New Results in the Calculation of Modulation Products
By W. R. BENNETT

A new method of computing modulation products by means of multiple
Fourier series is described. The method is used to obtain for the problem of
modulation of a two-frequency wave by a rectifier a solution which is con-
siderably simpler than any hitherto known.

HE problem of computing modulation products has long been
recognized as being of fundamental importance in communication
engineering. Heretofore certain quite fundamental modulation prob-
lems have been attacked by methods which are difficult to justify from
the standpoint of mathematical rigor and some of the solutions ob-
tained have been in the form of complicated infinite series that are not
easy to use in practical computations. In this paper these problems
are solved by means of a new method which is mathematically sound
and whih yields results in a form well suited for purposes of com-
putation.

The analysis here given applies specifically to the case of two fre-
quencies applied to a modulator of the “cut off” type;i.e., a modulator
which operates by virtue of its being insensitive to input changes
throughout a particular range of values. A simple rectifying charac-
teristic forms a convenient basis of approximation for study of such
modulators, and hence we consider in detail methods of calculating
modulation in rectifiers when two frequencies are applied. Applica-
tions to certain other types of modulation problems and to the case of
more than two applied frequencies are discussed briefly at the close.

HALrF WAVE LINEAR RECTIFIER—TwWO0O APPLIED FREQUENCIES

We shall define a half wave linear rectifier as a device which delivers
no output when the applied voltage is negative and delivers an output
wave proportional to the applied voltage when the applied voltage is
positive. We may take the constant of proportionality as unity since
its only effect is to multiply the entire solution by a constant. Assume

“the input voltage e(f) to be specified by

e(t) = P cos (pt + 6,) + Qcos (gt + 8,). (1)

The output wave will then consist of the positive lobes of the above
function with the negative lobes replaced by zero intervals. It is
228
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convenient to represent the amplitude ratio Q/P by k, and without
loss of generality to take

P>0and0=k=1. )

The problem we now consider is the resolution of the output wave into
sinusoidal waves, a complete solution requiring the determination of
the frequencies present, their amplitudes, and their phase relations.

The method of solution used employs the auxiliary function of two
independent variables f(x, v) defined by

f(x,¥) = P(cos x + k cosy), cosx + kcosy = 0,} 3)
= 0, cosx + kcosy < 0.
It is clear that the function f(x, ¥) may be represented by a surface
which does not pass below the xy-plane and which coincides with the
xy-plane throughout certain regions which are bounded by the multi-
branched curve, ‘
cosx + kcosy = 0. _ (4)
If either x or y is increased or decreased by any multiple of 2, the
value of f(x, y) is unchanged. Hence f(x, y) is a periodic function of
x and y, and if its value is known for every point in the rectangle
bounded by ¥ = =+ 7, x = =+ = say, the value of the function may be
determined for any point in the entire xy-plane.

From the above considerations we are led to investigate the expan-
sion of f(x, ¥) in a double Fourier series in x and y. We may readily
verify that the function satisfies any one of several sets of sufficient
conditions ! to make such an expansion valid. We may write the
expansion thus:

flx, y) = i;a iﬂ [Axpn cos (mx 4= ny) + Bapa sin (mx = ny)], (5)

with the summation to be extended over both the upper and lower of
the ambiguous signs except when m or # is zero, in which case one value
only is taken (it is immaterial which one); when m and # are both zero,
we divide the coefficient Ay by two in order that all the 4-coefficients
may be expressed by the same formula. Determining the coefficients
by the usual method of multiplying both sides of (5) by the factor the
coefficient of which is to be found and integrating both sides throughout
the rectangle bounded by & = ==, y = ==, we obtain:

! Hobson, ‘' Theory of Functions of a Real Variable,” Vol. 2, p. 710.
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Atpmn = —21? f f f(x, v) cos (mx & ny)dydx,
bt 8 et (6)

Biyn =—271r?f f f(x, v) sin (mx 4+ ny)dydx.

We now return to our original problem of representing the positive
lobes of a two-frequency wave as a sum of sinusoidal components. We
may apply the double Fourier series expansion of f(x, v}, which must
hold for all values of x and y, to the special case in which x and y are
linear functions of the time. If we let

x = pt + Oy
y=qt+eq.} Q)

the function f(x, y) represents the rectified two-frequency wave as a
function of time. The values of x and y which are used lie on the
straight line,

yé§x+ﬂq—§6,,, (8)
which is obtained by eliminating ¢/ from (7). A representation of
f(x, v) valid for the entire xy-plane must of course hold for values of
x and y on thissstraight line. Hence we may substitute the values of
x and vy given by (7) directly into the double Fourier series (5), and
the result will evidently be an expression for the rectifier output in
terms of discrete frequencies of the type (mp & ng)/2x. The phase
angle of the typical component is m#0, 4= nf, and the amplitude is
expressed by (6).

The solution is thereby reduced to the evaluation of the definite
double integrals of (6). Three different methods of reducing these
integrals have been investigated, and it appears that each has certain
peculiar advantages and points of interest. We shall consider them
separately.

I. STRAIGHTFORWARD GEOMETRIC METHOD

In this method, which yields remarkably simple results in a direct
‘manner, we determine the boundaries of the region throughout which
f(x, ¥) vanishes and substitute appropriate limits in the integrals to
exclude this region from the area of integration. When this exclusion
has been accomplished, f(x,y) may be replaced in the integral by
cos ¥ + kcosy. The boundary between zero and non-zero values of
f(x, ¥) is the curve (4), which has two branches crossing the rectangle
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over which the integration is performed. The non-zero values of
f(x, y) lie in the shaded region of Fig. 1. From the symmetry of the
- region about the x and y axes we deduce at once that the sine coeffi-
cients, B+,., must vanish and that the cosine coefficients, Ay, may
be obtained by integrating throughout one quadrant only and multi-
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Fig. 1—Region of integration for the determination of the coefficients in the double
Fourier series expansion of f (x, ¥).
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plying by four. We therefore obtain, on substitution of the proper
limits,

2P
Apn = Atmn = =5 f cos nydy
™™ Jo

are cos (— k cos y)
Xf (cos x + k cos y) cos mxdx  (9)
0
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This expression gives the amplitude of the typical component of
frequency (mp & ng)/2w. The remaining steps are concerned merely
with the calculation of the integral (9) for particular values of m and #.

It will suffice to work through one example in detail and give the
results in tabular form for the other products up to the fourth order.
The second order side frequencies, (p = ¢g)/2w, will be taken as a
typical case.

By direct substitution

2P T are cos {— k cos ¥)
An = ?I cos ydyf (cos x + k cos y) cos xdx. (10)
0 0

Performing the inner integration and substituting the limits for x, we
obtain:

An = ;frcosy[arc cos (—kcosy) + kcosy V1 — krcos’yIdy. (11)

0

Considering separately the integral,

f cos y arc cos (— % cos y)dy,
0

integrate once by parts, letting

u = arc cos (— kcosy),
dv = cos ydy.

The result is, after combining with the remainder of the integral for Ap,

T a1 2 2 ._.. 2 2
Ay = g [‘ sin?y + cos? (1 — k%cos?y) dy. (12)
™ Jy V1 — k2costy
Now substituting
cos y = 3,
we obtain
2kP M 1 — k%t
Ay = 2P ke (13)

™ NI =) — B

This is a standard elliptic form.? It is convenient here to let

2 Tt may be remarked that a large number of the integrals required in the evaluation
of the coefficients are listed by D. Bierens de Haan, ‘“Nouvelles Tables d'Integrales
Definies.”” See in particular Tables 8 and 12, pages 34 and 39.
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A il _
.[ul \f(I i Zz)(l — kzzz) dz ) (14)

By differentiating the expression z7—3 V(1 — 22)(1 — k%?), we may
easily derive the useful recurrence formula:

(m - 2)(1 + kz)zm—i’ - (”1 - S)Zm—'l .

Zn = m— D&

(15)

We may now calculate the value of Z,, for even values of 7 in terms of
Zoand Z,. Z,is a complete elliptic integral of the first kind which we
shall designate as usual by K i.e.,

' dz

K= [ —% [é\l—fezsinﬂede. (16)
Jo v — 2 (1 — k%) 0

Furthermare from; the identity:

ES =,l[ 1 =2
Ao - BlNi-sa—ks Vi—2

we have

v (17)

1
= (K — E), (18)

where E is a complete elliptic integral of the second kind defined by

— p252 L
F_[ \/11 _krf dz=f2\-1—ia2sin2 6do. (19)
Q

Now making use of (15), we calculate Z, in terms of Z, and Z, and

get finally:
(2 + BK — 21 + BE

Zy = 37 (20)

We can then evaluate (13) in terms of K and £. The result is
An =22 11 + BE WK 1
uﬂml:( ‘+‘k) _(1_ ) ] (2)

The process of evaluating the other coefficients is quite similar.
Results are listed in Table I.

Convenient tables of K and E may be found in Peirce's Short Table
of Integrals (page 121), Byerly's Integral Calculus, and the Jahnke
und Emde tables. For a very extensive set of tables, see Legendre's
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Traité des Fonctions Elliptiques. Numerical calculation of the coef-
ficients making use of these tables and the formulae listed in Table I
is a quite simple process. Curves of the coefficients as functions of k
have been calculated in this way and are plotted in Fig. 2.
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Fig. 2—Curves showing amplitudes of modulation products in output of half wave
linear rectifier when input wave consists of two frequencies.

It is perhaps worth noting that the special case of equal funda-
mental amplitudes (P = Q or £ = 1) yields the simple result,

8(—)mP

Amn = Con + n)? — 1[(m — n)? — 1]n°

(22)

where m + n is even. When m + # is odd and greater than one,
Aun is zero.
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II. FouriER SERIES METHOD

The second method is of interest because it obtains the same results
as the only previously known solution,® which is in terms of infinite
series involving Bessel functions. The fact that the results agree is a
check on the validity of certain doubtful rearrangements of multiple
series necessary in the process by which these results were originally
obtained. Furthermore by comparison with the corresponding results
of the first method we can sum the infinite series in terms of complete
elliptic integrals; a number of interesting mathematical theorems are
thus proved, which have been made the basis of a paper by the author
in the December, 1932 issue of the Bulletin of the American Mathe-
~ matical Society.
By expanding the function:

d)(u}:—%r —c=u=20
| (23)
= %s O=u=c
in a Fourier series in %, we may verify that:
c ., u 2c& 1 (2r — Dau _ _
iR R P Ry s vt R e CE“SO} (24)
= u, O=u=c.

If welet # = P cos x + Q cos v, the left hand member of (24) is equal
to f(x, y) provided |P| + |Q| < ¢. With this restriction on ¢, we
may substitute the resulting expression for f(x, ¥) in the integrand of
(6), and no change in the limits of integration are required. Term by
term integration of the series may be justified without difficulty, and
making use of well known definite integrals, we obtain finally:

. wjmf,n(z"_le)Jﬂ(z’"_le)
2

C c c
Amn = '1';2' (_) g (2? — 1)2 y (25)

where # -+ 7 is an even integer. When m + # = 0, the extra term
¢/4 must be added. When m + # is odd and greater than one, the
value of A,. is zero; when m + n = 1, the values are 4w = P/2,
Am = Q/Z. N
Peterson and Keith obtained the above result 3 by substituting

3 Peterson and Keith, “Grid Current Modulation,'" Bell System Technical Journal,
Vol. 7, pp. 138-9, January, 1928.
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# =P cos x + Q cos y in the left hand member of (24), applying
Jacobi’s expansions in series of Bessel coefficients, and rearranging the
resulting triple series. It appears that it is much more difficult to
justify the series rearrangement than term by term integration. From
the results obtained by the first method it follows that the series in
(25), which might be termed a generalized Schlémilch series,* is sum-
mable in terms of elliptic integrals.

III. TRIGONOMETRIC INTEGRAL METHOD

Following a suggestion of Mr. S. O. Rice, we may make use of the
following relation:

g+1—£ s uhd)t=ﬂ, 1:20}

T Jo A (26)

=0, u=0.

Evidently if we substitute # = P cosx 4+ Q cos y, the left hand member
of (26) represents the function f(x, ¥) and may bé substituted in the
integrand of (6) without change in the limits. Interchange of the
order of integration may then be justified without difficulty and the

following result is obtained in terms of a special case of the integral of
Weber and Schafheitlin:

’"+"+2 Ju(PX
A = 2 (= f n( )J TnPNIAON 4 @7
'JT‘
where m + n is even and greater than zero. When m 4+ n = 0, the
above integral should be replaced by an infinite contour integral taken
along the real axis except for an indentation to avoid the origin and
with all other quantities remaining the same except for a division by
two. For all even order modulation products it may now be deduced *
that:

m+n
e +IP(m+n—1

7 ) k»P

A,,.,,=
27T (n 4+ 1)T (W)
xF(’”"';’_l. ”"’;’—1; n+1; kﬂ). (28)

The case of m + n = 0 requires a special investigation, which shows
that (28) holds for this case also.

4 Cf. Watson, " Theory of Bessel Functions,” Chapter XIX.
& Watson, ' Theory of Bessel Functions,” p. 401.
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The hypergeometric function in (28) may always be expressed in
terms of K and E by successive applications of recurrence formulae and
use of the known relations:

K=’—2‘”F(%. %; 1; kz),
(29)
E=7_"F(_.1, %; 1; kﬁ).

By means of the hypergeometric recurrence formule we may also
show that

—_ 2[(m — 1)k2 + n— IJAm—l, n—1 '+' (m + n— 5)kAm—z, n—2

Amn = (m+n+ 1Dk

(30)

when m + niseven. A discussion of the hypergeometric function and
a derivation of (30) are given in the appendix.

From (30), we can compute successively all even order modulation
products starting with say A and Ay, known. If negative subscripts
occur in applying the formula, they may be replaced by positive sub-
scripts without changing the validity of the results; this is proved in
the appendix.

HaLr WAVE SoUARE Law RECTIFIER—Two APPLIED FREQUENCIES

The solution for two frequencies applied to a square law rectifier, or
in fact to any rectifier operating on an integer power law, can be
obtained in a manner quite similar to that used in solving the linear
rectifier. In the case of a square law rectifier, we have to represent
the function

flx,y) = P?(cos x + kcos )3, cosx + kcosy > 0

=0, cosx + kcosy < 0.} (31)

Going through the same steps with this function that we did with that
of (3), we find that the amplitudes of the modulation products can be
expressed in terms of K and E as in the case of the linear rectifier; the
results are listed in Table I. A set of curves is plotted in Fig. 3.

7. (2" 1 WP) 7. (2’" 1 WQ)
c C
T™ r=1 (21’ - 1)3

We may also show that

(32)

when m + n is odd and greater than one and ¢ > |P| 4+ |Q|. For
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Fig. 3—Curves showing amplitudes of modulation products in output of half wave
square law rectifier when input wave consists of two frequencies.
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Ay and Ao we must add cP/2 and ¢Q/2 respectively. The value of
A mn is zero for m + n even and greater than two; the other even order
products are listed in Table I. Another form of the result for odd order
products is

m-n+41 ]
™ 0 A
or
mpnd1 kP (%@)
Amn = (—) : m—n + 4

XF(m—l—;z—z, n—?;t—-Z; n+1; ke). (34)

A three term recurrence formula for odd order products is:

_ 2[(m—1D)k+n—1]4n1, nart(m+n—6)kAm 2. 2,

Amn = (m+?l+2)k (35)
When P = Q, and m + » is odd,
—\ m+1p2
Apn = 64 () P (36)

m* — w®)[(m + n)? — 4] (m — n)* — &]r*

OTHER APPLICATIONS AND RESULTS

The solution for any full wave rectifier can be obtained from the
solution for the corresponding half wave rectifier. Thus we may easily
show that the output of a full wave linear rectifier contains neither of
the fundamentals and that the amplitudes of all other modulation
products are twice as large as the corresponding amplitudes in the
output of a half wave linear rectifier. It is also evident that by super-
posing the solutions for the linear and square law rectifiers we can
obtain the solution for a quadratic law rectifier having an output equal
to ae(t) + asle(t) ] when e(f) is positive and no output when e(f) is
negative. Biased rectifiers, peak choppers, and saturating devices
can be solved by the same methods used above, the solution of course
becoming more complicated for the more complicated kinds of char-
acteristics. Nor is the method restricted to ““ cut off "' type modula-
tion. Curvature type modulators can be treated in the same way and
in many cases solution by the above method is simpler than by the
usual power series expansion. The method also appears to have
promise in the solution of magnetic modulation problems, where the
effect of hysteresis must be considered.



THE CALCULATION OF MODULATION PRODUCTS 241

When three frequencies are applied, a triple Fourier series is required,
and in the general case of n frequencies, a Fourier series in # variables
would be used. The work becomes more complicated as the number of
frequencies increases, but there is no theoretical limitation.

In conclusion the writer wishes to express his appreciation of the
valuable advice of Messrs. T. C. Fry and L. A. MacColl on the tech-

nical features of the paper.
APPENDIX

The hypergeometric function F(a, 8; v; z) may be defined by the
power series:

e af ale + 1)B(B +

F(QHBI'YOZ)_I-FI!’YZ',_ 2'7(‘7-'—1)

When any one of the three quantities «, 8, v is increased or decreased
by unity a new hypergeometric function is formed which is said to be
contiguous to the first. Gauss listed fifteen linear relations which
connect F(e, B;+v;2) with pairs of its contiguous functions. In deriv-
ing the recurrence formula for 4., we require difference relations
between functions which are not contiguous, but the required relations
may be obtained from those listed by Gauss by a process of substitution
and elimination.

We shall find it convenient to designate F(e, 8;v;3) by F, F(a + 1,
Biv:2) by Fey, Fla + 1, 8; v — 1; 3) by Fapq—, etc., and to let

1)22—1----.

Q=W; an_%—_ﬂ v =, 5=

In this notation, Equation (27) becomes:

mtn _
(—) 2 %(%) P
Amn = — Fatrte
24T (n + )T (”‘2—"+—3)

The corresponding expressions for 4m—_1, n—1 and 4,._s, ,_» are by direct
substitution:

min _
R NCESEE
Am—], n—1 = — F,
27T(n)T (’”—;’ "'—3)
(—)M_F_]P (m +;l — 5) pr2p
Am—2, n—-2 = Fn_y_.

22T(n — 1)T (—’” 4 3)

2
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Thus a recurrence relation expressing A,. in terms of A,y n—1 and
A s, n_s evidently requires a relation between Fayyt, F, and Foy_.
Referring to Gauss’ tables,® we find

(y—a— 1)F+aFy — (y— 1DF,-=0,
¥y(1 — 5)F — yFar + (v — B)2Fay = 0.

Il

From the second of these two equations we form two more equations by
substituting « 4+ 1 for a in one case and y — 1 for v in the other,
giving

y(1 — 2)Fay — vF + (v — B)sFayse =0

(y— DA —=2)F-— (y— DFary-+ (v —1 — B)2F = 0.

Now eliminating F.. and F,_ from the first, third, and fourth of the
equations, we obtain

a(B — ¥V)2Fapry + [y — 1 + (@ — B)z]F
— vy — DFaey- =0,

which is the relation desired. Substituting the value of Faiyq in
terms of Ama, F in terms of Am_1, a1, and Fa—y_ in terms of Apm_2, 22
gives the recurrence formula of Equation (30).

In using (30) we may find, as for instance in calculating Amo, Am,
Aon, A1, that the right hand member involves coefficients with nega-
tive subscripts. A simple rule for treating such cases may be demon-
strated as follows. We first note that if we replace m by —m in
(28) the value of the right hand member is unchanged.” Hence since
(30) is derivable directly from (28), we conclude that correct results
are obtained from (30) if we adopt the convention,

A—m, n = Amn-

The case of n negative is a little more difficult because if # is a
negative integer in (28), an indeterminate form results. However,
making use of the result just obtained on the interchangeability of sign
of the subscripts, m, m — 1, m — 2 in (30), we can demonstrate a

¢ Gauss, Werke, Bd. III, page 130. The equations used here are numbered (5)
and (8) by Gauss. .

7If we express (—)"/T (m +;1 - 1) /I' (m — ; + 3) in terms of (—)-m?

— - —m — 3 . —
T (_mll) /I‘ (_%t_) by successive applications of the recurrence

2
formula for the gamma function, we find the two quantities are equivalent. Chang-
ing the sign of m in the hypergeometric function merely interchanges « and B, and
hence does not change the value of the function.
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similar rule for the subscripts #, # — 1, n — 2, valid when (30) is used.
For example, by direct application of (30), we deduce that

A _ 2[(1 —mk+n+1]4 a1+ (n—m— l)kA—m.n.
Bt (n—m + S)k

Now since it is known that we may replace the subscripts 2 — m,
1 — m, and —m by m — 2, m — 1, and m respectively, we may show
that

_ 2[(’” - 1)k2 - n— lem—l,ﬂ-H -+ (m — n + S)kAm—2. n+2

Am"l= (m_ﬂ‘i_l)k ?

which is exactly equivalent to the relation we get if we replace n by —n
throughout in (30) and then substitute A, —n = Amny Am, —n1 =
Am, n41y Am. —n-2 = Am, nt2.

It may be remarked that it would be incorrect to base a proof of
interchangeability of sign of subscripts on (27) because the equivalence
of (27) and (28) has not been demonstrated for a sufficient range of
values of m and n.



