Mutual Impedance of Grounded Wires for Horizontally
Stratified Two-Layer Earth *

By JOHN RIORDAN and ERLING D. SUNDE

A general formula is derived for the mutual impedance of wires embedded
in a conducting medium and lying in one of two parallel planes of discon-
tinuity in the conductivity. The general formula is quite complicated, but
simplifies in a number of important cases, and summarizes the published
mutual impedance formulas relating to two-layer earth and its special cases.
The two most important cases are obtained by making the conductivity of
one or the other of the outer regions zero. The special case in which the
conductivity of the outer region adjoining the wires is zero gives the mutual
impedance of any thin grounded wires lying on the surface of a horizontally
stratified earth having conductivities A, and X. at depths less than or greater
than b, respectively. When the conductivity of the other outer region is
zero, the formula gives the mutual impedance of wires lying in the plane of
separation, at the depth b. The formulas in both cases involve integrals
which apparently cannot be evaluated in closed form: for practical applica-
tion the use of curves of the kind given is suggested for approximate
numerical results. The formulas for the special cases, of which there are 11,
together with some of their limiting forms, are tabulated together for ready
reference.

I

HE general formula for the mutual impedance of wires embedded

in a conducting medium and lying in one of two parallel planes

of discontinuity in the conductivity with displacement currents
neglected is of the following form:

Zsu = f ’ fA ’ {d;gi,? + iwP(r) cos e} dSds. )

The integrations are extended in the double integral over the two
wires S and s extending between points 4, B, and a, b, respectively,
whose elements d.S and ds are separated by distance r and include the
angle e between their directions. Q(r) and P(r) are functions of the
frequency, the conductivities, and of the separation b between the
planes of discontinuity in the conductivities as well as of 7.

For wires on the surface of a horizontally stratified earth having
conductivities A and As at depths less than or greater than b,
respectively, Q(r) and P(r) are given by:

* A preliminary report of some of the results of this paper has been given in a
Iettet)' to the Editor of the Physical Review, Vol. 37, No. 10, pp. 1369-1370 (May 15,
1931).
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Q(?’) = L N [ 4(112(“ + C!z) ()\1 —_ lz)e—zbal ]
27\ ), Alahz + a2h; + (@2 — ashy)e e ]

X Jo(ru)du,

P(r) = zfm%[m + as + (1 — az)e ] Jo(ru)du.
(1]

For wires lying in the plane of separation, at the depth b:

u[all: + u+ (a1 — w)e 2]
= L "o Tan + a4+ (a — as)e @] 4+ daase
Q) = 27 Jy Al ahs + ashs £ (ahe — azh)e e ] Jo(ru)du,

POY =2 [ Lo+t (= e (i
/0

In these formulas:

= v— 1 = imaginary unit,

= 2xf = radian frequency,

= (a1 + a)(u + ar) + (@1 — a2 — ar)e =,
af = u? 4 tdrwk; (j =1and 2),

Jo = Bessel function of the first kind, zero order.

=,

w > E

Expression (I) is identical in general form with the formula for
mutual impedances of grounded wires given by R. M. Foster! and
the Q(r) and P(r) functions for the two cases above reduce to agree-
ment with his formula, with appropriate changes in notation where
necessary, in any of the cases resulting in wires on the surface of
homogeneous earth, namely, for the first pair of functions, (i) Ay = A,
(i) b = 0, (iii) b = =, and for the second, (i) b = 0, (i1) A\ = 0,
(iii) b = o, A = 0. :

It may be noted that the integrations involving the Q(r) function
are accomplished by inserting the four limits, which are the four
distances between wire terminals, since each of the indicated integra-
tions has a corresponding differentiation. Symbolically the result of
carrying out the integrations in (I) may be written as follows:

Zsi = Qu-ma—n + 10Ns, (11)
where
Ou-men = [ [ G352 asis = 0(4a) ~ Q4B + QBY) — Q(Bo)

1R. M. Foster, ‘*Mutual Impedances of Grounded Wires Lying on the Surface
of the Earth,” Bulletin of the American Math. Soc., Vol. XXXVI, pages 367-368,
May, 1930. Bell System Technical Journal, Vol. X, pages 408-419, July, 1931.
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and

v B
. Ng: = f f P(r) cos edSds.
a A

Both Qi—5)@—n and Ng, are generally complex-valued and thus do
not represent resistance and inductance, as ordinarily defined, as
might be inferred from the similarity of expression (II) to the
usual impedance expression. At zero frequency 7wNgs, vanishes and
Q(A—B)(a—t) becomes R4_p)@a_), @ real number, the d.-c. mutual resist-
ance of the circuits. For frequencies sufficiently low, such that terms
involving higher powers of the frequency in the expansions of the
functions in powers of the frequency are negligible, the mutual imped-
ance can be expressed in the ordinary form; that is, in the formula

Zg = Ru—mye—t + 1@[N°—py@—p + N°s:] (I1I)

R(a—py@—n is as above the d.-c. mutual resistance; N°—p)@-p is the
coefficient of Zw in the expansion of Qs_g)@-n, a real number, and
generally equal to the sum of the Neumann integrals of the earth
flows with the wires and with each other, the earth flows being those
for direct current; N°g, is generally the Neumann integral of the
wires.? The bracketed terms thus give the d.-c. mutual inductance of
the wires with earth return.

For infinite distance between all terminal grounds 4, B, a, b, taken
in pairs, Qa—p)@—b vanishes.

The physical distinction of Qu—p)@-» and Ng, may be illustrated
by the following two cases: In the first, one wire is supposed straight
and of arbitrary length; the second extends at right angles to it from
two grounding points and is closed at infinity (that is, by a segment
parallel to the first wire and at such distance that its mutual impedance
with the first wire is negligibly small). In this case, in the per-
pendicular segments cos ¢ = 0, and in the parallel segment P(r) = 0,
since r = o, so that Ns, = 0 and the mutual impedance is given
entirely by Qa—p)w—n; that is, the mutual impedance depends only on
the grounding points. In the second case, the two perpendicular
segments of the second wire extend away from a parallel segment to
grounding points at infinity. Here the mutual impedance is given
entirely by Ng,, since Q(r) and, therefore, Qt1-5)w—s vanishes for the
limit r = eo.

Table I is a summary of mutual impedance formulas obtained as
special cases of the general formula. For each case the first column
entries consist of the Q(r) and P(r) functions in the mutual impedance

? An ambiguity concerning this statement as well as that referring to N°wu_p)(a—t),
arising in certain particular cases, is discussed below. -
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formula for arbitrary paths; then follow the d.-c. mutual resistance and
inductance, and in the last columns exact and approximate expressions
for the mutual impedance gradient parallel to a straight wire of infinite
length.

The first entry in each group is the general case of two-layer earth.
In the first group, the next three entries are those in which one of the
conductivities is given the special value zero or infinity, one of the
four possible cases being trivial. The fifth and sixth entries involve
finite surface conductivity which is defined by ¢ = tl,i_rg bA1; in the first

of these the surface conductivity differs from the conductivity of the
homogeneous earth below it, in the second the earth below is abolished.
The latter may serve as a convenient approximation to the case in
which the earth consists of a thin upper layer of high conductivity
relative to the layer below. The final entry of this group is the case
of homogeneous ground. In the second group the second entry is
the limiting case for b = o, which places the wires at the plane of
separation of two semi-infinite media of conductivities A\; and A\g;
the general formula for this case has been independently obtained by
R. M. Foster. With either conductivity zero this case reduces to the
case of homogeneous earth; with equal conductivities the case of an
infinite medium is obtained, which is the final entry of this group.
The third entry is the case of wires at depth 4 in homogeneous earth:
for sufficiently large depths the formulas approach those of an infinite
medium.

Further information regarding these special cases may be obtained
from the papers referred to in Table I. .

In case 1.4 where the conductivity A, approaches an infinite limit,
an ambiguity arises concerning the d.-c. mutual inductance, two
cases appearing according as the approach of A, to infinity is assumed
faster or slower, respectively, than the approach of the frequency to
zero, that is, according as the limits are taken Ay — ©, w — 0 or
w =0, A2 > . The entry in the table corresponds to the latter
limit and also to d.-c. distribution of earth current. The alternate
limit gives:

L°sy = N°ss — N°ser + N°U—Byta—n,

where
N°®ge¢ = Mutual Neumann integral of one wire and the image of the
other wire, the image plane being the plane of separation
of the media.
® 1 — e % — 2k Jo(u) — 1
L] —_— —ku
Ne(r) 7’1: € (1 + eho)2 ) du

(0> N°(r) > = .2r).



165 BELL SYSTEM TECHNICAL JOURNAL

The ambiguous cases arise only in the limits A = «©, w - 0and A -0,
@ — ®, the product Aw appearing in the expressions then being
strictly indeterminate, until the order of the limits is defined.

11

Different problems are encountered in obtaining numerical results
for the two functions Qu—p)@—» and Ns.; Qua—pye—b is determined in
terms of four values, with proper sign, as given in equation (II), of
Q(r); while Q(r) apparently is not generally expressible in terms of
known functions it may always be evaluated by numerical integration.
The case of N, is different because of the necessity of double integra-
tion over the wires; general numerical results involve carrying out at
least one of these integrations in addition to that required in evaluating
P(r), involving a considerable amount of labor and complexity of
results.

However, without carrying out either of the evaluations completely,
the formulas for the limiting cases may be used to obtain results
approximating certain practical conditions. The important limiting
cases are (i) one wire infinite, and (ii) zero frequency. Curves for
these cases for wires on the surface of the ground and for special
values of the parameters are given in Figs. 1-6, as described below.
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Fig. 1—Mutual impedance gradient at earth’s surface parallel to an infinite
straight wire on the earth’s surface; real component; two-layer earth Ay = 10Ay;
b and v in feet, frequency in cycles per second, conductivities in abmhos per cm.

Figures 1 and 2 show, respectively, the real and imaginary parts of
the mutual impedance gradient parallel to an infinite straight wire for
the conductivity ratio Az/A; = 0.1; Figs. 3 and 4 show the same
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quantities for Az/A; = 10. When the depth b approaches the limits
zero and infinity, the ground condition approaches the limits of
homogeneous ground of conductivities Az and A;, respectively. By
reference to Figs. 2 and 4 it will be seen that there is a wide range in
which the curves for other values of the depth are parallel to these
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Fig. 2—Imaginary component of mutual impedance gradient
for conditions of Fig. 1.

limiting curves so that for a given frequency a properly chosen homo-
geneous ground conductivity leads to equivalent results. The equiva-
lent conductivity varies with the frequency, increasing or decreasing
with increasing frequency according as \; is greater or less than Ag;
this variation of apparent homogeneous conductivity with frequency
has been frequently observed in results obtained from mutual im-
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pedance measurements.® For a given frequency the complete group
of curves of which Figs. 2 and 4 are examples may be put in more con-
venient form by plotting the equivalent conductivity as dependent on
the other parameters of the problem.

The d.-c. mutual inductance of wires .S and s, as given at the head
of the corresponding column in Table I, is:

- L°g = N%, + N°(da) — N°(Ab) — N°(Ba) + N°(Bb),

where N°g, is the mutual Neumann integral of the wires and is the
main term in the formula. The small contribution arising from the

remaining terms is as shown on Fig. 5 always less than A = — Aa
1.0 ]
u
08 . p=lirhe
Bs, A+Az
0.6 t
— 275 \\\
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11 o] e
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Fig. 5—D.-C. mutual inductance, exclusive of mutual Neumann integral of wire
paths, of wires on surface of two-layer earth;

Nota-mia-ty = N°(Aa) — N°(Ab) + N°(Bb) — N°(Ba).

+ Ab + Ba — Bb. Figure 5 shows values of N°(r)/r for values
of £ = 2b/r from .01 to 10 and for a range of values of 8 = (A, —
M) /(A1 + Xg) from — 1 to + 1.

The d.-c. mutual resistance, of course, also varies between the

# Extensive results of such measurements are published in the following papers:

A. E. Bowen and C. L. Gilkeson: “Mutual Impedances of Ground Return
Circuits,” Trans. A.I.LE.E., 49, 13701383 (Oct. 1930), and Bell System Technical
Journal, 9, 628-651, Oct. 1930.

G. Swedenborg: ‘' Investigations Regarding Mutual Induction in Parallel Con-
ductors Earthed at the Ends.” The L. M. Ericsson Review, English Ed. No. 7-9,
1931, pages 189-204.

H. Klewe: ‘‘Gegeninductivitiits Messungen an Leitungen mit Erdruckleitung,
Elekirische Nachrichten Technik, 1929, page 467, and 1931, page 533.

J. Collard: ** Measurement of Mutual Impedance of Circuits with Earth Return,"
The Journal of The Institution of Electrical Engineers, Vol. 71, No. 430 (Oct. 1932),
pages 674—682.

* The only formal result in the evaluation of the Neumann integral known to us
is that for arbitrary straight paths published by G. A. Campbell, * Mutual Induc-
tances of Circuits Composed of Straight Wires,”" Phys. Rev., 5, pp. 452-458 (June
1915); see also his “ Mutual Impedance of Grounded Circuits,” Bell System Technical
Journal, 2, pp. 1-30 (Oct. 1923).
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limiting cases of conductivities Az and A, corresponding to the limiting
depths zero and infinity. The curves showing the dependence of
mutual resistance on the depth and conductivities are put in the
simplest form in terms of the two quantities 2b/r and the conductivity
ratio A;/A2. Curves of this kind are shown on Fig. 6.°

100

50
40

30{—
zow

/Y
/

3.16

21— 778

V
// ///
[1/]
1777
171/
1L/ 7/

2T AR ()

0562 = e

0.5 =
0.4

0.316 .

V7
74

0.2

0. 1

olo

-

0.05

0.04 0.0316 J
+—

0.03 /

002 0.0

/|
0.0l /

ol 0.5 1.0 2b 5 10 50 . loo
T
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5 We are indebted to our colleague Mr. L. L. Lockrow for these curves. Tables
from which the function R(r) can be evaluated are published in the Bureau of Mines
Technical Paper No. 502.




MUTUAL IMPEDANCE OF GROUNDED WIRES 171

Thus for low frequencies and short wires the main effect of two-
layer earth will consist of the effect on the d.-c. mutual resistance.

IT1

The mutual impedance of wires in a medium having two parallel
planes of discontinuity in the conductivity may be derived by extension
of certain results published by A. Sommerfeld,® who has obtained the
electric and magnetic fields of a horizontal electric doublet in a medium
having one plane of discontinuity; the doublet may be regarded as an
element 4. of a wire of negligible diameter carrying a finite current and
the mutual impedance of wires obtained by double integration over
their lengths. The general formula may also be derived by extension
of the second method of derivation given by R. M. Foster (loc. cit.),
but for brevity this derivation is omitted here.

In the following both rectangular coordinates (x, ¥, z) and cylindrical
coordinates (7, ¢, 2) are employed, with the origin in the upper hori-
zontal plane of discontinuity, z in the vertical direction and x in the
direction of the doublet. Electromagnetic c.g.s. units are used, and
the field variation with time taken as €, this factor being omitted
throughout. The fields are defined through ‘“‘Hertzian Vectors,” 7
the rectangular components of which must individually satisfy the
wave equation:

I | 811 | 9°1I1

- o O AT =
6x2 6}'2 a Y I = O (IJ
and in terms of which
E = ¢ grad div IT — ¢+?21I, (2)
H=— ”;‘:72 curl 1, 3)

where

=
Il

Hertzian vector = II,, II,, II,,

Y= 4drMw — ew?,

kel
m
I

= conductivity and dielectric constant,
w = 2xf = radian frequency,
¢ = velocity of light.
¢ A. Sommerfeld, “Uber die Ausbreitung der Wellen in der drahtlosen Tele-
graphie,”" Annalen der Phyuk (4), 81, 1135-1153, December, 1926

" Abraham and Féppl, * ‘Theorie der Elektrmtat " Tth ed Lelpz:g and Berlin,
1922, Vol. I, § 79, page 322,
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The conductivities and dielectric constants are taken as:

Mo, €0 for z>0
AL €1 for—b<z<0
Kg, €9 for 2 — b

where b is the distance between the parallel planes of discontinuity.
The primary field of a doublet in the direction of the x-axis at

z = his given by

' e Mk “ g
Iy, = 4 7= Af . wJo(ru)du 0>z>h, 4)
0 0

where

=
5]
I

x* +
R=r+ (z — h)?
vo = 4miwhy — w?

a® = u? + 702-

€0y

The constant 4 which is the moment of the doublet is as yet un-
determined. From (3):

ic
Hu’ = —4 ; 'Y(]2 curl Ho;’,

and for vo = 0:
‘ N R 1
Hy [ A L ]vn-n curlR

’

For this case the magnetic force due to unit current in an element
dS is given by Biot-Savart’s law 8 as
H = dS curl -1,
R .

so that
1wdS

Yol

The secondary fields are derived from Hertzian vectors having
components in the direction of the x and z axes. Components in the
direction of the y-axis are eliminated due to symmetry with respect to
the x — z plane.  The resulting fields are then composed as follows:

HD:: = HD::' + HD::”: HD; = Hﬂx” 2 > 0:
H]_;, H], - b S z S 0,
szl Hﬂz z S - br (5)

8 Abraham and Féppl, ““ Theorie der Elektrizitit,” 7th ed., Vol. I, § 55, page 189.
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in the first of which the double primes indicate the components of
the secondary field.

The expressions for the field intensities in terms of the Hertzian
vector components may now be written out by equations (2) and (3)
and are as follows:

i, = — L,

!

e ©)
E; = — ¢yII; + c%(%-k 661:') ,

= a5 (T +55)

Bam o2 (e O,

The proper general solution of (1) for the components of the second-
ary fields is of the following form:

II = cos nqu‘ou (fw)ee + g(u)e==2) J, (ru)du. (7)
0

X
where a? = %% + 4% and cos ¢ = L

The boundary conditions at z= 0 and z = — b consist in the
continuity of the tangential (x, y) components of H and E. The
equations arising from the boundary conditions can be simplified by
differentiation or integration with respect to x or y (which is possible
by virtue of (7)), and are taken in the following convenient form:
z=0:

¥o'llo: = 7*114,, (8)
all,. oIl

2 — 2 ,

¥ oz T 0z ©)

dlly, |, dlle, 9l |, 9104,
0z 4 IMlos _ 1z 4 9t

dx dz ox- dz (10)

Yo' oz = vo*Il1s; (11)
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z= —1b
7]21115 = 7221—[221 (12)
oIl 011,
2 — 2
T VY (13)

O, |, oIl _ 9l | 91y,
6x+6z_6x+az' (14)

Y2 = 2 s (15)

From boundary conditions (9), (11), (13), and (15), the x-components
of the Hertzian vectors can be determined separately and then used
in finding the z-components.

For the x-components the arbitrary functions f(\) and g(\) can be
determined from the boundary conditions if in (7) » = 0. These
components are therefore taken as follows:

My, = f " fo(wew To(ru)du - £>0,  (16)
0

M, = f " (fwe + g Jo(rwdu  —b<5<0, (A7)

e fomf“(")ew To(ru)du s< — b (18)

The arbitrary functions f(x) and g(u) are then determined by the
following equations, obtained from (9), (11), (13), and (15):

viter(fi — g1) = Aydue=*" — ydaofo,
vitao(f1 + g1) = Aydue + viaofo, (19)
viar(fiemat — gie®d) = ylasfrem P,
vi2(frem® + gie™?) = yo'foe™e,
where for convenience the argument % of the arbitrary functions has

been omitted.
The solutions of (19) for f; and g, are

_ 2Au(a; + ﬂz)e

SR (20)
7= 2A‘It(0£&— az) e"'ﬂo—%ﬂl,

where
A= o”) + al) (a1 + a) + (ﬂo - Ch) (al - az)e_%"l.
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The boundary conditions for the z-components may be satisfied by
taking # = 1 in equation (7); the resulting expressions are as follows:

. = cos qum po(u)e o Ty (ru)du 220, (21)
]

IT;, = cos ¢ fm (pr(u)e= 4+ q1(w)e=o) T (ru)du — b < 2<0, (22)
v

ITy, = cos ctuf po(u)e™ Ty (ru)du &< — b (23)
0

From boundary conditions (8), (10), (12), and (14) and the values of
the x-components as now determined, IT,, being given by equation
(17), Iy and Il being given in terms of it by equations (11) and
(15), the following equations are obtained:

v2(p1 + q1) = voPo,
arye(pr — 1) = — aovo’po + u(ve® — v)H(fL — g1),
y(pre=b + gred) = yy2pae—asd, (24)
a1y P(pre~a — qie™®) = agyo’pae b
+ u(y? — v (frema + gied),

the arguments of the functions being omitted as before.
From (24), . and ¢, are obtained as

("ru2 - ‘le)(aﬂﬁz -+ 02712)(f1 + gl)
b= — (v — yo¥) (aoy:® — aryo?) (fie~ ™ 4 great)e—=b
' (aovi® + arve®)(aiy2® + azv.?) ’
+ (aoy1® — a1ve?) (arys? — azyi®)e e

(ve* — M1V (a1ye? — aevid)(fr + gr)e?=a
. 4+ (v1® — v (aovi® + a1ved) (fre=® + gremb)e—at .
(aovi® + arvo’) (arys® + asvi?)
+ (cor1® — arved) (@1v2? — aayi?)e %o

(25)

qir = 1

The tangential components of the electric force at z = 0 are by (6),
(17), and (22):

E,= — cys? f " () + ga(u)) To(ru)du

+ c%cos 3 f "= w(fi(w) + gu(w)
+ ai(pr(u) — q1(u)) JJ1(ru)du,

(26)
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Ef=+€%ﬂﬁ¢£wD-MﬁW)+m@D
+ aa(pr(n) — q1(u)) JJ1(ru)du.

a [ Jo(ru)

Or since cos ¢‘£ Ji(rw)du = — p 0 !

Eo= = ovit [ (f) + i) Tofru)du

L]

— "'a%; - [— (f1(u) + g1(w))
+ %‘ (pa(n) — ql(n))] Jo(ru)du, (26a)
E, = — ‘ax_ay.f.; [— () + )

2 (pu(0) — 01 | Jutraodu.

Inserting the values of fi(x), gi(u), p1(x), and gi(x) for & = 0 and
neglecting all displacement currents (ep = €1 = e2 = 0), the following
expression is obtained: :

#90), 2901, o

E,, E, = dS [~ 1wP(r) + o ' oxdy

where

P(r) = wa%[m 4 as + (a1 — az)e™ 2 Jy(ru)du,
0

1 o0
Q(r) = ﬂj; ALAI {4(M — No)agar’e™*"
+ [ﬂfl + a2 + (ou - ag)ehgh']ﬂalfo(fﬂ)du,
where as before

A= (ap+ ar)(ar + a2) + (a0 — ar)(a1 — ag)e 2=n
and

Ay = (aoh1 + ano)(ahe + ahi) + (aht — aho)(@hs — ashi)e 2o,
Ay = (ag + 1) (ahe + ahi) + (a0 — ar)(ahe — ashi)e 2,

The mutual impedance of wire elements d.S and ds lying in the plane
z = 0, and including the angle e between their directions, is:
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dZg, = — ds[E, cos ¢ + E; sin €]
_ . _9%Q(r) a#*Q(r) .
= dSds [wP(r) COs € ap2 COS € 920y sin € (28)

dSds

Integration over the two wires S and s extending from 4 to B and
from a to b, respectively, gives their mutual impedance:

= {d2Q(r) + 2wP(r) cos € } dSds.

Zse = fb fs { tz%g;) + 1wP(r) cos € } dSds. (29)
a *A

With Ao = 0, the expressions following (27) for P(r) and Q(r)
reduce to those given in Part I for wires on the surface of the earth.
The expressions given in Part I for wires in the plane of separation at
the depth b below the earth’s surface are obtained by putting As = 0
and changing Aq to Az in the resulting expression.

We are indebted to Mr. R. M. Foster for evaluation of some of the
integrals as well as for general suggestions and counsel.



