Probability Theory and Telephone Transmission
Engineering

By RAY S. HOYT

Part I of this paper contributes methods, theorems, formulas and graphs
to meet a previously unfilled need in dealing with certain types of two-
dimensional probability problems—especially those relating to alternating
current transmission systems and networks, in which the variables occur
naturally in complex form and thus are two-dimensional. The paper is
concerned particularly with ‘“normal” probability functions (distribution
functions) in two dimensions, which are analogous to the familiar ‘‘normal”
probability functions in one-dimensional probability problems. It supplies
a comprehensive set of graphs for the probability that a ““normal” complex
chance-variable deviates from its mean value by an amount whose magni-
tude (absolute value) exceeds any stated value; in other words, the proba-
bility that the chance-variable lies without any specified circle centered at
the mean value in the plane of its ‘‘scatter-diagram,"’ that is, in the complex
plane of the chance-variable. It gives a comprehensive treatment of the
distribution-parameters of the ‘‘normal’’ complex chance-variable, and con-
venient formulas for the necessary evaluation of these parameters. For use
in various portions of the paper, as well as for various possible outside uses,
it supplies a considerable number of formulas and theorems on '“mean
values” (‘*expected values'’) of complex chance-variables.

Part II of the paper makes application of Part I to some important
problems in telephone transmission systems and networks involving chance
il}']regularities of structure and hence requiring the application of probability
theory.

INTRODUCTION

IN telephone transmission engineering a frequent problem is that of
determining the effects of random manufacturing variations upon
the wvalue of some characteristic (for instance, a transfer admit-
tance, or a driving-point impedance, or a current-ratio) of a trans-
mission system or network.! In certain cases, such effects may be of
great or even controlling importance in the performance of the system
and hence must be fully taken into account when designing the system
and when making calculations for predicting its performance.

For example, in a multi-pair telephone cable the crosstalk between
any two pairs is directly proportional to (strictly, a linear function

1 Such problems have in the past been handled by various approximate methods
the most satisfactory of which for many purposes was that described in a paper by
George Crisson, entitled, ‘“Irregularities in Loaded Telephone Circuits,” published
in this Journal for October, 1925. The method given in the present paper, while
necessarily more involved than approximate methods, yields more precise results;
and this additional precision is expected to be of importance in practice. Moreover,
there has been an increasing need for a comprehensive paper covering the entire
ground, and it is hoped that the present Faper meets this need to a measurable extent.

In Crisson's paper references will be found to various engineers in the Bell System
who had previously contributed to specific probability problems of the type dealt
with in Part IT of the present paper,
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of) the deviations of certain internal parameters from their nominal
values. Another example is furnished by two telephone lines con-
nected by the usual type of two-way telephone repeater: If the
two lines and their associated apparatus could be made identically
alike, a state of perfect balance would exist at the repeater and
there would be no tendency for the repeater to sing; however, as a
result of manufacturing variations, perfect balance is unattainable and
thus the practicable amplification obtainable from the repeater is
limited by the manufacturing deviations of the lines and associated
apparatus—particularly the deviations in the inductances and spac-
ings of the loading coils, in case the lines are loaded.

Such examples may furnish at least the three types of probability
problems described in the following three paragraphs:

Before the construction of the system there may arise the ““direct"
problem of calculating the characteristic to be expected, corresponding
to the known (or assumed) ranges of the manufacturing variations in
the elements. Before the elements are manufactured, the deviation
of any element from its nominal value is of course unknown; more-
over, such deviation is not completely predictable, since from its very
nature it depends on chance. The deviation is a variable in the sense
that it can take any value within a certain possible range. But it is
a particular sort of variable, namely a chance-variable, in the sense
that there exists a certain chance or probability that the deviation
will lie within any stated range of values, with the chance depending
of course on this range and on the specific probability law of deviation
for the kind of element under consideration. Correspondingly the
deviation of the contemplated transmission characteristic of the pro-
posed system is a chance-variable, whose probability law depends of
course on the probability laws for the deviations of the elements and
on the functional formula connecting the contemplated transmission
characteristic with the elements.

Before the elements of the system have been manufactured there
may, on the other hand, arise the “inverse” problem of setting such
restrictions on the manufacturing deviations of the elements as to
insure that the contemplated characteristic of the proposed transmis-
sion system will have a preassigned probability of lying within a
certain specified range. As might be expected, this “inverse” prob-
lem is more difficult than the “direct’ problem, and often it can be
solved only by successive tentative solutions of the corresponding
“‘direct” problem.

Finally, after the system has been constructed and tested, there may
arise the question as to whether its elements have been correctly con-
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nected together when installed. Assuming that the elements them-
selves are known, from previous individual measurements on them,
to fall within their specified ranges of allowable variation, a compari-
son of the measured value of the contemplated characteristic with the
calculated value to be expected on the basis of probability theory will
give some indication as to whether some of the elements are incorrectly
connected. Further, when there is present not merely a single system
but a large number of systems which are nominally alike (for instance,
the various pairs in a multi-pair telephone cable), measurement of
the contemplated transmission characteristic of each of the systems
and comparison of the statistical distribution of these measured values
with their calculated theoretical distribution will give a more con-
clusive indication as to whether some of the elements are incorrectly
connected.

Any particular problem to be solved can be handled most conveni-
ently and advantageously if the general problem is first formulated
analytically. Let us suppose, therefore, that H denotes the specific
transmission characteristic under consideration (for instance, a trans-
fer admittance, or a driving-point impedarice, or a current-ratio), and
Ky, +++ K, the internal parameters on which H depends; and let the
functional formula for H be

H= FK, --- K,), (D

where, of course, H and the K’s are in general complex (on the suppo-
sition that the usual complex quantity method of treating alternating-
current problems is being employed). As we shall be particularly con-
cerned with the deviations of the various quantities from their nominal
values it will be convenient to suppose that A and the K’'s denote the
nominal values of the corresponding quantities, and that any actual
set of values are denoted by X+ & and K, + %, -+ K, + ka, so
that % and ki, - - - £, will denote the corresponding complex deviations
of these quantities from their nominal values. Then the general
functional formula for % will of course be

h = F(K}+k], "'Kn+kﬁ) "F(Kln "'Kﬂ)- (II)

Since & may be regarded as causally dependent on the k's, it may
naturally be called the “resulting’ chance-variable.

Usually the &’s will be so small compared with the K's that the right
side of (II) can be replaced, as a good approximation, by the first-
order terms of a Taylor expansion; thus, approximately,

h = lel + see + Dﬂkn, (III)
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where
D, = dF(K,, --- K,)/dK,, r=1,2, .-+ n. (IV)

Before the physical elements are manufactured the k’s are chance-
variables, in the sense already defined; for it is not possible to predict
the value which any one, say k., will have, but only to state the chance
that it will lie within any specified range, this chance being calculable
from the known (or assumed) probability law p,(k.). Hence & is also
a chance-variable, whose probability law (%) depends on the func-
tional formula for % and on the individual probability laws pi(k1),
+++ pa(kn). In the general case, the “direct” problem is to calculate
from p(k) the probability that 2 will have a value lying within any
specified region of the i-plane.

In the types of problem contemplated in the present paper, the
probability law p(k) of & may usually be assumed to be approximately
“normal” (Subsection 1.2). Moreover, the specified region in the
h-plane will usually be a circle, since in such problems we are usually
concerned only with the magnitude of %, not with its angle. For
crosstalk, this is obviously true. For the usual type of two-way tele-
phone repeater operating between lines whose impedances do not
balance each other, it is true as a good approximation when the un-
balance is not too large, since then the practicable amplification de-
pends (approximately) only on the magnitude of the unbalance, not
on its angle.

Unfortunately the complete solution of the problem for a circular
region is sufficiently difficult and laborious, particularly as regards
numerical evaluation, that apparently there has not heretofore been
sufficient incentive to lead to its being carried through—at least so:
far as [ am aware.? The present paper includes the needed solution,
in convenient form for practical applications, by means of the com-
prehensive set of graphs described in Subsection 1.3, supplemented by
Subsection 1.2 defining and formulating the ‘‘normal’’ complex chance-
variable, and further supplemented by Section 2 giving general meth-
ods and formulas for evaluating the distribution-parameters of the
“normal” complex chance-variable; and by Section 3, which applies
Section 2 to the case where, as is usual, the contemplated '‘resulting”’
complex chance-variable is (at least approximately) a linear function
of other complex chance-variables.

Section 4, which is somewhat in the nature of an appendix, supplies
a considerable number of formulas and theorems on ‘‘mean values”

2 As well-known to those familiar with the literature of the subject, the solution
is quite easy for regions having certain other shapes, notably for an equiprobability
ellipse and for a rectangle lying parallel to a principal axis of such an ellipse. How-
ever, those solutions are of no help in the case of a circular region.
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(“expected values') of complex chance-variables. These formulas
and theorems find frequent and important uses in the present paper;
and outside of the paper they may well find varied uses.

The method of treatment characterizing the present paper will now
be very briefly indicated in the remainder of this Introduction.

As a preliminary step toward this objective we shall now return to
the functionai formulas (II) and (III) with the remark that, if the
K's and F's were all real quantities and if these formulas were such
that % also were a real quantity, then the “direct” problem would be
to calculate the probability that & would lie within any stated linear
range, say h, to h; thus the probability problem would then be one-
dimensional, and the well-known existing probability theory for real
quantities would be immediately applicable, including the correspond-
ing known methods and formulas for evaluation of the distribution-
parameters.

When, as in the present paper, the K's and k's are in general com-
plex quantities, the corresponding probability problem is inherently
two-dimensional. The distribution-parameters, which naturally are
more numerous than in the one-dimensional case, could be evaluated
in a roundabout way by an extensive process of resolution into rectan-
gular components; but it is believed that very superior advantages are
possessed by the probability methods and formulas contributed by the
present paper, for dealing with complex chance-variables in a more
direct manner, as set forth at some length in Sections 2 and 3, exten-
sively utilizing Section 4. The advantages of this method for evalu-
ating the distribution-parameters are perhaps particularly marked
whenever there is involved a summation of propagated effects, as in
transmission lines; for then, as will appear more concretely in the
applications in Part II, the necessary summations can be accomplished
much more easily and the resulting expressions are much more com-
pact and manageable than if a method employing rectangular resolu-
tions were used.

Regardless of which method is used for evaluating the distribution-
parameters, the new material contributed by Subsection 1.3 is neces-
sary for the complete numerical solution of the problem in any specific
case where the ‘“‘resulting’’ complex chance-variable & is ‘““normal.”
It may be recalled that this will be the case when % is a linear function
of the &'s and the k's themselves are “normal.”” Even when these
two conditions are rather far from being fulfilled, however, it is known
from certain rather broad theoretical considerations that in many
practical problems % will be approximately ‘‘normal’; it may perhaps
be recalled that one of the most important among a set of sufficient
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conditions for approximate “normality’ is that the k’s be numerous
(n a large number).

As stated in the Synopsis, Part II makes application of Part I to
some important problems in telephone transmission systems and net-
works involving chance irregularities in structure. One of these prob-
~ lems, namely that in Section §, is the general problem already outlined

in connection with the equations in this Introduction.

PartT I: THEORY

1. PROBABILITY OF THE DEVIATION OF A NORMAL COMPLEX
CHANCE-VARIABLE FROM ITS MEAN VALUE

Toward the end of the Introduction it was stated that in many
problems of the types contemplated in the present paper the distri-
bution of the “resulting” complex chance-variable is approximately
““normal.”

To meet a previously unfilled need in the solution of such problems,
this Section of the paper supplies (in Subsection 1.3) a comprehensive
sel of graphs for the probability that a “normal” complex chance-
variable deviates from its mean value by an amount whose magnitude
(absolute value) exceeds any stated value; that is, the probability that
the chance-variable lies without any specified circle centered at the
mean value in the plane of its ‘“scatter-diagram.”” These graphs are
accompanied by sufficient explanation to enable them to be understood
and used without any necessity for studying the formulas from which
they were computed—which, because of their length and complexity,
have not been included in this paper.? '

To furnish the necessary precise basis for the graphs, Subsection 1.3
describing them is preceded by Subsection 1.2 giving analytical defini-
tions of the normal complex chance-variable and its distribution-
parameters; and these quantities are discussed at moderate length
there.

To lead up to the normal complex chance-variable, it is preceded
by a brief review of the normal real chance-variable (Subsection 1.1),
which is more familiar.

1.1. The Normal Real Chance-Variable

In order to lead up to the normal complex chance-variable (which
is 2-dimensional) it will be recalled that a real chance-variable (which

3 The formulas are given (with derivations) in an unpublished Appendix (Ap-
pendix A). Another unpublished Appendix (B) gives various concepts and definitions
employed in two-dimensional probability theory, and also gives various analytical
and graphical ways of representing probability. Still another (C) treats a problem
of crosstalk in a telephone cable.
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is 1-dimensional) is defined as ‘““normal” if its probability law, or
‘distribution function, can by the proper choice of origin be written in
the form

P, = ! exp (— —g-z-) (1)
Y N2rS, 28.2)°

where, by definition of the term ‘‘probability law,” P.du represents
in general the probability that the unknown value #' of a random
sample consisting of a single value of the chance-variable lies between
# and u# + du; or, what is ultimately equivalent, the probability that
#" lies in the differential range u 4= du/2, namely in the differential
range du containing the point #. S, is a distribution-parameter called
the “standard deviation’ of # and defined by the equation

S2=(u—ap=u= f u?P,du, (2)
-
the superbar connoting the ‘mean value,” or “‘mean,” of any chance-
variable to which it is applied. In this paper the term “mean value”
is used as an alternative for “expected value,” namely the ‘‘weighted
average value’’ with the weighting in accordance with the probability
of occurrence of each particular possible value of the variable. (Sec-
tion 4 supplies a considerable number of formulas and theorems on
mean values of complex chance-variables—and hence of real chance-
variables, by specialization.)
From the foregoing definitions, it is easily verified that

meudu —1,

which corresponds to taking unity as the measure of certainty.

It will be recognized that the chance-variable  in equation (1) is
related to the original given chance-variable, which will be denoted
by x, by the equation # = x — Z. Hence # = 0, as has already ap-
peared in equation (2); thus the origin is at the ‘“center” ¢ of the
distribution, namely the point #. with respect to which as origin the
““mean value” of the chance-variable is zero, that is, such that u — u,
= 0, whence #, = # = 0. If, in terms of the original variable x, the
position of ¢ is denoted by x,, then x — x, = 0 and hence x. = %.
Since # = x — &, it is seen from (2) that

Si=(x =2 =Sz 3)
The probability that the magnitude (absolute value) |«’! of a ran-

\
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dom sample %’ of u is less than any stated value r will be denoted by
p(|u'| < 7). Then

T 2 r 2
p(lu’;<?’)= —rPudu=mj; exp(—%ﬁz)du. (4)

Evidently the number of parameters can be reduced from one (which
is S.) to none by taking as chance-variable the ratio %/S., which may
be called the “reduced’’ chance-variable. Thus, with |«'| denoted
by ¢ and with '/S. and 7/S. denoted by R’ and R respectively,
equation (4) becomes

p(lw'| <r) = p(R' < R) = erf (R/N2), (5)

where erf () is the so-called “error function’ defined, for any vari-
able z, by the equation
2 2
erf (2) = —= | exp (— A)d\ (6)
VrJo
and extensively tabulated 4 for real values of z. For somé purposes
it is more convenient to employ the “error function complement,”
defined by the equation

erfc (s) = % f " exp (— N)dA )

and hence related to erf (z) by the equation
erf (z) + erfc (2) = 1. (8)

If s denotes any ‘ﬁxed value of %, and if U3 denotes u3/S., then

pu’ > uz) = fm Pudu = %erfcij-r—g- (9)

If #; and us denote any two fixed values of % such that u; < us,
and if U, and Us denote u;/.S. and u2/S. respectively, then

pluy < 4 < ug) = % (erfcﬁ - erfc%) . (10)

4 To avoid possible confusion, it may be well to remind the reader that there has
also been extensively tabulated, for real values of 2, the closely related function

\I%j: exp (—n/2)d,

which is more convenient for some purposes, though less convenient in the present
paper.
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If, with a view to generalizing (5), we inquire as to the probability
p(|u’ — ue| < r) that «’ deviates from any fixed value u, of # by an
amount whose magnitude is less than any stated value 7, and if now
we let 7" and ry denote |#' — u,| and |uy! respectively and R, R', R,
denote 7/Sy, *'/Su, to/S. respectively, then

p(|u" — uo| <7) = p(R' < R)
“Hor (B) ()]

When #, = 0 this formula correctly reduces to (5).

1.2. The Normal Complex Chance-Variable

Before proceeding to the ‘““normal” complex chance-variable it
should be remarked that, although any 2-dimensional chance-variable
can be represented either as a complex chance-variable z = x + 1y
= pexp (in) or as a pair of real chance-variables (x,y) or (u,n7),
nevertheless the two modes of representation, though of course mu-
tually equivalent, are not always equally advantageous. For the
types of problems contemplated in the present paper, the complex
representation has important advantages resulting from the fact that
the chance-variable when so represented is formally a single entity
and subject to the laws and transformations of complex algebra. In
Sections 2, 3, 4 of Part I and also in Part II, the complex representa-
tion possesses very great advantages. In the present Subsection, how-
ever, which is mainly concerned with formulations of the 2-dimensional
“normal’’ probability law (distribution function), the representation
in terms of a pair of real variables is the more advantageous. In this
Subsection, therefore, the complex representation is used only in those
places where it is particularly conducive to brevity and sharpness of
statement, and to simplicity and clearness of correlation with the
remainder of the paper where the complex representation is mainly
used.

The normal complex chance-variable (which of course is 2-dimen-
sional) may be defined in several mutually-equivalent ways. Here a
complex chance-variable z will be defined as “normal’ if its proba-
bility law can, by the proper choice of a pair of rectangular axes u,v
in the plane of the ‘“‘scatter-diagram’’ of z, be written in the form

u? p?

1
-Pu,v = _ZTrSuS,;eXp(—m —'23:2) = Pan, (12)

# and v being the pair of coordinates of any point of the scatter-
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diagram with respect to the ,v-axes. P, and S, have the values
already defined by equations (1) and (2) respectively, and P, and S,
are defined by those same two equations after changing # to v through-
out; S, and .S, are distribution-parameters called the "'standard devia-
tions'’ of u and v respectively.

It will be récognized that the u,v-axes are the ‘“‘central principal
axes,” namely that pair of rectangular axes which have their origin
at the “center’ ¢ of the scatter-diagram of z, and hence of w = u + v,
and are so oriented in the scatter-diagram that #o.= 0. By the ‘‘cen-
ter'" ¢ of the scatter-diagram of any complex chance-variable sz is
meant that point 3, with respect to which as origin the “mean value”
(Section 4) of the chance-variable is zero, that is, such that 27—z, = 0;
thus, 2z, = 2. In the case of the chance-variable w = u + v, whose
origin is the center of the scatter-diagram, so that w, = 0, it is thus
seen that @ = 0; the fact that the «,v-axes have their origin at ¢ may
conveniently be indicated by designating them as the ucv-axes.

Instead of taking S, and S, as the distribution-parameters it will be
found preferable to take b and S, defined by the equations ®

_ Sr—-582 1-— (S./Su)?
SZFSE 1T+ (S50

=82+ S52=u+2 = [w|. (14)

b (13)

It is convenient, and fairly natural, to call S the "resultant standard
deviation” of ¢ # and . More explicit formulas for b and S* are (37)
and (38) established in Section 2.

Equation (12) shows that the equiprobability curves of the complex
chance-variable w = u + v are a set of similar ellipses centered at the
center ¢ of the scatter-diagram; and that the axes of these ellipses
coincide with the principal axes of the scatter-diagram and have
lengths proportional to S, and S,, and hence proportional to N1 +b
and V1 — b respectively, since, from (13) and (14),

252 = (1 4 5)%, 252 = (1 — b)S%

Thus, when S, = S, and hence when & = 0, the ellipses degenerate
to circles. When S, =0 or S, = 0 and hence when & = + 1 or

8 A parameter which itself is simpler than b is @ = SufSu; but if ¢ were used in-
stead of & most of the formulas in the unpublished Appendix A, mentioned in foot-
note 3, would be rendered considerably longer and more complicated.

6 It is to be noted that [w|? is not equal to S}y, if, as is natural, this is defined

by the equation .
2

St = (Jw]| = [w]? = [w]* - [wl.
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b = — 1 respectively, the ellipses degenerate to superposed straight
line segments coinciding with the w-axis or the v-axis respectively;
owing to this superposition of the straight line segments the * proba-
bility density' on the resulting straight line locus is not constant but
varies in accordance with the 1-dimensional normal law, as expressed
by equation (1).

With the object of reducing the number of parameters from 2 to 1
and of dealing with variables that are independent of units, it will be
preferable not to deal directly with the original chance-variable
w = u + v, which is referred to the central principal axes wucv, but
rather to deal with the “reduced' chance-variable W = U + iVde-
fined by the equation

W=w/S=u/S+i/S=U+1iV, (15)

which is referred to the central principal axes UCV coinciding with the
central principal axes ucv (Fig. 1), so that the position of any point T

v W=U+1V
| Wall+H v
|

—_—————-

Fig. 1

in the W-plane will be represented by W = U 4+ 4V. Thus we shall
be directly concerned with the scatter- dlagram of W= U441V in-
stead of with that of w = u + 7v.

From (12) it is easily found.that the probability law, say Py,
for W=U+%1Vis

1 u? V2
Pov="F —bz‘p(‘m‘m)' (16)
which contains only the one parameter b, defined by (13), while more-
over the variables U and V are independent of units. Thus the
“reduced” complex chance-variable W = U 4 iV given by (15) is
defined as “normal” if its probability law can by the proper choice
of a pair of rectangular axes UCV in the plane of its scatter-diagram
be written in the form (16); the UCV-axes are the ‘“‘central principal
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axes” of the scatter-diagram of W = U + iV; and the “mean value”
of W is then zero, thatis, W = 0.

1.3. Graphs for the Probability of the Deviation of a Normal Complex
Chance-Variable from its Mean Value

Before taking up the technical description of the graphs presented
in this Subsection, some indication of their field for practical use will be
furnished by the statement that the chance-variable w = « + v of the
next paragraph may, for instance, be identified with the chance-
variable & given by equation (II) of the Introduction, in case % is
“normal” and is of zero “‘mean value,” so that & = 0; in case & # 0,
then w would be identified with & — k. On referring to equation (II),
it will be seen that % there denotes the deviation of any transmission
characteristic from its nominal value; more generally, # may be any
complex chance-variable which is *normal"—or approximately “nor-
mal.”

The graphs here to be presented and described relate directly to the
“reduced” complex chance-variable W = U + iV given by equation
(15) in terms of the original chance-variable w = u + iv and the
parameter S defined by equation (14). Assuming w to be “normal”
and of zero “mean value” (@ = 0), it has the probability law formu-
lated by equation (12); and hence W = U + 2V is normal and of zero
mean value (W = 0), and has the probability law formulated by (16),
with the parameter b defined by (13).

With W’ denoting the unknown value of a random sample consisting
of a single value of the chance-variable W, the graphs herewith rep-
resent the probability that the magnitude R’ = |W’| of W’ exceeds?’
any stated value R; that is, the probability that W’ lies without a
circle of radius R whose center coincides with the center C (Fig. 1)
of the scatter-diagram of W, so that the center of the circle is at
W = 0. This probability will be denoted by ps(R’ > R), the sub-
script b implying dependence on the parameter b. The complemen-
tary probability will be denoted by #(R’ < R); this is of course the
probability that R’ is less than the stated value R; or, what is equiva-
lent, the probability that W’ lies within a circle of radius R centered
at C. Of course the sum of the two foregoing probabilities is unity,
that is,

(R > R) + p(R' < R) = 1. (17

7 In engineering applications it is usually preferable to deal with the relatively
small probability of exceeding, rather than with the complementary probability,
nearly equal to unity, of being less than a preassigned rather large value of R.
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Moreover,
to(Ri < R' < Re) = pb(R' > R)) — po(R' > Ry) (18)
= p(R’ < Rq) — po(R' < Ry), (19)

where R; and R, denote any two stated values of R such that R; < R..

From (13) the total possible range of b is seen to be from — 1 to
=+ 1, corresponding to the total possible range of S,/S, from « to 0,
with & = 0 corresponding to S,/S. = 1. However, it will evidently
suffice to consider for b the range 0 to 1, corresponding to the range
1 to O for S,/S., which will be secured by choosing S, as the greater
and hence S, as the smaller of the two “standard deviations' (with
the ucv-axes chosen correspondingly, of course).

The graphs in Figs. 2 and 3 show the relation between R and
(R’ > R) with b as parameter; similarly, Figs. 4 and 5 show the rela-
tion between R and the quantity #; o(R’ > R) defined by the equation

po(R' > R) = p(R" > R) — po(R' > R). (20)

Here po(R’ > R), being a particular value of (R’ > R), plays the
part of a reference value. It is'a natural reference value, being the
value for b = 0; and it can be evaluated immediately and accurately,
since its exact formula is merely

po(R' > R) = exp ( — R?). (21)
10
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The curves in Fig. 2 are chiefly useful for showing the form and
range of the relations rather than for the reading-off of individual
values; however, for the lower range of R (R < 1, say), they can be
read with very fair accuracy. Fig. 3 is merely an enlarged plot of
Fig. 2, over the R-range of about 1.5 to 3. The curves in Fig. 3 are
accurately readable except in the upper part of this R-range; and the
deficiency there is compensated by the curves of Fig. 5 described in
the next paragraph.

The curves in Figs. 2 and 3 were plotted by aid of the much more
accurately readable curves in Figs. 4 and 5, namely curves of R versus
the quantity p,0(R’ > R) defined by equation (20); thus, by aid
of (21),

p(R' > R) = ppo(R' > R) + exp (— R?). (22)

Fig. 5 is merely an enlarged plot of Fig. 4, over the R-range of 1.4
to 3.0.

The material of Fig. 2 is represented in alternative forms, which
are more convenient for some purposes, by Figs. 6 and 7, the former
giving curves of p(R’ > R) versus b with R as parameter, the latter
giving curves of b versus R with p,(R’ > R) as parameter.

The material of Fig. 4 is represented in one alternative form by
Figs. 8 and 9 each of which gives curves of ps0(R" > R) versus b with
R as parameter.

Returning to Fig. 2, it will be noted that the curves cross each other,
but not at a common point; they cross rather diffusely in the neigh-
borhood of R = 1.2, In the lower range of R, $(R' > R) decreases

-ith increasing b; while in the upper range of R, it increases with
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increasing b. Quantitatively these relations are shown more clearly
and accurately by Figs. 6 and 7.
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Correspondingly in Fig. 4 the curves of poo(R' > R) cross each
other rather diffusely in the neighborhood of® R = 1.2; thus,
to(R’ > R) changes sign_in this neighborhood.  p»,o(R" > R) is nega-

8 Except for values of b very nearly equal to 0; but in such cases ps,o(R’ > R)
is very small, so that the exception would be unimportant in most practical appli-

cations. A corresponding qualification applies, of course, to the discussion of Fig.
in the preceding paragraph.
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tive in the lower range of R and positive in the upper range; and the
magnitude of p, (R’ > R) always increases with increasing b. Since
the value of R at which (R’ > R) changes sign depends somewhat
on b it will be denoted by Rs,. Fig. 4 shows that R, is equal to about
1.24; and that R,, when 1 > b > 0, is greater than R, but only slightly
greater except when b is very nearly zero. (See also Figs. 8 and 9.)
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Since the curves of p(R’ > R) in Fig. 2 cross each other (though
somewhat diffusely) in the neighborhood of R = 1.2, it is unnecessary
in approximate work to evaluate b when we are concerned only with
values of R in this neighborhood; likewise when R is in the neighbor-
hood of 0. Except in these two neighborhoods, however, a fairly
accurate evaluation of b is necessary; for Fig. 2 shows that, in the
upper R-range, p(R’' > R) depends very greatly on b, while even in
the lower R-range the dependence on b is considerable. Thus the
error resulting from assuming a value for b (in order to avoid the con-
siderable labor of its actual evaluation) would usually be large. Quan-
titatively these facts are indicated more clearly and accurately by
Figs. 6 and 7.

The computations underlying the graphs have proved to be so
difficult and laborious that it has been deemed advisable to preserve
he fundamental results in tabular form herewith (Table 1), chiefly
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to enable the graphs to be replotted to a larger and more finely-
divided scale by anybody so desiring. The values for & = 0 and
b = 1 were omitted from the table, as being unnecessary because
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P5,0(R’ > R) is identically zero for & = 0, while for b = 1 it is given
by the simple and exact formula

pro(R > R) = erfc (RV2) — exp (— R?).

Although in many of the computed values in Table I the last digit
(the third significant figure) cannot be regarded as reliable, it is
thought that the tabulated values are accurate to about one per cen
or better, which of course is quite adequate for all practical purpose
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2. THE LEADING DISTRIBUTION-PARAMETERS OF ANY COMPLEX
CHANCE-VARIABLE

By the ‘‘leading distribution-parameters’ of any complex chance-
variable will here be meant a certain set of distribution-parameters
(specified below) which would be sufficient for completely fixing the
distribution if it were ‘“normal.” Even when the distribution is not
“normal” these parameters are usually present among the other
parameters in the distribution-function; indeed they are often thr
most important of the distribution-parameters.

In order to define and formulate the ‘‘leading distribution-para
eters” of any complex chance-variable Z = X + Y in an exp
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manner, conformably to the implicit definition in the preceding para-
graph, we could proceed in a purely analytical manner, as outlined in
Subsection 2.2 below. However, in recognition of the very substantial
aid to thought and description furnished by the concept of the “scat-
ter-diagram,” for graphically representing any two-dimensional dis-
tribution, this concept will here be invoked in framing the definitions
and in deriving the desired formulas.

Proceeding on this basis, it will be found that three of the ‘leading
distribution-parameters’ are certain “average values’ pertaining to
the scatter-diagram of the contemplated chance-variable; for any
‘““average value'' pertaining to the scatter-diagram is equal to the cor-
responding ‘‘mean value” (“expected value'’) pertaining to the chance-
variable, when the ' mean value” is defined as just after equation (2).
It will be recalled that there a superbar applied to the symbol denoting
any chance-variable was used to connote the ‘“mean value' of the
chance-variable. In the present Section (2), owing to the above-noted
relation, the superbar may interchangeably be regarded as connoting
either an “average value" pertaining to the scatter-diagram or the
corresponding ‘‘mean value’ pertaining to the chance-variable.

Having in mind the definition of the “scatter diagram" of any
complex chance-variable Z = X 4 ¢V, let XAY (Fig. 10) designate

vy Y =X
y Z:X+ly
T W=L v
4 u
Z YW
c X
e
A X
Fig. 10

the pair of rectangular axes with respect to which the scatter-diagram
of Z is plotted, A designating the origin of the X4 V-axes. Also, let
T designate any plotted point in the scatter-diagram; and let ¢ desig-
nate the ‘‘center’’ of the scatter-diagram, namely the point whose
position Z, with respect to the X4 Y-axes is such that Z — Z, = 0,
whence Z, = Z. Further let xcy designate a pair of axes through ¢
parallel to the X4 Y-axes, and ucv any other pair of rectangular axes
through ¢; and let w = u + 4v represent the position of the point T
with respect to the wucv-axes, the position of T with respect to the
vcy-axes being represented by z = x + iy and with respect to the
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XAVY-axes by Z = X + 1Y, whence z = Z — Z,. Any pair of axes,
such as ucv, through the center ¢ are called ‘‘central axes” ; y. denotes
their orientation-angle with respect to the xcy-axes, and hence with
respect to the XA V-axes. When ¢, has such a value ./ that uv = 0,
the central axes wucv are called “principal central axes”; the corre-
sponding values of u? and ?? are denoted by S.? and S,? respectively,
and S, and S, are called the * principal standard deviations’’ pertaining
to the chance-variable w = % -+ v.

Conformably to the implicit definition in the first paragraph of this
Section, we may now state that the ‘‘leading distribution parameters”
of any complex chance-variable Z = X + ¢V are the four quantities
Zo Yo'y Sur S, defined and named in the preceding paragraph; it will
be recognized that these four quantities would be sufficient for fixing
the distribution if it were ‘‘ normal.”

(Still referring to Fig. 10, it may be noted that an alternative set
of four parameters fixing the distribution of any ‘‘ normal ”’ complex
chance-variable consists of Z,, II.,, Sz S, where II;, = xy, S = x2,
S, = 3? The set Z., ¥.', S., S, was chosen as being much prefer-
able for this paper.)

With a view to formulating precise definitions of the various addi-
tional technical terms needed, and to establishing general formulas
from which to deduce the desired formulas for the last three of the
“leading distribution parameters’ Z., ¥.’, Su S, consider Fig. 11,

W' =X +iY
T W=UsiV
w7
U
YWa
A X
Fig. 11

which is a partial reproduction of Fig. 10, with the addition of the
axes UA V, which are any pair of rectangular axes through 4, so that
W = U + iV represents the position of any point T with respect to
the UA V-axes, the position of T with respect to the X4 Y-axes being
represented by Z = X + iV, of course. Then it can be shown (Sub-
section 2.1) that when the orientation-angle ¥4 of the UAV-axes
(Fig. 11) with respect to the XA Y-axes has either of the values ¥,
given by the equation ® .

9 In this paper, if Z d‘enotes any complex quantity, then ag Z denotes its angle,

|Z] its absolute value, Z its conjugate, ReZ its real part, and Im Z its imaginar
part (that is, the cofactor of i when Z is written in rectangular form).
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20, = ag( + Z2), (23)
then the ““mean"’ of the product UV vanishes, that is,
UV =0, (24)

and the mean of U2 and the mean of V2 have the values expressed by
the equations

207 = 1Z[* + |27, (25)
2V = [Z]2 F |27, (26)

and these values are extremum values in the sense that one is a maxi-
mum and the other a minimum when ¥, has either of the values
¥4’ given by (23). Regarding the double signs in equations (23), (25),
(26), it is hardly necessary to remark that the upper signs go together
as one set, and the lower signs as another set. However, the presence
of the double signs is a triviality; for the UA V-axes (Fig. 11) with
respect to which equations (23), (24), (25), (26) are fulfilled are unique
except merely as to their designations (U versus V, with signs), the
values of ¥, differing only by a multiple of /2. (In numerical apph-
cations it will usually be convenient to choose the upper set of signs,
so that U? will be the maximum quantity and V? the minimum.)

The particular UA V-axes (Fig. 11) for which equation (24) is ful-
filled and for which ¥, therefore has a value ¥,’ given by equation
(23) are called the “principal axes” through 4, and the corresponding
mean squares FiE and V7 given by (25) and (26) are called the “prin-
cipal mean squares.” It will therefore be natural. and will be found
convenient, to call ¥,’, U% V? the “principal parameters”’ pertaining
to the point A4; they are seen to depend only on Z? and |Z[2.

More generally, when the point 4 in Fig. 11 is not restricted to
being the origin of the scatter-diagram of the given complex chance-
variable but is any point in that scatter-diagram and when the X4 Y-
axes and the UA V-axes are any two pairs of rectangular axes through,
4, it is readily seen that the formulas (23), (24), (25), (26) remain
unchanged, although of course Z no longer represents the given chance-
variable but now represents merely the position of any point T with
respect to the X4 Y-axes, while IV represents the position of T" with
respect to the UA V-axes. The quantities ¥4/, T?, V? given by equa-
tions (23), (25), (26) will naturally continue to be called the * principal
parameters'’ relating to the point 4, which is now any point. Thus
the “principal parameters’’ are more general than the last three
¥’y S, S,) of the “leading distribution-parameters,” to which the

principal parameters '’ reduce when 4 coincides with the “center” ¢
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Continuing to regard A in Fig. 11 as any point in the scatter-
diagram, it can be shown that in the degenerate case characterized by
7% = 0 all pairs of rectangular axes through A are " principal axes”’;
for when Z? = 0, equation (24) is fulfilled for all values of ¥4 (as will
be shown in the last paragraph of Subsection 2.1). Furthermore the
mean squares with respect to all pairs of rectangular axes through 4
are then equal, as is shown by the fact that equations (25) and (26)
reduce to

=22 =Z?=X*+ 1" (27)

Since A in Figs. 10 and 11 can be any point, the desired formulas
for the last three of the “leading distribution-parameters” Z., ¥.’,
Su, S,, relating to the point ¢ in Fig. 10, are now seen to be immediately
obtainable from formulas (23), (25), (26) for the “principal param-
eters’ relating to the point 4, by merely letting 4 coincide with ¢,
the XA V-axes with the xcy-axes and the UA V-axes with the ucv-axes;
for then ¥4/, U, V, Z become ¥.', u, v, = respectively; whence, after
writing S,? and S,2 for ¢ and 2, the desired formulas are seen to be

2#"«:’ = a'g( + 2_2-)| (28)
252 = Ta]* = |#, (29)
252 = Tz[* F |, (30)

where, as will be recalled, s = Z — Z, = Z — Z represents (Fig. 10)
the position of any point T of the scatter-diagram of Z with respect
to the axes xcy through the center ¢ parallel to the X4 V-axes, which
latter are there the axes of Z; thus 2 =0, though of course Z # 0in
general. In accordance with (28), (29), (30) the last three of the
leading distribution-parametersof Z = z + Z, = z + Z, which are the
same as the last three of the leading distribution-parameters of z, are
completely determined by the two mean values 22 and a2

In order to represent explicitly the last three of the leading distri-
bution-parameters of Z as depending on Z — Z, it seems worth while
to rewrite (28), (29), (30) in the following equivalent forms:

W) =ag(£[Z—Z]), (31)
282 = |Z — Z|* + |[Z — ZP|, (32)
252 = |Z — Z|*F |1Z — ZP|, (33)

which are completely determined by the two mean values 1z -2
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and |Z — Z|?, though each of these depends on Z, which plays the
part of a reference value.

The foregoing formulas, by aid of (88) and (89) in Subsection 4.2,
can be written also in the forms:

- 2
2 =ag(£[22-Z)), (34)
— - 2
282 =[ZP - |Z|"x= |22 - Z |, (35)
— J— -2
2852 =(Z|* = |Z*F |22 - Z |, (36)

which are completely determined by the three mean values Z, Z?,
1z

Su and S, are termed the * principal standard deviations,” obviously
because they relate to the *‘ principal central axes,” namely the par-
ticular ucv-axes corresponding to ¢, = ¢.' (Fig. 10). They are special
values of the “‘standard deviations” S; and S,, which latter relate to
any specified central axes, xcy, and are defined by the equations °
S2 =2%and S;2 = 32 ,

By aid of the pairs of equations (29), (30) and (32), (33) and (35),
(36), the parameters b and S defined by equations (13) and (14) can
now be written in the following more explicit forms:

2 _|z- z)2| 7 -7 .
rzT TTZE -z (37
= [z2=|Z-Z]*=Z]* - |Z|" (38)

Returning now to the general case in which point 4 in Fig. 11 is any
point in the scatter-diagram of the given complex chance-variable, it
will be recalled that formulas (23), (25), (26) give the values of the
“principal parameters’ relating to the point A. Let it now be re-
quired to formulate the principal parameters relating to any other
point, a, in terms of quantities relating to the point 4. With this
purpose, consider Fig. 12. Here the XA Y-axes are any rectangular
axes through A; but the UA V-axes are the principal axes through 4,
as implied by the symbol ¥,’ for their orientation-angle. The xay-
axes are merely a pair of auxiliary axes through a drawn parallel to
the XA Y-axes; and the uav-axes are the principal axes through a.
Z, W, z, w represent the position of any point T with respect to the
axes XA Y, UAV, xay, uav respectively; and Z, represents the position
of point a with respect to the XA V-axes. Then, corresponding to
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(23), (25), (26), the formulas for the principal parameters relating to
the point a are, of course,

2, = ag( =), (39)
2u? =[a* = |2, (40)
2 = zPF |2 (41)
vk oy
2=X+iY
W=U+lV
Z=X+y . T
W=Uu+LV
W w
v Y 7
YV,
a X
W/Z
Za
U
L
A X

Fig. 12

But, since the xay-axes are parallel to the XA Y-axes,
2=Z — Z. (42)

Squaring (42) and taking the mean of the result gives
2 =204 Z2 — 2ZZ,. (43)

Multiplying (42) by its conjugate * and taking the mean of the result
gives
Tzl2 = TZ[2 + | Za|* — 2Re (ZZ,). (44)

Substituting (43) and (44) into (39), (40), (41) yields the desired for-
mulas expressing the principal parameters relating to the point a (Fig.
12) in terms of quantities relating to the point 4.
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In particular, the formulas (34), (35), (36) for the last three of the
““leading distribution parameters” of the original given chance-variable
Z are immediately obtainable by merely letting the point a (Fig. 12)
coincide with the center ¢; for then equations (42), (43), (44) reduce to

s=2Z—Z,=7Z — 2, (45)
EF=Z-7, | (46)
Ta[2 = 1Z]* - |Z]™ (47)

2.1. Proofs of Formulas (23), (25), (26)

With W = U + 4V here denoting any complex quantity,? formulas
(23), (25), (26) will be proved by starting with the three identities '°

2UV = Im W7, (48)
202 = |W|2 + Re W2, (49)
212 = |W|? — Re W (50)

In order to apply these identities in proving formulas (23), (25),
(26), which relate to Fig. 11, we evidently must identify the W appear-
ing in these identities with the W in Fig. 11, and also must introduce
the relation existing between W and Z in Fig. 11, namely

W = Zexp (— i¥,). (51)

To prove (23) we substitute (51) into (48) and take the mean value
of the result, thus getting

20V = |Z%| sin (ag Z* — 2W.). (52)

For the general case in which |Z2| is not zero, this equation shows
that the necessary and sufficient condition for UV to be zero is that
¥4 shall have any of the special values ¥, satisfying the following
equation, in which # is real:

ag Z® — 2V, = nm, (|n] =0,1,2,3,---). (53)

10 These are equivalent to the identities

A

WUV = W2 — We,
407 = W2+ W2 4 20WW,
— 4V = Wr + W — 2WTW,
tich are immediately obtainable from the pair of simpler identities 2U = W + W

142V = W — W. However, formulas (48), (49), (50) can be readily verified by
-ely substituting W = U + il
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Hence o .
20, = ag Z? — nr = ag (£ Z%), (54)

which is (23). Evidently there are only two geometrically distinct
values of ¥/, namely that for even » and that for odd #; and even
this duality is a triviality, in the sense indicated in the latter part of
the paragraph containing equations (25) and (26).
To prove (25) and (26) and at the same time to show that they are
extrema, we substitute (51) into (49) and (50) and take the mean
value of each result, thus getting

2T = [Z[® + | 2| cos (ag 28 — 2¥.), (55)
2V? = [Z? — |Z%| cos (ag Z* — 2.4). (56)

For the general case in which |Z%| is s not zero, these two equations
show that when ¥4 is varied, U? and V? have extremum values when
¥4 has any of the special values ¥4’ satisfying (53) and hence satis-
fying (23). Substitution of (53) into (55) and (56) gives (25) and
(26), which are thus proved.

In the degenerate case characterized by Z? = 0, the unrestricted
equation (52) shows that (24) will be fulfilled for all values of ¥y.
This remark serves to prove the statement made in the paragraph

containing equation (27).

2.2 Outline of a Purely Analytical Treatment of the Leading
Distribution-Parameters

This Subsection is supplied, in accordance with the second para-
graph of Section 2, in order to show that the leading distribution-
parameters can be equivalently defined and formulated in a purely
analytical manner, that is, without the aid of the ‘“‘scatter-diagram”
concept.

With Z = X + i Y denoting the given chance-variable, let Z. denote
that particular value of Z determined by the equation Z — Z. = 0,
so that Z, = Z, the superbar connoting the ““mean value” (*expected
value”) of Z, as defined just after equation (2). On account of the
restriction of the present Subsection to pure analysis, Z. cannot here
be consistently called the “center of the scatter-diagram’'; instead it
will be called the ‘“central value” of Z.

Next let z = x + 4y and w = u + 4 be the auxiliary chancr

variables defined by the equations

z=42 — Zc: (57) w = ZEexp ( - i‘ibc)r (
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where, however, . is arbitrary, so that w is not determined until ¢,
is assigned. Also let ¢.' be such a value of ¢, that uv = 0; and let
S.2 and S,? denote the corresponding values of #? and #* respectively,
that is, the particular values taken by u* and 2 when ¢, = ¥./, so that
ur = 0.

The formulas (28), (29), (30) for ¢./, S., S, can now be established
in a purely analytical manner in just the same way as the more gen-
eral formulas (23), (25), (26) were established in Subsection 2.1.

3. FORMULAS FOR THE LEADING DISTRIBUTION-PARAMETERS OF
A LINEAR FUNCTION OF COMPLEX CHANCE-VARIABLES

To meet the needs in dealing with problems of the type handled in
Part IT, namely problems involving linear functions of complex chance-
variables, the present Section furnishes formulas for the ‘““leading
distribution-parameters’’ of any complex chance-variable Z which is
a linear function of any number n of complex chance-variables Z;,

+ Zn, 50 that
Z=G+blzl+"' +ann: (59)

where a, by, - -+ b, are any constants, complex in general.

It will be recalled that the ‘'leading distribution-parameters' of any
complex chance-variable Z are the quantities Z;, ¥.’, Sy, S, defined
and formulated in Section 2.

Since, in general, Z, = Z, application of Theorem 3 of Subsection
4.2 to (59) gives _ _

Z=a+bZi+ - + buZn, (60)
so that here Z is not zero even when Z,, - - - Z, are all zero.

The formulas for ¢.’, S., S, are (28), (29), (30), wherez = Z — Z,;
or the equivalent formulas (31), (32), (33) or (34), (35), (36).

With a view to using formulas (28), (29), (30), which have the
advantage of compactness, we introduce the quantities z and z, de-
fined by the equations

1=Z—Z.=2Z— 2, (61)
s =2, —Z, (r=1,---n), (62)

which show that Z = 0 and that
=0, (r=1,---n). (63)

Subtracting (60) from (59) and then substituting (61) and (62) into

he result gives
z = b|51 + ct + bnzm (64)

hich has the advantage of not involving a.
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Formulas (28), (29), (30) involve 22 and |z [z[>. To evaluate 2! we
square z and take the mean value of the result; to evaluate Tz]? we
multiply z by its conjugate z and take the mean value of the result.
We thus obtain from (64) the formulas

F=bizE 4 e bt 4 o+ 2bbmn (65)

Telf = |balfTmP + -+ + |5al?[zal* + -+ 4+ 2RebbzZe + -+, (66)
where s =1,---n—1and t =s+ 1, --- n. These two formulas
can also be written
- locun — 1...7 R
g2 = Z b2+ 2 Z bsbizy3, (67)
r a<t
leean - leesm Fpe—
[2]2 = X |b:|%|2:|2 + 2Re X bsbizsZs, (68)
r s<t

cofresponding respectively to formulas (94) and (95) in Subsection 4.3.
When the subscripted Z's are independent, and hence the sub-
scripted s's are independent, equations (65) and (66) respectively re-

duce to _ . .
22 = bz 4 - -+ + balzd, (69)

[2]2 = [Bal?[z]® + -+ 4 [0a]*]2a % (70)
on account of Theorem 1 in Subsection 4.1 together with equation (63).

4. SOME FORMULAS AND THEOREMS ON MEAN VALUES OF
COMPLEX CHANCE-VARIABLES

The present Section supplies a considerable number of formulas
and theorems on “mean values’ (‘“expected values') ! of complex
chance-variables. Many of these formulas and theorems have already
been used in Part I, and further use for them will be found in Part II;
while outside of this paper they may well find varied other uses.

The theorems are word-statements of the simpler and more fre-
quently useful of the formulas; the remaining formulas are more gen-
eral and are not simple enough to be profitably expressed as theorems.

Theorems 1 and 2 regarding the mean of a product of complex
chance-variables and Theorem 3 regarding the mean of a sum are
generalizations of the corresponding known theorems for real chance-
variables, are formally the same as the latter, and are susceptible of
the same sort of proofs. These three theorems furnish a natural basis
for the remaining theorems, besides having extensive other uses.

11 Defined just after equation (2).
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4.1. Mean of a Product of Independent Complex Chance-Variables

The following Theorems 1 and 2 relating to the mean of a product
of complex chance-variables are very important notwithstanding their
limitation to chance-variables which are independent.

Two discrete chance-variables are said to be ‘“independent’ (or
“uncorrelated’ or ‘‘non-correlated’) if the probability that either
takes any given value is independent of the value taken by the other.

Two continuous chance-variables are said to be “independent’ if
the probability that either lies close to any given value is independent
of the value taken by the other.

TuEOREM 1. If any number of complex chance-variables are inde-
pendent, the mean of their product is equal to the product of their indi-
vidual means.

That is, if the Z's are independent,

Zy v By =212y Zn. (71)

TuEOREM 2. If the magnitudes (absolute values) of any number of
complex chance-variables are independent, the mean of the magnilude of
the product of these complex chance-variables is equal lo the product
of the means of their individual magnitudes.

That is, if the |Z|'s are independent,

|Z]Zg"‘zn| = IZﬂlZzl e [.Z,‘l. (72)

For the validity of Theorem 2 it is not necessary that the angles
of the chance-variables be independent, but only their magnitudes.
Moreover, if ¢;, - -+ ¢, denote the angles of Z,, - - - Z, and ® the angle
of their product, then, by Theorem 3,

® =14+ ¢ (72a)

whether or not the ¢'s are independent.

4.2, Mean of a Sum of Complex Chance-Variables
The following Theorem 3 is of unlimited scope, in the sense that it
involves no assumption as to independence of the chance-variables.
THEOREM 3. Given any number of complex chance-variables, which
need not be independent, the mean of their sum is equal to the sum of their
individual means.
That is, whether or not the Z’s are independent,

Zit A Zn=2Z1+ -+ + Zn (73)
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Since the Z’s in Theorem 3 need not be independent, the theorem
will continue to be valid when the Z's are any functions of any number
of other chance-variables wy, -+ Wn.

The following six simple and useful equations, in which Z = X 4 ¢V
denotes any complex ? chance-variable, are immediately obtainable
by means of Theorem 3.

7 =X +i7, (74) Z=X-if =12, (75)
7t = X? — V2 4+ 12X 7, (76)
[ZE=22 = X* + T, &)
_2 _ 2 -2 —_
Z =X — ¥ +i2X7, (78)
ZP=ZZ-X + 7. (79)

The following eight equations can be obtained by solving the fore-
going set of equations or by applying Theorem 3 to the appropriate
identities.

X =ReZ=ReZ  (80) Y=ImZ=1ImZ,  (81)
2XY = Im' 2%, (82)
2X? = [Z[* + Re 22, (83)
2V = [Z]? — Re Z, (84)
2XY = Im 22. (85)
2% = |Z|*+ Re Z, (86)
27 = |Z|' - ReZ. (87)

Theorem 3 yields also the following two useful equations
P E———— J— -2
Z—-22=2t—-2Z, (88)
|z —Z|* =72 - | Z|* (89)

The first can be obtained immediately by squaring Z — Z and then
applymg Theorem 3; the second by expanding the product (Z — Z)
(Z Z) and then applying Theorem 3 together with equation (75).
When, instead of a single chance-variable Z, there are n chance
variables Z,, - -- Z,, not restricted to being independent, equatior
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(88).and (89) become

—_— P 2

X (EZ—-Z)=YX(Z—Z), (90)

Z IZ:"_Zﬁrl2 = Z(lzrlﬂ_ |ZrE2)s (91)
where each summation ¥ covers the set 7 = 1, - - - .

4.3. Mean of a Squared Sum of Complex Chance-Variables

With a view to arriving at Theorems 4 and 5 below, and also several
formulas which are more general than the theorems but are not simple
enough to be profitably expressed as theorems, let Zy, - - - Z, denote
any complex chance-variables; and for brevity let W denote their sum,
so that

W=2+4- -+ Z. (92)

As indicated by its title, this Subsection will be concerned particu-
larly with formulas for W2 and | W|?, but it will also include formulas
.2 —
for W and | W}~
Squaring W, given by (92), and then applying Theorem 3 gives

n n—1 n
Wt=3%22+23% % ZiZs (93)
r=1 h=1 E=h+1

or, in a briefer notation,

M

_ leeen 1..
W= % Z24+2 % ZpZ, (94)
T K<k
the second }_ in (94) thus denoting double summation.!?

Taking the product of W and its conjugate W and then applying
Theorem 3 gives

WP = £ TZ[* + 2Re ¥ ZiZs. (95)
Applying Theorem 3 to (92) and then squaring the result gives
W =57 +25 % (96)
Taking the product of W and W gives

|'ﬁ/|2 =2 |Z|2 4+ 2Re 3 _Zh?;, 97

12 1n (95), --- (99) the summations evidently cover the same sets of values as in
‘.
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When the Z's are independent, so that Theorem 1 is applicable,
equations (94) and (95) respectively reduce to

W =X 22+ 2% Zi, (98)

- TWPE = STZ.E + 2Re . ZiZs, (99)

although (96) and (97) remain unchanged. Thus, when the Z’s are
independent, the following relations exist:

W =% (ZF—Z) (100)
W — |W|* =X (Z]F - |Z|". (101)

It is of interest to compare these with (90) and (91), which do not
require the Z's to be independent. )

When, further, not more than one of the Z's is of non-zero mean
value, so that at least » — 1 are of zero mean value, that is, when ?

Z, =0, (=1 j—1,j+1, -, n), (102)

then (98) and (99) reduce to
W=3%Z2 (103)
W = XTZ.]* (104)

After substitution of the value of W from the defining equation
(92), and with due regard to (102), equations (103) and (104), on
account of their importance and simplicity, may profitably be ex-
pressed in the form of two theorems, respectively, as follows:

THEOREM 4. If any number of complex chance-variables are inde-
pendent and if not more than one is of non-zero mean value, then the
mean of the squared value of their sum is equal to the sum of the means
of their individual squared values.

That is,

(ZI+""‘I“ZH)2=—Z—1-2+"'+Z_TL21 (105)

provided the Z's are independent and not more than one is of non-zero
mean value, in accordance with (102).

THEOREM 5. If any number of complex chance-variables are inde-
pendent and if not more than one is of non-zero mean value, then the
mean of the squared magnitude (absolute value) of their sum 1is equal to
the sum of the means of their individual squared magnitudes.

13 An important practical instance in which one of the Z's is of non-zero mez

value will be found in connection with equation (120) in the problem treated
Section 6.
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That is,

Izl + - -|—Z,.|2 = ,ZI|2 + -+ |Zn|21 (106)

provided the Z's are independent and not more than one is of non-
zero mean value, in accordance with (102).

ParT II: APPLICATIONS

The methods, theorems and formulas presented in Part I will now
be applied to two important problems in telephone transmission engi-
neering.!* However, in each of these problems the solution is carried
no further than to formulate the ''leading distribution-parameters’ in
a form suitable for numerical evaluation in any specific case, since
Subsection 1.3 of Part I has furnished the means of solving such prob-
lems when once these parameters have been evaluated and when the
distribution is known to be approximately ‘‘ normal.”

The two problems mentioned above are treated separately in the
following Sections 5 and 6. Section 5 sketches the solution of the
general problem which was outlined in the Introduction (in Part I)
in connection with the equations there; Section 6 deals somewhat
fully with another problem, which, though specific, is yet of a rather
broad type.

The problem in Section 6 has heretofore been handled by various
approximate and less comprehensive methods, as indicated in the first
footnote of the Introduction. The relative simplicity of the method
described by Crisson in his paper there cited is due to his simplifying
assumption (made just after his equations 26 and 27) which amounts
to assuming that the scatter-diagram is circular instead of, as actually,
elliptical.

5. DEVIATION OF ANY CHARACTERISTIC OF A TRANSMISSION
SYSTEM OR OF A NETWORK

This Section sketches an approximate solution of the general prob-
lem outlined in the Introduction, in connection with equations (I) and
(IT), which are the general functional formulas for the contemplated
characteristic H and its deviation h, respectively; in general H and %
are complex.

The present Section relates chiefly to formulas for the “leading
distribution-parameters' of k& when this is regarded as a chance-
variable.

In accordance with Section 2 (in Part I) the leading distribution-
parameters of & are completely determined by %, %2, [1[%. Evidently

4 An additional problem, crosstalk in a telephone cable, is treated in the un-
nublished Appendix C already mentioned in footnote 3.
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the exact formulas for these three quantities must depend, in any
specific case, on the corresponding specific form of the function F in
equations (I) and (II) of the Introduction. However, general ap-
proximate formulas can be obtained when, as usual, the %'s in (II) are
small enough compared with the K's to enable the right side of (II)
to be represented by the first-order terms of a Taylor expansion, so
that k will be given by formula (III), as a good approximation. Since
h, when so given, is a linear function of the chance-variables %, - - - ka,
the formulas of Section 3 (in Part I) are directly applicable by setting
a = 0 there, and identifying Z, b,, Z, there with &, D,, k. here, and
hence z and z, there with # — % and k, — k, here, respectively. Thus
it is not necessary to write down here the formulas for h, 72, |h_|2.

When £ is approximately ‘“normal,” the chance that the unknown
value ' of a random sample consisting of a single value of % lies without
a circle of specified radius centered at the mean value % of h can be
found by application of the graphs presented and described in Sub-
section 1.3.

6. IMPEDANCE-DEVIATION AND REFLECTION COEFFICIENT OF A
LOADED CABLE DUE TO LOADING IRREGULARITIES
AND TERMINAL IRREGULARITY
As represented schematically by Fig. 13, the physical system con-
sidered in this problem consists of a periodically loaded cable whose
loading-coil impedances and loading-section admittances, and also the

X Xz Xr

Yo Y A Ye
Near Enp, Far Enp
OR
IniTIAL END
Z = IMPEDANCE OF SYSTEM: W = 1/Z = ADMITTANCE OF SYSTEM.
T = ADMITTANCE OF TERMINAL APPARATUS.
X: = IMPEDANCE OF TYFICAL LOADING-COIL NO. r.
Y, = ADMITTANCE OF TYPICAL WHOLE LOADING SECTION, NO. I.

X,Y = NOMINAL VALUES OF Xr,Yr.
Y /2 = NOMINAL VALUE OF Y, AND Yn.

Fig. 13

terminal admittance (T), deviate randomly from their nominal values,
so that the deviations are complex chance-variables; however, the
nominal value of the terminal admittance is not here restricted to
equality with the iterative impedance of the loaded cable, since such
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a restriction would not correspond to the conditions usually existing
in practice.

The resulting deviation in the impedance Z of the initial end of the
system (Fig. 13) from the iterative impedance of the loaded cable is
a complex chance-variable which is of much engineering importance
in case the loaded cable is to constitute part of a transmission system
containing a 2-way repeater, of the 22-type, connected between the
initial end of the loaded cable and the remainder of the transmission
system (not shown in Fig. 13); for, so far as the loaded cable is con-
cerned, the practicable amplification obtainable from the repeater will
depend approximately inversely on the impedance-deviation of the
loaded cable; more precisely, it will depend inversely on the reflection
coefficient defined, in terms of the impedance-deviation, by equation
(107) below.

In Fig. 13 the loaded cable is represented as beginning with a half-
section, and as ending with a half-section, and the latter as terminated
with an admittance 7. The formulas herein established are for this
system. Analogous formulas for a system beginning and ending with
half-coils, instead of with half-sections, can be obtained in an analo-
gous manner, or even written down directly by analogy.

The important reflection coefficient mentioned at the end of the
second paragraph, and to be denoted by p, is defined by the equation

_Z—h__ (Z=h  _  (Z—h)/2%
P="Z%n™ "2+ Z—-h 1+ EZ-b/2h’

(107)

Z denoting the impedance of the system in Fig. 13, and % the mid-
section iterative impedance of the loaded cable. Each of the forms in
(107) is useful and significant. However, if W = 1/Z denotes the
admittance of the system, and H = 1/k the mid-section iterative ad-
mittance of the loaded cable, the equation for p can be written in the
equivalent forms

W-H  (W-H) (W — H)/2H

PEWTR T Wt 1+ w—maa 1%

and these forms, instead of those in (107), will be the ones mostly
used herein, because of their simpler and more direct relations to the
corresponding current deviations. For, if an electromotive force E is
impressed between the terminals of the system in Fig. 13, the current J
there will be WE,; and if I° denotes the value that I would have if
W were equal to H, then I° = ITE. Thus the reflection coefficient p
defined in terms of W and H by equation (108) can be expressed in



72 BELL SYSTEM TECHNICAL JOURNAL

terms of I and I° by the equation

I-I0_  (I-IY  (I-1I)/I
P=TFD 2+ -1 1+ = I9/20%

(109)

If the system contained no internal irregularities within the loaded
cable itself and also no terminal irregularity at the far end, p would
of course be zero. There are three types of irregularities here to be
considered : section-irregularities, coil-irregularities, and the terminal-
irregularity. Each of these types will be considered separately, with
the ultimate object of constructing, by superposition, an approximate
formula for p in terms of all of the existing irregularities.

First, consider the typical section-irregularity, situated in section
No. 7 and consisting in the admittance-deviation % y, = ¥, — ¥ of
the admittance ¥, of this section from its nominal value ¥. The
admittance-increment y, may evidently be regarded as situated any-
where within the section. However, for the present purpose it is most
conducive to simplicity of thought to regard y. as situated just beyond
the nominal mid-point of the section, namely the point which is at a
distance of half a normal, or ‘‘regular,”” section from the initial end
of the section; for then it is immediately evident that the admittance -
of the portion of the system beyond the nominal mid-point will deviate
from the mid-section iterative admittance H by an amount approxi-
mately ' equal to v,, and hence that the corresponding reflection
coefficient {, pertaining to that mid-point will, in accordance with
(108), be given (approximately) by the formula

¥ w/?2H
C = H Ty 1+ 2H (110)

Due to the presence of the internal admittance-increment y, in section
No. r, the admittance W of the whole system (Fig. 13) at its initial
end will deviate somewhat from the mid-section iterative admittance
H; the admittance-deviation W-H will be denoted by v,’, and the
corresponding reflection coefficient of the system will be denoted by
¢/, so that, in accordance with (108),

’ ’
r_ Yr _ I /2H

Y A )7 ()

5 Here r = 1, 2, -+« n — 1; for of course the nominal values of ¥y and Y, are

each V(2 and hence vo = ¥y — ¥/2and v, = ¥, — ¥/2. With these qualifications
duly observed, formula (110) is valid for r = 0 and » = n as well as for r = 1, 2,
-n — 1. As seen below, yo is to be regarded as situated at the initial end of
section No. 0, and y, at the far end of section No. n.
18 “ Approximately,’" because ¥, is distributed; ‘‘exactly,” if ¥, were localized.
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Then it can rather easily be shown that {,' is related to {. in accord-
ance with the simple but exact equation

& = Le ¥ = 507, (112)
Q =¢eT =¢4e (113)

where

I' = A + iB denoting the propagation constant and ( the propaga-
tion factor of the loaded cable, each per periodic interval. It is some-
times convenient to call ¢’ the ‘propagated value” of {,, though it
is to be observed that the apparent propagation constant of {; is 2T
not I'. Alternatively, {;/ may be called the “apparent value” of {,
as viewed from the initial end of the system.

Second, consider the typical coil-irregularity, situated in coil No. r
and consisting in the impedance-deviation x, = X, — X of the im-
pedance X, of this coil from its nominal value X. The impedance-
increment x, will be regarded as situated just beyond the nominal
mid-point of the coil; and the corresponding reflection coefficient £,
pertaining to that mid-point will, in accordance with (107), be given
by the following formula, in which K denotes the mid-coil iterative
impedance of the loaded cable:

g = — Xy __ %/2K
T 2K +=x 1+ x/2K

(114)

Since &, is situated at a distance of » — 1/2 periodic intervals from the
initial end, it appears at that end' as a reflection coefficient £’ such
that
t = £QL (115)
Third, consider the terminal-irregularity situated at the junction
‘of the loaded cable with the terminal-admittance 7" and consisting
in the admittance-deviation { = T-H of the admittance T from the
mid-section iterative admittance H of the loaded cable. The corre-
sponding reflection coefficient 7 pertaining to that point will be given

by the formula
t t/2H

T2+t 1+1{2H

(116)

r

This will appear at the initial end as a reflection coefficient =’ given
by the formula

7= Q™. (117)

Finally let all of the loading-section admittances differ from their

nominal values, all of the loading-coil impedances from their nominal
values, and the terminal-admittance 7" from the mid-section iterative
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admittance H. Then, when these deviations are not too large, the
resulting reflection coefficient p at the initial end of the system will
be approximately equal to the sum of the *‘propagated’’ or “apparent”
values of the reflection coefficients arising from all of the individual
irregularities, that is,

p =§)§r'+’;£r’+7’1 (118)
whence, by substitution of (112), (115), (117),
p= ;}GQE’ + er £Q + Q. (119)

Since ¢», &, 7 are chance-variables, p is a complex chance-variable.
In accordance with Section 2 (in Part I) the leading distribution-
parameters of p are completely determined by p, o8, W; and these
will completely determine the distribution of p if it is “normal.” In
the present problem, owing to the presence of r in equation (119), p
is not to be taken as zero; for, in accordance with the second half of
the first paragraph of this Section, 7 would usually not be zero in
practice. However, ¢, and £, would usually be zero and will here be
so taken. Hence, from (119),

p = 7Q™ (120)

Since the chance-variables ¢, &, 7 are independent, and since only one
of them, namely r, has a non-zero mean value, Theorems 4 and 5 of
Subsection 4.3 (in Part I) are applicable to (119). Assuming all of
the loading-section deviations to be statistically alike, so that 7

F=0 TGPE=TFE (=012 -mn, (121
and all of the loading-coil deviations to be statistically alike, so that
§§=?, |Er[2= |f|2| (r =1, 2, m), (122)

application of Theorems 4 and 5 to (119), followed by the execution
of the indicated summations, gives the formulas

= 21 — Q) _1 2 2()4n 123

p g- Q, E Q; Q +TQ ( ‘)
- __1 — 4(n+1) ﬂl — g4n -

[ol* = TsT° T{’q—ﬂ g et Tl (24

where ¢ denotes the attenuation factor of the loaded cable per peri-

7 The assumption represented by (121) is an approximation to the extent that sta-
tistically, to and ¢ would usually differ somewhat from {;, wherej = 1,2, ---# — L.
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odic interval, that is,

g=10| =e*, (125) -

A denoting the attenuation constant of the loaded cable per periodic
interval, in accordance with equation (113).

When ¢** is small compared to unity, formulas (123) and (124)
reduce approximately to

e
p =s“_1ir:§2_?+fzgw, (126)
2 2.2 R
|p‘2=|§"1‘t|q’:;|9 + Tr2g*. (127)

When, further, g is nearly equal to unity, which by (125) will be the
case when 24 is small compared to unity, then formula (127) reduces
approximately to

P+ TP |,

2 _ 240

] ) + | 7|3 (128)
Returning to the formulas (110) and (114), which give {, and £, in

terms of 4./2H and x,/2K respectively, it may be said that for prac-

tical applications it is more convenient to express {, and £ in terms

of the fractional deviations &, and e and the coefficients D and G,

defined by the following four equations:

[p

& = /Y, (129) & = x./X, (130)
D = Y/2H, (131) G = X/2K. (132)
With these substitutions, formulas (110) and (114) become

Dé, . Ge,
g-r = 1 + Dari (133) Er - - 1 + GE,- (134)

It can be shown that D and G, defined by equations (131) and (132),
are approximately equal and may be expressed approximately in each
of the forms appearing in the equation

D=G= 1—% — \T = 1/HE = tanh (T/2), (135)
with H, K, T' already defined in connection with equations (108),
(114), (113) respectively. Equation (135) would be exact if the cable
wires were perfectly conducting, since then each section-admittance
Y could be regarded as effectively localized, so that the loaded cable
would be effectively a ladder-type structure, for which equation (135)
is known to be rigorously exact.



