Distortion Correction in Electrical Circuits with Constant
Resistance Recurrent Networks

By OTTO J. ZOBEL

Synopsis: Constant resistance recurrent networks, that is, networks
whose iterative impedances are a pure constant resistance at all frequencies,
form here the basis of a method of distortion correction which is applicable
to any electrical circuit. The paper takes up first the general problem of

distortion correction, then this method of correction and its application in
the following Parts and supplementary Appendices.

Part 1. Ideal Circuit Characteristics. Both ideal steady-state
attenuation and phase characteristics are formulated and then verified
as being necessary and sufficient for the preservation of signal-shape
under transient conditions.

PART 2. Constant Resistance Recurrent Networks. These networks
are of three general types and are made possible by the introduction of
inverse networks of constant impedance product. Their propagation
characteristics are considered in some detail and various methods of
design are indicated.

PArRT 3. Arbitrary Impedance Recurrent Networks. These net-
works are a generalization of those in Part 2.

PART 4. Applications. The large variety of uses to which these
networks may be put is illustrated by specific designs made for com-
plementary distortion correcting networks, for a submarine cable
circuit, a loaded-cable program transmission circuit, and an open-wire
television circuit. In addition, networks are given for the equalization
of variable attenuation in carrier telephone circuits, for phase correc-
tion in the transatlantic telephone system and for the simulation of a
smooth line.

AppeNDIX 1. Discussion of Linear Phase Intercept.

ArrenDix I1.  Linear Transducer Theorems.

Three theorems are proved which relate to the variation with
frequency over the entire frequency range of the propagation constants
and iterative impedances of certain passive linear transducers.

Appenpix 111, Propagation Constant and Iterative Impedance
Formule for General Ladder, Laitice and Bridged-T Types. This
includes an improved formula for cosh™ (x + ).

ArpENDIX IV. Propagation Characteristics and Formule for Various
Lattice Type Networks. These results can be applied quite readily to
many problems arising in the design of distortion correcting networks.
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INTRODUCTION

VERY actual electrical circuit or transmission system distorts
transmitted signals; that is to say, the received signal, regarded
as a time-function, differs in shape from the impressed signal. Heavi-
side studied in detail the distorting action of the transmission line
itself and indicated the necessary electrical properties of the distor-
tionless line.! The distortionless line of Heaviside was approximately
realized in the loaded line ? in which similar lumped inductances are
inserted in series with the line at uniform intervals. While this loading
has the effect of partially correcting distortion of the lower frequency
components of the signal, it also tends to increase the distortion of the
higher frequency components and so limit somewhat the useful fre-
quency range. More recently the transmission characteristics of some
newly installed submarine cables have been greatly improved by means
of continuous loading with the new magnetic material permalloy.?

The methods mentioned above are directed to rendering the line
itself more nearly perfect. The method of distortion correction pre-
sented here may be used to supplement them and is that of pas-
sive terminal networks; more particularly networks whose iterative
impedances are a pure constant resistance at all frequencies.* These
networks are, however, not limited in their use to any particular type
of transducer or transmission system but have general applicability.
For this reason the general problem of distortion correction by this
method resolves itself principally into a study of the transmission
properties of these networks together with systematic methods of
design to meet specified requirements.

This paper takes up first the characteristics necessary for no dis-
tortion in an electrical circuit; then, an extended study of constant
resistance networks which can be used for distortion correction; finally,
several applications to important practical problems. In addition,
Appendix TV gives a considerable number of network structures and

1 “Electrical Papers,” Vol. IT, p. 123, 1892; * Electromagnetic Theory," Vol. I,
p. 445, 1893, Oliver Heaviside.

2. S. Patent No. 652,230 to M. I. Pupin, dated June 19, 1900. See also “On
Loaded Lines in Telephonic Transmission,” G. A. Campbell, Phil. Mag., March,
1903. Later a loading system more specifically directed to reducing distortion per se
was disclosed in U. S. Patent No. 1,564,201 to J. R. Carson, A. B. Clark and J. Mills,
dated December 8, 1925.

24 The Loaded Submarine Telegraph Cable,” O. E. Buckley, B. S. T. J., July,
1()2‘5"I‘ht: equalization of the attenuation of certain transmission lines has for some
time been obtained by means of comparatively simple series or shunt terminal net-
works. See, for example, U. S, Patent No. 1,453,980 to R. S, Hoyt, dated May I,

1923. Such networks necessarily produce total terminal impedances which vary
with frequency.

29
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corresponding formule which will be found useful in further applica-
tions.
ParT 1. IpEAL CirRcUiT CHARACTERISTICS

There is no distortion in the transmission of an impressed signal over
an electrical circuit or network when the shape of the received signal,
considered as a time-function with usually a time-of-transmission, is
identical with that of the impressed signal. A uniform decrease in
magnitude only is not distortion, and it can be restored to its original
value by means of a distortionless amplifier.

Let us assume in the general case that the e.m.f. impressed on the
circuit is E, and that the circuit is always terminated by a receiver of
resistance, R, across which is the received voltage, », in which we are
interested. The received current is then directly proportional to the
received voltage.

The necessary and sufficient conditions for distortionless transmis-
sion can be stated quite simply in terms of the steady-periodic transfer
voltage ratio of the circuit which will be written as

A (1)

with the terminology a + 4b = the transfer vollage exponent of the
ctrcutt, or concisely, the transfer exponent. Here a represents attenua-
tion in napiers and b phase difference in radians, omitting in the latter
any constant integral multiple of 27, and assuming the two voltages
to have zero phase difference at zero frequency. That is, the origin
of phase difference is so chosen that the phase intercept at zero fre-
quency is zero.

For ideal transmission characteristics the steady-periodic transfer expo-
nent of the circutt should have an allenuation independent of frequency
and a phase proportional to angular frequency, w, whose slope is the lime-
of -transmission of the circuit.

In mathematical terms these ideal characteristics, represented by
primes, are

a' = constant (napiers),

and (2)

b’ = 7w (radians),

where
7 = time-of-transmission (seconds).

To show this, consider first what the indicial voltage, g(f), would be
under these assumptions. By indicial voltage is meant the received
voltage as a time-function per unit constant e.m.f. impressed at the
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sending end at time ¢ = 0. With (1) and (2) in the integral equation
of electric circuit theory ® we obtain

e—a'—Tp ]
= f erg(i)dt, (3)
whose solution is ’
g) =0, t <,
and @)

’

g(t) = e = constant, ¢ > 1.

Thus, a constant voltage, which has been atlenuated by the circuil an
amount a' napiers, arrives suddenly al the receiving end after a time
r = (b'|w) seconds, and there is no distortion with respect to the unit
constant e.m.f. impressed on the circuit at time t = 0.

If now any type of e.m.f., E(t), is impressed on this circuit which is
specified by the steady-state characteristics (2) or the indicial voltage
(4), we obtain through a general formula *

o0 = 5 [ Bl - »e0)y = B 7). s)

This received voltage has the same shape as the impressed e.m.f.,
there being an attenuation, a’, and a time-of-transmission, 7. Hence,
a circuit specified as above is distortionless to any lype of impressed
e.m.f. A further discussion involving the phase intercept is taken up
in Appendix I.

It may be stated that Heaviside's theoretical distortionless smooth
line was that in which the line constants R’, L', G’ and C’ per unit

length had the relation
R[G' = L'|C', (6)

giving attenuation and phase constants per unit length, respectively,

a = VR'G’ napiers,
and
B = VL'C'w radians;

also an iterative (or characteristic) impedance

R’ L’
k= \/-;; = \/;ohms,

which is a constant resistance at all frequencies. A circuit made up

5 “Electric Circuit Theory and the Operational Caleulus,” John R. Carson.
SL.c.
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of such a line of length / terminated by a resistance R = k is readily
seen to satisfy the conditions (2) above for no distortion. It would
have an attenuation ¢’ = VR'G'] napiers and time-of-transmission
r = VL'C’l seconds.

Having seen above what constitutes ideal transmission character-
istics, the problem of distortion correction in any practical distorting
circuit is that of altering the circuit in some way so as to approach this
ideal. In most circuits it is impossible to obtain these ideal charac-
teristics throughout the entire frequency range. More or less satis-
factory transmission results will be had, however, if this ideal is
approached over the range of frequencies most essential to the com-
position of the impressed e.m.f., as shown by its Fourier integral
analysis.

How accurately an ideal attenuation characteristic has been met
in any case depends upon how nearly constant the attenuation is in
the frequency range. A simple practical measure of the degree of
approach to an ideal phase characteristic at the frequencies in this
range is furnished by a consideration of the time-of-phase-transmission
in the steady state,

7, = b/w seconds, (7)

in which b is defined as in (1) for the complete circuit. The more
nearly constant 7, is in the frequency range, the closer it approaches
equality with r, the time-of-transmission of the circuit for those
frequencies.

In many cases approximately ideal phase characteristics already
exist in the desired frequency ranges so that corrections need be made
for attenuation only. In others, such as those in which the steady-
periodic state is of most importance and where the phase relations
between the components are immaterial, it is satisfactory to obtain
uniform attenuation at the desired frequencies. The method of alter-
ing circuit transmission characteristics to be shown in this paper
follows in Part 2.

PART 2. CONSTANT RESISTANCE RECURRENT NETWORKS

2.1. Fundamenital Basis of Distortion Correction

The general transmission circuit of Fig. 1 is shown as having a
resistance, R, at the receiving end, as in the case where the energy is
absorbed. Usually the circuit characteristics at this resistance with
respect to the sending terminals show distortion in the required
frequency range. If so, an ideal method of correcting the distortion
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would appear to be that of interposing between the circuit and the
receiving resistance a transducer having the requisite corrective propa-
gation constant and an iterative impedance, R. By so doing, the
transfer exponent at the end of the circuit proper would remain un-

O
E—_— viiw) _ . -a-ib
E <1: Circuit vl SR m-e

Qttenuation (napiers)
b, b Phase (radians)

el a, b:Non-Ideal
"6 - - a,' b’ I c[ea&
§ -
//
0 Ongular Frequency, w, (radians persecond,)

Fig. 1—Non-ideal and ideal transfer exponents of circuits.

altered, irrespective of the exact nature of the network beyond, since the
latter has the impedance R; but the total transfer exponent would
become ideal through the addition of the complementary propagation
constant of the transducer. Stated analytically,

let a 4+ ib = transfer exponent of the distorting circuit at a ter-
minating resistance R,
propagation constant of the correcting transducer of
iterative impedance R,
and @' 4 b’ = resultant ideal transfer exponent at the receiving re-
sistance R.

A + 1B

Then the correcting transducer must be so designed that A and B
satisly over the required frequency range the conditions

a’ = a + A = constant,

and
bV =b+ B =10,

where 7 is a positive constant. Or, explicitly,
A = a' — a, positive,

and (8)
B=bV—0b=10—0.
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The total attenuation, a’, and time-of-transmission, r, are somewhat
at our disposal; it will be found that their best choice is usually guided
by experience. The transducer will often consist of a number of sec-
tions, not necessarily alike. This distortion correcting process may
be called ‘equalizing both the attenuation and the time-of-phase-
transmission.”

The idea of altering circuil transmission characteristics by means of
one or more sections of constant resistance recurrent networks forms the
Sundamental basis of the method of distortion correction presented here.
It is, of course, dependent for its application upon the physical possi-
bility of designing recurrent networks whose iterative impedances are
a constant resistance at all frequencies and whose propagation con-
stants have the desired characteristics.

Another method by which distortion correction has sometimes been
obtained is by means of terminal thermionic distortion circuits wherein
networks of particular frequency characteristics are placed in the plate
circuits of successive thermionic tubes. In it any reaction of one
stage upon a preceding stage or upon the original circuit is prevented
by the unilateral property of the tubes, whereas in the method given
here this same result is obtained by the property of a constant resist-
ance iterative impedance and the use of a resistance termination.
While from the standpoint of the original circuit both methods give
the resultant effect of a terminal unilateral device, one very practical
advantage of the constant resistance method over the thermionic
tube method appears to be that it corrects distortion before any
amplification is added and hence with it there would be less tendency
to cause tube distortion or modulation. Another advantage is that
the distortion correcting networks can be designed independently of
the amplifying device. A description of this other method appeared
in the last number of the Journal.?

Before taking up specific types of constant resistance structures, let
us consider some of the inherent limitations of certain transducers as
are brought out by the following theorems.

2.2. Linear Transducer T heorems

These theorems relate to the variation with frequency over the
entire frequency range of the iterative parameters, that is, the propaga-
tion constants and iterative impedances, of certain passive linear
transducers. In symmetrical transducers we could as well employ the
image parameters which are of such utility in a study of electric wave-

7*Phase Distortion and Phase Distortion Correction,"” Sallie Pero Mead, B. S.
T. J., April, 1928,
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filters and which, together with iterative parameters, were discussed
generally by the writer in a previous number of this Journal® But
since here in the ladder type networks some dissymmetrical sections
are also considered, I shall use the iterative parameters throughout
this paper.

Theorem I: Any symmetrical transducer whose attenuation constant is
zero at all frequencies has a phase constant which increases with fre-
quency and an iterative impedance which is a constant resistance through-
out the frequency range.

Theorem II: Any transducer whose tterative impedance is real at all
frequencies has a constant resistance iterative impedance, and if in
addition its phase constant is proportional to frequency, it has a uniform
attenuation constant.

Theorem III: Any symmetrical transducer whose attenuation constant
is independent of frequency and whose iterative impedance is a constant
resistance at all frequencies has a phase constant which is zero or increases
with frequency.

The theorems, whose proofs are given in Appendix II, may be
represented by the following table. The variations with frequency of
the network parameters shown apply to the entire frequency range
and in each theorem the parenthesis designates the dependent property,
where A4 is the attenuation constant, B the phase constant, and K the
iterative impedance.

TABLE 1

LINEAR TRANSDUCER THEOREMS

Theorem A B K
| B 0 (Increases) (Constant)
... (Constant) Real (Constant)

TW
L. ......... Constant (Zero, or increases) Constant

That part of Theorem I which relates to the iterative impedance
explains why there is no physical ladder type network having zero
attenuation throughout the frequency range. For, the ladder type,
when non-dissipative and having zero attenuation, requires a mid-series
or mid-shunt iterative impedance which varies with frequency.

8 “ Transmission Characteristics of Electric Wave-Filters," O. J. Zobel, B. S. T. J.,
October, 1924. The term “characteristic impedance’” used in_that paper for a
recurrent or iterative parameter with dissymmetrical transducers is replaced here by
“iterative impedance.,”” Thus, the same term “‘iterative’ applies to the structure,
to the corresponding impedances, and to the kind of parameters. The use of the
term “characteristic impedance’” will be limited to smooth lines, or sometimes to
symmetrical recurrent structures. In symmetrical structures the “characteristic,”
““iterative,” and ‘‘image’ impedances are identical.
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2.3. Inverse Networks of Constant Impedance Product

We have already seen that the fundamental advantage of using
constant resistance networks for distortion correction lies in the fact
that when they are placed ahead of the receiving resistance, R, they
present this same impedance to the circuit proper and hence do not
alter the transfer exponent at that point. They can be designed to
have, in addition to the impedance R, a propagation constant which
complements this exponent and produces a resultant transfer exponent
at the receiving resistance which is approximately ideal.

The possibility of physically realizing recurrent networks having a
constant resistance iterative impedance at all frequencies rests, as
will be seen, upon that of obtaining pairs of two-terminal networks the
product of whose impedances is constant, independent of frequency.
Such pairs ? I have defined as inverse networks of impedance product R,
or more concisely, inverse networks.

In the paper just referred to it was pointed out that one elemental
pair of such inverse networks is composed of two resistances R; and
R, and another is composed of an inductance L and a capacity C
bearing the impedance product relations at all frequencies

R\R, = L/C = R 9

The same paper gave a simple proof of the following theorem relating
to series and parallel combinations of networks. If 2,/ and z. are
any pair of inverse networks and if z,"" and z,'' are any other pair, such
that z'z.' = 5,"'zy" = R?, then 3, and z," in series and 2.’ and z.”" in
parallel are a pair; similarly z,' and 3" in parallel and z," and z." in
series are another pair.

Without much difficulty a theorem relating to simple networks
having the form of a general Wheatstone bridge can also be obtained,
as follows: The inverse network corresponding to any given two-terminal
bridge network of five distinct branches is also a bridge network, and may
be derived by replacing the network in each branch of the given network by
115 inverse nelwork and then interchanging the networks in either opposite
pair of branches. By successive applications of these relations, be-
ginning with the elemental pairs, very complicated inverse net-
works can be built up. Only reactance networks were considered
in the paper referred to above. Ordinarily the series and parallel

? An extensive use of inverse networks of pure reactance types was made in the
paper, “Theory and Design of Uniform and Composite Electric Wave-Filters,"
0. ]J. Zobel, B. S. T. J., January, 1923. Also in U. S. Patents No. 1,509,184, Sep-
tember 23, 1924; Nos. 1,557,229 and 1,557,230, October 13, 1925; and No. 1,644,004,
October 4, 1927.
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combinations are most useful, since the bridge structures require at
least five elements in each network. Some networks may have other
equivalent structures, as well.
If 24 = 11 + ix1, and 2., = 7y + 1x9; are inverse networks such
that
2115801 = R2, (10)

a number of simple relations exist among their impedance components;
namely,

X2 X1
T2 T E’
|:2112=%, (1)
and
Xoy X1
.’.:zlw2 _-.EZ

In a smooth line the condition (6) which makes it distortionless is
actually the one making the series and shunt impedances per unit
length inverse networks of impedance product R? = R'/G' = L'/(".

2.4. Types of Constant Resislance Recurrent Networks and Thetr
Propagation Constanis

The types of recurrent networks considered in this paper are the
three simplest ones, the ladder, lattice, and bridged-T types whose
general structures are shown in Fig. 2. Propagation constant and
iterative impedance formulz for these types in terms of general
impedance elements are given in Appendix III for possible future
reference.

By introducing in each of these types the use of inverse networks
with z1; and 2., satisfying relation (10), and assuming various relations
in the general formulz, it is possible to derive general network struc-
tures whose iterative impedances are a constant resistance, R, at all
frequencies.”” The structures are of such general nature as to permit
a very wide range of propagation constants. Any one of them when
closed by a resistance, R, presents at the other terminals the impedance
R at all frequencies. They will now be considered.

The networks of the ladder type are shown in Fig. 3 as six complete
sections, each designated by the termination at which it has the
iterative impedance R; one at full-series, one at full-shunt, and two

10See U. S. Patent No. 1,603,305 to O. J. Zobel,"dated October 19, 1926. Also
British Patent Specification No. 236,189, dated July 8, 1926.
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each at mid-series and mid-shunt. The first two sections are dis-
symmetrical as regards the two pairs of terminals. - The two mid-series
sections are symmetrical and identical except for the structure of their
shunt branches, which, however, are equivalent impedances. Simi-

Ladder

Fubl-Series Full=Shunt
Zy Z;
- %Zz - Zz
Oo— L O— -0
Mid-Series Mid-Shunié
77 77 Z

o
’
} i
o
N
| &

2
S

22 22, 2

o)
)

Fig. 2—Types of general recurrent network sections.

larly, the symmetrical mid-shunt pair have different series branches of
equivalent impedance. It may be of interest to point out that if each
of these sections is closed by a resistance, R, to form a two-terminal
network, then three pairs of these networks are seen directly from
series and parallel rules to be inverse networks; namely,

I, Iy; I, Iy; and Iy, I,.
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If one has the impedance R, the other must also, as is the case. The
propagation constant, T' = A + B, of each of these ladder type

sections is the same and is given by the simple relation

Full~ Serzies Full~Shunt
]b
Mid-=Series Iy
R R
iR P
27
Za1 2
o— 0 o —o0
) le Mid=Shumni Ir
2R P 2B 7y
o o AN —o AN~
p ZH 1
R R
ZZZ, 2427 2221
O-

+—0 0
Zy Zy=R* '
Fig. 3—Ladder type constant resistance sections.
e = 1 + z11/R; (12)

the particular iterative impedance is R. Here z); is arbitrarily taken
as the independent impedance determining the propagation constant
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with 2., dependent through the inverse network relation 2,22, = R*.
This relation, besides ensuring a constant resistance iterative im-
pedance, reduces the network parameters at least one half, Since
resistances occur explicitly in the structures, these sections will all be dis-
sipative.

The network of the lattice type, shown in Fig. 4, is symmetrical
and has a propagation constant determined by

72,
c B
L2z 747
O - o AAAN . 0
2z
22y
Zy 2z <R*
Tig. 4—Lattice type constant resistance section.
1 + Zu/zR
r = _ — —
€ 1 — Z]1/2R’ (13)

where 211201 = R If 21 45 a reactance, the network will introduce no
attenuation, only phase difference. '

The networks of the bridged-T type are symmetrical and will be given
in two groups, the members of each group having the same propagation
constant. The two sections of the first group (I, and I,) in Fig. 5

[a, [b
Z
Zr” /7
oA P té'grl?f
ol ch chR . o ch ch .
AR
Zor o
O - 0 0}

O
c=/ Zn szﬁz

Fig. 5—Bridged-T(I) type constant resistance sections.
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have a propagation constant formula

of — 1 + (C + I)Z]l/QR

T T F (e~ Dau/2R’ (14

where, besides the arbitrary impedance 2,,, there is the arbitrary real
¢ = 1. These sections will be dissipative owing to the ever present
resistances. Utilizing directly the rule given for inverse bridge net-
works, it can be seen that when closed by R these two structures are
inverse networks of impedance product R*.

The four bridged-T sections of the second group (11, 11, 11., and
I1,) in Fig. 6 have the formula

Iy Y/
4z 34 ZZI
TRz y °
e — “ _
ZZ 2y ZZy ZZy —W—2ZI
o 0 o—d o
T2
22
221
O O O— O
-EC Jw
Z
&2 2 22y W22

72y
o 22y
C 2z

I I
!
i
} !

_ O (e,
c=/(usually)  ZyZyR*

Fig., 6—DBridged-T(1l) type constant resistance sections.

- 1 + 511/2R + 6(311/212)2 (1 5)
1 — 511/2R + C(Z“/ZR)E ! .

el
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where ¢ = 1, usually. In the very special cases of networks II, and
II,, wherein 2y, is an inductance, ¢ may be less than unity and approach
zero as a limit. For the latter values the negative inductance may
be obtained physically as a negative mutual between the series coils.
When ¢ = 1, networks 11, and II, become physically identical, as do
also networks 11, and I1;.  If 21, is @ reaciance, there will be no attenua-
tion. Again, we shall find by applying the proper rule directly that
when the four general sections are closed by resistances R there will
result two pairs of inverse networks of impedance product R?, respec-
tively 1L, 114 and II,, IL..

R
Znkozi Y g

Fig. 7—Unbalanced lattice type constant resistance section.

A special network of the unbalanced lattice type may be mentioned
briefly. This symmetrical structure as shown in Fig. 7 plays no
direct part here as a distortion correcting network but is closely related
to some of the other types and possesses interesting properties, among
others that of conjugacy as in an ordinary balanced Wheatstone bridge.
Its open-circuit impedance X and short-circuit impedance ¥ are both
equal to R, hence its iterative impedance, VX7, is also R. Since
tanh I' = V¥/X = 1, T' = «, which means that no current would
flow in a terminating resistance R due to an e.m.f. applied through a
sending resistance R, these two impedance branches being conjugate.
The network containing four resistances R, which is obtained by
terminating this section at each end by a resistance R, may likewise be
derived directly from the limiting case (¢ = 1) of the bridged-T (I)
section which has similarly been terminated, merely by a rearrange-
ment of form. It has these properties:

1. Opposite resistances are in conjugate branches.
2. Each of the four resistances is faced by a resistance R.

These properties can be seen as a result of the symmetry and also from
a comparison with the full-series and full-shunt ladder type sections
when terminated by resistances R. It is known that for one direction
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of propagation these two ladder sections have the same iterative
impedance and propagation constant. In the full-series section ter-
minated by R the junction point between R of the section and 2., is
short-circuited with the point at the receiving side of 21, while in the
corresponding full-shunt network the structure is the same except that
these two points are open-circuited. Because of the identity of
propagation constants this can be possible only if the two points are
at the same potential whence they can be connected by any impedance
without altering propagation in the one direction. This being the
case, a branch of resistance R, conjugate with the sending branch,
can be connected across these points, and this results in giving the
symmetrical bridged-T (I) type (where ¢ = 1), or the equivalent net-
work of Fig. 7 terminated by R. Thus the receiving-side series
resistance R in the limiting case (¢ = 1) of the bridged-T (I) section
plays no role and is superfluous for this direction of transmission, but
it makes the section symmetrical and ensures similar propagation
and impedance characteristics when transmitting in the opposite
direction.!

If, in the network of Fig. 7, 21, is made resonant and anti-resonant
at different frequencies, selective maximum energy transmission can
be obtained at these frequencies between pairs of the four different
resistance branches which might also be considered as different lines.
The propagation constant between any pair of resistances can be
determined from the relationships established above.

As an aid in obtaining an approximate value of the propagation
constant for any of these types when its impedance elements are known,
a simple chart may be drawn up if desired. This could be obtained
in the following manner. The formulee (12) to (15) are all of the form

el = g4HB = m | in;
whence
et = Vm? + n, (16)
and
tan B = n/m.

Thus, it is evident that any locus of uniform attenuation constant, 4,
is represented in the m, n plane by a circle of radius, e, with center
at the origin. Also, any locus of uniform phase constant, B, is a
straight line of slope, tan B, starting from the origin.

1t Another method of deriving the section having directly the form given by putting

¢ = 1 in the bridged-T (I) type was used by G. H. Stevenson, U. S. Patent No.
1,606,817, November 16, 1926.
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2.5. Relations for Equivalence of Propagation Constants

All of the above networks have equivalent iterative impedances
equal to R. It is sometimes useful to be able to transform readily
from one type to another which has also an equivalent propagation
constant, if that is physically possible. This may arise in an economic
study of a final network design where account is taken of all practical
factors, such as symmetry, line balance, number of the elements,
their magnitudes, etc.

The structures which are important in this connection when dealing
with both attenuation and phase characteristics comprise the ladder,
lattice, and bridged-T (I) networks, whose propagation constant
formulae are given in (12), (13), and (14). For their propagation
constants to be identical the impedance 2,, in one type must bear a
definite relation to that in another. In the following table, derived
by equating these formule, a general impedance z is introduced. Each
2;; may be expressed in terms of z and R. Here z is taken as the zi
for each type in succession. It then becomes a simple matter to
transform from one type of structure to another having an equivalent
propagation constant. The parameter ¢ in a derived bridged-T (I)
network would be taken such as to give the minimum number of
elements.

TABLE II
RELATIONS FOR EQUIVALENCE
Ladder Lattice Bridged-T (I)
211 Z11 Z1, € = 1
1 1
5 T 1 1 1
2 TR PRy J Py
1t . 1
1 1 1 1
PRy E+—2R,’c
. 1 :
1 1 1 1
E+2R/(r, —1) E+2R/c

A transformation from the 21, of one type section to that of another
equivalent one involves essentially only an alteration of the given
impedance by a positive or negative resistance element in parallel
with it. This will not always result in a physical network with
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positive elements. The following statements can be made, however:

1. The transformation of the ladder type to the equivalent bridged-T (I)
type, and vice versa, is always possible.

2. The transformation of the ladder type, or the bridged-T (I) type, lo
the equivalent lattice type is always physically possible; the converse is
not necessarily so.

Those structures which are potentially phase networks, and thus
useful when requiring a non-attenuating network with a phase char-
acteristic only, are the lattice type again and the bridged-T (II) type.
Such networks are used to introduce various characteristics for the
time-of-phase-transmission. It will be sufficient to give the relations
for equivalence between these two types, obtained from (13) and (15),

as
1
(zll)]umue = ! (17)
1 1
_—
2 4291/¢/ vrdgea-T (am

which is always physically possible if the bridged-T (II) nelwork exisis.
On the other hand

2 J—
{zll)brldged-'l‘ (mn = E (221 =+ \(2212 — R aetce ! (18)

where the ¢ which belongs to the bridged-T (II) type must necessarily
be taken so as to make the radical a perfect square, if a physical
equivalent 1is possible. It is to be pointed out that in the propagation
constant formula (15), considered as a general form, the range of
values for the parameter ¢ which will give a physical bridged-T (II)
network is ¢ = 1, usually, while the range for a physical lattice net-
work is ¢ = 0, as seen from (17). Thus, the lattice type can give a
greater variety of propagation constants.

From all the comparisons made above this conclusion may be drawn.
The lattice type has a greater range for its propagation constant char-
acteristic than has either a ladder or a bridged-T type. Hence, the lattice
type might well be considered as the fundamental one, when designing such
networks, from which other equivalent types may be obtained by transforma-
tions, if such physical structures are possible.

2.6. Propagation Constants Expressed as Frequency Functions

In Section 2.4 the propagation constant of any of these networks
was given as varying with frequency only implicitly, according to
some function of the impedance ratio, z;/2R. To express it more
explicitly as a frequency function, I shall sketch briefly a satisfactory
general method to be followed.

30
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For an impedance z;; which is made up of lumped elements of
resistance, inductance, and capacity we may express the impedance
ratio z;;/2R as the ratio of two frequency-polynomials in (if), where
i = ¥Y— 1 and fis frequency. Thus,

Zu _ Qo + ai(zf) + a=(if)* + - - -
2R bo + bi(ef) + be(af)P + - --

The impedance coefficients a,, bo, etc., of which one is unity and some
may be zero, are positive quantities and are algebraic combinations
of the network elements. Their number is equal to, or greater than,
the number of independent elements. For any given type of network
the coefficients are fixed by the elements, and vice versa.

Putting this expression in any of the formule (12) to (15), there
results for the propagation constant a form

g0+ galif) + g0 + - -
& = b F GH F G - (20)

in which go, %o, etc., are algebraic functions of a,, b, etc., also of ¢
if the network is a bridged-T type. From this the attenuation con-
stant and phase constant can also be derived and expressed separately
as functions of frequency.

For the attenuation constant, a form is obtained

_ Pyt Pafi -
RSN R @1)

which is the ratio of two frequency-polynomials both in even powers
of frequency. One of the attenuation coefficients is unity.
For the phase constant, a form

=5+ iy. (19)

F = eEA — 101‘()[10

Mif + Mot + ---
N ¥ NP F 22)

in which one of the phase coefficients is unity, is the ratio of two
frequency-polynomials, odd powers of frequency in the numerator
and even powers in the denominator. (It is sometimes convenient to
use tan (B/2).) In (21) and (22) the attenuation coefficients Py, Qo,
etc., and the phase coefficients M,, N, etc., are expressible in terms
of the impedance coefficients a,, b, etc.

It should be mentioned here that in deriving the above expressions
certain assumptions have been made; namely, invariable elements
and non-dissipative inductances and capacities. These restrictions
are well justified from the fact that such departures are usually small

H=tan B =
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and their effects in a network do not alter appreciably the general
characteristics. However, to calculate accurate results for both the
propagation constant and the iterative impedance of the final design
of a physical network taking into account all factors, one should use
the general formulae given in Appendix III which have been simplified
to give accurate results quite readily.

2.7. Network Solutions from Their Propagation Characteristics

It was assumed in the previous section that the recurrent network
elements are invariable and that inductances and capacities are non-
dissipative. On this basis general formulz for the propagation char-
acteristic were obtained in terms of these elements. The same assump-
tions are retained here but reverse processes will be carried through
which derive the elements from the propagation characteristic of the
recurrent network. Three methods will be outlined, necessarily in
general terms.

Method 1.  Solutions from the Attenuation Constant

Since attenuation is ordinarily of greatest importance, this method
is the one most frequently used with networks having an attenuation
characteristic and involves initially the determination of the attenua-
tion coefficients Py, Qy, etc., from this characteristic. Using these
coefficients, one derives from algebraic relations, first, the impedance
coefficients a,, by, etc., and finally the network elements in 2;;. The
elements of zi; follow from the inverse network relation (10).

The method is based upon the transformation of the attenuation
formula (21) to a linear equation in Py, Q, etc., whose number is equal
to or greater than the number of independent network parameters.
If we multiply equation (21) by the Q-polynomial, we obtain formally
the attenuation linear equation which holds at all frequencies,

Po+f*Py+ -+ = FQy — f*FQy — -+ = 0. (23)

Introducing in this the attenuation constant, and hence F, at a number
of different frequencies equal to the number of independent network
parameters, there results a system of independent simultaneous linear
equations which can be solved for the coefficients. The simplest
practical procedure is perhaps that of the step-by-step elimination of
the coefficients.

When the number of coefficients and independent network param-
eters, hence equations, are the same, the solution of the latter offers
no particular difficulty and results can readily be checked by substitu-
tion in the original equation (21).
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When, as sometimes occurs, the number of coefficients is one greater
than the number of independent network parameters, it means that
one relation exists between the coefficients and hence any one of the
latter may be assumed dependent. The dependent relation can be
found from the formula for Py, Qy, etc., in terms of ag, by, etc. How-
ever, in some such networks it is possible to use the attenuation con-
stant at a particular frequency, say zero or infinite frequency, and
thereby reduce the number of remaining coefficients and independent
network parameters to equality, when the case is readily solvable.
If this does not produce the desired reduction, it is usually best to first
transfer the dependent coefficient to the right-hand member of (23)
and after forming the set of linear equations solve them for the inde-
pendent coefficients in terms of the dependent one. Substitution of
these values in the dependent relation gives a polynomial in the
dependent coefficient which can be solved by Horner’s method. Its
solution then determines the independent coefficients. This procedure
might be extended similarly to cases where the number of coefficients
is two or more greater than that of the linear equations, but obviously
the process becomes quite involved.

The values of the attenuation coefficients Py, (y, etc., are unique
when determined from linear equations. The impedance coefficients
o, bo, etc., derived from them are also single-valued to give a physical
solution in most types of networks, meaning that only one such
physical network has the particular attenuation characteristic. How-
ever, in the laltice lype, it has been found that there are usually possible
lwo or more physical solutions for the impedance coefficients from the
attenuation coefficients, which correspond to two or more similar
appearing physical structures having identically the same attenuation
characteristic but different phase constants.

Method 2. Solutions from the Phase Constant

This method is applicable particularly to phase networks which
ideally have no attenuation and to other networks where the number
of phase coefficients equals the number of independent network
parameters. The procedure is the same as in the previous method
where now we operate with the phase constant formula (22). Multi-
plying the latter by its N-polynomial, we obtain formally the phase
linear equation, true at all frequencies,

M+ f*Ms + -+ — HNy — f*HN; — -+ = 0. (24)

Fixing the phase constant, and hence H, in this equation at frequencies
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equal in number to the phase coefficients gives us, if this number is
equal to the number of independent network parameters, the desired
set of linear equations to be solved by the usual methods. In a net-
work where the number of phase coefficients is one less than the
number of network parameters an additional relation will be needed
to determine the network elements and this can be supplied from the
attenuation characteristic. Here the attenuation characteristic can
probably be lowered uniformly without altering the phase character-
istic. (See Section 2.82.)

Method 3. Solutions from the Propagation Constant

Since it has been shown in Section 2.5 that any network of the type
considered in this paper can always be represented physically by a
lattice type having an equivalent propagation constant, we can
simplify the discussion here by dealing entirely with the lattice net-
work. From (13) the impedance ratio z11/2R for this type is derived
in terms of its propagation constant as

2n _CP—1

T tanh (T/2), (25)

which holds at all frequencies. Thus, a determination of the recurrent
nelwork from its propagation constant (attenuation and phase constants
together) reduces to the solution of a two-terminal impedance nelwork from
its impedance characteristic. 'The impedance ratio components s and
v in (19) will become definite known functions of frequency deter-
mined through (25) by the propagation constant of the given lattice
network,

A method of solving for the impedance coefficients aq, by, etc., and
hence the network elements from the components s and y, follows.
Instead of attempting to separate the impedance ratio expression
into its real and imaginary parts which can then separately be equated
to s and y, which is the usual method, let us multiply (19) by the b-
polynomial. Now equating separately the real and imaginary parts
we obtain a pair of equations which are linear in the coefficients and
hold at all frequencies. This pair of impedance linear equations are
formally

@0 — flas + -+ — sby + fyby + fisbs + -+ =0,
and (26)
fay — flag+ -+ — ybo — fsb, + fiybe + -+ = 0.

By this means the formula are put in a form such as to require in all
cases the solution of a set of equations linear in the coefficients, obtained
from (26) at different frequencies. A procedure for their solution



460 BELL SVSTEM TECHNICAL JOURNAL

similar to that used in dealing with equation (23) can be applied and
will not be repeated here. This process, apparently new, of obtaining
linear equations for the impedance coefficients which contain powers
of frequency and the impedance components, was applied by the
writer to non-dissipative two-terminal networks in this Journal,
January, 1923, p. 21, also in U. S. Patent No. 1,509,184, dated Septem-
ber 23, 1924; and to dissipative networks which simulate a smooth
line impedance in U. S. Patent Application, Serial No. 134,515, filed
September 9, 1926. It is merely outlined here.

2.8. Useful Properties and Relations

The following discussion covers a number of points concerning these
networks which have been found quite useful. They can be verified
readily from the fundamental formulz and so need not be derived
in detail.

2.81. Analytical Simplifications

Let it be desired to design a given network from its attenuation
characteristic in a frequency range when the number of attenuation
coefficients is one greater than the number of independent network
elements. As previously stated, it is usually possible in such cases
to choose as part of the attenuation data the attenuation constant at
a particular frequency, such as zero or infinite frequency, and make
the resulting number of attenuation coefficients and independent
elements equal in number, with consequent ease of solution. Another
method of simplifying the analysis might be to slightly alter the form
of the given z,; by adding to it, or subtracting from it, a resistance
element in series or in parallel. This may have the effect of making
the resulting attenuation coefficients and independent elements equal
in number without appreciably altering the general attenuation char-
acteristic in the desired frequency range.

2.82. Uniform Attenuation Change

According to principles developed above, if the attenuation constant
of a given network is changed uniformly over the entire frequency
range without altering its phase constant, its distortion producing
characteristics are not affected.

Let z;; correspond to a given laffice iype network and z,,’ to a
derived one in which the attenuation only has been changed by a
uniform amount A4, at all frequencies. Then one form of structure
for z1,/ is

211 = !
1 1
miz11 + MR maR

, (27)
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where m; = cosh? (A4,/2),
My = sinh Au,
and mj3 = 2 coth (4/2),

m, being greater than unity, while m. and ms have the sign of A4,.
This relation for z;,’ stated approximately in words is as follows: To
raise the attenuation, magnify the given z. and add series resistance, then
add parallel resistance lo the whole; to lower the attenuation, magnify zu
and add such negative resistances. An example is given by Networks
1a and 3a of Appendix IV.

An impedance equivalent form of structure for z1,’ is

1
zn’ = —1—1— + ms'R, (28)

my'zn mz’R

where m,’

I

sech? (4,/2),
ms' = 4 cosech Ay,
2 tanh (A [)/2),

and  m3'

my’ being positive and less than unity, while #," and m;" have the sign
of A,. Hence with this form, o raise the atlenuation, reduce the given z,,
and add parallel resistance, then add series resistance to the whole; to
lower the attenuation, reduce zy1 and add such negative resistances. An
example is given by Networks 15 and 3b, Appendix IV.

It will be seen from these relations derived from a physical 2z,
that when A, is positive a physical z;," always results. When 4, is
negative, however, physical impedances would be obtained only under
certain conditions, depending upon the given z;; and upon 4.

One practical utility of the relations would occur in the following
situation. Suppose that a design was being attempted from assumed
attenuation values with a network having such a general characteristic
and that z,, consists of some structure in series or in parallel with a
resistance element. The latter resistance as determined from the
linear equations may come out to be negative and give z;; an unphysical
structure. In such a case we could apply the above relations and
raise all the attenuation values uniformly such an amount 4, that the
resulting network z;,” would be physical.

Corresponding relations between two networks of the ladder type are

21’ = edoz + (et — 1)R; (29)

and between two of the bridged-T (I) type are
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211" = (c sinh (4¢/2) + cosh (4¢/2))%1
+ 2 sinh (A4/2)(c sinh (44/2) 4 cosh (44/2))R,

» _ ¢+ tanh (44/2)
" c¢tanh (4,/2) + 1

and

In the above process we would generally be increasing the number
of network parameters without changing the number or magnitude of

the phase coefficients.

2.83. Phase Constant Comparisons of Certain Pairs of Lattice Type
Networks

It has already been stated that there are usually two physical net-
works of the same structural lattice form which have identical attenua-
tion constants but different phase constants. They are derivable as
two physical solutions from the same attenuation coefficients. In the
case of a limited class of these networks, an interesting relation exists
between the phase constants of such a pair which may be stated as
follows.

Theorem.—The two lattice type networks of every pair having the same
attenuation characteristic in each of which the series impedance (211)
consists of a resistance in parallel with any pure reactance network, of
different proportions in each, have phase constants such that their sum or
difference is identical with that of a non-dissipative lattice phase network
whose series impedance (z11) is a pure reactance network proportional to
that in the series impedance of either of the pair.

A corollary results from this.

One network of the pair is equivalent to the tandem combination of
the other and the related phase nelwork.

It should be pointed out here that results for the case in which z,
is a resistance in series with a reactance network are similar, except
for a phase change of =, since then the lattice impedance z;;, the
inverse network of z;,, is a resistance in parallel with a reactance
network.

A procedure for proving the theorem will be sketched briefly.
Assume as given one network in which z;; is made up of a resistance in
parallel with a pure reactance network whose impedance is imy,
where m is a positive constant and vy is a function of frequency. This
gives a form

F=et= il @31)
1+ Qw?

Reversing the process, we obtain from the same coefficients Pz and Q:
a second similarly constructed network besides the original one. The
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two physical networks differ in their phase constants but have the
same attenuation constants. For one

tan B’ = —(‘”TE + o)y

1 vPow: ' (32)
and for the other .
tan B = M (33)
1+ vasz2

where B’ has a maximum or minimum depending upon whether y is
positive or negative. As a result for the sum

! "
tan (B—_;—B— ) = Py, (34)
and for the difference
B' — B" .
tan '—2——) = \@—23’. (35)

Now a non-dissipative lattice type network in which z), is a reactance
proportional to y has a formula

tan (B/2) = My, (36)

where M, is positive. Comparison of these latter formula indicates
the proof of the theorem and its corollary.

A simple and useful relation exists between the maximum attenua-
tion constant A4,, occurring at y = o and the maximum or minimum
phase constant B, of (33) occurring at y = & 1/(P:Q2)'%. It is

sinh (4,,/2) = & tan B,". (37)

An example is given by Networks 2a, Appendix IV, and a practical
use of this relation will be made in Section 4.2,

2.84. Composite Networks

The tandem combination of two or more different sections of
constant resistance networks can generally give propagation char-
acteristics which are unattainable in a single section. For this reason
it is sometimes advantageous to treat such a composite network of
two or three simple sections as a single unit. When this is done it
will be found that the composite network has attenuation coefhicients,
if any, which in number may be equal to, greater than, or even less than
the sum for the individual networks when considered separately.

An example of a case in which the number of attenuation coefficients
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for the composite network equals the sum for the separate sections is
furnished by two sections of Network la or of 2a, Appendix IV, both
having four coefficients. On the other hand, a composite network of
la and 2a, one of each, has five attenuation coefficients. Finally, a
composite network of two sections of Network 3a has only five attenua-
tion coefficients contrasted with a sum of six for the separate networks.
In the latter case we can obtain only five linear equations from the
attenuation characteristic which are not sufficient to determine the
six series elements. This probably means that for the same attenua-
tion characteristic the resistances in series with the two inductances
can be given any ratio to each other from zero to infinity. A sixth
relation can then be supplied by assuming the practical condition
which makes the ratio of resistance to reactance the same in the
inductance branches of both sections. This composite network can
have an attenuation constant whose increase with frequency is approxi-
mately linear over a wide internal frequency range.

Composite phase networks of simple structure also lend themselves
readily to such treatment as a single unit.

2.85. Composite Lattice Networks Having Uniform Attenuation

To a lattice type network of a certain class having a finite non-
uniform attenuation characteristic there corresponds a single infinity
of complementary ones, such that when any one of the latter is com-
bined with it, the composite network has a uniform total attenuation
constant and a zero total phase constant over the entire frequency
range. The separate attenuation constanis are complementary while the
phase constants are equal, but opposite in sign. Such a conposite net-
work we have seen would be absolutely distortionless. 1t is a relatively
simple matter to obtain the necessary relations which such a comple-
mentary network must bear to the first if we impose these propagation
conditions on the combination. Two sets of relations may be derived,
each corresponding to a particular structure for the first network,
with the following results.

If the given section (A, B) has sertes impedances

Z1n = -Ra + Zgy (38)

where R, is a resistance and z, is any impedance, any equivalent trans-
formation of which does not contain series resistance, and if a com-
plementary network (A4’, B’) is added such as to give a composite
network (4., B.) with the propagation constant

A, = A + A" = constant,
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and (39)
B.= B+ B =0,

then the complementary network is given by

1
1,1

23 Rs

zn’ = R+ ' (40)
where R, = 2 coth (4./2)R,
2s = 4 cosech? (4./2)R%/z,,
and Rj; = 4 cosech? (4./2)R*/(R. — 2 coth (4./2)R).
Here 2, is the inverse network of z, of impedance product 4co-

sech? (4./2)R:. The network in (40) is R, in series with the parallel
combination of 2z, and R;. An equivalent form for 2,/ is

1
211' = 1—-—1' (41)

Ry + 24’ + R?
where R,/ = cosh? (4,/2)(R, — 2 tanh (4./2)R),
2o’ = cosh? (4./2)(R, — 2 tanh (A./2)R)?*/z,,

_ 2R(coth (4./2)R, — 2R)
~ (R, — 2 coth (4./2)R)

El.I'ld Ra’

It will be a physical network provided A. satisfies the relation
1 < coth (4./2) = R,/2R. (42)

At the minimum A., Ry = R\, 32 = 2.', and R3 = Ry = =,

1f, on the other hand, the given section has parallel impedances
(similar to the preceding network of (38) whose output terminals are
reversed),

' (43)

where R, is a resistance and z, is any impedance, any equivalent
transformation of which does not contain parallel resistance, then a
corresponding complementary network has one form given by

1
au = (44)
—_ +—
R1 Zo + Ra
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where R, = 2 tanh (4./2)R,
2y = 4 sinh? (4./2)RY/z,,
and R; = 2sinh® (4./2)R(2R — coth (4./2)R,)/R,.

An equivalent form is

'’ = I_I_T + Ry, (45)
P + —
le 22'
where R, = 2 sech® (4./2)RR,/(2R — tanh (4./2)R,),
22’ = 4 sech? (4./2)R°R,*/(2R — tanh (4./2)R,)%,,
and R = 2R(2R — coth (4./2)R,) )

(2 coth (4./2)R — R})
There will be a physical nelwork provided
1 < coth (4./2) = 2R/R,. (46)

At the minimum A., R, = R\, 2, = 2/, and Ry = Ry’ = 0.

It may be added that if (38) and (43) represent inverse networks of
impedance product 4R?, then another such pair is given by (40) and
(44), and still another by (41) and (45).

An extension of these results may now readily be made to give
two-section composite nelworks whose altenuation constants are uniform
but whose phase constants are not zero. It has been stated that to every
lattice type network having finite attenuation there usually corresponds
another one of the same structural form having the same attenuation
but a different phase characteristic. Hence, in either case above
where the two complementary sections giving a total uniform attenua-
tion are known, we may derive by reguiar methods the alternative
lattice sections, having, respectively, the same attenuation constants.
Since we would then have two sections to give the one attenuation
characteristic and two sections for the complementary characteristic,
it would be possible to obtain four composite networks of similar struc-
ture, all of which give the same uniform attenuation but four different
phase characteristics. One of these combinations would be the case in
which the phase constant is zero. Four more phase characteristics,
differing from the others by an amount , can obviously be obtained
by reversing the terminals of either section.

2.9. Procedure for the Design of Distortion Correcting Networks

It would be most gratifying to be able to obtain directly from a
desired propagation characteristic the corresponding form of network.



DISTORTION CORRECTION 467

This is generally a difficult problem and it becomes necessary to resort
to simplifying methods somewhat similar to those employed in the
design of electric wave-filters. One reason for this difficulty is that
we are limited to physical resistance, inductance, and capacity ele-
ments, all of which must, in general, be positive. We would, therefore,
begin with known forms of networks whose general propagation
characteristics have been determined and choose from them one or
more whose combination offers the possibility of giving a satisfactory
desired result. A number of points which are applicable in the general
case may be noted as follows:

1. First, determine the desired propagation characteristics of the
distortion correcting network corresponding to formula (8).

2. If necessary, divide this propagation characteristic into several
parts each of which has the approximate characteristic belonging to a
known network structure.

3. Assume one of these networks physically capable of having such
an alloted characteristic and attempt a design to approximately
fit it according to one of the methods of Section 2.7. Where there is
an attenuation characteristic, Method 1 is usually best, as attenuation
is generally of more importance than phase and hence its simulation
requires greater accuracy. The network will introduce a phase con-
stant which will necessarily have to be taken into account. Of the
two or more possible solutions for the lattice type network, the one
with the most desirable phase constant would obviously be chosen and
in some cases this may be close to requirements. Another reason for
usually following this order of simulating the attenuation first and
the resultant phase later is furnished as a consequence of Theorems 1
and II of Section 2.2. From them we see the physical possibility of
introducing certain phase characteristics without attenuation (ideally),
but not varying attenuation characteristics without phase. Method 3
imposes a rather severe requirement on a single network.

4. 1f the network design comes out to be unphysical with the
particular characteristic values assumed, small variations from these
values should be tried, since the natural varying curvatures in the
propagation characteristic of the network must sometimes be allowed
for. Otherwise, a different kind of network should be used, or a
composite one, which has a similar characteristic.

5. In designing successive sections of the complete transducer, the
effects of previous parts must be considered.

To facilitate the application of this method of distortion correction,
general propagation characteristics together with formule have been
derived for a representative number of lattice type structures. These
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are given in Appendix IV. Any pair of the networks, such as 1a and
15, differ only by an interchange of series and lattice elements with a
corresponding difference in their phase constants of an amount .
In order to simplify computations for some networks the formulae
were derived so as to require attenuation data at a limiting frequency,
but other formulze may also be obtained. By means of the relations
in Section 2.5, transformations can readily be made to any of the other
general types, if they lead to physical structures.

The type of network which a final design is to assume will be sug-
gested by economic and practical considerations. However, an ap-
proximate statement can be made in this connection. If the sections
are to be dissymmetrical as regards the two pairs of terminals and
unbalanced as regards the two sides of the line, use the full-series or
full-shunt ladder types; if symmetrical and unbalanced, use the
bridged-T types; if symmetrical and balanced, use the bridged-T or

lattice types.

PART 3. ARBITRARY IMPEDANCE RECURRENT NETWORKS

In Part 2 consideration was given entirely to recurrent networks
whose iterative impedances are a constant resistance at all frequencies
and which depend upon the use of inverse networks; that is, 21122, = R2
It is intended here merely to point out briefly that all the types in
Section 2.4 can be generalized to have iterative impedances of arbitrary

value K provided in them

R is generalized to K,

and
z11291 = K7 (47)

that is, z11 and zp; are inverse nelworks* of impedance product K>,
The corresponding propagation constant formula hold also with these
generalizations.

Where a recurrent network of arbitrary iterative impedance K is
desirable, these structures would, theoretically at least, be applicable.
Practically, however, considerable difficulties are usually encountered
in physically realizing 2;; and 2., to give a desired propagation con-
stant, and perhaps even K when K is not a simple function of fre-
quency. A few physical possibilities will be given here in which the
structures for z;; and z.; are easily identified from the forms of the
expressions. They may be used in the different types of networks,
and, of course, z;; and zs;, may be interchanged.

12 The complete qualifying statement such as given is necessary here, not just
simply ‘‘inverse networks.”
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1.

K = R + iLw;

211 = ‘I;Luw, - (48)
and

291 = (ZRL/LH) + i(L"’/Ln)w -+ 1/i(L11/R2)w.

The impedance 2., is series resistance, inductance and capacity.

2.
K = R + 1/iCo;
Zn = l/iCuw, (49)

291 = (2RC1/C) + i(R2Cn)w + 1/i(C?/Cii)w.

and

Here 2», is the same type of structure as in (48).

3.
K = R + 1/iCuw;
1
Zn = 1 1 ' (50)
R, 1 TR, 1
miy £m1Cw Me imgcnm
and
- b Ruto
221 _.i_ 1 23 1;C24m’
R‘Bl 'ingm

where Ry, = myR(C — Ci1)?/C?,

Lzz = ?‘JtzRECu(C - C“)E/CZ,

Ry = R(m1€2 + mECL](ZC - CU))/CZ:
and

Cz.; = CZ/(?TE]_C + m2C11)-

The impedance 2, consists of two parallel branches each containing
series resistance and capacity; zs; is made up of parallel resistance and
inductance in series with both resistance and capacity. For certain
values of the parameters m,, ., and Cy, even though positive, the
resistance Ra3 can become negative and hence unphysical as a passive
element.

A lattice or equivalent network made up of such impedances, in
addition to having the assumed iterative impedance which approxi-
mates that of an open-wire line at the upper frequencies, can have an
attenuation constant decreasing with frequency which tends to equalize
that of a length of such line; the attenuation formula has the form

Po+ Pof? |
Qo + f*

F=¢4=

(51)
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4,
R ¥ilw L
K = T +iCw’ (smooth line);
21y = mR' + imL'e, (52)
and
1

Zn = (mG" 4+ imC'w) ’

Another possible simple pair is that in which z,; is a resistance and
291 is either series resistance and inductance in parallel with series
resistance and capacity or parallel resistance and inductance in series
with parallel resistance and capacity. These impedance elements
may be used in the lattice or bridged-T (II) type structures where the
impedance element K is not explicitly required. Extension to more
complex structures can be made by the methods of Section 2.3. An
application will be given in Section 4.7 which considers the simulation
of a smooth line.

Owing to the much greater inherent difficulty of physically realizing
inverse networks of impedance product K* when K is not R, the
generalization does not add much practically for our purpose, but
some structures in which K is not R may be of utility under particular
conditions.

PART 4. APPLICATIONS

4.1. Complementary Distortion Correcting Networks

The pair of networks in Fig. 8 illustrates in a very simple manner
the general relations given in Section 2.85, as well as ideal distortion

Y y
2Ry ZRy

By<2R; Gy ((2}3)3 )sz

Fig. 8—Distortionless composite network.
(Broken lines indicate the other series and lattice branches, respectively identical).

correction over the entire frequency range. When placed in tandem
they represent a composite network whose attenuation constant is
uniform at all frequencies and whose phase constant is zero, which are
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characteristics for no distortion. Let us obtain the steady-state
characteristics of each network and of the composite one; then con-
sider transient conditions and obtain the indicial voltages of the
corresponding networks to verify again by this illuminating example
that the steady-state characteristics laid down for no distortion are
quite sufficient when transient conditions exist.

The first section is Network 2a, Appendix IV, wherein 21, is parallel
resistance Ri; and inductance L, with Ry; less than 2R and the
characteristic 1. Let us put m = Ry1/2R, and n = L1»/2R.

Then

Z11 _ i'mnm

2R~ m + tnw (53)
and the propagation constant formula becomes from (13)
o mt i(1 + m)nw (54)

T om il — mnw

To obtain a complementary second section let us assume that the
total attenuation constant, A. napiers, of the composite structure is
to equal the maximum of the first section which occurs at infinite
frequency. Then from the above

1+m

Ae —
eb____
1 —m

and tanh (4./2) = m, giving as the correcting section by (44) one of
Network 15, Appendix 1V, with characteristic 1 in which

Ry = 2mR, as in (53),

and (
W —mn [ (2R (L
Co=—7mr  ~ [(R“) 1] IR (55)
For this second section then
2 _ "
2R m+ il — m)nw’
and (
14+ m m + (1 — m)nw
I — N
¢ (1 — m) (m + (1 + m)nw) (56)
Obviously, from (54) and (56),
el"1+I‘: p— 1 + m — LA
1 —m !

as was assumed.
31
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The attenuation and phase constants of each of these two sections
and the combined structure are shown in Fig. 9, as a function of
Ly20/2R, where Ry; = R. It will be seen that 4, and A, are comple-
mentary while B, and B, are equal but opposite. For the composite
network A, = constant and B, = 0; thus the latter phase constant

2
1 AC
PN L
9 AN —T |
i \\Az i’, =
7 N v |
Rpl=R
(EEEENP :
- 5 B< \\ i
g ‘ A/ ——
g YA ™S T s e o
£
) / =~
=, / -
Rl 1
-y / —
& L 2
< g ‘.
\ 7 f 5 P w/Z [ 1z 16 7 e
1 Lp/jelt
)
SN
N ———
7 N —T |
-5 \ d ./"'//

Fig. 9—Propagation constants in distortionless network.

has a zero slope with frequency. Whatever steady periodic voltage
exists at one end would appear across the terminating resistance R
in the same phase but attenuated by an amount A, napiers. Since
these conditions hold for the composite network at all frequencies, we
should expect to obtain for it an indicial voltage and time-of-trans-
mission, respectively,

g(t) = e4e,
and (57)
_B._dB _,
TT e  de

Let us next determine the indicial voltages of the individual sections
when each is closed by a resistance R. Substitute the operator p for
iw and obtain symbolically from (54) and (56)
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-] p
e 1 .’2nm(m+ { +m)np)' (58)
and ( )
1 —=m  2mn(l —m P )
erdl+m+ 14 m (m-f—(l—m)np) (59)

Introducing these expressions in the general relation, where the net-
work is terminated by R,

g—I‘ ]
b =f e~ rg(t)dt, (60)
0
there results for the indicial voltage of the first section, since
1 b e (ut/v)
= —pt
i+ vp ju‘el( v )d{' (61)
o) =1— 2m e—lmt/ (1Hmyn]. (62)
! 1 +m !
and for the second section
1—m 2m
- —[mt{(1—m)n]
o) =1, tTrat : (63)

m

These functions are given in Fig. 10.

It will now be shown that, whereas the indicial voltage of each section
alone is a varying function of time, that of the composite network is a
constant, which represents the transient condition for no distortion
with zero time-of-transmission.

For the composite network terminated by R the indicial voltage
g.(t) may be derived from the usual formula for such a combination,
equivalent to (5),

i
g:(t) = g2(0)e:(1) + f gi(t — ¥)g2'(y)dy. (64)
0
Upon carrying through the integration we get
o l=—m_
gt = Tom = e~4¢ = constant, (65)

which agrees with the prediction from the steady state and is so shown
in Fig. 10.

Obviously the two sections can be interchanged.

The composite network appears at first hand to behave in a rather
remarkable manner. For if a periodic voltage is suddenly impressed
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at one end, the steady state will not be established within the network
until after some lapse of time, whereas it occurs at the terminating
resistance instantaneously. This property is, of course, to be ex-
pected from its steady-state characteristics.

12
I
10| y’ (o.o.j.-_._ I—
9
N R ———
RN - -
3 y \% 2 PACE
——
VT e
g, ><T
[~~~
4 // -ﬂ —
gelt) —
3
2
J
7] 0 20 ao 40 a0
2R/,

Fig. 10—Indicial voltages in distortionless network.

It may be added that such networks would still give complementary
results if separated for any purpose by a symmetrical line in a circuit
which is terminated at each end by a resistance R and which has an
e.m.f. applied through one of the resistances. The separation of the
two complementary networks under these conditions would result in
the same current being received by the terminating resistance as when
both networks are together at one end, where it is known the networks
would produce no distortion. This follows immediately from the
reciprocal theorem. For by it we readily see that the same current
would be transmitted to the input terminals of the complementary
receiving network whether the first network was at one end or the
other. (These two cases are equivalent from the standpoint of received
current to turning the combined transmission line and first network
end for end.)

4.2. Distortion Correction in Submarine Cable Circuit
The following illustration shows the improvement which can be
made in the shape of the arrival voltage at the end of a long submarine
cable circuit by distortion correction at the very low frequencies only.
Such an improvement would increase the speed of building up of d-c.
telegraph signals and hence allow a greater speed of signaling.
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The circuit assumed is a submarine cable whose length, [, is 1700
miles and whose parameters are to have the constant values per mile

R’ = 2.74 ohms; L' = .001 h.;
G =0 ; ¢’ = .296 mf.

It is terminated at the receiving end only by a resistance R = vL'/C’
= 58.12 ohms. The transfer exponent, @ + b, of this circuit at the
terminal resistance is computed from the formula, easily derived,

evtd = (k/R) sinh vl + cosh +1, (66)
where

v = VR + iL'w)ilw,
and

P =V(R + il'w)/iC'w.

These results are shown in Fig. 12.

It is desired to obtain distortion correction in this circuit from 0
to 25 cycles per second by introducing a terminal constant resistance
transducer which will approximately equalize the attenuation over
this range and make the resultant phase linear with frequency. Since
in practice there is interference between different cables at higher
frequencies, the correcting network should introduce increased attenua-
tion above this range. Calculations gave

at f = 0, a = 4.40 napiers;
and
at f = 25~, a = 14.10 napiers.

Assuming arbitrarily that the network will have at f = 25~ an
attenuation of only .30 napier, the ideal total attenuation for the
frequency range is

a’ = 14.10 4 .30 = 14.40 napiers. (67)

The attenuation of the network should decrease from a maximum
value of (14.40 — 4.40) = 10.00 napiers at f = 0 to a value of .30
napier at f = 25~ and then increase with frequency. If a linear
relation for the resultant phase is assumed so as to cross the b curve
at about f = 25~ the phase which the network should give is negative
in the range with a minimum of about — 2.75 radians, and is zero at
f=0and f=25~.

A network having this desired general type of propagation constant
is Network 8, Appendix 1V, with the characteristic 1, but a single
section will not be sufficient since its minimum phase is between 0
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and — 7/2 radians. The best number of sections to use is determined
by the total minimum phase required and can be found here quite
readily, as follows. Because of the comparatively small amount of
attenuation assumed for the total correcting network at f = 25~
this type of network is one in which 2;; consists of a resistance in
parallel with an approximate reactance so that we may apply for the
present purpose the relation (37) between maximum attenuation and
minimum phase of such a section. For a total maximum attenuation
of 10.00 napiers this relation gives for two sections a total minimum
phase of — 2.81 radians, which is close to the required value — 2.75
radians. Three sections give — 3.59 radians, showing the best number
to be two. (If the result with two identical sections had been a
negative phase considerably greater than the required value, it would
have been possible to proportion the total maximum attenuation at
zero frequency between two such different sections so as to give
approximately the desired total minimum phase. In such a case each
section could be designed from its corresponding proportion of the
total attenuations at the other frequencies.)

Each of two such identical sections was designed by the formulax
given in Appendix IV, using attenuation data fixed by the values of
(@’ — a)/2. Allowances had to be made at f; = 5~ and f; = 15~
for necessary curvature in the attenuation characteristic so as to
obtain a physical result. It was assumed that the phase constant
would turn out to be satisfactory since it had already been given some
consideration when determining the number of sections. The fre-
quencies and corresponding attenuations used were

fo= 0, Ay = 5.00 napiers;
fi= 5~, Ai = 3.25 napiers;
fo=15~, A» = 1.78 napiers;
fa = 25~, As = .15 napier.
The solution of the attenuation linear equations gave
P, = — 68.737; Q. = 1.1929; Oy = 2.5537-107°6,

Whence
ay = 08661 ; a; = 1.1854.107%,;

b, = 15.829-10°9; b, = 1.5980-1073,

I

Also,
R, = 9.42 ohms; L= 1994 h.;

Ciy = 20.30 mf.; Ry, = 114.68 ohms;

where R = 58.12 ohms.
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These results were transformed to give a ladder type network
according to Section 2.5 and then incorporated in two of the dis-
symmetrical unbalanced full-shunt sections, as shown in Fig. 11.

’

Ry Ay
MWW MW
Ry L
R L%g 6&;_ ] 7 Lz 6;/3_

V2 gﬂz

R— R

e G

o- o o—
Fig. 11—Distortion correcting network for submarine cable circuit.

This transformation gives a different parallel resistance in the series
branch, namely,
RH, = 2anR/(1 — GU). (68)

Here R,y = 8565 ohms. The elements of zs; in the shunt branch of
the ladder type were determined from the inverse network relations

R11R21 = LLE/CE‘.! = Lﬂa/cw = RM’RM' = R

Finally combining two resistances which are in series, Ry = R + R/,
we have

.Rgl = 350 Oth; C-_v_'_x = 5900.3 mf.;
L.z = .0686 h.; Ry’ = .39 ohm;
and R, = 58.51 ohms.

In Fig. 12 are shown the steady-state propagation characteristics of
the uncorrected circuit, the correcting network, and the corrected
circuit; the latter indicates approximately ideal conditions up to 25
cycles per second.

The improvement in shape of the arrival voltage due to this dis-
tortion correction can be seen from Fig. 13 which gives the ratio of
indicial to final voltage for both the uncorrected and corrected circuit, a
constant e.m.f. being impressed at the sending end at time ¢t = 0. (These
were computed from the steady-state characteristics of the respective
circuits, using formule based upon those given by J. R. Carson in
B.S.T.J., 1924, p. 563.) The building-up speed has been increased,
perhaps fourfold. The arrival voltage for the corrected circuit is
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within 3 per cent of its final value when that for the uncorrected
circuit has reached but half value. The initial maximum in the former
is similar to that in the case of a low-pass wave-filter ¥ and may be

26,
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! and{’: Gitenuation and Phase of Submarine Cable (ircuidfa,b)| |
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Fig. 12—Transmission characteristics of submarine cable circuit and distortion

correcting network.

due to the increasing attenuation beyond the equalized range. It is
probable that had but partial equalization been obtained without a
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Fig. 13—Ratio of indicial to final voltage for (1) uncorrected and (2) corrected

submarine cable circuit.

13 “Transient Oscillations in Electric Wave-Filters,” J. R. Carson and O. J.

Zobel, B. S. T. J., July, 1923,
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sharp change in the attenuation, such a maximum would not have been
produced. However, it is desirable to sharply attenuate the higher
frequencies as has been done here, for the reason stated above. It
is of interest to point out that the time-of-transmission which might
be expected for the corrected circuit from the low-frequency slope with
angular frequency of the steady-state phase, approximately = = .076
second, is actually the time at which the indicial voltage increases
most rapidly and has reached about .4 its final value, a quite satis-
factory agreement.

4.3. Distortion Correction in Loaded-Cable Program Transmission
Circuits

Circuits which transmit programs originating at distant points to a
radio broadcasting station need to be of considerably better quality
over a wider frequency range than those used for ordinary telephone
transmission and must be reliable under various weather conditions.
Such circuits can be obtained economically with lightly loaded cable
pairs which have been corrected by terminal networks for each repeater
section.

The design of distortion correcting networks applicable to a 50-mile
repeater section of 16-gauge H-44 cable follows. The section is
terminated at each end by a resistance R = 600 ohms, the generator
which impresses the voltage E having an internal impedance R.
Since the received voltage would be only .5E with the cable removed,
in this case we are interested in the ratio

,L = g—o—ib

SE ’
where a then represents the iusertion loss in napiers.
If T and K are the propagation constant and iterative impedance
(here used at mid-section) of the loaded cable ! of length, I, it can be
shown that the transfer exponent is

a+ib=Tl+ My + M, (69)
where T'l = propagation length,

1 1 /K R
=g 143 (&+x)]

eM: = 1 — (K — Re—rl !
K+ R
The above, of course, includes the effects of circuit terminations.

14 Accurate computations for the propagation constant of the loaded cable were
made readily by means of an improved formula for cosh™ (x 4 iy), given in
Appendix I11.

and
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It was desired to equalize the attenuation over a frequency range
from zero to 4500 cycles per second and improve the time-of-phase-
transmission at the lower frequencies. Computations for this 50-mile
cable circuit gave values of attenuation (¢ in T.U.) and time-of-phase-
transmission (b/2xf) as shown in Fig. 15. These circuit characteristics
suggested the use of two different networks in tandem shown separately
in Fig. 14, one equalizing principally at the lower frequencies, the
other at the higher frequencies of the required range.

Low-Freguency Distortior Correcting Network
7

o— —0

Fig. 14—Distortion correcting networks for program transmission circuit.

The low-frequency correcting network, shown as the upper section
in Fig. 14, is of the symmetrical unbalanced bridged-T (Iz) type and was
transformed from Network 7, Appendix IV. In the design of the
latter the attenuation data corresponding to (8) were

fi=  40~, A, = .536 napier;
fo = 200~, A, = .291 napier;
f;( = 800""’, A3
fi 2000 ~, A,

.176 napier;

I

Il

.100 napier.
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Solution of the resulting four attenuation linear equations gave

Py = 102.007-10°; P, = 5.06037-10°%;

Qv = 32.200-10°; Q. = 3.43087-10%;
from which

a, = .28054; a, = .88319-1073;

b, = 8.6884-1073; by = 4.0094-10°5,

Then, where R = 600 ohms, the series elements in the lattice structures

are
R, = 248.40 ohms; Cy = 2.0171 mf.;

C13 = .6021 mf; Ru = 336.65 ochms.

Transforming from this lattice type to the equivalent bridged-T (Ia)
type, we eliminate a parallel resistance in the bridged series branch
(corresponding to Ry by letting

c = 1/(10. (70)
Then in Fig. 14, where ¢ = 3.5645,

R, = 168.3 ochms; R3 = 248.4 ohms;
C; = 2.0171 mf.; C; = .6021 mf.;
and in the shunt branch
R, = 3037.4 ohms; R, = 1458.1 ohms;
Lg = .243 h: Ls = 2.010 h.

This latter useful form in which resistances are in series with induc-
tances was obtained from the regular bridged-T (Ia) shunt elements
by means of Transformation C, B. S. T. J., January, 1923, p. 45.
The high-frequency network, shown as the lower section in Fig. 14,
is well suited to extend the range of attenuation equalization above
that so far considered and was derived from Network 8, Appendix IV,
Allowing for both cable and low-frequency network attenuations, and
arbitrarily assuming this network to have an attenuation of .300
napier at 4500 cycles per second, the data became (as from (8))

Jo =0, Ay = .796 napier;
f1 = 3000~ Ay = 747 napier;
fo = 4000~ Ay = .530 napier;
fa = 4500~, A; = .300 napier.

Il

Il
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The solution is

Py, = — 46.207-1075; Q. = — 9.0092-1078; Q4 = 23.198-1071,
Whence
ag = .37824; a; = 8.4245-107F;
by = 57.522-107%; by = 4.8164-1078,
30 375
I and I': Gitenuation and Time-of-Phase -Transmission
of Program Transmission Circuit
2and 2': with Low-Frequency Distorbion Correcting Nebwork /
3and 3": with Both Networks
5 3%
3 //

20 / 325
134 3
-2 2 3003
: Xf ——— // g
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w07 - % . . 215

\
VA D—
5 »&3" i
225
0 1000 2000 3000 4000 3000

Frequency (cycles per second)

Fig. 15—Transmission characteristics of program transmission circuit with and
without distortion correcting networks.

The series elements of the lattice structure are
Ry, = 286.8 ohms; Ly = .0987 h.;
C13 01236 mf, R].; = 453.9 ohms.

Transforming to the equivalent bridged-T (Ia) type, we take ¢ similarly
as in (70); thus ¢ = 2.6438. The series elements in Fig. 14 then

become

Il

R, = 226.9 ohms; R; = 286.8 ohms;

L; = .0987 h.; C; = .01236 mf.;
and the shunt elements

R, = 679.7 chms; Ry = 1255.0 ohms;

Lﬁ = .00445 h.; Cg = .2741 mf.
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The effect of adding these two sections successively to the cable
circuit is shown in Fig. 15. It will be seen that the first section,
besides equalizing the attenuation up to about 2000 cycles per second,
produces as well approximately ideal results on the time-of-phase-
transmission at the lower frequencies. The complete circuit attenua-
tion departs less than .2 T.U. from a constant value everywhere
over the assumed frequency range. If desired, the time-of-phase-
transmission could be improved also at the upper frequencies by the
addition of proper phase networks. Such a type of correction will be
made in the following application.

4.4. Distortion Correction in Open-Wire Television Circuit

The networks to be described here were designed by the writer
especially for the particular open-wire circuit which was used for the
television demonstrations from Washington, D. C., to New York City
on April 7, 1927. They were designed entirely from calculated data,
some of which had previously been derived from measurements on other
similar lines, as the complete circuit was not available for measure-
ments until later.

The circuit had a total length of about 285 miles, being made up
principally of 276.4 miles of 165-mil open-wire pair together with
8.43 miles of necessary entrance, submarine and underground 13-
gauge carrier-loaded cable (C-4.1). The iterative impedances of these
two types of lines are very nearly the same in the frequency range
considered and were so assumed in what follows. Hence, the propa-
gation length of the circuit was taken as the sum of the propagation
lengths of the parts. In order that such a circuit be suitable for
television transmission it must be made to have extremely high quality
over a very wide frequency range by means of distortion correcting
networks. The requirements which the design of the present net-
works aimed to meet follow.

Design Requirements

1. An impedance of 600 ohms is to terminate the line at each end.

2. The attenuation, or insertion loss, of the corrected circuit is
to be constant within + 1 T.U. over the entire frequency range from
10 to 20,000 cycles per second.

3. The time-of-phase-transmission of the corrected circuit is to be
constant within == 500 microseconds (107¢) from 10 to 400 cycles per
second, and to be the same constant within =+ 10 microseconds from
400 to 20,000 cycles per second.

4. Provision is to be made for distortion correction under various
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weather conditions of the open-wire line. Details of the process of
arriving at some of these requirements, also measurements and per-
formance of the complete television circuit, have been given in a
previous number of this Journal.'®

Low-Frequency Distortion Correcting Network
Sl
¥i4 [ Vo

High-Freguency Qitenuation Equalizer
"
—Eh = AL 1 .

2
L»

AN

:Ez

L6 3R 305 B,

Fig. 16—Distortion correcting networks for television circuit, (Dry weather.)

Since the general circuit arrangement is here the same as in the
previous problem, formula (69) is directly applicable. The transfer
exponents, ¢ + b, were calculated from it for two weather conditions
of the open-wire line, called dry weather and average-wet weather.

15 “Wire Transmission System for Television,” D. K. Gannett and E. I. Green,
B. 8. T. J., October, 1927, pp. 616-632. See also ‘‘The Production and Utilization
of Television Signals,"” Frank Gray, J. W. Horton, and R. C. Mathes, pp. 560-603.
Three other papers on Television by H. E. Ives, by H. M. Stoller and E. R. Morton,
and by E. L. Nelson are given in the same number of the Journal.
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From a study of these characteristics and those of certain distortion
correcting networks it appeared possible to obtain a base network
design for the dry weather condition and supplementary networks for
various degrees of wet weather.

The dry weather network consists of three parts in tandem, a low-
frequency distortion correcting network, a high-frequency attenuation
equalizer, and a high-frequency phase corrector, which were designed
in the order given. The final structures are shown in Fig. 16, the first
two being put in the form of balanced bridged-T (Ia) types. The
low-frequency distortion correcting section corresponds to Network
15, Appendix 1V, and, while designed to approximately equalize the
attenuation at low frequencies, it gave at the same time sufficient
phase correction in that frequency range. The attenuation data used
were

fi= 50~, A1 = .409 napier;
fz = 500"‘/, Az = .060 napier;

from which, where R = 600 ohms,

P, = 60,307; Qo = 25,217;
a, = .2145; by = 4.945-107%;
Ry, = 257.4 ohms; Ci» = 3.056 mf.

Transformation in the usual manner to the bridged-T (la) type,
letting ¢ = 1/a, = 4.662, gave the balanced structure of Fig. 16 in
which

R, = 64.35 ohms; R; = 1334 ohms;

Cy, = 6.112 mf.; L, =1.100 h.

The high-frequency attenuation equalizer was derived from Net-
work 8, Appendix IV, with this data, which followed formula (8) and
allowed for the attenuation of the preceding network. The amount
of attenuation at the highest frequency was arbitrarily assumed to be
.400 napier.

fo=0, Ay = 2.551 napiers;
fi 5,000 ~, A = 2.100 napiers;
f» = 10,000~ Ao = 1.476 napiers;

fa = 20,000~ Az = .400 napier.

Solution of the linear equations gave

P, = — 53.683-1078, @2 = 5.0669-107; Qs = 3.7662-10718,
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whence
ao = .85529; a

b, = 39.906-10°5; bs

6.1045-10-%;
1.9407-10°.

Il
Il

Then in the lattice structure

R = 223.8 ohms; Ly = 9.668 mh.;
Cis .005081 mf.; Ry = 1026.3 ohms.

Transformation to the bridged-T (Ia) type, using as in (70) ¢ = 1/a,
= 1.1692, gave as the elements of the balanced structure of Fig. 16

R, = 256.6 ohms; R: = 94.20 ohms;
R3; = 111.9 ohms; R, = 1609 ohms;
L; = 9.668 mh.; Lg = 1.829 mh.;
Cy = .010162 mf.; Cs = .02686 mf.

Having equalized the dry weather attenuation over the desired
frequency range from 10 to 20,000 cycles per second and improved
phase conditions at low frequencies, there remained the problem of total
phase correction at the higher frequencies. It was found that the
high-frequency attenuation equalizer introduced phase distortion at
the higher frequencies which was of the same nature but more than
twice as great as that due to the original circuit itself. Letting D be
the departure from linearity to the value at 20,000 cycles per second
of the total phase due to the circuit and the two networks above, the
departures at three important frequencies were

fi= 5000~, D;= — .686radian;
f2 = 10,000~, D; = — 1,053 radians;
fs = 20,000~, Dy = 0.

A phase characteristic which when combined with these departures
can give an approximate linear resultant phase in that frequency
range is that of the composite phase Network 16, Appendix IV,
containing three parameters. Its phase constant B was therefore
taken to satisfy at these three frequencies the relation B + D = (f,
or explicitly

B = Cf — D. (71)

The constant C was arbitrarily chosen so that the network became
physical and satisfactory results were given at intermediate frequencies
also. After a number of trials the final value taken was C = .370-107%.
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This then gave
M, = 2.8015-10~; M, = — 1.3929-1072; N, = — 2.4671-1078,
Whence
a; = 1.8846-107; a,’ = .9169-107%; b’ = .7391-107%.
These gave as the elements of the high-frequency phase corrector of

Fig. 16
L, = 35.99 mh.; Co = .04999 mf.;

L3 = 17.51 mh.; Cy = .02432 mf.;
C; = .02138 mf.; Lg = 15.40 mh.

The small attenuation effects of coil dissipation were not included in
this design and they were later found to be negligible. An equivalent
network, namely, Network 15, Appendix IV, might have been used
instead of Network 16 for this phase corrector. But since it gives
less uniform or practical magnitudes for the inductances and capacities,
it would not be the simplest network to construct.

(ittenuation Equalizer Phase Corrector
3
oA
U Ry
O—4 —0
Ry %
Ly
r 9l Cz
O—4 —O0
03
—d|
Fig. 17—Weather change distortion correcting networks for television circuit.
(One step.)

To provide for wet weather effects on the open-wire part of the
circuit, three identical weather change networks were designed each
of which was capable of correcting one half the increase in circuit dis-
tortion caused by a change from dry weather to average-wet weather.
With 0, 1, 2, or 3 of these supplementary networks added in tandem
to the dry weather network, provision was thus made for a total of
four assumed weather conditions which for convenience I have desig-
nated dry, semi-wet, wet, and extra-wet weather. These conditions
~differed by small equal steps and their number was later found to be
32
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sufficient to cover the weather range ordinarily experienced. The
increase, # + v, in the transfer exponent due to a change of one step,
such as from dry to semi-wet, was taken as one half the difference of
these exponents computed for dry and average-wet weather conditions
under which the circuit constants were known. Thus

u+ 1w = 3[(@a+ th)avwes — (@ + 0)ary]. (72)

The weather change network which corrected this consists of two
parts shown in Fig. 17, an attenuation equalizer and a phase corrector,
the latter being required primarily because of the phase constant
necessarily introduced by the former.

This attenuation equalizer has the same form as the low-frequency
network for dry weather and was designed similarly from the data
(according to (8))

fi=0, A, = 466 napier;
fa = 20,000~ A = .150 napier.

The assumption for the network of .150 napier at 20,000 cycles per
second was found to result in a satisfactory attenuation characteristic
over the entire frequency range. Then

Py = 29,872-10%; Qv = 11,763-104;
ap = .22887; by = .71099-10%;
R]l = 274.62 Oth; Clg = .04120 mf.

Transforming to the bridged-T (Ia) structure, ¢ = 1/ap = 4.369 and
the elements of Fig. 17 become

R, = 68.65 ohms; R, = 1242 ohms;
C; = .08240 mf.; L, = 14.83 mh.

The phase corrector was Network 13, Appendix IV, designed in a
manner somewhat different from that usually employed. If D again
represents the phase departure of the uncorrected phase from linearity
to the value at 20,000 cycles per second, it was found that

at f; = 10,000~ D, = — .111 radian;
at f = 20,000~, D, = 0.
To give a satisfactory resultant phase which is linear through f; and f.

irrespective of its slope, the phase corrector only needed to have a
phase constant, B; at f; and B, at fs, such that

D, + By = 3B, (73)
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since fi = 1fs. Imposing this condition on the phase relation

H = tan (B/2) = a.f, (74)
there resulted
2 tan™! (H,/2) — tan™ Hy = — Dy,
which can be reduced to
Hy = —tan D
1+ 3112 "
and the cubic in Ho,
Hs4 + 3 tan D12 + 4 tan D, = 0. (75)
&
2
¢
— J‘
Sm z P i
&= p S e
£ P il = Lt I P i
¥ e S e S P i
P s s e e B
§ e
] e
S 2 .
! and I':Circuil Before ond Qfter Correction tn Dry Weather
2 and 2'in Semi-Wet Weather |
r 3 and 3':in Wet Weather
4 and 4':in Exira -Wet Weather
0 2000 18000 15000 20000
Frequency (cycles per second)
Fig. 18—Attenuation characteristics of television circuit before and after distortion
correction.
The solution of the latter with D, = — .111 radian gave here

H, = 89363, whence a, = Hylfs = 44681-10~,

and in Fig. 17
L, = 8533 mh.; C, = .01185 mf.

For the purpose of showing the amount and precision of distortion
correction produced by the addition of these various networks to the
open-wire circuit under different weather conditions, attenuation and
time-of-phase-transmission characteristics are given in Figs. 18 and
19, respectively. The final results indicate that the design require-
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ments were fulfilled. (For measurements and performance of the
complete line circuit see footnote 15.)
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Fig. 19—Time-of-phase-transmission characteristics of television circuit before and
after distortion correction.

4.5. Equalization of Variable Attenuation in Carrier Telephone Circuits

An open-wire circuit, such as used in a carrier system, is exposed to
various weather conditions along the line and consequently experiences
considerable changes in its transmission characteristics, primarily its
attenuation. For satisfactory operation of carrier circuits the total
circuit attenuation must ordinarily be kept reasonably constant.

One practical and advantageous method of maintaining a constant
circuit attenuation which takes into account weather changes as well
as length differences in the successive repeater sections is the following.
Each repeater section is built out and equalized with terminal networks
such that at all times the total attenuation has the same uniform value
in the desired frequency range. This is done by means of two kinds
of networks, a variable artificial line and a base attenuation egualizer.
The variable artificial line builds out any given section to correspond
to what is effectively under wet weather conditions the maximum
line section used, and the base attenuation equalizer makes this total
attenuation of the section uniform in the frequency range under
consideration. Then the total attenuation of any line section, arti-
ficial line, and attenuation equalizer has the same constant value over
the frequency range and will thus be in proper adjustment with a
repeater having a fixed gain.
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Such an artificial line is made up of a number of different sections
whose various tandem combinations can build up by small steps a
considerable length of repeater section. A mechanism for switching
the various sections of artificial line in and out of a repeater section
might be operated by means of regulating apparatus which is auto-
matically controlled from circuit conditions existing on a single-
frequency pilot channel or channels. In Fig. 20 is shown a type of
network suitable for a section of such artificial line. It is equivalent
to Network 3a, Appendix 1V, from which it can be transformed. The

’ | LTI ] ]
Ry Ls —— Grtificial Line Section,_ |Steps
2 ———- Ideal, [
0 zal
A
~ —
=Y
b 8 /.// — ]
&
_§ - / ’//
g4 / ol
$ —
5] 7
/
|1
4 p— £
.----"'d-w=
_—-—'
z "] z
_——-—-"”-_'_--
—] 1
0 2 4 6 8 0 7 g 6
Frequency (kilocycles persecond)

Fig. 20—Sections of variable artificial line and their attenuation characteristics for
carrier telephone circuits.

following table gives the network elements for a group of such sections.
I need not discuss any of the design details here but shall merely state
that these sections were designed according to formule in Appendix
IV from attenuation data which represent average requirements on the
open-wire pairs used for carrier systems. The frequency range for
these networks, 5.0-15.4 kilocycles per second, includes a lower group
of adjacent carrier channels each having a band width of about 2500

cycles per second.
The attenuation characteristics of these individual sections are also

given in Fig. 20. By properly combining them the desired maximum
amount of artificial line can be obtained in equal steps, each step
corresponding to approximately 1 T.U. at the highest frequency of
the range.
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TABLE III
ArtiFiciAL LINE Constants (Fig. 20)
(5.0-15.4 kilocycles per second)

Steps

1 2 4 8 12
R, (chms)......| 54.2 108.2 212.9 401.4 605.0
Reo oo ... 3348, 1637. 753.2 255.3 0
Ry ool 40.2 80.5 160.9 318.4 445.3
Raoo oo 9108. 4544, 2275. 1150. 822.1
Ls (mh.)....... 1.62 3.24 6.57 13.83 23.13
Co(mf)........ .004426 .008363 01794 03779 .06318

Iterative Impedance R = 605 ohms,

A structure suitable for a base attenuation equalizer is that of Fig.
21, transformed from Network 11, Appendix IV. In designing it to
simulate the required attenuation characteristic shown, the procedure

\\
" N ——DBase ditenuation Egualizer
“ N ——-ldeal
\
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E 12— \
g o —
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& — \\
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a 8 " 7 I 16

Frequency (kilocycles per second)

Fig. 21—Base attenuation equalizer and its attenuation characteristic for carrier
telephone circuits.

was first to choose arbitrarily a plausible maximum attenuation for the
network and then to use in the attenuation linear equations the three
desired attenuation values at the mean and the extreme frequencies
of the frequency range. At the highest frequency the attenuation
was lowered slightly to allow for coil dissipation. Several such com-
putations were made with different values of this maximum until a
network was derived which gave a satisfactory result at all frequencies
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within the range. The magnitudes of the elements corresponding to
the partial attenuation characteristic shown in Fig. 21, where R = 605

ohms, are
R, = 508.4 ohms; R, = 105.8 ohms;

L; = 12,69 mh.; Cy = .03469 mf.;
C; = .005852 mf.; Ls = 2.14 mh.;
L7 = 238.8 mh.} Cg = .6525 mf.

The departures of the attenuation from the desired values are less than
.2 T.U, At the highest frequencies small coil dissipation tends to
improve this result.

4.6. Phase Correction in Transatlantic Telephone System

At the receiving stations of the transatlantic telephone system it
is necessary to use phase correctors in connection with the antenna
arrays. These networks serve in two capacities, either (a) as artificial
lines or delay networks which build out the phase characteristics of
short transmission lines until they are equivalent to certain longer
lines used elsewhere in the system, or (b) as phase correctors which
secure adjustable and arbitrary phase characteristics when combining
the outputs of the antennz which form the array. For satisfactory
operation the phase correctors had to meet these design requirements.

1. A constant iterative impedance of R = 600 ohms.

2. A continuously variable phase change which is proportional to
frequency over the frequency range from 50 to 65 kilocycles per
second, the total phase change being from 0 to 250 degrees at
50 kilocycles per second.

3. Over any frequency band of 5 kilocycles per second in the range
the variations should be less than .100 degree for the phase and
less than .025 T.U. for the attenuation.

4. A balanced structure.

In making the design it was found that the continuously variable
phase change to the desired maximum could be provided by means of
one variable section having a small phase constant and five fixed
sections of Networks 13, 14, and 16, Appendix IV. Designated in
terms of their phase constants at 50 kilocycles per second as in Fig. 22,
the variable section has a range of 0-15 degrees, while the fixed
sections have phase constants of 10, 20, 40, 80, and 160 degrees, respec-
tively. The variable section is normally required to give a maximum
of only 10 degrees but an extension of its range to 15 degrees is provided
so as to ensure phase overlapping at any transition point where a
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section is put in or taken out of the circuit. By properly combining
these sections it is seen that a continuous range from 0 to 325 degrees
is obtainable.

The sections were designed from the formula of Appendix IV so as
to give the desired individual linear phase characteristics shown in
Fig. 22. It need only be stated that the data taken from the phase
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Fig. 22—Sections of variable phase corrector and their phase characteristics used in
the transatlantic telephone system.

characteristics in the one-parameter sections were those at 50, in the
two-parameter sections those at 50 and 63, and in the three-parameter
composite sections those at 50, 57.5, and 65 kilocycles per second. The
elements for the variable section in Fig. 22 are continuously variable
and have their magnitudes given in terms of the variable phase constant
B at 50 kilocycles per second as
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_ tan (B/2)R m

10 tan (B/2)
S0r = mf.

I;]_ h.; Cz R

The results for the fixed sections follow in Table IV.

TABLE 1V
PrASE CORRECTOR CONSTANTS
(Fig. 22)
Fixed Sections
(Degrees at 50 kilocycles per second)
10 20 40 80 160
Li(mh).............. 334 1.211 2.941
Co (107 mf.).......... 464 1.682 4.084
Ly(mh).............. .667 1.333 1.456 2.466
Cs(103mf).......... 926 1.851 2.023 3.425
C(103mf.).......... 309 .631 1.051 2.408
L (mh).....ooovvunnn. 223 454 756 1.734

In any one of these sections the computed departures of the phase
constant from ideal proportionality to frequency in the frequency
range 50 to 65 kilocycles per second was usually much less than .02
degree. The practical construction of the networks gave similar high
precision, and by using coils of small dissipation constant, d = (re-
sistance/reactance), the attenuation requirements were likewise satis-
fied. The frequency band now in use is from 58.5 to 61.5 kilocycles
per second.

It may be added that these designs can readily be altered so as to
apply to other frequency ranges. In order to translate the phase
constants from the 50-kilocycle designation to any other frequency
range with a minimum frequency, fo, designation, multiply all induc-
tances and capacities by the translation factor (50,000/fo)."®

4.7, Simulation of Smooth Line

This application is based upon and illustrates the general results
of Part 3 which discusses recurrent networks having arbitrary iterative
impedances. A network design will be given which has the following
characteristics.

1. A propagation constant which simulates a moderate propagation
length of any smooth line, or its equivalent.

18 For a discussion of other applications of constant resistance networks see
footnote 10; also '‘Transmission Circuits for Telephonic Communication,” K. S.
Johnson.
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2. An iterative impedance which equals that of the smooth line at all
frequencies.

Such a network could have a number of uses. For example, it
could serve as a substitute for a small length of smooth line where
approximately exact simulation is required as in certain laboratory
tests, or as part of an artificial line in a balancing network. Leakance
changes can be provided for by means of particular adjustable re-
sistances. The design can represent the special case of a distortionless
line at the lower frequencies and, if non-dissipative, give a phase net-
work having a constant time-of-phase-transmission in this frequency
range.

The method of solution differs considerably from those previously
used for the other networks and so will be given here. To begin with
let

. )impedance of any section of smooth line, or its equivalent,
3, = series . . .
J» of propagation constant 7, iterative impedance k, and
z, = shunt
length /.
Also let
X = open-circuit ], . )
o ]rlmpedance of the smooth line section,
Y = short-circuit
Then
vl = Vzu/z = tanh~! VY/X,
and - (76)
E = Vz.2, = VXV.
(B. S. T. J., October, 1924, p. 617.)
From these

3¢ = kyl = VXY tanh™! VY/X,
and _ (77)
2 = k/yl = VX¥Y/tanh~ VV/X;

thus z, and 2z, are inverse networks of impedance product k2. In a
physical smooth line z, is simulated by series resistance and inductance
and z, by parallel resistance and capacity (assuming the line constants
to be independent of frequency), both represented by simple physical
networks. In other cases they may be realized in desired frequency
ranges, more or less approximately, by physical networks. It will
be assumed in what follows that z, and sz, are given by the above
formulee.

The structure which is to simulate the smooth line is shown in its
general form as Network 18, Appendix IV, wherein 2, and 2z are con-
sidered as two types of physical elements whose combinations in
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different proportions make up the network. It consists of a com-
posite lattice network of two sections having four real, positive
parameters, m,, ma, m,’, and my’, two in each section.

In the first section put for the series impedance

—_1 .
LSNP S
21124 235/1742

5y = (78)

To satisfy the condition for the desired iterative impedance at all
frequencies,

K =Nz =k = \{Zuzm (79)
it follows that the lattice impedance must be

_ MaZq Zh

= o (80)

That is, 211 and 24, are also inverse networks of impedance product &2
The propagation constant, by generalized (13) (that is, R replaced
by K), is

o — 1 4+ my + mlmgy'll

1 — myy + mongy® (81)
where for convenience y = «z./z, = vl = propagation length.
In the second section, similarly,
[ ’ = 1 3y
<11 1 I -
2my'za 22/ ma’
, _ Ma'a Zb
Zoy = 7 2??11"' (82)

and
c U4 my + my'myy?

el = .
1 — miy + my'my'y?

For the composite structure made up of these two sections in
tandem, the iterative impedance condition is already fulfilled inde-
pendently of the values of the coefficients, since (79) holds for each
section. Its propagation constant is given from (81) and (82) by

ele = el‘+l“'

14+ (my + mi)y + (mums + mumy + mi'ms")y?
_ 4+ (mymamy” + mlml’mg’)gﬁ -+ m1mzm1’m-¢’y"
Tl = (my + md)y + (e + w4 my'ms")y? )
— (mamamy” + mumy'ms") v+ mymamy ' my' v

(83)
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It remains to choose the coefficients m,, ma, m,’, and my’ so that for
moderate propagation lengths, y = «l, the composite network will give

I'; approximately = y = ¥l. (84)
At this point let us introduce an important simplification by writing
the function
1_|_1 _|_1 z+l a+_1_y4_|_L 5.
evl2 7Y T8 TigY T383Y T 38407 _

e 1

(85)
1_3 +12_LS+L4__5+...
27 TgY TgY Ti3gaY T 3810”7

el =

Then upon comparing (83) and (85) we see that fortunately for small
values of y we can satisfy (84) providing we identify the coefficients
of powers of y in (83) as

1
L——
my + my = 2 ]
1
mymy + mymy + mi'my’ = 3 (86)
1
momamy’ + mumi'my’ = i3
and
mimemy my = -L .
384

The solution of the equations gives a sixth degree equation for i,
namely, X
1

3 3 5
6 — 2 b 48 g — . =0
M1 2m1 =+ iy Sml +64m1 128m1 +4608 0;
and for the others
_ 6my — 48mPm, — 1

my = ’

48m1(m1 - ml')
my = .5 — m,,

and

' _ 1 + 48m1(m1')2 -_— 6m1'

- 48m1’(m1 - ml’) )

2

From these we get this set of real positive coefficients, determined
once for all, namely,

n, 45737, mg = .14456;

87
m, = .04263; my' = .92403. (87)
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With the above fixed values of the coefficients and formule (77), (78),
(80), and (82), the network can be constructed which is to simulate
any smooth line having physically realizable z, and z,. This simula-

’

Rs
| B’{'”L’;
_7—0
67 //
e

/
<
7/
’

(Broken lines indicate the other series and lattice branches, respectively identical.)

R, = muR, Ry = 1/muG'l, R/ = m/R'l, Ry = 1/m/G'l,
Ly = mL'l, Cy = mC'l, L =m/'L'l, C/ =m'C'l,
Ry = 1/maGl, Ry = maR'l Ry = 1/mG'l, R{ = ms/R'l,
Cr = muC'l, Lg = mylL'l, C' = my'C'l, Ly = my'L'l,
my; = 45737, my = 14456, m,’ = .04263, my’ = .92403.

Fig. 23—Artificial smooth line which simulates a moderate length, I, of line
having the primary constants R, L, G, and ' per unit length. (f R =G =0,
it becomes a non-dissipative phase network whose time-of-phase-transmission at the

lower {requencies has the constant value, rp = YL'C'L)

tion is very accurate for small values of y. As y increases, the de-
parture of the network propagation characteristic from the smooth
line values also increases, but it amounts to less than 1.4 per cent
even at |y| = 3.0, as may be derived from a comparison of (83)
and (85).

As an illustration of this type of design, these results were analyt-
ically applied to the case of a 104-mil open-wire smooth line having
the constants per loop mile (for wet weather, and assumed independent
of frequency),

3.66 mh.;
.00837 mf.

R' = 10.12 ohms; L
G' = 3.20 micromhos; c’

Il

The corresponding simulating network for a length I is shown struc-
turally in Fig. 23, where
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2a = (R +iL'w)l,
and (88)
7, = 1/(G' 4+ iC'w)l.
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Fig. 24—Propagation characteristics of 10-, 20- and 30-mile lengths of 104-mil
open-wire smooth line and of the simulating artificial smooth lines.
(R' = 10.12 ohms, L' = 3.66 mh., G' = 3.20 micromhos (wet weather), and (" =
.00837 mf. per loop mile.)
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A comparison of the propagation characteristic of a line section and
that of its simulating network is shown in Fig. 24 for three different
line lengths, I = 10, 20, and 30 miles. Even in the longest section
the simulation is good up to 3000 cycles per second. The iterative
impedances are, of course, identical as in Fig. 25.
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Fig. 25—Iterative impedance of 104-mil open-wire smooth line and of the simulating
artificial smooth lines.

While the above general design considered four parameters, a
similar procedure can be followed with other networks having a smaller
or greater number of parameters. The structure can be obtained
by building the series impedance of any section out of various com-
binations of the impedance elements z, and z. However, several of
the above four-parameter composite sections can perhaps meet most
design requirements.

ArpPENDIX 1

Discussion oF LINEAR PHASE INTERCEPT

Let us first consider steady-state transmission over a circuit where
the impressed e.m.f., consisting of simple sinusoids of any two angular
frequencies w; and ws, is given by

E()

Il

sin wif + sin wof,
) . (89)
= 2 cos f(wl —_ wg)t sin a(wl + wg)f.
Assume that the circuit has at these frequencies the transfer exponents
a, + b, and a, + ibs such that a, = a2 = a’. A straight line drawn
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through b; and b; in the w, b plane will have a slope 7, say, and at
w = 0 a linear phase intercept b, which may have any value. Hence,
the transfer exponent may be expressed as a function of frequency at
these two frequencies by the relations

a = a’' = constant,

and (90)

b='rw-|-bu.

The received voltage across R will then be a periodic function which is
attenuated by an amount e’ napiers and is

o(t) = e=[sin (wi(t — 7) — bo) + sin (ws(t — 7) — bo)],

= 267 cos $(ws — w1)(t — 7) sin (3w + w)(t — 1) — bo).

(91)

How the transmitting property of this circuit for the two frequencies
depends upon the phase intercept can be seen from a comparison of
(91) with (89). In order that the received voltage may be a time-
function of identically the same shape as the impressed voltage, but
with a time-of-transmission over the circuit of r seconds, it is necessary
that by = 2nw radians, where »# is any positive or negative integer,
This would mean no distortion of the impressed steady-state signal
made up of the two frequency components. If by = (2n &4 1), there
would be an apparent distortion only of a reversal in sign. However,
if by = (2n & 3)m, there would be maximum distortion in the trans-
mitted voltage. These conclusions may be tabulated briefly as follows:

If bp = 2nm, no distortion;
If by = (2n & 1)m, apparent distortion of sign reversal;

If by = (2n £ ¥)=, maximum distortion.

The above discussion considered the case of any two frequencies.
If now we assume that the circuit has the characteristics (90) for
several or a range of frequencies, then the conclusions above obviously
apply as well to the steady-state transmission of an impressed e.m.f.
which is made up of any of those frequencies. Thus, for distortionless
steady-state transmission (without change of signal shape), the transfer
exponent must have for the frequency components impressed not only a
uniform attenuation and a linear phase relation, but also a proper linear
phase intercept by = 2nw. If, in a physical system, (90) is satisfied
over a frequency range which includes zero frequency, then r would
necessarily be positive and by = 0 or a multiple of 2.

Proceeding next to the transmission of an e.m.f. impressed suddenly
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at time ¢ = 0, we note that since the e.m.f. can be expressed in terms
of a Fourier integral representation from t = — « to { = + =« we
may regard it as made up of a distribution of steady-state components.
For example, let the e.m.f. of (89) be impressed on a circuit at time
t = 0. Then

E(t) = (% + ;lrf S“;’—"dy) (sin wif + sin waf),
’ { e (92)
— 1(a . " 1 wy w3
1(sin wyf + sin wat) + 7’.[ (w12 —a T o wz)cos twdw.

This represents the impressed voltage for negative as well as positive
values of { since in the first equation the factor of the sinusoids repre-
sents a function which is zero for all negative and unity for all positive
values of £.  We may then interpret the last equation as giving for all
values of time the frequency distribution of steady-state components
of all frequencies which give the same result as the sinusoids of (89)
impressed suddenly at ¢ = 0. This distribution extends over the
entire frequency range and has the largest amplitudes about & = w;
and o = ws.

Hence, if the initial part of the impressed e.m.f., as well as the final
steady state, is to be transmitted without distortion, the circuit transfer
voltage must have a characteristic which is distortionless not only with
respect to w; and w; but also to all angular frequencies about them as
obtained from the analysis. That is, since the steady state is only
the limiting case of the transient state, an ideal circuit characteristic
for its distortionless transmission is only a part of and is included in
that for the transient state. Or, vice versa, ideal circuit characteristics
for the steady state are at least the same as for the transient state.

These results are useful in studying a circuit whose attenuation is
constant and whose phase characteristic is approximately linear over
an internal frequency band. An extrapolation of this linear phase
characteristic to zero frequency may give a phase intercept which is
not ideal for preservation of wave-shape even in the steady state of
frequencies within the band, as we have seen. Increasing the fre-
quency range over which an ideal phase relation holds obviously
improves the transmission of transient voltages. Practically, good
results are obtained in a circuit wherein the attenuation is approxi-
mately constant and the phase is approximately proportional to
frequency over the required internal band of frequencies; then the
phase intercept, by, is zero and the time-of-phase-transmission,
7, = b/w, is approximately constant and represents the time-of-
transmission of the circuit for those frequencies.

33
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ArpPeENDIX II
Proors oF LINEAR TRANSDUCER THEOREMS

Theorem I: Any passive network whose attenuation constant is
zero at all frequencies is a limiting case of a physical wave-filter wherein
the transmitting band extends over the entire frequency range. The
proof that the phase constant increases with frequency in the trans-
mitting band of any wave-filter has already been given by the writer
in the paper, “Theory and Design of Uniform and Composite Electric
Wave-Filters,” B. S. T'. J., January, 1923, pages 37-38. In the present
case, therefore, the phase constant increases throughout the frequency
range.

The proof relating to the iterative impedance will be given in two
steps which comprise essentially the proofs of two impedance theorems.
From the first of these it will follow immediately that the transducer
under consideration has everywhere a real iterative impedance because
of symmetry and a transmitting band extending over the entire fre-
quency range; from the second, this real iterative impedance is a con-
stant resistance throughout the frequency range.

Wave-Filter Impedance Theorem: In all transmitiing bands the iterative
impedances of a recurrent section of any electric wave-filler are conjugate
smpedances. If the section is symmetrical, they are equal and real
without a reactance component.

From the general formulz on page 617 of B. S. T'. J., October, 1924,
we may write the iterative impedances as:

K,

Kb} = }((X. + X,) tanh T' = (X, — X4)), (93)

where X, and X, are the open-circuit driving-point impedances at the
ends e and b of the transducer. In a wave-filter recurrent section which
is made up of non-dissipative reactance elements the impedances X,
and X have only reactance components. Also, in a transmitting
band the attenuation constant is zero, so that here I' = ¢B and tanh T'
= ¢ tan B. From this, it follows readily that in any transmitting
band the first term of the right-hand member of (93) represents a
positive resistance component and the second term a reactance com-
ponent. Hence, the resistance components of K, and K, are identical
while their reactance components differ only in sign; that is, K, and
K are conjugate impedances in all transmitting bands.

As results of the above we may state parenthetically:

Corollary I: The absolute values of the iterative impedances of a

wave-filter recurrent section are equal at any frequency in all
transmitting bands; and
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Corollary II: The iterative impedances of a wave-filter recurrent
section are such as to give maximum energy transfer from sec-
tion to section in all transmitting bands.

When the section is symmetrical, X, = X, and therefore K, = K, = 7,
a resistance in those frequency ranges.

Non-Reactive Impedance Theorem: The impedance of any two-terminal
nelwork whose reactance component is zero al all frequencies must have a
resistance component which is constant, independent of frequency. To
prove the theorem, let the impedance of any two-terminal network
whose reactance component is zero at all frequencies be represented as:

Z=r, (94)

where r is a real function of frequency.

The general relations between the components of the steady-state
admittance, a(w) + 78(w), of a network and the corresponding indicial
admittance, k(f), are known from electric circuit theory to be:

lw) = h(o) + J ™ cos wyh!(y)dy
and ’
B@) = — [ sin eyt Gy 95)
also ’

h(D) = alo) -I—Efmgii)-cos twdo, 1> 0.
T™Jo

(See pages 18 and 180 of the reference in footnote 5.)
In the passive network under discussion here, the admittance com-
ponents at all frequencies from (94) are

a(w) = 1/r,
and (96)
Blw) = 0.
Upon substituting them in (95) it is found that
h(t) = «(o) = a constant, ¢ > 0,
() =0 97)
a(w)

This relation demands that the resistance component 7 be constant,
independent of frequency, as stated in the theorem.
The converse of the above theorem does not follow, that is, if the resist-

and

1/r = k(o) = a constant.
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ance component of a two-terminal network impedance is constant,
independent of frequency, it is not necessary that the reactance com-
ponent be zero throughout the frequency range. This may be seen
from the relations above. A simple example is series resistance and
inductance.

Theorem II: If the iterative impedance of a network is real at all
frequencies, it must be constant according to the latter impedance
theorem above.

For the second part of Theorem II we have as assumptions regarding
the propagation constant, I' = 4 + 7B, and iterative impedance, K,
effectively

B =10
and (98)
K = a constant = R,

where 7 is some positive constant. The transfer admittance com-
ponents with respect to a resistance R which terminates the transducer

are then
—A

(@) = €
alw) = & €08 @
and (99)
oA
Bw) = —Tsin TWw,

By means of these and (95) we shall prove that 4 is uniform at all
frequencies.

To satisfy (95) with (99) at all frequencies the transducer must be
such as to give the relations

k(o) = o,

B(t) =0, §+#7,
and (100)

T+ , e—4
f W (y)dy = -5

Since the left-hand member of the last relation is independent of
frequency, it follows necessarily that the attenuation constant, 4,
must be uniform. That uniform attenuation together with (98) is
also sufficient to satisfy the other relations of (100) can be seen if the
parameter characteristics at all frequencies are

A = a constant,

B =10 (101)
and

~
I

a constant = R.
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From electric circuit theory, the fundamental integral equation for
the indicial admittance %(#) becomes

S S f ® epuh(y)dy (102)
pZ(p) PR A '

where p replaces iw. Its solution is

) =0, 1< 7
and s (103)
) = R =a constant, ¢ > 13
whence also #/(f) = o for t % r, thus satisfying (100). These results
hold as well for the limiting case of B = o, meaning 7 = o.

It may be pointed out here also that the converse of the latter theorem
does not follow. That is, if the transducer has a uniform attenuation
constant and a constant resistance iterative impedance, it is not nec-
essary that the phase constant be proportional to frequency through-
out the range. This is seen from the general equations or from the
fact that we can alter the phase characteristic non-linearly by means
of phase networks having zero attenuation and a constant resistance
iterative impedance.

Theorem ITI: A symmetrical transducer made up entirely of resist-
ances would have the characteristics

A = a constant,

B=o (104)
K

and
a constant = R,

Many other more complicated networks satisfying (104) are known to
exist, as in Section 4.1, We need not, therefore, seek further to prove
the possible existence of such a combination of parameters.

For networks in which B is not zero, but

A = aconstant

and (105)
K = aconstant = R,

the transfer admittance components with respect to a terminating
resistance R are given as

e A
a(w} = ?COS B

and (1006)

B—A
Blw) = — —Fsin B.
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Using these and the general relations (95), we can obtain

B jnmy sin wyh'(y)dy

= , (107)
de j sin wyh'(y)dy
(]

which is independent of 4.

Since (if B is not everywhere zero) dB/dw is positive when 4 = o
according to Theorem I, and since by (107) it is independent of 4
(a constant), it will be positive whatever the value of A. Hence, B
increases with frequency in such transducers.

ArrENDIX III

PrOPAGATION CONSTANT AND ITERATIVE IMPEDANCE FORMULA FOR
GENERAL LADDER, LATTICE AND BRIDGED-T TYPES

These formule apply to the general types of structures shown in
Fig. 2 and should be used whenever it is desired to take into account
accurately the actual physical impedances. Network designs which
follow the methods given in this paper are made under the assumption
of invariable lumped elements. In constructing physical networks
according to such designs, however, certain departures from this as-
sumption unavoidably make their appearance and must be taken into
consideration whenever extreme accuracy is required. The departures
include dissipation in coils and condensers, distributed capacity in
coils, as well as inaccuracies due to manufacture.

Some of these formulz have been given in previous papers but all
can be derived readily either by the method given in B. S. T. J,,
January, 1923, p. 34, or by that in B. S. T'. J., October, 1924, p. 617.

Ladder Tvpe:
coshT =1+ %?- (108)
2
The iterative impedances at different terminations are:

At full-series = K, + 3}z,
At full-shunt = K; — 1z,

109
At mid-series = K; = Vz12 + 13,7, (109)
At mid-shunt = Kg = 2122/K1.
Lattice Type:
coshT =1 —|—i— (110)

dzy — 5

K = vz, (111)

and
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Bridged-T Type:

_ 22,85
coshT =1+ G F 42) T do (112)
and
a2 (Za + 42.)
K = \x 4(z0 F 20) . (113)

As an aid in obtaining the propagation constant, I' = 4 4 ¢B, from
any of the three hyperbolic cosine formule it will be found convenient
to use the following formulze.

Computation Formule for the Complex Anti-Hyperbolic Cosine

It is known that many formule have already been derived for such
evaluations but those below appear to give accurate results more
readily.

Let it be desired to obtain A and B from the formula

cosh (4 + B) = x + iy, (114)

wherein x and y are known. A transformation of the x and y variables
is first made so as to use the form of substitution and formulz given in
B. 5. T. J., October, 1924, pages 577 and 578. A further substitution
and the application of hyperbolic formulae give the following results
where

U=23x-1),
V=1,
P=4U+ U+ VY, (115)
and
V
= 1 aoh-1
Q = % sinh s

When P is Positive:
A = sinh™! (7P cosh Q)

and (116)
B = =+ sin~' (/P sinh Q).

When P is Negative:
A = sinh™' (¥ — P sinh Q)

and (117)
B = =+ sin~! (V— P cosh Q).

When P is Zero, a Special Case:
A = sinh~' V2| V| = }cosh™ (1 4+ 4| V)

and (118)
B = +£sin~' V2| V] = =& Fcost (1 — 4| V]).
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In All Cases:
B =cos‘1(1+2U> =sin—‘( 2V ) (119)

cosh A sinh 4

The latter anti-cosine formula is particularly useful when B is in the
neighborhood of (2# + 1)x/2, and both formulz of (119) when con-
sidered together determine the sign of B.

The above formule give the solution of (114) which has a positive
value for A (as in the propagation constant of a passive network).
The other solution, since cosh (—TI) = cosh T', would have values for
both A and B which are the negative of those in the first solution (as
may be possible in an active network).

It has been found that, when x and ¥ are given to five or six decimals,
it is possible to derive 4 and B to about this same degree of accuracy
from these formule and the Smithsonian Mathematical Tables of
Hyperbolic Functions. The formule may be used to advantage in
accurately obtaining the propagation constant of a loaded line where
x and y are calculated from the known circuit constants. (See foot-
note 2.)

AprpEnDIX IV

ProPAGATION CHARACTERISTICS AND FORMULZE FOR VARIOUS LATTICE
TyPE NETWORKS

Networks of the lattice type only are specifically considered here
since they have more general propagation characteristics than ladder
or bridged-T types. However, transformations of any lattice type
design obtained can be made to equivalent networks of these other
types, if physical, by means of the simple relations given in Table II
and the corresponding Section 2.5.

The network drawings show only half of the elements so as to avoid
confusion; it is to be understood that the broken lines indicate the
other series and lattice branches, respectively identical. The double
subscript notation adopted for the elements is to be interpreted as
follows: the first subscript on any element denotes the general position
of the element in the network, 1 for the series branch and 2 for the
lattice branch; the second subscript denotes the serial number of the
element in either branch. Elements in the two branches which have
the same serial numbers for their second subscripts correspond to each
other according to the inverse network relations.

This group of networks, while not exhaustive, includes the simpler
and perhaps most useful structures, but it could readily be extended.
The propagation characteristics shown for each structure and derived
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from computed results are representative and serve to give an idea
of the possibilities of the network for design purposes. All networks
except the last have a constant resistance iterative impedance R.
Networks 1a—12 have attenuation so that they will usually be designed
from their attenuation characteristics in terms of which the formule
are given. There is usually more than one physical solution from the
same attenuation characteristic, and in Networks 9 and 10 as many
as four have been found possible. These multiple solutions all have
different phase constants. A possible practical advantage of one solu-
tion over another may lie either in its phase constant or the magnitudes
of its elements. It is of interest to point out that if these networks were
designed from the phase characteristic some of them might have mul-
tiple solutions with different attenuation characteristics. For example,
Networks 3a and 3b corresponding to the phase characteristics 1’ and
2’ each can have two such solutions.

The Networks 1b, 2b, etc., with their output terminals interchanged
are, respectively, identical with Networks 1a, 2a, etc. Hence, any
pair of these networks have the same attenuation constants but phase
constants differing by = radians. An extension of this list to include
Networks 6b, 7b, etc., was not thought to be necessary.

Several networks may have the same form of frequency function
for For H. Some values of the attenuation or phase coefficients will
give a physical structure to one network but not to another. Whether
a network having a definite A- or B-characteristic is physical or
not can be determined most readily by a direct substitution of the
coefficients in the formula for the elements. In certain cases these
latter formula show easily that one network may give a physical result
where another cannot. For example, Networks 6 and 10 both have
the same F formula, but when one network is physical the other is not;
similarly with Networks 7 and 9. These particular results would be
expected from the fact that those pairs of networks cannot have the
same attenuation characteristics, as seen from their structures.

Networks 13-17 have no attenuation and are designed from their
phase characteristics, Network 18 represents a somewhat general
form of artificial line and has other types of formulz.

Examples of networks which are potentially complementary are
Networks 1a and 2b; 1b and 2a; 3a and 3b; 11 and 12.

Transformations of impedance branches to equivalent ones can be
made in some of the networks by means of the general transformation
formule given in B. S. T. J., January, 1923, pages 45 and 46.
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NETWORK la

27N b IA7]

Ry = 2a.R;
RuRy = meczz = R%

F=ea—1o0 = Lot l

Attenuation Linear Equation:
Py — FQq = f*(F — 1).

In physical solutions O = Q¢ = P,.

toag= Yo NG 2

’ NPy — Qo ' b APy — VO,

1'.GU=M' a,=T2—_.
VPo + V0’ VP, + VQo
H =tan B = 20 f

A —ad) — &t
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NETWORK 1)

Ry = 2a.R; Ci

RyRy = Lu/Cs = R

TU
. — Pu+f2
F=¢4 =100 = .
¢ 10 Qo + f*

Attenuation Linear Equation:
Py — FQo = f2(F — 1).

In physical solutions 0 = @y = P..

_\’E-—-\’@_ _ 2
Qg = ——m——3 bl - - .
\fPo + \’Qa VP, + \“Qo
v g = YPo+ Qo _ 2
B bl = —_—
\an - ‘JQn VPy — N{Qo
I = tan B = —— 230

(1 — a¢®) + b3f*? )
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NETWORK 2a

2N
[_.,Ij L.z Il

QﬂlR . _ QIR .
bl ! T

RyRy = Lyp/Cp = R

Ry =

U 1 4 P,f?
F=¢td =100 =22 |
‘ [+ Qff

Attenuation Linear Equation:
Pg - FQg = (F - l)ffg.

In physical solutions O = Q; = Ps.
1. a; 1 r ‘\l-—
by = 3(VPz F V(o).
1’. ay 1 r ‘\j-—
b = F(VP; == V().

o _ 2a1f .
I =tan B = =t — b
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NETWORK 2b

o

RyRy = Lyp/Cr = R2.

TU

. W1+ Py
F =g =100 =_T1T7%2 |
¢ 1+ Quf?

Attenuation Linear Equation:

Py — FQy = (F = 1)/~

In physical solutions O = Q» = P,.

1. ——
?):} = 3(VP, = \(Qy).
1. o, 1 (JPr -
b, = 7( Py F '\’QQ).
H =tan B = 2b.f

1+ (af — blz)fz'
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NETWORK 3a
23
DS

° iy A 0

o F 2 -
= JaR . ___a’R _
R” - (11bn — g ' 12 = ‘J'l'((llbu - au) ’ RlB = 201R-
RyRy = Lp/Coes = RiyRy = R,
TU Pyt

F=g4=10w “ T O
Attenuation Linear Equation:

= Po+ FQo + f*FQx = f~
In physical solutions O = Qy = Po; 0 = O = 1.
If Qo < PoQ: (A decreases with frequency):

1. au}_ Py = VO, | . 140

bo| 1—@ ! 1_1—@
1. ﬂo}=V'ITa:F1fa;. o = L HNO:
bo 1—A0 ' 1=
If Qv > PoQ: (4 increases with frequency):
2wl BE, L, 1oV
bD 1+@ y 1 1+@

2’. Same formule as in 1°.

If Qy = PoQ:, F = 1/(: (4 is constant).

T = - 2(arbo — ao)f .
H =tan B 7 —ad) + 0 — o)
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NETWORK 3b

i 703
’Zéza
-~ 2Rz
Tl AL22 TN
4 7

_ 2 —adR L b
b ! 2 47i'((1c|b1 - al)R !

Ran = L'zz/Cm = R13R23 = R2,

0 Pyt
= 2 = = —-
F = e =101 Ov ¥ O

Attenuation Linear Equation:
— Py + FQo + f*FQy = f*.

In physical solutions O = Qg = Py; O = @ = 1.

If Qp < Py(: (A decreases with frequency):
VP, — \Q, a) _ 1FAQ

WP N0 bl T NP Qe
1. a \an"l-\"Qn 01}_ 1:F'\@ .
. 0 —’\IQB bl {PD '\;QD

If Qy > Po(Q. (A increases with frequency):

VP, + VO | al}z 10

NPy — Qo bl NPy — A
2’, Same formula as in 1.

If Qo = PoQe, F = 1/Q: (A is constant).

— 2(a¢h, — ﬂl)f .
(T —a) + (6F — &P

2, ag =

H=tan B =
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NETWORK 4a

RyRy = Lyp/Coy = Ly-[Cys = R

=14 Poft + Puft
F_ 24 — 10 — C
‘ 1o® 14+ Quf* + Puf?

Attenuation Linear Equation:
Py — fA(F — 1)Py — FQ, = (F — 1)/f*
In physical solutions O = 24P, = Q, = Pa.

1. ay

bl} — 1\P: + 2P F 0 — 29Py);  ax = \Pu.

1/, Same formule as in 1, but with @, and & interchanged.

2(Ilf + 2ﬂ',gb]f'1

H=tan B = = (ad = o) —a22f4-
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NETWORK 4b

2 r

_ 2((1151 - bg)R

Rll b]2 '

Cr = Ir(ab, — )R’

RnRzl = L22/C]2 = Lza/Cu = R

¥ 14 Pofr 4 Pif
F = g4 = .
¢ 1o 1+ Qef* + Puft

Attenuation Linear Equation:
Py, — f(F = 1)P, — FQ» = (F — 1)/fA

In physical solutions O = 24P, = 0, = P..

. (2} =3P+ 24P, £\ — 2WP)); by = P

1’. Same formula as in 1, but with a; and b, interchanged.

2b1f + ZGlbgfﬂ

H =tan B = TF (af = b2)f — bzﬂf*'

34
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NETWORK 5a

Ry Hae s
T 50T o

RyRy = L12/C22 = Lz"/cla = R

T 14 Pof? 4 Pft
F = p24 — 1 0 .
A N R

Attenuation Linear Equation:
Py — FQp — f2(F — )Py = (F — 1)/f%
In physical solutions — 2VP; = Qs = P

_ %i} = %(\/Pz + ZW}E."J: V@ + 2\":54); Ay = {15;

1’. Same formulee as in 1, but with a; and &, interchanged.

2b1f - 2(12b1f3 .
F (@ — 2a5 — b + agf*

II=tanB=1
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NETWORK 5b

A
0
_ 201R . _ alR . _ bg
R” - bl ! le - ™ ! C]:] - 4:17'(11R

Ry Ry, = L1p/Coz = Lys/Ciy = R,

T _ 1+ Pof* 4 Puf
— — 10 _— .
F=¢e4=10 T 0 F oS

Attenuation Linear Equation:

Py — FQy — fA(F — )P, = (F — 1)/f.

In physical solutions — 24P; = Qs = Pa.

Pl =P P EN P b=

1’. Same formule as in 1, but with @, and b, interchanged.

~ 3 2a.f — 2a:baf? .
H=tan B = +— (a2 = b + 2ba) f* + bf*
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NETWORK 6
$ftm

B "zﬁé 2
[ Z

A- and B-characteristics are similar to those of Networks 2a and 4a.

R — 2a,%a:R . _ a1a:*R .
1 aldzbl - alzbg - 1122 ! 12 w(a,azb, b aﬁbz — af) !
Ly = M; Ry = 2a:R
T be

RyuRy = Lyp/Cos = Li13/Cys = RuuRyy = R

o _ 14 Poft + Puft
= p24 — 0 — .
F=et =100 =10+ of

Attenuation Linear Equation:
Py + 2Py — FQy — f*FQu = (F — 1)/f*

In unrestricted solutions, where O = Qy = Py:

“*} or bl} = 1P + 24P £ 0 — 290

b1 a;

‘;j}=%ulﬁi@.

Also

‘Zi}orzi} = 1P + 2VP: + O + 2900);

w1 = 3P = Q0.

In physical solutions ai, as, by, by are positive;

012b2 + (Izz = alasz.

2a,f — 2(a1by — asby)f? .
N (7o T T e (R T

H=tan B =
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NETWORK 7
Fonu

A- and B-characteristics are similar to those of Networks 15 and 4b.

2a00’R .oy = Qb = a — adhy
aualbl -_ a.2 - auzba ! 2 4#0021'1112 !

Cla = ‘Er—l:'l—fe; Rm = ZGDR.
Ry Ry = Lyy/Ciy = Lys/Cis = RuRyy = R

TU
WPy 4 Pof? 4 f
= 24 — 10 _— .
F=c¢ 10 O+ O ¥/
Attenuation Linear Equation:
Po +f2P2 - FQ(] —ﬂFQz =f4(F - 1).

In unrestricted solutions, where O = Qy = Py:

a=@-0_'vrQ—0. by = 2 .
NP NG AP+ O

al}orbl} _ VP + 2Py =@ + V00 |

b a Py + Qo
Also
g o VPO NG 2
0 m-@| 2 ’V’E—’\FQ_Q’
al}orbl}=\/ﬂ+zvﬁi\]og—2@.
bl a Py — Qs

In physical solutions a,, ai, by, b are positive;

a? + ad?bs = awby.

B _ 2(a1 — acb))f — 2a,bof? .
H=tan B = (1 — 002) — (a® — b + 252)f2 + baif*
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NETWORK 8
2Rn
FRu iz 201,

|.n—

i
ST~ . J
_ daabzR
b = by —an)’
RH = 2{1|JR.

RyRy = Lip/Cow = Ly/Ci3s = RyuRyy = R

TU

F=¢4=100 = Fﬂl"_"_lé’-ﬁzig%ﬂ
Fo(f=0) = Fo(f = »); Ao = Aa.
Attenuation Linear Equation:
— Py + FQy — f{(Fo — F)Qu = (Fo — F)[f%

In physical solutions O = Qs + 2\/@ =n=P + 2FD\/@ = m.
If P, < FyQ: (4 has a minimum):

1. ap = tanh (A4/2); by = \/E.
gi} — 1(1 — tanh (44/2)) (N7 F V).
1’. ap = coth (44/2); by = @:
‘;i} = 3(coth (4o/2) — 1)(Nm F V).
If P, > Fy(Q: (A has a maximum):
2. ap = coth (4¢/2); by = VQu;
‘Zi} = I(coth (44/2) — 1)(\m == V).

2’. The same formule as in 1.

_ _ 2(aub — @) (— f + buf?) )
H=tanB =G o5 0= aHb)* F (0 = ad)bif
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NETWORK 9
FRu
#ho e

W
=
||£ /3
L -
-

R _ zflualzR . Lo = G]sR .
" agthy + {]’,]2 - aﬂalbl ' - W(Guzbz + a? — G‘,u&lbl) !
_ b _ 2qeR
Ca = dra R’ R = aiby — aghy

R11R2] = L12/C22 = Lz:i/CIE = R14R24 = R

TU

T _ Po+ PfP 4+ f*

F = 24=110= AL, < .
NN N
Attenuation Linear Equation:
Py + f2Py — FQy — f2FQy = f4(F — 1).

In unrestricted solutions, where O = Qy = Py:

VP = NQ 2
=, g = Y=,
VPy + Qo Py + Qo
al} bl} _ AP+ 2WP £ 40 + 240,
or = A% .

@ VPo + V0o

=\"—P_O+@_ b 2

Po— Q' AP — Q0

al}orbl} _ \]PE + 2\'?0 + \/Qz — 2\@;‘
by i VP, — V0,

ag

Also

Qg

In physical solutions Q2 = Pa; agtiby = ao?be + ai?.

2((11 — aubl)f — 2a1bgf3 .
(1 —a¢®) — (& — b + 2b)f* + bo?f*

H =tan B =
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NETWORK 10

2‘ “@M
1R 200

17

R = 2&12a2R . Cro = 01252 + 022 - a1a261 .
1 = -
012b2 + (3‘,22 — ﬂ.lﬂ}zbl ! 12 4#(113R !
E]R 2(112R
L13 = — ; _R14 = .
aiby — az

RiRy = L'zz/Cm = L13/C23 = RuRyy = Rz,

o _ 14+ Pof? 4 Pyjt
= 24 = 10 _ .
F=¢ 10 T 07 F Ouf

Attenuation Linear Equation:
Py + f2Py — FQp — f2FQs = (F — 1)/f*

In unrestricted solutions, where O = Q, = P,

‘;i} or ”1} = 3(JP: + 2VP. £ 0 — 2404);

451

1= 1P = VD0,

Also

whor b = 3P+ 2VPL = O + 29005

a

‘;:} = L(VP, F Qo).

In physical solutions Q: = Pa; @by = a:?by + a2’

2a;f — 2(a1bs — azbi)f®
1 — (a® = b2 + 2b,)f? — (a2 — b*)f*

H=tan B =
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NETWORK 11

22
#. 2z
+ ST}

A
1
0 7
_ Glﬂ,sR .
Lu = b —an)
_uR, _ 2R
L13 - T ] Rli = m
L11/C21 = LM/Cm = Lla/c'zs = RMRM = R2,
o _ 14 (14 m)H
= ¢4 = 10 =
F=c¢ 10 T+ (= mpy’
where
_af — aaf?
SO p—

is the total parallel reactance in 2y; divided by 2R.

1. m = coth 34.;

1. m = tanh 14.;
where 4, is the m_aximum attenuation at f = = and at the internal
frequency f = 1/bs.
Attenuation Linear Equation:

a; — fas + fyby = J’/f-

where

F—1
= i\/(1+m)2—(1 — m)*F

and the signs to be taken for y correspond to the particular reactance
branches involved, whose signs in order on the frequency scale are
+, —, and +.

In physical solutions a; = a1bs.

— _ 2y .
H—tan}j'--l'_-(1__%22”2
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NETwoORK 12

2R

3 2002
T oo
Vi

4

—

Lu/Cm = Lzz/cm = Lza/cm = R14R24 = R.

F=62A=10%_1+(1+m)2y2

STE A
where
_ 1 +af
Y T S = byfs
is the total parallel reactance in z; divided by 2R.
1. m = coth £4;

1’. m = tanh 14;
where A4, is the maximum attenuation at f = 0 and at the internal
frequency f = Vb/bs.
Attenuation Linear Equation:

ay — (y[)b + fybs = 1/f?,
where

F—1
y= i\/(1+m)2—(1—m)2}?

and the signs to be taken for y correspond to the particular reactance
branches involved, whose signs in order on the frequency scale are
—, 4+, and —.

In physical solutions b3 = asb;.

r - 2y .
H =tan B T= (1 = mi)y
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NETWORK 13
FLu
o —

A=0

g F
Ly =—; Ly/Cy = R
™
H = tan 3B = a,f.
Phase Linear Equation:

(See also formula (75).)

a, = Hif.
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NETWORK 14
2002
I-v——]

_ a]R . _ bz
In="7i Ce=ggR
Ly/Cy = Lyp/Cy = R
7 g __of |
H = tan 1B T— b

Phase Linear Equation:
a, + fHby = HIf.

1. bg < %ﬂ-]_z. 2. bz > %ﬂllﬂ.

Equivalent Network, if b, = 1a,®:
Two sections (a," and a,”’) of Network 13:

!
“1,,} — g + o — 4h).
a
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NETWORK 15

L3 20z

A=0.
B-characteristic is the sum of those for Networks 13 and 14.
_amR by — as, __ @maR
Lu - 7 ! C12 - 47('0,12R ! L13 - ‘Jr(a]_bz — ﬂ.a)

Lu/Cm = Lzz/Cm = L13/Cza = R,

Ceoag o af —aft
H = tan {B = p——T

Phase Linear Equation:

a, — fofIa +be2 = II/f

In physical solutions a3 = a1b,.
Equivalent to Network 16.
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NETWORK 16

R , a'R b
Lu="73 L === Gf =g
Lu/Cu = Ly/[Cy’ = Lp'{C’ = R

M,f + Myf?
— 1R — .
H = tan 3B EES A

Phase Linear Equation:
My + f*My — fHN, = HJf.
a* — Mya® — Noay + Mz = 0;
a = M, — aq;

bg’ = — Ma/ﬂl.

Equivalent to Network 15.
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NETWORK 17

A=0.
B-characteristic is the sum of those for two sections of Network 14.
GI’R

alR bz bg’

— o1+, = 2 . — . r— .
Ly = x Cia Ira,R’ Ly g Ci Ira, R
L]]/Cﬂl = Lzz/Cm = Ln’/Cm' = Lzz'/cm' = R

3
H = tan 3B = 20/ 1+ Maf

T4 Nof? + Nof*

Phase Linear Equation:
My + f*M; — fHN, — f*HN, = H/f.

In physical solutions M; and N, are positive, as are also ay, @), bz, and
by'. Mjzand N, are negative.

g* 4+ 2N2g* + (— M M3+ No* — 4N)g + (MEN,— M, M;N; 4+ Ms*) = 0;
%} = o0 =N 1)

b
by

bor '} = 4(= Ve + q) = N F g7 = 380,

the determining condition being that a.b.’ 4+ a\"b, = — Ma.
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NETWORK 18

(To simulate a short symmetrical line or circuit)
Symmetrical Section of Line or Circuit:

X = open-circuit impedance;
Y = short-circuit impedance;
tanh—!' V¥/X = propagation length;
VXV = iterative impedance.
Simulating Network:
2, = VXY tanh ' \V/X ;
2 = VX ¥/tanh! W;
my = 45737; msy = .14456; m,’ = .04263; my’ = .92403.

The impedances 2, and 2 are to be realized in desired frequency ranges,
more or less approximately, by comparatively simple physical networks.



