The Present Status of Wire Transmission Theory and
Some of its Qutstanding Problems

By JOHN R. CARSON

Synorsis: The rapid development in the technique of wire transmission
and the increasing complexity of the problems involved calls for a more
adequate theoretical guide and a more rigorous transmission theory. This
paper gives an account, practically without mathematics, of classical
transmission theory and its limitations; of the several ways the problem
may be attacked more fundamentally and rigorously, and the lines along
which transmission theory must be extended, as the writer has come to
view the problem in the light of his own experience.

N the present paper the term wire transmission theory will be under-
stood to mean the mathematical theory of guided wave propaga-

tion along a system of parallel conductors; which is supposed to be
geometrically and electrically uniform throughout its length. The
theory of wave propagation along such a system is of fundamental
theoretical and practical importance to the communication engineer
and presents some extremely interesting and difficult problems to the
mathematician. The development of the elementary or classical
theory will first be briefly sketched, after which the rigorous mathe-
matical theory will be discussed together with some of the important
unsolved problems.

Historically wire transmission theory goes back to the early work of
Kelvin and Heaviside. It is based on the simple idea that a trans-
mission line (say consisting of two similar and equal wires in which
equal and opposite currents flow) can be represented as consisting of
uniformly distributed series inductance and resistance and shunt
capacitance and leakance, these concepts deriving from electrostatics
and elementary circuit theory. In accordance with this idea, if X
denote the axis of propagation, the current I and voltage V are related
by the familiar equations
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where Z is the uniformly distributed series impedance and V the
shunt admittance per unit length, it is easy to show that I and V
satisfy the differential equations
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where 4 = ZYV. The solution of these equations is
I = Aes — Bers,
(4)

V = kdAe 7= + kBe=,

v = VZY is called the propagation constant and k = NZ[Y the
characteristic impedance of the line. A4 and B are integration con-
stants which must be so chosen as to satisfy the boundary conditions
(continuity of current and potential at the line terminals). The first
term represents a direct wave, the second a reflected wave, their rela-
tive values depending on terminal reflections and the terminal im-
pressed electromotive forces.

We see therefore that in accordance with elementary or classical
transmission theory, the current and potential waves are both express-
ible as unique simple exponentially propagated direct and reflected
waves, the values of which are determined by the continuity of current
and potential at the line terminals. The characteristics of the line
appear only through two parameters, the propagation constant + and
the characteristic impedance k.

Generalizing the preceding, consider a system of n parallel wires,
parallel to the surface of the earth. The differential equations for
such a system, in terms of elementary transmission theory, are !
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Here the physical system is represented by the parameters Z;, and
Y, the Z parameters being the series impedances (self and mutual)
and the Y parameters the shunt admittances. If the differential
operator d/dx is replaced by +, thus confining attention to exponentially
propagated waves, and if either the potential ¥ or the current I is

1See references 9 and 10.
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eliminated from (5), we get a set of # homogeneous equations in I or
V, the determinant of which must vanish for a non-trivial solution.
This determinant is a function of +? and it has in general 7 roots in +%
indicating 7 possible modes of propagation, with corresponding char-
acteristic impedances kj. The general solution is then of the form

I; =3 Aje ™ — Bje™,

Vi= 2 kiad e + kjpBire. ©
Here A, Bj: are integration constants, the number of independent
constants being 2n. These are determined by the 2# boundary con-
ditions at the physical terminals of the system; that is, the continuity
of the n currents and n potentials. The solution represents z direct
and 7 reflected current waves, which in general are propagated with
different attenuations and different phase velocities.

The conclusions derivable from the classical theory sketched above
may be summarized as follows: In a system of » parallel conductors
there are in general # modes of propagation, that is, # direct and »
reflected waves, which may be termed the normal modes of propaga-
tion. The distribution of the wave energy among the n modes of
propagation or # component waves, is determined by the boundary
conditions, which are essentially the continuity of the currents and
potentials of the n wires. The system is supposed to be completely
specified by the self and mutual series impedances and the self and
mutual shunt admittances of the # conductors, while in the solution
for the waves the physical and electrical characteristics of the line
enter only through the propagation constants and corresponding
characteristic impedances.

Before analyzing the theoretical basis of the preceding elementary
theory, and showing its limitations, an interesting and practically
important extension will be briefly touched on. The equations of the
theory given above presuppose that the impressed electromotive forces
are concentrated at the terminals of the system, and that in the line
itself the electric and magnetic fields are due entirely to the currents
and charges of the conductors, and consequently that the distribution
of current and charge is determined entirely by their own fields.
Suppose, however, that the system is in addition exposed throughout
its length to an impressed field, from some disturbing source; then the
preceding theory must be modified to take into account the effect of
this additional field. To take the simplest case, consider a single wire
parallel to the surface of the earth (ground return circuit). Let us
suppose that this wire is exposed to an arbitrary field specified by an
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axial electric force f at the surface of the wire and an impressed poten-
tial F (line integral of electric force to ground). The differential
equations are then 2

a
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(Here g is a shunt admittance. See reference 10.) Writing
v = V(Liw + R)(Ciw + G),
y_  [Liwt R
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this reduces to the differential equation
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The solution of this equation and its practical significance have been
discussed in a recent paper. The resulting analysis is of considerable
practical importance in connection with the theory and design of the
wave antenna and the problems of ‘cross-talk’ and induction.

The elementary or classical theory sketched above is essentially
based on the simple concepts of electric circuit theory and its beautiful
simplicity is a consequence of the fact that it is approximate only.
For example the circuit parameters are only approximately calculable
from the geometry of the system and its electrical constants and then
only when the problem is treated as a two-dimensional one in which
the variation of current and charge along the system is ignored as well
as the finite velocity of propagation of their fields. Going further,
it is by no means evident that even the form of the equations is
rigorous. (We shall find that the form is rigorously valid only in an
ideal case.) In the extension of elementary transmission theory, then,
the first problem, as the writer sees it, is to examine the conditions
under which the specification of the system by series impedance and
shunt admittance parameters is justified; that is, to establish the
conditions under which the classical form of the differential equations
is valid. The second phase of this problem is to formulate a general
method for calculating these circuit parameters in terms of the geom-
etry and electrical constants of the system. The investigation of
these problems leads to still further problems, arising from the fact

2 See reference (10).
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that the solutions of elementary theory, when valid, are only particular
solutions, and therefore do not, in general, represent the complete wave.

In taking up this problem it is necessary to discard the simple
concepts underlying classical transmission theory and attack the
problem, ab initio, by aid of Maxwell’s equation. Otherwise stated,
our problem is to find solutions of the wave equation which satisfy
the boundary conditions at the surfaces of the conductors, that is, the
continuity of the tangential component of E and H, and therefore
represent physically possible waves.

To put the matter otherwise, we shall place ourselves in the position
of a mathematician, unacquainted with circuit theory or classical
transmission theory, for whom the laws governing propagation of
electromagnetic waves are formulated only by Maxwell's equations.
His procedure in developing the theory of transmission along wires
would be totally different from the way the theory has actually been
developed. Starting with Maxwell’s equations he would find that
the electric and magnetic vectors satisfy a partial differential equation
called the wave equation. He would then search for particular solu-
tions of the wave equation which satisfy the geometry and electrical
constants of the system, and therefore represent physically possible
waves. The results of such a mode of approach to the problem are
sketched below.

To formulate the problem concretely, consider a system of # parallel
conductors, parallel to the (plane) surface of the earth, and extending
along the positive X axis. The conductors may have any cross-
sectional shape desired, but it is expressly assumed that they do not
vary electrically or geometrically along the axis of transmission X
(except at points of discontinuity or the terminals); that is to say, the
transmission system is uniform along the axis of transmission.

Now in any medium of conductivity ¢, permeability x and dielectric
constant ¢, the electric and magnetic vectors satisfy the wave equation ®

A
(W+W+@—V)F—O: 9)
where
v = drouiw — wf?,
v=1 \r-.
e (10)
w = 27 times the frequency,
i= vV—1,

and F may be any component electric or magnetic vector.

3 See reference (11).
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We now suppose that solutions of the type
F = f(y, z)ett-r) (11)

exist, where f(y, 5) is a two-dimensional wave function satisfying the
two-dimensional wave equation

(gt+25)f = 0 = L. (12)

In other words we search for exponentially propagated waves of this
type; that is, waves which involve the spatial coordinate x only
exponentially. It is well known that solutions of this type exist when
the transmission system is uniform along the X axis.

The mathematical analysis of the problem outlined above is dealt
with in detail in my paper ‘The Rigorous and Approximate Theories
of Electrical Transmission along Wires' (ref. 11) and the outstanding
conclusions of that analysis are as follows:

The form of the differential equations of classical transmission
theory is rigorously valid, that is, the system is specified rigorously
by its self and mutual series impedances and shunt admittances,
only for the ideal case of a system consisting of perfect conductors
embedded in a perfect dielectric. In this case »* — 4* = 0 in the
dielectric; »® = e in the conductors, and the propagation constant
v is fwfy, indicating unattenuated transmission with the velocity of
light, » = 1/veu. The wave is a pure plane guided wave, and the
electric and magnetic fields are derivable from two wave functions,
one a linear function of the conductor charges and the other a linear
function of the conductor currents, the determination of which, in
terms of the geometry of the system, is reduced to the solution of a
well-known potential problem.

Such a system, the ideal for guided wave transmission, is of course
unrealizable, since there are always losses in both conductors and
dielectric. For efficient transmission, however, the losses must be
small and the guided wave must approximate the plane wave of the
ideal case. Let us suppose, therefore, that the losses in the system are
so small that n the dieleciric, in the neighborhood of the conductors,
we can set »® — 4% = 0, and that in the conductors the conductivity is
so high that »* — 4% may be replaced by »* without appreciable error.
Under the circumstances where these approximations are valid it is
found that the electric and magnetic fields in the dielectric and the
current distribution over the cross-sections of the conductors are
likewise derivable from two wave functions which are linear functions

18
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of the conductor charges and currents respectively. The first of these
is determined in terms of the geometry of the system by the solution
of the same two-dimensional potential problem as in the ideal case,
while the second is determined in terms of the geometry and electrical
constants of the system, by a generalized two-dimensional potential
problem.* Otherwise stated, to the approximations explained above
the system may be regarded as specified by self and mutual series
impedances and self and mutual shunt admittances, and these are
calculable by the solution of the two-dimensional potential problems.
The solution of the differential equations leads, precisely as in the
classical theory, to an nth order equation in 4% indicating » modes
of propagation. Moreover, the #n corresponding waves, which will,
for reasons explained below, be termed the principal waves, are quasi-
plane. This means that, in the dielectric the axial electric intensity
is in general small compared with the electric intensity in the plane
normal to the axis of transmission; or, more broadly stated, the
departure of the waves from true planarity is due entirely to dissipa-
tion in conductors and dielectric. A plane wave is here understood
to mean a wave in which E; = H, = 0.

Now it is important to observe that in arriving at the foregoing
result we have introduced at the outset approximations and assump-
tions regarding the order of magnitude of the propagation constant y
which depend on the assumption that the transmission losses are small.
Fortunately these assumptions are justified, and the resulting approxi-
mate solutions are valid to a high degree of accuracy, in those systems
which can be employed for the efficient guided transmission of electro-
magnetic energy; otherwise stated, the mathematical restrictions
correspond to the actual requirements for efficient transmission. If,
however, either the conductors or the dielectric become sufficiently
imperfect, the approximations introduced and the resulting wave
solutions become increasingly inaccurate and unreliable.

Suppose now that we attack the problem in a still more fundamental
way: discard the assumptions regarding the order of magnitude of ¥,
introduced above, and attempt to deal with the problem and the
solution of the wave equation in its general form. The case then is
entirely different and vastly more complicated. In general, the solu-
tion can not be carried out, but a few simple systems have been studied
and the results of this analysis may be generalized as follows:® in a
system of # parallel conductors there exist, in addition to the # principal
modes of propagation, an #-fold infinity of other modes of propagation,

4 See reference (8).
§ See reference (5).
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which will be termed complementary modes of propagation. In general,
the corresponding complementary waves differ from the principal
waves in that they are not quasi-plane and are very rapidly attenuated.
Consequently it appears that as regards the currents and charges, and
the fields near the conductors, the effect of the complementary waves
is usually appreciable only in the neighborhood of the physical
terminals of the system so that at a distance from the terminals,
usually small, they are represented with sufficient accuracy by the
principal waves alone. At a great distance from the conductors,
however, it appears that the errors resulting from ignoring the fields
of the complementary waves may be large; in fact the complementary
waves must be expressly included to take into account the phenomena
of radiation.

The practical as distinguished from the theoretical importance of
the foregoing resides in the fact that the principal waves corresponding
to those of elementary theory represent the transmission phenomena
accurately only at some distance from the physical terminals of the
line and then only in the neighborhood of the wires. This defect
may be of small practical consequence when the conductors all consist
of wires of small cross section. When, however, conductors of large
cross sections, or the ground, form part of the transmission system,
the theory may be quite inadequate for some purposes. In particular,
in calculating inductive disturbances in neighboring transmission
systems at a considerable distance it may lead to large errors.

The discussion given above is based in part on a mathematical
analysis of simple representative systems, in part on inferences from
physical considerations. Unfortunately a direct frontal attack and
rigorous solution of the general problem appears impossible. For
example, in addition to finding the infinitely many modes of propaga-
tion the corresponding infinitely many complementary waves must
be so chosen as to satisfy the boundary conditions at the physical
terminals. In the classical theory these boundary conditions are
simply the continuity of currents and potentials; in the rigorous
formulation of the problem they are the continuity of E,, E,, H,, H,
throughout the entire boundary plane (x = 0). Even to formulate
these conditions involves specifying the impressed field throughout
the plane and this is never given explicitly in technical transmission
problems. While, therefore, the theory sketched above leads to
inferences and conclusions of importance, the writer is convinced
that some more powerful and indirect mode of attack on the problem
must be devised; a rather hopeful possibility along this line will be
briefly described.
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As stated above, it is a reasonable inference from the general theory,
that the complementary waves modify the current and charge waves
appreciably only in the immediate neighborhood of the physical
terminals, at least in most actual transmission systems. The essence
of the method to be described consists of taking advantage of this
fact and directly calculating the fields of the principal current and
charge waves by means of their retarded potentials,® instead of em-
ploying for calculations the principal wave fields as given by the
solution of the wave equation. This will now be explained in more
detail.

In any transmission system energized by impressed forces introduced
through terminal networks, the electromagnetic field may be analyzed
as follows: (1) the impressed field, (2) the field of the terminal currents
and charges, and (3) the field of the line currents and charges proper.
The impressed field may be supposed to be concentrated in the
terminal network, and the field of the terminal currents and charges
may be supposed to be relatively unimportant except in the neigh-
borhood of the terminals; what we are essentially concerned with is
the field of the line currents and charges. Now let us suppose that
we have calculated the principal wave in the system in the usual
manner; corresponding to the resulting current and charge distribu-
tion, there will then be an unique corresponding field distribution
determined by the solution of the wave equation, and this field is
propagated in precisely the same way as the currents. But now
suppose that we calculate the field of this current and charge distribu-
tion directly by means of their retarded potentials. We will find
that the field so calculated is analyzable into two components: (1)
a field identical with that given by the solution of the wave equation,
and propagated in the same manner as the currents and charges, and
(2) an additional field propagated in an entirely different way and for
systems of small dissipation much more rapidly attenuated at least
in the neighborhood of the conductors. We find further that the field
of the principal current and charge wave does not correctly satisfy
the boundary conditions at the surfaces of the conductors, which
indicates that there must exist a compensating current and charge
distribution. However, it appears that this compensating distribution
will be relatively small and concentrated in the neighborhood of the
terminals, so that we infer that its field, as calculated from its retarded
potentials, can be ignored. Under such circumstances the inductive
field (and the radiation field) is calculable by means of the retarded
potentials in terms of the principal wave of current and charge alone.

¢ See reference (7).
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To recapitulate this mode of attack, first determine the distribution
of line currents and charges by means of elementary theory; that is,
determine the principal wave distribution of currents and charges.
Secondly, calculate the field of this current and charge distribution
by means of the retarded potentials. This will give in addition to
the field calculable from elementary theory an additional field the
existence of which is not recognized by elementary theory. In brief,
this mode of attack is based on the argument that the actual distribu-
tion of current and charge in the system is given with sufficient accu-
racy by elementary theory, but that in calculating the field at a
distance, corrections must be introduced.

As might be expected this mode of attack presents formidable
difficulties particularly when the ground plays an important réle in
the transmission phenomena. On the other hand, the analysis of a
few of the simplest cases has been quite encouraging and leads one to
hope that the method may at least be successfully applied to calculating
the orders of magnitude of corrections which must be introduced in
such important problems as, for example, inductive disturbances, in
neighboring transmission systems.

The foregoing may appear to many as highly academic and the-
oretical. The writer's actual experience with practical transmission
problems has convinced him, however, that the extension of wire
transmission theory along the lines indicated above is urgently needed.
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APPENDIX

The mode of attack outlined in the latter part of the text will be
illustrated by an application to the simplest possible case.

Let the transmission system consist of a wire of radius a whose
axis coincides with the X axis, and a coaxial cylinder of internal
radius b. Both conductors are supposed to be perfectly conducting,
while the dielectric in the space between (a = p = b) is supposed to
be perfect. For this system we know that the principal wave is
transmitted without attenuation with the velocity of light ¢; that is
to say, v = iw/c, where « is 2r times the frequency.

We suppose that the system extends for an indefinite distance along
the positive X axis so that reflected waves are absent. The principal
current and charge waves are then:

I= Ige‘“’”, Q = Qoe—iﬂz' (la)

where 8 denotes w/c, and i = V— 1. From the relation

SR
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it follows that
Q=1 (2a)

Now by definition the retarded potentials are

b= f %e"""dﬂ (Scalar),
A= f 1: —ifrdy  (Vector),

where ¢ and u denote the charge and vector current density respec-
tively, 7 is the distance between the contributing element dv and the
point at which the potential is to be calculated, and the integration
is extended over the entire system of currents and charges. In terms
of the retarded potentials the magnetic and electric intensities E and

H are given by
H=curl 4,

E = — grad ® — ipA.

(3a)
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To formulate the retarded potentials of the system under consideration
we have recourse to the Sommerfeld integral

e—ifr A

AE___JSZ

= f Ju(ﬂ?\)e*lrfz’:\fo\ﬂ—.ﬂﬂ’ , (4a)
0

where p = \’yﬂ + 22 and J,is the Bessel function in the usual notation.

Applying this integral to the system of currents and charges under
consideration, and remembering that they are surface currents and
charges at p = a and p = b respectively, we get without difficulty,
for x = 0,

* = AA
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which reduces to
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Since the currents are entirely axial, we have also 4, = 4, = 0, and
from (2a)

A, = @ (7a)

The first integral in & represents a potential wave propagated
along the X axis in precisely the same way as the current and charge;
it will therefore be termed the homogeneous potential wave. We find
further that the field derivable from the homogeneous potentials is
precisely the principal wave field, as given by the particular solution
of Maxwell's equation, corresponding to v = 8.

The second integral in @ represents a potential wave propagated
in an entirely different manner, and dying away for sufficiently large
values of x. The corresponding field may be called, for want of a
better term, the heterogeneous field, since its mode of propagation is
quite different from that of the current and charge. It is this field
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which represents the correction which must be added to the field of
elementary theory.

It is beyond the scope of this brief appendix to discuss this solution
in detail. It may be said, however, that, while the integrals repre-
senting the heterogeneous field can not be solved in finite terms, their
properties can be approximately and qualitatively deduced without
much difficulty.

One point of interest may be noted; the homogeneous wave is plane,
that is, the axial electric intensity is everywhere zero. If weapply to
the preceding formulas the relation

i) .
EI—— —-B_DE‘IJ—?"BA:

we get, for the heterogeneous field,

AN
=~ 0 [ HRL00) = T e T e

The integral term in this expression is simply the retarded potential
of a ring of point sources located on the circle x = 0, p = @ minus the
retarded potential of a corresponding ring of point charges located on
the circle x = 0, p = b. Since this field does not vanish at the con-
ductor surfaces p = a and p = b, it is clear that a compensating charge
and current distribution must exist.



