Contemporary Advances in Physics. XIV. Introduction
to Wave-Mechanics

By KARL K. DARROW

IN a period when a limited domain of physical phenomena is exciting
wide fervent interest and commanding intensive study, and con-
tinues for years to monopolize the attention of many brilliant theorists,
sometimes it is the fortune of an ingenious mind to express or interpret
or picture the already-discovered laws in a new way which makes so
greatly favourable an impression, that in a moment it sweeps its rivals
from the field. The new theory may not lead to more or better agree-
ments with experience than did its predecessors; it need not make
predictions which they were incapable of making; its mathematical
processes may be identical with theirs, the old symbols reappearing
with new names in the old equations. Contrariwise it may be born
well endowed with these advantages which normally decide the contest
between old theories and new, yet owe its victory not to them at all.
It triumphs because it seems natural or sensible or reasonable or elegant
or beautiful—words said of a theory which fulfils some deep-seated de-
mand or evades some deep-rooted prejudice in the minds of its judges.
Later its vogue may pass, not through the disclosure of any intrinsic
defect, but because the physicists of the rising generation do not share
the prejudices and the predilections of those who first applauded it.
The kinetic theory of gases was welcomed by a generation which wished
to believe in atoms; the electromagnetic theory by people prejudiced
against the notion of action at a distance; the quantum-theory has
always had to do battle against those who yearn for continuity in
their images of Nature, and the theory to which these pages are devoted
has captivated the world of physics in a few brief months because it
seems to promise a fulfilment of that long-baffled and insuppressible
desire.

Wave-mechanics being a new way of interpreting a vast field of
well-known phenomena, it is unnecessary as indeed it would be
impossible for me to recite in this place everything which the new
theory is meant to explain. A few years hence, indeed, we may rec-
ognize in certain phenomena only newly or not yet discovered the
securest basis for the new conceptions; but for the present, any ade-
quate description of the facts on which Bohr's atom-model is based is
nearly sufficient. I will recall only that the cardinal and dominant
facts of the field which is the hunting-ground of the present generation
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of theorists are these: atoms exist in Stationary States—they emit or
absorb radiation in passing from one of these States to another—the
frequency of the radiation is proportional to the energy-difference
between the two States from one to the other of which the atom
passes. Moreover, for certain kinds of atoms and molecules there
are empirical formule which express known interrelations among the
energy-values of the various Stationary States. These in brief are
the major facts to be explained.

Bohr proved that the energy-values of the Stationary States of the
hydrogen atom could be reproduced by affirming, first, that the atom
consists of an electron and a nucleus of known masses and equal and
opposite known charges; second, that these revolve around their
common centre of mass according to the classical laws of mechanics
and without radiating energy; fhird, that among all the conceivable
orbits which such particles might describe there are certain ellipses,
distinguished by certain especial and peculiar features, which alone
the particles are permitted to choose—to each “permitted’ ellipse
there corresponds a Stationary State, and each Stationary State may
be visualized as a permitted ellipse.

The first of these assumptions has never since departed from the
physicists' world-pictures. In wave-mechanics it is still implicit,
though easily overlooked. The second and third have not so firm a
foothold. As I have elsewhere remarked, they are and always will
be as good as they ever really were. If we make the first two of Bohr's
assumptions, then it follows as a matter of course that whichever
Stationary State of the hydrogen atom we may wish to consider or may
hereafter discover, we shall always be able to find an elliptic orbit with
the proper energy-value to serve as its picture. Yet thisaloneis notan
important fact; the serious question is, whether the family of all per-
mitted elliptic orbits is set apart from the vast multitude of forbidden
ones by some simple and striking distinction which they all share and
none of the rest possesses, whether they rejoice in some intrinsic patent
of aristocracy. At first it seemed so; now, however, it turns out that
the distinctive feature which originally was supposed to ennoble just the
orbits required to account for the Stationary States, and no others,
is not perfectly suited to every case. This weakened the prestige of
the elliptic orbits; and though the introduction of the Spinning
Electron has done much to save the situation, it has not done enough
to preserve them from the crescent disparagement of those who never
really liked them.

With other atoms and with molecules, the situation is much the
same. Bohr and his successors visualized atoms as groups of electrons
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surrounding nuclei; diatomic molecules, as paired nuclei surrounded
by their jointly shared electron-family, capable of revolving like a
dumbbell around their centre of mass and of vibrating like the two
ends of a spring along their line of centres. These pictures persist in
wave-mechanics; but the permitted vibration-amplitudes, the per-
mitted rotation-speeds, and the permitted electron-orbits adduced to
symbolize the Stationary States languish for the moment in the same
discredit as the permitted elliptic orbits of the hydrogen atom.

Meanwhile, the humiliation of the electron-orbits accentuates the
grave defect of the original atom-model of Bohr. That model offered
nothing to interpret the fact that when an atom passes between two
Stationary States of energy-values (let me say) E; and E;, it emits (or
absorbs) radiation of the precise frequency (E; — E;)/h, the quotient
of the energy-difference by the notorious constant of Planck. Neither
in the initial State nor in the final State are the constituent parts of
the atom-model vibrating with this frequency (except in occasional
untypical cases). The frequencies of the waves streaming out from
the atom do not agree with the frequencies of the motions assumed
to exist inside the atom—a very uncomfortable idea, altogether dis-
cordant with all our experience of sound and electrical circuits.

If it should be found possible to incorporate into the atom-model
something vibratory, having for its vibration-frequency the quotient
of the energy-value of the then-existing Stationary State by Planck's
constant: then in the foregoing case this ‘‘something” would be
vibrating initially with frequency Ei/k and finally with frequency
E;/h, and the frequency of the emitted radiation would be the hetero-
dyne or beat-frequency of these two. This is an agreeable idea; and
wave-mechanics offers it. If then it should be found possible to
arrive at the energy-values of the Stationary States by imposing
conditions upon this vibrating entity instead of the electron-orbits,
we should achieve as much as the electron-orbits enable us to achieve,
and have the foregoing advantage also, and perhaps others as well,
This is what wave-mechanics promises.

To this introduction I wish to join two warnings before plunging
into the exposition. In the first place, wave-mechanics has several
aspects, and may be approached from several directions; the one which
I have chosen for this article is not the one which de Broglie elected
nor the one which Schroedinger prefers.! In the second place, wave-

1] suspect that the method of exposition which I shall follow is the one which
Schroedinger meant when he wrote “'I had originally the intention of establishing
the new formulation of the quantum-conditions in this more visualizable (anschaulich)

way, but preferred a neutral mathematical form, because it makes the essence
clearer.”” Schroedinger himsell stresses the formal likeness between ordinary me-
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mechanics is yet incomplete. It has been applied with success to many
problems, but there are situations—those involving the Spinning
Electron, for instance—in which the way to apply it is not yet clear, and
many theorists are groping. The new theory is still plastic; many
minds, perhaps the hands of many experimenters, have yet to work
upon it before it is molded into its final shape.

CLASSICAL MECHANICS AND WAVE-MECHANICS

The underlying principles of ‘“‘classical”’ or “ Newtonian” mechanics
may be stated in several alternative ways, each of which is especially
well adapted to certain particular classes of problems. The most
familiar of the statements is Newton's own. Unfortunately, it is
another and less current which is the most expedient for the problems
with which we have to deal. This formulation I will derive from
Newton's, by imagining a particular extremely simple mechanical
system and using Cartesian coordinates.

Conceive then a particle of mass m and charge ¢, moving in an
electrostatic field of which the potential is a function U(x, y, 5) of
the coordinates.? Its momentum is a vector of which the components
are ma, my, mz. These are called the momenta with respect to the
coordinates x, y, 5, and are designated by sz, p,, .. The force upon
the particle is the negative of the product of e into the gradient of the
potential, a vector of which the components are dU/dx, dU/dy, dU/ds.

Newton’s way of stating the underlying principles of mechanics
then gives:

dpsldt = p, = — edUldx; P, = — edUldy, p.= —edUldz. (1)

Multiplying the members of these three equations by &, y and 2
respectively, and adding, we find:

g1

dU dx . dU dy dUdz) (;)
a2 :
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On the left we have the rate of change of the kinetic energy T of the
particle as it travels along its path. To interpret the right-hand

chanics and geometrical optics on the one hand and wave-mechanics and diffraction-
theary on the other. I have not yet found this comparison helpful, and therefore
cannot present it in a convincing manner.

I wish to acknowledge the valuable assistance of my colleague Mr. L. A. MacColl
in preparing the mathematical portions of this paper.

2 The reader will doubtless recognize that I am leading up to the case of the
electron traveling in the field of a nucleus; I must therefore recall that in the case
of the electron the charge e is intrinsically negative, and that according to the
classical electromagnetic theory equation (1) should contain a term describing the
reaction of the emitted radiation upon the electron—a term which is omitted in all
contemporary atomic theories.
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member, introduce a symbol V to designate the value of U at the
locality where at any moment the particle actually is, multiplied by
+ e; this is the potential-energy-function of the particle, and the
right-hand member of (2) is its rate of change. Therefore:

Il

d

T + V = constant = E. (3)

The constant E is (by definition) the energy. As the behavior of the
particle depends upon the field, the ensemble of particle and field
should be considered as one entity, the system, of which kinetic energy
T and potential-energy-function V" and total energy E are properties.

To bring out the next feature, I take the still more specific case of a
particle of charge ¢ and mass m moving in the inverse-square central
field of a “nucleus,” an immobile point-charge equal in magnitude and
opposite in sign to the electron-charge. Using Cartesian coordinates
with the origin at the nucleus, we have V = — e®/Vx? + 3? + z2;
using polar coordinates,® we have V = — ¢*/r. It is obvious that
polar coordinates permit a much simpler expression for ¥ than do
Cartesians; on the other hand, they entail a distinctly more com-
plicated expression for 7. ‘The proper choice of coordinates is often
a vital question. For a few paragraphs I will carry along the reasoning
in both coordinate-systems. The underlying equation (3) becomes,
in the one and in the other:

Im(@ + gt + &) — Ny 8 = E (4a)
Im(i® + r°6° + 1 sin? 0- &) — e*/r = E. (4b)

In these equations, we have the potential-energy-function expressed
as a function of the coordinates (x, y, s or r, 8, ¢) and the kinetic energy
expressed in terms of the coordinates and the velocities (&, 3, 2 or 7, 65.
¢). It is desirable to express the kinetic energy in terms of the co-
ordinates and the momenta. We have already met the momenta in
Cartesian coordinates, the quantities m, my, mz. It is obvious that
they are the derivatives of the expression for the kinetic energy with
respect to the velocities, always in Cartesian coordinates:

p: = dT/di;  p, = dT]dy;  p. = dT/ds. (5)

The momenta in any other coordinate-system are defined in the same

3The equations of transformation are: x = rsinfcos¢, y = rsin@sin ¢,
2 = rcosé.
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way; first the kinetic energy is expressed as a function of the velocities,

then differentiated with respect to these. In polar coordinates
pr = dT/di = mi; P = dT/dé = mr6; ©)
po = dT/de = mr?sin® §- o.

Expressing in the equations (4a) and (4b) the kinetic energy in terms
of the coordinates and momenta, we have

ﬁ— (b + p* + p2) — [N + 37 + 28 = E, (7a)
1 2 1 2 1 2 2 - E 7b
m Pr+;§158 +;'2*E]2—@‘P¢ — ¢e¥r = E. (7b)

Whenever in any problem the kinetic energy and the potential energy
of the system are given as functions of coordinates and momenta, the
problem is prepared for treatment by the methods of classical mechanics.

To make the next step, we consider the function L = 7" — V, the
difference between the kinetic energy and the potential-energy-function
of the particle, a function of the particle as it travels along its path

in the force-field:
L=T-V=2T—-E (8)

and the time-integral of this function
W = fLdt = f2Tdt — EL )
Into the expression for W, insert explicitly the expression for kinetic
energy in Cartesian or in polar (or in any other) coordinates:
W = mJS (@ + §* + #)dt — Et = m S (ddx + ydy + zdz) — El, (10a)
W = mJ (it + r'é + r* sin® 6- @)dt — EL . (10b)
= m S (idr + 126d0 + r* sin® 0- ed ) — Et.

From all of this it follows that

P = dW/dx, by = dW/dy, b = dW/ds, (11a)

pr = dW/dr, be = dW/d®, pe = dW/de, (11b)

and in general, the momenta belonging to any coordinate-system are the
derivatives of the function W with respect to the coordinates.

Into the fundamental equation (7a) substitute these expressions
for the momenta, and obtain:

L[(aW)ﬂJr(aW)?Jr(?LV)’] Ve =E  (12)

2m x W dz
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or, seeing that the quantity (aW/ax): + (8W/ay)2 + (W /ds)? is the
magnitude |VIW| of the gradient of the function W, the gradient of
a function being a vector well known in vector-analysis and denoted
by prefixing the sign V or the abbreviation grad to the symbol of the

function:
VW |2 = 2m(E — V). (13)

This equation governs the space-derivatives of the function W;
it is complemented by the equation derived from (9) which governs
the time-derivative of W:

aW/at = — E. (13a)

At this point the procedure of classical mechanics and the procedure
of wave-mechanics diverge from one another.

Were we to follow the classical procedure, we should perform certain
integrations and other processes, and arrive in the end at equations
describing trajectories or orbits—in the particular case of an inverse-
square central force-field, at equations describing elliptical orbits.
The particular elliptical orbit to which the reasoning would conduct
us would be determined by the value which had originally been assigned
to the energy E, and the values which we attributed to the various
constants of integration supervening in the course of the working-out.
The function W, having served its purpose, would have vanished from
the scene, leaving with us the electron swinging in its orbit within
the atom or the planet in its orbit across the heavens.

The procedure of wave-mechanics, however, is based upon the
observation that the equations (13) and (13a) together are the descrip-
ton of a family of wave-fronts, traveling with the speed E/N2m(E — V)
through space.

To display this aspect of the equation, let it be supposed at some
prescribed time-instant #y the function W has a certain prescribed
constant value W, at every point of a surface Sy; for instance, that
at time f, = 1 it is equal to unity all over the sphere of unit radius
centered at the origin. It is to be shown that at a slightly later
instant {p -+ dt there is again a surface everywhere over which the value
of Wis Wy, this not however being the same surface .Sy, but another—
a surface S) so placed that from any point P, on Sy the shortest line to
51 is perpendicular to Sp and its length is (E/V2m(E — V)dt).

This is easily shown. Imagine a vehicle * which at the instant #

4 T use this word instead of ‘‘ particle” lest this entity be confused with the moving
electron to which the foregoing equations relate. The electron does travel along
a curve normal to the surfaces of constant W, not however with the speed u about

to be defined, but with a different speed related to « in a curious and significant way
(cf. the allusion on p. 695).
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is traveling through P,, along the line normal to Sy, with a speed
to be designated by . At the instant #, 4 df it occupies a locality
where the value of W is given by the formula:

Wo 4 dW T

= Wo+ u|VW|dt — Edl, (14)

W, + |V W|ds + (‘”’V)d.z

for in the time-interval dt¢ it travels over a distance ds = udt along
the normal to the surface Sy, and along this normal the slope of the
function W is equal to | VW], and meanwhile at each point of space W
is varying directly with time by virtue of the term — Ef occurring in
the equation (9) which defines it. Now if the imaginary vehicle
happens to be moving with just the speed defined by the equation

u=ENW = E/\2m(E — V), (15)

the coefficient of d¢ in equation (14) vanishes; that is, the vehicle as
it moves outward keeps up with the prescribed value of W; but this
is the same thing as saying that the value given for u in (15) is the
speed of the wave-front.

At this (if not an earlier) stage of the argument, one begins to
wonder what W ‘‘really is"; one turns back to seek the original defi-
nition of this artfully constructed function, so suddenly advanced from
an auxiliary to the central role of the theory; one tries to grasp it,
to form an image of it. I can do little to satisfy this very human
craving. I can point out that W is that quantity “action” with
which the Principle of Least Action has to do; this feature scarcely
makes it more conceivable, but at least enhances its prestige. I can
point out that since no one has ever seen what moves or is inside an
atom, the conception of waves in an intangible medium curling and
flowing around a centre is no more far-fetched than the conception
of intangible particles sailing in ellipses around a nucleus. (To this
one can reply that the planets in their courses supply a visible analogue
for the notion of revolving electrons, but no one has seen in the sky
the wave-fronts of the function W.) I can point out that for some
important purposes, notably the prediction of the Stationary States,
it makes no difference what the function W ‘‘really is’’—no more
difference than it makes to the solver of a quadratic equation whether
the variable be called x or ¢, whether in the mind of the propounder
of the equation it stood for distance or for time. One might in fact
begin with the forthcoming equation (20) as foundation, laying it
down without introduction or apology; yet there must be deep-lying
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interconnections between the classical mechanics and the new, which
such a procedure might mask. I can refer the reader to Schroedinger’s
own attempts to interpret W, some of which will figure in the last
section of this article; or I can invite him to grow his own conception
of W. This last in fact is what I will do.

Now if it is proposed to regard the fundamental dynamical equation
(13) as the description of a family of wave-fronts perpetually wandering
through space with the speed E/v2m(E — V)—and this is precisely
what is proposed—then the description is obviously incomplete; for
it omits to state the wave-length of these waves or the frequency of
whatever be the vibrating thing which manifests itself by the waves,
and indeed if the frequency were separately stated there would be no
place for it in such an equation as (13). That equation, in fact, may
be compared with the bare statement that the ripples traveling over
the water of a pond from the place where a stone fell in are circles
expanding at a given speed, or that the sound-waves proceeding
through air from a distant source are plane waves traveling about
340 metres per second. To describe the ripples or the sound-waves
completely it is essential to discover some ampler equation; a like
extension is necessary here.

In treating familiar vibrating mechanical systems, stretched strings
and tensed membranes and the like, it is customary to employ the
general Wave-Equation

+ = V¥ = — (16)

o (EY L2 I A
dx? = dy* = dg? dr

in which V* stands for the Laplacian differential operator (page 671);
¥ stands for the sidewise displacement of the string or distortion of
the membrane or whatever it is that is transmitted as a wave; and
u for the speed of propagation of the wave. It is furthermore cus-
tomary to supplement this by the equation

EV/dR = — AxBA, (17)

in which » stands for the frequency of the vibration; combining
which with (16), one obtains
42p?

VA R = VA A

2
\I:Evzqf+4—;’2—~1r=0, (18)

in which X = u/v stands for the wave-length of the wave-motion.
All of these matters will be developed at length in the following
section. At this point it is necessary only to return to the description
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of the wave-motion partially but only partially described by (13),
and complete it by the assertion—not an inevitable nor a self-evident
assumption, but an original and daring hypothesis—that it is indeed a
wave-motion endowed with a frequency, and this the frequency

v = Efh. (19)

This manner of introducing into every mechanical system a
vibration-frequency linked with its energy by the vital quantum-
relation (19) was the invention of Louis de Broglie.

The wave-equation to which this hypothesis leads us then is:

2
vy 4 8’;;2’” (E — V)¥ = 0. (20)

This is a particular form of the wave-equation of de Broglie and
Schroedinger. It is the form which I will use throughout this article,
for it is adequate to the first steps in the processes of atom-design—
adequate, for instance, to supply a theory of the major features of the
spectrum of atomic hydrogen, though not of its fine-structure; ade-
quate also to interpret the data of the experiment of Davisson and
Germer, and sufficient for an introduction to the ways of thinking
which constitute wave-mechanics. Nevertheless it is certainly not
the general wave-equation, for it is subject to at least two limitations.

The first of these is, that equation (20) is based upon Newtonian,
not upon relativistic mechanics. We should therefore expect it to be
valid only for slow-moving particles, to be the limiting form of a
relativistic wave-equation appropriate to all velocities. Such an
equation, indeed, was the first propounded by de Broglie. The past
history of atomic theory suggests that we should need it when em-
barking upon the enterprise of explaining the fine-structure of the
hydrogen spectrum. The latest developments in that history, how-
ever, indicate that the mere replacement of equation (20) by its
relativistic analogue would not suffice for that enterprise; due allow-
ance must be made in addition for the “spin’’ of the electron.® Wave-
mechanics being yet too young to have furnished an answer to this
twofold problem, the relativistic equation still wants what may in
the end turn out to be its main experimental support. Yet it can
scarcely be doubted that relativity must figure in the general wave-
equation.

The second limitation upon equation (20) is due to its origin in

b For the application of the relativistic equation to the hydrogen atom without
allowance for the spinning electron, see V. Fock, Zs. f. Phys., 38, pp. 262-269 (1926).
See also the first footnote on p. 688.
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equation (13), and to a peculiar feature of that equation—to the fact
that in it the magnitude of the gradient of W stands equated to a
function of the coordinates. This indeed is the feature which rendered
it possible to imagine flowing waves. Now this feature occurs because
the system to which equation (13) relates—the particle voyaging in a
force-field—has a kinetic-energy-function which is the sum of the squares
of the momenta (multiplied by a constant). Had we presupposed a
system possessing a kinetic-energy-function not capable of being so
expressed—two particles of different masses voyaging in a force-field,
or a rigid rotating body of irregular shape, for example—the equation
which we should have obtained in lieu of (13) would not have had the
peculiar feature aforesaid; the wave-picture would not have offered
itself, much less the equation (20) which was superposed upon the
wave-picture. It is precisely at this obstacle that the mode of thought
known as non-Euclidean geometry proves itself useful. It proposes
equations of a general type, which can be written down for every
system of which the kinetic-energy-function is preassigned, and which
for the single particle floating in a force-field become the equation
(13) and (20). In the language of non-Euclidean geometry, even the
words and the symbols for wave and wave-speed and gradient and
Laplacian are preserved; but whether they are advantageous to any-
one not already versed in this subject may well be doubted. Suffice it
to say, that non-Euclidean geometry provides a general equation ®
of which (20) is a special case, and that the general equation has
already justified its existence by its successes in dealing with certain
atom-models and molecule-models such as the rigid rotator used in
the study of band-spectra. But the question as to what the waves
“really are’’ becomes in these cases all the darker and more perplexing.

One further step, and we attain to the idea on which the calculation
of the energy-values of the Stationary States reposes.

It is very well known that a medium capable of transmitting waves,
and bounded in certain ways, may develop what are variously known
as standing waves—stationary wave-patterns—the phenomena of
resonance. Air enclosed in a box, a string pinched at the ends, a
membrane clamped around its circumference, the mobile electricity in

¢ Let the kinetic-energy-function of the system, expressed in terms of the co-
ordinates and velocities, be written

T = ZZ Qiididi
ij
and let A stand for the Laplacian operator in the non-Euclidean configuration-space
of which the metric is ds* = £ZQ:;dgidg;; then the general wave-equation of de Broglie

and Schroedinger is:
Ay + 8x%(E — V)¢ = 0.
43
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a tuned circuit—each of these vibrates in a wave-pattern of “nodes”
and ‘“loops” if the frequency of vibration imposed upon it conforms to
one of its own ‘“‘natural frequencies” or ‘‘resonance frequencies.”
To each of these natural frequencies corresponds a particular pattern
of loops and nodes; when one of them is impressed upon the medium,
its corresponding wave-pattern springs into existence, and would con-
tinue forever were it not for friction internal or external. When any
frequency not agreeing with one of the resonances is imposed upon the
bounded medium, the resulting motion is very much more compli-
cated. The calculation of these natural frequencies, the mapping
of these vibration-patterns, is performed by using the methods of one
of the great divisions of mathematical physics—the methods under-
lying the Theory of Acoustics.

May the Stationary States, then, of a natural atomic system be
visualized as stationary wave-patterns such as these, and their energy-
values as the products of the natural frequencies by the constant of
Planck? Are the problems of atomic theory to be solved by devising
atom-models imitated after familiar resonant bodies or tuned circuits,
and applying to these “‘acoustic models’ the mathematical technique
of the Theory of Acoustics? This idea was developed by E. Schroe-
dinger.”

FAMILIAR EXAMPLES OF STATIONARY WAVE-PATTERNS

To display the laws governing wave-patterns, I will develop three
examples: the stretched string, the tensed membrane, the ball of
fluid confined in a spherical shell. The first of these is the simplest
and most familiar of all instances; excursions into the theory of
vibrating systems commence always at the wire of the piano and the
string of the violin. Physically, this is a case of one dimension (dis-
tance, measured along the length of the string); mathematically, it is
a case of two variables (that distance, and the time). The example
of the tensed membrane is not unfamiliar in the practice of telephony,
though many of the diaphragms of actual instruments are too thick
to be considered such; for a membrane is, by definition, infinitely thin.
It is a case of two dimensions and three variables. It will reveal to
us the desirability of choosing for each specific problem its appropriate
set of coordinates; and we shall observe what happens when one of
the chosen coordinates is cyclic, being an angle which for all practical
purposes returns to its original value when increased by 2r; and we

7 Since the present article is based henceforth chiefly on Schroedinger’s publica-
tions, I wish to make particular reference here to works embodying de Broglie's
contributions: his own Ondes et mouvements (Paris, Gauthier-Villars, 1926) and
article in Jour. de Phys. (6), 7, pp. 321-337 (1926); L. Brillouin, ibid., pp. 353-368.
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shall encounter functions not so widely known as the simple sine and
cosine which suffice for the case of the stretched string. The little-
known example of the ball of fluid, with its three dimensions and four
variables, will repeat these lessons, and will serve as the final stepping-
stone to the wave-motions imagined by de Broglie and by Schroedinger.
To proceed to these, it will suffice to imagine strings and fluids not
uniform like those of the simple theory of vibrating systems and sound,
but varying from point to point in a curious and artificial way.

Example of the Stretched Siring

Imagine a stretched string, infinitely long, extended along the
x-axis of a system of coordinates. Designate the tension in the string
by 7, the (linear) density of the string by p. To derive the differential
equation governing the motion, conceive the
string as a succession of short straight seg-
ments (Figure 1). Each segment exerts upon
its neighbors a force, which is the tension in
the string. When the string lies straight
along the axis of x, each segment lies in equi-
librium between the equal and opposite forces
which its neighbors exert upon it. When how-
ever the string is drawn sidewise (remaining, Fig. 1
we shall suppose, in the xy-plane) the neigh-
bors of each segment are oblique to it and to one another, the forces
which they exert upon it have components along the y-direction.
These components are in general unequal, and their algebraic sum
is a force urging the segment along the y-direction. Denote by dx
the length of such a segment, by v its lateral displacement, by 8 the
angle between it and the axis of x; so that dy/dx = tan 6, and pdx
stands for the mass of the segment. The resultant force upon the
segment is given by:

F

T[sin (# + df) — sin 6] = I tan (8 4+ d6) — tan 8]
= T-d(tan 8/dx)dx = T(d*y/dx*)dx (101)

to the degree of approximation to which the difference between sin
and tan § may be neglected.®
Equating this to the product of mass by acceleration, we obtain:

pd2y/di = T(dy]dx?) (102)

8 This is the degree of approximation all but universal in the theory of vibrating
systems and sound. The conclusions from this theory are therefore strictly valid
only in the limit of infinitesimal displacements or distortions.
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or using dots to symbolize differentiation with respect to time, and
dashes to represent differentiation with respect to space:

i = ~NT/p-y". (103)

This equation, a linear combination of a second derivative with
respect to time and a second derivative with respect to space, is the
first and simplest of our wave-equations.

It is called a wave-equation, because it may represent—it does not
necessarily represent, but it may—a shape or a figure or a distortion
of the string (whichever one may choose to call it) which travels con-
tinually and indefinitely along the string with a constant speed.

To illustrate this possibility, let us suppose that at the time { = 0
the string is distorted into a sinusoidal curve described by the equation:

y=Asinmx at t=0 (104)

and that its points are moving parallel to the y-axis with speeds
described by the equation:

7 =nd cosmx at (= 0. (105)

At any other moment #, the configuration of the string is described by
the equations:

y = A sin (at + mx), 3 = nd cos (nt + mx), (106)

for these satisfy the differential equation which underlies the whole
theory, and they satisfy also the "initial conditions’ specified by
(104) and (105). They satisfy these equations, that is to say, provided
that a certain relation is fulfilled among the constants # and m, and
the quantities 7" and p which describe the physical nature of the
stretched string; this relation being:

nim = NT/p. (107)

If this relation is fulfilled, the condition of the string throughout all
time is described by the equations (106).

Examining these equations, we perceive that they signify that the
values of displacement and speed, which at the time ¢ = 0 existed at
any point xo on the string, are at any other time / to be found at the
point x; = xo — (n/m)t. These values are moving steadily along the
string; the whole configuration of the string, its sinusoidal shape and
its transverse velocities, is slipping steadily lengthwise in the direction
of decreasing x—the shape of the string is being transmitted as a
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wave, with the ratio of the constants #/m for its speed of propagation #:
w=mn/m= NT/p. (108)

This result justifies the title wave-equation for the differential equation
(103), and the meaning speed of propagation for its coefficient NT/p.

The reader will scarcely have failed to notice, however, that the
result was obtained only by prescribing very sharply defined physical
conditions. The string was supposed infinitely long; it was supposed
distorted into the form of a sine-wave; the transverse speeds of its
successive particles at the instant / = 0 were preassigned as rigorously
as their positions. Were we to alter this last specification, we should
arrive at very different results. If for instance we should make the
assumption that at ¢t = 0 the string is distorted into a sine-wave and
is stationary, the equations (106} would not be adequate to describe
what happens. We should then be forced to have recourse to a
more general solution of the differential equation:

y = Csin (nt + mx) + D sin (nt — mx) (109)

and to adjust the constants C and D so as to conform to the newly
prescribed initial conditions, which are:

v = A sin my, y=0 at =0. (110)

The adjustment is attained by making € = D = 34, whereupon we
getl:
v = A sin nt cos mx, (111)

an equation which describes not a wave advancing perpetually along
the string, but a stationary oscillation with nodes and loops of vibra-
tion, like those which a violin-string properly bowed exhibits, those in
the air-column of Kundt's tube which the hillocks of dust reveal.
One would hardly detect by instinct in this stationary wave-pattern
the superposition of two oppositely gliding wave-trains each traveling
with the speed u = n/m = VT/p. Yet the one is always equivalent
to the other, and in the equation (111), the coefficients # and m are
linked to one another through the wave-speed characterizing the string,
and the equation may be written

v = A sin umt cos mx, = \1/p. (112)

Although the tension and the density of the string thus determine
n when m is preassigned (or vice versa), nothing so far brought upon
the scene compels any limitations upon the coefficient m. The infi-
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nitely long wire can sustain vibrations of any wave-length, or vibrations
of two or any number of wave-lengths simultaneously, with any inter-
relation whatever among their several amplitudes and phases. On this
fact rests our freedom to impose any initial conditions whatsoever
on such a wire (subject to the usual restrictions of continuity and
finiteness). For, if it be demanded that at ¢ = 0 the displacement ¥y
shall vary along the wire according to any totally arbitrary function
f(x), and the transverse speed v according to any totally arbitrary
function g{x), then we have only to expand these functions f and g
into Fourier series, or if need be, Fourier integrals:; and each term in
such an expansion corresponds to such a solution as (109), with a
specific value of m and such specific values of C and D as the initial
conditions require; and the configuration of the wire forever before
and after is described by the sum of all these solutions. In such a case
we should not see an unchanging distortion of the wire slipping
steadily along its length with a constant speed, nor a stationary pattern
of nodes and loops. All the obvious features of wave-motions would
be blotted out; and yet the infinitely complicated and variable figure
of the string would be equivalent, in the last analysis, to a multitude
of sinusoidal wave-trains perpetually gliding to and fro with the
same uniform speed.

As soon, however, as we impose boundary-conditions, the vibrations
which the string can execute are severely restricted.

As a simple and familiar example of boundary-conditions, I will
assume that the string is clamped at the points x = 0 and x = L, and
concern mysell only with the finite length of string, L, comprised
between these two fixed extremities.

As a preparation for future developments, it is advisable to restate
the underlying differential equation, and solve it ab initio. We have:

y = ury", (113)
in which # stands for the speed of propagation of a sine-wave along

an infinite wire. We essay a tentative solution, in the form of a
product of a function of ¢ only by a function of x only:

y = g{#) f(x). ' (114)
The differential equation subjects the functions g and f to the condition:
Ff = glwg = — m?, (115)

for, since the first member of this triple equation does not depend on
¢, and the second does not depend on %, each of the two must be inde-
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pendent of both ¢ and x, and equal to a constant which (for the sake of
consistency with prior notation) I denote by — m?*.  Solutions of these
differential equations into which the underlying one was broken up
are these:

f = A cos mx + B sin mux, g = Ccosmut + D sin mut. (116)

So far, there is no limitation upon .
Now come the boundary-conditions, formulated thus:

f(0) = f(L) = 0. (117)

We have now encountered, in its simplest example, the peculiar and
characteristic problem of the Theory of Acoustics, which is also the
peculiar and characteristic problem of the type of Atomic Theory which
is inherent in wave-mechanics. This is not the question which we
meet in the theory of moving particles, where we are asked what path
a particle will follow through all future time if its position and velocity
at a single moment are given. A similar question will indeed presently
be asked and answered; but this peculiar problem intrudes itself at the
beginning.

To adjust the function f(x) to the boundary conditions, it is evident
that we must set 4 = 0 and sin mL = 0; therefore we must assume
that m has one of the values:

m = kx/L kE=1,2,34..., (118)

The boundary-condiiions have compelled the coefficient m to choose
among a rigidly defined series of values. The wave-lengths, and conse-
quently the frequencies, of the permitted vibrations are strictly deter-
mined.

The permitted values of m are known in German as the Eigenwerte
of the differential equation for the boundary-conditions in question.
The English term would be “‘characteristic values'; but it is long and
has many meanings, and I think it preferable to borrow the German
word as a foreshadowing of the application which Schroedinger has
made peculiarly his own. To each Eigenwert of m there corresponds a
value of the vibration-frequency #2i/2mr, which in German is called an
Eigenfreguenz; but here we may as well keep to the English term
natural frequency.

To each Eigenwert there corresponds a solution of the differential
equation, an Eigenfunktion. In the present instance the KEigen-
funktion corresponding to the Eigenwert m = kx/L is:

. kw . kmu . kmu
yk=51n1—x(CkC054L—t+Dk51nTt>' (119)
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It represents a sinusoidal stationary oscillation of the wire, with nodes
at the ends and at (¢ — 1) points spaced evenly between the ends—a
case not difficult to realize with a violin-string, if 2 be not too great.
The constants € and D specify the amplitude of the oscillation, and
its phase at any given instant.

It is of course not necessary that the motion of the wire should
conform to a single Figenfunktion. Any number of Eigenfunktionen,
corresponding to different permitted values of m—different integer
values of k—might coexist simultaneously, each with its particular
values of C; and D; the actual distortion of the wire would be the
superposition of all. It would in fact be necessary to adjust the initial
distoriion of the wire and the initial velocities of its points with infinite
accuracy, to cause its future motion to conform exactly to a single
Eigenfunktion. On the other hand, any choice whatever of initial
distortion and initial velocities would entail a future motion com-
pounded out of the various Figenfunktionen with suitable values of
Cr and Dy, which could be computed. This process corresponds to
that of determining the future orbit of a particle of which the position
and the velocity at a given instant are preassigned.® Both in acoustics
and in wave-mechanics it is, as a rule, much more laborious than the
determination of natural frequencies; and happily it is often less im-
portant, though not always to be neglected.

Example of the Tensed Membrane

The differential equation of the tensed membrane is:

dz  dz 1 d%

VEZ:&?" E:;Z=EEF' (120)
The coordinate-axes of x and y lie in the equilibrium plane of the
membrane, and z stands for the displacement of any point of the
membrane normally from this plane. The symbol # stands for the
speed of a sine-wave traveling in an infinite membrane of the same
tension T and surface-density p as the actual one, and is determined

by the equation:
u? = T/p, (121)

which is derived by an obvious extension of the method employed in
deriving the like equation for a stretched string. In an actual bounded
membrane the motion may be tremendously complicated, but it can

9 Inversely, the imposition of quantum-conditions upon orbits corresponds to the

determination of natural frequencies; here is the bridge _between the atom-models
with electron-orbits and the atom-models of wave-mechanics.
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be analyzed into a multitude of wave-trains traveling to and fro with
the speed .

The symbol V2 (to be read del or nabla-squared) stands for the
Laplacian operator which in rectangular coordinates is d*/dx®, or
(d*dx® + d*/dy*), or (d*/dx* + d*/dy* + d®/ds?), according as we are
dealing with one, two or three dimensions. In other coordinates than
rectangular, it naturally assumes other forms. Now in these problems
of two and three dimensions, the choice of coordinate-system and the
imposition of boundary-conditions are two decisions which cannot
be separated from one another. Were we to decree that the membrane
should be square or rectangular with its edges clamped, the suitable
coordinate-system would be the rectangular. The problem would then
be extremely simple (the reader can easily solve it for himself by
using the method adopted for the stretched string, and will arrive
at very similar results) but not so instructive to us as the problem of
the circular membrane with clamped edge. For this we must adopt
polar coordinates (with the origin at the centre of the membrane,
naturally). In these, the Laplacian operator assumes the form:

, d* 1d 1 d*
Vi=mtin TR (122)
We restate the fundamental differential equation (120) in this fashion;
we essay a tentative solution in the form of a product of a function
f(r) of r exclusively, a function F(8) of 6 exclusively, and a function g(¢)
of t exclusively; and we discover as before that each of these functions
is subjected to a differential equation of its own. The procedure is
like that already used in the case of the stretched string clamped at
its ends. First we have
142  1df 1 d*F 1 d%

—_ = —_—— = ———_— = — 2 K
fdr rfdr-i_Jf"’FaIE?2 u’g dt* i (123)

for, since the first member of this triplet does not depend on ¢, the
second not on r nor on 6, both must be independent of all three
variables and equal to a constant which, as before, I denote by — m?.
The differential equation for the factor dependent on ¢ has the solution:

g(t) = A cos mut 4+ B sin mul. (124)

Our experience with the stretched string suggests that m will be
restricted to certain Eigenwerte, derived from the boundary-conditions;
and this is true; but before arriving at these, we must attend to the
differential equation governing the functions f and F. This assumes
the form:
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2 72 J 2
r df fdf“i‘ mirt = ,__,lg_F= )\2' (125)

Fart " fdr Fde
both members of the equation being, by the familiar reasoning, equal
to a constant which I denote by A% It follows that the function F(6)

is of the form:
F(#) = C cos M + D sin M (126)

and the coefficient A thus far seems to be unrestricted. But it carries
its own restrictions in itself; for the coordinate 8 is a cyclic coordinate,
like longitude on the earth; whenever it is altered by 2m, we are back
at the same place. The function F(f) must therefore repeat itself
whenever 8 is altered by 2r; but this will not occur, unless X is an

integer:
A=01,23---. (126a)

These are the Eigenwerte, and the functions (126) with one or another
of these values assigned to A are the Eigenfunktionen, of the equation
(125). In this case we have obtained Eigenwerie for the parameter
and Eigenfunktionen for the solutions of a differential equation, not
out of boundary conditions but out of the simple fact that the inde-
pendent variable is by its nature cyclic. Such cases will occur in the
undulatory mechanics.

We arrive at the third and last step of the problem: the determina-
tion of the function f(r). It is governed by the differential equations:

2. 2
gri;+1r%+(mz—"—)f=o, (127)

a distinct equation for each of the permitted integer values of \. As
the solution of such an equation as (115) is a sine-function of the
variable mx, so the solution of such an equation as (127) is a function
of the variable mx; not however a sine-function, but a Bessel function.

For the values 0, 1, 2, --- of X, the solutions of (127) are the Bessel
functions of order 0, 1, 2, - - -, denoted by Jo(mr), Ji(mr), Jo(mr), and
so forth.

Like the sine-function of mx, the Bessel functions of mr oscillate
back and forth between negative and positive values as their variable
increases from zero to infinity, and pass through zero at an infinite
number of discrete values of mr. These do not lie at equal intervals,
as do the values of mx at which sin mx vanishes. Their values may
be found in the tables; I shall designate them as &', & &% --- in
order of increasing magnitude, using the superscripts not as expo-
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nents, but as ordinal numbers so that I may reserve the subscripts
to distinguish the various Bessel functions from one another. The
function

Z = J\(mr)(C cos N8 + D sin N0)(4 cos mut + B sin mut) (129)

represents a stationary oscillation of an infinitely extended membrane,
in which X lines intersecting one another at the origin are nodal lines,
and an infinity of concentric circles centred at the origin are nodal
circles. These lines and circles are motionless while the sections of
the membrane which they delimit vibrate with the frequency mu/2w.

The A lines are spaced uniformly in angle; the radii ry, 7s, - - of the
infinity of circles are obtained by dividing m into the roots !, b,
b3, -+ - of the Bessel function of order \, Jx(mr).

How then does the boundary-condition upon the finite membrane
enter in? Obviously, if a membrane of radius R be clamped at its
edge, and if it is vibrating in the manner described by (129), then the
edge must coincide with one of the nodal circles; the radius R must
be equal to one of the quantities byi/m. Or rather, since the nodal
circles are to be adjusted to the size of the diaphragm and not the
size of the diaphragm to the nodal circles, the coefficient m must con-
form to one of the equations:

m = hlYR, or /R, or /R, < (130)

These equations define Eigenwerte of the parameter m in the differential
equation of the tensed membrane. There is a double infinity of these—
an infinite series of them for each of the Eigenwerte of the parameter
A To each corresponds a natural frequency of the membrane, and
to each corresponds an Eigenfunktion, the one written down in (129)
with the proper value of m taken from (130). The constants 4, B,
C, and D in the Eigenfunktionen specify the amplitude of the oscilla-
tion, the phase of the vibrations at any given instant, and the orienta-
tion of the nodal lines with respect to any given axis. Any number of
Eigenfunktionen may coexist simultaneously; the actual distortion
of the membrane will be the superposition of all. Any initial condi-
tions imposed on z and Z (and not involving discontinuities or infinities)
could be satisfied by adjusting the constants.

Example of the Ball of Fluid

Among the familiar vibrating systems the ball of fluid presents the
closest analogy to the atom-model for the hydrogen atom in wave-
mechanics, the wave-patterns in the two cases being strikingly alike.
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In three dimensions and in polar coordinates (those appropriate
to the boundary-conditions which we shall impose) the wave-equation
assumes the somewhat alarmingly intricate form:

T = 1Vl = g? COSPZ,C o4 ( 7% sin Bﬂ
| dr dr

72
d dw d (. d¥
+@((‘OSQC 53;;) +EE(SH1 9%)]

The argument ¥ can no longer be visualized as a displacement per-
pendicular to the equilibrium-position of the undistorted medium,
since all three dimensions are already used up. The reader may
visualize it, if he will, as a condensation or a rarefaction, after the
fashion of sound-waves. Perhaps not to visualize it at all would be
a better preparation for the study of wave-mechanics.

In the familiar way, we essay a solution in the form of a product
of a function of time g(t), a function of radius f(r), a function ®(¢) of
the longitude-angle ¢ and a function 6(0) of the colatitude-angle 6. As
before, we find that the time-function is of the form:

g(t) = A cos mut + B sin mut (132)

(131)

and, as before, we shall find that the boundary-conditions confine the
coefficient m and the frequency mu/2r to certain ‘‘permitted”’ values.
The angle-functions and the radius-function are governed by the

differential equations:

1| d
L () e | -

- Deosee o £ (conee o2 ) 4 (i 2X)] - (139)
= YCOSCC d<,o osec d(,o dB 1 df) = )

in which ¥ stands for the product of © and &, and X\ for a constant
which seems to be arbitrary, but as a matter of fact is constrained by
the same circumstance as arose in the case of the membrane; for, when-
ever ¢ is altered by 27 and # by =, we are back at the same place as
before, and the function ¥ must have the same value as before; and

this will occur only if
A= nn—+ 1), n==0,1223 ---, (134)

these being the Eigenwerte for the differential equation in (133) for
the angle-function.® The corresponding Eigenfunktionen are spherical

10 This and the following statements about the functions ¥, are proved by writing
Y in the second of equations (133) as the product of a function of § and a function
of ¢, and so dissolving the equation into two in the manner which I have already
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harmonics. To each value of n belongs a ‘‘spherical harmonic of
order #,” which itself is a sum of (2» 4+ 1) terms, each multiplied
by a constant which is at our disposal and can be adjusted to fit initial
conditions or to emphasize particular modes of vibration. These
terms are products of sine-functions of ¢ by peculiar functions, the
Legendrian functions P, ,, of the variable 8; so that the Eigenfunktion
for a permitted value n(n 4 1) of the parameter X has this for its most
general form:

Y6, ¢) =an oPn. o(c0s 8) + 3 an. s oS (s¢) P, +(cos 6)
=t . (135)
+ 2 by, s sin (5¢) Py, s(cos 6).
=1

Each term by itself describes a particular mode of vibration of the
fluid; the sum represents a superposition of divers modes of vibration.
If we isolate one of these modes by giving to » some particular value
11, and to s some particular value s, and causing all the constants a
and b in (135) to vanish except a,,, ,, and b,,, 5,; we then find that YV,
and consequently ¥, and consequently the motion altogether, vanishes
at s; values of ¢ and at n, — s, values of . If we draw a sphere
centred at the origin, we find that its surface bears s; nodal meridian-
circles, and #; — s; nodal latitude-circles, along which there is per-
petual rest. 1f we consider all the spheres at once—if, that is to say,
we consider the entire volume of the fluid medium—we see that when
the fluid is vibrating in the mode distinguished by the integers (I had
almost said ‘‘quantum-numbers’'!) #; and s, it is divided into com-
partments by s; nodal planes intersecting along the axis § = 0°, and
#n; — §; double-cones having that axis for their axis and the origin
for this apex.

We have not yet considered the dependence of the wave-motion
on the radius r; but the close analogy between this and the corre-
sponding stage of the problem of the tensed membrane will make the
task easy. The differential equation (133) for f(r) resembles Bessel's
equation (127), and has the somewhat similar solution

flr) = —1: Tz s (mr). (136)
N

used five or six times; the values of the constant s in equation (135) are the Eigen-
werle of the latter of these two. I thought it desirable not to overload the exposition
by carrying through all stages of the process of solution, especially as the splitting
of Y.(6, ¢) into the two functions is of secondary importance in the atom-model to
which all this leads up; nevertheless the reader may find it advantageous to supply
the lack.
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This function vanishes, entailing the vanishing of the wave-motion,
at an infinity of discrete values of the variable mr:—the roots of the
function, which I denote in order of increasing magnitude by B!, B?,

B3, ---. In an infinite medium we could assign any value whatever
to 7, and then there would be an infinity of nodal spheres, their radii
given by BYm, B*m, B’/m, ---. If the medium is bounded by a

rigid spherical wall of radius R, the coefficient m must possess one of
the values B/R, so that one of the nodal spheres may coincide with
the wall. These are the Eigenwerie of the constant m, and the natural
frequencies of the corresponding vibrations are given by Biu/2rR.
The Eigenfunktionen are given by the equation (136) with the various
values Bi/R substituted for the parameter m.

The Eigenfunktionen of the fundamental differential equation for
the fluid sphere are, therefore, each a product of a radius-function
given by (136), with a “permitted” value for the constant m deter-
mined by the boundary-condition; an angle-function given by (135),
with “permitted” values for the constants z and s, determined by the
fact that the angles are cyclic variables; and a time-function given by
(132), with a “permitted” vibration-frequency determined by the
boundary-condition. Each Eigenfunktion with the indices m, n, s
describes a mode of vibration, in which the fluid sphere is divided into
compartments by s meridian planes, (# —s) double-cones, and a
certain number of spheres, upon each of which the fluid is perpetually
at rest: within the compartments, it vibrates with a prescribed fre-
quency.

AtoM-MoDELS IN WAVE-MECHANICS
Case of a ** String" for which the Wave-Speed is Variable, or even
Imaginary

Thus far I have used the images of the stretched string, the tensed

membrane, and the elastic fluid to illustrate the behavior of the

differential equation
WV = d>/de, (151)

when the coefficient #? is a positive constant. In these examples u?
is interpreted as the ratio of the intrinsically positive quantities
“tension” (or “pressure”) and ‘‘density,’” and turns out to be
equal to the square of the speed of propagation of sine-waves in the
string, membrane, or fluid. In certain problems of undulatory
mechanics we encounter just such an equation. In some of the
most important applications of Schroedinger’s theory, however, one
meets with differential equations of the type of (151), in which however
the coefficient #? depends on the coordinates and even assumes negative
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values! Such equations need not be more difficult to solve than the
conventional wave-equation in which #? stands for a positive constant;
but the image of the elastic medium becomes unsatisfying. In the
one-dimensional case, so long as #® remains a positive function of x,
one can visualize a string of which the density varies along its length;
but when #® passes through zero and becomes negative, the wave-
speed attains zero and is superseded by an imaginary quantity. One
may speak, in such a case, of a “string” or a ‘“fluid”’ characterized
by an “imaginary wave-speed.” So speaking, one comes perilously
close to the verge of using words devoid of physical meaning; but
otherwise, there is no verbal language with which to relieve the mon-
otony of the procession of equations.

The differential equation of the type of (151), with a constant
negative value of the coefficient #? is not a difficult one. Confining
ourselves to one dimension, we find for one of the solutions of the
equation for a ‘‘string with constant imaginary wave-speed’ this
expression :

¥ = (A cos mUt 4+ B sin mUt)(Cem= 4+ De~m=), (152)

in which U stands for the (real) square root of — #2. This is a much
less tractable function than the product of sine-functions which serves
when #? is positive. One cannot, for instance, find Eigenwerte for
the constant m whereby the function can be made to vanish at all
times at two distinct points upon the ‘‘string’; or rather, one can
find only the value m = 0, which fulfils this familiar boundary-
condition by destroying the function. Similarly, one cannot force
¥ to remain finite everywhere except by annulling either m or else
both 4 and B, again destroying the function. Vibrations which are
sine-functions of time are, however, permitted by the differential
equation.
Consider now the equation

ty/dx® = (a — bx*)d*y/dE, (153)
which may be regarded as the wave-equation of a string of which the
wave-speed varies with x along its length as the function (@ — bx2)—1/2,
being therefore real over the central part from x = — “a/b to
x = + Va/b, and imaginary from each extremity of this central
range outward to infinity. In the usual way, we derive the equations:

y = f(x)g(t), g = A cos vt + B sin #t,

Bfldx* + v(a — ba?)f = &fldx® + (C — x)f = 0,  (154)

and it is incumbent upon us to solve the equation ! for f(x).
U The constant »*b has been equated to unity, which entails no loss of generality.
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Essay a solution in the form of a power-series, multiplied by g~ (2,
o0
flx) = e VB2 Y auxn, (155)
n=0

Substitute this into the differential equation, and group all the terms
involving the same power of x. For each such group, we have

Qnpz(n + 1)(n + 2)x" — a.(2n + 1 — C)xn, (156)
and equating each group separately to zero, we arrive at the relation
Gnyofan = 2n + 1 — O)f(n + 1)(n + 2). (157)

Put @ = 0, thus causing all the even-numbered coefficients to vanish;
assign any arbitrary value to ai, and calculate the odd-numbered
coefficients as, as, a7, and so onward. Or, put a; and all the odd-
numbered coefficients equal to zero, assign any arbitrary value to a,,
and calculate the even-numbered coefficients as, @4, @5, and so onward.
Either way we shall get a solution of (154), whatever the value of the
parameter C; but there are certain specific values of C which admit
a peculiar sort of solution. Itis, in fact, evident from (156) that we
shall arrive at two entirely distinct results, according as C is or is not
equal to some value of (2# + 1)—according, that is to say, as C is
or is not an odd integer. For, if Cis equal to an odd integer (2z + 1),
the chain of coefficients will come to an abrupt end at the member
having that particular value of #; it and all the succeeding members
will be zero; the power-series in the tentative (and adequate) expres-
sion (155) for the unknown function f(x) will consist of a finite number
of terms. But, if Cis not equal to an odd integer, the power-series
will go on forever.

Here we have a new kind of Eigenwert. 1f the parameter C, in the
differential equation for the curious kind of ‘string” which I have
just defined, has for its value one of the numbers:

C=m+1, n=2012234" ", (158)

the equation enjoys a special sort of solution. If the parameter does
not have one of these Eigenwerte, the solution of the differential equa-
tion is altogether different.

Let us see what difference these Eigenwerte make in the general
solution (155) of the differential equation. If the parameter C has
some other value than one of these, the series a.x™ goes on forever:
and as x approaches infinity, the value of its summation increases at
such a rate as to overwhelm the steadily declining factor e~®/®#, so
that the function f(x) is infinite at both ends of the range — © <x <.
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If however C is equal to one of the Eigenwerte, the series a,x" comes to
an abrupt end; and as x approaches infinity, the decline of the factor
e~ gyerpowers the increase of the summation, and f(x) remains
finite at infinity. The values 1, 3, 5, - - of the constant C are there-
fore the Eigenwerte which permit solutions which remain finite all
through the range of values of the independent variable from positive to
negative infinity. This condition replaces the boundary-conditions
applied to the ordinary stretched string.
The Eigenfunktionen are:

fu(x) = e WD, (x), (159)

the symbol H,(x) standing for the finite series } a,x" constructed
according to the rules of the foregoing paragraphs, and terminating
at the mth term. These are known as the polynomials of Hermite.2

Interpretation of the Simple-Ilarmonic Linear Oscillator by Wave-
Mechanics

The foregoing section contains all that is necessary to Schroedinger’s
theory ¥ of the linear simple-harmonic oscillator—an object, or a con-
cept, famous in the history of the quantum-theory; for it was the
linear oscillator which Planck first ‘‘quantized ''—of which, that is to
say, Planck first proposed that it be endowed with the power of receiv-
ing and retaining and disbursing energy only in fixed finite amounts;
thereby arriving at an explanation of the black-body radiation-law,
and founding the quantum theory.

Conceive a particle of mass m, constrained to move along the x-axis,
attracted to the origin by a force — k% proportional to its displace-
ment, and consequently prone to oscillate to and fro across the origin
with frequency v, = k/2r \m. Its potential energy is the following

function of x:
V = 1k%2 = 2a%myg’s®, (160)

The wave-equation assumes the form

d*v  8rim
dx? h?

(E — 2emygx)¥ = 0. (161)

A simple change of variable (¢ = x-27 ~Nmuwo/h) transforms this into
the equation (154):

@EVjdg + (C — ¢)¥ = 0;  C = 2E/hw,. (162)

12 The first five are written down by Schroedinger, Ann. d. Phys., 79, p. 515
(1927).  An arbitrary numerical multiplier remains at disposal.

15 Schroedinger, Ann., d. Phys., 79, pp. 514-519 (1926); for the general case in
which the restoring-force is not supposed to vary as the displacement, consult H. A,
Kramers, ZS. f. Phys., 39, pp. 828-840 (1926).

44
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According to Schroedinger the Stationary States of the linear oscillator
are distinguished by the energy-values which cause this equation to have
a solution finite at all values of the variable, infinity included.

These are the values of the constant C which cause the parameter
C to take one of the Eigenwerle set down in (158).

The energy-values of the Stationary States should therefore be

kVu

163
13,05, (169
Hz-vo,zwu,z-voy

The successive permitted energy-values of the linear simple-harmonic
oscillator of frequency », the energy-values of its consecutive Sta-
tionary States, are therefore specified by wave-mechanics as the
products of the fundamental factor kv, by the consecutive ‘‘half-
integers' 1/2, 3/2, 5/2, and so onward.

The linear simple-harmonic oscillator thus furnishes an instance of
‘““half-quantum-numbers.” In most of the earlier theories it was
either assumed or inferred that this “Planck” oscillator displayed
““whole quantum-numbers’—that its permitted energy-values were
the products of hve by the successive integers 1, 2, 3,4, ---. However,
in the interpretation of certain features of band-spectra by the assump-
tion that the two atoms of a diatomic molecule vibrate as linear oscil-
lators along their line of centres, the half-quantum-numbers sometimes
led to better agreement with experience than did the whole-quantum-
numbers.

The Eigenfunkiionen corresponding to the consecutive Stationary
States are these:

¥, (x) = const-e 2emotiH, (2rx Nmwo/h). (164)

The first five of these Eigenfunktionen are exhibited in Fig. 2. These
curves may be regarded, if the reader so chooses, as the stationary-
wave patterns of “loops’ and ‘‘nodes,” exhibited by five resonating
strings along which the wave-speed varies according to the five laws
obtained by assigning the first five values given by (163) to the constant
E in the equation: =

= . 165
\2m(E — 2wimue*x?) (165)

un

The various Stationary States of a linear oscillator are therefore imaged
not as the fundamental and the overtones of one and the same string,
but as the fundamental (and exclusive) nodes of vibration of distinct
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strings. It is important to realize this. Schroedinger’s way of think-
ing provides not a single atom-model for each sort of atom, but as
many distinct models as there are Stationary States.*

n=0
n=4 n=3 -4 n=l
n=4 n=4
n=2 n=3
n=0 n=0 rr1'==€
-X - + x
-2 -1 { 2
n=1
n=3

Fig. 2 (after Schroedinger).

Interpretation of the Hydrogen Atom by Wave-Mechanics

The hydrogen atom is conceived as a system endowed with the
potential energy V = — ¢*/r. This form for the potential energy,
I recall, is obtained by imagining an electron and a nucleus, or more
precisely two point-charges + e and — e, separated by a distance
denoted by r. The image of the electron and the nucleus does not
come over explicitly into the new theory; but in spirit it does come
over, for the potential-energy-function derived from that image is the
basis for the new theory.

Polar coordinates for the wave-equation are imperiously suggested
by a potential-energy-function of this form, and consequently it is

thus expressed:
E? oy PV

2m(E + e¥r) Vi = dae’ (171)
and putting E/h for the vibration-frequency, we attain
2 2
V2W+$(E+%)?=O. (172)

The resemblance of these equations to those laid down for the ball
of fluid is as unmistakable as the resemblance of the wave-equation
for a linear oscillator to that of a stretched string. Here we have
the case of a fluid in which the wave-speed varies from point to point,
according to the law

1wt = E2m(E + 1), (173)

*Some may find satisfaction in conceiving, as my colleague Dr. T. C. Fry sug-
gests, a “‘string” so constructed that the speed of propagation of waves along it is a
function of their frequency.
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and we meet the problem of finding modes of vibration and stationary
wave-patterns.

If E is supposed positive, the wave-speed is everywhere real.
Boundary-conditions of the usual sorts (e.g., the prescription that the
fluid shall be confined within a rigid spherical wall of given radius)
might be imposed, and then Eigenwerte of the constant E could be
calculated, and from these the wave-patterns and natural frequencies
of the fluid. If no such boundary-conditions were prescribed, the
equation (172) could be solved with any value of E.

If E is supposed negative, the whole state of affairs is changed.
The wave-speed is now real within the sphere of radius — €*E, zero
over this sphere and imaginary beyond it. This recalls the case of
the “string” proposed as an analogy for the linear oscillator, for which
the wave-speed was real along its central segment and imaginary from
each end of its central segment onwards to infinity. There are im-
portant differences: in the present case, the variable r assumes positive
values only, and the wave-speed at r = 0 is infinite though real.

In the case of the ‘‘string’ with wvariable and at some points
imaginary wave-speed, we found that the law of variation of wave-
speed could be so chosen that the “string’’ enjoys a natural mode of
vibration with a stationary wave-pattern and a natural resonance-
frequency. This was done by selecting any of a series of Eigenwerte
for a parameter of the differential equation. Here we shall do likewise.

Essaying for the function ¥ in (172) a solution in the form of a
product of a function of # and ¢ exclusively by a function of r exclu-
sively, we arrive in the familiar way at differential equations:

d/{ . d¥" d dY
cosecﬁ{ﬁ(sm B-E) +d—‘-P(mseL BE)} = — AV, (175
d { ,df 8atmr® ey, _
S(rd) +5 (E+%)r=+¥ am

The equation (175) is the identical one which we encountered in the
case of the ball of fluid. Here, as there, the fact that the variables 6
and ¢ are cyclic requires Figenwerte of the constant \:

A=I(0+1), 1=012234 - (176)

Equation (174), however, is not the same as the corresponding equation
(133) of the prior case; here we find the difference between the fluids of
actual experience and the ‘‘imaginary fluid” which is to serve as ma-
terial for the atom-model supplied by wave-mechanics for hydrogen.

If in that equation (174) one were to assign an arbitrarily chosen
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negative value to the parameter E, one would in general not be able
to find a solution which is finite both at the origin and at infinity.
This is the same situation as occurred in the theory of the linear
oscillator, where an arbitrary choice of a value for the parameter
there called C would in general have led to a solution implying infinite
amplitude at both ends of the “string.”

Schroedinger however discovered ™ that there is a series of Eigenwerte
for the parameter E, each of which (subject to a limitation to be
introduced below) entails a solution which is single-valued, continuous
and finite over the entire range of the variable r.

These Eigenwerte are the following:

E, = — 2r*me*/h*n?; n=1234,---. (177)

The consecutive permitied energy-values of the system of polential-
energy-function — e*[r, the Stationary States of the model for the hydrogen
atom, are therefore specified by wave-mechanics as the quotients of the
fundamental factor — 2r*me'/h? by the squares of the consecutive integers
from unity onward.

These agree with experiment. The formula (177) is in fact the
renowned formula of Bohr, from which the whole contemporary theory
of spectra sprang; a formula so successful that it is scarcely conceiv-
able that any alternative theory should ever win acceptance unless
by presenting the identical equation over again.

Schroedinger’s models for the hydrogen atom in its various Sta-
tionary States thus are imaginary fluids each pervading the whole of
space, and in each of which the wave-speed depends on the distance r
from a centre, according to a peculiar law—the law obtained by in-
serting into the formula (173) the appropriate value for E, chosen from
the sequence given in (177). If into (173) we were to put any value
chosen at random for the energy-constant E, we should be inventing
an imaginary fluid; but, in general, this fluid would not be capable of
sustaining a continuous stationary wave-pattern of finite amplitude.
Only when one of Bohr's sequence of energy-values is chosen do we get
a fluid able to resonate as a ball of actual physical substance can.

The next task is to enquire into the wave-patterns in the imaginary
fluids corresponding to these various permitted energy-values. Thisis
much more difficult than the same problem for the imaginary strings
corresponding to the various permitted energy-values of the linear
oscillator, and the new complexities are not altogether due to the fact
that we now have three dimensions to deal with instead of one; they

4 Schroedinger, Ann.d. Phys., 79, pp. 361-376 (1926). For an alternative method
of proof see A. S. Eddington, Nature, 120, p. 117 (1927).
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are due chiefly to the fact that the system is mathematically ‘‘de-
generate.” Owing to this circumstance there are more than one pos-
sible mode of vibration, more than one stationary wave-pattern, for
each (except the first) of the permitted energy-values. To describe
these it is necessary to consider both of the equations (174) and (175).

Since the equation (175) is identical with the corresponding equation
derived for balls of actual physical fluids, the modes of vibration for
Schroedinger’s atom-model are identical with the modes of vibration of
actual fluid spheres insofar as the dependence on angle is concerned.
The imaginary fluid is divided into compartments by nodal planes,
nodal double-cones and nodal spheres; and the division by planes and
double-cones is identically such as we should find in the corresponding
mode of vibration of an actual fluid ball; it is only the division by nodal
spheres which differs.

To the first Eigenwert, E; (n = 1) there corresponds a single Eigen-
funktion of equation (174); to the second, E,, a pair; to the third,
three; and so forth. This multiplicity is linked with the limitation
upon the Eigenwerte which was foreshadowed above. Inthe expression
for the function ¥ as a product of functions of the individual variables

11’(?3 0: ﬂa) = F(?’) YE(BJ 50)! (178)

if we assign an Eigenwert E, to the parameter E in the first factor
according to (174), we have still a choice of values to assign to the
parameter I in the second factor according to (176). This choice
however is limited. We must not take any value of ! as great as
or greater than the value adopted for #»; otherwise the value of E,
would not be an Eigenwert in the sense adopted. Thus for n = 1 we
are restricted to the choice [ = 0; for » = 2 we have the alternative
of Il = 0orl = 1; forn = 3 the option of # = 0, 1, or 2, and so forth.
Each Eigenwert E, thus admits (z — 1) distinct spherical harmonics
Yi(0, ©), Ya(8, ©) -+ Ya_i(6, ¢) as solutions of equation (175); and
to each of these there corresponds, with each of these there goes, a
distinct Eigenfunktion F,, ;(r) of the equation (174), which is expressed

2rN—2mE, , = dr*me? 1

as follows in terms of a variable p = = r=—rv
h nh? Ny
instead of 7 to make the function seem less intricate:®
n—1—1 (__ 2p)k n_l..l
= -
X., 1(p) = const. ptle=? Py 7 (n—l—l—k)' (180)

15 The factor in parentheses in equation (180) stands for the ‘*number of combina-
tions of (m + /) guantities taken (# —! — 1 — k) at a time,” which is the
(n — I — 1 — k)th coefficient in the binomial expansion of (& + b)t+n,
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The function X,, (p) has (n — I — 1) roots, so that the corresponding
mode of vibration has (n — I — 1) nodal spheres. To each permitted
energy-value E, there consequently correspond # different solutions
of the general equation (172), differing from one another in respect
of the number of nodal spheres:

‘I’n, !(rl 6! ¢) = Xﬂ. E(p) Yl(el ¢)l I = 0: 1! 2. (ﬂ' - 1)' (181)

Each of these describes a permitted class of modes of vibration,
owing to the subdivision of the spherical harmonic Y into terms
according to (135).

Allowing for the subdivision of the spherical harmonics, there are
(1+24+3+---n)=mn(n+ 1)/2 modes of vibration for the nth
permitted energy-value E,.

The equation (181) exhibits the various modes of vibration of
which our imaginary ‘‘fluid,” the model for the hydrogen atom, is
capable. It would be possible to describe these with a wealth of
verbal detail. I hesitate to do so; for vast amounts of industry and
ink have been expended during the last twelve years in tracing and
describing electron-orbits, which are now quite out of fashion; and
who dares affirm that in another five years the vibrating imaginary
fluid will not be démodé? Yet it is altogether probable that for some
years to come, if not for all time, the image of the vibrating fluid will
furnish the customary symbolism for expressing the data of experi-
ment. Therefore let me point out some features of the vibrations
corresponding to the first (or “lowest,” or “deepest”) three states
of the hydrogen atom:

Normal State, n = 1. One Eigenfunktion, X1 o(p); an exponential
function of 7, decreasing steadily from the origin to infinity, with no
nodal spheres. Corresponding spherical harmonic Yo(8, ¢),—a con-
stant. The vibration consequently is described by

¥(r) = const. e (aq = h*[4n*me?) (182)

and is endowed with perfect spherical symmetry.

First Excited State, n = 2 (the state into which the atom relapses
alter emitting any line of the Balmer series). Two Eigenfunktionen
X, o and X. 1; the first represents a vibration with a single nodal
sphere, the second a vibration diminishing steadily in amplitude from
the origin outward. The first is to be multiplied by Y,(8, ¢) to obtain
the complete description of the vibration; ¥, being a constant, this
mode is endowed with perfect spherical symmetry. The second is
to be multiplied by ¥, which is a combination of terms written out
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in equation (135); the permissible mode, or rather modes, of vibration
involve nodal plapes and double-cones, which the reader may work
out for himself with the aid of (135).

Second Excited State, n = 3 (the state from which the atom departs
when it emits the line [H-alpha). Three Eigenfunktionen X, o, Xa
and Xj, 2. The first corresponds to a vibration with two nodal
spheres, and perfect spherical symmetry. The second and third corre-
spond to vibrations with one nodal sphere, and with a steady diminu-
tion of amplitude from the centre outward, respectively; but being
multiplied with the spherical harmonics ¥; and Y., they describe
modes which are not endowed with spherical symmetry, and involve
nodal double-cones and nodal planes.

Generally: the state distinguished by the numeral z enjoys n
distinct Eigenfunktionen, describing vibrations having respectively
0,1,2, 3 -+ (n— 1) nodal spheres; to the Eigenfunktion with the
maximum number of nodal spheres corresponds a single mode of
vibration which is spherically symmetric, to the others various modes
with varying members of nodal double-cones and planes.

If this is destined to be the “‘language of the future” for describing
the data of experiment, it will be necessary to have dictionaries for
translating it out of (or into) the ‘‘language of the present,”’ the
vocabulary of the Bohr-Sommerfeld atom-model in which Stationary
States are represented by electron-orbits. They will contain defini-
tions such as these: the numeral % is the total-quantum-number of
the electron-orbits—the numeral [ is one unit smaller than the
azimuthal quantum-number % of the electron-orbit—the numeral
(n — I — 1), to which the number of nodal spheres is equal, is the
radial quantum-number of the electron-orbit. To elucidate these
“definitions” of the future dictionary, I recall that the Bohr-Sommer-
feld atom-model provided, for the hydrogen atom in its state of energy-
values E,, a family of n distinct electron-orbits, of which one is circular
while the other (# — 1) are ellipses of varying degrees of eccen-
tricity. These ellipses were selected by laying down the conditions,
that the integral S pade of the angular momentum p, around the
orbit shall be equal to the product of 7 by some integer % equal to or
less than the prescribed 7; and the integral S p.dr of the radial
momentum " p,dr shall be equal to the product of & by the integer
(n — k); so that the sum of the integrals S p,de and S p.dr shall be
equal to the product of & by #n. The quantities n, k and n — k were
given the names total, asimuthal, radial quantum-number. ‘‘Defini-

16 The introduction some twenty months ago of the ‘'spinning electron’’ caused a

modification of this picture; for those who accept the modification, it is the “language
of antiquity " which is compared in this paragraph with the ‘language of the future.”
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tions"’ such as those above (which are not necessarily the only self-
consistent nor the best ones) make it possible to translate orbits of
the orbit-model into modes of vibration of the wave-model, and vice
versa; and to devise definitions for these three kinds of quantum-
numbers from the qualities of the vibrations themselves.

Perturbations

Inasmuch as the wave-mechanics indicates » different Eigenfunk-
tionen with n different collections of nodal spheres (not to speak of
the still more greatly varied possibilities of nodal planes and double-
cones) for the Stationary State having the Eigenwert and energy-value
E,, one may well ask whether there is any chance of distinguishing
which of these, or which linear combination of these (for the differ-
ential equation will permit any) is actually adopted by a hydrogen
atom.

Translating into the language of the Bohr-Sommerfeld atom-model,
we find the question in this form: is there any way of distinguishing
which of the # permitted elliptical electron-orbits is actually adopted?

When the question was asked in this form, it was answered by
pointing out that if the force exerted upon the electron were not the
pure inverse-square force ascribed to the nucleus, but the sum of this
and a perturbing force, the energy-values of the » permitted ellipses
would cease to coincide exactly. If for instance the atom under
examination were composed of a nucleus of charge 11e, a group of ten
electrons very close to it and an “outer” electron relatively far out
(the conventional model for a sodium atom in certain states); then
the group of ten inner electrons would act upon the outer one with a
perturbing force, and the »n permitted ellipses of the outer one would
be endowed with distinct energy-values—the single Stationary State
of the outer electron would be dissolved into # distinguishable states.
Even in the hydrogen atom, the dependence of the mass of the electron
upon its speed should separate the energy-values of the various ellipses
which but for this fact would share a common energy £,, and produce
the fine-structure of the hydrogen lines.

The very same thing occurs in wave-mechanics; and from the effect
ol a perturbing force, allowance for which is made in the potential-
energy-function introduced into the wave-equation, we may expect
to be able to distinguish the different modes of vibration attributed to
a single Figenwert and a single Stationary State of the unperturbed
hydrogen atom.”

7]n the language of the mathematicians, the perturbing forces remove the de-

generacy of the problem; some kinds of perturbation remove it completely, others
in part.
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The results are, in fact, just like those obtained with the Bohr-
Sommerfeld atom-model; and this is somewhat embarrassing. For,
in order to perfect the Bohr-Sommerfeld model and establish a com-
plete analogy between (for instance) the sodium spectrum on the one
hand and the fine-structure of the hydrogen lines on the other hand,
it was necessary to introduce a new feature—the ‘'spinning electron.”
Something of the sort must evidently be done again—the “spinning
electron’’ must be imported into the undulatory mechanics; but the
exact way to do it seems as yet to elude the virtuosi of mathematical
physics.’8

In one case—when the perturbing force is an impressed electric
field—the results obtained by the method of Bohr and Sommerfeld
and those obtained by the method of Schroedinger agree to first
approximation with each other and with the data of experience,
without the introduction of a ‘“‘spinning electron.” As this case of
the “‘Stark Effect” furnishes a convenient transition to the last section
of the article, I will quote the results.!?

The Stark Effect

Imagine a hydrogen atom, upon which an electric field F parallel
to some arbitrary direction which we call the z-direction is acting.
Owing to this field, the electron at the point x, ¥, = and the nucleus
at the origin (we are still using the concept of the nucleus and the
electron!) possess a potential energy composed of the “intrinsic”
term — ¢%/r and the ‘‘perturbation’ + eFs. The wave-equation
takes the form:

2 2
WJFE*:;TW(E%_MZ):O. (183)

Paraboloidal coordinates are indicated for this problem. Instead
of the planes, double-cones and spheres of the polar coordinate-system
which we earlier used, it is desirable to employ planes and two families
of paraboloids of rotation; the planes intersect one another along the
line through the nucleus parallel to the field (hitherto called the z-axis),
and the two families of paraboloids have their common foci at the
nucleus and their noses pointing opposite ways along that axis. The
transformation is made by the equations:

x = Eq cos o, y = vEn sin o, z=3(¢£ — ) (184)

18 Unless the problem has been solved by C. F. Richter (cf. preliminary note in
Proc. Nat. Acad. Sci., 13, pp. 476-479; 1927),

1 Schroedinger, Ann. d. Phys., 80, pp. 457-464 (1926); P.S. Epstein, Phys. Rev. (2),
28, pp. 695-710 (1926).
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and the wave-equation appears in this guise:
d ( d¥ d dv 1/1 1\ ad*¥
(63 ) i () +i(5+3)

2rim

+ LB + ) + 26 — JeF(g — 7)]¥ = 0.

(185)

Essaying as tentative solution a product of a function of ¢ by a
function of £ and a function of 5, we obtain as usual three differential
equations, involving E and two other parameters, to which specific
Eigenwerle must be assigned either because the variable ¢ is cyclic,
or because for values other than these Eigenwerte the solutions become
infinite for certain values of the variable.

Suppose that we set F = 0, and ascertain these Eigenwerte, and
insert them into the equations: we then find the imaginary fluid
vibrating in a stationary wave-pattern, oscillating in compartments
divided from one another by nodal planes and by nodal paraboloids
pointing up or down the field. To each of the energy-values E, there
correspond (1 + 2 4 3 + -+ n) distinct wave-patterns, each having
a distinctive number %; of nodal paraboloids of the one family, a
distinctive number ks of nodal paraboloids of the other family, and a
distinctive number s of nodal planes; the values of k; and k; and s
are limited by the conditions that they must be integers, that they
cannot be less than zero nor greater than », and that their sum must
be equal to (» — 1): that is,

k1+k2+3+1=n. (186)

(Translating into the language of the electron-orbits, we find that s
becomes the equatorial quantum-number which represents the angular
momentum of the electron around the direction of the field (in terms of
the unit 2/2x) and k, and &, become the parabolic quantum-numbers.)

Introducing now the impressed electric field F, we find that among
the (1 + 2 + 3 + --- n) modes of vibration which originally shared
the energy-value E,, those for which k; = k, retain this energy-value,
while the rest are displaced by varying amounts given by the celebrated

Epstein formula:
3Fhn

T 8rime

AE (k1 — ko). (187)
The Stationary State of energy-value E, is thus “resolved” or “split”
into several—not, however, into the full number (1 +2 4+ 3 4+ --- »)
corresponding to the total number of modes of vibration, for some of
these still share identical energy-values. The line resulting from the
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transition between two States, E; and E; for instance, is thus resolved
into a set of lines lying close together. These individual *Stark-effect
components’’ testify to the individual existence of the several distinct
modes of vibration which, when there is no impressed electric field,
should share a common energy-value E, and be indistinguishable
from one another.”

In the closing section we shall consider another aspect of these
Stark-effect components. At this point I wish only to allude to a
quaint little paradox which may already have disconcerted the reader.
I have just said that the imaginary ‘‘fluid” executes stationary
vibrations in which it is divided into compartments by nodal planes
and nodal paraboloids, even when the impressed field F is made equal
to zero; but earlier I said that the “fluid” representing the unper-
turbed hydrogen atom executes vibrations in which it is divided into
compartments by nodal planes, nodal double-cones and nodal spheres.
There is no actual contradiction between these two assertions; for a
mode of vibration of the one kind can be obtained by superposing two
or more modes of vibration of the other kind, with a proper distribu-
tion of relative amplitudes. Take the specific case of the *‘first
excited state” of the hydrogen atom, » = 2. By the earlier process,
we find three wave-patterns: (a) with one nodal sphere, (b) with one
nodal double-cone, (¢) with one nodal plane. By the later process, we
find three wave-patterns: (a) with one nodal paraboloid facing one
way; (B) with one nodal paraboloid facing the other way: (v) with
one nodal plane. The wave-patterns (c) and (y) are evidently the
same, while either («) or (8) can be reproduced by superposing (a),
(b) and (c) with the proper relative amplitudes.*" If the field F acting
upon a hydrogen atom in the first excited state were to be gradually
reduced to zero, it would leave the atom, or to speak more carefully
the “imaginary fluid,"" vibrating in a manner which would be one of
the modes (a), (8) or (), hence a cleverly adjusted superposition of
the three modes (a), (b) and (¢). Suppose however that a very small
field F were to be applied to a hitherto unperturbed atom; why should
it necessarily find ready for it a vibration with precisely the proper
relative adjustment of the modes (a), (b) and (c)? or if it did not, if
it should find the atom vibrating say in mode (a), how would it per-
suade the “fluid”" to change over into the manner of vibration suitable
for its own operations to begin?#

20 A couple of ““contour maps'’ of the wave-patterns for two of these paraboloidal
modes of vibration are given by F. G. Slack (Ann. d. Phys., 82, pp. 576-584; 1927).

21| have not actually proved this, but believe that it must follow from Schroe-
dinger's general theorem.

2 This same curious thing occurs in a somewhat different guise when the electron-

orbit theory is adopted.
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Interpretation of the Rotator by Wave-Mechanics

The rotator or rotating body, the “spinning-top’ as the Germans
often call it, is a very important object in the workshop of the builder
of atom-models. It is the accepted molecule-model used in theorizing
about the polarization of gases by electric and magnetic fields, and
the basis of the accepted molecule-model used in explaining the band-
spectra of diatomic and polyatomic gases. Most models devised for
the latter purpose combine the features of the rotator and the linear
oscillator; but for the present purpose it is sufficient to view these
separately, conceiving the rotator as a perfectly rigid whirling body.

The treatment of the rotator by wave-mechanics is in one respect
admirably simple, but eventually we are led into the mazes of the
General Equation with its non-Euclidean geometry. One can how-
ever avoid the complexity long enough to benefit by the intelligible
feature, by considering first a rotator such as was invented more than
fifty years ago to account for the specific heats of diatomic gases such
as hydrogen—a dumbbell not permitted to spin around its own
axis-of-figure or line-of-centres, but revolving around some axis passing
through its center-of-mass perpendicular to its line-of-centres. The
orientation of such a dumbbell is specified by the angles 8 and ¢ which
define, in a polar coordinate-system, the direction in which its axis-of-
figure is pointing. The energy is exclusively kinetic, so that the term
containing V vanishes from the wave-equation, a circumstance which
is very helpful. Representing by A the moment of inertia of the
dumbbell about the axis of revolution, we find the wave-equation in
the form:?
8mEA

2

V= 0. (190)

Vi +
In this equation the Laplacian operator is to be expressed in the polar
coordinates # and ¢, as it was expressed in equation (131), but without
the terms involving the third and missing coordinate r. We have
before us, therefore, the second of equations (133), with a specific
value for the constant there called A:

o d dy d (. dy\| _ 8rEA
— cosec 0 [(Tdi ((‘osec Bd-;b) +ﬁ(sm Bd() )J = v, (191)

Here, as there, the function ¥ must repeat itself whenever 8 is altered
by any multiple of = and ¢ by any multiple of 2m; for then we are
back at the same place, i.e. at the same orientation of the rotator.

# Schroedinger, Ann. d. Phys., 79, pp. 520-522 (1926).
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Here, as there, this necessity imposes of itself a certain condition upon
the coefficient of ¢ in the right-hand member, which is tantamount
to this condition imposed on E:

h?

E=n(n+1)§]£—4 =(n+3)? Y] -+ const., 7n=0,1,2,3---. (192)

The energy of the rotator is thus by the mere fact that the variables
are cyclic limited to a single sequence of permitted values, furnishing
incidentally another example of half-quantum-numbers.

The Eigenwerte, the permitted energy-values, are thus for the rotator
determined by an exceptionally lucid condition; yet the complications
of the General Equation already appear on the horizon. Equation
(190) differs from the wave-equation which I have hitherto used by
virtue of the substitution of moment-of-inertia A for mass m. This
replacement seems sensible enough; one might rely on intuition in this
particular case; but strictly it is caused by the form preassumed for
the General Wave-Equation and by the specific form of the kinetic-
energy-function for this specially restricted kind of rotator. If now
we remove the restriction, and permit the rotator to spin about its
axis-of-figure at the same time as it whirls about some axis normal to
that—if we pose the general problem of the rigid rotator unrestricted
save by the conditions which the wave-equation imposes, it is neces-
sary to invoke the General Equation with the non-Euclidean geometry.
The problem is soluble, and has been solved;? the utility of the results
for the interpretation of band-spectra gives valuable support to the
form selected by de Broglie and Schroedinger for the General Equation.

The polarization of a gas by an electric (or magnetic) field may be
treated by supposing that each atom is an electric (or magnetic)
doublet. The treatment is simplest if we may assume that the electric
(or magnetic) axis of the doublet coincides with the axis-of-figure of
a dumbbell-molecule, not allowed to spin around its axis-of-figure.
Let M stand for the moment of such a doublet, and suppose the field
H to be parallel to the direction from which the angle ¢ of the fore-
going paragraphs is measured. The field supplies the potential-
energy term to be added to the left-hand member of equation (190);

this new term is:
— V¢ = (MH cos 0)y. (193)

It is easy to see that the wave-equation has Eigenwerte, so that the
atoms are in effect limited to certain ‘“‘permitted” orientations in the

U E. Reiche, ZS. f. Phys., 39, pp. 444-464 (1920); R. de L. Kronig, I. I. Rabi,
Phys. Rev. (2), 29, pp. 262-269 (1927).
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field—a conclusion from the earlier atomic theory, which for magnetic
fields has become a fact of experience through the experiments of
Gerlach and Stern and others. To calculate the polarization of a gas,
it is necessary to make a further assumption concerning the relative
probabilities of these various orientations in a gas in thermal equi-
librium; having done so, one obtains a formula for the polarization,
or the dielectric constant, or the susceptibility of the gas as function
of applied field and temperature. The customary assumption leads
to a formula which, in the limiting case of high temperature and low
field, agrees with the celebrated equation of Langevin for the polariza-
tion of a paramagnetic gas by a magnetic field : *

Susceptibility = I/H = NM?/3kT. (194)

Interpretation of the Free Electron in Wave- Mechanics

We now depart from the calculation of Eigenwerte and Stationary
States, and return to the original ideas of de Broglie.

For a free electron moving in a field-free region—or any particle
moving in a region where no force acts upon it—with a constant speed
v along a direction which I will take as the x-direction, the (non-
relativistic) wave-equation assumes the form:

@y | 8rmE = Lo
e i Yy =0 (£ = Jm®). (195)

This equation admits a sine-function as its solution whatever the
value of the constant £ and consequently does not restrict the energy-
values which the electron is allowed to take (a contrary result would
have been hard to swallow!). Assigning the value E/i to the fre-
quency of the sine-wave and the value E/ V2mE to its speed, we obtain
for the wave-length of the wave-train, “associated with'' a free electron
(or free particle) of mass m and speed », this value:

_E/N2mE _ h_h
= Efh \2mE S (196)

TFor electrons of such speeds as ordinarily occur in discharge-tubes,
these wave-lengths are of the magnitude of X-ray wave-lengths; for
instance, a 150-volt electron is associated with a wave-length of very
nearly one Angstrom unit.

® C. Manneback, Phys. ZS., 28, pp. 72-84 (1927); J. H. Van Vleck, Phys. Rev.
(2), 29, pp. 727-744; 30, pp. 31-54 (1927). For the classical derivation of formula

(194) and meaning of the symbols cf. my article *‘Ferromagnetism,” this Journal,
6 (1927), pp. 351-353.
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This coincidence makes one wonder whether, if a stream of such
electrons were projected against a crystal such as is used for diffracting
X-rays, there would be a semblance of diffraction. Nothing yet said
about the waves leads inevitably to such an inference. On the con-
trary, it might well be argued that we have no greater justification
for expecting to observe them in the ordinary world of space and
time than for expecting the x and the y of an algebraic equation to
come to life before our eyes. It might forcibly be pointed out that
while in this instance and the instance of the hydrogen atom the
“waves" are defined in ordinary space, there are other instances—
supplied for instance by rotators—in which the wave-equation is
formally similar to (195) and the theory quite as effective, and yet
the alleged “waves’ exist only in the configuration-space and indeed
in non-Euclidean configuration-space, which is much the same as
saying that they do not exist at all. Nevertheless it appears that
there is indeed a diffraction of electrons by crystals, and that the
wave-length indicated by the diffraction-angles is in accordance with
the value given by de Broglie! The first evidence for this amazing
and portentous effect will be narrated by its discoverers Davisson and
Germer in the following issue of this Journal.?

Notice that the speed of the associated wave-train is not the same
as that of the flying particle; it is VE/2m, that of the particle is
v2E/m. It is, however, the wave-length of the wave-train which is
measured by the diffraction-experiments; not the speed, and not the
frequency. This is important; for it is the wave-length which is
exempt from the consequences of the essential uncertainty in the
value of E. In classical mechanics, energy-differences alone are
definite, but the absolute values of the “‘energy” of a system are not
defined; the definition of energy involves an arbitrary additive con-
stant. If now we were to add an arbitrary constant to the kinetic
energy of the free electron, and call E the sum of the two, we should
alter the frequency and alter the speed assigned to the wave-train;
but we should not alter the wave-length, for the wave-length is strictly
equal to k/N2m(E — V) with V standing for the potential energy of
the free electron, and the added constant would enter into V and
vanish by subtraction. Returning to the preceding sections of this

% Consult meanwhile their note in Nature, 119, pp. 558-560; 1927. The predic-
tion was first published by W. Elsasser (Naturwiss., 13, p. 711; 1925). For addi-
tional intimations of evidence for undulatory qualities in matter cf. G. P. Thomson,
A. Reid (Nature, 119, p. 890; 1927); T. H. Johnson, Nature, 120, p. 191 (1927); E.
G. Dymond, Phys. Rev. (2), 29, pp. 433—441 (1927). Schroedinger’s elegant treat-
ment of the Compton effect is based upon the conception of electrons as wave-trains

(Aun. d. Phys., 82, pp. 257-264; 1927); for a more elaborate treatment of Compton
effect cf. W. Gordon (ZS. f. Phys., 40, pp. 117-133).
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article, we see that Schroedinger calculated the energy-values of the
Stationary States by conditions imposed upon the wave-lengths of the
waves, not upon their frequencies; the wave-patterns depend only
upon the wave-lengths, and the frequency of the light which an atom
emits in passing between two Stationary States depends only on the
difference between their energy-values. In relativistic mechanics,
energy is defined absolutely, and this difficulty never even threatens
to arise; yet it is worth while to note that the ambiguity of the concept
‘““energy’'’ in classical mechanics does not interfere with, nor is it re-
solved by, anything which has been observed in Nature and interpreted
by wave-mechanics.

In relativistic mechanics, the wave-equation for the free-flying
particle assumes the form:

¢y 4

dx® =~ I

e o _ Moc*
(E — mo*c') =0 (E “w—\fl——zf’/cﬂ) (197)
The wave-length has the value iVl — v’c*/mg = h/mv; the frequency is
moc*/hv1 — v*/c®; the speed of propagation of the waves is c*/v,
superior to the speed of light.

I can no more than allude to the strangely suggestive fact, that in
general as well as in this special case the speed of the particle and the
speed of the associated waves are related to one another in the same
way as group-speed and wave-speed in ordinary optics.

ATTEMPT TO FIND A MEANING FOR THE SYMBOL ¥

Thirty-three years ago the Earl of Salisbury, invited by reason of his
eminence as a statesman to be the President of the British Association
for the Advancement of Science, observed the physicists of his day
involved in their fervent speculations over the nature of the wther;
and of an address brilliant with felicitous phrases the best-remembered
words are those by which he described the outcome of their travail:
The main, if not the only, function of the word aether has been to furnish a
nominative case to the verb 'to undulate.’ Quite the same thing could
now be said of the symbol ¥, insofar as it serves to determine the
energy-values of the Stationary States of the systems devised to repre-
sent atoms. When it is used for this purpose, it vanishes just as the
final triumph is achieved. Like the variable under the sign of integra-
tion in a definite integral, it drops out of sight when the calculations
which it proposes are actually performed. Indeed it might be dis-
carded altogether during the process of calculating Eigenwerte and
energy-values; one might speak exclusively of the ‘“differential opera-

tor" V¢ — 8x2m(E — V)/h*; many mathematicians do so.
45
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Schroedinger however conceived the daring, the admittedly tenta-
tive and still incomplete but very alluring, idea of seeking in ¥ some
measure of the density of electric charge. Specifically, it occurred
to him to define the square of the amplitude of the oscillations of ¥,
which the Eigenfunktionen prescribe as function of the coordinates—
to define this squared amplitude as the density of the electric charge,
spreading the electron as it were throughout space.

Let us examine this idea, and see whither it leads.

To avoid avoidable complexities as far as possible, I take the simplest
of all cases: the linear oscillator, represented by the imaginary “string"”’
stretched along the x-axis, possessed of a wave-speed varying as
A1 — #%/I2, real from the origin both ways as far as the points
x = + L and imaginary thenceforward. I will also refer to the still
simpler “actual’ case which served as an introduction to this one:
the problem of the stretched string, clamped at its extremities at
% = =+ L, possessed of a uniform real wave-speed u at all points
between.

In both these cases of the imaginary and the real string, the search
for the Eigenwerte and the Eigenfunktionen leads us to diverse natural
modes of vibration, executed with various frequencies »y, v1, v2, ¥3 * -
and displaying stationary wave-patterns described by the Eigenfunk-
tionen: ’

yi = f(x)(4; cos 2rwit + Bysin 2mvit); i=0,1,2,3 - (201)

For the real string the functions fi(x) are sine-functions; for the
imaginary strings which are the model of the linear oscillator, they are
given by (155). I recall once more that in the latter case we have, not
distinet modes of oscillation of one string, but the fundamental modes of
as many strings as there are Stationary States.

When the real string is vibrating in the 7th mode, or when we are
dealing with the ith imaginary string, the function f;(x) is proportional
to its vibration-amplitude. The form of equation (201) shows that
this amplitude at any fixed point remains constant in time.

If the square of the vibration-amplitude is to be regarded as the
density of electric charge along the string, it follows that when the
oscillator is in one of its stationary states, and the string therefore
vibrating in one of its modes, the density and the distribution of charge
remain everywhere constant. There would be no to-and-fro motion
of charges, and no tendency to radiation.

Suppose now that the real string is vibrating simultaneously in two
modes, the ith and the jth; or that we have both the ith and the jth
imaginary string coexisting (this is where the model is clumsiest!).
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The vibrations are described by the following formula (I have put
A; = A; = 1 and B; = B; = 0, which simplifies without injury to the
generality of the result):

v = y; + 3; = fi(x) cos 2mvit + fi(x) cos 2mwt, (202)

which is easily transformed thus:
y = Ccos (2zvi — «), (203)
C* = f& + fi* + 2fif; cos 2x(vi — w))t, (204)

and o = a constant not important for our purpose.

Here we have a vibration in which the amplitude at any fixed point
varies with time; the square of the amplitude is the sum of a constant
term and a sine-function of time, and the frequency of the sine-
function is the difference between the frequencies of the two coexisting
modes of vibration.

Identifying the square of the amplitude with the density of electric
charge, we see that this charge-density varies at each point with the
frequency (v; — »;). We might therefore expect radiation of this
frequency. )

Now the vibration-frequencies »; and »; corresponding to the modes
of vibration, that is to the Stationary States ¢ and j having energy-
values E; and E;, are respectively E;/h and E;/h.

If therefore—to speak in a vague but suggestive fashion—the linear
oscillator were simultaneously in two Stationary States, their energy-
values being E; and E;, then the square of the amplitude of the oscilla-
tions of ¥ would be fluctuating at each point of the ‘‘imaginary
string”’ with the frequency (E; — E;)/k; and if this squared amplitude
were to be identified with charge-density, then the system might be
expected to emit radiation of the frequency (E; — E,;)/h.

Transition between two states would then signify coexistence of the
two states.?

We proceed a step further in the development of this idea, by forming
the following integral:

M= f xClx = f xfidy + f xf fdx

+ [ 2fm.\'f,'f,dx J cos 2w (v; — vl

in which

(205)

This integral represents the electric moment of the supposed distribu-

I should again recall that in the picture we have, not two distinct coexisting
modes of vibration of the same elastic string; but the fundamental (and solitary)
modes of vibration of two distinct elastic strings.
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tion of “electric charge’’ along the imaginary string, relatively to its
centre at the origin. If it should turn out zero, there would be equal
amounts of charge to left and to right of the centre; if it should turn
out positive or negative, there would be more charge to the right of
the centre than to the left, or more to the left than to the right; if it
should turn out variable, if for instance the coefficient of the cosine-
term should differ from zero, there would be a surging of the charge
to and fro across the origin.

The functions fi(x) have been written down in equation (155), near
which it was shown that they are alternately even and odd functions
of x: fo, fo, fa -+ are even, fi, fs, f5 -+ are odd. Their squares are
consequently even, the products of their squares by x are odd, functions
of x; and the first two integrals in the expression (205) for M vanish.

As for the integral f xfifidx, its integrand is an odd function of x if

i and j are both even or both odd, and in either case it vanishes; so
that if two wave-patterns corresponding both to even-numbered or
both to odd-numbered Stationary States coexist, there is no surging
of charge to and fro, and the electric moment of the system remains
constant. If 7 is even and j odd, or vice versa, the conclusion is not
so immediate. It follows however from the general properties of the

el

Hermite polynomials *® that the integral xfifidx always vanishes

—a0
unless ¢ and j differ by one unit, so that in every case but this the
electric moment is continually zero. This leads us to the rule:

If two modes of vibration i and j coexist, the electric moment of the
“imaginary string’ representing the linear harmonic oscillator varies
sinusoidally with the frequency (vi — v;), if and only if 1 =7 £ 1;
otherwise the electric moment is and remains zero.

This may be interpreted as meaning physically that radiation
occurs only when two “adjacent” states—two states for which the
quantum-number differs by one unit—coexist; that transilions are
possible only between adjacent states.

This is a Principle of Selection. It is the principle of selection
predicted for the linear harmonic oscillator in the earlier versions of
atomic theory, and sustained by observations on those features of
band spectra which are attributed to simple-harmonic vibrations of
molecules.

Thus in the case of the linear oscillator, the idea of interpreting the
square of the amplitude of the W-vibrations as density of electric
charge is twice successful. When the oscillator is in one of its sta-

2 Courant-Hilbert, Methoden der math. Physik, p. 76.
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tionary states, the distribution of ‘‘charge” along the imaginary string
which represents it is stationary; when the vibrations corresponding
to two distinct Stationary States coexist, the distribution of the
‘““charge” fluctuates, with precisely the frequency which experiment
teaches us to expect from a transition between the states in question;
when and only when the two coexisting stationary states are adjacent
in the ordering, when and only when experiment teaches us to expect
transitions, the fluctuation assumes the emphatic character of a bodily
surging of the charge to and fro across the centre of the string.®

One further desirable result of identifying square of amplitude of ¥
with density of electric charge appears when from one dimension we
go over to systems of two or three dimensions. As illustration I take
the example of an hydrogen atom exposed to an electric field, repre-
sented by an imaginary fluid in three dimensions, the stationary wave-
patterns of which correspond to the stationary states of the perturbed
atom. If two of these stationary wave-patterns coexist, there may
be a bodily surging of charge to and fro, with the frequency belonging
to the transition between the stationary states which the wave-patterns
represent. If in particular two wave-patterns sharing a common
value of the quantum-number s (the “‘equatorial quantum-number,”
equation 186) coexist, there is a surging of the ‘‘charge,” and its to-
and-fro motion is parallel to the applied electric field; there is no
component of the motion normal to the field. With this result agrees
well the fact of experience, that the light emitted by virtue of transi-
tions between stationary states differing only in the quantum-numbers
by and ks, and sharing the same value of s, is polarized with its electric
vector parallel to the field. Again, if two wave-patterns for which the
values of s differ by one unit coexist, the resultant surging of the
charge is perpendicular to the electric field; and it is a fact of ex-
perience that the light due to transitions between stationary states
having values of s one unit apart is polarized with electric vector nor-
mal to the field. Finally, if two wave-patterns for which the values
of s differ by two or more units coexist, there is no far-sweeping dis-

2 Schroedinger has shown that if we conceive a great number of Stationary
States with high values of ¢ and artfully chosen relative ‘““amplitudes” (i.e. values
of A; and B; in equation 201) to exist simultaneously, we find the *charge-density"”
concentrated into a small region, a sort of knot or bundle which oscillates back and
forth across the centre of the string with frequency »o and with approximately the
same amplitude of vibration as the original particle (the particle with mass # and
restoring-force — 4x?mrpg*x of which the string is our image in wave-mechanics)
would have if its energy were the same as that of the Stationary State which was
made most prominent in the summation (Naturwiss., 14, pp. 664-666; 1926). This
is a promising result, suggesting as it does that atoms in highly excited states may
be groups of particles which, as the system returns to normalcy, spread out into a

sort of fluid haze. The idea can be generalized widely, and merits a thorough
analysis.
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placement of charge; and in the spectra, the lines which such tran-
sitions should cause are missing.

Thus in the case of the hydrogen atom exposed to an electric field,
and in other two- and three-dimensional systems as well, the identifica-
tion of the square of the amplitude of the ¥-vibrations with density of
electric charge is thrice successful. In the picture, we see the electric
charge stationary when the system is in a stationary state, fluctuating
with the proper frequency when two states coexist; we see it surging
back and forth en masse when the coexisting states are two between
which a transition is “permitted,” and otherwise not; we see it
surging back and forth along the proper direction to explain the polari-
zation of the light which results from the transition. As a device for
picturing the radiation-process, Schroedinger’s model is certainly un-
rivalled. In the earlier atom-models, even the frequencies of the
emitted rays of light and the frequencies of the intra-atomic vibrations
did not agree. Here at last they do, and when a tube full of hydrogen
atoms is pouring out the light of the red Balmer line with its frequency
of 4.57-10%, it is permissible at last to imagine each of them as a
mechanism, within which something is vibrating 4.57-10" times in
a second.

Even the relative intensities of spectrum lines may fall within the
scope of wave-mechanics. We have seen that in the case of the linear
oscillator, the vanishing of the integral J'xfif;dx for all pairs of Sta-
tionary States for which ¢ and j differ by more than one unit entails
the non-occurrence of the corresponding transitions, the inability to
emit or absorb the corresponding radiation. May it not be that the
intensity of the radiation emitted by reason of the transition between
any two states of any system, and polarized parallel to any direction
x, is governed by the value of the integral S xy:dx involving the
Eigenfunktionen y; and y; of the states in question? To develop this
idea more assumptions must be introduced than I have yet mentioned,
since every Eigenfunktion which I have thus far written down might
be multiplied by any constant factor without ceasing to be an Eigen-
funktion, and some rule must be laid down to fix these constant
factors. To predict the relative intensities of the components into
which certain hydrogen-atom lines are split by electric field, Schroe-
dinger made a simple and natural assumption about these factors; and
the results turned out to be in good agreement with the data.® I
cannot enter further into this topic, except to remark that the point
of contact between wave-mechanics and the matrix-mechanics ot
Heisenberg lies here; for the integrals in question figure as matrix-

% Schroedinger, Ann. d. Phys., 80, pp. 464-478 (1926); Phys. Rev. (2), 28, pp.
1049-1070 (1926).
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elements in the latter theory, which indeed appears to be an alternative
way of thinking to reach the same conclusions as emerge from the
speculations of de Broglie and Schroedinger.®

Nevertheless the image is still far from perfect; there is certainly
something still lacking, something still to be discovered and added.
Radiation may flow forth from the atom when two stationary states
coexist, but it does not flow forever; one or the other of the wave-
patterns must therefore die out, soon after the radiation commences;
yet no agency has thus far been provided to effect the extinction of
either. It may not be difficult to insert such an agency into the theory,
in the form perhaps of an interaction between the ¥-waves and the
outflowing electromagnetic waves. It may be much more troublesome
to extricate ourselves from the paradox into which the identification
of square-of-amplitude-of-the-¥-vibration with density-of-electric-
charge has led us. All of the numerical agreements between this
theory of the hydrogen atom and the features of the hydrogen spectrum
are obtained by putting — ¢¥/r for the potential-energy-function of
the atom-model. This is the potential-energy-function for a point-
nucleus and a point-electron. If we dissolve the electron, spread it
out like a cloud in space around the centre of the atom, how can we
consistently retain the potential-energy-function derived from the
picture of a point-charge? How is it defensible to define electric
charge in one way in order to lay the cornerstone of the new theory,
and then redefine it in a contrasting way in order to raise the super-
structure?

Wave-mechanics, striking as are the pictures which it offers of
certain of the processes within the atom, still abounds in conceptual
difficulties of which the last is a fair instance; and those who share
the view of Lessing that it is more desirable to be approaching truth
perpetually than ever to attain it may still find satisfaction in physics.
Wave-mechanics still is tentative, not definitive; a plan of cam-
paign, rather than a conquest. The outcome cannot now be foreseen.
Yet we may reflect that twenty-five years ago it was universally sup-
posed that light possesses only the qualities of a wave-motion; and
then experiment was piled upon experiment which showed that in
addition it behaves in many situations as though it were a stream of
corpuscles. Perhaps we stand at the beginning of an equally imposing
series of experiments, which will show that matter with equal incon-
sistency partakes of the qualities of particles and of the qualities of
waves.

3 Schroedinger, Ann. d. Phys., 79, pp. 734-756 (1926); C. Eckart, Phys. Rev.
(2), 28, pp. 711-726 (1926).



