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Electromagnetic Theory and the Foundations of Electric
Circuit Theory *

By JOHN R. CARSON

Synorpsis: The familiar equations which are used to solve for the currents
and charges in linear networks summarize the inductive analysis of countless
observations made upon such networks. Having been arrived at by induc-
tive methods, these familiar equations of Ohm, Faraday and Kirchhoff
are substantially independent of the more general electromagnetic theory
of Maxwell and Lorentz. The present paper examines the foundation of
electric circuit theory from the standpoint of the fundamental equations of
electromagnetic theory and a derivation of the former from the latter is
made, in the course of which the assumptions, approximations and restric-
tions tacitly involved in the equations of circuit theory are explicitly stated.
The treatment is sufficiently extended as to show how the familiar equation
for the simple oscillating circuit and the so-called telegraph equation can
be deduced from the Maxwell-Lorentz statement of electromagnetic theory.

LECTRIC circuit theory, as the term is employed in the present
paper, is that branch of electromagnetic theory which deals with
electrical oscillations in linear networks; more precisely stated, with
the distribution of currents and charges in the free oscillations of the
network, or under the action of impressed electromotive forces. The
network is a connected set of closed circuits or meshes each of which
is regarded as made up of inductances, resistances and condensers, a
simplifying assumption which is fundamental to circuit theory.

The great importance of electric circuit theory in electro-technics
does not require emphasis; it is not too much to say that it is respon-
sible in no small measure for the rapid development of electrical
engineering and is an absolutely essential guide in the complicated
technical problems there encountered.

The equations of electric circuit theory in their present form are
essentially a generalization of the observations of Ohm, Faraday,
Henry, Kirchhoff and others and their development preceded the
electromagnetic theory of Maxwell and Lorentz. Naturally, in view
of its early development, circuit theory embodies approximations,
the precision of which cannot be determined from the observations on
which it is based. For example, circuit theory explicitly ignores the
finite velocity of propagation of electromagnetic disturbances, and

1In its original form this paper was read before the National Academy of Sciences,
April 1925. Subsequently it was amplified and revised and included in a lecture
course delivered at the Massachusetts Institute of Technology, April 1926.

1 1



2 BELL SYSTEM TECHNICAL JOURNAL

hence the phenomena of radiation. Again it involves the assumption
that the network can be represented by a finite number of coordinates
and thus that it constitutes a rigid dynamic system. The rigorous
equations of electromagnetic theory formulate the relations between
current and charge densities and the accompanying fields. Circuit
theory, on the other hand, expresses approximate relations between
total currents and charges and impressed electromotive forces.

With the rapid development of electro-technics an increasing number
of problems is being encountered where the application of classical
electric circuit theory is of doubtful validity, or where the conclusions
derived from it must be interpreted with great care. Such problems
are the result not only of the use of very high frequency in radio-
transmission but arise also in connection with the need of a more
precise theory of wire transmission.

In view of the foregoing it seems desirable to examine the founda-
tions of circuit theory. This is the problem dealt with in the present
paper:—a derivation of the classical circuit theory equations from the
standpoint of electromagnetic theory, in the course of which the
approximations involved are pointed out.

A second reason, pedagogic in character, is believed to justify the
present study. This is, that, as circuit theory is usually taught to
technical students no picture of its true relation to electromagnetic
theory is given, and the student comes to regard inductance, resistance,
capacity, voltage, etc., as fundamental concepts.

To start with our problem in a general form, consider a conducting
system of any form whatsoever, in which the charge density at any
point x, ¥, z at any time ¢ is denoted by

p(x, 3,3, 1) = p,
and the vector current density by

u(x! ¥ 5 t) = u,
the functional notation indicating that the charge and the current
density are functions of space and time. At any point in the system let

E(x,y,2 1t =E
denote the vector electric intensity. This we shall suppose to be com-
posed of two parts; thus

E=E +FE. (1)

In this equation E° is the impressed eleciric intensity and E’ the

electric intensity due fo the reaction of the currents and charges in the
system. Thus E° may be the electric intensity due to a distant system,
as in radio transmission, or that due to a generator, battery or other
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source of energy. In the following we shall suppose that E° is specified
and we shall keep carefully in mind the fact that E° denotes the
electric intensity not due to the reaction of the system itself. This
distinction is extremely important.

We have now to take up the problem of specifying the electric
intensity E’ in terms of the currents and charges of the system. The
necessary relation is furnished by the Lorents or refarded potentials

d = [- plt = 7fe) dv, (scalar) (2)

p
A= fu_(t_—r_r/c) dv, (vector). (3)

Interpreting equation (2), ® is equal to the volume integral of the
retarded charge density divided by the distance between the point
at which ® is evaluated and the location of the charge. The refarded
charge density means that at time ¢ we take the value of the charge at
the earlier time ¢ — r/c, where ¢ is the velocity of light. It is to be
understood that p and u are the true charge and current density, and
displacement currents are not included. Their effect appears in the
retardation only. ¢ also is the true velocity of propagation in vacuo.
The potential ® is therefore a generalization of the electrostatic
potential into which it degenerates in an unvarying system.

Similarly the vector potential A of equation (3) is gotten by a volume
integral of the retarded vector current density divided by distance 7.
As the name indicates it is a vector quantity and in Cartesian co-
ordinates has three components 4., 4,, 4,.

By means of the equation

19
— d— =2
E grad T

A, @)
the electric intensity due to the reaction of the system is expressed
in terms of the charge and current densities.

Equations (2), (3), (4) and the additional equations

B = curl 4, (5)
. 10
divu = — 7252 Py (6)

(where B’ is the magnetic induction due to the currents in the system)
are the complete equivalent of Maxwell’s equations from which they
are immediately derivable.
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Aside from the fact that the physical significance of the foregoing
equations is deducible by direct inspection, they represent a great
step because they are infegral equations whereas Maxwell's equations
are partial differential equations. A second advantage is that only
true currents and charges are involved, the displacement currents of
Maxwell being replaced by retarded action at a distance. Whatever
may be said for or against the physical point of view, this effects a
substantial mathematical simplification. The formulation of the
fundamental field equations in terms of the retarded potentials is
due to Lorentz.

In order to complete the specification of the system we have to
formulate the relation between the current density u and the electric
intensity E. In doing so we shall exclude magnetic matter and
shall assume that the conductors obey Ohm's law. This restriction
is not necessary but effects a great simplification in both the physical
picture and the mathematical formulas.? We therefore assume that
the conducting system is specified completely by its conductivity

g =glx, v 3),
and that
1
—-u = E. 7
P (7)
Combining with (1) and (4), we have
Ly = o _ _1a
Eu =F grad ® pEY A, (8)

which is our fundamental equation.® The preceding set of equations,
if g and E° are everywhere specified, enable us, theoretically at least,
to completely solve the problem of the distribution of currents and
charges in the system.

Before taking up this problem we shall first derive the energy
theorem and then investigate the properties of the field by aid of the
retarded potentials.

Starting with equation (8), multiply throughout by u, getting

1 2 — o, — . — ' .1_9
Eu = (E°-u) — (u-grad ®) -<u cazA)'

and integrate over the system, getting

f—z—uﬂdv =I(E°-u)dw —f(u-grad ®)dv —f(u- lza%A)dv.

2 See Appendix for the general formulas.
3 See Appendix for the vector notation employed in this paper.
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Remembering that u is expressed in elm. units, this becomes

151 . —(u 12
-ED_EW_I(“ grad ®)dv J(u catA)dv

W=D+ cJ (u-grad ®)dv + cj.(u- %%A)dﬂ,

or

where W is the work done per unit time by the impressed electric
field, and D is the dissipation per unit time in the system; i.e., the rate
at which electrical energy is converted into heat. By means of general
theorems in vector analysis, the integrals can be transformed and the
equation reduced to the form

W = D-{-—(igﬂj‘(l':"-l-I:l"z)ai,'iu—l—4 f[EH],.dS
the last integral being taken over any closed surface which includes
the system. Translating this equation into words, it states that:—

The work done per unit time by the impressed forces is equal to the
rate of dissipation per unit time plus the rate of increase of the field
energy plus the rate at which energy is radiated from the system. The
vector (c/4w)[E-H] is the radiation veclor and gives the density and
direction of energy flow per unit time;* it will be denoted by S.

We now shall briefly consider the field due to the currents and
charges in the system.

If the current density u and charge density p are everywhere
specified, the retarded potentials are uniquely and completely deter-
mined by the formulas

A= f&:”;ﬂ—) dv, (vector)

® = j L:Lc) dv. (scalar).

The functional notation u(t — r/c) and p(¢t — r/c) indicating that u
and p are to be evaluated at time ¢ — r/c may profitably be replaced
by ue= @97 and pe~*/*)", so that

ue—(ﬁ-’c')r
4 :f r du,
—(ple)r
[4
b =fp p dv.

4 This is known as Poynting’s theorem.
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These expressions may be interpreted in either of two ways. (1)
If p = iw where & = 2xf and ¢ = V— 1, then the formulas are the
usual complex steady state expressions. On the other hand if p is
regarded as d/dt, they are operational formulas. Tt is worth while to
explain the latter briefly on account of its own interest and its bearing
on the operational calculus.

The differential equations of 4 and ® are

192
(vz—g-ﬁ)A =47ru,

1 4?

(Vz—c—zé?z) ® = 47p.

where
V2 = 9%/ax* 4+ 9*/ay? + 9%*/9z%

Now it will be recalled that the differential equation of the electro-
static potential T is

V2V = 4np
and that its solution is

V= 'Jr-gdv.

2
(Vz—%)d):‘hrp

and the corresponding solution is

e—(plc)
¢'=fp p dv.

Now this is an operational equation in which p is an arbitrary time
function. Its solution depends on the following general operational
theorem.’

If x is defined by the operalional equation

x = f(t)e™,
x=f(t—N).

Consequently, the solution of the operational equation for & is*®

P = [Mdﬂ.

v

Operationally

then

5 See ** The Heaviside Operational Calculus," Bull. Amer. Math. Soc., Jan., 1926.
8 A proof of this theorem by operational methods was privately communicated to
the author several years ago by Stuart Ballantine.
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Let us now examine the field of the currents and charges by aid of
the formulas

E = —gradq)——-gA,
H = curl A.

Performing the indicated operations,

curl A = — fg—(mc)r[n,u](_r_lz_}_p l)dv,

cr
—lor 1. p1
grad & = —fe ('”P'"(,Tz'l'z r)dzl,

where n is a unit vector, parallel to r, drawn through the contributing
element.

We see from these formulas that the magnetic field due to the
currents, and the electric field due to the charges, consist each of two
components; one varying inversely as the square of the distance from
the contributing element and the other inversely as the distance.
Writing » = 4w = i-2nf, the orders of magnitude of the two com-
ponents are 1/r2 and w/c? and their ratio is 2w (r/\), where X is the wave
length.

The first component is the induction field, and involves the fre-
quency only through the exponential term; the second is the radiation
field and involves the frequency linearly.

If we are considering points in the system itself, and if the dimen-
sions of the system are so small that 2z (r/)) is small compared with
unity, the expressions reduce to

curl A = — [[n :[] dv,

r

grad ® = — 'fn%dzr.

If therefore the dimensions of the system are sufficiently small with
respect to the wave length, these expressions can be employed in cal-
culating the distribution of the currents and charges in the system.
This is usually the case in circuit theory, even at radio frequencies.

At a great distance from the system, however, the case is quite
different. For no matter how large the wave length, A, if we consider
points outside the system such that 2x(r/A) is everywhere large com-
pared with unity, the second or radiation field will predominate.
This leads to the important conclusion that the field which determines
the distribution of currents and charges in the system is quite different
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from the field which determines the radiation, and explains the fact
that radiation may usually be neglected in calculating the distribution
in the network.”

To examine the radiation field, consider a point P at such a distance
from the system that 27 (r/\) is very large. Choose any point in the
system as the origin and write 7y as the distance from the origin to the
point P, and 7’ the distance from the contributing element P’ to the
origin. Then

r=ry— (r'n),

where n is the unit vector parallel to 7, and

e_"““"" —iwry
A= fu_eiw(r'-n)dv — € J,

Yo To

curl A = — fw fe—'w"n [n-J],
. Yo
which determines H.
Instead of calculating E from the formula

— grad & —i—;—oA,

we make use of the fact that in the dielectric

iwE = curl H,
whence

E=—[H-n]

The interpretation of these equations is that in the radiation field E
and H are equal, are in phase and are perpendicular to each other
and to the vector ro. Consequently the radiation vector S is given by

C
S“Gm
_cw® [ J|?
T 4r 2

and the radiation is everywhere outward.

These formulas can be used to calculate the radiation in terms of
the current distribution alone, and the charge distribution does not
appear explicitly.

" Conversely the field in the immediate neighborhood of the system is no criterion

of the radiation field or the radiating properties of the system. This fact is not
always kept in mind by radio-engineers.
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DERIVATION OF THE FAMILIAR CIRCUIT THEORY RELATIONS

In the foregoing we have tacitly assumed that the distribution of
currents and charges in the systems is known. We now take up the
more difficult problem of determining the distribution in terms of the
impressed field and the geometry and electrical constants of the system.
This will introduce us to circuit theory and the enormous complexity
of the general rigorous expressions will show its important role in
physics and engineering. In fact without the beautiful simplifications
of circuit theory very few problems of this type could be solved.

In taking up this problem there are two possible modes of approach.
In accordance with one we start with Maxwell’s differential equations
and try to find a solution which satisfies the geometry of the system
and the boundary conditions. For conducting systems of simple
geometrical shapes solutions in this way are possible. For compli-
cated networks, however, this mode of approach is quite hopeless.

The other mode of approach is to start with the equation

!—lzu=E°—grad<I)-~iwA

_ E° gradfp(t —r rlc) do — i fu(t — 7/c) do,

r

(8)

which, together with the relation
iwp = — div u,

is an integral equation which completely determines the distribution
of currents and charges in the system provided g and E° are specified.

For general purposes of calculation it is quite hopeless as it stands.
1t has, however, several advantages. First, it is a direct and complete
statement of the physical relations which obtain everywhere. Second,
it uniquely determines the distribution and does not, like the differ-
ential equations, involve the determination of integration constants
from the boundary conditions. Third, it leads, through appropriate
approximations, to the philosophy and equations of circuit theory.

To start with a simple case, the solution of which can be extended
without difficulty to the general network, consider a conductor forming
a closed circuit. We suppose that it is exposed at every point to.an
impressed electric force E°, and we suppose that the surrounding di-
electric is perfectly non-conducting. It is now our problem to derive,
for this simple circuit, the circuit equations, in terms of fofal currents
and charges, from the rigorous integral equation for the current and
charge densilies.
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In the interior of the conductor let us assume a curve s defined
as parallel, at every point, to the direction of the resultant current.
We do not know precisely the path of this curve but we do know that
such a curve can be drawn. In the case of wires of uniform cross
section it will be approximately parallel to the axis of the wire. Let
the cross section of the conductor normal to s be denoted by S. The
total current I,, parallel to s, is then given by

I,=1=fuds.

Now corresponding to the surface S and its element d.S, let us define a
hypothetical surface > and its element do by the equation

#.dS = Ido,
whence

fﬂ,dS=I=Ifda=I'Zr
so that }_ is always unity. Now multiply the equation

1 o O .
Eu, = E, _(TS‘;) - 'r,wA_, (9)

by d¢ and integrate over the cross section }_; we get

fyﬁdcr = fEda - iwa,,da' — g—fti’dd.
g as

This can be written as
P(5)I(s) = E(s) — iwdy(s) — %E(s),
or simply

-
rI] = E — iwA —é}‘I’. (10)

r is simply the resistance per unit length of the conductor, since

2
rI? = fu—‘dS = dissipation per unit length due to current I,,

while E is the mean impressed electric force, parallel to s, averaged
over the surface 3. B
Now consider the term zwA ; we have

A =fA,da = fdaj t—’dv, w = u(t — r/c)
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or, neglecting the retardation,

§=fdrr L
r

We now assume that the * charging "’ current normal to s is negligibly
small in its contribution to the vector potential, whence

= ‘[‘ I(s") s/ E,S’ s') A(s, s")ds’,

A(s, s") = fdd f_l;dcr’.

The term & = f®do of (10) is next to be considered. Writing
pdS = Qdr,

where Q is the total charge per unit length, it becomes

f ds'0(s") f do f %dr' - f 0(s")us, s)ds’,

and we get finally

where

rI = E — iw fI-cos (s, s")N(s, s")ds" — (%f(_)-p(s, shds'. (11)
This, together with the further relation

jwQ = — a%f, (12)

constitutes an integral equation in the total current I = I,. That
is to say, we have succeeded in passing from the rigorous integral
equation in the point function densities to an approximate integral
equation in terms of the total current and charge per unit length of
the conductor. The functions A and u of this equation, however, while
theoretically determinable from the rigorous equation, are not solvable
from the approximate integral equation. Indeed they are, strictly
speaking, functions of the mode of distribution of the impressed field
E°. This fact in most cases, however, is of purely academic interest
and A and g can be approximately evaluated from the geometry of the
conductor by assuming a certain distribution of current density over
the cross section. With this problem, however, we have no concern
here, we are merely concerned to deduce the form of the canonical
equations of circuit theory.
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Now let us integrate with respect to s, around the closed curve;

we get
f rids

fE‘ds - iwfIdsfcos (s, SIA(s, s")ds’

(13)
V — i [ 1ds,

Il

thus defining the émpressed voltage V, and the inductance per unit
length /. Finally, if we assume that this current variation along the
conductor is negligibly small, we get

Ifrds= V—imIflds,

which may be written as
RI 4 iwll = T, (14)

which is the usual form of the equation of circuit theory for a closed
loop.

In deducing (14) from (10) there is one important point which should
be noticed. The assumption that the variation in the current I
along the conductor is sufficiently small to justify passing from (13) to
(14) does not by any means imply that the effect of the distributed
charge, which is absent in (14), is negligible. The term (9/ds)®
vanishes in passing from (12) to (13) because the integration is carried
around a closed path. Actually comparing the terms iwd and (3/9s)®,
we see that their ratio involves the factor (w/c)? which is an exceedingly
small quantity even at very high frequencies. Consequently extremely
small variations in the current are sufficient to establish charges
which can and do profoundly modify the resultant electric field.
These, in the case of a closed circuit, are eliminated from explicit
consideration by integrating around a closed curve.

This may be illustrated by brief consideration of a second case
where the conductor is not closed but is terminated in the plates of a
condenser at s = 5, and s = s, respectively. Making the same as-
sumption as above, after integrating (11) from s = s; to 5§ = 59, we get

RI+ oLl + & — & = V, (15)

where &, — @, is the difference in ® between the condenser plates.
Assuming these very close together, ®; — &, is approximately propor-
tional to the charge on the condenser, that is, to

fIdt -1
Tw
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and may be written as I/wC, whence
RI 4+ ioll + —I =V, (16)
twC

which is the usual circuit equation for series resistance, inductance
and capacity.

Extension of the foregoing to networks containing a plurality of
circuits or meshes is straightforward and involves no conceptual or
physical difficulties, although branch points may be analytically
troublesome. These questions will not be taken up, however, as the
foregoing is sufficient to show the connection between general electro-
magnetic theory and circuit theory and to show how circuit equations
may be rigorously derived and their limitations explicitly recognized.

TuE TELEGRAPH EQUATION

A particularly interesting and instructive application of the pre-
ceding is to the problem of transmission along parallel wires and the
assumptions underlying the engineering theory of transmission.?

Consider two equal and parallel straight wires so related to the
impressed field that equal and opposite currents flow in the wires.
Here, corresponding to equation (11), we have

1l =E— iwfI[?\(s, sy — N(s, s')}ds’
(17)
- :—SIQI#(S: s') — u'(s, ) }ds".

In this equation \(s, s') is the ‘‘mutual inductance'’ between points
5, s’ in the same wire while \'(s, s') is the corresponding mutual induc-
tance between point s in one wire and point s’ in the other. p and p’'
have a corresponding significance as ‘‘mutual potential coefficients.”

Now A(s, s') — N (s, §') is a rapidly decreasing monotonic function
of |s —s'| and the same statement holds for u — p'. In view of
this property and further assuming the variation of I and @ with
respect to s as small, (17) to a first approximation may be replaced by

rI = E — iwl [ (A — N)ds" — %QI (u — w)ds'. (18)
At a sufficient distance from the physical terminals of the wires the

# For an entirely different treatment of this problem, reference may be made to
“The Guided and Radiated Energy in Wire Transmission,” Trans. 4. I. E. E., 1924,
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integrals become independent of s and approach the limits

[“oamwe 1,

(u — pds" =

o |-

whence
/I +iall + =1 = E,
TwC

Finally assuming that the impressed electric intensity E = 0, and
introducing the relation

'!.wQ = '—'6—SI,
we get

(r-l—ml—i— a)I=0,

which is the telegraph equation.

Besides its formal theoretical interest the foregoing derivation of
the telegraph equation admits of some deductions of practical impor-
tance. These deductions, which are rather obvious consequences of
the analysis, may be listed as follows.

1. The telegraph equation, as derived above, applies with accuracy
only at points at some distance from the physical terminals of
the line.

2. The accuracy of the telegraph equation in formulating the phys-
ical phenomena decreases in general with increasing frequency.

3. The telegraph equation is the first approximate solution of an
integral equation. The first approximate solution decreases in
accuracy with decreasing wave length of the propagated current.

4. While the telegraph equation indicales a finite velocity of propagation
of the current along the line, it is based on the assumption that
the fields of the currents and charges (as derived from the potential
functions ® and A) are propagated with infinite velocity.

5. As a consequence of (4), the telegraph equation does not take
into account the phenomena of radiation, and in fact indicates
implicitly the absence of radiation.

THE CoIL ANTENNA

An important example of the type of problem to which the fore-
going analysis is applicable is the coil antenna. To this problem
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equations (11) and (12) immediately apply but, at least at high
frequencies, the approximations introduced above to derive the tele-
graph equation are not legitimate. This is due to the geometry of
the conductor, and also to the fact that the impressed field is not
approximately concentrated but is distributed over the entire length
of the coil. It is intended to apply these equations to a detailed
study of this problem. In the meantime, however, it may be noted
that the current depends not only on the line integral of the impressed
electric intensity but also on its mode of distribution along the length of
the coil. This fact may possibly have practical significance in the
design of coil antenna and their calibration at very short wave lengths.

APPENDIX

In the beginning of this paper, it was stated that the analysis applied
only to the case of conductors of unit permeability and specific induc-
tive capacity which obey Ohm's Law. The reason for this restriction
and the formal extension of the analysis to the more general case will
now be briefly discussed.’

Suppose that the conductor, instead of having the restricted proper-
ties noted above, obeys Ohm’s Law but has a permeability x and
specific inductive capacity k which may differ from unity.

The equation (1),

E = E° — grad ® — iwA, (1)

still holds, as do also the potential formulas (2) and (3) and the
formulas for the electric and magnetic intensities (4) and (5). The
relation
— dwp = divu
is also valid.
The equation u = gE must, however, be modified in the following
manner. If we write

E—1

P =",

_n—1
M = drp H,

then the foregoing equations are correct, provided we substitute for
the equation u = gE the more general expression
u = gE + iwP + curl M.

9 For a previous discussion, see ‘‘A Generalization of the Reciprocal Theorem,”
B. S. T. J., July, 1924,
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By aid of these relations, the problem involves the solution of the
simultaneous integral equations

E = E° — grad & — 1wA,
H = H° + curl A.

These simultaneous equations can immediately be reduced to a single
integral equation in u, the formal solution of which is straightforward.
A study of this equation, however, has not been carried far enough
to justify further discussion in the present paper.

NoTE oN VECTOR ANALYSIS AND NOTATIONS

In the foregoing, vectors are indicated by Clarendon, or bold-faced
type. To those unfamiliar with vector analysis the following may be
helpful:

grad @ is a vector with the Cartesian components

_ﬂcp, grad, ® = itb, grad. ® = g"‘]’:

grad ® = dx dy dz

curl A is a vector with the Cartesian components

curl; 4 = (%A, — :—ZAy,
curl, 4 = ;%A-,, - a—iAz.
curl, A = ;%A" — C%Az;
div u is a scalar; in Cartesian notation
divu = 56_:}“‘ + %uy + (%n,,.

(E-u) denotes the scalar product of the vectors E and u and itself is
a scalar. In Cartesian notation

(E-u) = Eau. + Eu, + E.u..

[E-H] denotes the vector product of the vectors E and H. It is
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itself a vector with the Cartesian components
[E-H], = E,H. — E.H,
(E-H], = E.II, — E.H.,
[E-H]., = E.II, — E,I.
The symbol W72 denotes, in Cartesian coordinates, the operator

a? a? a?
+ 25+ 35

dy*

V=

dx?
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