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INTRODUCTION

HE transmission of alternating currents over any transmission

line between specified terminal impedances depends only on the
propagation constant and the characteristic impedance of the line
(at the particular frequency contemplated). In this sense, then, the
properties of transmission lines may be classed broadly as propagation
characteristics and impedance characteristics. In telephony we are
primarily concerned with the dependence of these characteristics on
the frequency, over the telephonic frequency range.

Prior to the application of telephone repeaters to telephone lines the
propagation characteristics of such lines were more important than
their impedance characteristics, because the received energy depended
much more on the former than on the latter.

The application of the two-way telephone repeater greatly altered
the relative importance of these two characteristics, decreasing the
need for high transmitting efficiency of a line but greatly increasing
the dependence of the results on the impedance of the line. As well
known, this is because the amplification to which a two-way repeater
can be set without singing, or even without serious injury to the
intelligibility of the transmission, depends strictly on the degree of
impedance-balance between the lines or between the lines and their
balancing-networks. In the case of the 21-type repeater the two lines
must have such impedances as to closely balance each other throughout
the telephonic frequency range. In the case of the 22-type repeater,
which for long lines requiring more than one repeater is superior to the
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21-type, impedance networks are required for closely balancing the
impedances of the two lines throughout the telephonic frequency
range. Such balancing networks are necessary also in connection
with the so-called four-wire repeater circuit.!

Smooth lines are fundamental in telephonic transmission; for any
telephone line is either a simple smooth line, or a compound smooth
line, or a periodically loaded line whose sections are themselves short
smooth lines. In any case the characteristic impedances of the con-
stituent smooth lines enter importantly into the impedance of the
system. Moreover, the characteristic impedance of ‘the series type of
periodically loaded line, at frequencies low relatively to its critical
frequency, is closely the same as the characteristic impedance of the
corresponding smooth line.

Parts I, II, and III of this paper aim to present in a simple yet
comprehensive manner the dependence of the characteristic impedance
of the various types of smooth lines on the frequency and on the line
constants, by means of description accompanied by equations
transformed to the most suitable forms and by graphs of such
equations.

Part IV describes the principal networks devised by the writer at
various times within about the last ten years, for simulating the im-
pedance of the various types of smooth lines. Of course, the imped-
ance of any line could be simulated, as closely as desired, by means
of an artificial model constructed of many short sections each having
lumped constants; but such structures would be very expensive and
very cumbersome. Compared with them the networks described in
this paper are very simple non-periodic stiuctures that are relatively
inexpensive and are quite compact; yet the more precise of them have
proved to be adequate for simulating with high precision the im-
pedance of most types of smooth lines, while even the least precise
(which are the simplest) suffice for a good many applications. The
paper includes first approximation design-formulas and outlines a
supplementary semi-graphical method for arriving at the best pro-
portioning of the networks. A typical illustrative example is worked
out in Appendix E.

It is hoped to devote a succeeding paper to the impedance char-
acteristics of periodically loaded lines, and to various networks de-
vised for simulating and compensating such impedance.

IRegarding the broad subject of repeaters and repeater circuits, reference may

be made to the paper by Gherardi and Jewett: ‘“ Telephone Repeaters,” A. I. E. E.
Trans., 1919, pp. 1287-1345.
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Part |
GENERAL CONSIDERATIONS PERTAINING TO SM()OTH LINES

The exact formula for the characteristic impedance K of any smooth
line is usually written in the form

-_ | R+iwL 1
K=\ GFiuc )

R, G, L and C denoting, as usual, the fundamental line constants,?
namely, the resistance, leakance (leakage conductance), inductance,
and capacity, per unit length; w denoting 2 times the frequency f;
and 4 the imaginary operator V1.

However, this form is neither the simplest nor the most significant.
For it involves separately the four quantities R, G, L, and C and is
thus a function of not less than four?® variables, whereas its value
evidently depends on only the relative values of these quantities and
hence must be expressible as a function of only three independent
variables—namely the ratios of any three of them to the fourth.

In deciding just what form or forms of expression to adopt for K
we shall here he guided by the following practical considerations:

(A) In telephony we are chiefly interested in the dependence of
K on the frequency f; or, stated more generally, in the dependence of
some quantity that is approximately proportional to K on some
quantity that is approximately proportional to f.

The class of smooth lines is comprised between the following two
rather wide extremes, having very different characteristics:

(B) At one extreme are the large gauge open-wire lines, particularly
when used at high frequencies. For them R is small relatively to «L,
and G relatively to «C; and hence K is approximately or at least
roughly equal to \/L,«"C.

(C) At the other extreme are the small gauge cables, particularly
when used at low frequencies. For them R islarge relatively to wL,
though G is small relatively to wC; and hence K is approximately or at

least roughly equal to V'R/iwC.

(D) The line constants R, L, € do not change much with frequency
over at least the voice frequency range; and hence they, or combina-
tions of them, serve suitably as parameters.

(E) The leakance G, which is nearly always the least important
of the four line constants, usually varies greatly with the frequency

2 Constants as to current and voltage.
3 Five if w is regarded separately from L and C.
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and hence by itself does not serve very suitably as a parameter. How-
ever, in a wide range of applications G is approximately or at least
roughly proportional to the frequency; and then a suitable parameter
is G/f or preferably G/wC. This is true of cables except at extremely
low frequencies. It is at least roughly true of open-wire lines at very
high frequencies, such as carrier frequencies, but usually not at voice
frequencies. For most lines the leakance G is usually approximately
or at least roughly a linear function of the frequency, namely,
G =Go+f, where Gy is the leakance at f=0, and » is approximately
independent of the frequency. For cables, Gy is small compared
with »f except at very low values of f; but for open-wire lines Gy is
usually not negligible except at high values of f.

In the light of these considerations a study of equation (1) suggests
the employment of the quantities F, E, k, g, a, b defined by the follow-
ing six equations. Not all of these substitutions will be employed
simultaneously, but it is convenient to set them all down here together.

F=wL/R, (2) E=uwC/R, (3)
k=+/L/C, (4) g=VG/R, (5)
a=GL/RC, (6) b=G/wC. (7

Usually F or E will be treated as the independent variable; and
k, g, a, b as parameters.

It should perhaps here be emphasized that the approximations
mentioned in the foregoing set of five considerations, (A) to (E),
are employed merely as guides in the selection of the variables and
parameters defined by the above equations (2) to (7), and in the
choice of the forms adopted below for the formula for the character-
istic impedance. Except where the contrary is definitely indicated,
the formulas that will be adopted for the characteristic impedance are
rigorously exact; though the variables F and E are never exactly pro-
portional to the frequency, and the parameters &, g, a, b are never
exactly independent of the frequency. If the independant variables
were exactly proportional to the frequency and the parameters were
exactly independent of the frequency, the graphs of the formulas
would by a mere change of scales exactly represent the impedance
as an explicit function of the frequency.

With particular regard to considerations (B) and (C) it will be
found convenient to divide the further treatment of smooth lines
into two main parts, pertaining to open-wire lines and to cables
respectively; and then, in each of those parts, to present the impedance
formulas in the two forms respectively most suitable for the cases
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where the leakance is approximately proportional to the frequency
and approximately independent of the frequency, corresponding to
consideration (E).

While the classification of smooth lines into open-wire lines and
cables is convenient, there is, of course, no very sharp distinction
between the open-wire type of lines and the cable type of lines, since
the distinction depends on the line parameters and on the frequency
range involved, rather than on the physical form of the line; for, any
line at sufficiently high frequencies has the open-wire type of char-
acteristics, and at suffciently low frequencies the cable type of char-
acteristics. With regard to the relative importance of the funda-
mental line constants R, G, L, C when the frequency range is that of
the voice, it may be said that for the open-wire type of lines L and C
are of about equal importance, R of secondary, and G of tertiary im-
portance; while, on the other hand, for the cable type, R and C are
of about equal importance, L of secondary, and G of tertiary import-
ance. In illustration of the above remarks it may be noted that
smoothly loaded cables (unless loaded very lightly) have the open-
wire type of characteristics; as have also periodically loaded cables at
low frequencies.

Before proceeding to the separate treatments of open-wire lines
anl cables, it seems desirable to indicate the general nature of the
effect produced on the impedance by leakance.

The General Effect of Leakance

The amount of leakance that is normally allowable as regards its
attenuating effects is so small as to produce only very slight effects on
the characteristic impedance of either type of line (except at very low
frequencies).

In ordinary telephone cables the leakance is so small that, except at
very low frequencies, the impedance of such cables is very closely the
same as in the limiting case of no leakance; whence that limiting case
may be taken as being a good approximation to the actual case. In
open-wire lines leakance may be much larger than in cables, yet
normally it is small enough so that its effects on the impedance are
slight, except at very low frequencies, so that usually the limiting
value of zero leakance is still a good approximation when calculating
the characteristic impedance. However, during wet weather and
in particularly humid climates and locations the leakance in open-
wire lines becomes large enough to affect the impedance quite ap-
preciably, even within the voice frequency range, while enormously
affecting it at very low frequencies.
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The general nature of the effect produced on the characteristic
impedance K by any value of the leakance G is readily seen from mere
inspection of equation (1), so far as regards the absolute value and
angle of the impedance. Thus, increasing G from any initial value
decreases the absolute value of the impedance and (algebraically)
increases the angle. Starting with G=0, the angle is negative and
has the value —3% tan"%; increasing G decreases this negative

angle until G has become as large as RC/L, when the angle has become
zero and the impedance has become equal to the simple value \/L/ C,

and thereby equal also to \/R;’ . Increasing G beyond this transi-
tion value RC/L toward infinite values gives to the impedance a
positive angle which continually increases toward its limiting value

_1 wL . .
1 tan™! % while the absolute value of the impedance goes on con-

tinually decreasing toward its limiting value of zero.

The statements in the foregoing paragraph hold at all frequencies,
though the effects of leakance are usually most pronounced at low
frequencies. In fact at zero frequency the characteristic impedance

of a line having any finite leakance however small is merely V'R/G;
and at frequencies so low that wL is small compared with R and wC
small compared with G, the impedance K is, approximately,

‘R (L O
\eg! 1+“"(§1’a‘2€)
and hence is at least roughly equal to \/R/G.

Of course, with actual lines the whole physically possible range of
variation of G from zero to infinite values is never traversed. On the
contrary the leakance G even in open-wire lines seldom reaches a
value as large as the transition value RC/L and hence the angle
seldom becomes positive; while in cables the angle probably always
remains negative and indeed is at least roughly equal to its limiting

K=

Q&

1 R .
value of —3 tan™' I except at very low frequencies.

Although, as already indicated, the effects of normal amounts of
leakance are usually very small for both cables and open-wire lines,
vet the effects in the two cases differ rather markedly in their nature,
owing to the difference in the angles of the impedances of these two
types of lines; the angle of cables begin almost —45°, while that of
open-wire lines, though likewise negative, is much smaller (except at
very low frequencies).
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To formulate analytically the effects of any value of the leakance G,
let K, denote the value of K when G=0, and let AK denote the incre-
ment K — K, due to the presence of the leakance G. A suitable meas-
ure of the effect of the leakance is then the ratio AK/K,. In order
to obtain for the value of this ratio a formula which will be convenient
for use with the formula for K (which involves a radical) it is ad-
vantageous to write AK in the form AK =(K?*—K¢*)/(K+K,), and
to introduce for brevity the quantity u defined by the equation

,u:Kr"‘flKu."_l. (7.1)

This procedure leads readily to the following simple identity for
AK/K,, namely

L Y v

In particular, when this is applied to the formula (1) for K, the value
of uis found to be
1G/wC
K= 16 Wl (7.3)
Equations (7.2) and (7.3) enable the exact value of AK/K, to be cal-
culated for any value of G/wC. For small values of G/wC, the formula
for AK/K, takes the very simple approximate form

AK/’IK[]:JFG,I‘QQJC; (74)

and this shows that, to the degree of approximation involved, AK
is proportional to iK, through a proportionality factor (G/2wC) which
is real and positive. Now, for cables, Ko, has an angle of nearly
—45°; and hence, by (7.4), it is seen that the addition of small leakance
increases the resistance component and decreases the negative-re-
actance component of the impedance by about equal amounts. For
open-wire lines, on the other hand, the angle of K, is much smaller,
though negative, and hence a small increase in the leakance changes the
reactance component of the impedance much more than it does the
resistance component; evidently, the change in the negative-reactance
component is a decrease, but the change in the resistance component
may be of either sign, depending on the frequency. This fact regard-
ing the elfect of leakance on the resistance component of the impedance
is not completely represented by the approximation (7.4)—which
indicates the change as being always an increase—but it can be in-
ferred from a study of the exact formulas (7.2) and (7.3). These
would have to be employed also if the effects of large leakance were
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being studied—or, more generally, large G/wC. 1f it were not for a
need of these exact formulas, the approximate formula (7.4) would
have been derived by the mere application of Taylor’s theorem to (1).

Part 11
ImPEDANCE OF OPEN-WIRE LINES

It will be recalled that the characteristic impedance of an ordinary
open-wire line depends primarily on its inductance and its capacity,
only recondarily on its resistance, and far less still on its leakance;

and hence that its impedance is at least roughly equal to VL/C.

Of the quantities defined by equations (2), . .. (7), the four most
suitable for describing open-wire lines are F, k, b, and a. F is suitable
as the independent variable, approximately proportional to the fre-
quency. k& is suitable as one parameter. For the other parameter,
which evidently must involve the leakance, b or a respectively is the
most suitable according as the leakance G is approximately propor-
tional to the frequency or is approximately independent of the fre-
quency. The corresponding suitable forms of the equation for the
characteristic impedance K are then

_p.| 1+iF 8 K=k | 1 +iF, 9
=t oror  ©® \/a—l—iF ©

The quantity k=\/L/C which occurs in (8) and (9) as a mere
factor is significant as being the value that the impedance approaches
when the frequency is indefinitely increased*; it is also the value the
impedance would have at all frequencies if, without changing L and C,
the line could be rendered non-dissipative. For ordinary open-wire
lines at voice frequencies (R/wL small or fairly small compared to
unity) it is at least a rough approximation to the value of the im-
pedance. This limiting value k= \/L/C will be termed the ' nominal
impedance "' or, more fully, the * nominal characteristic impedance.’ ®

The amount K —k by which the characteristic impedance K exceeds
the nominal characteristic impedance &k will be termed the " excess
impedance,” and hence its two components the ‘' excess resistance "
and the * excess reactance ''; (or, more fully, for the three: the * excess
characteristic impedance,” ‘‘ excess characteristic resistance,” and
‘“ excess characteristic reactance,” respectively). The latter two

¢ Provided that G/f approaches zero.

¥ Strictly speaking, k varies slightly with the frequency, because of the varia-
tions of L and even C.
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have respectively the values M —% and N, since k is real; M and N
denoting the resistance and reactance components of K. The concept
‘“ excess impedance "' will be found convenient in various connections,
particularly in the description of networks for simulating the impedance
of smooth lines.

The ratio K/k of the characteristic impedance K to the nominal
impedance k will be termed the “ relative impedance " and will be
denoted by z=x-+1y; whence x=M/k will be termed the ‘' relative
resistance,” and y=N/k the ‘ relative reactance.” This complex
number z is roughly equal to unity over most of the voice frequency
range, and approaches unity as a limit when F is indefinitely in-
creased. Its exact value, written in the two forms corresponding to
(8) and (9) respectively, is

8=y g (10) 2= 1L (11)
(b+1) F a+iF

Thus 2z, which is proportional to the characteristic impedance K
(except for the fact that the proportionality factor % is not strictly
independent of the frequency), depends merely on the two quantities
Fand b, or F and a, and hence can be readily represented by tables
or graphs.

When z has once been tabulated or graphed the value of K in any
specific case (R, G, L, C specified) is readily obtained therefrom by
entering such tables or graphs of z with the values of the arguments
F=wL/R and b=G/wC of (10) or the arguments F=wL/R and
a=GL/RC of (11), and then multiplying the value of 5 there found by
k=\/L/C. (Graphically this would amount merely to a change of
scales if the parameters employed were strictlv independent of the
frequency.) Thus the function

2=V (1+iF)/(b+i)F=V (1+iF)/(a+iF)

represents simply and comprehensively the properties of the char-
acteristic impedance of all smooth lines, though it is more suitable
for representing open-wire lines than cables. '

The two components x and y of z are represented as functions of
F by the curves in Figs. 1 and 2 with b and e respectively as para-
meters. (Explicit formulas for x and y are included in Appendix A.)

The effects produced on z=x-+1iy by the leakance G are exhibited,
in Figs. 1 and 2, through the parameters b and a. These effects may
be conveniently represented analytically in a manner formally the
same as that already outlined in connection with equations (7.1) and
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(7.2); with K, K,, AK (there) corresponding to z, 2, Az (here).
Thus, by applying (7.1) to (10) and (11),

20— 71 1 1

RELATIVE IMPEDANCE K/K OF
1.6 OPEN WIRE LINES WHEN ——
LEAKAGE IS PROPORTIONAL

TO FREQUENCY
1.2
\.__ b=0
X ] 0.3
8 g
. [1+iF
\ Kk=x+iy =\ w0
A=< I 1 10
T R
e ——
-4 r',, "1" ~ — g____
' ]J‘I' b= ..g_
y |"'r (.L)C
-8 i
I
,,, F=wL/R

=0 2 4 6 8 10,

p=1b/(1—1b) =1ia/(F—1ia).
Or, approximately, when b and a are small,
p=1b=1a/F;
and thence, approximately, by (7.2),
Az/zy=1b/2=1ia/2F.

This -analysis serves to account, approximately, for the nature of the
effects of small leakance, as depicted in Figs. 1 and 2 by the curves for
small b and small . To account for the effects of large leakance, as
depicted by the curves for large b and large @, recourse to the exact
formula for Az/z, would be necessary; but the curves for large leakance
possess hardly more than academic interest, as will be realized from
the remarks already made under the heading The General Effect of

Leakance.
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When there is no leakance (G=0, and hence b=0 and ¢ =0) equa-
tions (10) and (11) reduce to the same form, namely

z=+v/1—1i/F. (12)

This limiting form of the equation for the relative impedance z is
rather important because it is comparatively simple and yet is a close
approximation for the impedance of most actual lines except at very
low frequencies (since the effects of normal amounts of leakance are

16 T T 1

RELATIVE IMPEDANGE K /K OF
OPEN-WIRE LINES WHEN
LEAKAGE IS INDEPENDENT

| OF FREQUENCY

1.4

12%a=4 —"—_%_— +iF 4 P~
Kbty =\aie |y T —
OF——— — 2 3
8 0 [N ——
/ — // 5% |
6 6L -2
/ as= RC V
4 0 '—.4 _ _G_L_
o y / a°RC
2 -6
3=40
: F=wl/R s / F=wL/R

0 2 4 6 8 0 "o 2 4 6 8 10
Fig. 2

very small except at very low frequencies). It will therefore now
be discussed with some fullness:

For the case of no leakance the formulas for x and y are given
under equation (12) in Appendix A; and are graphed in Fig. 1, (b=0),
and in Fig. 2, (a=0). If the wires were devoid of resistance (R=0),
x would be equal to unity and y would be zero. Thus the effect of
wire resistance (in a non-leaky line) is to make x greater than its
limiting value unity by the amount x—1 (the “relative excess resist-
ance''), and to introduce a negative value of y (the “relative excess
reactance,” which is equal to the ‘“relative reactance”). Both
x—1 and —y increase with decreasing F; the increase being slow at
large values of F, but more and more rapid as F is decreased. x—1
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is always smaller than —¥; and is much smaller except at low values
of F, where the two approach equality as F approaches zero. The
statements regarding x and y hold also for the effect of wire resistance
on the characteristic resistance and the characteristic reactance, since
these are (approximately) proportional to x and y respectively, the
proportionality factor being the nominal impedance V' L/C.

Before leaving equation (12) attention will be directed to certain
approximate and exact forms of this equation that have been found
very useful in devising and proportioning networks for simulating
the characteristic impedance of smooth lines, as will appear more
fully in the latter part of this paper. At large values of F equation
(12) yields immediately the approximation

1 .1
5W1+§ﬁ—1ﬁ; (13)
whence x—1 and y have approximately the values
1 1

From equation (12) of Appendix A the exact values of x—1 and y are
known to be '
1 2 1

Thus it is seen that each of the approximations (14) and (15) is always
somewhat larger than the exact value, since x is always greater than
unity. However, these two approximations are fairly good for
values of F as small even as unity, since there x does not exceed 1.1;
and they rapidly approach exactness when F is increased, since x
rapidly approaches unity. The exact equation for z will now be set
down for purposes of reference; by (16) and (17) it is

1 2 1

82 (x—l—l)x?_{m' (18)

z=1+4

At small values of F formula (12) shows that z is approximately

equal to z"”/=x""+iy"’, defined by the equation 3" = 1/ViF. The
exact value of the fractional departure (z—2"")/z" is

z—z" iF
- , 18.1
' 14+1+iF (18D
which, at small F, is approximately equal to ¢F/2 merely. Thus, at
small F, z exceeds its approximate value ="/ by an amount which is
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proportional to 42", through a proportionality factor (F/2) which is
real and positive; since the angle of 5" is —45° it follows that x is
greater than x” by about the same amount that —y is less than —y".
This analysis serves to account for the shape of the curves of x and ¥
at small values of F and no leakance (the curves 5=0 in Fig. 1, and
a=0 in Fig. 2). The shape of the curves at any value of F can be
accounted for by means of the exact formula (18.1), or a suitable
approximation thereof. In fact formula (18.1) shows immediately
that
x—=x">(=y") = (—y)

and that this inequality increases with F.

Part 111
IMPEDANCE OF CABLES

It will be recalled that the impedance of an ordinary cable depends
chiefly on its capacity and resistance, relatively little on its inductance,
and far less still on its leakance; and hence that its impedance is at
least roughly equal toV R/iwC=(1—i)V R/2uC.

Of the quantities defined by equations (2), ... (7), the four most ‘
suitable for describing cables are £, k, b and g. E is suitable as the in-
dependent variable, approximately proportional to the frequency. kis
suitable as one parameter. For the other parameter, which evidently
must involve the leakance, b or g respectively is the most suitable ac-
cording as the leakance G is approximately proportional to or approxi-
mately independent of the frequency. The corresponding suitable

forms of the equation for the impedance are then .
K=_|1+ikE 19 K= TiFE
G+)E 1) exie @0

These two formulas (19) and (20) for cables are less simple than
the corresponding formulas (8) and (9) for open-wire lines, because
in (19) and (20) neither of the two parameters enters as a mere factor,
and hence the number of effective parameters aannot be reduced to
less than two. For purposes of mere specific computations this is
not much of a complication; but in graphical representation it is
enough to prevent the desired simplicity and compactness, if the
representation is required to be exact and comprehensive. (Explicit
formulas for the two components M and N of K are included in
Appendix A.)
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The effects of the leakance G, as represented through the medium of
the parameters b and g, may if desired be conveniently formulated and
analyzed in a manner formally the same as that already outlined
under the heading The General Effect of Leakance.

In cables, particularly, the effect of leakance is usually extremely
small except at very low frequencies. Hence in the graphical repre-
sentation of formulas (19) and (20) it will suffice very well to confine
ourselves to the limiting case of no leakance (G =0, and hence 4=0
and g=0), when these two equations reduce to the same form, namely

K=+k—i/E. (21)

The curves in Fig. 3 represent the resistance and reactance components
M and N of K as functions of E with k as parameter.

400 I |
\ l IMPEDANCE K
oF NoN-LEAKY CABLES

M300 \\

200 k=200
N

&"“‘"—-—-—-_.J___é 100
~0

0 200

___—4
| — ——100
| —— 2 k=0

-100 L
= 50
: 200 %f/I@MHNﬂ/kz-i/E
N / =\/_E_ _wC
-300 k=Ve E R—

/ |
Ex1{0®
MG o2 6 8 0

- Fig. 3

The effects produced on K= AM+iN by the inductance L are ex-
hibited, in Fig. 3, through the parameter k. These effects may be
conveniently represented analytically in a manner formally the same
as that already employed for the effects of leakance, under the heading
The General Effect of Leakance. Thus, if K’ denotes the value of K, '
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expressed by (21), when k=0, then K’ here will correspond to K,
there; hence p=ik*E, and thence, when E2E is small compared to
unity,
AK/K'=1k'E/2.

This analysis serves to account approximately for the nature of the
effects of small inductance as depicted in Fig. 3. When the leakance
is not zero but is small, the effects of inductance are still about the
same. The general nature of the effect of the inductance L on the
characteristic impedance of any smooth line, so far as regards the
absolute value and the angle of the impedance, can be readily de-
termined by mere inspection of equation (1), in a manner similar to
that already outlined regarding the effect of leakance under the head
ing The General Effect of Leakance.

An alternative mode of representing the characteristic impedance of
cables is suggested by the fact, already mentioned, that the impedance
of a cable is at least roughly equal to \/R/iwC, whence its absolute
value is at least roughly equal to V R/wC. This suggests that we
study a relative impedance consisting of the ratio of K to \/R/unC,
where w; denotes any fixed value of w; and that we adopt the ratio
w/w, as the independent variable. In this mode of treatment it will
be convenient to employ the quantities w, 7, Fy, b, b, defined by the
equations

K K
-— _ K 22
T VRjeiC T K] (22)
r=w/wi=f/f1, (23) Fi=w,L/R, (24)
b=G/wC, (25) bi=G/wiC. (26)

Thus, w denotes the relative impedance to be studied; its real and
imaginary components will be denoted by « and v, so that w=u-+iv.
r denotes the relative frequency—relative to any fixed frequency f,.
Fy is one parameter. The other parameter is, respectively, b or b,
according as the leakance G is approximately proportional to or ap-
proximately independent of the frequency.® The corresponding
forms of the equation for the relative impedance w are
L+1Fr - 14+2Fr

These are seen to be of the same functional forms as (19) and (20)
respectively; with w corresponding to K, r to E, F; to k2, and b, to g

* It will be noted that b is the same as already defined by (7); b, js related to b;
and F, is related to F, which has already been defined by (2).
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In other respects, however, there are marked differences: K is an
impedance, while w is a pure number, being the ratio of K to \/R/w,C:
E, though approximately proportional to the frequency, is not a pure
number (for it is not dimensionless), while 7 is a pure number, being
the ratio of the general frequency to any fixed frequency; of the para-
meters, k? is very different from Fy, and b, is very different from g’
The fact that (27) and (28) are of the same functional forms as (19)
and (20) respectively renders formally applicable the material per-
taining to equations (19) and (20) given in Appendix A.

As already remarked, the effect of leakance in cables is usually
extremely small except at very low frequencies. Hence in the graphi-

3
RELATIVE IMPEDANCE K/IK;| oF
NoN-LEAKY CABLES
2 N
V] Fi=2
| 4
N— 5
0 [ 19
E— —1
e N
=
T K IKyl=usiv=\F-ifr —
v F =——%’L
-2 i
/ r=f/f,

Fig. 4

cal representation of formulas (27) and (28) it will suffice for most
purposes to confine ourselves to the limiting case of no leakance
(G=0, and hence b=0 and b,=0), when these two equations reduce
to the same form, namely,

w=~/Fy—i/r. (29)

This has the same functional form as (21), with w corresponding to
K, r to E, and F; to k?; a circumstance rendering formally applicable
the material pertaining to equation (21) given in Appendix A. The
curves in Fig. 4 represent the two components % and v of w as functions
of r with F, as parameter.
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Part IV
NETWORKS FOR SIMULATING THE I[MPEDANCE OF SMOOTH LINES

Under this heading will be described the various networks devised
by the writer, for simulating the characteristic impedance of smooth
lines, as mentioned in the latter part of the INTRODUCTION. Before
~ proceeding to the systematic description of these networks, some of
their practical uses will be mentioned. Foremost of these is their
employment for balancing purposes in connection with 22-type re-
peaters, already spoken of in the INTRODUCTION. Another application
is for properly terminating an actual telephone line in the field or an
artificial line in the laboratory, usually for electrical testing purposes
or electrical measurements on the lines. In making certain tests
on apparatus normally associated with a telephone line, such line
may be conveniently represented for impedance purposes by the ap-
propriate simulating network.

Some of the networks to be shown are potentially equivalent in
impedance; but may differ somewhat in cost, space occupied, etc.
For the purpose of this paper any two networks will be called  po-
tentially equivalent " if, when the elements of either network are
assigned any arbitrary values, the other network can be so pro-
portioned as to have at all frequencies identically the same impedance
as the first network. Evidently the mathematical condition for
such equivalence is that the expressions for the impedances of the two
networks have the same functional forms when the frequency is re-
garded as the independent variable. The two networks will then
have the same number of independent parameters, or degrees of
freedom for adjustment; and this number is the same as the mini-
mum number of elements requisite for the construction of a network
to have identically the impedance of the given network.

For most of the networks described, there are included design-
formulas for the values of the network elements (resistances and
capacities). But in any applications requiring the highest simulative
precision attainable with such networks, these formulas should be
regarded merely zs first approximations serving to reduce the requisite
detailed design-work down to a relatively small amount but not
permitting it to be dispensed with entirely; for the best values of the
network elements depend somewhat on the particular frequency-
range involved, and on the preassigned weighting of the desired
simulative precision with respect to the frequency. Moreover, these
formulas completely ignore leakance; while actually leakance may
not always be quite negligible. even in the voice frequency-range.
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A supplementary semi-graphical method as an aid to finally arriving
at the best proportioning of the networks will be found outlined
in Appendix C.

The Basic Resistance and the Excess Simulator

The first approximation to a network for simulating the character-
istic impedance K of a smooth line is evidently a mere resistance R,

(3) —wWWh— - J (b
i

©) —WWM—— J
Ry J

Fig. 5—Synthesis of the General Form of Complete Network. (a). Basic Resist-

ance Element R, for Simulating Nominal Impedance. (b). Excess-Simulator J

(Abstractly Symbolized) for Simulating Excess Impedance. (c). Complete Net-
work for Simulating Line Impedance

(Fig. 5a) approximately equal to the nominal impedance & of the
line, that is,

Ri=VL/C, (30)

and this is a very close approximation, for instance, in the case of
open-wire lines at the frequencies of carrier current transmission.

Over the voice frequency range, however, a mere resistance does
not suffice; since there the excess characteristic impedance K —k is
not negligible, particularly at the lower frequencies. But the re-
sistance R, equal to the nominal impedance may be retained as the
natural basis of a network if it is supplemented by an element or
elements such as to approximately simulate the excess characteristic
impedance. Such a supplementary network is here termed an *‘ ex-
cess-simulator "7, and is symbolized abstractly by Fig. 5b; while
Fig. 5c represents the corresponding complete network consisting of
the basic resistance R, in series with the excess-simulator, whose
impedance is denoted by J. The requisite excess-simulator is obvi-
ously less simple in structure and proportioning than the mere basic
resistance; whence most of the remainder of this paper will be con-
cerned with various specific types of excess-simulators.

" But in practice the term “low frequency corrector' has become rather firmly

established. It was suggested by the fact that the excess impedance to be simulated
is largest at relatively low frequencies.
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The Simplest Excess-Simulator, and Complete Network

The simplest type of excess-simulator is a mere capacity C: (Fig. 6b).
This is adequate only for those lines whose excess characteristic
resistance is negligible; as, for instance, large gauge open-wire lines,
and even then not at very low frequencies. The capacity C, is cap-

(a)o—wv&m—o o—-—lf(—:——"(b)
1 i
) ——o——F—

R1 C‘l

Fig. 6—Synthesis of the Simplest Type of Complete Network. (a). Basic Resist-
ance. (b). Excess-Simulator. (c). Complete Network

able of simulating the reactance N of such a line rather closely, and
its proper value for that purpose is approximately

_2VIC  2VL/C ,
== =C=gF (31)

although the most suitable value depends somewhat on the specific
frequency-range involved. The complete network (Fig. 6c) thus
consists merely of a resistance R, and a capacity C, in series with each
other, having approximately the values expressed by (30) and (31).*

The simple network in Fig. 6c was devised a good many years ago.®
The majority of present-day applications require such high simulative
precision that the excess characteristic resistance of the line is not
negligible, and also a mere capacity does not in all cases simulate
the excess characteristic reactance quite as closely as desirable. To
meet these needs there have been devised the much more precise,
yet fairly simple, excess-simulators and complete networks described
under several of the following headings.

Cy

Two Precise Types of Excess-Simulators, and Their Limiting Forms

Fig. 7 represents two potentially equivalent ' excess-cimulators
that in most cases admit of such proportioning as to simulate with

3 See Appendix B for the derivation of formula (31) for €, and incidentally formula
(30) for R); and for a discussion of the simulative precision of this network; also
for the values R\’ and C\’ requisite for exact simulation at any preassigned single
frequency.

9 In 1913. U. S. Patent No. 1,167,694 of January 1t, 1916,

W [ comparing networks as to equivalence I have found very useful the general
theorems on equivalence given by O. J. Zobel in his paper on electric wave-filters
in the January Number of this Jour~NaL, pages 45-46.
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the requisite high precision the excess characteristic impedance of
the line; the complete network then consisting of either of these excess-
simulators in series with the basic resistance element R, of Fig: 5a.

In any specific application the most suitable values for the elements
constituting either of the two excess-simulators in Fig. 7 depend

Ca _Cs
- (b
@) | )Wi'_—w;}—o
R; Cs Rs

Fig. 7—Two Potentially Equivalent 3-Element Excess-Simulators Possessing High
Simulative Precision for Most Applications, Except at very Low Frequencies

somewhat on the particular frequency-range involved, and also on
the weighting of the desired simulative-precision with respect to the
frequency. As might be expected, therefore, the work of determining
closely the best combination of values for the elements of the excess-
simulator can hardly avoid a certain amount of tentative detailed
design-work; but usually this can be reduced to a relatively small
amount by a semi-graphical method such as outlined in the latter
part of Appendix C. Moreover, first-approximation values that will
usually prove to be rather close, can be quickly found by means of
the following approximate design-formulas (32), ... (37), which are
explicit except for containing the single undetermined parameter D.
These formulas are such that the excess-simulator will possess high
simulative-precision at large and even fairly large values of F, for all
physcially admissible values of D (0£D £1); and at the lower values
of Fwill have a considerable range of adjustment by means of D, whose
optimum value can be readily determined from inspection of Figs. 8
and 9, as described below. The above-mentioned approximate design-
formulas for the elements of the two excess-simulators in Fig. 7 are!l:

¢=2YIC, (32)
D 2+/LC

o= \—D R’ (33)

Ry=2y/ %, (34)

1 The first part of Appendix C gives the derivation of these formulas, and also
the equation of the curves in Fig. 8.
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1 2vVILC :
“=T=p TR 5
1 2v/LC
co=p 2VEE (36)
R5=D22\‘ ‘é (37)

When the excess-simulator is proportioned in accordance with these
design-formulas the corresponding complete network consisting of
such excess-simulator J in series with the basic resistance R; = V' L/C
will possess the simulative precision represented by the set of graphs
in Fig. 8, which shows the percentage impedance-departure é of the

12
T T 11
4 SIMULATIVE PRECISION (PERCENTAGE) |
10 11} 0F THE NETWORKS N FiG. H. WHEN _
PROPORTIONED IN AGCORDANGE
WITH FORMULAS (32),...(37).—
8
5 i)
_in JUHR)-K]
6 \ \ &5=100 K]
AL
\\\\\
2 \ 1 D=0
01.55 4 [ e S
0 2 4 6 8
F=wL/R
Fig. 8

complete network R,+J from the line-impedance K, as function of
F with D as parameter. In any specific case, where, of course, the
F-range would be known, inspection of these graphs (Fig. 8) enables
the best value of D to be readily determined, and the corresponding
resulting precision 8 to be seen as function of F. The curves show that
the best value of D is determined by the lowest value of F contem-
plated, since the departure § is largest at small values of F and rapidly
decreases toward the larger values of F. It will be noted that the
curves for the limiting values D=0 and D=1 have been included
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in Fig. 8; the corresponding limiting forms of the excess-simulators
are considered a little further on.

Fig. 9, derived from Fig. 8, represents the optimum value of D
as function of F; and shows also the corresponding minimum de-
parture §,, of the complete network. If D is chosen to be the optimum

1.2 1 I e R

L OpTIMUM VALUE OF D(OPT.D) —
IN THE DESIGN-FORMULAS(32),...(37)

ALSO THE CORRESPONDING PRECISION &,

1.0 lf PERTAINING TO THE NETWORKS I fig.)1 710

.8 \ 8

opt.D [} Sm
6 T 6
—Opt.D
4 4
&m
.2 2

0
0 4 8 12 16 20 24
F=wL/R

Fig.9

value at any fixed F, the resulting network will have at that F exactly
the departure shown on Fig. 9, but at all other values of F will, of
course, have departures larger than those on Fig. 9.

It should be noted that these statements regarding the departures
pertain to the network when the excess-simulator is proportioned in
accordance with formulas (32), . . . (37). As those are only first-
approximation formulas, the ultimate precision attainable will usually
be better, and may be adjusted to possess a somewhat different dis-
tribution over the frequency-range.

Although the two excess-simulators in Fig. 7 are potentially equiva-
lent as regards impedance there is a slight choice between them from
the viewpoints of cost and space occupied. For it is readily seen by
mere inspection of the networks at zero frequency that when they have
equal impedances the total capacity C:+Cy of the excess-simulator
in Fig. 7a is equal to merely the capacity C, of the excess-simulator
in Fig. 7b, thus leaving C; in excess. As regards the relative magni-
tudes of their various elements the two excess-simulators can be
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readily compared by means of the following equations (38) derived
from (32), . . . (37):

CotCo _ 1 _Cs_Ci_ |R

(38)

Co+Cy D Co Cs \IE

Fig. 10 represents the two limiting forms of the excess-simulators
in Fig. 7, corresponding to the limiting values 0 and 1 of the para-
meter [ occurring in the design-equations (32), . . . (37). For
D=0 the limiting form is that in Fig. 10a, and will be recognized as

C,=CsC
@ o—f—

D=0

C=CC,
(b) . .ll.al".l..l.ll N

D__._..i VWVwW

R=R;2R,

Fiz. 10—The Two Limiting Forms of the Excess-Simulators in Fig. 7, Corresponding
to the Limits 0 and 1 of the Parameter 1

the simple excess-simulator already shown in Fig. 6b consisting of a
mere capacity ) having the value expressed by (31); while for D=1
the limiting form is that in Fig. 10b, and is thus of the same form as
one mentioned below, under the heading Modifications for Very Low
Frequencies, as being capable of furnishing approximate simulation
extending down to zero frequency. The departure-curves for these
two limiting forms (D=0 and D=1) are included in Fig. 8, as already
mentioned ; and from them it is seen that the form in Fig. 10b (D =1)
possesses much higher simulative precision than the form in Fig. 10a
(D=0)—as would be expected.

Four Precise Tvpes of Complete Networks, and Their Limiting Forms

Figs. 11a and 11b represent the two potentially equivalent com-
plete networks that can be constructed from the basic resistance
R; of Fig. 5a, and the excess-simulators in Figs. 7a and 7b respectively;
and hence having for their elements approximately the values ex-
pressed by equations (30), (32), . . . (37).
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Figs. 11c and 11d represent two other complete networks that also
are potentially equivalent to those in Figs. 11a and 11b'2.

Appendix D gives the three sets of formulas expressing the values
of the elements constituting the networks in Figs. 11b, 11c, 11d re-

£ s
@, [ Ot}
i CS R3 i 4 RS

RG RB |98
G I
R7 C, Ro Co

Fig. 11—Four Potentially Equivalent 4-Element Complete Networks Possessing
High Simulative Precision for Most Applications, Except at Very Low Frequencies

spectively, in terms of the elements constituting the network in
Fig. 11a, when those four networks have equal impedances.

Although the four complete networks in Fig. 11 are potentially
equivalent as regards impedance there is some choice among them from
the viewpoint of cost and space occupied. For it is readily seen by
mere inspection of the networks at zero frequency that, when they
have equal impedances,

CotCy=Cs+Cy=Cy=Ce. (39)

Thus the networks in Figs. 11a and 11d have the same total capacity:
and this is less than the total capacity of the network in Fig. 11b
by the amount Cj, and is less than the total capacity of that in Fig. 11c
by the amount C;. Similarly by mere inspection of the networks at
infinite frequency it is seen that

Get+Gr=Gs+Go=Gy, (40)

the G’s being the reciprocals of the R's and thus being the corre-
sponding conductances.

Before leaving Fig. 11 it may be noted that the network in Fig. 11d
has the same form as though obtained by connecting in parallel two
networks having the same form as Fig. 6¢c but with elements R,’, C,’
and R,”, C\"”, say. Now it is known that, in most applications, the

2 In connection with Figs. 11b and 11c the network shown in U. S. Patent No.
1,240,213 of September 18, 1917 may be of some interest.
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network in Fig. 11d has much higher simulative precision than that
in Fig. 6c. These considerations suggest the possibility of attaining
still higher precision by connecting in parallel several such networks,
having constants R/, Ci'; R, C/'*; R/, C/", . . ..

Fig. 12 represents the two limiting forms of the network in Fig. 11,
corresponding to the limiting values 0 and 1 of the parameter D
occurring in the design-equations (32), . . . (37). For D=0 the
limiting form is that represented in Fig. 12a,and this will be recognized

D=1

© =

D=1 i

7

Fig. 12—The Two Limiting Forms of the Networks in Fig. 11, Corresponding to

the Limits 0 and 1 of the Parameter D. Networks (b) and (c) are Potentially
Equivalent

as the simple 2-element network already shown in Fig. 6¢; while for
D =1 the limiting forms are the two potentially equivalent 3-element
networks represented in Figs. 12b and 12c, and are thus of the same
forms as two mentioned below, under the heading Modifications for
Very Low Frequencies, as being capable of furnishing approximate
simulation extending down to zero frequency. The values of the
elements of the network in Fig. 12c in terms of the elements of the
network in Fig. 12b, for equivalence of these two networks as regards
impedance, are

R5:R1+R3=3Rh (41)
R;=R,(1+R,/R;) =3R,/2, (42)
G G _ 4G (43)

TFR /R T 9

Thus the network in Fig. 12¢ requires only four-ninths as much
capacity as the network in Fig. 12b.
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Modifications for Very Low Frequencies

Thus far the present paper has dealt with the characteristic im-
pedance of smooth lines as distinguushed from their sending-end
impedance, strictly speaking. The two are closely equal when the
lines are electrically long, which is usually the case for the telephonic
frequency range; but at very low frequencies the sending-end im-
pedance of even a rather long line may depend very greatly on the
distant terminating impedance and hence depart widely from the
characteristic impedance. In case the terminating impedance is
conductive to direct current the sending-end impedance of even a
strictly non-leaky line would have a finite value at zero frequency; its
resistance component evidently being equal to the total line-wire
resistance plus the terminating resistance, while its reactance com-
ponent would, of course, be zero. Actually, on account of line leak-
ance, the resistance component would be somewhat less; and in case
the distant terminating impedance permits no passage of direct cur-
rent the sending-end impedance of the line at zero frequency would
depend largely on the line leakance.

Most of the simulating networks thus far described were devised
primarily with regard to the voice range of frequencies, without refer-
ence to frequencies very far below that range. At very low fre-
quencies these networks become unsuitable because their impedance
is not only much too large but also has not even approximately the
proper angle. There have not been many occasions for modifying
the networks so as to extend their range of simulation down toward
zero frequency; but it seems likely that in most cases the requisite
modification in the network impedance could be attained, at least
roughly, by shunting the excess-simulator (Fig. 5b) with a mere
resistance S’ approximately equal to the zero-frequency sending-end
resistance of the line diminished by the resistance R, of the basic
resistance element. Clearly this modification will give the network
the desired impedance at zero-frequency, without affecting its im-
pedance at infinite frequencies; since the impedance of the unshunted
excess-simulator is infinite ** at zero-frequency and is zero at infinite
frequencies. At the intermediate frequencies the resulting modifi-
cation would doubtless be slight except toward the lower frequencies,
where it would increase more and more rapidly as zero-frequency is
approached. Of course, the addition of the modifying element S’
would usually entail some alterations in the proportioning of the

13 Except for the limiting form in Fig. 10b.
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original network, as indicated by Fig. 13a, where the altered values of
J and R, are denoted by J' and R, respectively.

RI
(3) o——wwv'm—u J

— T
S

Ry
(b) J' T

Sll
Fig. 13—Two Potentially Equivalent Modifications for Extending Range of Simulaa
tion Down to Zero Frequency. (a). Modification by Shunting the Excess-Simulator
J'. (b). Modification by Shunting the Complete Network R,"”+.J"

Fig. 13b represents an alternative but potentially equivalent form
of modification, obtained by shunting the original form of network
(Fig. 5¢) with a resistance S”; and the conditions for equivalence are

Sr.r — S: +le’ . (44)
R/ =R/(14+R/ /S, (45)
J'=T(14R/ /5" (46)

Since the shunts S’ and S’ are potentially equivalent in their effects
their simultaneous application would be potentially equivalent to
the application of either alone.

Thus far the suggested modifications have been stated only with
reference to the excess-simulator regarded abstractly. When the
specific structure of the excess-simulator is regarded, the modifications
can take several different forms which, for any one excess-simulator,
are equivalent as regards impedance. Certain of these are noted in
the following paragraph's:

Among the modified excess-simulators will evidently be found one
having the limiting form already depicted in Fig. 10b.

Fig. 14 represents by (a) and (b), respectively, the 3-element
excess-simulators in Figs. 7a and 7b modified by the shunt resistance
S’, and thereby converted to 4-element excess-simulators. Figs. 14c
and 14d represent two other 4-element excess-simulators that are
potentially equivalent to those in Figs. 14a and 14b as regards im-
pedance.
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Before leaving Fig. 14 it may be noted that the excess-simulator in
Fig. 14d has the same form as though obtained by connecting in
series two of the simple form of modified excess-simulator in Fig. 10b
having elements C./, Ry’ and C.”, Ry, say. This observation suggests

Il
Ll __,
( a) AW '1If —o ( b) H

SI

1 -+

d)

(€)e-

AAL AAA
wyyy wyy

Fig. 14—Four Potentially Equivalent 4-Element Excess-Simulators Embodying
Shunt-Resistance Modifiers for Extending the Range of Simulation down to Zero
Frequency

the possibility of attaining still higher simulative precision for a
modified excess-simulator by connecting in series several such simple
modified excess-simulators. .
Among the modified complete networks will evidently be found two
having respectively the forms already depicted in Figs. 12b and 12c.
Fig. 15 represents four potentially equivalent complete networks
derived from Fig. 11d by application of a shunt resistance S"’. The

MW W
(a)"-‘ " (b)"—
Lo
" 1,11
5" S
'A'A'AVA':III
€ o (d)
V‘V‘V‘V‘V—El

Fig. 15—Four Potentially Equivalent Complete Networks Embodying Shunt-Re-
sistance Modifiers for Extending the Range of Simulation Down to Zero Frequency



SMOOTH LINES AND SIMULATING NETWORKS 29

forms in Figs. 15¢ and 15d, though each containing a superfluous
element, are of interest because they have the same forms as though
obtained by connecting in parallel two networks of the forms already
depicted in Figs. 12c and 12b respectively.

Modifications For Leaky Lines

For lines whose leakance is not quite negligible a study of the
formulas and graphs of the line impedance indicates that the effects
of such leakance can be sufficiently taken into account by a mere slight
reproportioning of the network without the addition of any further
element, except that a small series inductance might be a slight im-
provement in those cases where the leakance increases rapidly with
the frequency.

APPENDIX A
EquaTions oF THE COMPONENTS OF THE LINE IMPEDANCE

This Appendix contains the equations for the rectangular compon-
ents and the equation for the angle of the relative impedance z and of
the impedance K, corresponding to most of the various forms of the
equations employed in this paper for expressing z and K. It thereby
includes the equations for all the graphs employed in representing
zand K. It contains also the equations for the network of curves of
z and K in the complex plane for certain of the more important limit-
ing cases involving not more than one parameter.

With regard to the notation it will be recalled that z=x-+1iy and
K =M+iN. The angles of zand K will be denoted by ag z and ag K,
respectively, “ag’ being an abbreviation for “‘angle of".

T
Equation (10): e \’ (Liiff‘"

(b4 P/ (L+0) (L4 ),

2 (140 F
o 1=bF
YT T Py

1—bF

=—1 -1~
ags 2 tan I F
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. _ _ [1+iF,
Egquation (11): z*\laal-'iF'
Ja+F2+\/(1+1~2)(a,2+F2)
V 02_{.11 )
. (=ar
YT T+ )X
_ (l—a)F
__1 1 .
agz=—3 tan PR
Equation (12): s=~/1—1/F;

1 JE—
=—— /1 14+1/F2,
= —1/2Fx=—/a?—1,

_1= 1 2
FTRTRR (k)
ag = —7% cot™!F.

The relation y= — V/x*—1 can be written in the form
x—1 _ J x—1

-y Nxt1

which shows that x—1 is always smaller than —y; and is very much
smaller except at small values of F, where the two approach equality
as F approaches zero.

The locus of z in the xy-plane is the hyperbola x*—3y*=1. For any
preassigned value of F the corresponding values of x and y on this
locus can be accurately calculated by means of the above equations
for # and y. For any pair of values of x and vy situated on this locus
the corresponding value of F is given by F=—1/2xy.

Equation (19): - \/I‘ ?btf)g
bR E+V (146 (+EE)
M=y 214+ E
1—bkE
N=—=sarmEemr

1 —bRE

—_1 -1
ag K= —7 tan bFRE
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. | 1+iRE
Equation (20) K= \IE‘H—T'
p o EHEEE VTR (),
a 2 (g +E%)
N (1=g#)E
2 +EHM
o I—gR)E
(ng= *% tan—! W
Equation (21): K=~F—1i/E;
M= prvETI/E,

V2 \

N=—1/2EM=—~/M>—F,
2
T8E (M+k)M

ag K= —3% cot™! R’E.

M—Fk

The relation N=—V M?—F can be written in the form

M—k_ [M—k
-N M+E

which shows that M —k is always smaller than — N, though the two
approach equality when E approaches zero.
The network of curves of K in the M N-plane are the equi-k curves

consisting of the family of hyperbolas M?— N?*=k? and the equi-E
curves consisting of the family of hyperbolas MN=—1/2E.

ArrPENDIX B
ON THE SiMPLE TypreE oF CoMPLETE NETWORK (F1G. 6)

The network in Fig. 6c consisting of a resistance R, and capacity
C, in series with each other and having the values expressed by equa-
tions (30) and (31) was originally arrived at by working with values of
F large or at least fairly large compared with unity; for then, by
equation (12), the characteristic impedance K has approximately the
value.

K=Fk—ik/2F. (1-B)
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This represents K as having a resistance component k that is inde-
pendent of frequency, and a reactance component —k/2F that is
negative and inversely proportional to the frequency f (since F=wL/R)
and thus leads exactly to the values of R; and C, expressed by (30)
and (31), wherice the impedance of this network is exactly equal to
the approximate value of the line impedance expressed by (1-B).

To obtain more precise and comprehensive knowledge regarding
the simulative precision of this network its exact impedance £ —ik/2F
will here be compared with the exact value of the line impedance
(when leakance is neglected). For this purpose it is convenient to
employ the line impedance in the form

K =xk—ik/2xF, (2-B)

obtained by means of the relation y= —1/2Fx found under equation
(12) in Appendix A. The equation (2-B) shows that to exactly simu-
late the line impedance by a resistance R," and capacity Ci in series
with each other these would have to possess the values

Ry =x\/f:7C_, (3'B)
Clt :sz\/ LC' (4~B)

which differ only by the factor x from the values of R; and C; ex-
pressed by (30) and (31). Thus the ideal resistance R’ and capacity
Cy for exactly simulating the line impedance would vary with F in
precisely the same way as x varies with F. Moreover the ratio of
these ideal values to the fixed values of R; and C; expressed by (30)
and (31) is merely x. By reference to Fig. 1 (with b=0) it will be
seen that, except at small values of F, the factor x is nearly inde-
pendent of F and is only slightly greater than unity. Thus the values
of Ry and C; determined by means of equations (30) and (31) are
slightly too small at all frequencies; while the values determined by
means of equations (3-B) and (4-B), for any specified frequency
(by inserting the appropriate value of x), are slightly too small at
lower frequencies and slightly too large at higher frequencies.
Since (3-B) can, by (30), be written in the form

R1'=R1+(x—1)\/f/7, (5-B)

and since x is always greater than unity, it is seen that the simulation
can be somewhat improved by supplementing the excess-simulator
with a small series resistance element R;;, the ideal value of which

would be )
Ru=(x—1)VI/C. (6-B)
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Actually, since x varies with frequency, Ry is limited to some com-
promise value. In practice R;; would usually be combined with
the basic resistance R,, though the functions of the two are distinctly
different. (If the requisite value of R;; were negative, R, would
merely be decreased by that amount.)

AppENDIX C
O~ TueE PreEcist TypeEs oF Excess-Simurartors (Fic. 7)

The two sets of formulas (32), (33), (34) and (35), (36), (37), rep-
resenting first-approximations to the proper values of the elements
constituting the excess-simulators in Figs. 7a and 7b respectively,
were originally obtained by working with values of F large or at
least fairly large compared with unity; for then, by (13), the excess
characteristic impedance K —k has approximately the value

k k

K—k=ﬁ_qﬁ‘, (I-C)

while, at large or fairly large values of T, the impedance J=P+iQ
of each excess-simulator in Fig. 7 can be expressed approximately
by the equation

Py i(l‘l‘f)Pu,

J="—x—

-7 = (2-C)

derived from the exact equation (16-C) below, in which ¢, Py, and T
have the values defined by the following two sets of equations (3-C),
(4-C), (5-C) and (6-C), (7-C), (8-C) for the excess-simulators in
Figs. 7a and 7b respectively:

t=Ca/Cs, (3-C) t=C5/C, (6-C)
_ Ry -
Po= i1 (4-C) Po=R;, (7-C)
C:R .
T=" e (5-C) T =wCsRs, (8-C)

Py thus being the value of P at w=0. Comparison of the approxi-
mate equations (1-C) and (2-C) gives immediately

Py/T?=Fk/8F, (9-C)
(14-6)Po/T =k/2F, (10-C)

as the two conditions that are necessary and sufficient for (approxi-
mate) equality of J and K —k at large values of ¥ and 7. This pair
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of equations is equivalent to the more convenient equations (11-C),
r_4_ [i
F 1+t \ %

Thus the ratio of T to F is fixed as soon as either ¢ or Py/k is fixed.

(11-C)

It will be convenient to adopt \/Pn,f2k as the arbitrary quantity and
to denote it by D, so that

D=~/Py/2k, (12-C)
whence Py=2D%, ' (13-C)
and £=Il)—l, (14-C)
and T'=4DF. (15-C)

Since only positive values of ¢ and D are physically admissible, equa-
tion (14-C) shows that the admissible range of D is 0 to 1.

From (13-C), (14-C), (15-C) and the defining equation F=wL/R
the two sets of equations (32), (33), (34) and (35), (36), (37) follow
readily from the two sets of defining equations (3-C), (4-C), (5-C) and
(6-C), (7-C), (8-C), respectively.

The formula for plotting the curves in Fig. 8 depends on the exact
equation for J/P, which is

J 1 (4T

P TR U TUHTY (16-C)

By substituting herein the values of Py, t, and T expressed by (13-C),
(14-C), (15-C) the equation for J/k becomes

J_ 2D  1+416DF-D
B 1416D2F2 2F(1+16D°F)

(17-C)

which is thus the exact formula for the relative impedance J/k of
each of the excess-simulators in Fig. 7 when these are proportioned in
accordance with the formulas (32), . . . (37).

A semi-graphical method will now be outlined in the remainder of
this Appendix. In this method the ratio 7'/f is of frequent occur-
rence and will be denoted by d. Then, recalling that P+iQ =17, it
will be seen from equation (16-C) that P/P, depends only on f and d;
while Q/P, depends on f, d, and ¢. These observations are the basis
for the method now to be described for evaluating the three para-
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meters Py, d, and ¢ which implicitly determine the elements of the
excess-simulators in Fig. 7.

In the first step of this method the two parameters d and P, are
so chosen that the resistance component P of the excess-simulator
will be approximately equal to the excess resistance M —k of the line-
impedance K, over the specific f-range contemplated, or else will
differ therefrom by a nearly constant amount, which can be approxi-
mately simulated by a mere series resistance element. In the second
step of the method the remaining parameter, {, is so chosen that the
reactance component ) of the excess-simulator will be approximately

_equal to the reactance N of the line impedance, when d and Py have

the pair of values already chosen in the first step. The technical
procedure in these two steps may now be formulated explicitly as
follows:

First, over the contemplated f-range, plot a set of curves represent-
ing P/Py as function of f with d as parameter; and on the same sheet
a set of curves representing (M — k) /P, as function of f with Py as para-
meter. To evaluate d and Py choose (by interpolation, if necessary)
such P/Py-curve and (M —Fk)/Py-curve as most closely coincide. A
preliminary idea regarding the useful ranges of d and P, can be readily
obtained from the approximate formulas (15-C) and (13-C), together
with Fig. 8.

Second, on another sheet plot as function of f that particular N/ P,-
curve having as parameter the value of P, already found in the first
step. With this value of P, and the corresponding value of d, as
found in the first step, plot also a sufficient set of Q/P-curves as
function of f with ¢ as parameter to find the one that coincides most
closely with the single N/Pjs-curve already plotted. To abridge
this step tentative values for ¢ can be readily obtained from the ap-
proximate formula (14-C), together with Fig. 8. But the useful
range of { can be demarcated more closely by solving for ¢ the equation
obtained by equating the expressions for @ and N; the value for ¢
thus found is ™

dfN d*f?

f= -

_pn 1 +d2f."

This may even be plotted, as function of f, to see whether the requisite
value of ¢ varies much in the contemplated f-range.

If the best compromise value of ¢ found in the second step is un-
satisfactory as regards simulation of N by (, it will be necessary to
revert to the first step, choose some other pair of values for ¢ and

1 It will be recalled that the line-reactance NN is practically always negative.
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Py, and with these repeat the second step. In this connection it
should be noted that, in the first step, it is not necessary to choose
the P/Pycurve and (M —k)/Pycurve which most closely coincide;
on the contrary it suffices to choose two curves that are closely parallel
(that is, have closely equal slopes at each f). For, corresponding to
the nearly constant distance between such two curves, it will only be
necessary to supplement the excess-simulator with a series resistance
element R;;—which will thus in the complete network be also in series
relation to the basic resistance R; and hence can be merged therewith
(even when the requisite R,; is negative, provided it is less than R,
in absolute value).

After the parameters f, Py, and d=T/f have been evaluated, the
values for the elements of the excess-simulators in Figs. 7a and 7b
can be readily obtained from the two sets of equations (3-C), (4-C),
(5-C) and (6-C), (7-C), (8-C), respectively; it thus being found that

Co=d/2n(1+1) P,
Cy=d/2r(1+1)tP,,
Ry=P,(14+1)%,

Ci=d/2xtP,,
Co=d/2m Py,
Ra = Pu.

The requisite value for the supplementary series resistance element
Ry, is evidently
M-k P )

ko =P (5"~ 5,

which will be approximately independent of f if the curves of P/Py
and (M —#%)/P, chosen in the first step are approximately parallel.
If the requisite value of Ry, is negative, the basic resistance R; will
merely be decreased by that amount.

For the limiting form of excess-simulator in Fig. 10b the design-
procedure is considerably simpler, because the parameter ¢ is fixed
(t=0). The two remaining parameters d and P, can be evaluated
by inspection of two sheets of curves plotted as functions of f: One
sheet containing a set of curves of P/P, with d as parameter, and
curves of (M —k)/Po with Py as parameter; and the other sheet,
curves of Q/Py with d as parameter, and curves of N/P, with P, as
parameter.
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Instead of f as the independent variable it may be more convenient
to employ some quantity proportional to f (for instance, F or E);
likewise, instead of P, Py, Q, M, N, some quantities proportional to
them (for instance, their ratios to k).

ArpPENDIX D

RELATIVE VALUES oF THE ELEMENTS IN THE Four PrEcCISE TYPEs
oF CoMpLETE NETWORKS (FIG. 11)

The following three sets of formulas express the values of the ele-
ments constituting the networks in Figs. 11b, 11c¢, 11d, respectively, in
terms of the elements constituting the network in Fig. 11a when those
four networks have equal impedances. These formulas involve
the two ratios £ and { pertaining to the network in Fig. 11a and de-
fined by the equations

E: Cﬂ,/C'zy ¢ =R1/R3.

For Fig. 11D,
§a=(,,§,,)ﬂ, Gi_1+¢ G _1+¢
Ry \1+4¢ Cy £ Cy &
For Fig. 11c,
Ry _ £y Co_1+¢E
R Voo KR o =
R; 1+ £y2 Cq 1
5 =), =a
le.'] s ( E ) (_3 E 1+¢
A+ (Tt )
For Fig. 11d,
Ry Z%r
Ry (n+7)—2(1+¢)
Ry 20T

Ry 2Q0+8&—(n—1)
Cs_26—(148)(n—1)

Cs 2¢0T
Co_(I+E)(nt7)—2¢
Cy 2T

where n=1+g+§- T:\; (1+£+§)2—4§'
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ArrEnDIX E
ILLUSTRATIVE EXAMPLE

The example contained in this Appendix serves two purposes.
First, it illustrates the use of two types of the general line-impedance
graphs contained in Parts IT and III of the paper; second, it illus-
trates the first-approximation design of a simulating network by
means of the method in Part IV.

The specific example chosen pertains to a well-insulated open-wire
line consisting of two horizontal parallel copper wires, of No. 12
N. B. S. gauge, having per loop-mile the constants

R=10.4 ohms, L =.00367 henry, C=.00835x10"° farad,

the leakance G being regarded as negligible. This particular type and
gauge of line was-chosen because it is rather extensively employed in
practice, and also because its excess impedance is far from being
negligible even as regards its resistance component.

For the illustratve purposes contemplated, it will be supposed that
it is desired to evaluate the resistance and reactance components
M and N of the characteristic impedance K of this line over the
frequency-range from 200 to 2500 cycles per second; and also to
design a network for approximately simulating this impedance over
that frequency-range, and to determine the simulative precision of
such network.

The procedure and results are indicated by the following table
together with the supplementary description coming thereafter.

f F x —¥ M —N r u —9 8o 5
200 444 1.32 .86 876 570 222 1.87 1.22 3.0
300 666 1.19 .64 790 425 .333 1.69 .91 16.6 1.3
500 1.110  1.08 .42 717 279 .555 1.53 .60 8.1 .3
800 1.776  1.04 .27 691 179 .888 1.48 .38 3.6 .1
1200 2.664 1.02 .19 676 126 1.332 1.45 27 1.7 .1
1600 3.552 1.01 .14 670 93 1.776 1.43 20 1.0 .1
2000 4,440 1.01 .12 670 80 2.220 1.43 17 6 1
2300 5.106 1.01 .10 670 66 2.553 1.43 14 5001
2500 5.550 1.01 .10 670 66 2775 1.43 14 41

o = 1 0 663 0 ® V2 0 0 0

The first column in the table is a set of values of the frequency f
distributed over the specified range 200 to 2500.

The columns headed F,x, —y, M, — N, show the successive steps in
evaluating the characteristic impedance K=M+iN by means of
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Fig. 2, with a=0 (since the leakance G is neglected). The F-
column was obtained from the f-column by means of the equation
F=wL/R=.00222f. Next the values of x and ¥ were read from the
curves a=0 in Fig. 2. Finally M and N were obtained from M =kx
and N=*ky, with k=\/L/C=663 ohms (whence M and N are in
ohms). From the table it will be noted that at f=200 the excess
resistance is about one-third as large as the nominal impedance, and
the reactance is about nine-tenths as large as the nominal impedance.

The columns r, 1, —v show the steps in evaluating M and N by
means of Fig. 4. After choosing F; (in Fig. 4) equal to 2, the r-
column was obtained from the f-column by means of the equation
r=f/fi=2xLf/RF,=.00111f. Next the values of # and v were read
off from the curves F,=2 in Fig. 4. Finally the values of M and N
were obtained from flf=|Kl‘u and- N=]Kl[z', with |K1|= V R/w,C=
V/L/CF,=469.

The two last columns (8s, 8) of the table show the percentage pre-
cision of certain simulating networks designed in accordance with the
first-approximation methods of this paper, and having for their ele-
ments the values given in the last paragraph of this Appendix.

&y pertains to the simple 2-element network in Fig. 6c when propor-
tioned in accordance with equations (30) and (31). The values of &
were read from the curve D=0in Fig. 8. The precision at the lower
frequencies could be considerably improved by the addition of a small
resistance Ry, (as already noted in connection with equation (6-B) of
Appendix B), but with a corresponding sacrifice in the rest of the
range.

§ pertains to the 4-clement networks in Figs. 1la and 1lb when
proportioned in accordance with (30), (32), (33), (34) and (30), (35),
(36), (37) respectively; and & pertains also to the networks in Figs.
11c and 11d when these are proportioned, by Appendix D, so as to be
equivalent to the network in Fig. 1la. The values of § were read
from the curve D =0.55 in Fig. 8, this value of D being known from
Fig. 9 to be about the best.

The values of the elements of the networks to which & and & per-
tain will now be set down, each preceded by a reference to the cor-
responding diagram and design-formulas:

Fig. 6c—Formulas (30). (31); Precision 8.
. =663 ohms, C1=1,063x10-° farad.
15 Or Fig. 1, with b=0; but Fig. 2 is plotted to a larger scale.

16/, =1 would be somewhat preferable for reading off values; but the principles
are more clearly exhibited by choosing for F, some other value than unity.
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Fig. 11a—Formulas (30), (32), (33), (34); Precision 3.

R; =663 ohms, Ce=1.063x10-° farad, C3=1.300x10"° farad,
R3=1326 ohms.

Fig. 11b—Formulas (30), (35), (36), (37); Precision é.
R;=663 ohms, C;=2.362x10"° farad, C5=1.932x10"° farad,
R5=401 ohms.

Note:—To furnish sufficiently high precision for most engineering applications
the curves and the cross-section lines in the line-impedance charts would evidently
have to be drawn at much closer intervals than has been done in the present paper,
where the purpose of the charts is mainly qualitative, or only roughly quantitative,
to exhibit the general nature of the functions involved.



