O

O

O

INTRO(1) UNIX Programmer’s Manual INTRO(1)

intro - introduction to commands

DESCRIPTION

This section describes publicly accessible commands in alphabetic order. Certain distinctions of pur-
pose are made in the headings:

) Commands of general utility.

(1C) Commands for communication with other systems.

(1G) Commands used primarily for graphics and computer-aided design.
(1W) EUNICE specific commands.

N.B.: Commands related to system maintenance used to appear in section 1 manual pages and were dis-
tinguished by (1M) at the top of the page. These manual pages now appear in section 8.

EUNICE NOTES

In contrast to previous releases of Wollongong’s EUNICE product, pages have NOT been included in
the Programmer’s Manual for certain User Contributed Software commands which are presently una-
vailable under EUNICE. For a complete list of commands not supported, please refer to the EUNICE
BSD Reference Manual.

Certain commands exhibit altered characteristics due to VMS’s being the host operating system. Wher-
ever possible, the manual pages involved have been changed to include a section (like this one) entitled
"EUNICE NOTES" - which contains any appropriate caveats.

Background processes terminate at logout.

SEE ALSO

Section (6) for computer games.
How to get started, in the Introduction.

DIAGNOSTICS

Upon termination each command returns two bytes of status, one supplied by the system giving the
cause for termination, and (in the case of ‘normal’ termination) one supplied by the program, see wait
and exit(2). The former byte is 0 for normal termination, the latter is customarily O for successful exe-
cution, nonzero to indicate troubles such as erroneous parameters, bad or inaccessible data, or other ina-
bility to cope with the task at hand. It is called variously ‘exit code’, ‘exit status’ or ‘return code’, and
is described only where special conventions are involved.

April 20, 1989 The Wollongong Group 1

ADB(1) UNIX Programmer’s Manual ADB(1)

NAME
adb — debugger

SYNOPSIS
adb [-w] [-k] [-Idir] [objfil [corfil]]

DESCRIPTION
Adb is a general purpose debugging program. It may be used to examine files and to provide a con-
trolled environment for the execution of UNIX programs.
Objfil is normally an executable program file, preferably containing a symbol table; if not then the sym-
bolic features of adb cannot be used although the file can still be examined. The default for objfil is
a.out. Corfil is assumed to be a core image file produced after executing objfil; the default for corfil is
core.
Requests to adb are read from the standard input and responses are to the standard output. If the -w
flag is present then both objfil and corfil are created if necessary and opened for reading and writing so
that files can be modified using adb.
The -k option makes adb do UNIX kemnel memory mapping; it should be used when core is a UNIX
crash dump or /dev/imem.
The -I option specifies a directory where files to be read with $< or $<< (see below) will be sought; the
default is /usr/lib/adb.
Adb ignores QUIT; INTERRUPT causes return to the next adb command.
In general requests to adb are of the form

[address] [, count] [command] [;]

If address is present then dot is set to address. Initially dot is set to 0. For most commands count
specifies how many times the command will be executed. The default count is 1. Address and count
are expressions.
The interpretation of an address depends on the context it is used in. If a subprocess is being debugged
then addresses are interpreted in the usual way in the address space of the subprocess. If the operating
system is being debugged either post-mortem. or using the special file /dev/mem to interactive examine
and/or modify memory the maps are set to map the kernel virtual addresses which start at 0x80000000
(on the VAX). ADDRESSES.

EXPRESSIONS

The value of dot.

+ The value of dot incremented by the current increment.

-~

The value of dot decremented by the current increment.
" The last address typed.

integer A number. The prefixes 0o and 0O (*‘zero oh’’) force interpretation in octal radix; the prefixes
Ot and OT force interpretation in decimal radix; the prefixes Ox and 0X force interpretation in
hexadecimal radix. Thus 0020 = 0t16 = 0x10 = sixteen. If no prefix appears, then the
default radix is used; see the $d command. The default radix is initially hexadecimal. The
hexadecimal digits are 0123456789abcdefABCDEF with the obvious values. Note that a hexa-
decimal number whose most significant digit would otherwise be an alphabetic character must
have a Ox (or 0X) prefix (or a leading zero if the default radix is hexadecimal).

integer fraction
A 32 bit floating point number.

‘ccecc © The ASCII value of up to 4 characters. \ may be used to escape a °.
< name The value of name, which is either a variable name or a register name. Adb maintains a

April 18, 1989 The Wollongong Group 1

®

UNIX Programmer’s Manual ADB(1)

ADB(1)

number of variables (see VARIABLES) named by single letters or digits. If name is a register
name then the value of the register is obtained from the system header in corfil. The register
names are those printed by the $r command.

symbol A symbol is a sequence of upper or lower case letters, underscores or digits, not starting with a
digit. The backslash character \ may be used to escape other characters. The value of the
symbol is taken from the symbol table in objfil. An initial _ will be prepended to symbol if
needed.

_ Symbol
In C, the ‘true name’ of an external symbol begins with _. It may be necessary to utter this
name to distinguish it from internal or hidden variables of a program.

routine .name
The address of the variable name in the specified C routine. Both roufine and name are sym-
bols. If name is omitted the value is the address of the most recently activated C stack frame
corresponding to routine. (This form is currently broken on the VAX; local variables can be
examined only with dbx(1).)

(exp) The value of the expression exp.

Monadic operators 5

*exp The contents of the location addressed by exp in corfil.

@exp The contents of the location addressed by exp in objfil.

~exp Integer negation.

~exp Bitwise complement.

#exp Logical negation.

Dyadic operators are left associative and are less binding than monadic operators.

el+e2 Integer addition.

el-€2 Integer subtraction.

el*e2 Integer multiplication.

el %e2 Integer division.

el &e2 Bitwise conjunction.

el |e2 Bitwise disjunction.

el#e2 EI rounded up to the next multiple of ¢2.

COMMANDS

Most commands consist of a verb followed by a modifier or list of modifiers. The following verbs are
available. (The commands ‘?’ and /" may be followed by ‘*’; see ADDRESSES for further details.)

g
If

=

Locations starting at address in objfil are printed according to the format f. dot is incremented
by the sum of the increments for each format letter (q.v.).

Locations starting at address in corfil are printed according to the format f and dot is incre-
mented as for ‘?°.

The value of address itself is printed in the styles indicated by the format f. (For i format ‘?’
is printed for the parts of the instruction that reference subsequent words.)

A format consists of one or more characters that specify a style of printing. Each format character may
be preceded by a decimal integer that is a repeat count for the format character. While stepping
through a format dor is incremented by the amount given for each format letter. If no format is given
then the last format is used. The format letters available are as follows.

April 18, 1989

The Wollongong Group 2

ADB(1)

A TmMmEeE MY OAROS OO
e e R ANANDBAND AN RN

17,

—-%

-

|+

)=== -

==

= I -

~y ™~

UNIX Programmer’s Manual ADB(1)

Print 2 bytes in octal. All octal numbers output by adb are preceded by 0. o
Print 4 bytes in octal.

Print in signed octal.

Print long signed octal.

Print in decimal.

Print long decimal.

Print 2 bytes in hexadecimal.

Print 4 bytes in hexadecimal.

Print as an unsigned decimal number.

Print long unsigned decimal.

Print'the 32 bit value as a floating point number.

Print double floating point.

Print the addressed byte in octal.

Print the addressed character.

Print the addressed character using the standard escape convention where control char-
acters are printed as “X and the delete character is printed as "?.

Print the addressed characters until a zero character is reached.

Print a string using the "X escape convention (see C above). n is the length of the
string including its zero terminator.

Print 4 bytes in date format (see ctime (3)).

Print as machine instructions. » is the number of bytes occupied by the instruction.
This style of printing causes variables 1 and 2 to be set to the offset parts of the
source and destination respectively.

Print the value of dot in symbolic form. Symbols are checked to ensure that they
have an appropriate type as indicated below.

local or global data symbol
local or global text symbol
local or global absolute symbol

Print the addressed value in symbolic form using the same rules for symbol lookup as
a.
When preceded by an integer tabs to the next appropriate tab stop. For example, 8t
moves to the next 8-space tab stop.

Print a space.

Print a newline.

Print the enclosed string.

Dot is decremented by the current increment. Nothing is printed.

Dot is incremented by 1. Nothing is printed.

Dot is decremented by 1. Nothing is printed.

newline Repeat the previous command with a count of 1.

[?/11 value mask

April 18, 1989

Words starting at dot are masked with mask and compared with value until a match is found.
If L is used then the match is for 4 bytes at a time instead of 2. If no match is found then dot
is unchanged; otherwise dot is set to the matched location. If mask is omitted then -1 is used.

(2/1w value ...

Write the 2-byte value into the addressed location. If the command is W, write 4 bytes. Odd

addresses are not allowed when writing to the subprocess address space.
[?2/1m bl el f1[?/]
New values for (b1, el, fl) are recorded. If less than three expressions are given then the

remaining map parameters are left unchanged. If the ‘?’ or ‘/’ is followed by ‘*’ then the _
second segment (b2,e2,f2) of the mapping is changed. If the list is terminated by ‘?° or */’

The Wollongong Group 3

O

ADB(1)

!

UNIX Programmer’s Manual ADB(1)

then the file (objfil or corfil respectively) is used for subsequent requests. (So that, for exam-
ple, ‘/m?’ will cause ‘/ to refer to objfil.)

>name Dot is assigned to the variable or register named.
A shell (/bin/sh) is called to read the rest of the line following “!°.

$Smodifier
Miscellaneous commands. The available modifiers are:

<

<<f

THg<aowgao

smodifier
Manage a subprocess. Available modifiers are:

April 18, 1989

bc

Read commands from the file f. If this command is executed in a file, further com-

mands in the file are not seen. If fis omitted, the current input stream is terminated.

If a count is given, and is zero, the command will be ignored. The value of the count _
will be placed in variable 9 before the first command in f is executed.

Similar to < except it can be used in a file of commands without causing the file to be

closed. Variable 9 is saved during the execution of this command, and restored when

it completes. There is a (small) finite limit to the number of << files that can be open

at once.

‘Append output to the file f, which is created if it does not exist. If f is omitted, output

is returned to the terminal.

Print process id, the signal which caused stoppage or termination, as well as the regis-
ters as $r. This is the default if modifier is omitted.

Print the general registers and the instruction addressed by pc. Dot is set to pc.

Print all breakpoints and their associated counts and commands.

C stack backtrace. If address is given then it is taken as the address of the current
frame instead of the contents of the frame-pointer register. If C is used then the
names and (32 bit) values of all automatic and static variables are printed for each
active function. (broken on the VAX). If count is given then only the first count
frames are printed.

Set the default radix to address and report the new value. Note that address is inter-
preted in the (old) current radix. Thus ‘‘10$d’’ never changes the default radix. To
make decimal the default radix, use *‘0t10$d"’.

The names and values of external variables are printed.

Set the page width for output to address (default 80).

Set the limit for symbol matches to address (default 255).

All integers input are regarded as octal.

Exit from adb.

Print all non zero variables in octal.

Print the address map.

(Kernel debugging) Change the current kemel memory mapping to map the designated
user structure to the address given by the symbol _u. The address argument is the
address of the user’s user page table entries (on the VAX).

Set breakpoint at address. The breakpoint is executed count-1 times before causing a
stop. Each time the breakpoint is encountered the command ¢ is executed. If this
command is omitted or sets dot to zero then the breakpoint causes a stop.

Delete breakpoint at address.

Run objfil as a subprocess. If address is given explicitly then the program is entered
at this point; otherwise the program is entered at its standard entry point. count
specifies how many breakpoints are to be ignored before stopping. Arguments to the

subprocess may be supplied on the same line as the command. An argument starting
with < or > causes the standard input or output to be established for the command.

The Wollongong Group 4

ADB(1) UNIX Programmer’s Manual ADB (1)

cs . The subprocess is continued with signal s, see sigvec(2). If address is given then the
subprocess is continued at this address. If no signal is specified then the signal that
caused the subprocess to stop is sent. Breakpoint skipping is the same as for r.

Ss As for ¢ except that the subprocess is single stepped count times. If there is no
current subprocess then objfil is run as a subprocess as for r. In this case no signal
can be sent; the remainder of the line is treated as arguments to the subprocess.

k The current subprocess, if any, is terminated.

VARIABLES

Adb provides a number of variables. Named variables are set initially by adb but are not used subse-
quently. Numbered variables are reserved for communication as follows.

0 The last value printed.

1 The last offset part of an instruction source.
2 The previous value of variable 1.
9 The count on the last $< or $<< command.

On entry the following are set from the system header in the corfil. If corfil does not appear to be a
core file then these values are set from objfil.

b The base address of the data segment.
d The data segment size. '
e The entry point.
m The ‘magic’ number (0407, 0410 or 0413).
s The stack segment size.
t The text segment size.
ADDRESSES

FILES

The address in a file associated with a written address is determined by a mapping associated with that
file. Each mapping is represented by two triples (bl, el, f1) and (b2, €2, f2) and the file address
corresponding to a written address is calculated as follows.

bl<address<el => file address=address+fl-bl, otherwise,
b2<address<e2 = file address=address+2-b2,

otherwise, the requested address is not legal. In some cases (e.g. for programs with separated I and D
space) the two segments for a file may overlap. If a ? or / is followed by an * then only the second tri-
ple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is not of
the kind expected then, for that file, bl is set to 0, el is set to the maximum file size and fI is set to 0;
in this way the whole file can be examined with no address translation.

a.out
core

SEE ALSO

cc(1), dbx(1), ptrace(2), a.out(5), core(5)

DIAGNOSTICS

BUGS

‘Adb’ when there is no current command or format. Comments about inaccessible files, syntax errors,
abnormal termination of commands, etc. Exit status is 0, unless last command failed or returned
nonzero status.

Since no shell is invoked to interpret the arguments of the :r command, the customary wild-card and
variable expansions cannot occur.

April 18, 1989 The Wollongong Group 5

O

ADDBIB(1) UNIX Programmer’s Manual ADDBIB (1)

NAME

addbib — create or extend bibliographic database
SYNOPSIS

addbib [-p promptfile] [-a] database
DESCRIPTION

When this program starts up, answering ‘‘y”’ to the initial ‘‘Instructions?’’ prompt yields directions;
typing ‘‘n”> or RETURN skips them. Addbib then prompts for various bibliographic fields, reads
responses from the terminal, and sends output records to a database. A null response (just RETURN)
means to leave out that field. A minus sign (-) means to go back to the previous field. A trailing
backslash allows a field to be continued on the next line. The repeating ‘‘Continue?’’ prompt allows

the user either to resume by typing “‘y”” or RETURN, to quit the current session by typing *“‘n’’ or q”’,
or to edit the database with any system editor (vi, ex, edit, ed).

The —a option suppresses prompting for an abstract; asking for an abstract is the default. Abstracts are
ended with a CTRL-d. The —p option causes addbib to use a new prompting skeleton, defined in
promptfile. This file should contain prompt strings, a tab, and the key-letters to be written to the data-
base.

The most common key-letters and their meanings are given below. Addbib insulates you from these
key-letters, since it gives you prompts in English, but if you edit the bibliography file later on, you will
need to know this information.

DA Author’s name

%B Book containing article referenced

%C City (place of publication)

%D Date of publication

%E Editor of book containing article referenced
%F Footnote number or label (supplied by refer)
%G Government order number

%H Header commentary, printed before reference
Dl Issuer (publisher)

%] Journal containing article

%K Keywords to use in locating reference

%L Label field used by -k option of refer

%M Bell Labs Memorandum (undefined)

%N Number within volume

%0 Other commentary, printed at end of reference
%P Page number(s)

%Q Corporate or Foreign Author (unreversed)
%R Report, paper, or thesis (unpublished) -

%S Series title

%T Title of article or book

/A% Volume number

%X Abstract — used by roffbib, not by refer
%Y,Z ignored by refer

Except for ‘A’, each field should be given just once. Only relevant fields should be supplied. An
example is:

DA Bill Tuthill

%T Refer — A Bibliography System
%! Computing Services

%C Berkeley

April 18, 1989 The Wollongong Group 1

ADDBIB(1) UNIX Programmer’s Manual

%D 1982
%0 UNX 4.3.5.

FILES

promptfile optional file to define prompting
SEE ALSO

refer(1), sortbib(1), roffbib(1), indxbib(1), lookbib(1)
AUTHORS

Al Stangenberger, Bill Tuthill

April 18, 1989 The Wollongong Group

ADDBIB (1)

o

APPLY (1) UNIX Programmer’s Manual APPLY (1)

o NAME
apply - apply a command to a set of arguments

SYNOPSIS
apply [—ac] [-n] command args ...

DESCRIPTION
Apply runs the named command on each argument arg in turn. Normally arguments are chosen singly;
the optional number n specifies the number of arguments to be passed to command. If n is zero, com-
mand is run without arguments once for each arg. Character sequences of the form %d in command,
where d is a digit from 1 to 9, are replaced by the d’th following unused arg. If any such sequences
occur, n is ignored, and the number of arguments passed to command is the maximum value of 4 in
command. The character ‘%’ may be changed by the —a option.

Examples:
apply echo *
is similar to Is(1);
apply -2 cmp al bl a2 b2 ...
compares the ‘a’ files to the ‘b’ files;
apply Owho12345
runs who(1) 5 times; and
apply In %1 /just/joe” *
links all files in the current directory to the directory /ust/joe.
SEE ALSO
sh(1)

AUTHOR

Rob Pike
o BUGS

Shell metacharacters in command may have bizarre effects; it is best to enclose complicated commands
in single quotes * “.

There is no way to pass a literal ‘%2’ if ‘%’ is the argument expansion character.

@

April 18, 1989 The Wollongong Group 1

APROPOS (1) UNIX Programmer’s Manual APROPOS (1)

NAME | o

apropos — locate commands by keyword lookup

SYNOPSIS
apropos keyword ...

DESCRIPTION
Apropos shows which manual sections contain instances of any of the given keywords in their title.
Each word is considered separately and case of letters is ignored. Words which are part of other words
are considered; thus, when looking for compile, apropos will find all instances of ‘compiler’ also. Try

apropos password
and
apropos editor
If the line starts ‘name(section) ... you can do ‘man section name’ to get the documentation for it. Try
‘apropos format’ and then ‘man 3s printf” to get the manual on the subroutine printf.
Apropos is actually just the -k option to the man(1) command.

FILES

fusr/man/whatis data base
SEE ALSO

man(1), whatis(1), catman(8)
AUTHOR

William Joy

April 18, 1989 The Wollongong Group 1

AR (1)

NAME

UNIX Programmer’s Manual AR (1)

ar — archive and library maintainer

SYNOPSIS

ar key [posname] afile name ...

DESCRIPTION

Ar maintains groups of files combined into a smgle archive file. Its main use is to create and update
library files as used by the loader. It can be used, though, for any similar purpose. N.B: This version
of ar uses a ASCII-format archive which is portable among the various machines running UNIX. Pro-
grams for dealing with older formats are available: see arcv(8).

Key is one character from the set drqtpmx, optionally concatenated with one or more of vuaibclo. Afile
is the archive file. The names are constituent files in the archive file. The meanings of the key charac-

ters are:

d
r

FILES

Delete the named files from the archive file.

Replace the named files in the archive file. If the optional character u is used with r, then
only those files with ‘last-modified’ dates later than the archive files are replaced. If an
optional positioning character from the set abi is used, then the posname argument must be
present and specifies that new files are to be placed after (a) or before (b or i) posname. Oth-
erwise new files are placed at the end.

Quickly append the named files to the end of the archive file. Optional positioning characters
are invalid. The command does not check whether the added members are already in the
archive. Useful only to avoid quadratic behavior when creating a large archive piece-by-piece.

Print a table of contents of the archive file. If no names are given, all files in the archive are
tabled. If names are given, only those files are tabled.

Print the named files in the archive.

Move the named files to the end of the archive. If a positioning character is present, then the
posname argument must be present and, as in r, specifies where the files are to be moved.

Extract the named files. If no names are given, all files in the archive are extracted. In neither
case does x alter the archive file. Normally the ‘last-modified’ date of each extracted file is the
date when it is extracted. However, if 0 is used, the ‘last-modified’ date is reset to the date
recorded in the archive.

Verbose. Under the verbose option, ar gives a file-by-file description of the making of a new
archive file from the old archive and the constituent files. When used with t, it gives a long
listing of all information about the files. When used with p, it precedes each file with a name.

Create. Normally ar will create afile when it needs to. The create option suppresses the nor-
mal message that is produced when afile is created.

Local. Normally ar places its temporary files in the directory /tmp. This option causes them
to be placed in the local directory.

/tmp/v* temporaries

SEE ALSO

lorder(1), 1d(1), ranlib(1), ar(5), arcv(8)

BUGS

If the same file is mentioned twice in an argument list, it may be put in the archive twice.

The ‘last-modified’ date of a file will not be altered by the o option if the user is not the owner of the
extracted file, or the super-user. N

April 18, 1989

The Wollongong Group 1

AR(5) UNIX Programmer’s Manual AR(5)

NAME
ar — archive (library) file format

SYNOPSIS
#include <ar.h>

DESCRIPTION
The archive command ar combines several files into one. Archives are used mainly as libraries to be
searched by the link-editor /d.

A file produced by ar has a magic string at the start, followed by the constituent files, each preceded by
a file header. Filenames are truncated to 15 characters, if necessary. The magic number and header
layout as described in the include file are:
/*

* Copyright (c) 1980 Regents of the University of California.

* All rights reserved. The Berkeley software License Agreement

* specifies the terms and conditions for redistribution.

*

* @(#Har.h 5.1 (Berkeley) 5/30/85

*/

#define ARMAG "!<arch>\n"
#define SARMAG 8

#define ARFMAG """

struct ar_hdr {
char ar_name[16];
char ar_date[12];
char ar_uid([6];
char ar_gid[6];
char ar_mode(81;
char ar_size[10];
char ar_fmag(2];
B
The name is a blank-padded string. The ar_fmag field contains ARFMAG to help verify the presence
of a header. The other fields are left-adjusted, blank-padded numbers. They are decimal except for
ar_mode, which is octal. The date is the modification date of the file at the time of its insertion into
the archive.

Each file begins on a even (0 mod 2) boundary; a new-line is inserted between files if necessary.
Nevertheless the size given reflects the actual size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

The encoding of the header is portable across machines. If an archive contains printable files, the
archive itself is printable.

SEE ALSO
ar(1), 1d(1), nm(1)

BUGS

File names lose trailing blanks. Most software dealing with archives takes even an included blank as a
name terminator.

O

July 1988 The Wollongong Group 1

AS(1) UNIX Programmer’s Manual AS(1)

NAME
as — VAX-11 assembler

SYNOPSIS
as[-al-16] [[-d124] [-L] [-W] [-V] [-J] [-R] [=t directory] [—o objfile] [name ...]
DESCRIPTION
As assembles the named files, or the standard input if no file name is specified. The available flags are:
-a Specifies the alignment of procedures and data blocks. It is given as a power of two; thus an
alignment of 3 causes alignment on an eight byte boundary. The default is —a2.
—d Specifies the number of bytes to be assembled for offsets which involve forward or external
references, and which have sizes unspecified in the assembly language. The default is —dd4.

-L Save defined labels beginning with a ‘L’, which are normally discarded to save space in the
resultant symbol table. The compilers generate such temporary labels.

-V Use virtual memory for some intermediate storage, rather than a temporary file.
-w Do not complain about errors.

-J Use long branches to resolve jumps when byte-displacement branches are insufficient. This
must be used when a compiler-generated assembly contains branches of more than 32k bytes.
-R Make initialized data segments read-only, by concatenating them to the text segments. This

obviates the need to run editor scripts on assembly code to make initialized data read-only and
shared.

-t Specifies a directory to receive the temporary file, other than the default /tmp.
All undefined symbols in the assembly are treated as global.
The output of the assembly is left on the file objfile; if that is omitted, a.out is used.

EUNICE NOTES
There are two assemblers provided: /usr/eunfvmsas and /bin/as. See cc(l) or f77(1) for more informa-
tion.
FILES
[tmp/as* default temporary files.
a.out default resultant object file
SEE ALSO
1d(1), nm(1), adb(1), dbx(1), a.out(5), vmsas(1)
Auxiliary documentation Assembler Reference Manual.
AUTHORS
John F. Reiser
Robert R. Henry
BUGS

-J should be eliminated; the assembler should automatically choose among byte, word and long
branches.

April 18, 1989 The Wollongong Group 1

o

AT(1)

NAME

UNIX Programmer’s Manual AT (1)

at — execute commands at a later time

SYNOPSIS

at[-c][-s][-m]time [day][file]

DESCRIPTION

At spools away a copy of the named file to be used as input to sh(1l) or csh(l). If the —c flag (for
(csh(1))) or the -s flag (for (sh(1))) is specified, then that shell will be used to execute the job; if no
shell is specified, the current environment shell is used. If no file name is specified, ar prompts for
commands from standard input until a "D is typed.

If the -m flag is specified, mail will be sent to the user after the job has been run. If errors occur during
execution of the job, then a copy of the error diagnostics will be sent to the user. If no errors occur,
then a short message is sent informing the user that no errors occurred.

The format of the spool file is as follows: A four line header that includes the owner of the job, the
name of the job, the shell used to run the job, and whether mail will be set after the job is executed.
The header is followed by a cd command to the current directory and a umask command to set the
modes on any files created by the job. Then at copies all relevant environment variables to the spool
file. When the script is run, it uses the user and group ID of the creator of the spool file.

The time is 1 to 4 digits, with an optional following ‘A’, ‘P’, ‘N’ or ‘M’ for AM, PM, noon or mid-
night. One and two digit numbers are taken to be hours, three and four digits to be hours and minutes.
If no letters follow the digits, a 24 hour clock time is understood.

The optional day is either (1) a month name followed by a day number, or (2) a day of the week; if the
word ‘week’ follows, invocation is moved seven days further off. Names of months and days may be
recognizably truncated. Examples of legitimate commands are

at 8am jan 24

at -c -m 1530 fr week

at -s -m 1200n week

At programs are executed by periodic execution of the command /ust/lib/atrun from cron(8). The
granularity of ar depends upon the how often atrun is executed.

Error output is lost unless redirected or the —m flag is requested, in which case a copy of the errors is
sent to the user via mail(1).

EUNICE NOTES

The EUNICE BSD at(1) requires write access to the directory /usr/spool/at. The file fusr/lib/atrun can
also be run periodically by TWGSADMIN:ATRUN.COM, that is restarted during the EUNICE BSD
startup procedure. When a EUNICE filename has multiple extensions, the last two extensions cannot be
composed solely of numbers. Because of this, the filenames of job files were changed to
fusr/spoolfat/yy.ddd.hhhh.*at.

FILES
[usr/spool/at spooling area
[ust/spool/at/yy.ddd.hhhh.*at job file
/ust/spool/at/past directory where jobs are executed from
fusr/spool/at/lasttimedone last time atrun was run
Jusr/lib/atrun executor (run by cron(8))
fetc/eunice/atrun.com executor of /usr/lib/atrun

SEE ALSO

atq(1), atrm(1), calendar(1), sleep(1), cron(8)

April 18, 1989 The Wollongong Group 1

AT(1) UNIX Programmer’s Manual AT(1)

DIAGNOSTICS o

Complains about various syntax errors and times out of range.

BUGS
Due to the granularity of the execution of /usr/lib/atrun, there may be bugs in scheduling things almost
exactly 24 hours into the future.

If the system crashes, mail is not sent to the user informing them that the job was not completed.

Sometimes old spool files are not removed from the directory [usr/spool/at/past. This is usually due to a
system crash, and requires that they be removed by hand.

April 18, 1989 The Wollongong Group 2

ATQ(1) UNIX Programmer’s Manual ATQ(1)

NOTE
o NOT PRESENT IN WOLLONGONG'’S EUNICE!
NAME
atq — print the queue of jobs waiting to be run
SYNOPSIS
atq[-c][-n] [name ...]
DESCRIPTION

Atq prints the queue of jobs that are waiting to be run at a later date. These jobs were created with the
at(1) command. With no flags, the queue is sorted in the order that the jobs will be executed.

If the —c flag is used, the queue is sorted by the time that the ar command was given.

The ~n flag prints only the total number of files that are currently in the queue.

If a name(s) is provided, only those files belonging to that user(s) are displayed.
EUNICE NOTES

Not implemented in EUNICE.
FILES

[usr/spool/at spool area
SEE ALSO

at(1), atrm(1), cron(8)

O

April 18, 1989 The Wollongong Group 1

ATRM(1) UNIX Programmer’s Manual ATRM(1)

NOTE o
NOT PRESENT IN WOLLONGONG'’S EUNICE!

NAME
atrm - remove jobs spooled by at

SYNOPSIS
atrm [-f] [-i] [-] [[job #] [name]...]

DESCRIPTION
Atrm removes jobs that were created with the at(1) command. With the - flag, all jobs belonging to
the person invoking atrm are removed. If a job number(s) is specified, atrm attempts to remove only
that job number(s).
If the —f flag is used, all information regarding the removal of the specified jobs is suppressed. If the —i
flag is used, atrm asks if a job should be removed; a response of 'y’ causes the job to be removed.

If a user(s) name is specified, all jobs belonging to that user(s) are removed. This form of invoking
atrm is useful only to the super-user.

EUNICE NOTES

Not implemented in EUNICE.
FILES

fusr/spool/at spool area
SEE ALSO

at(1), atq(1), cron(8)

April 18, 1989 The Wollongong Group 1

O

AWK (1) UNIX Programmer’s Manual AWK(1)

NAME

awk — pattern scanning and processing language

SYNOPSIS

awk [-Fc] [prog] [file] ..

DESCRIPTION

Awk scans each input file for lines that match any of a set of patterns specified in prog. With each pat-
tern in prog there can be an associated action that will be performed when a line of a file matches the
pattern.. The set of patterns may appear literally as prog, or in a file specified as -f file.

Files are read in order; if there are no files, the standard input is read. The file name ‘-’ means the
standard input. Each line is matched against the pattern portion of every pattern-action statement; the
associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by using FS,
vide infra.) The fields are denoted $1, $2, ... ; $0 refers to the entire line.

A pattern-action statement has the form
pattern { action }
A missing { action } means print the line; a missing pattern always matches.
An action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]

while (conditional) statement

for (expression ; conditional ; expression) statement
break

continue

{ [statement] ... }

variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, newlines or right braces. An empty expression-list stands for
the whole line. Expressions take on string or numeric values as appropriate, and are built using the
operators +, —, *, /, %, and concatenation (indicated by a blank). The C operators ++, —, +=, —=, *=,
/=, and %= are also available in expressions. Variables may be scalars, array elements (denoted x[i]) or
fields. Variables are initialized to the null string. Array subscripts may be any string, not necessarily
numeric; this allows for a form of associative memory. String constants are quoted "...".

The print statement prints its arguments on the standard output (or on a file if >file is present),
separated by the current output field separator, and terminated by the output record separator. The
prinif statement formats its expression list according to the format (see printf(3S)).

The built-in function length returns the length of its argument taken as a string, or of the whole line if
no argument. There are also built-in functions exp, log, sqrt, and int. The last truncates its argument
to an integer. substr(s, m, n) returns the n-character substring of s that begins at position m. The func-
tion sprinififmt, expr, expr, ...) formats the expressions according to the pringf(3S) format given by fmt
and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, ||, &&, and parentheses) of regular expressions and rela-

tional expressions. Regular expressions must be surrounded by slashes and are as in egrep. Isolated
regular expressions in a pattern apply to the entire line. Regular expressions may also occur in rela-
tional expressions.

April 18, 1989 The Wollongong Group 1

AWK(1) UNIX Programmer’s Manual AWK(1)

A pattern may consist of two patterns separated by a comma; in this case, the action is performed for O
all lines between an occurrence of the first pattern and the next occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either ~ (for contains) or !~
(for does not contain). A conditional is an arithmetic expression, a relational expression, or a Boolean
combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line is read
and after the last. BEGIN must be the first pattern, END the last.

A single character ¢ may be used to separate the fields by starting the program with
BEGIN { FS = "¢" }
or by using the —Fc¢ option.

Other variable names with special meanings include NF, the number of fields in the current record; NR,
the ordinal number of the current record; FILENAME, the name of the current input file; OFS, the out-
put field separator (default blank); ORS, the output record separator (default newline); and OFMT, the
output format for numbers (default "%.6g").

EXAMPLES
Print lines longer than 72 characters:

length > 72
Print first two fields in opposite order:
{ print $2, $1 }
Add up first column, print sum and average:

{s+=8%1}
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:
{ for (i = NF; i > 0; —i) print $i }

Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first field is different from previous one:
$1 != prev { print; prev = $1)

SEE ALSO
lex(1), sed(1)
A. V. Aho, B. W. Kemnighan, P. J. Weinberger, Awk — a pattern scanning and processing language
BUGS
There are no explicit conversions between numbers and strings. To force an expression to be treated as
a number add 0 to it; to force it to be treated as a string concatenate "" to it.

April 18, 1989 The Wollongong Group 2

BASENAME(1) UNIX Programmer’s Manual BASENAME (1)

o NAME
basename - strip filename affixes

SYNOPSIS
basename string [suffix]

DESCRIPTION

Basename deletes any prefix ending in ‘/* and the suffix, if present in string, from string, and prints the
result on the standard output. It is normally used inside substitution marks * * in shell procedures.

This shell procedure invoked with the argument /usr/src/binfcat.c compiles the named file and moves
the output to cat in the current directory:

cc $1
mv a.out “basename $1 .c°

SEE ALSO
sh(1)

O

April 18, 1989 The Wollongong Group 1

BC(1) UNIX Programmer’s Manual BC(1)

NAME

v be - arbitrary-precision arithmetic language

SYNOPSIS '
be[—<][-1]{file..]

DESCRIPTION

Bc is an interactive processor for a language which resembles C but provides unlimited precision arith-
metic. It takes input from any files given, then reads the standard input. The -l argument stands for
the name of an arbitrary precision math library. The syntax for bc programs is as follows; L means
letter a-z, E means expression, S means statement.

Comments
are enclosed in /* and */.

Names
simple variables: L
array elements: L { E]
The words ‘ibase’, ‘obase’, and ‘scale’
Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point

L(E,..,E)
Operators
+ - * [/ % (% is remainder; " is power)
++ — (prefix and postfix; apply to names)
= <= >= l= < >
= 4= —= *= [= Y= "=
Statements
E
{S;..;8}
if(E)S
while (E) S
for(E;E;E)S
null statement
break
quit

Function definitions
define L (L ,...,L) {
auto L, ..., L
S;..S
retum (E)

}

Functions in -1 math library
s(x) sine
c(x) cosine
e(x) exponential
1(x) log
a(x) arctangent
j(nx) Bessel function

April 18, 1989 The Wollongong Group 1

BC(1) UNIX Programmer’s Manual BC(1)

o All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assignment.
Either semicolons or newlines may separate statements. Assignment to scale influences the number of
digits to be retained on arithmetic operations in the manner of dc(1). Assignments to ibase or obase set
the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable simultaneously. All vari-
ables are global to the program. ‘Auto’ variables are pushed down during function calls. When using
arrays as function arguments or defining them as automatic variables empty square brackets must follow
the array name.

For example
scale = 20
define e(x){
auto a, b, ¢, i, s
a=1
b=1
s=1
for(i=1; 1==1; i++){
a = a*x
b = b*i
c=afh
if(c == 0) return(s)
S = S+C
)
}
0 defines a function to compute an approximate value of the exponential function and

for(i=1; i<=10; i++) e(i)
prints approximate values of the exponential function of the first ten integers.

Bc is actually a preprocessor for dc(1), which it invokes automatically, unless the —¢ (compile only)
option is present. In this case the dc input is sent to the standard output instead.

FILES
fusr/lib/lib.b mathematical library
dc(1) desk calculator proper
SEE ALSO
dc(1)

L. L. Cherry and R. Morris, BC — An arbitrary precision desk-calculator language

BUGS
No &&, ||, or ! operators.
For statement must have all three E’s.
Quit is interpreted when read, not when executed.

O

April 18, 1989 The Wollongong Group 2

BIFF(1) UNIX Programmer’s Manual BIFF(1)

NAME

biff ~ be notified if mail arrives and who it is from
SYNOPSIS

biff [yn]

DESCRIPTION

Biff informs the system whether you want to be notified when mail arrives during the current terminal
session. The command

biff y
enables notification; the command
biff n
disables it. When mail notification is enabled, the header and first few lines of the message will be

printed on your screen whenever mail arrives. A “‘biff y’* command is often included in the file Jdogin
or profile to be executed at each login.

Biff operates asynchronously. For synchronous notification use the MAIL variable of sh(1) or the mail
variable of csh(1).

SEE ALSO
csh(1), sh(1), mail(1),

April 18, 1989 The Wollongong Group 1

o

BINMAIL(1) UNIX Programmer’s Manual BINMAIL (1)

NAME

binmail - send or receive mail among users

SYNOPSIS

/bin/mail [+] [-i] [person] ...
/bin/mail [+][-i] -f file

DESCRIPTION

FILES

Note: This is the old version 7 UNIX system mail program. The default mail command is described in
Mail (1), and its binary is in the directory /fusr/uch.

mail with no argument prints a user’s mail, message-by-message, in last-in, first-out order; the optional
argument + displays the mail messages in first-in, first-out order. For each message, it reads a line from
the standard input to direct disposition of the message.

newline Go on to next message.

d Delete message and go on to the next.
) Print message again.

- Go back to previous message.

s{file]..
Save the message in the named files (‘mbox’ default).

w[file]..
Save the message, without a header, in the named files (‘mbox’ default).

m [person] ...
Mail the message to the named persons (yourself is default).

EOT (control-D)
Put unexamined mail back in the mailbox and stop.

q Same as EOT.

lcommand
Escape to the Shell to do command.

* Print a command summary.

An interrupt normally terminates the mail command; the mail file is unchanged. The optional argument
—i tells mail to continue after interrupts.

When persons are named, mail takes the standard mput up to an end-of-file (or a line with just °.’) and
adds it to each person’s ‘mail’ file. The message is preceded by the sender’s name and a postmark.
Lines that look like postmarks are prepended with ‘>’. A person is usually a user name recognized by
login(1). To denote a recipient on a remote system, prefix person by the system name and exclamation
mark (see uucp(1C)).

The —f option causes the named file, for example, ‘mbox’, to be printed as if it were the mail file.
When a user logs in he is informed of the presence of mail.

fetc/passwd to identify sender and locate persons
/usr/spool/mail/* incoming mail for nser *

mbox saved mail

/tmp/ma* temp file

/usr/spool/mail/*.lock lock for mail directory

dead.letter unmailable text

April 18, 1989 The Wollongong Group 1

BINMAIL (1) UNIX Programmer’s Manual BINMAIL (1)

SEE ALSO o

Mail(1), write(1), uucp(1C), uux(1C), xsend(1), sendmail(8)

BUGS
Race conditions sometimes result in a failure to remove a lock file.

Normally anybody can read your mail, unless it is sent by xsend(1). An installation can overcome this
by making mail a set-user-id command that owns the mail directory.

April 18, 1989 The Wollongong Group 2

o

CAL(1) UNIX Programmer’s Manual CAL(1)

NAME
cal — print calendar

SYNOPSIS
cal [month] year

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a calendar just for that month
is printed. Year can be between 1 and 9999. The month is a number between 1 and 12. The calendar
produced is that for England and her colonies.

Try September 1752.

BUGS
The year is always considered to start in January even though this is historically naive.
Beware that ‘cal 78’ refers to the early Christian era, not the 20th century.

April 18, 1989 The Wollongong Group 1

CALENDAR(1) UNIX Programmer’s Manual CALENDAR(1)

NAME G

calendar - reminder service

SYNOPSIS
calendar [-]

DESCRIPTION
Calendar consults the file ‘calendar’ in the current directory and prints out lines that contain today’s or
tomorrow’s date anywhere in the line. Most reasonable month-day dates such as ‘Dec. 7, ‘december
7, “12/1, etc., are recognized, but not ‘7 December’ or ‘7/12°. If you give the month as “‘*’’ with a
date, i.e. ““* 1”°, that day in any month will do. On weekends ‘tomorrow’ extends through Monday.

When an argument is present, calendar does its job for every user who has a file ‘calendar’ in his login
directory and sends him any positive results by mail(1). Normally this is done daily in the wee hours
under control of cron(8).

The file ‘calendar’ is first run through the ““C** preprocessor, /lib/cpp, to include any other calendar
files specified with the usual “‘#include’ syntax. Included calendars will usually be shared by all users,
maintained and documented by the local administration.

FILES
calendar
/usr/lib/calendar to figure out today’s and tomorrow’s dates
fetc/passwd
/tmp/cal*
/lib/cpp, egrep, sed, mail as subprocesses

SEE ALSO
at(1), cron(8), mail(1)

BUGS

Calendar’s extended idea of ‘tomorrow’ doesn’t account for holidays.

April 18, 1989 The Wollongong Group 1

O

@

CAT(1) UNIX Programimer’s Manual CAT(1)

NAME
cat — catenate and print

SYNOPSIS
cat[-u][-n][=s][=-v]fie..

DESCRIPTION
Cat reads each file in sequence and displays it on the standard output. Thus

cat file
displays the file on the standard output, and

cat filel file2 >file3 |
concatenates the first two files and places the result on the third.

If no input file is given, or if the argument ‘-’ is encountered, cat reads from the standard input file.
Output is buffered in the block size recommended by stat(2) unless the standard output is a terminal,
when it is line buffered. The —u option makes the output completely unbuffered.

The -n option displays the output lines preceded by lines numbers, numbered sequentially from 1.
Specifying the —b option with the —n option omits the line numbers from blank lines.
The —s option crushes out multiple adjacent empty lines so that the output is displayed single spaced.
The ~v option displays non-printing characters so that they are visible. Control characters print like “X
for control-x; the delete character (octal 0177) prints as "?. Non-ascii characters (with the high bit set)
are printed as M- (for meta) followed by the character of the low 7 bits. A —e option may be given
with the —v option, which displays a ‘$’ character at the end of each line. Specifying the -t option with
the —v option displays tab characters as “I.

SEE ALSO
cp(1), ex(1), more(1), pr(1), tail(1)

BUGS
Beware of ‘cat a b >a’ and ‘cat a b >b’, which destroy the input files before reading them.

April 18, 1989 The Wollongong Group 1

CB(1) UNIX Programmer’s Manual CB(1)

NAME o
¢b — C program beautifier

SYNOPSIS
cb

DESCRIPTION
Cb places a copy of the C program from the standard input on the standard output with spacing and
indentation that displays the structure of the program.

April 18, 1989 The Wollongong Group 1

o

CC(1)

NAME

UNIX Programmer’s Manual cc(1)

cc — C compiler

SYNOPSIS

cc [option] ... file ...

DESCRIPTION

Cc is the UNIX C compiler. Cc accepts several types of arguments:

Arguments whose names end with ‘.c’ are taken to be C source programs; they are compiled, and each
object program is left on the file whose name is that of the source with ‘.0’ substituted for ‘.c’. The
‘.0’ file is normally deleted, however, if a single C program is compiled and loaded all at one go.

In the same way, arguments whose names end with ‘.s’ are taken to be assembly source programs and
are assembled, producing a ‘.0’ file.

The following options are interpreted by cc. See ld(1) for load-time options.

- Suppress the loading phase of the compilation, and force an object file to be produced even if
only one program is compiled.

-g Have the compiler produce additional symbol table information for dbx(1). Also pass the -Ig
flag to ld(1).

-go Have the compiler produce additional symbol table information for the obsolete debugger
sdb(1). Also pass the -Ig flag to ld(1).

-W Suppress warning diagnostics.

-p Arrange for the compiler to produce code which counts the number of times each routine is
called. If loading takes place, replace the standard startup routine by one which automatically
calls monitor(3) at the start and arranges to write out a mon.out file at normal termination of
execution of the object program. An execution profile can then be generated by use of
prof(l).

-pg Causes the compiler to produce counting code in the manner of -p, but invokes a run-time
recording mechanism that keeps more extensive statistics and produces a gmon.out file at nor-
mal termination. Also, a profiling library is searched, in lieu of the standard C library. An
execution profile can then be generated by use of gprof(1).

-0 Invoke an object-code improver.

-R Passed on to as, making initialized variables shared and read-only.

-S Compile the named C programs, and leave the assembler-language output on corresponding
files suffixed ‘.s’.

M Run only the macro preprocessor on the named C programs, requesting it to generate Makefile
dependencies and send the result to the standard output.

-E Run only the macro preprocessor on the named C programs, and send the result to the stan-
dard output.

-C prevent the macro preprocessor from eliding comments.

-0 output
Name the final output file output. If this option is used the file ‘a.out’ will be left undis-
turbed.

~Dname=def

-Dname Define the name to the preprocessor, as if by ‘#define’. If no definition is given, the name is
defined as "1".

April 18, 1989 The Wollongong Group 1

CC(1)

UNIX Programmer’s Manual CC(1)

~Uname Remove any initial definition of name.

~Idir ‘#include’ files whose names do not begin with */* are always sought first in the directory of
the file argument, then in directories named in -I options, then in directories on a standard

list.

-Ldir Library archives are sought first in directories named in -L options, then in directories on a
standard list.

-f Use an alternate compiler which does not convert expressions involving only floats to double.

This does not conform to the standard which states that all intermediate results should be con-
verted to double but does provide a speed improvement for programs which don’t require full
double precision. This option also makes register float variables work appropriately.

-Bstring Find substitute compiler passes in the files named string with the suffixes cpp, ccom and c2.
If string is empty, use a standard backup version.

~t[p012] Find only the designated compiler passes in the files whose names are constructed by a -B
option. In the absence of a —-B option, the string is taken to be ‘/usr/c/’.

Other arguments are taken to be either loader option arguments, or C-compatible object programs, typi-
cally produced by an earlier cc run, or perhaps libraries of C-compatible routines. These programs,
together with the results of any compilations specified, are loaded (in the order given) to produce an
executable program with name a.out. '

EUNICE NOTES

FILES

cc(1) has been modified to create either VMS or UNIX objects. It will read the value of the csh vari-
able, AS_IMAGE, to determine if the UNIX or VMS assembler should be used. The value of
LD_IMAGE will determine whether the UNIX or VMS loader should be used as the loader. Add the
following lines to a .cshrc in your home directory.

Have cc(1) or £77(1) use UNIX assembler and loader.

alias unixobj 'unsetenv AS_IMAGE; unsetenv LD_IMAGE’

#

Have cc(1) or £77(1) use VMS assembler and loader.

alias vimsobj ’setenv AS_IMAGE /usr/eun/vmsas; setenv LD_IMAGE /ust/eun/vmsld’

Also add either of the following lines, depending on your choice of object type.

unixobj

vmsobj

The -g flag for additional symbol table information can only be used with UNIX objects.
Note: See Id(1) for additional flags (-noshare, -nopObufs, -notraceback)

file.c input file
file.o object file
a.out loaded output

/tmp/ctm? temporary

lib/cpp preprocessor

flib/ccom compiler

/lib/sccom compiler for single precision floats
/usr/c/occom backup compiler

/ust/cfocpp backup preprocessor

April 18, 1989 The Wollongong Group 2

o

CC(1) UNIX Programmer’s Manual cc(1)

0 flib/c2 optional optimizer
flibfert0.0 runtime startoff

/lib/mcrt0.0 startoff for profiling
/usr/lib/gert0.ostartoff for gprof-profiling
Mlib/libc.a standard library, see intro(3)
[ust/lib/libc_p.aprofiling library, see intro(3)
/ustfinclude standard directory for ‘#include’ files
mon.out file produced for analysis by prof(1)
gmon.out file produced for analysis by gprof(1)

SEE ALSO
B. W. Kemighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978
B. W. Kemighan, Programming in C—a tutorial
D. M. Ritchie, C Reference Manual
monitor(3), prof(1), gprof(1), adb(1), 1d(1), dbx(1), as(1), vmsas(1W), vmsld(1W)

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages may be
produced by the assembler or loader.

BUGS
* The compiler currently ignores advice to put char, unsigned char, short, unsigned short, float, or
double variables in registers, except as noted above. It previously produced poor, and in some cases
incorrect, code for such declarations.

o

April 18, 1989 The Wollongong Group 3

CD(1) UNIX Programmer’s Manual CD(1)

NAME O
¢d — change working directory

SYNOPSIS
cd directory
DESCRIPTION

Directory becomes the new working directory. The process must have execute (search) permission in
directory.

Because a new process is created to execute each command, cd would be ineffective if it were written
as a normal command. It is therefore recognized and executed by the shells. In csh(l) you may
specify a list of directories in which directory is to be sought as a subdirectory if it is not a subdirec-
tory of the current directory; see the description of the cdpath variable in csh(1).

SEE ALSO
csh(1), sh(1), pwd(1), chdir(2)

April 18, 1989 The Wollongong Group 1

CHECKNR(1) UNIX Programmer’s Manual CHECKNR (1)

O NAME .
" checknr — check nroff/troff files

SYNOPSIS
checknr [-s] [f] [-axl.yl.x2.y2. ... xnyn] [—e.x1.x2.x3 ... xn] [file ...]

DESCRIPTION
Checknr checks a list of nroff(1) or troff(1) input files for certain kinds of errors involving mismatched
opening and closing delimiters and unknown commands. If no files are specified, checknr checks the
standard input. Delimeters checked are:

(¢))] Font changes using \fx ... \fP.

2) Size changes using \sx ... \s0.

3 Macros that come in open ... close forms, for example, the .TS and .TE macros which must
always come in pairs.

Checknr knows about the ms(7) and me(7) macro packages.

Additional pairs of macros can be added to the list using the —a option. This must be followed by

groups of six characters, each group defining a pair of macros. The six characters are a period, the first

macro name, another period, and the second macro name. For example, to define a pair .BS and .ES,
use —-a.BS.ES

The —c option defines commands which would otherwise be complained about as undefined.
The —f option requests checknr to ignore \f font changes.
The —s option requests checknr to ignore \s size changes.

Checknr is intended to be used on documents that are prepared with checknr in mind, much the same as
lint. It expects a certain document writing style for \f and \s commands, in that each \fx must be ter-

o minated with \fP and each \sx must be terminated with \s0. While it will work to directly go into the
next font or explicitly specify the original font or point size, and many existing documents actually do
this, such a practice will produce complaints from checknr. Since it is probably better to use the \fP and
\sO forms anyway, you should think of this as a contribution to your document preparation style.

SEE ALSO
nroff(1), troff(1), checkeq(1), ms(7), me(7)

DIAGNOSTICS
Complaints about unmatched delimiters.
Complaints about unrecognized commands.
Various complaints about the syntax of commands.
BUGS
There is no way to define a 1 character macro name using -a.
Does not correctly recognize certain reasonable constructs, such as conditionals.

@

April 18, 1989 The Wollongong Group 1

CHFN(1) UNIX Programmer’s Manual CHFN(1)

NOTE . 0

NOT PRESENT IN WOLLONGONG’S EUNICE!

NAME

chfn, chsh, passwd - change password file information
SYNOPSIS

passwd [—f] [-s] [name]
DESCRIPTION

This command changes (or installs) a password, login shell (~s option), or GECOS information field (-f
option) associated with the user name (your own name by default).

When altering a password, the program prompts for the current password and then for the new one.
The caller must supply both. The new password must be typed twice to forestall mistakes.

New passwords must be at least four characters long if they use a sufficiently rich alphabet and at least
six characters long if monocase. These rules are relaxed if you are insistent enough.

Only the owner of the name or the super-user may change a password; the owner must prove he knows
the old password.

When altering a login shell, passwd displays the current login shell and then prompts for the new one.
The new login shell must be one of the approved shells listed in /etc/shells unless you are the super-
user. If /etc/shells does not exist, the only shells that may be specified are /bin/sh and /bin/csh.

The super-user may change anyone’s login shell; normal users may only change their own login shell.

When altering the GECOS information field, passwd displays the current information, broken into fields,
as interpreted by the finger(1) program, among others, and prompts for new values. These fields
include a user’s “‘real life’’ name, office room number, office phone number, and home phone number.
Included in each prompt is a default value, which is enclosed between brackets. The default value is
accepted simply by typing a carriage return. To enter a blank field, the word ‘‘none’’ may be typed.
Below is a sample run:

Name [Biff Studsworth II}:

Room number (Exs: 597E or 197C) []: 521E
Office Phone (Ex: 1632) []: 1863

Home Phone (Ex: 987532) [5771546]: none

Passwd allows phone numbers to be entered with or without hyphens. It is a good idea to run Sfinger
after changing the GECOS information to make sure everything is setup properly.

The super-user may change anyone’s GECOS information; normal users may only change their own.

EUNICE NOTES
All password authentication is done by VMS and not EUNICE. Running the command will not change
the /etc/password file, but will change the VMS password instead.

The commands chfn and chsh are not implemented in EUNICE.

FILES
fetc/passwd The file containing all of this information
fetc/shells The list of approved shells

SEE ALSO

login(1), finger(1), passwd(5), crypt(3)
Robert Morris and Ken Thompson, UNIX password security

April 18, 1989 The Wollongong Group 1

o

o

CHGRP(1) UNIX Programmer’s Manual CHGRP(1)

NOTE
NOT PRESENT IN WOLLONGONG’S EUNICE!
NAME
chgrp - change group
SYNOPSIS
chgrp [-f -R] group file ...
DESCRIPTION

Chgrp changes the group-ID of the files to group. The group may be either a decimal GID or a group
name found in the group-ID file.

The user invoking chgrp must belong to the specified group and be the owner of the file, or be the
super-user.

No errors are reported when the -f (force) option is given.

When the -R option is given, chgrp recursively descends its directory arguments setting the specified
group-ID. When symbolic links are encountered, their group is changed, but they are not traversed.

EUNICE NOTES
Not implemented in EUNICE.

FILES
[fetc/group

SEE ALSO
chown(2), passwd(5), group(5)

April 18, 1989 The Wollongong Group 1

CHMOD(1) UNIX Programmer’s Manual CHMOD(1)

NAME

chmod — change mode

SYNOPSIS

chmod [-Rf] mode file ...

DESCRIPTION

The mode of each named file is changed according to mode, which may be absolute or symbolic. An
absolute mode is an octal number constructed from the OR of the following modes:

4000 set user ID on execution

2000 set group ID on execution

1000 sticky bit, see chmod(2)

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:
[who] op permission [op permission] ...

The who part is a combination of the letters u (for user’s permissions), g (group) and o (other). The
letter a stands for all, or ugo. If who is omitted, the default is a but the setting of the file creation
mask (see umask(2)) is taken into account.

Op can be + to add permission to the file’s mode, - to take away permission and = to assign permission
absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), X (set execute only if file
is a directory or some other execute bit is set), s (set owner or group id) and t (save text — sticky).
Letters u, g, or o indicate that permission is to be taken from the current mode. Onmitting permission is
only useful with = to take away all permissions.

When the —R option is given, chmod recursively descends its directory arguments setting the mode for
each file as described above. When symbolic links are encountered, their mode is not changed and they
are not traversed.

If the —f option is given, chmod will not complain if it fails to change the mode on a file.

EXAMPLES

The first example denies write permission to others, the second makes a file executable by all if it is
executable by anyone:

chmod o-w file
chmod +X file

Multiple symbolic modes separated by commas may be given. Operations are performed in the order
specified. The letter s is only useful with u or g.

Only the owner of a file (or the super-user) may change its mode.

EUNICE NOTES

Files and directories under EUNICE adhere to the UNIX file protection conventions. In order to imple-
ment UNIX-like file protections using the VMS file protection mechanism, the VMS "DELETE" per-
mission is enabled. This does not mean that file security has been violated.

In order to delete a file, VMS (like UNIX) requires that the directory in which the file resides have
"WRITE" permission to the person attempting the deletion. In addition, the file in question must have
"DELETE" turned on.

April 18, 1989 The Wollongong Group 1

o

Le,

CHMOD(1) UNIX Programmer’s Manual CHMOD (1)

Under UNIX, if the directory has "WRITE" permission turned on, then anybody can delete any file in
that directory. If the file also has "WRITE" permission, the file is deleted immediately. If it does not,
then UNIX will ask whether the file really is to be removed, and will allow it if the answer is
affirmative. The documentation for rm(I) in the UNIX Programmer’s Manual discusses UNIX
"WRITE" permission. Files and directories created under EUNICE will be created with the VMS pro-
tections necessary for rm to work.

The COMBINATION of the directory and the file protections determine whether a file may be deleted.
The EUNICE command chmod automatically adds the VMS "DELETE" command in order to remain
consistent with the UNIX conventions - that the "WRITE" permission on directory decide the access to
the files inside it.

As may be seen, in both VMS and UNIX the directory permission are the critical item. Good file
management dictates that the directories wherein important files reside be set with protections appropri-
ate to the occasion. As long as the directories are correctly set, nobody will be able to delete any file
for which they lack proper authorization.

SEE ALSO

Is(1), chmod(2), stat(2), umask(2), chown(8)

April 18, 1989 The Wollongong Group 2

CHSH(1) UNIX Programmer’s Manual CHSH(1)

NOTE
NOT PRESENT IN WOLLONGONG’S EUNICE!
NAME
chfn, chsh, passwd — change password file information
SYNOPSIS
passwd [-f] [-s] [name]
DESCRIPTION

This command changes (or installs) a password, login shell (-s option), or GECOS information field (-f
option) associated with the user name (your own name by default).

When altering a password, the program prompts for the current password and then for the new one.
The caller must supply both. The new password must be typed twice to forestall mistakes.

New passwords must be at least four characters long if they use a sufficiently rich alphabet and at least
six characters long if monocase. These rules are relaxed if you are insistent enough.

Only the owner of the name or the super-user may change a password; the owner must prove he knows
the old password.

When altering a login shell, passwd displays the current login shell and then prompts for the new one.
The new login shell must be one of the approved shells listed in /etc/shells unless you are the super-
user. If /etc/shells does not exist, the only shells that may be specified are /bin/sh and /bin/csh.

The super-user may change anyone’s login shell; normal users may only change their own login shell.

When altering the GECOS information field, passwd displays the current information, broken into fields,
as interpreted by the finger(l) program, among others, and prompts for new values. These fields
include a user’s “‘real life’’ name, office room number, office phone number, and home phone number.
Included in each prompt is a default value, which is enclosed between brackets. The default value is
accepted simply by typing a carriage return. To enter a blank field, the word “‘none’” may be typed.
Below is a sample run:

Name [Biff Studsworth IT]:

Room number (Exs: 597E or 197C) []: 521E
Office Phone (Ex: 1632) []: 1863

Home Phone (Ex: 987532) [5771546]: none

Passwd allows phone numbers to be entered with or without hyphens. It is a good idea to run finger
after changing the GECOS information to make sure everything is setup properly.

The super-user may change anyone’s GECOS information; normal users may only change their own.

EUNICE NOTES
All password authentication is done by VMS and not EUNICE. Running the command will not change
the /etc/password file, but will change the VMS password instead.

The commands chfn and chsh are not implemented in EUNICE.

FILES
fetc/passwd The file containing all of this information
fetc/shells The list of approved shells

SEE ALSO

login(1), finger(1), passwd(5), crypt(3)
Robert Morris and Ken Thompson, UNIX password security

April 18, 1989 The Wollongong Group 1

CI(1) UNIX Programmer’s Manual CI(1)

NAME
ci — check in RCS revisions

SYNOPSIS
ci [options] file ...

DESCRIPTION
Ci stores new revisions into RCS files. Each file name ending in ‘,v’ is taken to be an RCS file, all
others are assumed to be working files containing new revisions. Ci deposits the contents of each work-
ing file into the corresponding RCS file.

Pairs of RCS files and working files may be specified in 3 ways (see also the example section of co
1)

1) Both the RCS file and the working file are given. The RCS file name is of the form pathl/workfile,v
and the working file name is of the form parh2/workfile, where pathl/ and path2/ are (possibly different
or empty) paths and workfile is a file name.

2) Only the RCS file is given. Then the working file is assumed to be in the current directory and its
name is derived from the name of the RCS file by removing pathl/ and the suffix ‘,v’.

3) Only the working file is given. Then the name of the RCS file is derived from the name of the work-
ing file by removing path2/ and appending the suffix “,v’.

If the RCS file is omitted or specified without a path, then ci looks for the RCS file first in the directory
J/RCS and then in the current directory.

For ci to work, the caller’s login must be on the access list, except if the access list is empty or the
caller is the superuser or the owner of the file. To append a new revision to an existing branch, the tip
revision on that branch must be locked by the caller. Otherwise, only a new branch can be created. This
restriction is not enforced for the owner of the file, unless locking is set to strict (see rcs (1)). A lock
held by someone else may be broken with the rcs command.

Normally, ci checks whether the revision to be deposited is different from the preceding one. If it is not
different, ci either aborts the deposit (if -q is given) or asks whether to abort (if -q is omitted). A depo-
sit can be forced with the -f option.

For each revision deposited, ci prompts for a log message. The log message should summarize the
change and must be terminated with a line containing a single ‘.. If several files are checked in, ci
asks whether to reuse the previous log message. If the std. input is not a terminal, ¢i suppresses the
prompt and uses the same log message for all files. See also -m.

The number of the deposited revision can be given by any of the options -r, -f, -k, -1, -u, or -q (see -r).

If the RCS file does not exist, ci creates it and deposits the contents of the working file as the initial
revision (default number: 1.1). The access list is initialized to empty. Instead of the log message, ci
requests descriptive text (see -t below).

-r{rev] assigns the revision number rev to the checked-in revision, releases the corresponding lock,
and deletes the working file. This is also the default.

If rev is omitted, ci derives the new revision number from the caller’s last lock. If the caller
has locked the tip revision of a branch, the new revision is appended to that branch. The
new revision number is obtained by incrementing the tip revision number. If the caller
locked a non-tip revision, a new branch is started at that revision by incrementing the
highest branch number at that revision. The default initial branch and level numbers are 1.
If the caller holds no lock, but he is the owner of the file and locking is not set to strict,
then the revision is appended to the trunk.

If rev indicates a revision number, it must be higher than the latest one on the branch to
which rev belongs, or must start a new branch.

CI(1) UNIX Programmer’s Manual CI(1)

If rev indicates a branch instead of a revision, the new revision is appended to that branch. o
The level number is obtained by incrementing the tip revision number of that branch. If

rev indicates a non-existing branch, that branch is created with the initial revision numbered

rev.l.

Exception: On the trunk, revisions can be appended to the end, but not inserted.

~flrev] forces a deposit; the new revision is deposited even it is not different from the preceding
one.

—k[rev] searches the working file for keyword values to determine its revision number, creation
date, author, and state (see co (1)), and assigns these values to the deposited revision, rather
than computing them locally. A revision number given by a command option overrides the
number in the working file. This option is useful for software distribution. A revision that
is sent to several sites should be checked in with the -k option at these sites to preserve its
original number, date, author, and state.

=l{rev] works like -r, except it performs an additional co -1 for the deposited revision. Thus, the
deposited revision is immediately checked out again and locked. This is useful for saving a
revision although one wants to continue editing it after the checkin.

-ufrev] works like -1, except that the deposited revision is not locked. This is useful if one wants
to process (e.g., compile) the revision immediately after checkin.

~q[rev] quiet mode; diagnostic output is not printed. A revision that is not different from the
preceding one is not deposited, unless -f is given.

~mmsg uses the string msg as the log message for all revisions checked in.

-nname assigns the symbolic name name to the number of the checked-in revision. Ci prints an
error message if name is already assigned to another number.

-Nname same as -n, except that it overrides a previous assignment of name.
~Sstate sets the state of the checked-in revision to the identifier szate. The default is Exp.

-tlextfile] writes descriptive text into the RCS file (deletes the existing text). If txsfile is omitted, ci
prompts the user for text supplied from the std. input, terminated with a line containing a
single “.’. Otherwise, the descriptive text is copied from the file txtfile. During initializa-
tion, descriptive text is requested even if -t is not given. The prompt is suppressed if std.

input is not a terminal.

DIAGNOSTICS
For each revision, ci prints the RCS file, the working file, and the number of both the deposited and the
preceding revision. The exit status always refers to the last file checked in, and is O if the operation
was successful, 1 otherwise.

FILE MODES
An RCS file created by ci inherits the read and execute permissions from the working file. If the RCS
file exists already, ci preserves its read and execute permissions. Ci always turns off all write permis-
sions of RCS files.

FILES
The caller of the command must have read/write permission for the directories containing the RCS file
and the working file, and read permission for the RCS file itself. A number of temporary files are
created. A semaphore file is created in the directory containing the RCS file. Ci always creates a new
RCS file and unlinks the old one. This strategy makes links to RCS files useless.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.1 ; Release Date: 83/04/04 . 0

April 18, 1989 The Wollongong Group 2

CI(1) UNIX Programmer’s Manual CI(1)

o Copyright © 1982 by Walter F. Tichy.
SEE ALSO
co (1), ident(1), rcs (1), resdiff (1), resmerge (1), rlog (1), resfile (5).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System,” in Proceed-
ings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept. 1982.

BUGS

0 April 18, 1989 The Wollongong Group 3

CLEAR(1) UNIX Programmer’s Manual CLEAR(1)

NAME o

clear - clear terminal screen

SYNOPSIS
clear

DESCRIPTION
Clear clears your screen if this is possible. It looks in the environment for the terminal type and then
in /etc/termcap to figure out how to clear the screen.

FILES
fetc/termcap terminal capability data base

April 18, 1989 The Wollongong Group 1

O

CMP(1) UNIX Programmer’s Manual CMP(1)

NAME
cmp — compare two files

SYNOPSIS
cmp [-1] [-s] filel file2

DESCRIPTION
The two files are compared. (If filel is ‘~’, the standard input is used.) Under default options, cmp
makes no comment if the files are the same; if they differ, it announces the byte and line number at
which the difference occurred. If one file is an initial subsequence of the other, that fact is noted.
Options:
-1 Print the byte number (decimal) and the differing bytes (octal) for each difference.
-s Print nothing for differing files; return codes only.

SEE ALSO
diff(1), comm(1)

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible or missing argu-
ment.

April 18, 1989 The Wollongong Group 1

CO(1) UNIX Programmer’s Manual CO(1)

NAME o

co — check out RCS revisions

SYNOPSIS
co [options] file ...

DESCRIPTION
Co retrieves revisions from RCS files. Each file name ending in ‘,v’ is taken to be an RCS file. All
other files are assumed to be working files. Co retrieves a revision from each RCS file and stores it
into the corresponding working file.

Pairs of RCS files and working files may be specified in 3 ways (see also the example section).

1) Both the RCS file and the working file are given. The RCS file name is of the form pathl/workfile,v
and the working file name is of the form path2/workfile, where pathl/ and path2/ are (possibly different
or empty) paths and workfile is a file name.

2) Only the RCS file is given. Then the working file is created in the current directory and its name is
derived from the name of the RCS file by removing pathl/ and the suffix ‘,v’.

3) Only the working file is given. Then the name of the RCS file is derived from the name of the
working file by removing path2/ and appending the suffix ‘,v’.

If the RCS file is omitted or specified without a path, then co looks for the RCS file first in the direc-
tory ./RCS and then in the current directory.

Revisions of an RCS file may be checked out locked or unlocked. Locking a revision prevents overlap-
ping updates. A revision checked out for reading or processing (e.g., compiling) need not be locked. A
revision checked out for editing and later checkin must normally be locked. Locking a revision
currently locked by another user fails. (A lock may be broken with the rcs (1) command.) Co with lock-
ing requires the caller to be on the access list of the RCS file, unless he is the owner of the file or the
superuser, or the access list is empty. Co without locking is not subject to accesslist restrictions.

A revision is selected by number, checkin date/time, author, or state. If none of these options are
specified, the latest revision on the trunk is retricved. When the options are applied in combination, the
latest revision that satisfies all of them is retrieved. The options for date/time, author, and state retrieve
a revision on the selected branch. The selected branch is either derived from the revision number @if
given), or is the highest branch on the trunk. A revision number may be attached to one of the options
<l, -p, -q, or -r.

A co command applied to an RCS file with no revisions creates a zero-length file. Co always performs
keyword substitution (see below).

~l[rev] locks the checked out revision for the caller. If omitted, the checked out revision is not

locked. See option -r for handling of the revision number rev.

-plrev] prints the retrieved revision on the std. output rather than storing it in the working file.
This option is useful when co is part of a pipe.

—qfrev] quiet mode; diagnostics are not printed.

—ddate retrieves the latest revision on the selected branch whose checkin date/time is less than or

equal to date. The date and time may be given in free format and are converted to local
time. Examples of formats for date:

22-April-1982, 17:20-CDT,
2:25 AM, Dec. 29, 1983,

Tue-PDT, 1981, 4pm Jul 21 (free format),
Fri, April 16 15:52:25 EST 1982 (output of ctime).

Most fields in the date and time may be defaulted. Co determines the defaults in the order o

April 18, 1989 The Wollongong Group 1

O

CO(1)

=r{rev]

~S8state
~w(login]

~jjoinlist

UNIX Progx_'ammer’s Manual CO(1)

year, month, day, hour, minute, and second (most to least significant). At least one of
these fields must be provided. For omitted fields that are of higher significance than the
highest provided field, the current values are assumed. For all other omitted fields, the
lowest possible values are assumed. For example, the date "20, 10:30" defaults to
10:30:00 of the 20th of the current month and current year. The date/time must be quoted
if it contains spaces.

retrieves the latest revision whose number is less than or equal to rev. If rev indicates a
branch rather than a revision, the latest revision on that branch is retrieved. Rev is com-
posed of one or more numeric or symbolic fields separated by ‘.’. The numeric equivalent
of a symbolic field is specified with the -n option of the commands ci and rcs.

retrieves the latest revision on the selected branch whose state is set to state.

retrieves the latest revision on the selected branch which was checked in by the user with
login name login. If the argument login is omitted, the caller’s login is assumed.

generates a new revision which is the join of the revisions on joinlist. Joinlist is a
comma-separated list of pairs of the form rev2.:rev3, where rev2 and rev3 are (symbolic or
numeric) revision numbers. For the initial such pair, rev! denotes the revision selected by
the options -I, ..., -w. For all other pairs, revl denotes the revision generated by the previ-
ous pair. (Thus, the output of one join becomes the input to the next.)

For each pair, co joins revisions revl and rev3 with respect to rev2. This means that all
changes that transform rev2 into revl are applied to a copy of rev3. This is particularly
useful if revl and rev3 are the ends of two branches that have rev2 as a common ancestor.
If revl < rev2 < rev3 on the same branch, joining generates a new revision which is like
rev3, but with all changes that lead from revl to rev2 undone. If changes from rev2 to
revl overlap with changes from rev2 to rev3, co prints a warning and includes the over-
lapping sections, delimited by the lines <<<<<<< revl, =======, and >>>>>>> rev3.

For the initial pair, rev2 may be omitted. The default is the common ancestor. If any of
the arguments indicate branches, the latest revisions on those branches are assumed. If the
option -1 is present, the initial rev! is locked.

KEYWORD SUBSTITUTION .
Strings of the form $keyword$ and $keyword:...5 embedded in the text are replaced with strings of the
form $keyword: value $, where keyword and value are pairs listed below. Keywords may be embedded
in literal strings or comments to identify a revision.

Initially, the user enters strings of the form $keyword$. On checkout, co replaces these strings with
strings of the form' $keyword: value $. If a revision containing strings of the latter form is checked back
in, the value fields will be replaced during the next checkout. Thus, the keyword values are automati-
cally updated on checkout.

Keywords and their corresponding values:

$Author$
$Date$
$Header$

$Locker$
Log

April 18, 1989

The login name of the user who checked in the revision.
The date and time the revision was checked in.

A standard header containing the RCS file name, the revision number, the date, the
author, and the state.

The login name of the user who locked the revision (empty if not locked).

The log message supplied during checkin, preceded by a header containing the RCS file
name, the revision number, the author, and the date. Existing log messages are NOT
replaced. Instead, the new log message is inserted after $Log:...§. This is useful for
accumulating a complete change log in a source file.

The Wollongong Group o2

COo(1) UNIX Programmer’s Manual Co(1)

$Revision$ The revision number assigned to the revision.
$Source$§ The full pathname of the RCS file.
$State$ The state assigned to the revision with rcs -s or ci -s.

DIAGNOSTICS _
The RCS file name, the working file name, and the revision number retrieved are written to the diag-
nostic output. The exit status always refers to the last file checked out, and is 0 if the operation was
successful, 1 otherwise.

EXAMPLES
Suppose the current directory contains a subdirectory ‘RCS’ with an RCS file ‘io.c,v’. Then all of the
following commands retrieve the latest revision from ‘RCS/io.c,v’ and store it into ‘io.c’.

co io.c; coRCSfioc,v; co ioc,v;
co io.c RCSfio.c,v; co io.c io.c,v;
co RCSfio.c,v io.c; co io.c,v ioc;

FILE MODES
The working file inherits the read and execute permissions from the RCS file. In addition, the owner
write permission is turned on, unless the file is checked out unlocked and locking is set to strict (see rcs

D).

If a file with the name of the working file exists already and has write permission, co aborts the
checkout if -q is given, or asks whether to abort if -q is not given. If the existing working file is not
writable, it is deleted before the checkout.

FILES
The caller of the command must have write permission in the working directory, read permission for
the RCS file, and either read permission (for reading) or read/write permission (for locking) in the
directory which contains the RCS file.

A number of temporary files are created. A semaphore file is created in the directory of the RCS file to
prevent simultaneous update.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.1 ; Release Date: 83/04/04 .
Copyright © 1982 by Walter F. Tichy.

SEE ALSO
ci (1), ident(1), rcs (1), resdiff (1), resmerge (1), rlog (1), resfile (5).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System," in Proceed-
ings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept. 1982.
LIMITATIONS
The option -d gets confused in some circumstances, and accepts no date before 1970. There is no way
to suppress the expansion of keywords, except by writing them differently. In nroff and troff, this is
done by embedding the null-character &’ into the keyword.
BUGS ’
The option -j does not work for files that contain lines with a single °.’.

April 18, 1989 The Wollongong Group 3

O

O

COL(1) UNIX Programmer’s Manual COL (1)

NAME
col - filter reverse line feeds

SYNOPSIS
col [-bfh]

DESCRIPTION
Col reads the standard input and writes the standard output. It performs the line overlays implied by
reverse line feeds (ESC-7 in ASCII) and by forward and reverse half line feeds (ESC-9 and ESC-8).
Col is particularly useful for filtering multicolumn output made with the .rt’ command of nroff and out-
put resulting from use of the tbi(1) preprocessor.
Although col accepts half line motions in its input, it normally does not emit them on output. Instead,
text that would appear between lines is moved to the next lower full line boundary. This treatment can
be suppressed by the ~f (fine) option; in this case the output from col may contain forward half line
feeds (ESC-9), but will still never contain either kind of reverse line motion.
If the -b option is given, col assumes that the output device in use is not capable of backspacing. In
this case, if several characters are to appear in the same place, only the last one read will be taken.
The control characters SO (ASCI code 017), and SI (016) are assumed to start and end text in an alter-
nate character set. The character set (primary or alternate) associated with each printing character read
is remembered; on output, SO and SI characters are generated where necessary to maintain the correct
treatment of each character.
If the ~h option is given, col converts white space to tabs to shorten printing time.
All control characters are removed from the input except space, backspace, tab, return, newline, ESC
(033) followed by one of 7, 8, 9, SI, SO, and VT (013). This last character is an alternate form of full
reverse line feed, for compatibility with some other hardware conventions. All other non-printing char-
acters are ignored. :

SEE ALSO
troff(1), tbl(1)

BUGS

Can’t back up more than 128 lines.
No more than 800 characters, including backspaces, on a line.

April 18, 1989 The Wollongong Group 1

COLCRT(1) UNIX Programmer’s Manual COLCRT (1)

NAME .
colcrt - filter nroff output for CRT previewing

SYNOPSIS
colert [-][-2][file..]

DESCRIPTION
Colcrt provides virtual half-line and reverse line feed sequences for terminals without such capability,
and on which overstriking is destructive. Half-line characters and underlining (changed to dashing ‘-*)
are placed on new lines in between the normal output lines.
The optional -~ suppresses all underlining. It is especially useful for previewing allboxed tables from
tbi(1).
The option -2 causes all half-lines to be printed, effectively double spacing the output. Nommally, a
minimal space output format is used which will suppress empty lines. The program never suppresses
two consecutive empty lines, however. The -2 option is useful for sending output to the line printer
when the output contains superscripts and subscripts which would otherwise be invisible.
A typical use of colcrt would be

tbl exum2.n | nroff —ms | colcrt — | more

SEE ALSO
nroff/troff(1), col(1), more(1), ul(1)

BUGS

Should fold underlines onto blanks even with the ‘-’ option so that a true underline character would
show; if we did this, however, colcrt wouldn’t get rid of cu’d underlining completely.

Can’t back up more than 102 lines.
General overstriking is lost; as a special case ‘I’ overstruck with ‘~’ or underline becomes ‘+’.
Lines are trimmed to 132 characters.

Some provision should be made for processing superscripts and subscripts in documents which are
already double-spaced.

April 18, 1989 The Wollongong Group 1

COLRM(1) UNIX Programmer’s Manual COLRM(1)

Q NAME
colrm — remove columns from a file

SYNOPSIS
colrm [startcol [endcol]]

DESCRIPTION
Colrm removes selected columns from a file. Input is taken from standard input. Output is sent to
standard output.

If called with one parameter the columns of each line will be removed starting with the specified
column. If called with two parameters the columns from the first column to the last column will be
removed.

Column numbering starts with column 1.

SEE ALSO
expand(1)

o

April 18, 1989 The Wollongong Group 1

COMM(1) UNIX Programmer’s Manual COMM(1)

NAME .
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- [123]] filel file2

DESCRIPTION
Comm reads filel and file2, which should be ordered in ASCII collating sequence, and produces a three
column output: lines only in filel; lines only in file2; and lines in both files. The filename ‘-’ means
the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm -12 prints only the lines
common to the two files; comm -23 prints only lines in the first file but not in the second; comm -123
is a no-op.

SEE ALSO
cmp(1), diff(1), uniq(1)

April 18, 1989 The Wollongong Group 1

COMPRESS (1) UNIX Programmer’s Manual COMPRESS (1)

o NAME
compress, uncompress, zcat — compress and expand data

SYNOPSIS
compress [—f]1[-v][-] [-b bits] [name ...]
uncompress [~f] [~v] [=] [name ...]
zcat [name ...]

DESCRIPTION
Compress reduces the size of the named files using adaptive Lempel-Ziv coding. Whenever possible,
each file is replaced by one with the extension .Z, while keeping the same ownership modes, access and
modification times. If no files are specified, the standard input is compressed to the standard output.
Compressed files can be restored to their original form using uncompress or zcat.

The ~f option will force compression of name, even if it does not actually shrink or the corresponding
name Z file already exists. Except when run in the background under /bin/sh, if —f is not given the user
is prompted as to whether an existing name.Z file should be overwritten.

The —¢ (“‘cat’’) option makes compressfuncompress write to the standard output; no files are changed.
The nondestructive behavior of zcat is identical to that of uncompress —c.

Compress uses the modified Lempel-Ziv algorithm popularized in "A Technique for High Performance
Data Compression”, Terry A. Welch, IEEE Computer, vol. 17, no. 6 (June 1984), pp. 8-19. Common
substrings in the file are first replaced by 9-bit codes 257 and up. When code 512 is reached, the algo-
rithm switches to 10-bit codes and continues to use more bits until the limit specified by the -b flag is
reached (default 16). Bits must be between 9 and 16. The default can be changed in the source to
allow compress to be run on a smaller machine.

After the bits limit is attained, compress periodically checks the compression ratio. If it is increasing,

o compress continues to use the existing code dictionary. However, if the compression ratio decreases,
compress discards the table of substrings and rebuilds it from scratch. This allows the algonthm to
adapt to the next "block” of the file.

Note that the -b flag is omitted for uncompress, since the bits parameter specified during compression
is encoded within the output, along with a magic number to ensure that neither decompression of ran-
dom data nor recompression of compressed data is attempted.

The amount of compression obtained depends on the size of the input, the number of bits per code, and
the distribution of common substrings. Typically, text such as source code or English is reduced by
50-60%. Compression is generally much better than that achieved by Huffman coding (as used in
pack), or adaptive Huffman coding (compact), and takes less time to compute.

The -v option causes the printing of the percentage reduction of each file.

If an error occurs, exit status is 1, else if the last file was not compressed because it became larger, the
status is 2; else the status is 0.

DIAGNOSTICS

Usage: compress [—fvc] [-b maxbits] [file ...]
Invalid options were specified on the command line.

Missing maxbits
Maxbits must follow -b.

file: not in compressed format
The file specified to uncompress has not been compressed.

file: compressed with xx bits, can only handle yy bits
File was compressed by a program that could deal with more bits than the compress
code on this machine. Recompress the file with smaller bits.

file: already has .Z suffix -- no change

o The file is assumed to be already compressed. Rename the file and try again.

April 18, 1989 The Wollongong Group 1

COMPRESS (1) UNIX Programmer’s Manual COMPRESS (1)

BUGS

file: filename too long to tack on .Z

The file cannot be compressed because its name is longer than 12 characters
Rename and try again. This message does not occur on BSD systems.
file already exists; do you wish to overwrite (y or n)?
Respond "y" if you want the output file to be replaced; "n" if not.
uncompress: corrupt input
A SIGSEGYV violation was detected which usually means that the input file is cor-
rupted.
Compression: xx.xx%
Percentage of the input saved by compression. (Relevant only for -v.)
-~ not a regular file: unchanged
When the input file is not a regular file, (e.g. a directory), it is left unaltered.
-- has xx other links: unchanged

The input file has links; it is left unchanged. See In(1) for more information.
-- file unchanged

No savings is achieved by compression. The input remains virgin.

Although compressed files are compatible between machines with large memory, —b12 should be used
for file transfer to architectures with a small process data space (64KB or less, as exhibited by the DEC
PDP series, the Intel 80286, etc.)

compress should be more flexible about the existence of the ‘.Z’ suffix.

April 18, 1989 The Wollongong Group 2

CORE(S) UNIX Programmer’s Manual CORE(S)

NAME
core — format of memory image file

SYNOPSIS
#include <sys/param.h>

DESCRIPTION
The UNIX System writes out a memory image of a terminated process when any of various errors
occur. See sigvec(2) for the list of reasons; the most common are memory violations, illegal instruc-
tions, bus errors, and user-generated quit signals. The memory image is called ‘core’ and is written in
the process’s working directory (provided it can be; normal access controls apply). '
The maximum size of a core file is limited by setrlimit(2). Files which would be larger than the limit
are not created.

The core file consists of the u. area, whose size (in pages) is defined by the UPAGES manifest in the
<sys/param.h> file. The u. area starts with a user structure as given in <sys/user.h>. The remainder of
the core file consists first of the data pages and then the stack pages of the process image. The amount
of data space image in the core file is given (in pages) by the variable u_dsize in the u. area. The
amount of stack image in the core file is given (in pages) by the variable u_ssize in the u. area. The
size of a ‘‘page’’ is given by the constant NBPG (also from <sys/param.h>).

In general the debugger adb(1) is sufficient to deal with core images.

SEE ALSO
adb(1), dbx(1), sigvec(2), setrlimit(2)

April 11, 1989 The Wollongong Group 1

o

O

CP(1)

NAME

UNIX Programmer’s Manual CP(1)

cp - copy

SYNOPSIS

cp [-ip] filel file2
cp [-ipr] file ... directory

DESCRIPTION

Filel is copied onto file2. By default, the mode and owner of file2 are preserved if it already existed;
otherwise the mode of the source file modified by the current umask(2) is used. The —p option causes
cp to attempt to preserve (duplicate) in its copies the modification times and modes of the source files,
ignoring the present umask.

In the second form, one or more files are copied into the directory with their original file-names.

Cp refuses to copy a file onto itself,

If the —i option is specified, cp will prompt the user with the name of the file whenever the copy will
cause an old file to be overwritten. An answer of 'y’ will cause cp to continue. Any other answer will
prevent it from overwriting the file.

If the -r option is specified and any of the source files are directories, cp copies each subtree rooted at
that name; in this case the destination must be a directory.

EUNICE NOTES

Cp requires that files be kept to one version by turning EUNICE_IVERSION ON. See
fetc/eunicefeunice.com.

SEE ALSO

cat(1), mv(1)

April 18, 1989 The Wollongong Group 1

CRYPT(1) UNIX Programmer’s Manual CRYPT(1)

NAME
crypt — encode/decode
SYNOPSIS
crypt [password]
DESCRIPTION
Crypt reads from the standard input and writes on the standard output. The password is a key that
selects a particular transformation. If no password is given, crypt demands a key from the terminal and
turns off printing while the key is being typed in. Crypt encrypts and decrypts with the same key:
crypt key <clear >cypher
crypt key <cypher | pr
will print the clear.
Files encrypted by crypt are compatible with those treated by the editor ed in encryption mode.
The security of encrypted files depends on three factors: the fundamental method must be hard to
solve; direct search of the key space must be infeasible; ‘sneak paths’ by which keys or cleartext can
become visible must be minimized.
Crypt implements a one-rotor machine designed along the lines of the German Enigma, but with a
256-element rotor. Methods of attack on such machines are known, but not widely; moreover the
amount of work required is likely to be large.
The transformation of a key into the internal settings of the machine is deliberately designed to be
expensive, i.e. to take a substantial fraction of a second to compute. However, if keys are restricted to
(say) three lower-case letters, then encrypted files can be read by expending only a substantial fraction
of five minutes of machine time.
Since the key is an argument to the crypt command, it is potentially visible to users executing ps(1) or
a derivative. To minimize this possibility, crypt takes care to destroy any record of the key immedi-
ately upon entry. No doubt the choice of keys and key security are the most vulnerable aspect of crypt.
FILES
/devftty for typed key
SEE ALSO
ed(1), makekey(8)
BUGS

There is no warranty of merchantability nor any warranty of fitness for a particular purpose nor any
other warranty, either express or implied, as to the accuracy of the enclosed materials or as to their sui-
tability for any particular purpose. Accordingly, Bell Telephone Laboratories assumes no responsibility
for their use by the recipient. Further, Bell Laboratories assumes no obligation to furnish any assis-
tance of any kind whatsoever, or to furnish any additional information or documentation.

April 18, 1989 The Wollongong Group 1

@

CSH(1)

NAME

UNIX Programimer’s Manual CSH(1)

csh — a shell (command interpreter) with C-like syntax

SYNOPSIS

csh [—cefinstvVxX] [arg ...]

DESCRIPTION

Csh is a first implementation of a command language interpreter incorporating a history mechanism (see
History Substitutions), job control facilities (see Jobs), interactive file name and user name completion
(see File Name Completion), and a C-like syntax. So as to be able to use its job control facilities,
users of csh must (and automatically) use the new tty driver fully described in #y(4). This new tty
driver allows generation of interrupt characters from the keyboard to tell jobs to stop. See swy(1l) for
details on setting options in the new tty driver.

An instance of csh begins by executing commands from the file ‘.cshrc’ in the home directory of the
invoker. If this is a login shell then it also executes commands from the file ‘.login’ there. It is typical
for users on crt’s to put the command ‘‘stty crt’’ in their .login file, and to also invoke tset(1) there.

In the normal case, the shell will then begin reading commands from the terminal, prompting with ‘% °.
Processing of arguments and the use of the shell to process files containing command scripts will be
described later.

The shell then repeatedly performs the following actions: a line of command input is read and broken
into words. This sequence of words is placed on the command history list and then parsed. Finally
each command in the current line is executed.

When a login shell terminates it executes commands from the file ‘.logout’ in the users home directory.
Lexical structure

The shell splits input lines into words at blanks and tabs with the following exceptions. The characters
‘&P < ST Y °)Y form separate words. If doubled in ‘&&’, ‘I I, ‘<<’ or ‘>>’ these pairs form
single words. These parser metacharacters may be made part of other words, or prevented their special
meaning, by preceding them with \’. A newline preceded by a \' is equivalent to a blank.

[X4l (321

In addition strings enclosed in matched pairs of quotations, ‘”’, *** or ‘", form parts of a word; meta-
characters in these strings, including blanks and tabs, do not form separate words. These quotations
have semantics to be described subsequently. Within pairs of *”* or ‘"’ characters a newline preceded
by a °\ gives a true newline character.

When the shell’s input is not a terminal, the character ‘#’ introduces a comment which continues to the
end of the input line. It is prevented this special meaning when preceded by ‘\’ and in quotations using

€Y &2y

s R aﬂd ¢ m.
Commands

A simple command is a sequence of words, the first of which specifies the command to be executed. A
simple command or a sequence of simple commands separated by ‘I’ characters forms a pipeline. The
output of each command in a pipeline is connected to the input of the next. Sequences of pipelines
may be separated by °;’, and are then executed sequentially. A sequence of pipelines may be executed
without immediately waiting for it to terminate by following it with an ‘&’.

Any of the above may be placed in ‘(" *)’ to form a simple command (which may be a component of a
pipeline, etc.) It is also possible to separate pipelines with ‘I I’ or ‘&&’ indicating, as in the C language,
that the second is to be executed only if the first fails or succeeds respectively. (See Expressions.)

Jobs

The shell associates a job with each pipeline. It keeps a table of current jobs, printed by the jobs com-
mand, and assigns them small integer numbers. When a job is started asynchronously with ‘&’, the
shell prints a line which looks like:

April 18, 1989 The Wollongong Group 1

CSH(1) UNIX Programmer’s Manual CSH(1)

[1] 1234 o

indicating that the job which was started asynchronously was job number 1 and had one (top-level) pro-
cess, whose process id was 1234,

If you are running a job and wish to do something else you may hit the key “Z (control-Z) which sends
a STOP signal to the current job. The shell will then normally indicate that the job has been ‘Stopped’,
and print another prompt. You can then manipulate the state of this job, putting it in the background
with the bg command, or run some other commands and then eventually bring the job back into the
foreground with the foreground command fg. A “Z takes effect immediately and is like an interrupt in
that pending output and unread input are discarded when it is typed. There is another special key Y
which does not generate a STOP signal until a program attempts to read(2) it. This can usefully be
typed ahead when you have prepared some commands for a job which you wish to stop after it has read
them.

A job being run in the background will stop if it tries to read from the terminal. Background jobs are
normally allowed to produce output, but this can be disabled by giving the command “‘stty tostop’”. If
you set this tty option, then background jobs will stop when they try to produce output like they do
when they try to read input.

There are several ways to refer to jobs in the shell. The character ‘%’ introduces a job name. If you
wish to refer to job number 1, you can name it as ‘%1’. Just naming a job brings it to the foreground;
thus ‘%1’ is a synonym for ‘fg %1°, bringing job 1 back into the foreground. Similarly saying ‘%1 &’
resumes job 1 in the background. Jobs can also be named by prefixes of the string typed in to start
them, if these prefixes are unambiguous, thus ‘%ex’ would normally restart a suspended ex(1) job, if
there were only one suspended job whose name began with the string ‘ex’. It is also possible to say
‘%?string’ which specifies a job whose text contains string, if there is only one such job.

The shell maintains a notion of the current and previous jobs. In output pertaining to jobs, the current
job is marked with a ‘+’ and the previous job with a ‘~’. The abbreviation ‘%+’ refers to the current °
job and ‘%~ refers to the previous job. For close analogy with the syntax of the history mechanism

(described below), ‘%%’ is also a synonym for the current job.

Status reporting

This shell learns immediately whenever a process changes state. It normally informs you whenever a
job becomes blocked so that no further progress is possible, but only just before it prints a prompt.
This is done so that it does not otherwise disturb your work. If, however, you set the shell variable
notify, the shell will notify you immediately of changes of status in background jobs. There is also a
shell command notify which marks a single process so that its status changes will be immediately
reported. By default notify marks the current process; simply say ‘notify’ after starting a background
job to mark it.

When you try to leave the shell while jobs are stopped, you will be warned that ‘You have stopped
jobs.” You may use the jobs command to see what they are. If you do this or immediately try to exit
again, the shell will not warn you a second time, and the suspended jobs will be terminated.

File Name Completion

When the file name completion feature is enabled by setting the shell variable filec (see set), csh will
interactively complete file names and user names from unique prefixes, when they are input from the
terminal followed by the escape character (the escape key, or control-[). For example, if the current
directory looks like

DSC.OLD bin cmd lib xmpl.c

DSC.NEW chaosnet cmtest mail xmpl.o

bench class dev mbox xmpl.out
and the input is ‘

% vi ch<escape> o
csh will complete the prefix ‘‘ch” to the only matching file name ‘‘chaosnet’’, changing the input line

o

O

CSH(1)

April 18

UNIX Programmer’s Manual CSH(1)

to
% vi chaosnet
However, given
% vi D<escape>
csh will only expand the input to
% vi DSC.
and will sound the terminal bell to indicate that the expansion is incomplete, since there are two file
names matching the prefix ‘‘D’’,

If a partial file name is followed by the end-of-file character (usually control-D), then, instead of com-
pleting the name, csh will list all file names matching the prefix. For example, the input
% vi D<control-D>
causes all files beginning with ‘‘D’’ to be listed:
DSC.NEW DSC.OLD
while the input line remains unchanged.

The same system of escape and end-of-file can also be used to expand partial user names, if the word to
be completed (or listed) begins with the character ‘“~"’. For example, typing

cd “ro<control-D>
may produce the expansion

cd “root
The use of the terminal bell to signal errors or multiple matches can be inhibited by setting the variable
nobeep.

Normally, all files in the particular directory are candidates for name completion. Files with certain
suffixes can be excluded from consideration by setting the variable fignore to the list of suffixes to be
ignored. Thus, if fignore is set by the command

% set fignore = (.0 .out)
then typing

% vi x<escape>
would result in the completion to

% vi xmpl.c
ignoring the files "xmpl.o" and "xmpl.out”". However, if the only completion possible requires not
ignoring these suffixes, then they are not ignored. In addition, fignore does not affect the listing of file
names by control-D. All files are listed regardless of their suffixes.

Substitutions

We now describe the various transformations the shell performs on the input in the order in which they
occur.

History substitutions

History substitutions place words from previous command input as portions of new commands, making
it easy to repeat commands, repeat arguments of a previous command in the current command, or fix
spelling mistakes in the previous command with little typing and a high degree of confidence. History
substitutions begin with the character ‘!’ and may begin anywhere in the input stream (with the proviso
that they do not nest.) This ‘I’ may be preceded by an \’ to prevent its special meaning; for conveni-
ence, a ‘!’ is passed unchanged when it is followed by a blank, tab, newline, ‘=’ or ‘(’. (History substi-
tutions also occur when an input line begins with *T°. This special abbreviation will be described
later.) Any input line which contains history substitution is echoed on the terminal before it is executed
as it could have been typed without history substitution.

Commands input from the terminal which consist of one or more words are saved on the history list.
The history substitutions reintroduce sequences of words from these saved commands into the input
stream. The size of which is controlled by the history variable; the previous command is always
retained, regardless of its value. Commands are numbered sequentially from 1.

, 1989 The Wollongong Group 3

CSH(1) UNIX Programmer’s Manual CSH(1)

For definiteness, consider the following output from the history command: o

9 write michael
10 ex write.c

11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. It is not usually necessary to use event numbers,
but the current event number can be made part of the prompt by placing an ‘!’ in the prompt string.

With the current event 13 we can refer to previous events by event number “!11°, relatively as in ‘!-2’
(referring to the same event), by a prefix of a command word as in ‘!d’ for event 12 or ‘!wri’ for event
9, or by a string contained in a word in the command as in ‘!?mic?’ also referring to event 9. These
forms, without further modification, simply reintroduce the words of the specified events, each separated
by a single blank. As a special case ‘!!” refers to the previous command; thus *!!” alone is essentially a
redo.

To select words from an event we can follow the event specification by a *:’ and a designator for the
desired words. The words of an input line are numbered from 0, the first (usually command) word
being 0, the second word (first argument) being 1, etc. The basic word designators are:

0 first (command) word
n n’th argument
T first argument, ie. ‘1’
$ last argument

% word matched by (immediately preceding) ?s? search
x=y range of words

-y abbreviates ‘0-y’

* abbreviates *T-$’, or nothing if only 1 word in event
x* abbreviates ‘x-$’ -
x— like ‘x*’ but omitting word ‘$’

The °:’ separating the event specification from the word designator can be omitted if the argument
selector begins with a ‘T°, ‘$’, “** ‘=’ or ‘%’. After the optional word designator can be placed a
sequence of modifiers, each preceded by a “:’. The following modifiers are defined:

Remove a trailing pathname component, leaving the head.
Remove a trailing ‘.xxx* component, leaving the root name.
Remove all but the extension ‘.xxx’ part.

Ir/ Substitute / for r
Remove all leading pathname components, leaving the tail.
Repeat the previous substitution.
Apply the change globally, prefixing the above, e.g. ‘g&’.
Print the new command but do not execute it.
Quote the substituted words, preventing further substitutions.
Like g, but break into words at blanks, tabs and newlines.

Unless preceded by a ‘g’ the modification is applied only to the first modifiable word. With substitu-
tions, it is an error for no word to be applicable.

~

XOTWM e o

The left hand side of substitutions are not regular expressions in the sense of the editors, but rather
strings. Any character may be used as the delimiter in place of /’; a ‘' quotes the delimiter into the /
and r strings. The character ‘&’ in the right hand side is replaced by the text from the left. A °\’
quotes ‘&’ also. A null [uses the previous string either from a / or from a contextual scan string s in
‘125?°. The trailing delimiter in the substitution may be omitted if a newline follows immediately as
may the trailing ‘?’ in a contextual scan.

April 18, 1989 The Wollongong Group 4

)

o

CSH(1)

UNIX Programmer’s Manual CSH(1)

A history reference may be given without an event specification, e.g. ‘!$’. In this case the reference is
to the previous command unless a previous history reference occurred on the same line in which case
this form repeats the previous reference. Thus ‘1?7foo?T !$’ gives the first and last arguments from the
command matching ‘?foo?’.

A special abbreviation of a history reference occurs when the first non-blank character of an input line
is a ‘“T". This is equivalent to “!:sT providing a convenient shorthand for substitutions on the text of
the previous line. Thus ‘TIbTlib’ fixes the spelling of ‘lib’ in the previous command. Finally, a history
substitution may be surrounded with ‘{’ and ‘}’ if necessary to insulate it from the characters which fol-
low. Thus, after ‘Is -1d ~paul’ we might do ‘!{1}a’ to do ‘Is —Id ~paula’, while ‘!la’ would look for a
command starting ‘la’.

Quotations with “ and "

The quotation of strings by ‘” and *’ can be used to prevent all or some of the remaining substitutions.
Strings enclosed in ‘” are prevented any further interpretation. Strings enclosed in ‘"’ may be
expanded as described below.

In both cases the resulting text becomes (all or part of) a single word; only in one special case (see
Command Substitition below) does a ‘"’ quoted string yield parts of more than one word; ‘~ quoted
strings never do.

Alias substitution

The shell maintains a list of aliases which can be established, displayed and modified by the alias and
unalias commands. After a command line is scanned, it is parsed into distinct commands and the first
word of each command, left-to-right, is checked to see if it has an alias. If it does, then the text which
is the alias for that command is reread with the history mechanism available as though that command
were the previous input line. The resulting words replace the command and argument list. If no refer-
ence is made to the history list, then the argument list is left unchanged.

Thus if the alias for ‘Is’ is ‘Is -1’ the command ‘Is fusr’ would map to ‘Is -1 /usr’, the argument list
here being undisturbed. Similarly if the alias for ‘lookup’ was ‘grep !T fetc/passwd’ then ‘lookup bill’
would map to ‘grep bill /etc/passwd’.

If an alias is found, the word transformation of the input text is performed and the aliasing process
begins again on the reformed input line. Looping is prevented if the first word of the new text is the
same as the old by flagging it to prevent further aliasing. Other loops are detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus we can ‘alias print ‘pr \!*
| Ipr” to make a command which pr's its arguments to the line printer.

Variable substitution

The shell maintains a set of variables, each of which has as value a list of zero or more words. Some
of these variables are set by the shell or referred to by it. For instance, the argv variable is an image of
the shell’s argument list, and words of this variable’s value are referred to in special ways.

The values of variables may be displayed and changed by using the set and unset commands. Of the
variables referred to by the shell a number are toggles; the shell does not care what their value is, only
whether they are set or not. For instance, the verbose variable is a toggle which causes command input
to be echoed. The setting of this variable results from the —-v command line option.

Other operations treat variables numerically. The ‘@’ command permits numeric calculations to be
performed and the result assigned to a variable. Variable values are, however, always represented as
(zero or more) strings. For the purposes of numeric operations, the null string is considered to be zero,
and the second and subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is executed, variable substitution is
performed keyed by °$’ characters. This expansion can be prevented by preceding the ‘$’ with a \’
except within *"’s where it always occurs, and within ‘“’s where it never occurs. Strings quoted by ’

April 18, 1989 The Wollongong Group 5

CSH(1) UNIX Programmer’s Manual CSH(1)

are interpreted later (see Command substitution below) so ‘$’ substitution does not occur there until o
later, if at all. A ‘$’ is passed unchanged if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable expanded
separately. Otherwise, the command name and entire argument list are expanded together. It is thus
possible for the first (command) word to this point to generate more than one word, the first of which
becomes the command name, and the rest of which become arguments.

‘ny

Unless enclosed in or given the ‘:q’ modifier the results of variable substitution may eventually be
command and filename substituted. Within *"’, a variable whose value consists of multiple words
expands to a (portion of) a single word, with the words of the variables value separated by blanks.
When the “:q’ modifier is applied to a substitution the variable will expand to multiple words with each
word separated by a blank and quoted to prevent later command or filename substitution.

The following metasequences are provided for introducing variable values into the shell input. Except
as noted, it is an error to reference a variable which is not set.

$name

${name}
Are replaced by the words of the value of variable name, each separated by a blank. Braces insu-
late name from following characters which would otherwise be part of it. Shell variables have
names consisting of up to 20 letters and digits starting with a letter. The underscore character is
considered a letter.
If name is not a shell variable, but is set in the environment, then that value is returned (but :
modifiers and the other forms given below are not available in this case).

$name[selector]
${name[selector]}
May be used to select only some of the words from the value of name. The selector is subjected
to ‘$’ substitution and may consist of a single number or two numbers separated by a ‘~’. The e

first word of a variables value is numbered ‘1’. If the first number of a range is omitted it
defaults to ‘1°. If the last member of a range is omitted it defaults to ‘$#name’. The selector ‘*’
selects all words. It is not an error for a range to be empty if the second argument is omitted or

in range.
$#name
${#name)
Gives the number of words in the variable. This is useful for later use in a ‘[selector]’.
$0
Substitutes the name of the file from which command input is being read. An error occurs if the
name is not known.
$number
${number}
Equivalent to ‘Sargv[number]’.
S+

Equivalent to ‘Sargv[*]’.
The modifiers “:h’, “:t’, “r’, “:q’ and ‘:x’ may be applied to the substitutions above as may ‘:gh’, “:gt’
and “:gr’. If braces ‘(’ '}’ appear in the command form then the modifiers must appear within the
braces. The current implementation allows only one ‘:’ modifier on each ‘§’ expansion.

The following substitutions may not be modified with *:’ modifiers.

$name
${name}
Substitutes the string ‘1’ if name is set, ‘0’ if it is not.

April 18, 1989 The Wollongong Group 6

)

o

CSH(1)

April 18

UNIX Programmer’s Manual CSH(1)
$20 _ .
Substitutes ‘1” if the current input filename is known, ‘0’ if it is not.
$3
Substitute the (decimal) process number of the (parent) shell.
$<

Substitutes a line from the standard input, with no further interpretation thereafter. It can be used
to read from the keyboard in a shell script.

Command and filename substitution

The remaining substitutions, command and filename substitution, are applied selectively to the argu-
ments of builtin commands. This means that portions of expressions which are not evaluated are not
subjected to these expansions. For commands which are not internal to the shell, the command name is
substituted separately from the argument list. This occurs very late, after input-output redirection is
performed, and in a child of the main shell.

Command substitution

Command substitution is indicated by a command enclosed in *’. The output from such a command is
normally broken into separate words at blanks, tabs and newlines, with null words being discarded, this
text then replacing the original string. Within *"’s, only newlines force new words; blanks and tabs are
preserved.

In any case, the single final newline does not force a new word. Note that it is thus possible for a com-
mand substitution to yield only part of a word, even if the command outputs a complete line.

Filename substitution

If a word contains any of the characters ‘*’, ‘?’, ‘[’ or ‘{’ or begins with the character ‘*’, then that
word is a candidate for filename substitution, also known as ‘globbing’. This word is then regarded as
a pattern, and replaced with an alphabetically sorted list of file names which match the pattern. In a list
of words specifying filename substitution it is an error for no pattern to match an existing file name, but
it is not required for each pattern to match. Only the metacharacters ‘*’, *?’ and ‘[’ imply pattern
matching, the characters ““* and ‘{’ being more akin to abbreviations.

In matching filenames, the character ‘.’ at the beginning of a filename or immediately following a */’, as
well as the character ‘/* must be matched explicitly. The character ‘*’ matches any string of characters,
including the null string. The character ‘?’ matches any single character. The sequence °[...]°" matches
any one of the characters enclosed. Within ‘[...]’, a pair of characters separated by ‘-’ matches any
character lexically between the two.

The character “~* at the beginning of a filename is used to refer to home directories. Standing alone,
ie. ‘7’ it expands to the invokers home directory as reflected in the value of the variable home. When
followed by a name consisting of letters, digits and ‘—’ characters the shell searches for a user with that
name and substitutes their home directory; thus ‘“ken’ might expand to ‘/usr/ken’ and “~ken/chmach’
to ‘/ust/ken/chmach’. If the character *~* is followed by a character other than a letter or /* or appears
not at the beginning of a word, it is left undisturbed.

The metanotation ‘a{b,c,d}e’ is a shorthand for ‘abe ace ade’. Left to right order is preserved, with
results of matches being sorted separately at a low level to preserve this order. This construct may be
nested. Thus ‘““source/s1/{oldls,Is}.c’ expands to ‘/usr/source/sl/oldls.c /usr/source/sl/ls.c’ whether or
not these files exist without any chance of error if the home directory for ‘source’ is ‘/ust/source’.
Similarly ‘../{memo,*box})’ might expand to ‘./memo ../box ./mbox’. (Note that ‘memo’ was not
sorted with the results of matching ‘*box’.) As a special case ‘{’, ‘)’ and ‘()" are passed undisturbed.

, 1989 The Wollongong Group 7

CSH(1) UNIX Programmer’s Manual CSH(1)

Input/output o

The standard input and standard output of a command may be redirected with the following syntax:

< name
Open file name (which is first variable, command and filename expanded) as the standard input.

<< word

Read the shell input up to a line which is identical to word. Word is not subjected to variable,
filename or command substitution, and each input line is compared to word before any substitu-
tions are done on this input line. Unless a quoting ‘\’, *", ** or *** appears in word variable and
command substitution is performed on the intervening lines, allowing *\’ to quote ‘$’, \" and .
Commands which are substituted have all blanks, tabs, and newlines preserved, except for the
final newline which is dropped. The resultant text is placed in an anonymous temporary file
which is given to the command as standard input.

> name

>! name

>& name

>&! name
The file name is used as standard output. If the file does not exist then it is created; if the file
exists, its is truncated, its previous contents being lost.

If the variable noclobber is set, then the file must not exist or be a character special file (e.g. a
terminal or ‘/dev/null’) or an error results. This helps prevent accidental destruction of files. In
this case the ‘!” forms can be used and suppress this check.

The forms involving ‘&’ route the diagnostic output into the specified file as well as the standard
output. Name is expanded in the same way as ‘<’ input filenames are.

>> name o

>>& name
>>! name
>>&! name
Uses file name as standard output like ‘>’ but places output at the end of the file. If the variable
noclobber is set, then it is an error for the file not to exist unless one of the ‘!’ forms is given.
Otherwise similar to *>’.
A command receives the environment in which the shell was invoked as modified by the input-output
parameters and the presence of the command in a pipeline. Thus, unlike some previous shells, com-
mands run from a file of shell commands have no access to the text of the commands by default; rather
they receive the original standard input of the shell. The ‘<<’ mechanism should be used to present
inline data. This permits shell command scripts to function as components of pipelines and allows the
shell to block read its input. Note that the default standard input for a command run detached is not
modified to be the empty file ‘/dev/null’; rather the standard input remains as the original standard input
of the shell. If this is a terminal and if the process attempts to read from the terminal, then the process
will block and the user will be notified (see Jobs above).

Diagnostic output may be directed through a pipe with the standard output. Simply use the form ‘I &’
rather than just ‘I’

Expressions

A number of the builtin commands (to be described subsequently) take expressions, in which the opera-
tors are similar to those of C, with the same precedence. These expressions appear in the @, exit, if,
and while commands. The following operators are available:

11 && | T & === = I" <= > <><<>> +-* /% !~ ()

April 18, 1989 The Wollongong Group 8

CSH(1) UNIX Programmer’s Manual CSH(1)

G Here the precedence increases to the right, ‘=="‘I="‘="" and ‘I”’, ‘<=" ‘>=" ‘<’ and ‘>’, ‘<<’ and ‘>>’,
‘+’ and ‘~’, ‘+’ */" and ‘%’ being, in groups, at the same level. The ‘==’ ‘!=’ ‘="’ and ‘!"’ operators
compare their arguments as strings; all others operate on numbers. The operators ‘="" and ‘!"’ are like
‘I=" and ‘== except that the right hand side is a pattern (containing, e.g. ‘*’s, ‘?’s and instances of
‘[...]") against which the left hand operand is matched. This reduces the need for use of the switch
statement in shell scripts when all that is really needed is pattern matching.

Strings which begin with ‘0’ are considered octal numbers. Null or missing arguments are considered
‘0’. The result of all expressions are strings, which represent decimal numbers. It is important to note
that no two components of an expression can appear in the same word; except when adjacent to com-
ponents of expressions which are syntactically significant to the parser (‘&’ ‘I" ‘<’ >’ ‘(" ‘)’) they
should be surrounded by spaces.

Also available in expressions as primitive operands are command executions enclosed in ‘{” and ‘)’ and
file enquiries of the form ‘-] name’ where [is one of:

read access

write access

execute access

existence

ownership

zero size

plain file

d directory

The specified name is command and filename expanded and then tested to see if it has the specified
relationship to the real user. If the file does not exist or is inaccessible then all enquiries return false,
ie. ‘0’. Command executions succeed, returning true, i.e. ‘1°, if the command exits with status 0, oth-

o erwise they fail, returning false, i.e. ‘0’. If more detailed status information is required then the com-
mand should be executed outside of an expression and the variable status examined.

Control flow

The shell contains a number of commands which can be used to regulate the flow of control in com-
mand files (shell scripts) and (in limited but useful ways) from terminal input. These commands all
operate by forcing the shell to reread or skip in its input and, due to the implementation, restrict the
placement of some of the commands.

The foreach, switch, and while statements, as well as the if~then—else form of the if statement require
that the major keywords appear in a single simple command on an input line as shown below.

- NO® Mg

If the shell’s input is not seekable, the shell buffers up input whenever a loop is being read and per-
forms seeks in this internal buffer to accomplish the rereading implied by the loop. (To the extent that
this allows, backward goto’s will succeed on non-seckable inputs.)

Builtin commands

Builtin commands are executed within the shell. If a builtin command occurs as any component of a

pipeline except the last then it is executed in a subshell.

alias

alias name

alias name wordlist
The first form prints all aliases. The second form prints the alias for name. The final form
assigns the specified wordlist as the alias of name; wordlist is command and filename substituted.
Name is not allowed to be alias or unalias.

o

April 18, 1989 The Wollongong Group 9

CSH(1) UNIX Programmer’s Manual CSH(1)

alloc o
Shows the amount of dynamic memory acquired, broken down into used and free memory. With
an argument shows the number of free and used blocks in each size category. The categories
start at size 8 and double at each step. This command’s output may vary across system types,

since systems other than the VAX may use a different memory allocator.

bg
bg %job ...
Puts the current or specified jobs into the background, continuing them if they were stopped.
break
Causes execution to resume after the end of the nearest enclosing foreach or while. The remain-
ing commands on the current line are executed. Multi-level breaks are thus possible by writing
them all on one line.
breaksw
Causes a break from a switch, resuming after the endsw.
case label:
A label in a switch statement as discussed below.
cd
cd name
chdir
chdir name

Change the shell’s working directory to directory name. If no argument is given then change to

the home directory of the user.

If name is not found as a subdirectory of the current directory (and does not begin with */°, <./’ or

‘.["), then each component of the variable cdpath is checked to see if it has a subdirectory name.

Finally, if all else fails but name is a shell variable whose value begins with */°, then this is tried °
to see if it is a directory.

continue
Continue execution of the nearest enclosing while or foreach. The rest of the commands on the
current line are executed.

default:
Labels the default case in a switch statement. The default should come after all case labels.

dirs
Prints the directory stack; the top of the stack is at the left, the first directory in the stack being
the current directory.

echo wordlist

echo -n wordlist
The specified words are written to the shells standard output, separated by spaces, and terminated
with a newline unless the —n option is specified.

else
end
endif
endsw
See the description of the foreach, if, switch, and while statements below.

eval arg ...
(As in sh(1).) The arguments are read as input to the shell and the resulting command(s) executed
in the context of the current shell. This is usually used to execute commands generated as the
result of command or variable substitution, since parsing occurs before these substitutions. See
tset(1) for an example of using eval. 0

April 18, 1989 The Wollongong Group 10

O

@

CSH(1) UNIX Programmer’s Manual CSH(1)

exec command
The specified command is executed in place of the current shell.

exit

exit(expr)
The shell exits either with the value of the status variable (first form) or with the value of the
specified expr (second form).

fg
fg %job ...
Brings the current or specified jobs into the foreground, continuing them if they were stopped.

foreach name (wordlist)

end
The variable name is successively set to each member of wordlist and the sequence of commands
between this command and the matching end are executed. (Both foreach and end must appear
alone on separate lines.)

The builtin command continue may be used to continue the loop prematurely and the builtin com-
mand break to terminate it prematurely. When this command is read from the terminal, the loop
is read up once prompting with ‘?* before any statements in the loop are executed. If you make a
mistake typing in a loop at the terminal you can rub it out.

glob wordlist
Like echo but no °\’ escapes are recognized and words are delimited by null characters in the out-
put. Useful for programs which wish to use the shell to filename expand a list of words.

goto word
The specified word is filename and command expanded to yield a string of the form ‘label’. The
shell rewinds its input as much as possible and searches for a line of the form ‘label:’ possibly
preceded by blanks or tabs. Execution continues after the specified line.

hashstat
Print a statistics line indicating how effective the internal hash table has been at locating com-
mands (and avoiding exec’s). An exec is attempted for each component of the path where the
hash function indicates a possible hit, and in each component which does not begin with a */’.

history

history n

history -r n

history ~h n
Displays the history event list; if n is given only the n most recent events are printed. The -r
option reverses the order of printout to be most recent first rather than oldest first. The —h option
causes the history list to be printed without leading numbers. This is used to produce files suit-
able for sourceing using the -h option to source.

if (expr) command
If the specified expression evaluates true, then the single command with arguments is executed.
Variable substitution on command happens early, at the same time it does for the rest of the if
command. Command must be a simple command, not a pipeline, a command list, or a
parenthesized command list. Input/output redirection occurs even if expr is false, when command
is not executed (this is a bug).

if (expr) then

else if (expr2) then

April 18, 1989 The Wollongong Group 11

CSH(1) UNIX Programmer’s Manual CSH(1)

else"

endif
If the specified expr is true then the commands to the first else are executed; otherwise if expr2 is
true then the commands to the second else are executed, etc. Any number of else-if pairs are
possible; only one endif is needed. The else part is likewise optional. (The words else and endif
must appear at the beginning of input lines; the if must appear alone on its input line or after an
else.)

jobs

jobs -1
Lists the active jobs; given the -1 options lists process id’s in addition to the normal information.

kill %job

kill —sig %job ...

kill pid

kill —sig pid ...

kill -1
Sends either the TERM (terminate) signal or the specified signal to the specified jobs or
processes. Signals are either given by number or by names (as given in /fusr/include/signal.h,
stripped of the prefix ‘‘SIG”’). The signal names are listed by ‘‘kill ~I’°. There is no default,
saying just ‘kill’ does not send a signal to the current job. If the signal being sent is TERM (ter-
minate) or HUP (hangup), then the job or process will be sent a CONT (continue) signal as well.

limit

limit resource

limit resource maximum-use

limit -h

limit -h resource

limit <h resource maximum-use
Limits the consumption by the current process and each process it creates to not individually
exceed maximum-use on the specified resource. If no maximum-use is given, then the current
limit is printed; if no resource is given, then all limitations are given. If the ~h flag is given, the
hard limits are used instead of the current limits. The hard limits impose a ceiling on the values
of the current limits. Only the super-user may raise the hard limits, but a user may lower or raise
the current limits within the legal range.

Resources controllable currently include cpwtime (the maximum number of cpu-seconds to be
used by each process), filesize (the largest single file which can be created), datasize (the max-
imum growth of the data+stack region via sbrk(2) beyond the end of the program text), stacksize
(the maximum size of the automatically-extended stack region), and coredumpsize (the size of the
largest core dump that will be created).

The maximum-use may be given as a (floating point or integer) number followed by a scale fac-
tor. For all limits other than cputime the default scale is ‘k’ or ‘kilobytes’ (1024 bytes); a scale
factor of ‘m’ or ‘megabytes’ may also be used. For cputime the default scaling is ‘seconds’,
while ‘m’ for minutes or ‘h’ for hours, or a time of the form ‘mm:ss’ giving minutes and seconds
may be used.

For both resource names and scale factors, unambiguous prefixes of the names suffice.

login
Terminate a login shell, replacing it with an instance of /bin/login. This is one way to log off,
included for compatibility with sh(1).

April 18, 1989 The Wollongong Group 12

o

O

CSH(1)

April 18

UNIX Programmer’s Manual CSH(1)
logout
Terminate a login shell. Especially useful if ignoreeof is set.
nice ‘
nice +number

nice command

nice +number command
The first form sets the scheduling priority for this shell to 4. The second form sets the priority to
the given number. The final two forms run command at priority 4 and number respectively. The
greater the number, the less cpu the process will get. The super-user may specify negative prior-
ity by using ‘nice —number ...". Command is always executed in a sub-shell, and the restrictions
placed on commands in simple if statements apply.

nohup

nohup command
The first form can be used in shell scripts to cause hangups to be ignored for the remainder of the
script. The second form causes the specified command to be run with hangups ignored. All
processes detached with ‘&’ are effectively nohup’ed.

notify

notify %job ...
Causes the shell to notify the user asynchronously when the status of the current or specified jobs
changes; normally notification ‘is presented before a prompt. This is automatic if the shell vari-
able notify is set.)

onintr

onintr -

onintr label
Control the action of the shell on interrupts. The first form restores the default action of the shell
on interrupts which is to terminate shell scripts or to return to the terminal command input level.
The second form ‘onintr -’ causes all interrupts to be ignored. The final form causes the shell to
execute a ‘goto label’ when an interrupt is received or a child process terminates because it was
interrupted.

In any case, if the shell is running detached and interrupts are being ignored, all forms of onintr
have no meaning and interrupts continue to be ignored by the shell and all invoked commands.

popd

popd +n
Pops the directory stack, returning to the new top directory. With an argument ‘+n’ discards the
nth entry in the stack. The elements of the directory stack are numbered from 0 starting at the
top.

pushd

pushd name

pushd +n
With no arguments, pushd exchanges the top two elements of the directory stack. Given a name
argument, pushd changes to the new directory (ala cd) and pushes the old current working direc-
tory (as in csw) onto the directory stack. With a numeric argument, rotates the nth argument of
the directory stack around to be the top element and changes to it. The members of the directory
stack are numbered from the top starting at 0.

rehash
Causes the internal hash table of the contents of the directories in the path variable to be recom-
puted. This is needed if new commands are added to directories in the path while you are logged
in. This should only be necessary if you add commands to one of your own directories, or if a
systems programmer changes the contents of one of the system directories.

, 1989 The Wollongong Group 13

CSH(1) UNIX Programmer’s Manual CSH(1)

repeat count command
The specified command which is subject to the same restrictions as the command in the one line if
statement above, is executed count times. I/O redirections occur exactly once, even if count is 0.

set

set name

set name=word

set name[index]=word

set name=(wordlist)
The first form of the command shows the value of all shell variables. Variables which have other
than a single word as value print as a parenthesized word list. The second form sets name to the
null string. The third form sets name to the single word. The fourth form sets the index'th com-
ponent of name to word; this component must already exist. The final form sets name to the list
of words in wordlist. In all cases the value is command and filename expanded.

These arguments may be repeated to set multiple values in a single set command. Note however,
that variable expansion happens for all arguments before any setting occurs.

setenv

setenv name value

setenv name
The first form lists all current environment variables. The last form sets the value of environment
variable name to be value, a single string. The second form sets name to an empty string. The
most commonly used environment variable USER, TERM, and PATH are automatically imported
to and exported from the csh variables user, term, and path; there is no need to use setenv for
these.

shift

shift variable
The members of argv are shifted to the left, discarding argv/I]. It is an error for argv not to be
set or to have less than one word as value. The second form performs the same function on the
specified variable.

source name
source ~h name
The shell reads commands from name. Source commands may be nested; if they are nested too
deeply the shell may run out of file descriptors. An error in a source at any level terminates all
nested source commands. Normally input during source commands is not placed on the history
list; the -h option causes the commands to be placed in the history list without being executed.

stop
stop %job ...
Stops the current or specified job which is executing in the background.

suspend
Causes the shell to stop in its tracks, much as if it had been sent a stop signal with “Z. This is
most often used to stop shells started by su(1).

switch (string)
case strl:

breaksw
default:

breaksw

April 18, 1989 The Wollongong Group 14

@

O

UNIX Programmer’s Manual CSH(1)

endsw .

Each case label is successively matched, against the specified string which is first command and
filename expanded. The file metacharacters ‘*’, ‘?” and °[...]’ may be used in the case labels,
which are variable expanded. If none of the labels match before a ‘default’ label is found, then
the execution begins after the default label. Each case label and the default label must appear at
the beginning of a line. The command breaksw causes execution to continue after the endsw.
Otherwise control may fall through case labels and default labels as in C. If no label matches
and there is no default, execution continues after the endsw.

time

time command
With no argument, a summary of time used by this shell and its children is printed. If arguments
are given the specified simple command is timed and a time summary as described under the time
variable is printed. If necessary, an extra shell is created to print the time statistic when the com-
mand completes. /

umask

umask value
The file creation mask is displayed (first form) or set to the specified value (second form). The
mask is given in octal. Common values for the mask are 002 giving all access to the group and
read and execute access to others or 022 giving all access except no write access for users in the
group or others. ‘

unalias pattern :
All aliases whose names match the specified pattern are discarded. Thus all aliases are removed
by ‘unalias *°. It is not an error for nothing to be unaliased.

unhash
Use of the internal hash table to speed location of executed programs is disabled.

unlimit

unlimit resource

unlimit -h

unlimit -h resource
Removes the limitation on resource. If no resource is specified, then all resource limitations are
removed. If -h is given, the corresponding hard limits are removed. Only the super-user may do
this.

unset pattern
All variables whose names match the specified pattern are removed. Thus all variables are
removed by ‘unset *’; this has noticeably distasteful side-effects. It is not an error for nothing to
be unset.

unsetenv pattern '
Removes all variables whose name match the specified pattern from the environment. See also
the setenv command above and printenv(1).

wait
All background jobs are waited for. It the shell is interactive, then an interrupt can disrupt the
wait, at which time the shell prints names and job numbers of all jobs known to be outstanding.

while (expr)

end
While the specified expression evaluates non-zero, the commands between the while and the
matching end are evaluated. Break and continue may be used to terminate or continue the loop |
prematurely. (The while and end must appear alone on their input lines.) Prompting occurs here
the first time through the loop as for the foreach statement if the input is a terminal.

April 18, 1989 The Wollongong Group 15

CSH(1)

% job
% job

@

UNIX Programmer’s Manual CSH(1)

Brings the specified job into the foreground.

&
Continues the specified job in the background.

@ name = expr
@ name[index] = expr

The first form prints the values of all the shell variables. The second form sets the specified
name to the value of expr. If the expression contains ‘<’, >’, ‘&’ or ‘I’ then at least this part of
the expression must be placed within ‘(" ‘)’. The third form assigns the value of expr to the
index'th argument of name. Both name and its index’th component must already exist.

The operators ‘*=’, ‘+=, etc are available as in C. The space separating the name from the
assignment operator is optional. Spaces are, however, mandatory in separating components of
expr which would otherwise be single words.

Special postfix “++’ and ‘~-’ operators increment and decrement name respectively, i.e. ‘@ i++’.

Pre-defined and environment variables

The following variables have special meaning to the shell. Of these, argv, cwd, home, path, prompt,
shell and status are always set by the shell. Except for cwd and status this setting occurs only at initial-
ization; these variables will not then be modified unless this is done explicitly by the user.

This shell copies the environment variable USER into the variable user, TERM into term, and HOME
into home, and copies these back into the environment whenever the normal shell variables are reset.
The environment variable PATH is likewise handled; it is not necessary to worry about its setting other
than in the file .cshrc as inferior csh processes will import the definition of path from the environment,
and re-export it if you then change it.

argv

Set to the arguments to the shell, it is from this variable that positional parameters are
substituted, i.e. ‘$1° is replaced by ‘Sargv([1]’, etc.

cdpath Gives a list of alternate directories searched to find subdirectories in chdir commands.

cwd
echo

filec

The full pathname of the current directory.

Set when the -x command line option is given. Causes each command and its argu-
ments to be echoed just before it is executed. For non-builtin commands all expan-
sions occur before echoing. Builtin commands are echoed before command and
filename substitution, since these substitutions are then done selectively.

Enable file name completion.

histchars Can be given a string value to change the characters used in history substitution. The

first character of its value is used as the history substitution character, replacing the
default character !. The second character of its value replaces the character T in
quick substitutions.

history Can be given a numeric value to control the size of the history list. Any command

home

April 18, 1989

which has been referenced in this many events will not be discarded. Too large
values of history may run the shell out of memory. The last executed command is
always saved on the history list.

The home directory of the invoker, initialized from the environment. The filename
expansion of =’ refers to this variable.

The Wollongong Group 16

O

CSH(1)

ignoreeof

mail

noclobber

noglob

nonomatch

notify

path

prompt

savehist

shell

status

time

UNIX Programmer’s Manual CSH(1)

If set the shell ignores end-of-file from input devices which are terminals. This
prevents shells from accidentally being killed by control-D’s.

The files where the shell checks for mail. This is done after each command comple-
tion which will result in a prompt, if a specified interval has elapsed. The shell says
‘You have new mail.’ if the file exists with an access time not greater than its modify
time.

If the first word of the value of mail is numeric it specifies a different mail checking
interval, in seconds, than the default, which is 10 minutes.

If multiple mail files are specified, then the shell says ‘New mail in name’ when there
is mail in the file name.

As described in the section on Input/output, restrictions are placed on output redirec-
tion to insure that files are not accidentally destroyed, and that ‘>>’ redirections refer
to existing files.

If set, filename expansion is inhibited. This is most useful in shell scripts which are
not dealing with filenames, or after a list of filenames has been obtained and further
expansions are not desirable.

If set, it is not an error for a filename expansion to not match any existing files;
rather the primitive pattern is returned. It is still an error for the primitive pattern to
be malformed, i.e. ‘echo [’ still gives an error.

If set, the shell notifies asynchronously of job completions. The default is to rather
present job completions just before printing a prompt.

Each word of the path variable specifies a directory in which commands are to be
sought for execution. A null word specifies the current directory. If there is no path
variable then only full path names will execute. The usual search path is ‘.’, */bin’
and ‘fusr/bin’, but this may vary from system to system. For the super-user the
default search path is ‘/etc’, ‘/bin’ and ‘/usr/bin’. A shell which is given neither the
~¢ nor the -t option will normally hash the contents of the directories in the parh
variable after reading .cshrc, and each time the path variable is reset. If new com-
mands are added to these directories while the shell is active, it may be necessary to
give the rehash or the commands may not be found.

The string which is printed before each command is read from an interactive terminal
input. If a ‘" appears in the string it will be replaced by the current event number
unless a preceding ‘\’ is given. Default is ‘% °, or *# * for the super-user.

is given a numeric value to control the number of entries of the history list that are
saved in ~/history when the user logs out. Any command which has been referenced
in this many events will be saved. During start up the shell sources ~/history into
the history list enabling history to be saved across logins. Too large values of
savehist will slow down the shell during start up.

The file in which the shell resides. This is used in forking shells to interpret files
which have execute bits set, but which are not executable by the system. (See the
description of Non-builtin Command Execution below.) Initialized to the (system-
dependent) home of the shell.

The status returned by the last command. If it terminated abnormally, then 0200 is
added to the status. Builtin commands which fail return exit status ‘1°, all other buil-
tin commands set status ‘0.

Controls automatic timing of commands. If set, then any command which takes more
than this many cpu seconds will cause a line giving user, system, and real times and a
utilization percentage which is the ratio of user plus system times to real time to be

17

CSH(1) UNIX Programmer’s Manual CSH(1)

printed when it terminates. o

April 18, 1989 The Wollongong Group 18

©

O

CSH(1) UNIX Programmer’s Manual CSH(1)

verbose Set by the ~v command line option, causes the words of each command to be printed
after history substitution.

Non-builtin command execution

When a command to be executed is found to not be a builtin command the shell attempts to execute the
command via execve(2). Each word in the variable path names a directory from which the shell will
attempt to execute the command. If it is given neither a —¢ nor a -t option, the shell will hash the
names in these directories into an internal table so that it will only try an exec in a directory if there is
a possibility that the command resides there. This greatly speeds command location when a large
number of directories are present in the search path. If this mechanism has been turned off (via
unhash), or if the shell was given a — or -t argument, and in any case for each directory component of
path which does not begin with a ‘/, the shell concatenates with the given command name to form a
path name of a file which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus ‘(cd ; pwd) ; pwd’ prints the home
directory; leaving you where you were (printing this after the home directory), while ‘cd ; pwd’ leaves
you in the home directory. Parenthesized commands are most often used to prevent chdir from
affecting the current shell.

If the file has execute permissions but is not an executable binary to the system, then it is assumed to
be a file containing shell commands and a new shell is spawned to read it.

If there is an alias for shell then the words of the alias will be prepended to the argument list to form
the shell command. The first word of the alias should be the full path name of the shell (e.g. ‘$shell’).
Note that this is a special, late occurring, case of alias substitution, and only allows words to be
prepended to the argument list without modification.

Argument list processing
If argument O to the shell is ‘-’ then this is a login shell. The flag arguments are interpreted as follows:

-b This flag forces a ‘‘break’ from option processing, causing any further shell arguments to be
treated as non-option arguments. The remaining arguments will not be interpreted as shell
options. This may be used to pass options to a shell script without confusion or possible subter-
fuge. The shell will not run a set-user ID script without this option.

— Commands are read from the (single) following argument which must be present. Any remaining
arguments are placed in argv.

—e The shell exits if any invoked command terminates abnormally or yields a non-zero exit status.

-f The shell will start faster, because it will neither search for nor execute commands from the file
‘.cshrc’ in the invoker’s home directory.

-i The shell is interactive and prompts for its top-level input, even if it appears to not be a terminal.
Shells are interactive without this option if their inputs and outputs are terminals.

-n Commands are parsed, but not executed. This aids in syntactic checking of shell scripts.
~s Command input is taken from the standard input.

-t A single line of input is read and executed. A ‘' may be used to escape the newline at the end
of this line and continue onto another line,

-v Causes the verbose variable to be set, with the effect that command input is echoed after history
substitution.

~-x Causes the echo variable to be set, so that commands are echoed immediately before execution.
-V Causes the verbose variable to be set even before ‘.cshre’ is executed.
-X Isto-xas-Visto-v.

April 18, 1989 The Wollongong Group 19

CSH(1)

UNIX Programmer’s Manual CSH(1)

After processing of flag arguments, if arguments remain but none of the —¢, —i, —s, or -t options was
given, the first argument is taken as the name of a file of commands to be executed. The shell opens
this file, and saves its name for possible resubstitution by ‘$0’. Since many systems use either the stan-
dard version 6 or version 7 shells whose shell scripts are not compatible with this shell, the shell will
execute such a ‘standard’ shell if the first character of a script is not a ‘#’, i.e. if the script does not
start with a comment. Remaining arguments initialize the variable argv.

Signal handling

The shell normally ignores quit signals. Jobs running detached (either by ‘&’ or the bg or %... & com-
mands) are immune to signals generated from the keyboard, including hangups. Other signals have the
values which the shell inherited from its parent. The shells handling of interrupts and terminate signals
in shell scripts can be controlled by onintr. Login shells catch the terminate signal; otherwise this signal
is passed on to children from the state in the shell’s parent. In no case are interrupts allowed when a
login shell is reading the file ‘.logout’.

EUNICE NOTES

Use Y, not “Z to suspend jobs for Berkeley job control. When you log out all stopped and background
jobs will be killed. Therefore, it is recommended that you use at(1) to submit background jobs to the
VMS batch queue.

Note that redirection always makes a UNIX style file. See unixtovms(1). UNIX style shell scripts,
created by redirection or brought in from a UNIX site should be run through unixtovms(1). If the csh is
passed a shell script in UNIX format, it will try to run it like an executable, resulting in an image
activation error.

Use suspend to get into a sub-process DCL and ’stop/id=0" to resume the csh. Note that what you do
in this sub-process will not effect the current shell. Also control “Y is disabled in the sub DCL process.

Csh builtin commands piped to more(1), such as "history | more”, will result in "stopped tty output".
The csh puts the command into the background, and more(I) trys to change the terminal modes. This
is illegal for a background job and currently kills the shell if brought to the foreground.

If umask is not used in the .login file, files EUNICE BSD creates use the default protection set on the
VMS level. If you do specify umask in the .Jogin file, files EUNICE BSD creates use the protection
specified in umask. In addition, VMS delete bits for system, world, group, and user are also set.

The limit option will not change the stacksize.
Filename completion is not implemented in EUNICE BSD.

AUTHOR

William Joy. Job control and directory stack features first implemented by J.E. Kulp of I.I.A.S.A, Lax-
enburg, Austria, with different syntax than that used now. File name completion code written by Ken
Greer, HP Labs.

FILES
~/.cshrc ‘ Read at beginning of execution by each shell.
~/login Read by login shell, after ‘.cshrc’ at login.
~ /.logout Read by login shell, at logout.
fbin/sh Standard shell, for shell scripts not starting with a ‘#’.
/tmp/sh* Temporary file for ‘<<’.
fetc/passwd Source of home directories for ‘" name’.
LIMITATIONS

Words can be no longer than 1024 characters. The system limits argument lists to 10240 characters.
The number of arguments to a command which involves filename expansion is limited to 1/6°th the
number of characters allowed in an argument list. Command substitutions may substitute no more char-
acters than are allowed in an argument list. To detect looping, the shell restricts the number of alias
substitutions on a single line to 20.

April 18, 1989 The Wollongong Group 20

o

O

CSH(1) UNIX Programmer’s Manual CSH(1)

SEE ALSO

BUGS

-sh(1), access(2), execve(2), fork(2), killpg(2), pipe(2), sigvec(2), umask(2), setrlimit(2), wait(2), tty(4),

a.out(5), environ(7), ‘An introduction to the C shell’

When a command is restarted from a stop, the shell prints the directory it started in if this is different
from the current directory; this can be misleading (i.e. wrong) as the job may have changed directories
internally. ‘

Shell builtin functions are not stoppable/restartable. Command sequences of the form ‘a ; b ; ¢’ are
also not handled gracefully when stopping is attempted. If you suspend ‘b’, the shell will then immedi-
ately execute ‘c’. This is especially noticeable if this expansion results from an alias. It suffices to
place the sequence of commands in ()'s to force it to a subshell, i.e. ‘(a;b;c)’.

Control over tty output after processes are started is primitive; perhaps this will inspire someone to
work on a good virtual terminal interface. In a virtual terminal interface much more interesting things
could be done with output control.

Alias substitution is most often used to clumsily simulate shell procedures; shell procedures should be
provided rather than aliases.

Commands within loops, prompted for by ‘?’, are not placed in the history list. Control structure
should be parsed rather than being recognized as built-in commands. This would allow control com-
mands to be placed anywhere, to be combined with ‘I’, and to be used with ‘&’ and *;’ metasyntax.

It should be possible to use the ‘:’ modifiers on the output of command substitutions. All and more
than one ‘:’ modifier should be allowed on ‘$’ substitutions.

The way the filec facility is implemented is ugly and expensive.

April 18, 1989 The Wollongong Group 21

CTAGS (1) UNIX Programmer’s Manual CTAGS (1)

NAME

ctags — create a tags file
SYNOPSIS

ctags [-BFatuwvx] [-f tagsfile] name ...
DESCRIPTION

Ctags makes a tags file for ex(1) from the specified C, Pascal, Fortran, YACC, lex, and lisp sources. A

tags file gives the locations of specified objects (in this case functions and typedefs) in a group of files.

Each line of the tags file contains the object name, the file in which it is defined, and an address

specification for the object definition. Functions are searched with a pattern, typedefs with a line

number. Specifiers are given in separate fields on the line, separated by blanks or tabs. Using the tags
file, ex can quickly find these objects definitions.

If the —x flag is given, ctags produces a list of object names, the line number and file name on which

each is defined, as well as the text of that line and prints this on the standard output. This is a simple

index which can be printed out as an off-line readable function index.

If the —v flag is given, an index of the form expected by vgrind(1) is produced on the standard output.

This listing contains the function name, file name, and page number (assuming 64 line pages). Since

the output will be sorted into lexicographic order, it may be desired to run the output through sort -f.

Sample use:

ctags —v files | sort —f > index
vgrind -x index

Normally ctags places the tag descriptions in a file called fags; this may be overridden with the —f

option.

Files whose names end in .c or .h are assumed to be C source files and are searched for C routine and

macro definitions. Files whose names end in ..y are assumed to be YACC source files. Files whose

names end in .I are assumed to be either lisp files if their first non-blank character is ‘;’, ‘C, or ‘[’, or
lex files otherwise. Other files are first examined to see if they contain any Pascal or Fortran routine
definitions; if not, they are processed again looking for C definitions.

Other options are:

-F use forward searching patterns (/.../) (default).

-B use backward searching patterns (?...7).

-a append to tags file.

~t - create tags for typedefs.

-w suppressing warning diagnostics.

-u causing the specified files to be updated in tags, that is, all references to them are deleted, and the
new values are appended to the file. (Beware: this option is implemented in a way which is
rather slow; it is usually faster to simply rebuild the rags file.)

The tag main is treated specially in C programs. The tag formed is created by prepending M to the

name of the file, with a trailing .c removed, if any, and leading pathname components also removed.
This makes use of ctags practical in directories with more than one program.
FILES

tags output tags file
SEE ALSO

ex(1), vi(1)
AUTHOR

Ken Amold; FORTRAN added by Jim Kleckner; Bill Joy added Pascal and -x, replacing cxref; C
typedefs added by Ed Pelegri-Llopart.

April 18, 1989 The Wollongong Group 1

CTAGS(1) UNIX Programmer’s Manual CTAGS(1)

O BUGS

Recognition of functions, subroutines and procedures for FORTRAN and Pascal is done is a very
simpleminded way. No attempt is made to deal with block structure; if you have two Pascal procedures
in different blocks with the same name you lose.

The method of deciding whether to look for C or Pascal and FORTRAN functions is a hack.
Does not know about #ifdefs.

Should know about Pascal types. Relies on the input being well formed to detect typedefs. Use of -tx
shows only the last line of typedefs.

O

April 18, 1989 The Wollongong Group 2

CVTBACKUP(1)

NAME

UNIX Programmer’s Manual CVTBACKUP(1)

cvtbackup - procedure to convert between VMS backup format and UNIX format

SYNOPSIS

evtbackup [-pack/-unpack] saveset packedsaveset

DESCRIPTION

pack: Turns a save set into fixed length 512-byte records.
unpack: Turns fixed length 512 byte records back into a save set.

Cvtbackup is a utility program that packs or unpacks a VMS backup save set into a form that is more
easily transported between machines (typically over networks and non-ANSI tape formats). A typical
use, such as sending a backup save set over a UUCP link, comprises these steps:

1
2.
3.
4

o

FILES

A backup file is created on disk, with BLOCK=2048/GROUP=0 to keep the size down
cvtbackup is run to create a UNIX file
The UNIX file is run through uuencode to make it all ASCII.

The resulting file is transported over the network and run through uudecode to turn it
back into binary.

cvtbackup is again run to unpack the file into a backup save set
The save set is restored using backup.

fusr/eun/cvtbackup

EUNICE NOTES

cvtbackup is a EUNICE BSD-specific command.

April 18, 1989

The Wollongong Group 1

o

O

CVTENAMES (1W) UNIX Programmer’s Manual CVTENAMES (1W)

NAME

cvtfnames — convert hashed file names
SYNOPSIS

cvtfnames [option] filename ...
DESCRIPTION

Cvifnames will convert filenames which were hashed by versions previous to EUNICE BSD Version
4.1. The name will be re-hashed to a new name. With VMS 4.0 the RMS file system was modified to
allow a greater range in filenames. The hashing algorithm uses a single file, rather than the older
method of two files, one name HSHxxxxxx.HSN and the other either HSHxxxxxx.HSH or
HSHxxxxxx.DIR (depending whether the file was a directory or not).

Filenames which were hashed because of either name or extension length, such as Jogin will no longer
be hashed. A dollar sign will be used to indicate a change of case. For instance, the filename,
Makefile, will hashed to SMSAKEFILE.

Cvifnames will prompt before changing each old hashed file. Respond y or <CR> for the filename to
be changed.

~f can be used to force the change to be made for all files specified. To force a change on all
files in the current directory and below, use: cvtfnames -f °[...]°

EUNICE NOTES

BUGS

This utility was created for EUNICE BSD Version 4.1.

A corrupted HSHxxxxxx.HSN file (e.g. zero length) will cause a "cannot read UNIX filename" message.
Each subsequent conversion attempt then fails with a "cannot stat HSHxxxxxx.HSN" file. Delete the
corrupted hashed file first and then rerun cvifnames.

(Note: Doing an /s in EUNICE will often show a "HSH" file when this situation occurs.)

April 18, 1989 The Wollongong Group 1

DATE(1) UNIX Programmer’s Manual DATE (1)

NAME
date — print and set the date

SYNOPSIS
date [-n][-u] [yymmddhhmm [.ss]]

DESCRIPTION
If no arguments are given, the cumrent date and time are printed. Providing an argument will set the
desired date. Only the superuser can set the date. The -u flag is used to display or set the date in GMT
(universal) time. yy represents the last two digits of the year; the first mm is the month number; dd is
the day number; hh is the hour number (24 hour system) the second mm is the minute number; .ss is
optional and represents the seconds. For example:

date 8506131627

sets the date to June 13 1985, 4:27 PM. The year, month and day may be omitted; the default values
will be the current ones. The system operates in GMT. Date takes care of the conversion to and from
local standard and daylight-saving time.
If timed(8) is running to synchronize the clocks of machines in a local area network, date sets the time
globally on all those machines unless the —n option is given.

FILES
/usr/adm/wtmp to record time-setting. In /usr/adm/messages, date records the name of the user setting
the time.

SEE ALSO
gettimeofday(2), utmp(5), timed(8),
TSP: The Time Synchronization Protocol for UNIX 4.3BSD, R. Gusella and S. Zatti

DIAGNOSTICS
Exit status is 0 on success, 1 on complete failure to set the date, and 2 on successfully setting the local
date but failing globally.
“You are not superuser: date not set’ if you try to change the date but are not the super-user. Occasion-
ally, when timed synchronizes the time on many hosts, the setting of a new time value may require
more than a few seconds. On these occasions, date prints: ‘Network time being set’. The message
‘Communication error with timed’ occurs when the communication between date and timed fails.

BUGS

The system attempts to keep the date in a format closely compatible with VMS. VMS, however, uses

local time (rather than GMT) and does not understand daylight-saving time. Thus, if you use both

UNIX and VMS, VMS will be running on GMT.

April 19, 1989 The Wollongong Group 1

O

DBX(1) UNIX Programmer’s Manual DBX(1)

NAME
dbx - debugger

SYNOPSIS
dbx [-r]1[-i][-k][-Idir][—cfile][objfile [coredump 1]

DESCRIPTION
Dbx is a tool for source level debugging and execution of programs under UNIX. The objfile is an
object file produced by a compiler with the appropriate flag (usually ‘‘~g’*) specified to produce symbol
information in the object file. Currently, cc(1), f77(1), pc(1), and the DEC Western Research Labora-
tory Modula-2 compiler, mod(l), produce the appropriate source information. The machine level facili-
ties of dbx can be used on any program.

The object file contains a symbol table that includes the name of the all the source files translated by
the compiler to create it. These files are available for perusal while using the debugger.

If a file named ‘‘core” exists in the current directory or a coredump file is specified, dbx can be used to
examine the state of the program when it faulted.

If the file ‘“.dbxinit’’ exists in the current directory then the debugger commands in it are executed.
Dbx also checks for a ‘“.dbxinit™ in the user’s home directory if there isn’t one in the current directory.

The command line options and their meanings are:

-r Execute objfile imnmediately. If it terminates successfully dbx exits. Otherwise the reason for
termination will be reported and the user offered the option of entering the debugger or letting
the program fault. Dbx will read from ‘/dev/tty>® when —r is specified and standard input is
not a terminal.

—i Force dbx to act as though standard input is a terminal.
-k Map memory addresses, useful for kernel debugging.

-l dir Add dir to the list of directories that are searched when looking for a source file. Normally
dbx looks for source files in the current directory and in the directory where objfile is located.
The directory search path can also be set with the use command.

— file Execute the dbx commands in the file before reading from standard input.

Unless -r is specified, dbx just prompts and waits for a command.

Execution and Tracing Commands

run [args] [< filename] [> filename]

rerun [args] [< filename] [> filename]
Start executing objfile, passing args as command line arguments; < or > can be used to redirect
input or output in the usual manner. When rerun is used without any arguments the previous
argument list is passed to the program; otherwise it is identical to run. If objfile has been
written since the last time the symbolic information was read in, dbx will read in the new
information.

trace [in procedure(function] [if condition]

trace source-line-number [if condition)

trace procedure/function [in procedure/function) [if condition]
trace expression at source-line-number [if condition)

trace variable [in procedure/function) [if condition)

April 19, 1989 ' The Wollongong Group 1

DBX (1) UNIX Programmer’s Manual DBX(1)

Have tracing information printed when the program is executed. A number is associated with
the command that is used to turn the tracing off (see the delete command).

The first argument describes what is to be traced. If it is a source-line-number, then the line is
printed immediately prior to being executed. Source line numbers in a file other than the
current one must be preceded by the name of the file in quotes and a colon, e.g.
"mumble.p”:17.

If the argument is a procedure or function name then every time it is called, information is
printed telling what routine called it, from what source line it was called, and what parameters
were passed to it. In addition, its return is noted, and if it’s a function then the value it is
returning is also printed.

If the argument is an expression with an at clause then the value of the expression is printed
whenever the identified source line is reached.

If the argument is a variable then the name and value of the variable is printed whenever it
changes. Execution is substantially slower during this form of tracing.

If no argument is specified then all source lines are printed before they are executed. Execu-
tion is substantially slower during this form of tracing.

The clause “‘in procedure/function’’ restricts tracing information to be printed only while exe-
cuting inside the given procedure or function.

Condition is a boolean expression and is evaluated prior to printing the tracing information; if
it is false then the information is not printed.

stop if condition

stop at source-line-number [if condition)

stop in procedureffunction [if condition]

stop variable [if condition]
Stop execution when the given line is reached, procedure or functxon called, variable changed,
or condition true.

status [> filename]
Print out the currently active trace and stop commands.

delete command-number ...
The traces or stops corresponding to the given numbers are removed. The numbers associated
with traces and stops are printed by the status command.

catch number

catch signal-name

ignore number

ignore signal-name
Start or stop trapping a signal before it is sent to the program. This is useful when a program
being debugged handles signals such as interrupts. A signal may be specified by number or by
a name (e.g., SIGINT). Signal names are case insensitive and the ‘‘SIG’’ prefix is optional.
By default all signals are trapped except SIGCONT, SIGCHILD, SIGALRM and SIGKILL.

cont integer

cont signal-name
Continue execution from where it stopped. If a signal is specified, the process continues as
though it received the signal. Otherwise, the process is continued as though it had not been

stopped.

O

©

DBX(1) UNIX Programmer’s Manual DBX(1)

Execution cannot be continued if the process has ‘‘finished’’, that is, called the standard procedure
*“‘exit’’. Dbx does not allow the process to exit, thereby letting the user to examine the program state.

step Execute one source line.

next Execute up to the next source line. The difference between this and step is that if the line
contains a call to a procedure or function the step command will stop at the beginning of that
block, while the next command will not.

return [procedure]
Continue until a return to procedure is executed, or until the current procedure returns if none
is specified. '

call procedure(parameters)
Execute the object code associated with the named procedure or function.

Printing Variables and Expressions

Names are resolved first using the static scope of the current function, then using the dynamic scope if
the name is not defined in the static scope. If static and dynamic searches do not yield a result, an arbi-
trary symbol is chosen and the message ‘‘[using qualified name]’’ is printed. The name resolution pro-
cedure may be overridden by qualifying an identifier with a block name, e.g., ‘‘module.variable’’. For
C, source files are treated as modules named by the file name without *“.c’’.

Expressions are specified with an approximately common subset of C and Pascal (or equivalently
Modula-2) syntax. Indirection can be denoted using either a prefix ‘‘**’ or a postfix *“** and array
expressions are subscripted by brackets (“‘[1’*). The field reference operator (‘“.”*) can be used with
pointers as well as records, making the C operator ‘‘->’’ unnecessary (although it is supported).

Types of expressions are checked; the type of an expression may be overridden by using ‘‘type-
name(expression)’”. When there is no corresponding named type the special constructs ‘‘&zype-name’’
and *‘$$tag-name’* can be used to represent a pointer to a named type or C structure tag.

assign variable = expression
Assign the value of the expression to the variable.

dump (procedure] [> filename]
Print the names and values of variables in the given procedure, or the current one if none is
specified. If the procedure given is **.””, then the all active variables are dumped.

print expression [, expression ...]
Print out the values of the expressions.

whatis name
Print the declaration of the given name, which may be qualified with block names as above.

which identifier
Print the full qualification of the given identifer, i.e. the outer blocks that the identifier is asso-
ciated with.

up [count]

down [count]
Move the current function, which is used for resolving names, up or down the stack count lev-
els. The default count is 1.

where Print out a list of the active procedures and function.

whereis identifier
Print the full qualification of all the symbols whose name matches the given identifier. The

April 19, 1989 The Wollongong Group 3

DBX(1) UNIX Programmer’s Manual DBX(1)

order in which the symbols are printed is not meaningful. o
Accessing Source Files

[regular expression(/]
Tregular expression(?]
Search forward or backward in the current source file for the given pattern.

edit [filename]

edit procedure/function-name
Invoke an editor on filename or the current source file if none is specified. If a procedure or
function name is specified, the editor is invoked on the file that contains it. Which editor is
invoked by default depends on the installation. The default can be overridden by setting the
environment variable EDITOR to the name of the desired editor.

file [filename]
Change the current source file name to filename. If none is specified then the current source
file name is printed.

func [procedureffunction]
Change the current function. If none is specified then print the current function. Changing the
current function implicitly changes the current source file to the one that contains the function;
it also changes the current scope used for name resolution.

list [source-line-number [, source-line-number]]

list procedureffunction
List the lines in the current source file from the first line number to the second inclusive. If no
lines are specified, the next 10 lines are listed. If the name of a procedure or function is given
lines n-k to n+k are listed where n is the first statement in the procedure or function and k is
small.

use directory-list)
Set the list of directories to be searched when looking for source files.

Command Aliases and Variables

alias name name

alias name “‘string’’

alias name (parameters) “‘string”’
When commands are processed, dbx first checks to see if the word is an alias for either a com-
mand or a string. If it is an alias, then dbx treats the input as though the corresponding string
(with values substituted for any parameters) had been entered. For example, to define an alias
“‘rr”’ for the command ‘‘rerun’’, one can say

alias rr rerun
To define an alias called ‘‘b’’ that sets a stop at a particular line one can say
alias b(x) ‘‘stop at x’

Subsequently, the command *‘b(12)”’ will expand to “‘stop at 12",

set name [= expression]
The set command defines values for debugger variables. The names of these variables cannot
conflict with names in the program being debugged, and are expanded to the corresponding

DBX(1) UNIX Programmer’s Manual DBX (1)

expression within other commands. The following variables have a special meaning:

$frame
Setting this variable to an address causes dbx to use the stack frame pointed to by the
address for doing stack traces and accessing local variables. This facility is of partic-
ular use for kernel debugging.

$hexchars

S$hexints

S$hexoffsets

S$hexstrings :
When set, dbx prints out out characters, integers, offsets from registers, or character
pointers respectively in hexadecimal.

S$listwindow
The value of this variable specifies the number of lines to list around a function or
when the list command is given without any parameters. Its default value is 10.

$mapaddrs
Setting (unsetting) this variable causes dbx to start (stop) mapping addresses. As
with “‘$frame”’, this is useful for kernel debugging.

$unsafecall

$unsafeassign
When ‘‘Sunsafecall’’ is set, strict type checking is turned off for arguments to sub-
routine or function calls (e.g. in the call statement). When “‘Sunsafeassign’ is set,
strict type checking between the two sides of an assign statement is turned off.
These variables should be used only with great care, because they severely limit
dbx’s usefulness for detecting errors.

unalias name ;
Remove the alias with the given name.

unset name .
Delete the debugger variable associated with name.

Machine Level Commands

tracei [address] [if cond]
tracei [variable] [at address] [if cond]
stopi [address] [if cond)]
stopi [at] [address] [if cond]
Turn on tracing or set a stop using a machine instruction address.

stepi
nexti Single step as in step or next, but do a single instruction rather than source line.

address .address/ [mode]

address | [couni] [mode]
Print the contents of memory starting at the first address and continuing up to the second
address or until count items are printed. If the address is *“.”’, the address following the one
printed most recently is used. The mode specifies how memory is to be printed; if it is omitted
the previous mode specified is used. The initial mode is *“X’’. The following modes are sup-
ported:

April 19, 1989 The Wollongong Group S

DBX(1) UNIX Programmer’s Manual DBX(1)

print the machine instruction

print a short word in decimal

print a long word in decimal

print a short word in octal

print a long word in octal

print a short word in hexadecimal
print a long word in hexadecimal
print a byte in octal

print a byte as a character

print a string of characters terminated by a null byte
print a single precision real number
print a double precision real number

v eTHHOO DA™

Symbolic addresses are specified by preceding the name with an ““&’’. Registers are denoted by
“$IN”’ where N is the number of the register. Addresses may be expressions made up of other
addresses and the operators ‘‘+’’, *‘->*, and indirection (unary *‘*’’).

Miscellaneous Commands

gripe Invoke a mail program to send a message to the person in charge of dbx.
help Print out a synopsis of dbx commands.
quit Exit dbx.

sh command-line
Pass the command line to the shell for execution. The SHELL environment variable deter-
mines which shell is used.

source filename
Read dbx commands from the given filename.

FILES

a.out object file

.dbxinit initial commands
SEE ALSO

cc(l), £77(1), pe(1), mod(l)
COMMENTS

Dbx suffers from the same ‘‘multiple include’” malady as did sdb. If you have a program consisting of
a number of object files and each is built from source files that include header files, the symbolic infor-
mation for the header files is replicated in each object file. Since about one debugger start-up is done
for each link, having the linker (Id) re-organize the symbol information would not save much time,
though it would reduce some of the disk space used.

This problem is an artifact of the unrestricted semantics of #include’s in C; for example an include file
can contain static declarations that are separate entities for each file in which they are included. How-
ever, even with Modula-2 there is a substantial amount of duplication of symbol information necessary
for inter-module type checking.

Some problems remain with the support for individual languages. Fortran problems include: inability
to assign to logical, logical*2, complex and double complex variables; inability to represent parameter
constants which are not type integer or real; peculiar representation for the values of dummy procedures
(the value shown for a dummy procedure is actually the first few bytes of the procedure text; to find the
location of the procedure, use ‘‘&’’ to take the address of the variable).

April 19, 1989 The Wollongong Group 6

o

DC(1)

NAME

UNIX Programmer’s Manual DC(1)

dc — desk calculator

SYNOPSIS

de [file]

DESCRIPTION

Dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but one may
specify an input base, output base, and a number of fractional digits to be maintained. The overall
structure of dc is a stacking (reverse Polish) calculator. If an argument is given, input is taken from
that file until its end, then from the standard input. The following constructions are recognized:

number '

X
[..]

<X >x

The value of the number is pushed on the stack. A number is an unbroken string of the digits
0-9. It may be preceded by an underscore _ to input a negative number. Numbers may contain
decimal points.

* 9 ~

The top two values on the stack are added (+), subtracted (-), multiplied (*), divided (/), remain-
dered (%), or exponentiated (*). The two entries are popped off the stack; the result is pushed
on the stack in their place. Any fractional part of an exponent is ignored.

The top of the stack is popped and stored into a register named x, where x may be any charac-
ter. If the s is capitalized, x is treated as a stack and the value is pushed on it.

The value in register x is pushed on the stack. The register x is not altered. All registers start
with zero value. If the 1 is capitalized, register x is treated as a stack and its top value is popped
onto the main stack.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged. P interprets the top of
the stack as an ascii string, removes it, and prints it.

All values on the stack and in registers are printed.

exits the program. If executing a string, the recursion level is popped by two. If q is capital-
ized, the top value on the stack is popped and the string execution level is popped by that value,

treats the top element of the stack as a character string and executes it as a string of dc com-
mands.

replaces the number on the top of the stack with its scale factor.
puts the bracketed ascii string onto the top of the stack.

=x
The top two elements of the stack are popped and compared. Register x is executed if they
obey the stated relation,

replaces the top element on the stack by its square root. Any existing fractional part of the
argument is taken into account, but otherwise the scale factor is ignored.

interprets the rest of the line as a UNIX command.
All values on the stack are popped.

The top value on the stack is popped and used as the number radix for further input. I pushes
the input base on the top of the stack.

The top value on the stack is popped and used as the number radix for further output.
pushes the output base on the top of the stack.

the top of the stack is popped, and that value is used as a non-negative scale factor: the
appropriate number of places are printed on output, and maintained during multiplication,

DC(1) UNIX Programmer’s Manual DC(1)

division, and exponentiation. The interaction of scale factor, input base, and output base will be o
reasonable if all are changed together. :

z The stack level is pushed onto the stack.
replaces the number on the top of the stack with its length.
? A line of input is taken from the input source (usually the terminal) and executed.
HE are used by bc for array operations.
An example which prints the first ten values of n! is
[lal+dsa*plal0>y]sy
Osal
lyx
SEE ALSO
be(1), which is a preprocessor for dc providing infix notation and a C-like syntax which implements
functions and reasonable control structures for programs.
DIAGNOSTICS
‘x is unimplemented’ where x is an octal number.
‘stack empty’ for not enough elements on the stack to do what was asked.
‘Out of space’ when the free list is exhausted (too many digits).
‘Out of headers’ for too many numbers being kept around.

‘Out of pushdown’ for too many items on the stack.
‘Nesting Depth’ for too many levels of nested execution.

April 19, 1989 The Wollongong Group 2

O

DD(1)

NAME

UNIX Programmer’s Manual DD(1)

dd — convert and copy a file

SYNOPSIS

dd [option=value] ...

DESCRIPTION

Dd copies the specified input file to the specified output with possible conversions. The standard input
and output are used by default. The input and output block size may be specified to take advantage of
raw physical I/O. ‘

option values
if= input file name; standard input is default
of= output file name; standard output is default
ibs=n input block size n bytes (default 512)
obs=n output block size (default 512)
bs=n set both input and output block size, superseding ibs and obs; also, if no conversion is
specified, it is particularly efficient since no copy need be done
cbs=n conversion buffer size
skip=n skip » input records before starting copy
files=n copy n input files before terminating (makes sense only where input is a magtape or
similar device).
seek=n seek n records from beginning of output file before copying
count=n copy only n input records
conv=ascii convert EBCDIC to ASCII
ebedic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
block convert variable length records to fixed length
unblock convert fixed length records to variable length
Icase map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input record to ibs

s one several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end with k, b or w to specify
multiplication by 1024, 512, or 2 respectively; a pair of numbers may be separated by x to indicate a
product.

Cbs is used only if ascii, unblock, ebcdic, ibm, or block conversion is specified. In the first two cases,
cbs characters are placed into the conversion buffer, any specified character mapping is done, trailing
blanks trimmed and new-line added before sending the line to the output. In the latter three cases,
characters are read into the conversion buffer, and blanks added to make up an output record of size
cbs.

After completion, dd reports the number of whole and partial input and output blocks.

For example, to read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record into the
ASCII file x:

dd if=/dev/rmt0 of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to [/O on the raw physical devices because it
allows reading and writing in arbitrary record sizes.

April 19, 1989 The Wollongong Group 1

DD(1) UNIX Programmer’s Manual DD(1)

EUNICE NOTES o

EUNICE dd(1) requires that the tape drive is mounted foreign with the appropriate blocksize. The
blocksize is determined by the VMS mount command, never automatically. For a blocking factor of 20
(a very popular quantity) mount with a blocksize of 10240. For example, for tape drive MTAO:, mount
with the following command:

$ MOUNT/FOREIGN/BLOCKSIZE=10240 MTAQ:

The only valid blocksize for the VMS file system on the disk is 512. Therefore, dd will always create
blocks of 512. However, dd will be able to read files from a tape which were created with a different
blocksize. For example, if the tape was created with blocks of 5120, mount as follows:

S MOUNT/FOREIGN/BLOCKSIZE=5120 MTAO:
Enter the EUNICE environment, and type the following to read the tape:
% dad if=/dev/rmt0 of=readfile ibs=5120 obs=512

With VMS versions prior to 4.2, do not use the suspend or vms(1) commands to mount the tape, rather
mount from the DCL level. Starting with VMS 4.2, tapes can be mounted by a subprocess using either
suspend or vms(1).

SEE ALSO
cp(1), tr(1)

DIAGNOSTICS
f+p records in(out): numbers of full and partial records read(written)

BUGS
The ASCII/JEBCDIC conversion tables are taken from the 256 character standard in the CACM Nov,
1968. The ‘ibm’ conversion, while less blessed as a standard, corresponds better to certain IBM print
train conventions. There is no universal solution.
One must specify ‘‘conv=noerror,sync’’ when copying raw disks with bad sectors to insure dd stays
synchronized.

Certain combinations of arguments to conv= are permitted. However, the block or unblock option can-
not be combined with ascii, ebcdic or ibm. Invalid combinations silently ignore all but the last
mutually-exclusive keyword.

April 19, 1989 The Wollongong Group 2

DEROFF(1) UNIX Programmer’s Manual DEROFF(1)

o NAME
deroff — remove nroff, troff, tbl and eqn constructs

SYNOPSIS
deroff [-w] file ...

DESCRIPTION
Deroff reads each file in sequence and removes all nroff and troff command lines, backslash construc-
tions, macro definitions, egn constructs (between ‘EQ’ and ‘EN’ lines or between delimiters), and table
descriptions and writes the remainder on the standard output. Deroff follows chains of included files
(‘.s0’ and “.nx’ commands); if a file has already been included, a ‘.50’ is ignored and a ‘.nx’ terminates
execution. If no input file is given, deroff reads from the standard input file.

If the -w ﬂag is given, the output is a word list, one ‘word’ (string of letters, digits, and apostrophes,
beginning with a letter; apostrophes are removed) per line, and all other characters ignored. Otherwise,
the output follows the original, with the deletions mentioned above.

SEE ALSO
troff(1), eqn(1), tb(1)

BUGS
Deroff is not a complete troff interpreter, so it can be confused by subtle constructs. Most errors result

in too much rather than too little output.

©

April 19, 1989 The Wollongong Group 1

DF(1) UNIX Programmer’s Manual DF(1)

NAME
df - disk free

SYNOPSIS
df [-i] [filesystem ...] [file ...]

DESCRIPTION :
Df prints out the amount of free disk space available on the specified filesystem, e.g. *‘/dev/rp0a’’, or on
the filesystem in which the specified file, e.g. *‘SHOME", is contained. If no file system is specified,
the free space on all of the normally mounted file systems is printed. The reported numbers are in kilo-
bytes.

Other options are:
-i Report also the number of inodes which are used and free.

FILES
[etc/fstab list of normally mounted filesystems

SEE ALSO
fstab(5)

April 19, 1989 The Wollongong Group 1

DICTION(1) UNIX Programmer’s Manual DICTION(1)

o NAME

diction, explain — print wordy sentences; thesaurus for diction

SYNOPSIS
diction [-ml] [-mm] [-n] [-f pfile] file ...
explain

DESCRIPTION
Diction finds all sentences in a document that contain phrases from a data base of bad or wordy diction.
Each phrase is bracketed with []. Because diction runs deroff before looking at the text, formatting
header files should be included as part of the input. The default macro package ~ms may be overridden
with the flag ~mm. The flag —ml which causes deroff to skip lists, should be used if the document con-
tains many lists of non-sentences. The user may supply her/his own pattern file to be used in addition
to the default file with -f pfile. If the flag ~n is also supplied the default file will be suppressed.
Explain is an interactive thesaurus for the phrases found by diction.

SEE ALSO
deroff(1)

BUGS

Use of non-standard formatting macros may cause incorrect sentence breaks. In particular, diction
doesn’t grok —me.

O

April 19, 1989 The Wollongong Group 1

DIFF(1) UNIX Programmer’s Manual DIFF(1)

NAME
diff - differential file and directory comparator

SYNOPSIS
diff[-1][-r][=-s][~cefhn] [-biwt] dirl dir2
diff [—cefhn] [-biwt] filel file2
diff [-Dstring] [-biw] filel file2

DESCRIPTION
If both arguments are directories, diff sorts the contents of the directories by name, and then runs the
regular file diff algorithm (described below) on text files which are different. Binary files which differ,
common subdirectories, and files which appear in only one directory are listed. Options when compar-
ing directories are:
-1 long output format; each text file diff is piped through pr(1) to paginate it, other differences are
remembered and summarized after all text file differences are reported.

-r causes application of diff recursively to common subdirectories encountered.
-S causes diff to report files which are the same, which are otherwise not mentioned.
-Sname

starts a directory diff in the middle beginning with file name.

When run on regular files, and when comparing text files which differ during directory comparison, diff
tells what lines must be changed in the files to bring them into agreement. Except in rare cir-
cumstances, diff finds a smallest sufficient set of file differences. If neither filel nor file2 is a directory,
then either may be given as ‘~’, in which case the standard input is used. If file! is a directory, then a
file in that directory whose file-name is the same as the file-name of file2 is used (and vice versa).

There are several options for output format; the default output format contains lines of these forms:

nl an3.nd
nl.n2 d n3
nl,n2 c n3,nd

These lines resemble ed commands to convert filel into file2. The numbers after the letters pertain to
file2. In fact, by exchanging ‘a’ for ‘d’ and reading backward one may ascertain equally how to con-
vert file2 into filel. As in ed, identical pairs where nl = n2 or n3 = n4 are abbreviated as a single
number.

Following each of these lines come all the lines that are affected in the first file flagged by ‘<’, then all
the lines that are affected in the second file flagged by *>’.

Except for -b, -w, i or -t which may be given with any of the others, the following options are mutu-
ally exclusive:

- produces a script of a, ¢ and d commands for the editor ed, which will recreate file2 from
filel. In connection with —e, the following shell program may help maintain multiple ver-
sions of a file. Only an ancestral file ($1) and a chain of version-to-version ed scripts
(82,%3,...) made by diff need be on hand. A ‘latest version’ appears on the standard output.

(shift; cat $*; echo “1,$p") | ed — $1

Extra commands are added to the output when comparing directories with —e, so that the
result is a sh(1) script for converting text files which are common to the two directories from
their state in dir! to their state in dir2.

-f produces a script similar to that of —e, not useful with ed, and in the opposite order.

-n produces a script similar to that of —e, but in the opposite order and with a count of changed
lines on each insert or delete command. This is the form used by rcsdiff(1).

- produces a diff with lines of context. The default is to present 3 lines of context and may be

@

DIFF(1) UNIX Programmer’s Manual DIFF(1)

changed, e.g to 10, by —10. With —c the output format is modified slightly: the output
beginning with identification of the files involved and their creation dates and then each
change is separated by a line with a dozen *’s. The lines removed from filel are marked
with ‘- °; those added to file2 are marked ‘+ ’. Lines which are changed from one file to the
other are marked in both files with with ‘! °,

Changes which lie within <context> lines of each other are grouped together on output.
(This is a change from the previous ‘‘diff -c’* but the resulting output is usually much easier
to interpret.)

-h does a fast, half-hearted job. It works only when changed stretches are short and well
separated, but does work on files of unlimited length.

-Dstring causes diff to create a merged version of filel and file2 on the standard output, with C
preprocessor controls included so that a compilation of the result without defining string is
equivalent to compiling filel, while defining string will yield file2.

-b causes trailing blanks (spaces and tabs) to be ignored, and other strings of blanks to compare
equal. '

-w is similar to -b but causes whitespace (blanks and tabs) to be totally ignored. Eg.,
“if (a==1b)" will compare equal to “‘if(a==b)"".

-i ignores the case of letters. E.g., “‘A’" will compare equal to “‘a’’.

~t will expand tabs in output lines. Normal or —¢ output adds character(s) to the front of each

line which may screw up the indentation of the original source lines and make the output
listing difficult to interpret. This option will preserve the original source’s indentation.

FILES
/tmp/d?2277?
Just/lib/diffh for —h
/bin/diff for directory diffs
/bin/pr
SEE ALSO
cmp(1), cc(1), comm(1), ed(1), diff3(1)
DIAGNOSTICS
Exit status is O for no differences, 1 for some, 2 for trouble.
BUGS

Editing scripts produced under the —e or —f option are naive about creating lines consisting of a single

When comparing directories with the b, -w or -i options specified, diff first compares the files ala cmp,
and then decides to run the diff algorithm if they are not equal. This may cause a small amount of
spurious output if the files then turn out to be identical because the only differences are insignificant
blank string or case differences.

April 19, 1989 The Wollongong Group 2

DIFF3(1) UNIX Programmer’s Manual DIFF3 (1)

NAME
diff3 - 3-way differential file comparison
SYNOPSIS
diff3 [—exEX3] filel file2 file3
DESCRIPTION
Diff3 compares three versions of a file, and publishes disagreeing ranges of text flagged with these
codes:
==== all three files differ
s filel is different
==== file2 is different
The type of change suffered in converting a given range of a given file to some other is indicated in
one of these ways: '
f:nl a Text is to be appended after line number ! in file f, where f = 1, 2, or 3.
f:nl ,n2c Text is to be changed in the range line nl to line n2. If nl = n2, the range may be
abbreviated to nl.
The original contents of the range follows immediately after a ¢ indication. When the contents of two
files are identical, the contents of the lower-numbered file is suppressed.
Under the —e option, diff3 publishes a script for the editor ed that will incorporate into filel all changes
between file2 and file3, i.e. the changes that normally would be flagged === and ====3. Option —x
(=3) produces a script to incorporate only changes flagged ==== (====3). The following command will
apply the resulting script to ‘filel’.
(cat script; echo “1,8p") | ed - filel
The -E and =X are similar to —e and -x, respectively, but treat overlapping changes (i.c., changes that
would be flagged with === in the normal listing) differently. The overlapping lines from both files
will be inserted by the edit script, bracketed by "<<<<<<" and ">>>>>>" lines.
For example, suppose lines 7-8 are changed in both filel and file2. Applying the edit script generated
by the command
"diff3 -E filel file2 file3"
to filel results in the file:
lines 1-6
of filel
<<<<<<x filel
lines 7-8
of filel
lines 7-8
of file3
>>>>>>> file3
rest of filel
The -E option is used by RCS merge(l) to insure that overlapping changes in the merged files are
preserved and brought to someone’s attention.
FILES

fusr/lib/diff3

April 19, 1989 The Wollongong Group 1

DIFF3(1) UNIX Programmer’s Manual DIFF3(1)

O SEE ALSO
diff(1)

BUGS
Text lines that consist of a single .’ will defeat —e.

April 19, 1989 The Wollongong Group 2

DU(1) UNIX Programmer’s Manual DU(1)

NAME
du - summarize disk usage
SYNOPSIS
du(-s][-a][name..]
DESCRIPTION
Du gives the number of kilobytes contained in all files and, recursively, directories within each specified
directory or file name. If name is missing, ‘.’ is used.
The argument -s causes only the grand total to be given. The argument —a causes an entry to be gen-
erated for each file. Absence of either causes an entry to be generated for each directory only.
A file which has two links to it is only counted once.
SEE ALSO
df(1)
BUGS

Non-directories given as arguments (not under —-a option) are not listed.
If there are too many distinct lirtked files, du counts the excess files multiply.

April 19, 1989 The Wollongong Group 1

ECHO(1) UNIX Programmer’s Manual ECHO(1)

NAME
echo — echo arguments

SYNOPSIS
echo[-n][arg]..
DESCRIPTION

Echo writes its arguments separated by blanks and terminated by a newline on the standard output. If
the flag —n is used, no newline is added to the output.

Echo is useful for producing diagnostics in shell programs and for writing constant data on pipes. To
send diagnostics to the standard error file, do ‘echo ... 1>&2’.

O

April 19, 1989 The Wollongong Group 1

ED(1)

NAME

UNIX Programmer’s Manual ED(1)

ed - text editor

SYNOPSIS

ed [-][-x][name]

DESCRIPTION

Ed is the standard text editor.

If a name argument is given, ed simulates an e command (see below) on the named file; that is to say,
the file is read into ed’s buffer so that it can be edited. If —x is present, an x command is simulated
first to handle an encrypted file. The optional — suppresses the printing of explanatory output and
should be used when the standard input is an editor script.

Ed operates on a copy of any file it is editing; changes made in the copy have no effect on the file until
a w (write) command is given. The copy of the text being edited resides in a temporary file called the
buffer.

Commands to ed have a simple and regular structure: zero or more addresses followed by a single char-
acter command, possibly followed by parameters to the command. These addresses specify one or more
lines in the buffer. Missing addresses are supplied by default.

In general, only one command may appear on a line. Certain commands allow the addition of text to
the buffer. While ed is accepting text, it is said to be in input mode. In this mode, no commands are
recognized; all input is merely collected. Input mode is left by typing a period ‘.’ alone at the begin-
ning of a line.

Ed supports a limited form of regular expression notation. A regular expression specifies a set of

strings of characters. A member of this set of strings is said to be matched by the regular expression.

In the following specification for regular expressions the word ‘character’ means any character but new-

line.

1. Any character except a special character matches itself. Special characters are the regular
expression delimiter plus \[. and sometimes " * $.

A . matches any character.
3. A\ followed by any character except a digit or () matches that character.

A nonempty string s bracketed [s] (or ["s]) matches any character in (or not in) s. In s, \ has
no special meaning, and] may only appear as the first letter. A substring g-b, with @ and b in
ascending ASCII order, stands for the inclusive range of ASCII characters.

5. A regular expression of form 1-4 followed by * matches a sequence of 0 or more matches of
the regular expression.

6. A regular expression, x, of form 1-8, bracketed \(x\) matches what x matches.

7. A \ followed by a digit » matches a copy of the string that the bracketed regular expression
beginning with the nth \(matched.

8. A regular expression of form 1-8, x, followed by a regular expression of form 1-7, y matches a

match for x followed by a match for y, with the x match being as long as possible while still
permitting a y match.

9. A regular expression of form 1-8 preceded by ~ (or followed by $), is constrained to matches
that begin at the left (or end at the right) end of a line.

10. A regular expression of form 1-9 picks out the longest among the leftmost matches in a line.

11. An empty regular expression stands for a copy of the last regular expression encountered.

April 19, 1989 The Wollongong Group 1

O

o

ED(1) UNIX Programmer’s Manual ED(1)

e Regular expressions are used in addresses to specify lines and in one command (see s below) to specify
a portion of a line which is to be replaced. If it is desired to use one of the regular expression meta-
characters as an ordinary character, that character may be preceded by ‘\'. This also applies to the
character bounding the regular expression (often ‘/’) and to °\ itself.

To understand addressing in ed it is necessary to know that at any time there is a current line. Gen-
erally speaking, the current line is the last line affected by a command; however, the exact effect on the
current line is discussed under the description of the command. Addresses are constructed as follows.

1. The character ‘." addresses the current line.

2. The character ‘$’ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4 “x’ addresses the line marked with the name x, which must be a lower-case letter. Lines are

marked with the £ command described below.

5. A regular expression enclosed in slashes ‘/ addresses the line found by searching forward from
the current line and stopping at the first line containing a string that matches the regular
expression. If necessary the search wraps around to the beginning of the buffer.

6. A regular expression enclosed in queries ‘?” addresses the line found by searching backward
from the current line and stopping at the first line containing a string that matches the regular
expression. If necessary the search wraps around to the end of the buffer.

7. An address followed by a plus sign ‘+’ or a minus sign ‘-’ followed by a decimal number
specifies that address plus (resp. minus) the indicated number of lines. The plus sign may be
omitted.

8. If an address begins with ‘+’ or ‘-’ the addition or subtraction is taken with respect to the

_current line; e.g. ‘-5’ is understood to mean ‘.-5.
9. If an address ends with ‘+’ or ‘~’, then 1 is added (resp. subtracted). As a consequence of this

rule and rule 8, the address ‘-’ refers to the line before the current line. Moreover, trailing ‘+’
and ‘-’ characters have cumulative effect, so ‘—’ refers to the current line less 2.

10. To maintain compatibility with earlier versions of the editor, the character “*’ in addresses is
equivalent to ‘-,

Commands may require zero, one, or two addresses. Commands which require no addresses regard the
presence of an address as an error. Commands which accept one or two addresses assume default
addresses when insufficient are given. If more addresses are given than such a command requires, the
last one or two (depending on what is accepted) are used.

Addresses are separated from each other typically by a comma °,’. They may also be separated by a
semicolon ‘;>. In this case the current line ‘.’ is set to the previous address before the next address is
interpreted. This feature can be used to determine the starting line for forward and backward searches
(‘/, *7"). The second address of any two-address sequence must correspond to a line following the line

corresponding to the first address. The special form ‘%’ is an abbreviation for the address pair ‘1,$°.

In the following list of ed commands, the default addresses are shown in parentheses. The parentheses
are not part of the address, but are used to show that the given addresses are the default.

As mentioned, it is generally illegal for more than one command to appear on a line. However, most
commands may be suffixed by ‘p’ or by ‘I’, in which case the current line is either printed or listed
respectively in the way discussed below. Commands may also be suffixed by ‘n’, meaning the output
of the command is to be line numbered. These suffixes may be combined in any order.

(.)a
<text>

O

April 19, 1989 The Wollongong Group 2

ED(1) UNIX Programmer’s Manual ED(1)

The append command reads the given text and appends it after the addressed line. .’ is left on
the last line input, if there were any, otherwise at the addressed line. Address ‘0’ is legal for this
command; text is placed at the beginning of the buffer.

(.,.)¢
<text>

The change command deletes the addressed lines, then accepts input text which replaces these
lines. ‘.’ is left at the last line input; if there were none, it is left at the line preceding the deleted
lines.

(.,.)d
The delete command deletes the addressed lines from the buffer. The line originally after the last
line deleted becomes the current line; if the lines deleted were originally at the end, the new last
line becomes the current line.

e filename
The edit command causes the entire contents of the buffer to be deleted, and then the named file
to be read in. ‘.’ is set to the last line of the buffer. The number of characters read is typed.
‘filename’ is remembered for possible use as a default file name in a subsequent » or w command.
If ‘filename’ is missing, the remembered name is used.

E filename
This command is the same as e, except that no diagnostic results when no w has been given since
the last buffer alteration.

f filename
The filename command prints the currently remembered file name. If ‘filename’ is given, the
currently remembered file name is changed to ‘filename’.

(1,) gfregular expression/command list

In the global command, the first step is to mark every line which matches the given regular
expression. Then for every such line, the given command list is executed with ‘.’ initially set to
that line. A single command or the first of multiple commands appears on the same line with the
global command. All lines of a multi-line list except the last line must be ended with \'. A, i,
and ¢ commands and associated input are permitted; the ‘.’ terminating input mode may be omit-
ted if it would be on the last line of the command list. The commands g and v are not permitted
in the command list.

()i
<text>

.

This command inserts the giw;en text before the addressed line. ‘.’ is left at the last line input, or,
if there were none, at the line before the addressed line. This command differs from the a com-
mand only in the placement of the text.

(... +Dj _
This command joins the addressed lines into a single line; intermediate newlines simply disap-
pear. .’ is left at the resulting line.

()kx
The mark command marks the addressed line with name x, which must be a lower-case letter.
The address form “x’ then addresses this line.

(.,)1
The list command prints the addressed lines in an unambiguous way: non-graphic characters are
printed in two-digit octal, and long lines are folded. The ! command may be placed on the same
line after any non-i/o command.

April 19, 1989 The Wollongong Group 3

©

©

ED(1) UNIX Programmer’s Manual ED(1)

(.,.)ma
The move command repositions the addressed lines after the line addressed by a. The last of the
moved lines becomes the current line.

(..Ip
The print command prints the addressed lines. ‘.’ is left at the last line printed. The p command

may be placed on the same line after any non-i/o command.

(.,.)P
This command is a synonym for p.

q The quit command causes ed to exit. No automatic write of a file is done.

Q This command is the same as g, except that no diagnostic results when no w has been given since
the last buffer alteration.

($)r filename
The read command reads in the given file after the addressed line. If no file name is given, the
remembered file name, if any, is used (see e and f commands). The file name is remembered if
there was no remembered file name already. Address ‘0’ is legal for r and causes the file to be
read at the beginning of the buffer. If the read is successful, the number of characters read is
typed. ‘.’ is left at the last line read in from the file.

(., .)sfregular expression/replacement/ or,

(., .)s/regular expression/replacement/g
The substitute command searches each addressed line for an occurrence of the specified regular
expression. On each line in which a match. is found, all matched strings are replaced by the
replacement specified, if the global replacement indicator ‘g’ appears after the command. If the
global indicator does not appear, only the first occurrence of the matched string is replaced. It is
an error for the substitution to fail on all addressed lines. Any punctuation character may be used
instead of ‘/* to delimit the regular expression and the replacement. .’ is left at the last line sub-
stituted.

An ampersand ‘&’ appearing in the replacement is replaced by the string matching the regular
expression. The special meaning of ‘&’ in this context may be suppressed by preceding it by V.
The characters “W’ where n is a digit, are replaced by the text matched by the n-th regular subex-
pression enclosed between “\(’ and “\)’. When nested, parenthesized subexpressions are present, n
is determined by counting occurrences of “\(’ starting from the left. '

Lines may be split by substituting new-line characters into them. The new-line in the replace-
ment string must be escaped by preceding it by “\’.

One or two trailing delimiters may be omitted, implying the ‘p’ suffix. The special form ‘s’ fol-
lowed by no delimiters repeats the most recent substitute command on the addressed lines. The
‘s’ may be followed by the letters r (use the most recent regular expression for the left hand side,
instead of the most recent left hand side of a substitute command), p (complement the setting of
the p suffix from the previous substitution), or g (complement the setting of the g suffix). These
letters may be combined in any order.

(.,.)ta
This command acts just like the m command, except that a copy of the addressed lines is placed
after address a (which may be 0). *.’ is left on the last line of the copy.

(.,.)u
The undo command restores the buffer to it’s state before the most recent buffer modifying com-
mand. The current line is also restored. Buffer modifying commands are q, c, d, g, i, k, and v.

For purposes of undo, g and v are considered to be a single buffer modifying command. Undo is
its own inverse.

When ed runs out of memory (at about 8000 lines on any 16 bit mini-computer such as the PDP-

April 19, 1989 The Wollongong Group 4

ED(1) UNIX Programmer’s Manual ED(1)

11) This.full undo is not possible, and # can only undo the effect of the most recent substitute on
the current line. This restricted undo also applies to editor scripts when ed is invoked with the -
option. .

(1, $) v/regular expression/command list
This command is the same as the global command g except that the command list is executed g
with °.” initially set to every line except those matching the regular expression.

(1, $) w filename
The write command writes the addressed lines onto the given file. If the file does not exist, it is
created. The file name is remembered if there was no remembered file name already. If no file
name is given, the remembered file name, if any, is used (sece e and f commands). .’ is
unchanged. If the command is successful, the number of characters written is printed.

(1, $) W filename
This command is the same as w, except that the addressed lines are appended to the file.

(1, $) wq filename
This command is the same as w except that afterwards a ¢ command is done, exiting the editor
after the file is written.

X A key string is demanded from the standard input. Later r, e and w commands will encrypt and
decrypt the text with this key by the algorithm of crypz(1). An explicitly empty key turns off
encryption. (.+1)z or,

(.+Dzn
This command scrolls through the buffer starting at the addressed line. 22 (or n, if given) lines
are printed. The last line printed becomes the current line. The value n is sticky, in that it
becomes the default for future z commands.

($)= The line number of the addressed line is typed. ‘.’ is unchanged by this command.

l<shell command>
The remainder of the line after the ‘!’ is sent to sh(1) to be interpreted as a command. ‘.’ is
unchanged.

(+1,.+1) <newline>
An address alone on a line causes the addressed line to be printed. A blank line alone is
equivalent to ‘.+1p’; it is useful for stepping through text. If two addresses are present with no
intervening semicolon, ed prints the range of lines. If they are separated by a semicolon, the
second line is printed.

If an interrupt signal (ASCII DEL) is sent, ed prints ‘?interrupted’ and returns to its command level.

Some size limitations: 512 characters per line, 256 characters per global command list, 64 characters
per file name, and, on mini computers, 128K characters in the temporary file. The limit on the number
of lines depends on the amount of core: each line takes 2 words.

When reading a file, ed discards ASCII NUL characters and all characters after the last newline. It
refuses to read files containing non-ASCII characters.

FILES
/tmp/e*
edhup: work is saved here if terminal hangs up

SEE ALSO
B. W. Kemighan, A Tutorial Introduction to the ED Text Editor
B. W. Kemighan, Advanced editing on UNIX
ex(1), sed(1), crypt(1)

April 19, 1989 The Wollongong Group 5

ED(1) UNIX Programmer’s Manual ED(1)

DIAGNOSTICS
‘Iname’ for inaccessible file; ‘?self-explanatory message’ for other errors.

To protect against throwing away valuable work, a ¢ or ¢ command is considered to be in error, unless
a w has occurred since the last buffer change. A second g or e will be obeyed regardless.

BUGS
The ! command mishandles DEL.
The undo command causes marks to be lost on affected lines.
The x command, -x option, and special treatment of hangups only work on UNIX.

April 19, 1989 The Wollongong Group 6

EFL(1) UNIX Programmer’s Manual EFL (1)

NAME . o
efl — Extended Fortran Language
SYNOPSIS

efl [option ...] [filename ...]

DESCRIPTION
Efl compiles a program written in the EFL language into clean Fortran. Eff provides the same control
flow constructs as does ratfor(1), which are essentially identical to those in C:

statement grouping with braces;
decision-making with if, if-else, and switch-case; while, for, Fortran do, repeat, and
repeat...until loops; multi-level break and next. In addition, EFL has C-like data structures, and
more uniform and convenient input/output syntax, generic functions. EFL also provides some
syntactic sugar to make programs easier to read and write:

free form input:

multiple statements/line; automatic continuation statement label names (not just numbers),
comments:

this is a comment

translation of relationals:

>, >=, etc., become .GT., .GE,, etc.
return (expression)

returns expression to caller from function

define: define name replacement
include: include filename

The Efl command option —w suppresses warning messages. The option —=C causes comments to be
copied through to the Fortran output (default); —# prevents comments from being copied through. If a

command argument contains an embedded equal sign, that argument is treated as if it had appeared in

an option statement at the beginning of the program. Ef is best used with f77(1).

SEE ALSO
£77(1), ratfor(1).
S. 1. Feldman, The Programming Language EFL, Bell Labs Computing Science Technical Report #78.

April 19, 1989 The Wollongong Group 1

EQN(1) UNIX Programmer’s Manual EQN(1)

NAME

delim $$

eqn, neqn, checkeq — typeset mathematics

SYNOPSIS

eqn [dxy J[-pn][-sn][-fn][file]..
checkeq [file] ...

DESCRIPTION

Egn is a troff(1) preprocessor for typesetting mathematics on a Graphic Systems phototypesetter, neqn
on terminals. Usage is almost always

eqn file ... | troff
neqn file ... | nroff

If no files are specified, these programs read from the standard input. A line beginning with ‘EQ’
marks the start of an equation; the end of an equation is marked by a line beginning with *.EN’. Nei-
ther of these lines is altered, so they may be defined in macro packages to get centering, numbering,
etc. It is also possible to set two characters as ‘delimiters’; subsequent text between delimiters is also
treated as egn input, Delimiters may be set to characters x and y with the command-line argument —dxy
or (more commonly) with ‘delim xy’ between .EQ and .EN. The left and right delimiters may be ident-
ical. Delimiters are turned off by ‘delim off’. All text that is neither between delimiters nor between
.EQ and .EN is passed through untouched.

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs.

Tokens within egn are separated by spaces, tabs, newlines, braces, double quotes, tildes or circumflexes.
Braces {} are used for grouping; generally speaking, anywhere a single character like x could appear, a
complicated construction enclosed in braces may be used instead. Tilde ~ represents a full space in the
output, circumflex " half as much.

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub i makes $x sub i$,
a sub i sup 2 produces $a sub i sup 28, and e sup {x sup 2 + y sup 2} gives $e sup {x sup 2 + y sup
2}8.

Fractions are made with over: a over b yields $a over bS$.
sqrt makes square roots: 1 over sqrt {ax sup 2 +bx+c} results in $1 over sqrt {ax sup 2 +bx+c}$.

The keywords from and to introduce lower and upper limits on arbitrary things: S$lim from {n-> inf)
sum from O to n x sub i$ is made with lim from {n-> inf } sum from 0 to n x sub i.

Left and right brackets, braces, etc., of the right height are made with left and right: left [x sup 2 + y
sup 2 over alpha right] ~="1 produces $left [x sup 2 + y sup 2 over alpha right] “="1$. The right
clause is optional. Legal characters after left and right are braces, brackets, bars, ¢ and f for ceiling
and floor, and "" for nothing at all (useful for a right-side-only bracket).

Vertical piles of things are made with pile, lpile, cpile, and rpile: pile {a above b above ¢} produces
$pile {a above b above c}$. There can be an arbitrary number of elements in a pile. Ipile left-justifies,
pile and cpile center, with different vertical spacing, and rpile right justifies.

Matrices are made with matrix: matrix { Icol { x sub i above y sub 2 } ccol { 1 above 2 } } produces
$matrix { Icol { x sub i above y sub 2 } ccol { 1 above 2 } }$. In addition, there is rcol for a right-
justified column.

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and under: x dot = f(t) bar is ‘
$x dot = f(t) bar$, y dotdot bar ~=" n under is $y dotdot bar “=" n under$, and x vec ~=" y dyad is $x
vec "=" y dyads.

April 19, 1989 The Wollongong Group 1

EQN(1) UNIX Programmer’s Manual EQN(1)

Sizes and font can be changed with size n or size +n, roman, italic, bold, and font n. Size and fonts
can be changed globally in a document by gsize n and gfont n, or by the command-line arguments —sn
and -fa.

Normally subscripts and superscripts are reduced by 3 point sizes from the previous size; this may be
changed by the command-line argument —pn.

Successive display arguments can be lined up. Place mark before the desired lineup point in the first
equation; place lineup at the place that is to line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define: define thing % replacemem %
defines a new token called thing which will be replaced by replacement whenever it appears thereafter.
The % may be any character that does not occur in replacement.

Keywords like sum (sum) int (int) inf (inf) and shorthands like >= (>=) —> (->), and != (!=) are
recognized. Greek letters are spelled out in the desired case, as in alpha or GAMMA. Mathematical
words like sin, cos, log are made Roman automatically. Troff(1) four-character escapes like \(bs (&)
can be used anywhere. Strings enclosed in double quotes "..." are passed through untouched; this per-
mits keywords to be entered as text, and can be used to communicate with troff when all else fails.

SEE ALSO
troff(1), tbl(1), ms(7), eqnchar(7)
B. W. Kemighan and L. L. Cherry, Typesetting Mathematics—User's Guide
J. F. Ossanna, NROFF/TROFF User's Manual

BUGS
To embolden digits, parens, etc., it is necessary to quote them, as in ‘bold "12.3".

April 19, 1989 The Wollongong Group 2

©

ERROR (1) UNIX Progrémmer’s Manual ERROR (1)

NAME

error — analyze and disperse compiler error messages

SYNOPSIS

error [-n][-s][—q][-v]I[-tsuffixlist] [~I ignorefile] [name]

DESCRIPTION

Error analyzes and optionally disperses the diagnostic error messages produced by a number of com-
pilers and language processors to the source file and line where the errors occurred. It can replace the
painful, traditional methods of scribbling abbreviations of errors on paper, and permits error messages
and source code to be viewed simultaneously without machinations of multiple windows in a screen
editor.

Error looks at the error messages, either from the specified file name or from the standard input, and
attempts to determine which language processor produced each error message, determines the source
file and line number to which the error message refers, determines if the error message is to be ignored
or not, and inserts the (possibly slightly modified) error message into the source file as a comment on
the line preceding to which the line the error message refers. Error messages which can’t be categor-
ized by language processor or content are not inserted into any file, but are sent to the standard output.
Error touches source files only after all input has been read. By specifying the -q query option, the
user is asked to confirm any potentially dangerous (such as touching a file) or verbose action. Other-
wise error proceeds on its merry business. If the -t touch option and associated suffix list is given,
error will restrict itself to touch only those files with suffices in the suffix list. Error also can be asked
(by specifying —v) to invoke vi(1) on the files in which error messages were inserted; this obviates the
need to remember the names of the files with errors.

Error is intended to be run with its standard input connected via a pipe to the error message source.
Some language processors put error messages on their standard error file; others put their messages on
the standard output. Hence, both error sources should be piped together into error. For example, when
using the csh syntax,

make —s lint | & error —q -v ,
will analyze all the error messages produced by whatever programs make runs when making lint,

Error knows about the error messages produced by: make, cc, cpp, ccom, as, Id, lint, pi, pc, f77, and
DEC Western Research Modula-2. Error knows a standard format for error messages produced by the
language processors, so is sensitive to changes in these formats. For all languages except Pascal, error
messages are restricted to be on one line. Some error messages refer to more than one line in more
than one files; error will duplicate the error message and insert it at all of the places referenced.

Error will do one of six things with error messages.

synchronize
Some language processors produce short errors describing which file it is processing. Error
uses these to determine the file name for languages that don’t include the file name in each
error message. These synchronization messages are consumed entirely by error.

discard Error messages from lint that refer to one of the two lint libraries, /usr/lib/llib-Ic and
{usr/lib/llib-port are discarded, to prevent accidently touching these libraries. Again, these
error messages are consumed entirely by error.

nullify Error messages from lint can be nullified if they refer to a specific function, which is
known to generate diagnostics which are not interesting. Nullified error messages are not
inserted into the source file, but are written to the standard output. The names of functions
to ignore are taken from either the file named .errorrc in the users’s home directory, or
from the file named by the -I option. If the file does not exist, no error messages are
nullified. If the file does exist, there must be one function name per line.

not file specific

April 19, 1989 The Wollongong Group 1

ERROR(1) UNIX Programmer’s Manual ERROR(1)

Error messages that can’t be intuited are grouped together, and written to the standard out-
put before any files are touched. They will not be inserted into any source file.

file specific Error message that refer to a specific file, but to no specific line, are written to the standard
output when that file is touched.

true errors Error messages that can be intuited are candidates for insertion into the file to which they
refer. :

Only true error messages are candidates for inserting into the file they refer to. Other error messages
are consumed entirely by error or are written to the standard output. Error inserts the error messages
into the source file on the line preceding the line the language processor found in error. Each error
message is turned into a one line comment for the language, and is internally flagged with the string
“‘###°° at the beginning of the error, and ‘*%%%"’ at the end of the error. This makes pattern search-
ing for errors easier with an editor, and allows the messages to be easily removed. In addition, each
error message contains the source line number for the line the message refers to. A reasonably format-
ted source program can be recompiled with the error messages still in it, without having the error mes-
sages themselves cause future errors. For poorly formatted source programs in free format languages,
such as C or Pascal, it is possible to insert a comment into another comment, which can wreak havoc
with a future compilation. To avoid this, programs with comments and source on the same line should
be formatted so that language statements appear before comments.

Options available with error are:
-n Do not touch any files; all error messages are sent to the standard output.

—q The user is queried whether s/he wants to touch the file. A “‘y” or ‘‘n”’ to the question is neces-
sary to continue. Absence of the —q option implies that all referenced files (except those referring
to discarded error messages) are to be touched.

-v After all files have been touched, overlay the visual editor vi with it set up to edit all files
touched, and positioned in the first touched file at the first error. If vi can’t be found, try ex or ed
from standard places.

-t Take the following argument as a suffix list. Files whose suffixes do not appear in the suffix list
are not touched. The suffix list is dot separated, and ‘‘*’* wildcards work. Thus the suffix list:

".c.y.foo*.h"
allows error to touch files ending with *‘.¢’’, *“.y”’, ‘“.foo*"’ and “‘.y’’.
—s Print out statistics regarding the error categorization. Not too useful.

Error catches interrupt and terminate signals, and if in the insertion phase, will orderly terminate what
it is doing.

AUTHOR
Robert Henry

FILES
~ .errorrc function names to ignore for lint error messages
[devitty user’s teletype

BUGS

Opens the teletype directly to do user querying.
Source files with links make a new copy of the file with only one link to it.

Changing a language processor’s format of error messages may cause error to not understand the error
message.,

Error, since it is purely mechanical, will not filter out subsequent errors caused by ‘floodgating’ ini-
tiated by one syntactically trivial error. Humans are still much better at discarding these related errors.

April 19, 1989 The Wollongong Group 2

O

ERROR (1) UNIX Programmer’s Manual ERROR (1)

G Pascal error messages belong after the lines affected (error puts them before). The alignment of the ‘I’
marking the point of error is also disturbed by error.

Error was designed for work on CRT’s at reasonably high speed. It is less pleasant on slow speed ter-
minals, and has never been used on hardcopy terminals.

©

April 19, 1989 The Wollongong Group 3

EUNLOGIN (1W) UNIX Programmer’s Manual EUNLOGIN (1W)

NAME

eunlogin - log into the EUNICE accounting

SYNOPSIS

eunlogin

DESCRIPTION

Eunlogin controls the accounting for the number of logins to be allowed access to the UNIX utilities.
Eunlogin must always be used before accessing the EUNICE environment, using UNIX utilities as
foreign commands from the DCL, or running UNIX utilities from a DCL command file. Any program
which is compiled with the EUNICE compilers will contain UNIX code, thus limiting access to that
program,

Eunlogin adds the user to access accounting by making an entry in a special global section file which
keeps track of the number of users in EUNICE. It is AUTOMATICALLY run from
TWGSADMIN:CSHELL.COM and other EUNICE command files that need permission to use the UNIX
libraries. The only time that users should need to run eunlogin by hand is when they use EUNICE
commands from DCL.

Eunlogout, the companion program to this utility, is used to log the user out of access accounting.

Precautions have been taken to compensate for a user’s forgetting to logout of access accounting pre-
cluding a new user from using one of the UNIX utilities; eunlogin will clean up the global section.
Eunlogin will also clean up the global section for processes that have been killed. If the full number of
allowable users is already entered in the global section and a new user wishes to be added, eunlogin
will check the global section for users who are entered, but who don’t have any active processes. The
inactive account will be replaced with the new user.

If a binary UNIX license was purchased through The Wollongong Group, the maximum number of
users (2, 8, 16, 32, 64 or unlimited) allowed is specified on the license. If a company has a source
license from AT&T, it is possible to buy a binary license associated with the source license. In this
case, the number of users is unlimited, since the source license is unlimited. Remember: SITES WITH
UNRESTRICTED LICENSES STILL NEED TO RUN THIS UTILITY.

EUNICE NOTES

This is a EUNICE specific command which can only be run from DCL.

FILES
fusr/adm/wtmp accounting
/ust/spool/mail/* mail
fetc/motd message-of-the-day
fetc/passwd password file
~+/ hushlogin makes login quieter
SEE ALSO

eunlogout(1W), prtusers(8W), mail(1), passwd(5)

April 19, 1989 The Wollongong Group 1

o

EUNLOGOUT (1W) UNIX Progrémﬁt,ner’s Manual EUNLOGOUT (1W)

o NAME
eunlogout — log out of EUNICE process accounting

SYNOPSIS
eunlogout

DESCRIPTION
Eunlogout controls the accounting for the number of logins which are allowed access to the UNIX utili-
ties. Since all sites now have to run eunlogin(IW), this program must be run when terminating a EUN-
ICE session.

Eunlogout logs the user out of access accounting. The entry made with eunlogout’s companion pro-
gram [eunlogin(IW)] in the global section file, is removed by using the eunlogout command so that
resources may be released to future users of EUNICE.

As with eunlogin, this program is automatically called from TWGSADMIN:CSHELL.COM. Normally
the only time users would invoke it separately is when they need to relinquish EUNICE resources to
other users who need them.

NOTE: SITES WITH UNRESTRICTED LICENSES STILL NEED TO RUN THIS UTILITY.

EUNICE NOTES
This is a EUNICE specific command which can only be run from DCL. For more details, please refer
to eunlogin(1W).

SEE ALSO
eunlogin(1W), prtusers(8W)

o

©

April 19, 1989 The Wollongong Group 1

EX (1)

NAME

UNIX Programmer’s Manual EX(1)

ex, edit — text editor

SYNOPSIS

ex[-][-v][~ttag][-r][+command][-l] name ...
edit [ex options]

DESCRIPTION

Ex is the root of a family of editors: edit, ex and vi. Ex is a superset of ed, with the most notable
extension being a display editing facility. Display based editing is the focus of vi.

If you have not used ed, or are a casual user, you will find that the editor edit is convenient for you. It
avoids some of the complexities of ex used mostly by systems programmers and persons very familiar
with ed.

If you have a CRT terminal, you may wish to use a display based editor; in this case see vi(1), which is
a command which focuses on the display editing portion of ex.

DOCUMENTATION

FILES

The document Edit: A tutorial (USD:14) provides a comprehensive introduction to edit assuming no
previous knowledge of computers or the UNIX system.

The Ex Reference Manual - Version 3.7 (USD:16) is a comprehensive and complete manual for the
command mode features of ex, but you cannot learn to use the editor by reading it. For an introduction
to more advanced forms of editing using the command mode of ex see the editing documents written by
Brian Kemighan for the editor ed; the material in the introductory and advanced documents works also
with ex.

An Introduction to Display Editing with Vi (USD:15) introduces the display editor vi and provides refer-
ence material on vi. In addition, the Vi Quick Reference card summarizes the commands of vi in a use-
ful, functional way, and is useful with the Introduction.

/usr/lib/ex?.2strings €ITor messages
/fusr/lib/ex?.?recover recover command
[usr/lib/ex?.?preserve preserve command

fetc/termcap describes capabilities of terminals
~/.exrc editor startup file

ftmp/Exnnnnn editor temporary

/tmp/Rxnnnnn named buffer temporary
fusr/preserve preservation directory

SEE ALSO

awk(1), ed(1), grep(1), sed(1), grep(1), vi(1), termcap(5), environ(7)

AUTHOR

BUGS

Originally written by William Joy
Mark Horton has maintained the editor since version 2.7, adding macros, support for many unusual ter-
minals, and other features such as word abbreviation mode.

The undo command causes all marks to be lost on lines changed and then restored if the marked lines
were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More than a screen full of output
may result if long lines are present.

April 19, 1989 The Wollongong Group 1

EX (1) UNIX Programmer’s Manual EX (1)

File input/output errors don’t print a name if the command line ‘=’ option is used.
There is no easy way to do a single scan ignoring case.
The editor does not warn if text is placed in named buffers and not used before exiting the editor.
Null characters are discarded in input files, and cannot appear in resultant files.

©

April 19, 1989 The Wollongong Group 2

EXPAND(1) UNIX Programmer’s Manual EXPAND(1)

NAME v O
expand, unexpand — expand tabs to spaces, and vice versa ‘

SYNOPSIS
expand [—tabstop] [—tabl,tab2,...,tabn] [file ...]
unexpand [-a] [file ...]

DESCRIPTION
Expand processes the named files or the standard input writing the standard output with tabs changed
into blanks. Backspace characters are preserved into the output and decrement the column count for tab

calculations. Expand is useful for pre-processing character files (before sorting, looking at specific
columns, etc.) that contain tabs.

If a single tabstop argument is given, then tabs are set tabstop spaces apart instead of the default 8. If
multiple tabstops are given then the tabs are set at those specific columns.

Unexpand puts tabs back into the data from the standard input or the named files and writes the result
on the standard output. By default, only leading blanks and tabs are reconverted to maximal strings of
tabs. If the —a option is given, then tabs are inserted whenever they would compress the resultant file
by replacing two or more characters.

April 19, 1989 The Wollongong Group 1

EXPR(1) UNIX Programmer’s Manual : EXPR (1)

NAME
expr — evaluate arguments as an expression
SYNOPSIS
expr arg ...
DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written on the standard output.
Each token of the expression is a separate argument.

The operators and keywords are listed below. The list is in order of increasing precedence, with equal

precedence operators grouped.
expr | expr
yields the first expr if it is neither null nor ‘0’, otherwise yields the second expr.
expr & expr
yields the first expr if neither expr is null or ‘0’, otherwise yields ‘0.
expr relop expr
where relop is one of < <= = = >= >, yields ‘1’ if the indicated comparison is true, ‘0’ if
false. The comparison is numeric if both expr are integers, otherwise lexicographic.
expr + expr
expr — expr
addition or subtraction of the arguments.
expr * expr
expr [expr
expr % expr
multiplication, division, or remainder of the arguments.
expr : expr

The matching operator compares the string first argument with the regular expression second
argument; regular expression syntax is the same as that of ed(1). The \(...\) pattern symbols
can be used to select a portion of the first argument. Otherwise, the matching operator yields
the number of characters matched (‘0’ on failure).

(expr) parentheses for grouping.

Examples:

To add 1 to the Shell variable a:
a="expr $a + 1

To find the filename part (least significant part) of the pathname stored in variable a, which may or may
not contain ‘/’:

expr $a : “*A(.*)° °I” $a
Note the quoted Shell metacharacters.

SEE ALSO
sh(1), test(1)
DIAGNOSTICS
Expr returns the following exit codes:
0 if the expression is neither null nor ‘0’,
1 if the expression is null or ‘0’,
2 for invalid expressions.

April 19, 1989 The Wollongong Group 1

F77(1) UNIX Programmer’s Manual F77(1)

NAME

f77 — Fortran 77 compiler

SYNOPSIS
f77 [option] ... file ...

DESCRIPTION
F77 is the UNIX Fortran 77 compiler. It accepts several types of arguments:

Arguments whose names end with “.f* are taken to be Fortran 77 source programs; they are compiled,
and each object program is left on the file in the current du'ectory whose name is that of the source
with ‘.0’ substituted for *.f*.

Arguments whose names end with ‘F’ are also taken to be Fortran 77 source programs; these are first
processed by the C preprocessor before being compiled by £77.

Arguments whose names end with ‘x’ or ‘.¢’ are taken to be Ratfor or EFL source programs respec-
tively; these are first transformed by the appropriate preprocessor, then compiled by £77.

Arguments whose names end with ‘.c’ or ‘s’ are taken to be C or assembly source programs and are
compiled or assembled, producing a ‘.0’ file.

The following options have the same meaning as in cc(1). See /d(1) for load-time options.
- Suppress loading and produce ‘.0’ files for each source file.

-g Produce additional symbol table information for dbx(1) and pass the -Ig flag to /d(1) so that on
abnormal terminations, the memory image is written to file core. Incompatible with -O.

-0 output
Name the final output file output instead of ‘a.out’.

-p Prepare object files for profiling, see prof(1).

-pg Causes the compiler to produce counting code in the manner of -p, but invokes a run-time
recording mechanism that keeps more extensive statistics and produces a gmon.out file at nor-
mal termination. An execution profile can then be generated by use of gprof(1).

-W Suppress all warning messages. If the option is ‘~w66’, only Fortran 66 compatibility warn-
ings are suppressed.

-Dname=def

-Dname
Define the name to the C preprocessor, as if by ‘#define’. If no definition is given, the name is
defined as "1". (“.F’ suffix files only).

-Idir ‘#include’ files whose names do not begin with ‘/* are always sought first in the directory of
the file argument, then in directories named in I options, then in directories on a standard list.
(*.F’ suffix files only).

-0 Invoke an object-code optimizer. Incompatible with —g.

-S Compile the named programs, and leave the assembler-language output on corresponding files
suffixed ‘.s’. (No ‘.0’ is created.).

The following options are peculiar to f77.
-d Used for debugging the compiler.

-i2 On machines which support short integers, make the default integer constants and variables
short. (~i4 is the standard value of this option). All logical quantities will be short.

-q Suppress printing of file names and program unit names during compilation.
-m Apply the M4 preprocessor to each ‘r’ file before transforming it with the Ratfor or EFL o
preprocessor.

April 19, 1989 The Wollongong Group 1

©

UNIX Programmer’s Manual F77(1)

—onetrip

-1 Compile DO loops that are performed at least once if reached. (Fortran 77 DO loops are not
performed at all if the upper limit is smaller than the lower limit.)

-r8 Treat all floating point variables, constants, functions and intrinsics as double precision and all
complex quantities as double complex.

-u Make the default type of a variable ‘undefined’ rather than using the default Fortran rules.
-V Print the version number of the compiler, and the name of each pass as it executes.

-C Compile code to check that subscripts are within declared array bounds. For multi-dimensional
arrays, only the equivalent linear subscript is checked.

-F Apply the C preprocessor to “.F’ files, and the EFL, or Ratfor preprocessors to ‘.¢’ and ‘r’
files, put the result in the file with the suffix changed to *.f’, but do not compile.

-Ex Use the string x as an EFL option in processing ‘.¢’ files.
-Rx Use the string x as a Ratfor option in processing ‘.r’ files.

-N[qxscn]nnn
Make static tables in the compiler bigger. The compiler will complain if it overflows its tables
and suggest you apply one or more of these flags. These flags have the following meanings:

q Maximum number of equivalenced variables. Default is 150,

X Maximum number of external names (common block names, subroutine and function
names). Default is 200.

s Maximum number of statement numbers. Default is 401.
Maximum depth of nesting for control statements (e.g. DO loops). Default is 20.

n Maximum number of identifiers. Default is 1009.

-U Do not convert upper case letters to lower case. The default is to convert Fortran programs to
lower case except within character string constants.

Other arguments are taken to be either loader option arguments, or F77-compatible object programs,
typically produced by an earlier run, or perhaps libraries of F77-compatible routines. These programs,
together with the results of any compilations specified, are loaded (in the order given) to produce an
executable program with name ‘a.out’.

Programs compiled with f77 produce memory dumps in file core upon abnormal termination if the —g
flag was specified during loading. If the environment variable f77_dump_flag is set to a value begin-
ning with y or n, dumps for abnormal terminations are respectively forced or suppressed.

EUNICE NOTES

The £77 compiler has been modified to create either VMS or UNIX objects. It will read the value of
the csh variable, AS_IMAGE, to determine if the UNIX or VMS assembler should be used. The value
of LD_IMAGE will determine whether the UNIX or VMS loader should be used as the loader. Add
the following lines to a .cshrc or .login in your home directory.

Have cc(1) or £77(1) use UNIX assembler and loader.

alias unixobj ’unsetenv AS_IMAGE; unsetenv LD_IMAGE’

#

Have cc(1) or f77(1) use VMS assembler and loader.

alias vmsobj ’setenv AS_IMAGE /usr/eun/vmsas; setenv LD_IMAGE /usr/eun/vmsld’

Also add either of the following lines, depending on your choice of object type.

unixobj

April 19, 1989 The Wollongong Group 2

F717(1) UNIX Programmer’s Manual F77(1)

vmsobj

The -g flag for additional symbol table information can only be used with UNIX objects.

FILES
file.[fFresc] input file
file.o object file
a.out loaded output
fusr/lib/f77passl compiler
Nib/f1 pass 2
Mlib/c2 optional optimizer
Mlib/cpp C preprocessor
fust/lib/libF77.a intrinsic function library
fusr/lib/libI77.a Fortran I/O library
/ust/lib/libU77.a UNIX interface library
/usr/lib/libm.a math library
flib/libc.a C library, see section 3
fusr/lib/libF77_p.a profiling intrinsic function library
/usr/lib/libl77_p.a profiling Fortran I/O library
/ust/lib/libU77_p.a profiling UNIX interface library
fust/lib/libm_p.a profiling math library
fustflib/libc_p.a profiling C library, see section 3
mon.out file produced for analysis by prof(1).
gmon.out file produced for analysis by gprof(1).
SEE ALSO
S. 1. Feldman, P. J. Weinberger, J. Berkman, A Portable Fortran 77 Compiler
D. L. Wasley, J. Berkman, Introduction to the f77 I/O Library
fpr(1), fsplit(1), 1d(1), ar(1), ranlib(1), dbx(1), intro(3f)
efi(1), ratfor(1), struct(1), prof(1), gprof(1), cc(1), as(1), vmsas(1), vmsld(1)
DIAGNOSTICS
The diagnostics produced by f77 itself are intended to be self-explanatory. Occasional messages may
be produced by the loader.
BUGS

Files longer than about 50,000 lines must be split up to be compiled.

April 19, 1989 The Wollongong Group 3

FALSE(1) UNIX Programmer’s Manual FALSE(1)

NAME
false, true — provide truth values

SYNOPSIS
true
false

DESCRIPTION
True and false are usually used in a Bourne shell script. They test for the appropriate status "true" or
"false” before running (or failing to run) a list of commands.

EXAMPLE
while false
do
command list
done
SEE ALSO
csh(l), sh(1), true(1)
DIAGNOSTICS

False has exit status nonzero.

April 19, 1989 The Wollongong Group 1

FILE(1) UNIX Programmer’s Manual FILE(1)

NAME
file ~ determine file type

SYNOPSIS
file file ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it. If an argument appears to
be ascii, file examines the first 512 bytes and tries to guess its language.

EUNICE NOTES
File(1) returns "data” for stripped executable objects, "commands text" for text files with execute per-
mission and "ascii text" for text files without execute permission. Below are other possible responses
from file(1):
commands text (see above)
data (see above)
ascii text (see above)
ascii text with garbage
English text
jfr or pdp-11 unix 411 executable
executable not stripped
executable not stripped old format symbol table
very old archive
old archive
archive
archive random library
cpio data
¢ program text
fortran program text
assembler program text
roff, nroff, or eqn input text
troff (CAT) output
troff intermediate output text
C-shell script
C-shell commands
demand paged pure executable not stripped
symbolic link to "library"
BUGS
It often makes mistakes. In particular it often suggests that command files are C programs.

Does not recognize Pascal or LISP.

April 19, 1989 The Wollongong Group 1

FILETYPE (1W) UNIX Programmer’s Manual FILETYPE (1W)

NAME
filetype - provides information about the file type

SYNOPSIS
filetype name

DESCRIPTION
Filetype displays the type of file (UNIX or VMS), for file name.

EUNICE NOTES
Filetype is a EUNICE BSD specific command. It is stored in fusr/eun.

SEE ALSO
file(1)

April 19, 1989 The Wollongong Group 1

FIND(1) UNIX Programmer’s Manual FIND (1)

NAME

find - find files

SYNOPSIS

find pathname-list expression
find pattern

DESCRIPTION

In the first form above, find recursively descends the directory hierarchy for each pathname in the
pathname-list (i.e., one or more pathnames) seeking files that match a boolean expression written in the
primaries given below. In the descriptions, the argument n is used as a decimal integer where +n
means more than n, —» means less than n and n means exactly n.

The second form rapidly searches a database for all pathnames which match pattern. Usually the data-
base is recomputed weekly and contains the pathnames of all files which are publicly accessible. If
escaped, normal shell *‘globbing’’ characters (‘**, ‘?’, ‘[’, and ’]’) may be used in pattern, but the
matching differs in that no characters (e.g. ‘/’) have to be matched explicitly. As a special case, a sim-
ple pattern containing no globbing characters is matched as though it were *pattern*; if any globbing
character appears there are no implicit globbing characters.

-name filename
True if the filename argument matches the current file name. Normal shell argument syntax
may be used if escaped (watch out for ‘[, ‘?’ and *’).

—perm onum
True if the file permission flags exactly match the octal number onum (see chmod(1)). If
onum is prefixed by a minus sign, more flag bits (017777, see stat(2)) become significant
and the flags are compared: (flags&onum)==onum.

~type c True if the type of the file is ¢, where c is b, ¢, d, f, 1 or s for block special file, character
special file, directory, plain file, symbolic link, or socket.

-links n True if the file has n links.

-user uname
True if the file belongs to the user uname (login name or numeric user ID).

-nouser True if the file belongs to a user not in the /etc/passwd database.

-group gname
True if the file belongs to group gname (group name or numeric group ID).

-nogroup True if the file belongs to a group not in the fetc/group database.
-size n True if the file is n blocks long (512 bytes per block).

—inum n True if the file has inode number n.

—atime n True if the file has been accessed in n days.

-mtime n True if the file has been modified in n days.

—exec command
True if the executed command returns a zero value as exit status. The end of the command
must be punctuated by an escaped semicolon. A command argument ‘{}’ is replaced by
the current pathname. '

—ok command
Like —exec except that the generated command is written on the standard output, then the
standard input is read and the command executed only upon response y.

-print Always true; causes the current pathname to be printed.
~Is Always true; causes current pathname to be printed together with its associated statistics.

April 19, 1989 The Wollongong Group 1

O

FIND(1) UNIX Programmer’s Manual FIND (1)

These include (respectively) inode number, size in kilobytes (1024 bytes), protection mode,
number of hard links, user, group, size in bytes, and modification time. If the file is a spe-
cial file the size field will instead contain the major and minor device numbers. If the file
is a symbolic link the pathname of the linked-to file is printed preceded by ‘‘->"’. The for-
mat is identical to that of ‘‘Is -gilds”’ (note however that formatting is done internally,
without executing the 1s program).

-newer file
True if the current file has been modified more recently than the argument file.

—cpio file Write the current file on the argument file in cpio format.

—xdev Always true; causes find not to traverse down into a file system different from the one on
which current argument pathname resides.

The primaries may be combined using the following operators (in order of decreasing precedence):
1) A parenthesized group of primaries and operators (parentheses are special to the Shell and must be

escaped).
2) The negation of a primary (‘!’ is the unary not operator).
3) Concatenation of primaries (the and operation is implied by the juxtaposition of two primaries).
4) Alternation of primaries (‘~0’ is the or operator).

EUNICE NOTES

The message, "find: bad status < filename >", will be reported if the file is not readable by the user.
This is a restriction of the VMS file system. It will allow a user to read the names of the contents of a
directory as long as the directory is executable by the user. Non-readable directory entries cannot be
stated. Ignore the message.

Jusr/lib/findfupdatedb should be run periodically on changed files in your file tree. This executable file
creates the fusr/lib/find/find.codes file used by the second form of find(1).

EXAMPLES

FILES

To find all accessible files whose pathname contains ‘find’:
find find
To typeset all variants of manual pages for ‘Is’:
vtroff -man ‘find ’*man*/1s.?’*
To remove all files named ‘a.out’ or “*.0’ that have not been accessed for a week:
find / \(—name a.out —0 —name ’*.0’ \) —atime +7 —exec rm {} \;

fetc/passwd

fetc/group

fusr/lib/find/find.codes coded pathnames database
/usr/lib/find/updatedb

SEE ALSO

BUGS

sh(1), test(1), fs(5)
Relevant paper in February, 1983 issue of ;login..

The first form’s syntax is painful, and the second form’s exact semantics is confusing and can vary
from site to site.

April 19, 1989 The Wollongong Group 2

FIND(1) UNIX Programmer’s Manual FIND(1)

More than one ‘-newer’ option does not work properly.

April 19, 1989 The Wollongong Group 3

©

FINGER (1) UNIX Programmer’s Manual FINGER (1)

NAME

finger — user information lookup program

SYNOPSIS

finger [options] name ...

DESCRIPTION

By default finger lists the login name, full name, terminal name and write status (as a ‘*’ before the ter-
minal name if write permission is denied), idle time, login time, and office location and phone number
(if they are known) for each current UNIX user. (Idle time is minutes if it is a single integer, hours and
minutes if a ’:’ is present, or days and hours if a ’d’ is present.)

A longer format also exists and is used by finger whenever a list of people’s names is given. (Account
names as well as first and last names of users are accepted.) This format is multi-line, and includes all
the information described above as well as the user’s home directory and login shell, any plan which
the person has placed in the file .plan in their home directory, and the project on which they are work-
ing from the file .project also in the home directory.

Finger may be used to lookup users on a remote machine. The format is to specify the user as
“‘user@host.”’ If the user name is left off, the standard format listing is provided on the remote
machine.

Finger options include:
-m Match arguments only on user name.

-1 Force long output format.
-p Suppress printing of the .plan files
-$ Force short output format.
FILES
fetc/utmp who file
fetc/passwd for users names, offices, ...
/usr/adm/lastlog last login times
~/.plan plans
~ /.project projects
SEE ALSO
chfn(1), w(1), who(1)
AUTHOR
Earl T. Cohen
BUGS

Only the first line of the .project file is printed.

The encoding of the gcos field is UCB dependent — it knows that an office ‘197MC’ is ‘197M Cory
Hall’, and that *529BE’ is ‘529B Evans Hall’. It also knows that a four digit office phone number
should have a ‘‘x2-’’ prepended.

There is no way to pass arguments to the remote machine as finger uses an internet standard port.

A user information data base is in the works and will radically alter the way the information that finger
uses is stored. Finger will require extensive modification when this is implemented.

April 19, 1989 The Wollongong Group _ 1

FMT(1) UNIX Programmer’s Manual FMT (1)

NAME
fmt — simple text formatter

SYNOPSIS
fmt [name ...]

DESCRIPTION
Fmt is a simple text formatter which reads the concatenation of input files (or standard input if none are
given) and produces on standard output a version of its input with lines as close to 72 characters long
as possible. The spacing at the beginning of the input lines is preserved in the output, as are blank
lines and interword spacing.

Fmt is meant to format mail messages prior to sending, but may also be useful for other simple tasks.
For instance, within visual mode of the ex editor (e.g. vi) the command
1}mt
will reformat a paragraph, evening the lines.
SEE ALSO
nroff(1), mail(1)
AUTHOR
Kurt Shoens
BUGS

The program was designed to be simple and fast — for more complex operations, the standard text pro-
cessors are likely to be more appropriate.

April 19, 1989 The Wollongong Group 1

O

FOLD(1) UNIX Programmer’s Manual FOLD(1)

NAME
fold - fold long lines for finite width output device

SYNOPSIS
fold [—width] [file ...]

DESCRIPTION
Fold is a filter which will fold the contents of the specified files, or the standard input if no files are
specified, breaking the lines to have maximum width width. The default for width is 80. Width should
be a multiple of 8 if tabs are present, or the tabs should be expanded using expand(1) before coming to
fold.

SEE ALSO
expand(1)

BUGS

If underlining is present it may be messed up by folding.

April 19, 1989 The Wollongong Group 1

FP(1) UNIX Programmer’s Manual FP(1)

NAME O

fp — Functional Programming language compiler/interpreter
SYNOPSIS

fp
DESCRIPTION

Fp is an interpreter/compiler that implements the applicative language proposed by John Backus. It is
written in FRANZ LISP.

In a functional programming language intent is expressed in a mathematical style devoid of assign-
ment statements and variables. Functions compute by value only; there are no side-effects since the
result of a computation depends solely on the inputs.

Fp "programs” consist of functional expressions ~ primitive and user-defined fp functions combined by
functional forms. These forms take functional arguments and return functional results. For example, the
composition operator ‘@’ takes two functional arguments and returns a function which represents their
composition.

There exists a single operation in fp — application. This operation causes the system to evaluate the
indicated function using the single argument as input (all functions are monadic).

EUNICE NOTES
Control Z exits back to the shell. Control Y terminates any computation in progress.

GETTING STARTED

Fp invokes the system. Fp compiles functions into lisp(1) source code; lisp(1) interprets this code (the

user may compile this code using the liszt (1) compiler to gain a factor of 10 in performance). Control

D exits back to the shell. Break terminates any computation in progress and resets any open file units.

help provides a short summary of all user commands. '
*

FILES
fusr/ucb/lisp the FRANZ LISP interpreter
fusr/ucb/liszt the liszt compiler
fusr/doc/fp the User’s Guide

SEE ALSO
lisp(1), liszt(1).
The Berkeley FP user's manual, available on-line. The language is described in the August 1978
issue of CACM (Turing award lecture by John Backus).

BUGS
If a non-terminating function is applied as the result of loading a file, then control is returned to the
user immediately, everything after that position in the file is ignored.

FP incorrectly marks the location of a syntax error on large, multi-line function definitions or applica-
tions.

AUTHOR
Scott B. Baden

April 19, 1989 The Wollongong Group 1

FPR(1) UNIX Programmer’s Manual FPR(1)

NAME
fpr — print Fortran file

SYNOPSIS
fpr

DESCRIPTION
Fpr is a filter that transforms files formatted according to Fortran’s carriage control conventions into
files formatted according to UNIX line printer conventions.

Fpr copies its input onto its output, replacing the carriage control characters with characters that will
produce the intended effects when printed using /pr(1). The first character of each line determines the
vertical spacing as follows:

Character | Vertical Space Before Printing |
Blank One line

0 Two lines
1 To first line of next page
+ No advance

A blank line is treated as if its first character is a blank. A blank that appears as a carriage control char-
acter is deleted. A zero is changed to a newline. A one is changed to a form feed. The effects of a "+"
are simulated using backspaces.

EXAMPLES
a.out | fpr | Ipr

fpr < f77.output | lpr
o BUGS

Results are undefined for input lines longer than 170 characters.

©

April 19, 1989 The Wollongong Group 1

FROM(1) UNIX Programmer’s Manual FROM (1)

NAME
from — who is my mail from?
SYNOPSIS
from [—s sender] [user]
DESCRIPTION
From prints out the mail header lines in your mailbox file to show you who your mail is from. If user
is specified, then user’s mailbox is examined instead of your own. If the -s option is given, then only
headers for mail sent by sender are printed.
FILES
fust/spool/mail/+*
SEE ALSO
biff(1), mail(1)

April 19, 1989 The Wollongong Group 1

O

FSPLIT(1) UNIX Programmer’s Manual FSPLIT (1)

NAME
fsplit — split a multi-routine Fortran file into individual files

SYNOPSIS
fsplit [-e efile] ... [file]

DESCRIPTION
Fsplit takes as input either a file or standard input containing Fortran source code. It attempts to split
the input into separate routine files of the form namef, where name is the name of the program unit
(e-g. function, subroutine, block data or program). The name for unnamed block data subprograms has
the form blkdtaNNN f where NNN is three digits and a file of this name does not already exist. For
unnamed main programs the name has the form mainNNN f. If there is an error in classifying a program
unit, or if namef already exists, the program unit will be put in a file of the form zzzNNNf where
2zzNNN f does not already exist.
Normally each subprogram unit is split into a separate file. When the -e option is used, only the
specified subprogram units are split into separate files. E.g.:

fsplit -e readit -e doit prog.f

will split readit and doit into separate files.

DIAGNOSTICS
If names specified via the -e option are not found, a diagnostic is written to standard error.

AUTHOR
Asa Romberger and Jerry Berkman

BUGS

Fsplit assumes the subprogram name is on the first noncomment line of the subprogram unit. Nonstan-
dard source formats may confuse fsplit.

It is hard to use -e for unnamed main programs and block data subprograms since you must predict the
created file name.

April 19, 1989 The Wollongong Group 1

FTP(1C) UNIX Programmer’s Manual FTP(1C)

NOTE

NAME

WOLLONGONG’S WIN/TCP PRODUCT

ftp — ARPANET file transfer program

SYNOPSIS

ftp [-v]1[-d][-i][-n][-g][host]

DESCRIPTION

Fip is the user interface to the ARPANET standard File Transfer Protocol. The program allows a user
to transfer files to and from a remote network site.

The client host with which fip is to communicate may be specified on the command line. If this is
done, fip will immediately attempt to establish a connection to an FTP server on that host; otherwise,
fip will enter its command interpreter and await instructions from the user. When fip is awaiting com-
mands from the user the prompt ‘‘ftip>"* is provided to the user. The following commands are recog-
nized by fip:

! [command [args]]
Invoke an interactive shell on the local machine. If there are arguments, the first is taken to be
a command to execute directly, with the rest of the arguments as its arguments.

$ macro-name [args]
Execute the macro macro-name that was defined with the macdef command. Arguments are
passed to the macro unglobbed.

account [passwd]
Supply a supplemental password required by a remote system for access to resources once a
login has been successfully completed. If no argument is included, the user will be prompted
for an account password in a non-echoing input mode.

append local-file [remote-file]
Append a local file to a file on the remote machine. If remote-file is left unspecified, the local
file name is used in naming the remote file after being altered by any ntrans or nmap setting.
File transfer uses the current settings for type, format, mode, and structure.

ascii Set the file transfer type to network ASCIL. This is the default type.
bell Arrange that a bell be sounded after each file transfer command is completed.
binary Set the file transfer type to support binary image transfer.

bye Terminate the FTP session with the remote server and exit fip. An end of file will also ter-
minate the session and exit.

case Toggle remote computer file name case mapping during mget commands. When case is on
(default is off), remote computer file names with all letters in upper case are written in the
local directory with the letters mapped to lower case.

cd remote-directory
Change the working directory on the remote machine to remote-directory.

cdup Change the remote machine working directory to the parent of the current remote machine
working directory.
close Terminate the FTP session with the remote server, and return to the command interpreter. Any

‘

defined macros are erased. \

cr Toggle carriage retumn stripping during ascii type file retrieval. Records are denoted by a car-
riage return/linefeed sequence during ascii type file transfer. When er is on (the default),

April 19, 1989 The Wollongong Group 1

o

©

FTP(1C) UNIX Programmer’s Manual FTP(1C)

carriage returns are stripped from this sequence to conform with the UNIX single linefeed
record delimiter. Records on non-UNIX remote systems may contain single linefeeds; when an
ascii type transfer is made, these linefeeds may be distinguished from a record delimiter only
when cr is off.

delete remote-file
Delete the file remote-file on the remote machine,

debug [debug-value]
Toggle debugging mode. If an optional debug-value is specified it is used to set the debugging
level. When debugging is on, fip prints each command sent to the remote machine, preceded
by the string ‘‘-->"’.

dir [remote-directory 1 [local-file]
Print a listing of the directory contents in the directory, remote-directory, and, optionally, plac-
ing the output in local-file. If no directory is specified, the current working directory on the
remote machine is used. If no local file is specified, or local-file is -, output comes to the ter-
minal.

disconnect
A synonym for close.

form format
Set the file transfer form to format. The default format is “‘file’’.

get remote-file { local-file]
Retrieve the remote-file and store it on the local machine. If the local file name is not
specified, it is given the same name it has on the remote machine, subject to alteration by the
current case, ntrans, and nmap settings. The current settings for type, form, mode, and struc-
ture are used while transferring the file.

glob Toggle filename expansion for mdelete, mget and mput. If globbing is turned off with glob,
the file name arguments are taken literally and not expanded. Globbing for mput is done as in
csh(l). For mdelete and mget, each remote file name is expanded separately on the remote
machine and the lists are not merged. Expansion of a directory name is likely to be different
from expansion of the name of an ordinary file: the exact result depends on the foreign operat-
ing system and ftp server, and can be previewed by doing ‘mls remote-files -’. Note: mget
and mput are not meant to transfer entire directory subtrees of files. That can be done by
transferring a tar(1) archive of the subtree (in binary mode).

hash Toggle hash-sign (‘‘#’") printing for each data block transferred. The size of a data block is
1024 bytes.

help [command }
Print an informative message about the meaning of command. If no argument is given, fip
prints a list of the known commands.

led [directory]
Change the working directory on the local machine. If no directory is specified, the user’s
home directory is used.

Is [remote-directory] [local-file]
Print an abbreviated listing of the contents of a directory on the remote machine. If remote-
directory is left unspecified, the current working directory is used. If no local file is specified,
or if local-file is -, the output is sent to the terminal.

macdef macro-name
Define a macro. Subsequent lines are stored as the macro macro-name; a null line (consecu-
tive newline characters in a file or carriage returns from the terminal) terminates macro input
mode. There is a limit of 16 macros and 4096 total characters in all defined macros. Macros

April 19, 1989 The Wollongong Group 2

FTP(1C) UNIX Programmer’s Manual FTP(1C)

remain defined until a close command is executed. The macro processor interprets *$’ and '\’
as special characters. A '$’ followed by a number (or numbers) is replaced by the correspond-
ing argument on the macro invocation command line. A ’$’ followed by an ’i’ signals that
macro processor that the executing macro is to be looped. On the first pass *$i’ is replaced by
the first argument on the macro invocation command line, on the second pass it is replaced by
the second argument, and so on. A "\’ followed by any character is replaced by that character.
Use the "\’ to prevent special treatment of the ’$’.

mdelete [remote-files]
Delete the remote-files on the remote machine.

mdir remote-files local-file
Like dir, except multiple remote files may be specified. If interactive prompting is on, fip will
prompt the user to verify that the last argument is indeed the target local file for receiving
mdir output.

mget remote-files
Expand the remote-files on the remote machine and do a get for each file name thus produced.
See glob for details on the filename expansion. Resulting file names will then be processed
according to case, ntrans, and nmap settings. Files are transferred into the local working
directory, which can be changed with ‘lcd directory’; new local directories can be created with
‘! mkdir directory’.

mkdir directory-name
Make a directory on the remote machine.

mls remote-files local-file
Like Is, except multiple remote files may be specified. If interactive prompting is on, fip will
prompt the user to verify that the last argument is indeed the target local file for receiving mls
output.

mode [mode-name]
Set the file transfer mode to mode-name. The default mode is ‘‘stream’’ mode.

mput local-files
Expand wild cards in the list of local files given as arguments and do a put for each file in the
resulting list. See glob for details of filename expansion. Resulting file names will then be
processed according to ntrans and nmap settings.

nmap [inpattern outpattern]
Set or unset the filename mapping mechanism. If no arguments are specified, the filename
mapping mechanism is unset. If arguments are specified, remote filenames are mapped during
mput commands and put commands issued without a specified remote target filename. If
arguments are specified, local filenames are mapped during mget commands and get com-
mands issued without a specified local target filename. This command is useful when connect-
ing to a non-UNIX remote computer with different file naming conventions or practices. The
mapping follows the pattern set by inpattern and outpattern. Inpattern is a template for
incoming filenames (which may have already been processed according to the ntrans and case
settings). Variable templating is accomplished by including the sequences *$1°, ’$2’, ..., '$9’
in inpattern. Use '\’ to prevent this special treatment of the °$’ character. All other characters
are treated literally, and are used to determine the nmap inpattern variable values. For exma-
ple, given inpattern $1.$2 and the remote file name "mydata.data”, $1 would have the value
"mydata”, and $2 would have the value "data”. The outpattern determines the resulting
mapped filename. The sequences *$1°, ’$2’,, $9” are replaced by any value resulting from
the inpattern template. The sequence '$0° is replace by the original filename. Additionally,
the sequence ’[seql,seq2]’ is replaced by seql if seql is not a null string; otherwise it is
replaced by seq2. For example, the command "nmap $1.$2.$3 [$1,$2].[$2,file]" would yield

April 19, 1989 The Wollongong Group 3

o

O

FTP(1C)

UNIX Programmer’s Manual | FTP(1C)

~ the output filename "myfile.data" for input filenames "myfile.data” and "myfile.data.old",

"myfile.file" for the input filename "myfile", and "myfile.myfile" for the input filename
".myfile". Spaces may be included in outpattern, as in the example: nmap $1 Ised "s/ *$//" >
$1 . Use the '\’ character to prevent special treatment of the °$’, ’[’, ’]’, and °,’ characters.

ntrans [inchars [outchars]]

Set or unset the filename character translation mechanism. If no arguments are specified, the
filename character translation mechanism is unset. If arguments are specified, characters in
remote filenames are translated during mput commands and put commands issued without a
specified remote target filename. If arguments are specified, characters in local filenames are
translated during mget commands and get commands issued without a specified local target
filename. This command is useful when connecting to a non-UNIX remote computer with
different file naming conventions or practices. Characters in a filename matching a character
in inchars are replaced with the corresponding character in outchars. If the character’s posi-
tion in inchars is longer than the length of outchars, the character is deleted from the file
name.

open host [port]

Establish a connection to the specified host FTP server. An optional port number may be sup-
plied, in which case, fip will attempt to contact an FTP server at that port. If the auto-login
option is on (default), fip will also attempt to automatically log the user in to the FTP server
(see below).

prompt Toggle interactive prompting. Interactive prompting occurs during multiple file transfers to

allow the user to selectively retrieve or store files. If prompting is turned off (default is on),
any mget or mput will transfer all files, and any mdelete will delete all files.

proxy ftp-command

Execute an ftp command on a secondary control connection. This command allows simultane-
ous connection to two remote ftp servers for transferring files between the two servers. The
first proxy command should be an open, to establish the secondary control connection. Enter
the command "proxy ?" to see other ftp commands executable on the secondary connection.
The following commands behave differently when prefaced by proxy: open will not define
new macros during the auto-login process, close will not erase existing macro definitions, get
and mget transfer files from the host on the primary control connection to the host on the
secondary control connection, and put, mput, and append transfer files from the host on the
secondary control connection to the host on the primary control connection. Third party file
transfers depend upon support of the ftp protocol PASV command by the server on the secon-
dary control connection.

put local-file [remote-file

pwd
quit

Store a local file on the remote machine. If remote-file is left unspecified, the local file name
is used after processing according to any ntrans or nmap settings in naming the remote file.
File transfer uses the current settings for type, format, mode, and structure .

Print the name of the current working directory on the remote machine.
A synonym for bye.

quote argl arg2 ...

The arguments specified are sent, verbatim, to the remote FTP server.

recv remote-file [local-file |

A synonym for get.

remotehelp [command-name]

April 19, 1989

Request help from the remote FTP server. If a command-name is specified it is supplied to the
server as well.

The Wollongong Group 4

FTP(1C) UNIX Programmer’s Manual FTP(1C)

rename [from] [1o]
Rename the file from on the remote machine, to the file 0.

reset Clear reply queue. This command re-synchronizes command/reply sequencing with the remote
ftp server. Resynchronization may be neccesary following a violation of the ftp protocol by
the remote server.

rmdir directory-name
Delete a directory on the remote machine.

runique
Toggle storing of files on the local system with unique filenames. If a file already exists with
a name equal to the target local filename for a get or mget command, a ".1" is appended to the
name. If the resulting name matches another existing file, a ".2" is appended to the original
name. If this process continues up to ".99", an error message is printed, and the transfer does
not take place. The generated unique filename will be reported. Note that runique will not
affect local files generated from a shell command (see below). The default value is off.

send local-file [remote-file]
A synonym for put.

sendport
Toggle the use of PORT commands. By default, fip will attempt to use a PORT command
when establishing a connection for each data transfer. The use of PORT commands can
prevent delays when performing multiple file transfers. If the PORT command fails, fip will
use the default data port. When the use of PORT commands is disabled, no attempt will be
made to use PORT commands for each data transfer. This is useful for certain FTP implemen-
tations which do ignore PORT commands but, incorrectly, indicate they’ve been accepted.

status Show the current status of fip.

struct [struct-name]
Set the file transfer structure to struct-name. By default “‘stream’’ structure is used.

sunique
Toggle storing of files on remote machine under unique file names. Remote fip server must
support ftp protocol STOU command for successful completion. The remote server will report
unique name. Default value is off.

tenex Set the file transfer type to that needed to talk to TENEX machines.
trace Toggle packet tracing.

type [type-name]
Set the file transfer type to type-name. If no type is specified, the current type is printed. The
default type is network ASCII.

user user-name [password] [account]

Identify yourself to the remote FTP server. If the password is not specified and the server
requires it, fip will prompt the user for it (after disabling local echo). If an account field is not
specified, and the FTP server requires it, the user will be prompted for it. If an account field is
specified, an account command will be relayed to the remote server after the login sequence is
completed if the remote server did not require it for logging in. Unless fip is invoked with
“‘auto-login’’ disabled, this process is done automatically on initial connection to the FTP
server.

verbose Toggle verbose mode. In verbose mode, all responses from the FTP server are displayed to the
user. In addition, if verbose is on, when a file transfer completes, statistics regarding the
efficiency of the transfer are reported. By default, verbose is on.

? { command 1

April 19, 1989 The Wollongong Group 5

©

©

FTP(1C) UNIX Progfiither’s Manual FTP(1C)

A synonym for help.
Command arguments which have embedded spaces may be quoted with quote (") marks.

EUNICE NOTES

This file is pertinent only to customers who have Wollongong’s WIN/TCP product.

ABORTING A FILE TRANSFER :

To abort a file transfer, use the terminal interrupt key (usually Ctrl-C). Sending transfers will be
immediately halted. Receiving transfers will be halted by sending a ftp protocol ABOR command to
the remote server, and discarding any further data received. The speed at which this is accomplished
depends upon the remote server’s support for ABOR processing. If the remote server does not support
the ABOR command, an "ftp>" prompt will not appear until the remote server has completed sending
the requested file.

The terminal interrupt key sequence will be ignored when fip has completed any local processing and is
awaiting a reply from the remote server. A long delay in this mode may result from the ABOR pro-
cessing described above, or from unexpected behavior by the remote server, including violations of the
ftp protocol. If the delay results from unexpected remote server behavior, the local fip program must be
killed by hand.

FILE NAMING CONVENTIONS

Files specified as arguments to ftp commands are processed according to the following rules.
1) If the file name *‘-’’ is specified, the stdin (for reading) or stdout (for writing) is used.

2) If the first character of the file name is ““I’’, the remainder of the argument is interpreted as a
shell command. Fip then forks a shell, using popen(3) with the argument supplied, and reads
(writes) from the stdout (stdin). If the shell command includes spaces, the argument must be
quoted; e.g. ““"l Is -It"”’. A particularly useful example of this mechanism is: “‘dir Imore”’.

3) Failing the above checks, if ‘“‘globbing’’ is enabled, local file names are expanded according to
the rules used in the csh(1); c.f. the glob command. If the fip command expects a single local
file (.c.g. put), only the first filename generated by the "globbing" operation is used.

4) For mget commands and get commands with unspecified local file names, the local filename is
the remote filename, which may be altered by a case, ntrans, or nmap setting. The resulting
filename may then be altered if runique is on.

5) For mput commands and put commands with unspecified remote file names, the remote
filename is the local filename, which may be altered by a ntrans or nmap setting. The result-
ing filename may then be altered by the remote server if sunique is on.

FILE TRANSFER PARAMETERS

The FTP specification specifies many parameters which may affect a file transfer. The type may be one
of “‘ascii’’, “‘image’’ (binary), ‘‘ebcdic’’, and “‘local byte size’* (for PDP-10’s and PDP-20’s mostly).
F'tp supports the ascii and image types of file transfer, plus local byte size 8§ for tenex mode transfers.

Fip supports only the default values for the remaining file transfer parameters: mode, form, and struct.

OPTIONS

Options may be specified at the command line, or to the command interpreter.

The -v (verbose on) option forces fip to show all responses from the remote server, as well as report on
data transfer statistics.

The -n option restrains fip from attempting ‘‘auto-login’’ upon initial connection. If auto-login is
enabled, fip will check the .netrc (see below) file in the user’s home directory for an entry describing an
account on the remote machine. If no entry exists, fip will prompt for the remote machine login name
(default is the user identity on the local machine), and, if necessary, prompt for a password and an
account with which to login.

April 19, 1989 The Wollongong Group 6

FTP(1C) UNIX Programmer’s Manual ‘ FTP(1C)

The —i option turns off interactive prompting during multiple file transfers.
The ~d option enables debugging.
The —g option disables file name globbing.

THE .netrc FILE

BUGS

The .netrc file contains login and initialization information used by the auto-login process. It resides in
the user’s home directory. The following tokens are recognized; they may be separated by spaces, tabs,
or new-lines:

machine name
Identify a remote machine name. The auto-login process searches the .netrc file for a machine
token that matches the remote machine specified on the fip command line or as an open com-
mand argument. Once a match is made, the subsequent .netrc tokens are processed, stopping
when the end of file is reached or another machine token is encountered.

login name
Identify a user on the remote machine. If this token is present, the auto-login process will ini-
tiate a login using the specified name.

password string
Supply a password. If this token is present, the auto-login process will supply the specified
string if the remote server requires a password as part of the login process. Note that if this
token is present in the .netrc file, fip will abort the auto-login process if the .netrc is readable
by anyone besides the user.

account string
Supply an additional account password. If this token is present, the auto-login process will
supply the specified string if the remote server requires an additional account password, or the
auto-login process will initiate an ACCT command if it does not.

macdef name
Define a macro. This token functions like the fip macdef command functions. A macro is
defined with the specified name; its contents begin with the next .netrc line and continue until
a null line (consecutive new-line characters) is encountered. If a macro named init is defined,
it is automatically executed as the last step in the auto-login process.

Correct execution of many commands depends upon proper behavior by the remote server.

An error in the treatment of carriage returns in the 4.2BSD UNIX ascii-mode transfer code has been
corrected. This correction may result in incorrect transfers of binary files to and from 4.2BSD servers
using the ascii type. Avoid this problem by using the binary image type.

April 19, 1989 The Wollongong Group 7

GCORE (1) UNIX Programmer’s Manual GCORE (1)

NOTE
NOT PRESENT IN WOLLONGONG’S EUNICE!
NAME
geore — get core images of running processes
SYNOPSIS
geore process-id ...
DESCRIPTION

Gecore creates a core image of each specified process, suitable for use with adb(1) or dbx(1).

EUNICE NOTES
Not implemented in EUNICE.

FILES
core.<process-id> core images

BUGS
Paging activity that occurs while gcore is running may cause the program to become confused. For
best results, the desired processes should be stopped.

April 19, 1989 The Wollongong Group 1

GPROF(1) UNIX Programmer’s Manual GPROF(1)

NAME

gprof — display call graph profile data

SYNOPSIS

gprof [options] [a.out [gmon.out ...]]

DESCRIPTION

gprof produces an execution profile of C, Pascal, or Fortran77 programs. The effect of called routines
is incorporated in the profile of each caller. The profile data is taken from the call graph profile file
(gmon.out default) which is created by programs which are compiled with the —pg option of cc, pc, and
f77. That option also links in versions of the library routines which are compiled for profiling. The
symbol table in the named object file (a.out default) is read and correlated with the call graph profile
file. If more than one profile file is specified, the gprof output shows the sum of the profile information
in the given profile files.

First, a flat profile is given, similar to that provided by prof(1). This listing gives the total execution
times and call counts for each of the functions in the program, sorted by decreasing time.

Next, these times are propagated along the edges of the call graph. Cycles are discovered, and calls
into a cycle are made to share the time of the cycle. A second listing shows the functions sorted
according to the time they represent including the time of their call graph descendents. Below each
function entry is shown its (direct) call graph children, and how their times are propagated to this func-
tion. A similar display above the function shows how this function’s time and the time of its descen-
dents is propagated to its (direct) call graph parents.

Cycles are also shown, with an entry for the cycle as a whole and a listing of the members of the cycle
and their contributions to the time and call counts of the cycle.

The following options are available:

-a suppresses the printing of statically declared functions. If this option is given, all relevant
information about the static function (e.g., time samples, calls to other functions, calls from
other functions) belongs to the function loaded just before the static function in the a.ous file.

-b supresses the printing of a description of each field in the profile.

- the static call graph of the program is discovered by a heuristic which examines the text space
of the object file. Static-only parents or children are indicated with call counts of 0.

—€ name
suppresses the printing of the graph profile entry for routine name and all its descendants
(unless they have other ancestors that aren’t suppressed). More than one -e option may be
given. Only one name may be given with each —e option.

-E name
suppresses the printing of the graph profile entry for routine name (and its descendants) as —e,
above, and also excludes the time spent in name (and its descendants) from the total and per-
centage time computations. (For example, —=E mcount -E mcleanup is the default.)

~f name
prints the graph profile entry of only the specified routine name and its descendants. More
than one -f option may be given. Only one name may be given with each ~f option.

~F name
prints the graph profile entry of only the routine name and its descendants (as -f, above) and
also uses only the times of the printed routines in total time and percentage computations.
More than one -F option may be given. Only one name may be given with each —F option.
The -F option overrides the -E option.

- a profile file gmon.sum is produced which represents the sum of the profile information in all
the specified profile files. This summary profile file may be given to subsequent executions of

April 19, 1989 The Wollongong Group 1

o

°

GPROF(1) UNIX Programmer’s Manual GPROF(1)

gprof (probably also with a —s) to accumulate profile data across several runs of an a.out file.

-z displays routines which have zero usage (as indicated by call counts and accumulated time).
This is useful in conjunction with the —¢ option for discovering which routines were never
called.

FILES
a.out the namelist and text space.
gmon.out dynamic call graph and profile.
gmon.sum summarized dynamic call graph and profile.

SEE ALSO
monitor(3), profil(2), cc(1), prof(1)
‘‘gprof: A Call Graph Execution Profiler’’, by Graham, S.L., Kessler, P.B., McKusick, M.K.; Proceed-
ings of the SIGPLAN ’82 Symposium on Compiler Construction, SIGPLAN Notices, Vol. 17, No. 6, pp.
120-126, June 1982.

BUGS
Beware of quantization errors. The granularity of the sampling is shown, but remains statistical at best.
We assume that the time for each execution of a function can be expressed by the total time for the
function divided by the number of times the function is called. Thus the time propagated along the call
graph arcs to parents of that function is directly proportional to the number of times that arc is
traversed.

Parents which are not themselves profiled will have the time of their profiled children propagated to
them, but they will appear to be spontaneously invoked in the call graph listing, and will not have their
time propagated further. Similarly, signal catchers, even though profiled, will appear to be spontaneous
(although for more obscure reasons). Any profiled children of signal catchers should have their times
propagated properly, unless the signal catcher was invoked during the execution of the profiling routine,
in which case all is lost.

The profiled program must call exit(2) or return normally for the profiling information to be saved in
the gmon.out file.

April 19, 1989 The Wollongong Group 2

GRAPH(1G)

NAME

UNIX Programmer’s Manual GRAPH(1G)

graph — draw a graph

SYNOPSIS

graph [option] ...

DESCRIPTION

Graph with no options takes pairs of numbers from the standard input as abscissas and ordinates of a
graph. Successive points are connected by straight lines. The graph is encoded on the standard output
for display by the plot(1G) filters.

If the coordinates of a point are followed by a nonnumeric string, that string is printed as a label begin-
ning on the point. Labels may be surrounded with quotes "...", in which case they may be empty or
contain blanks and numbers; labels never contain newlines.

The following options are recognized, each as a separate argument.

-a

&

-1

-x[1]

-y [1]
-h
-w
-r
-u
-t

Supply abscissas automatically (they are missing from the input); spacing is given by the next
argument (default 1). A second optional argument is the starting point for automatic abscissas
(default O or lower limit given by -x).

Break (disconnect) the graph after each label in the input.

Character string given by next argument is default label for each point.

Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid (default).
Next argument is label for graph.

Next argument is mode (style) of connecting lines: O disconnected, 1 connected (default).
Some devices give distinguishable line styles for other small integers.

Save screen, don’t erase before plotting.

If 1 is present, x axis is logarithmic. Next 1 (or 2) arguments are lower (and upper) x limits.
Third argument, if present, is grid spacing on x axis. Normally these quantities are determined
automatically.

Similarly for y.

Next argument is fraction of space for height.

Similarly for width.

Next argument is fraction of space to move right before plotting.

Similarly to move up before plotting.

Transpose horizontal and vertical axes. (Option —x now applies to the vertical axis.)

A legend indicating grid range is produced with a grid unless the -s option is present.

If a specified lower limit exceeds the upper limit, the axis is reversed.

SEE ALSO

spline(1G), plot(1G)

BUGS

Graph stores all points internally and drops those for which there isn’t room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.

April 19, 1989

The Wollongong Group 1

o

©

GREP(1) ‘ UNIX Programmer’s Manual GREP(1)

NAME
grep, egrep, fgrep — search a file for a pattern

SYNOPSIS
grep [option] ... expression [file] ...

egrep [option] ... [expression] [file] ...
fgrep [option] ... [strings] [file]

DESCRIPTION
Commands of the grep family search the input files (standard input default) for lines matching a pattern.
Normally, each line found is copied to the standard output. Grep patterns are limited regular expres-
sions in the style of ex(1); it uses a compact nondeterministic algorithm. Egrep patterns are full regular
expressions; it uses a fast deterministic algorithm that sometimes needs exponential space. Fgrep pat-
terns are fixed strings; it is fast and compact. The following options are recognized.

-v All lines but those matching are printed.

-x (Exact) only lines matched in their entirety are printed (fgrep only).

- Only a count of matching lines is printed.

-1 The names of files with matching lines are listed (once) separated by newlines.
-n Each line is preceded by its relative line number in the file.

-b Each line is preceded by the block number on which it was found. This is sometimes useful in
locating disk block numbers by context.

-i The case of letters is ignored in making comparisons — that is, upper and lower case are con-
sidered identical. This applies to grep and fgrep only.

- Silent mode. Nothing is printed (except error messages). This is useful for checking the error
status.

-w The expression is searched for as a word (as if surrounded by “<’ and °>’, see ex(1).) (grep
only)

~e expression
Same as a simple expression argument, but useful when the expression begins with a —.

~f file The regular expression (egrep) or string list (fgrep) is taken from the file.

In all cases the file name is shown if there is more than one input file. Care should be taken when
using the characters $ * [" | () and \ in the expression as they are also meaningful to the Shell. It is
safest to enclose the entire expression argument in single quotes * *.

Fgrep searches for lines that contain one of the (newline-separated) strings.
Egrep accepts extended regular expressions. In the following description ‘character’ excludes newline:
A\ followed by a single character other than newline matches that character.
The character “ matches the beginning of a line.
The character $ matches the end of a line.
A . (period) matches any character.
A single character not otherwise endowed with special meaning matches that character.

A string enclosed in brackets [] matches any single character from the string. Ranges of
ASCII character codes may be abbreviated as in ‘a-z0-9°. A] may occur only as the first
character of the string. A literal — must be placed where it can’t be mistaken as a range indi-
cator.

A regular expression followed by an * (asterisk) matches a sequence of 0 or more matches of

April 19, 1989 The Wollongong Group 1

GREP(1) UNIX Programmer’s Manual GREP(1)

the regular expression. A regular expression followed by a + (plus) matches a sequence of 1 o
or more matches of the regular expression. A regular expression followed by a ? (question
mark) matches a sequence of 0 or 1 matches of the regular expression.

Two regular expressions concatenated match a match of the first followed by a match of the
second.

Two regular expressions separated by | or newline match either a match for the first or a match
for the second.

A regular expression enclosed in parentheses matches a match for the regular expression.

The order of precedence of operators at the same parenthesis level is [] then *+? then concatenation
then | and newline.
Ideally there should be only one grep, but we don’t know a single algorithm that spans a wide enough
range of space-time tradeoffs.

SEE ALSO
ex(1), sed(1), sh(1)

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files.

BUGS
Lines are limited to 256 characters; longer lines are truncated.

April 19, 1989 The Wollongong Group 2

GROUPS (1) UNIX Programmer’s Manual GROUPS (1)

O w=

groups — show group memberships

SYNOPSIS
groups [user]

DESCRIPTION
The groups command shows the groups to which you or the optionally specified user belong. Each user
belongs to a group specified in the password file /etc/passwd and possibly to other groups as specified in
the file /etc/group. If you do not own a file but belong to the group which it is owned by then you are
granted group access to the file.
When a new file is created it is given the group of the containing directory.

SEE ALSO
setgroups(2)

FILES
fetc/passwd, fetc/group

BUGS
More groups should be allowed.

April 19, 1989 The Wollongong Group ‘ 1

HEAD(1) UNIX Programmer’s Manual HEAD(1)

NAME O

head - give first few lines

SYNOPSIS
head [~count] [file ...]

DESCRIPTION
This filter gives the first count lines of each of the specified files, or of the standard input. If count is
omitted it defaults to 10.

SEE ALSO
tail(1)

April 19, 1989 The Wollongong Group 1

O

HOSTID(1) UNIX Programmer’s Manual . HOSTID(1)

NOTE
WOLLONGONG’S WIN/TCP PRODUCT
NAME
hostid — set or print identifier of current host system
SYNOPSIS
hostid [identifier]
DESCRIPTION
The hostid command prints the identifier of the current host in hexadecimal. This numeric value is
expected to be unique across all hosts and is commonly set to the host’s Internet address. The super-
user can set the hostid by giving a hexadecimal argument or the hostname; this is usually done in the
startup script /etc/rc.local.
EUNICE NOTES
This file is pertinent only to customers who have Wollongong’s WIN/TCP product.
SEE ALSO

gethostid(2), sethostid(2)

April 19, 1989 The Wollongong Group 1

HOSTNAME((1) UNIX Programmer’s Manual HOSTNAME (1)

NOTE O

WOLLONGONG’S WIN/TCP PRODUCT

NAME
hostname — set or print name of current host system

SYNOPSIS
hostname [nameofhost]

DESCRIPTION
The hostname command prints the name of the current host, as given before the ‘“‘login’’ prompt. The
super-user can set the hostname by giving an argument; this is usually done in the startup script
fetc/rc.local.

EUNICE NOTES
This file is pertinent only to customers who have Wollongong’s WIN/TCP product.

SEE ALSO
gethostname(2), sethostname(2)

April 20, 1989 The Wollongong Group 1

IDENT(1) \ UNIX Programmer’s Manual IDENT(1)

NAME

ident - identify files
SYNOPSIS

ident file ...

DESCRIPTION
Ident searches the named files for all occurrences of the pattern $keyword....$, where keyword is one of

Author
Date
Header
Locker
Log
Revision
Source
State

These patterns are nommally inserted automatically by the RCS command co (I), but can also be
inserted manually.

Ident works on text files as well as object files. For example, if the C program in file f.c contains
char rcsid[] = "$Header: Header information $";
and f.c is compiled into f.o, then the command

ident fc fo
will print

fc:

$Header: Header information $
f.o:

$Header: Header information $

IDENTIFICATION
Author: Walter F, Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.0 ; Release Date: 82/12/04 .
Copyright © 1982 by Walter F. Tichy.

SEE ALSO
ci (1), co (1), res (1), resdiff(1), resmerge (1), rlog (1), resfile (5).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System,” in Proceed-
ings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept. 1982.

April 20, 1989 The Wollongong Group 1

INDENT(1) UNIX Programmer’s Manual INDENT (1)

NAME
indent - indent and format C program source

SYNOPSIS
indent [input-file [output-file]] [-bad | -nbad] [-bap | -nbap] [bbb | =nbbb] [~bc | -nbc]
[-bll-br] [—n] [—dn] [—cdb|-ncdb] [—cel-nce] [—cin] [—clin] [-dn] [-din]
[(—dj!-ndj] [—eil-nei] [~fcll-nfcl] [~in] [~ip|-nip] [-In] [~dcn] [-Ip | -nlp]
[-npro] [-pcs|-npes] [—ps|-nps] [-psl!|-npsl] [-sc|-nsc] [-sob | -nsob] [-st]
[~troff] [=v | —nv]
DESCRIPTION
Indent is a C program formatter. It reformats the C program in the input-file according to the switches.
The switches which can be specified are described below. They may appear before or after the file
names.
NOTE: If you only specify an input-file, the formatting is done ‘in-place’, that is, the formatted file is
written back into input-file and a backup copy of input-file is written in the current directory. If input-
Jfile is named ‘/blah/blah/file’, the backup file is named file.BAK.
If output-file is specified, indent checks to make sure it is different from input-file.
OPTIONS
The options listed below control the formatting style imposed by indent.

-bad,-nbad If -bad is specified, a blank line is forced after every block of declarations. Default:

-nbad.
~bap,-nbap If -bap is specified, a blank line is forced after every procedure body. Default:
-nbap.
-bbb,-nbbb If bbb is specified, a blank line is forced before every block comment. Default:
-nbbb.
=bc,-nbc If -be is specified, then a newline is forced after each comma in a declaration. —nbe
turns off this option. The default is -nbc.
~br-bl Specifying bl lines up compound statements like this:
if (...)
{
code
}
Specifying -br (the default) makes them look like this:
if (..) {
code
}
—cn The column in which comments on code start. The default is 33.
—cdn The column in which comments on declarations start. The default is for these com-

ments to start in the same column as those on code.

—-cdb,-ncdb Enables (disables) the placement of comment delimiters on blank lines. With this
option enabled, comments look like this:
/*
* this is a comment
*/
Rather than like this:
/* this is a comment */
This only affects block comments, not comments to the right of code. The default is
—cdb.

April 20, 1989 The Wollongong Group 1

o

©

©

INDENT(1)

~Ce,~nce

~cin

=clin

~din
~dj,~ndj
—ei,~nei
—fcl,-nfcl
~in
—ip,-nip

-In
-Ip,-nlp

-npro
—pcs,~npcs

-ps,-nps

—psl,—npsl

April 20, 1989

UNIX Programmer’s Manual INDENT (1)

Enables (disables) forcing ‘else’s to cuddle up to the immediately preceding ‘}’. The
default is —ce.

Sets the continuation indent to be n. Continuation lines will be indented that far from
the beginning of the first line of the statement. Parenthesized expressions have extra
indentation added to indicate the nesting, unless -Ip is in effect. —ci defaults to the
same value as —i.

Causes case labels to be indented n tab stops to the right of the containing switch
statement. —cli0.5 causes case labels to be indented half a tab stop. The default is
~cli0. (This is the only option that takes a fractional argument.)

Controls the placement of comments which are not to the right of code. Specifying
~d1 means that such comments are placed one indentation level to the left of code.
The default -d0 lines up these comments with the code. See the section on comment
indentation below.

Specifies the indentation, in character positions, from a declaration keyword to the
following identifier. The default is —dil6.

—~dj left justifies declarations. -ndj indents declarations the same as code. The
default is -ndj.

Enables (disables) special else-if processing. If enabled, ifs following elses will have
the same indentation as the preceding if statement. The default is —ei.

Enables (disables) the formatting of comments that start in column 1. Often, com-
ments whose leading ‘/" is in column 1 have been carefully hand formatted by the
programmer. In such cases, -nfel should be used. The default is —fcl.

The number of spaces for one indentation level. The default is 8.

Enables (disables) the indentation of parameter declarations from the left margin.
The default is —ip.

Maximum length of an output line. The default is 78.

Lines up code surrounded by parenthesis in continuation lines. If a line has a left
paren which is not closed on that line, then continuation lines will be lined up to start
at the character position just after the left paren. For example, here is how a piece of
continued code looks with —nlp in effect:
p1 = first_procedure(second_procedure(p2, p3),
third_procedure(p4, p5));
With -Ip in effect (the default) the code looks somewhat clearer:
pl = first_procedure(second_procedure(p2, p3),
third_procedure(p4, p5));
Inserting two more newlines we get:
pl = first_procedure(second_procedure(p2,
p3),
third_procedure(p4,
p5));

Causes the profile files, ‘./.indent.pro’ and *~/.indent.pro’, to be ignored.

If true (—pcs) all procedure calls will have a space inserted between the name and the
‘(. The default is —npcs.

If true (-ps) the pointer following operator
either side. The default is —nps.

¢

—>’ will be surrounded by spaces on

If true (—psl) the names of procedures being defined are placed in column 1 — their
types, if any, will be left on the previous lines. The default is —psl.

The Wollongong Group 2

INDENT(1) UNIX Programmer’s Manual INDENT (1)

—S¢,~nsc Enables (disables) the placement of asterisks (‘*’s) at the left edge of all comments. o
The default is -sc. :
~sob,~nsob If -sob is specified, indent will swallow optional blank lines. You can use this to get
rid of blank lines after declarations. Default: -nsob.
-st Causes indent to take its input from stdin, and put its output to stdout.

~Ttypename Adds typename to the list of type keywords. Names accumulate: -T can be specified
more than once. You need to specify all the typenames that appear in your program
that are defined by typedefs — nothing will be harmed if you miss a few, but the pro-
gram won’t be formatted as nicely as it should. This sounds like a painful thing to
have to do, but it’s really a symptom of a problem in C: typedef causes a syntactic
change in the language and indent can’t find all typedefs.

—troff Causes indent to format the program for processing by troff. It will produce a fancy
listing in much the same spirit as vgrind. If the output file is not specified, the
default is standard output, rather than formatting in place.

~V,~nv -v tumns on ‘verbose’ mode; -nv turns it off. When in verbose mode, indent reports
when it splits one line of input into two or more lines of output, and gives some size
statistics at completion. The default is —nv.

FURTHER DESCRIPTION
You may set up your own ‘profile’ of defaults to indent by creating a file called .indent.pro in either
your login directory and/or the current directory and including whatever switches you like. Switches in
‘.indent.pro’ in the current directory override those in your login directory (with the exception of -T
type definitions, which just accumulate). If indent is run and a profile file exists, then it is read to set
up the program’s defaults. The switches should be separated by spaces, tabs or newlines. Switches on
the command line, however, override profile switches.

Comments

‘Box’ comments. Indent assumes that any comment with a dash or star immediately after the start of
comment (that is, ‘/*-’ or ‘/#*’) is.a comment surrounded by a box of stars. Each line of such a com-
ment is left unchanged, except that its indentation may be adjusted to account for the change in inden-
tation of the first line of the comment.

Straight text. All other comments are treated as straight text. Indent fits as many words (separated by
blanks, tabs, or newlines) on a line as possible. Blank lines break paragraphs.

Comment indentation

If a comment is on a line with code it is started in the ‘comment column’, which is set by the —cn com-
mand line parameter. Otherwise, the comment is started at n indentation levels less than where code is
currently being placed, where 7 is specified by the —-dn command line parameter. If the code on a line
extends past the comment column, the comment starts further to the right, and the right margin may be
automatically extended in extreme cases.

Preprocessor lines

In general, indent leaves preprocessor lines alone. The only reformatting that it will do is to straighten
up trailing comments. It leaves embedded comments alone. Conditional compilation (#ifdef...#endif)
is recognized and indent attempts to correctly compensate for the syntactic peculiarities introduced.

C syntax

Indent understands a substantial amount about the syntax of C, but it has a ‘forgiving’ parser. It
attempts to cope with the usual sorts of incomplete and misformed syntax. In particular, the use of

macros like:
#define forever for(;;) o
is handled properly.

April 20, 1989 The Wollongong Group 3

INDENT((1) UNIX Progféiﬁiﬂer’s Manual INDENT (1)

FILES
J.indent.pro profile file
~/.indent.pro profile file

BUGS
Indent has even more switches than Is.

A common mistake that often causes grief is typing:
indent *.c

to the shell in an attempt to indent all the C programs in a directory. This is probably a bug, not a
feature.

April 20, 1989 The Wollongong Group 4

INSTALL (1) UNIX Programmer’s Manual INSTALL (1)

NAME O

install - install binaries

SYNOPSIS
install [—] [-m mode] [-0 owner] [-g group] [—s] binary destination

DESCRIPTION)
Binary is moved (or copied if —c is specified) to destination. If destination already exists, it is removed
before binary is moved. If the destination is a directory then binary is moved into the destination
directory with its original file-name.

The mode for Destination is set to 755; the ~m mode option may be used to specify a different mode.
Destination is changed to owner root; the -0 owner option may be used to specify a different owner.
Destination is changed to group staff; the —g group option may be used to specify a different group.
If the —s option is specified the binary is stripped after being installed.

Install refuses to move a file onto itself,

SEE ALSO
chgrp(1), chmod(1), cp(1), mv(l), strip(1), chown(8)

April 20, 1989 The Wollongong Group 1

IOSTAT(1) UNIX Programmer’s Manual IOSTAT (1)

NOTE

NAME

NOT PRESENT IN WOLLONGONG'S EUNICE!

iostat — report I/O statistics

SYNOPSIS

iostat [drives] [interval [count]]

DESCRIPTION

Iostat iteratively reports the number of characters read and written to terminals per second, and, for
each disk, the number of transfers per second, kilobytes transferred per second, and the milliseconds per
average seek. It also gives the percentage of time the system has spent in user mode, in user mode run-
ning low priority (niced) processes, in system mode, and idling.

To compute this information, for each disk, seeks and data transfer completions and number of words
transferred are counted; for terminals collectively, the number of input and output characters are
counted. Also, each sixtieth of a second, the state of each disk is examined and a tally is made if the
disk is active. From these numbers and given the transfer rates of the devices it is possible to deter-
mine average seek times for each device.

The optional interval argument causes iostat to report once each interval seconds. The first report is for
all time since a reboot and each subsequent report is for the last interval only.

The optional count argument restricts the number of reports.

If more than 4 disk drives are configured in the system, iostat displays only the first 4 drives, with
priority given to Massbus disk drives (i.e. if both Unibus and Massbus drives are present and the total
number of drives exceeds 4, then some number of Unibus drives will not be displayed in favor of the
Massbus drives). To force iostat to display specific drives, their names may be supplied on the com-
mand line.

EUNICE NOTES

FILES

Not implemented in EUNICE.

/dev/kmem

/vmunix

SEE ALSO

vmstat(1)

April 20, 1989 The Wollongong Group 1

JOIN(1) UNIX Programmer’s Manual JOIN(1)

NAME o
join — relational database operator

SYNOPSIS
join [options] filel file2

DESCRIPTION _
Join forms, on the standard output, a join of the two relations specified by the lines of filel and file2.
If filel is *’, the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating sequence on the fields on which they are to
be joined, normally the first in each line.

There is one line in the output for each pair of lines in filel and file2 that have identical join fields.
The output line normally consists of the common field, then the rest of the line from filel , then the rest
of the line from file2.

Fields are normally separated by blank, tab or newline. In this case, multiple separators count as one,
and leading separators are discarded.

These options are recognized:

-an In addition to the normal output, produce a line for each unpairable line in file n, where n is 1
or 2.

-es Replace empty output fields by string s.
=jn m Join on the mth field of file n. If n is missing, use the mth field in each file.

-o list Each output line comprises the fields specified in /ist, each element of which has the form n.m,
where n is a file number and m is a field number.

~tc Use character ¢ as a separator (tab character). Every appearance of ¢ in a line is significant.

SEE ALSO
sort(1), comm(1), awk(1)

BUGS
With default field separation, the collating sequence is that of sort —b; with —t, the sequence is that of a
plain sort.

The conventions of join, sort, comm, unig, look and awk(1) are wildly incongruous.

April 20, 1989 The Wollongong Group 1

o

©

KILL(1) UNIX Prog’fainmer’s Manual KILL (1)

NAME
kill — terminate a process with extreme prejudice

SYNOPSIS
kill [-sig] processid ...
kill -1

DESCRIPTION
Kill sends the TERM (terminate, 15) signal to the specified processes. If a signal name or number pre-
ceded by ‘-’ is given as first argument, that signal is sent instead of terminate (see sigvec(2)). The sig-
nal names are listed by ‘kill -I’, and are as given in /usr/include/signal.h, stripped of the common SIG
prefix.
The terminate signal will kill processes that do not catch the signal; ‘kill -9 ...’ is a sure kill, as the
KILL (9) signal cannot be caught. By convention, if process number O is specified, all members in the
process group (i.e. processes resulting from the current login) are signaled (but beware: this works only
if you use sh(1); not if you use csh(1).) Negative process numbers also have special meanings; see
kill(2) for details.
The killed processes must belong to the current user unless he is the super-user.
The process number of an asynchronous process started with ‘&’ is reported by the shell. Process
numbers can also be found by using ps(1). Kill is a built-in to csh(1); it allows job specifiers of the
form *‘%..."" as arguments so process id’s are not as often used as kill arguments. See csh(l) for
details.

SEE ALSO
csh(1), ps(1), kill(2), sigvec(2)

BUGS

A replacement for *‘kill 0" for csh(1) users should be provided.

April 20, 1989 The Wollongong Group 1

LAST(1) UNIX Programmer’s Manual LAST(1)

NAME
last — indicate last logins of users and teletypes

SYNOPSIS
last [-N] [name ...][ty ...]

DESCRIPTION ‘
Last will look back in the wimp file which records all logins and logouts for information about a user, a
teletype or any group of users and teletypes. Arguments specify names of users or teletypes of interest.
Names of teletypes may be given fully or abbreviated. For example ‘last 0’ is the same as ‘last tty0’.
If multiple arguments are given, the information which applies to any of the arguments is printed. For
example ‘last root console’ would list all of "root’s" sessions as well as all sessions on the console ter-
minal. Last will print the sessions of the specified users and teletypes, most recent first, indicating the
times at which the session began, the duration of the session, and the teletype which the session took
place on. If the session is still continuing or was cut short by a reboot, last so indicates.
The pseudo-user reboot logs in at reboots of the system, thus

last reboot

will give an indication of mean time between reboot.
Last with no arguments prints a record of all logins and logouts, in reverse order. The -N option limits
the report to N lines.
If last is interrupted, it indicates how far the search has progressed in wemp. If interrupted with a quit
signal (generated by a control-\) last indicates how far the search has progressed so far, and the search
continues. :

FILES
fust/adm/wtmp login data base
/usr/adm/shutdownlog ~ which records shutdowns and reasons for same

SEE ALSO
wtmp(5), ac(8), lastcomm(1)

AUTHOR

Howard Katseff

April 20, 1989 The Wollongong Group 1

O

©

©

LASTCOMM(1) UNIX Programmer’s Manual LASTCOMM(1)

NOTE
NOT PRESENT IN WOLLONGONG’S EUNICE!
NAME
lastcomm - show last commands executed in reverse order
SYNOPSIS
lastcomm [command name] ... [user name] ... [terminal name] ...
DESCRIPTION

Lastcomm gives information on previously executed commands. With no arguments, lastcomm prints
information about all the commands recorded during the current accounting file’s lifetime. If called
with arguments, only accounting entries with a matching command name, user name, or terminal name
are printed. So, for example,

lastcomm a.out root ttyd0
would produce a listing of all the executions of commands named a.out by user root on the terminal
ttyd0.

For each process entry, the following are printed.
The name of the user who ran the process.
Flags, as accumulated by the accounting facilities in the system.
The command name under which the process was called.
The amount of cpu time used by the process (in seconds).
The time the process exited.

The flags are encoded as follows: *‘S’* indicates the command was executed by the super-user, “F’’
indicates the command ran after a fork, but without a following exec, ‘‘C’’ indicates the command was
run in PDP-11 compatibility mode (VAX only), “D"’ indicates the command terminated with the gen-
eration of a core file, and ‘X"’ indicates the command was terminated with a signal.

EUNICE NOTES

FILES

Not implemented in EUNICE.

Jusr/adm/acct

SEE ALSO

last(1), sigvec(2), acct(8), core(5)

April 20, 1989 The Wollongong Group 1

- LD(1)

NAME

UNIX Programmer’s Manual LD(1)

1d - link editor

SYNOPSIS

1d [option] ... file ...

DESCRIPTION

Ld combines several object programs into one, resolves external references, and searches libraries. In
the simplest case several object files are given, and Id combines them, producing an object module
which can be either executed or become the input for a further /d run. (In the latter case, the —r option
must be given to preserve the relocation bits.) The output of /d is left on a.out. This file is made exe-
cutable only if no errors occurred during the load.

The argument routines are concatenated in the order specified. The entry point of the output is the
beginning of the first routine (unless the —e option is specified).

If any argument is a library, it is searched exactly once at the point it is encountered in the argument
list. Only those routines defining an unresolved external reference are loaded. If a routine from a
library references another routine in the library, and the library has not been processed by ranlib(1), the
referenced routine must appear after the referencing routine in the library. Thus the order of programs
within libraries may be important. The first member of a library should be a file named ‘__.SYMDEF’,
which is understood to be a dictionary for the library as produced by ranlib(l); the dictionary is
searched iteratively to satisfy as many references as possible.

The symbols *_etext’, ‘_edata’ and ‘_end’ (‘etext’, ‘edata’ and ‘end’ in C) are reserved, and if referred
to, are set to the first location above the program, the first location above initialized data, and the first
location above all data respectively. It is erroneous to define these symbols.

Ld understands several options. Except for -1, they should appear before the file names.

-A This option specifies incremental loading, i.e. linking is to be done in a manner so that the
resulting object may be read into an already executing program. The next argument is the
name of a file whose symbol table will be taken as a basis on which to define additional sym-
bols. Only newly linked material will be entered into the text and data portions of a.out, but
the new symbol table will reflect every symbol defined before and after the incremental load.
This argument must appear before any other object file in the argument list. The ~T option
may be used as well, and will be taken to mean that the newly linked segment will commence
at the corresponding address (which must be a multiple of 1024). The default value is the old
value of _end.

-D Take the next argument as a hexadecimal number and pad the data segment with zero bytes to
the indicated length.

-d Force definition of common storage even if the -r flag is present.

b

The following argument is taken to be the name of the entry point of the loaded program; loca-
tion O is the default.

-Ldir Add dir to the list of directories in which libraries are searched for. Directories specified with
-L are searched before the standard directories.

~Ix This option is an abbreviation for the library name ‘libx.a’, where x is a string. Ld searches
for libraries first in any directories specified with —L options, then in the standard directories
‘flib’, ‘/usr/lib’, and ‘/usr/local/lib’. A library is searched when its name is encountered, so the
placement of a -l is significant.

-M produce a primitive load map, listing the names of the files which will be loaded.
-N Do not make the text portion read only or sharable. (Use "magic number" 0407.)

-n Arrange (by giving the output file a 0410 "magic number”) that when the output file is exe-

cuted, the text portion will be read-only and shared among all users executing the file. This

April 20, 1989 The Wollongong Group 1

LD(1)

4

-T

-t

=X

-ysym

EUNICE NOTES

UNIX Programmer’s Manual LD(1)

involves moving the data areas up to the first possible 1024 byte boundary following the end of
the text.

The name argument after —o is used as the name of the Id output file, instead of a.out.

Generate relocation bits in the output file so that it can be the subject of another Id run. This
flag also prevents final definitions from being given to common symbols, and suppresses the
‘undefined symbol’ diagnostics.

‘Strip’ the output by removing all symbols except locals and globals.

‘Strip’ the output, that is, remove the symbol table and relocation bits to save space (but impair
the usefulness of the debuggers). This information can also be removed by strip(1).

The next argument is a hexadecimal number which sets the text segment origin. The default
origin is 0.
("trace™) Print the name of each file as it is processed.

Take the following argument as a symbol and enter it as undefined in the symbol table. This
is useful for loading wholly from a library, since initially the symbol table is empty and an
unresolved reference is needed to force the loading of the first routine.

Save local symbols except for those whose names begin with ‘L’. This option is used by cc(1)
to discard internally-generated labels while retaining symbols local to routines.

Do not preserve local (non-.globl) symbols in the output symbol table; only enter external sym-
bols. This option saves some space in the output file.

Indicate each file in which sym appears, its type and whether the file defines or references it.
Many such options may be given to trace many symbols. (It is usually necessary to begin sym
with an ‘_’, as external C, FORTRAN and Pascal variables begin with underscores.)

Arrange for the process to be loaded on demand from the resulting executable file (413 format)
rather than preloaded. This is the default. Results in a 1024 byte header on the output file fol-
lowed by a text and data segment each of which have size a multiple of 1024 bytes (being
padded out with nulls in the file if necessary). With this format the first few BSS segment
symbols may actually appear (from the output of size(1)) to live in the data segment; this to
avoid wasting the space resulting from data segment size roundup.

EUNICE introduces additional options.

-notrace

Causes the loader to not insert traceback. This must be used when an image is to be installed.
Refer to the VMS manuals for more information. This flag is specific to the vmsld(1W) pro-
vided with EUNICE.

-noshare

This option cancels the default which loads the shareable C images and will cause all routines
to be loaded out of the standard C library. This will produce an image which does not require
the presence of the shareable C images. If this image is to be run on a VMS system without a
EUNICE or UNIX license, read "REX Capabilities and Obligations” in The EUNICE BSD
Reference Manual and obtain the proper license. This option is also important if you are
linking code which manipulates the EUNICE runtime system (e.g. code with # include
<eunice/eunice.h> in it). This flag is specific to the vmsld(1W) provided with EUNICE.

-nopObufs

©

April 20, 1989

Sets the NOPOBUFS flag in the VMS image header and sets the IMGIOCNT to 250. This
will keep RMS from intruding on PO space in those programs which are sensitive to the state
of PO space. These are usually programs which do their own memory allocation and expect
contiguous sbrks. Very few UNIX programs have this requirement (e.g adb and dd). Programs

The Wollongong Group 2

LD(1) - UNIX Programmer’s Manual LD(1)

using the malloc routines will not have any problems. Include /lib/prealloc.o for UNIX object
files or /usr/libvms/prealloc.obj for VMS object files in the load to keep EUNICE from intrud-
ing on PO space. The intemal EUNICE data structures will be preallocated. This flag is
specific to the vmsld(1W) provided with EUNICE.

-vSHRBLEIMAGENAME
Includes the shareable image SHRBLEIMAGENAME in the load. This flag is specific to the
vmnsld(1W) provided with EUNICE.

Note that vmsld does not reference the variables set up by the aliases vmsobj or unixobj. Use cc or f77
for the load phase if these aliases are to be used or explicitly request /usrfeun/vmsid. See cc(I) and

f77(1).
FILES
/lib/lib*.a libraries
fusr/lib/lib*.a more libraries
fusr/local/lib/lib*.a still more libraries
a.out output file
SEE ALSO
as(1), ar(1), cc(1), ranlib(1), vmsld(1W), £f77(1)
BUGS

There is no way to force data to be page aligned. Ld pads images which are to be demand loaded from
the file system to the next page boundary to avoid a bug in the system.

April 20, 1989 The Wollongong Group 3

O

LEARN(1) UNIX Programiner’s Manual LEARN (1)

NAME

learn ~ computer aided instruction about UNIX

SYNOPSIS

learn [—directory] [subject [lesson]]

DESCRIPTION

Learn gives Computer Aided Instruction courses and practice in the use of UNIX, the C Shell, and the
Berkeley text editors. To get started simply type learn. If you had used learn before and left your last
session without completing a subject, the program will use information in SHOME/.learnrc to start you
up in the same place you left off. Your first time through, learn will ask questions to find out what you
want to do. Some questions may be bypassed by naming a subject, and more yet by naming a lesson.
You may enter the lesson as a number that learn gave you in a previous session. If you do not know
the lesson number, you may enter the lesson as a word, and learn will look for the first lesson contain-
ing it. If the lesson is ‘~’, learn prompts for each lesson; this is useful for debugging.

The subject s presently handled are

files

editor

vi

morefiles

macros

eqn

C
There are a few special commands. The command ‘bye’ terminates a learn session and ‘where’ tells
you of your progress, with ‘where m’ telling you more. The command ‘again’ re-displays the text of
the lesson and ‘again lesson’ lets you review lesson. There is no way for learn to tell you the answers
it expects in English, however, the command ‘hint’ prints the last part of the lesson script used to
evaluate a response, while ‘hint m’ prints the whole lesson script. This is useful for debugging lessons
and might possibly give you an idea about what it expects.

The —directory option allows one to exercise a script in a nonstandard place.

FILES

fusr/lib/learn subtree for all dependent directories and files

fusr/tmp/pl* playpen directories

$HOME/ learnrc startup information
SEE ALSO

csh(l), ex(1)

B. W. Kernighan and M. E. Lesk, LEARN — Computer-Aided Instruction on UNIX
BUGS

The main strength of learn, that it asks the student to use the real UNIX, also makes possible baffling
mistakes. It is helpful, especially for nonprogrammers, to have a UNIX initiate near at hand during the
first sessions.

Occasionally lessons are incorrect, sometimes because the local version of a command operates in a
non-standard way. Occasionally a lesson script does not recognize all the different correct responses, in
which case the ‘hint’ command may be useful. Such lessons may be skipped with the ‘skip’ command,
but it takes some sophistication to recognize the situation.

To find a lesson given as a word, learn does a simple fgrep(l) through the lessons. It is unclear
whether this sort of subject indexing is better than none.

Spawning a new shell is required for each of many user and internal functions.

April 20, 1989 The Wollongong Group 1

LEARN(1) UNIX Programmer’s Manual LEARN(1)

The ‘vi’ lessons are provided separately from the others. To use them see your system administrator. o

April 20, 1989 The Wollongong Group 2

LEAVE(1) UNIX Programmer’s Manual LEAVE(1)

o NAME
leave — remind you when you have to leave

SYNOPSIS
leave [[+]Jhhmm]

DESCRIPTION
Leave waits until the specified time, then reminds you that you have to leave. You are reminded 5
minutes and 1 minute before the actual time, at the time, and every minute thereafter. When you log
off, leave exits just before it would have printed the next message.

The time of day is in the form hhmm’ where hh is a time in hours (on a 12 or 24 hour clock). All
times are converted to a 12 hour clock, and assumed to be in the next 12 hours.

If the time is preceeded by ‘+’, the alarm will go off in hours and minutes from the current time.

If no argument is given, leave prompts with "When do you have to leave?". A reply of newline causes
leave to exit, otherwise the reply is assumed to be a time. This form is suitable for inclusion in a .login
or profile.

Leave ignores interrupts, quits, and terminates. To get rid of it you should either log off or use *‘kill
-9’ giving its process id.

SEE ALSO
calendar(1)

©

April 20, 1989 The Wollongong Group 1

LEX(1) UNIX Programmer’s Manual LEX (1)

NAME
lex — generator of lexical analysis programs

SYNOPSIS
lex [-tvfn][file] ...

DESCRIPTION
Lex generates programs to be used in simple lexical analyis of text. The input files (standard input
default) contain regular expressions to be searched for, and actions written in C to be executed when
expressions are found.

A C source program, ’lex.yy.c’ is generated, to be compiled thus:
cc lex.yy.c -1l

This program, when run, copies unrecognized portions of the input to the output, and executes the asso-
ciated C action for each regular expression that is recognized.

The options have the following meanings.

-t Place the result on the standard output instead of in file "lex.yy.c".

-V Print a one-line summary of statistics of the generated analyzer.

-n Opposite of ~v; -n is default.

~f "Faster” compilation: don’t bother to pack the resulting tables; limited to small programs.

EXAMPLE
lex lexcommands

would draw lex instructions from the file lexcommands, and place the output in lex.yy.c

% %

[A-Z] putchar(yytext[0]+a’~"A");

[1+8 ;

[+ putchar(" %);
is an example of a lex program that would be put into a lex command file. This program converts
upper case to lower, removes blanks at the end of lines, and replaces multiple blanks by single blanks.

SEE ALSO
yace(1), sed(1)
M. E. Lesk and E. Schmidt, LEX — Lexical Analyzer Generator

April 20, 1989 The Wollongong Group 1

©

LINT(1) UNIX Progidmmer’s Manual LINT(1)

NAME

lint — a C program verifier
SYNOPSIS

lint [—abchnpuvx] file ...

DESCRIPTION
Lint attempts to detect features of the C program files which are likely to be bugs, or non-portable, or
wasteful. It also checks the type usage of the program more strictly than the compilers. Among the
things which are currently found are unreachable statements, loops not entered at the top, automatic
variables declared and not used, and logical expressions whose value is constant. Moreover, the usage
of functions is checked to find functions which return values in some places and not in others, functions
called with varying numbers of arguments, and functions whose values are not used.

By default, it is assumed that all the files are to be loaded together; they are checked for mutual compa-
tibility. Function definitions for certain libraries are available to lint; these libraries are referred to by a
conventional name, such as ‘~Im’, in the style of /d(1). Arguments ending in .In are also treated as
library files. To create lint libraries, use the ~C option:

lint -Cfoo files . . .

where files are the C sources of library foo. The result is a file llib-Ifoo.In in the correct library format
suitable for linting programs using foo.

Any number of the options in the following list may be used. The -D, -U, and -I options of cc(1) are
also recognized as separate arguments.

p Attempt to check portability to the /BM and GCOS dialects of C.
h Apply a number of heuristic tests to attempt to intuit bugs, improve style, and reduce waste.
b Report break statements that cannot be reached. (This is not the default because, unfor-

tunately, most /lex and many yacc outputs produce dozens of such comments.)
Suppress complaints about unused arguments in functions.

Report variables referred to by extern declarations, but never used.

Report assignments of long values to int variables.

Complain about casts which have questionable portability.

E 6 B X <

Do not complain about functions and variables used and not defined, or defined and not used
(this is suitable for running lint on a subset of files out of a larger program).

Do not check compatibility against the standard library.

z Do not complain about structures that are never defined (e.g. using a structure pointer without
knowing its contents.).

Exit(2) and other functions which do not return are not understood; this causes various lies.
Certain conventional comments in the C source will change the behavior of lint:

/*NOTREACHED*/
at appropriate points stops comments about unreachable code.

/*VARARGSn*/
suppresses the usual checking for variable numbers of arguments in the following function
declaration. The data types of the first n arguments are checked; a missing # is taken to be 0.

/*NOSTRICT*/
shuts off strict type checking in the next expression.

/*ARGSUSED*/
turns on the —v option for the next function.

April 20, 1989 The Wollongong Group 1

LINT(1) ‘ UNIX Programmer’s Manual LINT(1)

/*LINTLIBRARY*/
at the beginning of a file shuts off complaints about unused functions in this file.
AUTHOR
S.C. Johnson. Lint library construction implemented by Edward Wang.
FILES
fusr/lib/lint/lint[12] programs
fusr/lib/lint/llib-lc.In declarations for standard functions
fusr/lib/liny/1lib-1c human readable version of above
/usr/lib/lint/llib-port.In declarations for portable functions
fust/lib/lint/llib-port human readable . . .
1lib-1*.In library created with ~C
SEE ALSO
cc(1)
S. C. Johnson, Lint, a C Program Checker
BUGS

There are some things you just can’t get lint to shut up about.
/#NOSTRICT#/ is not implemented in the current version (alas).

April 20, 1989 The Wollongong Group 2

LISP(1) UNIX Programmer’s Manual LISP(1)

o NAME

lisp - lisp interpreter

SYNOPSIS
lisp

DESCRIPTION
Lisp is a lisp interpreter for a dialect which closely resembles MIT’s MAcLisp. This lisp, known as
FRANZ LIsP, features an I/O facility which allows the user to change the input and output syntax, add
macro characters, and maintain compatibility with upper-case only lisp systems; infinite precision
integer arithmetic, and an error facility which allows the user to trap system errors in many different
ways. Interpreted functions may be mixed with code compiled by liszt(1) and both may be debugged
using the ‘‘Joseph Lister’” trace package. A lisp containing compiled and interpreted code may be
dumped into a file for later use.

There are too many functions to list here; one should refer to the manuals listed below.

AUTHORS
An early version was written by Jeff Levinsky, Mike Curry, and John Breedlove. Keith Sklower wrote
and is maintaining the current version, with the assistance of John Foderaro. The garbage collector was

implemented by Bill Rowan.
FILES :
fusr/lib/lisp/trace.l Joseph Lister trace package
fusr/lib/lisp/toplevel.l top level read-eval-print loop
SEE ALSO

liszt(1), Ixref(1)
‘FRANZ LISP Manual, Version 1’ by John K. Foderaro

o MACLISP Manual

BUGS
The error system is in a state of flux and not all error messages are as informative as they could be.

©

April 20, 1989 The Wollongong Group 1

LISZT (1) UNIX Programmer’s Manual LISZT(1)

-)

liszt — compile a Franz Lisp program
SYNOPSIS
liszt [-mpqruwxCQST] [—e form] [—o objfile] [name]

DESCRIPTION
Liszt takes a file whose names ends in ‘I’ and compiles the FRANZ LIsP code there leaving an object
program on the file whose name is that of the source with ‘.0’ substituted for *.I’.

The following options are interpreted by liszz.
-e Evaluate the given form before compilation begins.

-m Compile a MACLISP file, by changing the readtable to conform to MACLISP syntax and includ-
ing a macro-defined compatibility package.

-0 Put the object code in the specified file, rather than the default ‘.0’ file.

-p places profiling code at the beginning of each non-local function. If the lisp system is also
created with profiling in it, this allows function calling frequency to be determined (see
prof(1).)

-q Only print warning and error messages. Compilation statistics and notes on correct but unusual

constructs will not be printed.

-r place bootstrap code at the beginning of the object file, which when the object file is executed
will cause a lisp system to be invoked and the object file fasl’ed in.

-u Compile a UCI-lispfile, by changing the readtable to conform to UCI-Lisp syntax and including
a macro-defined compatibility package.

-w Suppress warning diagnostics.

—x Create a lisp cross reference file with the same name as the source file but with “.x* appended.
The program Ixref(1) reads this file and creates a human readable cross reference listing.

-C put comments in the assembler output of the compiler. Useful for debugging the compiler.
-Q Print compilation statistics and warn of strange constructs. This is the default.

-S Compile the named program and leave the assembler-language output on the corresponding file
suffixed “.s’. This will also prevent the assembler language file from being assembled.

-T send the assembler output to standard output.

If no source file is specified, then the compiler will run interactively. You will find yourself talking to
the lisp(1) top-level command interpreter. You can compile a file by using the function /liszt (an
nlambda) with the same arguments as you use on the command line. For example to compile ‘foo’, a
MAcLISP file, you would use:

(liszt —m foo)
Note that liszt supplies the *“.I'” extension for you.
FILES
/ust/lib/lisp/machacks.l MACLISP compatibility package
fusr/lib/lisp/syscall.l macro definitions of Unix system calls
fusr/lib/lisp/ucifnc.1 UCI Lisp compatibility package
AUTHOR
John Foderaro
SEE ALSO

lisp(1), Ixref(1) o

April 20, 1989 The Wollongong Group 1

©

LN(1)

NAME

UNIX Programmer’s Manual LN(1)

In - make links

SYNOPSIS

In [-s] sourcename [targetname]
In [~s] sourcenamel sourcename? [sourcename3 ...] targetdirectory

DESCRIPTION

A link is a directory entry referring to a file; the same file (together with its size, all its protection infor-
mation, etc.) may have several links to it. There are two kinds of links: hard links and symbolic links.

By default /In makes hard links. A hard link to a file is indistinguishable from the original directory
entry; any changes to a file are effective independent of the name used to reference the file. Hard links
may not span file systems and may not refer to directories.

The -s option causes /n to create symbolic links. A symbolic link contains the name of the file to
which it is linked. The referenced file is used when an open(2) operation is performed on the link. A
stat(2) on a symbolic link will return the linked-to file; an Istat(2) must be done to obtain information
about the link. The readlink(2) call may be used to read the contents of a symbolic link. Symbolic
links may span file systems and may refer to directories.

Given one or two arguments, In creates a link to an existing file sourcename. If targetname is given,
the link has that name; targetname may also be a directory in which to place the link; otherwise it is
placed in the current directory. If only the directory is specified, the link will be made to the last com-
ponent of sourcename.

Given more than two arguments, /n makes links in targetdirectory to all the named source files. The
links made will have the same name as the files being linked to.

EUNICE NOTES

Hard links are not implemented in EUNICE BSD because of VMS restrictions.

SEE ALSO

rm(1), cp(1), mv(1), link(2), readlink(2), stat(2), symlink(2)

April 20, 1989 The Wollongong Group 1

LOCK (1) UNIX Programmer’s Manual LOCK (1)

NavE o
lock — reserve a terminal

SYNOPSIS
lock [=number]

DESCRIPTION
Lock requests a password from the user, reads it again for verification and then it will normally not
relinquish the terminal until the password is repeated. There are three other conditions under it will ter-
minate: it accepts the password for root as an alternative to the one given by the user, it will timeout
after some interval of time, and it may be killed by somebody with the appropiate permission. The

default time limit is 15 minutes but it may be changed with the —number option where number is the
time limit in minutes.

April 20, 1989 The Wollongong Group 1

LOGGER(1) UNIX Programmer’s Manual LOGGER(1)

NOTE
NOT PRESENT IN WOLLONGONG'’S EUNICE!
NAME
logger — make entries in the system log
SYNOPSIS
logger [~ttag] [-ppri] [-i] [-f file] [message ...]
ARGUMENTS

-t tag Mark every line in the log with the specified tag.

-p pri Enter the message with the specified priority. The priority may be specified numerically
or as a “‘facility.level’”” pair. For example, ‘“‘—p local3.info”’ logs the message(s) as
informational level in the local3 facility. The default is ‘‘user.notice.”

-i Log the process id of the logger process with each line.

-f file Log the specified file.

message The message to log; if not specified, the —f file or standard input is logged.

DESCRIPTION
Logger provides a program interface to the syslog(3) system log module.
A message can be given on the command line, which is logged immediately, or a file is read and each
line is logged.
EUNICE NOTES

Not implemented in EUNICE.
EXAMPLES

logger System rebooted

logger —p localQ.notice -t HOSTIDM —f /dev/idmc
SEE ALSO

syslog(3)

April 20, 1989 The Wollongong Group 1

LOGIN(1) UNIX Programmer’s Manual LOGIN(1)

NAME
login — sign on

SYNOPSIS
login [—p] [usemame]

DESCRIPTION
The login command is used when a user initially signs on, or it may be used at any time to change
from one user to another. The latter case is the one summarized above and described here. See ‘‘How
to Get Started’’ for how to dial up initially.
If login is invoked without an argument, it asks for a user name, and, if appropriate, a password. Echo-
ing is turned off (if possible) during the typing of the password, so it will not appear on the written
record of the session.
After a successful login, accounting files are updated and the user is informed of the existence of mail.
The message of the day is printed, as is the time of his last login. Both are suppressed if he has a
‘“hushlogin” file in his home directory; this is mostly used to make life easier for non-human users,
such as uucp.
Login initializes the user and group IDs and the working directory, then executes a command interpreter
(usually csh(1)) according to specifications found in a password file. Argument O of the command
interpreter is the name of the command interpreter with a leading dash (“*-"").
Login also modifies the environment environ(7) with information specifying home directory, command
interpreter, terminal type (if available) and user name. The ‘-p’ argument causes the remainder of the
environment to be preserved, otherwise any previous environment is discarded.
If the file /etc/nologin exists, login prints its contents on the user’s terminal and exits. This is used by
shutdown(8) to stop users logging in when the system is about to go down.
Login is recognized by sh(1) and csh(1) and executed directly (without forking).

FILES
fetc/utmp accounting
fusr/adm/wtmp accounting
/usr/spool/mail/* mail
fetc/motd message-of-the-day
fetc/passwd password file
fetc/nologin stops logins
~ */.hushlogin makes login quieter

EUNICE NOTES
login is available only from DCL. The -p and username options are not supported.

SEE ALSO
init(8), getty(8), mail(1), passwd(1), passwd(5), environ(7), shutdown(8), rlogin(1c)

DIAGNOSTICS
‘‘Login incorrect,”’ if the name or the password is bad.
*“No Shell”’, ““‘cannot open password file’’, ‘‘no directory’’: consult a programming counselor.

BUGS

An undocumented option, —r is used by the remote login server, rlogind(8C) to force login to enter into
an initial connection protocol. -h is used by telnetd(8C) and other servers to list the host from which
the connection was received.

April 20, 1989 The Wollongong Group 1

LOOK(1) UNIX Programmer’s Manual LOOK (1)

O =
look — find lines in a sorted list

SYNOPSIS
look [—df] string [file]

DESCRIPTION
Look consults a sorted file and prints all lines that begin with string. It uses binary search.

The options d and f affect comparisons as in sort(1):
d ‘Dictionary’ order: only letters, digits, tabs and blanks participate in comparisons.
f Fold. Upper case letters compare equal to lower case.

If no file is specified, /usr/dict/words is assumed with collating sequence —df.

FILES
fusr/dict/words

SEE ALSO
sort(1), grep(1)

©

April 20, 1989 The Wollongong Group 1

LOOKBIB(1) UNIX Programmer’s Manual LOOKBIB(1)

NAME
indxbib, lookbib — build inverted index for a bibliography, find references in a bibliography

SYNOPSIS
indxbib database ...
lookbib [—n] database

DESCRIPTION ‘
Indxbib makes an inverted index to the named databases (or files) for use by lookbib(1) and refer(1).
These files contain bibliographic references (or other kinds of information) separated by blank lines.
A bibliographic reference is a set of lines, constituting fields of bibliographic information. Each field
starts on a line beginning with a *“%’’, followed by a key-letter, then a blank, and finally the contents
of the field, which may continue until the next line starting with ‘%",
Indxbib is a shell script that calls /fusr/libfrefer/mkey and /usr/lib/referfinv. The first program, mkey,
truncates words to 6 characters, and maps upper case to lower case. It also discards words shorter than
3 characters, words among the 100 most common English words, and numbers (dates) < 1900 or >
2000. These parameters can be changed; see page 4 of the Refer document by Mike Lesk. The second
program, inv, creates an entry file (.ia), a posting file (.ib), and a tag file (.ic), all in the working direc-
tory.
Lookbib uses an inverted index made by indxbib to find sets of bibliographic references. It reads key-
words typed after the *“>’’ prompt on the terminal, and retrieves records containing all these keywords.
If nothing matches, nothing is returned except another *‘>** prompt.
Lookbib will ask if you need instructions, and will print some brief information if you reply “‘y’’. The
‘“—n’’ flag turns off the prompt for instructions.
It is possible to search multiple databases, as long as they have a common index made by indxbib. In
that case, only the first argument given to indxbib is specified to lookbib.
If lookbib does not find the index files (the .i[abc] files), it looks for a reference file with the same
name as the argument, without the suffixes. It creates a file with a ’.ig’ suffix, suitable for use with
fgrep. 1t then uses this fgrep file to find references. This method is simpler to use, but the .ig file is
slower to use than the .i[abc] files, and does not allow the use of multiple reference files.

FILES
x.ia, x.ib, x.ic, where x is the first argument, or if these are not present, then x.ig, x

SEE ALSO
refer(1), addbib(1), sortbib(1), roffbib(1), lookbib(1)

BUGS

Probably all dates should be indexed, since many disciplines refer to literature written in the 1800s or
earlier.

April 20, 1989 The Wollongong Group 1

o

LORDER(1) UNIX Programmer’s Manual LORDER(1)

NAME
lorder - find ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION
The input is one or more object or library archive (see ar(1)) files. The standard output is a list of pairs
of object file names, meaning that the first file of the pair refers to external identifiers defined in the
second. The output may be processed by tsort(1) to find an ordering of a library suitable for one-pass
access by ld(1).
This brash one-liner intends to build a new library from existing ‘.0’ files.
ar cr library " lorder *.0 | tsort’

The need for lorder may be vitiated by use of ranlib(1), which converts an ordered archive into a ran-
domly accessed library.

FILES
*symref, *symdef
nm(1), sed(1), sort(1), join(1)

SEE ALSO
tsort(1), 1d(1), ar(1), ranlib(1)

BUGS
The names of object files, in and out of libraries, must end with “.0’; nonsense results otherwise.

April 20, 1989 The Wollongong Group 1

LPQ(1)

NAME

UNIX Programmer’s Manual LPQ(1)

Ipq — spool queue examination program

SYNOPSIS

Ipq(+[n]][-1][—Pprinter] [job #...] [user...]

DESCRIPTION

EUNICE

Ipg examines the spooling area used by /pd(8) for printing files on the line printer, and reports the
status of the specified jobs or all jobs associated with a user. lpg invoked without any arguments reports
on any jobs currently in the queue. A -P flag may be used to specify a particular printer, otherwise the
default line printer is used (or the value of the PRINTER variable in the environment). If a + argument
is supplied, [pg displays the spool queue until it empties. Supplying a number immediately after the +
sign indicates that Ipq should sleep n seconds in between scans of the queue. All other arguments sup-
plied are interpreted as user names or job numbers to filter out only those jobs of interest.

For each job submitted (i.e. invocation of pr(1)) Ipq reports the user’s name, current rank in the queue,
the names of files comprising the job, the job identifier (a number which may be supplied to Iprm(1) for
removing a specific job), and the total size in bytes. The -l option causes information about each of the
files comprising the job to be printed. Normally, only as much information as will fit on one line is
displayed. Job ordering is dependent on the algorithm used to scan the spooling directory and is sup-
posed to be FIFO (First in First Out). File names comprising a job may be unavailable (when Ipr(1) is
used as a sink in a pipeline) in which case the file is indicated as ‘‘(standard input)".

If Ipq warns that there is no daemon present (i.e. due to some malfunction), the /pc(8) command can be
used to restart the printer daemon.

NOTES
Ipq displays only the VMS spool queue in the VMS style.

None of the options listed are supported.

FILES
fetc/termcap for manipulating the screen for repeated display
fetc/printcap to determine printer characteristics
fust/spool/* the spooling directory, as determined from printcap
fust/spool/*/cf* control files specifying jobs
fusr/spool/*{lock the lock file to obtain the currently active job
/ust/eun/Ipq EUNICE BSD version of Ipq
fetc/eunice/dev.com where PRINTER is assigned
SEE ALSO
lpr(1), Iprm(1), Ipc(8), 1pd(8)
BUGS
Due to the dynamic nature of the information in the spooling directory lpq may report unreliably. Out-
put formatting is sensitive to the line length of the terminal; this can results in widely spaced columns.
DIAGNOSTICS

April 20

Unable to open various files. The lock file being malformed. Garbage files when there is no daemon
active, but files in the spooling directory.

, 1989 The Wollongong Group 1

LPR(1) UNIX Programmer’s Manual LPR (1)

NAME

Ipr, print — line printer spooler
SYNOPSIS

lpr [-m] [name ...]
DESCRIPTION

Lpr causes the named files to be queued for printing. If no files are named, the standard input is read.
The option —m causes notification via mail(1) to be sent when the job completes.

EUNICE NOTES

The Ipr(1) command has no option for page length or number of lines per page as it is simply a ‘cat’ to
the device /dev/printer. It is important to remember that the concept of ‘paging’ known to pr(l),
nroff(1), and troff(1) is not known to Ipr(1). The VMS printer device driver defaults the number of
lines per page to ‘62’. This default is different from standard 4.3 BSD UNIX in which the default is
‘66’ lines per page. To change defaults for pr(1), nroff(1) and troff(1) refer to the respective manual
pages in the UNIX User’s Reference Manual or the more complete documents in the UNIX User’s Sup-
plementary Documents.

There are two choices here: (a) alias /pr to “VMS PRINT/NOFEED’; (b) with pr(1), nroff(1) or troff(1)
specify the number of lines per page as ‘62’ to override the default of ‘66’ (see nroff(1), pr(1), troff(1)).

For example:
the ‘I’ option to pr(1) ‘pr -162 arg...’
the “.pl’ macro to nroff(1), troff (1) ‘.pl -0.6’
(default is 11 inches, 4 lines is appx. 0.6 inches)
Ipr sends the files to the VMS line printer queue, if the printer is queued.
None of the options listed for /pr are supported.
print is not implemented.
fusr/libflpd and /usr/lib/lpf are not used by the EUNICE BSD Ipr(1).

FILES
/ust/spool/lpd/* spool area, see EUNICE NOTES
fust/lib/lpd printer daemon, see EUNICE NOTES
fusr/lib/lpf filter to handle banners and underlining, see EUNICE NOTES
fust/eun/lpr EUNICE BSD version of lpr
/etc/eunice/dev.com where PRINTER is assigned
SEE ALSO

pr(1), vipr(1)

April 20, 1989 The Wollongong Group 1

LPRM(1) UNIX Programmer’s Manual LPRM(1)

NAME

Iprm — remove jobs from the line printer spooling queue

SYNOPSIS
Iprm [-Pprinter] [-][job # ...][user...]

DESCRIPTION
Iprm will remove a job, or jobs, from a printer’s spool queue. Since the spooling directory is protected
from users, using Iprm is normally the only method by which a user may remove a job.
Iprm without any arguments will delete the currently active job if it is owned by the user who invoked
lprm.
If the - flag is specified, /prm will remove all jobs which a user owns. If the super-user employs this

flag, the spool queue will be emptied entirely. The owner is determined by the user’s login name and
host name on the machine where the lpr command was invoked.

Specifying a user’s name, or list of user names, will cause /prm to attempt to remove any jobs queued
belonging to that user (or users). This form of invoking Iprm is useful only to the super-user.

A user may dequeue an individual job by specifying its job number. This number may be obtained
from the Ipg(1) program, e.g.

% lpq -1
1st: ken [job #013ucbarpa]
(standard input) 100 bytes
% lprm 13
Iprm will announce the names of any files it removes and is silent if there are no jobs in the queue
which match the request list.

Iprm will kill off an active daemon, if necessary, before removing any spooling files. If a daemon is
killed, a new one is automatically restarted upon completion of file removals.

The —P option may be usd to specify the queue associated with a specific printer (otherwise the default
printer, or the value of the PRINTER variable in the environment is used).

EUNICE NOTES ’
None of the options listed for lprm are supported.

Iprm removes jobs from the VMS print queue.

FILES
/etc/printcap printer characteristics file
fusr/spool/* spooling directories
fusr/spool/*/lock lock file used to obtain the pid of the current
daemon and the job number of the currently active job
fusr/eun/lprm EUNICE BSD version of lprm
SEE ALSO
Ipr(1), 1pq(1)
DIAGNOSTICS
‘‘Permission denied” if the user tries to remove files other than his own.
BUGS

Since there are race conditions possible in the update of the lock file, the currently active job may be
incorrectly identified.

April 20, 1989 The Wollongong Group 1

LPTEST(1) UNIX Programmer’s Manual LPTEST(1)

c NOTE

NOT PRESENT IN WOLLONGONG’S EUNICE!

NAME

Iptest — generate lineprinter ripple pattern
SYNOPSIS

Iptest [length [count]]

DESCRIPTION
Lptest writes the traditional "ripple test" pattern on standard output. In 96 lines, this pattern will print
all 96 printable ASCII characters in each position. While originally created to test printers, it is quite
useful for testing terminals, driving terminal ports for debugging purposes, or any other task where a
quick supply of random data is needed.

The length argument specifies the output line length if the the default length of 79 is inappropriate.

The count argument specifies the number of output lines to be generated if the default count of 200 is
inappropriate. Note that if count is to be specified, length must be also be specified.

EUNICE NOTES
Not implemented in EUNICE.

©

April 20, 1989 The Wollongong Group 1

LS(1)

NAME

UNIX Programmer’s Manual LS(1)

Is - list contents of directory

SYNOPSIS

Is [—acdfgilqrstulACLFR] name ...

DESCRIPTION

For each directory argument, Is lists the contents of the directory; for each file argument, Is repeats its
name and any other information requested. By default, the output is sorted alphabetically. When no
argument is given, the current directory is listed. When several arguments are given, the arguments are
first sorted appropriately, but file arguments are processed before directories and their contents.

There are a large number of options:

-

List in long format, giving mode, number of links, owner, size in bytes, and time of last
modification for each file. (See below.) If the file is a special file the size field will instead
contain the major and minor device numbers. If the file is a symbolic link the pathname of the
linked-to file is printed preceded by ‘‘—>".

Include the group ownership of the file in a long output.
Sort by time modified (latest first) instead of by name.

List all entries; in the absence of this option, entries whose names begin with a period (.) are
not listed.

Give size in kilobytes of each file.
If argument is a directory, list only its name; often used with -1 to get the status of a directory.

If argument is a symbolic link, list the file or directory the link references rather than the link
itself.

Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.

Use time of last access instead of last modification for sorting (with the -t option) and/or print-
ing (with the -1 option).

Use time of file creation for sorting or printing.
For each file, print the i-number in the first column of the report.

Force each argument to be interpreted as a directory and list the name found in each slot. This
option turns off -1, -t, —s, and -r, and turns on -a; the order is the order in which entries
appear in the directory.

cause directories to be marked with a trailing ‘/’, sockets with a trailing ‘=’, symbolic links
with a trailing ‘@’, and executable files with a trailing ‘*’.

recursively list subdirectories encountered.
force one entry per line output format; this is the default when output is not to a terminal.
force multi-column output; this is the default when output is to a terminal.

force printing of non-graphic characters in file names as the character ‘?°; this is the default
when output is to a terminal.

The mode printed under the -1 option contains 11 characters which are interpreted as follows: the first
character is

w -6 o

April 20, 1989

if the entry is a directory;

if the entry is a block-type special file;

if the entry is a character-type special file;
if the entry is a symbolic link;

if the entry is a socket, or

The Wollongong Group 1

O

O

LS(1)

UNIX Programmer’s Manual LS(1)

— if the entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to owner per-
missions; the next refers to permissions to others in the same user-group; and the last to all others.
Within each set the three characters indicate permission respectively to read, to write, or to execute the
file as a program. For a directory, ‘execute’ permission is interpreted to mean permission to search the
directory. The permissions are indicated as follows:

r if the file is readable;

w if the file is writable;

x if the file is executable;

~ if the indicated permission is not granted.

The group-execute permission character is given as s if the file has the set-group-id bit set; likewise the
user-execute permission character is given as s if the file has the set-user-id bit set.

The last character of the mode (normally ‘x’ or ‘-’) is t if the 1000 bit of the mode is on. See
chmod(1) for the meaning of this mode.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect blocks is
printed.

EUNICE NOTES

FILES

BUGS

In EUNICE, Is -I will give "not found" on directories or files for which one does not have "read" per-
mission. Is without the option will list the directories or files.

Jetc/passwd to get user id’s for ‘Is -1°.
/etc/group to get group id’s for ‘Is —g’.

Newline and tab are considered printing characters in file names.
The output device is assumed to be 80 columns wide.

The option setting based on whether the output is a teletype is undesirable as ‘‘Is —s’* is much different
than ““Is —s | Ipr”’. On the other hand, not doing this setting would make old shell scripts which used /s
almost certain losers.

April 20, 1989 The Wollongong Group 2

LXREF(1) UNIX Programmer’s Manual LXREF(1)

NAME

Ixref — lisp cross reference program

SYNOPSIS

Ixref [=N] xref-file ... [-a source-file ...]

DESCRIPTION

Lxref reads cross reference file(s) written by the lisp compiler liszt and prints a cross reference listing
on the standard output. Liszt will create a cross reference file during compilation when it is given the
-x switch. Cross reference files usually end in *.x’ and consequently Ixref will append a ‘x’ to the file
names given if necessary. The first option to Ixref is a decimal integer, N, which sets the ignorelevel. If
a function is called more than ignorelevel times, the cross reference listing will just print the number of
calls instead of listing each one of them. The default for ignorelevel is 50.

The -a option causes Ixref to put limited cross reference information in the sources named. [xref will
scan the source and when it comes across a definition of a function (that is a line beginning with ‘(def
it will preceed that line with a list of the functions which call this function, written as a comment pre-
ceeded by ‘,.. ' . All existing lines beginning with ‘;.. * will be removed from the file. If the source file
contains a line beginning ‘;.-’ then this will disable this annotation process from this point on until a
‘;.+’ is seen (however, lines beginning with ‘;.. * will continue to be deleted). After the annoation is
done, the original file foo.l’ is renamed to " “#foo0.I’" and the new file with annotation is named foo.I’

AUTHOR

John Foderaro

SEE ALSO

BUGS

lisp(1), liszt(1)

April 20, 1989 The Wollongong Group 1

O

o

M4 (1)

NAME

UNIX Programmer’s Manual M4 (1)

m4 — macro processor

SYNOPSIS

m4 [files]

DESCRIPTION

M4 is a macro processor intended as a front end for Ratfor, C, and other languages. Each of the argu-
ment files is processed in order; if there are no arguments, or if an argument is ‘-’ the standard input is
read. The processed text is written on the standard output.

Macro calls have the form

name(argl,arg2, . . ., argn)
The ‘(" must immediately follow the name of the macro. If a defined macro name is not followed by a
‘C, it is deemed to have no arguments. Leading unquoted blanks, tabs, and newlines are ignored while
collecting arguments. Potential macro names consist of alphabetic letters, digits, and underscore °_’,
where the first character is not a digit.

Left and right single quotes (" *) are used to quote strings. The value of a quoted string is the string
stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a matching right
parenthesis. Macro evaluation proceeds normally during the collection of the arguments, and any com-
mas or right parentheses which happen to turn up within the value of a nested call are as effective as
those in the original input text. After argument collection, the value of the macro is pushed back onto
the input stream and rescanned.

M4 makes available the following built-in macros. They may be redefined, but once this is done the
original meaning is lost. Their values are null unless otherwise stated.

define The second argument is installed as the value of the macro whose name is the first argu-
ment. Each occurrence of $n in the replacement text, where n is a digit, is replaced by the
n-th argument. Argument 0 is the name of the macro; missing arguments are replaced by

the null string,

undefine removes the definition of the macro named in its argument.

ifdef If the first argument is defined, the value is the second argument, otherwise the third. If
there is no third argument, the value is null. The word unix is predefined on UNIX ver-
sions of m4.

changequote

Change quote characters to the first and second arguments. Changequote without argu-
ments restores the original values (i.e., *).

divert M4 maintains 10 output streams, numbered 0-9. The final output is the concatenation of
the streams in numerical order; initially stream O is the current stream. The divert macro
changes the current output stream to its (digit-string) argument. Output diverted to a stream
other than O through 9 is discarded.

undivert causes immediate output of text from diversions named as arguments, or all diversions if no
argument. Text may be undiverted into another diversion. Undiverting discards the

diverted text.
divhum returns the value of the current output stream.
dnl reads and discards characters up to and including the next newline.
ifelse has three or more arguments. If the first argument is the same string as the second, then

the value is the third argument. If not, and if there are more than four arguments, the pro-
cess is repeated with arguments 4, 5, 6 and 7. Otherwise, the value is either the fourth

April 20, 1989 The Wollongong Group 1

M4(1)

incr

eval

len
index

substr

translit

include
sinclude
syscmd

UNIX Programmer’s Manual M4 (1)

string, or, if it is not present, null.

returns the value of its argument incremented by 1. The value of the argument is calcu-
lated by interpreting an initial digit-string as a decimal number.

evaluates its argument as an arithmetic expression, using 32-bit arithmetic. Operators
include +, —, *, /, %, * (exponentiation); relationals; parentheses.

returns the number of characters in its argument.

returns the position in its first argument where the second argument begins (zero origin), or
-1 if the second argument does not occur.

returns a substring of its first argument. The second argument is a zero origin number
selecting the first character; the third argument indicates the length of the substring. A
missing third argument is taken to be large enough to extend to the end of the first string.

transliterates the characters in its first argument from the set given by the second argument
to the set given by the third. No abbreviations are permitted.

returns the contents of the file named in the argument.
is identical to include, except that it says nothing if the file is inaccessible.
executes the UNIX command given in the first argument. No value is returned.

maketemp fills in a string of XXXXX in its argument with the current process id.

errprint

prints its argument on the diagnostic output file.

dumpdef prints current names and definitions, for the named items, or for all if no arguments are

SEE ALSO

given.

B. W. Kemighan and D. M. Ritchie, The M4 Macro Processor

April 20, 1989

The Wollongong Group 2

MAIL(1) UNIX Programmer’s Manual MAIL(1)

NAME
mail — send and receive mail

SYNOPSIS
mail [-v] [-i] [-n] [-s subject] [user ...]
mail [-v][-i][-n]-f[name]
mail [-=v] [-i][-n]-u user

INTRODUCTION
Mail is a intelligent mail processing system, which has a command syntax reminiscent of ed with lines
replaced by messages.

The -v flag puts mail into verbose mode; the details of delivery are displayed on the users terminal.
The -i flag causes tty interrupt signals to be ignored. This is particularly useful when using mail on
noisy phone lines. The -n flag inhibits the reading of /ust/lib/Mail.rc.

Sending mail. To send a message to one or more people, mail can be invoked with arguments which
are the names of people to whom the mail will be sent. You are then expected to type in your mes-
sage, followed by an EOT (control-Z) at the beginning of a line. A subject may be specified on the
command line by using the -5 flag. (Only the first argument after the —s flag is used as a subject; be
careful to quote subjects containing spaces.) The section below, labeled Replying to or originating mail,
describes some features of mail available to help you compose your letter.

Reading mail. In normal usage mail is given no arguments and checks your mail out of the post office,
then prints out a one line header of each message there. The current message is initially the first mes-
sage (numbered 1) and can be printed using the print command (which can be abbreviated p). You
can move among the messages much as you move between lines in ed, with the commands ‘+’ and ‘-’
moving backwards and forwards, and simple numbers.

Disposing of mail. After examining a message you can delete (d) the message or reply (r) to it. Dele-
tion causes the mail program to forget about the message. This is not irreversible; the message can be
undeleted (u) by giving its number, or the mail session can be aborted by giving the exit (x) command.
Deleted messages will, however, usually disappear never to be seen again.

Specifying messages. Commands such as print and delete can be given a list of message numbers as
arguments to apply to a number of messages at once. Thus ‘“‘delete 1 2°° deletes messages 1 and 2,
while *‘delete 1-5 deletes messages 1 through 5. The special name ‘“‘*’* addresses all messages, and
*“$”” addresses the last message; thus the command top which prints the first few lines of a message
could be used in ‘‘top *** to print the first few lines of all messages.

Replying to or originating mail. You can use the reply command to set up a response to a message,
sending it back to the person who it was from. Text you then type in, up to an end-of-file, defines the
contents of the message. While you are composing a message, mail treats lines beginning with the
character *~’ specially. For instance, typing ‘“"m’’ (alone on a line) will place a copy of the current
message into the response right shifting it by a tabstop. Other escapes will set up subject fields, add
and delete recipients to the message and allow you to escape to an editor to revise the message or to a
shell to run some commands. (These options are given in the summary below.)

Ending a mail processing session. You can end a mail session with the quit (q) command. Messages
which have been examined go to your mbox file unless they have been deleted in which case they are
discarded. Unexamined messages go back to the post office. The —f option causes mail to read in the
contents of your mbox (or the specified file) for processing; when you quit, mail writes undeleted mes-
sages back to this file. The -u flag is a short way of doing "mail -f /usr/spool/mail/user”.

Personal and systemwide distribution lists. It is also possible to create a personal distribution lists so
that, for instance, you can send mail to ‘‘cohorts’ and have it go to a group of people. Such lists can
be defined by placing a line like

alias cohorts bill ozalp jkf mark kridle@ucbcory

April 20, 1989 The Wollongong Group 1

MAIL(1) UNIX Programmer’s Manual MAIL (1)

in the file .mailrc in your home directory. The current list of such aliases can be displayed with the
alias (a) command in mail. System wide distribution lists can be created by editing /usr/lib/aliases, see
aliases(5) and sendmail(8); these are kept in a different syntax. In mail you send, personal aliases will
be expanded in mail sent to others so that they will be able to reply to the recipients. System wide
aliases are not expanded when the mail is sent, but any reply returned to the machine will have the sys-
tem wide alias expanded as all mail goes through sendmail.

Network mail (ARPA, UUCP, Berknet) See mailaddr(7) for a description of network addresses.

Mail has a number of options which can be set in the .mailrc file to alter its behavior; thus ‘‘set askcc”’
enables the ‘‘askcc’’ feature. (These options are summarized below.)

SUMMARY
(Adapted from the ‘Mail Reference Manual’)

Each command is typed on a line by itself, and may take arguments following the command word. The
command need not be typed in its entirety — the first command which matches the typed prefix is used.
For commands which take message lists as arguments, if no message list is given, then the next mes-
sage forward which satisfies the command’s requirements is used. If there are no messages forward of
the current message, the search proceeds backwards, and if there are no good messages at all, mail
types ‘‘No applicable messages’ and aborts the command.

- Goes to the previous message and prints it out. If given a numeric argument n, goes to
the n-th previous message and prints it.

? Prints a brief summary of commands.

! Executes the UNIX shell command which follows.

Print (P) Like print but also prints out ignored header fields. See also print , ignore and
retain.

Reply (R) Reply to originator. Does not reply to other recipients of the original message.

Type (T) Identical to the Print command.

alias (a) With no arguments, prints out all currently-defined aliases. With one argument, prints

out that alias. With more than one argument, creates an new or changes an on old alias.

alternates (alt) The alternates command is useful if you have accounts on several machines. It can
be used to inform mail that the listed addresses are really you. When you reply to mes-
sages, mail will not send a copy of the message to any of the addresses listed on the
alternates list. If the alternates command is given with no argument, the current set of
alternate names is displayed.

chdir (c) Changes the user’s working directory to that specified, if given. If no directory is
given, then changes to the user’s login directory. v

copy (co) The copy command does the same thing that save does, except that it does not mark
the messages it is used on for deletion when you quit.

delete (d) Takes a list of messages as argument and marks them all as deleted. Deleted mes-
sages will not be saved in mbox, nor will they be available for most other commands.

dp (also dt) Deletes the current message and prints the next message. If there is no next
message, mail says ‘‘at EOF.”’

edit (e) Takes a list of messages and points the text editor at each one in turn. On return
from the editor, the message is read back in.

exit (ex or x) Effects an immediate return to the Shell without modifying the user’s system
mailbox, his mbox file, or his edit file in -f.

file (fi) The same as folder.

April 20, 1989 The Wollongong Group 2

MAIL (1)

o folders

folder

from
headers

help
hold

ignore

mail
o mbox

next

preserve

print
quit

reply

respond
retain

©

April 20, 1989

UNIX Programmer’s Manual MAIL (1)

List the names of the folders in your folder directory.

(fo) The folder command switches to a new mail file or folder. With no arguments, it
tells you which file you are currently reading. If you give it an argument, it will write
out changes (such as deletions) you have made in the current file and read in the new
file. Some special conventions are recognized for the name. # means the previous file, %
means your system mailbox, %user means user’s system mailbox, & means your ~/mbox
file, and +folder means a file in your folder directory.

(f) Takes a list of messages and prints their message headers.

(h) Lists the current range of headers, which is an 18 message group. If a “‘+”’ argument
is given, then the next 18 message group is printed, and if a ‘‘~’’ argument is given, the
previous 18 message group is printed.

A synonym for ?

(ho, also preserve) Takes a message list and marks each message therein to be saved in
the user’s system mailbox instead of in mbox. Does not override the delete command.

N.B.: Ignore has been superseded by retain.

Add the list of header fields named to the ignored list. Header fields in the ignore list
are not printed on your terminal when you print a message. This command is very handy
for suppression of certain machine-generated header fields. The Type and Print com-
mands can be used to print a message in its entirety, including ignored fields. If ignore is
executed with no arguments, it lists the current set of ignored fields.

(m) Takes as argument login names and distribution group names and sends mail to those
people.

Indicate that a list of messages be sent to mbox in your home directory when you quit.
This is the default action for messages if you do not have the hold option set.

(n like + or CR) Goes to the next message in sequence and types it. With an argument
list, types the next matching message.

(pre) A synonym for hold.
(p) Takes a message list and types out each message on the user’s terminal.

(q) Terminates the session, saving all undeleted, unsaved messages in the user’s mbox file
in his login directory, preserving all messages marked with hold or preserve or never
referenced in his system mailbox, and removing all other messages from his system mail-
box. If new mail has arrived during the session, the message ‘‘You have new mail’’ is
given. If given while editing a mailbox file with the —f flag, then the edit file is rewrit-
ten. A return to the Shell is effected, unless the rewrite of edit file fails, in which case
the user can escape with the exit command.

(r) Takes a message list and sends mail to the sender and all recipients of the specified
message. The default message must not be deleted.

A synonym for reply.

Add the list of header fields named to the retained list. Only the header fields in the
retain list are shown on your terminal when you print a message. All other header fields
are suppressed. The Type and Print commands can be used to print a message in its
entirety. If retain is executed with no arguments, it lists the current set of retained
fields.

The Wollongong Group 3

MAIL (1)

save

set

shell
size
source
top

type
unalias

undelete
unread
unset
visual

write

xit

UNIX Programmer’s Manual MAIL (1)

(s) Takes a message list and a filename and appends each message in turn to the end of
the file. The filename in quotes, followed by the line count and character count is
echoed on the user’s terminal.

(se) With no arguments, prints all variable values. Otherwise, sets option. Arguments
are of the form ‘‘option=value’’ (no space before or after =) or ‘‘option.”’

(sh) Invokes an interactive version of the shell.
Takes a message list and prints out the size in characters of each message.
(s0) The source command reads mail commands from a file.

Takes a message list and prints the top few lines of each. The number of lines printed is
controlled by the variable toplines and defaults to five.

(t) A synonym for print.

Takes a list of names defined by alias commands and discards the remembered groups of
users. The group names no longer have any significance.

(u) Takes a message list and marks each message as not being deleted. _

(U) Takes a message list and marks each message as not having been read.

Takes a list of option names and discards their remembered values; the inverse of set.
(v) Takes a message list and invokes the display editor on each message.

(w) Similar to save, except that only the message body (without the header) is saved.
Extremely useful for such tasks as sending and receiving source program text over the
message system.

(x) A synonym for exit.

Mail presents message headers in windowfuls as described under the headers command.
You can move mail’s attention forward to the next window with the z command. Also,
you can move to the previous window by using z~.

Here is a summary of the tilde escapes, which are used when composing messages to perform special
functions. Tilde escapes are only recognized at the beginning of lines. The name ‘‘tilde escape’’ is
somewhat of a misnomer since the actual escape character can be set by the option escape.

~Icommand
~b name ...

~f messages

“h

“m messages

P
“q

April 20, 1989

Execute the indicated shell command, then return to the message.

Add the given names to the list of carbon copy recipients but do not make the names
visible in the Cc: line ("blind" carbon copy).

Add the given names to the list of carbon copy recipients.
Read the file ‘‘dead.letter’” from your home directory into the message.

Invoke the text editor on the message collected so far. After the editing session is
finished, you may continue appending text to the message.

Read the named messages into the message being sent. If no messages are specified,
read in the current message.

Edit the message header fields by typing each one in tumn and allowing the user to
append text to the end or modify the field by using the current terminal erase and kill
characters.

Read the named messages into the message being sent, shifted right one tab. If no mes-
sages are specified, read the current message.

Print out the message collected so far, prefaced by the message header fields.
Abort the message being sent, copying the message to ‘‘dead.letter’’ in your home

The Wollongong Group 4

O

MAIL (1) UNIX Progrmﬁmer’s Manual MAIL (1)

e directory if save is set.

©

April 20, 1989 The Wollongong Group 5

MAIL (1)

“r filename
~s string
~t name ...

\4

“w filename

~ |command

T~ string

UNIX Programmer’s Manual MAIL (1)

Read the named file into the message.
Cause the named string to become the current subject field.
Add the given names to the direct recipient list.

Invoke an alternate editor (defined by the VISUAL option) on the message collected so
far. Usually, the alternate editor will be a screen editor. After you quit the editor, you
may resume appending text to the end of your message.

Write the message onto the named file.

Pipe the message through the command as a filter. If the command gives no output or
terminates abnormally, retain the original text of the message. The command fmz(1) is
often used as command to rejustify the message.

Insert the string of text in the message prefaced by a single ~. If you have changed the
escape character, then you should double that character in order to send it.

Options are controlled via the set and unset commands. Options may be either binary, in which case it
is only significant to see whether they are set or not; or string, in which case the actual value is of
interest. The binary options include the following:

append
ask
askee
autoprint
debug
dot

hold

ignore
ignoreeof

metoo
nosave
Replyall

quiet
verbose

April 20, 1989

Causes messages saved in mbox to be appended to the end rather than prepended.
(This is set in /usr/lib/Mail.rc on version 7 systems.)

Causes mail to prompt you for the subject of each message you send. If you respond
with simply a newline, no subject field will be sent.

Causes you to be prompted for additional carbon copy recipients at the end of each
message. Responding with a newline indicates your satisfaction with the current list.

Causes the delete command to behave like dp — thus, after deleting a message, the
next one will be typed automatically.

Setting the binary option debug is the same as specifying —-d on the command line
and causes mail to output all sorts of information useful for debugging mail.

The binary option dot causes mail to interpret a period alone on a line as the termina-
tor of a message you are sending. Dot is set by default. Use the unser dot command
to override the default.

This option is used to hold messages in the system mailbox by default.
Causes interrupt signals from your terminal to be ignored and echoed as @'s.

An option related to dot is ignoreeof which makes mail refuse to accept a control-z as
the end of a message. Ignoreeof also applies to mail command mode.

Usually, when a group is expanded that contains the sender, the sender is removed
from the expansion. Setting this option causes the sender to be included in the group.

Normally, when you abort a message with two RUBOUT, mail copies the partial letter
to the file “‘dead.letter’” in your home directory. Setting the binary option nosave
prevents this.

Reverses the sense of reply and Reply commands.
Suppresses the printing of the version when first invoked.

Setting the option verbose is the same as using the -v flag on the command line.
When mail runs in verbose mode, the actual delivery of messages is displayed on he
users terminal.

The Wollongong Group 6

MAIL(1) UNIX Programmer’s Manual MAIL (1)

o The following options have string values:

EDITOR Pathname of the text editor to use in the edit command and ~e escape. If not
defined, then a default editor is used.

PAGER Pathname of the program to use in the more command or when crt variable is set. A
default paginator is used if this option is not defined.

SHELL Pathname of the shell to use in the ! command and the ~! escape. A default shell is
used if this option is not defined.

VISUAL Pathname of the text editor to use in the visual command and ~v escape.

crt The valued option crt is used as a threshold to determine how long a message must
be before PAGER is used to read it.

escape If defined, the first character of this option gives the character to use in the place of -
to denote escapes.

folder The name of the directory to use for storing folders of messages. If this name begins

with a ‘/’, mail considers it to be an absolute pathname; otherwise, the folder direc-
tory is found relative to your home directory.

record If defined, gives the pathname of the file used to record all outgoing mail. If not
defined, then outgoing mail is not so saved.

toplines If defined, gives the number of lines of a message to be printed out with the top com-
mand; normally, the first five lines are printed.
FILES
/usr/spool/mail/* post office
~ /mbox your old mail
0 ~ /. mailrc file giving initial mail commands
/tmp/R# temporary for editor escape
fasr/lib/Mail help* help files
fusr/lib/Mail.rc system initialization file
Message* temporary for editing messages
SEE ALSO
binmail(1), fmt(1), newaliases(1), aliases(5),
mailaddr(7), sendmail(8)
‘The Mail Reference Manual’
BUGS
There are many flags that are not documented here. Most are not useful to the general user.
Usually, mail is just a link to Mail, which can be confusing.
AUTHOR

Kurt Shoens

©

April 20, 1989 The Wollongong Group 7

MAILINFO(1W) UNIX Programmer’s Manual MAILINFO (1W)

NAME
mailinfo - tells the user that UNIX mail has been received
SYNOPSIS
mailinfo
DESCRIPTION
Mailinfo is used to tell the user that he or she has received UNIX mail. Mailinfo does not provide
information about VMS mail.
EUNICE NOTES
Mailinfo is a EUNICE BSD specific command. It is stored in /usr/eun. This command can be run as

a part of LOGIN.COM to tell the user that he or she has received UNIX mail, without the user entering
the EUNICE BSD environment. Enter the following line in LOGIN.COM:

$RUN TWGSUSR:[EUNJMAILINFO.

April 20, 1989 The Wollongong Group 1

©

MAKE (1) UNIX Programmer’s Manual MAKE(1)

NAME

make — maintain program groups

SYNOPSIS

make [—f makefile] [option] ... file

DESCRIPTION

Make executes commands in makefile to update one or more target names. Name is typically a pro-
gram. If no -f option is present, ‘makefile’ and ‘Makefile’ are tried in order. If makefile is ‘-, the
standard input is taken. More than one -f option may appear.

Make updates a target if it depends on prerequisite files that have been modified since the target was
last modified, or if the target does not exist.

Makefile contains a sequence of entries that specify dependencies. The first line of an entry is a blank-
separated list of targets, then a colon, then a list of prerequisite files. Text following a semicolon, and
all following lines that begin with a tab, are shell commands to be executed to update the target. If a
name appears on the left of more than one ‘colon’ line, then it depends on all of the names on the right
of the colon on those lines, but only one command sequence may be specified for it. If a name appears
on a line with a double colon :: then the command sequence following that line is performed only if the
name is out of date with respect to the names to the right of the double colon, and is not affected by
other double colon lines on which that name may appear.

Two special forms of a name are recognized. A name like a(b) means the file named b stored in the
archive named a. A name like a((b)) means the file stored in archive a containing the entry point b.

Sharp and newline surround comments.

The following makefile says that ‘pgm’ depends on two files ‘a.0’ and ‘b.0’, and that they in turn
depend on ‘.c’ files and a common file ‘incl’.

pgm: a.o b.o

cc a.0 b.o -Im -0 pgm
a.0: incl a.c

¢C -C a.c
b.o: incl b.c

cc—c bc

Makefile entries of the form
stringl = string2

are macro definitions. Subsequent appearances of $(stringl) or ${stringl } are replaced by string2. If
stringl is a single character, the parentheses or braces are optional.

Make infers prerequisites for files for which makefile gives no construction commands. For example, a
¢’ file may be inferred as prerequisite for a .0’ file and be complled to produce the ‘.0’ file. Thus the
precedmg example can be done more briefly:

pgm: a.o b.o
cc a.0 b.o -Im -0 pgm
a.0 b.o: incl

Prerequisites are inferred according to selected suffixes listed as the ‘prerequisites’ for the special name
*.SUFFIXES’; multiple lists accumulate; an empty list clears what came before. Order is significant;
the first possible name for which both a file and a rule as described in the next paragraph exist is
inferred. The default list is

SUFFIXES: out.oc.er.f.y.ls.p

The rule to create a file with suffix s2 that depends on a similarly named file with suffix s/ is specified
as an entry for the ‘target’ s/52. In such an entry, the special macro $* stands for the target name with

April 20, 1989 The Wollongong Group 1

MAKE(1) UNIX Programmer’s Manual MAKE (1)

suffix deleted, $@ for the full target name, $< for the complete list of prerequisites, and $? for the list
of prerequisites that are out of date. For example, a rule for making optimized ‘.0’ files from ‘.c’ files
is

£.0: ; cc < -0 -0 $@ $*.c

Certain macros are used by the default inference rules to communicate optional arguments to any result-
ing compilations. In particular, ‘CFLAGS’ is used for cc(1) options, ‘FFLAGS’ for f77(1) options,
‘PFLAGS’ for pc(1) options, and ‘LFLAGS’ and ‘YFLAGS’ for lex and yacc(l) options. In addition,
the macro ‘MFLAGS’ is filled in with the initial command line options supplied to make. This
simplifies maintaining a hierarchy of makefiles as one may then invoke make on makefiles in subdirec-
tories and pass along useful options such as -k.

Another special macro is ‘VPATH’. The ‘VPATH’ macro should be set to a list of directories
separated by colons. When make searches for a file as a result of a dependency relation, it will first
search the current directory and then each of the directories on the ‘VPATH’ list. If the file is found,
the actual path to the file will be used, rather than just the filename. If ‘VPATH’ is not defined, then
only the current directory is searched.

One use for ‘VPATH’ is when one has several programs that compile from the same source. The
source can be kept in one directory and each set of object files (along with a separate makefile) would
be in a separate subdirectory. The ‘VPATH’ macro would point to the source directory in this case.

Command lines are executed one at a time, each by its own shell. A line is printed when it is executed
unless the special target ‘.SILENT”’ is in makefile, or the first character of the command is ‘@’.

Commands returning nonzero status (see intro(1)) cause make to terminate unless the special target
*IGNORE’ is in makefile or the command begins with <tab><hyphen>.

Interrupt and quit cause the target to be deleted unless the target is a directory or depends on the spe-
cial name ‘. PRECIOUS’.

Other options:

-i Equivalent to the special entry ‘. IGNORE:’.

-k When a command returns nonzero status, abandon work on the current entry, but continue on
branches that do not depend on the current entry.

-n Trace and print, but do not execute the commands needed to update the targets.

-t Touch, i.e. update the modified date of targets, without executing any commands.

-T Equivalent to an initial special entry ‘. SUFFIXES:” with no list.
- Equivalent to the special entry ‘.SILENT:’.

FILES

makefile, Makefile
SEE ALSO

sh(1), touch(1), £77(1), pe(1)

S. 1. Feldman Make — A Program for Maintaining Computer Programs
BUGS

Some commands return nonzero status inappropriately. Use —i to overcome the difficulty.
Commands that are directly executed by the shell, notably cd(1), are ineffectual across newlines in
make.

‘VPATH’ is intended to act like the System V ‘VPATH’ support, but there is no guarantee that it func-
tions identically.

April 20, 1989 The Wollongong Group 2

O

O

©

MAN(1) UNIX Programmer’s Manual MAN(1)

NAME

man - find manual information by keywords; print out the manual

SYNOPSIS

man [-] [=M path] [section] title ...
man -k keyword ...
man -f file ...

DESCRIPTION

Man is a program which gives information from the programmers manual. It can be asked for one line
descriptions of commands specified by name, or for all commands whose description contains any of a

 set of keywords. It can also provide on-line access to the sections of the printed manual.

When given the option -k and a set of keywords, man prints out a one line synopsis of each manual
sections whose listing in the table of contents contains one of those keywords.

When given the option —f and a list of file names, man attempts to locate manual sections related to
those files, printing out the table of contents lines for those sections.

When neither -k nor f is specified, man formats a specified set of manual pages. If a section specifier
is given man looks in the that section of the manual for the given titles. Section is either an Arabic sec-
tion number (3 for instance), or one of the words ‘‘new,”” *‘local,”” ‘‘old,” or ‘‘public.”” A section
number may be followed by a single letter classifier (for instance, 1g, indicating a graphics program in
section 1). If section is omitted, man searches all sections of the manual, giving preference to com-
mands over subroutines in system libraries, and printing the first section it finds, if any.

If the standard output is a teletype, or if the flag — is given, man pipes its output through more(1) with
the option —s to crush out useless blank lines and to stop after each page on the screen. Hit a space to
continue, a control-D to scroll 11 more lines when the output stops.

Normally man checks in a standard location for manual information (fusr/man). This can be changed
by supplying a search path (a la the shell) with the -M flag. The search path is a colon (*:") separated
list of directories in which manual subdirectories may be found; e.g. ‘‘/usr/local:/usr/man’’. If the
environment variable ‘MANPATH’ is set, its value is used for the default path. If a search path is sup-
plied with the -k or ~f options, it must be specified first.

Man will look for the manual page in either of two forms, the nroff source or preformatted pages. If
either version is available, the manual page will be displayed. If the preformatted version is available,
and it has a more recent modify time than the nroff source, it will be promptly displayed. Otherwise,
the manual page will be formatted with nroff and displayed. If the user has permission, the formatted
manual page will be deposited in the proper place, so that later invocations of man will not need to for-
mat the page again.

FILES
/usr/man standard manual area
/usr/man/man?/* directories containing source for manuals
fust/man/cat?/* directories containing preformatted pages
fusr/man/whatis keyword database

SEE ALSO
apropos(1), more(1), whereis(1), catman(8)

BUGS

The manual is supposed to be reproducible either on the phototypesetter or on a typewriter. However,
on a typewriter some information is necessarily lost.

April 20, 1989 The Wollongong Group 1

MERGE(1) UNIX Programmer’s Manual MERGE (1)

NAME

merge — three-way file merge

SYNOPSIS
merge [-p] filel file2 file3

DESCRIPTION
Merge incorporates all changes that lead form file2 to file3 into filel. The result goes to std. output if -p
is present, into filel otherwise. Merge is useful for combining separate changes to an original. Suppose
file2 is the original, and both filel and file3 are modifications of file2. Then merge combines both
changes.

An overlap occurs if both filel and file3 have changes in a common segment of lines. Merge prints
how many overlaps occurred, and includes both alternatives in the result. The alternatives are delimited
as follows:

<<<<<< filel
lines in filel

lines in file3
>>>>>>> file3

If there are overlaps, the user should edit the result and delete one of the alternatives.

IDENTIFICATION

Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.

Revision Number: 3.0 ; Release Date: 82/11/25 .

Copyright © 1982 by Walter F. Tichy.
SEE ALSO
diff3 (1), diff (1), rcsmerge (1), co (1).

April 20, 1989 The Wollongong Group 1

MESG(1) UNIX Programmer’s Manual MESG (1)

NAME
mesg — permit or deny messages
SYNOPSIS
mesg[n][y]
DESCRIPTION ‘
Mesg with argument n forbids messages via write and talk(1) by revoking non-user write permission on
the user’s terminal. Mesg with argument y reinstates permission. All by itself, mesg reports the current
state without changing it.
FILES
/dev/tty*
SEE ALSO
write(1), talk(1)

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

April 20, 1989 The Wollongong Group 1

MKDIR (1) UNIX Programmer’s Manual MKDIR (1)

NAME
mkdir — make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION
Mkdir creates specified directories in mode 777. Standard entries, ‘.’, for the directory itself, and ©..’
for its parent, are made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO
rmdir(1)

April 20, 1989 The Wollongong Group 1

©

MKSTR (1) UNIX Programmer’s Manual MKSTR (1)

NAME
mkstr — create an error message file by massaging C source
SYNOPSIS
mkstr [-] messagefile prefix file ...
DESCRIPTION
Mkstr is used to create files of error messages. Its use can make programs with large numbers of error
diagnostics much smaller, and reduce system overhead in running the program as the error messages do
not have to be constantly swapped in and out. .
Mkstr will process each of the specified files, placing a massaged version of the input file in a file
whose name consists of the specified prefix and the original name. A typical usage of mkstr would be
mKstr pistrings xx *.c
This command would cause all the error messages from the C source files in the current directory to be
placed in the file pistrings and processed copies of the source for these files to be placed in files whose
names are prefixed with xx.
To process the error messages in the source to the message file mkstr keys on the string ‘error("” in the
input stream. Each time it occurs, the C string starting at the *"* is placed in the message file followed
by a null character and a new-line character; the null character terminates the message so it can be
easily used when retrieved, the new-line character makes it possible to sensibly cat the error message
file to see its contents. The massaged copy of the input file then contains a Iseek pointer into the file
which can be used to retrieve the message, i.c.:
char efilname[] = "/usr/lib/pi_strings";
int efil = -1;
error(al, a2, a3, a4)
{
char buf[256];
if (efil < 0) {
efil = open(efilname, 0);
if (efil < 0) {
00ps:
perror(efilname);
exit(1);
)
}
if (Iseek(efil, (long) al, 0) Il read(efil, buf, 256) <= 0)
goto oops;
printf(buf, a2, a3, ad);
} .
The optional - causes the error messages to be placed at the end of the specified message file for
recompiling part of a large mkstr ed program.
SEE ALSO

Iseek(2), xstr(1)

April 20, 1989 The Wollongong Group 1

MORE(1) UNIX Programmer’s Manual MORE (1)

NAME

more, page — file perusal filter for crt viewing

SYNOPSIS

more [~cdfisu] [-n] [+linenumber 1 { +/pattern] [name ...]

page more options

DESCRIPTION

More is a filter which allows examination of a continuous text one screenful at a time on a soft-copy
terminal. It normally pauses after each screenful, printing --More-- at the bottom of the screen. If the
user then types a carriage return, one more line is displayed. If the user hits a space, another screenful
is displayed. Other possibilities are enumerated later.

The command line options are:

-n An integer which is the size (in lines) of the window which more will use instead of the
default,

—< More will draw each page by beginning at the top of the screen and erasing each line just
before it draws on it. This avoids scrolling the screen, making it easier to read while more is
writing. This option will be ignored if the terminal does not have the ability to clear to the
end of a line.

-d More will prompt the user with the message "Press space to continue, q” to quit." at the end
of each screenful, and will respond to subsequent illegal user input by printing "Press "h” for
instructions.” instead of ringing the bell. This is useful if more is being used as a filter in
some setting, such as a class, where many users may be unsophisticated.

—f This causes more to count logical, rather than screen lines. That is, long lines are not folded.
This option is recommended if nroff output is being piped through ul, since the latter may gen-
erate escape sequences. These escape sequences contain characters which would ordinarily
occupy screen positions, but which do not print when they are sent to the terminal as part of an
escape sequence. Thus more may think that lines are longer than they actually are, and fold
lines erroneously.

-1 Do not treat “L (form feed) specially. If this option is not given, more will pause after any line
that contains a "L, as if the end of a screenful had been reached. Also, if a file begins with a
form feed, the screen will be cleared before the file is printed.

- Squeeze multiple blank lines from the output, producing only one blank line. Especially help-
ful when viewing nroff output, this option maximizes the useful information present on the
screen.

-u Normally, more will handle underlining such as produced by nroff in a manner appropriate to
the particular terminal: if the terminal can perform underlining or has a stand-out mode, more
will output appropriate escape sequences to enable underlining or stand-out mode for under-
lined information in the source file. The —u option suppresses this processing.

+linenumber
Start up at linenumber.

+/pattern
Start up two lines before the line containing the regular expression pattern.

If the program is invoked as page, then the screen is cleared before each screenful is printed (but only
if a full screenful is being printed), and k — 1 rather than k — 2 lines are printed in each screenful,
where k is the number of lines the terminal can display.

More looks in the file /etc/termcap to determine terminal characteristics, and to determine the default
window size. On a terminal capable of displaying 24 lines, the default window size is 22 lines.

April 20, 1989 The Wollongong Group 1

o

O

o

©

MORE (1)

UNIX Programmer’s Manual MORE (1)

More looks in the environment variable MORE to pre-set any flags desired. For example, if you prefer
to view files using the —c mode of operation, the csh command setenv MORE -c or the sh command
sequence MORE="-c’ ; export MORE would cause all invocations of more , including invocations by
programs such as man and msgs , to use this mode. Normally, the user will place the command
sequence which sets up the MORE environment variable in the .cshrc or .profile file.

If more is reading from a file, rather than a pipe, then a percentage is displayed along with the --More--
prompt. This gives the fraction of the file (in characters, not lines) that has been read so far.

Other sequences which may be typed when more pauses, and their effects, are as follows (i is an
optional integer argument, defaulting to 1) :

i <space>

display i more lines, (or another screenful if no argument is given)

D display 11 more lines (a *‘scroll’’). If i is given, then the scroll size is set to i.

d same as “D (control-D)

iz same as typing a space except that i, if present, becomes the new window size.

is skip i lines and print a screenful of lines

if skip i screenfuls and print a screenful of lines

ib skip back i screenfuls and print a screenful of lines

i'B same as b

q or Q Exit from more.

= Display the current line number.

\ Start up the editor vi at the current line.

h Help command; give a description of all the more commands.

ifexpr search for the i-th occurrence of the regular expression expr. If there are less than i
occurrences of expr, and the input is a file (rather than a pipe), then the position in the file
remains unchanged. Otherwise, a screenful is displayed, starting two lines before the place
where the expression was found. The user’s erase and kill characters may be used to edit the
regular expression. Erasing back past the first column cancels the search command.

in search for the i-th occurrence of the last regular expression entered.
(single quote) Go to the point from which the last search started. If no search has been per-
formed in the current file, this command goes back to the beginning of the file.

!command
invoke a shell with command . The characters ‘%’ and ‘!’ in "command" are replaced with the
current file name and the previous shell command respectively. If there is no current file
name, ‘%’ is not expanded. The sequences "%" and "\!" are replaced by "%" and "!" respec-
tively.

i:n skip to the i -th next file given in the command line (skips to last file if n doesn’t make sense)

ip skip to the i -th previous file given in the command line. If this command is given in the mid-
dle of printing out a file, then more goes back to the beginning of the file. If i doesn’t make
sense, more skips back to the first file. If more is not reading from a file, the bell is rung and
nothing else happens.

:f display the current file name and line number.

:q or :Q exit from more (same as q or Q).

April 20, 1989

The Wollongong Group 2

MORE(1) UNIX Programmer’s Manual MORE(1)

FI