F—

@ nreracTIVE COMPUTER SYSTEMS, INC. "~
I s B DIMARCO ROAD « TAMPA, FLORIDA 33614

First Edition 1979

All rights reserved. Reproduction or use, without express
‘”permlslon, of editorial or pictorial content, in any manner
is prohlblted No patent liability is assumed with respect

\i_to the use of the 1nformat10n contained herein. While every
‘precaution has- ‘been taken in the preparation of this manual,

the publisher assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages from
the use of the information contained herein.

“© copyright 1979,
Interactive Computer Systems, Inc.
6403 DiMarco Rd. Tampa, F1 33614

b

Irteractive Computer Sustems. Inc. OmniFORTH CONTENTS

1 OmriFORTH INTRODUCTION

1.1 IMbroduction .+ o e « ¢ o = o o o o s o o o = 1=1
1.1.1 What i OMAiFORTH & & 2 o & o o = = =« o a « « 1=1
1.1.2 OmmiFORTH iz Interactive . o« o ¢ o o o = « o 1=1
1.1.3 OmniFORTH is Stiructured « « ¢ o o o o« = « o « 1=2
1.1.4 OmniFORTH is Extensible o« ¢ ¢ o « o s = o « « 1-2
1.1.5 Present Dag OmmiFORTH & & ¢ ¢ o o o = = = & « 12
1.2 The Stack and Arithmetic « ¢ o o o = = o o« « 1=-2
1.2.1 Stack OPErabore « o o o « o o o= « = = a » o o 1=3
1.2.2 Aritmetic OPerators -« o « o = o « =« » = a « « 1=3
1.2.3 OubtrPut OFSrabor o« o o « o « = « » o = = =« » o 1=4
1.3 MHotaticns and EXamPles « « = o o « o« « o « » 1—4
1.3.1 Fnter = Number om the Stack &« &« « « o« « ¢ » « 1-4
1.3.2 Erter Mumber and Prinmt « ¢« ¢ o o o o = o« o 18
- :u -: F!ddit-i‘:!n -Eﬂ"n:! Pl’"int ® ® ® ®m m ® ® ®© = ® = = 1'—5 .
1.3. Taw Caleulation « « o« = « v o = a =« s = = = o 1-6
- Ge D All the OFera3tolrS « o« o « = o« = = s s « = = » 16
i.4 Defining Hew Words (ComPilins) . ¢« o o o « o 1=7
1.4.1 The Colon Defimition o « « o o = o = » « « « 1-8
1 - 5 Ci'.ll'lditiol‘lals - " ® ®» ® @ @ ®w ® = 3 & ®w ® o = 1-'9
1 - 5- 1 CD"’IF‘Er‘i ES0M UO!"dE.- ® ® ®™m ® ® ® = ®2 e 8 w @ ®v = 1—'9
1 - 5- : IF Statem@ﬁt - - - - » - - - - - » - - - - 1_13
1.5.3 IF te) ... ELSE ffP) eese ENDIF . ¢ ¢ o o o « 1—-10
1.5.4 IF 4P voe EMDIF v v o o o = o« o » o = o = « 1=11
1.5.5 Hestinmg IF Statement® v ¢ o o o o o« « » = « o« 1=11
1.89.6 DO oo LOOPE & 4 o o « o o s« o« =« a s « o o » 1-12
1.5.7 Examrles: DO voe LOOP & ¢ & ¢ o « o = = o » » 1-12
1.9.8 Memors DumP using DO ... LOOP v ¢ « o o =« « « 1-13
1.8.2 Heztingd DO .. LOOPS o o o o « o =« a = o o o« 1=13
1.5.18 BEGIM ... UMTIL LOOP « « o « = = = « =« » = « i—14
1.& Rofererce SUPPliment . o o o o =« « o « o =« « 1=13
1.68.1 Humber Base Comversions « « « « o = = = « = « 1=135
1.6.2 Cormztants « « « « e o o » ® v« = s« = =« 1-16
1.56.3 liagr-iables. Arrads and Buffers e 2 o a « « » « 1-16
1.5.4 Double Mumberzs 32 bitd & ¢ ¢ o o o = a o o « 1=17
1.8.5 Custom Mumber Formatting .« « o o o o o o « « 118

Interactive Compuber Sustems. Inc. OmniFORTH CONTENTS

2 OmmiFORTH EDITOR

QrniFORTH Text Editor 2-1

2.1 - e % & » ® » 2 % w e = @
2225 7 EDITOR COMMENAS @ v & & 4 o 2 o o o o o o » o 2=2
2.3 " Entering the EDITOR & v v v v v o o = o o o 2-4
2.4 - " Screen COMMENGS ¢ o« 4 o o o = o & = = « = o » 2-4
2.8.1 Screen List?® mLIST v v v v 4 4 o o o o o o » 2-4
2.8.2 Screen Re—List! L o 4 40 v 4o 4 v o o o o o » o 25
2.4.7 Screén'Index: nm INDEX . . ¢ v v v o o « « o 2=5
2.4.4 Screen Triad List: m TRIAD . v v v ¢ o o o « 2=5°
2.4.5 Screen ' SHow? nm SHOW . & & v 4 4ta v e o o . 2=5
2.4.86 Screen Corul nmCOPY @ v v v 4 v 4 ¢ o o =« « 2-6
2.4.7 Screen Cleart N CLEAR . 46 v v 4 o o o =« o » 2-6
2.3.8 7 Screen FIush:z FLUSH v v v v o o = o o o o « 2-6
2.5 Lire Commands o o 2 o o o o o o o &« a = =« » o 2=6
2.5.1 LineDeletel nNMD . . v v v o ¢ ¢ o o o « o o 2=7
252 Lime Erase! N E & 2 4 o o o o o o « = o o 2 2=7
2.5.3 - Lime Hold: mH o v v 2 4 o 4 o o o o o o s & 2=7
2.5-4 Liﬁe IHSEP"‘L: [n] I - - » . = @ I - » * e - e 2-?
2i5.5 - Lime Put: m P string & & & v v v v v o o . o 2-8
2.5.56 - Line RePlace?l N R . . & 4 4 4 v v o o o o« « 28
2.5.7 - Linme SPread! N S v v v v v s v s e e e s . . 2=3
2.85.2 Lirne Ture? N T 2o v 4 & o« o « o =« s 2 s o« » « 2-8
ZoBC . SHringd COMMANAE « v o v o o o = 2 = « o » o o 2=9
2Bl ¢ BLring BackuRr! B v v v e e e e s a e m e e . 2=9
282 . BLrinad. Corwt C 3tring v v v v v v o o o o o 2=O
2.56.3 Strina Deletel N DELETE . & v v o « o = « « 2-10
2.5.3 String Find: F string . @ v o v o & o = = « 2-10
2.5.5 String Mowel N M ot o 6 6 6 e o o o o o o « 2-18
2.6.6 String Hexbl M o 4 o o o o o o o o « = = = « 2-18
2.5.7 String Tille? TILL string @ ¢ @ ¢ 4 o & » « « 2-11
2.6.2 Stringd Tor: TOP & & 4 4 & o w = « « « = » « 2-11
2.6.9 String eXtract! X string . & ¢ v @ & & & - « 2~11

Interactive Computer Sustems. Inc. - OmniFORTH CONTENTS

W

OmniFORTH ASSEMBLER

3.1 OomniFORTH 883G + Z88 Hssembler . = o a = -s 31
3.2 CODE wotrds . . . 4 |
3.3 Conditional Test Operatora I T
3.4 Code Word Terminations . « « « o o ¢ o o & « >=2°
3.5 OmniFORTH Register Decisnatlons e e s e e o s 32
3.6 Ortional 288 Instruction Set . . « + o o = » 3-3
3.7 ComPatibility o « o o o o = = = s = = = = = » 33
3.8 ExEMPlES o v o a 2 w = = 2 2 2 8 = 8 a .« o » =4
3.9 Azsembler MAEmMOMicsS o « o o o o o o o «_ s o = 39
Z.2.1 Regdicter MREmMomics « « o = = o o s » = o o » 36
3.9.2 Aosembly LangUasSe « o o o o o = o s s s o o o 37
I.9.3 Eight Bit Load . « = o o o = s o = = » » @.o 37
J.P.4 Accumulator Load 7~ Stare + « « o o o o o = 3I-7
3.9.5 Eight Bit Load Immediadte . . « « « + « « » « 58
F.D.A Sixtesn Bit Load -~ Store .« .« . . e » 8 « 3-8
3.9.7 Exchange, Block Transfers. and Search « o o = 39
3.9.8 Eight. Bit Arithmetic and Lodgical 318
3.9.9 Gerneral Pureose Arithmetic amd CPU Control. o 3-11
3.9.18 Sixteen Bit Arithmetic Grour . « « « = » « « 3-11
3.9.11 Rotate and SHift GROUP « « « & o = = = = = » 3—11
Z.9.12 Bit Manipulabion . o o = = = » o = = = » « « >—12
T.9.17 InFut ~ OUtPUL. GROUP .+ o« = = o = o » o o .« «i 312
3.9.14 JumP GFrOUF o« = = s = = = =« s =« s« = » =« & » » 313
4 OnmniFORTH GLOSSARY

4.1 - Glossary

4.2 Credits

4.3 FIG Arrlication Form

Interactive Computer Ssstems. Inc. OmniFGRTH'INTRGDUCTIOH‘I?il

1.1 Imntroduction

This text is mot intended to be an 3ll inclusive text but it
iz intended to rrovide slemertry OmniFORTH concerts in 3
simple aasu—to—masper MmANTe .

A small subset of OmniFORTH words have been selected that
will teach the OmrniFORTH fundamentals without overerowering
the reader.

It iz hored that once this text is understood the reader
will be able Frogress duickls on his own in mastering the
comPlete et of words listed in the glossarg.

1.1.1 What iz OmmiFORTH?

OmmiFORTH iz more tharm Just 3 comruter lamsiuase, it is a
larmsuagde. an oFeratirng swstemn.,. an editor. a monitor and
aszembler all im ane externzible rackases.

OmmiFORTH is like 3 sProken lamguage in that it iz a
callection of defirmed words which are verbs. mouns and
modifiers. OmmiFORTH iz used. rmot in writing erograms. but
definingd new words and then usina the words to Froduce the
desired resultsz. Therefore:, OmniFORTH is simels a
dictionars of words that includesz zall defimsed words whether
thews are rew words definmed be the user or old words
Freviowsla detfimed and surrlied in the OmmiFORTH Ppackasde.

OmniFORTH cam be thought of a3s 18 bit stachk orientated
comPuler landuage that combires structured prodramming. “
virtual memora. comriler. assembler,. and Tile swystem into an
efficiernt extermsible macro—-larmsuags.

1.1.2 QmrmdFORTH i= Interactive

Just as Emglish iz intetractive C3 Person savwe RUN armd the
Ferzorn 2Roben Lo runs) the OnmiFORTH user mavw enter the word
LIST and the sepecifised text iz listed on the cornsole.

Each mew word entered iz reads for executiorn after it is
det"imed. This means that @ou can create 3 rew words test it
immediatels, and debud it as wou go using the interactive ,
features of OmmiFORTH. The interactiverness of OmmiFORTH will
enable wows software develoement effort Lime to be reduced
to a fraction of that reauired bae other larmguages.

- Ifteractive Computsr Svstems. Imc. OmniFORTH INTRODUCTION 1-2

m

1.1.3 QmmiFORTH iz Structured

Just as Eralish is structured. OnmiFORTH has ro GO TO since.
whern =peaking, it wowld be impractical to saws

G0 TO THE WORD I SPOKE FIVE MINUTES AGO"

iz imFractical imn QmriFORTH to GO 7O a word that was
wecuted erevicusla. OmmiFORTH iz also modular like Endglish

cadse once 3 word iz defirmed it is no longer necessars to
at. the definmnition to get the desired resronse.

1.1.4 OmmiFORTH iz Extencsible

Extemsibilita is the abilits to define mew words <as
Freviouslya ment.ioned) that customize a languasle to saw or do
what we wish. MHew words are added bws the user into the
CmiFORTH dictionars until the user has develored a
woacabilargs that suits his needs.

1.1.5 Prezent Daw OmmiFORTH

OmniFORTH is 2till in its infancy. The FORTH lansuadge is
“becoming PoPular as a control lamguage and as a man—machine
arnd machirne—-machine interface. More seriocus users are
turning to FORTH because it aives them comrlete control of
their computer and it is cost effective. Aprlications can be
written in OmniFORTH that reauire less harware and software
irwestment than other high level languases.

1.2 The Stack and Arithmetic

Thiz csection deals with cornzsale OPEPdtIOH and the stack and
arithmet.ic operators.

DmniFORTH is a reverse—rolish larsuadges: this section maw
make OmmiFORTH look like a reverse—eolish calculator,. but
later wou will find that reverse~eolish is the natural order
of comFruters.

The stack is illustrated with the tor to the risht. For
2xanFlal

Sr’ “«, = " —td 52 s 1

iz the notation showirmg S1 as tor of the stachk. S2 as the
zecornd stack item., 53 as the third item on the stack. and so
forth until Sm which is the nth item of the stack. Simce 51
iz the tor of the stack. 52 iz below S1. 53 is below 52, and
Sn ie below 5m—1.

Interactive Comruter Swetems. Inc. OmniFORTH INTRODUCTION 1-3°

1.2.1 Stack Orerators

The following is a list of the oreratore used in this
iptroduction {additiomal orerators are given in glossary).

Stack Stack

Wotrd Exrlanation Before After

DROP Removes the tor stack item. 4 3 4;

DU Durlicate the tor stack item. 2 22+
QUER Copd second stack item over 21 212

first., rlacing it orm tor.

RAT Rotate the tor three stack 1 32 321
itemsz, bringdimg the third to :
the tor of the stack.

SWAP Swar the tor two stack items. & 1 1 6

1.2.2 Arithimetic Operators

Unless otherwise moted, a3ll numbers are assumed 16 bit
sigred - inteders. All arithemstic is implicitly 16 bit sidned
imtegsr math. Illustratioms assume that the normal base is
decimal and anw other baze will be noted on examples. |

The following iz a list of arithmetic orerators used in this
imntroduction {(more are mgiven in sglossarg).

Stachk Stack
. Waed Exrplanation Before After

+ Add the two tor stack 24 R -
values leawing the sum.

- Subtiract tor stack value 32 3
from the second. leauving
the differencs.

£ 3 Multirly the two tor stack 4 2 3
values, leavimg a3 sigrmed
18 kit interdgsr number.

& Divide second stack value 72 3
b the tor stack item. '
leaving a signed 18 bit
imteder number.

MO0 Divide second stack wvalue
ba the tor stack item.
leaving the auctient on toe
ard sigrnsed reminder bereath.

~
N

13

Trtersctive ComPuter Sustems, Inc. OmniFORTH IMTRODUCTIOM 1-4

1.2.7 Outrut. OrFerator

The output. orerator "." Fronounced "dot” will corwert 3 16
Eit zigrned rumber fournd on o of the stack and then erint
it orm the comzscles with a trailing space. Corwersion is dorne
vsirgd the currernt mumeric base.

Stachk Stach

;' Weord Exelanation Before After
G - Diserlaw the tor stack walue 3 {Lwpe "3
) ‘ as a signed rumber. drorping drorring
the value from Lthe stack. value)

7 1.3 Motations and Exameles

Foar- clarita and braevity,. we use zome special rmotaticons to
illustirate the OmmiFORTH languaste in the following text.

-

i~ ertiiss will be underlined and OmniFORTH outeut will

oM

Coan

-

i
The zwumbol (CRY will mearn that the user entersz a carriade
retirr.

1.3.1 Examrle: Enter a Humber on the Stack

The ussr ernter: a number by turing it on conzole and
terminating it with a carriage return.

TSI CCRY QK

Exrlanation: OmniFORTH scans the input bufter until the
strimg 53 delimited bw srace or carriage return is found.
The string iz tested agaimst defired words in the wocabulars
and fimallys is corverted to a 16 bit sigred inteder number
thase 18. decimsl in thisz examrle) and placed on tor of the
stack. OmniFORTH then disrlaws OK as a promet indicating the
reauest iz complete and it iz now reads for more input.

Interactive ComPuter Swsstems. Inc. OwniFORTH IMTRODUCTION 1-5

1.3.2 Examrle: Enter Number and Print

Uzer enters ancther number and attemerts to print 51,

52, and 53

ey
¥

. . . CCRY P2 ST ¥¥ .? EMPTY STACK

@

Explamation: 72 was placed omn tor of the stack and 33 is
helow it at 52 Jthe number 53 was entered in the previous
examrled. The first reriod causees 51 to rrint 73 and dror it
fiom the tor allowing 52 to become the mew 51 tor stack
item. The second reriod mow prints 53 and drors it from the

“tor thus emetaing the stack. Fimalle the third reriod
gttemrts to Frint am emrtws stack and the error messade "KX
L7TOEMPTY STRCK™ iz tweed bw OnmiFORTH simce there was
rothing left om the stack. Hote that in gensrating the error
messagde the "HEHE" represesrmts the attemprted outrut off 533 and
the ".7 EMPTY STARACE" was disrlawed as the error om .
tirairmd Lo Lure the enrta stack.

For claritw and brewits, the exwamerle above cam be
illustrated using the following mnotatiom:

Exacution Stack ‘o of stachk is to the right)
examele 1 52 TexamPrle 1 left 53 on stack)

2= S22 ‘rut T2 on tor of stack owver 33D
. 53 tope "7P2" legving 53 on tor)

. ttupe "I3" leaving stack emrta)d

. Tture ".MM STRCK EMPTYY error message)
CCRD ernd of ineul buffer -

1.7.3 Examrle! Additiomn and Print
Uzer adds two rmumberses together and Frinte the sum.

5 2 + . WCRM 7 0K

Exrlanation of the ztack at sach oreration:t

Ezcmout.iom Stack ttor of stack is to the right)
= 3

2 2 2

+ v

. ttupre "F" leaving stack emeta)

CCRD ernd of imneut buffer

“Irteractive ComPuter Sustems. Inc. OmniFORTH INTRODUCTION 1-6

1.7.4 Examrle: Ta« Calculaticon
. User wishes to calcoulate 5% of 2988 and eprint walue.

2968 S o« 188 s . (CRY 145 0K

Exrlanation of the stack at sach oreration:

. Exescution Stack (tor of stack is to the right)

F - zong 2960

= 2568 S

14566

1ag 14568 168

- 145

. thare "145" leaving stack emptgd

COR zrd of imeut buffer

-

1.3.5 Examelet All the Operators

Thiz examrle will illustiraste all the orerations listed
imn the begirmming of this section.

4 I 2 1 ICRY
SWAP _OUER _DROP_ROT DUP + # <CRD

QUER _— POT__~MOC_ ~ . . ¢tCRy 1 1 OK
Explamaticon of the stack at each oreratioms:

Ewaecution Stack <tor of stack is to the right)

El 4

= 4 3

2 4 3 2

1 4 3 2 1

TCRD ernd of Tirst line

SldAP 4 3 1 2

OUER 4 3 1 2 1

DROP 4 3 1 2

FOT 4 1 2 3

DF 4 1 2 3 3

+ 4 1 2 &

e 4 1 12 :

TCRY ernd of secand line

QUER 4 1 12 1

- 4 1 11

ROT 1 11 4

<MD 1 3 2

- 1 1

. 1 Jtope "1" leawing 1 on tor of stack

- {tape "1" leaving stack empta)

{CRD> end of third line

Interactive Computer Sustems. Inc. OmniFORTH IMTRODUCTION 1-7
1.4 Definimg MNew Words (Coméilins)

In the rrevious section we illustrated the stack and several
predefined words. We are now goindg to show how Qou can
externd the OmniFORTH Jdicticomars bs defiming rnew words in
terms of existind words and numbers.

-

Externzibility of OmniFORTH will enable sou to define wour
owrn words to best describe wour apeplication and instruct the
comPruter in gour own terms.

Words zre definded a3s a strinmg of one or more characlers
dalimited bw st lasst one eprace o a carriage return.

OmrmiFORTH will search for the word in the dictiornars: if it
iz fournd it will be sxecuted.

I the wod iz mot found in the dictionarw. OmniFORTH will
attemrt to corwert the word to a number using the current
rumber base.

I the word JYcharacter strirmas iz successfully conwverted to
a3 sigred integer rmumber, the number is placed on tor of the
stach.

If all fails., <the strinmg was not a defimned word or it could
ot be corwerted to a rmumber) OmniFORTH will twre the
character strirg: print an error message. clear the stack.
arnd ffimalla z=tore intereretation of the imFut buffer.

Interactive Computer Swstems. Inc. OmniFORTH INTRODUCTION 1-8

1.4.1 The Colon Definition

At. thiz time, we introduce the colon ":* definmition. The
colom is & worrd that is a part of OmniFORTH and enables gou
ta define new words.

:In the last section we demcnstirated that the user could
grnter and sxecute the following interactivelw:

2208 5 o« 188 . . LCR> 145 0K

«State szales tax maw be SX and the user masw wish to define a
o e word TR that will compute and print the sales tax for

a varieta of itemsz. The user would snter:

s TAM T % 188 . . 3 (CR» OK

The colon "1 iz 3 wordd that has been defimed to compile
imto the OmniFORTH dicticnarw 3 definition header
cornt.aiming the next word arrearing in the input buffer
"TRE". TAX will then become 3 mew word definition that will
cayse the bode "3 % 168 ~ " to be exscuted whernever TAX is
used. The "3" is arcther predefimed OmniFORTH word that
zignals the end of a colom "1 detfimition. 8 new word is
stiructiured as follows:

TR S =« 1@@ .~ . 3
T B T Mt e e At Y
H H end of defimition
H bode of definition

rname of defimitian

- ey W e wmw —--"' B

cmPeller direct.ive

i}

Mote that the colan 1" z3lsa places OmniFORTH in compiler
mode and directs that the following words in the bodw of the
defimition to be comPpiled in the dictionary instead of being
axecuted. The comerilimg will comtinue until the semicolon
" szignals the end of a definition. Remember that OmniFORTH
exFpacts 3 sPace o carriase return to delimit words. so be
e o preceed and follow each word with a space and end
the imput string with a carriage return.

We now have 3 mnew word TAY defined in our wvoacabularg that
will comeute 5% of an item and erint it. Therefore we may
| e O 'y -

29EE TAX <CRY 145 QK
o Zoaa 1He LCRs 198 oK
o 193 TAY <CRD 5 0K

Irteractive Computer Swstems. Inc. OmniFORTH INTRODUCTION 1-9

1.5 Conditionals

Mo lamguage would be comelete without the ability to make
conditional branches amd loors. This sectiom will introduce
the IF ... ELSE ... EHMDIF., DO ... LOOP. DO ... +LOOP. and
the BEGIM ... UNTIL comstructions. It should be noted that
cther conditionals are available but will mot be covered in
this text., thew are left to the reader Lo investisate.

Conditiornals cammot be used outside of colon defimitions

that., define 3 word. Conditiomals are made up of special

words such as the IF ... ELSE ... EHMDIF that derend on each
other arnd on the word being defimed for conditional execution.

A1l OmmdiFORTH conditionals use a condition wvalue rlaced on

top of the stack to make a deciziom. A zero on Ltor of the

-k sets the Talze comdition <8=FALSE>. The true condition

. wher the tor of the stack is mot a zero. The tor of

chrue o falsed) iz removed bw the condbiomal. If a
it.iom iz meeded later, the comnditiomn must be durlicated

- agised o later referernce.

i

i
s B e B
2w
oL 0o
e TRT
-

(s BN R o

i

1.5%.1 Comrarison Words

Irm order to Provide eﬁamples aoft IF ahd UNTIL conditional
orerators, the following comrarison words are listed:

Stachk Stack

Word Exrlanaticon Before UWord After
B= Leguwve a trrue if tor of stack 8 a= 1
wass eaual Lo zera o g= g
50 Leave a tirue if tor of stack - a< 1
was less than zero 4 a< a
= Leave 3 true i tor two stack v 7 = 1
itemns were squal 1 3 = a
< Leawve 3 true if item under 2 6 < 1
tor ztack iz less tham tor 9 4 < a
> Leave & tirue 1if item urnder & 2 > 1
tor stachk is areater than tor 4 9 > e

Interactive Computer Swstems. Inc. OmniFORTH INTRODUCTION 1-16

1.53.2 IF Statement

The IF statement must occour within 3 colon definition and
has the tollowing formss ‘

f IF <tPpd... ENDIF

ar
f IF <(tPl)e.. ELSE <fP)... EHNDIF
uhere=‘
f iz a Boolean value on top of the
stack. 8 = FALSE, nmon—-zero = TRUE
tte2 iz the true rart that executes
if f is trus.
{(fr) is the falss part that. executes
if f is false.
Exrlanaticn:

The IF selects execution based on a Boolean flag T that
precesds the IF. The Booclean flag is removed from the stack
cwhern the IF iz executed.

Whern f is true (non—zero), execution continues thru the true
Fart (LP) and skirs over the ELSE and false part (fe)d, if
used., to Jdust after EMDIF.

When f iz false {(zero), execution skirs ouver the true part
to Just after ELSE and executes the false rart (fp), if
Present., and comtinues thru the EMDIF.

The followind examrle will print out "Yes” if the tor of the
stack 51 is tiue arnd "ne” if S1 is false:

:_VESSMO IF LM WES" ELSE ." NO" EMDIF ;3

This routine will removse the tor stack item S1 and execute
LTYES" Af 51 was true <not esual zeraold otherwise the .Y NO"
will be sxecuted. The routirme carm be tested at the concole
)

-
-

a YESAHO (CREY MO 0K
1 YES-HO (CRY YES OK

A

A

Irteractive Computer Swustems., Inc. OmniFORTH IMTRODUCTIOM 1-11

1.9.4 Examrlet IF <ted... EMDIF
Lesuse the zmallest of the Ltor two stack items.

: MIM OUER OUER > IF SWAP EMDIF DROP 3 <CR)

Exrlanation of bow the routine works:

oUER OVER

Eay

Durlicates tor two ztack items)
p ¢ leave true if 52 > 513
IF sWAP ENDIF ¢ Swar will_execute if 52 > 510

DROP Y Drors the tor {largest) stack item
lesving minimum on the stack)

1.5.5 Hestimg IF Statements
IF ztaztemernts mas be nested mamy times. The limit of
resting maw varw betuser imelementaticons, but in most cases
the user will rurm out of need before the limit will be
Faachked., The following examcle is not a usable oreration.
but. illustiates the nestimg carabilitw.
r MEST-IF
f IF (tPrJau.
f IF tPple..
 IF {tP)ue.
ELSE (fPl..«
ENDIF
ELSE {(fPle..
ENDIF
ELSE (fPl...

EMDIF 3

Irteractive Computer Sustems. Imnc. OmniFORTH IMNTRODUCTION 1~12

1.5.54 DO ... LOOPs

DO loors rrovide the carability of looring a krnown number of
times. DO loors are cormtiructed in two forms:

and
nt n2 DO ... N3 +LOOP

wher=:
i is the loor limit or fimal wvalue

nz iz the initizl index walue

na ies the loocr increment
inote LOOP iz esuivalent to 1 +LOOP)

At execution time. the DO ssts the loor index 1 to the
imitisl value N2 and saves the loor limit ni. Both nl and n2
aire rencoved from the rarameter stack. Then a sesuence of
repetitive execubions bedgins controlled by the loor limit
rml. Uron reaching the LOOP. or +LOOP the index I is
incremented be 1, o~ n3 and then tested. If the index is
less tham the loor limit ml, execution loors back to Just
after the DO. When the index I fimallw increments to be
egual o greater than the loor limit. the loor terminates
removing ml and N3 from the stack.

Mote that the word "I" maw be used withim a DO ... LOOP to
Flace the loor index on the stack.
1.3.7 Examrles: DO ... LOQOP

The following are two examples that will 111ustrate the
oFerat.ion of each twre of DO ... LOOP:

i AEBC 18 8 DO I . LOOP 3 <(CR> OK

ABC YCRY B 1234567839 0K

: WYZ 1@ @ DO I . 2 +LOOP 3 <KCRY OK

NS ICRD 82488 OK

It should be moted that the rumbers nl. N2, and N3 are
remcewsd firom the rarameter stack amd il and N2 are placed on
the return stack by the DO sa that thew are not directly
zuzmilable within the DO ... LOOP.

Interactive ComPuter Swstems. Inc. OwniFORTH INTRODUCTION 1-13

1.5.2 Examrle! Memorws Dume Ueimz DO ... LOOP

A zimrle memnore dume Froutine mas be constiructed using a
zirmgle DO ... LOOF. Im this case we wish to enter the first
menors address. last memorw address and the word DUMP.

= DUMP 1+ SWwAP DO I CR® . LOOP 3 <{CR> OK

To use the DUMP enter:

HEX 1986 1885 DUMP <(CR> V5 S AF BY 1 9 OK

In this sxamrle we aliered the reuvrse rolish rparameters

ml amd N2, since it sesms more natural to enter the starting
address before the ending address. To de this we execute the
SHAP. To includs the bute at the ending address we add 1

to the nl before the SWAP. The locr index will mow increment
from 18608 to 1685, The I will eplace the loor index on the
stack.: the CF will rerlace the tor of the stack with memord
comternts rointed to be the loor index and the dot "." will
it Lthe memorw conternts using HEY base cornwversion.

WARMING: It is auite common for new OmmiFORTH prodrammers
to leave ame o more items on the stack at each loor. IF
the rumber of loors are large. the stack mas overflow and
corturt the memors residert OmniFORTH swstem. Use caution
wharn testing loors bw using small values and check the
ztack to see if wou have left armg items on it bw accident.

1.5.3 Hestimng DO ... LOOP=
The DO ... LOOFP maw be mested simialar to the IF such as:
1 MEST-DO |
mli n2 DO ...
ni n2 DO ...
Nt n2 DO ...

LOOP
LOQP

LOoorF 2

Althcuah the DO rrovide:s tremendous rowers often the user
reeds 3 loor that iz inderendent of a count. and will loor
unt.il some conditiom is truse. The BEGIM ... UNTIL loor
provides thiz carabilita.

Interactive Computer Swstems. Inc. OmniFORTH INTRODUCTION t1-14

1.5.19 BEGIN ... UHTIL loor.
The BEGIM UNTIL loor is comstructed as follows:
BEGI*"I - f UHTIL

Where BEGIM mardkz the start of a seauence that mas be
reretitivels executed. BEGIM serwes as a return point for
the UNTIL. If the Boolean flag f is false ({zero). the UNTIL
cause:s execution to returmn to BEGIM. Onlw when the flag is
truse (non—zero), does the UNTIL force the loor to terminate
and makes the execution shkir Lo the word after UMTIL.

The following is an examrle that will accept input from the
conssles then echo the imrut to the comnsole, and place the
imeut. character in a buffer. The input will be terminated by
ertira of a carriage retuwrn. AL ternimation the counter CNT
will comtain the number of inrut characters emtered bu the
user. It should be roted that this routime burasses the
mormal OnmiFORTH ineut.

DECIMAL { set base 16 5
8 VARIABLE BUFFER 78 HLLOT { dimernsion Buffer{8@>>
8 UARIRBLE CNT { define CHT=8)
T IMPUT { defime word INPUTD
BEGIM { begin2
KEY DUP { inPut and durlicate)
EMIT ¢ echo character)
DUP ¢ durlicate character)
BUFFER { get BUFFER address)
CHT & ¢ get value of CNTO
+ { add to BUFFER address)‘
ct L store char at BUFFERC(CNTS)
1 CNT +! ¥ increment CNTY
13 = ¢ test char DUPed before
for carriadge returnd
UNTIL { exits when char = CR>

ig EMIT 3 (. outrut line feed)

Iﬁteractiue Computerr Swastems. Inc. OmniFORTH INTRODUCTION 1-15

1.6 Reference Surpliment

Thi=s zection is desigsmed to be a reference surrliment to the
Frevious sectiorns. The disscussions are specific areas of
the use of OmniFORTH amd it iz aszumed that the reader now
has some bkrnowledde of OmniFORTH and is familiar with the use
of the glossard.

1.6.1 Humber Base Corwver<sions

Im theors OmmiFORTH cam use anws number base for inFput and
cgtrut.. The conwversion base is stored in a user variable
called BRSE.

The QmniFORTH inmitial load or COLD start will zet BASE to 16
DECIMAL?Y . The user maw change the corwverzsion base to ang
walue fram 2 to 36 bw entering:

e BRASE ! { where M is a number 2 Lo 36)

MHow all imPut arnd outeut numbers will be corverted according
to the current value ztored in BASE. In actual practice

most of the time 3 user will use either DECIMAL. OCTARL. or
HEY rmumbers. OmniFORTH =z wocabulars contaims Fpredefined
words, DECIMAL. OCTAL. and HEX that set the BARASE to 18. 8.
o 16. \

The following iz an examPrle of an interactive comversion of
a DECIMAL rumber to HEX:

DECIMAL 255 HEX . <CR> FF QK

The abouve examrle sets the BASE to 16. rlaces the number 255
or the stack. setsz the BASE to 16. and ther . corwerts and
Frimts the rmumber using BASE 16. Hote that the BRSE is mow
set to 186 and all irmerut and outerut nunbers will be in HEX.

Imteractive Computer Saostems, Inc. OmniFORTH INTRODUCTION 1-i6

1.6.2 Comstants

I amwe comFruber lamguage it is necessary to have different
dat.s tores. OnniFORTH has a data constamt declarstion word
COMETAMT that can be used to defime words that will place a
Fredetermined numsric walue om Lor of the stack.

The followimdg iz an examrle of the use of COMSTARMWT:

zat BRSE 160
define @=ZER0>
det'ine 1=0ME>
det'ine FF=MASK?>
set BASE 165

HE

g COMSTRMT ZERO
1 COMSTAMT OHE
FF CONMSTARMT MASK
DECIMAL

RN a el

The abowve examele will create three words ZERO., OME. and
MASHE that when executed will place a3 8. 1. and 2595 on the
staocl.,

1.6.3 Uariables. Arrags and Buffers

Variablesz differ from constarnts because when thew are
executed the address of the data iz rlaced on the stack.
Therefore to et zt the data stored inm a variable we must
use & the word 8 Lo febtcoch the comtents of an address on top
of the stack. Examele:l

8 UARIRBLE WALLUE { imitializes 8=UALUED
23 URALUE ! T stores 23 at UARLUED
VALUE & ¢ fetoch value at URLUE?

Arragss and buffere are aboul the same and cam be coreated
wzing the words UARIABLE ard ALLOT. Am eighty character
buffer or arras can be oreatsd ast

A UARIARBLE BUF 72 ALLOT

MHote that UARIABLE dJdefimes a word:, BUF in this example, that
iz 15 bits ftwo buwltes) lomg and initizalizes it to zero. Next
the examrle contimues Lo allocate am additional 728 butes
usingd ALLOT to extend the BUF arraws to embrace a total of
gightd bwtes of memorw. It should be noted that only the
first two betes have been initizlized and the remaining 78
bates are mot.

FRemember that z2ll referernces Lo a wvarisble will cause the a
14 bit addresz of the variable to be placed on the stack.
Arg bate in the buffer maw be accessed bw adding an of'fset
value to the addiress. For example the fifth bute mavw be
accessord bhwl

BUF 4 + C®

Irteractive Computer Sustems. Inc. OmniFORTH INTRODUCTION 1-17

1.58.4 Double Mumbers <32 Bito

OmmiFORTH has the abilitw to use 32 bit double inteder
rambers Lo allow computations resuiring more Frrecision than
that available with 16 bit nurnbers.

Double numbers are carmstiructed as 32 bit sisrned inteders
oococuRrging twa 186 bit stack epositions or memorw locations.
The tor of the stack holde the most sigmificant part
including sian. and the zecond stack item contains the least
significant. rart of the double number.

Thiz sectiom will cover irmput and outrut of double numbers.
The math oreraztors availables will not be dizscussed here
zirmce thes are well described inm the gdlossary (such as M,
Meos D+ ebo.d.

n irmeut the interereter will trest a number containing a
decimal roint Csuch as 1.9008686008) as a double number.

The rumber iz comverted as an integer. The decimal point
will rmot effect the corwerted value therefore 1.000088 and
1600063, 8 will convert to the samse 32 bit signed integer
ramber-. The anle differernce is the value rplaced in user
war-izble DPL.

DPL i= set to the number of digits to the right of the
decimal Froint and it iz wue to the user to usze DPL as needed.

Double numbets carm be disrlaved using "D." to rerform the
cormversion frrom 32 bit sigred integer rumber into digits
that carr be primted om the comscle. Far further custom
formatiing zee the rnext secltion.

Interactive Computer Sostems. Inc. OmmiFORTH INTRODUCTION 1-18

1.6.5 Custom Mumber Formatbting

Cuztom formnatting maw zeem comrlex at firet and is not
necessard for most applications.

The following WORDS are used in number formattings
<, ¥ #>, SIGH. HOLD, and #S5

The dlozsaryd zhould be referred to for definmitions and use
of the oFerators.

In demnsral <% seturs for a double number conversion. # o #S
e wsed to corwert the dizits and #> is used to terminate
the comersiomn. The words SIGH and HOLD are used to insert
the =igm and or other characters such as decimal pointe,
commas, eto.,

The coruverted digites bedin with the last sisnificant digit
beirmd stored at PAD-1 and each succeeding digit eplaced below
that at butes PRAD-2. PRD-3., sto.

#> placesz the court of characters and address of the
corwetrted string on the stack in the order required for the
woird TYFE which will outrut the string.

The asbowve discussion iz not comelete and will reauire
exprerimentat.ion of the user. In hores of helring, the coding
of outrut. oreratore we have included listings of screens
that are surelised with OmniFORTH. The OmniFORTH INSTALLATION
manual contains sowrce listings for zeveral custom number
rout.ines along with sourcs for the OmniFORTH EDITOR that can
be used for referencs.

Interactive Computer Swustems. Inc. OmniFORTH EDITOR 2-1

2.1 OmniFORTH Text Editor

The OmniFORTH operatingd swstem contains an EDITOR
vocabulard. The ERITOR allows wou to build and maintain text
on disk. New text and changes to existing text are made
interactivels using the EDITOR . Insertion. deletion. and
rerlacement. of text are allowed.

Some of the features of the EDITOR are:
Text may be listed.
New lines maw be inserted.
Existing lines maw be altered or delested.
Limnes maw be coried or moved on a screen.
Text on one screen can be coried to ancother screen.
Character strings in the text maw be found and changed.
Internal rointers to lime and cursor are under wouwr control.
Edit command definitions can be callsd by sour aPrlication.
New commands can be added to existing set to extend EDITOR.
The sowrce for the EDITOR is rprovided on the OmniFORTH dishk
starting at screen 36. We hore that wou will use it to learn

more about OmmiFORTH and encouwrade wou to extend it to suit
wour needs. .

CAUTION

The EDITOR gives wou comrlete control and access to all
information stored on disk. We recommernd that sou make a
backur copg of wour disk before starting an edit session.
Use wow~ Disk Operating Swstem DOS to copy the entire disk
for backup.

You will be editing interactivelw and directls onto disk.
Need for backur will be greatest while w9ou are learningd how
to use the swstem and will diminish as wou Jain exrerience.
Even experienced users will occasionally make mistakes and
desti~row valuable information on disk, so rlease use caution
and take the time to make a backup corw of wour dishk.

Interactive Computer Swstems. Inc. — OmniFORTH EDITOR 2-2

2.2 EDITOR Commands

The EPITOR resronds to the followind command wocabularg
shown alphabeticallws.

All commands are shown in urPer case. Parameters and user

suprlied data are indicated in lower case. String indicates

one or more characters. and rumbers are indicated bw n and
" me. Each command is terminated bw turing a carriage return.

Use the command TOP to reset error flags and restart edit.
The cursor position is shown bw the _ underline character.

The EDITOR uses OmniFORTH wariables PAD <{to allocate text
buffers) and SCR (to indicate which scoreen iz being edited>.

Note <(part of OmniFORTH *) indicates a commarnd available
outside of the EDITOR wvocabulardg. They are included here
because thew are useful when editins.

COMMAND DESCRIPTION

B - Backur cursor bw length of text in PAD.
C string Copw string into lirme at cursor.

n CLEAR Clear entire screen n Lo sPaces.

n m COPY Cors all text from screen n to screen m.
nb Delete line m bw holding line at PAD

and moving lirez n+l theu 15 urwards.
Line 135 will be rerroduced.

Hote: 15 D won’t work because n+l iz
off soreern. Use 1S H 15 E to Hold
and Erase line 15,

n DELETE Delete rFrevious n characters befors cursor
nE Erase line n bw filling it with sraces.
F string ~ Find strina starting at cursor until

end of screen. If stringd is not found
on screen. the cursor is rlaced at tor
of screen with a given error message.

FLUSH © Flush or write updated screen to dishk.
‘ - ~ Cpart of OmniFORTH =)

nH - Hold line n by corwing to FRD.

Interactiue Conruter Swstems. Inc. OmniFORTH EDITOR 23

2.2 EDITOR Commands (continuedd

COMMAND

n1

n om INDEX

n LIST

n P strins

nk

n

n m SHOW
nT

TILL string
n TRIARD

¥ string

DESCRIPTION

Insert text from PAD at lime mn bs Pushing

‘lines n+l down and discarding last lire.

-Index listing of line 8 of each screen

beginning with screen n until screen m.

- (part of OmniFORTH %)

Re~List current edit screen.

Use n LIST to list anw other screen.

List screen n and set SCR makingd n current

edit screen. <rart of OmniFORTH >

Move cursor bw sianed n characters and
disrplaw PAD. If n<8 then move bachkwards.

Next occurence of previous Find strinsa.
If string is not found. the cursor iz moved

to tor of screen and an error messade diven.

This allows another scan of current screen.

Put string on line n and in PAD.
This command is used to imFPut and overlas

lines of text within a screen.

Rerlace on line n text held in PARD.

Seread bw movina line n downwards and
sPpace filling lime n. Lime 15 is lost.

List screens in TRIADs {three rer rage).
Uses TRIAD and includes screerms n thru m

- in show list. (part of OmniFORTH #)

Twre line n, rlacing line in PAD arnd n on

stach.

Delete from cursor unTILL end of string.
Tor cursor home to TOP of screen.

List screens in TRIADS (thiree rer rPage).

~ Each page begins with a scireen number evenlws

divisible bw 2. TRIAD allows rerlacing one
rage. rather than listing entire arplication
when chandes are made.(rart of OmniFORTH *o

Delete the first occurence of strind,
starting ‘scan from current cursor position

until end of screen.

Interactive Computer Swstems. Inc. OmniFORTH EDITOR 2-4

2.3 Entering the EDITOR

CRUTION: Make a backur cory of gow disk using DOS before
starting an edit session.

The source for the EDITOR is provided beginning on screen 36
of the OmniFORTH disk.

To determine if EDITOR is resident. twre:
EDITOR

If the EDITOR is not resident wou will see EDITOR? and will
need to ture in: 36 LOAD EDITOR followed bw a carriade
return to load the EDITOR and enter its wvocabularw..

AR promrt OK will sprear when the EDITOR is entered and sou
will be in the EDITOR s wocabularw until sou return to
OmniFORTH bu comriling a new word or resuesting another
vocabularyd.

2.4 5creen Commands

The EDITOR works with a page of text called a screen. A
screen consists of 16 limes {numbered B8-15)> with &4
characters on each line. Screern numbers are assidned to each
screen and refresent a contisgucus area on disk. OmniFORTH
variable SCR is used to store the current editing screen
rumber and will be altered by most of the screen commands.
You maw alter it wourself bw tueing:

n SCR !

where n is the screen number that wgou would like. Most of
the screen commands will do this for wou automaticallu.

2.4.1 Screen List: n LIST (rart of OmniFORTH =)

Once wou enter the EDITOR wou should list a screen. Samele
edit screens 57, 38, and S9 have been rrovided on the
OmniFORTH disk to give wou a chance to learn how to use the
EDITOR. You maw list a scoreen at anw tine by turing its
number and LIST. For example.

57 LIST or 58 LIST or 59 LIST

will list screen 57.58. or S59. LIST not onlw lists a screen.
it also places the screen number in the OmniFORTH wariable
SCR. The EDITOR wuses SCR to determime which screen is beina
edited. You should LIST & screen before wou bedin editing it
to verify that it iz the one wou want and to set SCR.

Interactive Computer Swustems. Inc. OmniFORTH EDITOR 2-5

2.4.2 Screen Re—List: L

Once wou are in the EDITOR s wvocabularg, g9ou cam tore L Lo
list the cuwrrent edit screen. Try turina:d :

R
to list the current edit screen stored at 5CR.

2.4.3 Screen Index: m m INDEX f(part of OmniFORTH #*>

INDEX will list line 8 of a range of screeﬁs starting at
screen n until screen m. INDEX is rart of OmniFORTH and can
be called at anuw time. For examrle ture:

36 44 INDEX

to list the firet line {(lime 8) of screermns 36 thiru 44. Mote
that comments are enclosed bw left and riaht Farentheses .
preceded and followed bw a srace. armd can be used for
documentation anwwhere on screen. It is 3 dgood rFractice to
use line B8 as a comment line to describe the screen. INDEX
will not alter S5CR.

2.4.4 Screen Triad List: n TRIAD {rart of OmniFORTH #*)
To list the entire text of a triad of screens. ture:
36 TRIAD or 37 TRIRD or 328 TRIARD

which will list three screens per pade. the first zcreen

alwaws starting with a number evenlw divisible bw three.

This is done so wou won“t have to list an entire zource

file Just to urpdate a few rasge changes. TRIAD alters 5CR to
- last screen listed on rase.

2.4.5 Screen Show: n m SHOW (Part of OmniFORTH *)

SHOW uses“TRIRD to list entire screerns over a range. For
examrle ture:

36 44 SHOW

to list triads of screens that make ur the text EDITOR. Hote
that the first screen on each rage is ewenlw divisible bw
three including screemn n on first Fpage and m on last rPasge.
SHOW alters S5CR to last screen listed on rPage.

Interactive Computer Sustems. Inc. OmniFORTH EDITOR 2-6

2.4.5 Screen Coput n m COPY
COPY allows entire screens of text to be transfered from one
screen to ancther. Text from screen n will be coried to
screen m. For examrle twre:

38 32 COPY
to copw screen 38 to 59. Hote that 5CR will not be altered
by COPY. _
2.4.7 Screen Clear: n CLERAR
CLEAR screen n to spaces and set SCR eaual to n. Tures

59 CLEAR
to clear screen 59 and set SCR to 59 making it the cwrrent
edit screen.
2.4.8 Screen Flush: FLUSH (Part of OmniFORTH #)
FLUSH is & rart of OmniFORTH and can be called ang time to
write an updaled screen to disk. FLUSH requires no
Parameters and is called bw:

FLUSH

Note that FLUSH will only write to disk if there has beern an
urdate to a soreen. FLUSH will not alter SCR.

2.5 Line Commands

The EDITOR contains a vocabulars of line editind commands
that allows comrlete control text lines. There are 64
characters rPer line and 16 lines <numbered @ thru 13> in an
edit screen. '

Please corg screen 37 to 39 and use 59 as a sanrle edit
screen to familiarize wourself with the line commands. Turel

57 39 COPY . { to copw screen 57 to 59 O
TP ¢ to position cursor to TOP O

59 LIST { to list screen 5% and set 3CR=35%9 >

Interactive Computer Sustems. Inc. OmniFORTH EDITOR 2-7

2.5.1 Line Delete: n D

Delete line n of current edit screen bw moving line to PARD
and Pulling lines n+l thru 135 ur., reproducing lime 15.
Exameles

SD

will hold lime S in PAD, pPull lines & thru 15 w into 5 thru
14 thus reproducingd line 15 at 14. Remember that D will
renumber the remaining lirmes in the screen each time it is
used. Obserwve that 15 D will not work because 15+1 is off
current edit screen. Use 15 H then 1S E to hold and erase
line 15. Note that PAD holds original lire S reads for other
line commands like I or R. :

2.3.2 Line Erase: nE
Erase line n bw filling it with sraces. Examrle:
12 E

will space or blank Till entire &4 characters of line 12.

2.5.3 Lirne Hold: nH

Hold line n by copwina it to PAD. For examrlel

will move lime 13 into PAD without disturbing original line
15 in any wav. PAD can be used bw other line commands like I
or R to rerroduce PAD text om current or anw other screen.
2.5.4 Line Insert: nl

Insert text. held in PAD at. line n bw pushing lines m+l down
and discarding last line. Trw:

81
to move lime 8 thru 14 down to 9 thru 15 and then rerlace

text held in PAD on line 8. Mote that I will renumber the
remaining lines in the screen each time it is used.

Interactive Computer Swstems. Inc. OmriFORTH EDITOR 2-8

2.5.3 Line Put: n P string

Put. string of text into PAD and corw to line n. Put iz the
command used to inrut new lines of text. For examrle:

12 P the suick brown fox

will move "the auick brown fox"” into PAD and rerlace line 12
with the contents of PAD.

2.5.8 Line Replace: n R

Replace lime n with the contents of PAD. For examrle. if PAD
had been loaded usinga D, H, 1. P. ar T then turing:

7R
will corw text from PAD onto line 7 of curtent edit screen.
Note that R is useful to rereat lines on screens.

2.5.7 Line Spread: n S

Seread orens wP line n bw pushing lines n thru 14 down to
n+l thru 15 and then space filling line n. For examrle:s

4s

will push limes 4 thru 14 to lines 5 thru 135 and then blank
fill line 4. Note that lime 15 is lost and that each time 5
is used, the remaininag limes in the screen are renumbered.

2.5.8 Line Twre: n T

Tore will disrlaw Just one line of a screen placing the
line of text in PAD and line number on stack. For examrle:

T

will ture line 8, place its text in PAD. and line number O
on the stack. Note that T can be used to set ur other lire
editing commands D, E. I. R. and 5. Remember that during a
normal edit session wou will probablae use several T7s.
Ppushinag numbers onto stack and not using or rorrina Lhem
off. 80 it is a dgood ideas to clean up the stach occasionalla
bw turind SP! followed bw a carriage return.

Interactive Computer Sustems. Inc. OrmniFORTH EDITOR 2-9

2.6 Strinag Commands

The EDITOR” s wvocabularg contains command definitions that
allow interactive character string and cursor manirulations.
The cursor position is shown bw the - underline character.
Note that one space must serarate a command that uses 3
string parameter and all commands resuire a carriadge return
to execute.

Please corw screen 57 to 39 and use 32 as a sanrle edit
screen to familiarize wourself with the line commands. Twre:

57 39 COPY ¢ to copd screen 57 to 59 O
TOP { to position cursor to TOP >

59 LIST { to list screen 939 and set SCR=S9)

2.6.1 String Backur: B

Bachkur cursor bw the lenath of text in PAD. Thiz command is
normally used after a C, F, or N to rerosition cursor to the
bedinning of the strringd. For example. after using F string.

You maw tures

..B -
to move cursor back to bedgimning of tardet stiringd. Hote that
rereated use of B will backur cursor rast TOP.

2.6.2 String Copst C string

Corw string by insertina it into line at Fresent cursor
location. For example. after rFositioning cwsor. Qou maw
tures o '

€ copw string test

to insert "copw string tesl" at cursor location. The
remainder of lime is disrlaced right causingd anw trailing
characters past the 64th to be lost. Remember to imsrect the
promPt line after using C to check if wou have lost last
few characters. If end of edit screen is detected. an error
messasle OFF CURRENT EDITIMG SCREEM is sgiven {use TOP to
reset).

Interactive Computer Swstems. Inc. OmmiFORTH EDITOR 2-10

2.6.3 String Deletes n DELETE

To delete the previous n characters that arrear before the
cursor. For examrle if cursor is located after a strina Just

tsre='
2 DELETE

and wou will delete the last two characters of stringd and
pPull the remainder of lime left. MHote that if wou delete

while the cursor is positioned at beslnn1ns of a line wou
uill Pull lire up into previous line.

2.6.4 String Find: F string
Find sting starting scan at cursor until end of scoreen. Tral
_F target

to Find "tardet" string. If target string is not found or
search encounters end of screen an error messade is diven
and the cursor is placed at TOP readws for another scan. You
mas use N to search for Mext tarsget string.

2.6.5 String Move: n M

Move cuwrsor bw sisned n locations and then disrlaw rromet
line. For examprle:

-5M or 7M

will move cursor back 3 or forward 7 positions and disrlaw
line showind new curscor location. Note 8 M will disrlaw
line without moving cursor.

2.6.6 String Next: N

Next. will search for the Mext occurence of the previous Find
tardet strzns. Search starts at current curesor location and
continues unt:l end of screen. For examrle. after using F.
tras

N
to find Next tarsdet used bw F. MNote if scan encounters end

of screen an error message is zgiven and the cursor is
rpositioned to TOP readw for another scan.

Interactive Computer Sustems. Inc. OnriFORTH EDITOR 2-11

2.6.7 String Till: TILL string

Deletes characters starting at cursor and continuing unTILL
end of string has been deleted on current edit lire.
Position cursor and ture:

- TILL test
to delete all characters unTILL end of strind. Note that an
error messade is diven if srting is not found or end of line
is encountered.
2.6.8 5Strind Tor: TOP
TOP will move cursor location home to the TOP left rosition

of the current editing screen. TOP can be used to reset
error conditions and to resume edit session.

2.6.9 String eXtract: X string

Remove or eXtract the first occurence of target strina
starting scan at current cursor location. Trwi

® test

to eXtract the string "test" from the edit screen. Hote that
an error messade is given if string is not found. The cursor
is rositioned to the TOP of the curtent edit screen to allow
another scan.

Interactive Computer Sustems. Inc. OmrmiFORTH HSSEMBLER 3—~1
3.1 OmmiFORTH 2628 + 286G Rezembler

OnmiFORTH Frovides the ability to imrlement native machine

- code of the resident Processor. FAlthoush OmniFORTH Provides
Fower. almost e2aual to asszemblw lansuage there are some cases
where the user mas desire to use native machirne code such as
calling predefired subroutires or in zreed critical
routines. Assemble code is easw to produce inm OmniFORTH,
oftern sasisr than using a standard assembler.

melete incremental structured

OrmmiFORTH comees with 3 come

gzsembler o each processor imPrlemented. This imerlemenation
iz swrrlied with a2 3626 azzembler loaded and readws to use.
Flus and crticormal 2308 assenmbler that can be loaded bw the

Wiar as needed.

J.2 CODE words

Uzsers of FORTH refer to the assembls lansuade routines as
CODE words. CODE woirds once created mas be used the same as
ard other OmniFORTH word., The OwniFORTH assembler is alwavs
rezidert. and is inwcked by the worde CODE or RSSEMBLER.
ASSEMBLER iz the names of the assembly wocabulary Just as
FORTH is the name of the fundamertal wvocsbul ary.

CODE words beginm with the word CODE and end with NEXT JMP.
HEXT beimg the addresz of the reentre into OmniFORTH. The
structure of 3 CODE word iss

CODE mames « assemble code . HEXT JMP

where mams is the name of word the same as used with a colon
1" defimiticn.

Incrder to be comerlete. OmmiFORTH prowvides the ability to
locr and test ba the use of the words BEGIN, UNTIL. IF ELSE
znd ENDIF <zimilar to their use in high level OmniFORTHY.

There iz ome fundamerntal difference when coding code words
from codimg colom words, and that is that the interereter is
im execution mode and mot in comrile mode. Therefore high
lewvel OmmiFORTH words such as SWAP, DROP, 1+, etc, may be
used at assembls time to mamirulate addresses. values etco.
Ancther consideration is that like high level OmmiFORTH. the
redverse Folish notation holds. therefore mhemconic definition
iz reversed from that of 3 starndard assembler. AN examele of
this cam be zeemn inm the MEMT JMP which would be JMP NEXT
with 3 standard assembler-.

Irteractive Compuber Swsshtems. Inc. OmniFORTH ASSEMBLER 3-2

2.7 Conditiormal Test Operators

When using the BEGIM ... UNTIL and IF ... EL3E ... EMDIF
structures im the assembler, the UNTIL and IF statements
will code conditional Jumrs. Inorder to make the prorer
Jume code. the user must Frecede the IF or UNTIL by one of
the assembler conditiconal test orerators.

ASSEMBLER TEST OFERATORS

Q= True if condition code Z Bit is set
cs True if condition code C Bit is set
PE True if comditicr code P~ Bit is set
0« True if corndition code 5 Bit is set

HOT Reversess logic of the abouve conditions
T3 Code word terminations

Code words are terminated be Jumeing into the interereter.
therefore the OmmiFORTH assembler provides three constants
that Frovide absolute addresses within the interrreter thew
aret

MEHT Stardard ermtry into the interereter

HPUSH Puzh“s the HL register om the stack
then goes to MEXT

WHPUSH Push~s the WW* <or DE? and the HL redgisters
or the stack then does to NEXT

Theze conztants are used zsi

MEXT JHMP
HPUSH JMP
o WHPUSH JIMP

3.5 OmmiFORTH Register Designations

OmniFORTH uses two of the 16 bit register rairs to hold
zwustem rointers. Thes are the DE register which contains
the word Fointer and the BC redister which contains the
irterereter rointer. therefore most FORTH eprogrrammers prefer
to refer Lo the D and E registers as W and W and the B and
L regdizsterse as the I and 17. For those die hard assemblw
progranmers the user mas load the D, E, B, and C orerators
from the orticormal instruction set.

The WW* redizter rair mas be charnged within a code word
zimce HEXT will restore the WW” register rFair.

Interactive Computer Sustems. Inc. OmriFORTH ASSEMBLER 3-3

WARMING:

The I17 register rair must be restored by the user within
the code word, if used. because FORTH will blow whern NEXT
iz entered and if I1° iz incortect.

The uzer mas use all other regdisters Zexcert the stack
Froimter SPY since all FORTH intra word rparameters are
Frassed am the stack.

3.8 Optional 2809 Instruction Set

Inorder to save memory srace the entire 288 instruction set
iz mot Precomriled inm OmrmiFORTH the user is provided with
the source of the remaining mnemonics and maw elect to load
any Fart o all. The ortional mremonics are indicated in
the mmemonic lizt bg am asterisk in column ore.

~J

Fe? Comeatibilita

Incrder to remainm comratible with other uversions of FORTH in
2 bit immediate imstructiorns. OmmniFORTH allows the use of
the immedizte orerator #. The fallowing table lists
alternate forms of zome mnemonics listed in the assembly
mnemconic table:

Standard Alterrate favailable in OmniFORTH)
wwa RBOMUT ~ o g # R OMOU

wa ADI wg # ADD

=t ACT wo # ADC

W AMI <9 # ANA

e <RI @4 # XRA

wa TFI =g # CHMP

wa ORI =u # ORR

wa SUT g # SUB

o SBI s # SBBR

Mormalls CODE words are witten in HEX mode therefore the
HEX walues AR,B.C.D,& E would be misinterreted as redisters
instead of the HEXY walues. Incrder to avoid this problem.
the user when using the assembler should use BR. BB, BC.
8P, & BE for the HEX valuss.

WARMIMGE

The B, C, D, & E regizter mnemonics are not resident inm the
standard swstenm therefore if use is desired thews must be
logded from the orticnal assembls mnemonic source.

Thiz manual is not irmtended to teach assembly landuase
Frogramming. but to be a guide in imrlementing machire code
in FORTH. User sz that are not alreads proficiemt in assemblws
largusge coding should cormsult other reference material..

Irteractive Compuber Swstems. Inc. OnniFORTH ASSEMBLER 34

3.8 Examrles

The followind are examPrles of simrle code words used to
illustrates OmniFORTH assemblw coding. It should be noted
that. thew are for examrle PurrPoses onlw and mas alreadw
exist or maw be of no rractical use.

<

Z.2.1 Duplicate the tor ztack item.

CODE DUP H POP H PUSH HPUSH JMP

i
2

Add the tor 2 ztack items.

CODE + W FOF H POF W DARD HPUSH JMP

€
0

<3 SWAFP the tor 2 ztack ilems.

CODE SWAP H POP #THL HPUSH JMP

i
0
$

Call 3 user routine located at address FOG8.

CODE SAM Faaa CALL MNEXT JMP

3.2.5 Search memorws starting at the address on tor of the stack
for a character contaimed in the second item on the stack.
leaving the address of the character on the stack

CODE SEARCH-MEM H FPOP W POP W7 A MOV
BEGIN M CMP H INx 8= UNTIL
H DCX H PUSH NEXT JMP

I.8.6 Rerlace the tor of stack with a 1 (TRUEY if it is esual
to = zera otherwise rerlace it with a @8 <{FALSED> .

CODE 5AM H POF A XRA H ORA L ORA @ H MUI
a= IF 1 L MUl ELSE
a L MJI EHNDIF HPUSH JMP

Interactive Computer Sustems. Inc. OmmiFORTH RSSEMBLER 3-S5

3.% Assembler Mremonrnics

The following mmemonic table was modified armd reprinted
from A.M. Ashlew’'s PDS Assemblw Language Develorment Sustem
which was used to dewvelor this 2863688 OmniFORTH Swstem.

Rerrinted with tharks and permission of:

A.M. Ashlew
395 Siertra Madre Uilla
Pasadena, CA 91167

r2133 TII-5748

Interactive Computer Sustems. Inc. OmniFORTH ASSEMBLER 3-6

I.%.1 Register Mrhemonics

All of the 7536 registers have been assigned rredefined
mremnorics. These assismments asree with those dgiven by INTEL
and ZILOG.

The predefired register set is defimned ast

Redister Definition Value
A ‘ Accumul ator 7
* B 3 or 16 bit %
I 8 or 16 bit a
* 3 bit i
I” 8 bit 1
D 2 or 16 bit 2
W 2 or 16 bit 2
#* E 3 bit 3
W 8 bit 3
H 8 or 186 bit 4
L 8 bit S
M Memors Indirect C(HLD &
5P Stack Pointer 6
PSW Prodram Status Word 3
I3 16 bit Index @DDH
14> 16 bit Index @DDH
IR 16 bit Index 8FDH
I 16 bit Index 8FCH
RF Refresh Register B4FH
I Interrurt Uector a47vH
Immediate

Thece redizter assignmente maw not be redefined.

Indicates an oprtiomal mremonic <(see texil.

Interactive Computer Swustems.

3.2.2 Aszembly Lansuade

Inc.

OmniFORTH ASSEMBLER 3-7

As a consesauence of favoring the IMNTEL mnemonic set over
that of ZILOG, the 288 instruction superset has been
irvented. One concsideration in the definition of instruction
mhemoniics is standard assembly languase convention. In the
imstruction mremonics which follow. :

39 FP refers Lo an arbitﬁars.ls bit datums

it refaers to an arbitrary 8 bit datums

d refers toa a 288 disrlacement except
for relative Jumnmrss

=4 refers to an 8 bit register .
H, Bor Io Coar IV, Dor Ws E or W Hs, L, M

RP refers Lo an

B ar I, D oor W H
QF refars to am

PSWs B ar I. D ar W,

J3.2.3 Eight Bit Load

MHEMONIC ZIL0G
R R Mo LD R.JE
d I B MO LD R.CIH+dd
d Iv R pou LD R,<{IW+c)
R d I¥ Moy LD (I¥+dd,R
R d IV MOU LD IY+do.R
It A Mo LD A.I
FF & MO LD AR
A It pou LD 1I.A
A RF MO LD R.A

J.Z.4 Accumulator Load ~ Store

a9 rFe LDRA
B LDAX
D LDAX

a9 pPp STA
B 5TARX
D 5TAX

LD A, <nn2

LD
LD

A. (BCY
A, (DED>

LD <nm>.A

Lo
LD

tBCO.A
DE>L,R

18 bit regizster rair

16 bit redister pair
H>

REMARKS

From register to register
Redgister indirect (R not= M)

Memorws indirect (R mot= M

Fetch inmterrurt vector
Fetch refresh redgister
Load interrurt wector
Load refresh register

Acoumulator direct
Accumul at.or extended

Accumul ator direct
Recumulator extended

Interactive Computer Sgstems.

Inc.

3.9.5 Eight. Bit Load Immediate

3.2.6

MHEMOMIC

wa #$ ROMOL
owd BOMUT

e
Y

a9
a9
a9

PP
PP
PP

a5
59
a9 PP
a9 FP
a9 FF
49 RF

PP
PR

a9
ag
aq
aq
a9
39

==
FF
PP
PP
PR
FP

SPHL
SPIN
SPIY

aP

d I¥ MUl
d IY MUI

RP LMI
I¥ LMI
IV L¥I

LHLD
LBCD
LDED
LI¥D
LIVD
LESPD

SHLD
5BCD
SDED
SIHD
SIVD
S5PD

PUSH

IX PUSH

IV
in) =4
I
1%

FUSH

POP
POP
POP

ZILOG

LD
LD

LD
LD

LD
LD
LD

LD
LD
LD
LD
LD
LD

FUSH

R:sm
R.m

CIn+ddn
(IY+dd.n

Sixteen Bit Lpad s Store

RP.nn
I¥.mnm
V.

HL, <mm
BC, Krm2
DE. <nm)
IX. inmd
I, nn
SP.Cnm)

rnd . HL
rr) .BC
“rnn>.DE
rrd s IV
rm) L 5P

SP.HL
SP. IX
SP. IY

QP

PUSH IX

PUSH
POP

POP
POP

v

QP
Ix
Iy

OmniFORTH ASSEMBLER 3-8

REMARKS

FResgister immediate
Register immediate

Memory indirect immediate

Extended immediate

Extended indirect load

Extended indirect store

Set, stack pointer
Tao stack

From stack

Indicates am ortiomnal mnemonic (see text).

Interactive Computer Sustems.

3.32.7 Exchange, Block Transfeors.

MMEMOMIC

MCHG

4 EX

4 EX
THL

TR

KTIY

* LDI
LDIR

* LDD
LDDR

* CPD
* CPDR
CPII

CPIR

ZILOG

EX DE.HL
EX AF,AF~”

EX¥

EX (5PY.HL
EX (5P).,IX
EX <5P)., 1%

LDI
LDIR
LDD
LDDR

CPD
CPDR
CPI
CPIR

Inc.

OmniFORTH ASSEMBLER 3-9

and Search
REMARKS
Exchanse

Transfer

Search

3.9.8 Eight. Bit Arithmetic and Logical

R ADD

uu # AND
* 9a ADI

d I¥ ADD
d I¥Y RDD

R RDC

d I ADC
d IV ADC

wa # ADD
* wa ACI

ADD R

AbD Asww
ADD A, ww

ADD (IX+dd
ADD {IVY+dd>

ADD R

ADC (IX+d>
ADC {IY+d>

ADC n
ADC n

Add register

Add immediate
Add immediate

Add indirect

Register with carry

Memorw indirect with carry

Inmediate with carry
Immediate with carry

#* Indicates an ortional mnemonic (see text).

Interactive Computer Sustems. Inc.

OmniFORTH ASSEMBLER 3-1@

3.9.2 Eight Bit Arithmetic and Logical <Continued)

MHEMOMIC

acodaodaaFoacNonoloalnadacn

'St

o

b

#

A

e

'

lsl:‘
* o

suB
IX 5UB
IvY sue
sBB
IX SBB
IV SBB
AMNA
IX ANA
IV ANA
ORA
IX ORA
IY ORA
¥RA
IX ¥RA
IV =REA
chP
IX CMP
IV CMP
INR
IX INR
IV INR
DCR
IV DCR

Y DCR

ANA
AMI

XRA
#RI

CMP
CPI

ORA
ORI

SUB
SuUI

SBB
SBI

ZILO0G

suB R
S5UB (IX+dD
5UB {IX+d>
sBC R
SBC (IX+d)
SBC (IV+d>
AND R

CAND (IX+d)
AND (IY+d)

OR R

OR (Ik+d>
oR {IY+dd
KOR R

H“OR (IX+dD
ROR (IV+dD
CP R

CP {IX+dd
CP {I%+d>
INC R

IMNC (I¥+dD
IMC {IV+d)
DEC R

DEC ({IX+dd
DEC (I%+dd

AND ww
AND wa

wOR ww
WOR 9w

CP ww -
CPR o

orR 94
R wu

SUB 9w
SUB v

SBC A.gv9
SBC R.9w

REMARKS

Subtract. redister
Subtiract memorw indirect

Redgister with carry
Memors indirect with carry

Logical and redgister
Memors indirect

Loglical OR register
Memors indirect

Exclusive OR register
Memcirs indirect

Register comrFare
Memorw indirect
Register increment

Resgister decrement

Accumulator immediate

Indicates an oFtional mnemonic {(see texil.

Interactive Compubter Sustems.

Inc.

OmniFORTH ASSEMBLER 3-11

3.3.% Gereral Purrose Arithmetic and CPU Control

MHEMOMNIC 2IL0G
DAA DAR
cMA CPL
NEG NEG -
cMC CCF
5TC ' SCF
HOP NOP
HLT HALT
DI DI
EI ' EI

a Im iMmae
1 IM IM 1
2 IM Im 2

REMARKS

Decimal adJust accumulator

ComPlement. accumulator lodgical
MNegate accumulator

Comrliment carry flag

Set. carvra flag

Ho orPeration

Halt CPU

Disable interrupts

Eable interruets

Set. interrurt mode

3.9.18 Sixteen Bit Arithmetic Grous

RP DAD ADD HL.RP
RP CHRD ADC HL.RP
RP 5BC ADD IX.RP
RP I% DAD ADD IV.RP
RP INX IMC RP
Ik INR INC IX
IV INX INC IY
RFP DCX DEC RP
IX DC¥ DEC IX
IV DCX DEC I¥

3.9.11 Rotate and Shift Grour

RLC RLCAR
FAL. RLA
RRC RRCH
RAR RREA
R sSCL RLC R
M SCL RLC «<HL.D
d IX SCL ' RLC (IX.d>
* d IV SCL RLC {IY¥.d>
®* B RL RL R
* R SRC RRC R
® R RR RER R
B SLRA S5LA R
®* R SREA SRA B
R SREL SRLL R
* RLD RLD
* RRED RRD

%

16 bit. add {RP not= H. I¥>
Add with carrwe (RP not= H., I¥)
Add register rair to IX

Add register rpair to I¥

16 bit increment

18 bit decrement

Accumulator left circular
Left circular throush carra
Accumulator right circular
Right circular throush carrw
Register left circular

Memorw left circular

Left circular memory indirect

Register left throush carryg
Register right circular
Redister right throusgh carrwg
Left lirmear bit 8 a

Right limear bit 7 = extended
Right linear bit ¥ = 8

Left decimal

Right decimal

Indicates an opticmal mnemonic {see tewt)d.

Interactive Computer Susstems.

Inc.

OmniFORTH ASSEMBLER 3-12

3.9.12 Bit Manirulation “b=bit number @ <= b {=

GO3TI0 aazT0 aaEl

MHEMONIC

b BIT
B BIT
IX b BIT

IY¥ b BIT

b STE
b 5TB
I¥ b STB
I¥ b STB

b RES
b RES
I b RES
IY b RES

ZILOG

BIT
BIT
BIT
BIT

SET
SET
SET
SET

RES
RES
RES
RES

b.R

b CHLD

b S IH+dD
bs CIW+dD

b.R

b, CHLD
b. (IX+dD
b, CIV+dd

b.R

b, CHLD
b, {I¥+dD
b, L IW+dD

REMARKS

Zero flag = bit b of R

SET <1> bit b of R or memord

Reset, 78) bit b of R or memory

3.9.13 Input ~ Outrut Grour (P=Port number R=Register)

P

R

IM

CIM

INI
INIR

IMND
INDR

P ouT

R COUT

OuTI
QUTIR

ouTD
OUTDR

IN
IH
IMI

A, P2

R, <0

INIR

IND

IMDR

ouT

P2.R

QuUT (CH.R

ouTI
QUTIR

ouTD
CUTDR

Ineut to accumulator
Register R from port (LD

Input and increment
Rereat. inPput and increment

Ireut and decrement
Rereated inPut and decrement

Outeut.. accunulator
Register R to rort <D

Outreut and increment
Repeated output and increment

Qutput. and decrement
Repeated outeut and decrement

Indicates an ort.ional mnemonic Lsee textd.

Interactive Computer Sdstems.

Inc.

OmniFORTH ASSEMBLER

3~13

JaPuld Jume Grour (U=address dest=destimation +-128 butes)

%

MHEMONIC

I

8]
1)
1
)

b

J
Y
8

JMP

JHC
JC
JNZ
Jz
JPO
JPE
JP
Jr

dest. JR
dest JRC
dest. JRMHC
dest. JRZ
dest. JRHZ

PCHL
PCIX

PCIY

dest DJMZ

ZILOG
Py
JP NC, U
JP C.U
JP NZLU
P 2.
JP PO
JP PE.U
P P
P M.y
JF d

JR C.d
JR HC.d
JR Z.d
JR HMNZ.d
JP CHLD
RS £
JP IV
DINZ. d

REMARKS

'JumP

Mo carvwa
Carra

Mot Zero
Zero .
Paritw odd
Parits even
Positive
Nedgat.ive
JumFr relative
Carryg

Mo carira
Zero

Not zero

Branch to location
Branmch to location
Branch to location
Decrement. and Jume

Z.7.15 Call and Return Grour “U=address)

L%
1}
W
1J
iJ
1)
¥
1
i

CRLL
CHC
cC
CHZ2
cZ
CPE
CPO
CP
M

RET
RHC
RC
RNZ
rRZ
RPE
RPO
rP
R~M

RETI
RETH

rn RBRST

CALL v
CALL MNC.U
CALL C.u
CALL NZ.W
CALL Z.U
CALL PE.V
CALL PO.W
CALL P.W
CALL M.V

RET
RET
RET
RET
RET
RET
RET
RET
RET

NC
c
NZ
z
PE
PO
P
M

RETI
RETH

RST

r

Subrout.ine transfer
No carry '
Carra

Mot zero

Zero

Parits even

Paritwe odd

Positive

Negative

Return

No carydg
Carry

NHot. Zera
Zero

Paritw even
Paritw odd
Positive
Negat.ive

Return from interruet

in
in
in
if

HL.
IX
Iv
not. zero

Return from rmon-maskable

interrurt

Restart

Indicates an opticonal mremonic <see text.).

Interactive Computer Systems, Inc. OmniFORTH GLOSSARY 4-1

This glossary contains most of the word definitions that have been
released with OmniFORTH. Please note that a particular 1mp1ementa—
tion of OmniFORTH may not include all of the words shown in this
glossary. Words that are illustrated are from fig-FORTH Release 1
plus additional words have been added to provide the user with a
more powerful vocabulary.

The definitions are presented in the order of their ASCII sort.

Unless otherwise noted, all references to numbers are for 16 bit
signed integers in a stack that is 16 bits wide. Double integers
are 32 bits long and take two stack locations, the most significant
part including sign is on top of the stack.

The glossary illustrates the first line of each entry with the word
followed by a description of the action of the procedure on the stack.
The symbols indicate the order in which input parameters have been
placed on the stack. In this notation, the top of the stack is to the
right. Three dashes '"---" indicate the execution point and any
parameters left on the stack are listed.

Symbols include:

addr 16 bit memory address

b 8 bit byte with zeros in upper 8 bits

c 7 bit ASCII character with zeros in upper 9 bits

d 32 bit signed double integer with most significant
part including sign on top of stack

f Boolean flag. O=false, non-zero=true

ff Boolean false flag. £=0

n 16 bit signed integer number

u 16 bit unsigned integer number

tf Boolean true flag. f=non-zero

The capital letters shown on the right indicate FORTH definition
characteristics:

C May only be used within a colon definition. A digit
indicates number of memory addresses used.
E Intended for execution only.

L0 Level zero definition of FORTH-78.

Ll Level one definition of FORTH-78.

P Has precedence bit set. Will execute even when compiling.
U A user variable.

ICSP

#>

#BUF

#D

#H

n addr --- LO

Store 16 bits of n at address. Pronounced "store".

Save the stack position in CSP. Used as part of the
compiler security.

dl --- d2 ' LO

Generate from a double number dl, the next ascii
character which is placed in an output string.
Result d2 is the quotient after division by BASE,
and is maintained for further processing. Used
between < # and #> . See #S.

d - addr count LO

Terminates numeric output conversion by dropping d,
leaving the text address and character count
suitable for TYPE.

--—-

A constant returning the number of disk buffers allo-
cated. For the disk I-0 routines to work correctly,
#BUF must be greater than 1.

- v

Special output formatting. Converts one decimal
digit and holds it in PAD.

Special output formatting. Converts one HEX digit
and holds it in PAD.

4

#S

(.")

(;CODE)

dl --- d2

Generates ascii text in the text output buffer, by the
use of #, until a zero double number n2 results. Used
Used between < # and #> .

— addr
Used in the form:
! nnnn

Leaves the parameter field address of dictionary word
nnnn. As a compiler directive, executes in a compiler
directive, executes in a colon-definition to compile
the address as a literal. If the word is not found
after a search of CONTEXT and CURRENT, an appropriate
error message is given. Pronounced "tick".

Used in the form:
(ccee)

Ignore a comment that will be delimited by a right
parenthesis on the same line. May occur during
execution or in a colon-definition. A blank after
the leading parenthesis is required.

- -

The run-time procedure, compiled by ." which transmits
the following in-line text to the selected output
device. See ."

-

The run-time procedure, compiled by ;CODE, that
rewrites the code field of the most recently defined
word to point to the following machine code sequence.
See ;CODE.

Lo

P,LO

P,LO

C+

(+LOoP)

(ABORT)

(FIND)

(LINE)

(LooP)

(NUMBER)

n o ---

The run-time procedure compiled by +LOOP, which
increments the loop index by n and tests for Toop
completion. See +LOOP.

Executes after an error when WARNING is -1. This
word normally executes ABORT, but may be altered
(with care) to a user's alternative procedure.

The run-time procedure compiled by DO which moves the
loop control parameters to the return stack. See DO.

addrl addr2 --- pfa b tf (ok)
addrl addr2 --- ff (bad)

Searches the dictionary starting at the name field
address addr2, matching to the text at addrl. Returns
parameter field address, length byte of name field
and boolean true for a good match. If no match is
found, only a boolean false is left.

nl ne -— addr count

Convert the line number nl and the screen nZ to the
disc buffer address containing the data. A count of
64 indicates the full line text length.

The run-time procedure compiled by LOOP which
increments the loop index and tests for loop
completion. See LOOP.

dl addrl -— d? addr?2

Convert the ascii text beginning at addrl+l with
regard to BASE. The new value is accumulated into
double number dl, being left as d2. Addr2 is the
addggss of the first unconvertable digit. Used by
NUMBER.

c2

c2

*/

*/MOD

+1

+-

+BUF

nl n2 --- prod

Leave the signed product of two signed numbers.

nl n2 n3 --- nd

Leave the ratio n4 = nl*n2/n3 where all are signed
numbers. Retention of an intermediate 31 bit
product permits greater accuracy than would be
available with the sequence:

nil n2 * n3 /

nl n2 n3 --- nd n5
Leave the quotient n5 and remainder n4 of the

operation nl*n2/n3 A 31 bit intermediate product
is used as for */.

nl n2 --- sum

Leave the sum of nl+n2.

n addr ——

Add n to the value at the address. Pronounced
"plus-store”.

nl n2 --- n3

Apply the sign of n2 to nl, which is left as n3.

addl --- addr2 f

Advance the disc buffer address addrl to the address

of the next buffer addr2. Boolean f is false when

addr2 is the buffer presently pointed to by variable

PREV.

Lo

LO

Lo

Lo

Lo

v

v

+L0OOP

+ORIGIN

nl --- (run) ' ‘
addr n2 --- {compile) P,C2,L0

Used in a colon-definition in the form:
DO cee nl +L0OO0P

At run-time, +LOOP selectively controls branching back
to the corresponding DO based on nl, the loop index

and the loop limit. The signed increment nl is added
to the index and the total compared to the limit. The
branch back to DO occurs until the new index is equal
to or greater than the limit (nl > 0), or until the new
index is equal to or less than the 1imit (n1< 0). Upon
exiting the loop, the parameters are discarded and
execution continues ahead.

At compile time, +LOOP compiles the run-time word
(+LOOP) and the branch offset computed from HERE to the

address left on the stack by DO. n2 is used for compile
time error checking.

n - addr

Leave the memory address relative by n to the origin

"~ parameter area. n in the minimum address unit,

either byte or word. This definition is used to
access or modify the boot-up parameters at the origin
area.

n o --- LO

Store n into the next available dictionary memory
cell, advancing the dictionary pointer. (comma)

nl n2 --- diff LO

Leave the difference of nl-n2.

_— P,LO

Continue interpretation with the next disc screen.
(pronounced next-screen).

v

v

s

-Dup

-FIND

-TRAILING

nl -- nl (if zero)
nl -- nl nl (non-zero) LO

Reproduce nl only if it is non-zero. This is
usually used to copy a value just before IF, to
eliminate the need for an ELSE part to drop it.

--- pfa b tf (found)
-— ff (not found)

Accepts the next text word (delimited by blanks) in
the input strean to HERE, and searches the CONTEXT
and then CURRENT vocabularies for a matching entry.
If found, the dictionary entry's parameter field
address, is length byte, and a boolean true is left.
Otherwise, only a boolean false is left.

addr nl —— addr n2

Adjusts the character count nl of a text string
beginning address to suppress the output of trailing
blanks. i.e. the characters at addr+nl to addr+n2

are blanks.

nooee- LO

Print a number from a signed 16 bit two's complement
value, converted according to the numeric BASE. A
trailing blanks follows. Pronounced "dot".

n ———

Outputs n as an unsigned number per the present BASE.

P,LO
Used in the form:

." ccec”

Compiles an in-line string cccc (delimited by the
trailing ") with an execution procedure to transmit
the text to the selected output device. If executed
outside a definition. ." will immediately print the
text until the final ". The maximum number of
gharacters may be an installation dependent value.
ee (."

~ .4H
v .CPU
v .LINE
v R
v /
v /M0OD
v 0123

n -

Outputs to console n as two HEX digits. Any
overflow is lost.

n o ---

Outputs to console n as four HEX digits.

Prints the processor name (i.e., 8080) from QORIG+22H
encoded as a 32 bit, base 36 integer.

line scr ---
Print on the terminal device, a line of text from the

disc by its line and screen number. Trailing blanks
are suppressed.

nf n2 ---

Print the number nl right aligned in a field whose
width is n2. No following blank is printed.

nl n2 --- quot LO

Leave the signed quotient of nl/n2.

nl n2 --- rem quot Lo

Leave the remainder and signed quotient of nl/n2.
The remainder has the sign of the dividend.

-—-

These small numbers are used so often that it is
attractive to define them by name in the dictionary
as constants. .

o<

OBRANCH

1+

2+

2!

2@

2Dup

n --- f

Leave a true flag if the number is less than zero
(negative), otherwise leave a false flag.

n - f

Leave a true flag if the number is equal to iero,
otherwise leave a false flag.

f oa--
The run-time procedure to conditionally branch. If
f is false (zero), the following in-line parameter

is added to the interpretive pointer to branch
ahead or back. Compiled by IF, UNTIL, and WHILE.

nl --- n2

Increment nl by 1.

nl - n2

Leave nl incremented by 2.

nlow nhigh addr ---

32-bit store. nhigh is stored at addr; nlow is
stored at addr+2.

Caddr --- nlow nhigh

32-bit fetch. nhigh is fetched addr; nlow is
fetched from addr+2.

n2Z nl --- n2 nl n2 nl

Duplicates the top two values on the stack.
Equivalent to OVER OVER.

Lo

Lo

c2

L1

s . _— P,E,LO
Used in the form called a colon-definition:
. CCCC v e ;

Creates a dictionary entry defining cccc as equivalent
to the following sequence of FORTH word definitions
'..." until the next ';' or ';CODE'. The compiling
process is done by the text interpreter as long as
STATE is non-zero. Other details are that the CONTEXT
vocabulary is set to the current vocabulary and that
words with the precedence bit set (P) are executed
rather than being compiled.

L — PcC,LO

Terminate a colon-definition and stop further
compilation. Compiles the run-time ;S.

, 3CODE -—-- P,C,LO
Used in the Form:
1 CCCC auen ;CODE assembly mneumonics

Stop compilation and terminate a new defining word
cccc by compiling (;CODE). Set the CONTEXT vocabulary
to ASSEMBLER, assembling to machine code the following
mneumonics.

When cccc later executes in the form:
cccc nnnn

the word nnnn will be created with its execution
procedure given by the machine code following cccc.
That is, when nnnn is executed, it does so by

jumping to the code after nnnn. An existing defining
word must exist in cccc prior to ;CODE.

v ;S - : P,LO

Stop interpretation of a screen. ;S is also the
run-time word compiled at the end of a colon-
definition which returns execution to the calling
procedure.

v

<t#

<BUILDS

nl n2 --—- f

Leave a true flag if nl is less than n2; otherwise
leave a false flag.

- -

Setup for pictured numeric output formatting using
the words:

<# # #S SIGN #>

The conversion is done on a double number producing
text at PAD.

-

Used within a colon-definition:

ccce < BUILDS ...
DOES> ...

Each time cccc is executed,<BUILDS defines a new
word with a high-level execution procedure.
Executing cccc in the form:

Ccccc nnnn

uses <BUILDS to create a dictionary entry for nnnn
with a call to the DOES> part for nnnn. When nnnn
is Tater executed, it has the address of its
parameter area on the stack and executes the words
after DOES > in ccce. < BUILDS and DOES> allow
run-time procedures to written in high-level rather
than in assembler code (as required by ;CODE).

nl ne -—- f

Leave a true flag if nl=n2; otherwise leave a
false flag.

nl n2 - f

Leave a true flag if nl is greater than n2;
Otherwise a false flag.

Lo

Lo

c,L0

Lo

Lo

>R

?7COMP

?2CSP

?ERROR

7EXEC

?LOADING

?PAIRS

n -

Remove a number from the computation stack and
place as the most accessible on the return stack.

Use should be balanced
definition.

addr -

Print the value contained at the address in free

with R> in the same

format according to the current base.

- -

Issue error message if

- -

Issue error message if
value saved in CSP.

f n ---

Issue an error message
flag is true.

Issue an error message

Issue an error message

nl n2 ---

Issue an error message
message indicates that
not match.

not compiling.

stack position differs from

number n, if the bolean

if not executing.

if not loading.

if nl does not equal n2.
compiled conditionables do

The

c,L0

LO

?S

?STACK

?TERMINAL

ABORT

ABS

AGAIN

Qutputs the contents of the parameter stack in
HEX and DECIMAL.

Issue an error message if the stack is out of bounds.
This definition may be installation dependent.

— f

Perform a test of the terminal keyboard for actuation
of the break key. A true flag indicates actuation.
This definition is installation dependent.

addr --- n

Leave the 16 bit contents of address.

- - - p
—

Clear the stacks and enter the execution state.
Return control of the operators terminal, printing
a message appropriate to the installation.

n - u

Leave the absolute value of n as u.

addr n --- (compiling)
Used in a colon-definition in the form:
BEGIN .es AGAIN

At run-time, AGAIN forces execution to return to
corresponding BEGIN. There is no effect on the
stack. Execution cannot leave this loop (unless
R> DROP is executed one level below).

At compile time, AGAIN compiles BRANCH with an

offset from HERE to addr. n is used for
compile-time error checking.

Lo

Lo

Lo

P,C2,LO0

ALLOT n_ --- LO
Add the signed number to the dictionary pointer DP.
May be used to reserve dictionary space or re-origin

memory. n is with regard to computer address type
(byte or word).

AND nl n2 --- n2 LO

Leave the bitwise logical and of nl and n2 as n3.

B/BUF —— n

This constant leaves the number of bytes per disc
buffer, the byte count read from disc by BLOCK.

B/SCR --- n
This constant leaves the number of blocks per editing

screen. By convention, an editing screen is 1024
bytes organized as 16 lines of 64 characters each.

BACK addr ---
Calculate the backward branch offset from HERE to

addr and compile into the next available dictionary
memory address.

BASE --- addr u,L0

A user variable containing the current number base
used for input and output conversion.

~ BEGIN

BL

BLANKS

BLK

BLOCK

--- addr n (compiling)
Occurs in a colon-definition in form:

BEGIN ... UNTIL
BEGIN ... AGAIN
BEGIN ... WHILE ... REPEAT

At run-time, BEGIN marks the start of a sequence that
may be repetitively executed. It serves as a return
point from the corresponding UNTIL, AGAIN or REPEAT.
When executing UNTIL, a return to BEGIN will occur if
the top of the stack is false; for AGAIN and REPEAT a
return to BEGIN always occurs.

At compile time BEGIN leaves its return address and n
for compiler error checking.

--—-

A constant that leaves the ascii value for "blank".

addr count --«

Fill an area of memory beginning at addr with blanks.

--- addr

A user variable containing the block number being
interpreted. If zero, input is being taken from
the terminal input buffer. ‘

n -— addr

Leave the memory address of the block buffer
containing block n. If the block is not already

in memory, it is transferred from disc to whichever
buffer was least recently written. If the block
occupying that buffer has been marked as updated,
it is rewritten to disc before block n is read

into the buffer. See also BUFFER, R/W UPDATE
FLUSH

P,LO

u,L0

LO

BRANCH

BUFFER

c!

C/L

ce

CFA

The run-time procedure to unconditionally branch.
An in-line offset is added to the interpretive
pointer IP to branch ahead or back. BRANCH is
compiled by ELSE, AGAIN, REPEAT.

n -—— addr

Obtain the next memory buffer, assigning it to block
n. If the contents of the buffer is marked as
updated, it is written to the disc. The block is
not read from the disc. The address left is the
first cell within the buffer for data storage.

b addr -

Store 8 bits at address. On word addressing
computers, further specification is necessary
regarding byte addressing.

b a=-—

Store 8 bits of b into the next available dictionary
byte, advancing the dictionary pointer. This is
only available on byte addressing computers, and
should be used with caution on byte addressing
mini-computers.

--—- n

Constant leaving the number of characters per line;
used by the editor.

addr --- b
Leave the 8 bit contents of memory address. On word

addressing computers, further specification is
needed regarding byte addressing.

pfa --- cfa

Convert the parameter field address of a definition
to its code field address.

c2,L0

4 CMOVE from to count ---

Move specified quantity of bytes beginning at address
(from) to address (to). The contents of address from is
moved first proceeding toward high memory. Further
specification is necessary on word processing

computers.

/' coLD —--

The cold start procedure to adjust the dictionary
pointer to the minimum standard and restart via
ABORT. May be called from the terminal to remove
application programs and restart.

v COMPILE -—-

When the word containing COMPILE executes, the
execution address of the word following COMPILE is
copied (compiled) into the dictionary. This allows
specific compilation situations to be handled in
addition to simply compiling an execution address
(which the interpreter already does).

v CONSTANT n --- L0
A defining word used in the form:
n CONSTANT cccc

to create word cccc, with its parameter field
containing n. When cccc is later executed, it will
push the value of n to the stack.

4 CONTEXT --- addr u,L0

A user variable containing a pointer to the
vocabulary within which dictionary searches
will first begin.

v COUNT addrl --- addr2 n LO

Leave the byte address addr2 and byte count n of

a message text beginning at address addrl. It is
presumed that the first byte at addrl contains the
text byte count and the actual text starts with the
second byte. Typically COUNT is followed by TYPE.

7

CR

CREATE

CsSpP

D+

D+~

D.R

Transmit a carriage return and line feed to the
selected output device.

A defining word used in the form:

CREATE cccc
by such words as CODE and CONSTANT to create a
dictionary header for a FORTH definition. The
code field contains the address of the words

parameter field. The new word is created in
the CURRENT vocabulary.

--- addr

A user variable temporarily storing the stack
pointer position, for compilation error checking.

dl d2 --- dsum

Leave the double number sum of two double numbers

dl n =-- dz2

Apply the sign of n to the double number dl,
leaving it as d2.

d ---

Print a signed double number from a 32 bit two's
complement value. The high-order 16 bits are most
accessable on the stack. Conversion is performed
according to the current BASE. A blank follows.
Pronounced D-dot.

Print a signed double number d right aligned in a
field n characters wide.

Lo

L1

Vv DABS

v DECIMAL
v DEFINITIONS
% DENSITY
, DIGIT
4 DISK-ERROR
DLIST

d --- ud

Leave the absolute value ud of a double number.

Set the numeric conversion BASE for decimal
input-output.

Used in the form:
cccc DEFINITIONS

Set the CURRENT vocabulary to the CONTEXT vocabulary.
In the example, executing vocabulary name cccc made
it the CONTEXT vocabulary and executing DEFINITIONS
made both specify vocabulary cccc.

-—— addr

A variable used by the disk 1nterface.
0 = single density; 1 - double density.

¢ nl --- n2 tf (ok)
c nl --- ff (bad)

Converts the ascii character ¢ (using base nl) to its
binary equivalent n2, accompanied by a true flag. If
the conversion is invalid, leaves only a false flag.

--- addr
A variable used by the disk interface, containing the

disk status for the last sector read or written.
0 means no error.

List the names of the dictionary entries in the
CONTEXT vocabulary.

Lo

L1

v DLITERAL d --- d (executing)
d --- (compiling) P

If compiling, compile a stack double number into
a literal. Later execution of the definition
containing the literal will push it to the stack.
If executing, the number will remain on the stack.

4 DMINUS dl --- d2

Convert dl to its double number two's complement.

v DO nl n2 --- (execute)
addr n --- (compile) P,C2,L0

Occurs in a colon-definition in form:

po ... LOOP
DO ... +LOOP

At run time, DO begins a sequence with repetitive
execution controlled by a loop limit nl and an
index with initial value n2. DO removes these from
the stack. Upon reaching LOOP the index is
incremented by one. Until the new index equals or
exceeds the limit, execution loops back to just
after DO; otherwise the loop parameters are
discarded and execution continues ahead. Both nl
and n2 are determined at run-time and may be the
result of other operations. Within a loop 'I'
will copy the current value of the index to the
stack. See I, LOOP, +LOOP, LEAVE.

When compiling within the colon-definition, DO
compiles (DO), leaves the following address addr
and n for later error checking.

v DOES > --- LO

A word which defines the run-time action within a
high-level defining word. DOES > alters the code
of field and first parameter of the new word to
execute the sequence of compiled word addresses
following DOES> . Used in combination with
<BUILDS. When the DOES> part executes it
begins with the address of the first parameter

of the new word on the stack. This allows
interpretation using this area or its contents.
Typical uses include the FORTH assembler, multi-
dimensional arrays, and compiler generation.

DP —m-- addr u,L

A user variable, the dictionary pointer, which
contains the address of the next free memory
above the dictionary. The value may be read by
HERE and altered by ALLOT.

DPL —em= addr U,L0

A user variable containing the number of digits to
the right of the decimal on double integer input.
It may also be used hold output column location of
a decimal point, in user generated formating. The
default value on single number input is -1.

DRO -—-
DR1 -—

Installation dependent commands to select disc drives,
by presetting OFFSET. The contents of OFFSET is added
to the block number in BLOCK to allow for this

selection. Offset is supressed for error text so that
it may always originate from drive O.

DRIVE —— addr
A variable used by disk interface, containing the disk

drive number (0 to MXDRV) used on the last sector
read or written.

DROP n === Lo

Drop the number from the stack.

DUMP addr n --- LO

Print the contents of n memory locations beginning
at addr. Both addresses and contents are shown in
HEX and ASCII.

pupP n ——— n n L0

Duplicate the value on the stack.

v’

v

7

e

ELSE

EMIT

EMPTY-BUFFERS

ENCLOSE

END

addrl nl --- addr2 n2 (compiling)
Occurs within a colon-definition in the form:
IF ees ELSE - ENDIF

At run-time, ELSE executes after the true part
following IF. ELSE forces execution to skip over
the following false part and resumes execution
after the ENDIF. It has no stack effect.

At compile-time ELSE emplaces BRANCH reserving a
branch offset, leaves the address addr2 and n2 for
error testing. ELSE also resolves the pending
forward branch from IF by calculating the offset
from addrl to HERE and storing at addrl.

fol Pp—

Transmit ascii character c to the selected output
device. OUT is incremented for each character
output.

Mark all block-buffers as empty, not necessarily
affecting the contents. Updated blocks are not
written to the disc. This is also an initialization
procedure before first use of the disc.

addrl c -——
ddrl nl nZ n3

The text scanning primitive used by WORD. From
the text address addrl and an ascii delimiting
character c, is determined the byte offset to

the first non-delimiter character nl, the offset
to the first delimiter after the text n2, and

the offset to the first character not included.
This procedure will not process past an ascii
'null', treating it as an unconditional delimiter.

This is an 'alias' or duplicate definition for
UNTIL.

P,C2,L0

Lo

L0

P,C2,L0

v ENDIF
/" ERASE
, ERROR
s EXECUTE
v EXPECT

addr n - (compile) P,CO,LO

Occurs in a colon-definition in form:

IF ... ENDIF
IF ... ELSE ... ENDIF

At run-time, ENDIF serves only as the destination of
a forward branch from IF or ELSE. It marks the
conclusion of the conditional structure. THEN is
another name for ENDIF. Both names are supported

in FORTH. See also IF and ELSE.

At compile-time, ENDIF computes the forward branch
offset from addr to HERE and stores it at addr. n
is used for error tests.

addr n ——

Clear a region of memory to zero from addr over n
addresses.

1ine --- in blk

Execute error notification and restart of system.
WARNING is first examined. If 1, the text of line

n, relative to screen 27 of drive 0 is printed.

This line number may be positive or negative, and
beyond just screen 27. If WARNING=0, n is just
printed as a message number (non disc installation).
If WARNING is -1, the definition (ABORT) is executed,
which executes the system ABORT. The user may
cautiously modify this execution by altering (ABORT) .
fig-FORTH saves the contents of IN and BLK to assist
in determining the location of the error. Final
action is execution of QUIT.

addr ---

Execute the definition whose code field address is
on the stack. The code field address is also called
the compilation address.

addr count -—— LO

Transfer characters from the terminal to address,
until a "return” or the count of characters have
been received. One or more nulls are added at the
end of the text.

FENCE

FILL.

FIRST

FLD

FLUSH

FORGET

--- addr]
A user variable containing an address below which

FORGETting is trapped. To forget below this
point the user must alter the contents of FENCE.

addr quan b ---

Fill memory at the address with the specified
quantity of bytes b.

-—- n

A constant that leaves the address of the first
(Towest) block buffer.

--- addr U

A user variable for control of number output field
width. Presently unused in FORTH.

Write all UPDATEd disk buffers to disk. Should be used
after editing, before dismounting a disk, or before
exiting FORTH.

——_—— E,LO
Executed in the form:
FORGET cccc

Deletes definition named cccc from the dictionary
with all entries physically following it. 1In
fig-FORTH, an error message will occur if the
CURRENT and CONTEXT vocabularies are not currently
the same.

v FORTH

v HERE
v HEX

» HLD

v HOLD
v I

J ID.

o | P.L1

The name of the primary vocabulary. Execution
makes FORTH the CONTEXT vocabulary. Until
additional user vocabularies are defined, new
user definitions become a part of FORTH. FORTH
is immediate, so it will execute during the
creation of a colon-definition, to select this
vocabulary at compile time.

=== addr ' LO

Leave the address of the next available
dictionary location.

—_— ' Lo

Set the numeric conversion base to sixteen
(hexadecimal).

—— addr LO
A user variable that holds the address of the

latest character of text during numeric output
conversion.

c - LO
Used between <# and # > to insert an ascii

character into a pictured numeric output string.
e.g. 2E HOLD will place a decimal point.

--- n C,LO0
Used within a DO-LOOP to copy the loop index to

the stack. Other use is implementation dependent.
See R.

addr ---

* Print a definition's name from its name field

address.

v

/

IF

IMMEDIATE

IN

INDEX

f --- (run-time)

--- n (compile) P,C2,L0

Occurs in a colon-definition in the forms:

IF (tp) vee ENDIF
IF (tp) ... ELSE (fp) ... ENDIF

At run-time, IF selects execution based on a
boolean flag. If f is true (non-zero), execution
continues ahead thru the true part. If f is false
(zero), execution skips til1l just after ELSE to
execute the false part. After either part,
execution resumes after ENDIF. ELSE and its false
part are optional.; if missing, false execution
skips to just after ENDIF.

At compile-time IF compiles OBRANCH and reserves
space for an offset at addr. addr and n are used
later for resolution of the offset and error
testing.

Mark the most recently made definition so that
when encountered at compile time, it will be
executed rather than being compiled. i.e. the
precedence bit in its header is set. This method
allows definitions to handle unusual compiling
situations, rather than build them into the
fundamental compiler. The user may force
compilation of an immediate definition by
preceeding it with [COMPILE] .

-—— addr L0

A user variable containing the byte offset within
the current input text buffer (terminal or disc)

from which the next text will be accepted. WORD

uses and moves the value of IN.

from to -———

Print the first line of each screen over the range
from, to. This is used to view the comment lines
of an area of text on disc screens.

/

INTERPRET

KEY

LATEST

LEAVE

LFA

LIMIT

The outer text interpreter which sequentially
executes or compiles text from the input stream
(terminal or disc) depending on STATE. If the
word name cannot be found after a search of
CONTEXT and then CURRENT it is converted to a
number according to the current base. That also
failing, an error message echoing the name with a
" ?" will be given. Text input will be taken
according to the convention for WORD. If a
decimal point is found as part of a number, a
double number value will be left. The decimal
point has no other purpose than to force this
action. See NUMBER.

--- . C LO

Leave the ascii value of the next terminal key
struck.

--- addr

Leave the name field address of the topmost word
in the CURRENT vocabulary.

— C,LO

Force termination of a DO-LOOP at the next
opportunity by setting the loop 1imit equal to

the current value of the index. The index itself
remains unchanged, and execution proceeds normally
until LOOP or +LOOP is encountered.

pfa --- 1fa

Convert the parameter field address of a dictionary
definition to its link field address.

--==

A constant leaving the address just above the highest
memory available for a disc buffer. Usually this is
the highest system memory.

va LIST n --- ' : Lo

Display the ascii text of screen n on the selected
output device. SCR contains the screen number
during and after this process.

7 LIT --= n c2,L0

Within a colon-definition, LIT is automatically
compiled before each 16 bit literal number
encountered in input text. Later execution of
LIT causes the contents of the next dictionary
address to be pushed to the stack.

7 LITERAL n --- (compiling) P,C2,L0

If compiling, then compile the stack value n as

a 16 bit literal. This definition is immediate

so that is will execute during a colon definition.
The intended use is:

XXX calculate LITERAL ;

Compilation is suspended for the compile time
calculation of a value. Compilation is
resumed and LITERAL compiles this value.

v LOAD n --- LO

Begin interpretation of screen n. Loading will
terminate at the end of the screen or at ;S. See
;S and -->.

v LooP addr n --- (compiling) P,C2,L0
Occurs in a colon-definition in form:
DO .o LoopP

At run-time, LOOP selectively controls branching
back to the corresponding DO based on the loop
index and limit. The loop index is incremented by
one and compared to the limit. The branch back to
DO occurs until the index equals or exceeds the
1imit; at that time, the parameters are discarded
and execution continues ahead.

At compile-time, LOOP compiles (LOOP) and uses
addr to calculate an offset to DO. n is used
for error testing.

S

Joow
v/ M/MOD
/ MAX
v/ MESSAGE
v MIN
/ MINUS
/ MOD

nl n2 --- d

A mixed magnitude math operation which leaves the

double number signed product of two signed number.

d nl --- n2 n3
A mixed magnitude math operator which leaves the
signed remainder n2 and signed quotient n3, from

a double number dividend and divisor nl. The
remainder takes its sign from the dividend.

udl, w2 --- u3 udd
An unsigned mixed magnitude math operation which

leaves a double quotient ud4 and remainder u3,
from a double dividend udl and single divisor u2.

nl n2 --- max

Leave the greater of two numbers.

n e

Print on the selected output device the text of

line n relative to screen 27 of drive 0. n may

be positive or negative. MESSAGE may be used to
print incidental text such as report headers.

If WARNING is zero, the message will simply be
printed as a number (disc un-available).

nl n2 --- min

Leave the smaller of two numbers.

nt --- n2

Leave the two's complement of a number.

nl n2 --- mod

Leave the remainder of nl/n2, with the same sign
as nl.

LO

Lo

LO

LO

/ MODE

MON
MOVE
NEXT
v NFA
v~ NOOP

Outputs the contents of the user variable BASE
in a BASE independent form.

Exit to the system monitor, leaving a re-entry to
FORTH, if possible.

addrl addr2 n ---

Move the contents of n memory cells (16 bit contents)
beginning at addrl into n cells beginning at addr2.
The contents of addrl is moved first. This definition
is appropriate on word addressing computers.

This is the inner interpreter that uses the
interpretive pointer IP to execute compiled FORTH
definitions. It is not directly executed but is
the return point for all code procedures. It

acts by fetching the address pointed by IP, storing
this value in register W. It then jumps to the
address pointed to by the address pointed to by W.
W points to the code field of a definition which
contains the address of the code which executes for
that definition. This usage of indirect threaded
code is a major contributor to the power,
portability, and extensibility of FORTH. Locations
of IP and W are computer specific.

pfa ---. nfa

Convert the parameter field address of a definition
to its name field.

A Forth 'no operation'.

v/ NUMBER

v OFFSET
. OR
vooouT
v OVER
v Pl
v p@

addr === d

Convert a character string left at addr with a
preceeding count, to a signed double number,
using the current numeric base. If a decimal
point is encountered in the text, its position
will be given in DPL, but no other effect
occurs. If numeric conversion is not possible,
an error message will be given.

--=- addr

A user variable which may contain a block offset
to disc drives. The contents of OFFSET is added
to the stack number by BLOCK. Messages by

MESSAGE are independent of OFFSET. See BLOCK,
DRO, DR1, MESSAGE.

nl n2 -- or

Leave the bit-wise logical OR of two 16 bit values.

-— addr
A user variable that contains a value incremented

by EMIT. The user may alter and examine OUT to
control display formating.

nl n2 --- nl n2 nl

Copy the second stack value, placing it as the
new top.

b port# ---

8080 or Z-80 I-0 port store. OQutputs byte b to port#.

port# --- b

8080 or Z-80 I-0 port fetch. Inputs byte b from port#.

LO

Lo

PAD

PFA

POP

PREV

PUSH

PUT

QUERY

--- addr Lo

Leave the address of the text output buffer, which
is a fixed offset above HERE.

nfa --- pfa

~onvert the name field address of a compiled
definition to its parameter field address.

The code sequence to remove a stack value and return
to NEXT. POP is not directly executable, but is a
FORTH re-entry point after machine code.

---- addr

A variable containing the address of the disc buffer
most recently referenced. The UPDATE command marks
this buffer to be later written to disc.

This code sequence pushes machine registers to the
computation stack and returns to NEXT. It is not
directly executable, but is a FORTH re-entry

point after machine code.

This code sequence stores machine register contents
over the topmost computation stack value and returns

to NEXT. It is not directly executable, but is a FORTH
re-entry point after machine code.

Input 80 characters of text (or until a "return") from
the operators terminal. Text is positioned at the
address contained in TIB with IN set to zero.

QIT

R#

R/W

R>

RO

Clear the return stack, stop compilation, and
return control to the operators terminal. No
message is given.

-—- n

Copy the top of the return stack to the computation
stack.

- addr

A user variable which may contain the location of an
editing cursor, or other file related function.

addr blk f ===

The fig-FORTH standard disc read-write linkage.
addr specifies the source or destination block
buffer. blk is the sequential number of the
referenced block; and f is a flag for f=0 write
and f=1 read. R/W determines the location on
mass storage, performs the read-write and
performs any error checking.

——n Lo
Remove the top value from the return stack and

leave it on the computation stack. See >R and
RC

--~ addr U

A user variable containing the jnitial location
of the return stack. Pronounced R-zero. See RP!

/' REPEAT
< ROT
v RP!
V4 RP@
v S->D
v’ S0
7 SCR

addr n --- (compiling)
Used within a co]on-definition in the form:
BEGIN «.. WHILE ... REPEAT

At run-time, REPEAT forces an unconditional branch
back to just after the corresponding BEGIN.

At compile-time, REPEAT compiles BRANCH and the
offset from HERE to addr. n is used for error
testing.

nl n2 n3 -—— n2 n3 nl

Rotate the top three values on the stack, bringing
the third to the top.

A computer dependent procedure to initialize the
return stack pointer from user variable RO.

-— addr

Leaves the current value in the return stack pointer
register.

n --- d

Sign extend a single number to form a double number.

—-—— addr

A user variable that contains the initial value
for the stack pointer. Pronounced S-zero. See SP!

-— addr

A user variable containing the screen number
most recently referenced by LIST.

P,C2

Lo

SEC

SHOW

SIGN

SMUDGE

SP!

Spe

SPACE

--- addr
A variable used by the disk interface, containing

the sector number last read or written relative
to the last drive used.

nl n2 ---

Outputs screens nl through n2 with 3 screens per page.

*used TRIAD)

n d - d

Stores an ascii "-" sign just before a converted
numeric output string in the text output buffer
when n is negative. n is discarded, but double
number d is maintained. Must be used between
<# and #>

Used during word definition to toggle the "smudge
bit" in a definitions' name field. This prevents
an uncompleted definition from being found during
dictionary searches, until compiling is completed
without error.

A computer dependent procedure to initialize the
stack pointer from SO.

--- addr
A computer dependent procedure to return the address
of the stack position to the top of the stack, as it

was before SP@ was executed. (e.g. 1 2 SPe @
. would type 2 2 1).

-

Transmit an ASCII blank to the output device.

Lo

LO

~ SPACES n --- | LO

Transmit n ascii blanks to the output device.

.~ STATE --- addr Lo,u
A user variable containing the compilation state.

A non-zero value indicates compilation. The
value itself may be implementation dependent.

e SWAP nl n2 --- n2 nl L0

Exchange the top two values on the stack.

v T&SCALC —

Track & Sector and drive calculation for disk IO.
n is the total sector displacement from the first
logical drive to the desired sector.

n = (block# + QFFSET) * SEC/BLK

The corresponding drive, track, and sector numbers
are calculated. If the drive number is different
from the contents of DRIVE, the new drive number is
stored in DRIVE and SET-DRIVE is executed.

The track number is stored in TRACK; the sector number
is stored in SEC. T&SCALC is executed by RWDSK.

v TASK ---
A no-operation word which can mark the boundary
between applications. By forgetting TASK and
re-compiling, an application can be discarded
in its entirety.
v THEN —— P,CO,LO
An alias for ENDIF.
v TIB -—- addr . U

A user variable containing the address of the
terminal input buffer.

v TOGGLE ~ addr b ---

Complement the contents of addr by the bit pattern b.

v TRAVERSE addrl n --- addr2

Move across the name field of a fig-FORTH variable
length name field. addrl is the address of either
the length byte or the last letter. If n=1, the
motion is toward hi memory; if n=-1, the motion
is toward Tow memory. The addr2 resulting is
address of the other end of the name.

v TRIAD scr ---

Display on the selected output device the three
screens which include that numbered scr, beginning
with a screen evenly divisible by three. Output

~is suitable for source text records, and includes
a reference line at the bottom taken from line 15
of screen 27.

v TYPE addr count ---

Transmit count characters from addr to the
selected output device.

v u* ul u2 — ud

Leave the unsigned double number product of two
unsigned numbers.

7/ U/ ud ul --- u2 u3

Leave the unsigned remainder u2 and unsigned
quotient u3 from the unsigned double dividend
ud and unsigned divisor ul.

U ul w2 --- f

Leave the Boolean value of an unsigned less-than
comparison. Leaves f =1 for ul u2; otherwise
leaves 0. This function must be used when comparing
memory addresses. ul and u2 are unsigned 16-bit
integers.

v

v’

UNTIL

UPDATE

USE

USER

f -=- (run-time)

addr n --- (compile) P,C2,L0

Occurs within a colon-definition in the forms:
BEGIN ... UNTIL

At run-time, UNTIL controls the conditional
branch back to the corresponding BEGIN. If
f is false, execution returns to just after

BEGIN; if true, execution continues ahead.

At compile-time, UNTIL compiles (OBRANCH)
and an offset from HERE to addr. n is used
for error tests.

— Lo

Marks the most recently referenced block (pointed

to by PREV) as altered. The block will subsequently
be transferred automatically to disc should its
buffer be required for storate of a different

block.

—-— addr

A variable containing the address of the block
buffer to use next, as the least recently written.

n_ o--- LO
A.defining word used in the form:
n USER ccc

which creates a user variable cccc. The
parameter field of cccc contains n as a fixed
offset relative to the user pointer register UP
for this user pointer register UP for this user
variable. When cccc is later executed, it
places the sum of its offset and the user area
base address on the stack as the storage address
of that particular variable.

/

/

v

v

VARIABLE

VOC-LINK

VOCABULARY

VLIST

—- E,LO
A defining word used in the form:
n VARIABLE cccc

When VARIABLE is executed, it creates the definition
cccc with its parameter field initialized to n. When
ccce is later executed, the address of its parameter
field (containing n) is left on the stack, so that a
fetch or store may access this location.

S addr U

A user variable containing the address of a field
in the definition of the most recently created
vocabulary. A1l vocabulary names are linked by
these fields to allow control for FORGETting thru
multiple vocabularies.

--- E,L
A defining word used in the form:
VOCABULARY cccc

to create a vocabulary definition cccc. Subsequent
use of cccc will make it the CONTEXT vocabulary
which is searched first by INTERPRET. The sequence
"cccc DEFINITIONS™ will also make cccc the CURRENT
vocabulary into which new definitions are placed.

In fig-FORTH, cccc will be so chained as to include
all definitions of the vocabulary in which cccc is
itself defined. A1l vocabularies ultimately chain
to FORTH. By convention, vocabulary names are to be
declared IMMEDIATE. See VOC-LINK.

List the names of the definitions in the context
vocabulary.

v

v

v

v

WARNING

WHILE

WIDTH

WORD

-—— addr

A user variable containing a value controlling
messages. If = 1 disc is present, and screen 4
of drive 0 is the base location for messages.
If = 0, no disc is present and messages will be
presented by number. If = -1, execute (ABORT)
for a user specified procedure. See MESSAGE,
ERROR.

f -== (run-time)
adl nl --- adl nl ad2 n2

Occurs in a colon-definition in the form:
BEGIN cee WHILE (tp) ... REPEAT

At run-time, WHILE selects conditional execution
based on boolean flag f. If f is true (non-zero),
WHILE continues execution of the true part thru to
REPEAT, which then branches back to BEGIN. If f
is false (zero), execution skips to just after
REPEAT, exiting the structure.

At compile time, WHILE emplaces (OBRANCH) and
leaves ad2 of the reserved offset. The stack
values will be resolved by REPEAT.

--- addr

In fig-FORTH, a user variable containing the
maximum number of letters saved in the compilation
of a definitions' name. It must be 1 thru 31, with
a default value of 31. The name character count
and its natural characters are saved, up to the
value in WIDTH. The value may be changed at any
time within the above limits.

(o] - -

Read the next text characters from the input stream
being interpreted, until a delimiter ¢ is found,
storing the packed character string beginning at

the dictionary buffer HERE. WORD leaves the
character count in the first byte, the characters,
and ends with two or more blanks. Leading occurances
of ¢ are ignored. If BLK is zero, text is taken from
the terminal input buffer, otherwise from the disc
block stored in BLK. See BLK, IN.

P,C2

Lo

v

XOR

[COMPILE]

- -

This pseudonym for the "null" or dictionary entry
for a name of one character of ascii null. It is
the execution procedure to terminate interpretation
of a line of text from the terminal or within a disc

buffer, as both buffers always have a null at the end.

nl n2 --- xor

Leave the bitwise logical exclusive-or of two
values.

Used in a colon-definition in form:
XXX C words J more

Suspend compilation. The words after [are executed,
not compiled. This allows calculation or compilation
exceptions before resuming compilation with J . See
LITERAL, J .

Used in a colon-definition in form:
xxx [COMPILE] FORTH ;

LCOMPILE] will force the compilation of an immediate
definition, that would otherwise execute during
compilation. The above example will select the
FORTH vocabulary when xxx executes, rather than at
compile time.

Resume compilation, to the completion of a
colon-definition. See[.

L1

p,L1

P,C

L1

CREDITS

The following are some of the individuals and organizations
that we acknowledge credit for the initial development and

advancement of FORTH:

FORTH was created by Charles Moore the founder of FORTH,
Inc. We are all indebited to this man and his associates
because without their effort this powerful computer tool

would»not be available.

FORTH INTEREST GROUP (FIG) and Bill Ragisdale developed the
fig-FORTH Model that OmniFORTH was derived from. It is
recommended that anyone seriously interested in FORTH join
the FORTH INTEREST GROUP; an application form is included

in this manual. It 1is also highly recommended that the user

order the following manuals from FIG:

fig-FORTH Installation Manual $10.00
Using FORTH, by FORTH, Inc. $25.00

FORTH INTERNATIONAL STANDARDS TEAM (FIST) develops and

maintains the standards for which we all try to follow.

FORTH implementation teams (part of‘FIG) developed the Model
on various processors and their results were used as a base
in the development of OmniFORTH. Further credits to
individuals involved in the implementation effort are
presented in the installation manuals for the particular

OmniFORTH applications.

‘. INTERACTIVE COMPUTER SYSTEMS, INC.
E 6403 DIMARCO ROAD « TAMPA, FLORIDA 33614

FORTH INTEREST GROUP

MAIL ORDER
usa/ OVERSEAS
CAN AIR
[] Membership in FORTH Interest Group.
and Volume 2 (6 issues: #7 thru $#12
of FORTH DIMENSIONS $12 $15
E] fig-FORTH Installation Manual, con-
taining the language model of
fig-FORTH, a complete glossary,
memory map, and installation
instruction $10 $13

[] Assembly language source listing of
fig-FORTH for specific CPU's.
The above manual is required for
installation. Check appropriate $10 $13
box(es). Price per each.

O so080 0O 6502 0O 6800
O ppp-11 O 9900 0O PACE

[[] volume 1 of FORTH DIMENSIONS.
Issues 1 thru 6 as a set. $6 $8

[(] reprint of two Dr. Dobbs FORTH
articles "FORTH for Micro-
computers, "DUMP Example." v $2 $2

[[] using FORTH, by Forth, Inc. >
This is the best users manual
available. 160 pages, spiral
bound. $25 $31

FORTH Programmers Reference Card.

If ordered separately, send
stamped, addressed envelope. FREE

RENEW NOW! B TOTAL s

——— — o—— ——

Make check or money order on U.S. bank payable to: FIG.
All prices include postage. No purchase orders.

NAME MAIL STOP/APT
ORGANIZATION (If company address)
ADDRESS _
CITY STATE ZIP

COUNTRY

FORTH INTEREST GROUP ° P.O. BOX 1105 ° SAN CARLOS, CA 94070

	Title page

	Contents

	OmniFORTH Introduction

	OmniFORTH Editor

	OmniFORTH Assembler

	OmniFORTH Glossary

	Credits

	FIG Mail Order Form

