for the
MEMORY AND INPUT/OUTPUT
ACCESSORY
for the ET-3400 Trainer
Model ETA-3400

595-2271-01

. -y

=

e e s el 2

HEATH COMPANY < BENTON HARBOR, MICHIGAN

HEATH COMPANY PHONE DIRECTORY
The following telephone numbers are direct lines to the departments listed:
Kit orders and delivery information (616) 982-3411

Credit (616) 982-3561
Replacement Parts (616) 982-3571

Technical Assistance Phone Numbers
8:00 AM. to 12 P.M. and 1:00 P.M. to 4:30 P.M., EST, Weekdays Only

R/ C, Audio, and ElectronicOrgans (616) 982-3310
Amateur Radio o i (616) 982-3296
Test Equipment, Weather Instruments and

Home Clocks (616} 982-3315

Television . (616) 982-3307
Aircraft, Marine, Security, Scanners, Automotive,

Appliances and General Products . . (616) 982-3496
Computer Hardwareoiienens (616) 982-3309
Computer Software (616) 982-3860
Heath Craft Wood Workso. (616) 982-3423

R R

YOUR HEATHKIT 90-DAY LIMITED WARRANTY

Consumer Protection Plan for Heathkit Consumer Products

Welcome to the Heath family. We believe you will enjoy assembling your kit and will be pleased with its
performance. Please read this Consumer Protection Plan carefully. It is a “LIMITED WARRANTY" as
defined in the U.S. Consumer Product Warranty and Federal Trade Commission Improvement Act. This
warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

Heath’s Responsibility

PARTS — Replacements for factory defective parts will be supplied free for 90 days from date of purchase. Replacement parts are
warranted for the remaining portion of the original warranty period. You can obtain warranty parts direct from Heath Company by writing
or telephoning us at (616) 982-3571. And we will pay shipping charges to get those parts to you . . . anywhere in the world.

SERVICE LABOR — For a period of 90 days from the date of purchase. any malfunction caused by defective parts or error in design will
be corrected atno charge to you. You must deiiver the unit at your expense to the Heath tactory, any Heathkit Electronic Center {units of
Veritechnology Electronics Corporation), or any of our authorized overseas distributors.

TECHNICAL CONSULTATION — You will receive free consultation on any problem you might encounter in the assembly or use of your
Heathkit product. Just drop us a line or give us a call. Sorry. we cannot accept coliect calls.

NOT COVERED — The correction of assembly errors, adjustments, calibration, and damage due to misuse, abuse, or negligence are
not covered by the warranty. Use of corrosive solder and/or the unauthorized modification of the product or of any furnished component
will void this warranty in its entirety. This warranty does not include reimbursement for inconvenience, loss of use, customer assembly,
set-up time. or unauthorized service.

WWWW&@%

This warranty covers only Heath products and is not extended to other equipment or companents that a customeruses in conjunction with
our products.

SUCH REPAIR AND REPLACEMENT SHALL BE THE SOLE REMEDY OF THE CUSTOMER AND THERE SHALL BE NO LIABILITY
ON THE PART OF HEATH FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES. INCLUDING BUT NOT
LIMITED TO ANY LOSS OF BUSINESS OR PROFITS, WHETHER OR NOT FORSEEABLE.

Some states do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not
apply to you.
Owner’s Responsibility

EFFECTIVE WARRANTY DATE — Warranty begins on the date of first consumer purchase. You must supply a copy of your proof of
purchase when you request warranty service or parts.

ASSEMBLY — Before seeking warranty service, you should complete the assembly by carefully following the manual instructions.
Heathkit service agencies cannot complete assembiy and adjustments that are customer’s responsibility.

ACCESSORY EQUIPMENT — Performance malfunctions involving other non-Heath accessory equipment, (antennas, audio compo-
nents, computer peripherals and software, etc.) are not covered by this warranty and are the owner's responsibility.

SHIPPING UNITS — Follow the packing instructions published in the assembly manuals. Damage due to inadequate packing cannot be
repaired under warranty.

If you are not satisfied with our service (warranty or otherwise) or our products, write directly to our Director of
Customer Service, Heath Company, Benton Harbor M 48022. He will make certain your problems receive

MMMMMMMWMMMM%MM%

WWRXWWWWWW
m&mmmmmmmmmmmmmm

SOFTWARE REFERENCE MANUAL

for the
MEMORY AND INPUT/OUTPUT
ACCESSORY
for the ET-3400 Trainer
Model ETA-3400
595-2271-01

Copyright © 1979

HEATH COMPANY Heath Company

All Rights Reserved
BENTON HARBOR, MICHIGAN 49022 Printed in the United States of America

TABLE OF CONTENTS

IntrodUction oo 3
Heath/Wintek Fantom II Monitort 4
Symbols. e 5
Using the Monitorttt 6
Display/Alter Register Contents oo, 7
Display/Alter Memory Contentsc.veeerririenininennnns 9
Display Program Instructionsl 11
Block Memory Transfer i it 12
Program Execution Control i it 13
Program Storage and Retrieval 18
Using a Teletypewriterot A 20
Sample Program e 22
Monitor Command SUmMmaryoooiiiurinineeennenennnn 23
Heath/Pittman Tiny BASIC 26
Editing Commands i 27
Using Tiny BASIC 28
Modes of Operation i i, 29
Instructions 30
Mathematical Expressions 32
Tiny BASIC Re-Initialization (Warm Start) 33
Functions ... e 34
Sample USR Programscoiiiiiiiiiiiieiiiiinnnnnn. 36
APPENAIXES . . 40
Appendix A —Memory Map i 40
Appendix B — Tiny BASIC Error Message Summary 41
Appendix C — Heath/Wintek Monitor Listing 43
Appendix D — Excerpts from “Kilobaud” 75

INTRODUCTION

This Manual describes the operation of your ET-3400/ETA-3400 microcomputer
system. The major operational features of the system are explained in the sec-
tions titled ‘“Heath/Wintek FANTOM II Monitor” and ‘“Heath/Pittman Tiny
BASIC.” The keyboard commands, ‘“Monitor Listing,”” sample programs, and
memory maps are also included, as well as several article reprints from
“Kilobaud” magazine that will help you more fully enjoy your ET-3400/ETA-
3400 Microcomputer System.

The Microcomputer system easily interfaces to a video terminal and a cassette
recorder. The increase in memory size and software support gives you a more
flexible, general-purpose computer system, while the trainer itself still remains
functional and useful. The following list summarizes the main features.

® The ETA-3400 uses an independent power supply.

® The system supports 1024 (1K) bytes of read/write random-access
memory. This is expandable to 4K.

¢ A 2K ROM MONITOR.
e A 2K ROM Tiny BASIC interpreter.
® Expanded I/O support:

— Audio cassette mass storage;

— Video terminal.

HEATH/WINTEK FANTOM I1
MONITOR

This Monitor consists of a group of individual computer programs linked to-
gether that operate as a single supervisory systems controller. These programs
are permanently located in a 2K ROM (2048 bytes of Read-Only-Memory) on the
ETA-3400 circuit board. FANTOM II schedules and verifies the operation of
peripheral computer components. You use the Monitor to build, test, execute,
store, and retrieve computer programs written in machine code.

The Monitor provides you with a means of communicating between the microp-
rocessor, the terminal, and a cassette. You select aMonitor command by pressing
a key on the console terminal associated with the particular command. This
information is processed by the Monitor, which then directs the computer to the

routine that performs the operation. Control is returned to the Monitor after the
operation is completed.

This section of the Manual describes the function, operation and features of
FANTOM II. Some of the major features are:

® Display/Alter register contents.
® Display/Alter memory contents.
® Display Program Instructions
® Program Execution Control.
® Program Storage and Retrieval.
NOTE: A knowledge of the Motorola 6800 microprocessor and common pro-

gramming techniques is essential for understanding the FANTOM II Monitor.
The HEATH EE-3401 microprocessor course provides this knowledge.

SYMBOLS

This Manual uses symbols to describe some terms. Frequently used symbols and
their meaning are listed below. In examples of keyboard dialogue, monitor and
program output are underlined.

MICROPROCESSOR

A

Accumulator or register A. The 8-bit arithmetical or logical sec-
tion of the computer that processes data.

B Accumulator or register B. An 8-bit register similar to register A.

C The condition code register. A 6-bit register that indicates the
nature or result of an instruction.

P The program counter. A 16-bit register that sequentially counts
each program instruction.

S The stack pointer. A 16-bit register that records the last address of
an entry onto the stack.

X The index register. This 16-bit register permits automatic pro-
gram modification of an instruction address without destroying
the address contained in memory. The index register is frequently
used as a memory pointer.

TERMINAL

ESC The ESCape key. Press this key to return control to the Monitor.

BRK The BReaK key. Press this key once to return control to the
Monitor. Press it twice to return control to the ET-3400 trainer.

CTRL The control key. When it is used in conjunction with another key,
it creates a special function. For instance, if you hold CTRL and
press P, the contents of the program counter will be displayed.

() The carriage return, or return key, on your video terminal.

PROMPT CHARACTERS
MON> The FANTOM II Monitor prompt character. It indicates that your

system is functioning and ready to accept a Command.

Tiny BASIC prompt character.

USING THE MONITOR

POWER UP and MASTER RESET

When power is first applied to the ET-3400/ETA-3400 Microcomputer System,
you should press the RESET key on the ET-3400 keypad. The display will then
show CPU UP, and the next keypad entry will be interpreted as a command. Use
the RESET key to initialize the system or escape from a malfunctioning program.

When you wish to use FANTOM II, after pressing the RESET key, press the DO
(D) key on your trainer and enter the hexadecimal starting address 1400. This
command causes FANTOM II to print the prompt characters (MON>)« on the
video terminal. This tells you that the system Monitor is functioning and is
waiting for a command. For instance, the following sequence will initialize the
Monitor, examine the contents of several memory locations, and return control
to the ET-3400 microcomputer.

Apply power to the microcomputer system.

Press RESET on the ET-3400 keypad.

Press DO on the keypad and enter hexadecimal address 1400.
Look for the prompt character (MON>) on your terminal.

Type M (Memory) on the terminal keyboard and enter the address
1400 followed by a carriage return.

The video display responds by printing the address and the memory
contents. (1400 OF)

Enter several carriage returns and observe the display. You will notice
that, for each carriage return, a sequential memory location and its
corresponding data is shown.

Press the ESCape or BReaK key on your terminal. The prompt character
reappears and control is returned to the monitor.

Press the BReaK key a second time and control is returned to the
Trainer.

«Throughout this Manual, the computer output has been underlined to set it off from the user respcnse.

DISPLAY/ALTER REGISTER CONTENTS

DISPLAY REGISTERS

The ET-3400/ETA-3400 Microcomputer System manipulates all data through its
registers. You can examine the contents of a single register or all the registers by
selecting the appropriate command. When you use the correct format, display-
ing the contents of a selected register is simple. For instance, pressing R after the
prompt character displays the contents of all microprocessor registers. In this
and subsequent examples, unless specified, the data shown is only given as an
example. You should expect to get different displays.

MON> R C=DB B=0B A=0B X=0BOB P=1401 S=00D2 CE 1000
MON>

In this example, you can see that the condition code register was set to hexadec-
imal integer DB. The A and B registers equal 0B, while the index register X was set
to 0BOB. The program counter (P) displays the address of the next instruction to
be executed and S is the current address of the stack pointer. Finally, the next
instruction that would be executed if the program were run is CE 1000. This
information, when displayed on the video screen, is useful for correcting pro-
gram errors. '

The two most significant bits of the 8-bit RAM location that hold the condition
code are neglected by the system hardware. In the example, DB (1101 1011)
shows the status of the condition codes. By pressing CTRL/C and entering a
different value, you can change the status of register C.

DISPLAY/ALTER REGISTERS

The Monitor also lets you display or change the contents of individual registers,
except the stack pointer. To display the contents of a register (other than the stack
pointer), press the CTRL key on the terminal, and then select and press the key
that corresponds to the register name. When you wish to change the contents of a
register, enter the new value after displaying the original contents. The follow-
ing examples show you how to display and alter the contents of each micro-
processor register.

For instance, to display the program counter, simultaneously press the CTRL
and the P keys. A return causes the Monitor to complete the command and
display the prompts.

MON> CTRL/P P=1401 &
MON>

In the next example, the contents of register A are first displayed and then
altered. Press CTRL/A to display the current contents of register A. Enter a new
hexadecimal value, for instance 1B, and a carriage return. The return signals the
Monitor to execute the command, and the displayed prompt character indicates
a successful completion of the command. You can then press CTRL/A and verify
that the register contents were changed.

MON> CTRL/A A=NN 1B @
MON> CTRL/A A=1B &
MON>

The Monitor uses the same format to display or alter the contents of each
microprocessor register. In all subsequent examples, NN or NNNN represents a
random hexadecimal value. The list summarizes the usage of register commands
available to you through the Monitor.

MON> CTRL/A A=1B & (Display A)
MON> CTRL/B B=NN 12 ¢ (Alter B to read 12)
MON> CTRL/C C=NN 0O (Alter C to read 0OO)

MON> CTRL/P P=NNNN 1234 ® (P 1234)

MON> CTRL/X X=NNNN 5678 @ (X = 5678)
MON> R C=00 B=12 A=1B X=5678 P=1234 S=NNNN =

«You can neither alter the stack pointer, nor predict its value, with the FANTOM II Monitor. Also, machine
instructions or data will be output after the stack pointer address is printed.

DISPLAY/ALTER MEMORY CONTENTS

OISPLAY MEMORY

The FANTOM Il Monitor can access individual or sequential memory locations.
This feature allows you to rapidly examine and correct program instructions or
data. To display an area of memory on the video terminal, type D {display) and
specify the range of the memory locations. The following example shows you
how to display the contents of 16 sequential memory cells from address 1400
thru 140F. Because the area shown in the example is part of the Monitor, you
should obtain the same results.

MON> D 1400, 140F s
1400 OF CE 10 00 6F 01 6F 03 86 01 A7 00 86 7F A7 02
MON>

The Monitor responds to the carriage return by typing the starting address and
listing the memory contents. The address of each line displayed is always the
first four-digit number, followed by the contents of the next sixteen sequential
memory locations.

DISPLAY/ALTER MEMORY

Usethe M (Memory) command when you wish to examine or alter the contents of
an individual or a sequence of memory locations. For instance, as shown below,
type an M after the prompt character and the address 1400. FANTOM Il responds
by printing the address and the memory contents (OF) after you press the carriage
return. To proceed to the next location, press the carriage return again. FANTOM
IIresponds by printing an address and its contents. To exit the display mode and
return to the Monitor, press ESC or BRK.

The following example shows you how to examine the contents of ROM memory
locations. You can compare the data with the ‘‘Heath/Wintek Monitor Listing,”
{“Appendix C,” Page 37) and/or examine additional locations. This feature
provides a quick method of searching for useful Monitor or Tiny BASIC sub-
routines.

10|

You may use the same procedure to modify memory contents that you use to
change register contents. In the next example, use the M command to alter the
contents of several hexadecimal locations between 100 and 105. The procedure
always gives you an option of changing or not changing the program data. You
will not alter memory contents if you press a carriage return after the data is
displayed.

MON> M 100 &
0100 NN A &
0101 NN OB &
0102 NN C &
0103 NN OD &
0104 NN E &
0105 NN BRK

MON>

The previous example features free-format hexadecimal input. This means you
do not have to enter leading zeros. For example, at location 0104 we entered the
value E rather than OE. Free-format allows you to correct or modify a bad entry
simply by typing extra digits. For instance, assume that, in the previous exam-
ple, you incorrectly entered 109 after the M command. Enter the address 0100
before the carriage return to correct the mistake. For example:

MON> M 1090100 ¢
0100 NN ESC
MON>

Since a maximum of four digits is all that are needed for an address, only the last
four areretained. Similarly, if only two digits are expected, then only two will be
retained.

DISPLAY PROGRAM INSTRUCTIONS

The FANTOM II Monitor offers an important extra feature. You may use the
Instruction (I) command to display program instructions. The format is similar to
the memory display instruction except that the Monitor prints a single micro-
processor instruction per line rather than the contents of each memory cell. An
instruction can be one, two, or three bytes. A carriage return, as with the M
command, causes FANTOM II to display the next sequential instruction. The I
command allows data changes using the same procedure as the M command.
However, only the last byte of an instruction can be altered.

The next example displays the first four Monitor program instructions.

MON> I 1400 &
1400 OF @

1401 CE 1000 &
1404 6F 01 @
1406 6F 03 BRK
MON>

When the data in the first byte of an instruction address memory location is nota
machine instruction, the Monitor prints a DATA=NN message. The next instruc-
tion following the DATA =NN statement is printed after the carriage return. For
instance, the command sequence:

MON> I 1A0D &
1A0D DATA=45 &
1ADE DATA=15 &
1A0F 39 ESC
MON>

produces the DATA = NN message until the Monitor encounters a valid machine
instruction. In this example, the Monitor recognizes the integer (39y) as a
machine instruction.

1

12|

BLOCK MEMORY TRANSFER

The Monitor features a command that allows you to move the contents of a block
of memory from one location to another. The SLIDE memory command simply
copies one section of memory to another.

To use the SLIDE memory command, you must determine the parameters of the
block of memory to be moved. These parameters include a hexadecimal starting
address of both the source and destination of the memory block to be moved. In
addition, a hexadecimal count of the number of memory cells to be transferred is
also required. Press and hold the CTRL key on the keyboard while pressing the S
key toinitiate the SLIDE command after you determine the program parameters.
FANTOM II prompts you with the keyword SLIDE. You respond to this keyword
by typing the starting address of the origin and destination, followed by the
count and a carriage return.

The SLIDE command in the next example transfers thirty-two (decimal) bytes of
data from ROM into low memory. The starting address of data to be moved is
1400 and the data will be moved to an area of memory starting at location 200.
The display (D) command only verifies the data manipulation before and after
the SLIDE command is executed.

MON> D 200,21F @®

D200 NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN
0210 NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN
MON> D 1400, 141F

1400 OF CE 10 00 _6F 01 6F 03 86 01 A7 00 86 7F A7 02
1410 €6 04 E7 01 E7 03 A7 00 09 A6 00 63 00 43 01 0O
MON> CTRL/S SLIDE 1400,200,20 @&

MON> D 200,21F &

0200 OF CE 10 00 6F 01 6F 03 86 01 A7 00 86 7F A7 02
0210 C6 04 E7 01 E7 03 A7 0D 09 A6 00 63 00 43 A1 00

PROGRAM EXECUTION CONTROL

FANTOM 1I gives you two options when you execute a machine language
program. With the first option, you execute the complete program by entering
the GO (G) command and a starting address. The second option allows you to
execute a program segment with the S or E command. It is primarily used for
detecting errors in program logic.

EXECUTING A PROGRAM

The ETA-3400 Microcomputer Accessory contains a machine language program
(Tiny BASIC). We will use this routine to show program execution with the GO
command, G. The G command and a program starting address causes the system
to fetch the operational code in the memory location specified. Program execu-

tion begins from this location and continues until your program returns control
to the FANTOM II Monitor, or the RESET key is pressed on the ET-3400. To run
Tiny BASIC, enter:

MON> G 1C00 @&

HTB1 G 1C00O

210 REM HTB1 IS PRINTED OVER MON> @&

20 PRINT "HEATH TINY BASIC IS RUNNING" &
:30 END &

~RUN @

HEATH TINY BASIC IS RUNNING

GBYE ®
MON>

NOTE: Tiny BASIC writes over the MON> prompt with the HTB1 letters and then
issues a carriage return. The prompt character (:) signifies that Tiny BASIC is in
the command mode and waiting for an instruction.

Using the Tiny BASIC firmware is only one example of program execution. For
another example, you should enter the program shown at the top of Page 14
using the M command. This routine prints a message on your video terminal.
The format is similar to the listing printed in “Appendix C,” and it illustrates a
format that you might encounter in some computer magazines. The JSR (Jump to
SubRoutine) mnemonic at hexadecimal location 100 is translated to machine
code instructions BD 1618. BD is the machine equivalent of JSR and 1618 is the
starting address of a Monitor subroutine that prints a character string. Likewise,
FCB is a pseudo-mnemonic that reserves a block of memory for your character
string (i.e. the message).

13

0100 BD 1618 MSG JSR OUTIS ; OUTPUT CHARACTERS

0103 0DDA48 FCB 0D,0A,48 ; INSERT ASCII MSG.
0106 454C4C FCB 45,4C,4C ;CR,LF,HELLO,O
0109 4F00 FCB 4F , 00

010B BD 1400 JSR MAIN ;RETURN TG MONITOR

Machine language program to print a message on your video terminal.

The following operational sequence uses the Monitor to enter the machine code,
check the accuracy of the instructions, and execute the program.

MON> M 100 @ { ... Enter machine code. . .)
0100 NN BD & {...JSR..)
0101 NN 16 (...High byte address}
0102 NN 18 < (...Low byte address)
D103 NN OD €A (... Sequentially enter)
. data from the
. machine code
. until complete.
010D NN 00 & (...J]SRMAIN............)
010E NN ESC
MON>

The display instruction (I) lets you sequentially verify the accuracy of your work.

MON> I 100 o
0100 BD 1618

010B BD 1400 ESC
MON>

The program is ready for execution. Use the Go (G) instruction to run your
program from address 100.

MON> G 100 &
MON>

The computer prints a friendly greeting on the display when you execute the
program.

WARNING

Always originate your programs at or above hexadecimal
location 100 because Tiny BASIC and FANTOM II fre-
quently use the low memory as a buffer. “Appendix A”
contains a memory map of the RAM locations that the
firmware uses.

EXECUTING A PROGRAM SEGMENT

Isolating and correcting program errors is another function of program execu-
tion control. This function is commonly referred to as breakpointing. For a more
complete discussion on breakpointing, refer to the operation section of the
ET-3400 Microprocessor Trainer Manual. The Monitor supports breakpointing
techniques by providing you with both single STEP (S) and multiple step
EXECUTE (E) commands. A third technique lets you enter breakpoint addresses
into a table and then use the GO command to execute a program segment.

Assume that, in the previous example, machine instruction BD 1618 was incor-
rectly entered to read BD 160D. The simple method to detect this error is to set
the program counter to address 100 and step through each instruction, compar-
ing the computer activity with the results expected from your algorithm.

The single STEP command requires that you define the initial program para-
meters and preset any registers to their initial status. For this example, only the
program counter is affected and must be preset to the starting address of the
program (i.e. 100). Use the command to display/alter the program counter toread
hexadecimal integer 100. Type S after presetting the initial parameters to exe-
cute a single instruction. The Monitor responds by executing the instruction
located at the program address contained in the program counter, and then
printing the contents of each CPU register on the terminal.

MON> CTRL/P P=NNNN 100 @&

MON> R C=NN B=NN A=NN X=NNNN P=0100 S=NNNN
MON> S C=NN B=NN A=NN X=NNNN P=160D S=NNNN
MON>

15

16

Analysis of the program data displayed on your terminal, when compared with
the algorithm (i.e. see Chart 1), shows an incorrect address for the JSR mnemonic.
Once the initial parameters have been defined, you may continuously single step
through a program by typing S.

A better technique for debugging large programs is to use the EXECUTE (E)
multiple step command. The EXECUTE command is similar to the STEP com-
mand, except control is returned to the Monitor only after a specified number of
steps have been executed. The step count is a hexadecimal integer. For example,
the following sequence would execute 18 program steps, and then display the
registers in the same format as the STEP command.

MON> CTRL/P P=NNNN 100 @

MON> E 12 @

C=NN B=NN_A=NN X=NNNN P=NNNN S=NNNN NN NN «
MON>

Breakpointing is another technique for isolating errors in your program. A
breakpoint in your program interrupts the normal program execution and lets
you test or analyze program parameters. Type H to set a breakpoint (Haltpoint),
followed by the address and a carriage return.

For instance,

MON> H 10B &
MON>

would set a breakpoint in the table that would halt your program at address 10B.

#»NOTE: Be extremely careful when you are using ROM subroutines and the S, E, and H commands.
In this example, it is not possible to accurately predict the program results because the FANTOM I
Monitor and the ET-3400 Monitor share RAM locations. Occasionally, this sharing causes unpre-
dictable results.

|17

When you wish to examine the status of the breakpoint table, simply type
CTRL/H. This command displays the contents of the breakpoint table. The
Monitor forbids the entering of additional breakpoints into the table until one of
the entries is cleared. A cleared table entry is displayed as FFFF.

MON> CTRL/H 010B FFFF FFFF FFFF
MON>

The only way to delete a breakpoint from the table is to use the CLEAR (C)
command. To remove a breakpoint, type C and the address. For instance:

MON> C 10B @
MON>

would remove the breakpoint 10B from the table.

A maximum of four breakpoints (Haltpoints) is permissible in the table. An
attempt to set more than four breakpoints would return the following message:

ERRCOR!

Always place a haltpoint at a RAM location containing an operation code. Use
the G command to execute the program until the haltpoint is reached. After it
encounters a haltpoint address, the Monitor prints the current status of the
microprocessor registers. You may examine or alter the contents of memory or
registers before proceeding with program execution.

18|

PROGRAM STORAGE AND RETRIEVAL

The ETA-3400 Microcomputer Accessory lets you choose either of two different
methods for controlling a cassette magnetic tape recorder. The simpler method
allows you to use a recorder and the ET-3400 keypad. The other method lets you
use a recorder and console terminal to store data. The advantage to the second
method is the optional increase in speed with which you can LOAD or DUMP
your routine. Either method lets you create and use an inexpensive library of
computer routines. The information you store on cassette tape uses the Kansas
City Standard (KCS) format with a five second leader and trailer.

The method you choose to LOAD or DUMP a magnetic tape is optional. However,
using a console lets you select different baud rates to transfer data between
cassette tape and computer memory. A baud rate is the measure (bits per second)
of the speed of transmission of data pulses. We recommend that you use 300
baud. The important thing about baud rates is that they be the same for each
device when you are reading or writing information between devices. For your
convenience, always write the baud rate on the cassette label next to the program
name.

CASSETTE USAGE WITH A CONSOLE TERMINAL

To use the Tape (T) command, press CTRL/T after the Monitor prompt character.
This command causes the terminal to print a T after which you specify the baud
ratex (1 to 8). A colon {:) separates the baud rate from the program starting
address, and a comma is used between the starting and ending address of the
memory block to be recorded. Prepare the cassette by installing and rewinding a
tape before typing a carriage return. Always allow the recorder to attain a normal
operating speed by waiting several seconds before hitting the return key. For
instance, assume you wish to save sample program number one on Page (22).

MON> CTRL/T T1:100,126 &
MON>

This command writes the data from memory locations 100 through 126 to
cassette tape at 2400 baud. When the data is completely written, program control
is returned to the Monitor and the FANTOM II prompt character reappears. To
specify 300 baud, type 8 rather than 1.

«Any integer can be used to specify a baud rate. However, the common rates use: 300 for T8; 600 for
T4; 1200 for T2, and 2400 for T1.

Because 300 baud is the recommended rate, the Monitor lets you select and type
T rather than CTRL/T when writing data. With this feature, you may standardize
all your tapes at 300 baud and, in so doing, be able to use either the keypad or the
terminal to LOAD your tapes. For example, the following two commands are
equivalent:

MON> CTRL/T T8:100,126 @
or .
MON> T 100,126 @®

The LOAD (L) command allows you to read data from a cassette tape into
memory. The baud rate with which the tape was written must agree with the
baud rate at which you wish toread the data. If the baud rates do not agree or you
find a tape error, possibly due to dirt on the recorder heads, a tape error message
will be generated. To use the load command, type L followed by the integer code
(1 to 8) that indicates the selected baud rate. For example:

MON> L 1 &
ON>

=

would load a tape written at 2400 baud. A tape written at 300 baud can be read by
either an “L8” or “L”’ command.

ET-3400 CASSETTE USAGE

You may use the ET-3400 keypad to save a block of memory on cassette tape. This
routine prompts you for the first and last address of the memory block to be
recorded. To execute the cassette dump routine from the keypad, use the DO
function to transfer control to address 1A8F. The following two prompts are
printed on the ET-3400 displays:

- __Fr.

____La.

You respond to the prompts by entering the first (Fr.) and last (La.) address of the
block of memory to be saved on cassette tape. Before you enter the last digit,
activate the cassette recorder by pressing the record button on the cassette. For
instance, assume you wish to save sample program number one on Page 22.

® Press DO (D) on the ET-3400 keypad and enter address 1A8F.

e Enterthefirstaddress (0100) of the memory block to be transferred after
the _ _ _ _ Fr. prompt.

19

20|

® Enter the first three digits of the last address (012) after the _ _ _ _ La.
prompt.

e Install and rewind a magnetic tape. Then press the Record button. Be
sure the leader passes the recording head.

e Enter the last digit (6) of the address. When the memory block is
recorded, the ET-3400 displays will print CPU UP.

The ET-3400 cassette LOAD routine, located in the Monitor from address 1ABC
through 1AD4, reads a block of memory data from cassette tape into computer
memory. The routine proceeds until the last record is found or until a tape error
occurs. An error can be caused by many diverse problems such as, dirt on the
tape or tape heads, an incorrect baud rate, etc. If an error is found the ET-3400
display prints:

Error

If no error is found, the CPU UP message is printed after the data is completely
loaded. Don’t forget to turn off the recorder at this point. The following proce-
dure transfers binary data from a cassette tape into computer memory:

e Pressthe DO (D) key on the trainer and enter the first three digits of the
cassette loader routine, 1AB_ .

e Install and rewind the cassette tape.

® Press the PLAY button on the recorder and enter the last digit (C) on the
keypad.

® Wait for the message (CPU UP or Error) to be printed on the displays.

USING A TELETYPEWRITER

Two commands let you Punch/List formatted absolute binary tapes using the
Motorola MIKBUG* format. The tape format is shown in Figure 1. When you
want to load or store binary data from a teletypewriter, use the L or P monitor
commands. For instance, to transfer binary data from a paper tape to memory,
enter the following command from your console:

MON> LOC

NOTE: Always activate the teletypewriter before you enter any monitor com-
mands.

*Registered Trademark, Motorola Inc.

To Print/Punch a formatted binary tape, enter the P command followed by a
beginning and ending address. FANTOM Il responds by outputting the data. The
next example displays the sixteen bytes of memory from hexadecimal location
1400 to 140 F.

MON> P 1400, 140F@®

S11314000FCE10006F0 16F03861A700867FA7022D
S9

MON>

Figure 1 is a breakdown of the Motorola MIKBUG* format. Use the information
only to decode programs stored in the MIKBUG* format.

Leader (Nulls)
[]o] (CR) Formatting for printer
Frame QA {LF) readability ; ignored
00 {NULL) by leader
1 53 S Start-of-record
2 cc CC = Type of Record
3 _ Byte Count {two frames -
4 » one byte)
5 8 -
6 - P
° € — - Address/Size
7 2 3 - =
€ ™~ <
2 £ ’;‘ g — - Data
10 ? H |
. x o
o Y
. = >
. @
} - - Checksum
N

Frames 3 through N are hexadecimal digits (in 7-bit ASCI1) which are converted
to BCO. Two BCD digits are combined to make one 8-bit byte

The checksum s the one’s complement of the summation of 8-bit by tes

cCc 39 cc- 3t e 39
Header Data End-of F-ie
Frame Record Record Recora
1 Startof-Record ___ 53 s 53 S 53 S
2 Type of Recard 30 @ 31 1 39 9
3 3 31 . 30
4 Byte Count T 12 36 16 33 03
[} 30 21 30
6 Address Size 30 a1 1100 30 0000
7 30 0000 30 30
8 30 30 30
9 34 39 a6 FC
10, Data 18 4811 18 98 43
- 34 44D 30 22 [Checksumi
-
?g 52.R a1 |
— A8 (Checksumi
L 48
39
N. Checksum 45 9%
Figure 1

Courtesy of Motorola Semiconductor Products Inc.

2|

A SAMPLE PROGRAM

The sample program provides you with a routine to test the operation of your
ETA-3400 Microcomputer Accessory. You can use the routine to gain profi-
ciency with the FANTOM II Monitor. The routine is a duplicate (with minor
changes) of a program listed in the ET-3400 Manual.

0100
0103
0105
0107
0109
010B
010D
010E
0111
0114
0115
0117
0118
0119
011B
011D
011F
0122
0124

BD
86
20
D6
CB
D7
48
BD
CE
09
26
16
5D
26
86
DE
8C
26
BD

FCBC START
01
o7
F1 SAME
10
F1

FE3A OUT
2F00

WAIT
FD

EC
01
FO
Ci10F
EA
1400

JSR
LDA
BRA
LDA
ADD
STA
ASL
JSR
LDX
DEX
BNE
TAB
TST
BNE
LDA
LDX
CPX
BNE
JSR

> 0 W

REDIS
$01

ouT

DIGADD+1
$10

DIGADD+1

OUTCH
$2F00

WAIT

SAME
$01
DIGADD
$C10F
ouT
MAIN

Use FANTOM II when you enter, verify, and execute the sample program. When
the program is running, the LED display on the ET-3400 Trainer will sequen-
tially turn each segment on and off and then return to the monitor.

| 23

MONITOR COMMAND SUMMARY

REGISTER
COMMAND

R
CTRL/P
CTRL/X
CTRL/A
CTRL/B
CTRL/C

MEMORY

COMMAND

D addri, . . .,addrN

M addr1

[addr1

CTRL/S addr1, addr2,cnt

FUNCTION

Display all the registers.
Display/alter the program counter.
Display/alter the index register.
Display/alter accumulator A
Display/alter accumulator B
Display/alter the condition codes.

FUNCTION
Display an area of memory on your console start-
ing from location addr1 through addrN.

Display/Alter sequential memory location start-
ing from addr1.

Display sequential program instructions starting
from memory location addr1.

Transfer a block of memory contents starting
from location addr1 to the memory location
starting at addr2. The hexadecimal integer count

(cnt<=FF) is the number of bytes to be trans-
ferred.

24|

PROGRAM EXECUTION CONTROL

COMMAND
G addr1

S addr1

E cnt

H addr1

C addr1

CTRL/H

FUNCTION
Run the program starting from location addr1.

Execute a single program instruction from loca-
tion addr1.

Using the present value of the program counter
as a starting value, execute a series of instruc-

tions. (cnt<=FF)

Insert a single haltpoint address into the break-
point table.

Remove a single haltpoint address from the
breakpoint table.

Examine the status of the breakpoint table.

INPUT/OUTPUT OPERATIONS

COMMAND

T addr1, ... ,addrN

CTRL/T #,addr1,addrN

L #

FUNCTION

Write the memory contents from location addr1
through addrN to a cassette tape at 300 baud.

Write the memory contents from location addr1
through addrN to a cassette tape. The symbol
"#" refers to an integer value representing the
desired output baud rate.

Read a cassette tape into memory at 300 baud.
Read a cassette tape into memory. The symbol

141 refers to an integer value representing the
desired output baud rate.

ET-3400 USAGE
COMMAND

D 1A8F
— — — — Fr
— — — — la

D 1ABC

TELETYPEWRITER
COMMAND
P addri1,addrN

Lo

FUNCTION
Start the cassette and:
enter the first address

enter the last address

Start the cassette and the monitor routine that
reads a cassette tape.

FUNCTION

Punches a tape using the MIKBUG# format.

Reads a paper tape that was created with the
MIKBUG format.

25

26

HEATH/PITTMAN TINY BASIC

Tiny BASIC is a subset of BASIC« that allows you to easily create your own
computer programs. For instance, a program to balance your checkbook is easy
to write using Tiny BASIC. The People’s Computer Company (PCC), a nonprofit
corporation in Menlo Park, Ca., conceived the idea of a compact computer
language designed to teach programming skills. The implementation of Tiny
BASIC follows the philosophy of the original idea.

In keeping with the “small is good” philosophy, Heath/Pittman Tiny BASIC
employs a two-level interpreter approach with its consequent reduction in
speed. The Heath Tiny BASIC firmware is permanently located in your computer
system. The obvious advantage to this arrangement is the protection from a
runaway program given to the Tiny BASIC interpreter. Also, you do not need to
load the interpreter from cassette every time BASIC is used.

The following pages describe the function, operation, and features of Tiny
BASIC. Some of the major features are:

® Integer Arithmetic (16-bit)

® Twenty six Variables (A, B, ... ,Z)

® Fifteen BASIC statements:
LET LOAD INPUT REM
RUN SAVE PRINT IF (THEN)
END GOTO GOSUB RETURN
BYE LIST CLEAR

® FUNCTIONS: Random (RND)
User (USR)

*BASIC is a registered trademark of the Trustees of Dartmouth College.

EDITING COMMANDS

Tiny BASIC lets you modify a program by inserting, changing, or deleting lines
in the program. You can insert lines by typing a line with a line number that is
not currently in the program. You can change lines by typing a new line with the
same line number, and you can delete lines by typing a line number followed
immediately by a carriage return.

Two control characters also permit you to edit a line as you enter it. Hold the
control (CTRL) key down and then press a U or H to delete either a complete line
of text or a single character, respectively.

CTRL/U This command deletes the current line.

CTRL/H This command deletes the previous character.

21

28

USING TINY BASIC

Heath Tiny BASIC employs several FANTOM Il Monitor subroutines. Therefore,
you must always initialize the Monitor and use the Monitor command (G) to start
BASIC. This causes Tiny BASIC to execute a CLEAR command. BASIC then
prints a prompt character (:) on your terminal, indicating that the system
firmware is functioning and awaiting a command. The entry to Tiny BASIC is at
1C00, so you must use “G 1C00"’ to start it.

For example, the following program prints a message on your terminal several
times. The procedure to implement this program requires that you initialize the
FANTOM II Monitor, start the Tiny BASIC interpreter, create and execute a
BASIC program, and finally return control to the monitor.

® Initialize the FANTOM II monitor by entering "DO 1400 &".

® Type "G 1C00 @" on your console. This is the Tiny BASIC starting
address.

® Enter the following program statements after the prompt (:) charac-
ter.

1100 LET I=0
2200 PRINT "HEATH TINY BASIC"
2300 I=I+1

:400 IF I<5 GOTO 200

>500 END

® Type "RUN @". The program prints
HEATH TINY BASIC
five times on your display, and then outputs a prompt character.

e Type "BYE @". System control is then returned to the monitor.

The BReaK key is used to interrupt the execution of a Tiny BASIC program. This
is particularly valuable if a program is in an infinite loop. You may stop it by
pressing the BReaK key and holding it until Tiny BASIC responds
"10 AT NNN". Thes error message tells you that the BreaK key was pressed and
line NNN is the next line to be executed. To continue running your program, you
may type "GOTO NNN".

NOTE: When your program is at an INPUT statement, the BreaK key is disabled.
You must either respond to the INPUT request with data or use a “MASTER
RESET” from the ET-3400 keypad to regain system control.

MODES OF OPERATION

You can use either the COMMAND mode or the PROGRAM mode when working
with Tiny BASIC. An instruction in the COMMAND mode does not have a line
number and is immediately executed after the carriage return. An instruction in
the PROGRAM mode has a line number and will not execute until a RUN
command is given. For example, the following two statements perform the same

operation. However, the second statement will not be executed until you type
RUN @ on the keyboard.

_PRINT "TESTING THE ETA-3400 ACCESSORY" @&

210 PRINT "TESTING THE ETA-3400 ACCESSORY" &

The important thing to remember about the modes of operation is: The COM-
MAND mode primarily assists you in detecting and debugging program errors,
whereas the PROGRAM mode collects statements that will eventually become
your finished computer program.

All Tiny BASIC instructions are valid in either mode. However, some of the
instructions only make sense in one of the modes. For thisreason, RUN and LIST
should not be used in the PROGRAM mode. Also, END and RETURN should not
be used in the COMMAND mode.

All instructions function the same in either mode except for INPUT and GOTO.
In COMMAND mode, the data that is to be INPUTted must be on the same line.
Thus,

G INPUT X,5,Y,7
will cause the variable X to be set to 5 and Y to be set to 7. In addition, in the

COMMAND mode, a GOTO will not be accepted until the program has been
started with a RUN command at least once.

29

30

INSTRUCTIONS

A list of the instructions that Tiny BASIC recognizes is given below. It assumes
that you are familiar with programming in the BASIC language. If you are not
comfortable using BASIC, a course such as “‘BASIC Programming,”” Heath Model
EC-1100, will help you to become proficient with BASIC.

INSTRUCTION FORM

REM (text)

LET Var = Exp
or
Var = Exp

INPUT Var1,...,VarN

PRINT “message’’;Arg
or
PR Argl,...,ArgN

GOTO NNN

GOSUB NNN

RETURN

DESCRIPTION

The remark (REM) is a nonexecutable statement,
used only for commentary.

This instruction assigns the value of the expre-
sion to the variable. Variable values are not pre-
set. Therefore, always assign an initial value toa
variable before using it.

This instruction allows you toread data from the
keyboard and assign values to the variables.

The message or value of the argument is printed
on the console terminal. Messages may be
numbers or letters and are enclosed within quo-
tations. If a comma is used between items in the
PRINT list, items are printed in fields that startin
columns 1, 8, 16, 32, and so on. If semicolons are
used between the items, no space is left between
them when they are printed.

The program is unconditionally transferred to
the statement numbered NNN and execution
continues.

The go-to-subroutine (GOSUB) instruction
transfers program execution to the statement
number. When the RETURN instruction is en-
countered in the subroutine, program execution
returns to the statement following GOSUB.

Once program control is transferred to a sub-
routine, program execution continues until pro-
gram control encounters a RETURN statement. A
subroutine must always be terminated with a
RETURN statement.

IF Exp1 rel Exp2

THEN Stmt
RUN
END
LIST
LIST NNN

LIST NNN1,NNN2

CLEAR

BYE

SAVE

LOAD

If the test “Exp1 rel Exp2” is true, the statement
after the “THEN” is executed. This statement
can be any Tiny BASIC statement. The “THEN
Stmt” part can be replaced by

GOTO NNN
Tiny BASIC recognizes the relational operators:
= < > <= >= < ><

This instruction starts the program at the state-
ment with the lowest statement number.

When the interpreter encounters an END state-
ment in your program, it stops program execu-
tion and returns control to the command mode.

The LIST instruction writes the entire buffer
contents to your terminal. The LIST instruction
followed by an argument writes either a single
program statement or the range of statements
between the arguments. ((NNN1 < NNN2))

The interpreter removes all program statements
from the buffer when it encounters a CLEAR
instruction.

Executing a BYE instruction causes the interpre-
ter to exit BASIC and return to the FANTOM 11
Monitor. The exit does not clear the buffer and
you canreturn to BASIC with the buffer contents
intact by using a warm start (see Page 33).

The SAVE instruction directs Tiny BASIC to
write the buffer contents at 300 baud to a cassette
tape.

The LOAD instruction reads a cassette tape at
300 baud and transfers a previously saved com-
puter program into the buffer.

31

32

MATHEMATICAL EXPRESSIONS

A mathematical expression is the combination of one or more constants, vari-
ables, and functions connected by arithmetical operators. For instance, the Tiny
BASIC statement: LET A = 5+6/3—2%2 contains a mathematical expression.

NUMERICAL CONSTANTS

All constants in Tiny BASIC are evaluated as 16-bit signed integers. An integer
constant is written without a decimal point, using the decimal digits zero
through nine. Unless they are preceded by a negative sign, integer constants are
assumed to be positive.

VARIABLES

A variable is any capital letter (A-Z). The letter is a symbol for a numeric value
capable of changing during program execution. The value of this variable can
range from —32768 to 32767. “Appendix A” contains the address of each of the
26 variables used by Tiny BASIC.

OPERATORS

Tiny BASIC uses four arithmetical operators; addition (+), subtraction (-),
multiplication (*), and division (/). The statement LET A = 5+6/3—2*2 is an
example of a mathematical expression using these operators. Tiny BASIC pro-
cesses these operators in the same fashion that you would use to solve an
algebraic expression. For example, Tiny BASIC first evaluates 6/3 and 2*2 and
then evaluates the expression to A=5+2—4 and sets the variable A equal to 3.
Because Tiny BASIC evaluates multiplication and division before addition and
subtraction, you must be careful when writing any mathematical expression. If
you are not certain of the order of operations, use parentheses to force the order
you wish. Evaluation always proceeds from left to right, except that arguments
enclosed within parentheses are evaluated first.

Tiny BASIC also uses two unary (+ or —) operators. These operators denote
whether an expression is positive or negative. The expression LET A = 5— (—3)
causes the variable A to equal eight.

33

TINY BASIC RE-INITIALIZATION (Warm Start)

Tiny BASIC, in conjunction with the FANTOM II Monitor, allows you to exit
Tiny BASIC and then re-enter it without clearing program statements and vari-
ables. In particular, the warm start re-entry preserves any remaining program
and sets your memory limits. You can also reserve a block of memory by
changing the high or low memory address (‘‘Appendix A, Tiny BASIC Memory
Map”) and combine a BASIC program with a routine written in machine code.

The warm start is used after you have left Tiny BASIC by typing “BYE” or by
pressing RESET on the ET-3400 Trainer. From the FANTOM II Monitor, when
you have the “MON>" prompt, type “B”’ to do a warm start of Tiny BASIC.

34

FUNCTIONS

You may use either of two intrinsic functions in Tiny BASIC. The rand om (RND)
function allows you to generate a positive pseudo-random integer. The user
(USR) function is actually a call to a machine language subroutine that you have
previously written. You can use either function in the COMMAND or PROGRAM
mode.

THE RND FUNCTION

The RaNDom function selects a positive pseudo-random integer between zero
and one less than the argument. The argument is an integer or variable between 1
and 32767. For instance, the following statement, when inserted in the sample
program, causes the computer to store a random integer between zero and eight
in the variable]J.

LET J = RND(9)

THE USR FUNCTION

If a subroutine is written in Tiny BASIC, you simply use the GOSUB and
RETURN commands to call and return from the subroutine. This is no problem.
But suppose you wish to call a machine language subroutine from a program
written in Tiny BASIC. This is the purpose of the USR function.

The USR function also permits you to call two routines in the Tiny BASIC
interpreter. These two are commonly called PEEK and POKE, but they are not
part of Tiny BASIC’s vocabulary. You must implement the USR function to call
the PEEK and POKE interpreter subroutines. These two routines let you get at
nearly every feature of your microcomputer. As the name implies, you can
examine the contents of selected memory locations with the PEEK routine. The
POKE routine lets you enter data into memory locations.

First, how do machine language subroutines work? A subroutine is called with a
JSR instruction. This pushes the return address onto the stack and jumps to the
subroutine whose address is in the JSR instruction. When the subroutine has
finished its operation, it executes the RTS instruction, which retrieves that
address from the stack, returning control to the program that called it.

Depending on what function the subroutine is to perform, data may be passed to
the subroutine by the calling program in one or more of the CPU registers and
results may be passed back from the subroutine to the main program in the same
way. The registers contain either addresses or more data. In some cases, the
subroutine has no need to pass data back and forth, so the contents of the
registers may be ignored.

The USR function may be called with one, two, or three arguments. These
arguments are enclosed by parentheses, separated by a comma, and may be
constants, variables, or expressions. The first of these is always the address of the
subroutine to be called. The second and third arguments allow you to pass data
through the CPU registers. The value of the second argument is placed in the
index register while registers A and B contain the third argument. The forms of
the USR statement are:

A = USR (sa)
A = USR (sa, x)
A = USR (sa, x, 1)

The starting address (sa) and the index register (x) are 16-bit arguments. The
third argument (r) is also 16 bits, but must be split between two registers. The
most significant 8 bits of the third argument go into the B register, while the least
significant bits are placed in the A register. However, it is important to realize
that the three arguments in the USR function are decimal expressions and not the
hexadecimal expressions that are normally associated with machine language
programs. Any valid combination of numbers, variables, or expressions can be
used as arguments.

The value returned by a USR function is a 16-bit number that is split between the
A and B registers. The most significant byte is in the B register, and the least
significant byte is in the A register. If your BASIC program does not use a
returned value (such as POKE), the USR does not have to set up one. However, if
the USR is supposed to return a value (such as PEEK), you must set up the value
in the machine language of the USR.

The sample program on the next page shows you how to implement the USR
function. The program accesses the Tiny BASIC interpreter subroutines *“‘POKE”
and “PEEK”, which permit you to alter or examine the contents of memory
locations. The program lets you store fifteen integer variables into an array that
occupies the lowest memory in your computer system.

The program uses a simple loop to input and store data in memory locations zero
through fourteen. After running the program, use the BYE command to exit Tiny
BASIC and return to the Monitor. You can then examine the memory locations
and verify that the program stores data in memory. By using a warm start, you
can return to your Tiny BASIC program without deleting program statements.

The program accesses two machine language subroutines. PEEK and POKE.
PEEK is permanently programmed into ROM starting at hexadecimal memory
locations 1C14 (7188) and POKE is at location 1C18 (7192).

35

36

10
11
12
13
14
15
16
17
18
20
21
22
23
24
30
31
32
33
34
40
41
42
43
50
51
52
53
54
55
56
57
58
60
62
64
70

REM THIS PROGRAM IS AN ADAPTATION OF A ROUTINE
REM PUBLISHED BY TOM PITTMAN FOR KILOBAUD MAGAZINE.
REM HEATH HAS OBTAINED PERMISSION FROM KILOBAUD TO
REM REPRINT SEVERAL ARTICLES AT THE END OF THIS
REM MANUAL ABOUT TINY BASIC. THESE ARTICLES PRESENT
REM AN INFORMATIVE DISCUSSION ON TINY BASIC.

REM

REM

REM

REM LET "L" REPRESENT THE VARIABLE FOR THE

REM ADDRESS OF THE INDEX REGISTER.

REM

LET L=0

REM

REM LET "J" REPRESENT THE VARIABLE DATA THAT

REM WILL BE STORED IN ARRAY MEMORY LOCATIONS 0-15.
REM

INPUT J

REM

REM "POKE" THE VARIABLE "J" INTO LOCATION "L"

REM

LET J=USR(7192,L,J)

REM

REM USE THE "PEEK"COMMAND TO WRITE DATA FROM

REM ARRAY LOCATION "L" INTO VARIABLE "N", THEN
REM USE A PRINT STATEMENT TO VERIFY THAT THE DATA
REM WAS CORRECTLY STORED.

REM

LET N=USR(7188,L)

REM

PRINT "INTEGER ",N," IS LOCATED AT ADDRESS ",L

REM

REM INCREMENT INDEX REGISTER AND TEST FOR END OF ARRAY.
LET L=L+1

IF L<15 GOTO 30

END

SAMPLE USR PROGRAMS

In the next example, the USR function lets you call two separate machine
language subroutines. A listing of these routines is provided in Figures 1A and
1B. The first routine, “LEDOFF”’, turns off the ET-3400 LED display, while the
other routine, “LEDON”, lights various LED segments. Both routines use ac-
cumulators A and B to pass a value from the USR function to the BASIC program.

0000 BD FE50 LEDOFF JSR OUTST1

0003 0o0oooo FCB 0,0.0

0006 0CO0CO FCB 0,0,0

CODS 8O FCB 80

000A 86 44 LDAA #%44

000C 5F CLRB

000D 39 RTS
Figure 1A

0100 CE Cie6F LEDON LDX DG6EADD

0103 BD FE50 JSR OUTST1
0106 3E5BOS FCB 3E,5B,05
0109 47158D FCB 47,15,8D
010C 86 AA LDAA #/AA
010E 5F CLRB
010F 39 RTS

Figure 1B

The USR function requires that you either reserve an area of memory for machine
code by adjusting the low memory address of BASIC user space upward, or you
use the available bytes in low memory.» Both methods are featured in this
example.

*NOTE: See “Appendix A” for a complete memory map. Always use caution when you are
working in memory locations below 100y for subroutines. This area is generally used by BASIC
and the Monitors to store program variables. This example only shows you that areas of memory
are available. However, the accepted procedure is toreserve an area of memory above address 100y
for your programs.

37

38 |

Use the following procedure to adjust BASIC’s low memory limit. For example,
the “LEDON” subroutine requires sixteen bytes of memory. Therefore, add the
number of program bytes to the constant 0100, and insert the result in memory
locations 20, and 21,. Replacing these values changes the low memory limit in
BASIC.

0100 Tiny BASIC low memory address.
+ 10 Number of program bytes needed.
0110 New low memory address.

Reserve memory locations 0100, through 010F for the program by using the
following procedure. First, enter BASIC from the monitor. This will initialize the
interpreter, and you will be able to set the new low memory limit by exiting
BASIC and replacing the value with your new low memory limit. For example:

MON> G 1COO0
HTB1: BYE
MON> M 20 @&
0020 01 &
0021 00 10 €
0022 NN ECS
MON>

Now use the Phantom II Monitor to enter the machine code from Figure 1A and
1B. The two subroutines are almost identical because they call another sub-
routine (OUTST1) located in the ET-3400 monitor. This routine outputs data to
the LED displays. The major difference between the routines is in the program
data. Changing this data changes the display.

Observe that the program statement, LDX DG5ADD, is missing from the LEDOFF
routine. The operand, DG6ADD, corresponds to Hexadecimal value C16F, which
is the address of the left-most digit on your ET-3400 Trainer. This value must be
in the index register before the USR program inserts this value (49519,, = C16F,)
into the index register for the second program.

The machine language subroutines performs one additional operation before
returning to BASIC. The hexadecimal value entered intoaccumulators A and B is
returned to the USR variable (i.e. A=USR(0)). When the return from subroutine
instruction is executed, these values are converted to a decimal equivalent and
stored in variable A. The value stored in this variable determines the on/off delay
time of the LED display. Changing the value in the accumulators lets you alter
this delay time.

Always use a warm start to reenter BASIC after you adjust the memory limits and
enter the machine code. If you do not use a warm start, BASIC will reinitialize the
available memory and write over any program that you may have in memory.
That is:

MON> B &

Enter the following BASIC program statements after you adjust the low memory
boundry and enter your machine language subroutines.

10 K=5

20 PR " OBSERVE ET-3400 DISPLAY"
30 A=USR(256)

40 GOSUB 100

50 A=USR(0,49519)
60 GOSUB 100

70 K=K-1

80 IF K>0 GOTO 30
90 END

100 A=A-1

110 IF A>0 GOTO 100
120 RETURN

The LED display on the ET-3400 will display a message when you run the
program. Program statement 30 calls the machine language routine that prints
the “USr Fnc.” message. After lighting the display, the program returns to
BASIC and enters the time delay subroutine.

Program statement 50 calls the routine that turns off the LED display. Note that
the decimal value, 49519, is equivalent to the hexadecimal value C16F. Setting
the index register in the calling program reduces the memory requirements in
the subroutine.

The starting address of each routine is supplied in decimal as the first argument
in the USR function. If the address is not included, the program will never be
executed. If the address is wrong, the jump will be to the wrong place in memory
and unpredictable results will occur.

40

APPENDIXES

LOCATION
0000-000F
0010-001F
0020-0021
0022-0023
0024-0025
0026-0027
0028-002F
0030-007F
0080-0081
0082-00B5
00B6-00C7
0100-0FFF

1C00
1C03
1C06
1C09
1CoC
1COF
1C10
1C11
1C12
1C13
1C14

1C18

APPENDIX A

Tiny Basic Memory Map

SIGNIFICANCE

Not used by Tiny BASIC.

Temporaries.

Lowest address of user program space.
Highest address of user program space.
Program end + stack reserve.

Top of GOSUB stack.

Interpreter parameters.

Input line buffer and Computation stack.
Random Number generator workspace.
Variables: A,B,...,Z

Interpreter temporaries.

Tiny BASIC user program space.

Cold start entry point.

Warm start entry point.

Character input routine.

Character output routine.

Break test.

Backspace code.

Line cancel code.

Pad character.

Tape mode enable flag. (HEX 80 = enabled)

Spare stack size.

Subroutine (PEEK) to read one byte from RAM to B and A.
(address in X)

Subroutine (POKE) to store A and B into RAM at address in X.

NUMBER

APPENDIX B

Tiny Basic Error Message Summary

MEANING

104
123
124
132
133
134

Break during execution.

Memory overflow; line not inserted.

Line number 0 is not allowed.

RUN with no program in memory.

LET is missing a variable name.

LET is missing an =.

Improper syntax in LET.

LET is not followed by END.

Improper syntax in GOTO.

No line to GOTO.

Misspelled GOTO.

Misspelled GOSUB.

Misspelled GOSUB.

GOSUB invalid. Subroutine does not exist.
PRINT not followed by END.

Missing close quote in PRINT string.
Colon in PRINT is not at end of statement.
PRINT not followed by END.

IF not followed by END.

INPUT syntax bad — expects variable name.

INPUT syntax bad — expects comma.
INPUT not followed by END.
RETURN syntax is bad.

RETURN has no matching GOSUB.
GOSUB not followed by END.

41

42

139
154
158
164
183
188
211
224
226
232
233
234
253
259
266
267
275
284
287
288
290
293
296
298
303
304
306
330
363
365

END syntax bad.

Cannot list line number 0.

LIST not followed by END statement.

LIST syntax error — expects comma.,

REM not followed by END.

Memory overflow, too many GOSUB’S.
Expression too complex.

Divide by zero.

Memory overflow.

Expression too complex.

Expression too complex using RND.
Expression too complex in direct evaluation.
Expression too complex — simplify.
RND(0) not allowed.

Expression too complex.

Expression too complex for RND.

USR expects (before argument.

USR expects) after argument.

Expression too complex.

Expression too complex for USR.
Expression too complex.

Syntax error in expression — expects value.
Syntax error — missing) .

Memory overflow — CHECK USR function.
Expression too complex in USR.

Memory overflow.

Syntax error.

Syntax error — check IF/THEN.

Missing statement. Type keyword.
Misspelled statement. Type keyword.

APPENDIX C

Heath/Wintek Monitor Listing

43

HEATH KEYROARD

RAM

AND

0000

O00It
0004
0020

1000
1000
1001
1002
1003

FE&R
FEFC
FF7&
FCERC
FO7E
FEZ0
FIl43
Foos
FC8s

FES2

oLt
oocCe
oocn
00CE
00CF
oani
O0E 4
0004
O0E4
00EC
QOEE
00F 0
00F 2
00F 4
00F4
0CF7

CHARACTERS

MONITOR

DEFINED

*kk

I I I 2

XX

LDEEREUG

XK

Ck
LF
SFACE

X

TERM
TERM.C
TARE
TAFE.C

Xk

SSTEF
SWIVEL
OFTAR
REDIS
DISFLAY
QUTEYT
BRKSF
FROMPT
GUTSTA
QUTSTR

& 4

USERC
USERE
USERA
USERX
USERF

NER
EKTEL.
TO

71
DIGADD
USERS
T2
SYSSWI
UIRQ

HEATH/WINTEK TERMINAL MONITOR SYSTEM

EY JIM WILSON FOR WINTEK CORFORATION
COFYRIGHT 1978 RBY WINTEK CORF.

ALL RIGHTS RESERVEDR

CONDITIONAL ASSEMELIES

EQuy

0 DERUG CODE OFF

CHARACTER DEFINITIONS

EQuU
EQU
EQU

FIA

ORG
RMR
RME
RME
RME

ODH
OAH

DEFINITION

$1000

.

EXTERNALS

EQu
EQU
EGU
EQU
EQuU
Equ
EQU
EQuU
EQU
EQu

RaM

ORG
RME
RME
RME
RMR
KRR
ORG
EQU
RME
RMFK
RMER
RME
RME
EQU
RME
RME

OFE&EH
OFEFCH
GFF74H
OFCRCH
OFN7EH
OFE20H
OFn43H
OFD2GH
OFC846H
OFESG2H

TEMFORARIES
OCCH
CONDX CODES

INDEX

1

1

1 ACCUNMULATORS
2

2 F.C.

4 FOUR BREAKFOINTS ALLOWEI

S PR RIR

HEATH KEYRBOARLD MONITOR
rRAM AND CHARACTERS DEFINED

O0FA USWI RME 3
OOFID UNMI RME 3
FFFF IF RERUG-1
ELSE
1400 ORG $1400
ENDIF
&k MAIN MONITOR LOOF
X
b § 1) FEELS OQUT MEMORY
X 2) SEARCHES FOR FAST INCARNATIONS
X A) CLEARS BREAKFOINTS TF REINCARNATED
X B) CLEARS EREAKFOINT TABLE OTHERWISE
* 3) SENDS FROMPT "MON:"
X 4) ACCEFTS COMMAND CHARACTERS ANID JUMFS
X TO AFFROFRIATE HANDLER
1400 OF MAIN SET
1401 CE 10 0O LIX #TERM TERMINAL FIA
1404 &F 01 CLR 1sX IN CASE TRREGULAR ENTRY
1406 &F 03 CLR 3sX
1408 86 01 LIA A ¥1
1408 A7 00 STA A O X
140C 86 7F LDA A #01111111E
140E A7 02 STA A 29X
1410 Cé6 04 LA R #4
1412 E7 01 STA R 1sX
1414 E7 03 STA B LED
141& A7 00 STA A 0sX IDLE MARKING!!
X NOW FIND MEMORY EXTENT
1418 09 MAIN1 DEX
1419 A6 00 LhA A 09X
141 83 00 CoM 0sX
1410 43 CoM A
141E A1 00 CHF A 0sX
1420 26 Fé BNE MAIN1
1422 63 00 CoM OsX RESTORE GOODN RYTE
1424 86 153 LA A $4%XNEBRES5
1424 09 MAINZ DEX GO TO MONITOR GRAVEYARD
1427 4A DEC A
1428 26 FC ENE MAIN2
1424 35 TXS
142 86 0OC LA A F2XNEBR+4
1420Ir EE 08 LoXx 2XNER s X RETURN ANDIRESS IF ANY
142F 8C 14 4C CFX FMAING
1432 27 09 REQ MAIN4 IS RE-INCARNATION
1434 Cé6 FF LA E ¥SFF
14346 30 TSX
1437 E7 OA MATN3 STA B Z2XNER+2X
1439 08 INX
143A 44 LEC A

143R 26 FA ENE MAIN3

HEATH KEYROARD MONITOR
MAIN - MAIN MONITOR LOOF

143n 846 04 MAIN4 LA A FNER CLEAR BREAKFOINTS
143F 33 MAIN44 FUL R
1440 33 FUL R
1441 30 T8X
1442 EE OC LDX 2XNBR+4 X
1444 E7 00 STA B 09X
14446 44 LEC A
1447 26 Fé ENE MAIN44
1449 0OC CL.C ND ERROR MESSAGE
1444 31 INS
144 31 INS
144C 24 On MAINS ECC MAING NO ERROR
144E EI 16 18 JSR ouTIS
1451 OD OA 45 FCR CRsLFs "ERROR! 7 +750
145k RD 16 18 MAINS JSR QUTIS
145E On 0A 4L FCR CRyLF s "MON: 790
1446 701 10 00 MAINGS TST TERM
1469 24 FR BFL. MAINGS
144k RD 18 E1 JSR INCH INFUT COMMAND
146E CE 19 EF LIX $CMDTAR-3
1471 08 MAINY INX
1472 08 INX
1473 08 INX
1474 A1 00 CMF A 09X
1476 25 F9 RCS MAIN7
1478 26 D2 BNE MAINS ILLEGAL COMMAND
1476 36 FSH A
147k BN 18 &3 JSR OUTSF
147E 32 FUL A
147F Cé& 4AC L& E F-MAINS/256%256+MATNG
1481 37 FSH R
1482 Cé6 14 LA R EMAING /206
1484 37 FSH Fk
1485 ES 02 i.0A R 29X
1487 37 FSH R
1488 Eé6 01 LA R 1yX
148a 37 FSH R
148R GF CLR E
148C IDE F2 Lnx USERS
148E 39 RTS&
*k GO - GO TO USER CODE
X
X ENTRY?! (X)) = USERS
X EXIT? UFON EBREAKFOINT
b 4 USES ALL»TO»T1L»T2
148F ED 16 25 GO JSR AHY
1492 24 04 ECC Gotl NO OFTIONAL ANDRESS
14924 A7 07 STA A 79X
1496 E7 06 STA B 46X
1498 RD FE 6R GO1 JSR SSTEF STEF FAST BRFT
149k C& 04 LA R ENER
149D 30 602 T8X COFY IN RREARFOTNTS

149E EE OC Lonx 2X%NER+4y X

47

HEATH KEYROARDI MONITOR

GO - GO TOo USER CODE

1440
14A2
14A3
1444
1446
14A8
14A9
14AR

14AN
14AE
14ER0
14R2
14R4
14R6
14ER7
14R9
14RE
14RD
14RE
14C0
14C2
14C3
14C4
14CS
14Cé
14C8
14CaA
14CC
14CE
1401
1404
i4né
1407
1408
1409
140k
1400
14DE
14E0

14E3
14E4

14E8
14ER
14ED
14F0Q

Ab
36
36
86
A7
SA
26
20

30
Abd
26
6A
Eé
44
A7
F
?E
36
846
Q7
32
30
08
08
Al
26
El
26
RD
on
84
33
33
30
EE
E7
44
26
7E

74
26

EBD

CE
7E

00

3F
00

F2
3E

06
o2
05
035

06
F2
EC

04
EC

ol
19
oC
15
16
0A
04

oc
00

Fé

15

00
nc

FE
EC
14
FE

18
00

EC

4R

Al
FC

GO3

G033

GD4

G044

GOS

GO7

LDA
FSH
FSH
LDA
STA
DEC
EBNE
ERA

T8X
L.OA
ENE
LEC
LA
LEC
STA
STS
LIS
FSH
DA
STA
FUL
TSX
INX
INX
CMF
ENE
CMF
RNE
JSR
FCR
LoA
FUL
FuL
T8X
LDX
STA
DEC
ENE
JHF

DEC
EBNE

JSR
5TS
L.DX
JMF

TI>T>D>D

>o>m

>D2>DD

NOT

0sX

$$3F
Oy X

GO2
Gaz

b1 X
G033
e X
SeX

b X
USERS
T0

#NER
TO

2XNER+5y X
G0S
2XNEBR+4y X
GO0S

ouTIS
CRsLFe0O
#NER

2XNER+4,X
O X

G044
REGS

TO
G04

DECREMENT USER FC

SEARCH TARLE FOR HIT

NO HIT HERE

OF CODE INTO R

DISFLAY REGISTERS

MONITORS S0 INTERFRET

SSTEF
TO
$603
SWIVE1

STEF PAST SWI

HEATH KEYROARIH MONITOR
EKFT - INSERT BREAKFOINT

xX BRKFT - INSERT EREAKFOINT INTO TARLE
X
¥ ENTRY?! NONE
X EXIT? ‘C7 SET IF TaARLE FULL
X USES? ALL,TO
14F3 30 EKFT TSX
14F4 86 FF LbA A ¥$FF
14F6 Cé& 04 LoA R FNBER
14F8 08 BKF 1 INX
14F9 08 INX LOOK FOR EHMFTY SFQOT
14FA A1 04 CMF A 49X
14FC 26 04 ENE EKF2 NOT EMPTY
14FE Al 05 CHF A G X
1500 27 095 KEQ EKF3 IS EMFTY
1502 SaA BKF2 IEC R
1503 24 F3 BNE ERKF1 STILL. HOFE
1508 On SEC
15086 39 RTS FLLL !
1507 BIr 16 25 BRF3X JSR AHV GET BREAKFOINT UaALUE
150A 24 04 ECC EKF4 NO ENTRY
150C A7 05 STA A Ge X
180E E7 04 STA E 45X
1510 oOC EKF 4 CL.C
1511 39 RTS
X CLEAR -~ CLEAR BREARFOINT ENTRY
X
b ENTRY?! (X)) = USERS
¥ EXIT! CT GET IF NOT FOUND
X USES S ALL s TO
1512 86 04 CLEAR LA A #NER
1514 97 EC STh A T0
1516 EIM 16 25 JSR AHY GET LOCATION
1519 25 04 RCS CLE1L NO VALID HEX
1%1R A& O7 LIa & 79X
1510 Eé& 06 L.h&a B b X USER FC FOR DEFAULT
151F 30 ClLE1 TSX
1520 08 CLEZ INX
1521 08 INX
1522 A1 05 CMF A TR SEARCH TARLE
1524 26 04 ENE CLE3 NOT FOUNT
1526 E1 04 CMF B 45X
1528 27 07 REQ CLE4 FOUND
15264 7A 00 EC CLE3 DEC TO
1520 26 F1 BNE CLEZ2
1892F On SEC
1530 39 RTS
1531 Cé FF CLEA4 LbhA R FEFF
1533 E7 04 STA R 49 X CLEAR ENTRY
153% E7 05 STA K G X

1537 0C CLC

HEATH KEYROARD! MONITOR
BKFT - INSERT BREAKFOINT

1538 3¢ RTS
b 3. EXEC - FROCESS MULTIFLE STNGLE STEF
*
* ENTRY?! NONE
X EXIT: REGISTERS FRINTED
X USES? ALLyTO»T1,T2
1539 BRI 16 25 EXEC JER AHY GET COUNT
153¢ 25 09 RCS EXEC1
153E 84 01 LbA A ¥1 DEFAULT COUNT
1540 20 05 ERA EXEC1
1542 36 EXECO FSH A SAVE COUNT
1543 BD FE 6R JSR SSTEF STEF CODE
1546 32 FUL A
1547 44 EXEC1 LEC A
1548 26 F8 ENE EXECO MORE STEFS
1%4A ERDI 16 18 NN QUTIS
1545 Ol 0A OO FCER CRsLF»0Q
K STEF -~ STEF USER CODE
*
3 ENTRY? NONE
X EXIT? REGISTERS FRINTED
X USEST ALLsTO»TL,T2
1550 BIN FE &R STEF JER SSTEF STEF USER CODE
* K REGS -~ DISFLAY aALL USER REGISTERS
k4
b § ENTRY: NONE
3 EXIT? REGIGTERS FRINTED
% USES? ALL,TO
1553 5F REGS CLR E
1554 DE F2 1.InX USERS
1556 86 43 L.DA A ¥°C
1558 8D 26 ESE REGS1
165Aa 86 42 LA A #'R’
188C 8o 24 BSKR REGS3
1G8E 86 41 LA A 47
1560 80 20 ESR REGS3
1362 84 48 LA A FX7
1344 BD 1R ESR REGS2
1546 8B6 50 LA A $F’
1568 &I 18 RSR REGS3
156A B&6 53 LA A ¥'67
156C 09 IEX
1560 DF EC STX TO
156F CE 00 ER LIOX ¥T0-1
1572 8D oC RSR REGS1

1574 DE F2 LEX USERS

0|

HEATH KEYROARI

REGISTER

1576
1578
15764
1570
157€
157F

1580
1581
1382
1585
1587
158A

158C
1580
1%8E
1598F
1590
1591
1592
1594
1596
1597
1594
159C
159FE
159F
15A0
1541
15A3
15A4
15A4
1548
1644
15AR

EE
nF
Ab
8h
ocC
39

08
ot
ED
86
ED
20

08
08
08
=

08
o8
8k
8
37
ED
24
80
17
33
SA
27
09
a7
Al
27
on
39

06
EC
00
63

18
an
18
&7

16
oF
05

08

00
00
01

MONITOR
LISFLAY COMMANDS

8]
&0}

REGS1
REGS2
REGS3

¥ K I I K W

REGF
REGX
REG#A

REGE
REGC

REG1

REG2

K K ¥

MEM

LIX
STX
LDA
ESK
CL.C
RTS

INX
INC
JSK
LDA
J8R
ERA

61X (X) = USERFC
TO

A Qs X

TYFINO TYPE INSTRUCTICN

OUTCH OUTFUT REGISTER NAME
A =’

OUTCH

TYFIN2

REGISTER NISFLAY COMMANDS

ENTRY? (X)) = USERSF

(B) = 0

EXIT: OFTIONAL REFLACEMENT VALUE STORED
USES: ALL,TO

INX
TNX
INX
INC
INX
INX
ALlD
RSR
FSH
JER
RCEC
ESR
TEA
FuUl.
REC
REQ
DEX
5TA
CHF
REQ
SEC
RTS
MEM

E
A $$40 DISFLACE REG NAME
REGS1 OUTFUT WITH NAME
E
AHY
MEM4
REGL
E
Kk
REGZ
A O X
A 09X
REG2
-~ NISFLAY MEMORY EBYTES

ENTRY! (B) = 0

(X) = USER S.F.

USES?: ALL»TO

nEC

R

HEATH KEYROARD

MEM — DISFLAY MEMORY

154D
15AE
15R0
15k2
15E4
15RS
15ké
15K
15E9
1%5ERA
15RE
15RC
15K
15EkF
15C1
1503
18G4
15C6
15C7
15C9
15CR
15CC
1500

15CE
1500
1501
1503
1505
1508
150K
150
15DE
150F
1581
15E3
15E4
1SE6
15E7
15E9
15EF
15F1
15F3

37
EE
an
24
36
37
30
EE
31
31
oC
33
24
8n
25
08
an
37
23

23 F

33
39

Ab
34
IF
8n
on
CE
8n
32
St
2K
an
1)
24
sC
8h
44
DE
asn
C1

Q6
73
07

00

05
£2

OA

08

00

EC
43
0121
00

2n
OE
b6
09
2F
41
EC

01

MONITOR

00
EC

OR INSTRUCTTION

*

I I I I e

INST

MEM1
MEM2

MEM3

MEM4

MEMS

TYFINS

TYFINO

TYFINT

TYFINZ

INST - DRISFLAY INSTRUCTIONS

ENTRY?

USES:

FSH
LIIX
BSK
ECC
FSH
FSH
TSX
LEIX
INS
INS
CLC
FUL
ECC
ESK
ECS
INX
ESK
FSH
RS
BLS
CLC
FUL
ETS

TYFINS -~

ENTRY?

K

R

EXIT?
USES?

LI
FSH
STX
ESR
FCR
LIX
ESR
FUL
8T
EMI
ESR
DEC
EBPL
INC
BSR
FCE
LIX
ESR
CMF

A
A

B

k

(B) = 0O

(X) = USER 8.F.

ALLTO

br X
AHY
MEM1

OrX

MEM3
REG1
MEMS

TYFINS

AHV
MEM2

GET USER F.C.

TYFE THE DATA
SAVE MODE FLAG
GET REFLACEMENT VALUE

TYFE INSTRUCTION IN HEX

(XD
(X)
AlLL

I

00X

TO
ouTIS
CRsLF»0O
*TO
QUTAHS

TYFINT
RYTCNT

TYFIN1

ouTIS
‘DATA='50
TO

OUTZHS

$1

ANDRESS OF INSTRUCTION
ADDRESS OF NEXT INST.

oF CODE
ONTO STACK

ONE. RYTE ONLY

IS VALID TNST.
RESTORE (R)

o1

HEATH KEYROARD MONITOR
~ DISFLAY MEMORY OR INSTRUCTION

MEM

15F3 2B 20
15F7 27 13
15F9 20 OF

X

X

X

X

X
15FR Cé6 06 ISk
195FIr 30
15FE 08 I1ISE1L
15FF SéA
1600 26 FC
14602 (&6 04
1604 8L 04 DISE2
1606 DA
1607 26 FR
1609 39

*k

*

X

*

X
160A 8t 03 QUTAHE
1600 8D 03 QUT2HS
160E 7E 18 43

*¥

*

X

X

X
1611 37 THE
1612 OF
1613 RID 17 EA4
1616 33
1617 39 THER1L

¥k

b 4

X

X

X

X

X

*

BMI THE1
EEQ OUT2HS
ERA OUTAHS

DISE - DTSFLAY RREAKFOINTS

ENTRY?: NONE
EXIT? EREAKFOINT TABLE FRINTED
USES:? ALL

LbA R 4 OFFSET TNTO TABRLE
T8X

INX

DEC R

RNE NISE1

Loa R ENER

EBSKR OUT 4HS

DEC R

EBNE DISE2

RTS

OUTAHSy OUT2HS - OUTFUT HEX ANt SPACES

ENTRY: (X)) = AIIRESS

EXIT: X UFDATED FAST RYTE(S)

USES:S XyArC

ESK THE TYFE HEX RBYTE
ESR THE

JHF auUTSsF

THE - TYFE HEX RYTE

ENTRY: (X) = ANDRESS OF ERYTE
EXIT] X INCREMENTED FAST RYTE
USES ! Xrads

F&H R

CLKE B

JSR 0OCH
FUL R

RTS

QUTIS - QUTFUT IMREDDED STRING

CALLING CONVENTION?

JSR ouTIs
FCE ‘STRING »0
“NEXT INST-

EXIT: TO NEXT INSTRUCTION
Uses! A X

HEATH KEYROARD MONITOR
MEM - DISFLAY MEMORY OR INSTRUCTION

1618 30 ouUTIS TSX
1619 EE 00 LoXx 0sX
1618 31 INS
161C 31 INS
161 37 FSH F
161E 5F CLR R
161F RD 17 C3 JSR QAS
1622 33 FUL R
1622 6E 00 JMF 0rX
b %3 AHV - ACCUMULATE HEX VALUE
*
X ENTRY! NONE
X EXIT? (BA) = ACCUMULATED HEX VALUE OR
X (A) = ASCII IF NO HEX
¥ ‘C’ SET FOR VALID HEX
X ‘27 SET FOR TERMINATOR = CR
X USES?: EsAsC
1625 5OF AHY CLR R
14626 RD 18 A3 AHVD JER IHD GET FIRST NIGIT
1629 24 1D RCC AHV3 NOT HEX
1628 34 AHVI. FSH A
1620 37 FSH R
14200 48 ASL A
142E 59 ROL R
162F 48 ASL. &
1630 &9 ROL. R
1631 48 ASL A
1632 &9 ROL. R
1633 48 ASL. A
1634 59 ROL R MAKE WAY FOR NEXT DIGIT
1635 37 FSH E
146346 36 FSH A
1637 RI' 18 A3 JSR IHG
1634 24 07 ECC AHV2 THIS NOT HEX
1463C 33 FUL B
1630 1R ABA
163E 33 FUL R
163F 31 ING
14640 31 INS DISCART OLD VALUE
1641 20 ES8 BRA AHU1
1643 31 AHV2 INS
14644 31 INS SKIF LATEST VALLUE
1645 33 FUL R
1646 32 FUL A
1447 OR SEC

1648 39 AHUZ RTS

54|

HEATH KEYEROARD
RYTCNT - COUNT INSTRUCTION EBYTES

1649
1644
164R
1464E
164F
1651
1653
1658
1656
1657
1659
1654
165C
165E
1660
1662
1664
1666
1668
1664
166C
166E
1670
1672
1674
1676
1678
1679
1674

147k
167E
14895
1688
1484
168R
1468C
1468F
1491
1692

36
16
CE
08

24
Ab

5C
26
32
25
81
24
81
24
81

25

81
27
84
81
27
84
81
c2
oC
T

39

34
53
EL
24
346
37
kI
24
34
37

FF

08
FE
00

FC

1E
30
04
20
14
60
11
8!
ocC
30
8C
04
30
30
FF

16
146
19

16
10

MONITOR

75

18
49

25

]
4}

X

I W I W I e

BYTONT

EYT1

RYT2

RYT3

BYTA
BYTS
RYT&
RYT?

3%

¥ ¥ K WK XK

COFY

EYTCNT - COUNT INSTRUCTION BYTES

ENTRY!
EXIT?

FSH A
TAE

L.nx

INX

SUR B
KCC
L.DhaA
ROR
INC
ENE
FUL. A
RCS
CMF
ECC
CMFP
RCC
CHMF
ECS
CHF
BREQ
AN
CMFP
EEQ
AN
CMF
SEC
ING
INC
RTS

> > > > DD

> D>

mmm D>

OFCODE
Qele2

(A) =
(B) =
‘C’ CLEAR
Izl

#0FTAR-1

#8
BYT1
Oy X

RYT2

RYT7
#$30
RYT3
$#$20
RYTS
440
BYTé&
¥$80
RYTS
¥$ED
#48C
EYT4
$#$30
430
FEFF

OR 3

IF RELATIVE ANORESSING
SET IF ILLEGAL

CHECK FOR BRANCH

IS ERANCH

IS ONE RYTE

I8 R&R

IS X OR SF TMH.
CHECK FOR THREE EBYTES

COFY - COFY MEMORY ELSEWHERE

ENTRY
EXIT:
USES?

COMMAND

JSR
FCE
JSR
RCC
FSH A
FSH E
JSR
EBCC
FSH A
FSH K

NONE
BLOCK HOVED
AL L.

SYNTAX:

QuTIS
‘SLIDE
AHY
COF3

‘90

AHY
CoF2

(CNTL-)D

SFROM: ¢ < TO y <COUNT =

GET XFROMX
NO HEX

GET XTOx
NO HEX

HEATH KEYROARD

COFY - COPY MEMORY ELSEWHERE

1693
1694
1498
14699
169A
1690
16%E

169F
16A0
16A1
16A2
146A3
16A4

16A5
16A8
146AA
14AC
16A0
16AE
16AF
16R2
14R4
16R&
16E8
16RE
16RD
1 6KF
14C1
16C2
14C4
146C4
146C9
146CaA
146CE
16CE
1481
14604
1605
1607
1609
161A
160C
1600
161F
16E2
16E4
16E5

Bt
24
36
37
ED
oc
39

31
31
31
31
on
39

ED
25
86
14
34
34

R

81
24
EL
84
81
27
34
81
26
E7
AF
30
ED
D
ED
30

n7
33
co
37
L&
R
nz
33
SA

16
07

19

16
02
08

18

53
F7
18
7F
39
34

31
E?
C1

03

EC
18
EC

MONITOR

25

&I

RE

&F

c2

)
al

c2

car1
COF2

COF3

L.aAD
L.0AOO
LOAO

LOA1

LOAZ

JSK
RCC
FSH A
FEH R
JSR
cLC
RTS

INS
INS
INS
INS
SEC
RTS

AHY GET X%COUNTX

COFt NO HEX

MOVE MOVE DIATA
NO ERRORS

LOAD — LOAD DATA INTO MEMORY

ENTRY
EXIT:
USES?

JSR
ECS
LA A
TAR

LES

LES

JSR

AND A
CMF &
ENE

JSR

AND A
CHF A
EEQ

DES

CHMF A
ENE

STA A
CLR A
TSX
JSR
JSR
JER
TSX
LIX
STA
FuUL
SUR
FSH
LDA
JSR
STA
FuL
DEC

e mx

m o

NONE
‘7 SET IF ERROR
ALL,TO

AHY GET OFTIONAL FARAMETERS
LOAQO
8 DEFAULT TO CASSETTE

SCRATCHFADR ON STACK
ICT INFUT CASSETTE/TERM
¥#7FH
'8’
LOAT
ICT
F7FH
$#'9
LOA4 IS EOF

:'_.111
L.0Al NOT START-QF ~RECORI
OC16FH TURN ON D.FP.

THR COUNT
IHE ANDRESS (2 BRYTES)
IHR

1,X GET FWA OF RUFFER
TO

#3 ACCOUNT 3 RYTES
T0

IHR
T0

99

56|

HEATH KEYROARDI MONITOR
LOADI - FROM TAFE OR TERMINAL

16E6 26 FA4

16E8 7F C1 6F

16ER D16 EC

16EIl CE 00 EC

14F0 ED 18 C2

16F3 4C

16F4 27 E9

16F6 O LOA3

16F7 31 LOA4

16F8 31

16F9 39
KK
X
X
X
X
X
X
X
X
"
X
*
X
X
XX
*
X
X
X
X
X

16FA 8E 40 CTLY

16FC ED 18 45

16FF EBI 16 25

1702 14

1703 C4 7F

170% 20 03
¥k
*
X
%

1707 CE 09 RCRD

ENE LOA2
CLR OC146FH TURN OFF D.F.
LA R TO
LoX #T0
JSR IHE
INC A

REQ LOAL
SEC

INS

INS

RTS

TIME CRITICAL ROUTINES
SINCE CASSETTE I/0 IS DONE USING ONLY SOFTWARE
TIMING LDOFSs THE ROUTINE ‘EIT’ MU&ST BE CALLED
EVERY 208 US. CRITICAL TIMES IN THESE ROUTINES
ARE LISTED IN THE COMMENT FIELDS OF CERTAIN
INSTRUCTIONS IN THE FORM °"NNN US'. THESE TIMES
REFRESENT THE TIME REMAINING BEFORE THE NEXT
RETURN FROM ‘BIT’., THE TIME INCLUDES THE
LARELED INSTRUCTION AND INCLUDES THE EXECUTION
OF THE ‘RTS’ AT THE END OF ‘RIT‘. SOHE
ROUTINES HAVE "NNN US USED" AS A COMMENT

ON THEIR LAST STATEMENT. THIS REFRESENTS

THE TIME EXFIKED SINCE THE LAST RETURN

FROM ‘EIT’ INCLUDING THE LARLED INSTRUCTION.
HIGH SFEED LOAD

ACCEFTS ADDITIONAL EBIT/CELL FARAMETER
ENTRY?! (A) = COMMAND

(R} = 0

USES ALLsTO»T1yT2
AL A ¥3$40 DISFLACE TO PRIMNTING
JSK OUTCH ECHO TGO USER
JOR AHV
TAE
AND B ¥$7F
ERA FTAF
RCRD ~ RECORD MEMORY DATA IN “KCSY FORMAT
ENTRY: (RB) = 0
USES? ALLsTO»T1,T2
ADD K ¥9

HEATH KEYROARD

FUNCH - FUNCH MEMORY

1709

170A
170F
170C
170F
1711
1713
1718
1718
171A
171C
171E
1720
1722
1724
17264
1728

1729
1724
172C
172F
1731

1733
1735
1734
1738
1739

S9A

30
37
RIt
24
A7
E7
EI
A7
E7
Ad
Eé
EE
IF
@7
nz
33

oh
2F
EI
86
20

86
44
26
37
nes

14
OF
03
02
16
03
04
0%
04
02
EE
FS
F4

07

07
02

04

FIn

Fa

MONITOR

&

&y

XX
*
X
X

DUMF

K I W ;W PR

FTAF

FTAF1

*

& I IE I J I I WK I K

FUNCH

FNCHO
FNCH1

LUMF - RAW MEMORY NUMF 16 RYTES FER LINE

ENTRY?

USES?

LEC

FTAF

ENTRY?

B

EXIT:
USES?

TSX
FSH
JSR
ECC
8ThA
STah
JASR
STA
SThA
LA
LD
LoX
STX
STA
STA
FUL

FUNCH -

ENTRY?

- D>

oD m D

oD

USES?

8T
RLE
JSR
LDA
BRA

LDA
LEC
ENE
FSH
LDaA

E

> 2>

mm

(R) = 0O
TOrT1,T2

- FUNCH TO TAFE

DEFAULT VALUES ON STACK
RELOW RETURN ANDRESS
‘C* SET FOR ERROR

ALL»TO»T1yT2

CASSETTE/TERMINAL FILAG
AHYV ACCUMULATE HEX
FTAF1 USE DEFAULT

39X STORE FWaA

29X

AHY

SeX

44X

G X

44X GET LWAy FWA
29X

T1

T2+1

T2

WRITE LOADER FILE TO TERMINAIL. OR CASSETTE

(Ti) = FWA BYTES TO FUNCH
(T2) = LWA BYTES TO FUNCH
(B) = CASSETTE TERMINAL FLAG:
(B) > 0 THEN TO CASSETTE
USING (R) CELLS FER RIT
(B) = O THEN TO TERMINAL
(B) < O THEN TO TERMINAL WITH
IMREDDED SFPACES AND NO S1+ETC.
ALLTOsT1

FNCHO

OLT OUTFUT LEADER
$7

FPNCH1

¥4 186 US
FPNCH1

SAVE FLAGF 160 US
T2 (RA) = ENDF 156 US

o/

58|

HEATH KEYEOARD MONIT
FUNCH —~ FUNCH MEMORY

173k 96 F5
1730 90 EF
173F D2 EE
1741 25 S8
1743 81 OF
1745 C2 00
1747 33

1748 24 02
1744 20 03
174C 86 OF
174E 01

174F 97 EC
1751 8k 04
1753 97 ED
1755 CE 17 Ré
1758 5I

1759 24 03
175 CE 17 CO
175E 8D 63
1760 CE 00 EE
1763 4F

1764 01

1765 SD

1766 2R 03

1768 09
1769 A3 00
176R 01
174C 01
1740 8D 75
176F 01

1770 26 F9
1772 LE EE
1774 8D 62
17276 74 00 EC
1779 28 F9

177 43
1727C 36
17271 01
177E 86 07
1780 4A
1781 26 FI
1783 32
1784 SI
1785 2k 02
1787 8@l 4E
1789 ERé 10 00
178C 43
1780 49
178E DF EE

1790 IF EE
1792 22 9F

1794 08
1795 37
1796 86 06
1798 44

1799 26 FI

OR

FNCH2

FNCH3

FNCH3S

FNCHS

FNCH&

FNCH?7

FNCH?7S

F*NCH8

LA
SUR
SEC
ECS
CHF
SEC
FUL
RCC
ERA
LA
NOF
STA
ADD
STA
LIoX
TST
RFL
LBX
ERSR
LIX
CLR
NOF
787
B4l
DEX
BIT
NOF
NOF
ESR
NOF
EBNE
LoX
RSR
DEC
BFL
coMm
FSH
NOF
LDvA
LEC
ENE
FUL
TST
EMI
KSR
LA
coMm
ROL
8STX
8STX
EHI
INX
FSH
LDvA
DEC
ENE

> m D > D

>> 2

> >

> D >D>

>D>m

T2+1
Ti+1
Ti
FNCH?
$15
*¥0

FNCH2
FNCH3
¥15

TO

$4
TO+1
#51STR

FNCH35
#CRSTR
O0AS
#TO+2

FNCHS

Q¢ X

OCH

FNCHS
T1
0SH
TO
FNCH6

. ¥4

FNCHZ

FNCH7S

OHE
TERM

T1
T1
FNCHO
$6

FNCH8

(BA) = END - CURRENT
NONE s 144 US
140 U8

RESTORE FLAG
AT LEAST FULL RECQRD

COUNTER

BYTE COUNT
114 US

OUTFUT ASCII STRING

(A) = CHECKSUM

S CYCLE NUTHIN'

182 USs

182 US

NO CHECKSUM

NOT DONE§F NO BREAK

HEATH REYROARD

FUNCH - FUNCH MEMORY

179k
179C
179D
179F
1740
1742
17AS
1746
17A8
1784
17AE
17AD
174F
17RO
17R2
17E4
17RS

17Ré
17EER
17C0

17C3
17C5
1706
17C8
17C9
17CE
17CcC
17CE
1700
17101
1703
1705
1706

33
01
84
44
26
CE
5D
2R
8n
Sh
27
86
44
26
8n
oC
39

on
on
on

Ab

8n
01
84
44
26
Ab
08
&I
26
o8
20

03

FI
17

on
19

08
13

FD
73

oA
0A
oA

00

49

10

FI
00

00
Fi

39

1708 AR 00

170A

36

MONITOR

EER

53
93

00

FNCH?

FNCHA

FNCHE

FNCHC

S18TR
S98TR
CRSTR

*

I I I K K I M

jan]
i3]
X

FUL R
NOF
LDA A
LEC A
ENE
LnX
T8T B
EMI
ESR
TST E
EEQ
LOA A
DEC A
ENE
ESR
CLC
RTS

FCER
FCE
FCE

aas

ENTRY S

EXIT?
USES

LA A
INX
ESR
NOF
LIy A
IEC A
ENE
LDA A
INX
TST
ENE
INX
RRA

0SH

1

ENTRY

e

EXIT?
USES?

ADD A
FSH A

#3

FNCHA
$59STR

FNCHC
0AS

FNCHC
$#19

FNCHR
oLT

CRsLFy“S1°90
CRsLF»’S97 40
CRsLF»O

140 US

RETURN

NOT CASSETTE

NO ERRORS

OUTFUT ASCII STRING

(X) = ANDRESS OF STRING IN FORM:

‘STRING 20

(B) = CASSETTE/TERM FLACG
X POINTS FAST END OF STRING ZERQD

XeidrC

Oy X

OAE

¥16

0Aas2
O X

0y X
0AS1

AR

Y7 USs

88 US

208 US

NOT LAST RYTE

OUTFUT LAST AND RETURN

OUTFUT OFTIONAL SFACE WITH HEX RYTE

(X) = ADDRESS OF RYTE

(A) = CHECKSUM

(B) = CASSETTE/TERMINAL FLAG
(X) INCREMENTEIls (A) UFDATED

XefisC

Oy X

174 US

o9

60

HEATH KEYROARD
QUTFUT ROUTINES

170k
17nn
170E
17E0
17E3

17E4
17E6
17E7
17E9
17EA
17EER
17ED
17EF
17F1
17F2
17F3
17F6

17F7
17F8
17F9
17FA
17FE
17FC
17FE
1800
1801
1803
1804
1806
1808
1804
180C
180D
180F

86
Sht
24
RD
32

AE
36
86
01
4A
26
Ab
8n
32
08

39

36
44
44
44
44
80

44
26
32
84
81
24
20
ot
8E
8E

05

09
18

00

06

Fh

00
06

00

oR

12

FD

OF
OA
e

03

07
30

MONITOR

63

FoO

*

I I} I I I W K WK

0CH

0CHO
OCH1

% H K I K

OHE

OHE1

OHEZ2

OHRI

OHE4

LA A #5

TST R

EBFL OCHO NO SFACE

JSR QUTSF QUTFUT SFACE
FUL A

OCH - OUTFUT AN CHECKSUM HEX BYTE
ENTRY?! (XD ALNRESS OF BYTE

(A1) CHECKSUM

(E) CASSETTE/TERMINAL FLAG
EXITS (X) INCREMENTETs (A) UFDATED

‘Z’ SET IF END OF HEADER INFO
USES? XsArC

HooE

Al A OrX 174 US
FSH A

Lna A #6

NOF

DEC A

ENE 0CH1

LA A 0rX

KSR OHE

FUL A

INX

CFX ¥T1+2

RTS 16 US USED

OHE - OUTFUT HEX EYTE

ENTRY: (A) = BYTE
(R) = CASSETTE TERMINAL FLAG
USES? ArC

FSH A 112 Us
LSR A

LSR A

LSK A

LSR A

EBSR OHE2

LA A ¥18 208 US
NEC A

ENE OHEL

FUL. A

AND A ¥$F

CMF A ¥10

RCC OHR3 Is a ~-F
ERA OHE4

NOF

AN A $7

ADD A 430

HEATH KEYEROARD
OUTFUT ROUTINES

1811
1812

1814
1815
1817
1818
1819
1814
181C
1810
181E
1820
1822
1823
1824

1825

1827
1828
1829
182k
182cC
182E
182F
1831
1832
1833
1835
18346

&I
2F

oC

8n :

36
on
446
8n
01
44
26
8sh
32

o8

20

on

an
37
Cé
17
an
01
44
26
33
32

31

iE

Fa

15

10

13

06

FA

MONITOR

I I FH I K

OCE1

I I I ¥

oLT

OLT:

OAR - OUTFUT ASCII RYTE

ENTRY?

EXIT:
USES!

T8T
ELE

OCE

k

ENTRY

USES:

cLe
ESR
FSH
SEC
ROR
ESR
NOF
LSk
ENE
RSR
FUL.
INX
DEX
BR A

QLT

ENTRY
EXIT:
USES

SEC
FSH
ESK
FSH
LA
TEA
RSR
NOF
LEC
ENE
FUL
FUL

e

A)
(R)

C

OUTCH

(R)
A)
C

BIT1

EIT

OCE1

RIT

EIT

NONE

- CASSETTE/TERMINAIL. FLAG
(A) FRESERVED

80 US

OQUTFPUT CASSETTE RYTE

CELLS/RIT COUNT
CHARACTER

START RIT: 74 US
72 Us

208 US

STOF RIT

200 us
208 U8

8 CYCLE FSEUDD-NOF

OUTFUT LEADER TRAILER

3 SECONDNS MARKING WRITTEN

e

RIT1

#110

EIT

OLT1

78 US

61

62 |

HEATH KEYROARDN MONITOR
OUTFUT ROUTINES

1837
1838
183A
193K
183C

183E
183F
1841
1842
1843
1845
1846
1848
1849
184E
184D
184E
1850
1851
1853
1855
1856
1858
1859
185A

185K
185C
185F
18462

1863

36
86
01
01
20

34
86

8C
846
44
26
AC
8n
g6
44
26
07
84
8n
S5A
26
33
32
39

o1
R8
R7
39

86

03

01

in

FI

10
1E

Fh

01
07

10 02
10 02

20

I ¥ I R

)
-t
-

RIT1

RIT3

RIT4
RITS

RITé

3 I W ¥ X

FLIF
FLIF1

I ¥ K I X

GUTSF

EIT - OUTPUT ‘C’ TO CASSETTE

ENTRY?S

USES!

FSH A
LoA A
NOF
NOF
ERA

FSH
LTiA
FSH
FCR
LA
IEC
ENE
INC A
RSK
LTIA
LEC
ENE
TFA
ANIt A
ESR

DEC E
BNE

FUL E
FUL A
RTS

> D D> D

D> >

(R) CELL/RIT COUNT
o P RIY
C EXCEFT 'C7

i

192 U8

RIT3 182 US

64 US
$1

$8C 3 CYCLE SKIF
¥29

RITS

FLIF 43 USs
¥30

RITé&

¥1 MASK TO CARRY
FLIF1

RITA

e ALL TIMES REFERENCED HERE !!!

FI.IF - FLIF CASSETTE EIT

ENTRY?

NOF
ECGR A
STA A
RTS

OUTSF -

ENTRY?
EXIT:
USES:

LA A

(A) = 0 THEN NO FLIF
(A) = 1 THEN FLIF
ArC EXCEFT 7C7

TAFE
TAFE
24 US

OQUTFUT SFACE TO TERMINAL
NONE:

Ay = 7 7

a6 C

i.l I\

63

HEATH KEYROARD' MONITOR
QUTFUT ROUTINES

*k OQUTCH -~ BQUTFUT CHARACTER T0O TERMINAL
X
X ENTRY?! (A) = CHARACTEK
X EXIT? (A) FRESERVED UNLESS -IF-
b | USES? C
1845 36 OUTCH FSH A
1866 37 FSH E
1867 8I 21 RSR RRI BAUD RATE DETERMTNE
1869 oI SEC STOF RIT
186A 8bn 32 RSk WOE
186C oOC cLc START RIT
186D 8D 2F RSk WOE
186F OD SEC
1870 46 ROR A
1871 8It 2R ouTci ESR WOE WAIT - QUTFUT RIT
1873 44 LSR A
1874 26 FR BNE ouTCi1
1876 8Ih 26 kSR WOR WAITy OQUTFUT STORF
1878 33 FUL E
1879 32 FUL A
1874 81 0A CHMF A $LF
187C 26 OR ENE ouTcz2
187E 3¢ FSH A
187F AF CLR A
1880 8I' E3 RSR QUTCH QUTFUT FILL CHARACTER
1882 8D E1l RS8R OUTCH
1884 8L IF ESR QUTCH
1886 8Ir LD RSR ouTCH
1888 32 FUL A
1889 3¢9 ouTc? RTS
*X ERD - RAUD RATE DETERMINATION
X
X ENTRY? NONE
X EXIT: (B) = BRAUD RATE DIVISOR
X (COMFENSATED FOR 35%13 EXTRA
X EXECUTION TIME!!)
* USES ! RsC
i88a 34 ERD FSH A
188k Cé 01 Lha R #1 ASEUME 110 RAUD
1g8lr REé 10 00 LDhA & TERH BAULD SWITCH DATA
1890 43 COoM A
1891 84 OE AN A ¥#1110R MASK TO SWITHCES
1893 44 LS8R A
1894 27 06 REQ BRD2 IS 110
1896 G6 BRI ROR R
1897 44 DEC A
1898 26 FC ENE ERII1
1894 €O 05 SUR R #5 EXECUTION COMPENSATION
18%C 32 BRII2 FUL. A

i89n 39 RTS

HEATH KEYEROARD MONITOR
OUTFUT ROUTINES

189E
189F
18A1

18A3
18AS
18A7

1849
18AE
18AD
18AF
18E1
18E3
18RS
18R7
18R9
18EE
18ED
18EE

18RF
18C1

37
8D
20

8L
81
27

80
25

81
25
80
81

Ty
25

8k
8k
81
ocC
39

80
39

72
68

3C
20
Fé

30
oC
0A
10
i
06
08
i1
30
on

Fé

I K I K ¥ R

WOE

I

3¢ I I I I I ¥ K

IKD

I I ¥ ¥

pog

SH

ASH1

ASH2
AGH3

I I W W W K X

WOE - WAIT AND OUTFUT EIT

ENTRY: (E) = DELAY COUNT
‘€7 = BIT

EXIT: (R)y ‘C’ FPRESERVED

USES? c

FSH E

ESR OLE DELAY ONE EBIT
ERA WIE1

IHD - INFUT HEX DIGIT FROM TERMINAL

ENTRY NONE
EXIT: (A) = HEX VALUE IF VaALID
ASCII OTHERWISE
‘C7 SET IF HEX
‘2’ SET IF CR
USES? AsC

.e

RSR INCH
CHF A #¥SFACE
REQ IHI TGNORE SFACES

ASH - ASCII TO HEX TRANSLATOR

ENTRY?: (A = ASCII
EXIT, USES! SEE "IHD®
SUEB A 707
BCS ASHI1 NOT HEX
CHMP A $10
RCS ASH3
SUR A $°A -0
CMF A #6
ECS ASH2 I8 HEX
ADD A #¥A°-707 DISFLACE RACK
AL A $/07
CMF A #CR
cLC
RTS
SUE A #-10
RTS
IHE - INFUT HEX RYTE
ENTRY! (B) = CASSETTE/TERMINAL FLAG
(X) = ADDRESS
(A4) = CHECKSUM

EXIT? Ay X UFPDATED
() FPRESERVED

|55

HEATH KEYROARDr MONITOR
INFUT ROUTINES

18C2 346 IHE
18C3 8Ir 19

18C5 84 7F

18C7 8b EO

18C9 48

18CA 48

18CEr 48

18CC 48

18CH 97 EC

18CF 8D oD

181 84 7F
1803 80 I4

18ns. 9 EC
1807 A7 00
1809 32
18I AR 00
180C 08
ignn 39 IHR2
3 3
X
X
X
X
18IE 5D ICT
18D0F 2E 54
XX
*
X
X
X
i18E1 37 INCH
18E2 8N aAé
1BE4 17
1BES 16 INC1
18Eé6 54
18E7 5C
1BE8 701 10 00 INC2
18EE 2K FE
18ED 8D 15
1B8EF 25 F7
18F1 14
18F2 86 80
18F4 8D 0OE INC3
18F86 46
18F7 24 FER
18F9 8L 09
18FR 25 03
18Fn 7C 10 0¢
1900 84 7F INC4A

1902 33

FSH A SAVE CHECKSUM
RSR IicT INFUT CASSETTE/TERMINAL
AND A #7FH
RSK ASH AGCII - HEX
ASL A
ASL A
ASL A
ASL A
5ThA A T0O
EBSKR ICT INFUT CASSETTE/TERMINAL
AND A $#7FH '
ESR ASH ASCII - HEX
ADD A T0
STA A OrX FLACE TN MEMORY
FUL A
CADLD A 09X
INX
RTS

ICT - INFUT FROM CASSETTE OR TERMINAL

ENTRY?! (R) = CASSETTE/TERMINAL FLAG
EXIT:? (&) = CHARACTER

USES? A

TST B

BGT 1ce IS CASSETTE

INCH - INFUT TERMINAL CHARACTER

ENTRY?! NONE

EXITS (A) = CHARACTER

USES?: ArC

FSH E

RSR BRI RAULl RATE DETERMINE
TRA

TAR

LSR E

INC R

TST TERM

EMI INC2 WAIT FOR SFPACING
ESR WIE WAIT,» INFUT START
BRCS INC2 WAS NOISE

TAE

LA A $80H

ESR WIE WAITF INFUT RIT
ROR &

RCC INC3

ESR WIE GET STOP

ECS INCA4 NO FRAME ERROR
INC TERM SEND STOF RIT
AND A +#$7F MASK TO SEVEN RITS

FUL B

66|

HEATH KEYROARD MONITOR
INFUT ROUTINES

1903

1904
19035
1907
1909
190k
190D
1210
1911
1912

1913
1915
1917
1718
1914
1910
191E
191F
1921
1922
1924
1925
1927
1928
192k
192C
192D
192F
1932
1934

39

37
8n
CE
Co
(14
F7
56
33
39

ocC
80
80
Q0
i0

FE
11

Y
P

38
31

FIi

F8

19

Fe

10
FE

00

13

00

I I ¥ K

WIE

WIE1

I I I W ¥

DR

DLEL

nLE2
NLE3

[i.R4

%

I I I I I I K XK

RTS

WIE -~ WAIT AND INFUT EBIT

ENTRY? (R) = TNELAY COUNT

EXIT: ‘C’ = RIT

USES! C

FG&H R

KSR DILE WAIT ONE BIT TIME
Al B $80H

SUR E #80H

ANC R #0 COFY RIT INTO LSE
" STA R TERM

ROR E ' RESTORE SMASHED ‘C~°
FUL B

RTS

OLE - DELAY ONE RIT AND RETURN (TERM) IN E

ENTRY (R) DELAY CONSTANT
EXIT? (E) (TERM) .AND. 11111110 E
USES? C EXCEFT ‘C7

*e

[T}

BIT B $¥OFEH

ENE R4 NOT 110 BAUD
DEC B

REQ DLEL 110 FULL. BIT TIME
LA B 546

EOR EB #49

FSH A

LA A ¥#18

LEC A

ENE DLR3

BEC E

BNE DLE2

FUL. A

CFX DLE 5 CYCLE NUTHINA
NOF

IEC B

ENE LLE4

LDA B TERM
ANDI E ¥3FE
RTS

ICC - INFUT CASSETTE CHARACTER

GETS RITS FROM CASSETTE IN SERIAL FASHION
EACH RIT CONSISTS OF SEVERAL ‘CELLS’
EACH CELL IS EITHER 1/2 CYCLE OF 1200HZ
OR 1 CYCLE OF 2400HZ
AT 8 CELLS/RIT THE ROUTINE IS ‘KCS’
COMFATIELE

67

HEATH KEYROARD! MONITOR
INFUT ROUTINES

X
b 3 ENTRY: (R) = CELLS FER EIT
X EXIT: (A) = CHARACTER
X ‘CT = GTOF EIT
L USES! AsC
1935 37 ICC FSH E
19346 54 LSR R
1937 8Lt 1E ICc1 RSKR TNC TARKE NEXT CELL
1939 25 FC RCS ICCt NOT START RIT
193k 5A EC R
193C 24 F9 EFL Icci NOT ENQUGH CELLS
193E 33 FUL R
193F 86 7F LOA A $01111111K FRESET ASSEMELY
1941 37 Icea FSH E
1942 36 FSH A
1943 @8I 12 Iccx RSR TNC TAKE NEXT CFLL
1945 5A DEC R
19446 26 FR ENE ICC3
1948 32 FUL A
1949 33 FUL E
194 446 ROR A
194F 25 F4 RCS Icc2
194 37 FEH R
194E 36 FSH A
194F 8D 06 ICC4 ESR TNC GET 8T0F RIT
1951 GSA LDEC R
1952 26 FR BNE ICCA
1954 32 FUL A
1985 33 FUL E
1956 39 RTS
%X TNC - TAKE NEXT CELL
X
X WAITS FOR 1/2 CYCLE OF 1200 HZ OR
X 1 CYCLE OF 2400 HZ
X STRUCTURE ASSURES EXIT AT END OF
X ZERD CELL
X
* ENTRY: NONE
* EXIT: ‘€7 = CELL VALUE
* (A) = NEW CASSETTE DATA
X USES? iy C
19857 ERé6 10 02 TNC LDA A TAFE
1954 8D 02 RSR TNC1
195C 24 OE RCC TNC3 WAS ZERD
195E 37 TNEC1 FSH E
195F GF CLR R
1960 &C TNC2 INC R
1961 RB1 10 02 CMF A TAFE
1964 27 FaA BEQ TNC2 NO TRANSITION
1966 BRé6 10 02 LDA A TAFE
1969 C1 1D CHMF R 29

196k 33 FUL E

HEATH KEYROARD MONITOR
INFUT ROUTINES

194C 39 TNC3 RTS
XX MOVE -~ REENTRANT MOVE MEMORY
X
X ENTRY?: STACK:> RETURN (0sSG)
X COUNT (298)
X T0 {(4:5)
X FROM (69 5)
X EXIT: STACK CLEANEDN
¥ USES ALL
1?60t 30 MOVE TGX
196E EE 02 L.0X 29X CHECK COUNT <> 0
1970 27 74 REQ MOV 4 NO MOVE
1272 30 MOVEA T6X k% ALTERNATE ENTRY XX
1973 A4 00 LA A G X (RAY = T0O
1975 Eé6 04 LA R 49X
1977 A0 07 SUR A 7 X (BA) = TO - FROH
1979 E2 06 SRC R b X
1978 25 24 RCS Mov2 IS MOVE DOWN
1970 26 03 RNE MOV1
197F A TST A
1980 27 64 REQ MOV 4 ISFLACEMENT = O
X HAVE MOVE UF -~ MUST &TART AT TOF
. § TO AVOID CONFLICT
1982 86 FF Movi LA A -1 {RA) = ~1
1984 16 TAER
1985 34 FSH A DELTA = -1
1986 37 FSH E
1987 AR 03 ALD A 39X (BAY = COUNT - 1
1989 E% 02 ALC R 2eX
198k 36 FSH A
198C 37 FSH E
1980 AR 05 ADE A Tie X TO = TO + COUNT -~ 1
198F E? 04 AC R 45X
1991 A7 05 STA A SeX
1993 E7 04 STA R 45X
1995 33 FUL E
1996 32 FUL A
1997 AR 07 AlD A 7y X FROM = FROM
1999 E? 06 ALC K by X 4 COUNT - 1
199 A7 07 STA A 79X
1990 E7 06 STA R & X
199F 20 OE ERA MOV3
* HAVE MOVE DOWN ~ MAY START AT TOF
19A1 86 01 MOUV2 LA A #1 NELTA = 1
1963 SF CLR B
19244 36 FSH &
19245 37 FSH R
1946 4AF CLR A
19A7 A0 03 SUR A I X (RA)Y = - COUNT

69

HEATH KEYROARD MONITOR
MOVE - MOVE SUBROUTINE

19A9
1?AR
12AD

19AF
19E0
19R2
19R4
19RS
19R7
19R9?
19Ra
19RC
19RE
19CO
19C2
19C4
19C6
19Cs8
19CaA
19CC
19CE
1900
1902
19n4
196
ieng
19ha
19nc
19LF
19E0
19E1
19E3
19E4
19ES

19ES
19E8
19E9
1?EA
19ER
19EC
19En
19EE
19EF
19F0

E2
A7
E7

30
EE
Ab
30
EE
A7
30
Ab

AR
E9
A7
E7
Ab
Eé
AR
E9
A7
E7
Ad
Eé
AR
E9
A7
E7
26
an
26
31
31
30

EE
31

31
31

31
31

4E

02
03
02

08
00

04
00

01
00
09
08
09
08
01
oy
07
064
07
06
01
00
05
04
05
04
CF

cc

00

00

MOV3

MOV4

SEC
STA
SThA

E
A
E

29X
3¢ X

2¢X

ACTUAL MOVE

T8X
Lox
LDA
T8X
LIX
STA
TSX
LA
L.TIA
AN
AlIC
STA
STA
LT
LA
ADD
ADC
STA
STA
LIA
LA
Al
ALlIC
STa
STh
ENE
TST
ENE
INS
INS
TSX

LIX
INS
INS
INS
INS
INS
INS
INS
INS
JHF

D

> DX DD>DTDODDD

8sX
Q09X

&y X
O X

1eX
00X
P9 X
8y X
P X
8+ X
1+X
0sX
7+ X
b9 X
7 X
b9 X
1+X
0y X
S X
49X
S X
4, X
MOV3

MOU3

0rX

0sX

COUNT = - COUNT

LOOF FOLLOWS

BUMF XFFROMX

BUMF XT0O%

RUMF XCOUNTxX

COUNT <= 0

LDISCARD DELTA

HEATH KEYROARD MONITOR
TAERLES

XK COMMANTT TARLE

19F2 G4 CMOTAE FCR ‘T TAFE RECORD ATA
19F3 17 07 Fhk RCRY

19FS 83 FoE 8 STER USER CODE
19F&6 15 GO FTiR &TEF

19F8 G2 FCH RS RIGRLAY USER REGISTERS
19F? 1% 33 FTiR REGS

19FE 50 FiR P FUNCH 10 FareER Tarb
19FC 17 0OA FIip FTar

19FE 4l FCR i DISFLAY MERRY (RYTED
19FF 13 Al FhE MEH

1A01 4C FCE L LA FROM TalE
1402 146 AG Fng LAl

1A04 49 FCR T DESFLAY MRy CENST)
1A05 15 AD FUE INGT

1A07 4§ FCER THY HAL TRFILNT THsERT
1408 14 F3 Fi EEFT

1A0R 47 FOCE G GO USER COUE
1A0B 14 8F FIE GO

iAol 45 FCR B “UETIFLE STEF
1A0E 1% 39 FIR FXEE

1410 44 FOR N DU MEMORY
1A11 17 09 FIiR TIUMF

1413 43 FCE c
1Al4 18 iz FIR CLEAR RREARKFOINT 7L Fal

1A1é6 Az FCE R GO 70 BaGTC
iAl1l7 1C O3 FIE HEOAH Wk STakT LHTRY

iAl? 18 FCR X’ -40H PTSPEAY TNBEX
1Ala 15 8E FIE REGX

141C 14 FCR T -A40H HI GFEEIDN TaFE
161 16 FA FLIE CrLT

1AlF 13X FCE TG-40H SLTLE MEMORY I
1A20 146 7R FIR COry

1422 10 FCR P diH NLGHELAY F.C,
1423 15 8C FIIR REGF

1A25 04 FCR ‘H-40H HALTROINT | TET
1A26 15 FE FTIR N16GK

HEATH KEYROARI MONITOR

TARLES

1A28
1A29

1434
1A#35
1437
1A38
1439
1A3K
1830
1A3E
1A40
1A42
1A45
1A48
1A4KR
144D
1AS0
1451
1AG2
1A5S
1A56
1AS9?
1A3A
1AGC
1ASE
1440
1A82
1463
1A66
1468
1A&ER
1ASE
1A70
1471

1A73

03

15

02

o
(W

01

15

00
FC

OF
an
35

31

09
26
6F
PF

Bh
CE
Ca
Bl
4F
by
BD
34
RD
32
NE
Al
26

&C

8C
26
CE
né
ac
20

nF

?1

70

49

00

FE
00
EE
00

00
o
Fn
FE
Fh

EE
00

00
00
03
00
FF
EC
I

EE

Fi

uF
FF

%

¥ KX 3 K K e

MTST

MTe2

MTH3

MTS54

MTSS

MTSA

FCR
Frg

FCH
Fhig

FOR
FTiR

FCR
FIR

HTST

NISPLAYS L6
CURRENT TESY
ENTRY?

EXIT

UBES

SEI
BSR
TrS
INS
CLR
LEX
BHFE
CLE
8T8
LG
JER
LX
L.IlA
SR
CLR
nEC
JSR
FSH
JER
FUL
LDX
CrifFr
BNE
INC
NEX
CFX
ENE
LIX
CFX
ENE
INC
EBRA

STX

¢

<
<+

‘(7 ~40H
REGC

‘B ~40H
REGE

“h7-40H
REGA

‘27 ~40H
$FCOD

= MEMORY DIAGNQSTIC

MNONE

N

RTISFLAY CORNNX

NISPLAY B ACC.

LDISFLAY a (LT,

EXIT 10 OLD MONITO

FIELD ON LEDS
FATTERM IN "DaTar’

FallED ADDRESS/FATTERN NITGP_AYED
FROCESSOR HaAL.TER

L Ly TO» T1+NIGADD

Fam

Qs X

MTR2
O X

T
#T0~1
FETILS
11

2
UTSPLAY

OUTERYT

BRGF

T1

09X
MTSé
O X

ANLGANDNH1
MTSS
F10-13
-1

MTH4

MTE3

T1

FIND TOF OF MERORY
S5TaACK AT TOF

CLEAR A MELEORY

HOFE THIS I8 Guont

REGET DISFLAYS

QUTFUT LWa FOUNE

QUITFUT PATTERN

RACKEFALE DISFLAYS

FalllURE!

SKIF CONTAMINATEN

N

AREA

n

HEATH KEYROARD MONITOR
MEMORY DIAGNOSTIC

1A75 HD FC RC JSR RENILS RESET NISPLAYS
1478 CE 00 EE X #T1
1A7R 5C INC E
1A7C BL F 7K JSR RISFLAY
1A7F 3E WA
XK FT0OF - FIND MEMORY 7T0OF
X
X SEARCHES NHOWN FROM 1000H UNTTL FINOG
* GOOR HEMORY
*
X ENTRY?! NONE
X EXIT: (X o= WA MEMORY
b4 USES: X
1A80 36 FTOF FSH A
1481 CF 10 00 LOX FTERM TOF OF MEMORY L
FFFF IF NERUG-1
ENIIF
1A84 86 55 LIA A #5514 TEST FPATTERN
1A86 09 FTO1 L X
1A87 A7 00 STA A 0sX
1A89 Al 00 CMF A Qs X
iABE 26 F9 RNE 101
iAg8n 32 FUL A
1A8E 39 RTS
X CCh ~ CONSOLE CASSETTTE JUMF
X
% ENTRY?! NONE
X EXIT: 10 LEXN MONITOR
¥ USES! ALLsTOsT1s12
1A8F C& 08 cchn LU R £33
1491 8o 42 KGR INJ.FIA THITARLLTEE Pia
1A93 BE 00 EER Lns $T0-1
1A96 37 FSH 1
1497 ED FC 86 JSR QUTSTA
1A9Aa 47 85 FCE 47Hy 05 FB30H R
1A9C CE 00 EE Lox 371
1A9F C&6 02 Lia kB %22
iaal RD FC EC JBR REDIS RESET NLSFLAYS
iAA4 BDOFID 25 JSR FROMPT FROMFT FWéa
ina7 BO FC 84 J5R QUTSTA
1aAA OE FI FCR OEH» 7IIH+80H i
1AAC RID FC RC JGR REDIS REGET WISFLAYS
1AAF CE 00 F4 LoX T2
1AR2 RO FDU 25 JSR FROMFT FROMFT LWA
1ARS 33 FUL. B
1ARSs RD 17 29 JER FUNCH

1aR? 7F FC 00 (CCD1 JMF $FCO0 EXIT TO HMONTTOR

HEATH KEYROARD MONITOR
LED MONITOR TAFE FROCESSORS

XX
X
X
*
X

1ARC C& 08 CCL

iARE 8D 15

1ACO 8D kE

1AC2 35

1aC3 31

1AC4 ED 16 aAn

1AC7 24 FO

1AC? BRI FC RC

1tACC RID FE 52

1ACF 4F 0% 05

1A4 3E
¥k
X
*
¥
%
%
X
X
¥

1A0S CE 10 00 IN(.FIA

1408 &F 01

1Al &F O3

1ATIC 86 8¢

1ADE A7 00

1AEQ 43

1AE1 A7 02

1AEZ 86 04

18ES A7 03

1aE7 39
KK
¥
*
*

1AF6 8B6 0L TrST

i1AF8 B7 10 00

1AFR C6 04

1AFDE F7 10 01

1E00 BD 16 18 TTS0
1RO3 O 0A G4

iriD 20 E1

CCL -~ CONSOLE CASSETTE LOAD

ENTRY?
EXIT:

USES !

NONE
10 CONSOLE MONITOR IF SUCESS
ALL s TOSHIGHEST MEMORY

La R &

BaR IN.FIA INITIALIZE FIA

ERSR FTOF FIND MEMORY TOF

TXE

INS

JGR LOAOD LLOADN MEMORY

RCC CCchni NORMAL RETURN

JSR RELXS FRINT ERROR MESSAGE
JSR QUTSTR

FCR 4FHy 05y 05H s 1) OOH4BOH

WAI

INGFPIA - INITIALTZE FIa FOR LED MONTTOR

INITVIALLZE CASSETTE SIDE FOR LUAND OR UMF
ANDL SET (TERM) S0 THAT & BREAK IS NOT
SENSED .

ENTRYS NONE

XU NONE

USES? A X

LIX #TERM

CLR 1sX

CLR 3¢X

LA A FLOQODOOOR

STA A 0 X INTO LDR
coM A

STA A 29X INITIALIZE CABGETTI
LG A *4

STA & 3y X

RTS

LON L.

TTST - TERMINAL TESTER

ENTRY{ NONE

EXIT? NEVER

LDA A ¥1

ST A TERT

LA R ¥4

STA k TERM.C

JSK OUTIS

FCR CRyLFy "THIES 18 A TERMINAL- TEST »0

BRé TTs0

13

14

HEATH KEYROARD MOMNITOR
TERMINAL TEST

1B1F E N

STATEMENTS =1632

FREE BYTES =14&823

NO ERRORS DETECTED

APPENDIX D

Excerpts from ‘“Kilobaud”

The following magazine articles have been reproduced with permission from
Kilobaud. They provide entertaining and educational material that enables you
to more fully appreciate and enjoy your ETA-3400 microcomputer accessory.

The programs will not necessarily run as is on your computer accessory, but with
some modifications you can run the programs.

75

76

Ron Anderson
3540 Sturbridge Ct.
Ann Arbor Ml 48105

Tiny Basic

l ssue #1 of Kilobaud con-
tained an article by Tom
Pittman describing his Tiny
BASIC. As a very optimistic
owner of a new KIM-1, and
with a SWTP CT-1024 TV
terminal on order, | sent my
order off to Tom’s Itty Bitty
Computer Company, and
soon my Tiny BASIC listing
arrived. Lacking the terminal,
| spent a Saturday loading
Tiny by hand with the hex
keyboard and verifying it.
When the last kit of the TV
terminal arrived, | loaded
Tiny. A close reading of the
instructions indicated that |

ways to save memory:

1. PRINT may be abbre-
viated PR in all cases. For
example:

50 PR*“HI THERE!”
2. Tiny needs no spaces in
the program statements. A
listing is hard to read without
them, but it is better than
running out of memory.
3. Tiny has no absolute value
function. This can be imple
mented easily as follows:

100 IF A <0 A=-A
4. Tiny has no ON N GOTO
statement {see Example 1).

ME THINK A MOMENT .. .”
and that is what seems to be
happening.

I've made my Hunt the
Hurkle game a little more
interesting for a first-time
player by including a random
1 out of 15 chance of seem-
ing confusion on the part of
the computer. The result is
that instead of the normal
THE HURKLE 1S HIDING
message, the printout is as
shown in Example 3.

THE HURDLE IS HIKING
NO, THAT’S NOT RIGHT

NOW WAIT A MINUTE!

THE HIDEL IS HURKING.
THE HURKLE IS HIDING.

Example 3.

(pause random time)
(pause random time}
(pause random time)
(pause random time})

tions extends to more than
one full page, it is lost before
it can be read. This would
also be a problem with a
scrolling display, particularly
if the TVT is running at 1200
baud. The program can con-
tain a “pause for read’” which
can be implemented easily at

Here the program resumes
its regular course.

Last but not least, Tiny
BASIC lacks any kind of
string manipulation. It is
possible to get around this by
using Y and N for Yes and No
responses as shown in Exam-
ple 4.

150 ON N GOTO (100,110,120,130)

Example 1.

had to insert some I/O jump
addresses. This done, Tiny
ran with nothing more than
operator problems.

It was not hard to begin
programming some of the
simpler games from Basic
Computer Games published
by Digital Equipment Corp.

As limited as it is, using
only 2%K of memory (I had
added an Econoram 4K
expansion to my KIM)}, a
great deai can be done with it
that is not obvious on first
glance.

At the bargain price of $5
| didn't expect a full course
in BASIC programming. But
there are some features that
are not obvious and could be
expanded upon for those of
us who are rank beginners.

First, here are a couple of

The following allows the
same results:

60 GOTO 100+10*N

This is particularly useful
in implementing a game like
Bombers (see Basic Computer
Games). Here the player is
given a multiple choice, and
the number he enters (N)
determines a branch in the
program.

My TV typewriter is the
kind that “pages’’; when the

60 Y=1

70 N=0

80 INPUT R

90 IF R=1 GOTO 10

999 END

50 PR“WANT TO PLAY AGAIN’;

85 REMARK R FOR RESPONSE

100 PR“THANKS FOR PLAYING. HOPE YOU ENJOYED IT”

Example 4.

the desired point.

100 T=0
105 T=T+1
110 1¥ T <150 GOTO 105

The T less-than number may
be adjusted for a suitable
time delay. These steps may
be a subroutine, and T may
be randomized by Example 2.

115 RETURN

1101F T <(RND(150)+10) GOTO 105

Example 2.

screen fills, it “flips” a page
and starts to fill it from the
top. If output such as instruc-

The delay loop is used to
add interest to a game, where
the computer outputs “LET

Kilobaud, December 1977

A little ingenuity allows
many tricks in Tiny BASIC.
Use a little imagination, and
it can be great fun.

| started out in this hobby
with full intentions never to
waste time playing games
with my computer. Obviously
I've changed my mind. The
reason is that programming
games seems to be a very
good way to learn all the
tricks and non-tricks of pro-
gramming in BASIC. | still
intend to do alot of machine
language programming, but |
can’t imagine a way to learn
BASIC faster than by using it
to program a game. Thanks,
Tom Pittman, for Tiny
BASIC. It really works. ®

Along with pointing out the
differences between Tiny
BASIC and standard BASIC,
Tom offers here some com-
ments and opinions on
BASIC and structured pro-
gramming. Interestingly, his
manuscript is one of the few
we’ve received which was pre-
pared using a text editor (a
Mode! 37 TTY driven by a
COSMAC 1802 microproces-
sor). It would seem that more
of wus (including myself)
should be at this stage by
now. — John.

Tom Pittman
PO Box 23189
San Jose CA 95153

f you have an Altair or

IMSAI computer or any
8080-based system, you have
your choice of several ver-
sions of BASIC. There are
rumors of BASIC for 6800
and 6502 within the next few
months. But these require
memory — probably more
than you have with your low
budget machine.

The alternative is Tiny
BASIC. The language is a
stripped down version of

regular BASIC, with integer
variables only — no strings, no
arrays, and a limited set of
statement types. It was first
proposed by Bob Albrecht,
the ‘“’dragon” of Peoples
Computer Company (PCC) in
Menlo Park, as a language for
teaching programming to
chitdren. The PCC newspaper
ran a series of articles {largely
written by Dennis Allison}
entitled ‘“‘Build Your Own
BASIC,” suggesting how Tiny
BASIC might be implemented
in a microprocessor. The
important portions of these
articles have been reprinted in
Dr. Dobb’s Journal of Com-
puter Calisthenics and Ortho-
dontia, published by PCC and
available in most computer
stores.

11

Tiny Basic

-« @ mini-language

BASIC

Before we get into Tiny
BASIC, let us look at high
level languages in general and
BASIC in particular.

When you program in ma-
chine language, each com-
mand, or statement, repre-
sents one operation from the
machine’s point of view.
When we think of a single
concept like, “’A is the sum of
B and C,”” a machine language
program to perform this oper-
ation may take several opera-
tions, such as:

LDA B
LDA C
STQ A
A high level language, on
the other hand, iets you put a
single human idea into a
single program statement, for
instance:
LET A B+ C
BASIC is one of a class of
“*algebraic” languages in that
it permits the representation
of algebraic formulae as part

for your micro

of the language. Other lan-
guages in this class are
FORTRAN and ALGOL.
COBOL does not generally
fall in this class (except for
the “‘super’” versions).

Of critical importance to
all algebraic languages is the
concept of an expression. An
expression is the program-
ming language notation for
what we might think of as
“the right-hand side of a for-
mula.”” Alternatively, we can
think of an expression as “‘a
way of expressing the value
of some number which the
computer is to compute.”

An expression may consist
of a single number, a single
variable name (all variables
are referred to by name in
high level languages), a single
function call (discussed in
detail later), or some combin-
ation of these, separated by
operators and possibly
grouped by parentheses. For
this discussion, when we refer

Kilobaud, January 1977

to an operator, we mean one
of the four functions found
on a cheap pocket calculator:
addition symbolized by * + '*;
subtraction by ' - **; multipli-
cation by " *"” {(we do not
use X’ because that would
be confused with the name of
the wvariable “X"); and
division by “/". (The usual
symbot for division does not
appear on most typewriter

and computer keyboards.)
ThUS, A-B
c-D

becomes, in computerese,

A -
Here the parentheses are used
to indicate priority of opera-
tions. Normally multiplica-
tion and division are per-
formed first, then addition
and subtraction. Without the

parentheses the expression,
A-B
c-D
would be understood by the
high level language as,

B
a- ¢ d

By » ¢y

18

which is not the same at all.

In BASIC, when an expres-
sion is encountered, it is
evaluated. That is, the values
of the variables are fetched,
the numbers are converted (if
necessary), the functions are
called, and the operations are
performed. The evaluation of
an expression always results
in a number which is defined
to be the value of that expres-
sion.

The first example which
we discussed showed a simple
BASIC statement,

LET A B
This is called an assignment
statement, because it assigns
the value of the expression
B + C" to the variable A. All
algebraic high level languages
have some form of assign-
ment statement. They are
characterized by the fact that
when the computer processes
an assignment statement, a
single named variable is given
a new value. The new value
may not necessarily be

different from the old; for
example:
LET A-A

This is also a valid assignment
statement, even though
nothing changes. Assignment
statements are also used to
put initial values into var-
iables, for instance:

Control Structures

One of the important char-
acteristics distinguishing
different high level languages
is the control structure
afforded to the programmer.
The control structure is deter-
mined by the various per-

mitted control statements,
which alter the flow of pro-
gram execution. Normally

program execution advances
from statement to statement
in sequence, although there
are however, circumstances in
which this sequence is
altered. The most common
control structure allows one
set of operations to be per-

formed if a certain condition
is true, and another, if it is
false. In "structured program-
ming'’ this is referred to as
the “IF ... THEN ... ELSE”
construct; its general form is
"IF condition is true, THEN
do something, ELSE do some
other thing.” The full gener-
ality of this control structure
is not directly available in
BASIC, but, as we shall see,
this is only a minor incon-
venience.

Standard BASIC uses the
IF ... THEN construct, and
makes it work something like
a conditional GOTO:

IF A>3 THEN 120

If the value of the variable A
is greater than three, then
{GOTO) line 120, otherwise
continue with the next state-
ment in sequence. Actually,
the condition to be tested
consists of a comparison
between two expressions,
using any of the comparison
operators which are given in
Fig. 1.

Photo courtesy of Electronic Product Associates, Inc., 1157 Vega Street, San Diego CA 92110.

In each case, if the compar-
ison of the two expressions
evaluates as true, the implied
GOTO is taken; otherwise the
next statement in sequence is
executed. In Tiny BASIC the
syntax is slightly different.
Instead of a statement num-
ber, a whole statement
follows the THEN part of the
IF ... THEN. The compar-
ison above, in Tiny BASIC,
would be:
IF A>3 THEN GOTO 120

But we could also validly
write:

IF A<=3 THEN LET A=A+10

or some such. Note that this
is not valid in standard
BASIC.

The GOTO construct has
been the subject of contro-
versy in the last few years. A
strong case has been made for
““GOTO-less programming’’
which uses only certain other
control structures to achieve
structured programs which
are more readable and fess

AN VOA ANV
i

Equality {the comparison is true
if the two expressions are equal)

Greater than

Less than

Less or Equal (not-Greater)
= Greater or Equal

> Not Equal

Fig. 1. Comparison Operators.

prone to errors. | believe that
both good and incomprehen-
sible programs are possible
regardiess of the control
structures used or not used,
but | seem to be in a minority
at this time. Suffice to say
that BASIC is not conducive
to structured programming in
the technical sense of the
term.

Standard BASIC has one
control structure which has
been omitted from Tiny
BASIC. This is the FOR . ..
NEXT loop. Normally, if a
program reguires some se-
quence to be performed
thirteen times, the following
program steps might be used:

10 FOR I=1 TO 13
20 ...
30 NEXT I

Statement 20 would be exe-
cuted 13 times, with the
variable | containing succes-
sively the values, 1, 2, 3...
12, 13. In Tiny BASIC the
same operation is a little
more verbose:

10 LET T-1

20 ...

30 LET I=1=1

40 IF I<=13 THEN GOTO 20

but, as you can see, nothing is
lost in program capability.

Data Structures

Standard BASIC also has
some data structures which
have not been carried over
into Tiny BASIC. The only
data structure in Tiny BASIC
is the integer number, which
is further limited to 16 binary
bits for a value in the range of
-32768 to +32767. Compare
this precision with the six

digit precision in standard
BASIC, which also gives you
fractional numbers (some
times called ‘'floating
point’). Regular BASIC
allows arrays, or variables
with multiple values distin-
guished by “‘subscripts,”” and
strings, which are variables
with text information for
values instead of numbers. We
will see presently how these
deficiencies in Tiny BASIC
can be overcome.

Input/Output

Thus far we have said
nothing about input and out-
put, how to see the answers
the computer has calculated,
or how to put in starting
values. These needs are
accommodated in BASIC by
the PRINT and INPUT state-
ments. Numbers are printed
(in decimal, for us humans to
read) at the user terminal by
the PRINT statement:

PRINT A, B + C
This prints two numbers; the
first is the value of the var-
iable A, and the second is the
value of the expression B+C.
In general, the PRINT state-
ment evaluates and prints
expressions. It is perfectly
valid to write

PRINT 1, 123, 0-0
although we know in advance
what will be displayed on the
terminal. To make our output
more readable, BASIC per-
mits the program to print out
text labels on the data.
PRINT "THE SUM OF 1 + 2 IS",
will display the line:

THE SUM OF 1 + 2 IS 5

To feed new numbers

from the terminal to the pro-

3+ 2

gram the INPUT statement is
used.
INPUT A, B, C

will request three numbers
from the input keyboard. The
more popular versions of
Tiny BASIC have an extra
capability here beyond stan-
dard BASIC, in that the oper-
ator can type in numbers and
whole expressions. Thus, if in
response to the INPUT re-
quest above, the operator
types
1+2, 3%(4+5), B-A

the variabie A will receive the
value 3, B will receive the
value 27, and C will receive
the value 24 = 27-3. There-
fore, a program in Tiny
BASIC, which permits no
text strings, can display and
accept as input limited text
information:

10 LET Y=1

20 LET N=0

30 PRINT "PLEASE ANSWER Y OR N'';
40 INPUT A

50 TF A=Y THEN GOTO 100

60 [F A=N THEN GOTO 120

70 GOTO 30

This little program asks for an
answer, which should be
either the letter "Y'’ or the
letter “N" (or their equiva-
lents, the numbers 1 or O,
respectively). If the operator
types anything else, the re-
quest is repeated. Obviously,
this technique will not work
for something tike a person’s
name where any letters of the

alphabet in any sequence
must be expected, but it is
certainly an improvement

over no alphabetic input at
all.

A generalized text output
capability in Tiny BASIC
depends on another charac-
teristic peculiar to Tiny
BASIC and not shared by
standard. That is the fact that
the line number in a2 GOTO
or GOSUB statement is not
limited to numbers only, but
may itself be any valid ex-
pression which evaluates to a
line number. The program
which is shown in Fig. 2
prints A, B, or C, depending
on whether the variable N has
the value 1, 2, or 3. Note
that, if N is out of range,
nothing is printed.

The USR Function
What about the fact that

there are no arrays? Let us
turn to the USR function for
a way to store and retrieve
blocks of data. The remarks
which follow apply only to
my version of Tiny BASIC

and are unique in that
respect.
The USR function is in-

voked with one, two, or three
arguments (expressions
separated by commas within
the parentheses). The first (or
only) argument is evaluated
to the binary address of a
machine language subroutine
somewhere in the computer
memory. The USR function
does a machine fanguage sub-
routine call {JSR instruction)
to that address. The user is
obliged to be sure that there
is in fact a subroutine at that
address. If there is not, Tiny
BASIC (and thus your com-
puter) will execute whatever
is there. The second and third
arguments, if present, will be
loaded into the CPU registers
before jumping to this sub
routine. On exit, any answer
the subroutine produces may
be left in the CPU accumula-
tor, and it becomes the vatue
of the function. Two machine
language routines are already
provided with the BASIC
Interpreter; if Sis the address
of the beginning of the inter-
preter,
USR(S + 20, M)

has as its value the byte
stored in memory at the
address in the variable M
(that is, the contents of the
second argument is evaluated
to a memory address). Also,
USR(S + 24, M, B)
stores the low order 8 bits of
the value of B into the
memory location addressed
by M. The return vaiue of this

function is meaningless.
Consider the standard

BASIC orogram in Fig. 3(a)
to input ten numbers and
print the largest as compared
to the Tiny BASIC program
in Fig. 3(b}.

I have used this example
for two reasons: First, it
shows how the USR function
may be used to simulate the
operation of arrays. Second,
it is typical of many of the
applications commonly ad-

19

80

RETURN
PRINT "A"
RETURN
PRINT "B"
RETURN
PRINT "'C"
RETURN

IF N>0 THEN IF N<4 THEN GOSUB 20+(N * 10)

to argue for arrays; however,
neither real nor simulated
arrays are required for this
program! Here is the same
program, with no arrays:

10 LET I=1

20 LET 1.-0

30 INPUT V

IF L<V THEN LET L=V
50 LET I=I1+1

) 1F 1<=10 THEN GOTO 30
PRINT 1.

Summary

Tiny BASIC is not a super
language. But, it also does not
require a super computer to
run. I've given here only a
cursory examination of the
power of Tiny BASIC. A full
description of Tiny BASIC
may be found in the Itty

Bitty Computers Tiny BASIC
User’'s Manual. This comes
with a hex paper tape of the
program and is available for
$5 from: Itty Bitty Com-
puters, PO Box 23189, San
Jose CA 95153.

There are different ver-
sions for each of the follow-
ing systems, so be sure to
specify which system you are
running:

M6800 with MIKBUG,
EXBUG, or home brew (Exe-
cutes in 0100-08FF); AMI
Proto board (Executes in
EOOO-E7FF); SPHERE
(Executes in 0200-09FF);
6502 with KIM, TIM or
homebrew {Executes in

Fig. 3. Programs to input ten numbers and print the largest.
{a) Standard BASIC; (b} Tiny BASIC.

Fig. 2. Program to Print A,
B, or C, depending on the
value of .

0200-0AFF); JOLT (Exe-
cutes in 1000-18FF); APPLE
(Executes in 0300-0BFF);
KIM-2 4K RAM (executes in
2000-28FF).

Although few people have
paper tape systems, we are
unable to provide the pro-
gram on audio cassette. But if
you request it, we will supply
a hexadecimal listing of the
program instead of tape
which you can key in and
then can save on cassette for
future use.

If you have a small 8080
system, there are several
widely differing versions of

domain. Most of them have
been published in Dr. Dobb’s
Journal, which is $10 per
year from: People's Com-
puter Company, PO Box 310,
Menlo Park CA 94025. This
journal has also published a
number of games which run
in Tiny BASIC.

One final comment. Tiny
BASIC was originally con-
ceived as ‘‘free software’ by
the people at PCC. The 6800
and 6502 versions described
in this article are not free;
they are proprietary and
copyrighted. Software is my
only source of income, and, if
| cannot make it from pro-
grams like Tiny BASIC, |
won't write them. Please
respect the labor of those of
us who are trying to make
quality software available to
you: pay for the programs

Tiny BASIC in the public vyouuse.®
10 LET I=1
10 FOR 1=] TO 10 20 INPUT V
20 INPUT V(1) 25 LET V=USR(S=24,1,V)
30 NEXT I 30 LET I=I+1
&0 LET L=V(1) 35 IF I<=10 THEN GOTO 20
50 FOR I=2? TO 10 40 LET L=USR (S+20, 1)

60 IF L>=V(1) THEN 80 50 LET I=2

70 LET L=V(T) 60 TF L<USR(S+20,1) THEN LET L=USR(S+20,1)
80 NEXT I 80 LET I=I+1

90 PRINT L 30 PRINT L

Tiny BASIC Shortcuts

Tom Pittman’s Tiny BASICs (6502, 1802, etc.) are somewhat limited
in capabilities. This is the first of several articles discussing
methods to expand those capabilities.

Charles R. Carpenter
2228 Montclair Place
Carroliton TX 75006

Writing small but useful
programs in Tiny BASIC
(to paraphrase Tom Pittman) is
a practical reality. Getting the

most out of your programs is
easier if you work with the inter-

preter's limitations. The utility
program in Fig. 1 shows how to
work with some of these lim-
itations. This program is titled
“Loans,” but it could be any
comparison of WHAT-IF alter-
natives. Here's what we’'ll be
working with (and without):
® Decimal numbers not al-
lowed.
@ Number range limited from
-32768 to + 32767.

® 72 characters maximum on
Input lines.

® Implied statements and ab-
breviations to save bytes of
memaory.

(Note: Tom Pittman now has an

experimenter’s manual avail-

able that explains many of

these features and how to work

with them. They are not as sim-

pie as my approach. The

manual is available from Itty

Bitty Computers, PO Box
23189, San Jose CA 95153))

These are not significant
handicaps if you're estimating
the effect of several alter-
natives. Round numbers are
usually acceptable if you only
want to get on base in some
specific baill park (ciichés are
fun once in a while).

Byte-saving Tips

Saving bytes of memory is a
practical approach if your com-
puter has limited memory (I
have 1250 bytes of free space
now). Let's talk about the
memory-saving part first.

Fig. 1 is an example of a pro-
gram with no statement short-
cuts; Fig. 2 uses all the implied
and abbreviated statements
possible in this Tiny BASIC in-
terpreter. Memory in Fig. 1 is
492 bytes, an average of 17
bytes per line, while Fig. 2 uses
410 bytes for an average of 14
bytes per {ine. REM comments
were added later and used 470
bytes.

Using implied statements
causes the program tc run

THE REASON.

110 INPUT N
115 PRINT
120 LET A=0

140 PRINT**

150 PRINT*

160 PRINT*¢

170 INPUT P,R,T,X
190 LET I=P*T*R
200 LET O=100*P +1
210 LET M=0/X

TINY BASIC FOR KIM-i
6502 V.1K BY T. PITTMAN.

PROGRAMMED BY:

C.R. (CHUCK) CARPENTER W5USJ
2228 MONTCLAIR PL.
CARROLLTON TX 75006

THESE PROGRAMS ILLUSTRATE BYTE SAVING
TECHNIQUES IN LIMITED MEMORY SYSTEMS.
THE FIRST PROGRAM USED 492 BYTES. THE
OTHER USED 410 BYTES. AN INCREASE

(OR SAVING) OF 82 BYTES. IMPLIED
STATEMENTS AND ABBREVIATIONS ARE

PRINT*“LOANS : HOW MANY -"

PRINT“INPUT: PRINCIPAL IN HUNDREDS (P)”
RATE IN PERCENT (R)”’

TIME IN YEARS (T)”
PAYMENTS IN MONTHS (X)

LET A=A+1
PRINT
PRINT
PRINT

PRINT
LET N=N-1

PRINT

PRINT
END

=0

A l=0+2
:2 GOSUB |
:RUN

1226 AT 1
:END

:PRINT*THERE ARE ’;I;** BYTES LEFT”
THERE ARE 288 BYTES LEFT

Fig. 1. First program version using no shortcuts to write the program or save bytes. This program uses 492 bytes, exclusive of the REM
statements. REM statements use 470 bytes. The short routine above illustrates how Tiny BASIC finds the number of bytes of free
space remaining. The user’'s manual tells how to do it.

PRINT“LOAN NUMBER -"; A"
PRINT*INTEREST IS $;1

PRINT'‘MONEY OWED IS $’;C

PRINT“PAYMENTS ARE §’";M

IF N>0 THEN GOTO 170

PRINT*“DONE"’

Kilobaud, June 1978

81

82

slower, but the increase in pro-
gram lines is worth the loss of
speed (if speed is your concern
then Tiny BASIC may not be for
you, anyway). Memory saving
wasn't really necessary for this
short program; but in a