
GRAPHICS TUTORIALS

The Graphics Tutorials GTI-7 and GT8-16 consist primarily of a series of tutorials
which teach PS 390 programming. Both volumes are designed to instruct program-
mers of various levels of expertise. Those with little computer graphics experience
will want to read carefully through each section and do each exercise. Those with
some computer graphics experience may find it sufficient to read these and supple-
ment them with the Reference Materials volume. Though sophisticated users may
want to rely primarily on the reference material, they are encouraged to read the
Graphics Tutorials as well to become familiar with the approach to graphics pro-
gramming taken in the PS 390 Document Set.

Each tutorial section covers a PS 390 programming concept or group of related
concepts that provide you with experience in creating and manipulating an object
on the screen using PS 390 commands. Because each section builds on information
contained in the previous section, it is highly recommended that you read the sec-
tions in the established order. The following provides a capsule description of
sections GT1—GTE:

GT1 Hands-on Experience

This brief section steps you through a first encounter with the PS 390. Even
with no prior graphics experience, you can quickly learn to take advantage
of the PS 390's capabilities.

GT2 Graphics Principles

This is the foundation of Graphics Tutorials. It presents the concepts of inter-
active graphics—how to construct models in a coordinate system—and illus-
trates how PS 390 programming puts these concepts into effect.

GT3 Tutorial Demonstrations

The tutorial demonstration package consists of programs which illustrate
many of the graphics principles detailed in the tutorial sections. This set of

software is distributed on magnetic tape. In addition to these programs, the

tape contains a group of primitives which are required for many of the

exercises in the tutorial sections. Before reading the tutorials, be sure to

load the demonstration package.

GT4 Modeling

This section presents the first stage of graphics modeling, analyzing the
model. This consists of breaking the model into interactive parts, organizing
those parts into a hierarchy, and representing the hierarchy as a PS 390
display tree.

GTS Command Language

This section details how to express the hierarchical display tree model in
terms of the PS 390 command language.

GT6 Function Networks I

Function Networks I explains how to connect input devices to the model so
you can interact with it.

GT7 Function Networks II

Function Networks II describes more advanced ways to use function net-
works. This includes multiple uses of dials (via function keys), labeling dial
LEDs, limiting the motion of a model, and storing and retrieving variables.

GTl. HANDS-ON EXPERIENCE

INTRODUCTION TO PS 390 GRAPHICS

CONTENTS

1. STRATEGY 1

1.1 For Systems With allon-IBM Host 1
1.2 For Systems ~'Vith an IBM Host 2

2. DISPLAYING A SQUARE 2

2.1 The Display List 3
2.2 Coordinate Values 3
2.3 Blanking the Screen 4

3. DISPLAYING A DIAI~ZOND 4

4. DISPLAYING STAR 5

5. Tti~'O MORE VERSIONS OF STAR 6

6. UPDATING VALUES, CONNECTING AN INPUT DEVICE 8

7. ANOTHER ~~'AY TO CLEAR THE SCREEN 9

8. CONNECTING A DIAL TO SPINSTAR 9

9. CONCLUSION 10

t

ILLUSTRATIQ~NS

Figure 1-1. The Part of the Coordinate System that Appears on the Screen 4
Figure 1-Z. "Spinner" Function Diagram 9

li

Section GTl

Hands-On Experience

Introduction to PS 390 Graphics

In this section you will begin programming the PS 390 to display a few simple
objects . Unlike the demonstration programs you have already worked with, where a
preprogrammed object was displayed and you were able to manipulate it, here you
will actually create the object before you interact with it. Everything you will be
doing in this section will be done locally on the PS 390, without any help from your
host computer.

1. Strategy

First you will build and display a square on the PS 390 screen. Next, you
will make a rotated version of that same square to display as a diamond
shape. Then, you will link these two shapes together for display as one
object, an eight-pointed star. Last, you will make two slightly modified ver-
sions of the star and manipulate them. First, boot the PS 390. This is de-
scribed in detail in Section IS3 Operation and Communication. Briefly, here is
what you need to do.

Put the PS 390 graphics firmware diskette in the disk drive. Boot the system
by turning on the power.

1.1 For Systems ~~Tith a Non-IBI~7 Host

once the system is booted, hold do`vn the CTRL key and press the LINE
LOCAL key. Then press the RETURN key. You `will see this prompt

~v~hich indicates the PS 390 is now in command mode. It will accept any

instructions you give it and execute them locally. (Command mode and
other modes of operation are described in Section IS3 Operation and Com-
munication.)

Hands-On Experience GTl -1

1.2 For Systems with an IBM Host

Once the system is booted, hold down the ALT key and press the LOCAL
key. This prompt will appear:

~c

This indicates the PS 390 is in command mode and will accept any com-
mand you give it. When your host is an IBM, remember to enter a carriage
return (<RETLTRN>) on the PS 390 keyboard (instead of the ENTER key)
when you are working in command mode. The ENTER key does not work in
command mode. (Command mode and other modes of operation are de-
scribed in Section IS3 Operation and Communication.)

2. Displaying a Square

Before the PS 390 can display anything, it needs the coordinate points of
the object you want to build—the square. Any wire-frame object you define
must be specified as a collection of vectors, coordinate points and lines. The
VECTOR LIST command does this. Enter

Square := VECTOR_LIST .5,.5 .5,-.5 -.5,-.5 -.5,.5 .5,.5;

Enter this command exactly as you see it here and end it by entering <RE-
TURN>. Pay special attention to all punctuation, but do not worry about
capitalization (the PS 390 accepts either uppercase or lowercase letters).
The "~~" prompt is shown here only because it appears on the screen
when you enter commands. It is not something you have to enter.

If the command is accepted, another ~ cY prompt will appear on the next
line, so this is what you should see on your screen.

C~Square := VECTOR_LIST .5, .5 .5,-.5 -.5,-.5 -.5,.5 .5, .5;

If you get an error message instead, be sure you entered the line exactly as
shown above. The " c7 a " prompt will not appear after an error message
until you enter another carriage return. After an error message, enter the
command again, exactly as shown above. Try this two or three times. If the
command still is not accepted, the problem lies elsewhere.

GTI -2 Graphics Tutorials

After the PS 390 accepts this command, it knows about an object called

Square that it will draw by going to the first point in the vector list (.5, .5)
and then drawing to the next four points in the sequence listed (you need to
end up back at .5, .5 to close the Square) . The PS 390 will not display

Square until you tell it to using the DISPLAY command. Enter

DISPLAY Square;

Square will appear centered on the screen. That is because Square is cen-

tered on the world coordinate system's origin, which currently corresponds

to the center of the screen. By default, the part of the coordinate system

viewed is from -1 to +1 in X and Y.

Z.1 The Display List

As you have just seen, an object can be defined in the PS 390 and not be
visible on the screen. When you use the DISPLAY command to display an

object, the object's name is placed on a display list. The PS 390 continually
checks this list to see if any names have been added or removed and then
displays or "undisplays" the corresponding objects.

2.2 Coordinate Values

Right now, the screen shows a view of only part of the coordinate system,

from plus 1 to minus 1 on both the X and Y axes. Anything to be drawn

outside those coordinates will not show up on the screen. To see an object,

you have to choose coordinates for it that are within these bounds. So, the

coordinates for Square's corners are one-half unit in X and one-half unit in

Y, and they appear about halfway from the center to the edge of the screen

(Figure 1-1) . Everything in this section will be two dimensional and take

place in the plane defined by the X and Y axes, with Z equal to zero. The Z
axis accounts for the third dimension of "depth."

Hands—fin Experience GTI-3

 1

This square as it
appears on the screen

•----
-1,0

0,1

i 0,-1

1,0
----•

If you could see the
coordinate system axes,
they would look like this,

U390015

Figure 1-1. The Part of the Coordinate System that Appears on the Screen

2.3 Blanking the Screen

Two very useful keys, '1,ERM and GRAPH, are located to the left of~ the
typewriter section of the keyboard.

• Press the TERM key when you want to clear the screen of text. La-
bels or titles that are part of the displayed object are unaffected. This
key toggles so you can press it again to redisplay, or "unblank," the
text.

• Press the GRAPH key to blank any graphics being displayed on the
screen. This will allow you an uncluttered view of the text. Press
GRAPH again to redisplay the graphics.

3. Displaying a Diamond

After displaying a square, the next thing to do is to superimpose a diamond
on it to make a star shape. Create the diamond as a rotated version of
Square. Enter

Diamond := ROTATE IN Z 45 APPLIED TO Square;

GT1-4 Graphics Tutorials

which means essentially "create a new object by applying a 45-degree rota-
tion to the object Square." To get a star figure to display on the screen,
enter

DISPLAY Diamond;

Diamond is displayed superimposed on Square, resulting in astar-shaped
object. At this point, you have done what you set out to do, which was to
display a star shape on the screen. But if you want to do anything to the star
now on the screen, you must issue two commands, one for each of the two
objects that make it up. There is no single object named Star that you can
manipulate. You can create such an object using an INSTANCE command.
This command defines some new single object as a collection of other ob-
jects. You can define Star to be an instance of the two objects you already
created. Enter

Star := INSTANCE OF Square, Diamond;

Now any operation you apply to Star will apply simultaneously to its two
components, Square and Diamond.

4. Displaying Star

Before you display Star, remove the Square and Diamond from the screen.
Enter

REMOVE Square;

and then

REMOVE Diamond;

The screen should now have nothing on it but text. There is a difference
bet`veen removing objects from the screen this way and toggling the GRAPH

key. When you press the GRAPH key, every object on the display list is

blanked out from the screen (or unblanked so it will show up), but the

contents of the display list stay the same. When you REMOVE something, it

is removed from the display list and will not display no matter how many

times you press the GRAPH key.

Hands—On Experience GTl-S

Now enter

DISPLAY Star;

Star will appear. It looks like the two objects you just removed, but now it is
defined in the PS 390 as only one object.

5. Two More Versions of Star

With the SALE command, you can scale an object on the screen to shrink
it or enlarge it. For example, to make a new star one-fourth the size of Star,
enter

Smallstar := SCALE BY .25 APPLIED TO Star;

and

DISPLAY Smallstar;

Smallstar will appear inside Star, centered on the screen origin. You can
use the TRANSLATE command to define an object that is a "moved" ver-
sion of some other object. Enter

Movestar := TRANSLATE BY .75,0 APPLIED TO Smallstar;

Movestar is a new version of Smallstar moved three-fourths of a unit to the
right. The two values, .75 and 0, indicate how to move the object in X and
Y. When the Y value is 0, the object translates horizontally only. Enter

DISPLAY Movestar;

and the new object will appear on the screen.

Even though the two newer stars, Smallstar and Movestar, are based on
Star, they are separate objects with names of their own. You can do any-
thing you want to Movestar or Smallstar and not affect Star. If you rotate or
scale Smallstar, nothing will happen to Star. It will still be displayed at the
center of the screen until you remove it. The reverse is not true. If you
redefine Star in some way, that will affect Smallstar and Movestar because
they are defined in terms of Star. Redefine Star as a triangle and watch
what happens to Smallstar and Movestar. Enter

Star := VECTOR_LIST 0,.43 .5,-.43 -.5,-.43 0,.43;

GTI -6 Graphics Tutorials

These coordinates define an approximately equilateral triangle. As soon as
you enter this command, `what happens? Not only Star, but everything de-
fined in terms of Star, changes. As a further illustration of how Smallstar
and Movestar depend on Star, redefine Star once more, as the word
"STAR" . You need a couple of commands to accomplish this. You could do
the same thing with one BEGIN_STRUCTURE... END_STRUCTLTRE. BE-
GIN_STRUCTURE...END_STRUCTURE is a convenient way to group re-
lated commands together. Enter

Star := BEGIN STRUCTURE

CHARACTER SCALE .l;

CHARACTER -.2, 0 'STAR';

END STRUCTURE;

All three objects will change from triangles to the word "STAR." Smallstar
is still aquarter-size version of Star.And Movestar appears to the right of
both of them. Briefly, here is what the two commands in the BE-
GIN STRUCTURE... END STRUCTURE did:

CHARACTER: The CHARACTER instruction specifies the word you want
to display and the location of the lower left corner of the first character in
the word. In this case, the S of STAR will be placed one-fifth unit (.2) out
on the negative X axis. The characters in single quotation marks comprise
the character string to be displayed.

CHARACTER SCALE: Without scaling, each character would appear on
the screen one unit in size. The first letter would cover the entire upper right
quarter of the screen, and any letters following it would be out of view to
the right. So this instruction scales the characters to one-tenth their normal
size so they can all appear on the screen. The intricacies of BEGIN_STRUC-
TURE...END_STRUCTURE and the two CHARACTER commands (CHAR-
ACTER and CHARACTER SCALE) are explained in detail in other
sections. You can redefine Star to be the eight-pointed figure it was before.
Square and Diamond still exist in memory, so all you need to do is re-enter
the command that defines Star as an instance of those two objects. For an
exercise, do that now.

Hands-Gn Experience GTl -7

6. Updating Values, Connecting an Input Device

If you wanted to reposition Movestar, you could do so by redefining it with
new translation values like this:

Movestar := TRANSLATE BY -.5,0 APPLIED TO Smallstar;

This would redefine Movestar at a new position to the left of the origin.
There is a way to reposition Movestar without redefining it, and that is to
SEND a new value to it. To do that, enter

SEND V3D(.75,.75,0) to <1>MOVESTAR;

Remember that Movestar is a translation applied to another object,
Smallstar. Whenever you update a translation, you must send it a three-
dimensional value; "V3D" stands for athree-valued vector. To supply
Movestar with the right kind of data, you had to deal with all three dimen-
sions, even though you are not making use of Z here. This SEND command
immediately updates the translation values in Movestar (they were .75, 0
with an assumed Z value of 4) . Movestar shifts to the upper right corner of
the screen. None of the definitions for any objects changed—the values
changed. This is what input devices and function networks do. Without
changing the basic definitions of objects, they alter and update values; how
big to scale the objects, how much to rotate or translate them, and so on. To
illustrate this, hook a simple function network from a control dial to an
object to make it rotate. First, create the object. The PS 390 already knows
about Smallstar, the scaled-down version of Star. Define Spinstar to be a
version of Smallstar that can rotate. Enter

Spinstar := ROTATE IN Z 0 APPLIED TO Smallstar;

You must put ~ as the initial rotation value. Later, values coming from a
dial will update Spinstar and make it rotate.

GTI -8 Graphics Tutorials

7. Another Way To Clear the Screen

You have defined Spinstar. The next step is to display it. But first, clear the
screen of the other objects. When you did this before with Square and Dia-
mond, you used REMOVE for each of them. It is much more convenient to
use the Il~TITIALIZE DISPLAY command. Enter

INITIALIZE DISPLAY;

This clears everything from the display list. Now display Spinstar by enter-
.
ing

DISPLAY Spinstar;

8. Con~~ecting a Dial to Spinstar

Nov build a simple function network to take values from the dial and turn
them into values that can be used to update Spinstar. The PS 390 contains a
"master" intrinsic function called F:DZROTATE that does that. To use it,
make a copy of it and assign it a name, "Spinner" for example. Enter

Spinner := F:DZROTATE;

It is convenient to think of individual functions as "black boxes" with values
coming in and other values going out. The functions are usually drawn as
shown in Figure 1-2, as squares with input and output lines:

INPUTS

SPINNER

Name of Function Instance

Name of Intrinsic Function

F: DZROTATE

<1> <1>

<2> <2>

<3>

U390016

OUTPUTS

Figure 1-2. "Spinner" Function Diagram

wands-On Experience GTl-9

Connect a dial to the first input of this function and the first output to
Spinstar. Use the COl~TNECT command twice to do this.

CONNECT Dials<1>:<1>Spinner;

CONNECT Spinner <1>:<1>Spinstar;

These commands say to connect output <1> of the control dials (correspond-
ing to the top left dial) to input <1> of the function Spinner. And connect
output <1> of Spinner to input <1> of Spinstar. The numbers for the inputs
of a function are to the left of the name, the output numbers are to the
right. You are not quite finished setting up your function network, because
Spinner needs to be "primed." It needs two initial values for its second and
third inputs . You have already used the SEND command to update Move-
star. You can use this command again to send 0 and 200 to Spinner's sec-
ond and third inputs, respectively. Enter

SEND 0 TO <2>Spinner;

SEND 200 TO <3>Spinner;

The function network is now ready. If you turn dial 1, Spinstar will start
turning. The values the dial generates update Spinstar so quickly that it
appears to move in real time. When you turn the dial, Movestar responds
instantaneously.

9. Conclusion

If any of what you have done is not completely clear to you, do not worry
about it right now. The purpose of this section was to give you an opportu-
nity to create and manipulate a few simple objects. In the remaining sec-
tions, you will discover in more detail how you can use these commands to
create display structures and more complex function networks for models.
You will also learn how to save the commands in a host file so they are
more convenient to use.

GTI -10 Graphics Tutorials

GT2. GRAPHICS PRINCIPLES

HIGH-PERFORMANCE PS 390 DISTRIBUTED GRAPHICS

CONTENTS

1. CREATING PRIMITIVE OBJECTS 1

1.1 Coordinate Systems 2
1.1.1 Right-Hand Coordinate System 2
1.1.2 Left-Hand Coordinate System 3
1.1.3 The World Coordinate System 3
1.2 Data Base For an Object 4
1.2.1 Geometry 4
1.2.2 Coordinate Notation 6
1.2.3 Topology 6
1.2.4 Vector List 6
1.2.5 Polygon List 7
1.3 Graphical Primitives 8
1.3.1 Same Geometry but Different Topologies 8
1.3.2 Same Topology but Different Geometries 9
1.3.3 Curve Primitives 9
1.3.4 Text Primitives 9
1.4 Summary 10

Z. TRANSFORMING PRIMITIVES 11

Z.1 Creating New Objects From Primitives 11
2.1.1 Applying Transformations 12
2.2 Modeling Transformations 13
2.2.1 Rotation 13
2.2.2 Rotations Around an Axis 14
2.2.3 Translation 15
2.2.4 Translations in All Three Axes 16

2.2.5 Scaling 17

t

2.3 The Ordering of Transformations 18

2.3.1 Transformation Matrices 22

2.4 Summary 25

3. CREATING COMPOUND OBJECTS 26

3.1 Building with Primitives and Transformations 26

3.1.1 Creating a Star Primitive 26

3.1.2 Grouping Primitives and Transformations 30

3.2 Summary 31

4. DESIGNING A MODEL FOR INTERACTION 32

4.1 Designing a Complex Model 32

4.1.1 Analyzing a Model as a Hierarchy 34

4.2 Display Trees 34

4.2.1 Display Tree for the Mechanical Arm 35
4.2.2 Display Tree Terminology 36
4.2.3 Nodes 36
4.2.4 Updating Nodes 36
4.2.5 Data Nodes 36
4.2.6 Operation Nodes 37
4.2.7 Instance Nodes 39
4.2.8 Grouping 39
4.2.9 Sphere of Influence 40
4.3 Summary 43

5. LOOKING AT OBJECTS 44

5.1 Viewing Operations 45
5.1.1 Displaying an Object 45
5.2 Establishing a Line of Sight 46
5.3 Including Part of the World Coordinate System 49
5.3.1 Viewing Areas in the world Coordinate System 50
5.3.2 Orthographic Views 50
5.3.3 Perspective Views 53
5.4 Displaying an Image in Some Area of the Screen 57
5.4.1 Specifying a Viewport 58

5.5 Viewing Transformations and Display Trees 60
5.6 Summary 66

6. USING A'T'TRIBUTES 67

6.1 Attributes 67

it

6.2 Appearance Attributes 68
6.2.1 Displaying Qbjects in Color 68
6.2.2 Displaying All Vectors in the Same Color 69
6.2.3 Setting and Changing Intensity Levels 71
6.2.4 Enabling and Disabling Depth Clipping 72
6.2.5 Choosing a Character Font for Text 75
6.3 Structure Attributes 77
6.3.1 Conditional Referencing 78
6.3.2 Level of Detail 80
6:3.3 Blinking or Alternating Displays 82
6.4 Picking Attributes 84
6.5 Summary 87

7. INTERACTING ~'VITH THE PICTURE 88

7.1 Evans &Sutherland and Interactive Graphics 88
7.2 Programming the Interactive Devices 90
7.2.1 Planning for Interaction 90
7.2.2 Updating a Node 91
7.2.3 Supplying the Correct Type of Data 92
7.3 PS 390 Functions 92
7.3.1 Intrinsic Functions 95
7.3.2 Initial Function Instances 95
7.3.3 User-written Functions 95
7.3.4 Creating Networks 96
7.3.5 Active and Constant Inputs 99
7.3.6 Data-Driven Networks 100
7.3.7 ~Vhy Function Networks? 100
7.3.8 Creating Function Networks 101
7.4 Summary 101

8. P~LYG~NAL RENDERING 102

8.1 Defining Polygonal Objects 103
8.1.1 Constructing Surfaces and Solids 104
8.2 Specifying Vertices for Surfaces and Solids 105
8.3 l~Zemory Requirements 106
8.4 Creating Renderings 107

$.5 Rendering operations 108
8.5.1 Backface Removal 108

8.5.2 Sectioning 109

8.5.3 Cross-sectioning 110

8.5.4 Static Viewport Renderings 110

. .
ttt

8.5.5 Hidden-Line Removal 111
8.5.6 Wash Shading 111
8.5.7 Flat Shading 112
8.5.8 Gouraud and Phong Shading 112
8.6 SHADINGENVIR~NMENT Function 112
8.7 Summary ll2

lv

ILLUSTRATIONS

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.

Right-Hand Coordinate System
Left-Hand Coordinate System
The World Coordinate System
Coordinates of a Square
Location of the Square in the World Coordinate System
Primitives With the Same Geometry and Different Topologies
Primitives With the Same Topology and Different Geometries
Location of the Diamond
The Structure of the Diamond

Figure 2-10. Rotation in the World Coordinate System
Figure 2-11. Orientation of the Rotated Arrow
Figure 2-12. Rotation of an Object Not Centered at the Origin
Figure 2-13. Location of the Translated Square
Figure 2-14. Square Translated in X and Negative Y
Figure 2-15. Scaling the Square
Figure 2-16. Nonuniform Scaling to Create a Rectangle
Figure 2-17. ATwo-Dimensional Arrow
Figure 2-18. Rotated Arrow
Figure 2-19. Arrow Rotated, Then Translated
Figure Z-20. The Structure of Arrow
Figure 2-21. Translated Arrow
Figure 2-22. Arrow Translated, Then Rotated
Figure Z-23. The Structure of Arrow_4
Figure 2-24. An Identity Matrix
Figure 2-25. Concatenating Matrices
Figure 2-26. Location of the Star Primitive
Figure 2-27. The Star Primitive Displayed on the Screen
Figure 2-28. The Location of Trans_Star on the Screen
Figure 2-29. The Structure of Trans_Star
Figure 2-30. The Structures of Trans_Square and Trans_Diamond
Figure 2-31. The Structure of Trans_Starl
Figure 2-32. An Articulated Mechanical Arm

Figure Z-33. Hierarchy of Parts for the Mechanical Arm

Figure 2-34. Display Tree for the Mechanical Arm

Figure 2-3 5. Inputs to a Vector List Node

Figure 2-36. Inputs to a Rotation Node

2
3
4
5
5
8
9

11
12
13
14
15
16
16
17
18
19
19
20
20
21
21
22
23
24
27
27
28
29
29
30
33
34
35
37
38

v

Figure 2-37. The Structure of Trans_Starl 39
Figure 2-38. Display Tree for Trans_Starl 40
Figure 2-39. Structure of the Upper Arm 41
Figure 2-40. A Simple Display Tree 42
Figure 2-41. Shape Represented by Display Tree in Figure 2-40 42
Figure Z-42. The Location of the Square on the Screen 45
Figure 2-43. A Cube With Labeled Faces 46
Figure 2-44. Displaying the Cube 47
Figure 2-45. "Looking Down" the Y Axis at the Cube 47
Figure 2-46. Looking Down at the Cube: the View on the Screen 48
Figure 2-47. How the LOOK Command Rearranges the Coordinate System 49
Figure 2-48. An Orthographic Viewing Area 50
Figure 2-49. "Visible" and "Invisible" Objects 51
Figure 2-50. Clipping Parts of an Object 51
Figure 2-51. Depth Clipping of Objects 52
Figure 2-52. Orthographic View of a Rotated Cube 52
Figure 2-53. The Default Vie~~ing Space 53
Figure 2-54. Perspective View of a Rotated Cube 54
Figure 2-55. A Viewing Area for Perspective Views 54
Figure 2-56. The FIELD_OF_VIEw Viewing Pyramid 55
Figure 2-57. The Viewing Pyramid Created by the EYE Command 56
Figure 2-58. Displaying an Object with the Default Window 57
Figure 2-59. Distorted Views of the Arrow 59
Figure 2-60. A Group of Objects in the Coordinate System 60
Figure Z-61. Display Tree for Shapes 61
Figure 2-62. DISPLAYing Shapes 61
Figure 2-63. Adding the LOOK Node 62
Figure 2-64. The LOOK Transformation 63
Figure 2-65. Calculating the Front and Back Boundaries 63
Figure 2-66. Adding the FIELD_OF_VIEti'V Node 64
Figure 2-67. Adding the VIE~'VPORT Node 65
Figure 2-68. The Final Display 65
Figure 2-69. The Color Wheel 68
Figure 2-70. A Simplified Display Tree for the Mechanical Arm 69
Figure 2-71. Display Tree With Color Nodes 70
Figure 2-72. An Interactive Intensity Node 72
Figure 2-73. Depth Clipping Enabled for a Vie«ping Area 73
Figure 2-74. Objects Outside the Front and Back Boundaries 74
Figure 2-75. Display Tree with Depth-Clipping Node 75
Figure 2-76. Display Tree for a Group of Labeled Objects 76
Figure 2-77. Display Tree tiVith Character Font Nodes 77
Figure 2-78. Simplified Display Tree for a Car 78

vt

Figure 2-79. Display Tree ti'Vith Conditional Referencing Nodes 79
Figure Z-80. Display Tree for a Contour l~'Iap 80
Figure 2-81. Display Tree ~'Vith Level-Of-Detail Nodes 82
Figure 2-82. Conditional Nodes for Blinking 83
Figure 2-83. Display Tree for Alternate Display of T~vo Objects 84
Figure 2-84. The SET PICKING ON/OFF Node 85
Figure 2-85. Making the Components Pickable 86
Figure Z-86. Display Tree for Simple Interaction 90
Figure 2-87. The SET DEPTH_CLIPPING Node 92
Figure 2-88. Representation of a Function 93
Figure 2-89. The F:DZROTATE Function 96
Figure 2-90. The Initial Function Instance DIALS 97
Figure 2-91. Inputs to a Rotate Node 98
Figure 2-92. Simple Z-Rotation Net~~ork 98
Figure 2-93. Surface Object 105
Figure 2-94. Solid Object 105
Figure 2-95. Correctly Constructed Icosahedron 106
Figure 2-96. Object Before and After Backface Remo~~al 109
Figure 2-97. Object Before and After Sectioning 109
Figu~•e 2-98. Object Before and After Cross-Sectioning 110
Figure 2-99. Object Before and After Hidden-Line Remo~~al 111

vit

`J

Section GT2

Graphics Principles

High-Performance PS 390 Distributed Graphics

This guide introduces the concepts and terminology which you must understand to
program the PS 390. It begins by explaining concepts which are common to most
interactive graphics systems, but it soon becomes specific to the PS 390. The con-
cepts introduced here are explained in much greater detail in the tutorial sections.
In most cases, cross references are given to appropriate sections.

Examples of the PS 390 command language and of some PS 390 functions and
function networks are given to show how specific computer graphics operations are
performed by the PS 390. Little attempt is made to explain the syntax of com-
mands or to explore all of the options of a particular command or function. Con-
sult Sections RMI Command Summary, RM2 Intrinsic Functions, and RM3 Initial
Function Instances, for complete information on the commands and functions and
their options.

Programmers with little or no experience of computer graphics systems should
read this guide before embarking on the other tutorial sections. Experienced pro-
grammers who do not plan to use the tutorials sections can read this guide as an
introduction to the documentation in the Reference Materials volume.

1. Creating Primitive Objects

A graphics programmer using the PS 390 for designing, viewing, and ma-
nipulating objects begins by creating a data base of the mathematical infor-
mation that defines the objects. Objects are defined as two-dimensional or
three-dimensional shapes consisting of points and lines or planes. Objects
defined as points and the lines that connect them are wireframe models.
Objects defined as planes are polygonal models, and differ from wireframe
models because they contain surface or solid information.

The data space in which the programmer models objects is known as the

world coordinate system. This system provides a way of expressing the loca-
tion of all the points which define the object.

Grapjiics Principles GT2-1

The simplest object in a graphical data base is a primitive. This consists

entirely of points and lines or planes. The points specify the geometry of the

object; the lines or planes specify the topology.

1.1 Coordinate Systems

The PS 390 displays convincing three-dimensional images of mathemati-

cally defined objects. All mathematical information that the designer enters

to create an object (the data base) must be given in terms of a three-
dimensional coordinate system. A coordinate system is a way of specifying

a three-dimensional space in which objects can be modeled.

1.1.1 Right-Hand Coordinate System

One conventional method for representing three-dimensional space uses

three lines (axes) originating at a common point in space (the origin) and
drawn at right angles to each other in the dimensions of height, width, and
depth. These axes are labeled X (width), Y (height), and Z (depth).

Figure 2-1 represents a commonly used coordinate system known as the
right-hand coordinate system.

Z

Y

U390227

X

Z

Figure 2-1. Right-Hand Coordinate System

Y

-_

X

As Figure 2-1 shows, the thumb and first t`vo fingers of the right hand can
be used as a mnemonic for the names and positive directions of the axes in
this system. There is a disadvantage to this coordinate system for modeling
with a computer graphics system. If you consider the computer screen to be
parallel to the XY plane of this three-dimensional space, then positive val-
ues in the Z axis (depth) increase towards the eye of the viewer. The depth
of an object displayed on the screen should be perceived as a dimension

GT2-2 Graphics Ti~torials

into the screen. So a coordinate system is needed with a Z axis that has
positive values which increase into the screen away from the viewer.

1.1.2 Left-Land Coordinate System

A left-hand coordinate system, employed by many computer graphics sys-
tems including the PS 390, has a Z axis in which positive values increase
away from the viewer. Figure 2-2 shows a representation of the left-hand
coordinate system.

Y

Y

Z

X

X
U390228

Figacre 2-2. Left-Hand Coordinate System

Note that the thumb and first t~vo fingers of the left hand indicate the posi-
tive direction of the axes in this coordinate system.

1.1.3 The world Coordinate System

The left-hand coordinate system with which the PS 390 graphics program-
mer works is known as the world coordinate system. The world coordinate
system provides a way of expressing the mathematical data which the com-
puter needs to create, display, and manipulate models in three dimensions.

Figure 2-3 is a representation of the world coordinate system used in pro-
gramming the PS 390.

Grap~iics Principles GT2-3

Figure 2-3. The World Coordinate System

All axes have a positive direction and a negative direction, and values are
assigned for every point along an axis. The point at which the three axes
meet is the origin.

1.2 Data Base For an Object

A data base for an object consists of points and lines (if the object is a
wireframe model) or planes (if the object is a polygonal model) expressed
in world coordinate values. The points, lines, and planes define the geome-
try and topology of the object.

1.2.1 Geometry

The geometry of an object is the location in the world coordinate system of
the points which define it. If, for example, you want to create a square
centered at the origin of the world coordinate system with sides five units
long, then the coordinates of the four points A, B, C, and D that define the
square are as shown in Figure 2-4.

GT2-4 Graphics Tutorials

+Y

D
•

_3 _2 _~
X ~ ~ ~ ,

•
C

3

_ 2

-Y

1

_2

A
•

1 2 3

•
-3 g

+X

0390018

Figicre 2-4. Coordinates of a Sguare

When these coordinates are connected with lines, the result is the square
shown in Figure 2-5.

X

D

-3

+Y

3 A
_ 2

-1

-2 -1 1 2
I (I I

- -~

-2

3

C _3 B

-Y

+X

0390019

Figure 2-S. Location of the Square in the World Coordinate System

Graphics Principles GT2-S

1.2.2 Coordinate Notation

The convention for defining coordinates in three-dimensional space is to

give the X component first, then the Y component, and finally the Z compo-
nent. For example, point A is 2.5 units in the positive X axis, 2.5 units in
the positive Y axis, and zero units in the Z axis, since the square is a
two-dimensional figure. The notation for this coordinate is (2.5,2.5,0) or
just (2.5,2.5) with the value for Z defaulting to zero. Point B is also 2.5
units in the positive X axis, but 2.5 units in the negative Y axis, and zero
units in the Z axis. The notation for this coordinate is (2.5,-2.5,0) or just
(2.5,-2.5) . The coordinates of the four corners of the square are as follows:

• Point A: (2.5,2.5,0) or (2.5,2.5)

• Point B: (2.5,-2.5,0) or (2.5,-2.5)

• Point C: (-2.5,-2.5,0) or (-2.5,-2.5)

• Point D: (-2.5,2.5,0) or (-2.5,2.5)

1.2.3 Topology

The coordinates of the points specify the geometry of the square. For the
computer to draw the square, the manner in which the points are connected
must be indicated. This is called the topology of the object. In the case of
the square, A is connected to B, B to C, C to D, and D is connected back to
A. Geometry and topology form a minimum data base for displaying an
object. This combination forms a vector list or a polygon list, depending on
whether the object is defined as a set of lines or bounded planes (surfaces) .

1.2.4 Vector List

A vector list specifies an object that is composed of lines. A vector is a set
of coordinate pairs (X,Y) or triples (X,Y,Z) and a direction. A vector list
specifies points within the world coordinate system at which lines start and
end, and the order of the direction in which lines are drawn.

The following PS 390 command creates a vector list named Square.

Square := VECTOR_LIST N = 5 2.5,2.5 2.5,-2.5 -2.5,-2.5

-2.5,2.5 2.5,2.5;

Notice that five items were needed in the vector list to specify the topology
of this object. The computer must be told to draw from point D to point A

GT2-6 Graphics Ti~torials

to complete the square. The "N = 5" clause is an estimate of the number of
vectors so that sufficient memory can be allocated for the object.

The topology is implicit in the order in which coordinates are given. The
first coordinate indicates a starting position. Each coordinate after that is a
point to which a line is drawn. An alternative form of the ~1ECTOR LIST
command uses the clause ITENIIZED and includes P (position) and L (line)
identifiers to distinguish between move-to and draw-to coordinates. The
same vector list as specified above can be written as follows.

Square := VECTOR_LIST ITEMIZED N = 5 P 2.5,2.5 L 2.5,-2.5 L -2.5,-2.5

L -2.5,2.5 L 2.5,2.5;

Position and line indicators are essential in vector lists for shapes that are
not closed figures. For example, to draw just the left and right sides of the
square, a vector list such as the following is needed.

Sides := VECTOR,_LIST ITEMIZED N = 4 P -2.5,2.5 L -2.5,-2.5

P 2.5,2.5 L 2.5,-2.5;

1.2.5 Polygon List

A polygon is a set of points that enclose and define a plane or surface. Just
like a vector list, a polygon list contains the coordinates of the endpoints of
the lines that make up the polygon. Unlike a vector list, a polygon list does
not have to repeat the first point to close the figure, since by definition a
polygon is a closed figure. The following command creates a square as a
polygon list.

Square := POLYGON 2.5,2.5 2.5,-2.5 -2.5,-2.5 -2.5,2.5;

Only four items are needed in the polygon list to specify the topology of the
square when it is defined as a polygon.

Polygonal models differ from wireframe models created from vector lists in
that they contain surface or solid information. This information is necessary
for rendering operations applied to objects defined by the POLYGON com-
mand. Rendering operations include such things as cross-sectioning, hidden-
line removal, and shading of the model. The specific parameters for the
POLYGON command and a complete discussion of rendering operations
can be found in Section GT~3 Polygonal Rendering.

Graphics Principles GT2-~

1.3 Graphical Primitives

Vector lists and polygon lists contain all the information needed to specify
the geometry and topology of an object. Objects specified as vector lists or
polygon lists are known as graphical primitives. The VECTOR_LIST and
POLYGON commands are the two most commonly used to create primitives
locally in the PS 390. Complex primitives are often created by a host appli-
cation program and transferred to the PS 390 to be manipulated and
viewed.

1.3.1 Same Geometry but Different Topologies

Primitive objects can have the same geometry, but different topologies. That
is, the same set of world coordinates can be connected by lines to create
open figures or polygons of different sorts, as shown in Figure 2-6.

U390020

Figure 2-6. Primitives With the Same Geometry and Different Topologies

For example, the capital letter "N" can be created by the following vector
lest.

Capital_N := VECTOR_LIST N = 4 -2.5,-2.5 -2.5,2.5

2.5,-2.5 2.5,2.5;

The bow tie shape can be created by the following vector list.

Bow_Tie := VECTOR_LIST N = 5 -2.5,-2.5 -2.5,2.5 2.5,-2.5

2.5,2.5 -2.5,-2.5;

For open figures, such as the two parallel lines, position and line identifiers
must be included in the vector list. The following command creates the two
parallel horizontal lines as a single primitive.

Lines := VECTOR_LIST ITEMIZED N = 5 P -2.5,2.5 L 2.5,2.5

P -2.5,-2.5 L 2.5,-2.5;

Although the geometry is the same for all of these objects, their topologies
are different, and so their vector lists are different. Each object must be
defined as a separate primitive with its own vector list.

GT2-8 Graphics Tutorials

1.3.2 Same Topology but Different Geometries

Primitives can also share the same topology and have different geometries.
All of the four-sided shapes in Figure 2-7, for instance, consist of four
points connected in the same manner.

Figicre 2-7. Primitives With the Same Topology and Different Geometries

Each of these objects must be defined as a separate primitive. However, as
the next section, Transforming Primitives shows, there are ways of changing
the geometry of a primitive to create a new object without creating a new
primitive.

1.3.3 Curve Primitives

The examples used so far have been for primitives consisting of straight
lines only. Other commands, such as the BSPLINE and POLYNO
commands create curve primitives locally in the PS 390. For more informa-
tion on these commands refer to Section RMl Command Summary.

1.3.4 Text Primitives

Text is also treated as a graphical primitive in the PS 390. A standard
128-character ASCII set is provided with the system. The characters which
compose this standard font are created as vector lists, so you do not have to
create your own. However, if you want to create different fonts that can be
used as a supplement to the standard font, there is a command which allows
you to do this. The BEGIN_FONT ... END_FONT command lets you create
128 separate vector lists defining the characters which compose the font and
assign them a single name. This font can be substituted for the standard
font using the CHARACTER FONT command. For more details, refer to
Sections GTIO Text Modeling and String Handling and RMl Command
Summary.

Graphics Principles GT2-9

1.4 Summary

New Information Presented

1. To express the mathematical data which defines an object for graphi-
cal display, a programmer uses a coordinate system.

2. The coordinate system most useful for computer graphics purposes is
a left-hand coordinate system. This coordinate system has a Z axis
that has positive values which increase away from the eye of the
viewer.

3. The coordinate system used in creating a data base for graphical
objects is called the world coordinate system.

4. To create a model of an object with a graphics computer, you need to
specify two things:

• The positions of the endpoints of each line, expressed as three-
dimensional (X,Y,Z) coordinates. This is known as the geometry
of the object.

• The way in which those points are connected by lines. This is
known as the topology of the object.

5. The geometry and topology together form a vector list or polygon list
for a graphical primitive. A primitive defined by a vector list is com-
posed of lines. A primitive defined by a polygon list is composed of
planes or surfaces.

6. Other primitives composed of points and lines are curves and text.
Primitives of all sorts can be created locally using PS 390 com-
mands. They can also be generated by a host application program
and sent to the PS 390.

What Next?

At this point, you can create a graphical data base for a primitive. Vector
lists define wireframe objects made of lines, and polygon lists define objects
made of planes. In the next section you will see how to apply mathematical
transformations to primitives to create new objects. These new objects will
have the same topology as the primitives, but their geometries will be
different.

GT2-10 Graphics Tutorials

2. Transforming Primitives

Mathematical operations called transformations can be applied to a primi-
tive to change its geometry by moving some or all of its points to a new
location in the world coordinate system. Transformations create a new ob-
ject, based on the definition of the old one, which has the same topology as
the primitive, but a different geometry.

Using transformations, you can, in effect, move primitives around in the
coordinate system or add numerous different objects to the data base using
a small number of primitive shapes.

2.1 Creating New Objects From Primitives

The data base of shapes so far consists of a square with sides five units
long. If you want to add to the data base atwo-dimensional diamond shape
with sides that are five units long centered at the origin of the world coordi-
nate system, you could create it as a primitive by entering a vector list like
this.

Diamond := VECTOR LIST N = 5 0,3.54. 3.54,0 0,-3.54 -3.54,0

0,3.54;

The diamond will be located in the world coordinate system as shown in
Figure 2-8.

+X

0390022

Figure 2-8. Location of the Diamond

Graphics Principles GT2-11

Notice that the Diamond and the Square primitive that already exists share

several features. They are both two-dimensional figures, they are the same

size (5 units per side), and they have the same topology. In fact, the only

difference between the two figures is their geometry. The points that define

the four corners of the Square and the Diamond are in different locations

within the world coordinate system. The diamond shape could be described

as the square shape rotated 45 degrees around the Z axis.

Since the two objects share these relationships, there would be no need to

create a separate primitive if there were some way to change the geometry

of the square while maintaining its topology. PS 390 commands exist which

do exactly that.

2.1.1 Applying Transforrr~ations

With the PS 390, you can apply mathematical operations to primitives that

already exist to move them around in the coordinate system or create new

shapes from them. The resulting objects are not defined as primitives them-

selves. Instead, they are structures which consist of matrix transformations

applied to the coordinates which define a primitive.

Transformations are operations of matrix algebra which change the geome-

try of a graphical object, but do not affect the topology. When you create
either a vector list or polygon list for an object, you have to calculate the

coordinates of the points yourself. When you apply transformations to exist-

ing primitives, the PS 390 calculates the new coordinates for you. It is eas-

ier, for example, to create the diamond by rotating the square than to calcu-

late yourself the coordinates of the diamond primitive. The following

PS 390 command creates a diamond by rotating the square.

Diamond := ROTATE IN Z 45 APPLIED TO Square;

The structure of the diamond can be diagrammed as shown in Figure 2-9.

Rotation (Diamond)

Vector List (Square}

0390023

Figure 2-9. The Structure of the Diamond

GT2-12 Graphics Tutorials

The diamond is shown as a rotation transformation applied to the vector list
defining the square.

2.2 Modeling Transformations

Transformations which ~ are used to create new objects by changing the ge-
ometry of already defined primitives are often referred to as modeling
transformations. There are three modeling transformations: rotation, trans-
lation, and scaling. Section GT4 Modeling gives examples of the use of mod-
eling transformations to create and position the parts of a complex object.

2.2.1 Rotation

A new object can be created by rotating a primitive through any number of
degrees in any of the three dimensions. To perform a rotation on a primi-
tive, the computer uses the sine and cosine of the angle specified in the
rotate command to create a rotation matrix, which is applied to the points in
the vector list.

When an object is rotated in the world coordinate system, it rotates around
one of the X, Y and Z axes in the directions shown in Figure 2-10.

Y

U390024

X

Figure Z-10. Rotation in the World Coordinate System

Graphics Principles GT2 -13

2.2.2 Rotations Around an Axis

Note the terms used to express rotations. A rotation "in X" means rotation

around the X axis. To determine the direction of rotation around an axis,
use the left-hand coordinate mnemonic. Point the thumb of your left hand in

the positive direction of any axis, and your fingers will curl in the direction

of positive rotation.

Rotations always occur around one of the world coordinate axes. Consider a
new object called Rot_Arrow created by rotating an existing 2D arrow which
is centered at the origin through 120 degrees in Z.

Rot Arrow := ROTATE IN Z 120 APPLIED TO Arrow;

The orientation of the rotated arrow will be as shown in Figure 2-11.

Y

~^~
i~ ~~ ~_~

1
1 -.

X

U390025

Figure 2-11. Orientation of the Rotated Arrow

The primitive arrow is drawn with dashed lines; the rotated arrow is drawn
with solid lines. Since the primitive arrow was created with its base at the
origin, the rotated arrow is based at the origin also. If an object is not
centered at the origin, however, and a rotation is applied, the rotation about
the world axis will have the effect of "swinging" the object around the axis,
as illustrated in Figure 2-12.

GT2-14 Graphics Tutorials

X

0390026

Figure 2-12. Rotation of an Object Not Centered at the Origin

Rotating an object while it is centered at the origin, then, effectively rotates
it about its own center. Rotating an object which is not at the origin swings
that object around one of the world axes to a new location in the world
coordinate system.

2.2.3 Translation

Translating an object means moving it to a new location in the world coordi-
nate system. An object which is translated in X is moved in the X direction.
An object translated in X and Y is moved some distance in the X direction
and some distance in the Y direction.

The PS 390 performs translations on a primitive by adding the X, Y, and Z

values specified in the translation command to the coordinates of each vec-
tor.

Consider a new square created by translating the Square defined earlier by
2 units in the positive X axis.

Trans Square := TRANSLATE 2,0 APPLIED TO Square;

The location of Trans_Square will be as shown in Figure 2-13.

Graphics Principles ~ GT2-1 S

-3 -2 -1
-X

+Y

D 3
-2

1 2 3 4

A

5 +X

-2

-3

-4

-5
-Y

r B

U390027

Figure 2-13. Location of the Translated Square

Notice that in a translation in X, the X component of each coordinate is
changed (in this case, increased by 2) but the Y and Z components are not.

2.2.4 Translations in All Three Axes

The PS 390 performs translations in any direction (X, Y, or Z) and in any
combination of directions. For example, a translation of 2 units in positive
X and 2 units in negative Y can be applied to Square.

New_Trans_Square := TRANSLATE 2,-2 APPLIED TO Square;

The new translated square will be located as shown in Figure 2-14.

-3 -2 -1

+Y
3

2

1

__ 1 1 2 3 4

_-2

--3

--4

C ~- -5

~— +X
5

U390028

Figure 2-14. Sgl.tare Translated in X and Negative Y

GT2-~ 6 Graphics Tutorials

Naturally, translations may be specified in three dimensions. The notation
used for representing translations is to give the X component, the Y compo-
nent, then the Z component, separated by commas. So, for example, a
translation of 3,-2,4 is 3 units in X, 2 units in negative Y, and 4 units in Z.

2.2.5 Scaling

Scaling an object makes it smaller or larger, depending on the scale factor
that is specified. The PS 390 creates a scaling matrix which multiplies the
points in the vector list by the scale factor in the scaling command to deter-
mine the new coordinates of the scaled object.

For example, a small square can be created by scaling the square defined at
the origin of the world coordinate system by ~.5.

Small Square := SCALE BY .5 APPLIED TO Square;

The small square will have the coordinates shown in Figure 2-15.

+Y

3

D -2 A

-3 -2 ~~ 2 3
+X

- -1

_2 B
0390029

-3

Figure 2-1 S. Scaling the Square

This type of scaling is called uniform scaling. The new object is created by
scaling the primitive by the same amount in all dimensions. Another type of
scaling, nonuniform scaling, consists of scaling an object by different
amounts in different dimensions. For example, a rectangle can be created

by scaling the Small_Square by 2 units in X only.

Rectangle := SCALE 2,1,1 APPLIED TO Small_Square;

Graphics Principles GT2-1 ~

The rectangle will have the following coordinates (Figure 2-16).

+Y

3

D

-3 _2 _1
~ ~

C

2
A

3

_2

-3

B

U390030

+X

Figure 2-16. Nonuniform Scaling to Create a Rectangle

Nonuniform scaling is a commonly used modeling transformation; it distorts
the shape of a primitive to produce a new object. For example, a no-

nuniform scale in Y and Z applied to a cube at the origin can create an
object with the relative dimensions of a building brick. Circles can be scaled
nonuniformly to create ellipses, and spheres to create ellipsoids, and so on.

2.3 The Ordering of Transformations

When a series of transformations is applied to a primitive, the order in
which the transformations are applied always determines the final location
and orientation of the object in the world coordinate system. For example,
consider a 2D arrow which has been created within the world coordinate
system as shown in Figure 2-17.

GT2-18 Graphics Ti~to~rials

X
U390031

Figure 2-1 ~. ATwo-Dimensional Arrow

If the arrow is rotated 45 degrees in Z, rotation occurs around the Z axis.
The rotated arrow (Arrow_1) is oriented as shown in Figure 2-18.

Figure 2-18. Rotated Arrow

A new object called Arrow_2 is now created by applying a translation in
positive X and negative Y to the rotated arrow. The orientation of the trans-
lated arrow is still a rotation of 45 degrees in the plane of the Z axis, but its
location would be something like this (Figure 2-19).

Graphics Principles GT2-19

U390033

Fig~cre 2-19. Arrow Rotated, Then Translated

The structure of Arrow_2 is a translation pointing to a rotation, pointing to
a vector list. It can be diagrammed as shown in Figure 2-20.

Translation (Arrow_2)

Rotation (Arrow_1)
U390034

Vector List (Arrow)

Figure 2-20. The Stracctacre of Arrow

Now consider what happens if the original arrow is translated first, and then
is rotated. Translating the arrow in positive X and negative Y creates an
object (Arrow_3) located in the world coordinate system as shown in
Figure 2-21.

GT2-20 Graphics Tutorials

U390035

Figure 2-21. Translated Arrow

If a rotation of 45 degrees in Z is now applied to the translated arrow, the
new object Arrow_4 will "swing" around the Z axis to a new location in the
world coordinate system (Figure 2-22}.

Figure 2-22. Arrow Translated, Then Rotated

The structure of Arrow_4 is a rotation pointing to a translation pointing to a
vector list. It can be shown as follows (Figure 2-23).

Grapjiics Principles GT2-21

Rotation Arrow_4)

Translation

Vector List (Arrow)

Figure 2-23. The Structure of Arrow 4

The order in which transformations are applied to objects determines the
ultimate location and orientation of the new object in the world coordinate
system. The same transformations applied to the same primitive in a differ-
ent order produce different results. When you are applying a series of trans-
formations to an object, you must take care to apply those transformations
in the correct order to get the result you want.

2.3.1 Transformation Matrices

Translations, rotations, and scalings are the three basic transformations
which are applied to data in a computer graphics system. We have called
these three modeling transformations. As you will see in Section 2. S Looking
at objects, other transformations called viewing transformations can be ap-
plied to data to create different views of objects—for example, top views,
side views, or perspective views. Although viewing transformations are
more complex, they are still combinations of translations, rotations, and
scales.

Later sections also describe how transformations can be applied interac-
tively to data. Values from the keyboard, data tablet, dials, and buttons can
be used to apply a series of transformations in rapid succession, giving the
illusion of movement to displayed objects. All transformations applied to
graphical data are performed by matrix algebra. The most commonly used
matrices in computer graphics are 2x2 (two-dimensional rotations and
scales for characters and text strings); 3x3 (three-dimensional rotations and

scales for objects); and 4x3 and 4x4 (most of the viewing transformations
described in Section 2. S) .

GT2-22 Graphics Tutorials

All matrices are governed by the laws of matrix algebra. Of particular inter-
est to the graphics programmer is the law that matrix A times matrix B does
not equal matrix B times matrix A. This property is known as the noncom-
mutativity of matrices. The noncommutativity of matrices makes the careful
ordering of transformations necessary in graphics programming.

When a transformation is applied to an object, the new coordinates of the
vectors which compose the object are calculated by multiplying the old coor-
dinates by the elements in the matrix.

When more than one transformation is applied to graphical data, the matri-
ces are concatenated. This means that each matrix is premultiplied to a
matrix called the current transformation matrix. The current transformation
matrix contains the accumulation of all transformations that are to be ap-
plied to graphical data and preserves the order in which they are to be
applied. A 4x4 current transformation matrix is large enough to handle all
of the transformations needed for computer graphics operations.

Matrix concatenation works like this. Suppose you want to scale a primitive
to twice its size, rotate it 180 degrees in Z, and then translate it in X and Y.
Instead of applying three separate matrices to the points that define the
object, the PS 390 premultiplies the matrices that represent these transfor-
mations into the current transformation matrix. This single matrix is then
applied to the vector list that defines the object.

The current transformation matrix (CTM) starts out as an identity matrix,
as shown in Figure 2-24.

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Figure 2-24. An Identity Matrix

Graphics Principles GT2-23

An identity matrix is composed of ones and zeros, with the ones running in
a diagonal. Multiplying by an identity matrix is the equivalent of multiplying
by one: nothing changes. Each transformation matrix in turn—scale, rotate,
and translate—is premultiplied to the identity matrix. The result is a CTM
which consists of the cumulative transformations and the order in which
they are to be applied to the data. The vector list defining the object is run
through the CTM as the last stage in the process, as shown in Figure 2-25.

SCALE ROTATE TRANSLATE IDENTITY

Vector List CTM U390039

Figure 2-25. Concatenating Matrices

The transformed vectors which result form the points and lines of the newly
oriented object. If the order of the transformations were changed, then the
final CTM would be different. If this matrix were applied to the data defin-
ing the object, the ultimate location and orientation in the world coordinate
system of the transformed object would change.

For more information about matrix algebra, consult Newman, W.M., and
Sproull, R.F., Principles of Interactive Computer Graphics, Second Edition,
McGraw-Hill, 1979. This text contains an appendix which introduces vectors
an matrices.

GT2-24 Graphics Tutorials

2.4 Summary

New Information Presented

1. New objects can be created by applying transformations to primi-
tive s .

2. Transformations change the geometry of the primitives but leave
their topology the same.

3. Three basic transformations are translations, rotations, and scales.

4. When more than one transformation is applied to an object, the or-
der in which the transformations are applied affects the final location
and orientation of the object in the world coordinate system.

5. All transformations are applied through matrix algebra. Transforma-
tions are concatenated into a single matrix known as the current
transformation matrix.

6. Matrices are said to be noncommutative. That is, matrix A times
matrix B does not equal matrix B times matrix A. The noncom-
mutativity of matrix multiplication requires the careful ordering of
transformations to be applied to graphical data.

What Next?

By applying matrix transformations to existing primitives you are now able
to move objects around and create new objects of different sizes and
shapes.

In the next section, you will see how to create compound objects. Com-
mands exist to group collections of primitives and transformations created
from the VECTOR LIST command under one name. The resulting com-
pound object can be transformed as a single entity.

Graphics Principles GT2-25

3. Creating Compound Objects

Compound objects can be created with the PS 390 using primitives and
transformations.

Primitive objects and transformed primitives can be grouped into one
named object which can be transformed as a single entity.

3.1 Building with Primitives and Transformations

No matter how complicated an object is, you can create it as a primitive by
figuring out the vector list or polygon list needed to specify the coordinates
of all the line endpoints and the way in which those points are connected.
An alternative, however, is to use primitives and transformations as build-
ing blocks to create new objects which are compound structures.

3.1.1 Creating a Star Primitive

If, for example, you want to create an eight-pointed star centered at the
origin, making the object out of lines (not polygons) five units long, you
could create it as a primitive by entering the following vector list:

Star := VECTOR_LIST ITEMIZED N = 10 P 0,3.54 L 3.54,0 L 0,-3.54

L -3..54,0 L 0,3.54 P 2.5,2.5

L 2.5,-2.5 L -2.5,-2.5

L -2.5,2.5 L 2.5,2.5;

Notice that this form of the vector list has the word ITEMIZED and has P
and L identifiers preceding each coordinate. This is necessary because the
star shape cannot be drawn as a set of continuous lines. The new primitive,
Star, created by this command is located in the world coordinate system as
shown in Figure 2-26.

GTZ-26 Graphics Ti~torials

-4 ~3 -2
i

-1

-2

-1

1 2
i i --

1

-2 /

~~ _3~
\r

- -4

Figure 2-26. Location of the Star Primitive

U390040

When Star is displayed with the correct viewing transformations applied to
it (these are discussed in Section2.5), it will be located on the screen as
shown in Figure 2-27.

U390041

Figure 2-2 7. The Star Primitive Displayed on the Screen

The same shape can be displayed using existing primitives without adding a
new primitive to the graphical data base. If you display at the same time the

Square primitive and the Diamond primitive that already exist in the graphi-

cal data base, the picture on the screen will look the same as when you

displayed the Star primitive.

Graphics Principles GT2-2~

The advantage of using the Square and the Diamond is that you do not have

to calculate the coordinates for the Star primitive vector list. Your task as a

programmer is simplified by using existing objects. If however, you want to

do more than just display a picture of the star—if you want to apply trans-

formations to the star to rotate or translate it, for example—the new primi-

tive is easier to use than the Square and Diamond.

If you want to create a small star and move it to the upper-right corner of

the screen, you can create the small star by scaling the primitive and then

apply a translation in positive X and positive Y to the small star.

Scale Star := SCALE BY .25 APPLIED TO Star;

Trans_Star := TRANSLATE .5, .5 APPLIED TO Scale_Star;

When displayed, Trans_Star will appear on the screen as shown in

Figure 2-28.

0390042

Figlere 2-28. The Location of Trans_Star on the Screen

The structure of Trans_Star can be diagrammed as shown in Figure 2-29.

GT2-28 ~ Graphics Ti~torials

Translate _(Trans_Star}

Scale (Scale_Star}

Vector List (Star}
0390043

Figure 2-29. The Structure of Trans_Star

If you use the Square primitive and the Diamond structure (rotation applied
to the Square) instead of the Star primitive, however, four new objects have
to be created and displayed to get the same picture. You must create a
scaled square, a scaled diamond, a translated small square, and a translated
small diamond, and display them together.

Scale_Square := SCALE BY .25 APPLIED TQ Square;

Scale Diamond := SCALE BY .25 APPLIED TO Diamond;

Trans_Square := TRANSLATE .5, .5 APPLIED TO Scale_Square;

Trans Diamond := TRANSLATE .5, .5 APPLIED TO Scale Diamond;

The two structures look like this (Figure 2-30).

Translate (Trans Square)

Scale (Scale_Square)

Vector List (Square)

Translate (Trans_Diamond)

Scale (Scale Diamond)

Rotation (Diamond)

Vector List (Square)
0390044

Figure 2-30. The Stra~ctures of Trans_Square and Trans_Diamond

When they are displayed together, Trans_Square and Trans Diamond look
just like Trans_Star. However, unless this shape can be manipulated as a
single entity, some of the programming time and effort saved by not creat-
ing the star as a primitive will be lost.

Gj•aphics Principles GT2-29

3.1.2 Grouping Primitives and Transformations

The PS 390 allows you to construct a single named object from groupings of

primitives and transformed primitives generated from the VECTOR LIST

command. The resulting compound structure represents an object which is
composed of separate parts, but which can be treated as a single item,
much like a primitive.

The INSTANCE command lets you create compound objects such as this:

Starl := INSTANCE OF Diamond, Square;

The object called Starl has the same dimensions and location in the coordi-
nate system as Star, but it is not defined as a primitive vector list. It is a
compound object which groups the two existing definitions Diamond and
Square under a single name.

This compound object can be manipulated as easily as a primitive. A small
star can be created by scaling Starl.

Scale_Starl := SCALE BY .25 APPLIED TO Starl;

And the small star can be moved to the upper-right of the screen by trans-
lating Scale_Starl.

Trans_Starl := TRANSLATE .5, .5 APPLIED TO Scale_Starl;

The structure for Trans_Starl can be diagrammed as shown in Figure 2-31.

Translate (Trans_Star1 }

Scale (cale_Star1 }

Instance (Star1 }

Rotation (Diamond}

Vector List (Square}
U390045

Figure 2-31. The Structure of Trans_Starl

The name Trans_Starl identifies the translation which points to
Scale_Starl. The scaling transformation points to the name Starl. Starl
groups the vector list defining the square with the rotation that defines the
diamond. Both Diamond and Square share the same primitive definition.

GT2-30 Graphics Tutorials

A complete set of commands which would create Trans Starl is as follows.

Trans_Star1 := TRANSLATE .5,.5 APPLIED TO Scale_Starl;

Scale_Starl := SCALE BY .25 APPLIED TO Starl;

Starl := INSTANCE OF Diamond, Square;

Diamond := ROTATE IN Z 45 APPLIED TO Square;

Square := VECTOR_LIST N = 5 2.5,2.5 2.5,-2.5 -2.5,-2.5

-2.5,2.5 2.5,2.5;

Unlike the separate parts it is composed of, the compound object named
Start created by the INSTANCE command can now be treated as a single
entity. The translation and scale transformations (Trans_Star1 and
Scale_Starl) are applied directly to Starl. There is no longer any need to
transform the Diamond and Square separately, now that they are grouped
into a compound object.

There is also a structuring command BEGIN_STRUCTURE ...
END_STRUCTURE which groups primitives and transformations into com-
pound structures with a single name. Refer to Section GTS Command Lan-
guage for details on using this command.

3.2 Summary

New Information Presented

1. Compound objects can be created by grouping primitives and trans-
formed primitives under a single name.

2. Groupings such as these can be treated as a single object. Transfor-
mations applied to the named compound object automatically apply
to the parts it is composed of.

What Next?

The data base of graphical objects now consists of:

• Graphical primitives.

• Transformed primitives.

• Compound objects: structures consisting of primitives and trans-
formed primitives grouped into one object.

In the next section, you will learn how compound objects are used to create
complex models with parts that can be manipulated using the interactive
devices of the PS 390.

Graphics Principles GT2-31

4. Designing a Model for Interaction

The transformations discussed so far have been called modeling operations.
They are equivalent in the real world to assembling the raw materials for a
model and making the parts that the model is composed of. Complex 3D
models consisting of separate parts are made by building each part as a
compound object made of primitives and transformations. The parts are
then grouped together to form the complete model.

Complex models are designed as a hierarchical structure called a display
tree. The display tree shows the dependencies of parts within the structure
of the model and contains all the primitives and transformations needed to
create the model in the memory of the PS 390.

Models designed as hierarchical trees are a tremendously flexible design
tool. Complicated models can be created in smaller parts and assembled as
the designer requires. Changes can be made to any component of the model
without affecting other parts. Interaction with the entire model or with any
component is possible using the dials, buttons, function keys, and data tab-
let of the PS 390.

Section GT4 Modeling gives an extended example of designing a model as a
display tree.

4.1 Designing a Complex Model

The PS 390 can be used to model objects of any complexity. Consider the
articulated mechanical arm shown in Figure 2-32.

GT2-32 Graphics Tutorials

U390046

Figure 2-32. An Articulated Mechanical Arm

The arm consists of a base, two jointed sections, and a hand. The base is
fixed and cannot move. The whole arm can rotate at the base. The two arm
pieces and hand are affected by this movement. The movement at the "el-
bow" affects the upper arm and hand only. And movement at the "wrist"
only affects the hand .

Clearly, a computer model which simulates this mechanical arm cannot be
created as a primitive vector list or polygon list. Even if the object were
created as a primitive by a host application program, it would not be a
useful model of the mechanical arm. Transformations could be applied to
translate, rotate, or scale the complete model, but there would be no way to
interact with the individual parts. The arm could not be made to rotate at

the base, the elbow joint would not bend, and the hand could not twist at the
wrist.

Graphics Principles GT2-33

4.1.1 Analyzing a Model as a Hierarchy

Complex models such as the mechanical arm which are to be designed on
the PS 390 are analyzed to determine a hierarchy of the parts that compose
the model, and to show their dependencies . A hierarchy is a principled
organization of components. The organizing principle will vary depending
on the relationship between components which the hierarchy is designed to
show. The model for the mechanical arm, for example, can be represented
by the hierarchy in Figure 2-33. This hierarchy shows the dependent and
independent motion of the components.

Mechanical Arm

Base Arm

Lower_Arm_Piece Upper_Arm

Upper_Arm_Piece Hand

U390047

Figure 2-33. Hierarchy of Parts for the Mechanical Arm

This hierarchy shows that the model consists of a base and an arm. The arm
consists of a lower arm and an upper arm. The upper arm is made up of the
upper-arm piece and hand.

If the whole mechanical arm moves, then all the parts that compose it move
too. If the arm moves, the lower-arm piece and upper arm move with it. If
the upper arm moves, the upper-arm piece and hand move. The hand can
also move on its own without affecting anything else.

4.2 Display Trees

For a complex model designed to be manipulated interactively with the
PS 390, a hierarchy is drawn as a display tree. Much like a flowchart for a
conventional computer program, a display tree represents the graphical
primitives that must be created and the transformations that must be ap-
plied to create this model in the memory of the PS 390. It also indicates the
interaction points in the structure of the model to which interactive devices
will be connected to change the model dynamically.

GT2-34 Graphics Tutorials

4.2.1 Display Tree for the Mechanical Arm

The hierarchy that has been established for the mechanical arm can be used
to create the display tree shown in Figure 2-34.

Scale Mode

Translate Mode

Rotate Mode

Mechanical Arm

Base

Cube

Rotate Arm

Arm

Lower Arm Piece

Upper_Arm
Piece

Cylinder ~V

Rotate_Upper_Arm

Upper_Arm

Rotate Hand

Hand

Figure 2-34. Display Tree for the Mechanical Arm

U390048

The display tree shows details of the structure of the model in the PS 390
which the hierarchy of parts in Figure 2-33 does not. In particular, it in-
cludes the primitives, the modeling transformations which create the parts
of the model from the primitives, and the interaction points which will pro-
vide motion to the whole model and its parts.

Graphics Principles GT2-35

4.2.2 Display Tree Terminology

Display trees consist of nodes and the branches that connect them. A node
is an element in the hierarchy. The squares are data nodes. These are used
to represent the primitives from which individual pieces of the model are
built: the cube, the cylinder, and the hand. The triangles are instance nodes.
These represent the grouping of primitives and modeling transformations
into parts: the Upper arm, the Arm, and the complete Mechanical Arm.
Circles represent transformations and are called operation nodes. Single
circles represent the modeling transformations that are applied to primitives
to create the pieces and move them into place. Double circles represent
interaction points. These are the operation nodes in the model which will
receive new values from interactive devices such as dials or the data tablet.

4.2.3 Nodes

Nodes are created by PS 390 commands. Commands such as VEC-
TOR LIST and POLYGON create data nodes. ROTATE, SCALE, and
TRANSLATE commands are three of the many which create operation
nodes. The INSTANCE command creates instance nodes.

4.2.4 Updating Nodes

Each data and operation node contains information. A rotation node con-
tains arotation matrix, a vector list node contains point and line informa-
tion, and so on. An instance node does not contain data in the same way. It
acts as a pointer to paths in the display tree and occurs at the head of a
hierarchical branch. All operation nodes and most data nodes can have their
contents changed in several ways. You can redefine the command that cre-
ated the node and change its contents that way. You can send a new value
to a node using the SEND command. Or you can program an interactive
device to send a stream of constantly changing values to a node and so
change the model dynamically.

Nodes have inputs to which data can be sent. The number of inputs depends
on the type of node. An input will only accept data compatible with its
contents. A rotation node, for instance, will only accept a 3x3 matrix; a
translation node will only accept a 2D or 3D vector, and so on.

4.2.5 Data Nodes

Data nodes represent primitive objects. Vector lists, polygon lists, curves,
and text are all defined as graphical primitives using commands which cre-

GT2-36 Graphics Tutorials

ate data nodes. These nodes always appear at the bottom of a branch. Data
nodes have inputs so that their contents can be updated. Figure 2-35 shows
the inputs to a vector list data node.

name

Vector

Integer

Integer

Vector

Boolean

Vector

<last> Changes last vector

<clear> Clears list

<delete> Deletes from end

<append> Appends to end

<i> TRUE=Line; FALSE=Position

<i> Replaces i-th vector

VECTOR LIST
U390049

Figure 2-35. Inputs to a Vector List Node

Most of the inputs to a vector list node are named instead of being num-
bered. Anew vector sent to input <last> is substituted for the last vector in
the list. An integer sent to input <clear> removes the vector whose position
in the list corresponds to the number sent; for example, sending 4 will
remove the fourth vector. An integer sent to input <delete> will delete that
many vectors from the end of the vector list. Any vector sent to input <ap-
pend> is added to the end of the vector list. A Boolean TRUE or FALSE can
be sent to a numbered input (shown as input <i>) . This will change the
identifier of that vector to an L for line or a P for position. A vector sent to
any numbered input is substituted for the vector whose position in the list
corresponds to the number of the input. By sending new values to this node,
you can change the geometry and topology of an object.

4.2.6 Operation Nodes

Operation nodes represent transformations that are applied to objects: trans-

lations, rotations, and scales, viewing transformations (discussed in Section

2.5), attribute operations (discussed in Section 2.~, and rendering opera-

tions (discussed in Section 2.8). Operation nodes have inputs which will

accept data to update a node. Figure 2-36 shows the input to a rotation

node.

Graphics Principles GT2-3 7

3 X 3 matrix

U390053

Figure 2-36. Inputs to a Rotation Node

The rotation node has a single input which accepts a 3x3 matrix which is
substituted for the matrix currently contained in the node. operation nodes
may be created for modeling purposes or for interaction.

Modeling nodes represent transformations used to create the original static
model by sizing the pieces and moving or rotating them into place. These
nodes are shown as single circles in the display trees. The value contained
in a modeling node is not usually updated.

Interaction nodes represent places in the model which will be connected to
interactive devices. These are operation nodes whose contents will be up-
dated with data from the devices to which they are connected. Interaction
nodes are shown as double circles in a display tree. Naturally, any node that
can be updated has the potential for being an interactive node. But certain
nodes are specifically created as interaction points in the structure of a
model.

In Figure 2-34, for example, the scale node called Base is used for model-
ing purposes: it scales the vector list Cube by a fixed amount in X, Y, and Z
to create the shape which forms the base of the arm.

The scale node called Scale_Model, however, serves a different purpose. It
is drawn as a double circle to show that it is an interaction point in the
structure. This node will be created with a value of one (scaling by one has
no effect on the model at all) . Then a dial will be programmed to supply a
3x3 scaling matrix to this node. Each time the dial is turned, a different
scaling matrix will be sent to update the node and the model will grow
smaller or larger on the screen.

GT2-38 Graphics Ti~torials

A rotation node designed for interaction is usually created with a value of
zero. When the object is displayed, the zero rotation will have no effect on
the object's orientation. As rotation matrices are supplied to the node from
a dial, the object will rotate. Translation nodes set up for interaction are
created with a value of zero in X, Y, and Z. As new vectors are sent to the
translation node, the object will move in any of the three directions.

4.2.7 Instance Nodes

Instance nodes group operation nodes and data nodes into larger named
entities and set up and maintain spheres of influence in the display tree.

4.2.8 Grouping

Instance nodes form what were called compound objects in Section 2.3.
They group transformations and primitives into a single named entity. In a
display tree for a complex model, instance nodes are often at the "head" of
branches which represent the individual parts of the model. Recall the nota-
tion used in Section 2.3 to show the structure of the object called
Trans_Star 1.

Translate (Trans Start)

Scale (Scale Start)

Instance (Start)

Rotation (Diamond}

Vector List (Square}
0390045

Figure 2-37. The Structure of Trans Starl

The name Trans Starl is a translation which points to Scale_Starl.

Scale_Starl is a transformation that points to Starl. Starl groups the un-

transformed vector list defining the Square with the rotated square that de-

fines the Diamond. Both Diamond and Square share the same primitive

definition.

Graphics Principles GT2-39

If the structure Trans Starl is now drawn as a display tree, it appears as

shown in Figure 2-38.

Trans Start

Scale Start

Diamond

Start

Square

0390051

Figure 2-38. Display Tree for Trans_Starl

'The single instance node, Starl, groups all of the transformations that are

applied to the primitive Square under one name.

Because an instance node performs this grouping function, it has more than

one branch out of it. An instance node is the only node in a display tree

which may have more than one branch coming out of it, though a data node
and an operation node may have more than one branch into it.

4.2.9 Sphere of Influence

In a display tree, nodes higher up in the structure affect nodes lower down.

For example, the nodes Trans_Starl and Scale_Starl at the head of the

display tree in Figure 2-38 affect everything below them. If a new scaling

matrix is sent to Scale_Star1, the complete model will get bigger or smaller

on the screen.

GT2-40 Graphics Tutorials

However, a node can only affect its descendants, that is, other nodes below
it on the same hierarchical branch. Consider a simplified representation of
the structure for the upper arm of the mechanical arm model (Figure 2-39) .

Upper_Arm
Piece

Cylinder

U390052

Rotate_Hand

Figure Z-39. Structure of the Upper Arm

When a dial is connected to the interaction node Rotate Hand, only the
hand must move, not the upper-arm piece it is connected to. So the rotation
node is placed on a different branch from the Upper_Arm Piece data node
to restrict the sphere of influence of the rotation. The rotation will only
affect the data node Hand.

Instance nodes govern the spheres of influence in a hierarchy. Every branch
out of an instance node is affected by operations above the instance node.
operations below the instance node in one branch affect only data in that
branch. Instance nodes maintain the integrity of each branch they govern.
Consider the following simple tree in Figure 2-40.

Graphics Principles G~'2-41

Inner_Part

U390053

Outer_Part

Figure 2-40. A Simple Display Tree

The tree in Figure 2-40 represents the structure of the shape in Figure 2-41.

U390054

Figure 2-41. Shape Represented by Display Tree in Figure 2-40

The shape is created in two parts from a single square primitive. The inner
part is the square rotated 45 degrees in Z. The outer part is made by sealing
the square nonuniformly in X and Y. The instance node Shape groups the
primitive and both transformations into a single compound object.

Both transformations are applied to the same primitive, but they apply inde-
pendently. The instance node Shape ensures that this occurs. The rotation in
the left-most hierarchical branch out of Shape does not affect the scale in

GT2-42 Graphics Tutorials

the right branch, and vice versa. Any transformations applied to Shape (that
is, above Shape in the display tree) would then affect both branches
grouped by the instance node.

4.3 Summary

New Information Presented

1. Complex models consisting of separately maneuverable parts are de-
signed as a hierarchy of the components of the model.

2. A display tree is a hierarchy which shows the primitives, transforma-
tions, and groupings that are used to create the model in the PS 390.
Display trees consist of data nodes, operation nodes, ana instance
nodes, and the branches that connect them.

3. Data nodes and operation nodes can have their contents modified.
Certain operation nodes serve as interaction points in the model.
They are designed to be updated by values from the interactive de-
vices. In this way, a dial can be connected to a rotation node, for
example, to allow the model to be dynamically rotated.

What Next?

The data base now contains all of the "building blocks" for complex mod-
els.

• Primitives

• Transformed primitives

• Compound objects

• Complex objects: hierarchical groupings of independent parts of a
model, equipped with interaction points

In the next section, you will see how viewing nodes are added to the display
tree to create different views of the model that has been created.

Graphics Principles GT2-43

5. Looking at Objects

When you have created an object as a primitive, a compound object, or a
complex model, you will want to get some view of that model on the screen.
In the real world you can see a different view of an object by moving it. This
is simulated in a graphics system by applying modeling transformations
(translations and rotations) to the object. An alternative in the real world is
for you to move. Leaving the object alone, you can walk around it and
change your viewpoint.

The PS 390, in effect, lets you do the same thing. Using viewing operations,
you can obtain a number of "natural" views of a model on the screen.

These operations mimic the way you look at objects in real life. You decide
your eye point in the coordinate system and the direction you are looking in.
You can determine how much of the world coordinate system (and the
model) will appear in your view. You can enhance your perception of three
dimensions using perspective (to make objects further away appear smaller)
and depth cueing (to make them dimmer as they recede). In the real world,
objects at a distance or outside your range of view disappear naturally. The
PS 390 performs clipping to eliminate objects or parts of objects that lie
outside the screen boundaries.

Once you have determined the particulars of the view (the viewpoint and
"window" into the world coordinate system) you can determine where that
view will appear on the screen. Areas of the PS 390 screen can be defined
as viewports in which views of the models will appear.

There are two types of viewports: the dynamic viewport, and the static
viewport. The dynamic viewport is designated for manipulation and display
of wireframe models, while the static viewport is used for the display of
hidden-line and shaded renderings. An unlimited number and combination
of viewports can be specified.

Viewing operations are defined as part of the structure of a model. They are
represented as operation nodes in the display tree, with the exception of the
static viewport specification. Refer to Section GT8 Viewing operations for a
complete description.

GT2-44 Graphics Tutorials

5.1 Viewing Operations

The modeling transformations discussed earlier let you use primitives as
building blocks for the components of a hierarchically structured model,
changing their basic shape and moving them into position. Once the model
is designed, you need to get a picture of it on the screen. The PS 390 offers
a set of viewing operations that can be applied to a model to create various
views of objects in the world coordinate system.

5.1.1 Displaying an Object

With the PS 390, you can get a picture of a model on the screen by entering
a single command. Consider a square with sides one unit long. This shape
can be created by entering the following vector list.

Square := VECTOR_LIST N = 5 .5, .5 .5,-.5 -.5,-.5,

-.5,.5, .5, .5;

To display this shape on the screen, it is sufficient to enter

DISPLAY Square;

The Square shape will appear on the screen as shown in Figure 2-42.

0390055

Figure 2-42. The Location of the Square on the Screen

The apparent operation of a single command is, in fact, more complicated.
The PS 390 does not simply display Square; it displays a vv ew of Square.

Before the PS 390 can display this view it needs information about

• Aline of sight—your vantage point (as viewer) in the world coordinate
system and the direction in which you are looking.

Graphics Principles GT2-45

• A viewing area—what part of the world coordinate system to include

in the view.

• A viewport—where on the PS 390 screen to display the view.

If you do not specify a line of sight, a viewing area, and a viewport, the

PS 390 uses default values. It assumes you are looking from the origin

along the positive Z axis. The viewing area extends from -1 to 1 in X and Y

and from almost zero to 10 -15 in Z. And the viewport defaults to the full

dynamic PS 390 screen. These three default values are in effect when you

simply display the Square.

5.2 Establishing a Line of Sight

In the real world, you establish a line of sight by standing in some spot,

looking towards something, and possibly tilting your head. This gives you a

specific view of the object you are looking at. The PS 390 simulates this

same ability with a LODK command. Suppose, for example, the world coor-

dinate system contains a cube with its faces labeled top, bottom, front,
back, left and right. The cube is centered around the origin, as shown in

Figure 2-43.

Y

Z

U390056

X

Figure 2-43. A Cube With Ltzbeled Faces

For clarity in the following illustrations, only three labels are shown at a
time. If you display the cube without changing the default line of sight,

viewing area, or viewport, the screen will show the picture in Figure 2-44.

GT2-46 Graphics Tutorials

FRONT

0390057

Figure 2-44. Displaying the Cube

If you want a picture of the top of the cube, you can think of this as moving
your eye above the cube and looking down the Y axis at it, as shown in
Figure 2-45.

~1
Z

/~'
-X

0390058

Figure 2-45. "hooking Down " the Y Axis at the Cube

The view of the cube which will be displayed is shown in Figure 2-46.

Grap~iics Principles G~'2-47

r

TO P

U390059

Figure 2-46. Looping Down at the Cube: the View on the Screen

A PS 390 command which will create this view of the object is as follows:

Top_View := LOOK AT 0,0,0 FROM 0, .5,0 APPLIED TO Cube;

An optional UP clause in the command lets you specify what direction is up.
This is equivalent to tilting your head left or right.

The concept of "looking at an object" is a very natural way for humans to
think. With a graphics system, of course, every visual effect is an illusion.
When you look at an object from a location in the world coordinate system,
the computer cannot actually move your eye to that location. Instead, it
applies transformations to the points and lines that comprise the object and
creates a picture of what you would see if you could move your eye.

To get this effect, the LOOK command actually performs the following
transformations. First, it translates all points in the coordinate system so
that the FROM point is at the origin. It then rotates all points so that you are
looking along the positive Z axis towards the AT point. It also rotates points
so that the "up" vector is in the positive YZ plane. The ultimate effect of all
this is to place your "eye" at the origin and place the object you are looking
at in front of your "face" in the positive Z axis.

After you create Top_View with the LOOK command, the world coordinate
system and the points and lines defining the cube have been transformed as
shown in Figure 2-47.

GT2-48 Graphics Tutorials

,Z

i

~~

i
i
i

TOP'

 X
U390060

Figure 2-4~. How the LOOK Command Rearranges the Coordinate System

This rearrangement of the world coordinate system is accomplished with a

4x3 transformation matrix, a compound matrix of rotations and transla-
tions. The PS 390 uses the information you supply in the LOOK command
to create this matrix. It then multiplies all coordinates by this matrix to
create the correct "view" of the object for the line of sight you specified.

Section GT8 Viewing Operations teaches how to use the LOOK command
with all of its options. Mastering this command lets you locate your view-

point anywhere in the world coordinate system, look in any direction, and
specify any direction as "up" to create a specific view of an object.

5.3 Including Part of the World Coordinate System

In the real world, your view is limited by several factors. If you do not

change your position, you cannot see things that are behind you or to either

side beyond your field of view. Your view is further limited if you are look-

ing out of a window, or through binoculars or the view finder of a camera.

You can only see whatever part of the world is "framed" by the window or

the lenses.

With a graphics system, looking at the world coordinate system is much like
looking through a view finder. You must specify how much of the world will

appear in the view which is displayed on the screen. An area of the world

specified for viewing is called a viewing area or a window. To "see" an

object in the world coordinate system, that object must lie in the direction of

your line of sight and must be contained within the viewing area you

specify.

Graphics Principles GT2-49

5.3.1 Viewing Areas in the World Coordinate System

The PS 390 lets you create two types of viewing areas. The ~W com-

mand creates a viewing area for orthographic or parallel projection views.

The FI 1~:LD_~F VIEW and EYE commands create a viewing area for dis-
playing objects as perspective projection views.

5.3.2 Orthographic Views

A viewing area for orthographic views can be thought of as a box which can
be positioned anywhere in world coordinate space but oriented with its sides
parallel to the three major coordinate system planes (XY, XZ, and YZ), as
shown in Figure 2-48.

U3900561

Figure 2-48. An (Jrthographic Viewing Area

The viewing area defined by the box has limited X (width), Y (height), and
Z (depth) dimensions. In general, if an object lies within the area, it is
visible; if it is outside the space, it is not visible. The X and Y boundaries of
the viewing space are always in effect. Any object outside those boundaries
is never visible. The XY planes at the front and back of the box, however
can be enabled or disabled at will. If these planes are disabled, as long as
an object lies within the X and Y boundaries, it will be visible no matter
where it is located along the positive or negative Z axis. This is shown in
Figure 2-49.

GT2-SO Graphics Tutorials

INVISIBLE

VISIBLE

Figure 2-49. "Visible" and "Invisible" Objects

If an object is only partially within the XY bounds of the viewing area, only
parts of it are visible. In this case, the computer calculates which lines are
visible and clips those that are not visible from the view (Figure 2-50).

~ ~ . ~ .y
i ~

i

' .~~ CLIPPED LINES .L

U3900563

Figure 2-50. Clipping Parts of an Object

Clipping can also be specified in the Z dimension by enabling the front and
back faces of the viewing space which are called clipping planes. The front
boundary is sometimes called the hither plane; the back is called the yon
plane. Objects or parts of objects that lie outside the front and back bounda-
ries may be clipped from view. This is known as depth clipping, and is
illustrated in Figure 2-51.

Graphics Principles GT2-S1

FRONT BOUND

CLIPPED LINES
,t'';

.:~ ~~
i~
i
i

BACK BOUNDARY

U3900564

Figure 2-51. Depth Clipping of Objects

Objects within an orthographic viewing area are displayed in orthographic
or parallel projection. This produces a view in which lines that are parallel
in the object remain parallel in the view. A rotated cube viewed in ortho-
graphic projection, for example, appears as shown in Figure 2-52.

U390065

Figccre 2-52. Orthographic View of a Rotated Cube

An object must be enclosed in a viewing space before it can be displayed. If
you simply display an object (as with Square at the beginning of this sec-
tion) without explicitly defining a viewing space, the PS 390 defines one for
you. The default viewing space imposed by the system is shown in
Figure 2-53.

GT2-52 Graphics Tutorials

Figure 2-53. The Default Viewing Space

This is a viewing space for orthographic views only. It extends from -1 to 1
in the X and Y dimensions, and from 10 -15 (almost Zero) to 10 +ls in Z.

With the PS 390, a viewing space for orthographic views is created explic-
itly with the OW command. For example, the command

New View := WINDOW X = -2:2, Y = -2:2 APPLIED TO Cube;

creates a viewing space twice as high and twice as wide as the default
space, but with the same depth. Optional parameters of the command allow
you to change Z values by specifying the location of front and back clipping
planes. The section, Deming An Orthographic Window in GT8 Viewing Opera-
tions explains the OW command and its options.

5.3.3 Perspective Views

One way in which the PS 390 creates the illusion of depth on a flat screen is
to display objects in perspective.

In perspective views, parallel lines that go back from your eye point appear
to be converging. A rotated cube viewed in perspective might appear as
shown in Figure 2-54.

Graphics Principles GT2-53

U390067

Figure 2-54. Perspective View of a Rotated Cube

A perspective viewing space is a volume shaped like a frustum, a section of
a pyramid bounded by the front and back clipping planes. If you extend the
sides of the pyramid back, the apex of the pyramid is the eye point as
defined in the LOOK command (Figure 2-5 5) .

FRONT BOUNDARY

~~ i~~~ +y

EYE POINT
U390068

BACK
BOUNDARY

Figure 2-55. A Viewing Area for Perspective Views

Two PS 390 commands create perspective views: the FIELD_OF VIEW
command and the EYE command. Both commands are used in conjunction
with the LOOK command .

The FIELD_OF_VIEW command lets you specify an angle of view from the
eye point, which is the FROM point specified in the LOOK command. Op-
tional clauses let you specify the location of front and back boundaries.
These determine the depth of the viewing area created with this command.
A perspective view is fully defined in conjunction with a LOOK transforma-
tion. If no LOOK is specified, the default values are assumed.

The following commands set up a line of sight and a perspective view of an
object called Cube using a viewing angle of 3~ degrees.

GT2-54 Graphics Tutorials

Look Cube := LOOK AT 0,0,0 FROM 0,0,-5 APPLIED TO Cube;

View Cube := FIELD OF VIEW 30 FRONT = 4.5 BACK = 5.5

APPLIED TO Look Cube;

The LOOK transformation will place the center of the Cube at 5 in the

positive Z axis, so assuming the cube is one unit square, front and back

boundaries of 4.5 and 5.5 should enclose it. When View_Cube is displayed,

the screen will show a cube seen in true perspective.

Note that the angle you enter in the FIELD_OF_VIEW command does not

alter the severity of the perspective imposed on the object. That is deter-

mined by the distance between your eye and the object and depth of the

object itself. Instead, the angle lets you see more or less of the world coordi-

nate system. The larger the angle, the larger the portion of the world that

will be included in the view.

In a perspective view created using the FI N;LD_OF VIEW command, the

line of sight established by the LOOK command is always perpendicular to

the front and back boundaries of the frustum and passes through their cen-

ters. The viewing "pyramid" is always right-angled. This is shown in

Figure 2-SG.

~ ~
FRONT BOUNDARY `~ ~

~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~~

BACK BOUNDARY

LINE OF SIGHT

0390069

Figure 2-56. The FIELD_OF VIEW Viewing Pyramid

Gra hics Principles GT2-SS p

The EYE command is used to create a view of an object as it would appear
displayed on a screen which is positioned at an angle to your line of sight,
not perpendicular to it. This perspective view simulates the "natural" distor-
tion of screen displays that your own eye would see if it were some distance
back, up or down, and left or right of the PS 390 screen.

Like the F[I~:LD_~F VFW command, the EYE command creates a perspec-
tive view of an object. The eye point and the front and back clipping planes
specify apyramid-shaped viewing area. However, if the eye point is offset
left, right, up, or down, the pyramid is skewed, unlike the right rectangular
pyramid created by the FIELD_C~F_V~W command (Figure 2-S 7) .

BACK BOUNDAR

LINE OF SIGHT

~~~ 

FRONT BOUNDARY 

U390070 

Figicre 2-57. The Viewing Pyramid Created by the EYE Command 

The LOOK command must be used first to establish a line of sight on the 
object to be displayed. Then, clauses in the EYE command let you specify 
the front and back boundaries of the viewing area in world coordinates and 
your eye location relative to the center of the screen in relative room coordi-
nates. Note the difference between room coordinates and world coordinates. 
World coordinates are locations in the world coordinate system where mod-
els are built and viewed. Room coordinates are locations within the real 
world (the computer room where the PS 390 lives) and are used to simulate 
the actual location of your eyes relative to the PS 390 screen. This is a rare 
instance of when it is permissible to mix the computer's coordinate system 
and real-world coordinates, since the room coordinate values in the com-
mand are used for ratio and proportion operations only. 

The following is an example of setting up a viewing area with the EYE 
command. 

GT2-56 Graphics Tutorials 



Look_Cube := LOOK AT 0,0,0 FROM 0,0,-5 APPLIED TO Cube; 

Oblique View := EYE BACK 20 LEFT 5 UP 12 FROM SCREEN 

AREA 20 WIDE 

FRONT = 4.5 BACK = 5.5 APPLIED TO Cube; 

In this command, the front and back boundaries are chosen to enclose the 
cube after the LOOK transformation has taken place. When Oblique_View 
is displayed, the cube will appear in the correct perspective to simulate an 
eye position that is back from the screen, over to the left and somewhat 
high. 

The section called Defining Perspective Windows in GT8 Viewing Operations 
fully explains the FIELD_OF VFW and EYE commands with all of their 
options. 

5.4 Displaying an Image in Some Area of the Screen 

Whenever you instruct the PS 390 to display an object by simply using the 
DISPLAY command, as long as the object fits within the default window 
(that is, from 1 to -1 in X and Y and from 10 -1 s (almost Zero} to 10 +l s in 
Z) it will occupy the full screen. For example, a cube defined around the 
origin with sides 2 units long fits exactly in the default window. When the 
cube is displayed, an orthographic view will appear which fills the entire 
display area of the screen, as shown in Figure 2-58. 

 1 

u3soo~i 

Figure 2-58. Displaying an Object With the Default Window 

Graphics Principles GT2-S 7 



5.4.1 Specifying a viewport 

When an image is displayed on the screen, the view of the object contained 

in the viewing area is mapped to a viewport. A viewport is an area of the 

screen with horizontal (X) and vertical (Y) boundaries. A viewport may be 

specified as either dynamic or static, depending upon what kind of opera-

tions are to be performed in the viewport. Real-time manipulation and dis-

play of wireframe models is done in a dynamic viewport, while the display 
of hidden-line or shaded renderings is done in a static viewport. 

The dynamic viewport has an optional intensity range. The intensity range 
specifies the dimmest and the brightest that lines will be drawn on the 
screen. Lines at the front clipping plane of the viewing area will be bright-
est. By default, lines at the back clipping plane will be dimmest. The vari-
ation of intensity levels within a viewport creates an effect known as depth 
cueing . 

Perspective views created with the FIELD_OF VIEW or the EYE command 
naturally give the illusion of depth to any object displayed on the screen. 
This illusion is further enhanced by depth cueing. When intensity levels 
have been set for a dynamic viewport, the PS 390 varies the intensity of 
lines in the view that represent the Z dimension (depth) of the object. A line 
that recedes in the Z axis from the eye point gets dimmer as positive Z 
values increase. This gives the impression that objects are being displayed 
in a place that is brightly lit close to you and more dimly lit farther away. 
Depth cueing can be turned on or off. The default is on. 

The default viewport to which the PS 390 maps views of objects in the 
viewing area is the full dynamic screen, and the full intensity range (from 0 
to 1) is in effect. There are two commands that let you change the size of 
the dynamic viewport, relocate it anywhere on the screen, and vary the 
intensity. These are the V~WPORT and the LOAD V~WPORT com-
mands. The V.IEWPORT command specifies a viewport relative to the cur-
rent viewport, implying that a new viewport specification may be no larger 
than the current viewport. The LOA.D_vIEWPORT command, however, 
does not have this restriction, and specifies viewports relative to the full 
PS 390 screen. 

GT2-58 Graphics Tutorials 



The following command, for example, creates a viewport in the upper-right 
quadrant of the screen, and sets an intensity range from .5 to 1. 

New_Viewport := VIEWPORT HORIZONTAL=0:1 VERTICAL=0:1 INTENSITY=.5:1 

APPLIED TO Cube; 

When New_Viewport is displayed, a cube will appear in the upper-right 
quadrant of the screen. There will be less contrast between the brightest and 
the dimmest lines than in the original view of Cube. 

Specification of a static viewport is done by sending a value to an input of 
the SHADINGENVIROI~!-N~NT initial function instance. The SHADINGEN-
VIROI~f1V~NT function also allows you to clear either the current viewport 
or the entire screen, and specify whether it is to be treated as a dynamic or 
static viewport. 

To obtain an accurate view of an object, the viewport it is displayed in must 
have the same aspect ratio as the viewing area that encloses the object. The 
aspect ratio is the ratio of height t0 width. Objects defined in viewing areas 
with square front and back boundaries and displayed in nonsquare view-
ports will appear distorted. 

An arrow enclosed in a square viewing area and displayed in nonsquare 
viewports, for instance, may look like this (Figure 2-59). 

SCREEN 

WINDOW
f w 1 

L J 

U390072 

Figure 2-59. Distorted Views of the Arrow 

Distortion also occurs when nonsquare viewing areas are displayed in 
square viewports. The FIH;LD_OF_V~W and EYE commands always create 

Graphics Principles GT2-59 



viewing areas with an aspect ratio of 1:1, a square. The OW com-
mand can be used to create a viewing area with an aspect ratio that is not 
1:1, a nonsquare viewing area. 

Any size and any number of viewports may be displayed at the same time. 
In this way the screen can be used to show multiple views of the same 
object or different views of different objects. 

Note that viewport operations are the only viewing operations which are not 
matrix transformations of graphical data. When the contents of a viewing 
area are mapped to a viewport, this is a ratio and proportion operation, not 
a transformation of coordinates in the world coordinate system. 

5.5 Viewing Transformations and Display Trees 

When views of objects are created, viewing operation nodes are added to 
the display tree. 

Consider, for example, the group of objects shown in Figure 2-60. 

Figure 2-60. A Group of Objects in the Coordinate System 

The group consists of three primitives: a sphere centered around the origin, 
and a cube and pyramid translated off the origin. These primitives have 
been grouped as an instance called Shapes. The display tree for Shapes is 
shown in Figure 2-61. 

GT2-60 Graphics Tutorials 



SPHERE PYRAMID CUBE U390074 

Figure 2-61. Display Tree for Shapes 

If you use the DISPLAY command to view Shapes, the picture on the screen 
will be as shown in Figure 2-62. 

U390075 

Figure 2-62. DISPI.AYing Shapes 

The default viewing space is a window for orthographic projection, the de-
fault LOOK is in effect, and the default viewport is the dynamic full screen. 
To get any other view of Shapes on the screen, you must explicitly use the 
viewing commands. 

To establish a different line of sight, for instance, use the LOOK command 
as follows. Look towards the origin from a position that is left (negative X), 
up (positive Y), and back (negative Z) from the origin. 

View_Shapes := LOOK AT 0,0,0 FROM -1,1,-5 APPLIED TO Shapes; 

The LOOK command adds the following node to the display tree 
(Figure 2-63) . 

Graphics Principles GT2-61 



View_Shapes 

Shapes 

V 

Sphere 

V V 

Pyramid Cube u3soo7s 

Figicre 2-63. Adding the LOCK Node 

Now build a viewing area around Shapes so that the objects can be seen in 
perspective projection. First calculate where the LOOK command has actu-
ally placed the objects in the coordinate system. Remember that all coordi-

nates are translated and rotated so that the FROM point is at the origin and 
the AT point is in the positive Z axis. The new location of an object in Z is 
found by taking the square root of the following equation. 

2 2 2 
(Xa — Xf} + (Ya — Yf} + (Za — Zf) 

In this equation, "a" is the AT point in X, Y, and Z and "f" is the FROM 
point. 

In a LOOK command with a FROM point of 0,0,0 and an AT of -1,1,-5, 
the new location in Z of the sphere (the one object exactly at the origin) is 
the square root of 27, or 5.1962. This is shown in Figure 2-64. 

GT2-62 Graphics Tutor~'als 



Figure 2-64. The LOOK Transformation 

For maximum depth-cueing of the objects, the front and back boundaries of 
the perspective viewing area should be close to the objects. The sphere is a 
primitive with a radius of .15, so the front boundary should be placed at 
5.1962 - x.15, which is 5. X462. The back boundary can be placed further 
back at about 6. This is shown in Figure 2-65. 

6 

5.04672 

0 

1~ 

BACK BOUNDARY 

FRONT BOUNDARY 

0390078 

Figure 2-65. Calculating the Front and Back Boundaries 

Graphics Princr'ples GT2-63 



Finally a viewing angle must be chosen. An angle of about 28 degrees 
should suffice. The command to create the perspective view, then, is as 
follows. 

Perspective View := FIELD OF VIEW 28 FRONT = 5.0462 BACK = 6 

APPLIED TO View Shapes; 

This adds a viewing matrix node to the display. The new structure is shown 
below (Figure 2-66). 

Perspective_View 

View_Shapes 

Shapes 

V 

Sphere Pyramid Cube 
U390079 

Figure 2-66. Adding the FIELD_OF VIEW Node 

Now, create a viewport in the upper-right corner of the screen. This is where 
the view of Shapes will be displayed. Do not use the optional intensity 
clause, so that Shapes will be displayed with the full intensity in effect for 
maximum depth-cueing. 

Final View := VIEWPORT HORIZONTAL=0:1 VERTICAL=0:1 

APPLIED TO Perspective_View; 

The display tree for the final view is shown in Figure 2-~7. 

GT2-64 Graphics Tutorials 



Final View 

Perspective_View 

View_Shapes 

Shapes 

Sphere Pyramid Cube 
0390080 

Figure 2-67. Adding the VIEWPORT Node 

When Final_View is displayed, the PS 390 screen will appear as shown in 
Figure 2-68. 

0390081 

Figure 2-68. The Final Display 

Graphics Principles GT2-65 



5.6 Summary 

New Information Presented 

1. Viewing operations are matrix and nonmatrix operations that let you 
create a variety of views of objects and display those views anywhere 
on the PS 390 screen. 

2. A complete "view" is created by establishing a line of sight, defining 
a viewing area in the world coordinate system, and defining aview-
port on the PS 390 screen. The PS 390 assumes default values for all 
three if they are not explicitly specified. 

3. A line of sight is a matrix operation which specifies a point to look 
from and a direction to look at. You can also specify which direction 
is up. Whatever values you assign to these variables, the PS 390 
translates coordinates so that the "look from" point is at the origin 
and the "look at" point is somewhere in the positive Z axis. It also 
rotates all coordinates so that "up" is in the YZ plane. 

4. Viewing areas result from matrix transformations which produce or-
thographic or perspective views of objects. For an object to be vis-
ible, it must be enclosed in a viewing area. Objects or parts of ob-
jects that lie outside the viewing area are clipped, and do not appear 
in the view displayed on the screen. 

5. A viewport is the area of the screen in which the contents of a view-
ing area are displayed. Viewports are not matrix operations. Two 
kinds of viewports can be specified, dynamic or static. Any number 
of viewports and any sized viewports can be displayed at the same 
time. A difference between the aspect ratio (width to height) of the 
viewing area and the aspect ratio of the viewport will result in a 
distorted view of the object. 

6. Viewing transformations add operation nodes to the display tree for 
an object. 

What Next? 

The data base now contains display trees that represent many different 
views of the basic models that have been created. By displaying these views, 
any number of images can be displayed on any part of the PS 390 screen. 

In the next section, you will see how attributes can be assigned to the 
objects you create. 

GT2-66 Graphics Tutorials 



6. Using Attributes 

Modeling operations let you create objects of any complexity with the 
PS 390.. Using viewing operations, you can create an infinite number of 
different views of the objects and display them anywhere on the screen. 
Another set of operations add a further range of possibilities to the images 
that are displayed. They let you assign attributes to an object to enhance its 
usefulness in modeling and analysis applications. 

6.1 Attributes 

All modeling and viewing operations (other than viewports) transform the 
coordinates of objects in the world coordinate system to create new objects. 
Each transformation adds an operation node which applies matrix opera-
tions to the object definitions. 

The PS 390 lets you add other operation nodes to a display structure which 

do not transform graphical data and so do not create transformation matri-

ces. These nodes assign attributes to an object. 

Attributes offer a variety of possibilities for changing the characteristics of a 
displayed image. These include: 

• Determining aspects of the image such as color, intensity, and the 
character font in which text appears. 

• Referencing objects or parts of objects for display only when certain 

conditions are met. 

• Marking parts of the displayed image as capable of being "picked" 
with a stylus, puck, or other pointing device . 

Attribute settings are different from transformations because they are not 

matrix operations. Attribute nodes set and change values which are stored 

in registers. These registers record the current state of the machine. When 

the display processor of the PS 390 encounters an attribute node in a dis-

play structure, the contents of the node are used to check and sometimes to 

change the register representing that attribute. For example, an attribute 

node which sets depth clipping can enable or disable depth clipping, de-

pending on the Boolean value contained in the node. 

There are three classes of attributes: appearance attributes, structure attrib-

utes, and picking attributes. 

Graphics Principles GT2-67 



6.2 Appearance Attributes 

Appearance attributes govern the following aspects of an object when It 1S 

displayed. 

• The colors of lines that form the image. 

• The intensity at which lines are drawn. 

• Whether or not depth clipping is performed on the image. 

• The character font for any text in the image . 

6.2.1 Displaying Objects in Color 

Objects or parts of objects can be displayed in different colors. Color is 
specified as a hue and a saturation. The hue is the color itself. There are 
360 hues to choose from. These correspond to values on a color wheel as 
shown in Figure 2-69. 

BLUE 
360, 0 

CYAN MAGENTA 
300 _ 60 

GREE 
240 

YELLOW 
180 

ED 
120 

U390082 

Figure 2-69. The Color Wheel 

Blue has a value of 0 and 360, red is 120, and green is 240. The saturation 
is the amount of color versus the amount of white in the hue, and is speci-
fied as a range from 1 to 0. Blue at high saturation is deep toned. At low 
saturation, it is sky blue, and at 0 saturation it is white. 

GT2-68 Graphics Tutorials 



6.2.2 Displaying All Vectors in the Same Color 

Color is applied to an object using the SET COLOR command. A cube can 
be colored red by applying the following command to Cube. 

Red_Cube := SET COLOR 120,1 APPLIED TO Cube; 

When Red_Cube is displayed, the lines that form the cube will appear in 
full-bodied red on the screen. 

With complex objects, different parts of the object can be displayed in dif-
ferent colors. Each SET COLOR command creates an operation node in the 
display structure for the object. Consider the mechanical arm discussed in 
Section GT2.4. A simplified display tree is as shown in Figure 2-70. 

Mechanical Arm 

Base 

I 

v 

Lower Arm Piece 

Cylinder 

Arm 

Upper_Arm_ 
Piece 

V 

~ Upper_Arm 

V Hand 

0390083 

Figure 2-70. A Simplified Display Tree for the Mechanical Arm 

Graphics Principles GT2-69 



You can use the SET COLOR command to color the parts of the model 
separately. For example, the base can be colored red, the arm pieces blue, 
and the hand green. The display tree with the SET CoLQR nodes added is 
as shown in Figure 2-71. 

Mechanical Arm 

Base 

Lower Arm Piec 

I I 

Arm 

0390084 

Figure 2-71. Display Tree With Color Nodes 

For more information on color nodes, refer to the section called Setting 
Color in Section GT8 Viewing Operations. 

GT2-70 Graphics Tutorials 



6.2.3 Setting and Changing Intensity Levels 

The PS 390 can be programmed to vary the intensity at which line segments 
are drawn between endpoints. This ability is used to good effect in the proc-
ess known as depth cueing. Depth cuing enhances the illusion of three-
dimensional views by varying the intensity of any line that recedes in the 
positive Z axis. Lines in an image which are "farther away" from the viewer 
appear dimmer. 

Intensity levels are associated with dynamic viewports. An option of the 
VIEWPORT and LOAD_VIEWPORT commands allows you to specify the 
intensity variation for lines drawn within the dynamic vie`vport. A minimum 
and a maximum intensity are specified as values from 0 to 1. When objects 
enclosed in an orthographic or perspective window are mapped to the view-
port, lines closest to the front boundary of the window are drawn at maxi-
mum intensity, and lines closest to the back boundary are drawn at mini-
mum intensity. 

The PS 390 also has a SET INTENSITY command which allows intensity to 
be specified as a separate attribute of an object. The command creates an 
attribute operation node in a display tree which overrides the intensity speci-
f ication of the VIEwPORT or LOAD VIEwPORT command . 

A SET INTENSITY node in a display tree is often used as an interactive 
node. The node has two inputs. One accepts a Boolean value to enable or 
disable the effect of the node. The other accepts a 2D vector to change the 
intensity range. Thus a SET INTENSITY node in a display tree can be used 
to interactively change the lntenslty setting of a displayed image. The fol-
lowing command creates a node named Change_Intensity. 

Change_Intensity := SET INTENSITY OFF 0.0:0.5 APPLIED TO Car; 

The display tree which contains this node might be structured as in 
Figure 2-72. 

Graphics Principles GT2- 71 



Change_Intensity 

V 

Function Key 

Dial 

U390085 

Figure 2-72. An Interactive Intensity Node 

Function networks connect the two inputs of the node to interactive devices. 
Until the SET INTENSITY node is enabled, the intensity setting of the dy-
namic viewport (the default setting of 0:1) is in effect. A Boolean TRUE 
sent to input <1> from a function key will enable the SET INTENSITY node. 
New intensity settings can then be suppliec:l from a dial, so that the operator 
can interactively change the intensity setting while viewing an image. 

For more information on setting intensity, refer to Section GT8 Viewing op-
erations. 

6.2.4 Enabling and Disabling Depth Clipping 

Depth clipping is the operation of clipping (removing from the screen) ob-
jects or parts of objects that extend outside the viewing area in Z. The 
PS 390 automatically clips objects or parts of objects which extend beyond 
the X and Y boundaries of a window. Depth clipping (or Z clipping) is an 
optional feature which is not in effect when the system is initialized. It is 
specified as an attribute of an object. 

GT2- ~2 Graphics Tutorials 



Orthographic and perspective windows are defined with front and back 
boundaries or Z-clipping planes. When depth clipping is enabled, only ob-
jects or parts of objects that lie within the area bounded by the Z-clipping 
planes will be displayed in the viewpart. This is illustrated in Figure 2-73. 

Back Clipping Plan 

/ / 

Front Clipping Plane 

World Coordinate 
System 

SCREEN 

Figure 2-73. Depth Clipping Enabled for a Viewing Area 

U390086 

When depth clipping is disabled, objects that lie outside the Z-clipping 
planes in the positive or negative Z axis will be visible. Consider the objects 
in Figure 2-74. 

Graphics Principles GT2- 73 



Back Clipping Plane , 

Front Clipping Plane 

Figure 2-74. Objects Outside the Front and Back Boundaries 

U390087 

The cube and the sphere will not be displayed if depth clipping is on, be-
cause they lie outside the front and back boundaries. When depth clipping is 
turned off, however, they will be displayed. 

Objects in front of the front boundary, such as the cube, will be displayed at 
maximum intensity. Objects behind the back boundary, such as the sphere, 
will be displayed at minimum intensity. 

The following command enables depth clipping for an object called Ro-
tated_Car. 

Z_Clip := SET DEPTH_CLIPPING ON APPLIED TO Rotated_Car; 

A display tree into which the SET DEPTH_CLIPPING node is inserted is 
shown in Figure 2-75. 

GT2- ~4 Graphics Tutorials 



Z_C1ip 

Rotated View 

Rotated_Car 

Car V 

U390088 

Function Key 

Figure 2-75. Display Tree With Depth-Clipping Node 

The node can be turned on or off interactively. It has one input which ac-
cepts aBoolean TRUE or FALSE. TRUE turns depth clipping on; FALSE 
turns it off. A function key can be connected to the node to toggle depth 
clipping on and off. 

6.2.5 Choosing a Character Font for Text 

If text forms part of an object as a label, a menu item, or annotation, for 
example, you can add attribute nodes in the display tree to allow different 
character fonts to be used. 

The PS 390 has a standard character font in which all text appears. You 
also have the ability to create alternate fonts. There is a command which 
allows you to design any number of other character fonts. This command 
(BEGIN FONT .... END_FONT;) lets you enclose up to 128 separate vector 
lists defining characters within a named structure. Each vector list defines a 
letter, character, or number in the character font. For more information on 

the BEGIN FONT ... END FONT; command, consult Sections RMI Com-

mand Summary and GTIO Text Modeling and String Handling. Also, in Section 

TT3 Data Structure Editor there is a user's guide to MAI~EFONT, a graphi-

Graphics Principles GT2-7S 



cal character font editor program. This program allows you to create new 

character fonts, to combine fonts, and to change existing fonts . 

Once an alternate font has been created, it can be used by setting an attrib-

ute node in the display tree. Suppose that the alternate fonts Italic and Mod-

ern have been created, and that character strings in a display tree are to be 

displayed in the standard font and in Italic and Modern. Consider the dis-

play tree in Figure 2-7~ for a group of labeled objects. 

Labeled_Shapes 

Cube Pyramid Sphere Stringl String2 String3 
U390089 

FigLcre 2-76. Display Tree for a Group of Labeled Objects 

The instance node Labeled_Shapes groups vector lists for three objects (a 

cube, a sphere, and a pyramid) and character strings ("Cube", "Sphere", 

and "Pyramid") to label the objects. Each character node is created by the 

CHARACTERS command. The character nodes are preceded by a CHAR-

ACTER SCALE and a TRANSLATE node to scale the characters and move 

them to their correct location. When Labeled_Shapes is displayed, the three 

objects will appear labeled in the standard font. 

Suppose you want the word "Cube" (String 1) to appear in the Italic font 

and "Sphere" (String 3) to appear in Modern. Two CHARACTER FONT 

nodes must be inserted above the data nodes for the cube and sphere labels. 

The following commands create those nodes. 

GT2- ~6 Graphics Tutorials 



Cube Label := CHARACTER FONT Italic APPLIED TO String 1; 

Sphere_Label := CHARACTER FONT Modern APPLIED TO String 3; 

The modified display tree with alternate fonts specified is structured as 
shown in Figure 2-77. 

Labeled_Shapes 

I 

v 

Cube Pyramid Shpere 

Cube_Labe 

Italic i 

C 

String 1 String2 String3 

Sphere_Label 

Figure 2-77. display Tree With Character Font Nodes 

~ Modern 

U390090 

The CHARACTER FONT nodes called Cube_Label and Sphere_Label are 

pointers to the fonts called Italic and Modern. The branch of the tree which 

ends at the CHARAC'1'.~RS node for labeling the pyramid has no C C-
TER FONT node in it, so the string "Pyramid" will appear in the standard 

font. 

6.3 Structure Attributes 

A display tree for an object is composed of branches which determine the 

paths that the display processor must take when the object is being dis-

Graphics Principles GT2-77 



played. Each branch is unconditionally traversed during each display proc-
essing cycle. Structure attributes create nodes in a display tree at which 
"branching" may occur only if certain conditions are met. These attributes 
allow you to: 

• Reference objects or parts of objects by setting conditional bits and 
testing those bit settings further down the display tree. 

• Add or remove detail from an object by setting level-of-detail bits 
and testing for them further down in the display tree. 

• Control blinking or alternate displaying of images by setting a rate 
and an on/off phase, then testing for the phase further down the 
display tree. 

6.3.1 Conditional Referencing 

Conditional referencing is generally used to display or blank parts of a com-
plex structure by selectively traversing or bypassing branches of a display 
tree. Two commands are needed to set up and use conditional referencing. 
The SET CONDITIONAL BIT command sets any of fifteen conditional bits 
numbered 0 to 14. This creates a SET CONDITIONAL BIT node, or SET 
node for short, in the display tree. Below the SET node, an IF CONDI-
TIONAL BIT node, or IF node, is created. This node tests a conditional bit 
setting and branches to the name it is APPLIED TO if the condition is met. 

For example, consider a display tree for a car which, for simplicity, consists 
of four wheels, a chassis, and a body, as shown in Figure 2-78. 

v v 

Wheels Chassis 

v 

Body 
U390091 

Figure 2-78. Simplified Display Tree for a Car 

GT2- 78 Graphics Tutorials 



For some reason, you want to be able to display or blank the car body at 
your whim. Use the SET command and IF command to create a pair of SET 
and IF nodes in the branch which ends with Body. 

Set_Condition := SET CONDITIONAL_BIT 1 ON THEN Condition_Met; 

Condition Met := IF CONDITIONAL_BIT 1 IS ON THEN Body; 

Notice that the THEN form of the command is used. This is synonymous in 
all cases with the APPLII~;D TO form of the command, but makes more 
syntactic sense to readers. 

Figure 2-79 shows the display tree with conditional referencing nodes 
added. 

Car 

Wheels Chassis 

0390092 

Set Condition 

Condition Met 

Body 

Figure Z-79. Display Tree With Conditional Referencing Nodes 

Initially, when Set Condition is displayed, all the components of the car, 
including Body, will be displayed. The condition that bit 1 be set on is met 
and the path to the data node Body is made. The ON/OFF clause lets you 
control the display of the car body. A function key can be connected to 
Set Condition to turn it ON (Boolean TRUE) or OFF (Boolean FALSE). 

When the bit is off, the car body will not be displayed. 

Graphics Principles GT2-79 



Refer to the section Using Conditional-Bit Attribute Settings in Section 
GT9 Conditional Referencing for more examples of this sort. 

6.3.2 Level of Detail 

Level of detail is another form of conditional referencing that is built into a 
display tree using pairs of SET and IF nodes. This form of conditional refer-
encing is normally used to unfold detail in a complex display. For example, 
a display for a geological or seismological application might show various 
levels in the earth's crust. SET and IF level-of-detail nodes can be placed in 
.the display tree to allow the picture to be displayed or blanked layer by 
layer. 

Unlike conditional-bit referencing where 15 bits may be set, level of detail 
uses only one variable. This is an integer from 0 to 32767. The SET 
LEVEL OF DETAIL command creates a SET node in the display tree. The 
IF LEVEL OF DETAIL command creates an IF node to test the level-of-de-
tail setting and complete the path to a named entity accordingly. 

Consider as an example a display tree for athree-dimensional contour map 
of an area of land. You want to be able to turn a dial and add contour lines 
in 50 foot increments from sea level to 250 feet. Before any level-of-detail 
nodes are added, the display tree is simply a collection of vector lists, one 
for each contour line, under a single instance node, as shown in 
Figure 2-80. 

Map 
I 

v v v v 

50 Ft 150 Ft 200 Ft 250 Ft 
0390093 

Figure 2-80. Display Tree for a Contour Map 

This structure was created by the following command which grouped the 
vector lists. 

GT2-80 Graphics Tutorials 



Map := INSTANCE OF 50_Feet, 150_Feet, 200_Feet, 250_Feet; 

Begin allowing for level-of-detail displays by adding a SET node at the top 
of the display tree. 

Set_Level := SET LE~EL_OF_DETAIL TO 1 THEN Map; 

Each branch of the display tree out of the instance node Map can now be 
prefixed by an IF node. Unlike conditional-bit referencing IF nodes, 
LEVEL OF_DETAIL nodes do not test an on/off state, but a relationship. 
These relationships are as follows. 

Less Than < 

Less Than or Equal To <_ 

Equal To = 

Not Equal To <> 

Greater Than or Equal To >_ 

Greater Than > 

A different value can be assigned to the IF node for each contour line in the 
map. If the level of detail is 1 or greater, the fifty-foot contour is displayed. 
If it is 2 or greater, the hundred-foot contour is displayed, and so on. For 
example, the following command creates a node called If_1 which tests 
whether or not the level of detail is 1 or greater and completes the path to 
the 50-foot contour line. 

If_1 := IF LEVEL_OF DETAIL >= 1 THEN 50_feet; 

The complete tree with all IF nodes is as shown in Figure 2-81. 

Graphics Principles GT2-81 



Set_Leve 

Map 

v v 

I 

v 

~11111~11111~ 

v 

50 Ft 150 Ft 200 Ft 250 Ft 
U390094 

Dial 

Figure 2-81. Display Tree With Level-Of-Detail Nodes 

A function network can be connected to the SET node to supply new values 
to the level-of-detail setting from a dial. As the dial is turned and the level-
of-detail changes, more of the contours will be displayed. 

For more examples of this sort, refer to the section on Using 
LEVEL OF DETAIL in Section GT9 Conditional Referencing. 

6.3.3 Blinking or Alternating Displays 

Making an object blink or alternating the display of different objects is an-
other form of conditional referencing which involves SET nodes and IF 
nodes in the display tree. The SET node sets a rate for displaying and blank-
ing the object. This rate can be under control of the refresh rate of the 
PS 390 display, an internal PS 390 clock, or an external clock generated by 
a function network or the host computer. The IF node determines what will 
be displayed during the on phase and what will be displayed during the off 
phase. The commands are SET RATE and SET RATE EXTERNAL (for an 
external clock), and IF PHASE. 

The SET RATE commands specify durations for the on phase and the off 
phase, an optional initial state (either on or off), and an optional clause 

GT2-82 Graphics Ti~toxials 



called the delay, which specifies the number of refresh frames in the initial 
state. The IF PHASE command determines what will be displayed during 
the on phase and what will be displayed during the off phase using the 
APPLIED TO or THEN clause to indicate a path to a named structure. 

For example, to cause the label associated with an object to blink by being 
displayed for 120 refresh frames and blanked for 60, the following com-
mands can be used. 

Blink_Rate := SET RATE 120 60 THEN Phase; 

Phase := IF PHASE ON THEN Object Label; 

Object_Label := CHARACTERS 'THIS IS THE OBJECT YOU CHOSE'; 

These nodes would be placed in a display tree as shown in Figure 2-82. 

Blink Rate 

Phase 

Object_Labe 

U390095 

Figure 2-82. Conditional Nodes for Blinking 

The words "THIS IS THE OBJECT YOU CHOSE" will be displayed for 120 
refresh cycles (about two seconds) and blanked for GO (about one second) 
when this tree is traversed. 

The SET RATE and IF PHASE commands can also be used to display alter-
nately two different objects. A display tree can be created with SET and IF 

nodes to display one object during the on phase and another during the off 

phase. Figure 2-83 shows such a display tree. 

Graphics Principles GT2-83 



U390096 

Cube Pyramid 

Figure 2-83. Display Tree for Alternate Display of Two Objects 

During the on phase, the cube will be displayed for two seconds. During the 
off phase, the pyramid will be displayed for two seconds. Refer to Section 
GT9 Conditional Referencing for more information on blinking. 

d.4 Picking Attributes 

In computer graphics terms, picking means selecting by means of a stylus, a 
puck, or some other pointing deice, a line, set of lines, or piece of text in a 
display. When the pick occurs, the computer generates information in the 
form of a pick list which identifies the lines) or text picked no matter how 
the object may be oriented on the screen. This information is reported for 
programming purposes. For example, in the tutorial demonstration package, 
when a menu item is picked, the information returned by the pick is used to 
run the correct demonstration program. 

Picking attributes must be assigned to an object before it or any part of it 
can be picked from a screen display. These attributes are nodes in the dis-
play which: 

• Mark objects or parts of objects as candidates for picking and turn 
picking on or off. 

• Assign a name (pick identifier) which will be reported as a text string 
when a pick occurs. 

GT2-84 Graphics Tutorials 



The highest attribute node in the display tree must be the node that turns 
picking on and off for the object. For example, to make an object called 
Space_Shuttle capable of being picked from the screen, the following com-
mand can be used. 

Pick := SET PICKING ON APPLIED TO Space_Shuttle; 

Assuming that Space_Shuttle is an instance node grouping the various parts 
of the craft, the top level of the display tree will be structured as shown in 
Figure 2-84. 

Pick ~~ 
Set_Picking 

Space_Shuttle 

Fuselage Nose 

V 

Tail Left_Wing Right_Wing 
U390097 

Figure 2-84. The SET PICKING ONIoFF Node 

This node can be used interactively and should be created in the OFF set-
ting. Picking is enabled by a Boolean TRUE sent to the node through a 
function network. 

The node created in the command above makes the whole object called 
Space_Shuttle capable of being picked. If you want the separate components 
of the object to be pickable, nodes must be included in the display tree as 
shown in Figure 2-85. 

Graphics Principles GT2-85 



Pick 
Set_Picking 

Space_Shuttle 

Set Picking 

~~ 

V 

Fuselage 

Set_Picking 

~~ 

V 

Nose 

Set Picking 

~~ 

V 

Set Picking Set_Picking 

~~ ~~ 

V V 
U390098 

Tail Left_Wing Right_Wing 

Figure 2-85. Making the Components Pickable 

Now the fuselage, nose, tail, left wing, and right wing can be made individu-
ally Pickable. 

The other attribute node that must be added to the display tree assigns the 
pick identifier (or pick ID) that will be reported in the pick list when a pick 
occurs. Two names identify a picked object. 

The first is the pick ID—a character string assigned by the SET PICK:Il~TG 
IDENTIFIER command. The second name is the name of the data node that 
contains the line or character that was picked from the screen. 

The following command, for instance, assigns a pick ID to the fuselage. 

Fuselage_Pick := SET PICKING IDENTIFIER = Shuttle_Fuselage 

APPLIED TO Fuselage; 

If any line in the fuselage section of the space shuttle is picked when picking 
is enabled, the system will generate a pick list which reports the pick ID as 
Shuttle_Fuselage and the data node as Fuselage. To use picking with the 

GT2-86 Graphics Tutorials 



PS 390, function networks must be built to report any picks that occur. 
Refer to Section GTII Picking for complete information on setting up pick-
ing networks . 

6.5 Summary 

New Information Presented 

1. An attribute node is another type of operation node in a display tree. 
It allows you to specify characteristics of the displayed image of the 
models you create. 

2. There are three types of attributes: appearance attributes, structure 
attributes, and picking attributes. 

3. Attribute nodes differ from transformation nodes in a display tree. 
Transformation nodes create transformation matrices which are ap-
plied to the geometrical data in the data nodes. Attributes, however, 
are non-matrix operations. They set and change values in registers in 
the PS 390. 

What Next? 

You have now seen all of the types of nodes that can be included in a 
display tree. Data nodes define primitive shapes. Modeling operation nodes 
shape and position parts of complex models in the world coordinate system. 
Instance nodes group separate primitives and transformations into larger 
named entities. Viewing operation nodes create views of objects from any 
angle and from any perspective and specify areas of the screen in which the 
view will be displayed. Attribute operation nodes change aspects of the 
model's appearance, allow conditional referencing, and set up picking. 

In the next section, you will see how the interactive devices of the PS 390 
are programmed to allow interactive manipulation of models. Function net-
works are created to complete the path between the devices and interaction 
nodes in the display tree. These networks take values from the control dials, 
function keys, and so on, and convert them to the correct type of data for 
the interactive node they are connected to. 

Graphics Principles GT2-87 



7. Interacting With the Picture 

A display tree contains three types of operation nodes. Modeling nodes rep-
resent translation, rotation, and scale transformations that are applied to 
primitive data to shape and position the parts of a model in the world coor-
dinate system. Viewing nodes transform the model through viewing matri-
ces to create numerous views of the model from different vantage points. 
Attribute nodes determine aspects of the model's appearance on the screen, 
control which parts of a model will be displayed, and set up picking. 

.operation nodes can be set up for modeling purposes or for interaction. 

For modeling purposes, translation, rotation, and scale nodes; viewing 
nodes; and attribute nodes are all created with fixed values. For example, a 
primitive might be rotated 60 degrees around the X axis to a permanent 
location in the coordinate system. Or a model might have a permanent per-
spective view imposed on it with a viewing angle of 45 degrees. or the 
intensity range might be fixed at .5 to 1, and separate parts of the model 
might be designated as always pickable. 

Interaction nodes, on the other hand, are put in the display tree to allow you 
to interactively manipulate the entire model or any separate part of it. To 
achieve this interactive manipulation, the contents of these nodes must be 
updated with new values. These values are supplied from a physical device 
such as a dial through data-handling software called a function network to 
the interactive node. The network might feed a rotation node with a series 
of new rotation matrices, a viewing node with a new viewing matrix, or an 
attribute node with information to change its function. 

7.1 Evans &Sutherland and Interactive Graphics 

At Evans &Sutherland, interaction has always been the most important 
feature of graphics systems. For E&S, interaction means the ability to 
change the picture being displayed in an easy manner and in real time. 

The PS 390 provides ease of manipulation through offering a variety of 
interactive devices. A data tablet and stylus can be used to control a cursor 
on the screen for pointing at and selecting parts of the display. Eight control 
dials can be programmed to translate, rotate, and scale objects and to zoom 
and pan. A bank of 32 function buttons can be programmed to select differ-

GT2-88 Graphics Tutorials 



ent displays or change details of the same display. Twelve programmable 
function keys can act as toggle switches between different functions. These 
devices are all easy and natural to use and can be arranged comfortably at 
your work place. Refer to Section RM13 Interactive Devices for more infor-
mation. 

Real time interaction means that the effect of an interactive device—for 
example, turning a dial or pressing abutton—is seen instantly in the picture. 
If a dial is correctly programmed to rotate a model around the Y axis, then 
you perceive no delay between turning the dial and seeing the model re-
spond. If you turn the dial slowly the model turns slowly, and if you turn it 
fast the model turns fast. When the devices are correctly programmed, min-
ute, precise changes can be made to the orientation of a model on the 
screen as you watch. 

Since every owner of an interactive graphics system has a different reason 
for using interactive graphics and different requirements and expectations 
of the machine, the interactive devices must be programmed to suit individ-
ual needs. Users themselves decide how they want to interact with the mod-
els they have created, and they program the devices accordingly. 

In Evans &Sutherland systems previous to the PS 300 product line, the host 
computer controlled the interactive devices as well as running the applica-
tion programs and calling the routines that created the graphics. Interactive 
devices were checked regularly by the host computer programs to see if 
their state had changed. If the state had changed, the host program had to 
determine how and what to do about it. 

The PS 390 unburdens the host by handling the interactive devices locally. 
The host computer never has to intervene in setting up the devices or inter-
preting data from them. In addition, each device contains its own micropro-
cessor. This distribution of some intelligence to the devices themselves in 
turn unburdens the Joint Control Processor (JCP) of the PS 390. Devices 

send data that has already been interpreted to the JCP. So, for example, 

instead of the control dials unit sending a stream of data whenever a dial is 

turned, it sends significant information only (such as which of the eight 

dials was turned) at significant times (every sixteenth of a turn, for in-

stance). 

Graphics Principles GT2-89 



7.2 Programming the Interactive Devices 

The common end product of programming an interactive device is to have it 

change the displayed picture in some way or send information back to the 

host. For example, you might want the object being displayed to start and 

stop blinking when you press function key F3. Or you might want dial 2 to 

rotate only the wrist joint of a mechanical arm, and dial 4 to translate the 

whole model from left to right across the screen. Or when you pick an 

object on the screen, you may want information from the pick to be re-

ported back to an application program on the host. 

7.2.1 Planning for Interaction 

The first step in planning for interaction is designing the display tree for the 
model. You must decide what sort of interaction you want and structure the 
display tree accordingly. For most applications of interactive graphics, you 
will want to interactively translate, rotate, and scale the model. For other 
purposes, you may also want to change the viewing matrices dynamically. 
And in many cases you will want to use conditional referencing, level-of-de-
tail, and picking in interactive operations. 

Interactive nodes, unlike modeling operation nodes, are created with values 
that will later be updated from an interactive device. Consider, for example, 
the simple display tree in Figure 2-86 for a star that can be rotated interac-
tively. 

Diamond 

U390099 

Figure 2-86. Display Tree for Simple Interaction 

GT2-90 Graphics Tutorials 



The instance node called Star groups a data node called Square and a rota-
tion node called Diamond. The rotation node is a modeling node. It applies 
a 45 degree rotation matrix to the Square to create a diamond shape. Its 
contents never change. The rotation node Rot_Star, however, is not in the 
display tree for modeling purposes. It is drawn as a double circle to indicate 
that it is an interaction node. This rotation node is initially created with a 
rotation of zero degrees, so that at first it will not have an effect on the 
structure. Its contents will eventually be updated with a new rotation matrix 
from a function network as a dial is turned. 

The following commands will create the display tree shown in Figure 2-86. 

Rot Star := ROTATE 0 APPLIED TO Star; 

Star := INSTANCE OF Diamond, Square; 

Diamond := ROTATE IN Z 45 APPLIED TO Square; 

Square := VECTOR LIST N=5 .5, .5 .5,-.5, -.5,-.5, -.5,.5, .5,.5; 

7.2.2 Updating a Node 

Not every node in a display tree can be updated and so not every node can 
be an interactive node. Instance nodes, for example cannot be updated. 
Their function is to point to other places in the structure of the display tree. 
An instance node can be redefined using the INCLUDE and REMOVE com-
mands, but new values cannot be sent to an instance node through a func-
tion network because instance nodes do not contain data. 

Operation nodes, however, do contain data, in the form of matrices, vec-
tors, numbers, and Boolean values. Most operation nodes can have their 
contents changed as long as those nodes have a direct name by which they 
can be accessed. Data nodes contain vector lists, polygon lists, special vec-
tor lists for curves, and text in various forms. There are ways to change the 
contents of these nodes interactively too. 

Section R1V11 Command Summary shows the type of node a command creates 
and indicates if that node has inputs which allow it to be updated. 
Figure 2-87 shows a representation of the SET DEPTH_CLIPPING node. 

Graphics Principles GT2-91 



name 

Boolean <1 > Disables (F) /enables (T} 
depth clipping 

SET DEPTH 
CLIPPING 

U390100 

Figure 2-87. The SET DEPTH CLIPPING Node 

This node has one input which accepts a Boolean TRUE or FALSE. A 

TRUE enables depth clipping for an object and a FALSE disables it. 

7.2.3 Supplying the Correct Type of Data 

The Boolean value which the SET DEPTH_CLIPPING node requires is sup-
plied by an interactive device. Logically, atwo-state device such as a func-
tion key or function button would be programmed to act as a toggle switch, 
setting depth clipping on the first time it is pressed and setting it off when it 
is pressed again. However, when a function key is pressed it generates an 
integer which identifies the key, not a Boolean value. Some method is 
needed of programming a path between the function key and the SET 
DEPTH_CLIPPING node, and of converting the integer to a Boolean value. 

7.3 PS 390 Functions 

With the PS 390, interactive devices are not programmed using a standard 
programming language. Instead, the PS 390 uses functions which are com-
bined into function networks. The individual functions which compose a 
network are actually Pascal procedures, but can be thought of as "black 
boxes" with numbered input queues and outputs, as shown in Figure 2-88. 

GT2-92 Graphics Tutorials 



F:AND 

<1> <1> 

<2> 

U390101 

---► 

Figure 2-88. Representation of a Function 

Each function accepts data on its input queues, performs a mathematical, 
logical, data conversion, routing, or selecting operation, and sends data out 
of its outputs. Inputs accept data from interactive devices, from the host, or 
from the outputs of other functions. Outputs connect to inputs of other func-
tions or interactive nodes in a display tree. 

Functions are chosen and combined so that the final network will accept 
data from a device and manipulate and convert the data into types that will 
be accepted by the interactive nodes. There are nine categories of functions 
available with the PS 390. These are as follows. 

• Data Conversion 

Data conversion functions change matrices into rows, rows into scalar 
elements, and real numbers to integers or vectors. Data can be output in 
decimal or exponential format. 

• Arithmetic and Logical 

These functions perform all arithmetic operations (add, divide, subtract, 
multiply, square root, sine, and cosine) and logical operations (and, or, 
exclusive-or, and complement) . 

• Comparison 

Comparison functions test whether values are greater than, less than, 
equal to, not equal to, greater than or equal to, and less than or equal to 
other values. 

Graphics Principles GT2-93 



• Data Selection and Manipulation 

These functions are used to selectively switch functions, choose outputs, 

and route data. 

• Viewing Transformation 

Viewing transformation functions connect to viewing operation nodes in 

display trees to interactively change line-of-sight, window size, and view-

ing angle. 

• Object Transformation 

Object transformation functions connect to modeling operation nodes in 

display trees to interactively rotate, translate, and scale objects. 

• Character Transformation 

These functions are used to interactively position, rotate, and scale text. 

• Data Input and Output 

These functions set up and control the interactive devices (dials, function 

keys, function buttons, data tablet, and keyboard) and output values to 
the optional LED labels on the control dials and function keys. 

• Miscellaneous 

Other functions set up and control picking, clocking, timing, and synchro-
nizing operations. 

The complete set of functions is loaded into memory when the PS 390 is 
booted. Sections RM2 Intrinsic Functions and RM3 Initial Fi~nction Instances 
are a reference to all available functions. 

There are three types of functions: intrinsic functions, initial function in-

stances, and user-written functions. 

GT2-94 Graphics Tutorials 



7.3.1 Intrinsic Functions 

Intrinsic functions are the set of master functions which you can instance to 
create networks. Their names reflect the operation they perform, and are 
preceded by F:, for instance, F:A►ND, F:ROUTE, F:MATRIX. 

Functions are instanced using the NAME := F:function_name command. 
For example, the following command creates an instance of the ADD func-
tion (F:ADD) and assigns it the unique name Adder. 

Adder := F:ADD; 

Intrinsic functions are always instanced in this way. The intrinsic function 
name itself, in this case F:ADD, is never used in the network. The name of 
the function instance (i.e., Adder) is used instead. 

7.3.2 Initial Function Instances 

When the PS 390 is booted, the system itself instances (i.e., names) certain 
functions as initial function instances. Among other things, these functions 
connect to the interactive devices, connect to the host, and connect to error 
detection logic. For example, inputs to the initial function instance called 
DIALS are connected to the control dials unit at system initialization. DI-
ALS has eight outputs on which it sends real numbers from one to eight, 
corresponding to the numbers of the eight dials. It sends values generated 
by the dials out of the output that corresponds to the number of the dial. 

Unlike intrinsic functions, which must always be assigned a unique name, 
initial function instances are used with their system-assigned name. The 
name reflects the operation the function performs, but is not preceded by F: 
(for example, TABLETIN, WAR:NII~TG, KEYBOARD) . 

7.3.3 User-~~ritten Functions 

You are not limited to the set of intrinsic functions and initial function 
instances supplied with the system. If the functions that are available do not 
suit all your needs, you can write your own using the optional user-written 
function facility. User-written functions are instanced in the same way as 

intrinsic functions. E&S provides documentation on writing Pascal proce-

Graphics Principles GT2-95 



dures to create user-written functions and documentation and software files 
that aid in producing and transporting these procedures from the host to the 
PS 390. To understand user-written functions, you should know Pascal well 
and you should have experience in programming PS 390 function networks. 
For complete information, refer to the Advanced Programming volume of the 
PS 390 Document Set. 

7.3.4 Creating Networks 

Networks are created by connecting initial function instances, instances of 
intrinsic functions, and interactive nodes in display trees using the CON-
NECT command. For example, the following group of commands create a 
simple network to rotate the star diagrammed in Figure 2-86 around the Z 
axis. 

Rotate := F:DZROTATE; 

CONNECT DIALS<2>:<1>Rotate; 

CONNECT Rotate<1>:<1>Rot_Star; 

The first command 

Rotate := F:DZROTATE; 

creates an instance of the intrinsic function F:DZROTATE named Rotate. 
This intrinsic function is represented in Figure 2-89. 

~: DZRQTATE 

R -►~ 

R -~ 

R -►~ 

<1> <1> 

<2> <2> 

<3> 

--► 3X3 

---► Rea 

U390102 

Figure 2-89. The F: DZROTATE Fi~nction 

GT2-96 Graphics Tutorials 



This function has three inputs. Input <1> accepts real numbers, usually di-
rectly from the initial function instance DIALS. Input <3> is a magnification 
factor. The very small numbers (from 0 to 1) that arrive at input <1> from 
the dial are multiplied by this factor. Input <2> is an accumulator set for the 
values received on input <1>. The function creates a matrix from an angle 
of rotation, which is derived from the accumulator contents on input <2> 
multiplied by the scale factor on input <3>. The matrix is sent on output 
<1>. Output <2> contains the accumulator contents from input <2>. 

The second command 

CONNECT DIALS<2>:<1>Rotate; 

connects output <2> of the initial function instance DIALS to input <1> of 
Rotate. The initial function instance DIALS is diagrammed in Figure 2-90. 

DIALS 

Conneted to —~ 
Control Dials 

at System 
Initialization 

<1> 

<2> 

<3> 

<4> 

<5> 

<6> 

<7> 

<8> 

--~ 

~-~► 

---► 

~—~► 

U390103 

Figure 2-90. The Initial Function Instance DIALS 

This initial function instance is connected to the control dials unit when the 
PS 390 is booted. It produces a real number on each of its eight outputs. 
Every output corresponds to one of the eight dials. Connecting output <2> 
of DIALS to input <1> of Rotate feeds values into the Rotate function from 
dial 2 whenever the dial is turned. 

Graphics Principles GT2-97 



The third command 

CONNECT Rotate<1>:<1>Rot Star; 

connects output <1> of Rotate to input <1> of an interaction node called 

Rot_Star. Figure 2-91 represents a rotation node in a display tree. 

3 X 3 matrix 

0390053 

Figure 2-91, Inputs to a Rotate Node 

This connection feeds the rotation matrix from the Rotate function to the 

interactive rotation node. Figure 2-92 is a diagram of the simple Z-rotation 

function network which the commands create. 

DIALS 
<~>...~ Rotate 

<2> 

<3> -► 
-~► 

<4> -► 

<5> -► 

<6> -~ 

<7> -~ 

<8> -► 

Rot_Star 

0390104 

Figure 2-92. Simple Z-Rotation Network 

GT2-98 Graphics Tutorials 



Before the network will start to accumulate values from the dials correctly, 
however, inputs <2> and <3> on Rotate must be primed. The SEND com-
mand is used to send a magnification value of 50 to input <3> and an initial 
value of 0 to input <2> to set the accumulator to an initial value. 

The final command file, with comments in braces, might read as follows. 

Rotate := F:DZROTATE; {Instance of Z-rotate function} 

CONNECT DIALS<2>:><1>Rotate; {Connect dial 2 to rotate function} 

CONNECT Rotate<1>:<1>Rot_Star; {Connect output of rotate function} 

{to rotate node} 

SEND 0 TO <2>Rotate; 

SEND 50 TO <3>Rotate; 

7.3.5 Active and Constant Inputs 

{Set accumulator to zero} 

{Multiply values from dial by} 

{magnification factor of 50} 

A function instance can have active or constant input queues. An active 
input receives data from an interactive device or from the output of another 
function instance. Input <l> of F:DZROTATE is an active input, for exam-
ple. Each datum or token that arrives on an active input is a trigger for the 
function to execute. When the function is triggered, the datum is consumed. 
Constant input queues, however, are primed with a value, usually by the 
SEND command, and that value remains on the input queue until it is re-
placed by another constant value from another SEND command. For exam-
ple, inputs <2> and <3> of F:DZROTATE are constant inputs. The values 
that are sent to those inputs prime the function. The value on input <2> sets 
the accumulator to an initial value. The value on input <3> is a scale factor 
which is used to magnify the real numbers sent from the dial. 

Section RM2 Intrinsic Functions indicates whether a function has active or 
constant inputs: an input followed by a "C" in the "Intrinsic Functions" 
diagrams is a constant input. There is also a command named SETUP 
CHESS, which allows you to change the constant or active nature of func-
tion instance inputs. Refer to Section RMl Command Summary for details. 

Graphics Principles GT2-99 



7.3.6 Data-Driven Networks 

Individual functions and the networks they comprise are data driven. This 
means that a function only becomes active when data arrive at its inputs to 
be processed. once a function has executed its task, it dormant again until 
another set of tokens arrives. An entire network is dormant until activity 
occurs at the interactive device to which it is connected. As long as values 
are being sent out from the device, the network is active, converting and 
routing the data. 

7.3.7 Why Function Networks? 

Data driven function networks differ from conventional programming lan-
guages in that they are active only when an event occurs which produces 
data to be processed. Conventional programming languages are best suited 
for data treated as values to be looked at if necessary. whenever data exist 
as asynchronous events and when the arrival of such events causes an op-
eration to occur, then data are best handled by data-driven programs, such 
as function networks. Conventional programs written to handle input from 
interactive devices must regularly poll all the available devices to see if any 
activity has occurred. Once activity is detected, the type of activity has to be 
determined and data have to be processed accordingly. 

A PS 390 with a tablet, 8 control dials, 12 function keys, 32 function but-
tons, akeyboard, and a communications line to the host has a total of 55 
independent devices which can input data. Programming in a conventional 
language requires each device to be polled regularly to determine if its 
status has changed. Function networks, however, capitalize on the fact that 
few of these devices are ever used at the same time. A human user of the 
system has only two hands and typically uses only one or two of the devices 
at a time. The data-driven nature of function networks schedules operations 
so that devices which are unused at any time do not burden the central 
processing unit of the PS 390, the Joint Control Processor. 

Function networks are designed to filter data and perform data formatting 
and selection. They filter input data, for example, reducing a stream of data 
indicating tablet positions to just those data when the the tip switch of the 
stylus is pressed. They reformat input data, converting a dial's value, for 

GT2-100 Graphics Tutorials 



instance, into a rotation matrix. And they select and route data, by connect-
ing to a node in a display tree, for example, or transmitting data back to the 
host application program. They do not operate like conventional computer 
programs, as single processes whose parts communicate via subroutine 
calls. Instead, they are collections of autonomous, cooperative processes 
whose parts communicate via packages of information which are sent out 
while the originator of the information goes on to do something else. 

7.3.8 Creating Function Networks 

Function networks are created as ASCII files. They can be entered by hand 
or generated automatically from the graphical function network editor pro-
gram, NETEDIT. This program is documented in Section TT4 Function Net-
work Editor. Briefly, networks are created using a drawing program which 
lets you select and place symbols which represent functions. Connections 
are made by routing arcs between outputs and inputs, much like a wiring 
diagram. When a network drawing is complete, code can be generated auto-
matically. 

A network debugging aid, NETPROBE, is also available. It is documented in 
Section TTS Function Network Debugger. For more information on networks 
and their use, refer to Sections GT6 Function Networks 1 and GT7 Function 
Networks II. 

7.4 Summary 

New Information Presented 

1. Most operation nodes in a display tree can have their contents 
changed. Nodes that are set up for interaction have their contents 
updated with values from an interactive device. 

2. The path between a device and a node is a function network. The 
network, composed of individual functions, receives data from a 
physical device such as a dial, manipulates those data, and produces 
the correct data type to update the node. 

Graphics Principles GT2-1 of 



3. Networks are data driven. This means that they are only active when 
there is data to process. 

4. Programming with PS 390 functions allows you to customize the op-
erations of the interactive devices to suit any programming needs. 

What Next? 

Realtime interactive manipulation of models can be accomplished by the 
use of function networks, which are used to complete the path between the 
interactive devices and the interaction nodes in the display tree. 

The next section describes how polygonal models can be rendered. The 
options of the POLYGON command will be described as well as a discus-
sion of the rendering operations available with the PS 390 rendering firm-
ware . 

8. Polygonal Rendering 

The PS 390 has the capability of multiple rendering operations, yielding 
both calligraphic quality wireframe renderings as well as shaded models. 
There are two types of rendering operations that may be applied to poly-
gons; those performed in the dynamic viewport, and those performed in the 
static viewport. Dynamic viewport rendering operations include backface 
removal, sectioning by a section plane, and cross-sectioning. Static viewport 
rendering operations include hidden-line removal, wash, flat, Gouraud, and 
Phong shading. 

Rendering operations have effect on polygonal models only. Vector list, 
text, and curve primitives are not affected by rendering operations. 

Renderings are created from collections of polygons defined by the POLY-
GON command. A polygon is defined by the coordinates of its vertices, with 
the edges defined by the lines that connect those vertices. Polygons in the 
PS 390 are limited to a minimum of three vertices and a maximum of 250, 
all of which must lie in the same plane. 

GT2-102 Graphics Tutorials 



8.1 Defining Polygonal Objects 

Polygons are defined by the POLYGON command, which defines a data 
node in the data structure of an object. The POLYGON command consists 
of one or more polygon clauses, which define an individual polygon or face 
of an object by specifying the coordinates of its vertices. By definition, poly-
gons are closed implicitly, so the first vertex is not repeated when defining a 
polygon. 

Each polygon of an object must be defined with a POLYGON clause. A 
POLYGON command can contain an unlimited number of polygon clauses. 
Each polygon clause has 3 different options which associate characteristics 
or attributes with the individual polygons. The vertex definition in the 
POLYGON command also has options to specify additional characteristics. 

The POLYGON command is: 

Name :_ <polygon> <polygon> <polygon>; 

where each polygon clause has the definition: 

<polygon> _ [WITH ATTRIBUTES namel] [WITH OUTLINE h] [COPLANAR] 

POLYGon <vertex> ... <vertex> 

Following is a brief description of each of the parameters in the command, 
and of the vertex definition contained in the command. 

WITH ATTRIBUTES is an option that assigns the attributes defined by 
name 1 for all polygons until superseded by another WITH ATTRIBUTES 
clause. This option is used to specify color, diffuse reflection, specular high-
lights and the degree of transparency for polygons to be rendered in the 
static viewport. Attributes may be specified for both the front and back 
sides of a polygon. 

WITH OUTLINE is an option that specifies the color of the outlines overlaid 
on polygon borders of shaded images, and the color of polygon edges in 
hidden-line renderings. The specifier (h) in the WITH OUTLINE clause is 
an index into the Spheres and Lines Attributes table. 

COPLANAR declares that the specified polygon and the one immediately 
preceding it have the same plane equation. This option is used when defin-
ing polygons that represent cavities or holes in an object. 

Graphics Principles GT2-103 



A <vertex> definition has the form [S] x,y,z [N x,y,z] [C h[,s[i]]] 

where 

S indicates that the edge drawn between the previous vertex and the current 

one represents a soft edge of the polygon. If S is specified for the first 

vertex in a polygon definition, the edge connecting the last vertex with the 

first is soft. 

N indicates a normal to the surface with each vertex of the polygon. Nor-

mals are used only in smooth shaded renderings. Normals must be specified 

for all vertices of a polygon or for none of them. If normals are not speci-

fied for a polygon, their values default to the values for the normal to the 

plane in which the polygon lies. 

x,y, and z are coordinates in aleft-handed Cartesian system. 

C indicates a color to be assigned to the vertex. This color will be interpo-
lated across the polygon to the other vertices during shading operations in a 
static viewport. Color must be specified for all vertices of a polygon or for 
none of them. 

h,s,i are coordinates of the Hue/Saturation/Intensity color system. 

For a more detailed explanation of the POLYGON command and its options 
refer to Section GT13 Polygonal Rendering. 

8.1.1 Constructing Surfaces and Solids 

There are two classes of polygons which may be defined: surfaces and sol-
ids. Solids enclose a volume of space while surfaces do not. Different types 
of rendering operations require specific types of models, either surfaces or 
solids. For example, cross-sectioning a polygonal model requires that it be 
defined as a solid, whereas shading a polygonal model can be done on 
either a surface or a solid. 

Surfaces can have edges belonging to just one polygon, or edges common to 
three or more polygons (Figure 2-93). 

GT2-104 Graphics Tutorials 



0390420 

Figure 2-93. Surface Object 

In a solid, each edge of a polygon must coincide with the edge of an adja-
cent polygon, and cannot have three or more polygons that have a single 
edge in common (Figure 2-94). 

Figure 2-94. Solid Object 

Determining the nature of a polygonal object, either surface or solid, is 
accomplished not only by the construction, but by its placement beneath a 
rendering node determined by the SURFACE_RENDERING and 
SOLID RENDERING commands. These commands are discussed in Section 
8.4. 

8.2 Specifying Vertices for Surfaces and Solids 

In solids, the direction in which the vertices are ordered within each polygon 

clause has important consequences for rendering operations. The listing of 
the vertices (as indicated by the order in the polygon clause) should move in 
a clockwise direction. 

Graphics Principles GT2-~ OS 



Also important is the direction of the edges in common edge pairs. In all 
correctly defined solids, each edge is repeated in two different polygons. 
For each pair of adjacent polygons, the common edges should run in oppo-
site directions. This is true for any edge of any correctly defined solid 
(Figure 2-95) . 

Figure 2-95. Correctly Constructed Icosahedron 

For surfaces, the vertex ordering rule is less stringent. Vertices in surfaces 
do not have to be ordered in a clockwise direction, although if so defined, 
provide for easy upgrade to solids. Although the vertices of a surface do not 
need to be ordered in a clockwise direction, they should be ordered so that 
common edges of adjacent polygons run in opposite directions. 

8.3 Memory Requirements 

Rendering operations require a large block of mass memory be available as 
working storage. Before the rendering process can execute, a workspace 
must be reserved in mass memory. The PS 390 can automatically calculate 
the required working storage for you, or you may explicitly reserve it your-
self. To have the system calculate the working storage for you, enter the 
command: 

RESERVE WORKING STORAGE 0; 

The PS 390 will automatically calculate the amount of memory required, 
and will display the total memory used at the completion of the rendering 
operation. 

GT2-106 Graphics Tutorials 



System calculation of working storage is more efficient in memory usage, 
but requires extra time during the rendering process. To avoid this, work-
ing storage may also be reserved explicitly. The best time to reserve work-
ing storage is immediately after booting, when large requests can be filled 
easily. 

Between 200, 000 to 400, 000 bytes of working storage should be reserved 
when you begin a session. This is also done with the RESERVE_WORK-
ING_STORAGE command. The command syntax for reserving working 
storage is: 

RESERVE WORKING STORAGE n; 

where the current working storage is replaced with another containing at 
least n bytes. 

8.4 Creating Renderings 

A polygonal object must be defined as either a surface or solid before ren-
dering operations can be applied to it. The commands to do this are: 

SURFACE_RENDERING 

SOLID_RENDERING 

The SURFACE_RENDERING command creates an operation node in the 
data structure. The default value of this command declares that all of its 
descendant polygon data nodes define surfaces. 

The SOLID_RENDERING command also creates an operation node in the 
data structure. The default value of this command declares that all of its 
descendant polygon data nodes define solids. 

A POLYGON data node can be displayed by itself. However, if the object is 
to be rendered, it must have a rendering node as an ancestor. All rendering 
and display operations involving the object are done with the rendering node 
rather than the data node itself . 

Graphics Principles GT2-107 



Syntax for the rendering commands i s 

Name := SURFACE_RENDERING APPLIED TO Namel; 

Name := SOLID_RENDERING APPLIED TO Namel; 

where: 

Namel names either (a) a POLYGON node, or (b) an ancestor of one or 
more POLYGON nodes. If (b) is the case, then any rendering referring to 
Name is performed on all of the POLYGON objects descended from Namel 
at once. 

An appropriate integer sent to a SOLID_RENDERING or SURFACE_REN-
DERING node produces a rendering of that node's descendant polygonal 
object. Refer to Sections RMI Command Summary and GT13 Polygonal Ren-
dering for more information on the rendering commands. 

8.5 Rendering operations 

There are two types of rendering operations available with the PS 39~. Ren-
dering operations are divided into those performed in the dynamic viewport 
and those performed in the static viewport. Rendering operations performed 
in the dynamic viewport include the following: 

• Backface removal (for solid wireframe polygonal models) 

• Sectioning (for solid or surface wireframe polygonal models) 

• Cross-sectioning (for solid ~vireframe polygonal models) 

8.5.1 Backface Removal 

Backface removal provides an approximation of a hidden-line rendering's 
appearance. In Backface removal, all polygons facing away from the viewer 
are removed. Because the Backface removed rendering resembles an unfin-
ished hidden-line rendering, it can be used to give a rough idea of the hid-
den-line rendering. 

Only solids can be subjected to Backface removal; the operation has no 
visual effect on surfaces. 

GT2-108 Graphics Tutorials 



(Before) (After} 

0390423 0390424 

Figure 2-96. Object Before and After Backface Removal 

8.5.2 Sectioning 

Sectioning makes use of a sectioning plane that passes through an object 
and divides the object into two pieces. This operation yields a "cutaway 
view" of the object. The part of the object that is behind the plane is dis-
carded and only the front section of the object is displayed. 

(Before) 

0390425 

Figa~re 2-97. Object Before and After Sectioning 

0390426 

Graphics Principles GT2-109 



A sectioned object may be saved and then subjected to further rendering 
operations such as resectioning, or backface removal. 

8.5.3 Cross-sectioning 

The cross-sectioning operation makes use of a defined sectioning plane to 
create a cross section of an object. When this operation is used, both sides 
of the object are discarded and only the slice defined by the sectioning 
plane remains. Cross-sectioning has effect on solid polygonal models only. 

(Before} 

U390427 

(After} 

;%~ 
r 

U390428 

Figure 2-98. Object Before and After Cross-Sectioning 

8.5.4 Static Viewport Renderings 

Rendering operations that apply to objects in a static viewport include hid-
den-line removal, wash shading, flat shading, Gouraud shading, and Phong 
shading. 

GT2-I1 D Graphics Tutorials 



8.5.5 Hidden-Line Removal 

Hidden-line removal generates a view in which only the unobstructed por-
tions of an object are displayed. All polygon edges or parts of edges that 
would be obscured by other polygons are removed. 

Hidden-line removal may be performed on both solids and surfaces. 

(Before Hidden-Line Removal} 

0390429 

0390423 

(After Hidden-Line Removal) 

0390431 

0390430 

Figure 2-99. Object Before and After Hidden-Line Removal 

8.5.6 Wash Shading 

Wash shading is the quickest and most simple of the shading operations. 
Wash shading produces an object with area-filled colored polygons ignoring 

normals, light sources, all lighting parameters, and all depth cuing parame-

ters. This operation does not produce objects that simulate a curved surface. 

Graphics Principles GT2-111 



8.5.7 Flat Shading 

Flat shading considers color, one light source, and depth cuing to shade the 

polygons in the object accordingly. Flat shading produces a faceted surface. 

8.5.8 Gouraud and Phong Shading 

Gouraud and Phong shading are both examples of smooth shading. These 

shading processes are the most complex of all the shading styles. The color 

of a polygon is varied across its surface, considering the normals at the 

vertices of the polygon, the direction and color of various active light 

sources, the attributes of the polygon (both color and highlights), and depth 

cueing. Objects that simulate a curved surface can be produced with both 

Phong and Gouraud shading. 

8.6 SHADINGENVIR~NMENT Function 

The initial function instance SHADINGENVIROi~fN~NT allows you to con-

trol various non-dynamic factors of shaded renderings. This function con-

trols factors that affect the total environment in which shading operations 
are performed, as well as specific polygonal characteristics. Things such as 
background color, viewport specification, polygon edge enhancement, edge 
smoothing, and transparency are controlled by the SHADINGENfVIRON-
MENT function. 

For more information on rendering operations and the SHADINGEN-
VIROI~fN~NT function, refer to Section GT13 Polygonal Rendering. 

8.7 Summary 

1. Polygons are defined by the POLYGON command, which defines a 

data node in the data structure of an object. Polygonal objects are the 
only objects eligible for rendering operations. 

2. The POLYGON command has the syntax: 

Name :_ <polygon> <polygon> ... <polygon>; 

where each polygon clause has the definition: 

<polygon> _ [WITH ATTRIBUTES namel] [WITH OUTLINE h] [COPLANAR] 

POLYGON <vertex> ... <vertex> 

GT2-112 Graphics Tutorials 



3. A polygon must be defined as a surface or solid before rendering 
operations can be applied. The commands to do this are: 

SURFACE RENDERING 

SOLID_RENDERING 

4. All types of rendering operations require an ancestral rendering 
node. The syntax for the rendering commands is: 

Name := SURFACE_RENDERING APPLIED TO Namel; 

Name := SOLID_RENDERING APPLIED TO Namel; 

where Namel names either a POLYGON node or an ancestor of one 
or more POLYGON nodes. 

5. Rendering operations require a large block of mass memory. This 
working storage may be reserved automatically by the system or you 
may reserve it explicitly. To have the system allocate working stor-
age, the command is: 

RESERVE WORKING_STORAGE 0; 

To explicitly reserve a block of memory, the syntax of the command 
1S' 

RESERVE WORKING_STORAGE n; 

where n is the size of the block you wish to reserve. 

6. Dynamic viewport renderings include backface removal, sectioning 
by a section plane, and cross-sectioning. 

7. Static viewport renderings include hidden-line removal, and wash, 
flat, Gouraud, and Phong shading styles. 

8. The initial function instance SHADINGENVIRONMENT controls fac-
tors affecting the total environment in which shaded renderings oc-
cur, as well as specific polygonal characteristics. 

Graphics Principles GT2-113 





PS 390 TUTORIAL DEMONSTRATIONS 

LIMITED SUPPORT DISCLAIMER 

The PS 390 Tutorial Demonstrations are distributed by 
Evans &Sutherland as a convenience to customers and 
as an aid to understanding the capabilities of the 
PS 390 graphics systems. Evans &Sutherland Cus-
tomer Engineering supports the Tutorial Demonstra-
tions to the extent of answering questions concerning 
the installation and operation of the programs, as well 
as receiving reports on any bugs encountered while the 
programs are running. However, Evans &Sutherland 
makes no commitment to correct any errors which may 
be found. 

Copyright ©19 8 7 

EVANS &SUTHERLAND COMPUTER CORPORATION 

P.O. Box 8700, 580 Arapeen Drive 

Salt Lake City, Utah 8 410 8 





GT3. PS 390 TUTORIAL DEMONSTRATIONS 

CONTENTS 

1. INTRODUCTION TO THE TUTORIAL DEMONSTRATIONS . . . 1 

1.1 The Components of the Tutorial Demonstration Package  4 
1.2 Required Interactive Devices   4 
1.3 Host Computer Requirements   4 

2. ACCESSING THE TUTORIAL DEMONSTRATIONS   5 

Z.1 Using the Tutorial Command File   5 

3. RUNNING THE TUTORIAL DEMONSTRATION PROGRAMS . . 5 

3.1 Program: TUTORIAL DEMONSTRATION MENU -GLOBE AND 
SHUTTLE  6 

3.2 Program: PROGRAMMING  8 
3.3 Program: WINDO`V/VIEWPORT  12 
3.4 Program: FIELD_OF_VIEW  15 
3.5 Program: LOOK AT   1 ~ 
3.6 Program: CHARACTERS   2Q 
3.7 Program: LEVEL OF DETAIL  22 
3.8 Program: NETWORK EXECUTION   24 
3.9 Program: PICKING  27 
3.1~ Program: WORKSPACE  29 

t 





Section GT3 

PS 390 Tutorial Demonstrations 

1. Introduction to the Tutorial Demonstrations 

The eight Tutorial Demonstration programs are designed to clarify graphics 
programming concepts explained in the tutorial sections of the PS 390 
Document Set. 

The programs display images you can interact with using the data tablet, 
control dials, and function keys. Typically, the keys and dials are pro-
grammed to translate, rotate, and scale the objects displayed and to change 
the values in the PS 390 graphics programming commands that are being 
illustrated. Programmed operations are shown in the LED displays above 
each control dial or function key. 

The following concepts are illustrated in the programs. 

• Programming the PS 390 

In three separate areas of the screen, you are shown a sequence of 
PS 390 commands, a representation of the structures these commands 
create in memory, and the picture that the commands produce on the 
screen. As you scroll through the commands, the contents of memory 
and the screen display are changed when each command takes effect. 

• Windows and Vier ports 

This program illustrates the mapping of an orthographic window in the 
world coordinate system to a viewport on the PS 390 screen. In one area 
of the screen, a sphere is shown enclosed in a window. In another, the 
sphere is shown as it appears when displayed on the PS 390 screen. To 

the side, the variables used in the OW and VIEWP~RT commands 

are listed. Using function keys and dials, you can change the dimensions 

of the window and the viewport and control the size and orientation of 

the sphere. The relation between windows and viewports is clearly shown 

in the resulting changes to the displayed image of the sphere. 

PS 390 Ti~torial Demonstrations GT3-1 



• The FIELD OF VIEW Command 

To demonstrate the FIELD_OF_VIEW command, a sphere is shown en-
closed in a perspective viewing area. In another portion of the display, 
the sphere is shown as it would appear on the PS 390 screen. The values 
entered in the FIELD_OF_VIEW command are listed to one side. Using 
dials you can change the viewing angle and front and back boundaries of 
the viewing area to see how the image of the sphere is affected on the 
screen. 

• The LOOK Command 

This program shows how the LOOK command rotates and translates all 
points in the world coordinate system to simulate a vantage point and a 
line of sight towards an object. One area of the screen shows a collection 
of objects and an eye that can be moved in any direction to change values 
in the LOOK command. A second area shows the rotations and transla-
tions that are performed by the PS 390 to create the view specified in the 
LOOK command. A third area shows the screen display. Dials are pro-
grammed to change the "at" and "from" points in the LOOK command 
and to change the "up" vector. 

• Character Modes 

The three ways in which characters can be used in an image are illus-
trated in this program. Three cubes are displayed with each of their faces 
labeled. The cubes can be rotated, translated, and scaled using control 
dials. The first cube contains world-oriented characters which are trans-
formed with the cube. The second cube contains screen-oriented charac-
ters which always remain at the same size and in a plane parallel to the 
screen, so that they are always legible. The third cube contains screen-
oriented characters which are "fixed" so that they do not vary in intensity 
as they move forwards and backwards (in the Z axis) . 

• Level of Detail Settings 

This demonstration shows how level-of-detail nodes can be used in a 
structure to display changing images of an object in response to changing 
values from a function network. A display structure is shown with a SET 
node connected to a network and IF nodes at the head of each of twelve 
hierarchial branches. As the value in the SET node is updated from the 

GT3-2 Graphics Tutorials 



network, a different branch is traversed. This produces an animation se-
quence of 12 frames in which the ends of a cylinder twist and untwist in 
opposite directions. 

• Execution of a Function Network 

This program illustrates the relationship between interactive devices, 
function networks, interactive nodes in a display structure, and a dynami-
cally changing image. In one area of the screen, an object is shown which 
consists of two wheels and atie-bar. A display structure is shown for the 
structure of this object. The structure contains interactive rotation and 
translation nodes connected to a dial through a function network. As you 
turn the dial to rotate the wheels, the function network is shown accepting 

data, converting it to matrices, and updating the nodes in the display 
structure. 

o Picking 

To illustrate picking, this program shows a collection of objects consisting 
of two cubes, a B-spline curve, a character string and a labels block. The 
display structure for these objects is shown with the required SET PICK-

ING node and pick identifier nodes. A picking network is connected to 
the display structure. When a vector, character, or label is picked, the 
branch traversed in the display structure is highlighted and the informa-
tion returned from the pick on the outputs of the function F:PICK:Il~TFo is 
shown. 

This manual explains how to install the Tutorial Demonstrations and how to 

run each of the programs. 

The first section describes the components of the Tutorial Demonstrations 

and explains the interactive devices and host computer requirements for 

running the demonstrations. 

The second section explains how to install the Tutorial Demonstration pro-

grams on your system. 

The third section gives complete operating instructions for each of the pro-

grams. 

PS 390 Tutorial Demonstrations ~T3-3 



1.1 The Components of the Tutorial Demonstration Package 

The PS 390 Tutorial Demonstration package consists of several files distrib-
uted on magnetic tape. 

The tape contains control networks, the Tutorial Demonstrations Menu from 
which programs are chosen, the programs themselves, and several character 
fonts. Also included are the vector lists for the primitives used in the tutori-
al sections of the PS 390 Document Set. 

1.2 Required Interactive Devices 

The following interactive devices are required to run the Tutorial Demon-
stration programs . 

• Data Tablet and Stylus 

• Keyboard with Function Keys 

• Control Dials 

The data tablet and stylus are used to pick programs from the menu and to 
interact with the objects displayed by some of the programs. The function 
keys and control dials are programmed through function networks to per-
form various graphical operations such as scaling, rotating, and translating 
the images displayed and to change dynamically the values in the PS 390 
commands being illustrated. The operation controlled by each function key 
and control dial is displayed in its red LED label. 

1.3 Host Computer Requirements 

The eight programs that comprise the Tutorial Demonstrations are run lo-
cally on the PS 390. There are no host computer requirements for running 
the programs. 

The files that are distributed on the tape must be loaded onto a host com-
puter and then transferred to the PS 390. There are two requirements for 
the host computer for storing and transferring the files. First, it must have 
sufficient memory to contain the files on the tape: approximately 1166K 
bytes are needed. Second, the host must be able to communicate with the 
PS 390 so that the files can be transferred. 

GT3-4 Graphics Tutorials 



2. Accessing the Tutorial Demonstrations 

The complete Tutorial Demonstrations package takes between 15 and 20 
minutes to transfer from the host to the PS 390, depending on the current 
work load on the host. 

2.1 Using the Tutorial Command File 

Individual sites will need to set up a method on the host computer to gain 

access to the Tutorial Demonstrations as well as the objects that are re-
quired by some of the tutorial sections and the sample programs. A com-

mand file displaying the following menu should be available. 

PS 390 GRAPHICS PROGRAMMING TUTORIAL 

Set to be loaded 

1. Demonstrations 

2. Sports Car 

3. Molecule 

4. Complete Robot 

5. Sphere and Cylinder 

6. Sample Programs 

First used in section . 

GTS. "PS 390 Command Language" 

GT9. "Conditional Referencing" 

GT6. "Function Networks I" & GT7. 

"Function Networks II" 

GT5. "PS 390 Command Language" &GT9. 

"Conditional Referencing" 

GT16. "Sample Programs" 

Enter the number of the selection you want. Loading is complete when 

the host operating system prompt is displayed again. 

3. Running the Tutorial Demonstration Programs 

This section describes ho~v to run each of the Tutorial Demonstration pro-

grams. Each description is organized as follows. 

Typical screen displays are illustrated. An abstract points out some of the 

features of the PS 390 that are shown in the demonstration. The pro-

grammed functions and the LED labels that appear on control dials and 

function keys are listed. Notes on usage give instructions for running the 

program. 

PS 390 Ti~torial Demonstrations GT3-S 



3.1 Program: TUTORIAL DEMONSTRATION MENU -GLOBE AND 
SHUTTLE 

Typical Program Display 

PS 300 Series 

Progrenaning 
Overview 

11 indow/ 
View port 

Field 
Of 

View 

Look 
At 

Characters 
Level 

Oi 
Detail 

Network 
Execution 

picking X orkspace 

Tutorial Demonstrations 

Abstract 

This program serves both as a demonstration in itself and as the menu from 
which the other Tutorial Demonstration programs are picked. Several win-
dows and viewports are combined to produce a very complex dynamic im-
age. In the center of the screen is the earth spinning on its axis. Orbiting the 
earth is a Space Shuttle, and closely hugging the shuttle in a tight orbit of 
his own is one of the crew in a Manned Maneuvering Unit. Overlapping the 
globe to the right is the menu from which the programs are selected. 

GT3-6 Graphics Tutorials 



Programmed Functions 

Control Dials 

Dl - OS X ROT (globe and shuttle) 

D2 - OS Y ROT (globe and shuttle) 

D3 - OS Z ROT (globe and shuttle) 

Function Keys 

F10 - STRT/STP 

F11 - RESET 

Notes on Usage 

To use this program as a menu, pick the demonstration you want to run by 
positioning the cursor over the name and pressing the stylus down on the 
data tablet. Whenever you exit from a program by pressing F12, you are 
returned to this display. 

The function keys and dials let you interact with the spinning globe and 
space shuttle displayed in the center of the screen. Dials 1 through 3 let you 
rotate the globe and shuttle around the X, Y, or Z axes. The "OS" in the 
dial labels stands for Object Space. An object rotates in Object Space when 
it rotates about a set of axes which are different from the world coordinate 
system axes. 

Function key F10 starts and stops the rotation of the globe and shuttle. 

Function key F11 resets the orientation of the globe and shuttle. 

PS 390 Tutorial Demonstrations GT3-7 



3.2 Program: PROGRAMMING 

Typical Program Display 

 r--

O~~Y ~~~ 

~~* 

Cube~totation 

>> <~ 

f~0 —(~) 

Cub 

CR.~'r i n t  DLABE L4 

3 X 3 
MATRIX 

uh ~ 

~~~ a .a ~ , ~ 
~~ ~r..~
►,.. .~

VECTOR
LIST

PS 300 Mass Merr~ry

PS 300 Screen

Abstract

CUOE_ROT ~ ~ ROTot• 0 THEN CUOEs

01SPl~y CUSE_ROTs

RENov• CUSEs

I Cubs ~ot~tlo~ not~ork I

CUSE_ROTATION , ~ F:OYROTATEs

CONNoct OIALS<4>,<1►CUSE_ROTATIONs
CONN~ot CUSE_ROTATION~1~,<1>CUSE_ROTs

SENO 0 to ~2>CUSE_ROTAtIONs

SENO tA0 to <3>CUSE_ROTATIONs

CR_PRINT : ~ F:PRINT]

CONN~ct CUSE_ROTATION~2►,<1►CR_PRINt;

CONNoct CR_PRlNT~t>: <1>OLASEL4;

PS 300 Conun~e~nd s

This is a graphical introduction to programming the PS 390 with commands
and function networks. It illustrates how PS 390 commands create struc-
tures in memory and affect images being displayed, as well as how some of
the interactive devices are programmed with simple networks.

After an initial introductory message, the screen is divided into four view-
ports representing the contents of the display list, the contents of mass
memory, the PS 390 screen, and commands which are entered. When you
turn control dial 8, commands appear in the Commands viewport. Each
time a complete command is displayed, the display in the other viewports is

changed to reflect updates to mass memory, the display list, or the PS 390
screen.

GT3-8 Graphics Tutorials

Programmed Functions

Control Dials Function Keys

D4 - (rotate the object displayed)

D8 - (progress through program)

Notes on Usage

F1 - (used with conditional

F2 - referencing commands)

F11 - RESET

F12 - EXIT

When the Programming demonstration is chosen, the following message is
displayed.

.~n~rnDurtinn to

~~ 3~D }~ru~r ~mmi u~ t ~p urn
— ~is}~1~~ D~t~ strurfurps
— ~~~~—~riupn funr~ tan np~uuorks

Turn Dial 8 (bottom r ight dial)

clockwise to progress through

this tutor ial . The effects of

PS 300 com mands on the screen

and moss memory wi l l be shown.

IAS0220

Dial 8 controls your progress through this program. As you turn the dial,

the PS 390 commands will scroll in the lower right viewport of the screen.

As the semicolon terminator for each command becomes visible, the effect
of the command will be reflected in the other viewports on the screen. Func-
tion keys F1 and F2 and control dial 4 become active as the commands
controlling them become visible.

PS 390 Tutorial Demonstrations GT3-9

Notes on Usage (continued)

The program starts by showing how the VECTOR LIST command creates a
data node (shown as a. square) called CUBE in memory. Nothing appears
on the screen or in the Display List, however, until the DISPLAY command
is used. A rotation node (shown as a circle) called CUBE_ROT is created in
memory using the ROTATE command. Since this command is applied to
CUBE, the node becomes part of the same display structure. The two enti-
ties are displayed simultaneously as one bright cube, because the display
processor is traversing both nodes. CUBE is then removed from the display
list and CUBE_ROT is displayed alone.

Next, the capability of the PS 390 to do graphical manipulations locally is
shown through the use of functions. An instance of the Y-rotation function
F:DYROTATE is created and connected to control dial 4. This dial can now
be turned to rotate the cube displayed in the PS 390 Screen viewport. To
see the value of the rotation, an instance of the print function (F:PRINT) is
created and connected to dial label 4. When dial 4 is turned, the value of
the rotation will now be displayed in dial 4's LED and in the mass memory
viewport.

A scale node named CUBES is now created and applied to CUBE. This
shows how one vector list can be displayed in two different ways, one
through CUBE_ROT, and one through CUBES . Now an instance node (a
triangle) called VIEW is created, the display is initialized, and VIEW is
displayed. At first, VIEW groups nothing more than the rotation node
CUBE ROT and the data node CUBE. Then the INCLUDE command is
used to include CUBES in VIEW also, so both CUBE_ROT and CUBES
are displayed with the one display command.

CUBES is then redefined as a 2x2 scaling matrix applied to CUBE_CHAR,
a null structure which has not yet been defined. CUBE_CHAR is then de-
fined as the character string "PS 390", which is displayed on the screen.
CUBES is now redefined to be a special 2x2 skewing matrix to italicize the
characters. Using an alternate character font, the string is then displayed in
an Old English character set.

GT3-10 Graphics Tutorials

Notes on Usage (continued)

The LOOK command is used to view the structure being displayed from an
arbitrary point in space. The use of BEGIN_STRUCTURE ... END_STRUC-
TURE is shown as an alternative to naming every command. The
FIELD_OF VIEW command is applied to the structure to create a perspec-
tive view of the cube.

The display structure is next enhanced to include conditional references to
different branches of the hierarchy. Function keys are connected to the SET
LEVEL OF_DETAIL node. F1 controls display of one branch of the hierar-
chy, F2 controls display of the other. A similar operation is performed with
the SET CONDITIONAL_BIT node, but now the objects can be displayed
independent of each other, as determined by the CONDITIONAL BIT test.
The cube is displayed if conditional bit one is set, the text if bit two is set.
Another way to conditionally branch is shown, using the SET RATE node.
The number of refresh frames on and off are given, and a phase attribute is
set so that for 20 frames, the phase attribute is on and for 40 frames it is
off. By doing a test of the phase attribute, the cube is displayed for 20
frames and the text for 40 frames.

Note that you can go back through the program by turning dial 8 in the
opposite direction.

Function key F11 resets the screen to the initial display.

Function key F12 leaves this program and displays the Tutorial Demonstra-
tions Menu again.

PS 390 Tutorial Demonstrations GT3-11

3.3 Program: WINDOW/VIEWPORT

Typical Program Display

Abstract

~y

w orld 3 ace
(Oelique ~iew)

-window Parameters

X - -1.000 1.000
Y - -1.000 . 1.000
iPront - 4.000
Back - 6.000
(Y/X)~ - 1.000

- Yiewport Parameters

H orisontal • -1.000 : 1.000
Vertical - -1.000 : 1.000
lntenalt~ - 0.000 : 1.000
(Yert/H or)~ - 1.000

Aspect ratio

This program shows the relationship between windows and viewports and
illustrates the use of the OW and V.IEWPORT commands.

Two areas of the screen show two views of the world coordinate system, one
from the +X axis, and one from an oblique angle. A sphere is shown in the
world coordinate system enclosed in an orthographic window. Another area
of the screen shows the sphere as it would de displayed on the PS 390
screen in afull-screen viewport. Values for the OW and VIEWPORT
commands are shown to the left.

GT3-12 Graphics Tutorials

Abstract (continued)

In one mode of operation, dials let you change the X and Y values of the
window and the location of the front and back boundaries. In another mode,
the dials change the horizontal and vertical values of the viewport and the
intensity setting. The aspect ratio for the window (X/Y) and for the viewport
(vertical/horizontal) are also shown.

Programmed Functions

Mode 1

Control Dials

D1 WIN XMIN (window's minimum X value)

D2 - WIN YMIN (window's minimum Y value)

D3 WIN ZMIN (window's minimum Z value)

D4 unused

D5 WIN XMAX (window's maximum X value)

D6 WIN YMAX (window's maximum Y value)

D7 WIN ZMAX (window's maximum Z value)

D8 unused

Mode 2

Control Dials

Dl - W X CENT (move window along X axis)

D2 - W Y CENT (move window along Y axis)

D3 - W Z CENT (move window along Z axis)

D4 - unused

D5 - OBJ XROT (rotate objects around the X axis)

D6 - OBJ YROT (rotate objects around the Y axis)

D7 - OBJ ZROT (rotate objects around the Z axis)

D8 - OBJ SIZE (scale objects)

Mode 3

Control Dials

D1 - VP H MIN (viewport's minimum horizontal value)

D2 - VP V MIN (viewport's minimum vertical value)

D3 - VP I MIN (viewport's minimum intensity value)

D4 - VP HCENT (move viewport along X axis)

PS 390 Tutorial Demonstrations GT3-13

Programmed Functions (continued)

Control Dials

D5 - VP H MAX (viewport's maximum horizontal value)

D6 - VP V MAX (viewport's maximum vertical value)

D7 - VP I MAX (viewport's maximum intensity value)

D8 - VP VCENT (move viewport along Y axis)

Function Keys

F1 - MODE 1

F2 - MODE 2

F 3 - MODE 3

F4 - DEPTH CL (depth clipping)

F11 - RESET

F12 - EXIT

Notes on Usage

In Mode 1 (when function key F1 is pressed) the dials change the window's
X, Y, and Z minimum and maximum values.

In Mode 2 (when function key F2 is pressed) the dials let you move the
window along the X, Y, and Z axes and rotate and scale the sphere.

In Mode 3 (when function key F3 is pressed) the dials let you change the
vertical and horizontal minimum and maximum values for the viewport and
the minimum and maximum values for the intensity range. In this mode of
operation, you can also move the viewport along the X and Y axes.

Depth clipping is on when the program is first called. Use function key F4
to turn it on and off.

Function key F11 resets the program.

Function key F12 leaves the program and displays the Tutorial Demonstra-
tions Menu again.

GT3-14 Graphics Tutorials

3.4 Program: FIELD_oF VIEW

Typical Program Display

FOV = 28.00
Front = 4.00
Back = 6.00

Abstract

Perspective views of objects are created using the FII~;LD_QF_V~W com-
mand. This program illustrates how to use that command. Two viewports
show the world coordinate system from two different vantage points. In
each, a sphere is shown enclosed in a perspective viewing area. A third

viewport shows the sphere as it would be displayed on the PS 390 screen.

Values for command variables (viewing angle and front and back bounda-

ries) are also shown. Dials allow you to change the viewing angle, the loca-

tion of front and back boundaries, and the size and orientation of the

sphere.

PS 390 Tutorial Demonstrations ~T3-1 S

Programmed ~'i~netions

Control Dials Function Keys

Dl - WS X ROT

D2 - WS Y ROT

D3 - WS Z ROT

D4 - SCALE

D5 - FOV ANGL (field-of-view angle)

D6 - FRONT

D7 - BACK

D8 - BOTH

F11 - RESET

F12 - EXIT

Notes on Usage

The FIELD_OF VFW command (abbreviated to FOV) encloses an object
in a viewing space shaped like a frustum (a section of a pyramid). The eye
point, established by the LOOK command, is at the apex of the pyramid.
The top and bottom planes of the frustum are the front and back boundaries
in the FOV command.

Dials 1 through 4 manipulate the sphere, allowing you to rotate and scale it.

Dial 5 controls the viewing angle. Notice that as the angle increases, the size
of the image on the screen shrinks and vice versa. A larger viewing angle
encloses more of the coordinate system in the viewing space, a smaller
viewing angle encloses less.

Dials 6 through 8 move the front and back boundaries (clipping planes) of
the viewing area. Dial 8 moves both boundaries together.

Function key F11 resets the program.

Function key F12 leaves the program and displays the Tutorial Demonstra-
tions Menu again.

GT3-16 Graphics Ti~torials

3.5 Program: LOOK AT

Typical Program Display

f

R orld Sppace
(Before Look At Xiorin)

r Look P a r arr~e t o r s

FROM:0.00000.0.00000.-3.51563

AT :0.00000.0.00000.1.00000

U P :0 .00000.1 .00000.1 .00000

Abstract

A orld Space
(Ai ter Look At Xiorm)

(lth a window about AT)

• •

This deceptively simple program illustrates how the LOOK command works.

In one viewport, the world coordinate system is shown containing a cube,

sphere, cone, and cylinder, the three axes, and an eye. This viewport repre-

sents the world coordinate system before the LOCK transformation is ap-

plied to the objects. A second viewport shows the coordinate system after

the transformation has taken place. A third area shows the values for the
« ~~ ~~ • from, at, and up points. A fourth area shows the PS 390 screen an

the objects being displayed.

PS 390 Ti~torial Demonstrations GT3-17

Trogrammed Functions

Mode 1

Control Dials

Dl

D2

D3

D4

D5

D6

D7

D8

Mode 2

- FROM X

- FROM Y

- FROM Z

- WS Y ROT (world

- DOLLY X (rotate

- DOLLY Y (rotate

- DOLLY Z (rotate

space Y rotation)

eye point around the X

eye point around the Y

eye point around the Z

axis)

axis)

axis)

- FOR/BACK (move eye point forward and back along Z axis)

Control Dials

D1 AT X

D2 - AT Y

D3 AT Z

D4 unused

D5 OBJ XROT

D6 OBJ YROT

D7 OBJ ZROT

D8 OBJ SIZE

Mode 3

Control Dials

D1 UP X

D2 UP Y

D3 UP Z

D4 unused

D5 OBJ XTRAN

D6 - OBJ YTRAN

D7 OBJ ZTRAN

D8 unused

(rotate objects

(rotate objects

(rotate objects

(scale objects)

(translate

(translate
(translate

around the

around the

around the

objects

objects

objects

X

Y

Z

along the
along the
along the

axis)

axis)

axis)

X

Y
Z

axis)

axis)
axis)

GT3-18 Graphics Tutorials

Programmed Functions (continued)

Function Keys

Fl - MODE 1

F2 - MODE 2

F3 - MODE 3

F4 - DEPTH CL (depth clipping)

F5 - MOVE UP (move/don't move "up" point with the eye point)

F11 - RESET

F12 - EXIT

Notes on Usage

The LOOK transformation is a 4x3 transformation matrix. It applies a
translation and rotation to every point in the world coordinate system to
produce a view which corresponds to the "from," "at," and "up" points
given in the LOOK command.

All points are translated so that the eye is at the origin, and rotated so that
the "at" point is in the positive Z axis and the "up" vector is in the YZ
plane. These transformations are shown in the second viewport.

A window is built around the "at" point in the second viewport so that
whatever is being looked at will appear on the PS 390 display in the third
viewport. Initially, the sphere is displayed. As you manipulate the "at"
point, the window is moved also to maintain a display on the simulated
PS 390 screen.

The "up" point is shown as an asterisk. Function key FS is a toggle which
lets you move or not move the "up" point with the "from" and "at" points.

Function key F4 is a toggle which lets you turn depth-clipping on and off.

Dial 2 in Mode 1 rotates the objects and the eye in the first viewport so you
can see better where the eye is located.

Function key F11 resets the program.

Function key F12 leaves the program and displays the Tutorial Demonstra-

tions Menu again.

PS 390 Tutorial Demonstrations G~'3-19

3.6 Program: CHARACTERS

Typical Program Display

Abstract

This program illustrates the concept of character orientation discussed in
Section TU10. "Text Modeling and String Handling . " It shows the three
ways in which characters can be defined with the SET CHARACTERS com-
mand. Three cubes are displayed with their faces labeled. Characters in the
first cube are created with the ~VORLD_ORIENTED clause (the default).
They are transformed as an intrinsic part of the cube as if they were painted
on the cube's faces. Characters in the second and third cubes are created
with the SCREEN ORIENTED clause (the default setting) . No matter how
the cube is rotated, these characters always remain in a plane parallel to the

GT3-20 Graphics Tutorials

Abstract (continued)

screen. Character size is unaffected by scaling. In addition to being screen-
oriented, the characters in the third cube have an additional FIXED clause.
This maintains the characters at full intensity, no matter where they are
located in the Z axis.

Programmed Functions

Control Dials Function Keys

D1 OS X ROT

D2 OS Y ROT

D3 OS Z ROT

D4 - SCALE

D5 TRANS X

D6 TRANS Y

D7 TRANS Z

D8 unused

F11 - RESET

F12 - EXIT

Notes on Usage

As you manipulate the cubes with the control dials, note that the screen-ori-
ented characters remain in a plane parallel to the screen but that they do
move along the Z axis when the cubes are rotated in X and Y. Also, when
the cubes are scaled, the screen-oriented characters remain the same size
but the starting location of each character string responds to the scaling.

To see more clearly the difference between SCREEN ORIENTED and
SCREEN_ORIENTED/FIXED characters, turn down the intensity of the
PS 390 display. If you turn it low enough, only the "fixed" characters will
be visible.

Function key F11 resets the orientation of the cubes.

Function key F12 leaves the program and displays the Tutorial Demonstra-
tions Menu again.

PS 390 Ti~torial Demonstrations GT3-21

3.7 Program: LEVEL OF DETAIL

Typical Program Display

Abstract

This program shows how level-of-detail commands are used to set up condi-
tional branching in a display structure.

In one area of the screen, a display tree is shown with a SET LEVEL node
at the top. Thirteen different paths are grouped under one instance node
following the SET node. Each branch contains an IF LEVEL node and a
"structure." To keep the diagram simple, the structure is shown as a square
data node, but it actually consists of a vector list and a color node. The IF

nodes contain values from 0 to 12. The SET node is connected to a function
network.

GT3-22 Graphics Tutorials

Abstract (continued)

As new values from 0 to 12 are received from the network, different
branches out of the instance node are traversed. The effect of this is seen in
the lower part of the display, where a representation of the PS 390 screen is
shown. Each of the thirteen structures is a "frame" in a sequence which
shows a cylinder whose top and bottom twist and untwist in opposite direc-
tions.

Programmed Functions

Control Dials Function Keys

D1 WS X ROT

D2 WS Y ROT

D3 WS Z ROT

D4 SCALE

D5 X TRAN

D6 Y TRAN

D7 - Z TRAN

D8 LEVEL

F10 - STRT/STP

F11 - RESET

F12 - EXIT

Notes on Usage

Dials 1 through 7 are just for fun. They let you manipulate the cylinder
while it is cycling through its animation sequence.

Function key 10 starts and stops the animation. When the motion is
stopped, you can use dial 8 to change the level of detail by one value at a
time to step through the animation sequence. Note that the "WS" in the
LEDs for dials one, two, and three stands for World Space. Rotations of this
sort happen about the world coordinate axes.

Function key F11 resets the program.

Function key F12 leaves the program and displays the Tutorial Demonstra-
tions Menu again.

PS 390 Tutorial Demonstrations GT3-23

3.8 Program: NETWORK EXECUTION

Typical Program Display

Abstract

This program shows the sequence of activities when a function network
accepts data from a dial, processes the data through the functions that make
up the network, and updates interaction nodes in a display tree with the
resulting transformation matrices.

A representation of the PS 390 screen is shown in one viewport, displaying
the object defined by the display tree: two wheels connected by a tie bar. In
another viewport, the display tree is shown with the interactive rotation and
translation nodes that will supply motion to the object connected to a func-
tion network.

GT3-24 Graphics Tutorials

Abstract (continued)

The network connects to dial 8. As you turn the dial, the values received
from it are passed through the network, converted to the correct data types,
and fed into the interactive rotation and translation nodes at the end.

Programmed Functions

Control Dials Function Keys

D8 - WHEELROT F11 - RESET

F12 - EXIT

Notes on Usage

There are two parts to the network which supplies new values to the. interac-
tive rotation and translation nodes. One part handles the simultaneous rota-
tions of the two wheels; the other part handles the synchronized translation
of the tie bar with the motion of the wheels.

The rotation network consists of the function F:DZROTATE connected to
dial 8. The magnification value on input <3> of this function increases each
tiny value received from the dial by two hundred to create significant num-
bers to accumulate. The accumulator on input <2> is initially set to zero. As
the function accumulates values, it converts them to a Z-rotation matrix
which is sent out of output <1>. The accumulator contents are sent out of
output <2>.

The translation network calculates the amount in X and Y by which the
center of the tie bar must be translated to be synchronized with the motion
of the wheels. The accumulator contents from the F:DZROTATE function
(representing degrees of rotation around the Z axis) are fed into F:SINCOS.
This function calculates the sine and cosine of the angle of rotation. These
values are output by F:SINCOS and are multiplied by a constant value of
.75 in one case and -.75 in the other to calculate the displacement of the tie
bar. (The value is .75 because the center of the tie bar is initially located at
0 in X and .75 in Y.) The resulting values are fed into the F:VEC function
and are converted to a 2D translation vector.

PS 390 Tutorial Demonstrations GT3-25

Notes on Usage (continued)

The outputs of F:VEC and F:DZROTATE are fed into F:SYNC(2). This
synchronizes the updating of the rotation node and the translation node.

Function key F11 resets the display.

Function key F12 leaves the program and displays the Tutorial Demonstra-
tions Menu again.

GT3-26 Graphics Tutorials

3.9 Program: PICKING

Typical Program Display

Abstract

This program shows graphically how picking can be performed on a vector
list, a curve, a character string, or a label in a labels block.

Picking requires nodes in a display structure to set picking on and off, and
nodes to identify the object that was picked (picking identifiers or pick IDs).
A picking network must also be built so that a pick can be performed with
the data tablet and information about the picked object can be returned for
programming purposes.

PS 390 Tutorial Demonstrations GT3-27

Abstract (continued)

In one viewport, a representation of the PS 390 screen is shown displaying

two cubes, a B-spline curve, a character string, and two labels. In another
viewport, the display structure for this group of objects is shown. A SET
PICKING ON/OFF node heads the display structure. This node is connected
to the picking network. When you pick one of the vectors in the cube or
B-spline, one of the characters in the string, or one of the two labels in the
block, the path traversed in the display structure will brighten, and the func-
tion F:PICk:INFO will show on its outputs the information returned by the
pick.

Programmed Functions

Control Dials Function Keys

None F11 - RESET

F12 - EXIT

Notes on Usage

The display structure shows that there are two requirements for an object to
be a candidate for picking. The display structure must have a SET PICK:Il~TG
ON/OFF node that can be enabled, and the object must be identified with a
pick ID.

The picking network consists of the initial function instances TABLETIlv
and PICK, the initial structure PICK LOCATION, and an instance of the
function F:PICk:Il~TFO.

As you move the pen over the tablet, notice that output <1> of TABLETIl~T
sends X and Y coordinate values to PICK_LOCATION. This is positioning
the invisible pick-box so that it is centered exactly where the cursor appears
on the screen.

When a pick occurs, the path traversed in the display tree is momentarily
brightened, and the outputs of F:PICK:IlVFO show the information returned
about the vector picked.

Function key F11 resets the display.

Function key F12 leaves the program and displays the Tutorial Demonstra-
tions Menu again.

GT3-28 Graphics Tutorials

3.1Q Program: WORKSPACE

Typical Program Display

orxspace

Abstract

The work space is not truly a demonstration program, but a blank screen for
you to use with the tutorial sections of the PS 390 Document Set GENERAL
TUTORIAL V~LLJIVIE. Choose this selection from the menu when you are
studying a Section such as GT8. "Viewing Operations", or GT10. "Text
Modeling and String Handling" that requires you to display and manipulate

objects .

The work space is simply a border with the word "Workspace" at the bot-

tom right.

PS 390 Tutorial Demonstrations GT3-29

Programmed Functions

Control Dials Function Keys

None F12 - EXIT

Notes on Usage

When you go to the work space, you will probably be entering commands to
create and display structures as directed in the Tutorial Modules. If you
create any other structures on your own, be aware that the names you as-
sign may conflict with named entities in the Tutorial Demonstration files.
We recommend that you avoid this by prefixing any name of your own
devising with your initials or some other two-letter code.

Here is a reminder of the three modes of operation of the the PS 390 and
the key sequences that enter those modes.

Command Mode CONTROL/LINE LOCAL Enter PS 390 commands at

the "~" prompt .

Interactive Mode SHIFT/LINE LOCAL

TE Mode LINE LOCAL

Use the interactive

devices to perform

programmed functions.

Enter commands on the

host at the host prompt

(PS 390 is emulating a

host terminal).

When you leave the work space, enter the following command.

INITIALIZE NAMES;

This will clear all object names and function instance names you have cre-
ated in Command Mode but will not affect names that are contained in the
Tutorial Demonstration files. Remember that an Il~IITIA.LIZE command is
specific to a communications line. In other words, structures created
through the keyboard in Command Mode can only be initialized with a local
command from the keyboard, and structures transferred from the host can
only be initialized with a command sent from the host.

GT3-30 Graphics Tutorials

If you use the INITIALIZE DISPLAY command, you will have to display the
Tutorial Demonstration Menu and programs again. To do this, type the
command

DISPLAY TUTORIAL_DEMOS;

when you are finished at the work space.

Use Function key F12 to exit and return to the Tutorial Demonstration
Menu.

PS 390 Tutorial Demonstrations GT3-31

GT4. MODELING

DESIGNING A CONCEPTUAL MODEL

CONTENTS

INTRODUCTION 1

OBJECTIVES 3

PREREQUISITES 3

1. DESIGNING AN ORGANIZATIONAL HIERARCHY 3

1.1 Exercise 6

2. DESIGNING A DETAILED DISPLAY TREE 9

2.1 Exercise 23

3. DESIGNING A COMPLEX MODEL 27

3.1 Exercise 30
3.2 Exercise 31

4. SUMMARY 47

t

ILLUSTRATIONS

Figure 4-1. Mechanical Arm 6
Figure 4-2. All-Cylinder Robot and All-Sphere Robot 11
Figure 4-3. Robot Made of Cylinders and Spheres 12
Figure 4-4. Square and Corresponding Display Tree 14
Figure 4-5. Diamond and Corresponding Display Tree 15
Figure 4-6. Star and Corresponding Display Tree 15
Figure 4-7. Transformed Star and Corresponding Display Tree 15
Figure 4-8. Mechanical Arm With Proportions 16
Figure 4-9. Cylinder Primitive for Mechanical Arm 17
Figure 4-10. Cube Primitive for Mechanical Arm 17
Figure 4-11. Hand Primitive for Mechanical Arm 18
Figure 4-12. Mechanical-Arm Hand and Corresponding Display Tree ZO
Figure 4-13. Mechanical-Arm Upper Arm and Corresponding Display Tree 21

Figure 4-14. Mechanical-Arm-Final Display Tree 22
Figure 4-15. Sports Car 23
Figure 4-16. Car Primitive-Body 24
Figure 4-17. Car Primitive-Radial Tire 24
Figure 4-18. Car Primitive-Snow Tire 24
Figure 4-19. Tires Scaled and Rotated 180 Degrees 25
Figure 4-20. Interaction Nodes for Tire 25
Figure 4-21. Final Display Tree for Car 26
Figure 4-22. Robot-Orientation 27
Figure 4-23. Robot Sphere Primitive 28
Figure 4-24. Robot Cylinder Primitive 28
Figure 4-25. Robot-Proportions 29
Figure 4-26. Robot-Body Pieces 30
Figure 4-27. Robot-Informal Hierarchy 31
Figure 4-28. Robot-Right Hand Display Tree 32
Figure 4-29. Robot-Right Forearm Display Tree 33
Figure 4-30. Robot-Right Arm Display Tree 34
Figure 4-31. Robot-Shared Nodes far Hand 35
Figure 4-32. Robot-Left Forearm Display Tree 35
Figure 4-33. Robot-Display Tree for Two Arms 36

Figure 4-34. Robot-Head Display Tree 37

Figure 4-35. Robot-Upper Body Display Tree 38

Figure 4-36. Robot-Foot Display Tree 39

ti

Figure 4-37. Robot--Rotate and Translate for Foot 40
Figure 4-38. Robot—Right Calf Display Tree 40
Figure 4-39. Robot—Right Thigh Display Tree 41
Figure 4-40. Robot—Shared Nodes for Foot 42
Figure 4-41. Robot—Left Lower Leg Display Tree 43
Figure 4-42. Robot—Left and Right Leg Display Tree 44
Figure 4-43. Robot—Lower Body Display Tree 45
Figure 4-44. Robot—Completed Display Tree 46
Figure 4-45. Windmill Display Tree # 1 50
Figure 4-46. Windmill Display Tree #2 50
Figure 4-47. Correct and Incorrect Usage of Operate Nodes 51
Figure 4-48. Sphere of Influence 53
Figure 4-49. Instance Node Pointing to Three Data Nodes 54

TABLES

Table 4-1. Rules for Display Trees 48

iit

Section GT4

Modeling

Designing A Conceptual Model

Introduction

One of the benefits of the PS 390 is the ease with which you can create a model
for display. Essentially, there are three steps to creating a model which can be
manipulated interactively on the screen.

e The first step is to design the model on paper, taking into account
what it will look like and how it will move.

• The second step is to write the PS 390 code using that conceptual
model as a blueprint.

• The last step is to make the model interactive by connecting it to
interactive devices. This section details the first step, designing a
conceptual model.

Designing a conceptual model is in many ways like creating an outline or blueprint
of your model. Like any outline, it allows you to organize your material in a logi-
cal, sequential manner. It also helps you design a complex model one step at a
time.

Once the conceptual model is completed, it can be analyzed more easily for errors,
repetitions, omissions, or flaws in logic because you can see its organization as a
whole. Should you find an error, it is easy to correct at this stage of design.

Designing a conceptual model allows your attention to be focused on the problems
of design. You need not be concerned with operating procedures for the PS 390 or

with the PS 390 command language. In fact, once the model is designed, you al-

ready have the framework for the commands necessary to create that model in the

PS 390.

Modeling ~I'4-1

Inherent in the design process of any model is the consideration of not only what
the model looks like, but also what it does. This is because the way in which you
interact with a model is built into the design as part of its organization. Not only
can you interact with the model as a whole, you can manipulate different parts of it
as well.

Consequently, the model is organized as a hierarchy of interrelated parts. Building
this hierarchy entails:

• Knowing what the object to be modeled looks like.

• Dividing the object into the pieces that comprise it.

• Organizing these pieces according to movement or attributes.

The resulting hierarchy is a representation of the organization of the model.

Once you have the model organized into the pieces that comprise it, the next step
is to detail the steps that would be necessary to create each piece in the world
coordinate system of the PS 390.

To create a model in the world coordinate system, you perform a series of transfor-
mations (such as scales or rotations) on data primitives.

Using the hierarchy as your basis of organization for the pieces, you build each
piece in the world coordinate system, performing whatever transformations are
necessary; i.e., shaping a primitive into the desired piece, grouping the piece with
other pieces according to their interdependencies, and then moving the pieces into
their respective locations within the model.

Each of these steps is detailed in the display tree for the model. The modeled
primitives are represented in the display tree as data nodes. The transformations
you perform are represented in the display tree as operation nodes. There is a third
type of node in display trees called an instance node which is used to organize and
group the other two types of nodes. An instance node is placed wherever the dis-
play tree branches to more than one descending node.

When completed, the display tree represents all the information necessary to create
the model, step by step. It even includes operation nodes which allow you to inter-
act with the model as a whole or with any of its select pieces. The display tree can
then actually be coded in the PS 390 via the PS 390 command language.

GT4-2 Graphics Tutorials

Objectives

This section details how to design a display tree for a model. You will learn how
to:

• Design an organizational hierarchy.

• Design a detailed display tree.

• Design a complex model.

Prerequisites

Before reading this section, you should know basic computer graphics concepts, as
developed in Section GT2 Graphics Principles. You should also have completed Sec-
tion GTI Hands-On Experience.

1. Designing An Organizational Hierarchy

The first step in building a display tree is to design an organizational hierar-
chy for the model.

Before you can design an organizational hierarchy, however, you must know
exactly what the model will look like. The dimensions and proportions of
the model may have been provided for you initially, or you may have to
provide these yourself by drawing out a rough draft of the model on graph
paper.

This rough draft can be used to divide the model into indivisible pieces. The
basis for this division depends on what you want to do with the model.

One basis for division might be movement—what pieces you want to move
individually. You will also want to consider attributes which might differen-
tiate pieces, such as color, blinking, or level-of-detail. For example, you
may want to show red fingers on a white hand. These attributes affect the
way in which you design the model. It is much easier to make design allow-
ances for them initially than to reconstruct the model later.

Of course it is possible that you may not want to differentiate all the pieces
of a model. For example, suppose you are designing a sports car, and the
only movable pieces are the four wheels. In this case, the whole car body
can be thought of as one piece.

Modeling GT4-3

The model as a whole would then consist of five pieces:

Pieces

1. right front wheel

2. left front wheel

3. right rear wheel

4. left rear wheel

5. car body

The resulting hierarchy would be:

CAR

left rear right rear
wheel wheel

body left front right front
wheel wheel

However, if you want the doors to swing open, the front windshield wipers
to move, and an antenna to retract, each of these features is distinguished
as a separate piece. The following hierarchy would then be:

CAR

left rear right rear left front right front right door left door body wipers antenna
wheel wheel wheel wheel

There are also times when you may want to interact with several pieces of
the model collectively as well as individually or when the movement of one
piece has a direct result on another piece. This kind of grouping or depend-
ency affects the design of the hierarchy.

For example, if you were designing the arm of a robot, the arm could con-
sist of three pieces: the hand, the forearm, and the upper arm. The hand
piece can be moved individually. However, moving the forearm necessitates
moving the hand, and moving the upper arm necessitates moving the both

the forearm and hand. In this example, then, the three pieces have different

degrees of independent movement.

GT4-4 Graphics Tutorials

Pieces are organized in a hierarchy according to this kind of sphere of inf lu-
ence. Those pieces which influence other pieces are above them in the hier-
archy. So a simple hierarchy for the robot's arm might be:

Upper arm piece

Forearm piece

Hand piece

To build the capacity for movement into this hierarchy, add two "grouping"
names

Arm
T

I I
upper arm piece lower arm

I

forearm piece
i

hand

Grouping names are used when pieces act collectively. In this hierarchy,
Lower Arm is the grouping name used when the separate pieces, forearm
and hand, move collectively. Arm is the grouping name used when you want
to move the upper arm piece and the lower arm.

Grouping names make collective movement of pieces easier. Moving Arm is
easier than moving each of the three pieces simultaneously. Moving Lower
Arm is easier than moving the forearm and hand pieces individually.
Grouping names do not identify new pieces of the model—no A.F:M or
LOWER A,F:M piece exists.

Modeling

1.1 Exercise

Analyze the structure of the simplified mechanical arm in Figure 4-1 ac-
cording to dependent and independent movement of pieces. Then organize
these into a hierarchy accordingly. Use whatever grouping names are neces-
sary.

U390046

Figure 4-1. Mechanical Arm

The arm consists of a base, two jointed sections, and a hand. The base is
fixed and cannot move. The whole arm can rotate at the base. The two arm

pieces and hand are affected by this movement. The movement at the elbow
affects the upper arm and hand only. Movement at the wrist only affects the
hand.

So the pieces are:

base

lower arm

forearm

hand

GT4-6 Graphics Tutorials

The pieces can be grouped accordingly: the first movement that affects
more than one piece is above the elbow. Group the forearm and the hand
together to form UPPER A,RM.

Pieces

hand
forearm

Grouping Name

Upper Arm

The upper arm moves with the lower arm piece when the whole arm rotates
at the base. Group these together to form the Arm.

Pieces Grouping Name

lower arm piece
Upper Arm

Arm

Finally, the base is a piece on its own. It is unaffected by the movement of
the arm and the hand.

Piece

base

once the pieces of the model have been identified and grouped, an informal
hierarchy can be sketched out. The most inclusive pieces, in terms of influ-
encing other pieces, are at the top of the hierarchy.

Mechanical Arm

base piece Arm

lower arm piece Upper Arm

forearm piece hand piece

0390105

Modeling GT4-7

Since the pieces are divided according to how you can move them, it may be
helpful at this point to note in the hierarchy those points where interaction
will occur. So since Mechanical Arm in the above hierarchy is divided ac-
cording to rotation movements, note the places where interactions would
occur in the above hierarchy. The interaction points are shown in parenthe-
sis in the following hierarchy for Mechanical Arm.

(Translation Point)

(Rotation Point)

(Scale Point)

Mechanical Arm

(Rotation Point)

base piece A ~m

(Rotatioi Point)

lower arm piece Upper Arm

(Rotatioi Point)

forearm piece hand piece
u3so~os

GT4-8 Graphics Tutorials

2. Designing A Detailed Display Tree

The informal hierarchy is used as the organizational outline for the actual
display tree you will design in this section. This is reflected in the way the
model is actually built in the world coordinate system: pieces that are
grouped collectively down a hierarchical branch are often built collectively
along an axis of the world coordinate system.

The display tree conceptually represents each of the steps performed to
build each piece that comprises the model. As you identify each step neces-
sary to build the model, you will draw a corresponding node in the display
tree. In other words, modeling the pieces and designing the display tree are
simultaneous procedures.

The modeling steps themselves are:

• Shaping the organizational hierarchy pieces from primitives. For in-
formation on how to create primitives, refer to Section RMI Com-
mand Summary.

• Using modeling transformations to move pieces into position relative
to other pieces that are grouped within the hierarchy.

• Adding interactions where needed.

First determine the primitives you want to use. These will depend on the
kind of modeling you want to do.

• You may want an iconic model—one that looks as much as possible
like the object it models. With this kind of model, each body piece is
very distinctive and is modeled individually. For example, an iconic
model of a man might have details such as facial features, hair style,
fingernails, and so on. The designer can use vector lists or polygon
lists to create the model. A very large vector list or polygon list is
usually required to provide this kind of needed detail.

With iconic modeling, not only is more detail needed for each piece,

but more pieces are needed. This requires a great many vector lists

or polygon lists, atime-consuming and often difficult programming

task.

Modeling aGT4-9

• You may be able to use a less detailed analog model. Analog models
minimize your task by eliminating unneeded detail. You only define
pieces that are really needed. An analog model may be as useful as
an iconic one for certain applications. Use an analog model if you
only want to show movement, or relative position or size, for exam-
ple.

Most graphics programming is a compromise between these two types of
modeling. A model needs to be iconic enough to be recognizable but analog
enough to be useful.

For example, a robot model designed for movement might not require a
great deal of realism. If there is no need to differentiate individual fingers
on the hand, it could be designed as an oval shape. The vector list or poly-
gon list to create this would be simpler than one to create a detailed hand
with fingers. Both the left and right hands could be modeled from this vec-
tor list or polygon list.

In the same way, simpler primitive shapes, like cylinders and spheres, could
be used repetitively by many different pieces of the robot. For example, a
robot could be made from nothing but cylinders by defining a cylinder
primitive and then transforming that shape to create each body piece.
Changing the primitive from a cylinder to a sphere would change the ap-
pearance of the analog model.

GT4-1 D Graphics Tutorials

~ ~ U390107

Figure 4-2. All-Cylinder Robot and All-Sphere Robot

However, both models illustrate movement, position, and size in exactly the
same way. Both use only one primitive, easing the programming task im-
mensely.

The model in Figure 4-3 is only slightly more complex. It uses a sphere
primitive for the head and hands, and a cylinder primitive for the rest of the
body pieces. Two primitives are required, but the result is more aestheti-
cally pleasing.

Modeling GT4-11

ussoioa

Figure 4-3. Robot Made of Cylinders and Spheres

Clearly, there are numerous ways to model an object. In any modeling ap-
plication, there is flexibility in deciding how realistic the model will be and
how many primitives will be required.

CJnce you have established what primitives the model will be shaped from,
you will determine the actual dimensions and placement of the primitives in
the world coordinate system. To do this, it is helpful to draw the model to
scale on graph paper. The model serves as a visual aid as you determine
how much to enlarge, reduce, or reshape primitives.

The dimensions of the primitive are often determined arbitrarily and are
usually small, whole numbers. For example, it is easy to work with a sphere
with a radius of one. If you need an oval four units high and two units wide,
scale the sphere by 1 in X and 2 in Y.

When determining the initial position of primitives, consider where it is
easiest to define a primitive, and what position it needs to be in most of the
time to form pieces of the model. It is usually easiest to work with primi-
tives located at the origin of the world coordinate system. One reason is that

GT4-12 Graphics Tutorials

rotations take place around coordinate system axes. To apply rotations cor-
rectly to a primitive, pieces of a model often need to be centered about, sit
on, or hang from an axis.

Any model you create will be defined by coordinate system locations. When
positioning the model, it is usually preferable to construct a model near the
origin. One reason is that the initial view of the PS 390 world is centered on
the origin. Another reason is that it is often easiest to establish symmetry if
the model is centered about the X, Y, and Z axes. Finally, because rotations
and scalings are performed relative to the origin, building the model there is
easier.

Now that you know the dimensions of your model, its position in the world
coordinate system, and the primitives which compose it, you are ready to
design the display tree of the model.

A display tree represents several kinds of information. First, it includes the
step-by-step information necessary to create the model in the world coordi-
nate system. Second, it includes the capability to differentiate pieces of the
model by attributes, such as color, or by movement. Finally, it includes the
capacity for interaction with part or all of the model.

PS 390 display trees consist of up to three types of nodes.

• Primitive data, the "building blocks" for the model, are represented
in the diagrams by square data nodes. Specifically, these nodes de-
scribe the collection of points, lines, polygons, and characters that
define primitive data. Data nodes are always terminal nodes in a
display tree.

• Any operations (such as scaling and rotation) which are performed
on an object are represented in the display tree by a circle. These
nodes are called operation nodes. An operation node can point to no
more than one node below it.

Operation nodes are used in two ways: for modeling and for interac-
tion. Modeling operations are performed strictly to shape the "build-
ing blocks" of a model and move them into place. Interaction opera-

tions allow you to interact with a model. Any operation node can be
either a modeling or an interactive node, or both kinds, depending on

how it is used. In this section, interactive nodes are represented by a

double circle; modeling nodes by a single circle.

Modeling GT4-13

Operation nodes are also distinguished by the fact that once they
have been coded into the display tree, you can enable or disable
them interactively. For more information on this, refer to Section
GT6 Function Networks I.

• Instance nodes join one or more subparts, or hierarchical branches,
into a whole, namable part. Instance nodes are represented by a tri-
angle.

There is a special group of operation and data nodes that represent the
commands that allow you to display labels and character strings. For details
on these, refer to Section GTIO Text Modeling and String Handling.

In Section GTI Hands-On Experience, each step you took to create and dis-
play the Star can be represented by one of the three types of nodes de-
scribed above.

First, you created the square using a vector list:

Y

X Data Node

U390109

Figure 4-4. Square and Corresponding Display Tree

GT4-14 Graphics Tutorials

Then you displayed a rotated version of that square—Diamond:

Operate Node

0390110

Figure 4-S. Diamond and Corresponding Display Tree

The diamond and the square were then linked together to form a star:

Y

Instance Node

0390111

Figure 4-6. Star and Corresponding Display Tree

The other operations you perform on the star, scaling and translating, are
represented in the display structure by these nodes.

0390112

Figure 4-7. Transformed Star and Corresponding Display Tree

Modeling GT4-1 S

Display trees are designed beginning with the lowest nodes on the tree, the
data nodes, and moving consecutively up the tree through each operation
that is performed. This assures that the data are modified in the proper
order by the PS 390. Operations such as scale, rotate, and translate are all
performed using matrix multiplication. The non-commutativity of matrices
means you must order transformations carefully.

The remainder of this section describes, step by step, how to design a dis-
play tree for the mechanical arm used in the first exercise. The mechanical
arm and its dimensions are shown in Figure 4-8.

1

2 .5

Y
6

 /J 4

Figure 4-8. Mechanical Arm With Proportions

U390113

GT4-16 Graphics Tutorials

The mechanical arm is designed using these primitives:

1. A unit cylinder with its base on the XZ plane, centered on the posi-

tive Yaxis, with a radius of 1 and height of 1. (Figure 4-9)

Figure 4-9. Cylinder Primitive for Mechanical Arm

2. A unit cube with its base on the XZ plane, centered on the positive Y

axis, with a length, height, and width of 1. (Figure 4-10)

Y

~/" /

X

U390115

Figure 4-10. Cube Primitive for Mechanical Arm

Modeling GT4-17

3. A primitive consisting of lines which form the hand with its forks
pointing up, with the base on the XZ plane, centered on the positive
Y axis with a height of 2, width of 2, and depth of . S . (Figure 4-11)

Y

U390115

Figure 4-11. Hand Primitive for Mechanical Arm

As for initial position in the world coordinate system, the mechanical arm
will be placed with its base on the XZ plane, centered on the positive Y
axis. It will be easiest to build the model up the Y axis.

As you model the mechanical arm, create the corresponding display tree
using the hierarchy as the basis:

(Translation Point)

(Rotation Point)

(Scale Point)

Mechanical Arm

/~~
Base Piece

(Rotation Point}

Arm

(Rotati ~ Point)

Lower Arm Piece Upper Arm

(Rotati ~ Point)

Forearm Piece Hand Piece
U390117

GT4-18 Graphics Tictorials

Instance nodes are used to group other nodes in the display tree. The hierar-
chy branches at three places: where the mechanical arm is divided into a
base and arm, where the arm is divided into a lower arm piece and an
upper arm, and where the upper arm is divided into a forearm and a hand.
The instance nodes are placed accordingly:

(Translation Point)

(Rotation Point)

(Scale Point)

Mechanical Arm

Base Piece ~ (Rotatio~ Point)

Arm

Lower Arm Piece ~ (Rotation Point)

Upper Arm

Forearm Piece ~ (Rotation Point)

Hand Piece
U390118

Next remember that all terminal nodes, those which define primitives, are
represented with data nodes:

(Translation Point)

(Rotation Point)

(Scale Point)

Base Piece

U390119

Mechanical Arm

(Rotation Point)

Arm

(Rotation Point}

Lower Arm Piece

Forearm Piece

Upper Arm

(Rotation Point)

Hand Piece

Modeling GT4-19

Finally, working up from the bottom of the display tree, we will detail the
steps to model each of the primitives in the world coordinate system. Begin
with the hand .

The primitive for the hand (data node) is designed so the hand is already
the proper size and in the proper place, so no scaling or translating is neces-
sary. According to the hierarchy, however, a rotation node is needed to
allow rotation at the wrist. See Figure 4-12.

/'7 O

~~
Hand

U390120

Figure 4-12. Mechanical-Arm Hand and Corresponding Display Tree

Mow that the hand is built, it should be positioned so it can be grouped with
the forearm piece. You might be tempted to translate the hand to its final
position in the model, build the forearm piece, and then translate that piece
into its final position. But if you do this, when you group these two pieces
into upper arm and then rotate that upper arm, both pieces will "orbit" the
axis rather than rotate at the elbow. For proper rotation of the upper arm,
the hand must be grouped with the forearm and both rotated while the
forearm rests on the axis. For more information about rotation, refer to
Section GT2 Graphics Principles.

So next, translate the hand up the Y axis the length of the forearm piece, 7
units in +Y. Then build the forearm at the origin by scaling the cylinder
(1, 7,1), and group both the forearm and hand together as upper arm. Now
if you apply a rotation to upper arm, it will rotate properly. See Figure 4-13.

GT4-20 Graphics Tutorials

Forearm

i

Cylinder

U390121

Figure 4-13. Mechanical-Arm ~Ipper Arm and Corresponding Display Tree

A similar procedure is used to build the remainder of the arm. To assure
proper rotation, move the upper arm up the Y axis the length of the arm,

build the lower arm piece, and THEN apply the rotation to the whole arm.

Pieces do not have to be grouped just along the Y axis. If it is easier to do

so, you can build the pieces along the X or Z axis. The modeling steps can

be summarized as follows:

1. Move the upper arm (forearm and hand pieces) 9 units up the +Y

axis to make room for the lower arm piece.

2. Scale the cylinder to create the lower arm piece (1,9,1).

3. Group the lower arm and upper arm to form the whole arm.

4. Apply a rotation to the arm.

5. Scale the cube to create the base (6,1,4).

6. Allow for interactive manipulation of the whole mechanical arm (ro-

tation, translation, scaling) with three interactive nodes.

The final display tree is shown in Figure 4-14.

Modeling GT4-21

Base

Mechanical Arm

U390122

V

Figure 4-14. Mechanical-Arm—Final Display Tree

Hand

GT4-22 Graphics Tutorials

2.1 Exercis e

Design the display tree for the sports car in Figure 4-15.

Figure 4-1 S. Sports Car

Include the capacity for movement in the four wheels (rotation) and for
movement of the car as a whole (rotation, translation).

First design an informal hierarchy. Only five parts are needed for this car:
the four wheels and the body. Because the body has no moving parts, the
whole thing can be thought of as one part. The hierarchy is:

CAR

i i i i i
Right Front Right Rear Left Front Left Rear Body

Wheel Wheel Wheel Wheel

Next, model the primitives and create the display tree concurrently. There
are two sets of tires: snow tires on the back and radials on the front. This
means three primitives: a vector list for the body of the car, one for the
snow tire, and one for the radial tire. These will be represented in the dis-
play tree by three data nodes, as shown in Figures 4-16, 4-17, and 4-18.

1V~odeling GT4-23

Figure 4-16. Car Primitive—Body

i
i

Vec

I

Radial

0390124

Figure 4-17. Car Primitive Radial Tire

t
i

-- ~-i--
i/
I

Vec Snow Tire

0390125

Figure 4-18. Car Primitive Snow Tire

Vec Body

0390123

GT4-24 Graphics Tutorials

The wheels are scaled to fit into the wheelwells of the car. This means the
data node for each type of fire has a scale applied to it.

Each wheel also has a hubcap on one side. Rotate the two tires on the left of
the car 180 degrees about Y so that the hubcaps face out (Figure 4-19).

Snow Tire Radial

U390126

Figure 4-19. Tires Scaled and Rotated 180 Degrees

To allow for rotation of all four tires around the Z axis, insert interaction
nodes which can accept values from an input device or host computer via a
function network. Since these rotation values will subsequently be changed
interactively, they can be 0, 0, 0 for now (Figure 4-20) .

Radial
u3so 127

Figure 4-20. Interaction Nodes for Tire

The order of the operations is important here. Moving up the display tree
branch, the interaction node applies AFTER the modeling rotate node has
been applied to the data (Rot Z is above Rot Y 180) . If you build the inter-

action node first and then turn the left fire out 180 degrees, it rotates in the

wrong direction.

Modeling CT4-25

After all the rotations are applied, translate each wheel from the origin to
its proper position on the car. Then group all parts together as Car.

Two kinds of movement might be desirable for the car as a whole: rotation
and translation. These nodes are placed at the top of the structure.

The final display structure is shown in Figure 4-21.

Figure 4-21. Final Display Tree for Car

GT4-26 Graphics Tutorials

3. Designing A Complex Model

This section details the steps necessary to design a complex model, an an-
thropoid robot. The exercise illustrates the importance of interaction nodes,
(in this case, for movement) in the design of display trees. It also allows you
to deal with specific kinds of modeling problems, giving you practical expe-
rience and allowing for some helpful generalizations about good program-
ming techniques.

Design Robot with movement in mind. Robot moves at the joints: waving,
swinging his arms, nodding, bowing, kicking, and so on. All of these move-
ments are rotations of one kind or another about the bases of different body
parts such as the waist, shoulder, and wrist.

Robot should look like the one shown in Figure 4-22. Notice his initial orien-
tation—what position his limbs are in and where he's located in world space
coordinates. To make the design task easier, Robot is placed symmetrically
about the Y axis with his center at the origin.

U390129

Figure 4-22. Robot -orientation

Modeling GT4-27

Robot's body pieces consist of two primitives: a sphere for the head and
hands, and a cylinder for the remaining body pieces. The designer has the
option of using a vector list or a polygon list to create the primitives. These

two primitives are defined below. Note that they are three-dimensional ob-
jects requiring (X,Y,Z) coordinate values.

1. A unit sphere centered at the origin with a radius of 1 (Figure 4-23).

Y

1

2 1 2 X

- 2 U390130

Figure 4-23. Robot Sphere Primitive

The sphere is centered at the origin because it is easier to calculate
the shape in this position. Also, from this central location, the sphere
can be translated along axes easily. It will need to be translated up
the Y axis when modeling the head and down the same axis when
modeling the hands.

2 . A unit cylinder with the proportions (2, 2, 2) , hanging on the X, Z
plane (its top resting on the X axis), centered on the negative Y axis
(Figure 4-24) .

2

_2

X

U390131

Figure 4-24. Robot Cylinder Primitive

GT4-28 Graphics Tutorials

The cylinder could have been centered about the origin as the sphere was.
However, it has been created down the Y axis for a reason. Almost all the
body pieces that depend on the cylinder rotate from "above". For example,
the lower arm rotates at the elbow and the upper arm at the shoulder. If the
cylinder were placed at the origin, each time a body piece was created the
cylinder would have to be translated down the Y axis for this rotation to be
applied "above" the piece.

Placing the primitive below the origin initially, then, saves separately coding
a translate node for each piece you create. This is a good example of creat-
ing your primitive to suit your design goals.

once the proportions for primitives have been established, use these to de-
termine the exact size of Robot's body pieces in the world coordinate sys-
tem. For example, as shown in Figure 4-25, Robot's head is twice as tall as
it is wide. This means the sphere primitive will have to be scaled (1,2,1) to
make the head.

'l 1~

Figure 4-25. Robot Proportions

U390132

Modeling G~'4-29

3.1 Exercise

Design a hierarchy for Robot. Joints will be at the wrists, elbows, shoulders,
ankles, knees, hips, waist, and neck.

Robot is composed of the fifteen individual body pieces shown in Figure
4-26.

Head

\J
Right Upper Arm

Right Forearm

Right Hand

Right Thigh

Trunk

Pelvis

Right Calf

Left Upper Arm

Left Forearm

Left Hand

Left Thigh

Left Calf

Right Foot ~ ~ Left Foot

Figure 4-26. Robot—Body Pieces

U390133

The pieces should be organized so that rotating a joint causes all append-
ages affected by that joint to rotate. For example, rotating "upper body" to
make Robot bow should cause the trunk, head, and arms to rotate. Though
naming may differ somewhat, the hierarchy of named parts should basically
look like the one in Figure 4-2 7.

GT4-30 Graphics Ti~torials

Bod

Upper Body Lower Body

Head Trunk Right Left Pelvis Right Left
Arm Arm Leg Leg

Upper Lower Upper Lower Thigh Lower Thigh
Arm Arm Arm Arm Leg

Forearm Hand Forearm Hand Calf Foot C alf
Figure 4-27. Robot—Informal Hierarchy

Lower
Lgg

Foot
0390134

Notice the hierarchy includes additional "grouping names" (lower leg, right
arm, upper body). As with previous examples, interactive points have been
added to the hierarchy where the joints will rotate.

3.2 Exercise

Use the informal hierarchy as a guide for the display tree. "Grouping"
names can be represented by instance nodes. Data nodes will be terminal
nodes at the end of the hierarchical branches. Placement of interactive
nodes has already been established. Placement of modeling operation nodes
should be carefully worked out as you model each piece in the world coordi-
nate system.

As you design the display tree, make note of where the body pieces for
Robot's limbs can be shared by the left and right body pieces. Consider the
feet, calves, thighs, forearms, upper arms, and hands. Right and left pieces
can share nodes up to the point where the nodes serve to distinguish the two

(separate rotate and translate nodes) .

Sharing must be done carefully, in a way that allows parts of the model that

require individual movement to remain independent. In any given display

Modeling GT4-31

structure, there are many different ways to share nodes. The following de-
tails the modeling steps and corresponding display tree for Robot.

Creating the Right Hand

Scale the sphere to create the elongated shape of the hand (. 5,1, . 5) . Trans-
late the hand down the Y axis (0,-1) so a rotation can be applied at the
origin. Insert the rotate interaction node to simulate the wrist so the hand
can "wave" . For all interactive nodes, specify a zero value initially because
values can be supplied later from interactive devices or a host.

Notice that although you have placed only one rotate node for articulation
here, the wrist rotates around three axes (X, Y, and Z axes). Section GT6
Function Networks I describes how to allow for rotation in three dimensions
with one 3x3 matrix node (rotation node).

Since the hand must be grouped with the forearm piece, translate the hand
down the Y axis the length of the forearm piece (0,-3) rather than translat-
ing it into its final position in the model. Then when you apply a rotation to
the lower arm, both the hand and forearm will rotate properly "from the
elbow," rather than "orbiting" the axis.

Figure 4-28 illustrates the series of transformations that create the hand
from the sphere primitive.

Y Y
Trans Rot

X

Spher

Figure 4-28. Robot Right Nand Display Tree
0390135

GT4-32 Graphics Tutorials

Creating the Right Forearm

The forearm piece is created by scaling the cylinder to the proper size
(.5,1.5, . 5) . Scaling the forearm places it in the proper position to meet the
hand; there is no need to translate it.

When you rotate the right forearm from the elbow, you want the entire
lower arm (the forearm piece and hand) to rotate. To do that, define the
right forearm to be an instance of the forearm and hand. Insert a rotate
node above the lower arm instance to move the lower arm at the elbow.
Then translate the lower arm down the Yaxis—this time the length of the
upper arm piece (0,-4).

Figure 4-29 shows the series of transformations that create the lower arm.

X

Scale

X

X

Y Y
Instance ~ Rot

X

Y
Trans

Figure 4-29. Robot—Rigjit Forearm Display Tree

U390136

Modeling GT4-33

Completing the Right Arm

Build the upper arm piece so you can link it with the lower arm to make the
entire arm. First scale the cylinder primitive (.5,2,.5), then link the upper
arm piece and forearm together using an instance node. Allow for manipu-
lation by including a rotate node above that. Then translate the arm out to
its final place in Robot (-2.5, 6) . This translation value is the exact X,Y
coordinate location of the shoulder (the rest of the arm "hangs" below that
point).

Figure 4-30 shows the series of transformations that create the right arm.

X

Trans

X

Scale

X

Y

Y Y
Instance Rot

X

Figure 4-30. Robot—Right Arm Display Tree

U390137

GT4-34 Graphics Tutorials

Creating the Left Arm

Many of the modeling steps used to create the right arm are used to create
the left arm. Rather than repeat these nodes in a second branch of the
display tree, you can "share" nodes whenever possible, reducing the total
number of nodes in the display tree.

For example, since a hand has already been modeled by scaling and trans-
lating asphere, these nodes can be referenced in the other arm. However,
the second hand requires a separate rotate node so the left hand can "wave"
independently (Figure 4-31) .

Left Hand Right Hand

Figure 4-31. Robot—Shared Nodes for Hand

The left hand also requires its own translate node to move the hand from
the origin down the Y axis the length of the forearm piece (0,-3) because
one transformation cannot point directly to two descendent nodes.

The forearm piece was already created in doing the right arm, so next cre-
ate left forearm as an instance of the forearm piece and the hand (Figure
4-32) .

Figure 4-32. Robot—Left Forearm Display Tree

Modeling GT4-35

Then insert a rotate node so the lower arm moves at the elbow and translate
this piece of the arm down the Y axis the length of the upper arm piece
(0,-4).

The upper arm piece is already built, so it can be joined to the rest of left
lower arm with an instance node. A rotate node comes next to allow for left
shoulder manipulation. Then the left arm can be translated out to its final
place in Robot (2.5, 6) .

Figure 4-33 shows the display tree for the right and left arms.

Left
Forearm

Left
Hand

Right
Arm

. Right
Forearm

U390401

Figure 4-33. Robot—Display Tree for Two Arms

Right
Hand

Besides the two arms, the upper body includes the head and trunk.

GT4-36 Graphics Tutorials

Creating the Head

Scale (1,2,1) the sphere primitive to create Robot's head. Then translate the
head (0,1) so rotations (0,0) such as nodding and shaking the head, take
place at the neck. Notice that, in this case, translating before scaling would
produce the same result.

The head can then be translated to its final position (0,6). See Figure 4-34.

Y

X

Trans

Head

Sphere

u3so ~ ~

Figure 4-34. Robot—Head Display Tree

Creating the Trunk

With the arms and head built, you need only complete the trunk before
linking all four together as the upper body. Scale the cylinder for the trunk
(2, 3,1) . Then translate the cylinder up the Y axis (0, 6) to its final position.
This is the one time in the Robot model when it would have been better to
have a cylinder primitive that rested "on top of" the X axis instead of
"hanging down" from it.

Then join the arms, head, and trunk to form the upper body with an in-
stance node. Finally, insert a rotate node above the upper body to allow
Robot to bow at the waist and turn from side to side.

Modeling ~T4-3 7

Figure 4-35 shows the display tree for transformations that define the trunk
and also shows the display tree for the upper body of the robot.

X

Y

Y

Scale

X

Trans

X

Y

Instance

X

Figure 4-35. Robot—Upper Body Display Tree

U390402

No constraints have been placed on how much Robot can turn. He can
rotate his head 360 degrees if desirable. If you are trying to model a human
realistically, you must set limits. These are put in place using function net-

GT4-38 Graphics Tutorials

works. Refer to Section GT7 Function Networks II for more information on
this.

The rotate node that allows Robot to bow cannot be put above the trunk
alone. It must be above the instance node for the upper body in the display
structure to affect all the parts of the upper body.

Now that the upper body is finished, the lower body needs to be built before
they can be linked together as the entire body. Begin at the bottom of the
hierarchy with the foot and build up the display tree. In building the legs,
proceed as you did with the arms, sharing nodes whenever possible.

Creating the Right Foot

Because the foot is positioned perpendicular to the leg, the primitive cylin-
der must first be rotated 90 degrees in X. Then the cylinder can be scaled to
its proper size (.75, . S,1) . Finally, the scaled foot must be translated back in
Z so the foot will be correctly placed on the leg (0, 0,1) . These transforma-
tions are shown in Figure 4-36.

— — +z
Cylinder

Figure 4-36. Robot—Foot Display Tree

U390141

Above the foot, place a rotate node to allow independent movement at the
ankle. Then translate the foot down the Y axis so you can build the calf
(0,-5.5) (Figure 4-37).

Modeling GT4-39

~T~
0,-5.5

X

Foot

Figure 4-37. Robot—Rotate and Translate for Foot

Creating the Right Calf

Build the calf by scaling the cylinder (.65,2.5,.65). Link the calf and the foot
together as the lower leg. Place a rotate node above that to allow the knee to
bend, and then translate the right lower leg down the Y axis so you can
build the thigh (0,-5). Figure 4-38 shows these transformations.

X

Y
Scale

X

Y y
Instance ~ Rot

X

X

Trans

Calf

Figure 4-38. Robot—Right Calf Display Tree

GT4-40 Graphics Tutorials

Creating the Right Thigh

To create the thigh, scale the cylinder (. 75, 2.5, . 75) . Link the thigh and the
lower leg together as the right leg, and put a rotate node above that to allow
the leg to kick. Then translate the right leg into its final position (-1,-2).

Figure 4-39 shows the transformations that create the right thigh and the
display tree for the right leg.

X

Y

Y
Instance

X

Y
Scale

X —

S
.75, 2.5, . 75

Thigh

Cylinder
Calf

Y

Trans

X

Figure 4-39. Robot Right Thigh Display Tree

l

1

J

Right Leg

Right
Lower Leg

Right Foot

U390403

Modeling GT4; 41

Creating the Left Leg

Many of the modeling steps used to create the right leg are used to create
the left leg. Rather than repeat these nodes in a second branch of the dis-
play tree, share nodes whenever possible.

For example, since the scaled cylinders for the foot, calf, and thigh pieces
are used in both legs, a single scaled primitive for each can be used by both
legs.

Since the nodes to create a foot piece are already in place, the first new
node needed to build the left leg will be a rotate node so the left ankle can
move independently (Figure 4-40).

R Left Foot R Right Foot

Figure 4-40. Robot—Shared Nodes for Foot

The left foot also requires its own translate node to move the foot from the
origin down the Y axis the length of the calf piece (0,-5.5). (Though these
translate values are the same as for the right foot, this node cannot be
shared because a translate node can have only one direct descendent node.)

The calf piece was already created in doing the right leg, so create the left
lower leg as an instance of the calf piece and the left foot as shown in
Figure 4-41.

GT4-42 Graphics Tutorials

Left Lower Leg

Foot

0390145

Figure 4-41. Robot—Left Lower Leg Display Tree

Then insert a rotate node so the lower leg moves at the knee and translate
this part of the leg down the Y axis to make room for the thigh piece (0,-5).

The thigh piece is already built, so it can be joined to the left lower leg with
an instance node. Then a rotate node can be added to allow for manipula-
tion. Finally, the left leg can be translated out to its final place in Robot
~1,-2

Figure 4-42 shows the display tree for the left and right legs.

Modeling GT4- 43

Left Leg

Lef t
Lower Leg

Left Foot

Right Leg

Right
Lower Leg

Right Foot

Figure 4-42. Robot Left and Right Leg Display Tree

Creating Lowerbody

Now build the last piece of the lower body, the pelvis, and then link that
with the two legs.

Scale the cylinder (2,1,1). There is no need to translate this into position,
since it is already in place below the X axis and the legs have been trans-
lated down to fit under the pelvis. Link the pelvis and legs together as an
instance of the lower body.

GT4-44 Graphics Tutorials

The transformations that create the pelvis, as well as the complete display
tree for the lower body, are shown in Figure 4-43.

X

Pelvis

Scale
X

Y

Y

Instance
X--

~ a

Figure 4-43. Robot—Lower Body Display Tree

U390146

Both major subparts of Robot (the upper body and the lower body) are
complete. To move Robot as a whole, link the two subparts together with an
instance node called Body. Then scale Robot (.075) to proportions visible on
the screen (the screen coordinates are positive 1 to negative 1 on the X and
Y planes). Finally, allow for rotation and translation of the whole robot with
the top two nodes.

Modeling GT4-45

The completed display tree for Robot is shown in Figure 4-44.

Trunk

Head

Upper Body

Right
Forearm

Figure 4-44. Robot Completed Display Tree

U390405

Right
Leg

Right
Lower
Leg

Right
Foot

GT4-46 Graphics Tutorials

4. Summary

This section details the major steps in designing a conceptual data base:

• Designing a hierarchy

• Designing a display tree

In designing a display tree, you must first be aware of what the model looks
like, what attributes you want associated with particular parts, where it is to
be placed in the world coordinate system, what primitives it is made of, and
how you want to interact with it.

You can then divide your model into pieces and group those pieces into a
hierarchy which shows how they relate to each other.

Finally, you should design the display tree from the bottom up, using the
hierarchy as your basis of organization. The design process is as much an
art as it is a science, requiring attention to detail, synthesis of information,
and a good knowledge of the rules governing display trees.

There are certain rules governing display trees which you should be aware
of. For your convenience, these rules have been summarized in Table 4-1.
A more lengthy summary on data, operation and instance nodes follows
Table 4-1.

Section GTS Command Language explains how to code a display tree into the
PS 390 using PS 390 commands. It is highly recommended that you read
that section next.

Modeling GT4- 4 7

Table 4-1. Rules for Display Trees

NODE TYPE FUNCTION

POINTERS
TO OTHER
NODES COMMENTS

DATA Vector lists, characters,
curves, polygons.

OPERATION Operation to be performed
on data further down the
hierarchy. Examples include—
translate, rotate, character
font, set level-of-detail, etc.

0

0 or 1

INSTANCE Point to other nodes. Save 0,1, 2, .. .
and restore the state of the
machine between descendent
branches.

The state of the machine
includes:

A. The current transformation
matrix (CTM)

B. Current level-of-detail
C. Current conditional bits

values
D. Pick IDs active

Data nodes are always
terminal nodes in a
data structure.

0 pointers makes this
node and the path to it
useless. All terminal
nodes in a data structure
should be data nodes.

Except for some
debugging uses, 0 or 1
pointers from an
instance node is an
inefficient data
structure.

The remaining part of this section details important rules to follow when
designing display trees.

GT4-48 Graphics Tutorials

Data Nodes

Data nodes represent the primitive shapes that compose a model. Data
nodes are always the terminal (bottom) nodes in any display structure;

they never "point to other no es.

The data base that defines primitives may originate from several sources.
You may have been given the geometry already from another source. For

example, if you are an architect, you may already have access to primi-

tive shapes to define windows, doors, roofs, and buildings.

You can specify all the vectors in a primitive, or you might use com-

mands to specify characters, curves, and polygonal primitives.

• Vector lists define an object in terms of its coordinate points and
how to connect them. Points and line endpoints are expressed as
world coordinate locations. The VECTOR LIST command allows you
to specify all the vectors that make up an object.

• You can use line patterns (dashes, center lines, etc.) to draw a vector

list with the PA'hl'ERN command.

• The PS 390 allows you to generate vector lists that specify curves
using P~LYN~ and BSPLINE commands.

• Characters are ASCII character codes that are displayed using a
predefined character font. Both the C C'1'ERS and LABELS

commands define an object as a character string. Refer to Section

GTIO Text Modeling and String Dandling for details on characters.

• Polygons can be created to define surfaces for advanced 3D visuali-

zation operations. Refer to Section GT13 Polygonal Rendering for

more information on this.

• Interactive devices are commonly connected to operation nodes in a

display structure, but they can also be connected to other nodes. For

example, you can use a dial or data tablet to generate points for a

vector list.

Though a data node never points to another node, it can have multiple

parents (more than one operation or instance node pointing to it). For

example, to display a windmill with four identical blades, the display

structure might reuse a single data node translated to distinct locations

(Figure 4-45).

Modeling GT4- 49

Cylinder U390147

Figure 4-45. Windmill Display Tree #~

Another way to create a display tree for the same windmill is to define all
four blades in a single vector list, as in Figure 4-46. Creating this display
tree might be more programming work (specifying the points and lines
which form each blade) but eliminates four nodes: three operate nodes
and one instance node.

Cylinder
U390148

Figure 4-46. Windmill Display Tree #2

This model is simple. Four nodes is not a significant savings unless the
blades are to be instanced many times. But in a complex model, you may

GT4-So Graphics Tutorials

save nodes by carefully analyzing the pieces of the model that are better
defined with a single vector list.

The tradeoffs are that models made of numerous transformed primitives
may be easier and quicker to code than a single vector list of plotted lines
and points. However, it often takes a longer time for the display proces-
sor to traverse the extra transformation nodes than it does to traverse the
single vector list. A longer vector list uses more available memory, and
may take longer to program, but it reduces the time required for picture
refresh.

To save you the trouble of plotting all the points and lines initially, the
PS 390 has a group of commands and functions that convert a data base
consisting of transformed data into a single vector list for you. Refer to
Section GT12 Transformed Data and Writeback for more information on
this.

Operation Nodes

An operation node represents an operation to be performed on data be-
low it in the display tree. operation nodes are used to represent all types
of operations, including translations, rotations, and attributes such as set
level-of-detail and color.

As part of a display tree, an operation node affects only what is below it
on a hierarchical branch. Although an operation node can have multiple
nodes pointing to it, it can point to no more than one node below it
(Figure 4-47).

Correct Incorrect U390149

Figure 4-47. Correct and Incorrect Usage of Operate Nodes

Modeling GT4-S 1

Operation nodes can point to a data node, an instance node, or another
operation node. However, if a display tree contains a series of operation
nodes, the order of the operations is significant. Put the node for the first
operation to be performed on the data closest to the data node. Place the
second operation node above that, and so on.

Operation nodes are used in two ways: for modeling and for interaction.
Modeling operations are done strictly to shape the "building blocks" of a
model and move them into place. Interaction operations allow you to
interact with a model. Any operation node can be one or the other, de-
pending on how it is used.

On the display tree diagrams, an interaction node is differentiated from
other operation nodes by a double circle.

Interaction nodes allow you to interactively translate an object in X, Y, or
Z; rotate that object around any one axis; or scale the object. In addition,
you can alter the typeface of displayed text by changing the character
font, apply viewing transformations (to create a limitless number of dif-
ferent views of an object), or specify viewports (different areas on the
screen where the object is displayed).

Interaction nodes receive their values either from interactive devices or
from a host computer via a function network. For more information on
function networks, refer to Section GT6 Function Networks I.

Instance Nodes

Instance nodes serve two purposes:

First, they group other nodes and branches in a display tree. Instance
nodes are the only nodes that can point to more than one descendant
node in the display tree. Consequently, they are found wherever a hierar-
chical display tree breaks into more than one descending branch.

Second, instance nodes save and restore the state of the machine between
descendant branches. The state of the machine includes the current trans-
formation matrix, the current level of detail, current color, and status of
pick identifiers. For more information on this, refer to Section GT2
Graphics Principles and to specific tutorial sections.

GT4-52 Graphics Tutorials

Instance nodes save you from having to save and store data explicitly
before a path is traversed, thus preserving the integrity of the state of the
machine down any path. As a quick review, look at the way in which the
display processor saves and restores the state of the machine in the dis-
play tree shown in Figure 4-48. It is an illustration of the principle of
sphere of influence.

U390150

Figure 4-48. Sphere of Influence

When the display processor traverses this display tree, it saves the ma-
chine state when it reaches the instance node. It then continues down the
leftmost branch until it reaches the data node. The data there are sent
through the current transformation matrix and out to be displayed.

The display processor still has to travel down the other branches under

the instance node. But the state of the machine is altered by the two
operations in the first branch, so it must be restored to what it was when

the display processor first traversed the instance node. Since the machine

state is saved when it first reaches the instance node, it can be restored to

that state.

The display processor returns to the instance node, restores the state that

is saved there, and continues down the next branch to the right (the data

node) . The display processor sends that data through the matrix and out

for display, returns to the instance node, restores the state, and travels

down the last branch in the structure.

Modeling G~'4-53

Saving the state of the machine ensures that operations in one branch can
accumulate and affect everything below them in the display structure,
and still not affect anything in other branches.

If an instance node points directly to data nodes, the state is not saved
and restored because data nodes do not "operate" on or alter the state of
the display processor (Figure 4-49) .

Instance Node

Vec Char B-Spline

U390405

Figure 4-49. Instance Node Pointing to Three Data Nodes

GT4-54 Graphics Tutorials

GTS. COMMAND LANGUAGE

COMMUNICATING WITH THE PS 390

CONTENTS

Introduction 1

Objectives 3

Prerequisites 3

1. Using Explicit Naming 4

1.1 Exercise 7

2. Using BEGIN_STRUCTURE ... END_STRUCTURE 10

2.1 Exercise 17

3. Using Immediate Action Commands 25

4. Entering Code In The PS 390 27

4.1 Command Summary 28
4.2 Graphics Support Routines 28

5. Summary 29

t

ILLUSTRATIONS

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.

Display Tree for Robot's Forearm . 6
Car Display Tree ~
Possible BEGIN STRUCTURE ... END
Robot Display Tree
Possible BEGIN STRUCTURE ... END

STRUCTLJREs for Car 11
18

STRUCTURES for Robot 20

ii

Section GTS

Command Language

Communicating With The PS 390

Introduction

Once you have designed the display tree of the model, you can code the display
tree into the PS 390 using PS 390 commands. PS 390 commands:

• Create display trees.

• Modify display trees by sending new information to nodes.

• Create and modify function networks (refer to Section GT6 Function
Networks ~ .

• Instruct the display processor to display items or remove them from
the display list.

• Query or reset the command interpreter (such as CO1~~IlVfAND
STATUS or !RESET).

PS 390 commands are not stored in memory. They are interpreted and either exe-
cute immediately (e.g., DISPLAY OBJECT;) or create a data entity in mass mem-
ory.

Two kinds of PS 390 commands are detailed in this section: data structuring com-
mands and immediate action commands.

Data structuring commands are the only commands that can be named, either
directly or indirectly. Data structuring commands create the data structures in
mass memory which correspond to the display tree of a model or to a function
network. (Data structuring commands that create function networks are dealt with

in Section GT6 Function Networks 1.) The PS 390 associates the user-assigned name

of the command with the mass memory location of the data structure the command

creates.

Command Language GTS-1

Naming can be done explicitly by giving a unique name to a single node in a
display tree, such as naming a rotation node. It can also be done via BE-

GIN_STRUC ... END_STRUC where a single name is assigned to a

group of nodes.

Data structuring commands can be created in a file or an application program on

the host system and then downloaded to the PS 390, or an application program can

send these commands either directly in ASCII, or via the Graphics Support Rou-
tines (GSRs) in PS 390 binary format (preparsed).

The other type of command, the immediate action command, performs immediate
operations, such as displaying an object on the screen. Because it does not create
any autonomous structures in mass memory, an immediate action command can-
not be named.

PS 390 commands are designed to be easy to use. Once you are familiar with how
commands are used, you can refer to Section RMI Command Summary for quick
explanations of all existing commands.

You will also want to become familiar with the Graphics Support Routines (GSRs).
These are a collection of routines or procedures which allow faster, more efficient
communication between the PS 390 and the host computer. Using a Graphics Sup-
port Routine (GSR) causes a corresponding command to be sent directly to the
PS 390 without requiring further parsing. The GSRs are contained in Section RM4.

All commands follow these conventions:

• Commands end with a semicolon.

• The name of each command is indicative of what the command does
(for example, IZE, DISPLAY, and ROTATE) .

• Commands have both a long and a short form. The short form is the
shortest form of the word that uniquely identifies the command. For
example, DELETE can be referenced by DEL; APPLIED TO can be
referenced by APPL. In this section, a PS 390 command will be
written out fully in capital letters. For the short form of any com-
mand, consult Section RMl Command Summary.

• Commands may be entered in uppercase or lowercase letters or any
combination of these. The PS 390 does not distinguish between up-

per and lower case.

GTS-2 Graphics Ti~torials

• The PS 390 command language is free formatted. Comments go
wherever you can put a space and are enclosed in curly braces.

{This is a comment}

• Comments, carriage returns, line feeds, spaces, and tabs are all
treated as delimiters (white space) . If a command extends beyond a
single line, the PS 390 reads each line as part of the command until
it reads a semicolon. For example, the PS 390 interprets all of the
following commands in the same way:

ROTATE IN X 0 {comment} APPLIED TO Object;
ROTATE IN X 0 THEN Object;
ROTATE IN X 0 <TAB>APPLIED TO Object;
ROTATE IN X 0 <RETURN>

THEN Object ;

Objectives

In this section, you will use PS 390 commands to create a model in PS 390
mass memory and to display that model on the screen. To do this you will
learn to:

• Use explicit naming.

• Use BEGIN STRUC ... END STRUCTURE commands.

• Use immediate action commands.

• Enter code into the PS 390.

Prerequisites

Before reading this section, you should be able to design a display tree
(refer to Section GT4 Modeling) . You should also be able to perform the
operations detailed in Section IS3 operation and Communication. This in-
cludes how to switch to terminal emulator mode, how to use the text editor
on your host, and how to download a file from the host.

Command Language GTS-3

1. Using Explicit Naming

Once you have the display tree of the model designed on paper, you can

code the structure into mass memory by entering data structuring com-

mands into a file on the host. Data structuring commands create each node

in the display tree of the model. Each command must be named either

directly or indirectly. The name provides the "address" in mass memory for

locating the corresponding data structure. Which commands to use are de-

termined by the display tree of the model, like using a flowchart to deter-

mine code in conventional programming. One way to code is to have one

named command correspond to each node in the display tree. This is called

"explicit naming." Another way is to group numerous nodes together in

one named command. This is done using the BEGIN STRUC ...

END STRUC command. Most often, a combination of the two meth-

ods is used. With either method, use the following naming conventions:

• Names can be up to 240 characters long. The name can be any al-

phanumeric combination but it must begin with a letter. The PS 390
does not distinguish between uppercase and lowercase letters, so use

these for clarification, such as in the example: RightLowerArm.

• Names can include the underscore character (~, a dollar sign ($), or

a period (.). However, it is strongly recommended that you do not

use periods when explicitly naming something. The PS 390 automati-

cally inserts periods in the name of nodes contained in a BE-
GIN STRUCTURE ... END_STRUCTURE. For example, anode

named Rot within a BEGIN STRUCTURE ... END STRUCTURE

that you named Hand will automatically be named Hand.Rot by the

PS 390.

• Names cannot contain a space or other "white space" (return, tab,

etc.). These signal the end of a name. It may be convenient to run

words together in a name (RightArm) or to use underscores
(Right_Arm).

• Names must be unique.

GTS-4 Graphics Tutorials

The following PS 390 commands can be used in conjunction with the nam-
ing of data structures:

- Use the command (:_) for naming display data structures:

Name := display_structure_command;

- A null data structure can be named using:

Name := NIL;

The command can also be used to redefine a name. The command
saves the name but redefines the associated structure.

- The FORGET command deletes the name assigned to a command
but saves the associated structure.

- The DELETE command removes both the name and the associated
structure .

Primitives (data nodes) are created by specifying a series of points and the
lines or planes that connect them. Several PS 390 commands create primi-
tive shapes:

VECTOR_LIST

POLYGON

BSPLINE and RATIONAL BSPLINE

POLYNOMIAL and RATIONAL POLYNOMIAL

CHARACTERS

LABELS

Text is also a graphical primitive. The C CTERS command and the
LABELS command create data nodes for displaying text.

This section will not cover how to create data nodes. Rather than listing all

the points and lines required to build any data primitive in this section, a
SECTOR LIST command will be represented by the following abbreviated
notation:

Name := VECTOR LIST . .

Do not enter this abbreviated notation into the PS 390. Any data nodes you

will need for exercises on the PS 390 have already been provided for you on

Command I,unguage STS-S

the tutorial tape. For more information on creating data nodes, refer to
Section RMI Command Summary.

Using explicit naming, code the right forearm for the Robot that was de-
signed in Section GT4 Modeling. The display tree looked like this:

Sphere 0390152

Figure S-1. Display Tree for Robot's Forearm

Start from the top down.

TranRtLowerArm := TRANSLATE BY 0,-4 APPLIED TO RotRtLowerArm;

RotRtLowerArm := ROTATE 0 APPLIED TO RtLowerArm;

RtLowerArm := INSTANCE OF ForearmPiece, TranHand;

ForearmPiece := SCALE BY .5,1.5,.5 APPLIED TO Cylinder;

Cylinder := VECTOR_LIST ... ;

TranHand := TRANSLATE BY 0,-3 APPLIED TO RotHand;

RotHand := ROTATE 0 APPLIED TO TranSphere;

TranSphere := TRANSLATE BY 0,-1 APPLIED TO ScaleSphere;

ScaleSphere := SCALE BY .5,1,.5 APPLIED TO Sphere;

Sphere := VECTOR LIST ...

GTS-6 Graphics Tutorials

Zeros are given as the values for interactive nodes such as RotRtLowerArm

and RotHand because new values will be provided interactively from func-

tion networks. With explicit naming, a command can refer, or point, to a
name that does not exist yet. The name exists once the PS 39~ receives a
command defining the data structure associated with that name. Explicit

naming has some disadvantages. First, it can be confusing with a complex

display tree because you may have hundreds of command names to create

and keep track of. Effective comment lines would be essential. The major

drawback of explicit naming is that it forces you to name every node in a

_display tree. This means unnecessary work. The only nodes requiring names

are nodes you want to directly reference. There is no need to name nodes
that you can safely predict will not receive new values, or be instanced or
displayed directly.

1.1 Exercis e

In Section GT4 Modeling, you designed a display tree for a car. That display

tree is shown in Figure 5-2.

0 0 0 0
~~ ~ ~ ~o

R
Q 180 Q

Snow Tire Radial Tire

Figure S-2. Car Display Tree

U390153

Command I.r~nguage GTS- 7

Code this display tree from the top down using explicit naming. The values
provided below have been calculated to produce the desired transforma-
tions. The first two nodes are interactive nodes which translate and rotate
the whole car:

TranCar := TRANSLATE BY 0,0 APPLIED TO RotCar;

RotCar := ROTATE 0 APPLIED TO SportsCar;

The car is defined as an instance of the car body and the translations ap-
plied to each tire:

SportsCar := INSTANCE OF Car_Body, Tran_FR_Tire, Tran_FL_Tire,

Tran RR Tire, Tran RL Tire;

Define the radial on the rear, right side of the car. A translation node and
an interactive rotation node are needed:

Tran_RR Tire := TRANSLATE BY -.5664,-.1598,-.3357 THEN Rot_RR Tire;

Rot_RR_Tire := ROTATE IN Z 0 THEN Scaled_Radial_Tire;

Since both radial tires are scaled,. the scaled radial tire can be defined once
and then referenced with each tire.

Scaled_Radial_Tire := SCALE BY .139 THEN Radial_Tire;

The display tree for the radial on the rear, left side of the car also includes
a translation and rotation node:

Tran_RL_Tire := TRANSLATE BY -.5664,-.1598,.3357 THEN Rot_RL_Tire;

Rot_RL Tire := ROTATE IN Z 0 THEN Flip_RL_Tire;

Then the tire is rotated so the hubcap faces out:

Flip_RL Tire := ROTATE IN Y 180 THEN Scaled_Radial Tire;

The same process is used for the snow tires. Both snow tires consist of a
translation and interactive rotation node. Then the snow tire on the front,
left side of the car is rotated so the hubcap faces out.

GTS-8 Graphics Tutorials

The code for the snow fire on the front, right side of the car would be:

Tran_FR_Tire := TRANSLATE BY .5415,-.1598,-.3357 THEN Rot_FR_Tire;

Rot_FR_Tire := ROTATE 0 THEN Scaled_Snow_Tire;

Since both snow tires are scaled, the scaled snow fire can be defined once
and then referenced twice.

Scaled_Snow_Tire := SCALE BY .139 THEN Snow_Tire;

The code for the front left snow fire would be:

Tran_FL_Tire := TRANSLATE BY .5415,-.1598,.3357 APPLIED TO

Rot_FL_Tire;

Rot_FL_Tire := ROTATE 0 APPLIED TO Flip_FL_Tire;

Flip_FL_Tire := ROTATE IN Y 180 APPLIED TO Scaled_Snow_Tire;

The points and connecting lines for the three primitives must also be de-
fined. In this section, that code is represented by:

Snow Tire := VECTOR LIST ...
Radial Tire := VECTOR LIST ...
Car_Body := VECTOR_LIST ...

Since the data primitives for Snow Tire, Radial_Tire, and Car Body are
already provided for you when you load the PS 390 Tutorial Demonstrations
tape, display the car by typing:

DISPLAY SportsCar;

To prepare for the new definition Of SportsCar you will be coding in the
next section, enter:

INITIALIZE;

This removes the present definition of SportsCar you just coded in.

Command Language GTS-9

2. Using BEGIN_STRUCTURE ... END_STRUCTURE

An alternative to naming every node is to group nodes inside a BE-
GIN STRUCTURE ... END_STRUC .Though each node within a BE-
GIN_STRUC'I'LJRE ... END_STRUC is created in mass memory, you
only have to name those nodes which will be accessed again. (The display
processor "accesses" the node every time the model is displayed.)

Besides less naming, another advantage of the BEGIN STRUCTURE...
END_STRUC is that it is an effective way to organize the commands
in your file. In a complex display tree, nodes that directly affect each other
can be grouped together in the same BEGIN STRUCTURE ...
END STRUCTURE.

BEGIN STRUC ... END_STRUC is usually used in conjunction
with explicit naming. To illustrate this, code SportsCar using a combination
of the two. There are many ways to code a model. The following is only one
possible way of determining which type of code to use.

Before coding, identify all data nodes and any shared nodes in the display
tree of the car. In this case, there are three data nodes: the car body, the
radial tire, and the snow tire. The scaled radial tire and scaled snow tire are
shared nodes.

Now look at the branches above any shared nodes, data nodes, and instance
nodes, for those which have two or more operation nodes. These nodes
could be grouped into a BEGIN_STRUCTURE ... END_STRUC

GTS-10 Graphics Tutorials

Body

0

0 Car

O ~O~~O O
~ C COQ

R
Q 180 Q

Snow Tire Radial Tire U390154

Figure S-3. Possible BEGIN STRUCTURE ... END_STRUCTUREs for Car

Begin coding the display tree top down. The first two commands allow you
to see the car immediately once it is defined.

INITIALIZE DISPLAY;

DISPLAY SportsCar;

The display tree begins with a BEGIN_STRUC ... END_STRUC-

SportsCar := BEGIN STRUCTURE

Tran := TRANSLATE BY 0,0;

Rot := ROTATE 0;

INSTANCE OF Car_Body, RL_Tire, RR_Tire, FL_Tire, FR Tire;

END STRUCTURE;

The interactive translation and rotation nodes must be explicitly named so
they can be accessed to provide values to manipulate the car. Grouping
these nodes in a BEGIN STRUC ... END_STRUCZ~JRE saves you

Command Language GTS-11

from having to name the instance node. Naming the whole structure also
allows you to reference a "Car" that can be rotated and translated.

Each fire could be defined within a BEGIN STRUCTURE ... END STRUC-
TURE:

{Rear left wheel}

RL Tire := BEGIN STRUCTURE

TRANSLATE BY -.5664,-.1598,.3357;

Rot := ROTATE 0;

ROTATE IN Y 180 APPLIED TO Scaled_Radial_Tire;

END STRUCTURE;

{Rear right wheel}

RR Tire := BEGIN STRUCTURE

TRANSLATE BY -.5664,-.1598,-.3357;

Rot := ROTATE 0 APPLIED TO Scaled_Radial_Tire;

END_STRUCTURE;

Scaled_Radial_Tire references a scale operation node and a data node.
These iwo nodes can be shared by both the right and the left rear tires.
Notice how the operations within the BEGIN_STRUC ...
END_STRUC reflect the order indicated in the display tree; i.e.,
translates precede rotates, which precede scaled data. In much the same
way, the last two branches define the snow tire:

{Front left wheel}

FL Tire := BEGIN STRUCTURE

TRANSLATE BY .5415,-.1598,.3357;

Rot := ROTATE 0;

ROTATE IN Y 180 APPLIED TO Scaled_Snow Tire;

END_STRUCTURE;

{Front right wheel}

FR Tire := BEGIN STRUCTURE

TRANSLATE BY .5415,-.1598,-.3357;

Rot := ROTATE 0 APPLIED TO Scaled_Snow Tire;

END STRUCTURE;

GTS-12 Graphics Tutorials

The shared nodes for each tire are coded as:

Scaled_Radial_Tire := SCALE BY .139 APPLIED TO Radial_Tire;

Scaled_Snow Tire := SCALE BY .139 APPLIED TO Snow Tire;

The three primitives also need to be defined. The actual vector lists for
these have been provided for you in the PS 390 Tutorial Demonstrations
tape, so that you may see SportsCar. The following abbreviated code is just
to remind you that primitives must always be defined:

Snow Tire := VECTOR LIST ...
Radial Tire := VECTOR LIST ..

Car Body := VECTOR LIST . . . •

In general, then, a BEGIN STRUCTURE ... END_STRUC •

• Groups associated nodes together into identifiable parts of a model.

• Reflects the order of operations shown in the display tree.

• Eliminates the unnecessary naming of nodes. Nodes within a struc-
ture are only named if they are interactive.

There is one possible disadvantage to using too many BEGIN_STRUC-
TURE... END_STRUC commands. Each time the PS 390 parses a
BEGIN STRUC ... END_STRUC command, it automatically
creates another instance node in the display tree.

The created instance node is placed above all other nodes within that BE-
GIN STRUCTURE ... END STRUC command. The name of the BE-
GIN_STRUC ... END_STRUCTURE is actually the name of the
created instance node. For example, if you put the following nodes into a
BEGIN STRUC ... END STRUC •

TransMolecule := TRANSLATE BY 0,1 APPLIED TO RotMolecule;

RotMolecule := ROTATE 0 APPLIED to ScaleMolecule;

ScaleMolecule := SCALE 2,2 APPLIED TO Molecule;

Command Language GTS-13

The PS 390 would create a display tree like this:

Molecule := BEGIN STRUCTURE

TRANSLATE 0, 1;

Rot := ROTATE 0;

SCALE 2,2 APPLIED TO Molecule;

END STRUCTURE;

U390156

Extraneous instance nodes are only costly if they are used so frequently that

they begin to affect the traversal time of the display processor. In evaluating
when to use BEGIN STRUC ... END STRUCTURE command, then,

you must weigh the advantage of grouping nodes together without having to

name each node against the disadvantage of creating an extra instance node
in the display tree.

Now that you are familiar with BEGIN STRUCTURE ... END_STRUC-
TURE commands, examine some rules regarding their use.

1. When using BEGIN STRUC ... END_STRUC ,note that
an operation is applied to everything below it in the structure unless
the operation is explicitly applied to another structure. If an opera-
tion is applied directly to a name, nothing else listed below it in the
structure is affected by that operation.

So in the following example, the cylinder is both translated and
scaled, but the piston is only translated:

Shaft_Housing := BEGIN_STRUCTURE

TRANSLATE BY 0,1,0;

SCALE 2,2 APPLIED TO Cylinder;

INSTANCE OF Piston;

END STRUCTURE;

Look at another example. Each operation applies to everything fol-

lowing it in the BEGIN_STRUC ... END_STRUCTURE. So the

GTS-14 Graphics Tutorials

Cube is rotated in X 30 degrees. The sphere is rotated in Y 10 de-
grees and rotated in X 30 degrees. The pyramid is translated by
0,1,1; rotated in Y 10 degrees; and rotated in X 30 degrees.

Shapes := BEGIN STRUCTURE

XRot := ROTATE IN X 30;

Cube := VECTOR_LIST ...;

YRot := ROTATE IN Y 10;

Sphere := VECTOR_LIST ...,

Tran := TRANSLATE BY 0,1,1;

Pyramid := VECTOR_LIST ...;
END_STRUCTURE;

2. Remember from Section GT4 Modeling that instance nodes can point
to any number of descending nodes, operation nodes can point to
only one descending node, and data nodes are terminal nodes; that
is, they have no descending nodes.

Inside a BEGIN STRUC ... END_STRUCTLTRE, if an opera-
tion node points to more than one other node below it, the PS 390
automatically creates an instance node below the o eration node.

p

The operation node points to the instance node, which points to the
descendant branches.

For example, the BEGIN STRUC ... END_STRUC code
below is illegal because the translation applies to all three rotations
below it.

Example := BEGIN STRUCTURE

TRANSLATE BY 0, 2;

RotKnob := ROTATE IN X

APPLIED TO Knob;

Rotbutton := ROTATE IN Y

APPLIED TO Button;

Rotswitch := ROTATE IN Z

APPLIED TO Switch;

END_STRUCTURE;

Knob

/ \Example

Button Switch
U390157

Command Language GTS-1 S

In this case, the PS 390 automatically places an instance node below

the translation node:

Knob Button Switch
U390159

You could create the instance node explicitly with the following code:

Tran := TRANSLATE BY 0,2 APPLIED TO Parts;

Parts := INSTANCE OF RotKnob, Rotbutton, Rotswitch;

3. When located inside a BEGIN STRUC ... END_STRUCTURE,
a user-named node is assigned a name by the system which consists
of the BEGIN STRUCTURE ... END_STRUC name, a period,
and the user-assigned name of the node. So in the previous example
of the BEGIN STRUC ... END_STRUCTURE named Shapes,
the X Rotate node can be accessed as SHAPES.XROT. The period
indicates that the name XROT is in the BEGIN STRUC ...
END_STRUC named "Shapes" .

The PS 390 assigns the name automatically, so you can keep your
naming procedures simple, reusing descriptive names like SCALE,
ROTATE, and TRANSLATE as long as they are not repeated in the
same BEGIN STRUCTURE ... END_STRUCTU~EZE (so all names re-
main unique) .

If a node is not named, it is just part of the hierarchical structure and
cannot be addressed explicitly. This is indirect "naming" of a node.

GTS-16 Graphics Tutorials

4. BEGIN STRUC ... END STRUC scan be nested inside
each other. No operations within a nested BEGIN_STRIJC ...
END_STRUCTURE apply to any nodes in the encompassing BE-
GIN STRUCTURE... END STRUCTURE. Think of the nested BE-
GIN STRUC ... END STRUC as a terminal node in the
display tree.

5. No immediate action commands should be placed in BE-
GIN STRUC ... END_STRUCTLTREs (with two debugging ex-
ceptions: Co _STATUS and !RESET). Immediate action
commands are discussed in the next section.

2.1 Exercise

In this section you will use the following display tree, which was designed in
Section GT4 Modeling, to code Robot into mass memory.

Command Language GTE-17

0
0

Robot Body

0
Upper Body

Trunk

Head
Upper
Arm ~

Hand

0

0

r

Pelvis

Right
Arm

Right
- Forearm

Right
Hand 0

Figure S-4. Robot Display Tree

Lower Body

Calf

Foot

0

0

J~
0390405

Right
Leg

Right
Lower
Leg

Right
Foot

GTS-18 Graphics Tutorials

Enter the commands in a host file as you proceed (otherwise, they cannot
be saved).

Use explicit naming and BEGIN STRUC ... END_STRUC to
the best advantage. Keep in mind that you could use BEGIN STRUC-
TURE... END_STRUC any number Of ways to help you organize and
economize on code. This example develops one possible way.

First, isolate and identify all data nodes and any shared nodes.

Remember that the same data node—Cylinder—has been used for all the
body pieces except the hands and head, which are spheres. Shared nodes
have already been specified in the design of the display tree. These form the
pieces labeled hand, forearm, upper arm, foot, calf, and thigh.

The first step is to code the primitives. The sphere and cylinder are vector
lists that have been provided for you in the PS 39~ Tutorial Demonstrations
tape. The following serves only as a reminder that you must always define
primitives.

Sphere := VECTOR LIST ..

Cylinder := VECTOR LIST ..

Code the shared body pieces using both explicit naming and using BE-
GIN_STRUC ... END_STRUC .Calf, Thigh, Forearm, and Up-
per Arm each consist of one node above a data node, so each can be coded
explicitly:

Upper Arm :_

Forearm :_

Thigh •_

Calf : _

SCALE BY .5,2,.5 APPLIED TO Cylinder;

SCALE BY .5,1.5,.5 APPLIED TO Cylinder;

SCALE BY .75,2.5,.75 APPLIED TO Cylinder;

SCALE BY .65,2.5,.65 APPLIED TO Cylinder;

The Hand and Foot have two or more operation nodes above data nodes
and so code them using BEGIN STRUC ... END_STRUC •

Hand := BEGIN STRUCTURE

TRANSLATE BY 0,-l;

SCALE BY .5,1,.5 APPLIED TO Sphere;

END STRUCTURE;

Command Language GTS-19

Foot := BEGIN STRUCTURE

TRANSLATE BY 0,0,1;

SCALE BY .75, .5, l;

ROTATE IN X 90 APPLIED TO Cylinder;

END STRUCTURE;

Figure 5-5 illustrates what nodes in the display tree remain to be coded. The

nodes already accounted for are represented by name. The branches con-

taining two or more operation nodes above a name, a data node, or an

instance node have been circled. These could be coded using BE-

GIN_STRUC ... END_STRUC .Explicit naming could be used

elsewhere.

Cylinder

Sphere

Forearm

Hand

r
Cylinder

Thigh

Calf

FOOt' U390159

Figure S-5. Possible BEGIN STRUCTURE ... END STRUCTURES for Robot

GTS-20 Graphics Tutorials

With this in mind, begin at the top branches of the display tree and code
down.

The top of the display tree can be coded in one BEGIN_STRUCTURE...
END STRUC •

Robot := BEGIN STRUCTURE

Tran := TRANSLATE BY 0, 0;

Rot := ROTATE 0;

Scale := SCALE BY .075;

INSTANCE OF Upper_Body, Lower_Body;

END STRUCTURE;

Remember that PS 390 screen coordinates are +1 to -1 units, so the screen

is 2 units across. Because of the dimensions of the Robot, it is scaled so it is
viewable on the display screen.

Each of these top nodes could have been coded explicitly since three of the
four nodes are interactive and must be named regardless:

TranRobot := TRANSLATE BY 0,0 APPLIED TO RotRobot;

RotRobot := ROTATE 0 APPLIED TO ScaleRobot;

ScaleRobot := SCALE BY .075 APPLIED TO Robot;

Robot := INSTANCE OF Upper_Body, Lower_Body;

However, BEGIN_STRUC ... END_STRUC saves naming one

node, the instance node, within the structure and groups all the interactive

nodes under a single name: Robot. The tradeoff, an additional instance

node, is not prohibitive in this case.

Next, Upper Body groups all the upper body parts into one entity which can

be rotated interactively.

Upper_Body := BEGIN_STRUCTURE

Rot :_ ROTATE 0;

INSTANCE OF Head, Right Arm, Left Arm, Trunk;

END STRUCTURE;

The above could be coded explicitly:

Rot_Upper_Body := ROTATE 0 APPLIED TO Upper_Body;

Upper_Body := INSTANCE OF Head, Right Arm, Left Arm, Trunk;

Command Language G?~5-21

However, it may be more convenient to group them into a BEGIN_STRUC-
... END_STRUC under a single name. This way, Robot could

subsequently be coded as an instance of Upper Body and Lower Body in-
stead of an instance of Rot Upper_Body and Lower Body.

You could choose to code explicitly for efficiency. However, in this exam-
ple, the convenience is worth the extra instance node. Both the trunk and
head could be defined in a BEGIN STRUC ... END STRUC

Trunk := BEGIN STRUCTURE

TRANSLATE BY 0,6;

SCALE BY 2,3,1 APPLIED TO Cylinder;

END_STRUCTURE;

Head := BEGIN STRUCTURE

TRANSLATE BY 0,6;

Rot := ROTATE 0;

SCALE BY 1,2,1;

TRANSLATE BY 0,1 APPLIED TO Sphere;

END_STRUCTURE;

Notice that only the rotation node (Head.Rot) is named so values may be
sent interactively to move the head.

Now work through the rest of the code. When you are finished, you can
compare your code with the following:

Begin with Right_Arm and code top down. The circled display tree indicates
the arm may be coded in three BEGIN_STRUCTLTRE ... END_STRUC-
TURE groups.

Right Arm := BEGIN STRUCTURE

TRANSLATE BY -2.5,6;

Rot := ROTATE 0;

INSTANCE OF Upper Arm, Right_Forearm;

END STRUCTURE;

Right_Forearm := BEGIN_STRUCTURE

TRANSLATE BY 0,-4;

Rot := ROTATE 0;

INSTANCE OF Forearm, Right_Hand;

END STRUCTURE;

GTS-22 Graphics Tutorials

Since Hand has already been coded, Right Hand is defined as:

Right_Hand := BEGIN_STRUCTURE

TRANSLATE BY 0,-3;

Rot := ROTATE 0 APPLIED TO HAND;

END STRUCTURE;

Left Arm is coded like Right Arm but with different transformation values

and name changes:

Left Arm := BEGIN STRUCTURE

TRANSLATE BY 2.5,6;

Rot := ROTATE 0;

INSTANCE OF Upper_Arm, Left_Forearm;

END STRUCTURE;

The pattern is similar for Left Forearm. Note that it references Forearm

and Left Hand, which have both been defined:

Left Forearm := BEGIN STRUCTURE

TRANSLATE BY 0,-4;

Rot := ROTATE 0;

INSTANCE OF Forearm, Left_Hand;

END STRUCTURE;

Notice in these two structures, the instance nodes are defined on a separate

line from the rotation node because there is more than one instance node

being referenced.

Since Hand has already been coded, Left Hand is defined as:

Left Hand := BEGIN STRUCTURE

TRANSLATE BY 0,-3;

Rot := ROTATE 0 APPLIED TO HAND;

END STRUCTURE;

Now the lower half of Robot can be coded. First, group the pieces of the

lower body of the Robot together in one line of code

Lower Body := INSTANCE OF Pelvis, Right_Leg, Left_Leg;

Command Language GTS-23

Then define each piece. Pelvis can be coded explicitly:

Pelvis := SCALE BY 2,1,1 APPLIED TO Cylinder;

The legs, like the arms, consist of BEGIN STRUC ... END_STRUC-
TLTRE groups:

Right_Leg := BEGIN_STRUCTURE

TRANSLATE BY -1,-2;

Rot := ROTATE 0;

INSTANCE OF Thigh, Right_Lower_Leg;

END_STRUCTURE;

Right_Lower_Leg := BEGIN_STRUCTURE

TRANSLATE BY 0,-5;

Rot := ROTATE 0;

INSTANCE OF Calf, Right_Foot;

END_STRUCTURE;

Right_Foot := BEGIN_STRUCTURE

TRANSLATE BY 0,-5.5;

Rot := ROTATE 0;

TRANSLATE BY 0,0,-.5 APPLIED TO Foot;

END_STRUCTURE;

Left Leg := BEGIN STRUCTURE

TRANSLATE BY 1,-2;

Rot := ROTATE 0;

INSTANCE of Thigh, Left_Lower_Leg;

END_STRUCTURE;

Left_Lower_Leg := BEGIN_STRUCTURE

TRANSLATE BY 0,-5;

Rot := ROTATE 0;

INSTANCE OF Calf, Left_Foot;

END_STRUCTURE;

Left Foot := BEGIN STRUCTURE

TRANSLATE BY 0,-5.5;

Rot := ROTATE 0;

TRANSLATE BY 0,0,-.5 APPLIED TO Foot;

END_STRUCTURE;

GTS-24 Graphics Tutorials

3. Using Immediate Action Commands

Immediate action commands are executed immediately when they are
received by the system. This kind of command cannot be named. For
example:

DISPLAY Smallstar;

is a command that causes the model (data structure) named Smallstar to be
displayed. The data structure Smallstar already exists in mass memory; the
DISPLAY command creates no additional data structure. Naming the dis-
play command:

Name := DISPLAY Smallstar;

would cause an error message to appear. Immediate action commands can
be divided into three types:

1. Those used with function networks. (For more information on these,
refer to Section GT6 Function Networks I.)

CONNECT
DISCONNECT
SEND
STORE

2. General commands

BEGIN...END

Defines a batch of commands so they appear to execute simultane-
ously.

CO STATUS

Reports current level to which BEGIN...END and BEGIN_STRUC-
...END STRUC commands are nested.

DISPLAY

REMOVE

Cause objects either to appear on or disappear from the screen.

Command Language GTE'-G S

FORGET (data structures)

Removes a name from use while leaving the data structure associ-
ated with the name in place.

DELE'1~E

Removes a name and its associated data structure from use.

INITIALIZE

Clears all user-defined structures from mass memory.

O ZE STRUC ... END OPTIlVIIZE

Places the PS 390 in, and removes it from, "optimization mode,"
which minimizes display processor traversal time for structures
created in this mode.

!RESET

Equivalent to entering enough "END_STRUC ;" commands
to terminate any upended BEGIN_STRUC ~ ... END_STRUC-
TUREs (i . e . , more BEGIN_STRUC statements than
END_STRUC statements, creating an "unended" structure) .

3. Structuring commands

These "hybrid" commands have characteristics of both immediate
action commands and data structuring commands. Like data struc-
turing commands, they create data tree nodes in mass memory by
inserting nodes into an already named display tree. (Note that the
SEND command sends new values to existing display tree nodes) .

Unlike data structuring commands, these commands cannot be
named (the nodes they create derive their names or traversal paths
from existing nodes), so they are considered immediate action com-
mand s .

FOLLOW WITH
REMOVE FOLLOV'iTER

The first command follows a named operation node with another
operation node. The second command removes this added opera-
tion node.

GTS-26 Graphics Tutorials

INCLUDE
REMOVE FROM

The first command modifies an existing INSTANCE display tree
node by including one named display tree in a named INSTANCE
display tree. The second command removes this added structure.

PREFIX
REMOVE PREFIX

The first command prefixes a named display tree with an operation
node. The second command removes the prefixed node.

SEND

This command sends a value to a display tree node, as well as to a
function instance or variable.

Immediate action commands are not only used for interactions such as dis-
playing or deleting an object on the screen. They are also useful for making
experimental or temporary changes to the display structure of a model in
mass memory. For example, if you wanted to change the view of a given
model, you could add operation nodes to the the display structure of a
model (in command mode) by using the FOLLOW WITH command. Should
the view prove undesirable, you could remove these nodes with the RE-
MOVE FOLLOWER command .

If you liked the effect and wanted the nodes permanently, you could edit the
display tree of the model file (in terminal emulator mode) adding data
structuring commands.

4. Entering Code In The PS 390

When you have determined the commands needed to create the display tree,
enter them into the PS 390. You could enter them directly, as you did in

Section GTI Hands-On Experience, but this means they will not be saved.

To retain a copy of the code for further use, enter the commands into a text

file on your host computer. The procedure for this varies according to the

host. Refer to your host documentation for details.

The file can then be downloaded to the PS 390. For details on how to do

this, refer to Section IS3 Operation and Communication.

Command Language GTS-2 7

When the transfer is completed, you can display the model using the DIS-
PLAY command .

For example, transfer the Robot file to the PS 390 and display the Robot
model by pressing CTRL/LINE LCJCAL and entering:

DISPLAY Robot;

4.1 Command Summary

Now that you are familiar with how the commands work, the Command
Summary in Section RMI should be the only reference you need. The Com-
mand Summary serves as a quick, complete reference on all available com-
mands. Commands are listed alphabetically. Acceptable abbreviations,
formal command syntax, and information on data types for parameters are
supplied.

4.2 Graphics Support Routines

The Graphics Support Routines (GSRs) in Section RM4 are a collection of
procedures which are used to improve speed and efficiency in communica-
tions between the host computer and the PS 390. They reside in the host
computer.

Most of the PS 390 commands have a corresponding Graphics Support Rou-
tine. When you call one of these routines, the corresponding PS 390 com-
mand is sent in binary directly to the PS 390 to be executed.

This improves efficiency in that data is received in the format required by
the PS 390, ready for direct interpretation. Because the data requires no
further parsing, less time is required by the PS 390 to interpret commands.

Keep in mind that the GSR software does not replace the PS 390 command
language. It is an alternative way to invoke it. For details on the Graphics
Support Routines, refer to Section RM4.

GTS-28 Graphics Tutorials

5. Summary

All PS 39 0 commands

• End with a semicolon.

• Are free-formatted.

• Have a long and short form.

• Can consist of uppercase and/or lowercase letters.

Two kinds of PS 390 commands are needed to create a model in PS 390
mass memory and display it on the screen: data structuring commands and
immediate action commands.

Immediate action commands are executed immediately, and cannot be
named by the user. These are used in function networks, for general system
operations such as displaying or removing an object from the PS 390
screen, and for temporary modifications to existing display trees in mass
memory.

Display trees are initially created in mass memory using data structuring
commands. All data structuring commands must be named, either explicitly
or using BEGIN STRUCTURE ... END_STRUC

Whichever method you use, the following naming conventions must be fol-
lowed.

• A name can be up to 240 characters and consist of any alphanumeric
combination as long as it begins with a letter.

• A name can include underscore characters (~, a dollar sign ($), or a
period (.). However, using periods may be confusing because the
PS 390 automatically inserts periods in the name of nodes contained
in a BEGIN STRUCTURE... END STRUCTURE.

• A name cannot contain a space or other delimiter (return, tab, etc.).

• A name is followed by a colon, an equal sign, and the command to
be associated with the name.

• Other PS 390 commands can be used in conjunction with the naming
of data structures:

The FORGET command
The DELETE command

Command Language G7'5-29

Most display trees are coded using a combination of explicit naming and
BEGIN_STRUC ... END_STRUC . In general, BEGIN_STRUC-

... END STRUCTURE:

• Groups associated nodes together into identifiable parts of a model.

• Reflects the order of operations shown in the display tree.

• Eliminates the unnecessary naming of nodes: nodes within a struc-
ture are only named if they are interactive.

The BEGIN STRUCTURE ... END STRUC command follows certain
conventions:

• BEGIN STRUC ... END_STRUCTURE always creates an in-
stance node.

• Operation commands inside a BEGIN STRUC ...
END_STRUC apply to everything below in the structure unless
they are explicitly applied to other structures.

• If an operation node in a BEGIN STRUC ... END_STRUC-
TURE is to be applied to more than one branch of the hierarchy, the
PS 390 creates an instance node below the operation node, and the
instance node points to the appropriate branches.

• In a BEGIN_STRUC ... END_STRUCTURE, the PS 390 auto-
matically prefixes the name of a user-named node with the name of
the BEGIN_STRUC ~ ... END_STRUC .The prefixed (hier-
archical) name is first, followed by a period (.) and the user given
name.

• END_STRUC does not create a data node, but merely indi-
cates to the PS 390 that the BEGIN STRUC ... END STRUC-

is finished.

• Nested BEGIN_STRUC ... END_STRUCTURE groups can be
considered as terminal nodes in the encompassing BEGIN_STRUC-
TURE... END STRUC . In other words, nothing in the nested
structure is applied to anything in the rest of the encompassing BE-
GIN STRUC ... END_STRUCTURE.

GTS-30 Graphics Tutorials

The display tree of a model is coded in a text file or an application program
on the host computer and then downloaded to the PS 390. For quicker com-
munications between host and PS 390, use the PS 390 Graphic Support
Routines. Use Section R1V11 Command Summary as an easy reference manual
of all available commands.

For information on how to connect function networks into the display tree of
a model, to manipulate the model interactively, refer to Section GT6 Func-
tion Networks 1.

Command Language GTS-31

GT6. FUNCTION NETWORKS I

INTERACTION WITH A MODEL

CONTENTS

INTRODUCTION 1

OBJECTIVES 2

PREREQUISITES 2

1. Converting Input Device Values To Update An Interaction Node 3

1.1 Exercise .. 16

2. Adding Further Interaction: Rotation In Other Dimensions 18

2.1 Exercise 21

3. Expanding The Network For Other Kinds Of Interaction: Scaling
and Translating 22

3.1 Exercise 25
3.2 Exercise 26

4. A Clock Function As An Alternate Source Of Input For The
Network 27

4.1 Exercise 30

5. Summary 32

5.1 Review of Major Points 33
5.2 Important Facts About PS 390 Functions 34
5.3 PS 390 Commands Discussed in This Section 34

i

ILLUSTRATIONS

Figure 6-1. Sample Function Network 1
Figure 6-2. The "Black Box" 3
Figure 6-3. Interactive Nodes in Robot Display Tree 4

Figure 6-4. F:YROTATE 7
Figure 6-5. Possible Y Rotation Network 7
Figure 6-6. Y-Rotation Network With Multiplier 8
Figure 6-7. Adding an Accumulator 9
Figure 6-8. Tracing Dial Values (Part 1) 9
Figure 6-9. Tracing Dial Values (Part 2) 10
Figure 6-10. Tracing Dial Values (Part 3) 10
Figure 6-11. F: MUL 13
Figure 6-12. F: DYROTATE 14
Figure 6-13. F: DYROTATE Function Network 15
Figure 6-14. "Spinner" Function Diagram 16
Figure 6-15. Completed Function Network for X, Y and Z Rotation 18
Figure 6-16. Modified Display Tree With Three Rotate Nodes 19
Figure 6-17. F:YROTATE Network 20
Figure 6-18. Common Accumulator for Rotate Functions 20
Figure 6-19. Sample Configuration for Dials 23
Figure 6-20. Translate Network 24
Figure 6-21. Network for Uniform Scaling 26
Figure 6-22. F:CLFRAMES 28
Figure 6-23. F:CLFR.AMES as Input Source for Y Rotation 29
Figure 6-24. A Network That Toggles 31
Figure 6-25. A More Efficient Toggle Switch 32
Figure 6-26. The Completed Network . 32

ii

Section GT6

Function Networks I

Interaction With A Model

Introduction

This section illustrates how to construct simple function networks. Function
networks allow you to interact with a model you have created for display.

The first steps to using function networks were detailed in Sections GT4
Modeling and GTS Command Language. There, you analyzed a model (the
robot) for movement, allowed for that movement by including interaction

nodes in the display tree, and named those nodes when you coded the
model so they could be accessed.

Interactive nodes can be accessed using function networks. For example, in
Section GTI Hands-on Experience, you used a simple function network to
rotate a star on the screen Figure 6-1.

r
I DIALS

Sinner

F:DZROTATE

<1> <1>

I

Figure 6-1. Sample Function Network

Diamond

U390160

This section will illustrate in greater detail how this kind of function network

operates .

Function Networks 1 GT6-1

You will also learn how to use PS 390 interactive devices to move a more
complex model, the robot. When the robot display tree was initially coded,
zero values were assigned to the interaction nodes. In the case of rotating
the model, this meant the model would rotate zero degrees from initial
position when first displayed. To rotate the model, you can create a function
network to send a nonzero value to the rotate node. Specifically, this func-
tion network takes values from input devices and transforms them into val-
ues the interaction nodes can accept.

Part of this process entails selecting the appropriate PS 390 functions and
linking them together into a function network. This function network may
contain additional functions which perform other kinds of tasks, such as
accumulating values which are not large enough.

As you did when you created a display tree for your model, you will first
create a diagram of your function network and then code from that. Creat-
ing adiagram of the network first allows you to modify it easily and detect
errors before they become bugs in the code.

Objectives

In this section you will learn how to:

• Select functions which will convert input device values into values
that can update an interaction node.

• Add functions to the network for rotation in all three dimensions.

• Expand the network for other kinds of interaction (scaling and trans-
lating).

• Use a clock function as an alternate source of input for the network.

Prerequisites

Before beginning this section, you should be familiar with the concepts pre-
sented in Sections GT4 Modeling and GTS PS 390 Command Language.

GT6-2 Graphics Tutorials

1. Converting Input Device Values To Update An Interaction
Node

The first step to selecting the appropriate function to convert input values
into values that can update an interaction node is to identify the type of
values needed by the node. To understand this, look at the the most com-
mon graphics transformations—rotation, scaling, and translation.

Rotations and scales are done with 3x3 matrices; translations are specified
with a 2- or 3-dimensional vector. It makes sense, then, that the type of data
used by a rotation or scale node is a 3x3 matrix, and the data type for a
translation node is a vector.

Your task, if you are trying to rotate part of a model, is to find a way to
make an input device, such as a dial, send the correct 3x3 matrices to a
rotate node. In this section, this process will be represented by a "black
box" (Figure 6-2) that takes one kind of value and changes it into another
kind .

Input Values
r

, 3x3 Rotation I I
from Dials I Black Box I Matrices

I i
I i
L J

Figure 6-2. The "Black Box "

U390161

In Section GTl Hands-On Experience, you created Diamond by specifying a
45 degree rotation of Square. You did not need to work out what the 3x3
matrix for 45 degrees was. Whenever you use a command to create a rotate
or scale node (such as Diamond), you only have to specify an angle using a
real number value and the PS 390 automatically creates the associated 3x3
matrix.

once the node is created, however, you can only update it with the type of
data it accepts—in this case, a 3x3 matrix. For example, look at the robot

display tree again (Figure 6-3) . The names for the interactive nodes are

supplied so you can refer to them.

Function 1Vetworks I GT6-3

Trunk

Head. Rot

Head

Upper Body

Robot . Tran

Robot .Rot

Robot .Scale

UpperBody .Rot

Left_Arm .Rot

Right_A

Ri•

Left_Forearm .Rot
1

Forearm

Left_Hand .Rot

Hand

.Rot

Pelvis

Lower Body

~ ~ ~

~ 0 0

_O hi9ht ■
RI9ht O
Arm

t Forearm.Rot L _ • -

Lek_Foot.• Cali •

O n

Left_Leg .Rot

eft_Lower_Leg .

Rlght
Forearm
Right
Forearm

Rig ~ Right
Hand

Right_Hand. Rot

Foot

Figure 6-3. Interactive Nodes in Robot Display Tree

Figl Right_L~ g .Rot

Right_Lower_
Leg. Rot

~J~
U390405

Right
Leg

Right
Lower
Leg

Right_Foot .Rot

Right
Foot

To move the left arm, you must send a rotation matrix to the node named
Left Arm.Rot.

GT6- 4 Graphics Tutorials

Look at the other interaction nodes. Almost all of the them are rotations
except for the translate node above robot (Robot.Tran) . All of these rotate
nodes accept 3x3 rotation matrices, and the translation node, Robot.Tran,
requires vectors.

One other node in the robot display tree is interactive: Robot. Scale, the
scale node above Robot. Unlike the rotation nodes, it currently contains a
non-zero value (.OS) . Since it has been named, you can reference it and
connect functions to it. This will allow you to change the values it contains,
interactively making the robot larger or smaller.

You can control whether or not any operation node in the display tree will
be processed. Sending a Boolean value FALSE to input <-1> of any opera-
tion node will turn off the action specified in that node. Sending a TRUE to
input <-1> will turn it back on. The default is ON.

Once you know what values you need to produce for interaction nodes (out-
put from the black box), you should identify the type of values produced
from the input device (input to the black box).

The twelve function keys across the top of the PS 300-style keyboard pro-
duce discrete integer values from 1 to 36. Consequently, they are a useful
source of input for discrete tasks such as changing states or modes.

The data tablet is commonly used for digitizing (sketching or tracing from a
drawing), making menu selections, and picking. The values it produces are
XY vectors with fractional values between plus and minus 1.

This section focuses on the dials. Dials produce a stream of small, incre-
mental real numbers. This means the dials are well-suited for producing
smooth motion, so they are often used in controlling the three common
transformations: translations, rotations, and scaling. When you turn a dial
clockwise, it sends out a stream of fractional values (called delta values)
that sum to 1 after a complete rotation of the dial. If you turn it a full turn
counterclockwise, the values sum to -1.

If the delta value is .1, every time you turn the dial one-tenth of the way
around, it produces a .1. If you turned the dial one-twentieth of a turn, it
will not produce a value. By default, a dial is set to produce a delta of about
.001. This makes the dial extremely responsive. Only a slight movement of
the dial will generate a value.

Function Networks 1 GT6-S

The delta values produced by the dials do not accumulate. In other words,
the dial does not send out .001 the first click, .002 the next, and so on,
ending with 1.0 after one complete turn. After one complete turn, the dial
still sends out the same delta value it did when it was turned enough to
produce a value. This fact is extremely important to remember when you
are designing function networks.

Once you have identified the input source and the type of values it gener-
ates, you can use Section RMI Command Summary to identify the appropri-
ate functions) to convert incoming values from an input device into
appropriate output. For rotations, the functions) must convert real numbers
sent out by the dials into 3x3 matrices needed for the interaction nodes.

Section RMl Command Summary contains a description of each command
associated with a node (INSTANCE OF, ROTATE, VECTOR LIST, and so
on) . In each description is a list of associated functions that produce values
the node can accept. For example, if you look up ROTATE, you will find
these associated functions:

F:MATRZX3, F: XROTA'1,E, F:YROTA'1'E, F: ZROTA'i'E, F:DXROTA'1'E,
F:DYROTA'1'E, F:DZROTA'1'E, F: SCALE, F:DSCALE

All of these functions produce 3x3 matrices, so, in theory, all of them can
be connected to a rotate node. However, those most closely associated with
rotate nodes are the ones with ROTATE in their names . These are the can-
didate functions for the black box.

Section RMl Command Summary lists the following associated functions in
its description of the SCALE and T~SLATE operation nodes:

SCALE: F:MATR.IX3, F:XROTA'1'E, F:YROTA'1TE, F:ZROTATE,
F:DXROTA'1'E, F:DYROTA'1'E, F:DZROTATE, F: SCALE,
F:DSCALE

T~SLA'1'E: F:XVECTOR, F:~c'VECTOR, F:ZVECTOR

As with the ROTATE command, where a number of associated functions
produce the type of output needed, the name indicates the most likely func-
tions to use. So if you wanted to send values to a scale node, you should use
F:SCALE and F:DSCALE (for the differences between F:SCALE and
F:DSCALE, refer to Section RM2 Intrinsic Functions) .

GT6-6 Graphics Tutorials

Note that the associated functions for T~SLATE do not have "TR.AN" in
their names. Since T~SLATE nodes accept 3D vectors as input, the
associated functions are ones that generate 3D vectors—F:XVECTOR,
F:~C'VECTOR, and F: ZVECTOR.

To evaluate the functions themselves, look them up in Section RM2 Intrinsic
Functions. The following example illustrates how functions work, and how
RM2 Intrinsic Functions presents the information.

Assume you want to rotate Robot in Y, that is, to make it spin around
around its vertical axis. The node to interact with is the rotate node named
Robot.Rot in the display tree. Y rotations are associated with the functions
F:YROTATE and F:DYROTATE. Under F:YROTATE in the Section RM2
Intrinsic Functions you will find a diagram like the one in Figure 6-4.

F: YRQTATE

Real or Integer <1> <1>

Figure 6-4. F:YROTATE

 3x3 Matrix

U390162

The diagram indicates that this function has one input on the left and one
output on the right. It can accept real values which represent degrees of
rotation on its input and send out 3x3 rotation matrices as output values.

Like all PS 390 functions, it waits until an input value has arrived, performs
computations, and outputs the value. It is capable of consuming a steady
stream of input values and producing a steady stream of outputs.

F:YROTATE seems to be the likely candidate for the black box. It accepts
real numbers so it can be connected to the dials, and it produces 3x3 matri-
ces to send to the rotation node. Look at example shown in Figure 6-5.

DIALS
Real

Number ~

F: YRQTATE

<1> <1>

Robot. Rot

Rotation Matrices

Figure 6-S. Possible Y Rotation Network

u3so1s3

Function Networks I GT6-7

If you were to test this function with a stream of values from the dials, you
would discover several facts. The first is that the values from the dial are
very tiny. Each one supplies only a fraction of a degree of rotation to
F:YROTATE, so the corresponding matrices that F:YROTA'1'E sends out
specify almost insignificant amounts of rotation in the model on the screen.
You need a way to multiply the effect the dial values have. Adding a new
function can do that (see Figure 6-6) .

DIALS

<1>
.001.001

200

F: MULC

<1> <1>

<2>

.~

F: YROTATE

 ►<1> <1>

Robot. Rot

Figure 6-6. Y-Rotation Network With Multiplier

U390164

F:MCJLC is a multiplying function that takes any value it receives on input
<1> and multiplies it by the constant value on input <2>. Many PS 390
functions have constant inputs. Unlike regular inputs, called active inputs,
constant inputs never consume the values on them. If you place a large
number on input <2> (200 is the value shown in the diagram), then each
incoming dial value will be converted to a value 200 times greater. That will
specify noticeable amounts of rotation for F:YROTATE. F:MULC converts
a .001 from the dials to 0.2.

Continue to trace successive values through this modified network. When
F:YROTATE receives the 0.2 from F:MULC, it will immediately send out a
matrix to Robot.Rot that will rotate Robot 0.2 degrees.

The dial produces only a stream of incremental delta values; each one is
about 0.2. As F:YROTATE receives these, it produces a stream of matrices,
each corresponding to about .2 degrees of rotation. But nothing greater than
about a fifth of a degree of rotation ever occurs. The effect of this is that
the robot rotates only a small amount and stays there. It may even look like
the robot is not responding to the dials at all.

What is needed is a way to accumulate values, so the first delta value
causes .02 degree of rotation, the second value .04 degrees, and so on. This
calls for another modification of the network. Figure 6-7 shows one method
of adding an accumulator.

GT6-8 Graphics Tutorials

DIALS

<1>

200 ~~

F: M U LC F: YROTATE F:CMUL
Robot. Rot

Figure 6- ~. Adding an Accumulator

U390165

Values from F:YROTA'1'~ can accumulate using a multiply function
(F:CI~TUL) as the accumulator. F:Cl~TUL is the same as F:l~IULC, except its
first input is constant. To fire, this function needs to be "primed" the same
way F:MULC did. Place an identity matrix on input <1>. This ensures that
F:YROTATE will produce a product. When the first incoming value from
F:YROTATE arrives of at input <2> of F:Cl~ZUL, it will be multiplied by the
matrix waiting on input < 1 >.

The product of these two matrices goes to update the rotation node. It also
goes back to F:CNTUL input <1> to replace the identity matrix that was
there. So the next rotation matrix to arrive on F:Cl~~UL input <2> gets mul-
tiplied by the accumulated matrix, not by the identity matrix first placed
there.

This whole process repeats each time F:Cl~TUI, fires. A new matrix, contain-
ing the accumulated rotations is continually being sent back to input <1> as
each new matrix is output from the function.

Figure 6-8, Figure 6-9 and Figure 6-10 trace a stream of three or four val-
ues from the dial through the network to see if the modifications that are
added produce the desired matrices.

DIALS

... .001 .001 .001

200

F: M U LC

<1> <1>

<2> C

. ~... . ~ .

U390166

Figure 6-8. Tracing Dial Values (Part 1)

As shown in NO TAG, F:l~TULC multiplies the first dial value by 200 to

produce a 0.2. This value triggers F:YROTATE to produce a rotation matrix

Function Networks I GT6- 9

for one-fifth of a degree of rotation. That travels to F:CMUL, where it will
be multiplied by an identity matrix (n on input <1> (see Figure 6-9).

M (.2°)

20~

F: M U LC

<1> <1>

C

.2 . ~
F: YROTATE

<1> <1>

M (. 2 °)

F:CMUL

<1> <1>

<2>

M (.2°

Figure 6-9. Tracing Dial Values (Part 2)

U390167

Multiplying a matrix by an identity matrix has the same effect that multiply-
ing by 1 has on numbers. The matrix that first arrives on F:C1~7UL input
<2> from F:YROTATE is multiplied by the identity matrix on input <1> and
output unchanged from the function to the rotate node. This matrix also
travels back to F:CI~TUL constant input <1> and replaces the identity matrix
that was there.

The second dial value goes through the exact same process, causing
F:l~~LC to send out a 0.2, which causes F:YROTATE to send out another
matrix for 0.2 degree of rotation. But this second matrix gets multiplied, not
by the identity matrix as the first matrix did, but by the most recent value
sitting on input <1>. In this case, that value is a matrix for .2 degrees of
rotation (Figure 6-10) .

~~

200
---►

F: MULC

<1> <1>

C

M (.4°)

M(.2°)... M (.2°)

M (.2°)

F:CMUL

<1 > <1 >

<2>

M(.4) M(.

Figure 6-10. Tracing Dial Values (Part 3)

U390168

The second product from F:CI~7UL is a new accumulated matrix for .4
degrees of rotation that updates the rotate node and goes back to replace the
.2-degree matrix on the F: Cl~1UL constant input. Each time a new
0.2-degree rotation matrix comes from F:YROTATE, this process repeats,

GT6-10 Graphics Tutorials

and a new cumulative rotation matrix goes around to the F: Cl~1UL constant
input. So each time F:CI~TUL fires, the matrix sent to Robot.Rot will specify
a little more rotation than the one before it.

Once this network is implemented, it handles input values from the dials so
quickly that the model will appear to rotate in real time. It also provides the
expected results when the dial is turned the other way: it generates small,
negative values which cause F:YROTATE to output rotation matrices for
negative rotation. The result is that the model rotates in the opposite direc-
tion.

Examine the diagram you have so far. It illustrates several important facts
about functions. One of the functions, F:YROTATE, is a data conversion
function. It takes one type of input and produces a different type. Other
functions do not do this. For example, F:ADD is an arithmetic operation
function. It adds two incoming values and produces the same type of data it
receives as input. F:I~TULC and F: CNTUL, used in this network, are also
examples of functions that do arithmetic operations. Other functions per-
form logical operations or select and route data. The classes of functions
are outlined below:

• Data Conversion

Data conversion functions combine vectors into matrices, extract vec-
tors from matrices; form vectors from real numbers, round or trun-
cate real numbers to integers, float integers to equivalent real
numbers, make printable characters and convert character strings to
a string of integers .

• Arithmetic and Logical

These functions perform all arithmetic operations (add, divide, sub-
tract, multiply, square root, sine, and cosine) and logical operations
(and, or, exclusive-or, and complement .

• Comparison

Comparison functions test whether values are greater than, less than,

equal to, not equal to, greater than or equal to, and less than or

equal to other values.

Function Networks I GT6- I 1

• Data Selection and Manipulation

These functions are used to selectively switch functions, choose out-
puts, and route data.

• Viewing Transformation

Viewing transformation functions connect to viewing operation nodes
in display trees to interactively change line-of-sight, window size, and
viewing angle.

• Object Transformation

Object transformation functions connect to modeling operation nodes
in display trees to interactively rotate, translate, and scale objects.

• Character Transformation

These functions are used to interactively position, rotate, and scale
text.

• Data Input and Output

These functions set up and control the interactive devices (dials,
function keys, function buttons, data tablet, and keyboard) and out-
put values to the optional LED labels that several of the devices
have .

• Miscellaneous

Other functions set up and control picking, clocking, timing, and syn-
chronizing operations.

Notice from the function network diagrams that values flow from left to
right, with the input device usually situated "upstream" at the extreme left
and the destination for the values (the nodes) "downstream" on the extreme
right.

Despite this general direction of flow, values can be routed virtually any-
where in the network. A function output can be connected to the input of
any other function, including itself, as F:CMUL demonstrates.

In addition, an output can be connected to more than one destination.
Again, F:CMUL illustrates this. Its output goes to a rotate node and also

GT6-12 Graphics Tutorials

back to its own input. Similarly, an input can be fed by more than one
source.

As mentioned, functions have two kinds of inputs: active and constant. val-
ues coming in on an active input are consumed as the function executes,
clearing the input for the arrival of a new value. If the function cannot
execute yet because values for other inputs have not arrived, active input
values will queue up, waiting their turn to be consumed.

values on constant inputs stay on the input; they are not consumed when
the function executes. If another value arrives, it does not queue up; it
replaces the value that was there. In effect, then, there can only be one
value at a time on a constant input. Constant inputs are useful in a situation
like the previous network, where F:NTULC is used to multiply a stream of
values coming in on one input by the same constant factor.

Contrast this with the multiplying function F:1~7UL, which has two active
inputs (Figure 6-11) .

OA Value Arrives
on Input 1.

74 -►

F: MUL

1>

2>

OB Value Arrives
on Input 1.

7 (42
-~

(3)
---►

F: MUL

<1>

<2>

---►

OC Value Arrives on
Input 2 Multiplies
the First Value Received
on Input 1 -Product
is Fired Out.

Op After Firing, Value on
Input 1 Waits for a
Value to Appear on
Input 2.

Figure 6-I1. F:MUL

U390169

If you sent 200 to input <2> of F:l~~IUL, it would remain there until the first
value from the dial arrived on input <1>. Then the function would send out
the product and the two input values would disappear. A second value from
the dial would arrive on input <1> and wait, because there would be no
value on input <2> to multiply it by. The third, fourth, and all succeeding

Function Networks 1 GT6-13

values from the dial would queue up behind it on input <1>, all waiting for
their turn to be multiplied. To keep F:MUL working, you would need to
supply it with a steady stream of fresh ZOOs for input <2>. Obviously, it is
easier to use a constant input for this, as with F:MUI,C.

This section employs PS 390 functions with fixed constant or active inputs.
At times, however, it will be useful to specify whether an input to a function

is active or constant. Refer to Section RMl Command Summary for informa-
tion on the SETUP CHESS command, which allows you to determine
whether or not an input is constant or active.

As a rule, PS 390 functions execute only when all the inputs have values.
Some functions like F:ZVECTOR have only one input, so they fire when-
ever the correct value arrives on it. Others, such as F:MtTL, require a value
on each of two inputs. F:MULC and F:CMUL are this way, except that you
can place a single value on the constant input and then control the firing of
the function by sending or not sending values to the active input.

Many PS 390 functions have two or more inputs which must be accounted
for. Some function inputs have default values that do not need to be primed
before using the function. The descriptions in Section RM2 Intrinsic Func-
tions detail which inputs are constant and which have default values pro-
vided for them.

So far you have a function network to serve as the black box for rotating the
robot. There is still one other function to evaluate, F:DYROTATE.
F:DYROTATE is shown in Figure 6-12.

F: DYROTATE

Real
(Rotation Delta

Real
(Set Accumulator}

Real
(Scale Factor}

<1> <1>

<2>C

<3>C

3x3 Rotation
Matrix

<2> ~- Real
(Accumulator

Contents}

U390170

Figure 6-12. F:DYROTATE

This function has three inputs. Input <1> takes values directly from the
dials. Input <3>, a constant input, holds a magnifying value and does the

GT6-14 Graphics Tutorials

same thing F:l~ZULC does in the F:YROTATE network; the values coming in
on input <1> get multiplied by the value on F:DYROTATE's input <3>.

Input <2> is an accumulator value. It performs the same function F:CMUL
does in the other network. This input requires an initial or reset value (in
this case 0) the same way F:CMUL needs an identity matrix at input <1>.
(You can send a zero to input <2> and reset the accumulator whenever
desired.) Output <2> is not used here but consists ~f the constant accumu-
lator content on input <2>.

In short, F:DYROTATE does everything the F:YROTA'1'~ network does with
one function instead of three. Since there is no reason to use three functions
where one will do, the next task is to use PS 390 commands to implement a
function network using F:DYROTA'1'~ (Figure 6-13) .

DY Rot

DIALS

<1>

Send 0

Send 200

F: DYROTATE

<1> <1>

<2>C

<3>C

<2>

Robot .Rot

(Not Used}

u3soi7~

Figure 6-13. F:DYROTATE Function Network

This network consists of two functions and a named node. The first func-
tion, DIALS, is an initial function instance. It has eight outputs, one for
each dial. You do not have to instance it; the PS 390 does that automatically
when you turn it on.

The second function in the network, F:DYROTATE, must be instanced and
assigned a name.

This network is almost identical to the one used in Section GTI Hands-On
Experience. There you rotated the star-shaped object named Spinstar by con-
necting it to a F:DZROTATE function (Figure 6-14).

Function Networks I GT6-1 S

DIALS

<1>

<2>

Spinner

F: DZROTATE

<1> <1>

Figure 6-14. "Spinner" Function Diagram

Diamond

0390172

To use that function, you had to instance it, i.e., assign it a unique name
(Spinner) . Then, using the CONNECT command, you connected DIALS<1>
to the input of Spinner and its output to the interaction node named
Spinstar. Spinner was primed by sending initial values to its two constant
inputs. Then it was ready to use. Turning the dial activated the network,
causing the star to spin on the screen. Do the same thing in the following

exercise.

1.1 Exercis e

Define DY_Rot to be an instance of F:DYROTATE using this command

DY Rot := F:DYROTATE;

Now connect outputs to inputs as shown in the diagram. Connect DIALS<1>
(the output of the top left dial) to the input of DY Rot and the output of
DY Rot to Robot.Rot with the CONNECT command:

CONNECT DIALS<1>:<1>DY Rot;

CONNECT DY Rot<1>:<1>Robot.Rot;

In the CONNECT command, the input number of a function always pre-
cedes its name and the output number always follows it.

Send initial values where they are indicated. There are only two in this
network: the two constant inputs of DY Rot.

SEND 0 t0 <2>DY Rot;

SEND 100 to <3>DY Rot;

GT6-16 Graphics Tutorials

Everything in the function network diagram you drew is now accounted for
and implemented in the PS 390. Turn dial 1 and the model should rotate on
the screen.

Then try to enlarge the network so dials 2 and 3 control the other two
rotations in X and Z, using F:DXRoTA'1'E and F:DZRQTATE in exactly
the same way. When the network is coded, move the dials and watch what
happens to the model on the screen.

Whenever you construct a function network, use the following good pro-
gramming practices:

• Always design your network before you try to code it. If you work
from a diagram, you will not forget to instance a needed function or
to make a required connection.

• Instance all required functions, and check them off in the diagram as
you instance them. If you try to connect a function that has not first
been instanced, you will create an error.

• Next, make connections from left to right in the diagram, and check
them off as you make them. Starting with the functions most up-
stream, make all connections until you reach the outputs of the net-
work.

• Last, prime the network with initial values. Make sure that you send
a number to a constant input whenever you need to.

Figure 6-15 is a diagram of a larger network that includes the other two
rotations.

Function networks I GT6-17

DY Rot

F:DYROTATE

DIALS

<1>

<2>

<3>

0

200

<1>

<2>C

<3>C

<1>

<2>

DX_Rot

DZ Rot

0

200

F: DZROTATE

<1>

<2>C

<3>C

<1>

<2>

0

200

F: DXROTATE

<1>

<2>C

<3>C

<1>

<2>

Robot. Rot

U390173

Figure 6-1 S. Completed Function Network for X, Y and Z Rotation

Probably the only differences between your network and this one will be the
names used to instance functions. If you diagrammed your network and
entered the commands correctly, you should see some unexpected jerking
around in the model if you turn one dial after turning another. The next
section explains why.

2. Adding Further Interaction: Rotation In Other Dimensions

The first attempt to expand the number of rotations for Robot using
F:DXROTATE and F:DZROTATE produced some jerkiness. The jerkiness
occurs because each rotation function in this network has its own built-in
accumulator (input <2>) . If you rotate the robot in Y 90 degrees, you have
an accumulated 90-degree rotation value in DYROTA'1'E. Turning the X dial
generates a matrix that specifies X rotations from the initial position in X,
Y, and Z. In other words, the matrix that DXROTATE produces overrides
the accumulations already in DYROTA'1'E. The X rotation applies as if no
other rotation has occurred. So the model appears to jump back to its initial
position before it starts rotating in X.

GT6-18 Graphics Tutorials

It was not wrong to pick F:DYROTATE instead of the F:YROTATE network
if you only want to rotate a model around one axis. In that case, a D_RO-
TA'1'~ function is simpler to use. But to add rotations in other dimensions,
you need to account for all the rotations. You could add two more rotate
nodes to the display tree for X and Z rotations as shown in Figure 6-16.

DIALS

<1>

<2>

<3>

F:DZROTATE

F: DYROTATE

F: DXROTATE

Rotate Z

Rotate Y

Rotate X

0390174

Figure 6-16. Modified Display Tree With Three Rotate Nodes

Another method is to provide a common accumulator for the whole group.
Look at the network with F:YROTA'1'~ (Figure 6-17).

Function Networks I GT6-19

DIALS

<1 >

200

F:MULC

<1>

C <2>

F: YROTATE F:CMUL
C

Figure 6-17. F: YR~TATE Network

U390175

This network has a separate accumulator, an instance of F: CNTUL. It can
serve as the sole accumulator for all of the rotations of Robot.Rot, if all
three ROTATE functions are connected to it.

DIALS

<1>

<2>

<3>

F:MULC

200 C

F:MULC

200 C

200

F:MULC

C

RotX

F: XROTATE

RotY

F: YROTATE

RotZ

F:ZROTATE

Accum

F:CMUL

<1 >C <1 >

<2>

Robot. Rot

Figure 6-18. Common Accumulator for Rotate Functions

U390176

This example (Figure 6-18) shows how a single input of a function
(<2>F:CMUL) can receive values from more than one source
(F:XROTATE<1>, F:YROTATE<1>, F:ZROTATE<1>).

GT6-20 Graphics Tutorials

2.1 Exercise

Use the DISCONNECT command to break the connections for the network
you have programmed into the PS 390. Enter:

DISCONNECT DIALS<1>:<1>DY Rot;

DISCONNECT DIALS<2>:<1>DX_Rot;

DISCONNECT DIALS<3>:<1>DZ Rot;

Now program the network shown in Figure 6-18. Then turn all three dials
and pay close attention to how the model moves in Y after you have moved
it in Z.

First, the functions must be instanced:

Xmul := F:MULCT

Ymul := F:MULCT

Zmul := F:MULCT

RotX := F:XROTATE;

RotY := F:YROTATE;

RotZ := F:ZROTATE;

Accum := F:CMUL;

Second, connections must be made between the functions:

CONNECT DIALS<1>:<1>Xmul;

CONNECT DIALS<2>:<1>Ymul;

CONNECT DIALS<3>:<1>Zmul;

CONNECT Xmul<1>:<1>RotX;

CONNECT Ymul<1>:<1>RotY;

CONNECT Zmul<1>:<1>RotZ;

CONNECT RotX<1>:<2>Accum;

CONNECT RotY<1>:<2>Accum;

CONNECT RotZ<1>:<2>Accum;

CONNECT Accum<1>:<1>Accum;

CONNECT Accum<1>:<1>Robot.Rot;

Finally, the functions must be primed by sending initial values to their con-

stant inputs. This includes sending an identity matrix to initialize input <1>

of the accumulator.

Function Networks I GT6-21

SEND 200 to <2>Xmul;

SEND 200 to <2>Ymul;

SEND 200 to <2>Zmul;

SEND M3D(1,0,0 0,1,0 0,0,1) to <1>Accum;

These rotations are called world-space rotations; they take place around the
world axes and not the model axes. Once you rotate Robot in Z, if you
rotate him in Y he will spin around an axis running through him that is
parallel to the Y axis of the coordinate system. When a model rotates
around its own axes, that is called object-space rotation. For a further
discussion of object-space and world-space rotations, refer to Section TT7
Application Notes.

3. Expanding The Network For Other Kinds Of Interaction:
Scaling and Translating

Two other transformations are possible for Robot: scaling and translations.
You have already laid the groundwork by including a scaling node and a
translation node at the top of the robot display tree.

Dials 1, 2 and 3 now control the model's rotations. Determine which o~f the
remaining dials will control scaling and translation. Figure 6-19 shows a
sample configuration for using the dials to control rotations, translation, and
scaling for an object. One dial controls scaling, and three each are assigned
for rotation and translation. One dial is unassigned.

GT6-22 Graphics Tutorials

/ / /
~~~ 

~~~~~ 

DIALS
<1>

<2>

<3>

<4>

<5>

<6>

<7>

<8>

Rot X Network

Rot Y Network

Rot Z Network

Scale Network

Tran X Network

Tran Y Network

Tran Z Network

Unassigned

Figure 6-19. Sample Configuration for Dials

Translations take place in X, Y, and Z and need three dials: 5, 6, and 7.
The type of scaling here is uniform scaling, so one value will scale in all
dimensions equally. Only one dial needs to be used: dial 4.

Often, all the rotations you will need to make a model fully interactive will
require more than eight dials. In the proposed network you have so far, for
instance, only three nodes from the display tree of the model use up seven
dials. The remaining interaction nodes in the display tree require up to three
dials each. This means about fifty dials are necessary to handle all those
rotations. A way to reuse a single set of eight dials to solve this problem is
discussed in Section GT7 Function Networks II.

Now enlarge the network to translate the robot. This network will closely

resemble the one just finished for rotations. First, determine what data type

the node requires.

Function Networks 1 GT6-23

Translate nodes accept vectors. The associated functions of the TRANS-
LATE command in Section RMl Command Summary are F:XVECTOR,
F:~CTOR, and F: ZVECTOR. These all take real numbers as their input
and produce 3D vectors. The input value is in the X (or Y or Z) position in
the vector. F:XVECTOR, for example, would take the real number 4.5 and
send out the vector (4.5, 0, 0) . F:~C'VECTOR would take the same input and
send out (0, 4.5, 0) .

Figure 6-20 shows a network with VECTOR functions for translating in
three dimensions.

<5>

<6>

<7>

TranX

F: XVEC

TranY

F: YVEC

TranZ

F: ZVEC

Tran_Total

---~

V(0,0,0

1

F:ACCUMULATE

<1>

<2>

<3>

<4>

<5>

<6>

Figure 6-20. Translate Network

U390177

The accumulator in this network is not the multiplying function F:Cl~~IUL
but a new one, F:ACC ATE. F:ACC ATE does the job of sev-
eral functions. There is no need, for example, to put a multiplying function
like F:I~TULC in this network. To enlarge dial values, send a multiplying
factor to F:ACC ATE input <4>. In the case of this translate network,
a suggested factor is 10 (that corresponds to the 200 multiplying factor for
rotations) . The reset value for the accumulator goes on input <2>.

Three inputs are not used in this application. Input <3> lets you control the
smoothness of translation by setting the minimum change in position per
output. And the last two inputs control limits. If you do not want an object
to move more than a specified amount (to keep it within the limits of the
screen, for example), you can set limits on its movement with inputs <5>
and <6>.

GT6-24 Graphics Tutorials

The accumulator is shared by all three VECTOR functions just as the three
ROTATE functions share a common accumulator.

3.1 Exercise

Instance the functions in the translate network using the names suggested in
NO TAG, connect them to dials 6, and 7, and prime constant queues <2>
and <4> of F:ACC ATE. Then use what you know about building
networks to diagram one for scaling the robot.

To create the translate network, first instance the functions:

TranX := F:XVEC;

TranY := F:YVEC;

TranZ := F:ZVEC;

Tran_Total := F:ACCUMULATE;

Then connect the functions to the dials:

CONNECT Dials<5>:<1>TranX;

CONNECT Dials<6>:<1>TranY;

CONNECT Dials<7>:<1>TranZ;

CONNECT TranX<1>:<1>Tran Total;

CONNECT TranY<1>:<1>Tran_Total;

CONNECT TranZ<1>:<1>Tran Total;

CONNECT Tran_Total<1>:<1> Robot.Tran;

Prime the functions by sending initial values to all constant inputs.

SEND V(0,0,0) TO <2>Tran Total;

SEND 1 TO <4>Tran_Total;{Note that 1 is the default for input <4>}

To construct a network for scaling, first use Section RMI Command Sum-
mary to determine what values the scale node of the model uses-3x3 matri-
ces—and what its associated functions are. You will find the same functions
that are listed under the ROTATE command, but the applicable ones here
are F: SCALE and F:DSCALE. To use F: SCALE, you need a separate multi-
plying function and a separate accumulator.

F:DSCALE is more of a "3-in-1" function like F:ACC ATE and the
DROTA'1'E functions. It combines amatrix-producing function, an accumu-

lator, and a multiplier all in one. Since you only have one scaling factor,

Function Networks I GT6-2S

F:DSCALE will be safe to use here (you do not have to worry about sepa-
rate X, Y, and Z scaling factors) .

The values from the dial come in on input <1>. Input <3> is the multiplying
factor for dial values. Rather than using 100, as you did in the rotation
network, use 0.1. This smaller value is used because robot is initially scaled
by .075. (See Figure 6-21.)

Scale

DIALS

<4>
.075

0.1

0.1

0.1

F:DSCALE

<1>

<2>C

<3>C

<4>C

<5>C

<1>

Robot.Scale

U390178

Figure 6-21. Network for Uniform Scaling

F:DSCALE requires an accumulator reset value for input <2>. This should
correspond to the initial value the object is scaled to. In most cases, that is
1, but remember the robot is already scaled to .075 so he will be small
enough to appear on the screen. Be sure to send this initial scale value
(. 0 75) to input <2>.

F:DSCALE, like F:ACC ATE in the translation network, also lets you
set upper and lower limits so the object being scaled does not become too
large or small. If you sent 0.1 to input <4> and .O1 to input <5>, for exam-
ple, the robot would never become more than twice or less than one-fifth his
initial size (.075) on the screen. If you do not send limits to these two
inputs, no limit is set.

3.2 exercise

Tracing two or three of the fractional values from the dial shows that
F:DSCALE accumulates scaling values as you expect. Now, use the names
shown in Figure 6-21 to instance, connect, and prime the functions.

To create the scale network, first instance the function:

Scale := F:DSCALE;

GT6-26 Graphics Tutorials

Then connect the function to the dial and the interactive scale node in the
robot display tree:

CONNECT Dials<4>:<1>Scale;

CONNECT Scale<1>:<1>Robot.Scale;

Finally, prune the function by sending initial values to the constant inputs.

SEND .075 TO <2>Scale;

SEND 0.1 TO <3>Scale;

SEND 0.1 TO <4>Scale;

SEND .Ol TO <5>Scale;

4. A Clock Function As An Alternate Source Of Input For

The Network

It is not always necessary to use dials, function keys, or data tablets to
provide input for a function network. You may want some action to happen
automatically or to cycle through and repeat. This section discusses how to
use a clock function to do that for Y rotations. When the network is con-
nected to the robot, it will automatically rotate.

Whenever you SEND an integer to a function, use FIX(i), where (i) is the
integer being sent. FIX indicates the value is an integer and not a real num-
ber. If you do not use FIX, the function will still operate, but it requires
more computation time.

Use F: CLF S, shown in Figure 6-22.

Function Networks I G?'6-2 7

F:CLFRAMES

Integer
(Timed interval}

Integer
(Duration}

Boolean
(Gate)

Integer
(A}

Integer
(B}

Boolean
(TRUE =run
FALSE =wait)

<1 >C

<2>C

<3>C

<4>C

<5>C

<6>C

<1>

<2>

<3>

Integer
(A+B, if input <3>
is TRUE)

Integer
(A+B}

Boolean
(TRUE if number of
clock intervals
specified on input
<2> is not exceeded
then FALSE}

Figure 6-22. F: CLFI~'AMES

u3soi7s

The "CL" in the name indicates it is a clock function; "F S" means

that its "ticking" depends on the rate at which display frames are traversed.

F:CLF S sends out a value when a certain number of frames have

been traversed, independent of time. The integer you place on input <1>

specifies how many frames you want to elapse before F:CLF S

"ticks."

In all, there are six inputs and three outputs for this function. These allow

you to use F:CLF S as more than just a simple counter, which is all it

will be used for in this example.

Input <1> is the interval measured in frames. It requires an integer, so

SEND it a FIX(2). This will result in about 30 degrees rotation per second.

Input <2> affects output <3> but has no effect on what you are doing right
now. It requires an integer, so SEND it a FIX(1).

Input <3> shuts down or opens output <1>. Since you will not use output <1>

here, send a FALSE to input <3>.

Inputs <4> and <5> are constant, and contain integer values whose sum is
generated when F:CLFRg1v~S ticks. You can accumulate the sum by con-
necting output <2> back around to input <5> and then SENDing FIX(1) to

input <4> and FIX(0) to input <5>. However, since F:CLFRAMES is to be

used in a network that is already set up to accumulate values from the dials
(ACCiJM), values should not be accumulated in F:CLFRAMES.

GT6-28 Graphics Tutot~ials

F:CLF S output <2> is connected to the rotation network you already
have, as shown in Figure 6-23.

F: CLFRAM ES
SEND FIX (2}

SEND FiX ~ (1)

SEND FALSE

SEND FIX (1 }

SEND FIX (0)

(SEND TRUE}

<1> <1>

<2> <2>

<3> <3>

<4>

<5>

<6>

Not used

Not used

DIALS

<2>

200

F: M U LC

<1>

C <2>

F:YRoTATE

Figure 6-23. F: CLFRAMES as Input Source for Y Rotation

0390180

The diagram shows initial values for inputs <2> and <3> of F:CLF S.
Though they are not used here, they must be supplied for F: CLF S to
function. In the same way that F:ADD will not fire until it has two inputs,
F: CLF S requires that some value must be placed on all its inputs in
order to run. The diagram reminds you of all the values you need to send to
prime the network.

Input <6> provides a switch to operate the clock. It requires a Boolean
value, TRUE to run the clock or FALSE to stop it.

Function Networks I GT6-29

4.1 Exercise

Instance F:CLF S as "Timer" and connect the function into the net-

work as shown in Figure 6-23. Be sure to send initial values to all of the

first five inputs. Last, send a TRUE to input <6> to make the model begin

spinning. Here is a list of the commands needed to implement the network

shown in Figure 6-23.

Timer := F:CLFRAMES;

CONNECT Timer<2>:<1>RotY;

SEND FIX(2) TO <1>Timer;

SEND FIX(1) TO <2>Timer;

SEND FALSE TO <3>Timer;

SEND FIX(1) TO <4>Timer;

SEND FIX(0) TO <5>Timer;

SEND TRUE TO <6>Timer;

To stop the robot from twirling, send a FALSE to input <6>.

Remember that the dials are still connected to the robot. You now have two

sources of input for a function (RotY receives from DIALS through the

instance of F:l~TULC and from the clock function) . To be sure the two

sources of input do not compete, you can shut F:CLF S off when you

use the dials by sending FALSE to input <6>.

You can also "unplug" It entirely by using the DISCOI~INECT command.

Use this command exactly as you do CONNECT:

DISCONNECT Timer<2>:<1>RotY;

Of course, to ensure that the dial does not interfere with the clock, you

could break the connections between the dial and the instance of F:l~TULC

that leads to RotY.

When you do turn the clock off by sending FALSE to input <6>, it would be

convenient t0 do so by simply pushing a button instead of typing in SEND

commands repetitively.

Since function networks are so flexible, there are dozens of ways to accom-

plish something, as you have already seen with the two or three ways to

control rotations in a model. Designing a switch is just as open-ended. You

GT6-3o Graphics Tutorials

could arrange to have F:CLF S start firing when you push function
key F1 and stop when you push function key F2, for instance. Or it could
start if you sent it any value larger than five, and stop if it received a value
less than five. The network shown in Figure 6-24, however, toggles. If you
press any function key, it turns F:CLF Son; if you press it again,
F: CLF S turns off .

FKEYS

True

F: CONSTANT

<1> <1>

<2>C
False

F: XO RC

<1>

<2>C

<1>

Figure 6-24. A Network That Toggles

<6>CLFRAMES

0390181

In this network, F:CONSTANT can hold any value (a number, a matrix, a
Boolean value) on its constant input <2> and will send out that value when
any value arrives on input <1>.

Place a TRUE on input <2> and connect the output of F: CONST~►NT to
another function, F:XORC. This function performs a logical_operation, EX-
CLUSIVE-OR. It compares the Boolean value it receives on input <1> to the
Boolean value on its constant input <2> and produces a TRUE if they are
different and a FALSE if they are the same. The output of F:XORC is then
sent back to its own constant input and also on to the place you need to
toggle (input <6> of F: CLF S) .

Trace a couple of values from the function keys function FKEYS through
this network to confirm that you get alternating TRUE and FALSE values as
output.

To emphasize that there are many ways to do something with function net-
works, Figure 6-25 shows a more efficient network for a switch.

Function Networks I GT6-31

Toggle

FKEYS

<1>

F.T

F:SYNC(2}

<1> <1>

<2>C <2>

Unconnected ~

 To<6>F:CLFRAMES

0390182

Figure 6-25. A More E~cient Toggle Switch

Here the network is composed of only one function. The stackable nature of
active inputs is used to queue a FALSE and a TRUE. Then F:SYNC's out-
put is connected back to its own input 2 so the two Boolean values can
alternate as output values.

5. Summary

If you added to your function network throughout this section, the final
network diagram should look like the one in Figure 6-26.

FKEYS

DIALS

<1>

<2>

<3>

<4>

<5>

<6>

<7>

<8>

 (Clock Network}

(RotateX Network)

(RotateY Network

(RotateZ Network}

(Scale Network)

(TranX Network)

(TranY Network)

(TranZ Network)

CMUL

ACCUMULATE

Figure 6-26. The Completed Network

Robot. Rot

Robot.Scale

Robot.Tran

0390183

When the diagram contains all function instance names and initial values to
be sent, it looks complicated, but its operations are fairly simple. It controls
interactions for only three display tree nodes.

GT6-32 Graphics Tutorials

5.1 Review of Major Points

To build a function network, you must find candidate functions or function
networks (represented as a black box) which convert input device values
into values that can update interaction nodes in a display tree. To do this:

• Identify the type of output needed by interaction nodes.

• Identify sources of input and what type of values they generate.

• Use Section RMI Command Summary to find related functions for
interaction nodes.

• Use Section RM2 Intrinsic Functions to evaluate candidate functions or
networks and modify the network as needed with additional func-
tions.

• Implement the network using food programming practices:

Always diagram the network first
Instance functions first
Make connections from left to right in the diagram
SEND any initial values to prime the network.

Once the basic network is built, you can expand it. In the network of this
section, you added:

• Rotations in other dimensions. Some way of accumulating rotations
is usually needed.

• Other kinds of interaction—scaling and translating.

• An alternate source of input for the network—a clock function. This
can be toggled on and off with a switch network connected to a func-
tion key.

Function Networks I GT6-33

5.2 Important Facts About PS 390 Functions

• When a complete set of input values arrives, the function executes
and sends out values on its outputs.

• Functions can have constant or active inputs. A value on an active
input disappears or is consumed when the function fires. If values
arrive on an active input faster than they are consumed, they will
queue in the order they arrive. Constant inputs hold only one value at
a time—there is no queuing. A value on a constant queue is not
consumed when the function fires. It will remain until it is
overwritten by another value .

• Functions perform arithmetic, logical, routing, or data conversion
operations.

• In a function network, values flow from left (upstream) to right
(downstream) .

• Functions that are directly associated with an input device, such as
DIALS and FKEYS, do not need to be instanced. These are examples
of initial_function_instances; they are instanced by the system.

5.3 PS 390 Commands Discussed in This Section

• Immediate action commands: CONNECT, DISCONNECT, SE'~TD.

• Function-instancing commands: name := F:function name.

GT6-34 Graphics Tutorials

GT7. FUNCTION NETWORKS II

SWITCHING NETWORKS

coNTENrrs

Introduction 1

Objectives 2

Prerequisites 2

1. Making a Single Input Device Control Multiple Interactions 2

1.1 Exercise 13

2. Labeling the Control Dials 22

Z.1 Exercise 25

3. Setting Limits on the Motion of a Model

3.1 Exercise . .

. 29

. 31

4. Using Variables to Store Values 33

4.1 Exercise 36

5. Summary 37

t

ILLUSTRATIONS

Figure 7-1. Robot Display Tree 3
Figure 7-2. F: CROUTE (n) Function 7
Figure 7-3. F:CROUTE(n) Network -Example 1 7
Figure 7-4. F: CROUTE (n) Network -Example 2 7
Figure 7-5. F:CROUTE(n) Network With Unused Outputs 8
Figure 7-6. F: CROUTE (n) Network of Dial 1 9
Figure 7-7. F:CROUTE(n) Network of Dial 1 With Shared Functions 9
Figure 7-8. Final Network for Dials 1-3 10
Figure 7-9. Possible Network for Display 11
Figure 7-10. Final Network for Dial 4 11
Figure 7-11. Sample Function Network for Dial 5 12
Figure 7-12. Network for Dial 5 With Shared Functions 12
Figure 7-13. Final Function Network for Dial 5 13
Figure 7-14. Final Function Network for Dials 1-8 14
Figure 7-15. RESET Function Network 21
Figure 7-16. DLABEL Function 22
Figure 7-17. F:INPUTS_CHOOSE(n) Function 24
Figure 7-18. LED Labels for Dial 1 24
Figure 7-19. LED Labels for Dials 2-8 (continued on next page) 25
Figure 7-19. LED Labels for Dials 2-8 (continued) 26
Figure 7-20. Realistic Limitations of Leg Movement 29
Figure 7-21. Limits for the Robot Leg 29
Figure 7-22. F:LIMIT Function 30
Figure 7-23. Rotation Node Using F:DXROTATE 30
Figure 7-24. Rotation Network Using F:MULC and F:XROTATE 30
Figure 7-25. Rotation Network With F:ADD 31
Figure 7-26. Function Network To Limit Movement 31
Figure 7-27. Function Networks To Limit the Robot Knee Movement 31
Figure 7-28. F:CONSTANT Function 33
Figure 7-29. F:CONSTANT Connected to Several Destinations 33
Figure 7-30. Multiple Instances of F:CONSTANT Function 34
Figure 7-31. F: FETCH Function 3 5
Figure 7-32. Routing Values From Variable "This" to the Host 35
Figure 7-33. Routing Values From Variable "Matrix" to the Host 36

ii

Section GT7

Function Networks II

Switching Networks

Introduction

This section consists of four parts that build on ideas about function networks
introduced in Section GT6 Function Networks I.

In Section GT6 Function Networks I you used the PS 390 dials to manipulate a
robot. Each dial was connected to a node in the robot display tree so that moving
the dial caused Robot to move in a specific way. One dial was needed for each
manipulation.

In this section, you will learn how to use a dial for multiple interactions. This can
be done using function networks and PS 390 function keys. Pressing a function key
allows you to use the same dial for different kinds of interactions in different
modes.

The section also details how to send a label to the LEDs above each dial. These
labels remind you of the function of a dial and can change interactively each time
a new function key is pressed.

Note

The Soft labels network redefines the dynamic view-
port on the PS 390 to allow the left edge of the display
screen to be used as a display area for the function key
labels (flabels) and dial labels (dlabels). This network
can be useful for PS 390 systems with control dials and
function keys that do not have LEDs. For details of the
Soft labels network refer to Section TT2.

In addition, you will learn about several useful tasks which function networks can
perform. These include limiting the robot movement so that it remains "true to
life" and using variables to store values coming from a network.

Function Networks II GT7-1

Because the function networks in this section will differ from those created in
Section GT6 Function Networks I, it is suggested that you save the code from this
section in a separate file on your host. To avoid errors, do not combine these two
sets of code.

Objectives

In this section you will learn how to:

• Make a single input device (the dials) control multiple interactions.

• Label the dials so that the label changes when the dial's function
changes.

• Set limits on the motion of a model.

• Use variables to store values.

Prerequisites

Before beginning this section, you should be familiar with the concepts pre-
sented in Sections GT4 Modeling, GTS PS 390 Command Language, and GT6
Function Networks I.

1. Making a Single Input Device Control Multiple Interactions

In Section GT6 Function Networks I, you constructed a function network for
the display tree shown in Figure 7-1.

This function network supplied interactions for the top three nodes of the
display tree: Robot. Scale, Robot.Rot, and Robot.Tran. Seven dials were
required to manipulate the robot: three to rotate it in the X, Y, and Z
planes, three to translate it in X, Y, and Z, and one dial to scale the model.
Only one free dial remains, but no other interactive nodes in the robot dis-
play tree have yet been connected to functions. To supply X, Y, and/or Z
rotations for all the other interactive nodes would require dozens of other
dials. This section illustrates how to solve this problem by making one set of
eight dials perform like many sets.

GT7-2 Graphics Tutorials

Upper Body

Trunk

Head. Rot

Head

Left_Forearm. Rot

Left_Hand. Rot

Robot . Tran

Robot .Rot

Robot .Scale

UpperBody .Rot

Left_Arm .Rot

Hand

Right_A .Rot

Pelvis

Left_Leg. Rot

eft_Lower_Leg . Ro

Right
Arm

t_Forearm .Rot

Right
Forearm

Left_Foot . Ro

Right
Hand

Right_Hand.Rot

Lower Body

Foot

Right_Le g .Rot

~~J
U390405

Right_Lower_
Leg. Rot

Right
Leg

Right
Lower
Leg

Right_Foot .Rot

Right
Foot

Figure 7-1. Robot Display Tree

The first step in doing this is to determine exactly how many additional

dials you will need by deciding how many more interactions in the model

you want to control. In addition to Robot.Rot, the robot has 14 rotation

Function Networks II GT7-3

nodes. Ten of them require three dials each (three rotations for X, Y, and
Z) . The two nodes for elbows and the two for knees only use X rotations,
requiring only one dial each. The result is a total of 34 additional interac-
tions. To handle these interactions, each dial would have to be connected to
about six nodes.

There is nothing to prevent you from connecting a dial to more than one
destination. For example, you could hook dial 1, already updating X
rotations for the Robot.Rot node, to other rotate nodes. But of course
turning that one dial would cause multiple unrelated updates. Following is
one way the dials might logically be assigned to control the interactions.
In Mode 1, the dials would work as presently assigned:

Whole model: 1. Rotation in X

2. Rotation in Y

3. Rotation in Z

4. Scale

Mode 2:

Mode 3:

Mode 4:

Mode 5:

Head: 1. Rotation in X

2. Rotation in Y

3. Rotation in Z

4. Not Assigned

Right arm: 1. Rotation in X

2. Rotation in Y

3. Rotation in Z

4. Elbow Rot. in X

Right hand: 1. Rotation in X

2. Rotation in Y

3. Rotation in Z

4. Not Assigned

Right leg: 1. Rotation in X

2. Rotation in Y

3. Rotation in Z

4. Knee Rot. in X

5. Translation in X

6. Translation in Y

7. Translation in Z

8. Not Assigned

Trunk: 5. Rotation in X

6. Rotation in Y

7. Rotation in Z

8. Not Assigned

Left arm: 5. Rotation in X

6. Rotation in Y

7. Rotation in Z

8. Elbow Rot, in X

Left hand: 5. Rotation in X

6. Rotation in Y

7. Rotation in Z

8. Not Assigned

Left leg: 5. Rotation in X

6. Rotation in Y

7. Rotation in Z

8. Knee Rot. in X

GT7-4 Graphics Tutorials

Mode 6:

Right foot : 1. Rotation in X Lef t foot : 5 . Rotation in X

2. Rotation in Y 6. Rotation in Y

3. Rotation in Z 7. Rotation in Z
4. Not Assigned 8. Not Assigned

This configuration leaves several dials unassigned in a few modes. obvi-
ously, you could assign every dial in every mode, but this organization es-
tablishes a pattern that makes the functions of the dials easy to remember.

Another way to diagram this same dial assignment would be as follows. The
names of the nodes on the right are linked to the dials on the left.

DIALS<1> Rotation in X whole body (1)

Head (2)

Right arm (3)

Right hand (4)

Right leg (5)

Right foot (6)

DIALS<2> Rotation in Y Whole body (1)

Head (2)

Right arm (3)

Right hand (4)

Right leg (5)

Right foot (6)

DIALS<3> Rotation in Z whole body (1)

Head (2)

Right arm (3)

Right hand (4)

Right leg (5)

Right foot (6)

DIALS<4>

DIALS<5>

whole body scale (1)

Right elbow Rotation in X (3)

Right knee Rotation in X (5)

Whole body Translation in X (1)

Trunk Rotation in X (2)

Left arm Rotation in X (3)

Left hand Rotation in X (4)

Left leg Rotation in X (5)

Left foot Rotation in X (6)

Function 1Vetworks II GT7-S

DIALS<6>

DIALS<7>

Whole body Translation in Y (1)

Trunk Rotation in Y (2)

Left arm Rotation in Y (3)

Left hand Rotation in Y (4)

Left leg Rotation in Y (5)

Left foot Rotation in Y (6)

Whole body Translation in Z (1)

Trunk Rotation in Z (2)

Left arm Rotation in Z (3)

Left hand Rotation in Z (4)

Left leg Rotation in Z (5)

Left foot Rotation in Z (6)

DIALS<8> Left elbow Rotation in X(3)

Left knee Rotation in X (5)

If the connections were made from the dials as shown, a dial would control
several interactions simultaneously. If you turned dial 4, for instance, the
robot would become larger or smaller, or its right knee and elbow would
move. Dial 1, connected to six nodes, would cause six separate X rotations
in the model.

What is needed now is the equivalent of a switch in a railroad yard to route
values so that they are not routed down all function network paths at once.
For example, you might want to send values to the Robot.Rot node only in
dials mode 1, or just to Head.Rot node in mode 2.

Associated with all the function keys is one system function, FKEYS.
FKEYS has one output. When you press a function key, the number of that
key is output. For example, pressing key F4 causes an integer 4 to be
output.

The value could be output to an instance of function F:CROUTE(n)
(Figure 7-2). This switching function allows you to channel the values from
the dials (or anything else) to any number (n) of destinations.

GT7-6 Graphics Tutorials

Figure 7-2. F: CROUTE(n) Function

Specifically, when F:CROUTE(n) receives an integer from 1 to n on input
<1>, it routes what it receives on input <2> to the output with the same
number as the integer. So if you instance F:CROUTE (n), connect FKEYS
to input <1> of the function instance, connect the dials to input <2>, and
press function key F5, the values from the dials arriving on input <2> will
travel out on output <S> (Figure 7-3).

FKEYS<1>~ j

IDIALS<1>I-►

F:CROUTE(6}
<1> <1>

<2>
<3>
<4>

<2> <5>
<6>

F:MULCI--►I F:XROTATE ~ F:CMUL

Figure 7-3. F: CROUTE(n) Network —Example 1

Right_Leg. Rot

u3so22o

Pressing function key F3 routes the values from dial 1 to output <3>
(Figure 7-4).

IFKEYS<1>~-►

DIALS<1>I-►

F: CROUTE(6)
<1> <1>

<~> -►I F:MULC~ F:XROTATE ~ F:CMU

<2> <5>
<6>

Figure 7-4. F: CROUTE(n) Network —Example 2

Right_Arm .Rot

U390220

In this example, the number of destinations from a routing function is the
same as the number of modes among the function switches. For dial 1, that
is six modes, so dial 1 will use an instance of F:CROUfiE(6), as shown in
the above diagrams.

Function Networks II GT7- 7

Not all dials need to work in all six modes. Dial 4 must operate in mode 5,
however, so you must use 5 as a minimum value for n, as shown below. The
unused outputs (for modes in which dial 4 is unassigned) are left uncon-
nected (Figure 7-5) .

IFKEYS<1>~

IDIALS<4>I--►

F: CROUTE (5}

<1> <1>

<2>

<2>

<3>

<4>

<5>

F: SCALE

Robot.Scale

no connection
 L

F:MULCt-►I F:XROTATE 1--►I F:CMUL

no connection
 L

—►~ F:MULCI—►I F:XROTATE I--►I F:CMUL

Right_Forearm.Rot

Right_Lower_Leg.Bot

Figure 7-S. F:CROUTE(n) Network With Unused Outputs

U390223

The diagram indicates that the values from dial 4 will be routed to the
scaling node, Robot.Scale, when FKEYS sends 1 to F:CROLJTE(5) input
<1>. Values from dial 4 will go to the right knee when a 5 arrives on input
<1> and to the right elbow when a 3 arrives. If you push function keys F2 or
F4 to go into mode 2 or 4, dial 4 has no effect.

Dial 8 is similar to dial 4, but instead of working in three modes, it only
works in two. One of the two modes it works in is mode 5, so be sure to use
an instance of F:CROUTE(5) with dial 8 too.

Connect all six modes for dial 1 to the outputs of F:CROUTE(6) so that
FKEYS will control routing for this dial. Figure 7-6 illustrates the
F:CROIJTE(n) network of dial 1.

GTE-8 Graphics Tutorials

DIALS<1>I-►

F: CROUTE (6}
<1> <1>

<2> <2>

<3>

<4>

<5>

<6>

Robot. Rot

O
Head. Rot

O
Right_Arm. Rot

O

t ~ght Hand.Rot

F:MULC F:XROTATE

F:MULC F:XROTATE

F:MULC F:XROTATE F:CMU F:MULC F:XROTATE F:CMU

F:MULC~ F:XROTATE

Figure 7-6. F:CROUTE(n) Network of Dial 1

Right_Leg .Rot

Right_Foot.Rot

U390224

Notice that the F:I~TULC and F:XROTA'1'~ functions in all six modes are
exactly alike. The F:CI~TUL functions are not, since each one accumulates
rotations for a different rotation node. What is exactly alike can be used
once on the input side of the routing function, as shown in Figure 7-7.

(FKEYS<1>
F:CROUTE (6}

 ► <1 > <1 >

DIALS <1 > F:MULC F:XROTATE <2> <2>

<3>

<4>

<5>

<6>

 Robot.Rot

 F:CMUL~O

I
Head.Rot

►O F:CMUL.

~ Right_Arm.Rot

 F:CMUL~O

~ Right_Hand.Rot

 F:CMUL~O

~ Right_Leg.Rot

 F:CMUL~O

Right_Foot.Rot

 F:CMUL~O
U390225

Figure 7-7. F:CROUTE(n) Network of Dial 1 With Shared Functions

Function Networks II GT7-9

Either of the above two configurations would work. The second one is much
less trouble to diagram and program, since it requires only one instance of
F:l~7ULC and F:XROTATE instead of six. The previous two diagrams show
that a routing function is necessary only when a path must split, which
occurs when functions need to be unique, as in the case of the instances of
F: CI~TUL.

Now diagram networks for dials 2 and 3, using the diagram from dial 1 as a
guide. Since all three dials have the same destination nodes, you can route
them through the same switching function, as in Figure 7-8.

IFKEYS<1>

DIALS<1>

<2>

<3>

F:MULC~ F:XROTATE

F:MULC~ F:YROTATE

F:MULCI--►I F:ZROTATE

F: CRQUTE (6}
<1 > <1 >

<2>

<2>

<3>

<4>

<5>

<6>

 F:CMUL

Robot . Rot

~O
~ Head. Rot

 F:CMULI-L.~O

~ Right_Arm. Rot

 F:CMUL~L-~O

~ Right_Hand. Rot

 F:CMUL~L.~O

~ Right_Leg. Rot

 F:CMUL - ~O

~ Right_Foot. Rot

 F:CMUL~.-~O
U390226

Figure 7-8. Final Network for Dials 1-3

This diagram completely accounts for the first three dials in all six modes.
To implement it in the PS 390, you only need to fill in detail familiar from
Section GT6 Function Networks I: connections, function instance names, and
so on.

Next, look at dial 4. Since it performs rotations, you might think to use the
same rotation network for it as the first three dials, namely as shown in
Figure 7-9.

GTE 10 Graphics Tutorials

~ Right_Forearm.Rot

I DIALS<4> ►I F:MULC~—►~ :F XROTATE ~— I--►~ F:MULC~

Figure 7-9. Possible Network for Display

0390234

No other dials feed into that node, though, or the other rotation node for the
knee that dial 4 controls. So it would be simpler to use the F:DXROTATE
function here. It is the function that combines all features of F:l~ZULC,
F:XROTA'1'~, and F:Cl~TUL into one package. The network for dial 4 can be
diagrammed as Figure 7-1 ~ .

IFKEYS<1 > ~-

I DIALS<4>I—►

F:CROUTE(5)

<2>

Robot.Scate

<2>

<3> —►

<4>

<5> --~

no connection

F: DXROTATE

Right_Forearm.Rot ♦o
no connection Right_Lower_Leg .Rot

F : DXROTATE -♦o
Figure 7-10. Final Network for Dial 4

0390235

With dial 4, there are no functions on the output side of the routing function

that can be shared and moved over to the input side, as with F:I~ZULC and
rotation functions used with dials 1, 2, and 3. The above diagram com-
pletely specifies what dial 4 will do in all modes. To implement it, you must
supply function instance names, initial values, and so on.

Dials 5, 6, and 7 do almost exactly what dials 1, 2, and 3 do, but to the left

side of the model; in mode 1, they translate instead of rotate. In mode 1, all

three dials feed into one node, Robot.Tran. In the other five modes, dials 5,
6, and 7 do X, Y, and Z rotations. Figure 7-11 illustrates how a routing
function for dial 5 might work.

Function Networks 11 GT7-11

FKEYS<1>I-►

I DIALS<5>~-►

F: CROUTE (6}
<1> <1>

<2> <2>

<3>

<4>

«>

<6>

F:XYECTOR ~I F:A000MULATE

Robot.Tran

►O

~ Upper_Body.Rot

F:MULC~ F:XROTATE ~ F:CMUL~O

Left Arm.Rot

O
~ Left Hand.Rot

(F:MULC~ F:XROTATE ~ F:CMUL~O

~ Left_Leg.Rot

I F:MULC~ F:XROTATE ~ F:CMUI.~~O

Left Foot.Rot o ~90~9

F: MULC F:XROTATE F: CMU

F:MULC F:XROTATE F:CMU

Figure 7-11. Sample Function Network for Dial S

Of course, the diagram would be similar for dials 6 and 7, with Y and Z
rotations substituted for X.

Note that the F:l~TULC and F:XROTATE functions in modes 2 through 6
above are exactly the same and could be shared as in Figure 7-12.

I FKEYS<1>I-►

I DIALS<5>~-►

F: CROUTE (6}
<1> <1>

<2> <2>

<3>

<4>

<5>

<6>

~I F:XVECTOR ~I F:ACCUMULATE

r

F: MULC

Robot.Tran

►O

~ Upper_Body.Rot

F:CMUL.~..L~O

~ Left Arm.Rot

F:CMUL~O

~ Left Hand. Rot

F:XROTATE ~ F:CMUL~L~O

~ Left_Leg.Rot

F:CMUL~L~O

~ Left Foot.Rot

 F:CMUL~.~O

Figure 7-12. Network for Dial S With Shared Functions

0390230

GT7-12 Graphics Tutorials

This will save you having five sets of F:l~TULC and F:XROTA'1'E function

instances when one can do the job. But the output from F:XROTATE will

have to be routed, so you need another routing function. The final network

for dial 5 is shown in Figure 7-13 .

FKEYS<1>I-►

I oia~s<5>I-►

F: CROUTE (6}
<1> <1>

<2>

<2>

<3>

<4>

<5>

<6>

~F:XVECTOR ~I F:ACCUMULATE

FKEYS<1 >

F:MULC F : XROTATE

F: ROUTE (6}

<1>

<1>

<2>

<3>

<4>

<5>

<6>

 F:CMUL

F:CMUL

F:CMUL

 F:CMUL

 F:CMUL

Figure 7-13. Final Function Network for Dial S

Functionally, this completely specifies what dial 5 does.

1.1 Exercise

Robot.Tran

 ►O

Upper_Body. Rot

►O

Left Arm.Rot

►O

Left Hand.Rot

►O

Left_Leg. Rot

►O

Left Foot.Rot

~O U390231

Complete the network for dials 6 and 7 using dial 5 as a pattern. Then
diagram the network for the dial 8, using dial 4 as a pattern.

Next, code the networks for all eight dials. Include all the details, such as
instancing functions, connecting functions, and sending initial values to

functions when needed. Remember that the DIALS and FKEYS functions
have already been instanced by the system and do not need to be named by
you. To save these commands, do this in a text file.

Once the commands to implement the network for one dial are detailed, you
can copy them over again for each of the other dials and delete or add only

the details you want. For example, all the commands to implement this
network for dial 1 (X rotations) are the same as for dial 2, except you need

to change X to Y, and so on.

Figure 7-14 illustrates the final function network for dials 1-8.

Function Networks II GT7-13

IFKEYSct>

DIALS<~ >

<2>

<3>

F:MULC

F: MULC

F: MULC

F: XROTATE

F: YROTATE

F: ZROTATE

F: CROUTE (5)

`FKEYS<1 > <1> <1>

<2>

DIALS<4> <2> <3>

<4>

<5>

FKEYSc~>~

DIALS <5> ~♦

F: CROUTE (6)

<1> <1>

<2>

<3>

<4>

<5>

<6>

F:DSCALE i

F: CMUL

F:CMUL

Robot. Rot

Head. Rot

Right_Arm. Rot

F: CMULWo
F: CMUL

F:CMUL

Right_Hand. Rot

Right_Leg. Rot

Right_Foot. Rot

 OF: CMUL~

Robot. Scale

no connection

F: DXROTATE i
Right_Forearm. Rot

no connection

~ F : DXR OTATE

Right_Lower_Leg.Rnt

F: CROUTE (6)
Robot. Tran

<1> <1> --~F:XVECTOR ~ F:ACCUMULATE ~

<2> <2> -
<3> -
<4> -♦
<5> -

<6> -~

FKEYS<t>~

DIALS <6>

F: MULC

F: CROUTE (6)

<1 > <~ > ..~F: YVECTOR

<2> <2> --
<3> -
<4> --

<5> --

<6> --

 f#
FKEYS<~>~

DIALS <7> ~♦

IFKEYS<1> ~}

DIALS<g>

F: CROUTE (5)

<1> <1>

<2>

F: MULC

~F:XROTATE

~F; ZVECTOR

F : YROTATE

<2>
<3>
<4> F: MULC ~F: ZROTATE

<5> --

F: CROUTE (5)

<1> <1>

<2>

> <3> --►

<4>

<5> -~

no connection
no connection

F; DXROTATE

IFKEYS<~ >

Left_Forearm. Rot

no connection

F: DXROTATE

Left_Lower_Leg.Rnt

►O

F:CROUTE (6)

<1 > <1 > --~ no connect ion

Upper_Body. Rot

~> ~> ,..~ F: CMUL

Left Arm. Rot

-~- ~ F: CMUL

<4> ♦ F:CMUL

Left Hand. Rot

Left Leg. Rot

<5>

Left Foot .Rot

<6>

0390432

Figure 7-14. Final Function Network for Dials 1-8

!~ 0

GT7-14 Graphics Tutorials

The following commands are needed to code the function network. The
code has been organized by dial s0 that functions are instanced, connected,
and primed for each dial or group of dials before proceeding to the next
dial. The names are suggestive of what each function instance does. Com-
ment lines have been provided for clarification.

{CODE FOR DIALS 1-3}

X Mul D1 := F:MULCT

Y Mul D2 := F:MULC;

Z Mul D3 := F:MULC;

X Rot Dl := F:XROTATE;

Y Rot D2 := F:YROTATE;

Z Rot D3 := F:ZROTATE;

{Instance F:MULC and}

{rotation functions}

Switchl := F:CROUTE(6); {Instance F:CROUTE(n)}

{and F:CMUL functions}

Acc Rot Robot := F:CMUL;

Acc Rot Head := F:CMUL;

Acc Rt Arm := F:CMUL;

Acc Rt Hand := F:CMUL;

Acc Rt_Leg := F:CMUL;

Acc Rt Foot := F:CMUL;

CONNECT FKEYS<1>:<1>Switchl;

CONNECT DIALS<1> <1>X Mul Dl;

CONNECT DIALS<2> <1>Y Mul D2;

CONNECT DIALS<3> <1>Z Mul D3;

CONNECT X Mul Dl<1> <1>X_Rot D1;

CONNECT Y Mul D2<1> <1>Y_Rot D2;

CONNECT Z Mul D3<1> <1>Z Rot D3;

CONNECT X_Rot D1<1> <2>Switchl;

CONNECT Y_Rot D2<1> <2>Switchl;

CONNECT Z Rot D3<1> <2>Switchl;

CONNECT Switchl<1>

CONNECT Switchl<2>

CONNECT Switchl<3>

CONNECT Switchl<4>

CONNECT Switchl<5>

CONNECT Switchl<6>

<2>Acc_Rot Robot;

<2>Acc_Rot_Head;

<2>Acc Rt Arm;

<2>Acc Rt Hand;

<2>Acc_Rt_Leg;

<2>ACC Rt Foot;

{Connect FKEYS and}

{DIALS}

{Connect rotation}

{accumulator to}

{rotation function}

{Connect rotation}

{function to switch}

{Connect switch to}

{X,Y,Z accumulator}

Function Networks II GT7-1 S

CONNECT Acc Rot Robot<1> <1>Acc Rot Robot;

CONNECT Acc_Rot_Robot<1> <1>Robot.Rot;

CONNECT Acc_Rot_Head<1> : <1>Acc_Rot_Head;

CONNECT Acc_Rot_Head<1> <1>Head.Rot;

CONNECT Acc Rt Arm<1> <1>Acc Rt Arm;

CONNECT Acc_Rt Arm<1> <1>Right Arm.Rot;

CONNECT Acc Rt Hand<1> <1>Acc Rt Hand;

CONNECT Acc Rt_Hand<1> <1>Right_Hand.Rot;

CONNECT Acc Rt_Leg<1> <1>Acc_Rt_Leg;

CONNECT Acc_Rt_Leg<1> <1>Right_Leg.Rot;

CONNECT Acc Rt_Foot<1> <1>Acc_Rt_Foot;

CONNECT Acc_Rt_Foot<1> <1>Right_Foot.Rot;

SEND 200 TO <2>X Mul D1;

SEND 200 TO <2>Y Mul D2;

SEND 200 TO <2>Z Mul D3;

{Connect X,Y,Z}

{accumulator back to}

{self and to display}

{tree node}

{Prime F:MULC function}

SEND Mad (1,0,0 0,1,0 0,0,1) TO <1>Acc_Rot Robot; {Prime F:CMUL}

SEND Mad (1,0,0 0,1,0 0,0,1) TO <1>Acc_Rot_Head; {function}

SEND Mad (1,0,0 0,1,0 0,0,1) TO <1>Acc_Rt_Arm;

SEND Mad (1,0,0 0,1,0 0,0,1) TO <1>Acc_Rt_Hand;

SEND Mad (1,0,0 0,1,0 0,0,1) TO <1>Acc_Rt_Leg;

SEND Mad (1,0,0 0,1,0 0,0,1) TO <1>Acc Rt_Foot;

{CODE FOR DIAL 4}

Switch2:= F:CROUTE(6);

Scale Robot:= F:DSCALE;

Rot Rt Elbow := F:DXROTATE;

Rot Rt Knee := F:DXROTATE;

CONNECT FKEYS<1> <1>Switch2;

CONNECT DIALS<4> : <2>Switch2;

CONNECT Switch2<1> : <1>Scale_Robot;

CONNECT Switch2<3> <1>Rot Rt_Elbow;

CONNECT Switch2<5> : <1>Rot Rt Knee;

{Instance switch}

{function}

{Instance scaling &}

{rotation functions}

{Connect FKEYS and}

{DIALS}

{Connect switch to}

{scaling and rotation}

{functions }

GT7-16 Graphics Tutorials

CONNECT Scale_Robot<1> <1> Robot.Scale; {Connect scaling &}

CONNECT Rot_Rt_Elbow<1> <1>Right_Forearm.Rot; {rotation functions}

CONNECT Rot_Rt_Knee<1> <1>Right_Lower_Leg.Rot;{to display tree nodes}

SEND .075 TO <2>Scale_Robot;

SEND .02 TO <3>Scale Robot;

SEND .1 TO <4>Scale_Robot;

SEND .025 TO <5>Scale_Robot;

SEND 0 TO <2>Rot Rt Elbow;

SEND 200 TO <3>Rot_Rt_Elbow;

SEND 0 TO <2>Rot_Rt_Knee;

SEND 200 TO <3> Rot Rt Knee;

{CODE FOR DIAL 5}

{Prime scale function}

{Prime rotation}

{functions}

Switch3:= F:CROUTE(6); {Instance both switch}

Switch6:= F:CROUTE(6); {functions}

X Vec DS:= F:XVECTOR; {Instance X vector for}

X Mul D5:=F:MULCT {translation}

X_Rot D5 := F:XROTATE; {Instance F:MULC and}

{rotation function}

Acc_Trans:= F:ACCUM; {Instance translation}

{accumulator function}

Acc_Rot_Trunk:= F:CMUL;

Acc_Lt Arm:=F:CMUL;

Acc Lt_Hand:=F:CMUL;

Acc_Lt_Leg:= F:CMUL;

Acc_Lt_Foot:=F:CMUL;

CONNECT FKEYS<1> <1>Switch3;

CONNECT FKEYS<1> : <1>Switch6;

CONNECT DIALS<5> <2>Switch3;

CONNECT Switch3<1> <1>X Vec D5;

CONNECT X Vec D5<1> <1>Acc_Trans;

CONNECT Acc Trans<1> <1>Robot.Tran;

{Instance F:CMUL}

{functions}

{Connect FKEYS and}

{DIALS}

{Finish connections}

{translation network}

CONNECT Switch3<2> : <1>X_Mul_D5 {Connect switch to}

CONNECT Switch3<3> <1>X Mul D5; {F:MULC functions}

Function Networks II GT7-17

CONNECT Switch3<4> <1>X_Mul D5;

CONNECT Switch3<5> <1>X Mul D5;

CONNECT Switch3<6> <1>X Mul D5;

CONNECT X Mul_D5<1> <1>X_Rot D5;

CONNECT X_Rot D5<1> <2>Switch6;

CONNECT Switch6<2> : <2>Acc_Rot_Trunk;

CONNECT Switch6<3> <2>Acc Lt Arm;

CONNECT Switch6<4> <2>Acc_Lt_Hand;

CONNECT Switch6<5> : <2>Acc_Lt_Leg;

CONNECT Switch6<6> <2>Acc_Lt_Foot;

CONNECT Acc_Rot_Trunk<1> : <1>Acc_Rot_Trunk;

CONNECT Acc_Rot_Trunk<1> : <1>Upper_Body.Rot;

CONNECT Acc_Lt_Arm<1> <1>Acc_Lt Arm;

CONNECT Acc_Lt_Arm<1> <1>Left Arm.Rot;

CONNECT Acc_Lt_Hand<1> : <1>Acc_Lt_Hand;

CONNECT Acc_Lt_Hand<1> : <1>Left_Hand.Rot;

CONNECT Acc_Lt_Leg<1> : <1>Acc_Lt_Leg;

CONNECT Acc_Lt_Leg<1> : <1>Left_Leg.Rot;

CONNECT ACC_Lt_Foot<1> : <1>Acc_Lt_Foot;

CONNECT Acc_Lt_Foot<1> <1>Left_Foot.Rot;

{Connect F:MULC to}

{rotation function}

{Connect rotation}

{function to other}

{switch}

{Connect switch to}

{F:CMUL functions}

{Connect F:CMUL}

{functions back to}

{self and to display}

{tree nodes}

SEND 200 TO <2>X Mul D5; {Prime F:MULC function}

SEND Mad (1,0,0 0,1,0 0,0,1) TO <1>Acc_Rot_Trunk; {Prime F:CMUL}

SEND Mad (1,0,0 0,1,0 0,0,1) TO <1>Acc_Lt Arm;
SEND Mad (1,0,0 0,1,0 0,0,1) TO <1>Acc_Lt_Hand;
SEND Mad (1,0,0 0,1,0 0,0,1) TO <1>Acc_Lt_Leg;
SEND Mad (1,0,0 0,1,0 0,0,1) TO <1>Acc_Lt_Foot;

SEND V3d (0,0,0) TO <2>Acc_Trans;

SEND 0 TO <3>Acc_Trans;

SEND 1 TO <4>Acc_Trans;

SEND 10 TO <5>Acc_Trans;

SEND -10 TO <6>Acc_Trans;

{function}

{Prime translation}

{accumulator function}

GT7-18 Graphics Tutorials

{CODE FOR DIAL 6}

Switch4:= F:CROUTE(6); {Instance switch function}

{Note: 2nd switch already}

{instanced}

Y Vec D6:= F:YVEC; {Instance X vector for}

{translation}

Y Mul D6:=F:MULCT

Y_Rot D6:= F:YROT;

CONNECT FKEYS<1> <1>Switch4;

CONNECT DIALS<6> : <2>Switch4;

CONNECT Switch4<1> : <1>Y Vec D6;

CONNECT Y Vec D6<1> <1>Acc_Trans;

CONNECT Switch4<2> : <1>Y Mul D6;

CONNECT Switch4<3> <1>Y Mul D6;

CONNECT Switch4<4> <1>Y Mul D6;

CONNECT Switch4<5> : <1>Y Mul D6;

CONNECT Switch4<6> <1>Y Mul D6;

{Instance F:MULC and}

{rotation functions}

{Connect FKEYS and}

{DIALS }

{Finish connections for}

{translation network}

{Connect switch to}

{F:MULC functions}

CONNECT Y Mul D6<1> : <1>Y_Rot D6; {Connect F:MULC to}

{rotation function}

CONNECT Y_Rot D6<1> <2>Switch6; {Connect rotation}

{function to other switch}

SEND 200 TO <2>Y Mul D6;

Switch5:= F:CROUTE(6);

Z Vec D7:= F:ZVEC;

{CODE FOR DIAL 7}

{Prime F:MULC function}

{Instance switch function}

{Note: 2nd switch already}

{instanced}

{Instance Z vector for}

{translation}

Z MUL D7 := F:MULC; {Instance F:MULC and}

{rotation functions}

Z ROT D7 := F:ZROT;

Function Networks II GT7-19

CONNECT FKEYS<1> <1>Switch5;

CONNECT DIALS<7> <2>Switch5;

CONNECT Switch5<1> : <1>Z Vec D7;

CONNECT Z Vec D7<1> <1>Acc Trans;

CONNECT Switch5<2> : <1>Z Mul D7;

CONNECT Switch5<3> <1>Z Mul_D7;

CONNECT Switch5<4> <1>Z_Mul D7;

CONNECT Switch5<5> <1>Z Mul D7;

CONNECT Switch5<6> <1>Z_Mul D7;

CONNECT Z Mul_D7<1> : <1>Z_Rot D7;

CONNECT Z_Rot D7<1> <2>Switch6;

SEND 200 TO <2>Z Mul D7;

{CODE FOR DIAL 8}

Switch? := F:CROUTE(6);

Rot_Lt_Elbow:= F:DXROTATE;

Rot_Lt Knee:= F:DXROTATE;

CONNECT FKEYS<1> <1>Switch7;

CONNECT DIALS<8> : <2>Switch7;

CONNECT Switch?<3> <1>Rot_Lt_Elbow;

CONNECT Switch?<5> <1>Rot_Lt Knee;

{Connect FKEYS and DIALS}

{Finish connections for}

{trans network}

{Connect switch to}

{F:MULC functions}

{Connect F:MULC to}

{rotation function}

{Connect rotation}

{function to other switch}

{Prime F:MULC function}

CONNECT Rot_Lt_Elbow<1> <1>Left_Forearm.Rot;

CONNECT Rot_Lt Knee<1> <1>Left Lower_Leg.Rot;

SEND 0 TO <2>Rot_Lt_Elbow;

SEND 0 TO <2>Rot_Lt_Knee;

SEND 200 TO <3>Rot Lt Elbow;

SEND 200 TO <3>Rot_Lt_Knee;

{Instance switch}

{function}

{Instance rotation}

{functions}

{Connect FKEYS and}

{DIALS }

{Connect switch to}

{rotation functions}

{Connect rotation}

{function to display}

{tree node}

{Prime rotation functions}

GT7-20 Graphics Tutorials

The foregoing includes all the necessary code for a function network which
will manipulate Robot. However, there is one other function you could add

so that you can interactively reset Robot to its original position, before any
transformations were applied, at any time. Connecting an F:XROTATE
function to the F:CMUL (rotation accumulator) function will do this (see
Figure 7-15).

Reset

F:XROTATE

XROTATE ~—

I YROTATE

I ZROTATE ~—

F:CMUL

<1>C <1>

<2>

0390433

NODE

Figure 7-1 S. RESET Function Network

Add the following code:

Reset := F:XROTATE;

CONNECT Reset<1> <1>Acc Rot Robot;

CONNECT Reset<1> <1>Acc Rot Head;

CONNECT Reset<1> <1>Acc Rt Arm;

CONNECT Reset<1> <1>Acc Rt Hand;

CONNECT Reset<1> <1>Acc Rt Leg;

CONNECT Reset<1> <1>Acc Rt Foot;

CONNECT Reset<1> <1>Acc Rot Trunk;

CONNECT Reset<1> <1>Acc Lt Arm;

CONNECT Reset<1> <1>Acc Lt Hand;

CONNECT Reset<1> <1>Acc Lt Leg;

CONNECT Reset<1> <1>Acc Lt Foot;

This will reset the network value but not the display nodes of the robot. The

nodes will be reset once the dials are moved again. To reset the display

nodes at the same time as you reset the network, also connect this reset

function to all Of the rotation nodes in the display tree:

CONNECT Reset<1> <1>Robot.Rot;

CONNECT Reset<1> <1>Head.Rot;

Function Networks II GT7-21

CONNECT

CONNECT

CONNECT

CONNECT

CONNECT

CONNECT

CONNECT

CONNECT

CONNECT

CONNECT

CONNECT

CONNECT

CONNECT

Reset<1>

Reset<1>

Reset<1>

Reset<1>

Reset<1>

Reset<1>

Reset<1>

Reset<1>

Reset<1>

Reset<1>

Reset<1>

Reset<1>

Reset<1>

<1>Upper_Body.Rot;

<1>Right_Arm.Rot;

<1>Le f t Arm .Rot ;

<1>Right Hand.Rot;

<1>Left Hand.Rot;

<1>Left_Leg.Rot;

<1>Right Leg.Rot;

<1>Left Foot.Rot;

<1>Right_Foot.Rot;

<1>Right Forearm.Rot;

<1>Left_Forearm.Rot;

<1>Left Lower_Leg.Rot;

<1>Right Lower Leg.Rot;

To RESET Robot, then, simply enter:

SEND 0 TO <1>Reset;

2. Labeling the Control Dials

The function network that labels the dials also involves routing, except that
the output of the network will be routed to function instances associated
with the control-dial labels instead of into display-tree nodes.

Section RM3 Initial Function Instances explains that there are eight DLABEL
initial function instances, one for each dial, named DLABELI...DLABEL8
(see Figure 7-16) .

String

Boolean

Boolean

DLABELI ... DLABEL8

<1>

<2>C

<3>C

Connected to Dial
Labels at System
Initialization

U390436

Figure 7-16. DLABEL Function

If you send the string of characters you want to appear in the label of a dial
to input <1> of a DLABEL function, the string will appear in the LEDs
above the dial. (The second and third DLABEL inputs, not used in this

GT7-22 Graphics Tutorials

example, allow you to blink the label or display it flush left. The default is
nonblinking and centered in the available space above each dial.)

These character strings should be no more than 8 characters long. No con-
nections need to be made out of DLABEL function instances; their "out-
puts" are the LEDs on the control-dials box.

Note

The Soft labels network redefines the dynamic view-
port on the PS 390 to allow the left edge of the display
screen to be used as a display area for the function key
labels (flabels) and dial labels (dlabels). This network
can be useful for PS 390 systems with control dials and
function keys that do not have LEDs. For details of the
Soft labels network refer to Section TT2.

To build a function network using these functions, first determine what type
of output the network needs to produce; that is, what sort of values a
DLABEL function will accept. In this case, it is a string of characters. These
strings need to be sent to the DLABEL functions. Each time you change
modes, you will want a new set of LED labels to appear that correspond to
the new operations handled by the dials.

Begin with the first mode. Here, seven dials control overall movements for
the robot. Though the eighth dial is not labeled, a blank string is needed for
the eighth label to erase any existing labels above dial 8 which appear in
other modes.

The following are sample labels that might appear in the dial LEDs during
mode 1:

1—XRot BOD

2—XRot HD

3 —XR ARM

4—XR

5 —XR LEG

6—XR FOOT

Function Networks II GT7-23

Once you identify labels to be sent to the LEDs, an efficient way to send
them is to use an instance of F:INPUTS_CHOOSE(n) (Figure 7-17) for
each DLABEL function.

F:INPUTS_CHOOSE(n)

Any

Any

Integer

<1>C

<n-1>C

<n>

<1>

U390237

Any

Figure 7-17. F:INPUTS_CHOOSE(n) Function

Make n one number larger than the number of modes you need. With six
modes, use an instance of F:INPUTS_CHOOSE(7).

This function can house six different labels on its first six inputs, one for
each mode. The seventh input is the "routing signal." An integer on input
<7> indicates which of the labels to send out. Connect FKEYS to that input.

Now when you press a function key, FKEYS not only switches the dials into
a different mode, it switches labels for the dials. Figure 7-18 illustrates the
network for dial 1, with string outputs to DLA.BEL1 and integer inputs from
FKEYS.

`XROT BOD'

`XROT HD'

`XR ARM'

`XR HAND'

`XR LEG'

`XR FOOT'

FKEYS

F: INPUTS_CHOOSE (7}

<1>C

<2>C

<3>C

<4>C

<5>C

<6>C

<7>

<1>

DLABEL 1

<1>

U390238

Figure 7-18. LED Labels for Dial 1

GT7-24 Graphics Tutorials

2.1 Exercise

The above diagram suggests how an instance of F:INPiTTS_CHOOSE(7)
can handle the labels for dial 1 in all modes. Design a network with addi-
tional instances of F:INPUTS_CHOOSE(n) that will handle DLABEL2
through DLABEL8. Design labels for the dials in each mode that use 8 or
fewer characters to describe the functions of the dials.

Figure 7-19 illustrates the rest of the function network needed to label
LEDs. Following that is the code needed to implement the complete net-
work.

`YROT BOD'

`YROT H D'
`YR ARM'
`YR HAND'
'YR LEG'
`YR FOOT'

FKEYS
i

`ZROT BOD'

`ZROT HD'
`ZR ARM'
`ZR HAND'

`ZR LEG'
`ZR FOOT'

FKEYS

F:INPUTS_CHOOSE(7)

<1>C

<2>C

<3>C
<4>C

<5>C
<6>C
<7>

<1>

`S ROBOT'

`XROT RE'

`XROT RK'

FKEYS

F:INPUTS_CHOOSE (7}

<1>C <1>

<2>C
<3>C

<4>C

<5>C
<6>C
<7>

DLABEL 2

<1>

U390239

F:INPUTS_CHOOSE (7)
<1>C

<2>C

<3>C
<4>C
<S>C
<6>C
<7>

<1>

DLABEL 3

<1>

U390240

DLABEL 4

<1>

U390241

Figure 7-19. LED Labels for Dials 2-8 (continued on next page)

Function Networks II GT7-25

`XTRN BOD'

`XROT TRK'

`XL ARM'

`XL HAND'

`XL LEG'

`XL FOOT'

I FKEYS

`YTRN BOD'

`YROT TRK'

'YL ARM'

`YL HAND'

`YL LEG'

`YL FOOT'

FKEYS
i

F:INPUTS_CHOOSE(7)

<1>C

<2>C

<3>C

<4>C

<5>C

<6>C

<7>

<1>

`ZTRN BOD'

`ZROT TRK'

`ZL ARM'

'ZL HAND'

`ZL LEG'
`ZL FOOT'

FKEYS
i

`XROT LE'

`XROT LK'

FKEYS

F:INPUTS_CHOOSE (7)

<1>C

<2>C

<3>C
<4>C

<5>C

<6>C
<7>

<1>

DLABEL 5

<1>

0390242

F:INPUTS_CHOOSE(7)

<1>C

<2>C
<3>C

<4>C

<5>C

<6>C
<7>

<1>

DLABEL 6

<1>

0390243

F:INPUTS_CHOOSE (7}
< 1>C

<2>C

<3>C
<4>C
<5>C

<6>C
<7>

<1>

DLABEL 7

<1>

0390244

DLABEL 8

<1>

0390245

Figure 7-19. LED Labels for Dials 2-8 (continued)

GT7-26 Graphics Tutorials

The code follows for the eight labels in all six possible modes. Note that the
DLABEL function does not have to be instanced by the user.

D1 LEDs := F:INPUTS CHOOSE(7);

D2_LEDS := F:INPUTS_CHOOSE(7);

D3 LEDs := F:INPUTS CHOOSE(7);

D4_LEDs := F:INPUTS_CHOOSE(7);

D5_LEDS := F:INPUTS_CHOOSE(7);

D6_LEDS := F:INPUTS_CHOOSE(7);
D7 LEDs := F:INPUTS_CHOOSE(7);

D8_LEDS := F:INPUTS_CHOOSE(7);

CONNECT FKEYS<1>:<7>D1_Leds;

CONNECT FKEYS<1>:<7>D2_Leds;

CONNECT FKEYS<1>:<7>D3 Leds;

CONNECT FKEYS<1>:<7>D4_Leds;

CONNECT FKEYS<1>:<7>D5_Leds;

CONNECT FKEYS<1>:<7>D6 Leds;

CONNECT FKEYS<1>:<7>D7_Leds;

CONNECT FKEYS<1>:<7>D8 Leds;

CONNECT D1 Leds<1>:<1>DLABELl;

CONNECT D2 Leds<1>:<1>DLABEL2;

CONNECT D3_Leds<1>:<1>DLABEL3;

CONNECT D4_Leds<1>:<1>DLABEL4;

CONNECT D5 Leds<1>:<1>DLABELS;

CONNECT D6_Leds<1>:<1>DLABEL6;

CONNECT D7_Leds<1>:<1>DLABEL7;

CONNECT D8_Leds<1>:<1>DLABEL8;

SEND 'XRot BOD' TO <1>D1 Leds;

SEND 'XRot HD' TO <2>Dl Leds;

SEND 'XR ARM' TO <3>Dl Leds;

SEND 'XR HAND' TO <4>Dl Leds;

SEND 'XR LEG' TO <5>Dl_Leds;

SEND 'XR FOOT' TO <6>Dl Leds;

SEND 'YRot_BOD' TO <1>D2_Leds;

SEND 'YRot HD' TO <2>D2 Leds;

SEND 'YR ARM' TO <3>D2 Leds;

SEND 'YR_HAND' TO <4>D2_Leds;

SEND 'YR_LEG' TO <5>D2_Leds;

SEND 'YR FOOT' TO <6>D2 Leds;

{Instance the switch function}

{Connect FKEYS to switch}

{Connect switch to LEDs}

{Send characters}

Function Networks II GT7-27

SEND 'ZRot_BOD' TO <1>D3_Leds;

SEND 'ZRot_HD' TO <2>D3_Leds;

SEND 'ZR ARM' TO <3>D3_Leds;

SEND 'ZR_HAND' TO <4>D3_Leds;

SEND 'ZR LEG' TO <5>D3_Leds;

SEND 'ZR_FOOT' TO <6>D3_Leds;

SEND 'S_ROBOT' TO <1>D4_Leds;

SEND TO <2>D4_Leds;

SEND 'XRot_RE' TO <3>D4_Leds;

SEND TO <4>D4_Leds;

SEND 'XRot_RK' TO <5>D4_Leds;

SEND TO <6>D4 Leds;

SEND 'XTrn BOD' TO <1>D5_Leds;

SEND 'XRot TRK' TO <2>D5_Leds;

SEND 'XL ARM' TO <3>D5_Leds;

SEND 'XL HAND' TO <4>D5_Leds;

SEND 'XL_LEG' TO <5>D5_Leds;

SEND 'XL_FOOT' TO <6>D5_Leds;

SEND 'YTrn_BOD' TO <1>D6_Leds;

SEND 'YRot_TRK' TO <2>D6_Leds;

SEND 'YL ARM' TO <3>D6_Leds;

SEND 'YL_HAND' TO <4>D6_Leds;

SEND 'YL LEG' TO <5>D6 Leds;

SEND 'YL_FOOT' TO <6>D6_Leds;

SEND 'ZTrn_BOD' TO <1>D7_Leds;

SEND 'ZRot_TRK' TO <2>D7_Leds;

SEND 'ZL ARM' TO <3>D7_Leds;

SEND 'ZL_HAND' TO <4>D7_Leds;

SEND 'ZL_LEG' TO <5>D7_Leds;

SEND 'ZL_FOOT' TO <6>D7_Leds;

SEND TO <1>D8_Leds;

SEND TO <2>D8 Leds;

SEND 'XRot_LE' TO <3>D8_Leds;

SEND TO <4>D8 Leds;

SEND 'XRot_LK' TO <5>D8_Leds;

SEND TO <6>D8_Leds;

GT7-28 Graphics Tutorials

3. Setting Limits on the Motion of a Model

As the robot model now operates, its movements are unbounded: it can
continue bending its knees until they pass through its thigh and return to
initial position. This section demonstrates how to set a limit on that motion,
so that a model will more realistically imitate the movements of the object it
represents.

The knees of the robot provide a good illustration of how to do this. First,
think of how a real leg bends (Figure 7-20).

160°

U390458

Figure 7-20. Realistic Limitations of Leg Movement

In a real leg, little or no forward bending is possible, but backward bending,
through nearly 180 degrees, is. If you set a limit at 160 degrees, it would be
fairly realistic. Figure 7-21 shows how 160 degrees of backward movement
in a real leg corresponds to the rotation values in the robot's knee.

+Y

-160°

(L~
-Y

U390459

Figure 7-21. Limits for the Robot Leg

Function Networks II GT7-2 9

The rotations applied to it move it only around the X axis. Viewed from the
positive X axis (the way it is in the diagram above), the "backward" rota-
tion is counterclockwise. So the limits you want to impose are: no positive
rotation in X at all, and only up to 160 in negative X.

You can modify the rotation network in the function network diagram for
the robot. This requires the F:LIlVIIT function (see Figure 7-22). F:LIlVIlT
will monitor values for degrees of rotation for the rotation functions and
pass through only values between 0 and -160.

Accumulated rotation value --

Upper limit (0} ---

Lower limit (-160) ---

F: LIMIT

C

C

value between the two limits

U390246

Figure 7-22. F: LIMIT Function

In this example, any value larger than 0 will cause F:LIlV~T to send out a 0;
anything less than -160 will output -160.

The networks for the knees of the robot use the F:DXROTATE function
because they require rotations only in X. However, the accumulator is built
into F:DXROTATE, so you cannot tap into it for the input to F:LIlVIIT (see
Figure 7-23).

I DIALS ►I F: DXROTATE
U390247

Figure 7-23. Rotation Node Using F:DXROTATE

To use F:LIlV~T, begin with an XROTATE network such as the one used in
Section GT6 Function Networks I, as shown in Figure 7-24.

IDIALS ►IF:MULC~ ►) F:DXROTATE
U390248

Figure 7-24. Rotation Network Using F: MULC and F.•XROTATE

GTE 30 Graphics Tutorials

Then modify it to accumulate rotation values with an add function as shown
in Figure 7-25.

U390249

Figure 7-25. Rotation Network With F:ADD

Finally, add the F:LIlV~T function. With this network, a stream of values
from F:ADD (accumulated rotation values) can be output to F:LIlVIIT as
shown in Figure 7-26.

Figure 7-26. Function Network To Limit Movement

Though this network is bulkier (three functions now replace one), it allows
you to limit the motion in the knee joint.

3.1 Exercise

Figure 7-27 illustrates two modified function networks that will limit rota-
tions in both of the robot knees. Function instance names have been pro-
vided. Edit the existing code for Robot to incorporate these changes. Do not
repeat any existing commands which create function instances; otherwise,
all connections established by the original command are broken.

Right_Lower_Leg .Rot

~ Left_Lower_Leg .Rot

(DIALS<8>I-►I SWITCH7 (--►f X_MULC_D8 ~ ADD_D8 I-►I LIMIT_D8 ~ X_ROT_D8

U390.351

Figure 7-2 7. Function Networks To Limit the Robot Knee Movement

Function Networks II GT7-31

X MulC D4 := F:MULC;

X Mu1C D8 := F:MULC;

Add D4 := F:ADD;

Add D8 := F:ADD;

Limit D4 := F:LIMIT;

Limit D8 := F:LIMIT;

X Rot D4 := F:XROTATE;

X Rot D8 := F:XROTATE;

DISCONNECT Switch2<5>:<1>Rot_Rt Knee;

DISCONNECT Switch?<5>:<1>Rot_Lt_Knee;

CONNECT Switch2<5>:<1>X Mulc D4;

CONNECT Switch?<5>:<1>X Mulc D8;

CONNECT X Mu1C D4<1>:<1>Add D4;

CONNECT X Mu1C D8<1>:<1>Add D8;

CONNECT Add D4<1>:<1>Limit D4;

CONNECT Add D8<1>:<1>Limit D8;

CONNECT Limit D4<1>:<2>Add D4;

CONNECT Limit D4<1>:<1>X Rot D4;

CONNECT Limit D8<1>:<2>Add D8;

CONNECT Limit D8<1>:<1>X Rot D8;

{Instancing new functions}

{Creating new network}

CONNECT X_Rot D4<1>:<1>Right_Lower_Leg.Rot;

CONNECT X Rot D8<1>:<1>Left Lower Leg.Rot;

SEND 200 TO <2>X Mu1C D4;

SEND 200 TO <2>X Mu1C D8;

SEND 0 TO <2>Limit D4;

SEND -160 TO <3>Limit D4;

SEND 0 TO <2>Limit D8;

SEND -160 TO <3>Limit D8;

SEND 0 to <2>Add D4;

SEND 0 to <2>Add D8;

{Priming functions}

The next logical step would be t0 limit rotations in all Of the joints Of the
robot. However, this is no trivial matter. The other rotate nodes accept
three-dimensional rotations which are all accumulated using matrices. Ma-
trices cannot go through the F:LIlVIIT function. This problem is not insur-
mountable, but solutions can be complex. (For example, you could have
three rotation nodes, each limiting movement using the F:LIlVIIT function.)

GT7-32 Graphics Tutorials

4. Using Variables to Store Values

One difference between programming with PS 390 function networks and
programming a conventional language such as FORTRAN is that you almost
never need to use variables. In a conventional program, you may represent
two values to be added together as variables X and Y. In a function net-
work, you would add these using the F:ADD function. The "variables" are
the two inputs of the function.

Sometimes, though, you may want to use a variable value in a function
network in a more conventional way. Often this can be done using the
F:CONSTANT function (see Figure 7-28).

F:CONSTANT

Trigger value <1> <1> Any
From network <2>C U390452

Figure 7-28. F:CONSTANT Function

In this setup, the value you want to save is sent to the constant input of the
function. If you send a stream of values, each one will over-write the pre-
ceding one, so the value on the constant input will always be current (the
latest one sent) . When you need the variable somewhere else in the net-
work, send any value to trigger F:CONST~►NT input <1> and the value will
fire out to wherever you connect the output.

It may be the case, however, that several areas in a network need to access
the variable in an F: CONST~►NT function. You might think that can be
done by making numerous output connections to all the destinations that
may use the variable (Figure 7-29) .

F: CONSTANT

<1> <1>

<2>C
U390453

Destination 1

Destination 2

Destination 3

Figure 7-29. F:CONSTANT Connected to Several Destinations

Function Networks II GT7-33

However, this presents a problem of routing and selection. To send the
variable value to destination 1, you must trigger F:CONSTA.►NT, which
sends out values to all destinations. One solution to this problem could be to
use more instances of F:CONSTA►NT (Figure 7-30) .

 I F:CONSTANT I Destination 1

 I F:CONSTANT I Destination 2

 F:CONSTANT I Destination 3
U390454

Figure 7-30. Multiple Instances of F.•CONSTANT Function

A more efficient solution is to use the V LE command in conjunction
with the command STORE and the function F:FETCH. This section dis-
cusses how to do that.

The VARIABLE command creates a "holding tank" for a single value,
much the same way the constant input of F:CONST~,NT does. Look at the
following command:

VARIABLE This, That, The_Other;

This command creates three variables named This, That, and The Other.
Variables have only one input and no outputs. Function networks can be
connected to them, or they can receive values by means of the SEND com-
mand:

CONNECT Spinner<1>:<1>This;

SEND 4.5 TO <1>This;

If a network is connected to a variable, it can receive a stream of values and
will retain the last one sent.

An alternate way to send a value to a variable is to use the STORE com-
mand. The following commands both do the same thing:

STORE 4.5 IN This;

SEND 4.5 TO <1>This;

There are two ways to retrieve a value stored in a variable: using the SEND
VALUE command or using a function network with F:FETCH. For

GT7-34 Graphics Tutorials

example, if you want to send a value from the variable This to the third
input of a function named Rot_X, you could enter:

SEND VALUE (This) TO <3>Rot_X;

Even more convenient is using F:FETCH (Figure 7-31).

F:FETCH

Any <1> <1> Any

S <2>C ~ 9~~

Figure 7-31. F:FETCH Function

F:FETCH accepts the name of the variable on its constant input (input <2>).
When any value arrives on input <1>, the function is triggered. It fetches the
latest value from that variable and sends it out.

For example, in Figure 7-32 below, values for the variable This are routed
to the host using the F:FETCH function. (User-assigned names are written
above ,the function box.)

DIALS
<5>
<6>
<7>

Get This

— X TRANSLATE NETWORK
^Y TRANSLATE NETWORK
— Z TRANSLATE NETWORK

Printer
F:PRINT

Figure 7-32. Routing Values From Variable "This" to the Host

HOSTOUT

The variable This holds a 2D vector that indicates the accumulated transla-
tion values sent out from Acc_Trans in mode 1. (The translation network

has already been defined and coded in the robot code.)

HOSTOUT has one input, which accepts a string and routes it to the host.
HOSTOUT is preceded by a function that turns PS 390 values into strings,

Function Networks II GT7-35

F:PR.Il~1T. (If the GSRs are being used, HOST MESSAGE should be used in
lieu of HOSTOUT.)

The additional code needed for this network is:

VARIABLE This;

Get_This := F:FETCH;

Printer := F: PRINT;

CONNECT Acc_Trans<1>:<1>This;

CONNECT FKEYS<1>:<1>Get This;

CONNECT Get_This<1>:<1>Printer;

CONNECT Printer<1>:<1>HOSTOUT;

SEND 'This' to <2>Get_This;

4.1 Exercise

Using Figure 7-32 as a pattern, create a function network that uses a vari-
able named Matrix which holds the most current rotation matrix from
F:CMUL for the left arm of the robot (Acc Lt Arm) in mode 3. Retrieve
this value and send it to HOSTOVT using an instance of F:FETCH named
Retrieve. Specify any additional code needed (the rotation network for Ro-
bot has already been done).

Figure 7-33 illustrates the function network which retrieves values from the
variable Matrix.

DIALS
<5>
<6>
<7>

Retrieve

F:KEYS

`Matrix'_.,

Matrix

F:FETCH

<1>

<2>C

SWITCH 6 VARIABL~
ACC LT ARM

— X ROTATION NETWORK ~ F: ROUTE - - Left Arm. Rot

— Y ROTATION NETWORK
— Z ROTATION NETWORK

<3> ~IF:CMUL I
1

Printer
F: PRINT

U390457

Figure 7-33. Routing Values From Variable "Matrix" to the Host

HOSTOUT

GT7-36 Graphics Tutorikls

The additional code needed for this network is:

VARIABLE Matrix;

Retrieve := F: FETCH;

Printer := F:PRINT;

CONNECT Acc_Lt_Arm<1>:<1>Matrix;

CONNECT FKEYS<1>:<1>Retrieve;

CONNECT Retrieve<1>:<1>Printer;
CONNECT Printer<1>:<1>HOSTOUT;

SEND 'Matrix' to <2>Retrieve;

5. Summary

This section illustrates how to expand a function network so that a single
dial can manipulate several movements of a model. This entails determining
the number of dials needed for interactions in the model and assigning each
dial several destinations (in this section, LED labels or interactive nodes in
the display tree of the model).

Function keys and instances of F:CROUTE(n) are used to switch values
from the dials to their various destinations. This prevents dial values from
being routed to all function network destinations at once.

Specifically, the initial function instance FKEYS is connected to input <1>
of the switching function F:CROUTE(n). Incoming values from the dials are
connected to input <2>. The outputs of F:CROUTE(n) are connected to the
various destinations.

LEDs above the dials can be labeled in each mode of operation. Specifi-
cally, labels in every mode for that dial are sent to the constant inputs of
F:INPUTS_CHOOSE. FKEYS is connected to the last input of this function.
The output of F:INPUTS_CHOOSE is connected to the DLABEL function
associated with that dial. When the function key is pressed, to switch
modes, the correct label for the dial in that mode is routed to DLABEL,
which outputs to the LEDs.

Functions can serve more than one purpose. For example, in addition to
controlling X rotations, the F:XROTA'1~E function can be used to reset the
model back to its original position before any transformations were applied.

Function Networks II GTE 37

The F:LIlVIIT function can be inserted into a network to set limits on the
movement of a model. F:LIlVIIT requires that you establish upper and lower
limits for transformation values. It then passes through only those values
which lie within this range.

Finally, the V LE command and F:FETCH functions allow you to
store and retrieve a variable value in a function network.

GT7-38 Graphics Tutorials

