
PS 300 DOCUMENT SET

VOLUME 4

PROGRAM DEVELOPMENT TOOLS

The contents of this volume are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans &Sutherland.

Many concepts in this volume are proprietary to Evans &
Sutherland, and are protected as trade secrets or covered by
U.S. and foreign patents or patents pending.

Evans & Sutherland assumes no responsibility for errors or
inaccuracies in this document. It contains the most complete
and accurate information available at the time of
publication, and is subject to change without notice.

PS 1, PS2, MPS, and PS 300 are trademarks of the Evans &
Sutherland Computer Corporation.

Copyright o 1984
EVANS &SUTHERLAND COMPUTER CORPORATION

P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84121

VOLUNE 4

PROGRAU DEVELOPVE\T TOOLS

This volume contains programming aids for the PS 300 programmer. The programs
documented in this volume are distributed on the PS 300 Al Firmware tape. Each
programming aid is independent of the others and has its own level of limited support.
Consult the limited support disclaimer on the front page of each document in this
volume.

This volume contains the following sections.

PS 300 APPLICATION NOTES

The PS 300 Application Notes is a collection of programming samples and
graphical applications for PS 300 users. Evans &Sutherland's own programming
staff and PS 300 users outside the company have contributed and continue to
contribute to the Notes.

FUNCTION NETWORK EDITOR

The Function Network Editor is a graphical program named NETEDIT which lets
you create a function network as a diagram on the PS 300 display. Editing menus
are used to build a network of hierarchically structured "black boxes" which may
contain more detailed representations of parts of the network. When the
diagram is complete, an ASCII code file can be generated which Gonna-ins the
PS 300 commands needed to build the network.

The program is written in Pascal U2.2 and runs under VAX/UMS 3.3 and higher.

FUNCTION NETWORK DEBUGGER

The Function Network Debugger program, NETPROBE, was developed at Evans
& Sutherland as an aid to debugging function networks. The program displays the
activity of a network as it manipulates data. Each function output used in the
network is displayed on a separate display line in a 15—item page. Each page
shows the name of the function and number of the output, the value last output,
and optionally, a count of how many times the output has fired. Function keys
provide control over which of twenty pages are displayed, clear the currently
displayed values, and disable the display.

NETPROBE is written in Pascal U2.2 and runs under UAX/UMX 3.3 and higher.

CHARACTER FONT EDITOR

MAKEFONT is a graphical character font editing program that allows you to edit
an existing character font or create a new one. It is an interactive, menu-driven
program that displays characters in a 128- or 256-character font. Each
character can be edited to create a new shape. Different fonts can be combined
into a new font, and original fonts can be created from scratch.

MAKEFONT is written in Pascal V2.2 and runs under VAX/VMS 3.3 and higher.

PS 300 ADVANCED PROGRAMMING

PS 300 Advanced Programming is a detailed reference provided for experienced
programmers both as a guide to writing their own functions for the PS 300 and
also for doing direct physical I/O across the high-speed parallel interface. Some
sections might also be of interest for anyone wanting more information about
how the PS 300 creates and manipulates data structures.

The programmer using the user-written function and advanced user-written
function facilities should be familiar with the Pascal programming language, the
types of functions provided by E&S, the acceptable inputs to functions, and the
use of functions in the PS 300 system.

PS 300 Advanced Programming manual is distributed to you as part of your
A2.V02 Release Notes package.

UPDATES FUNCTION

The Updates Function (F:USERUPD) provides a method of rapidly updating
viewing transformations and characters. It is intended for use in applications
such as robotics and animation.

The Updates Function was created to allow data structures to be updated quickly
by transferring data from the host to the PS 300 very rapidly. F:USERUPD is an
enhancement included with Graphics Firmware Version A 1 that can be used with
all PS 300 interfaces and alI members of the PS 300 family of computers except
the PS 340.

APPLICATIO\ OTES

The PS 300 APPLICATION NOTES is a collection of useful information and applications
for PS 300 users. Contributions to the NOTES come from inside and outside of
Evans &Sutherland. Each note includes the author's name and company.

In the course of working with the PS 300, many of you will discover or develop ways of
using it that may be valuable for a wide range of applications. By publishing PS 300
APPLICATION NOTES, E&S is acting as a clearinghouse to make your ideas and
techniques generally available to other users.

These notes might describe an intricate function network that performs an important
operation or show a new and useful way of structuring data. Or they may provide
something as simple as "programming" conventions or debugging methods that have
helped you. In other words, almost any idea that you think may be useful for other
PS 300 users is a candidate for the PS 300 APPLICATION NOTES.

Please submit an Application Note for each idea you have to E&S. We will compile
them and distribute them periodically to all PS 300 sites (we may, of course, not be able
to publish every note submitted to us). Following is a sample form with instructions for
filling it out and a second, blank form. Although it is not necessary to use the blank
form provided here when you submit an Application Note, please follow the same
format. (You may want to photocopy the blank form and use it for submissions.)

The notes themselves are numbered arbitrarily for referencing only. Each is also
referenced in the Index according to category (a list of each note's categories appears
at the beginning of that note).

You should be aware that the NOTES is not a supported product of E&S -- they have
been written by PS 300 users and have not been rigorously tested. If you encounter
errors or bugs in these applications when you use them, please notify us at E&S. Submit
your Application Notes and send any comments you may have to:

Neil Harrington
Evans &Sutherland
P.O. Box 8700
Salt Lake City, Utah 84108

FORMAT NOTE

When actual code appears in an Application Note, the PS 300 commands are written
with essential syntax in caps. Non-essential syntax is in lower case. "BEGIN_Structure",
for instance, indicates that it is necessary to enter only "BEGIN S".

PS 300 APPLICATION NOTES Forin Instrnctiolis

(Title of Note Here)

Your Name
Department
Company
City
Date

CATEGORIES:

List all possible categories for this note, for example: data structurinr~, function
networks, command usage, host cor~~munications, animation, transformations, and so
on. These categories are just examples, of course -- your note will possibly fall into
different ones.

DESCRIPTION

Briefly describe the function or application. Then tell WHY the new application is
useful -- what need it fills, what new thing it does, or what old thing it does in a new
and easier way.

IMPLEMENTATION

Insert specific details about using the application. If the procedure is complex, describe
it "top—down":

FIRST explain the "big picture" or supply a block diagram

THEN describe in detail each piece of the overall description or block in the
diagram.

Don't start at the level of greatest detail right off -- with the code itself, for example
-- unless the application is extremely simple.

NOTES, EXAMPLES

Include an example of the application. For users, this could mean the difference
between understanding and not understanding how to use your application when they
can't find their way through the DESCRIPTION and IMPLEMENTATION.

Also put here any warnings or side notes you think might help someone to understand
and use your application.

PS 300 APPLICATION NOTES Form

Title:

Your (dame
Department
Company
City
Date

CATEGORIES:

DESCRIPTION

IMPLEMENTATION

NOTES, EXAMPLES

PS 300 APPLICATION NOTE #1

C~lrsor Redefinition

Kerry Evans
Systems Engineering
Evans &Sutherland
Salt Lake City, Utah
December 1981

CATF:GORIFS: Screen cursor, data structuring

D CSC RIPTION

This describes how the screen cursor may be redefined to be a symbol other than the
default cursor, which is an "X".

IMPLh:Mh:NTATION

The default cursor is defined as a vector list by a command of the form:

CURSOR := VECtor list ITEMized n = 4
P -.035, -.035
L .035, .035
P -.035, .035
L .035, -.035;

To redefine the cursor as a square, simply redefine "CURSOR" in the following manner:

CURSOR := VECtor list ITEMized n = 5
-.035, -.035
-.035, .035
.035, .035
.035, -.035

-.035, -.035;

NOTh:S, EXAMPLES

The original cursor definition is Iost until redefined in its original form by the user or
until the PS 300 is powered on again. The INITialize command does NOT restore the
default cursor definition.

:~

PS 300 APPLICATION NOTE #2

Defining a Dynamic Cursor

Kerry Evans
Systems Engineering
Evans &Sutherland
Salt Lake City, Utah
December 1981

CATEGORIES: Screen cursor, data structuring

DESCRIPTION

The screen cursor may be redefined to provide two different shapes -- one when the
data tablet pen tipswitch is up or open, and another when it is down
or closed.

IMPLEMENTATION

Redefine the cursor as

CURSOR := BEGIN Structure
UP_DOWN := SET conditional_BIT IOFF;

IF conditional_BIT 1 is ON THEN C_SQUARE;

IF conditional_BIT 1 is OFF THEN C_CROSS;
END_Structure;

C_SQUARE := VECtor List ITEMized n = 5
-.035, -.035
-.035, .035
.035, .035
.035, -.035

-.035, -.035;

C_CROSS := 1/ECtor list ITEMized n = 4
P -.035, -.035
L .035, .035
P .035, -.035
L -.035, .035;

PS 300 APPLICATION NOTF. #2

Defining' a Dynamic CILrSOr

Now connect the data tablet tipswitch Boolean value (output 2) to control which cursor
symbol is displayed:

CONNect Tabletin<2>:< 1 >CURSOR.UP_DOWN;

NOTES, EXAMPLES

The original cursor definition is lost until redefined in its original form by the user or
until the PS 300 is powered on again. The INITialiZe command does NOT restore the
default cursor definition.

PS 300 APPLICATION NOTE #3

World-Space Rotations

Neil Harrington
Marketing Software Support
Evans &Sutherland
Salt Lake City, Utah
February 1982

CATEGORIES: World-space rotations, object-space rotations, screen-space
rotations

DESCRIPTION

A very desirable way of performing three-dimensional rotations is to know beforehand
just what direction the object you are rotating is going to move. One way of doing this
is to perform world-space (world-centered) rotations -- that is, when you turn, say, the
X rotation dial, you know the rotation will be about the world-space X axis. Likewise,
of course, for Y and Z rotations. (See also object-space rotations.)

PS 300 APPLICATION NOTE #3

World-Space Rotations

oy

oZ ~-

~ OY

~~~ 

~Z 

IAS0227 

Fig~~re 3- 1. World-Space Rotations 

IMPLEMt:NTATION 

To get true world-space rotations, the rotations need to be processed in the order that 
they come in (that is, they need to be post-concatenated to the current matrix). The 
network to do this is shown in the diagram below. 

-12-



PS 300 APPLICATION NOTE #3 

World-Space Rotations 

W.~rese t 

F:XRQTATE 

N~xr~xa !c 

DIALS(i) 

F :':IS[7LC  
,80 c 

w~y,~i~
DIALS(j) --~ 

F ::~iULC  
180 —~ 

WS._.zrrav / c 

DIALS(k) — 

F : LiUL L' 

180 ~~ 

GY~,rro to to 

F : kROTATE !--

GY.~yro tote 

F:YRQTATE  

W.~..zro to t e 

F : ZROTATE ~--' 

6Y~ro to to 
} 

i tF : CMUL t (1)(Rotcation dutct node) 

(Ini tiatize (1)~S_rotc~te to the identity 
matrix by sending 0 to (1 )iPS,~ese t) 

IAS0228 

Fig~tire 3-?. World-Space Rotation Networks 

The output of the last function should also be connected to the appropriate rotation 

node in the data structure. 

NOTES, EXAMPLES 

If you are rotating an object about the world-space axes and viewing it from the 

negative Z axis, the space screen coordinates and world-space coordinates will coincide 

-- the space-screen rotations will in effect b.e the same as the world-space rotations. 

There should only be one rotation node in the data structure (not one each for X, Y, and 

Z rotations). This node can be created with the ROTate X, ROTate Y, or ROTate Z 

commands. 

To reset the network and rotation node in the data structure, just put an identity matrix 

on input < 1 > of WS_Rotation. This can be done by connecting an instance of 

F:XROTATE to it and sending a o to input < 1 > of WS_Reset. 





PS 300 APPI~IC ATION NOTE #4 

Object-Space Rotatio~ls 

Neil Harrington 
Marketing Software Support 
Evans &Sutherland 
Salt Lake City, Utah 
February 1982 

CATECURIES: Object-space rotations, world-space rotations, data-space rotations 

DESCRIPTION 

A very desirable way of performing three-dimensional rotations is to know beforehand 
just what direction the object you are rotating is going to move. One way of doing this 
is to perform object-space (object-centered) rotations -- that is, when you turn, say, 
the X rotation dial, you know the rotation will be about the X axis of the original object 
definition space. Likewise, of course, for Y and Z rotations. (See also world-space 
rotations). 



PS 300 APPLICATION NOTE #4 

Object-Space Rotatio~is 

oy 

oZ 

W~ 
IAS0229 

Figure 4-l. Object-Space Rotations 

IMPLEMENTATION 

To get true object space rotations, the rotations need to be processed in the reverse 
order that they come in (that is, they need to be pre-concatenated to the current 
matrix). The network to do this is shown in the diagram below. 



PS 300 APPLICATION NOTE #4 

Object-Space Rotations 

O.~Xrrx~ 1 c 

DIALS (i } ---~ 
F : MLTLC  

180 ~ 

O~ Ynx~ /c 

DIALS(j } ~ 
c ( F : h[(JLC 

18 0 --~ 

O~Yro to to 

0.~'miv / c 

DIALS(k) —~ 

F : hiULC 
184 —~ 

F:XROTATE --~ (InZti.cLtiae (f)OS~otate to the zde-nFzty 
mottrz~ by seridirtg 0 to (1)OS re9e t) 

O~Y~atate

F:YR~TATE 

O~Ro t o f a 

O.~Zro to t e 

F:ZROTATE 

O~Re s e f 

--) F : XROTATE 

F : ~4iULC (t}{Rotattion data node) 

IAS0230 

Fig~lre 3-2. Object-Space Rotation Network 

The output of the last function should also be connected to a rotation node in the data 
structure. 

NOTES, EXAMPLES 

There should only be one rotation node in the data structure (not one each for X, Y, and 
Z rotations}. This node can be created with the ROTate X, ROTate Y, or ROTate Z 
commands. 

To reset the network and rotation node in the data structure, put an identity matrix on 
input < 1 > of OS_Rotation. This can be done by connecting an instance of F:XROTATE 
to it and sending a 0 to input < 1 > of OS_Reset. 





PS 300 APPLICATION NOTE #5 

Rational Polynomial Command Usage 

Marty Best, Bill Armstrong 
Systems Engineering 
Evans &Sutherland 
Salt Lake City, Utah 
April 1982 

CATEGORIES: Circles, ellipses, curve generation, Rational Polynomial 
command usage 

DESCRIPTION 

The Polynomial commands that are available on the PS 300 offer a powerful means of 
building curve shapes without transmitting large numbers of vectors. Unfortunately, 
use of the Polynomial commands requires an understanding of curve generation and a 
routine for computing the curve paraR~eters to be sent to the PS 300. Only users 
experienced in curve generation, for the most part, will find a specific use for them. 

Some basic curve shapes, however, can be adapted to many applications and are simple 
to implement. 

The command detailed below can be modified to draw a circle of a given radius, or an 
ellipse of a specif ied size. Of course, these primitives can be instanced by any other 
structure and translated, rotated, or scaled. 

IMPLEMENTATION 

A circle must be defined in two parts using a Rational Polynomial command. It can 
then be included in a BEGIN_Structure...END_Structure and referenced as a single 
entity. The syntax is as follows: 



PS 300 APPLICATION NOTE #5 

Rational Polynomial Command Usage 

CIRCLE := BEGIN Structure 
RATional POLYnomial 
2r, 0, 0, 2 

-2r, -2r, 0,-2 
0, r, 0, 1 

CHORDS=25; 

RATional POLYnomial 
2r, 0, 0,-2 

-2r, -Zr, 0, 2 
0, r, 0,-1 

CHORDS=25; 
END_Structure; 

where r is the desired radius of the circle. The number of chords have been set at 25 to 
give a smooth appearance. 

NOTES, E~AM~'LFS 

The two Rational Polynomial commands given above define the right and left 
semi-circles of the circle and can be made the top and bottom semi-circles by 
exchanging the X and Y columns (Columns 1 and 2). 

The above circle can be modified to give an ellipse as follows: 

ELLIPSE := BEGIN Structure 
RATional POLYnomial 
2a, 0, 0, 2 

-2a,-2b, 0,-2 
0, b, 0, 1 

CHORDS=25; 

RATional POLYnomial 
2a, 0, 0,-2 

-2a,-2b, 0, 2 
0, b, 0,-1 

CHORDS=25; 
END_Structure; 

where a and b are the major and minor axes of the ellipse. Again the number of chords 
has been chosen for smoothness. 

-?0-



PS 300 APPLICATION NOTES #6 

Proportional Scaling 

Neil Harrington 
Marketing Support 
Evans &Sutherland 
Salt Lake City, Utah 
September, 1982 

CATEGORIES: Scaling 

DESCRIPTION 

A dial is usually used to accumulate the scale factor in standard scaling networks. It's 
hard to control scaling this way, though, since the current scale factor becomes very 
small or very large in proportion to the new dial value. For example: 

Current Scale Factor New Dial Ualue New Scale Factor %Increase 

0.01 . l 0.1 1 1000.0 
100.00 . l 100.10 0.1 

When the current scale factor is small, the effect of a turn of the dial is large, and vice 
versa. 

The network shown below will correct this problem by making the effect of the dial 
proportional to the current scaling factor. Using this network the chart shown above 
will look like: 

Current Scale Factor New Dial Ualue New Scale Factor %Increase 

0.01 .l 0.01 1 
100.00 . l 1 10.00 

10 
10 



PS 300 APPLICATION NOTES #6 

Proportional Scalilig 

IMPLEMENTATION 

~i-op Sco/e 

goo 

01 

c 

C 

C 

(s} F:DSCALE 

(4} 

(5} 

~ >) (Scal e rcode~ 

t AS0231 

F'ig~tlre 6-l. Proportional Scaling Network 

-22-



PS 300 APPLICATION NOTE #7 

Local Inking of Tablet Coordinates 

Neil Harrington 
Marketing Software Support 
Evans &Sutherland 
Salt Lake City, Utah 
June 1982 

CATEGORIES: Inking, F:XOR 

DESCRIPTION 

Inking is the technique of using an input device (usually the data tablet) to sketch 
"freehand." This application note describes a function network that will allow the user 
to do inking with the data tablet. 

IMPI~FMF.NTAT[ON 

The network is as follows: 

Data structure A should be DISPlayed and be created with a command such as: 

A := VEC n=1000 0,0; 

(The n=1000, or some other number, allocates a block of memory for the vector list). 

TASLETIN-----, 
~~~~ 

~~ i~ ~ z)I- /N~ Togg / e /NK.~'o l n f s

~: F : FOR ~--~ ~ ~ F : CBROUTE
F_~ ~ ~ --,

 I

i
(d)~--

/NIC~'a s

~--~APPEND)A

/N~Po~1 !na /NFL /na

~' : POS I T I ONE. I:~E ~--~
c~

~'1

~1

F : CONST~~1T
T-='

ci
F : BROL'TEC "

F -

t~lg~ire 7— 1. Itl~lIlg NPtWOrk

IAS0232

-23-

PS 300 APPLICATION NOTE #7

Local hiking of Tablet Coordinates

NOTES

To use this, press and release the data tablet pen to start inking and then press and
release it again to stop inking. Do this as many times as needed.

PS 300 APPLICATION NOTE ##8

Local Rubber-Banding of Tablet Coordinates

Neil Harrington
Marketing Software Support
Evans &Sutherland
Salt Lake City, Utah
June 1982

CATEGORIES: Rubber—banding, grid —banding

DESCRIPTION

This note describes a function network to do rubber—banding using the data tablet.

Rubber—banding is the technique of displaying a line segment that extends from some
fixed point to the data tablet cursor and moves along with the cursor until some
indication is given (such as pressing the data tablet pen switch) to fix the line segment
at the current position. This way you can see the lie of the line before you finish
positioning it.

IMPLEMENTATION

The network is as follows:

Data structure A should be DISPlayed and be created with a command such as:

A := VEC n=1000 0,0;

(The n=1000, or some other number, allocates a block of memory for the vector list).

PS 300 APPLICATION NOTE #8

Local Rubber-Banding of Tablet Coordinates

TAHLBTIN
t

tir

NOTES

(1~ (s~--

tz~ <s~—

(~> <4?

(~) (ay

R~T~/yyo~_.,tpps~rd

ts?—

c
T---

P:BROUTEC

R!~£nd

~F:BRdUTEC
c

F—~

"TaILXY"
c

~(APPEND)A

RR~fppsnd R~L /n~

:FETCH

~--
J

J—(LAST}A
1
1

T=

P:CON3TANT

RQ..Poz1 /ns

P : PQS I T I ON..,L~ INE

Fig~tire 8-l. Rubber-Banding Network

—(LAST}a

TaLt~l~f

VARIABLE

IAS0233

To use this network, press and release the stylus on the data tablet to fix the first
position. Moving the stylus around on the tablet now will create a rubber-band line
from the initial position to the cursor.

Pressing and releasing the stylus again will fix this line segment, and a new rubber-band
line will start from this last point to the next point you press down on and so on. To
break this continuous line and start a new series of rubber-band segments, you must
move the stylus away from the tablet surface. This will cause the current rubber-band
line to disappear; a new one will start as soon as a new starting position is selected.

PS 300 APPLICATION NOTE #9

Local Grid-BaIldillg of Tablet Coordinates

Kerry Evans
Systems Engineering
Evans &Sutherland
Salt Lake City, Utah
April 1982

CATEGORIES: Grid-banding, rubber-banding, function networks, data tablet

DESCRIPTION

This note describes a function network which takes 2D coordinates from the data tablet
and constrains the points to fall on grid points of a user-defined grid -- that is, it
performs rubber-banding to discrete points on a grid. We call this grid-banding (see
also Application Note ~~8.)

IMPLEMENTATION

Use the same network as that for rubber-banding (Application Note ~~8), but instead of
connecting the tablet xy position (TABLETIN < 1 >) to the POSITION_LINE Function
directly, connect the output of the DIVC Function in the network shown below to the
POSITION LINE Function.

Specify the number of grid-points per unit by sending a real to input < 1 > of the NOP
function. For example, sending 10 causes the vectors output from the DIVC function to
lie on grid-points 0.1 unit apart in X and Y.

TABLET 1 N(1)

CB~1Iy/c 6~Par is CB...Y~ouna G~,~'f/oa! 6~!%_ CB..Oi v~
t

—I i ~
~ t ►

t : ROL^YD ;- 1 F : F L0.1: ~--a
~ ~ ~

~
(11~

~~ F:~itlLC

—~ j

~~

~(i> P:PARTS

~ F:CEC
cl

(~

F:DIVC (1)Rubber~oint
(Sfo dpp. Note ~8)

(~~

i ~ C~Yroino Cr Yf1oo~ (—j ~

t~~ ~ F:ROUND ' i
F:FLOAT

C~Si ze
(4H—

n--; F : NOP

IAS0234

Fig'u.r'e 9-l. Grid-BaI1dlIlg' Network

-27-

PS 300 APPLICATION NOTE #9

Local Grid-Baildilig of Tablet Coordinates

NOTES, EXAMPLES

Use just like rubber-banding (Application Note ~~8). This is an easy way of doing
rubber—banding without having to be as accurate with pen positioning, especially if
you're doings things like schematics or block diagrams.

PS 300 APPLICATION NOTE #10

Translation Network

Kerry Evans
Systems Engineering
Evans &Sutherland
Salt Lake City, Utah
April 1982

CATEGORIES: Translation, F:ACCUMULATE

DES(; RIPTION

This application note shows an example of how the ACCUMULATE function may be
used to build translation vectors from the dials. Since ACCUMULATE can accept real
numbers or vectors, it is a simple matter for it to accumulate "position."

IMPLEMENT ATIO N

The following function network allows Dials 1, 2, and 3 to control the X, Y, and Z
components of the Translate vector, respectively.

TroZX

D I :BLS (i }-- F:XVECTOR

Trot Y

DIALS (j)--1 F : YVECT OR

Tro~r_Z

DIALS~k)--~ F :?VECTOR ~--'

Iris tzat postit~:on or reset

T~onsiofs

~(i)
i

 ~~(~~
i

t1~!in,irram change in po8z t~.on per output ~~(s>

Scade factor for ~.np~tt.t 1 (Recd; or V3D) tk(~>

tlpp e r t ~errtii t (Read o r l'3D ~ ~ !(6 >
I

Lower d~rri, t (Read or f'3D) c j(e>

F:aCCUMULATE (i ~ 1) (Trans t o.t z ors dd tai mode)

IAS0235

Figure 10— l . Translat io« Network

PS 300 APPLICATION NOTE #10

Translation Network

NOTES, EXAMPLES

The X, Y, and Z vector functions build 3D vectors from the dial values, which get
scaled by input <4> of ACCUMULATE and accumulated on input <2>. ACCUMULATE
may be reset by sending the initial translation value to input <2>. But no output will be
generated until input is received on < 1 >. This may be the result of turning a dial or
sending a Boolean value to < 1 >.

Scale factor and upper and lower limit may be real numbers (if uniform scaling and
limiting in X, Y and Z is desired) or they may be vectors, in which case the components
are applied individually in each dimension. Input <3> specifies the amount by which the
accumulated sum must change before an output is generated. This amount is a real
number greater than or equal to 0.

PS 300 APPLICATION NOTE #11

ATliln anon Sequencing with CLOCK Fuliction

Gary Cannon, Neil Harrington
Marketing Support
Evans &Sutherland
Salt Lake City, Utah
May 1982

CATEGORIES: Animation, F:CLCSECONDS

DESCRIPTION

This shows a method for using a series of clock functions (F:CLCSECONDS,
F:CLFRAMES, and/or F:CLTICKS) to run through a sequence of actions.

[MI'LI:MIi:N"1'ATIOIV

A clock can control some motion for a given time span, then stop and trigger the start
of the next clock in sequence, which controls some other motion.

T!rnrr_,S~q~er, ci t _~

i
~~~~~' ~ ~ 

~~~ ~~~— j 
Fo I ss-='(s>

c! F:CLCSECONDS <~~----+
~k)~ 4~' (~

~L } 1 c'~s~ ~ ~ I
(8oataon ~ cl

Trigger) ~ i
~s}

~ f

i

Control »etuork
for t st aegtea~nc•

TS f.~Vo f

NO'T ;

T /mv ~_,S~q~snci?

~, •)~«>

Fa I se ~~<s>

~k ~)~~4>

T ~~(s)

Contra t ne Mork
~f or 2nd sequ¢-nce

! ~
(~~--

I
F : CLCSECONDS <~34----t

<~~ r'i i

i,e' - Time tntertiat

j,~ ' - Seque-rLce duration (~ of terse eritervaZa)

k,k' - Adddng vague

G, t ' - Initeat acctmi.!ator value

TS2No f

F :NOT ~--

tAS0236

~~1g11re 11-1. At11IIlc`~,t10I1 SE'gtlellClI1~° OI1—Tile—FIy

PS 300 APPLICATION NOTE #11

Animation Sequencing with CLOCK Function

NOTES, EXAMPLES

The actions best suited for this type of animation sequence are those that can use the
summing outputs < 1 > or <2> to modify the currently displayed data structure. An
example of this would be using output <2> to feed a rotation network that then modifies
a rotation node in the displayed data structure.

When output <3> of the clock generates a FALSE, a network could also be triggered to
change the level of detail and change the data structure being viewed.

To cycle repetitively through the sequence, input <2> of each of the timers needs to be
reset to the initial value. This could be done by having the NOT function of the last
sequence trigger the following network (note that this network will also trigger the
sequence to start over again "n" times).

S~ • a.not,JP~s~ t

(~) (! (t ~-

' (~) (t

l:SYNC(K+i)

(•

~

—'

~TpS~a.~1b /~---~ ~ ~ (e>

(ail)

(a

` _NO~J
(awl)

(I)T Irtrr~~qu~ncot

(2)T Inwr.~~qu~nco2

(2)T Imor..Soquonoon

t °

s. /.c ~ 1 Addis

f : BitOlTTBC 1:ADDC

-'7
n - JVI~nD.r o j t inrr•
to - J1wnD.r of ttnva to r~cyo~•
t.l', .. , t" - Durattor► of •aoh tbnrr

Di.~ri .-_-

~:LEC ---(A; T Irrrr~oqu~neo t

IAS0237

Fig~lr~e 11-2. AIl1Il"1at10Il R,epldy ailC~ R,E'sE't. NE~twor~k

—32—

PS 300 APPLICATION NOTE #12

Frame-by-Frame Animation

Neil Harrington
Marketing Support
Evans &Sutherland
Salt Lake City, Utah
August, 1982

CATEGORIES: Animation, F:CLCSECONDS, F:MODC, Level of Detail

DESCRIPTION

This shows a method for using a clock function (F:CLCSECONDS, F:CLFRAMES, or
F:CLTICKS) to cycle through a series of previously calculated frames. Typically, each

frame would consist of different transformations applied to the same objects. The
modulo function allows for the animation to recycle indefinitely.

IMPLEMENTATION

C~~

True

Fra~aer— T i~ ~

n

C
(6)

F : c~.cs$coxns

t — Tirne ~.r~tervttl per ,Tr®ne
n— 11Frxrtb e r o f f ~r ao~rze 8

c

F~~~1odu !a

F :3~IODC r

v

~~

Antmatton

~~SET LEVEL
ÒF DETAI

L

i

Framel / ~rcme

Figure 12-1. FralYle-by-Fralne Aililnatioil

r ame

IAS0238

PS 300 APPLICATION NOTE #12

Frame-~y-Frame Animation

NOTES

1. Input < 1 > of Frame_Timer could be dynamically altered to change the speed of the
animation sequence.

2. Input <4> of Frame_Timer could be dynamically altered to skip frames in the
animation sequence.

3. The clock could be stopped and a value sent to input < 1 > of Frame_Modulo to look
at a particular frame in the sequence.

PS 300 APPi.IC ATION NOTE #13

Menu Selection

Gary Cannon
Marketing Support
Evans &Sutherland
Salt Lake City, Utah
August, 1982

CATEGORIES: Menu s

DESCRIPTION

This function network allows you to do menu picking from a defined menu in a specific
area of the screen. It uses simple math to produce a "box number" from the tablet x
and y coordinates.

The menu boundaries are shown below as they would appear in a full screen viewport on
the screen:

1 2 3 ! 4
i 5 6 7 ! 8

Figure 13-1. Menu

IAS0240

-35-

PS 300 APPLICATION NOTE #13

Menu Selection

Each of the numbers shown is a value produced by the network when the screen cursor
is in the menu box with that number and the stylus is pressed down on the tablet. Of
course, these numbers should be replaced by descriptive names for the real menu.

IMPLEMENTATION

The menu selection network is shown below:

TABLRTIN To.'L~t"Y
- -----

' ~f ~- V~Itt1l♦LZ L

„ f~>-

e) ls> - ,V~Slor l

r : frtsfnrrac
t1 ~~>- C

f~1-

NOTES

Kfe /e'A

r:rzTce
' Ts~XY' ~

tIS1`ar !~_ ~_ _

ar

it 1:PART!
(~►---

far---

f•r-

,wiXLoo:f _

~~ r : BROUTEC

~..redd~

r : Af1DC
i-- ,̀

.~,~„~;
-- - -- --- ,f/S~/'nerrrr J

r:wLc —rrr:catc~Nc 1 __---- ---
--

fI.LYiAeet J✓.~Yeose_ AI.LYsAie.tt AIS.Tep_^
-- ---- ~" IL_LNe! - -

--.~ ~ T:LTC
.

F:RROUTr.0
_

"'S ` I:LTC --~--{reNOT~ t0? i r:H1tOUiEC

- ------
r -- --- --

A/S_.Bellsr~

r : xnfxrrRc
(4) ~

Fig~tir~E~ 1.3-2. Menu Selection Network

r:aDD -Asa nvnb.r (f-s)

IASO?.39

With modifications to this network, menus of other sizes and shapes can easily be
created.

PS 300 APPLICATION NOTE #14

Rotary Switch

Carl Ellison
Software Engineering
Evans &Sutherland
Salt Lake City, Utah
August 1982

CATEGORIES: Switching, Multiplexing, F:SYNC(n), F:SIIVITCH

DESCRIPTION

The simplest form of multiplexing breaks a stream of items into a collection of streams
by sending the first item to destination 1, the second to destination 2..., the nth to
destination n, the (n+l) back to destination 1, and so on. As long as n<=20 the function
network shown below can do that job.

IMPLEMENTATION

R,~~/u l 1 i,o / e ,r e r

~i .

P r ~n~t~ w~ f h t i s E o ,f'
YLC; % ` C h O'!J, t p'LL ~ 1 ~'LQ'rZ,b E r S - -

~.~,~Po 1 o r

-. <i)

1) u t a t o b e r o w e d---~ - ~~>

(~.

(n ~-

1 /►5024 1

F ig~tire 14- l . Rotary Switch Network

PS 300 APPLICATION NOTE #15

Shift Register

Carl Ellison
Software Engineering
Evans &Sutherland
Sait Lake City, Utah
August, 1982

CATEGORIES: Shift register, F:SYNC(n)

DESCRIPT[ON

F:SYNC(n} can be used to act as a shift register. It can be used, for example, to
achieve scrolling by feeding character strings to CHARACTER display nodes.

IMI'I~H:MF.NTATION

Shi 11~4egist~!

f' r i7n,e ~ c,, : ~ h

', n, 2 f ' 2 Z L' ~. ~ LC F' ,Q

(2`

F:SY~C(`~)

~'ig~ire 15-1. Shift Register Network

NOTES

I ASQ2~2

These F:SYNC functions could be cascaded to shift or scroll more than 20 lines if

needed.

PS 300 APPLICATION NOTE #16

Function Network Sequencing

Carl Ellison
Software Engineering
Evans &Sutherland
Salt Lake City, Utah
August, 1982

CATEGORIES: Function network sequencing, F:SYNC(n}, function loops,
synchronization

DESCRIPTION

This application note describes how to control when a function network, or series of

networks, runs. The sequencing schemes described here are based on the use of a "GO"
token which is passed around among F:SYNC(n) functions, controlling the activation of

sub-networks.

This type of network implementation can be safer, also, since it will not allow new
tokens into a network until it has completely processed the current tokens.

IMPLEMENTATION

The network shown below has its inputs and outputs controlled by F:SYNC(n) functions.
This allows the network to "execute" completely before accepting new inputs:

r/npu fs

--~<1>

_'1~~)

F:sYrrc(t+i ~
-(i>

fog tie fJ (Na two~k~

(1> ~
~(

(2~~--- ~

. .

~'~ , I

Arbitrcry function network '

~posslbly TnciudTng loops}

with I inputs and J vufiputs ~

Out-u1s fa.- Nett

~ 1 ~----

(2)~---
. ~ .

F : SY:~TC (J+Z }

~» t i }~—
E1+1~ ~~+i>t--,

i

<1?

(2)

IAS0243

Figure 16-1. Function Network Sequellcillg°

The network shown below shows an arbitrary number of sub-networks linked together.

This forces the sequential processing of these networks.

PS 300 APPLICATION NOTF. #16

Fuliction Network Sequencing

(/npyfs fe.- N~f 11 (Mifnvit 11 (Arfpofi sow wf f)
~~)

—~(D

--t,~

t~~'--1
I

l~Y--
I

l:t7liC(141) I

F--It) (~7~- >

Arbilrerr Ivnetisn ne♦rerk i
(posslbtr ►weludinq Jeeps) i
vT fh 1 tnp~ts and J ouipuft i

!p

p=lY1~(7+1)

1

; ~ ;

(SHi W-! aa)

rO~lpyh !er Ai►f n)
U~-- ~ F--Sff (~>j--.

♦rbltrarr fuwo+lon nwt~re►k ~ ~+ ai~--
t
t

+

(poseltlr inoludlrp ioeps)
r11h K inpul~ and l wa4pof•!

i
1:~Y1tC(L*1)

i--•~t» ee>~
f mss` ~.~_ ~

IAS02L4

Fig~tire 16-2. Segt~erlt.ial Fxectitirig Networks

PS 300 APPLICATION NOTES #17

IF—THEN—ELSE: Construct

Carl Ellison
Software Engineering
Evans &Sutherland
Salt Lake City, Utah
August, 1982

CATEGORIES: IF —THEN —ELSE, Boolean switch, F:SELECT

DESCRIPTION

This application note shows how to implement an IF —THEN —ELSE construct using
PS 300 functions. It assumes "i" values are input to test some Boolean relation. The
.values are then routed to one of two networks depending on the Boolean value that is
output from the expression. This implementation is similar to the general programming
statement:

IF <expression> THEN stateri~ent 1
ELSE statement2;

PS 300 APPLICATION NOTES #17

IF-THEN-ELSE Co~lstrtict

IMPI.E:MF.NTATION

Input

Yarfables

NOTI~~

 i(a)

.I

.I

:Ye t ~r»r!r t o
e va 1 tea to

e~pressicn

I
~i ~' (900 l ean)

I

F:BROUTEC
c

~ I
j
i
j / f_S'wi t ch?

~--i ~

cf
F : BROUTSC

~i -~

j F : BKOL'TEC I
cl

< i)F--

Netirrvrk to ~zj:_
ev8loate . i

stateerntf : i

t; }—

 I(E) Ne t rror~ir Po ~z}~
. ~ eval4ate . ' .
.I stat~ent2 ' ~

I

E'ig~ire I7- 1. IF-THEN-E I.SE Network

THEN
OUTPUTS

EL SE
OUTPUTS

IAS0245

This application shows how F:SELECT can be used as a Boolean switch function,

-44-

PS 300 APPLICATION NOTES #18

A Real—Tune Analog a.l~d Digital Clock

Patrick Fitzhorn, David Ferguson
Center for Computer—Assisted Engineering
Colorado State University
Ft. Collins, Colorado
October, 1982

CATEGORIES: F:CLTICKS

DESCRIPTION

Frequently it is useful to display areal —time clock on the PS 300 screen. The network
described here has, as an end result, both an analog clock component (rotations in
degrees for the hour, minute, and second hands) and a digital component.

IMPLEMENTATION

The network is based on F:CLTICKS with constant input of 120 on input < 1 >. This
generates an integer at output < 2 > once per second, which is incremented by one each
tick. The clock is based on a i 2 —hour cycle, so F:MODC resets the clock after 43,200
seconds.

An initialization network is provided that changes standard hour, minute, and seconds
input into seconds. This value is then sent to input < 5 > of F:CLTICKS, which serves as
a new starting value for the clock. The network diagram is on the following page.

PS 300 APPLICATION NOTES #18

A Real-Time Analog and Digital Clock.

(H}~

Hoar: CIJYAL,~dd

(S~

Sicoirda

F : lmL F:ADD !':ADD ~^!
(3600) ~

`
II~iIlnatos

(y]~
F:YLTLC

(~)"~

Clock Inittalizatloa N~tworlc

CT TiAor

(120)~i)

(0).~sf

fo I sr~sl

(1)-~~)

o _ ~<e►
Truce ~<~1

(t>-

F:CL~ICYS ~*>

t~ir-
(43200)

c

C7~f/ode

F:l10DC~

Clook Tfiner Network

(-6)
c

A~Socondt~Po>oto

L' :1QTLC l- -~ P : ZRO?ATE --(t)kNAl04 CIOCK. SECONflS

./~A//nu Jis,11 / ve

(--10)=
F:DIVC

AG~i~oar.s_D! vc

(-120

AC.,.!/l9ri io~Ro JatM

F : ZRt77'ATS ~-(t).CNALOG.~LOCK. W i NUT£S

,ICJfovis,.~Po Jo J•

F:D1VC ---{ F:ZR~Yf'ATE F--(1)I~yAL4G1LOCK.HOURS
 J

AnaloS Cloolc Network

OG1IouiZ~/rc OC.flour.LPi/At
(~~

~ F:DIVC --~ ~i F:PR(N'C
(3 600)- -~_

c

DG.11oar;,6'airoo Jo

F:CONC~Y'lNATEC

D~,Ml2r9! vc DC~I~ 12,,i/odc OC.~6/ln~rin t

F:DIVC ~ ~i F':YODC --~ c I:PEtNT
(80)-~

DG~'i~.r1/o

F:YUDC

(60

c DC_Se. ondzPr/n J

~~ F:PR[NT

- 1

Digital Clocl~ Netxorl

.:,~

~Cooes/

O~JI/n~toa~Conaate j

F : C4NC~T'EATATEC

F : CONCL?ENA1'1<

rX,.J,~~,Cooto J

f
--J i F : CONCL?ENATE I-(1)!'LAHBLI2

Fig~i.re 18-1. Clock Network

IAS0246

PS 3O0 APPLICATION NOTES #18

A Real-Ti1ne Analog and Digital Clock

An example of the data structure for the analog clock face is:

ANALOG_CLOCK := BEGIN Structure
VIEWport HORizontal=-.1:.5454 VERtical=-1:1;

SECONDS := ROTate 0 := THEN SECONDHAND;
MINUTES := ROTate 0 THEN MINUTE_HAND;
HOURS := ROTate 0 THEN HOUR_HAND;

END_Structure;

SECONDHAND := SCALE .025,1 THEN BASIC_HAND;

MINUTE_HAND := SCALE .05,.8 THEN BASIC_HAND;

HOUR_HAND := SCALE .075,.5 THEN BASIC_HAND;

BASIC HAND := VECtor list N=5 0,0 1,.25 0,1 -1,.25 0,0;

PS 300 APPLICATION NOTES ##18

A_ Real-Time Analog and Digital Clock

Evans &Sutherland

IAS0247

F ig~ure 18-2. A~lalog° Clock

(~
PS 300 APPLICATION NOTES #18

A Real-Time Analog and Digital Clock

NOTES

The digital clock's display is of the form: (hours):(minutes):(seconds) with a maximum
of eight digits.

The output can be connected to a character node in a display data structure or to a
function-key LED label, if so desired. In the current digital component, leading zeros
for minutes and seconds do not appear, so that 9:05:05 is displayed as 9:5:5. This has
not proved to be much of a hardship. If a standard 8-digit output is required, one could
test the minute and second outputs and, if less than 10, concatenate a leading zero.

The clock starts out at time 00:00:00. To set the clock, the following commands are
used:

where

store f ix(h)
store f ix(m)
store f ix(s)

to < 1 > hours
to < 1 > minutes
to < 1 >seconds

h = integer between 1 and 12
m, s = integer between 1 and 60

—49—

INDEX

Animation 31-34

Boolean switch 42, 43

Circles 19, 20
Curve generation 19
Cursor Redefinition 7

Data structuring 7, 9
Data tablet 9, 10, 23-27
Data-Space rotations 15
Dynamic cursor 9, 10

Ellipses 19

F:A000MULATE 29
F:CLCSECONDS 31, 33
F:CLTICKS 31, 33, 44
F:MODC 33, 44
F:SELECT 42, 43
F:SWITCH 37
F:SYNC(n) 37, 39, 40~
F:XOR 23
Function loops 40
Function network sequencing 40, 41
Function networks 27

Grid-Banding 25, 27, 28

IF-THEN-ELSE 42, 43
Inking 23, 24

Leve 1 of Detai 1 33

Menus 35, 36
Multiplexing 37

Object-Space rotations 11, 15-17

Proportional Scaling 21, 22

Rational Polynomial 19, 20
Real-Time clock 44
Rubber-Banding 25-28

Scaling 21, 22, 30
Screen cursor 7, 9
Synchronization 40
Shift register 39
Switching 3~

Translation 29, 30

World-Space rotations 11-13, 15

51

l.!

NETED[T

FUNCTION NETWORK EDITOR

USER'S GUIDE

Release U 1.06

LIMITED SUPPORT DISCLAIMS R

This software package is distributed by Evans &
Sutherland as a convenience to customers and as an aid to
understanding the capabilities of the PS 300 graphics
systems. Evans & Sutherland Customer Engineering
supports the package to the extent of answering questions
concerning installation and operation of the programs, as
well as receiving reports on any bugs encountered while
the programs are running. However, Evans &Sutherland
makes no commitment to correct any errors which may be
found.

PREFACE

This document is the user's guide which accompanies the Function Network Editor
program, NETEDIT. The Function Network Editor is run on the PS 300 to create
function networks as diagrams. When the diagram is complete, an ASCII code file can
be generated directly from the diagrams.

This manual explains how to run NETEDIT and how to install it under VAX/VMS 3.3. It
is divided into the following sections.

Section 1 is an overview of the Editor. It explains how network diagrat~~s are structured
and gives a general orientation to using the Function Network Editor.

Section 2 explains hotiv to run the Editor from a command file menu and how to restart.

Section 3 describes the basic features of user interaction and display organization and
other characteristics of the Editor.

Section 4 describes the placement, movement, and deletion of the objects and
connections which make up a diagram.

Section 5 describes f i1e control, moving between different files during an editing
session, and recovering from crashes.

Section 6 describes the conversion of a diagram file into an ASCII PS 300 file.

Appendix A describes how to install the system under VAX VMS 3.3., how to customize
the command ~~enu files, and how to set up a parameter file.

Appendix B describes a sample editing session to create a small network. Illustrations
are included to show the network diagram at various stages of editing, and the final
ASCII code file is listed.

FUNCTION NETWORK EDITOR

CONTENTS

1. INTRODUCTION TO THE FUNCTION NETWORK EDITOR

USING THE EDITOR

1

1

EDITING A FILE 1
Network Diagram Primitives 2
Constructing the Diagram 2
Generating the PS 300 Command File 3

2. GETTING STARTED 5

RESTARTING
PARAMETER FILE

6
6

3. GENERAL CHARACTERISTICS 9

DISPLAY ORGANIZATION 9

CURSOR SHAPES 12

MENU SELECTIONS 12

PERMANENT MENU ITEMS 14
HELP 14
EXIT 14
HISTORY 14
FUNCTION KEYS 14
CONTROL DIALS 16

TEXT 1 ~

FUNCTION NETWORK EDITOR

MACROS 17
Instancing Macros 17
Compiling and Prefixing 17
Prefixing Constants, Variables, and External References 18
Date Checking 18

USER-WRITTEN FUNCTIONS 18

4. EDITING 1 ~

ADD ITEM 19
Detail Frame 19
Functions 20
Connector 21
Input Frame 22
Output Frar~~e 22
Constants 22
Variable 22
In--External 22
Ou t -External 2 3
Arc 2 3
Labels 24

MOVE 25

MOVE AREA 25

DELETE 26

DELETE AREA 26

OPTIONS 26
Change Scale 26
Redraw Frame 27
Replace Function 27
Update Macros 27
Print Page 2 7
Print Page Set 28

FUNCTION NETWORK EDITOR

ILLUSTRATIONS

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1.
2.
B—l.
B-2.
B-3.
B-4.
B-5.
B-6.
B-7.
B-8.
B-9.
B-10.
B-11.
8-12.
B-13.
B-14.

Function Network Editor Display
The HELP and HISTORY Display
Selecting the Network File
Placing Functions With the Cross—Hairs Cursor
Creating Strings to Label the Dials
Connecting Constants to Inputs With Arcs
Creating Detail Frames
Editing Labels
Adding Input and Output Frame Connectors to a Detail Frame
Placing Functions in the Detail Frame
The Complete Detail Frame for Rotations
The Next Highest Frame in the Hierarchy
The Complete Detail Frame for Zooming
The Complete Detail Frar~~e for Panning
Using MO1/E to Reposition Items in the Diagram
The Top—Level Frame of the Complete Diagram

10
1 1
41
42
43
44
45
46
47
48
49
50
51
52
53
54

FUNCTION NETWORK EDITOR

5. FILE CONTROL 29

SELECT NETWORK 29
BACKUP NETWORK 29
SCRATCH NETWORK 30
RECOVER 30
RENAME NETWORK 30

6. CON1/ERT NETWORK 31.

ASCII OUTPUT 31
USE FRAME PREFIX 32
USE MACRO PREFIX 32
COMPILE MACRO 32
SUPPRESS COMMENTS 33

APPENDIX A. INSTALLATION INSTRUCTIONS 35

APPENDIX B. SAMPLE EDITING SESSION 41

FUNCTION NETWORK EDITOR — 1

1. INTRODUCTION TO THE FUNCTION NETWORK EDITOR

The NETEDIT Function Network Editor is a program to aid in the creation of PS 30Q
function networks. Networks are created as diagrams using a drawing program with
menu selections. Symbols representing functions are placed in the diagram and their
inputs and outputs are connected much as in a wiring diagram. Constants and variables
can be specified. Items can be named and annotations can be added freely. When the
diagram is complete, the Editor allows you to generate an ASCII file of the
corresponding PS 300 commands and comments. Hardcopies of diagrams can be
obtained if the PS 300 system has the Hardcopy Option.

USING THE EDITOR

The Network Editor currently runs under i/AX 1/MS 3.3 and higher, uses Pascal
U2.2 and higher source code, and uses version P5.V03 and higher of the PS 300
firmware. Files are distributed on magnetic tape and are installed as explained
in Appendix A.

Command files display menus which let you start the Editor and restart if a
crash occurs. A log file is kept each time the Editor is started and this is used in
recovery. A parameter file can be created to specify user—definable options,
such as directory names and file extensions.

EDITING A FILE

NETEDIT stores the diagram as a hierarchical data structure in a sequential
file. It allows single files to represent extended function networks with external
contact points to other function networks or nodes in a display structure. It also
allows you to use macros (references to libraries of other networks) and
user—written functions.

2 -FUNCTION NETWORK EDITOR

You edit a file by making menu selections with the data tablet or in some cases
with the Function Keys. Selections let you place items in the display area to
create the network drawing, or change the drawing as needed. Other selections
display HELP information, access other files, and generate ASCII code from the
network diagram.

Network Diagram Primitives

Intrinsic functions, initial function instances, user-written functions, and macros
are represented as boxes with nur~~bered inputs and outputs. Functions are
selected and placed in the display area and named using the Labels selection.
This results in name : = F: FunCt ion_name; statements in the ASCII file that is
generated.

Connections corresponding to CONNECT name< i > : < j > name; commands are made
by routing arcs from one connection point to another. Connecting arcs are
shown as lines much like wires in a wiring diagram. A connector is and arc
endpoint. It may be an input queue to a function and so part of the function box,
or one of several free-floating types of endpoints.

Constant connectors can be placed in the diagram and connected to function
inputs. The value associated with the constant is entered also. This results in
SEND value To < i > :name; statements in the final ACS~II file.

Variables are created as connectors also. These correspond to instances of the
V~lRI.ABLE namel; command.

Constructing the Diagram

Since the display area is limited and networks are often quite extensive, most
diagrar~ns will be broken up into pages. The Editor allows you to construct a
diagram hierarchically by creating a "frame" for each page and by letting you
create "detail frames", which represent lower pages in the hierarchy.

Detail frames are shown as pseudo-3D boxes with inputs and outputs. They
represent different functional blocks of a network. For example, the parts of a
network which handle input from the dials can be shown as a detail frame within
a page that shows a general network of peripherals and display manipulation.
When you move into that detail frame the actual functions which comprise the
detail will be shown. Details can be nested to any level.

FUNCTION NETWORK EDITOR - 3

The hierarchical nature of the network diagram means you can create a network
top —down or bottom-up. Detail frames can be created first and then their
contents can be specified later or parts of the diagram can be moved into or
deleted from detail frames. The diagram can be constructed and restructured
however you want. You navigate between frames using function keys.

Generating the PS 300 Command File

When the diagram is completed, selections from the menus allow you to generate
an ASCII file of PS 300 commands which instance the functions, connect inputs
and outputs, declare variables, and send data as shown in the diagrar~~.

A sar~~ple ASCII file generated by the Editor is included in Appendix B.

FUNCTION NETWORK EDITOR — 5

2. GETTING STARTED

The Network Editor is started and entered through menu selections displayed by a
command file. After the Network Editor and associated files have been installed and
the command files NETUSER.COM and NETBUILD.COM have been customized by the
system manager, enter the following command.

$ ~a [HomeDir]NETUSER

For [HomeDir], substitute the name of the directory in which NETEDIT resides. This
command file brings up the following Initial Menu.

Evans &Sutherland PS 300 Utilities 111.06
Initial Menu

0) Exit
1) Initialize the PS 300
2) Send a f ile to the PS 300
3) Run NetProbe —Function Network Debugger (Menu)
4) Run NetEdit —Function Network Editor (Menu)
5) Character Font Utilities (Menu)

Select option 4 to bring up the following NETEDIT Menu of options specific to running
the Network Editor.

Evans &Sutherland Function Network Editor
Maintenance Command File 111.06

NetEdit: PS 300 Function Network Editor Menu

0) Exit
1) Start NetEdit from scratch, download support net
2) Start NetEdit without full init, but download support net
3) Restart NetEdit without downloading support net
4) Read the current release notes
5) Start NetEdit without full init from floppy disk
6) Init from floppy

6 -FUNCTION NETWORK EDITOR

Selection 1 initializes the PS 300 and loads NETEDIT. This is the selection most often
made when the Editor is run. Selection 2 loads NETEDIT without initializing the
PS 300. Selection 3 restarts the Editor of ter a crash or an aborted session. Selection 4
lets you review the current release notes. Selection 5 allows you to load NETEDIT from
a floppy diskette. Selection 6 initializes the PS 300 from a floppy diskette. This must
be done if NETEDIT was loaded from a floppy diskette.

To start NETEDIT for the first time, use selection 1 or 2. When the Editor display
appears, pick SELECT NETWORK and you will be prompted for the name of the file you
want to edit.

A sample editing session is included in Appendix B. You may wish to glance through
this before reading the following chapters.

RESTARTING

Should the prograr~~ crash while you are editing or should you deliberately abort
the current session using Control-C, the network editor may be restarted
without reloading the support network and display structures by using the menu
selections or typing the following command.

$ ~[HomeDir]NETUSER 4 3

For [HomeDir], substitute the name of the directory in which NETEDIT resides.
The parameters ~ 3 make the menu selections for you. Note that all selections
from the command file menus can be given as parameters to bypass the menu
displays.

PARAMETER FILE

A parameter file permits each user to customize the Editor by describing a
working set of directories and selecting some options.

Create a parameter file called NETPARMS.TXT. In this file, list the directories
(up to 30) that you want to have in your working set. List them in order of
preference, since the directories will be searched in this order.

FUNCTION NETWORK EDITOR - 7

The parameter file can also contain other operating parameters. Currently,
these consist of the following.

~ EXTENSION .FUN

~a SYSTEMPRIVILEGE

~ COLOR ON/OFF

~ FIRMWARE P5.V03

This sets the ASCII output file extension
to .FUN, and may be changed to any
other extension.

The Editor is set by default to use the
user/primitive function data base but
may be changed to use system privileged
functions.

Enables and disables color when
displaying the Editor on the CSM. If you
are using the CSM, turn color on.
Objects will be colored and the cursors
will be white.

Tells NETEDIT that a non-A 1 firmware
diskette is being used.

~la PRIMITIVEPROMPT ON/OFF Enables/disables prompting for function
names imr~~ediately as they arE instanced
and placed.

The parameter file is expected to reside in the directory NETUSERDIR. You
must make this logical assignment either manually or by inserting the following
line into your login or similar file.

~aIASSIGN [UserHomeDir] NETUSERDIR:

[UserHomeDir] should be replaced with the directory in which you keep your
parameter file. This ensures that the Editor can find your parameter file from
wherever it may be run.

FUNCTION NETWORK EDITOR - 9

3. GENERAL CHARACTERISTICS

DISPLAY ORGANIZATIQN

The Editor display is divided into three sections.

The main section is the diagram DISPLAY AREA in which you assemble and edit
the network diagram. This is made up of two parts: a header bar, which
describes the frame, and a work area in which you can pan and zoom.

The header bar includes the name and prefix of the current frame, the file name,
a page number, the total number o f pages, and the date the file was last
modified. The name and prefix in the header can be modified by picking the
item from the bar and entering a new value. The header bar is unaffected by
panning and zooming.

The work area is an oblong of a size which allows hardcopy to fit neatly on 8 1 /2
by 11 inch paper. Panning and zooming using the Control Dials can be performed
in the display area.

On the right edge of the display is the MENU AREA in which the different Editor
menus are displayed. Up to three menus may be present at a time, depending on
where you are in the hierarchy of menu options.

At the bottom of the screen is the MESSAGE AREA, two lines in which messages
are displayed. The top line serves as a PROMPT and text entry line, and the
second line displays warning and STATUS messages. The abbreviations I -
information, W - warning, E -error are used to indicate the relative severity of

the message.

Figure 1 shows the initial Network Editor display.

10 —FUNCTION NETWORK EDITOR

Evans 8~ Suther 1 and PS300 Eunct ~ on Network Ed i,. for V 1 Ob
r

Help

Exit
History

Eile Control

EHiting
Converk Netrork

~f flE CCN1Ro~
Select Netrork

Backup Netrork

Scratch Network

Recover

Rena~e Netrork

~~

._-__ .
l`~ I ~ 1 (~ ~; NE:W Sfw`i:~ 10N~ F'1 E~~~c~ select ti 1r for --ed~ -t--i - ►-~ ~~ - ---- - ~ n~~r~ 5a :~

Figure 1. Function Network Editor Display

The VIEWMENU function key (Function Key 1) is used to alternate between the
diagram/menu display for editing and the diagram only for hardcopy and closer
inspection.

FUNCTION NETWORK EDITOR — 11

The HELP and HISTORY selections also change the display. When these
functions are chosen, the display is as shown in Figure 2.

Evans 8[Sutherland PS30n Function Network Editor V1.Ob
r.~.~ r,....t
Ii1.M..., O~~LNET

Oof• Nodlf~•d: 1]-JUN-1V~4 01:]4~4C. 11 Tot.l i.p..i4

Dr•*l.i ft_

P.r.nfi -• F.0•N.~ 1

'II07/71 ®--
~Ol ~i[ll

L. r•7 ~. r r .•e•rr«

-~~-- r.l•.. • ••r.rr«

-~ / -
s~~ ~~

r.«. s
 r.lr. «.l...r.r•

 _~

l LlL' _1t ~

/.•»f

7.r.•r

/~•..f

7,«.t.

Ex Carnal di splay strut. furls:
t ►ena - rRAh'SL ATE BY 0, 0, 0 APPl. I£O Tu^ xra t;
xrc~f - RU T.4IE Ih' ' X 0. 0 AFFLIEO TO yrot;
yrn t - ROTATE IN Y 0. D APPL IED TO tro f;
Trot • : 'ROTATE IN 1 0. 0 Ar"Fl.IEO TJ stela;
stela - S[',4LE BY 1. O AFF'L IEO TO t~,sor__deta;

H¢lp Page 1

R, 2i1, 30, 4D

R, 2D, ~0, 4U

R

R, ?D, 3~, 40

R, zo, gin, 4n

~. z~, ~~I , ~1n

~ F~ : ~ r_ ~

- - - - - ~ > ~:~. c
I

 > i <3>

- - > i <4~ C

- - - - - - - . i < i, . r,

LM UL~tTE

r; r_

c i > ~ - - - - - ~ R, 2D, 3D, ~D

Figure Z. The HELP and HISTORY Display

Nelp
Exit

History

~~DD 11EM
Detai 1 Frans

~u~nctions

Connector

tlTc

babel

~SECECI!~ANIPUI~IE
~I~ccu~~~iate

Rtsca!e

Boolean Choose

BRcu,e

9R~~uteC

CBRout2

CR~ute

C~ele~!

C~~t t~h

~~~ ~.a 
~~ 

:nir~rt_~^452 

~, 

~ M; • 

~50551i 



12 -FUNCTION NETWORK EDITOR 

CURSOR SHAPES 

You interact with the display through a combination of tablet and keyboard 
actions. The cursor shows not only the current location at which you are 
pointing but also the current state of the program by changing shape for 
different actions. The most basic cursor shapes indicate when only a menu 
selection is permitted (a chevron), when no action is yet permitted (hourglass), 
when keyboard entry is permitted (downward pointing hand), and when an object 
may be placed, moved, or deleted (various shapes). A clock shape with sweeping 
arm appears for extended periods of waiting. This will help you judge the 
progress of the operation. With most cursor shapes, an asterisk (~) indicates 
exactly what point on the shape is the pen tip, which is the point at which object 
or menu "picking" is performed. Where an asterisk is not present, as with the 
arrow cursor shapes, the tip of the arrow corresponds to the point of the pen. 
Cursor shapes are described in the course of the documentation as appropriate. 
An optional cross-hair may be displayed at the cursor positioning by toggling 
Function Key 2. This cross-hair is useful for aligning objects on the display. 

MENU SELECTIONS 

The control and object menus are divided into three menus: the PERMANENT 
MENU (HELP, EXIT, HISTORY); the MAIN MENU (editing selections and further 
options); and the SUBMENU (object categories, file options) which will appear as 
needed. The permanent menu is always present and may always be selected 
from. When a permanent menu option has been invoked that option is 
highlighted. All cursor shapes except the hourglass or clock may be used to 
select from the menu at any time. Any incomplete action is canceled by making 
another selection. This includes keyboard entry and object placement. 

The main and submenus are arranged as a hierarchy which will sometimes display 
two different levels (MAIN and SUBMENU) and at other times just one (MAIN). 
You move from menu to menu by picking selections with the data tablet and pen 
or pressing certain function keys. The first item in all but the top level menu is 
in capital letters and preceded by a chevron (~) to signify that it is both the title 
of the menu and the entry point to move up. Selecting it will reset the menu 
display accordingly. Many submenus are particularly long. When a submenu is 
displayed it may be scrolled up or down by means of the first dial on the control 
dials unit. At the bottoR~ of the subr~~enu is a long string of dashes to indicate 
that you have moved off the bottor~ and that you should scroll upwards to find 
the submenu. 



FUNCTION NETWORK EDITOR — 13 

The menu hierarchy is as follows. 

HELP 
EXIT 
HISTORY 

FILE CONTROL 
SELECT NETWORK 
BACKUP NETWORK 
SCRATCH NETWORK 
RECOVER 
RENAME NETWORK 

EDITING 
ADD ITEM 

Detail Frame 
Functions 
Connector 

Input Frame 
Output Frame 
Constants 
Variable 
In—External 
Out—External 

Arc 
Labels 

MOVE 
MOVE AREA 
DELETE 
DELETE AREA 
OPTIONS 

Change Scale 
Redraw Frame 
Replace Functions 
Update Macros 
Print Page 
Print Page Set 

CONVERT NETWORK 
ASCII OUTPUT 
USE FRAME PREFIX 
USE MACRO PREFIX 
COMPILE MACRO 
SUPPRESS COMMENTS 



14 —FUNCTION NETWORK EDITOR 

PERMANENT MENU ITEMS 

HELP 

The HELP selection provides information on individual functions, all menu 
selections, and a variety of other topics. To get information on menu selections, 
select HELP and then pick the menu item. To get help on a function, pick 
EDITING, then ADD ITEM, then Functions, and pick the name of the function 
you are interested in. The scrolling dial, Dial 3 can be used to scan forwards and 
backwards through long descriptions. 

EXIT 

EXIT saves any existing network that has been edited, closes all open files, 
returns the keyboard to terminal emulator r~~ode, and exits from the program. If 
the file name is incorrect, EXIT will not let you leave the program. When this 
occurs, you must either scratch or rename the network and select EXIT again. 
Note that EXIT must be picked twice before it is selected. 

HISTORY 

This selection allows you to view the last ten pages of status messages. This can 
be useful when a code conversion produces errors and the messages have moved 
past faster than they could be read. The scrolling dial, Dial 3 can be used to 
scan forwards and backwards through the pages. 

FUNCTION KEYS 

Currently, 1 1 of the 12 function keys are programmed to perform specific 
operations. Most keys perform only one function, but keys 8, 9, and 10 have 
double functions. The keys are programmed as follows. 

Key 1 — VIEWMENU 
Changes the display for closer inspection and for hardcopy of diagrams. 
Removes the MENU area and MESSAGE area and displays just the diagram at 
a size that produces 8 1 /2 by 1 1 inch hardcopies. 



FUNCTION NETWORK EDITOR - 15 

Key 2 -CROSS 
Displays across-hair to help you place objects in the diagram. 

Key 3 - GO UP 
Moves you up one level in the diagram hierarchy from the current frame 
(context) to its parent frame. The frame you were just in appears as a detail 
frame in the new display. You are notified if you are in the top frame and so 
are unable to go higher. 

Key 4 -OUTLINE 
Displays a page which shows the structure of the diagram file. AlI frames in 
the file are listed, and indentation shows the hierarchical dependencies. The 
frame currently being edited is highlighted. The outline can be scrolled using 
Dial 2. You may also pick a frame in the outline and proceed directly to that 
frame without going through the intermediate frar~~es. 

Key  5 - GO DOWN 
Moves you into a detail frame in the context frame you are currently 
editing. If more than one detail frame is present, a large down-pointing 
arrow is displayed to allow you to select the detail frame you want to enter. 

Key 6 -FULL VIEW 
Resets the display after zooming and panning has taken place with the 
control dials. 

Key 7 - BY NAME 
Allows you to select an intrinsic function, initial function instance, macro, or 
user-written function by name. Press this key and then enter the name at 
the PROMPT line at the bottom of the screen. For primitive functions, you 
may place multiple copies before selecting another primitive, For macros 
and user-written functions, you are prompted after each placement. 

Key 8 -MOVE (double function) 
Allows you to select MOVE or MOVE AREA without picking from the menu. 
One press selects MOVE, two presses select MOVE AREA. 

Key 9 -DELETE (double function) 
Allows you to select DELETE or DELETE AREA without picking from the 
menu. One press selects DELETE, two presses select DELETE AREA. 



16 -FUNCTION NETWORK EDITOR 

Key 10 -ARC/TEXT (double function) 
Allows you to place an arc or edit labels without picking from the menu. One 
press selects ARC, two presses select LABELS. 

Key 11 
This key is currently unused. 

Key 12 -CANCEL 
Allows you to cancel a hardcopy from the plotter. 

CONTROL DIALS 

The Editor uses 6 of the 8 Control Dials to help in building and viewing network 
diagrams. The dials are programmed as follows. 

Dial 1 - SUBMENU 
Scrolls a submenu up and down. 

Dial 2 -OUTLINE 
Scolls the diagram outline page forwards and backwards. 

Dial 3 - FLIPPAGE 
Scans forwards and backwards through HELP or HISTORY pages. 

Dial 4 
This dial is currently unused. 

Dial 5 -- ZOOM 
Zooms in and out of the diagram. 

Dial 6 - HORIZNTL 
Pans left and right in the diagram after zooming. When panning, you cannot 
move out of the diagram work area. 

Dial 7 -VERTICAL 
Pans up and down in the diagram after zooming. Again, you cannot r~~ove out 
of the diagram work area. 

Dial 8 
This dial is currently unused. 



FUNCTION NETWORK EDITOR — 17 

TEXT 

There are two types of text used in a network diagram: permanent text and 
notations. Any textual information which is in italics on the diagram may be 
altered interactively by using the ADD ITEM/Labels selection. Any text shown 
in the standard font is permanent. When you are prompted for text entry (the 
downward pointing hand), either type in the string you want followed by a 
carriage return, or select another menu item to change your mind. Any text 
entered but not followed by a return will have: no effect on the display or current 
status. 

MACROS 

Macros are a means of incorporating into a network file code which is described 
in another file. They may be referenced repeatedly in the same file and may be 
nested to any level. When a macro is instanced, it appears in the diagram 
exactly as a function would, except that the name is preceded by M: instead of 
F:. Any existing network file that has been created by the Editor can be 
referenced as a macro. The macro description is derived from the top level 
frame of the network file, using the list of directories set up in your parameter 
file. 

Instancing 

Macros 

To instance a macro, use the BY NAME function key just as you do for selecting 
a primitive function but enter the file name of the source network file instead of 
a function name. If the name does not conflict with an existing primitive 
function, the editor will try to find the file. 

Compiling and Prefixing 

Macros must be compiled using the Compile Macro option of the menu selection 
CONVERT NETWORK. Macros may be prefixed with the Use Macro Prefix 
option to distinguish multiple uses of the same macro. Compiling a macro 
produces a .MAC file, which may be incorporated into the code for another file 
with proper instancing and connections made. 



18 —FUNCTION NETWORK EDITOR 

Prefixing 

Constants, 

Variables 

and 

External 

References 

Since final names of variables and so on may not be known until the final level 
code conversion, you can flag constants, variable names, and external references 
to indicate where prefixes should be placed as needed. By adding \M\ at the 
beginning of the name within the string, the macro prefix will be added 

as 

needed in place of it, but no frame prefix will be included. By adding \F\, both 
macro and frame prefixes will be added. 

Date 

Checking 

Each macro instance is flagged with the date that the source file was last 
modified. This allows the Update Macro option to check against the original 
source file for changes. Macro code which is compiled is flagged with the last 
date the source file was edited and the date that the code was compiled. A 
warning is given during code compilation if the .MAC file was generated from a 
different version of the source file than it was instanced from. The Updating 
Macros selection brings the instance into agreement with the source file, and 
recompiling brings the macro code into agreement with the source file. 

USER -WRITTEN FUNCTfONS 

User—written functions are referenced as if they were macros. The name of a 
user—written function is indicated on the diagram as i1: name, even though it is 
instanced in the code as F: name. If a network file contains no arcs, primitives, 
or detail frames, then it is automatically assumed to represent auser—written 
function. This allows you to create a description of the user—written function 
with named inputs, outputs, and internal comments which can later be used as a 
help item on that function. No macro code need be compiled for user—written 
functions, since they generate instances exactly as primitive functions do. 



FUNCTION NETWORK EDITOR - 19 

4. EDITING 

ADD ITEM 

The ADD ITEM selection allows objects to be placed into the diagram space to 
construct a diagram. Generally the object appears at the cursor shape and is 
placed by pushing down the pen when it is in the desired location. The asterisk 
shows where the pen tip actually is. To "discard" the object that you are moving, 
merely select another menu item. Note that while objects are seen completely 
before they are placed, they will be clipped against the boundary of the display 
space once placed. 

The ADD ITEM selection offers the following options: Detail Frame, Functions, 
Connector, Arc, and Labels. 

Detail Frame 

A frame is a portion of the hierarchical representation of the diagram, 
equivalent to a "page" of the cor~~plete network diagram. There are two types of 
frames: the one you are in (context frame) or a subsidiary frame within the 
context frame which refers to a lower level of the diagram hierarchy (detail 
frame. A context frame is a diagram page and the program may handle up to 
100 frames within a file, though this may be an impractical size for memory and 
load/save speeds. 

Context frames are bounded by a box outline corresponding to a higher level 
detail frame box. You can place Input Frar~~e or Output Frame connectors on 
this outline in the context frame to create connection points between the 
context frame you are working in and the higher level detail frame which 
references it. Each context frame has a PREFIX (upper left—hand corner) which 
can be changed one level higher on the detail frame representation. The prefix 
is (optionally) used before the function names to maintain unique nar~ing 
between frames. The prefix can be edited in the current frame by picking the 
prefix in the header bar while in Labels r~~ode. Each context frame also has a 
NAME tivhich is used to provide a r~~ore descriptive identifier ~J~~hile editing. 



20 —FUNCTION NETWORK EDITOR 

Frames are created in two ways. When a new file is created, the top level frame 
is created at the same time. From there on, the ADD ITEM/Detail Frame 
selection will add a symbol for the detail frame and also create the 
accompanying frame. 

Detail frames are displayed as pseudo-3D boxes to indicate that they include 
more detail at a lower level. Initially all detail frames have 0 inputs and outputs 
and are created as a minimum size detail symbol. As connectors are added in 
the corresponding frame below, the detail symbol will be updated to reflect its 
new description. The detail frame includes a single line label which may be 
edited exactly as a function box label. 

Input/Output Frame connectors may be attached to the left and right edges of 
the context frame (outside box), respectively. They may later be moved or 
deleted as needed, at which time the detail and its attached arcs will be 
modified as needed. 

Before a frame can be deleted, you are asked to verify the delete. Then the 
frame is deleted along with all contained detail frames and objects. 

To move between frames, there are three function keys: UP, DOWN, and 
OUTLINE. UP will reset the current context frame to the parent of the one you 
were just working in. Since there is only one parent currently allowed, this is 
unambiguous. DOWN will move into a detail frame in the current context. If 
there is more than one, a large down pointing arrow will appear to allow you to 
select the desired detail frame. By hitting the OUTLINE function key, an outline 
page will appear for selecting any frame in the current file; indentation indicates 
the tree structure of the file. The frame currently being edited will be 
highlighted. The outline is implemented as a page in the diagram and may be 
scrolled using Dial 2. 

Functions 

A function is an intrinsic function or initial function instance supported by the 
PS 300 Command Language. When the menu item Functions is selected, a 
submenu of function classes appears, organized by class. Since the list of classes 
is long, some are off the bottom of the display and may be seen by turning the 
dial marked SUBMENU to scroll up and down. When a class is selected, its list of 
functions will appear in place of the class submenu for selection. When a 
function is chosen, its box representation will appear. 



FUNCTION NETWORK EDITOR — 21 

A function may also be selected by name. This may be a faster method for many 
sessions. Press the BY NAME function key (Key 7) and you will be prompted for 
the name of a function. After the name is entered, the function box will appear 
and may be placed. The same box will appear at the cursor after one has been 
placed, and may be placed as often as needed. 

You must enter the complete name of the function. For "n" type functions such 
as F:SYNC(n), you are prompted for the number of outputs. 

The BY NAME key can also be used for instancing macros and user—written 
functions. Unlike intrinsic functions or initial function instances, only one 
instance of the macro or user—written function .can be placed at a time. After 
one instance is placed, you are prompted for another name. 

A function consists of a box; a set of up to 50 inputs, which appear on the left 
edge; a set of up to 50 outputs; the name of the function 
type (F: function name) on the top half of the box, and a user label, initially 
assigned by the system as Pn, written in italics. For initial function instances, 
there is no user label and the function 
name appears as TA~LETIN, or whatever. This user label may be altered 
interactively at any time (see Labels below). Long names are broken at an 
underscore if one is present in the name. 

The function box should be placed within the context frame. At any point that 
arcs are being drawn, the function's inputs and outputs will be activated for 
picking as appropriate. 

The PRIMITIVEPRQMPT ON/oFF option in the parameter file NETPARMS.TXT 
can be set to enable or disable prompting for function names immediately as 
they are instanced and placed. 

Connector 

There are various types of connectors, but all are basically similar in function to 
the primitive inputs and outputs. They serve as the source or destination of an 
arc, which establishes a data path between two points. Currently there are the 
following types of connectors: Input Frame, Output Frame, Constant, i/ariable, 
In —External, and Out —External. 

The connector shapes are indicated by the direction of the arrow and a contained 
letter (C for Constant, V for 1/ a riable, E for External) and may be freely placed 
anywhere in the diagram. For connectors containing text, you will be prompted 
for an initial value and then a copy of the shape and the value will be fixed at 
that location. 



22 -FUNCTION NETWORK EDITOR 

Input Frame 

Input Frame connectors are attached to the left-hand side of the surrounding box 
outline in the frame and represent input to the frame. When you select a frame 
connector, you are prompted for a name. If you press return, the system will 
assign a number to the connector. This can be changed using the ADD 
ITEM/Labels menu selection or Function Key 10 (TEXT). Names will be 
reflected in the detail frame above as soon as you have finished adding them and 
moved on to another action. Up to 50 of these may be placed. 

Output Frame 

Output Frame connectors are attached to the right-hand side of the surrounding 
box outline and represent an output channel from the frame`s contents. In every 
other way, they are treated the same as Input Frame connectors. 

Constants 

Constant connectors allow a line of text to be SENT to another point in the 
network. You will immediately be prompted for the value that you wish to 
SEND. Enter this string exactly as it would appear in the normal PS 300 
command syntax. Note that syntax checking is not currently performed by the 
Network Editor. You must then route an arc from the constant connector to the 
intended input. 

Variable 

1ariable connectors create variables to hold values apart from primitives. The 
variable will be instanced using the optional prefix in the name if 1M\ or \F\ are 
included in the name. Any connections going to these variables will be added 
when code is generated. 

In-External 

In —External connectors are a means of making connections to external networks 
or display structures freely. They are input points from outside sources of data. 
You should be careful in using them to make sure that when the code is 
do~~vnloaded, these connections already exist if they are data outputs. Also when 
pror~~pted for the connection name, you should enter the complete reference 
including the port number (e.g. INNAME < 1 >). 



FUNCTION NETWORK EDITOR — 23 

0 ut- E xtern dl 

Out —External connectors are output points to external destinations. Make sure 
that when the code is downloaded these connections already exist if they are 

data outputs, though this is not as important as it is with in —external 

connectors. Also when prompted for the connection name, you should enter the 

complete reference including the port number (e.g. <append>Outl/ecList). 

Arc 

An arc is a line indicating a pathway along which data tokens are expected to 

move during execution. They are much like wires between the inputs and outputs 
of integrated circuits. They correspond to the CONNECT or SEND statement in 

the PS 300 Command Language. Arcs must start at a data source (frame or 

external input, a constant, a primitive or detail output) and terminate at a data 

target (frame or external output, a variable, or primitive or detail input). An arc 

may follow a circuitous route, making as many turns as necessary. You start the 

arc as needed and then manually route the arc to the desired endpoint. The 
pathway is automatically grid locked and bent to horizontal or vertical lines. If 

the arc is not completed by making another menu selection before completion, it 

is cancelled. 

When Arc is selected, the cursor changes to an Arc Start Arrow: a single arrow 
which points to the left. Once the arc is started, the cursor changes to an Arc 
End Arrow--an arrow pointing to the right. A corner shape will appear at the 
last bend to indicate in what directions a turn can be made. Arcs can only be 
routed in horizontal and vertical segments. The point of bending is indicated by 
a four—way corner shape. Each time a new corner is added, this corner shape 
moves. Once terminated, the arc will flash once and then become a permanent 
part of the diagram, and all corners will be rounded of f to more easily distinguish 

the arcs from the other squared off shapes and lines around them. 

Arcs are homed into the starting or ending connector. 

When an arc is placed, the editor checks the types of the output and input 
connectors and beeps and issues a warning if they are incompatible. An arc 
placed between incompatible connector types will be highlighted. These arcs 
will remain in the diagram and must be deleted explicitly. Note that connection 

type checking is only performed on connections between prir~~itives. Connector 

symbols such as Constants and 1/ariables which have editable strings are not 

checked currently. 



24 —FUNCTION NETWORK EDITOR 

Duplicate arcs are deleted when a second connection is made between the same 
pair of connectors. There is no need to explicitly delete the old arc. 

Note that Arc can also be selected by pressing Function Key 10 once. 

labels 

Labels are any text strings in the diagram which can be edited. Labels appear in 
italics to distinguish them from text which cannot be edited. The first shape 
that appears is an arrow which points to the upper right. This is used to pick 
either a point in space at which to place afree—floating label (comment} or to 
pick any object which has a label associated with it such as a function box, or a 
previously defined label. If a new point is picked, then a new comment label will 
be placed there. Otherwise the already existing label will be replaced by the 
new value. 

Once a selection is made, the text —entry hand shape appears and is frozen in 
position where you have pointed. A second, dimmer copy of the hand will move 
about, allowing you to cancel the action by making another menu selection. The 
hand indicates that keyboard entry of text is expected. As you type on the 
keyboard, the text will appear in place at either the position of the previous 
label or at the point at which you are pointing. A second copy of what you are 
editing appears at the prompt line. 

To correct mistakes, the DELETE key on the PS 300 keyboard may be used, and 
deleted characters will be erased. Once the string is complete, press the 
RETURN key and the new value will be stored. You will remain in text —entry 
mode so that more strings can be entered until you enter a return only. In this 
way, you can create text as a block. To change from the Labels selection, pick 
another item from the menu. 

Note that Labels can also be selected be pressing Function Key 10 twice. 



FUNCTION NETWORK EDITOR - 25 

MovE 

All of the diagram objects may be moved once they have been included in the 
diagram, except arcs which are only moved by moving what they are attached 
to. Afour-directional arrow will appear to indicate that you may move objects. 
You may pick any of the above objects for moving at any point in their symbol. 
An identical "ghost" copy will then appear to help you accurately place the 
object again. If the ghost-symbol is not placed within the diagram, no movement 
will occur. The four-way arrow will also shrink to indicate that you have 
successfully picked an object up and are in the second half of moving an object. 
Any placement rules that apply to that object, such as placing a connector on the 
frame, still apply during movement. 

To move an object or set of objects to another frame, just pick the detail frame 
that you wish to move into, or pick the outer box outline to move up into the 
parent frame of the current context frame. The frame display will change to the 
selected context and you can repeat this process until you do NOT pick a frame 
or detail. At this point you can place the object or set of objects as if they were 
still in the original frame. Arcs which have had both of their endpoints moved 
are carried along while arcs for which only one endpoint has been affected will 
be stretched if the move is within the same frame, and destroyed if the move has 
jumped into another frame. A detail frame cannot be moved down into itself, 
even though it may originally have been picked up or included in the selected 
area. The frame outline will automatically be restructured to reflect the change 
made due to the move operation. 

MOVE may also be selected by pressing Function Key 8 once. 

MOVE AREA 

By selecting MOUE AREA and indicating any two opposite corners of an area 
box, you can move the items contained within the area. A large lower-left angle 
(first) and a large upper-right angle (second point) set the area. Select the 
lower-left and then the upper-right corners and then move the box to a third 
point. Objects within will be shifted to the new location of the area box. 

Detail frames must be completely contained within the area box if they are to be 
moved. Connectors and primitives need only have their placement point (the 
center of the cursor shape you notice when moving the item) within the area. 
Arcs are moved if their connection points are moved; they will be bent if only 
one endpoint is moved, but moved completely if both endpoints are moved. 
M01/E AREA will not allow you to position items outside of the frame area. 

MOUE AREA can also be selected by pressing Function Key 8 twice. 



26 —FUNCTION NETWORK EDITOR 

DELETE 

Any object in the diagram may be deleted. When DELETE is selected, the cursor 
changes to a large X shape which can be used to pick any of the diagram 
objects. The object _picked will be removed from the display together with any 
attached arcs. 

Delete can also be selected be pressing Function Key 9 once. 

DELETE AREA 

As with MOVE AREA, you can delete all items in an area by placing any two 
opposite corners of the area box. Objects within will be deleted from the 
diagram with the same inclusion rules as in MOVE AREA. Arcs are deleted if 
either of their connection points are deleted. 

DELETE AREA can also be selected by pressing Function Key 9 twice. 

OPTIONS 

The OPTIONS area of the EDITING menu offers selections that are less often 
used. These are: Change Scale, Redraw Frame, Replace Functions, Update 
Macros, Print Page, and Print Page Set. 

Change Scale 

Change Scale is used to change the overall size of the working page from the 
current size (size 2) up to size 20, which gives 10 times the working space. The 
selected size is noted in the frame data record and is automatically reset when 
you enter the frame. This allows you to have different sized frames within the 
same file. Frame connectors are moved automatically to the outer edge of the 
frame box. 



FUNCTION NETWORK EDITOR - 27 

Redraw Frame 

This option will clear and redraw the frame if for any reason the display contains 
errors or was partially lost in transmission to the PS 300. 

Replace Function 

This selection lets you pick an existing function in the diagram and replace it 
with another. You are prompted for the name of the replacement function. The 
replacement can be any valid type of function: Initial Function Instance, 
priR~itive function, macro, or User-Written Function. When functions are 
swapped, existing arcs are checked. They are highlighted if the connector types 

are incompatible with the new function. Arcs leading to inputs no longer 

available in the new function are deleted. 

Update Macros 

This option locates all macros used in the file and compares there to the original 

network file f ror~~ which they were derived. If the file has since been edited, the 

macro is updated. First, the display is set to the page containing the macro to 

allow you to see the related changes. Then, as with changes to detail frames, 

the existing connections are moved or deleted if the corresponding frame 

connectors in the top level of the source file have been changed. U'Jhen updating 

is complete, the display returns to the original page. 

Note that updating is based on the internal ID of the original frame connectors. 

If you delete the connector, connections to it are lost even if you rename a new 

connector to the same name. This allows you to change names without losing the 

original connection, but if you delete the original connection, the editor will also 

delete all connections to it in the corresponding usage as a macro. 

Print Page 

This option causes the current page to be printed out on the attached hardcopy 

plotter. When this option is chosen, the display automatically changes to the 

non-menu display (as shown when the 1/IEWMENU key is pressed) and zooms out 

to full size. After a page is started, you may use the VIEI~JMENU key or the 

ZOOM and HORIZNTAL and 1/ERTICAL dials to alter the display for hardcopy. 



28 —FUNCTION NETWORK EDITOR 

Print Page Set 

This option produces a hardcopy of the current frame and all of its subsidiary 
detail frames. If this option is chosen when the top frame is being displayed, the 
entire file will be printed. Form feeds are disabled between pages but a final 
form feed is added at the end of the run. When the run is complete or cancelled, 
the display returns to the original frame. 

NOTES 

1. To cancel a plot request, press Function Key 12. 

2. If the plotter is off—line, the system will hang. If this 
happens, first turn on the plotter. Then press the 
TERM key and the CONTROL/LINE LOCAL to put 
the PS 300 in command mode and enter the 
command: SE~1D FIX(402) TO < 1 >TOP ENABLE;. 



FUNCTION NETWORK EDITOR — 29 

5. FILE CONTROL 

A network file is a structured ASCII file with an extension of .NET which is created and 
edited by NETEDIT. The FILE CONTROL selection offers the following options: 
SELECT NETWORK, BACKUP NETWORK, SCRATCH NETWORK, REC01/ER, and 
RENAME NETWORK. 

SELECT NETWORK 

This selection lets you enter the name of an existing file which you want to edit 
or lets you create a new file. You may use directory names or logical names 
preceding the filename. Do not give the file an extension: .NET is assumed by 
the Editor. 

NOTE 

File names are truncated to nine characters. Before a 
new file is created, the directory list in your parameter 
file is searched from beginning to end to see if the file 
name already exists. 

BACKUP NETWORK 

During the course of editing, you can back up the file by selecting BACKUP 
NETWORK which will save tree current network file you are working in. Backup 
also happens automatically when EXITing or SELECTing a new network file. 
Backup will not occur if no editing has taken place. Sir~~ply pressing the MOUE 
Function Key is sufficient to "touch" a file and consider it edited. 



30 —FUNCTION NETWORK EDITOR 

SCRATCH NETWORK 

If you wish to abandon the network you are currently working on without saving 
any of it, select SCRATCH NETWORK. Asa precaution against stray menu 
picks, you must select this twice before the network is scratched. 

RECOVER 

A log file with an extension of .LOG is kept for every edit of a file. Log files 
are purged after a normal exit from the editor, but only in the current working 
directory. If a crash occurs during editing, the log file can be used to recover 
editing that was done between saves of the file. 

Use the REC01/ER selection to rerun the editing operations that were performed 
before the crash. DO NOT LOAD THE ORIGINAL NETWORK. The REC01/ER 
selection loads the network automatically. Then, if a log file is found with the 
correct name, it is read in and executed as if the commands were coming from 
the PS 300. The diagram is reconstructed step by step. When the recovery is 
complete, a message is displayed. At this point, select BACKUP NETWORK to 
close the current log file and open another. 

If the crash was caused by the Editor, or if you wish to undo the last few 
commands that you gave, edit the log file and remove the last few lines before 
you select RECOVER. 

RENAME NETWORK 

This selection lets you rename the file you are currently working on. Note that 
the editor does not check to see if the file name you enter already exists. 



FUNCTION NETWORK EDITOR — 31 

~. CONVERT NETWORK 

This option will automatically produce an ASCII file from the diagram structure 
currently in memory. The file will have an extension of .300 or any other extension 
that is set up in your parameter file NETPARMS.TXT. 

PrirY~itives result in name := F:function name; statements. The selection 
optionally adds the prefix in each frame to the primitives within it. Arcs between 
sources and targets produce CONNECT namel <I > : <1 >name?.; connection statements. 
Constants are sent to targets with S~'ND value TO <1>name; comr~~ands. VARIABL E 
connections cause the creation of the needed variables. External input and output 
connections are connected, expecting the external code to already be resident in the 
PS 300. Free-floating labels in the diagram are added as comments within the code. 

NOTE 

This selection will use the file currently in memory, 
which may be more recent than the accompanying 
diagram file unless you have just loaded or backed up the 
file. 

The following options are available: ASCII Output, Use 
Frame Prefix, Use Macro Prefix, Compile Macro, and 
Suppress Comments. Options are selected by being 
picked once and cancelled by being picked again. When 
an option has been selected, it is highlighted. Some 
options are present by default. 

ASCII OUTPUT 

This selection generates the actual ASCII file from the network diagram. 
Choose this selection after selecting the other options as you wish. If an item is 
highlighted, it is selected; if not, it is disabled. The file generated will have the 
same root name as the source file and an extension of .300 or the user-selected 
extension in the parameter file. 



32 —FUNCTION NETWORK EDITOR 

USE FRAME PREFIX 

Each context frame has a prefix (upper right—hand corner) which can be changed 
by going one level higher on the detail frame representation or by picking the 
prefix from the header bar. The prefix is (optionally) used before the function 
names to maintain unique naming between frames. This selection lets you 
specify whether or not frame—prefixes are used with function names. If you do 
not select this option, prefixes will NOT be used. 

USE MACRO PREFIX 

This selection controls the inclusion of a special macro prefix in the ASCII code 
file in several ways. The prefix (Ml$, M2$, M3$, etc.) is used to distinguish 
multiple uses of the same macro. If this option is selected when the original 
macro is corepiled, then the prefix will always be used later. You should use this 
selection if you intend to r~~ake multiple uses of a macro. If the option is of f 
when the «iacro is compiled, then use of the prefix is optional. 

If the option is selected during final code generation, then all macros will include 
the Mn$ prefix. Otherwise, only those macros that were compiled to force 
inclusion of the prefix will use the prefix. 

Prefixes areaway of making multiple copies of a macro with unique names. At 
the same time, by making these optional, the user has the flexibility of 
controlling the function names completely. 

COMPILE MACRO 

A macro must be co«~piled before it can be included in the code of a network 
that instances it. 

Macros are compiled into an intermediate form of ASCII code which is different 
from the code which the PS 300 normally expects. This form of output is 
selected by the Compile (Macro option. When this is selected, the ASCII output is 
written to a macro file with an extension of .MAC which is specially generated 
to allow later inclusion as a macro. Codes are embedded (\n\) which can later be 
interpreted to provide unique prefixes and allow arbitrary nesting of macros. 



FUNCTION NETWORK EDITOR — 33 

These codes make the ASCII code unreadable to the PS 300. In addition, the 
connections from the top frame connectors are listed at the end of the file to 
allow a network that instances the macro to be hooked up to the right inputs and 
outputs within the file. When one macro is compiled, other macro files are 
merged in with the special codes updated to allow unique prefixing later. 

SUPPRESS COMMENTS 

This selection lets you decide whether or not comments and frame headers are 
included in the code. If you choose this selection, no comments will be 
generated. If you do not choose Suppress Comments, comments and headers will 
be generated in the ASCII file. Comments are included in an arbitrary order, but 
they are placed with the code for that frame. 





FUNCTION NETWORK EDITOR - 35 

APPENDIX A. INSTALLATION INSTRUCTIONS 

NETEDIT is distributed on magtape along with NETPROBE, the function network debug 
program, and MAKEFONT, the character font editor program. The files supplied on the 
tape are installed in three stages. First, the files are transferred onto the SAX 
system. Then two r~~enu-driven command files, NETBUILD.CON1 and NETUSER.COM 
are edited to customize the home directory in which the files are to reside. Finally, 
NETBUILD.COM is run to compile and link all of the files. 

TRANSFERRING THE FILES FROM TAPE 

To transfer the files from the distribution tape to the 1/AX, follow the procedure 
outlined below. 

1. Install the distribution tape on the tape drive. 

2. Enter the following sequence of commands to allocate the tape drive, mount 
the tape, and transfer the files: 

$ ALLOCATE (~~1TA'unit-number': 
$ (~10UNT MTA'unit-number': EDITOR 
$ COPY MTA'unit-number': ~.~ [Destination Directory] 

3. Files take about 10 minutes to transfer. When they have all been copied to 
the system, the '$' prompt re -appears. Enter the following commands to 
dismount the tape and deallocate the tape drive. 

$ DISMOUNT (v1TA'unit-nu n~ber': 
$ DEALLOCATE MTA'unit-number': 



36 —FUNCTION NETWORK EDITOR 

CUSTOMIZING THE COMMAND FILES 

A menu —driven command file called NETBUILD.COM is provided to help you 
install the files. Another command file, NETUSER.COM, displays a 
programming utility menu from which NETEDIT, NETPROBE, and MAKEFONT 
are accessed. Both command files must be edited to set up the home directory 
in which the utility program files will reside. With a text editor, enter 
NETBUILD.COM and NETUSER.COM and change the entries which are marked 
with !INSTALL—DEPENDENT. These are the name of the directory in which 
the files will reside and the UIC reference. 

INSTALLING THE FILES 

When the changes have been made to NETBUILD.COM, start the command file 
by typing the following command. 

$ ~[Horr~eDir]NETBUILD.COM 

[HomeDir] is the name of the directory in which the files reside. The following 
menu is displayed. 

Evans &Sutherland PS 300 Utilities Maintenance 
Command File V 1.06 Main Menu 

0) Exit 
1) Initial installation —interactive 
2) Initial installation —submit as batch job 
3) Update Programs individually (menu) 
4) Update Databases/Datafiles Individually (menu) 
5) Utilities (menu) 

To install the network editor files, select 1 or 2 for interactive or batch 
compilation and linking of the entire system. Note that compilation will only 
occur if the object code is missing or if the source code or related files have 
been updated. 

The other selections on the menu display further menus of options for updating 
programs individually, selection 3, updating the data base, _ selection 4, and 
miscellaneous support activities, selection 5. 



FUNCTION NETWORK EDITOR - 37 

FILES THAT ARE LOADED 

The following is a list of alI the files that are loaded from the distribution tape. 
The files are ordered by logical groupings and in the same way they would appear 
if you were working in a multiple directory. 

WORK: 
NetParms.TXT 
Init.300 
NetBuild.COM* 
NetUser.COM~ 
NELinker.COM 
NEPascal.COM 
NEFileLst.DAT 
NEFileDbg.DAT 
NetProbe.PAS 
NetProbe.COM 
NetProbe.300 
NetProbeA.300 
NetEditO.Usr 

PROD: 
NEComm.MOD 
NEControl.MOD 
NEConvert.MOD 
NEDraw.MOD 
NEEdit.MOD 
NEError.MOD 
NEGraph.MOD 
NEInfo.MOD 
NEMain.MOD 
NEParse.MOD 
NERecord.MOD 
NEUtiI.MOD 
NEUtilCon.DCL 
NEUtilTyp.DCL 
NEUtilVar.DCL 
NEUtilExt.DCL 
NEError.DCL 
NetEdit.DCL 
NetEdit.PAS 
NetEdit.E XT 

A sample parameter file 
ASCII command file to initialize the PS 300 
The NetEdit maintenance command file 
The shared user utility command file 
A command file to link programs with NEUtiI library 
A conditional Pascal compilation command file 
The list of files needed for NetEdit distribution 
The list of files needed for NetProbe distribution 
The NetProbe debugger source program file 
The NetProbe maintenance command file 
The NetProbe debugger control network 
Command file to label function keys 
A dummy NetEdit usage Iog file-copied automatically 

PS 300 communications 
Intermediate level database management 
Network->ASCII command file conversion 
Object graphics 
High level editing control 
Error handling management(see also NEUtiI) 
Generic graphics support 
Function and Help database interface 
Top control loop and file control 
Parsing routines 
Low-level database management and I/O 
Shared library of string routines and file handling 
NEUtiI Constants 
NEUtiI Types 
NEUtiI Variables 
NEUtiI External declarations 
Error codes 
Global declarations 
Top-level program for NetEdit 
Global external declarations 



38 -FUNCTION NETWORK EDITOR 

DBASE: 
Conf ig.TXT Configuration file function list 
D~.~ Digit vectors for 1-9 input and output on functions 
GrandCF.OLD P5 function database 
GrandCF.TXT A 1 function database 
InitD.PAS Merge digits into sets of 1-9 
NetData.PAS Generate main function database files (user, system) 
NetFcn.PAS Parse the function appendix file into a database 
NetLoad.PAS Bind output of NetData and NetFcn together 
NetResolv.PAS Merge function and help databases and cross reference 
OIdToNew.PAS Compare P5 and A 1 databases and produce change list 
ParsUser.PAS Parse the users manual and produce indexed file 
PS300Man.DOC PS 300 User's Manual appendix on functions 
FNEUser.Man Function Network editor's manual 

DOC: 
Announce.DOC 
Database.DOC 
U 106.DOC 

MENU: 
Menu.DOC 
NetMenu.DAT 
NetMenu.PAS 

NETW: 
Editor.300 
Editor.Net 
EdMenuMgr.Net 
EdPlace.Net 
EdSysMgr.Net 
EdText.Net 
FetchPr.Net 
HNet.Net 
PickMgr.Net 
Timer.Net 
.MAC 

Editor.Doc 
Editor.DSP 
NetInit.300 
NetEnd.300 

Announcement of new release 
Function and Help Database notes 
V 106 release notes 

Menu construction information 
Menu outline file 
Menu construction program 

ASCII version of network editor support 
Top network file-host communications and integration 
Menu manager network-menu display and highlighting 
PointLine placement network-Drawing 
System management network-Hardcopy, Memory Alloc 
Text entry network 
Fetch and print network-used in EdSysMgr 
Help page control-dials 
Pick manager 
Clock display timer control 
Macro code versions of net files 
Description of network contents 
Main display structure 
Front end for network editor network 
Tail end for network editor network 



FUNCTION NETWORK EDITOR — 39 

DRAW: 
NetDraw.PAS 
NETran.PAS 
NetDraw.300 
NeCursors.300 

ERROR HANDLING 

Simple drawing program used to draw cursors 
Translate and scale drawings 
NetDraw support network 
Combined library of cursor shapes—must be broken into 
individual cursor files for editing. 

Should the program crash, the current routine stack will be recorded 
automatically in NETEDIT.ERR. An error message will appear on the status line 
at the bottom of the screen, and the terminal will be reset to the normal 
terminal emulator mode. After a crash, you should save the error file, along 
with the log file that is kept during a session (Filename.LOG) and your data file 
(Filenam.NET) as they are so that they are available for later examination during 
attempts to identify the problem. 

USER LOG FILE 

NETEDIT.USR is a log file that is kept to indicate who uses NetEdit and when. 
This file may become long and should be cleared occasionally by the system 
manager. If you have no use for the log f iie, it can be disabled in the 
NETUSER.COM command file. 





FUNCTION NETWORK EDITOR — 41 

APPENDIX B. SAMPLE EDITING SESSION 

In this sample session, NETEDIT is used to design a simple function network whic~i 
allows the control dials to be used to rotate, translate, and scale displayed objects. The 
transcript illustrates the sequence of operations used in creating the network, and 
shows how to place functions, constants and arcs; create and manipulate detail frames; 
and make connections to external display structures. 



42 -FUNCTION NETWORK EDITOR 

When NETEDIT is started, it will ask you to select the network to be edited. In 
Figure B-1, the SELECT NETWORK menu item has been selected and the name 
of the network (DIALNET) typed in. The network file will be called 
DIALNET.NET and the file containing the ASCII code will be named 
DIALNET.300, unless specified otherwise in the parameter file. 

Evans ~~ Sutherland PS300 Furlct ~ on N¢twork Editor V 1 .06 

Help 
Exit 

Nistorr 

Fil¢ Control 
Editing 
Convert Netrork 

~f [lE CONTROL
Select Netrork 
Backup Netrork 
Scratch Network 

Recover 

Renane Netrork 

Enter NetworkName:`~ -̀ ~ialnet 

STATUS: 

Figure B-1. Selecting the Network File 

IAS0555 



FUNCTION NETWORK EDITOR — 43 

In Figure B-2, the menu items for EDITING, ADD ITEM, and FUNCTIONS have 
been selected to get the Functions menu. Here, functions are being placed in the 
top—level frame. All of the functions that have been added here are Initial 
Function Instances, so they have not been assigned user—defined names as 
primitive functions are. The cross—hairs cursor has been turned on to help align 
the function boxes. 

Evans ~ Suther 1 and PS300 i- L~r1Ct l On N2twcrk ~ ~ i. ~or V i ub 

Nerve: Framei 

FileNar~a~ 01ALNzT 

Date Modified: 1 -.;UN-1984 07; 21: 54. 55 Total Fagesc l 

Praf~x; f i_ 

Parent; P~SeNo~ 

2 0IALS 

~DLAHELI 

sDL~eELz 

r 

~~ 

~OLAHE~3 

I30L~BEL1 

i > >~ 
~̀DL~9EL5 j 

  --~~ 

~3DL~BELb 

 , 

T
~ 

~ ~ I I 

I ~ ~ 
~DLA9L~b 

Help 

CX~t 

Histary 

~ACD i lEM 
~eiai ~ crane 

IE~r~;;tions

runr~ector 

arc 

a5e~ 

~Iti1Ti~L OUjP~I~ 
~LaE:e~ ) 

J~a~e~7 
n 

1 ~ J~ a~~ ~ .. 

~~ a~,p ~ ~ 

]] ~r 

r I .! 

L 
;STATUS 

( ~IU~7uG1~ 
II !_-_ 

  ~—

J 

 1 

Figure B-2. P1dCing Functions With the Cross-Hairs Cursor 

lA50556 



44 —FUNCTION NETWORK EDITOR 

In Figure B-3, the CONSTANT item has been selected from the EDITING menu 
to allow placement of constants, corresponding to PS 300 SEND commands. The 
user is prompted for the value to be sent as each constant is positioned. Note 
that the constants are not connected automatically to function inputs. Here, 
strings to label the dials according to their functions are being created. 

Evans 8~ Sutherland PS300 Function Network Editor V1 06 

Name; Framel 

Fi leName; D 11LNET 

Uate Modified: 1 -JUN -1984 Q7: 21: 54, 55 Total Pag¢y: l 

Prefix: F1_ 

Parent: - PageNo: 

2 DIA LS 

'XRDTAT£ ' 

' YR~ 7A T£ ' 

' ZRO 7 7 

a 
30LA8EL1 

~DLABEL2 

a 

~DLABEL3 

~ ~ ~-~ , 
zDLABEI~ 

~ULt.DELS 

30LAREt_A 

Help 
Ex~ 
History 

~~CD I iE"I 
Hetail (rane 

functions 

Connector

arc 

Babe I 

~CONtiEC10R 

Figure B-3. Creating Strings to ~ abel the Dials 

lnout. t rane 

Output FranE 

Constant 

Variable 

In External 

Dut-EXternal 

tAS0557 



FUNCTION NETWORK EDITOR — 45 

Arcs have been added to connect the constants to the function inputs in Figure 
B-4. Arcs may be inserted either by selecting the Arc menu item or from the 
ARC/TEXT Function Key. 

~v~tns & SuthPr 1 any PS300 ~unct i` on network Ed ~ for V 1 Ob r

~ Name: Frame( r~refix; F` 1_ 

f i t et~amE : D I ~+.LNE 1 

Date r``I c-~~l ifieJ: 1 -JUN- 1984 07. 21 ~ 54. ~5 Total Pages: Fa rent; - - FegeNo: ? 

t .1 
2 DIAL5 3 

I 
~) 
S, 
e~ 
~` 
e~ 

t; ~ n:.AeE! ~ 

' YR(3 T.t TE ~[~-- t t 
~

1v 30LAQEL2 

i 

'IROI,f 7£ ~ r ' t 

3C)LABEL3 

i 

' SCi1iE C ~ t i 

~DLA©ELF 

i i 

III~CLAQELS 

t 

'Y£~47ffAt C t t1 

30LABEL6 

Neap 
1 LX;, 

N~story 

^ Ii iJJ ~ ~ 1_ ~ ~ 

r ~ t 
l;et~~l : ~:a6;e 

~U'i~~l~'~S 
., 
I O~lileC~. i " 

Et i _ 

~ab~' 

L LTATIi_~: 

Figure B-4. Connecting Constants to Inputs With Ares 

1

~Aso558J 



46 —FUNCTION NETWORK EDITOR 

Detail frames are being created in Figure B-5. Instead of putting on one page all 
the functions to turn input from the dials into transformation matrices, using 
detail frames allows the details to be split up into logically independent blocks. 
Notice that all detail frames initially have no inputs or outputs; the names and 
prefixes are assigned default values automatically. 

Evans & Sutherland PS3Q0 Function Network Editor V1 Ob 

Name: Fr~m$1 Prefix: F1_ 

Fi leNam¢: DI/1LNET 

Oate Modified: 1 -JUN - 1984 07:21:54.55 Totol Pagea:2 Parent: - - PsgeNo: 1 

F?_ P~ 0 

2 DIALS s 

Pr.~.? 

V 

s 
e 

e 

'XROTAlE C t t 

3DLA9EL1 

' Y~9rJ 7if TE ~-- t t 

30LABEL2 i ~ / 

'IpOTATE D' 
t t 

~OLABEL3 

' SC~fLE C '~ t 

30LhBEL4 

'HOpIINTL ' 
li" 

t 1 

~~OLABELS 

'Yfl1T/C!L C ~ ~ ~ 

~30LABEL~ 

Help 

Exlt 
History 

~ti~0 ITEM 
Oetai 1 Frane 

f~n~tions 

Connector 
arc 

Label 

J 1 ~~ 

AS0559 

Figure B-5. Creating Detail Frames 



FUNCTION NETWORK EDITOR — 47 

The prefixes and names of detail frames, along with all other text which is 
displayed in italics, may be edited by selecting the Labels menu item and picking 
the text to be edited. Text can also be edited by pressing the ARC/TEXT 
function key twice. This feature can also be used to add "floating" comments. 
Labels are being added in Figure B-6. 

Evens ~x Sutherland PS300 ~unct~on Network td~tor Vi 06 

Name; frames Pretix; Fi 

Fi lzName: DI/1LNET 

Oate Mndifieci 1 -JUN- 1984 07:21 ; 54. SS Total P:~ges: 4 Paren{ ; - - PageNo: 1 

~ rraf.ti_on~s P~ 0~~ 

~ ~ 

? DIALS 3 

__ 

Fr.m.i 

e 
s 

_`~~ 

'XROTATf C 
~ 1 ~ rc, c+. P 0 

~OLABCLI 

-

~r.m.3 

rp07;11£ ~~, ~ 

I;DLABEL2 

•z~nT.1 TE ~~ ~ t 
~~DLAi3EL3 

I ~ 
_ 

-------_._ ------- 
p y o~~' 

- 

3DLABEL4 

'/fORIIN~( ' C 
l 

~ ~ 
1 
3 DLABELS 

'YfRIlC~fC L ~ ~-- ~ 

~DLApELb 

~..__ 

(~T,~1TU`~ : L` - -. ---- --

Nelp 

Exit 
History 

~~DO ITEM 
Detai i crane 

`~~cti~ns 

Connr~tcr 

Arc 

babe 1 

Figure B-fi. Editing Labels 

i ~1 ~ U'_~ fi ~~ 

J 

i 



48 -FUNCTION NETWORK EDITOR 

In Figure B-7, the GO DOWN function key has been pressed and the "rotations" 
detail frame has been selected to edit the "inside" of the detail box. This frame 
will have three inputs (from the dials for X, Y, and Z rotations) and three outputs 
(for the corresponding rotation matrices). Input and output frame connectors 
have been placed by selecting the INPUT FRAME and OUTPUT FRAME items 
from the CONNECTOR menu. These items may be placed only on the left and 
right edges of the frame, respectively. 

Evans 8~ Sutherland PS300 FUnCtIOn Network EdLtor V1 Ob 

Nsme: Frerns2 
Fi leNaT¢: DIIILNET 
Oat¢ Modified: 4-JUN-1984 07:09:54.70 Totol Pogms:4 

Prsfix: rotations 

Psront; 1 PsgmNo 

,~ 

s~ 

6~ 

Help 
Ezit 

History 

~~00 ITEM 
Detail frane 

functions 
Connector

~~rc 

label 

~CONNECI~R 
Input Frame 

STA~1i~ J .~ '_._. 

~. 

Output Erane 

Constant 

Yariab~e 

In-Ezterna! 

Out-Ezterna 

L_~___—.  

7 
~A~c~5G1 

Figure B-7. Adding Input and Output Frame Connectors to d Detail .Frame 

1 



FUNCTION NETUVORK EDITOR — 49 

In Figure B-8, the input and output frame connectors have been assigned 
descriptive names using the LABEL function. Functions are now being placed in 
the detail frame. since these are intrinsic functions, they are assigned default 
names by the Editor as they are instanced. These may also be edited using the 
BABEL function. 

Evar7s g Sucher I ar,d PS3JG r~nct i. on t ~etwcr~c Ed i. -+:or . ~6 

Name: Frame2 

F~ leName, DI/1LNET 

Date Modified: 4-dUN- 1~J84 07:09:54. 70 iotai Pagea:4 

prefix. rcfations 

d, l t s r 

~. A.; fa z 

PB  

~~ 
~3F, OXROTATE ~ 

i 
3F:orROT~TE 2I

Psr¢nt~ 1 PagaNc; 2 

x rot~fion 

y rOfltion 

z ~of~fion 

Nelp 
rr

.~ LXIt 

~ftstory 

~~oo l ~ EM 
Qetac~ crane 

Functions

~~,n~ECtur 

~~TC 

~1RAN~~QR~~1lON 
CRotate 
CScaie 
OScale 

D~Rotate 

DYRotate

DlRotate 

Scale 

XRotate 
YRotate 
ZRotate 

STATUS: 

Figure B-8. P1dCing Functions in the Detail Frdme 

rt~so5i~~ l 



50 —FUNCTION NETWORK EDITOR 

Constants and arcs have been drawn. Figure B-9 shows the completed detail 
frame for handling the rotations. 

Evans $~ Sutherland PS300 Function Network Editor V1 06 

Nsme: Frame2 

Fi leName: DIALNET 

Date Modified: 4 -JUN - 1484 O~.:OR:54.70 Total Peges:4 

Prefix: rotations 

Parent: 1 PagQNo: 2 

dolto x 
PB 

0. 0 
100. 0 

d~! to y 

,DXROTATE _ 

x rolati on 

P9 

0. 0 
100. 0 

do l ro ~ 

?F, DYRQTATE 

y rorati R 

P10 

d. D 
100, 0 

F,D2ROTATE t

r •oration 

r 

~ ̀'-_j-^ '- ~'- '-~-

Ne1p 
zit 

History 

~hDD I1EN 
Detai 1 f rage 

functions 

Cannect~~ 

~a5e 1 

Figure B-9. The Complete Detail Frame for Rotations 

1 ASU5fi3 



FUNCTION NETUVORK EDITOR — 51 

Figure B-10 shows that when the GO UP function key is selected, the next 
higher—level frame in the context tree is displayed again. Notice that the box 
for the "rotations" detail frame has grown and that the input and output 
connectors that were placed inside now appear. The connectors appear in the 
same order at both levels; the size of the detail frame box on the higher level is 
adjusted automatically, depending on the number of connectors. 

Ev~nc ~ Suther 1 and PS3~0 Eunct ~ Un ~letwork Ed i. for U i Ob 

Name: Framel Prefix; F1_ 

Fi leh:ame: DI~LNET 

Date Modified: 4-JI~N• 1984 07 09:54.70 Total Pages: 4 Parent: - - PageNo: 1 

/ rotetions P 2 

t 1 

2i)iALS 3 

5 
a 
7 
e 

Frseew? 

dolfe x r rotation 

deity y y rototion 

dwl tw r z rntwt~ on 

'XROT,fTE ~ ~ ~ aaon Pg 3 
C 

7 DLABELI 3 ~ I j~'s~o~ ~ ~: 
~R07.1 TE ~ LC , ~ 

3DLA8EL2 

'~'R07~17E [ 1 r 

3DLA8EL3 

L men Pp ~ ~1 
.~J 

' SCALE C ~ ~ 
Frero.t 

(~ OLABEL~ 

'HO.RIZN7L ' lY ~ ~ 

~OLABELS 

'YER/TCAL C ~ ~ 

3DLA9EL6 

r 

~~~G ~ i r 
U~tal 1 ~!'tliie

r ur,CtlOns

~onner,tor

J

~STATUS~

Figure B-10. The Next Highest Frame in the Hierarchy

52 —FUNCTION NETWORK EDITOR

The detail frame for "zoom" has been created in much the same way. Figure
B-11 shows the completed frame.

Evans 8~ Sutherland PS300 Function Network Editor V1 06

Nome: Frame3 Pr~fixs zoom

Fi leNarn¢: OIALNET
Oete Modified: 4-JUN -1984 07: OR: 54. 7C Total Pag¢s:4 Parents 1 PaQeNo: 3

P! 1
•C11• •~l~iM

Help
EXtt
History

~~OD ITEM
Detai I crane

functions
Connector

Arc

label

 ---. -- -
~TATU:~ :

Figure B-11. The Complete Detail Frame for Zooming

I AS~)r,Ci~

FUNCTION NETWORK EDITOR — 53

Figure B-12 shows the completed detail frame for "pan"--horizontal and vertical
translation. The output of the detail box is a 3D vector.

Evans ~ Sutherland PS3G0 Function Network Editor V3 06

Name; FraMe4

Fi leNaroe: DIAL?dET

Oate Modified: 4 - .JUN - 1 984 07:4 1 ; 24.87 Total Pag¢s.4

Prefix; pan

Par¢nt: I Pagetvo:

de! fo ~
P!?

ro y

FtXVECTOR

P/J
~ i~

F+YYECTOR

PIS
t

;acc~Mu~~rE

Help

Exit

NtStOr ~

~~00 I f E~
6eta.l ~raNe

.unctions

COnnPCtOr

arc

Cabe l

Figure B-12. The Complete Detail Frame for Panning

J
IAS0568

54 -FUNCTION NETWORK EDITOR

Because the sizes of the detail frame boxes change as they are edited, it is often
necessary to adjust the layout of the diagram after they have been completed.
In Figure B-13, the MOUE feature is being used to reposition a function box.

Evans ~ Sutherla d PS300 Function Network Editor V1 06

Name: Frame)

Fi leName: DIIILNE7

Date Modified: 4-Jt1N- 1984 12:

Prefix: F1_

15: 09. OS Total Pagea; 4 Par:mot: - - Page No: 1

rol.li en. Pe 7

t ~

2 0IALS 3

Frs~rl

di/!s .t it rotrlion

s
6
~

~

~

DIALS ~

4

~i7ra y y rotolion

dilt• r r rot~iien

/
,/ 5

e
~ tool P J

'XROTATE D ~ i
e

lrsro3

3DLABELI dtlt• •cal• walrir

' >'It'OTATE D t t

3OLASEL2

fr~rot

'ZROTifTE C ~ ~

~ DLA8Et.3

di/t~ x lr~n~T~fion

dam/ t• y

• sr~L E ~-- ~ ~

30LABEL~ _

'HORIINTL
lY • ~ t

~OLAeELS

' YERTTC.~L D• ~ ~

~OLABELt)

t
~_ -----

LSTATUS

Help
Exit

History

add ltea

Mave

Move ~rea~

Oel~ete

Delete area

Options

Figure B-13. Using MOVE to Reposition Items in the Diagram

IAS0566

FUNCTION NETWORK EDITOR — 55

Figure B-14 shows the top level frame of the completed diagram. Arcs have
been inserted to route the output from the dials to the appropriate places.
Connectors to external display structures were added. The floating comment,
added using the Labels feature, describes how to set up these display structures.

Evens ~ Suther 1 and PS30C~ F~uncttc~r~ Network Ede for V 1 O6

Name: ~~Frame?

_
Prefix: F1_

F~ leName: DlllL.NET

Date Modifi.¢d~ 4 -JUN- 198•} 12: 15: Oa, 0~ Total Pog¢s: ~ Per¢nt: - - Pagewo: 1

rot+ti on+ PQ 2

Fr.nr+1

r ~i

2D2ALS

 doJtw x x rofeiion E ~l~r.rot

~

'
~ dwlta y y rotrtiun ~)~l~yrot

VS .~ ~ ~ — d+l r, : a rot+ti on E rlarrot

e

~~

'XROT~f 7E ~~~-' ~ ~

3DLABELI ~

fr.wwJ

dwlfo sc.I+ 2.trix

i
E rlrsc~:•

' YRD to r£ ~C r-1~
i

~ }

IiOLABEL2 ~.~ F9 ~

r ~ t \ dolfl x ir~nil.tiort [r1~"r~no ~ '~ROTA1£ I~~

i3DLABEL3 ~ del to y
t—

' SCAC f t}—~ ~

(~ O~ABEI~

E-xternal di splay s true tares: r'
'NO~''I'~" ` ~'~;

'g GLABELs
trans - TRAiVSL A TE f~~' 0, 0, 0 APPL IED TO xro t;
,,-rot = ROTA TE IN X 0, 0 APPL IETI TD yro t;

RD TA TE IN Y' 0. 0 APPL IED Tt~ t;
'r£arl`~+`

~ ~` ~_ ~ ,DLAeELe
--

yro t = zro

zro t = ROTA TE IN Z 0. 0 APPL IED TO sca 1 e;
scale = SCALE f1Y 1. 0 APPLIED TO user data;

Help
Exit

History

~aOD I1EM
Deta.l Frane

functions

Connector

arc

Labe l

STATUS

Figure B-14. The Top-Level Frame of the Complete Diagram

IAS0567

56 -FUNCTION NETWORK EDITOR

Here is a listing of the ASCII code produced by selecting the CONVERT
NETWORK menu item.

To generate the file, the following options were selected.

Use Frame Prefix (off)
Suppress Comments (off)
Use Macro Prefix (off)

{ Code- generated by Network Editor 6 }
{ DIALNET}
{ Frame-Prefix Macro-Prefix }
{ Frame2:rotations }
rotationsP8:=F:DXROTATE;
rotationsP9:=F:DYROTATE;
rotationsP 10:=F:DZROTATE;
SEND 100.0 TO <3>rotationsPlO;
SEND 0.0 TO < 2 > rotationsP 10;
SEND 100.0 TO <3>rotationsP9;
SEND 0.0 TO <2>rotationsP9;
SEND 100.0 TO < 3 >rotationsP8;
SEND 0.0 TO < 2 > rotationsP8;
{ Frame3:zoom }
zoomP 1 1:=F:DSCALE;
SEND 0.0 TO <5>zoomPl l;
SEND 1000.0 TO <4>zoomPl l;
SEND 1.0 TO <3>zoomPl l;
SEND 1.0 TO < 2 > zoo mP 1 1;
{ Frame4:pan }
pane 12:=F:XVECTOR;
pane 13:=F:YVECTOR;
pang' 14:=F:ACCUMULATE;
CONN pane 12< 1 >:< 1 >panP 14;
CONN panP13< 1 >:< 1 >panPl4;
SEND -1000.0 TO <6>panP14;
SEND 1000.0 TO < 5 > panP 14;
SEND 1.0 TO <4>panPl4;
SEND 0.001 TO < 3>panP 14;
SEND v 3d(0,0,0) TO < 2 > panP 14;
{ Framel:F1 }
{External display structures:}
{trans := TRANSLATE BY 0,0,0 APPLIED TO xrot;}
{xrot := ROTATE IN X 0.0 APPLIED TO yrot;}
{yrot := ROTATE IN Y 0.0 APPLIED TO zrot;}
{zrot := ROTATE IN Z 0.0 APPLIED TO scale;}
{scale := SCALE BY 1.0 APPLIED TO user_data;}

FUNCTION NETWORK EDITOR — ~7

CONN DIALS< 1 >:< 1 >rotationsP8;
CONN DIALS<2>:< 1 >rotationsP9;
CONN DIALS < 3 >: < 1 > rotationsP 10;
CONN DIALS<4>:< 1>zoomPl 1;
CONN DIALS<5>:<1>panP12;
CONN DIALS<6>:< 1 >panP 13;
CONK rotationsP8 < 1 >: < 1 > xrot;
CONK rotationsP9 < 1 >: < 1 > yrot;
CONN rotationsP 10< 1 ;:< 1 > zrot;
CONN zoomP 1 1 < 1 >:< i >scale;
CONN pane 14 < 1 >: < 1 > trans;
SEND 'VERTICAL' TO < 1 >CLABEL6;
SEND 'HORIZNTL' TO < i > DLABELS;
SEND 'SCALE ' TO < 1 > DLABEL4;
SEND 'ZROTATE ' TO < 1 > DLABEL~;
SEND 'YROTATE ' TO < 1 > DLABEL2;
SEND 'XROTATE ' TO < 1 >DLABELI;

\ETPROBE

FUNCTION NETWORK DEBUGGER

USER'S GUIDE

LIMITED SUPPORT DISCLAIMER

This software package is distributed by Evans & Sutherland
as a convenience to customers and as an aid to
understanding the capabilities of the PS 300 graphics
systems. Evans & Sutherland Customer Engineering
supports the package to the extent of answering questions
concerning installation and operation of the programs, as
well as receiving reports on any bugs encountered while the
programs are running. However, Evans &Sutherland males
no commitment to correct and errors which may be found.

,~-

PREFACE

The purpose of this Guide is to introduce both experienced and novice PS 30o users to
NETPROBE, a network debugger designed to display the activity in a function network.

The Introduction gives basic background about NETPROBE, including a brief overview
of how it works and how it can be used. Chapter One describes how to use NETPROBE.
Chapter Two gives additional information about input and output files and the
debugging network.

Appendix A gives instructions for installing NETPROBE.

Appendix B describes how to customize NETPROBE for your purposes.

Appendix C explains how to port to other machines.

FUNCTION NETWORK DEBUGGER

CONTENTS

1. INTRODUCTION TO THE FUNCTION NETWORK DEBUGGER 1

2. GETTING STARTED 3

3. ADDITIONAL FEATURES 7

ASCII NETWORK FILE -ORIGINAL INPUT 7
ACTIVE OUTPUT NAME FILE 8
DEBUGGING NETWORK 8

APPENDIX A. INSTALLATION 9

APPENDIX B. CUSTOMIZATION 13

APPENDIX C. PORTING TO OTHER MACHINES 15

FUNCTION NETWORK DEBUGGER — 1

1. INTRODUCTION TO THE FUNCTION NETWORK DEBUGGER

One of the most critical aspects of the PS X00 graphics programmers' fob is isolating
and correcting problems in function networks. NETPROBE, developed at Evans 8c
Sutherland, can be used as a function network debugger or as a guide in writing your
own network debugging program, allowing you to see the data values the network
generates as it runs. NETPROBE is written in DEC Version 2 Pascal for use on a
UAX/VMS 3.3 and higher system.

The NETPROBE host program works in two stages: it . first reads an ASCII function

network file and produces a list of the actively used outputs; it uses this list to create
the debugging network and display structure for up to 300 outputs. It can then be
downloaded on top of the network to be debugged, and data from the function outputs
are displayed. The user can optionally edit the list of outputs to reorder or modify the
display, or generate a list to focus on particular segn~er~ts of a function network.

Each function output used in the network is displayed on a separate display line in a

15 —item page, showing the name of the function and number of the output, the value

last output, and optionally, a count of how many times the output has fired. Function

keys provide control over which of twenty pages are displayed, clear the currently

displayed values, and disable the display.

NETPROBE is invoked through a VMS command file (NETUSER.COM) which allows the
user to initialize the PS 300, download the ASCII command files, run the network
debugger, and run the Function Network Editor (if installed).

FUNCTION NETWORK DEBUGGER - 3

2. GETTING STARTED

Installation instructions for NETPROBE are contained in Appendix A. When all of the.
files have been installed, run NETPROBE using the NETUSER command file.

Enter:

$Ca1[HomeDir]NETUSER

where HomeDir is substituted by the name of the directory in which NETPROBE is
installed. This comr~~and file brings up the initial menu of the PS 300 utility programs.

Evans &Sutherland PS 300 Utilities U 1.06
Initial Menu

0) Exit
1) Initialize the PS 300
2) Send a f ile to the PS 300
3) Run NetProbe -Function Network Debugger (Menu)
4) Run NetEdit -Function Network Editor (Menu)
5) Character Font Utilities (Menu)

Use Option 2 or an equivalent procedure of your own to first download your ASCII
function network file to the PS 300. This must be done before the debugging network can
be sent to the PS 300. Then select Option 3. You will be presented with the following
Debug Menu:

Evans &Sutherland Function Network Utility Command File U 1.06
NETPROBE: Function Network Debugger

0. Exit
1. Prepare a debug module -complete and sorted
2. Prepare a debug module in stages
3. Send a debug module to the PS300
4. Label the control function keys.

4 —FUNCTION NETWORK DEBUGGER

Option 1 creates a list of output names and uses the list to create a debugging network,
performing both operations in a single pass and producing a sorted debug display for all
the outputs in the network. This is useful for small files. The command file prompts
you fora file name, runs NETPROBE and outputs a list, and then uses the VAX Sort
utility to sort the list. It immediately runs NETPROBE again and prepares the debugger
network and display structure. The default extension for input file names is .300, and
the extension for the output name list is .PRB.

Option 2 allows you to directly run NETPROBE to generate an output list or to use a
list to create a debugging network. You are presented with the following menu:

NETPROBE: Please provide a source file in one of two formats

Original PS 300 ASCII Network commands (any extension)
Assumes CONNECTS are contained on single lines and are the first non
blank words on the line

OR
Output name list: (no extension or .PRB)

a list of output names and comments (" " or "{")
OR

1. Turn Counting Option ON (OFF)

Enter filename, Option, or RETURN to exit:

If any extension other than .PRB (the output list extension) is used, it is assumed the
filename you provide is an ASCII network file and an output list is created. If no
extension or .PRB is used, it is assumed you are providing an output list and a debugging
network is created from it.

If you enter "1 ", the count option is toggled so the debugging network counts the
number of times the output is fired and displays the current count. A counted
debugging network is slow and should be used only for small numbers of outputs.

After using NETPROBE to generate an output list, you can also edit the. list to reduce
the number of outputs, improve the quality of printing, or add some outputs. To do this,
exit the NetUser command file and using the text editor, edit the .PRB file you have
just produced. Re—enter NetUser and the Debug Menu and select Option 2 to create a
debugging network using the modified output list.

r

ii - I..~ ~e v ? ~ ~: i ~i ! y ~ f t ~ L.J 1 '~ t'~ D L ~ ~ i.~ 1~ I~ -

Option 3 sends both the debugger contro~' network any the debugging netv~~ork ;us+~
produced to the PS 300. During the download of the debut structure, status messa~~es
appear on the bottom Iine of the display, including an eno rr~essa~e. The debug no=~tro
network includes the standard support. network for any o ~-~ the aebugging str~~ ~v ~~_~►-~~s, a~~
includes the top—level dispia~< structure and implementation of the funct~~~r ~~~~,~
controls. You must then press SHIFT/LIf~IE LOCAL to enable the runction keys prope~~l,~a

Once the network and the debugging network are downioa~ec to the PS 30u, trse
function keys can be used to control the debug display as ~- ailou~~~:~~

Shift—FKey 9: PACE — Display previous debug page
Shift—FKey 10: PACE + Display next debug page
Shift—FKey 1 l: CLEAR Clear the current values and counts
Shift—FKey 12: SHOW Y/(\i Enable or disable the debug display

You must press SHIFT and then the associated key. If you are not actively using these
function keys for your own function network, you can downicad labels for the function
keys by selecting Option 4.

Figure 1 shows data and values displayed when NETPROBE is run on a function network
in which Bails are used to rotate a cube.

6 -FUNCTION NETWORK DEBUGGER

NETPROBE: [PS3GOED. REL. YiCb. TESTJEXA;KPLE2B (Pag2s: 2

PAGE
DIALS< 1 >

DIALS<2>
DIALS<3~

DIALS<4>

DIALS<5>
DIALS
DIALS<7>

DIALS<8>
DoRotX2< ? >

JoR~tX< 1 >
DoRotY2~ 1 >
DoRctY< 1 ~

DoRotZ2< '; >
DoRotZ< 1 >

DoScale2< i >

i
Vi~~'

- 1 .562SOE-2
2.429b9E'-3
- 9. 7bS63E-4
2.92469E-3
1 .45313E-3
2.42464E-3
- 1 .95313E-3
1.95313E-3
1 . OCOOOOOOE+O, G. GOOOOOOOE+O, O. 00000000E+0 0.000^OQOOE+O, -9.96764005E - ? ,'. .96717 1 03E-2 0. ^^~?(
1 , 00000000E+0,0. OOGOOOOOE+O, O. 00000000E+0 0. OCOOOOOOE-+0,9. 603582C3E- 1 ,2.'p498724E-1 ^. C^u~;~.t
-9. 2729701 iE- 1 , {~, 00000000E+0, -3.741 3?804E- 1 0.00000000E+0, 1 . OOi)OCO:i0E~0, 0. GOOOGOOflE+:~ 3- ? 4
9.Sb739725E-1,0.00000000E+0, - 1.61875105E- 1 0.00000000E+0,1.00OOOOCGE+O,O COOOOGOOE+O 1 . 618:
-4.9$4?919bE-? ,5,5191$988E-2,O.L10000000E+0 -5.5?918988E-2, -9.98419196E- 1 ,0.00OOOOL~'E;0 ~. ~~ f
9.9841 91 96E- 1 , 5. S1 91 8988E -2, 0. OTC^v0000GE+0 -5.51 918988E-2, 9.9841 91 4oc - 1 , 0. GOOOG'v'OGL+~:~ v. O~~Ct
5.854140b3E-1,u,COGOLOQGE+O,G.GO000000E+O O.00OOOOOGE+0,5,86914063E-1 ,0.00000000E-0 v. GOL~~t

I

View 2

~~►so~sz

NETPROBE Display ready - Please SHIFT LINE-LOCAL to enable function keys

Figure 1. A NETPROBE Example

FUNCTION NETWORK DEBUGGER — 7

3. ADDITIONAL FEATURES

ASCII NETWORK FILE -ORIGINAL INPUT

NETPROBE reads in PS 300 command files and generates a list of the function
outputs that appear in CONNECT statements. For example:

CONNECT a<1>:<2>b;

produces

a<I>

in the output list.

The CONNECT commands must be coded on single lines with no commenfis or
other commands preceding the CONNECT command on the same line. Far lines
in which the CONNECT command follows a comment or another command or the
same line, the outputs are not listed. For example, in:

{Comment} CONNECT a< 1 >:< 1 >b;

the output a< 1 > is not listed.

In:

CONNECT a< 1 >b; CONNECT b< 1 >:< I >c;

the output b < 1 > is not listed.

Commands that have been commented out are ignored.

Some ~~ersions of Pasce.~ mad not tolerate a nail line at the end o ~` ~ ~ i .e dn~ ~--~a~
pro4 aye Gn error in re f~ Ong the file. In this case, the lase lir~F- st~o~.. j~ ~~:,., -~ j►._, e

~} ~ ~,~~' ea~. `~. _._v~~e~

S -FUNCTION NETUVORK DEBUGGER

ACTIVE OUTPUT NAME FILE

You can either run NETPROBE in one pass (Debug Menu, Option 1), or in stages
(Option 2) which allows you to edit the output name file (.PRB). You might want
to edit the output name file to improve the way the debug display appears, to
increase the efficiency of the debugging network, and to reduce delays caused by
very active networks and frequently sampled peripherals.

The output name file may contain blank lines to separate sets of display items or
it may contain comments. Any line beginning with a spare or left curly brace ({)
is treated as a comment and empty lines (0 characters) are ignored.

Sorting facilitates lookup. The NETPROBE progra~~ discards duplicate output
names whether the list is sorted or not.

The debug structure may result in a l~~rye and slow network bogged down by
frequently sar~pled peripherals (tablet and dial?. To reduce the traffic during
debugging, either edit the output name file and remove sor~~~e of the outputs
being monitored, or cut the sampling rate of the tablet and dials.

NETPROBE generates extensive code for each output. With moderate to large
networks (over 100 outputs) in which a lot of activity is expected, split the
output name intermediate file into sections and create debugging networks for
each of these separately for debug sessions focused on different network
segments.

The output name file can be used to check for spelling errors by listing its
contents.

DEBUGGING NETWORK

The debugging network and display file are downloaded on top of your network
and compete with it for memory, display capacity, function execution, and
object names.

Memory can be reduced and function execution enhanced by shortening the
output name file to focus on limited sections of the network. All
NETPROBE-generated named entities (function and display structures) use a D$
prefix to help reduce naming conflicts, e.g., D$pr_l. Please do not use this
prefix in your own files.

Once a debugging network has been passed to the PS 300, to eliminate it do an
INIT command (refer NetUser, Option 1) and retransmit the function network.

~_ ... ~~'CTiCN ~vET~~~~C ~-~~ DE~UCCER - 9

t ~d c
~ ~ Y 1 ~i ~ ! T ~' 5 ~.

~ ~ '1 t~ L i` 1 E 5 ~..o i +~

~~~~ ~~~P~~~~~E Lj dia~ribu -Lc~. :.;-~ ,-~~. ~ry~,^ ~ ~ >~c , _c~:~~ ~~~~stcl , ~e~~~ : ~~e ~~:~ctape contai~-~s several 
~' i~~~ ~..t~~ 1i !.~ ~' t~~~t_ E `:` ~,`~i~ 1~ ~~ 

;-ta.. 
~ 

'_.~ ~ ' ~ti ~~r'~~r'rC ~.~:. t,Ur ~E~t~ I
fQrac~,er t- ®nt~ ,.; ,, ~ z c i" ~ s I C ~ E 

~~C'~"_'wC~' f ? ~~`.:;o ~ he f ll~s ; ~~:` u~ ~: :~ ~~~ i'i.t~ ~ i~~~ ~~ L Lj~_ ~I'~ ~~~stalled In tV'~~ atc~geS. r°- ors* y the 

k- *. ~ r -, .!= i —. ~ ~ s ~ r h. ..:,- 
.. 

'1 k— h !" rv. r~ rrt r ~' n \ f E1  1 {,̀  ! 1 f ales are ~~ a~~sf er red ~: , ~ ~~; ~.; ~~ . . ~,~" ~~y;~,. ~ ; ~ ~ s r , ~ ~! !~ : . . ~:~ ~~ ~.ic type on ~;~ , llc, r ~ce~ are
y~ C ~' C 

J 

.-; ~ n r ti^~ Tj !(~"""''t~ ~ 
'- 

T 
1 

r r'1 +'r~ ~-; ►'~ ~ s ~•~ g'^ i \ / n r- i {~ ~ r,-~ ~~ ~ r• r-+ '1 , ~ ~ I ~ 1 e~9 I ! ~, ~' 1,.. 1.. ~ }.J _ i i:: ~.:; ! la,~ i ~ i i ~ G i ~ ~ ~ t h C. f i 
L,. ~ ~ e, 1 14J Ld ~, G ~ ® ! I ~ I ~ C: 1 ~ L. 1 ti.. ._,d _ b / ~. L.. °...i ~ 3 i i~ , i~ 1 i . 

L~~~r~~ ~~G T~~ Fey, k ~= ~ 

~~ fiy}.°a~,sfer t'~e ~i~.es frcm the d?strio~.~tion tape ~:o the ~°AX E follow the procedure 

o~.~E; r-.ed below° 

e ~~~stall the distri~u:ion tape on the tape drive. 

~~ enter the followinQ se~ue~;ce ,~f co~r~mands t o allocate the tape drive, mount 
she tape, and transfer fi ne files: 

~~ ALLOCATE 'u' r r~. i b~nt— .umber`: 
~t~UNT ti`s i ~. '~:~n~t—number': EDITOR 
COPS!' MTA "►~an`—''. ~.~ miter': '~,~ Destination Directory] 

~o Eiles take up to ' ~ minutes ~o transfer. when they have all been copied to 
the system the ~~' prompt appears. Enter the following commands to 
dismount the tape and deallocate the tape drive. 

$ DISMOUNT MTA'unit—number': 
$ REALLOCATE MTA'unit—number': 



10 —FUNCTION NETUUORK DEBUGGER 

CUSTOMIZING THE COMMAND FILES 

To modify the two command files NETPROBE.COM and NETUSER.COM: 

1. Using a text editor, search for and change the entries which are marked 
!INSTALL—DEPENDENT. These identify the .home directory in which the 
NETPROBE files are installed. 

2. In the NETUSER.COM file, if you don't intend to install the NetEdit file, 
comment out Option 4 in Top_Menu. 

3. Exit from the text editor. 

COMPILING AND LINKING 

NETPROBE is automatically compiled and linked when NETBUILD.COM is run to 
install the Network Editor. (Refer to Appendix A of Function Network Editor 
User's Guide for instructions on running NETBUILD.COM.) NETPROBE is 
compiled and linked on its own as follows: 

1. Enter: 

$~a [HomeDir]NETPROBE 

where HomeDir is substituted by the name of the directory in which 
NETPROBE is installed. 

2. The Main Menu is presented: 

Evans &Sutherland Function Network Debugger 
Maintenance Command File v 106 

Main Menu 

0. Exit 
1. Compile Debugger (NonDebug) 
2. Compile Debugger (Debug) 
3. Copy Debugger to Tape 

- Enter selection (0-3) 

Select Option 1 to compile and link NETPROBE and its utility library. 



FUNCTION NETWORK DEBUGGER — 

Option 2 prepares a debugging version of NETPROBE if you want to debug 
modifications to NETPROBE. Option 3 copies the necessary files (listed in 

NEFileDbg.DAT) to tape for further distribution. 

FILES THAT ARE LOADED 

The following is a list of all the NETPROBE files that are loaded from tide 

distribution tape (other files may be loaded that are used for ~~E ;EDIT). The 
¢files are ordered by logical groupings and in the same way they ~~~ould appear ~f 
you were working in a multiple directory. 

Irit.300 
NetUser.Com+ 
NELinker.Com 
NEPascal.Com 
NEFileDbg.Dat 
NetProbe.Pas 
NetProbe.Com+ 
NetProbe.300 
NetProbeA.300 
NEUtil.Mod 
NEUtiI~.DcI 

An initialization file or t~~e r'S 300, used by ~~~e~~User 

The user command file 
A command file to link ~ETPROBE after compilation 
A conditional Pascal compilation command ;lie 
The list of files needea in ~1E T PROBE distribution 
The NETPROBE source program file 
The maintenance co m many f lie 
The debugger control network 
Command file to label function keys 
A library of support routines needed by NE T PROBE 
Shared declarations between NEUtiI and NETPROBE 

NOTE 

The +'d files must be edited upon installation. NEUtiI.~ 
is shared in common with the Network Editor. 





FUNCTION NETWORK DEBUGGER — 13 

APPENDIX B. CUSTOMIZATION 

The NETUSER.COM command file is set up to assume a default extension of '.300'. This 
can be modified without side effects to meet user conventions. 

CAUTION 

In editing the NETPROBE.300 debug control network file, 
check to see if any portion of the PS 300 commands you 
intend to alter are referenced in NETPROBE.PAS. The 
commands are described in the NETPROBE.300 file header. 
(Refer to Appendix A for a summary of the files included in 
the distribution tape.) 

The following are changes that can easily be made to NETPROBE.PAS: 

■ Items per page: change the PageSize constant. 

■ Maximum items: change the MaxProbes constant and also modify the display 
structure in NETPROBE.300 to include more pages. NOTE: If there are more than 
512 lines, add more D$clear_all_N functions which can handle 128 outputs each. 

■ Placement of display structure: change the display structure in NETPROBE.300 and 
reset the VSpace constant if you are changing the scale of the display. 



~-



FUNCTION NETWORK DEBUGGER — 15 

APPENDIX C. PORTING TO OTHER MACHINES 

NETPROBE is written in Pascal and has been made as machine independent as possible. 

It is limited to standard Pascal with the following exceptions of DEC Pascal, 1/ersion 2: 

■ Attributes: Attributes are ANSI excentions to Pascal which qualify how routines and 
constants are used and shared and include [EXTERNAL], [GLOBAL], 
[ASYNCHRONOUS], [EN1/IRONMENT], and [INHERIT]. These must be edited out if 
the destination Pascal cannot handle them. 

■ Condition handlers: File errors are trapped by a condition handler called OpenError, 
which helps to recognize nonexistent or protected files and allows the user to try 
again. This can either be reimplemented if possible, or commented out if you are 
unable to provide a condition handler and can tolerate a crash on such a condition. 
Ignore EHandler, another condition handler; it is used only in the Network Editor, 
NETEDIT. 

■ NETPROBE consists of the debugger source program, NETPROBE.PAS, and 
NEUTIL.MOD, a library of support functions that it shares with NETEDIT. If you do 
not have NETEDIT, you do not have to worry about how modifications to NEUTIL 
will affect it. If you do have NETEDIT, you should rename it if you are going to 
make extensive changes to NEUTIL. 

Some of the routines in NEUTIL are not needed and can be commented out when 
converting to another version of Pascal or another language. If you are unable to 
support modules, these two files can be merged together and the associated ~.DCL 
files can be merged into the declaration section to provide a single support file. If 
you do merge files, then also modify NETPROBE.COM to directly compile and link 
as a single file rather than compiling and linking in the library. 





VAKEFONT 

CHARACTER FONT EDITOR 

USER'S GUIDE 

LIMITED SUPPORT DISCLAIMER 

This software package is distributed by Evans & 
Sutherland as a convenience to customers and as an aid to 
understanding the capabilities of the PS 300 graphics 
systems. Evans & Sutherland Customer Engineering 
supports the package to the extent of answering questions 
concerning installation and operation of the programs, as 
well as receiving reports on any bugs encountered while 
the programs are running. However, Evans & Sutherland 
makes no commitment to correct any errors which may be 
found. 





PREFACE 

This document is the user's guide for the Character Font Editor, MAKEFONT. The 
Character Font Editor is run on the PS 300 to create or modify character fonts. 

MAKEFONT is intended to be similar to the MPS character generator program, but with 
some additional features added. The program is written in IIAX-11 PASCAL, and uses 
the procedural interface to the PS 300 for graphical input and output. 

The files needed to run MAKEFONT are loaded from the same distribution tape as the 
NETEDIT (Function Network Editor) and NETPROBE (Function Network Debugger) 
files. For installation instructions, refer to Appendix A of the NETEDIT User's Manual. 

This manual explains how to run MAKEFONT. It is divided into the following sections. 

Section 1 describes how to run MAKEFONT. 

Section 2 explains the functions that can be selected from the Main Control Menu. 

Section 3 describes how to design individual characters. 

Section 4 explains how the character fonts are stored internally on the PS 300 and how 
the font files are stored externally on the host. 





CHARACTER FONT EDITOR 

CONTENTS 

1. INTRODUCTION 

RUNNING MAKEFONT 

2. MAIN CONTROL MENU 3 

DISCARD 4 
DELETE 4 
COPY 4 
SWAP 5 
EDIT 5 
READ_STD 5 
W RITE_STD 5 
READ_ALT 5 
W RITE_ALT 6 
INIT_ 12 7 6 
INIT_255 6 
QUIT 6 

3. EDIT MENU 7 

MOVE TO 8 
DRAW TO 8 
ORIGIN 8 
ERASE 9 
EXIT 9 
RETURN 9 



CHARACTER FONT EDITOR 

4. FONT STORAGE 1 1 

EXTERNAL FONT STORAGE FORMAT (Standard fonts) 1 1 

ILLUSTRATIONS 

Figure l~. The Main Control Menu 3 
Figure 2. The Edit Menu 7 



CHARACTER FONT EDITOR - 1 

1. INTRODUCTION 

MAKEFONT is a program that allows character fonts for the PS 300 to be designed or 
modified. Files may be read and written in formats for both standard fonts (the default 
font loaded when the PS 300 is booted) and user-defined alternate character fonts (a 
BEGIN_FONT...END_FONT sequence). MAKEFONT itself runs on a PS 300 under 
UAx!vMs. 

Either a 128--character or 256-character font may be created. There are features 
allowing merging or modification of existing fonts, as well as for creation of new 
characters. In addition, files can be read and written in the format used for 
user-defined alternate fonts. 

This document provides descriptions of the commands available within MAKEFONT. It 
also provides a detailed description of the standard font file format and instructions for 
downloading standard fonts. 

The files needed to run MAKEFONT are loaded from the same distribution tape as the 
NETEDIT (Function Network Editor) and NETPROBE (Function Network Debugger) 
files. For installation instructions, refer to Appendix A of the NETEDIT User's Manual. 

RUNNING MAKEFONT 

MAKEFONT is run from the command file NETUSER.COM. To bring up the 
menu from which MAKEFONT is selected, enter the following command. 

~ [HomeDir]NETUSE R.COM 

[HomeDir] is the name of the directory in which MAKEFONT resides. The 
following menu is displayed. 



2 -CHARACTER FONT EDITOR 

Evans &Sutherland PS 300 Utilities V 1.06 
Initial Menu 

0) Exit 
1) Initialize the PS 300 
2) Send a f ile to the PS 300 
3) Run NetProbe -Function Network Debugger (Menu) 
4) Run NetEdit -Function Network Editor (Menu) 
5) Character Font Utilities (Menu) 

Select option 5 to bring up the Character Font Utilities Menu. 

Evans &Sutherland PS 300 Utilities V 1.06 
MakeFont: PS 300 Character Font Utilities Menu 

0) Exit 
1) Run MakeFont character font editor program 
2) Convert standard font file to PS 300 s-record format 

Select option 1 to start the MAKEFONT program. Option 2 pror~pts for the 
name of a standard font file and produces and s-record file (.a file in a format 
which the PS 300 can read). This file can then be downloaded to diskette as the 
default character font. The name of the output file is the same as the input file, 
but the extension is .SR. 

When MAKEFONT is run, it first downloads menus and initializes the font. A 
"Ready" message appears when the host has completed the initialization, but 
because of delays due to such things as buffering, it takes about five minutes for 
the PS 300 to be ready to accept commands. The program is really ready to go 
when it responds to menu picks. 



CHARACTER FONT EDITOR — 3 

2. MAIN CONTROL MENU 

The main control menu for MAKEFONT consists of a character selection grid on the top 
half of the screen, and text strings representing various functions on the bottom half of 
the screen. Although only 128 characters at a time can be displayed on the character 
selection grid, you can edit a font with 256 characters by using Function Key 1 to 
toggle between the display of characters 0-127 and 128-255. (This action is carried out 
locally, so this has no effect on what MAKEFONT is doing on the host.) Figure 1 shows 
the Main Control Menu when MAKEFONT is first entered. 

ii in u i 
lu~~,u, 

DISCARD DELETE COPY SWAP 

READ_STD WRITE_STD READ_.ALT WRITE_ALT 

INIT_127 INIT_255 

EDIT 

QUIT 

Ready 

IAS0449 

Figure 1. The Main Control Menu 



4 —CHARACTER FONT EDITOR 

Use the data tablet and stylus to select menu items from the bottom half of the 
screen. Some of the functions available (DISCARD, DELETE, COPY, SWAP, and EDIT) 
require you to select one or more characters from the grid to operate on. For example, 
if you pick the menu item DELETE, you will be prompted to select a character to 
delete. You may then pick any number of characters from the selection menu to be 
deleted. To stop deleting, pick another function from the bottom menu. The remaining 
functions perform a single action; when complete, MAKEFONT will return to the 
"Ready" state. 

The Main Control Menu functions are described below. 

DISCARD 

This function is useful for combining characters from two or more fonts into a 
single font. When a character font is read in from a file, only those characters 
in the current font which are marked for discard will be overwritten by the 
character definitions being read in. A discarded character has a large 'X' drawn 
through it on the character selection menu. When the DISCARD menu item is 
picked, the discard flags for all characters are reset. Selecting a character 
while in DISCARD mode complements its current discard status. 

DELETE 

This function is used to delete character definitions from the current font. Any 
characters which are picked while in DELETE mode are removed from the font. 

COPY 

The COPY function is used to duplicate a character definition at a location 
corresponding to a different ASCII code. After selecting COPY, you will be 
prompted to select the character you wish to copy, and then to select the 
character location to copy it to. When the copy is complete, you will be 
prompted to select another character to copy. 



CHARACTER FONT EDITOR - 5 

SWAP 

This is similar to COPY, except that the stroke definitions for the two 
characters are interchanged. Again, when the swap is complete, the operation 
may be repeated. 

EDIT 

The EDIT function allows you to define or modify the stroke definition of a 
character. After selecting EDIT, select the character to be modified. The 
character edit menu (described in Section 2) will then appear. After picking 
EXIT or RETURN on the edit menu, you will be returned to the main control 
menu; at this point, another character may be selected for editing. 

READ STD 

This function reads a standard font from a file. Only characters which are 
marked for discard will be overwritten. After selecting the function, you will be 
asked for the name of the file; type in a valid VAX/VMS file specification or a 
logical name. 

WRITE STD 

Selection of this menu item writes the current font to a file, using the format 
for standard fonts. After selecting the function, you will be asked for the name 
of the file; type in a valid VAX/VMS file specification or a logical name. 

READ ALT 

This function reads a user-defined alternate font from a file. The file is 

assumed to contain a single BEGIN_FONT...END_FONT command. Only 

characters which are marked for discard tivill be overwritten. After selecting the 

function, you will be asked for the name of the file; type in a valid VAX/VMS file 

specification or a logical name. 



6 —CHARACTER FONT EDITOR 

WRITE ALT 

Selection of this menu item writes the current font to a file, using the 
BEGIN_FONT...END_FONT format. After selecting the function, you will be 
asked for the name of the file; type in a valid VAX/1IMS file specification or a 
logical name. 

INIT 127 

This function initializes a 128—character font (containing definitions for 
characters corresponding to ASCII 0 to 127). All characters are deleted and 
marked for discard when this function is selected. (This happens automatically 
when MAKEFONT is started.) 

INIT 255 

This function initializes a 256—character font (containing definitions for 
characters corresponding to ASCII 0 to 255). All characters are deleted and 
marked for discard when this function is selected. 

Quir 

Selection of this menu item causes MAKEFONT to terminate; control is returned 
to the operating system. 



CHARACTER FONT EDITOR — 7 

3. EDIT MENU 

A separate menu is used to design individual characters in EDIT mode. This menu 
consists of the character design grid on the upper park of the screen, and text strings 
representing various functions on the lower part of the screen. The Edit Menu is shown 
in Figure 2. 

MOVE TO DRAW TO ORIGIN ERASE EXIT RETURN 

Move_to 
Editing character 103 

IASO450 

Figure 2. The Edit Menu 



8 —CHARACTER FONT EDITOR 

The design grid coordinates range from —64 to 64 in both X and Y. (This is because of 
the way the standard text fonts are defined. User—defined fonts are actually defined as 
real numbers between 0 and 1, but MAKEFONT does a conversion internally to integer 
coordinates.) Normally, characters are drawn within a "unit square" that corresponds to 
the upper right quadrant of the design grid. If the strokes defining the character extend 
beyond this area, this may cause overlap between adjacent characters. 

If very large characters are being edited, Control Dial 1 may be used to adjust the scale 
of the grid. 

Notice the blinking box on the design grid. This marks the position of the last "move" 
or "draw" in the character definition. 

If the tablet stylus is pressed within the character design grid, a stroke will be added to 
the character definition. The stroke will be either a "move" or a "draw", depending on 
the current state. 

MOVE TO 

Selecting this menu item causes the current state to be set to "move". Selecting 
a position in the character design grid will then cause a "move" stroke to be 
added to the character. This is ,the default state upon entering EDIT mode. 

DRAW TO 

Selecting this menu item causes the current state to be set to "draw". Selecting 
a position in the character design grid will then cause a "draw" stroke to be 
added to the character. 

ORIGIN 

This selection adds a stroke to the character which causes a move to the origin. 
This is useful since all characters in a standard font should have the last position 
at the origin. If this rule is not observed, the characters will be drawn with 
incorrect spacing (although this can be a feature of the font, not a problem). 



CHARACTER FONT EDITOR — 9 

ERASE 

This function causes the last stroke to be erased from the character definition. 
This function may be selected multiple times to erase several strokes. There is 
no way to erase strokes except from the end of the list. 

EXIT 

Selecting EXIT updates the definition of the character being edited in the font 
and returns the user to the Main Control Menu. 

RETURN 

Selecting RETURN returns the user to the Main Control Menu without saving any 
changes that were made to the character being edited. 



~-



CHARACTER FONT EDITOR — 1 1 

4. FONT STORAGE 

MAKEFONT stores a font internally as an array of pointers to character definitions. A 
NIL pointer indicates that the associated character has not been defined. 

Character definitions are records with two fields: an integer to keep track of how many 
strokes there are, and an array containing the strokes. Strokes are also records 
containing the absolute X and Y (integer) coordinates and a Boolean indicating whether 
it is a move or draw. The maximum number of strokes per character (the dimension of 
the stroke array) is 64, but as this is a symbolic constant it can be changed if needed. 

The primary advantage in using this f orr~~at for internal storage of the character 
definitions is the ease with which characters can be changed. For instance, swapping 
two characters involves only swapping the two pointers in the font array. 

EXTERNAL FONT STORAGE FORMAT (Standard Fonts) 

The font files are stored on the host as ASCII text. Each record of a font file 
consists of a 7 —digit octal number. These numbers are decoded in various ways. 

The first record in the file is an integer, giving the size of the "stroke table", in 
16 —bit words. 

The second record in the file is an integer describing how many characters are in 
the font :either 128 or 256. (This number will be referred to as 'n'). 

The remaining records in the file comprise the "stroke table". The first 'n' of 
these records are integers which give the offset of the corresponding character 
definition in the stroke table. A zero value indicates that a character has not 
been defined. 

Then there are a some zero records in the file, generally five. After these come 
the actual character definitions. 



12 —CHARACTER FO(~lT EDITOR 

Suppose that, for example, the value in location 68 of the stroke table were 599. 
That would mean that the definition for character 67 (68-1) begins at location 
599 in the stroke table. Then the value at location 599 would be the number of 
strokes (moves/draws) defining the character. If location 599 had a value of 10, 
then locations 600 to 609 would contain the move/draw instructions for the 
character. 

The move/draw instructions are stored with the X and Y displacements at 
RELATIVE distances between —63 and 63. The information is packed into a 
16—bit word as follows: 

Bit 0 move/draw information (0: move, 1=draw) 
Bits 1-7 Y —displacement 
Bit 8 unused 
Bits 9-15 X —displacement 

Each character definition has to end with a zero word. Also, character 
definitions have to be aligned on longword boundaries. This means that words 1 
to 'n' in the stroke table must all have ODD values, so that the first stroke 
definition command of each character has an EDEN offset. More zero words are 
added here and there in the stroke table to fill it out. 



PS 300 ADVANCED PROGRAMIVIING 

EVANS &SUTHERLAND 

April 1987 
E&S #901194-085 



The contents of this document are not to be reproduced or copied in 
whole or in part without the prior written permission of Evans & 
Sutherland. Evans &Sutherland assumes no responsibility for errors 
or inaccuracies in this document. It contains the most complete and 
accurate information available at the time of publication, and is 
subject to change without notice. 

PS 1, PS2, MPS, PS 300, PS 330, PS 340, PS 350, and PS 390 are 
trademarks of the Evans & Sutherland Computer Corporation. 
DEC, VAX, UNIBUS, and ULTRIX are trademarks of Digital 
Equipment Corporation. UNIX is a trademark of Bell Laboratories. 
IBM ~~1VI/SP and IBM MVS/TSO are trademarks of International 
Business Machines. 

Copyright m 1987 
EVANS &SUTHERLAND COMPUTER CORPORATION 

P.O. Box 8700, 580 Arapeen Drive 
Salt Lake City, Utah 8 410 8 



LlMirl'ED SUPPORT DISCLAIMER 

The User-Written Functions facility is distributed by Evans &Sutherland as a convenience to 
customers and as an aid to understanding the capabilities of the PS 300 graphics systems. Evans 
& Sutherland Customer Engineering supports the User-Written Functions facility and files 
necessary to use this facility to the following extent: E&S may supply one or two software packages 
that are necessary to support user-written functions. The support of these packages is described 
below. 

1. E&S provides . two library files USERSTRUC.PAS and USERLINK.ASM and command 
files to compile, assemble, and link user-written functions with the functions and 
procedures in the standard PS 300 system. E&S also provides utilities to build a file 
containing S-Records in a form suitable for downloading to the PS 300 and to load the 
user-written function via the RS-232 Async interface. These files, any features provided 
in the PS 300 Graphics Firmware that support user-written functions, and the 
documentation are all fully supported. 

2. E&S may also supply the executable 'code for the cross-software (compiler, assembler, 
and linker) that is used to produce the S-records that will be transported to the PS 300. 
If licensed and purchased through E&S, the executable files- will be distributed on a 
separate tape. If the customer buys a license from E&S, no support will be provided by 
Motorola. Any problems with the compiler, linker, or assembler may be reported to 
E&S, but we make no guarantee that they will be fixed. We will answer questions about 
installing and using these programs, but may refer you to the Motorola d~eumentation for 
details about the compiler, assembler, and linker. E&S will only dea! with questions 
related to using these programs to write user-written functions. We will not deal with 
questions relating to how to use the cross-software compiler, assembler, and linker for 
any other purpose. 



., 

. 



PREFACE 

This manual is intended for use by experienced programmers both as a guide to writing functions 
for the PS 300 Graphics System and as a reference for doing direct Physical I/O across the 

high—speed parallel interface. 

Modules 1, 2, and 3 provide an overview of PS 300 hardware and firmware, details of 
mass memory structures, and how the PS 300 creates and manipulates data and function 

structures. It contains useful information regardless of the programming environment. 

Module 4 discusses general physical I/O procedures and command formats; however, 
specific interface and operating system information must be found in the appropriate 

Customer Installation and User Manual. A list of these manuals is contained on the 

Related Documents page following this preface. 

Modules 5 through 8 and Appendices A through I provide information specific to 
programmers using the Motorola cross—software to write their own functions. 

Appendix J contains operation and data node formats for either programming situation. 

Appendix K lists PS 300 errors and meanings. 





RELATED DOCUMENTS 

PS 30D Document Set 

PS 350 User's Manual 

Customer Installation and User Manual PS 300 UNIPUS Parallel Interface for 
VAX/VMS Operating Systems 

Customer Installation and User Manual PS 300/UNIX UNIPUS Parallel Interface ,for 
UNIX Operating Systems 

Customer Installation and User Manual PS 300 ethernet Interface for VAX/V11~IS 
Operating Systems 

Customer Installation and User Manual PS 300 Ethernet Interface for UNIX 
Operating Systems 





CaNTENTs 

1 THE PS 300 GRAPHICS SYSTEM   1-1 

1.1 Hardware Components   1-1 

1.2 PS 300 Graphics Firmware   1-2 

PS 300 Startup Code   1-2 

PS 300 Communications and Graphics Code   1-3 

Z PS 300 MASS MEMORY STRUCTURES   2-1 

2.1 Alpha Block   2-1 

2.2 Named Entity Block   2-4 

2.2.1 Function Instance Block   2-5 

2.2.2 Display Structures   2-14 

2.2.2.1 Control Blocks   2-15 

2.2.2.2 Set Node   2-25 

2.2.2.3 Operation Node   2-27 

2.2.2.4 Data Node   2-28 

2.2.3 Character Font Block   2-31 

2.3 Commhead   2-33 

2.4 Number Formats   2- 3 3 

2.5 Hash Table   2-33 

3 PS 300 OPERATION   3-1 

3.1 Structure Creation   3-1 

3.1.1 Alpha Lookup   3-1 

3.1.2 Named Entity Creation   3-1 

3.1.3 GCP Datum Pointer Setup   3-1 



3.1.4 Alpha Update   3-2 

3.2 Update Process   3-2 

3.2.1 Alpha Update  ~ 3-3 

3.2.2 Vaiue Update   3 - 3 

3.2.3 ACPProof   3-3 

3.2.4 Use of RAWBLOCK   3-4 

3.3 Function Operation   3-5 

3.3.1 Scheduler   3-b 

3.3.2 Function Activation   3-7 

3.3.3 Function Status   3-7 

3.3.4 Function Code Format   3-8 

4 PHYSICAL IIO PROGRAMMING   4-1 

4.1 The F: USERUPD Function   4-1 

4.2 The Parallel Interface   4-2 

4.3 Physical I/O   4-2 

4.3.1 Physical I/O Constraints   4-3 

4.3.2 Physical I/O Operations   4-3 

4.4 Advanced Physical I/O Programming   4-5 

5 USER—WRI'T'TEN FUNCTIONS TUTORIAL   5-1 

5.1 Introduction to User—Written Functions   5-1 

S .1.1 Requirements   $-Z 

5.1.2 Objectives   5-Z 

5.1.3 Prerequisites   5-3 
5.2 Constructing a Simple Function   5-3 
5.2.1 Example   5-4 

S . 2.2 About Messages and Queues   5-7 

5.2.3 About Function States   5-$ 

5.3 Writing Your Own Function   5-10 
S . 3.1 Exercise   5-10 
5.3.2 Feedback   5-11 
5.4 Compiling, Linking, and Naming the Function   5-13 
S . 4.1 Description of the Command Files for DEC VAX/'VMS and UNIX   5-13 

5.4.2 DEC VAX/VMS Command File   5-14 



5.4.3 DEC VAX/UNIX Command Files   5-15 

5.4.4 Instructions for IBM Systems   5-16 

5.4.5 Exercise   5-16 

5.4.6 Feedback   5-17 

S . S . Transferring the Function to the PS 300   5-17 

5.5.1 Using Routing Bytes to Transfer the S-Record File   5-18 

5.5.2 Using the Graphics Support Routines to Transfer the S-Record File   5-18 

5.5.3 Exercise   5-19 

5.5.4 Feedback   $-20 

5.6 Instancing the Function   5-20 

5.7 Debugging User-Written Functions   5-21 

5.7.1 Exercise   5-22 

5.7.2 Feedback   5-22 

5.8 Conclusion   5-23 

6 MORE ADVANCED IDEAS   b-1 

6.1 Example I -Handling Different Message Types on the Same Queue   6-2 

6.2 Example II -SET CNESS and Private Queues   6-4 

6.3 Example III -Variable Number of Input Queues   6-7 

6.4 Example IV - User-Defined Qdata Type   6-11 

6.5 Conclusion   6-17 

7 LOADING AND DEBUGGING USER-WRITTEN FUNCTIONS   7-1 

7.1 Loading User-Written Functions From Diskette   7.1 

7.1.1 Loading the User-Written Function Into Mass Memory   7-2 

7.1.2 Loading the User-Written Function and Creating an Instance   7-3 

7.1.3 Conclusion  ~ 7-4 

7.2 PS 300 Debugger   7-b 

7.2.1 Using the Debugger   7-6 

7.2.2 Debugger Commands   7-8 

7.3 Setting Breakpoints in Your Code   7-24 



$ USER—WRITTEN FUNCTION REFERENCE 

Introduction 

Message Types 

QDtype. and Qdata 

Input Message Pointers 

PS 300 Floating—Point Numbers 

8-1 

8-1 

8-3 

8-3 

8-5 

8-6 

Vector = AR:RAY [0..3] of PS 300_Floating Point;   $-b 

Matrix = AR:RAY [0..3, 0..3] of PS 300_Floating_Point;   8-7 

Bytespell =ARRAY [ 1..25 5 J of CHAR;   8-7 

Topical Listing Of Utility Routines   8-8 

Input Queue Handling and Function Scheduling Procedures   8-8 

Error Reporting Procedures   8-8 

Set Cness Procedure   8-9 

Private Data Queue Procedures   8-9 

Message Management Procedures   8-9 

PS 300 Floating—Point Utilities   8-9 

Carving and Initialization Procedures   8-10 

Timing Procedures   8-10 

String Handling Procedures   8-10 

Other Procedures Provided Via USERLiNK. PAS   8-10 

Procedures Provided Via USERLINK   8-11 

CkInputs   8-11 

Char tent   $-11 

CkPrivate   8-11 

C1eanInputs   8-1 Z 

Csecs   8-12 

DropMessage   8~ 12 

FCadd   8-13 

FCdivide   8-13 

FCint2double   8-13 

FCinteger   8-13 

FCmultiply   8-13 

FCnearzero   8-14 

FCp2multiply   8-14 

FCround   8-14 

FCsgroot   8-14 

FCsubtract   8-15 

Fpabs   8-15 



Fpecomp   8-15 

Frames   8-15 

HRTime   8-16 

Int text   8-16 

MsgCopy   8-16 

My_in_out   8-17 

My_name   8-17 

Newgboolean   8-17 

Newginteger   8-17 

Newgmatrix   8-17 

Newqnil   8-18 

Newgpacket   8-18 

Newqreal  ~ 8-18 

Newgvector   $-18 

Newtry   8-19 

QIllMessage   8-19 

QIllValue   8-19 

Qincompatmsgs   8-20 

QSendCopyMess   8-20 

Real text   8-20 

Rndmnumber   8-21 

SavePrivate   8-Z 1 

SendlVlsg   8-21 

Set Cness  _ 8-21 

Sincos   8-22 

Systemerror   8-22 

Text text   8-22 

Ticks     8-22 

Time text   8-23 

UWFerror   8-23 

Vfetch   8-23 

Vstore   8-23 
.c C 

Advanced UWF Procedures   8-24 

Lk cursuffix   8-24 

Lk nosuffix   8-24 

Lgaupdate   8-25 

Announceupdate   8-25 

Msgstore   8-25 



Setlock 

Clrlock  

Incausage  

Decausage . 

AcpProof  

Acpprf 1  

oLbaddtoset  

Removefromset  

FetchBlock  

Acp_v3 f  

Acp v2f  

Acp_v3b  

Acp_v2b  

nStoreVector  

nNewAcpdata  

Store 3x3  

Store 4x4  

Drop name  

GetVector  

Rawbacopy  

Rawcbcopy  

Rawchcopy  

Size of  

FetchAdnum  

nFetchCopy  

WaitFrame  

loc_chead  

ptr dcb  

DropNE  

Newreturns  

Reactivate  

Myanyoutputs  

Fushmyinput  

WaitCsec  

Stack Size  

Error Messages  

.,~ 

8-2~ 

8-26 

8-26 

8-26 

8-27 

8-27 

8-27 

8-28 

8-28 

8- 28 

8-29 

8-29 

8-29 

8-30 

8-30 

8-30 

8-31 

8-31 

8-31 

8-31 

8-32 

8-32 

8-32 

8-32 

8-33 

8-33 

8-~~` 

8-33 

8-34 

8-34 

8-34 

8-34 

8-35 

8-35 

8-36 

8-38 



APPENDICES 

Appendix A. Using the Command Files on DEC VAX/VMS  A-1 - A-8 

Appendix B. Using the Command Files on DEC VAX/UNIX   B-1 - B-7 

Appendix C. Using the Cross-Software on IBM VM/SP  C-1 - C-6 

Appendix D. Using the Command Files on IBM MVS/TSO   D-1 

Appendix E. USERSTRUCT. PAS   E-1 - E-6 

Appendix F. Function Header Line Format   F-1 

Appendix G. S-Record Format   G-1- G-2 

Appendix H. Motorola Pascal Register Usage   H-1- H-4 

Appendix I. Commhead Format   I-1 - I-3 

Appendix J. Operation and Data Node Formats   J-1 - J-ZO 

Appendix K. Error Types/Error Numbers   K-1- K-5 



-~ 



FIGURES 

Figure 2-la. 

Figure 2-1b. 

Figure 2-2. 

Figure 2-3. 

Figure 2-4. 

Figure 2-5. 

Figure 2-6a. 

Figure 2-6b. 

Figure 2-7a. 

Figure Z-?b. 

Figure 2-8. 

Figure 2-9. 

Alpha Block  

Pascal Data Definition of Alpha Block  

Function Instance Data Structures  

Function Instance Block and Pascal Data Definition  

Function Inputs Block and Pascal Data Definition  

Outset Block and Pascal Data Definition 

D CR Block  

Pascal Data Definition of DCR Block  

D CB Block  

Pascal Data Definition of DCB Block  

Set Nodes and Pascal Data Definition  

Operation Node . 

Figure 2-10a. Data Node  

Figure 2-lOb. Pascal Data Definition of Data Node  

Figure 2-11. 

Figure 3-1. 

Figure 4-1. 

Figure 4-2. 

Figure 4-3. 

Figure J-1. 

Figure J-Z. 

Figure J-3. 

Figure J-4. 

Figure J-5. 

Figure J-6. 

Figure J-?. 

Figure J-8. 

Character Font Blocks and Pascal Data Definition  

Rawblock  

Format of Physical Read Address ~ List  

Format of Data From PS 300 in Physical Read  

Format of Data to PS 300 in Physical Write  

General Operation Node Format  

Viewport  .~ 
Character Rotate, Character Scale, Character Size, Matrix_2x2 

Rotate, Scale, Matrix_3x3  

Window, Eye Back, Field_of View, Matrix_4x4  

Translate  

Increment Level-of-Detail  

Decrement Level-of-Detail  

2-3 

2-4 

2-? 

2-8 

2-11 

2-13 

2-16 

2-17 

2-20 

2-21 

2-26 

2-28 

2-28 

2-29 

2-32 

3-4 

4-4 

4-4 

4-5 

J-2 

J-2 

J-2 

J-3 

J-3 

J-3 

J-4 

J-4 



Figure J-9. 

Figure J-10. 

Figure J-11. 

Figure J-12. 

Figure J-13. 

Figure J-14. 

Figure J-15. 

Figure J-16. 

Figure J-17. 

Figure J-18. 

Figure J-19. 

Figure J-20. 

Figure J-21. 

Figure J-22. 

Figure J-23. 

Figure J-24. 

Figure J-25. 

Figure J-26. 

Figure J-27. 

Figure J-28. 

Figure J-29. 

Figure J-30.-

Figure J-31. 

Figure J-32. 

Figure J-33. 

Figure J-34. 

Figure J-35. 

Figure J-36. 

Figure J-37. 

Figure J-38. 

Figure J-39. 

Figure J-40. 

Figure J-41. 

Set Level-of-Detail, Set Conditional• Bit, Set Displays, Set Character 
Orientation, Set Contrast, Set CSM, Set Depth_Clipping, Set 
Set Rate External, Set Blinking (PS 350 only) , 
Set Line_Texture (PS 350 only)  

IF ConditionalvB it, IF Phase (Bit 15) 

Plotter, 

... o • • o 0 0 • • • • • . . • • o . . o 0 0 • 

IF Level of Detail  
~ ~ 

Look At/From, Matrix 4x3  

Set Picking Location  

Set Picking Identifier  

Character Font  

Set Color, Set Color Blending  

Set Rate  

Set Intensity  

Xform Matrix  

Xform Vector  

~Vriteback  

Solid Rendering, Surface_Rendering  

Sectioning Plane  

Light Pen (PS 350 only)  

Text Size  

Load Viewport (PS 350 only)  

Set Blink Rate (PS 350 only)  

Load Picking Location (PS 350 only)  

General Data Node Format  

Vector_List N=n X1,Y1,Z1 X2,Y2,Z2 ... Xn,Yn,Zn 
Vector-Normalized (Full Vector) - 3D (Vec3f0)  

Vector_List N=n X1,Y1,-- X2,Y2,-- ... Xn,Yn,--
Vector-Normalized (Full Vector) - 2D (Vec2f0)  

Vector List Block N=n X1,Y1,Z1 X2,Y2,Z2 ...Xn,Yn,Zn 
Block-Normalized - 2D (Vec3b0)   J-14 
Vector List Block N=n Xi,Yl X2,Y2 ... Xn,Yn 

J-4 
J-6 

J-6 

J-! 

J-7 

J-7 

J-7 

J-8 

J-8 

J-8 

J-9 

J-9 

J-9 

J-9 

J-10 

J-10 

J-11 

J-11 

J-11 

J-11 

J-12 

J-13 

J-13 

J-14 
Characters, Labels   J-15 
Illumination  ~ J-15 ,<< 
Polygon   J-16 
Characters, Labels Character string (DstringD)   J-17 
Vector_List Block N=n X1,Y1,Z1 X2,YZ,Z2 ... Xn,Yn,Zn   J-18 
Vector_List Block N=n X1,Y1 XZ,Y2 ... Xn,Yn   J-18 
Vector_List N=n X1,Y1,Z1 X2,Y2,Z2 ... Xn,Yn,Zn   J-19 
Vector_List N=n X1,Y1 X2,Y2 ... Xn,Yn   J-2p 

Block-Normalized - 2D (Vec2b0) 



DIAGRAMS AND TABLES 

Function States Diagram   5-9 

Function Network Diagram 1   7-5 

Function Network Diagram 2  ~ 7-5 

Table 7.2-1 Commands Accessing "Open" Memory Locations   7-9 

Table 7.2-1 Commands Accessing "Open" Memory Locations (continued)   7-10 

Table 7.2-1 Commands Accessing "Open" Memory Locations (continued}   7-11 

Table 7.2-2 Commands to List Data in Memory   7-12 

Table 7.2-3 Program Execution and Debugging Commands   7-13 

Table 7.2-3 Program Execution and Debugging Commands (continued)   7-14 

Table 7.2-4 Breakpoint-Related Commands   7-15 

Table 7.2-4 Breakpoint-Related Commands (continued}   7-16 

Table 7.2-5 Hunt Commands  
_ 

7-17 

Table 7.2-5 Boot-related Commands   7-18 

Table 7.2-6 Boot-related Commands (continued)   7-19 

Table 7.2-6 Boot-related Commands (continued)   7-20 

Table 7. Z-7 Memory Test Commands   7-21 

Table 7.2-7 Memory Test Commands (continued)   7-22 

Table 7.2-7 Memory Test Commands (continued)   7-23 



.~ c 



MODULE 1 

The PS 300 Graphics System 

This document is intended to provide information about the data formats and system function of 
the PS 300. It contains the information necessary to effectively write advanced user—written 
functions and to perform physical IIO functions across the high—speed parallel interface. The PS 
300 is a data—driven, interactive display system. It consists of several general— and 
special—purpose processors- and subsystems that are interfaced by means of a general data bus in 
conjunction with a mass memory system. 

1.1 Hardware Components 

The Graphics Control Processor (GCP) is ageneral—purpose microprocessor that manages 
the data structures in mass memory and initiates the display defined by these data 
structures. The GCP contains 25 6K (512K in a JCP system) bytes of local program 
memory. The Mass Memory is a general—purpose, dual—ported memory that is 
byte—addressable by the GCP. It consists of one or more Mass Memory cards, each of 
which contains 1024K bytes of memory. (Up to 2048K of mass memory is available on 
the JCP card) . This memory may be used as program memory for the GCP, but generally 
provides the memory in which data structures are stored and manipulated by the GCP 
and accessed for display by the Display Processor. The Display Processor accesses the 
data structures in the Mass Memory. Each refresh cycle, the Display Processor traverses 
the data structures and transforms the data to be displayed; performs clipping, 
perspective projections and viewport mapping; and finally draws the data on the CRT. 
The Display Processor is comprised of an Arithmetic Control Processor (ACP} , a Pipeline 
Subsystem(PLS} and a Line Generator Subsystem(LGS} . (There is also a Refresh Buffer 
between the PLS and LGS on the PS 350 systems) . 

• The Arithmetic Control Processor is aspecial—purpose, bit—slice microprocessor that 
interfaces with the Mass Memory by means of ahigh—bandwidth, 32—bit memory 
access port. The ACP traverses linked data structures in Mass Memory, referred to 
as SOD (Set—Operate—Data) structures. The SOD structures contain commands that 
indicate the functions the ACP is to perform for each SOD data block. These include 
commands to modify the state of the ACP and process three—dimensional data. 

PS ADO Advanced Programming - 1-1 



PS 300 Graphics System 

The state of the ACP is considered to be those values which are context dependent, 
such as transformation matrix contents, viewport boundaries, color, line texture, etc. 
'The SOD structures and the commands which initiate and control the ACP functions 
are detailed in later sections. In traversing the SOD structures, the ACP performs all 
of the matrix operations required to transform data points before passing the 
transformed data coordinates to the Pipeline Subsystem. 

• The Pipeline Subsystem accepts transformed data coordinates from the ACP and 
performs clipping, perspective division, and viewport mapping on the data to be 
displayed. The Pipeline Subsystem processes data asynchronously in relation to the 
processing performed by the ACP. The processed data is then output to the Line 
Generator Subsystem. 

~ The Line Generator Subsystem accepts screen coordinate data from the Pipeline 
Subsystem. From this data, the Line Generator Subsystem produces images on the 
CRT. 

1 e2 PS 300 Graphics Firmware 

The primary purpose of the PS 300 graphics firmware is the manipulation of data structures that 
are traversed by the Display Processor to display information. To do this, the graphics firmware 
must: 

• 

1. Perform startup operations 

2. Communicate with the host computer support software 

3. Receive input from graphics peripherals 

4. Initiate updates of the data structures 

5. Perform data storage allocation/deallocation 

6. Initiate the traversal of the data structures by the Display Processor 

The graphics firmware is made up of 

PS 300 Startup Code 

This determines hardware availability and status by performing a series of self—tests on 
hardware components. Following these self—tests, system configuration parameters and 
the 68000 Graphics Control Program are Loaded from the PS 300 floppy disk drive. 

s 

.~ ti~ 

1-2 - PS 300 Advanced Programming 



PS 300 Graphics System 

PS 300 Communications and Graphics Code 

Once start-up code is completed, the Graphics Control Program then initializes all data 
structures and communications handlers and awaits input from host software or keyboard. 

Included in this document are several block diagrams of data structures. The values of fields are 
indicated graphically, as in the following examples: 

16-bit Field 

32-bit Field 

Two 8-bit Fields 

PS 300 Advanced Programming 1-3 





MODULE 

PS 3~~ Mass Memory Structures 

PS 300 data structures are built by the GCP and exist in mass memory. Data structures in the 
PS300 which can be named by the user are referred to as Named Entities. Named Entity blocks 
represent function instances, variables, character fonts and display data structures. These types of 
structures are called Named Entities, even if there is no associated name. Hence, the term 
Named Entities refers to blocks which can be (but not necessarily are) named. The name 
associated with a Named Entity is kept in a block referred to as an alpha block. An alpha block is 
a data structure that contains the location in mass memory of a Named Entity as well as the name, 
if any, associated with that Named Entity. Every Named Entity, regardless of whether the user 
has chosen .to name it or not, has an alpha block associated with it.Alpha blocks with names are 
listed in a dictionary that is indexed by means of affixed-length hash table. The hash table is an 
array of pointers to forward and backward linked lists of alpha blocks. Naming a node causes the 
name to be entered into a hash table along with a porter to where the current node associated 
with that name resides in PS 300 Mass Memory. 

Though the address of the Named Entity referred to may change often, the address of the alpha 
block remains constant until an INITIALIZE command is entered, which will destroy the alpha 
block. 

In general, all references to a Named Entity structure are indirect, through its alpha block. 
Whenever some node in the system references another node, a pointer is placed to the alpha 
block (known as an "alpha pointer") so that the current node associated with that name can be 
determined. 

2.1 Alpha Block 

The alpha block structure is shown in Figure 2.1. Some contents of the alpha block are: 

• Datum Pointer •' ~~ r 

The aturn pointer points to a ocation in ass emory o e ame nt1 y to w is 
the alpha block refers. 

PS 300 Advanced Programming 2-1 



Mass Memory Structures 

• Dictionary Forward and Backward Pointer 

The dictionary forward and backward alpha pointers allow an alpha block to be linked 

into the cctionary list. 

.~ 

• Usage Count 

Usage count indicates the current number of references made to the alpha block in the 
display data structures or function networks. It is necessary since names may be multiply 
referenced. The usage count must . be incremented for every new pointer to this alpha 

block, and must be dcremented each time a pointer to the block is removed. When the 

usage count becomes zero, the alpha and its associated Named Entity block are removed 
from storage. Two utility routines, Incausage and Decausage exist to perform these 

actions. 

Note 

It Is Very Important To Keep This Count Accurate! If the count is too 
small it will crash the system at some later time, if it is too large the 
memory will never be recovered. 

• Alock 
• 

This is a Boolean value that is set true when the alpha is being manipulated, false 
otherwise. Normally, the utility procedures provided handle locking and unlocking of this 
field when it is necessary. 

• Ci num 

This field is a positive integer which indicates which instance of the Command Interpreter 
created the alpha block. Each Command Interpreter has associated with it a Ci_nurn 
which is the parameter that is given when instancing the command interpreter (for 
example, CIinstance : = f : ci (4) ; } . This number is kept in the CI's private data and is 
written into the alpha block for each alpha it creates. Note that once an alpha has been 
created, it "belongs" to this CI until an INIT command occurs. Even cede ° 'tion of the 
contents of an alpha block by another instance of the CI does not change ownership of 
the alpha. when the CI function instance receives an INITIALIZE command, it can then 
identify those alphas in the dictionary which it created and which need to be destroyed. 

• Gcpdatum 

The Gcpdatum points to the location i~ Mass Memory of the Named Entity to which the 
alpha will refer after all current data structure updates have been done. Whenever the 
GCP needs to find the Named Entity which is referred to by an alpha, it must look at this 
field rather than the Datum field, since the Gcpdatum field has the latest changes. This 
field disagrees with the Datum field only when an alpha update is pending. See the 
section on Alpha Updates for fiurther information. 

2-2 PS 300 Advanced Programming 



Mass Memory Structures 

• Namelength 

The namelength specifies the byte length of the name associated with the alpha block. 

• Name -. 

The name is a string of characters representing the name of the Named Entity. 

Pointer - Datum 

Alpha Pointer ____ Dict Forward 

'- Pointer Dict Back Alpha 

Usage Alock - Ci_num 

-' Gcpdatum -' 

'- Reserved --~ 

n = Namelength Char 0 

Char 1 Char 2 

Char n-1 Ghar n 

Figure 2-la. Alpha Bloch 

s 

~~ ',: 

PS 300 Advanced Programming 2-3 



Mass Memory Structures 

TYPE 
Ptralphablk 
PtrNamedEntity 
Namespell 
Lock 
Int 16 

_ " Alphablk; 
_ " NamedEntity; 
= ARRAY [ 1.. 2 5 5 ] OF Char; 
= Boolean; 
_ -32768..32767; 

Alphablk = 
RECORD 

Datum: Ptrnamedentity; 
Dictfwd: Ptralphablk; 
Dictback: Ptralphablk; 
Usage: Int16; 
ai,ock :Lock ; 
Ci_num: Int8 ; 
Gcpdatum: Ptrnamedentity; 

UserDatum: Ptrnamedentity; 
Namelength: Int 16 ; 
Name; Namespell; 

END; { of Alphablk } 

( Alpha's Named Entity } 
{ Dictionary list pointers } 

{ Reference count } 
{ Lock on this alpha } 
{ ID number of creating CI } 
{ Alpha's Named Entity } 
{ after all updates } 
{ Reserved for future use } 
{ Number characters of name } 
{ Alpha's name } 

Figure 2-lb. Pascal Data Definition of Alpha Block 

2.2 Named Entity Block 

'r 

a 

A Named Entity is a basic data structure type of the PS 300 system that can be named and 
referenced. Some of the Named Entity types are as follows: 

• Function Instance 

A function instance is a Named Entity that performs a given function, based upon a given 
set of inputs, and creates a given set of outputs. 

• Display Structures 

The ACP traverses these each refresh cycle for display purposes. 

• Character Font Block 
•' 'yam

A character font block is a structure that defines the strokes or vectors which make up the 
characters. It consists of an integer that indicates this display structure is a character font 
black, a 128 (or 25 6) -entry character font table (one for each character of the 12 8 
displayable ASCII character set), and up to 128 (or 256) associated character stroke 
blocks (with strokes in relative mode) . 

2-4 ~ PS 300 Advanced Programming 



Mass Memory Structures 

/'1 2.2.1 Function Instance Biock 

Functions perform specific operations by accepting input, processing it, and sending output to 
other functions. Generic functions exist as Pascal-callable procedures which reside in the 
Graphics Control Program. Since each function is guaranteed to run to completion once execution 
has begun, the module of code for a generic function can be shared among several instances of 
the function without regard to reentrancy requirements (as long as sufficient mass memory is 
available} . Care must be taken, however, to ensure that all residual data are kept on a private 
data queue which is accessible only to that function instance. Functions may be used individually 
or be part of a network of functions to perform a required operation. Three types of functions 
exist: standard functions, system functions, acid I/O functions. 

1. Standard functions 

Standard functions include all user-created functions and those functions receiving input 
from devices. Standard functions communicate through their inputs and outputs. They 
have specified priorities and are scheduled for execution accordingly by the Scheduler. 

2. System functions 

The system functions are special-purpose functions which can be created only by the 
firmware itself and which cannot be part of auser-created function network. One system 
function is the DESTROY function, which returns memory blocks to free storage. Its 

~ input queue is accessible to all functions, not by a function connection, but by a global 
variable. Another system function is the UPDATE-FORMA'1-1'ER function, which takes 
update blocks from asystem-wide update list and prepares their contents for the ACP to 
work on. This function has no inputs or outputs but is activated when an update is put on 
the update list. The UPDATE-KILLER function also has no inputs or outputs as other 
functions do. It is activated when update blocks have been processed by the ACP and 
need to be destroyed. 

3. I/O functions 

I/O functions perform input/output operations for I/O devices only. One input function 
and one output function exist per device. I/O functions are unique in that they 
communicate with interrupt-level routines through special buffers rather than through the 
normal function communication method of queued messages. Specifically, an input 
function differs from other functions in that it has no input queues. Instead, its data 

• come from the specific hard-coded buffer associated with its input device. When an input 
interrupt occurs, an interrupt routine places all input in this buffer and determines if an 
input function is waiting on that buffer. If so, the input function is activated. An output 
function is special in that it is the only function which waits on both an input queue and 

•~ an output "queue" . The output function receives input as queued messages and outputs 
to an associated hard-coded buffer through a special interrupt procedure. It may have to 
wait either for room in the output buffer or for new queued messages. Note that because 
I/O functions can communicate with other functions, they have names which the host can 
access (for creating function networks) , as well as standard communication queues for 
that purpose . 

PS 300 Advanced Programming 2-S 



1'Vfass 1Vlemory Structures 

~ Function Instance Data Structures 

when the need for a particular function arises, an "instance" of the generic function is 

created by the user or by the system. This function instance has its own unique set of 

input sources, output destinations, and private data. ' 

Before a function instance can be created, enough mass memory must be reserved to 
accommodate the necessary data structures. These data structures are: a Function 

Instance block, a Function Inputs block, and Outset blocks. 

To understand these data structures, it is important to note that PS 300 Pascal is not 
standard Pascal. In standard Pascal, the length of all records is known at compile time. 
In PS 300 Pascal, the size of one array in the record can be determined at runtime. 
Because this array is placed in the last field of the record, the compiler can correctly 
compute the starting offset of that last field (as well as all prior fields} . Standard Pascal 

allows a similar subterfuge in permitting variant records. With the PS 300 Pascal, note that 

the variance is extended to include the size of a final array. For example, a variable 
number of inputs and outputs is allowed for a function Yn~t~nce. The last field in the 
function instance .block is an array (of variable length) of c~uiset pointers (one for each 
output} . In order to allow a variable number of inputs, a separate Function Inputs block 
was defined whose last field is an array of input queue pointers (one for each input} . 

The Function Instance structure contains all the references to data needed to define a 
function instance. This information includes (a) an index identifying the Pascal-callable 
procedure that performs the required generic function, (b) the input source (s} , (c) the 
output destination (s} , (d} a priority value for scheduling purposes, (e} the current status 
of the function, and other information about the function. 

s 

The Function Instance block contains the address of a Function Input block. Each input 
queue is defined ~ by a Message Queue block. The Function Inputs block contains the 
number of inputs for the function, a message queue for the private message of the 
function, and one message queue for each other input of the function. 

The Message Queue block references the input data itself. It also indicates if the function 
instance is waiting for input on its associated data in order to be activated, though this 
technique is used only if the function requests to wait for a specific input rather than a full 
set of inputs. 

The Function Instance block also points to Function Outset blocks. The Function Outset 
block identifies each of the output destinations of this function instance, including the 

•~ ~~ appropriate queue of the receiving function or display data structure. 

The Function Outset blocks contain two int8's (aside: an int8 implies that the maximum 
degree of fanout from a function is 127) . One int8, Main, gives the capacity of the 
block; the other, N, gives the capacity actually used, where capacity means the number of 
output designators that will fit in the block. 

2-6 PS 300 Advanced Programming 



Mass Memory Structures 

A negative N is initially indicated. If a function attempts to send data out of an output 
port with a negative N, a warning "No connection ever made out of ..." (or somesuch} is 
issued, and the used field is set to zero (this prevents repeated warnings of no connection 
ever made} . An effect of a DISCONN ... :ALL on that output is to set N field to zero; 
this provides a means of the user specifically to indicate that no connection was intended 
to be made out of that input and hence disable the warning. The N also only goes down 
to zero (i.e., is not made negative} if each connection ever made is specifically removed 
(as opposed to the :ALL technique) .~ 

Figure 2-2 illustrates the general relationship between these function instance data 
structures. Then next sections detail each of these structure blocks. 

Function 
Instance 

Function 
Inputs 

Outset 

Input Message 

Input Message 

Input Message 

~ Pointer to Alpha Block of destination 

Figure 2-Z. Function Instance Data Structures 

~ Function Instance Block s 

A function instance is represented in storage by a function instance block of the format 
shown in Figure 2-3. 

~y ~ 

PS 300 Advanced Programming 2-7 



Mass Memory Structures 

Function Instance _ ~ 

® Named Entity Pointer ---~ 

Function Status Priority Value 

-- My Alpha Pointer --~ 

-- Debug Alpha Pointer ---

-- Debug Alpha Pointer --

Myint8 Carve. Memory 

Debug Function Code 

Pascal Function Code 
____. Function Inputs Pointer -+ 

Num of Outputs IamMemOI~ 

NumNonNull 

--~ Outset 1 Pointer 

i 

• 

--- Outset nPointer ---

CONST 
Fcninstance 

TYPE 
= 4• 

Ptrl~TamedEntity = " NamedEntity; 
Ptralphablk ~ " Alphablk; 
Ptrfcninputs = " Fcninputs; 
Ptroutset = "Outset 
IntB = -128..127 
Fcninstance = 

RECORD 
Type: Fcninstance; 
Schednext: PtrNamedEntity; 
Status: Fcn status; 
Priority: IntB ; 

s 
Myalpha: Ptralphablk; 
A_dbecmdex: Ptralphablk; 
A_dbgprint: Ptralphablk; 
Myint8 : int8 ; { 1-byte private message} 
Carvememory: Boolean; 
D_fcncode: Fcnty~pe; ' 
P fcncode: Fcntype; 
Inputs: Ptrfcninputs; 
Noutputs : Int 8 ; 
IamMemOK : M~r~OKindex; 
NumNonNull : Int 16 ; 
Outputs: AR:R.AY [Dummysize] OF Ptroutset; 

END; 

Figure 2-3. Function Instance Block and Pascal Data Definition 

2-8 PS 30o Advanced Programming 



1V~ass 1Vlemory Structures 

The fields of the function instance block are detailed below. 

- Function Instance 

This field identifies this block as a function instance block. 

- Named Entity Pointer 

The second field in the function instance block is for use by the Scheduler. The 
Named Entity pointer identifies the function instance next to run on the active or 
priority function list. 

- Function Status 

This field indicates the current state of the function instance. 

- Priority Value 

The priority value gives the priority of the function. The Scheduler uses this value at 
scheduling time to determine when this function will execute in relation to other 
functions ready to run. Lowest priority is 1 S and the highest is 0 . 

- Alpha Pointer 

The alpha pointer {Myalpha) points to the block in memory containing the user- or 
system-given name of the function instance. Note that because a function instance is 
a Named Entity, it may be named by the user. Through this name, the user may 
create the function instance, delete it, or display data structures. 

- Debug Alpha Pointers 

These alpha pointers are currently not used. 

- Myint8 

This field is used by individual functions for private data. For example, some of the 
data concentrator functions indicate which port this function serves via this field. 

- Carve Memory 

This is a boolean which indicates whether this function might need to carve memory. 

- Debug Function Code 

This .field identifies the generic function (a Pascal-callable procedure} to be called 
when the function instance is executed. 

- Pascal Function Code 

This code identifies the generic function (a Pascal-callable procedure) to be called 
when the function instance is scheduled for execution. (This field is always the same 
as the Debug Function code.) 

PS 3D0 Advanced Programming 2-9 



Mass Memory Structures 

- Function Inputs Pointer 

The function inputs pointer points to a function input block that lists the function 

instance inputs. 

- Number of Outputs 

Number of outputs specifies how many different output values are to be sent from this 
function to other functions . 

- IamMemOK 

This is index into array of users. Free storage used by this function will be charged to 
the user according to this index. Also, the scheduler uses this index to determine 
which user category this function is in. 

- NumNonNull 

This represents the number of inputs queues which still need data in order for this 
function to be able to run. When a message is sent to a previously empty input queue, 
this number is decremented; when it becomes 0, the function is ready be executed. 

- Outset Pointers 

Each function output port has an outset block. The outset block identifies output 
destination (s) . 

~ Function Inputs Block 

A function input arrives in the farm of a queued message. A function inputs block, see 
figure, contains the input queue headers. 

2-10 PS 300 Advanced Programming 



Mass Memory Structures 

Number Inputs Not Used 

- Private Queue Head Pointer 

- Private Queue Tail Pointer ---

Cqueue Ownerwait 

-- Input 1 Queue Head Pointer ---

input -- 1 Queue Tail Pointer --

Input 1 Cqueue Ownerwait 

- Input n Queue Head Pointer -

- Input n Queue Tail Pointer -

Input n Cqueue Ownerwait 

Reserved 

i 

TYPE 
Mqueue = 

RECORD 
Qhead: Ftrgdata; 
Qtai1: Ptrqdata; 
CQueue : Boolean; 
Ownerwait : Boolean; 

END; {of Mqueue} 

{head of queue} 
{tail of queue} 
{true -Cqueue, false - Tqueue} 
{true function waiting on this} 
{queue for activation} 

Fcninputs = 
REcoRD 

Nin: Int8 ; {number of input queues} 
Private: Mqueue; {private data} 
Inputqueues: ARRAY [Dummysize] OF Mqueue; {actual input queues} 

END; {of Fcninputs} 

• Figure 2-4. Function Inputs Block and Pascal Data Definition 

The fields of the function input block are detailed below: 

- Number of Inputs 

Number of inputs specifies the number of (public, not private) input a u eues of the 
function instance. 

PS 300 Advanced Programming ~ 2-11 



Mass Memory Structures 

- Private Message Queue Head and Tail Pointers 

A private data queue retains variables needed from one execution of the function 

in~'tance to tl~e next. Private message queue head and tail pointers point to the first 

and last messages on this queue. 

- Inputqueues Head and Tail Pointers 

These pointers point to the first and last messages on this queue. 

- Cness 

This Boolean value indicates if this queue is to be treated as a Constant or Trigger 

queue. Each function is initialized with specific defaults for each queue. This value 
may be changed from its default via the SETUP CNESS command. 

- Ownerwait 

This indicates if the function is waiting for input on this queue. It is only used if the 
function requests to wait on this specific queue. Most functions do not make use of 
this field anymore . 

• Outset Block 

An outset block, shown in Figure 2-5, gives the set of destinations for an output of a 
function. Each different output has an outset block. An outset block may specify any 
number of function instance or display data structure recipients; each is identified by its 
alpha pointer. The input number designates which input queue of the destination 
function or structure will receive this function's output. 

• Qdata Blocks 

A function's input queues are queues of Qdata blocks, each containing a message from 
another function. A message can communicate either data or an event (or both} , and is 
one of many types. Each Qdata block has a pointer to the next message on the queue, a 
field indicating the message type, followed by the message itself, whose contents and 
format depend upon the message type. Note that some Qdata are special types put on a 
private queue. A private data queue retains variables needed from one execution of a 
function instance to the next. 

• Function Instancing 

The function instance data structures provide the means for interfunction 
communication. Most commonly, function instances receive inputs from and send 
outputs to other function instances within a "function network. " Function instancing is 
the process of creating a function instance and tying it to the existing function network. 
Some function instances are instanced automatically in the PS 300 initialization code; 
others are done at the user's command. 

2-12 PS 300 Adva~zced Programming 



Mass Memory Structures 

Number Recipients Number this block 

- Alpha Pointer 1 --

- Input Number 1 -

Ci num Memok 

--- Alpha Pointer 2 -, 

2 - Input Number --

Ci num Memok 

--~ Alpha Pointer n ---

- Input Number n 

Ci num Memok 

TYPE 
Ptralphablk 
Int8 
Int 16 

_ "Alphablk; 
_ -128..127; 
_ -32768..32767 

Outdesignator 
RECORD 

Who: Ptralphablk; 
n: int16; 
CI num : int8; 
memok : memokindex 

END; {of Outdesignator} 
Outset = 

RECORD 
n: Int8; 
1Vlaxn: Int8; 
o : AR:RAY [ Dummysiz e ] 

END; {of Outset} 

{Alpha of destination} 
{index into that block} 
{CI that did the connect} 
{user classification of the connection} 

{set of output designators} 
{number of recipients} 
{# of Outdesignators this block can hold} 

OF Outdesignator; 

Figure 2-5. Outset Block and Pascal Data Definition 

To create a function instance, the system does the following: 

1. Obtains a function instance block for the function and loads it with the function code 
and priority values. 

2 . Assigns to the instance the user- or system-specified name (in an alpha block) , ties 
the alpha into the name dictionary (if it is not already there) , a j~l ~1 r nters the alpha 
address into the function instance block. 

PS 300 Advanced Programming 2-13 



1Vlass 1Vlemory Structures 

3. Sets up the input, output, and private data queue structure. This involves creating a 
function inputs block, and an outset block for each output, then tying the blocks 
together in the proper manner. 

4. Executes initialization code for the function, if any exists. 

5. Marks the function's state as "Act on update" and then asks the ACP to associate the 
function with its _name. (Some functions created at boot time are just directly 
associated. This is safe since the ACP cannot be using that name yet since the ACP is 
not running} . 

6. When the update killer function in the GCP sees that the name association for a 
function has been performed, it activates the function. The next time the scheduler 

runs, it will place the function on its appropriate active list. 

7. Executes the function. During this first execution, the function causes itself to wait for 
data in the appropriate manner (i.e., from a queue, from the clock, or from a 
device) . In addition, it may perform some initialization specific to that function (such 
as setting up its private queue data) , although this is usually done in the function 
initialization code described above. 

Once a function instance has been created, the user or system can connect it into the 
existing function network by issuing a command to tie the function's outputs to their 
destinations. This is done, for any given output, by entering into the outset block a 
pointer to and an index into the receiving function instance or data structure node. In 
the same manner, other functions may be connected to this function through its alpha (or 
name) . Note that since connections to receiving functions (and display structures) are 
made via their alphas, those functions (and structures) need not exist prior to this 
connection, and a redefinition of the receiving function does- not destroy connections 
from other functions into it. 

2.2.2 Display Structures 

Display structures in the PS 300 represent the operations and data that form the two— or 
three—dimensional objects constructed by the user. The objects that are formed are represented 
by a structured display file that is traversed each refresh cycle by the ACP. The structured display 
file is created and modified under control of the Graphics Control Processor (GCP, the 68000 in 
the system} . The elements of the structured display file are quite simplistic in nature, forming an 
acyclic graph of nodes that are either: 

• Control blocks (DCR, DCB} 

• Data (dots, lines, or characters) 

• Operations that change the "state of the machine" for descendent data n~,~lcs. 

• Set nodes that contain lists of branches of the acyclic graph that are to bC Traversed. 

With the exception of the control blocks, these nodes are all Named Entities, ctzus they each have 
an associated alpha block which may include a name. 

2-14 PS 300 Advanced Programming 



Mass Memory Structtcres 

r"1 2.2.2.1 Control Blocks 

The Display Control Root (DCR} and Display Control Block (DCB} are control blocks which 
serve as the major communication links between the ACP and the GCP. The DCR contains the 
items used for communication between the GCP and ACP. The DCR contains the address in 
Mass Memory where the first DCB resides. A DCB is the topmost node of the user's structure; 
one DCB exists for each user. 

• Display Control Root (DCR) 

The Display Control Root (DCR) is a block of storage that serves as the root node of the 
display data structures. The DCR, in conjunction with the Display Control Blocks, is the 
only means by which the GCP and the Display Processor (ACP} communicate directly. 
During system initialization, the GCP writes the address of the DCR to the ACP. The 
ACP microcode can then read this address and store it internally. The ACP controls the 
refresh synchronization by means of the DCR. The ACP polls a flag in the DCR, waiting 
for the flag to be set by the GCP to initiate a refresh cycle. When the GCP sets the flag, 
the ACP begins traversing the display data structures. When the ACP completes 
traversing the data structures, it performs the updates specified by the DCR, resets the 
flag, and restarts the process by polling the DCR again and then waiting for the GCP to 
initiate another refresh cycle. The DCR is shown in Figure 2-6. 

PS 300 Advanced Programming 2-1 S 



Mass Memory Structures 

Display Processor Busy Flag 

Do Updates Flag 

Plot Done Flag 

Plot Select 

-- Upblock List Head 

1st DCB Pointer - 

Transmit Trigger 

Progress Flag 

X Start 

Y Start 

//////////////////// //////////// 

Transmit Mode 

'---~ FIFO Head 

--- FIFO Tail 

ACP Dispose Flag 

///I!//I //////I/!/// ////!/////// 
Free Storage Size 

Free Storage Pointer 

Timeout Delta 

ACP Status 

Upblock List Tail 

Timeout Function Pointer 

ACP Free Owner 

ACP Free Lock /// ///////////// 

Last Shade Block 

Figure Z-6a. D CR Block 

2-16 PS 300 Advanced Programming 



Mass Memory Structures 

TYPE 

Int 16 
Bitmask 
PtrAvupblock 
PtrDCB 
Ptrnamedentity 
Lock 

-32768..32767 

=lnt 16 ; 
"Avupblock; 
="DCB; 
"Namedentity; 
BOOLEAN; 

DCRbIk = 
REcoRD 

ACPbusy: Int16; 
Doupdates: Int16; 
Plotdone: Bitmask; 
Plotselect: Bitmask; 
Avup: PtrAvupblk; 
FirstDCB: PtrDCB; 
Xmit Trigger : Int16; 
Progress flag : Int16; 

x Start : Int 16 ; 
Y Start : Int 16 ; 
unused0 : Int16; 

xmit mode : Int 16; 
FIFO_head : Ptrgdata; 
FIFO tail : Ptrgdata; 
unused 1 : Int 16 ; 
ACPDisposeFlag : Int16; 
unused2 : Int 16; 
ACPFreesize : Integer; 
PtrACPFree : PtrIntArray; 
TimeoutDelta : Int16; 
ACP Status : Int16; 
Avupt: Ptravupblk; 
Timoutfcn: Ptrnamedentity; 
ACPFreeowner : Ptrnamedentity; 
ACPFreelock :Lock; 
LastshadeBlock : Ptrgdata; 

END; 

Figure 2-6b. Pascal Data Definition of DCR Block 

As the figure shows, the DCR consists of several items, ten of which are explained below: 

- ACP Busy Flag 

The Display Processor busy flag (ACPbusy) is the location in Mass Memory that the 
ACP polls to determine when to begin traversing the display data structures. The GCP 
sets this location to a non-zero value to initiate a new refresh cycle, synchronizing the 

PS 300 Advanced Programming 217 



Mass Memory Structures 

setting of this location with the line frequency. When the ACP has completed its 
traversal (and update) cycle, it zeroes this location, indicating it is idle again. 

- Do Updates Flag 

The Do Updates flag (Doupdates) is a location that the ACP examines at the end of 
each refresh cycle to determine whether updates are to be performed. If this location 

is non-zero, then the update list head must be examined to determine the address of 

the first update to perform. 

- Plot Done Flag 

This field is used when a hard copy (plot) has been requested. Bit 10 in this field is 
set to indicate to the GCP that the plot has been completed. 

- Plot Select Flag 

The GCP sets bit 10 in this field to indicate to the ACP that a hard copy (plot) has 
been requested. Note that bits 8 and 9 indicate which hard-copy device has been 
selected for use. 

- Update List Head and Update List Tail 

when a change needs to be made in the display_ data structures, the GCP 
communicates the change to the Display Processor in an update block (Avupblk) . 
The update block is on an update list, which has a head and tail pointed at by the 
DC1~ update list head and list tail. The update list head indicates the address of the 
first update the ACP is to perform. Once an update cycle is completed, the ACP 
zeroes the (Doupdates) flag. The update list tail is used only by the GCP. When an 
update cycle is completed, the GCP returns the blocks in the update list to the free 
storage pool. 

- First Display Control Block Pointer 

The first Display Control Block pointer (FirstDCB} is an address in Mass Memory 
where the head of a list of Display Control Blocks resides. 

- Size of Free Storage Block 

This field gives the size in bytes of the contiguous block of free storage which has been 
allocated for the ACP's exclusive use for~perations such as sectioning and hidden line 
removal. A value of zero implies that no storage has been set aside for ACP use. 

- Pointer to Free Storage Block 

This field gives the pointer to the free storage block described above. 

- ACP Status 

This field is used as part of an intricate communications mechanism between the ACP 
and the GCP. when any solid modeling command is invoked via the solid rendering 

2-~ 8 PS 300 Advanced Programming 



Mass Memory Structures 

function, this field is written to by the ACP to indicate either that solid modeling is in 
progress, that solid modeling has completed or that an error has been detected by the 
ACP. On the GCP side, this field is checked by the solid_rendering function to 
determine when the ACP has completed its part of a viewing operation. The ACP 
timeout function must also check this field (along with some other fields) to determine 
if the ACP has had a genuine timeout or not. If the ACP has detected an error while 
performing a viewing operation, an error number is written to this field to indicate the 
type of error. The error will be brought to the attention of the GCP as either the 
solid rendering function will see the error number in this field, or the timeout function 
will see it (the ACP forces a timeout when an error has been detected. ) 

- Timeout Function 

This field, used only by the GCP, is a pointer to a function instance which restarts the 
ACP and preserves any pending updates. The function is activated when the ACP 
requires 120 clock ticks or more to walk the display structures, which is usually when a 
recursive data structure exists. 

~ Display Control Block {DCB) 

The Display Control Block (DCB) is a block of storage that is the highest level data 
structure for each user on the PS 300 system. There is one DCB for each user. The DCB 
is linked to the topmost nodes for all of the data structures associated with the user. The 
DCB is shown in Figure 2-7. 

PS 300 Advanced Programming 2-19 



Mass Memory Structures 

►-- --Next DCB 

--- Pick Select List Head ~--

Allocate Plotter 

Plotter Select 

---- First Set --' 

--- Pick Block Pointer 

Pick Index 
Pick Count 

Pick @Block Pointer --- --~ 

/// ////I//////// Data Type 

0 

Exponent /Vector Type 

Picked X 

Picked Y 

Picked Z 

Curve parameter t 

Curve segment number 

--- Rsvd for Future Enhancements ---

--- Rsvd for Future Enhancements --~ 

® Rsvd for Future Enhancements ---~ 

Rsvd for Future Enhancements 

LP Status 

Unused Word 

Light pen X position 

Light pen Y position 

~-- Menu Function 

`-- Pick Function 

~-- Timeout Function --~ 

--- Lightpen Function --~ 

User Suffix /// /////l/////// 

--- Menu Copy --~ 

Figure 2-7a. D CB Block 

• 

2-20 PS 30D Advanced Programming 



Mass Memory Structures 

TYPE 

Int8 
PtrDCB 
Ptrnamedentity 
Ptralphablk 
Dcb 

'` RECORD 

_ -128..127 
= DCB; 
_ "Namedentity; 
_ "Alphablk; 

Nxt: Ptrdcb; 
Picklh: Integer; 
Plotallocate: Bitmask; 
Plotterselect: Bitmask; 
Firstset: Ptralphablk; 
Actual block: Ptrnamedentity; 
Pickindex: Int 16; 
Pickcount: Int 16 ; 
Pickblock: Ptralphablk; 
Dcbpad 1: Int8 ; 
Picktype: Dattype; 
Dcbpad2 : Int 16 ; 
Pickexp : Int 8 ; 
Vectype : Int8 ; 
Pickx: Int 16 ; 
Picky: Int 16; 
Pickz : Int 16 ; 
Tsegments: Int16; 
Curvet : Int 16 ; 
F1: Integer; 
F2: Integer; 
F3: Integer; 
F4: Integer; 
LPTStat: Bitmask; 
jdpad : Int16; 
LPXcen: Int16; 
LPYcen: Int16; 
Menufcn: Ptrnamedentity; 
Pickfcn: Ptrnamedentity; 
Timoutfcn: Ptrnamedentity; 
LPfcn: Ptrnamedentity; 
Usersfx: char; 
Menucopy: integer; 

END; {of DCB} 

{Next on list} 
{Pick list head (really ptrnamedentity) } 
{Bit 11=1 if plotter allocated} 
{Bits 9..8 select plotter--used only by GCP} 
{Pointer to alpha of set} 
{Actual block picked} 
{Pick index field of picked node} 
{Vector count of pick} 
{Picked block} 

{Dattype of picked node} 

{Exponent of coordinates} 
{Vec type of picked vec} 

{x,y,z of picked vec} 
{number of segments used for t} 
{Curve parameter t with junk} 
{Reserved for future} 
{Reserved for future} 
{Reserved for future} 
{Reserved for future} 
{Lightpen status} 
{Pad to 0 mod 4 for ACP} 
{Light pen X center, exp = 0} 
{Light pen Y center, exp = 0} 
{fcn waiting for menu pick} 
{fcn waiting for pick} 
{Fcn to handle ACP timeout} 
{fcn to handle light pen} 
{user suffix char, this DCB} 
{copy of Menunum at Menu time} 

Figure 2-7b. Pascal Data Definition of DCB Block 

PS 300 Advanced Programming 2-2~ 



Mass Memory Structures 

Details of the Data Control Block are explained below: 

- Next DCB 

The next DCB pointer (Nxt) is an address in Mass Memory of the next DCB on the 
DCB list. In multiple user environments, a DCB exists for each user. The ACP 

traverses the DCB blocks (and associated display data structures) until it encounters a 
next DCB pointer that is zero. For a single user, the next DCB pointer is always zero. 

- Pick Select List Head 

The ACP may encounter pick identifier nodes during traversals of the display data 
structures. The Pick Select List Head (Picklh} is a pointer to the Mass Memory 
location where the ACP last encountered a pick identifier node. 

- Allocate Plotter 

The GCP sets bit 11 in this field if the user associated with this DCB has allocated the 
hard-copy device. Note that only one user can request a hard copy at one time. 
Other bits in this field may be used to communicate to the ACP. 

- Plotter Select 

Bits 8 and 9 in this field keep track of which hard-copy device the user has selected. 

- 

Fu°st 

Set 

First set (Firstset) is an indirect address in Mass Memory of the topmost node of all 
the data to be clisplayed for the workstation associated with this DCB . The node, or 
one of its descendants, is expected to contain members for each of the user display 
modes (i. e . , Graphics, Terminal Emulator) . 

- Pick Block Pointer 

After a pick has occurred, this field contains a pointer to the block whose vector or 
character was picked. 

- Pick Index 

The pick index (Pickindex} is a 16-bit integer associated with a vector or character 
list, inclicating which list contained the picked vector or character. 

- Pick Count 

The pick count (Pickcount) is an integer indicating which vector or character was 
picked, respectively, in a vector or character list. This count is valid only when the 
pick select listhead is non-nil. 

2®22 PS 300 Advanced Programming 



Mass Memory Structures 

-- Pick ~a Block Pointer 

After a pick has occurred, this field contains a pointer to the alpha block of the node 
whose vector or character was picked. 

- Data Type 

After a pick has occurred, this field contains a value indicating the data type of the 
vector or character list in which the pick occurred. 

- Exponent, Vector Type, Picked x, Picked y, Picked z 

These fields give the x, y, and z values of the point which was picked and provide 
information,in the Vector Type (Vectype) field, concerning the state of the pick. For 
example, if an error occurs in determining the x, y, and z values, the ACP sets bit 7 of 
the Vectype field. Also, if no x, y, z values are to be returned (for example, for a 
character pick) , bit 3 of the Vectype field is set. 

- Curve parameter t 

This field gives a count used to compute the (x,y,z) of the picked point as a fraction of 
the vector when the vector is part of a curve de ' 'tion. 

- Curve segment number 

This is number indicates number of segments that the 3-D picking microcode has 
divided the original picked vector to find the 3-D coordinates. 

- LP status: k 

1. Bit 15 -- Screen blast found a pick in the last frame. 
2. Bit 14 -- Set if tip switch was pressed in the last frame. 
3. Bit 13 -- Tracking cross found a pick in the last frame. 
4. Bit 12 -- Not used. 
5. Bit 11 -- Not used. 
6. Bit 10 -- Set if the user specified (X,Y) coordinate is used to position a tracking 

cross. 
7 Bit 9 --~ Set if screen blast enabled. 
8. Bit 8 -- Set if a tracking cross ena~led. 
9. Bit 7 -- (Set if the debug mode enabled) 

10. Bit 6 -- Set if the user has NOT triggered this operate node. 
11. Bit S -- Set if the GCP wants the ACP to display only a tracking cross. 
12. Bit. 4 -- Set if the delta limit has been exceeded. 
13. Bit 3 -- Set if tip switch changed from NOT pressed to pressed. 
14. Bit 2 -- Set if tip switch changed from pressed to NOT pressed. 
15. Bit 1 -- Set if the ACP has updated this word. Set if clock is to schedule LPIN 

function 
ib. Bit 0 -- Set if the ACP has updated this word. 

PS 300 Advanced Programming 2-23 



Mass Memory Structures 

Bits 1 S through 5 are written by the ACP to the matrix memory to the store the status 
of the light pen operation to be used the next frame, when it traverses the light pen 
operate node. Bit 4 is set to indicate that the current tracking cross location has 
changed more than the delta from the previous location. Note that the previous 
location is updated only if the new X and Y is specified or above condition is met. Bit 
3 is set if the tip switch state ~ s changed from NOT pressed to pressed. Bit 2 is set if 
the tip switch status is changed from pressed to NOT pressed. Bit 1 and 0 are set if 
EDGE =TRUE or EDGE =FALSE andlor LP DELTA condition is detected and 
also the GCP has reset the ACP ACTION bit when the light pen operate node is 
traversed. 

- Light pen X position, Light pen Y position 

Contains the current location of the center of the lightpen tracking cross. 

- Menu Function 

Not currently used. 

- Pick Function 

The pick function (Pickfcn) is a pointer to the pick function instance which is 
activated when a pick occurs (when the pick listhead is non-nil) . This field is known 
only to the GCP. 

- Timeout Function 

Time out function (Timoutfcn) is a pointer to the user timeout function, which is 
activated when the ACP requires too much time to traverse the display data structures 
( usually indicating a recursive display structure) . The user timeout function removes 
all user-created display data structures from the display. Note that this field is known 
only to the GCP. 

- Lightpen Function 

The lightpen function (LPfcn) is a pointer to the lightpen function instance which is 
activated when a change in ~ghtpen status occurs. 

- User Suffix 

The user suffix (Usersfx) is a character which identifies the user associated with this 
DCB. This field is known only to the GCP. 

- Menucopy 

Not currently used. 

2-24 PS 300 Advanced Programming 



Mass Memory Structures 

2.2.2.2 Set Node 

A set node is a data structure that can contain a variable number of members, each of which is, in 
effect, a set node, operate node, or a data node. Each member of the set is processed 
independently from every other member. That is, the state of the ACP is guaranteed to either be 
saved before each member of the set is traversed and restored afterwards or to remain unchanged 
by the member of the set. As Figure 2-8. shows, a set node consists of: 

* Set Node Indicator 

The set node indicator is a value (=0) that identifies this Named Entity as a set. 

• ACP Save State Pointer 

The ACP save state pointer is an address in Mass Memory of the location where a block 
of storage has been allocated for the saving of the ACP state information. If this address 
is zero, the ACP state is not to be saved for this set. 

~ ACP Control Block Listhead 

The ACP control block listhead is an address in Mass Memory where the first ACP 
control block associated with this set resides. An ACP control block exists for each 
member of the set. 

~ ACP Control Block Listtail 

The ACP control block listtail is an address in Mass Memory where the last ACP control 
block associated with this set resides. This is always a dummy control block (the alpha 
pointer is always null) . It is there because the ACP writes into its NEXT pointer to aid in 
structure traversal. The GCP is not allowed to remove this control block. 

~ GCP Control Block Listtail 

This control block is the last real control block. The ACP does not know about this field. 
It is there so that the GCP can add control blocks to the end of the list of control blocks 
without walking through the entire list of control blocks. 

a 

PS 30o Advanced Programming o 2-25 



Mass 11~Iemory Structures 

Unused Set Node 

Reserved 

ACP Save State Pointer -~ --~ 

.ACP Control Block Listhead —~ 

Control Block Dummy Listtail -- --

-~-- GCP Control Block Listtail ---

Next ACP Control Block 

Alpha 1 

ACP Save State Pointer 

Next ACP Control Block 

Alpha 2 

ACP Save State Pointer 

Next ACP Control Block 

Alpha n 

ACP Save State Pointer 

CONS'I' 
Netyp = 0; 

TAPE 
Ptrsaystate = "Saystate; 
PtrACPcblk = "ACPcblk; 
Ptralphablk = "Alphablk; 
Int8 = -128..127; 
Int16 = -32768..32767; 
Namedentity = 

RECORD 
Notused: Int 8 ; 
CASE Typ: Netype OF Setnode; 
Notused2 : Int 16 ; 
Ss: Ptrsaystate; 
Lh: PtrACPcblk; 
Lt: PtrACPcblk; 
Actlast: PtrACPcblk; 

END; 
ACPcblk -

REcoRD 
Nxt: PtrACPcblk; 
Alpha : Ptralphablk; 
Ss: Ptrsaystate; 

END; 

Next ACP Control Block 

Null 

ACP Save State Pointer 

Figure 2-S. Set Nodes and Pascal Data Definition 
a 

2-2 ~ PS 300 Advanced Programming 



Mass Memory Structures 

- ACP Control Blocks 

As figure 2-8 shows, each set consists of a variable number of ACP control blocks, linked 
together as a list that will be traversed by the ACP as the set is processed: An ACP control block 
exists for each member of a set. Each ACP control block consists of 

+~ Next ACP Control Block Pointer 

The next ACP control block pointer (Nxt} is an address in Mass Memory of the next 
ACP control block to be processed after the display data structures associated with this 
ACP control block are traversed. (Refer to "Alpha" below. ) 

• Alpha 

Alpha (Alpha) is the indirect address in Mass Memory of the display data structures to be 
traversed as this member of the set. 

~ ACP Save State Pointer 

'The ACP save state pointer (ACPstate) is an address in Mass Memory where the current 
ACP state resides. This state must be reloaded by the ACP before traversing the 
descendant display data structures of this block. If the ACP save state pointer is zero, 
then the ACP state has remained unchanged from ~~the last time it was loaded. For 
example, the first ACP control block of a set will always have an ACP state pointer of 
zero, since the ACP save state is the current state, by definition. 

When the ACP encounters a set, the last ACP control block of that set (the one pointed to by the 
ACP control block listtail) is updated to point to the next ACP control block to be traversed when 
that set is completed. The ACP then traverses the set. When the last ACP control block of the 
list is traversed, the updated next-ACP-control-blockpointer then directs the ACP to the next 
ACP control block. 

2.2.2.3 Operation Node 

An operation node is a data structure that modifies the state of the ACP. As shown in Figure 
i 2-9, an operation node consists of an integer that indicates this display data structure is an 

operation node (=1) , an integer that specifies the particular type of operation node, the 
descendent alpha, and a variable number of fields required by the particular type of operation 
node. Because an operation node modifies the state of the ACP, the ACP state must be saved 
before traversing a member of a set whose descendants include an operation node, and be 
restored before traversing the next member of the set. For any operation node, bit 15 of the 
operate type is a Conditional bit. If this bit is set, and if bit 15 (the blink bit) in the Condition 
Mask of the ACP State is zero, then the associated operation node is not performed. In all other 
cases, the operation node is performed. In all cases, the son of the operation node is traversed. 
Each of the operation nodes is described in Appendix J. 

PS 300 Advanced Programming 2-2 7 



Mass Memory Structures 

NOTE 

A "C" in the left corner of the Operate Type block indicates the 
Conditional Bit (bit 15} . 

Operate Node 1 

C Operate Type 

~o. Descendent Alpha --

Field 1 

Field 2 

Field n a 

Figure 2-9. Operation Node 

2.2.2.4 Data Node 

A data node is the display structure primitive that causes data to be drawn by the ACP . A data 

node consists of an integer that indicates this display structure is a data node (=2) , an 8-bit field 
that specifies the mode of vectors in the data node, an 8-bit integer that specifies the particular 
type of data node, a 32-bit integer which points to the next data node of identical data type, an 
integer (n) that specifies the number of vectors, polygons or characters in the data node, a 16-bit 
integer that specifies the pick index, and either vector data (including polygons) or character 
data. Vector data consists of the two- or three-dimensional vectors (preceded by polygon 
attribute information if polygons) . Character data consists of an initial translation, spacing 
information, and the character string. The general format of a data node is illustrated in Figure 
2-10. The format for each of the data nodes is shown in Appendix J. 

Data Node 2 

Do_Dots Data Type 

Pointer Next Data Node - to --~ 

n 

Pick Index 

Vector/Character Data 

Figure 2-10a. Data Node 

2-28 PS 300 Advanced Programming 



Mass Memory Structures 

TAPE 
Namedentity = RECORD 

Not used: Int8; 
CASE Typ: Netype OF 
ACPdata: (Do_Dots: Boolean; 
Adson: Ptrnamedentity; 
Adnum: Int 16; 
Adindex: Int 16 

• {Data} 

~~ 
END; 

Figure 2-lOb. Pascal Data Definition of Data Node 

3 

Mode, data type, pick index, and vector/character data are detailed ftu-ther below. 

~ Do Dots Field 

The Do Dots field of a data node consists of 

15 9 8 7 0 

Unused D Data Type 
1 

Do Dots Field 
= 0 for no endpoint intensification 
= 1 for endpoint intensification 

The Do_Dots field of a data node is a single bit that specifies how the vectors are to be 
drawn. When dot mode = 0, vectors are drawn normally. When dot mode = 1, each 
endpoint of the vector list is drawn as an intensified dot. 

• Data Type 

The data type field specifies the particular format of the data node. The ACP in the 
PS 300 accepts vectors of two formats: 

1. Vector-normalized data (full vectors) 

Vector-normalized data consist of 16-bit, signed binary fractions that share a 
common 8-bit, signed integer exponent and an explicit 7-bit, intrinsic intensity for 
each vector. 

i 

0 

PS 300 Advanced Programming 2-29 e 



Mass Memory Structures 

For the vector: 

(x,y,z,i) x= 2 e * ,f x, y=2e * fy, z= 2 e * fz, i=i 

where a is the signed 8-bit integer exponent; the 16-bit significant digit fields fx, fy, 
and fi satisfy -1 < f < 1; and the 7-bit intrinsic intensity field i satisfies 0 < i < 

1.Vectors contained within polygon nodes consist of 3D vector-normalized data as 
described above. 

2. Block-normalized data 

Block-normalized data consist of 16-bit signed binary fractions that share a common 
7-bit signed integer exponent and an explicit 8-bit intrinsic intensity for each block of 

vectors. For the vector: 

xl = 2 e * fxl, y1= 2 e * fyl, zl = 2e * f zl, i = i 

x2 = 2 e * f x2, y2 = 2 e * f y2, z2 = 2 * f z2, 1 = t 

. e 

xn = 2 e * .fxn, yn =- 2 e * .fyn, Zn= 2 * .fzn, t=1 

where a is the signed 8-bit integer exponent; the 16-bit significant digit fields fx, fy, 
and fz satisfy -1 < f < 1; the 7-bit intrinsic intensity field i satisfies 0 < i < 1. 

The PS 350 also accepts two formats; They are the 16-bit' block-norxrialized format 
shown above and a 32-bit block-normalized format that is the same in computation 
except that fx, fy, and fi are 32-bits instead of 16-bits. 

s Next Data Node Field 

The next data node field contains a 32-bit pointer to the next data node of identical type 
(0 =nil pointer} . This pointer allows vector lists to exist in non-contiguous blocks of 
memory and also allows one to group a set of character strings together (Label Block} . 

~ Pick Index Field 

The pick index field of a data node is reported with the vector count when a pick occurs, 
thus signifying the vector list in which the pick occurred. Although the number of vectors 
that may be contained in a data node is 65,535 (if n is treated as a 16-bit unsigned 
number) , by convention, the maximum number of vectors that will be specified in a given 
data ,node is 2 0 4 8 , which is less than the maximum number of vectors that may be 
counted during pick processing. The software that creates data nodes will ensure that the 
index is correct for a given data node and that the reported index, together with the 
vector count, will allow one to correctly identify the actual vector that was picked. 

2-30 - PS 300 Advanced Programming a 



~Vlass 1Vlemory Structures 

• Vector or Character Data 

- Vector Data 

All vector data processed by the ACP are numbers of normalized, floating-point form, 

as 2 e * f ,where a is asigned-integer exponent and the significant digit field, f, 
satisfies -1 < f < 1. Rather than provide an exponent for each coordinate of a vector, 
the Display Processor associates a single exponent with each vector or block of 
vectors. All vector data are two- or three-dimensional (i.e., (x,y) or (x,y,z)), with an 
implicit, homogenous coordinate equal to 1 (i. e ., (x, y, z, l}) . The dynamic range 
gained by explicit use of the homogenous coordinate has been provided by 
representing vector data in the normalized, floating-point form. In addition, polygon 
vectors have implicit closure; that is, there is an implied vector from the last point of 
the polygon to the first point. The ACP automatically displays this implied vector. 

- Character Data 

Character data consist of an initial translation to position the character string, spacing 
information to control the spacing between characters, and a string of characters. The 
initial translation consists of 16-bit, signed binary fractions for x, y, and z, with an 
implicit, homogeneous coordinate equal to 1 (i. e, , (x, y, z, l) } , and a shared 8-bit, 
signed integer exponent. Thus, the translation: 

(x, y, z, l) x= 2 e* f x, y= 2 e * f y, z= 2 e* f z, 

where a is the signed, 8-bit integer exponent, and where the 16-bit significant digit 
fields fx, ,fy, and fz satisfy -1 < = f < 1. The spacing information consists of a delta x 
and a delta y, each a 16-bit, signed binary fraction, sharing an implied exponent equal 
to zero. The delta x and delta y values determine the separation between characters 
in the x and y directions. They are given in the coordinate space of the characters 
themselves, satisfying the range : -1 < =delta x, d el to y < 1. 

For each character in a string of characters, the corresponding character stroke block 
is read from Mass Memory to provide the vectors which make up the individual 
character. The format of this character stroke block is described in Section 2.2.3. 

2.2.3 Character Font Block 

Each entry of the character font table is a 32-bit address in Mass Memory indicating where the 
associated character stroke block resides. Each character stroke block is an abbreviated Vec2s0 
block, consisting of a count of the number of vectors followed by the Vec2s0 vectors. Note that 
this type of data block is used only in association with the character font block. 

The character font block and associated character stroke blocks (with strokes in relative mode} 
.are shown in Figure 11. The x and y components of each vector are 7-bit binary fractions that 
have an implied exponent of o. 

PS 300 Advanced Programming 2-31 e 



Mass Memory Structures 

Unused Char Font 

Font Size 

Address 0 

Address 1 

i 

Address 127 

Address 255 

TYPE 

n 

xl yl d 

x2 y2 d 
.~ 

e 

xn yn d 

0 

n 

xl yl d 

x2 y2 d 

xn yn d 

0 

n 

xl yl d 

x2 y2 d 

xn yn d 

0 

PtrVec2sblock = Integer; 
Ptrqdata = "Qdata; 
Charfont = 

RECORD 
Fontsize : Int 16 ; 
CASE Chars: Chsize OF 

C 128: (Ccd: ARRAY [0..127] OF PtrVec2sblock} ; 
C256: (Cnd: ARRAY[0..255] OF PtrVec2sblock}; 

END; 
Vec2sblock —

RECORD 
V2snum : Int 16; 
V2s : ARRAAY [1..1] of Vec2s0; 

END ; 
Vec2s0 = 

RECORD 
x : Int8; 
y : IntB ; 

END; 

Figure Z-11. Character Font Blocks and Pascal Data Definition 

2-32 ~ PS 300 Advanced Programming 



Mass Memory Structures 

2.3 Commhead 

The largest portion of global variables used by the PS 300 exists in a record called Commhead. Its 
format can be seen in the Appendix I. This block, located at the iow end of Mass Memory, 
contains pointers to the active and priority function lists, the various update lists, the standard 
character font, the hashtable, the command and function name dictionaries, and the initial Save 
State, as well as to other information. 

2.4 Number Formats 

The intrinsic data types utilized by the Graphics Control Program are: 

• Int8: 

an 8-bit, two's complement number in the range of -128 to +127. 

• Int16: 

a 16-bit, two's complement number in the range of -32768 to +32767. 

• Integer: 

a 32-bit, two's complement number in the range of -214748364 to +2147483647. 

• Double: 

a 40-bit precision, floating-point number consisting of an 8-bit exponent (or 
characteristic) and a 32-bit fraction (or mantissa} . 

Z.~ Hash Tabie 

The hash table is an array [-l..n] of pointers to forward and backward linked lists of alpha 
blocks. The value of n is based on the amount of mass memory available when the system boots. 
This value is contained in the Commhead. 

Naming a node causes the name to be entered into the hash table with a pointer to the Alpha 
block associated with that name in PS 300 Mass Memory. The -1 entry in the table is for 
forgotten Fcninstances since their connections must be found when doing an INIT CONN; 
command. 

Any time a name is used in the cyst®m to reference a structure the name is processed by a hash 
algorithm to produce a hash index. This number is the index into the hash table. The Alpha 
pointer at that index is checked to see if the name equals the requested name. If not, the 
dictionary forward pointer of the Alpha is then checked. This process of checking continues until 
the name is found or the linked list ends. 

PS 300 Advanced Programming 2-33 



a 

0 



MODULE 3 

PS 300 Operation 

3.1 Structure Creation 

There are four main steps in the creation of structures in the PS 300. 

1. Alpha Lookup 

2. Named Entity Creation 

3. GCP Datum Pointer Set 

4. Alpha Update 

3.1.1 Alpha Lookup 

A lookup of the name specified is done which returns with a pointer to the Alpha block of 
the specified name. If the name wasn't already in the dictionary, it is added during the 
lookup. 

3.1.2 Named Entity Creation 

After the Alpha is established, the actual Named Entity structure is created. If the 
Named Entity is a function instance, there is a check of the function table to determine if 
it is a valid function. If it is valid, a check is made of the number of inputs and outputs to 
allocate in the function block. At this point the initialization code is executed and the 
state of the function is set to ACT ON UPDATE. If the Named Entity is a display 
structure, a Named Entity block of the proper type is created and data is put into the 
structure . 

3.1.3 GCP Datum Pointer Setup 

A pointer to the Named Entity is placed in the GCPdatum of the Alpha block. 

s 

PS 300 Advanced Programming 3-~ 



PS 300 Operation 

3.1.4 Alpha Update 

Pointers to the Alpha block and the Named Entity are placed on the ACP update list that 
causes the change to take place at the end of the current structure traversal. 

3.2 Update Process 

The GCP creates and manipulates the display data structures in mass memory (and 
initiates the display defined by these data structures) . The ACP then accesses the data 
structures in Mass Memory, traverses the structures, and transforms the data to be 
displayed. A rigid update process is followed when modifying display data structure. This 
process ensures that the GCP won't corrupt a data structure being traversed by the ACP 
and that changes in the display data structures will be synchronized. The update process 
entails: 

a 

1. A function produces a private list of changes through calls to Lgaupdate and 
OLbaddtoset. This creates a list head and tail pointer containing the private list of 
updates. Each call to Lgaupdate or OLbaddtoset adds to the list until a call to 
Announceupdate is made. The list tail is used in calls to FetchBlock, FetchAdnum 
and nFetchCopy to allow the searching of the private list for matching Named 
Entities. 

2. The function hands the private list to the update formatter. This list is made available 
by a call to Announceupdate. This call gives the functions .private list to the update 
formatter to be added to the current global list of updates to the ACP. 

3. The ACP makes the changes specified in the global list at the end of a refresh cycle. 
The ACP processes the list of changes and performs all updates. 

4. The GCP post—processes the update blocks. After the ACP finishes the update list, the 
blocks of data are returned as available storage. 

Because the display data structures are constantly being traversed for display by the ACP, 
whenever a change is required to a node the GCP "usually" makes a copy of the node 
that is to be changed, changes the elements to be changed, and then simply causes the 
pointer to the node in the alpha block to be changed by the ACP after it has finished 
refreshing. This occurs whenever a matrix is changed, a new PS 300 display enabled, etc. 
In essence then, most changes to the display data structures cause the change to be 
"double buffered" until the change can take place. Such changes are made by the ACP 
at the end of each refresh cycle. 

3-2 PS 300 Advanced Programming 



PS 300 Operation 

The GCP creates an update block whenever display data structures require updating by 
the ACP. Basically, an update block indicates what changes need to be made and where 
these changes are located in Mass Memory. The update block also specifies what TYPE 
of update is to be processed. The ACP can process two types of update blocks: 

• Alpha update 

• Value update 

3.2.1 Alpha Update 

An alpha update is performed whenever an alpha block is to refer to a new Named Entity 
block. Except for minor changes in data nodes, most updates in the standard runtime 
system are alpha updates. For example, all operation nodes are updated by creating a 
new operation node with the correct contents, then performing an alpha update. 

3.2.2 Value Update 

A value update is performed whenever a value is to be updated in an already existing data 
structure, i. e . , whenever small portions of a data structure (e . g . , character (s) or 
coordinates of a point) need to be updated in place without copying the entire data 
structure. 

3.2.3 ACPProof 

The updates process is not universally followed. A technique, called ACPproof, was 
established for special cases when direct modification by the GCP of the data structure 
(without going through the normal update process) is needed. If the GCP makes a change 
to a data structure through the normal update process, a Named Entity can NEVER be 
expected to be in the same location in Mass Memory. However, conversely, garbage 
collection is never done on existent Named Entities by the PS 300. So once a node has 
been created, if the node is NEVER referenced by a standard PS 300 function network or 
externally from the host, a Named Entity can ALWAYS be expected to be in the same 
location in Mass Memory. This knowledge can sometimes be used in auser-written 
function or by physical I/O programmers. 

For example, values in the node can be changed directly. However, if the node is 
currently being displayed no guarantee can be given that the ACP will not traverse the 
node during the small, but finite, time frame during which the data may be changed. This 
may result in an improper picture being displayed (new x value, old y value; or a matrix 
with mixed values--part new, part old) but should never cause the ACP to traverse the 
display data structures improperly, As Long As No P©inters Are Changed. Any pointers 
which are to be directly changed in the data structure by the GCP should use ACPproof. 

PS 30D Advanced Programming 3-3 



PS 300 operation 

ACPproof uses a convention with the ACP that if the top half of a pointer is zero, the 
pointer should be treated as nil. (ACPproof works by zeroing the upper half of a pointer, 
changing the lower half, and then changing the upper half. In this way the ACP either 

gets the old pointer, gets the ACPproofed pointer with a zero upper word., or gets the new 
pointer. } Not all pointers can be modified in this way. The ones which can be used with 
ACPproof are: 

• Nit in the DCB 

• Firstset in the DCB 

• Nit in Acpcblk 

• Alpha in Acpcblk 

• Aoson in Acpoper 

• Adson in Acpdata 

3.2.4 Use of RAWBLOCK 

The RAWBI:OCK command is used to allocate memory that can be directly managed by 
a User-Written Function or by the physical I/O capabilities of the Parallel Interface. 

The command: 

name := RAWBLOCK i; 

carves a contiguous block of memory such that there are ` ̀ i" bytes available for use . 
Since this has to be a display data structure and one contiguous memory block, it is 
structured so that it appears as shown in Figure 3-1. 

Rawblock 9 

1 

Descendent Alpha 

Datum Pointer 

Figure 3-1. Rawblock 

= Nop 
Points to next Long word 
Initially NIL 

3-4 PS 300 Advanced Programming 



PS 300 Operation 

This block looks like an operation node to the ACP. The descendant alpha pointer 
points to the next long word in the block. What the ACP expects in this word is the 
datum pointer of the alpha block. This is initially NIL to make the ACP think that the 
alpha doesn't have any data associated with it yet. To use this block, the parallel interface 
or auser-written function fills in the appropriate structure following the datum pointer. 
When this is complete, it changes the datum pointer to point to the beginning of the data 
using ACPproof . 

More than one data structure at a tame can exist in a RAWBLOCK. It is up to the user to 
manage all data and pointers in a RAWBLOCK. A RAWBLOCK may be displayed or 
deleted like any other named data structure in the PS_ 300 (e.g., DISPLAY "name"; or 
DELETE "name" ;) . 

3.3 Function Operation 

The PS 300 functions are instances of "generic" functions which exist in the PS 300 
runtime system. Generally, a generic function is a Pascal procedure which performs one 
or more operations by (a} accepting input, (b) processing input, and (c} sending output. 
(Note that occasionally the function code is written in assembly language but is called as a 
Pascal procedure.) The user, or less commonly the runtime software itself, creates a 
PS 300 function by "instancing" a generic function. There may be many "instances" of 
the same generic function. Each instance has its own user- or system-defined name, as 
well as~ its own input queues and output connections. The user connects these function 
instances into a network. Thus, each PS 300 function generally has inputs coming from 
other functions _and outputs going to other functions or data structures. All information 
regarding the instancing of a function, as well as all information regarding connections 
between instances, is kept in a "function instance block" and its associated substructures. 

When a function instance is created, it is assigned a default priority for execution (most 
default to 8) . The Scheduler uses priority numbers to determine which of the PS 300 
functions awaiting execution will be executed next. It executes a function by placing a 
pointer to the function instance block and calling the Pascal-callable procedure for the 
generic type of the function instance. 

A function instance cannot be executed until all of its essential inputs have arrived. 
Inputs exist on (and outputs are sent to) input queues. Once the function has processed 
the inputs, any output values are sent to destinations listed as outputs of that instance. 
Some functions may wait on an I/O device rather than on an input queue. In this case, 
the I/O device interrupt routine activates the function at the proper time. The following 
sections detail the creation, manipulation, scheduling, and execution of function 
networks . 

PS 300 Advanced Programming 3-S 



PS 300 Operation 

3.3.1 Scheduler 

Although it is not the major portion of code, the Scheduler is the driving force behind the 

Graphics Control Frogram. The scheduling loop is the process by which the Scheduler 

executes activated functions. Executing a function means to place the address of the 

function instance block in a global variable and call the generic Pascal procedure. 

The Scheduler is designed to avoid two major sources of lost time in software—scheduled 

systems: task context switching and the scheduling decision itself. Time can be lost in 

context switching, i.e., when a program is interrupted, because the complete processor 

state (including any memory mapping state} must be saved and the state of another task 

must be put in its place. 

The Scheduler avoids this loss in processing time by assuming that all scheduled functions 
will run to completion once execution begins. This assumption is based on the constraint 
that all functions complete in a reasonable amount of time, i. e . , less than two 
milliseconds. If an operation could take much longer, the function must place all data on 
a private queue and reschedule itself for execution. Note, however, that because this 
saving, restoring, and rescheduling process is so time—consuming, some functions are 
allowed to continue running. 

Because of the large amount of time to schedule a function instance, most functions are 
allowed to process more than one set of inputs per wakeup if a global Boolean variable 
KEEPGOING is true. This variable is set to be true by the scheduler prior to executing a 
function. However, any time the clock interrupt routine sees that a function waiting on 
the clock is ready to run, it can potentially set KEEPGOING to be false. Once 
KEEPGOING is false, the currently running function must give up control prior to 
processing the next set of inputs. 

Time would also be lost in scheduling decisions if the Scheduler scanned all potentially 
active tasks to determine which were truly active. Therefore, the Scheduler loop scans 
only those functions that are part of an active list. when a function instance is created, it 
is assigned to one of 16 possible priority levels (0-15} . The priority level is used by the 
Scheduler to determine when the function instance will execute. Unless mass memory is 
nearly full, priority is such that the smaller the priority number, the earlier the function 
instance is executed. Most functions operate at priority level 8. If mass memory is nearly 
full, the Scheduler executes only functions which do not require additional mass memory. 

At each execution, the Scheduler empties the Active List (the list of functions to be 
executed) into a set of separate lists (according to priority} . It then executes the first 
functio~i on the highest priority list. After the function has been executed, control returns 
to the Scheduler and the process is repeated. Note that user commands do exist to change 
a function's priority level. However, if a function is already on an active list when its 
priority is changed, the function's scheduling position does not change until subsequent 
activation. 

3-6 PS 300 Advanced Programming 



PS 300 Operation 

3.3.2 Function Activation 

Function instances are "activated" when they are placed on the Active List. The 
Scheduler then processes the Active List and executes the functions. Once a function has 
been instanced, it must have received all of the inputs needed for execution in order to be 
activated. During function instance creation, the function instances are initialized if 
necessary. This generally means that default values are placed on some input queues, 
and the private data message is created and initialized. Function instances are first 
activated following function instance creation. The first time it is executed a function will 
cause itself to do one of the following: 

• ~e reactivated. 

• Wait for an input on one or more input queues. 

A function waits for input on its queues by setting the Numnonnull counter in its 
record block to indicate the number of necessary -input queues which still remain 
empty. Whenever another function sends data to an input queue, if that queue does 
not already contain data (hence one more necessary queue now has data} , the 
numnonnull counter is decremented. When this counter is decremented to zero, the 
function is placed on the active list by the procedure doing the message send. 

• Wait for the clock or an I/O event. 

If a function instance has an output designation and is ready to send a message to another 
function, it does so by: 

• Obtaining a Qdata block from free storage and creating the message. 

• Sending the message to the destination specified in the function block's 
outdesignator. Utility procedures exist to do this. 

3.3.3 Function Status 

At any given time during its instancing or activation, a function exists in one of several 
possible states. Those states are: 

1. Actonupdate 

When the function is instanced. Once it has been tied to its name by the ACP, it 
takes on Active status. 

2. IO wait 

When the function is waiting for input from an I/O device or waiting to be activated 
by the clock. 

PS 300 Advanced Programming 3-7 



PS 300 Operation 

3. Ms~wait 

When the function is waiting for input on one or more input queues. 

4. Active 

When the function is on the Active List (waiting to be executed) . 

5. Running 

When the function is being executed by the Scheduler. 

6. Self destruct 

When the function is to be destroyed, rather than executed, the next time it is 
scheduled. 

Note that before a function is executed, the Scheduler changes its status to Running. A 
fatal system error occurs if control returns to the Scheduler after execution and the status 
is still Running. Thus, a function must cause its state to change during execution by either 
(a) waiting on a device or queue, or (b) activating itself, or (c) setting its status to 
Self-destruct and then activating itself. 

A function cannot wait on more than one item {queue, clock, or I/O device} . Thus, a 
system error also results if a function waits on a device, clock or input queue and then 
attempts to wait again without first changing its own state. 

3.3.4 Function Code Format 

The Pascal-callable procedure defining the generic function generally follows a rigid 
framework. It usually has a single parameter, which is a pointer to the function instance 
block of the particular function instance. A typical function procedure includes 
instructions to do the following: 

1. Check input queue (s) for new data. If there is a complete set, go to step 2. If not, set 
status to wait for data to be sent to empty queues and return to the Scheduler. 

2. Take one set of input data from the input queues (buffer) . 

3. Use that data to modify the private data, display structures, and/or generate output 
messages as needed. 

4. Send any output messages to all destinations referred to in the function instance 
block. 

5. Check the input queues for another sufficient set of data. If it exists, and the global 
flag Keepgoing is still set, then proceed to Step 2. If Keepgoing is False, then queue 
self on the active function list. If a sufficient set does not exist, set status to wait for 
data to be sent to empty queues and return to scheduler. 

3-8 PS 300 Advanced Programming 



MODULE 4 

Physical I/~ Programming 

The PS 300 is designed primarily to meet the needs of those customers who require that the 
dynamics of picture display be handled on the local PS 300 level, rather than be tightly coupled to 
a host machine. This is possible through the means of function networks, which offer a selection 
of local actions, driven by peripheral devices such as the dials or data tablet, or simply by 
internally-generated time pulses. This removes most of the frame-by-frame load from the host, 
freeing it for other work. However, there remain many applications where the host itself may be 
required to closely direct -- perhaps even on a per-frame basis -- the dynamics of the displayed 
picture. The difficulty in meeting this requirement has to do not only with the overall software 
speed, but with an inherent limitation of the hardware; namely the narrow bandwidth of the 
communication channel from the host to the PS 300. Because it was intended that 
frame-by-frame dynamics be handled on a local level, the asynchronous interface was not 
designed for host-driven dynamic communication. To circumvent this problem, and to provide 
for efficient host direction of dynamic operations, the system function F:USERUPD was provided. 

4.1 The F;USERUPD Function 

This function permits a variety of dynamic transformations to be sent from the host each 
frame, directly effecting changes to the displayed picture on a per-frame basis. only the 
arguments for these transformations are sent, with the matrices and vectors being 
generated by the F: USERUPD function, thus greatly decreasing the bandwidth 
requirements of the communication line. For example, the dynamic arguments for a 
picture with 25 to 30 degrees of freedom may be sent at a 10-hertz update rate over a 
9600-baud, asynchronous line. The F:USERUPD function, however, has some 
limitations both in system response speeds, and in flexibility. The ability, for instance, to 
turn a portion of the picture on or off using level-of-detail or conditional bits is not 
available with this function. Refer to the PS 300 Document Set Volume 4, Other ?'ools, 
for more complete details of the USERUPDATE function. 

PS 300 Advanced Programming 4-1 



Physical IlO Programming 

~.Z The Parallel Interface 

In order to help meet the need for more closely-coupled host control of the PS 300, a 
16-bit-wide parallel interface, operating through the General-Purpose Interface Option 
(GPIO) was developed. This interface gives VAX users a much higher data transmission 
rate, on the order of 0.5 megabytes per second (in practice the rate is somewhat less, and 
depends on cable length}. This is still many times faster than the 56 kilobaud runner-up. 

The effective speed of this interface is so great, that it outstrips the ability of both VAX 
and PS 300 software to keep up with it. The Graphics Support Routines (GSR's) , for 
example, must issue a separate System I/O Request (QIO) for each message to be sent to 
the PS 300. These requests are queued up to await the attention of the parallel interface 
device driver, and the more queued-up QIO's, the slower the response. In addition, on 
the PS 300 side, the incoming messages must each go through the command interpreter, 
generating new data nodes and involving other overhead having to do with the data 
structure. 

4.3 Physical I/O 

To fully take advantage of the speed of the interface, and to e ' 'nate as much of the 
node-juggling and other overhead as possible, the parallel interface protocol (and 
especially the GPIO microcode) includes, in addition to the standard communication 
commands, another set of commands collectively referred to as physical I/O commands. 
These commands permit the host to directly access the internal contents of any node (or 
other PS 300 structure, for that matter) , and modify those contents at machine speeds, 
without any node swapping, pointer juggling, memory management, or command 
interpretation. 

This direct access is possible because one of the physical I/O commands allows you to give 
the ASCII name to the PS 300 of any node, and receive back the physical memory 
location of that node. Once this address is known, and you know the internal structure of 
the node, you may use the write Physical command to directly modify those contents to 
suit your needs. 

In addition, physical I/O includes the capab' 'ty of scatter-writing from a single buffer into 
many non-contiguous blocks of PS 300 memory, thus allowing a single host QIO to 
effect modification of all the dynamic updates for an entire frame. 

4-2 PS 300 Advanced Programming 



Physical I/O Programming 

4.3.1 Physical I/O Constraints 

Because of the ability of physical IIO to circumvent the normal protocol of node- and 
structure-building by addressing any desired PS 300 mass memory location, you must use 
considerable caution in selecting the memory areas you choose to modify. You must 
consider the following rules to avoid crashing the PS 300 or worse by causing a bug which 
may appear later. These rules are: 

1. Only the contents of ACP data structures (i.e. nodes) can be modified. Modification 
of any other areas of memory is not allowed. 

2. Only the DATA portions of the nodes can be modified. The STRUCTURE elements 
(in particular, the first four 1 b-bit words of each node} must never be modified. 

3. Because the system mo ' 'es a node by- making a copy of it in another place, 
modifying the copy, and then chapging pointers, you must NEVER modify a node 
which can be modified by another source (for- example, one that is referenced by a 
function network} . 

4. Note that the Graphics Display Processor (the ACP) is also traversing the data 
structure at the same time your buffer is being written into it via physical IIO. A 
"double- buffering" scheme must be implemented to avoid the chance of the ACP 
Laying to access YOUR node while YOU are writing into it. Refer to 4.4 below. 

d.3.2 Physical IIO Operations 

There are four operations supported by the GPIO microcode to perform the physical I/O 
functions. These operations provide for (1) doing a name lookup, (2} doing a physical 
read of PS 300 mass memory, (3} doing a physical write to PS 300 mass memory, and/or 
(~) doing a synchronous physical write to PS 300 mass memory. The interface-specific 
commands and options for these operations are described in detail in the Customer 
Installation and User Manual for the appropriate interface. This section will describe the 
general data formats used in the physical IIO operations. 

• The first of these is the lookup format. The lookup requires a name, consisting of a 
string of characters and a 32-bit integer variable where the address of the named 
entity can be __returned by the GPIO. Only one name can be looked up per QIO. If 
there isn't an Alpha for the specified name, a null is returned for the address. 

• The physical read requires a special list of addresses to read from PS 300 mass 
memory. The addresses acquired through multiple lookupname calls are assembled 
into the addrlist. The format of this list is shown in Figure 4-1. When the physical 
read completes, it returns a list of addresses and data in the format shown in Figure 
4-2. 

PS 300 Advanced Programming 4-3 



Physical I/O Programming 

Reserved --~ --- 

Number of blocks to read 

Block #1 source —---~ 

Block #1 word count 

Block #Z source address --' ~- 

Block #Z word count 

Block n source address --— 

Block re word count 

(used in Ethernet data 
transmissions) 

n <=255 
LS, MS Address of 
data read 
Number of 16-bit 
words read 

Figure 4-1. Format of Physical Read Address List 

Reserved ®, —~ 

Number of blocks to read 

#1 —~ Block source address —

Block #1 word count 

Block #1 first data word 

Block #1 last data word 

—'- -°-o Block #'L source address 

Block #2 word count 

Block #2 first data word 

Block #2 last data word 

'— ---Block n source address 

Block re word count 

Block n first data word 

Block n last data word 

n <=255 
LS, MS Address of 
data read 
Number of 16-bit 
words read 

Data returned after 
read 

Figure 4-2. Format of Data From PS 300 in Physical Read 

4-4 PS 300 Advanced Programming 



Physical I/O Programming 

~ The physical write transfers a list of data to the PS 300 memory. The format for this 
list is shown in Figure 4-3. Note that the format is exactly the same as the data 
returned on a read. This allows you to do a physical read on a set of named entities, 
modify the data in the read list (do not modify the addresses) , and write back the 
same list to the PS 300. 

• The physical I/O write synchronous operation ensures that each buffer gets at least 
one refresh before allowing the next write operation. It is possible to specify that the 
physical write operation be synchronized with the ACP clock. The format for the 
assembled data block in synchronous physical write is identical to physical write, 
shown below. 

°-- Reserved -

Number of blocks to read 

#1 - Block source address ----~ 

Block #1 word count 

Block #1 first data word 

81ock #1 last data word 

- Block #2 source address -

Block #2 ward count 

Block #2 first data word 

Block #2 last data word 

---~ Block n source address --

Block nword count 

Block n first data word 

Block n last data word 

n<=255 
LS, MS Address of 
data read 
Number of 16-bit 
words read 

Data returned after 
read 

Figure 4-3. Format of Data to PS 300 in Physical Write 

4.4 Advanced Physical IIO Programming 

The Physical I/O process can produce distorted pictures when it is updating display 
structures at the same time the display processor is traversing them. To avoid this "single 
buffer" occurrence, these display structures can be "double buffered." This is done by 
creating two copies of the named entities to be updated with different names (e.g. Datal 
and Data2) . The data structures can then be alternately updated and displayed using 
either the IF LEVEL OF DETAIL or IF CONDITIONAL BIT commands such as: -- - - 

TOP:=BEGIN STRUCTURE 
LOD: =SET LEVEL OF DETAIL TO 1; 

PS 300 Advanced Programming 4-S 



Physical I/O Programming 

IF LEVEL = 1 THEN Data 1; 
IF LEVEL. = 2 THEN Data2; 

END STRUCTURE; 

or 

TOP: =BEGIN STRUCTURE 
CB : =SET CONDITIONAL BIT 1 ON; 

IF BIT 1 ON THEN Datal; 
IF BIT 1 OFF THEN Data2; 

END_STRUCTURE; 

These commands are used in conjunction with a node higher in the structured display file 
that either sets the level of detail (SET LEVEL) or sets the conditional bit (SET BIT} . 

The node that performs the SET BIT and SET LEVEL operation is the Change Bits 
operation node. This operation node is also used to set displays, set character orientation, 
set contrast, set CSM, set depth clipping, set plotter, set rate external, set blinking, and 
set line texture. The format and a more detailed description of this node is contained in 
Appendix J of this document. 

The SET LEVEL or SET BIT nodes can be updated using the physical I/O to "swap 
buffers." Placing the update of the SET LEVEL or SET BIT structure last in the physical 
write list will ensure that the data are all correct before the buffers are swapped. 

4-6 PS 300 Advanced Programming 



MODULE 5 

User-Written Functions Tutorial 

This module illustrates how to construct and use a simple user-written function (UWF} . A 
user-written function is a Pascal procedure that will accept input data, process the data, and 
output the resulting data. User-written functions can be designed to perform operations not 
supplied by standard PS 300 functions and also to collapse large function networks into a single 
function. 

5.1 Introduction to User-Written Functions 

The User-Written Function facility is provided to allow you to expand and enhance the 
usefulness of your system by writing functions of your own design. User-written functions 
can be written to create new functions that perform operations not provided by intrinsic 
PS 300 functions. User-written functions may also be written to perform tasks that would 
require a large network of intrinsic functions to accomplish. For example, numerical 
calculations are usually easier to perform inside a single user-written function than within 
a function network. Substituting a single user-written function for a large network of 
intrinsic functions can be beneficial in two ways. First, programming a few functions in 
Pascal may be easier than programming a complicated function network. Second, due to 
the overhead incurred by scheduling each function in a large network, a single 
user-written function will usually take less execution time. When collapsing a large 
function network into a single user-written function, there are several considerations: 

- User-written functions execute somewhat more slowly than intrinsic functions. 
Therefore, collapsing a network consisting of just a few functions into a 
user-written function may not result in any improvement in performance. 

- It is usually not possible to replace an entire function network with a single 
user-written function. User-written functions tend to be more useful for 
performing specific tasks within the context of a larger network. Before writing a 
user-written function, you should be sure that the function has swell-defined 
purpose and a definite set of inputs and outputs. 

5.1.1 Requirements 

No separate hardware is needed to write your own functions. You must, however, be able 
to communicate with your host system. If your PS 300 is not equipped with terminal 

PS 300 Advanced Programming S-1 



user-~rittert ~unct1ons Turtorial 

5.1.1 Requirements 

No separate hardware is needed to write your own functions. You must, however, be able 
to communicate with your host system. If your PS 300 is not equipped with terminal 
emulator capabilities, you will need a separate terminal to communicate with your host 
and access host-resident utilities. e 

To write your own functions, you will need the Motorola 68000 cross-software (compiler, 
assembler and linker} . Before using the tutorial section of this manual, the Motorola 
software must be resident in your host system and available for use. 

The Motorola software may be purchased and licensed through E&S or from Motorola 
directly. The software available through E&S has been modified to run in DEC 
VAX/'~MS and VAX/UNIX environments; the software purchased from Motorola 
supports IBM (specifically MVS/TSO) environments. Further information on purchasing 
the software and the license can be obtained from your E&S Account Executive. 

You will also need two E&S-provided files, USERLINK.RO and USERSTRUC.PAS. 
These files are provided on magnetic tape and must be loaded on your host system before 
you can use the tutorial section of this manual. 

Command files that are provided for the tutorial section of this manual were written for 
the E~.S-modified Motorola cross-software. Modifications to the files may be necessary 
if any other cross-software is used. . 

These files are only provided for DEC VAX/VMS or DEC VAX/UNIX hosts. Users in an 
IBM environment should consult the appendices (C and D} for instructions and files that 
illustrate the use of the cross-software. 

5.1.2 Objectives 

In this module, you will learn: 

• The steps for constructing a sample function whose template should beused in writing 
user-written functions. 

• How to write your own function. 

• How to compile, link, and name the function. 

• How to transfer the function to the PS 300. 

• The restrictions on instancing the function. 

• How to use basic debugging techniques. 

Sm2 PS 300 Advanced Programming 



User-Written Functions Tutorial 

5.1.3 Prerequisites 

Before beginning this module, you should be familiar with the Pascal programming 
language, the use of PS 300 standard functions, and the downloading utilities on your 
host system. You should also make sure that your host system has the prerequisite 
Motorola compiler and linker software and that you have access to it. (IBM users should 
be familiar with the instructions in Appendix C of this manual.} You should have a 
PS 300 console and keyboard with terminal emulator capabilities, or a separate terminal 
that can communicate with your host system. Recommended books to have on hand that 
may be referred to are: 

- PS 300 Document Set, Volumes 1 through S 

- 1t~fotorola Pascal User's Guide 

- Host-system ut' 'ties manual 

5,2 Constructing a Simple Function 

The first step in creating your own user-written function is writing the Pascal procedure 
that will later be compiled and transferred to the PS 300. The Pascal procedure must 
contain: 

- Calls to internal PS 300 functions and routines that allow your function to be 
scheduled and run _ 

- All the code necessary for your function to read data, process data, and write data 

Like all standard PS 300 functions, the function you write must wait until it has an input 
value on all queues, perform its computations; and then output the new values. All 
PS 300 functions must perform the same general series of actions when they are 
activated. These are: 

1. Fetch messages from the input queues. The function must have a message available 
on every queue before it can run. 

2. Make sure the messages received as inputs are of the appropriate type . If not, signal 
an error. 

3. Perform whatever calculations are necessary. 

4. Send output messages. 

5. "Clean up" the input queues and see if the function can be run again immediately. If 
so, go to Step 1. 

The following diagram and text illustrate a simplified version of the PS 300 function 
F:ADD and the Pascal procedure that supports it. 

PS 300 Advanced Programming S-3 



User-Written Functions Turtorial 

Function 

F:ADD 

<1> <1> 

<2> 

Description 

I 

F:ADD accepts integers as inputs and produces an output that is the sum of those 
integers. 

5.2.1 Example 

Note that the example contains comments. Some of these comments will be referred to 
in following portions of text. Refer to the Reference section of this manual for 
descriptions of the utility routines. This function, like all of the other examples included 
in this manual, was developed under DEC VAX/VMS. If you are using UNIX or an IBM 
system for developing your user-written functions, you may have to make minor changes 
in the examples. Refer to the appendix appropriate for your system for details on 
modifications and instructions on the use of the cross-software on your system. 

{ 

SUBPROGRAM UWFadd; 
{$F=USERSTRUC.PAS} 

PROCEDURE GenFunction; {procedure body must always be named GenFunction} 
VAR 

inputs PtrUWFlnQarray; {pointer to data types in Qarray} 
outmsg PtrUWFInQarray; {pointer to data types in Qarray} 
i Integer; 

{ Main body of UWF 

{ calls utility routine to check inputs for data, 
{ checks inputs for valid data type, 
{ returns error message if data are not valid. 
{ 

BEGIN {GenFunction} 

inputs := Cklnputs (l, 2); {check for data on range of queues} 
WHILE inputs <> NIL DO BEGIN 

IF inputs1 [1] '~. gtyp <> Qinteger THEN {check for valid data type} 
QI11Message (1) {error message if data are invalid} 

ELSE IF inputs1[21~'.gtyp <> Qinteger THEN {check for valid data type} 
Q111Message (2) {error message if data are invalid} 

S-4 PS 300 Advanced Programming 



User-Written Functions Tutorial 

ELSE BEGIN 

{ } 
{Allocate a new Qinteger to hold the output message. } 
{Then add the integers and send the sum from output <1>.} 
{ } 

outmsg := Newginteger; {allocate memory block for output message} 

outmsg~' . i : = Input s ~' [ 1 ] t . i + Input s ~' [ 2 ] ~' . i ; {put sum in output } 

{message} 
Sendmsg(outmsg,l); {send message to output <1>} 

END; 

{ } 
{Call utility routine to flush queues and see if there is} 
{enough time to process more data; call Cklnputs to see } 

{if there is data on all queues. } 
{ } 

IF C1eanInputs THEN {flush input queues and see if there is enough} 

{time to process new data} 
inputs := Cklnputs(1,2) {check for data on queue <1> thru <2>} 

ELSE 

inputs := NIL {get out of WHILE loop} 

END; 

END 

From the example, you can see that the first requirement of the Pascal procedure is that it 
checks for inputs on both queues: 

inputs:=CkInputs(1,2); {Check for inputs on queues 1 through 2} 

This will hold true for any user-written function; nothing can happen until the function 
has data on all input queues. The queues are checked for input by Cklnputs, a utility 
function that accepts the range of the queues as parameters; for example, if the function 
had six queues, that line of code would read: 

inputs:=CkInputs(1,6); {Check for inputs on queues 1 through 6} 

Cklnputs has a pointer to each of the input queues specified in the inclusive range and 

stores them. When Cklnputs is called, if there are data on all of the queues, it will return 

with a pointer to the array. Cklnputs will return a NIL if there are queues in the range 
that do not have input. Notice that if NIL is returned, the F:ADD function will exit. In 
F:ADD, if there are data on both queues, the program can proceed. The procedure next 

checks to see if the data on input <1> are the specified data type: 

IF inputs1[1]'~.Qtyp <> Qinteger THEN {input on <1> must be integer} 

PS 30D Advanced Programming S-S 



User-Wratten Functions 7"urtorial 

In this simplified version of F:ADD, the only acceptable data type is an integer. If the 
data type is not an integer, an error message is triggered, and the function cannot run. 
The utility routine, Qillmessage, would print out the message: 

Message which function cannot handle. 

signifying that the data on the queue were not of the specified type. 

Input <2> is then checked for an acceptable data type and the same process is repeated. 
In any function, all input queues must be checked to see if the data on the queues are the 
specified data type. Further, the specified data type must be one of the QData types 
defined in USERSTRUC.PAS. (This list is provided in the reference section of this 
document. ) 

If both inputs have data, and data are in the specified range, the function can run. In this 
case, the function processes the data by adding the two integers together to produce a 
sum. Note that before the integers are added, a memory block is allocated for the output 
message with the statement: 

outmsg := NewQinteger; 

Memory must always be allocated for the processed data that will be placed on the output 
queue (s) of the function. Again, the outmsg must be one of the QData types defined in 
USERSTRUC. PAS. After the memory is allocated and the integers are added together, 
the sum is then sent as an outmsg to output <1> of the function: 

outmsg' . i : = input s ~' [ 1 ] ~' , i + input s ~' [ 2 ] T , i ; {put sum in output message } 
Sendmsg(outmsg,l); {send message to output <1>} 

Finally, the program flushes the input queues by calling the CleanInputs function, which 
also checks to see if there is more time available to process more incoming data: 

IF C1eanInputs THEN {clean up input queues and see if there is} 
{enough time to process new data} 

The utility function C1eanInputs should be called after the input data have been processed 
and the outputs have been sent. This function "cleans up" the input queues and 
determines whether there is enough time for the function to run again immediately. 
CleanInputs will return a FALSE if the function has been running for more than 2 
centiseconds. Then, the inputs are again checked for data by calling CkInputs: 

inputs := CkInputs (1, 2) {check for data on queue <1> thru <2>} 

S-6 PS 300 Advanced Programming 



User-Written Functions ?'utorial 

If inputs =NIL, there is no more data on the input queues and the function exits . This is 
a very simple example and demonstrates the basic principle behind writing the Pascal 
procedures that will be used as functions in the PS 300 system. 

The ut' 'ty routines (or functions) that this program calls, CkInputs and C1eanInputs, are 
just two of the utility subprograms that will be used in writing your own functions. These 
routines and functions allow for scheduling and communication between functions. A 
complete list of the utility subprograms are in the reference section of this manual. Most 
of them will be described and demonstrated in this module and in the Advanced Ideas 
module. The utility routines and functions are declared in USERSTRUC. PAS, along with 
the QData types already mentioned. USERSTRUC. PAS must be compiled along with 
your user-written function by using the inclusion: 

{$F=USERSTRUC.PAS} 

immediately after the name of your program. (See example.) It is important to remember 
that the rules that apply to standard PS 300 functions also apply to any functions that you 
will write. The first important rule to remember is that: 

There must be a message available on all input queues before the function will be 
activated. 

5.2.2 About Messages and Queues 

The input and output messages received by the function must belong to one of the QData 
types declared in USERSTRUC.FAS. These message types include all of the types used 
by intrinsic PS 300 functions: integer, string, Boolean, real, vector, and matrix. In 
addition, it is possible for user-written functions to define additional message types; this 
will be discussed in more detail later on. 

By default, all of the input queues for auser-written function are initially active queues, 
although you may use the SETUP CNESS command to establish some of the queues as 
constant queues. Within the code for the body of the user-written function, however, 
both constant and active queues are treated identically. 

For your function to work properly, you must be careful to use messages correctly. 
Improper use of messages is by far the most common source of problems with 
user-written functions. Failure to observe the rules for proper use of messages will, at the 
very least, cause your function to behave unpredictably, and. may cause the PS 300 to 
crash. 

Messages used by auser-written function are of two types: those that are "owned" by the 
function, and those that are not. The only messages that are owned by the function are 
those that were created explicitly by the function, using the Pascal NEW function or the 
supplied functions NewQxxx and MsgCopy. The input messages to a function are NOT 
owned by that function. You should treat the input messages as being "read-only." 

PS 300 Advanced Programming S-7 



User—Written Functions Turtorial 

The most important rule for handling messages properly is that a function should never 
attempt to moclify, send, or dispose of messages which it does not own. You must also 
make sure that all of the messages that are created by the function are sent to an output 
queue (using SendMsg) , stored on the private queue, or otherwise disposed of (as via 
DropMessage) before the function exits. (After this is done, the message is no longer 
owned by your function.) If the function exits without disposing of all of its owned 
messages, it will "eat" storage and may cause the PS 300 to crash as a result of exhausting 
available memory. 

Some of the utility functions and procedures provided cause the values of the messages 
they take as arguments to become undefined (as QSendCopyMsg) , or they set the pointer 
to the message to NIL (as SendMsg) . You should be aware of these side—effects; refer to 
the Reference Section for complete descriptions of the utility functions and procedures. 

Messages are actually sent in the order that you make the calls to SendMsg, but not until 
the function has finished running. You should be careful to send messages in the correct 
order where necessary. For example, the outputs of the Bezier curve function in Module 
6 are intended to be connected to a vector list. Output <1>, which clears the vector list, 
must be sent before output <2>, which appends to the vector list; otherwise the vector list 
would always be empty 1 

5.2.3 About Function States 

Ordinarily, you need not be concerned about function states or the valid actions that a 
function can perform in each state, as long as the functions you write follow the template 
used in the examples in this manual. This information is provided for completeness. 

A PS 300 function instance may be in one of several states at any given time. Transitions 
between the states are caused by the scheduler in the PS 300 system, or by calls to utility 
procedures when the function is running. 

A function instance is in state MSG WAIT while it is waiting for messages to arrive on all 
input queues. When all input queues have messages, the scheduler changes the state to 
ACTIVE and puts the instance on the list of functions that are ready to be activated. 
When the main procedure of the function is called by the scheduler, the state is changed 
to RUNNING. 

The function instance must be in the state RUNNING when the utility procedure 
CkInputs is called. If messages are not available on all input queues, CkInputs returns 
I~TIL and the function state is changed back to MSG WAIT. If there are messages on all 
inputs, the function state is set to MID_RUNNING. 

~ilhile the function instance is in state MID_RUr~TING, it should process its inputs and 
send outputs. When this is complete, the utility procedure CleanInputs must be called. 
This procedure can only be called from the MID_RUNNING state. 

S-8 PS 300 Advanced Programming 



User-Written Functions Tutorial 

After disposing of the previous input messages, CleanInputs first checks to see if there are 
messages available on all input queues. If there are queues without messages, the state is 
changed to MSG WAIT. Otherwise, a check is made to see if the function has been 
running longer than two 'seconds; if it has, then the state is changed to ACTIVE. 
(This gives other functions a chance to run.} 

If the function has not been running longer that two milliseconds, its state is changed to 
RUNNING, allowing it to run again with the new set of input messages. The function may 
continue to execute as long as it is in the RUNNING or MID_RUNNING state. It must 
exit immediately if the state is changed to MSG WAIT or ACTIVE. The following 
diagram illustrates the change of states in a function instance . 

Function States Diagram 

~ --CleanInputs found 
~ empty input queue 

~ -~ -~ -~ ~ 

~ ~ 

~ ~ --CleanInputs 
~ timed out 

~ ~ 

~ ~ 

~ ~ 

~ ~ 

~ ~ 

~ ~ 
~ F F F F 

F ~ ~ F ~ ~ 

MSG WAIT 

~ --Messages received 
~ on all input queues 

ACTIVE 

~ --Function called 
~ by scheduler 

RUNNING 

F ~ ~ F 

~ --CkInputs 
returned 
I~TIL 

F F F F 

~ --C1eanIn uts P 
-CkInputs found messages ~ returned 

~ on all input queues TRUE 

MID_RUNNING 

In the next section, Writing Your Own Function, you will be asked to write the Pascal 
procedure for a specific function. Before you begin this section, make sure you are 
familiar with the types of messages that can be handled and with the utility routines. This 
information in found in the Reference Section of this manual. 

PS 300 Advanced Programming S-9 



User-tiVritten .Functions Turtorial 

5.3 tivriting Your Own Function 

The diagram below illustrates the function that you will be writing in this section. 

Function 

S 

B 

Description 

---~ 

F: CHASE 

<1> 

<2> 

<1> 

<2> 

--~. 

--.•~ 

S 

I 

F:CHCASE accepts ASCII character strings {gpacket data type} on input <1> and a 
Boolean value on input <2>. When input <2> is set to TRUE, the characters received 
on input <1> will be output as upper case. when input <2> is set to FALSE, the 
characters will be output as lower case. Output <1> takes the processed character 
string from input <1>. Output <2> sends out an integer that is the length of the string. 

To write this function you must: 

1. Name the program. 
2. Include USERSTRUC.PAS. 
3. Define the variables. 
4. Check the inputs for data. 
5. Check for the legitimate data types. 
6. Allocate memory for the output messages. 
7. Change case according to the value on input <2>. 
S. Send the processed string to output <1>. 
9. Send the count of the string to output <2>. 

10. Flush the queues. 
11. Check all queues for more data. 

Because you will be using this program for exercises in compiling, linking, and 
downloading, for consistency it is suggested that you name your program: 

SUBPROGRAM ChCase; 

~ . 3.1 Exercise 

Design and write the Pascal procedure for the function F:CHCASE, as previously 
described. 

5-10 PS 300 Advanced Programming 



User-Written functions Tutorial 

5.3.2 Feedback 

The procedure for F:CHCASE is provided as an example. Please check your exercise 
against it to make sure you have included all the necessary steps. You can design your 
program in any number of ways, so long as it performs the necessary steps in the correct 
order. 

SUBPROGRAM ChCase; 

{$F=USERSTRUC.PAS} 

PROCEDURE GenFunction; 

VAR 

inputs PtrUWFInQarray; 

length Integer; 

outmsg Ptrgdata; 

j,k Integer; 

{ } 
{ Utility functions for uppercasing and lowercasing a character } 
{ } 

FUNCTION uppercase (ch Char): Char; 
BEGIN 

IF ~ (ch >_ ' a' ) AND { ch <_ ' z' ) THEN 

uppercase : = chr ( ORD (ch) - 3 2 ) 
ELSE 

uppercase := ch; 
END; 

FUNCTION lowercase {ch Char): Char; 
BEGIN 

I F ( Ch >_ ' A' ) AND ( ch <_ ' Z' ) THEN 

lowercase := chr {ORD{ch) + 32) 
ELSE lowercase := ch; 

END; 

{ 

{ Main body of UWF 
{ 

BEGIN { GenFunction } 

inputs := CkInputs (1, 2); 

WHILE inputs <> NIL DO BEGIN 

IF inputs1 [1 ] '~ . gtyp <> QPacket THEN 

Qillmessage (1) 

} 

} 
} 

PS 300 Advanced Programming 5-11 



User-Written Functions Turtorial 

ELSE IF inputs1[2]'~.gtyp <> QBoolean THEN 
Qillmessage (2) 
ELSE BEGIN 

{ 
{ Allocate a new QPacket big enough to hold 
{ a the string. Then fill in the value and 
{ send the message from output <1>. 
{ 

WITH inputs' [1] '~ DO 
length := P_lth - P beg + l; 

outmsg := NewQPacket (QPacket, length); 
j := outmsgT.P beg; 

FOR k : = inputs' [1] '~. P beg TO inputs' [1] '~. P_1th DO BEGIN 
I F i npu t s fi [ 2] T. b THEN 

outmsg' . P_cnt [ J ] : = uppercase ( input s~' [ 1 ] '~ . P_cnt [ k] ) 
ELSE 

outmsg .P_cnt K [ ] : = lowercase ( input s fi [ 1 ] T . Pe cnt [ k]) ; 
j •= j + 1• 

END; 

SendMsg (outmsg, 1); 

{ 

{ Send a message indicating the length of 
{ the string on output <2>. 
{ 

outmsg := NewQInteger; 

outmsg~'.i := length; 

SendMsg (outmsg, 2); 
END; 

IF C1eanInputs THEN 

inputs := CkInputs (1, 2) 
ELSE 

inputs := NIL; 

END; 

END. { GenFunction } 

5-12 PS 300 Advanced Programming 



User-Written Functions Tutorial 

~ . 4 C omp~ling, Linking, and Naming the Function 

The procedure you have just written must now be successfully compiled and linked. The 
processor in the PS\300 that executes functions is the Motorola M68000 microprocessor 
and your code must be compiled and linked by Motorola cross-software. 

The next section provides simple instructions on using the files provided on magnetic tape 
for DEC VAX/VMS and DEC VAX/UNIX systems. 

IBM VM/SP and IBM MVS/TSO users should briefly familiarize themselves with the 
information provided here, and then refer to the appropriate appendices (C and D, 
respectively) in this manual for further instructions on using the cross-software. IBM 
MVS/TSO users should consult the Motorola manuals supplied with the cross-software. 

The first four appendices of this manual provide further instructions for each 
environment. If you are not operating in one of these environments, you will have to 
tailor the command files to your system or write your own. 

The code for all files is provided in the final appendix of this manual. 

Before continuing with this tutorial, make sure the cross-software and the files have been 
loaded on your system and that you have access to them. 

Use the 1Vlotorola Pascal User's Guide as a reference to interpret any error messages 
produced by the compiler when your function is compiled. 

5.4.1 Description of the Command Files for DEC VA.X/VMS and UNIX 

The command files provided for the DEC systems combine four specific tasks: 

1. Compile your Pascal procedure with the Motorola cross-compiler. 

2. Link your Pascal procedure with the MAIN program, USERLINK, to yield an 
S-record file. The S-record file is the definition of the userwritten function in a form 
that the PS\300 expects and will accept. USERLINK calls a procedure, GenFunction, 
which is the name of the body of the function that you have written. (Refer to the 
examples.} 

3. Append a trailing semicolon, ";", to the end of the S-record file. The semicolon must 
terminate any S-record file that is transferred to the PS\300. 

4. Name your function. Before the S-record file can be downloaded to the PS\300 and 
the function instanced, it must be named. A name "header" must be created that 
includes the number of inputs, the number of outputs, and the stack usage of the 
function. (The stack usage is the number of bytes that must be reserved on the stack 
for the function and includes the count of all utility routines that the function uses. 
The reference section of this manual contains a listing of the stack usage for all the 
utility routines . ) 

PS 300 Advanced Programming 5-13 



~Iser-written Functions ?'urtorial 

When the command file is called, it accepts as arguments the function name, number of 

inputs, number of outputs, and stack size. 

There are several restrictions on the files thatare provided as an aid in compiling, 
cross-linking and finally naming your function: 

• The name of the file that will be compiled and linked using thecommand files 
must have the same name as the function. 

• The provided command file will only accept one file name. This means that 
functions that use several files must be compiled, linked, and named under a 
modified version of the command file. 

x.4.2 DEC VAX/VMS Command File 

Before executing the following command, you should: 

1. Set your default directory to the directory containing the source files for the function 
you want to compile ,and Link. This directory should also contain copies of 
USERSTRUC.PAS and USERLINK.RO. 

2. Edit your login. com file to contain an ~XNAMES command. 

As a convenience, a command file, XL. COM has been provided to compile and link your 
function and to produce the S-record file that is ready to be downloaded to the PS 300. 
All of the code for the function must be in a single .PAS file and the name given to the 
function is assumed to be the name of the file. To invoke this command, you should 
enter the command in the form: 

$ XL <filename> <number inputs> <number outputs> <stack size> 

In the above example, the brackets are provided to separate the arguments. When 
actually using the command, the brackets are not used and the arguments are separated 
by a single space. Error messages will be returned if any errors are encountered in. the 
compiling, assembling, and linking process. 

When this message is displayed: 

<filename>.300 created 

the cross-software has been successfully called, an S-record file has been produced, and. 
the name header has been created. This file, <filename>.300, is ready to download to 
the PS 300. 

S-~ 4 PS 300 Advanced Programming 



User-Written Functions ?'utorial 

If functions that you may write later contain code from more than one file, or if you want 
to include routines you have written in assembly language, refer to Appendix A for 
instructions. Refer to the Motorola Pascal User's Guide to interpret error messages that 
are generated at the time your code is compiled. 

5.4.3 DEC VA,X/UNIX Command Files 

Before attempting to use the cross-software, you should edit your . cshrc file to "source" 
the file xnames, which defines the necessary aliases and shell variables. This allows the 
assembler, compiler, and linker to be used as described in the EXORMACS manuals. 

Before executing the command described below, you should set your working directory to 
the directory containing the source files for the function you want to compile and Iink. 
This directory should also contain copies of userstruc.pas and userlink.ro. Since UNIX is 
case sensitive, remember to use consistent case for file names. 

As a convenience, a shell script xl has been provided to compile and link your 
user-written function and to produce the S-record file ready to be downloaded to the 
PS 300. All of the code for the function must be contained in a single .pas file, and the 
name of the function is assumed to be the name of the file . To invoke this shell script, 
you should enter the command in the form: 

% xl <filename> <number inputs> <number outputs> <stack size> 

In the above example, the brackets are provided to separate the arguments . When 
actually using the command, the brackets are not used and the arguments are separated 
by a single space. Error messages will be returned if any errors are encountered in the 
comp' ' g, assembling, and linking process. Refer to the Motorola Pascal User's Guide 
to interpret these error messages. 

When this message is displayed: 

<filename>.300 created 

the cross-software has been successfully called, an S-record file has been produced, and 
the name header has been created. This file, <filename>.300, is ready to download to 
the PS 300. If functions that you may write later contain code from more than one file, or 
if you want to include routines you have written in assembly language, refer to Appendix 
B for instructions. 

PS 300 Advanced Programming S-1 S 



User-i~ritten Functions Turtorial 

x.4.4 Instructions for IBM Systems 

If you are using an IBM system, refer to the following appendices (or manuals) for 
instructions. 

IBM VM/SP Appendix C for the names of the files appropriate for your 
system, information on the use of the cross-software on your 
host system, and example files that execute the 
cross-software. 
Appendix G for instructions on how to build the name 
header that will be downloaded to the PS 300 prior to the 
S-record file. 

IBM MVS/TSO Appendix D for the names of the files appropriate for your 
system. Please refer to the Motorola cross-software manuals 
for instructions on using the cross-software on your system. 
Appendix G for instructions on how to build the name 
header that will be downloaded to the PS 300 prior to the 
S-record file. 

5.4.5 Exercise 

Compile, link, and name the function F:ChCase. If you are using the command files, 
remember that the name of the function must be the same as the name of the file that 
contains the Pascal procedure; i.e., your file name should be ChCase.pas. To successfully 
complete this exercise, complete the steps listed for your operating environment. 

For DEC VAX/VMS or UNIX: 

1. Invoke the command file appropriate for your host system. 

2. Enter the parameters for the function, F: CHCASE, including name, number of 
inputs, number of outputs, and stack size. (1000 is a reasonable estimate for the 
stack size of any function similar in size to F:CHCASE.) 

For IBM VM/SP: 

1. Compile and link your function using the instructions provided in Appendix C. 

2. Build the function header line (refer to Appendix F) . 

3. Append your file with the trailing semicolon ";" . 

5-16 PS 300 Advanced Programming 



User-Written Functions Tutorial 

For IBM MVS/TSO: 

1. Compile and link your function using the instructions provided in the Motorola 
manuals and Appendix D. 

2. Build the function header line (refer to Appendix F) . 

3. Append your file with the trailing semicolon ";" . 

5.4.6 Feedback 

The following example is provided to illustrate what should have been entered at your 
host terminal to call the Motorola cross-software successfully and to create the name 
header for your function for DEC systems: 

VAXIVM S 

$ XL CHCASE 2 2 1000 

VAX/UNIX: 

% xl ChCase 2 2 1000 

IBM systems users should use the example files provided in the appendices to check their 
exercise. 

5.5. Transferring the Function to the PS 300 

After your Pascal procedure has been compiled and linked with the main program 
USERLINK, the S-record file output by the linker must be modified to include a function 
header line and to terminate with a semicolon. If you have compiled- and linked your 
function using the command files previously described, this will be done for you. See 
Appendix F for a description of the header line format. 

If you are using VAX/VMS, UNIX, or any other ASCII system over an RS-232 
asynchronous line, the S-record file can be downloaded by including the routing bytes to 
access the appropriate channel. Input on this channel is sent to a PS 300 function that 

writes the new function into mass memory in the Graphics Control Processor. 

For IBM systems or high-speed lines, these channels are accessed by using the Utility 
Routines provided by the PS 300 Graphics Support Routines (GSRs), rather that using the 
ASCII routing bytes. Both transfer methods will be discussed in the following section. 

PS 300 Advanced Programming 5-17 



User-Written "unctions Turtorial 

5.5.1 Using Routing Bytes to Transfer the S-Record File 

If you are not familiar with the use of routing bytes in the PS 300, please refer to Volume 

5 of the PS 300 Document Set. In general, routing bytes are used to toggle between 
different communication channels in the PS 300 system. In downloading the S-record . 
files for user-written functions, the channel which loads the functions to mass memory 

must be accessed. The routing bytes that open this channel are 1\ 6, where T\ is the field 
separator character (decimal 28) and 6 designates the channel for loading user-written 
functions into memory. 

Once the user-written functions have been transferred to the PS 300, you should change 
the channel back to the terminal emulator so that any error messages can be intercepted 
and displayed on the PS 300 screen. The routing bytes for the terminal emulator are 
~'\> 

The routing bytes and S-record file can be sent to the PS 300 in number of ways. The 
suggestions that follow outline some of the normal communication methods available 
between the PS 300 and an ASCII host system. 

1. Ahost-system command file can be built that uses standard host transfer commands 
to send the mass-memory routing bytes (t\ 6) , then the file containing the name 
header and S-record file, and finally the routing bytes that open the communication 
channel to the terminal emulator. 

2. Individual files containing the routing bytes can be built and then copied to the 
PS 300 by a command file. The file transfers the opening sequence of routing bytes, 
the S-record file, and finally the routing bytes to change the channel. 

3. The file containing the S-record file can be edited using host facilities and the routing 
bytes can be included at the top and at the end of the file. The file can then be sent 
to the PS 300. The routing bytes are stripped out once the file is passed to 
communication functions in the PS 300, so they would not be the final code that is 
used by the function when it is instanced. 

x.5.2 Using the Graphics Support Routines to Transfer the S-Record File 

For any non-ASCII system, it is recommended that the utility routines in the Graphics 
Support Routines (GSRs) be used to access data channels and transfer the S-record file. 
The GSRs are provided in both FORTRAN and Pascal. If you are not familiar with the 
GSRs, refer to Volume 3b of the PS 300 Document Set. 

channel parameter 7 should be used with"the utility routine, PMUXG, to access the 
cha el to mass memory. It is recommended that the channel to the terminal emulator, 
15, be reconnected after the transfer is complete so that error messages will be displayed 
on the PS 300 screen. 

' The following Pascal program illustrates how the GSRs can be used to transfer the 
S-record file from the host system to the PS 300. This example illustrates the use of the 
GSRs in an IBM VM/SP environment. 

5-18 PS 300 Advanced Programming 



User-written Functions Tutorial 

File: SRECSND PASCAL 

Program SRecSnd (input,output,srecfile); 

CONST 

%INCLUDE PROCONST 

TYPE 

%INCLUDE PROTYPES 

VAR 

srecfile 
istr 

crlfa 
crlf 

Text; 

String (256); 

Packed array (.1..2.) of char; 

String(2); 

%INCLUDE PROEXTRN 

PROCEDURE err (errnum integer); 

BEGIN 

writeln( 'got error: ', errnum ); 
END ; 

BEGIN 

pattach ('junk' ,err) ; 
reset( srecfile); 
crlfa ( .l. } ~ : CHAR (13) ; 

crlf : = STR (crlfa) ; 
pmuxg(7,err); 

WHILE NOT EOF (srecfile) DO 

BEGIn 

readln (srecfile, istr); 

pputgx (istr,err); 
pputgx (crlf, err); 

END; 

writeln; 
pmuxg{15,err); 

pdetach(err); 

END. 

5.5.3 Exercise 

Using any of the previously described methods, transfer the file ChCase.300 (renamed 
after it was compiled and linked) from your host system to the PS 300. 

PS 300 Advanced Programming S-~ 9 



flser-Written Functions Turtorial 

5.5.4 Feedback 

The only way to check and see if your file transferred successfully is to try to instance the 
function. This is done by entering Command mode on the PS 300 (refer to Volume 1 of 
the PS 300 Document Set for entering the communication modes) and instancing the 
function using the standard PS 300 command: 

instance name := F:CHCASE; 

If no error message is returned, the function was successfully downloaded and now 
resides in mass memory in the PS 300. 

If the downloading process fails, the PS 300 may crash and require rebooting. After 
rebooting, attempt to download the file at least once more. If the PS 300 still crashes, 
check the following: 

1. The correct file name was used in the transferring process. 

2. The correct routing bytes or channel parameters were used. 

If you are compiling and linking using the command files provided, the information and 
format of the S-record file are valid. If you are not using the command files, check for 
the following: 

1. Correct syntax in the name header, including adequate stack size. 

2. Trailing semicolon at the end of the file. 

3. Correct routing bytes or channel parameters. 

5.6 Instancing the Function 

When the function has been successfully transferred to the PS 300, it is instanced using 
the standard PS 300 command: 

instance name := F:user-written function name; 

Once the function is resident in mass memory, there are several restrictions that apply to 
all user-written functions: 

1. Initializing the system with the global INIT; command, or using the INIT NAMES; 
command will destroy not only all instances of the function, but also the body of the 
function. The function would have to be again transferred down from the host system 
before it would be available for use on the PS 300. Functions can be protected from 
the INIT commands. The procedure for doing this is described in Module 7. 

5-20 PS 300 Advanced Programming 



User-Written Functions Tutorial 

2. Naming anything with the same name given to auser-written function will cause the 
function to be replaced by the new entity of that name. In particular, note that the 
command 

ChCase := F:CHCASE; 

will destroy the code for the function F:CHCASE. 

With the exception of those restrictions, the user-written function will respond as any 
intrinsic function resident in the PS 300. 

5.7 Debugging ITser-'4~ritten Functions 

The debugging environment on the PS 300 is less powerful than that used for debugging 
programs on the host computer. There is no symbolic debugger, and no way to include 
"writeln" statements inside the function to examine intermediate results and trace its 
execution. The function you are debugging is very much like a black box: you can see 
what goes in and what comes out, but you cannot look inside it. 

The standard technique for debugging auser-written function is to instance it and 
connect all outputs to F:PRINT functions, and from there to the terminal emulator or 
LABELS or CHARACTERS structures. Then, you SEND messages to the input queues 
of the function and examine the results. If the user-written function does not behave as 
expected, it is possible to replace the code for the function (by recompiling and relinking 
on the host and downloading the new S-record file) without losing the function instance 
or connections to and from it. 

If the function does not produce any outputs at all, make sure that it is receiving messages 
on all of its input queues. Remember that all queues default to being active queues unless 
you use SETUP CNESS to make them constant queues. 

If the function is only sending some of the output messages you expect, look for bugs in 
the body of the function. Make sure that SendMsg is being used to send the messages to 
the appropriate_ output queues. 

When the values of the output messages are incorrect, it is sometimes useful to modify the 
function temporarily to have additional outputs for sending intermediate results. By 
examining these values, it is possible to isolate the source of the problem. Once the 
problem has been fixed, -the extra outputs can be removed. 

There are two common problems that cause running auser-written function to crash the 
PS 300. If the PS 300 crashes immediately (as soon as the function is activated) , it is 
probably because the stack size you specified when you created the S-record file is not 
big enough. Try increasing this value. (Use the Stack Usage list in the Reference section 
of this manual to help determine stack size. The stack requirements are given for all the 
provided utility routines.} 

PS 300 Advanced Programming 5-21 



User-tiVritten Functions Turtorial 

Another cause of an immediate crash is when the number of inputs specified in the name 
header line is not correct. 

If the crash occurs randomly after the function has been run, it is probably the result of 
trying to send or otherwise dispose of a message which is not owned by the user-written 
function. The crash occurs when the true owner of the message tries to access it. In this 
case, you should examine the code for the function for proper use of messages. The 
Reference section of this manual contains a list of common crash messages and their 
probable cause . 

Remember that while your function is running, nothing else will. If the PS 300 seems to 
"hang" when the function is activated (i.e., it does not respond to the keyboard or other 
devices} , look for an infinite loop in the function. Problems with message ownership can 
sometimes cause an infinite loop if you are trying to use a message whose value has 
become undefined (as by using SendMsg or QSendCopyMsg) as the upper limit of a FOR 
loop. 

Another common problem is when the function "eats" memory. This is usually most 
noticeable after the function has been run many times. In this situation, examine the 
function closely to ~e sure that all of the messages it creates are being sent as outputs, or 
otherwise disposed of, before the function exits. 

~ . 7.1 Exercise 

Create an instance of F:CHCASE. Connect it to a network that will allow you to examine 
the contents of the messages that are sent out of the function to determine if it is working 
correctly. To do this you will have to: 

1. Create an instance of ~':CHCASE. 

2. Create an instance of F:PRINT for each output of F:CHCASE. 

3. Creme a label node that will accept and display the character string from F:PRINT. 

4. Create a network that will feed the messages from the output of F: CHCASE through 
the PRINT function to the label node. 

5. SEND messages to the input queues of F:CHCASE and examine the results. 

5.7.2 Feedback 

The strings displayed on the PS 300 screen should accurately reflect the case of the 
characters in the string, as determined by the Boolean value on input <2> of F:CHCASE. 

5-22 ~ PS 300 Advanced Programming 



User-Written Functions Tutorial 

5.8 Conclusion 

This completes the module 5, the User-Written Functions Tutorial. By this time, you 
should be able to construct, compile and link, download, and instance a simple function. 
Module 6, Examples of More Advanced Ideas, moves from a strictly tutorial •format to a 
format that demonstrates by examples some of the more advanced programming 
capabilities that can be used when writing your own functions . 

Module 7 provides instructions for transferring user-written functions to the PS 300 
Firmware diskettes, allowing them to load with the system, and PS 300 commands that 
protect user-written functions from global INITIALIZE commands. It also contains 
information on the use of the PS 300 Debugger. 

.~~ 

PS 300 Advanced Programming 5-23 



.< 

c 



MaDULE 6 

More Advanced Idea 

'Phis module illustrates, through examples and text, how to write more complex functions. There 
are four major examples, each illustrating a different type of function. The functions illustrate the 
following concepts: 

F: MAG How to handle more than one Qdata type on the same input queue . 

F:COUNT How to use the Set~Cness utility routine and private data queues. 

F:BEZIER How to write a function with a variable number of input queues. 

F: SPIRO How to make use of the user-defined QData type. 

Before proceeding with this module, you should be familiar with: 

~ The concepts presented in Module S . 

• The information provided in the reference section of this manual. 

Should you need further exercise in writing functions, it is recommended that you use this section 
in the following manner: 

1. Examine the initial introduction to each example and the description of the function. 

2. Using the reference section of this manual, write a procedure to support the described 
function. 

3. Check your code against the examples provided. 

4. Compile, download, and instance the function. 

5 . Try it out. 

PS 300 Advanced Programming 6-1 



More Advanced Ideas 

601 Example I —Handling Different 1Vlessage Types on the Same Queue 

F :MAG 

'The magnitude function, F:MAG, is an example of a function that can handle several 

types of messages on the same input queue. This function will calculate the absolute 
value, if the input message is of type integer or real, or the length, if the input is a 2D or 
3D vector. 

If a function has two or more inputs that can take different message types, it is often 
necessary to make additional checks to make sure that the received messages are 
compatible types. If this is not the case, there is a ut' 'ty procedure, QIncompatMsgs, 
provided to signal the error. 

F:MAG illustrates how the body of a function that can accept different types of inputs 
usually takes the form of a single IF /ELSE IF /ELSE statement. Each IF clause tests 
for a valid combination of inputs, with the final ELSE clause being used to flag an error. 

Function 

I, lZ, 2D, 3D --~° 

Description 

F: MAG 

<1> <1> 

This function calculates the absolute value (if integer or real} or magnitude (if a 
vector) of the input received. • 

Example 

SUBPROGRAM uwf map ; 

{$F=USERSTRUC.PAS} 

PRGCEDURE GenFunction; 

VAR 

inputs PtrLJWFInQarray; 

outmsg : Ptrgdata; 
temp double; 

6--2 ~ PS 300 Advanced Programming 



More Advanced Ideas 

BEGIN {GenFunction} 

inputs := CkInputs (l, 1); 

WHILE inputs <> NIL DO BEGIN 

IF inputs~'[1]~`.gtyp = QInteger THEN BEGIN {send absolute value} 

outmsg := NewQInteger; 

outmsg' . i : = ab s (inputs 1 [ 1 ] ~' . i) ; 

SendMsg (outmsg, 1); 

END 

ELSE IF inputsT[1]'~.gtyp = QReal THEN BEGIN {send absolute value} 

outmsg := NewQReal; 

outmsgT . r : = input s ~' [ 1 ] '~ . r ; 

FpAbs ( outmsg' . r) ; 

SendMsg (outmsg, 1); 

END 

ELSE IF inputsfi[1]1.gtyp = QVec2 THEN BEGIN {send sgrt (x*x + y+y)} 

outmsg := NewQReal; 

FCMultiply ( inputs' [1] ~' . v4 [o] , inputs ' [1] ~'. v4 [o] , outmsg'. r) ; 
FCMultiply ( inputsT [1] t . v4 [1] , inputs' [1] ~' . v4 [1] , temp) ; 

FCAdd (outmsg1.r, temp, temp); 

FCSgroot (hemp, outmsgfi.r); 

SendMsg (outmsg, 1); 

END 

ELSE IF inputsT[1]T.gtyp = QVec3 THEN BEGIN {send sgrt (x*x + y* y} 
{Z*Z)} 

outmsg := NewQReal; 

FCMultiply ( inputs' [1] fi . v4 [o] , inputs1 [1] ~' , v4 [o] , outmsg'. r) ; 
FCMultiply ( inputsT [1] ~'. v4 [1] , inputs' [1] ~', v4 [1] , temp) ; ' 

FCAdd (outmsgT.r, temp, outmsgT.r); 

FCMultiply (inputs1[1]t.v4[2] , inputs~'[1]1.v4[2] , temp) ; 

FCAdd (outmsg~'.r, temp, temp); 

FCSgroot (temp, outmsg~'.r); 

SendMsg (outmsg, 1); 

END 

ELSE {anything else is illegal} 

QI11Message (1); 

IF Cleaninputs THEN 

inputs := Ckinputs (1, 1) 

ELSE inputs := NIL; 

END; 

END. {GenFunction} 
.~t 

PS 300 Advanced Programming 6-3 



More Advanced Ideas 

6.2 Example II -SET Cl'~TESS and Private Queues 

F:COUNT The function F:COUNT is a simple counter function. Input <1> is the trigger 
queue. A Boolean value of TRUE causes the counter to be reset to the value received on 
input G2>. A value of FALSE causes the current value of the counter to be incremented. 
Input <2> is a constant queue. 

The utility procedure Set\Cness is used here to "hard-code" the cness of the queues. 
Usually, it is preferable to rely on using the SETUP CNESS command to establish the 
cness of the queues for each individual instance of a function. If you use the Set\Cness 
utility procedure, you cannot also use SETUP CNESS on the same queue. In F:COUNT, 
however, it is hard to imagine a situation where you would not want to have the initial 
value of the counter a constant queue, so you would want to use the Set\Cness utility. 

If a function uses the Set,\Cness procedure, the call should appear at the very beginning 
of the function body. Trying to change the Cness of a queue back and forth in the middle 
of the function will probably not do anything useful. 

F: COUNT also illustrates the use of the private queue to store the current value of the 
counter. Ordinarily, auser-written function has no global variables or other permanent 
information that remain from one activation of the function to the next. Since being able 
to "save state" is sometimes required for a function to perform its proper task, each 
user-written function is provided with a private queue to contain permanent information. 

The name "private queue" is used because the only way messages can be placed there is 
from inside the function itself; you cannot SEND to the private queue of a function. 

when a function is instanced, the private queue is initially empty. Therefore, one of the 
very first things a function that uses the private queue should do is check to see whether 
or not there is already a message on the queue, using the utility function CkPrivate. This 
function will return a pointer to the message if it exists. If the queue is empty, create a 
new message of the appropriate type and use the function SavePrivate to store it in the 
private queue. Once a message has been saved on the private queue, it remains there 
permanently. The message is owned by the function and may be modified as necessary. 

Note that the private queue really is a queue, and may contain more than one message. 
You can chain several messages together into a linked list by storing a pointer in the 
NEXT field in the Qdata record. But be careful--messages on the private queue are the 
_only instance where accessing the NEXT field directly will not cause huge amounts of 
trouble ! 

In the case of F:COUNT, the private queue contains a single message of type QInteger. 

6-4 - PS 300 Advanced Programming 



More Advanced Ideas 

Function 

B~ 

I 

Description 

F:COUNT 

<1> 

<2>C 

<1> --~• I 

This function is a simple counter. The private queue is used to maintain the last value 
of the counter. 

Input <1> is the trigger queue. V~hen a message of TRUE is received, the counter is 
reset to the value on input <2>. V~hen a message of FALSE is received, the counter 
is incremented. The current value of the counter is sent on output <1>. 

Example 

SUBPROGRAM uwfcou~t; 

{$F=USERSTRUC.PAS} 

PROCEDURE GenFunction; 

VAR 

inputs PtrUWF'InQarray; 

outmsg Ptrgdata; 
status Ptrgdata; 

BEGIN {GenFunction} 

{ } 
{ Set input <2> to be a constant queue. This } 

{ is done because it does not make sense to } 
{ have this an active queue. } 
{ } 

Set Cness (2, TRUE); 

{ } 
{ Get the inputs to the function and process. } 
{ } 

PS 300 Advanced Programming 6-S 



1Vlore Advanced Ideas 

status := NIL; 

inputs := CkInputs (1, 2); 

WHILE inputs <> NIL DO BEGIN 

{ 

{ First the usual check for valid inputs. 
{ 

IF input s~' [ 1 ] '~ , gtyp <> QBoolean THEN 
Qillmessage (1) 

ELSE IF inputs' [2]-T, gtyp <> Qlnteger THEN 
Qillmessage {2) 

ELSE BEGIN 

{ 

{ Now that's taken care of, you need to get 
{ the message from the private queue before 
{ you can continue. If the private queue 
{ is empty, allocate and initialize a new 
{ message. 

{ 

IF status = NIL THEN BEGIN 

status := CkPrivate; 
IF status = NIL THEN BEGIN 

status:= NewQInteger; 

SavePrivate {status); 

status1. i : =inputs' [2] 1. i ; 
END; 

END; 

{ 

• { Then you can use the message from the 
{ private queue to determine the value to 
{ be output. 

{ 

IF inputs' [1] '~ . b THEN 
statusT. i := inputs1[2] ~' , i 

ELSE 

status' . i : = status' . i + 1; 
outmsg := New~QInteger; 
outmsg1.i := status1.i; SendMsg (outmsg, 1); 
END; 

} 

} 

} 

6-6 PS 300 Advanced Programming 



More Advanced Ideas 

IF Cleaninputs THEN 

inputs := ckinputs (1, 2) 
ELSE 

inputs := NIL; 

END; 
END. { GenFunction } 

6.3 Example III -Variable Number of Input Queues 

F:BEZIER(N) 

The Bezier curve function, F:BEZIER(N), is an example of auser-written function which 
has a variable number of inputs. Input <1> is an integer indicating how many points on 
the curve are to be calculated. Inputs <2> through <N> are points (3D vectors) which 
define the Bezier curve. Output <1> of the function is intended to be connected to the 
<clear> input of a vector list, and output <2> should be connected to the <append> input 
of the same vector list. 

The body of the Bezier function is very similar to the code for any ordinary user-written 
function. The only difference is that, since you do not know how many inputs the 
instance of the function has ahead of time, you must call the utility procedure My\In\Out 
to find out. The call to this procedure should be placed at the very beginning of the 
function, before any calls to Set\Cness, and before the initial call to CkInputs. 

To indicate that a function has a variable number of inputs and/or outputs, you should 
specify the corresponding parameter as 255 in the header line of the S-record file. For 
example, since the Bezier function has a variable number of inputs and only 2 outputs, 
the header line should indicate 255 inputs and 2 outputs. On VAX/VMS, the command 
to compile and link the Bezier function is: 

$ XL Bezier 255 2 5000 

Then, when you instance the function, you must specify the actual value for N, as 

<instance\name> := F:<function~name>(N); 

In this example, the following command will create an instance of the F:BEZIER function 
with 10 inputs: ' 

drawit := F:Bezier(10); 

PS 300 Advanced Programming 6-~ 



1Vlore Advanced Ideas 

If the function has a variable number of inputs, N specifies the number of inputs. If the 
function has a variable number of outputs, N specifies the number of outputs. If both the 
number of inputs and the number of outputs are variable, the function will have N inputs 
and N outputs . 

Another interesting point about the Bezier function is that it is very important to send the 
output messages in the correct order. Since the messages are actually delivered in the 
same order that they were sent within the function code, you must be careful _that the 
clear message is sent on output <1> before any vectors are sent on output <2>. 
Otherwise, the vector list which. receives these messages would always appear empty. 

Function 

I —'' 

3D -'-*` 

3D ~ 

Description 

F: BEZIER{N) 

<1> <1> 

<2> <2> 

<N> 

--~ to <clear> vector list 

--~ to <append> vector list 

• 

F:BEZIER evaluates a series of points on a Bezier curve. Input <1> is an integer 
indicating how many points on the curve are to be calculated. Inputs <2> through 
<N> are points (3D vectors) which define the vertices of the Bezier curve. Output 
<1> of the function is intended to be connected to the <clear> input of a vector list, 
and output <2> should be connected to the <append> input of the same vector list. 

Example 

SUBROGRAM uwfbezier; 

{$F~USERSTRUC.PAS} 

PROCEDURE Genfunction; 

PI'YPE 
varray = AR,RAY [ 1. . MaxInputQueues~ OF vector ; 

6-8 PS 300 Advanced Programming 



1Vlore Advanced Ideas 

VAR 

ins, outs 
inputs 
~. 
1~ J 

npnts 
outmsg 
error 

vertices 
t, delta 

Intlfi ; 

PtrUWFlnQarray; 

Integer; 

Integer; 

Ptrgdata; 
Boolean; 

Varray; 

Double; 

{ } 
{ A function to evaluate the coordinates of a point on } 
{ a Bezier curve defined by "vertices" at parameter } 
{ value "t" } 
{ } 

FUNCTION eval Bezier (VAR vertices Varray; 

nvert: Integer; 
t: Double): vector; 

{ 

VAR 

j, k, m Integer; 

temp Double; 
BEGIN 

FOR j := nvert-1 DOWNTO 1 DO { loop over iterations } 
FOR k := 1 TO j DO { loop over each vertex } 

FOR m := 0 TO 2 DO BEGIN { loop over x,y,z } 

FCSubtract (vertices[k+l,m], vertices[k,m], temp); 
FCMultiply (temp, t, temp); 
FCAdd (vertices [k, m] , temp, vertices [k, m]) ; 
END; 

eval Bezier := vertices[1]; 
END; 

{ Main body of UWF 

{ . 

BEGIN { GenFunction } 

} 

} 
} 

My_in_out (ins, outs); 

inputs := CkInputs (1, ins); 

WHILE inputs q NIL DO BEGIN 

error := FALSE; 

IF inputst[1]~'.gtyp n QInteger THEN BEGIN 

error := TRUE; 
Qillmessage (1); 
END 

PS 300 Advanced Programming 6-9 



1Vlore Advanced Ideas 

ELSE IF inputs"[1]",i < 1 THEN BEGIN 

error := TRUE; 

END; 

FOR, i : = 2 TO ins DO 

I F input s ~' [ i ] T . gtyp <> QVec 3 THEN BEGIN 
error := TRUE; 

Qillmessage (i); 
END; 

IF (inputs <> NIL) AND (NOT error) THEN BEGIN 

{ } 
{ Send the CLEAR message out first. You need } 
{ to save the value of input 1 before doing } 
{ QSendCopyMsg, because once this is done the } 
{ function no longer owns that message. } 
{ } 

npnts : = inputs' [1] ~'. i - l; 
QSendCopyMsg (l, 1); 

{ 

{ Now calculate points on the curve and send 
{ them on output 2. 

{ 

FCInt2Double (npnts, delta); 

FOR j := 0 TO npnts DO BEGIN 

FOR i := 2 TO ins DO 

vertices [ i-1 ] : = inputs ' [ i ] T . v4 ; 
FCInt2Double (j, t); 

FCDivide (t, delta, t); 
outmsg := NewQVector (QVec3); 
outmsg'~.v4 := eval_Bezier (vertices, ins-1, t); 
SendMsg (outmsg, 2); 
END; 

END; 

IF Cleaninputs THEN 

inputs := ckinputs (1, ins) 
ELSE 

inputs := NIL; 

END; 

END. { GenFunction } 

v 
6-~~ 0 PS 300 Advanced Programming 



11~lore Advanced Ideas 

6.4 Example IV -User-Defined Qdata Type 

F: SPIRO 

F: SPIRO is a function which behaves like a spirograph toy. A spirograph consists of two 
gears, an inner wheel and an outer ring. A pen fixed to the inner gear traces a pattern as 
it is rotated inside the outer ring. 

Input <1> of the function will accept any message; it serves to trigger the function. The 
remaining inputs are constant queues. Input <2> is an integer specifying the number of 
teeth on the inner wheel, and input <3> specifies the number of teeth on the outer ring. 
Input <4> is a real number indicating the offset of the pen from the edge of the inner 
wheel. 

Output <1> is intended to be connected to the <clear> input of a vector list, and output 
<2> to the <append> input of the same vector list. A Boolean TRUE is sent on output 
<3> to indicate that there are additional points on the curve to be calculated. Output <4> 
is a boolean TRUE that is sent only when all points on the curve have been calculated. 

Instead of calculating all of the points which define the curve at once (as the F:BEZIER 
function does) , F: SPIRO will only output one point each time it is activated. The state 
information is saved on the private queue so that the next time the function is activated, it 
can pick up where it left off. Output <3> can be connected back to input <1> to 
"reschedule" the function. 

This approach is useful because it allows the computations to be "interruptible." If the 
spirograph function were allowed to run continuously until the entire curve was 
calculated, it could take up to several minutes to complete (depending on the complexity 
of the curve) . During this time, nothing else would be able to run on the PS 300. 
Breaking up the computation allows other PS 300 functions to run normally--including 
updating of the vector list to which the spirograph function is connected. 

A special message type was defined to save the state information on the private queue for 
the spirograph function. One of the Qdata types, QuserType, is reserved for this purpose. 
A copy of USERSTRUC.PAS was modified to include a definition of the record type 
StateType, which contains fields to store the information that must be saved from one 
activation pf the function to the next. The declaration of the Qdata record type was then 
modified so that QuserType messages contain a field (StateInfo) of this type. The 
spirograph function can then use the Pascal procedure NEw to create new QuserType 
messages. 

.► 
The following is an excerpt from SPSTRUC.PAS (modified USERSTRUC.PAS) 
illustrating the de ' 'tion of QuserType messages. 

PS 300 Advanced Programming ~ 6-~ ~ 



More Advanced Ideas 

TYPE 

statetype = RECORD 

newdata Boolean; 

maxi, maxo Integer; 

currenti, currento Integer; 

offset Double ; 
radiusl, radius2 Double; 
dthetai, dthetao Integer 

END; 

Qdata = 
RECORD 

Next: Ptrgdata; { next message in a list of messages } 

CASE Qtyp: Qdtype OP { type of message } 

• 

QuserType: 

( Statelnfo StateType ) ; 

END { Qdata } 

You can also use QuserType messages for communication between a set of user-written 
functions. These messages can be sent as output and received as input, just like any other 
message types. QuserType messages will also be handled correctly by any other function 
which accepts "any" message on the appropriate input, such as F:SYNC. 

Your function is responsible for correctly initializing QuserType messages. If the message 
type is to be shared by several functions, it might be convenient to add a procedure to the 
modified copy of USERSTRUC. PAS which creates and initializes new QuserType 
messages, s' ' ar to the predefined NewQ~ utility procedures. 

Qusertype Qtyp fields must be explicitly filled in by your program. Also, if the QuserType 
you define has fields in it that are pointers to other blocks, your_function is responsible 
for disposing. of these blocks. They must be disposed of before disposing ~ of the 
QuserType message. The DropMessage utility routine (used to dispose of messages) 
should be called after you dispose of any such blocks. 

6-12 PS 300 Advanced Programming 



More Advanced Ideas 

If your QuserType message is sent to a PS 300 intrinsic function that accepts "any" 
message on an input, any block pointed to in the internal fields of the QuserType will not 
be properly disposed of . If you must include pointers in your QuserType definition, make 
sure they are properly handled. 

Function 

ANY --" 
(trigger) 

I —~ 
(inner circ.) 

I —" 
(outer circ.) 

R —~ 
(pen offset) 

F: SPIRO 

<1> <1> 

<2>C <2> 

<3>C <3> 

<4>C <4> 

—~ <clear> vector list 

--►~ <append> Vector_list 

—~ TRUE (continue} 

--►~ TRUE (done} 

Description 

This UWF is a spirograph function. A spirograph consists of two circular gears, an 
inner wheel rotating inside a fixed outer ring. A pen is fixed to the inner gear at some 
offset from its circumference, so that it draws a pretty picture . 

Sending a message to input <1> triggers the function. Input <2> is the number of 
teeth on the inner gear, and input <3> is the number of teeth on the outer wheel. 
Input <4> is the distance the pen is offset from the circumference of the inner gear. 

The function outputs one line segment at a time. A value of TRUE is sent from 
output <3> to indicate that the function should be rescheduled. This output may be 
connected back to input <1>. TRUE is sent from output <4> when the curve is 
complete. 

The curve is constructed as follows. Maxi and maxo refer to the number of teeth on 
the inner and outer gears, respectively, and currenti and currento refer to the pair of 
teeth that are currently meshing. Dthetai and dthetao are the angles subtended by a 
single gear tooth on the inner and outer gears, respectively. Radius 1 is the distance 
from the center of the fixed ring to the center of the inner wheel, and radius2 is the 
distance from the center of the inner wheel to the pen. First, the angles of the two 
teeth that are currently meshing are found. The angles thetai and thetao are both 
relative to a fixed coordinate system. Then, the (x,y} coordinates of the pen location 
are given by: 

x =radiusl*cos(thetao) +radius2*cos (thetai) 
y =radiusl*sin(thetao) +radius2*sin(thetai) 

Note that the SinCos utility procedure expects the angle to be an integer from 0 to 
6 5 S 3 6 (2 * pi) , so you use this format for all the angles throughout the function. 

PS 300 Advanced Programming 6-13 



More Advanced Idea 

Example 

SUBPROGRAM uwfspiro; 

{$F=SPSTRUC.PAS } 

PROCEDURE GenFunction ; 

VAR 

inputs 

outmsg 

state 

si, ci 

so, co 
thetai 

thetao 

{USERSTRUC.PAS with Quserdata type defined} 

PtrUWFUWFInQarray; 

PtrQ~ata ; 
PtrQ~ata; 

Double; 

Double; 
Integer; 

Integer; 

A utility procedure to fetch information 

stored on the private queue. If nothing is 
on the private queue, or if the information 

is obsolete, reinitialize the state 

information using the input msgs. 

PROCEDURE fetch_state_information; 
CONST 

pi2exp = 1027; { Exponent part of 2 * pi } 

pitman = 1686628288; { Mantissa part of 2 * pi } 

VAR 

pit, temp Double; 

BEGIN 

{ 
{ If the private queue is empty, create 

{ and store a new message. 

{ 

state := CkPrivate; 
IF state = NIL THEN BEGIN 

NEW (state, QuserType); 

state~'.Qtyp := QuserType; 

state1.stateinfo.newdata := TRUE; 

SavePrivate (state); 

END ; 

b-14 PS 300 Advanced .Programming 



More Advanced Ideas 

{ 
{ If you are beginning a new curve, store 
{ the new set of constants. Calculate 
{ the radii of the two gears and find the 
{ angle subtended by a single tooth, as 
{ well as resetting other state variables. 
{ 

IF state1.stateinfo.newdata THEN 

state1. stateinfo. maxi : = inputs' [2] ~`. i ; { copy input constants } 
state fi .stateinfo .maxo : = inputsT [ 3 ] ~° . i ; 
state1. stateinfo. offset : = inputs' [4] T. r; 
pi2.m := pi2man; { find gear radii } 

pi2.c := pi2exp; 

FCInt2Double (statefi.stateinfo.maxi, temp); 
FCDivide (temp, pit, statefi.stateinfo.radius2); 
FCInt2Double (state~'.stateinfo.maxo, temp); 
FCDivide ( temp , pi2 , stated' .stateinfo . radiusl) ; 
FCSubtract (state~'.stateinfo.radiusl, state1.stateinfo.radius2, 

state~'.stateinfo.radiusl); 
FCSubtract (stateT.stateinfo.radius2, stateT.stateinfo.offset, 

statet.stateinfo.radius2); 

stateT.stateinfo.dthetai := 65536 DIV maxi; { angles of one} 
{ gear tooth } 

statet.stateinfo.dthetao := 65536 DIV maxo; 
stateT.stateinfo.curr.ento := 0; { set current tooth counter } 
END; 

END; 

{ 

{ Main body of UWF' . 
{ 

BEGIN { GenFunction } 

{ 

{ 

{ 
Set Cness (2, TRUE); 

Set Cness (3, TRUE); 
Set Cness (4, TRUE); 

{ 

} 

} 
} 

Establish constant queues. 

{ Check for valid inputs. 

{ 
inputs := CkInputs (1, 4); 
WHILE inputs O NIL DO BEGIN 

IF inputs 1 [ 2 ] '~ . gtyp O QInteger THEN 

} 

} 

} 

} 
} 

} 

PS 300 Advanced Programming 6-1 S 



More Advanced Ideas 

Qillmessage (2) 

ELSE IF inputs fi [ 3 ] '~ . gtyp <> QInteger THEN 

Qillmessage (3) 

ELSE IF inputsfi [4] '~ . gtyp <> QReal THEN 

Qillmessage (4) 

ELSE I F input s ~' [ 2 ] ~' . i <= 0 THEN 

Qillvalue (2) 
ELSE IF inputst [ 3 ] ~' . i <= 0 THEN 

Qillvalue (3) 
ELSE I F i nput s fi [ 2] 1. i >= i nput s ~' [ 3] 1. i THEN 

Qillvalue (2) 

ELSE BEGIN 

{ 

{Get state info from the private queue. 
{ 

Fetch_State_Information; 

{ 

{ If you are starting a new figure, do 
{ something special to initialise it. 

{ 

} 

} 

} 

} 

} 

IF state~°.stateinfo.newdata THEN BEGIN 

outmsg := NewQInteger; 
outmsg',. i : = stated' .stateinfo .maxo ; 
SendMsg (outmsg, 1); 

outmsg := NewQVector (Qvec2); 

FCAdd (state~'.stateinfo.radiusl, stateT.st.ateinfo.radius2, 
outmsg' . v4 [ 0 ]) ; 

FCInt2Double ( 0 , outmsg' . v4 [ 1 ]) ; 

SendMsg (outmsg, 2}; state1.stateinfo.newdata := FALSE; 
END; 

{ 

{ Calculate the next point on the figure. 
{ 

} 

} 
} 

state1.stateinfo.currenti :_ (stateT.stateinfo.currenti + 1) 
MOD statet.stateinfo.maxi; 

state1.stateinfo.currento :_ (state~'.stateinfo.currento + 1) 
MOD state' .stateinfo .maxo ; 

thetao := statet.stateinfo.currento 
state' .stateinfo . dthetao ; 

thetai := thetao - (state~'.stateinfo.currenti 
state' .stateinfo . dthetai) ; 

6-16 PS 300 Advanced Programming 



More Advanced Ideas 

Sincos (thetao, 
FCMultiply (so, 
FCMultiply (co, 

Sincos (thetai, 
FCMultiply (si, 
FCMultiply (ci, 

so, co); 

statet.stateinfo.radiusl, so); 
statet.stateinfo.radiusl, co); 
si, ci) ; 
state' .stateinfo . radius2 , si } ; 
state1.stateinfo.radius2, ci); 

outmsg := NewQvector (Qven2); 
FCAdd ( c i , co , outmsg' . v4 [ 0 ]) ; 
FCAdd (si, so, outmsgt.v4[1]); 
SendMsg (outmsg, 2); 

{ 

{ Test whether the figure is complete. 

{ 

outmsg := NewQBoolean; 
outmsg'. b : = TRUE; 
IF ( stated' .stateinfo . currenti = 0) AND 

(statefi.stateinfo.currento = 0) THEN BEGIN 
newdata := TRUE; 
SendMsg (outmsg, 4); 
END 

ELSE 
SendMsg (outmsg, 3); 

END; 

IF Cleaninputs THEN 

inputs := ckinputs (1, 4) 
ELSE inputs := NIL; 
END; 

END, { GenFunction } 

6e5 CONCLUSION 

} 

} 

This concludes the formal instructions for writing your own user-written functions. Once 
you are familiar with the processes and examples described in Module 5 and 6, the 
Reference section should be most helpful in providing a quick source of information on 
the u ' 'ty routines, and other information you will need to write your own functions. 

Module 7 of this manual contains instructions for transferring S-record files from the host 
system to the PS 300 firmware diskette, as well as instructions for protecting user-written 
functions from PS 300 global INIT commands. Once user-written functions reside on the 
firmware diskette, they will load in approximately the same manner as intrinsic PS 300 
functions. Module 7 also contains instructions on how to use the PS 300 Debugger. 

PS 300 Advanced Programming 6_~ ~ 





MODULE '7 

Loading and Debugging User-written Functions 

Section 7.1 of this module describes how to load auser-written function (UWF) from a runtime 

diskette (and optionally create an instance of the function) when the PS 300 is booted, in such a 

way that both the function code and the function instance are protected from INITIALIZE 

commands. For example, this facility might be used if you have written a function to control a 

peripheral device, such as a mouse, and you want to use the function in the same way as the 

ordinary PS 300 initial function instances. 

Section 7.2 of this module contains the various commands for the PS 300 Debugger and 

explanations of how to use them to determine whether a section of code for auser-written 

function is actually being executed or not. 

7.1 Loading User-Written Functions From Diskette 

Before proceeding with this section, you should know how to transfer files from the host 
computer to a diskette using the UTILITY program available on PS 300 Diagnostic Utility 
Diskette. You should be familiar with name suffixing conventions and how to use 
Configure mode on the PS 300. You may also find it useful to refer to the block diagrams 
for the C~NFIG. DAT file. All of this information can be found in Volume 5 of the 

PS 300 Document Set. 

To load auser-written function from the firmware diskette, the file containing the 
user-written function must first be downloaded to the diskette from the host. This file 
should contain the function header line followed by the S-record output from the linker, 

and should terminate with a semicolon. It should not contain any multiplexing bytes. To 
download the file to the diskette, follow the instructions for using the UTILITY program 

in Volume 5 of the PS 300 Document Set. The file should be transferred as an ASCII 

file and given an extension of .DAT on the PS 300 diskette. 

Unless you are using a PS 300 with two disk drives, the procedures described in the 
following sections require that the file containing the function code be on the same 

diskette as the SITE .DAT file . 

To load the user-written function file on the diskette, you must modify the SITE.DAT file 

to include a function network which will read the file from the disk and route its contents 

to the function which will Load the user-written function into memory. 

PS 300 Advanced Programming ~-1 



Loading and Debugging User-written Functions 

If you want to instance the user-written function at boot tune, you cannot just include the 
PS 300 commands to do so in SITE.DAT; this is because SITE.DAT is processed before 
the user-written function has been read in and loaded into memory. Instead, you must 
put the commands necessary to instance and initialize the user-written function in a 
separate file and modify SITE.DAT to include a network to read in this file after the 
user-written function code has been loaded. 

The function and its instances can be protected from INITIALIZE commands by creating 
them using a different CI (command interpreter) than that used for commands received 
from the host or the keyboard. (Remember that an INITIALIZE command removes only 
those names which. were created by the CI receiving the command.) You will use the CI 
numbered 0, which is also used for setting up the ordinary initial function instances from 
commands read from CONFIG. DAT. 

7.1.1 Loading the User-Written Function Into Mass Memory 

The following version of SITE.DAT sets up a function network which loads auser-written 
function from the file EXAMPLE.DAT into memory. After creating the file on the host, 
the PS 300 UTILITY program should be used to transfer it to the PS 300 'diskette. 

configure sezme; dcwaitl := f:timeout; 
StartUWF 1 : = f:constant; 
LoadUWFl := f:readdisk; 
send fix(500) to <2>dcwaitl; 
corn dcwait 1<2> : <1>StartUWF 1; 
send 'EXAMPLE' to <2>StartUWF 1; 
conn StartUWF 1<1> : <1>LoadUWF 1; 
conn LoadUWF1<1> : <1>srec_gather0; 
send fix(0} to <2>srec_gather0; 
disconn srec_gatherfl<1> :all; 
disconn srec_gather0<3> :all; 
send true to < 1>dcwait 1; 

'sh configuration; 

{ to force delay before reading UWF } 
{ holds name of file containing UWF } 

{ function to read the file } 
{ cause 5-second delay } 

{ then send filename to read function } 

{ route file contents to UWF loader } 
{ CI number to associate with UWF } 

{ normally connected to a CIROUTE } 

{ kick the thing to get it started } 

This is the bare minunum required. Note that since the SITE.DAT file is read in 
Configure mode, you have to be sure to include the proper suffixes on all the names 
referenced. 

The function dcwaitl is used to force a 5-second delay between processing. the 
SITE.DAT file and reading the file containing the user-written function. This delay is 
necessary because reading from the diskette disables interrupts which can fatally interfere 
with the data concentrator initialization sequence. This initialization takes place 
immediately after SITE.DAT has been read. To avoid conflicts, it is imp~rcant to allow 
sufficient time for the initialization to complete before trying to read from the diskette. 

7-2 PS 300 Advanced Programming 



Loading and Debugging User-written Functions 

After dcwait 1 has been triggered and the delay time elapsed, it will send a message to 

input <1> of StartUWF 1. In turn, this will send the name of the file to LoadUWF 1, 

which reads the file from the diskette. The contents of the file are routed to 

srec_gather0, an instance of F: GATHER GENFCN. 

Sending a value of fix(0) to .put <2> of srec_gather0 associates the name of all the 

user-written functions created by srec_gather0 with CI number 0. This means that the 

names of these functions are protected from an INITIALIZE command on any other CI. 

Note that this does not protect instances of these functions from INITIALIZE commands. 

Also, we must still be careful not to redefine the name of the function; i.e., 

example : = f : example ; 

will still destroy -the function body. 

7.1. Z Loading the User-Written Function and Creating an Instance 

If you want to create an instance of auser-written function at boot time, you should put 

the PS 300 commands necessary to do so in a separate file, which might be called 
SETUP.DAT. You can then modify SITE.DAT to include a network that reads 
SETUP. DAT from the diskette and sends its contents to the same CI that processes the 
CONFIG.DAT and SITE.DAT files. The important thing to remember is that you cannot 
instance auser-written function until it has been loaded, so SETUP.DAT cannot be read 
in until the file containing the user-written function has been read in. 

There are a few restrictions on what SETUP.DAT can contain. First of all, the CI used to 
process this file does not handle implicit name suffixing properly. You should always use 
Configure mode in SETUP.DAT, and be careful to include explicitly the proper suffixes 
on all names. Secondly, you cannot DISPLAY anything through this CI. 

The contents of SETUP.DAT will vary depending on the application. Here is an 
example 

configure sezme; ar 
myexample 1 : = f :example 1; {whatever needs to be done to a initialize the } 

{ function } 
setup cness true <2>myexample 1; 
send true to <2>myexample 1; 
send 'System is ready for use' &char (13) &char (10} to <1>es to 1; 

finish configuration; 

Note that, in Configure mode, you have to suffix the name of the user-written function, 

as well as any function instances that you refer to. 

PS 300 Advanced Programming ~-3 



Loading and Debugging User-written Functions 

Once you have created the SETUP.DAT file on the host, use the PS 300 UTILITY 
program to transfer the file to the PS 300 diskette in the usual way. Unless you have a 
two-drive system, this file must be placed on the same diskette as the SITE.DAT file. 

I-Iere is the SI'Z'E .DAT file to read the function code from EXAMPLE .DAT and the 
commands from,SETUP.DAT. This network is illustrated in Diagram 2. 

configure sezme; dcwaitl := f:timeout; 
delayl := f:tuneout; 
StartUWF 1 : = f ;constant; 
LoadUWF 1 := f:readdisk; 
StartSetupl := f;constant; 
LoadSetupl ;= f:readdisk; 
send fix (5 00) to <2>dcwait 1; 
Conn dcwaitl<2> : <1>StartUWF1; 
send 'EXAMPLE' to <2>StartUWF 1; 
cone StartUWF 1<1> : <1>LoadUWF 1; 
corn LoadUWF 1<1> : <1>srec_gather0; 
send fix(0) to <2>srec_gather0; 
disconn srec_gather0<1> :all; 
disconn srec_gather0<3> :all;. 
Conn LoadUWF 1<2> : <1>delay 1; 
send 6x(100) to <2>delay 1; 
coon delay 1<2> : <1>StartSetup 1; 
send 'SETUP' to <2>StartSetup 1; 
Conn StartSetup 1<1> : <1>LoadSetup 1; 
Conn LoadSetupl<1> : <1>rfchop$; 
send true to < 1>dcwait 1; 
finish configuration; 

{ to force delay before reading UWF } 
{ to delay before reading SETUP. DAT } 
{ holds name of file containing UWF } 

{ function to read the file } 

{ cause S-second delay } 

{ then send filename to read function } 

{ route file contents to UWF loader } 
{ CI number to associate with UWF } 

{ normally connected to a CIR~UTE } 

{ trigger when UWF file is read } 
{ 1-second delay } 

{ then fire the function to read SETUP } 

{ to send it to the CI } 
{ kick the thing to get it started } 

The first part of this network is the same as in the previous example. Output <2> of 
LoadUWF 1 is used to signal when the file containing the code for the user-written 
function has finished being read in. Use this message to trigger reading SETUP. DAT, 
after cone-second delay. (Experience has shown that this delay is necessary.) The 
contents of SETUP.DAT are routed to rfchop$. 

7.1.3 CONCLUSION 

The diagrams on the next page illustrate the function networks set up by the sample 
SITE.DAT files used in this module. 

This concludes the instructions for transferring S-records to the firmware diskette and 
initializing them at boot time. 

7-4 PS 300 Advanced Programming 



Loading and Debugging user-written Functions 

Function Network Diagram 1 

dcwaitl 

TRUE 

fix(500) 

TRUE 

fix (500) 

fix(100) 

<1> <1> 

<Z> 

<Z>C C3> 

F:TIMEOUT 

dcwaitl 

<1> <1> 

CZ>C <3> 

F:TIMEOUT 

delayl 

-----

i example' 

StartUWFl 

<1> <1> 

<2>C 
F:CONSTANT 

----

LoadUWFl 

<1> <1> 

<2> 

F:READDISK 

Function Network Diagram 2 

~~~~~ 

example'

~*■

<1>C <1>

<Z>

<2>C <3>
F:TIMEOUT

example'

StartUWFl

<1> <1>

<?.>C
F: CONSTANT

f~

StartSetupl

<1> <1>

<2>C
F: CONSTANT

LoadUWFl

<1> <1>

<?.>

F: READDISK

~~~~~~ 

--._.. 

LoadSetup 1 

~, Srec gather0 

fix(0) 

~ s ~ ~ ~ 

<1> <1> 

<?.> 

F:READDISK 

fix(0) 

----

s 

<1> 

<2>C 

Srec gather0 

<1> 

<2>C 

<1> 

Rfchop$ 

PS 300 Advanced Programming ~-S 



Loading and Debugging User-written Functions 

7e2 PS 3~0 Debugger 

The PS 300 Debugger (Debug) can sometimes aid in debugging a user-written function. 
However, Debug is rather primitive and the procedure for locating the code for auser-written 
function in mass memory is complicated. It is suggested that you do not attempt to use Debug 
except when other methods for debugging a function have fail~el. You must be familiar with 
assembly language and the Motorola listing file formats to understand what is required to use 
Debug. This section describes: 

• How to use Debug. 

• The Debug commands. 

• How to set breakpoints in your user-written function. Setting breakpoints is useful for 
determining whether a section of code in your function is actually being executed or not. 

NOTE 

This discussion of the PS 300 Debugger has been updated to include 
modifications and additions that have been made to the Debug Eproms. 
For users whose systems do not have the new Debug proms the 
documentation in the User-Written Functions (E&S #9 0119 4-0 61) 
section of the PS 300 Document Set is still applicable. 

7. Z.1 Using the Debugger 

To use the debugger, an ASCII terminal must be attached to PS 300 Port 3. The serial 
port used by Debug is initialized to 8 bits, no parity, and one stop bit; each byte is 
stripped to 7 bits in case the terminal being used sets a parity bit, and the baud rate is set 
to 9 600. Should you want to modify these characteristics, you can do so by using the 
SETUP INTERFACE command for port30. 

Debug mode can be entered by pressing the BREAK key on the ASCII terminal. When 
Debug is entered, an asterisk " * " is displayed on the terminal and the PS 300 display is 
blanked. 

The asterisk is a prompt character that appears whenever Debug is expecting a command 
to be entered. All Debug commands are either one or two c aracters in length. Debug 
converts all lowercase characters to uppercase automatically. whenever an invalid 
command is entered, Debug outputs a BEL and "?" character, moves to the next line, 
and prompts for a new command. Refer to the next section in this module for tables 
containing the Debug commands. 

Because of its requirement to run on a minimum amount of hardware, Debug has several 
limitations. First, minimal editing of input is allowed. Second, all commands execute 
immediately upon pressing the appropriate key. 'Third, all numbers used by Debug must 
be hexadecimal (base 16) rather than decimal (base 10) . 

7-6 PS 300 Advanced Programming 



Loading and Debugging User-written Functions 

Any time a number is required by a Debug command, a 32-bit register is cleared to zero, 

and each digit that is entered into the register is shifted in from the right. If more than 

eight digits are entered, the upper digit is shifted out the left end of the register and lost. 

Numbers are considered completely entered when the first non-hexadecimal character is 
entered. (This implies that if the first character entered is not hexadecimal, the numeric 
value is zero . ) 

Any time that a hex number may be entered, one of the following characters may be 
entered to provide a different meaning. Note that no additional delimiter character is 
required as with the entry of hexadecimal numbers. 

Specify an ASCII string. The string is terminated by a second single quote. All 
characters are taken exactly as typed (no lower case to upper case conversion) 
inclucling control characters such as carriage return and line feed (CTRL Y will 
still kill the command, however) . Note that there is no way to insert a single 
quote character in this mode. This should be most useful with the hunt 
commands (HB, HW, HL) or for inserting single characters ~ into memory. 
Example: "I 'a"' would insert the value X' 61' into the current open location. 

~ Use the current open location as the hex value. Most useful with the list 
command (L} or to set breakpoints (BR) . Example: "L O ." would list from the 
current open location for one line. 

P Use the current program counter value as the hex value. Most useful with the list 
command (L), to set breakpoints (BR), or with the open command (0). 
Example: , "BR P" would set a break point at the current program counter 
location. 

S Use the current stack pointer value as the hex value. Most useful with the list 
command (L) or with the open command (0) . Example: "O S" would open the 
location pointed to by the stack pointer. 

+ Use the current open location plus the specified offset. For example : " O + 10 . " 
would open the location 16 (X' 10') bytes beyond the current open location (note 
that a delimiter is needed here} . Or, "L + 10, . " would list the line 16 bytes 
beyond the current open location. 

- Use the current open location minus the specified offset. For example: "O -A." 
would open the location 10 (X' A') bytes before the current open location (note 
that a delimiter is needed here) . 

PS 300 Advanced Programming 7-7 



Loading and Debugging User-written Functions 

When entering a hex number, you may now use either backspace or delete to correct the 
number. tJp to the last 8 digits may be deleted from the number. A digit is deleted each 
time the delete or backspace key is pressed until the number being built is found to be all 
zero. Note that if more than 8 digits are entered, the first digits will have shifted out of 
the register and will no longer exist (but they will still appear on the screen) . With this 
new feature, however, there should be no need to enter numbers longer than 8 digits in 
the first place. Note that backspace and delete do not work for any ASCII strings° 

Three special characters control output of data to the terminal: 

<CTRL>S 'Temporarily stops the sending of output to the terminal. 

<CTRL>Q Resumes the sending of output to the terminal after a <CTRL> S . 
(Note that program code occasionally may miss a 
<CTRL> S-<CTRL> Q sequence when displaying great amounts of 
data at a baud rate over 2400.) 

<CTRL>Y Permanently stops the sending of output to the terminal. <CTRL> Y 
may also be used to terminate any command before the last character 
of the command is entered. 

Any unrecognized character is echoed to the terminal but is otherwise ignored. Most 
valid commands move the cursor on the terminal to the next line to indicate successful 
completion of the command. 

7. Z. 2 Debugger Commands 

The following table lists the valid Debug commands. Most of the information in the tables 
is provided. for completeness; only a few of these commands will be needed while using 
the debugger to set breakpoints in your code. The Debug program keeps a pointer to a 
specific location currently in use. This location is referred to as the "open Location" . AlI 
commands in the following table are associated with the open location. If a location has 
not been opened after a Reset or after stopping program execution using the O or Q 
commands, the current open location may be invalid and could cause a bus error if 
accessed. 

e 

O 

7-8 PS 300 Advanced Programming 



Loading and Debugging user-written Functions 

Table 7.2-1 Commands Accessing "Open" Memory Locations 

COMMAND DESCRIPTION 

O Open a location and display its contents. 

For example, to open location X' BA3E' 

OBA3E. 

* O BA3E. 
OOOOBA3E 00 

(Entered like this. Any delimiter can be used 
in place of the period in this and in the 
following examples.) 

(Displayed like this.) 

Q Open a location but do not display its contents. For example, to open location 
X' FFF 819' : 

SPACE 

QFFF819. (Entered like this.) 

* Q FFF819. (Displayed like this. Note that the *cursor 
* moves to a new line but nothing else is 

displayed. ) 

Insert a byte of data into the current open location and then open and display the 
contents of the next location. For example, if the current open location is X'BA3E' 
and the programmer desires to insert the bytes X'b0' and X'FE' in this and the next 

location: 

_60._FE. 

~* 60. 
OOOOBA3F 00 * FE. 
OOOOBA40 00 

(Entered like this. In this example, "_" means 
space. ) 

(Displayed like this.) 

(continued on next page) 

PS 300 Advanced Programming 7-9 



Loading and Debugging User—written Functions 

Table 7.2-1 Commands Accessing "Open" Memory Locations (continued) 

COMMAND DESCRIPTION 

I Insert a byte of data into the current open location but do not move on to the next 
location and do not display the contents of any location. For example, if the current 
open location is X' FFF 819' and the programmer desires to insert the value X' 00' into 
the location: 

I51. (Entered like this.) 

(Displayed like this.) 

W Insert a word of data at the current open location. This command should be used 
when writing data to a register that is addressable on a word basis only. If the current 
open location is an odd address, the word is inserted into the next lower even address 
(to avoid an address error} . For example, if the current open location is X' 321FE' 
and the .operator wants to insert the word X' 1234' into the location: 

W 123 4. (Entered like this . ) 

*W 1234 
* 

(displayed like this.) 

Display the address and contents of the current open location. For example, if the 
current open location is X' FFF819' 

(Entered like this.} 

*. 

OFFF819 51 
(Displayed like this . ) 

+ Open the location after the current open location and display its contents. For 
~ example, if the current open location is X' BA3E' 

+ (Entered like this.} 

*+ (Displayed like this.} 
OOOOBA3F FE 

/ Open the location after the current open location and display its contents. Identical 
to "+" but does not require the use of the shift key. 

(continued on next page) 

7-10 PS 300 Advanced Programming 



Loading and Debugging user-written Functions 

Table 7.2-1 Commands Accessing "Open" Memory Locations (continued) 

COMMAND DESCRIPTION 

- 

CTRL G 

Open the location before the current open location and display its contents. ~'or 

example, if the current open location is X' BA3F' , this command would work as 

follows: 

- (Entered like this.} 
* - (Displayed like this . ) 
OOOOBA3E 60 

The pointer following command. This command takes the 32-bit value at the open 

location and uses it as the new open location. Note that it does not check that the 
current open location is an even location (odd causes an address error) , or that the 
value at the open location is a valid memory address (invalid causes a bus error) . 

The following is an example of how to use this and other new commands to find the 
front of a diagnostic program and set a breakpoint at a subroutine listed as being at 
X' 7DC' in the link map: 

R 
O 3A23E. 
O -A. 

B R +7DC. 

Display registers (assume AS = 3A23E) . 
Open base of global variables. 
Get to diagnostic base address. 
Open the first location of the diagnostic. 
Set a breakpoint at the beginning of the subroutine. 

Begin execution at the current open location. Do not set up any of the registers 
before beginning and do not enable breakpoints. This should normally be used to 
begin program execution when local memory may not be used to hold the exception 

vectors. Nothing is displayed by this command. 

a 

PS 300 Advanced Programming o 7-I1 



Loading and Debugging User-written Functions 

Table 7.2-2 Commands to List Data in Memory 

COMMAND DESCRIPTION 

L List a block of data in both hexadecimal representation and ASCII representation. All 
unprintable characters are displayed as a period. For example, to display locations 
X' 40000' to X' 4002F' 

L40000,4002F. (Entered like this; period and comma are arbitrary delimiters.} 

(Displayed like this. } 

L40000, 4002F. 

00040000 00 O1 00 00 00 04 00 14 00 O1 00 00 00 04 02 DA  Z 

00040010 60 00 OA EC 10 38 F8 57 11 FC 00 4E F8 55 it FC ...1.8xw...NxU.. 

00040020 00 7A F8 55 11 FC 00 37 F8 F7 11 FC 00 41 F8 51 .zxU...7xW...AxQ 

At this point, the current open location is set to X' 40000' . For convenience, if the ending address 
is less than the starting address, the ending address is considered to be abyte-count. The list 
command accepts input in the form of: 

L<starting-address>,<number-of-bytes>. 
as well as: 

L<starting-address>,<ending-address>. 

For example, the following command could be used to display locations X' 40000' to X' 4002F: 

L40000, 2F. 

These addresses are obtained by a common routine which converts odd numbers to even numbers 
(so commands like "H'W~ do not get an address error) . If an odd number is entered as the 
starting address, the first byte listed is actually the- byte at the previous even address. 

> Display the line just after the last line displayed by the list (L} command. This is most 
useful when the block of memory listed was almost big enough but not quite. 

< Display the line just before the last line displayed by the list (L} command. This is most 
useful when one line of data was displayed (such as the current program counter location, 
and it is desired to see what was immediately in front of it. 

7-12 ~ PS 300 Advanced Programming 0 



Loading and Debugging ZJser-written .Functions 

Table 7.2-3 Program Execution and Debugging Commands 

COMMAND DESCRIPTION 

R Display contents of all processor registers at the time of the last exception. These 
contents are the values utilized by the "T" or "G" command. The values may be 
modified using the "A" , "D" , "P" , " S" , or "U" command. Most of these values 
are initialized. to 0 by the "V" command. Registers are displayed in the following 
format: 

~R

PC = 00000000 SR = 0000 USP = 00000000 

DO-D7= 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

AO-A7= 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

P Set the program counter to a new value. For example, to set the program counter 
to the value X' 4 0 014' 

P40014. (Entered like this.} 

P 40014. (Displayed like this; note that the cursor moves 
to a new line but nothing else is displayed.) 

S Insert a new value into the status register. For example, to set the status register 
to the value X' 2 7 0 0' 

S2700. (Entered like this.) 
S 2700. (Displayed like this; note that the cursor moves 

to a new line, but nothing else is displayed.) 

U Insert a new value into the user stack pointer (USP) . For example to set the user 
stack pointer to the value X' 36972' 

U36972. (Entered like this.) 
U 36972. (Displayed like this; note that the cursor moves 

to a new line, but nothing else is displayed. } 

D O-D 7 Change the value of the specified address register. For example, to set address 
register D2 to X' 12345678': 

D212345678. (Entered like this.} 

D 2 123 45 678. (Displayed like this . ) 

(continued on new page) 

PS 300 Advanced Programming 7-13© 



Loading and Debugging User®written Functions 

'I°able 7.2-3 Program Execution and Debugging Commands (continued) 

COMMAND DESCRIPTION 

AO-A7 Change the value of the specified address register. For example, to set address 
register A4 to X' FFFFF 8 5 0' 

G 

'I' 

A4FFFFF850. 
A4 FFFFF850. 

(Entered like this.) 
(Displayed like this.) 

Begin program execution with all registers set up as displayed by the "R" 
command. Immediately before execution, all breakpoints are initialized in 
memory. If the first instruction to be executed is at a breakpoint address, several 
microseconds pass between the execution of the first instruction and any following 
instructions. If the program counter is odd, execution begins at the next lower 
even address. Nothing is output to the screen to indicate that the "G" command 
has been executed. 

Trace one instruction. All registers are set up as displayed by the "R" command. 
This instruction uses the trace bit in the MC68000 microprocessor. Since 
breakpoints actually are only set up in memory when the "G" command is 
executed, they have no effect on the trace command. If the program counter is 
odd, execution begins at the next lower even address. After tracing one 
instruction, the following is displayed (with actual register values filled in) 

*T Trace PC= 00000000 SR = 0000 USP = 00000000 
DO-D7= 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 
AO-A7= 00000000 00000000 00000000 00000000 00000000 00000000 

00000000 00000000 

V Initialize exception vectors, registers, stack pointer, and breakpoint table. Care should be 
taken not to type a "V" while debugging your program, as the machine state will be lost! 

7-14 PS 300 Advanced Programming 
e 



Loading and Debugging User-written Functions 

Table 7.2-4 Breakpoint-Related Commands 

Up to seven breakpoints may be set for Debug programs. Debug sets a breakpoint by storing a 
TRAP #15 instruction at the breakpoint location when the "G" command is executed. Every time 
an exception occurs that causes DEBUG to be entered {e.g. pressing the BREAK key or 
encountering a breakpoint} , the current open location is set equal to the program counter 
address. This is especially useful when using the trace command or when using breakpoints. 

The programmer must assure that no attempt is made to set a breakpoint at a nonexistent 
location. If the breakpoint is set at an odd location, the next lower even address is used. It is 
important that the breakpoint be set at the beginning of an instruction rather than in the 
instruction parameter part. 

If there is not enough room to set another breakpoint, Debug indicates it is full with the following 
message: 

Break table is full 

COMMAND DESCRIPTION 

BR Set one breakpoint. A maximum of 7 breakpoints may be set up at any one 
time. If this number is exceeded, the following message is displayed: 

Break table is full 

For example, to set a breakpoint at location X'C000': 

BRC000. (Entered like this.) 

* B R C000. ~ {Displayed like this. 

BD Display all breakpoints. For example, if three breakpoints have been set, the 
following might be displayed: 

B D (Entered like this} 

Breakpoints = OOO00000 OOOOCAB8 OOOOC124 {Displayed like this) 

If no breakpoints are set, the following message is displayed: 

Breakpoints = 

(continued on ne~ct page) 

PS 300 Advanced Programming 
0 7-1 S 



Loading and Debugging User-written Functions 

`fable 7.2-4 Breakpoint-Related Commands (continued} 

COMMAND DESCRIPTION 

BC Clear one breakpoint. If the system is unable to clear the breakpoint for any 
reason, the cursor remains on the same line. If the breakpoint is successfully 
cleared, a carriage return is output to indicate successful completion. If the 
breakpoint is not successfully cleared, the audible alarm sounds. For example, to 
clear a breakpoint that was set at location X'C000': 

BCC000. 

B C 0000. 

BA Remove all breakpoints. 

(Entered like this . } 

(Displayed like this . } 

0 

7-1.6 PS 30~ Advanced Programming 



Loading and Debugging User-written Functions 

Table 7.2-5 Hunt Commands 

The Hunt commands HW, HB, and HL are used to look for a word (16 bits) , for a byte (8 bits} , 

or for a long word (32 bits), respectively, in a search range designated by the programmer. 

COMMAND DESCRIPTION 

HW Hunt for a word (16 bit) pattern within a specified search range designated by the 
programmer: 

°HB 

HW400,10000. 
HW 400, 10000. 

NOTE 

(Entered like this.) 
(Displayed like this.) 

If the specified search range is to be X' 100' to X' 1FF', enter the number 
range 100 to 200. The ending address is the one immediately preceeding 
the address entered by the operator. 

A prompt then asks for the pattern to search for, and the programmer responds as in 
the following example: 

Pattern to search for: 4ED0 

Once a matching pattern is found, its address is displayed, along with the 16 bytes 
following the address, as in the following example: 

OOOOEB64 4E DO 00 00 00 00 00 00 00 00 00 00 00 00 00 00  

Pressing any key on the terminal continues the search for another matching pattern from 
the point after the last pattern found until the end of the range. A <CTRL> Y may be 
used to stop the search at any time. When no matching pattern is found, the following 
message is displayed: 

Not found 

If the pattern to search for is an ASCII sequence of characters, the characters must be 
surrounded by single quote marks. Note that if an entry is found within 16 bytes of an end 
address, the whole line is not printed to avoid a bus error in case the end address is on a memory 
boundary. 

Hunt for a byte (8 bit) pattern within a specified search range designated by the 
programmer. 

HL Hunt for a long word (32 bit) pattern within a specified search range designated 
by the programmer. 

PS 300 Advanced Programming 
o 

7-17 



Loading and Debugging jJser-written Functions 

Table 7a 2-6 Boot-related Commands 

COMMAND DESCRIPTION 

NOTE 

The error-correction bits of memory must be initialized by either the 
confidence tests or a memory text (such as M 1) prior to execution of the 
boot-related commands. 

Should an error occur while executing one of the boot-related 
commands, additional error information may be obtained by reading the 
diskette controller status bits at location X`FFF811' . 

B d Load and execute the boot file from the minifloppy. This command must be 
followed immediately by a carriage return. 

A "V" command is automatically executed immediately before accessing the 
diskette controller to guarantee that memory error correction logic is enabled and 
that the exception vectors are initialized. 

The floppy disk drive is turned off after the file is loaded into memory. Any code 
that uses the disk immediately after being loaded must explicitly turn the disk 
motor on again. 

NOTE 

All breakpoints disappear when the boot command is executed. 

If an error is encountered, one on of the following messages is displayed: 

Disk initialization error 
This error message indicates tha either the diskette drive does not respond 
properly or that there is no diskette in the drive 

Error in locating boot file 
This error message indicates that either the diskette could not be read or that the 
diskette does not contain a valid boot file. 

Error in loading boot file 
This error message indicates that either a read or a seek error occured while 
reading in the boot file. 

(continued on next page) 

7--18 PS 300 Advanced Programming 
e 



Loading and debugging tTser-written Functions 

Table 7.2-b Boot-related Commands (continued) 

COMMAND DESCRIPTION 

BN 

BX 

Load the boot file in from the diskette but do not begin execution. This command 
is identical to the BO command except that when the file is loaded, instead of 
beginning execution immediately, control is returned to the programmer and the 
following message is displayed: 

Start address = XX~:XXXXX 

where XXXXXXXX is the address where the program was loaded. This command 
must be followed immediately by a carriage return. 

Note that a "V" command is automatically executed immediately before accessing 
the diskette controller to guarantee that memory error correction logic is enabled 
and that the exception vectors are initialized. This means that all breakpoints 
disappear when the- boot command is executed. 

The floppy disk drive is turned off after the file is loaded into memory. Any code 
that uses the disk immediately after being loaded must explicitly turn the disk 
motor on again. After the file is loaded, the start address is opened. A CTRL G 
command may be entered without explicitly opening the start address . 

Load the specified file from the diskette to the specified address. This command 
must be followed immediately by a carriage return. The file name is entered 
following the prompt message: 

Enter name of file: 

The name may be from 1 to 8 characters in length. Should an error be made in 
entering the file name, type a CTRL Y and begin again. 

No local memory accesses of any kind occur (unless the load address is within 
local memory) . If any breakpoints are set at the time that the "BX" command is 
entered, the original instructions at the breakpoint locations may not be restored. 

NOTE 

• Debug does not allow the programmer to specify the extension or file 
version number. The file must be of the type ,EXS (executable 
stand-alone) to be loadable by the BX command. The highest version 
number of the file is loaded in automatically; there is no way to select an 
alternate version number. 

(continued on next page) 

PS 300 Advanced Programming 7-19 



Loading and Debugging User-written Functions 

Table 7.2-6 Boot-related Commands (continued) 

COMMAND DESCRIPTION 

The load address is entered following the prompt message: 

Enter load address: 

If the address is odd, the next lower even address is used. This eliminates the 
possibility of an address error while executing the specified file. 

The floppy disk drive is turned off after the file is loaded into memory. Any code 
that uses the disk immediately after being loaded must explicitly turn the disk 
motor on again. After the file is loaded, the start address is opened. A CTRL G 
command may be entered without explicitly opening the start address. 

~-~20 PS 300 Advanced Programming 



Loading and Debugging User-written Functions 

Table 7.2-7 Memory Test Commands 

COMMAND DESCRIPTION 

NOTE 

Memory tests M3 through M6 strobe the DIAGSYNC line on the GCP 
card whenever a memory error is detected. This allows a logic analyzer 
to capture the state of the hardware at the time of the memory error. 

M1 'Test the GCP local memory. This test starts at location X`0008' and tests all of 
local memory. It performs a stripes' pattern test of all bits for both 1's and 0's, 
coming from both directions. 

After all normal memory bits have been tested, the test above is repeated using 
the check bits. This test has no parameters. Errors are displayed in the 
following manner: 

00000100 Expected-5555 Received-5554 Bits in error-0001 

where the first field is the address where the error. was detected, the second is the 
expected value, the third is the received value, and the fourLli contains the bits 
in error as determined by the test. 

M2 Test the error correction and detection circuitry of the local memory. 

M3 Perform a simple and quick complement test. M3 reads a location, complements 
it, and then verifies that all bits have changed. For example, to test memory from 
X`0008' to X`03FF': 

M38,400. 
M3 8, 400. 

(Entered in this form.) 
(Displayed in this form.) 

Note that the last location tested is X ̀ 3FE' (word address) , which includes 
location X ̀ 3FF' (byte address) . The end address corresponds to the first even 
address after the last address to be tested. A carriage return is output when the 
test is started, and another carriage return is output when the test has been 
completed successfully. Errors are displayed in the same way as in test M 1. 

(continued on next page) 

PS 300 Advanced Programming 7- 21 



Loading and Debugging User-written Functions 

Table 7.2-7 Memory Test Commands (continued) 

COMMAND DESCRIPTION 

NOTE 

For convenience, if the ending address is less than the starting address, 
the ending address is considered to be abyte-count. The M3 command 
accepts input in the form of : 

M3<starting-address>, <number-of-bytes>. 

as well as: 

M3<starting-address>,<ending-address>. 

For example, the following command could be used to test locations 
X`200000' to X`2001FE': 

M3200000, 200. (Enterd in this form) 
M~3 200000, 200. (Displayed in this form) 

These addresses are obtained by a common routine which converts odd 
numbers to even numbers. This eliminates the possiblity of an address 
error. 

M4 Perform an address line test. It stores the low order 16 bits of the address at the 
test address and then, when all of memory to be tested has been filled, it verifies 
that the proper data has been stored. Addresses are specified the same way as 
in test M3. 

MA Execute the read and verify portion of the memory address lines test {1VI4} . This 
command is intended to be preceded by an M4 test over the same range (and 
thus verifies that the data wr7tten by M4 is still intact} . Following is an example 
of how it might be used: 

M4 200000, 210000. 
<wait a while> 

MA 200000, 210000. 

(Write the data pattern) 

(Verify data integrity) 

(continued on next page) 

7-22 PS 300 Advanced Programming 



Loading and Debugging User-written F9unctions 

Table 7.2-7 Memory Test Commands (continued) 

COMMAND DESCRIPTION 

M5 Perform a supple stripes test. The test procedures are the same as those 
described in memory test command M 1 above, except the operator specifies the 
test range and the MMMR (Mass Memory Maintenance Register} is not 
modified. 

M6 Store a random pattern throughout the test memory, using apseudo-random-
number generator. After all of memory has been filled, the seed of the random 
number generator is reset and then all memory locations are verified. Addresses 
are specified in the same way as with test M3. 

PS 30D Advanced Programming ~-23 



Loading and Debugging User-written Functions 

7.3 Setting Breakpoints in Four Code 

This section describes the steps you must follow to set a breakpoint in your code. where 
appropriate, examples are given. The user-written function F: MAG will be used for the example . 
It is assumed that you want to put a breakpoint right after the function has checked its input 
queues upon being executed. 

1. 1\itake sure- that your compile, assemble and links are done with the List option set 
on. (Refer to the Motorola cross-software manual for more details on the List 
option.) This causes creation of listing and link-map files which are necessary to 
find the location to a set breakpoint. For F: MAG, the commands to do this on 
VAX/VMS are 

$ xpas mag 
$ xpas2 mag; L 
$ xlink mag/userlink, mag, mag; himx 

2. Find the offset within the user-written function code of the breakpoint location using 
the listing file from pass 2 of the compiler and the link map. 

a. Find the address within the link of the beginning of the filecontaining your code. 
The link map will give you this information. In the following example, for F:MAG, 
the code for the user-written function (Module USERFUly) starts at location 2CC. 

Load Map: 

Segment SEGO: 00000000 OOOOOOFF 0,1,2;3,4,5,6,7 
Module S T Start End Externally Defined Symbols 

USERLINK100000000 00000019 
USERLINK6 OOOOOOlA 00000025 

Segment SEGl(R): 00000100 000005FF 8,9,10,11,12,13,14 
Module S T Start End Externally Defined Symbols 

USERLINK 8 00000100 00000173 .PALSTS 00000108 .PDIS 00000156 
.PLJSR 00000100 .PNEW 0000012E 

~-24 PS 300 Advanced Programming 



Loading and debugging User_written Functions 

USERLINK 9 00000174 000002CB FRAMES 0000027C SENDMSG 0000018C 

SET ONES 00000X4 SYSTEMER 00000186 

TEXT TEX 00000294 UWFERROR 000002BC 

HRTIME 00000284 QILLMESS 00000198 

QILLVALU 0000019E QINCOMPA OOOOOlA4 

FCADD OOOOOlC8 FCDIVIDE 000OO1F4 

FCINT2D0 000OOIFA FCINTEGE 00000206 

FCMULTIP 000OO1D4 FCNEARZE 0000020C 

FCP2MULT OOOOOlEE FCROUND 00000200 

FCSQROOT 00000212 FCSUBTRA 000OOICE 

SINCOS 00000218 VFETCH 0000024E 

TICKS 0000026C TIME TEX 000002A4 

CHAR TEX 0000028C MSGCOPY OOOOOlAA 

RNDMNUMB 0000021E CKINPUTS 00000180 

CKPRIVAT 00000174 CLEANINP 00000186 

QSENDCOP 00000192 MY IN OU 00000264 

MY NAME 0000025C NEWQBOOL 00000236 

NEWQINTE 00000230 NEWQ~VIATR 00000248 

NEWQNIL 0000023C NEWQPACK 00000224 
~QRFAI• 0000022A NEWQVECT 00000242 

NEWTRY 00000284 SAVEPRIV 0000017A 

CSECS 00000274 DROPMESS 000OO1B0 

FPA.BS 000OO1C2 FPECOMP OOOOOlBC 
VSTORE 00000254 INT TEXT 0000029C 
REAL TEX 000002AC 

USERFUN 9 000002CC 0000057F GENFUNCT 000002CC 

b. Find the offset within your file of the particular instruction you want to set the 
breakpoint at. The listing file from pass 2 of the compiler will give you this 
information. 

PS 300 Advanced Programming ~-25 



Loading and Debugging User-written Functions 

In this example, the breakpoint will be set just after the initial call to CkInputs. Here is 
the relevant part of the listing file: 

*. PROCEDURE GenFunction ; 
*, 

*. VAR 

*. inputs : PtrUWFInQarray; 

outmsg Ptrgdata; 

* temp : Double; 
. 

* o

*. BEGIN { GenFunction } 

*. inputs := CkInputs (1, 1); 

000®0000 

00000000 2F2D OOOC 

00000004 4E56 FFFF 

00000008 2B4E OOOC 

OOOOOOOC 598F 

0000000E 7001 

00000010 3F00 

00000012 7001 

00000014 3F00 

00000016 4E93 

00000018 

000OOOIC 2D5F FFFC 

USER50 EQU 

MOVE.L 12(A5),-(A7) 

LINK A6,#-Ll 

MOVE.L A6,12(A5) 

SUB.L #4,A7 

MOVE.L #1,D0 

MOVE DO , -- (A7 ) 

MOVE.L #1,D0 

MOVE D0,-(A7) 

JSR (A3) CUP 

DC.L $OOFFFFEB 

MOVE e L (A7) + , -4 (A6 ) 

* WHILE inputs O NIL DO BEGIN 

00000020 L2 

00000020 206E FFFC 

00000024 227c 00000000 

0000002A B1C9 

0000002C 6700 0000 

NOTE 

EQU 

MOVE . L -4 (A6) , AO 

MOVE.L #O,A1 

CMP.L A1,A0 

BEQ L3 

The location where you should set the breakpoint is offset 0020 from the 
beginning of the module. 

326 
327 
328 
329 
330 
331 
332 
333 

334 

335 

>(see note) 

c. Add the two numbers arrived at in (a) and (b) . This will give you the actual offset 
from the beginning of the user-written function of the instruction at which to set 
the breakpoint. In this example, the actual offset is 2CC + 20 = 2EC. (Remember, 
all numbers are Ibex. } 

7-26 PS 300 Advanced Programming 



loading and Debugging User-written Functions 

3. Find the address in PS 300 mass memory of the start of the function code. After 

downloading the user-written function so that it is in place in the PS 300 mass 

memory, enter Debug by depressing the Break key on the ASCII terminal connected 

to port 3. Look through mass memory (using the HL or I-#W command) for the name 

of the function. Use the first 4 characters of the name only. Remember that all 

names have a suffix appended to the end of the name. For most functions 

downloaded from the host the suffix is a " 1" (one) . Hunt through memory starting at 

location 200000 and ending at 300000 (or 400000, if you have 2 megabytes of mass 

memory, 500000, if you have 3 megabytes, etc) . The example function is named 

MAG. Thus you should hunt for the characters "MAGI" . Enter the following 

commands to the debugger: 

* HL 200000 300000 
Pattern: 'MAG 1' ~ use CAPITAL letters only } 

When the debugger finds the first place in memory that this name exists it will display the 

line and address containing this name. Hit RETURN to have it search for the next one. 

Continue until the debugger returns with the message: 

Not found 

The name may actually exist in several places. in mass memory, although only one of these 
locations will help you find the function code . If the name exists more than once, you 
must decide which is the "right one." The address given at the beginning of the line must 
end with an " E . " This may help to eliminate some locations . 

In the example the terminal looked like this after searching through memory: 

00225332 4D 41 47 31 00 00 00 00 00 00 00 00 00 00 00 00 MAGI 

0022928E 4D 41 47 31 00 00 00 00 00 00 00 00 00 00 00 00 MAGI 

Not found 

The second entry is the only possible correct choice, since its address ends with "E . " 

When you think you have found the right one (or want to see if it is correct) , subtract 
Hex lA from the address and list that address for 2 lines. If this is the entry you are 
looking for, you will notice that the first 4 bytes of the first and second lines contain the 
same mass memory address which must end in the number 4. When you have found this 
block, add Hex 12 to the address in the first 4 bytes of the first (and second) line. This is 
the location in mass memory where your user-written function code starts. 

In the example, 1A is subtracted from 22928E to get 229274, then the following is typed 
in to examine this memory location: 

*L 229274 229294 

00229274 00 22 97 84 00 22 88 E4 00 00 00 00 00 02 00 04 " d 

00229284 00 22 9? 84 00 00 00 00 00 04 4D 41 47 31 00 00  MAGI.. 

PS 300 Advanced Programming 7-27 



Loading and Debugging User-written Functions 

Hex 12 is then added to the value found in the first 4 bytes: 

00229784 + 12 = 00229796 

This is the mass memory location of the beginning of the user®written function code. 

4. By adding the offset found in step 2 and the start address found in step 3, calculate 
the actual address of the code in question. 

00229796 + 2EC = 00229A82 

This is the address inside the code where you want to set the breakpoint, It is usually 
a good idea to check the contents of memory with what you expect them to be at this 
location. You can list the memory at the address you have calculated and compare 
the numbers with the numbers which represent the instructions given in your listing 
file. If they do not match, then you do not have the correct address. 

*L 00229A82 0229A92 

00229A82 20 6E FF FC 22 7C 00 00 00 00 B1 C9 6? 00 02 7E n.i"i. . . .lIg. .fi 
* 

Compare the contents of memory location with what you expected to see (see listing 
excerpt in step 2 above) and see that you have found the correct address. 

5. Set breakpoint. Up to seven breakpoints can be set at one time. 

*BR 229A82 

d. Type "G" to return to PS 300 run-time code. Just before the code is executed at the 
breakpoint location, the PS 300 will enter Debug mode. The picture on the display 
will go away, and the debug prompt as well as register contents will appear on the 
ASCII terminal screen. The program counter is listed with the registers.. It is at the 
address of your breakpoint. 

7. Return to P5 300 run time by typing "G" at the terminal, or trace through subsequent 
instructions as desired. 

7-28 PS 300 Advanced Programming 



Loading and Debugging user-written Functions 

NOTES 

-while the PS 30.0 is in debug mode, all interrupts are disabled. Thus, any 
data entering the PS 300 from the host or peripheral devices will be lost. 
Therefore, make sure no data are coming in from the host at the time 
your breakpoint is executed. If your function relies on data from the 
host, one way to get around this problem is to: 

1. Place an F:SYNC(2) function in front of your function. 

2. Connect the input source to input <1> of the sync function and output 
<1> of the sync function to your user-written function. 

3. Set input <2> of F: SYNC to be a constant. 

4. When all data from the host have arrived on input <1> of the sync 
function, send a message to input <2>. This will cause the data to 
pass through the sync function and cause your user-written function 
to be executed. 

PS 30Q Advanced Programming ~-29 





MODULE 8 

User-Written Function Reference 

Introduction 

This part of the manual is provided as a reference section for information you may need while 
writing your own functions. It contains the ,following sections: 

• Message Types Description of the legal message types that can be passed 
between functions. Also contains an excerpt from 
USERSTRUC.PAS that illustrates how the types are 
declared. 

• Utility Routines Topical listing and short description followed by the utility 
routines in alphabetical order. Advanced User-Written 
Function procedures are described separately after the 
User-Written Function utilities. 

• Stack Usage List of the stack usage, in bytes, of the utility routines. 

• Error Messages A list and description of system error messages you might 
encounter while writing your own functions. 

These routines are all declared in the E&S-provided file, USERSTRUC.PAS. The procedures 
themselves are in USERLINK.RO and must be linked to any function you write. 

PS 300 Advanced Programming 8-1 



UWF Reference 

NOTE 

During the initial distribution of USERSTRUC.PAS, two versions were 
sent to customer sites. The difference in the two versions is in the names 
of the pointers and the PS~300 floating—point record definition. This 
release of USERSTRUC. PAS supports the following naming conventions, 
with the strong recommendation that the conventions in this manual be 
used: 

Preferred Acceptable 

Double PS 300 floating point 
UWFInQarray InUwFQarray . 

The two names shown below are no longer acceptable and must be 
modified: 

a 

Not Acceptable Must Be Modified 'I'o 

PtrInQarray PtrUWFInQarray 
InQarray UWFInQarray 

8-~2 PS 300 Advanced Programming 



UHF Reference 

Message Types 

The type declarations included in USERSTRUC. PAS define the various message types that are 
used in the PS 300, as well as other types that are used by the utility routines. This section 
describes these types and how to use them. 

QDtype and Qdata 

The QDtype is used to specify the different types of Qdata message blocks available in the 

. PS 300 run—time ~ system. Qdata blocks are the primary vehicle for communication 
between functions in the PS 300. 

The Qdata record declaration specifies the formats for all messages. The first field, Next, 
is a pointer to the next message in a list or queue of messages. Ordinarily, you should not 
use the Next field explicitly. Next is defined as Ptrgdata = ~'Qdata; {pointer to a 
message} . Nearly all communication that takes place within the PS 300 runtime system 
occurs by passing message blocks (often referred to as Qdata blocks or a "Qdata") . The 
Ptrgdata contains the pointer to a Qdata block. 

The Qtyp field indicates the QDtype of the message body. The remaining fields vary, 
depending on the contents of the Qtyp field. A general listing of the QDtypes follows: 

QDtype = { types of Qdata (message) blocks } 

{ 0} Qreset, 
{ 1} Qprompt , 
{ 2} Qboolean, 
{ 3} Qinteger, 
{ 4} Qreal, 
{ 5} Qstring, 
{ 6 } Qpacket , 
{ 7} Qmorepacket 
{ 8} Qmove2, 
{ 9} Qdraw2, 

{10} Qvec2, 
{11} Qmove3, 
{12} Qdraw3, 
{13} Qvec3, 

dataless: reset a function instance 
dataless: flush the CI pipeline 
normal carrier of Boolean values 
normal carrier of integer values 
normal carrier of floating point values 
original carrier of byte strings, not used 
carrier of byte strings 
continuation Qpacket carrier of byte strings 
2D vector including P bit 
2D vector including L bit 
2D vector with no P/L bit (normal vector) 
3D vector including P bit 
3D vector including L bit 
3D vector with no P/L bit (normal vector) 

PS 300 Advanced Programming 8-3 



tIWF Reference 

{14} Qmove4, { 4D vector including P bit 

{15} Qdraw4, { 4D vector including L bit 

{~6} Qvec4, { 4D vector with no P/L bit (normal vector) 

{17} Qmat2, { 2x2 matrix 

{1~} Qmat3, { 3x3 matrix 

{19} Qmat4, { 4x4 matrix 

{2Q} QuserType { type that user may use to define own message 

); 

QDtype is padded with 260 miscellaneous elements to ensure that a 16-bit field is 
allocated by the Pascal compiler rather than the 8-bit field that would be allocated 
otherwise. 

Most of the QDtypes are self-explanatory. A few that may need more explanation 
follow. 

Qreset and Qprompt are not ordinarily used by user-written functions. Qstring is 
obsolete and remains in the PS 300 system for historical purposes only. You should use 
Qpacket for string messages. 

Qpacket is the standard byte/character message block. Although the Pascal declaration 
for a Qpacket indicates that the P_Cnt field will hold 255 characters, the actual amount of 
storage allocated varies. You should never attempt to reference characters outside of the 
P~Cnt[P~Beg..P_Lth] ~ doing so could cause a fatal error in the PS 300. If you need to 
append to the end of a Qpacket, you must allocate a new message large enough to hold 
the entire string. - 

Qmorepacket is used as a continuation block for a message coming from the host with 
more than 2~5 bytes of information. Again, this message type is not used by ordinary 
functions. - 

QuserType is available to allow users to define their own messages types, while still 
handling the messages uniformly within the PS 300 system. If you want QuserType 
messages to carry data, you must modify the declaration of the Qdata record type in 
USERSTRUC, PAS to include a variant for QuserType that contains the desired fields. 
QuserType's Qtyp fields must be explictly filled in by the program. (Refer to F: SPIRO in 

Module 6 of this manual for an example of how to use QuserType messages.) 

The QData record declaration (from USERSTRUC.PAS) follows. 

8-4 PS 300 Advanced Programming 



UWF Reference 

Int16 = -32768..32767; { 16-bit integer } 

Qdata = 

RECORD 

Next: Ptrgdata { next message in a list of messages 

CASE Qtyp: Qdtype OF { type of message } 

{ Qreset: no datum carried } 

{ Qprompt: no datum carried } 

Qboolean: 

END 
{ 

t 
b: Boolean 

Qinteger: 

C 
is integer 

Qreal: 

{ 

r: PS_300_floating_point 

Qpacket, Qmorepacket: { byte-string } 

P_lth: int 16 { max byte number } 

P beg: int 16 { min byte number } 

P_cnt: Bytespell { byte of message 

Qmove2, Qdraw2, Qvec2 

Qmove3, Qdraw3, Qvec3 

Qmove4, Qdraw4, Qvec4: 

C 

} 

V4: Vector { all vectors use 4D indexing } 

Qmat2, Qmat3, Qmat4: 

t 
Mato: Matrix { all matrices use 4x4 indexing 

Qdata } 

Input Message Pointers 

PtrUwFingarray = fiUWFIngarray; 

UWFInQarray = ARRAY [1..MaxInputgueues] of Ptrgdata; 

} 

} 

UWFInQarray contains the pointer to the input queues for the userwritten function. 
PtrUWFInQarray contains the pointer to the UWFInQarray. 

PS 300 Advanced Programming 8-S 



tIWF Reference 

PS 300 Floating-Point Numbers 

In the PS 300, floating-point numbers are defined as 

Double : RECORD 
c Int16 { Exponent } 
m Integer { Fraction } 
not used Int16 { not used } 

END ; 

where 

c is the excess-1024 power of two of the number. 

m is the mantissa in M68000 internal type "long" interpreted as atwo's-complement 
number whose binary point is between bit 31 (the sign bit) and bit 30. 

The fraction is normalized; i.e., except for zero, the sign bit differs from the most 
significant bit. This normalization is accomplished by adjustment of the exponent for any 
shifts which might occur. Such adjustment can cause the exponent to exceed its 
maximum (overflow) or underrun its minimum (underflow) . 

Because the fraction is stored as atwo's-complement number, overflow can occur when 
negating the negative number of largest magnitude. 

not_used is a field that is not used but must exist in all the floating-point records. 'Phis 
field is included in each floating-point record to ensure that data are aligned on 8-byte 
boundaries, a factor that can help improve some execution speeds. 

Examples: 

R Double; 

R.c := 0 + 1024; 

R.m := 16384 * fi5536; 

{This is number 1/2 * 2**0 = .5} 

R.c :_ -1+1024 R.m :_ -2147483648 

{This is the number -1 * 2**-1 = -.5} 

erector =ARRAY [0..3] of PS 300_Floating_Point; 

All vectors {2D or 3D) are allocated as 4D vectors of floating-point values to allow X,Y, Z 
and I to be accommodated, if required. When a vector becomes part of a display data 
structure, it has been optimized appropriately. 

8-6 PS 300 Advanced Programming 



UWF Reference 

Matrix =ARRAY [d..3, 0..3] of PS 300_Floating_Point; 

All matrices (2x2, 3x3, 3x4, and 4x4} are allocated as a 4x4 matrix of floating point 
values to allow all sizes of matrices to be accommodated, if required. When a matrix 
becomes part of a display data structure, it has been optimized appropriately. 

Bytespell =ARRAY [1..255] of CHAR; 

The Bytespell array is used to hold bytes/characters for Qpacket and Qmorepacket 
messages. ~ . 

PS 300 Advanced Programming g_7 



UW1~' Reference 

Topical Listing of Utility Routines 

Input Queue Hannling and Function Scheduling Procedures 

'These procedures are provided to obtain access to input messages and control function 
scheduling. Functions are not required to look at all of the inputs, but there must be one 
message on each of the inputs for .the function to run. The -scheduling procedures are 

CkInputs 
Cleanlnputs 

Error Reporting Procedures 

when a PS 300 function detects an error, a message is displayed. when this happens, 
the status of the messages on the input queues is the same as if the function had run to 
completion without an error. There is one exception: If the error was due to a message 
on a Cqueue, the message is removed. 

The supplied utility procedures provide for the basic needs of error reporting. They are 
not intended to cover all cases. If the proper error message routine does not exist, it is 
the programmer's option to write a new error routine that meets that need. 

The writer of the function is responsible for seeing that if one of these error routines is 
executed, flow immediately proceeds to the "IF C1eanInputs THEN" statement after all 
the inputs have been checked for errors. This follows the error philosophy that requires a 
function to have one complete input set to execute, and if anything is in error in that set, 
the function will not run. 

The following error handling procedures are provided in USERLINK. 

QIllMessage 
QIllVaiue 
Qincompatmsgs 
Systemerror 
UwFerror 

8~8 PS 300 Advanced Programming 



UWF Reference 

E"1 Set_Cness Procedure 

There is one procedure provided to change the Cness or Tness of a function queue 

Set_Cness 

Private Data Queue Procedures 

Some functions require that data acquired during the process of the function be retained 
from execution to execution. These functions are referred to as having "private data 
queues" ; that is, queues for data not fed from input to output during each execution 
cycle. No outside function can send messages to these queues. Procedures provided for 
functions with private data queues are: 

CkPrivate 
SavePrivate 

Message Management Procedures 

The following procedures are used to send, copy, or dispose of messages: 

DropMessage 
MsgCopy 
QSendCopyMess 
SendMsg 

PS 300 Floating—Point Utilities 

The procedures to perform floating—point computations are: 

FCadd 
FCdivide 
FCint2double 
FCinteger 
FCmultiply 
FCnearzero 
FCp2multiply 
FCround 

. 

FCsquareroot 
FCsubtract 
Fpabs 
Fpecomp 
Sincos 

PS 300 Advanced Programming 8-9 



UWF Reference 

Carving and Initialization Procedures 

The following procedures are used to carve and initialize new data types o 

Newqboolean 
Newginteger 
Newgmatrix 
Newgnil 
Newgpacket 
Newqreal 
Newgvector 
Newtry 

Timing Procedures 

Csecs 
Frames 
Hrtime 
Ticks 

String Handling Procedures 

Char text 
Int text 
Real text 
Text text 
Time text 

Other Procedures Provided Via USERLINK.PAS 

My_in_out 
My_name 
Rndmnumber 
Vfetch 
Vstore 

8-~ 0 PS 300 Advanced Programming 



UWF Reference 

Procedures Provided Via USERLINK 

CkInputs 

FUNCTION CkInputs (Nmin, Nmax : Int 16) PtrInQarrary; 

CkInputs sets a pointer to each of the input queues specified in the inclusive range Nmin to Nmax 
and stores them in an array. If there is a message on each of the input queues, it returns a pointer 
to the array and the function state is changed to MIDRUNNING. This signifies that the function 
may execute. The function returns NIL if there are queues in the range that do not have a 
message. When NIL is returned, the function is put into the MSG WAIT state and must exit. 

A function does not have control over these input message blocks. For example, it cannot reuse 
an input message block. Data being sent out must be contained in newly created message blocks. 
If a function is to send a message through without change (such as F: SYNC) , the utility procedure 
Qsendcopymess should be used for efficiency. 

Char text 

PROCEDURE Char text (c: char; VAR b,e: Int16; VAR ca: Bytespell} ; 
FORWARD ; { TE~TUTIL. PAS } 

Char text adds .one character to a text string ca at location b+ 1 within that string but not beyond 
location e. b is updated. If b is negative, system error 81 is generated. 

CkPrivate 

FUNCTION CkPrivate : Ptrgdata; 

Ckprivate returns a pointer to the private message for this function, if it exists, or returns NIL if 
the private message does not exist. 

PS 300 Advanced Programming 8-11 



tIWF Reference 

C1eanInputs 

FUNCTION CleanInputs : Boolean; 

C1eanInputs must be called after the input messages have been processed and the outputs have 
been sent. Its purpose is to "clean up" the input queues and determine whether the function may 
run again unmediately. 

This procedure can recognize whether an input queue is a trigger queue (Tqueue} or a constant 
queue (Cqueue) . It drops the first message from each Tqueue and leaves Cqueues unchanged. 

The function must be in the MID_RUNNING state when this utility procedure is called. If the 
function can run again immediately, C1eanInputs returns TRUE and the function state is set to 
RUNNING. If there are not enough input messages for the functions to run again, FALSE is 
returned and the function state is set to MSG WAIT. It is also possible for C1eanInputs to return 
FALSE if the function has been running longer than 2 milliseconds; in this case, the state is set to 
ACTIVE and is regrned to give up control so that other functions can run. 

Csecs 

FUNCTION Csecs: Integer ; 

Csecs returns the number of centiseconds since the system was booted. 

DropMessage 

PROCEDURE DropMessage (VAR m: Ptrgdata) ; 

Dropmessage disposes of the message rn. It should be used rather than DISPOSE for all message 
dropping--especially for dropping messages of unknown Qtype--since it knows when additional 
data items are affected by the message being dropped. The message m is no longer the property 
of the calling code. m is set to NIL. 

A function does not need to dispose of input messages explicitly since the procedure C1eanInputs 
disposes of them. 

8-12 PS 300 Advanced Programming 



UWF Reference 

FCadd 

PROCEDURE FCadd (VAR augend, addend: Double; 
VAR sum: Double); 

FCadd does afloating-point add. 

FCdivide 

PROCEDURE FCdivide (VAR dividend, divisor: Double; 
VAR quotient: Double) ; 

FCdivide does afloating-point divide. If the divisor is zero, the function returns the largest 
positive number if the dividend is positive, otherwise it returns the largest negative number. 

FCint2double 

PROCEDURE FCint2double (num : Integer; VAR floated: Double} ; 

FCint2double makes afloating-point number from an integer. 

FCinteger 

PROCEDURE FCinteger (VAR innum: Double; VAR outnum: integer} ; 

FCinteger truncates afloating-point number to an integer. 

FCmultiply 

PROCEDURE FCmultiply (VAR a, b: Double; 
VAR product: Double) ; 

FCmultiply does afloating-point multiply. 

PS 300 Advanced Programming 8-13 



UWF Reference 

FCnearzero 

FUI~tCTIOI~T FCnearzero (VAR tiny :Double; negpower2 : Intl6 Intl ;} 
{ negpower2=1 --> within .5; =2 --> within . 25 } 

Returns a byte that indicates if a number is close to zero given an absolute tolerance. 

The tolerance (negpower2) is expressed as the negative power of two; that is, 0 means that 
anything less than 1 is close enough, 

1 means anything less than .5 is close enough, 
2 means anything less than .25 is close enough, etc., 
and -1 means anything less than 2 is close enough, etc. 

Results mean: 

-1 means the number is not close to zero, and it is negative, 
0 means the number is close enough, 
1 means the number is not close to zero, and it is positive. 

FCp2multiply 

PROCEDURE FCp2multiply (VAR innum: Double; power: Integer; 
VAR outnum: Double) ; 

FCmultiply multiplies innum by 2 raised to the power specified by power, (i.e., power is added to 
the exponent of innum, hence power can be either positive or negative . ) 

FCround 

PROCEDURE FCround (VAR Innum: Double; VAR outnum: Integer) ; 

FCround rounds afloating-point number to an integer. 

FCsgroot 

PROCEDURE FCsgroot (VAR a: Double;VAR sgroot: Double) ; j FCsgroot returns the square 
root of a positive floating-point number. If the number is negative, 0 is returned. 

8-14 PS 300 Advanced Programming 



t~rWF Reference 

FCsubtract 

PROCEDURE FCsubtract (VAR rrunuend, subtrahend: Double; 
VAR difference: Double) ; 

FCsubtract does afloating-point subtract. 

Fpabs 

PROCEDURE Fpabs (VAR r: Double) ; 

Fpabs changes r to the absolute value. This is a destructive operation in that it changes r itself and 
does not put the absolute value in another variable. 

Fpecomp 

FUNCTION Fpecomp (VAR xl,x2: Double) : Int8 ; 

Fpecomp compares two floating-point numbers and returns: 

-1 'if xi < x2 
0 if x 1 = x2 
lifxl>x2 

Frames 

FUNCTION Frames: Integer ; 

Frames returns the number of frames displayed since the system was booted. 

PS 300 Advanced Programming 8-I S 



UWF" Reference 

HRTime 

PROCEDURE HRTime (VAR c, f, d: Integer} ; 

PI'he I~IRTime procedure returns ahigh-resolution clock value . It returns the current time in 
centiseconds, and a fraction indicating the amount of time remaining until. the next centisecond. 

It is mainly used to calculate the elapsed time between two events, as shown in the following 
example 

Hr'I'ime (co, f0, d) ; {initial high-resolution time } 

HrTime (c 1, f 1, d) ; {final high-resolution time } 
Elapsedtime : _ ((c 1-co) * d) + (f0-f 1} ; {actual runtime of code } 

c is the current value of the centisecond clock, returned as a 32-bit integer which wraps around to 
zero. f/d is the fraction remaining until the next centisecond° Note that f decreases in value for 
increasing time, while c increases in value for increasing time. 

Int_text 

PROCEDURE Int text (n: Integer; Ns,Nz: Int16; 
VAR b, e: Int 16; VAR Ca: Bytespell) ; 

Int text converts an integer to text, as a signed decimal number, and adds it to a text array, via 
Char text. Ns is the minimum number of characters to generate, and Nz is the minimum 
number of leading zeros to print. (Note: to print n=d, Nz must be 1.) The number starts in 
Ca [b+ 1 j and will not go beyond Ca [ej . b will be changed. a specifies last character which can be 
changed. If b is negative, system error S 1 is generated. 

Msgcopy 

FUNCTION Msgcopy (m: Ptrgdata) : Ptrgdata ; 

Msgcopy makes a copy of the message m. The message returned by Msgcopy is the property of 
the calling code and must be disposed of (Dropmessage) or handed on (Sendmsg) before the 
calling code returns. 

8-~ 6 PS 300 Advanced Programming 



tJW~' Reference 

My_in_out 

PROCEDURE My_in_out (VAR N in,N out: Intlb) ; 

My_in_out reports the number of input queues and output ports for the current function instance. 

My_name 

FUNCTION My_name : Ptrgdata ; 

My_name looks up the name of the function instance and returns that name in a Qpacket. 

Newgboolean 

FUNCTION Newgboolean: Ptrgdata ; 

Newgboolean carves and initializes a Qboolean message. Initialization includes setting: Qtyp = 
Qboolean, value to FALSE. 

Newqinteger 

FUNCTION Newqinteger: Ptrgdata ; 

Newqinteger carves and initializes a Qinteger message. Initialization includes setting: Qtype = 
Qinteger, value to zero. 

Newgmatrix 

PROCEDURE Newgmatrix(Typ: Qdtype) : Ptrgdata ; { Qmat2, ... } 

Newgmatrix carves and initializes a matrix message of type Typ and contents all zero (Note: not 
floating-point number zero) . 

PS 300 Advanced Programming 8-17 



tIW~' 1Zeference 

Newgnil 

PROCEDURE Newgnil (Typ: Qdtype) : Ptrgdata ; { Qreset; Qprompt } 

Newqnil carves and initializes a dataless message of type Typ. Initialization includes setting: 
Qtype = Typ 

Newqpacket 

PROCEDURE Newqpacket (Typ: Qdtype; {Qpacket or Qmorepacket } 
Nbytes: Int 16} : Ptrgdata ; 

Newqpacket carves and initializes a Qpacket or Qmorepacket message large enough to hold 
Nbytes of information. Note that, although the Pascal declaration for a Qpacket indicates that the 
P\Cnt field will hold 255 characters, only Nbytes bytes are actually allocated by NewQPacket. 
You should never attempt to reference characters beyond the end of the string. Initialization 
includes setting: Qtype = Typ, P lth = Nbytes, P beg = 1, P_cnt [ 1.. Nbytesj = 0 

Newqreal 

FUNCTION Newqreal: Ptrgdata ; 

Newqreal carves and initializes a Qreal message. Initialization includes setting: Qtype = Qreal, 
exponent and mantissa to zero (Note: not floating-point value zero) . 

Newgvector 

FUNCTION Newgvector (Typ: Qdtype) : Ptrgdata ; { Qvec2, ... } 

Newgvector carves and initializes a vector message of type Typ and contents all zero (Note: not 
floating-point number zero) . 

8-18 PS 300 Advanced Programming 



t~~' Reference 

Newtry 

FUNCTION Newtry (num bytes : Integer) Ptrgdata; 

Newtry returns a block of the specified length in bytes if one is currently available in the system. 

If one is not available, NIL is returned. This differs from all the other "Newq" functions that will 
not return until a block of the specified type is available (or eventually cause the system to crash 

with a trap 0} . Newtry is used to carve data blocks when the function has a choice of what to do if 
a data block of sufficient size is not available. 

QIllMessage 

PROCEDURE QIllMessage {Inqueue : Int 16) ; 

The parameter Inqueue indicates the input queue that contains the bad message. QILLMessage 
prints the message: 

Message which function cannot handle. 

It then drops the message and sets INPUTS1. [inqueue] := NIL; 

QIllValue 

PROCEDURE QIllValue (Inqueue : Int16 ) ; 

The parameter Inqueue indicates the input queue that contains the bad message. QillValue prints 
the message: 

Type okay but value out-of-range 

It then drops the message and sets INPUTS1. [inqueue] := NIL; 

PS 300 Advanced Programming 8-19 



U4VF' Reference 

Qincompatmsgs 

PROCEDURE Qincompatmsgs (one : Int 16; theother : Int 16) ; 

The parameters indicate the input queues that are incompatible. This procedure prints the 
message: 

Incompatible message types detected by this function 

It then deletes the message on the queue theother and .sets INPUTS1. [theother] := NIL; 

QSendCopyMess 

PROCEDURE QSendCopyMess (inqueue, outqueue: Int16) ; 

QSendCopyMess takes the message on the specified Inqueue and sends it unchanged on the 
specified Outqueue of the function. If the queue is a Cqueue, a copy of the message is sent. If 
it's a Tqueue, the message is removed and sent. 

NQTE 

Consuming a message results in INPUTS5O6. [Inqueue] := NIL and any 
following references to INPUTS5O6. [Inqueue] will produce 
unpredictable results. Because of this, it is recommended that 
QSendCopyMess only be used prior to the "IF CleanInputs THEN" 
statement. 

Real text 

PROCEDURE Real_text (VAR r: Double;VAR b,e: Int16; 
VAR Ca:Bytespell) ; 

Real text converts r into text, expressing roughly 5 digits. If possible, r is printed as a fixed point 
number, but if it is too small or too large, it is printed in exponential form. The real number will 
be written starting at Ca [b+ 1 ] . b will be changed. a specifies the last character that can be 
changed. If b is negative, system error 81 is generated. 

8®20 PS 300 Advanced Programming 



UWF Reference 

Rndmnumber 

FUNCTION Rnclmnumber (seed : Integer): Int16; 

Returns ~ a pseudo-random 16-bit number. If the value of the seed is zero, then the value 
returned is computed based on the current seed value. If the passed seed value is non-zero, then 
it~ is made into the current seed and then the number is computed. The linear feedback shift 
register technique uses a 31-bit seed (bits 31 to 1} with taps on bits 31 and 6. This algorithm does 
7 bits at a time (3 times for 16 bits) . It does not repeat until 2 t  31 - 1 iterations . 

SavePrivate 

PROCEDURE SavePrivate (msg : Ptrgdata); 

This utility procedure is used for filling the Private queue, a queue to which no outside function 
can send messages. Once a message has been saved on the private queue, it will remain there as 
long as the function exists. The value, however, can be changed, and the queue will then retain 
the new value . 

SendMsg 

PROCEDURE SendMsg (VAR m: Ptrgdata; o: Int16) ; Sendmsg sends the VAR m to any and 
all ~ other named entities connected to the function's output port <o>. After this is done, the 
message m is no longer the property of the calling code and m has value NIL. 

Set_Cness 

PROCEDURE Set_Cness (input :Int16; cgtype: Boolean}; Set Cness allows the function itself to 
do the SETUP CNESS TRUE/FALSE<i>a; command. input is the input number of the function 
that the Boolean value will be sent to. ctype is the Boolean value: TRUE sets the specified input 
to a Cqueue and FALSE sets the specified input to a Tqueue. By default, when a function is 
instanced, all input queues are Tqueues. 

WARNING 

Using this procedure inside the function, as well as sending the SETUP 
CNESS command to the function, may produce unpredictable results 
because it may not be clear which code is executed last. Either one 
method or the other should be used, not both. 

PS 300 Advanced Programming 8-21 



t~F Reference 

Sincos 

PROCEDURE Sincos (Angle: integer; VAR sine: Double; 
VAR cosine: Double; 

Sincos computes the sine and cosine of an angle. angle is an integer between 0 and 65535, 
corresponding to the range 0 to 2 *pi radians. It computes the sine of angle by using the most 
significant 8 bits to index into a table of values and using linear interpolation of the least 
significant 8 bits. If angle is not in the first quadrant, it is converted to an angle in the first 
quadrant using trigonometric relations. 

RESULT := TABLE(A) + B ' 256 (TABLE(A + 1) - TABLE(A)) 

A =most significant $bits of angle 
B =least significant 8 bits of angle 

The cosine is computed by adding 90 degrees to the angle, then computing the sine. 

Systemerror 

PROCEDURE Systemerror (n: Int16} ; 

Systemerror crashes the PS 300 with a TRAP 6. The parameter n becomes the system error 
number. There is no return from a Systemerror call. 

Text_text 

PROCEDURE Text text {VAR B 1, E 1: Int 16; VAR Ca 1: Bytespell; 
VAR B2,E2: Int16; 'VAR Cat: Bytespell) ; 

Text text will copy characters from Ca 1 to Cat starting from B 1+ 1 in Ca 1 into B2+ 1 in Cat and 
continuing until either Cal [E1] has been copied or Cat [E2] has been changed, at which point 
copying stops. Both B 1 and B2 are changed. If B 1 is negative, System error 80 is generated. 

Ticks 

FUNCTION Ticks: integer ; 

Ticks returns the number of ticks (line-clock ticks 120Hz or 100 Hz} since the system was 
booted. 

~-22 PS 300 Advanced ~'rogramming 



~WR Reference 

Time text 

PROCEDURE Time text (n: integer; VAR b,e: Int16; VAR Ca: Bytespell) ; 

Time text converts n number of seconds to text as a time. In the form: dd hh:mm:ss. The time 

string will be written starting at Ca [b+ 1 ] . b will be changed. a specifies the last character which 

can be changed. If b is negative, system error 81 is generated. 

UWFerror 

PROCEDURE UWFerror (VAR msg :Ptrqdata) ; 

UwFerror allows the user-written function to display any type of error message desired. msg 

must be a Qpacket containing the characters of the message to be printed. msg is set to NIL by 

the procedure. 

Vfetch 

FUNCTION Vfetch (name: Ptrqdata) :Ptrqdata; { a Qpacket } 

Vfetch fetches the contents of a named variable. The name of the VAR is supplied in name 
(Qpacket) . If any error is detected, Vfetch returns NIL. Otherwise, Vfetch returns a copy of the 
message stored in the specified VAR. The returned message is owned by the function. 

Vstore 

PROCEDURE Vstore (name: Ptrgdata; VAR new_val: Ptrqdata) ; 

Vstore stores the Qdata new val into a named variable. The name of the variable is supplied in 

name (must be a Qpacket) . If the store succeeds, new val is set to NIL and is no longer owned 
by the function. Otherwise it is left alone. 

PS 300 Advanced Programming 8-2.3 



tIV~F Reference 

Advanced ZJ~%VF Procedures 

Lk cursuffix 

FUNCTION Lk_cursuf fix 
Nlth: integer; {name length } 

VAR Nspell: Namespell {name to be looked up } 
Ptralphablk; 

Lk cursuffix returns a pointer to the block of memory that contains the name of an object and 
pointers to its definition. The suffix of the currently running function is appended to the end of 
the characters in Nspell. If the name currently exists a pointer to it is returned. If it does not 
exist a new name block is created and the pointer to that is returned. This routine can then 
introduce new names into the system. Since names may be multiply referenced, a usage count is 
maintained. Only when that usage count goes to zero is the name block disposed. IT IS VERY 
I11~IPORTANT TO KEEP THIS COUNT ACCURATE! If the count is too small it will crash the 
system at some later time, if it too large the memory will never be recovered. Since this routine 
returns another reference to the name, the usage count has been incremented for that value. If 
the reference is not stored, when finished the usage count should be decremented. Changing the 
usage count is done through the routines Incausage and Decausage. Nlth is the number of 
characters in the name and Nspell is the array of character for the name. 

NOTE: all names are uppercase, so any lowercase letters in Nspell will be changed to uppercase. 

Lk nosuffix 

FUNCTION Lk nosuffix( 
length: Integer; 
Cinum: Int8 ; 
suffix: Char; 

VAR Nspell: Namespell 
Ptralphablk; 

{ name length NOT counting suffix } 
{ creating CI } 
{ the user suffix } 
{ name to be looked up } 

Lk_nosuffix performs the same task as Lk_cursuffix except it is more general. Cinum is the 
number given to the name if it is created. This is used for such things as the INITIALIZE 
command. A CI may only initialize those things which it has created. Suffix is the suffix 
character added to the name. `0' : user 1 hidden names, ` 1' : user 1 accessible names, `2' : user 2 
hidden names, `3' : user 2 accessible names. Nspell contains the character string of the name. 

8-24 PS 300 Advanced Programming 



UtiVF Reference 

Lgaupdate 

PROCEDURE Lgaupdate 
name: Ptralphablk; {alpha of object to change } 
data: Ptrnamedentity; {new data to be referenced } 

VAR Uph,Upt: Ptravupblk {head and tail of list of updates} 

)~ 

Lgaupdate includes an update request onto a list of updates which are to be performed. Updates 
are identification for the display processor that an object is to change. This procedure creates the 
proper information so that the name of the element pointed to by `name' will have its data 
changed to now point to `data' . The value for `name' is obtained through the use of the 
Lk cursuf fix routine . 

This routine can be called several times followed by a call to Announceupdate. 

NOTE: uph and upt must be initialized to NIL prior to the first call of this routine. 

Announceupdate 

PROCEDURE Announceupdate 
VAR Uph, Upt: Ptravupblk 

}; 
{ head and tail of list of updates } 

Announceupdate takes the list of updates generated through the use of the Lgaupdate function 
and passes them to the display processor such that on the next frame the new definitions will be 
clisplayed and the old ones deleted. 

PROCEDURE Msgstore ( 
Msg: Ptrgdata; 
a: Ptralphablk; 
n: integer 
}; 

Msgstore 

{ pointer to message block } 
{ alpha to receive message } 
{ input to receive message } 

Msgstore is used instead of Sendmsg when the message is to be sent to a known destination and 
input and not to the list on one of the functions outputs. Msg is the message to be sent. 

NOTE: even though it is not a VAR parameter, msg is used just like in Sendmsg so the caller 
should treat it just as though it was set to NIL by Msgstore. a points to the name block for the 
recipient and n is the input number. 

PS 300 Advanced Programming 8-25 



tJWF Reference 

Setlock 

PROCEDURE Setlock( 
VAR x: Lock 

)~ 

Setlock sets a lock to be True. 

{ lock to be changed } 

PROCEDURE Clrlock( 
VAR x: Lock 

)~ 

Clrlock sets a lock to be False. 

Clrlock 

{ lock to be changed } 

PROCEDURE Incausage( 
a: Ptralphablk 

)~ 

Incausage 

{ alpha to be incremented } 

Incausage increases the usage count of a name block by one. 

PROCEDURE Decausage 
a: Ptralphablk 

): 

Decausage 

{ alpha to be decremented } 

Decausage decreases the usage count of a name block by one. If the usage count becomes 0 the 
name block and data pointed to by the name block is disposed. 

8-26 PS 300 Advanced Programming 



tI~F Reference 

AcpProof 

PROCEDURE AcpProof 
VAR location: ptracpcblk; {pointer to be replaced } 

newval: ptracpcblk {new pointer } 

)~ 

Acpprfl 

PROCEDURE Acpprf 1( 
VAR location: ptrsaystate; {pointer to be replaced } 

value: ptrsaystate {new pointer } 

)~ 

AcpProof, Acpprf 1 allow the changing of pointers directly without going through the normal 

update mechanism. Since pointers are 32 bits and the 68000 only writes 16 l it, at a time, this 

procedure writes the new pointer in such a way that if the display processor is reading at the same 

time it is being written, the worst that could happen is that it would appear a> a NIL pointer and 

the display processor will terminate traversal at that point and return to another branch it has to 

traverse. This means you may loose part of your picture for one frame. If the UWF does not use 

this routine and writes the new value directly, the display processor may be sent to a random 

place in memory and almost guarantee that memory will be corrupted. 

OLbaddtoset 

PROCEDURE OLbaddtoset 
A_son: Ptralphablk; {alpha of branch to be added } 
A_father: Ptralphablk; {alpha of set node } 

VAR Uph, Upt: Ptravupblk; ahead and tail of list of updates} 
VAR Error: boolean; {status on return } 

Optimize : boolean {optimize structure in effect } 

)~ 

OLbaddtoset adds another branch in the traversal tree. Setnodes are the points in the traversal 

where the display processor branches and also the point at which saving the state and restoring it 
are performed. The recommended way of initially creating one of these branches is to ~.gaupdate 
A_father to point to a Setnode which has had all of its pointers set to NIL. Olabaddtoset is called .z~ 
to add the first and all subsequent branches at this point. A_son points to the beginning of the 
new branch. A_father points to the name of the Setnode (branch) . Uph and Upt are the list of 

updates generated, just as Upt and Uph of Lgaupdate. Hence for the change to actually appear 

Announceupdates must be called. Error is returned TRUE if Father is not a set node . Optimize 

should be TRUE if the operation should be treated as though OPTIMIZE STRUCTURE; was in 

effect, otherwise it should be FALSE. 

PS 300 Advanced Programming 8- 2 7 



UWF Reference 

Removefromset 

PROCEDURE Removefromset( 
A_father: Ptralphablk; {alpha of set node } 
A son: Ptralphablk; {alpha of branch to remove } 

VAR Uph, Upt: Ptravupblk; {head and tail of list of updates } 
VAR Error: Boolean {status on return } 

)~ 

Removefromset removes the branch of A_father which points to A_son. Uph and Upt are the list 
of updates generated, just as Upt and Uph of Lgaupdate . Hence, for the change to actually 
.appear Announceupdates must be called. Error is returned TRUE if Father is not a set node. 

FetchB Lock 

FUNCTION FetchBlock( 
block: PtrNamedentity; 

upt: Ptravupblk 
} : Ptrnamedentity; 

{ pointer to block for which } 
{ updated values are desired } 
{ tail of list of updates } 

FetchBlock searches the set of updates pending and returns a copy of block which has all updates 
applied to it. block is the pointer to the block for which updated values are desired. upt should 
be NIL unless some updates have been generated which have not yet. been `announced' . 

Acp_v3f 

PROCEDURE Acp_v3f 
VAR v: Vector; {vector to be converted } 
VAR acpv: Vec3f; { APC format result } 

pl: Boolean {position/line } 

)~ 

Acp_v3f converts a GCP format vector v to Vec3f0 format which ̀ is the format for 3D 
vector-normalized vectors. IF pl is TRUE the vector is a line, if FALSE the vector is a position. 

8-28 PS 300 Advanced Programming 



tJWF Reference 

Acp_vZf 

PROCEDURE Acp_v2f( 
VAR v: Vector; {vector to be converted } 
VAR acpv: Vec2f; {APC format result } 

pl: boolean {position/line } 

)~ 

Acp_v2f converts a GCP format vector v to Vec2f0 format which is the format for 2D 
vector-normalized vectors. IF pl is TRUE the vector is a line, if FALSE the vector is a position. 

Acp_v3b 

PROCEDURE Acp_v3b 
VAR v: Vector; 
VAR acpv: Vec3b; 

pl: boolean; 
exp: Int 16 
); 

{ vector to be converted } 
{ APC format result } 
{ position/line } 
{ exponent to use } 

Acp_v3b converts a GCP format vector v to Vec3bo format which is the format for 3D 
block-normalized vectors. IF pl is TRUE the vector is a line, if FALSE the vector is a position. 
exp is the exponent for the entire block. If exp is too small for a vector a fatal error will occur. 

PROCEDURE Acp_v2b 
VAR v: Vector; 
VAR acpv: Vec2b; 

pl: boolean; 
exp : Int 16 
); 

Acp v2b 

{ vector to be converted } 
{ APC format result } 
{ positionlline } 
{ exponent to use } 

Acp_v2b converts a GCP format vector v to Vec2b0 format which is the format for 2D 
block-normalized vectors. IF p1 is TRUE the vector is a line, if FALSE the vector is a position. 
exp is the exponent for the entire block. If exp is too small for a vector a fatal error will occur. 

PS 3D0 Advanced Programming 8-29 



UWF' Reference 

nStoreVector 

PROCEDURE nStoreVector 
VAR block: Ptrnamedentity; {block to store vector in } 
VAR v: Vector; {the vector } 

pl: Boolean; {position or line? } 
firstblock: Ptrnamedentaty {first block in list for } 

{ block-normalized } 

nStoreVector is the recommended way to create vector lists. Initially create the first block with 
nNewAcpdata and then use nStoreVector to put all vectors into the data block. Block is the 
current block to which items are added. Initially block =firstblock but may change as vectors are 
added. v is the vector to be added. pl is TRUE if the vector is a line and FALSE if it is a 
position. firstblock is the pointer returned by nNewAcpdata and is the pointer to be used for 
Lgaupdate. DO NOT PASS the same variable for both block and firstblock as this procedure may 
generate a linked list for this particular vector list. 

nNewAcpdata 

FUI~TCTION nNewAcpdata( 
n; int 16; 
t: Dattype 

Ftrnamedentity ; 

{ number of elements } 
{ data type of block } 

nNewAcpdata carves the requested data type to the appropriate size. n is the number of 
elements, vectors or characters. t is the type of namedentity, vec3f0, vec2f0, dstring, etc. 

Store3x3 

PROCEDURE Store3x3 
VAR m: Matrix3; {GCP format matrix } 

Ob: Ptrnamedentity; {pointer to matrix operate node } 
n: int16 {offset into operate node to begin store } 
}; 

Store3x3 converts the GCP format matrix and stores it into a Matcon3 operate node which has 
been previously created starting at the location specified by n. 

8-30 PS 300 Advanced Programming 



tl~~" Reference 

Store4x4 

PROCEDURE Store4x4 
VAR m: Matrix4; 

Ob: Ptrnamedentity; 
n: int 16 

{ GCP format matrix } 
{ pointer to matrix operate node } 
{ offset into operate node to begin store } 

Store4x4 converts the GCP format matrix and stores it into a Matload4 operate node which has 
been previously created starting at the location specified by n. 

Drop_name 

PROCEDURE Drop_name( 
a: Ptralphablk 

): 

{ name to remove from dictionary } 

Drop_name removes the name block a from the dictionary such that Lk_cursuffix and 
Lk nosuffix will not be able to located it. 

PROCEDURE GetVector( 

VAR 

VAR 

GetVector 

block: Ptrnamedentity; 
index: Int 16; 
v: Vector; 
pl: Boolean 
): 

{ from which block } 
{ which vector } 
{ returns the vector } 
{ is it a draw? } 

GetVector converts a display processor format ~ vector into a GCP format vector. block is the 
block which contains the vector, index is:the number of the vector within that block, v is the GCP 
format returned vector and pl is returned TRUE if it is a line and FALSE if it is a position. 

.~t Rawbacopy 

PROCEDURE Rawbacopy 
Nbytes: int16; 

VAR Inba,Outba: int8 

)~ 

{ number of bytes to copy } 
{ input and output buffers } 

PS 300 Advanced Programming 8-3 ~ 



UWF Deference 

i 

Rawcbcopy 

PROCEDURE Rawcbcopy 
Nbytes: int 1 b; m {number of bytes to copy } 

VAR Inba:char; {input buffer } 
VAR Outba: into {output buffer } 

)~ 

Rawchcopy 

PROCEDURE Rawchcopy 
Nbytes : int 16 ; 

VAR Inba, Outba : char 

)~ 

{ number of bytes to copy } 
{ input and output buffers } 

The above procedures allow for the copying of bytes from one block to another. PASCAL, can be 
tricked by selecting the appropriate data types for Inba and Outba according to the particular 
need. 

Size of 

FUNCTION Size_of 
b: Ptrnamedentity 
: integer; 

{ pointer to block to check } 

Size_of returns the number of bytes available in the particular chunk of memory. b can be any 
type of element: Ptralphablk, Ptrnamedentity, etc. It must be declared properly for PASCAL to 
accept it. 

FUNCTION FetchAdnum( 

FetchAdnum 

f: Ptrnamedentity; {pointer to Named Entity for whose } 
{ .Adnum field search is being made } 

aupt: Ptravupblk {tail of list of updates } 
): Int16; 

FetchAdnum searches and returns the current .Adnum (count) field of the pointer namedentity 
which will be its value once all updates have been performed. f is the Ptrnamedentity for whose 
.Adnum field the search is being made. upt should be NIL unless there are updates which have 
not been `announced' . 

8-32 PS 300 Advanced Programming 



UWF Reference 

nFetchCopy 

FUNCTION nFetchCopy( 
block: PtrNamedentity; 
start: Int16; 
count: Int 16 ; 
upt: Ptravupblk 

PtrNamedentity; 

{ vec list to copy from } 
{ vector to start at } 
{ how many vectors to copy } 
{ update list tail} 

nFetchCopy searches the update list to return a current copy of the particular block of a vector list 

as it will be when all updates are completed. block is the block as currently in memory. start is 

the index of the vector to start at, count is the number of vector to return. upt should be NIL 

unless the function has updates which have not been `announced' . The function returns a block 

which contains the vector lists requested. 

PROCEDURE WaitFrame 

WaitFrame 

framecnt : integer 

)~ 

{ number of frames to wait } 

WaitFrame puts the function in I/O wait and waits for the number of frames specified in framecnt 

before reactivating the function. 

loc_chead 

FUNCTION loc chead : Ptrcommhead; 

Loc_chead returns a pointer into mass memory of the location of the Commhead. 

ptr_dcb 

FUNCTION ptr dcb : Ptrdcb; 

Ptr_dcb returns a pointer into mass memory to the current users DCB . 

PS 300 Advanced Programming 8-33 



~TW~' Reference 

DropNE 

PROCEDURE DropNE 
f Ptrnamedentity 

)~ 

{ name to be disposed of } 

DropNE disposes of the Named Entity f and any associated blocks. 

Newreturns 

PROCEDURE Newreturns 
givemenil : boolean 

)~ 

{ return NIL when not enough memory } 

Newreturns sets a flag that tells the free storage routines how to handle a request for memory if 
there isn't enough to grant the request. If givemenil is TRUE and there is not sufficient memory a 
NIL pointer is returned on the request. If givemenil is FALSE then the free storage routines will 
wait for a block to become available (eventually crashing the system if not found} . Any NEW that 
needs to have this flag set TRUE should be followed immediately with a call to this routine to set it 
FALSE for other functions . 

Reactivate 

PROCEDURE Reactivate ;Reactivate puts the current function on the active list. The function 
must exit immediately after this procedure call. 

FUNCTION Myanyoutputs 
n: int8 

Boolean; 

Myanyoutputs 

{ output number to check } .t 

Myanyoutputs checks the output specified in n to see if there are any connections to that output. 
If there are no connections a FALSE is returned. This can be used to determine the usefulness of 
doing some large calculation for an output that has nothing connected to it. 

8-34 PS 300 Advanced Programming 



tIWF Reference 

Pushmyinput 

PROCEDURE Pushmyinput 
m: Ptrgdata; 
n: Int8 

)~ 

{ data to be pushed on input } 
{ input number to push data on } 

Pushmyinput causes the data pointed to by m to become the first message on the input queue n. 

PROCEDURE WaitCsec 
cseccnt : integer 
}; 

WaitCsec 

{ number of centiseconds to wait } 

WaitCsec puts the function in I/O wait and waits for the number of centiseconds specified in 

cseccnt before reactivating the function. 

PS 300 Advanced Programming 8-~35 



tIWF Reference 

Stack Size 

This section contains the rough stack usage estimates of the majority of the utility 
routines. it 

is 

necessary to estimate the total stack usage of auser-written function during 
the transfer of the user-written function from the host to the PS 300. This estimate is 
used to allocate stack space for use during subsequent execution by the user-written 
function. 

It is very important that adequate stack size be allocated for any function you write. 
Failure to do so will cause the PS 300 to crash when the function is activated. It is better 
to overestimate the stack requirements that to underestimate and risk a crash. 

A good initial estimate is 500 to 1000 bytes. This allows for the overhead of the utility 
routines and for an ordinary number of local variables. If your function has many local 
variables, especially matrices or large arrays, you should add the memory requirements 
for these variables. If you have included local procedures that may be called recursively, 
you should multiply the amount of stack usage for each procedure by the maximum depth 
of recursion and add that amount to the total. 

A stack size of 1000 bytes is adequate for all of the function examples included in this 
manual with the exception of F:BEZIER, which requires about 5000 bytes. 

Procedure Stack Use In Bytes 

CSecs 22 
Char text 2 2 
CkInputs 3 6 
C1eanInputs 42 
DropMessage 22 
FCadd 22 
FCdivide 22 
FCinteger 22 
FCint2double 22 
FCmultiply 22 
FCnearzero 22 
FCp2multiply 18 

8-36 PS 300 Advanced Programming 



UWF Reference 

(Rough stack usage estimates continued.) 

Procedure Stack Use In Bytes 
FCround 18 
FCsgroot 22 
FCsubtract 18 
Fpabs 22 
Frames 22 
HRtime 18 
Int text 5 2 (1 character) 
Int text 9 4 (2 characters) 
Int text 290 (10 characters) 
MsgCopy 40 
My_in_out 18 
My_name 6 6 
Newgboolean 24 
Newginteger 24 
Newgmatrix 2 b 
Newqnil 2 6 
Newqpacket 28 
Newgreai 2 4 
Newqvector 3 2 
Newtry . 
QSendCopyMess 240 
QIllMessage 140 
QIllValue 140 
Qincompatmsgs 15 4 
Real text 310 (E-format) 
Real text 2 9 3 (F-format) 
Rndmnumber 22 
SendMsg 152 
Set Cness 180 
Sincos 22 
Text text 42 
Ticks , ~ 22 
Time text 13 4 
UwFerror 22 
Vstore 12 4 

~~ t 

PS 300 Advanced Programming 8-37 



t~WF Reference 

Error Messages 

The following list gives the error message, a brief description, and a short summary of what might 
have caused the error. It is provided as a simple guideline to some of the more common mistakes 
made in writing functions. A complete list of PS 300 errors is given in Appendix K. 

ERROR DESCRIPTION COMMON CAUSE 

TRAP 0 Out of memory 

TRAP 10 

SYSTEMERROR #D9 

SYSTEMERROR #DA 

SYSTEMERROR #DB 

SYSTEMERROR #DE 

SYSTEMERROR #EO 

Possible multiple 
dispose 

Forgetting to call DropMessage on 
item generated by function and not 
sent as a message. 

Using SendMsg on an input message. 

Using Dropmessage on an input 
message. 

Overwriting a Qdata boundary. 

Call to CkInputs has Nmin < 0. 

Call to CkInputs has Nmin > Nmax. 

Call to CkInputs has Nmax > total 
number of inputs for function. 

Multiple call to QSendCopyMess on the 
same input . 

Function was not in state running when 
CkInputs was called. 

CleanInputs returned a FALSE and still 
called CkInputs. 

CleanInputs was not called before calling 
CkInputs the second time. 

838 "PS 300 Advanced Programming 



UWF Reference 

ERROR DESCRIPTION COMMON CAUSE 

SYSTEMERROR #E 1 Function was not in state mid running 
when C1eanInputs was called. 

CleanInputs was called even though 
CkInputs had returned a NII,. 

SYSTEMERROR #E9 QIllMessage, or QIll'Value was called for 
input which does not exist. 

SYSTEMERROR #EA QIllMessage, or QlllValue was called for 
input which was already dealt with. 

Previous call to QIllMessage, QIllValue, 
or QSendCopyMess. 

PS 300 Advanced Programming 8-39 



0 



APPENDIX A 

Using the Command Files on DEC `VAX/~VMS 

This appendix describes the files supplied on magnetic tape to users in DEC VAX/VMS 
environments and provides such a user with information on the use of the files and special 
downloading instructions. It contains a list of the various files created by the Motorola 
cross-software. The final section of this appendix contains a listing of the code for the command 
file that is used to call the Motorola cross-software and name the function. The list below is a 
complete description of the files distributed on the magnetic tape to support the User-Written 
Function facility under DEC VAXIVNiS: 

Example Files: 

BEZIER.PAS 
CHCASE.PAS 
COUNT.PAS 
MAG. PAS 
SPIRO. PAS 
SPSTRUC.PAS ~ USERSTRUC.PAS modified to include Userdatatype } 

E&S-Provided Files to Support User-Written Functions° 

USERLINK.ASM 
USERLINK.RO 
USERSTRUC.PAS 

E&S-Provided Cross-Software Command Files: 

XASM.COM 
XPASCAL . COM 
XPASCAL2.COM 
XLINK. COM 
XBUILD.COM 
XL.COM 
XNAMES.COM 

PS 300 Advanced Programming ~ A-1 



Using the Command Files on D.EC VAX/V1t~IS 

1Vlotorola Cross-Software Files: cif purchased through E&S ) 

XASM. EXE 
XPASCAL.EXE 
XPASCALZ .EXE 
XLINK.EXE 
PAS CALIB . RO 
XASMINIT.DAT 

Using the Cross-Software on VAXIti'MS 

Before attempting to use the cross-software, users should edit their LOGIN. COM file to 
invoke XNAMES.COM, which defines the necessary commands and logical names. This 
allows the assembler, compiler, and linker to be used exactly as described in the 
EXORMACS manuals. Before executing any of the commands described below, you 
should set your default directory to the directory containing the source files for the 
function you wish to compile and link. This directory should also contain copies of 
USERSTRUC.PAS and USERLINK.RO. As a convenience, a command file XL.COM 
has been provided to compile and link auser-written function, and produce the S-record 
file ready to download to the PS 300. All of the code must be contained in a single .PAS 
file, and the name of the function is assumed to be the name of the file. To invoke this 
command file, you should enter a command of the form: 

$ XL <filename> <number inpu~s> <number outputs> <stack size> 

If your function contains code from more than one .PAS file, or if you wish to include 
routines you have written in assembly language, you will have to follow these steps: 

(1) Compile Pascal source files: 

$ XPAS <f i lename> 
$ XPAS2 <f i lenarne> 

(2) Assemble assembly-language source files: 

$ XASM <f i lename> 

(3) Link the object files into an S-record file: 

$ XLINK <filenamel>/<filename2>../userlink,<filenamel>,<filenamel>;himx 

(4) Add the function header line to the S-record file: 

$ XBUILD <filename> <number inputs> <number outputs> <stack size> 

A-~2 a PS 3.00 Advanced Programming 



Using the ~'ommand Files on DEC VAXIVMS 

Special Software Installation Instructions for DEC VAX/VMS 

These two steps should be taken prior to using the command files and the cross-software: 

1. You should edit XI~tAMES . COM so that the logical names XEXEDIR and XCOMDIR 
reflect the actual directories where the cross-software executables and command files 
(respectively) have been installed. 

2. You should make sure that all of the files are publicly readable. 

Files Created~by the Motorola Cross-Software 

File Description Contents 

<filename>.PAS Pascal source file. 

<filename>.PC P-code output from pass 1 of the Pascal compiler and input 
to pass 2. 

<filename>. P 1 Listing produced by pass 1 of the Pascalcompiler. 

<filename>.ASM Assembly-language source file. 

<filename>. LS Listing file produced by assembler or pass 2 of the Pascal 
compiler. 

<fiiename>.RO Object file output by assembler of pass 2 of the Pascal 
compiler, input to the linker. 

<filename>. SR S-record file created by the linker. 

<filename>. LL Link map output by the linker. 

<filename>.300 S-record file with header information included. 

DEC VAX/VMS Command Files 

This section contains the code for the DEC VAXIVMS command files that are supplied 
on magnetic tape by E&S to support the User-Written Function facility. 

1. XASM.COM 

~ ! 
$ ! Motorola 68000 Cross-Assembler 

~ ! 
~ ! The cross-assembler may be used exactly the same as on 
~ ! the EXOR,macs. Note that the source file must reside in the 
~ ! directory where the cross-assembler is called from, the file 
~ ! extension must be .ASM, and the user must NOT specify any other 
$ ! file extensions. 

$ ! 
~ open/write it inputline.dat 

PS 300 Advanced Programming A-3 



TJsing the Command Eiles on DEC ~AXIVMS 

$ write it " "pl' " 
$ close it 

$ ! 
$ ! Now cause cross software execution 

$ ! 
$ assign xasminit.dat INITFILE , 

$ copy xexedir:xasminit.dat xasminit.dat;9999 
$ on error then goto finish 

$ on control_y then goto finish 

$ ! 

$ run xexedir:xasm 

$ finish: 
$ delete xasminit.dat;9999 

$ delete inputline.dat;* 

$ deassign initfile 
$ exit 

2. xBUILD. COM 

$ ! xBUILD.COM -- build S-record .300 file for a UwF 

$ ! 
~ ! This command file builds an S-record file for a UWF which is ready to 
$ ! download to the PS 300. The header information is found and added to 
$ ! the front of the output file from the linker . 
$ ! 
$ ! You should execute this command file from the directory containing the 
$ ! files for the UwF. The name of the UVVF' is assumed to be the same as 
$ ! the name of the files. The .LL and the .SR files produced by the 
$ ! linker must be present . An extension of . 300 is used for the output 
$ ! file. 
$ ! Parameters: 
$ ! pl = name of UWF 
$ ! p2 = number of function inputs 
$ ! p3 = number of function outputs 
$ ! p4 = estimated stack size 
$ ! 
$ ! 
$ ! Ask the user for parameters if none were supplied. 
~ r 

$ if pl .eqs. "" then inquire pl "Name of UWF" 
$ if p2 . eqs . "" then inquire p2 "Number of function inputs" 
$ if p3 .eqs. "" then inquire p3 "Number of function outputs" 
$ if p4 .eqs. "" then inquire p4 "Estimated stack size" 
$ ! 
~ r 

$ ! Determine the length of the code produced. This is found in the link 
$ ! map {the .LL file). Note that the following commands depend on 
$ ! knowing the exact format of the link map. 

A-~ PS 300 Advanced Programming 



tsing the Command Files on DEC VAX/V1VIS 

$ ! 

$ search /output=lsearch.tmp 'pl'.LL "Total Length" 

$ open /read tmp lsearch.tmp 

$ read tmp length 

$ close tmp 

$ delete lsearch.tmp;0 

$ length :_ 'f$extract(24, 13, length) 

$ ! 

$ ! 

$ ! Write the .300 file. This involves writing out the header, doing some 
$ ! extra stuff to make sure VMS gives it the right file attributes, and 
$ ! then appending the S-record file (.SR) and a semicolon. 

$ ! 

$ open /write header fun.tmp 

$ write header "' 'length' "pl' "p2' "p3' "p4' " 

$ close header 

$ assign /user fun.tmp sys$input 

$ create 'pl'.300 
$ append 'pl'.sr 'pl'.300 
$ open /append fun 'pl'.300 
$ write fun "; " 

$ close fun 

$ delete fun.tmp;0 
$ write sys$command "" pl'.300 created" 
$ exit 

3. XL. COM 

$ ! XL.00M -- command file to compile and link UwFs 
$ ! 

$ ! This command file compiles and links a user-written function, 
$ ! producing an S-record file ready for downloading to the PS 300. 
$ ! The function must be contained in a single Pascal source file; 
$ ! the name of the function is the name of the source file. 
$ ! An extension of .PAS is assumed for the input file, and an 
$ ! extension of .300 for the output S-record file. 
$ ! You should execute this command file out of the directory containing 
$ ! the Pascal source file for the user-written function. 

$ ! 

$ ! Parameters: 

$ ! p 1 = name o f uwf 

$ ! p2 = number of inputs 
$ ! p3 = number of outputs 

$ ! p4 = estimated stack size 

$ ! 

$ on error then exit 

$ on control_y then exit 

PS 300 Advanced Programming A-S 



Using the Command Files on DEC VAX/VMS 

$ ! 
$ ! Compile and link the UWF; using Motorola 
$ ! detect compilation errors by checking 

$ if p1 .eqs. "" then inquire pl "Name of UWF" 
$ xpas 'pl' 

$ pcfile :_ 'pl'.pc 

$ if 'f$file attributes (pcfile, "ALQ" ) . eq. 0 
then goto bugs 

$ xpas2 'pl' 

$ xlink 'pl'/userlink,'pl','pl';himx 
$ ! 

$ ! 
$ ! Build the S-record file and clean up the extra files, leaving only 
$ ! the .PAS and .300 files. 
$ ! . 
$ xbuild 'p1' 'p2' 'p3' 'p4' 
$ delete 'pl'.11;*, 'pl'.pl;*, 'pl'.ro;*, 'pl'.sr;*, 'pl'.pc;* 
$ exit 

$ ! 

$ ! Clean up after compilation errors, leaving the .PL file so the user 
$ ! can find his bugs. 
$ ! 
$ bugs: 
$ write sys$output "Aborted -- compilation errors" 
$ delete 'pl'.pc;* 
$ exit 

4. XLINI~. COM 

$ ! 
$ ! Motorola 68000 Cross-Linker 
~ r 

$ ! The linker may be used exactly the 
$ ! Note that all files must reside 
$ ! is called from, all files 
$ ! the file extension. Also, all output files must be explicitly 
$ ! specified . 
$ ! 

$ open/write it inputline.dat 

$ close it 

$ ! 

$ ! Now cause cross software execution. 
$ ! 

$ copy xexedir:pascalib.ro pascalib.ro;9999 
$ on -error then goto finish 

68000 cross-software. You can 
for a 0-length . PC file . 

! pass 1 compiler 

! check for bugs 

! pass 2 compiler 

! linker 

write it ""pl'" 

same as on the EXORmacs. 

in the directory where the linker 
must be .RO, and the user must NOT specify 

A-6 PS 300 Advanced Programming 



using the Command ~"iles on DEC VAX/V1VIS 

$ on control_y then goto finish 

$ assign/user mode sys$command sys$input 

$ run xexedir:xlink 

$ ! 
$ finish: 
~ deletE inputline.dat;* 

$ delete pascalib.ro;9999 

$ delete headerf.dat;* 

$ exit 

5. XNAMES. COM 

$ ! XNAMES.COM -- set up logical names and symbols for using cross 

$ ! software. 
~ r 

$ ! You should execute this command file (as in your LOGIN.COM) before 

$ ! attempting to use the Motorola 68000 cross-software to build 

$ ! user-written functions. 

~ ! 

$ ! 

$ ! Define logical names for the actual locations of the cross-software 

$ ! command files and executables. These should be updated during 

$ ! installation as necessary. 

$ ! 
$ assign disk$ias soft:[loosemore.uwf.dist.com] xcomdir 

$ assign disk$ias soft:[loosemore.uwf.dist.exe] xexedir 

$ ! 

$ xasm :__ ~xcomdir:xasm ! invoke cross-assembler 

$ xpas :__ ~xcomdir:xpascal ! invoke cross-compiler, pass 1 

$ xpas2 :__ C~xcomdir:xpascal2 ! invoke cross-compiler, pass 2 

$ xlink :_= Cxcomdir:xlink ! invoke cross-linker 

$ ! 

$ ! 
$ ! Finally, two more command files to build S-record files ready to 

$ ! download to the PS 300. 

$ ! 
$ xl :__ ~xcomdir:xl ! compile, link, and build S-record file 

$ xbuild :__ ~xcomdir:xbuild ! build S-record file 

$ exit 

! 

! The following aliases allow the Motorola cross-software to be used 

~ under vMS exactly as described in the EXORmacs manuals. 

PS 30~ Advanced Programming A-7 



~Ising the Command Files on DEC VAX~VMS 

6. XPASCAL. COM 

$ ! 
$ ! Motorola X8000 Pascal Cross-Compiler 

$ ! 
$ ! The compiler may be used exactly the same as on the EXORmacs. 
$ ! Note that the source file must reside in the directory where the 
$ ! compiler is called from, the file extension must be .PAS, and the 
$ ! user must NOT specify any other file extensions. 

$ ! 
$ open/write it inputline.dat $ write it "" pl'" 

$ close it 

$ ! 
$ on error then goto finish 

$ on control_y then goto finish 

$ ' 
$ ! Now cause cross software execution. 

$ ! 
$ run xexedir:xpascal 

$ finish 
$ delete inputline.dat;* 

$ exit 

7. XPASCAL2. COM 

$~ ! 
$ ! Motorola 68000 Pascal Cross-Compiler (Phase 2) 
$ ! 

$ ! The compiler may be used exactly the same as on the EXORmacs. 
$ ! Note that the P-code file must reside in the directory where the 
$ ! compiler is called from, the file extension must be .PC, and the 
$ ! user must NOT specify any other file extensions. 

$ ! 
$ open/write it inputline.dat 

$ write it ""pl'" 
$ close it 

$ ! 
$ on error then goto finish 
$ on control_y then goto finish 
$ ! 
$ ! Now cause cross software execution 
$ ! $ run xexedir:xpascal2 
$ finish: 
$ delete inputline.dat;* 

$ exit 

A-$ PS 300 Advanced Programming 



APPENDIX B 

Using the Command Files on DEC VAXIUNIX 

This appendix describes the files supplied on magnetic tape to users in DEC VAX/UNIX 

environments and provides such a user with information on the use of the files and special 

downloading instructions. The list below is a complete description of the files distributed on the 

magnetic tape to support the User-Written Function facility under DEC VAX/UNIX: 

Example Files: 

bezier.pas 
chcase.pas 
count.pas 
mag.pas 
spiro.pas 
spstruc.pas { USERSTRUC.PAS modified to include Userdatatype } 

E&S-Provided Files to Support User-Written Functions: 

userlink. asm 
userlink.ro 
userstruc.pas 

E&S-Provided Cross-Software Command Files 

xbuild 
xl 
xnames 

Motorola Cross-Software Files {if purchased through E&S) 

uxasm 
uxpascal 
uxpascal2 
uxlink 
pascalib . ro 
asminit. dat 

PS 300 Advanced Programming B-1 



Using the Command Files on DEG VAXItIN~X 

Using the Cross-Software on Unix 4.2 BSD 

Before attempting to use the cross-software, users should edit their .cshrc file to "source" 
the file xnames, which defines the necessary aliases and shell variables . This allows the 
assembler, compiler, and linker to be used as described in the E~ORMACS manuals. 
(The only exception is that multiple input files should be separated by "+" instead of "/", 
and if options are specified using ";", the entire argument list should be quoted.) 

Before executing any of the commands described below, you should set your working 
directory to the directory containing the source files for the function you wish to compile 
and link. This directory should also contain copies of userstruc.pas and userlink.ro. 
Since Unix is case sensitive, you must remember to use consistent case for filenames. 

As a convenience, a shell script xl has been provided to compile and link auser-written 
function, and produce the S-record file ready to download to the PS 300. All of the 
code must be contained in a single .pas file, and the name of the function is assumed to 
be the name of the file. To invoke this shell script, you should enter a command of the 
form: 

~ xl <filename> <number inputs> <number outputs> <stack size> 

If your function contains code from more than one .pas file, or if you wish to include 
routines you have written in assembly language, you will have to follow these steps: 

(1) Compile Pascal source files: 

~o xpas <f i lename> 
~o xpas2 <f i lename> 

(2) Assemble assembly-language source files: 

% xasm <f i lename> 

(3} Link the object files into an S-record file: 

~ xlink '<filenamel>+<filename2>...+userlink,<filenamel>,<filenamel>;himx' 

(4) Add the function header line to the S-record file: 

% xbuild <filename> <number inputs> <number outputs> <stack size> 

B-2 PS 300 Advanced Programming 



Using the Command Eiles on DEC VAX/U1V~X 

Special Software Installation instructions for DEC VAXIUNIX 

These steps should be taken prior to using the commands files and the cross-software 

1. You should edit the shell script xnames so that the shell variables $xexedir and 

$xcomdir reflect the actual pathnames of the directories where the cross-software 

executables and shell scripts (respectively) have been installed. 

2. You must also make sure that the files pascalib.ro and asminit.dat can be found in: 

/usr/local/lib/pas68/pascalib.ro and 

/usr/local/lib/pas68/asminit.dat 

respectively. This may be done either by copying the files, or by creating a link to the 

files. 

3. Make sure that all of the files are publicly readable. 

Files Created by the Motorola Cross-Software 

File Description Contents 

<filename>.pas Pascal source file. 

<filename>.pc P-code output from pass 1 of the Pascal compiler and input 
to pass 2. 

<filename>.pl Listing produced by pass 1 of the Pascal compiler. 

<filename>. asm Assembly-language source file . 

<filename>.ls Listing file produced by assembler or pass 2 of the Pascal 
compiler. 

<filename>.ro Object file output by assembler of pass Z of the Pascal 
compiler, input to the linker. 

<filename>. sr S-record file created by the linker. 

<filename>.11 Link map output by the linker. 

<filename>.300 S-record file with header information included. 

PS 300 Advanced ~'rogramming B-3 



Using the Command Files on Z7EC VAXIUN~X 

DEC VAX/UNIX Command Files 

'Phis section contains the code for the DEC V~/UNIX corrimand files that are supplied 
on magnetic tape by E&S to support the User-Written Function facility. 

1. xnames 

# xnames -- set up names for using 68k cross-software 

# You should "source" this file in your .cshrc file before attempting 
# to use the Motorola 68000 cross-software to build 
# user-written functions 

# Define names for the actual locations of the cross software shell 
# scripts and executables. These should be updated during 

# installation as necessary. 

set xexedir=-loosemor/dist/exe 
set xcomdir=~loosemor/dist/com 

# The following aliases allow the Motorola cross-software to be used under 
# Unix exactly as described in the EXOI~MACS manuals. 
# The only exceptions are: 
# (1) Multiple input files should be separated with a "+" instead of "/". 
# (2) If you specify options using ";", the entire parameter list should 
# be~enclosed in quotes. 

alias xasm $xexedir/uxasm 

alias xlink $xexedir/uxlink 

alias xpas $xexedir/uxpascal 

alias xpas2 $xexedir/uxpascal2 

# Finally, two more command files to build S-record files ready to 
# download to the PS 300: 

alias xl csh $xcomdir/xl 

alias xbuild csh $xcomdir/xbuild 

B-~4 PS 300 Advanced Programming 



Using the Command .Files on DEC VAX/ UNIX 

20 xI 

# xl -- compile and link user-written functions, producing S-record file 

# This shell script compiles and links a user-written function, producing 

# an S-record file ready for downloading to the PS~300. The function 

# must be contained in a single Pascal source file; the name of the 

# function is the name of the source file. An extension of .pas is 

# assumed for the input file, and an extension of .300 for the, output 
# S-record file. 

# You should execute this shell script out of the directory containing the 

# Pascal source file for the user-written function. 

# Parameters: 

# $1 = name of UWF 

# $2 = number of inputs 

# $3 = number of outputs 
# $4 = estimated stack size 

# Get the name of the function (required). 

if ($#argv > 0) then 
set name=$1 

else 

echo -n ' Name of tJWF : 
set name= (~<) 

end i f 

# 
# Compile and link the UWF, using Motorola 68000 cross-software. We can 

# detect compilation errors by checking for a 0-length .pc file. 

xpas name 

set pclen='ls -1 ~name.pc ~ awk '{ print $4 }'" 
if (~pclen == 0) goto bugs 
xpas2 name 

xlink "name+userlink,~name,~name;himx" 

# Build the S-record file and clean up the extra files, leaving only the 

# .pas and the .300 files. 

# 

xbuild name $2 ~3 $4 
rm ~name.11 ~name.pl ~name.ro ~name.sr $name.pc 

exit 

PS 300 Advanced Programming B-S 



Using the Command Files on D.~C VAXlU1VIX 

# Clean up after compilation errors, leaving the .pl file so the user 
# can find hi s bugs . 

bugs: echo 'Aborted -- compilation errors' 
rm $name.pc 
exit 

3. xbuild 

# xbuild -- build S-record .300 file for a UwF 

# This command file builds an S-record file for a UwF which is ready to 
# download to the PS 300. The header information is found and added to 
# the front of the output file from the 1 inker . 
# You should execute this shell script from the directory containing the 
# files for the UwF. The name of the UWF is assumed to be the same as 
# the name of the files. The .11 and the .sr files produced by the 
# linker must be present. An extension of .300 is used,for the output 
# file. 
# Parameters: 

# $1 = name of UWF 

# $2 = number of function inputs 
# $3 = number of function outputs 
# $4 = estimated stack sire 

# Ask the user for parameters if none were supplied. 

if ($#argv > 0) then 
set name=$1 

else 

echo -n 'Name of UWF: ' 
set name=($<) 

end i f 
if ( $#argv > 1) then 

set inputs=$2 else 

echo -n 'Number of function inputs: ' 
set inputs=($<) 

end i f 
if ($#argv > 2) then 

set outputs=$3 
else 

echo -n 'Number of function outputs: 
set outputs=($<) 

end i f 
i f ( $#argv > 3 ) then 

B-6 PS ~ E1r ~ .-1 ~l vanced Programming 



using the Command Files on DFC VAXiIINIX 

set stacksize=$4 

else 
echo —n 'Estimated stack size: ' 

set stacksize=($<} 

end i f 

# Determine the length of the code produced. This is found in the link 

# map ( the .11 file } . 
# set len='awk '/Total Length/ { print $4 }' $name.11' 

# write the .300 file. This involves putting together the header line and 

# appending a semicolon to the end of the file. 

echo $len $name $inputs $outputs $stacksize >~name.300 
cat $name.. sr »$name.300 

echo ';' »$name.300 

echo $name.300 created 

exit 

PS 300 Advanced Programming B-7 





APPENDIX C 

Using the Cross-Software on IBM v1VI/SP 

This appendix describes the files supplied on magnetic tape to users in IBM VM/SP environments 
and provides such a user with information on the use of the Motorola cross-software. The list 
below is a complete description of the files distributed on the magnetic tape to support the 
User-Written Function facility under IBM VM/SP: 

Example Files: 

BEZIER PASCAL 
CHCASE PASCAL 
COUNT PASCAL 
MAG PASCAL 
SPIRO PASCAL 
SPSTRUC PASCAL { USERSTRUC.PAS modified to include Userdatatype } 

E&S-Provided Files to Support User-Written Functions: 

USERLiNK ASSEMBLE 
USERLINK~ OBJECT 
USERSTRU PASCAL 

Motorola Cross-Software Files (if purchased through E&S} 

ASMB MODULE 
PASCALCO MODULE 
DIRECT MODULE 
LI[VK MODULE 
PASCALIB DATA 
ASMINIT DATA 

How To Use the Cross-Software on IBM VM/SP 

It is very important that you are familiar with the following information before you try to 
use the Motorola cross-software. Because of the nature of the IBM environment, explicit 
files that call the cross-software are not provided by E&S. Use the following information 
to create the S-record file that contains the code for your user-written function, correctly 
format the file for downloading, and download it to the PS 300. 

PS 3 00 Advanced Programming C-1 



using the Cross-~So, ftware on I~3M V1VP/SP 

Pascal Differences 

The IBM version of the Motorola Pascal cross-compiler uses different lexical conventions 
than standard Pascal. In particular, you should: 

• use ~ instead of ~' for pointer references 

• use (. and .} instead of [ ] for array references. 

You cannot refer to files by name explicitly in $F=<filename> statements. To include files 
during compilation, the $F statement should refer to a DDNAME. You must include a 
FILEDEF command to define that DDNAME prior to invoking the cross-compiler. 

Using the Cross-Compiler 

Before invoking the cross-compiler, you must execute a number of FILEDEF commands 
to define the files used. These files are: 

SOURCE The file containing the Pascal source code to be compiled. 
This file is read in by pass 1 of the compiler. 

LISTING The listing output by pass 1 of the compiler. 

PCODE This file contains the intermediate code produced by pass 1 
of the compiler and used as input by pass 2. 

OUTPUT Both passes of the compiler write results of the corripilation 
to the file OUTPUT, which is normally associated with the 
terminal. 

P2LIST The listing file output by pass 2 of the compiler. 

FILE 1 Pass 2 writes the relocatable object module to this file. 

FILE2 This is a temporary file used by pass 2 of the compiler. 

In addition, if you have referenced any files to be included via $F statements in your 
Pascal source file, you must also execute FILEDEF commands for these files. 

The following exec file, UWFPASC EXEC, will compile the Pascal source file input as the 
first parameter. It is assumed that the source file includes USERSTRU PASCAL through 
a statement of the form: 

~$F=INCLUDE } 

FILE: UwFPASC EXEC 

&TRACE ERR 

&CONTROL &OFF 

C-2 PS 300 Advanced Programming 



Using the Cross-Software on IB1Vl V1VI/SP 

FILEDEF * CLEAR 

FILEDEF OU'~PUT TERMINAL (RECFM F LRECL 80 BLOCK 80 

FILEDEF SOURCE DISK &1 PASCAL A 

FILEDEF INCLUDE DISK USERSTRUC PASCAL A 

FILEDEF LISTING DISK &1 LISTING A (RECFM VBA LRECL 133 BLOCK 3990 

FILEDEF PCODE DISK PASCPCOD DATA A {RECFM VB LRECL 256 BLOCK 2600 

FILEDEF P2LIST DISK &1 DATA A (RECFM VBA LRECL 133 BLOCK 3990 

FILEDEF FILE1 DISK ~1 OBJECT A (RECFM FB LRECL 256 BLOCK 2560 

FILEDEF FILE2 DISK PASCFIL2 DATA (RECFM FB LRECL 256 BLOCK 2560 

PASCALCO 

DIRECT 

EXIT 

After invoking the cross-compiler, you should check the LISTING file for errors. 

Using the Cross-Assembler 

The cross assembler requires that you execute FILEDEF statements to define the 
following DDNAMES: 

OUTPUT ~ Normally, this file is allocated t~o the terminal. 

SOURCE This should be allocated to the assembly source input file. 

LISTING The cross assembler will write its output listing to this file . 

OBJECT The object code output by the assembler will be written to 
this file. 

INITFILE The initialization file, which must be read in at the beginning 
of each invocation of the cross-assembler. 

The following exec file, MYASMY EXEC, will assemble the source file passed as 
parameter 1: 

FILE: MYASMY EXEC 

& TRACE ON 

& CONTROL &OFF 

FILEDEF * CLEAR 

FILEDEF OUTPUT TERMINAL 

FILEDEF SOURCE DISK &1 ASSEMBLE * {RECFM FB,LRECL 80 BLOCK 3200 

FILEDEF LISTING DISK &1 LISTING * (RECFM VB LRECL 133 BLOCK 3990 

FILEDEF OBJECT DISK &1 OBJECT * (RECFM FB LRECL 256 BLOCK 2560 

FILEDEF INITFILE DISK ASMINIT DATA C1 (RECFM FB LRECL 80 BLOCK 3200 

ASMB 

& EXIT 

PS 300 Advanced Programming C-3 



flsing the Cross®Software on IBM V11~IlSP 

Linking 

Before invoking the linker, you should execute FILEDEF statements to define the 
following files: 

INPUT The file containing the linker commands. This may be 
assigned to the terminal. 

OUTPUT `The map file output by the linker. 

OUTFIL The load module produced as output by the Linker. 

HEADERF A temporary file used by the linker for processing the H 
option. 

PASCALIB The default run-time library for Pascal object modules. 

In addition, you must execute a FILEDEF for each object file you wish to input to the 
linker. These are referenced by the file INPUT, which should contain commands of the 
form: 

INPUT <ddnamel> 
INPUT <ddname2> 

END 

For example, the file LINK TXT contains the following commands: 

INPUT OBJ1 

INPUT OBJ2 

END 

This file is referenced by UwFLINK EXEC. This exec file takes the name of a single 
object file as a parameter, and links it with USERLINK OBJECT. 

FILE: UWFLINK EXEC 

&TRACE ON 

&CONTROL &OFF 

FILEDEF * CLEAR 

FILEDEF INPUT DISK LINK TXT A (RECFM F LRECL 80 BLOCK 80 

FILEDEF OUTPUT DISK &1 MAP A (RECFM F LRECL 80 BLOCK 80 

FILEDEF OUTFIL DISK &1 LOAD A (RECFM VB LRECL 256 BLOCK 2600 

FILEDEF HEADERF DISK M68KHDRF DATA C (RECFM F LRECL 80, BLOCK 80 

FI OBJ1 DISK &1 OBJECT A (RECRM FM LRECL 256 BLOCK 2560 

FI OBJ2 DISK USERLINK OBJECT A (RECFM FB LRECL 256 BLOCK 2560 

FILEDEF PASCALIB DISK PASCALIB DATA C1 

DESBUF 

LINK 

~'-4 PS 300 Advanced Programming 



Using the Cross-Software on IBM ~MISP 

Modifying the S-Record File 

Before you can download the S-record file for the UWF to the PS 300, you must modify 

it to contain a header line of the format described in Appendix G, and terminate the file 

with a semicolon. 

' You should examine the map file output by the linker to determine the length of code for 

including in the header line. 

Downloading the UwF to the PS 300 

The following is an example of a command file to run the program SRecsnd that sends the 

specified file to the PS 300 (this requires the file name as a parameter) 

&TRACE ON 

&CONTROL &OFF 

EXEC PfiP FILEDEF * CLEAR 

FILEDEF INPUT TERMINAL 

FILEDEF OUTPUT TERMINAL 

FILEDEF SRECFILE DISK &1 LOAD A (RECFM VB LRECL 256 BLOCK 2600 

LOAD SRECSND (START 

This is an example of the Pascal program, SRecsnd, that sends a file to PS 300. This 

program makes calls to the PS 300 GSR routines. 

FILE: SRECSND PASCAL 

program srecsnd {input, output, srecfile ); 

CONST 
%INCLUDE PROCONST 

TYPE 

°1oINCLUDE PROTYPES 

VAR, 

Ssrecf i le text ; 
istr string ( 256 ); 

crlfa packed array (. 1. . 2 .) of char ; 
crlf string{ 2 ); 

%INCLUDE PROEXTRN 

PROCEDURE err { errnum integer ) ; 

BEGIN 

writeln( got error: ', errnum ); 

END: 

PS 300 Advanced Programming C-S 



~Ising tize Cross—Software on IB1Vl ~M/SP 

EEGIN 

pattach ( ` junk' , err ) ; 

reset( srecfile ); 
crlfa ( . 1 . ) : = CHAR ( 13 ) ; 

crlf : = sTR{ crlfa ) ; 
pmuxg ( 7, err ); 

vVF-IILE NOT EOF ( srecfile ) DO 

BEGIN readln (srecfile, istr ); 
Pputgx (istr, err 

Pputgx (crlf , err 
END; 

writeln; 
PDetach ( err ); 
END. 

}; 

); 

C-6 PS 300 Advanced Programming 



APPENDIX D 

Using the Command Files on IB1VI MVSITS~ 

The list below is a complete description of the files distributed on the magnetic tape to support the 
User-Written Function facility under IBM MVS/TSO: 

Example Files: 

BEZIER PASCAL 
CHCASE PASCAL 
COUNT PASCAL 
MAG PAS CAL 
SPIRO PASCAL 

~~ SPSTRUC PASCAL { USERSTRUC.PAS modified to include Userdatatype } 

E&S-Provided Files to Support User-written Functions: 

USERLINK ASSEMBLE 
USERLINK OBJECT 
USERSTRU PASCAL 

Motorola Cross-Software Files (if purchased through E&S) 

ASMB MODULE 
PASCALCO MODULE 
DIRECT MODULE 
LINK MODULE 
PASCALIB DATA 
ASMINIT DATA 

The MVSITSO user should refer to the Motorola manuals distributed with the Motorola 
cross-software for instructions on the use of the crosscompiler, cross-assembler, and 
cross-linker. 

For information on preparing the file for downloading, and for downloading it to the 

PS 300, refer to the sections entitled "Modifying the S-Record File" and "Downloading 

the UWF to the PS 300" in Appendix C of this manual. 
a 

PS 300 Advanced Programming 0 



i 

• 

O 



APPENDIX E 

USERSTRUC.PAS 

This appendix contains the examples and supplied command files from the USERSTRUC.PAS 

file, that is clistributed on magnetic tape. Reference to this file is made throughout the document 

and it is provided here for completeness. 

CONST MaxlnputQueues = 127; { Max #of input queues 

TYPE Int16 = -3276 8..32767; { 16-bit integer } 

Int8 = -128..127; { 8-bit integer } 

Ptrqdata = 1Qdata { pointer to a message } 

for a function } 

PtrUwFlnQarray = tUWFInQarray; 

UWFInQarray = Array [1..MaxInputQueues] of PtrQdata; 

InUWFQarray = UWFInQarray; {for compatibility with older versions} 

double = 
RECORD 

c: Int16; 

m: integer; 

notused: int16; 

END; 

PS 300_f loat ing~o int 

{ 16 bit biased binary exponent} 

{ 32 bit floating point fraction} 

{ waste, to make = 8 bytes for} 

{ faster array indexing} 

= double; { old name, for compatibility} 

Vector = ARRAY [ 0..3 ] OF double; 

Matrix = ARRAY [ 0..3 0..3 ] OF double; 

Sytespell = ARRAY [ 1..255 ] OF char; 

Qdtype = { types of Qdata (message) blocks } 

t 
{ 0} Qreset, 

{ 1} Qprompt, 

{ 2} Qboolean, 

{ 3} Qinteger, 

{ 4} Qreal, 

{ 5} Qstring, 

dataless: reset a function instance 

dataless: flush the CI pipeline 

normal carrier of Boolean values_ 

normal carrier of integer values } 

normal carrier of f loating point values} 

original carrier of byte strings } 

} 
} 

} 

PS 300 Advanced Programming E-1 



USERSTR UC. PAS 

{ 6} 

{ 7} 

Qpacket, {new carrier of byte strings } 
Qmorepacket, { alternate to Qpacket {with the distinction } 

{ making a difference only on the link } 

{ 8} Qmove2, 
{ 9} Qdraw2, 

{10} Qvec2, 

{11} Qmove3, 
{12} Qdraw3, 
{13} Qvec3, 
{14} Qmove4, 
{15} Qdraw4, 
{16} Qvec4, 

{17} Qmat2, 

{18} Qmat3, 

{19} Qmat4, 

{20} Qusertype, 

{ between F:DEPACKET and 

2D vector including P bit 
2D vector including L bit 

2D vector with no P/L bit 

3D vector including P bit 
3D vector including L bit 
3D vector with no P/L bit 
4D vector including P bit 

4D vector including L bit 
4D vector with no P/L bit 

2x2 matrix } 

3x3 matrix } 

4x4 matrix } 

{ type which user 

F:DEMUX/F:CIROUTE) 

(normal vector) 

(normal vector) 

(normal vector) 

may use to define own message } 

{ padding, to make the field 16-bit, as it is in 
Pad, Pae, Paf, Pag, 

Pbd , Pbe , Pbf , Pbg , 
Pcd, Pce, Pcf , Pcg, 
Pdd, Pde, Pdf, Pdg, 
Ped, Pee, Pef, Peg, 
Pfd, Pfe, Pff, Pfg, 
Pgd, Pge, Pgf, Pgg, 
Phd, Phe, Phf, Phg, 
Pid, Pie, Pif, Pig, 
Pjd, Pje, Pjf , Pjg, 

Pkd , Pke , Pkf , Pkg , 
Pld, Ple, Plf, Plg, 
Pmd, Pme, Pmf, Pmg, 
Pnd, Pne , Pnf , Png, 

Pod , Poe , Pof , Pog , 

Ppd , Ppe , Ppf , Ppg , 
Pqd, Pqe, Pqf, Pqg, 
Prd , Pre , Prf , Prg , 

Psd, Pse, Psf, Psg, 
Ptd, Pte, Ptf, Ptg, 
Pud , Pue , Puf , Pug , 

Pvd, Pve, Pvf, Pvg, 
Pwd, 

Pxd, 

Pyd, 
Pzd, 

Pwe, 

Pxe, 

Pye, 
Pze, 

Pwf , 
Pxf , 
Pyf , 
Pzf , 

Pwg~ 
Pxg, 

Pyg, 
Pzg, 

Pah, 
Pbh, 

Pch, 
Pdh, 
Peh, 

Pfh, 
Pgh, 
Phh, 

Pih, 
Pjh, 

Pkh, 

Plh, 

Pmh, 
Pnh, 

Poh, 

Pph , 

Pqh, 

Prh, 
Psh, 
Pth, 

Puh, 

Pvh, 
Pwh, 

Pxh, 

Pyh, 
Pzh, 

Pai, 

Pbi, 

Pci, 

Pdi, 

Pei, 

Pfi, 
Pgi, 

Phi, 
Pii, 

Pj i, 
Pki, 

Pli, 

Pmi, 

Pni, 

Poi, 

Pp i , 

Pqi, 

Pri , 

Psi, 

Pti, 

Pu i , 

Pvi, 

Pwi, 

Pxi, 

Py i , 

PZ 1 , 

Paj , 

Pb j , 

PC j , 

Pdj , 

Pe j , 

Pf j , 

Pgj , 
Phj , 
Pij , 

Pjj, 

Pkj , 

Plj , 

Pm j , 

~j 
Poj , 

F'pj , 

Pqj 
Pr j , 

Psj , 

Pt j , 

Pu j , 

Pv j , 

~j 
Pxj , 

~~ , 
Pz j , 

P~,k , 
Pbk, 
Pck, 
Pdk , 
Pek, 
Pfk, 
Pgk , 
Phk , 
Pik, 

Pjk, 

Pkk', 
Plk, 

Pmk, 
Pnk , 
Pok, 
Ppk , 

Pqk , 

Prk, 
Psk, 
Ptk, 
Puk , 
Pvk , 
Pwk , 
Pxk , 
Pyk , 
Pzk 

Pal, 
Pb 1, 
Pcl, 

Pdl, 
Pel, 

Pfl, 
Pgl, 
Phl, 
Pil, 
Pj 1, 

Pkl, 

P11, 

Pml, 
Pn 1, 
Pol, 
Pp 1, 
Pql, 

Prl , 
Psl, 
Ptl, 

Pu 1, 
Pvl, 
Pwl, 

Pxl, 

Pyl, 

Pzl . 

Pam, 

Pbm , 
Pcm, 

Pdm, 
Pem, 

Pfm, 
Pgm, 

Phm, 

Pim, 
Pjm, 

Pkm, 

Plm, 

Pmm, 

Pnm, 

Pom, 

Ppm , 

Pqm, 

Prm, 

Psm, 

Ptm, 

Pum, 

Pvm, 

Pwm, 

Pam , 
Pym , 

Pzm 

the full system } 

• 

a 

E-2 PS 300 Advanced Programming 



tIS.~RSTR IIC. PAS 

{ TYPE declarations continued } 

Qdata = 
RECORD 

Next: Ptrqdata { next message in a list of messages 
CASE Qtyp: Qdtype OF { type of message } 

{ Qreset: no datum carried } 
" { Qprompt: no datum carried } 

Qboolean: 

t 
b: Boolean 

Qinteger: 

is integer 

Qreal: 

r: double 

~ ; 
Qstring: { an old form of byte-string message } 

1: int16 { # bytes of message } 
Qs~ad: intl6 { padding ... aligns with Qpacket } 
n: Eytespell { bytes of message } 

Qpacket, Qmorepacket: { newer form of byte-string } 
{ 

P_lth: intl6 { max byte number } 
P beg: int16 ; { min byte number } 
P_cnt: Bytespell { bytes of message } 

Qmove2, Qdraw2, Qvec2, 

Qmove3, Qdraw3, Qvec3, 
Qmove4, Qdraw4, Qvec4: 

't14: vector { all vectors use 4D indexing } 

Qmat2, Qmat3, Qmat4: 

Mato: Matrix { all matrices use 4x4 indexing } 

END { Qdata } 

{ **** Note: there are no global VARs available **** } 

} 

PS 300 Advanced Programming 
e E-3 



tJSERSTR SIC. PAS 

FUNCTION CkPrivate Ptrgdata; 
FORWARD ; 

PROCEDURE SavePrivate ( msg Ptrgdata ); 

FORWARD ; 

FUNCTION CkInputs ( first, last : Int16 ) : PtrUWFlnQarray; 

FORWARD ; 

FUNCTION C1eanInputs BOOLEAN; 

FORWARD ; 

PROCEDURE SendMsg ( VAR, msg Ptrgdata; outport Int16 ); 

FORWARD 

PROCEDURE QSendCopyMsg ( source, destination Int16 ); 

FORWARD ; 

PROCEDURE Q111Message ( input Intl6 ); 

FORWARD ; 

PROCEDURE Q111Value ( input Int16 ); 

FORWARD 

PROCEDURE Qincompatmsgs { one : Int16; theother Int16 ) ; 

FORWARD ; 

FUNCTION Msgcopy(m: Ptrgdata): Ptrgdata 

FORWARD ; 

PROCEDURE Dropmessage(VAR m: Ptrgdata) 

. FORWARD ; 

PROCEDURE Systemerror(n: Int16) ; 

FORWARD ; 

FUNCTION Fpecomp{VAR X1,X2: double): Int8 ; 
FORWARD ; 

PROCEDURE Fpabs(VAR r: double) ; 

FORWARD ; 

PROCEDURE FCadd(VAR Augend, Addend: double; 

VAR Sum: double} ; 

FORWARD ; 

PROCEDURE FCsubtract(VAR Minuend, Subtrahend: double; 

VAR Difference: double) ; 
FORWARD ; 

PROCEDURE FCmultiply(VAR a, b: double; 
VAR Product: double) ; 

FORWARD ; 

PROCEDURE FCp2multiply(VAR Innum: double; Power: integer; 

VAR Outnum: double) ; 
FORWARD ; 

PROCEDURE FCdivide(VAR Dividend, Divisor: double; 

VAR Quotient: double) ; 
FORWARD ; 

PROCEDURE FCint2double{ num Integer; VAR Floated: dou~>>F, l ; 

FORWARD ; 

~ -4 PS 300 Advanced Programming 0 



USERSTR UC. PAS 

PROCEDURE FCround(VAR Innum: double; VAR Outnum: integer) ; 

FORWARD ; 

PROCEDURE FCinteger(VAR Innum: double; VAR Outnum: integer) ; 

FORWARD 

FUNCTION FCnearzero ( VAR tiny double; negpower2 int16 

: int8 { negpower2=1 --> within .5; =2 --> within} 

{ .25 } 

FORWARD ; 

PROCEDURE FCsgroot(VAR a: double; 

VAR Sgroot: double) ; 

FORWARD ; 

• 

PROCEDURE Sincos(Angle: integer; VAR Sine: double; 

VAR Cosine: double) ; 

FORWARD ; 

FUNCTION Rndmnumber(seed Integer): Intl6; 

FORWARD ; 

FUNCTION Newgpacket( Typ: Qdtype; a 

Nbytes: Intl6): Ptrgdata ; 

FORWARD ; 

FUNCTION Newgreal: 

FORWARD ; 

FUNCTION Newginteger: 

FORWARD ; 

FUNCTION Newgboolean: 

FORWARD ; 

FUNCTION Newgnil(Typ: 

FORWARD ; 

FUNCTION Newgvector(Typ: Qdtype): Ptrgdata { Qvec2, ,.. 

FORWARD ; 

FUNCTION Newgmatrix(Typ: Qdtype): Ptrgdata { Qmat2, ... 

FORWARD ; 

Qpacket or Qmorepacket a 

Ptrgdata ; 

Ptrgdata 

Ptrgdata 

Qdt yp e) ' Ptrgdata { Qreset; 

FUNCTION Vfetch( Name: Ptrgdata) Ptrgdata; { a Qpacket } 

FORWARD ; 

PROCEDURE Vstore( Name: Ptrgdata; VAR New val: Ptrgdata) 

FORWARD ; 

FUNCTION My name Ptrgdata ; 

FORWARD ; 

PROCEDURE My_in_out ( VAR N_in,N_out: int16.) ; 

FORWARD ; 

FUNCTION Tiaks: integer 

FORWARD ; 

FUNCTION Csecs: integer 

FORWARD ; 

FUNCTION Frames: integer 

e 

Qprompt 

} 

} 

} 

PS 300 Advanced Programming E-S 



~S~RSTR t~C. PAS 

FORWARD ; 

PROCEDURE Hrtime(VAR c,f,d: integer) ; 

FORWARD ; 

PROCEDURE Char_text(c: char; VAR b,e: Intl6; VAR Ca: Bytespell) 

FORWARD ; 

PROCEDURE Text text(VAR B1,E1: Int16; VAR Cal: Bytespell; _ ~ 
VAR B2,E2: Int1S; VAR Cat: Bytespell) 

FORWARD ; 

PROCEDURE Int_text(n: integer; Ns,Nz: Int16; 

VAR b,e: Int16; VAR Ca: Bytespell) ; 

FORWARD ; 

PROCEDURE Time_text(n: integer; VAR b,e: Intl6; VAR Ca: Bytespell) 

FORWARD ; 

PROCEDURE Real_text(VAR r: double; VAR b,e: Intlfi; VAR Ca: Bytespell) 

FORWARD ; 

FUNCTION Nev~Try ( num_bytes INTEGER ) Ptrgdata; 

FORWARD; 

PROCEDURE UWFerror (VAR msg Ptrgdata ); 

FORWARD; 

PROCEDURE Set Cness( input Int16; cgtype: Boolean ); 

FORWARD; 

Advanced U'WF Procedures 

FUNCTION Lk cursuiffix ( Nlth: integer; VAR Nspell: Namespell) 

Ptralphablk; 

FORWARD; 

FUNCTION Lk nosuffix ( length: Integer; Cinum: Int 8; suffix: Char; 

VAR Nspell:Namespell) : Ptralphablk; 
FORWARD; 

PROCEDURE Lgaupdate ( Name: Ptralphablk; data: Ptrnamedentity; 

VAR Uph,Upt: Ptravuplbk); 
FORWARD; 

PROCEDURE Announceupdate ( VAR Uph,Upt: Ptravupblk); 

FORWARD; 

PROCEDURE Msgstore ( VAR Uph,Upt: Ptravupblk); 

FORWARD; 

PROCEDURE Msgstore ( Msg: Ptrgdata; a: Ptralphablk; n: integer); 
FORWARD; 

PROCEDURE Setlock ( VAR x: Lock); 

FORWARD; 

PROCEDURE Clrlock ( VAR s: Lock); 

FORWARD; 

~-6 P►S 300 Advanced Programming 



tISERS?'R ZI ~. PAS 

PROCEDURE Incausage ( a: Ptralphablk); 

FORWARD; 

PROCEDURE Decausage ( a: Ptralphablk); 

FORWARD; 

PROCEDURE AcpProof ( VAR location: ptracpcblk; newval: ptracpcblk); 

FORWARD; 

PROCEDURE Acpprfl ( VAR location: ptrsaystate; value: ptrsaystate); 

FORWARD; 

PROCEDURE OLbaddtoset ( A_son: Ptralphablk; A_father: Ptralphablk; 

VAR Uph,Upat: Ptravupblk; VAR Error: Boolean; Optimize Boolean); 

FORWARD; 

PROCEDURE Removefromset ( A_father: Ptralphablk; A son: Ptralphablk; 

VAR Uph,Upt: Ptravupblk; VAR Error: Boolean); 

FORWARD; 

FUNCTION FetchBlock ( block: Ptrnamedentity; Upt: Ptravupblk): 

Ptrnamedentity; 

FORWARD; 

PROCEDURE Acp_v3f ( VAR v: Vector; VAR acpv: Vec3f; pl: Boolean); 

FORWARD ; 

PROCEDURE Acp_v2f ( VAR v: Vector; VAR acpv: Vec2f; pl: Boolean); 

FORWARD; 

PROCEDURE Acp_v3b ( VAR v: Vector; VAR acpv: Vec3b; pl: Boolean; exp: 

Int16); 

FORWARD; 

PROCEDURE Acp_v2b ( VAR v: Vector; VAR acpv: Vec2b; pl: Boolean; exp: 

Int16); 

FORWARD; 

PROCEDURE NStoreVector ( VAR block: Ptrnamedentity; VAR v: Vector; pl: 

Boolean firstblock: Ptrnamedientity); 

FORWARD; 
FUNCTION nNewAcpdata ( n: int16; t: Dattype): Ptrnamedentity; 

FORWARD; 

PROCEDURE Store3x3 { VAR m: Matrix3; Ob: Ptrnamedentity; n: int16); 

. FORWARD; 

PROCEDURE Store4x4 ( VAR m: Matrix4; Ob: Ptrnamedentity; n: int16); 

FORWARD; 

PROCEDURE Drop name ( a: Ptralphablk); 

FORWARD; 

PROCEDURE GetVector ( block: Ptrnamedentity; index: Int16; 

VAR v: Vector; VAR pl: Boolean); 

FORWARD; 

PROCEDURE Rawbacopy ( Nbytes: int16; VAR Inba,Outba: int8); 

FORWARD; 

PROCEDURE Rawcbcopy (~ Nbytes: int16; VAR Inba:char; VAR Outba: int8); 

FORWARD; 

PROCEDURE Rawchcopy ( Nbytes: int16; VAR Inba,Outba: char); 

FORWARD; 

PS 300 Advanced Programming E-7 



USERS7'RUCePAS 

FUNCTION Size_of ( b: Ptrnamedentity): integer; 
FoRwARD; 

FUNCTION FetchAdnum ( f: Ptrnamedentity; upt: Ptravupblk): Int16; 
FoRwARD; 

FUNCTION nFetchCopy ( block: Ptrnamedentity; start: Int16; count: Int16; 
upt: Ptravupblk) PtrNamedentity; 

FORWARD; 

PROCEDURE WaitFrame ( framecnt : integer); 
FORWARD; 

FUNCTION loc_chead Ptrcommhead; 

FORWARD; 

FUNCTION ptr_dcb Ptrdcb; 
FORWARD; 

PROCEDURE DropNE ( f: Ptrnamedentity); 

FORWARD; 

PROCEDURE Newreturns ( givemenil boolean); 
FORW~R,D ; 

PROCEDURE Reactivate ; 

FORWARD; 

FUNCTION Myanyoutputs ( n: int8): Boolean; 

FORWARD; 

PROCEDURE Pushmyinput ( m: Ptrgdata; n: Int8); 
FORWARD; 

PROCEDURE WaitCsec ( cseccnt integer); 
FORWARD ; 

'~_g PS 300 Advanced Programming 



APPENDIx F 

Function Header Line Format 

This appendix contains a description of the function header line format used to name a function, 
define the number of inputs and outputs, and provide the stack usage. 

The function-naming command must use the following syntax: 

<length> <function name> <number inputs> <number outputs> <stack size> 

where: 

<lerigth> is the number of bytes in decimal of the file (the number of bytes can be found in 
the linker listing labeled 'Total Length') . 

<f unc t i on name> is the PS 3 0 4 name for the user-written function. 

<number inputs> is the number of input queues of the user-written function. 

<number output s> is the number of output ports of the user-written function. 

<stack size> is the estimated total stack usage requirements in decimal. (Refer to the 
Reference Section for estimates of stack usage of procedures.) 

These parameters are delimited by spaces. 

i 

0 

PS 300 Advanced Programming F-1 
0 



s 

0 

D 



APPENDIX G 

S—Record Format 

The S-record format for modules was devised for the purpose of encoding programs or data files 

for transportation between computer systems. In an S-record, atwo-level encoding method is 

used to transform each byte of binary data into two printable characters; therefore, the 

transportation process can be visually monitored and the file data can be more easily edited. 

when viewed by the user, S-records are essentially character strings made up of several fields, in 

which pairs of characters are interpreted as hexadecimal values from 1- to 2-byte length, 
representing a count, an address, a data record, or a checksum. Internally, each record is viewed 

as a sequence of byte values representing characters. To be compatible with teletype units, 

S-records may be no longer than 70 bytes. Since 10 bytes are required in each record for the 

type, byte, count, address, and checksum fields, the variable-length data field may be allocated at 

maximum 60 bytes. This translates to 60 characters or 30 character pairs or bytes of data per 

record, from the user viewpoint. 

The internal format of an S-record comprises five fields, as shown below: 

type byte_count address data checksum 

where the fields are composed as follows: 

Field Size {bytes) Contents 

type 2 Record type--SO, S 1, SZ, or S9 . The two bytes are 
hexadecimal, encoded directly from byte values. 

byte count 2 The count of the character pairs in the record, excluding 
the type and checksum fields. The high and low order 
hexadecimal digits of the actual byte value are 
individually represented as two hexadecimal bytes in the 
S-record. 

PS 300 Advanced Programming G-1 



S-Record Format 

Field Size (bytes) Contents 

address 

data 

4-b `The address at which the data field is to be loaded into 
memory. The high and low order hexadecimal digits of 
each actual type value are individually represented as 
hexadecimal bytes in the S-record. 

0-b0 Memory loadable data or descriptive information. High 
and low order hexadecimal digits of successive, actual 
byte values are individually represented as hexadecimal 
bytes in the S-record. 

checksum 2 The least significant byte of the one's complement of the 
sum of the values represented by the pairs of characters 
making up the byte count, the address, and the data 
fields. The high and low order hexadecimal digits of the 
actual checksum value are individually represented as 
two hexadecimal bytes in the S-record. 

Data blocks output by the linker may contain S-records of the following types: 

SO 'The header record for each block of data. Subfields in the data field may be: 

module name = 2 0 bytes 
version number = 2 bytes 
revision number = 2 bytes 
description = 0 to 3 b bytes 

Each of the subfields is composed of bytes, whose associated character, when 
paired, represent 1-byte hexadecimal values in the case of the version and 
revision numbers, or represent the encodement of the module name and 
description specified by the user with the interactive IDENT command. 

S 1 A record containing data and the 3-byte address at which the data are to 
reside. 

S2 A record containing data and the 3-byte address at which the data are to 
reside. 

S9 A termination record for a block of S-records. The address field may 
optionally contain the address, specified by the user with the ENTRY 
command, to which control is to be passed. If not specified, the first entry 
point specification encountered in the object module input will be used. There 
is no data field. 

~®2 PS 300 Advanced Programming 



APPENDIX I-i 

Motorola Pascal Register Usage 

This appendix contains a description of the Pascal register usage and calling conventions and 
includes descriptions of procedures to be followed when linking more than one procedure or using 
assembly language files. 

An assembly language routine may be called externally by a Pascal program using normal Pascal 
argument passing. Such a routine may: 

• Perform a function not available in Pascal; i. e . , data manipulation or I/O not 
provided in the applicable library, or some mathematics not supported by Pascal. 

~ Optimize code to be used repetitively in a real-tune environment. The Pascal 
compiler does optimize, but auser-written assembly language routine may be shorter 
and faster. 

Program Preparation 

There are two requirements that must be satisfied to include an assembly language 
subroutine in a Pascal program. First, the external assembly language routine must be 
declared in the Pascal program. This is done by declaring a level 1 procedure or function 
(i.e., one contained only by the main program) using the forward directive. A good place 
for these declarations is prior to the first nonexternal heading. 

For example: 

FUNCTION MSGCOPY (m: Ptrgdata) : Ptrgdata; 
FORWARD; 

The external assembly language subroutine may then be called just as any Pascal 
procedure or function. The second requirement concerns the file that contains the 
assembly language routine. This file must have an entry point, that has been declared 
external with an XDEF, with the same name as the procedure of function in the Pascal 
program. The assembler must be informed that the subroutine is to be included in section 
9 . A 'SECTION 9' directive at the beginning of the assembly language subroutine file 
accomplishes this. 

PS 300 Advanced programming ~ H-1 



1Vlotorola Pascal Register Zlsage 

Calling a Routine 

Calling an assembly language routine is identical in format (and its run-time requirements 
are identical in system usage) to a regular function or procedure call in Pascal. 

Parameters, for example, are placed on the top of the stack, beneath the return address, 
in the order they are declared; the first parameter is stacked first and the last parameter is 
nearest the top of the stack. If the assembly language routine is declared a function, the 

space for the return value is below the first parameter on the stack (i.e., the address 
contained in A7 plus a positive displacement} . For example, given the declaration and 
call in the following Pascal program fragment: 

FUNCTION SUMTHREE(I,J,K:INTEGER) :INTEGER; FORWARD; 

BEGIN 
A:= SUMTHREE (3, 5, 7) ; 

the stack would look as follows upon entry to the assembly language subroutine named 
Sumthree: 

Top of Stack (A7) — — — — -~► 

POSITIVE ~ 
OFFSETS ~ 
FROM A7 ~ t 

t 

RETURN ADDRESS 
4 bytes 

FORMAL PARAMETER 
K; 4 bytes; 

value = 7 

FORMAL PARAMETER 
J; 4 bytes 
value = 5 

FORMAL PARAMETER 
I; 4 bytes 
value = 3 

FUNCTION VALUE 
SUMTHREE: 4 bytes; 

value is undefined 

The size of parameters depends on the type. 

low address 

high address 

A VAR parameter passes afour-byte address of the actual parameter that can be used to 
reference the actual parameter via indirection. A value parameter passes the value of the 
expression that corresponds to the formal parameter. 

Boolean parameters occupy two bytes on the stack, but only the byte closer to the top of 
the stack contains valid data. This byte has the value of one for true and the value of 
zero for false. 

Character parameters use two bytes on the stack, but only the byte closest to the top of 
the stack contains valid data. This byte has the value of the ASCII code for the character 
passed in it. 

~-2 PS 300 Advanced Programming 



Motorola Pascal Register Usage 

Integer parameters occupy four bytes on the stack. They are stored as 32-bit 
two's-complement numbers. Integer subrange types that fall into the range -12 8 to 127, 
inclusive, use type bytes on the stack, but only the byte closer to the top of the stack 
contains valid data. They are stored as 8-bit two's-complement numbers. Integer 
subrange types that extend outside of the range -128 to 127, inclusive, but are within the 
range -32768 to 32767, inclusive, use two bytes on the stack. They are stored as 16-bit 
two's-complement numbers. 

Real parameters occupy four bytes on the stack, with the sign bit being closest to the top 
of the stack. Real parameters occupy eight bytes on the stack, with the sign bit being 
closest to the top of the stack. Xreal parameters occupy ten bytes on the stack, with the 
sign bit being closest to the top of the stack. 

Set parameters require eight bytes on the stack, with the byte nearest the top of the stack 
containing bits 63-5 6 and the byte farthest from the top of the stack containing bits 7-0 . 

Arrays and records occupy a number of bytes equal to their length, plus one if they are of 
an odd length. The filler byte is the byte farthest from the top of the stack. 

Strings should always be passed to assembly language routines as vAR parameters, due to 
the complexity of determining their actual size on the stack. 

Pointers require four bytes on the stack and they contain the address of the variable they 
reference. 

Registers 

The assembly language subroutine is responsible for preserving the value of registers A3, 
A5, and A6 during its execution. It is also responsible for removing from the stack all 
parameters passed to it by the Pascal program, and for storing a value in the return value 
location on the stack if the subroutine was declared as a function. 

The values of the AS and A6 registers may be of use to the assembly language routine, 
since AS points to the base of the global variable area and A6 points to the base of the 
local variable area of the procedure or function that was being executed when the 
assembly language routine was called. To reference a variable in either of these areas, a 
negative displacement from the register must be used. 

The assembly language subroutine is free to use the space between the top of the stack 
(pointed to by A7) and the top of the heap for local data storage. The address of the top 
of the heap is kept in the long word which is located in memory at a positive offset of four 
from the address in register A5. 

If A7 ever contains an address that is less than the address of the top of the heap, a 
stack/heap overflow condition has occurred. If a stack/heap overflow has occurred, then 
both the stack and the heap may contain invalid data. 

PS 300 Advanced Programming H-3 



1Vlotorola Pascal ~egaster Usage 

Control may be returned to the Pascal program by means of either a return from 
subroutine instruction or a jump indirect through an address register which contains the 
return address. No matter which method is used, it is up to the assembly language 
subroutine to adjust the stack so as to remove the passed parameters. If the assembly 
language routine returned a function value, then A7 should point to that location on the 
stack where the space was reserved for the return value prior to the call. If the assembly 
language routine did not return a function value, A7 should point just below where the 
first parameter was pushed on the stack. 

The following is a picture of the stack for the SUMTHREE routine, seen earlier, just 
before the return to the Pascal program: 

TOP OF STACK ON ENTRY 

TOP OF STACK A? -~ 
AT EXIT FROM FUNCTION FUNCTION VALUE 

SUMTHREE: 4 bytes; 

value = 15 

low address 

high address 

~-~~ PS 300 Advanced Programming 



APPEI~TDIX I 

~ommhead Format 

Commhead 

RECORD 

Actiist: Ptrnamedentity ; 
Actiock: Lock 
Mischead: Lock ; 

Fcn.kill: Ptrnamedentity ; 
Killer: Ptrnamedentity ; 
Auclock: Lock ; 
Upolock: Lock ; 
Dcr: Ptrdcr ; 
RedAmbient: Int 16; 
GreenAmbient: Int 16; 
B1ueAmbient: Int16; 
Packet Received: BOOLEAN; 
NotUsed2: Int8; 
Rdyuph: Ptravupbik ; 
Rdyupt: Ptravupblk ; 

FSpointer: Integer; 
Dtroy_alpha : Ptralphablk ; 
Dtroy_FI: Ptrnamedentity ; 
Dtroy_I S : Ptrf cninputs ; 

Prilist: Fcn~ri_array ; 
Pritail: Fcn~ri array ; 
Prilock: Fcn_lock array ; 
Chfont: Ptrnamedentity ; 
G msglist: Ptrmsglist; 
Hashlock: Lock ; 
Hashlength: Int 16 ; 
Hashtable : Ptrhash ; 

{ Active functions } 
{ Lock on Actlist } 
{ Lock on cheader fields } 
{ not otherwise locked } 
{ Dying functions } 
{ Their killer } 
{ Lock on alpha ~`/ .Usage } 
{ Lock on Pasuph/t } 
{ THE DCR } 
{ ambient light base color... } 
{ ... for shading ... } 
{ ... see SHADEINTF.DOC } 
{ for transfer indicator } 

{ Head: ACP fmt' d updates } 
{ Tail: ... } 
{ Above here, known to ACP? } 
{ makes FS ~' / .error available V 171 
{ Destroys name } 
{ its function inst. } 
{ its input set fcn instance blocks } 
{ in priority order } 
{ head } 
{ tail } 
{ Locks on ~ each } 
{ Standard character font } 
{ Canned messages } 
{ Lock on the hash table & lth } 
{ Length of the hash table } 
{ Dictionary of all names } 

} 

PS 300 Advanced Programming I-1 



Commhead Format 

Parsedict: Ptrdictarr; 
ParseXcode: PtrXcodearr; 

Head 1: INTEGER; 
Head2: INTEGER; 
Functdict: Ptrfdictarr; 
Fundable: Ptrfcnarray; 
PCperGCP: PtrPCpGCP ; 
FNany: Boolean ; 
FNptrlock: Lock ; 
Fnperuser: Ptrfnpuser ; 
FnperGCP: PtrfnpGCP ; 
Fcn_nact: Ptrintarray ; 
Fcn ttim: Ptrintarray ; 
Fcn mtim: Ptrintarray ; 
Last ci n: Int16 ; _ _ 
Ini sav st: Ptrsaystate ; 
Std chfont: Ptralphablk ; 
Parssword: Ptrgdata; 
Updsync: int 16 ; 
Notused4: Integer; Crash dcr: Ptrdcr; 
Crash_lod: Ptrnamedentity; 
TwoK_Location: PtrTwoK; 
setup tables: ptrsetup; 
Plotinprog: Boolean; 
P1ProgLock: Lock; 
Ibm table: Ptribmtrn; 
Ibm_device: Ptribmdevice; 
AS C_IB M_c onv_table : Ptrcnvtable ; 
MvupO~ad: int8 ; 
Mvupl_pad: int8 ; 
Noupdates: Boolean ; 
Vup lead: int8 ; 
Vup2~ad: int8 ; 
Vup3~ad: int8 ; 
WhoAllPlot: ARRAY [ 1..4J OF CHAR; 

WhoPlLock: Lock; 
HCPiniComp: Boolean; 
P ' 'Lock: Lock; 
MemOKlock: Lock; 
MemOKavailable: Arrmemok ; 
MemOKnumallocated: Arrmerllok ; 
User scopes: ARRAY [0..3] OF Scopearray; 
Schedstuff: Ptrschedarray ; 
Howtorun: pGCPshowtorun ; 
tap: Ptrtaprecord ; 

Normal command dictionary } 
expanded Pcodes for Normal } 
command syntax } 
really a PtrZHead: PS34Q ScanLine~- } 
ZBuffer head of edgepair linked-lists } 
Dictionary: function names } 
Table: function specs } 
PC report stats for each GCP } 
Should we bother to time fns } 
Gain right to change fnper * fields . } 
Per user fn report } 
Per GCP fn report } 
# of function activations } 
total running time of fcns } 
maximum running time of fcns } 
ID number for CI; locked by Hashlock } 
initial save state } 
standard char font } 
password gstring } 
sync level {lock w/ Upolock) } 
for system wide crashes } 
for system crash messages } 
Loc to save MM for 2-k acp } 
Terminal setup information } 
Plot in progress } 
Plot in progress lock } 

so either here } 
halt updates iff noupdates } 
is false used in wrtback } 
pad Noupdates to .l } 
to speed value updates } 

Which user has a plotter } 
~ allocated to self } 

Plotter allocation lock } 
No error during plot init } 
Plotter initialize lock } 
Multiple GCP requires } 
bytes left } 
bytes initially allocated } 
Log-phys scope map per user 
for experiments } 
CPU allocation } 
For shoulder tap response } 

} 

I-2 PS 300 Advanced Programming 



Commhead Format 

Finuph: Ptravupblk; 
Finupt: Ptravupblk; 
Notused5: Int16; UpKillFcn: Ptrnamedentity; 
UpKillFlg: Int8 ; 
Type340: Char; 
Frametime : Int 16 ; 
Maxframetime: Int16; 

Goon: goontype ; 
VopFunction: Ptralphablk; 
Mcrash: tCrashinfo ; 
Scrash: tCrashinfo ; 

{ Finished update head } 
{ Finished update tail } 
{ Update killer function } 
{ Update killer flag } 
{ Type of 3 4 0 system } 
{ Seconds for frame--ACP timout 
{ Max Seconds for sectioning } 
{ frame--ACP timout } 
{ Keepgoing in mass memory } 
{ viewing operation function } 
{ Info about crash in master } 
{ Info about crash in slave } 

WrtBackFcn: Ftralphablk; { V~rite back data function } 

Pasuphs: ARRAY [MemOKindex] OF Ptravupblk; {Pascal update listheads } 

Pasupts: ARRAY [MemOKindex] OF Ptravupblk; {Pascal update listtails } 

Fmtfcns: ARRAY [MemOKindex] OF Ptrnamedentity; {Update formatters } 
mem_thresh: INTEGER; 

} 

{ No big carves if they'll go below this 
no mem_on: BOOLEAN; { Nomemsched is running } 

IBM3270 saved variables: Ptribm3270; _ _ 

} 

PS 300 Advanced Programming I-3 





APPENDIX J 

Operation and Data Node Formats 

operation Nodes 

An operation node is a data structure that modifies the state of the display processor. As shown 
in Figure J-1, an operation node consists of an integer that indicates this display structure is an 
operation node (=1) , an integer that specifies the particular type of operation node, the 
descendant alpha, and a variable number of fields required by that particular type of operation 
node. For any operation node, bit 15 of the operation type is a conditional bit. If this bit is set, 
and if bit 15 (the blink bit} in the Condition Mask of the ACP State is zero, then the associated 
operation node is not performed. In all other cases, the operation node is performed. In all cases, 
the descendant of the operation node is traversed. Figures J-2 to J-28 detail each of the 
operation nodes. 

A box shown as ~-

NOTE 

--~

Motorola uses the following Byte ordering: 

AO AO+ 1 

indicates a long word (32-bits} . 

1 2 

3 4 
A0+2 A0+3 

This is different than the Byte ordering on a VAX: 

AO+ 1 

A0+3 

AO 

2 1 

4 3 

A0+2 

PS 300 Advanced Programming J-1 



Operation and Data 1'Vode Formats 

Operation Node Formats 

Operation Node 1 

C Operation Type 

-- Descendent Alpha —

Field 1 

Field 2 

o 
, . 

Field n 

Figure J-1. General Operation Node Format 

NOTE 

A "C" in the left corner of the Operation Type block indicates the 
conditional bit (bit 15) . 

Real #with 
Implied 
Exponent of Q1 

Operation Node 1 

C Operation Type 0 

—~ Descendent Alpha ~ -~ 

X Center 

Y Center 

Z Center 

X Size 

Y Size 

Z Size 

Figure J-2. Viewport 

Operation Node 1 

C Operation Type 2 

-- Descendent Alpha --- 

Exponent 

M (1, 1) 

M (1,2) 

M (Z, 1) 

M (2, 2) 

= Viewcon 

Viewport 
Center 

Viewport 
Size 

= Matcon2 

Figure J-3. Character Rotate, Character Scale, Character Size, Matrix_2x2 

J'-2 PS 300 ~4dvanced Programming 



Operation and Data Node Formats 

Operation Node 1 

C Operation Type 3 

— Descendent Alpha --~ 

Exponent 

— M (1,1) ---~ 
,,~ M (1 ~ 2) —, 

• 

— M (1, 2) --~ 

Tran Flag 0 

= Matcon3 

0 = No Translation 
Follows 

Figure J-4. Rotate, Scale, Matrix_3x3 

Operation Node 1 

C ~~ Operation Type 4 

— Descendent Alpha --

Exponent 

Exponent 

— M (1,1) —+ 

---~ M (1, 2) --
_ , 

— M (4, 4) --

= Matload4 

(Row 4) 

(Row 1-3) 

Figure J—~• Window, Eye Back, Fi~ld_of View, Matrix_4x4 

Operation Node 1 

C Operation Type 5 

— Descendent Alpha —

Exponent 

~-- Tx --

- Ty -

-- TZ —' 

Figure J-6. Translate 

= Translate 

PS 300 Advanced Programming .I-3 



Operation and Data Node Formats 

Operation Node ~ 

C Operation Type 6 

— Descendent Alpha 

= IncLOD 

Figure J-7. Increment Level—of—Detail 

Operation Node ~ 

C Operation Type ? 

— Descendent Alpha 

= DecLOD 

Figure J-8. Decrement Level—of—Detail 

Operation Node 1 

C Operation Type 8 

-®--~ Descendent Alpha 

Wordindex 

Offnlaslc 

Onmask 

= Change Bits 

Figure J-9. Set Level-of-Detail, Set Conditional Bit, 
Set Displays, Set Character Orientation, 
Set Contrast, Set CSM, Set Depth_Clipping, 
Set Plotter, Set Rate External, 
Set Blinking(PS 3S4 only), 
Set Line_Texture(PS 3S0 only) 

NOTES 

Wordindex = 0 - LOD value 
1 - Conditional bits 
2 - Line Generator Mask 
3 - Enable/PLS Mask 
4 - Line Texture value 

J-4 PS 300 Advanced Programming 



Operation and Data Node Formats 

The changebits operate node is created by several different PS 300 user 
commands. Its format is shown above. These PS 300 commands 
deternune the wordindex and also the offmask and onmask. When 
encountering this node in the structure, the ACP processor locates the 
correct mask according to the wordindex value. It then modifies the bits 
in this mask by turning off the bits indicated in the Offmask and then 
turning on the bits indicated in the Onmask. 

Command 

Set LOD 

Wordindex Bits used Offmask Onmask 

0 0-15 16#FFFF LOD value 

Set conditional bit n on 1 n XX XX 
Set conditional bit n off 1 n XX 0 
where XX is the 16 bit word with bit n ~ set 

Set csm on 
Set csm off 
Set displays all on 
Set displays all off 

Set plotter on 
Set plotter off 

2 
2 
2 
2 

3 
3 

6 16#0040 0 
6 16$0040 16$040 
12 16#1000 ~~ 0 
12 16#1000 16#1000 

11 p16#0800 16#0800 
11 16#0800 0 

Set picking on 3 15 16#8000 16#800.0 
Set picking off 3 15 16#8000 0 

Set depth clip on 
Set depth clip off 

3 2 16#0004 0 
3 2 16#0004 16#0004 

Set char world_oriented 3 12,13 16#3000 0 
Set char screen_oriented 3 12,13 16#3000 16#2000 
Set char screen/or/fixed 3 12,13 16#3000 16#1000 

Set Line texture 4 2-8 16#3FC Texture 
Set Line texture contin 4 2-8, 9 16#3FC 16#0020 

OR Texture 

PS 300 Advanced Programming J-S 



Operation and Data 1Vode Formats 

Operation Node 1 

C Operation Type 9 

—~ Descendent Alpha ---

C Type 

C Bit 

= Bit Test Conditional 
Mask 

Figure J-lU. IF Conditional_Bit, IF Phase (Bit 15) 

NOTES 

C TYPE = 0 Bit off 
1 Bit on 

Operation Node 1 

C Operation Type 9 

--- Descendent Alpha --

C Type 

C VaI 

Figure J-11. IF Level_of Detail 

NOTES 

C TYPE = 2-Les 
3-Eq 
4-Leq 
5-Gtr 
b~-Neq 
7-Geq 

= Value Test 
Level of Detail 

J-6 PS 300 Advanced Programming 



Operation and Data 1Vode Formats 

Real #with 
Implied 
Exponent of ~ 

Operation Node 1 

C . Operation Type 10 

-- Descendent Alpha --

Exponent 

— M (1,1) --~ 

-- M (1, 2) -- r 

-- M (3, 3) —

Tran Flag 1 

Exponent 

— Tx --~ 

-- Ty -

- Tz — 

= Mat3 Trans 

1 =Translation 
Follows 

Figure J-1 Z. Look At/From, Matrix~4x3 

Operation Node 1 

C Operation Type 11 

-- Descendent Alpha —~ 

Y Max 

Y Min 

X Max 

X Min 

Figure J-13. Set Picking Location 

Operation Node 1 

C Operation Type ~ 2 

-- Descendent Alpha -

- Previous Pick Node --

-'— Alpha Pickname -- y 

Figure J-14. Set Picking Identifier 

Operation Node 1 

C Operation Type 13 

— Descendent Alpha --

Char Font Alpha '— --~ 

Figure J-15. Character Font 

= Trypick 

= Pickname 

= Set Charfont 

PS 300 Advanced Programming J-7 



Operation and .data 1Vode formats 

Operation Node 1 

C Operation Type 14 

Descendent Alpha 

Hue Saturation 

= Set Color 

Figure J-16. Set Color, Set Color Blending 

Saturation = 4 bits (bits 6..3) 
Hue = 7 bits (bits 14..8) 
Blending = 1 bit (bit 15) 

NOTES 

All bits set is maximum saturation 
Clear Hue = ~, all bits set is max hue 
Set =blending, clear = no blending 

Operation Node 1 

C Operation Type 1 S 

-~- Descendent Alpha --

Ct 

b /I /1 ///////// ///I I ///// /////// 
M 

N 

Figure J-17. Set Rate 

NOTES 

Ct =Value counting down to zero; 
b =Blink bit; set initially to 1 
Blink on for M 
Blink off for N 

Real #with 
Implied 
Exponent of ~ 

Operation Node 1 

C Operation Type 16 

-- Descendent Alpha --

Intensity flag 

Z Center 

Z Size 

Figure J-18. Set Intensity 

NOTES 

Center is minimum intensity. 
Size is the difference between minimum and maximum. 

= Set Blink Mode 

= Set Intensity 

If zero , ignore 
this node. 

$ PS 300 Advanced Programming 



Operation and Data Node .Formats 

Operation Node 1 

C Operation Type 1 g 

-- Descendent Alpha 

Destination Alpha —~ 

Figure J-19. Xform Matrix 

Operation Node 1 

C Operation Type 19 

-- Descendent Alpha ~-

- Destination Alpha --, 

Figure J-Z0. Xform erector 

Operation Node 1 

C Operation Type 21 

— Descendent Alpha -- 

Progress flag 

Data node count 

Vector count 

maxe data node count 
— Progress flag 

® Progress flag 

Figure J-21. Writeback 

Operation Node 1 

C Operation Type 23 

—. Descendent Alpha -

- Alpha to Modeled view -

- Pointer to Linked List --

X ̀ 0001' 

X ̀ 0001' 

— X ̀ 40000000' ---

~-- X ̀ 00000000' -- 

X`40000000' 

= Xform 1 

= Xform2 

= Wrtdata 

Perform Viewing 
= Operation 

Exponent I41 - I44 

Exponent I11 - I34 

I11 

I12 

I44 

Figure J-22. Solid_Rendering, Surface_Rendering 

Identity matrix 

PS 300 Advanced Programming ,~ 9 



Operation and Z~ata llrode formats 

Operation Node 1 

C Operation Type 24 

--- Descendent Alpha --

X`0001' 

X ̀ 0001' 

x ̀40000000' -~-~ 
---° X`00000000' 

.~ X`40000000' --

Figure J-23. Sectioning Plane 

Operation Node 1 

C Operation Type 26 

--- Descendent Alpha --

Node on/off 

Control word 

Delta Position 

Sample Counter 

Use New X, Y 

Not used 

New X 

New Y 

_ Define Sectioning 
- Plane 

Exponent I41 - I44 

Exponent I11 - I34 

I11 

I12 

I44 

Figure J-24. Light Pen (PS 350 only) 

NOTES 

Identity matrix 

= Lightpen 

Position delta limit 

Sample count to output 

User specified cross X 
center. 
User specified cross Y 
center. 

Node onloff: 
Bit 6 -- -Set if you have not triggered this operation node. (USER.NODE.OFF) 

S-- Set if the GCP wants the ACP to display only a tracking cross. 
(GCP.NODE.OFF) 

Control word: 
Bit 9 -- Set if screen blast enabled. (BLAST.ON} 

8 -- Set if a tracking cross enabled. (CROSS.ON} 
7 -- (Set if the debug mode enabled -- company confidential} (LP.DEBUG) 

Use new XY: 
Bit 10 -- Set if you specified (X,Y) coordinate is used to position a tracking cross. 

(NEWXY.ON) 
New X and New Y: 

They must be values in the range from X'4000' to X'C000'. Where X'4000' is 
assumed to be 1 and X'C000' -1. 

.I-1 D PS 300 Advanced Programming 



Operation and Data 1Vode formats 

Real #with 
Implied 
Exponent of ~ 

Real #with 
Implied 
Exponent of ~ 

Operation Node 1 

C Operation Type 28 

— Descendent Alpha --

Exponent 

M (1,1) 

M (1,2) 

M (2, 1) 

M (2,2) 

Figure J-25. Text Size 

Operation Node 1 

C Operation Type 30 

-- Descendent Alpha —~ 

X Center 

Y Center 

Z Center 

X Size 

Y Size 

Z Size 

= Matload2 

= LoadViewport 

Viewport 
Center 

Viewport 
Size 

Figure J-26. Load Viewport (PS 350 only) 

Operation Node 1 

C Operation Type 32 

-- Descendent Alpha --

Rate 

= B1inkRate 

Figure J-27. Set Blink Rate (PS 350 only) 

Operation Node 1 

C Operation Type 34 

— Descendent Alpha 

Y Max 

Y Min 

X Max 

X Min 

= LoadPickbound 

Figure J-28. Load Picking Location (PS 350 only) 

PS 300 Advanced Programming J-11 



Operation and Data Node ~"ormats 

Data Nodes 

A data node is the display structure primitive that causes data to be drawn by the ACP. A data 
node consists of an integer that indicates this clisplay structure is a data node (=2} , an 8-bit field 
that specifies the mode of vectors in the data node, an 8-bit integer that specifies the particular 
type of data node, a 32-bit integer which points to the next data node of identical data type, an 
integer (n} that specifies the number of vectors, polygons or characters in the data node, a 16-bit 
integer that specifies the pick index, and either vector data (including polygons) or character 

data. Vector data consists of the two- or three-dimensional vectors (preceded by polygon 
attribute information if polygons} . Character data consists of an initial translation, spacing 
information, and the character string. The general format of a data node is illustrated in Figure 
J-29 . 

Data Node 2 

Do_Dots Data Type 

-- Pointer to Next Data Node --

n 

Pick Index 

vector/Character Data 

• 

Figure J-29. General Data Node Format 

IVlode, data type, pick index, and vector/character data are detailed further below. 

+ Do Dots Field 

The Do Dots field of a data node consists of: 

15 9 $ 7 

Unused D Data Type 

4

Do Dots Field _ 
= 0 for no endpoint intensification 
= 1 for endpoint intensification 

The Do_Dots field of a data node is a single bit that specifies how the vectors are to be 
drawn. when dot mode = 0, vectors are drawn normally. when dot mode = 1, each 
endpoint of the vector list is drawn as an intensified dot. 

Figures J-30 through J-41 show formats for PS 300 and PS 350 data nodes. 

,J~12 PS 300 Advanced Programming 



Operation and Data Node Formats 

n PS 340 Data Node Formats 

Data Node 2 

Do_Dots Data Type p 

~-- Pointer to Next Data Node 

n 

Pick Index 

X1 
Y1 
Z1 

Exponent 1 Intensity 1 d 

X2 
Y2 
Z2 

Exponent 2 Intensity 2 d 

Xn 
Yn 
Zn 

Exponent n Intensity n ~ d 

= Vec3f0 

Figure J-34. Vector_List N=n X1,Y1,Z1 XZ,YZ,Z2 ... Xn,Yn,Zn 
Vector-Normalized Full Vector) - 3D (Vec3f4) 

Data Node 2 

Do_Dots Data Type 1 

--- Pointer to Next Data Node --~ 

n 

Pick Index 

XI 
Y1 

Exponent 1 Intensity 1 d 

X2 
Y2 

Exponent 2 Intensity 2 d 

Xn 
Yn 

Exponent n Intensity n ~ d 

= Vec2f0 

Figure J-31. Vector_List N=n X1,Y1,-- XZ,Y2,-- ... Xn,Yn,--
Vector-Normalized (Full Vector) - 2D (Vec2f4) 

PS 300 Advanced Programming J-13 



Operation and data Node ~°ormats 

Data Node 2 

Do_Dots Data Type 2 

Pointer Next to Data Node --~ 

n 

Pick Index 

Exponent 1 Intensity 1 

X1 
Y1 
Z1 

/ 
~ 
d 

X2 
Y2 
Z2 

/ 
/ 
d 

Xn 
Yn 
Zn 

/ 
/ 
d 

= Vec3b0 

Figure J-32. Vector List Block N=n X1,Y1,Z1 X2,Y2,Z2 ...Xn,Yn,Zn 
Block-Normalized - 2D {Vec3bo) 

Data Node 2 

Do_Dots Data Type 3 

--- Pointer Next Data to Node ---r 

n 

Pick Index 

Exponent 1 Intensity 1 

X1 
Y1 

/ 
d 

X2 
Y2 

I 
d 

Xn 
Yn 

/ 
d 

= Vec2b0 

Figure J-33. Vector List Block N=n X1,Y1 X2,Y2 ... Xn,Yn 
Block-Normalized - 2D (Vec2bo) 

J-1 ~ PS 300 Advanced Programming 



Operation and Data Node Formats 

Data Node Z 

Do_Dots Data Type 4 

-- Pointer to Next Data Node 

Number of Characters 

Pick Index 

Tx 

Ty 

Tz 

Exponent //////////////// 

Delta x 

Delta y 

Char 0 Char 1 

Char 2 Char 3 

Figure J-34. Characters, Labels 

NO'Y'ES 

= Dstring 

Pick Index is always 0 for Characters, ~ for first label, 1 for next 
label, etc. 
A label block with only one label is indistinguishable from a character 
node. 

Data Node 2 

Do_Dots Data Type 5 

- Pointer to Next Data Node 

n 

Pick Index 

Light Source X 
Light Source Y 
Light Source Z 

Exponent Intensity / 

-- Next Light Source --, 

Light Source Red 

Light Source Green 

Light Source Blue 

Ambient 

Figure J-35. Illumination 

= ShadeLight 

PS 300 Advanced Programming J-1 S 



Operation and Data Node Formats 

Data Node 2 

Do_Dots ~ Data Type g 

~-- Pointer to Next Data Node -~—~ 

n 

Pick Index 

u o/c Fi11 Type 

Hue Sat 

c t ~ n 

X1 
Y1 
Z1 

Exponent 1 Intensity 1 d 
- , 

Xn 
Yn 
Zn 

Exponent n Intensity n d 

Figure J-3b. Polygon 

NOTES 

Abbreviations: 

= Vecpoly 

Number of polygons 

Fill type : solid, hatched, 
no fill, etc . 

Closure for each polygon 
is implicit : the vector 
from vertex n to vertex 1 
is generated by the 
microcode. 

u -Color use: 0 = ACP state, 1 =specified. 
o/c - Original/capping surface: 0 =original, 1 =capping. 
c -Continue flag: 0 =begin new polygon, 1 =continue polygon from previous 

node. 
t -Polygon type: 0 =first polygon of a planar surface, 1 = 2nd to mth polygon of 

planar surface. 
d -Edge visibility: 0 =invisible edge, 1 =visible edge. First vertex defines visibility 

of closing edge, second vertex of first edge, etc. 

~®~ 6 PS 300 Advanced Programming 



Operation and Data Node F9ormats 

~~ PS 350 Data Node Formats 

Note: Fields marked by asterisks are not used nor accessed by normal ASCII and GSR 
commands. The top bit in the second word of each of these formats (labeled "A" } is a flag 
which, if clear, tells the display structure walker to process these fields. This bit is set by default, 
and there exists no command to clear it. Advanced user—written functions and programs using 
the physical read/write facility may however, use these fields and clear that flag. 

Data Node 2 

A Do_Dots Data Type 6 

- Pointer to Next Data --

Number of Characters 

Pick Index 

Line Texture Traverse Cnt 

Color 

--- Tx --, 

~-- Ty ---

- TZ --~ 

Translation Exponent / l l/ I l l l I l I l l/ l l 

Exponent 

M {1,1) 

M (1,2) 

M (2,1) 

M (2,2) 

Delta x 

Delta y 

Char 0 Char 1 

Char 2 Char 3 

= DstringD 

Character 'translation 

2x2 Character Matrix 

Spacing between 
Characters 

Figure J-37. Characters, Labels Character string (DstringD) 

NOTES 

Pick Index is always ~ for Characters, ~ for first label, 1 for next 
label, etc . 
A label block with only one label is indistinguishable from a character 
node. 

PS 300 Advanced Programming J-17 



®peration and Data Node p'ormats 

Data Node 2 

A Do_Dots Data Type 12 

-- Pointer to Next Data Node --~ 

n 

Pick Index 

Line Texture Traverse Cnt 

Color 

Exponent Intensity 

X1 
Y1 
Z1 

/ 
/ 
d 

XZ 
Y2 
ZZ 

/ 
/ 
d 

Xn 
Yn 
Zn 

/ 
I 
d 

= Vec3bs2 

Figure J-3~. Vector List Block N=n X1,Y1,Z1 X2,Y2,Z2 ... Xn,Yn,Zn 

Data Node 2 

A Do_Dots Data Type 13 

--- Pointer to Next Data Node -

n 

Pick Index 

Line Texture Traverse Cnt 

Color 

Exponent Intensity 

X1 
Y1 

/ 
d 

X2 
Y2 

/ 
d 

Xn 
Yn 

/ 
d 

= Vec2bs2 

Figure J-39. Vector_List Block N=n X1,Y1 X2,Y2 ... Xn,Yn 

J-18 PS 300 Advanced Programming 



Operation and Data Node Formats 

/"1 

Data Node 2 

A, Do_Dots Data Type 14 

-- Pointer Next Data Node to 

n 

Pick Index 

Line Texture Traverse Cnt 

Color 

Exponent Intensity 

0 
X1 (H) 

X2 (L) 

0 
Y1 (H) 

Y1 (L) 

0 
Z1 (H) 
Z1 (L) 

/ 
d 

0 
X1 (H) 
X1 (L) 

0 
Y2 (H) 
Y2 (L) 

0 
Z2 (H) 
Z2 (L) 

i 
d 

0 
Xn (H) 
Xn (L) 

0 
Yn (H) 
Yn (L) 

0 
Zn (H) 
Zn (L) 

/ 
d 

= Vec2bd0 

Figure J-~0. Vector_List N=n X1,Y1,Z1 X2,Y2,Z2 ... Xn,Yn,Zn 

PS 300 Advanced Programming .I-19 



Operation and Data erode Formats 

Data Node 2 
s 

A Do_Dots Data Type 15 

--- Pointer to Next Data Node 

n 

Pick Index 

Line Texture Traverse Cnt 

Color 

Exponent Intensity 

0 
X1 (H) 
X1 (L) 

0 

Y1 (H) 

Y1 (L) 
I 
d 

0 
X1 (H) 
X 1 (L) 

0 
Y2 (H) 
Y2 (L) d 

a 
a 

• 

0 
Xn (H) 
Xn (L) ' 

0 
Yn (H) 
Yn (L) 

/ 
d 

= Vec2bd0 

Figure J-41. Vector List N=n X1,Y1 X2,Y2 ... Xn,Yn 

.t~ 

J-20 PS 300 Advanced Programming 



APPENDIX ~ 

Error Types/Error Numbers 

There are three crash error types in the PS 300. Each type has a set of error numbers associated 
with the type. The three types are: 

1. System Errors 
2. Traps 
3. Exceptions 

The following is the list of -errors for each type. 

Type 1 -System Errors 

1 Track number out of range 
2 Disk drive not ready 
3 Disk remains busy after a seek 
4 Block number out of range 
6 Lost data during read 
7 Record not found during read 
8 Data CRC error during read 
9 ID CRC error during read 
B Lost data during write 
C Record not found during write 
D Data CRC error during write 
E ID CRC error during write 
F Write fault 

10 Disk is write protected 
1l Lost data during format 
12 Write fault during format 
14 Disk drive number out of range 
15 Seek error 
1 b Drive not ready during read 
17 Drive not ready during write 
18 Disk not at track ~ after restore command 
19 Disk busy after restore command 

.t~ 

PS 300 Advanced Programming K-1 



error TypeslError Numbers 

lA Track number out of range during format 
1B Drive not ready during format 
1C Disk write protected during format 
1D Time out during read 
1 E Time out during write 
1 F Time out during format 
64 Wait maybe called with nil argument 
65 Wait maybe called with anon-function 
66 Wait maybe, already a function waiting 
67 Wait maybe, parameter function waiting elsewhere 
6 8 Q ship to an unrecognized Namedentity 
69 Msgcopy, Message type shouldn't be copied 
6A Msgcopy, Msg type Has structure, unknown to Msgcopy 
6B Send, ' Me' =nil 
6C Send, ' Me' not a function instance 
6D Send, No such output port for this function 
6E Rem connlAdd Conn, A 1 =nil _ _ 
6F Add corn, A2 =nil 
70 Findqueue, Named item =nil 
71 Findqueue, illegal queue number (queue no. < ~ or queue no. > no. of inputs 

for function} 
72 Allinpwait, Nmin > Nmax 
73 Allinpwait, Nmin < 1 
74 Tmessage, Waiting and n = 0 
75 Cmessage, Waiting and n = ~ 
76 Lookmessage, Waiting and n = ~ 
7 7 Allinputs, Nmin > Nmax 
7 8 Allinputs, Nmin < 1 
79 Fcnnotwait, Me =nil 
7A Findqueue, found a nil queue ! 
7B Waitnextinput, n = ~ 
7C Anyoutputs, Me =nil 
7D Anyoutputs, illegal outset number 
7E Anyoutputs, no outset where there should be 
7F Fdispatch, function failed to re-queue after running 
8 0 Text text, B 1 < ~ 
81 Char text, b < t~ 
85 Error dosing disk read 
8 D Initial structure not correct 
8E AnnounceUpdate List tail = nil;head < > nil 
8F FormatUpdate Somebody's sleeping in my bed 
90 FormatUpdate Ready Head not nil but Tail is 
9 i Bad code file -- illegal Op 
92 ByteIndex Invalid Acpdata type 
93 FormatUpdate, PASCAL Head not nil but Tail is 
9 4 Vec_size, Invalid Acpdata type 
9 5 KillUpdate, Updfetch was < ~ 

K-2 PS 300 Advanced Programming 



Error TypeslError Numbers 

9 6 KillUpdate, Some one was sleeping in my bed 
9 7 Vec bias, Invalid Acpdata type 
9 9 CntCapacity, Invalid Acpdata type 
9C Unknown brand of Namedentity 
9 D Hasstructure knows something I don't 
9E Amuhead not a Qalphapair 
A 1 AppendVector, Invalid Acpdata type 
A3 Nomemsched, Bad .Status for a fcn 
A9 Bad update list on ACP time-out 
AA ACP Timeout during initialization 
AB Crashprepare, Name CRASH$ has not been defined 
AC DecUpdsync, C header " .Updsync < ~ 

AD FormatUpdate, Someone waiting in C header " .IJpdswait already 
AF Someone else waiting in C header " .Killer already 
BO Non-nil Qwait of a dying function 
B 3 Microcode won't fit into ACP 
B4 Implementation limit on delta waits (2 * * 31) 
B 8 detected internal inconsistency 
B9 detected error (passed a bad parameter) 
BA diskette's parsecode table inconsistent with parser 
BD Bad boundary on binary data xfer 
BF default Devsts contains errors 
CO Inwait, f is already waiting or not a function 
C 1 Outwait, f is already waiting or not a function 
C2 ECO Level of GCP does not support S 6K Baud Line 
C3 Port 1 Configuration is invalid for 5 6K Baud Line Support 
C9 User generic function stack overflow 
CA Ugrun_cnt has become negative 
CB User generic function has bad alpha (on private queue) 
CC Bad format of MSGLIST .DAT detected 
CD MSGLIST (or code using it) has probably been corrupted 
CF Apparent datastructure incompatib' 'ty 
DO Bad MemOKindex detected 
D 1 routine passed bad parm (e. g., a nil ptr) 
D2 Lines to -ABM system not active 
D3 Floppy disk file INITGPIO.DAT; not found or unable to read 
D4 Floppy disk file GPIOCODE.DAT; not found or unable to read 
DS Floppy disk file IBMFONT. DAT; not found or unable to read 
Dd Floppy disk file IBMKEYBD.DAT; not found or unable to read 
D7 Floppy disk file IBMASCII. DAT; not found or unable to read 
D8 IBM GPIO timeout 
D 9 No . o f minimum inputs is negative 
DA No. of maximum inputs < No. of minimum inputs 
DB No. of maximum inputs > #inputs for function 
DC Sendlist detected a bad list 
DE Sendmess: message to be sent is NIL 
DF Caller did not have a lock set already 

PS 300 Advanced Programming ~ ~ 3 



Error TypeslError Numbers 

EO Curfcn in improper state to call Getinputs 
E 1 Cleanin, Curfcn in improper state to call Cleaning (e. g. , have you first called 

Getinputs?) 
E2 Somebody remembered a forgotten non-fcninstance 
ES Alpha not already locked by caller . 
E6 Confusion in discarding bad message 
E7 Lock not already set by caller 
E 8 Probable multiple master GCPs 
E9 RemOne, Curfcn does not have that many inputs 
EA RemOne, Message to be deleted and message pointed to by Curinputs is not the 

same 
EB Lock not already set in Gatheraupdate call 
ED Get2locks detected lock already set 
EE Error in semantic routine for polygon vertex 
EF Destination Alpha was not already locked 
FO Parent not already locked in add/remove from set 
F 1 Child not already locked in add to set 
F3 Alpha not already locked in Gpseudoaupdate 
F6 Confusion about locks or decausages 
F7 Unknown tap reason 
F8 Unanticipated state at which to see shoulder tap 
F9 Illegal number of inputs 
FC No existing DCB found for this user 
FD Timeout, Message on input 1 disappeared before fcn could get it 
FE Error while initializing disk drive 
FF Error while reading disk header 

100 Error while reading disk directory 
101 THULE.DAT not found on disk 
102 Error while reading THULE.DAT 
103 Curfcn was not active at entry 
104 Viewport not in structure 
105 Real simple, number of digits requested out of range (n < 1 or n > 9) 
106 Getnextone, illegal queue specified 
107 Getnextone, msg on head of queue and specified by Curinput do not agree 
10 8 Getnextone, no message on queue, but Curinput < > NIL 
109 ContBlock, nil block 
l0A Timeout when waiting for all on-line GCPs 
lOB Rehash only works first time, only time now. 
lOC No processor has right to issue this tap 
10D GetVector, Not an Acpdata block 
l0E GetVector, Not a vector Acpdata block 
10F Invalid gpacket received 
110 Tolerance on FCnearzero is absurd 
111 set construct of father has no dummy control block 
112 function code has to be of type CI to have elements included and removed 
113 ShadeEnviron node encountered in non PS 340 

~ PS 300 Advanced Programming 



Error Types/Error 1Vumbers 

Type 2 -Traps 

0 No mass memory on line, or too little to come up 
1 More OKINTs than NOINTs or > 12 8 NOINTs 
2 Free storage block size bad (on request or in free list) 0 
3 Attempt to Activate anon-function (or nil) or bad software detected during startup 

(most commonly, incompatible datastru.sa detected but perhaps invalid startup 
routine sequencing (if someone has been mucking around with it) ) 

4 NEVI call failed to find memory, within NOMEMSCHED 
5 Attempt to queue where a function is already waiting 
b Systemerror (n) 
7 Badfcode(Fcn) 
8 Mass Memory Error Interrupt 
9 Utility Routine not included in this linked system 
A Probable multiple DISPOSE of the same block 
B Block exponent not big enough 
C Attempt to divide with a divisor which is too small in FixLongDivide (twice the 

dividend must be less than the divisor} 
D (Used by Motorola PASCAL) 

Type 3 -Exceptions 

0 Reset: Initial SSP 
1 Reset: Initial PC 
2 Bus Error (i.e. attempt to address nonexistent location in memory} 
3 Address Error (i.e. attempt to access memory incorrectly, for example an 

instruction not starting on a word boundary} . 
4 Illegal instruction 
5 Zero Divide 
5 CHK Instruction 
7 TRAPV Instruction 
8 Privilege violation 
9 Trace 

10 Line 1010 Emulator 
11 Line 1111 Emulator 
2 4 Spurious interrupt 

PS 300 Advanced Programming ~ S 



.~ c 



Your coatments ~ will help us provide you with more accurate, 
complete, and usefuz doc:~aentation. After waking your co~aments 
in the space below, cut anal fold this form as indicated, and take 
to secure tclease do not staple} . T:~is fort may fl e ~nai led free 
•~i thin the ~n ~ red States. Thank you for your help. 

Docuiaent Title  

Document Ncuaber  

Com~aents/Corrections (please include page number) : 

Fold 

~~~ d 

L~asae

Company and Dept .

Address

Please tape. Postal regulations prohibit s ~apl~ng.

BUSINESS REPLY MAIL
P3AST CLASS PE~A+11T NO. 4632

P{~STA~E WILL 8E PASO 8Y AOt~AESSEE

EVANS & SUTHEALANO
580 Arapeen Orive
Sa;t Lake ~;ty, Uteh 84^, v8

SALT ~aKE CITY, uTAf-i

ATTN: iAS TE~HNIC~A►L PU 8 L! CAT1 ONS

NQ PQSTAGE
NECESSARY

IF MAtLEO
IN T'~iE

UNITE37 STATES

C
ut

 e
lo

n~
 c

ia
tte

cl
 li

ne
.

USERUPDATES

PS 300 USER GUIDE FOR THE UPDATES FUNCTION

NOTICE

The Updates Function, F:USERUPD, is preliminary and may
contain bugs. The functionality of the F:USERUPD may
change in response to feedback from the users of this
function. E&S has provided F:USERUPD so that those users
who need the ability to perform fast updates via an RS-232
line may use the function to determine if it meets their
needs. E&S makes no commitment to maintain the
functionality of F:USERUPD in its present form.

PREFACE

The Updates Function, F:USERUPD, was created to allow data structures to be updated
quickly by transferring data from the host to the PS 300 very rapidly. F:USERUPD is
an enhancement included with Graphics Firmware Version A 1 that can be used with all
PS 300 interfaces and all members of the PS 300 family of computers except the PS 340.

This document is intended for PS 300 Graphics System users who are very familiar with
the PS 300 Command Language and would like to use the PS 300 for robotics,
animation, or sirs ulation. These applications require that the host computer update
viewing transformations and characters rapidly, a capability now provided by
F:USERUPD.

This document describes the F:USERUPD function and details its use but does not
describe how data are handled once they are sent to the function.

UPDATES FUNCTION

CONTENTS

1. INTRODUCTION

2. TRANSFORMATION UPDATES SUPPORTED BY F:UPUSERUPD

1

3

Angle Values 4
Floating Point Format 4

3. UPDATE SET 7

4. INITIALIZATION SET 9

5. EXAMPLES 13

6. PROGRAM EXAMPLES 15

PUPDATE.PAS -Pascal Example 15
FUPDATE.FOR -FORTRAN Example 21
HOST COMMUNICATION Example 32
FLOATING POINT CONVERSION ROUTINE 35
ASSEMBLY LANGUAGE CONVERSION ROUTINE 36

UPDATES FUNCTION — 1

1. INTRODUCTION

Applications for robotics, animation, and simulation require rapidly updated viewing
transformations. USERUPDATES (F:USERUP) is a function that allows data structures
to be rapidly updated on the host and transferred to the PS 300 faster than ever before
possible.

Transferring data using the F:USERUPD consists of the following steps:

• Instancing the F:USERUPD function. When the function is instanced, it creates 256
names (Function Instance name 001 through Function Instance name 256).

• Creating a display structure using the names created by F:USERUPD, to update the
transformation nodes in that display structure.

• Setting up F:USERUPD by sending the bytes that describe SET count, update types,
and indices.

• Updating the data structure by sending the data SET.

UPDATES FUNCTION — 3

2. TRANSFORMATION UPDATES SUPPORTED BY F:UPUSERUPD

The updates supported by F:USERUPD are listed below. Each update is idenfiified by a
unique number.

Number of Bytes
Update Update Type Transmitted Description

1 Rot in X 2 Angle

2 Rot in Y 2 Angle

3 Rot in Z 2 Angle

4 Rot in XYZ 6 Angles for XYZ axis
(rotated in order)

5 Tran in X 3 X coordinate

6 Tran in Y 3 Y coordinate

7 Tran in Z 3 Z Coordinate

8 Tran in XYZ 9 XYZ coordinates

9 String 1 string length
string length string

10 1Nindow 18 Xmin, Xmax, Ymin, Ymax,
Front, Back

11 Look From 27 From XYZ, At XYZ, Up XYZ

12 Field of View 8 Angle, Front, Back

13 Scale 9 XYZ Scale factors

The angle for rotations and the coordinates for translations have to be sent in a
particular format to this function. To minimize the number of bytes transmitted on the
communication line between the host and the PS 300, numeric values are represented in
angle values or a floating point format.

4 —UPDATES FUNCTION

Angle Values

The angles for the rotations are represented as 65,536 t "' S of 360 degrees. All
angles must be positive. The angles are sent as two bytes with the high order
Byte being sent first. Representation for some common values follows:

ANGLE BYTES (HEX)
(Degrees) (High) (Low)

0 00 00

45 20 00

90 40 00

lso so 00

2~o co 00

36065,535 FF FF
65,5 36

Floating Point Format

Floating—point numbers are represented by three bytes each. The first byte
represents a sign bit and a base two excess 64 exponent. The mantissa sign bit is
the most significant bit of this first byte. The next 2 —byte field is a normalized
17—bit fraction with the redundant most significant fraction bit not represented.
The high —order byte of the fraction is sent first. A detailed example is given at
the end of this document.

DECIMAL NO. SIGN/EXPONENT MANTISSA (HEX)

0 00 00 00

.5 40 00 00

1 41 00 00

—3 C2 80 00

5 43 40 00

UPDATES FUNCTION — 5

Each update will generate an output directed to predetermined data structures
which are generated when the function is instanced.

NOTE

The examples in this document assume that you have some
knowledge of how floating point numbers are represented
in computers.

UPDATES FUNCTION — 7

3. UPDATE SET

Updates which are repeatedly carried out are termed as a SET. The number of updates
in a SET is the SET COUNT. After the system is initialized, each SET of updates is
sent from the host or the keyboard to the PS 300 in the following format.

SET HEADER Char(6)

Data Byte

Data Byte

Data Byte

Data Byte

Data Byte

Data Byte

Each SET contains a SET HEADER (CHAR(6)) byte to indicate the beginning of data
for that SET. This is then followed by data bytes, the number of bytes depending on the
types of updates in that SET. For example, if the set contained two updates, a ROT in
XYZ and a TRAN in X then the number of data bytes for that SET would be 9 (6 bytes
for the three angles and 3 bytes for the X coordinate).

The updates will NOT be performed until all the data bytes are received for the
particular SET of updates. It is your responsibility to ensure that the data bytes are
sent in the correct format. Failing to adhere to this will produce unpredictable results
or a SYSTEM CRASH as there is no system check for this condition.

The names are generated at the time the function is instanced. For example:

MTUP:=F:USERUPD;

will create 256 names MTUP001, MTUP002, MTUP256.

UPDATES FUNCTION - 9

4. INITIALIZATION SET

Once the function is instanced, data for the types of updates and the index to the
associated names have to be sent to the function by •the host or from the keyboard.
This information is sent to the function only once. It determines the number of updates
in the SET (namely SET COUNT), and (for each update) the number corresponding to the
type of update, and the index corresponding to the name this update is to be directed to.

NOTE

The only way this information can be changed is by
re-initializing the function which is accomplished by
re-instancing it.

The index is the number corresponding to the name. If the index is 5, then in the
previous example, the update will be directed to MTUP00~5. Once this information is
sent to the function by the host or from the keyboard, data can be sent to this function
continuously in the format described earlier.

The format in which initialization data have to be sent is as follows:

SET HEADER Char(b)

SET COUNT Number of Updates in Set

Update Type Char(1) thru Char(13)

Index Index into the Names

i i
i i
Update Type Char(1) thru Char(13)

Index Index into Names

10 -UPDATES FUNCTION

The name of the function can be any vaild PS 300 name. Thus, to update
transformation nodes within a data structure, use the following format.

World.myupdate := F:USERUPD;
World := BEGIN STRUCTURE

Myupdate 001 := WINDOW ... ;
Myupdate 002 := ROTATE IN X 0;
END_STRUCTURE;

CAUTION

It is your responsibility to make sure that the numbers
corresponding to the Update type and the indices are
within limits. No checks are made by the function to
ensure that the values are correct.

Failure to do so will result in a SYSTEM CRASH without a
warning. There are NO DEFAULT VALUES for the
window, look from, scale, and field of view commands.
ALL parameters must be sent each time. For example; for
the field of view command, the angle as well as the front
and back boundaries have to be sent to the function every
time when performing a SET of Updates which includes this
command.

This function is very easy to use once you are familiar with the PS 300 Command
Language. An example demonstrating the use of this function from the keyboard
follows. The same outcome can be accomplished by sending the data from the host.

PP:=F:USERUPD;
PP001:= ROT 0 THEN PP002;
PP002:= TRAN BY 0,0 THEN V;
V:=VEC 0,0 .5,.5 -.5,.5 0,0;
DISP PP001;

{Set up F:USERUPPD}

UPDATES FUNCTION — 1 1

SEND CHAR(6)&CHAR(2)&CHAR(2)&CHAR(1)&CHAR(5)&CHAR(2) TO < 1 > PP;

{ Note the format of the data }
{ Set header, set count, uptype, index, uptype, index }
{ This indicates a rotate in Y directed to 1 and trans in X }
{ Directed to 2 }
{ Update data}

SEND CHAR(6)&CHAR(64)&CHAR(0)&CHAR(64)&CHAR(0)&CHAR(0) TO < 1 >PP;

{ Thin will rotate the ob;ect 90 degrees in Y and translate .5 in X }

UPDATES FUNCTION — 13

5. FLOATING POINT EXAMPLE

EXPONENT BYTE

(Excess — 64)

V

BIT 16 15 14 13 12 11 10 9

Hidden Bit

i

~ Mantissa Sign Bit
V
S

BIT 7 6
i

5 4 3
i

2

ll BIT MANTISSA

HIGH BYTE i

1 0
i

LOW BYTE

6 5 4
i

8 7 3 2 1 0

i
i

14 -UPDATES FUNCTION

To elaborate on this example, observe the following representation of the
floating number 9.0

Real number = (2~~Exponent x Mantissa) / (2~~ 17)
[(2~~17) represents the number of bits in the fractional part.]

Exponent = 68 (68 - 64 = 4)

9.0 = (2~~4 x Mantissa) / (2~~17)

Mantissa = 9.0 x 2~~ 13
_ (2~~3 + 1) x (2~~ 13)
= 2~~ 16 + 2~~ 13
= Hidden Bit +Bit 13

Hidden Bit

i HIGH BYTE i
V

BIT 16 15 14 13 12 11 10 9 8 7

HIGH BYTE = 32 (Decimal) = 20 (Hex)
LOW BYTE = 0 (Decimal) = 0 (Hex)

Number EXP HIGH BYTE LOW BYTE

9.0 44 20 00 (HEX)

9.0 68 32 00 (DECIMAL)

LOW BYTE

6 5 4

i

3 2 1
J
0

The value of the exponent is the unsigned integer represented by the exponent
bits minus the excess of 64. Thus, the exponent 1 is represented as the number
65 (65-64=1) and the exponent -1 is represented by the number 6 3 (6 3-64=1).

By convention, the real number 0 is represented by a value of 0 in the exponent.

The fractional part of the real number is normalized such that 1 /2 > [fractional
part] < I.

UPDATES FUNCTION - 15

fi. PROGRAM EXAMPLES

The following programs are contained on the PS 300 magnetic tape labeled PSDIST
distributed with the Al version of the Graphics Firmware. The file UPDATE.DAT also
contained on the PS 300 magnetc tape should be loaded on the PS 300 before any of the
program examples are run.

PUPDATE.PAS -PASCAL EXAMPLE

PUPDATE.PAS is a program example of how to use the F:USERUPD function to
perform fast updates over an RS-232 communications line. This program is
contained on the PS 300 magnetic tape labeled PSDIST and uses the E&S supplied
GSR routines to send the data to an instance of USERUPD.

The program assumes that the file UPDATE.DAT has been loaded into the
PS 300. UPDATE.DAT contains the data structures to be updated, and also
instances F:USERUPD, initializes it, and connects it to output < 1 1 > of
CIROUTEO. The program updates five rotation nodes, one translation node, and
a character string.

The structure being updated is a simple robot arm. Although the program does
not demonstrate all updates that are possible using F:USERUPD, it does
demonstrate a mechanism for building all of the data types that F:USERUPD
acknowledges. Refer to Volume 5 for instructions on compiling and linking this
program.

"GSRLIB" is a VAX logical name for the directory containing the GSR files. The
program assumes that the error handling procedure is named "ERRHAN" and that
it resides in the same directory as the GSR files.

16 — UPDATES FUNCTIQN

Program HostUp (input, output >;
CONST

{GSR const declarations}
%INCLUDE 'GSRLIB:PROCONST.PAS/nolist'

TYPE
{GSR type declarations}
%INCLUDE 'GSRLIB:PROTYPES.PAS/nolist'

String = Varying C80] of Char;
IntB = Cbyte]0..255;
Int16 = -32768..32767;

{ a variant record makes it easy to get the pieces of a vax real }
Vax_real = PACKED RECORD

CASE BOOLEAN OF
TRUE: (fr2: 0. .127;

junk: Boolean; { can't use this bit }
exponent: 0..255; { place wants sign in exponent }
fr0,fr1: Int8);

FALSE: (r: Real);
END; {record}

VAR
current angle VARYING C2] OF CHAR; { USERUPD angles are 2 bytes}
current real VARYING C3] OF CHAR; { USERUPD reals are 3 bytes }
current_str P_VaryingType; {USERUPD strings are }
{ up to 255 bytes }

Cnt Integer;
Upl ,IncUpl Real ;
Up2, IncUp'' Real ;
Up3,IncUp3 Real ;
Up4,IncUp4 Real ;
Up5,IncUpS Real ;
Up6,Incs~p6 Real ;
PrintStr~ing String;
Update set P_VaryingType;
Pr I Intl6;

{include the GSR EXTERNAL declarations }
%INCLUDE 'GSRLIB:PROEXTRN.PAS/nolist'
{include the GSR error handler}
%INCLUDE 'GSRLIB:VAXERRHAN.PAS/nolist'

{These are the assembler routines to get exponents and mantissas}
PROCEDURE PUPDEXP (rnum: Real ; VAR exp: IntB); EXTERN;
PROCEDURE PUPDFRA (rnum: Real ; VAR mhi ,mlo: Int8 >; EXTERN;

UPDATES FUNCTION - 17

PROCEDURE Vax_Fp C rnum: Vax_real; VAR exp,mhi ,m~lo: Int8);

{ get the pieces of a USERUPD real from a VAX real }
BEGIN
PUPDEXP C rnum.r, exp);
PUPDFRA C rnum.r, mhi, mlo);

END;

PROCEDURE R_angle C angle: Real; VAR ahi ,alo: Int8);

{ Get the pieces of a USERUPD angle from degrees }
CONST

Factor = 182.0444444; {magic number = 65536/360 }
{to turn degrees in to 65536's of a circle}

VA R
itemp: Integer;
my_angle: real;

BEGIN

{ make any angle its equivalent in the range of 0 to 360 - 1/2**16 }

my_angle:= angle;
IF my_angle >= 0 THEN { the angle is positive }
BEGIN

REPEAT {make the angle be 0>= angle < 360 }
IF my_angl a >= 360 THEN

my_angle:= my_angle - 360;
UNTIL Cmy_angle >= 0) AND Cmy_angle < 360);

End
Else { the angle is negative }
BEGIN

REPEAT {make the equivalent positive angle}
IF my_angle < 0 THEN

my_angle:= my_angle + 360;
UNTIL CMy_angle >= 0) AND Cmy_angle < 360>;

End;
itemp:= ROUNDCMy_angle *factor);
ahi := itemp DIV 256;
alo := itemp MOD 256;

END;

PROCEDURE R real C r: Real; VAR exp,mhi,mlo: IntB);

{ copy a VAX real into the variant record and get the components }
VA R

rtt: Vax_real;
BEGIN
rtt.r:=r;
Vax_fp (rtt, exp, mhi, mlo);

END;

18 - UPDATES FUNCTION

PROCEDURE Prot C angle: Real ; VAR Upd_angle: VARYING Clen] OF CHAR);

{ make a Z-byte string that is a USERUPD angle }
VAR

hiangle,loangle: Int8;
BEGIN
Upd_angle.length:= 2;
R_angle C angle, hiangle, loangle >;~
Upd_angleClJ:= CHRChiangle) ;
Upd_angleC2]:= CHRCloangle) ;

END;

PROCEDURE P_string C s: String; VAR UPD_string: P_VaryingType);

{ make a USERUPD string; i.e., a 1-byte length and the string }
VA R

is i s Intl6;
BEGIN
Upd_string.length:= s.length + l ;
UPD_stringClJ:= CHRCs.length) ;
FOR is_i := 1 to s.length DO
UPD_stringCis_i +l]:= sCis_i];

END;

PROCEDURE P_tran (vec: Real ; VAR UPD_trans: VARYING Clen] OF CHAR);

{ make a 3-byte string that is a UPD real used for translates }
VAR

exp,mhi ,mlo: Int8;
BEGIN
Upd_trans.length:= 3;
R_real (vec, exp, mhi, mlo >;
UPD_transCll:= CHRCexp);
UPD_transC2]:= CHRCmhi);
UPD_transC3J:= CHRCmIo>;

END;

BEGI N
{use the GSRs to attach to the PS 300's async interface }

PAttachC'LOGDEVNAM=TT:/PHYDEVTYP=ASYNC', ERRHAN>;

{ Multiplex to CIROUTE<11> the instance of USERUPD is }
{ connected there. }

PMuxG(9, ERRHAN >;
Cnt := 3; { go through the sequence 3 times }

UPDATES FUNCTION — 19

REPEAT
Upl := 0;
IncUpl := 1;
Up2 :_ -90;
IncUp2 := 0.5;
Up3 := 90;
IncUp3 :_ -0.25;
Up4 :_ -90;
IncUp4 := 0.5;
Ups := 0;
IncUpS := l;
Up6 := l ;
IncUp6 :_ -0.0022;
FOR Pr I := 0 to 720 DO

BEGIN
Update_set.Length := 0; {initialze the update buffer}

{length }
Update set:= CHRC6); { every update set must start}

{ with this character }
{ get the angle }

P_ROTCUpI,Current_angle);
{ and concatenate it onto the update set }
Update_set:= Update set + Current angle;

P_ROTCUp2,Current_angle);
Update set:= Update set + Current_angle;

P ROTtUp3,Current_angle);
Update set:= Update set + Current angle;

P_ROTCUp4,Current_angle);
Update set:= Update set + Current angle;

P_ROTCUpS,Current_angle);
Update set:= Update_set + Current angle;

P_TRANCUp6,Current_real);
Update set:= Update set + Current real ;

PrintString :_ ~.

PrintStringC3] :=CNRttruncCUpl) MOD 10 + 48);
PrintStringC2] :=CHRCtruncCUpli10) MOD 10 + 48);
PrintStringCl] :=CHRCtrunc(Upl/100) MOD 10 + 48);
P_STRINGCPrintString,Current_str>;
Update set:= Update set + Current_str;

20 —UPDATES FUNCTION

{ send the update set to the PS 300 }
PPutG(Update set, ERRHAN);
{ make sure it goes now }
PPurge(ERRHAN);

{ fix up the angles so that the arm ends up in its }
{ initial position; e.g., upl goes from 0 to 359 and }
{ back to 0 }
IF Pr_I = 360 THEN
BEGIN

IncUpl :_ -1.0;
IncUp2 :_ -0.5;
IncUp3 := 0.25;
IncUp4 :_ -0.5;

IncUp6 := 0.0022;

END;
Upl := Upl + IncUpl ;
Up2 := Up2 + IncUp2;
Up3 := Up3 + IncUp3;
Up4 := Up4 + IncUp4;
Ups := Up5 + IncUp5;
Up6 := Up6 + IncUp6;

END; { FOR pr i }
Cnt := Cnt - l ;

UNTIL Cnt = 0;
PDetach(ERRHAN >;

END.

UPDATES FUNCTION — 21

FUPDATE.FOR -FORTRAN EXAMPLE

FUPDATE.FOR is a program example of how to use the F:USERUPD function to
perform fast updates over an RS-232 communications line. This program is
contained on the PS 300 magnetic tape_ labeled PSDIST and uses the E&S supplied
GSR routines to send the data to an instance of USERUPD. The program
assumes that the file UPDATE.DAT has been loaded into the PS 300.
UPDATE.DAT contains the data structures to be updated, and also instances
F:USERUPD, initializes it and connects it to output < 1 1 > of CIROUTEO. Thy
program updates five rotation nodes, one translation node, and a character string.

The structure being updated is a simple robot arm. Although the program does
not demonstrate all updates that are possible using F:USERUPD it does
demonstrate a mechanism for building all of the data types that F:USERUPD
acknowledges. Refer to Volume 5 for instructions on compiling and linking this
program.

The program assumes that the error handling procedure is named "ERRHND" and
that it resides in the same directory as the GSR files.

Program Update
REAL Upl ,Up2,Up3,Up4,Up5,Up6
REAL IncUpl ,IncUp2,IncUp3,IncUp4,IncUp5,IncUp6
CHARACTER Current angle*2, Current real*3, Current_str*5
CHARACTER Update set*20, Printstring*4
C
EXTERNAL ERRHND

C
C
CALL PAttch('LOGDEVNAM=TT:/PHYDEVTYP=ASYNC', ERRHND)
C
C Multiplex to CIROUTE<11>
C
CALL PMuxG(9, ERRHND >
C
C Do the sequence 3 times
C
Cnt = 3

22 — UPDATES FUNCTION

1 CONTINUE
Upl = 0.
IncUpl = 1.
Up2 = -90.
IncUp2 = 0.5
Up3 = 90.
IncUp3 = -0.25
Up4 = -90.
IncUp4 = 0.5
Ups = 0.
IncUpS = 1.
Up6 1.
IncUp6 = -0.0022
DO Pr I = 0 ,720

C
C The first character of an update set is always CHAR(6)
C

Update_setCl:l)= CHARC6)
C
C Get the angle and put it in the Update set buffer
C
CALL P_ROT(Up1,Current_angle)
Update_set(2:3) = Current angle

CALL P_ROT(Up2,Current_angle)
Update_set(4:5)= Current angle

CALL P_ROTCUp3,Current_angle)
Update_setC6:7)= Current angle

CALL P_ROTCUp4,Current_angle)
Update_set(8:9>= Current angle

CALL P_ROTCUp5,Current_angle)
Update_setClO:li)= Current_angle

CALL P_TRANCUpb,Current_real>
Update setC12:14>= Current real

PrintString = '
PrintStringC3:3) =CHAR(IMODCIINTCUpI),10) + 48>
PrintStringC2:2) =CHARCIMODCIINTCUpI/10),10) + 48)
PrintStringCl:l) =CHARCIMOD(IINTCUpI/100),10) + 48)

CALL P_STRING(PrintString,Current str)
C
C we know the length of the string so kludge it.
C Fortran thinks the strings length is what it is declared
C to be, Pascal lets you manipulate the length
C

UPDATES FUNCTION - 23

Update_setC15:19)= Current_str
C
C Send the update set to the PS300
C

CALL PPutGC Update_set,19,ERRHND>
C
C Make sure it goes now
C

CALL PPurgeC ERRHND)
C
C Fix up the angles so that the arm ends up in its initial
C position; e.g., Upl goes from 0 to 359 and back to 0
C

IF CPr I .eq. 360) THEN
IncUpl = -1.0
IncUpl = -0.5
IncUp3 = 0.25
IncUp4 = -0.5
IncUpS = -1.0
IncUp6 = 0.0022

END IF
Upl = Upl + IncUpl
Up2 = Up2 + IncUpl
Up3 = Up3 + I ncUp3
Up4 = Up4 + IncUp4
Ups = Up5 + IncUp5
Up6 = Up6 + IncUp6

END DO
Cnt = Cnt - 1

IF C Cnt .gt. 0) GOTO 1

CALL PDtachC ERRHND >
END

24 -UPDATES FUNCTION

SUBROUTINE Vax_Fp (rnum, exp,mhi,mlo)

C
C Redundant routine left in so the FORTRAN looks like the Pascal version
C
C PUPDEXP and PUPDFRA are Macro routines to obtain the USERUPD
C exponent and mantissa from a VAX real
C

REAL rnum
BYTE exp, mhi,mlo
CALL PUPDEXP C rnum, exp)
CALL PUPDFRA C rnum, mhi, mlo)

RETURN
END

S U B R O U T IN E R_angle (angle, ahi,alo ~

C
C Get the pieces of a USERUPD angle from degrees
C
REAL Factor, angle, my_angle,temp
INTEGER hemp
BYTE ahi, a]o, buffC2)
EQUIVALENCE C hemp, buff)

C
C factor is a magic number to turn degrees into
C 65536's of a circle
C

Factor = 182.0444444 ! = 65536/360

my_angle= angle
IF (my_angle .ge. 0.0) THEN ! the angle is positive

1 CONTINUE
IF Cmy_angle .ge. 360> THEN

my_angle= my_angle - 360.0
END IF

IF (my_angle .gt. 360> GOTO 1
ELSE ! the angle is negative

2 CONTINUE ! make the equivalent positive angle
IF (my_angle .lt. 0> THEN

my_angle= my_angle + 360.0

UPDATES FUNCTION - 25

END IF
IF (My_angle .lt. 0) GOTO 2

END IF
Temp = My_angle ~ factor
itemp= NINT(Temp)
ahi = buff(2)
alo = buff(1)

RETURN
END

SUBROUTINE R_real (r, exp,mhi,mlo)

C
C Get the components of a USERUPD real
C

REAL r
BYTE exp,mhi,mlo

CALL Vax_fp C r, exp, mhi, mlo)
RETURN
END

S U B R O U T I N E Prot (angle, U pd_angle)

C
C Get the components of a USERUPD angle
C
BYTE hiangle,loangle
CHARACTER Upd_angle*C*)
REAL angle

CALL R_angle C angle, hiangle, loangle)
Upd_angleCl:l)= CHARChiangle)
Upd_angleC2:2)= CHARCIoangle)

RETURN
END

26 —UPDATES FUNCTION

S U B R O U T I N E P_string (s, U P D_string)

C
C make a USERUPD string; i.e., a 1 —byte length and the string
C
INTEGER*Z is_i
CHARACTER s*C*), Upd_string*(*>

UPD_stringCl:l)= CHARCLENCs>>
UPD_stringC2:> = s

RETURN
END

S U B R O U T I N E P_tran (vec, U P D_trans)

C
C Make a 3—byte string that is a USERUPD real used for translates
C
REAL vec
CHARACTER Upd_trans*C*)
BYTE exp,mhi,mlo

CALL R_real (vec, exp, mhi, mlo)
UPD_transCl:l>= CHARCexp)
UPD_trans(2:2>= CHARCmhi)
UPD_transt3:3>= CHARCmIo>
RETURN
END

The following data are contained in the UPDATE.DAT file on the PSDIST
magnetic tape and is used with the program examples.

0
CYLINDER:= VEC item N=100
P 1 .0000,1., 0.0000 L
L 0.9686,0., 0.2487 L
P 0.9686,1., 0.2487 L
L 0.8763,0., 0.4818 L
P 0.8763,1., 0.4818 L
L 0.7290,0., 0.6845 L
P 0.7290,1., 0.6845 L
L 0.5358,0., 0.8443 L
P 0.5358,1., 0.8443 L
L 0.3090,0., 0.9511 L

0.9686,1., 0.2487
1 .0000,0., 0.0000
0.8763,1., 0.4818
0.9686,0., 0.2487
0.7290,1., 0.6845
0.8763,0., 0.4818
0.5358,1., 0.8443
0.7290,0., 0.6845
0.3090,1., 0.9511
0.5358,0., 0.8443

UPDATES FUNCTION - 27

P 0.3090,1., 0.9511 L 0.0628,1., 0.9980
L 0.0628,0., 0.9980 L 0.3090,0., 0.9511
P 0.0628,1., 0.9980 L -0.1874,1., 0.9823
L -0.1874,0., 0.9823 L 0.0628,0., 0.9980
P -0.1874,1., 0.9823 L -0.4258,1., 0.9048
L -0.4258,0., 0.9048 L -0.1874,0., 0.9823
P -0.4258,1., 0.9048 L -0.6374,1., 0.7705
L -0.6374,0., 0.7705 L -0.4258,0., 0.9048
P -0.6374,1., 0.7705 L -0.8090,1., 0.5878
L -0.8090,0., 0.5878 L -0.6374,0., 0.7705
P -0.8090,1., 0.5878 L -0.9298,1., 0.3681
L -0.9298,0., 0.3681 L -0.8090,0., 0.5878
P -0.9298,1., 0.3681 L -0.9921 ,1., 0.1253
L -0.9921 ,0., 0.1253 L -0.9298,0., 0.3681
P -0.9921 ,1., 0.1253 L -0.9921 ,1.,-0.1253
L -0.9921,0.,-0.1253 L -0.9921 ,0., 0.1253
P -0.9921 ,1.,-0.1253 L -0.9298,1.,-0.3681
L -0.9298,0.,-0.3681 L -0.9921 ,0.,-0.1253
P -0.9298,1.,-0.3681 L -0.8090,1.,-0.5878
L -0.8090,0.,-0.5878 L -0.9298,0.,-0.3681
P -0.8090,1.,-0.5878 L -0.6374,1.,-0.7705
L -0.6374,0.,-0.7705 L -0.8090,0.,-0.5878
P -0.6374,1.,-0.7705 L -0.4258,1.,-0.9048
L -0.4258,0.,-0.9048 L -0.6374,0.,-0.7705
P -0.4258,1.,-0.9048 L -0.1874,1.,-0.9823
L -0.1874,0.,-0.9823 L -0.4258,0.,-0.9048
P -0.1874,1.,-0.9823 L 0.0628,1.,-0.9980
L 0.0628,0.,-0.9980 L -0.1874,0.,-0.9823
P 0.0628,1.,-0.9980 L 0.3090,1.,-0.9511
L 0.3090,0.,-0.9511 L 0.0628,0.,-0.9980
P 0.3090,1.,-0.9511 L 0.5358,1.,-0.8443
L 0.5358,0.,-0.8443 L 0.3090,0.,-0.9511
P 0.5358,1.,-0.8443 L 0.7290,1.,-0.6845
L 0.7290,0.,-0.6845 L 0.5358,0.,-0.8443
P 0.7290,1.,-0.6845 L 0.8763,1.,-0.4818
L 0.8763,0.,-0.4818 L 0.7290,0.,-0.6845
P 0.8763,1.,-0.4818 L 0.9686,1.,-0.2487
L 0.9686,0.,-0.2487 L 0.8763,0.,-0.4818
P 0.9686,1.,-0.2487 L 1 .0000,1., 0.0000
L 1.0000,0., 0.0000 L 0.9686,0.,-0.2487

28 -UPDATES FUNCTION

{WORLD SPACE ROTATIONS}

XMUL : = F : MU LC ;
YMUL : = F : MU LC ;
ZMUL : = F : MU LC ;
XROT := F:XROTATE;
YROT := F:YROTATE;
ZROT := F:ZROTAT E;
CMUL := F:CMUL;

CONN DIALS <1>:<1> XMUL;
CONN DIALS <2>:<1> YMUL;
CONN DIALS <3>:<1> ZMUL;
CONK XMUL <1>:<1> XROT;
CONN YMUL <1>:<1> YROT;
CONN ZMUL <1>:<1> ZROT;
CONN XROT <1>:<2> CMUL;
CONN YROT <1>:<2> CMUL;
CONN ZROT <1>:<2> CMUL;
CONN CMUL <1>:<1> CMUL;

SEND 150 TO <2> XMUL;
SEND 150 TO <2> YMUL;
SEND 150 TO <2> ZMUL;
SEND M3D(1 ,0,0 0,1 ,0 0,0,1) TO <1> CMUL;
SEND 'ROTATE X' TO <1> DLABELI ;
SEND 'ROTATE Y' TO <1> DLABEL2;
SEND 'ROTATE Z' TO <1> DLABEL3;

SCALE:=F:DSCALE;

CONK DIALS <4>:<1> SCALE;
CONK SCALE <2>:<3> SCALE;

SEND 1 TO <2 > SCALE ;
SEND 1 TO <3> SCALE;
SEND 100 TO <4> SCALE;
SEND 0 TO <5> SCALE;
SEND SCALE TO tl> DLABEL4;

XVEC:=F:XVECTOR;
YVEC:=F:YVECTOR;
ZVEC:=F:ZVECTOR;
TRAN:=F:A000MULATE;

~.J

UPDATES FUNCTION — 29

CONN DIALS <5>:<1> XVEC;
CONN DIALS <6>:<1> YVEC;
CONN DIALS <7>:<1> ZVEC;
CONK XVEC <1>:<1> TRAN;
CONK YVEC <1>:<1> TRAN;
CONN ZVEC <1>:<1> TRAN;

SEND V3DC0,0,0> TO <2> TRAN;
SEND 'TRANS X' TO <1> DLABEL5;
SEND 'TRANS Y' TO <1> DLABEL6;
SEND 'TRANS Z' TO <1> DLABEL7;

UP := F:userupd;
configure a;
disc ciroute0<11>:all ;
Conn ciroute0<11>:<1>UPI ;
finish configuration;
{ initialize the USERUPD function }
send
charC6> {mode character}
&charC7) { do 7 updates }
&charC2>&charCl) { y rot --> UP001 }
&charCl)&charC2> { x rot --> UP002 }
&charCl)&charC3> { x rot --> UP003 }
&charCl>&charC4> { x rot --> UP004 }
&charC2)&charC5) { y rot --> UP005 }
&charC5)&char(6> { x trans --> UP006 }
&charC9>&charC7) { string --> UP007 }
to <1>UP;

INIT DISP;
DISPLAY ROBOT ARM;

ROBOT_ARM:=BEGIN S
{WINDOW}

—

Char scale .l then UP007;
TR:=TRANSLATE 0,0,0;
RT:=ROTATE 0;
SC:=SCALE .2;

INST FOOTING_COL,UP001 ;
END S;

Up007 := Char -1 ,-.9 'XXXX';

30 - UPDATES FUNCTION

FOOTING_COL:=SET COLOR 0,1 APPLIED TO FOOTING;
FOOTING :=SCALE 3,-2,3 APPLIED TO CYLINDER;

UPO0I:=ROTATE Y 0 APPLIED TO BASE COL;

BASE_COL:=SET COLOR 300,1 APPLIED TO BASE;

BASE:= BEGIN_S
TRANSLATE -2 , 7 , 0
TRANSLATE 2 , 7 , 0
TRANSLATE -2.5,0,0
TRANSLATE 2.5,0,0
SCALE 2
TRANSLATE 0,7,0

END S;

APPLIED TO BASE_L_HUB;
APPLIED TO BASE_R_HU6;
APPLIED TO BASE_SUPPORT;
APPLIED TO BASE_SUPPORT; •
APPLIED TO CYLINDER;
APPLIED TO UP002;

BASE_L_HUB :=ROTATE Z 90
BASE_R_HUB :=ROTATE Z -90
BASE SUPPORT:=SCALE .5,8,.5

APPLIED TO CYLINDER;
APPLIED TO CYLINDER;
APPLIED TO CYLINDER;

UPO02:=ROTATE X -90 APPLIED TO PRIMARY COL;

PRIMARY COL:=SET COLOR 240,1

PRIMARY:=BEGINS
TRANSLATE 2 , 0 , 0
TRANSLATE -.5,13,0
TRANSLATE .5,13,0
TRANSLATE -1 , -4 , 0
TRANSLATE 1 , -4 , 0
TRANSLATE 1.5,-4,0
TRANSLATE 0,13,0

END S;

APPLIED TO PRIMARY;

APPLIED TO PRIMARY_PIVOT;
APPLIED TO PRIMARY L HUB;
APPLIED TO PRIMARY_R_HUB;
APPLIED TO PRIMARY_SUPPORT;
APPLIED TO PRIMARY_SUPPORT;
APPLIED TO PRIMARY_TI E ;
APPLIED TO UP003;

PRIMARY_PIVOT :=ROTATE Z 90 APPLIED TO PRIMARY PIVOTC;
PRIMARY_L_HUB : =ROTATE Z 90 APPLIED TO CYLINDER;
PRIMARY_R_HUB :=ROTATE Z -90 APPLIED TO CYLINDER;
PRIMARY_SUPPORT:=SCALE .5,18,.5 APPLIED TO CYLINDER;
PRIMARY_TIE :=ROTATE Z 90 APPLIED TO PRIMARY_TIEC;
PRIMARY_PIVOTC :=SCALE 1 ,4,1 APPLIED TO CYLINDER;
PRIMARY_TIEC :=SCALE .5,3,.5 APPLIED TO CYLINDER;

UPO03:=ROTATE X 90 APPLIED TO SECONDARY COL;

SECONDARY_COL:=SET COLOR 180,1 APPLIED TO SECONDARY;

UPDATES FUNCTION - 31

SECONDARY:=BEGINS
TRANSLATE .5,11,0 APPLIED TO SECONDARY_HUB;
TRANSLATE 0,-4,0 APPLIED TO SECONDARY_SUPPORT;
TRANSLATE .5,0,0 APPLIED TO SECONDARY_HUB;
TRANSLATE 0,11,0 APPLIED TO UP004;

END S;

SECONDARY_HUB :=ROTATE Z 90 APPLIED TO CYLINDER;
SECONDARY SUPPORT:=SCALE .5,16,.5 APPLIED TO CYLINDER;

UP004:=ROTATE X -90 APPLIED TO WRIST COL;

WRIST COL:=SET COLOR 120,1 APPLIED TO WRIST;

WRIST:=BEGINS
TRANSLATE -
TRANS LAT E
TRANSLATE -
TRANSLAT E

.5,0,0 APPLIED TO WRIST_L_HUB;
5,0,0 APPLIED TO WRIST_R_HUB;
.85,-1,0 APPLIED TO WRIST_SUPPORT;
85,-1,0 APPLIED TO WRIST_SUPPORT;

TRANSLATE 0,2,0 APPLIED TO WRIST_PIVOT;
TRANSLATE 0,2.5,0 APPLIED TO UP005;

END S;

WRIST L HUB :=ROTATE Z 90 APPLIED TO WRIST HUB;
WRIST R HUB :=ROTATE Z -90 APPLIED TO WRIST HUB;
WRIST SUPPORT:=SCALE .35,3.0,.35 APPLIED TO CYLINDER;
WRIST PIVOT :=SCALE 1 .5,-.5,1.5 APPLIED TO CYLINDER;
WRIST NUB :=SCALE 1,.5,1 APPLIED TO CYLINDER;

UP005:=ROTATE X 0 APPLIED TO HAND COL;

HAND COL:=SET COLOR 60,1 APPLIED TO HAND;

HAND:=BEGINS
SCALE 1 .5,-.5,1.5 APPLIED TO CYLINDER;

ROTATE Y 0 APPLIED TO UP006;
ROTATE Y 90 APPLIED TO UP006;
ROTATE Y 180 APPLIED TO UP006;
ROTATE Y 270 APPLIED TO UP006;

END S;

UP006:=TRANSLATE 1,0,0 APPLIED TO FINGER;

FINGER:=SCALE .2,2,.2 APPLIED TO CYLINDER;

CONN CMUL <1>:<1> ROBOT ARM.RT;
CONN SCALE <1>:<1> ROBOT~ARM.SC;
CONK TRAM <1>:<1> ROBOT~ARM.TR;

32 - UPDATES FUNCTION

HOST COMMUNICATION EXAMPLE

Listed below is a FORTRAN subroutine called SHIP, which can be used in a
VAX/VMS environment to provide easy host communication with a PS 300 data
structure via the F:USERUPD function. This is a method to buffer USERUPD
commands if you do not run the GSRs.

Notice particularly the Configuration Mode statements mentioned in the
subroutine's Comments Section. These statements must be included in your data
structure to provide a link between the PS 300's host communication mechanisms
and the F:USERUPD function.

This subroutine is NOT contained on the PS 300 magnetic tape labeled PSDIST.

C
C ROUTINE TO SHIP A BUFFER IN COUNT MODE TO CIROUTEO<8>.
C
C This routine sends the indicated string to CIROUTEO<8> of the PS 300.
C CThe terminal must have been set to modes TTSYNC,NOWRAP,NOBROAD,EIGHTBIT.)
C The PS 300 must have been configured with the following code:
C
C CONFIGURE A;
C DISCONNECT CIROUTEO<8>:ALL;
C USERNOPI := F:NOP;
C CONNECT CIROUTEO<8>:<1>USERNOPI ;
C FINISH CONFIGURATION;
C
C FORTRAN calling sequence:
C
C CALL SHIPCJBUF,ICT,IRATE>
C
C Where:
C
C JBUF is the LOGICAL*1 buffer containing the data to be shipped Cif ICT>0).
C ICT is the INTEGER*2 byte count for JBUF. If ICT=O, then initial-
C ization is assumed, and the first byte of JBUF is taken as the name
C of the USERUPDATES function to be initialized.
C IRATE is INTEGER*2 maximum update rate, in frames per second. If
C this value is zero, update proceeds without any delay. (This
C argument is noticed only when ICT=O.)
C

UPDATES FUNCTION — 33

SUBROUTINE SHIP(JBUF,ICT,IRATE)

C
INCLUDE 'C$IODEF>'
C
INTEGER*2 ICT,IKT,IRATE
REAL DT,TIMEO,TIME,T
LOGICAL*1 JBUFC 1) ,JKTC2) ,SIZ(4) , INITC68>
EQUIVALENCE CIKT,JKT>
C
INTEGER*4 SYSQIO,SYSQIOW,CHAN,STATUS,STAT2,SYS$ASSIGN
INTEGER*2 IOSBC4),IOSB2C4)
CHARACTER* 3 U N I T
DATA ISW/0/,SIZ/6,0,0,'5'/,T,DT/2*0./
DATA INIT/6,0,65,'0',
~ ~D~ ~ ~I' ~ ~S',~C' ~'0' ~'N' ~'N' ~'E' ~'C~ ~'T',
2 ' , 'U' , 'S' , ' E' , ' R' , ' N' , '0' , ' P' , ' : ' , 'A' ,

4 ~E' ~ 'R' , 'U' ~ ~P' , 'D' , 'A' , 'T~ , ~E' ~ 'S~ , '
5 'C','0','N','N','E','C','T',' ','U','S',

C
IFtISW.EQ.O.OR.ICT.EQ.O> TIMED=SECNDSCO.)
IFCISW.NE.O> GO TO 5
ISW=1
UNIT='TT:'
STATUS=SYS$ASSIGNCUNIT,CHAN„>
IFCSTATUS.EQ.I) GO TO 5
TYPE *,'BAD ASSIGN! -- ',STATUS
STOP
C
5 IFCICT.NE.0) GO TO 10
T=O.
DT=O.
IFCIRATE.NE.0) DT=1./FLOATCIRATE)
INIT(28)=JBUFCI)
INITC67)=JBUFC 1)

C
C This system call sends the array INIT to the PS 300
C
STAT2=SYS$QIOWC,%VAL(CHAN),%VALCIO$_WRITEVBLK+IO$M NOFORMAT
l +IO$M_CANCTRLO>,IOSB2,,,INIT,%VALC68),,,,)
STATUS=STAT2
GO TO 50

34 — UPDATES FUNCTION

10 IKT=ICT+l
SIZ(2)=JKTC2)
SIZC3)=JKTCI)
T=T+DT
C
30 TIME=SECNDSCTIMEO)
IFCTIME.LT.T) GO TO 30

C
C This system call sends the 4—byte count mode prefix to the PS 300.
C
C
STAT2=SYS$QIQWC,9aVALCCHAN),%VAL(IO$_WRITEVBLK+IO$M_NOFORMAT
1 +IO$M CANCTRLO),IOSB2,,,SIZ,%VALC4),,,,)

C
C
C This system call sends ICT bytes form buffer JBUF to the PS 300.
C
C
STATUS=SYS$QIOWC,%VALCCHAN),%VALCIO$_WRITEVBLK+IO$M_NOFORMAT
1 +IO$M CANCTRLO),IOSB,,,JBUF,%VAL(ICT),,,,)

C
50 IFCSTATUS.EQ.I.AND.STAT2.EQ.l .AND.I0SB2(1>.EQ.1) RETURN
TYPE *,'COMMUNICATION ERROR! -- STATUS = ',
1 STATUS,STAT2,IOSBCI),IOSB2C1)
STOP
END

UPDATES FUNCTION — 35

FLOATING POINT CONVERSION ROUTINE

Following are two program segments, one written in FORTRAN and the other
written in VAX assembly language. These segments convert standard VAX
4—byte floating—point into the floating—point format expected by the
F:USERUPD function. Both program segments are contained on the PS 300
magnetic tape labeled PSDIST in the file TUB.MAR.

C
C CONVERSION ROUTINE FOR PS 300 FLOATING POINT NUMBERS
C
C Calling sequence:
C
C CALL FPCVTCA,JNUM>
C
C Where
C
C A is the REAL*4 number to be converted.
C JNUM is the LOGICAL*1 string of three bytes to receive the converted
C result.
C
SUBROUTINE FPCVT(A,JNUM>
REAL A
LOGICAL* 1 JNUMC 3)

C
CALL PUPDEXPCA,JNUMCI))
CALL PUPDFRACA,JNUMC2>,JNUMC3>)
RETURN
END

36 - UPDATES FUNCTION

ASSEMBLY LANGUAGE CONVERSION ROUTINES

.TITLE TLIB

.IDENT /Ol/

PUPDEXP--Return EXCESS 64 exponent of a real
Pascal calling sequence
PROCEDURE PUPDEXP C r: Real ; VAR exp: INT8);

FORTRAN calling sequence
SUBROUTINE PUPDEXP(r, exp)
Where
R is REAL*4 number to be converted
exp is BYTE variable to return the exponent

PUPDEXP::
WORD
MOVL
ASHL
BICL2
BEQL
SUBL2

1$: BICL2
ASHL
BICL2
BISB3

RET

~M<R2,
@4CAP) ,
#-7,R2,
#~XFFFFFF00,
1$;
#-64,
#X80,
#-8,R2,
#~XFFFFFF7F,
R2,R3,@8CAP>

R3>
R2
R3
R3

R3
R3
R2
R2

PUPDFRA--Return hi and

Move into position
Keep only exponent data
If zero, leave it alone
Else make it excess 64
Clear sign-bit position
Go get the s i gn bi t
Clear all but sign bit
Set sign

1 ow byte s of a rea 1

Pascal Calling sequence
PROCEDURE PUPDFRA C r: Real ; VAR mhi ,mlo:

FORTRAN calling sequence
SUBROUTINE PUPDFRA(r, mhi , mlo >
Where
r is REAL*4 number to be converted
mhi , and mlo are BYTE variables to return
of the mantissa

PUPDFRA::
WORD ~M<R2,R3,R4>
MOVL @4CAP>,R4
ROTL #1 ,R4,R4
BICB3 #~XFFFFFFOO,R4,@8CAP>
ROTL #8,R4,R4
BICB3 #~XFFFFFFOO,R4,@12(AP)

RET

Int8 >;

the High and low bytes

END

