
PS 300 DOCUMENT SET

VOIUME 3a

PROGRAMMER REFERENCE

The contents of this volume are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans &Sutherland.

Many concepts in this volume are proprietary to Evans &
Sutherland, and are protected as trade secrets or covered by
U.S. and foreign patents or patents pending.

Evans & Sutherland assumes no responsibility for errors or
inaccuracies in this document. It contains the most complete
and accurate information available at the time of
publication, and is subject to change without notice.

PS 1, PS2, MPS, and PS 300 are trademarks of the Evans &
Sutherland Computer Corporation.

Copyright o 1984
EVANS &SUTHERLAND COMPUTER CORPORATION

P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84121

UOLU VE 3A

PROGRAvVER REFERE\CE

Volume 3A of the PS 300 User Documentation Set is a graphics programmer's reference
to PS 300 commands and functions. Volume 3A and Volume 3B, which contains
information on FORTRAN and Pascal Graphics Support Routines CGSRs), together
constitute a complete source of reference materials for PS 300 programmers.
Reference material of interest to the System Manager is contained in Volume 5.

This volume contains the following sections.

PS 300 COMMAND SUMMARY

This document is a concise summary of information about the ASCII form of
every command in the PS 300 Command Language set. The long form and
acceptable short form of each command are given, together with information on
parameters, default values, and other requirements. Where a command creates a
node in a display tree, the type of node is indicated. If that node can be updated
with values from an interactive device, the inputs to the node and acceptable
data types are shown in a diagram. Examples of the use of commands are given
whenever appropriate, and related information is included as notes. The
summary is alphabetized for ease of use. Appendices list commands by
classification, give the syntax of each command, and provide across—reference
to the Graphics Support Routines in Volume 3B.

PS 300 FUNCTION SUMMARY

This is a summary, in diagrams and text, of essential information about each
function available to the user in the PS 300 intrinsic function and initial function
instance set. Functions are represented as boxes with numbered input queues
and outputs. Acceptable data types are indicated, as are default values and
associated functions where appropriate. Notes explain any further features or
peculiarities of functions, and examples of usage are often provided.

PS 300 GRAPHICS FIRMWARE RELEASE NOTES

The Graphics Firmware Release Notes summarize the new features of the A 1
release and list corrected problems, known problems, and miscellaneous notes
and advice. They are specifically intended to point the user to revised
documentation that discusses the firmware changes in detail. The Diagnostic
Release Notes describe all new diagnostics and changes in the PS 300 diagnostic
software.

USER ERROR REPORTING AND INFORMATION MESSAGES

This document lists and explains all messages generated by the PS 300. Included
are informational messages, warning messages, and non —fatal and fatal error
messages.

PS 300 CO vVA\D SU VVARY

The contents of this document -are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans &Sutherland.

Many concepts in this document are proprietary to Evans &
Sutherland, and are protected as trade secrets or covered by
U.S. and foreign patents or patents pending.

Evans & Sutherland assumes no responsibility for errors or
inaccuracies in this document. It contains the most complete
and accurate information available at the time of
publication, and is subject to change without notice.

PSI, PS2, MPS, and PS 300 are trademarks of the Evans &
Sutherland Computer Corporation.

Copyright o 1984
E1/ANS &SUTHERLAND COMPUTER CORPORATION

P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84121

PREFACE

This manual is a PS 300 Command Language reference for graphics programmers who
are already familiar with the basic operation of the PS 300.

Commands are ordered alphabetically, with the command name in the upper right—hand
corner of each page. The following information, where relevant, is given for each
command:

• Name
• Category and sub—category
• Syntax
• Description
• Parameters
• Defaults
• Notes
• Display tree node created
• Inputs for updating node
• Notes on inputs
• Associated functions
• Examples

Appendix A shows how the commands are grouped into categories.

For a quick reference, Appendix B contains an alphabetical listing of just the command
syntax.

Appendix Ccontains across—reference between the ASCII form of the commands and
the Graphics Support Routines.

Since some commands require the ASCII decimal equivalent of characters in their
parameters, an ASCII chart with decimal values is included after the appendices.

PS 300 COMMAND SUMMARY

CONTENTS

ALLOCATE PLOTTER 3

APPLIED TO/THEN 4

ATTRIBUTES 5

BEGIN FONT...END FONT 8

BEGIN S...END S 10

BEGIN...END 14

BSPLINE 15

CHARACTER FONT I8

CHARACTER ROTATE 19

CHARACTER SCALE 21

CHARACTERS 23

COMMAND STATUS 25

CONNECT 26

COPY 27

DEALLOCATE PLOTTER 29

DECREMENT LE1/EL OF DETAIL 30

PS 300 COMMAND SUMMARY

DELETE 3 2

DISCONNECT 3 3

DISPLAY 34

ERASE PATTERN FROM 35

EYE 36

FIELD OF VIEW 38

FOLLOW WITH 40

FORGET (Structures) 42

FORGET (units) 43

(Function Instancing) 44

IF CONDITIONAL BIT 45

IF LEVEL OF DETAIL 47

IF PHASE 49

ILLUMINATION 50

INCLUDE 5 2

INCREMENT LE1/EL OF DETAIL 53

INITIALIZE 55

INSTANCE OF 5 7

LABELS 5 g

LOOK 61

MATRIX 2x2 64

MATRIX 3x3 66

MATRIX 4x3 68

PS 300 COMMAND SUMMARY

MATRIX 4x4 70

(Naming of Display Tree Nodes) 72

OPTIMIZE MEMORY 73

OPTIMIZE STRUCTURE;...END OPTIMIZE; 74

PATTERN 76

PATTERN WITH 77

POLYGON 78

POLYNOMIAL 81

PREFIX WITH 83

RATIONAL BSPLINE 84

RATIONAL POLYNOMIAL 88

REBOOT 91

REMOVE 92

REMOVE FOLLOWER 93

REMOVE FROM 94

REMOVE PREFIX 95

RESERVE WORKING STORAGE 96

!RESET 98

ROTATE 99

SCALE 101

SECTIONING PLANE 103

SEND 105

PS 300 COMMAND SUMMARY

SEND nu mber~mode 107

SEND VL. 108

SET CHARACTERS 109

SET COLOR 1 10

SET COLOR BLENDING 1 12

SET CONDITIONAL BIT 1 14

SET CONTRAST 1 16

SET CSM 1 18

SET DEPTH CLIPPING 120

SET DISPLAYS 122

SET INTENSITY 124

SET LEVEL OF DETAIL 126

SET PICKING 128

SET PICKING IDENTIFIER 130

SET PICKING LOCATION 132

SET PLOTTER 134

SET RATE 135

SET RATE EXTERNAL 137

SETUP CNESS 139

SOLID RENDERING 140

STANDARD FONT 143

STORE 145

PS 300 COMMAND SUMMARY

SURFACE RENDERING 146

TEXT SIZE 149

TRANSLATE 151

VARIABLE 153

VECTOR LIST 154

VIEI~/PORT 160

WINDOW 163

WITH PATTERN 165

XFORM 167

APPENDIX A. PS 300 COMMANDS BY CATEGORY

APPENDIX B. PS 300 COMMAND SYNTAX

APPENDIX C. PS 300 ASCII COMMANDS AND CORRESPONDING GSRs

ASCII CHARACTER CODE SET

PS 300 COMMAND SUMMARY — 1

C o m m dnd Syntax

A command's syntax is shown at the top of the page. In the syntax, UPPERCASE
letters are required and lowercase letters are optional. Command parameters
are shown in the syntax in boldface. Parameters are optional if enclosed in
[square brackets], and required otherwise.

There are two main types of PS 300 commands —data structuring commands and
immediate action commands.

D dtd Structuring Commands

The data structuring commands are the only commands that can be named either
directly or indirectly (by being included in a BEGIN_STRUCTURE ...
END STRUCTURE). These commands are named because they create nodes in a
display structure (display tree) in mass memory. These nodes have to be
accessed, and the name given to the command which creates a node is the
address of that node in memory.

Immediate Action Commands

Immediate action commands cannot be named. These commands perform
immediate operations and da not create nodes in mass memory. In other words,
there is nothing to associate an address (name) with.

PS 300 COMMAND SUMMARY ALLOCATE PLOTTER

GENERAL -Hardware Attributes

FORMAT

name := ALLOCATE PLOTTER devi ce_number;

DESCRIPTION

Allows you to specify which of up to four plotters to allocate in order to obtain
hardcopies of the currently displayed PS 300 screen image. It also supresses
automatic form feeds between plots.

PARAMETERS

devi ce_number - An integer between 0 and 3 which indicates the device number
of the plotter you want to allocate.

NOTE

The main use of this command is to supress automatic form feeds between plots.

DISPLAY TREE NODE CREATED

ALLOCATE PLOTTER operation node.

INPUTS FOR UPDATING NODE

None.

3

APPLIED TO/THEN PS 300 COMMAND SUMMARY

STRUCTURE -Explicit Referencing

FORMAT

name := operation command CAPPLied to Hamel];
name := operati on_command [THEN name 1];

DESCRIPTION

Associates a command to the structure which is to be affected by the command.

PARAMETERS

operat~on_comman - A command that creates an operation node in a display
tree.

Hamel -Structure that will be affected by the command.

NOTE

APPLied to and THEN are synonyms. The terms are completely interchangeable.

DISPLAY TREE NODE CREATED

The command node with a pointer to the structure name l .

EXAMPLE

A:= ROTate in X 45 THEN B;

B:= VECtor_list n=5 1,1 - l , l - l ,-1 1,-1 1,1;

4

PS 300 COMMAND SUMMARY ATTRIBUTES

RENDERING —Data Structuring CPS 340>

FORMAT

name := ATTRIBUTES attributes [AND attributes];

DESCRIPTION

Specifies the various characteristics of polygons used in the creation of shaded
renderings. This command is only used with the PS 340. For a detailed
explanation of defining and interacting with shaded images, consult the "Using
the PS 340 -Rendering Operations For Surfaces and Solids" tutorial in Volume 2.

PARAMETERS

dttri bates - The attributes of a polygon are defined as follows.

[COLOR h[,s[,i]]] [DIFFUSE d] [SPECULAR s]

where

h - is a real number specifying the hue in degrees around the
color wheel. Pure blue is 0 and 360, pure red is 120, and pure
green is 240.

s - is a real number specifying saturation. No saturation (gray)
is 0 and full saturation (full toned colors) is 1.

i - is a real number specifying intensity. No intensity (black) is
0, full intensity (white) is 1.

d - is a real number from 0 to 1 specifying the proportion of
color contributed by diffuse reflection versus that
contributed by specular reflection. Increasing d makes the
surface more matte. Decreasing d makes it more shiny.

S - is an integer from 0 to 10 which adjusts the concentration of
specular highlights. The more metallic an object is, the more
concentrated the specular highlights.

5

ATTRIBUTES PS 300 COMMAND SUMMARY

RENDERING —Data Structuring CPS 340)

Ccontinued)

DEFAULTS

If no color is specified, the default is white (s = 0, i = 1). If saturation and
intensity are not specified, they default to 1. If only hue and saturation are
specified, intensity defaults to 1. If no diffuse attribute is given, d defaults to
.75. If no specular attribute is given, s defaults to 4.

NOTES

1. Polygon attribute nodes are created in Mass Memory but are not part of a
display tree. The attributes specified in an ATTRIBUTES command are
assigned to polygons which include a WITH ATTRIBUTES clause. The
attributes specified in a WITH ATTRIBUTES clause of a polygon command
apply to all subsequent polygons until superseded by another WITH
ATTRIBUTES clause. If no WITH ATTRIBUTES option is given for a polygon
node, default attributes are assumed. The default attributes are 0,0,1 for
color, 0.75 for diffuse, and 4 f or specular.

2, The various attributes may be changed from a function network via inputs to
an attribute node, but the changes have no effect until a new rendering is
created.

3. A second set of attributes may be given after the word AND in the
ATTRIBUTES command. These attributes apply to the obverse side of the
polygons) concerned. In other words, the two sides of an object may have
different attributes. The attributes defined in the first attr 1 ute s pertain
to front —facing polygons. Those in the AND attributes clause pertain to
back f acing polygons.

NODE CREATED

Polygon attribute definition node. This node resides in Mass Memory, but is not
included in a display tree.

6

PS 300 COMMAND SUMMARY ATTRIBUTES

RENDERING -Data Structuring CPS 340)

Ccontinued)

INPUTS FOR UPDATING NODE

name

/ \

Real ,2D,3D
Real

Integer

Rea 1 , 2D , 3D
Real

Integer

NOTES ON INPUTS

< 1 >Updates hue, saturati on ,intensity
< 2 > Updates diffuse value
< 3 > Updates specular value
<4>

Undefined

<10 >
<11 >Updates hue,saturation,intensity
<12> Updates diffuse value
<13 > Updates specular value

Polygon Attributes

IAS0676

1. Inputs < 1 > and < 1 1 > accept a real number as hue, a 2D vector as hue and
saturation, and a 3D vector as hue, saturation and intensity.

2. Values sent to inputs < 1 >, <2>, and <3> specify the COLOR for the front of
the polygons) or for both sides if no obverse attributes are given.

3. If anything other than a 3D vector is sent to input < 1 > or < 1 1 >, default
values for the other variables are assumed.

7 -

BEGIN FONT...END FONT PS 300 COMMAND SUMMARY

MODELING —Primitives

FORMAT

name := BEGIN Font
CCCO]: N=n {itemized 2D vectors };]

CCCi]: N=n {itemized 2D vectors };]

CCC127]: N=n {itemized 2D vectors };]
END_Font;

DESCRIPTION

Defines alternative character fonts, using itemized 2D vector lists to describe
each character. Up to 128 PS 300 character codes may be defined for each font.

PARAMETERS

n —Number of vectors in ZD vector list.

i — Decimal ASCII code to be defined. The square brackets around the ASCII
number from 0 to 127 are required.

{itemized 2D vectors} — Vectors making up the ASCII character being defined
(P x 1, y 1, L x2, y2, etc).

NOTES

1. Not all ASCII codes need to be defined for a font. Nothing is output for an
undefined character.

2. There is no restriction on the range of values for the 2D vector making up a
character, but for correct spacing and orientation to adjacent characters,
the range in x and y should be kept between 0 and 1.

8

PS 300 COMMAND SUMMARY BEGIN FONT. . .END FONT

MODELING -Primitives

(continued>

NODE CREATED

Alternate character font definition node. This node resides in Mass Memory but
is not part of a display tree. To specify an alternate font, the character FONT
command is used. This creates a character FONT node in a display tree which
points to the appropriate alternate font definition.

INPUTS FOR UPDATING NODE

None.

EXAMPLE

A := BEGIN Font
C[65]: N=5 P 0,0 L .9,0 L .9,.9 L 0,.9 L 0,0;

END_Font;

B := BEGIN Structure
character FONT A;
CHARacters 'ABA';

END_Structure;

DISPIay B;

{Two squares -the new A -will appear right next to each other with the lower
left corner of the first at the origin. The letter B is not defined in character
FONT A, so nothing is DISPlayed for B. Note that this examrle creates a special
symbol (a square) rather then defining an alternate character font.}

9

BEGIN S...END S PS 300 COMMAND SUMMARY

STRUCTURE -Implicit Referencing

FORMAT

name := BEGIN Structure
[name 1:=~ nameab 1 e_command;

[namen:=] nameab 1 e_command;
END_Structure;

DESCRIPTION

Groups a set of viewing and/or modeling commands so that each element does
not need to be explicitly named and APPLied to the next structure in line. This
does not, however, prevent naming nested commands directly or explicitly
applying a command to another structure via APPLied to.

PARAMETERS

Hamel . .namen - Optional names for individual commands inside the
BEGIN_S...END_S, allowing reference to these specific
commands from elsewhere (see Note 3). The PS 300 prefixes
these names with the name of the outer structure and a period
(.), ad infinitum. So, for example, the command defined as
Hamel in the structure is referenced as name.namel.

nameabl e_command - Nameable commands are those that can be prefixed with
"name :_", with the following exceptions:

• COMmand STATus can also be used.
• Intrinsic Functions cannot be instanced.
• name := nil; cannot be used.

- 10 -

PS 300 COMMAND SUMMARY

STRUCTURE -Implicit Referencing

BEGIN S. . ,END S

NOTES

(continued)

1. Essentially, any data structuring command except a function instancing
command can be used.

2. Anon-data command inside a BEGIN_S...END_S is applied to every node that
follows in the structure unless it is explicitly APPLied to another structure,
in which case it only affects the APPLied to structure (see examples).

3. If a command inside the structure is to be modified later by a function
network or from the host, it must be named so that it can be referenced. Its
referencing name is the name with all prefixes (e.g.

name

.Hamel).

DISPLAY TREE NODE CREATED

The various nodes created by the "nameable commands" linked together as
specified. The top node of this structure is name and is an instance node.

INPUTS FOR UPDATING NODE

The nodes that may be updated are created by those nameable commands that
are explicitly named (see note 3). For inputs, refer to the individual command
descriptions.

BEGIN S. . .END S PS 300 COMMAND SUMMARY

STRUCTURE -Implicit Referencing

Ccontinued>

EXAMPLES

A:= BEGIN Structure
TRANslate by 2,3;
BEGIN_Structure

ROTate 30;
SCALE .5 THEN B;

END_Structure;
UECtor_list ... ;

Rot:= ROTate in X 45 THEN C;
ROTate in Y 90;
character FONT D THEN E;

Char:= CHARacters 'ABC';
Data= UECtor_list ... ;

END_Structure;

{Ta modify the X angle of rotation, a 3x3 matrix would be sent to < 1 >A.rot. You
could not modify the Y rotation angle since it is not explicitly named.}

{An equivalent display tree could be created without using BEGIN_Structure
END Structure, for example:}

A:= INSTance of F;
F:= TRANslate by 2,3 THEN G;
G:= INSTance o f H,I,A. R OT,J
H:= INSTance of K;
I:= UECtor_list ...;
A.ROT:= ROTate in X 45 THEN C:
J:= ROTate in X 90 THEN L;
K:= ROTate in Y 30 THEN M;
L:= INSTance of N,A.CHAR,A.DAT;
M:= SCALE .5 THEN B;
N:= character FONT D THEN E;
A.CHAR:= CHARacters 'ABC';
A.DAT:= UECtor_list ... ;

. .

12

PS 300 COMMAND SUMMARY

STRUCTURE -Implicit Referencing

BEGIN S. . .END S

EXAMPLES

A

(continued)

- 13 -

BEGIN. . .END PS 300 COMMAND SUMMARY

GENERAL -Command Control and Status

FORMAT

BEGIN
command;
command;

command;
END;

DESCRIPTION

Defines a "batch" of commands which. take effect in a single screen update, so
that they appear to be executed simultaneously.

PARAMETERS

NOTE

command —Any PS 300 command.

Although any commands may be used inside a BEGIN...END structure, only
commands that create, display, or delete objects will happen "simultaneously".

EXAMPLE

BEGIN
DISPIay A;
A:= VECtor_list n=5 1,1 —1,l —1,-1 1,-1 l,l;
DISPIay B;
B:= 1/ECtor_list n=4 0,0 1,0 1,1 0,0;
END;

{A and B will be displayed si.multaneously.}

V

- 14 -

PS 300 COMMAND SUMMARY BSPLINE

MODELING —Primitives

FORMAT

name := BSpline ORDER= k
[OPEN/CLOSED] [NONPERIodic/PERIodic] [N= n]
[VERTICES =] xl ,yl ,zl

xZ,y2,z2

xn,yn,zn
[KNOTS] = tl , t2 , . . . , tj
CHORDS = q;

DESCRIPTION

Evaluates a B-spline curve, allowing the parametric description of the curve
form without the need to specify or transfer the coordinates of each constituent
vector.

The B-spline curve C is defined as:

n
C(t) = E piNi,k(t)

i=1

where

pi - ith vertex of the B-spline's defining polygon

and

Ni,k - ith B-spline blending function of order k.

The parameter t of the curve and blending functions is defined over a sequence
of knot intervals tl,t2,...,tn+k. Different knot sequences define different types
of B-splines. Two common knot sequences are uniform non-periodic and uniform
periodic. A uniform non-periodic B-spline is defined by the knot sequence:

0 (for j < k)
t j = j-k (fork < j < n)

A uniform periodic B-spline is defined by the knot sequence:

- 15 -

BSPLINE PS 300 COMMAND SUMMARY

MODELING -Primitives

(continued)

DESCRIPTI~7N (continued)

The blending functions can be defined recursively as

Ni, l (t) = 1 (if ti < t < ti+ 1), 0 otherwise

Ni,k(t) _ (t-ti)Ni,k-1(t) + (ti+k-t)Ni+ l ,k-1(t)
ti+k- l -ti ti+k-ti+ 1

The curve is evaluated at the points:

t = (1-i)ti + it j-k+ 1

q

for i=0,1,2,...,q.

PARAMETERS

k -The order of the curve (0 < k).

n -The number of vertices (used to anticipate storage requirements).

x 1 ,yl , zl . . . xn , yn , zn - The vertices of the defining polygon of the curve. The
z component is optional.

tl , tl , . . . , tj - User specified knot sequence. Because closed B-splines are
evaluated as open B-splines with duplicate vertices, the number
of knots required is:

n+k for open B-splines
n+k+ 1 for closed non-periodic B-splines
n+2k-1 for closed periodic B-splines

The knots must also be non-decreasing.

q -The number of vectors to be created CO < q < 32767).

V

- 16 -

PS 300 COMMAND SUMMARY BSPLINE

MODELING -Primitives

(continued)

NOTES

1, OPEN or CLOSED is an option which describes the B-spline defining
polygon. The default is OPEN, (Note that CLOSED merely describes the
polygon, eliminating repetition of the last vertex.)

2. If no knot sequence is given, NONPERIODIC or PERIODIC is an option
which specifies that the non-periodic or periodic knot sequence be used as
the knot sequence. NONPERIODIC is the default for open B-splints;
PERIODIC is the default for closed B-splines.

3. At least k vertices must be given, or the order k will be reduced accordingly.

DISPLAY TREE NODE CREATED

B-spline vector list data node.

INPUTS FOR UPDATING NODE

name

Integer

Real

2D,3D,4~ vector

NOTES ON INPUT

< 1 > Updates chords

<2> Updates knots

< 3 > Updates vertices

B-spline

IAS0604

1, The z value of a vector defaults to 0 when a 2D vector is sent to a 3D
B-spline.

2. W and z values should be ignored when a 3D or 4D vector is sent to a 2D
Bspline.

- 17 -

CHARACTER FONT PS 300 COMMAND SUMMARY

VIEWING -Appearance Attributes

FORMAT

name := character FONT fontname [APPLied to name 1];

DESCRIPTION

Establishes a user—defined alternate character font as the working font. This
font must have been previously defined with ,the BEGIN_Font ... END_Font
command. If the font is not defined, the current font is still used.

PARAMETERS

font name —Name of the desired font.

Hamel —Structure to use the character font.

DISPLAY TREE NODE CREATED

Character font operation node. This node points to the definition of the
alternate font that is to be used.

INPUTS FOR UPDATING NODE

None.

EXAMPLE

New Font := BEGIN Font

{character definitions}
END_Font

A := BEGIN Structure
CHARacters 'HERE'; {this uses standard font}
character FONT New font;
CHARacters 0,-2 'HERE'; {this uses the font New_Font}

END_Structure;

DISPIay A;

— 18 —

PS 300 COMMAND SUMMARY CHARACTER ROTATE

MODELING -Character Transformations

FORMAT

name := CHARacter ROTate angle [APPLied to Hamel];

DESCRIPTION

Rotates characters. Creates a 2x2 rotation matrix to be applied to the specified
characters (in name 1).

PARAMETERS

angle — Z —rotation angle in degrees (unless other units are specified). When you
are looking along the positive direction of the Z axis, positive angl e
values produce counterclockwise rotations.

DISPLAY TREE NODE CREATED

2x2 matrix operation node.

INPUTS FOR UPDATING NODE

2x2 matri x

NOTE ON INPUT

Any 2x2 matrix is legal.

name

<1> Changes matrix value

2x2 matrix

rAso6o5

- 19 -

CHARACTER ROTATE PS 300 COMMAND SUMMARY

MODELING -Character Transformations

(continued)

ASSOCIATED FUNCTIONS

F:MATRIX2, F:(ROTATE, F:(SCALE

EXAMPLE

A:= CHARacter ROTate 90 THEN B;

B:— CHARacters 'Vertical';

{If A were DISPlayed, the text 1ertical would start at the origin and read up the
Y axis.}

— 20 —

PS 300 COMMAND SUMMARY CHARACTER SCALE

MODELING -Character Transformation

FORMAT

name := CHARacter SCAIe s [APPLied to Hamel];
name := CHARacter SCAIe s x , sy [APPLied to name l];

DESCRIPTION

Creates a uniform (S) or non —uniform (sx, Sy) .2x2 scale matrix to scale the
specified characters.

PARAMETERS

s —Scaling factor for both axes.

sx, Sy —Separate axial scaling factors.

name 1 — Structure whose characters are to be scaled (vector lists in the
structure are not affected).

DISPLAY TREE NODE CREATED

2x2 matrix operation node.

INPUTS FOR UPDATING NODE

2x2 matrix

NOTE ON INPUT

Any 2x2 matrix is legal.

name

<1> Changes matrix value

2x2 matrix

IAS0605

- 21 -

CHARACTER SCALE PS 300 COMMAND SUMMARY

MODELING -Character Transformation

(continued)

ASSOCIATED FUNCTIONS

F:MATRIX2, F:(ROTATE, F:CSCALE

EXAMPLE

A;= CHARacter SCAIe .5 THEN B;

B;= CHARacters 'Half scale';

_ 22 _

PS 300 COMMAND SUMMARY CHARACTERS

MODELING —Primitives

FORMAT

name := CHARacters [x , y[,z]][STEP dx , dy] 'string';

DESCRIPTION

Displays character strings and (optionally) specifies their location and placement.

PARAMETERS

x,y,z - Location in the data space of the beginning of the character string (i.e.,
the lower left corner of a box enclosing the first character).

dx , dy - Spacing between the characters, in character size units. The width of
the character is one dx unit; the height is one dy unit.

string -Text string to be displayed (up to 240 characters).

DEFAULT

If string is the only parameter specified, the character string will start at 0,0,0
and dx , dy will be 1,0 (i.e., regular horizontal spacing).

DISPLAY TREE NODE CREATED

Characters data node.

-23-

CHARACTERS PS 300 COMMAND SUMMARY

MODELING — Primitives

tcontinued)

INPUTS FOR UPDATING NODE

name

Character

2D , 3q , 4D vec tor~-

2D , 3D , 40 vector~-

Integer

Integer

String

Stri ng

String

<last > Changes the last character

< position > Changes the starting position

<step > Changes the stepping

<clear > Clears the current string

< delete> Deletes n characters (from the end)

< append > Appends to end of current string

<i> Replaces current string with new string,
starting at the i-th character

<substitute> Replaces entire current string
with new string

CHARACTERS

IAS0606

EXAMPLES

CHARacters 'HERE';

CHARacters 3,-3 STEP .5,1 'HERE';

CHARacters STEP —1,0 'HERE';

—24—

PS 300 COMMAND SUMMARY COMMAND STATUS

GENERAL -Command Control and Status

FORMAT

COMmand STATu s;

DESCRIPTION

Used with BEGIN...END and BEGIN STRUCTURE...END STRUCTURE commands:
to report the current level to which these structures are nested.

PARAMETERS

None.

NOTES

1. If a syntactically correct command produces a parser syntax error, there
may be unENDed BEGINs or BEGIN_STRUCTUREs causing the PS 300 to
expect one or more ENDs or END_STRUCTUREs. By sending COMMAND
STATUS, you can see if this is the case.

2. The 'RESET command can be used to get out of unended BEGIN's or
BEGIN_STRUCTURE's when a problem occurs, (see '.RESET).

-25-

CONNECT PS 300 COMMAND SUMMARY

FUNCTION

FORMAT

CONNect name 1 < i > : < j >name2;

DESCRIPTION

Connects function instance namel's output <i > to input <j > of function instance
or display tree node name2.

PARAMETERS

Hamel —Function instance to be connected from.

<i > — Output number of function instance Hamel to be connected. Refer to the
PS 300 Function Summary for specific functions and acceptable values.

name2 —Function instance or display tree node to be connected to.

<j> — Input number or input name (in the case of some display tree nodes) of
name2 to be connected. Refer to the PS 300 Function Summary for
specific functions and acceptable values.

—26—

PS 300 COMMAND SUMMARY COPY

MODELING -Primitives

FORMAT

name := COPY name 1 [START=] i [,] [COUNT=] n;

DESCRIPTION

Creates a UECtor list node containing a group of consecutive vectors copied
from another vector list (name 1) or a LABELS node containing a group of
consecutive labels from an existing block (Hamel).

PARAMETERS

name -Name of new UECtor list or LABELS node.

Hamel -Name of the node being copied from.

i - First vector or index of first label in Hamel to be copied.

n - Last vector or count of labels in Hamel to be copied.

NOTE

The keywords START= and COUNT= are optional, but if one is used, both must
be used.

DISPLAY TREE NODE CREATED

UECtor list or LABELS data node.

INPUTS FOR UPDATING NODE

(See UECtor list or LABELS command).

2~

COPY PS 300 COMMAND SUMMARY

MODELING —Primitives

(continued)

EXAMPLES

A := 1/ECtor_list n=5 .5,.5 —.5,.5 —.5,—.5 .5,—.5 .5,.5;

B := COPY A 1 3;

{This would be the same as saying:
B := 1/ECtor_list n=3 .5,.5 —.5,.5 —.5,—.5;}

C := COPY ASTART=2 ,COUNT=2;

{This would be the same as saying:
C := VECtor_list n=2 —.5,,5 —.5,—.5;}

28

PS 300 COMMAND SUMMARY DEALLOCATE PLOTTER

GENERAL -Hardware Attributes

FORMAT

name := DEALLOCATE PLOTTER devi ce_number;

DESCRIPTION

Allows you to specify which of up to four plotters to deallocate after hardcopies
of the currently displayed PS 300 screen image have been plotted. Enables
automatic form feeds between plots.

PARAMETERS

devi ce_number - An integer between 0 and 3 which indicates the device number
of the plotter you want to deallocate.

DISPLAY TREE NODE CREATED

DEALLOCATE PLOTTER operation node.

INPUTS FOR UPDATING NODE

None.

I"1

DECREMENT LEVEL OF DETAIL PS 300 COMMAND SUMMARY

STRUCTURE —Attributes

FORMAT

name := DECrement LEVeI_of_detail[APPLied to Hamel];

DESCRIPTION

Decrements the current level of detail by 1 when
name is being traversed.

PARAMETERS

name

1 -Structure to be affected by the decreased level of detail.

NOTE

There is really only one global level of detail; this command only changes the
value of the level of detail while the named node and nodes below it in a display
tree are being traversed.

DISPLAY TREE NODE CREATED

DECREMENT LEVEL OF DETAIL operation node.

INPUTS FOR UPDATING NODE

None.

- 30 -

PS 300 COMMAND SUMMARY DECREMENT LEVEL OF DETAIL

STRUCTURE -Attributes

(continued>

EXAMPLE

A:= SET LEUeI of detail TO 5 THEN B;

B:= BEGIN Structure
IF LEUeI_of_detail = 4 THEN C;
IF LEUeI of detail = 5 THEN D;
DECrement ~EUeI_of_detail;
IF LEUeI_of_detail = 4 THEN E;
IF LEUeI of detail = 5 THEN F;
END_Structure;

{If A were DISPlayed, structures D and E would also be displayed.}

- 31 -

DELETE PS 300 COMMAND SUMMARY

GENERAL -Data Structuring and Display

FORMAT

DELete nameC,namel .., namen];
DELete any_s tr i ng~;

DESCRIPTION

Sets name to nil, then FORGETs name. The wild card delete will set to nil any
name beginning with the string that is entered.

PARAMETERS

name -Any previously-defined name,

any_stri ng - A character string which is part of any ndme.

NOTES

1. After a DELete name command is issued, all Function Instances and
structures referring to name will no longer include the data formerly
associated with ndme.

2. After a DELete name command is issued, further definitions of or references
to name will not change structures which referred to name before the DELete.

3. Compare with FORGET, which eliminates name while preserving objects
which it formerly referred to.

4. If the wild card delete is used on an object being displayed, the object must
be removed from display before entering the wild card delete command.
Failure to do this will results in a small amount of memory being used for
each object still displayed.

5. If a name is created from the host, it must be deleted via the host line.
Similarly, if a name is created locally using the keyboard, the DELete
command must be entered locally.

-32-

PS 300 COMMAND SUMMARY DISCONNECT

FUNCTION

FORMAT

DISCONNect name 1 [< i >]:opt i on;

DESCRIPTION

Disconnects one or all of Function Instance ndmel's outputs from one or all
inputs that it has previously been connected to.

PARAMETERS

Hamel —Function Instance to disconnect outputs) from.

<i > — The output number of Hamel to disconnect. If this is not specified, all of
namel's outputs are implied and the option parameter must be ALL (this
would disconnect all of namel's outputs from everything they had
previously been connected to).

option —Either the keyword ALL or <j >name2, where:

ALL — Disconnect the specified output of name 1 (or all outputs of
Hamel) from all Function Instances or display tree nodes that it
was previously connected to.

<j > — Input number or input name of ndme2 to be disconnected from
name 1.

ndme2 —Function instance or named node previously connected to name 1.

-33-

DISPLAY PS 300 COMMAND SUMMARY

GENERAL -Data Structuring and Display

FORMAT

DISPIay name;

DESCRIPTION

Displays a structure. Adds name to the Display Processor's display list.

PARAMETERS

name —Any structure name.

- 34 -

PS 300 COMMAND SUMMARY ERASE PATTERN FROM

MODELING -Primitives

FORMAT

ERASE PATTERN FROM name;

DESCRIPTION

An immediate action command which erases a pattern from a vector list (name).

PARAMETERS

name -The vector list containing the pattern you want to erase.

DISPLAY TREE NODE CREATED

None.

-35-

EYE PS 300 COMMAND SUMMARY

VIEWING -Windowing Transformations

FORMAT

name := EYE BACK z [optionl][option2] from SCREEN area w WIDE
[FRONT boundary = zmi n BACK boundary =zmax]
[APPLied to name 1];

DESCRIPTION

Specifies a viewing pyramid with the eye at the apex and the frustum of the
pyramid (bounded by zmi n and zmax) enclosing a portion of the data space to be
displayed in perspective projection. Unlike the Field_Of_1/iew command, the EYE
command can create a skew (non-right) viewing pyramid (compare Field_Of_View
and WINDOW).

PARAMETERS

z -The perpendicular distance of the eye from the plane of the viewport.

optionl - RIGHT x or LEFT x, where x is the distance of the eye right or left of
the viewport center, respectively, in relative room coordinates.

option2 - UP y or DOWN y, where y is the distance of the eye up or down from
the viewport center, respectively, in relative room coordinates.

w -Width of the viewport in relative room coordinates.

zmi n,zmax - Front and back boundaries of the frustum of the viewing pyramid.
(See note 3 of the LOOK command for properly specifying zmi n and
zmax.)

Hamel -Structure to which the EYE viewing area is applied.

DEFAULT

None. If no EYE is specified, the default WINDOW is assumed (parallel
projection X = -1:1 Y = -1:l FRONT = 10-' S BACK = 10' S). Refer to the WINDOW
command.

- 36 -

PS 300 COMMAND SUMMARY EYE

VIEWING —Windowing Transformations

(continued)

NOTES

1. Notice that EYE always creates square side boundaries because the viewport
width (w) is also taken to be the height; the aspect ratio is always 1.

2. If x and y are not specified (i.e. 0), then a right rectangle viewing pyramid is
created (compare F01/).

DISPLAY TREE NODE CREATED

4x4 matrix operation node.

INPUTS FOR UPDATING NODE

4x 4 ma t r i x

name

<1> Changes matrix value

4x4 matrix

ASSOCIATED FUNCTIONS

F:FOV, F:WINDOW, F:MATRIX4

EXAMPLE

lAS~607

A:= BEGIN Structure
EYE BACK 24 LEFT 1.5 FROM SCREEN area 10 WIDE

FRONT boundary = 12
BACK boundary = 14;

LOOK AT 0,0,0 FROM 5,6.6 3,-10;
INSTance of SPHERE;
END_Structure;

{If SPHERE is defined with a radius of 1 about the origin, A would be a view of
the SPHERE from 5,6.63,-10 fully depth —cued. Note that the FROM to AT
distance in the LOOK AT command is 13.}

_ 37 _

FIELD OF VIEW PS 300 COMMAND SUMMARY

VIEWING -Windowing Transformations

FORMAT

name := Field Of View angl e
[FRONT boundary = zmi n BACK boundary =zmax]
[APPLied to name 1];

DESCRIPTION

Specifies a right rectangular viewing pyramid with the eye at the apex and the
frustum of the pyramid (bounded by zmi n and zmax) enclosing a portion of the
data space to be displayed in perspective projection (compare EYE and WINDOW).

PARAMETERS

angle - Angle of view from the eye (i.e., the FROM point established in the
LOOK command) in x and y. (See note 1 below.)

zmi n ,zmax - Front and back boundaries of the frustum of the viewing pyramid.
(See note 3 of the LOOK command for properly specifying zmi n and
zmax.)

name 1 -Structure to which the FOV is applied.

DEFAULT

None. If no Field Of l/iew is specified, the default WINDOW is assumed instead
(parallel projection X = -1:l Y = -1:l FRONT = 10 - ' S BACK = 10' S). Refer to the
EYE command.

NOTES

1. Notice that FOV always creates square side k~oundaries because angl e
defines both the x and the y angles; the aspect ratio is always 1.

2. See also notes for the WINDOW command.

DISPLAY TREE NODE CREATED

4x4 matrix operation node.

- 38 -

PS 300 COMMAND SUMMARY FIELD OF VIEW

VIEWING -Windowing Transformations

Ccontinued>

INPUTS FOR UPDATING NODE

4x4 matrix

name

 1> Changes matrix value

4x4 matrix

IAS0607

ASSOCIATED FUNCTIONS

F:F01/, F:ININD0IN, F:MATRIX4

EXAMPLE

BEGIN_Structure
Field Of l/iew 30

FRONT boundary 12
BACK boundary 14;
LOOK AT 0,0,0 FROM 5,6.63,-10;
INSTance of SPHERE;

END_Structure;

{If SPHERE is defined with a radius of 1 about the origin, A would be a view of
the SPHERE from 5,6.63,-10 fully depth-cued. Note that the FROM to AT
distance in the LOOK command is 13.}

- 39 -

FOLLOW WITH PS 300 COMMAND SUMMARY

STRUCTURE -Modifying

FORMAT

FOLLOW name 1NITH option;

DESCRIPTION

Follows a named operation node (name) with another operation node.

PARAMETERS

name - A named transformation, attribute, or conditional reference node to be
followed with one of the options.

option - 1. A node created by a transformation command (SCALE by,
ROTate, etc).

2. A node created by an attribute setting command (SET
LEVeI_of_detail, etc.).

3. A node created by a conditional referencing command (IF
LE1/e1 of detail, etc).

NOTE

The structure name does not change association, unlike a named structure in a
PREFIX WITH command.

DISPLAY TREE NODE CREATED

An operation node corresponding to the option phrase of the command. This
node points to whatever node name pointed to previously. The node is also
pointed to by name.

-40-

PS 300 COMMAND SUMMARY FOLLOW WITH

STRUCTURE -Modifying

Ccontinued>

EXAMPLE

SHAPE := BEGIN_Structure
trap := TRANslate by 20,20;
rotate := ROTate in X 90;
triangle := UECtor_list n=4 0,0 0,3 3,0 0,0;
END Structure;

FOLLOW SHAPE.ROT WITH SCALE by 2;

{This will alter the structure SHAPE so that SHAPE.triangle is first scaled, then
rotated, then translated.}

- 41 -

FORGET
(Structures)

PS 300 COMMAND SUMMARY

GENERAL -Data Structuring and Display

FORMAT

FORget name;

DESCRIPTION

If the structure name is being displayed; it is removed from the display. name is
also removed from the name dictionary.

PARAMETERS

NOTES

name -Any previously-defined structure name.

1. After a FORget name command is issued for a structure, all Function
Instances and structures referring to name will continue to refer to the data
formerly associated with name, even though name is no longer linked with the
data.

2. After a FORget name command is issued for a structure, further definitions
of, or references to, name will not change structures which referred to name
before the FORget command.

3. Compare with DELete, which affects not only name but the content of name
also.

-42-

PS 300 COMMAND SUMMARY

GENERAL -Data Structuring and Display

FORGET
Cunits)

FORMAT

FORget (uni t_name);

DESCRIPTION

Removes a unit definition from memory.

PARAMETERS

NOTE

Unit name -Any previously-assigned unit name.

Note that FORget requires unit names to be enclosed in parentheses (unlike
structure names).

-43-

CFunction Instancing) PS 300 COMMAND SUMMARY

FUNCTION

FORMAT

name := F:functi on_name;

DESCRIPTION

Creates an instance of PS 300 Intrinsic Function.

PARAMETERS

ndme - Any combination of alphanumeric characters up to 240. Must begin with
an alpha character and can include $ or _.

fUnCtlOn ndme -Any PS 300 Intrinsic Function name.

EXAMPLE

Add 1 := F:add;
Add2 := F:add;

{This creates two different instances of the same Intrinsic Function F:add.}

- 44 -

PS 300 COMMAND SUMMARY IF CONDITIONAL BIT

STRUCTURE —Conditional Referencing

FORMAT

name := IF conditional_BIT n is state [THEN Hamel];

DESCRIPTION

Refers to a structure if an attribute bit has a specified setting (ON or OFF). (See
SET conditional BIT command).

PARAMETERS

n —Integer from o to 14 indicating which bit to test.

state —The setting to be tested (ON or OFF).

Hamel —Structure to be conditionally referenced.

DEFAULT

If bit n was not manipulated higher in the display tree, it will default to OFF.

DISPLAY TREE NODE CREATED

IF CONDITIONAL_BIT operation node (conditional connection between two
structures).

INPUTS FOR UPDATING NODE

name

Integer ~ < 1 > Changes bit nurrlber

ONA "BIT I~ NDITI ~._
_~
IAS0608

- 45 -

IF CONDITIONAL BIT PS 300 COMMAND SUMMARY

STRUCTURE -Conditional Referencing

Ccontinued)

NOTES ON INPUTS

Input < 1 > accepts an integer (between 0-14) to change the bit number to the
integer value.

EXAMPLE

A:= SET conditional BIT 3 ON THEN B;

B:= IF conditional BIT 3 is ON THEN C;

{Initially when A is DISPlayed, C would also be displayed, indirectly. If a
function network were connected to A to change conditional bit 3 to OFF, then
the test in B would fail and C would not be displayed.}

-46-

PS 300 COMMAND SUMMARY ~ IF LEVEL OF DETAIL

STRUCTURE -Conditional Referencing

FORMAT

name := IF LE1/e1_of_detail relationship n [THEN Hamel];

DESCRIPTION

Refers to a structure if the level of detail attribute has a specified relationship
to a given number. Tests the relation between the current level of detail and the
number n (see SET LEVeI of detail command).

PARAMETERS

relationship -The relationship to be tested (<, <_, _, <>, >_, >).

n - Integer from 0 to 32767 indicating the number to compare the current level
of detail to.

Hamel -Structure to be conditionally referenced.

DEFAULT

If the level_of_detail is not manipulated higher in the structure by a SET
LEVeI_of_detail node, it will default to 0.

DISPLAY TREE NODE CREATED

IF LE1/EL OF_DETAIL operation node (conditional connection between two
structures).

-47-

IF LEVEL OF DETAIL PS 300 COMMAND SUMMARY

STRUCTURE -Conditional Referencing

(continued)

INPUTS FOR UPDATING NODE

name

Integer

NOTES ON INPUTS

<1>Changes level of detail

I F BEVEL OF D~fiAI L

AS0609

Input < 1 > accepts an integer (from 0 to 32767) to change the level of detail to
the integer value.

EXAMPLE

A:= SET LEVeI of detail to 3 THEN B;

B:= IF LEVeI of detail = 3 THEN C;

C:= VECtor list ... ;

{Initially when A is DISPlayed, C would also be displayed, indirectly. If a
function network were connected to A to change the level of detail to something
other than 3, then the test in B would fail and C would not be displayed.}

-48-

PS 300 COMMAND SUMMARY IF PHASE

STRUCTURE -Conditional Referencing

FORMAT

name := IF PHASE is state THEN [name 1];

DESCRIPTION

Refers to a structure if the PHASE attribute is in a specified state (ON or OFF).
(See SET RATE and SET RATE EXTernal commands).

PARAMETERS

state -Phase setting to be tested (ON or OFF).

Hamel -Structure to be conditionally referenced.

DEFAULT

If there is no SET RATE node or SET RATE EXTernal node higher in the display
tree, the PHASE attribute will always be OFF.

DISPLAY TREE NODE CREATED

IF PHASE operation node (conditional connection between two structures).

INPUTS FOR UPDATING NODE

None.

EXAMPLE

A:= SET RATE 10 15 THEN B;

8:= IF PHASE is ON THEN C;

C:= 1/ECtor list ...

{If A is DISPlayed, C will also be displayed for 10 refresh frames and not
DISPlayed for 15 refresh frames repetitively.}

-49-

ILLUMINATION PS 300 COMMAND SUMMARY

RENDERING -Data Structuring CPS 340>

FORMAT

name := ILLUMINATION x ,y, z [COLOR h [,s [,i]]] [AMBIENT a);

DESCRIPTION

Specifies light sources for shaded images createG with the PS 340. An unlimited
number of light sources may be specified. This .command is only used with the
PS 340. For a detailed explanation of defining and interacting with shaded
images, consult the "Using the PS 340 -Rendering Operations For Surfaces and
Solids" tutorial in Volume 2.

PARAMETERS

x ,y, z - A vector from the origin pointing towards the light source.

h - Areal number specifying the hue in degrees around the color wheel. Pure
blue is 0 and 360, pure red is 120, and pure green is 240.

S - A real number specifying saturation. No saturation (gray) is 0 and full
saturation (full toned colors) is 1.

i - Areal number specifying intensity. No intensity (black) is 0, full intensity
(white) is 1.

a - A real number which controls the contribution of a light source to the
ambient light. Increasing d for a light source increases its contribution to
the ambient light.

DEFAULTS

If no ILLUMINATION command is used, a default white light at (0,0,-1) with an
ambient proportion of 1.0 is assumed. If intensity and saturation are not
specified, they default to 1. If only hue and saturation are specified, intensity
defaults to 1. The default for ambient proportion is 1.

- 50 -

PS 300 COMMAND SUMMARY ILLUMINATION

RENDERING -Data Structuring CPS 340)

(continued)

NOTES

1. Illumination nodes may be placed anywhere in a display tree, allowing lights
to be stationary or to rotate with the object, or both.

2. An unlimited number of light sources are valid for smooth-shaded
renderings, but only the last illumination node encountered is used in
creating f lat-shaded renderings.

3. Light-sources are not used in wash-shaded (area-filled) images.

DISPLAY TREE NODE CREATED

Illumination operate node.

INPUTS FOR UPDATING NODE

name

3D

Rea1,2D,3D

Real

NOTES ON INPUTS

<1> Update X,Y,Z

<2> Updates hue,saturation,intensity
i

<3>Updates ambient proportion

ILLUMINATION

i nso~»

A real number sent to input < 1 > changes only the hue. In this case, saturation

and intensity default to 1. You cannot change just one value and retain the
remaining values. Unless a 3D vector is sent, the default values are assumed for

the variables not specified.

EXAMPLE

Light := ILLUMINATION 1,1,-1 COLOR 18Q;

{This creates a node which def Ines a yellow light over the right shoulder. Since
saturation and intensity are not specified, the defaults s = 1 and i = 1 are

assumed. The ambient proportion defaults to l.}

- 51 -

INCLUDE PS 300 COMMAND SUMMARY

STRUCTURE —Modifying

FORMAT

INCLude name 1 IN name2;

DESCRIPTION

Used to include (instance) another named entity (name 1) under a nar~ed instance
node in a display tree (name2).

PARAMETERS

name 1 —Structure to be included under instance node name2.

name2 —Name of the instance node to include name l .

DISPLAY TREE NODE CREATED

None. This is an immediate action command which modifies an existing instance
node in a display tree.

EXAMPLE

MAP:= INSTance of CANADA, SOUTH_AMERICA, UNITED_STATES;

INCLude MEXICO IN MAP;

{This would result in the instance node called MAP also pointing at MEXICO.}

-52-

PS 300 COMMAND SUMMARY INCREMENT LEVEL OF DETAIL

STRUCTURE —Attributes

FORMAT

name := INCRement LE1/el_of_detail[APPLied to Hamel];

DESCRIPTION

Increments the current level of detail by 1 when name is being traversed.

PARAMETERS

Hamel -Node to be affected by the increased level of detail.

NOTE

There is really only one global level of detail; this command only changes the
value of the level of detail while the named node and nodes below it in the
display tree are being traversed.

DISPLAY TREE NODE CREATED

INCREMENT LEVEL_OF_DETAIL operation node.

INPUTS FOR UPDATING NODE

None.

- 53 -

INCREMENT LEVEL OF DETAIL PS 300 COMMAND SUMMARY

STRUCTURE -Attributes

Ccontinued)

EXAMPLE

A:= INCRement LEVeI of detail THEN B;

B:= INSTance of C, D;

C:= IF LEVeI of detail = 1 THEN E;

D:= IF LE1/el of detail = 2 THEN F;

{If A were DISPlayed, E would also be displayed but not F. Since the default
level of detail is 0, A will change the level of detail to 1, so the test in C will
pass to E, while the test in D will fail and F will not be traversed.}

- 54 -

PS 300 COMMAND SUMMARY INITIALIZE

GENERAL -Initialization

FORMAT

INITialize [option];

DESCRIPTION

INITialize (without specifying an option} restores the PS 300 to its initial state in
which:

No user-defined names exist.
• No user-defined units exist.
• No user-created display trees exist.
• No user-defined function connections exist.
• No structures are being displayed.

You may also initialize any of the above areas selectively (without initializing
others) by following INITialize with the appropriate keyword for the area to be
initialized.

The INITialize command also automatically executes the OPTIMIZE MEMORY
command to collect any contiguous free blocks of memory into single blocks.

PARAMETERS

Option -Any of the following:

CONNections -Breaks all user-defined function connections.

DISPI ay -Removes all structures from the display list.

NAMES - Clears the name dictionary of all structures and Function
Instance names.

UNITS -Clears all user-defined units.

- 55 -

INITIALIZE PS 300 COMMAND SUMMARY

GENERAL - Initialization

(continued>

NOTES

1. An INITialize command is specific to a command interpreter. It only
affects the structures which were established by the same command
interpreter as the initialization command itself. For example, structures
created through the host line can be removed with an INITialize from the
host, but not by an INITialize from the PS 300 keyboard.

2. The INITialize command blanks every object being displayed whether the
object was created from the host or locally.

~--

~J

-56-

PS 300 COMMAND SUMMARY INSTANCE OF

STRUCTURE -Explicit Referencing

FORMAT

name := INSTance of Hamel [,name2 ... ,namen];

DESCRIPTION

Groups one or more structures under a single named instance node.

PARAMETERS

Hamel ...namen —Structures to be grouped.

DISPLAY TREE NODE CREATED

An instance node with pointers to each of the structures referenced
(name 1 ... namen).

INPUTS FOR UPDATING NODE

None; however the INCLude and REMove commands can be used to modify the
instance node.

EXAMPLE

A:= INSTance of B,C,D;

—57—

LABELS PS 300 COMMAND SUMMARY

MODELING —Primitives

FORMAT

name := LABELS x ,y [, z] 'string'

Cxi ,yi [,zi] 'string'];

DESCRIPTION

The LABELS command, like CHARacters, defines character strings for display.
However, a single LABELS command can define an indefinitely large number of
character strings.

PARAMETERS

x,y,z - Coordinates of the lower left-hand corner of the first character in the
string.

String -Text string up to 240 characters in length.

DEFAULT

If z is not specified, it is assumed to be 0.

NOTES

1. A gain in display capacity is realized whenever two or more character
strings are combined in a single LABELS command.

2. The smallest LABELS entity that can be picked is an entire string; a pick
returns an index into the LABELS command's list of strings. Individual
characters cannot be picked as they can with CHARacters.

3. The commands SET CHARacters SCREEN oriented/[FIXED] and SET
CHARacters WORLD oriented can be applied to LABELS in the same way
they are applied to CHARacters.

4. You may SEND messages to a LABELS node as you can to a CHARacters
node.

- 58 -

PS 300 COMMAND SUMMARY LABELS

MODELING -Primitives

(continued)

DISPLAY TREE NODE CREATED

LABELS data node.

INPUTS FOR UPDATING NODE

name

String

Integer

Integer

La bei

600lean

String

NOTES ON INPUTS

< 1 ast> Changes 1 ast 1 abet

<clear> C1 ears list

<del ete > Deletes f ~~om end

<a ppend > Appends from end

< i > True=on,Fal se=off

<i> Replaces i-th label

LABELS

I ASOb 10

1. Sending an integer to <delete> of a LABELS node deletes that many strings
from the end of the labels block. If the integer is as large as or larger than
the number of strings in the block, then all strings are removed except the
first. This is retained to keep the step size information, but display of that
string is disabled.

2. Sending an integer to <clear> of a LABEL-S node deletes all labels except the
first, which is retained for step size information, but is not displayed.

- 59 -

LABELS PS 300 COMMAND SUMMARY

MODELING -Primitives

Ccantinued)

NOTES ON INPUTS (continued)

3. The <append> input accepts only special "label" type messages that give
both the string and the position to be appended. This data type is created by
the F:LABEL function.

EXAMPLE

A:= LABELS 0,0 'FIRST LINE'
0,-1.5 'SECOND LINE';

- 60 -

PS 300 COMMAND SUMMARY LOOK

VIEWING -Windowing Transformations

FORMAT

name := LOOK AT ax,ay,az FROM fx,fy,fz
[UP ux , uy, uz] [APPLied to name 1];

name := LOOK FROM fx , fy, fz AT ax , ay, az
[UP ux,uy,uz] [APPLied to Hamel];

DESCRIPTION

This command, in conjunction with a windowing command (WINDOW,
Field_Of_View, or EYE), fully specifies the portion of the data space that will be
viewed, as well as the viewer's own orientation in the world coordinate system.

The LOOK AT...FROM clauses specify the viewer's position with respect to the
object(s), while the optional UP clause specifies the screen "up" direction
(analogous to adjusting the way the viewer's head is tilted).

LOOK creates a 4x3 transformation matrix which:

1. Translates the data base so that the FROM point is at the origin (0,0,0).

2. Rotates the data base so that the AT point is Tong the positive z axis at
(O,O,D), where D = I IF —AI I•

3. Rotates the data base so that the UP vector is in the YZ plane.

PARAMETERS

dx , dy, dz —Point being looked at, in world coordinates.

fx,fy,fz —Location of viewer's eye, in world coordinates.

ux , uy, uz — l/ector indicating screen "u p" direction.

Hamel —Any structure.

- 61 -

LOOK PS 300 COMMAND SUMMARY

VIEWING -Windowing Transformations

(continued)

DEFAULT

LOOK AT 0,0,1 FROM 0,0,0 UP 0,1,0;

NOTES

1. To be implemented properly in a display tree, the LOOK node must follow
one of the windowing nodes and may not precede any windowing node. (See
note 1 for WINDOW.)

2. The UP vector indicates a direction only; its r-nagnitude does not matter.
For example, the two clauses UP 0,1,0 and UP 0,10,0 have exactly the same
effect.

3. In determining FRONT and BACK boundary parameters for an associated
windowing command (WINDOW, FIELD_Of_1/iew, or EYE), remember that
the LOOK command positions the AT point along the positive Z axis at O,O,D
where D equals the distance of the FROM point to the AT point. So, for
example, if the FROM to AT distance is 13, if full depth cueing is desired,
and the radius of the object is 1, then

FRONT boundary = 12
BACK boundary = 14

is used.

DISPLAY' TREE NODE CREATED

4x3 matrix operation node.

INPUTS FOR UPDATING NODE

4x3 matrix
or 4x4 matri x

name

 <1>Changes LOOK AT 4x3 matrix

-62-

PS 300 COMMAND SUMMARY LOOK

VIEWING -Windowing Transformations

(continued)

NOTES ON INPUTS

If a 4x4 matrix is input, the 4th column is ignored.

ASSOCIATED FUNCTIONS

F:LOOKAT

EXAMPLE

A:= BEGIN Structure
WINDOW X=- l: l Y= -1: l

FRONT boundary = 12
BACK boundary = 14;
LOOK AT 0,0,0 FROM 5,6.63,-10 THEN Sphere;

END_Structure;

{If Sphere is defined with a radius of 1 about the origin, A would be a view of the
Sphere from 5,6.63,-10, fully depth-cued. Note that the FROM to AT distance
in the LOOK command is 13.}

- 63 -

MATRIX 2x2 PS 300 COMMAND SUMMARY

MODELING -Character Transformations

FORMAT

name := Matrix 2x2 ml 1 , ml 2
m21 , m22 [APPLied to name l~;

DESCRIPTION

Creates a 2x2 transformation matrix which applies to characters in the structure

that follows (Hamel).

PARAMETERS

ml 1 - m22 -Elements of the 2x2 matrix.

Hamel - Structure whose characters are to be transformed (any vector lists in
the display tree are left unchanged).

DISPLAY' TREE NODE CREATED

2x.2 matrix operation node.

INPUTS FOR UPDATING NODE

2x2 matrix

NOTE ON INPUT

Any 2x2 «~atrix is legal.

name

<1> Changes matrix value

2x2 matri x

tAS0605

- 64 -

PS 300 COMMAND SUMMARY MATRIX 2x2

MODELING -Character Transformations

(continued)

ASSOCIATED FUNCTIONS

F:MATRIX2, F:CSCALE, F:CROTATE

EXAMPLE

A := MATRIX_2x2 1,0
.5,1 THEN B;

{This creates a skewing matrix which is useful for italicizing text.}

-65-

MATRIX 3,~3 PS 300 COMMAND SUMMARY

MODELING —Transformations

FORMAT

name := Matrix_3x3 ml 1 ,ml2,ml 3
m21 ,m22,m23
m31 , m32 , m33 [APPLied to name 1];

DESCRIPTION

Creates a 3x3 transformation matrix which applies to the specified data (vector
lists and/or characters).

PARAMETERS

ml 1' — m33 —Elements of the 3x3 matrix to be created.

Hamel —Structure to be transformed by the matrix.

DISPLAY TREE NODE CREATED

3x ~ matrix operation node.

INPUTS FOR UPDATING NODE

3x3 matrix

NOTE ON INPUT

name

<1> Changes matrix value

3x3 matrix

ASOb 12

Any 3x3 matrix is legal (a rotation matrix, a scale matrix, etc.).

-66-

PS 300 COMMAND SUMMARY MATRIX 3x3

MODELING -Transformations

(continued)

ASSOCIATED FUNCTIONS

F:MATRIX3, F:XROTATE, F:YROTATE,
F:ZROTATE, F:DXROTATE, F:DYROTATE,
F:DZROTATE, F:SCALE, F:DSCALE

EXAMPLE

A := MATRIX_3x3 1,0,0
0,1,0
0,0,1 APPLied TO B;

{This creates an identity matrix.}

-67-

MATRIX 4x3 PS 300 COMMAND SUMMARY

MODELING -Transformations

FORMAT

name := Matrix 4x3 ml 1 , ml 2 , ml 3
m21 ,m22,m23
m31 ,m32,m33
m41 , m42 , m43 [APPLied to name 1];

DESCRIPTION

Creates a 4x3 transformation matrix which applies to the specified data (vector
lists and/or characters).

PARAMETERS

ml 1 - m43 -Elements of the 4x3 matrix to be created.

Hamel -Structure to be transformed by the matrix.

DISPLAY TREE NODE CREATED

4x3 matrix operation node.

INPUTS FOR UPDATING NODE

4x3 matrix

name

<1> Changes matrix value

4x3 matrix

IAS0613

- 68 -

PS 300 COMMAND SUMMARY MATRIX 4x3

MODELING -Transformations

(continued)

NOTE ON INPUT

Any 4x3 matrix is legal {a rotation matrix, a scale matrix, etc.).

ASSOCIATED FUNCTIONS

F:MATRIX 4, F: X R OTATE, F: Y R OTATE,
F:ZROTATE, F:DXROTATE, F:DYROTATE,
F:DZROTATE, F:SCALE, F:DSCALE

EXAMPLE

A := MATRIX_4x3 1,0,0
0,1,0
0,0,1
0,0,0 APPLied TO B;

69

MATRIX 4x4 PS 300 COMMAND SUMMARY

MODELING -Transformations

FORMAT

name := Matrix_4x4 ml 1 , ml 2 , ml 3 , ml 4
m21 ,m22,m23,m24
m31 ,m32,m33,m34
m41 , m42 , m43 , m44 [APPLied to name 1];

DESCRIPTION

Creates a 4x4 transformation matrix which applies to the specified data (vector
lists and/or characters).

PARAMETERS

ml 1 - m44 -Elements of the 4x4 matrix to be created.

Hamel -Structure to be transformed by the matrix.

DISPLA~r' TREE NODE CREATED

4~;4 matrix operation node.

INPUTS FOR UPDATING NODE

4x4 matrix

name

<1> Changes matrix value

4x4 matrix

iAso6o7

- 70 -

PS 300 COMMAND SUMMARY MATRIX 4x4

MODELING -Transformations

(continued>

NOTE ON INPUT

Any 4x4 matrix is legal (a rotation matrix, a scale matrix, etc.).

ASSOCIATED FUNCTIONS

F:MATRIX4, F:XROTATE, F:YROTATE,
F:ZROTATE, F:DXROTA,TE, F:DYROTATE,
F:DZROTATE, F:SCALE, F:DSCALE

EXAMPLE

A := MATRIX_4x4 1,0,0,0
0,1,0,0
0,0,1,0
0,0,0,1 APPLied TO B;

{This creates an identity matrix.}

_ ~~

(Naming of Display Tree Nodes) PS 300 COMMAND SUMMARY

STRUCTURE - Explicit Referencing

FORMAT

name := d i sp 1 ay_data_s true ture_command;

DESCRIPTION

Gives a name (address) to a node in a display tree so that it can be referenced

e~:plicitly.

PARAMETERS

name - Any cor~~bination of alphanumeric characters up to 240. Must begin with

an alpha character and can include $and _.

Di spl ay-data-structure command All data structuring commands except the
function instancing command (name :_
F:function name).

NOTES

1. All nodes in a display tree must be named (addressed) either directly, using

this structure naming command, or indirectly, nesting a display data
structure command within a BEGIN Structure...END Structure command.

2. Upper and lower—case letters can be used in names, but all letters are
converted to upper—case. Thus turbine blade, Turbine_Blade, and
TURBINE BLADE are equivalent nar~~es.

3. A null structure can be nar~~ed using the name : = n i 1 ; form of the
command. If this cor~~~and ~~~ere used to redefine name, name would be kept
in the name dictionary but the definition previously associated with name
would be removed. FORGET name does just the opposite (see FORGET).
DELETE name removes both the name and its definition (see DELETE).

72 _

PS 300 COMMAND SUMMARY OPTIMIZE MEMORY

GENERAL -Command Control and Status

FORMAT

OPTIMIZE MEMORY;

DESCRIPTION

An immediate action command which collects any contiguous free blocks ~~of
memory into single blocks.

NOTES

1. If you are transmitting a large vector list fror~ the host and you suspect that
memory is being fragmented, enter this command before doing any
operations.

2. This command is executed automatically whenever an INITialize command is
entered.

- 73 -

OPTIMIZE STRUCTURE;...END OPTIMIZE; PS 300 COMMAND SUMMARY

GENERAL -Command Control/Status

FORMAT

OPTIMIZE STRUCTURE;
command;
command;

END OPTIMIZE;

DESCRIPTION

Places the PS 300 in, and removes it from, "optimization mode", during which
certain elements of a display tree are created in a way that minimizes Display
Processor traversal time.

PARAMETERS

None.

NOTES

1. Optimization mode is intended for application programs whose development
is complete. Since optimization severely restricts the kinds of changes that
may be made to a PS 300 display tree, it should not be used with programs
whose structures may be changed.

2. To enter optimization mode for a developed application program, place the
command

OPTIMIZE STRUCTURE;

at the beginning of the program (or portion of program) to be optimized, and
place the command

END OPTIMIZE;

at the end.

-74-

PS 300 COMMAND SUMMARY OPTIMIZE STRUCTURE;...END OPTIMIZE;

GENERAL -Command Control/Status

(continued)

NOTES (continued)

3. Optimization is not retroactive. The OPTIMIZE STRUCTURE command
alone does not optimize any existing structures. On the other hand,
structures created after the cor~mand is entered remain optimized even
after END OPTIMIZE is entered, and even after legal changes are made to
the structure.

4. The following changes may not be made to structures created or instanced
during optimization mode:

a. PREFIXes

b. Redefinitions of data-definition commands (UECtor_list, CHARacters,
LABELS, and polynomial and B-spline curves), regardless of whether or
not the syster~~ is in optir~~ization mode at the time of redefinition.
Illegal changes to optimized structures have unpredictable effects on
the display.

5. Among the types of structures for ~~vhich optimization has an effect are
INSTANCEs of multiple data-definition commands and BEGINS ... END_S
structures containing only data-definition commands.

6. Optimization has no effect on a reference to a data-definition comr~and
which precedes the data-definition cor~~r~~and itself.

7. OPTIMIZE STRUCTURE, like the INITialize command, affects only those
structures created at the port at which the comr~nand is entered.

8. An INITialize comr~~and automatically performs an END OPTIMIZE.

-75-

PATTERN PS 300 COMMAND SUMMARY

MODELING — Primitives

FORMAT

name := PATtern i [AROUND corners][MATCH/NOMATCH]
LENgth r;

DESCRIPTION

Defines name to be a pattern. Patterns can be applied to existing vector lists
(patterned and unpatterned) created by the WITH PATTERN, POLYNOMIAL, and
BSPLINE commands. If curve commmands are used, the [AROUND corners]
option must be used.

PARAMETERS

i A series of up to 32 integers between 0 and 128 (delineated by spaces)
indicating the relative lengths of alternating lines, spaces, lines, etc., in the
pattern. The longer the series, the more complex the pattern of lines and
spaces, which repeats every r units.

AROUND_corners — This indicates that patterning is to continue around each of the
vectors in the vector list until the end of the list or a position
vector is reached.

MATCH/NOMATCH _This indicates that the pattern length should be adjusted to make
the pattern exactly match the end points of the vector or series
of vectors being patterned. The default is MATCH.

r —The length over which i is defined and repeated.

DISPLAY TREE NODE CREATED

None.

— 76 —

PS 300 COMMAND SUMMARY PATTERN WITH

MODELING —Primitives

FORMAT

PATTERN name 1 WITH pattern;

DESCRIPTION

An immediate action comr~and which applies a pattern to a vector list (Hamel).

PARAMETERS

pattern — The pattern to be applied to name 1. The pattern can be defined as
either of the following.

name — A pattern created by the name := PATtern command

or

i [AROUND corners] [MATCH/NOMATCH] LENgth r

where

i — A series of up to 32 integers between 0~ and 128 delineated by spaces
indicating the relative lengths of alternating lines, spaces, lines, etc.,
in the pattern. The longer the series, the more complex the pattern of
lines and spaces, which repeats every r units.

AROUND_Corners — This indicates that patterning is to continue around
each of the vectors in the vector list until the end of
the list or a position vector is reached.

MATCH/NOMATCN — This indicates that the pattern length should be adjusted
to make the pattern exactly match the end points of the
vector or series of vectors being patterned. The default
is MATCH.

r —The length over which i is defined and repeated.

DISPLAY TREE NODE CREATED

None.

_ ~~

POLYGON PS 300 COMMAND SUMMARY

MODELING -Primitives CPS 340)

FORMAT

name := CWITH ATTRIBUTES Hamel] [UJITH OUTLINE h] [COPLANAR]
POLYGon vertex ... vertex;

DESCRIPTION

Allows you to define primitives as solids and surf aces. This command is only
used with the PS 340. For a detailed explanation of defining and interacting with
polygons, consult the "Using the PS 340 -Rendering Operations For Surfaces and
Solids" tutorial in i/olume 2.

PARAMETERS

WITH ATTRIBUTES - An option that assigns the attributes defined by Hamel for
all polygons until superseded by another WITH ATTRIBUTES
clause.

WITH OUTLINE - An option that specifies the color of the edges of a polygon on
the color CSM display, or their intensity on a black and white
display as a real number (h).

COPLANAR - Declares that the specified polygon and the one immediately
preceding it have the same plane equation.

vertex - A vertex is defined as follows:

~ s ~ x,y,z C ~N x,y,z]

where

S - indicates that the edge drawn between the previous vertex and
this one represents a soft edge of the polygon. If the S specifier
is used for the first vertex in a polygon definition, the edge
connecting the last vertex with the first is soft.

_ ~g _

PS 300 COMMAND SUMMARY POLYGON

MODELING -Primitives CPS 340)

(continued>

PARAMETERS (continued)

N - Indicates a normal to the surface with each vertex of the
polygon. Normals are used only in smooth-shaded renderings.
Normals must be specified for all vertices of a polygon or for
none of therms. If no normals are given for a polygon, they are
defaulted to the sar~e as the plane equation for the polygon.

x , y, z - are coordinates in a lef t-handed Cartesian system.

NOTES

1. A polygon declared to be coplanar r~~ust lie in the same plane as the previous
polygon if correct renderings are to be obtained. The syster~~ does not check
for this condition. Coplanar polygons may be defined without the coplanar
specifier, unless outer and inner contours are being associated.

2. All members of a set of consecutive coplanar polygons are taken to have the
same plane equation, that of the previous polygon not containing the
coplanar option.

3. If coplanar is specified for the first polygon in a node, it has no effect.

4. If the N (normal) specifier is specified for a vertex in a polygon, it must be
specified for all vertices in that polygon.

5. If the S (soft) specifier is used for the first vertex in a polygon definition,
the edge connecting the last vertex with the first is soft.

6. No more than 250 vertices per POL.YGon may be specified.

7. The last defined vertex in the polygon is assumed to connect to the first
defined vertex; that is, polygons are implicitly closed.

8. There is no syntactical limit for the number of POLYGon clauses in a group.

9. The ordering of vertices within each POLYGon has ir~~portant consequences
for rendering operations.

79

POLYGON PS 300 COMMAND SUMMARY

MODELING - Primitives CPS 340)

(continued)

DISPLAY TREE NODE CREATED

Polygon data node.

INPUTS '~~OR UPDATING NODE

None.

- 80 -

PS 300 COMMAND SUMMARY POLYNOMIAL

MODELING -Primitives

FORMAT

name := POLYnomial[ORDER=i]
[COEFFICIENTS=] xi , yi , zi

xi-1, yi-1, zi-1

CHORDS=q;

DESCRIPTION

0, y0, z0

Evaluates a parametric polynomial in the independent variable t over the
interval [0,1]. This command allows the parametric description of many curve
forms without the need to specify or transfer the coordinates of each constituent
vector.

If the polynomial to be evaluated is cared C, C is an i t "'-order parametric
polynomial in t such that:

This polynomial may be expressed as the product of a vector (containing the
various powers of t) and a coefficient matrix with three columns and i+l rows:

CCt) = Cti ti-1 ... tOJ xi y, z,
Xl-~ yi-~ Zl-~

x0 y0 z0

This coefficient matrix is what is specified in the polynomial com rr~and to
represent the parametric polynomial C.

_ g~

POLYNOMIAL PS 300 COMMAND SUMMARY

MODELING -Primitives

(continued)

PARAMETERS

i -- Optional specification of the order of the polynomial used to anticipate
internal storage requirements.

xi , yi , zi -Coefficients of the polynomial.

q -~ The number of vectors to be created (0 < q < 32768).

NOTES

1 The interval [0,1] over which the polynomial in t is to be evaluated, is
divided into q equal parts, so that C(t) is evaluated at t=0/q, l /q,2/q,...q/q.
This causes the curve's constituent vectors to generally not be equal in
length.

2. The polynomial's order is determined by the number of coefficient rows, and
if the ORDER=i clause disagrees, it is ignored.

DISPLAY TREE NODE CREATED

Polynor~~ial vector list data node.

INPUTS FOR UPDATING NODE

Integer

2D,3q,4~ vector

NOTES ON INPUTS

name

< 1 > Updates coeff i c ~ ents

< 2 > Updates chords

Polynomial

I ASt~614

Sending a 2D vector to a 3D ploynor~ial node causes a default value of 0 to be
used for z. If a 4D vector is sent to a 3D polynomial or a 3D or 4D vector is sent
to a 2D polynomial, the w or z components are ignored.

82

PS 300 COMMAND SUMMARY PREFIX WITH

STRUCTURE -Modifying

FORMAT

PREFIX name WITH operation command;

DESCRIPTION

Prefixes a nar~~ed data node (name) with an operation node.

PARAMETERS

name - A r~~odeling primitive data node to be prefixed.

operation command -Any PS 300 command that creates an operation node.

NOTE

Any connections r~~ade to Hamel will be applied to the added prefix and not to the
modeling primitive (i.e. name no~v points to the new operation node which points

to the node that was previously name).

DISPLAY TREE NODE CREATED

None. This is an ir~~mediate action cor~mand which just modifies an existing data

node.

EXAMPLE

A:= 1iECtor list ...;

PRE f ix A WITH SCALE by . l ;

{This will rl~ake A the name of a scale node pointing at a no~v unnar~~ed vector

list.}

-83-

RATIONAL BSPLINE PS 300 COMMAND SUMMARY

MODELING —Primitives

FORMAT

name := RATIonal BSpline ORDER=k
[OPEN/CLOSED) [NONPERIodic/PERIodic] [N=n]
[VERTICES =) xl ,yl , Czl] ,w

x2,y2,Cz2J,w2

xn,yn,Czn),wn
[KNOTS = tl , t2 , ... , tj
CHORDS =q;

DESCRIPTION

Evaluates a rational B-spline curve, allowing the parametric description of the
curve form without the need to specify or transfer the coordinates of each
constituent vector.

The rational B-spline curve C is defined as:

n
E wipiNi,k(t)

C(t)= i=1
n
E wiNi,k(t)

i=1

where

pi - ith vertex of the B-spline's defining polygon

Ni,k - ith B-spline blending function of order k

and

wi - weighting factor associated with each vertex (different weights
determine the shape of the curve).

-84-

PS 300 COMMAND SUMMARY RATIONAL BSPLINE

MODELING -Primitives

(continued)

DESCRIPTION (continued)

The parameter t of the curve and blending functions is defined over a sequence
of knot intervals tl,t2,...,tn+k. Different knot sequences define different types
of B-splines. Two common knot sequences are the uniform nonperiodic and
uniform periodic knot sequences. A uniform nonperiodic B-spline is defined by
the knot sequence:

0 (for j < k)
t j = j-k (fork < j < n)

A uniform periodic B-spline is defined by the knot sequence:

The blending functions can be defined recursively as

Ni, l (t) = 1 (if ti < t < ti+ 1), 0 otherwise

Ni,k(t) _ (t-ti)Ni,k-1(t) + (ti+k-t)Ni+ l ,k-1(t)
ti+k- l -ti ti+k-ti+ 1

The curve is evaluated at the points:

q

for i=0,1,2,...,q.

PARAMETERS

k -The order of the curve (0 < k < 10).

n -The number of vertices (used to anticipate storage requirements).

xl ,yl ,zl ,wl . . .xn,yn,zn,wn The vertices and weighting factor of the defining
polygon of the curve. The z component is
optional.

- 85 -

RATIONAL BSPLINE PS 300 COMMAND SUMMARY

MODELING —Primitives

(continued)

PARAMETERS (continued)

tl , tl , . . . , tj — User specified knot sequence. Because closed B—splines are
evaluated as open B—splines with duplicate vertices, the number
of knots required is:

n+k for open B—splines
n+k+1 for closed nonperiodic B—splines
n+2K-1 for closed periodic B—splines

The knots must also be nondecreasing.

q —The number o f vectors to be created (0 < q < 3 2766).

NOTES

1. OPEN or CLOSED is an option which describes the B—spline defining polygon.
The default is OPEN. (Note that CLOSED merely describes the polygon,
eliminating repetition of vertices. A full knot sequence, if specified, must
be given.)

2. NONPERIODIC or PERIODIC is an option which specifies the default knot
sequence. NONPERIODIC is the default for open B—splines; PERIODIC is the
default for closed B—splines.

3. At least k vertices must be given, or the order k will be reduced accordingly.

4. If all the weights of a rational B—spline are the same, tl ~ ~ curve is identical
to the B—spline without the weights.

DISPLAY TREE NODE CREATED

B—spline vector list data node.

-86-

PS 300 COMMAND SUMMARY RATIONAL BSPLINE

MODELING -Primitives

(continued)

INPUTS FOR UPDATING NODE

name

Integer

Real

2D , 3D ,4~ vector

NOTES ON INPUT

<1> Updates chords

< 2 > Updates knots

< 3 > Updates vertices

Rational 8-spline

I AS0615

When a 2D vector is sent to a 3D rational B-spline, the default for z is 0 and for
w is 1. The third component of 3D and 4D vectors is used as w in 2D rational
B-splines.

EXAMPLES

A third-order rational B-spline with defining polygon Pl, P2, P3 defines a conic
arc:

the arc is parabolic if w 1=uv2=w3
the arc is elliptic if w 1=w 3 > w2
the arc is hyperbolic if w 1=w 3 < w2

g~

RATIONAL POLYNOMIAL PS 300 COMMAND SUMMARY

MODELING —Primitives

FORMAT

name := RATional POLYnorr~ial[ORDER=~
[COEFFICIENTS=] xi , yi , zi , wi

xi-1 , yi-1 , zi-1, wi-1

x0, y0, z0, w0
CHORDS=q;

DESCRIPTION

Evaluates a rational parametric polynomial in the independent variable t over
the interval [o, l]. This command allows the parametric description of many
curve forr~~s without having to specify or transfer the coordinates of each
constituent vector.

If the polynomial to be evaluated is called C, C is an i t "' —order rational
parametric polynomial in t such that:

C(t) _ x C t> yC t> z(t>
wCt> wtt) wCt>

This polynomial may be expressed as the product of a vector (containing the
various powers of t) and a coefficient matrix with four columns and i+l rows:

C(t) = Cti ti -1 ... tOJ x~ y~ zi w~
xi-1 yi-1 zi-1 wi-1

x0 y0 z0 w0

This coefficient r~~atrix is what is specified in the polynomial cor~~mand to
represent the rational parametric polynomial C.

gg

PS 300 COMMAND SUMMARY RATIONAL POLYNOMIAL

MODELING —Primitives

(continued)

PARAMETERS

i — Optional specification of the order of the polynomial used to anticipate
internal storage requirements.

x i , yi , zi , wi — Coefficients of the polynomial.

NOTES

1. The interval [0,1] over which the polynor~~ial in t is to be evaluated, is
divided into q equal parts, so that C(t) is evaluated at t=0/q,l/q,2/q,...q/q.

2. Note that the curve's constituent vectors are not generally equal in length.

3. The polynomial's order is determined by the number of coefficient rows, and
if the ORDER=i clause disagrees, it is ignored.

DISPLAY TREE NODE CREATED

Rational polynomial vector list data node.

INPUTS FOR UPDATING NODE

name

Integer

2D , 3D ,4D vector

< 1 > Updates caeff i ci ents

< 2 > Updates chords

Rational Polynomial

IAS061b

RATIONAL POLYNOMIAL PS 300 COMMAND SUMMARY

MODELING -Primitives

Ccontinued)

NOTES ON INPUTS

Sending a ZD vector to a 3D ploynomial node causes a default value of 0 to be
used for z and 1 for w. If a 4D vector is sent to a 3D polynomial or a 3D or 4D
vector is sent to a 2D polynomial, the w or z and w components are ignored. The
third component of 3D and 4D vectors is used as w in a 2D rational polynomial.

EXAMPLE

CIRCLE:= BEGIN Structure

R ATional POLYno m ial
2, 0, 0, 2

-2, -2, 0, 2
0, 1, 0, -1

CHORDS = 25;

RATional POLYnomial
2, 0, 0, -2

-2, -2, 0, 2
0 ;. 1, 0, -1

CHORDS = 25;

END_Structure;

{This will create right and left semi-circles of radius l.}

- 90 -

PS 300 COMMAND SUMMARY REBOOT

GENERAL -Command Control and Status

FORMAT

na«~e := REBOOT pas sword;

DESCRIPTION

Causes the PS 300 to reboot just as if it had been powered up, that is, it starts
the confidence tests beginning with 'A'.

PARAMETERS

password -System password set up by the PS 300 system manager.

NOTES

1. If a password has been set up, an incorrect password will give an error
message. If no password has been setup, any character string will cause the
PS 300 to reboot.

2. REBOOT may be used inside a BEGIN_Structure ... END_Structure or outside.

DISPLAY TREE NODE CREATED

None.

g~ _

REMOVE PS 300 COMMAND SUMMARY

GENERAL —Data Structuring and Display

FORMAT

REMove name;

DESCRIPTION

Stops the display of name, that is, removes name from the display list.

PARAMETERS

name —Any structure name.

NOTE

Does not affect any structures in r~~emory.

-92-

PS 300 COMMAND SUMMARY REMOVE FOLLOWER

STRUCTURE -Modifying

FORMAT

REMove FOLLOWER of name;

DESCRIPTION

Removes a previously placed follower of name (see FOLLOW WITH command).

PARAMETERS

name -Structure that was previously modified with a FOLLOW WITH command.

EXAMPLE

(Refer to the example given in the FOLLOW WITH command.)

REMove FOLLOWER of Shape.Rot;

{This command will restore the structure Shape to what it was originally (i.e.
before the FOLLOW WITH command was given.)}

- 93 -

REMOVE FROM PS 300 COMMAND SUMMARY

STRUCTURE -Modifying

FORMAT

REMove Hamel FROM name2;

DESCRIPTION

Used to remove a named node (Hamel) from a named instance node (name2) irr a
display tree.

PARAMETERS

Hamel -Node to be removed from instance node name2.

name2 -Instance node that will no longer point to name l .

DISPLAY TREE NODE CREATED

None. This is an immediate action command which just modifies an existing
instance node.

EXAMPLE

MAP:= INSTance CANADA, SOUTH_AMERICA, UNITED_STATES;

REMOVE SOUTH AMERICA FROM MAP;

{This makes the instance of MAP point at CANADA and UNITED_STATES only.}

- 94 -

PS 300 COMMAND SUMMARY REMOVE PREFIX

STRUCTURE —Modifying

FORMAT

REMove PREfix of name;

DESCRIPTION

Removes a previously placed prefix (see PREFIX WITH comr~~and).

PARAMETERS

name —Structure that was previously modified by a PREFIX WITH cor-nmand.

NOTE

This immediate action command restores name to what it was before being
modified by a PREFIX WITH command.

EXAMPLE

PREf ix A WITH SCALE by . l ;

REMove PREfix of A;

{This will remove the previously PREP fixed SCALE node, and A will once again be
the name of the 1/ECtor list.}

-95-

RESERVE__WORKING_STORAGE PS 300 COMMAND SUMMARY

GENERAL -Immediate Action CPS 340)

FORMAT

RESERI/E_WORKING_STORAGE size;

DESCRIPTION

Reserves a block of Mass Memory for ;sectioning plane, hidden-line removal, and
backface removal renderings of solid objects defined as polygons. This command
is used only with the PS 340.

PARAMETERS

size -The number of bytes of Mass Memory that are reserved.

NOTES

1. Renderings and saved renderings reside in mass memory along with the rest
of the display structure. The original polygon is also stored in mass memory.

2. Each polygon of a solid object with four vertices will require approximately
150 bytes of reserve working storage. Memory needs will vary from figure
to figure dependent upon the complexity of the object, the operations to be
performed, and the view.

3. After one reserve-working-storage request is made, subsequent requests do
not add to the original memory block -- they replace the original memory
block.

4. If a contiguous block of memory cannot be allocated, no working storage is
allocated and any previous storage is deallocated. If working storage is too
small or has not been reserved, the rendering request is ignored and an error
message is issued.

5. The best tir~~e to use RESERVE_WORKING_STORAGE is after booting, when
large requests can be filled r~ore easily. However, the com rand may be
entered at any tir~~e.

- 96 -

PS 300 COMMAND SUMMARY RESERVE WORKING STORAGE

GENERAL - Immediate Action CPS 340)

Ccontinued>

NOTES (continued)

6. Typically, 200,000 to 400,000 bytes of working storage should be reserved at
the beginning of a session.

7. A previously allocated block of memory is released prior to filling the request
for a new block. Thus, a request for a smaller working storage area can
always be fulfilled. However, because the working storage must be a
contiguous block of memory, even slight increases in the working storage~~size
may not be satisfied.

8. If working storage is too small or has not been reserved, the rendering request
is ignored and an error message is issued.

97

!RESET PS 300 COMMAND SUMMARY

GENERAL -Command Control and Status

FORMAT

!RESET;

DESCRIPTION

The !RESET command is used to get out of unended BEGIN's or
BEGIN_STRUCTURE's when a problem occurs. ($ee also COMmand STATus.)

_ gg _

PS 300 COMMAND SUh1MARY ROTATE

MODELING -Transformations

FORMAT

name := ROTate in [axis] angle [APPLied to Hamel];

DESCRIPTION

Rotates a structure (Hamel). Creates a 3x3 rotation matrix which rotates the
specified data (vector lists and/or characters) about the designated axis, relative
to the world coordinate system's origin. When you look in the positive direction
of a given axis, positive angle values cause counterclockwise rotations (following
the left-hand rule).

PARAMETERS

axi S - X, Y, or Z. If no axis is specified, the default is Z.

angle - Rotation angle in degrees (if no other units have been specified as
default, and if no other units are explicitly specified in the ROTATE
command).

Hamel -Structure to be rotated.

DISPLAY TREE NODE CREATED

3x3 matrix operation node.

INPUTS FOR UPDATING NODE

name

3x3 matrix <1> Changes matrix value

3x3 matrix

IAS0612

gg

ROTATE PS 300 COMMAND SUMMARY

MODELING -Transformations

(continued)

NOTE ON INPUT

Any 3x3 matrix is legal (any rotation matrix, a scale matrix, a compound 3x3
matrix, etc.).

ASSOCIATED FUNCTIONS

F:MATRIX 3, F: X R OTATE., F: Y R OTATE,
F:ZROTATE, F:DXROTATE, F:DYROTATE,
F:DZROTATE, F:SCALE, F:DSCALE

EXAMPLE

A:= ROTate in X 45 THEN B;

B:= 1/ECtor_list ... ;

- 100 -

PS 300 COMMAND SUMMARY SCALE

MODELING -Transformations

FORMAT

name := SCALE by s [APPLied to name 1);
name := SCALE by sx , syC , sz] [APPLied to Hamel);

DESCRIPTION

Scales an object. Applies a uniform (S) or nonuniform (sx, Sy, Sz) 3x3 scale
matrix transformation to the specified data (vector lists and/or characters).

PARAMETERS

s -Uniform scaling factor (same along all axes).

S x , Sy, sz - Axial scaling factors. If sz is not specified, it is assumed to be 1 (no
Z-scaling).

name 1 -Object to be scaled.

DISPLAY TREE NODE CREATED

3x3 matrix operation node.

INPUTS FOR UPDATING NODE

3x3 matri x

NOTE ON INPUT

name

<1> Changes matrix value

3x3 ma tri x

i AS0612

Any 3x3 r~~atrix is legal (another scale matrix, a rotation matrix, etc.).

- 101 -

SCALE PS 300 COMMAND SUMMARY

MODELING -Transformations

(continued)

ASSOCIATED FUNCTIONS

F:MATRIX3, F:XROTATE, F:YROTATE,
F:ZROTATE, F:DXROTATE, F:DYROTATE,
F:DZROTATE, F:SCALE, F:DSCA~E

EXAMPLE

A:= SCALE by 5,2,3 THEN B;

B:= I/ECtor list ... ;

- 102 -

PS 300 COMMAND SUMMARY SECTIONING PLANE

MODELING —Data Structuring CPS 340)

FORMAT

name := SECTioning_plane APPLied to name 1 ;

DESCRIPTION

Defines a sectioning plane, which is needed to produce a sectioned rendering of
an object. This command is only used with the PS 340.

PARAMETERS

Hamel — Either a POLYGon command or an ancestor of a POLYGon command.

NOTES

1. Defining, displaying, and positioning a sectioning plane are the first steps in
producing a sectioned rendering of an object. Hidden —line removal and
backface removal do not require sectioning planes, but they can be used in
conjunction with sectioned renderings.

2. The data which actually define a sectioning plane are contained in a
POLYGon node; SECTioning_plane simply indicates that a given POLYGon
represents a sectioning plane rather than an object to be rendered.

3. The sectioning plane is the plane in which a specified POLYGor~ lies. The
polygon itself need not intersect the object to be sectioned, as long as some
part of the plane does.

4. The sectioning plane is the plane containing the polygon defined by the first
POLYGon clause of the first polygon node encountered b.y the Display
Processor as it traverses the branch beneath asectioning—plane node.

5. If the polygon node has r~~ore than one POLYGon, only the first polygon
deterr~r~ines the sectioning plane. The other polygons have no effect on
sectioning operations, but are displayed along with the defining polygon.
This can be put to good use in designing an indicator which shows the side of
the plane at which sectioning will remove Cor preserve) polygon data.

- iO3 -

SECTIONING PLANE PS 300 COMMAND SUMMARY

MODELING -Data Structuring CPS 340)

(continued)

NOTES (continued)

6. Anode may be a descendant of a sectioning-plane node if and only if it may be
a descendant of a rendering operate node. Refer to the Notes on the
SOLID_rendering command for permitted and prohibited descendant nodes.

7. If objects are to be sectioned, matrix-transformation nodes may be placed
above the sectioning-plane node when and only when they are also ancestors of
the objects' SOLID RENDERING or SURFACE_RENDERING node(s). Failures
to observe this rule results in bad renderings.

8. No SOLID_rendering or SURFACE rendering operation node, whether below or
above the sectioning-plane node, may be an ancestor of a sectioning plane's
defining POLYGon. The PS 340 interprets such POLYGons as objects to be
rendered rather than as sectioning-plane definitions, and issues a "Sectioning
plane not found" message when a sectioning attempt is made. Other nodes
which do not represent matrix viewing transformations, such as SET RATE and
SET PLOTTER, may be placed either above or below the sectioning-plane node
as needed.

9. Before an object can be sectioned, the sectioning-plane node must be part of a
structure which is DISPlayed. If the plane's defining POLYGon is itself
DISPlayed but its sectioning-plane node is not, no renderings can be created.

DISPLAY TREE NODE CREATED

Sectioning-plane operation node.

INPUTS FOR UPDATING NODE

None.

- 104 -

PS 300 COMMAND SUMMARY SEND

FUNCTION

FORMAT

SEND option TO <n>namel;

DESCRIPTION

Sends a value to input n of Function Instance, node, or variable name l .

PARAMETERS

option -The value to be sent. This can be any of the following forms:

i -Areal number (with or without decimal point).

FIXC i) - Designates i to be an integer value (without decimal point).

V2D(i , j) - 2D vector.

V3DCi ,j,k) - 3D vector.

V4DC i , j , k, l) - 4D vector.

M2DCall ,al2 a21 ,a22) - 2x2 matrix.

M3DCal 1 , al 2 , al 3 a21 , a22 , a23 a31 , a32 , a33> - 3x3 matrix

M4DCall ,al2,al3,al4 a21 ,a22,a23,a24 a31 ,a32,a33,a34 a41 ,a42,a43,
d44) 4x4 matrix

Boolean -TRUE or FALSE

'String' - A character string of one or more characters.

CHAR(m> - A single character whose decimal ASCII value is m.

P, L -Position or line.

VALUE C var i ab 1 e_name > - The value currently in var i ab 1 e_name, where
var i ab 1 e name is a previously declared PS 300
variable.

- 105 -

SEND PS 300 COMMAND SUMMARY

FUNCTION

Ccontinued>

EXAMPLE

TIMER:= F:CLCSECONDS;

SEND FIX(10) TO < 1 > TIMER;

{This puts an integer 10 on input 1 of TIMER.}

- 106 -

PS 300 COMMAND SUMMARY SEND number *mode

FUNCTION

FORMAT

SEND number mode TO <n>namel;

DESCRIPTION

Sends to a vector list or labels node to change a specified number of; vectors
from position vectors to line vectors, or to turn a specified number of labels on
or off.

PARAMETERS

number - An integer specifying the number of vectors or labels.

mode - Either a P or L. For vector lists, P indicates a position vector and L
indicates a line vector. For a labels block, P turns the label of f, L turns
it on.

n - An integer which identifies the first vector or label to receive the new
specification.

Hamel -The destination vector list or labels node.

- 107 -

SEND VL PS 300 COMMAND SUMMARY

FUNCTION

FORMAT

SEND 1/~(name 1) TO < i >name2;

DESCRIPTION

Overwrites or appends vectors in vector lists or labels in label blocks. :

PARAMETERS

Hamel - Name of vector list, character string, or label block to be sent.

name2 - Name of the destination VECtor list or LABELS node.

i - An integer that specifies the first vector or first label to be replaced in
name2 with vectors or labels in name l .

NOTES

1. The parameter i can be replaced with 1 as t or append.

2. If i exceeds the number of vectors or labels in name2, the command will be
ignored.

- 108 -

PS 300 COMMAND SUMMARY SET CHARACTERS

VIEWING -Appearance Attributes

FORMAT

name := SET CHARacters on entati on [APPLied to Hamel];

DESCRIPTION

Sets the type of screen orientation you want for displayed character strings.

PARAMETERS

orientation -Three types of orientation may be set:

WORLD oriented - Characters are transformed just like any part of the
object containing them.

SCREEN_ori ented - Characters are not affected by ROTate or SCALE
transformations. Intensity and size of characters
still vary with depth (Z-position).

SCREEN oriented/FIXED - Characters are not affected by ROTate or
SCALE transformations. They are always
displayed with full size and intensity.

Hamel -Structure affected by the SET CHARacters node.

DEFAULT

SET CHARacters WORLD oriented;

DISPLAY TREE NODE CREATED

SET CHARacters operation node.

INPUTS FOR UPDATING NODE

None.

- 109 -

SET COLOR PS 300 COMMAND SUMMARY

VIEWING -Appearance Attributes

FORMAT

name := SET COLOR hue,sat [APPLied to Hamel);

DESCRIPTION

Specifies the color of an object (name 1).

PARAMETERS

hue -Areal number greater than or equal to 0 and less than 360, where:

0 =pure blue
120 =pure red
240 =pure green
360 =pure blue

sdt -Areal number from 0 to 1 where:

0 = no saturation (white)
1 = f u 11 saturation

Hamel -Structure to be colored.

DEFAULT

The default setting for both hue and sat is 0.

NOTE

Zero saturation in any hue is white.

DISPLAY TREE NODE CREATED

SET COLDR operation node.

- 110 -

PS 300 COMMAND SUMMARY SET COLOR

VIEWING -Appearance Attributes

(continued)

INPUTS FOR UPDATING NODE

Real

Rea 1

EXAMPLE

A:= SET COLOR 240,1 THEN B;
B:= UECTOR_LIST ;

{If A is displayed, the vector list described by B will be displayed in a pure green
hue on a CSM.}

SET COLOR BLENDING PS 300 COMMAND SUMMARY

VIEWING -Appearance Attributes

FORMAT

name := SET COLOR BLENDing sat [APPLied to Hamel];

DESCRIPTION

This command, used in conjunction with the COLOR option of the VECtor_list
command, allows individual vector hue specifications. The ability to specif y
vector hues individually is called "color blending" because, if two adjacent
vectors are of different hues, the hue of the line segment drawn between them is
blended continuously between the endpoints. Vectors can only be color-blended
when the contrast is set to zero using the SET CONTrast command.

PARAMETERS

sat - Areal number between 0 and 1, where 0 represents no color saturation
(white) and 1 represents full color situation.

Hamel - Either a VECtor_list command containing the COLOR option, or an
ancestor of one or more such commands. Hamel may also be a
VECtor list command without the COLOR option (or ancestor thereof)
provided that the SET COLOR comr~and is applied to these lists as
described in the notes that follow.

NOTES

1. A color definition requires the specification of hue, saturation, and
intensity. With SET COLOR BLENDing:

hue values are specified individually for each vector

a single saturation value is specified for all vectors

intensity is always full (color-blended vector lists cannot be depth-cued),
and the z values of vectors affect the color rather than the intensity. (Far
this reason, 2D vector lists are generally the most useful in color-Mending.)

- 112 -

PS 300 COMMAND SUMMARY SET COLOR BLENDING

VIEWING -Appearance Attributes

(continued)

NOTES (continued)

2. Note that the "I=" clause of the VECtor_list command is not among the
factors that determine a color-blended vector's intensity. Refer to the
VECtor list command for further details.

3. On systems lacking either a 2K ACP or a CSM Calligraphic Display, the SET
COLOR BLENDing command is accepted but has no effect.

4. With color blended vector lists, the SET CONTrast command must be used
to set the contrast of the PS 300 display to zero. If contrast is not set to
zero, all color-blended vectors will appear blue.

- 113 -

SET CONDITIONAL BIT PS 300 COMMAND SUMMARY

STRUCTURE -Attributes

FORMAT

name := SET conditional_BIT n switch [APPLied to Hamel];

DESCRIPTION

Alters one of the 15 global conditional bits temporarily, during the traversal of a
branch of a display tree. These temporary settings may be tested further down
within the display tree, possibly allowing conditioned reference to other
structures (see IF conditional BIT command). When traversal of the branch is
complete, the bits are restored to their previous values.

PARAMETERS

n - An integer from 0 to 14, corresponding to the conditional bit to be set ON or
OFF by the command (see Note 1 below).

switch -ON or OFF.

name -Structure to follow the conditional bit node.

DEFAULT

All 15 conditional bits are initially set to OFF.

NOTES

1. Although only one conditional bit can be set ON or OFF by this command, a
function network could be tied in to this node to set any conditional bit ON
or OFF.

2. Note that there is really only one bank of 15 conditional bits and that this
command only changes the values of these bits temporarily, while Hamel is
being traversed. However, descendants of Hamel could also be SET
conditional_BIT nodes. These are saved and restored as part of the state of
the machine during the traversal of different branches of the display tree.

- 114 -

PS 300 COMMAND SUMMARY SET CONDITIONAL BIT

STRUCTURE - Attributes

(continued)

DISPLAY TREE NODE CREATED

SET conditional BIT operation node.

INPUTS FOR UPDATING NODE

name

Boolean <1> Sets the original bit n)
to be ON(T) or OFF(F~

Integer <2> Sets bit number input (0-1~) ON
1

Integer <3> Sets bit number input (0-14) 0

Integer ~ <4> Disables bit number input (0-14) from being

I
Integer ~ <5> Complements (toggles) bit number input (0-14)

affected by th i s node .

SET CONDITIONAL BIT

ASOb 18

EXAMPLE

A:= SET conditional BIT 3 ON THEN B;

B:= IF conditional BIT 3 is ON THEI`J C;

C:= IF conditional BIT 6 is ON THEN D;

D:= 1/ECtor list ... ;

{A function network should be tied to A so that the state of any of the
conditional BITs can be changed, not just the one that was initially set ON or OFF.}

- 1 15 -

SET CONTRAST PS 300 COMMAND SUMMARY

VIEWING -Appearance Attributes

FORMAT

name := SET CONTrast to C [APPLied to name 1];

DESCRIPTION

Changes the contrast of the PS 300 display(s).

PARAMETERS

C - A nu tuber from U to 1 (0 =lowest contrast, 1= highest contrast).

Hamel -Structure using this contrast setting.

DEFAULT

SET CONTrast to l;

NOTES

1. Setting contrast to 1 provides the highest contrast and thus the greatest
perception of depth cueing (all else being equal).

2. Although any real value from 0 to 1 is legal for C, C is mapped to one of four
values (0.,. 3 3,.67,1.).

3. With color blended vector lists, SET CONTrast must be used to set the
contrast of the PS 300 display to zero. If contrast is not set to zero,
color-blended vectors will appear blue.

DISPLAY TREE NODE CREATED

SET CONTrast operation node.

- 1 16 -

PS 300 COMMAND SUMMARY SET CONTRAST

VIEWING - Appearance Attributes

Ccontinued>

INPUTS FOR UPDATING NODES

Real

name

1>Changes contrast

SET CONTRAST

IAS0619

EXAMPLE

A:= SET CONTrast to 0 THEN B;

{This is a minimum contrast setting.}

— 117 —

SET CSM PS 300 COMMAND SUMMARY

VIEWING -Appearance Attributes

FORMAT

name := SET CSM Switch [APPLied to Hamel];

DESCRIPTION

Allows you to specify one of two modes of operation for the CSM Calligraphic
Display.

PARAMETERS

switch -Two settings may be specified:

ON - This setting slows the Line Generator to half speed and provides
extra brightness and precision (endpoint match and color
convergence) in ;displayed data.

OFF - This is the default setting. It sets the Line Generator to ful
speed, allowing for the rT~aximum number of vectors to be
displayed in a refresh cycle.

NOTE

The following command should be added to the SITE.DAT file of any installation
using a CSM Calligraphic Display:

SEND TRUE TO < 1 > CSM;

This command establishes SET CSM ON as the default mode for graphics display,
and sets the Terminal Emulator and the Message Display line to be displayed in
CSM mode.

DEFAULT

SET CSM OFF;

DISPLAY TREE NODE CREATED

SET CS(`~'1 operation node.

- 1 18 -

PS 300 COMMAND SUMMARY

VIEWING - Appearance Attributes

SET CSM

INPUTS FOR UPDATING NODE

Boolean

name

<1>T/F set line generator
at full/half speed

SET CSM

IAS0620

(continued)

- 1 19 -

SET DEPTH CLIPPING PS 300 COMMAND SUMMARY

VIEWING -Appearance Attributes

FORMAT

name := SET DEPTH Clipping swi tCh [APPLied to name 1];

DESCRIPTION

Enables/disables Z —plane (.depth) clipping.

PARAMETERS

swi tCh — ON or OFF.

Hamel —Structure affected.

DEFAULT

SET DEPTH Clipping OFF;

NOTE

With depth clipping off, data between the front clipping plane and the eye will
appear at full intensity, and data behind the eye will be clipped.

DISPLAY TREE NODE CREATED

SET DEPTH Clipping operation node.

INPUTS FOR UPDATING NODES

name

Boolean /<1>Disables (F)/enables
(T) depth clipping

SET DEPTH
CLIPPING

1 AS0621

- 120 -

PS 300 COMMAND SUMMARY SET DEPTH CLIPPING

VIEWING -Appearance Attributes

(continued)

EXAMPLE

A:= SET DEPTH_CLipping ON THEN B;

g•-.- ...

{This enables Z clipping.}

- 121 -

SET DISPLAYS PS 300 COMMAND SUMMARY

VIEWING —Appearance Attributes

FORMAT

name := SET DISPIays ALL switch [APPLied to Hamel];
name := SET DISPIay nC ,m...] switch [APPLied to Hamel);

DESCRIPTION

Specifies the scopes) which are to receive display information.

PARAMETERS

switch - ON or OFF.

n C , m ...] - 0,1,2, 3. Numeric designation for PS 300 scopes.

name 1 -Structure to be displayed.

DEFAULT

SET DISPLAYS ALL ON;

NOTE

1. The ALL version of the command only refers to those scopes that have
already been explicitly specified by a previous SET DISPIay command.

2. Scope numbers correspond to the hardware configuration (e.g., Scope 0 is
the scope number when there is just one scope in the system).

DISPLAY TREE NODE CREATED

SET DISPIay(s) operation node.

- 122 -

PS 300 COMMAND SUMMARY SET DISPLAYS

VIEWING - Appearance Attributes

(continued)

INPUTS FOR UPDATING NODES

name

Boolean <1> Turns indicated displays
ON(T) or OFF(F)

SET DISPLAYS)

IAS0622

EXAMPLE

A:= SET DISPIay 1 ON THEN B;

B:= 11ECtor list ... ;

{This channels B to be displayed on scope l.}

- 123 -

SET INTENSITY PS 300 COMMAND SUMMARY

VIEWING - Viewport Specification

FORMAT

name := SET INTENsity switch i mi n': i max [APPLied to name 1];

DESCRIPTION

Specifies intensity variation for depth cueing, and may be used to override the
intensity specification associated with the i/IEWPORT command or previous SET
INTENsity commands.

PARAMETERS

switch - Two settings may be specified: ON and OFF. The default setting is ON,
which means enable the effect of this node in the display tree. OFF
means disable the effect.

i mi n - A real number ranging from 0.0 to 1.0, i mi n represents the dimmest
intensity setting.

i mdx - A real number ranging from 0.0 to 1.0, i mdx represents the brightest
intensity setting.

name 1 -Structure to be affected.

NOTE

The last SET INTENsity node that is ON in a display tree determines the intensity
range.

DISPLAY TREE NODE CREATED

SET INTENsity operation node.

- 124 -

PS 300 COMMAND SUMMARY SET INTENSITY

VIEWING - Viewport Specification

Ccontinued>

INPUTS FOR UPDATING NODE

name

Boolean <1>T/F enable/disable the effect
of this node

2D vector <2>Change min:max intensity range

SET INTENSITY

I~S0623

- 125 -

SET LEVEL OF DETAIL PS 300 COMMAND SUMMARY

STRUCTURE -Attributes

FORMAT

name := SET LEVeI of detail ton [APPLied to name 1];

DESCRIPTION

Alters a global level of detail value temporarily, during the traversal of~~ a
specified branch of a display tree. These temporary settings may be tested
further down within the display tree, possibly allowing conditioned reference to
other structures (see IF LE1/el of detail command). When traversal of the branch
is complete, the level of detail is restored to its original value.

PARAMETERS

n - An integer from 0 to 32767 indicating the level of detail value.

name := Structure to be affected by the level of detail.

DEFAULT

The level of detail is initially 0.

NOTE

There is really Only one global level of detail value; this command only changes
the value of the level of detail temporarily, while the Hamel structure is being
traversed.

DISPLAY TREE NODE CREATED

SET LE1lel of detail operation node.

V

- 126 -

PS 300 COMMAND SUMMARY SET LEVEL OF DETAIL

STRUCTURE - Attributes

Ccontinued>

INPUTS FOR UPDATING NODE

Integer

name

<1>Changes the level of
detail (0-32767)

SET LEVEL OF
DETAIL

IAS0624

EXAMPLE

A:= SET LEUeI of detail to 2 THEN B;

B:= IF LE1/el of detail = 2 THEN C;

{A function network should be tied to A to change the level of detail for
conditional referencing of C.}

- 127 -

SET PICKING PS 300 COMMAND SUMMARY

MODELING -Picking Attributes

FORMAT

name := SET PICKing switch [APPLied to Hamel];

DESCRIPTION

Enables or disables picking for a specified structure.

PARAMETERS

Swi tCh - ON or OFF for enabling or disabling picking.

name 1 -Structure to be affected.

NOTE

1. There r~~ust also be a SET PICKing IDentifier node in the structure to be
packable for picking to be reported.

2. See also SET PICKing LOCation and SET PICKing IDentifier.

DISPLAY TREE NODE CREATED

SET PICKING operation node (information to enable/disable hardware picking).

INPUTS FOR UPDATING NODE

name

Boot can <1>Enable (true)/disable (false) .picking
of structure that follows

SET PICKING

1AS0625

- 128 -

PS 300 COMMAND SUMMARY SET PICKING

MODELING -Picking Attributes

(continued)

EXAMPLE

A:= SET PICKing OFF THEN B;

g•-. - ...

{A function network should be tied to A to SET PICKing ON when needed in
order to make structure B pickable.}

- 129 -

SET PICKING IDENTIFIER PS 300 COMMAND SUMMARY

MODELING -Picking Attributes

FORMAT

name := SET PICKing IDentif ier = i d_ndme [APPLied to name 1];

DESCRIPTION

Specifies textual information that will be reported back if a pick occurs further
down in the structure Hamel. Nested pick identifier names are all reported,
separated by commas.

PARAMETERS

i d_name - Text that will be reported if a pick occurs anywhere within the
structure Hamel. This must be a legal PS 300 name.

name 1 -Structure to which the pick ID applies.

NOTES

1. At least one pick ID must precede any pickable entity for picking to be
reported.

2, i d_name cannot be updated by a function network.

DISPLAY TREE NODE CREATED

SET PICKing IDentifier operation node.

INPUTS FOR UPDATING NODE

None.

- 130 -

PS 300 COMMAND SUMMARY SET PICKING IDENTIFIER

MODELING -Picking Attributes

(continued)

EXAMPLE

A:= SET PICKing OFF THEN B;

B:= SET PICKing IDentifier =structure_(THEN C;

C:= 1/ECtor_list ... ;

{If a vector in C is picked, the ID name reported in the pick list will be
structure C.}

- l31 -

SET PICKING LOCATION PS 300 COMMAND SUMMARY

MODELING —Picking Attributes

FORMAT

name := SET PICKing LOCation = x ,y S i ze_x , S i ze_y;

DESCRIPTION

Specifies a retangular picking area at (x,y) within the current viewport. The
rectangle is bounded by (x > s i ze_x) and (y > s i ze_y).

If an appropriate picking network is set up and a pick-sensitive vector list
(vectors or dots) is drawn within the pick location, it will be reported as picked.

PARAMETERS

x ,y -The center of the pick location.

s i ze_x , s i ze_y - Offsets from the x ,y center specifying the bounds of the
picking rectangle (the rectangle bounds must be within > 1
range).

DEFAULTS

NOTES

A default pick location is set up in the configuration file that is loaded when the
system is booted. The x ,y center is tied to the position of the data tablet stylus,
and s i ze_x , s i ze_y are both set to .O l , (i.e., a box whose dimensions are .02 on
each side).

1. In most applications, the picking location needs to be moveable, so the x,y
center is usually updated by a function network that specifies where the
center should be.

2. The data tablet's x , y value is usually the source for specifying the pick
location center.

- 132 -

PS 300 COMMAND SUMMARY SET PICKING LOCATION

MODELING — Picking Attributes

Ccontinued)

DISPLAY TREE NODE CREATED

SET PIC King LOCation operation node (information for hardware picking).

INPUTS FOR UPDATING NODE

name

2D vector <1> x,y center

2D vector

ASSOCIATED FUNCTION

F: PIC K

EXAMPLE

<2> size x , s i ze~y boundary offsets

SET PICKING
LOCATION

IAS0626

PICK LOCATION := SET PIC King LOCation = 0,0 .02,.02;

{This redefines the default picking area set up in the configuration file, making
the picking area twice as large as the default.}

- 133 -

SET PLOTTER PS 300 COMMAND SUMMARY

VIEWING -Appearance Attributes

FORMAT

name := SET PLOTTER switch [APPLied to Hamel);

DESCRIPTION

Allows you to specify parts of a structure that are eligible for plotting.

PARAMETERS

switch - Two settings may be used with the SET PLOTTER command:

ON - enables a structure to be plotted.

OFF - prevents a structure from being plotted.

Hamel -The structure in question.

DEFAULT

SET PLOTTER ON;

DISPLAY TREE NODE CREATED

SET PLOTTER operation node.

I(~JPUTS FOR UPDATING NODE

None.

134 -

PS 300 COMMAND SUMMARY SET RATE

STRUCTURE —Attributes

FORMAT

name := SET RATE phase_on phase off [i ni ti al_state] [delay]
[APPLied to Hamel];

DESCRIPTION

Temporarily alters two global duration values (phdse_on and phase off, in
refresh frames during the traversal of a specified branch of a display tree.
These temporary settings may be tested further down within the display tree,
possibly allowing conditioned reference to other structures Csee IF PHASE
command). 1Nhen traversal of the branch is complete, the durations are restored
to their original values.

PARAMETERS

phase_on , phase off - Integers designating the durations of the on and of f
phases, respectively, in refresh fra~r~es.

i ni ti al_state - ON or OFF, indicating the initial phase.

del ay — Integer designating the number of refresh frames in the initial State.

Hamel —Structure to follow the SET RATE command.

DEFAULT

The default phase is OFF and never changes unless a SET RATE node is
encountered.

NOTES

1. This structure attribute is useful for controlling blinking, the alternating
display of two structures, the alternating display of a single structure in two
different views Cstereo?, etc.

2. Note that there are only two rate values (lphase_on , phase off) and that
this cor~~mand only changes those values for the structures) that follow.

- 135 -

SET RATE PS 3O0 COMMAND SUMMARY

STRUCTURE — Attributes

(continued)

DISPLAY TREE NODE CREATED

SET RATE operation node.

INPUTS FOR UPDATING NODE

name

Integer

Integer

Boolean

Integer

<1> Changes the phase on value

<2> Changes the phase_ off ,value

<3> Changes the initial
state ON(T)/OFF(F)

<4> Changes the delay

SET RATE

EXAMPLE

A:= BEGIN Structure
rate:= SET RATE 10 100;

IF PHASE is ON THEN B;
END_Structure;

B:= !/ECtor list ... ;

IAS0627

{If A is DISPlayed, then vector list B v~~ill be displayed for 10 frames and not
displayed for 100 frames repetitively.}

- 136 -

PS 300 COMMAND SUMMARY SET RATE EXTERNAL

STRUCTURE -Attributes

FORMAT

name := SET RATE EXTernal [APPLied to name 1];

DESCRIPTION

Sets up a structure that can be used to alter the PHASE attribute via an external
source, such as a function network or a message from the host computer. This
PHASE attribute can be tested further down within the display tree, allowing
conditional references to other structures (see IF PHASE command). See also
the SET RATE comr~iand which alters the PHASE attribute based on refresh
cycles.

PARAMETERS

Hamel -Structure to follow the SET RATE EXTernal command.

DEFAULT

The default phase is ON when a SET RATE EXTernal node is encountered.

NOTES

1. The PHASE attribute is changed by sending a Boolean ~alue to input 1 of
SET RATE EXTernal node.

2. See also notes for SET RATE command.

DISPLAY TREE NODE CREATED

SET RATE EXTernal operation node.

- 137 -

SET RATE EXTERNAL PS 300 COMMAND SUMMARY

STRUCTURE - Attributes

(continued)

INPUTS FOR UPDATING NODE

Boolean

EXAMPLE

name

<1>Changes the PHASE state
ON(T)/OFF(F)

SET RATE
EXTERNAL

IAS062a

A:= BEGIN Structure
rate:= SET -RATE EXTernal;

IF PHASE is ON THEN B;
END Structure;

B:= 1/ECtor list ... ;

{A function network should be connected to A.rate to.set the PHASE ON and OFF
in order to conditionally display vector list B.}

- 138 -

PS 300 COMMAND SUh1MARY

FUNCTION

SETUP CNESS

FORMAT

SETUP CNESS queue type <i>name;

DESCRIPTION

Allows you to specify whether or not an input queue to a function instance is to
be a constant queue.

PARAMETERS

queue type - TRUE sets the queue type to constant, FALSE sets it to active.

name -Most intrinsic function nar~~es, except those listed in the notes.

NOTES

1. This feature should only be used when a function is first instanced. Input
queues should not be changed between active and constant after the function
has started processing data.

2. The SETUP CNESS command can be used for all intrinsic functions except the
following.

F:LINEEDITOR, F:CLSECONDS, F:CLFRA(uIES, F:CLTICKS,
F:BOOLEAN_CHOOSE, F:INPUTS_CHOOSE, F:PASSTHRU,
F:XFOR(~1DATA

3. Functions `r~fhich specify their queue characteristics by their name, e.g.,
F:ADDC, `will continue to be instanced with their default active and constant
queues.

- 139 -

SOLID RENDERING PS 300 COMMAND SUMMARY

MODELING —Data Structuring CPS 340)

FORMAT

name := SOLID rendering APPLied to name 1;

DESCRIPTION

Declares a POLYGon object to be a solid and marks the object so that rendering
operations can be performed on it. This command creates a rendering node. It is
used exclusively with the PS 340.

PARAMETERS

Hamel — Either a POLYGon node or an ancestor of one or more POLYGon nodes.

NOTES

1. If non—POLYGon data nodes (such as VECtor_list, CHARacters, LABELS,
POLYnomial, and BSPLINE) are included in Hamel, these data objects are
displayed along with the polygon objects prior to rendering but are omitted
fror-n renderings. The rendering operations have no effect on these data
nodes.

2. IF and SET CONDITIONAL BIT, IF and SET LE1/EL_OF_DETAIL, INCRement
LE1lel_of_detail, DECrement LEVeI_of_detail, IF PHASE, SET RATE, SET
RATE EXTernal, SET DEPTH_CLipping, and BEGIN_Structure...
END Structure may be placed between a rendering node and its data. A
rendering takes into account any effects of these nodes at the time the
request is made; for example, if IF PHASE and SET RATE are being used to
blink an object and that object is,"off" at the moment the request is made,
the object is excluded from the rendering.

The nodes in the above paragraph may also be placed above the rendering
node.

3. The transformations ROTate, TRANslate, SCALE, Matrix_2X2, Matrix_3X3,
Matrix 4X 3, and LOOK may be placed between a rendering node and its data
node(s). However, these nodes should be used with caution, since, like the
operate nodes mentioned above, their effects will be incorporated into
renderings, and precision probler~~s may result. (Since most vertices in an
object usually belong to r~~ore than one polygon, each vertex must be defined
with the same numerical value in each of its polygons; otherwise, precision
discrepancies r~nay cause inaccurate renderings.) The transformation nodes
mentioned bove may also be placed above the rendering node.

- 140 -

PS 300 COMMAND SUMMARY SOLID RENDERING

MODELING -Data Structuring CPS 340)

(continued)

NOTES (continued)

4. The five nodes WINDOW, 1/IEWPORT, EYE, Field_Of_l/iew, and MATRIX 4X4
should NOT, in general, be made descendants of a rendering node. Like
other transformations, these five are incorporated into the output data from
a rendering operation. However, this rendered data is generally displayed
within a framework that already includes global 4x4-matrix transformations
of its own. Including these transformations as part of the rendering, then,
usually has the net effect of applying an unwanted double-WINDOW
(double-1/IEWPORT, etc.) to the rendered object.

5. SOLID_rendering, SURFACE rendering, and SECTioning_plane may not be
descendants of a rendering node, especially if multiply-instanced rendering
nodes are involved. If this rule is not observed, bad renderings or a system
crash may result. The system does not check for }4~Is ~,onditionr

6. Other nodes, including character transformations and the SET nodes (SET
RATE, SET COLOR, SET PLOTTER) not mentioned above, are ignored by
rendering operations when placed beneath a rendering node. Such nodes
must therefore be placed above a rendering node if they are to have their
customary effects on renderings. Data nodes other than POLYGON are also
ignored.

7. Before an object can be rendered, its rendering node must be part of a
structure which is DISPLAYed. If the object itself is DISPLAYed but its
rendering node is not, no renderings can be created.

8. Any input to input< 1 > of a rendering node causes an output. Inputs sent to
input<2> will not cause an output to be sent. If output< 1 > has not been
connected, and an integer, string, or Boolean is sent to input< 1 >, a message
will appear on the screen upon successful completion of the rendering
operation. An error message will appear if the rendering was not completed.

DISPLAY TREE NODE CREATED

Rendering operation node.

- 141 -

SOLID RENDERING PS 300 COMMAND SUMMARY

MODELING -Data Structuring CPS 340)

(continued)

INPUTS FOR UPDATING NODE

name

Integer,String
or Boolean

Boolean

NOTES ON INPUTS

<1>

<2>

SOLID. RENDERING

<1>

{AS0629

Boolean

Input <1>
0: Toggles between the current rendering and the original object.
l: Creates and displays across-section of an object defined by the sectioning

plane (solid only).
2: Creates and displays a sectioned rendering.
3: Creates and displays a rendering using backface removal (solid only).
4: Creates and displays a rendering using hidden-line removal.
5: Generates awash-shaded image on the raster display.
6: Generates a f lat-shaded image on the raster display.
7: Generates asmooth-shaded image on the raster display.

String: Causes the current rendering to be saved under the name given in the
string.

False: Sets the original view. The original descendant structure of the
rendering operate node is displayed.

True: Sets the rendered view. The rendered view of the original descendent
structure of the rendering operate node.

Input <2>
True: Declares the object to be a solid.
False: Declares the object to be a surface.

Output < 1 >
True: Rendering is displayed
False: Rendering is not displayed

- 142 -

PS 300 COMMAND SUMMARY STANDARD FONT

VIEWING -Appearance Attributes

FORMAT

name := STANdard FONT [APPLied to name 1];

DESCRIPTION

Establishes the standard PS 300 95-character font as the working font.

PARAMETERS

Hamel -Structure to use the standard font.

DEFAULT

If no other font is specified, the STANdard FONT is the default font.

NOTE

This command is necessary only if the STANdard FONT is to be used in a display
tree that uses another font higher in the same structure.

DISPLAY TREE NODE CREATED

Character font pointer node.

- 143 -

STANDARD FONT PS 300 COMMAND SUMMARY

VIEWING -Appearance Attributes

(continued?

EXAMPLE

SLANT := BEGIN Font
(character definitions)

END_Font;

A := BEGIN Structure
character FONT SLANT;
CHARacters 'HERE';
STANdard FONT;
CHARacters 0,-2 'HERE';

END Structure;

DISPIay A;

{'HERE' at 0,0 will be in the SLANT font 'HERE' at 0,2 will be in the
STANDARD font.}

- 144 -

PS 300 COMMAND SUMMARY STORE

FUNCTION

FORMAT

STORE option IN Hamel;

DESCRIPTION

Sends a value to input < 1 > of Function Instance, node, or variable Hamel.

PARAMETERS

Option -See SEND command.

name 1 - Function Instance name,. node name, or variable name to receive value
on input < 1 >.

NOTE

This command is another way of doing a special case of the SEND command. It
is synonymous with: SEND option TO < 1 > name 1;

EXAMPLE

TIMER:= F:CLCSECONDS;

STORE FIX(10) IN TIMER;

{This is equivalent to: SEND FIX(10) TO < I > TIMER;}

- 145 -

SURFACE RENDERING PS 300 COMMAND SUMMARY

-MODELING -Data Structuring CPS 340>

FORMAT

name := SURFACE rendering APPLied to name 1;

DESCRIPTION

Declares a POLYGon object to be a surface and marks the object so that
rendering operations can be performed on it. This command creates a rendering
node. It is used exclusively with the PS 340.

PARAMETERS

name 1 - Either a POLYGon node or an ancestor of one or r~~ore POLYGon nodes.

NOTES

1. If non-POLYGon data nodes (such as 1/ECtor_list, CHARacters, LABELS,
POLYnomial, and BSPLINE) are included in Hamel, these data objects are
displayed along with the polygon objects prior to rendering but are omitted
from renderings. The rendering operations have no effect on these data
nodes.

2. IF and SET CONDITIONAL BIT, IF and SET LE1/EL_OF_DETAIL, INCRement
LE1/el_of_detail, DECrement LE1/el_of_detail, IF PHASE, SET RATE, SET
RATE EXTernal, SET DEPTH_CLipping, and BEGIN Structure...
END_Structure may be placed between a rendering node and its data. A
rendering takes into account any effects of these nodes at the time the
request is made; for exar~nple, if IF PHASE and SET RATE are being used to
blink an object and that object is "off" at the moment the request is made,
the object is excluded from the rendering.

The nodes in the above paragraph may also be placed above the rendering
node.

3. The transformations ROTate, TRANslate, SCALE, Matrix_2X2, Matrix_3X3,
Matrix_4X 3, and LOOK may be placed bet4veen a rendering node and its data
node(s). However, these nodes should be used with caution, since, like the
operate nodes mentioned above, their effects will be incorporated into
renderings, and precision problems may result. (Since most vertices in an
object usually belong to more than one polygon, each vertex must be defined
with the same numerical value in each of its polygons; otherwise, precision
discrepancies may cause inaccurate renderings..) The transformation nodes
r~~entioned Bove may also be placed above the rendering node.

- 146 -

PS 300 COMMAND SUMMARY SURFACE RENDERING

MODELING -Data Structuring CPS 340)

Ccontinued>

NOTES (continued)

4. The five nodes U~JINDOW, 1/IEWPORT, EYE, Field_Of_1/iew, and MATRIX 4X4
should NOT, in general, be made descendants of a rendering node. Like
other transformations, these five are incorporated into the output data from
a rendering operation. However, this rendered data is generally displayed
within a framework that already includes global 4x4-matrix transformations
of its own. Including these transformations as part of the rendering, then,
usually has the net effect of applying an unwanted double-WINDOW
(double-VIEWPORT, etc.) to the rendered object.

5. SOLID rendering, SURFACE rendering, and SECTioning_plane may not be
descendants of a rendering node, especially if multiply-instanced rendering
nodes are involved. If this rule is not observed, bad renderings or a system
crash may result. The system does not check for this condition.

6. Other nodes, including character transformations and the SET nodes (SET
RATE, SET COLOR, SET PLOTTER) not mentioned above, are ignored by
rendering operations when placed beneath a rendering node. Such nodes
must therefore be placed above a rendering node if they are to have their
customary effects on renderings. Data nodes other than POLYGon are also
ignored.

7. Before an object can be rendered, its rendering node must be part of a
structure which is DISPLAYed. If the object itself is DISPLAYed but its
rendering node is not, no renderings can be created.

8. Any input to input< 1 > of a rendering node causes an output. Inputs sent to
input<2> will not cause an output to be sent. If output< 1 > has not been
connected, and an integer, string, or Boolean is sent to input < 1 >, a message
will appear on the screen upon successful cor~pletion of the rendering
operation. ,An error r~nessage will appear if the rendering was not completed.

DISPLAY TREE NODE CREATED

Rendering operation node.

- 147 -

SURFACE RENDERING PS 300 COMMAND SUMMARY

MODELING -Data Structuring CPS 340>

(continued)

INPUTS FOR UPDATING NODE

Integer,String
or Boolean

Boolean

NOTES ON INPUTS

name

<1>

<2>

SURFACE RENDERING

<1>

AS0630

600lean

Input < 1 >
0: Toggles between the current rendering and the original object.
l: Creates and displays across-section of an object defined by the sectioning

plane (solid only).
2: Creates and displays a sectioned rendering.
3: Creates and displays a rendering using backface removal (solid only).
4: Creates and displays a rendering using hidden-line removal.
5: Generates awash-shaded image on the raster display.
6: Generates aflat-shaded image on the raster display.
7: Generates asmooth-shaded image on the raster display.
String: Causes the current rendering to be saved under the name given in the

string.
False: Sets the original view. The original descendant structure of the

rendering operate node is displayed.
True: Sets the rendered view. The rendered view of the original descendent

structure of the rendering operate node.

Input <2>
True: Declares the object to be a solid.
False: Declares the object to be a surface.

Output < 1 >
True: Rendering is displayed
False: Rendering is not displayed

- 148 -

PS 300 COMMAND SUMMARY TEXT SIZE

MODELING -Character Transformations

FORMA~-

name := TEXT SIZE x [APPLied to name 1];

DESCRIPTION

Creates a 2X2 uniform scale matrix which defines character size.

PARAMETERS

x -The size of the characters.

name 1 -Structure containing the characters.

NOTES

1. The text size (x) is a multiple or fraction of the default character size, i.e. 1.

2. A TEXT SIZE node in a display tree over-rides any previous character sizes
that may have been created using the CHARacter SCAIe or CHARachter
SIZE comr~ands. In other words, the TEXT SIZE scaling matrix is not
concatenated into any other 2X2 r~~atrix.

3. A TEXT SIZE node will also override CHARacter ROTate and MATRIX 2X2
nodes.

DISPLAY TREE NODE CREATED

2x2 matrix operation node.

- 149 -

TEXT SIZE PS 300 COMMAND SUMMARY

MODELING -Character Transformations

(continued)

INPUTS FOR UPDATING NODE

2x2 matrix

NOTE ON INPUT

Any 2x2 matrix is legal.

ASSOCIATED FUNCTIONS

F:MATRIX2, F:CSCALE

EXAMPLE

name

<1> Changes matrix value

2x2 matri x

IAS0605

String := CHARacters 'This is only a test';
Scale := CHARacter SCAIe 2 THEN String;
New Scale := CHARacter SCAIe 3 THEN Scale;
Change Size := TEXT SIZE .5 THEN String;

{The Scale matrix creates characters twice the default size. The New Scale
matrix is concatenated with the Scale matrix to create characters six times the
default size. The Change_Size matrix, ho~n~ever is not concatenated, and so
returns the characters to one half of the default size.}

- 150 -

PS 300 COMMAND SUMMARY TRANSLATE

MODELING -Transformations

FORMAT

name := TRANslate by tx , ty[,tz] [APPLied to name 1];

DESCRIPTION

Translates an object by applying a translation vector to it.

PARAMETERS

tx, ty, tz — Distances to translate in each coordinate direction, ire world
coordinates.

name 1 —Structure to be translated.

DEFAULT

tz is 0 if not specified.

DISPLAY TREE NODE CREATED

3D translation vector operation node.

INPUTS FOR UPDATING NODE

name

3D vector <1>Changes the translation vector

3D translation
vector

IAS0631

- 151 -

TRANSLATE PS 300 COMMAND SUMMARY

MODELING -Transformations

(continued>

ASSOCIATED FUNCTIONS

F:X1/ECTOR, F:Y1/ECTOR, F:ZVECTOR

EXAMPLE

A:= TRANslate by 5,7 THEM B;

B:= 1/ECtor_list ... ;

- 152 -

PS 300 COMMAND SUMMARY VARIABLE

FUNCTION

FORMAT

UARiable name 1 [,name2 ... namen];

DESCRIPTION

Declares a storage place (or places) for any PS 300 Function data type. A value
can be stored in variable Hamel either by SENDing (or STORing) a value to input
< 1 > of name 1 , or by CONNECTing a Function Instance to input < 1 > of name 1. The
current value of variable Hamel can be obtained by using either the FETCH
function or the SEND UALUE(variable) option of the SEND command, where
variable in this case is name 1.

PARAMETERS

name 1 , name2... - Uariable nar~~es.

EXAMPLE

UARiable CURRENT_XY, X, Y, Z, SAUE;

- 153 -

VECTOR LIST PS 300 COMMAND SUMMARY

MODELING -Primitives

FORMAT

name := 1/ECtor_list [options] [N=n] vectors;

DESCRIPTION

Defines an object by specifying the points comprising the geometry of the object
and their connectivity (topology).

PARAMETERS

name -Any legal PS 300 name.

options - Can be none, any, or all of the following five groups (but only one
from each group, and in the order specified):

1. BLOCK normal i zed -All vectors will be normalized to a single
common exponent.

2. COLOR -This option is used when specifying color-blended vectors
(refer to SET COLOR BLENDing command) to indicate that
vector colors will be specified in lieu. of vector intensities. When
the COLOR option is used, the optional I=i clause used to specify
the intensity of a vector (refer to the vectors parameter below)
is replaced by the optional H=hue clause, where H is a number
from 0 to 720 specifying the individual vector hues. The default
is 0 (pure blue).

The 0-720 scale for the H=hue clause is simply the SET COLOR
scale of 0-360 repeated over the interval 360-720. On this scale,
0 represents pure blue, 120 pure red, 240 pure green, 360 pure
blue again, 480 pure red again, 600 pure green again, and 720 pure
blue. This "double color wheel" allows for color blending either
clockwise or counterclockwise around the color wheel.

- 154 -

PS 300 COMMAND SUMMARY VECTOR LIST

MODELING - Primitives

(continued)

PARAMETERS (continued)

3. Connectivity:

A. CONNECTED 1 i neS - The first vector is an undisplayed
position and the rest are endpoints of lines from the
previous vector.

B. SEParate_ ~ nes -The vectors are paired as line endpoints.

C. DOTS -Each vector specifies a dot.

D. ITEMi zed - Each vector is individually specified as a move
to position (P) or a line endpoint (L).

4. Y and Z coordinate specifications (for constant or linearly
changing Yand/or Z values):

Y = yCDY=delta_y]CZ = zCDZ=delta_z]]

where y and Z are default constants or beginning values, and
de 1 ta_y and de 1 ta_z are increment values for subsequent vectors.

4. INTERNAL_uni is - 1/ector values are in the internal PS 300 units
[LENGTH]. Specifying this option speeds the processing of the
vector list, but this also requires P/L information to be specifiec_~
for each vector, and it doesn't allow default y values or specified
intensities.

n - Estimated nu«~ber of vectors.

veCtOrS - The syntax for individual vectors will vary depending on the options
specified in the options area. For all options except ITEMi zed and
COLOR, the syntax is:

xcompC,ycompC,zco~r~p]]CI=i]

~~vhere xcomp, ycomp and zcomp are real or integer coordinates and i
is a real number (0.0 < i < 1.0> specifying the intrinsic intensity for
that point (1.0 =full intensity?.

- 155 -

VECTOR LIST PS 300 COMMAND SUMMARY

MODELING -Primitives

Ccontinued)

PARAMETERS (continued)

For ITEMi zed vector lists the syntax is:

P xcompC,ycompC,zcompJJCI=iJ

or

L xcompC,ycompC,zcomp7JCI=i]

where Pmeans amove-to-position and L means a line endpoint.

If default y and z values are specified in the options area, they
are not specified in the individual vectors.

For color-blended (COLOR) vector lists, the syntax is:

xcompC,ycompC,zcomp])CH=hue]

where xcomp, ycomp and zcomp are real or integer coordinates
and hue is a real number between 0 and 72Q specifying the hue of
a vector.

DEFAULTS

If not specified, the options default to:

1. Unnormalized
2. Connected
3. No default y or z values are assumed (see note 4)
4. Not expecting internal units
5. Not color-blended

Non color-blended vectors default to:

xcomp,ycompC,zcompJCI=i7

If i is not specified, it defaults to 1.

Color-blended vectors default to:

xcomp,ycompC,zcomp)CH=hue]

If hue is not specified, it defaults to Q (pure blue).

- 156 -

PS 300 COMMAND SUMMARY VECTOR LIST

MODELING —Primitives

Ccontinued>

NOTES

1. If n is less than the actual number o f vectors, insufficient allocation o f
memory will result; if greater, more memory will be allocated than is used.
(The former is generally the more severe problem.)

2. All vectors in a list must have the same number of components.

3. If y is specified in the options area, z must be specified in the options area.

4. If no default is specified in the options area and no z components are
specified in the vectors area, the vector list is a 2D vector list. If a z
default is specified in the same case, the vector list is a 3D vector list.

5. The first vector must be a position (P) vector
position vector if not.

6. Options must be specified in the order given.

u~ ~u will be fc~~ ~:~~:~ ~o be a

7. If CONNECTED_1 i nes, SEParate_1 i nes, or DOTs are specified in the options
area but the vectors are entered using P/Ls, then the option specified takes
precedence.

8. Block normalized vector lists generally take longer to process into the
PS 300, but are processed faster for display once they are in the syster~.

DISPLAY TREE NODE CREATED

vector list data node.

— 157 —

VECTOR LIST PS 300 COMMAND SUMMARY

MODELING —Primitives

Ccontinued>

INPUTS FOR UPDATING NODE

name

Vector

Integer

Integer

Vector

Boolean

Vector

NOTES ON INPUTS

<last> Changes last vector

< clear > C1 ears 1 i st

< delete> Deletes from end

< append > Appends to end

< i > True=Li ne j False=Position

< i > Replaces i -th vector

VECTOR LIST

1. Vector list nodes are in one of two forms:

IAS0632~

A. If DOTS were specified in the options area of the comr~~and, a DOT mode
vector list node is created. The Boolean input to <i> is ignored in this
case as well as the P/L portion of input vectors, and all vectors input
are considered new positions for dots.

B. All other vector list nodes created can be considered to be ZD or 3D
ITEMi zed with intensity specifications after each vector, and if a 3D
vector is input to a 2D vector list node, the last component modifies
the intensity.

2. If a 2D vector is sent to a 3D vector list, the z value defaults to o.

3. When you replace the i—th vector, the new vector is considered a line (L)
vector unless it was first changed to a position vector with
F:POSITION LINE.

- 158 -

PS 300 COMMAND SUMMARY VECTOR LIST

MODELING -Primitives

(continued)

EXAMPLES

A := 1/ECtor list BLOCK ScParate INTERNAL N=4
P l,l L -1,l L -1,-1 L 1,-l;

B := 1/ECtor list n=5
l,l -1,l I=.S
-1,-1 1,-1 I=.75

> >

C := i/ECtor list ITEM N=5
P l,l
L -1,1
L -1,-1
P 1,-1
L l,l;

- 159 -

VIEWPORT PS 300 COMMAND SUMMARY

VIEWING - Viewport Specification

FORMAT

name := VIEWport HORizontal = hmi n :hmax
1/ERTical = vmi n :vmax
[INTENsity = i mi n : i max] [APPLied to Hamel];

DESCRIPTION

Specifies the area of the screen that the displayed data will occupy, and the
range of intensity of the lines.

PARAMETERS

hmi n ,hmax , vmi n ,vmax - The x and y boundaries of the new viewport. l/alues
Rust be within the -1 to 1 range relative to the current
viewport, implying that each viewport may be no larger
than its predecessor.

imi n, imdx - Specifies the minimum and maximum intensities for the viewport.
i mi n is the intensity of lines at the back clipping plane; i max at
the front clipping plane. Values must be within the 0 to 1 range
relative to the current viewport, implying that each viewport may
have no greater intensity range than its predecessor.

Hamel -Structure to which the viewport is applied.

DEFAULT

The initial viewport is the full PS 300 screen with full intensity range (0 to 1):

VIEWport HORizontal = -1,l 1/ERTical = -1,1 INTENsity = 0:1;

lam/

- 160 -

PS 300 COMMAND SUMMARY VIEWPORT

VIEWING - Viewport Specification

(continued>

NOTES

1. A new 1/IEWport is defined relative to the current viewport, whose
boundaries are always taken to be -1 and 1 horizontally and vertically for
the purposes of the command. (The "current" viewport is the one
established by the most recent 11IEWport command.}

2. lliewports can be nested to any level.

3. If the viewport aspect ratio (vertical/horizontal) is different from the
window aspect ratio (y/x) or field-of -view aspect ratio (always 1) being
displayed in that viewport, the data displayed there will appear distorted.

DISPLAY TREE NODE CREATED

3x3 viewport matrix operation node.

INPUTS FOR UPDATING NODE

2x2 matrix
3x3 matrix

ASSOCIATED FUNCTIONS

name _

<1>Changes viewport boundaries (and intensity
range if 3x3 matrix is input)

F:MATRIX2, F:MATRIX 3

3x3 VI ~WPORT
matrix

IASOb33

- 161 -

VIEWPORT PS 300 COMMAND SUMMARY

VIEWING - Viewport Specification

Ccontinued>

NOTES ON INPUTS

1. For 2x2 matrix input, row 1 contains the hmi n , hmax values and row 2 the
vmin,vmax values.

2. For 3x3 matrix input, column 3 is ignored (there is no 3x2 matrix data type),
rows 1 and 2 are as for the 2x2 matrix above, and row 3 contains the

imin,imax values.

EXAMPLE

A:= 1/IEwport HORizontal = 0:1
VERTical = 0:1
INTENsity = .5:1 THEN B;

._ .- ...

{If A is displayed, structure B will be displayed in the upper right quadrant of the
screen with the intensity ranging from .5 to 1 instead of 0 to l.}

- 162 -

PS 300 COMMAND SUMMARY WINDOW

VIEWING -Windowing Transformations

FORMAT

name := WINDOW X = xmin:xmax
Y = ym i n : yma x
[FRONT boundary = zmi n BACK boundary =zmax]
[APPLied to name 1];

DESCRIPTION

Specifies a right rectangular prism enclosing a portion of the world coordinate
system to be displayed in parallel projection (cormspare Field_Of_l/iew).

P,gRAMETERS

xmi n . . .zmax -The window's boundaries along each axis (see Note 3.)

Hamel -Structure to which the ~~~indow is applied.

DEFAULT

WINDOW X=-l:l Y=-l:l FRONT=O BAC~<=100000;

NOTES

1. The windowing co«~r~~ands (WINDOW, Field_Of_View, and EYE) should always
be the highest level eler~~entithe outermost transformation) in a display tree
since these transformations override any previous transforr~~ations in the
tree. Note that VIE1~Jport is a r~~apping operation not a transformation of
the data and thus is not affected by a ~,riindowing command.

2. These cor~~n~ands should .also be followed by a LOOK command to fully
specify the vie~f~inq transformation. (Refer to the LOOK cor~~n~and.)

WINDOW PS 300 COMMAND SUMMARY

VIEWING -Windowing Transformations

Ccontinued)

NOTES (continued)

3. The front and back boundaries should be specified relative to the AT point's
position along the positive Z axis (O,O,D) (refer to the notes on the LOOK
command). So, FRONT should equal ~(D minus del ta_mi n) and BACK should
equal (D plus de 1 ta_max), where de 1 ta_mi n and de 1 ta_max are the distances
before and after the AT point that are to be included in the window,
respectively. (See Note 3 of the LOOK command also.)

DISPLAY TREE NODE CREATED

4x4 matrix operation node.

INPUTS FOR UPDATING NODE

4x4 matrix

ASSOCIATED FUNCTIONS

F:WINDOW, F:FOV, F:MATRIX4

EXAMPLE

name

<1> Changes matrix value

4x4 matrix

IAS0607

A:= BEGIN Structure
WINDOW X = -l:l Y = -l:l

FRONT boundary = 12
BACK boundary = 14;

LOOK AT 0,0,0 FROM 5,6.63,-10 THEN Sphere;
END_Structure;

{If Sphere is defined with a radius of 1 about the origin, A would be a view of the
Sphere from 5,6.63,-10, fully depth-cued. Note that the FROM to AT distance
in the L_00 K co «~ remand is 1 3.}

- 164 -

PS 300 COMMAND SUMMARY WITH PATTERN

MODELING —Primitives

FORMAT

name := WITH PATtern i [AROUND corners] [MATCH/NOMATCH]
LENgth r (UECtor_list);

DESCRIPTION

Uses line patterns (dashes, center lines, etc.) in drawing a vector list. The line
pattern is created over the length r, so lines will have the pattern repeated as
many times as necessary to the end of the line.

PARAMETERS

name - Any legal PS 300 name. A reference name for the patterned vector list.

i - A series of up to 32 integers between 0 and 128 indicating the relative lengths
of alternating lines, spaces, lines, etc., in the pattern. The longer the series,
the more complex the pattern of lines and spaces, which repeats every r units.

AROUND corners - This indicates that patterning is to continue around each of the
vectors in the vector list until the end of the list or a position
vector is reached.

MATCH/NOMATCH - This indicates that the pattern length should be adjusted to make
the pattern exactly match the end points of the vector or series
of vectors being patterned. The default is MATCH.

r -The length over which i is defined and repeated.

VECtOr_1 i St -The standard UECtor_list command with all options available except
DOTs.

NOTES

1. The UECtor list parameter n should be the estimate for the total number of
vectors that will result from the command (not the number of vectors
specified in the vector list).

- 165 -

WITH PATTERN PS 300 COMMAND SUMMARY

MODELING -Primitives

Ccontinued)

NOTES (continued)

2. As r approaches 0, n approaches infinity.

3. If r is greater than a vector line segment, that segment will be drawn solid;
no pattern will be used.

DISPLAY TREE NODE CREATED

Vector list data node.

INPUTS FOR UPDATING NODES

See UECtor list command.

NOTES ON INPUTS

Remember that the vectors in the node are the patterned vectors, so it is
non-trivial to update a vector.

EXAMPLES

WITH PATTERN 1 1 LENgth 1 VECtor_list N=2 0,0 3,0;

1,NITH PATTERN 1 1 LENgth 3 VECtor_list N=2 0,0 3,0;

WITH PATTERN 1 t LENgth 4 VECtor_list N=2 0,0 3,0;

WITH PATTERN 1 1 1 1 LENgth 2 1/ECtor_list N=2 0,0 3,0;

{same as the first exar~ple}

WITH PATTERN 1 .25 .125 .25 .125 .25 1 LENgth 3
VECtor_iist N=2 0,0 3,0;

- 166 -

PS X00 COMMAND SUMMARY XFORM

MODELING -Data Structuring

FORMAT

name := XFORM output_data_type APPLied to name l ;

DESCRIPTION

Allows transformed data to be saved either as a vector list or a 4x4 matrix at
t►ie point in the display tree where this XFORM data node is positioned.

PARAMETERS

output_data_type -Specifies what type of transformed data is to be saved.

MATRIX -A single 4x4 matrix representing the concatenation of all
transformation matrices currently in effect.

VECtor -A vector list specifying the transforr~~ed coordinates of the object
(name 1).

Hamel -The object whose transformed data are to be saved.

NOTE

This node indicates to the F:XFORMDATA function the point in the display tree
where transformed data are requested.

DISPLAY TREE NODE CREATED

XFORM operate node.

ASSOCIATED FUNCTIONS

F:XFORMDATA, F:LIST, F:SYNCC2).

- 167 -

XFORM PS 300 COMMAND SUMMARY

MODELING -Data Structuring

Ccontinued>

EXAMPLE

XFORM := BEGINS {Set up switch mechanism}
X := SET CONDITIONAL BIT 1 ON;
IF CONDITIONAL BIT 1 IS ON THEN 1/IEW;
IF CONDITIONAL BIT 1 IS OFF THEN TRAN;

END S;

TRAN := BEGINS {To be:used while getting transformed data}
MATRIX 4x4 1,0,0,0,0,1,0,0,0,1,0,0,0,1;
INSTANCE OF OBJ;

END S

1/IEW := BEGINS {To be used while viewing and designing}
{Viewing commands: FIELD_OF_1/IEW, WINDOW
EYE BACK, or 4x4_MATRIX}

INSTANCE OF OBJ;
END S;

OBJ := BEGINS {Setup transformed-data request}
(Transformation commands:
ROTATE, TRANSLATE, and/or SCALE)
XFORM REQUEST := XFOR(~1 1/ECTOR;
INSTANCE OF DATA;
E N D_S;

XFOR(v1DATA := F:XFORMDATA; {Build transformed-data network}
SYNC2 := F:SYNC(2);
LIST := F:LIST;
CONN SYNC2 < 1 >: < 1 > XFORMDATA;
CONN XFORMDATA< 1 >:< 1 >~IST;
CONN LIST < 1 > : < I > HOST (~~1ESSAGE; {Send trans data to host}
CONN LIST<2>:<2>SYNC2; {"Task cor~~pleted" flag}
SEND <any n~essage> TO <2>S1~NC2;
SEND 'OBJ.XFORf~'1 REQUEST' TO < 2> XEORMDATA;
SEND 'XDATA' TO < 3 > XEORMDATA;
DISPLAY XFOR(vl;

- 168 -

PS 300 COMMAND SUMMARY A-1

APPENDIX A. PS 300 COMMANDS BY CATEGORY

FUNCTION (Data Structuring)

(Function Instancing) name:=F:function_name
VARIABLE

FUNCTION (Ilninediate-action)

CONNECT
DISCONNECT
SEND
SEND number*mode
SEND UL
SETUP CNESS
STORE

GENERAL (Immediate-action)

Command Control arld Status:
BEGIN...END
COMMAND STATUS
OPTIMIZE MEMORY
OPTIMIZE STRUCTURE...END OPTIMIZE
REBOOT
RESERVE WORKING STORAGE
'.RESET

A-2 PS 300 COMMAND SUMMARY

GENERAL (Immediate-actio~l) (continued)

Data Structuring and Display:
DELETE
DISPLAY
FORGET (structures)
FORGET (units)
REMOVE

Initializatio~l:
INITIALIZE

HARDWARE ATTRIBUTES (Immediate-action)

ALLOCATE PLOTTER
DEALLOCATE PLOTTER

MODELING (Data Structuriil~)

Character Transformations:
CHARACTER SCALE
CHARACTER ROTATE
MATRIX_2x2
TEXT SIZE

Picking Attributes:
SET PICKING
SET PICKING IDENTIFIER
SET PICKING LOCATION

Primitives:
BEGIN_FONT...END_FONT
BSPLINE
CHARACTERS
COPY
ERASE PATTERN FROM
LABELS
PATTERN
PATTERN WITH

PS 300 COMMAND SUMMARY A-3

MODELING (Data Structuring) (continued)

Primitives: (continued)
POLYGON
POLYNOMIAL
RATIONAL BSP~INE
RATIONAL POLYNOMIAL
VECTOR LIST
WITH PATTERN

Tra~lsforined Data Attrib~ltes:
XFORM

Tra,lisformations:
MATRIX_3x3
MATRIX_4x3
NIATRIX_4x4
ROTATE
SCALE
TRANSLATE

RENDERING (Data Structuri~l~°)

ATTRIBUTES
ILLUMINATION
SOLID RENDERING
SURFACE RENDERING

STRUCTURt: (I)a.ta Strlic'ttl~'ltl~',')

~t t C'1~11t.P.S:

DECREMENT LEVEL OF DETAIL
INCREMENT LE1/EL OF_DETAIL
SET CONDITIONAL BIT
SET LEVEL_OF_DETAIL
SET RATE
SET RATE EXTERNAL

A-4 PS 300 COMMAND SUMMARY

STRUCTURE (Data Structuring) (continued)

ConditioTlal Referencillg~:
IF CONDITIONAL BIT
IF LEVEL OF_DETAIL
IF PHASE

Explicit. Referencing:
APPLIED TO/THEN
INSTANCE OF
NAME:=

Implicit Referencing°:
BEGIN STRUCTURE...END STRUCTURE

STRUCTURE (Immediate-action)

Modifying:
FOLLOW WITH
INCLUDE
PREFIX WITH
REMOVE FOLLOWER
REMOVE FROM
REMOVE PREFIX

VIEWING (Da.ta Structur'lil~°)

Appearance Attributes:
CHARACTER FONT
SET CHARACTERS
SET COLOR
SET COLOR BLENDING
SET CONTRAST
SET CSM
SET DEPTH CLIPPING
SET DISPLAYS
SET PLOTTER
STANDARD FONT

PS 300 COMMAND SUMMARY A-5

VIEWING (Data Structuring) (continued)

Viewport Specification:
SET INTENSITY
VIEWPORT

WilldoWing Transformations:
EYE
FIELD_OF_VIE W
LOOK
WINDOW

PS 34Q-SPECIFIC COMMANDS

ATTRIBUTES
ILLUMINATION
POLYGON
RESERVE WORKING STORAGE
SECTIONING PLANE
SOLID RENDERING
SURFACE RENDERING

PS 300 COMMAND SUMMARY B-1

APPENDIX B, PS 300 COMMAND SYNTAX

ALLOCATE PLOTTER
ALLOCATE PLOTTER devi ce_number;

APPLIED TO/THEN
name := operat i on_command [APPLied to name 1];
name := operati on_command [THEN Hamel];

ATTRIBUTES
name := ATTRIBUTES attributes [AND attributes];

BEGIN...END
BEGIN
command;
command;

command;
END;

B-2 PS 300 COMMAND SUMMARY

BEGIN_FONT...END_FON T
name := BEGIN Font

[C[0]: N=n {itemized 2D vectors};]

[C[i]: N=n {itemized 2D vectors};]

[C[127]: N=n {itemized 2D vectors};]
END_Font;

BEGINS ... END_S
name := BEGIN Structure
[name 1:=] nameab 1 e_command;

[names:=J nameab ~ e_command;
END Structure;

BSPLINE
name := BSp~ine ORDER=k

[OPEN/CLOSED] [NONPERIodic/PERIodic] [N=n]
[VERTICES =] x l ,yl ,[z 1

x2,y2,[z2]

xn,yn,[zn]
[KNOTS = tl,t2,. . .,tj]
CHORDS = q;

CHARACTER FONT
name := character FONT font name [APPLied to name 1];

CHARACTER ROTATE
name := CHARacter ROTate angle [APPLied to Hamel];

PS 300 COMMAND SUMMARY B-3

CHARACTER SCALE
name := CHARacter SCAIe s [APPLied to name 1];
name := CHARacter SCAIe sx,sy [APPLied to Hamel);

CHARACTERS
name := CHARacters [x,y[,z]][STEP dx,dy] 'string';

COMMAND STATUS
COMmand STATus;

CONNECT
CONNect name 1 < i >: < j > name2;

COPY
name := COPY Hamel [START=] i [,] [COUNT=] n;

DEALLOCATE PLOTTER
DEALLOCATE PLOTTTER dev i ce_number;

DECREMENT LEVEL OF DETAIL - -
name:= DECrement LEVeI_of_detail[APPLied to Hamel];

DELETE
DELete name[,namel . . . namen];
DELete any_s tr i ng~;

DISCONNECT
DISCONNect Warne 1 [<i >]:option;

B-4 PS 300 COMMAND SUMMARY

DISPLAY
DISPIay name;

ERASE PATTERN FROM
ERASE PATTERN FROM name;

EYE
name := EYE BACK z [optionl][option2] from SCREEN area w WIDE

[FRONT boundary = zmi n BACK boundary = zmax]
[APPLied to name 1];

FIELD OF VIEW
name := Field Of View angl e

[FRONT boundary = zmi n BACK boundary = zmax]
[APPLied to name 1];

FOLLOW WITH
FOLLOW name WITH option;

FORGET (structures)
FORget name;

FORGET (units)
FORget (uni t_name);

(Function Instancing)
name := F:function_name;

IF CONDITIONAL_BIT
name := IF conditional BIT n is state [THEN name 1];

PS 300 COMMAND SUMMARY B-5

IF LEVEL OF DETAIL
name := IF LEUeI_of_detail relationship n [THEN name 1];

IF PHASE
name := IF PHASE is state THEN [name 1];

ILLUMINATION
name := ILLUIV1INATION x,y,z [COLOR h [,S [,i]]] [AMBIENT a];

INCLUDE
INCLude name 1 IN name2;

INCREMENT LEVEL OF DETAIL
name:= INCRement LEUeI_of_detail[APPLied to Hamel];

INITIALIZE
INITialize [option];

INSTANCE OF
name := INSTance of name 1 [,name2 . . . namen];

LABELS
name := LABELS x,y,[,z] 'string' [x i ,yi [z i] 'string' . . .];

LOOK
name := LOOK AT ax,ay,az FROM f x,fy,fz

[UP ux,uy,uz] [APPLied to Hamel];

name := LOOK FRO(~1 fx,fy,fz ,AT ax,ay,az

[UP ux,uy,uz] [APPLied to Hamel];

B-6 PS 300 COMMAND SUMMARY

MATRIX_2x2
name := Matrix_2x2 ml l ,ml 2

m21,m22 [APPLied to name 1);

MATRIX_3x3
name := Matrix_3x3 ml l ,ml 2,m13

m21,m22,m23
m31,m32,m33 [APPLied to name 1);

MATRIX_4x3
name := Matrix_4x3 mll,ml2,ml3

m21,m22,m23
m31,m32,m33
m41,m42,m43 [APPLied to name 1];

MATRIX_4x4
name := Matrix_4x4 ml l ,ml 2,m13,m14

m21,m22,m23,m24
m31,r~32,m33,m34
m41,m42,m43,m44 [APPLied to name 1);

(Naming of Display Data Structures)
name:= display_data_structure_command;

OPTIMIZE MEMORY
OPTIMIZE MEMORY;

OPTIMIZE STRUCTURE; END OPTIMIZE;
OPTIMIZE STRUCTURE;

command;
command;

END OPTIMIZE;

PS 300 COMMAND SUMMARY B-7

PATTERN
name := PATtern i [AROUND_corners][MATCH/NOMATCH] LENgth r;

PATTERN WITH
PATTERN Hamel WITH pattern;

POLYGON
name :_ [WITH ATTRIBUTES Hamel] [WITH OUTLINE h] [COPLANAR]

POLYGon vertex ... vertex;

POLYNOMIAL
name:= POLYnomial[ORDER=i

[COEFFICIENTS=] x i , yi , z i
xi -1 , yi-1 , zi-1

xo, yo,

zo

CHORDS= q;

PREFIX WITH
PREFIX name WITH operat i on_command;

RATIONAL BSPLINE
name := RATlonal BSpline ORDER=k

[OPEN/CLOSED] [NONPERIodic/PERIodic] [N=n]
[VERTICES =] x 1 ,yl , Czl J , w

x2,y2,Cz2),w2

xn,yn,CznJ,wn
[KNOTS = tl ,t2, . . . ,tj]
CHORDS = q;

B-8 PS 300 COMMAND SUMMARY

RATIONAL POLYNOMIAL
name:= RATional POLYnomial[ORDER=i]

[COEFFICIENTS=] xi , yi , zi , wi
xi -1, yi-1, zi-1, wi-1

x0, y0, z0, w0
CHORDS= q;

REBOOT
name := REBOOT pdS Sword;

REMOVE
REMove name;

REMOVE FOLLOWER
REMove FOLLOWER of name;

REMOVE FROM
REMove Hamel FROM name2;

REMOVE PREFIX
REMove PREfix of name;

RESERVE WORKING STORAGE
RESERVE_WORKING_STORAGE size;

ROTATE
name := ROTate in [axis] angle [APPLied to Hamel];

PS 300 COMMAND SUMMARY B-9

SCALE
name := SCALE by s [APPLied to name 1];
name := SCALE by sx,sy[,sz] [APPLied to Hamel];

SEND
SEND option TO < n > name l ;

SEND number mode
SEND number*mode TO < n > name 1;

SEND VL
SEND VL (name 1) TO < i > name 2;

SET CHARACTERS
name := SET CHARacters orientation [APPLied to Hamel];

SET COLOR
name := SET COLOR hue,sat [APPLied to name 1];

SET COLOR BLENDING
name := SET COLOR BLENDing sat [APPLied to name 1);

SET CONDITIONAL_BiT
name := SET conditional_BIT n switch [APPLied to name 1];

SET CONTRAST
name := SET CONTrast to c [APPLied to name 1];

B-10 PS 300 COMMAND SUMMARY

SET CSM
name := SET CSM Switch [APPLied to name 1];

SET DEPTH CLIPPING
name := SET DEPTH_CLipping Switch [APPLied to Hamel];

SET DISPLAYS
name := SET DISPIays ALL switch [APPLied to name 1];
name := SET DISPIay n C , m...] switch [APPLied to name 1];

SET INTENSITY
name := SET INTENsity switch i mi n : i max [APPLied to name 1];

SET LEVEL OF DETAIL
name := SET LEVeI of detail ton [APPLied to name 1];

SET PICKING
name := SET PICKing switch [APPLied to Hamel];

SET PICKING IDENTIFIER
name := SET PICKing IDentifier = i d_name

[APPLied to Hamel];

SET PICKING LOCATION
name := SET PICKing LOCation = x ,y S i ze_x , S i Ze_y;

SET PLOTTER
name := SET PLOTTER switch [APPLied to name 1];

PS 300 COMMAND SUMMARY B-11

SET RATE
name := SET RATE phase_on phase off [i ni ti al_state] Cdel ay]

[APPLied to Hamel];

SET RATE EXTERNAL
name:= SET RATE EXTernal [APPLied to Hamel];

SETUP CNESS
SETUP CNESS queue type <i>name;

SOLID_RENDERING
name := SOLID rendering APPLied to name 1;

STANDARD FONT
name := STANdard FONT [APPLied to name 1];

STORE
STORE option IN name 1;

SURFACE_RENDERING
name := SURFACE_rendering APPLied to name 1;

TEXT SIZE
name := TEST SIZE x [APPLIED to Hamel];

TRANSLATE
name := TRANsiate d~~ tx,ty[,tz] [APPLied to Hamel];

B-12 PS 300 COMMAND SUMMARY

VARIABLE
UARiable Hamel [,name2 ... namen];

VECTOR LIST
name := UECtor_list [options] [N=nJ vectors;

VIEWPORT
name := UIEWport HORizontal = hmi n : hmaX

UERTical = vmin:vmax
[INTENsity = i mi n : i max] [APPL.ied to name 1];

WINDOW
name := WINDOW X = xmin:xmax Y = ymin:ymax

[FRONT boundary = zmi n BACK boundary = zmdx]
[APPLied to name 1];

WITH PATTERN
name := WITH PATtern i [AROUND corners][MATCH/NOMATCH)

LENgth r UECtor_list;

XFORM
name := XFORM output_data_type [APPLied to Hamel];

!RESET
!RESET;

PS 300 COMMAND SUMMARY C-1

APPENDIX C. PS 300 ASCII COMMANDS AND CORRESPONDING GSRS

The following list from left to right gives an alphabetical listing of the PS 300 ASCII
Command Name, the Pascal Application Procedure Name, and the FORTRAN
Subroutine Call.

ASCII COMMAND NAME Pascal PROCEDURE FORTRAN SUBROUTINE

ALLOCATE PLOTTER PALLPLOT PALLPL

ATTRIBUTES PATTRIB PATTR
PATTRIB2 PATTR2

BEGIN PBEGIN PBEG

BEGIN STRUCTURE PBEGINS PBEGS

BSPLINE PBSPL PBSPL

CHARACTER FONT PFONT PFONT

CHARACTER ROTATE PCHARROT PCHROT

CHARACTERS [STEP} PCHARS PCHS

CHARACTER SCALE PCI--IARSCA PSCHSC

CONNECT PCONNECT PCONN

COPY PCOPYVEC PCOPYI/

QEALLOCATE PLOTTER PDALLPLT PDALLP

C=2 PS 300 COMMAND SUMMARY

ASCII COMMAND NAME Pascal PROCEDURE. FORTRAN SUBROUTINE

DECREMENT LEVEL OF DETAIL PDECLOD PDELOD

DELETE PDELETE PDELET

DELETE NAMES PDELWILD PDELW

DISCONNECT ALL PDISCALL PDIALL

DISCONNECT PDISC PDI

DISCONNECT OUTPUT PDISCOUT PDIOUT

DISPLAY PDISPLAY PDISP

END PEND PEND

END STRUCTURE PENDS PENDS

END OPTIMIZE PENDOPT ~ PENDOP

ERASE PATTERN PERAPATT PERAPA

EYE PEYEBACK PEYEBK

F:FUNCTION NAME PFNINST PFN

FOLLOW WITH PFOLL PFOLL

FORGET PFORGET PFORG

FIELD OF VIEW PFOV PFOV

IF CONDITIONAL BIT PIFBIT PIFBIT

IF LEVEL OF DETAIL PIFLEVEL PIFLEV

IF PHASE PIFPHASE PIFPHA

ILLUMINATION PILLUMIN PILLUM

INCLUDE PINCL PINCL

INCREMENT LEUEL OF DETAIL PINCLOD PINLOD

INITIALIZE PINIT PINIT

PS 300 COMMAND SUMMARY C-3

ASCII COMMAND NAME Pascal PROCEDURE FORTRAl~T SUBROUTINE

INITIALIZE CONNECTIONS PINITC PINITC

INITIALIZE DISPLAYS PINITD PINITD

INITIALIZE NAMES PINITN PINITN

INSTANCE OF PINST PINST

LABELS PLABBEGN PLABEG
PLABADD ~ PLAADD
PLABEND PLAEND

LOOK AT FROM PLOOKAT PLOOKA

MATRIX 2X2 PMAT2X2 PM~~~ L2

MATRIX 3X3 PMAT3 X 3 PMAT3 3

MATRIX 4X 3 PMAT4X 3 PMAT4 3

MATRIX 4X4 PMAT4X4 PMAT44

NAME:= NIL PNAMENIL PHIL

NAME:= PATTERN PDEFPATT PDEFPA

OPTIMIZE STRUCTURE POPTSTRU POPT

PATTERN WITH PPATWITH PPATWI

POLYGON (ATTRIBUTES) PPLYGATR PPLYGA

POLYGON (BEGIN) PPLYGBEG PPLYBG

POLYGON (END) PPLYGEND PPLYGE

POLYGON (LIST) PPLYGLIS PPLYGL

POLYGON (OUTLINE) PPLYGOTL PPLYGO

POLYNOMIAL PPOLY PPOLY

PREFIX NAME WITH PPREF PPREF

RATIONAL BSPLINE PRBSPL PRBSPL

C-4 PS 300 COMMAND SUMMARY

ASCII COMMAND NAME Pascal PROCEDURE FORTRAN SUBROUTINE

REMOVE NAME PREM PREM

REMOVE FOLLOWER OF NAME PREMFOLL PREMFO

REMOVE FROM PREMFROM PREMFR

REMOVE PREFIX PREMPREF PREMPR

ROTATE IN X PROTX PROTX

ROTATE IN Y PROTY PROTY

ROTATE IN Z PROTZ PROTZ

RATIONAL POLYNOMIAL PRPOLY PRPOLY

RESERVE WORKING STORAGE PRSUSTOR PRSVST

SCALE PSCALEBY PSCALE

SECTIONING PLANE PSECPLAN PSECPL

SEND BOOLEAN TO PSNDBOOL PSNBOO

SEND FIX TO PSNDFIX PSNFIX

SEND 2x2 MATRIX TO PSNDM2D PSNM2D

SEND 3x3 MATRIX TO PSNDM3D PSNM3D

SEND 4x4 MATRIX TO PSNDM4D PSNM4D

SEND NUMBER*MODE TO PSNDPL PSNPL

SEND REAL NUMBER TO PSNDREAL PSNREA

SEND STRING TO PSNDSTR PSNST

SEND 2D VECTOR TO PSNDV2D PSNV2D

SEND 3D VECTOR TO PSNDV 3D PSNV 3D

SEND 4D VECTOR TO PSNDV4D PSNV4D

SEND VALUE TO PSNDVAL PSNVAL

PS 300 COMMAND SUMMARY C-5

ASCII COMMAND NAME Pascal PROCEDURE FORTRAN SUBROUTINE

SEND UECTOR LIST PSNDUL PSNUL

SET CONDITIONAL BIT PSETBIT PSEBIT

SET CHARACTERS SCREEN ORIENTED PSETCHRS PSECHS

SET CHARACTERS PSETCHRF PSECHF
SCREEN ORIENTED/FIXED

SET CHARACTERS WORLD ORIENTED PSETCHRW PSECHW

SET COLOR PSETCOLR PSECOL

SET COLOR BLENDING PSETBLND PSETCB

SET CONTRAST PSETCONT PSECON

SET CSM PSETCSM PSECSM

SET DISPLAYS ALL PSETDALL PSEDAL

SET DEPTH CLIPPING PSETDCL PSEDCL

SET DISPLAY PSETDONF PSEDOF

SET INTENSITY PSETINT PSEINT

SET LEUEL OF DETAIL PSETLOD PSELOD

SET PICKING INDENTIFIER PSETPID PSEPID

SET PICKING LOCATION PSETPLOC PSEPLO

SET PICKING OFF PSETPONF PS~POF

SET RATE PSET R PSE R

SET RATE EXTERNAL PSETREXT PSEREX

SETUP CNESS PSETCNES PSECNS

SOLID RENDERING PSOLREND PSOLRE

SURFACE RENDERING PSURREND PSURRE

C-6 PS 300 COMMAND SUMMARY

ASCII COMMAND NAME

STANDARD FONT

TRANSLATE

1/ARIABLE NAME

VECTOR LIST

1/IEWPORT

WINDOW

XFORM MATRIX

XFORM VECTOR

Pascal PROCEDURE

PSTDFONT

PTRANSBY

PVAR

PVECBEGN
P1/ECLIST
P1/ECEND

PVIEWP

PWINDOW

PXFMATRX

PXF1/ECTR

FORTRAN SUBROUTINE

PSTDFO

PTRANS

P1/AR

PVCBEG
PVCLIS
P1/CEND

PVIEWP

PWINDO

PXFMAT

PXF1/EC

ASCII Character Code Set

Decimal ASCII
Value Character

Decimal ASCII Decimal ASCII
Value Character Value Character

0 NUL 44 ~ 88 X
1 SOH 45 - 89 Y
2 STX 46 90 Z
3 ETX 47 / 91 C
4 EOT 48 0 92 \
5 ENQ 49 1 93]
6 ACK 50 2 94 T or
7 BEL 51 3 95 ~- or
8 BS 52 4 96
9 HT 53 5 97 a
10 LF 54 6 98 b
11 VT 55 7 99 c
12 FF 56 8 100 d
13 CR 57 9 101 e
14 SO 58 102 f
15 SI 59 103 g
16 DLE 60 < 104 h
17 DC1 61 = 105 i
18 DC2 62 > 106 j
19 DC3 63 ? 107 k
20 DC4 64 @ 108 1
21 NAK 65 A 109 m
22 SYN 66 B 110 n
23 ETB 67 C 111 0
24 CAN 68 D 112 p
25 EM 69 E 113 q
26 SUB 70 F 114 r
27 ESC or ALT 71 G 115 s
28 FS 72 H 116 t
29 GS 73 I 117 u
30 RS 7 4 J 118 v
31 VS 75 K 119 w
32 SP 76 L 120 x
33 ! 77 M 121 y
34 78 N 122 z
35 # 79 0 123 {
36 $ 80 P 124
3 7 ~~ 81 Q 12 5 }
38 & 82 R 126 Tilde
39 83 S 127 Rubout or DEL

40 C 84 T
41 ~ 85 U
42 * 86 V
43 + 87 W

PS 300 FUNCTIO \ SUVVARY

The contents of this document are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans &Sutherland.

Many concepts in this document are proprietary to Evans &
Sutherland, and are protected as trade secrets or covered by
U.S. and foreign patents or patents pending.

Evans & Sutherland assumes na responsibility for errors or
inaccuracies in this document. It contains the most complete
and accurate information available at the time of
publication, and is subject to change without notice.

PS 1, PS2, MPS, and PS 300 are trademarks of the Evans &
Sutherland Computer Corporation.

Copyright o 1984
EVANS & SUTHERLAND COMPUTER CORPORATION-

P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84121

PREFACE

This manual is a PS 300 Function reference guide for users who are already familiar
with the basic operation of the PS 300.

There are three types of PS 300 functions: Intrinsic Functions, Initial Function
Instances, and User—written Functions. This document is a reference for the first two
types only. User—Written Functions are documented in Volume 4 of the PS 300
Documentation Set.

Also included in this reference are the Initial Structures CURSOR and
PICK LOCATION. These establish the shape of the cursor as an 'X' and the
pick —sensitive location as the center of the cursor.

PS 300 FUNCTION SUMMARY

CONTENTS

Intrinsic Functions

F:ACCUMULATE 5

F:ADD 8

F:ADDC 9

F:AND 10

F:ANDC 11

F: ATSC ALE 12

F:AVERAGE 14

F:BOOLEAN CHOOSE 15

F:BROUTE 16

F:BROUTEC 17

F:CBROUTE 18

F:CCONCATENATE 19

F:CDIV 20

F:CEILING 21

F:CGE 22

PS 300 FUNCTION SUMMARY

Intrinsic Functions (Continued)

F:CGT

F:CHARCONVERT

F:CHARMASK

F:CLCSECONDS

F:CLE

F:CLFRAMES

F:CLT

F:CLTICKS

F:CMUL

F:COLOR

F:COMP STRING

F:CONCATENATE

F:CONCATENATEC

F:CONSTANT

F:CROTATE

F:CROUTE(n)

F:CSCALE

F:CSUB

F:C1/EC

F:DELTA

23

24

26

27

29

30

32

33

35

36

37

38

39

40

41

42

44

45

46

47

PS 300 FUNCTION SUMMARY

Intrinsic Functions (continued)

F:DIN 48

F:DING 49

F:DSCALE 50

F:DXROTATE 52

F:DYROTATE 53

F:DZROTATE 54

FLEDGE DETECT 55

F:EQ 56

F:EQC 57

F:FETCH 58

F:FIND STRING 59

F:FIX 60

F:FLOAT 61

F:FOV 62

F:GATHER STRING 64

F:GE 65

F:GEC 66

F:GT 67

F:GTC 68

F:INPUTS CHOOSE(n) 69

PS 300 FUNCTION SUMMARY

Intrinsic Functions t~ontinued)

F:LABEL 70

F:LBL EXTRACT 71

FILE 72

F:LEC 73.

F:LENGTH STRING 74

F:LIMIT 75

F:LINEEDITOR 77

F:LOOKAT 80

F:LOOKFROM 81

F:LT 82

F:LTC 83

F:MATRIX2 84

F:MATRIX 3 85

F:MATRIX4 86

F:MCONCATENATE(n) 87

F:MOD 88

F:MODC 89

F:MUL 90

F:MULC 91

F:NE 92

PS 300 FUNCTION SUMMARY

Intrinsic Functions tcontinued)

F:NEC 93

F:NOP 94

F:NOT 95

F:OR 9~

F:ORC 97

F:PARTS 98

F:PASSTHRU(n) 99

F:PICKINFO 100

F:POSITION LINE 103

F:PRINT 104

F:PUT STRING 108

F:RANGE SELECT 109

F:ROUND 111

F:ROUTE(n) 1 I2

F:ROUTEC(n) 113

F:SCALE 1 I4

F:SEND I I5

F:SINCOS l I6

F:SPLIT 1 17

F:SQROOT I I8

PS 300 FUNCTION SUMMARY

Intrinsic Functions t~ontinued)

F:STRING TO NUM

F:SUB

F:SUBC

F:SYNC(n)

F:TAKE STRING

F:TIMEOUT

F:TRANS STRING

F:VEC

F:VEC EXTRACT

F:VECC

F:WINDOW

F:XFORMDATA

F:XOR

F:XORC

F:XROTATE

F:XVECTOR

F:YROTATE

F:YVECTOR

F:ZROTATE

F:ZVECTOR

I19

120

121

122

123

124

126

127

128

129

130

132

134

135

136

137

138

139

140

141

PS 300 FUNCTION SUMMARY

Initial Function Instances

BUTTONSIN 143

CLEAR LABELS 144

DIALS 145

DLABELI ... DLABEL8 147

DSET1 ... DSET8 149

ERROR 151

FFPLOT 152

FKEYS 153

FLABELO 154

FLABELI ... FLABELI2 156

HCPIP 158

HOSTOUT 160

INFORMATIQN 16I

KEYBOARD 162

MEMORY ALERT 163

MEMORY MONITOR 165

MESSAGE DISPLAY 167

OFFBUTTONLIGHTS I68

PICK 169

SCREENSAVE ~ 7Z

PS 300 FUNCTION SUMMARY

Initial Function

Instances

tcontinued)

SHADINGENI/IRONMENT 173

SPECKEYS 176

TABLETIN 17 7

TABLETOUT 179

TECOLOR 182

TSCSM 183

WARNING 184

Initial

Structures

CURSOR

PICK LOCATION

APPENDIX A. FUNCTIONS BY CATEGORY

APPENDIX B. INPUTS TO NODES

ASCII CHARACTER CODE SET

185

186

PS 300 FUNCTION SUMMARY — 3

Table 1. Key to Abbreviations for valid Data Types

KEY TO VALID DATA TYPES

Any
B
C
CH
I

Label
M
PL
R
S

Special
V
2D
3D
4D
2x2
3x3
4x3
4x4

Any message
Boolean value
Constant value
Character
Integer
Data input to LABELS node
2x2, 3x3, 4x3, 4x4 matrix
Pick list
Real number
Any string
Special data type
Any vector
2D vector
3D vector
4D vector
2x2 matrix
3x3 matrix
4x3 matrix
4x4 matrix

Conjunctive/Disjunctive Sets

Inputs and outputs to a function are either disjunctive or conjunctive. The
following notation is used in the Function Summary to indicate disjunctive or
conjunctive inputs and outputs.

KEY TO CONJUNCTIVE/DISJUNCTIVE SYMBOLS

CC
CD
DC
DD

conjunctive inputs, conjunctive outputs
conjunctive inputs, disjunctive outputs
disjunctive inputs, conjunctive outputs
disjunctive inputs, disjunctive outputs

PS 300 FUNCTION SUMMARY - 1

Intrinsic F unctions

Intrinsic Functions are the master set of function "templates" which are
available for the user to instance and use in building Function Networks. These
functions are of the form

F: Identifier

where "identifier" is the name of the function, e.g. ROUTE, MUL,
CONCATENATE. Using the NA1~tE : = F:Ident~fier; command, the user can
create uniquely named instances of Intrinsic Functions. For example,

Adder : = F: ~1DD;

creates a function called Adder which is a uniquely named instance of the
F:ADD Intrinsic Function. Input queues and outputs of user-instanced functions
are connected to create Function Networks for handling data input from the
Interactive Devices, from the host computer, or from other functions. For
example,

CONNECT Adder<1>:<1>Multiply;

connects output 1 of the function instance Adder to input queue 1 of the
function instance Multiply.

Initial Function Instances

Whenever the PS 300 is initialized, certain Initial Function instances are loaded
into memory with the Graphics Firmware. Initial Function Instances are of the
form:

Function instance name

Unlike Intrinsic Functions, they are not preceded by "F:", e.g. TABLETIN,
OFFBUTTONLIGHTS. They provide access to host communication and to
PS 300 interactive devices, as well as allowing for the display of messages on
keyboard and control dial LEDs. Initial Function Instances are not used as
templates to create uniquely-named function instances. Instead, they are used
in Function Networks by their own system-assigned name. They cannot be
renamed by the user. For example,

SEND ' EX I ~' T 0 < .I > FLABFL 1 Z ;

sends the string EXiT to the LED for Function Key 12.

2 — PS 300 FUNCTION SUMMARY

Reference

Documentation

Each Intrinsic Function and Initial Function Instance in the PS 300 firmware is
concisely documented in this Function Summary. Intrinsic Functions are listed
first, then Initial Function Instances. Functions are ordered alphabetically.
The function name appears in the upper right corner of each page. The type of
function (e.g. Intrinsic) and its category (e.g. Data Conversion) are shown in the
upper left corner. Appendix A lists functions by category. Appendix B lists
display tree nodes that can accept input data from a function, the commands
that create these nodes, and the data types which the nodes accept. Since some
functions use the ASCII decimal equivalent of characters, an ASCII chart with
decimal codes is included after the appendices.

The following information, where relevant, is given for each function:

Name
Type
Category
Purpose
Description of inputs and outputs
Defaults
Notes
Associated functions
Examples

Function Representation

Functions are represented as 'black boxes' with numbered input queues and
outputs enclosed in angle brackets. Valid data types are shown in abbreviated
form at each input ,and output. A "C" in the function name usually indicates
that one or more input queues contain a constant value. A constant input is
shown by the letter "C" following the input number in angle brackets.

The following is a key to the abbreviations used.

Intrinsic Function
Ar i tt~me t i c and Log i c a i F: ACCUMU LAT E

F:A000MU LATE

R, ZD, 3D, 4D, B ---->

R, 2D, 3D, 4D >

R >

R, 2D, 3D, 4D

R, 2D, 3D, 4D

R, ZD, 3D, 4D >

PURPOSE

<1>

<2> C

<3> C

<4> C

<5> C

<6> C

D D

<i> > R, 2D, 3D, 4D

Accumulates a series of input values and sends the sum at specified intervals.

DESCRIPTION

INPUT
< 1 > —value to be accurn-ulated
<2> —initial value (c©nstant)
E 3> —output interval (constant)
< 4 > —scale factor (constant)
< 5 > — upRer limit on sum (constant}
<6> —lower limit on sum (constant}

OUTPUT
<1> —sum

5

Intrinsic Function
F:A000MULATE Arithmetic and Logical

(continued)

NOTES

1. The input values may be scaled, and the output values may be limited to a
specified range as in F: LIMIT. Note that this combination of operations is
especially useful for handling input from the control dials.

2. An initial value must be sent to input <2>; subsequent values are sent to
input < 1 >. All values at input < 1 > are scaled by input <4> before adding.

3. The sum is output whenever it differs from the previous F :ACCUMULATE
output (or zero if there was no previous output) by more than the value at
input < 3 >. (If vectors are being accumulated, this difference and the value
at input <3> are taken to be vector lengths, and, therefore, real numbers.
Vector lengths are considered to be n(x,y) _ ~x~ + ~y~, not n(x,y) = x 2 + y 2.)

4. Inputs < 5 > and < 6 > specify limits (upper and lower, respectively) to be
applied to the accumulated sum. A sum falling outside the range is
adjusted to the nearer limit, and any further accumulations operate on the
limited sum.

5. Inputs < 1 > and < 2> must be of the same data type. To change the data type
of the sum to be accumulated, send a new initial value of the appropriate
type to <2>. Note that the data type of the accumulated sum may not be
changed simply by starting to send different data types to < 1 >--these will
only generate an "Incompatible inputs" error message.

6. If input <2> is real, then inputs <4>, <5>, and <6> must be real. On the
other hand, if input <2> is a vector, then each of inputs <4>, <5>, and <6>
may be either a vector of the same dimension as <2> or a real number.

7. If vectors are being accumulated, but the scale factor at <4> is real, then
each coordinate of each vector accumulated at < 1 > is multiplied by the
real scale factor before the vector is added in. If the scale factor at <4> is
a vector, each of its coordinates is multiplied by the corresponding
coordinate of the accumulated vector.

S. If vectors are being accumulated, but both the upper sum limit at <5> and
the lower sum limit at <6> are real, then these real numbers are the limits
for each coordinate of the sum. If <5> and <6> are vectors, each of its
coordinates is applied as a limit to the corresponding coordinate of the sum.

6

Intrinsic Function
Arithmetic and Logical F:A000MULATE

(continued)

NOTES (continued)

9. If input < 1 > is Boolean (regardless of value), the current sum is
immediately sent to output < 1 >.

10. Vector types may not be mixed in an F :ACCUMULATE operation; all vectors
must be either 2D, 3D, or 4D.

EXAMPLE

Refer to Application Note 10 in the PS 300 Application Notes.

7

Intrinsic Function
F:ADD Arithmetic and Logical

F:ADD

I, R, 2D, 3D, 4D ---->
2x2, 3x3, 4x4

I, R, 2D, 3D, 4D ---->
2x2, 3x3, 4x4

PURPOSE

<1>

<2>

CC

<1> ---> I, R, ZD, 3D, 4D
2x2, 3x3, 4x4

Accepts two inputs and produces an output that is the sum of those inputs.

DESCRIPTION

INPUT
< 1 > -input value
< 2 > -input valu e

OUTPUT
<1> -sum

NOTES

The two input values must be of the same data type (except a combination of
real and integer is allowed); the output data type depends on the input data
type(s). If an integer is added to a real number the output is a real number.

ASSOCIATED FUNCTIONS

F:ADDC

8

Intrinsic Function
Arithmetic and Logical F:ADDC

F:ADDC

I, R, 2D, 3D, 4D ---->
2x2, 3x3, 4x4

I, R, 2D, 3D, 4D ---->
2x2, 3x3, 4x4

PURPOSE

<1>

<2> C

DC

<1> ---> I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

Accepts two inputs and produces an output that is the sum of those inputs.
Input < 2> is a constant.

DESCRIPTION

INPUT
< 1 > -input value
<2> -input value {constant)

OUTPUT
<1> -sum

NOTES

The two input values must ~e of the same data type {except a combination of
real and integer is allowed); the output data type depends on the input data
type{s). If an integer is added to a real number the output is a real number.

ASSOCIATED FUNCTIONS

F:ADD

9

Intrinsic Function
F:AND Arithmetic and logical

F:AND

B >

B ~

PURPOSE

<1>

<Z>

~ C

<1> > B

Accepts two Booleans as input and produces a Boolean output that is the logical
AND of the two inputs.

DESCRIPTION

INPUT
< l > —Boolean input
<2> —Boolean input

OUTPUT
< l > —logical AND of the two inputs

ASSOCIATED FUNCTIONS

F:AND~

Intrinsic Function
Arithr~etic and Logical F:ANDC

F:AND~

B >

B >

PURPOSE

<1>

<2> C

DC

<1>

Accepts two Booleans as input and produces a Boolean output that is the logical
AND of the two inputs. Input <2> is a constant.

DESCRIPTION

INPUT
< 1 ~ —Boolean input
<2> —Boolean input (constant)

OUTPUT
< 1 > —logical AND of the two inputs

ASSOCIATED FUNCTIONS

F:AND

F:ATSCALE
Intrinsic Function

Data Selection and Manipulation

R , 2 D , 3D , 4D ---- >

R

R

PURPOSE

<1>

<2> C

<3> C

F :ATSCALE

DC

<1> ----> R, 2D, 3D, 4D

Like F :ACCUMULATE, F :ATSCALE accumulates the sum of a series of real numbers
or vectors. Unlike F :ACCUMULATE, its sum is cleared after output.

DESCRIPTION

INPUT
< 1 > —value to be accumulated
<2> —scale factor (constant}
<3> —delta (constant}

OUTPUT
< 1 > —accumulated su m

DEFAULT

Input < ~ > = 1.0, Input < 3 > = 0.0

NOTES

1. Each value on input < 1 > is scaled by the value on input <2>, then added to
the internally stored current sum of scaled input < 1 > values. When the
accumulated sum differs from the last value sent out output < 1 > by at least
the amount on input < 3 ~, the accumulated sum is output and the internal
accumulated sum is cleared.

_ 12 _

intrinsic Function
Data Selection and Manipulation F:ATSCALE

Ccontinued)

NOTES (continued)

2. If vectors are input on input <1>, the difference on input <3> is taken to be
vector length. Vector length- is the linear distance from a vector location
to the origin of the world coordinate system (i.e., the Euclidean norm,

3. Sending a Boolean (TRUE or FALSE) to input < 1 > forces the accumulated
sum to be output and cleared from internal storage.

Intrinsic Function
(:AVERAGE Arithmetic and Logica]

F:AVERAGE

I, R, 2D, 3D, 4D ---->

I, R, 2D, 3D, 4D ---->

PURPOSE

<1>

<2>

CC

<1>

<2>

> I, R, 2D, 3D, 4D

> I, R, 2D, 3D, 4D

Accepts two inputs, outputs the average of the two inputs on output < 1 >, and
outputs the value of input < 2> unchanged on output < 2>.

DESCRIPTION

INPUT
< 1 > -any value
< 2 > -any value

OUTPUT
< 1 > -average of the two input values
<2> -value of input <Z> unchanged

NOTES

The two input values must be of the same data type (except a combination of
real and integer is allowed); the outputs are also of that data type. If an
integer is averaged with a real number, a real number is output on output < i >.

- 14 -

Intrinsic Function
Data Selection and Manipulation F:BOOLEAN CHOOSE

F:BOOLEAN CHOOSE

B

Any

A ray

PURPOSE

> <1>

> <<2> C

> <3> C

D C

<1> > Any

This function uses the Boolean on in-put < I > to select the constant message on
input < 2 } or input < 3 >, outputting the selected message on output ~ 1 >.

DESCRIPTION

INPUT
< I > -Boolean
<2> -any message Cconstant~
< 3 > -any message (con-scant)

OUTPUT
< 1 > -message on input < ~> or input < 3 >

NOTES

A TRUE on input < 1 > selects the message on input < 2>; a FALSE on input < 1 >
selects the message on input < ~>.

_ IS

Intrinsic Function
F:BROUTE Data Selection and Manipulation

F:BROUTE

B >

Any >

PURPOSE

<1>

<2>

C D

<l>

<2 >

> Any

> Any

Acts as a Boolean route function, accepting a Boolean on input < 1 > and any
message an input <2>. When a TRUE is received on input < 1 >, the message
appears at output < 1 >. When a FALSE is received on in-put < 1 >, the message
appears at output <2>.

DESCRIPTION

INPUT
< 1 > -trigger
<2> -any message

OUTPUT
< 1 > -message on input <2> when input is < 1 > TRUE
<2> -message on input <2> when input is < 1 > FALSE

ASSOCIATED FUNCTIONS

F:BROUTEC,F:CBROUTE

- 16 -

Intrinsic Function
Data Selection and Manipulation F:BROUTEC

F:BROUTEC

B >

Any >

PURPOSE

<i>

<2> C

D D

<1>

<2>

> Any

> Any

Acts as a Boolean route function, accepting a Boolean on input < 1 > and any
message on constant input <2>. When a TRUE is received on input < i >, the
message appears at output < 1 >. When a FALSE is received on input < 1 >, the
message appears at output <2>.

DESCRIPTION

INPUT
< 1 > -trigger
< 2 > -any message {constant)

OUTPUT
< 1 > -message on input < 2 > when input is < 1 j TR UE
<2> -message on input <2> when input is < 1 > FALSE

ASSOCIATED FUNCTIONS

F:BROUTE, F:CBROUTE

Intrinsic Function
F:CBROUTE Data Selection and Manipulation

F:CBROUTE

B

Any

PURPOSE

<1> C

<2 >

D D

<1>

<2 >

> Any

> Any

Acts as Boolean route function, sending the message on input <2> to output < 1 >
when the Boolean on constant input < 1 > is TRUE or to output <2> when the
constant Boolean on input < 1 > is FALSE.

DESCRIPTION

INPUT
< 1 > —trigger (constant)
< 2> —any message

OUTPUT
< 1 > — message on input <2> when input < 1 > is TRUE
< 2 > — message on input < 2 > when input < 1 > is FALSE

ASSOCIATED FUNCTIONS

F:BROUTE,F:BROUTEC

_ ~g _

Intrinsic Function
Data Selection and Manipulation F:000NCATENATE

F:000NCATENATE

S >

S >

PURPOSE

<1> C

<2>

D C

<1>

<2 >

>S

> I

Accepts two ASCII character strings and outputs on output < 1 > a string that is
formed by concatenating the string on input <2> behind the string on input < 1 >.
The length of the resulting string is sent on output <2>. Input < 1 > is a constant.

DESCRIPTION

INPUT
< 1 > -ASCII string -(constant)
z 2 > -ASCII string

OUTPUT
< 1 > -concatenated string
<2> -length of the concatenated string

ASSOCIATED FUNCTIONS

F : CONCATENATE, f : CONCATENATEC

- i9 -

Intrinsic Function
F:CDIV Arithmetic and Logical

F:CDIV

I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

I, R

PURPOSE

> <1> C

> <2 >

DC

<1> ----> I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

Accepts two inputs and produces an output that is the quotient of the two
inputs (input- < 1 > divided by input <2>). Input < 1 > is a constant.

DESCRIPTION

INPUT
< 1 > —dividend (constant)
< 2 > —divisor

OUTPUT
<1> —quotient

NOTES

The output is the same data type as input < 1 > (except when < 1 > is an integer
and input <2> is a real; then a real is output). Input <2> should not be 0.

ASSOCIATED FUNCTIONS

F:DIV, F:DIVC

- 20 -

("1
Intrinsic Function
Data Conversion F:CEILING

R >

PURPOSE

<1>

F:CEILING

CC

<1> ~ I

Rounds a real number away from zero to the nearest integer.

DESCRIPTION

INPUT
< ~ > -real number to ~e rounded

OUTPUT
< 1 > —nearest integer

Intrinsic Function
F:CGE Comparison

F:CGE

R, I >

R, I >

PURPOSE

<1> C

<2>

DC

<1> > B

Accepts any combination of reals and integers at its two inputs, and produces a
Boolean output that is TRUE if input < 1 > is greater than or equal to input <2>,
and FALSE otherwise. Input < 1 > is a constant.

DESCRIPTION

INPUT
< 1 > -real or integer to be compared (constant)
<2> -real or integer to be compared

OUTPUT
< 1 > -Boolean

ASSOCIATED FUNCTIONS

F:GE, F:GEC

22

Intrinsic Function
Comparison F:CGT

F:CGT

R, I >

R, I >

PURPOSE

<1> C

<2>

DC

<~~ > B

accepts any combination of two reals or integers at its inputs, and produces a
Boolean- output that is TRUE if input < 1 > is greater than input < 2>, and E~4ESE
otherwise. Input < 1 > is a constant.

DESCRIPTION

INPUT
< 1 > -real or integer to be compared (constant}

~ > -real or integer to be compared

OUTPUT
< 1 > -Boolean

aSSOCIQTED F~JNCTIONS

F : GT, F : GTC

_ 23

Intrinsic Function
F:CHARC~NVERT Data Conversion

F:CHARCONUERT

S >

B >

PURPOSE

<1>

<2 > C

D C

<1> > I

Converts the bytes of the string on input < 1 > into a stream of integers, one
integer per byte.

DESCRIPTION

INPUT
< 1 > —any string
<2> —Boolean (constant)

OUTPUT
< 1 > —stream of integers

DEFAULTS

Boolean TRUE on input <2>.

NOTES

1. The condition of the Boolean determines the range of bytes as integers as
follows:

TRUE = 0 to 255
FALSE _ —128 to 127 (2's complement)

— 24 —

Intrinsic Function
Data Con~crs i on F : C~~p~C~~f~VFRT

~ cont i n~.~~d ~

~1C~TE ~ continued)

~, ivote that if a ~~F~L:~~ is on input <2>, a value from U-255 is output on < 1 >.
If a ~~AL~E is ors i,~~~~~ 4 < 2> and the value on input ~ ~ ~ is from 0-127, the
value output is the s3rne v~~1ue that wata input ors ; 1 >. If ~ F~AL~E is on
input <2> ar~d t!~ie value on ir~put < 1 > is 128-255, a corresponding value
between —

1.
28 and —1 is output.

EXAMPLE

'A' becc~r~~es ~`
'A~' becomes ~~ follouved by ~5

- 25 -

Intrinsic Function
F:CHARMASK Data Selection and Manipulation

F:CNARMASK

S >

PURPOSE

<1>

<2> C

D C

<1> >S

Masks each of the bytes of the string on input < 1 > by ANDing it with the
integer on the constant input < 2>, .then outputs the masked string.

DESCRIPTION

INPUT
< 1 > —any string
<2> —integer (constant)

OUTPUT
1 > —masked string

NOTES

Only the low—order byte of the integer is used in the mask, i.e., integer 256
would be a 0 mask. Therefore, numbers between 0-255 are recommended.

—26—

Intrinsic Function
Timing F:CLCSECONDS

F:CLCSECONDS

<1> C

<2> C

<3> C

<~> C

<S> C

<6> C

D D

PURPOSE

Generates outputs at timed intervals as specified by the inputs. All inputs to
F : CLCSECONDS are constants. All outputs occur at the same timed interval.
(Output < 1 > may be disabled.)

DESCRIPTION

INPUT
< 1 > —timed interval (constant)
<2> -number of time intervals (constant)
< 3 > -gate (constant)
<4> - integer A (constant)
< 5 > - integer B (constant)
<6> —TRUE =run, FALSE =stop (constant)

OUTPUT
<1> —integer A+B if input <3> is TRUE
<2> —integer A+B
< 3 > —TRUE if input < 2> is not exceeded

27

Intrinsic Function
F:CLCSECONDS Timing

(continued)

NOTES

1. Input < 1 > is an integer that specifies a timed interval in hundredths of a
second. Outputs from the function occur at this interval. Thus, a 10 on
input < 1 > would specif y a time interval of 1 / 10 second.

2. Input <2> is an integer that specifies the number of time intervals
(duration) that the Boolean on output < 3> will be TRUE. When this number
of intervals is exceeded, the Boolean will be output as FALSE on each
succeeding interval. Input <2> may be reset at any time, since the value at
this input is decremented by 1 with each execution.

3. Input < 3 > is a Boolean that is used to gate the integer on output < 1 >. If the
Boolean is TRUE, the integer (A+B) is output each timed interval. If the
Boolean is FALSE, output < 1 > is disabled.

4. Inputs <4> and <5> are integers A and B, respectively. The sum of these
integers is output as an integer on output < 1> if the Boolean on input <3> is
TRUE. This sum (A+B) is output as an integer on output <2>, independent
of the condition of the Boolean on input < 3 >.

5. Input <6> is an optional switch. If input <6> receives no messages, the
timer will run when there is a message on all of inputs < 1 > through <5>. If
a Boolean FALSE is received on input <6>, the timer waits for a Boolean
TRUE to be received on input <6> before running. No outputs are
generated so long as input < 6 > is FALSE.

ASSOCIATED FUNCTIONS

F:CLFRAMES,F:CLTICKS

EXAMPLE

Refer to Application Notes 10 and 12 in the PS 300 Application Notes.

_ 28 _

Intrinsic Function
Comparison F:CLE

F:CLE

R, I >

R, I >

PURPOSE

<1> C

<2>

DC

<1> > B

Accepts any combination of reals or integers at its inputs, and produces a
Boolean output that is TRUE if input < 1 > is less than or equal to input <2>, and
FALSE otherwise. Input < 1 > is a constant.

DESCRIPTION

INPUT
< 1 > -value to be compared (constant)
<2> -value to be compared

OUTPUT
< 1 > -Boolean

ASSOCIATED FUNCTIONS

F : LE, F : LEC

29

Intrinsic Function
F:CLFRAMES Timing

F:CLFRAMES

<1> C

<2> C

<3> C

<4> C

<5> C

<6> C

D D

PURPOSE

Identical to F : CLCSECONDS and F : CLTICKS, except the time source is refresh
frames.

DESCRIPTION

INPUT
< 1 > -timed interval (constant)
<2> -number of time intervals (constant)
< 3 > -gate (constant)
<4> - integer A (constant)
< 5 > - integer B (constant)
 -TRUE =run, FALSE =stop (constant)

OUTPUT
< 1 > - A+B if input < 3 > is TRUE
<2> - A+B
< 3 > -TRUE if input < 2 > is not exceeded

— 30 —

Intrinsic Function
Timing F:CLFRAMES

Ccantinued>

NOTES

1. Input < 1 > is an integer that specifies a timed interval in frames. A frame
is the length of time the Display Processor takes to draw the current
structure once. The refresh rate is the number of frames per second.
Outputs from the function occur at this interval.

2. Input < 2 > is an integer that specifies the number of timed intervals
(duration) that the Boolean on output <3> will be TRUE. When this number
of intervals is exceeded, the Boolean will be output as FALSE on each
succeeding interval. Input <2> may be reset at any time.

3. Input < 3 > is a Boolean that is used to gate the integer on output < 1 >. If tk~e
Boolean is TRUE, the integer (A+B) is .output each timed interval. If the
Boolean is FALSE, output < I > is disabled.

4. Inputs < 4 > and < 5 > are integers A and B, respectively. The sum o f these
integers is output as an integer on output < 1 > if the Boolean on input <3> is
TRUE. This sum (A+B) is output as an integer on output <2>, independent
of the condition of the Boolean on input <3>.

5. Input <6> is an optional switch. If input <6> receives no messages, the
timer will. run when there is a message on all of inputs < 1 > through < 5 >. If
a Boolean FALSE is received on input <~>, the timer waits for a Boolean
TRUE to be received on input <6> before running. No outputs are
generated so long as input <~> is FALSE.

- 31 -

Intrinsic Function
F:CLT Comparison

F:CLT

R, I >

R, I >

PURPOSE

<1> C

<2>

DC

<1> > B

Accepts any combination of reals or integers at its inputs, and produces a
Boolean output that is TRUE if input < 1 > is less than input <2>, and FALSE
otherwise. Input < 1 > is a constant.

DESCRIPTION

INPUT
< 1 > —value to be compared (constant)
<2> —value to be compared

OUTPUT
< 1 > —Boolean

ASSOCIATED FUNCTIONS

F:LT, F:LTC

-32-

Intrinsic Function
Timing F:CLTICKS

F:CLTICKS

<1> C

<2> C

<3> C

<4> C

<5> C

<6> C

D D

PURPOSE

Identical to F : CLCSECONDS and F : CLFRAMES, except the time source is ticks of
the 20 Hz system clock.

DESCRIPTION

INPUT
< 1 > —timed interval (constant)
<2> —number of time intervals (constant)
< 3 > —gate (constant)
<4> — integer A (constant}
<5> — integer B (constant)
<6> —TRUE =run, FALSE =stop (constant)

OUTPUT
< 1 > — A+B if input <3> is TRUE
< 2> — A+B
<3> —TRUE if input <2> is not exceeded

— 33 —

Intrinsic Function
F:CLTICKS Timing

Ccontinued)

NOTES

1. Input < 1 > is an integer that specifies a timed interval in ticks (where a tick
is half the duration of the alternating current supply, 1 /20 second in the
U.S.). Outputs from the function occur at this interval.

2. Input <2> is an integer that specifies the number of timed intervals
(duration) that the Boolean on output < 3> will be TRUE. When this number
of intervals is exceeded, the Boolean will be output as FALSE on each
succeeding interval. Input <2> may be reset at any time.

3. Input <3> is a Boolean that is used to gate the integer output < 1 >. If the
Boolean is TRUE, the integer (A+B) is output each timed interval. If the
Boolean is FALSE, output < 1 > is disabled.

4. Inputs <4> and <5> are integers A and B, respectively. The sum of these
integers is output as an integer on output < 1 > if the Boolean on input < 3 > is
TRUE. This sum (A+B) is output as an integer on output <2>, independent
of the condition of the Boolean on input <3>.

5. Input <6> is an optional switch. If input <6> receives no messages, the
timer will run when there is a message on all of inputs < 1 > through <5>. If
a Boolean FALSE is received on input <6>, the timer waits for a Boolean
TRUE to be received on input <6> before running. No outputs are
generated so long as input <6> is FALSE.

— 34 —

Intrinsic Function
Arithmetic and Logical F:CMUL

F : CMUL

I, R, 2D, 3D, 4D ---->
2x2, 3x3, 4x4

I, R, 2D, 3D, 4D ---->
2x2, 3x3, 4x4

PURPOSE

<1> C

<2>

D C

<1> ---> I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

Accepts two inputs and outputs the product of the two inputs. Input < 1 > is a
constant.

DESCRIPTION

INPUT
< 1 > -any value (constant)
< 2 > -any valu e

OUTPUT
< 1 > -product

NOTES

The two input values must be compatible data types; the output data type
depends on the combination of input data types. Vectors are taken to be either
row vectors (input < 1 >) or column vectors (input <Z>).

ASSOCIATED FUNCTIONS

F :MUL, F :MULC

- 3~ -

Intrinsic Function
F:COLOR Miscellaneous

F:COLOR

2D, 3D > <1>

R > <2 >
C C

<1>

PURPOSE

> 3D, 4D

Accepts a 2D or 3D vector at input < 1 > and a real number representing a
color-blended vector hue at input <2>, and outputs a 3D or 4D vector whose last
"coordinate" is the hue value. This vector format is required for inputs to the
vector list that has the color option specified.

DESCRIPTION

INPUT
< 1 > -vector
<2> - color-blended vector hue (0-720)

OUTPUT
< 1 > -vector whose last coordinate is the hue value

NOTES

The real number at input <2> must be within the range 0-720; values outside
this range are clamped to the nearest in-range value.

- 35 -

Intrinsic Function
Comparison F:COMP STRING

F:COMP STRING

S >

S >

PURPOSE

<1>

<2 >

C D

<1>

<2 >

<3>

Compares two strings and sends a TRUE on output < 1 > if string 1 is less than
string 2, a TRUE on output <2> if string 1 is equal to string 2, or a TRUE on
output < 3 > if string 1 is greater than string 2.

DESCRIPTION

INPUT
< 1 > -string
< 2 > -string

OUTPUT
< 1 > -TRUE =less than
<2> -TRUE =equal to
< 3 > -TRUE =greater than

- 37 -

Intrinsic Function
F:CONCATENATE Data Selection and Manipulation

F:CONCATENATE

S >

S >

PURPOSE

<1>

<2 >

C C

<1>

<2>

>S

Accepts two ASCII character strings and outputs a string that is formed by
concatenating the string on input < 2> behind the string on input < 1 >. The length
of the resulting string is sent on output <2>.

DESCRIPTION

INPUT
< 1 > —ASCII string
< 2 > —ASCII string

OUTPUT
< 1 > —concatenated string
< 2 > —length of the concatenated string

ASSOCIATED FUNCTIONS

F:000NCATENATE,F:CONCATENATEC

- 38 -

("1
Intrinsic Function
Data Selection and Manipulation F:CONCATENATEC

S >

S >

PURPOSE

F:CONCATENATEC

<1>

<2> C

D C

<1>

<2>

>S

> I

Accepts two ASCII character strings and outputs a string that is formed by
concatenating the string on input < Z> behind the string on input < 1 >. The length
of the concatenated string is sent on output <2>. Input <2> is a constant.

DESCRIPTION

INPUT
< 1 > -ASCII string
< 2 > -ASCII string (constant)

OUTPUT
< 1 > -concatenated string
<2> -length of the concatenated string

ASSOCIATED FUNCTIONS

F:CCONCATENATE,F:CONCATENATE

Intrinsic Function
F:CONSTANT Data Selection and Manipulation

F:CONSTANT

Any >

Any >

PURPOSE

<1>

<2> C

D C

<1> > Any

Accepts any message on inputs < 1 > and <2>. Input <2> is a constant. The
constant message on input <2> is output on output < 1 > wheneve-r a message is
received on input < 1 >.

DESCRIPTION

INPUT
< 1 > —trigger
<2> —any message (constant)

OUTPUT
< 1 > —message on input <2> when triggered

— 40 —

Intrinsic Function
Character Transformation F:CROTATE

F:CROTATE

R >

PURPOSE

<1>

CC

<1>

Creates a 2x2 Z rotation matrix.

DESCRIPTION

NOTES

INPUT
< 1 > —degrees of rotation in Z

OUTPUT
< 1 > — 2x2 rotation matrix

> 2x2

1. The rotation matrix created by the function is normally used to update 2x2
matrix nodes in a display tree.

2. The "C" in the function's name stands for "character". 2x2 matrix nodes in
display trees only affect character data nodes.

41 —

Intrinsic Function
F:CROUTECn) Data Selection and Manipulation

F:CROUTECn)

Any >

PURPOSE

<1> C

<2>

D D

<1>

<n>

> Any

> Any

Accepts an integer on input < 1 > to switch the message on input < 2> to the
output specified by that integer. The message on input <2> may be of any data
type. The integer on input < 1 > is a constant.

DESCRIPTION

INPUT
< 1 > -integer (valid range 1 - 127) (constant)
< 2 > -any message

OUTPUT
< 1 > -message on input <2> when selected

<n> -message on input <2> when selected

-42-

Intrinsic Function
Data Selection and Manipulation F:CROUTE(n)

(continued)

NOTES

The "n" in the function name may be any integer from 2 to 127. If the integer
input is not a number from 1 to n, inclusive, then an error is detected and
reported.

ASSOCIATED FUNCTIONS

F:ROUTECn),F:ROUTEC(n)

Intrinsic Function
F:CSCALE Character Transformation

F : CSCALE

R, 2D >

PURPOSE

<1>

C C

<1> > 2x2

Scales characters. Accepts a, real number or a 2D vector as a scaling factor for
character strings. A 2x2 scaling matrix is output.

DESCRIPTION

NOTES

INPUT
< 1 > -scaling factor

OUTPUT
< 1 > - 2x2 scaling matrix

1. The scaling matrix is normally used to update a 2x2 matrix node in a
display tree. The "C" in the function's name stands for "character". Only
character data nodes are affected by 2x2 matrices.

2. If a real is input, the sc<~ling factor represented by the real value is applied
in X and Y. If a 2D vector is input, the X component of the vector is the
scaling factor for X, ar~d the Y component of the vector is the scaling
factor for Y.

- 44 -

Intrinsic Function
Arithmetic and Logical F:CSUB

F:CSUB

I, R, 2D, 3D, 4D >
2x2, 3x3, 4x4

I, R, 2D, 3D, 4D >
2x2, 3x3, 4x4

PURPOSE

<1> C

<2>

D C

<1> ---> I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

Accepts two inputs and produces an output that is the difference of the two
inputs (input <2> is subtracted from input < I >). Input < I > is a constant.

DESCRIPTION

INPUT
< 1 > -minuend (constant)
< 2 > -subtrahend

OUTPUT
< I > -difference

NOTES

The two input values must be of the same data type (except a combination of
real and integer is allowed); the output data type depends on the input data
type(s).

ASSOCIATED FUNCTIONS

F :SUB, F : SUBC

- 45 -

Intrinsic Function
F:CVEC Data Conversion

F:CVEC

R, 2D, 3D >

R >

PURPOSE

<1> C

<2>

DC

<1> > 2D, 3D, 4D

Accepts two real numbers and outputs a 2D vector; accepts a 2D vector and a
real number and outputs a 3D vE~ctor; or accepts a 3D vector and a real number
and outputs a 4D vector.

DESCRIPTION

INPUT
< 1 > -real, 2D, or 3D vecto:r (constant)
< 2 > -real

OUTPUT
< 1 > - 2D vector if input < 1;► is a real number

3D vector if input < 1 > is a 2D vector
4D vector if input < 1 > is a 3D vector

NOTES

The output vector is the constant real .number or vector from input < 1 > with the
real number from input <2> appended as the last vector component.

ASSOCIATED FUNCTIONS

F:VEC, F:VECC

- 46 -

Intrinsic Function
Data Selection and Manipulation F:DELTA

F:DELTA

I , R, 2D, 3D >

I, R >

PURPOSE

<1>

<2> ~

D D

<1> > I, R, 2D, 3D

Accepts integers, reals, 2D vectors, and 3D vectors on input < 1 > and integers or
reals on input <2>. The value on input < 1 > is output on output < 1 > if it differs
in magnitude from the previous input < 1 > value by at least the constant delta
value on input < 2 > .

DESCRIPTION

INPUT
< 1 > - integer, real, 2D, 3D vector
<2> - delta value (constant)

OUTPUT
< 1 > — value an input f 1 > if it differs from the previous input < 1 > by at

least the delta value on input <2>

DEFAULTS

The first input <I> value is compared to 0 (zero).

NOTES

The constant delta value ors input < 2 > may be a real or an integer. If values on
input < 1 > are reals or vectors the delta value on input < 2> must be real. If
input < I > is an integer, input < 2> must also be an integer.

-47-

Intrinsic Function
F:DIV Arithmetic and Logical

F:DIV

I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

I, R

PURPOSE

<1>

CC

---> I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

Accepts two inputs and produces an output that is the quotient of the two
inputs (input < 1 > is divided by input <2>).

DESCRIPTION

INPUT
< 1 > —dividend
< 2 > —divisor

OUTPUT
<1> —quotient

NOTES

The output is the same data type as input < 1 > (except when input <~l > is an
integer and input <2> is a real; then a real is output). Input <2> should not be 0.

ASSOCIATED FUNCTIONS

F:DIVC, F:CDIV

— 48 —

Intrinsic Function
Arithmetic and Logical F:DIVC

F:DIVC

I, R, 2D, 3D, 4D >
2x2, 3x3, 4x4

I, R >

PURPOSE

<1>

<2> C

DC

<1> ---> I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

Accepts two inputs and produces an output that is the quotient of the two
inputs (input < 1 > is divided by input <2>). Input <2> is a constant.

DESCRIPTION

INPUT
< 1 > -dividend
< 2 > -divisor (constant)

OUTPUT
<1> -quotient

NOTES

The output is the same data type as input < 1 > (except when input < 1 > is an
integer and input <2> is a real; then a real is output). Input <2> should not be 0.

ASSOCIATED FUNCTIONS

F:DIV, F:CDIV

- 49 -

Intrinsic Function
F :DSCALE Object Transformation

F :DSCALE

R > <1>

R > <2> C

R > <3> C

R > <4> C

R > <5> C

DC

<1>

<2 >

PURPOSE

> 3x3

> R

Typically accepts real valuE~s originating from a control dial on input < 1 > and
forms a 3x3 scaling matrix (.output < 1 >) from the product of accumulated real
values (input <1>) and the scaling factor on input <3>. Upper and lower scaling
limits may be set on input: <4> and <5>, respectively. If the accumulator
content exceeds the upper limit (input <4>), then the upper limit value is sent
out on output < 1 >. Likewise, if the product is below the lower limit, the lower
limit value is sent out on out~~ut < 1 >.

DESCRIPTION

INPUT
< 1 > -delta
<2> - accur~~ulator set (constant)
<3> -scaling factor (constant)
<4> -upper limit (constant)
<5> -lower limit (constant)

OUTPUT
< 1 > - 3x3 scaling matrix
<2> -accumulator contents

- 50 -

Intrinsic Function
Object Transformations F:DSCRLE

(continued)

DEFAULTS

Inputs < 3 >, <4>, and < 5 > are optional. If input < 3 > receives no messages, a
scaling factor of 1 is the default value. If inputs <4> and/or <5> receive no
messages, no upper and/or lower limits are set.

NOTES

1. Input <2> is the accumulator. This value may be reset at any time (and is
usually set initially to 1). The current accumulator content is output on
output <2>.

2. It is sometimes valuable to limit the upper range of scaling to a value that
will not cause data to overflow the viewport. Also, lower limits may be set
to keep the object to a size that allows the ob}ect to be viewed easily and
to prevent negative scaling.

EXAMPLE

Refer to Application Note 6 in the PS 300 Application Notes.

- 57 -

Intrinsic Function
F:DXROTATE Object Transformation

F:DXROTATE

R >

R >

R >

PURPOSE

<1>

<2 > C

<3> C

D C

<1>

<2>

> 3x3

> R

Typically accepts real values originating from a control dial on input < 1 > and
produces a 3x3 rotation matrix (output < 1 >) from the angle derived from the
accumulated sum of the real values on input < 1 >, multiplied by the scale factor
received on input < 3>. Rotation is around the X axis.

DESCRIPTION

INPUT
< 1 > -rotation delta
< 2 > -initial accu mulator~ value (constant)
< 3> -scale factor (constant)

OUTPUT
< 1 > - 3x3 rotation matrix in X
< 2> -current accumulator value

DEFAULTS

If input <3> receives no mess~~ges, a scale factor of 1 is the default value.

NOTES

Input <2> is the accumulato~~. This value may be reset at any time (and is
usually set initially to 0). 7~he current accumulator value is output on output
<2>.

-52-

Intrinsic Function
Object Transformation F:DYROTATE

F:DYROTATE

R > <1>

R > <2 > C

R > <3> C

D C

<1>

<2>

PURPOSE

> 3x3

> R

Typically accepts real val~res originating from a control dial on input < 1 > and
produces a 3x3 rotation matrix (output < 1 >) from the angle derived from the
accumulated sum of the real values on input < I >, multiplied by the scale factor
received on input < 3 >. Rotation is around the Y axis.

DESCRIPTION

INPUT
< 1 > -rotation delta
<2> -initial accumulator value (constant)

3 > -scale factor (constant)

OUTPUT
< 1 > - 3x3 rotation matrix in Y
< 2 > -current accumulator value

DEFAULTS

If input < 3 > receives no mess-ages, a scale factor of I is the default value.

NCiTES

Input <2> is the accumulator. This value may be reset at any time- (and is
usually set initially to 0). The current accumulator value is output can output
<2>.

- 53 -

Intrinsic Function
F:DZROTATE Object Transformation

F~:DZROTATE

R > <1>

R > < 2 > C;

R > <3> C:

D C

<1>

<2 >

PURPOSE

> 3x3

> R

Typically accepts real values originating from a control dial on input < 1 > and
produces a 3x3 rotation matrix (output < 1 >) from the angle derived from the
accumulated sum of the real v~~lues on input < 1 >, multiplied by the scale factor
received on input <3>. Rotation is around the Z axis.

DESCRIPTION

INPUT
< 1 > -rotation delta
<2> -initial accumulator v~~lue (constant)
<3> -scale factor (constant.)

OUTPUT
< 1 > — 3x3 rotation matrix ire Z
<2> —current accumulator value

DEFAULTS

If input <3> receives no messages, a scale factor of 1 is the default value.

NOTES

Input <2> is the accumulator. This value may be reset at any time (and is
usually set initially to 0). The ~~urrent accumulator content is output on output
<2>.

- 54 -

Intrinsic Function
Miscellaneous F:EDGE DETECT

F:EDCE DETECT

B >

B >

PURPOSE

<1>

<2> C

DC

<1>

<2>

> B

> B

Accepts Boolean values on inputs < 1 > and <2>. Input <2> is a constant.
Whenever the state of the Boolean on input < 1 > changes to match the state on
input < 2>, the Boolean on input < 1 > is output on output < 1 >, and the
complement of that value is output on output <2>.

DESCRIPTION

INPUT
< 1 > -Boolean
< 2 > -Boolean (constant}

OUTPUT
< 1 > -Boolean on input < 1 > when this matches input < 2>
< 2> -complement of output < 1 >

NOTES

By connecting output < 2> to input < 2>, alI transitions are detected.

- 55 -

Intrinsic Function
F:EQ Comparison

F:EQ

R, I >

R, I >

PURPOSE

<1>

<2>

C C

<1> > B

Accepts any combination of reals and integers on its two inputs, and produces a
Boolean output that is TRUE= if input < 1 > equals input <2>, and FALSE
otherwise.

DESCRIPTION

INPUT
< 1 > -real or integer to be compared
< 2 > -real or integer to be compared

OUTPUT
< 1 > -TRUE if input < 1 > equals input <2>, else FALSE

NOTES

Inputs do not have to be of the :>ame data type.

ASSOCIATED FUNCTIONS

F : EQC

- 56 -

Intrinsic Function
Comparison F:EQC

F:EQC

R, I >

R, I >

PURPOSE

<1>

<2 > C

D C

<1> > B

Accepts any combination of reals and integers on its two inputs, and produces a
Boolean output that is TRUE if input < 1 > equals input <2>, and FALSE
otherwise. Input <2> is a constant.

DESCRIPTION

INPUT
< 1 > -real or integer to be compared
<2> -real or integer to be compared (constant)

OUTPUT
< 1 > -TRUE if input < 1 > equals input <2>, else FALSE

NOTES

Inputs do not have to be of the same data type.

ASSOCIATED FUNCTIONS

F:EQ

Intrinsic Function
F:FETCH Miscellaneous

F:FETCH

Any

S

PURPOSE

<1>

<2 > C

DC

<1> > Any

Accepts a string which is the name of a variable on input <2>. UVhen any
message is received on input; < 1 >, the message currently stored in the variable
named on input <2> is fetched and output from this function. The message
stored in the named variable may be of any data type. The arrival of input < 1 >
is used to activate the function, but is otherwise ignored. Input <2> is a
constant.

DESCRIPTION

INPUT
< 1 > -trigger
<2> -variable name (constant)

OUTPUT
< 1 > -message associated with variable name on input <2>

- 58 -

Intrinsic Function
Data Selection and Manipulation F:FIND STRING

F:FIND STRING

S >

S >

PURPOSE

<1>

<2>

CD

<1>

<2> ---> B

If the string on input <2> is a substring of the string on input < 1 >, the starting
position of the substring and a Boolean TRUE are output. A FALSE is output if
the substring cannot be found and nothing is sent on output < 1 >.

DESCRIPTION

INPUT
< 1 > -string
< 2> -substring

OUTPUT
< 1 > -starting position of the substring, if found
< 2 > -TRUE =substring found, FALSE =not found

- 59 -

Intrinsic Function
F:FIX Data Conversion

F :FIX

R >

PURPOSE

<1>

CC

<1>

Accepts a real number and outputs a value that is truncated to an integer
(toward zero).

DESCRIPTION

INPUT
<1> -real number

OUTPUT
< 1 > -real on input < 1 > truncated to an integer

- 60 -

Intrinsic Function
Data Conversion F:FLOAT

F :FLOAT

-PURPOSE

<1 >

C C

<1> > R

Accepts an integer and outputs a real number of the same value.

DESCRIPTION

I[~1PUT
< 1 > -integer

OUTPUT
< 1 > -real number of the same value as input < 1 >

_ 6i _

F : FC)V
~\

Intrinsic Function
Viewing Transformation

Any > <1>

R > < 2 > C;

R > <3> C;

R > <4> C:

F:FOV

DC

<1>

PURPOSE

> 4x4

This is the functional counterp~~rt of the FI ELD_OF_VI EW command. The field of
view that is specified by this function is used for perspective projections.

DESCRIPTION

INPUT
< 1 > -trigger
< 2 > -viewing angle (constant)
<3> -front boundary (const~~nt)
<4> -back boundary (constant)

OUTPUT
< 1 > - 4x4 matrix

62

Intrinsic Function
Viewing Transformation F:FOV

Ccontinued~

NOTES

1. The message on input < 1 > acts as a trigger to the function.

2. The constant real value on input <2> represents the viewing angle in
degrees. This angle defines the viewing frustum.

3. The front boundary and back boundary of the viewing frustum are specified
as constant real numbers on inputs < 3 > and <4>, respectively.

4. The field of view specified on the inputs to F: FOV is output as a 4x4 matrix.

ASSOCIATED FUNCTIONS

F:WINDOW,F:MATRIX_4X4

- 63 -

Intrinsic Function
F:GATHER_STRING Data Selection and Manipulation

F :GATHER STRING

S > <1>

CH > < 2 > ~~

B > <3> C

D C

<1>

<2 >

PURPOSE

---> S

Collects strings that arrive at input < 1 > until the terminator character on input
<2> arrives. Concatenates a,ll strings into one packet and outputs the
concatenated string on output < 1 >. If the Boolean on input < 3 > is TRUE, the
terminator character is appended to the string. Output < 2 > contains the length
of the string. Inputs < 2 > and < 3 > are constants.

DESCRIPTION

INPUT
< 1 > —string
<2> —packet terminator (constant)
<3> —TRUE =with terminator, FALSE =without -terminator (constant)

OUTPUT
< 1 > —concatenated string (~~acket)
<2> —length of the string

- 64 -

Intrinsic Function
Comparison F:GE

F:GE

R, I >

R, I >

PURPOSE

<1>

<2>

CC

<1> > B

Accepts any combination of reals and integers on its two inputs, and produces a
Boolean output that is TRUE if input < 1 > is greater than or equal to input <2>,
and FALSE otherwise.

DESCRIPTION

INPUT
< 1 > - value to be compared
< 2 > - value to be compared

OUTPUT
< 1 > - TRUE if input < 1 > is greater than or equal to input < 2>, otherwise

FALSE

ASSOCIATED FUNCTIONS

F:GEC, F:CGE

Intrinsic Function
F:GEC Comparison

F:GEC

R, I >

R, I >

PURPOSE

<1>

<2 > C

DC

<1> > B

Accepts any combination of reals and integers on its two inputs, and produces a
Boolean output that is TRUE if input < 1 > is greater than or equal to input <2>,
and FALSE otherwise. Input <2> is a constant.

DESCRIPTION

INPUT
< 1 > — value to be compered
< 2 > — value to be co mp~~red (constant)

OUTPUT
< 1 > — TRUE if input < l > is greater than or equal to input <2>, otherwise

FALSE

ASSOCIATED FUNCTIONS

F:GE, F:CGE

- 66 -

Intrinsic Function
Comparison F:GT

F:GT

R, I >

R, I >

PURPOSE

<1>

<2>

C C

<1> > B

Accepts any combination of teals and integers on its two inputs, and produces a
Boolean output that is TRUE if input < 1 > is greater than input <2>, and FALSE
otherwise.

DESCRIPTION

INPUT
< 1 > -value to be compared
< 2 > -value to be compared

OUTPUT
< 1 > -TRUE if input < 1 > greater than input <2>, otherwise FALSE

ASSOCIATED FUNCTIONS

F:GTC, F:CGT

-67-

Intrinsic Function
F:GTC Comparison

F:GTC

R, I >

R, I >

PURPOSE

<1>

<2> C

C C

<1> > B

Accepts any combination of 1•eals and integers on its two inputs, and produces a
Boolean output that is TRUE= if input < 1 > is greater than input <2>, and FALSE
otherwise. Input <2> is a constant.

DESCRIPTION

INPUT
< 1 > —value to be compared
< 2 > —value to be compared (constant)

OUTPUT
< 1 > —TRUE if input < 1 > greater than input <2>, otherwise FALSE

ASSOCIATED FUNCTIONS

F:GT, F:CGT

- 68 -

Intrinsic Function
Data Selection F:INPUTS CHOOSECn)

F:INPUTS CHOOSECn).

Any

Any

I

PURPOSE

<1> C

<n-1 > C

<n>

D C

<1> > Any

Accepts an integer with a value from 1 to (n-1) on input <n> and uses that value
to choose which of inputs < 1 > through <n-1 > to accept as an input. The chosen
message is then output.

DESCRIPTION

INPUT
< I > -any message (constant)
< r~- I > - any message (constant)
<n> -chosen message number

OUTPUT
< 1 > -chosen message

NOTES

Ta set up F:INPUTS_CHOOSECn) for a given nu-tu ber of messages between 2 and
1 ~7 inclusive, add one to the number of messages and substitute the result for
"n-" in the function identifier. For example, F:INPUTS_CHOOSECS) accepts four
messages at inputs < 1 > through <4>. The selector input is always input fn>.
Thus, for F:I~PUTS_CHOOSECS), the selector input is <5>.

_ ~g _

Intrinsic Function
F:LABEL Data Selection and Manipulation

F :LABEL

2D,3D > <1>

S > <2>

B > <3>

CC

<1>

PURPOSE

---> Label

Creates a label to send to a .labels node using the vector on input < 1 > as the
position of the label and the string on input <2> as the text of the label. Input
< 3 > indicates whether the the l~~bel is displayed or not.

DESCRIPTION

NOTES

INPUT
< 1 > - X, Y, and (optionally) Z location of the label
<2> -text of the label
< 3 > -TRUE =displayed, F~~LSE =not displayed

OUTPUT
< 1 > -label for input to a labels node

1. The data type output by this function can only be used to update a labels
node. It is not accessible or printable.

- 70 -

Intrinsic Function
Data Selection and Manipulation F:LBL EXTRACT

F:LBL EXTRACT

S >

PURPOSE

<1>

<2>

C C

<1>

<2>

<3>

<4>

--- > I

---> 2D, 3D, 4D

---> S

---> B

Extracts information about a string from a LABELS node given an index into the
labels block on input < 1 > and the name of the labels node on input <2>.

DESCRIPTION

NOTES

INPUT
< 1 > -index of the string in question
<2> -name of the LABELS node

OUTPUT
< 1 > -data type
<2> -the start location of the string in question
< 3 > -the text of the string
<4> -TRUE = on, FALSE =off

1. The integer on output < 1 > is the same as would be sent from output <7> of
F:PICkINFO.

2. Output <4> indicates whether the string is on or off.

Intrinsic Function
FILE Comparison

FILE

R, I >

R, I >

PURPOSE

<1>

<2>

C C

<1> > B

Accepts any combination of re~ils and integers on its two inputs, and produces a
Boolean output that is TRUE if input < 1 > is less than or equal to input < 2>, and
FALSE otherwise.

DESCRIPTION

INPUT
< 1 > — value to be compared
<2> — value to be compared

OUTPUT
< 1 > — TRUE if input < 1 > is less than or equal to input <2>, otherwise

FALSE

ASSOCIATED FUNCTIONS

f : LEC, F : CLE

72

Intrinsic Function
Comparison F:LEC

F: LEC

R, I >

R, I >

PURPOSE

<1>

<2> C

D C

<1> > B

Accepts any combination of reals and integers on its two inputs, and produces a
Boolean output that is TRUE if input < 1 > is less than or equal to input <Z>, and
FALSE otherwise. Input < 2 > is a constant.

DESCRIPTION

INPUT
< 1 > - value to be compared
< 2 > - value to be compared (constant)

OUTPUT
< 1 > - TRUE if input < 1 > is less than or equal to input <Z>, otherwise

FALSE

ASSOCIATED FUNCTIONS

F: LE, F:CLE

- 73 -

Intrinsic Function
F:LENGTH_STRING Data Selection and Manipulation

F : L_ENGTH STRING

S >

PURPOSE

<1>

CC

<1>

<2>

Outputs the length of a string.

DESCRIPTION

NOTES

INPUT
< 1 > -string

OUTPUT
< 1 > -length of the string
<2> -TRUE =null string, F-ALSE otherwise

1. A possible output is zero.

---> B

- 74 -

Intrinsic Function
Data Selection and Manipulation F: LIMIT

R, I

PURPOSE

F:LIMIT

> <1> <1>

> <2 > C <2 >

> <3> C <3>

D D

Accepts real number or integer values on all inputs; all three input values must
be of the same data type. The output data type is the same as the input data
type.

DESCRIPTION

NOTES

INPUT
< 1 > -value
<2> -upper limit (constant)
< 3 > -lower limit (constant)

OUTPUT
< 1 > -input < 1 > if this value is in range
<2> - in-range value
< 3> -TRUE if in-range, FALSE if out-of-range

1. The value on input < 1 > is compared to the constant upper limit value on
input < 2> and the constant lower limit value on input < 3 >.

2. If the input < 1 > value is in range, that value is output unchanged on output
< 1 > and output < 2>, and a TRUE is output on output < 3 >.

- 75 -

Intrinsic Function
F:LIMIT Data Selection and Manipulation

(continued)

NOTES (continued)

3. If the input < 1 > value is out of range, the output < 1 > value is adjusted to
the nearer limit (as set by inputs <2> and <3>), output <2> is disabled, and
output <3> is FALSE.

4. If the value on input < 2 > ins less than or equal to the value on input < 3 >, the
function will always output the value received on input <3>.

- 76 -

Intrinsic Function
Data Selection and Manipulation F:LINEEDITOR

F:LINEEDITOR

S

S

S

PURPOSE

> <1>

> <2> C

> <3> C

D D

<1>

<2>

<3>

<4>

<5>

<6>

Accepts a stream of characters and simple editing commands, accumulates the
characters in an internal line buffer, applies the commands to the contents of
the line buffer as they are received, and outputs the edited line when a
specified delimiter character is recognized.

DESCRIPTION

INPUT
< 1 > —editing commands and material to be edited (input string)
< 2 > —prompt message (constant)
< 3 > —line delimiter (constant}

OUTPUT
< 1 > —edited output
< 2 > —display output
< 3 > —integer for <clear> of CHARACTERS
< 4 > —integer for < append > o f CHARACTERS
< 5 > —character for < append > of CHARACTERS
< 6 > —string for < su bstitu to > or < replace > of CHARACTERS

77

Intrinsic Function
F:LINEEDITOR Data Selection and Manipulation

Ccontinued)

NOTES

1. In a typical application, F: LINEEDITOR receives its input from the PS 300
keyboard and sends its e~~ited output either to a terminal (such as the debug
terminal or the Terminal Emulator) or to a CHARACTERS node in the PS 300
display tree. Aspecially-formatted "display" output is used for terminals;
other outputs are intended as connections into CHARACTERS to allow keyboard
editing of a CHARACTERS string.

2. F : LI NEEDI TOR recognizes the following editing commands:

Delete (Hex '7F'): Deletes the most recently received character
from the internal line buffer.

Control-U (Hex ' 15'): Deletes the entire line buffer. Redisplays a
predetermined prompt message at any associated terminals by
sending the prompt string on the display output <2>.

Control-R (Hex '12'): Retypes the entire line (preceded by the
prompt message) at any associated terminals by sending the prompt
and line along the display output <2>.

3. Input < 1 > receives the stream of strings to be collected and edited, along
with ali editing commands. The PS 300 keyboard is typically connected to
this input.

4. Input <2> contains a prompt message, if one is needed. The prompt string
may contain one or several characters. This prompt appears only at output
<2>, and it appears there ~rvhenever a control-U, a control-R, or a delimiter
is received at input < 1 >. The prompt message is optional and there is no
default.

5. Input < 3 > contains a single character designated as the delimiter. When this
character is received at input < 1 >, the contents of the line buffer appear at
outputs < 1 > and <6> (edited by the editing commands), and at output <2>
(along with the prompt).

6. The default delimiter is <cr> (carriage-return; Hex 'OD'), but this <cr> is
always expanded to <cr> <lf > (carriage-return/line-feed; Hex 'ODOA') for
output at < 1 >, <2>, and <6;~.

_ 78 _

Intrinsic Function
Data Selection and Manipulation F:LINEEDITOR

(continued)

NOTES (continued)

7. If input <3> contains anon—<cr> delimiter <delim>, this delimiter is passed
on as is to outputs < 1 > and <6>, but it is always converted to
<delim> <cr> <lf > for output <2> (the display output). (This implies that
specif ying a delimiter of <lf > produces double—spaced display output.)

8. Output < 1 > contains the contents of the line buffer, which in turn is
composed of the collected and edited characters from input < 1 >. This
output fires when a delimiter is recognized at input < 1 > or when 255
characters have been collected since the last firing or since initialization.

9. Output <2> is the display output. Unlike outputs < 1 > and <6>, this output
includes "editing effects" intended for terminal display (prompt messages,
displayed Control —U's and Control—R's, character erasures corresponding
to deletes, and so on). For the treatment of delimiters at output <2>, see
note 7 above.

10. Output < 3 > is an integer output intended as a connection into the <clear>
input of a CHARACTERS command. The integer is sent whenever acontrol—U
is received at input < 1 >.

1 1. Output <4> always sends an integer 1, and is intended as a connection into
the <delete> input of a CHARACTERS command. The 1 is sent whenever a
delete is received at input < 1 >.

12. Output <5> is intended as a connection into the <append> input of a
CHARACTERS command. This output passes on all characters received at input
< 1 > except editing commands (delete, control —U, control —R). No buffering
is performed at this output -- it fires once for each non —command
character, and the message is always a single character.

13. Output <6> is intended as a connection into the <substitute> or <replace>
input of a CHARACTERS command. It fires whenever the function is
activated by a (single—character or multi—character) string at input < 1 >. In
addition, output <6> fires whenever output < 1 > fires.

_ 79 _

Intrinsic Function
F:LOOKAT Viewing Transformation

F:LOOKAT

3D

3D

3D

PURPOSE

< 1 >~

< 2 >~ C

<3> C

DC

<1> > 4x3

Accepts three 3D vectors that specify the position to "look at", the position to
"look from", and which direction is "up". Inputs <2> and <3> ("look from" and
"up" orientation) are constant:.

DESCRIPTION

NOTES

INPUT
< 1 > -look at point
<2> -look from point (constant)
< 3 > - up orientation (constant)

OUTPUT
< 1 > - 4x3 viewing matrix

1. input < 1 >, the "look at" vector, triggers the function.

2. The 3D vectors are used to generate a 4x3 matrix that may be used to
update a LOOK viewing transformation node in a display tree.

- 80 -

Intrinsic Function
Viewing Transformation F:LOOKFROM

3D

3D

3D

PURPOSE

F:LOOKFROM

<1> C

<2 >

<3> C

DC

<1> > 4x3

Accepts three 3D vectors that specify the position to "look at", the position to
"look from", and which direction is "up". Inputs < 1 > and <3> ("look at" and "up"
orientation) are constants.

DESCRIPTION

NOTES

INPUT
< 1 > —look at point (constant)
<2> —look from point
< 3 > — up orientation (constant)

OUTPUT
< 1 > — 4x3 viewing matrix

1. Input <2>, the "look from" vector, triggers the function.

2. The 3D vectors are used to generate a 4x3 matrix that may be used to
update a LOOK viewing transformation node in a display tree.

_ g~ _

Intrinsic Function
F:LT Comparison

F:LT

R, I >

R, I >

PURPOSE

<1>

<2 >

CC

<1> > B

Accepts any combination of reals and integers on its two inputs, and produces a
Boolean ;~Utput that is TRUE if .input < 1 > is less than input <2>y and FALSE
otherwise.

DESCRIPTION

INPUT
< 1 > —value to be compared
<2> —value to be compared

OUTPUT
< 1 > —TRUE if input < 1 > is less than input < 2>, otherwise FALSE

ASSOCIATED FUNCTIONS

F: LTC, F:CLT

_ 82 _

Intrinsic Function
Comparison F:LTC

F:LTC

R, I >

R, I >

PURPOSE

<1>

<2> C

DC

<1> > B

Accepts any combination of reals and integers on its two inputs, and produces a
Boolean output that is TRUE if input < 1 > is less than input < 2>, and FALSE
otherwise. Input <2> is a constant.

DESCRIPTION

INPUT
< 1 > —value to be compared
<2> —value to be compared (constant)

OUTPUT
< 1 > —TRUE if input < 1 > is less than input <2>, otherwise FALSE

ASSOCIATED FUNCTIONS

F: LT, F:CLT

Intrinsic Function
F:MATRIX2 Data Conversion

F:MATRIX2

2D >

ZD >

PURPOSE

<1>

<2>

CC

<1> ---> 2x2

Accepts two 2D vectors and produces a 2x2 matrix.

DESCRIPTION

INPUT
< 1 > — 2D vector
<2> — 2D vector

OUTPUT
< 1 > — 2x2 matrix

NOTES

1. The matrix output may be used to update a 2x2 matrix node in a display
tree or as input to another function.

2. The vector on input < 1 > is output as the first row of the matrix. The
vector on input <2> is output as the second row.

84

Intrinsic Function
Data Conversion F:MATRIX3

F:MATRIX3

3D >

3D >

3D >

PURPOSE

<1>

<2>

<3>
CC

<1> ---> 3x3

Accepts three 3D vectors and produces a 3x3 matrix.

DESCRIPTION

NO-TES

INPUT
< 1 > - 3D vector
<2> - 3D vector
< 3 > - 3 D vector

OUTPUT
< 1 > - 3x3 matrix

1. The matrix output may be used to update a 3x3 matrix node in a display
tree or as input to another function.

2. The vector on input < 1 > is output as the first row of the matrix. The
vector on input < 2> is output as the second row. The vector on input < 3 > is
the third row.

-85-

Intrinsic Function
F:MATRIX4 Data Conversion

F:MATRIX4

4D > <1>

4D > <2 >

4D > <3>

4D > <4>

C C

<1>

PURPOSE

---> 4x4

Accepts four 4D vectors and produces a 4x4 matrix.

DESCRIPTION

NOTES

INPUT
< 1 > - 4D vector
<2> - 4D vector
<3> - 4D vector
<4> - 4D vector

OUTPUT
< 1 > - 4x4 matrix

1. The matrix output may be used to update a 4x4 matrix node in a display
tree or as input to another function.

2. The vector on input < 1 > is output as the first row of the matrix. The
vector on input <2> is output as the second row. The vector on input <3> is
the third row. The vector on input <4> is the fourth row.

- 86 -

Intrinsic Function
Data Selection and Manipulation F:MCONCATENATECn)

F:MCONCATENATECn)

S >

S >

PURPOSE

<1>

<n>

CC

<1>

<2>

Accepts strings on inputs < 1 > through <n> and concatenates them into a single
string. Output < 1 > contains the resulting string and output <2> contains its
length.

DESCRIPTION

NOTES

INPUT
< 1 > -string
< n > -string

OUTPUT
< 1 > -concatenated string
< 2> -string length

1. The limit to the number of inputs to this function is 127.

- 87 -

Intrinsic Function
F:MOD Arithmetic and Logical

F:MOD

PURPOSE

<1>

<2>

C C

<1> > I

Accepts two integers as inputs and produces an integer output that is the
remainder resulting from the division of the value on input < 1 > by the value on
input <2>. The integer on input <2> must be positive.

DESCRIPTION

INPUT
< 1 > -integer
<2> -integer

OUTPUT
< 1 > -remainder from dividing input < 1 > by input <2>

NOTES

F :MOD uses aPascal-like definition of modulo. For a negative integer on input
< 1 >, the resulting output will be negative. For example, -8 mod 3 is -2.

ASSOCIATED FUNCTIONS

F:MODC

gg

Intrinsic Function
Arithmetic and Logical F:MODC

F:MODC

PURPOSE

<1>

<2> C

D C

<1> > I

Accepts two integers as inputs and produces an integer output that is the
remainder resulting from the division of the value on input < 1 > by the value on
input <2>. Input <2> is a constant.

DESCRIPTION

INPUT
< 1 > -integer
<2> -integer (constant)

OUTPUT
< 1 > -remainder from dividing input < 1 > by input <2>

NOTES

F:MODC uses aPascal-like definition of modulo. For a negative integer on input
< 1 >, the resulting output will be negative. For example, -8 mod ~ is -2.

ASSOCIATED FUNCTIONS

F:MOD

gg

Intrinsic Function
F:MUL Arithmetic and Logical

F:MUL

I, R, 2D, 3D, 4D ---->
2x2, 3x3, 4x4

I, R, 2D, 3D, 4D ---->
2x2, 3x3, 4x4

PURPOSE

<1>

<2 >

CC

<1> ----> I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

Accepts two inputs and outputs their product.

DESCRIPTION

INPUT
< 1 > -value
< 1 > -value

OUTPUT
< 1 > -product

NOTES

The two input values must be compatible data types; the output data type
depends on the combination of input data types. Vectors are taken to be either
row or column vectors, as appropriate, to perform the multiplication.

ASSOCIATED FUNCTIONS

F : MU LC, F : CMU L

- 90 -

("~
Intrinsic Function
Arithmetic and Logical F:MULC

I, R, 2D, 3D, 4D ---->
Zx2, 3x3, 4x4

I, R, 2D, 3D, 4D ---->
2x2, 3x3, 4x4

PURPOSE

F:MULC

<1>

<2 > C

D C

<1> ----> I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

Accepts two inputs and outputs their product. Input <2> is a constant.

DESCRIPTION

INPUT
< 1 > —value
< 1 > —value (constant)

OUTPUT
< 1 > —product

NOTES

The two input values must be compatible data types; the output data type
depends on the combination of input data types. Vectors are taken to be either
row or column vectors, as appropriate, to perform the multiplication.

ASSOCIATED FUNCTIO(\1S

F:MUL, F:CMUL

Intrinsic Function
FINE Comparison

FINE

R, I >

R, I >

PURPOSE

<1>

<2>

CC

<1> > B

Accepts any combination of reals and integers on its two inputs, and produces a
Boolean output that is TRUE if input < 1 > is not equal to input <2>, and FALSE
otherwise.

DESCRIPTION

INPUT
<1> —value to be compared
<2> —value to be compared

OUTPUT
< 1 > — TRUE if input < 1 > is not equal to input < 2>, otherwise FALSE

ASSOCIATED FUNCTIONS

F:NEC

92

Intrinsic Function
Comparison F:NEC

F:NEC

R, I >

R, I >

PURPOSE

<1>

<Z> C

DC

<1> > B

Accepts any combination of reals and integers on its two inputs, and produces a
Boolean output that is TRUE if input < 1 > is not equal to input <2>, and FALSE
otherwise. Input <2> is a constant.

DESCRIPTION

INPUT
< I > -value to be compared
<2> -value to be compared (constant)

OUTPUT
< I > -TRUE is input < I > is not equal to input <2>, otherwise FALSE

ASSOCIATED FUNCTIONS

FINE

- 93 -

Intrinsic Function
F:NOP Miscellaneous

F:NOP

Any >

PURPOSE

<1>

C C

<1> > Any

Accepts any message and outputs that message unchanged.

DESCRIPTION

INPUT
< 1 > — any message

OUTPUT
< 1 > — message on input < 1 >

NOTES

This function is useful for tying a set of many outputs to a set of many inputs.

— 94 —

Intrinsic Function
Arithmetic and Logical F:NOT

F:NOT

B >

PURPOSE

<1>

CC

<1> > B

Accepts a Boolean input and outputs its complement as a Boolean value.

DESCRIPTION

INPUT
< 1 > - Boolean

OUTPUT
< 1 > -logical complement of input < 1 >

_ g5 _

Intrinsic Function
F:OR Arithmetic and Logical

F:OR

B >

B >

PURPOSE

<1>

<2>

C C

<1> > B

Accepts two Booleans as input and produces a Boolean output that is the logical
OR of the two inputs.

DESCRIPTION

INPUT
< 1 > -Boolean
<2> -Boolean

OUTPUT
< 1 > -logical OR of the two inputs

ASSOCIATED FUNCTIONS

F : ORC

- 96 -

Intrinsic Function
Arithmetic and Logical F:ORC

F:ORC

B >

B >

PURPOSE

<1>

<2> C

D C

<1> > B

Accepts two Booleans as input and produces a Boolean output that is the logical
OR of the two inputs. Input <2> is a constant.

DESCRIPTION

INPUT
< 1 > —Boolean
<2> —Boolean (constant)

OUTPUT
< 1 > —logical OR of the two inputs

ASSOCIATED FUNCTIONS

F:OR

g~

Intrinsic Function
F:PARTS Data Conversion

F: PARTS

2D, 3D, 4D >
2x2, 3x3, 4x4

PURPOSE

<1>

C D

<1>

<2>

<3>

<4>

----> R, 2D, 3D, 4D

----> R, 2D, 3D, 4D

----> R, 3D, 4D

----> R, 4D

Separates a vector into its elements or a square matrix into its row vectors.

DESCRIPTION

INPUT
< 1 > —any vector or matrix

NOTES

OUTPUT
< 1 > — x component or row vector
<2> — y component or row vector
< 3 > — z component or row vector
<4> — w component or row vector

1. If a square matrix is sent to input < 1 >, its row vectors appear in sequence
at the outputs.

2. If a vector is input, its components are output as real numbers. The x
component is output on output < 1 >, the y component on output <2>, and the
z and w components (if any) on output <3> and output <4> respectively.

3. Note that same outputs are not always used. For example, if a 3x3 matrix
or a 3D vector is sent to F: PARTS, nothing is output on output <4>.

_ gg _

Intrinsic Function
Data Selection and Manipulation F:PASSTHRUCn)

F:PASSTHRUCn)

Any

Any

PURPOSE

<1>

<n>

D D

<1>

<n>

----> Any

----> Any

Immediately passes the message which arrives at any input to all function
queues connected to its associated output.

DESCRIPTION

NOTES

INPUT
< 1 > —Any message
<n> —Any message

OUTPUT
< 1 > —Message on input < 1 >
<n> —Message on input <n>

1. A message is passed through as soon as it arrives at an input queue. The
function does not have to wait for messages on all its inputs before it
becomes active.

2. The SETUP CNESS command cannot be used with this function.

_ gg _

Intrinsic Function
F:PICKINFO Miscellaneous

F:PICKINFO

PL >

PURPOSE

<1>

<2> C

D D

<1>

<2>

<3>

<4>

<5>

<6>

<7>

<8>

Reformats picklist information for use by other functions. The output picklist
is separated into its component parts.

DESCRIPTION

INPUT
< 1 > -picklist
<2> -depth within structure reported (constant)

OUTPUT
< 1 > -index
<2> -pick identifiers)
<3> -coordinates
<4> -dimension
< 5 > -coordinates reported
<6> -curve parar~eter, t
< 7> -data type code
<8> -name of picked element

- 100 -

Intrinsic Function
Miscellaneous F:PICKINFO

(continued)

DEFAULTS

The default depth on input <2> is all.

NOTES

1. Input < 1 > accepts a picklist. Since the only source of a picklist is the
initial function instance PICK, instances of F:PICKINFO must be connected
to PICK.

2. Input <2> accepts an integer that specifies the depth within a structure
that will be reported when a pick occurs. For example, if the picked item
were at the fiftieth level within pick identifiers (i.e., the picked data could
be appended with 49 pick identifiers separated by commas) and the integer
2 were input on input <2>, then only the identifier of the picked item and
the item directly above it in the structure would be output as the string on
output <2>.

3. The output information varies with the type of picklist supplied. If the
associated PICK function instance has a TRUE on input <2>, it supplies a
detailed coordinate picklist, and most or all of F : PICKI NFO's outputs are
activated. If the associated PICK has a FALSE on input <2>, a less detailed
picklist is supplied, and only F: PICKINFO outputs < 1 >, <2>, and <5> are
activated.

4. The integer on output < 1 > is the pick index, indicating which vector (in a
vector list), character (in a character string}, label (in a labels block}, or
parameter value (in a POLYNOMIAL or RATIONAL POLYNOMIAL curve) was
picked. Vectors (or characters or labels} are assigned consecutive integer
values in order of their appearance in the list (or string or labels block),
beginning with 1.

5. Output <2> is a string containing the requested pick ID's.

6. Output < 3> is a 2D or 3D vector giving the coordinates of the intersection
of the pickbox with the picked vector. Its data type depends on the data
type of the picked vector (~D or 3D). Output <3> also reports the start
location of a picked character string or label. (This output is supplied only
for coordinate picklists.)

7. Output <4> gives the dimension (2 or 3} of the picked vector. (This output
is supplied only for coordinate picklists.}

Intrinsic Function
F:PICKINFO Miscellaneous

(continued)

NOTES (continued)

8. Output <5> is TRUE if coordinate picking information is being sent out, and
FALSE otherwise. Output <5> is also false if coordinate picking is
attempted on a character.

9. Output <6> gives the value of a polynomial parameter t (from 0 to 1,
inclusive). This output is activated only for coordinate picklists resulting
from picking a vector created by the POLYNOMIAL command or RATIONAL
POLYNOMIAL command.

10. Output <7> is for an integer code specifying the data type of the object
picked. The code may have values 1 through 8, corresponding to the
following data types: (1) CHARACTERS; (2) 2D vector; (3) 3D vector (4) 2D
POLYNOMIAL or RATIONAL POLYNOMIAL; (5) 3D POLYNOMIAL or RATIONAL
POLYNOMIAL; (6) 2D BSPLINE or RATIONAL BSPLINE; (7) 3D BSPLINE or
RATIONAL BSPLINE; (8) LABELS.

1 1. When output < 8 > is connected to < 1 > F :PRINT it causes F :PRINT to produce
the name of the VECTOR_LIST, CHARACTERS, LABELS, BSPLINE, RATIONAL
BSPLINE, POLYNOMIAL, or RATIONAL POLYNOMIAL command containing the
picked vector.

12. If the command containing the picked vector is not .named, a null is output
at <8>.

- 102 -

Intrinsic Function
Miscellaneous F:POSITION LINE

F:POSITION LINE

2D, 3D, 4D -->

B, S >

PURPOSE

<1>

<2> C

D C

<1> ---> 2D, 3D, 4D

Accepts a 2D, 3D, or 4D vector on input < 1 >. A Boolean on input <2> is used to
assign a position (P) or line (L) to be associated with the vector. A string sent
to input < 2> consists of either a P or an L identifier. The vector, with the
positionlline condition specified by the Boolean, is output on output < 1 >.

DESCRIPTION

INPUT
< 1 > -any vector
< 2 > -Boolean or string (constant)

OUTPUT
< 1 > -vector with P or L identif ier

NOTES

A TRUE on input < 2> causes a line (L) to be associated with the vector; a
FALSE on input <2> causes a position (P) to be associated with the vector. The
outputs from this function vectors with position/line specifications) can only be
applied to a vector list data node in a display tree. No function accepts such
vectors as inputs.

- 103 -

Intrinsic Function
F:PRINT Data Conversion

F:PRINT

Any >

B >

PURPOSE

<1>

<2> C

D C

<1> > S

Converts any data type to string format; that is, it performs an inverse of the
operation that occurs when an ASCII string is input to the PS 300 and is
converted to one of the data types.

DESCRIPTION

INPUT
< 1 > -any message
<2> -Boolean governing numeric format (constant)

OUTPUT
< 1 > -string

DEFAULTS

The default for input <2> is FALSE, indicating decimal format.

NOTES

1. Any message on input < 1 > is converted to string format .and sent out on
output < 1 >.

- 104 -

Intrinsic Function
Data Conversion F:PRINT

Ccontinued)

NOTES (continued)

2. Input <2> governs the format of real numbers and vectors (but not matrix
elements) in the output string. When input <2> is FALSE, these values have
the usual decimal format (e.g., '.001'). When input <2> is TRUE, these
values are in exponential format (e.g. ' 1.000000E-3'). (Integers, on the
other hand, are never in exponential format.) The output character string
that results from each type of input follows:

Input Data Type -Output Character string

Boolean 'FALSE' or 'TRUE'.

Character The same character that was input.

String The same character string that was input.

Integer The character representation of the integer; e.g.,
' 129', '-107543'.

Real A character representation of the real number;
e.g., '3.1416', '2.3E2' etc.

All vectors are preceded by a P (position), L (line), or V (no P or L)
designation. ("X" in the following vector descriptions indicates P, L, or V.)

Input Data Type

2D Vector

3D Vector

4D Vector

Output Character String

Two real numbers separated by a comma; e.g., 'X
3.5,.0 715'

Three real numbers separated by commas; e.g., 'X
3.1416,-2 7 5.012, 3.5'

Four real numbers separated by commas; e.g., 'X
3.1416,-2 7 5.012, 3.5,.0 715'

Intrinsic Function
F:PRINT Data Conversion

(continued)

NOTES (continued)

Input Data Type

2x2 Matrix

3x3 Matrix

4x4 Matrix

Pick list

Output Character String

Two 2D vectors (nine—digit precision, exponential
format) separated by a space; e.g.,
' 1.23456789E0 1, —2.56900187E-02 3.14159265E0 1,
2.71828183E01')

Three 3D vectors (nine—digit precision,
exponential format) separated by spaces.

Four 4D vectors (nine—digit precision, exponential
format) separated by spaces.

The format of a picklist string depends on
whether coordinate information was requested for
the picklist (refer to F:PICKINFO and the PICK
initial function instance) and, if it was requested,
whether it was given. (For example, a vector in a
character is not susceptible to standard
coordinate picking.) All of these formats contain
the clause <pick ID's>. This clause contains two
things: first, a list of pick identifiers established
in SET PICK ID, with the "closest" pick identifier
first; second, a space followed by the name of the
original data—definition command corresponding
to the picked object. If this command is not
named, neither a name nor a space follows the
pick identifiers.

If no coordinate picking information was
requested (input < 2 > of the associated PICK
function instance is FALSE), the output string has
the format

<index><pick ID's>

for a vector in a declared vector list (including
WITH PATTERN lists) or for a character in~. a string
or label in a block, and

< ><pick ID's>

for a vector in a polynomial curve.

- 106 -

Intrinsic Function
Data Conversion F:PRINT

(continued)

NOTES (continued)

Input Data Type

Pick list (cont.)

Output Character String

If coordinate picking information was requested
and given (i.e., if input <2> of the associated PICK
is TRUE, and it was not a character vector), then
the output string format is

<1><dimension><pick_x, picky, Cpick_zJ>
<index><pick ID's>

for a vector in a declared vector list and

<2><dimension><pick_x, pick_y,Cpick_z]><t>
<pick ID's>

for a vector within a polynomial curve, where
<dimension> and <t> are as defined for
F:PICKINFO.

For a character in a string the format is

<3><dimension><start_x, start_y, start_z>
<index><pick ID's>

and for a label in a labels block, the format is

<5><dimension><start_x, start_y, start_z>
<index><pick ID's>

If picked coordinates were requested but not
given (i.e., input <2> of the associated PICK is
TRUE and a vector in a character or in a
polynomial curve was picked), the output string
format is

<3><index><pick ID's>

— 107 —

Intrinsic Function
F:PUT STRING Data Selection and Manipulation

F:PUT STRING

S

I

S

PURPOSE

<1>

<2>

<3>

CC

<1>

<2>

Replaces characters in the string on input < 1 > with the string on input < 3 >,
starting at the position specified by the integer on input < 2>. The resulting
string may be longer than the original string if the string on input < 3 > overlaps.
The Boolean on output < 2> is TRUE if the resulting string is the same length as
the string on input < 1 >, and FALSE otherwise.

DESCRIPTION

INPUT
< 1 > - string
<Z> - starting location for replacing characters
< 3 > - replacement characters

OUTPUT
< 1 > - resulting string
< 2> - TRUE = resulting string same length as the original, FALSE _

resulting string longer than the original

- 108 -

Intrinsic Function
Data Selection and Manipulation F:RANGE SELECT

F:RANGE SELECT

R, 2D, 3D > <1>

R, 2D, 3D > <2> C

R, 2D, 3D > <3> C

<1>

<2 >

<3>

D D

PURPQSE

> R, 2D, 3D

> R, 2D, 3D

> R, 2D, 3D

Compares the value on input < I > to the maximum and minimum on inputs <2>
and < 3 > to determine whether the value is in range or not.

DESCRIPTIQN

INPUT
< 1 > -value
<2> -maximum (constant)
< 3 > -minimum (constant}

OUTPUT
< 1 > - in-range, normalized
<2~ - in-range, unchanged
< 3> - aut-of-range, unchanged

NOTES

1. Accepts real number values or 2D or 3D vectors on all inputs. The data
type rrzust be the same on all inputs, as must the vector dimensions (that is,
alI vectors must be either 2D or 3D). The type of data output from the
function is the same type that is input to the function.

2. The value on input ~ I > is cam-pared to the constant maximum value on
input <2> and the constant minimum value on input <3>.

- 109 -

Intrinsic Function
F:RANCE_SELECT Data Selection and Manipulation

(continued)

NOTES (continued)

3. If the value on input < 1 > is within the range defined by the minimum and
maximum values (input <3> <= input < 1 > <= input <2>} then the value on
input < 1 > is sent out on outputs < 1 > and <2>..

4. The value on output < 1 > is normalized to the maximum/minimum values of
inputs <2> and <3>. The value on output <2> is identical to the input < 1 >
value. If the value is in range, nothing is sent out on output <3>.

5. If the value on input < 1 > is nod within rage, it is output on output < 3 >
unchanged. Data is normalized for output < 1 > by:

X , - v min

normal X value =

normal Y value =

normal Z value =

Y

X range

-

Y

min

Z

Y range

- 7 min

Z range

- 0.5

- 0.5

- 0.5

Intrinsic Function
Arithmetic and Logical F:ROUND

F:ROUND

R >

PURPOSE

<1>

CC

<1> > I

Accepts a real number and outputs the nearest integral value.

DESCRIPTION

INPUT
< 1 > -real number

OUTPUT
< 1 > -nearest integral value

NOTES

1/alues n to n.4999...9 are rounded to n; values n.5 to n.9999...9 are rounded to
n+ l . Values -n to -n.4999...9 are rounded to -n; values -n.5 to -n.999...9 are
rounded to -n+(-1).

Intrinsic Function
F:ROUTECn) Data Selection and Manipulation

F:ROUTE(n)

Any >

PURPOSE

<1>

<2>

CD

<1>

<2>

<n>

> Any

> Any

> Any

Uses the integer on input < 1 > to route the message on input <2> to the output
whose number matches the input < 1 > integer.

DESCRIPTION

INPUT
< 1 > -number of selected output (1 through n)
< 2 > -any message

OUTPUT
< 1 > -message on input <2>

<n> -message on input <2>

NOTES

The message on input < 2> may be of any data type. The "n" in the function
name can be any integer from 2 to 127. If the integer on input < 1 > is not a
number from 1 to n inclusive, then an error is detected and reported.

ASSOCIATED FUNCTIONS

F:ROUTECCn> and F:CROUTE(n>

- 112 -

Intrinsic Function
Data Selection- and Manipulation F:ROUTECCn)

F : ROUTECC n)

Any >

PURPOSE

<1>

<2> C

D D

<1>

<2 >

<n>

> Any

> Any

> Any

Uses the integer on input < 1 > to switch the message on input <2> to the output
whose number matches the input < 1 > integer. Input <2> is a constant.

DESCRIPTION

INPUT
< 1 > -number of selected output (1 through n)
<2> -any message (constant)

OUTPUT
< 1 > -message on input <2>

<n> -message on input <2>

NOTES

The message on input <2> may be of any data type. The "n" in the function
name may be any integer from 2 to 127. If the integer on input < 1 > is not a
number from 1 to n, inclusive, then the message on input < 2 > is held until a
valid integer is received on input < 1 >.

ASSOCIATED FUNCTIONS

F: ROUTECn), F:CROUTECn>

- 113 -

Intrinsic Function
F:SCALE Object Transformation

F:SCALE

R, I, 3D >

PURPOSE

<1>

C C

<1> > 3x3

Accepts a real value, an integer, or a 3D vector. If a real is input, the scaling
factor represented by the real value is applied to X, Y, and Z. A 3x3 scaling
matrix is output that may be used to update a scaling element of a display data
structure.

DESCRIPTION

INPUT
< 1 > -value

OUTPUT
< 1 > - 3x3 scaling matrix

NOTES

If a 3D vector is input, the X component of the vector is the scaling factor for
X, the Y component of the vector is the scaling factor for Y and the Z
component of the the vector is the scaling factor for Z.

- 114 -

Intrinsic Function
Data Selection and Manipulation F:SEND

F:SEND

Any > <1>

S > <2 >

I > <3>

C

PURPOSE

This is the function network equivalent of the SEND command. It allows you to
send any valid data type to any naR~ed entity at any valid index.

DESCRIPTION

INPUT
< 1 > -message sent
<2> -name of the destination node
< 3 > -index into the destination node

NOTES

1. This function has no output.

2. Input < 1 > accepts special data types that most functions do not accept,
such as the data type output by F :LABEL.

3. The SETUP CNESS command can be used to specify constant inputs as
default values.

- 115 -

Intrinsic Function
F:SINCOS Arithmetic and Logical

F:SINCOS

R >

PURPOSE

<1>

C C

<1>

<2 >

> R

> R

Accepts a real number on input < 1 > which represents an angle in units of
degrees. The sine of that angle is output as a real number on output < 1 >, and
the cosine of that angle is output as a real number on output <2>.

DESCRIPTION

INPUT
< 1 > -angle

OUTPUT
< 1 > -sine
<2> -cosine

- 116 -

Intrinsic Function
Data Selection and Manipulation F:SPLIT

F: SPLIT
S >

S >

PURPOSE

<1>

<2> C

D D

<1>

<2 >

<3>

<4>

>S

> S

>S

> B

Accepts character strings on inputs < 1 > and <2>. The string on input <2> is a
constant. When the string is received on input < 1 >, it is compared to the string
on input < 2> for an exact match.

DESCRIPTION

INPUT
E 1 > -string
< 2 ~ -string (constant}

OUTPUT
< 1 > -characters preceding match
<~> -matching characters
<3> -characters following match
<4> -TRUE if matching inputs, EASE otherwise

NOTES

1. If a match occurs, characters in the string on input < 1 > that precede the
match are output on output < 1 >. Matching characters are output on output
<2>. Characters following the matching characters are- output an output
f 3>. And a Boolean TRUE is output on output <~>.

2. If no match is found, nothing is output on outputs < 1 >, <2>, and <3>, and a
Boolean FALSE is output on output <~>.

- 117 -

Intrinsic Function
F:SQROOT Arithmetic and Logical

F:SQROOT

I, R ---->

PURPOSE

<1>

CC

<1> > R

Extracts the square root of the real number or integer on input < 1 >.

DESCRIPTION

INPUT
< 1 > -real or integer

OUTPUT
< 1 > -square root

NOTES

The output is always real. If the input is negative, the_ output is 0.

Intrinsic Function
Data Conversion F:STRING TO NUM

F:STRING TO NUM

S >

PURPOSE

<1>

CC

<1>

Outputs the value of a string of digits as a real number. If the function
receives characters that cannot represent a number then an error message is
generated.

DESCRIPTION

INPUT
< 1 > -string of digits

OUTPUT
< 1 > -value of the string on input < 1 >

NOTES

A valid number can contain any or all of the following components: decimal
point, 'E' expression, plus or minus sign, numerals.

- X19 -

Intrinsic Function
F:SUB Arithmetic and Logical

F:SUB

I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

I, R, ZD, 3D, 4D
2x2, 3x3, 4x4

PURPOSE

<1>

C C

> I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

Accepts two inputs and produces an output that is the difference of the two
inputs (input <2> is subtracted from input < 1 >).

DESCRIPTION

INPUT
< 1 > -minuend
<2> -subtrahend

OUTPUT
< 1 > -difference

NOTES

The two input values must be of the same data type (except a combination of
real and integer is allowed); the output data type depends on the input data
type. If a real and an integer are input, a real is output.

ASSOCIATED FUNCTIONS

F : SUBC, F : CSUB

- 120 -

Intrinsic Function
Arithmetic and Logical F:SU BC

F:SUBC

I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

PURPOSE

> <1>

> <2> C

DC

<1> > I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

Accepts two inputs and produces an output that is the difference of the two
inputs (input <2> is subtracted from input < 1 >). Input <2> is a constant.

DESCRIPTION

INPUT
< 1 > -minuend
<2> -subtrahend (constant)

OUTPUT
<1> -difference

NOTES

The two input values must be of the same data type (except a combination of
real and integer is allowed); the output data type depends on the input data
type. If a real and an integer are input, a real is output.

ASSOCIATED FUNCTIONS

F :SUB, F : CSUB

Intrinsic Function
F:SYNCCn) Miscellaneous

F:SYNCCn)

Any >

Any >

<1>

<n>

C C

<1>

<n>

> Any

> Any

PURPOSE

Synchronizes the output of a specified number of messages. The number, ►'n",

may have any value from 2 to 127.

DESCRIPTION

INPUT
< 1 > -any message

<n> -any message

OUTPUT
< 1 > -any message

NOTES

<n> -any message

1. F : SYNC(n) waits until a message is received on all of its '►n►► inputs, then
sends the messages out; for example, F : SYNCC 32) synchronizes 32 messages.

2. Usually, the outputs of an F:SYNCCn) function instance are connected to
nodes in a display tree to assure that updates to displayed -data are
synchronized.

3. Outputs from F : SYNC(n) are effectively simultaneous. In fact, outputs are
sequential (< 1 > through <n>} at a rapid rate.

- 122 -

Intrinsic Function
Data Selection and Manipulation F:TAK~ STRING

F:TAKE STRING

S

I

I

PURPOSE

<1>

<2 >

<3>

CC

<1>

<2>

Outputs a string consisting of the number of characters specified on input < 2>
taken from the string on input < 1 >, starting at the position given on input < 3 >.
A TRUE on output <2> means that there were enough characters left in the
string. A FALSE means there were not enough characters, so the output string
was truncated.

DESCRIPTION

INPUT
< 1 > -string
<2> -starting position
<3> -number of characters to take

OUTPUT
< 1 > -resulting string
<2> -TRUE =enough characters, FALSE =output string truncated

- 123 -

Intrinsic Function
F:TIMEOUT Timing

F:TIMEOUT

Any >

PURPOSE

<1>

<2> C

D C

<1>

<2>

<3>

> Any

> B

> B

Provides the means to detect the occurrence of consecutive messages on input
< 1 > within the time interval specified in centiseconds by the constant integer
on input <2>.

DESCRIPTION

INPUT
< 1 > -message on input < 1 >
<2> -time interval (constant)

NOTES

OUTPUT
< 1 > -any message
<2> -TRUE =timeout, FALSE = no timeout
<3> -logical complement of output <2>

1. Once the first message is received on input < 1 >, the subsequent message
must be received in the duration specified on input < 2> in order to be
passed through the function. Then the third message must be received
within that specified duration after the second message, and so on.

2. The first message to input < 1 > serves only to start the timeout
measurement, and never generates an output.

- 124 -

Intrinsic Function
Timing F:TIMEOUT

(continued)

NOTES (continued)

3. If any subsequent messages are received at input < 1 > within the time
interval specified on input <2>, only the last message is sent on output < 1 >
at the end of the interval; all intervening messages are discarded.

4. If a message on input < 1 > is not received within the specified time, the
Boolean on output <2> is TRUE. If a message on input < 1 > is received
within the interval, the Boolean on output < 2 > is FALSE. Output < 3 > is the
complement of output <2>.

5. This function is especially useful to determine a data tablet stylus
out —of —range condition. If the message from the data tablet stylus is
connected to input < 1 > of this function and an appropriate duration is
specified on input <2>, then the inputs from the data tablet will be passed
through the function until the duration is exceeded.

Intrinsic Function
F:TRANS STRING Data Conversion

F:TRANS STRING

S > <1>

I > <2> C

S > <3> C

DC

<1>

PURPOSE

Translates the string on input < 1 > into the output string using the string on
input < 3 > as a translation table. The integer on input < 2> is the beginning place
(i.e., the ASCII decimal equivalent or ORD) of the first character to be
translated. Inputs <2> and <3> are constants.

DESCRIPTION

NOTES

INPUT
< 1 > -string
< 2 > -first character to be translated (constant)
< 3 > -translation table (constant)

OUTPUT
< 1 > -translated string

1. The upper-limit of the number of characters to translate is the length of
the string on input < 3 >

EXAMPLE

SEND 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' TO < 3>Trans_String;
SEND FIX(97) TO <2>Trans_String; {the ASCII equivalent of 'a'}
SEND 'abcdefghijklmnopgrstuvwxyz' TO < 1 >Trans_String;

The lower case letters send to input < 1 > will be translated to upper case on
output <1>.

-]26 -

Intrinsic Function
Data Conversion F:VEC

F:VEC

R, 2D, 3D

R

PURPOSE

<1>

<2>

CC

<1> ----> 2D, 3D, 4D

Accepts two real numbers and outputs a 2D vector, accepts a 2D vector and a
real number and outputs a 3D vector, or accepts a 3D vector and a real number
and outputs a 4D vector.

DESCRIPTION

INPUT
< 1 > —real, 2D, or 3D vector
< 2 > —real number

OUTPUT
< 1 > —vector consisting of the value on input < 1 > with the real on

input <~> appended

NOTES

The output vector is the real number or vector from input- < 1 > with- the real
number from input < 2> appended as the last vector component.

ASSOCIATED FUNCTIONS

F:VECC,F:CVEC

- 127 -

Intrinsic Function
F:VEC EXTRACT Data Selection and Manipulation

F:VEC EXTRACT

S >

PURPOSE

<1>

<2>

CC

<1>

<2>

<3>

<4>

Extracts information about a vector in a vector list node given an index into the
vector list on input < 1 > and the name of the vector list node on input <2>.

DESCRIPTION

INPUT
< 1 > -index of the vector in question
<2> -name of the vector list node

NOTES

OUTPUT
< 1 > -data type
<2> -the vector in question
< 3 > -intensity
<4> -TRUE =Position, FALSE =Line

1. The integer on output < 1 > is the same as would be sent from output < 7> of
F:PICKINFO.

- 128 -

Intrinsic Function
Data Conversion F:VECC

F:VECC

R, 2D, 3D >

R >

PURPOSE

<1>

<2 > C

D C

<1> ----> 2D, 3D, 4D

Accepts two real numbers and outputs a 2D vector, accepts a 2D vector and a
real number and outputs a 3D vector, or accepts a 3D vector and a real number
and outputs a 4D vector. Input < 2> is a constant.

DESCRIPTION

INPUT
< 1 > -real, 2D, or 3D vector
< 2 > -real number (constant)

OUTPUT
< 1 > -vector consisting of the value on input < 1 > with the real on

input <2> appended

NOTES

The output vector is the real number or vector from input < 1 > with the real
number from input <2> appended as the last vector component.

ASSOCIATED FUNCTIONS

F:VEC, F~:CVEC

Intrinsic Function
F:WINDOW Viewing Transformation

F:WINDOW

Any

R

R

R

R

R

R

PURPOSE

> <1>

> <2> C

> <3> C

> <4> C

> <5> C

> <6> C

> <7> C

D C

<1> > 4x4

This is the functional counterpart of the WINDOW command. The windowing
matrix that results from this function defines a viewing area for orthographic
views (parallel projections) of objects.

DESCRIPTION

INPUT
<1> -
<2> -
<3> -
<4> -
<5> -
<6> -
<7> -

trigger
x minimum
x maximum
y minimum
y maximu m
z minimum
z maximum

OUTPUT
< 1 > - 4x4 matrix

(constant)
(constant)
(constant)
(constant}
(constant)
(constant)

- 130 -

Intrinsic Function
Viewing Transformation F:WINDOW

(continued)

NOTES

1. F:WINDOW accepts any message on input < 1 > to trigger the function and
constant real values on inputs <2> through <7>. These real values define
the boundaries of a three-dimensional rectangular volume within which
objects can be viewed in parallel projection (i.e. no perspective is imposed).

2. This volume is defined by expressing a rectangle in terms of xmi n (input
<2>), Xmdx (input <3>), ymi n (input <4>), and ymax (input <5>). The
rectangle is then extended into a three dimensional volume by specifying
zmi n (input < 5 >) and zmax (input < 7 >).

- 13~ -

Intrinsic Function
F:XFORMDATA Data Conversion

F:XFORMDATA

Any

S

S

I

I

PURPOSE

<1>

<2> C

<3> C

<4> C

<5> C
DC

<1> > Special

Sends transformed data (either a vector list or a 4x4 matrix) to a specified
destination (e.g., the host, a printer, or the screen).

DESCRIPTION

INPUT
< 1 > - any message
<2> -name of XFORM node (constant)
< 3 > -name of destination object (constant)
<4> -destination vector index (constant)
< 5 > -number o f vec tors (constant)

OUTPUT
< 1 > -special data type used exclusively as input to F: LIST

DEFAULTS

Default for input <4> is 1, default for input <5> is 2048.

- 13 2 -

Intrinsic Function
Data Conversion F:XFORMDATA

Ccontinued)

NOTES

1. Input < 1 > is a trigger for F:XFORMDATA. This input would typically be
connected to a function button, either directly or via F : SYNCC 2), allowing
transformed data to be requested easily.

2. Input < 2 > is a string or matrix containing the name of the XFORM command
in the display tree (either XFORM MATRIX or XFORM VECtor). By referring to
an XFORM command, this input ~ indirectly specifies the object whose
transformed data is to be sent. If the string names something other than
an XFORM command, an error message is displayed. If the. string names a
node which does not exist, an error message is sent and the message is
removed from input <2>.

3. Input < 3 > is a string containing the name to be associated with the
transformed vectors. The name need not be previously defined. If this
input does not contain a valid string, the transformed matrix or vectors
will be created without a name (an acceptable situation unless the
transformed vectors need to be referenced or displayed.) The transformed
vector list can be displayed or modified, provided a name is given on this
input. The transformation matrix cannot be used, however, so naming and
sending it to input < 3 > is not useful.

4. Input <4> is an integer index specifying the place in a vector list at which
the PS 300 is to start returning transformed data. This input is only used
when the command name at input <2> represents an XFORM VECtor
command (not an XFORM MATRIX command). The default value is 1.

5. Input <5> is an integer number of consecutive vectors for which
transformed data is to be returned, starting at the vector specified at input
<4>. This inp~rt is only used when the command name at input <2>
represents an XFORM VECtor command (not an XFORM MATRIX command). No
more than 2048 consecutive vectors may be returned. The default value is
2048.

~. Output < 1 > contains the transformed data in a format which can only be
accepted by input < 1 > of F : EIST (F :LIST then prints out the data in ASCII
format -- either a PS 300 VECTOR LIST command or a PS 300 MATRIX 4X4
command, depending on whether the command named at input < 2> was an
XFQRM VECtor' or an XFORM MATRIX).

Intrinsic Function
F:XOR Arithmetic and Logical

F:XOR

B >

B >

PURPOSE

<1>

<2>

CC

<1> > B

Accepts Boolean values on inputs < 1 > and <2>, performs an exclusive-OR
function on the values, and outputs the result as a Boolean value. That is, if the
Boolean values on both inputs are the same, the output is FALSE; if the Boolean
values on the inputs are different, the output is TRUE.

DESCRIPTION

INPUT
< 1 > -Boolean
< 2 > -Boolean

OUTPUT
<1> -exclusive OR of inputs

ASSOCIATED FUNCTIONS

F:XORC

- 134 -

Intrinsic Function
Arithmetic and Logical F:XORC

F:XORC

B >

B >

PURPOSE

<1>

<2> C

DC

<1> > B

Accepts Boolean values on inputs < 1 > and <2>, performs an exclusive-OR
function on the values, and outputs the result as a Boolean value. Unlike F : XOR,
for which both inputs are active, F:XORC input <2> is a constant. If the Boolean
values on both inputs are the same, the output is FALSE; if the Boolean values
on the inputs are different, the output is TRUE.

DESCRIPTION

INPUT
< 1 > -Boolean
< 2> -Boolean (constant)

OUTPUT
< 1 > -exclusive OR of inputs

ASSOCIATED FUNCTIONS

F:XOR

- 135 -

Intrinsic Function
F:XROTATE abject Transformation

F:XROTATE

R, I >

PURPOSE

<1>

CC

<1> > 3x3

Accepts a real value or an integer that specifies the number of degrees about
the X axis that the rotation matrix generated by the function is to represent.

DESCRIPTION

INPUT
< 1 > -real value or integer

OUTPUT
< 1 > - 3x3 rotation matrix

NOTES

The 3x3 rotation matrix which is output may be used to update a rotation node
in a display tree.

Intrinsic Function
Data Conversion- F:XVECTOR

F:XVECTOR

R >

PURPOSE

<1>

CC

<1>

Accepts a real on input < 1 > and outputs a 3D vector.

DESCRIPTION

INPUT
< 1 > —real number

OUTPUT
< 1 > — 3D vector

NOTES

> 3D

In the 3D vector which is output, x is equal to the input real, and y and z are 0.
For example, if 3 were input, the 3D vector output would be 3,0,0.

Intrinsic Function
F:YROTATE abject Transformation

F:YROTATE

R, I >

PURPOSE

<1>

CC

<1> > 3x3

Accepts a real value or an integer that specifies the number of degrees about
the Y axis that the rotation matrix generated by the function is to represent.

DESCRIPTION

INPUT
< 1 > -degrees rotation in Y

OUTPUT
< 1 > - 3x3 rotation matrix

NOTES

The 3x3 rotation matrix that is output may be used to update a rotation node in
a display tree.

_ l38 _

Intrinsic Function
Data Conversion F:YVECTOR

F:YVECTOR

R >

PURPOSE

N>

CC

<1>

Accepts a real on input < 1 > and outputs a 3D vector.

DESCRIPTION

INPUT
< 1 > -real number

OUTPUT
< 1 > - 3D vector

NOTES

> 3D

In the 3D vector which is output, y is equal to the input real, and x and Z are 0.
For example, if 4 were input, the 3D vector output would be 0,4,0.

- 139 -

Intrinsic Function
F:ZROTATE Object Transformation

F:ZROTATE

R, I >

PURPOSE

<1>

C C

<1> > 3x3

Accepts a real value or an integer that specifies the number of degrees about
the Z axis that the rotation matrix generated by the function is to represent.

DESCRIPTION

INPUT
< 1 > -degrees rotation in Z

OUTPUT
< 1 > - 3x3 rotation matrix

NOTES

The 3x3 rotation matrix that is output may be used to update a rotation node in
a display tree.

- 140 -

Intrinsic Function
Data Conversion F:ZVECTOR

F:ZVECTOR

R >

PURPOSE

<1>

CC

<1 >

Accepts a real on input < 1 > and outputs a 3D vector.

DESCRIPTION

INPUT
< 1 > —real nu mbar

OUTPUT
< 1 > — 3D vector

N-OYES

> 3D

In the 3D vector which is output z is equal to the input real, and x and y are 0.
.For example, if 5 were input, the 3D vec-tor output would be 0,0,5.

- 142 -

Initial Function Instance
Input BUTTONSIN

BUTTONSIN
CBUTTONSIN2)

(Connected to---->
Function Buttons
Unit at system
initialization)

PURPOSE

<i>

CC

<1>

<2>

Detects activity from the Function Buttons Unit an input < ~ >, which is
system-connected at initialization.

DESCRIPTION

INPUT
< 1 ~ -connected to Function Buttons

OUTPUT
l > -number of the button aetivatecl

< 2 > -TRUE = on, F At_SE = of f

P~tOTES

Output occurs when one of the 32 buttons is pushed. The numk~er of tt~e ~ushe~
button appears at output ~ l >, anc~ its light state TRUE for an, FALSE for off}
at output <2>.

- X43 -

Initial Function Instance
CLEAR_LABELS Output

CLEAR_LABELS
CCLEAR LABELS2)

B >

PURPOSE

<1>

CC

<1>
Connected to Dial

> Labels and Function
Key Labels at System
Initialization

Clears the control dial LED labels and the function key LED labels. If input < 1 >
is TRUE, the labels are cleared; otherwise, no action is taken.

DESCRIPTION

INPUT
< 1 > -TRUE =clear labels, FALSE = no action

OUTPUT
< 1 > -connected to Dial and Function Key labels

NOTES

The INITi al i ze command sends a TRUE to this function instance, clearing all
LED labels.

- 144 -

Initial Function Instance
Input DIALS

Connected to >
Control Dials
at System
Initialization

~~~uRPosE 

DIALS 
C DIALS2 ) 

<1> 

C D 

<1> 

<2> 

<3> 

<4> 

<5> 

<6> 

<7 > 

<S> 

> R 

> R 

> R 

> R 

> R 

> R 

> R 

> R 

Produces eight real number outputs that correspond to inputs from control dials 
1 though 8. 

DESCRIPTION 

INPUT 
< 1 > - Connected to Control Dials 

OUTPUT 
<1> -real number 
<2> -real number 
< 3 > -real number 
<4> -real number 
< 5 > -real number 
< 6 > -real number 
< 7 > -real number 
<8> -real number 

- 145 - 



Initial Function Instance 
DIALS Input 

. (continued) 

NOTES 

1. The control dials are numbered from 1 through 4, left to right across the 
top row and from 5 to 8, left to right across the bottom row. 

2. The message from each control dial is converted to a real number value, 
which is the incremented value from the dial normalized to between -1.0 
and +1.0. This value is sent out on the output (< 1 >...<8>) that corresponds 
to the number of the dial that sent the message. 

- 146 - 



Initial Function Instance 
Output DLABELI . . . DLABEL8 

DLABELI . . . DLABEL8 
CDLABEL21 . . . DLABEL28) 

S  > <1> 

B  > <2> C 

B  > <3> C 

DC 

<1> 

PURPOSE 

> Connected to 
Dial Labels 
at System 
Initialization 

Eight function instances are provided to separately label the eight LED 
indicators above each control dial. DLABELI is used to label the LED indicators 
associated with the first control dial (leftmost, top row); DLABEL2 is used to 
label the LED indicators associated with the second control dial (second from 
left, top row); and so on, through DLABEL8, which is used to label the LED 
indicators associated with the eighth dial (rightmost, bottom row). 

DESCRIPTION 

INPUT 
< 1 > -label message 
<2> -blink/no blink (constant) 
< 3 > -center/left justify (constant) 

OUTPUT 
< 1 > -connected to Control Dials 

- 147 - 



Initial Function Instance 
DLABELI ... DLABEL8 Output 

(continued) 

NOTES 

1. Input < 1 > accepts the character string (up to eight characters) to be 
displayed on the corresponding control dial LED indicators. The constant 
Boolean on input <2> selects blink (TRUE) or no blink (FALSE} for the 
displayed characters. The constant Boolean on input < 3 > controls whether 
the displayed message will be centered in the eight available locations 
(TRUE) or whether the first character will be placed in the leftmost of the 
eight locations (left justified) (FALSE). 

2. If inputs <2> and <3> are not used, the message will not blink and will be 
centered. 

3. Allowable characters for control dial labels are: 

! # $ % & C > * + - / 0 1 Z 3 4 5 6 7 8 9 < _ > ? @ 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z < C ] 

4. Lowercase letters are converted to uppercase letters. A space may also be 
specified. 

5. Carriage return < C R > and line feed < LF > are not legal characters and 
cause a message that follows < C R > and/or < LF > to be partially lost or 
ignored. 

- 148 - 



Initial Function Instance 
Output DSETI ... DSET8 

DSETI ... DSET8 
CDSET21 ... DSET28> 

R, I  > 

PURPOSE 

<I> 

CC 

<1> ----> Connected to 
Control Dials 
at System 
Initialization 

Eight function instances are provided to set the operating parameters for the 
eight control dials. DSETI is used to set parameters for the first control dial 
(leftmost, top row); DSET2 is used to set parameters for the second control dial 
(second from left, top row}; and so on, through DSET8, which is used to set 
parameters for the eighth control dial (rightmost, bottom row). 

DESDRIPTION

If~1PUT 
E 1 > -real =delta value, integer =sample rate 

Ol~TPUT 
< 1 > -connected to Control Dials 

DEEAt~LTS

All control dials default to an enabled condition in relative mode (each value 
from a dial reflects the amount of change (delta} from the last output value). 
There is no absolute mode for the control dials. 

The- default sample rate is ZO per second. 



Initial Function Instance 
DSETI . . . DSET8 Output 

(continued) 

NOTES 

1. Input < 1 > accepts real numbers or integers that set the delta value and 
sample rate. The default sample rate is 20 samples per second. 

2. Real numbers set the delta value relative to one complete dial rotation. 
For example, if .25 were the real number input, the dial would have to be 
rotated 90 degrees (.25 x 360) before an output from the dial would be 
generated. 

3. An integer is applied to input < 1 > to indicates the sample rate. Sample rate 
is specified in samples per second. For example, the integer 10 causes the 
dial to be sampled 10 times per second. 

4. Output < 1 > is used to set the dial parameters as specified by the real 
number or integer on input < 1 >. 

- 150 - 



Initial Function Instance 
Miscellaneous ERROR 

ERROR 
C ERROR2 ) 

CF:CBROUTE 
instance) 

B > 

Connected to 
system at  
initialization 

PURPOSE 

<1> C 

<1> 

D C 

<1> 

<Z > 

Enables and disables the display of error messages. 

DESCR~PT~ON 

INPUT 
< 1 > —TRUE =enable, EQLSE =disable (con-stant) 
<2> —Connected to system 

OI~TPUT 
1 > —connected to Terminal Emulator 

<~> —not used 

N-OYES

> Connected to 
Terminal Emulator 
at initialization 

> Not connected 

The INITi al i ze command automatically sends a TRUE to input ~ 1 > to enable 
the display o~ error messages. 



Initial Function Instance 
FFPLOT Output 

FFPLOT 
CFFPLOT2> 

Any  > 

PURPOSE 

<1> 

<2> C 

D C 

<1> 

Causes a form feed at the specified plotter. 

DESCRIPTION 

INPUT 
< 1 > -trigger 
<2> -plotter number (constant} 

OUTPUT 
< 1 > -connected to plotters 

DEFAULT 

The default for input <2> is plotter 0. 

NOTES 

> Connected to 
Plotters 

If the form feed attempt fails due to an invalid plotter number or an allocation 
error, no error message appears. Valid plotter numbers are from 0 to 3. 

- 152 - 



Initial Function Instance 
Output FKEYS 

FKEYS 
C FKEYS2 > 

Connected to the --> 
KEYBOARD Initial 
Function at System 
Initialization 

PURPOSE 

<1> 

CC 

<1> > I 

Converts a character received from a keyboard function key to an integer code. 

DESCRIPTION 

INPUT 
< 1 > -connected to KEYBOARD 

OUTPUT 
< 1 > -integer code (1-36) 

NOTES 

Characters are converted as follows: 

Integer Output 

1-12 

13-24 

25-36 

Corresponds To 

Function keys 1-12 

Function keys 1-12 with the shift key pressed. 

Function keys 1-12 with the control key pressed. 

- 153 - 



Initial Function Instance 
FLABELO Output 

FLABELO 
CFLABEL20) 

S  > 

PURPOSE 

<1> 

C C 

<1> > Connected 
to Keyboard at 
initialization 

This initial function instance is similar to the FLABELI through FLABELI2 initial 
function instances in that it allows the user to specify characters to be 
displayed in the LED indicators above the function keys. However, unlike 
FLABELI through FLABELI 2, which are used to separately specify the 8—character 
display above each function key, FLABELO allows a single character string (to a 
maximum of 96 characters) to be specified for display in the twelve 
8—character displays. FLABELO treats the 96 LED displays as a single string of 
characters and spaces. 

DESCRIPTION 

INPUT 
< 1 > —string for label 

NOTES 

OUTPUT 
< 1 > —connected to keyboard 

1. The string of characters on input < 1 > is displayed starting in the leftmost 
LED location (the first of the 8 LEDs over the first function key). 

2. Allowable characters for the function key LED indicators follow: 

! # $ % & ( ) * + - / 0 1 2 3 4 5 6 7 8 9 < _ > ? @ 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z < C 

- 154 - 



Initial Function Instance 
Output FLABELO 

Ccontinued) 

NOTES (continued) 

3. Lowercase letters are converted to uppercase letters for display. A space 
may also be specified. 

4. Carriage return < C R > and line feed < LF > are not legal characters and 
cause a message that follows <CR> and/or <LF> to be partially lost or 
ignored. 

- 155 - 



Initial Function Instance 
FLABELI ... FLABELI2 Output 

FLABELI ... FLABELI2 
(FLABEL21 ... FLABEL212> 

S  > <1> 

B  > <2> C 

B  > <3> C 

DC 

N> 

PURPOSE 

> S 

Twelve initial function instances are provided to label the eight LED indicators 
above each of the twelve function keys. FLABELI is used to label the eight LED 
indicators associated with the first function key; FLABEL2 is used to label the 
eight LED indicators for the second function key; and so on, through FLABELI2, 
which is used to label the eight LED indicators for the twelfth function key. 

DESCRIPTION 

NOTES 

INPUT 
< 1 > -label message 
< 2 > -blink/no blink (constant) 
< 3 > - centeri lef t justify (constant) 

OUTPUT 
< 1 > -string to Function Key LED 

1. Input < 1 > accepts a character string (up to eight characters) to be 
displayed on the corresponding function key LED indicators. The constant 
Boolean on input <2> selects blink (TRUE) or no blink (FALSE) for the 
displayed characters. The constant Boolean on input <3> controls whether 
the displayed message will be centered in the eight available locations 
(TRUE) or whether the first character will be placed in the leftmost of the 
eight locations (left justified) (FALSE). 

- 156 - 



Initial Function Instance 
Output FLABELI . . . FLABELI2 

(continued) 

NOTES (continued) 

2. If inputs < 2 > and < 3 > are not used, the message will not blink and will be 
centered. 

3. Allowable characters for Function Key labels are: 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z < C ] 

4. Lowercase letters are converted to uppercase letters for display. A space 
may also be specified. 

5. Carriage return <CR> and line feed <LF> are not legal characters and 
cause a message that follows <CR> and/or <LF> to be partially lost or 
ignored. 

6. The FLABELI through FLABELI2 function instances are used to separately 
program the 8-character LED displays associated with a particular 
function key. If the entire set of 96 LEDs (12 function keys x 8 characters 
per function key) is to be programmed as a single message, then FLABELO 
must be used. 

- 157 - 



Initial Function Instance 
HCPIP Output 

HCPIP 
CHCPIPZ) 

I  > <1> C 

I  > <2> C 

I  > <3> C 

I  > <4> C 

Any  > <S> 

D C 

<1> 

PURPOSE 

> Connected to 
Plotters 

Initializes plotters so that hardcopies can be obtained of screen displays. 

DESCRIPTION 

INPUT 
< 1 > —plotter ~~0 type (constant) 
<2> —plotter ~~l type (constant) 
< 3 > —plotter ~~2 type (constant) 
<4> -plotter ~~3 type (constant) 
< 5 > -trigger 

OUTPUT 
< 1 > -connected to plotters 

DEFAULTS 

The default for input < 1 > is 1, the default for inputs <2>, <3>, and <4> is 0. 

NOTES 

The initial function instance HCPIP (HardCoPy Initialize Plotters) is 
automatically triggered at system configuration time during booting. You must 
also trigger HCPIP after connecting or disconnecting a plotter. 



Initial Function Instance 
Output HCPIP 

(continued) 

NOTES 

1. Inputs < 1 >, <2>, <3>, and <4> specify the types of plotters at ports 0, 1, 2, 
and 3, respectively. There are currently two admissible values for these 
inputs: 0 (no plotter) and 1 (versatec V80). The default plotter type at 
input < 1 > is l; the default type for inputs <2>, <3>, and <4> is 0. If invalid 
values are input, the default value is automatically used without an error 
message or other notification. 

2. Input <5 > triggers the function and initializes the plotters. 

3. If you trigger HCPIP while a plot is in progress, initialization will not occur. 

- 159 - 



Initial Function Instance 
HOSTOUT Output 

HOSTOUT 
(HOSTOUT2) 

S  > 

PURPOSE 

<1> 

C C 

<1> > Connected to 
the Host 
Communications 
Port at System 
Initialization 

Accepts a string on input < 1 > and outputs the string for communication to the 
host. At initialization, the input to HOSTOUT is connected to a network used for 
the I/O routines. 

DESCRIPTION 

INPUT 
< 1 > -string 

OUTPUT 
< 1 > -connected to Host Communications Port 

- 160 - 



Initial Function Instance 
Miscellaneous INFORMATION 

INFORMATION 
C I N FORMAT I ON2 > 

CF:CBROUTE 
instance) 

Connected to 
system at  

B  > 

initialization 

PURPOSE 

<1> C 

<2> 

D D 

<1> 

<2> 

Enables and disables the display of information messages. 

DESCRIPTION 

INPUT 
< 1 > —TRUE =enable, FALSE =disable 
<2> —connected to system 

OUTPUT 
< 1 > —connected to Terminal Emulator 
< 2 > —not used 

NOTES 

> Connected to 
Terminal Emulator 
at initialization 

> Not connected 

The INITi al i ze command automatically sends a TRUE to input < 1 > to enable 
the display of information messages. 

— 161 — 



Initial Function Instance 
KEYBOARD Input 

KEYBOARD 
(KEYBOARD2) 

Connected to  > 
Terminal Emulator 
Network at 
Initialization 

PURPOSE 

<1> 

CD 

<1> 

<2 > 

> S 

> CH (System-connected 
to FKEYS> 

Connected at initialization to accept an ASCII character string from the 
keyboard. 

DESCRIPTION 

INPUT 
< 1 > -connected to Terminal Emulator network 

OUTPUT 
< 1 > -characters not preceded by CONTROL 

v 

<2> -characters preceding CONTROL 
v 

NOTES 

Input characters are checked for a preceding CONTROL V character. If a 
character is preceded by a CONTROL v, the CONTROL 

v is removed by the 
function and the associated character is output on output <2>, which is 
system-connected to the input of FKEYS. Characters that are not preceded by a 
CONTROL 

v are output on output < 1 >. 

- 162 - 



Initial Function Instance 
Miscellaneous MEMORY ALERT 

MEMORY_ALERT 
(MEMORY ALERT2> 

I  > <1> 

Not used  > <2> 

I  > <3> 

Not Used > <4> 

I  > <5> 

DC 

<1> 

PURPOSE 

----> Connected to 
MESSAGE DISPLAY 
at Initialization 

Generates a message and a bell alarm when system memory is 75 percent full. 

DESCRIPTION 

INPUT 
< 1 > — memory threshold percentage for reporting 
<2> —unused 
< 3 > —sampling interval 
<4> —unused 
<5> —integer specifying memory threshold in bytes for vector list creation 

OUTPUT 
< 1 > —connected to MESSAGE DISPLAY 

— ]63 — 



Initial Function Instance 
MEMORY ALERT Miscellaneous 

(continued) 

DEFAULTS 

The threshold specified on input < 1 > is set at 75% unless changed by the user. 
The sampling interval is set at 10 seconds unless changed. Input <5> defaults to 
0. 

NOTES 

The number of bytes specified on input <5> is the minimum number of bytes 
that must be available in memory for the system to create vector list. Once 
this threshold has been reached, a vector list will be only partially created, or 
not created at all. When this occurs, the error message "E 105 ~~~ cannot 
complete operation due to insufficient memory" is issued. This applies to 
vector lists, characters, labels, polynomials, bsplines, patterned vector lists, 
and polygons. 

1. Memory status is sampled at 10-second intervals. The message displayed is 
of the form: 

MASS MEMORY nn PERCENT FILLED. 

2. If the amount of memory used falls below the threshold, the message is 
removed. 

3. Output < 1 > is connected to MESSAGE_DISPLAY at initialization. 

4. If the user wishes to change the percentage that generates the alarm, 
another value must be sent to input < 1 >. If the user wishes to specify a 
sampling interval other than 10 seconds, another value must be sent to 
input <3>. The value is an integer that specifies the nuR~ber of seconds to 
wait before rechecking memory. 

- 164 - 



Initial Function Instance 
Miscellaneous MEMORY MONITOR 

MEMORY_MONITOR 
CMEMORY MONITOR2) 

I  > <1> <1> 

I  > <2> C <2> 

I  > <3> C <3> 

D D 

PURPOSE 

> S and bell 

> I 

> B 

Notifies the user of the number of bytes that are available for use out of a 
maximum number of bytes available at system initialization and of the elapsed 
time since initialization. 

DESCRIPTION 

INPUT 
< 1 > —memory threshold percentage 
< 2> —delta value 
<3> —sampling interval 

OUTPUT 
< 1 > —message string and bell 
< 2 > —percentage f u 11 
< 3> —TRUE if threshold is exceeded, not sent if otherwise 

DEFAULTS 

T.~ie threshold is set at 75%, the delta value is set at 0, and the sampling rate is 
set at 10 seconds unless changed by the user. 

- 165 - 



Initial Function Instance 
MEMORY MONITOR Miscellaneous 

(continued) 

NOTES 

1. None of the outputs from this function instance are connected upon system 
initialization. The user must connect output < 1 > of MEMORY_MONITOR input 
< 1 > of MESSAGE_DISPLAY. This causes the message to be displayed in the 
message display area of the screen and a bell to be sent to the keyboard. 
The message displayed is of the form: 

nnnnnn bytes free out of nnnnnnnn bytes maximum at dd hh:mm:ss 

2. Output <2> is an integer representing the .percentage of memory filled. 
Unless a change on input <2> (since the last report) is equal to or greater 
than the previous value on input <2>, no report is given. 

3. Output < 3 > is a Boolean that is output as a TRUE if the threshold indicated 
on input < 1 > is crossed. 

- 166 - 



Initial Function Instance 
Miscellaneous MESSAGE DISPLAY 

MESSAGE_DISPLAY 
(MESSAGE DISPLAY2) 

S  > 

PURPOSE 

<1> 

D C 

<1> > S and bell 

Displays error messages and informational messages in the MESSAGE_DISPLAY 
area of the PS 300 display. At initialization, input < 1 > is connected by the 
system to output < 1 > of MEMORY_ALERT and error-detection functions. Output 
< 1 > is connected to input < 1 > of FLABELO so that bell messages can be sent to 
the keyboard. 

DESCRIPTION 

INPUT 
< 1 > -connected to MEMORY ALERT and error-detection functions 

OUTPUT 
< 1 > -string and bell connected to FLABELO 

NOTES 

1. Each string received is treated as a complete message. Incoming characters 
are displayed at position 1 and replace the previous message. 

- 167 - 



Initial Function Instance 
OFFBUTTONLIGHTS Output 

OFFBUTTONLIGHTS 
COFFBUTTONLIGHTS2> 

PURPOSE 

<1> 

CC 

<1> 

Turns of f lighted buttons on the Function Buttons unit. 

DESCRIPTION 

> Connected to 
Function Buttons 
at initialization 

INPUT 
< 1 > —integer (1 through 32) indicating the button number 

NOTES 

OUTPUT 
< 1 > —connected to Function Buttons 

1. Each button may be turned of f independently or all buttons may be turned 
of f by a single message. A zero (0) or any out —of —range integer at input 
< 1 > turns off all button lights. An integer from 1 to 32 at input < 1 > turns 
off the corresponding button light. 

2. Function buttons are arranged in one row of four, four rows of six, and 
another row of four. They are numbered from left to right starting from 
the top row. The top row is numbered 1 through 4; the second row 5 
through 10, and so on until the last row, 29 through 32. 

— 168 — 



Initial Function Instance 
Input PICK 

PICK 
CPICK2> 

Any  > <1> <1> 

B  > <2 > C <2 > 

I  > <3> C <3> 

D D 

PURPOSE 

> PL 

> B 

> B 

Interfaces with the hardware picking circuitry. Any message on input < 1 > arms 
the PICK function. Once PICK is enabled, when a pick occurs, the pick list 
associated with the picked data is sent out on output < 1 > and a Boolean FALSE 
is sent out on output <2>. Typically, this Boolean is used to disable picking of a 
set of objects by connecting it to a SET PICKING ON/OFF node in a display tree. 

DESCRIPTION 

INPUT 
< 1 > -trigger 
<2> -TRUE =coordinate, FALSE =index (constant) 
< 3 > -timeout duration (constant) 

OUTPUT 
< 1 > -pick list 
<2> -FALSE =pick enabled 
< 3 > -FALSE =timeout elapsed 

- 169 - 



PICK 
Initial Function Instance 

Input 

tcontinued> 

NOTES 

1. Input <2> selects the kind of pick list that will be output on output < 1 >. A 
FALSE on input <2> indicates that the output pick list will be the pick 
identifier and an index into the vector list or the character string. (The 
index into the vector list identifies its position in the list; vector 3 is the 
third vector in a vector list. The index into a character string identifies 
the picked character by its position in the string; character 5 is the fifth 
character in a string.) 

2. A TRUE on input <2> indicates that the output pick- list will include, in 
addition to the pick identifier and the index, the picked coordinates and the 
dimension of the picked- vector. If the vector is part of a polynomial curve, 
its parameter value, t, is supplied instead of the index. 

3. Coordinate picking on a character string returns an index into the string, 
not its picked coordinates. 

4. Coordinate picking cannot be performed on a vector over 500 [LENGTH] 
units long. 

5. The pick list on output < 1 > is typically connected to an instance of 
F: PICKINFO to convert the pick list to a locally useful format. If the pick 
list is to be printed out, output < 1 > may be connected to F: PRINT to 
convert the pick list code to printable characters. 

6. When several vectors are picked, the first vector drawn by the Line 
Generator is reported as picked. For example, if three vectors in a single 
vector list were picked simultaneously (at a point of intersection), the first 
vector listed in the object definition would be reported as picked. 

7. The integer on input <3> specifies a pick timeout period in refresh frames. 
This pick timeout period allows the user to determine whether a pick has 
occurred v~✓ithin the specified amount of time. Timing starts when the PICK 
function is armed with a message on active input < 1 >. Allowable integers 
for input < 3> are from 4 through 60. 

- 170 - 



Initial Function Instance 
Input PICK 

Ccontinued> 

NOTES (continued) 

S. If input < 3 > is not used, all picks will be reported once the function is 
armed because no timeout duration has been specified. 

9. Typically, the FALSE at output <3> would be used to turn off picking in a 
display tree (at a SET PICKING ON/OFF node) or to send a "NO PICK" 
message (probably via F : SYNCC 2 )). back to the host. 

10. The user has three means of cancelling an existing pick timeout duration: 

a. Send an INITi al i ze command. This will remove the PICK function and 
replace it with a new instance of the PICK function. 

b. Send anon—integer (and ignore the "Bad message" error). 

c. Send an integer less than 4 or greater than 60 to input < 3 > (and ignore 
the "Bad message" error). 

EXAMPLE 

If a 10 is sent to constant input <3>, then the PICK function is armed with a 
message on input < 1 >. The function waits 10 refresh frames from the time the 
input < 1 > message is received before checking to see if a pick has occurred. If 
a pick has occurred within that period, the function outputs the appropriate 
pick list. If a pick has not occurred, the function outputs a FALSE on output 
< 3 >. In either case, the PICK function is disarmed and must be rearmed via 
input < 1 > before further picking can be reported. 

— 171 — 



Initial Function Instance 
SCREENSAVE Miscellaneous 

SCREENSAVE 

PURPOSE 

NOTES 

No explicit 
connections 

> No explicit 
connections 

Helps to protect the PS 300 screen from phosphor damage by slowly shifting the 
viewport in a way that is imperceptible to the user. The viewport moves right 
two line widths, up two line widths, left two line widths, and down two line 
widths, and repeats this cycle as long as SCREENSAVE in in effect. SCREENSAVE is 
on by default. 

1. Note that SCREENSAVE has no explicit inputs or outputs; the only way to use 
this function is to instance it when phosphor protection is desired and to 
delete the instance (using NIL> when it is not desired. To disable 
screen-saving, enter the command 

SCREENSAVE := NIL; 

To enable screen-saving, enter the command 

SCREENSAVE := F:SCREENSAVE; 

2. Screen-saving should be set to NIL before timed-exposure photographs of 
the PS 300 screen are taken. 

3. Despite SCREENSAVE, users should still exercise other customary 
precautions against phosphor burn (.e.g., avoiding the display of 
high-intensity images for long periods of time). 

- 172 - 



Initial Function Instance 
Miscellaneous SHADINGENVIRONMENT 

SHADINGENVIRONMENT 

2D, 3D  > <1> 

R, 2D, 3D  > <2> 

3D  > <3> 

R  > <4> 

I  > <5> 

R  > <6> 

B  > <7> 

<1> 

D C 

PURPOSE 

> PS 340 Raster Display 

For use with the PS 340 system, this function allows you to control various 
non —dynamic factors of shaded renderings displayed on the raster screen. 

DESCRIPTION 

INPUT 
<1> —ambient color 
<2> —background color 
< 3 > —raster viewport 
<4> —exposure 
< 5 > —quality level 
<6> —depth cueing 
< 7> —screen wash 

OUTPUT 
< 1 > —connected to the PS 340 Raster Display 

("1 



Initial Function Instance 
SHADINGENVIRONMENT Miscellaneous 

(continued) 

NOTES 

1. Ambient color: input < 1 > accepts a real number as hue, a ZD vector as hue 
and saturation, and a 3D vector as hue, saturation, and intensity, to specif y 
the ambient color. The ambient color is combined with the result obtained 
from the light sources to determine the color of ambient light. The default 
ambient color is white, with a default intensity of .25. The ambient color 
is analagous to the color reflected off a wall. 

2. Background color: input <2> accepts a real number as hue, a 2D vector as 
hue and saturation, and or a 3D vector as h.ue, saturation, and intensity to 
specify the background color. The raster screen will be colored with the 
background color prior to any shaded rendering. The default background 
color is black (0,0,0). 

3. Raster viewport: input < 3 > accepts a 3D vector as the viewport on the 
raster image buffer where shaded renderings will be displayed. Raster 
viewports are always square, the lower left corner being given by the X and 
Y coordinates of the vector, and its size given by the Z coordinate, such 
that the upper right corner is at (x+z,y+z). Values are rounded to the 
nearest pixel. The default viewport is (80,0,480). The viewport is not 
intended for magnification of small parts of the calligraphic image, but for 
mapping the square vector display onto the rectangular raster display. 

The viewport is also intended to allow multiple images to be generated side 
by side on the raster display. Thus, the largest recommended value for the 
viewport is (0,-80,640). The actual largest viewport is somewhat larger 
and depends on combinations of the three values. The image is clipped to 
the physical raster for which 0<X<640 and 0<Y<480. 

4. Exposure: input <4> accepts a real number as the exposure, controlling the 
overall brightness of the picture. The exposure is like that on a camera. If 
a picture is taken of an object with a very bright specular highlight, it may 
be so bright that the rest of the object is darkened. If three light sources 
exist, the object would be about three times brighter, making the object 
too bright. The exposure should be brought down to control this. 

— 174 — 



Initial Function Instance 
Miscellaneous SHADINGENVIRONMENT 

Ccontinued) 

NOTES (continued) 

The exposure is multiplied by the intensity at each pixel and the result 
clipped to the maximum intensity. This enables the overall brightness of a 
rendering to be increased without causing bright spots to exceed maximum 
intensity (instead forming "plateaus" of maximum intensity). Note that 
this may cause changes in color on a plateau, where color has reached its 
maximum, but the others have not. Exposure values may vary between .3 
and 3, values outside that range being changed to .3 or 3. The default 
exposure is 1. 

5. Quality level: input <5> accepts an integer as quality level. The quality 
controls the number of pixels over which filtering applied. Jagged edges 
are characteristic of a raster display, so the fuzzier the edges, the better 
quality the picture. 1/alues of 1, 3, 5, and 7 are allowed, meaning that the 
effect of coloring a pixel will be spread over a square of pixels with that 
number on a side, centered on the colored pixel. Because of anti-aliasing, 
pictures are good at quality 1. (The default value 1 is the typical choice.) 
1/alues of 3, 5, and 7 produce better quality renderings in terms of 
anti-aliasing but are time-consuming to process. 

6. Depth cueing: input <6> accepts a real number in the range of 0 to 1 to 
control depth cueing in the shaded image (0 specifying no depth cueing and 
1 specifying maximum depth cueing). As perceived depth from the viewer 
increases, the intensity of the colors decreases from maximum (1) at the 
nearest point to the given proportion of maximum at the farthest. Thus 0 
gives a ramp ending in black at the back clipping plane, while 1 turns of f 
the effect of depth cueing. The default is 0.2 giving a fairly large depth 
cueing effect. 

7. Screen wash: input <7> accepts a Boolean, and is the only input to cause a 
visual effect immediately. True causes the whole physical raster screen to 
be filled with the current background color, while false just fills the 
currently defined viewport (clipped to the screen}. 

- 175 - 



Initial Function Instance 
SPECKEYS Input 

SPECKEYS 
CSPECKEYS2> 

Connected to  > 
Terminal Emulator 
Network at 
Initialization 

PURPOSE 

<1> 

CC 

<1> >S 

Connected at initialization to accept an ASCII character string from the 
keyboard. Input characters are checked for a preceding "control U" character. 
If a character is preceded by a "control V", SPECKEYS removes the "control U" 
and outputs the associated character on output < 1 >. (Characters not preceded 
by a "control U" appear at the output of KEYBOARD instead.) 

DESCRIPTION 

INPUT 
< 1 > —connected to Terminal Emulator 

OUTPUT 
< 1 > —string 

NOTES 

Note that neither SPECKEYS nor KEYBOARD outputs function key values. The 
initial function FKEYS supplies these values. 

— 176 — 



Initial Function Instance 
Input TABLETIN 

TABLETIN 
C TABLETI N2 ) 

R  > 

S Connected ---> 
to data 
tablet at 
initialization 
Cstring) 

R  > 

PURPOSE 

<1 >C 

<2> 

<3> C 

<4> 
D D 

<1> 

<2> 

<3> 

<4> 

<5> 

<6> 

> 2D 

> B 

> I 

> B 

> B 

> 2D 

Connected at system initialization to accept data from the data tablet on input 
< 2>. This data includes 2D vectors, an indication of the open/closed condition 
of the stylus tipswitch (or 4—button cursor), and an indication of the switch 
number for systems using a 4—button cursor instead of a stylus. 

DESCRIPTION 

INPUT 
< 1 > —delta x, y (constant) 
<2> —string (system connected to Tablet) 
< 3 > —tablet size (constant) 
<4> —wait time 

OUTPUT 
< 1 > — x,y coordinate (position/line) 
<2> —TRUE =switch closed, FALSE =switch open 
< 3 > —switch number 
<4> —tipswitch transition 
< 5 > —range transition 
<6> — x,y when switch closed 

— 177 — 



Initial Function Instance 
TABLETIN Input 

Ccontinued) 

DEFAULT 

The default delta x,y on input < 1 > is .002. The default tablet size on input <3> is 
2200. The default wait time on input <4> is 8 centiseconds. 

NOTES 

1. Input < 1 > accepts a real number that specifies the minimum change in X or 
Y required on input <2> before output < 1 > is sent. The default value is .002,, 

2. Input <3> accepts an integer that specifies the number of points full-scale 
for the data tablet being used. The default value is 2200, corresponding to 
the standard 1 1 -inch x 1 1 -inch data tablet. 

3. Input <4> is a wait time for the data tablet in centiseconds; a FALSE is sent 
on output <5> if the tablet stops sending data for longer than this duration. 
The default value is 8. It should never be necessary to SEND to this input, 
since TABLETOUT sends an appropriate value here automatically (see 
TABLETOUT}. 

4. The Boolean on output <2> indicates the condition of the stylus tipswitch (or 
cursor button) as follows: 

TRUE =Stylus tipswitch closed or cursor button pressed. 
FALSE =Stylus tipswitch open or cursor button not pressed. 

5. The integer on output <3> is the sum of the numbers of the pressed buttons 
on the 4-button cursor. The buttons are numbered 1, 2, 4, and 8. If button 1 
and button 4 are pressed simultaneously, 5 is output. 

6. A TRUE appears at output <4> whenever the tipswitch goes from open to 
closed, and a FALSE whenever the tipswitch goes from closed to open. For 
button-type cursors, output <4> is TRUE when a button is pushed and FALSE 
when the button is released. 

7. Output <5> indicates transitions in stylus proximity (i.e., from "receiving 
data" to "not receiving data" and vice versa). A TRUE appears here when 
data is received from the tablet after a period of no data. A FALSE is sent 
when data does not arrive from the tablet in time. The time is the nurri"ber 
of hundredths of a second specified at input <4>. 

8. Output <6> is the (x,y)-position of the stylus when the tipswitch goes from 
open to closed. 

- 178 - 



Initial Function Instance 
Input TABLETOUT 

TABLETOUT 
CTABLETOUT2> 

S  > 

PURPOSE 

<1> 

C C 

<1> 

<2> 

> Connected to 
the Data Tablet at 
initialization 

> Connected to 
<4>TABLETIN at 
initialization 

Provides the means to set operating parameters in the Data Tablet by sending a 
character to input < 1 >. The character also determines a value to be sent to 
<4>TABLETIN, setting the tablet's timeout interval. If amulti-character string is 
sent to input < 1 >, only the final character of the string is used. 

DESCRIPTION 

INPUT 
< 1 > -character or string 

OUTPUT 
< 1 > -connected to Data Tablet 
< 2 > -connected to < 4 > TABLETI N 

- 179 - 



Initial Function Instance 
TABLETOUT Input 

(continued> 

NOTES 

1. Characters for mode settings are as follows: 

CHARACTER

S 

P 

A 
B 
C 
D 
E 

H 
I 
J 
K 
L 
M 

TIMEOUT INTERVAL 
MODE SAMPLING RATE CIN CENTISECONDS) 

Stop Idle 

Pointy Manual control 

Switched Stream~~ 2 52 
4 27 
10 12 
20 8 
35 5 

Switched Stream 70 3 

Stream~~~ 

Stream 

2 52 
4 27 
10 12 
20 8 (default) 
35 5 
70 3 

~ Pressing the stylus on the tablet or the button on the cursor sends out the 
single x,y coordinate pair. 

~~ Pressing the stylus on the tablet surface or the button on the cursor causes 
x,y coordinate pairs to be output continuously at the selected sampling rate 
until the stylus is lifted or the cursor button is released. 

~~~ x,y coordinate pairs are generated continuously at the selected sampling 
rate when the stylus or cursor is in the proximity of the tablet surface.
Pressing the stylus on the tablet surface or pressing the cursor button sets
the flag character (F) in the output stream.

— 180 —

Initial Function Instance
Input TABLETOUT

(continued)

NOTES (continued)

2. Users who have early versions of the PS 300 hardware may not see a cursor
from the data tablet after booting. If this is the case, press the RESET
button on the back of the tablet immediately following power-up. If the
RESET button is not pressed immediately following power-up, the user can
later press the RESET button and then enter the command:

SEND 'K' TO <1> TABLETOUT;

Optionally, a 'J' may be used. Anything greater than 'K' is not
recommended.

3. For additional information on the data tablet, refer to the Bit Pad One
User's Manual by Summagraphics Corporation, which is included in the
customer installation package.

- 18i -

Initial Function Instance
TECOLOR Miscellaneous

TECOLOR
CTECOLOR2>

R >

PURPOSE

<1>

C C

<1> > Connected to
Terminal Emulator
at initialization

Specifies the hue of Terminal Emulator and Setup output on systems with the
CSM Calligraphic Display option.

DESCRIPTION

INPUT
<1> —hue

OUTPUT
< 1 > —connected to Terminal Emulator

DEFAULT

The default hue is 240, pure green.

NOTES

1. The range of acceptable values is the 0-360 "color wheel" used by the SET
COLOR command, in which 0 represents pure blue, 120 pure red, and 240
pure green. The default is 240. Out —of —range values are clamped to the
nearest in —range value (0 or 360 -- hence always blue).

2. On systems without a CSM Calligraphic Display, TECOLOR accepts real
values but has no effect.

— 182 —

Initial Function Instance
Miscellaneous TSCSM

TSCSM
CTSCSM2>

B >

PURPOSE

<1>

CC

<1>

Sets the CSM on or off for the Terminal Emulator

DESCRIPTION

INPUT
< 1 > -TRUE =CSM on, FALSE =CSM of f

OUTPUT
< 1 > -connected to Terminal Emulator

DEFAULT

The default is FALSE, setting the CSM off.

NOTES

> Connected to
Terminal Emulator
at initialization

1. This setting has important consequences for both CSM Calligraphic and
monochrome displays! Refer to Section 5.2.5 of the PS 300 User's Manual
for guidelines on setting CSM mode ON and OFF.

- 183 -

Initial Function Instance
WARNING Miscellaneous

WARNING
CWARNING2)

CF:CBROUTE
instance)

B >

Connected to
system at
initialization

PURPOSE

<1> C

<2>

D D

<1>

<2 >

Enables and disables the display of warning messages.

DESCRIPTION

NOTES

INPUT
< 1 > -enable/disable warning messages (constant)
<2> -connected to system

OUTPUT
< 1 > -connected to Terminal Emulator
<2> -not used

> Connected to
Terminal Emulator
at initialization

> Not connected

1. A TRUE at input < 1 > enables warning messages. A FALSE at input < 1 >
disables them. The INITi al i ze command automatically sends a TRUE to
input < 1 > enabling the display of warning messages.

- 184 -

Initial Structure
CURSOR

CURSOR
CCURSOR2)

Cursor := VECTOR_LIST ITEMIZED N = 4
P .035, .035 L -.035,-.035
P -.035, .035 L .035,-.035;

PURPOSE

This initial structure is a vector list as shown above, which creates a
displayable cursor in the form of a cross when the system is initialized.

DESCRIPTION

INPUT
Vector list

OUTPUT
Displayable "X"-shaped cursor

NOTES

1. The cursor is controlled by a function network which positions it on the
PS 300 screen in response to stylus movement over the data tablet
surface. The intensity of the cursor increases when the stylus tip switch is
pressed down.

2. The user is free to redefine CURSOR using any other vector list.

- 185 -

Initial Structure
PICK LOCATION

PICK_LOCATION
CPICK LOCATION2)

PURPOSE

PICK_LOCATION is the name assigned at initialization to the system-created
picking location.

DEFAULT

At system initialization, the pick location is defined as the center of the cursor.

NOTES

The initial TABLETIN function instance is connected to PICK LOCATION and the
system-initialized CURSOR points to its center.

- 186 -

PS. 300 FUNCTION SUMMARY A-1

APPENDIX A. FUNCTIONS BY CATEGORY

INTRINSIC FUNCTIONS

Arithmetic and Logical
F:ACCUMULATE
F:ADD
F:ADDC
F:AND
F:ANDC
F:AVERAGE
F:CDIV
F:CMUL
F:CSUB
F:DI1/
F:DING
F:MOD
F:MODC
F:MUL
F:MULC
F:NOT
F:OR
F:ORC
F:ROUND
F:SINCOS
F:SQROOT
F:SUB
F:SUBC
F:XOR
F:XORC

A-2 PS 300 FUNCTION SUMMARY

Character Transformation
F:CROTATE
F:CSCALE

INTRINSIC FUNCTIONS (continued)

Comparison
F:CGE
F:CGT
F:CLE
F:CLT
F:COMP STRING
F:EQ
F:EQC
F:GE
F:GEC
F:GT
F:GTC
F:LE
F:LEC
F:LT
F:LTC
FINE
F:NEC

Data COIlVerSlon

F:CEILING
F:CHARCONUERT
F:CVEC
F:FIX
F:FLOAT
F:MATRIX2
F:MATRIX3
F:MATRIX4
F:PARTS
F:PRINT
F:STRING TO NUM
F:TRANS STRING
F:UEC
F:i/ECC
F:XFORMDATA
F:X1/ECTOR
F:Y1/ECTOR
F:Z1/ECTOR

PS 300 FUNCTION SUMMARY A-3

Data Selection
F:INPUTS CHOOSE(n)

INTRINSIC FUNCTIONS (continued)

Data Selection and Manipulation
F:ATSCALE
F:BOOLEAN CHOOSE
F:BROUTE
F:BROUTEC
F:CBROUTE
F:CCONCATENATE
F:CHARMASK
F;CONCATENATE
F:CONCATENATEC
F:CONSTANT
F:CROUTE(n)
F:DELTA
F:FIND STRING
F:GATHER STRING
F;LABEL
F;LBL EXTRACT
F:LENGTH_STRING
F;LIMIT
F:LINEEDITOR
F;MCONCATENATE(n)
F:PASSTHRU(n)
F:PUT STRING
F;RANGE SELECT
F: R OUTE(n)
F:ROUTEC(n)
F:SEND
F;SPLIT
F:TAKE STRING
F:UEC EXTRACT

Miscellaneous
F:COLOR
F:EDGE DETECT
F:FETCH
F:NOP
F:PICKINFO
F:POSITION_EINE
F;SYNC(n)

A-4 PS 300 FUNCTION SUMMARY

INTRINSIC FUNCTIONS (continued)

Object Tra,~lsformation
F:DSCALE
F:DXROTATE
F:DYROTATE
F:DZROTATE
F:XROTATE
F:YROTATE
F:ZROTATE
F:SCALE

Timing
F:CLCSECONDS
F:CLFRAMES
F:CLTICKS
F:TIMEOUT

Viewing Transf orm atioil
F:FOV
F:LOOKAT
F:LOOKFROM
F:WINDOW

INITIAL FUNCTION INSTANCES

Input.
BUTTONSIN
DIALS
KEYBOARD
PIC K
SPECKEYS
TABLETIN
TABLETOUT

Miscellaneous
ERROR
INFORMATION
MEMORY ALERT
MEMORY_MONITOR
MESSAGE DISPLAY

`.l

PS 300 FUNCTION SUMMARY A-5

INITIAL FUNCTION INSTANCES (continued)

Miscellaneous (continued)
SCREENSAI/E
SHADINGENVIRONMENT
TECOLOR
TSCSM
WARNING

Output
CLEAR LABELS
DLABELI ... DLABEL8
DSET1 ... DSETB
FFPLOT
FKEYS
FLABELO
FLABELI ... FLABELI2
HCPIP
HOSTOUT
OFFBUTTONLIGHTS

INITIAL STRUCTURES

CURSOR
PICK LOCATION

PS 300 FUNCTION SUMMARY B-1

APPENDIX B. INPUTS TO NODES

This appendix lists nodes in a display which contain data that can be updated using
function networks. The naR~e of the PS 300 command which creates the node is given.
A diagram shows the number of inputs to the node and the types of data those inputs
accept.

ATTRIBUTE:

name

/ \
Rea 1 , 2D , 3D

Real
Integer

Rea 1 , 2D , 3D
Real

Integer

< 1 >Updates hue, saturation ,intensity
< 2 > Updates diffuse value
< 3 > Updates specular value
<4>

Undefined

<10>
<11 >Updates hue, saturation ,intensity
<12> Updates diffuse value
<13 > Updates specular value

Polygon Attributes

IAS0676

B-2 PS 300 FUNCTION SUMMARY

RSPLINE

name

Integer

Reai

2D,3p,4Q vector

(,I~AR~~;TER ROT~TI~;

2x2 matri x

<1> Updates chords

<2> Updates knots

< 3 > Updates vertices

B-spline

name

<1> Changes matrix value

2x2 matrix

t ASO~i05

iAso6o4

PS 300 FUNCTION SUMMARY B-3

CHARACTER SCALE

2x2 matrix

CHARACTERS

Character--

2D , 3p , 4p vec tor~-

2D , 3D , 4D vector---

Integer

Integer

String

String

String

name

<1> Changes matrix value

2x2 matri x

~AsaboS

name

<l ast > Changes the 1 ast character

< position > Changes the starting position

<step > Changes the stepping

<ciear> Clears the current string

< del ete> Del etes n characters (from the end)

< append > Appends to end of current string

<i> Replaces current string with new string,
starting at the i -th character

<substitute> Replaces entire current string
with new string

CHARACTERS

~Asobo~

B-4 PS 300 FUNCTION SUMMARY

[{. Y [~:

4x4 ma tr i x

4x4 matrix

name

<1> Changes matrix value

4x4 matrix

IAS0607

name

 1> Changes matrix value

name

I nteger ~ < 1 > Changes bi t number

IF CONDITIONA "BIT

tAS0608

PS 300 FUNCTION SUMMARY B-5

IF LF.VFL OF DFTAII.

name

Integer

I[.I.[IMILVAT[ON

3D

Rea 1, 2D , 3D

Real

< 1 > Changes ~ evel of detai 1

IF LEVEL OF DETAIL

IAS0609

name

<1> Update X,Y,Z

< 2 > Updates hue ,saturation ,intensity
i

< 3 > Updates ambient proportion

ILLUMINATION

IAS0677

B-6 PS 300 FUNCTION SUMMARY

I J L i i.~.1J IJ1,)

name

String

Integer

Integer

Label

Boolean

String

IJOOK

4x3 matrix
or 4x4 matrix

< 1 ast> Changes 1 ast 1 abet

<cl ear > Clears 1 i st

<del ete > Deletes f ~~om end

<a ppend > Appends from end

<i> True~on,False=off

<i> Replaces i-th label

LABELS

name

 1> Changes LOOK AT 4x3 matrix

4x3 matrix

iaso6lo

IAS0611

PS 300 FUNCTION SUMMARY B-7

name

2x2 matrix

~tiT ~~r ~.« ~~3

3x3 matrix

~IIr1T~ZI~C ~~3

4x3 matrix

<1> Changes matrix value

2x2 matrix

I AS0605

name

<1> Changes matrix value

3x3 matri x

IAS0612

name

<1> Changes matri x value

4x3 matrix

IASOb13

B-8 PS 300 FUNCTION SUMMARY

NtATRIX 4X4

4x4 matrix

I'OLYNOMIAI~

Integer

2D , 3p ,4~ vector

name

1> Changes matrix value

4x4 matrix

IAS0607

name

< 1 > Updates coefficients

<2> Updates chords

Polynomial

i AS0614

PS 300 FUNCTION SUMMARY B-9

RAT[ONAL I~SPLINE

name

Integer

Real

2D,3~,4D vector

RATIONA[~ ~'OLYNOMIAI~

Integer

2D , 3D , 4D vector

<1> Updates chords

<2> Updates knots

< 3 > Updates vertices

Rational B-spline

I AS0615

name

< 1 > Updates coefficients

< 2 > Updates chords

Rational Polynomial

i aso6~ 6

B-10 PS 300 FUNCTION SUMMARY

R,OT ~T F:

name

3x3 matrix <1> Changes matrix vai ue

3x3 matrix

1 AS0612

1~J~ A IJ !_I

3x3 matrix

~~:T c ~~ r,~~ r~

Reai

Real

name

<1> Changes matrix value

3x3 matri x

IAS0612

PS 300 FUNCTION SUMMARY 8-11

AFT (JU.NDI'I`IO=NAL I3IT

name

Boolean <1> Sets the original bit n~
to be ON(T) or OFF(F~

Integer <2> Sets bit number input (0-14} ON
1

Integer <3> Sets bit number input (0-14) OFF

Integer <4>~Disables bit number input (0-14) from being
affected by this node.

Integer <5> Complements (toggles) bit number input (0-14)

SET CONDITIONAL BIT

iAso6~8

SFT C;ON1'Iz.~ST

Real

B-12 PS 300 FUNCTION SUMMAR Y

Boolean

Boolean

name

<1>T/F set line generator
at full/half speed

SET CSM

i ASOb20

name

<1> Disables (F)/enables
(T) depth clipping

name

SET DEPTH
CLIPPING

1 AS0621

Boolean <1> Turns indicated displays
ON(T) or OFF(F)

SET DISPLAYS)

I~SOfi22

PS 300 FUNCTION SUMMARY B-13

SF~T INT~~NSITY

Boolean

2D vector

S~:~r I~F.v~:I~ (~F nF,~c~II.

I nteger

name

<1>T/F enat <1>T/F enable/di sabl a the effect
of this node ~

<2> Change min:max intensity range

SET INTENSITY

name

<1>Changes the level of
detail (0-32767)

SET LEVEL OF
DETAIL

name

IAS0624

Boolean <1>Enable (true)/disable (false) picking
of structure that follows

SET PICKING

IAS0625

B-14 PS 300 FUNCTION SUMMARY

F~T P I(KING LOC A'CIO N

2D vector

2D vector

Integer

Integer

Boolean

I nteger

name

<1> x,y center

<2> size x, si zed boundary offsets

name

SET PICKING
LOCATION

IAS0626

<1> Changes the phase on value

<2> Changes the phase_ off ,value

<3> Changes the initial
state ON(T)/OFF(F)

<4> Changes the delay

SET RATE
IAS0627

PS 300 FUNCTION SUMMARY 8-15

Boolean

name

 <1>Changes the PHASE state
ON(T)/OFF(F)

I nteger,Stri ng
or Boolean

Boolean

SET RATE
EXTERNAL
SET RATE
EXTERNAL

iAso62a

name

<1>

<2>

SOLID RENDERING

<1>

tAS0629

Boolean

B-16 PS 300 FUNCTION SUMMARY

S[TR~'ACF: K.E:NDE~:RIN(~

name

I nteger,Stri ng
or Boolean

Booi can

T EJ~'C SII EJ

2x2 matrix

'I`RAN~[.A'I'f~

3D vector

<1>

<2>

SURFACE RENDERING

<1>

name

<1> Changes matrix value

2x2 matrix

1 AS0605

name

~ Aso63o

<1> Changes the translation vector

3D translation
vector

IAS0631

600lean

PS 300 FUNCTION SUMMARY 8-17

V ~~(;TOR LIST

name

Vector

Integer

Integer

Vector

Boolean

Vector

VI~t~1~_PORZ'

2x2 matrix
3x3 matrix

WINDUVI~

4x4 matrix

<last> Changes last vector

< clear> Clears list

< delete > Dei etes from end

< append > Appends to end

< i > True=Line; Fai se=Position

<~ i > Repi aces ~ -th vector

VECTOR LIST

name

1 AS0632`

<1> Changes viewport boundaries (and intensity
range if 3x3 matrix is input)

3x3 VIEWPORT
matrix

name

> Changes matrix value

4x4 matrix

tAS0633

tAso6o7

ASCII Character Code Set

Decimal ASCII
Value Character

Decimal ASCII Decimal ASCII
Value Character Value Character

0 NUL 44 ~ 88 X
1 SOH 45 - 89 Y
2 STX 46 90 Z
3 ETX 47 / 91 C
4 EOT 48 0 92 \
5 ENQ 49 1 93]
6 ACK 50 2 94 T or
7 BEL 51 3 95 ~ or
8 BS 52 4 96
9 HT 53 5 97 a
10 LF 54 6 98 b
11 VT 55 7 99 c
l2 FF 56 8 100 d
13 CR 57 9 101 e
14 SO 58 102 f
15 SI 59 103 g
16 DLE 60 < 104 h
17 DC1 61 = 105 i
18 DC2 62 > 106 j
19 DC3 63 ? 107 k
20 DC4 64 @ 108 1
21 NAK 65 A 109 m
22 SYN 66 B 110 n
23 ETB 67 C 111 0
24 CAN 68 D 112 p
25 EM 69 E 113 q
26 SUB 70 F 1 14 r
27 ESC or ALT 71 G 115 s
28 FS 72 H 116 t
29 GS 73 I 117 u
30 RS 7 4 J 118 v
31 VS 75 K 119 w
32 SP 76 L 120 x
33 ! 77 M 121 y
34 78 N 122 z
35 # 79 0 123 {

36 $ 80 P 124
37 % 81 Q 125 }
38 & 82 R 126 Tilde
39 83 S 127 Rubout or DEL
40 (84 T
41) 85 U
42 * 86 V
43 + 87 W

PS 300 GRAPHICS FIRMWARE RELEASE NOTES

Version A 2. V01
(904015-602)

June, 1986

Version A2.V01 of the PS 300 Graphics Firmware supersedes all previous releases
and is the only firmware version now supported by E&S Customer Engineering.
These Release Notes summarize changes and additions to the Graphics Firmware
and are intended for use with the entire PS 300 family of graphics computers.
Information specific to a particular mode! is noted.

Formal change pages for the Command and Function Summaries in the PS 300
Document Set are provided with this release. Please discard the old pages and
replace with these new pages.

Before you use the new firmware, read these R e! ease Notes caref u I I y and be sure
you understand the differences between this and previous releases.

With this release, PS 300 Diagnostic Diskettes are no longer supplied. Instead,
one Diagnostic Utility Diskette is provided containing all the utility programs
described in Volume 5, Section 10 of the PS 30o Document Set. Please refer to
that sect ion far instruct ions on using the ut i I i ty programs for back-up and file
management and make note that the new Diagnostic Uti I ity Diskette is the only
diskette that should be used to load these programs.

Direct your quest ions and comments to the Evans & Sutherland's Customer
Engineering Hotline 1-800-582-4375 (except Utah). Within Utah, customers
shou I d ca I 1582-5847.

2 - PS 300 Release Notes

This Release Package Includes the Following Items

• One copy of the Graphics Firmware Version A2.V01.

• A magnetic distribution tape including (but not limited to) the following:

- An updated version of the PS 300 Graphics Support Routines on magnetic
tape. The files READFQR.GSR and READPAS.GSR contain descriptions of
the FORTRAN and Pascal GSR software.

- The PS 300 Host-Resident I/O Subroutines

- Three programming utilities: NETEDIT, NETPROBE, and MAKEFONT (For
VAX/VMS users only).

• One copy of the Diagnostic U t i I i ty Diskette.

• These Release Notes, summarizing the new features of the A2.V01 release
and I fisting corrected problems, miscellaneous notes, and advice. These notes
should be placed in the new PS 300 Document Set behind the Release Notes
tab in Volume 3A.

• One copy of Graphics Firmware Version A1.V03 for single diskette systems.
These systems do not support the Writeback feature.

• Writeback Feature User's Guide, detai I ing the new Writeback feature
avai cable with this release.

New Distribution Tape Format

All PS 300 VAX/VMS sites will receive the A2.V01 distribution tape (PS 300 host
software) in VMS Backup format. To instal I the VAX PS 300 host software, first
create a subdirectory for the PS 300 software and set your default to that
directory by following the procedure below. Using the VMS Backup Utility, enter
the following commands:

$ Allocate MTNN:
$ Mount/Foreign MTNN:
$ Backup MTNN:PSDIST.BCK [...J*.*
$ Dismount MTNN:
$ Deallocate MTNN:

where MTNN: is the physical device name of the tape drive being used.

This w i I I create the sub-directory A2V01. D 1 R which is the parent directory of
the PS 300 host software.

PS 300 Release Notes - 3

Alf PS 300 sites that are not DEC VAX/VMS, excluding UNIX and IBM sites, will
receive a variable length ANSI format distribution tape with the PS 300 host
software. Consult your system operation manual for instructions on reading
ANSI -for matted .tapes.

All UNIX and IBM sites will receive the distribution tape with the same format
as previous releases.

Enhancements in Graphics Firmware Version A2.V01

• This release of the graphics firmware provides the new Writeback feature.
The Writeback Feature allows displayed transformed data to be sent back to
the host. This feature provides a Writeback command and a Writeback
function.

The Writeback command creates a WR ITEBACK operation node and enables
the data structure below the node for w ri teback operations. When the
Writeback node is activated, Writeback is performed for Hamel (the name of
the structure for which Writeback is applied). A default WRITEBACK
operation node is created by the system at initialization time.

The Writeback Function is initialized by the system and is used to send
encoded w r i teback data to user function networks. This function is not
activated by the normal input queue triggering mechanism. It is activated by
sending a TRUE to any Writeback operation node in a display structure.

Writeback is described completely in the Writeback Feature User's Guide,
included with this release.

• PVecMax (PVCMax-FaRTRAN) has been added to the GSRs. This procedure
sets the maxi mum component of ablock-normalized vector I ist, so that
multiple cal Is may now be made to PVec~ist for block-normalized vectors.

4 - PS 300 Release Notes

Modifications in the Graphics Firmware

• Changes to BUTTONSIN (PS 350 Only)

The initial function instance BUTTONSIN has two new inputs.

Integer <2> Enable/Disable Bit Mask
Default FIX(-1) all buttons enabled.

Boolean <3> TRUE -enable use of bit mask
FALSE -disable use of bit mask.
Default FALSE

The Buttonsin bit mask is a mapping of the bits of a 32-bit integer to the
individual buttons. The Most Significant Bit (sign bit) maps to button #1; the
least significant bit maps to button #32.

Most Significant Bit least Significant Bit
~ ~
~ 1

Bits of the Integer

Button Number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 0 21 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 31 3 2

If the bit is set (=1), the button is enable. If the bit is off (=0), the button is
disabled.

• Changes to ONBUTTONLIGHTS and OFFBUTTONLIGHTS (PS 350 Only)

The initial function instance ONBUTTONLIGHTS/OFFBUTTONLIGHTS has
one new input.

New input
<2> Boo I can
TRUE -interpret integer on input <1 > as a bit mask.
FALSE -interpret integer on input <~1 > as a button number.

The ONBUTTONLIGHTS/OFFBUTTONLIGHTS bit mask is a mapping of the
bits of a 32 bit integer to the individual buttons. The most significant bit
(sign bit) maps to button #1; the least significant bit maps to button #32. If
the bit is set (_~) the button I fight is on.

PS 300 R e I ease Notes -- 5

PS 300 Bug Fixes

• Begin_Structure Name

Within Begin_Structure, End Structure pairs, names are concatenated with the
name of the most recent Begin_Structure. Thus, in the fol law ing example,
the names with the outermost Begin_Structure) should be name.name~ ,
name.name2, name.name3, and name name4.

Name := begin_s
beg i n_s

named • - .- .
name2 •-.- .

end s;
narne3 •- ...
beg i n_s

name4 :_ .
ends;

end s;

. .

. .

. .

In previous releases, the names were name.namel, name.name2, name3,
name4. This occurred because the first End Structure after the unnamed
Begin_Structure removed the outer name, and so a1 I names afterward did not
have the prefix. This bug was fixed so that ai I names are concatenated
correctly. Some users may notice this if they have written their code to get
around the bug.

• Wildcard Delete

The w i Idcard delete command has been modified so that only the named
entities created by the command interpreter that receives the w i Idcard delete
command are deleted. This change fixes the problem of accidentally deleting
system named entities such as CURSOR and HOST_MESSAGE.

• XFORMDATA Vector Loss

A bug has been fixed in the XFORMDATA function that caused certain dots in
large dots vector I fists to be missing from the vector I fist collected by
XFORMDATA.

• User-Written Function SRECORDS

User-Written Function SRECORDS can now be correctly loaded using the
GSRs on al I supported interfaces. In the A1.V01 distribution, SR ECOR DS
could not be loaded using the GSR's on the DMR~1 ~1 and PARALLEL
interfaces. In the A1.V02 distribution user-written function SRECORDS could
be loaded using the GSRs but a problem in the CON FI G. DAT f i fie caused
subsequent GSR data to be loaded incorrectly. This problem has been fixed.

PS 300 WRITEBACK FEATURE

The Writeback feature allows displayed transformed vector data to be sent back to the
host. The position of the writeback node in the display structure determines which
transformations w i I I be applied to the writeback data. The system-generated writeback
node w i I I include al I transformations (viewing and modeling). Once the host has
received these data, , they can be used to generate hardcopy plots or display
host-generated raster images. The user is responsible for retrieval and all subsequent
processing of data on the host system.

This guide describes how to use the Writeback feature on all members of the PS 300
family of graphics computers. Operational differences among models are specifically
noted.

This guide contains:

• A description of the user interface for the Writeback feature. The user interface
consists of the WRITEBACK operation node and the WRITEBACK initial function.

• Constraints on the use of the WRITEBACK operation node.

• Descriptions of the WRITEBACK function.

• A I ist of the commands that may need to be interpreted by host-resident code to
f i I ter writeback data retrieved from the PS 300.

• An example of the sequence of data sent back to the host.

• An example of a host program that retrieves, processes, and f i I es writeback data
from the PS 350.

Change-pages supporting the Writeback feature are provided in this guide for the
Command Summary, the Function Summary and the Graphics Support Routine sections
of the PS 300 Document Set.

2 - PS 300 WRITEBACK FEATURE

Writeback User Interface

The Wri teback f eature is implemented by:

• Creating the WRITEBACK operation node (or using the system-generated
writeback node, WB$).

• Activating the WRITEBACK operation node.

• Connecting the WRITEBACK function to a function network.

WRITEBACK Operation Node

When the PS 300 is booted, a WRITEBACK operation node is created. It is named
WB$ and is placed above every user-defined display structure. This node can be
triggered if an entire displayed picture is to be included in the writeback data. If
writeback of only a portion of the picture is desired, the user must place other
WRITEBACK nodes appropriately in the display structure.

A user-defined WRITEBACK operation node is created by the command:

Name := WRITEBACK [APPlied to Name1];

The WRITEBACK node has one input. A TRUE sent to input <~ > of the
WRITEBACK node triggers writeback for the data structure below the node. This
trigger is sent by the user, for example:

SEND TRUE TO c 1 >name;

triggers that WRITEBACK node. Of course the node could be triggered through a
function network using a function key, etc.

A WRITEBACK operation node delimits the structure from which the writeback
data w i I I be collected. Only the data nodes below the WRITEBACK operation
node in the display structure w i I I be transformed, clipped, viewport scaled
perspective divided (as delineated by the placement of the WRITEBACK node),
and sent back to the host.

NOTE

On the PS 350, viewport translations w i I I not be applied
to the data.

PS 30o Writeback Feature - 3

WRITEBACK operation Node Constraints

Only a displayed structure can be enabled for writeback. This means that the
WRITEBACK operation node must be traversed by the display processor and
therefore must be included in the displayed portion of the structure. The default
WRITEBACK node WB$ is displayed as part of every displayed structure. Bert, if
the user creates another WRITEBACK node and if this node is triggered before
being displayed, the following error message w i I I result:

E 8 ACP cannot find your operate node

Any number of WRITEBACK nodes can be placed within a structure. However,
only one WRITEBACK operation can occur at a time. If more than one node is
triggered, the WRITEBACK operations are performed in the order in which the
corresponding nodes were triggered.

The terminal emulator and message display information will not be returned to
the host .

Polygon data can be returned to the host only if the PS 340 has a 4K ACP.

Before triggering the WRITEBACK operation, disable the SCREENSAVE function
by entering the command "SCR EENSAVE:= ni I;".

The WRITEBACK Function

An initial function instance, WRITEBACK, is created by the system at boot up.

WRITEBACK

Integer specifying
size of output
Qpackets <~> <1> ----> Qpackets to user

function network

WRITEBACK sends encoded writeback data received from the display processor.
The writeback data is prefixed by a start-of-writeback command, followed by the
encoded data, followed by an end-of-writeback or end-of -frame command.

4 - PS 300 WRITEBACK FEATURE

WRITEBACK has one user-accessible input queue. Input <1 > accepts integers
specifying the size of Qpackets to be output by the function. The default size is
512 bytes per Qpacket. The minimum and maximum size are 16 bytes per
Qpacket and 1024 bytes per Qpacket, respectively. If the size specified by the
user is not within this range, the default size w i I I be used by the system.

The input value should be chosen such that the actual size of the gpacket sent to
the I/O port is less than or equal to the present input buffer size on the host
computer.

If the CVT8TO6 function is used to send the binary data to the host, then the
number of the bytes sent to the host is approximately 3/2 *the number of bytes
sent by the Writeback function.

For example, if the integer sent to <1 > of the Writeback function is 80, the
I argest Qpacket sent to the host w i I I be 80 * 3/2 = 120. Qpackets, where the size
is not a multiple of 4, will be padded to the next multiple of 4. For instance,
Qpacket sizes of 77, 78, and 79, sent to CVT8TO6 w i I I al I have output sizes of 120.

WRITEBACK has one user-accessible output queue. Output <1 > passes the
encoded writeback data out as Qpackets unt i I the end-of -writeback or
end-of-frame command is seen.

This function is not activated by the normal input queue triggering mechanism. It
is activated by sending a TRUE to any WRITEBACK operation node.

Data output by WRITEBACK

WRITEBACK will return all data below the WRITEBACK operation node.
Host-resident code w i I I be responsible for recognizing the start-of-writeback and
end-of-writeback or end-of-frame commands.

Attribute information, such as color, must be interpreted by host code to ensure
that the hardcopy plots are correct.

On the PS 350, viewport translations w i I I not be applied to the data. Correct
computation of the position of endpoints requires that the host program add a
viewport center to each endpoint. The initial viewport center is established with
a VIEWPORT CENTER command. The VIEWPORT CENTER command is sent
following the start-of-writeback command. Any changes to the viewport center
w i I I be indicated through this sequence of commands: CLEAR DDA, CLEAR
SAVE POINT, position endpoint, CLEAR SAVE POINT. The position endpoint
becomes the new viewport center.

Also, on the PS 350, several commands such as ENABLE PICK and ENABLE
BLINK are sent to the host. These w i I I not typically be needed by the host
program. However, these commands come directly from the refresh buffer and
are not f i I tered by the PS 350. Host-resident code must f i I ter the writeback data
and strip out nonessential information.

PS 300 Writeback Feature - 5

Data Packets Returned

Data packets sent out the WRiTEBACK function contain the following
information:

• If bit ~15 of the first word is 0, it signals that the data that follows is a
command. For example, if the first word is H#0200 (Hex 0200) then the Line
Generator status w i I I follow .

bits 15 14 p
0 cortmand 0 command

parameter

• If bit 15 of the first word is ~, it indicates that intensity, x and y coordinate
information will follow. Intensity can range from 0 to 127. The format of the
data is:

bits 15114113112 --

bits

bits

0
1 d // inten j////////

15 - 13 12 -- 0
//////// ~ y c oo r d

15 - 13 12 -- 0
//////// x coord

NOTE

if d = 1, then it is a DRAW
ifd=0, it isal~OVE

In the i I lustrations of data format, the slash character is
used to i I lustrate blocks of data that are unused.

Command Descriptions

The following I ist describes the commands that the host-resident code might have
to interpret before i t can recognize and f i I ter w r i teback data received from the
PS 3~. These commands can be intermixed with vector data.

It is important to note that each command contains at least three ~6-bit words.
For example, if a command only has one parameter then the third word is unused,
but it is sti I I sent to the host. If a command has 3, 4, or 5 parameters, then 6
words w i I I be sent for that command.

6 - PS 300 WRITEBACK FEATURE

START-OF-wRITEBACK code in hex = H#0600
281fi

Parameters:
Line texture (one word)
LGS (one word)

Marks the beginning of the writeback segment, of which there is
guaranteed to be only one.

The texture and l ine generator status are included here. They fol low
the same format as the texture and l ine generator status shown below.

B00
/////////~ Texture

LGS

END-OF-WRITEBACK code in hex = H#0000
3072

Parameters:
None

Marks the end of the writeback segment. For the PS 350, the
end-of-writeback may also be indicated by the end-of-frame command.

C00
0 0/1

/////////////////////
0 = finished successful ly, 1 = cannot finish

operation because of insufficient memory

The error code (0 or 1) is currently not present in the PS 350 systems.

LINE GENERATOR STATUS code in hex = H#0200
512

Parameters:
Status word (one word)

Indicates dot mode (bit 8) and which display is selected (bits 0-3).
Normal ly, only the dot mode bit must be referenced.

200
LGS

/////////////////////

PS 300 Writeback Feature - 7

Line Generator Status Register (LGS):

/// /// /// /// /// /// SHO /// /// /////// SCOPE SELECT I/// /// /// ///_///_/// ///_///_EPT_///_///_ //////_ D C B A
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Bit Logical Names
BA

08 SHOWENDPT Dot mode
03 BLANKD Blank scope D (1 blanks the scope 0 enables the scope)
02 BLANKC Blank scope C
01 BLANKS Biank scope B
00 BLANKA Blank scope A

COLOR

Parameters:
Color value (one word)

400
Hue ~ Saturation

/////////////////////

code in hex = H#0400
1024

i,,, /// HI HUE LO
15 14 13 12 11 10 09 08

/// ///////////
//// HI SAT LO ///////////
07 06 05 04 03 02 O1 00

TEXTURE code in hex = H#0500
1280

Parameters:
Texture value (one word)

500
/////////~ Texture
///////////////////

L i ne Generator Texture Register

I/////////////////////////////// Texture bit pattern
///////////////////////////////
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

H#007F or H#OOFF both default to a Sol id l ine.
For non-PS 350 users, the texture wi l l always be H#OOFF.

8 - PS 300 V1tRITEBACK FEATURE

The following commands are for PS 350 users ONLY.

CLEAR DDA code in hex = H#0100
256

Parameters:
None

PICK BOUNDARY code in hex = H#0300
768

Parameters:
Four Boundary Values (4 words)

CLEAR SAVE POINT code in hex = H#0600
i536

Parameters:
None

SET PICK ID code in hex = H#0700
1792

Parameters:
Pick ID Pointer (two words)

SET Li~htPen MODE code in hex = H#0800
2048

Parameters:
Control Mask (1)
New X,Y (2)
Delta distance (1)
Delta frames (1) (Total five words)

ENABLE PICK code in hex = H#0900
2304

Parameters:
None

DISABLE PICK code in hex = H#OA00
2560

Parameters:
None

PS 300 Writeback Feature - 9

SET BLINK RATE code in hex = H#OD00
3328

Parameters:
Bl ink Rate (one word)

ENABLE BLINK code in hex = H#OE00
3584

Parameters:
None

DISABLE BLINK code in hex = H#OF00
3840

Parameters
None

END-~F-FRAME code in hex = H#1700
5888

Parameters:
None

Signifies that the current update cycle is completed and that any
fol lowing data is part of the next update frame. This also signifies
end of the writeback segment.

VIEWPORT CENTER code in hex = H#1800

Parameters:
x center (one word)
y center (one word)
z center (one word)
spare (two words)

bits 15 0

I coordinates I 2's complement vector

This value has to be added to each x,y coordinate pair. This
information is necessary to calculate the actual coordinates of the
data which has been viewport scaled. Every time a new viewport is
traversed by the Arithmetic Control Processor, a new viewport center
command wi l l be sent.

10 - PS 300 WRITEBACK FEATURE

NOTE

Codes H#1900 - H#1 F00 are reserved for future
commands. Code H#0000 is defined as a no-op, and
naturally has no parameters.

EXAMPLE aF THE SEQUENCE OF QATA SENT BACK TO THE HOST

The following example i I lustrates the sequence of data and the data in byte
format sent to the host during a WRITEBACK operation.

PS 30~ Writeback Feature - ~ 1

B00
////////// Texture

LGS
400

Hue Saturation
////////////////////////

Intensity
Y
X

200
LGS

//////////////////1/////
50.0

////////// Texture
////////////////////////

400
Hue Saturation

///////////////l////////
Intensity

Y
X

coo
0/1

////////////////////////

Start-of-writeback command

Color command

V
E
C
T
0
R
S

line Generator Status command

Texture command

Color command

V
E
C
T
0
R
S

End-of-writeback command
0 = finished successful ly, 1 = cannot
finish because of insufficient memory

12 - PS 300 WR ITEBACK FEATU R E

Data in Byte Format

OB 00 Start-of-writeback command
00 FF Texture
04 70 LGS
04 00 Color command
80 00 Hue/Saturation
00 00 Not used
00 FF Intensity
1Y FF Y
1X FF _ X
00 FF Intensity
2Y FF Y
2X FF X

02 00 LGS command
04 70 LGS
00 00 Not used
05 00 Texture command
00 FF Texture
00 00 Not used
04 00 Color command
80 00 Color
00 00 Not used
00 FF Intensity
1Y FF Y
1 X FF X

OC 00 End-of-writeback command
00 00 Finshed successful ly
00 00 Not used.

PS 300 Writeback Feat~xre - '13

SAMPLE WRITEBACK PROGRAM

PROGRAM Writeback(Input,Output,Outfi le,Devfi le);
{ P rog ram to read w r i teback data from a PS 350 . Th i s program set s up a
{ function network to get the Writeback data and processes the data and
{ creates a data fi le on the host with the data from the PS 350.

CONST
XINCLUDE 'PROCONST.PAS'
Max buf = 1024;

TYPE
I n t 16 = -32768. .32767 ;
Max_l ine = VARYING [Max buf] OF CHAR;
INCLUDE 'PROTYPES.PAS'

VAR
OUTFILE TEXT;
DEVFILE TEXT;
DEVSPEC P VARYINGTYPE;
OUTNAME P_VARYINGTYPE;
WBNAME P_VARYINGTYPE;
COMMAND I NT1 fi ;
INDEX INTEGER;
LEN INTEGER;
Inl ine P VARYBUFTYPE;
vx,vy,vz REAL;
In DDA BOOLEAN := FALSE;

INCLUDE 'PROEXTRN.PAS'

PROCEDURE ERR (ERROR: INTEGER);
{}
{ ERROR HANDLER ROUTINE }
{}

BEGIN { ERR }
{}
WRITELN(' ERROR :=',ERROR);
HALT;
{}

END; { ERR }

}
}
}

14 - PS 300 WR ITEBACK FEATURE

PROCEDURE Setup;
{ Create function network to send writeback data to host }
{ This uses F:cvt8to6 to send 6-bit data to the host }

BEGIN
PFnfnst('cvt','cvt8',Err);
Pconnect ('Writeback',1,1 ,'cvt',Err);
Pconnect ('cvt',1,1,'host message', Err);
PsndStr (CHR(36),2,'cvt',Err);
PsndFix (48,1,'writeback', Err);
PNameNi l('screensave',Err);
PPurge(Err);
END ;

{ Uti l ity procedures}
PROCEDURE Six to_eight(Inbuf Max l ine;
VAR Outbuf P VARYBUFTYPE);
{ Data from PS 350 is in six-bit packed format. This procedure unpacks

data}

CONST Base = 36;

TYPE
Cheat 4 = PACKED RECORD CASE Boolean OF
TRUE (i s UNSIGNED);
FALSE (c: PACKED ARRAY [1..4) OF CHAR);

END;

VAR
w Cheat 4;
c out,cycle_count,buf_index,i l,tc INTEGER;
first BOOLEAN;

BEGIN
bu f i ndex : = 1 ;
first := TRUE;
cycle_count := 1;
c_out := 4;
outbuf :_ ";
WHILE buf index <= len DO

BEGIN
tc := ORD(Inbuf[buf_index]) - base;
IF first THEN

F tc < 0 THEN
c out := 4+tc

ELSE
BEGIN

first := FALSE;
w.i .= tc;
cycle_count := SUCC(cycle_count);

END { ELSE tc >= 0 }

PS 300 Writeback Feature - 15

ELSE
BEGIN

cycle_count := SUCC(cycle_count);
END; { ELSE }

IF cycle_count > 6 THEN
BEGIN

FOR i t := 4 DOWNTO (5-c_out) DO
Outbuf := outbuf + w.c[i l];

cycle_count := 1;
first := true;

END ;
buf_index := SUCC(buf index);

END; { VYH I LE }
END ;

PROCEDURE Next Block;
{ Get a block of data from the PS 350 and convert from six to eight}
{ bit format }

VAR Inbuff Max l ine;

BEGIN
PGETWAIT(Inbuff,err);
Index := 1;
Len := LENGTH(Inbuff);
Six_to_eight (Inbuff, Inl ine);
Len := LENGTH(Inl ine);

END;

PROCEDURE Get Value(VAR a INT16);
{ Convert two bytes of input buffer to 16 bit integer }

VAR i INTEGER;

BEGIN { 6et Value }
a = 0;
FOR i : = 1 TO 2 DO
BEGIN

Index := Index + 1;
IF Index > Len THEN
Next Block;

a := a 256 + ORD(Inl ine[Index]);
END;

END;{ Get_Value }

16 - PS 300 WRITEBACK FEATURE

{ Procedures for processing refresh buffer commands }

PROCEDURE Clear DDA;
{ CLEAR DDA - X0100 }
{ Parameters - None }
{ Indicates start of sequence to set v~ewport center }
{ This sequence is CLEAR DDA, CLEAR SAVE POINT, Vector, CLEAR SAVE POINT}

VAR a,b I nt16;

BEGIN
In DDA := TRUE;
Get value (a);
Get value (b);
Writeln(Outfi le,'{Clear DDA}'~;

END ;

PROCEDURE Write LGS;
{ WRITE LINE GENERATOR STATUS - XX0200 }
{ Parameters - Status word (one word) }
{ Bit 8 Dot mode. }
{ Bit 6 Fast sweep (Opposite of 7) }
{ Bits 5 - 4: Contrast selection (00-min,ll-max)}
{ Bits 3 - 0: Scope select(1 disables,0 enables)}

VAR Igs,a Int16;

BEGIN
Get_value (Igs);
Get value (a);
Writeln(Outfi le,'{write LGS:',HEX(Igs),'}');

END;

PROCEDURE Write Pick Bound;
{ WRITE PICK BOUNDARY - XX0300 }
{ Parameters - Left, Right, Bottom, Top }

VAR I , r,b,t,a Int16;

BEGIN
Get value (I);
Get value (r);
Get value (b);
Get value (t);
Get value (a);
Writeln(Outfi le,'{Write_Pick_bound:',HEX(I),HEX(r),HEX(b),HEX(t),'}');

END;

PS 300 Writeback Feature - ~ 7

PROCEDURE Write Color;
f WRITE COLOR - XX0400 }
{ Parameters - Color value (one Word) }
{ Bit 15 Not Used }
{ Bits 14 - 8 Hue (High order in 14)}
{ Bit 7 Not Used }
{ Bits 6 - 3 Sat (High order in 3) }
{ Bits 2 - 0 Not Used }

VAR c,a Int16;

BEGIN
Get_value (c);
Get value (a);
Writeln(Outfi le,'{Write Color:',HEX(c),'}');

END ;

PROCEDURE Write Texture;
{ WRITE TEXTURE - XX0500 }
{ Parameters - Texture value (one word) }
{ Bits 15 - 7 Not Used }
{ Bits 6 - 0 Texture bit pattern }

VAR t,a Int16;

BEGIN
Get_value (t);
Get value (a);
Writeln(Outfi le,'{Write Texture:',HEX(t),'}');

END;

PROCEDURE Clear Save Point;
{ CLEAR SAVE POINT - XX0600 }
{ Parameters - None }

VAR a,b I nt16;

BEGIN
Get value (a);
Get value (b);
Writeln(Outfi le,'{Clear_Save_Point:}');

END ;

PROCEDURE Set Pick_Id;
{ SET PICK ID - XX0700 }
{ Parameters - Pick Id Pointer (two words)}

VAR a,b Int16;

18 - PS 300 WRITEBACK FEATURE

BEGIN
Get value (a);
Get value (b);
Writeln(Outfi le,'{Set Pick ld:',HEX(a),HEX(b),'}');

END;

PROCEDURE Set_Lightpen_Mode;
{ SET LIGHTPEN MODE - XX0800 }
{ Parameters - Control mask }
{ Tracking cross y }
{ Tracking cross x }
{ Delta distance }
{ Delta frames }

VAR cm,x,y,dd,df Int16;

BEGIN
Get value (cm);
Get value (x);
Get value (y);
Get value (dd);
Get value (df);
Writeln(Outfi le,'{Set Lightpen_mode:',HEX(cm),HEX(x),HEX(y),
HEX(dd),HEX(df),'}'~;

END;

PROCEDURE Enable Pick;
{ ENABLE PICK - XX0900}
{ Parameters - None }

VAR a,b Int16;

BEGIN
Get value (a);
Get value (b);
Writeln(Outfi le,'{Enable Pick:}');

END;

PROCEDURE Disable Pick;
{ DISABLE PICK - %XOA00 }
{ Parameters - None }

VAR a,b Int16;

BEGIN
Get_value (a);
Get value (b);
Writeln(Outfi le,'{Disable_Pick:}');

END;

PS 3~ Writeback Feature - 19

PROCEDURE Enable Writeback;
{ ENABLE WRITEBACK - XXOB00 }
{ Parameters - Line Texture }
{ Line Gen Status}

VAR a,b Int16;

BEGIN
Get_value (a);
Get value (b);
Writeln(Outfi le,'{Enable_Writeback:',HEX(a),HEX(b),'}');

END ;

PROCEDURE Disable Writeback;
{ DISABLE WRITEBACK - ~X0000 }
{ Parameters - None }~

VAR a,b Int16;

BEGIN
Get_value (a);
Get value (b);
Writeln(Outfi le,'{Disable Writeback:}');

END;

PROCEDURE Set Bl ink Rate;
~ SET BLINK RATE - XXOD00 }
{ Parameters - Bl ink rate }

VAR a,b Int16;

BEGIN
Get_value (a);
Get value (b);
Writeln(Outfi le,'{Set_Bl ink_Rate:',HEX(a),'}');

END;

PROCEDURE Enable Bl ink;
{ ENABLE BLINK - XXOE00 }
{ Parameters - None }

VAR a,b Int16;

BEGIN
Get value (a);
Get value (b);
Writeln(Outfi le,'{Enable_Bl ink:}');

END;

20 - PS 30~ WRITEBACK FEATURE

PROCEDURE Disable Bi ink;
{ DISABLE BLINK - %XOF00 }
{ Parameters - Nine }

VAR a,b I nt16;

BEGIN
Get_value (a);
Get value (b);
Writeln(Outfi le,'{Disable Bl ink:}');

END;

PROCEDURE End Of Frame;
{ END QF FRAME - XX1700 }
{ Parameters - None }

VAR a,b lnt16;

BEGIN
Get value (a);
Get value (b);
Writeln(Outfi le,'{End Of Frame:}');

END;

PROCEDURE Viewport_Center;
{ VIEWPORT CENTER - XX1800}
{ Parameters - x center }
{ y center }
{ z center }

VAR xc,yc,zc,a,b int16;

BEGIN
Get_value (xc);
Get_value (yc);
Get_value (zc);
Get_value (a);
Get value (b);
VX := XC;

IF (vx >= 32768) THEN vx := vx - 65536.0;
vx := vx/32767; ~y • _ y ~ • ._ ,
IF (vy >= 32768) THEN vy := vy - 65536.0;
vy := vy/32767;
vz := zc;
IF (vz >= 32768) TNEN vz := vz - 65536.0;
vz := vz/32767;
Writeln(Outfi le,'{Viewport_Center:',vx:6:6,'

END;

f ,vy:6:6, ' ,Vz'6'6 ~ ' }')

PS 3~ W r i teback Feature - 2~

PROCEDURE Process Vector;
{ Vector - Bit 15 of command = 1 }
{ Word 1 (command) }
{ Bit 15 Always one for vector }
{ Bit 14 1~ = Draw, 0 = hove }
{ Bits 12 - 6 Intensity/2 }
{ Bits 5 - 0 Not Used }
{ Word 2 (y coord) }
{ Bits 15 - 13: Not Used }
{ Bits 12 - 0: Y coordinate }
{ Word 3 (x coord) }
{ Bits 15 - 13: Not Used }
{ Bits 12 - 0: X coordinate }

VAR a,b Int1fi;
un UNSIGNED;
pl CHAR;
i nt,x,y REAL;

6EGIN
Get_value (a);
Get_value (b);
un:=cor~unand;
pl :_' I ' ;
IF (UAND(un,XX4000) = 0) THEN pl :_ 'p';
un := UAND(un,~X1FC0);
int := un;
IF In_DDA THEN

vz : = i n tI8128.0
ELSE

int :_ (int/8128.0 + vz) 2;
un : = a ;
un := UAND(un,XX1FFF);
y •- un• .- ,
IF (y >= XX1000) THEN y := y - X2000;
IF In_DDA THEN
vy := y / ~XFFF

ELSE

un := b;
un : = UAND (u~n , XX1 FFF) ;
x := un;
I F (x >= XX1000) THEN x : = x - XX2000 ;
!F In_DDA THEN

vx := x / ~XFFF
ELSE

IF In_DDA THEN
BEGIN

22 - PS 3U0 WRITEBACK FEATURE

Wri teln(Outfi le,'{New View Center:_' ,vx;6:6,' ' ,vy:6:6,' ' ,vz:6:6,'}');
In_DDA := FALSE;

END
ELSE
Writeln(Outfi le '{Vec ' pl ' ' x ' ' y i=' int '}')•

END;

PROCEDURE Unknown;
VAR a,b Int16;

BEGIN
Get value (a);
Get value (b);
Writeln(Outfi le,'fUnknown:',HEX(comnand),HEX(a),HEX(b),'}');

END;

BEGIN { Writeback}
Write ('Enter Output Fi le Name:');
Readln(Outname);
Write ('Enter Writeback Operate Node Name:{WB$ is default mode}');
Readln(wbname);
open(Outfi le,0utname,new);
rewrite(Outfi le);

{ Look for fi le specifying l ine for pattach procedure }
{ Example of record in PSDEV.DAT: }
{ 'logdevnam=tt:/Phydevtyp=async' }
open(devfi le,'psdev',old);
reset(devfi le);
readln(devfi le,devspec);
close(devfi le);

PATTACH(devspec,err); {Attach to PS 350 }
Setup; { Setup writeback network }

PNAMENIL('SCREENSAVE', ERR);
PPURGE(ERR);
PSndBool(TRUE,1,wbname, Err); { Trigger write back operate }

Next block; { Read in first block of writeback data}

Index := 0;
Command := 0;
vx := 0.0;
vy := 0.0;
vz := 0.0;

{ Process writeback buffers unti l END OF FRAME or END WRITEBACK}
WHILE (Command <> XX0000) AND (Command <> X1700) DO

PS 300 Writeback Feature - 23

BEGIN
Get value(Comnand);
IF ~Comnand > 32767) THEN { If bit 15 of command if set}

Process_vector
ELSE
CASE (Corr~nand D I V 256) OF

XX01 C I ea r DDA ;
XX02 Wr i te~LGS;
XX03 Wr i te_P i ck Bound ;
XX04 Write Color;
XX05 : Wr i te_Texture;
XX06 Clear Save Point;
XX07 Set Pick Id;
XX08 Set_Lightpen_Mode;
XX09 Enable Pick;
XXOA Disable Pick;
XXOB : Enable Writeback;
XXOC Disable Writeback;
XXOD Set Bl ink Rate;
XXOE Enable Bl ink;
XXOF Disable_Bl ink;
XX 17 : E n d_0 f F r ame ;
XX18 Viewport_Center;
OTHERWISE Unknown;

END; { CASE }
END ;

PFNINST('SCREENSAVE', 'SCREENSAVE', ERR PDETACH(ERR);
PPURGE(ERR):
{}

END. {Writeback}

CHANGE PAGES FOR THE COMMAND SUMMARY, THE FUNCTION SUMMARY,

AND THE GRAPHICS SUPPORT ROUTINE MANUALS

PS 300 COMMAND SUMMARY RAWBLOCK

ADVANCED PROGRAMMING -Memory Allocation

Version A2.V01

FORMAT

name := RAWBLOCK i;

DESCRIPTION

Used to allocate memory that can be directly managed by a user-written
function or by the physical I/O capabilities of the Parallel or Ethernet Interfaces.

PARAMETERS

i -bytes available for use.

NOTES

1. The command carves a contiguous block of memory such that there are
bytes available for use.

2. The block looks like an opertation node to the ACP. The descendant alpha
points to the next long word in the block. What the ACP expects in this
word is the .datum pointer of the alpha block. (The datum pointer points to
the first structure to be traversed by the ACP. This is the address in
memory where the data associated with a named entity is located.)

3. To use this block, the interface or user-written function fills in the
appropriate structure following the .datum pointer. When this is complete,
it changes the .datum pointer to the proper value and points to the beginning
of the data. After the ACP examines this structure, it displays the
newly-defined data. (Use the ACPPROOF procedure to change the .datu m
pointer with auser-written function.)

4. More than one data structure at a time can exist in a RAWBLOCK. It is up
to the user to manage all data and pointers in RAWBLOCK.

5. A RAWBLOCK may be displayed or deleted like any other named data
structure in the PS 300. When a RAWBLOCK is returned to the free storage
pool, the PS 300 firmware recognizes that s is a RAWBLOCK and does not
delete any of the data structures linked to RAWBLOCK.

DISPLAY TREE NODE CREATED

Rawblock data node.

PS 300 COMMAND SUMMARY VECTOR LIST

MODELING -Primitives

Version A2.V01

FORMAT

name := VECtor_list Coptions] [N=n] vectors;

DESCRIPTION

Defines an object by specifying the points comprising the geometry of the object
and their connectivity (topology).

PARAMETERS

name -Any legal PS 300 name.

options - Can be none, any, or all of the following five groups (but only one from
each group, and in the order specified):

1. BLOCK_normal i zed - All vectors will be normalized to a single
common exponent.

2. COLOR -This option is used when specifying color-blended vectors
(refer to SET COLOR BLENDing command) to indicate that vector
colors will be specified in lieu of vector intensities. When the
COLOR option is used, the optional I=i clause used to specify the
intensity of a vector (refer to the vectors parameter below) is
replaced by the optional H=hue clause, where H is a number from 0
to 720 specifying the individual vector hues. The default is 0 (pure
blue).

The 0-720 scale for the H=hue clause is simply the SET COLOR
scale of 0-360 repeated over the interval 360-720. On this scale, 0
represents pure blue, 120 pure red, 240 pure green, 360 pure blue
again, 480 pure red again, 600 pure green again, and 720 pure blue.
This "double color wheel" allows for color blending either clockwise
or counterclockwise around the color wheel.

3. Connectivity:

A. CONNECTED_1 i nes -The first vector is an undisplayed position
and the rest are endpoints of lines from the previous vector.

VECTOR LIST PS 300 COMMAND SUMMARY

MODELING -Primitives

Version A2.V01 [continued)

PARAMETERS (continued)

B. SEParate_1 i nes —The vectors are paired as line endpoints.

C. DOTs —Each vector specifies a dot.

D. ITEMi zed —Each vector is individually specified as a move to
position (P} or a line endpoint (L).

E. TABU 1 ated —This caluse is used to specify an entry into a table
that is used for specifying colors for raster lines and for
specifying colors, radii, diffuse, and specular attributes for
raster spheres. This option is also used to alter the attribute
table itself.

When the TABulated option is used, the T=t clause replaces
the I=i clause (for intensities) and the H=hue clause (for vector
hues). The default is 127 (table entry 127}.

There are 0 to 127 entries into the Attribute table. The
Attribute table may be modified via input < 14> of the
SHADINGENVIRONMENT function.

4. Y and Z coordinate specifications (for constant or linearly changing
Y and/or Z values):

Y = yCDY=delta_y]CZ = zCDZ=delta_z]]

where y and z are default constants or beginning values, and
del ta_y and del ta_z are increment values for subsequent vectors.

5. I NTERNAL_un i is —Vector values are in the internal PS 300 un~.ts
[LENGTH]. Specifying this option speeds the processing of the vector
list, but this also requires P/L information to be specified for each
vector, and it doesn't allow default y values or specified intensities.

n —Estimated number of vectors.

PS 300 COMMAND SUMMARY VECTOR LIST

MODELING -Primitives

Version A2.V01 Ccontinued)

PARAMETERS (continued)

vectors -The syntax for individual vectors will vary depending on the options
specified in the options area. For all options except ITEMi zed, COLOR,
and TABU 1 ated the syntax is:

xcompC,ycompC,zcompJJCI=iJ

where xcomp, ycomp and zcomp are real or integer coordinates and i is
a real number (0.0 < i < 1.0) specifying the intrinsic intensity for that
point (1.0 =full intensity).

For ITEMi zed vector lists the syntax is:

P xcompC,ycompC,zcompJJCI=iJ

or

L xcompC,ycompC,zcompJJCI=iJ

where Pmeans amove-to-position and L means a line endpoint.

If def ault y and z values are specified in the options area, they are
not specified in the individual vectors.

For color-blended (COLOR) vector lists, the syntax is:

xcompC,ycompC,zcomp]]CH=hueJ

where xcomp , ycomp and zcomp are real or integer coordinates and hue
is a real number between 0 and 720 specifying the hue of a vector.

For TABU 1 ated vector lists (TAB), the syntax is:

xcompC,ycompC,zcompJJCT=tJ

where t is an integer between 0 and 127 specif ying a table entry.

VECTOR LIST PS 300 COMMAND SUMMARY

MODELING -Primitives

Version A2.V01 Ccontinued)

DEFAULTS

If not specified, the options default to:

1. Vector normalized
Z. Not color blended
3. Connected
4. No default y or z values are assumed (see note 5)
5. Expecting internal units

Non color—blended vectors default to:

xcomp,ycompC,zcomp]CI=iJ

If i is not specified, it defaults to 1.

Color—blended vectors default to:

xcomp,ycompC,zcomp]CH=hue]

If hue is not specified, it defaults to 0 (pure blue).

Tabulated vectors default to:

xcomp,ycompC,zcompJCT=t]

If the table entry is not specified, it defaults to 127 (table entry 127).

NOTES

1. If n is less than the actual number of vectors, insufficient allocation of
memory will result; if greater, more memory will be allocated than is used.
(The former is generally the more severe problem.)

2. All vectors in a list must have the same number of components.

3. If y is specified in the options area, z must be specified in the options area.

PS 300 COMMAND SUMMARY VECTOR LIST

MODELING -Primitives

Version A2.V01 Ccontinued)

NOTES (continued)

4. If no default is specified in the options .area and no z components are
specified in the vectors area, the vector list is a 2D vector list. If a z
default is specified in the same case, the vector list is a 3D vector list.

5. The first vector must be a position (P) vector and will be forced to be a
position vector if not.

6. Options must be specified in the order given.

7. If CONNECTED_1 i nes, SEPdrdte_1 i nes, or DOTs are specified in the_ options
area but the vectors are entered using P/Ls, then the option specified takes
precedence.

8. Block normalized vector lists generally take longer to process into the
PS 300, but are processed faster for display once they are in the system.

DISPLAY TREE NODE CREATED

Vector list data node.

VECTOR LIST PS- 300 COMMAND SUMMARY

MODELING -Primitives

Version A2.V01 Ccontinued)

INPUTS FOR UPDATING NODE

name

Vector

Integer

Integer

Vector

Boolean

Vector

<last > Changes last vector

< clear> Clears list

< delete > Deletes from end

< append > Appends to end

<i> True=Line; False=Position

Replaces i-th vector

VECTOR LIST
1AS0632

NOTES ON INPUTS

1. Vector list nodes are in one of two forms:

A. If DOTS was specified in the options area of the command, a DOT m~~de
vector list node is created. The Boolean input to <i> is ignored in t;his
case as well as the P/L portion of input vectors, and all vectors input are
considered new positions for dots.

B. All other vector list nodes created can be considered to be 2D or 3D
ITEMi zed with intensity specifications after each vector, and if a 3D
vector is input to a 2D vector list node, the last component modifies the
intensity.

2. If a 2D vector is sent to a 3D vector list, the z value defaults to 0.

3. When you replace the i—th vector, the new vector is considered a line (L)
vector unless it was first changed to a position vector with F:POSITION LINE.

PS 300 COMMAND SUMMARY VECTOR LIST

MODELING -Primitives

Version A2.V01 Ccontinued)

EXAMPLES

A := VECtor list BLOCK SEParate INTERNAL N=4
P l,l L -1,l L -1,-1 L 1,-1;

B := UECtor list n=5
1,1 -1,1 I=.S
-1,-1 1,-1 I=.75
1,1;

C := UECtor_list ITEM N=5
P 1,1
L -1,1
L -1,-1
P 1,-1
L l,l;

D := VECtor list TABulated N=5 {for drawing raster lines}
P 0,1,0
L

o,a,o t=s
L 1,0,0 t=2
P 1,1,0 t=3
L 0,1,0 t=4;

I~1
PS 300 COMMAND SUMMARY WRITEBACK
SPECIAL

Version A2.V01

FORMAT

name := WRITEBACK [APPLied to Hamel];

DESCRIPTION

The WRITEBACK command creates a WRITEBACK operation node and delineates
the data structure below the node for writeback operations. When the
WRITEBACK operation node is activated, writeback is performed for name 1.

PARAMETERS

name 1 —The name of the structure or node to which writeback is applied.

NOTES

1. This node delimits the structure from which writeback data will be retrieved.
Only the data nodes that are below the WRITEBACK operation node in the
data structure will be transformed, clipped, viewport scaled, and sent back to
the host.

2. Only a structure that is being displayed can be enabled for writeback. This
means that the WRITEBACK operation node must be traversed by the display
processor and so must be included in the displayed portion of the structure. If
the writeback of only a portion of the picture is desired, WRITEBACK nodes
must be placed appropriately in the display structure.

3. Any number of WRITEBACK nodes can be placed within a structure. Only one
writeback operation can occur at a time. If more than one node is triggered,
the writeback operations are performed in the order in which the
corresponding nodes were triggered. If the user creates any WRITEBACK
nodes (other than the WRITEBACK node created initially at boot—up), these
nodes must be displayed before being triggered. If the nodes are triggered
before being displayed, an error message will result.

4. The terminal emulator and message_display data will not be returned to the
host.

DISPLAY TREE NODE CREATED

The command creates a WRITEBACK operation node.

r"1
PS 300 Function
Initial Function Instance WRITEBACK

Version A2.V01

PURPOSE

WRITEBACK

<1> <1> ----Qpacket

WRITEBACK is initialized by the system and is used to send encoded writeback
data to user function networks.

This function is not activated by the normal input queue triggering mechanism. It
is

activated by sending a TRUE to any WRITEBACK operation node.

DESCRIPTION

INPUT
WRITEBACK has one input queue. Input < 1 > accepts integers specifying the
size of Qpackets to be output by the function. The default size is 512.
Minimum and maximum sizes are 16 and 1024. If the size specified on the
input is not within this range, the default size will be used.

OUTPUT
WRITEBACK has one output queue. Output < 1 > passes the encoded writeback
data out as Qpackets.

NOTES

WRITEBACK will return _all data that are under the WRITEBACK operation node.
Host-resident code will be responsible for recognizing the start-of-writeback and
end-of-writeback commands. Attribute information, such as color, must be
interpreted by host code to ensure that the hardcopy plots are correct.

On the PS 350, viewport translations have not been applied to the data. To
correctly compute the position of endpoints, the host program interpreting the
writeback code must add a viewport center to each endpoint. The initial viewport
center is established with a VIEWPORT CENTER command. The VIEWPORT
CENTER command is sent following the start-of-writeback command. Any
changes to the viewport center will be indicated through this sequence of
commands: CLEAR DDA, CLEAR SAVE POINT, position endpoint, CLEAR SAVE
POINT. The position endpoint becomes the new viewport center.

PS 300 DEC VAX/VMS PASCAL GSR PWRTBACK

Name := WRITEBACK

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PWrtBack C ~DESCR Name P VaryingType;
~oDESCR Hamel P_VaryingType;
PROCEDURE Error_Handler CErr INTEGER));

DEFINITION

This procedure enables writeback in the data structure Name 1. Writeback is
triggered by sending a TRUE to the WRITEBACK operation node created with this
procedure.

PARAMETERS

Hamel —The name of the structure to which writeback is applied.

PS 300 COMMAND AND SYNTAX

name := WRITEBACK [APPLied to Hamel];

PS 300 IBM PASCAL/VS GSR PWRTBACK

Name := WRITEBACK

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PWrtBack C CONST Name STRING;
CONST Namel STRING;
PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure enables writeback in the data structure Name 1. Writeback is
triggered by sending a TRUE to the WRITEBACK operation node created with this
procedure.

PARAMETERS

Namel —The name of the structure to which writeback is applied.

PS 300 COMMAND AND SYNTAX

name := WRITEBACK [APPLied to Namel];

PS 300 FORTRAN GSR PWRTBK

Name := WRITEBACK

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PWRTBK t Name, Namel , Errhnd)

where:

Namel is a CHARACTER STRING
Errhnd is the user-defined error-handling subroutine

DEFINITION

This subroutine enables writeback in the data structure Namel. Writeback is
triggered by sending a TRUE to the WRITEBACK operation node created with this
procedure.

PARAMETERS

Namel -The name of the structure to which writeback is applied.

PS 300 COMMAND AND SYNTAX

name := WRITEBACK [APPLied to Name 1];

PS 300 DEC VAX/VMS PASCAL GSR PATTACH

UTILITY PROCEDURE

Version AZ.VOi

UTILITY PROCEDURE AND PARAMETERS

PROCEDURE PAttach C 9'oDESCR Modifiers P_VaryingType;
PROCEDURE Error_Handier CError INTEGER));

DEFINITION

This procedure attaches the PS 300 to the communications channel.

If this procedure is not called prior to use of the Application Procedures, the error
code value corresponding to the name PSE_NotAtt is generated, indicating that
the PS 300 communications link has not been established.

The parameter (Modify) must contain the phrases:

LOGDEI/NAM=name/PHYDEVTYP=type

where "name" refers to the logical name of the device that the GSRs will
communicate with, i.e. TTA6:, TTB2: XMEO:, PS:, etc. and "type" refers to the
physical device type of the hardware interface that the GSRs will communicate
through. This last argument can only be one of the following four interfaces:

ASYNC (standard RS-232 asynchronous communication interface)
DMR-1 1 (DMR-11 high speed interface)
PARALLEL (Parallel interface option)
ETHERNET (DECnet Ethernet option)

The parameter string must contain EXACTLY one "/" and blanks are NOT allowed
to surround the "_" in the phrases. The PAttach parameter string is not sensitive
to upper or lower case.

Example: PAttach ('logdevnam=tta2:/phydevtyp=async', Error_Handler);

where "tta2" is the logical device name of the PS 300, and the hardware interface
is standard asynchronous RS-232.

Example: PAttach ('logdevnam=ps:/phydevtyp=dmr-1 1', Error_Handler);

where the physical device type is a DMR-11 interface, and where the user has
informed the VAX that the logical symbol "ps" refers to the name of the logical
device that the GSRs will communicate with using the following ASSIGN
command:

$ ASSIGN XMDO: PS
$ RUN <application-pgm>

PS 300 DEC VAX/VMS PASCAL GSR PVECBEGN

Name := VECTOR_LIST Cno corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVecBegn C yaDESCR Name P VaryingType;
VectorCount INTEGER;
B1ockNormalized BOOLEAN;
Color6lending BOOLEAN;
Dimen INTEGER;
Class INTEGER;

PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure must be called to begin a vector list. To send a vector list, the
user must call the procedures:

PVecBegn

PUecList (This procedure may be called multiple times for vector-normalized
vector lists}

PUecEnd

It contains the following parametric definitions:

• Name specifies the name to be given to the vector list

• VectorCount is the number of vectors to be created

• B1ockNormalized is TRUE for Block Normalized and FALSE for Vector
Normalized

• ColorBlending is TRUE for Color Blending and FALSE for normal depth
cueing

• Dimen is 2 or 3 (2 or 3 dimensions respectively}

• Class corresponds to a vector class

• Error Handler is the user-defined error-handler procedure

(Continued on next page)

PS 300 DEC VAX/VMS PASCAL GSR PVECBE:GN

Name := VECTOR_LIST Cno corresponding command)

Version A2.V01

Together, the above 3 procedures implement the PS 300 command:

(continued)

Name := VECTOR LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

NOTE

The dimension must be specified in the PVECBEGN
application procedure. In the PS 300 command, dimension is
implied by syntax.

~ These mnemonics may be referenced directly by the user if PROCONST.PAS~ is
INCLUDED in the procedure.

Mnemonic Meaning INTEGER Value

P_Conn Connected 0
P_Dots Dots 1
P Item Itemized 2
P_Sepa Separate 3
P Tab Tabulated 4

Note: If the vector list is class P_Tab, BlockNormalized must be FALSE,
and Dimen must be equal to 3; that is, tabulated vector lists must be
vector—normalized 3D vector lists.

PS 300 DEC VAX/VMS PASCAL GSR PVECLIST

Name := VECTOR_LIST Cno corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVecList C NumberOfVectors INTEGER;
VAR Vectors P VectorListType;

PROCEDURE Error_Nandler CErr INTEGER));

DEFINITION

This procedure must be called to send a piece of a vector list. For
vector-normalized vector lists, this procedure can be called repeatedly to send
the vector list down in pieces. Multiple calls to this procedure are not permitted
for the block-normalized vector list case, unless the procedure PVecMax is called
first. To send a vector list, the user must call the procedures:

PVecBegn

PVecList (This procedures may be called multiple times for
vector-normalized vector lists)

PVecEnd

Together, the above 3 procedures implement the PS 300 command:

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

Vectors is the array containing the vectors of the vector list.

where: Vectors [n].V4[1] := Vector n x-component
Vectors [n].V4[Z] := Vector n y-component
Vectors [n].V4[3] := Vector n z-component
Vectors [n].V4[4] := Vector n intensity (or hue)

0 <= vectors [n].V4[4] <=1 or 0 <_
Vectors[n].V4[4] <=127 if vector class is
tabulated.

Vectors [n].Draw := True if vector n is adraw/line vector.
Vectors [n].Draw := False if vector n is amove/position vector.

The fourth position of Vectors is the intensity of that vector if
vector-normalized, regardless of dimension. If block-normalized, the first
vector's fourth position is used as the entire vector list intensity.

PS 300 DEC VAX/VMS PASCAL GSR PVECLI'ST

Name := VECTOR LIST Cno corresponding command)

Version A2.V01 Ccontinue~d)

The fourth position of Vectors can be used to specify color in lieu of intensity
when specifying color-blended vectors (refer to PSETBLND). Use the f ollowi,ng
algorithm to convert the acceptable range of hues (real numbers 0-720 for the
PS 300 VECTOR LIST command) to the expected range of 0-1 for the PVECLIST
GSR procedure before sending.

• If the value is less than 0 or greater than 720, clamp it to the nearE~st
in-range value.

• If the value is greater than or equal to 360, subtract 360.

• Divide the value by 768.

• If the original value was greater than or equal to 360, add .5 to the result of
the division.

This has the effect of mapping hue values in the range (0-360) to (0-.46875), and
values in the range (360-720) to (.5-.96875). Values greater than .46875 and lE~ss
than .5 are out of range, and are interpreted as .5 (pure blue).

If the vector class is "tabulated," the fourth position of the VECTORS is an
IRIDEX. Users should specify whole numbers 0 < index < 127 in this case. The GSRs
will truncate the value supplied to an integer and force the value to be in rangE~ 0
to 127.

If specifying P_Conn, P_Dots, or P_Sepa; the vector's draw section of the vector
list is generated by the procedure. P_Item and P_Tab require that the move/draw
nature of each vector be defined by the user.

PS 300 DEC VAX/VMS PASCAL GSR PVECMAX

Name := VECTOR_LIST Cno corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

[GLOBAL, CHECKCNOBOUNDS)~ PROCEDURE PVecMax CMaxcomp REAL)
[PROCEDURE Error Handler [Err INTEGER));

DEFINITION

This procedure must be called to set the maximum component of a vector list for
multiple calls to PVecList with block—normalized vectors. To send a vector list,
the user must call:

• PVecBegn

• PVecMax (If defining block—normalized vector with multiple calls to
PVecList)

• PVecList (This may be called multiple times.)

• PVecEnd (This is called last.)

Together, the above 4 procedures implement the PS 300 command

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE)
N=n <vectors>;

PS 300 DEC VAX/VMS FORTRAN-77 GSR PATTCN

UTILITY SUBROUTINE

Version A2.V01

UTILITY SUBROUTINE AND PARAMETERS

CALL PAttch (Modify, ErrHnd)

where:

Modify is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine attaches the PS 300 to the communications channel. If this
subroutine is not called prior to use of the Application Subroutines, the user's
error handler is invoked with the "The PS 300 communications link has not been
established" error code corresponding to the mnemonic: PSENOA:.

The parameter (Modify) must contain the phrases:

LOGDEVNAM=name/PHYDEVTYP=type

where "name" refers to the logical name of the device that the GSRs will
communicate with, i.e. TTA6:, TTB2: XMEO:, PS:, etc. and "type" refers to the
physical device type of the hardware interface that the GSRs will communicate
through. This last argument can only be one of the following four interfaces:

ASYNC (standard RS-232 asynchronous communication interface)
DMR-11 (high-speed synchronous interface)
PARALLEL (high speed parallel interface
ETHERNET (DECnet Ethernet option),

The parameter string must contain EXACTLY 1 "/" and blanks are NOT allowed to
surround the "_" in the phrases. The PAttch parameter string is not sensitive to
upper or lower case.

Example: CALL PAttch ('logdevnam=tta2:/phydevtyp=async', Errhnd)

where "tta2" is the logical device name of the PS 300, and the hardware interface
is standard asynchronous RS-232.

(Continued on next page)

PS 300 DEC VAX/VMS FORTRAN-77 GSR PATTCH

UTILITY SUBROUTINE

Version A2.V01 Ccontinued)

Example: CALL PAttch ('logdevnam=ps:/phydevtyp=dmr-1 1', ErrHnd)

where the physical device type is a DMR-1 1 interface and where the user has
informed the VAX that the logical symbol "ps" refers to the name of the logical
device that the GSRs will communicate with using the following ASSIGN
command:

$ ASSIGN XMDO: PS:
$ RUN <application-pgm>

PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCBEG

Name := VECTOR_LIST Cno corresponding command)

Version AZ.VO1

APPLICATION SUBROUTINE AND PARAMETERS

CALL PVcBeg CName, VecCou, BNorm, CBlend, Dimen, Class, ErrHnd)

where:

Name is a CHARACTER STRING defining the name of the vector list

VecCou is an INTEGER~4 specifying the total number of vectors in the
vector list

BNorm is a LOGICAL~1 defined: .TRUE. for Block Normalized, .FALSE, for
Vector Normalized

CBlend is a LOGICAL 1 defined: .TRUE. for Color Blending, .FALSE, for
normal depth cueing

Dimen is an INTEGER~4 2 or 3 (2 or 3 dimensions respectively)

*Class is an INTEGER~4 defining the class of the vector list

ErrHnd is the user-defined error-handler subroutine.

This subroutine must be called to begin a vector list. To send a vector list, the
user must call:

PVcBeg

PVcLis (This may be called multiple times for vector-normalized vector
lists.)

PUcEnd

Together, the above 3 subroutines implement the PS 300 command:

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

NOTE

The dimension must be specified in the PVCBEG
application subroutine. In the PS 300 command,
dimension is implied by syntax.

(Continued on next page)

PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCE~EG

Name := VECTOR_LIST Cno corresponding command)

Version A2.V01 Ccontinued)

~ These mnemonics may be referenced directly by the user if PROCONST,FO~: is
INCLUDED in the subroutine. See the section on Programming Suggestions for
a description of PROCONST,FOR, A description of the vector classes and their
INTEGER*4 value is given below.

Mnemonic Meaning INTEGER*4 Ualue

PVCONN Connected 0
PVDOTS Dots 1
PUITEM Itemized 2
PUSEPA Separate 3
PVTAB Tabulated 4

Note: If the vector list is class PVTAB, then the BNorm must be FALSE
and Dimen must be equal to 3; that is, tabulated vector lists must be
vector-normalized 3D vector lists.

PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCLIS

Name := VECTOR_LIST Cno corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PVcLis CNVec, Vecs, PosLin, ErrHnd)

where:

NVec is the number of vectors in the vector list and is defined: INTEGER~4

Vecs is the array containing the vectors of the vector list and is defined:
REAL~4 (4, NVec)

where: Vecs(l,n) =vector n x-component
Vecs(2,n) =vector n y-component
Vecs(3,n) =vector n z-component
Vecs(4,n) = vector n intensity (or hue)

0 <= Vecs(4,n) <=127 if vector
class is tabulated.

PosLin is the array containing the move/positive -draw/line information
for each vector. PosLin is defined : LOGICAL 1 PosLin(NVec)

If PosLin(n) _ .TRUE. then vector n is a draw line) vector.

If PosLin(n) _ .FALSE. then vector n is a move position) vector.

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine must be called to send a piece of a vector list. For
vector-normalized vector lists, this subroutine can be called multiple times to
send the vector list down in pieces. Multiple calls to this subroutine are not
permitted for the block-normalized vector list case, unless the subroutine
PVcMax is called first. To send a vector list, the user must call:

PVcBeg

PVcLis (This may be called multiple times for vector-normalized vector lists)

PVcEnd

(Continued on next page)

PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCLIS

Name := VECTOR_LIST Cno corresponding command)

Version A2.V01 Ccontinued)

The POSLIN Array is always required, however the CLASS specified in PVcBeg
determines how it is used. For CONNECTED, DOTS, and SEPARATE, the user
need not specify the contents of POSLIN. For ITEMIZED and TABULATED, the
user—specified position/line is used.

The fourth position of Vecs is the intensity of that vector if vector—normali~~ed,
regardless of dimension. If block—normalized, the first vector's fourth position is
used as the entire vector list intensity.

The fourth position of Vecs can be used to specify color in lieu of intensity when
specifying color—blended vectors (refer to PSETCB). Use the following algoril:hm
to convert the acceptable range of hues (real numbers 0-720 for the PS 300
VECTOR_LIST command) to the expected range of 0-1 for the PVCLIS CaSR
routine before sending.

• If the value is less than 0 or greater than 720, clamp it to the nearest
in —range value.

• If the value is greater than or equal to 360, subtract 360.

• Divide the value by 768.

• If the original value was greater than or equal to 360, add .5 to the result: of
the division.

This has the effect of mapping hue values in the range (0-360) to (0—.46875), ,and
values in the range (360-720) to (.5—.96875). Values greater than .46875 and less
than .5 are out of range, and are interpreted as .5 (pure blue).

If the vector class is 'tabulated," the fourth position of the VECS is an INDEX.
Users should specify whole numbers 0< index < 127 in this case. The GSRs will
truncate the value supplied to an integer and force the value to be in range 0 to
127.

Together, the subroutines PVcBeg, PVcLis, and PVcEnd implement the PS 300
command:

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCMAX

Name := VECTOR_LIST tno corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

SUBROUTINE PVCMAX tMAX, ERRHAND)

DEFINITION

This subroutine must be called before calling PUCLis if creating a creating a
block—normalized vector list with multiple calls to PUCLis. To send a vector list,
the user must call:

• PUCBeg

• PVCMax (If making calls to PUCLis and creating ablock—normalized vector
list.)

• PUCLis (This may be called multiple times for vector—normalized vector
lists.)

• PUcEnd (This must be last.)

Together, the above 4 procedures implement the PS 300 command

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE)
N=n <vectors>;

PS 300 IBM PASCAL/VS GSR PVECBEGN

Name := VECTOR_LIST Cno corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVec6egn C ~'oDESCR Name P VaryingType;
VectorCount INTEGER;
BlockNormalized BOOLEAN;
ColorBlending BOOLEAN;
Dimen INTEGER;
Class INTEGER;

PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure must be called to begin a vector list. To send a vector list, the
user must call the procedures:

PtlecBegn

PVecList (This procedure may be called multiple times for vector—normalized
vector lists)

PVecEnd

It contains the following parametric definitions:

• Name specifies the name to be given to the vector list

• VectorCount is the number of vectors to be created

• BlockNormalized is TRUE for Block Normalized and FALSE for Vector
Normalized

• ColorBlending is TRUE for Color Blending and FALSE for normal depth
cueing

• Dimen is 2 or 3 (2 or 3 dimensions respectively)

• *Class corresponds to a vector class

• Error Handler is the user—defined error—handler procedure

(Continued on next page)

PS 300 IBM PASCAL/VS GSR PVECBEGN

Name := VECTOR_LIST Cno corresponding command)

Version A2.V01 (continued)

Together, the above 3 procedures implement the PS 300 command:

Name := VECTOR LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

NOTE

The dimension must be specified in the PVECBEGN
application procedure. In the PS 300 command, dimension is
implied by syntax.

~ These mnemonics may be referenced directly by the user if PROCONST.PAS is
INCLUDED in the procedure.

Mnemonic Meaning INTEGER Value

P_Conn Connected 0
P_Dots Dots 1
P Item Itemized 2
P_Sepa Separate 3
P Tab Tabulated 4

Note: If the vector list is class P_Tab, BlockNormalized must be FALSI~,
and Dimen must be equal to 3; that is, tabulated vector lists must be
vector—normalized 3D vector lists.

("1
PS 300 IBM PASCAL/VS GSR PVECLIST

Name := VECTOR_LIST Cno corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVecList C

DEFINITION

NumberOfVectors INTEGER;
VAR Vectors P VectorListType;

PROCEDURE Error_Handler CErr INTEGER));

This procedure must be called to send a piece of a vector list. For
vector—normalized vector lists, this procedure can be called repeatedly to send
the vector list down in pieces. Multiple calls to this procedure are not permitted
for the block—normalized vector list case, unless the procedure PVecMax is called
first. To send a vector list, the user must call the procedures:

PVecBegn

PVecList (This procedures may be called multiple times for
vector—normalized vector lists)

PVecEnd

Together, the above 3 procedures i;nplement the PS 300 command:

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

Vectors is the array containing the vectors of the vector list.

where: Vectors [n].V4[1] := Vector n x—component
Vectors [n].V4[2] := Vector n y—component
Vectors [n].V4[3] := Vector n z—component
Vectors [n].V4[4] := Vector n intensity (or hue)

0 <= vectors [n].V4[4] <=1 or 0<=
Vectors[n].V4[4] <=127 if vector class is
tabulated.

Vectors [n].Draw := True if vector n is adraw/line vector.
Vectors [n].Draw := False if vector n is amove/position vector.

The fourth position of Vect-ors is the intensity of that vector if
vector—normalized, regardless of dimension. If block—normalized, the first
vector's fourth position is used as the entire vector list intensity.

PS 300 IBM PASCAL/VS GSR PVECLIST

Name := VECTOR_LIST Cno corresponding command)

Version A2.V01 (continued)

The fourth position of Vectors can be used to specify color in lieu of intensity
when specifying color—blended vectors (refer to PSETBLND). Use the follo~nring
algorithm to convert the acceptable range of hues (real numbers 0-720 for the
PS 300 VECTOR_LIST command) to the expected range of 0-1 for the PUECL.IST
GSR procedure before sending.

• If the value is less than 0 or greater than 720, clamp it to the nearest
in —range value.

• If the value is greater than or equal to 360, subtract 360.

• Divide the value by 768.

• If the original value was greater than or equal to 360, add .5 to the result of
the division.

This has the effect of mapping hue values in the range (0-360) to (0—.46875), and
values in the range (360-720) to (.5—.96875). Values greater than .46875 and Mess
than .5 are out of range, and are interpreted as .5 (pure blue).

If the vector class is "tabulated," the fourth position of the VECTORS is an
INDEX. Users should specify whole numbers 0< index < 127 in this case. The G`,~Rs
will truncate the value supplied to an integer and force the value to be in range 0
to 127.

If specifying P_Conn, P_Dots, or P_Sepa, the vector's draw section of the vector
list is generated by the procedure. P_Item and P_Tab requires that the move/draw
nature of each vector be defined by the user.

PS 300 IBM PASCALlVS GSR PVECMAX

Name := VECTQR_LIST Cno corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVecMax tMaxcomp REAL)
CPROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure must be called to set the maximum component of a vector list for
multiple calls to PVecList with block—normalized vectors. To send a vector list,
the user must call:

• PUecBegn

• PUecMax (If defining block normalized—vector with multiple calls to
PVecList}

• PUecList (This may be called multiple times.}

• PVecEnd (This is called Iast.)

Together, the above 4 procedures implement the PS 300 command

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE}
N=n <vectors>;

("'"1
PS 300 IBM VS FORTRAN GSR PVCBEG

Name := VECTOR_LIST Cno corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PVcBeg (Name, VecCou, BNorm, (Blend, Dimen, Class, ErrHnd)

where:

Name is a CHARACTER STRING defining the name of the vector list

VecCou is an INTEGER~4 specifying the total number of vectors in the
vector list

BNorm is a LOGICAL~I defined: .TRUE. for Block Normalized, .FALSE, for
Vector Normalized

(Blend is a LOGICAL 1 defined: .TRUE. for Color Blending, .FALSE. for
normal depth cueing

Dimen is an INTEGER~4 2 or 3 (2 or 3 dimensions respectively)

Class is an INTEGER~4 defining the class of the vector list

ErrHnd is the user—defined error—handler subroutine.

This subroutine must be called to begin a vector list. To send a vector list, the
user must call:

PVcBeg

PVcLis (This may be called multiple times for vector—normalized vector lists)
PVcEnd

Together, the above 3 subroutines implement the PS 300 command:

Name := VECTOR LIST . (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

NOTE

The dimension must be specified in the PVCBEG
application subroutine. In the PS 300 command,
dimension is implied by syntax.

(Continued on next page)

PS 300 IBM VS FORTRAN GSR PVCI3EG

Name := VECTOR_LIST Cno corresponding command)

Version A2.V01 (continued)

~ These mnemonics may be referenced directly by the user if PROCONST.FOR is
INCLUDED in the subroutine. See the section on Programming Suggestions for
a description of PROCONST.FOR. A description of the vector classes and their
INTEGER~4 value is given below.

Mnemonic Meaning INTEGER~4 Value

PVCONN Connected 0
PVDOTS Dots 1
PVITEM Itemized 2
PVSEPA Separate 3
PVTAB Tabulated 4

Note: If the vector list is class PVTAB, then the BNorm must be FALSE
and Dimen must be equal to 3; that is, tabulated vector lists must be
vector normalized 3D vector lists.

PS 300 IBM VS FORTRAN GSR PVCLIS

Name := VECTOR_LIST Cno corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PVcLis CNVec, Vecs, PosLin, ErrHnd)

where:

NUec is the number of vectors in the vector list and is defined: INTEGER~4

Vecs is the array containing the vectors of the vector list and is defined:
REAL~4 (4, NUec)

where: Vecs(l,n) =vector n x—component
Vecs(Z,n) =vector n y—component
Vecs(3,n) =vector n z—component
Uecs(4,n) = vector n intensity (or hue)

0 <= Vecs(4,n) <=127 if vector
class is tabulated.

PosLin is the array containing the move/positive —draw/line information
for each vector. PosL.in is defined : LOGICAL 1 PosLin(NUec)

If PosLin(n) _ .TRUE, then vector n is a draw line) vector.

If PosLin(n) _ .FALSE. then vector n is a move position) vector.

ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine must be called to send a piece of a vector list. For
vector—normalized vector lists, this subroutine can be called multiple times to
send the vector list down in pieces. Multiple calls to this subroutine are not
permitted for the block—normalized vector list case, unless the subroutine
PUcMax is called first. To send a vector list, the user must call:

PVcBeg

PUcLis (This may be called multiple times for vector normalized vector lists)

PUcEnd

(Continued on next page)

PS 300 IBM VS F~RTAN GSR PVCI.I S

Name := VECTOR_LIST Cno corresponding command)

Version A2.V01 (continued)

The POSLIN Array is always required, however the CLASS specified in PVc:Beg
determines how it is used. For CONNECTED,. DOTS, and SEPARATE, the user
need not specify the contents of POSLIN. For ITEMIZED and TABULATED, the
user—specified position/line is used.

The fourth position of Vecs is the intensity of that vector if vector—normalized,
regardless of dimension, If block—normalized, the first vector's fourth position is
used as the entire vector list intensity.

The fourth position of Vecs can be used to specify color in lieu of intensity ~rvhen
specifying color—blended vectors (refer to PSETCB). Use the following algorithm
to convert the acceptable range of hues (real numbers 0-720 for the PS 300
VECTOR_LIST command) to the expected range of 0-1 for the PVCLIS GSR
routine before sending.

• If the value is less than 0 or greater than 720, clamp it to the nearest
in—range value.

• If the value is greater than or equal to 360, subtract 360.

• Divide the value by 768.

• If the original value was greater than or equal to 360, add .5 to the result of
the division.

This has the effect of mapping hue values in the range (0-360) to (0—.46875), and
values in the range (360-720) to (.5—.96875). Values greater than .46875 and less
than .5 are out of range, and are interpreted as .5 (pure blue).

If the vector class is "tabulated," the fourth position of the VECS is an INDEX.
Users should specify whole numbers 0< index < 127 in this case. The GSRs will
truncate the value supplied to an integer and force the value to be in range IJ to
12 7.

Togeth~e~Y, the subroutines PVcBeg, PVcLis, and PVcEnd implement the PS 300
command:

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

PS 300 IBM VS FORTRAN GSR PVCMAX

Name := VECTOR_LIST Cno corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

SUBROUTINE PVCMAX CMAX, ERRHAND)

DEFINITION

This subroutine must be called before calling PVCLis if creating a creating a
block—normalized vector list with multiple calls to PVCLis. To send a vector Iist,
the user must call:

• PVCBeg

• PUCMax (If making calls to PVCLis and creating ablock—normalized vector
list.)

• PUCLis (This may be called multiple times for vector—normalized vector
lists.)

• PVcEnd (This must be last.)

Together, the above 4 procedures implement the PS 300 command

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE)
N=n <vectors>;

PS 300 FUNCTION SUMMARY — 3

Table 1. Key to Abbreviations for Val id Data Types

KEY To VA L I D DATA TYPE S

Any
B
C
CH
I

Label
M
PL
R
S

Special
V
2D
3D
4D
2x2
3x3
4x3
4x4

Any message
Boolean value
Constant value
Character
Integer
Data input to LABELS node
2x2, 3x3, 4x3, 4x4 matrix
Pick list
Real number
Any string
Special data type
Any vector
2D vector
3D vector
4D vector
Zx2 matrix
3x3 matrix
4x3 matrix
4x4 matrix

Conjunctive/Disjunctive Sets

Some PS 300 functions have conjunctive or disjunctive inputs and outputs. A
function with conjunctive inputs must have a new message on every input
before it will activate. A function with conjunctive outputs will send a message
on every output when the function is activated.

Conversely, a disjunctive—input function does not require a new message on
every input to activate. A disjunctive—output function may not send a message
on each output Cor any output) every time it receives a complete set of input
messages.

The F:ADD function, for example, has conjunctive inputs. A value must be sent
to each of the two inputs before the function will fire. The inputs are then
added together, which produces an output that is the sum of the inputs. The
output is conjunctive. Unlike F:ADD, F:ADDC is a disjunctive—input function;
it does not require anew message on every input.

4 — PS 300 FUNCTION SUMMARY

F:BROUTE, on the other hand, is a conjunctive—input, disjunctive—output
function. Both inputs require messages to activate the function. However, a
message will be sent out only one of the outputs, depending on the value
received on input 1.

F:ACCUMULATE is an example of different sort of disjunctive output. Every
input does not produce an output. The function activates each time a new
message is received on input 1, but the output fires at specified intervals rathE~r
than each time the function is activated.

The following notation is used in the Function Summary to indicate conjunctive
and disjunctive inputs and outputs.

KEY TO CONJUNCTIVE/DISJUNCTIVE SYMBOLS

CC
CD
DC
DD

conjunctive
conjunctive
disjunctive
disjunctive

inputs,
inputs,
inputs,
inputs,

conjunctive outputs
disjunctive outputs
conjunctive outputs
disjunctive outputs

6-10 SYSTEM FUNCTIONS

F: CI

F:CI

Qchopitems ---->
Qprompt

<1>

CH_CIO)
CCIO)

<1>

<2 >

<3>

<4>

<5>

<6>

----> unused

----> unused

----> error messages

----> Qboolean

----> Qprompt

----> unused

This function interprets commands, creating display structures and function networks.
It receives input either from achop/parse function or a Readstream function (if using
the GSRs).

A single parameter is given when this function is instanced (for example H
CIO:=F:CI(4);). This parameter is the "CINUM" and is used to identify all names and
connections this CI makes. When the CI receives an INIT command, it destroys only
those connections it has made and only those structures associated with the names
which have its CINUM.

Note: A name is created when that name is referenced for the first time, even if it has
no associated structure. The CI that created the name is the "owner" of that name,
even if the entity it refers to is created by another CI.

Note: Each function has an output <0> that is used to send error messages (such as
illegal input error messages). The connection from this output is made automatically by
the CI that creates the function. The CI finds the appropriate error function to connect
output <0> to by looking on its own output <3>.

Output 4 sends out a Qboolean with a TRUE value when an INIT command is entered.
This output is connected to the initial function CLEAR_LABELS to clear out the labels
on the keyboard and dials.

DATA STRUCTURES, NAME SUFFIXING, AND COMMANDS 7-1 1

Version A2.V01

7 5.3 Command Status Command

The command:

COMMAND STATUS;

directs the command interpreter to print the status of the command stream. The
message output lists the number of open BEGIN...END and
BEGIN_STRUCTURE...END_STRUCTURE commands, and indicates if the privileged
state is operative. The message also indicates if the optimize structure model is in
effect.

1,5.4 Reboot Command

The command

REBOOT password;

reboots the PS 300 as if from power—up. If no password has been setup, then any
character string will do. Otherwise entering an incorrect password will give an error
message. The REBOOT command can appear anywhere; it can occur within
BEGIN...END and BEGIN_STRUCTURE...END_STRUCTURE as well as without. It may
be named or not. However, it cannot be within a quote or comment.

The command causes the PS 300 to reboot just as if it had been powered up (starts the
confidence tests at "A", etc.).

1,S,S Set Priority

The command

Set Priority of name to i;

sets the execution priority of a function (name) to some integer (i) between 0 and 15.
All user instancible functions and most functions instanced by the system at boot time
have a default value of 8. Lowering a function's priority number raises its priority and
causes it to run before any functions with a larger number. A typical use of this
command is to give to a function a priority number greater than 8 so it runs only when
no other functions are running (i.e. functions at default priority 8). Assigning priority
numbers less than 8 could be potentially very "dangerous," since their execution could
lock up the system.

Since this command will affect the execution of other functions in a function network,
careful consideration must be given to its use. E&S does not recommend the use of this
procedure by anyone who does not have a complete understanding of functions and their
interrelationships.

7-12 DATA STRUCTURES, NAME SUFFIXING, AND COMMANDS

1,S.b Notes On Using the ~ 0 N FI ~ U R E Mode

E&S reserves the right to change the content of the CONFIG.DAT file and the
implementation of the CONFIG.DAT file without prior notice. Use of any named
entities or networks instanced in CONFIGURE mode that have names identical to any
names found in the CONFIG.DAT file will result in unpredictable system behavior. E~~S
will not use any names that are preceded with the three characters CM .

9-2 SYSTEM ERROR MESSAGES

r"1

TABLE 9-1 PS 300 TRAPS and Their Meanings

NUMBER DEFINITION

0 Not enough available memory to come up or handle request.

1 E&S firmware error.

2 Memory corrupted or over—written (could be caused by UWF).

5 Attempt to wait on queue when function is waiting on another device
(CLOCK, I/O)(could be caused by UWF).

6 System errors (see Table 3).

8 Mass memory error if address on LEDs is between 200 and 300;
unexpected interrupt on a vector with no routine, if address is between
300 and 400. For example, if address on LEDs is 22C, error occurred
on memory card 200000-300000. If address is 23C, error occurred on
memory card 300000-400000 and so forth.

9 Utility routine was called which was not included in system link.

10 Memory corrupted or over—written (could be caused by UWF).

11 E&S firmware error.

12 Pascal in —line runtime error: usually caused by Case statement in
Pascal with no Otherwise clause (could be caused by UWF).

PS 340 GRAPHICS FIRMWARE RELEASE NOTES

Version A2.VOy

June, y 986

y. GENERAL 1NTRQDUCTioN

Version A2.V01 of the PS 340 Graphics Firmware supersedes all previous
releases and is the only firmware version now supported by E&S Customer
Engineering. These Release Notes summarize the changes and additions to the
Graphics Firmware and are intended for use with all PS 340 systems supporting
cal I igraphic and/or raster displays.

There are two versions of this PS 340 release, each distributed on a separate
diskette. Both diskettes are included in this release package.

Version A2.V01 PS 340S incorporates new features and changes to previous
releases, This version supports hidden-line rendering and shading operations
and runs on systems w i th a 2K ACP.

Version A2.V01 PS 340E incorporates all new features and changes to previous
releases (same as above) with additional enhancements and capabilities. This
version is supported only on systems with a 4K ACP.

The PS 340E (4K ACP) firmware will boot on a PS 340 with a 2K ACP, but the
system w i I I be unable to perform any rendering and other operations.

You can determine whether your system has a 2K or a 4K ACP by booting the
system using the PS 340E (4K ACP) firmware and entering the following
commands:

Reserve 100000;
X := Surface then y;
Y := Polygon -1,1,0 1,1,0 1,-1 ,0 -1,-1 ,0;
Display X;
Send f i x(3) to < 1 > x;

2 PS 340 Release Notes

If the PS 340 vector screen goes blank, the system has a 2K ACP. The screen
goes blank because the ACP has referenced control store that does not exist
and has stopped traversing data structures.

These R e I ease Notes sum mar i ze the changes and additions to the PS 340
Graphics Firmware and are organized as follows. Section 3 discusses
modifications in the PS 340 Graphics Firmware that are incorporated in both
PS 340S and PS 340E versions (2K ACP and 4K ACP versions). All PS 340
users should read this section. Section 4 gives information on enhancements
and new capabilities in the PS 340 that are incorporated only in version
PS 340E (4K ACP users only). Section 5 gives programming examples and
diagrams.

Formal change pages for the Command and Function Summaries in the PS 300
Document Set are provided with this release. Please discard the old pages and
replace with these new pages.

Before you use the new firmware, read these Release Notes carefully and be
sure you understand the differences between this and previous releases. Also
read the PS 300 Release notes included with this Release package.

Direct your questions and comments to the Evans &Sutherland's Customer
Engineering Hotline 1-800-582-4375 (except Utah). Within Utah, customers
shou I d ca I 1582-5847.

2. RELEASE PACKAGE CONTENTS

This Release Package contains the following items.

• One copy of the PS 340 Graphics Firmware supporting systems with 2K.
ACP.

• One copy of the PS 340E Graphics Firmware supporting systems with 4K.
ACP.

• A magnetic tape with all PS 300 graphics support routines including all
updated PS 340 FORTRAN and Pasca I Routines.

• One copy of the Diagnostic Utility Diskette.

• Change pages for the PS 300 Command and Function Sum mar i es supporting
PS 340 Graphics Firmware, Version A2.V01.

• PS 300 Graphics Firmware Release Notes.

• PS 340 Graphics Firmware Release Notes.

PS 340 Release Notes 3

3. MODIFICATIONS IN THE PS 340 GRAPHICS FIRMWARE

The following changes to the previous A1.V02 release are incorporated in both
the PS 340S and PS 340E versions of the firmware.

3.1 New Shading Algorithm

In the previous PS 340 release, when you requested a shaded image to be
displayed on the raster screen, a hidden line rendering of the object was
displayed on the cal I igraphic screen at the same time. This was because the
same algorithm was used to compute both hidden-I ine and shaded-image
renderings.

In the A2.V01 release, the algorithm used to produce shaded images on the
raster screen is araster-oriented algorithm which is completely separate from
the hidden-line algorithm used to produce hidden-line pictures on the
cal I igraphic screen.

After requesting a shaded image on the raster display (sending a fix(5), fix(6),
fix(7), or fix($) to input <1 > of the SOLID_RENDERING or SURFACE_
RENDERING node), the calligraphic screen will go blank while the image is
being painted on the raster display. After the shaded image has been
completely painted on the raster screen, the original object (rather than a
hidden-I ine object) w i I I be displayed on the cal I igraphic screen.

3.2 New Shading Features

Following are changes to the way shaded images were produced in previous
versions of the firmware.

~ A type of Gouraud shading has been added as a shading rendering style.
This style of shading is obtained by sending a fix(8) to input <1> of the
SOLID RENDERING or SURFACE RENDERING node. Sending a fix(7) to
input <1> of the SOLID_RENDERING or SURFACE RENDERING node
produces a type of Phong shading as before. Both styles of shading will
produce a smooth shading of the object if you supply normals with each
vertex of the polygon. The Gouraud shading is faster but does not produce
the quality of picture that the Phong shading will produce.

• You can now choose between producing an object with jagged po I ygon
edges at a quick rate, or producing an object with smoother edges at a
slower rate. This control is accomplished through input <5> of
SHADINGENVIRONMENT:

4 PS 340 Release Notes

Sending fix(0) to input <5> of SHADINGENVIRONMENT produces no
edge-smoothing and is the fastest shading option.

Sending fix(1) to input <5> of SHADINGENVIRONMENT produces
smooth edges but may not smooth along edges of interpenetrating
polygons or correctly resolve obscurity between surfaces that are
extremely close. This has a speed intermediate between a fix(0) and a
f ix(2).

Sending fix(2) to input <5> of SHADINGENVIRONMENT produces
edge-smoothing and is slower.

3.3 Transparent Polygon Attribute

Polygons may now have a transparent attribute. To accomplish this, the form
of the ATTRIBUTE command has been changed to:

[COLOR h[,sL,i]]] [DIFFUSE d] [SPECULAR s] [OPAQUE t]

where t refers to a real number between 0 and 1.

The opaque specifier [t] in the ATTRIBUTE command allows the specification
of a transparency level and is input as a real number between 0 and '1, with 1
being fully opaque and 0 be i ng fully transparent .

As t decreases from 1 to 0, more of the color of the obscured objects) w i I I
show through. At t=0, the transparent polygon becomes completely invisible.
If no opaque attribute is specified, the default is ~ (fully opaque).

Polygons that are rendered as transparent have no color of their own, but
merely f i Iter the color of objects appearing behind them. This is according to
to the rule that each of the red, green, and blue components of the object
behind is multiplied by the red, green, and blue components of the transparent
polygon. This means that a transparent object rendered over a black
background w i I I be invisible. This also means that a purely blue transparent
object rendered over a purely red object, w i I I make the red object look more
black (depending on the value of the Opaque specifier).

There are no specular highlights available on transparent objects.

To show polygon orientation relative to the eye point, the color which is
transmitted through the transparent object is darkened according to the
z-component of a surface normal . This means that with Phong, Gouraud, and
flat shading, as the object bends away from the user, the transmitted color
becomes darker.

PS 340 Release Notes 5

In Phong shading, the surface normal used is the normal derived by
interpolating the normals you supply at each vertex. In flat shading, the
normal used is the vector perpendicular to the polygon. In Gouraud shading
the degree of light which is transmitted is derived by first calculating the
degree of I fight transmitted at the vertices using the normal you supply and
then interpolating between the vertices. In wash shading, no surface normal is
used and no I fights are used.

To render any objects as transparent, you must at some time prior to rendering
send a TRUE to input <~11> of SHADINGENVIRONMENT. This is a new input
that allows you to turn on (or off) transparency. Sending a TRUE to input <11 >
w i I I cause only the transparent objects to be rendered transparent. Sending a
FALSE to input <11 > of SHADINGENVIRONMENT will cause a!I objects to be
rendered as fully opaque, regardless of their attributes.

The node created with the ATTRIBUTES command has two new inputs <4> and
<14>. Both inputs accept a real number to update the opaque value of the
polygon's attributes, for the two sides of the polygon.

3.4 Toggling Between the Rendered and the Original Object

Requesting hidden-line pictures, backface pictures, sectioned pictures or
cross-sectioned pictures (sending a f ix(1), f ix(2), f ix(3), or f ix(4) to input <~ > of
the SOLID RENDERING or SURFACE_RENDERING node) operates as in
previous releases. Toggling between the current rendering and the original
object (sending a fix(0) to input <~1> of the SOLID_RENDERING ar
SURFACE_RENDERING node) works only after requesting hidden-line
pictures, backface pictures, sectioned pictures or cross-sectioned pictures.

3.5 Default Color Look-up Table

This release of the PS 340 firmware includes a new gamma-corrected color
look-up table. (This look-up table compensates for the non-1 inear response of
the phosphors in the raster display.) This new table is the default table which
w i I I be loaded at boot time. Some users may have appl i cat ions dependent on
the previous look-up table or wish to use the previous table as the default. If
you want to use the previous look-up table, you can do so by renam ing a f i le on
Disk B of the PS 340 firmware, while running the PS 300 diagnostic operating
system.

6 PS 340 Release Notes

The new default table is named "LUT.DAT" The old linear look-up table is
named "LINLUT.DAT". To use the old linear look-up table as the default
table, boot the diagnostic utility diskette and enter the Utility program. Type
the command:

"RENAME LINLUT.DAT LUT.DAT"

AI I subsequent boots of the firmware w i I I load the old I inear look-up table.
The new table can be re-enabled by renaming the file again with the
command:

"RENAME LUT.DAT LINLUT.DAT"

3.6 SHADINGENVIRONMENT Function Additions

Inputs <8> through <~15> have been added to the SHADINGENVIRONMENT
function.

User Abort: Input <8> accepts any message and causes an abort to occur for
the current rendering. Sometimes the hidden-line algorithm can take a long
time to run to completion. This input allows you to exit before the rendering
is complete. This functional ity only applies to images on the calligraphic
screen. I t does not apply to images on the raster screen.

Clear/Overlay Control: Input <9> accepts a Boolean which determines whether
the screen is to be cleared with the current background color before the
rendering is done, or whether the requested rendering w i I I overlay the object
already displayed on the raster screen.

Sending a TRUE to input <9> of SHADINGENVIRONMENT causes the current
rendered object to be displayed on top of the previous picture displayed on the
the raster screen. Sending a FALSE to input <9> of SHADINGENVI RONMENT
causes the screen to be c! eared with the current background color before the
rendering is done. The default is false.

Opaque (Transparency) Control: Input <11 > accepts a Boolean which allows you
to turn off (or on) the transparency assigned to the polygon with the OPAQUE
clause of the attribute command. To render polygons as transparent, at some
time prior to the rendering, you must send a TRUE to input <11 >. Sending a
FALSE to input <11 > w i I I cause al I objects to be rendered as fully opaque,
regardless of their attributes. The default is false.

PS 340 Release Notes 7

Specular Highlight Control: Input <12> accepts a Boolean which allows you to
turn off (or on) specular highlights for shading on the raster screen.

Flat, Gouraud, and Phong shading in this new release ai i use the same shading
equation. This means that multiple I fight sources are processed in each case
and that specular highlights are calculated. Specular highlights may appear
strange in Gouraud and flat shading, so there is an added option to turn off (or
on) specular highlights. Sending FALSE to input <12> of
SHADINGENVIRONMENT turns off the specular highlight (without requiring a
change in the diffuse contribution to the shading equation). Sending TRUE to
input <~2> of SHADINGENVIRONMENT turns on the specular highlights. The
def au I t i s true.

Functionality associated with new inputs <10>, <13>, <14>, and <~ 5> is not
supported under 2K ACP systems and so is not discussed until Section 4 of
these Release Notes.

4. ENHANCEMENTS AND NEW CAPABILITIES IN THE PS 340 GRAPHICS
FIRMWARE

The following changes to the A1.V02 release are incorporated only in the
PS 340E version of the firmware. PS 340E firmware is supported only by
systems with a 4K ACP.

4.1 Polygon Color Interpolation

You can now specify color at the vertices of a polygon to provide color
interpolation across the polygon. To invoke this option, you must f first specify
the color in the polygon command. To accomplish this, the vertex definition in
the polygon command has been changed to:

[Sl x,Y,z LN x,y,zl [C h[,s[,il]]

where

C - indicates a color to be assigned to the vertex. This color w i I I be
interpolated across the polygon to the other vertices.

h, s, i -are coordinates of the Hue-Saturation-Intensity color system.

8 PS 340 Release Notes

Polygons may be solidly colored by specifying a color through the attributes
command or the colors may be assigned to the vertices by giving a color with
each vertex specified. The color is specified by giving, first, the vertex and
then, the color (h, s, i).. If just the hue and saturation are given, the intensity
will default to ~ . if dust the hue value ~s given, the saturation and intensity
will default to 1. If no vertex colors are given, the vertex colors will default to
those specified in the attribute clause.

Vertex colors must be specified for al I vertices of a polygon or for none of
them. However, as with normals, some polygons may have color at thei r
vertices while other polygons may not have color at their vertices. This means
that it is possible to have some objects in the picture color interpolated, while
others are not.

Although color of polygon vertices is specified h, s, i, the colors are linearly
interpolated across the vertices in the Red-Green-Blue color system. If colors
are not interpolating the way you would like them to be add more vertices to
the polygon, or break up large solid volumes into smaller sub-volumes and
assign the desired colors to the new vertices in the object.

You can specify color for a polygon with both the ATTRIBUTES command and
the color by vertex specification. A new input to the
SHADINGENVIRONMENT function allows you to switch between
attribute-defined color and vertex-defined color. Input <~ 0> of
SHADINGENVIRONMENT accepts a Boolean to determine how color will be
specified. To use vertex colors rather than surface attributes, send TRUE to
input <~10> of SHADINGENVIRONMENT. To return to using the attributes
specified in the ATTRIBUTE command, send FALSE to input <10> of
SHADINGENVIRONMENT. The default is false.

Refer to Section 5 for a programming example showing how to specify vertex
colors to provide color interpolation across a polygon.

4.2 SHADINGENVIRONMENT Function Additions

Some of the inputs to the SHADINGENVIRONMENT FUNCTION have been
mentioned throughout these release notes. The following I ist describes al I of
the new SHADINGENVIRONMNET inputs supported by 4K ACP systems.

User Abort: Input <8> accepts any message and causes an abort to occur for
the current hidden-I ine rendering. Sometimes the cal I igraphic hidden-I ine
algorithm can take a long time to run to completion. This input allows you to
exit before the rendering is complete.

~PS 340 Release Notes 9

Refresh/Overlay Control: Input <9> accepts a Boolean which determines
whether the screen is to be cleared with the current background color before
the rendering is done, or whether the requested rendering w i I I overlay the
object already displayed on the raster screen.

Sending a TRUE to input <9> of SHADINGENVIRONMENT causes the current
rendered object to be displayed on top of the current picture displayed on the
the raster screen. Sending a FALSE to input <9> of SHADINGENVIRONMENT
causes the screen to be cleared with the current background color before the
rendering i s done.

Color by Vertex Control: Input <10> accepts a Boolean which turns off (or on)
the vertex colors. The use of the color at the vertex rather than the color
specified in the ATTRIBUTES command is control led by sending to this input.
To use the vertex colors defined this way rather than the color defined in the
ATTRIBUTES, send TRUE to input <10>. Send FALSE to this input to return
to using the color specified by the ATTRIBUTES command. (This feature is
for 4K ACP systems only). The default is false.

Opaque (Transparency) Control: Input <11 > accepts a Boolean which allows you
to turn off (or on) the transparency assigned to the polygon with the OPAQUE
clause of the attribute command. To render polygons as transparent, at some
time prior to the rendering, you must send a TRUE to input <11 >. Sending a
FALSE to input <11 > w i I I cause al I objects to be rendered as fully opaque,
regardless of their attributes.

Specular Highlight Control : Input <12> accepts a Boolean which allows you to
turn on (or off) specular highlights. Flat, Gouraud, and Phong shading al I use
the same shading equation, so for al I types of shading, multiple I fight sources
are processed in each case and specular highlights are calculated. Specular
highs fights may appear strange in Gouraud or flat shading. In Gouraud shading,
the highlights may cause bright horizontal bands to appear inside the polygons.

Blending (near in Z surf aces) Control: Input <13> accepts a Boolean which
turns off (or on) the color-blending used for correct spherical rendering.
Sending a TRUE to input <13> turns ON this special color blending. Sending a
FALSE to input <13> turns OFF special color-blending. (This feature is for 4K
ACP systems only.) The default is false.

Spheres and Lines Attribute Table Update: Input <14> accepts the name of a
vector I fist to update attributes for spheres and I fines (4K ACP only). The
spheres and lines PS 340 enhancement is explained in Section 4.3.

~ 0 PS 340 Release Notes

Raster Lines Z-value Control: Input <~15> accepts a real number in the range
of 0-~1 which is added to the z-values of I ines in raster renderings. Sending a 0
to this input will leave lines in their original z position. Sending a ~ to this
input w i I I force I ines to be in front of everything else in the image. This
feature may be desirable when rendering I ines exactly along polygon edges.
Leaving I ines at they r original z-values w ~ I I cause obscure ty problems with the
edges of the the polygons. By adding an offset to the I ines' z values, this
obscurity problem is more easily resolved. (This features is for 4K ACP only.)
The def au I t i s 0.

4.3 Spheres and Lines Capabi I ities

Spherical rendering (primarily used in molecular modeling) and raster-I ines
(primarily used for labeling) have now been incorporated with the the standard
PS 340 raster rendering capabilities supported under 4K ACP systems. Spheres
and raster I ines are represented as vector I fists instead of an explicit PS 300
data type. Spheres are shaded consistent with the Phong shading style,
allowing multiple colored light sources, specular reflections, and depth cueing.

1f "wash" shading is selected for polygons, spheres in the same rendering w i I i
be rendered with just one light source at the default position (straight on).

Since spheres are represented as vector lists, no color interpolation or
transparency is supported. Lines are rendered with their defined color with no
shading, but may have depth-cueing applied. H idden-element removal with
spheres, I ines, and polygons has been accomplished w i th a common z-buffer
algorithm.

• Defining Raster Spheres and Lines

Since there are no explicit PS 300 data types for representing spheres or
raster I ines, you do not place sphere or raster-I ine data under a rendering
operation node.

To display I ine data on the raster display, a tabulated vector I fist (3D
tabulated vector) must be created. The "P" and "L" indicators specify the
"moves" and "draws" for raster-I ine renderings just as they do for
cal I igraphic display. For spherical data, a dots or itemized vector I fist (3D
tabulated vector) must be created where each x, y, z is interpreted as a
spherical center.

PS 340 Release Notes 1'1

These vector lists must be tied to F:XFORMDATA functions which are
connected directly to inputs in the SOLID_RENDERING node. Inputs <3>,
<4>, and <5> have been added to the rendering node to accommodate
sphere and I ine data. Input <3> of the rendering node accepts a
transformed vector list (from output<1 > of F:XFORMDATA} and interprets
the vectors as "moves" and "draws" for raster-I ine rendering. Similarly,
input <4> of the rendering node accepts a transformed vector I ist and
interprets each vector as an x, y, z spherical center for raster rendering.
Input <5> of the renderin5 node accepts the original vector I ist to enable
accurate scaling of the rendering. These inputs are explained in detai I in
the following sections.

• Attribute Table

The attributes for lines (color) and spheres (radius, color, diffuse, specular)
are stored in a default table created at system boot up. This table can be
modified via <input> ~4 of the SHADINGENVIRONMENT function. The
table has the following components:

Hue Saturation Intensity Radius Diffuse Specular

Hue is a real number in the range 0 to 360. Saturation and intensity are
real numbers in the range 0 to 1. Radius is a real number greater than 0.
Diffuse is a real number in the range 0 to ~ . Specular is an integer in the
range 0 to 255.

The table is initialized as follows:

INDEX Hue Sat Intensit Radius Diffuse Secular
0 0 0 0.5 1.8 0.7 4 (Grey)
1 0 0 1 1.2 0.7 4 (White)
2 120 1 1 1.35 0.7 4 (Red)
3 240 1 1 1.8 0.7 4 (Green)
4 0 1 1 1.8 0.7 4 (Blue)
5 180 1 1 1.7 0.7 4 (Yellow)
6 0 0 0.7 1.8 0.7 4 (Grey)
7 300 1 1 2.15 0.7 4 (Cyan)
8 60 1 1 1.8 0.7 4 (Magenta)

9-127 0 0 1 1.8 0.7 4 (White)

Spheres use all six of these components. Lines use only the hue, saturation,
and intensity components.

The t field of each 3D tabulated vector is used as an index into this table.
The table contains 128 entries (0-127).

12 PS 340 Release Notes

For example, the following vector I ist represents three spheres with the
color indicated.

SPHERE := VECtor list TABulated N = 3
P 1,2,3 t = 5 {yellow sphere}
L 4,5,6 t = 6 {grey sphere}
L 7,8,9 t = 7 {cyan sphere}

The following example represents a square with sides of the indicated
colors.

RASTERLINE := VEC TAB N = 5
P 0,1,0
L 0,0,0 t = 5 {yellow}
L 1,0,0 t = 2 {red}
L 1,1,0 t = 3 {green}
L 0,1,0 t = 4 {blue}

NOTE

Lines use the tabulated index of the point drawn "to" and
not the point drawn "from." Thus, the tabulated index of
position vectors is ignored and may be omitted.

• Updating the Attribute Table

The attribute table may be updated by encoding the table entries into a
PS 300 tabulated vector I ist and then sending the name of the vector I ist to
<14>SHADINGENVIRONMENT. The six table components are encoded into
two consecutive 3D vectors of the vector list. Hue, saturation, and
intensity are encoded into the first x, y, z, respectively. Radius, diffuse,
and specular are encoded into the second x, y, z, respectively. The table
index is encoded into the t f field of the second vector.

For example the following vector I fist would be used to update attribute
t ab I e entry 5

ATTRIBUTE_TABLE := VEC TAB N = 2
150,0.5,1 5.0,0.3,2 t = 5;

Updating would be accomplished by the command:

@C SEND 'ATTRIBUTE_TABLE' TO <14>SHADINGENVIRONMENT;

PS 340 Release Notes 13

Note that more than one table entry may be encoded into a vector I ist.
The following vector list would be used to update attribute table entries 5,
6 , and 7

ATTRIBUTE_TABLE := VEC TAB N = 6
0,1,1 2.0,0.5,4 t= 5
120,1,1 4.0,0.8,9 t = 6
240,1,1 3.0,0.3,2 t = 7

If you change the attribute table (using the above command) to the image
of the three atoms defined in the example on the previous page, the yellow,
grey, and cyan spheres would change to a small blue sphere, a large, dull,
red sphere, and a shiny, medium-sized green sphere.

• Spherical Radii Scaling

To app I y the correct radii scaling factor, the rendering node must examine
the original or untransformed data. You must supply the name of the
vector list representing the spherical data on input <5> of the rendering
node. The name is sent as a string in single quotes.

• Sphere and Line Constraints

Window Restriction - For spheres to be rendered correctly, a cubical
orthographic projection must be used (i.e., WINDOW command). Spherical
renderings with perspective projections or any other non-cubical
orthographic projections will not be displayed correctly.

Viewport Restriction - If spheres are to be rendered in conjunction with
either I fines or polygons, then only the following raster viewport should be
used

Xleft = 64
Y bot tom = -32

Xright = 575
Y t op = 479

The command "SEND V3D(64,-32,511) to <3>SHADlNGENVIRONMENT;"
will set this raster viewport.

Lines and/or polygons can be rendered correctly in any raster viewport.
Spheres alone can be rendered correctly in any raster viewport.

14 PS 340 Release Notes

• Edge-smoothing Mode for Spheres and Lines

Input <5> of SHADINGENVIRONMENT accepts an integer defining the
level of edge-smoothing. For I ines and spheres to be rendered correctly, a
'1 or a 2 should be sent to this input. A value of 0 for edge-smoothing may
result in incorrect renderings.

• Function Network Considerations

Two potential timing problems exist with triggering the rendering node.
Input <1 > of the rendering node is the only active input. Inputs <3> and <4>
which accept transformed data for rendering I ines and spheres are constant
inputs. (These inputs are constant inputs and initialized to NIL so that
application programs written prior to A2. V01 w i 1 I work without any
modifications.) Since inputs <3> and <4> are constant inputs, you must
guarantee that they have updated before the trigger is sent to input <1 > of
the rendering node. This is accomplished using the F:SYNC(n) function.

F:SYNC(n) sends its outputs in the order ~ to n. By connecting outputs 1 to
n-~1 of F:SYNC(n) to the constant inputs of the rendering node and by
connecting output n of t-:SYNC(n) to input <1 > of the rendering node, you
can guarantee that the constant inputs w i I I be updated before the rendering
node is triggered. This is shown in the following example.

SOLID RENDERING

ine_xformdata_output---->

sphere_xformdata_output---->

rendering_trigger_value >

F:SYNC(3)

<1> <1>

<2> <2>

<3> <3>

<~> <1>

<2>

<3>

<4>

<5>

The second potential timing problem deals with the triggering of
F:XFORMDATA. An instance of F:XFORMDATA must not be triggered
while it or any other instance of F:XFORMDATA is still active. Thus when
using multiple instances of F:XFORMDATA, one instance should be used as
the trigger for the next. (See the following example.)

PS 340 Release Notes 15

F:SYNC(3)

F:XFORMDATA

<1> <1>

<2>

F:XFORMDATA

<1> <1>

<2>

• Naming Transformed Data

--~ <~> <~1>

<2> <2>

You must be aware of one other restriction when using F:XFORMDATA.
Input <3> of F:XFORMDATA typically allows you to specify a name for the
transformed data. However when using F:XFORMDATA in conjunction
with a rendering node, this input must be left blank.

cauT~oN

Naming the transformed data and then sending it to a
rendering node, will result in a system failure.

F:CONCATXDATA(n) accepts up to ~ 27 transformed vector I fists (output
from XFORMDATA functions) and concatenates them into a single
transformed vector list. It is used to avoid the maximum vector restriction
imposed on the output of F:XFORMDATA. The XFORMDATA function
will return a maximum of 2048 vectors. This restriction passes on to the
rendering node since the output of the XFORMDATA function is normally
connected directly to the rendering node. To obtain a rendering of greater
than 2048 vectors (or spheres), the output of multiple instances of
XFORMDATA must be concatenated into a single transformed vector I fist
which can then be sent to the rendering node.

16 PS 340 Release Notes

F:CONCATXDATA(n)

xformdatal--->

xformdatal--->

xformdata--->

<1>

<2>

<n>

<1> --> to SOLID RENDERING

As previously discussed, multiple instances of F:XFORMDATA must be
I inked together for triggering purposes to ensure that one instance
completes before the next one commences.

For example, assume that in the following network, the vector I ist
SPHERES contains 5,000 vectors.

FORRAST := BEGIN STRUCTURE
GETXF := XFORM VEC;
INSTANCE OF SPHERES;

END STRUCTURE;

One instance of XFORMDATA could retrieve the first 2048 transformed
vectors of MOLECULE (vectors 1-2048). A second execution of
XFORMDATA could retrieve the second 2048 transformed vectors (vectors
2049 - 4096). And a third execution of XFORMDATA could retrieve the
last 904 vectors (vectors 4097 - 5000). An illustration of this network
follows.

PS 34Q R e I ease Notes ~ 7

F:XFORMDATA

-->

'FORRAST.GETXF'-->

-->

1 -->

2048 -->

<1>
<1>

<2>

<3>

<4>

<5>

---+----

--->

'FORRAST.GETXF'-->

-->

2049 -->

2048 -->

<1>
<1>

<2>

<3>

<4>

<5>

--->

'FORRAST.GETXF'-->

-->

4097 -->

904 -->

<1>
<1>

<2>

<3>

<4>

<5>

F:CONCATXDATA(n)

<1>

<2>

<3>

18 PS 340 Release Notes

V

5. PROGRAMMING EXAMPLES

Following are two programming examples showing color by vertex and
transparency specifications and spheres and I fines rendering on the raster
screen. These examples are contained on the magnetic distribution tape
included with this release.

5.y Specifying Vertex Color

The first polygon, the top of the cylinder, has no normals or vertex colors
specified. Since no vertex colors have been specified, and no attribute is given
either, the color of the polygon will be given the default attribute which is
white.

The second polygon, the bottom of the cylinder, has no normals either. Only
vertex colors have been specified. Since no normals are specified the normals
default to the normal of the polygon (computed in the PS 340) and no
smoothing is done across either of these f i rst two polygons. Since an attribute
has been given far this polygon, this polygon w i I I be rendered w i th a f lat red
color if the vertex colors have been globally turned off (by sending a FALSE to
input <10>SHADINGENVIRONMENT). If vertex colors have been turned on,
this polygon will exhibit all the colors present in the color wheel, all blended
smoothly with each other and interpolating to a shade of light-grey in the
middle of the cylinder.

The third polygon, one of the sides of the cylinder, has soft edges (S) for
producing hidden-I fine pictures on the cal I igraphic display. Normals are
specified so this polygon w i I I be rendered smoothly if you render this with the
Gouraud or Phong shading style. The vertex colors have also been specified.
Notice that only the hue value has been given, the saturation and intensity will
default to 1.0. If vertex colors have been turned off , the polygon w i I I be
rendered with the attribute that i t has been given, cyan.

The fourth polygon, an adjacent side, also has normals and vertex colors
specified. In this case, only the hue and saturation values have been given.
The intensity value wi11 default to 1.0. If vertex colors have been turned off,
the polygon w i I I be rendered with the attribute that i t has been given,
magenta. Notice that the attribute magenta is transparent with an opaque
specification of 0.5. This means that if transparency is turned ON (by sending
TRUE to -input <11 > of SHADINGENVIRONMENT), this polygon will appear
transparent with a filtering color specified by either the attribute magenta or
the vertex colors (depending on whether or not vertex colors have been turned
off).

The rest of the polygons all have normals, and vertex colors fully specified
with hue, saturation, and intensity values.

PS 340 Release Notes 19

BLUE := ATTR
MAGENTA := ATTR
PURPLE := ATTR
RED := ATTR
ORANGE := ATTR
YELLOW := ATTR
GREEN := ATTR
TURQUOISE := ATTR
CYAN := ATTR
WHITE := ATTR
GREY := ATTR
BLACK := ATTR

CYLINDER :_
POLYGON

BUTES COLOR 0;
BUTES COLOR 60 DIFFUSE 0.8 SPECULAR 4 OPAQUE 0.5;
BUTES COLOR 90;
BUTES COLOR 120;
BUTES COLOR 150 DIFFUSE 0.8 SPECULAR 4 OPAQUE 0.5;
BUTES COLOR 180;
BUTES COLOR 240 DIFFUSE 0.8 SPECULAR 4 OPAQUE 0.5;
BUTES COLOR 270;
BUTES COLOR 300;
BUTES COLOR 0, 0, 1 ;
BUTES COLOR 0, 0, 0.5;
BUTES COLOR 0, 0, 0;

1.00000, 0.00000, 0.50000
0.95106, 0.30902, 0.50000
0.80902, 0.58779, 0.50000
0.58779, 0.80902, 0.50000
0.30902, 0.95106, 0.50000
0.00000, 1 .00000, 0.50000
-0.30902, 0.95106, 0.50000
-0.58779, 0.80902, 0.50000
-0.80902, 0.58779, 0.5U000
-0.95106, 0.30902, 0.50000
-1.00000, 0.00000, 0.50000
-0.95106, -0.30902, 0.50000
-0.80902, -0.58779, 0.50000
-0.58779, -0.80902, 0.50000
-0.30902, -0.95106, 0.50000
0.00000, -1 .00000, 0.50000
0.30902, -0.95106, 0.50000
0.58779, -0.80902, 0.50000
0.80902, -0.58779, 0.50000
0.95106, -0.30902, 0.50000

20 PS 340 Release Notes

WITH ATTRIBUTES RED
POLYGON

0.95106, -0.30902, -0.50000 C 2$8.00003, 1.00000, 1 .00000
0.80902, -0.58779, -0.50000 C 306.00006, 1.00000, 1 .00000
0.58779, -0.80902, -0.50000 C 324.00003, 1.00000, 1 .00000
0.30902, -0.95106, -0.50000 C 342.00003, 1.00000, 1 .00000
0.00000, -1.00000, -0.50000 C 360.00003, 1.00000, 1 .00000
-0.30902, -0.95106, -0.50000 C 17.99998, 1.00000, 1 .00000
-0.58779, -0.80902, -0.50000 C 36.00000, 1 .00000, 1 .00000
-0.80902, -0.58779, -0.50000 C 53.99999, 1.00000, 1 .00000
-0.95106, -0.30902, -0.50000 C 71.99998, 1.00000, 1 .00000
-1 .00000, 0.00000, -0.50000 C 90.00001 , 1 .00000, 1 .00000
-0.95106, 0.30902, -0.50000 C 108.00002, 1 .00000, 1 .00000
-0.80902, 0.58779, -0.50000 C 126.00001 , 1 .00000, 1 .00000
-0.58779, 0.80902, -0.50000 C 144.00000, 1.00000, 1 .00000
-0.30902, 0.95106, -0.50000 C 162.00000, 1.00000, 1 .00000
0.00000, 1.00000, -0.50000 C 180.00000, 1.00000, 1.00000
0.30902,. 0.95106, -0.50000 C 198.00002, 1.00000, 1 .00000
0.58779, 0.80902, -0.50000 C 216.00000, 1 .00000, 1 .00000
0.80902, 0.58779, -0.50000 C 234.00002, 1.00000, 1.00000
0.95106, 0.30902, -0.50000 C 252.00002, 1 .00000, 1 .00000
1 .00000, 0.00000, -0.50000 C 270.00000, 1 .00000, 1 .00000

WITH ATTRIBUTES CYAN
POLYGON
S 1.00000, 0.00000, -0.50000 N 1 .97538, 0.00000, -1.00000

C 270.00000
0.95106, 0.30902, -0.50000 N 1.87869, 0.61042, -1.00000

c

252.00002
S 0.95106, 0.30902, 0.50000 N 1.87869, 0.61042, 1 .00000

c

252.00002
1 .00000, 0.00000, 0.50000 N 1 .97538, 0.00000, 1 .00000

C 270.00000

WITH ATTRIBUTES MAGENTA
POLYGON

0.95106, 0.30902, -0.50000 N 1 .87869, 0.61042, -1 .00000
C 252.00002, 1.00000

0.80902, 0.58779, -0.50000 N 1 .59811 , 1 .16110, -1 .00000
C 234.00002, 1.00000

S 0.80902, 0.58779, 0.50000 N 1 .59811 , 1 .16110, 1 .00000
C 234.00002, 1.00000

0.95106, 0.30902, 0.50000 N 1.87869, 0.61042, 1.00000
C 252.00002, 1.00000

PS 340 Release Notes 2'1

WITH ATTRIBUTES ORANGE
POLYGON

0.80902, 0.58779, -0.50000 N 1 .59811 , 1 .16110, -1 .00000
C 234.00002, 1 .00000, 1 .00000

0.58779, 0.80902, -0.50000 N 1 .16110, 1 .59811 , -1 .00000
c

21s.00000,

1.00000, 1 .00000
S 0.58779, 0.80902, 0.50000 N 1.16110, 1 .59811, 1 .00000

c

216.00000, 1
.0000a,

1 .00000
0.80902, 0.58779, 0.5000o N 1.59811, 1.16110, 1 .00000

c

234.O0002, 1 .00000, 1 .OoaoO

WITH ATTRIBUTES GREEN
POLYGON

0.58779, 0.80902, -0.50000 N 1 .16110, 1 .59811 , -1 .00000
C 216.00000, 1 .00000, 1 .00000

0.30902, 0.95106, -0.50000 N 0.61042, 1 .87869, -1.00000
C 198.00002, 1 .00000, 1 .00000

S 0.30902, 0.95106, 0.50000 N 0.61042, 1 .87869, 1 .00000
C 198.00002, 1 .00000, 1 .00000

0.58779, 0.80902, 0.50000 N 1 .16110, 1 .59811 , 1 .00000
C 216.00000, 1 .00000, 1 .00000

WITH ATTRIBUTES YELLOW
POLYGON

0.30902, 0.95106, -0.50000 N 0.61042, 1 .87869, -1.00000
C 198,00002, 1 .00000, 1 .00000

0.00000, 1 .00000, -0.50000 N 0.00000, 1 .97538, -1 .00000
C 180.00000, 1 .00000, 1 .00000

S 0.00000, 1 .00000, 0.50000 N 0.00000, 1.97538, 1 .00000
C 180.00000, 1.00000, 1 .00000

0.30902, 0.95106, 0.50000 N 0.61042, 1 .87869, 1 .00000
C 198.00002, 1 .00000, 1 .00000

WITH ATTRIBUTES CYAN
POLYGON

0.00000, 1.00000, -0.50000 N 0.00000, 1.97538, -1.00000
C 180.00000, 1 .00000, 1 .00000

-0.30902, 0.95106, -0.50000 N -0.61042, 1 .87869, -1 .00000
C 162.00000, 1 .00000, 1 .00000

S -0.30902, 0.95106, 0.50000 N -0.61042, 1 .87869, 1 .00000
C 162.00000, 1 .00000, i .00000

0.00000, 1.00000, 0.50000 N 0.00000, 1 .97538, 1 .00000
C 180.00000, 1 .00000, 1 .00000

22 PS 340 Release Notes

WITH ATTRIBUTES MAGENTA
POLYGON

-0.30902, 0.95106, -0.50000 N -0.61042, 1.87869, -1.00000
C 162.00000, 1.00000, 1.00000

-0.58779, 0.80902, -0.50000 N -1 .16110, 1 .59811 , -1 .00000
C 144.00000, 1.00000, 1 .00000

S -0.58779, 0.80902, 0.50000 N -1 .16110, 1 .59811 , 1 .00000
C 144.00000, 1.00000, 1.00000

-0.30902, 0.95106, 0.50000 N -0.61042, 1.87869, 1.00000
C 162.00000, 1.00000, 1.00000

WITH ATTRIBUTES ORANGE
POLYGON

-0.58779, 0.80902, -0.50000 N -1 .16110, 1 .59811 , -1 .00000
C 144.00000, 1 .00000, 1.00000

-0.80902, 0.58779, -0.50000 N -1 .59811 , 1 .16110, -1 .00000
C 126.00001 , 1 .00000, 1 .00000

S -0.80902, 0.58779, 0.50000 N -1 .59811 , 1 .16110, 1 .00000
C 126.00001 , 1 .00000, 1.00000

-0.58779, 0.80902, 0.50000 N -1 .16110, 1 .59811 , 1 .00000
C 144.00000, 1 .00000, 1.00000

WITH ATTRIBUTES GREEN
POLYGON

-0.80902, 0.58779, -0.50000 N -1 .59811 , 1 .16110, -1 .00000
C 126.00001 , 1 .00000, 1 .00000

-0.95106, 0.30902, -0.50000 N -1 .87869, 0.61043, -1 .00000
C 108.00002, 1 .00000, 1.00000

S -0.95106, 0.30902, 0.50000 N -1.87869, 0.61043, 1.00000
C 108.00002, 1.00000, 1.00000

-0.80902 , 0.58779 , 0.50000 N -1 .59811 , 1 .16110 , 1 .00000
C 126.00001 , 1 .00000, 1.00000

WITH ATTRIBUTES YELLOW
POLYGON

-0.95106, 0.30902, -0.50000 N -1.87869, 0.61043, -1.00000
C 108.00002, 1 .00000, 1.00000

-1 .00000, 0.00000, -0.50000 N -1 .97538, 0.00000, -1 .00000
C 90.00001 , 1 .00000, 1.00000

S -1.00000, 0.00000, 0.50000 N -1.97538, 0.00000, 1.00000
C 90.00001 , 1 .00000, 1 .00000

-0.95106, 0.30902, 0.50000 N -1 .87869, 0.61043, 1 .00000
C 108.00002, 1.00000, 1.00000

PS 340 Release Notes 23

WITH ATTRIBUTES CYAN
POLYGON

-1 .00000,

-0.95106,

S -0.95106,

-1.00000,

0.00000,

-0.30902,

-0.30902,

0.00000 ,

WITH ATTRIBUTES MAGENTA
POLYGON

-0.95106,

-0.80902,

S -0.80902,

-0.95106,

-0.30902,

-0.58779,

-0.58779,

-0.30902,

WITH ATTRIBUTES ORANGE
POLYGON

-0.80902 ,

-0.58779,

S -0.58779,

-0.80902,

-0.58779,

-0.80902,

-0.80902,

-0.58779,

-0.50000 N
C

-0.50000 N
C

0.50000 N
C

0.50000 N
C

-0.50000 N
C

-0.50000 N
C

0.50000 N
C

0.50000 N
C

-0.50000 N
C

-0.50000 N
C

0.50000 N
C

0.50000 N
C

WITH ATTRIBUTES GREEN
POLYGON

-0.58779, -0.80902, -0.50000

-0.50000

0.50000

0.50000

-0.30902,

S -0.30902,

-0.58779,

-0.95106,

-0.95106,

-0.80902,

-1.97538, 0.00000, -1.00000
90.00001 , 1 .00000 , 1 .00000
-1.87870, -0.61042, -1.00000
71 .99998, 1 .00000, 1 .00000
-1.87870, -0.61042, 1 .00000
71.99998, 1.00000, 1 .00000
-1.97538, 0.00000, 1 .00000
90.00001 , 1 .00000, 1 .00000

-1 .87870, -0.61042, -1 .00000
71 .99998, 1 .00000, 1 .00000
-1 .59811 , -1 .16110 , -1 .00000
53.99999, 1 .00000, 1 .00000
-1 .59811 , -1 .16110, 1 .00000
53.99999, 1.00000, 1 .00000
-1.87870, -0.61042, 1 .00000
71.99998, 1 .00000, 1 .00000

-1 .59$11 , -1 .16110 , -1 .00000
53.99999, 1.00000, 1 .00000
-1 .16110, -1 .59811 , -1 .00000
36.00000, 1 .00000, 1 .00000
-1 .16110, -1 .59811 , 1 .00000
36.00000, 1 .00000, 1 .00000
-1 .59811 , -1 .16110, 1 .00000
53.99999, 1 .00000, 1 .00000

N -1 .16110, -1 .59811 , -1 .00000
C 36.00000, 1 .00000, 1 .00000
N -0.61043, -1.87869, -1.00000
C 17.99998, 1.00000, 1 .00000
N -0.61043, -1.87869, 1 .00000
C 17.99998, 1.00000, 1 .00000
N -1 .16110, -1 .59811 , 1 .00000
C 36.00000, 1.00000, 1.00000

24 PS 340 Release Notes

WITH ATTRIBUTES YELLOW
POLYGON

-0.30902, -0.9510fi, -0.50000 N -0.61043, -1.87869, -1.00000
C 17.99998, 1 .00000, 1 .00000

0.00000, -1.00000, -0.50000 N 0.00000, -1.97538, -1.00000
C 360.00003, 1 .00000, 1.00000

S 0.00000, -1.00000, 0.50000 N 0.00000, -1.97538, 1.00000
C 360.00003, 1 .00000, 1 .00000

-0.30902, -0.95106, 0.50000 N -0.61043, -1.87869, 1 .00000
C 17.99998, 1 .00000, 1 .00000

WITH ATTRIBUTES CYAN
POLYGON

0.00000, -1.00000, -0.50000 N 0.00000, -1.97538, -1.00000
C 360.00003, 1 .00000, 1 .00000

0.30902, -0.95106, -0.50000 N 0.61042, -1.87870, -1.00000
C 342.00003, 1.00000, 1.00000

S 0.30902, -0.95106, 0.50000 N 0.61042, -1 .87870, 1 .00000
C 342.00003, 1.00000, 1.00000

0.00000, -1.00000, 0.50000 N 0.00000, -1.97538, 1.00000
C 360.00003, 1.00000, 1.00000

WITH ATTRIBUTES MAGENTA
POLYGON

0.30902, -0.95106, -0.50000 N 0.61042, -1 .87870, -1 .00000
C 342.00003, 1 .00000, 1.00000

0.5$779, -0.80902, -0.50000 N 1 .16110, -1 .59811 , -1 .00000
C 324.00003, 1.00000, 1.00000

S 0.58779, -0.80902, 0.50000 N 1 .16110, -1.59811 , 1.00000
C 324.00003, 1.00000, 1.00000

0.30902, -0.95106, 0.50000 N 0.61042, -1.87870, 1.00000
C 342.00003, 1 .00000, 1 .00000

WITH ATTRIBUTES ORANGE
POLYGON

0.58779, -0.80902, -0.50000 N 1 .16110, -1 .59811 , -1 .00000
C 324.00003, 1.00000, 1.00000

0.80902, -0.58779, -0.50000 N 1 .59811 , -1 .16110, -1 .00000
C 306.00006, 1.00000, 1.00000

S 0.80902 , -0.58779 , 0.50000 N 1 .59811 , -1 .16110 , 1 .00000
C 306.00006, 1.00000, 1.00000

0.58779, -0.80902, 0.50000 N 1 .16110, -1 .59811 , 1 .00000
C 324.00003, 1.00000, 1.00000

PS 340 R ei ease Notes 25

WITH ATTRIBUTES GREEN
POLYGON

0.80902, -0.58779, -0.50000 N 1 .59811 , -1 .16110, -1 .00000
C 306.00006, 1.00000, 1.00000

0.95106, -0.30902, -0.50000 N 1 .87869, -0.61043, -1.00000
G 288.00003, 1 .00000, 1 .00000

S 0.95106, -0.30902, 0.50000 N 1 .87869, -0.61043, 1 .00000
C 288.00003, 1 .00000, 1 .00000

0.80902, -0.58779, 0.50000 N 1 .59811 , -1 .16110, 1 .00000
C 306.00006, 1.00000, 1.00000

WITH ATTRIBUTES YELLOW
POLYGON

0.95106, -0.30902, -0.50000 N 1 .87869, -0.61043, -1 .00000
C 288.00003, 1.00000, 1.00000

1.00000, 0.00000, -0.50000 N 1.97538, 0.00000, -1.00000
C 270.00003, 1.00000, 1.00000

1.00000, 0.00000, 0.50000 N 1.97538, 0.00000, 1.00000
C 270.00003, 1.00000, 1.00000

0.95106, -0.30902, 0.50000 N 1 .87869, -0.61043, 1 .00000
C 288.00003, 1 .00000, 1 .00000

26 PS 340 Release Notes

5.2 Spheres and Lines Programming Example

Following is a programming example of a function network displaying spheres
and I fines on the raster screen. This network w i I I load and prepare for.
rendering one green I fine segment and four spheres (one red, one blue, and two
green). The spheres are a portion of a molecular model. Sections of this
network which are particularly relevant to lines and spheres are noted with
several asterisks (*********).

initial ize;

{reserve memory for rendering is needed only once per session and is
typical ly included in the Site.Dat fi le executed at boot time}

reserve_working_storage 300000;

{define a sectioning plane which can be rotated independently}

spattributes := attributes;

sect :=begin_s
sectioning_plane;
trans := translate by 0,0,0;
rot := scale by 1;
with attributes spattributes
polygon -0.9,-0.9,0.0 -0.9,0.9,0.0 0.9,0.9,0.0 0.9,-0.9,0.0
polygon 0.1 ,0.0,0.0 0.1 ,0.0,-0.3 0.15,0.0,-0.3 0.0,0.0,-0.45

-0.15,0.0,-0.3 -0.1,0.0,-0.3 -0.1,0.0,0.0
polygon 0.0,0.1 ,0.0 0.0,0.1 ,-0.3 0.0,0.15,-0.3 0.0,0.0,-0.45

0.0,-0.15,-0.3 0.0,-0.1,-0.3 0.0,-0.1,0.0;
end s;

{define a l ight which can be rotated independently}

sunset := begin_structure
persp := fov 90 front=2.2 back=3.6;
look at 0,0,0 from 0,0,-3;
set depth cl ipping off;
rot := scale by 1;
vector 0,0,-.9 0,0,0;
instance sun;
translate 0,0,-.9;
rational polynomial .2,0,8 -.2,-.2,-8 0, .1,4 chords=l5;
rational polynomial .2,0,-8 -.2,-.2,8 0, .1,-4 chords=l5;
vector separate n=15 -.1,0 -.05,0 .05,0 .1,0

0,-.1 0,-.05 0, .05 0, .1
-.0707,-.0707 -.0354,-.0354 .0354, .0354 .0707, .0707
-.0707, .0707 -.0354, .0354 .0354,-.0354 .0707,-.0707;

end structure;

PS 340 Release Notes 27

sun := i l lumination 0,0,-1;

{define a l ight which can be rotated with the object}

moonset :=begin_structure
set depth_cl ipping off;
rot := scale by 1;
vector 0,0,-.9 0,0,0'
instance moon;
translate 0,0,-.9;
rational polynomial .2,0,4 -.2,-.2,-4 0, .1 ,2 chords=l5;
rational polynomial .12,0,4 -.12,-.2,-4 0, .1 ,2 chords=l5;
end structure;

moon := i l lumination 0,0,-1;

{set up a place to redisplay a saved hidden-l ine picture}

disphlview := matrix_4x4 1 ,0,0,0 0,1 ,0,0 0,0,0,0 0,0,1,1 then hiview;

{set up initial display structure}

universe := begin_s;
csm := set condition 1 off;
set contrast 0;
if condition 1 on then rainbow;
if condition 1 off then world;

end s;

rainbow := begin_s;
csm2 := set csm on;
csm3 := set color blending 1 ;
inst world;

end s;

world := begin_s
bits := set condition 1 on;
if condition 1 off then disphlview;
i f condition 1 on;
window x = -1:1 y= -1:1
front boundary = 19
back boundary = 21 ;
from := LOOK AT 0,0,0 FROM 0,0,-20;

set depth cl ipping on;

al ltrans := translate by 0,0,0;
al lrot := scale by 1;

{

instance of l ines;

28 PS 340 Release Notes

instance of spheres;

trans := translate by 0,0,0;
rot := scale by 1 ;
if condition 2 on then sect;
rendering := surface;
{ rendering operate node, initial ly a surface }

if condition 3 on then sunset;
if condition 4 on then moonset;
instance object;
end s;

display universe;

l ines := begin_s
I i nexform := xform vector ;
trans := translate by 0,0,0;
rot := scale by 1 ;
instance of l ine vl ist;

end s;

i ine_vl ist := vec tabulated n = 2
p -1 ,-1 ,0 t = 2
I 1, 1 ,0 t = 3

l inexformdata := f:xformdata;
send 'lines. l inexform' to <2>l inexformdata; { do not name input<3>! }

spheres := begin_s
spherexform := xform vector;
trans := translate by 0,0,0;
rot := scale by 1 ;
instance of sphere_vl ist;

end s;

sphere_vl ist := vec tabulated n = 512
p 0.387,-0.368,-0.051 t=2
-0.574,-0.500,-1.155 t=3

1 0.037 , -1 .170 ,1 .155 t=3
1 0.573 ,1 .170 , 0.398 t =4

give_up_cpu;
give_up_cpu;
send 'sphere_vl ist' to <5>world.rendering; {original vector l ist for }

{ radi i scale factor }

PS 349 Release Notes 29

sphe rex fo rmdata : = f : x fo rmdata ;
send ' sphe res .sphe rex fo rm' to <2>sphe rex fo rmdata ;

network to translate object}

a := f :addc;
connect a<1>:<1>world.trans;
connect a<1>:<2>a;
send v3d(0,0,0) to <2>a;

{network to rotate/scale object}

m := f:cmul ;
connect m<1 > : <1 >wo r I d .rot ;
connect m<1>:<1>m;
send m3d(1,0,0 0,1,0 0,0,1) to <1>m;

{network to translate al l}

aal l := f:addc;
connect aal l<1>:<1>world.al ltrans;
connect aal l<1>:<2>aal l ;
send v3d(0,0,0) to <2>aal l ;

{network to rotate/scale al l}

mal l := f:cmul ;
connect mal l<1>:<1>world.al lrot;
connect mal l<1>:<1>mal l ;
send m3d(1 ,0,0 0,1,0 0,0,1) to <1>mal l ;

{network to translate l ines}

al ines := f:addc;
connect al ines<1>:<1>l ines.trans;
connect al ines<1>:<2>al ines;
send v3d(0,0,0) to <2>al ines;

{network to rotate/scale l ines}

ml ines := f:cmul ;
connect ml ines<1>:<1>l ines.rot;
connect ml ines<1>:<1>ml ines;
send m3d(1 ,0,0 0,1 ,0 0,0,1) to <1>ml fines;

{network to translate spheres}

asphe res : = f :addc ;
connec t asphe res<1 > : <1 >sphe res .trans ;
connect aspheres<1>:<2>aspheres;
send v3d(0,0,0) to <2>aspheres;

3D PS 34o Release Notes

{network to rotate/scale spheres}

mspheres := f:cmul ;
connect mspheres<1>:<1>spheres.rot;
connect mspheres<1>:<1>mspheres;
send m3d(1,0,0 0,1 ,0 0,0,1) to <1>mspheres;

{network to translate sectioning plane}

a2 := f:addc;
connect a2<1>:<1>sect.trans;
connect a2<1>:<2>a2;
send v3d(0,0,0) to <2>a2;

{network to rotate/scale sectioning plane}

m2 := f:cmul ;
connect m2<1>:<1>sect.rot;
connect m2<1>:<1>m2;
send m3d(1,0,0 0,1 ,0 0,0,1) to <1>m2;

{network to rotate sun}

msun : = f : cmu I ;
connect msun<1>:<1>sunset.rot;
connect msun<1>:<1>msun;
send m3d(1,0,0 0,1 ,0 0,0,1) to <1>msun;

{network to rotate moon}

mmoon : = f : cmu I ;
connect mmoon<1>:<1>moonset.rot;
connect mmoon<1>:<1>mmoon;
send m3d(1 ,0,0 0,1 ,0 0,0,1) to <1>mmoon;

{network selecting original or rendered view}

original := f:constant;
Conn o r i g i na I <1 >: <1 >wo r l d .rendering ;
send FALSE to <2>original ; { to switch to original view }
connect dia
connect dia
connect dia
connect dia
connect dia
connect dia
connect dia
connect dia

s<1>:<1>origina
s<2>:<1>origina
s<3>:<1>origina
s<4>:<1>origina
s<5>:<1>origina
s<6>:<1>origina
s<7>:<1>origina
s<8>:<1>origina

PS 340 Release Notes 31

{color network}

tripcolor := f:sync(5);
setup cness true <2>tripcolor;
setup cness true <3>tripcolor;
setup cness true <4> t r i pco I or;
setup cness true <5>tripcolor;
connect tripcolor<2>:<3>shadingenvironment;
connect tripcolor<3>:<7>shadingenvironment;
connect tripcolor<4>:<3>shadingenvironment;
connect tripcolor<5>:<2>shadingenvironment;
send v3d(0,440,39) to <2> t r i pcolor;
send false to <3>tripcolor;
send v3d(0,0,0) to <5>tripcolor;

suncolor := f:accumulate;
connect suncolor<1 > : <2>sun;
connect suncolor<1 >:<2>shadingenvironment;
connect suncolor<1 >:<1 >tripcolor;
send v3d(0,0,1) to <2>suncolor;
send 0 to <3>suncolor;
send v3d(20,.25,.25) to <4>suncolor;
send v3d(360,1,1) to <5>suncolor;
send v3d(0,0,0) to <6>suncolor;

mooncolor := f:accumulate;
connect mooncolor<1 > : <2> moon;
connect mooncolor<1 >:<2>shadingenvironment;
connect mooncolor<1 >:<1 >tripcolor;
send v3d(0,0,1) to <2>mooncolor;
send 0 to <3> mooncolor;
send v3d(20, .25, .25) to <4> moonco I or;
send v3d(360,1,1) to <5> mooncolor;
send v3d(0,0,0) to <6>mooncolor;

backgroundcolor := f:accumulate;
connect backgroundcolor<1 >:<2>shadingenvironment;
connect backgroundcolor<1 >:<1 >tripcolor;
connect backgroundcolor<1 >:<5>tripcolor;
send v3d(0,0,0) to <2>backgroundcolor;
send 0 to <3>backgroundcolor;
send v3d(20, .25, .25) to <4> backg roundco I or;
send v3d(360,1,1) to <5>backgroundcolor;
send v3d(0,0,0) to <6>backgroundcolor;

{mux the dials}

32 PS 340 Release Nates

dialmux := f:croute(8);
connect d i a Imux<1 > : <1 >a;
connect dialmux<6>:<1>al ines;
connect dialmux<7>:<1>aspheres;
connect dialmux<8>:<1>aal l ;
connect dialmux<2>:<1>a2;
connect dialmux<3>:<1>suncolor;
connect dialmux<4>:<1>mooncolor;
connect dialmux<5>:<1>backgroundcolor;

dialmux2 := f:croute(8);
connect dialmux2<1>:<2>m;
connect dialmux2<6>:<2>ml ines;
connect dialmux2<7>:<2>mspheres;
connect dialmux2<8>:<2>mal l ;
connect dialmux2<2>:<2>m2;
connect dialmux2<3>:<2>msun;
connect dialmux2<4>:<2>mmoon;

{network to translate in x}

tx := f:xvec;
connect tx<1>:<2>dialmux;
connect dials<1>:<1>tx;

{network to translate in y}

ty := f:yvec;
connect ty<1>:<2>dialmux;
connect dials<2>:<1>ty;

{network to translate in z}

tz := f:zvec;
connect tz<1>:<2>dialmux;
connect dials<3>:<1>tz;

{network to scale}

s := f:scale;
connect s<1>:<2>dialmux2;
sa := f:addc;
connect sa<1>:<1>s;
send 1 to <2>sa;
connect dials<4>:<1>sa;

{network to rotate in x}

PS 340 R e! ease Notes 33

rx : = f : x ro tate ;
connect rx<1>:<2>dialmux2;
sx := f:mulc;
connect sx<1 > : <1 > rx ;
send 100 to <2>sx;
connect dials<6>:<1>sx;

{network to rotate in y}

ry := f:yrotate;
connect ry<1>:<2>dialmux2;
sy := f:mulc;
connec t sy<1 > : <1 > ry ;
send 100 to <2>sy;
connect dials<6>:<1>sy;

{network to rotate in z}

rz := f:zrotate;
connect rz<1>:<2>dialmux2;
sz := f:mulc;
connect sz<1>:<1>rz;
send -100 to <2>sz;
connect dials<7>:<1>sz;

{network to adjust back cl ipping plane}

backcl ip := f:fov;
{ connect backcl ip<1>:<1>world.persp; }
connect backcl ip<1>:<1>sunset.persp;
setup cness false <4>backcl ip;
setup cness true <1>backcl ip;
send true to <1>backcl ip;
send 45 to <2>backcl ip;
send 2.2 to <3>backcl ip;
backcl ipaccum := f:accum;
connect backcl ipaccum<1>:<4>backcl ip;
connect dials<8>:<1>backcl ipaccum;
send 3.6 to <2>backcl ipaccum;
send 0 to <3>backcl ipaccum;
send 1 to <4>backcl ipaccum;
send 30 to <5>backcl ipaccum;
send 2.2 to <6>backcl ipaccum;

{network to reset transformations}

34 PS 34~ Release Notes

connect rs<1>:<1>world.trans;
connect rs<1>:<2>a;
connect rs<2>:<1>world.rot;
connect rs<2>:<1>m;
connect rs<2>:<2>rs;
send m3d(1,0,0 0,1,0 0,0,1) to <2>rs;

rsal l := f:sync(2);
connect rsal l<i>:<1>world.al ltrans;
connect rsal l<1>:<2>aal l ;
connect rsal l<2>:<1>world.al lrot;
connect rsal l<2>:<1>mal l ;
connect rsal i<2>:<2>rsal l ;
send m3d(1,0,0 0,1,0 0,0,1) to <2>rsal l ;

rsl ines := f:sync(2);
connect rsl ines<1>:<1>l ines.trans;
connect rsl ines<1>:<2>al ines;
connect rsl ines<2>:<1>l ines.rot;
connect rsl ines<2>:<1>ml ines;
connect rsl ines<2>:<2>rsl ines;
send m3d(1 ,0,0 0,1 ,0 0,0,1) to <2>rsl fines;

rssphe res : = f :sync (2) ;
connect rsspheres<1>:<1>spheres.trans;
connect rssphe res<1 > : <2>asphe res ;
connect rsspheres<2>:<1>spheres.rot;
connect rsspheres<2>:<1>mspheres;
connect rsspheres<2>:<2>rsspheres;
send m3d(1,0,0 0,1,0 0,0,1) to <2>rsspheres;

rs2 := f :sync(2) ;
connect rs2<1>:<1>sect.trans;
connect rs2<1>:<2>a2;
connect rs2<2>:<1>sect.rot;
connect rs2<2>:<1>m2;
connect rs2<2>:<2>rs2;
send m3d(1,0,0 0,1,0 0,0,1) to <2>rs2;

rssun := f:constant;
connect rssun<1>:<1>msun;
connect rssun<1>:<1>sunset.rot;
send m3d(1,0,0 0,1,0 0,0,1) to <2>rssun;

rsmoon := f:constant;
connect rsmoon<1>:<1>mmoan;
connect rsmoon<1>:<1>moonset.rot;
send m3d(1 ,0,0 0,1,0 0,0,1) to <2>rsmoon;

PS 340 Release Notes 35

connect r<1>:<1>rs;
connect r<6>:<1>rsl ines;
connect r<7>:<1>rsspheres;
connect r<8>:<1>rsal l ;
connect r<2>:<1>rs2;
connect r<3>:<1>rssun;
connect r<4>:<1>rsmoon;

{network to turn bits on and off}

bits := f:constant;
connect bits<1>:<5>world.bits;

{network to send to object or sectioning plane}

waylabel := f:inputs_choose(9);
connect way I abe I <1 > : <1 > f I abe 112 ;
send 'OBJECT' to <1>waylabel ;
send 'VECTORS' to <6>waylabel ;
send 'SPHERES' to <7>waylabel ;
send 'ALLPRIMS' to <8>waylabel ;
send 'PLANE' to <2>waylabel ;
send 'SUN' to <3>waylabel ;
send 'MOON' to <4>waylabel ;
send 'BACK' to <5>waylabel ;

dial label :_
connect dia
connect dia
connect dia
connect dia
connect dia
connect dia
connect dia
connect dia
connect dia
connect dia
connect dia
connect dia
connect dia
connect dia
connect dia
connect dia

f:sync(9);
abe
abe
abe
abe
ab e
abe
abe
abe
abe
abe
abe
ab e
abe
abe
abe
abe

<1>:<1>dlabell ;
<1>:<1>dial label ;
<2>:<1>dlabel2;
<2>:<2>dial label ;
<3>:<1>dlabel3;
<3>:<3>dial label ;
<4>:<1>dlabel4;
<4>:<4>dial label ;
<5>:<1>dlabel5;
<5>:<5>dial label ;
<6>:<1>dlabel6;
<6>:<6>dial label ;
<7>:<1>dlabel7;
<7>:<7>dial label ;
<8>:<1>dlabel8;
<8>:<8>dial label ;

36 PS 340 Release Notes

send 'X-TRANS' to <1>dial
send 'X-TRANS' to <1>dial
send 'HUE' to <1>dial labe
send 'HUE' to <1>dial labe
send 'HUE' to <1>dial labe
send 'X-TRANS' to <1>dial
send 'X-TRANS' to <1>dial
send 'X-TRANS' to ~1>dial

send 'Y-TRANS' to <2>dial
send 'Y-TRANS' to <2>dial
send 'SAT' to <2>dial labe
send 'SAT' to <2>dial labe
send 'SAT' to <~>dial labe
send 'Y-TRANS' to <2>dial
send 'Y-TRANS' to <2>dial
send 'Y-TRANS' to <2>dial

send 'Z-TRANS' to <3>dial
send 'Z-TRANS' to <3>dial
send 'INT' to <3>dial labe
send 'INT' to <3>dial labe
send 'INT' to <3>dial labe
send 'Z-TRANS' to <3>dial
send 'Z-TRANS' to <3>dial
send 'Z-TRANS' to <3>dial

abet ;
abe I ;
a

abet ;
abet ;
abet ;

abet ;
abet ;

abet ;
abe I ;
abet ;

abet ;
abet ;

abe I ;
abet ;
abet ;

send 'SCALE' to <4>dial label ;
send 'X-ROT' to <5>dial label ;
send 'Y-ROT' to <G>dial label ;
send 'Z-ROT' to <7>dial label ;
send 'BACKCLIP' to <8>dial label

way := f:sync(2);
connect way<2>:<1>dialmux;
connect way<2>:<1>dialmux2;
connect way<2>:<2>way;
connect way<2>:<1>r;
connect way<2>:<9>waylabel ;
connect way<2>:<2>bits;
connect way<2>:<9>dial label ;
send fix(1) to <2>way;
send fix(2) to <2>way;
send fix(3) to <2>way;
send fix(4) to <2>way;
send fix(5) to <2>way;
send fix(6) to <2>way;
send fix(7) to <2>way;
send fix($) to <2>way;
send TRUE to <1>way; {activate it}

PS 340 Release Nates 37

{network to change from sol id to surface}

sslabel := f:boolean choose;
connect sslabel<1>:<1>flabel7;
send 'SOLID' to <2>sslabel ;
send 'SURFACE' to <3>sslabel ;

issol id := f:nop;
connect issol id<1>:<2>world.rendering;
connect issol id<1>:<1>sslabel ;
ss : = f :sync (2) ;
connect ss<2>:<2>ss;
connect ss<2>:<1>issol id;
send TRUE to <2>ss;
send FALSE to <2>ss;
send FALSE to <1>ss; { initial ly a surface }

{network to toggle anti-al ias possibi l ities}

aalabel := f:sync(2);
aavalue := f:sync(2);
connect aavalue<1>:<5>shadingenvironment;
send 'NO-AA to <1>aa abet ;
send 'EDGEAA' to <1>aa abet ;
send 'FULLAA' to <1>aa abet ;
send fix(0) to <1>aava ue;
send f i x (1) to <1 >aava ue ;
send fix(2) to <1>aava ue;
connect aavaiue<1>:<1>aavalue;
connect aalabel<1>:<1>aalabel ;
connect aalabel<1>:t1>flabel5;
send fix(o) to <2>aalabel ;
send fix(0) to <2>aavalue;
{network to control rendering style}

stylab := f:sync(2);
styval := f:sync(2);
style := f:const;
send 'HIDDEN' to <1>stylab;
send 'WASH' to <1>stylab;
send 'FLAT' to <1>stylab;
send 'PRONG ' to <1>stylab;
send 'GOURAUD' to <1>stylab;
send 'XSECTION' to <1>stylab;
send 'SECTION' to <1>stylab;
send 'BACKFACE' to <1>stylab;
send 'SAVE-SEC' to <1>stylab;
send 'SAVE-HL' to <1>stylab;
send fix(4) to <1>styval ;

38 PS 34Q Release Notes

send f i x (5) to <1 >s tyva ;
send f i x(fi) to <1 >styva ;
send fix(7) to <1>styva
send fix(8) to <1>styva
send fix(1) to <1>styva
send fix(2) to <1>styva ;
send f i x (3) to <1 >s tyva ;
send 'object' to <1>styval ;
send 'hlview' to <1>styvai ;
conn stylab<1>:<1>stylab;
conn stylab<1>:<1>flabel3;
conn styval<1>:<1>styval ;
conn styval<1>:<2>style;

send fix(0) to <2>styval ;
send fix(0) to <2>stylab;

{ some useful viewports }

piclab := f:sync(2);
picval := f:sync(2);
send 'SQUARE' to <1>piclab;
send 'BIG-PIC' to <1>piclab;
send ' 1-OF-2' to <1 >p i c ab ;
send '2-OF-2' to <1>pic ab;
send '1-OF-6' to <1>pic ab;
send '2-OF-fi' to <1>pic ab;
send '3-OF-6' to <1>pic ab;
send '4-OF-6' to <1>pic ab;
send 'S-OF-6' to <1>pic ab;
send '6-OF-fi' to <1>pic ab;
send v3d (80,0,479) to <1>picval ;
send v3d (0,-80,639) to <1>picval ;
send v3d (0 , 80 , 319) to <1 >p i cva I ;
send v3d (320,80,319) to <1>picval ;
send v3d (5,240,209) to <1>picval ;
send v3d (215 , 240 , 209) to <1 >p i cva I ;
send v3d (425,240,209) to <1>picval ;
send v3d (5}30,209) to <1>picval ;
send v3d (215,30,209) to <1>picval ;
send v3d (425,30,209) to <1>picval ;

conn piclab<1,:<1>piclab;
conn piclab<1>:<1>flabef2;
conn picval<1>:<1>picval ;
conn picval<1>:<3>shadingenvironment;
conn picval<1>:<4>tripcolor;

send 1 to <2>piclab;
send 1 to <2>picval ;

PS 340 Release Notes 39

{network to invert overlay-picture mechanism}

overinvert := f :xorc;
send true to <2>overinvert;
overlabel := f:sync(2);
connect overinvert<1>:<9>shadingenvironment;
connect overinvert<1>:<2>overlabel ;
send 'REFRESH' to <1>overlabel ;
send 'OVERLAY' to <1>overlabel ;
connect overlabel<1>:<1>overlabel ;
connect overlabel<1>:<1>flabel4;

{network to invert color interpolation}

colorinvert := f:xorc;
send true to <2>colorinvert;
colorlabel := f:sync(2);
connect colorinvert<1>:<10>shadingenvironment;
connect colorinvert<1>:<2>colorlabel ;
send 'COL-OFF' to <1>colorlabel ;
send 'COL-ON to <1>colorlabel ;
connect colorlabel<1>:<1>colorlabel ;
connect colorlabel<1>:<1>flabel8;

primsync := f:sync(3); { this sync to ensure that l ines and spheres have }
{ been xformed before rendering is actual ly }
{ triggered }

connect styled >:<3>primsync; { style is where polygon rendering type is }
{ stored }

connect primsync<3>:<1>world.rendering;
Conn primsync<1>:<3>world.rendering; {connect l ines u } P
Conn prams nc<2>:<4>world.render~n {connect s heres u ~Iy g p p}

Conn l inexformdata<1>:<1>primsync; { connect l ines to sync function }
Conn l inexformdata<1>:<1>spherexformdata; { Let f ine xformdata trigger }

{ sphere xformdata }
Conn spherexformdata<1>:<2>primsync; { connect spheres to sync function }

{ buttons }
fkmo .= f:switch;
connect fkeys<1>:<1>fkmo;

connect fkmo<1>:<1>l inexformdata;
connect fkmo<1>:<1>style;

connect fkmo<2>:<2>piclab; connect fkmo<2>:<2>picval ;

{ Trigger l ine xformdata }
{ Trigger rendering style constant }

40 PS 340 Release Notes

connect fkmo<3>:<2>stylab; connect fkmo<3>:<2>styval ;
connec t fkmo<4> : <1 >ove r i nve r t ;
connect fkmo<5>:<2>aavalue;
connect fkmo<5>:<2>aalabel ;
connect fkmo<6>:<?>shadingenvironment;
connect fkmo<?>:<1>ss;
connect fkmo<8>:<1>coiorinvert;
connect fkmo<9>:<8>shadingenvironment;
connect fkmo<10>:<2>r;
connect fkmo<10>:<1>original ;
connect fkmo<11>:<1>bits;
connect fkmo<11>:<1>original ;
connect fkmo<12>:<1>way;

fkm := f:inputs_choose(13);
connect fkm<1>:<2>fkmo;
connect fkeys<1 > : <13>fkm;
send fix(1) to <1>fkm;
send fix(2) to <2>fkm;
send fix(3) to t3>fkm;
connect overinvert<1>:<4>fkm
send fix(0) to <5>fkm;
send true t0 <6>fkm;
send fix(?) to <7>fkm;
connect colorinvert<1>:<8>fkm
send 'ABORT' to <9>fkm;
send v3d(0,0,0) to <10>fkm;
send f i x (11) to <11 > fkm ;
send fix(12) to <12>fkm;

send 'RENDER' to <1>flabell ;
send ' CLEAR' to <1 > f I abe 16 ;
send ' ABORT' to <1 > f I abe 19 ;
send °RESET' to <1>flabe110;
send ' ON/OFF' to ~1 > f l abe 111 ;
send t rue to <1 >o~ve r i nve r t ;
send t rue to <1 >co l o r i nve r t;

{ some useful colors }

blue := attr co
magenta := attr co
purple := attr co
red := attr co
orange := attr co
yel low := attr co
green := attr co
turquoise := attr co
cyan := attr co
white := attr co
grey := attr co
black := attr co

or 0;
or 60;
or 90;
or i20;
or 150;
or i80;
or 240;
or 210;
or 300;
or 0, 0, 1;
or 0, 0, 0.5;
or 0, 0, 0;

PS 340 Release Notes 4~1

{some other names for shadingenvironment}

se := f : pass(14) ;
connect se<1>:<1>shadingenvironment;
connect se<2>:<2>shadingenvironment;
connect se<3>:<3>shadingenvironment;
connect se<4>:<4>shadingenvironment;
connect se<5>:<5>shadingenvironment;
connect se<6>:<6>shadingenvironment;
connect se<7>:<l>shadingenvironment;
connect se<8>:<8>shadingenvironment;
connect se<9>:<9>shadingenvironment;
connect se<10>:<10>shadingenvironment;
connect se<11>:<11>shadingenvironment;
connect se<12>:<12>shadingenvironment;
connect se<i3>:<~3>shadingenvironment;
connect se<14>:<14>shadingenvironment;
ambient := f:pass(1);
connect ambient<1>:<1>shadingenvironment;
background : = f :pass (1) ;
connect background<1>:<2>shadingenvironment;
rasterviewport := f:pass(1);
connect rasterviewport<1>:<3>shadingenvironment;
exposure : = f :pass (1) ;
connect exposure<1>:<4>shadingenvironment;
anti-al ias := f:pass(1);
connect anti-al ias<1>:<5>shadingenvironment;
depth := f:pass(1);
connect depth<1>:<6>shadingenvironment;
screenwash := f:pass(1);
connect screenwash<1>:<7>shadingenviranment;

{ make PS300 come up in shift l ine/local }
send 'R' to <1>kbhandler;

{EOF}

.~

n
ac F-

C

J

C
tai
y

m
t

y

C .~

y .~.

L
O
4-

L
O

Z

O ._

V
C

tL
.a

~'~w
w+

CHANGE PAGES FOR THE COMMAND SUMMARY, THE FUNCTION SUMMARY,

AND THE GRAPHICS SUPPORT ROUTINE MANUALS

PS 300 COMMAND SUMMARY ATTRIBUTES

RENDERING -Data Structuring CPS 340)

Version A2.U01

FORMAT

name := ATTRIBUTES attributes [AND attributes];

DESCRIPTION

Specifies the various characteristics of polygons used in the creation of shaded
renderings. This command is only used with the PS 340. For a detailed
explanation of defining and interacting with shaded images, consult the "Using the
PS 340 -Rendering Operations For Surf aces and Solids" tutorial in Volume 2B.

PARAMETERS

dttri butes - The attributes of a polygon are defined as follows.

[COLOR h[,s[,i]]] [DIFFUSE d] [SPECULAR s] [OPAQUE t]

where

h - is a real number specifying the hue in degrees around the color
wheel. Pure blue is 0 and 360, pure red is 120, and pure green
is 240.

S - is a real number specifying saturation. No saturation (gray) is
0 and full saturation (full toned colors) is 1.

i - is a real number specifying intensity. No intensity (black) is 0,
full intensity (white) is 1.

d - is a real number from 0 to 1 specifying the proportion of color
contributed by diffuse reflection versus that contributed by
specular reflection. Increasing d makes the surface more
matte. Decreasing d makes it more shiny.

s - is an integer from 0 to 255 which adjusts the concentration of
specular highlights. The more metallic an object is, the more
concentrated the specular highlights.

t - is a real number from 0 to 1 specifying the transparency of the
polygon, with 1 being fully opaque and 0 being fully
transparent (invisible).

ATTRIBUTES PS 300 COMMAND SUMMARY

RENDERING -Data Structuring CPS 340)

Version A2.V01 Ccontinued)

DEFAULTS

If no color is specified, the default is white (S = 0, i = 1). If saturation and
intensity are not specified, they default to 1. If only hue and saturation are
specified, intensity defaults to 1. If no diffuse attribute is given, d defaults to
.75. If no specular attribute is given, s defaults to 4. If no opaque attribute is
given, the default is 1 (fully opaque).

NOTES

1. Polygon attribute nodes are created in mass memory but are not part of a
display tree. The attributes specified in an ATTRIBUTES command are
assigned to polygons which include a WITH ATTRIBUTES clause. The
attributes specified in a WITH ATTRIBUTES clause of a POLYGON command
apply to all subsequent polygons until superseded by another WITH
ATTRIBUTES clause. If no WITH ATTRIBUTES option is given for a
POLYGON node, default attributes are assumed. The default attributes are
0,0,1 for COLOR, 0.75 for DIFFUSE, and 4 for SPECULAR.

2. The various attributes may be changed from a function network via inputs to
an attribute node, but the changes have no effect until a new rendering is
created.

3. A second set of attributes may be given after the word AND in the
ATTRIBUTES command. These attributes apply to the obverse side of the
polygons) concerned. In other words, the two sides of an object may have
different attributes. The attributes defined in the first attributes pertain
to front-facing polygons. Those in the AND dttri butes clause pertain to
backf acing polygons.

NODE CREATED

Polygon ATRRIBUTES definition node. This node resides in mass memory, but is
not included in a display tree.

PS 300 COMMAND SUMMARY ATTRIBUTES

r'1 RENDERING -Data Structuring CPS 340)

Version A2.V01 Ccontinued)

INPUTS FOR UPDATING NODE

Rea 1 , 2D , 3D
Real

Integer

Rea 1 , 2D , 3D

Real
Integer

Real

NOTES ON INPUTS

name

< 1 >Updates hue ,saturation ,intensity
< 2 > Updates diffuse value
< 3 > Updates specul ar value
< 4 > Updates opaque va 1 ue

Undefined

<10>

<11 >Updates hue,saturation,intensity
<12 > Updates diffuse value
gl3 > llpdates specul ar value

14 > updates opaque value

Polygon Attributes

IAS0676

1. Inputs < 1 > and < 1 1 > accept a real number as hue, a 2D vector as hue and
saturation, and a 3D vector as hue, saturation and intensity.

2. Values sent to inputs < 1 >, <2>, and <3> specify the color and attributes for
shading the front of the polygons) or for both sides if no obverse attributes
are given. (Values sent to inputs < 1 1 >, < 12>, and < 13> specify the color and
attributes for shading the obverse side of the polygon.

3. Inputs <4> and < 14> accept a real number to update the opaque value of the
polygon's attributes.

4. If anything other than a 3D vector is sent to input < 1 > or < 1 1 >, default values
for the other variables are assumed.

PS 300 COMMAND SUMMARY POLYGON

MODELING -Primitives CPS 340)

Version A2.V01

FORMAT

name := CWITH ATTRIBUTES name 1] [WITH OUTLINE h] [COPLANAR]
POLYGon vertex ... vertex;

DESCRIPTION

Allows you to define primitives as solids and surfaces. This command is only used
with the PS 340. For a detailed explanation of defining and interacting with
polygons, consult the "Using the PS 340 -Rendering Operations For Surf aces and
Solids" tutorial in Volume 2B.

PARAMETERS

WITH ATTRIBUTES - An option that assigns the attributes defined by name 1 for all
polygons until superseded by another WITH ATTRIBUTES
clause.

WITH OUTLINE - An option that specifies the color of the edges of a polygon on
the color CSM display, or their intensity on a black and white
display as a real number (h).

COPLANAR - Declares that the specified polygon and the one immediately
preceding it have the same plane equation. This should only be used
to define holes in the interior of a polygon.

vertex - A vertex is defined as follows:

C S] x,y,z C N x,y,z ~ CC hC,sCi]~]

where

S - indicates that the edge drawn between the previous vertex and this
one represents a soft edge of the polygon. If the S specifier is used
for the first vertex in a polygon definition, the edge connecting the
last vertex with the first is soft. This option is only necessary to
use if soft edges are desired in hidden-line pictures on the
calligraphic display. This option has no effect on renderings
displayed on the raster screen.

POLYGON PS 300 COMMAND SUMMARY

MODELING -Primitives CPS 340)

Version A2.V01 Ccontinued)

PARAMETERS (continued)

N - Indicates a normal to the surface with each vertex of the polygon.
Normals are used only in smooth-shaded renderings. Normals must
be specified for all vertices of a polygon or for none of them. .If no
normals are given for a polygon, they are defaulted to the same as
the plane equation for the polygon.

x , y, z - are coordinates in aleft-handed Cartesian system.

C - indicates a color to be assigned to the vertex. This color will be
interpolated across the polygon to the other vertices. Color must be
specified for all vertices of a polygon or for none of them (4K ACP
only).

h, s, i -- are coordinates of the Hue-Saturation-Intensity color system.

Polygons may be solidly colored by specif ying a color through the attributes
command or the colors may be assigned to the vertices by giving a color with
each vertex specified. The color is specified by giving first the vertex and
then the color (h, s, i). If just the hue and saturation are given, the intensity
will default to 1. If just the hue value is given, the saturation and intensity
will default to 1. If no vertex colors are given, the vertex colors will default to
those specified in the ATTRIBUTE clause.

Vertex colors must be specified for all vertices of a polygon or for none of
them. However, as with normals, some polygons may have color at their
vertices while others polygons do not have color at their vertices. This means
that it is possible to have some objects in the picture color interpolated, while
others are not.

Although color of polygon vertices is specified h , s , i , the colors are linearly
interpolated across the vertices in the Red-Green-Blue color system. If colors
are not interpolating the way you would like them to, add more vertices to the
polygon, or break up large solid volumes into smaller sub-volumes and assign
the desired colors to the new vertices in the object.

You can specify color for a polygon with both the ATTRIBUTES command and
the color by vertex specification. A new input to the
SHADINGENVIRONMENT function allows you to switch between
attribute-defined color and vertex-defined color. Input < 10 > o f
SHADINGENVIRONMENT accepts a Boolean to determine how color will be
specified. To use vertex colors rather than surface attributes, send TRUE to
input < 10> of SHADINGENVIRONMENT. To return to using the attributes
specified in the ATTRIBUTE command, send FALSE to input < 10> of
SHADINGENVIRONMENT.

PS 300 COMMAND SUMMARY POLYGON

f"1
MODELING -Primitives (PS 340)

Version A2.V01 Ccantinued)

NOTES

1. A polygon declared to be coplanar must lie in the same plane as the previous
polygon if correct renderings are to be obtained. The system does not check
for this condition. Coplanar polygons may be defined without the
COPLANAR specifier, unless outer and inner contours are being associated.

2. To use the COPLANAR specifier to define a hole, the vertices of the hole
must be ordered in acounter-clockwise direction, while the vertices of the
surrounding polygon must be ordered in a clockwise direction.

3. All members of a set of consecutive coplanar polygons are taken to have the
same plane equation, that of the previous polygon not containing the coplanar
option. If COPLANAR is specified for the first polygon in a node, it has no
effect.

4. If the N (normal) specifier is specified for a vertex in a polygon, it must be
specified for all vertices in that polygon. The same is true for the C (~;olor at
vertex) specifier.

5. If the S (soft) specifier is used for the first vertex in a polygon definition, the
edge connecting the last vertex with the first is soft.

6. No more than 250 vertices per POLYGon may be specified.

7. The last defined vertex in the polygon is assumed to con~~ect to the first
defined vertex; that is, polygons are implicitly closed.

8. There is no syntactical limit for the number of POLYGon clauses in a g~ oup.

9. The ordering of vertices ~vvithin each POLYGon has important consequences
for rendering operations.

DISPLAY TREE NODE CREATED

POLYGON data node.

INPUTS FOR UPDATING NODE

None.

PS 300 COMMAND SUMMARY SOLID RENDERING

MODELING -Data Structuring CPS 340)

Version A2.V01

FORMAT

name := SOLID_rendering APPLied to name 1;

DESCRIPTION

Declares a POLYGon object to be a solid and marks the object so that rendering
operations can be performed on it. This command creates a rendering node. It is
used exclusively with the PS 340.

PARAMETERS

name 1 - Either a POLYGon node or an ancestor of one or more POLYGon nodes.

NOTES

1. If non-POLYGon data nodes (VECtor/list, CHARacters, LABELS,
POLYno mial, and BSPLINE) are included in name 1, these data objects are
displayed along with the polygon objects prior to rendering but are omitted
from renderings. The rendering operations have no effect on these data
nodes. However, special vector lists output from F:XFORMDATA used to
display spheres and lines on the raster display can be used and will be
displayed if rendered.

2. IF and SET Conditional_BIT, IF and SET LEVeI_of_detail, INCRement
LEVeI_of_detail, DECrement LEVeI_of_detail, IF PHASE, SET RATE, SET
RATE EXTernal, SET DEPTH_CLipping, and BEGIN_Structure...
END_Structure may be placed between a rendering node and its data. A
rendering takes into account any effects of these nodes at the time the
request is made; for example, if IF PHASE and SET RATE are being used to
blink an object and that object is "off" at the moment the request is made,
the object is excluded from the rendering.

The nodes in the above paragraph may also be placed above the rendering
node.

3. The transformations ROTate, TRANslate, SCALE, Matrix_2X2, Matrix_3X3,
Matrix 4X3, and LOOK may be placed between a rendering node and its data
node(s). However, these nodes should be used with caution, since, like the
operation nodes mentioned above, their effects will be incorporated into
renderings, and precision problems may result.

SOLID RENDERING PS 300 COMMAND SUMMARY

MODELING -Data Structuring CPS 340)

Version A2.Vol Ccontinued>

NOTES (continued)

Since most vertices in an object usually belong to more than one polygon,
each vertex must be defined with the same numerical value in each of its
polygons; otherwise, precision discrepancies may cause inaccurate
renderings. The transformation nodes mentioned above may also be placed
above the rendering node.

4. The five nodes WINDOW, VIEWport, EYE, Field_Of_View, and Matrix_4X4
should not, in general, be made descendants of a rendering node. Like other
transformations, these five are incorporated into the output data from a
rendering operation. However, this rendered data is generally displayed
within a framework that already includes global 4x4—matrix transformations
of its own. Including these transformations as part of the rendering, then,
usually has the net effect of applying an unwanted double—WINDOW
(double—VIEWport, etc.) to the rendered object.

5. SOLID_rendering, SURFACE rendering, and SECTioning_plane may not be
descendants of a rendering node, especially if multiply—instanced rendering
nodes are involved. if this rule is not observed, bad renderings or a system
crash may result. The system does not check for this condition.

6. Other nodes, including character transformations and the SET nodes (SET
RATE, SET COLOR, SET PLC)TTER) not mentioned above, are ignored by
rendering operations when placed beneath a rendering node. Such nodes must
therefore be placed above a rendering node if they are to have their
customary effects on renderings. Data nodes other than POLYGon are also
ignored.

7. Before an object can be rendered, its rendering node must be part of a
structure which is DISPlayed. If the object itself is DISPlayed but its
rendering node is not, no renderings can be created.

8. Any input to input< I > of a rendering node causes an output. Inputs sent to
input<2~ will not cause an output to be sent. If output< 1 > has not been
connected, and an integer, string, or Boolean is sent to input < 1 >, a message
will appear on the screen upon successful completion of the rendering
operation. An error message will appear if the rendering was not completed.

PS 300 COMMAND SUMMARY SOLID RENDERING

MODELING -Data Structuring CPS 340)

Version A2.V01 (continued)

NOTES (continued)

9. Input <3> of the rendering node accepts a transformed vector list (from
output < 1 > of F:XFORMDATA} and interprets the vectors as "moves" and
"draws" for raster-line rendering.

10. Input <4> of the rendering node accepts a transformed vector list (from
output < 1 > of F:XFORMDATA) and interprets each vector as an x,y,z
spherical

11. Input <5> of the rendering node accepts the name of the original vector list
(sent to F:XFORMDATA with its output < 1 > sent to input <4> of the
rendering node} to enable accurate scaling for rendering raster lines and
spheres.

1 Z. Toggling between the current rendering and the original object (sending a
fix(0) to input < 1 ~ of the SOLID_rendering or SURFACE_rendering node)
works only after requesting hidden-line pictures, backf ace pictures, sectioned
pictures, or cross-sectioned pictures. Raster images may not be toggled.

13. Sending a fix(7) to input < 1 > of the SOLID_rendering or SURFACE_rendering
node produces a type of Phong shading. Phong shading is made by
interpolating the surface normal between vertices of the polygon and then
calculating the correct lighting at each pixel. This is the highest quality of
smooth shading currently supported.

14. Sending a fix(8) to input < 1 > of the SOLID_rendering or SURFACE_rendering
node will produce a type of Gouraud shading. Gouraud shading is made by
calculating the correct lighting at the vertices of the polygon only and
interpolating the intensity across the polygon to produce a smooth-shaded
picture. An image produced with Gouraud shading will not be the quality of
an image produced with Phong shading, but the Gouraud-shaded image will be
produced at a faster rate. The user must supply normals at each of the
polygons for the object to be smooth-shaded.

15. Sending data anon-existent rendering node input, will cause the system to
crash.

DISPLAY TREE NODE CREATED

Rendering operation node.

SOLID RENDERING PS 300 COMMAND SUMMARY

MODELING -Data Structuring CPS 340)

Version A2.V01 (continued)

INPUTS FOR UPDATING NODE

name

Integer String
or Boolean

Boolean

XFORMDATA
Vector List (raster lines

XFORMDATA
Yector List (spherical date)
Original Vector List ►

NOTES ON INPUTS

Boolean

Input < 1 >
0: Toggles between the current rendering and the original object on the

calligraphic display.
l: Creates and displays across—section of an object defined by the sectioning

plane (solid only).
2: Creates and displays a sectioned rendering on the calligraphic display.
3: Creates and displays a rendering using backface removal (solid only) on the

calligraphic display.
4: Creates and displays a rendering using hidden —line removal on the

calligraphic display.
5: Generates awash—shaded image on the raster display.
6: Generates aflat—shaded image on the raster display.
7: Generates a Phong—shaded image on the raster display.
8: Generates a Gouraud—shaded image on the raster display.

PS 300 COMMAND SUMMARY SOLID RENDERING

MODELING -Data Structuring CPS 340)

Version A2.V01 Ccontinued)

NOTES ON INPUTS (continued)

String: Causes the current rendering to be saved under the name given in the
string (calligraphic display only).

False: Sets the original view. The original descendent structure of the
rendering operate node is displayed.

True: Sets the rendered view. The rendered view of the original descendent
structure of the rendering operate node.

Input <2>
True: Declares the object to be a solid.
False: Declares the object to be a surface.

Input <3>
Accepts a transformed vector list from output < 1 > of F:XFORMDATA to
define raster lines.

Input <4>
Accepts a transformed vector list from output < 1 > of F:XFORMDATA to
define spherical centers.

Input <5>
Accepts the original vector list to enable accurate spherical scaling.

Output < 1 >
True: Rendering is displayed
False: Rendering is not displayed

PS 300 COMMAND SUMMARY SURFACE RENDERING

MODELING -Data Structuring CPS 340)

Version A2.V01

FORMAT

name := SURFACE_rendering APPLied to name 1;

DESCRIPTION

Declares a POLYGon object to be a surface and marks the object so that
rendering operations can be performed on it. This command creates a rendering
node. It is used exclusively with the PS 340.

PARAMETERS

name 1 - Either a POLYGon node or an ancestor of one or more POLYGon nodes.

NOTES

1. If non-POLYGon data nodes (such as VECtor_list, CHARacters, LABELS,
POLYnomial, and BSPLINE) are included in name 1, these data objects are
displayed along with the polygon objects prior to rendering but are omitted
from renderings. The rendering operations have no effect on these data
nodes. However, special vector lists output from F:XFORMDATA used to
display spheres and lines on the raster display can be used and will be displayed
if rendered.

Z. IF and SET conditional_BIT, IF and SET LEVeI_of_detail, INCRement
LEVeI_of_detail, DECrement LEVeI_of_detail, IF PHASE, SET RATE, SET
RATE EXTernal, SET DEPTH_CLipping, and BEGIN_Structure... END_Structure
may be placed between a rendering node and its data. A rendering takes into
account any effects of these nodes at the time the request is made; for
example, if IF PHASE and SET RATE are being used to blink an object and
that object is "off" at the moment the request is made, the object is excluded
from the rendering.

The nodes in the above paragraph may also be placed above the rendering node.

3. The transformations ROTate, TRANslate, SCALE, Matrix_2X2, Matrix_3X3,
Matrix 4X3, and LOOK may be placed between a rendering node and its data
node(s). However, these nodes should be used with caution, since, like the
operation nodes mentioned above, their effects will be incorporated into
renderings, and precision problems may result.

SURFACE RENDERING PS 300 COMMAND SUMMARY

MODELING -Data Structuring CPS 340)

Version AZ.VO1

NOTES (continued)

Since most vertices in an object usually belong to more than one polygon, each
vertex must be defined with the same numerical value in each of its polygons;
otherwise, precision discrepancies may cause inaccurate renderings. The
transformation nodes mentioned above may also be placed above the rendering
node.

4. The five nodes WINDOW, UIEWport, EYE, Field_Of_Uiew, and Matrix_4.X4
should not, in general, be made descendants of a rendering node. Like other
transformations, these five are incorporated into the output data from a
rendering operation. However, this rendered data is generally displayed within
a framework that already includes global 4x4-matrix transformations of .its
own. Including these transformations as part of the rendering, then, usually
has the net effect of applying an unwanted double-WINDOUV
(double-UIEWport, etc.) to the rendered object.

5. SOLID_rendering, SURFACE rendering, and SECTioning_plane may not be
descendants of a rendering node, especially if multiply-instanced rendering
nodes are involved. If this rule is not observed, bad renderings or a system
crash may result. The system does not check for this condition.

6. Other nodes, including character transformations and the SET nodes (SE:T
RATE, SET COLOR, SET PLOTTER) not mentioned above, are ignored by
rendering operations when placed beneath a rendering node. Such nodes must
therefore be placed above a rendering node if they are to have their customary
effects on renderings. Data nodes other than POLYGon are also ignored.

7. Before an object can be rendered, its rendering node must be part of a
structure which is DISPlayed. If the object itself is DISPlayed but its
rendering node is not, no renderings can be created.

8. Any input to input< 1 > of a rendering node causes an output. Inputs sent t:o
input<2> will not cause an output to be sent. If output< 1 > has not been
connected, and an integer, string, or Boolean is sent to input< 1 >, a message
will appear on the screen upon successful completion of the rendering
operation. An error message will appear if the rendering was not completed.

PS 300 COMMAND SUMMARY SURFACE RENDERING

MODELING -Data Structuring CPS 340)

Version A2.V01 Ccontinued)

NOTES (continued)

9. Input <3> of the rendering node accepts a transformed vector list (from
output < 1 > of F:XFORMDATA) and interprets the vectors as "moves" and
"draws" for raster—line rendering.

lo.

Input <4> of the rendering node accepts a transformed vector list (from
output < 1 > of F:XFORMDATA) and interprets each vector as an x,y,z
spherical

1 1. Input < 5 > of the rendering node accepts the name o f the original vector list
(sent to F:XFORMDATA with its output < 1 > sent to input <4> of the
rendering node) to enable accurate scaling for rendering lines and spheres.

12. Toggling between the current rendering and the original object (sending a
fix(o) to input < 1 > of the SOLID_rendering or SURFACE rendering node)
works only after requesting hidden—line pictures, backface pictures, sectioned
pictures, or cross—sectioned pictures. Raster images may not be toggled.

13. Sending a fix(7) to input < 1 > of the SOLID_rendering or SURFACE_rendering
node produces a type of Phong shading. Phong shading is made by
interpolating the surface normal between vertices of the polygon and then
calculating the correct lighting at each pixel. This is the highest quality of
smooth shading currently supported.

14. Sending a fix(8) to input < 1 > of the SOLID_rendering or SURFACE_rendering
node will produce a type of Gouraud shading. Gouraud shading is made by
calculating the correct lighting at the vertices of the polygon only and
interpolating the intensity across the polygon to produce a smooth—shaded
picture. An image produced with Gouraud shading will not be the quality of
an image produced with Phong shading, but the Gouraud—shaded image will be
produced at a faster rate. The user must supply normals at each of the
polygons for the object to be smooth—shaded.

15. Sending data anon—existent rendering node input, will cause the system to
crash.

DISPLAY TREE NODE CREATED

Rendering operation node.

SURFACE RENDERING PS 300 COMMAND SUMMARY

MODELING -Data Structuring CPS 340)

Version A2.V01 (continued)

INPUTS FOR UPDATING NODE

nam ~

f nteger String
or Booiean ~' ` ~' < 1 > ~ooleen

Booieen

XFORMOATA _~
Yector List (raster lines)

XFORM DATA .r. ~-
Yector List C sphericei data
Or i g ~ nel Yector List !~

NOTES ON INPUTS

Input < 1 >
0: Toggles between the current rendering and the original object on the

calligraphic display.
1: Creates and displays across-section of an object defined by the sectioning

plane (solid only) on the calligraphic display.
2: Creates and displays a sectioned rendering on the calligraphic display.
3: Creates and displays a rendering using backface removal (solid only) on the

calligraphic display.
4: Creates and displays a rendering using hidden-line removal on the

calligraphic display.
5: Generates awash-shaded image on the raster display.
6: Generates a f lat-shaded image on the raster display.
7: Generates a Phong-shaded image on the raster display.
8: Generates a Gouraud-shaded image on the raster display.

PS 300 COMMAND SUMMARY SURFACE RENDERING

MODELING -Data Structuring CPS 340)

Version A2.VOi (continued)

NOTES ON INPUTS (continued)

String: Causes the current rendering to be saved under the name given in the
string (calligraphic display only).

False: Sets the original view. The original descendant structure of the
rendering operate node is displayed.

True: Sets the rendered view. The rendered view of the original descendent
structure of the rendering operate node.

Input <2>
True: Declares the object to be a solid.
False: Declares the object to be a surface.

Input <3>
Accepts a transformed vector list from output < 1 > of F:XFORMDATA to
define raster lines.

Input <4>
Accepts a transformed vector list from output < 1 > of F:XFORMDATA to
define a spherical center.

Input <5>
Accepts the original vector list to enable accurate spherical scaling.

Output < 1 >
True: Rendering is displayed
False: Rendering is not displayed

Intrinsic Function
Data Selection and Manipulation F:CONCATXDATACN)

PS 340 Version AZ.VO1

F:CONCATXDATACN)

XFORMDATAI---->

XFORMDATA2----~

XFORMDATA >

PURPOSE

<1>

<2 >

<N>

<1> > to SOLID RENDERING

Accepts up to 127 transformed vector lists (output from XFORMDATA functions)
and concatenates them into a single transformed vector list.

DESC RIPTION

INPUT
< 1 > -output of F:TRANSFORMDATA (transformed vector list)

<N> -output of F:TRANSFORMDATA (transformed vector list)

OUTPUT
< 1 > -concatenated vector list

Intrinsic Function
Data Selection and Manipulation F:CONCATXDATACN)

Version A2.V01 (continued)

NOTES

1. This function is used to avoid the maximum vector restriction imposed on the
output of F:XFORMDATA. The XFORMDATA function will return a
maximum of 2048 vectors. To obtain a rendering on the PS 340 raster display
of greater than 2048 vectors, the output of multiple instances of
XFORMDATA must be concatenated into a single transformed vector list
which can be sent to the rendering node.

2. Inputs < 1 > through <N> accept a transformed vector list output from
F:XFORMDATA.

Intrinsic Function
Data Conversion F:XFORMDATA

Version A2.V01

F:XFORMDATA

Any

S

S

I

I

PURPOSE

<1>

<2> C

<3> C

<4> C

<5> C
DC

<1> > Special

Sends transformed data (either a vector list or a 4x4 matrix) to a specified
destination (e.g., the host, a printer, or the screen).

DESCRIPTION

INPUT
< 1 > -any message
<2> -name of XFORM node (constant)
<3> -name of destination object (constant)
<4> -destination vector index (constant)
<5> -number of vectors (constant)

OUTPUT
<1> -special data type used exclusively as input to F:LIST

DEFAULTS

Default for input <4> is 1, default for input <5> is 2048.

Intrinsic Function
F:XFORMDATA Data Conversion

Version A2.V01 Ccontinued)

NOTES

1. Input <1> is a trigger for F:XFORMDATA. This input would typically be
connected to a function button, either directly or via F : SYNCt 2), allowing
transformed data to be requested easily.

2. Input <2> is a string or matrix containing the name of the XFORM command in
the display tree (either XFORM MATRIX or XFORM VECtor). By referring to an
XFORM command, this input indirectly specifies the object whose transformed
data is to be sent. If the string names something other than an XFORM
command, an error message is displayed. If the string names a node which
does not exist, an error message is sent and the message is removed from
input <2>.

3. Input < 3 > is a string containing the name to be associated with the
transformed vectors. The name need not be previously defined. If this input
does not contain a valid string, the transformed matrix or vectors will be
created without a name (an acceptable situation unless the transformed
vectors need to be referenced or displayed.) The transformed vector list can
be displayed or modified, provided a name is given on this input. The
transformation matrix cannot be used, however, so naming and sending it to
input <3> is not useful.

4. Input <4> is an integer index specifying the place in a vector list at which the
PS 300 is to start returning transformed data. This input is only used when
the command name at input <2> represents an XFORM VECtor command (not
an XFORM MATRIX command). The default value is 1.

5. Input <5> is an integer number of consecutive vectors for which transformed
data is to be returned, starting at the vector specified at input <4>. This
input is only used when the command name at input <2> represents an XFORM
VECtor command (not an XFORM MATRIX command). No more than 2048
consecutive vectors may be returned. The default value is 2048.

6. Output < 1 > contains the transformed data in a format which can only be
accepted by input <1> of F:LIST. (F:LIST then prints out the data in ASCII
format ~-- either a PS 300 VECTOR_LIST command or a PS 300 MATRIX_4X4
command, depending on whether the command named at input <2> was an
XFORM VECtor or an XFORM MATRIX.)

7. F:XFORME)ATA is used in connection with rendering lines and spheres on the
PS 340 raster display. This functionality is described in Version A2.V01 of
the PS 340 Graphics Firmware Release Notes.

Initial Function Instance
Miscellaneous SHADINGENVIRONMENT

Version A2.V01

SHADINGENVIRONMENT

R, 2D, 3D > <1>

R, 2D, 3D > <2>

3D > <3>

R > <4>

I > <5>

R > <6>

B > <7>

Any > <8>

B > <9>

B > <10>

B > <11>

B > <12>

B > <13>

string > <14>

R > <15>

<1>

DC

PURPOSE

> PS 340 Raster Display

For use with the PS 340 system, this function allows you to control various
non—dynamic factors of shaded renderings displayed on the raster screen.

Initial Function Instance
SNADINGENVIRONMENT Miscellaneous

Version A2.V01 (continued)

DESCRIPTION

INPUT
<1> -ambient color
~2> -background color

3 > -raster viewport
<4> -exposure
<5> - edge-smoothing (anti-aliasing) control
<6> -depth cueing
<7> -screen wash
<8> -user abort
<9> -overlay/refresh control
< 10 > -color by vertex control
< 1 1 > -opaque (transparency) control
< 12> - specular highlights control
< 13> -special color blending for spheres control
< 14> -update attribute table
< 15 > -line z-value control

OUTPUT
<1> -connected to the PS 340 Raster Display

NOTES

I. Ambient color: input < 1 > accepts a real number as hue, a 2D vector as hue
and saturation, and a 3D vector as hue, saturation, and intensity, to specify
the ambient color. The ambient color is combined with the result obtained
from the light sources to determine the color of ambient light. The default
ambient color is white, with a default intensity of .25. The ambient color is
analogous to the color reflected off a wall.

2. Background color: input <2> accepts a real number as hue, a 2D vector as hue
and saturation, and or a 3D vector as hue, saturation, and intensity to specif y
the background color. The raster screen will be colored with the background
color prior to any shaded rendering done in the refresh mode (refer to input
<9>). The default background color is black (0,0,0).

3. Raster viewpo t: input < 3 > accepts a 3D vector as the viewport on the raster
image buffer •vrrhere shaded renderings will be displayed. Raster viewports
are always square, the lower left corner being given by the X and Y
coordinates of the vector, and its size given by the Z coordinate, such that
the upper right corner is at (x+z,y+z). Ualues are rounded to the nearest
pixel. The default viewport is (80,0,480). The viewport is not intended for
magnification of small parts of the calligraphic image, but for mapping the
square vector display onto the rectangular raster display.

Initial Function Instance
Miscellaneous SHADINGENVIRONMENT

Version A2.Vol (continued)

NOTES

The viewport is also intended to allow multiple images to be generated side
by side on the raster display. Thus, the largest recommended value for the
viewport is (0,-80,640). The actual largest viewport is somewhat larger and
depends on combinations of the three values. The image is clipped to the
physical raster for which 0<X<640 and 0<Y<480.

4. Exposure: input <4> accepts a real number as the exposure, controlling the
overall brightness of the picture. The exposure is like that on a camera. If a
picture is taken of an object with a very bright specular highlight, it may be
so bright that the rest of the object is darkened. If three light sources exist,
the object would be about three times brighter, making the object too bright.
The exposure should be brought down to control this.

The exposure is multiplied by the intensity at each pixel and the result
clipped to the maximum intensity. This enables the overall brightness of a
rendering to be increased without causing bright spots to exceed maximum
intensity (instead forming "plateaus" of maximum intensity}. Note that this
may cause changes in color on a plateau, where color has reached its
maximum, but the others have not. Exposure values may vary between .3 and
3, values outside that range being changed to .3 or 3. The default exposure is
1.

5. Edge smoothing (anti—aliasing) control: input <5> accepts an integer which
will allows users to choose between having a relatively fast rendering with
jagged edges along the edges of polygons and having a slower rendering with
smoother edges. Anti—aliasing is accomplished by taking 16 samples per pixel
instead of just one. You are given the choice of having no edge smoothing at
all, smoothing along the edges only, or sampling 16 times within every pixel
for every polygon.

Sending f ix(0) to this input produces no smooth edges, and is fastest. The
polygons are rendered with one sample per pixel.

Sending f ix(1) produces smooth edges, but may not correctly resolve obscurity
between surfaces that are extremely close in z —values or that are
interpenetrating. The 16 samples are taken only where the edges of the
polygon touch a pixel. The interior of the polygons are still rendered with
one sample per pixel. This has a speed intermediate between a f ix(0) and a
fix(2).

Sending fix(2) to input <5> of SHADINGENVIRONMENT produces
edge—smoothing, and is slower, but resolves surfaces. The 16 samples are
taken in every pixel of every polygon. The default is 0.

Initial Function .Instance
SHADINGENVIRONMENT Miscellaneous

Version A2.V01 (continued)

NOTES (continued)

6. Depth cueing: input <6> accepts a real number in the range of 0 to 1 to
control the effect of depth cueing in the shaded image (1 specifying no depth
cueing and 0 specifying maximum depth cueing). As perceived depth from
the viewer increases, the colors are mixed with the ambient light color (input
< 1 > of SHADINGENVIRONMENT). Thus, if a 3D vector(0,o,0) (black) is sent
to the ambient input < 1 > and if a 0 is sent to input <6>, the objects will be
rendered with a ramp ending in black at the back clipping plane. A 1 sent to
input <6> will turn off depth cueing. The default is 0.2 giving a fairly large
depth cueing effect.

7. Screen wash: input <7> accepts a Boolean, and is the only input to cause a
visual effect immediately. TRUE causes the whole physical raster screen to
be filled with the current background color, while FALSE just fills the
currently defined viewport (clipped to the screen).

8. User abort: input <8> accepts any message and causes abort to occur for the
current hidden-line rendering on the calligraphic screen. Sometimes the
hidden-line algorithm can take a long time to run to completion. This input
allows you to exit rendering before it is complete.

9, Clear/Overlay Control: input <9> accepts a Boolean which determines
whether the screen is to be cleared with the current background color before
the rendering is done. Sending a TRUE to this input causes the current object
to be rendered on top of the image currently being displayed on the raster
screen. Sending a FALSE to this input causes the screen to be washed clean
with the current background color. The object which overlays the image is is
anti-aliased with the background color so the object is correctly composited
into the image with no jagged edges. The default is false.

lo.

Color by Vertex Control: input < 10> accepts a Boolean which turns off (or
on) the use of vertex colors. Color by vertex is accomplished by defining a
color for each vertex in the polygon:

[S] x,y,z [N x,y,z] [C h [,s [,i]]]

Refer to the notes on the POLYGon command for more information about
how to add color by vertex. To use the vertex colors defined this way rather
than the color defined in the ATTRIBUTES, send TRUE to this input. Send
FALSE to this input to return to using the color specified by the
ATTRIBUTES command. The default is false.

1 1. Opaque (Transparency) Control: input < 1 1 > accepts a Boolean which allows
you to turn off (or on) the transparency assigned to the polygon with the
OPAQUE clause of the attribute command. Transparent polygons are created
by modifying the ATTRIBUTE command in the following manner.

Initial Function Instance
Miscellaneous SHADINGENVIRONMENT

Version A2.V01 (continued)

NOTES (continued)

Name := ATTRIBUTE [Color h [,s [,i]]] [OPAQUE t]
[Diffuse d] [Specular s];

where t refers to a value between 0 and 1, with 1 being a fully opaque
polygon and 0 being a fully transparent polygon. The default is false.

As t decreases from 1 to 0, more of the color of the obscured objects) will
show through. At t=0, the transparent polygon becomes completely
invisible. If no opaque attribute is specified, the default is 1 (fully opaque).

12. Specular Highlight Control: input < 12> accepts a Boolean which allows you to
turn on (or off} specular highlights. Flat, Gouraud, and Phong shading all use
the same shading equation. This means that multiple light sources are
processed in each case and that specular highlights are calculated. Specular
highlights may appear strange in Gouraud or flat shading. In Gouraud
shading, the highlights may cause bright horizontal bands to appear inside the
polygons. In flat shading, some polygons will appear very bright when viewed
from certain angles unless specular highlights are turned off. The default is
true.

13. Special Color Blending for Spheres: input < 13> accepts a Boolean which turns
off (or on) the color blending used for correct spherical rendering. Sending a
TRUE to input < 13> turns ON this special color blending. Sending a FALSE to
input < 13> turns OFF special color blending. The default is false.

14. Update Attribute Table: input < 14> accepts a 3D tabulated vector list to
update the attribute table that specifies color, radii, diffuse, and specular
highlights for spheres and lines. The attribute table has 0 to 127 entries with
six table components for each entry. The attribute table can be updated by
encoding the table entries into a PS 300 vector list and then sending the name
of the vector list to input < 14>. The six table components are encoded into
two consecutive 3D tabulated vectors of the vector list. Hue, saturation, and
intensity are encoded into the first x,y,z respectively. Radius, diffuse, and
specular are encoded into the second x,y,z respectively. The table index is
encoded into the t field of the second vector.

The table is initialized as follows:

INDEX Hue Sat Intensit Radius Diffuse S• ecular
0 0 0 0.5 1.8 0.7 4 (Grey)
1 0 0 1 1.2 0.7 4 (White)
2 120 1 1 1.35 0.7 4 (Red)
3 240 1 1 1.8 0.7 4 (Green)
4 0 1 1 1.8 0.7 4 (Blue)
5 180 1 1 1.7 0.7 4 (Yellow)
6 0 0 0.7 1.8 0.7 4 (Grey)
7 300 1 1 Z.15 0.7 4 (Cyan)
8 60 1 1 1.8 0.7 4 (Magenta)

9-127 0 0 1 1.~8 0.7 4 (White)

Initial Function Instance
Miscellaneous SHADINGENVIRONMENT

Version A2.Vol (continued)

NQTES (continued)

15. Raster Lines Z-value Control: input < 15> accepts a real number in the range
of 0-1 which is added to the z-values of lines in raster renderings. Sending a

o to this input will leave lines in their original z position. Sending a 1 to this
input will force lines to be in front of everything else in the image. This
feature may be desirable when rendering lines exactly along polygon edges.
Leaving lines at their original z values will cause obscurity problems with the
edges of the the polygons. By adding an offset to the lines' z-values, this
obscurity problem is resolved more easily. The default is false.

PS 300 IBM PASCAL/VS GSR PATTRIB

ATTRIBUTES

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PATTRIB C goDESCR Name P_Varying_Type;
Hue REAL;
Saturation REAL;
Intensity REAL;
Opaque REAL;
Diffused REAL; {default .75}
Specular REAL; {default 4}

Procedure Error Handler CErr INTEGER));;

DEFINITION

This procedure defines polygon characteristics used by the rendering firmware in
the PS 340 to produce shaded renderings. Hue, Saturation, and Intensity define
the color of the polygon. Hue specifies an angle between 0 and 360 indicating the
color on a color wheel with pure blue being 0, red being 120 and green being 240.
Saturation specifies the saturation of the color with 0 being no color and 1 being
full saturation. Intensity specifies the intensity of the color with 0 being no color
(black} and 1 being full intensity. Diffused is the proportion of color contributed
by diffuse reflection versus that contributed by specular reflection with a value of
1 eliminating all specular highlighting and a value of 0 eliminating all diffuse
reflectivity. Specular adjusts the concentration of specular highlights in the
range of 0 to 10. Opaque specifies how transparent the polygon is with 1 being
fully opaque and 0 being fully transparent.

PS 300 COMMAND AND SYNTAX

Name := ATTRIBUTES [COLOR h[,s[i]]]
[DIFFUSE d]
[SPECULAR s]
[OPAQUE t];

PS 300 IBM PASCAL/VS GSR PATTRIB2

Name := ATTRIBUTES ... AND

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PATTRIB2 C %DESCR Name P Varying Type;
Huel REAL;
Saturation) REAL;
Intensity) REAL;
Opaque) REAL;
Diffused) REAL; {defaul t .75}
Specularl REAL; {default 4}
Hue2 REAL;
Saturation2 REAL;
Intensity2 REAL;
Opaque2 REAL;
Diffused2 REAL; {defaul t .75}
Specularl REAL; {default 4}

Procedure Error Handler [Err INTEGER));;

DEFINITION

This procedure defines polygon characteristics used by the rendering
firmware in the PS 340 to produce shaded renderings. This is similar
to the PATTRIB procedure but allows for a second set of attributes to
be defined for the back s i de of polygons .

PS 300 COMMAND AND SYNTAX

Name := ATTRIBUTES [COLOR hC,sCi]]]
[DIFFUSE d]
CSPECULAR s]
[OPAQUE t]

AND [COLOR hC,sC,i]]]
[DIFFUSE d]
CSPECULAR s]
[OPAQUE t];

/'1
PS 300 IBM PASCAL/VS GSR

Name := POLYGON CATTRIBUTES - no corresponding command)

PPLYGATR

Version AZ.VO1

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPLYGATR C CONST Attr STRING;
PROCEDURE Error_Handler C Err INTEGER));

DEFINITION

This procedure specifies that the attributes named by Attr and specified in a call
to PATTRIB or PATTRIB2 apply to all subsequent polygons until superseded by
another call to PPLYGATR.

This procedure is one of the procedures used to implement the PS_340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 IBM PASCAL/VS GSR PPLYGBEG

Name := POLYGON CBEGIN - no corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPLYGBEG C 9oDESCR Name P VaryingType;
PROCEDURE Error_Handler C Err INTEGER));

DEFINITION

This procedure begins a polygon display list. The parameter (Name) specifies the
name to be given to the polygon display list defined by PPLYGATR, PPLYGOTL,
AND PPLYGLIS.

Defining a polygon list requires that the user call a minimum of three procedures:
PPLYGBEG, to begin the list, one of the list routines (PPLYGLIS, PPLYGRGB,
PPLYGHSI) to build the list, and PPLYGEND to end the list. The procedures
PPLYGATR and PPLYGOTL provide many options that can be specified when
defining a polygon list.

This procedure is one of the procedures used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 IBM PASCAL/VS GSR PPLYGEND

Name := POLYGON LEND - no corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPLYGEND CPROCEDURE Error_Handler CErr INTEGER));

DEFINITION

This procedure ends the definition of a polygon display list.

This procedure is one of the procedures used to implement the PS 34Q command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[1NITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 IBM PASCAL/VS GSR PPLYGHSI

Name := POLYGON (Colors - no corresponding command)

Version A2.VOi

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PP1ygHsi C Coplanar Boolean;
NVertices Integer:

VAR Vertices P VectorListType;
NormSpec Boolean;

VAR Normals P VectorListType;
Colorspec Boolean

VAR Colors P_VectorListType;
PROCEDURE Error Handler (Err INTEGER));

DEFINITION

This procedure defines another polygon within the polygon display list currently
being constructed. The procedure may be called many times to specify additional
polygons for the polygon display currently under construction as named by the
PP1ygBeg procedure. It has the following parametric definitions:

• Coplanar determines whether the polygon is coplanar with the previous
polygon or not.

TRUE =coplanar, FALSE =not coplanar

• NVertices specifies the number of vertices in the polygon

• Vertices specifies the vertices of the polygon
Vertices [n].Draw =False defines the edge as 'soft'
Vertices [n].Draw =True defines the edge as 'hard'
Vertices [n].V4[1] =vertex n: x—coordinate;
Vertices [n].V4[Z] =vertex n: y—coordinate;
Vertices [n].V4[3] =vertex n: z—coordinate;

• NormSpec specifies if the normals to the vectors defining the polygon are
specified. It is TRUE if normals are specified in the Normals array.
Otherwise NormSpec =FALSE.

• Normals specifies the normals to the corresponding vector and is of the
identical form as: Vertices.

PS 300 IBM PASCAL/VS GSR PPLYGHSI

Name := POLYGON CColors - no corresponding command>

Version A2.V01 Ccontinued)

• ColorSpec specifies colors of vertices if the colors associated with the
defining polygon vertices are present. TRUE =colors are present, FALSE =
colors are not present.

• Colors specifies the colors associated with the polygon vertices.
Colors[n].Draw —Not used
Colors[n].V4[1] =Hue value mapped to a range 0-360.0;
Colors[n].V4[2] =Saturation value mapped to range 0—l;
Colors[n].V4[3] =Intensity value mapped to a range 0—l;

Saturation and intensity values are clamped to the nearest range without
warning.

NOTE

Polygon color by vertex capability rquires
PS 340 Firmware Version A2.V01 or higher
and a 4K ACP.

This procedure is one of the procedures used to implement the PS 340 command:

Name := [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 IBM PASCAL/VS GSR PPLYGLIS

Name := POLYGON CLIST - no corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPLYGLIS C

DEFINITION

Coplanar BOOLEAN;
NVertices INTEGER:

CONST Vertices P_VectorListType;
NormSpec Boolean;

CONST Normals : P_VectorListType;
PROCEDURE Error_Handler CErr INTEGER));

This procedure defines another polygon within the polygon display list currently
being constructed. The procedure may be called many times to specify additional
polygons for the polygon display currently under construction as named by the
PPlygBeg procedure. It has the following parametric definitions:

• Coplanar determines whether the polygon is coplanar with the previous
polygon or not.

TRUE =coplanar, FALSE =not coplanar

• NVertices specifies the number of vertices in the polygon
• Vertices specifies the vertices of the polygon

Vertices (.n.).Draw =False defines the edge as 'soft'
Vertices (.n.).Draw =True defines the edge as 'hard'
Vertices (.n.).V4(.l.) =vertex n: x—coordinate;
Vertices (.n.).V4(.2.) =vertex n: y—coordinate;
Vertices (.n.).V4(.3.) =vertex n: z—coordinate;

• NormSpec specifies if the normals to the vectors defining the polygon are
specified.

TRUE =specified in the Normals array, FALSE =not specified.

• Normals specifies the normals to the corresponding vector and is of the
identical form as: Vertices.

PS 300 IBM PASCAL/VS GSR PPLYGLIS

Name := POLYGON CLIST - no corresponding command)

Version A2.V01 Ccontinued)

This procedure is one of the procedures used to implement the PS 340 command:

Name := [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 IBM PASCAL/VS GSR PPLYGOTL

Name := POLYGON (OUTLINE - no corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPLYGOTL C VAR Outline REAL;
PROCEDURE Error_Handler t Err INTEGER));

DESCRIPTION

This procedure specifies that Outline to be used as the color (if between 1 and
360) or intensity (if between 0 and 1) of all polygons edges on the calligraphic
display until superseded by another call to PPLYGOTL.

This procedure is one of the procedures used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 IBM PASCAL/VS GSR PPLYGRGB

Name := POLYGON CRGBList - no corresponding command)

Version AZ.VO1

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPLYGRGB C

DEFINITION

Coplanar BOOLEAN;
NVertices INTEGER:

VAR Vertices P_VectorListType;
NormSpec Boolean;

VAR Normals P_VectorListType;
ColorSpec Boolean;

VAR RGBList P_PolyColorType;
PROCEDURE Error_Handler CErr INTEGER));

This procedure defines another polygon within the polygon display list currently
being constructed. The procedure may be called many times to specify additional
polygons for the polygon display currently under construction as named by the
PP1ygBeg procedure. It has the following parametric definitions:

• Coplanar determines whether the polygon is coplanar with the previous
polygon or not.

TRUE =coplanar, FALSE =not coplanar

• NVertices specifies the number of vertices in the polygon
• Vertices specifies the vertices of the polygon

Uertices [.n.].Draw =False defines the edge as 'soft'
Uertices [.n.].Draw =True defines the edge as 'hard'
Vertices [.n.].U4[.l.] =vertex n: x-coordinate;
Vertices [.n.].U4[.2.] =vertex n: y-coordinate;
Uertices [.n.].U4[.3.] =vertex n: z-coordinate;

• NormSpec specifies if the normals to the vectors defining the polygon are
specified.

TRUE =specified in the Normals array, FALSE =not specified.

• Normals specifies the normals to the corresponding vector and is of the
identical form as: Vertices.

PS 300 I6M PASCAL/VS GSR PPLYGRGB

Name := POLYGON (RGBList - no corresponding command)

Version A2.V01 (continued)

• ColorSpec specifies colors of vertices if the colors associated with the
defining polygon vertices are present. TRUE =colors are present, FALSE _
colors are not present.

• RGBList specifies the colors associated with the polygon vertices.
RGBList[l ,n] =Red
RGBList[2,n] =Green
RGBList[3,n] =Blue

P_PolycolorType is defined as
P_PolycolorType =ARRAY [1..3, l.. P_MaxpolygonSize] OF INTEGER;

All Red, Green, Blue values are mapped to the range 0—Z55. Out of range values
are clamped to the nearest range without warning.

NOTE

Polygon color by vertex capability rquires
PS 340 Firmware Version A2.V01 or higher
and a 4K ACP.

This procedure is one of the procedures used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h)]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 IBM PASCAL/VS GSR PSUTIL HSIRGB

UTILITY PROCEDURE

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSUTIL_HSIRGB C VAR red, green b1ue:INTEGER;
VAR Hue, Saturation, Intensity:REAL);

DEFINITION

This procedure converts Hue, Saturation, and Intensity color specifications to
Red, Green, and Blue color specification.

The algorithm used by the PS 340 to covert HSI color specifications to RGB color
specifications is adapted from Foley and VanDam's algorithm, which returns RGB
values in the range of range 0 to 1 and has the color wheel where Hue=O is red,
Hue=120 is green, Hue=240 is blue. This is NOT the same color wheel
specification used by the PS 340.

The PS 340 algorithm returns RGB values as integers in a range of 0 to 255 and
has the color wheel where Hue=O is blue, Hue=120 is red, and Hue=240 is green.

PS 300 IBM VS FORTRAN GSR PATTR

Name := ATTRIBUTES

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PATTR [Name, Hue, Sat, Intens, Opaque, Diffus, Specul, ErrHnd)

where

Name is a CHARACTER STRING
Hue is a REAL
Sat is a REAL
Intens is a REAL
Opaque is a REAL
Diffus is a REAL
Specul is an INTEGER~4
Errhnd is the user-defined error-handler subroutine

DESCRIPTION

This subroutine defines polygon characteristics used by the rendering firmware in
the PS 340 to produce shaded renderings. Hue, Sat and Intens define the color of
the polygon. Hue specifies an angle between 0 and 360 indicating the color on a
color wheel with pure blue being 0, red being 120 and green being 240. Sat
specifies the saturation of the color with 0 being no color and 1 being full
saturation. Intens specifies the intensity of the color with 0 being no color (black)
and 1 being full intensity. Diffus is the proportion of color contributed by diffuse
reflection versus that contributed by specular reflection with a value of 1
eliminating all specular highlighting and a value of 0 eliminating , alI diffuse
reflectivity. Specul adjusts the concentration of specular highlights in the range
of 0 to 10. Opaque specifies how transparent the polygon is with 1 being fully
opaque and 0 being fully transparent.

PS 300 COMMAND AND SYNTAX

Name := ATTRIBUTES [COLOR h[,s[i]]]
[DIFFUSE d]
[SPECULAR s]
[OPAQUE t];

PS 300 IBM VS FORTRAN GSR PATTR2

("1 Name : = ATTRIBUTES . . . AND

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PATTR2 [Name, Hue, Sat, Intens, Opaqul, Diffus, Specul,
Hue2, Sat2, Intent, Opaqu2~, Diffu2, Specul2, ErrHnd)

where

Name is a CHARACTER STRING
Hue is a REAL
Sat is a REAL
Intens is a REAL
Opaqu 1 is a REAL
Diffus is a REAL
Specul is an INTEGER~4
Hue2 is a REAL
Sat2 is a REAL
Intent is a REAL
Opaqu2 is a REAL
Diffu2 is a REAL
Specul2 is an INTEGER~4
Errhnd is the user—defined error—handler subroutine

DESCRIPTION

This subroutine defines polygon characteristics used by the rendering firmware in
the PS 340 to produce shaded renderings. This is similar to the PATTR subroutine
but allows for a second set of attributes to be defined for the backside of polygons.

PS 300 COMMAND AND SYNTAX

Name := ATTRIBUTES [COLOR h[,s[,i]]]
[DIFFUSE d]
[SPECULAR s]
[OPAQUE t]

AND [COLOR h[,s[,i]]]
[DIFFUSE d]
[SPECULAR s]
[OPAQUE t];

PS 300 IBM VS FORTRAN GSR PPLYGA

Name := POLYGON CATTRIBUTES - no corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPLYGA CAttr, ErrNnd)

where:

Name is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine specifies that the attributes named by Attr and specified in a call
to PATTR or PATTR2 apply to all subsequent polygons until superseded by
another call to PPLYGA.

This subroutine is one of the subroutines used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 IBM VS FORTRAN GSR PPLYGB

r""1 Name := POLYGON CBEGIN - no corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PP1yg6 CName, ErrHnd)

where:

Name is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine begins a polygon display list. The parameter (Name) specifies the
name to be given to the polygon display list defined by calls to PPLYGA, PPLYGO
and PPLYGL.

Defining a polygon list requires that the user call a minimum of three
subroutines: PPLYGB, to begin the list, one of the list routines (PPLYGL,
PPLYGR, PPLYGH) to build the list, and PPLYGE to end the List. The
subroutines PPLYGA and POLYGO provide many options that can be specified
when defining a polygon list.

This subroutine is one of the subroutines used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 IBM VS FORTRAN GSR PPLYGE

Name := POLYGON LEND - no corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPLYGE CErrHnd)

where:

ErrHnd is the user—defined error—handler subroutine.

DEFINITION

This subroutine ends the definition of a polygon display list.

This subroutine is one of the subroutines used to implement the PS 340 command:

Name :_ [1NITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 IBM VS FORTRAN GSR PPLYGH

Name := POLYGON (Colors - no corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPLYGH (Coplan, Nverts, Verts, Vedges, NorSpec, Norms,
ColSpe, Colors, ErrHnd)

where:

Coplan is a LOGICAL
Nverts is an INTEGER~4
Verts is a REAL~4 (4, Nverts)
Vedges is a LOGICAL 1 (NUerts)
NorSpec is a LOGICAL
Norms is a REAL*~ (4, Nverts)
Co1Spe is a LOGICAL
Colors is a REAL~4 (4,Nverts)
ErrHnd is the user-defined error-handler subroutine.

DEFINITION

This subroutine defines another polygon within the polygon display list currently
being constructed. The subroutine may be called many times to specif y
additional polygons for the polygon display currently under construction as
named by the PP1ygB subroutine call. It has the following parametric definitions:

• Coplan determines whether the polygon is coplanar with the previous
polygon or not.

.TRUE. =coplanar, .FALSE. =not coplanar

• NVert specifies the number o f vertices in the polygon

• Verts specifies the vertices of the polygon
Verts (1, n) =vertex n: x-coordinate;
Verts (2, n) =vertex n: y-coordinate;
Verts (3, n) =vertex n: z-coordinate;

• Vedges specifies the "soft" versus "hard" nature of each edge specified by:
Verts.

Vedges (n) _ .FALSE, if "soft edge", .TRUE. if "hard edge".

(Continued on next page)

PS 300 IBM VS FORTRAN GSR PPLYGH

Name := POLYGON CColors - no corresponding command)

Version A2.V01 Ccontinued)

• NorSpe specifies if the normals to the vectors defining the polygon are
specified.

NorSpe = .TRUE. if specified, NorSpe = .FALSE. if not specified.

• Norms specifies a normal to correspond to each vertex. This parameter is of
the same form as: Verts.

• ColSpe specifies if the colors attached to the polygon vertices are specified.
ColSpe = .TRUE. if specified, ColSpe = .FALSE. if not specified.

• Colors specifies the colors of the vertices of the polygon. It is of the same
form as Verts:

Colors(l,n) =Hue n
Colors(2,n) =Saturation n
Colors(3,n) =Intensity n

This subroutine is one of the subroutines used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300/IBM VS FORTRAN GSR PPLYGL

Name := POLYGON CLIST - no corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPLYGL (Coplan, Nverts, Verts, Vedges, NorSpec, Norms, ErrHnd)

where:

Coplan is a LOGICAL
Nverts is an INTEGER~4
Verts is a REAL~4 (4, Nverts)
Vedges is a LOGICAL 1 (NVerts)
NorSpec is a LOGICAL
Norms is a REAL~4 (4, Nverts)
ErrHnd is the user—defined error—handler subroutine.

DEFINITION

This subroutine defines another polygon within the polygon display list currently
being constructed. The subroutine may be called many times to specify additional
polygons for the polygon display currently under construction as named by the
PP1ygB subroutine call. It has the following parametric definitions:

• Coplan determines whether the polygon is coplanar with the previous
polygon or not.

.TRUE. =coplanar, .FALSE. =not coplanar

• NVerts specifies the number of vertices in the polygon

• Verts specifies the vertices of the polygon
1/erts (l, n) =vertex n: x—coordinate;
Verts (2, n) =vertex n: y—coordinate;
Verts (3, n) =vertex n: z—coordinate;

• Vedges specifies the "soft" versus "hard" nature of each edge specified by:
Verts.

Vedges (n) _ .FALSE. if "soft edge", .TRUE. if "hard edge".

• NorSpe specifies if the normals to the vectors defining the polygon are
specified.

NorSpe = .TRUE. if specified, NorSpe = .FALSE. if not specified.

• Norms specifies a normal to correspond to each vertex. This parameter is
of the same form as: Verts.

(Continued on next page)

PS 300 IBM VS FORTRAN GSR PPLYGL

Name := POLYGON (LIST - no corresponding command)

Version A2.V01 (continued)

This subroutine is one of the subroutines used to implement the PS 34Q command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[[WITH [ATTRIBUTES attr] [OUTLINE r]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 IBM VS FORTRAN GSR PPLYGO

('1 Name := POLYGON COUTLINE - no corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPLYGO COutlin, ErrHnd>

where

Outlin is a REAL
Errhnd is the user—defined error—handler subroutine

DESCRIPTION

This subroutine specifies that Outln be used as the color (if between 1 and 360) or
intensity (if between 0 and 1) of all polygons edges on the calligraphic display
until superseded by another call to PPLYGO.

This subroutine is one of the subroutines used to implement the PS 340
command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 IBM VS FORTRAN GSR PPLYGR

Name := POLYGON C~RGBVaI - no corresponding command)

Version V2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPLYGR (Coplan, Nverts, Verts, Vedges, NorSpec, Norms, Co1Spe,
RGBVaI, ErrHnd)

where:

Coplan is a LOGICAL
Nverts is an INTEGER~4
verts is a REAL~4 (4, Nverts)
Vedges is a LOGICAL~I (Nverts)
NorSpec is a LOGICAL
Norms is a REAL~4 (4, Nverts)
ColSpe is a LOGICAL
RGBVaI is an INTEGER~4(3,Nverts)
ErrHnd is the user-defined error-handler subroutine.

DEFINITION

This subroutine defines another polygon within the polygon display list currently
being constructed. The subroutine may be called many times to specify additional
polygons for the polygon display currently under construction as named by the
PPIygB subroutine call. It has the following parametric definitions:

• Coplan determines whether the polygon is coplanar with the previous
polygon or not.

.TRUE. =coplanar, .FALSE. =not coplanar

• NVert specifies the number of vertices in the polygon

• verts specifies the vertices of the polygon
Verts (l, n) =vertex n: x-coordinate;
Verts (2, n) =vertex n: y-coordinate;
Verts (3, n) =vertex n: z-coordinate;

• Vedges specifies the "soft" versus "hard" nature of each edge specified by:
Verts.

Vedges (n) = .FALSE, if "soft edge", .TRUE, if "hard edge".

• NorSpe specifies if the normals to the vectors defining the polygon are
specified.

NorSpe = .TRUE. if specified, NorSpe = .FALSE. if not specified.

r1 (Continued on next page)

PS 300 IBM VS FORTRAN GSR PPLYGR

Name := POLYGON CRGBVaI - no corresponding command)

Version A2.V01 Ccontinued)

• Norms specifies a normal to correspond to each vertex. This parameter is
of the same form as: Verts.

• ColSpe specifies if the colors attached to the polygon vertices are
specified.

ColSpe = .TRUE. if specified, ColSpe = .FALSE. if not specified.

• RGBVaI specified the colors of the vertices of the polygon.
Colors(l,n) =Red intensity n (range 0..255)
Colors(2,n) =Green intensity n (range 0..255)
Colors(3,n) =Blue intensity n (range 0..255)

Out of range values are converted to the nearest range value without
warning.

This subroutine is one of the subroutines used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR) [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 IBM VS FORTRAN GSR PSURGB

UTILITY COMMAND

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSURGB CRed, Green, Blue, Hue, Sat, Intens)

where

Red, Green, Blue are INTEGER~4
Hue, Sat, Intens are REAL*4

DESCRIPTION

This procedure defines polygon characteristics used by the rendering firmware in
the PS 340 to produce renderings. This procedure converts Hue, Saturation, and
Intensity color specifications to Red, Green, and Blue color specification.

This algorithm is adapted form Foley and VanDam, which returns RGB values in
the range of range 0..1 and has a color wheel where Hue = 0 is red, Hue = 120 is
green, Hue = 240 is blue .

This algorithm uses a different color wheel, where Hue = 0 is blue, Hue = 120 is
red, and Hue = 240 is green. It returns RGB values as Integers in the range 0..255.

PS 300 DEC VAX/VMS PASCAL GSR PATTRIB

ATTRIBUTES

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PATTRIB C 9'oDESCR Name P Varying_Type;
Hue REAL;
Saturation REAL;
Intensity REAL;
Opaque REAL ;
Diffused REAL; {default .75}
Specul ar REAL; {default 4}

Procedure Error_Handler tErr INTEGER));;

DEFINITION

This procedure defines polygon characteristics used by the rendering firmware in
the PS 340 to produce shaded renderings. Hue, Saturation, and Intensity define
the color of the polygon. Hue specifies an angle between 0 and 360 indicating the
color on a color wheel with pure blue being 0, red being 120 and green being 240.
Saturation specifies the saturation of the color with 0 being no color and 1 being
full saturation. Intensity specifies the intensity of the color with 0 being no color
(black} and 1 being full intensity. Diffused is the proportion of color contributed
by diffuse reflection versus that contributed by specular reflection with a value of
1 eliminating all specular highlighting and a value of 0 eliminating all diffuse
reflectivity. Specular adjusts the concentration of specular highlights in the
range of 0 to 10. Opaque specifies how transparent the polygon is with 1 being
fully opaque and 0 being fully transparent.

PS 300 COMMAND AND SYNTAX

Name := ATTRIBUTES [COLOR h[,s[i]]]
[DIFFUSE d]
[SPECULAR s]
[OPAQUE t];

PS 300 DEC VAX/VMS PASCAL GSR PATTRIB2

Name := ATTRIBUTES ... AND

Version A2.Vol

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PATTRIB2 C 9oDESCR Name P Varying_Type;
Huel REAL;
Saturation) REAL;
Intensity) REAL;
Opaque) REAL;
Di ffusedl REAL; {default .75}
Specularl REAL; {default 4}
Hue2 REAL;
Saturation2 REAL;
Intensity2 REAL;
Opaque2 REAL;
Di ffusedl REAL; {default .75}
Specularl REAL; {default 4}

Procedure Error_Handler CErr INTEGER));;

DEFINITION

This procedure defines polygon characteristics used by the rendering firmware in
the PS 340 to produce shaded renderings. This is similar to the PATTRIB
procedure but allows for a second set of attributes to be defined for the back side
of polygons.

PS 300 COMMAND AND SYNTAX

Name := ATTRIBUTES [COLOR h[,s[i]]]
[DIFFUSE d]
[SPECULAR s]
[OPAQUE t]

AND [COLOR h[,s[,i]]]
[DIFFUSE d]
[SPECULAR s]
[OPAQUE t];

PS 300 DEC VAX/VMS PASCAL GSR PPLYGATR

Name := POLYGON (ATTRIBUTES - no corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPLYGATR C 9~oDESCR Attr P_VaryingType;
PROCEDURE Error_Handler C Err INTEGER));

DEFINITION

This procedure specifies that the attributes named by Attr and specified in a call
to PATTRIB or PATTRIB2 apply to all subsequent polygons until superseded by
another call to PPLYGATR.

This procedure is one of the procedures used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 DEC VAX/VMS PASCAL GSR ~ PPLYGBEG

Name := POLYGON CBEGIN - no corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPLYGBEG C %DESCR Name P_VaryingType;
PROCEDURE Error_Handler C Err INTEGER));

DEFINITION

This procedure begins a polygon display list. The parameter (Name) specifies the
name to be given to the polygon display list defined by PPLYGATR, PPLYGOTL,
AND PPLYGLIS.

Defining a polygon list requires that the user call a minimum of three routines:
PPLYGBEG, to begin the list, one of the list routines (PPLYGLIS, PPLYGRGB,
PPLYGHSI) to build the list, and PPLYGEND to end the list. The routines
PPLYGATR and PPLYGOTL provide many options that can be specified when
defining a polygon list.

This procedure is one of the procedures used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 DEC VAX/VMS PASCAL GSR PPLYGEND

Name := POLYGON LEND - no corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPlygEnd CPROCEDURE Error_Handler CErr INTEGER));

DEFINITION

This procedure ends the definition of a polygon display list.

This procedure is one of the procedures required to implement the PS 340
command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 DEC VAXIVMS PASCAL GSR PPI.YGHSI

Name := POLYGON CColors - no corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPlygHsi C Coplanar Boolean;
NVertices Integer:

VAR Vertices P VectorListType;
NormSpec Boolean;

VAR Normals P VectorListType;
Colorspec Boolean

VAR Colors P_VectorListType;
PROCEDURE Error Handler CErr INTEGER));

DEFINITION

This procedure defines another polygon within the polygon display list currently
being constructed. The procedure may be called many times to specify additional
polygons for the polygon display currently under construction as named by the
PPlygBeg procedure. It has the following parametric definitions:

• Coplanar determines whether the polygon is coplanar with the previous
polygon or not.

TRUE =coplanar, FALSE =not coplanar

• NVertices specifies the number of vertices in the polygon

• Vertices specifies the vertices of the polygon
Vertices [n].Draw =False defines the edge as 'soft'
Vertices [n].Draw =True defines the edge as 'hard'
Vertices [n].V4[1] =vertex n: x—coordinate;
Vertices [n].V4[2] =vertex n: y—coordinate;
Vertices [n].V4[3] =vertex n: z—coordinate;

• NormSpec specifies if the normals to the vectors defining the polygon are
specified. It is TRUE if normals are specified in the Normals array.
Otherwise NormSpec =FALSE.

• Normals specifies the normals to the corresponding vector and is of the
identical form as: Vertices.

PS 300 DEC VAX/VMS PASCAL GSR PPLYGHSI

Name := POLYGON Colors Cno corresponding command)

Version A2.V01 (continued)

• ColorSpec specifies colors of vertices if the colors associated with the
defining polygon vertices are present. TRUE =colors are present, FALSE _
colors are not present.

• Colors specifies the colors associated with the polygon vertices.
Colors[n].Draw —Not used
Colors[n].V4[1] =Hue value mapped to a range 0-360.0;
Colors[n].U4[2] =Saturation value mapped to range 0— l ;
Colors[n].V4[3] =Intensity value mapped to a range 0—l;

Saturation and intensity values are clamped to the nearest range without
warning.

NOTE

Polygon color by vertex capability rquires
PS 340 Firmware Version A2.U01 or higher
and a 4K ACP.

This procedure is one of the procedures used to implement the PS 340 command:

Name :_ [1NITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[1NITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 DEC VAX/VMS PASCAL GSR PPLYGLIS

l~1 Name := POLYGON tLIST - no corresponding command>

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPlygLis

DEFINITION

t Coplanar BOOLEAN;
NVertices INTEGER:

VAR Vertices P VectorListType;
NormSpec BOOLEAN;

VAR Normals P_VectorListType;
PROCEDURE Error_Handler tErr INTEGER));

This procedure defines another polygon within the polygon display list currently
being constructed. The procedure may be called many times to specify additional
polygons for the polygon display currently under construction as named by the
PPlygBeg procedure. It has the following parametric definitions:

• Coplanar determines whether the polygon is coplanar with the previous
polygon or not.

TRUE =coplanar, FALSE =not coplanar

• NVertices specifies the number of vertices in the polygon

• Vertices specifies the vertices of the polygon
Vertices [n].Draw =False defines the edge as 'soft'
Vertices [n).Draw =True defines the edge as 'hard'
Vertices [n].V4[1] =vertex n: x—coordinate;
Vertices [n].V4[2] =vertex n: y-coordinate;
Vertices [n].V4[3] =vertex n: z—coordinate;

• NormSpec specifies if the normals to the vectors defining the polygon are
specified. It is TRUE if normals are specified in the Normals array.
Otherwise NormSpec =FALSE.

• Normals specifies the normals to the corresponding vector and is of the
identical form as: Vertices.

PS 300 DEC VAX/VMS PASCAL GSR PPLYGLIS

Name := POLYGON CLIST - no corresponding command)

Version A2.V01 Ccontinued)

This procedure is one of the procedures used to implement the_ PS 340 command:

Name := CWITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 DEC VAX/VMS PASCAL GSR PPLYGOTL

Name := POLYGON COUTLINE - no corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPLYGOTL C VAR Outline REAL;
PROCEDURE Error_Nandler C Err INTEGER));

DESCRIPTION

This procedure specifies that Outline to be used as the color (if between 1 and
3b0) or intensity (if between 0 and 1) of all polygons edges on the calligraphic
display until superseded by another call to PPLYGOTL.

This procedure is one of the procedures used to implement the PS 34Q command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h])
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 DEC VAX/VMS PASCAL GSR PPLYGRGB

n Name := POLYGON CRGBList - no corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PPLYGRGB

DEFINITION

Coplanar 600lean;
NVertices Integer:

VAR Vertices P VectorListType;
NormSpec 600lean;

VAR Normals P VectorListType;
ColorSpec Boolean;

VAR RGBList P_PolyColorType;
PROCEDURE Error_Handler CErr INTEGER));

This procedure defines another polygon within the polygon display list currently
being constructed. The procedure may be called many times to specify additional
polygons for the polygon display currently under construction as named by the
PP1ygBeg procedure. It has the following parametric definitions:

• Coplanar determines whether the polygon is coplanar with the previous
polygon or not.

TRUE =coplanar, FALSE =not coplanar

• NVertices specifies the number of vertices in the polygon
• Vertices specifies the vertices of the polygon

Vertices [.n.].Draw =False defines the edge as 'soft'
Vertices [.n.].Draw =True defines the edge as 'hard'
Vertices [.n.].V4[.l.] =vertex n: x—coordinate;
Vertices [.n.].V4[.2.] =vertex n: y—coordinate;
Vertices [.n.].V4[.3.] =vertex n: z—coordinate;

• NormSpec specifies if the normals to the vectors defining the polygon are
specified.

TRUE =specified in the Normals array, FALSE =not specified.

• Normals specifies the normals to the corresponding vector and is of the
identical form as: Vertices.

PS 300 DEC VAX/VMS PASCASL GSR PPLYGRGB

Name := POLYGON CRGBList - no corresponding command)

Version A2.V01 Ccontinued)

• ColorSpec specifies colors of vertices if the colors associated with the
defining polygon vertices are present. TRUE =colors are present, FALSE _
colors are not present.

• RGBList specifies the colors associated with the polygon vertices.
RGBList[l,nJ =Red
RGBList[2,nJ =Green
RGBList[3,nJ =Blue

P_PolycolorType is defined as
P_PolycolorType =ARRAY [1..3, 1.. P_MaxpolygonSizeJ OF INTEGER;

All Red, Green, Blue values are mapped to the range 0-255. Out of range values
are clamped to the nearest range without warning.

NOTE

Polygon color by vertex capability rquires
PS 340 Firmware Version A2.V01 or higher
and a 4K ACP.

This procedure is one of the procedures used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attrJ [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,iJ

[WITH [ATTRIBUTES attr] [OUTLINE hJJ
POLYGON [COPLANAR) [SJ x,y,z [N x,y,zJ [C h,s,iJ;

PS 300 DEC VAX/VMS PASCAL GSR PSUTIL HSIRGB

UTILITY PROCEDURE

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PSUTIL_NSIRGB C VAR red, green b1ue:INTEGER;
VAR Hue, Saturation, Intensity: REAL);

DEFINITION

This procedure converts Hue, Saturation, and Intensity color specifications to
Red, Green, and Blue color specification.

The algorithm used by the PS 340 to covert HSI color specifications to RGB color
specifications is adapted from Foley and VanDam's algorithm, which returns RGB
values in the range of range 0 to 1 and has the color wheel where Hue=O is red,
Hue=120 is green, Hue=240 is blue. This is NOT the same color wheel
specification used by the PS 340.

The PS 340 algorithm returns RGB values as integers in a range of 0 to 255 and
has the color wheel where Hue=O is blue, Hue=120 is red, and Hue=240 is green.

PS 300 DEC VAX/VMS FORTRAN-77 OSR PATTR

Name := ATTRIBUTES

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PATTR CName, Hue, Sat, Intens, Opaque, Diffus, Specul, ErrNnd)

where

Name is a CHARACTER STRING
Hue is a REAL
Sat is a REAL
Intens is a REAL
Opaque is a REAL
Diffus is a REAL
Specul is an INTEGER~4
Errhnd is the user-defined error-handler subroutine

DESCRIPTION

This subroutine defines polygon characteristics used by the rendering firmware in
the PS 340 to produce shaded renderings. Hue, Sat and Intens define the color of
the polygon. Hue specifies an angle between 0 and 360 indicating the color on a
color wheel with pure blue being 0, red being 120 and green being 240. Sat
specifies the saturation of the color with 0 being no color and 1 being full
saturation. Intens specifies the intensity of the color with 0 being no color (black)
and 1 being full intensity. Diffus is the proportion of color contributed by diffuse
reflection versus that contributed by specular reflection with a value of 1
eliminating all specular highlighting and a value of 0 eliminating all diffuse
reflectivity. Specul adjusts the concentration of specular highlights in the range
of 0 to 10. Opaque specifies how transparent the polygon is with 1 being fully
opaque and 0 being fully transparent.

PS 300 COMMAND AND SYNTAX

Name := ATTRIBUTES [COLOR h[,s[i]]]
[DIFFUSE d]
[SPECULAR s]
[OPAQUE t];

PS 300 DEC VAX/VMS FORTRAN-77 GSR PATTR2

Name := ATTRIBUTES ... AND

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PATTR2 [Name, Hue, Sat, Intens, Opaqul, Diffus, Specul ,
Hue2, Sat2, Intent, Opaqu2, Diffu2, Specul2, ErrHnd)

where

Name is a CHARACTER STRING
Hue is a REAL
Sat is a REAL
Intens is a REAL
Opaqu 1 is a REAL
Diffus is a REAL
Specul is an INTEGER~4 _
Hue2 is a REAL
Sat2 is a REAL
Intent is a REAL
Opaqu2 is a REAL
Dif f u 2 is a REAL
Specul2 is an INTEGER~4
Errhnd is the user—defined error—handler subroutine

DESCRIPTION

This subroutine defines polygon characteristics used by the rendering firmware in
the PS 340 to produce shaded renderings. This is similar to the PATTR subroutine
but allows for a second set of attributes to be defined for the backside of polygons.

PS 300 COMMAND AND SYNTAX

Name := ATTRIBUTES [COLOR h[,s[,i]]]
[DIFFUSE d]
[SPECULAR s]
[OPAQUE t]

AND [COLOR h[,s[,i]]]
[DIFFUSE d~
[SPECULAR s]
[OPAQUE t];

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPLYGA

Name := POLYGON CATTRIBUTES - no corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPLYGA CAttr, ErrHnd)

where:

Name is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine specifies that the attributes named by Attr and specified in a call
to PATTR or PATTR2 apply to all subsequent polygons until superseded by
another call to PPLYGA.

This subroutine is one of the subroutines used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLAi~IAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 DEC VAXIVMS FORTRAN-77 GSR PPLYGB

Name := POLYGON CBEGIN - no corresponding command)

Version AZ.VO1

APPLICATION SUBROUTINE AND PARAMETERS

CALL PP1ygB CName, ErrHnd)

where:

Name is a CHARACTER STRING
ErrHnd is the user—defined error—handler subroutine.

DESCRIPTION

This subroutine begins a polygon display list. The parameter (Name) specifies the
name to be given to the polygon display list defined by calls to PPLYGA, PPLYGO
and PPLYGL.

Defining a polygon list requires that the user call a minimum of three
subroutines: PPLYGB, to begin the list, one of the list routines (PPLYGL,
PPLYGR, PPLYGH) to build the list, and PPLYGE to end the list. The
subroutines PPLYGA -~ and PPLYGO provide many options that can be specified
when defining a polygon list.

This subroutine is one of the subroutines used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPLYGE

Name := POLYGON LEND - no corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPLYGE CErrHnd)

where:

ErrHnd is the user—defined error—handler subroutine.

DEFINITION

This subroutine ends the definition of a polygon display list.

This subroutine is one of the subroutines required to implement the PS 340
command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPLYGH

r'"1
Name := POLYGON (Colors - no corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPLYGH (Coplan, Nverts, Verts, Vedges, NorSpec, Norms, Co1S.pe,
Colors, ErrHnd)

where:

Coplan is a LOGICAL
Nverts is an INTEGER*4
Verts is a REAL~4 (4, Nverts)
Vedges is a LOGICAL~I (Nverts)
NorSpec is a LOGICAL
Norms is a REAL*4 (4, Nverts)
Co1Spe is a LOGICAL
Colors is a REAL~4 (4,Nverts)
ErrHnd is the user-defined error-handler subroutine.

DEFINITION

This subroutine defines another polygon within the polygon display list currently
being constructed. The subroutine may be called many times to specify additional
polygons for the polygon display currently under construction as named by the
PPIygB subroutine call. It has the following parametric definitions:

• Coplan determines whether the polygon is coplanar with the previous
polygon or not.

.TRUE. =coplanar, .FALSE. =not coplanar

• NVert specifies the number of vertices in the polygon

• Verts specifies the vertices of the polygon
Verts (1, n) =vertex n: x-coordinate;
Verts (2, n) =vertex n: y-coordinate;
Verts (3, n) =vertex n: z-coordinate;

• Vedges specifies the "soft" versus "hard" nature of each edge specified by:
Verts.

Vedges (n) _ .FALSE. if "soft edge", .TRUE, if "hard edge".

(Continued on next page)

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPLYGH

Name := POLYGON (Colors - no corresponding command)

Version A2.VOl (continued)

• NorSpe specifies if the normals to the vectors defining the polygon are
specified.

NorSpe = .TRUE. if specified, NorSpe = .FALSE. if not specified.

• Norms specifies a normal to correspond to each vertex. This parameter is of
the same form as: Vertic.

• ColSpe specifies if the colors attached to the polygon vertices are specified.
ColSpe = .TRUE, if specified, ColSpe = .FALSE. if not specified.

• Colors specifies the colors of the vertices of the polygon. It is of the same
form as Verts:

Colors(l,n) =Hue n
Colors(2,n) =Saturation n
Colors(3,n) =Intensity n

This subroutine is one of the subroutines used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPLYG~

Name := POLYGON CLIST - no corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARA~/IETERS

CALL PPLYGL (Coplan, Nverts, Vents, Vedges, NorSpec, Norms, ErrHnd)

where:

Coplan is a LOGICAL
Nverts is an INTEGER~4
Vents is a REAL~4 (4, Nverts)
Vedges is a LOGICAL~I (NVerts)
NorSpec is a LOGICAL
Norms is a REAL~4 (4, Nverts)
ErrHnd is the user—defined error—handler subroutine.

DEFINITION

This subroutine defines another polygon within the polygon display list currently
being constructed. The subroutine may be called many times to specify additional
polygons for the polygon display currently under construction as named by the
PPIygB subroutine call. It has the following parametric definitions:

• Coplan determines whether the polygon is coplanar with the previous
polygon or not.

.TRUE. =coplanar, .FALSE. =not coplanar

• Nverts specifies the number of vertices in the polygon

• Vents specifies the vertices of the polygon
Vents (l, n) =vertex n: x—coordinate;
Vents (2, n) =vertex n: y—coordinate;
Vents (3, n) =vertex n: z—coordinate;

• Vedges specifies the "soft" versus "hard" nature of each edge specified by:
Vents.

Vedges (n) _ .FALSE, if "soft edge", .TRUE. if "hard edge".

(Continued on next page)

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPLYGL

Name := POLYGON CLIST - no corresponding command)

Version A2.V01 Ccontinued)

• NorSpe specifies if the normals to the vectors defining the polygon are
specified.

NorSpe = .TRUE, if specified, NorSpe = .FALSE. if not specified.

• Norms specifies a normal to correspond to each vertex. This parameter is
of the same form as: Verts.

This subroutine is one of the subroutines used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attrJ [OUTLINE h]J
POLYGON [COPLANAR) [SJ x,y,z [N x,y,z] [C h,s,iJ

[[WITH [ATTRIBUTES attrJ [OUTLINE rJ]
POLYGON [COPLANAR) [SJ x,y,z [N x,y,zJ [C h,s,iJ;

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPLYGO

Name := POLYGON COUTLINE - no corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPLYGO COutlin, ErrHnd)

where

Outlin is a REAL
Errhnd is the user-defined error-handler subroutine

DESCRIPTION

This subroutine specifies that Outln be used as the color (if between 1 and 360) or
intensity (if between 0 and 1) of all polygons edges on the calligraphic display
until superseded by another call to PPLYGO.

This subroutine is one of the subroutines used to implement the PS 340
command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPLYGR

Name := POLYGON CRGBVaI - no corresponding command)

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PPLYGR CCoplan, Nverts, Vents, Vedges, NorSpec, Norms,
Co1Spe, RGBVaI, ErrHnd>

where:

Coplan is a LOGICAL
Nverts is an INTEGER~4
Vents is a REAL~4 (4, Nverts)
Vedges is a LOGICAL 1 (NVerts)
NorSpec is a LOGICAL
Norms is a REAL~4 (4, Nverts)
ColSpe is a LOGICAL
RGBVaI is an INTEGER~4(3,Nverts)
ErrHnd is the user-defined error-handler subroutine.

DEFINITION

This subroutine defines another polygon within the polygon display list currently
being constructed. The subroutine may be called many times to specif y
additional polygons for the polygon display currently under construction as
named by the PP1ygB subroutine call. It has the following parametric definitions:

• Coplan determines whether the polygon is coplanar with the previous
polygon or not.

.TRUE. =coplanar, .FALSE. =not coplanar

• NVert specifies the number of vertices in the polygon

• Vents specifies the vertices of the polygon
Vents (l, n) =vertex n: x-coordinate;
Vents (2, n) =vertex n: y-coordinate;
Vents (3, n) =vertex n: z-coordinate;

• Vedges specifies the "soft" versus "hard" nature of each edge specified by:
Vents.

Vedges (n) _ .FALSE. if "soft edge", .TRUE. if "hard edge".

• NorSpe specifies if the normals to the vectors defining the polygon are
specified.

NorSpe = .TRUE. if specified, NorSpe = .FALSE, if not specified.

(Continued on next page)

PS 300 DEC VAX/VMS FORTRAN-77 GSR PPLYGR

Name := POLYGON CRGBVaI - no corresponding command)

Version A2.V01 Ccontinued)

• Norms specifies a normal to correspond to each vertex. This parameter is
of the same form as: Verts.

• ColSpe specifies if the colors attached to the polygon vertices are
specified.

ColSpe = .TRUE, if specified, ColSpe = .FALSE. if not specified.

• RGBVaI specifies the colors of the vertices of the polygon.
Colors(l,n) =Red intensity n (range 0..255)
Colors(2,n) =Green intensity n (range 0..255)
Colors(3,n) =Blue intensity n (range 0..255)

Out of range values are converted to the nearest range value without
warning.

This subroutine is one of the subroutines used to implement the PS 340 command:

Name :_ [WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i]

[WITH [ATTRIBUTES attr] [OUTLINE h]]
POLYGON [COPLANAR] [S] x,y,z [N x,y,z] [C h,s,i];

PS 300 DEC VAX/VMS FORTRAN-77 GSR PSURGB

UTILITY PROCEDURE

Version A2.V01

APPLICATION SUBROUTINE AND PARAMETERS

CALL PSURGB CRed, Green, Blue, Hue, Sat, Intens)

where

Red, Green, Blue are INTEGER~4
Hue, Sat, Intens are REAL~4

DESCRIPTION

This procedure converts Hue, Saturation, and Intensity color specifications to
Red, Green, and Blue color specification.

The algorithm used by the PS 340 to covert HSI color specifications to RGB color
specifications is adapted from Foley and VanDam's algorithm, which returns RGB
values in the range of range 0 to 1 and has the color wheel where Hue=O is red,
Hue=120 is green, Hue=240 is blue. This is NOT the same color wheel
specification used by the PS 340.

The PS 340 algorithm returns RGB values as integers in a range of 0 to 255 and
has the color wheel where Hue=O is blue, Hue=120 is red, and Hue=240 is green.

E&S CUSTOMER SERVICE TELEPHONE INFORMATION LIST

Evans &Sutherland Customer Engineering provides a central service number staffed by
C E representatives who are avai I ab I e to take requests from 9:00 a. m . Eastern Time to
5:00 p.m. Pacific Time (7:00 a.m. to 6:00 p.m. Mountain Time). All calls concerning
customer service should be made to one of the following numbers during these hours.
Before you call, please have available your customer site number and system tag
number. These numbers are on the label attached to your PS 300 display or control unit.

Customers in the continental United States should call toll-free:

1 + 800 + 582-4375

Customers within Utah or outside the continental United States should call:

(8011582-5847, Eztension 4848

If problems arise during product installation or you have a question that has not been
answered adequately by the customer engineer or the customer service center, contact
the regional manager at one of the following Customer Engineering off ices:

Eastern R eg i ona 1 Manager
(for Eastern and Central Time Zones)
(518) 885-4639

Western R eg i ona I Manager
(for Mountain and Pacific Time Zones)
(916) 448-0355

If the regional off ice is unable to resolve the problem, you may want to cal I the
appropriate department manager at corporate headquarters:

National Field Operations
(for field service issues)
(801) 582-5847, ext 4843

Software Support
(for sofware issues)
(801) 582-5847, ext 4810

Director of Customer Engineering
(for any unresolved problem)

(801) 582-5847, ext 4840

Techn i ca I Support
(for hardware issues)
(801) 582-5847, ext 4858

READER COMMENT FORM Publication Number

Title

Your comments will help us provide you with more accurate, complete, and useful
documentation. After making your comments in the space below, cut and fold this form as
indicated, and tape to secure (please do not staple). This form may be mailed free within
the United States. Thank you for your help.

How did you use this publication?

[] General information [] As a reference manual
[] Guide to operating instructions [] Other

Please rate the quality of this publication in each of the following areas.

EXCELLENT GOOD FAIR POOR
Technical Accuracy

Is the manual technically accurate? [] U [] [J

Completeness
Does the manual contain enough information?

Readabi I ity
Is the manual easy to read and understand?

Clarity
Are the instructions easy to follow?

Organization
Is it easy to find needed information?

Illustrations and Examples
Are they clear and useful?

Physical Attractiveness
what do you think of the ove ral I appearance?

n n n

n

n o

v n

n n

v n

n n

v n

n

n n

n

[] [I [] []

What errors did you find in the manual? (Please include page numbers)

Name

Title

Department

Street

city

State

Company Zip Code

All comments and suggestions become the property of Evans &Sutherland.

Fold

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 4632 SALT LAKE CITY, UTAH

POSTAGE WILL BE PAID BY ADDRESSEE

EVANS &SUTHERLAND
580 Arapeen Drive
Sait Lake City, Utah 84108

ATTN: IAS TECHNICAL PUBLICATIONS

NO POSTAG E
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold

d
o

tt
e

d
 I

 i n
e

0

U

USER ERROR REPORTI \G A\D I\FORVATIO\AL VESSAGES

Supported Under Graphics Firmware Al

ERROR AND INFORMATIONAL MESSAGES

CONTENTS

INTRODUCTION 1

INFORMATIONAL MESSAGES 1

WARNING MESSAGES 5

NON—FATAL ERRORS 7

FATAL ERRORS 17

Warnings and Qualifications 18

ERROR AND INFORMATIONAL MESSAGES - 1

The PS 300 issues four types of messages:

1. Informational messages

2. Warning messages

3. Non-fatal error messages

4. Fatal error messages

Informational messages, warning messages, and non fatal error messages are all
displayed in the same manner on the terminal emulator display. Fatal errors are
displayed on PS 300 Keyboard LEDs.

The display of error messages is enabled and disabled by the initial function instance
ERROR. The initial function instances WARNING and INFORMATION control the
display of warning and informational messages. Refer to the PS 300 Function
Summart~ for details on these function instances.

To direct one of these types of messages to the host, connect the appropriate output
of these function instances to the HOSTOUT initial function instance.

INFORMATIONAL MESSAGES

M1000 REPORT: value =

This message appears in response to the command:

REPORT unitl AS unit2

The user must have previously defined unit 1 and unit2 in common terms. For
example, if ,the following command were received by the system:

REPORT 1(inch) AS (cm)

the following message might be displayed (dependant on actual user-assigned
unit definitions):

M 1000 REPORT: 1(inch) = 2.54(cm)

2 —ERROR AND INFORMATIONAL MESSAGES

~I1001 Name ignored

Issued when a parser error has occurred in a named command, and indicates
that nothing is being created under the name. The message also appears
when an attempt is made to assign a name to something that cannot be
named. For example:

A := INIT;

would result in:

E0001 Parser syntax error = INIT<~>;
M1001 Name ignored: A

M1002 Depth in BEGIN...END pairs:

This message appears in response to a COMMAND STATUS request, and
reports the depth that has been reached in nested BEGIN...END pairs.

M1003 Depth in BEGIN_STRUCTURE...END_STRUCTURE pairs:

This message appears in response to a COMMAND STATUS request, and
reports the depth that has been reached in nested BEGIN_STRUCTURE...
END STRUCTURE pairs.

M1030 Strange number of inputs for function named:

This message appears when one of the functions that allow auser—specified
number of inputs or outputs is instanced with more than 127 inputs. If so,
the function instance is not created.

For example, this error message would be displayed if the following
command were entered:

ERROR AND INFORMATIONAL MESSAGES — 3

M1086 File not found

A syntactically—acceptable file name was specified, but a file was not found
for reading.

M1090 Hidden—line removal completed

(PS 340 only) The requested hidden-line rendering has been performed.

MI091 Plot finished

The PS 300 has scaled down the graphics display to fit on the HP plotter,
and also scaled down and plotted the terminal emulator contents.

ERROR AND INFORMATIONAL MESSAGES. — 5

WARNING MESSAGES

A warning message indicates a condition which is not illegal, but unusual enough to
warrant attention. The initial function instance WARNING sends warning messages on
output <Z>.

W2021 Destination of connection does not het exist: <name>?

No object was associated with the destination of the connection when the
CONNECT command was entered. However, the connection is
remembered. For example, the command sequence:

A := CHARACTER 'A';
CONNECT A< 1 >:< 1 >C;

displays the warning message:

W2021 Destination of connection does not yet exist: C?

but there will be a connection between A and C as soon as an appropriate
command f or C is entered.

Note that while a connection to anon—existent destination IS made (and
results in a warning message), a connection from anon—existent source IS
NOT made (and results in an error message: E0075).

W2023 Connection alreadg exists

The specified connection has already been made. For example, the second
command in the sequence causes the error message to be displayed:

CONNECT A< 1 >:< l >B;
CONNECT A< 1 >:< 1 >B;

W2D24 Msg from <name> discarded --

No such input. The destination instance exists, but does not have
the specified input queue.

No such destination. The destination instance does not exist.

Rejected by destination: < 1 > <name>? Qtype.

Invalid data has been sent to a SET CONDITIONAL
BIT node or an IF CONDITIONAL BIT node.

6 -ERROR AND INFORMATIONAL MESSAGES

W204I Maximum quoted string exceeded; character discarded

A quoted string in a PS 300 command may contain at most 240 characters.
This warning occurs for every character over 240. The string used by the
PS 300 will contain only the first 240 characters.

W2042 semicolon noticed within quoted string

This warning generally calls attention to the accidental omission of one of
the single quotes delimiting a string. This is a warning and not an error
because a semicolon may legally be included within a string.

W2043 semi colon noticed within comment

This warning generally calls attention to the accidental ommission of a
closing comment brace. This is a warning and not an error because a
semicolon may legally be included within a comment (for example, as in a
commented-out command}.

W2044 '{' noticed within comment

This warning generally calls attention to the accidental omission of a closing
comment brace. An opening brace is never legal inside a comment and is
discarded.

W2062 source of FETCH has no value

The VARIABLE source for FETCH has not been initialized.

W2070 Polygon precision error detected; recovery attempted

(PS 340 only) The hidden-line code has detected a precision error and tried
to recover. If the picture is acceptable, this message may be ignored. If
the picture has an obvious problem, try a slightly different view.

ERROR AND INFORMATIONAL MESSAGES — 7

NON-FATAL ERRORS

E0001 parser syntax error

Indicates that the syntax of a command or name is not legal. The illegal
syntax is displayed at the right of the error message.

For example, if TRI~~NGLE were used as a name, a parser syntax error
would occur because ~~ is not a legal character for names. In the error
message, "<~>" follows the word in which the error was detected.

Parser syntax errors are corrected by reentering proper syntax for the name
or command that caused the error.

E0002 DEFINE command: undefined unit

Indicates that an attempt was made to define units in terms of other
undefined units. The undefined unit is displayed at the right of the error
message.

For example, this message would appear if the following command was
received and neither (inch) nor (foot) were defined:

DEFINE(FOOT) TO BE 12(INCH);

The error is corrected by defining the undefined unit and repeating the
DEFINE command.

E0003 REPORT command: undefined unit

Indicates that an attempt was made to report units in terms of units for
which no common definition has been established.

The error is corrected by defining both units in terms of a common unit or,
more simply, by defining the units in terms of each other, eliminating the
need to report.

8 —ERROR AND INFORMATIONAL MESSAGES

E0004 REPORT command: unit mismatch

Indicates that an attempt was made to have units reported in terms of units
of another measurement type (i.e., converting length to degrees). The
mismatched unit is displayed at the right of the error message.

For example, the following command would cause this error message to be
displayed:

REPORT (FOOT) AS [DEGREES];

E0005 REPORT command: value = iofinit~

Indicates that the result of reporting units in terms of other units is infinity.

For example, this error message would be displayed if the following
command were received by the system:

REPORT (light years) AS (angstroms);

E0006 DEFINE command: unit mismatch

Indicates an attempt was made to define units in terms of units of another
measurement type.

For example, this error message would display if the following command
were received:

DEFINE ()XYZ TO BE 5 [DEGREE];

E0007 Insufficient privilege

Indicates the user attempted to use a privileged (restricted) command. In
general, privileged commands are for system configuration. (These
commands and their syntax are subject to change.)

ERROR AND INFORMATIONAL MESSAGES — 9

E0008 More END STRUCTURES than BEGIN STRUCTURES

Indicates an attempt to end a grouping without beginning the grouping. The
system discards the extra END_STRUCTURE. It is up to the user to check
through the. command sequences and determine if a BEGIN_STRUCTURE
was inadvertently omitted.

E0009 More ENDS than BEGINS

Indicates an attempt to end a grouping without beginning the grouping. The
system discards the extra END. It is up to .the user to check through the
command sequences and determine if a BEGIN was inadvertently omitted.

E0010 Cannot prefix, follow, or remove follower from named element

Indicates that the applicable element in a PREFIX command, FOLLOW
command, or REMOVE FOLLOWER command is data defined by an object
modeling command and is therefore illegal.

To correct the error, repeat the command using a legal name or a command
other than an object modeling command.

E0011 Follower of named element cannot be removed

Indicates the element named in a REMOVE FOLLOWER command cannot
have a follower removed because its follower is an object definition.

E0012 Message which function cannot handle

Indicates that an illegal data type has been sent to a function instance
input. The message occurs when the function instance receives the invalid
data, not when the connection is made. The name of the function instance
and type of the invalid data is displayed to the right of the error message.

The error is corrected by connecting a valid data type to the specified
function instance input. The message of illegal type is discarded.

10 -ERROR AND INFORMATIONAL MESSAGES

E0013 Named item not a displar~ structure

Indicates that a PREFIX, FOLLOW, REMOVE PREFIX, or REMOVE
FOLLOWER command contains the name of something other than a data
structure. The invalid name is displayed at the right of the error message.

For example, if SCALE is the name of a function instance and the following
command is received:

PREFIX SCALE WITH ROTATE IN X 30;

The error message reads:

E0013 Named item not a display structure SCALE

The error is corrected by supplying the name of a display data structure in
the command.

E0014 Unrecognized function tape:

Indicates an attempt was made to create a function instance from a
nonexistent function. The spelling of the nonexistent function is displayed
at the right of the error message.

For example, if the following command were received:

SPIN := F:TURN;

the following error message would be displayed:

E0014 Unrecognized function type: F:TURN

E0016 MCP timed out; Number of times:

Indicates the ACP is in a tight loop, usually as a result of trying to process a
recursive display data structure.

All user-defined structures are removed from the display when the error is
detected. To correct the problem, eliminate the recursive reference and
redisplay the structures.

E0017 Named item cannot have elements removed or included

An attempt has been made to INCLUDE data in or REMOVE data from an
item other than an object definition.

ERROR AND INFORMATIONAL MESSAGES — 1 1

E0019 Inconsistent inputs detected by function instance

Inconsistent data types were sent to a function instance. For example, if an
instance of F:ADD receives an integer at input < 1 > and a vector at input
<2>, this message is displayed.

The error message is issued as soon as data which makes the input set
inconsistent arrives at an input queue. This can occur before the function
has a full firing set.

The message which makes the input set inconsistent is considerec' to be an
invalid message. In accordance with the PS 300's general policy for handling
invalid messages, this message is discarded (without restoration of the
default value for constant queues). Other messages which existed in the
input set before the error message are not considered invalid; however, note
that the PS 300 clears ALL of a function's active queues when an invalid
message is detected.

E0021 Error in Binary Data Transfer

Indicates an error occurred when the user attempted to transfer binary data
using the PSIOs or the GSRs.

E0022 Name not defined or incorrect type: <name>

The transformed data function (F:XFORM) causes this error to be displayed
when a string is sent for which there is no existing node.

E0023 String overflow; output truncated

Indicates an attempt to concatenate a string longer than 32,767 characters.

E0029 Invalid vector index or count

Indicates that a COPY or SEND to a vector list included an invalid vector
index or an invalid count (e.g., a negative integer).

E0032 Invalid knot sequence

An invalid knot sequence appears in a BSPLINE or RATIONAL BSPLINE
command.

12 -ERROR AND INFORMATIONAL MESSAGES

E0036 Exhausted working storage

(PS 340 only) The amount of working storage set aside by the system
conf igurator for surf ace-rendering operations was not large enough for the
attempted operation, Use the RESERUE_WORKING_STORAGE command to
increase the amount.

E0037 Bad polr~gon structure or precision error

(PS 340 only) A bad polygon data definition or precision error was detected
during chidden-line operation.

E0038 Sectioning plane not found

(PS 340 only) A sectioned rendering was requested, but no sectioning plane
was found. This can occur if no SECTIONING_PLANE is defined, or if a
SECTIONING PLANE command is an ancestor of a SOLID_RENDERING or
SURFACE RENDERING node or vice versa.

E0039 No rendering to save

(PS 340 only) An attempt at saving a rendering failed because no rendering
has yet been requested for the specified marking node.

E0041 Tgpe okay but value out-of-range:

An out-of -range value of the correct data type was received by a function
or display data structure.

E0044 Hardcopg not initialized

The hardcopy initialization function was not executed after the plotter was
connected.

E0045 Allocation error: plotter allocated to another user

The plotter must be deallocated from its current user and allocated to the
user who desires the plot.

ERROR AND INFORMATIONAL MESSAGES — 13

E0046 Plotter error:

Plotter of f line. The plotter was left of f line, possibly when
the previous plot was removed.

Plotter out of supplies. The plotter is out of paper or toner.

No plotter present.

Plotter timeout.

The plotter has been disconnected, or was
never present.

Could be dine to an improper timeou~t
count or other plotter error.

E0047 DeaIIocation error: plotter allocated to another user

The user attempting to deallocate the plotter never had it allocated in the
first place.

E0070 Generic function not in system; destroying instance

A valid function name was specified, but that function does not exist in this
particular PS 300 configuration.

E0071 Source of connection is not a function: <name>?

Only functions can emit data. So if the object named as the source of a
connection is not a function at the time of the CONNECT command, the
connection request is rejected. For example, the command sequence:

CHARACTER 'A';
CONNECT A < 1 > : < 1 > B;

would display the error message:

E0071 Source of connection is not a function: A?

E0072 Source of connection is no Longer a function: <name>?

The named function was being deleted at the time the connection was
attempted. No connection is made.

14 -ERROR AND INFORMATIONAL MESSAGES

E0073 No such output source for the function <name>?

The source of the connection is a function, but it does not have the output
specified. For example, the command sequence:

A := CHARACTER 'A';
B := F:ADD;
CONNECT B<2>:< 1 >A;

would display the error message since F:ADD has only one output:

E0073 No such output source for the function B?<2>

E0074 Maximum fanout of 127 exceeded -- connection rejected

A function output may have no more than 127 connections.

E0075 Source of connection does not exist: <name>?

If the named source has not yet been defined, connections from it are
ignored. For example, the command sequence

A := CHARACTER 'A';
CONNECT C < 1 >: < 1 > A;

displays the error message:

E0075 Source of connection does not exist: C?

Note that a connection from anon-existent source is NOT made (and results
in an error), while a connection to anon-existent destination IS made (and
results in a warning: W2021).

E0079 Cannot instantiate with that parameter, so will destror~ it

The "n" parameter value for a function such as F:SYNC(n), F:ROUTE(n), or
F:INPUTS_CHOOSE(n) was out-of-range or otherwise invalid. No function
instance is created.

E0080 string submitted is too Long to be a ZegaZ name

The function received a string message containing a node name longer than
254 characters.

ERROR AND INFORMATIONAL MESSAGES — 15

E0085 Disk directory fuZ1, file not written

Indicates there is insufficient room on the disk for the file.

E0086 Disk write error or disk is write protected

Indicates existance of either a bad disk or no disk in the drive.

E0087 Disk read error

Indicates a bad disk on read.

E0088 Bad file name

A syntactically unacceptable file name was specified.

E0090 Can't perform COPY: not a vector Zist or Zabel

An attempt has been made to use the COPY command to copy an entity
other than an existing vector list or label.

E0095 Name must be a function instance

An attempt has been made to change the queue characteristics of a function
whose name is not recognized as a function instance.

E0097 Invalid name for save rendering

Indicates invalid data was sent to save the rendering node.

E0102 Cannot affect CNBSS for its generic function: <FCNNAIKE>

An attempt has been made, using the SETUP CHESS command, to change

the queue characteristics of a function which does not allow queue changes.

E0103 Corrupt poZ~gon structure

(PS 340 only) Often indicates a precision error.

16 —ERROR AND INFORMATIONAL MESSAGES

E0104 Insufficient working storage to remove hidden lines

(PS 340 only) Use the RESERVE_WORKING_STORAGE command to reserve a
larger amount of memory for hidden-line operations.

E0105 Cannot complete operation due to insufficient memort~

Indicates that there is insufficient memory to create a data node. The
PS 300 terminates the data node.

ERROR AND INFORMATIONAL MESSAGES - 17

FATAL ERRORS

Fatal errors are generally system hardware or software failures from which recovery

is not possible. A fatal error may be any one of the following:

• A system error, which is an internal inconsistency detected by PS 300 firmware at
a high level (such as a master copy of some function not linked into the system).

• A trap, or an inconsistency, detected by the firmware at a lower level (such as
insufficient memory).

• An unexpected hardware exception (as when hardware detects an illegal firmware
instruction).

In response to a f atal error:

1. The protocol of each data concentrator is reset by transmitting a null (control-A)
to ports 1 through 5, after first lowering the baud rate of any 19200 baud port to
300. This sets up communication between the PS 300 processor and the data
concentrator's standard-configuration PS 300 Keyboard.

2. A description of the fatal error is transmitted to ports 1 through 5 and displayed
on the function-key LEDs of the PS 300 Keyboard. For system errors and traps, a
less detailed error message is also displayed on the PS 300 screen (unless the
system hardware has been modified for DEC 56KB communications. Refer to the
following section, Warnings and Qualifications).

The fatal error message consists of a null (control-A), followed by a string which
includes the class of fatal error, an error code number, and the location of the
firmware's execution when the error was detected. The message is in the form:

F9[nnn] ~~~ CRASH. [class] [code] AT [loc]; PLEASE HIT <CTRL P>

where:

[nnn] is 001 for a system error, 002 for a trap, and 003 for an unexpected
hardware exception.

[class] is either SYSTEM ERROR, TRAP, or EXCEPTION.

[code] is a four-digit hexadecimal number (form $hhhh) for system errors, and a
three digit decimal number (form ddd) for traps and exceptions.

[loc] is an eight-digit hexadecimal number (form $hhhhhhhh).

18 —ERROR AND INFORMATIONAL MESSAGES

3. A control—P is solicited ("PLEASE HIT <CTRL P>") on function —key LEDs to
determine which port to use for further communications (restarting or
debugging). Type <CTRL P> at the port where further communication is to be
established.

NOTE

If a character other than a <CTRL P> is entered from
a port, it is possible that the fatal error handler may
misinterpret the baud rate of that port.

4. The user is asked (at the chosen port) if a restart is desired. Answer "Y" to restart
(to run initial confidence tests and reload system firmware).

The PS 300 may also be restarted by turning off system power, waiting a few
seconds, then turning system power on. This method of cycling power could aid in
clearing ahardware—induced fatal error.

Warnings and Q ualif i~ ations

Should a fatal PS 300 error occur, the user should note the failure condition and report
it to the E&S Customer Engineering Representative.

NOTE

Output of the fatal error message may violate the
protocol of the attached device (since the method for
resetting the protocol of an arbitrary device cannot be
anticipated). For example, the attached device may
receive characters even though it had XOFFed the
PS 300.

ERROR AND INFORMATIONAL MESSAGES — 19

The fatal error handler is oriented towards configurations in which the LEDs of the
Evans & Sutherland keyboard are connected to the "A" connector of the data
concentrator (standard configuration). A PS 300 Keyboard with LEDs or a terminal
(hooked to port 3) is necessary for output display.

Systems having hardware that has been modified for DEC 56Kb interfacing will not
display a system error or trap message on the PS 300 screen in the event of a fatal
error. (Refer to ~~2 above.) It is also possible for the debug PROM to be entered
prematurely on these systems, depending on whether the DEC 56Kb interface
caused/detected the fatal error.

The MEMORY_ALERT function generates a message and a bell alarm when system
memory is 75 percent full. The message is updated every 10 seconds. (Both the
percentage and the sampling interval for rechecking memory can be changed by the
user.)

If the memory falls below the threshhold, the message is removed. If memory
depletion is unusually rapid, the system uses all of its resources to recover memory,
and does not respond to the user until a sufficient amount of memory is recovered. If
memory is truly exhausted, a trap eventually occurs, initiating the four responses to a
fatal error described above.

System traps indicate hardware failures that require an E&S Customer Engineer. The
one exception may be the following message:

No mass memory or too little to initialize

If this message appears when initializing the system, the probable cause is a faulty
Mass Memory card, requiring a Customer Engineer. If, however, the message appears
when the system has been running, the probable cause is an overloaded Mass Memory
that resulted from trying either to load too much data or to improperly connect
function networks. Check all function networks for proper connections.

If any message appears other than described in preceding sections or in the above trap
message, note the message and report it to your E&S Customer Engineer.

