PS300 DOCUMENT SET

VOLUME 3a

PROGRAMMER REFERENCE

The contents of this volume are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans & Sutherland.

Many concepts in this volume are proprietary to Evans &
Sutherland, and are protected as trade secrets or covered by
U.S. and foreign patents or patents pending.

Evans & Sutherland assumes no responsibility for errors or
inaccuracies in this document. It contains the most complete
and accurate information available at the time of
publication, and is subject to change without notice.

PSl, PS2, MPS, and PS 300 are trademarks of the Evans &
Sutherland Computer Corporation.

Copyright © 1984
EVANS & SUTHERLAND COMPUTER CORPORATION
P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84121

VOLUME 5A

PROGRAMMER REFERENCE

Volume 3A of the PS 300 User Documentation Set is a graphics programmer's reference
to PS300 commands and functions. Volume 3A and Volume 3B, which contains
information on FORTRAN and Pascal Graphics Support Routines (GSRs), together
constitute a complete source of reference materials for PS 300 programmers.
Reference material of interest to the System Manager is contained in Volume 5.

This volume contains the following sections.

PS 300 COMMAND SUMMARY

This document is a concise summary of information about the ASCII form of
every command in the PS 300 Command Language set. The long form and
acceptable short form of each command are given, together with information on
parameters, default values, and other requirements. Where a command creates a
node in a display tree, the type of node is indicated. If that node can be updated
with values from an interactive device, the inputs to the node and acceptable
data types are shown in a diagram. Examples of the use of commands are given
whenever appropriate, and related information is included as notes. The
summary is alphabetized for ease of use. Appendices list commands by
classification, give the syntax of each command, and provide a cross-reference
to the Graphics Support Routines in Volume 3B.

PS 300 FUNCTION SUMMARY

This is a summary, in diagrams and text, of essential information about each
function available to the user in the PS 300 intrinsic function and initial function
instance set. Functions are represented as boxes with numbered input queues
and outputs. Acceptable data types are indicated, as are default values and
associated functions where appropriate. Notes explain any further features or
peculiarities of functions, and examples of usage are often provided.

PS 300 GRAPHICS FIRMWARE RELEASE NOTES

The Graphics Firmware Release Notes summarize the new features of the Al
release and list corrected problems, known problems, and miscellaneous notes
and advice. They are specifically intended to point the user to revised
documentation that discusses the firmware changes in detail. The Diagnostic
Release Notes describe all new diagnostics and changes in the PS 300 diagnostic
software.

USER ERROR REPORTING AND INFORMATION MESSAGES

This document lists and explains all messages generated by the PS 300. Included
are informational messages, warning messages, and non-fatal and fatal error
messages.

P3300 COMMAND SUMMARY

The contents of this document are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans & Sutherland.

Many concepts in this document are proprietary to Evans &
Sutherland, and are protected as trade secrets or covered by
U.S. and foreign patents or patents pending.

Evans & Sutherland assumes no responsibility for errors or
inaccuracies in this document. It contains the most complete
and accurate information available at the time of
publication, and is subject to change without notice.

PS1, PS2, MPS, and PS 300 are trademarks of the Evans &
Sutherland Computer Corporation.

Copyright © 1984
EVANS & SUTHERLAND COMPUTER CORPORATION
P.0O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84121

PREFACE

This manual is a PS 300 Command Language reference for graphics programmers who
are already familiar with the basic operation of the PS 300.

Commands are ordered alphabetically, with the command name in the upper right-hand
corner of each page. The following information, where relevant, is given for each

command:

Name :
Category and sub-category
Syntax

Description

Parameters

Defaults

Notes

Display tree node created
Inputs for updating node
Notes on inputs
Associated functions
Examples

Appendix A shows how the commands are grouped into categories.

For a quick reference, Appendix B contains an alphabetical listing of just the command
syntax.

Appendix C contains a cross-reference between the ASCII form of the commands and
the Graphics Support Routines.

Since some commands require the ASCII decimal equivalent of characters in their
parameters, an ASCII chart with decimal values is included after the appendices.

PS 300 COMMAND SUMMARY

ALLOCATE PLOTTER
APPLIED TO/THEN
ATTRIBUTES

BEGIN FONT...END FONT
BEGIN S...END S
BEGIN...END

BSPLINE

CHARACTER FONT
CHARACTER ROTATE
CHARACTER SCALE
CHARACTERS
COMMAND STATUS
CONNECT

COPY

DEALLOCATE PLOTTER

CONTENTS

DECREMENT LEVEL OF DETAIL

10

14

15

18

21

23

25

26

27

29

30

PS 300 COMMAND SUMMARY

DELETE
DISCONNECT
DISPLAY

ERASE PATTERN FROM
EYE

FIELD OF VIEW
FOLLOW WITH
FORGET (Structures)
FORGET (units)
(Function Instancing)
IF CONDITIONAL BIT
IF LEVEL OF DETAIL
IF PHASE
ILLUMINATION

INCLUDE

INCREMENT LEVEL OF DETAIL

INITIALIZE
INSTANCE OF
LABELS
LOOK
MATRIX 2x2
MATRIX 3x3

MATRIX 4x3

32

33

34

35

36

38

40

42

43

44

45

47

49

50

52

53

55

57

58

61

64

66

68

PS 300 COMMAND SUMMARY

MATRIX 4x4

(Naming of Display Tree Nodes)
OPTIMIZE MEMORY

OPTIMIZE STRUCTURE;...END OPTIMIZE;
PATTERN

PATTERN WITH

POLYGON

POLYNOMIAL

PREFIX WITH

RATIONAL BSPLINE
RATIONAL POLYNOMIAL
REBOOT

REMOVE

REMOVE FOLLOWER

REMOVE FROM

REMOVE PREFIX

RESERVE WORKING STORAGE
'RESET

ROTATE

SCALE

SECTIONING PLANE

SEND

70

72

73

T4

76

77

78

81

83

84

88

91

92

93

94

95

96

98

99

101

103

105

PS 300 COMMAND SUMMARY

SEND number*mode
SEND VL

SET CHARACTERS
SET COLOR

SET COLOR BLENDING
SET CONDITIONAL BIT
SET CONTRAST

SET CSM

SET DEPTH CLIPPING
SET DISPLAYS

SET INTENSITY

SET LEVEL OF DETAIL

SET PICKING

SET PICKING IDENTIFIER

SET PICKING LOCATION
SET PLOTTER

SET RATE

SET RATE EXTERNAL
SETUP CNESS

SOLID RENDERING
STANDARD FONT

STORE

107
108
109
110
112
114
116
118
120
122
124
126
128
130
132
134
135
137
139
140
143

145

PS 300 COMMAND SUMMARY

SURFACE RENDERING
TEXT SIZE
TRANSLATE
VARIABLE

VECTOR LIST
VIEWPORT

WINDOW

WITH PATTERN

XFORM

APPENDIX A. PS 300 COMMANDS BY CATEGORY

APPENDIX B. PS 300 COMMAND SYNTAX

APPENDIX C. PS 300 ASCII COMMANDS AND CORRESPONDING GSRs

ASCII CHARACTER CODE SET

146

149

151

153

154

160

163

165

167

PS 300 COMMAND SUMMARY - |

Command Syntax

A command's syntax is shown at the top of the page. In the syntax, UPPERCASE
letters are required and lowercase letters are optional. Command parameters
are shown in the syntax in boldface. Parameters are optional if enclosed in
[square brackets], and required otherwise.

There are two main types of PS 300 commands — data structuring commands and
immediate action commands.

Data Structuring Commands

The data structuring commands are the only commands that can be named either
directly or indirectly (by being included in a BEGIN_STRUCTURE

ﬁ END STRUCTURE). These commands are named because they create nodes in a
display structure (display tree) in mass memory. These nodes have to be
accessed, and the name given to the command which creates a node is the
address of that node in memaory.

Immediate Action Commands

Immediate action commands cannot be named. These commands perform
immediate operations and do not create nodes in mass memory. In other words,
there is nothing to associate an address (name) with.

PS 300 COMMAND SUMMARY ALLOCATE PLOTTER

GENERAL - Hardware Attributes

FORMAT

name := ALLOCATE PLOTTER device number;

DESCRIPTION

Allows you to specify which of up to four plotters to allocate in order to obtain
hardcopies of the currently displayed PS 300 screen image. It also supresses
automatic form feeds between plots.

PARAMETERS

device number - An integer between 0 and 3 which indicates the device number
of the plotter you want to allocate.

NOTE

The main use of this command is to supress automatic form feeds between plots.

DISPLAY TREE NODE CREATED

ALLOCATE PLOTTER operation node.

INPUTS FOR UPDATING NODE

None.

PS 300 COMMAND SUMMARY

APPLIED TO/THEN
STRUCTURE - Explicit Referencing

FORMAT
name := operation command [APPLied to namell;
name := operation_command [THEN namel];
DESCRIPTION

Associates a command to the structure which is to be affected by the command.

PARAMETERS
operation _command - A command that creates an operation node in a display

tree.

namel - Structure that will be affected by the command.

NOTE
APPLied to and THEN are synonyms. The terms are completely interchangeable.

DISPLAY TREE NODE CREATED

The command node with a pointer to the structure namel.

EXAMPLE

A:= ROTate in X 45 THEN B;

VECtor list n=5 1,1 —1,1 —-1,-1 1,-1 1,13

B:

PS 300 COMMAND SUMMARY

ATTRIBUTES

RENDERING - Data Structuring (PS 340)

FORMAT

name := ATTRIBUTES attributes [AND attributes];

DESCRIPTION

Specifies the various characteristics of polygons used in the creation of shaded

renderings. This

command is only used with the PS 340. For a detailed

explanation of defining and interacting with shaded images, consult the "Using
the PS 340 - Rendering Operations For Surfaces and Solids" tutorial in Volume 2.

PARAMETERS

attributes — The attributes of a polygon are defined as follows.

[COLOR h[,s[,i1]1 [DIFFUSE d] [SPECULAR s]

where

h -

is a real number specifying the hue in degrees around the
color wheel. Pure blue is 0 and 360, pure red is 120, and pure
green is 240.

is a real number specifying saturation. No saturation (gray)
is 0 and full saturation (full toned colors) is 1.

is a real number specifying intensity. No intensity (black) is
0, full intensity (white) is 1.

is a real number from 0 to | specifying the proportion of
color contributed by diffuse reflection versus that
contributed by specular reflection. Increasing d makes the
surface more matte. Decreasing d makes it more shiny.

is an integer from 0 to 10 which adjusts the concentration of
specular highlights. The more metallic an object is, the more
concentrated the specular highlights.

ATTRIBUTES PS 300 COMMAND SUMMARY

-

RENDERING - Data Structuring (PS 340) \J

(continued)

DEFAULTS

If no color is specified, the default is white (s = 0, i = 1). If saturation and
intensity are not specified, they default to l. If only hue and saturation are
specified, intensity defaults to 1. If no diffuse attribute is given, d defaults to
.75. If no specular attribute is given, S defaults to 4.

NOTES

I. Polygon attribute nodes are created in Mass Memory but are not part of a
display tree. The attributes specified in an ATTRIBUTES command are
assigned to polygons which include a WITH ATTRIBUTES clause. The
attributes specified in a WITH ATTRIBUTES clause of a polygon command
apply to all subsequent polygons until superseded by another WITH
ATTRIBUTES clause. If no WITH ATTRIBUTES option is given for a polygon
node, default attributes are assumed. The default attributes are 0,0,1 for
color, 0.75 for diffuse, and 4 for specular.

2. The various attributes may be changed from a function network via inputs to ‘ ’
an attribute node, but the changes have no effect until a new rendering is
created.

3. A second set of attributes may be given after the word AND in the
ATTRIBUTES command. These attributes apply to the obverse side of the
polygon(s) concerned. In other words, the two sides of an object may have
different attributes. The attributes defined in the first attributes pertain
to front-facing polygons. Those in the AND attributes clause pertain to

backfacing polygons.

NODE CREATED

Polygon attribute definition node. This node resides in Mass Memory, but is not
included in a display tree.

PS 300 COMMAND SUMMARY ATTRIBUTES
! ’ RENDERING - Data Structuring (PS 340)

(continued)

INPUTS FOR UPDATING NODE

name

Real,2D,3D ——4<1>Updates hue,saturation,intensity
Real =———<2>Updates diffuse value
Integer ———<3> Updates specular value
<4>
: Undefined
<10>
f‘ ‘ Real,2D,3D=——i<11>Updates hue,saturation,intensity
Real <12>Updates diffuse value

Integer———<13>Updates specular value

Polygon Attributes

1AS0676

NOTES ON INPUTS

l. Inputs <l> and <ll> accept a real number as hue, a 2D vector as hue and
saturation, and a 3D vector as hue, saturation and intensity.

2. Values sent to inputs <l>, <25, and <3> specify the COLOR for the front of
the polygon(s) or for both sides if no obverse attributes are given.

5. If anything other than a 3D vector is sent to input <l> or «<ll», default
values for the other variables are assumed.

BEGIN FONT...END_FONT PS 300 COMMAND SUMMARY
MODELING - Primitives

FORMAT

name := BEGIN Font
[C[0]: N=n {itemized 2D vectors};]

[C[{k N=n {itemized 2D vectors};]

[C[127): N=n {itemized 2D vectors};]
END Font;

DESCRIPTION

Defines alternative character fonts, using itemized 2D vector lists to describe
each character. Up to 128 PS 300 character codes may be defined for each font.

PARAMETERS

n - Number of vectors in 2D vector list.

i - Decimal ASCII code to be defined. The square brackets around the ASCII
number from 0 to 127 are required.

{itemized 2D vectors} - Vectors making up the ASCII character being defined
(P xl, yl, Lx2,y2, etc).

NOTES

1. Not all ASCII codes need to be defined for a font. Nothing is output for an
undefined character.

2. There is no restriction on the range of values for the 2D vector making up a
character, but for correct spacing and orientation to adjacent characters,
the range in x and y should be kept between 0 and 1.

PS 300 COMMAND SUMMARY BEGIN_FONT...END _FONT

MODELING - Primitives

(continued)

NODE CREATED

Alternate character font definition node. This node resides in Mass Memory but
is not part of a display tree. To specify an alternate font, the character FONT
command is used. This creates a character FONT node in a display tree which
points to the appropriate alternate font definition.

INPUTS FOR UPDATING NODE

None.

EXAMPLE

A := BEGIN Font
Cl65]: N=5P0,0L .9,0L .9,.9L 0,.9 L 0,0;
END_Font;

B := BEGIN Structure
character FONT A;
CHARacters 'ABA";

END Structure;

DISPlay B

{Two squares - the new A - will appear right next to each other with the lower
left corner of the first at the origin. The letter B is not defined in character
FONT A, so nothing is DISPlayed for B. Note that this exam _le creates a special
symbol (a square) rather then defining an alternate character font.}

BEGIN S...END_S PS 300 COMMAND SUMMARY —

STRUCTURE - Implicit Referencing

FORMAT
name := BEGIN Structure
[namel:=] nameable command;
[namen:=] nameable command;
END Structure;
DESCRIPTION

Groups a set of viewing and/or modeling commands so that each element does
not need to be explicitly named and APPLied to the next structure in line. This
does not, however, prevent naming nested commands directly or explicitly
applying a command to another structure via APPLied to.

PARAMETERS

namel..namen - Optional names for individual commands inside the
BEGIN S...END_S, allowing reference to these specific
commands from elsewhere (see Note 3). The PS 300 prefixes
these names with the name of the outer structure and a period
(.), ad infinitum. So, for example, the command defined as
namel in the structure is referenced as name.namel.

nameable_command - Nameable commands are those that can be prefixed with
"name :=", with the following exceptions:

® (COMmand STATus can also be used.

® Intrinsic Functions cannot be instanced.
® name := nil; cannot be used.

- 10 -

PS 300 COMMAND SUMMARY BEGIN_S...END_S

STRUCTURE - Implicit Referencing

(continued)

NOTES

. Essentially, any data structuring command except a function instancing
command can be used.

2. A non-data command inside a BEGIN S...END S is applied to every node that
follows in the structure unless it is explicitly APPLied to another structure,
in which case it only affects the APPLied to structure (see examples).

3. If a command inside the structure is to be modified later by a function

network or from the host, it must be named so that it can be referenced. Its
referencing name is the name with all prefixes (e.g. name.namel).

DISPLAY TREE NODE CREATED

The various nodes created by the "nameable commands” linked together as
specified. The top node of this structure is name and is an instance node.

INPUTS FOR UPDATING NODE

The nodes that may be updated are created by those nameable commands that
are explicitly named (see note 3). For inputs, refer to the individual command

descriptions.

-1 -

BEGIN S...END_S PS 300 COMMAND SUMMARY =
STRUCTURE - Implicit Referencing u

(continued)

EXAMPLES

A:= BEGIN Structure
TRANslate by 2,3;
BEGIN Structure
RQOTate 30;
SCALE .5 THEN B;
END Structure;
VECtor list ... ;
Rot:= ROTate in X 45 THEN C;
ROTate in Y 90;
character FONT D THEN E;
Char:= CHARacters 'ABC';
Dat:= VECtor list ... ;
END Structure;

{To modify the X angle of rotation, a 3x3 matrix would be sent to <l>A.rot. You
could not modify the Y rotation angle since it is not explicitly named.}

{An equivalent display tree could be created without using BEGIN Structure ... U
END Structure, for example:}

A:=INSTance of F;

F:= TRANslate by 2,3 THEN G;
G:= INSTance of H,[,A.ROT,J

H:= INSTance of K;

I:= VECtor list ...;

A.ROT:= ROTate in X 45 THEN C:
J:= ROTate in X 90 THEN L;

K:= ROTate in Y 30 THEN M;
L:=INSTance of N,A.CHAR,A.DAT;
M:= SCALE .5 THEN B;

N:= character FONT D THEN E;
A.CHAR:= CHARacters 'ABC";
A.DAT:= VECtor list ... ;

- 12 -

(..\ PS 300 COMMAND SUMMARY BEGIN_S...END_S
STRUCTURE - Implicit Referencing

(continued)
EXAMPLES
A.CHAR A.DAT
CHAR VEC
'ABC'
’ E
Ir— 1I r— —l 1AS0248
L] | |
™ (—

- 13 -

BEGIN...END PS 300 COMMAND SUMMARY

GENERAL - Command Control and Status

FORMAT
BEGIN
command;
command;
command ;
END;
DESCRIPTION

Defines a "batch" of commands which take effect in a single screen update, so
that they appear to be executed simultaneously.

PARAMETERS

command — Any PS 300 command.

NOTE

Although any commands may be used inside a BEGIN...END structure, only
commands that create, display, or delete objects will happen "simultaneously".

EXAMPLE

BEGIN

DISPlay A;

A:= VECtor list n=5 1,1 -1,1 -1,-1 1,-1 1,13
DISPlay B;

B:= VECtor list n=4 0,0 1,0 1,1 0,0;

END;

{A and B will be displayed simultaneously.}

- 14 -

\J

PS 300 COMMAND SUMMARY BSPLINE

m

MODELING - Primitives

FORMAT

name := BSpline ORDER= k
[OPEN/CLOSED] [INONPERIodic/PERIodic] [N= n]
[VERTICES =] x1,y1,z1
x2,y2,z2

xﬁ,yﬁ,zﬁ
[KNOTS] = t1,t2,...,t]
CHORDS = q:

DESCRIPTION

Evaluates a B-spline curve, allowing the parametric description of the curve

m form without the need to specify or transfer the coordinates of each constituent
vector.

The B-spline curve C is defined as:

n
C(t) = I piNik(t)
i=1

where
pi - ith vertex of the B-spline's defining polygon
and
Ni,k — ith B-spline blending function of order k.
The parameter t of the curve and blending functions is defined over a sequence
of knot intervals tl,t2,...,tn+k. Different knot sequences define different types

of B-splines. Two common knot sequences are uniform non-periodic and uniform
periodic. A uniform non-periodic B-spline is defined by the knot sequence:

0 (for j < k)
tj = j-k (fork < j<n)
n-k+l (forn < j < n+k)
f ‘ A uniform periodic B-spline is defined by the knot sequence:
tj = j (for j < n+k)

- 15 -

BSPLINE PS 300 COMMAND SUMMARY

MODELING - Primitives

(continued)

DESCRIPTION (continued)

The blending functions can be defined recursively as
Ni,1(t) = 1 (if ti < t < ti+l), 0 otherwise

Nik(t) = (t=tDNi,k=1(t) + (ti+k-t)Ni+1,k=1(t)
ti+k-1-ti ti+k—ti+l

The curve is evaluated at the points:

t = (I-Dti + itj-k+l
q

for i=0,1,2,...,q9.

PARAMETERS

k - The order of the curve (0 < k).
n - The number of vertices (used to anticipate storage requirements).

x1,yl,z1...xn,yn,zn - The vertices of the defining polygon of the curve. The
z component is optional.

t1,t1,...,t] - User specified knot sequence. Because closed B-splines are
evaluated as open B-splines with duplicate vertices, the number
of knots required is:
n+k for open B-splines
n+k+1 for closed non-periodic B-splines
n+2k-1 for closed periodic B-splines

The knots must also be non-decreasing.

q - The number of vectors to be created (0 < g < 32767).

- 16 -

PS 300 COMMAND SUMMARY BSPLINE

MODELING - Primitives

NOTES

(continued)

OPEN or CLOSED is an option which describes the B-spline defining
polygon. The default is OPEN. (Note that CLOSED merely describes the
polygon, eliminating repetition of the last vertex.)

If no knot sequence is given, NONPERIODIC or PERIODIC is an option
which specifies that the non-periodic or periodic knot sequence be used as
the knot sequence. NONPERIODIC is the default for open B-splings;
PERIODIC is the default for closed B-splines.

At least k vertices must be given, or the order kK will be reduced accordingly.

DISPLAY TREE NODE CREATED

B-spline vector list data node.

INPUTS FOR UPDATING NODE

2D,3D,4D vector

name

Integer 1 <1> Updates chords

Real

<2> Updates knots

<3> Updates vertices

B-spline

1AS0604

NOTES ON INPUT

l.

The z value of a vector defaults to 0 when a 2D vector is sent to a 3D
B-spline.

W and z values should be ignored when a 3D or 4D vector is sent to a 2D
Bspline.

- 17 -

CHARACTER FONT PS 300 COMMAND SUMMARY
VIEWING - Appearance Attributes

FORMAT

name := character FONT font_name [APPLied to namel];

DESCRIPTION

Establishes a user-defined alternate character font as the working font. This
font must have been previously defined with.the BEGIN Font ... END Font
command. If the font is not defined, the current font is still used.

PARAMETERS

font _name — Name of the desired font.

namel - Structure to use the character font.

DISPLAY TREE NODE CREATED

Character font operation node. This node points to the definition of the
alternate font that is to be used.

INPUTS FOR UPDATING NODE

Nane.

EXAMPLE
New Font := BEGIN Font

{character definitions}
END Font

A := BEGIN Structure
CHARacters 'HERE"; {this uses standard font}
character FONT New font;
CHARacters 0,-2 '"HERE"; {this uses the font New Font}
END Structure;

DISPlay A;

- 18 -

PS 300 COMMAND SUMMARY CHARACTER ROTATE

MODELING - Character Transformations

FORMAT

name := CHARacter ROTate angle [APPLied to namel];

DESCRIPTION

Rotates characters. Creates a 2x2 rotation matrix to be applied to the specified
characters (in namel).

PARAMETERS

angle - Z-rotation angle in degrees (unless other units are specified). When you
are looking along the positive direction of the Z axis, positive angle
values produce counterclockwise rotations.

DISPLAY TREE NODE CREATED

2x2 matrix operation node.

INPUTS FOR UPDATING NODE

name

2x2 matrix <1>Changes matrix value

2x2 matrix

1AS0605

NOTE ON INPUT

Any 2x2 matrix is legal.

- 19 -

CHARACTER ROTATE PS 300 COMMAND SUMMARY

MODELING - Character Transformations ‘iﬂ’

(continued)

ASSOCIATED FUNCTIONS

F:MATRIX2, F:CROTATE, F:CSCALE

EXAMPLE
A:= CHARacter ROTate 90 THEN B;
B:= CHARacters 'Vertical';

{If A were DISPlayed, the text Vertical would start at the origin and read up the
Y axis.}

- 20 -

PS 300 COMMAND SUMMARY CHARACTER SCALE

MODELING - Character Transformation

FORMAT

name := CHARacter SCAle s [APPLied to namel];
name := CHARacter SCAle sx,sy [APPLied to namel];

DESCRIPTION

Creates a uniform (s) or non-uniform (sx,Sy) .2x2 scale matrix to scale the
specified characters.

PARAMETERS

S — Scaling factor for both axes.
SX,SY - Separate axial scaling factors.
‘ ~ namel - Structure whose characters are to be scaled (vector lists in the

structure are not affected).

DISPLAY TREE NODE CREATED

2x2 matrix operation node.

INPUTS FOR UPDATING NODE

name

2x2 matrix <1>Changes matrix value

2x2 matrix

1AS0605

NOTE ON INPUT

Any 2x2 matrix is legal.

_ 2] -

CHARACTER SCALE PS 300 COMMAND SUMMARY

MODELING - Character Transformation ‘ii,

(continued)

ASSOCIATED FUNCTIGNS

F:MATRIX2, F:CROTATE, F:CSCALE

EXAMPLE
A:= CHARacter SCAle .5 THEN B;

B:= CHARacters 'Half scale’;

_ 22 _

PS 300 COMMAND SUMMARY CHARACTERS

MODELING - Primitives

FORMAT
name := CHARacters [x,y[,z]IISTEP dx,dy] 'string";

DESCRIPTION

Displays character strings and (optionally) specifies their location and placement.

PARAMETERS

X,Y,Z - Location in the data space of the beginning of the character string (i.e.,
the lower left corner of a box enclosing the first character).

dx,dy - Spacing between the characters, in character size units. The width of
the character is one dx unit; the height is one dy unit.

string - Text string to be displayed (up to 240 characters).

DEFAULT

If string is the only parameter specified, the character string will start at 0,0,0
and dx,dy will be 1,0 (i.e., regular horizontal spacing).

DISPLAY TREE NODE CREATED

Characters data node.

_ 23 -

CHARACTERS PS 300 COMMAND SUMMARY -
MODELING - Primitives V

(continued)

INPUTS FOR UPDATING NODE

name
Character <last> Changes the last character

2D,3D,4D vector— <position>Changes the starting position
2D,3D,4D vector <step> Changes the stepping

Integer <clear> Clears the current string

Integer < delete> Deletes n characters (from the end)

String < append> Appends to end of current string

String <i> Replaces current string with new string,

starting at the i-th character \)
String <substitute>Replaces entire current string
with new string
CHARACTERS
TAS060

EXAMPLES

CHARacters 'HERE";
CHARacters 3,-3 STEP .5,1 "HERE";

CHARacters STEP -1,0 'HERE";

PS 300 COMMAND SUMMARY COMMAND STATUS

GENERAL - Command Control and Status

FORMAT
COMmand STATus;

DESCRIPTION

Used with BEGIN...END and BEGIN STRUCTURE...END STRUCTURE commands:
to report the current level to which these structures are nested.

PARAMETERS

None.

NOTES

‘ ' l. If a syntactically correct command produces a parser syntax error, there
may be unENDed BEGINs or BEGIN STRUCTUREs causing the PS 300 to
expect one or more ENDs or END STRUCTUREs. By sending COMMAND

STATUS, you can see if this is the case.

2. The 'RESET command can be used to get out of unended BEGIN's or
BEGIN STRUCTURE's when a problem occurs, (see 'RESET).

_ 25 -

CONNECT PS 300 COMMAND SUMMARY
FUNCTION

FORMAT

CONNect namel<i>:<j>name2;

DESCRIPTION

Connects function instance namel's output <i> to input <J> of function instance
or display tree node nameZ2.

PARAMETERS

namel - Function instance to be connected from.

<i> - QOutput number of function instance namel to be connected. Refer to the
PS 300 Function Summary for specific functions and acceptable values.

name2 - Function instance or display tree node to be connected to.
<j> - Input number or input name (in the case of some display tree nodes) of

name2 to be connected. Refer to the PS 300 Function Summary for
specific functions and acceptable values.

- 26 -

PS 300 COMMAND SUMMARY COPY

MODELING - Primitives

FORMAT

name := COPY namel [START=]1i [,] [COUNT=] n;

DESCRIPTION

Creates a VECtor list node containing a group of consecutive vectors copied
from another vector list (namel) or a LABELS node containing a group of
consecutive labels from an existing block (namel).

PARAMETERS

name - Name of new VECtor list or LABELS node.
namel - Name of the node being copied from.
i — First vector or index of first label in namel to be copied.

n - Last vector or count of labels in namel to be copied.

NOTE

The keywords START= and COUNT= are optional, but if one is used, both must
be used.

DISPLAY TREE NODE CREATED

VECtor list or LABELS data node.

INPUTS FOR UPDATING NODE

(See VECtor list or LABELS command).

COPY

PS 300 COMMAND SUMMARY
MODELING - Primitives

(continued)

EXAMPLES
A := VECtor list n=5.5,.5 -.5,.5 —.5,-.5 .5,-.5 .5,.5;
B:= COPY A I 3;

{This would be the same as saying:
B := VECtor list n=3.5,.5 -.5,.5 -.5,-.5;}

C := COPY A START=2 , COUNT=2;

{This would be the same as saying:
C := VECtor list n=2 -.5,.5 -.5,-.5;}

- 28 -

v/

PS 300 COMMAND SUMMARY DEALLOCATE PLOTTER

GENERAL - Hardware Attributes

FORMAT

name := DEALLOCATE PLOTTER device number;

DESCRIPTION

Allows you to specify which of up to four plotters to deallocate after hardcopies
of the currently displayed PS 300 screen image have been plotted. Enables
automatic form feeds between plots.

PARAMETERS

device _number - An integer between 0 and 3 which indicates the device number
of the plotter you want to deallocate.

DISPLAY TREE NODE CREATED

DEALLOCATE PLOTTER operation node.

INPUTS FOR UPDATING NODE

None.

- 29 _

DECREMENT LEVEL OF DETAIL PS 300 COMMAND SUMMARY
STRUCTURE - Attributes

FORMAT

name := DECrement LEVel of detail[APPLied to namel];

DESCRIPTION

Decrements the current level of detail by 1 when name is being traversed.

PARAMETERS

namel - Structure to be affected by the decreased level of detail.

NOTE

There is really only one global level of detail; this command only changes the
value of the level of detail while the named node and nodes below it in a display
tree are being traversed.

DISPLAY TREE NODE CREATED

DECREMENT LEVEL OF DETAIL operation node.

INPUTS FOR UPDATING NODE

None.

- 30 -

W

PS 300 COMMAND SUMMARY DECREMENT LEVEL OF DETAIL

STRUCTURE - Attributes

(continued)

EXAMPLE
A:= SET LEVel of detail TO 5 THEN B;

B:= BEGIN Structure
IF LEVel of detail = 4 THEN C;
IF LEVel of detail =5 THEN Dj
DECrement LEVel of detail;
IF LEVel of detail = 4 THEN E;
IF LEVel of detail =5 THEN F;
END Structure;

{If A were DISPlayed, structures D and E would also be displayed.}

- 31 -

DELETE PS 300 COMMAND SUMMARY
GENERAL - Data Structuring and Display
FORMAT
DELete name[,namel ... namen];
DELete any _string¥;
DESCRIPTION

Sets name to nil, then FORGETs name. The wild card delete will set to nil any
name beginning with the string that is entered.

PARAMETERS

name - Any previously-defined name.

any string - A character string which is part of any name.

NOTES

L.

After a DELete name command is issued, all Function Instances and
structures referring to name will no longer include the data formerly
associated with name.

After a DELete name command is issued, further definitions of or references
to name will not change structures which referred to name before the DEL ete.

Compare with FORGET, which eliminates name while preserving objects
which it formerly referred to.

If the wild card delete is used on an object being displayed, the object must
be removed from display before entering the wild card delete command.
Failure to do this will results in a small amount of memory being used for
each object still displayed.

If a name is created from the host, it must be deleted via the host line.

Similarly, if a name is created locally using the keyboard, the DElLete
command must be entered locally.

- 32 -

PS 300 COMMAND SUMMARY DISCONNECT
FUNCTION

FORMAT

DISCONNect namel[<i>]:option;

DESCRIPTION

Disconnects one or all of Function Instance namel's outputs from one or all
inputs that it has previously been connected to.

PARAMETERS

namel - Function Instance to disconnect output(s) from.
<i> - The output number of namel to disconnect. If this is not specified, all of
namel's outputs are implied and the option parameter must be ALL (this
would disconnect all of namel's outputs from everything they had
previously been connected to).
option - Either the keyword ALL or <j>name2, where:
ALL - Disconnect the specified output of namel (or all outputs of
namel) from all Function Instances or display tree nodes that it

was previously connected to.

<j> - Input number or input name of name2 to be disconnected from
namel.

name2 - Function instance or named node previously connected to namel.

- 33 -

DISPLAY PS 300 COMMAND SUMMARY

GENERAL - Data Structuring and Display

FORMAT

DISPlay name;

DESCRIPTION

Displays a structure. Adds name to the Display Processor's display list.

PARAMETERS

name — Any structure name.

- 34 -

PS 300 COMMAND SUMMARY ERASE PATTERN FROM

MODELING - Primitives

FORMAT

ERASE PATTERN FROM name;

DESCRIPTION

An immediate action command which erases a pattern from a vector list (name).

PARAMETERS

name — The vector list containing the pattern you want to erase.

DISPLAY TREE NODE CREATED

None.

EYE PS 300 COMMAND SUMMARY

VIEWING - Windowing Transformations

FORMAT
name := EYE BACK z [optionl]loption2] from SCREEN area w WIDE
[FRONT boundary = zmin BACK boundary = zmax]
[APPLied to namel];
DESCRIPTION

Specifies a viewing pyramid with the eye at the apex and the frustum of the
pyramid (bounded by zmin and zmax) enclosing a portion of the data space to be
displayed in perspective projection. Unlike the Field Of View command, the EYE
command can create a skew (non-right) viewing pyramid (compare Field Of View
and WINDOW).

PARAMETERS

Z — The perpendicular distance of the eye from the plane of the viewport.

optionl — RIGHT x or LEFT x, where x is the distance of the eye right or left of
the viewport center, respectively, in relative room coordinates.

option2 - UP y or DOWN y, where y is the distance of the eye up or down from
the viewport center, respectively, in relative room coordinates.

W — Width of the viewport in relative room coordinates.

zmin,zmax - Front and back boundaries of the frustum of the viewing pyramid.
(See note 3 of the LOOK command for properly specifying zmin and
zZmax.)

namel - Structure to which the EYE viewing area is applied.

DEFAULT

None. If no EYE is specified, the default WINDOW is assumed (parallel
projection X = —1:1 Y = -1:1 FRONT = 107'° BACK = 10'®). Refer to the WINDQOW

command.

- 36 -

PS 300 COMMAND SUMMARY EYE

VIEWING - Windowing Transformations

(continued)

l. Notice that EYE always creates square side boundaries because the viewport
width (w) is also taken to be the height; the aspect ratio is always 1.

2. If x and y are not specified (i.e. 0), then a right rectangle viewing pyramid is
created (compare FOV).

DISPLAY TREE NODE CREATED

4x4 matrix operation node.

INPUTS FOR UPDATING NODE

name

4x4 matrix <1>Changes matrix value

4x4 matrix

ASSOCIATED FUNCTIONS

F:FOV, F:WINDOW, F:MATRIX4

EXAMPLE

A:= BEGIN Structure
EYE BACK 24 LEFT 1.5 FROM SCREEN area 10 WIDE
FRONT boundary = 12
BACK boundary = l4;
LOOK AT 0,0,0 FROM 5,6.63,-10;
INSTance of SPHERE;
END Structure;

{If SPHERE is defined with a radius of 1 about the origin, A would be a view of
the SPHERE from 5,6.63,-10 fully depth-cued. Note that the FROM to AT
distance in the LOOK AT command is 13.}

FIELD OF VIEW PS 300 COMMAND SUMMARY

VIEWING - Windowing Transformations u

FORMAT
name := Field Of View angle

[FRONT boundary = zmin BACK boundary = zmax]
[APPLied to namel];

DESCRIPTION

Specifies a right rectangular viewing pyramid with the eye at the apex and the
frustum of the pyramid (bounded by zmin and zmax) enclosing a portion of the
data space to be displayed in perspective projection (compare EYE and WINDOW).

PARAMETERS

angle - Angle of view from the eye (i.e., the FROM point established in the
LOOK command) in x and y. (See note | below.)

zmin,zmax — Front and back boundaries of the frustum of the viewing pyramid.
(See note 3 of the LOOK command for properly specifying zmin and

Zmax.)

namel — Structure to which the FOV is applied.

DEFAULT

None. If no Field Of View is specified, the default WINDOW is assumed instead
(parallel projection X = —=1:1 Y = —1:1 FRONT = 107"® BACK = 10"®). Refer to the

EYE command.

NOTES

I. Notice that FOV always creates square side boundaries because angle
defines both the x and the y angles; the aspect ratio is always 1.

2. See also notes for the WINDOW command.

DISPLAY TREE NODE CREATED

4x4 matrix operation node.

- 38 -

PS 300 COMMAND SUMMARY

VIEWING - Windowing Transformations

FIELD OF VIEW

INPUTS FOR UPDATING NODE

name

4x4 matrix 1>Changes matrix value

4x4 matrix

1AS0607

ASSOCIATED FUNCTIGONS

F:FOV, F:WINDOW, F:MATRIX4

EXAMPLE

BEGIN Structure
Field Of View 30
FRONT boundary 12
BACK boundary 14;
LOOK AT 0,0,0 FROM 5,6.63,-10;
INSTance of SPHERE;
END Structure;

(continued)

{If SPHERE is defined with a radius of | about the origin, A would be a view of
the SPHERE from 5,6.63,~-10 fully depth-cued. Note that the FROM to AT
distance in the LOOK command is 13.}

FOLLOW WITH PS 300 COMMAND SUMMARY
STRUCTURE - Modifying

FORMAT
FOLLOW name WITH option;

DESCRIPTION

Follows a named operation node (name) with anather operation node.

PARAMETERS

name — A named transformation, attribute, or conditional reference node to be
followed with one of the options.

option- 1. A node created by a transformation command (SCALE by,
ROTate, etc).

2. A node created by an attribute setting command (SET
LEVel of detail, etc.).

3. A node created by a conditional referencing command (IF
LEVel of detail, etc).

NOTE

The structure name does not change association, unlike a named structure in a
PREFIX WITH command.

DISPLAY TREE NODE CREATED

An operation node corresponding to the option phrase of the command. This
node points to whatever node name pointed to previously. The node is also

pointed to by name.

- 40 -

—

U

PS 300 COMMAND SUMMARY FOLLOW WITH

™

STRUCTURE - Modifying

(continued)

EXAMPLE

SHAPE := BEGIN Structure
tran := TRANslate by 20,20;
rotate := ROTate in X 90;
triangle := VECtor list n=4 0,0 0,3 3,0 0,0;
END Structure;
FOLLOW SHAPE.ROT WITH SCALE by 23

{This will alter the structure SHAPE so that SHAPE.triangle is first scaled, then
rotated, then translated.}

_ 4] -

FORGET PS 300 COMMAND SUMMARY

(Structures)
GENERAL - Data Structuring and Display

FORMAT

FORget name;

DESCRIPTION

If the structure name is being displayed; it is removed from the display. name is
also removed from the name dictionary.

PARAMETERS

name - Any previously-defined structure name.

NOTES

. After a FORget name command is issued for a structure, all Function
Instances and structures referring to name will continue to refer to the data
formerly associated with name, even though name is no longer linked with the

data.

2. After a FORget name command is issued for a structure, further definitions
of, or references to, name will not change structures which referred to name
before the FORget command.

3, Compare with DELete, which affects not only name but the content of name
also.

_ 42 -

T~

v/

PS 300 COMMAND SUMMARY FORGET

(nu‘ (units)

GENERAL - Data Structuring and Display

FORMAT

FORget (unit_name);

DESCRIPTION

Removes a unit definition from memory.

PARAMETERS

unit _name - Any previously-assigned unit name.

NOTE

m Note that FORget requires unit names to be enclosed in parentheses (unlike
structure names).

(Function Instancing) PS 300 COMMAND SUMMARY
FUNCTION

FORMAT

name := F:function_name;

DESCRIPTION

Creates an instance of PS 300 Intrinsic Function.

PARAMETERS

name - Any combination of alphanumeric characters up to 240. Must begin with
an alpha character and can include $ or .

function _name - Any PS 300 Intrinsic Function name.
EXAMPLE

Addl := F:add;
Add2 := F:add;

{This creates two different instances of the same Intrinsic Function F:add.}

_ 44 -

PS 300 COMMAND SUMMARY IF CONDITIONAL BIT

STRUCTURE - Conditional Referencing

FORMAT

name := IF conditional BIT n is state [THEN namel];

DESCRIPTION

Refers to a structure if an attribute bit has a specified setting (ON or OFF). (See
SET conditional BIT command).

PARAMETERS

n - Integer from 0 to 14 indicating which bit to test.
state - The setting to be tested (ON or OFF).

namel - Structure to be conditionally referenced.

DEFAULT

If bit n was not manipulated higher in the display tree, it will default to OFF.

DISPLAY TREE NODE CREATED

IF CONDITIONAL BIT operation node (conditional connection between two
structures).

INPUTS FOR UPDATING NODE

name

Integer <1>Changes bit number

IF CONDITIONAL BIT

1AS0608

45 -

IF CONDITIONAL_BIT PS 300 COMMAND SUMMARY

STRUCTURE - Conditional Referencing

(continued)

NOTES ON INPUTS

Input <l> accepts an integer (between 0-14) to change the bit number to the
integer value.

EXAMPLE
A:= SET conditional BIT 3 ON THEN B;
B:= IF conditional BIT 3 is ON THEN C;
C:= VECtor list ... ;
{Initially when A is DISPlayed, C would also be displayed, indirectly. If a

function network were connected to A to change conditional bit 3 to OFF, then
the test in B would fail and C would not be displayed.}

- 46 -

PS 300 COMMAND SUMMARY ’ IF LEVEL OF DETAIL

STRUCTURE - Conditional Referencing

FORMAT

name := I[F LEVel of detail relationship n [THEN namel];

DESCRIPTION

Refers to a structure if the level of detail attribute has a specified relationship
to a given number. Tests the relation between the current level of detail and the
number n (see SET LEVel of detail command).

PARAMETERS

relationship - The relationship to be tested (¢, <=, =, <>, >=, >).

n - Integer from O to 32767 indicating the number to compare the current level
of detail to.

namel - Structure to be conditionally referenced.

DEFAULT

If the level of detail is not manipulated higher in the structure by a SET
LEVel of detail node, it will default to 0.

DISPLAY TREE NODE CREATED

IF LEVEL OF DETAIL operation node (conditional connection between two
structures).

_ 47 -

IF LEVEL_OF DETAIL PS 300 COMMAND SUMMARY

STRUCTURE - Conditional Referencing

(continued)

INPUTS FOR UPDATING NODE

name

<1>Changes level of detail

IF LEVEL OF DETAIL

1AS0609

NOTES ON INPUTS

Input <l> accepts an integer (from 0 to 32767) to change the level of detail to
the integer value.
EXAMPLE
A:= SET LEVel of detail to 3 THEN B;
B:= IF LEVel of detail = 3 THEN C;
C:= VECtor list ...
{Initially when A is DISPlayed, C would also be displayed, indirectly. If a

function network were connected to A to change the level of detail to something
other than 3, then the test in B would fail and C would not be displayed.}

_ 48 -

&Nw)

PS 300 COMMAND SUMMARY IF PHASE

STRUCTURE - Conditional Referencing

FORMAT

name := I[F PHASE is state THEN [namel];

DESCRIPTION

Refers to a structure if the PHASE attribute is in a specified state (ON or OFF).
(See SET RATE and SET RATE EXTernal commands).

PARAMETERS

state — Phase setting to be tested (ON or OFF).

namel — Structure to be conditionally referenced.

ﬁ DEFAULT

If there is no SET RATE node or SET RATE EXTernal node higher in the display
tree, the PHASE attribute will always be OFF.

DISPLAY TREE NODE CREATED

IF PHASE operation node (conditional connection between two structures).

INPUTS FOR UPDATING NODE

None.

EXAMPLE
A:= SET RATE 10 15 THEN B;
B:= IF PHASE is ON THEN C;
C:= VECtor list ... ;

{If A is DISPlayed, C will also be displayed for 10 refresh frames and not
m DISPlayed for 15 refresh frames repetitively.}

- 49 -

o

TLLUMINATION PS 300 COMMAND SUMMARY —
RENDERING - Data Structuring (PS 340) U

FORMAT
name := ILLUMINATION x,y,z [COLOR h[,s [,i]]] [AMBIENT al;

DESCRIPTION

Specifies light sources for shaded images created with the PS 340. An unlimited
number of light sources may be specified. This.command is only used with the
PS 340. For a detailed explanation of defining and interacting with shaded
images, consult the "Using the PS 340 - Rendering Operations For Surfaces and
Solids" tutorial in Volume 2.

PARAMETERS

X,Y¥,Z - A vector from the origin pointing towards the light source.

h - A real number specifying the hue in degrees around the color wheel. Pure u
blue is 0 and 360, pure red is 120, and pure green is 240.

S - A real number specifying saturation. No saturation (gray) is 0 and full
saturation (full toned colors) is 1.

i — A real number specifying intensity. No intensity (black) is 0, full intensity
(white) is 1.

a - A real number which controls the contribution of a light source to the
ambient light. Increasing a for a light source increases its contribution to
the ambient light.

DEFAULTS

If no ILLUMINATION command is used, a default white light at (0,0,-1) with an
ambient proportion of 1.0 is assumed. If intensity and saturation are not
specified, they default to I. If only hue and saturation are specified, intensity
defaults to 1. The default for ambient proportion is 1.

- 50 -

PS 300 COMMAND SUMMARY ITLLUMINATION

RENDERING - Data Structuring (PS 340)

(continued)

NOTES

I. Illumination nodes may be placed anywhere in a display tree, allowing lights
to be stationary or to rotate with the object, or both.

2. An unlimited number of light sources are valid for smooth-shaded
renderings, but only the last illumination node encountered is used in

creating flat-shaded renderings.

3. Light-sources are not used in wash-shaded (area-filled) images.

DISPLAY TREE NODE CREATED

Illumination operate node.

INPUTS FOR UPDATING NODE

3D <1> Update X,Y,Z
Real,2D,3D <2> Updates hue,saturation,intensity
|
Real <3>Updates ambient proportion

ILLUMINATION

1AS0677

NOTES ON INPUTS

A real number sent to input <l> changes only the hue. In this case, saturation
and intensity default to l. You cannot change just one value and retain the
remaining values. Unless a 3D vector is sent, the default values are assumed for
the variables not specified.

EXAMPLE
Light := ILLUMINATION 1,1,-1 COLOR 180;
{This creates a node which defines a yellow light over the right shoulder. Since

saturation and intensity are not specified, the defaults s = 1 and i = 1 are
assumed. The ambient proportion defaults to 1.}

- 5] -

INCLUDE PS 300 COMMAND SUMMARY
STRUCTURE - Modifying

FORMAT

INCLude namel IN nameZ2;

DESCRIPTION

Used to include (instance) another named entity (namel) under a named instance
node in a display tree (name2).

PARAMETERS

namel — Structure to be included under instance node name2.

name2 - Name of the instance node to include namel.

DISPLAY TREE NODE CREATED

None. This is an immediate action command which modifies an existing instance
node in a display tree.

EXAMPLE
MAP:= INSTance of CANADA, SOUTH AMERICA, UNITED STATES;

INCLude MEXICO IN MAP;

{This would result in the instance node called MAP also pointing at ME XICQO.}

-5 -

PS 300 COMMAND SUMMARY INCREMENT LEVEL OF DETAIL

STRUCTURE - Attributes

FORMAT

name := INCRement LEVel of detail[APPLied to namel];

DESCRIPTION

Increments the current level of detail by | when name is being traversed.

PARAMETERS

namel - Node to be affected by the increased level of detail.

NOTE

There is really only one global level of detail; this command only changes the
value of the level of detail while the named node and nodes below it in the

display tree are being traversed.

DISPLAY TREE NODE CREATED

INCREMENT LEVEL OF DETAIL operation node.

INPUTS FOR UPDATING NODE

None.

- 53 -

INCREMENT LEVEL OF DETAIL PS 300 COMMAND SUMMARY
STRUCTURE — Attributes

(continued)

EXAMPLE
A:= INCRement LEVel of detail THEN Bj
B:= INSTance of C, D;
C:=IF LEVel of detail = 1 THEN E;
D:=IF LEVel of detail = 2 THEN F;
{If A were DISPlayed, E would also be displayed but not F. Since the default

level of detail is 0, A will change the level of detail to I, so the test in C will
pass to E, while the test in D will fail and F will not be traversed.}

- 54 -

PS 300 COMMAND SUMMARY INITIALIZE

GENERAL - Initialization

FORMAT
INITialize [option];
DESCRIPTION
INITialize (without specifying an option) restores the PS 300 to its initial state in
which:
® No user-defined names exist.
® No user-defined units exist.
® No user—created display trees exist.
® No user-defined function connections exist.
® No structures are being displayed.

You may also initialize any of the above areas selectively (without initializing
others) by following INITialize with the appropriate keyword for the area to be
initialized.

The INITialize command also automatically executes the OPTIMIZE MEMQORY
command to collect any contiguous free blocks of memory into single blocks.

PARAMETERS

option - Any of the following:
CONNections - Breaks all user-defined function connections.
DISPlay - Removes all structures from the display list.

NAMES - Clears the name dictionary of all structures and Function
Instance names.

UNITS - Clears all user-defined units.

- 55 —

INITIALIZE

PS 300 COMMAND SUMMARY

GENERAL - Initialization

(continued)

NOTES

l.

An INITialize command is specific to a command interpreter. It only
affects the structures which were established by the same command
interpreter as the initialization command itself. For example, structures
created through the host line can be removed with an INITialize from the
host, but not by an INITialize from the PS 300 keyboard.

The INITialize command blanks every object being displayed whether the
object was created from the host or locally.

- 56 -

—

\J/

PS 300 COMMAND SUMMARY INSTANCE OF

STRUCTURE - Explicit Referencing

FORMAT

name := INSTance of namel[,name2...,namen];

DESCRIPTION

Groups one or more structures under a single named instance node.

PARAMETERS

namel...namen - Structures to be grouped.

DISPLAY TREE NODE CREATED

An instance node with pointers to each of the structures referenced
(namel...namen).

INPUTS FOR UPDATING NODE

None; however the INClLude and REMove commands can be used to modify the
instance node.

EXAMPLE

A:= INSTance of B,C,D;

- 57 -

LABELS PS 300 COMMAND SUMMARY —
MODELING - Primitives u

FORMAT

name := LABELS x,y[,z]'string’

[xi,yi [,zi] 'string'l;

DESCRIPTION

The LABELS command, like CHARacters, defines character strings for display.
However, a single LABELS command can define an indefinitely large number of
character strings.

PARAMETERS

X,Y,Z - Coordinates of the lower left-hand corner of the first character in the
string. u

string - Text string up to 240 characters in length.

DEFAULT

If z is not specified, it is assumed to be O.

NOTES

1. A gain in display capacity is realized whenever two or more character
strings are combined in a single LABELS command.

2. The smallest LABELS entity that can be picked is an entire string; a pick
returns an index into the LABELS command's list of strings. Individual
characters cannot be picked as they can with CHARacters.

3. The commands SET CHARacters SCREEN oriented/[FIXED] and SET
CHARacters WORLD oriented can be applied to LABELS in the same way
they are applied to CHARacters.

4. You may SEND messages to a LABELS node as you can to a CHARacters
node.

_ 58 -

m PS 300 COMMAND SUMMARY LABELS

MODELING - Primitives

(continued)

DISPLAY TREE NODE CREATED

LABELS data node.

INPUTS FOR UPDATING NODE

name
String <last> Changes last label
Integer <clear> Clears list
Integer <delete> Deletes firom end
’!Ns Label <append> Appends from end
Boolean <i> True=on,False=off
String <i> Replaces i-th label
LABELS

1AS0610

NOTES ON INPUTS

l. Sending an integer to <delete> of a LABELS node deletes that many strings
from the end of the labels block. If the integer is as large as or larger than
the number of strings in the block, then all strings are removed except the
first. This is retained to keep the step size information, but display of that
string is disabled.

2. Sending an integer to <clear> of a LABELS node deletes all labels except the
first, which is retained for step size information, but is not displayed.

LABELS PS 300 COMMAND SUMMARY
MODELING - Primitives

(continued)

NOTES ON INPUTS (continued)

3. The <append> input accepts only special "label" type messages that give
both the string and the position to be appended. This data type is created by

the F:LABEL function.

EXAMPLE

A:= LABELS 0,0 'FIRST LINE"
0,-1.5 'SECOND LINE;

- 60 - N

m PS 300 COMMAND SUMMARY LOOK

VIEWING - Windowing Transformations

FORMAT
name := LOOK AT ax,ay,az FROM fx,fy,fz
[UP ux,uy,uz] [APPLied to namell;
name := LOOK FROM fx,fy,fz AT ax,ay,az
[UP ux,uy,uz] [APPLied to namel];
DESCRIPTION

This command, in conjunction with a windowing command (WINDOW,

Field Of View, or EYE), fully specifies the portion of the data space that will be

viewed, as well as the viewer's own orientation in the world coordinate system.

The LOOK AT...FROM clauses specify the viewer's position with respect to the

object(s), while the optional UP clause specifies the screen "up" direction
m (analogous to adjusting the way the viewer's head is tilted).

LOOK creates a 4x3 transformation matrix which:

l. Translates the data base so that the FROM point is at the origin (0,0,0).

2. Rotates the data base so that the AT point is along the positive z axis at
(0,0,D), where D = ||F-A|].

3. Rotates the data base so that the UP vector is in the YZ plane.

PARAMETERS

ax,ay,az — Point being looked at, in world coordinates.
fx,fy,fz - Location of viewer's eye, in world coordinates.
Ux,uy,uz - Vector indicating screen "up" direction.

namel — Any structure.

- 61 -

LOOK

PS 300 COMMAND SUMMARY

VIEWING - Windowing Transformations

(continued)

DEFAULT

LOOK AT 0,0,1 FROM 0,0,0 UP 0,1,0;

NOTES

l.

To be implemented properly in a display tree, the LOOK node must follow
one of the windowing nodes and may not precede any windowing node. (See
note | for WINDOW.)

The UP vector indicates a direction only; its magnitude does not matter.
For example, the two clauses UP 0,1,0 and UP 0,10,0 have exactly the same
effect.

In determining FRONT and BACK boundary parameters for an associated
windowing command (WINDOW, FIELD Of View, or EYE), remember that
the LOOK command positions the AT point along the positive Z axis at 0,0,D
where D equals the distance of the FROM point to the AT point. So, for
example, if the FROM to AT distance is 13, if full depth cueing is desired,
and the radius of the object is I, then

FRONT boundary = 12
BACK boundary = 14

is used.

DISPLAY TREE NODE CREATED

4x3 matrix operation node.

INPUTS FOR UPDATING NODE

name

4x3 matrix <1>Changes LOOK AT 4x3 matrix

or 4x4 matrix

4x3 matrix

1AS0611

- 62 -

PS 300 COMMAND SUMMARY LOOK

VIEWING - Windowing Transformations

(continued)

NOTES ON INPUTS

If a 4x4 matrix is input, the 4th column is ignored.

ASSOCIATED FUNCTIONS

F:LOOKAT

EXAMPLE

A:= BEGIN Structure
WINDOW X = -1:1 Y = -1:1
FRONT boundary = 12
BACK boundary = 14;
LOOK AT 0,0,0 FROM 5,6.63,-10 THEN Sphere;
END Structure;

{If Sphere is defined with a radius of | about the origin, A would be a view of the

Sphere from 5,6.63,-10, fully depth-cued. Note that the FROM to AT distance
in the LOOK command is 13.}

- 63 -

MATRIX 2x2 PS 300 COMMAND SUMMARY

MODELING - Character Transformations

FORMAT

name := Matrix 2x2 ml1,ml12
m21,m22 [APPLied to namell];

DESCRIPTION

Creates a 2x2 transformation matrix which applies to characters in the structure
that follows (namel).

PARAMETERS

mll - m22 - Elements of the 2x2 matrix.

namel - Structure whose characters are to be transformed (any vector lists in
the display tree are left unchanged).

DISPLAY TREE NODE CREATED

2x2 matrix operation node.

INPUTS FOR UPDATING NODE

name

2x2 matrix <1> Changes matrix value

2x2 matrix

IAS0605

NOTE ON INPUT

Any 2x2 matrix is legal.

- 64 -

PS 300 COMMAND SUMMARY

MODELING - Character Transformations

MATRIX 2x2

ASSOCIATED FUNCTIONS

F:MATRIX2, F:CSCALE, F:CROTATE

EXAMPLE
A := MATRIX 2x2 1,0
.5,1 THEN B;

{This creates a skewing matrix which is useful for italicizing text.}

- 65 -

(continued)

MATRIX 3x3 PS 300 COMMAND SUMMARY

MODELING - Transformations

FORMAT
name := Matrix 3x3 ml1,ml2,m13
m21,m22,m23
m31,m32,m33 [APPLied to namel];
DESCRIPTION

Creates a 3x3 transformation matrix which applies to the specified data (vector
lists and/or characters).

PARAMETERS

mll - m33 - Elements of the 3x3 matrix to be created.

namel — Structure to be transformed by the matrix.

DISPLAY TREE NODE CREATED

3x3 matrix operation node.

INPUTS FOR UPDATING NODE

name

3x3 matrix <1>Changes matrix value

3x3 matrix

1AS0612

NOTE ON INPUT

Any 3x3 matrix is legal (a rotation matrix, a scale matrix, etc.).

- 66 -

PS 300 COMMAND SUMMARY

MODELING - Transformations

MATRIX 3x3

ASSOCIATED FUNCTIONS

F:MATRIX3, F:XROTATE, F:YROTATE,
F:ZROTATE, F:DXROTATE, F:DYROTATE,
F:DZROTATE, F:SCALE, F:DSCALE

EXAMPLE

A := MATRIX 3x3 1,0,0
0,1,0
0,0,1

b

APPLied TO B;

b

{This creates an identity matrix.}

67 -

(continued)

MATRIX 4x3 PS 300 COMMAND SUMMARY

MODELING - Transformations

FORMAT
name := Matrix 4x3 ml1,m12,m13
m21,m22,m23
m31,m32,m33
m41,m42 ,m43 [APPLied to namell;
DESCRIPTION

Creates a 4x3 transformation matrix which applies to the specified data (vector
lists and/or characters).

PARAMETERS

mll - m43 - Elements of the 4x3 matrix to be created.

namel - Structure to be transformed by the matrix.

DISPLAY TREE NODE CREATED

4x3 matrix operation node.

INPUTS FOR UPDATING NODE

name

4x3 matrix <1>Changes matrix value

4x3 matrix

1AS0613

- 68 -

PS 300 COMMAND SUMMARY MATRIX 4x3

MODELING - Transformations

(continued)

NOTE ON INPUT

Any 4x3 matrix is legal (a rotation matrix, a scale matrix, etc.).

ASSOCIATED FUNCTIONS

F:MATRIX4, F:XROTATE, F:YROTATE,
F:ZROTATE, F:DXROTATE, F:DYROTATE,
F:DZROTATE, F:SCALE, F:DSCALE

EXAMPLE

b}

0,0
1,0
0,1

0,0

b

A := MATRIX 4x3

OO O —

APPLied TO B;

b

- 69 -

MATRIX 4x4 PS 300 COMMAND SUMMARY

MODELING - Transformations

FORMAT
name := Matrix 4x4 ml1,ml2,m13,ml4
m21,m22,m23,m24
m31,m32,m33,m34
m41,m42 ,m43,m44 [APPLied to namell;
DESCRIPTION

Creates a 4x4 transformation matrix which applies to the specified data (vector
lists and/or characters).

PARAMETERS

mll - md44 — Elements of the 4x4 matrix to be created.

namel — Structure to be transformed by the matrix.

DISPLAY TREE NODE CREATED

4x4 matrix operation node.

INPUTS FOR UPDATING NODE

name

4x4 matrix <1>Changes matrix value

4x4 matrix

1AS0607

- 70 -

(@)

PS 300 COMMAND SUMMARY

MODELING - Transformations

MATRIX 4x4

NOTE ON INPUT

Any 4x4 matrix is legal (a rotation matrix, a scale matrix, etc.).

ASSOCIATED FUNCTIGONS

F:MATRIX4, F:XROTATE, F:YROTATE,
F:ZROTATE, F:DXROTATE, F:DYROTATE,
F:DZROTATE, F:SCALE, F:DSCALE

EXAMPLE

A := MATRIX 4x4

QO’O)O
,1,0,0
,0,1,0

0,0,1

b

OO O —

,0,1 APPLied TO B;

{This creates an identity matrix.}

~ 71 -

(continued)

(Naming of Display Tree Nodes) PS 300 COMMAND SUMMARY —
STRUCTURE - Explicit Referencing u

FORMAT
name := display data structure_command;
DESCRIPTION
Gives a name (address) to a node in a display tree so that it can be referenced
explicitly.
PARAMETERS

name - Any combination of alphanumeric characters up to 240. Must begin with
an alpha character and can include $ and _.

Display-data-structure command - All data structuring commands except the
function instancing command (name :=
F:function name). U

NOTES

I. All nodes in a display tree must be named (addressed) either directly, using
this structure naming command, or indirectly, nesting a display data
structure command within a BEGIN Structure...END Structure command.

2. Upper and lower-case letters can be used in names, but all letters are
converted to upper-case. Thus turbine blade, Turbine Blade, and
TURBINE BLADE are equivalent names.

3. A null structure can be named using the name := nil; form of the
command. If this command were used to redefine name, name would be kept
in the name dictionary but the definition previously associated with name
would be removed. FORGET name does just the opposite (see FORGET).
DELETE name removes both the name and its definition (see DELETE).

~ 72 -

PS 300 COMMAND SUMMARY OPTIMIZE MEMORY

GENERAL - Command Control and Status

FORMAT

OPTIMIZE MEMORY;

DESCRIPTION

An immediate action command which collects any contiguous free blocks sof
memory into single blocks.

NGOTES

I. If you are transmitting a large vector list from the host and you suspect that
memory is being fragmented, enter this command before doing any
operations.

h 2. This command is executed automatically whenever an INITialize command is
‘ entered.

-~ 73 -

OPTIMIZE STRUCTURE;...END OPTIMIZE; PS 300 COMMAND SUMMARY .
GENERAL - Command Control/Status ﬁ“"

FORMAT
OPTIMIZE STRUCTURE;
command;
command;
END OPTIMIZE;
DESCRIPTION

Places the PS 300 in, and removes it from, "optimization mode", during which
certain elements of a display tree are created in a way that minimizes Display
Processor traversal time.

PARAMETERS |

None.

NOTES

l. Optimization mode is intended for application programs whose development
is complete. Since optimization severely restricts the kinds of changes that
may be made to a PS 300 display tree, it should not be used with programs
whose structures may be changed.

2. To enter optimization mode for a developed application program, place the
command

OPTIMIZE STRUCTURE;

at the beginning of the program (or portion of program) to be optimized, and
place the command

END OPTIMIZE;

at the end.

- 74 -

PS 300 COMMAND SUMMARY OPTIMIZE STRUCTURE;...END OPTIMIZE;

GENERAL - Command Control/Status

(continued)

NOTES (continued)

5.

Optimization is not retroactive. The OPTIMIZE STRUCTURE command
alone does not optimize any existing structures. On the other hand,
structures created after the command is entered remain optimized even
after END OPTIMIZE is entered, and even after legal changes are made to
the structure.

The following changes may not be made to structures created or instanced
during optimization mode:

a. PREFIXes

b. Redefinitions of data-definition commands (VECtor list, CHARacters,
LABELS, and polynomial and B-spline curves), regardless of whether or
not the system is in optimization mode at the time of redefinition.
Illegal changes to optimized structures have unpredictable effects an
the display.

Among the types of structures for which optimization has an effect are

INSTANCEs of multiple data-definition commands and BEGIN S ... END S

structures containing only data-definition commands.

Optimization has no effect on a reference to a data-definition command
which precedes the data-definition command itself.

OPTIMIZE STRUCTURE, like the INITialize command, affects only those
structures created at the port at which the command is entered.

An INITialize command automatically performs an END OPTIMIZE.

~ 75 -

PATTERN PS 300 COMMAND SUMMARY

MODELING - Primitives

FORMAT

name := PATtern i [AROUND corners][MATCH/NOMATCH]
LENgth r;

DESCRIPTION

Defines name to be a pattern. Patterns can be applied to existing vector lists
(patterned and unpatterned) created by the WITH PATTERN, POLYNOMIAL, and
BSPLINE commands. If curve commmands are used, the [AROUND corners]

option must be used.

PARAMETERS

i- A series of up to 32 integers between 0 and 128 (delineated by spaces)
indicating the relative lengths of alternating lines, spaces, lines, etc., in the
pattern. The longer the series, the more complex the pattern of lines and

spaces, which repeats every r units.

AROUND corners - This indicates that patterning is to continue around each of the
vectors in the vector list until the end of the list or a position

vector is reached.

MATCH/NOMATCH - This indicates that the pattern length should be adjusted to make
the pattern exactly match the end points of the vector or series

of vectors being patterned. The default is MATCH.

r — The length over which i is defined and repeated.

DISPLAY TREE NODE CREATED

None.

- 76 -

W,

m PS 300 COMMAND SUMMARY PATTERN WITH

MODELING - Primitives

FORMAT

PATTERN namel WITH pattern;

DESCRIPTION

An immediate action command which applies a pattern to a vector list (namel).

PARAMETERS

pattern - The pattern to be applied to namel. The pattern can be defined as
either of the following.

name — A pattern created by the name := PATtern command
‘ : ~ or
i [AROUND corners] [MATCH/NOMATCH] LENgth r

where

i - A series of up to 32 integers between 0 and 128 delineated by spaces
indicating the relative lengths of alternating lines, spaces, lines, etc.,
in the pattern. The longer the series, the more complex the pattern of
lines and spaces, which repeats every r units.

AROUND corners — This indicates that patterning is to continue around
each of the vectors in the vector list until the end of
the list or a position vector is reached.

MATCH/NOMATCH - This indicates that the pattern length should be adjusted
to make the pattern exactly match the end points of the
vector or series of vectors being patterned. The default
is MATCH.

r — The length over which 1 is defined and repeated.

DISPLAY TREE NODE CREATED

m None.

- 77 -

POLYGON PS 300 COMMAND SUMMARY

MODELING - Primitives (PS 340)

FORMAT

name := [WITH ATTRIBUTES namel] [WITH OUTLINE h] [COPLANAR]
POLYGon vertex ... vertex;

DESCRIPTION

Allows you to define primitives as solids and surfaces. This command is only
used with the PS 340. For a detailed explanation of defining and interacting with
polygons, consult the "Using the PS 340 - Rendering Operations For Surfaces and
Solids" tutorial in Volume 2.

PARAMETERS

WITH ATTRIBUTES - An option that assigns the attributes defined by namel for
all polygons until superseded by another WITH ATTRIBUTES

clause.

WITH OUTLINE - An option that specifies the color of the edges of a polygon on
the color CSM display, or their intensity on a black and white
display as a real number (h).

COPLANAR - Declares that the specified polygon and the one immediately
preceding it have the same plane equation.

vertex - A vertex is defined as follows:
[ST1x,y,z ['Nx,y,z 1
where
S - indicates that the edge drawn between the previous vertex and
this one represents a soft edge of the polygon. If the S specifier

is used for the first vertex in a polygon definition, the edge
connecting the last vertex with the first is soft.

- 78 -

U

m PS 300 COMMAND SUMMARY POLYGON

MODELING - Primitives (PS 340)

(continued)

PARAMETERS (continued)

N - Indicates a normal to the surface with each vertex of the
polygon. Normals are used only in smooth-shaded renderings.
Normals must be specified for all vertices of a polygon or for
none of them. If no normals are given for a polygon, they are
defaulted to the same as the plane equation for the polygon.

X, ¥, z - are coordinates in a left-handed Cartesian system.

NOTES

1. A polygon declared to be coplanar must lie in the same plane as the previous
polygon if correct renderings are to be obtained. The system does not check
for this condition. Coplanar polygons may be defined without the coplanar
specifier, unless outer and inner contours are being associated.

| ﬁ 2. All members of a set of consecutive coplanar polygons are taken to have the
same plane equation, that of the previous polygon not containing the

coplanar option.
3. If coplanar is specified for the first polygon in a node, it has no effect.

4, If the N (normal) specifier is specified for a vertex in a polygon, it must be
specified for all vertices in that polygon.

5. If the S (soft) specifier is used for the first vertex in a polygon definition,
the edge connecting the last vertex with the first is soft.

6. No more than 250 vertices per POLYGon may be specified.

7. The last defined vertex in the polygon is assumed to connect to the first
defined vertex; that is, polygons are implicitly closed.

8. There is no syntactical limit for the number of POLYGon clauses in a group.

9. The ordering of vertices within each POLYGon has important consequences
for rendering operations.

- 79 -

POLYGON

PS 300 COMMAND SUMMARY

MODELING - Primitives (PS 340)

(continued)

DISPLAY TREE NODE CREATED

Polygon data node.

INPUTS FOR UPDATING NODE

None.

- 80 -

PS 300 COMMAND SUMMARY POLYNOMIAL

MODELING - Primitives

FORMAT
name := POLYnomiall[ORDER=1]
[COEFFICIENTS=] «xi, yi, zi
xi-1, yi-1, zi-1
0, yo, z0
CHORDS=q;
DESCRIPTION

Evaluates a parametric polynomial in the independent variable t over the
interval [0,1]. This command allows the parametric description of many curve
forms without the need to specify or transfer the coordinates of each constituent
vector.

If the polynomial to be evaluated is called C, C is an i*"-order parametric
polynomial in t such that:

C(t) = [x(t) y(t) z(v)]

This polynomial may be expressed as the product of a vector (containing the
various powers of t) and a coefficient matrix with three columns and i+! rows:

C(t) = [ti ti-1 ... tOl xi yi zi
xi-1 yi-1 zi-]

X0 y0 20

This coefficient matrix is what is specified in the polynomial command to
represent the parametric polynomial C.

- 81 -

POLYNOMIAL PS 300 COMMAND SUMMARY -
MODELING - Primitives U

(continued)

PARAMETERS

i — Optional specification of the order of the polynomial used to anticipate
internal storage requirements.

xi, yi, zi - Coefficients of the polynomial.

q - The number of vectors to be created (0 < g < 32768).

NOTES

I. The interval [0,1] over which the polynomial in t is to be evaluated, is
divided into q equal parts, so that C(t) is evaluated at t=0/q,l/q,2/q,...q/q.
This causes the curve's constituent vectors to generally not be equal in
length.

2. The polynomial's order is determined by the number of coefficient rows, and
if the ORDER=1 clause disagrees, it is ignored.

DISPLAY TREE NODE CREATED

Polynomial vector list data node.

INPUTS FOR UPDATING NODE

name

Integer <1> Updates coefficients

2D,3D,4D vector <2> Updates chords

Polynomial

NOTES ON INPUTS 1AS0614

Sending a 2D vector to a 3D ploynomial node causes a default value of 0 to be v
used for z. If a 4D vector is sent to a 3D polynomial or a 3D or 4D vector is sent ‘ '
to a 2D polynomial, the w or z components are ignored.

- 82 -

PS 300 COMMAND SUMMARY PREFIX WITH

STRUCTURE - Modifying

FORMAT

PREFIX name WITH operation_command;

DESCRIPTION

Prefixes a named data node (name) with an operation node.

PARAMETERS

name - A modeling primitive data node to be prefixed.

operation _command - Any PS 300 command that creates an operation node.

NOTE

Any connections made to namel will be applied to the added prefix and not to the
modeling primitive (i.e. name now points to the new operation node which points
to the node that was previously name).

DISPLAY TREE NODE CREATED

None. This is an immediate action command which just modifies an existing data
node.

EXAMPLE
A:= VECtor list ...;
PREfix A WITH SCALE by .13

{This will make A the name of a scale node pointing at a now unnamed vector
list.}

_ 83 -

RATIONAL BSPLINE PS 300 COMMAND SUMMARY

MODELING - Primitives

FORMAT
name := RATIonal BSpline ORDER=K
[OPEN/CLOSED] [NONPERIodic/PERIodic] [N=n]
[VERTICES =] x1,y1,[z1]1,w
x2,y2,022]1,w2
xﬁ,yﬁ,[zﬁ],wn
[KNOTS = t1,t2,...,t]]
CHORDS =q;
DESCRIPTION

Evaluates a rational B-spline curve, allowing the parametric description of the
curve form without the need to specify or transfer the coordinates of each

constituent vector.
The rational B-spline curve C is defined as:
n
I wipiNi,k(t)
C(t)=_i=1 i

wiNi,k(t)
1

I ™3

i
where
pi — ith vertex of the B-spline's defining polygon
Ni,k - ith B-spline blending function of order k

and

wi - weighting factor associated with each vertex (different weights
determine the shape of the curve).

_ 84 -

W)

PS 300 COMMAND SUMMARY RATIONAL BSPLINE

MODELING - Primitives

(continued)

DESCRIPTION (continued)

The parameter t of the curve and blending functions is defined over a sequence
of knot intervals tl,t2,...,tn+k. Different knot sequences define different types
of B-splines. Two common knot sequences are the uniform nonperiodic and
uniform periodic knot sequences. A uniform nonperiodic B-spline is defined by
the knot sequence:

0 (for j < k)
tj = j-k (for k < j <n)
n—k+1 (for n < j < n+k)

A uniform periodic B-spline is defined by the knot sequence:
tj = j (for j < n+k)
The blending functions can be defined recursively as
m Ni,I1(t) = 1 (if ti < t ¢ ti+l), 0 otherwise

Ni,k(t) = (t=ti)Ni,k=1(t) + (ti+k=t)Ni+1,k-1(t)
ti+k—1-ti ti+k—ti+l

The curve is evaluated at the points:

t = -tk + itj-k+l
q

for i=0,1,2,...,q.

PARAMETERS

k — The order of the curve (0 < k < 10).
n - The number of vertices (used to anticipate storage requirements).
x1,y1,z1,wl...xn,yn,zn,wn — The vertices and weighting factor of the defining

polygon of the curve. The 2z component is
optional.

_ 85 -

RATIONAL BSPLINE PS 300 COMMAND SUMMARY

MODELING - Primitives

(continued)

PARAMETERS (continued)

t1,t1,...,t] - User specified knot sequence. Because closed B-splines are

evaluated as open B-splines with duplicate vertices, the number
of knots required is:

n+k for open B-splines
n+k+1 for closed nonperiodic B-splines
n+2K-1 for closed periodic B-splines

The knots must also be nondecreasing.

g - The number of vectors to be created (0 < q < 32766).

NOTES

1.

OPEN or CLOSED is an option which describes the B-spline defining polygon.
The default is OPEN. (Note that CLOSED merely describes the polygon,
eliminating repetition of vertices. A full knot sequence, if specified, must
be given.)

NONPERIODIC or PERIODIC is an option which specifies the default knot
sequence. NONPERIODIC is the default for open B-splines; PERIODIC is the
default for closed B-splines.

At least k vertices must be given, or the order k will be reduced accordingly.

If all the weights of a rational B-spline are the same, tl.2 curve is identical
to the B-spline without the weights.

DISPLAY TREE NODE CREATED

B-spline vector list data node.

- 86 -

(ﬂn\ PS 300 COMMAND SUMMARY RATIONAL BSPLINE

MODELING - Primitives

(continued)

INPUTS FOR UPDATING NODE

name

Integer <1> Updates chords

Real <2> Updates knots

2D,3D,4D vector <3> Updates vertices

Rational B-spline

‘ '5 1AS0615

NOTES ON INPUT

When a 2D vector is sent to a 3D rational B-spline, the default for z is 0 and for
w is 1. The third component of 3D and 4D vectors is used as w in 2D rational

B-splines.

EXAMPLES

A third-order rational B-spline with defining polygon P1l, P2, P3 defines a conic
arc:

the arc is parabolic if wl=wZ2=w3
the arc is elliptic if wl=w3>w?2
the arc is hyperbolic if wl=w3<«w?2

RATIONAL POLYNOMIAL PS 300 COMMAND SUMMARY

MODELING - Primitives

FORMAT
name := RATional POLYnomiall[ORDER=1]
[COEFFICIENTS=] xi, yi, zi, wi
xi-1, yi-1, zi-1, wi-1]
x0, y0, z0, w0
CHORDS=q;
DESCRIPTION

Evaluates a rational parametric polynomial in the independent variable t over
the interval [0,1]. This command allows the parametric description of many
curve forms without having to specify or transfer the coordinates of each
constituent vector.

If the polynomial to be evaluated is called C, C is an i*"—order rational

parametric polynomial in t such that:

C(t) =| x(t) y(t) z(b)
w(t) w(t) w(t)

This polynomial may be expressed as the product of a vector (containing the
various powers of t) and a coefficient matrix with four columns and i+l rows:

C(t) = [ti ti-1 ... tO] [xi yi zi wi
xi-1 yi-1 zi-1 wi-1

X0 yé 20 WO

This coefficient matrix is what is specified in the polynomial command to
represent the rational parametric polynomial C.

_ 88 -

PS 300 COMMAND SUMMARY RATIONAL POLYNOMIAL

MODELING - Primitives

(continued)

PARAMETERS

i — Optional specification of the order of the polynomial used to anticipate
internal storage requirements.

xi, yi, zi, wi - Coefficients of the polynomial.

NOTES

I. The interval [0,1] over which the polynomial in t is to be evaluated, is
divided into g equal parts, so that C(t) is evaluated at t=0/q,1/q,2/q,...q/q.

2. Note that the curve's constituent vectors are not generally equal in length.
5. The polynomial's order is determined by the number of coefficient rows, and

if the ORDER=1 clause disagrees, it is ignored.

‘ ’ DISPLAY TREE NODE CREATED

Rational polynomial vector list data node.

INPUTS FOR UPDATING NODE

name

Integer———<1> Updates coefficients

2D,3D,4D vector <2> Updates chords

Rational Polynomial

1AS0616

-89 -

RATIONAL POLYNOMIAL PS 300 COMMAND SUMMARY
MODELING - Primitives

(continued)

NOTES ON INPUTS

Sending a 2D vector to a 3D ploynomial node causes a default value of 0 to be
used for z and | for w. If a 4D vector is sent to a 3D polynomial or a 3D or 4D
vector is sent to a 2D polynomial, the w or z and w components are ignored. The
third component of 3D and 4D vectors is used as w in a 2D rational polynomial.

EXAMPLE
CIRCLE:= BEGIN Structure

RATional POLYnomial
2, 0,0, 2
-2,-2, 0, 2
o, 1, 0,-1
CHORDS = 25;
RATional POLYnomial
2, 0, 0, -2
-2,-2, 0, 2
0, 1, 0,-1
CHORDS = 25;
END Structure;

{This will create right and left semi-circles of radius 1.}

- 90 -

PS 300 COMMAND SUMMARY REBOOT

GENERAL - Command Control and Status

FORMAT

name := REBOQOT password;

DESCRIPTION

Causes the PS 300 to reboot just as if it had been powered up, that is, it starts
the confidence tests beginning with 'A'.

PARAMETERS

password - System password set up by the PS 300 system manager.

NOTES
I. If a password has been set up, an incorrect password will give an error
message. If no password has been setup, any character string will cause the

PS 300 to reboot.

2. REBOOT may be used inside a BEGIN Structure ... END Structure or outside.

DISPLAY TREE NODE CREATED

None.

-~ 9] -

REMOVE PS 300 COMMAND SUMMARY

GENERAL - Data Structuring and Display U

FORMAT

REMove name;

DESCRIPTION

Stops the display of name, that is, removes name from the display list.

PARAMETERS

name — Any structure name.

NOTE

Does not affect any structures in memory.

- 92 -

PS 300 COMMAND SUMMARY REMOVE FOLLOWER

STRUCTURE - Modifying

FORMAT

REMove FOLLOWER of name;

DESCRIPTION

Removes a previously placed follower of name (see FOLLOW WITH command).

PARAMETERS

name - Structure that was previously modified with a FOLLOW WITH command.

EXAMPLE
ﬁ (Refer to the example given in the FOLLOW WITH command.)
REMove FOLLOWER of Shape.Rot;

{This command will restore the structure Shape to what it was originally (i.e.
before the FOLLOW WITH command was given.)}

93 -

REMOVE FROM PS 300 COMMAND SUMMARY
STRUCTURE - Modifying

FORMAT

REMove namel FROM nameZ;

DESCRIPTION

Used to remove a named node (namel) from a named instance node (name2) irv a
display tree.

PARAMETERS

namel — Node to be removed from instance node nameZ2.

name2 - Instance node that will no longer point to namel.

DISPLAY TREE NODE CREATED

None. This is an immediate action command which just modifies an existing
instance node.

EXAMPLE

MAP:= INSTance CANADA, SOUTH AMERICA, UNITED STATES;
REMOVE SOUTH AMERICA FROM MAP;

{This makes the instance of MAP point at CANADA and UNITED STATES only.}

~ 94 -

PS 300 COMMAND SUMMARY REMOVE PREFIX

STRUCTURE - Modifying

FORMAT

REMove PREfix of name;

DESCRIPTION

Removes a previously placed prefix (see PREFIX WITH command).

PARAMETERS

name — Structure that was previously modified by a PREFIX WITH command.

NOTE
m This. i.mmediate action command restores name to what it was before being
modified by a PREFIX WITH command.
EXAMPLE
A:= VECtor list ...;
PREfix A WITH SCALE by .l;
REMove PRETfix of A; ‘

{This will remove the previously PREfixed SCALE node, and A will once again be
the name of the VECtor list.} |

- 95 - |

RESERVE WORKING_STORAGE PS 300 COMMAND SUMMARY

GENERAL - Immediate Action (PS 340)

FORMAT

RESERVE WORKING STORAGE size;

DESCRIPTION

Reserves a block of Mass Memory for sectioning plane, hidden-line removal, and
backface removal renderings of solid objects defined as polygons. This command
is used only with the PS 340.

PARAMETERS

size — The number of bytes of Mass Memory that are reserved.

NOTES

L.

Renderings and saved renderings reside in mass memory along with the rest
of the display structure. The original polygon is also stored in mass memory.

Each polygon of a solid object with four vertices will require approximately
150 bytes of reserve working storage. Memory needs will vary from figure
to figure dependent upon the complexity of the object, the operations to be
performed, and the view.

After one reserve-working-storage request is made, subsequent requests do
not add to the original memory block —- they replace the original memory
block.

If a contiguous block of memory cannot be allocated, no working storage is
allocated and any previous storage is deallocated. If working storage is too
small or has not been reserved, the rendering request is ignored and an error
message is issued.

The best time to use RESERVE WORKING STORAGE is after booting, when
large requests can be filled more easily. However, the command may be
entered at any time.

- 96 -

M

PS 300 COMMAND SUMMARY RESERVE _WORKING STORAGE

GENERAL - Immediate Action (PS 340)

(continued)

NOTES (continued)

6.

Typically, 200,000 to 400,000 bytes of working storage should be reserved at
the beginning of a session.

A previously allocated block of memory is released prior to filling the request
for a new block. Thus, a request for a smaller working storage area can
always be fulfilled. However, because the working storage must be a
contiguous block of memory, even slight increases in the working storage’size
may not be satisfied.

[f working storage is too small or has not been reserved, the rendering request
is ignored and an error message is issued.

- 97 -

'RESET

PS 300 COMMAND SUMMARY

GENERAL - Command Control and Status

FORMAT

DESCRIPTION

The 'RESET command is

'RESET;

used to

get

out

of

unended BEGIN's

BEGIN STRUCTURE's when a problem occurs. (See also COMmand STATus.)

- 98 -

or

PS 300 COMMAND SUMMARY ROTATE

MODELING - Transformations

FORMAT

name := ROTate in [axis] angle [APPLied to namell];

DESCRIPTION

Rotates a structure (namel). Creates a 3x3 rotation matrix which rotates the
specified data (vector lists and/or characters) about the designated axis, relative
to the world coordinate system's origin. When you look in the positive direction
of a given axis, positive angle values cause counterclockwise rotations (following

the left-hand rule).

PARAMETERS

axis - X, Y, or Z. If no axis is specified, the default is Z.

angle - Rotation angle in degrees (if no other units have been specified as
default, and if no other units are explicitly specified in the ROTATE

command).

namel - Structure to be rotated.

DISPLAY TREE NODE CREATED

3x3 matrix operation node.

INPUTS FOR UPDATING NODE

name

3x3 matrix <1>Changes matrix value

3x3 matrix

1AS0612

- 99 _

ROTATE PS 300 COMMAND SUMMARY -
MODELING - Transformations ~i"

(continued)

NOTE ON INPUT

Any 3x3 matrix is legal (any rotation matrix, a scale matrix, a compound 3x3
matrix, etc.).

ASSOCIATED FUNCTIONS

F:MATRIX3, F:XROTATE, F:YROTATE,
F:ZROTATE, F:DXROTATE, F:DYROTATE,
F:DZROTATE, F:SCALE, F:DSCALE

EXAMPLE
A:= ROTate in X 45 THEN B;

B:= VECtor list ... ;

- 100 -

PS 300 COMMAND SUMMARY SCALE

MODELING - Transformations

FORMAT

name := SCALE by s [APPLied to namel];
name := SCALE by sx,syl,sz] [APPLied to namel];

DESCRIPTION

Scales an object. Applies a uniform (S) or nonuniform (sx,sy,sz) 3x3 scale
matrix transformation to the specified data (vector lists and/or characters).

PARAMETERS

s — Uniform scaling factor (same along all axes).

SX,SY,SZ — Axial scaling factors. If Sz is not specified, it is assumed to be | (no
Z-scaling).

namel - Object to be scaled.

DISPLAY TREE NODE CREATED

3x3 matrix operation node.

INPUTS FOR UPDATING NODE

name

3x3 matrix <1>Changes matrix value

3x3 matrix

1AS0612

NOTE ON INPUT

Any 3x3 matrix is legal (another scale matrix, a rotation matrix, etc.).

- 101 -

SCALE

PS 300 COMMAND SUMMARY

MODELING - Transformations

(continued)

ASSOCIATED FUNCTIONS

F:MATRIX3, F:XROTATE, F:YROTATE,
F:ZROTATE, F:DXROTATE, F:DYROTATE,
F:DZROTATE, F:SCALE, F:DSCALE

EXAMPLE
A:= SCALE by 5,2,3 THEN B;

B:= VECtor list ... ;

- 102 -

v/

)

PS 300 COMMAND SUMMARY SECTIONING_ PLANE

MODELING - Data Structuring (PS 340)

FORMAT

name := SECTioning plane APPLied to namel;

DESCRIPTION

Defines a sectioning plane, which is needed to produce a scetioned rendering of
an object. This command is only used with the PS 340.

PARAMETERS

namel — Either a POLYGon command or an ancestor of a POLYGon command.

NOTES

L.

Defining, displaying, and positioning a sectioning plane are the first steps in
producing a sectioned rendering of an object. Hidden-line removal and
backface removal do not require sectioning planes, but they can be used in
conjunction with sectioned renderings.

The data which actually define a sectioning plane are contained in a
POLYGon node; SECTioning plane simply indicates that a given POLYGon
represents a sectioning plane rather than an object to be rendered.

The sectioning plane is the plane in which a specified POLYGon lies. The
polygon itself need not intersect the object to be sectioned, as long as some
part of the plane does.

The sectioning plane is the plane containing the polygon defined by the first
POLYGon clause of the first polygon node encountered by the Display
Processor as it traverses the branch beneath a sectioning-plane node.

[f the polygon node has more than one POLYGon, only the first polygon
determines the sectioning plane. The other polygons have no effect on
sectioning operations, but are displayed along with the defining polygon.
This can be put to good use in designing an indicator which shows the side of
the plane at which sectioning will remove (or preserve) polygon data.

- 103 -

SECTIONING PLANE PS 300 COMMAND SUMMARY —
MODELING - Data Structuring (PS 340) \“"

(continued)

NOTES (continued)

6. A node may be a descendant of a sectioning-plane node if and only if it may be
a descendant of a rendering operate node. Refer to the Notes on the
SOLID rendering command for permitted and prohibited descendant nodes.

7. If objects are to be sectioned, matrix-transformation nodes may be placed
above the sectioning-plane node when and only when they are also ancestors of
the objects' SOLID RENDERING or SURFACE RENDERING node(s). Failure
to observe this rule results in bad renderings.

8. No SOLID rendering or SURFACE rendering operation node, whether below or
above the sectioning-plane node, may be an ancestor of a sectioning plane's
defining POLYGon. The PS 340 interprets such POLYGons as objects to be
rendered rather than as sectioning-plane definitions, and issues a "Sectioning
plane not found" message when a sectioning attempt is made. Other nodes
which do not represent matrix viewing transformations, such as SET RATE and
SET PLOTTER, may be placed either above or below the sectioning-plane node

as needed. .

9. Before an object can be sectioned, the sectioning—plane node must be part of a
structure which is DISPlayed. If the plane's defining POLYGon is itself
DISPlayed but its sectioning-plane node is not, no renderings can be created.

DISPLAY TREE NODE CREATED

Sectioning-plane operation node.

INPUTS FOR UPDATING NODE

None.

- 104 -

PS 300 COMMAND SUMMARY SEND

FUNCTION

FORMAT

SEND option TO <n>namel;

DESCRIPTION

Sends a value to input n of Function Instance, node, or variable namel.

PARAMETERS

option - The value to be sent. This can be any of the following forms:
i — A real number (with or without decimal point).
FIX(i) - Designates i to be an integer value (without decimal point).
V2D(i,j) - 2D vector.
V3D(i,j,k) - 3D vector.
vaD(i,j,k,1) - 4D vector.
M2D(all,al2 a21,a22) - 2x2 matrix.
M3D(all1,al12,al13 a21,a22,a23 a31,a32,a33) - 3x3 matrix

MaD(all1,a12,al13,al4 a21,a22,a23,a24 a31,a32,a33,a34 adl,ad2,a43,
a44) 4x4 matrix

Boolean - TRUE or FALSE

'string' - A character string of one or more characters.

CHAR(m) - A single character whose decimal ASCII value is m.

P,L - Position or line.

VALUE(variable name) - The value currently in variable_name, where

variable name is a previously declared PS 300
variable.

- 105 -

SEND PS 300 COMMAND SUMMARY

FUNCTION

(continued)

EXAMPLE
TIMER:= F:CLCSECONDS;
SEND FIX(10) TO <1>TIMER;

{This puts an integer 10 on input | of TIMER.}

- 106 -

PS 300 COMMAND SUMMARY SEND number * mode
FUNCTION

FORMAT

SEND number*mode TO <n>namel;

DESCRIPTION

Sends to a vector list or labels node to change a specified number of vectors
from position vectors to line vectors, or to turn a specified number of labels on
or off.

PARAMETERS

number — An integer specifying the number of vectors or labels.

mode - Either a P or L. For vector lists, P indicates a position vector and L
indicates a line vector.

For a labels block, P turns the label off, L turns
it on.

n - An integer which identifies the first vector or label to receive the new
specification.

namel — The destination vector list or labels node.

SEND VL PS 300 COMMAND SUMMARY

FUNCTION

FORMAT

SEND VL(namel) TO <i>name2;

DESCRIPTION

Overwrites or appends vectors in vector lists or labels in label blocks. :

PARAMETERS

namel - Name of vector list, character string, or label block to be sent.
name2 - Name of the destination VECtor list or LABELS node.

i — An integer that specifies the first vector or first label to be replaced in
name2 with vectors or labels in namel.

NOTES

I. The parameter i can be replaced with last or append.

2. If i exceeds the number of vectors or labels in name2, the command will be
ignored.

PS 300 COMMAND SUMMARY SET CHARACTERS

VIEWING - Appearance Attributes

FORMAT

name := SET CHARacters orientation [APPLied to namell];

DESCRIPTION

Sets the type of screen orientation you want for displayed character strings.

PARAMETERS

orientation - Three types of orientation may be set:

WORLD oriented - Characters are transformed just like any part of the
object containing them.

SCREEN oriented - Characters are not affected by ROTate or SCALE
transformations. Intensity and size of characters
still vary with depth (Z-position).

SCREEN oriented/FIXED - Characters are not affected by ROTate or

SCALE transformations. They are always
displayed with full size and intensity.

namel — Structure affected by the SET CHARacters node.

DEFAULT

SET CHARacters WORLD oriented;

DISPLAY TREE NODE CREATED

SET CHARacters operation node.

INPUTS FOR UPDATING NODE

None.

- 109 -

SET COLOR PS 300 COMMAND SUMMARY
VIEWING - Appearance Attributes

FORMAT
name := SET COLOR hue,sat [APPLied to namel];

DESCRIPTION

Specifies the color of an object (namel).

PARAMETERS

hue - A real number greater than or equal to 0 and less than 360, where:
0 = pure blue
120 = pure red
240 = pure green
360 = pure blue

sat - A real number from 0 to | where:

0 = no saturation (white)
1 = full saturation

namel - Structure to be colored.

DEFAULT

The default setting for both hue and sat is 0.

NOTE

Zero saturation in any hue is white.

DISPLAY TREE NODE CREATED

SET COLOR operation node.

- 110 -

PS 300 COMMAND SUMMARY

VIEWING - Appearance Attributes

SET COLOR

INPUTS FOR UPDATING NODE

EXAMPLE

name

1> Hue
<2> Saturation

Real
Real

SET COLOR

1AS0617

A:= SET COLOR 240,1 THEN B;
B:= VECTOR LIST;

(continued)

{If A is displayed, the vector list described by B will be displayed in a pure green

hue on a CSM.}

- 111 -

SET COLOR BLENDING PS 300 COMMAND SUMMARY
VIEWING - Appearance Attributes u

FORMAT
name := SET COLOR BLENDing sat [APPLied to namell;

DESCRIPTION

This command, used in conjunction with the COLOR option of the VECtor list
command, allows individual vector hue specifications. The ability to specify
vector hues individually is called "color blending" because, if two adjacent
vectors are of different hues, the hue of the line segment drawn between them is
blended continuously between the endpoints. Vectors can only be color-blended
when the contrast is set to zero using the SET CONTrast command.

PARAMETERS

sat - A real number between 0 and |, where 0 represents no color saturation |
(white) and | represents full color satuation. v ‘
\

namel - Either a VECtor list command containing the COLOR option, or an
ancestor of one or more such commands. namel may also be a
VECtor list command without the COLOR option (or ancestor thereof)

provided that the SET COLOR command is applied to these lists as
described in the notes that follow.

NOTES

lI. A color definition requires the specification of hue, saturation, and
intensity. With SET COLOR BLENDing:

hue values are specified individually for each vector
a single saturation value is specified for all vectors
intensity is always full (color-blended vector lists cannot be depth-cued),

and the z values of vectors affect the color rather than the intensity. (For
this reason, 2D vector lists are generally the most useful in color-blending.)

- 112 -

PS 300 COMMAND SUMMARY SET COLOR BLENDING

VIEWING - Appearance Attributes

(continued)

NOTES (continued)

2.

Note that the "I=" clause of the VECtor list command is not among the
factors that determine a color-blended vector's intensity. Refer to the
VECtor list command for further details.

On systems lacking either a 2K ACP or a CSM Calligraphic Display, the SET
COLOR BLENDing command is accepted but has no effect.

With color blended vector lists, the SET CONTrast command must be used

to set the contrast of the PS 300 display to zero. If contrast is not set to
zero, all color-blended vectors will appear blue.

- 113 -

SET CONDITIONAL_BIT PS 300 COMMAND SUMMARY

STRUCTURE - Attributes

FORMAT

name := SET conditional BIT n switch [APPLied to namell;

DESCRIPTION

Alters one of the 15 global conditional bits temporarily, during the traversal of a
branch of a display tree. These temporary settings may be tested further down
within the display tree, possibly allowing conditioned reference to other
structures (see IF conditional BIT command). When traversal of the branch is
complete, the bits are restored to their previous values.

PARAMETERS

n - An integer from 0 to 14, corresponding to the conditional bit to be set ON or

OFF by the command (see Note | below).

switch — ON or OFF.

name — Structure to follow the conditional bit node.

DEFAULT

All 15 conditional bits are initially set to OFF.

NOTES

l.

Although only one conditional bit can be set ON or OFF by this command, a
function network could be tied in to this node to set any conditional bit ON
or OFF.

Note that there is really only one bank of 15 conditional bits and that this
command only changes the values of these bits temporarily, while namel is
being traversed. However, descendants of namel could also be SET
conditional BIT nodes. These are saved and restored as part of the state of
the machine during the traversal of different branches of the display tree.

- 114 -

PS 300 COMMAND SUMMARY

STRUCTURE - Attributes

SET CONDITIONAL BIT

DISPLAY TREE NODE CREATED

SET conditional BIT operation node.

INPUTS FOR UPDATING NODE

Boolean <1>Sets the original bitSn)

to be ON(T) or OFF(F
<2>Sets bit number input (0-14) Oﬂ

Integer
Integer <3> Sets bit number input (0-14) OFF

Integer
affected by this node.

SET CONDITIONAL BIT

EXAMPLE
A:= SET conditional BIT 3 ON THEN B;
B:= IF conditional BIT 3 is ON THEN C;
C:= IF conditional BIT 6 is ON THEN Dj
D:= VECtor list ...

{A function network should be tied to A so that the

(continued)

<4>.Disables bit number input (0-14) from being

<5>Complements (toggles) bit number input (0-14)

state of any of the

conditional BITs can be changed, not just the one that was initially set ON or OFF.}

- 115 -

SET CONTRAST PS 300 COMMAND SUMMARY

VIEWING - Appearance Attributes

FORMAT

name := SET CONTrast to ¢ [APPLied to namel];

DESCRIPTION

Changes the contrast of the PS 300 display(s).

PARAMETERS

¢ - A number from 0 to | (0 = lowest contrast, = highest contrast).

namel — Structure using this contrast setting.

DEFAULT

SET CONTrast to 1

NOTES

l. Setting contrast to | provides the highest contrast and thus the greatest
perception of depth cueing (all else being equal).

2. Although any real value from 0 to | is legal for ¢, ¢ is mapped to one of four
values (0.,.33,.67,1.).

3. With color blended vector lists, SET CONTrast must be used to set the
contrast of the PS 300 display to zero. If contrast is not set to zero,
color-blended vectors will appear blue.

DISPLAY TREE NODE CREATED

SET CONTrast operation node.

- 116 -

C

(ﬂh\

PS 300 COMMAND SUMMARY

VIEWING - Appearance Attributes

SET CONTRAST

INPUTS FOR UPDATING NODES

name

Real 1>Changes contrast

SET CONTRAST

1AS0619

EXAMPLE

A:= SET CONTrast to 0 THEN B;
B:= VECtor list ...

{This is a minimum contrast setting.}

- 117 -

(continued)

SET CSM PS 300 COMMAND SUMMARY
VIEWING - Appearance Attributes u

FORMAT
name := SET CSM switch [APPLied to namel];

DESCRIPTION

Allows you to specify one of two modes of operation for the CSM Calligraphic
Display.

PARAMETERS

switch - Two settings may be specified:

ON - This setting slows the Line Generator to half speed and provides
extra brightness and precision (endpoint match and color

convergence) in displayed data.) ’

OFF - This is the default setting. It sets the Line Generator to ful
speed, allowing for the maximum number of vectors to be

displayed in a refresh cycle.

NOTE

The following command should be added to the SITE.DAT file of any installation
using a CSM Calligraphic Display:

SEND TRUE TO <1>CSM;
This command establishes SET CSM ON as the default mode for graphics display,
and sets the Terminal Emulator and the Message Display line to be displayed in
CSM mode.
DEFAULT

SET CSM OFF;

DISPLAY TREE NODE CREATED

SET CSM operation node. ‘ '

- 118 -

A

PS 300 COMMAND SUMMARY

VIEWING - Appearance Attributes

SET CSM

INPUTS FOR UPDATING NODE

name

Boolean <1>T/F set line generator

at full/half speed

SET CSM

(continued)

SET DEPTH_CLIPPING PS 300 COMMAND SUMMARY

VIEWING - Appearance Attributes

FORMAT

name := SET DEPTH ClLipping switch [APPLied to namel];

DESCRIPTION

Enables/disables Z-plane (depth) clipping.

PARAMETERS

switch — ON or OFF.

namel - Structure affected.

DEFAULT
SET DEPTH CLipping OFF;
NOTE
With depth clipping off, data between the front clipping plane and the eye will

appear at full intensity, and data behind the eye will be clipped.

DISPLAY TREE NODE CREATED

SET DEPTH CLipping operation node.

INPUTS FOR UPDATING NODES

name

<1>Disables (F)/enables
(T) depth clipping

Boolean

SET DEPTH
CLIPPING

1AS0621

- 120 -

PS 300 COMMAND SUMMARY SET DEPTH_CLIPPING

VIEWING - Appearance Attributes

(continued)

EXAMPLE

A:= SET DEPTH CLipping ON THEN B;

{This enables Z clipping.}

- 121 -

SET DISPLAYS PS 300 COMMAND SUMMARY

VIEWING - Appearance Attributes

FORMAT

name := SET DISPlays ALL switch [APPLied to namel];
name := SET DISPlay n[,m...] switch [APPLied to namel];

DESCRIPTIGCN

Specifies the scope(s) which are to receive display information.

PARAMETERS

switch - ON or OFF.
nl,m...]1-0,1,2,3. Numeric designation for PS 300 scopes.

namel - Structure to be displayed.

DEFAULT

SET DISPLAYS ALL ON;

NOTE

l. The ALL version of the command only refers to those scopes that have
already been explicitly specified by a previous SET DISPlay command.

2. Scope numbers correspond to the hardware configuration (e.g., Scope 0 is
the scope number when there is just one scope in the system).

DISPLAY TREE NODE CREATED

SET DISPlay(s) operation node.

- 122 -

PS 300 COMMAND SUMMARY SET DISPLAYS

VIEWING - Appearance Attributes

(continued)

INPUTS FOR UPDATING NODES

Boolean <1>Turns indicated displays

ON(T) or OFF(F)
SET DISPLAY(S)

1AS0622

EXAMPLE
A:= SET DISPlay 1 ON THEN B;
B:= VECtor list ... ;

{This channels B to be displayed on scope 1.}

- 123 -

SET INTENSITY PS 300 COMMAND SUMMARY

VIEWING - Viewport Specification

FORMAT

name := SET INTENSsity switch imincimax [APPLied to namell;

DESCRIPTION

Specifies intensity variation for depth cueing, and may be used to override the
intensity specification associated with the VIEWPORT command or previous SET

INTENsity commands.

PARAMETERS

switch - Two settings may be specified: ON and OFF. The default setting is ON,
which means enable the effect of this node in the display tree. OFF
means disable the effect.

imin - A real number ranging from 0.0 to 1.0, imin represents the dimmest
intensity setting.

imax - A real number ranging from 0.0 to 1.0, imax represents the brightest
intensity setting.

namel - Structure to be affected.

NOTE

The last SET INTENsity node that is ON in a display tree determines the intensity
range.

DISPLAY TREE NODE CREATED

SET INTENsity operation node.

- 124 -

PS 300 COMMAND SUMMARY

VIEWING - Viewport Specification

SET INTENSITY

INPUTS FOR UPDATING NODE

name

Boolean <1>T/F enable/disable the effect
of this node J

<2>Change min:max intensity range
SET INTENSITY

2D vector

1AS0623

- 125 -

(continued)

SET LEVEL OF DETAIL PS 300 COMMAND SUMMARY
STRUCTURE - Attributes

FORMAT

name := SET LEVel of detail to n [APPLied to namell];

DESCRIPTION

Alters a global level of detail value temporarily, during the traversal of> a
specified branch of a display tree. These temporary settings may be tested
further down within the display tree, possibly allowing conditioned reference to
other structures (see IF LEVel of detail command). When traversal of the branch
is complete, the level of detail is restored to its original value.

PARAMETERS

n — An integer from 0 to 32767 indicating the level of detail value.

name := Structure to be affected by the level of detail.

DEFAULT

The level of detail is initially 0.

NOTE

There is really only one global level of detail value; this command only changes
the value of the level of detail temporarily, while the namel structure is being
traversed. '

DISPLAY TREE NODE CREATED

SET LEVel of detail operation node.

- 126 -

PS 300 COMMAND SUMMARY SET LEVEL OF DETAIL

STRUCTURE - Attributes

(continued)

INPUTS FOR UPDATING NODE

<1>Changes the level of_
detail (0-32767)

Integer

SET LEVEL OF
DETAIL

1AS062U

EXAMPLE
A:= SET LEVel of detail to 2 THEN B;
B:= IF LEVel of detail = 2 THEN C;
Ci=...;

{A function network should be tied to A to change the level of detail for
conditional referencing of C.}

- 127 -

SET PICKING PS 300 COMMAND SUMMARY
MODELING - Picking Attributes

FORMAT

name := SET PICKing switch [APPLied to namel];

DESCRIPTION

Enables or disables picking for a specified structure.

PARAMETERS

switch — ON or OFF for enabling or disabling picking.
namel - Structure to be affected.
NOTE
Il. There must also be a SET PICKing IDentifier node in the structure to be
pickable for picking to be reported.

2. See also SET PICKing LOCation and SET PICKing IDentifier.

DISPLAY TREE NODE CREATED

SET PICKING operation node (information to enable/disable hardware picking).

INPUTS FOR UPDATING NODE

name

<1>Enable (true)/disable (false) picking
of structure that follows

Boolean

SET PICKING

- 128 -

U

(ug\ PS 300 COMMAND SUMMARY SET PICKING

MODELING - Picking Attributes

(continued)

EXAMPLE
A:= SET PICKing OFF THEN B;

{A function network should be tied to A to SET PICKing ON when needed in
order to make structure B pickable.}

- 129 -

SET PICKING IDENTIFIER PS 300 COMMAND SUMMARY

MODELING - Picking Attributes

FORMAT

name := SET PICKing IDentifier = id_name [APPLied to namel];

DESCRIPTION

Specifies textual information that will be reported back if a pick occurs further
down in the structure namel. Nested pick identifier names are all reported,
separated by commas.

PARAMETERS

id_name - Text that will be reported if a pick occurs anywhere within the
structure namel. This must be a legal PS 300 name.

namel — Structure to which the pick ID applies.

NOTES

l. At least one pick ID must precede any pickable entity for picking to be
reported.

2. id_name cannot be updated by a function network.

DISPLAY TREE NODE CREATED

SET PICKing IDentifier operation node.

INPUTS FOR UPDATING NODE

None.

- 130 -

m

PS 300 COMMAND SUMMARY SET PICKING IDENTIFIER

MODELING - Picking Attributes

EXAMPLE
A:= SET PICKing OFF THEN B;
B:= SET PICKing IDentifier = structure C THEN C;
C:= VECtor list ... ;

{If a vector in C is picked, the ID name reported in the
structure C.}

- 131 -

(continued)

pick list will be

SET PICKING LOCATION PS 300 COMMAND SUMMARY .
MODELING - Picking Attributes

FORMAT
name := SET PICKing LOCation = X,y size x,size_y;

DESCRIPTION

Specifies a retangular picking area at (X,y) within the current viewport. The
rectangle is bounded by (x > size x) and (y > size_y).

If an appropriate picking network is set up and a pick-sensitive vector list
(vectors or dots) is drawn within the pick location, it will be reported as picked.

PARAMETERS

X,y — The center of the pick location.

size x,size y - Offsets from the X,y center specifying the bounds of the
picking rectangle (the rectangle bounds must be within >1

range).

DEFAULTS

A default pick location is set up in the configuration file that is loaded when the
system is booted. The X,y center is tied to the position of the data tablet stylus,
and size x,size_y are both set to .0l, (i.e., a box whose dimensions are .02 on

each side).

NOTES

I. In most applications, the picking location needs to be moveable, so the X,y
center is usually updated by a function network that specifies where the
center should be.

2. The data tablet's X,y value is usually the source for specifying the pick
location center.

- 132 -

PS 300 COMMAND SUMMARY SET PICKING LOCATION

MODELING - Picking Attributes

(continued)

DISPLAY TREE NODE CREATED

SET PICKing LOCation operation node (information for hardware picking).

INPUTS FOR UPDATING NODE

2D vector <1> X,y center

2D vector <2> size x, size_y boundary offsets

SET PICKING
LOCATION

1AS0626

ASSOCIATED FUNCTION

F:PICK

EXAMPLE
PICK LOCATION := SET PICKing LOCation = 0,0 .02,.02;

{This redefines the default picking area set up in the configuration file, making
the picking area twice as large as the default.}

- 133 -

SET PLOTTER PS 300 COMMAND SUMMARY
VIEWING - Appearance Attributes u

FORMAT

name := SET PLOTTER switch [APPLied to namel];

DESCRIPTION

Allows you to specify parts of a structure that are eligible for plotting.

PARAMETERS

switch - Two settings may be used with the SET PLOTTER command:
ON - enables a structure to be plotted.
OFF - prevents a structure from being plotted.

namel - The structure in question. ‘ ’

DEFAULT

SET PLOTTER ON;

DISPLAY TREE NODE CREATED

SET PLOTTER operation node.

INPUTS FOR UPDATING NODE

None.

- 134 -

PS 300 COMMAND SUMMARY SET RATE

STRUCTURE - Attributes

FORMAT

name := SET RATE phase on phase off [initial state][delay]
[APPLied to namel];

DESCRIPTION

Temporarily alters two global duration values (phase on and phase off, in
refresh frames) during the traversal of a specified branch of a display tree.
These temporary settings may be tested further down within the display tree,
possibly allowing conditioned reference to other structures (see IF PHASE
command). When traversal of the branch is complete, the durations are restored
to their original values.

PARAMETERS

phase on,phase off - Integers designating the durations of the on and off
phases, respectively, in refresh frames.

initial state — ON or OFF, indicating the initial phase.
delay - Integer designating the number of refresh frames in the initial state.

namel — Structure to follow the SET RATE command.

DEFAULT

The default phase is OFF and never changes unless a SET RATE node is
encountered.

NOTES
I. This structure attribute is useful for controlling blinking, the alternating
display of two structures, the alternating display of a single structure in two

different views (stereo), etc.

2. Note that there are only two rate values (phase _on, phase off) and that
this command only changes those values for the structure(s) that follow.

- 135 -

SET RATE PS 300 COMMAND SUMMARY
STRUCTURE - Attributes

(continued)

DISPLAY TREE NODE CREATED

SET RATE operation node.

INPUTS FOR UPDATING NODE

<1>Changes the phase_ on value
<2> Changes the phase_ off value

<3> Changes the initial_
state ON(T)/OFF(F)

<4> Changes the delay

SET RATE

1AS0627

EXAMPLE
A:= BEGIN Structure
rate:= SET RATE 10 100;

[F PHASE is ON THEN B;
END Structure;

B:= VECtor list ...

{If A is DISPlayed, then vector list B will be displayed for 10 frames and not
displayed for 100 frames repetitively.}

- 136 -

PS 300 COMMAND SUMMARY SET RATE EXTERNAL

STRUCTURE - Attributes

FORMAT

name := SET RATE EXTernal [APPLied to namel];

DESCRIPTION

Sets up a structure that can be used to alter the PHASE attribute via an external
source, such as a function network or a message from the host computer. This
PHASE attribute can be tested further down within the display tree, allowing
conditional references to other structures (see IF PHASE command). See also
the SET RATE command which alters the PHASE attribute based on refresh

cycles.

PARAMETERS

namel — Structure to follow the SET RATE EXTernal command.

DEFAULT

The default phase is ON when a SET RATE EXTernal node is encountered.

NOTES

I. The PHASE attribute is changed by sending a Boolean alue to input | of
SET RATE EXTernal node.

2. See also notes for SET RATE command.

DISPLAY TREE NODE CREATED

SET RATE EXTernal operation node.

- 137 -

SET RATE EXTERNAL PS 300 COMMAND SUMMARY

STRUCTURE - Attributes

(continued)

INPUTS FOR UPDATING NODE

name

Boolean <1>Changes the PHASE state

ON(T)/OFF(F)

SET RATE
EXTERNAL

1AS0628
EXAMPLE
A:= BEGIN Structure
rate:= SET RATE EXTernal;
IF PHASE is ON THEN Bj
END Structure;
B:= VECtor list ... ;

{A function network should be connected to A.rate to.set the PHASE ON and OFF
in order to conditionally display vector list B.}

- 138 -

PS 300 COMMAND SUMMARY SETUP CNESS

FUNCTION

FORMAT

SETUP CNESS queue_type <i>name;

DESCRIPTION

Allows you to specify whether or not an input queue to a function instance is to
be a constant gueue.

PARAMETERS

queue _type - TRUE sets the queue type to constant, FALSE sets it to active.

name - Most intrinsic function names, except those listed in the notes.

NOTES

I. This feature should only be used when a function is first instanced. Input
queues should not be changed between active and constant after the function

has started processing data.

2. The SETUP CNESS command can be used for all intrinsic functions except the

following.

F:LINEEDITOR, F:CLSECONDS, F:CLFRAMES, F:CLTICKS,
F:BOOLEAN CHOOSE, F:INPUTS CHOOSE, F:PASSTHRU,
F:XFORMDATA

3. Functions which specify their queue characteristics by their name, e.qg.,

F:ADDC, will continue to be instanced with their default active and constant
queues.

- 139 -

SOLID RENDERING PS 300 COMMAND SUMMARY

MODELING - Data Structuring (PS 340)

FORMAT

name := SOLID rendering APPLied to namel;

DESCRIPTION

Declares a POLYGon object to be a solid and marks the object so that rendering
operations can be performed on it. This command creates a rendering node. It is

used exclusively with the PS 340.

PARAMETERS

namel — Either a POLYGon node or an ancestor of one or more POL YGon nodes.

NOTES

l.

If non-POLYGon data nodes (such as VECtor list, CHARacters, LABELS,
POLYnomial, and BSPLINE) are included in namel, these data objects are
displayed along with the polygon objects prior to rendering but are omitted
from renderings. The rendering operations have no effect on these data

nodes.

IF and SET CONDITIONAL BIT, IF and SET LEVEL OF DETAIL, INCRement
LEVel of detail, DECrement LEVel of detail, IF PHASE, SET RATE, SET
RATE EXTernal, SET DEPTH CLipping, and BEGIN Structure...
END Structure may be placed between a rendering node and its data. A
rendering takes inta account any effects of these nodes at the time the
request is made; for example, if IF PHASE and SET RATE are being used to
blink an object and that object is."off" at the moment the request is made,
the object is excluded from the rendering.

The nodes in the above paragraph may also be placed above the rendering
node.

The transformations ROTate, TRANslate, SCALE, Matrix 2X2, Matrix 3X3,
Matrix 4X3, and LOOK may be placed between a rendering node and its data
node(s). However, these nodes should be used with caution, since, like the
operate nodes mentioned above, their effects will be incorporated into
renderings, and precision problems may result. (Since most vertices in an
object usually belong to more than one polygon, each vertex must be defined
with the same numerical value in each of its polygons; otherwise, precision
discrepancies may cause inaccurate renderings.) The transformation nodes
mentioned bove may also be placed above the rendering node.

- 140 -

v

W,

ﬁ

PS 300 COMMAND SUMMARY SOLID RENDERING

MODELING - Data Structuring (PS 340)

(continued)

NOTES (continued)

4.

The five nodes WINDOW, VIEWPORT, EYE, Field Of View, and MATRIX 4X4
should NOT, in general, be made descendants of a rendering node. Like
other transformations, these five are incorporated into the output data from
a rendering operation. However, this rendered data is generally displayed
within a framework that already includes global 4x4-matrix transformations
of its own. Including these transformations as part of the rendering, then,
usually has the net effect of applying an unwanted double-WINDOW
(double-VIEWPQORT, etc.) to the rendered object.

SOLID rendering, SURFACE rendering, and SECTioning plane may not be
descendants of a rendering node, especially if multiply-instanced rendering
nodes are involved. If this rule is not observed, bad renderings or a system
crash may result. The system does not check for this condition.

Other nodes, including character transformations and the SET nodes (SET
RATE, SET COLOR, SET PLOTTER) not mentioned above, are ignored by
rendering operations when placed beneath a rendering node. Such nodes
must therefore be placed above a rendering node if they are to have their
customary effects on renderings. Data nodes other than POLYGON are also

ignored.

Before an object can be rendered, its rendering node must be part of a
structure which is DISPLAYed. If the object itself is DISPLAYed but its
rendering node is not, no renderings can be created.

Any input to input<l> of a rendering node causes an output. Inputs sent to
input<2> will not cause an output to be sent. If output<l> has not been
connected, and an integer, string, or Boolean is sent to input<l>, a message
will appear on the screen upon successful completion of the rendering
operation. An error message will appear if the rendering was not completed.

DISPLAY TREE NODE CREATED

Rendering operation node.

141 -

SOLID RENDERING PS 300 COMMAND SUMMARY

MODELING - Data Structuring (PS 340)

(continued)

INPUTS FOR UPDATING NODE

name
Integer,String—mm—— <1> <1>| Boolean
or Boolean
Boolean <2>
SOLID RENDERING

1AS0629

NOTES ON INPUTS

Input <I>
0: Toggles between the current rendering and the original object.
l: Creates and displays a cross-section of an object defined by the sectioning
plane (solid only).
Creates and displays a sectioned rendering.
Creates and displays a rendering using backface removal (solid only).
Creates and displays a rendering using hidden-line removal.
Generates a wash-shaded image on the raster display.
Generates a flat-shaded image on the raster display.
Generates a smooth-shaded image on the raster display.

~ O\ U BN
es o se oe es s

String: Causes the current rendering to be saved under the name given in the
string.

False: Sets the original view. The original descendant structure of the
rendering operate node is displayed.

True: Sets the rendered view. The rendered view of the original descendent
structure of the rendering operate node.

Input <2>
True: Declares the object to be a solid.
False: Declares the object to be a surface.

QOutput <1»

True: Rendering is displayed
False: Rendering is not displayed

- 142 -

PS 300 COMMAND SUMMARY STANDARD FONT

) VIEWING - Appearance Attributes

FORMAT

name := STANdard FONT [APPLied to namel];

DESCRIPTION

Establishes the standard PS 300 95-character font as the working font.

PARAMETERS

namel - Structure to use the standard font.

DEFAULT

- If no other font is specified, the STANdard FONT is the default font.

NOTE

This command is necessary only if the STANdard FONT is to be used in a display
tree that uses another font higher in the same structure.

DISPLAY TREE NODE CREATED

Character font pointer node.

- 143 -

STANDARD FONT

PS 300 COMMAND SUMMARY

VIEWING - Appearance Attributes

(continued)

EXAMPLE

SLANT := BEGIN Font
(character definitions)
END Font;

A := BEGIN Structure
character FONT SLANT;
CHARacters 'HERE";
STANdard FONT;
CHARacters 0,-2 "HERE";

END Structure;

DISPlay A;

{'HERE' at 0,0 will be in the SLANT

STANDARD font.}

- 144 -

font 'HERE' at 0,2 will be in the

m

PS 300 COMMAND SUMMARY STORE

FUNCTION

FORMAT

STORE option IN namel;

DESCRIPTION

Sends a value to input <1> of Function Instance, node, or variable namel.

PARAMETERS

option - See SEND command.

namel - Function Instance name, node name, or variable name to receive value
on input <l>.

NOTE

This command is another way of doing a special case of the SEND command. [t
is synonymous with: SEND option TO <Is>namel;

EXAMPLE
TIMER:= F:CLCSECONDS;
STORE FIX(10) IN TIMER;

{This is equivalent to: SEND FIX(10) TO <1>TIMER;}

- 145 -

SURFACE_RENDERING PS 300 COMMAND SUMMARY

MODELING - Data Structuring (PS 340)

FORMAT

name := SURFACE rendering APPLied to namel;

DESCRIPTION

Declares a POLYGon object to be a surface and marks the object so that
rendering operations can be performed on it. This command creates a rendering
node. It is used exclusively with the PS 340.

PARAMETERS

namel — Either a POLYGon node or an ancestor of one or more POL Y Gon nodes.

NOTES

l.

If non-POLYGon data nodes (such as VECtor list, CHARacters, LABELS,
POLYnomial, and BSPLINE) are included in namel, these data objects are
displayed along with the polygon objects prior to rendering but are omitted
from renderings. The rendering operations have no effect on these data

nodes.

IF and SET CONDITIONAL BIT, IF and SET LEVEL OF DETAIL, INCRement
LEVel of detail, DECrement LEVel of detail, IF PHASE, SET RATE, SET
RATE EXTernal, SET DEPTH ClLipping, and BEGIN Structure...
END Structure may be placed between a rendering node and its data. A
rendering takes into account any effects of these nodes at the time the
request is made; for example, if IF PHASE and SET RATE are being used to
blink an object and that object is "off" at the moment the request is made,
the object is excluded from the rendering.

The nodes in the above paragraph may also be placed above the rendering
node.

The transformations ROTate, TRANslate, SCALE, Matrix 2X2, Matrix 3X3,
Matrix_4X3, and LOOK may be placed between a rendering node and its data
node(s). However, these nodes should be used with caution, since, like the
operate nodes mentioned above, their effects will be incorporated into
renderings, and precision problems may result. (Since most vertices in an
object usually belong to more than one polygon, each vertex must be defined
with the same numerical value in each of its polygons; otherwise, precision
discrepancies may cause inaccurate renderings.) The transformation nodes
mentioned bove may also be placed above the rendering node.

- 146 -

\/

W

~

PS 300 COMMAND SUMMARY SURFACE_RENDERING

MODELING - Data Structuring (PS 340)

(continued)

NOTES (continued)

4,

The five nodes WINDOW, VIEWPORT, EYE, Field Of View, and MATRIX 4X4
should NOT, in general, be made descendants of a rendering node. Like
other transformations, these five are incorporated into the output data from
a rendering operation. However, this rendered data is generally displayed
within a framework that already includes global 4x4-matrix transformations
of its own. Including these transformations as part of the rendering, then,
usually has the net effect of applying an unwanted double-WINDOW
(double-VIEWPORT, etc.) to the rendered object.

SOLID rendering, SURFACE rendering, and SECTioning plane may not be
descendants of a rendering node, especially if multiply-instanced rendering
nodes are involved. If this rule is not observed, bad renderings or a system
crash may result. The system does not check for this condition.

Other nodes, including character transformations and the SET nodes (SET
RATE, SET COLOR, SET PLOTTER) not mentioned above, are ignored by
rendering operations when placed beneath a rendering node. Such nodes
must therefore be placed above a rendering node if they are to have their
customary effects on renderings. Data nodes other than POLYGon are also
ignored.

Before an object can be rendered, its rendering node must be part of a
structure which is DISPLAYed. If the object itself is DISPLAYed but its
rendering node is not, no renderings can be created.

Any input to input<l> of a rendering node causes an output. Inputs sent to
input<2> will not cause an output to be sent. If output<l> has not been
connected, and an integer, string, or Boolean is sent to input<l>, a message
will appear on the screen upon successful completion of the rendering
operation. An error message will appear if the rendering was not completed.

DISPLAY TREE NODE CREATED

Rendering operation node.

- 147 -

SURFACE_RENDERING PS 300 COMMAND SUMMARY

MODELING - Data Structuring (PS 340)

(continue

d)

INPUTS FOR UPDATING NODE

name
Integer,String <1> <1> Boolean
or Boolean
Boolean 1 <2>
SURFACE RENDERING

1AS0630

NOTES ON INPUTS

Input <1>»

0:

l:

2
3
4:
5:
6.
7
S

tri

Toggles between the current rendering and the original object.

Creates and displays a cross-section of an object defined by the sectioning

plane (solid only).

Creates and displays a sectioned rendering.

Creates and displays a rendering using backface removal (solid only).

Creates and displays a rendering using hidden-line removal.

Generates a wash-shaded image on the raster display.

Generates a flat-shaded image on the raster display.

Generates a smooth-shaded image on the raster display.

ng: Causes the current rendering to be saved under the name given in the
string.

False: Sets the original view. The original descendant structure of the

rendering operate node is displayed.

True: Sets the rendered view. The rendered view of the original descendent

structure of the rendering operate node.

Input «2>
True: Declares the object to be a solid.
False: Declares the object to be a surface.

Output <1>
True: Rendering is displayed
False: Rendering is not displayed

- 148 -

m PS 300 COMMAND SUMMARY TEXT SIZE

MODELING - Character Transformations

FORMAT

name := TEXT SIZE x [APPLied to namel];

DESCRIPTION

Creates a 2X2 uniform scale matrix which defines character size.

PARAMETERS

X — The size of the characters.

namel - Structure containing the characters.

m NOTES

l. The text size (x) is a multiple or fraction of the default character size, i.e. .

2. A TEXT SIZE node in a display tree over-rides any previous character sizes
that may have been created using the CHARacter SCAle or CHARachter
SIZE commands. In other words, the TEXT SIZE scaling matrix is not
concatenated into any other 2X2 matrix.

3. A TEXT SIZE node will also override CHARacter ROTate and MATRIX 2X2
nodes.

DISPLAY TREE NODE CREATED

2x2 matrix operation node.

- 149 -

TEXT SIZE

MODELING - Character Transformations

PS 300 COMMAND SUMMARY

-

(continued)

INPUTS FOR UPDATING NODE

name

2x2 matrix <1>Changes matrix value

2x2 matrix

1AS0605

NOTE ON INPUT

Any 2x2 matrix is legal.

ASSOCIATED FUNCTIONS

F:MATRIX2, F:CSCALE

EXAMPLE

String := CHARacters 'This is only a test';
Scale := CHARacter SCAle 2 THEN String;
New Scale := CHARacter SCAle 3 THEN Scale;
Change Size := TEXT SIZE .5 THEN String;

{The Scale matrix creates characters twice the default size.

The New Scale

matrix is concatenated with the Scale matrix to create characters six times the
default size. The Change Size matrix, however is not concatenated, and so

returns the characters to one half of the default size.}

- 150 -

PS 300 COMMAND SUMMARY TRANSLATE

MODELING - Transformations

FORMAT

name := TRANslate by tx, ty[,tz] [APPLied to namel];

DESCRIPTION

Translates an object by applying a translation vector to it.

PARAMETERS

tx,ty,tz - Distances to translate in each coordinate direction, in world
coordinates.

namel - Structure to be translated.

DEFAULT

tz is 0 if not specified.

DISPLAY TREE NODE CREATED

3D translation vector operation node.

INPUTS FOR UPDATING NODE

3D vector

- 151 -

TRANSLATE

PS 300 COMMAND SUMMARY

MODELING - Transformations

(continued)

ASSOCIATED FUNCTIONS

F:XVECTOR, F:YVECTOR, F:ZVECTOR

EXAMPLE
A

B:

1

TRANslate by 5,7 THEN B;

VECtor list ... ;

- 152 -

e PS 300 COMMAND SUMMARY VARIABLE
‘ FUNCTION

FORMAT

VARiable namel[,name2 ... namen];

DESCRIPTION

Declares a storage place (or places) for any PS 300 Function data type. A value
can be stored in variable namel either by SENDing (or STORing) a value to input
<l> of namel, or by CONNECTIing a Function Instance to input <l> of namel. The
current value of variable namel can be obtained by using either the FETCH
function or the SEND VALUE(variable) option of the SEND command, where
variable in this case is namel.

PARAMETERS

m namel, namel... - Variable names.

EXAMPLE

VARiable CURRENT XV, X, VY, Z, SAVE;

- 153 -

VECTOR_LIST

PS 300 COMMAND SUMMARY

MODELING - Primitives

FORMAT

DESCRIPTIGON

name := VECtor list [options] [N=n] vectors;

Defines an object by specifying the points comprising the geometry of the object
and their connectivity (topology).

PARAMETERS

name — Any legal PS 300 name.

options - Can be none, any, or all of the following five groups (but only one

from each group, and in the order specified):

BLOCK normalized - All vectors will be normalized to a single
common exponent.

COLOR - This option is used when specifying color-blended vectors
(refer to SET COLOR BLENDing command) to indicate that
vector colors will be specified in lieu.of vector intensities. When
the COLOR option is used, the optional I=i clause used to specify
the intensity of a vector (refer to the vectors parameter below)
is replaced by the optional H=hue clause, where H is a number
from 0 to 720 specifying the individual vector hues. The default
is 0 (pure blue).

The 0-720 scale for the H=hue clause is simply the SET COLOR
scale of 0-360 repeated over the interval 360-720. On this scale,
0 represents pure blue, 120 pure red, 240 pure green, 360 pure
blue again, 480 pure red again, 600 pure green again, and 720 pure
blue. This "double color wheel" allows for color blending either
clockwise or counterclockwise around the color wheel.

~ 154 -

PS 300 COMMAND SUMMARY VECTOR_LIST

MODELING - Primitives

(continued)

PARAMETERS (continued)

3.

Connectivity:

A. CONNECTED lTines - The first vector is an undisplayed
position and the rest are endpoints of lines from the
previous vector.

B. SEParate lines - The vectors are paired as line endpoints.
C. DOTs - Each vector specifies a dot.

D. ITEMized - Each vector is individually specified as a move
to position (P) or a line endpoint (L).

Y and Z coordinate specifications (for constant or linearly
changing Y and/or Z values):

Y = y[DY=delta yl[Z = z[DZ=delta z1]

where y and Z are default constants or beginning values, and
delta y and delta z are increment values for subsequent vectors.

INTERNAL units - Vector values are in the internal PS 300 units
[LENGTH]. Specifying this option speeds the processing of the
vector list, but this also requires P/L information to be specified
for each vector, and it doesn't allow default y values or specified
intensities.

n - Estimated number of vectors.

vectors — The syntax for individual vectors will vary depending on the options

specified in the options area. For all options except ITEMized and
COLOR, the syntax is:

xcompl,ycompl,zcompll[I=il
where xcomp, ycomp and zcomp are real or integer coordinates and i

is a real number (0.0 < i < 1.0) specifying the intrinsic intensity for
that point (1.0 = full intensity).

- 155 -

VECTOR_LIST

PS 300 COMMAND SUMMARY

MODELING - Primitives

(continued)

PARAMETERS (continued)

DEFAULTS

For ITEMized vector lists the syntax is:
P xcompl,ycompl,zcomplIl[I=i]
or
L xcompl,ycompl,zcompll[I=i]
where P means a move-to-position and L means a line endpoint.

If default y and z values are specified in the options area, they
are not specified in the individual vectors.

For color-blended (COLOR) vector lists, the syntax is:
xcompl,ycompl,zcompll[H=hue]l
where xcomp, ycomp and zcomp are real or integer coordinates

and hue is a real number between 0 and 720 specifying the hue of
a vector.

If not specified, the options default to:

UV BSwW N -
o e e e e

Unnormalized

Connected

No default y or z values are assumed (see note 4)
Not expecting internal units

Not color-blended

Non color-blended vectors default to:

xcomp,ycompl,zcompl[I=il

If i is not specified, it defaults to I.

Color-blended vectors default to:

xcomp, ycomp[,zcompl[H=huel

If hue is not specified, it defaults to O (pure blue).

- 156 -

U

| PS 300 COMMAND SUMMARY VECTOR_LIST

MODELING - Primitives

NOTES

(continued)

If n is less than the actual number of vectors, insufficient allocation of
memory will result; if greater, more memory will be allocated than is used.
(The former is generally the more severe problem.)

All vectors in a list must have the same number of components.

If y is specified in the options area, z must be specified in the options area.
If no default is specified in the options area and no z components are
specified in the vectors area, the vector list is a 2D vector list. If a z

default is specified in the same case, the vector list is a 3D vector list.

The first vector must be a position (P) vector und will be foiced Lo be a
position vector if not.

Options must be specified in the order given.

If CONNECTED 1ines, SEParate lines, or DOTs are specified in the options
area but the vectors are entered using P/Ls, then the option specified takes

precedence.

Block normalized vector lists generally take longer to process into the
PS 300, but are processed faster for display once they are in the system.

DISPLAY TREE NODE CREATED

Vector list data node.

- 157 -

VECTOR LIST PS 300 COMMAND SUMMARY —
MODELING - Primitives ““’

(continued)

INPUTS FOR UPDATING NODE

name
Vector <last > Changes last vector
Integer <clear> Clears list

Integer——— < delete> Deletes from end

Vector < append > Appends to end
Boolean <i> True=Line; False=Position
Vector <i> Replaces i-th vector

VECTOR LIST

1AS0632

NOTES ON INPUTS

1. Vector list nodes are in one of two forms:

A. If DOTs were specified in the options area of the command, a DOT mode
vector list node is created. The Boolean input to <i> is ignored in this
case as well as the P/L portion of input vectors, and all vectors input
are considered new positions for dots.

B. All other vector list nodes created can be considered to be 2D or 3D
ITEMized with intensity specifications after each vector, and if a 3D
vector is input to a 2D vector list node, the last component modifies

the intensity.
2. If a 2D vector is sent to a 3D vector list, the z value defaults to O.

3. When you replace the i-th vector, the new vector is considered a line (L)
vector unless it was first changed to a position vector with
F:POSITION LINE.

- 158 -

PS 300 COMMAND SUMMARY VECTOR LIST

MODELING - Primitives

(continued)

EXAMPLES
A := VECtor list BLOCK SEParate INTERNAL N=4
PILI,IL-1I,lL-1,-1LI1,-1;
B := VECtor list n=5
1,1 -1,1 I=.5
-1,-11,-11=.75
L1
C := VECtor list ITEM N=5
P 1,1
L-1,1
L-1,-1
P1,-1
L 1,1

- 159 -

VIEWPORT PS 300 COMMAND SUMMARY

VIEWING - Viewport Specification

FORMAT
name := VIEWport HORizontal = hmin:hmax
VERTical = vmin:vmax
[INTENsity = imin:imax] [APPLied to namell];
DESCRIPTION

Specifies the area of the screen that the displayed data will occupy, and the
range of intensity of the lines.

PARAMETERS

hmin,hmax,vmin,vmax - The x and y boundaries of the new viewport. Values
must be within the -1 to | range relative to the current
viewport, implying that each viewport may be no larger
than its predecessor.

imin,imax - Specifies the minimum and maximum intensities for the viewport.
imin is the intensity of lines at the back clipping plane; imax at
the front clipping plane. Values must be within the 0 to | range
relative to the current viewport, implying that each viewport may
have no greater intensity range than its predecessor.

namel - Structure to which the viewport is applied.

DEFAULT
The initial viewport is the full PS 300 screen with full intensity range (0 to 1):

VIEWport HORizontal = -1, VERTical = -1,1 INTENsity = 0:1;

- 160 -

\

PS 300 COMMAND SUMMARY VIEWPORT

VIEWING - Viewport Specification

NOTES

(continued)

A new VIEWport is defined relative to the current viewport, whose
boundaries are always taken to be -1 and | horizontally and vertically for
the purposes of the command. (The "current" viewport is the one
established by the most recent VIEWport command.)

Viewports can be nested to any level.
If the viewport aspect ratio (vertical/horizontal) is different from the

window aspect ratio (y/x) or field-of-view aspect ratio (always 1) being
displayed in that viewport, the data displayed there will appear distorted.

DISPLAY TREE NODE CREATED

3x3 viewport matrix operation node.

INPUTS FOR UPDATING NODE

name

<1>Changes viewport boundaries (and intensity

2x2 matrix
range if 3x3 matrix is input)

3x3 matrix

3x3 VIEWPORT
matrix

ASSOCIATED FUNCTIGONS

F:MATRIX2, F:MATRIX3

- 161 -

VIEWPORT PS 300 COMMAND SUMMARY

VIEWING - Viewport Specification

(continued)

NOTES ON INPUTS

l. For 2x2 matrix input, row | contains the hmin,hmax values and row 2 the
vmin,vmax values.

2. For 3x3 matrix input, column 3 is ignored (there is no 3x2 matrix data type),
rows | and 2 are as for the 2x2 matrix above, and row 3 contains the

imin, imax values.

EXAMPLE
A:= VIEWport HORizontal = 0:1

VERTical = 0:1
INTENsity = .5:1 THEN B;

{If A is displayed, structure B will be displayed in the upper right quadrant of the
screen with the intensity ranging from .5 to 1 instead of 0 to 1.}

- 162 -

v

m PS 300 COMMAND SUMMARY WINDOW

VIEWING - Windowing Transformations

FORMAT
name := WINDOW X = xmin:xmax
Y = ymin:ymax
[FRONT boundary = zmin BACK boundary = zmax]
[APPLied to namell];
DESCRIPTION

Specifies a right rectangular prism enclosing a portion of the world coordinate
system to be displayed in parallel projection (compare Field Of View).

PARAMETERS

m xmin...zmax — The window's boundaries along each axis (see Note 3.)

namel - Structure to which the window is applied.

DEFAULT

WINDOW X=-1:1 Y=-1:1 FRONT=0 BACK=100000;

NOTES

l. The windowing commands (WINDOW, Field Of View, and EYE) should always
be the highest level element (the outermost transformation) in a display tree
since these transformations override any previous transformations in the
tree. Note that VIEWport is a mapping operation not a transformation of
the data and thus is not affected by a windowing command.

2. These commands should also be followed by a LOOK command to fully
specify the viewing transformation. (Refer to the LOOK command.)

- 163 -

WINDOW PS 300 COMMAND SUMMARY

VIEWING - Windowing Transformations

(continued)

NOTES (continued)

3. The front and back boundaries should be specified relative to the AT point's
position along the positive Z axis (0,0,D) (refer to the notes on the LOOK
command). So, FRONT should equal (D minus delta min) and BACK should
equal (D plus delta_max), where delta_min and delta max are the distances
before and after the AT point that are to be included in the window,

respectively. (See Note 3 of the LOOK command also.)

DISPLAY TREE NODE CREATED

4x4 matrix operation node.

INPUTS FOR UPDATING NODE

name

4x4 matrix <1>Changes matrix value

4x4 matrix
1AS0607
ASSOCIATED FUNCTIONS

F:WINDOW, F:FOV, F:MATRIX4

EXAMPLE

A:= BEGIN Structure
WINDOW X = -1:1Y = -1:1
FRONT boundary = 12
BACK boundary = 14;
LOOK AT 0,0,0 FROM 5,6.63,-10 THEN Sphere;
END Structure;

{If Sphere is defined with a radius of | about the origin, A would be a view of the
Sphere from 5,6.63,-10, fully depth-cued. Note that the FROM to AT distance

in the LOOK command is 13.}

- 164 -

v

\J

PS 300 COMMAND SUMMARY WITH PATTERN

MODELING - Primitives

FORMAT

name := WITH PATtern i [AROUND corners] [MATCH/NOMATCH]
LENgth r (VECtor list);

DESCRIPTION

Uses line patterns (dashes, center lines, etc.) in drawing a vector list. The line
pattern is created over the length r, so lines will have the pattern repeated as
many times as necessary to the end of the line.

PARAMETERS

name - Any legal PS 300 name. A reference name for the patterned vector list.

i - A series of up to 32 integers between 0 and 128 indicating the relative lengths
of alternating lines, spaces, lines, etc., in the pattern. The longer the series,
the more complex the pattern of lines and spaces, which repeats every r units.

AROUND corners - This indicates that patterning is to continue around each of the
vectors in the vector list until the end of the list or a position

vector is reached.
MATCH/NOMATCH - This indicates that the pattern length should be adjusted to make

the pattern exactly match the end points of the vector or series
of vectors being patterned. The default is MATCH.

r — The length over which i is defined and repeated.

VECtor 1list -The standard VECtor list command with all options available except
DOTs.

NOTES

l. The VECtor list parameter n should be the estimate for the total number of
vectors that will result from the command (not the number of vectors
specified in the vector list).

- 165 -

WITH PATTERN PS 300 COMMAND SUMMARY

MODELING - Primitives

(continued)

NOTES (continued)
2. Asr approaches 0, n approaches infinity.

3. If r is greater than a vector line segment, that segment will be drawn solid;
no pattern will be used.

DISPLAY TREE NODE CREATED

Vector list data node.

INPUTS FOR UPDATING NODES

See VECtor list command.

NOTES ON INPUTS

Remember that the vectors in the node are the patterned vectors, so it is
non-trivial to update a vector.

EXAMPLES

WITH PATTERN | | LENgth 1 VECtor list N=2 0,0 3,0;

WITH PATTERN | 1 LENgth 3 VECtor list N=2 0,0 3,0;

WITH PATTERN | | LENgth 4 VECtor list N=2 0,0 3,0;

WITH PATTERN | 1 | I LENgth 2 VECtor list N=2 0,0 3,0;
{same as the first example}

WITH PATTERN 1 .25 .125.25.125 .25 1 LENgth 3
VECtor list N=2 0,0 3,0;

- 166 -

v/

W,

PS 300 COMMAND SUMMARY XFORM

MODELING - Data Structuring

FORMAT

name := XFORM output data type APPLied to namel;

DESCRIPTION

Allows transformed data to be saved either as a vector list or a 4x4 matrix at
the point in the display tree where this XFORM data node is positioned.

PARAMETERS

output data type - Specifies what type of transformed data is to be saved.

MATRIX -A single 4x4 matrix representing the concatenation of all
transformation matrices currently in effect.

VECtor -A vector list specifying the transformed coordinates of the object
(namel).

namel - The object whose transformed data are to be saved.

NOTE

This node indicates to the F:XFORMDATA function the point in the display tree
where transformed data are requested.

DISPLAY TREE NODE CREATED

XFORM operate node.

ASSOCIATED FUNCTIONS

F:XFORMDATA, F:LIST, F:SYNC(2).

- 167 -

XFORM

PS 300 COMMAND SUMMARY

MODELING - Data Structuring ‘hﬂ’

(continued)

EXAMPLE

XFORM := BEGIN S {Set up switch mechanism}
X := SET CONDITIONAL BIT 1 ON;
IFF CONDITIONAL BIT 1 IS ON THEN VIEW; |
[F CONDITIONAL BIT 1 IS OFF THEN TRAN; |
END S;

TRAN := BEGIN S {To be:used while getting transformed data}
MATRIX 4x4 1,0,0,0,0,1,0,0,0,1,0,0,0,1;
INSTANCE OF 0OBJ;
END S

VIEW := BEGIN S {To be used while viewing and designing}
{Viewing commands: FIELD OF VIEW, WINDOW
EYE BACK, or 4x4 MATRIX}
INSTANCE OF 0BJ;
END S;

OBJ := BEGIN S {Setup transformed-data request} v
(Transformation commands:
ROTATE, TRANSLATE, and/or SCALE)

XFORM REQUEST := XFORM VECTOR;
INSTANCE OF DATA;
END S;

XFORMDATA := F:XFORMDATA; {Build transformed-data network}
SYNC?2 := F:SYNC(2);

LIST := F:LIST;

CONN SYNC2<1>:<1>XFORMDATA;

CONN XFORMDATA¢l>:<1>LIST;

CONN LIST<1l>:<1>HOST MESSAGE; {Send trans data to host}
CONN LIST«<¢25:<2>SYNC2; {"Task completed" flag}

SEND <any message> TO <2>SYNCZ2;

SEND 'OBJ.XFORM REQUEST' TO «2>XFORMDATA;

SEND 'XDATA' TO <3>XFORMDATA;

DISPLAY XFORM;

- 168 -

PS 300 COMMAND SUMMARY A-1

APPENDIX A. PS 300 COMMANDS BY CATEGORY

FUNCTION (Data Structuring)

(Function Instancing) name:=F:function_name
VARIABLE

FUNCTION (Immediate-action)

CONNECT
DISCONNECT
SEND

SEND number*mode
SEND VL

SETUP CNESS
STORE

GENERAL (Immediate-action)

Command Control and Status:
BEGIN...END
COMMAND STATUS
OPTIMIZE MEMORY
OPTIMIZE STRUCTURE...END OPTIMIZE
REBOOT
RESERVE WORKING STORAGE
'RESET

A-2 PS 300 COMMAND SUMMARY

GENERAL (Immediate-action) (continued)

Data Structuring and Display:
DELETE
DISPLAY
FORGET (structures)
FORGET (units)
REMOVE

Initialization:
INITIALIZE

HARDWARE ATTRIBUTES (Immediate-action)

ALLOCATE PLOTTER
DEALLOCATE PLOTTER

MODELING (Data Structuring)

Character Transformations:
CHARACTER SCALE
CHARACTER ROTATE
MATRIX 2x2
TEXT SIZE

Picking Attributes:
SET PICKING
SET PICKING IDENTIFIER
SET PICKING LOCATION

Primitives:
BEGIN FONT...END FONT
BSPLINE
CHARACTERS
COPY
ERASE PATTERN FROM
LABELS
PATTERN
PATTERN WITH

PS 300 COMMAND SUMMARY A-3

MODELING (Data Structuring) (continued)

Primitives: (continued)
POLYGON
POLYNGMIAL
RATIONAL BSPLINE
RATIONAL POLYNGOMIAL
VECTOR LIST
WITH PATTERN

Transformed Data Attributes:
XFORM

Transformations:
MATRIX 3x3
MATRIX 4x3
MATRIX 4x4
ROTATE
SCALE
TRANSLATE

RENDERING (Data Structuring)

ATTRIBUTES
ILLUMINATION

SOLID RENDERING
SURFACE RENDERING

STRUCTURE (Data Structuring)

Attributes:
DECREMENT LEVEL OF DETAIL
INCREMENT LEVEL OF DETAIL
SET CONDITIONAL BIT
SET LEVEL OF DETAIL
SET RATE
SET RATE EXTERNAL

A-4 PS 300 COMMAND SUMMARY

STRUCTURE (Data Structuring) (continued)

Conditional Referencing:
IF CONDITIONAL BIT
IF LEVEL OF DETAIL
IF PHASE

Explicit Referencing:
APPLIED TO/THEN
INSTANCE OF
NAME:=

Implicit Referencing:
BEGIN STRUCTURE...END STRUCTURE

STRUCTURE (Immediate-action)

Modifying:
FOLLOW WITH
INCLUDE
PREFIX WITH
REMOVE FOLLOWER
REMQOVE FROM
REMOVE PREFIX

VIEWING (Data Structuring)

Appearance Attributes:
CHARACTER FONT
SET CHARACTERS
SET COLOR
SET COLOR BLENDING
SET CONTRAST
SET CSM
SET DEPTH CLIPPING
SET DISPLAYS
SET PLOTTER
STANDARD FONT

PS 300 COMMAND SUMMARY A-5

VIEWING (Data Structuring) (continued)

Viewport Specification:
SET INTENSITY
VIEWPORT

Windowing Transformations:
EYE
FIELD OF VIEW
LOOK
WINDOW

PS 340-SPECIFIC COMMANDS

ATTRIBUTES
ILLUMINATION

POLYGON

RESERVE WORKING STORAGE
SECTIONING PLANE

SOLID RENDERING

SURFACE RENDERING

PS 300 COMMAND SUMMARY B-1

APPENDIX B. PS 300 COMMAND SYNTAX

ALLOCATE PLOTTER
ALLOCATE PLOTTER device number;

APPLIED TO/THEN
name := operation_command [APPLied to namel];
name := operation_command [THEN namel];

ATTRIBUTES
name := ATTRIBUTES attributes [AND attributes];

BEGIN...END
BEGIN

command;

command;

command;
END;

B-2 PS 300 COMMAND SUMMARY

BEGIN FONT...END_FONT
name := BEGIN Font
[C[0]: N=n {itemized 2D vectors};]

[Cli): N=n {itemized 2D vectors}:]

[C[127]: N=n {itemized 2D vectors};]
END Font;

BEGINS ... END_S
name := BEGIN Structure
[namel:=] nameable command;

(namen:=] nameable command;
END Structure;

BSPLINE
name := BSpline ORDER=k
[OPEN/CLOSED] [NONPERIodic/PERIodic] [N=n]
[VERTICES =] x1,y1,[z1] '
x2,y2,[22]

xn,yn,[z.n] '
[KNOTS = t1,t2,...,t]]
CHORDS = q;

CHARACTER FONT
name := character FONT font name [APPLied to namell];

CHARACTER ROTATE
name := CHARacter ROTate angle [APPLied to namell;

m PS 300 COMMAND SUMMARY B-3

CHARACTER SCALE
name := CHARacter SCAle s [APPLied to namel];
name := CHARacter SCAle sx,sy [APPLied to namel];

CHARACTERS
name := CHARacters [x,y[,Z]J[STEP dx,dy] 'string’;

COMMAND STATUS
COMmand STATus;

CONNECT
CONNect namel<i>:<j>name2;

COoPY
name := COPY namel [START=]1i [,][COUNT=] n;

DEALLOCATE PLOTTER
DEALLOCATE PLOTTTER device number;

DECREMENT LEVEL_OF_DETAIL
name:= DECrement LEVel of detail[APPLied to namel];

DELETE
DELete name[,namel ... namen];
DELete any_string*;

DISCONNECT
DISCONNect namel[<i>]:option;

m

B-4 PS 300 COMMAND SUMMARY

DISPLAY
DISPlay name;

ERASE PATTERN FROM
ERASE PATTERN FROM name;

EYE
name := EYE BACK z [optionl]loption2] from SCREEN area w WIDE
[FRONT boundary = zmin BACK boundary = zmax]
[APPLied to namell];

FIELD_OF_VIEW
name := Field Of View angle
[FRONT boundary = zmin BACK boundary = zmax]
[APPLied to namell;

FOLLOW WITH
FOLLOW name WITH option;

FORGET (structures)
FORget name;

FORGET (units)
FORget (unit_name);

(Function Instancing)
name := F:function_name;

IF CONDITIONAL_BIT
name := IF conditional BIT n is state [THEN namell];

(, PS 300 COMMAND SUMMARY B-5

IF LEVEL_OF DETAIL
name := IF LEVel of detail relationship n [THEN namell];

IF PHASE
name := IF PHASE is state THEN [namel];

ILLUMINATION
name := [LLUMINATION x,y,z [COLOR h [,s [,i]]] [AMBIENT al;

INCLUDE
INCLude namel IN name2;

INCREMENT LEVEL_OF_DETAIL
name:= INCRement LEVel of detaillAPPLied to namel];

INITIALIZE
INITialize [option];

INSTANCE OF
name := INSTance of namel[,name2 ... namen];
LABELS

name := LABELS x,y,[,z] 'string'(xi,yi[zi] "string'...];

LOOK
name := LOOK AT ax,ay,az FROM fx,fy,fz
[UP ux,uy,uz] [APPLied to namell;

) name := LOOK FROM fx,fy,fz AT ax,ay,az
[UP ux,uy,uz] [APPLied to namell;

B-6 PS 300 COMMAND SUMMARY

MATRIX_2x2

name := Matrix_2x2

MATRIX_3x3

name := Matrix_3x3

MATRIX_4x3

name := Matrix_4x3

MATRIX_4x4

name := Matrix_4x4

ml1,mi2
m21,m22 [APPLied to namel];

mlil,mi2,ml3
m21,m22,m23
m31,m32,m33 [APPLied to namell;

mi1,mi2,ml3
m21,m22,m23
m31,m32,m33
m41,m42 m43 [APPLied to namell];

mll,m2,mi3,ml4
m21,m22,m23,m24
m31,m32,m33,m34
m41,m42,m43 m4d [APPLied to namel];

(Naming of Display Data Structures)
name:= display data structure_command;

OPTIMIZE MEMORY

OPTIMIZE MEMORY;

OPTIMIZE STRUCTURE; END OPTIMIZE;
OPTIMIZE STRUCTURE;
command;
command;

END OPTIMIZE;

PS 300 COMMAND SUMMARY

PATTERN
name := PATtern i [AROUND corners][MATCH/NOMATCH] LENgth r;

PATTERN WITH
PATTERN namel WITH pattern;

POLYGON
name := [WITH ATTRIBUTES namel] [WITH OUTLINE h] [COPLANAR]

POLYGon vertex ... vertex;

POLYNOMIAL
name:= POLYnomial[ORDER=i]
[COEFFICIENTS=] xi, yi, Zi
xi-1, yi-1, zi-1

X0, y0, 20
CHORDS= q;

PREFIX WITH
PREFIX name WITH operation_command;

RATIONAL BSPLINE
name := RATIonal BSpline ORDER=k
[OPEN/CLOSED] [NONPERIodic/PERIodic] [N=n]
[VERTICES =] x1,y1,[z1],w
x2,y2,0221,w2

xﬁ,yn,tzn],@n
[KNOTS = t1,t2,...,t]]
CHORDS = q;

B-8 PS 300 COMMAND SUMMARY

RATIONAL POLYNOMIAL
name:= RATional POLYnomial[ORDER=1]
[COEFFICIENTS=] «xi, yi, zi,

xi-1, yi-1, zi-1, wi-1

xo; yO,. zO,.

CHORDS= q;

REBOOT
name := REBOQOT password;

REMOVE
REMoaove name;

REMOVE FOLLOWER
REMove FOLLOWER of name;

REMOVE FROM
REMove namel FROM name2;

REMOVE PREFIX
REMove PREfix of name;

RESERVE WORKING STORAGE
RESERVE WORKING STORAGE size;

ROTATE

name := ROTate in [axis] angle [APPLied to namel];

wi

w0

PS 300 COMMAND SUMMARY

B-9

SCALE
name := SCALE by s [APPLied to namell];
name := SCALE by sx,sy[,sz] [APPLied to namel];

SEND
SEND option TO <n>namel;

SEND number*mode
SEND number*mode TO <n>namel;

SEND VL
SEND VL (namel) TO <i>name 2;

SET CHARACTERS
name := SET CHARacters orientation [APPLied to namel];

SET COLOR
name := SET COLOR hue,sat [APPLied to namell;

SET COLOR BLENDING
name := SET COLOR BLENDing sat [APPLied to namell];

SET CONDITIONAL BIT
name := SET conditional BIT n switch [APPLied to namell];

SET CONTRAST
name := SET CONTrast to ¢ [APPLied to namell;

B-10 PS 300 COMMAND SUMMARY

SET CSM
name := SET CSM switch [APPLied to namel];

SET DEPTH_CLIPPING
name := SET DEPTH CLipping switch [APPLied to namell];

SET DISPLAYS
name := SET DISPlays ALL switch [APPLied to namell;
name := SET DISPlay n[,m...] switch [APPLied to namel];

SET INTENSITY
name := SET INTENSsity switch imin:imax [APPLied to namell;

SET LEVEL_OF DETAIL
name := SET LEVel of detail to n [APPLied to namell;

SET PICKING
name := SET PICKing switch [APPLied to namell];

SET PICKING IDENTIFIER
name := SET PICKing IDentifier = id_name
[APPLied to namell;

SET PICKING LOCATION
name := SET PICKing LOCation = x,y size x,size_y;

SET PLOTTER
name := SET PLOTTER switch [APPLied to namell;

PS 300 COMMAND SUMMARY

B-11

SET RATE
name := SET RATE phase_on phase off [initial state][delay]
[APPLied to namell];

SET RATE EXTERNAL
name:= SET RATE EXTernal [APPLied to namel];

SETUP CNESS
SETUP CNESS queue_type <i>name;

SOLID_RENDERING
name := SOLID rendering APPLied to namel;

STANDARD FONT
name := STANdard FONT [APPLied to namel];

STORE
STORE option IN namel;

SURFACE_RENDERING
name := SURFACE rendering APPLied to namel;

TEXT SIZE
name := TEXT SIZE x [APPLIED to namell;

TRANSLATE
name := TRANslate by tx,ty[,tz] [APPLied to namel];

B-12 PS 300 COMMAND SUMMARY

VARIABLE
VARiable namel[,name2 ... namenl;

VECTOR_LIST
name := VECtor list [options] [N=n] vectors;

VIEWPORT
name := VIEWport HORizontal = hmin:hmax
VERTical = vmin:vmax
[INTENsity = imin:imax] [APPLied to namell;

WINDOW
name := WINDOW X = xmin:xmax Y = ymin:ymax
[FRONT boundary = zmin BACK boundary = zmax]
[APPLied to namel];

WITH PATTERN
name := WITH PATtern i [AROUND corners][MATCH/NOMATCH]
LENgth r VECtor list;

XFORM
name := XFORM output_data type [APPLied to namell;

IRESET
'RESET;

PS 300 COMMAND SUMMARY C-1

APPENDIX C. PS 300 ASCII COMMANDS AND CORRESPONDING GSRs

The following list from left to right gives an alphabetical listing of the PS 300 ASCII
Command Name, the Pascal Application Procedure Name, and the FORTRAN
Subroutine Call.

ASCII COMMAND NAME Pascal PROCEDURE FORTRAN SUBROUTINE
ALLOCATE PLOTTER PALLPLOT PALLPL
ATTRIBUTES PATTRIB PATTR
PATTRIB2 PATTR2
BEGIN PBEGIN PBEG
BEGIN STRUCTURE PBEGINS PBEGS
BSPLINE PBSPL PBSPL
CHARACTER FONT PFONT PFONT
CHARACTER ROTATE PCHARROT PCHROT
CHARACTERS [STEP] PCHARS PCHS
CHARACTER SCALE PCHARSCA PSCHSC
CONNECT PCONNECT PCONN
COPY PCOPYVEC PCOPYYV

DEALLOCATE PLOTTER PDALLPLT PDALLP

C-2 PS 300 COMMAND SUMMARY

ASCII COMMAND NAME

Pascal PROCEDURE

FORTRAN SUBROUTINE

DECREMENT LEVEL OF DETAIL

DELETE
DELETE NAME*
DISCONNECT ALL
DISCONNECT
DISCONNECT OUTPUT
DISPLAY

END

END STRUCTURE
END OPTIMIZE
ERASE PATTERN

EVE

F:FUNCTION NAME
FOLLOW WITH
FORGET
FIELD OF VIEW

IF CONDITIONAL BIT
IF LEVEL OF DETAIL
IF PHASE
ILLUMINATION

INCLUDE

INCREMENT LEVEL OF DETAIL

INITIALIZE

PDECLOD
PDELETE
PDELWILD
PDISCALL
PDISC
PDISCOUT
PDISPLAY
PEND
PENDS
PENDOPT
PERAPATT
PEYEBACK
PFNINST
PFOLL
PFORGET
PFOV
PIFBIT
PIFLEVEL
PIFPHASE
PILLUMIN
PINCL
PINCLOD

PINIT

PDELOD
PDELET
PDELW
PDIALL
PDI
PDIOUT
PDISP
PEND
PENDS
PENDOP
PERAPA
PEYEBK
PEN
PFOLL
PFORG
PFOV
PIFBIT
PIFLEV
PIFPHA
PILLUM
PINCL
PINLOD

PINIT

PS 300 COMMAND SUMMARY (C-3

ASCII COMMAND NAME

INITIALIZE CONNECTIONS
INITIALIZE DISPLAYS
INITIALIZE NAMES
INSTANCE OF

LABELS

LOOK AT FROM
MATRIX 2X2

MATRIX 3X3

MATRIX 4X3

MATRIX 4X4

NAME:= NIL

NAME:= PATTERN
OPTIMIZE STRUCTURE
PATTERN WITH
POLYGON (ATTRIBUTES)
POLYGON (BEGIN)
POLYGON (END)
POLYGON (LIST)
POLYGON (OUTLINE)
POL YNOMIAL

PREFIX NAME WITH

RATIONAL BSPLINE

Pascal PROCEDURE

FORTRAN SUBROUTINE

PINITC
PINITD
PINITN
PINST
PLABBEGN
PLABADD
PLABEND
PLOOKAT
PMAT2X2
PMAT3X3
PMATA4X3
PMATA4X4
PNAMENIL
PDEFPATT
POPTSTRU
PPATWITH
PPLYGATR
PPLYGBEG
PPLYGEND
PPLYGLIS
PPLYGOTL
PPOLY

PPREF

PRBSPL

PINITC
PINITD
PINITN
PINST
PLABEG
PLAADD
PLAEND
PLOOKA
PMATZ2
PMAT33
PMATA43
PMATA44
PNIL
PDEFPA
POPT
PPATWI
PPLYGA
PPLYBG
PPLYGE
PPLYGL
PPLYGO
PPOLY
PPREF

PRBSPL

C-4 PS 300 COMMAND SUMMARY

ASCII COMMAND NAME

REMOVE NAME

REMOVE FOLLOWER OF NAME
REMOVE FROM

REMOVE PREFIX
ROTATE IN X

ROTATE INY
ROTATE IN Z

RATIONAL POLYNOMIAL
RESERVE WORKING STORAGE
SCALE

SECTIONING PLANE
SEND BOOLEAN TO
SEND FIX TO

SEND 2x2 MATRIX TO
SEND 3x3 MATRIX TO
SEND 4x4 MATRIX TO
SEND NUMBER*MODE TO
SEND REAL NUMBER TO
SEND STRING TO

SEND 2D VECTOR TO
SEND 3D VECTOR TO
SEND 4D VECTOR TO

SEND VALUE TO

Pascal PROCEDURE

FORTRAN SUBROUTINE

PREM
PREMFOLL
PREMFROM
PREMPREF
PROTX
PROTY
PROTZ
PRPOLY
PRSVSTOR
PSCALEBY
PSECPLAN
PSNDBOOL
PSNDFIX
PSNDM2D
PSNDM3D
PSNDM4D
PSNDPL
PSNDREAL
PSNDSTR
PSNDV2D
PSNDV3D
PSNDV4D

PSNDVAL

PREM
PREMFO
PREMFR
PREMPR
PROTX
PROTY
PROTZ
PRPOLY
PRSVST
PSCALE
PSECPL
PSNBOO
PSNFIX
PSNM2D
PSNM3D
PSNM4D
PSNPL
PSNREA
PSNST
PSNV2D
PSNV3D
PSNV4D

PSNVAL

PS 300 COMMAND SUMMARY (C-5

ASCII COMMAND NAME

SEND VECTOR LIST

SET CONDITIONAL BIT

SET CHARACTERS SCREEN ORIENTED

SET CHARACTERS
SCREEN ORIENTED/FIXED

SET CHARACTERS WORLD ORIENTED

SET COLOR

SET COLOR BLENDING
SET CONTRAST

SET CSM

SET DISPLAYS ALL

SET DEPTH CLIPPING
SET DISPLAY

SET INTENSITY

SET LEVEL OF DETAIL
SET PICKING INDENTIFIER
SET PICKING LOCATION
SET PICKING OFF

SET RATE

SET RATE EXTERNAL
SETUP CNESS

SOLID RENDERING

SURFACE RENDERING

Pascal PROCEDURE

FORTRAN SUBROUTINE

PSNDVL
PSETBIT
PSETCHRS

PSETCHRF

PSETCHRW
PSETCOLR
PSETBLND
PSETCONT
PSETCSM
PSETDALL
PSETDCL
PSETDONF
PSETINT
PSETLOD
PSETPID
PSETPLOC
PSETPONF
PSETR
PSETREXT
FSETCNES
PSOLREND

PSURREND

PSNVL
PSEBIT
PSECHS

PSECHF

PSECHW
PSECOL
PSETCB
PSECON
PSECSM
PSEDAL
PSEDCL
PSEDOF
PSEINT
PSELQOD
PSEPID
PSEPLO
PSEPOF
PSER
PSEREX
PSECNS
PSOLRE

PSURRE

C-6 PS 300 COMMAND SUMMARY

ASCII COMMAND NAME Pascal PROCEDURE FORTRAN SUBROUTINE
STANDARD FONT PSTDFONT PSTDFO
TRANSLATE PTRANSBY PTRANS
VARIABLE NAME PVAR PVAR
VECTOR LIST PVECBEGN PVCBEG
PVECLIST PVCLIS
PVECEND PVCEND
VIEWPORT PVIEWP PVIEWP
WINDOW PWINDOW PWINDO
XFORM MATRIX PXFMATRX PXFMAT
XFORM VECTOR PXFVECTR PXFVEC

ASCIT Character Code Set

Decimal ASCII Decimal ASCII Decimal ASCII
Value Character Value Character Value Character

0 NUL 44 . 88 X
1 SOH 45 - 89 Y
2 STX 46 . 90 YA
3 ETX 47 / 91 [
4 EOT 48 0 92 \
5 ENQ 49 1 93]
6 ACK 50 2 94 tor ~
7 BEL 51 3 95 € or _
8 BS 52 4 96 s
9 HT 53 5 97 a
10 LF 54 6 98 b
11 VT 55 7 99 C
12 FF 56 8 100 d
13 CR 57 9 101 e
14 SO 58 : 102 f
15 SI 59 ; 103 g
16 DLE 60 < 104 h
17 DC1 61 = 105 i
18 DC2 62 > 106 j
19 DC3 63 ? 107 k
20 DCa 64 @ 108 1
21 NAK 65 A 109 m
22 SYN 66 B 110 n
23 ETB 67 C 111 o
24 CAN 68 D 112 p
25 EM 69 E 113 q
26 SuUB 70 F 114 r
27 ESC or ALT 71 G 115 S
28 FS 72 H 116 t
29 GS 73 I 117 u
30 RS 74 J 118 Vv
31 VS 75 K 119 w
32 SP 76 L 120 X
33 ! 77 M 121 y
34 " 78 N 122 z
35 # 79 0 123 {
36 $ 80 P 124 |
37 % 81 Q 125 }
38 & 82 R 126 - Tilde
39 ! 83 S 127 Rubout or DEL
40 (84 T
41) 85 U
42 * 86 '}
43 + 87 W

P3300 FUNCTION SUMMARY

The contents of this document are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans & Sutherland.

Many concepts in this document are proprietary to Evans &
Sutherland, and are protected as trade secrets or covered by
U.S. and foreign patents or patents pending.

Evans & Sutherland assumes no responsibility for errors or
inaccuracies in this document. It contains the most complete
and accurate information available at the time of
publication, and is subject to change without notice.

PS1, PS2, MPS, and PS 300 are trademarks of the Evans &
Sutherland Computer Corporation.

Copyright © 1984
EVANS & SUTHERLAND COMPUTER CORPORATION
P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84121

PREFACE

This manual is a PS 300 Function reference guide for users who are already familiar
with the basic operation of the PS 300.

There are three types of PS 300 functions: Intrinsic Functions, Initial Function
Instances, and User-Written Functions. This document is a reference for the first two
types only. User-Written Functions are documented in Volume 4 of the PS 300
Documentation Set.

Also included in this reference are the Initial Structures CURSOR and
PICK LOCATION. These establish the shape of the cursor as an 'X' and the
pick-sensitive location as the center of the cursor.

PS 300 FUNCTION SUMMARY

CONTENTS

Intrinsic Functions
F:ACCUMULATE
F:ADD
F:ADDC
F:AND
F:ANDC
F:ATSCALE
F:AVERAGE
F:BOOLEAN CHOOSE
F:BROUTE
F:BROUTEC
F:CBROUTE
F:CCONCATENATE
F:CDIV

F:CEILING

F:CGE

10

11

12

14

16

17

18

19

20

21

22

PS 300 FUNCTION SUMMARY

Intrinsic Functions (continued)

F:CGT 23
F:CHARCONVERT 24
F:CHARMASK 26
F:CLCSECONDS 27
F:CLE 29
F:CLFRAMES 30
F:CLT 32
F:CLTICKS 33
F:CMUL 35
F:COLOR 36
F:COMP_STRING 37
F:CONCATENATE 38
F:CONCATENATEC 39
F:CONSTANT 40
F:CROTATE 41
F:CROUTE(n) 42
F:CSCALE 44
F:CSUB 45
F:CVEC 46

F:DELTA 47

PS 300 FUNCTION SUMMARY

F:DIV

F:DIVC
F:DSCALE
F:DXROTATE
F:DYROTATE
F:DZROTATE
F:EDGE DETECT
F:EQ

F:EQC

F:FETCH

F:FIND STRING
F:FIX

F:FLOAT

F:FOV
F:GATHER STRING
F:GE

F:GEC

F:GT

F:GTC

F:INPUTS CHOQOSE(n)

Intrinsic Functions (continued)

48

49

50

52

53

54

55

56

57

58

59

60

61

62

64

65

66

67

68

69

PS 300 FUNCTION SUMMARY

F:LABEL

F:LBL EXTRACT
F:LE

F:LEC

F:LENGTH STRING
F:LIMIT
F:LINEEDITOR
F:LOOKAT
F:LOOKFROM
F:LT

F:LTC

F:MATRIX2
F:MATRIX3
F:MATRIX4
F:MCONCATENATE(n)
F:M0OD

F:MODC

F:MUL

F:MULC

F:NE

Intrinsic Functions (continued)

70

71

72

73

74

75

77

80

81

82

83

84

85

86

87

88

89

90

91

92

m PS 300 FUNCTION SUMMARY

Intrinsic Functions (continued)

F:NEC 93
F:NOP 94
F:NOT 95
F:0R 96
F:ORC 97
F:PARTS 98
F:PASSTHRU(n) 99
F:PICKINFO 100
‘) F:POSITION LINE 103
F:PRINT 104
F:PUT STRING 108
F:RANGE SELECT 109
F:ROUND 11
F:ROUTE(n) 112
F:ROUTEC(n) 113
F:SCALE 114
F:SEND 115
F:SINCOS 16
F:SPLIT L7

F:SQROOT 118

PS 300 FUNCTION SUMMARY

Intrinsic Functions (continued)

F:STRING TO NUM 119
F:SUB 120
F:SUBC 121
F:SYNC(n) 122
F:TAKE STRING 123
F:TIMEOUT 124
F:TRANS STRING 126
F:VEC 127
F:VEC EXTRACT 128
F:VECC 129
F:WINDOW 130
F:XFORMDATA 132
F:XOR 134
F:XORC 135
F:XROTATE 136
F:XVECTOR 137
F:YROTATE 138
F:YVECTOR 139
F:ZROTATE 140

F:ZVECTOR 141

PS 300 FUNCTION SUMMARY

Initial Function Instances
BUTTONSIN
CLEAR LABELS
DIALS
DLABEL! ... DLABELS
DSET! ... DSETS8
ERROR
FFPLOT
FKEYS
FLABELO
FLABELI! ... FLABEL12
HCPIP
HOSTOUT
INFORMATION
KEYBOARD
MEMORY _ALERT
MEMORY MONITOR
MESSAGE DISPLAY
OFFBUTTONLIGHTS
PICK

SCREENSAVE

143

144

145

147

149

151

152

153

154

156

158

160

161

162

163

165

167

168

169

172

PS 300 FUNCTION SUMMARY

Initial Function Instances (continued)
SHADINGENVIRONMENT
SPECKEYS
TABLETIN
TABLETOUT
TECOLOR
TSCSM

WARNING

Initial Structures
CURSOR

PICK LOCATION

APPENDIX A. FUNCTIONS BY CATEGORY

APPENDIX B. INPUTS TO NODES

ASCII CHARACTER CODE SET

173
176
177
179
182
183

184

185

186

PS 300 FUNCTION SUMMARY -3

Table 1. Key to Abbreviations for Valid Data Types

KEY TO VALID DATA TYPES

Any Any message
B Boolean value
C Constant value
CH Character
I Integer
Label Data input to LABELS node
M 2x2, 3x3, 4x3, 4x4 matrix
PL Pick list
R Real number
S Any string
Special| Special data type
v Any vector

2D 2D vector
3D 3D vector
4D 4D vector
2x2 2x2 matrix
3x3 3x3 matrix
4x3 4x3 matrix
4x4 4x4 matrix

Conjunctive/Disjunctive Sets

Inputs and outputs to a function are either disjunctive or conjunctive. The
following notation is used in the Function Summary to indicate disjunctive or
conjunctive inputs and outputs.

KEY TO CONJUNCTIVE/DISJUNCTIVE SYMBOLS

CcC conjunctive inputs, conjunctive outputs
CD conjunctive inputs, disjunctive outputs
DC disjunctive inputs, conjunctive outputs

DD disjunctive inputs, disjunctive outputs

PS 300 FUNCTION SUMMARY - 1

Intrinsic Functions

Initial

Intrinsic Functions are the master set of function "templates" which are
available for the user to instance and use in building Function Networks. These
functions are of the form

F:Identifier

where "identifier" is the name of the function, e.g. ROUTE, MUL,
CONCATENATE. Using the NAME := F:Identifier; command, the user can
create uniquely named instances of Intrinsic Functions. For example,

Adder := F:ADD;

creates a function called Adder which is a uniquely named instance of the
F:ADD Intrinsic Function. Input queues and outputs of user-instanced functions
are connected to create Function Networks for handling data input from the
Interactive Devices, from the host computer, or from other functions. For
example,

CONNECT Adder<I>:<I>Multiply;

connects output 1 of the function instance Adder to input queue | of the
function instance Multiply.

Function Instances

Whenever the PS 300 is initialized, certain Initial Function Instances are loaded
into memory with the Graphics Firmware. Initial Function Instances are of the
form:

Function_instance_name

Unlike Intrinsic Functions, they are not preceded by "F:", e.g. TABLETIN,
OFFBUTTONLIGHTS. They provide access to host communication and to
PS 300 interactive devices, as well as allowing for the display of messages on
keyboard and control dial LEDs. Initial Function Instances are not used as
templates to create uniquely-named function instances. Instead, they are used
in Function Networks by their own system-assigned name. They cannot be
renamed by the user. For example,

SEND 'EXIT ’ TO <I>FLABEL12;

sends the string EXIT to the LED for Function Key 12.

2 - PS 300 FUNCTION SUMMARY

Reference Documentation

Each Intrinsic Function and Initial Function Instance in the PS 300 firmware is
concisely documented in this Function Summary. Intrinsic Functions are listed
first, then Initial Function Instances. Functions are ordered alphabetically.
The function name appears in the upper right corner of each page. The type of
function (e.g. Intrinsic) and its category (e.g. Data Conversion) are shown in the
upper left corner. Appendix A lists functions by category. Appendix B lists
display tree nodes that can accept input data from a function, the commands
that create these nodes, and the data types which the nodes accept. Since some
functions use the ASCII decimal equivalent of characters, an ASCII chart with
decimal codes is included after the appendices.

The following information, where relevant, is given for each function:

Name

Type

Category

Purpose

Description of inputs and outputs
Defaults

Notes

Associated functions

Examples

Function Representation

Functions are represented as 'black boxes' with numbered input queues and
outputs enclosed in angle brackets. Valid data types are shown in abbreviated
form at each input and output. A "C" in the function name usually indicates
that one or more input queues contain a constant value. A constant input is
shown by the letter "C" following the input number in angle brackets.

The following is a key to the abbreviations used.

™~ Intrinsic Function
(‘ Arithmetic and Logical F:ACCUMULATE

F:ACCUMULATE
R, 2D, 3D, 4D, B ———->|<1> <A [-——-- > R, 2D, 3D, 4D
R, 2D, 3D, 4D -—-———-- >|1¢2> C
R e - >[¢3> C
R, 2D, 3D, 4D —————-- >|<4> C
R, 2D, 3D, 4D ——————- >1<5> C
R, 2D, 3D, 4D ——————- >[<6> C
DD

(a\ PURPQOSE

Accumulates a series of input values and sends the sum at specified intervals.

DESCRIPTION

INPUT
<l> - value to be accumulated
<2> - initial value (constant)
<3> - output interval (constant)
<4> — scale factor (constant)
<5> — upper limit on sum (constant)
<6> — lower limit on sum (constant)

OUTPUT
<l> —sum

Intrinsic Function

F:ACCUMULATE Arithmetic and Logical

(continued)

NOTES

1.

The input values may be scaled, and the output values may be limited to a
specified range as in F:LIMIT. Note that this combination of operations is
especially useful for handling input from the control dials.

An initial value must be sent to input <2Z>; subsequent values are sent to
input <1>. All values at input <l> are scaled by input <4> before adding.

The sum is output whenever it differs from the previous F:ACCUMULATE
output (or zero if there was no previous output) by more than the value at
input <3>. (If vectors are being accumulated, this difference and the value
at input <3»> are taken to be vector lengths, and, therefore, real numbers.
Vector lengths are considered to be n(x,y) = |x| + |y|, not n(x,y) = x% + y2.)

Inputs <5> and <6> specify limits (upper and lower, respectively) to be
applied to the accumulated sum. A sum falling outside the range is
adjusted to the nearer limit, and any further accumulations operate on the
limited sum.

Inputs <1> and <2> must be of the same data type. To change the data type
of the sum to be accumulated, send a new initial value of the appropriate
type to <2>. Note that the data type of the accumulated sum may not be
changed simply by starting to send different data types to <l>——these will
only generate an "Incompatible inputs" error message.

If input <2> is real, then inputs <4>, <5>, and <6> must be real. On the
other hand, if input <2> is a vector, then each of inputs <4>, <55, and <6>
may be either a vector of the same dimension as <2> or a real number.

If vectors are being accumulated, but the scale factor at <4»> is real, then
each coordinate of each vector accumulated at <!> is multiplied by the
real scale factor before the vector is added in. If the scale factor at <4»> is
a vector, each of its coordinates is multiplied by the corresponding
coordinate of the accumulated vector.

If vectors are being accumulated, but both the upper sum limit at <5> and
the lower sum limit at <6> are real, then these real numbers are the limits
for each coordinate of the sum. If <5> and <6> are vectors, each of its
coordinates is applied as a limit to the corresponding coordinate of the sum.

Intrinsic Function
Arithmetic and Logical F:ACCUMULATE

(continued)

NOTES (continued)

9. If input <l> is Boolean (regardless of value), the current sum is
immediately sent to output <l>.

10. Vector types may not be mixed in an F:ACCUMULATE operation; all vectors
must be either 2D, 3D, or 4D.

EXAMPLE

Refer to Application Note 10 in the PS 300 Application Notes.

Intrinsic Function

F:ADD Arithmetic and Logical \/
F :ADD
I, R, 2D, 3D, 4D —-—->[<1> 1>|---> I, R, 2D, 3D, 4D
2x2, 3x3, 4x4 2x2, 3x3, 4x4

I, R, 2D, 3D, 4D ———->|<2>
2x2, 3x3, 4x4

ccC

PURPQOSE

Accepts two inputs and produces an output that is the sum of those inputs.

DESCRIPTION A ’

INPUT
<l> - input value
<2> - input value

OQUTPUT
¢<l> —sum

NOTES
The two input values must be of the same data type (except a combination of

real and integer is allowed); the output data type depends on the input data
type(s). If an integer is added to a real number the output is a real number.

ASSOCIATED FUNCTIONS

F:ADDC

Intrinsic Function

(F!\ Arithmetic and Logical F:ADDC

F:ADDC

I, R, 2D, 3D, 4D ———->|<1> <I>|---> I, R, 2D, 3D, 4D

2x2, 3x3, 4x4 2x2, 3x3, 4x4

I, R, 2D, 3D, 4D ————>|<2> C

2x2, 3x3, 4x4
DC

PURPQOSE

Accepts two inputs and produces an output that is the sum of those inputs.
Input <2> is a constant.

(\ DESCRIPTION

INPUT
<l> - input value
<2> - input value (constant)

QUTPUT
<l> —sum

NOTES

The two input values must be of the same data type (except a combination of
real and integer is allowed); the output data type depends on the input data
type(s). If an integer is added to a real number the output is a real number.

ASSCCIATED FUNCTIONS

F:ADD

Intrinsic Function
F:AND Arithmetic and Logical ‘ ’

F:AND

B ———- >1<2>

CC

PURPQOSE

Accepts two Booleans as input and produces a Boolean output that is the logical
AND of the two inputs.

DESCRIPTION

INPUT u

<l> - Boolean input
<2> - Boolean input

OUTPUT
<!> - logical AND of the two inputs

ASSOCIATED FUNCTIONS

F:ANDC

- 10 -

Intrinsic Function

Arithmetic and Logical F:ANDC
F:ANDC
B ———- > <> <I>»|--——> B
B ————- >[<2> C
DC
PURPQOSE

Accepts two Booleans as input and produces a Boolean output that is the logical
AND of the two inputs. Input <2»> is a constant.

DESCRIPTION

INPUT
<l> - Boolean input
<2> - Boolean input (constant)

OUTPUT
<1> - logical AND of the two inputs

ASSOCIATED FUNCTIONS

F:AND

-1 -

F:ATSCALE

Intrinsic Function

Data Selection and Manipulation

F:ATSCALE
R, 2D, 3D, 4D -——->|<1>
O >[<2> C
O >1<3>» C
DC

<>

PURPOSE

----> R, 2D, 3D, 4D

Like F:ACCUMULATE, F:ATSCALE accumulates the sum of a series of real numbers
or vectors. Unlike F:ACCUMULATE, its sum is cleared after output.

DESCRIPTION

INPUT
<l> - value to be accumulated
«2> - scale factor (constant)
<35> - delta (constant)

QUTPUT
<l> — accumulated sum

DEFAULT

Input <2> = 1.0, Input <3> = 0.0

NOTES

l. Each value on input <l> is scaled by the value on input <2>, then added to
the internally stored current sum of scaled input <l> values. When the
accumulated sum differs from the last value sent out output <1> by at least
the amount on input <3>, the accumulated sum is output and the internal

accumulated sum is cleared.

- 12 -

Intrinsic Function
Data Selection and Manipulation F:ATSCALE

(continued)

NQOTES (continued)

2. If vectors are input on input <l>, the difference on input <3> is taken to be
vector length. Vector length is the linear distance from a vector location
to the origin of the world coordinate system (i.e., the Euclidean norm,
n(x,y) = x% +y?).

3. Sending a Boolean (TRUE or FALSE) to input <l> forces the accumulated
sum to be output and cleared from internal storage.

- 13 -

Intrinsic Function

F:AVERAGE Arithmetic and Logical
F:AVERAGE
I, R, 2D, 3D, 4D ——-—>|<1>» <d>|-==-- > I, R, 2D, 3D, 4D
I, R, 2D, 3D, 4D ———->|<2> 2>|----- >I, R, 2D, 3D, 4D
cC
PURPOSE

Accepts two inputs, outputs the average of the two inputs on output <l»>, and
outputs the value of input <2> unchanged on output <2>.

DESCRIPTION

INPUT
<l> - any value
<2> - any value

OuUTPUT
<l> -~ average of the two input values
<2> - value of input <2> unchanged

NOTES
The two input values must be of the same data type (except a combination of

real and integer is allowed); the outputs are also of that data type. If an
integer is averaged with a real number, a real number is output on output <l>.

- 14 -

, Intrinsic Function
f 5 Data Selection and Manipulation F:BOOLEAN_CHOOSE

F:BOOLEAN_CHOOSE
B - >I<1> <I>]-=——- > Any
Any ——————— >1<2> C
Any ——————- >|<3> C
DC

PURPOSE

This function uses the Boolean on input <1> to select the constant message on
input <2> or input <3>, outputting the selected message on output <1>.

! l DESCRIPTION

INPUT
<1> - Boolean
<2> - any message (constant)
<3> - any message (constant)

OouTPUT
<l> - message on input <2»> or input <3>

NOTES

A TRUE on input <l> selects the message on input <2>; a FALSE on input <l>»
selects the message on input <3>.

- 15 -

Intrinsic Function

F:BROUTE Data Selection and Manipulation
F:BROUTE
B ————-——- >[<1> <A>|-=-=— > Any
Any —-—-———-- > <2> 2>|----- > Any
CD
PURPOSE

Acts as a Boolean route function, accepting a Boolean on input <l> and any
message on input <2>. When a TRUE is received on input <l»>, the message
appears at output <l>. When a FALSE is received on input <l>, the message
appears at output <2>. :

DESCRIPTION

INPUT
<l> - trigger
<2> — any message

QUTPUT

<l> - message on input <2> when input is <1> TRUE
<2> - message on input <2> when input is <1> FALSE

ASSOCIATED FUNCTIONS

F:BROUTEC, F:CBROUTE

- 16 -

Intrinsic Function

m Data Selection and Manipulation F:BROUTEC
F:BROUTEC
B ————— >[<1> A>|-———- > Any
Any ——————- >[<2> C 2> |-=---- > Any
DD
PURPQOSE

Acts as a Boolean route function, accepting a Boolean on input <l> and any
message on constant input <2>. When a TRUE is received on input <l», the
message appears at output <l>. When a FALSE is received on input <l>, the

message appears at output <2>.

(\ DESCRIPTION

INPUT
<l> - trigger
<2> - any message (constant)

OQUTPUT
<l> - message on input <2> when input is <1> TRUE

<2> — message on input <2> when input is <1> FALSE

ASSOCIATED FUNCTIONS

F:BROUTE, F:CBROUTE

- 17 -

Intrinsic Function —

F:CBROUTE Data Selection and Manipulation ~hi)
F:CBROUTE
B - >[<1> C <I>|——=—— > Any
Any ————— >[<2> 2>|-————- > Any
DD
PURPOSE

Acts as Boolean route function, sending the message on input <25 to output <I»
when the Boolean on constant input <l> is TRUE or to output <2> when the
constant Boolean on input <1> is FALSE,

DESCRIPTION U

INPUT
<l> - trigger (constant)
<2> — any message

OUTPUT

<> — message on input <2> when input <l»> is TRUE
<2> - message on input <2> when input <l> is FALSE

ASSOCIATED FUNCTIONS

F:BROUTE, F:BROUTEC

- 18 -

Intrinsic Function
Data Selection and Manipulation F:CCONCATENATE

F :CCONCATENATE
S ——— >[<1> C A> |- > S
S >[<2> 2> - > I
DC

PURPOSE

Accepts two ASCII character strings and outputs on output <l> a string that is
formed by concatenating the string on input <2> behind the string on input <1>5.
The length of the resulting string is sent on output <2>. Input <l> is a constant.

DESCRIPTION

INPUT
<1> - ASCII string (constant)
<2> - ASCII string

OuTPUT

<l> - concatenated string
<2> - length of the concatenated string

ASSOCIATED FUNCTIONS

F:CONCATENATE, F:CONCATENATEC

- 19 -

Intrinsic Function

F:CDIV Arithmetic and Logical
F:CDIV
I, R, 2D, 3D, 4D ————-- > <1> C <1>|----> I, R, 2D, 3D, 4D
2x2, 3x3, 4x4 2x2, 3x3, 4x4
I,R -~ >|<2>
DC
PURPOSE

Accepts two inputs and produces an output that is the quotient of the two

inputs (input <1> divided by input <2>).

DESCRIPTION

INPUT

<1> - dividend (constant)

<2> - divisor

OuUTPUT
<l> - quotient

NOTES

Input <1> is a constant.

The output is the same data type as input <l> (except when «<l> is an integer
and input <2> is a real; then a real is output). Input <2> should not be 0.

ASSOCIATED FUNCTIONS

F:DIV, F:DIVC

- 20 -

A

Intrinsic Function
Data Conversion

F:CEILING

PURPQOSE

Rounds a real number away from zero to the nearest integer.

DESCRIPTION

INPUT

<>

F:CEILING

ccC

<>

<l> — real number to be rounded

OUTPUT
<l> - nearest integer

- 2] -

Intrinsic Function
F:CGE Comparison

F:CGE
R, T ————- >(<1> C <> |-===- > B
R, T ————- >[<2>

DC

PURPOSE

Accepts any combination of reals and integers at its two inputs, and produces a
Boolean output that is TRUE if input <l> is greater than or equal to input <2>,
and FALSE otherwise. Input <l> is a constant.

DESCRIPTION

INPUT
<l> - real or integer to be compared (constant)
<2> - real or integer to be compared

OQUTPUT
<l> - Boolean

ASSOCIATED FUNCTIONS

F:GE, F:GEC

- 22 -

Intrinsic Function
() Comparison F:CGT

F:CGT
R, T ———— >[<1> C <A >[-=—=- > B
R, T ————- >I<2>

DC

PURPOSE

Accepts any combination of two reals or integers at its inputs, and produces a
Boolean output that is TRUE if input <l> is greater than input <25, and FALSE
otherwise. Input <l»> is a constant.

m DESCRIPTIGCN

INPUT
<l> —real or integer to be compared (constant)
<2> - real or integer to be compared

QUTPUT
<l> -~ Boolean

ASSOCIATED FUNCTIONS

F:GT, F:GTC

- 23 -

Intrinsic Function -
F : CHARCONVERT Data Conversion \“)

F :CHARCONVERT
S ———————- >[<T> A>f-=-=- > 1
B ——————- >[<«2> C

DC

PURPOSE

Converts the bytes of the string on input <l»> into a stream of integers, one
integer per byte.

DESCRIPTION

INPUT U

<1> - any string
<2> - Boolean (constant)

OuUTPUT
<l> - stream of integers
DEFAULTS

Boolean TRUE on input <2>.

NOTES

l. The condition of the Boolean determines the range of bytes as integers as
follows:

TRUE =0 to 255
FALSE = -128 to 127 (2's complement)

- 24 -

Intrinsic Function
Data Conversion F:CHARCONVERT

(continued)

NOTES (continued)

2. Note that if a TRUE is on input <2>, a value from 0-255 is output on <l>.
If a FALSE is on input <Z> and the value on input <l» is from 0-127, the
value output is the same value that was input on <l>. If a FALSE is on
input <2> and the value on input <«l»> is 128-255, a corresponding value
between -128 and -1 is output.

EXAMPLE

'A' becomes 65
'"AB' becaomes 65 followed by 66

- 25 -

Intrinsic Function
F:CHARMASK Data Selection and Manipulation

F : CHARMASK
S ———————- >i<> <I>|--——- > S
I ———— >[<«2> C

DC

PURPOSE

Masks each of the bytes of the string on input <l> by ANDing it with the
integer on the constant input <2>, then outputs the masked string.

DESCRIPTION

INPUT
<l> - any string
<2> - integer (constant)

OuTPUT
<l> -~ masked string

NOTES

Only the low-order byte of the integer is used in the mask, i.e., integer 256
would be a 0 mask. Therefore, numbers between 0-255 are recommended.

- 26 -

Intrinsic Function
Timing F:CLCSECONDS

F:CLCSECONDS
I - >[<1>» C <AO>[---> 1
I - >[<2> C 2>|--—> 1
B - >[<3> C <3>|---> B
I - >|1<4> C
I >[<5> C
B ————mm - >|<6> C
DD

PURPOSE
Generates outputs at timed intervals as specified by the inputs. All inputs to

F:CLCSECONDS are constants. All outputs occur at the same timed interval.
(Output <1> may be disabled.)

DESCRIPTION

INPUT
<l> - timed interval (constant)
<2> — number of time intervals (constant)
<3> - gate (constant)
<4> - integer A (constant)
<5> - integer B (constant)
<6> - TRUE = run, FALSE = stop (constant)

OUTPUT
<l> — integer A+B if input <3»> is TRUE
<2> — integer A+B
<3> - TRUE if input <2»> is not exceeded

- 27 -

Intrinsic Function
F : CLCSECONDS Timing

(continued)

NOTES

1.

Input <I> is an integer that specifies a timed interval in hundredths of a
second. Outputs from the function occur at this interval. Thus, a 10 on
input <1> would specify a time interval of 1/10 second.

Input <2> is an integer that specifies the number of time intervals
(duration) that the Boolean on output <3> will be TRUE. When this number
of intervals is exceeded, the Boolean will be output as FALSE on each
succeeding interval. Input <2> may be reset at any time, since the value at
this input is decremented by | with each execution.

Input <3> is a Boolean that is used to gate the integer on output <l>. If the
Boolean is TRUE, the integer (A+B) is output each timed interval. If the
Boolean is FALSE, output <1» is disabled.

Inputs <4> and <5> are integers A and B, respectively. The sum of these
integers is output as an integer on output <l> if the Boolean on input <3> is
TRUE. This sum (A+B) is output as an integer on output <2>, independent
of the condition of the Boolean on input <3>.

Input <6> is an optional switch. If input <6> receives no messages, the
timer will run when there is a message on all of inputs <l> through <5»>. If
a Boolean FALSE is received on input <6>, the timer waits for a Boolean
TRUE to be received on input <6> before running. No outputs are
generated so long as input <6> is FALSE.

ASSOCIATED FUNCTIONS

F:CLFRAMES, F:CLTICKS

EXAMPLE

Refer to Application Notes 10 and 12 in the PS 300 Application Notes.

- 28 -

Intrinsic Function
('\ Comparison F:CLE

F:CLE
R, I ———- >[<1> C <A>f-=——- > B
R, T ————- >[<2>

DC

PURPOSE

Accepts any combination of reals or integers at its inputs, and produces a
Boolean output that is TRUE if input <1> is less than or equal to input <2>, and
FALSE otherwise. Input <l> is a constant.

m DESCRIPTION

INPUT
«l> - value to be compared (constant)
<2> - value to be compared

OUTPUT
<l> — Boolean

ASSOCIATED FUNCTIONS

F:LE, F:LEC

- 29 -

Intrinsic Function

F:CLFRAMES Timing
F:CLFRAMES
I >[<1> C <d>|--->1
I ———— >[<2> C 2> |--->1
B - - >[<3> C <3>|---> B
I o >[<4> C
I ———— >[<5> C
B - - >|<6> C
DD
PURPQOSE
Identical to F:CLCSECONDS and F:CLTICKS, except the time source is refresh
frames.
DESCRIPTION
INPUT

<l> - timed interval (constant)

<2> - number of time intervals (constant)
<3> - gate (constant)

<4> - integer A (constant)

<5> - integer B (constant)

<6> - TRUE = run, FALSE = stop (constant)

OUTPUT
<> = A+B if input <3> is TRUE
<2> - A+B

<35> - TRUE if input <2> is not exceeded

- 30 -

Intrinsic Function

Timing

F:CLFRAMES

NOTES

(continued)

Input <1»> is an integer that specifies a timed interval in frames. A frame
is the length of time the Display Processor takes to draw the current
structure once. The refresh rate is the number of frames per second.
Outputs from the function occur at this interval.

Input <2> is an integer that specifies the number of timed intervals
(duration) that the Boolean on output <3> will be TRUE. When this number
of intervals is exceeded, the Boolean will be output as FALSE on each
succeeding interval. Input <2> may be reset at any time.

Input «<3> is a Boolean that is used to gate the integer on output <l>. If the
Boolean is TRUE, the integer (A+B) is output each timed interval. If the
Boolean is FALSE, output <l> is disabled.

Inputs <4> and <5»> are integers A and B, respectively. The sum of these
integers is output as an integer on output <!> if the Boolean on input <3> is
TRUE. This sum (A+B) is output as an integer on output <2>, independent
of the condition of the Boolean on input <3>.

Input <6> is an optional switch. If input <6> receives no messages, the
timer will run when there is a message on all of inputs <l> through <5»>. If
a Boolean FALSE is received on input <6>, the timer waits for a Boolean
TRUE to be received on input <6> before running. No outputs are
generated so long as input <6> is FALSE.

-3 -

Intrinsic Function
F:CLT Comparison

F:CLT
R, T ———- >1<1> C 4D Er—— > B
R, T ———- >1<2>

DC

PURPQOSE

Accepts any combination of reals or integers at its inputs, and produces a
Boolean output that is TRUE if input <l> is less than input <2>, and FALSE
otherwise. Input <I> is a constant.

DESCRIPTION

INPUT
<1l> - value to be compared (constant)
<2> - value to be compared

OUTPUT
<l> - Boolean

ASSOCIATED FUNCTIONS

F:LT, F:LTC

- 32 -

Intrinsic Function

(nn\ Timing F:CLTICKS
F:CLTICKS
I >[<1>» C <KAO>l--—> 1
I ————o - >[<2> C 2>|---> 1
B -———— >[<«3> C 3>|---> B
I >[<4> C
I >[<5> C
B - >[<6> C
DD

‘) PURPOSE

Identical to F:CLCSECONDS and F:CLFRAMES, except the time source is ticks of
the 20 Hz system clock.

DESCRIPTION

INPUT
<l> - timed interval (constant)
<2> - number of time intervals (constant)
«3> - gate (constant)
<4> - integer A (constant)
<5> - integer B (constant)
<6> - TRUE = run, FALSE = stop (constant)

OuTPUT
<> = A+B if input 3> is TRUE
<2> - A+B

<3> - TRUE if input <2> is not exceeded

- 33 -

F:CLTICKS

Intrinsic Function
Timing

(continued)

NQOTES

I.

Input <1> is an integer that specifies a timed interval in ticks (where a tick
is half the duration of the alternating current supply, 1/20 second in the
U.S.). Qutputs from the function occur at this interval.

Input <2> is an integer that specifies the number of timed intervals
(duration) that the Boolean on output <3> will be TRUE. When this number
of intervals is exceeded, the Boolean will be output as FALSE on each
succeeding interval. Input <2> may be reset at any time.

Input <3> is a Boolean that is used to gate the integer output <l>. If the
Boolean is TRUE, the integer (A+B) is output each timed interval. If the
Boolean is FALSE, output <1> is disabled.

Inputs <4> and <5»> are integers A and B, respectively. The sum of these
integers is output as an integer on output <l> if the Boolean on input <3> is
TRUE. This sum (A+B) is output as an integer on output <25, independent
of the condition of the Boolean on input <3>.

Input <6> is an optional switch. If input <6> receives no messages, the
timer will run when there is a message on all of inputs <l> through <5>. If
a Boolean FALSE is received on input <6>, the timer waits for a Boolean
TRUE to be received on input <6> before running. No outputs are
generated so long as input <6> is FALSE.

- 34 -

Intrinsic Function

Arithmetic and Logical F:CMUL
F:CMUL
I, R, 2D, 3D, 4D ——-—>{<1> C <1>»|---> I, R, 2D, 3D, 4D
2x2, 3x3, 4x4 2x2, 3x3, 4x4
I, R, 2D, 3D, 4D -——->[<2>
2x2, 3x3, 4x4
DC

PURPOSE

Accepts two inputs and outputs the product of the two inputs. Input <«l> is a
constant.

DESCRIPTION

INPUT
<l> - any value (constant)

<2> — any value

OQUTPUT
<l> - product

NOTES

The two input values must be compatible data types; the output data type
depends on the combination of input data types. Vectors are taken to be either
row vectors (input <1»>) or column vectors (input <2>).

ASSOCIATED FUNCTIONS

F:MUL, F:MULC

- 35 -

Intrinsic Function
F:COLOR Miscellaneous

F:COLOR

2D, 3D - > <> A>[-———- > 3D, 4D

R ————————- >[<2>
ccC

PURPOSE

Accepts a 2D or 3D vector at input <l> and a real number representing a
color-blended vector hue at input <2>, and outputs a 3D or 4D vector whose last
"coordinate" is the hue value. This vector format is required for inputs to the
vector list that has the color option specified.

DESCRIPTIGON

INPUT
<l> - vector
<2> - color-blended vector hue (0-720)

QUTPUT
<l> — vector whose last coordinate is the hue value
NOTES

The real number at input <2> must be within the range 0-720; values outside
this range are clamped to the nearest in-range value.

- 35 -

Intrinsic Function
Comparison

F:COMP_STRING

S —————- >[<1>

S —————- >|<2>

CD

F:COMP_STRING

<>
2>

3>

PURPOSE

---> B

---> B

—> B

Compares two strings and sends a TRUE on output <l1»> if string | is less than
string 2, a TRUE on output <2> if string | is equal to string 2, or a TRUE on
output <3> if string | is greater than string 2.

DESCRIPTION

INPUT
<l> - string
<2> - string

OUTPUT
<l> - TRUE = less than
<2> - TRUE = equal to
<3> - TRUE = greater than

- 37 -

Intrinsic Function
F:CONCATENATE Data Selection and Manipulation

F:CONCATENATE
S ——————- >|<1> A>|==—=-- > S
S ———— >[<2> 2>|---—- > 1

CC

PURPOSE

Accepts two ASCII character strings and outputs a string that is formed by
concatenating the string on input <2> behind the string on input <1>. The length
of the resulting string is sent on output <2>.

DESCRIPTION

INPUT
<l> - ASCII string
<2> - ASCII string

OuUTPUT

<1> - concatenated string
<2> - length of the concatenated string

ASSOCIATED FUNCTIONS

F:CCONCATENATE, F:CONCATENATEC

- 38 -

~

Intrinsic Function
Data Selection and Manipulation F:CONCATENATEC

F :CONCATENATEC
S o >l <> QD —— > S
R >|<2> C A > 1

DC

PURPOSE
Accepts two ASCII character strings and outputs a string that is formed by

concatenating the string on input <2> behind the string on input <1>. The length
of the concatenated string is sent on output <2>. Input <2»> is a constant.

DESCRIPTION

INPUT
<1> - ASCII string
<2> - ASCII string (constant)

CuTPUT

<l> - concatenated string
<2> - length of the concatenated string

ASSOCIATED FUNCTIONS

F:CCONCATENATE, F:CONCATENATE

- 39 -

F:CONSTANT

Intrinsic Function

Data Selection and Manipulation

PURPOSE

<>

F:CONSTANT

2> C

DC

<>

Accepts any message on inputs <l> and <2».
constant message on input <2> is output on output <l> whenever a message is

received on input <l>.

DESCRIPTION

INPUT
<l> - trigger

<2> - any message (constant)

OuUTPUT

<l> — message on input <2> when triggered

- 40 -

Input <2> is a constant. The

Intrinsic Function
Character Transformation F:CROTATE

F:CROTATE
R —————- >[<1> D > 2x2

ccC

PURPQOSE

Creates a 2x2 Z rotation matrix.

DESCRIPTION

INPUT
<l> — degrees of rotation in Z

OUTPUT
<l> - 2x2 rotation matrix
NOTES

l. The rotation matrix created by the function is normally used to update 2x2
matrix nodes in a display tree.

2. The "C" in the function's name stands for "character". 2x2 matrix nodes in
display trees only affect character data nodes.

- 4] -

Intrinsic Function
F:CROUTE(n) Data Selection and Manipulation

F:CROUTE(n)

I - >[<1> C <> [-——— > Any

Any ———————— >[<2> <ﬁ> ————— > Any
DD

PURPOSE
Accepts an integer on input <l> to switch the message on input <2> to the

output specified by that integer. The message on input <2> may be of any data
type. The integer on input <l> is a constant.

DESCRIPTION

INPUT
<> - integer (valid range | - 127) (constant)
<2> — any message

QUTPUT
<l> — message on input <2> when selected

<n> — message on input <2> when selected

- 42 -

O

Intrinsic Function
Data Selection and Manipulation F:CROUTE(n)

(continued)

NOTES

The "n" in the function name may be any integer from 2 to 127. If the integer
input is not a number from 1 to n, inclusive, then an error is detected and

reported.

ASSOCIATED FUNCTIONS

F:ROUTE(n), F:ROUTEC(n)

~ 43 -

Intrinsic Function
F:CSCALE Character Transformation

F:CSCALE
R, 2D ——————- >I<I> A>|-====— > 2x2

cC

PURPOSE

Scales characters. Accepts a real number or a 2D vector as a scaling factor for
character strings. A 2x2 scaling matrix is output.

DESCRIPTION

INPUT
<l> - scaling factor

OUTPUT
<l> - 2x2 scaling matrix

NOTES

l. The scaling matrix is normally used to update a 2x2 matrix node in a
display tree. The "C" in the function's name stands for "character". Only
character data nodes are affected by 2x2 matrices.

2. If a real is input, the scaling factor represented by the real value is applied
in X and Y. If a 2D vector is input, the X component of the vector is the
scaling factor for X, and the Y component of the vector is the scaling
factor for V.

- 44 -

Intrinsic Function

Arithmetic and Logical F:CSUB
F:CSUB
I, R, 2D, 3D, 4D ——-- >[<1> C <1>{---> I, R, 2D, 3D, 4D
2x2, 3x3, 4x4 2x2, 3x3, 4x4
I, R, 2D, 3D, 4D ————- >1<2>
2x2, 3x3, 4x4
DC

PURPQOSE

Accepts two inputs and produces an output that is the difference of the two
inputs (input <2> is subtracted from input <1>). Input <l> is a constant.

DESCRIPTION

INPUT
<l> = minuend (constant)

<2> — subtrahend

OUTPUT
<l> — difference

NOTES

The two input values must be of the same data type (except a combination of
real and integer is allowed); the output data type depends on the input data

type(s).

ASSOCIATED FUNCTIONS

F:SUB, F:SUBC

- 45 -

Intrinsic Function
F:CVEC Data Conversion

F:CVEC
R, 2D, 3D ———————- >I<1> C <Ad>|-———- > 2D, 3D, 4D
R >[<2>

DC

PURPQOSE

Accepts two real numbers and outputs a 2D vector; accepts a 2D vector and a
real number and outputs a 3D vector; or accepts a 3D vector and a real number
and outputs a 4D vector.

DESCRIPTION
INPUT
<l> —real, 2D, or 3D vector (constant)
<2> - real
OUTPUT

<l> - 2D vector if input <1l» is a real number
3D vector if input <1> is a 2D vector
4D vector if input <1> is a 3D vector

NOTES

The output vector is the constant real number or vector from input <l> with the
real number from input <2> appended as the last vector component.

ASSOCIATED FUNCTIONS

F:VEC, F:VECC

- 46 -

Intrinsic Function

Data Selection and Manipulation F:DELTA
F:DELTA
I, R, 2D, 3D ———-- > <1> O>|-——- > I, R, 2D, 3D
I,R ———— >[<2> C
DD
PURPOSE

Accepts integers, reals, 2D vectors, and 3D vectors on input <1> and integers or
reals on input <2>. The value on input <l> is output on output <l» if it differs
in magnitude from the previous input <l> value by at least the constant delta
value on input <2>.

DESCRIPTION

INPUT
<l> - integer, real, 2D, 3D vector
<2> — delta value (constant)

QUTPUT

¢<l> - value on input <«l> if it differs from the previous input <l> by at
least the delta value on input <2»

DEFAULTS

The first input <> value is compared to 0 (zero).

NOTES
The constant delta value on input <2> may be a real or an integer. If values on

input «l> are reals or vectors the delta value on input <2> must be real. If
input <l> is an integer, input <2> must also be an integer.

_ 47 -

Intrinsic Function

F-DIV Arithmetic and Logical
F:DIV
I, R, 2D, 3D, 4D ————- > <> <I>{---> I, R, 2D, 3D, 4D
2x2, 3x3, 4x4 2x2, 3x3, 4x4
I,R ———o o >[<2>
cCcC
PURPOSE

Accepts two inputs and produces an output that is the quotient of the two
inputs (input <1> is divided by input <2>).

DESCRIPTION

INPUT
<l> - dividend
<2> - divisor

OUTPUT
<l> - quotient

NOTES

The output is the same data type as input <l> (except when input <l»> is an
integer and input <2> is a real; then a real is output). Input <2> should not be 0.

ASSOCIATED FUNCTIONS

F:DIVC, F:CDIV

~ 48 -

v/

Intrinsic Function

Arithmetic and Logical F:DIVC
F:DIVC
I, R, 2D, 3D, 4D ————- > <> <I>{---> I, R, 2D, 3D, 4D
2%x2, 3x3, 4x4 2x2, 3x3, 4x4
I,R-——i >[<2> C
DC
PURPOSE

Accepts two inputs and produces an output that is the quotient of the two
inputs (input <1> is divided by input <2>). Input <2> is a constant.

DESCRIPTION

INPUT
<l> - dividend
«2> - divisor (constant)

ouTPUT
<l> - quotient

NOTES

The output is the same data type as input <l> (except when input <l> is an
integer and input <2> is a real; then a real is output). Input <2> should not be O.

ASSOCIATED FUNCTIONS

F:DIV, F:CDIV

~ 49 —

Intrinsic Function

Typically accepts real values originating from a control dial on input <1> and
forms a 3x3 scaling matrix (output <l>) from the product of accumulated real
values (input <1») and the scaling factor on input <3>. Upper and lower scaling
limits may be set on inputs <4> and <5>, respectively.
content exceeds the upper limit (input <4>), then the upper limit value is sent
out on output <l>. Likewise, if the product is below the lower limit, the lower

limit value is sent out on output <l>.

DESCRIPTION

INPUT
<>
<2>
<3>
<h>
<5>

- delta

-~ accumulator set (constant)
- scaling factor (constant)

- upper limit (constant)

- lower limit (constant)

OuUTPUT

<l>
<2>

- 3x3 scaling matrix
- accumulator contents

- 50 -

F:DSCALE Object Transformation
F:DSCALE
R mmmmmmmee o > <> <A>|--——- > 3x3
R ——~——mo - >[<«2> C A R >R
R - - >|<3> C
R ————— >[<4> C
2 >1<5> C
DC
PURPQOSE

If the accumulator

v

U

(F!\

Intrinsic Function
Object Transformations F:DSCALE

(continued)

DEFAULTS

Inputs <3>, <4>, and <5> are optional. If input <3> receives no messages, a
scaling factor of | is the default value. If inputs <4> and/or <5> receive no
messages, no upper and/or lower limits are set.

NOTES

l. Input <2> is the accumulator. This value may be reset at any time (and is
usually set initially to 1). The current accumulator content is output on
output <2>.

2. It is sometimes valuable to limit the upper range of scaling to a value that
will not cause data to overflow the viewport. Also, lower limits may be set

to keep the object to a size that allows the object to be viewed easily and
to prevent negative scaling.

EXAMPLE

Refer to Application Note 6 in the PS 300 Application Notes.

_ 5] -

Intrinsic Function

F:DXROTATE Object Transformation
F :DXROTATE
R ———e o > <> A>|-———- > 3x3
R >[<«2> C 2>|----- > R
R - >|<3>» C
DC
PURPOSE

Typically accepts real values originating from a control dial on input <l> and
produces a 3x3 rotation matrix (output <l>) from the angle derived from the
accumulated sum of the real values on input <l>, multiplied by the scale factor
received on input <3>. Rotation is around the X axis.

DESCRIPTION

INPUT
<l> - rotation delta
<2> - initial accumulator value (constant)
<3> - scale factor (constant)

QUTPUT
<l> — 3x3 rotation matrix in X
<2> - current accumulator value

DEFAULTS

If input <3> receives no messages, a scale factor of | is the default value.

NOTES
Input «2> is the accumulator. This value may be reset at any time (and is

usually set initially to 0). The current accumulator value is output on output
<2>.

- 52 —

U

Intrinsic Function

Object Transformation F:DYROTATE
F:DYROTATE
R ——————- >[<1> A>|-==- > 3x3
R~ — >1<2> C @2y -———- > R
R —————mm—- >|<3> C
DC
PURPQOSE

Typically accepts real values originating from a control dial on input <I> and
produces a 3x3 rotation matrix (output <l>) from the angle derived from the
accumulated sum of the real values on input <l>, multiplied by the scale factor
received on input <3>. Rotation is around the Y axis.

DESCRIPTION

INPUT
<l> - rotation delta
<2> - initial accumulator value (constant)
<3> - scale factor (constant)

OUTPUT

<l> = 3x3 rotation matrix in Y
<2> — current accumulator value

DEFAULTS

If input <3> receives no messages, a scale factor of | is the default value.

NOTES
Input <2> is the accumulator. This value may be reset at any time (and is

usually set initially to 0). The current accumulator value is output on output
<2>. '

- 53 -

Intrinsic Function

F:DZROTATE Object Transformation
F:DZROTATE
R - — > <> <I>|-==== > 3x3
R ———————- >[<2> C 2>|-=——= > R
R ————— >1<3> C
DC
PURPQOSE

Typically accepts real values originating from a control dial on input <l»> and
produces a 3x3 rotation matrix (output <l>) from the angle derived from the
accumulated sum of the real values on input <l>, multiplied by the scale factor
received on input <3>. Rotation is around the Z axis.

DESCRIPTION

INPUT
<l> - rotation delta
<2> - initial accumulator value (constant)
<3> - scale factor (constant)

QUTPUT
<l> = 3x3 rotation matrix in Z
<2> — current accumulator value

DEFAULTS

If input <3> receives no messages, a scale factor of | is the default value.

NOTES
Input <2> is the accumulator. This value may be reset at any time (and is

usually set initially to 0). The current accumulator content is output on output
<2>.

_ 54 -

U

Intrinsic Function
Miscellaneous F:EDGE_DETECT

F:EDGE_DETECT

B ——- >1<1> QD) Fr—— > B

B ———- >1<2> C U Er— > B
D C

PURPOSE

Accepts Boolean values on inputs <l> and «<2>. Input <2> is a constant.
Whenever the state of the Boolean on input <l> changes to match the state on
input <2>, the Boolean on input «<l> is output on output <l>, and the
complement of that value is output on output <2>.

DESCRIPTION

INPUT
<l> - Boolean
<2> — Boolean (constant)

QUTPUT

<l> - Boolean on input <1> when this matches input <2»
<2> - complement of output <I>»

NOTES

By connecting output <2> to input <2», all transitions are detected.

- 55 -

Intrinsic Function
F:EQ Comparison

F:EQ
R, T ————- > <> > —==== > B
R, T ————- > <2>

ccC

PURPOSE
Accepts any combination of reals and integers on its two inputs, and produces a

Boolean output that is TRUE if input «<l> equals input <2>, and FALSE
otherwise.

DESCRIPTION

INPUT
<l> — real or integer to be compared
<2> - real or integer to be compared
OUTPUT
<«l> - TRUE if input <1> equals input <2>, else FALSE
NOTES

Inputs do not have to be of the same data type.

ASSOCIATED FUNCTIONS

F:EQC

- 56 -

Intrinsic Function

Comparison F:EQC

F:EQC
R, T ———— > <> [Q D) E—— > B
R, T ———— >[<2> C

DC

PURPOSE

Accepts any combination of reals and integers on its two inputs, and produces a
Boolean output that is TRUE if input «<l> equals input «<2>, and FALSE
otherwise. Input <2»> is a constant.

DESCRIPTION

INPUT
<l> — real or integer to be compared
«2> - real or integer to be compared (constant)

OUTPUT
<l> - TRUE if input <l»> equals input <25, else FALSE

NOTES

Inputs do not have to be of the same data type.

ASSOCIATED FUNCTIONS

F:EQ

- 57 -

Intrinsic Function —
F:FETCH Miscellaneous \J

F:FETCH

Any ———— > <> D > Any

S ——————- >[<2> C
DC

PURPQOSE

Accepts a string which is the name of a variable on input <2>. When any
message is received on input <l>, the message currently stored in the variable
named on input <2> is fetched and output from this function. The message
stored in the named variable may be of any data type. The arrival of input <l>»
is used to activate the function, but is otherwise ignored. Input <2> is a
constant. u

DESCRIPTION

INPUT
<l> - trigger
<2> — variable name (constant)

OUTPUT
<l> — message associated with variable name on input <2>

- 58 -

Intrinsic Function
Data Selection and Manipulation F:FIND_STRING

F:FIND STRING
S —————- >I<1> <KI>[--->1
S ————— >[<2> <2>|---> B
CD

PURPOSE
If the string on input <2»> is a substring of the string on input <l>, the starting

position of the substring and a Boolean TRUE are output. A FALSE is output if
the substring cannot be found and nothing is sent on output <1>.

DESCRH”TON

INPUT
<l> - string
<2> - substring

OUTPUT

<l> - starting position of the substring, if found
<2> - TRUE = substring found, FALSE = not found

- 59 -

Intrinsic Function
F:FIX Data Conversion

F:FIX

CC

PURPOSE

Accepts a real number and outputs a value that is truncated to an integer
(toward zero).

DESCRIPTION

INPUT
<l> - real number

OUTPUT
<l> - real on input <l»> truncated to an integer

- 60 -

(na‘ Intrinsic Function
Data Conversion F:FLOAT

F:FLOAT
I oo >I<1> AP —— >R

cCC

PURPOSE

Accepts an integer and outputs a real number of the same value.

DESCRIPTICON

INPUT
<l> - integer

OUTPUT
<I> - real number of the same value as input <1>»

- 6] -

Intrinsic Function

F:FOV Viewing Transformation
\
F:FOV
Any ————- > <> A>|—=———- > 4x4
R ————— >[<2> C
R ——————- >[1<3> C
R ————— >[<4> C
DC
PURPOSE

This is the functional counterpart of the FIELD OF VIEW command. The field of
view that is specified by this function is used for perspective projections.

DESCRIPTION

INPUT
<l> - trigger
<2> - viewing angle (constant)
<3> - front boundary (constant)
<4> — back boundary (constant)

QUTPUT
<l> - 4x4 matrix

- 62 -

@)

Intrinsic Function
Viewing Transformation F:FOV

(continued)

NOTES

l. The message on input <l> acts as a trigger to the function.

2. The constant real value on input <2> represents the viewing angle in
degrees. This angle defines the viewing frustum.

3. The front boundary and back boundary of the viewing frustum are specified
as constant real numbers on inputs <3> and <4>, respectively.

4, The field of view specified on the inputs to F:FOV is output as a 4x4 matrix.

ASSOCIATED FUNCTIONS

F:WINDONW, F:MATRIX 4X4

- 63 -

Intrinsic Function
F:GATHER_STRING Data Selection and Manipulation

F:GATHER _STRING
S —————- > <1> <I>[--->S
CH ———- >1<2> C 2>|--->1
B —————- >[<3> C
DC

PURPOSE

Collects strings that arrive at input <l> until the terminator character on input
<2> arrives. Concatenates all strings into one packet and outputs the
concatenated string on output <l>. If the Boolean on input <3> is TRUE, the
terminator character is appended to the string. Output <2> contains the length
of the string. Inputs <2> and <3»> are constants.

DESCRIPTION

INPUT
<l> - string
<2> - packet terminator (constant)
<3> - TRUE = with terminator, FALSE = without terminator (constant)

OuUTPUT

<l> - concatenated string (packet)
<2> - length of the string

- 64 -

U

Intrinsic Function
Comparison F:GE

F:GE

R, T ———- >1<2>
cc

PURPOSE

Accepts any combination of reals and integers on its two inputs, and produces a
Boolean output that is TRUE if input <1> is greater than or equal to input <2»,
and FALSE otherwise.

DESCRIPTION

INPUT
<l> - value to be compared
<2> - value to be compared

OUTPUT

<«l> — TRUE if input <l> is greater than or equal to input <2>, otherwise
FALSE

ASSOCIATED FUNCTIONS

F:GEC, F:CGE

- 65 -

Intrinsic Function
F:GEC Comparison

F:GEC

R, T ————- >1<2> C
DC

PURPQOSE
Accepts any combination of reals and integers on its two inputs, and produces a

Boolean output that is TRUE if input <l> is greater than or equal to input <2>,
and FALSE otherwise. Input <2> is a constant.

DESCRIPTION

INPUT
<l> - value to be compared
<2> — value to be compared (constant)

QUTPUT

<l> — TRUE if input <l> is greater than or equal to input <2>, otherwise
FALSE

ASSOCIATED FUNCTIONS

F:GE, F:CGE

- 66 -

Intrinsic Function
Comparison F:GT

F:GT

R, T ——— >1<2>

cc

PURPQOSE

Accepts any combination of reals and integers on its two inputs, and produces a
Boolean output that is TRUE if input <l> is greater than input <2»>, and FALSE
otherwise.

DESCRIPTION

INPUT
¢<l> - value to be compared
<2> — value to be compared

QUTPUT
<!> - TRUE if input <l> greater than input <2»>, otherwise FALSE

ASSOCIATED FUNCTIONS

F:GTC, F:CGT

_ 67 -

F:GTC

Intrinsic Function
Comparison

PURPOSE

<I>

2> C

F:GTC

CC

Accepts any combination of reals and integers on its two inputs, and produces a
Boolean output that is TRUE if input <l> is greater than input <2>, and FALSE
otherwise. Input <2»> is a constant.

DESCRIPTION

INPUT

<l> — value to be compared

<2> — value to be compared (constant)

OUTPUT

<«l> - TRUE if input <l> greater than input <2>, otherwise FALSE

ASSOCIATED FUNCTIONS

F:GT, F:CGT

- 68 -

~

Intrinsic Function
Data Selection F:INPUTS_CHOOSE(n)

F:INPUTS_ CHOOSE(n)
Any —————m———e >[<1> C A== > Any
Aﬁy ——————————— > <ﬁ—l> C
] - >l<n>
DC

PURPOSE
Accepts an integer with a value from | to (n-1) on input <n> and uses that value

to choose which of inputs <l»> through <n-1> to accept as an input. The chosen
message is then output.

DESCRIPTION

INPUT
<l> — any message (constant)
<n—1>- any message (constant)
<n> — chosen message number

OUTPUT
¢l> - chosen message

NOTES

To set up F:INPUTS CHOOSE(n) for a given number of messages between 2 and
127 inclusive, add one to the number of messages and substitute the result for
"n" in the function identifier. For example, F:INPUTS CHOOSE(5) accepts four
messages at inputs <l> through <4>. The selector input is always input <n>.
Thus, for F:INPUTS CHOOSE(S), the selector input is <5>.

- 69 -

Intrinsic Function

F:LABEL Data Selection and Manipulation
F:LABEL
2D,3D ————-—- >[<1> <1>|---> Label
S —————— >[<2>
B —————- >[<3>
cc
PURPQOSE

Creates a label to send to a labels node using the vector on input <l> as the
position of the label and the string on input <2> as the text of the label. Input
<3> indicates whether the the label is displayed or not.

DESCRIPTION

INPUT
<> - X, VY, and (optionally) Z location of the label
<2> - text of the label
<3> - TRUE = displayed, FALSE = not displayed

QUTPUT
<l> - label for input to a labels node

NOTES

l. The data type output by this function can only be used to update a labels
node. It is not accessible or printable.

- 70 -

Intrinsic Function
Data Selection and Manipulation F:LBL_EXTRACT

F:LBL_EXTRACT
I ————— <> <KI>f-——> 1
S —————- >1<2> <2>|---> 2D, 3D, 4D
3>|---> S
<4>|---> B
ccC

PURPQOSE

Extracts information about a string from a LABELS node given an index into the
labels block on input <l> and the name of the labels node on input <2>.

DESCRIPTION

INPUT
<l> - index of the string in question
<2> - name of the LABELS node

OUTPUT
<l> - data type
<2> - the start location of the string in question
<3> - the text of the string
<4> - TRUE = on, FALSE = off

NOTES

1. The integer on output <l> is the same as would be sent from output <7> of
F:PICKINFO.

2. Output <4> indicates whether the string is on or off.

- 71 -

F:LE

Intrinsic Function
Comparison

PURPQOSE

<>

2>

F:LE

cC

Accepts any combination of reals and integers on its two inputs, and produces a
Boolean output that is TRUE if input <l> is less than or equal to input <25, and

FALSE otherwise.

DESCRIPTION

INPUT

<l> - value to be compared
<2> — value to be compared

OuTPUT

<> — TRUE if input <l> is less than or equal to input <2>, otherwise

FALSE

ASSOCIATED FUNCTIONS

F:LEC, F:CLE

- 72 -

—

v/

M

Intrinsic Function
Comparison F:LEC

F:LEC

R, T ————- >1¢2> C

DC

PURPOSE

Accepts any combination of reals and integers on its two inputs, and produces a
Boolean output that is TRUE if input <1> is less than or equal to input <2>, and
FALSE otherwise. Input <2> is a constant.

DESCRIPTION

INPUT
<l> - value to be compared
<2> - value to be compared (constant)

OuTPUT

«l> - TRUE if input <l> is less than or equal to input <2>, otherwise
FALSE

ASSOCIATED FUNCTIONS

F:LE, F:CLE

- 73 -

Intrinsic Function

F:LENGTH_STRING Data Selection and Manipulation

F:LENGTH_STRING
S ————- >I1<1> <I>
2>

cC

PURPOSE

Outputs the length of a string.

DESCRIPTION

INPUT
<1> - string

OUTPUT
<1> - length of the string

<2> - TRUE = null string, FALSE otherwise

NOTES

l. A possible output is zero.

- 74 -

-—> 1

> B

~ Intrinsic Function
(\ Data Selection and Manipulation F:LIMIT

F:LIMIT
R, I ——————- >1<> <A>|-===- >I, R
R, T ——————- >[<2> C 2>|-——-- > I
R, T ——————- >[<3> C 3> |-———- > B
DD

PURPOSE

Accepts real number or integer values on all inputs; all three input values must
be of the same data type. The output data type is the same as the input data

type.

DESCRIPTION

INPUT
<l> - value
<2> - upper limit (constant)
<3> - lower limit (constant)

OUTPUT
<«I> - input <1> if this value is in range
<2> - in-range value
<3> - TRUE if in-range, F ALSE if out-of-range

NOTES

I. The value on input <l> is compared to the constant upper limit value on
input <2> and the constant lower limit value on input <3>.

2. If the input <l»> value is in range, that value is output unchanged on output
<1> and output <2>, and a TRUE is output on output <3>.

- 75 -

Intrinsic Function
F:LIMIT Data Selection and Manipulation

(continued)

NOTES (continued)
3. If the input <l> value is out of range, the output <l> value is adjusted to
the nearer limit (as set by inputs <2> and <35), output <2> is disabled, and
output <3> is FALSE.

4. If the value on input <2> is less than or equal to the value on input <3>, the
function will always output the value received on input <3>.

- 76 -

Intrinsic Function
(””\ Data Selection and Manipulation F:LINEEDITOR

F:LINEEDITOR
S >[<1> QB EE— > S
S m———— >{<2> C 2> > S
S >[<«3> C 3> |-———— > I
[DY e — > I
D R > CH
D e > S
DD

m PURPOSE

Accepts a stream of characters and simple editing commands, accumulates the
characters in an internal line buffer, applies the commands to the contents of
the line buffer as they are received, and outputs the edited line when a
specified delimiter character is recognized.

DESCRIPTIGON

INPUT
«l> - editing commands and material to be edited (input string)

<2> - prompt message (constant)
<3> — line delimiter (constant)

OUTPUT
<l> — edited output
<2> - display output
<3> - integer for <clear> of CHARACTERS
<4> - integer for <append> of CHARACTERS
<5> — character for <append> of CHARACTERS
<6> - string for <substitute> or <replace> of CHARACTERS

- 77 -

Intrinsic Function

F:LINEEDITOR Data Selection and Manipulation

(continued)

NOTES

1.

In a typical application, F:LINEEDITOR receives its input from the PS 300
keyboard and sends its edited output either to a terminal (such as the debug
terminal or the Terminal Emulator) or to a CHARACTERS node in the PS 300
display tree. A specially-formatted "display" output is used for terminals;
other outputs are intended as connections into CHARACTERS to allow keyboard
editing of a CHARACTERS string.

F:LINEEDITOR recognizes the following editing commands:

Delete (Hex '7F'): Deletes the most recently received character
from the internal line buffer.

Control-U (Hex '15"): Deletes the entire line buffer. Redisplays a
predetermined prompt message at any associated terminals by
sending the prompt string on the display output <2>.

Control-R (Hex 'l2"): Retypes the entire line (preceded by the
prompt message) at any associated terminals by sending the prompt
and line along the display output <2>.

Input <1> receives the stream of strings to be collected and edited, along
with all editing commands. The PS 300 keyboard is typically connected to
this input.

Input <2> contains a prompt message, if one is needed. The prompt string
may contain one or several characters. This prompt appears only at output
<2>, and it appears there whenever a control-U, a control-R, or a delimiter
is received at input <l>. The prompt message is optional and there is no

default.

Input <3> contains a single character designated as the delimiter. When this
character is received at input <l»>, the contents of the line buffer appear at
outputs <l> and <6> (edited by the editing commands), and at output <2»
(along with the prompt).

The default delimiter is <cr> (carriage-return; Hex '0D'), but this <cr> is
always expanded to «<cr><lf> (carriage-return/line-feed; Hex 'ODOA') for
output at <l>, <2>, and <6>.

- 78 -

v/

Intrinsic Function
(ﬂ‘\ Data Selection and Manipulation F:LINEEDITOR

(continued)

NOTES (continued)

7.

10.

1.

13.

If input <3> contains a non—<cr> delimiter <delim>, this delimiter is passed
on as is to outputs <l> and «6>, but it is always converted to
<delim><cr><Ifs for output <2> (the display output). (This implies that
specifying a delimiter of <If> produces double-spaced display output.)

Output <l> contains the contents of the line buffer, which in turn is
composed of the collected and edited characters from input <l>. This
output fires when a delimiter is recognized at input <l> or when 255
characters have been collected since the last firing or since initialization.

Output <2> is the display output. Unlike outputs <l> and <65, this output
includes "editing effects" intended for terminal display (prompt messages,
displayed Control-U's and Control-R's, character erasures corresponding
to deletes, and so on). For the treatment of delimiters at output <25, see
note 7 above.

Output <3»> is an integer output intended as a connection into the <clear>
input of a CHARACTERS command. The integer is sent whenever a control-U
is received at input <l>».

Output <4> always sends an integer |, and is intended as a connection into
the «delete> input of a CHARACTERS command. The 1 is sent whenever a
delete is received at input <l>.

Output <5> is intended as a connection into the <append> input of a
CHARACTERS command. This output passes on all characters received at input
<> except editing commands (delete, control-U, control-R). No buffering
is performed at this output —-- it fires once for each non-command
character, and the message is always a single character.

Output <6> is intended as a connection into the <substitute> or <replace>
input of a CHARACTERS command. It fires whenever the function is
activated by a (single-character or multi-character) string at input <l>. In
addition, output <6> fires whenever output <l»> fires.

- 79 -

Intrinsic Function

F : LOOKAT Viewing Transformation
F:LOOKAT
3D - <> <> > 4x3
D ————- >[<2> C
3D - >[<3> C
DC
PURPQOSE

Accepts three 3D vectors that specify the position to "look at", the position to
"look from", and which direction is "up". Inputs <2> and <3> ("look from" and
"up" orientation) are constants.

DESCRIPTION

INPUT
<l> - look at point
<2> - look from point (constant)
<3> — up orientation (constant)

OQUTPUT
<l> = 4x3 viewing matrix

NOTES

l. Input <l»>, the "look at" vector, triggers the function.

2. The 3D vectors are used to generate a 4x3 matrix that may be used to
update a LOOK viewing transformation node in a display tree.

- 80 -

Intrinsic Function

Viewing Transformation F: LOOKFROM
F : LOOKFROM
3D —————- >[<1> C A>)-—=— > 4x3
3D —————- >[<2>
3D -—-——- >[<3> C
DC
PURPOSE

Accepts three 3D vectors that specify the position to "look at", the position to
"look from", and which direction is "up". Inputs <1> and <3> ("look at" and "up"
orientation) are constants.

DESCRIPTIGON

INPUT
<l> - look at point (constant)
<2> - look from point
<3> — up orientation (constant)

QUTPUT
<l> = 4x3 viewing matrix

NOTES
1. Input <2>, the "look from" vector, triggers the function.

2. The 3D vectors are used to generate a 4x3 matrix that may be used to
update a LOOK viewing transformation node in a display tree.

- 8] -

Intrinsic Function
F:LT Comparison

F:LT

R, T ~—mu- >|1<2>

CC

PURPQOSE
Accepts any combination of reals and integers on its two inputs, and produces a

Boolean cutput that is TRUE if input <l> is less than input <2>, and FALSE
otherwise.

DESCRIPTION

INPUT
<l> - value to be compared
<2> - value to be compared

QUTPUT
<> = TRUE if input <l> is less than input <2>, otherwise F ALSE

ASSOCIATED FUNCTIONS

F:LTC, F:CLT

- 82 -

Intrinsic Function
Comparison F:LTC

F:LTC
R, I ———- >[<1> A |- > B
R, T ————- >[<2> C

DC

PURPQOSE
Accepts any combination of reals and integers on its two inputs, and produces a

Boolean output that is TRUE if input <l> is less than input <2>, and FALSE
otherwise. Input <2»> is a constant.

DESCRIPTION

INPUT
<l> - value to be compared
<2> - value to be compared (constant)

QUTPUT
«l> — TRUE if input <1> is less than input <2>, otherwise FALSE

ASSOCIATED FUNCTIONS

F:LT, F:CLT

- 83 -

F:MATRIX2

Intrinsic Function
Data Conversion

PURPOSE

2>

F:MATRIX2

cC

<>

-—

Accepts two 2D vectors and produces a 2x2 matrix.

DESCRIPTION

INPUT
<l> - 2D vector
<2> - 2D vector

OUTPRPUT
<l> = 2x2 matrix

NOTES

2x2

1. The matrix output may be used to update a Z2x2 matrix node in a display
tree or as input to another function.

2. The vector on input <l> is output as the first row of the matrix. The

vector on input <2> is output as the second row.

-84 -

C

(ﬂh\ Intrinsic Function
Data Conversion F:MATRIX3

F:MATRIX3
3D - > <> <I>[---> 3x3
3D >[<2>
D - >[<¢3>
ccC

PURPQOSE

Accepts three 3D vectors and produces a 3x3 matrix.

DESCRIPTION

INPUT
<l> - 3D vector
<2> - 3D vector
<3> - 3D vector

QUTPUT
<l> —= 3x3 matrix

NOTES

I. The matrix output may be used to update a 3x3 matrix node in a display
tree or as input to another function.

2. The vector on input <l> is output as the first row of the matrix. The

vector on input <2> is output as the second row. The vector on input <3> is
the third row.

- 85 -

Intrinsic Function

F:MATRIX4 Data Conversion
F:MATRIX4
4D —~———————- >[<1> <I>|---> 4x4
4D ————————- >[<2>
4D ————————- > <3
4D ~———mme- >[<4>
CcCC
PURPOSE

Accepts four 4D vectors and produces a 4x4 matrix.

DESCRIPTION

INPUT
<l> - 4D vector
<2> - 4D vector
<3> — 4D vector
<4> — 4D vector

QUTPUT
<1> - 4x4 matrix

NOTES

l. The matrix output may be used to update a 4x4 matrix node in a display
tree or as input to another function.

2. The vector on input <l> is output as the first row of the matrix. The

vector on input <2> is output as the second row. The vector on input <3>» is
the third row. The vector on input <4> is the fourth row.

- 86 -

(nm\ Intrinsic Function
Data Selection and Manipulation F :MCONCATENATE(n)

F :MCONCATENATE(n)

S ———— >I<1> I>|---> S

R —— >l<n> 2 |--—> 1

ccC

PURPQOSE

Accepts strings on inputs <l> through <n> and concatenates them into a single
string. Output <l> contains the resulting string and output <2> contains its
length.

DESCRIPTION

INPUT
<> - string
<n> — string

OuUTPUT
<l> - concatenated string
<2> - string length

NOTES

l. The limit to the number of inputs to this function is 127,

- 87 -

Intrinsic Function
F :MOD Arithmetic and Logical

F :MOD

I ————— >[<2>

CC

PURPOSE

Accepts two integers as inputs and produces an integer output that is the
remainder resulting from the division of the value on input <l> by the value on
input <2>. The integer on input <2> must be positive.

DESCRIPTION

INPUT
<l> - integer
<2> - integer

OUTPUT
<l> — remainder from dividing input <1> by input <«2»

NOTES

F:MOD uses a Pascal-like definition of modulo. For a negative integer on input
<l>, the resulting output will be negative. For example, -8 mod 3 is -2.

ASSOCIATED FUNCTIONS

F:MODC

- 88 -

Intrinsic Function

Arithmetic and Logical F :MODC
F :MODC
I ———— >[<1> <I>| === > I
I ——— >[<«2> C
DC
PURPOSE

Accepts two integers as inputs and produces an integer output that is the
remainder resulting from the division of the value on input <l> by the value on
input <2>. Input <2»> is a constant.

DESCRIPTION

INPUT
<l> - integer
<2> - integer (constant)

OQUTPUT
<l> - remainder from dividing input <1> by input <2>

NOTES

F:MODC uses a Pascal-like definition of modulo. For a negative integer on input
<l>, the resulting output will be negative. For example, -8 mod 3 is -2.

ASSOCIATED FUNCTIONS

F:MOD

- 89 -

F:MUL

Intrinsic Function
Arithmetic and Logical

I, R, 2D, 3D, 4D ——->
2x2, 3x3, 4x4

I, R, 2D, 3D, 4D —-——->
2x2, 3x3, 4x4

PURPOSE

<1>

2>

F:MUL

<I>

ccC

-———> I, R, 2D, 3D, 4D
2x2, 3x3, 4x4

Accepts two inputs and outputs their product.

DESCRIPTION

INPUT
<l> - value
<l> - value

OUTPUT
<l> - product

NOTES

The two input values must be compatible data types; the output data type
depends on the combination of input data types. Vectors are taken to be either
row or column vectors, as appropriate, to perform the multiplication.

ASSOCIATED FUNCTIONS

F:MULC, F:CMUL

- 90 -

\J

Intrinsic Function

Arithmetic and Logical F:MULC
F:MULC
I, R, 2D, 3D, 4D ——->|<1> <1>|----> I, R, 2D, 3D, 4D
2x2, 3x3, 4x4 2x2, 3x3, 4x4

I, R, 2D, 3D, 4D ———>{<2> C
2x2, 3x3, 4x4

DC

PURPQOSE

Accepts two inputs and outputs their product. Input <2> is a constant.

DESCRIPTION

INPUT
<l> — value
<1> — value (constant)

OUTPUT
<l> - product

NOTES

The two input values must be compatible data types; the output data type
depends on the combination of input data types. Vectors are taken to be either
row or column vectors, as appropriate, to perform the multiplication.

ASSOCIATED FUNCTIONS

F:MUL, F:CMUL

- 9] -

Intrinsic Function
F:NE Comparison

F:NE
R, T ———-- >I<1> A>|=-=- > B
R, T ———- >1<2>

CC

PURPOSE
Accepts any combination of reals and integers on its two inputs, and produces a

Boolean output that is TRUE if input <l> is not equal to input <2>, and FALSE
otherwise.

DESCRIPTION

INPUT
<l> - value to be compared
<2> - value to be compared

OUTPUT
«l> - TRUE if input <1l> is not equal to input <2>, otherwise FALSE

ASSOCIATED FUNCTIONS

F:NEC

- 92 -

m

Intrinsic Function
Comparison F:NEC

F:NEC
R, T ———-—- >[<1> <> |- > B
R, T ————- >[<2> C

DC

PURPQOSE

Accepts any combination of reals and integers on its two inputs, and produces a
Boolean output that is TRUE if input <l> is not equal to input <2>, and FALSE
otherwise. Input <2> is a constant.

DESCRIPTION

INPUT
<1> - value to be compared
<2> - value to be compared (constant)

OUTPUT
<l> - TRUE is input <1> is not equal to input <2>, otherwise FALSE

ASSOCIATED FUNCTIONS

F:NE

- 93 -

Intrinsic Function
F:NOP Miscellaneous

F :NOP
Any ——————— > A> === > Any
ccC

PURPQOSE

Accepts any message and outputs that message unchanged.

DESCRIPTION

INPUT
<l> - any message

OUTPUT
<l> -~ message on input <1>

NOTES

This function is useful for tying a set of many outputs to a set of many inputs.

- 94 -

\J

, Intrinsic Function
f \ Arithmetic and Logical F:NOT

F:NOT
B ———————- >I<T> > |- > B

ccC

PURPQOSE

Accepts a Boolean input and outputs its complement as a Boolean value.

DESCRIPTION

INPUT
<l> - Boolean

OUTPUT
<1> - logical complement of input <I>»

- 95 _

Intrinsic Function -
F:OR Arithmetic and Logical u

F:OR

B ————- >1<2>
cC

PURPOSE
Accepts two Booleans as input and produces a Boolean output that is the logical

OR of the two inputs.

DESCRIPTION

INPUT u

<l> — Boolean
<2> — Boolean

OouTPUT
<1> - logical OR of the two inputs

ASSOCIATED FUNCTIONS

F:0ORC

- 96 -

Intrinsic Function
Arithmetic and Logical

F:ORC

B ———-- >|1<2> C

F:0ORC

DC

<>

PURPOSE

Accepts two Booleans as input and produces a Boolean output that is the logical
OR of the two inputs. Input <2> is a constant.

DESCRIPTION

INPUT
<l> - Boolean
<2> — Boolean (constant)

QUTPUT

<1> - logical OR of the two inputs

ASSOCIATED FUNCTIONS

F:OR

- 97 -

Intrinsic Function

F:PARTS Data Conversion
F:PARTS
2D, 3D, 4D —~—————————- >[<1> <1>{---—> R, 2D, 3D, 4D
2x2, 3x3, 4x4
<2>|----> R, 2D, 3D, 4D
<3>|----> R, 3D, 4D
<4>|----> R, 4D

CD

PURPOSE

Separates a vector into its elements or a square matrix into its row vectors.

DESCRIPTION

INPUT
<l> - any vector or matrix

OuTPUT
¢<l> - x component or row vector
<2> — y component or row vector
<3> - z component or row vector
<4> — w component or row vector

NOTES

1. If a square matrix is sent to input <l»>, its row vectors appear in sequence
at the outputs.

2. If a vector is input, its components are output as real numbers. The x
component is output on output <l»>, the y component on output <2>, and the
z and w components (if any) on output <3> and output <4> respectively.

3. Note that some outputs are not always used. For example, if a 3x3 matrix
or a 3D vector is sent to F:PARTS, nothing is output on output <4>.

- 98 -

Intrinsic Function
(”‘\ Data Selection and Manipulation F:PASSTHRU(n)

F:PASSTHRU(n)
Any —————— >[<1> <1>|----> Any
Any —————— > <ﬁ> <n>|----> Any
DD

PURPOSE

Immediately passes the message which arrives at any input to all function
queues connected to its associated output.

() DESCRIPTION

INPUT
<l> - Any message
<n> — Any message

OUTPUT
<l> - Message on input <1>»
<n> — Message on input <n»

NOTES
l. A message is passed through as soon as it arrives at an input queue. The
function does not have to wait for messages on all its inputs before it

becomes active.

2. The SETUP CNESS command cannot be used with this function.

- 99 _

Intrinsic Function

F:PICKINFO Miscellaneous
F:PICKINFO
PL ————- > <> <A>--—-->1
I ————- >[<2> C 2>|----> S
<3>|----> 2D, 3D
A4>|---—> 1
<5>|----> B
<6>|----> R
KI>|--—-->1
<8>|----> Special
DD
PURPOSE

Reformats picklist information for use by other functions. The output picklist
is separated into its component parts.

DESCRIPTION

INPUT
<l> - picklist

<2> - depth within structure reported (constant)

OuTPUT
<l>» - index
<2> - pick identifier(s)
<3> - coordinates
<b4> — dimension
<5> - coordinates reported
 — curve parameter, t
<7> - data type code
<8> - name of picked element

- 100 -

- ~

\J

Intrinsic
Miscellane

Function
ous F:PICKINFO

(continued)

DEFAULTS

The default depth on input <2> is all.

NOTES

1.

Input <l> accepts a picklist. Since the only source of a picklist is the
initial function instance PICK, instances of F:PICKINFO must be connected
to PICK.

Input <2> accepts an integer that specifies the depth within a structure
that will be reported when a pick occurs. For example, if the picked item
were at the fiftieth level within pick identifiers (i.e., the picked data could
be appended with 49 pick identifiers separated by commas) and the integer
2 were input on input <2>, then only the identifier of the picked item and
the item directly above it in the structure would be output as the string on
output <2>.

The output information varies with the type of picklist supplied. If the
associated PICK function instance has a TRUE on input <2», it supplies a
detailed coordinate picklist, and most or all of F:PICKINFO's outputs are
activated. If the associated PICK has a FALSE on input <25, a less detailed
picklist is supplied, and only F:PICKINFO outputs <l>, <2>, and <5> are
activated.

The integer on output <l> is the pick index, indicating which vector (in a
vector list), character (in a character string), label (in a labels block), or
parameter value (in a POLYNOMIAL or RATIONAL POLYNOMIAL curve) was
picked. Vectors (or characters or labels) are assigned consecutive integer
values in order of their appearance in the list (or string or labels block),
beginning with 1.

Output <2» is a string containing the requested pick ID's.

Output <3> is a 2D or 3D vector giving the coordinates of the intersection
of the pickbox with the picked vector. Its data type depends on the data
type of the picked vector (2D or 3D). Qutput <3> also reports the start
location of a picked character string or label. (This output is supplied only
for coordinate picklists.)

Output <4> gives the dimension (2 or 3) of the picked vector. (This output
is supplied only for coordinate picklists.)

- 101 -

F:PICKINFO

Intrinsic Function
Miscellaneous

(continued)

NOTES (continued)

8.

11,

12.

Output <5> is TRUE if coordinate picking information is being sent out, and
FALSE otherwise. Qutput <5> is also false if coordinate picking is
attempted on a character.

QOutput <6> gives the value of a polynomial parameter t (from 0 to I,
inclusive). This output is activated only for coordinate picklists resulting
from picking a vector created by the POLYNOMIAL command or RATIONAL

POLYNOMIAL command.

Output <7> is for an integer code specifying the data type of the object
picked. The code may have values | through 8, corresponding to the
following data types: (1) CHARACTERS; (2) 2D vector; (3) 3D vector (4) 2D
POLYNOMIAL or RATIONAL POLYNOMIAL; (5) 3D POLYNOMIAL or RATIONAL
POLYNOMIAL; (6) 2D BSPLINE or RATIONAL BSPLINE; (7) 3D BSPLINE or
RATIONAL BSPLINE; (8) LABELS.

When output <8> is connected to <1>F:PRINT it causes F:PRINT to produce
the name of the VECTOR LIST, CHARACTERS, LABELS, BSPLINE, RATIONAL
BSPLINE, POLYNOMIAL, or RATIONAL POLYNOMIAL command containing the

picked vector.

If the command containing the picked vector is not named, a null is output
at <8».

- 102 -

Intrinsic Function
Miscellaneous F:POSITION LINE

F:POSITION LINE
2D, 3D, 4D -—>|<I>» <1>|---> 2D, 3D, 4D
B, S ———————- >[<2> C

DC

PURPOSE

Accepts a 2D, 3D, or 4D vector on input <l>. A Boolean on input <2> is used to
assign a position (P) or line (L) to be associated with the vector. A string sent
to input <2> consists of either a P or an L identifier. The vector, with the
position/line condition specified by the Boolean, is output on output <l>.

DESCRIPTION

INPUT
<l> - any vector
<2> - Boolean or string (constant)

OQUTPUT
<l> — vector with P or L identifier

NOTES

A TRUE on input <2> causes a line (L) to be associated with the vector; a
FALSE on input <2»> causes a position (P) to be associated with the vectaor. The
outputs from this function (vectors with position/line specifications) can only be
applied to a vector list data node in a display tree. No function accepts such
vectors as inputs.

- 103 -

Intrinsic Function
F:PRINT Data Conversion

F:PRINT

P —— >|<2> C
DC

PURPOSE
Converts any data type to string format; that is, it performs an inverse of the

operation that occurs when an ASCII string is input to the PS 300 and is
converted to one of the data types.

DESCRIPTION

INPUT

<l> - any message

<2> - Boolean governing numeric format (constant)
CUuTPUT

<«l> - string

DEFAULTS

The default for input <2> is FALSE, indicating decimal format.
NOTES

l. Any message on input <l> is converted to string format and sent out on
output <l>.

- 104 -

Intrinsic Function
Data Conversion

F:PRINT

NOTES (continued)

2.

(continued)

Input <2> governs the format of real numbers and vectors (but not matrix
elements) in the output string. When input <2»> is FALSE, these values have
the usual decimal format (e.g., '.001'). When input <2> is TRUE, these
values are in exponential format (e.g. 'l.000000E-3'). (Integers, on the
other hand, are never in exponential format.) The output character string
that results from each type of input follows:

Input Data Type

‘Output Character String

Boolean
Character
String

Integer

Real

'FALSE' or 'TRUE".
The same character that was input.
The same character string that was input.

The character representation of the integer; e.g.,
'129', '-107543",

A character representation of the real number;
e.g., '3.1416", '2.3E2" etc.

All vectors are preceded by a P (position), L (line), or V (no P or L)
designation. ("X" in the following vector descriptions indicates P, L, or V.)

Input Data Type

Output Character String

2D Vector

3D Vector

4D Vector

Two real numbers separated by a comma; e.g., 'X
3.5,.0715"

Three real numbers separated by commas; e.g., 'X
3.1416,-275.012,3.5'

Four real numbers separated by commas; e.g., 'X
3.1416,-275.012,3.5,.0715'

- 105 -

F:PRINT

Intrinsic Function
Data Conversion

(continued)

NOTES (continued)

Input Data Type

Output Character String

2x2 Matrix

3x3 Matrix

4x4 Matrix

Pick list

Two 2D vectors (nine-digit precision, exponential
format) separated by a space; e.g.,
'1.23456789E01, -2.56900187E-02 3.14159265E01,
2.71828183E01")

Three 3D vectors (nine-digit precisiorn,
exponential format) separated by spaces.

Four 4D vectors (nine-digit precision, exponential
format) separated by spaces.

The format of a picklist string depends on
whether coordinate information was requested for
the picklist (refer to F:PICKINFO and the PICK
initial function instance) and, if it was requested,
whether it was given. (For example, a vector in a
character is not susceptible to standard
coordinate picking.) All of these formats contain
the clause «<pick ID's>. This clause contains two
things: first, a list of pick identifiers established
in SET PICK ID, with the "closest" pick identifier
first; second, a space followed by the name of the
original data-definition command corresponding
to the picked object. If this command is not
named, neither a name nor a space follows the
pick identifiers.

If no coordinate picking information was
requested (input <2> of the associated PICK
function instance is FALSE), the output string has
the format

<index><pick ID's>

for a vector in a declared vector list (including
WITH PATTERN lists) or for a character in a string
or label in a block, and

< >¢pick ID's>

for a vector in a polynomial curve.

- 106 -

\J

W

M

Intrinsic Function
Data Conversion

F:PRINT

NOTES (continued)

Input Data Type

(continued)

Output Character String

Pick list (cont.)

If coordinate picking information was requested
and given (i.e., if input <2> of the associated PICK
is TRUE, and it was not a character vector), then
the output string format is

<I><dimension><pick_x, pick y, [pick z]»
<index><pick ID's>

for a vector in a declared vector list and

<2><dimension><pick_x, pick_y,[pick zl><t>
<pick ID's>

for a vector within a polynomial curve, where
<dimension> and «<t> are as defined for
F:PICKINFO.

For a character in a string the format is

<3><dimension><start x, start y, start z»
<index><pick ID's>

and for a label in a labels block, the format is

<5><dimension><start _x, start_ y, start z»
<index><¢pick ID's>

If picked coordinates were requested but not
given (i.e., input <2> of the associated PICK is
TRUE and a vector in a character or in a
polynomial curve was picked), the output string
format is

<3><index><pick ID's>

- 107 -

F:PUT STRING

Intrinsic Function
Data Selection and Manipulation

PURPOSE

F:PUT_STRING
S - > <> <A>[---=> S
I ———— > <2> >|---—-> B
S —————- >[<3>
CC

Replaces characters in the string on input <l> with the string on input <3»>,
starting at the position specified by the integer on input <2>. The resulting
string may be longer than the original string if the string on input <3> overlaps.
The Boolean on output <2> is TRUE if the resulting string is the same length as
the string on input <l>, and FALSE otherwise.

DESCRIPTION

INPUT
<l> -
2> -
<3> -

QUTPUT
<> -
<2> —

string
starting location for replacing characters
replacement characters

resulting string
TRUE = resulting string same length as the original, FALSE =

resulting string longer than the original

- 108 -

U

’ﬂa\ Intrinsic Function
Data Selection and Manipulation F:RANGE_SELECT

F:RANGE_SELECT
R, 2D, 3D -———————- >[<1> <>|-— > R, 2D, 3D
R, 2D, 3D - >1<2> C 2> |-=-—- > R, 2D, 3D
R, 2D, 3D ———-————- >1<3> C 3> |-——-- > R, 2D, 3D
DD
PURPQOSE

Compares the value on input <l> to the maximum and minimum on inputs <2>
and <3> to determine whether the value is in range or not.

DESCRIPTION

INPUT
<l> - value
<2> — maximum (constant)
<35> — minimum (constant)

OuUTPUT
<l> - in-range, normalized
<2> - in-range, unchanged
<3> - out-of-range, unchanged

NOTES

l. Accepts real number values or 2D or 3D vectors on all inputs. The data
type must be the same on all inputs, as must the vector dimensions (that is,
all vectors must be either 2D or 3D). The type of data output from the
function is the same type that is input to the function.

2. The value on input <l> is compared to the constant maximum value on
input <2> and the constant minimum value on input <3>.

Intrinsic Function
F:RANGE_SELECT Data Selection and Manipulation

(continued)

NOTES (continued)

3. If the value on input <l»> is within the range defined by the minimum and
maximum values (input <3> <= input <l> <= input <2>) then the value on
input <l> is sent out on outputs <l> and <2>..

4, The value on output <l> is normalized to the maximum/minimum values of
inputs <2> and «<3>. The value on output <2> is identical to the input «<l»
value. If the value is in range, nothing is sent out on output <3>.

5. If the value on input <l> is not within range, it is output on output <3>
unchanged. Data is normalized for output <l> by:

X] _ Xmin
normal X value = - 0.5
X range
Y! _ Ymin
normal Y value = - 0.5
Y range
Zl _ Zmin
normal Z value = - 0.5
Z range

- 110 -

(ﬂh\ Intrinsic Function
Arithmetic and Logical F :ROUND

F :ROUND
R —————— >[<1> <> -===—- > 1

CC

PURPOSE

Accepts a real number and outputs the nearest integral value.

DESCRIPTION

INPUT
<l> - real number

OUTPUT
<l> - nearest integral value

NOTES

Values n to n.4999...9 are rounded to n; values n.5 to n.9999...9 are rounded to
n+l. Values -n to -n.4999...9 are rounded to -n; values -n.5 to -n.999...9 are
rounded to -n+(=1).

Intrinsic Function

F:ROUTE(n) Data Selection and Manipulation
F:ROUTE(n)
I - >[<1> > - > Any
Any ——————- >[<2> D > Any
<ﬁ> —————— > Any
CD
PURPQOSE

Uses the integer on input <l> to route the message on input <2> to the output
whose number matches the input <1> integer.

DESCRIPTIGON

INPUT

<l> — number of selected output (1 through n)

<2> - any message

CuUTPUT

<l> - message on input <2>

<n> — message on input <2>

NOTES

The message on input <2> may be of any data type. The "n" in the function

name can be any integer from 2 to 127.

If the integer on input <l> is not a

number from | to n inclusive, then an error is detected and reported.

ASSOCIATED FUNCTIONS

F:ROUTEC(n) and F:CROUTE(n)

- 112 -

U

Intrinsic Function

M Data Selection and Manipulation F:ROUTEC(n)
F:ROUTEC(n)
I o >[<T> <> |- > Any
Any —————— >[<«2> C @2>|-———- > Any
N> | === > Any
DD
PURPOSE
Uses the integer on input <l> to switch the message on input <2> to the output
m whose number matches the input <1 integer. Input <2> is a constant.
DESCRIPTION
INPUT

<!> — number of selected output (1 through n)
<2> — any message (constant)

OuTPUT
<l> - message on input <2>

<n> — message on input <2>

NOTES

The message on input <2> may be of any data type. The "n" in the function
name may be any integer from 2 to 127. If the integer on input <l> is not a
number from | to n, inclusive, then the message on input <2> is held until a
valid integer is received on input <l>.

ASSOCIATED FUNCTIONS

‘) F:ROUTE(n), F:CROUTE(n)

- 113 -

F:SCALE

Intrinsic Function
Object Transformation

PURPQOSE

<>

F:SCALE

cC

Accepts a real value, an integer, or a 3D vector. If a real is input, the scaling
factor represented by the real value is applied to X, Y, and Z. A 3x3 scaling
matrix is output that may be used to update a scaling element of a display data

structure.

DESCRIPTION

INPUT
<l> = value

OUTPUT

<l> - 3x3 scaling matrix

NOTES

If a 3D vector is input, the X component of the vector is the scaling factor for
X, the Y component of the vector is the scaling factor for Y and the Z
component of the the vector is the scaling factor for Z.

- 114 -

Intrinsic Function

(”\ Data Selection and Manipulation F:SEND
F:SEND
Any ———— >[<T>
S ————— >[<2>
I ———- >[<3>
C
PURPOSE

This is the function network equivalent of the SEND command. It allows you to
send any valid data type to any named entity at any valid index.

() DESCRIPTION

INPUT
<l> - message sent
<2> — name of the destination node
<3> — index into the destination node

NOTES
l. This function has no output.

2. Input <I> accepts special data types that most functions do not accept,
such as the data type output by F:LABEL.

3. The SETUP CNESS command can be used to specify constant inputs as
default values.

- 115 -

Intrinsic Function

F:SINCOS Arithmetic and Logical
F:SINCOS
A>|-==—= > R
R ——————- >[<1>
2>|-————- > R
cc
PURPOSE

Accepts a real number on input <l> which represents an angle in units of
degrees. The sine of that angle is output as a real number on output <l>, and
the cosine of that angle is output as a real number on output <2>».

DESCRIPTION
INPUT
<l> - angle
QUTPUT
<l> - sine

<2> - cosine

- 116 -

(ﬂ‘\ Intrinsic Function
Data Selection and Manipulation F:SPLIT

F:SPLIT
S ———- >[<1> <O>|-====- > S
S ————- >[<«2> C 2>|--—-—- > S
3>|-——-- > S
Ab>|-————- > B
DD

PURPQOSE
Accepts character strings on inputs <l> and <2>. The string on input <2> is a

: constant. When the string is received on input <l>, it is compared to the string
f » on input <2> for an exact match.

DESCRIPTICON

INPUT
<l> - string
<2> - string (constant)

OUTPUT
<l> — characters preceding match
<2> - matching characters
<3> - characters following match
<4> — TRUE if matching inputs, FALSE otherwise
NOTES

1. If a match occurs, characters in the string on input <l> that precede the
match are output on output <l>. Matching characters are output on output
<2>. Characters following the matching characters are output on output
<3>. And a Boolean TRUE is output on output <4>.

2. If no match is found, nothing is output on outputs <l>, <2>, and <3>, and a
Boolean FALSE is output on output <4>.

Intrinsic Function ‘ ’
F : SQROOT Arithmetic and Logical

F:SQROOT
I, R ——=>[<1> 'S DY [— > R

cC

PURPOSE

Extracts the square root of the real number or integer on input <l>.

DESCRIPTION

INPUT
<l> — real or integer

OUTPUT
<1l> - square root

NOTES

The output is always real. If the input is negative, the output is 0.

- 118 -

m

Intrinsic Function
Data Conversion F:STRING_TO_NUM

F:STRING_TO_NUM

S ————- > <> <I>]-———> R

CC

PURPOSE

Outputs the value of a string of digits as a real number. If the function
receives characters that cannot represent a number then an error message is
generated.

DESCRIPTION

INPUT
<l> - string of digits

QUTPUT

<1> — value of the string on input <1>

NOTES

A valid number can contain any or all of the following components: decimal
point, 'E' expression, plus or minus sign, numerals.

- N9 -

Intrinsic Function

F:SUB Arithmetic and Logical
F.SuB
I, R, 2D, 3D, 4D ———- > <> QB E— > I, R, 2D, 3D, 4D
2x2, 3x3, 4x4 2x2, 3x3, 4x4
I, R, 2D, 3D, 4D ———- >1<2>
2x2, 3x3, 4x4
ccC

PURPQOSE

Accepts two inputs and produces an output that is the difference of the two
inputs (input <2> is subtracted from input <1>).

DESCRIPTION

INPUT
<l> = minuend
<2> — subtrahend

ouTPUT
<l> - difference
NOTES
The two input values must be of the same data type (except a combination of

real and integer is allowed); the output data type depends on the input data
type. If a real and an integer are input, a real is output.

ASSOCIATED FUNCTIONS

F:SUBC, F:CSUB

- 120 -

Intrinsic Function

Arithmetic and Logical F:SUBC
F:SUBC
I, R, 2D, 3D, 4D ——-- >[<1> Y DY —— > I, R, 2D, 3D, 4D
2x2, 3x3, 4x4 2x2, 3x3, 4x4
I, R, 2D, 3D, 4D ——-—- >|<2> C
2x2, 3x3, 4x4
DC
PURPQOSE

Accepts two inputs and produces an output that is the difference of the two
inputs (input <2> is subtracted from input <1>). Input <2> is a constant.

DESCRIPTION

INPUT
<l> = minuend
<2> - subtrahend (constant)

QUTPRPUT
<1l> - difference

NOTES

The two input values must be of the same data type (except a combination of
real and integer is allowed); the output data type depends on the input data
type. If areal and an integer are input, a real is output.

ASSOCIATED FUNCTIONS

F:SuB, F:CSUB

- 121 -

Intrinsic Function
F:SYNC(n) Miscellaneous

F:SYNC(n)

Aﬁy ————— > <n; an>|----- > Any

cC

PURPOSE

Synchronizes the output of a specified number of messages. The number, "n",
may have any value from 2 to 127.

DESCRIPTION

INPUT
<l> - any message

<n> - any message

OUTPUT
<l> - any message

<n> — any message

NOTES

1. F:SYNC(n) waits until a message is received on all of its "n" inputs, then
sends the messages out; for example, F:SYNC(32) synchronizes 32 messages.

2. Usually, the outputs of an F:SYNC(n) function instance are connected to
nodes in a display tree to assure that updates to displayed data are

synchronized.

3. Outputs from F:SYNC(n) are effectively simultaneous. In fact, outputs are
sequential (<1> through <n>) at a rapid rate.

- 122 -

Intrinsic Function
Data Selection and Manipulation F:TAKE_STRING

F:TAKE_STRING
S —————- > <1> <I>|--—--> S
I ——— >|<2> 2>|----> B
I ———- >[<3>
cCC

PURPQOSE

QOutputs a string consisting of the number of characters specified on input <2>
taken from the string on input <l>, starting at the position given on input <3>.
A TRUE on output <2> means that there were enough characters left in the
string. A FALSE means there were not enough characters, so the output string
was truncated.

DESCRIPTION

INPUT

<l> - string

<2> - starting position

<3> — number of characters to take

OuUTPUT

<1> - resulting string
<2> - TRUE = enough characters, FALSE = output string truncated

- 123 -

Intrinsic Function

F:TIMEOUT Timing
F:TIMEOUT
Any ——--- > <1> <> |-==——- > Any
I ——————- >[<2> C A > B
3| --——-= > B
DC
PURPQOSE

Provides the means to detect the occurrence of consecutive messages on input

<l> within the time interval specified in centiseconds by the constant integer

on input <2>.

DESCRIPTION

INPUT

<l> - message on input <1>
<2> - time interval (constant)

ouTPUT

NOTES

<l> - any message
2> - TRUE = timeout, FALSE = no timeout
<3> - logical complement of output <2>

Once the first message is received on input <l>, the subsequent message
must be received in the duration specified on input <2> in order to be
passed through the function. Then the third message must be received
within that specified duration after the second message, and so on.

The first message to input <l> serves only to start the timeout
measurement, and never generates an output.

- 124 -

(’"\ Intrinsic Function

Timing

F:TIMEOUT

(continued)

NOTES (continued)

3.

If any subsequent messages are received at input <l> within the time
interval specified on input <2>, only the last message is sent on output <1»
at the end of the interval; all intervening messages are discarded.

If a message on input <l> is not received within the specified time, the
Boolean on output <2> is TRUE. If a message on input <l» is received
within the interval, the Boolean on output <2»> is FALSE. Output <3> is the
complement of output <2>.

This function is especially useful to determine a data tablet stylus
out-of-range condition. If the message from the data tablet stylus is
connected to input <l»> of this function and an appropriate duration is
specified on input <2>, then the inputs from the data tablet will be passed
through the function until the duration is exceeded.

- 125 -

Intrinsic Function
F:TRANS_STRING Data Conversion

F:TRANS_STRING
S - > <> <I>f-—--> S
I —————- >1<2> C
S >|1<3> C
DC

PURPOSE

Translates the string on input <l»> into the output string using the string on
input <3> as a translation table. The integer on input <2> is the beginning place
(i.e., the ASCII decimal equivalent or ORD) of the first character to be
translated. Inputs <2> and <3> are constants.

DESCRIPTION

INPUT
<l> - string
<2> - first character to be translated (constant)
<3> - translation table (constant)

OUTPUT
<1l> - translated string

NOTES

1. The upper-limit of the number of characters to translate is the length of
the string on input <3>

EXAMPLE
SEND 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' TO «3>Trans String;
SEND FIX(97) TO <2>Trans String; { the ASCII equivalent of 'a'}
SEND 'abcdefghijklmnopgrstuvwxyz' TO <1>Trans String;

The lower case letters send to input <l> will be translated to upper case on
output <l»>.

- 126 -

m

Intrinsic Function

Data Conversion F:VEC
F:VEC
R, 2D, 3D ——————- >« <1>|----> 2D, 3D, 4D
R —— e > <2>
cC
PURPOSE

Accepts two real numbers and outputs a 2D vector, accepts a 2D vector and a
real number and outputs a 3D vector, or accepts a 3D vector and a real number
and outputs a 4D vector.

DESCRIPTION

INPUT
<l> - real, 2D, or 3D vector
<2> - real number

OUTPUT
<l> - vector consisting of the value on input <1> with the real on
input <2> appended
NOTES

The output vector is the real number or vector from input <l> with the real
number from input <2> appended as the last vector component.

ASSOCIATED FUNCTIONS

F:VECC, F:CVEC

- 127 -

F:VEC_EXTRACT

Intrinsic Function

Data Selection and Manipulation

I —————- <>

S —————- >[<2>

CC

F:VEC_EXTRACT

<>
2>
<3

4>

PURPQOSE

-1
----> 2D, 3D, 4D
----> R

> B

Extracts information about a vector in a vector list node given an index into the
vector list on input <1> and the name of the vector list node on input <2>.

DESCRIPTION

INPUT
<l> - index of the vector in question
<2> — name of the vector list node

OUTPUT
<l> - data type
<2> — the vector in question
<3> — intensity
<4> - TRUE = Position, FALSE = Line

NOTES

1. The integer on output <l> is the same as would be sent from output <7> of

F:PICKINFO.

- 128 -

G

U

Intrinsic Function

Data Conversion F:VECC
F:VECC
R, 2D, 3D ——————- > <1> <1>|----> 2D, 3D, 4D
R —— >[<2> C
DC
PURPQOSE

Accepts two real numbers and outputs a 2D vector, accepts a 2D vector and a
real number and outputs a 3D vector, or accepts a 3D vector and a real number
and outputs a 4D vector. Input <2> is a constant.

DESCRIPTION

INPUT
<1l> -real, 2D, or 3D vector
<2> - real number (constant)

OuUTPUT
<1> - vector consisting of the value on input <1> with the real on
input <2> appended
NOTES
The output vector is the real number or vector from input <l> with the real

number from input <2> appended as the last vector component.

ASSOCIATED FUNCTIONS

F:VEC, F:CVEC

- 129 -

Intrinsic Function

F:WINDOW Viewing Transformation
F : WINDOW
Any ———————- >I<1> <> === > 4x4
R - - >[<2> C
R >[<¢3> C
R ———mm >|<4> C
R - —— >1<5> C
R - - >[<6> C
N >|<7> C
DC
PURPQOSE

This is the functional counterpart of the WINDOW command. The windowing
matrix that results from this function defines a viewing area for orthographic
views (parallel projections) of abjects.

DESCRIPTION

INPUT
<>
<2>
<3>

<5>
<6>
<7>

OUTPUT
<> — 4x4 matrix

trigger

X
X
Yy
Y
z
z

minimum (constant)
maximum (constant)
minimum (constant)
maximum (constant)
minimum (constant)
maximum (constant)

- 130 -

~

\J

Intrinsic Function
Viewing Transformation F:WINDOW

(continued)

NOTES

1. F:WINDOW accepts any message on input <l»> to trigger the function and
constant real values on inputs <2> through <7>. These real values define
the boundaries of a three-dimensional rectangular volume within which
objects can be viewed in parallel projection (i.e. no perspective is imposed).

2. This volume is defined by expressing a rectangle in terms of xmin (input
<2>), xmax (input «<3>), ymin (input <4>), and ymax (input <5>). The
rectangle is then extended into a three dimensional volume by specifying
zmin (input <5>) and zmax (input <75).

- 131 -

Intrinsic Function —
F:XFORMDATA Data Conversion \ }

F:XFORMDATA

Any ———————- ><1> D > Special

S >[<2> C

S >[<3> C

I - >|<4> C

I —————;————> <5 C

DC
PURPOSE

Sends transformed data (either a vector list or a 4x4 matrix) to a specified
destination (e.q., the host, a printer, or the screen). u

DESCRIPTION
INPUT
<l> - any message
<2> — name of XFORM node (constant)

<35> - name of destination object (constant)
<4> - destination vector index (constant)
<5> — number of vectors (constant)

|

QUTPUT
<l> - special data type used exclusively as input to F:LIST

DEFAULTS

Default for input <4> is |, default for input <5> is 2048.

- 132 -

Intrinsic Function
Data Conversion F : XFORMDATA

(continued)

NOTES

1. Input <l> is a trigger for F:XFORMDATA. This input would typically be
connected to a function button, either directly or via F:SYNC(2), allowing
transformed data to be requested easily.

2. Input <2»> is a string or matrix containing the name of the XFORM command
in the display tree (either XFORM MATRIX or XFORM VECtor). By referring to
an XFORM command, this input’ indirectly specifies the object whose
transformed data is to be sent. If the string names something other than
an XFORM command, an error message is displayed. If the string names a
node which does not exist, an error message is sent and the message is
removed from input <2>.

3. Input <3> is a string containing the name to be associated with the
transformed vectors. The name need not be previously defined. If this
input does not contain a valid string, the transformed matrix or vectors
will be created without a name (an acceptable situation unless the
transformed vectors need to be referenced or displayed.) The transformed
vector list can be displayed or modified, provided a name is given on this
input. The transformation matrix cannot be used, however, so naming and
sending it to input <3> is not useful.

4. Input <4> is an integer index specifying the place in a vector list at which
the PS 300 is to start returning transformed data. This input is only used
when the command name at input <2> represents an XFORM VECtor
command (not an XFORM MATRIX command). The default value is 1.

5. Input <5> 1is an integer number of consecutive vectors for which
transformed data is to be returned, starting at the vector specified at input
<4>. This input is only used when the command name at input «<2>
represents an XFORM VECtor command (not an XFORM MATRIX command). No
more than 2048 consecutive vectors may be returned. The default value is
2048,

6. Output <l> contains the transformed data in a format which can only be
accepted by input <1> of F:LIST (F:LIST then prints out the data in ASCII
format —- either a PS 300 VECTOR_LIST command or a PS 300 MATRIX 4X4
command, depending on whether the command named at input <2> was an
XFORM VECtor or an XFORM MATRIX).

- 133 -

Intrinsic Function
F:XOR Arithmetic and Logical

F:XOR

B —————- >[<2>

cCC

PURPQOSE

Accepts Boolean values on inputs <l»> and <2», performs an exclusive-OR
function on the values, and outputs the result as a Boolean value. That is, if the
Boolean values on both inputs are the same, the output is FALSE; if the Boolean
values on the inputs are different, the output is TRUE.

DESCRIPTION

INPUT
<l> - Boolean
<2> — Boolean

QUTPUT
<l> - exclusive OR of inputs

ASSOCIATED FUNCTIONS

F:XORC

- 134 -

Intrinsic Function

Arithmetic and Logical F:XORC
F :XORC
B —————-- >[<1> A= > B
B ————me >{<2> C
DC
PURPQOSE

Accepts Boolean values on inputs <l> and <2>, performs an exclusive-OR
function on the values, and outputs the result as a Boolean value. Unlike F:XOR,
for which both inputs are active, F:XORC input <25 is a constant. If the Boolean
values on both inputs are the same, the output is FALSE; if the Boolean values
on the inputs are different, the output is TRUE.

DESCRIPTION

INPUT
<l> - Boolean
<2> — Boolean (constant)

OUTPUT
<l> - exclusive OR of inputs

ASSOCIATED FUNCTIONS

F:XOR

- 135 -

Intrinsic Function
F:XROTATE Object Transformation

F:XROTATE
R, T ————- >[<1> <KA> |- > 3x3
ccC

PURPQOSE

Accepts a real value or an integer that specifies the number of degrees about
the X axis that the rotation matrix generated by the function is to represent.

DESCRIPTION

INPUT
<l> - real value or integer

QUTPUT
<l> — 3x3 rotation matrix

NOTES

The 3x3 rotation matrix which is output may be used to update a rotation node
in a display tree.

- 136 -

» Intrinsic Function
(\ Data Conversion F:XVECTOR

F:XVECTOR
R ~—erm >I<> A>|-—=--—- > 3D
ccC

PURPOSE

Accepts a real on input <!> and outputs a 3D vector.

DESCRIPTION

INPUT
<l> = real number

(@) OUTPUT

<l> - 3D vector
NOTES

In the 3D vector which is output, x is equal to the input real, and y and z are 0.
For example, if 3 were input, the 3D vector output would be 3,0,0.

- 137 -

Intrinsic Function
F:YROTATE Object Transformation

F:YROTATE
R, T ———- ><1> A>|—=—- > 3x3

CC

PURPOSE

Accepts a real value or an integer that specifies the number of degrees about
the Y axis that the rotation matrix generated by the function is to represent.

DESCRIPTION

INPUT
<l> - degrees rotation in Y

OQUTPUT
<l> = 3x3 rotation matrix

NOTES

The 3x3 rotation matrix that is output may be used to update a rotation node in
a display tree.

- 138 -

Intrinsic Function
Data Conversion F:YVECTOR

F:YVECTOR
R ~=——- >I<I> '4 D) Epm— > 3D
cCcC

PURPOSE

Accepts a real on input <1> and outputs a 3D vector.

DESCRIPTION

INPUT
<l> — real number

OUTPUT
<1> = 3D vector

NOTES

In the 3D vector which is output, y is equal to the input real, and x and z are 0.
For example, if 4 were input, the 3D vector output would be 0,4,0.

- 139 -

Intrinsic Function
F:ZROTATE Object Transformation

F:ZROTATE
R, T ——————- >[<1> (G D) T — > 3x3

CC

PURPOSE

Accepts a real value or an integer that specifies the number of degrees about
the Z axis that the rotation matrix generated by the function is to represent.

DESCRIPTION

INPUT
<l> - degrees rotation in Z

OUTPUT
<l> - 3x3 rotation matrix

NOTES

The 3x3 rotation matrix that is output may be used to update a rotation node in
a display tree.

- 140 -

Intrinsic Function
Data Conversion

F:ZVECTOR

R ————- >1<T>

F:ZVECTOR

ccC

<>

PURPOSE

Accepts a real on input <1> and outputs a 3D vector.

DESCRIPTION

INPUT
<l> - real number

OUTPUT
<l> - 3D vector

NOTES

In the 3D vector which is output, z is equal to the input real, and x and y are 0.
For example, if 5 were input, the 3D vector output would be 0,0,5.

- 141 -

- 142 -

M

Initial Function Instance
BUTTONSIN

Input
BUTTONSIN
(BUTTONSIN2)
(Connected to-——->[<1> 4B e —— > 1
Function Buttons
Unit at system
initialization) 2> > B
cCC
PURPOSE
Detects activity from the Function Buttons Unit on input <l>, which is
system-connected at-initialization.
DESCRIPTION
INPUT
<l> - connected to Function Buttons
OUTPUT
<> - number of the button activated
«2> - TRUE = on, FALSE = off
NOTES

Output occurs when one of the 32 buttons is pushed. The number of the pushed
button appears at output <l>, and its light state (TRUE for on, FALSE for off)

at output <2>.

- 143 -

Initial Function Instance o
CLEAR_LABELS Output \JJ/

CLEAR_LABELS
(CLEAR_LABELS2)

Connected to Dial
B ————— >1<1> 4 DY S ——— > Labels and Function
Key Labels at System

Initialization
CC

PURPOSE

Clears the control dial LED labels and the function key LED labels. If input <I>
is TRUE, the labels are cleared; otherwise, no action is taken.

DESCRIPTION

INPUT u

<I> - TRUE = clear labels, FALSE = no action

OQUTPUT
<I> - connected to Dial and Function Key labels

NOTES

The INITialize command sends a TRUE to this function instance, clearing all
LED labels.

- 144 -

Initial Function Instance

("\ Input DIALS

DIALS
(DIALS2)
> |- > R
2> |-=-=-—- > R
3>l > R
Connected to----- > <I> D B >R
Control Dials
at System <5>|--———= > R
Initialization
|————~- > R
D > R
B> |-———-- > R
(ﬂa\ cCD

PURPOSE

Produces eight real number outputs that correspond to inputs from control dials
1 though 8.

DESCRIPTION

INPUT
<l> - Connected to Control Dials

OUTPUT
<l> - real number
<2> - real number
<3> - real number
<4> ~ real number
<5> - real number
<6> - real number
<7> - real number
<8> - real number

- 145 -

Initial Function Instance
DIALS Input

(continued)

NOTES

l. The control dials are numbered from 1 through 4, left to right across the
top row and from 5 to 8, left to right across the bottom row.

2. The message from each control dial is converted to a real number value,
which is the incremented value from the dial normalized to between -1.0
and +1.0. This value is sent out on the output (<1»>...<8>) that corresponds
to the number of the dial that sent the message.

- 146 -

Initial Function Instance
Output DLABEL1 ... DLABELS

DLABEL1 ... DLABELS8

(DLABEL21 ... DLABEL28)
S ——— - >[<1>
4 D) E— > Connected to

Dial Labels
 J— >|<2> C at System

Initialization
B ————m >[<«3> C

DC

PURPQOSE

Eight function instances are provided to separately label the eight LED
indicators above each control dial. DLABEL1 is used to label the LED indicators
associated with the first control dial (leftmost, top row); DLABEL2 is used to
label the LED indicators associated with the second control dial (second from
left, top row); and so on, through DLABEL8, which is used to label the LED
indicators associated with the eighth dial (rightmost, bottom row).

DESCRIPTION

INPUT
<1> - label message
<2> - blink/no blink (constant)
<3> — center/left justify (constant)

QUTPUT
<l> - connected to Control Dials

- 147 -

DLABEL1

Initial Function Instance
. DLABELS8 Output

(continued)

NOTES

L.

Input <l> accepts the character string (up to eight characters) to be
displayed on the corresponding control dial LED indicators. The constant
Boolean on input <2»> selects blink (TRUE) or no blink (FALSE) for the
displayed characters. The constant Boolean on input <3> controls whether
the displayed message will be centered in the eight available locations
(TRUE) or whether the first character will be placed in the leftmost of the
eight locations (left justified) (FALSE).

If inputs <2> and <3»> are not used, the message will not blink and will be
centered.

Allowable characters for control dial labels are:

70

PSR () e - /0123456789 : ;<¢c=>
ABCDEFGHIJKLMNOPQRSTUVHWXY Z<I[1
Lowercase letters are converted to uppercase letters. A space may also be
specified.

Carriage return <CR> and line feed <LF> are not legal characters and

cause a message that follows <CR> and/or <LF> to be partially lost or
ignored.

- 148 -

Initial Function Instance
Output DSET1 ... DSET8

DSET1 ... DSET8

(DSET21 ... DSET28)

R, T ———————- > <> <1>|----> Connected to
Control Dials
at System
Initialization

ccC

PURPOSE

Eight function instances are provided to set the operating parameters for the
eight control dials. DSET] is used to set parameters for the first control dial
(leftmost, top row); DSET2 is used to set parameters for the second control dial
(second from left, top row); and so on, through DSET8, which is used to set
parameters for the eighth control dial (rightmost, bottom row).

DESCRIPTION

INPUT
<1> - real = delta value, integer = sample rate

OUTPUT

<l> - connected to Control Dials

DEFAULTS

All control dials default to an enabled condition in relative mode (each value
from a dial reflects the amount of change (delta) from the last output value).
There is no absolute mode for the control dials.

The default sample rate is 20 per second.

- 149 -

Initial Function Instance

DSET1 ... DSET8 Qutput
(continued)
NOTES

l.

Input <l> accepts real numbers or integers that set the delta value and
sample rate. The default sample rate is 20 samples per second.

Real numbers set the delta value relative to one complete dial rotation.
For example, if .25 were the real number input, the dial would have to be
rotated 90 degrees (.25 x 360) before an output from the dial would be
generated.

An integer is applied to input <l> to indicate the sample rate. Sample rate
is specified in samples per second. For example, the integer 10 causes the
dial to be sampled 10 times per second.

Output <l»> is used to set the dial parameters as specified by the real
number or integer on input <l>.

- 150 -

Initial Function Instance

Miscellaneous ERROR
ERROR
(ERROR2)
(F:CBROUTE
instance)
B~ >[<1> C D e > Connected to

Terminal Emulator
at initialization
Connected to
system at - —————————- > <I> N B > Not connected
initialization
DC

PURPOSE

Enables and disables the display of error messages.

DESCRIPTION

INPUT
<l> - TRUE = enable, FALSE = disable (constant)
<2> - Connected to system

OUTPUT

<> - connected to Terminal Emulator
<2> - not used

NOTES

The INITialize command automatically sends a TRUE to input <l> to enable
the display of error messages.

- 151 -

Initial Function Instance

FFPLOT
FFPLOT
(FFPLOT2)
Any ——————- > <> <I> === > Connected to
Plotters
I ——— i > 2> C
DC
PURPQOSE

Causes a form feed at the specified plotter.

DESCRIPTION

INPUT

<l> - trigger

<2> - plotter number (constant)
OUTPUT

<l> - connected to plotters

DEFAULT

The default for input <2> is plotter 0.

NOTES

If the form feed attempt fails due to an invalid plotter number or an allocation

error, no error message appears. Valid plotter numbers are from 0 to 3.

- 152 -

(@)

Initial Function Instance
Output

FKEYS

Connected to the --»>
KEYBOARD Initial
Function at System
Initialization

PURPOSE

FKEYS
(FKEYS2)

<>

CC

Converts a character received from a keyboard function key to an integer code.

DESCRIPTION

INPUT

<l> - connected to KEYBOARD

ouTPUT

<l> - integer code (1-

NOTES

36)

Characters are converted as follows:

Integer Output

1-12

13-24

25-36

Corresponds To

Function keys 1-12
Function keys 1-12 with the shift key pressed.

Function keys 1-12 with the control key pressed.

- 153 -

Initial Function Instance

FLABELO Output

FLABELO
(FLABEL20)

Y —— >[<1> 4P E— > Connected
to Keyboard at
initialization

cC

PURPOSE

This initial function instance is similar to the FLABEL1 through FLABELI2 initial
function instances in that it allows the user to specify characters to be
displayed in the LED indicators above the function keys. However, unlike
FLABEL1 through FLABEL12, which are used to separately specify the 8-character
display above each function key, FLABELO allows a single character string (to a
maximum of 96 characters) to be specified for display in the twelve
8-character displays. FLABELO treats the 96 LED displays as a single string of
characters and spaces.

DESCRIPTION

INPUT
<l> - string for label

OUTPUT
<l> - connected to keyboard

1. The string of characters on input <l> is displayed starting in the leftmost
LED location (the first of the 8 LEDs over the first function key).

2. Allowable characters for the function key LED indicators follow:

70

8 < >
W <]

~ |l

"()Y*+-./0123456789:;
GHIJKLMNOPQRSTUVHXY!Z

- 154 -

Initial Function Instance

Output

FLABELO

(continued)

NOTES (continued)

3.

Lowercase letters are converted to uppercase letters for display. A space
may also be specified.

Carriage return <CR»> and line feed <LF»> are not legal characters and

cause a message that follows <CR»> and/or <LF> to be partially lost or
ignored.

- 155 -

Initial Function Instance —

FLABEL1 ... FLABEL12 Qutput u
FLABELY ... FLABEL12
(FLABEL21 ... FLABEL212)

S ————— <> KI>|—————- > S

B - »1<2> C

B -————=—- »[1<3> C

D C

PURPQOSE

Twelve initial function instances are provided to label the eight LED indicators
above each of the twelve function keys. FLABEL1 is used to label the eight LED
indicators associated with the first function key; FLABEL2 is used to label the
eight LED indicators for the second function key; and so on, through FLABEL12,
which is used to label the eight LED indicators for the twelfth function key. u

DESCRIPTION

INPUT
<!> - label message
<2> - blink/no blink (constant)
<3> - center/left justify (constant)

OUTPUT
<> - string to Function Key LED

NOTES

l. Input <l> accepts a character string (up to eight characters) to be
displayed on the corresponding function key LED indicators. The constant
Boolean on input <2> selects blink (TRUE) or no blink (FALSE) for the
displayed characters. The constant Boolean on input <3> controls whether
the displayed message will be centered in the eight available locations
(TRUE) or whether the first character will be placed in the leftmost of the
eight locations (left justified) (FALSE).

- 156 -

Initial Function Instance

Output

FLABELT ... FLABEL12

(continued)

NOTES (continued)

2.

If inputs <2> and <3> are not used, the message will not blink and will be
centered.

Allowable characters for Function Key labels are:

P #SL& () *+ - . /0123 7 e
ABCDEFGHIJKLMNOPAQR

>
]

[|

56789 : ;<
TUVRWXY Z<
Lowercase letters are converted to uppercase letters for display. A space
may also be specified.

Carriage return <CR»> and line feed <LF> are not legal characters and
cause a message that follows <CR> and/or <LF> to be partially lost or
ignored.

The FLABEL1 through FLABEL12 function instances are used to separately
program the B8-character LED displays associated with a particular
function key. If the entire set of 96 LEDs (12 function keys x 8 characters
per function key) is to be programmed as a single message, then FLABELO
must be used.

- 157 -

Initial Function Instance

HCPIP Output
HCPIP
(HCPIP2)
I ———— - >[<1> C <A>|-——=—- > Connected to
Plotters
I ——————- >[<2> C
I - >[<3> C
I - >[<4> C
Any —————-- >b<5>
DC
PURPOSE

Initializes plotters so that hardcopies can be obtained of screen displays.

DESCRIPTION

INPUT
<l> - plotter #0 type (constant)
<2> - plotter #1 type (constant)
<3> - plotter #2 type (constant)
<4> - plotter #3 type (constant)
<5> — trigger

OUTPUT
<l> - connected to plotters

DEFAULTS

The default for input <l> is 1, the default for inputs <2>, <3»>, and <4> is 0.

NOTES

The initial function instance HCPIP (HardCoPy Initialize Plotters) is
automatically triggered at system configuration time during booting. You must
also trigger HCPIP after connecting or disconnecting a plotter.

- 158 -

Initial Function Instance
(‘s Output HCPIP

(continued)

NOTES

I. Inputs <l>, <2>, <3>, and <4> specify the types of plotters at ports 0, 1, 2,
and 3, respectively. There are currently two admissible values for these
inputs: 0 (no plotter) and 1 (Versatec V80). The default plotter type at
input <l> is 1; the default type for inputs <2>, <35>, and <4> is 0. If invalid
values are input, the default value is automatically used without an error
message or other notification.

2. Input <5> triggers the function and initializes the plotters.

3. If you trigger HCPIP while a plot is in progress, initialization will not occur.

- 159 -

Initial Function Instance
HOSTOUT Output

HOSTOUT
(HOSTOUT2)

S ———— >[<1> A>|—=== > Connected to
the Host
Communications
Port at System
Initialization

CC

PURPOSE

Accepts a string on input <l> and outputs the string for communication to the
host. At initialization, the input to HOSTOUT is connected to a network used for
the I/0 routines.

DESCRIPTION

INPUT
<l> - string

QUTPUT
<l> - connected to Host Communications Port

- 160 -

Initial Function Instance

Miscellaneous INFORMATION
INFORMATION
(INFORMATION2)
(F:CBROUTE
instance)
B —————— >|1<1> C 4 D) P —— > Connected to

Terminal Emulator
at initialization
Connected to
system at -——-——————- >[<2> 2> |~ > Not connected
initialization
DD

PURPOSE

Enables and disables the display of information messages.

DESCRIPTICN

INPUT
<l> - TRUE = enable, FALSE = disable
<2> - connected to system

OQUTPUT
<l> — connected to Terminal Emulator
<2> - not used

NOTES

The INITialize command automatically sends a TRUE to input <l> to enable
the display of information messages.

- 161 -

Initial Function Instance —

KEYBOARD Input \)
KEYBOARD
(KEYBOARD2)
Connected to ———- >1<1> Aa>|-=-—- > S
Terminal Emulator
Network at
Initialization
2>|--—-- > CH (System-connected
to FKEYS)

CD

PURPOSE

Connected at initialization to accept an ASCII character string from the

keyboard. u

DESCRIPTION

INPUT
¢<l> -— connected to Terminal Emulator network

OuTPUT
<l> - characters not preceded by CONTROL V
<2> - characters preceding CONTRQOL V

NOTES

Input characters are checked for a preceding CONTROL V character. If a
character is preceded by a CONTROL V, the CONTROL V is removed by the
function and the associated character is output on output <2>, which is
system-connected to the input of FKEYS. Characters that are not preceded by a
CONTROL V are output on output <l>.

- 162 -

Initial Function Instance
) Miscellaneous MEMORY ALERT

MEMORY ALERT
(MEMORY_ALERT2)

I e >[<1> <1>|----> Connected to
MESSAGE DISPLAY
at Initialization

Not used --—---- >|<2>
I —— >[<3>
Not Used---—---- > <4>
I > <5>

DC

m PURPOSE

Generates a message and a bell alarm when system memory is 75 percent full.

DESCRIPTION

INPUT
<l> — memory threshold percentage for reporting
<2> — unused
<3> - sampling interval
<b4> - unused
<5> — integer specifying memory threshold in bytes for vector list creation

OuTPUT
<I> - connected to MESSAGE_DISPLAY

- 163 -

Initial Function Instance
MEMORY ALERT Miscellaneous

(continued)

DEFAULTS
The threshold specified on input <l> is set at 75% unless changed by the user.

The sampling interval is set at 10 seconds unless changed. Input <5> defaults to
0.

NOTES

The number of bytes specified on input <5> is the minimum number of bytes
that must be available in memory for the system to create vector list. Once
this threshold has been reached, a vector list will be only partially created, or
not created at all. When this occurs, the error message "E 105 *** cannot
complete operation due to insufficient memory" is issued. This applies to
vector lists, characters, labels, polynomials, bsplines, patterned vector lists,
and polygons.

l. Memory status is sampled at 10-second intervals. The message displayed is
of the form:

MASS MEMORY nn PERCENT FILLED.

2. If the amount of memory used falls below the threshold, the message is
removed.

3. Output <l> is connected to MESSAGE DISPLAY at initialization.

4, If the user wishes to change the percentage that generates the alarm,
another value must be sent to input <l>. If the user wishes to specify a
sampling interval other than 10 seconds, another value must be sent to
input <3>. The value is an integer that specifies the number of seconds to
wait before rechecking memory.

- 164 -

Initial Function Instance
(”*3 Miscellaneous MEMORY MONITOR

MEMORY MONITOR
(MEMORY_MONITOR2)

I ———— >[<T1> A>|————- > S and bell
I ———— >[<2> C A > 1
I ———— >[<«3> C 3>|----- > B

DD

PURPQOSE
Notifies the user of the number of bytes that are available for use out of a

maximum number of bytes available at system initialization and of the elapsed
ﬁ time since initialization.

DESCRIPTION

INPUT
<l> — memory threshold percentage
<2> - delta value
<3> - sampling interval

OuTPUT
<l> - message string and bell
<2> - percentage full
<3> - TRUE if threshold is exceeded, not sent if otherwise

DEFAULTS

The threshold is set at 75%, the delta value is set at 0, and the sampling rate is
set at 10 seconds unless changed by the user.

A

- 165 -

T

Initial Function Instance

MEMORY_MONITOR Miscellaneous

(continued)

NOTES

1.

None of the outputs from this function instance are connected upon system
initialization. The user must connect output <l> of MEMORY_ MONITOR input
<> of MESSAGE DISPLAY. This causes the message to be displayed in the
message display area of the screen and a bell to be sent to the keyboard.
The message displayed is of the form:

nnnnnn bytes free out of nnnnnnnn bytes maximum at dd hh:mm:ss
Output <2> is an integer representing the .percentage of memory filled.
Unless a change on input <2> (since the last report) is equal to or greater

than the previous value on input <2>, no report is given.

Output <3> is a Boolean that is output as a TRUE if the threshold indicated
on input <l> is crossed.

- 166 -

o~ Initial Function Instance
f s Miscellaneous MESSAGE _DISPLAY

MESSAGE _DISPLAY
(MESSAGE _DISPLAY2)

S e >[<1> A>|—===- > S and bell

DC

PURPOSE

Displays error messages and informational messages in the MESSAGE DISPLAY
area of the PS 300 display. At initialization, input <l> is connected by the
system to output <l> of MEMORY ALERT and error-detection functions. Output
<l> is connected to input <l> of FLABELO so that bell messages can be sent to

the keyboard.

DESCRIPTION

INPUT
<l> — connected to MEMORY ALERT and error-detection functions

QUTPUT
<l> - string and bell connected to FLABELO

NOTES

I. Each string received is treated as a complete message. Incoming characters
are displayed at position | and replace the previous message.

\ - 167 -

Initial Function Instance —

Output u

OFFBUTTONLIGHTS
OFFBUTTONLIGHTS
(QFFBUTTONLIGHTS2)
I ———- >|<1> 4 D) Fr—— > Connected to
Function Buttons
at initialization
cCcC
PURPQOSE

Turns off lighted buttons on the Function Buttons unit.

DESCRIPTION

INPUT

<1> - integer (1 through 32) indicating the button number

OuUTPUT

<l> - connected to Function Buttons

NOTES

I. Each button may be turned off independently or all buttons may be turned
off by a single message. A zero (0) or any out-of-range integer at input

<l> turns off all button lights.

off the corresponding button light.

An integer from | to 32 at input <l»> turns

2. Function buttons are arranged in one row of four, four rows of six, and
another row of four. They are numbered from left to right starting from
the top row. The top row is numbered
through 10, and so on until the last row, 29 through 32.

- 168 -

I through 4; the second row 5

m

Initial Function Instance

Input PICK
PICK
(PICK2)
Any ————————— > <1> D > PL
B ————————- >[<«2> C 2> ———— > B
I >[<3> C 3| > B
DD
PURPOSE

Interfaces with the hardware picking circuitry. Any message on input <l> arms
the PICK function. Once PICK is enabled, when a pick occurs, the pick list
associated with the picked data is sent out on output <l> and a Boolean FALSE
is sent out on output <2>. Typically, this Boolean is used to disable picking of a
set of objects by connecting it to a SET PICKING ON/OFF node in a display tree.

DESCRIPTION

INPUT
<!> - trigger
<2> - TRUE = coordinate, FALSE = index (constant)
<3> - timeout duration (constant)

OQUTPUT
<l> — pick list
<2> - FALSE = pick enabled
<3> - FALSE = timeout elapsed

- 169 -

PICK

Initial Function Instance
Input

(continued)

NOTES

1.

Input <2> selects the kind of pick list that will be output on output <l>. A
FALSE on input <2»> indicates that the output pick list will be the pick
identifier and an index into the vector list or the character string. (The
index into the vector list identifies its position in the list; vector 3 is the
third vector in a vector list. The index into a character string identifies
the picked character by its position in the string; character 5 is the fifth
character in a string.)

A TRUE on input <2> indicates that the output pick list will include, in
addition to the pick identifier and the index, the picked coordinates and the
dimension of the picked vector. If the vector is part of a polynomial curve,
its parameter value, t, is supplied instead of the index.

Coordinate picking on a character string returns an index into the string,
not its picked coordinates.

Coordinate picking cannot be performed on a vector over 500 [LENGTH]
units long.

The pick list on output «<l»> is typically connected to an instance of
F:PICKINFO to convert the pick list to a locally useful format. If the pick
list is to be printed out, output <l> may be connected to F:PRINT to
convert the pick list code to printable characters.

When several vectors are picked, the first vector drawn by the Line
Generator is reported as picked. For example, if three vectors in a single
vector list were picked simultaneously (at a point of intersection), the first
vector listed in the object definition would be reported as picked.

The integer on input <3> specifies a pick timeout period in refresh frames.
This pick timeout period allows the user to determine whether a pick has
occurred within the specified amount of time. Timing starts when the PICK
function is armed with a message on active input <l>. Allowable integers
for input <3> are from 4 through 60.

- 170 -

U

Initial Function Instance

(‘”\ Input PICK

(continued)

NOTES (continued)

8. If input «3> is not used, all picks will be reported once the function is
armed because no timeout duration has been specified.

9. Typically, the FALSE at output <3> would be used to turn off picking in a
display tree (at a SET PICKING ON/OFF node) or to send a "NO PICK"
message (probably via F:SYNC(2)) back to the host.

10. The user has three means of cancelling an existing pick timeout duration:

a. Send an INITialize command. This will remove the PICK function and
replace it with a new instance of the PICK function.

b. Send a non-integer (and ignore the "Bad message" error).

c. Send an integer less than 4 or greater than 60 to input <3> (and ignore

the "Bad message" error).
‘ ’ EXAMPLE

If a 10 is sent to constant input <3>, then the PICK function is armed with a
message on input <l>. The function waits 10 refresh frames from the time the
input <l> message is received before checking to see if a pick has occurred. If
a pick has occurred within that period, the function outputs the appropriate
pick list. If a pick has not occurred, the function outputs a FALSE on output
<3>. In either case, the PICK function is disarmed and must be rearmed via
input <1> before further picking can be reported.

- 171 -

Initial Function Instance

SCREENSAVE Miscellaneous
SCREENSAVE
No explicit ———-—- b > No explicit
connections connections
PURPQOSE

Helps to protect the PS 300 screen from phosphor damage by slowly shifting the
viewport in a way that is imperceptible to the user. The viewport moves right
two line widths, up two line widths, left two line widths, and down two line
widths, and repeats this cycle as long as SCREENSAVE in in effect. SCREENSAVE is
on by default.

NOTES

L.

Note that SCREENSAVE has no explicit inputs or outputs; the only way to use
this function is to instance it when phosphor protection is desired and to
delete the instance (using NIL) when it is not desired. To disable
screen-saving, enter the command

SCREENSAVE := NIL;
To enable screen-saving, enter the command
SCREENSAVE := F:SCREENSAVE;

Screen-saving should be set to NIL before timed-exposure photographs of
the PS 300 screen are taken.

Despite SCREENSAVE, users should still exercise other customary

precautions against phosphor burn (e.qg., avoiding the display of
high-intensity images for long periods of time).

- 172 -

" Initial Function Instance
(“S Miscellaneous SHADINGENVIRONMENT

SHADINGENVIRONMENT
2D, 3D ————————- >I<1> ‘A DY = — > PS 340 Raster Display
R, 2D, 3D -————- >1<2>
D - >[<¢3>
R ——emmmmmm > <4>
I ————————— > <5
R >[<6>
B ———— - >[<7>
DC

(.’ PURPOSE

For use with the PS 340 system, this function allows you to control various
non-dynamic factors of shaded renderings displayed on the raster screen.

DESCRIPTION

INPUT
<l> — ambient color
<2> - background color
<3> - raster viewport
<4> - exposure
<5> - quality level
<6> — depth cueing
«7> - screen wash

OUTPUT
<l> - connected to the PS 340 Raster Display

- 173 -

Initial Function Instance

SHADINGENVIRONMENT Miscellaneous

(continued)

NOTES

1.

Ambient color: input <1> accepts a real number as hue, a 2D vector as hue
and saturation, and a 3D vector as hue, saturation, and intensity, to specify
the ambient color. The ambient color is combined with the result obtained
from the light sources to determine the color of ambient light. The default
ambient color is white, with a default intensity of .25. The ambient color
is analagous to the color reflected off a wall.

Background color: input <2> accepts a real number as hue, a 2D vector as
hue and saturation, and or a 3D vector as hue, saturation, and intensity to
specify the background color. The raster screen will be colored with the
background color prior to any shaded rendering. The default background

color is black (0,0,0).

Raster viewport: input <3»> accepts a 3D vector as the viewport on the
raster image buffer where shaded renderings will be displayed. Raster
viewports are always square, the lower left corner being given by the X and
Y coordinates of the vector, and its size given by the Z coordinate, such
that the upper right corner is at (x+z,y+z). Values are rounded to the
nearest pixel. The default viewport is (80,0,480). The viewport is not
intended for magnification of small parts of the calligraphic image, but for
mapping the square vector display onto the rectangular raster display.

The viewport is also intended to allow multiple images to be generated side
by side on the raster display. Thus, the largest recommended value for the
viewport is (0,-80,640). The actual largest viewport is somewhat larger
and depends on combinations of the three values. The image is clipped to
the physical raster for which 0<X<640 and 0<Y <480.

Exposure: input <4> accepts a real number as the exposure, controlling the
overall brightness of the picture. The exposure is like that on a camera. If
a picture is taken of an object with a very bright specular highlight, it may
be so bright that the rest of the object is darkened. If three light sources
exist, the object would be about three times brighter, making the object
too bright. The exposure should be brought down to control this.

~ 174 -

. Initial Function Instance
() Miscellaneous SHADINGENVIRONMENT

(continued)

NOTES (continued)

The exposure is multiplied by the intensity at each pixel and the result
clipped to the maximum intensity. This enables the overall brightness of a
rendering to be increased without causing bright spots to exceed maximum
intensity (instead forming "plateaus" of maximum intensity). Note that
this may cause changes in color on a plateau, where color has reached its
maximum, but the others have not. Exposure values may vary between .3
and 3, values outside that range being changed to .3 or 3. The default
exposure is 1.

5. Quality level: input <5> accepts an integer as quality level. The quality
controls the number of pixels over which filtering applied. Jagged edges
are characteristic of a raster display, so the fuzzier the edges, the better
quality the picture. Values of 1, 3, 5, and 7 are allowed, meaning that the
effect of coloring a pixel will be spread over a square of pixels with that
number on a side, centered on the colored pixel. Because of anti-aliasing,
pictures are good at quality 1. (The default value | is the typical choice.)
Values of 3, 5, and 7 produce better quality renderings in terms of

m anti-aliasing but are time-consuming to process.

6. Depth cueing: input <6> accepts a real number in the range of 0 to I to
control depth cueing in the shaded image (0 specifying no depth cueing and
| specifying maximum depth cueing). As perceived depth from the viewer
increases, the intensity of the colors decreases from maximum (1) at the
nearest point to the given proportion of maximum at the farthest. Thus O
gives a ramp ending in black at the back clipping plane, while 1 turns off
the effect of depth cueing. The default is 0.2 giving a fairly large depth
cueing effect.

7. Screen wash: input <7> accepts a Boolean, and is the only input to cause a
visual effect immediately. True causes the whole physical raster screen to
be filled with the current background color, while false just fills the
currently defined viewport (clipped to the screen).

- 175 -

Initial Function Instance

SPECKEYS Input
SPECKEYS
(SPECKEYS2)
Connected to ————- >[<1> AP E— > S
Terminal Emulator
Network at
Initialization cC
PURPOSE

Connected at initialization to accept an ASCII character string from the
keyboard. Input characters are checked for a preceding "control V" character.
If a character is preceded by a "control V", SPECKEYS removes the "control V"
and outputs the associated character on output <l>. (Characters not preceded
by a "control V" appear at the output of KEYBOARD instead.)

DESCRIPTION

INPUT
<l> — connected to Terminal Emulator

QUTPUT
<l> - string
NOTES

Note that neither SPECKEYS nor KEYBOARD outputs function key values. The
initial function FKEYS supplies these values.

- 176 -

m

Initial Function Instance
Input

TABLETIN

R - >
S Connected —-—->
to data
tablet at
initialization
(string)
R >
] —— >

PURPOSE

TABLETIN
(TABLETIN2)
<1>C <>
2> 2>

<3>

4>

3> C <5>

<4> <6>
DD

Connected at system initialization to accept data from the data tablet on input
<2>. This data includes 2D vectors, an indication of the open/closed condition
of the stylus tipswitch (or 4-button cursor), and an indication of the switch
number for systems using a 4-button cursor instead of a stylus.

DESCRIPTION

INPUT

<1> - delta x, y (constant)

2>
<3>
<4> - wait time

QUTPUT

<1> - x,y coordinate (position/line)
<2> - TRUE = switch closed, FALSE = switch open

<3> — switch number

<b4> — tipswitch transition
<5> - range transition
6> — x,y when switch closed

- 177 -

string (system connected to Tablet)
tablet size (constant)

TABLETIN

Initial Function Instance
Input

(continued)

DEFAULT

The default delta x,y on input <l»> is .002. The default tablet size on input <3> is
2200. The default wait time on input <4> is 8 centiseconds.

NOTES

1.

Input <1> accepts a real number that specifies the minimum change in X or
Y required on input <2> before output <1> is sent. The default value is .002

Input <3> accepts an integer that specifies the number of points full-scale
for the data tablet being used. The default value is 2200, corresponding to
the standard ll-inch x l1l-inch data tablet.

Input <4> is a wait time for the data tablet in centiseconds; a FALSE is sent
on output <5»> if the tablet stops sending data for longer than this duration.
The default value is 8. It should never be necessary to SEND to this input,
since TABLETOUT sends an appropriate value here automatically (see
TABLETOUT).

The Boolean on output ¢2»> indicates the condition of the stylus tipswitch (or
cursor button) as follows:

TRUE = Stylus tipswitch closed or cursor button pressed.
FALSE = Stylus tipswitch open or cursor button not pressed.

The integer on output <3> is the sum of the numbers of the pressed buttons
on the 4-button cursor. The buttons are numbered 1, 2, 4, and 8. If button 1
and button 4 are pressed simultaneously, 5 is output.

A TRUE appears at output <4> whenever the tipswitch goes from open to
closed, and a FALSE whenever the tipswitch goes from closed to open. For
button-type cursors, output <4> is TRUE when a button is pushed and FALSE
when the button is released.

Output <5> indicates transitions in stylus proximity (i.e., from '"receiving
data" to "not receiving data" and vice versa). A TRUE appears here when
data is received from the tablet after a period of no data. A FALSE is sent
when data does not arrive from the tablet in time. The time is the nuniber
of hundredths of a second specified at input <4>.

Output <6> is the (x,y)-position of the stylus when the tipswitch goes from
open to closed.

- 178 -

—

v/

Initial Function Instance
(nm‘ Tnput TABLETOUT

TABLETOUT
(TABLETOUT2)

S >1<1> A>f--—- > Connected to
the Data Tablet at
initialization

2>|-——- > Connected to

<4>TABLETIN at
initialization
ccC

PURPOSE

Provides the means to set operating parameters in the Data Tablet by sending a
character to input <l>. The character also determines a value to be sent to
, <4>TABLETIN, setting the tablet's timeout interval. If a multi-character string is
ﬁ sent to input <l», only the final character of the string is used.

DESCRIPTION

INPUT
<l»> - character or string

OUTPUT

<l> — connected to Data Tablet
<2> — connected to <4>TABLETIN

- 179 -

Initial Function Instance

TABLETOUT Input
(continued)
NOTES
1. Characters for mode settings are as follows:
TIMEOUT INTERVAL
CHARACTER MODE SAMPLING RATE (IN CENTISECONDS)
S Stop Idle
P Point* Manual control
@ Switched Stream** 2 52
A 4 27
B 10 12
C 20 8
D . 35 5
E Switched Stream 70 3
H Stream*** 2 52
[4 27
J 10 12
K 20 8 (default)
L . 35 5
M Stream 70 3
* Pressing the stylus on the tablet or the button on the cursor sends out the
single x,y coordinate pair.
** Pressing the stylus on the tablet surface or the button on the cursor causes
x,y coordinate pairs to be output continuously at the selected sampling rate
until the stylus is lifted or the cursor button is released.
HHH

x,y coordinate pairs are generated continuously at the selected sampling
rate when the stylus or cursor is in the proximity of the tablet surface.
Pressing the stylus on the tablet surface or pressing the cursor button sets
the flag character (F) in the output stream.

()

Initial Function Instance
Input TABLETOUT

(continued)

NOTES (continued)

2. Users who have early versions of the PS 300 hardware may not see a cursor
from the data tablet after booting. If this is the case, press the RESET
button on the back of the tablet immediately following power-up. If the
RESET button is not pressed immediately following power-up, the user can
later press the RESET button and then enter the command:

SEND 'K' TO <1> TABLETOUT;

Optionally, a 'J' may be used. Anything greater than 'K' is not
recommended.

3. For additional information on the data tablet, refer to the Bit Pad One
User's Manual by Summagraphics Corporation, which is included in the
customer installation package.

- 181 -

Initial Function Instance -
TECOLOR Miscellaneous ~Hi)

TECOLOR
(TECOLOR2)

R - > <> AP E—— > Connected to

Terminal Emulator
at initialization
ccC

PURPOSE

Specifies the hue of Terminal Emulator and Setup output on systems with the
CSM Calligraphic Display option.

DESCRIPTION

INPUT
<l> = hue u

OUTPUT
<l> — connected to Terminal Emulator

DEFAULT

The default hue is 240, pure green.

NOTES

l. The range of acceptable values is the 0-360 "color wheel" used by the SET
COLOR command, in which O represents pure blue, 120 pure red, and 240
pure green. The default is 240. QOut-of-range values are clamped to the
nearest in-range value (0 or 360 —— hence always blue).

2. On systems without a CSM Calligraphic Display, TECOLOR accepts real
values but has no effect.

- 182 -

(ﬂns Initial Function Instance
Miscellaneous TSCSM

TSCSM
(TSCSM2)

B ————- >[<1> 4 D P— > Connected to

Terminal Emulator
at initialization
ccC

PURPOSE

Sets the CSM on or off for the Terminal Emulator

DESCRIPTION

INPUT
‘) 1> - TRUE = CSM on, FALSE = CSM off

QUTPUT
<l> - connected to Terminal Emulator
DEFAULT

The default is FALSE, setting the CSM off.

NOTES

I. This setting has important consequences for both CSM Calligraphic and
monochrome displays! Refer to Section 5.2.5 of the PS 300 User's Manual
for guidelines on setting CSM mode ON and OFF.

WARNING

Initial

Function Instance
Miscellaneous

Connected to
system at
initialization

PURPOSE

WARNING
(WARNING2)

(F:CBROUTE
instance)

<> C

2>

DD

<>

2>

Enables and disables the display of warning messages.

DESCRIPTION

INPUT

<l> - enable/disable warning messages (constant)

<2> - connected to system

OUTPUT

<1> - connected to Terminal Emulator
<2> - not used

NOTES

I. A TRUE at input <l»> enables warning messages.

> Connected to
Terminal Emulator
at initialization

> Not connected

A FALSE at input <>

disables them. The INITialize command automatically sends a TRUE to
input <l»> enabling the display of warning messages.

- 184 -

Initial Structure
CURSOR

CURSOR
(CURSOR2)

Cursor := VECTOR_LIST ITEMIZED N = 4
P .035,.035 L -.035,-.035
P -.035,.035 L .035,-.035;

PURPOSE

This initial structure is a vector list as shown above, which creates a
displayable cursor in the form of a cross when the system is initialized.

DESCRIPTION

INPUT
Vector list

OuUTPUT
Displayable "X"-shaped cursor

NOTES
I. The cursor is controlled by a function network which positions it on the
PS 300 screen in response to stylus movement over the data tablet

surface. The intensity of the cursor increases when the stylus tip switch is
pressed down.

2. The user is free to redefine CURSOR using any other vector list.

- 185 -

Initial Structure
PICK LOCATION

PICK_LOCATION
(PICK_LOCATION2)

PURPQOSE

PICK_LOCATION is the name assigned at initialization to the system-created
picking location.

DEFAULT

At system initialization, the pick location is defined as the center of the cursor.

NOTES

The initial TABLETIN function instance is connected to PICK_LOCATION and the
system~-initialized CURSOR points to its center.

- 186 -

PS 300 FUNCTION SUMMARY A-]

APPENDIX A. FUNCTIONS BY CATEGORY

INTRINSIC FUNCTIONS

Arithmetic and Logical
F:ACCUMULATE
F:ADD
F:ADDC
F:AND
F:ANDC
F:AVERAGE
F:CDIV
F:CMUL
F:CSUB
F:DIV
F:DIVC
F:MOD
F:MODC
F:MUL
F:MULC
F:NOT
F:0R
F:0ORC
F:ROUND
F:SINCOS
F:SQROOT
F:SUB
F:SUBC
F:XOR
F:XORC

A-2 PS 300 FUNCTION SUMMARY

Character Transformation
F:CROTATE
F:CSCALE

INTRINSIC FUNCTIONS (continued)

Comparison
F:CGE
F:CGT
F:CLE
F:CLT
F:COMP STRING
F:EQ
F:EQC
F:GE
F:GEC
F:GT
F:GTC
F:LE
F:LEC
F:LT
F:LTC
F:NE
F:NEC

Data Conversion
F:CEILING
F:CHARCONVERT
F:CVEC
F:FIX
F:FLOAT
F:MATRIX?2
F:MATRIX3
F:MATRIX4
F:PARTS
F:PRINT
F:STRING TO NUM
F:TRANS STRING
F:VEC
F:VECC
F:XFORMDATA
F:XVECTOR
F:YVECTOR
F:ZVECTOR

PS 300 FUNCTION SUMMARY A-3

Data Selection
F:INPUTS CHOOSE(n)

INTRINSIC FUNCTIONS (continued)

Data Selection and Manipulation
F:ATSCALE
F:BOOLEAN CHOOSE
F:BROUTE
F:BROUTEC
F:CBROUTE
F:CCONCATENATE
F:CHARMASK
F:CONCATENATE
F:CONCATENATEC
F:CONSTANT
F:CROUTE(n)
F:DELTA
F:FIND STRING
F:GATHER STRING
F:LABEL
F:LBL EXTRACT
F:LENGTH STRING
F:LIMIT
F:LINEEDITOR
F:MCONCATENATE(n)
F:PASSTHRU(n)
F:PUT STRING
F:RANGE SELECT
F:ROUTE(n)
F:ROUTEC(n)

F:SEND

F:SPLIT

F:TAKE STRING
F:VEC EXTRACT

Miscellaneous
F:COLOR
F:EDGE DETECT
F:FETCH
F:NOP
F:PICKINFO
F:POSITION LINE
F:SYNC(n)

A-4 PS 300 FUNCTION SUMMARY

INTRINSIC FUNCTIONS (continued)

Object Transformation
F:DSCALE
F:DXROTATE
F:DYROTATE
F:DZROTATE
F:XROTATE
F:YROTATE
F:ZROTATE
F:SCALE

Timing
F:CLCSECONDS
F:CLFRAMES
F:CLTICKS
F:TIMEOUT

Viewing Transformation
F:FOV
F:LOOKAT
F:LOOKFROM
F:WINDOW

INITIAL FUNCTION INSTANCES

Input
BUTTONSIN
DIALS
KEYBOARD
PICK
SPECKEYS
TABLETIN
TABLETOUT

Miscellaneous
ERROR
INFORMATION
MEMORY ALERT
MEMORY MONITOR
MESSAGE DISPLAY

PS 300 FUNCTION SUMMARY A-5

INITIAL FUNCTION INSTANCES (continued)

Miscellaneous (continued)
SCREENSAVE
SHADINGENVIRONMENT
TECOLOR
TSCSM
WARNING

Output
CLEAR LABELS
DLABEL] ... DLABELS
DSET! ... DSETS8
FFPLOT
FKEYS
FLABELO
FLABELI ... FLABEL12
HCPIP
HOSTOUT
OFFBUTTONLIGHTS

INITIAL STRUCTURES

CURSOR
PICK LOCATION

PS 300 FUNCTION SUMMARY B-1

APPENDIX B. INPUTS TO NODES

This appendix lists nodes in a display which contain data that can be updated using
function networks. The name of the PS 300 command which creates the node is given.
A diagram shows the number of inputs to the node and the types of data those inputs
accept.

ATTRIBUTES
name

Real,2D,3D <1>Updates hue,saturation,intensity,
Real =——<2>Updates diffuse value
Integer ——<3> Updates specular value
<4>
: Undefined
<10>
Real,2D,3D=——<11>Updates hue,saturation,intensity
Real <12>Updates diffuse value
Integer <13>Updates specular value

Polygon Attributes

1AS0676

B-2 PS 300 FUNCTION SUMMARY

BSPLINE

name

Integer <1> Updates chords

Real 1<2> Updates knots

<3> Updates vertices

2D,3D,4D vector

B-spline

1ASO60U

CHARACTER ROTATE

name

2x2 matrix <1>Changes matrix value

2x2 matrix

1AS0605

PS 300 FUNCTION SUMMARY B-3

CHARACTER SCALE

name

2x2 matrix <1>Changes matrix value

2x2 matrix
1AS0605

CHARACTERS

name

Character <last> Changes the last character
2D,3D,4D vector—— <position>Changes the starting position

2D,3D,4D vector — <step> Changes the stepping

Integer <clear> Clears the current string

Integer < delete> Deletes n characters (from the end)

String < append> Appends to end of current string

String <i> Replaces current string with new string,
starting at the i-th character

String <substitute>Replaces entire current string

with new string

CHARACTERS

1AS060

B-4 PS 300 FUNCTION SUMMARY

EYE
DAY
Y

name

4x4 matrix 1> Changes matrix value

4x4 matrix

1AS0607

FIELD OF VIEW

name

4x4 matrix 1>Changes matrix value

4x4 matrix

IAS0607

[CONDITIONAL BIT

name

Integer <1>Changes bit number

IF CONDITIONAL BIT

1AS0608

(ﬂﬂ\

PS 300 FUNCTION SUMMARY B-5

[F LEVEL OF DETAIL

name

<1>Changes level of detail

IF LEVEL_OF DETAIL

1AS0609

ILLUMINATION

Real,2D 30—
Real

<2> Updates hue,saturation,intensity

1
<3>Updates ambient proportion

ILLUMINATION

1AS0677

B-6 PS 300 FUNCTION SUMMARY

LABLELS
name

String <last> Changes last label

Integer <clear> Clears list

Integer <delete> Deletes from end
Label <append> Appends from end

Boolean ———<i> True=on,False=off
String——{<i> Replaces i-th label

LABELS

I1AS0610

LOOK

name

4x3 matrix 1>Changes LOOK AT 4x3 matrix

or 4x4 matrix

4x3 matrix

1AS0611

PS 300 FUNCTION SUMMARY B-7

MATRIX 2X2
name
2x2 matrix <1>Changes matrix value
2x2 matrix
1AS0605
MATRIX 3X3
name
3x3 matrix <1>Changes matrix value
3x3 matrix
1AS0612
MATRIX 4X3
name
4x3 matrix <1>Changes matrix value

4x3 matrix

1AS0613

B-8 PS 300 FUNCTION SUMMARY

MATRIX 4X4
name
4x4 matrix 1> Changes matrix value
4x4 matrix
1AS0607
POLYNOMIAL

name

Integer <1> Updates coefficients

2D,3D,4D vector <2> Updates chords

Polynomial

1AS0614

PS 300 FUNCTION SUMMARY B-9

RATIONAL BSPLINE

Integer

Real

2D,3D,4D vector

RATIONAL POLYNOMIAL

Integer

2D,3D,4D vector

name

<1> Updates chords

<2> Updates knots

<3> Updates vertices

Rational B-spline

1AS0615

name

<1> Updates coefficients

<2> Updates chords

Rational Polynomial

1AS0616

B-10 PS 300 FUNCTION SUMMARY

ROTATE
name
3x3 matrix <1>Changes matrix value
3x3 matrix
1AS0612
SCALE
name
3x3 matrix <1>Changes matrix value

3x3 matrix

1AS0612

SET COLOR

name

Real
Real

1> Hue

<2> Saturation

SET COLOR

1AS0617

PS 300 FUNCTION SUMMARY B-11

SET CONDITIONAL BIT

Boolean

<1>Sets the original bitSn)
to be ON(T) or OFF(F

Integer <2>Sets bit number input (0-14) ON
\
<3> Sets bit number input (0-14) OFF

<4>.Disables bit number input (0-14) from being
affected by this node.

<5>Complements (toggles) bit number input (0-14)

SET CONDITIONAL BIT

1AS0618

SET CONTRAST

name

Real 1>Changes contrast

SET CONTRAST

B-12 PS 300 FUNCTION SUMMARY

SET CSM

name

Boolean <1>T/F set 1ine generator

at full/half speed

SET CSM

1AS0620

SET DEPTH CLIPPING

name

<1>Disables (F)/enables
(T) depth clipping

Boolean

SET DEPTH
CLIPPING

1AS0621

SET DISPLAYS

Boolean <1>Turns indicated displays

ON(T) or OFF(F)

SET DISPLAY(S)

1AS0622

PS 300 FUNCTION SUMMARY

SET INTENSITY

name

Boolean <1>T/F enable/disable the effect
of this node |
2D vector <2>Change min:max intensity range

SET INTENSITY

SET LEVEL OF DETAIL

Integer <1>Changes the level of

detail (0-32767)

SET LEVEL OF
DETAIL

1AS062h

SET PICKING

name

Boolean <1>Enable (true)/disable (false) picking

of structure that follows

SET PICKING

1AS0625

B-14 PS 300 FUNCTION SUMMARY

SET PICKING LOCATION

<1> X,y center

2D vector

2D vector <2> size x, size_y boundary offsets

SET PICKING
LOCATION

1AS0626

SET RATE

<1>Changes the phase_ on value
<2> Changes the phase_ off value

<3> Changes the initial_
state ON(T)/OFF(F)

<4> Changes the delay

Integer

Integer
Boolean———

Integer

SET RATE

1AS0627

m PS 300 FUNCTION SUMMARY B-15

SET RATE EXTERNAL

name

Boolean <1>Changes the PHASE state

ON(T)/OFF(F)

SET RATE
EXTERNAL

1AS0628
SOLID RENDERING
name
Integer,String <1> <1>p——2Boolean
or Boolean
Boolean <2>
SOLID RENDERING

1AS0629

B-16 PS 300 FUNCTION SUMMARY

SURFACE RENDERING
name

Integer,String—m—<1> <1>
or Boolean
Boolean <2>
SURFACE RENDERING
1AS0630

TEXT SIZE

name

2x2 matrix

TRANSLATE

3D vector

2x2 matrix

3D translation

<1> Changes matrix value

1AS0605

<1>Changes the translation vector

1AS0631

Boolean

PS 300 FUNCTION SUMMARY B-17

VECTOR LIST
name

Vector <last > Changes last vector
Integer
Integer———— < delete> Deletes from end

< clear> Clears 1ist

Vector < append > Appends to end
Boolean <i> True=Line; False=Position
Vector <j > Replaces i-th vector
VECTOR LIST
1AS0632
VIEWPORT
name
2x2 matrix <1>Changes viewport boundaries (and intensity
3x3 matrix range if 3x3 matrix is input)
3x3 VIEWPORT
1AS0633
WINDOW
name
4x4 matrix 1>Changes matrix value

4x4 matrix
1AS0607

ASCIT Character Code Set

Decimal ASCII Decimal ASCII Decimal ASCII
Value Character Value Character Value Character

0 NUL 44 ’ 88 X

1 SOH 45 - 89 Y

2 STX 46 . 90 z

3 ETX 47 / 91 L

4 EOT 48 0 92 \

5 ENQ 49 1 93]

6 ACK 50 2 94 T or

7 BEL 51 3 95 € or

8 BS 52 4 96 N

9 HT 53 5 97 a

10 LF 54 6 98 b

11 VT 55 7 99 C

12 FF 56 8 100 d

13 CR 57 9 101 e

14 SO 58 : 102 f

15 SI 59 ; 103 g

16 DLE 60 < 104 h

17 DC1 61 = 105 i

18 DC2 62 > 106 R

19 DC3 63 ? 107 k

20 DC4 64 @ 108 1

21 NAK 65 A 109 m

22 SYN 66 B 110 n

23 ETB 67 C 111 0

24 CAN 68 D 112 p

25 EM 69 E 113 q

26 SuUB 70 F 114 r

27 ESC or ALT 71 G 115 S

28 FS 72 H 116 t

29 GS 73 I 117 u

30 RS 74 J 118 v

31 VS 75 K 119 W

32 SP 76 L 120 X

33 ! 77 M 121 y

34 " 78 N 122 z

35 # 79 0] 123 {

36 $ 80 P 124 |

37 % 81 Q 125 }

38 & 82 R 126 “ Tilde

39 ' 83 S 127 Rubout or DEL

40 (84 T

41) 85 U

42 * 86 v

43 + 87 W

P§ 300 GRAPHICS FIRMWARE RELEASE NOTES

Version A2.V01
(904015-602)

June, 1986

Version A2.VO1 of the PS 300 Graphics Firmware supersedes all previous releases
and is the only firmware version now supported by E&S Customer Engineering.
These Release Notes summarize changes and additions to the Graphics Firmware
and are intended for use with the entire PS 300 family of graphics computers.
Information specific to a particular model is noted.

Formal change pages for the Command and Function Summaries in the PS 300
Document Set are provided with this release. Please discard the old pages and
replace with these new pages.

Before you use the new firmware, read these Release Notes carefully and be sure
you understand the differences between this and previous releases.

With this release, PS 300 Diagnostic Diskettes are no longer supplied. Instead,
one Diagnostic Utility Diskette is provided containing all the utility programs
described in Volume 5, Section 10 of the PS 300 Document Set. Please refer to
that section for instructions on using the utility programs for back-up and file
management and make note that the new Diagnostic Utility Diskette is the only
diskette that should be used to load these programs.

Direct your questions and comments to the Evans & Sutherland's Customer
Engineering Hotline 1-800-582-4375 (except Utah). Within Utah, customers
should call 582-5847.

2 - PS 300 Release Notes '

This Release Package Includes the Following Items

® One copy of the Graphics Firmware Version A2.VO1.
® A magnetic distribution tape including (but not limited to) the following:

- An updated version of the PS 300 Graphics Support Routines on magnetic
tape. The files READFOR.GSR and READPAS.GSR contain descriptions of
the FORTRAN and Pascal GSR software.

- The PS 300 Host-Resident 1/0 Subroutines

- Three programming utilities: NETEDIT, NETPROBE, and MAKEFONT (For
VAX/VMS users only).

e One copy of the Diagnostic Utility Diskette.

o These Release Notes, summarizing the new features of the A2.VO1 release
and listing corrected problems, miscellaneous notes, and advice. These notes
should be placed in the new PS 300 Document Set behind the Release Notes
tab in Volume 3A. U

e One copy of Graphics Firmware Version A1.V03 for single diskette systems.
These systems do not support the Writeback feature.

® Writeback Feature User's Guide, detailing the new Writeback feature
available with this release.

New Distribution Tape Format

All PS 300 VAX/VMS sites will receive the A2.VO1 distribution tape (PS 300 host
software) in VMS Backup format. To install the VAX PS 300 host software, first
create a subdirectory for the PS 300 software and set your default to that
directory by following the procedure below. Using the VMS Backup Utility, enter
the following commands:

Allocate MTNN:

Mount/Foreign MTNN:

Backup MTNN:PSDIST.BCK [...]*.*
Dismount MTNN:

Deallocate MTNN:

LA nenen

where MTNN: is the physical device name of the tape drive being used. ~ .)

This will create the sub-directory A2V01.DIR which is the parent directory of
the PS 300 host software.

PS 300 Release Notes - 3

All PS 300 sites that are not DEC VAX/VMS, excluding UNIX and IBM sites, will
receive a variable length ANSI format distribution tape with the PS 300 host
software. Consult your system operation manual for instructions on reading
ANSI-formatted tapes.

All UNIX and IBM sites will receive the distribution tape with the same format
as previous releases.

Enhancements in Graphics Firmware Version A2.V01

® This release of the graphics firmware provides the new Writeback feature.
The Writeback Feature allows displayed transformed data to be sent back to
the host. This feature provides a Writeback command and a Writeback
function.

The Writeback command creates a WRITEBACK operation node and enables
the data structure below the node for writeback operations. When the
Writeback node is activated, writeback is performed for name1 (the name of
the structure for which writeback is applied). A default WRITEBACK
operation node is created by the system at initialization time.

The Writeback Function is initialized by the system and is used to send
encoded writeback data to user function networks. This function is not
activated by the normal input queue triggering mechanism. It is activated by
sending a TRUE to any writeback operation node in a display structure.

Writeback is described completely in the Writeback Feature User s Guide,
included with this release.

e PVecMax (PVCMax-FORTRAN) has been added to the GSRs. This procedure
sets the maximum component of a block-normalized vector list, so that
multiple calls may now be made to PVecList for block-normalized vectors.

4 - PS 300 Release Notes

Modifications in the Graphics Firmware

e Changes to BUTTONSIN (PS 350 Only)
The initial function instance BUTTONSIN has two new inputs.

Integer <2> Enable/Disable Bit Mask
Default FIX(-1) all buttons enabled.

Boolean <3> TRUE - enable use of bit mask
FALSE - disable use of bit mask.
Default FALSE

The Buttonsin bit mask is a mapping of the bits of a 32-bit integer to the
individual buttons. The Most Significant Bit (sign bit) maps to button #1; the
least significant bit maps to button #32.

Most Significant Bit Least Sign‘iﬂcant Bit
+ ¥
Bits of the Integer| 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15141312 1110 9 8 7 6 5 4 3 2 1 0
I S A Ty A (T A R O Y (O Y (Y I O
Button Number 1 2 3 4 S5 6 7 8 91011 1213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 i

If the bit is set (=1), the button is enable. If the bit is off (=0), the button is
disabled.

® Changes to ONBUTTONLIGHTS and OFFBUTTONLIGHTS (PS 350 Only)

The initial function instance ONBUTTONLIGHTS/OFFBUTTONLIGHTS has
one new input.

New input

<2> Boolean

TRUE - interpret integer on input <1> as a bit mask.
FALSE - interpret integer on input <1> as a button number.

The ONBUTTONLIGHTS/OFFBUTTONLIGHTS bit mask is a mapping of the
bits of a 32 bit integer to the individual buttons. The most significant bit
(sign bit) maps to button #1; the least significant bit maps to button #32. If
the bit is set (=1) the button light is on.

PS 300 Release Notes - 5

PS 300 Bug Fixes

® Begin Structure Name

Within Begin Structure, End Structure pairs, names are concatenated with the
name of the most recent Begin Structure. Thus, in the following example,
the names (with the outermost Begin Structure) should be name.namel,
name.name2, name.name3, and name.name4.

Name := begin s
begin s

name2 := ...
end s;
name3 := ...
begin s

end s;
end s;

In previous releases, the names were name.namel, name.name2, name3,
name4. This occurred because the first End Structure after the unnamed
Begin Structure removed the outer name, and so all names afterward did not
have the prefix. This bug was fixed so that all names are concatenated
correctly. Some users may notice this if they have written their code to get
around the bug.

o Wildcard Delete

The wildcard delete command has been modified so that only the named
entities created by the command interpreter that receives the wildcard delete
command are deleted. This change fixes the problem of accidentally deleting
system named entities such as CURSOR and HOST MESSAGE.

o XFORMDATA Vector Loss

A bug has been fixed in the XFORMDATA function that caused certain dots in
large dots vector lists to be missing from the vector list collected by
XFORMDATA.

o User-Written Function SRECORDS

User-Written Function SRECORDS can now be correctly loaded using the
GSRs on all supported interfaces. In the A1.VO1 distribution, SRECORDS
could not be loaded using the GSR's on the DMR11 and PARALLEL
interfaces. In the A1.V02 distribution user-written function SRECORDS could
be loaded using the GSRs but a problem in the CONFIG.DAT file caused
subsequent GSR data to be loaded incorrectly. This problem has been fixed.

PS 300 WRITEBACK FEATURE

The Writeback feature allows displayed transformed vector data to be sent back to the
host. The position of the writeback node in the display structure determines which
transformations will be applied to the writeback data. The system-generated writeback
node will include all transformations (viewing and modeling). Once the host has
received these data, they can be used to generate hardcopy plots or display
host-generated raster images. The user is responsible for retrieval and all subsequent
processing of data on the host system.

This guide describes how to use the Writeback feature on all members of the PS 300
family of graphics computers. Operational differences among models are specifically
noted.

This guide contains:

® A description of the user interface for the Writeback feature. The user interface
consists of the WRITEBACK operation node and the WRITEBACK initial function.

e Constraints on the use of the WRITEBACK operation node.
® Descriptions of the WRITEBACK function.

® A list of the commands that may need to be interpreted by host-resident code to
filter writeback data retrieved from the PS 300.

® An example of the sequence of data sent back to the host.
® An example of a host program that retrieves, processes, and files writeback data

from the PS 350.

Change-pages supporting the Writeback feature are provided in this guide for the
Command Summary, the Function Summary and the Graphics Support Routine sections
of the PS 300 Document Set.

2 - PS 300 WRITEBACK FEATURE

Writeback User Interface

The Writeback feature is implemented by:

e Creating the WRITEBACK operation node (or using the system-generated
writeback node, WB$).

e Activating the WRITEBACK operation node.

e Connecting the WRITEBACK function to a function network.

WRITEBACK Operation Node

When the PS 300 is booted, a WRITEBACK operation node is created. It is named
WB$ and is placed above every user-defined display structure. This node can be
triggered if an entire displayed picture is to be included in the writeback data. If
writeback of only a portion of the picture is desired, the user must place other
WRITEBACK nodes appropriately in the display structure.

A user-defined WRITEBACK operation node is created by the command:
Name := WRITEBACK [APPlied to Name1];

The WRITEBACK node has one input. A TRUE sent to input <1> of the
WRITEBACK node triggers writeback for the data structure below the node. This
trigger is sent by the user, for example:

SEND TRUE TO <1>name;

triggers that WRITEBACK node. Of course the node could be triggered through a
function network using a function key, etc.

A WRITEBACK operation node delimits the structure from which the writeback
data will be collected. Only the data nodes below the WRITEBACK operation
node in the display structure will be transformed, clipped, viewport scaled
perspective divided (as delineated by the placement of the WRITEBACK node),
and sent back to the host.

NOTE

On the PS 350, viewport translations will not be applied
to the data.

PS 300 Writeback Feature - 3

WRITEBACK Operation Node Constraints

Only a displayed structure can be enabled for writeback. This means that the
WRITEBACK operation node must be traversed by the display processor and
therefore must be included in the displayed portion of the structure. The default
WRITEBACK node WBS$ is displayed as part of every displayed structure. But, if
the user creates another WRITEBACK node and if this node is triggered before
being displayed, the following error message will result:

E8 ACP cannot find your operate node

Any number of WRITEBACK nodes can be placed within a structure. However,
only one WRITEBACK operation can occur at a time. If more than one node is
triggered, the WRITEBACK operations are performed in the order in which the
corresponding nodes were triggered.

The terminal emulator and message display information will not be returned to
the host.

- ’ Polygon data can be returned to the host only if the PS 340 has a 4K ACP.

Before triggering the WRITEBACK operation, disable the SCREENSAVE function
by entering the command "SCREENSAVE:= nil;".

The WRITEBACK Function
An initial function instance, WRITEBACK, is created by the system at boot up.

WRITEBACK

Integer specifying
size of output
Qpackets —————————- > [< <1> | -———-> Qpackets to user

' function network

WRITEBACK sends encoded writeback data received from the display processor.
m The writeback data is prefixed by a start-of-writeback command, followed by the
encoded data, followed by an end-of-writeback or end-of-frame command.

4 - PS 300 WRITEBACK FEATURE

Data

WRITEBACK has one user-accessible input queue. Input <1> accepts integers
specifying the size of Qpackets to be output by the function. The default size is
512 bytes per Qpacket. The minimum and maximum size are 16 bytes per
Qpacket and 1024 bytes per Qpacket, respectively. If the size specified by the
user is not within this range, the default size will be used by the system.

The input value should be chosen such that the actual size of the gpacket sent to
the 1/0 port is less than or equal to the present input buffer size on the host
computer.

If the CVT8TO6 function is used to send the binary data to the host, then the
number of the bytes sent to the host is approximately 3/2 * the number of bytes
sent by the Writeback function.

For example, if the integer sent to <1> of the Writeback function is 80, the
largest Qpacket sent to the host will be 80 * 3/2 = 120. Qpackets, where the size
is not a multiple of 4, will be padded to the next multiple of 4. For instance,
Qpacket sizes of 77, 78, and 79, sent to CVT8TO6 will all have output sizes of 120.

WRITEBACK has one user-accessible output queue. Output <1> passes the
encoded writeback data out as Qpackets until the end-of-writeback or
end-of-frame command is seen.

This function is not activated by the normal input queue triggering mechanism. It
is activated by sending a TRUE to any WRITEBACK operation node.

Output by WRITEBACK

WRITEBACK will return all data below the WRITEBACK operation node.
Host-resident code will be responsible for recognizing the start-of-writeback and
end-of-writeback or end-of-frame commands.

Attribute information, such as color, must be interpreted by host code to ensure
that the hardcopy plots are correct.

On the PS 350, viewport translations will not be applied to the data. Correct
computation of the position of endpoints requires that the host program add a
viewport center to each endpoint. The initial viewport center is established with
a VIEWPORT CENTER command. The VIEWPORT CENTER command is sent
following the start-of-writeback command. Any changes to the viewport center
will be indicated through this sequence of commands: CLEAR DDA, CLEAR
SAVE POINT, position endpoint, CLEAR SAVE POINT. The position endpoint
becomes the new viewport center.

Also, on the PS 350, several commands such as ENABLE PICK and ENABLE
BLINK are sent to the host. These will not typically be needed by the host
program. However, these commands come directly from the refresh buffer and
are not filtered by the PS 350. Host-resident code must filter the writeback data
and strip out nonessential information.

PS 300 Writeback Feature - 5

Data Packets Returned

Data packets sent out the WRITEBACK function contain the following
information:

o If bit 15 of the first word is O, it signals that the data that follows is a
command. For example, if the first word is H#0200 (Hex 0200) then the Line
Generator status will follow.

bits 15|14 0
0| command

parameter

o |f bit 15 of the first word is 1, it indicates that intensity, x and y coordinate
information will follow. Intensity can range from 0 to 127. The format of the

data is:
' bits 15/14|13[12 -- 6 |5 —- 0
1] d{// inten [///////7| if d =1, then it is a DRAW
ifd=20, it is a MOVE
bits |15 - 13 |12 -- 0
i y coord
bits |15 - 13 [12 -- 0
/1177777 x coord
NOTE

In the illustrations of data format, the slash character is
used to illustrate blocks of data that are unused.

Command Descriptions

The following list describes the commands that the host-resident code might have
to interpret before it can recognize and filter writeback data received from the
PS 300. These commands can be intermixed with vector data.

ﬁ It is important to note that each command contains at least three 16-bit words.
For example, if a command only has one parameter then the third word is unused,
but it is still sent to the host. If a command has 3, 4, or 5 parameters, then 6
words will be sent for that command.

6 - PS 300 WRITEBACK FEATURE

START-OF-WRITEBACK code in hex = H#0B0O0
2816

Parameters:
Line texture (one word)
LGS (one word)

Marks the beginning of the writeback segment, of which there is
guaranteed to be only one.

The texture and line generator status are included here. They follow
the same format as the texture and line generator status shown below.

B0O
/////////] Texture
LGS
END-OF-WR | TEBACK code in hex = H#0C00
3072
Parameters:

None

Marks the end of the writeback segment. For the PS 350, the
end-of-writeback may also be indicated by the end-of-frame command.

cao
0 | 0/1 0 = finished successfully, 1 = cannot finish
[1/1/7/71//17//7/7///// operation because of insufficient memory

The error code (0 or 1) is currently not present in the PS 350 systems.

LINE GENERATOR STATUS code in hex = H#0200
512

Parameters:
Status word (one word)

Indicates dot mode (bit 8) and which display is selected (bits 0-3).
Normally, only the dot mode bit must be referenced.

200
LGS
[11177777117/7/7777777/

PS 300 Writeback Feature - 7

Line Generator Status Register (LGS):

111717 /77 /717\/77\///\//7|\SHO\///\///\///////| SCOPE SELECT
1171117/ 1/\///1/1/1///)\///\EPTL///\///1///////] D C B A
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Bit Logical Names

BA
08 SHOWENDPT Dot mode
03 BLANKD Blank scope D (1 blanks the scope 0 enables the scope)
02 BLANKC Blank scope C
01 BLANKB Blank scope B
00 BLANKA Blank scope A
COLOR code in hex = H#0400
1024 :
Parameters:
Color value (one word)
400

Hue | Saturation
[///711//711/1/771//77/7
/77 /// /17117717777
/// HI HUE LO |//// HI SAT Lo /////777777

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

TEXTURE code in hex = H#0500
1280

Parameters:
Texture value (one word)

500
//77////7] Texture
[1///1//7711/7///77

Line Generator Texture Register:

[1777777777717777777177777777777 Texture bit pattern
[11111111171711/7/7//17177/////7
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

H#007F or H#OOFF both default to a Solid line.
For non-PS 350 users, the texture will always be H#0OFF.

8 - PS 300 WRITEBACK FEATURE

The following commands are for PS 350 users ONLY.

CLEAR DDA code in hex = H#0100
256

Parameters:

None

PI1CK BOUNDARY code in hex = H#0300
768

Parameters:

Four Boundary Values (4 words)

CLEAR SAVE POINT code in hex = H#0600
1536

Parameters:

None

SET PICK ID code in hex = H#0700
1792

Parameters:

Pick ID Pointer (two words)

SET LightPen MODE code in hex = H#0800
2048

Parameters:

Control Mask (1)

New X,Y (2)

Delta distance (1)

Delta frames (1) (Total five words)

ENABLE PICK code in hex = H#0900
2304

Parameters:

None

DISABLE PICK code in hex = H#0AQ0
2560

Parameters:

None

PS 300 Writeback Feature - 9

SET BLINK RATE code in hex = H#0D0O
3328

Parameters:

Blink Rate (one word)

ENABLE BLINK code in hex = H#0EQO
3584

Parameters:

None

DISABLE BLINK code in hex = H#OFQO0
3840

Parameters:

None

END-QOF-FRAME code in hex = H#1700
5888

Parameters:

None

Signifies that the current update cycle is completed and that any
following data is part of the next update frame. This also signifies
end of the writeback segment.

VIEWPORT CENTER code in hex = H#1800

Parameters:

x center (one word)
y center (one word)
z center (one word)
spare (two words)

bits 15, 0
coordinates 2's complement vector

This value has to be added to each x,y coordinate pair. This
information is necessary to calculate the actual coordinates of the
data which has been viewport scaled. Every time a new viewport is
traversed by the Arithmetic Control Processor, a new viewport center
command will be sent.

10 - PS 300 WRITEBACK FEATURE

NOTE
Codes H#1900 - H#1FO00 are reserved for future

commands. Code H#0000 is defined as a no-op, and
naturally has no parameters.

EXAMPLE OF THE SEQUENCE OF DATA SENT BACK TO THE HOST

The following example illustrates the sequence of data and the data in byte
format sent to the host during a WRITEBACK operation.

PS 300 Writeback Feature - 11

BOO

//////77// |Texture

LGS
400

Hue [Saturation

[11/77171//777////7////7

Intensity

Y

X

200

LGS

////////////////////////

500

//////7//7/ | Texture

[111/1777777/7117777/7/7/7777

400
Hue |Saturation

i

Intensity

Y
X

C00

0/1

[111/77777717/77771717//7777

Start-of-writeback command

Color command

NIVOoO—Oom<

Line Generator Status command

Texture command

Color command

NIVOoO—-OomMm<

End-of-writeback command
0 = finished successfully, 1 = cannot
finish because of insufficient memory

12 - PS 300 WRITEBACK FEATURE

Data in Byte Format

0B 00 Start-of-writeback command
00 FF Texture

04 70 LGS

04 00 Color command

80 00 Hue/Saturation

00 00 Not used

00 FF Intensity

1Y FF Y
1X FF X
00 FF Intensity
2Y FF Y

2X FF X

02 00 LGS command
04 70 LGS

00 00 Not used

05 00 Texture command
00 FF Texture

00 00 Not used

04 00 Color command
80 00 Color

00 00 Not used

00 FF Intensity

1Y FF Y

1X FF X

0C 00 End-of-writeback command
00 00 Finshed successfully
00 00 Not used.

PS 300 Writeback Feature - 13

SAMPLE WRITEBACK PROGRAM

PROGRAM Writeback(Input,Qutput,Qutfile,Devfile);

{ Program to read writeback data from a PS 350. This program sets up a }
{ function network to get the writeback data and processes the data and }
{ creates a data file on the host with the data from the PS 350. }

CONST
%INCLUDE 'PROCONST.PAS'
Max_buf = 1024;

TYPE

Int16 = -32768..32767;

Max_line = VARYING [Max_buf] OF CHAR;
%INCLUDE 'PROTYPES.PAS'

N

OUTFILE : TEXT;
DEVFILE : TEXT;
DEVSPEC : P_VARYINGTYPE;
OUTNAME : P_VARYINGTYPE;
WBNAME : P_VARYINGTYPE;

COMMAND : [INT16;
INDEX : INTEGER;
LEN : INTEGER;

Inline : P_VARYBUFTYPE;
vx,vy,vz : REAL;

In_DDA : BOOLEAN := FALSE;
%INCLUDE 'PROEXTRN.PAS'

PROCEDURE ERR (ERROR: INTEGER);

{}
{}ERROR HANDLER ROUTINE }
{
BE%;N { ERR }
WRITELN(' ERROR :=',ERROR);
HALT;
{}

END; { ERR }

14 - PS 300 WRITEBACK FEATURE

PROCEDURE Setup;
{ Create function network to send writeback data to host }
{ This uses F:cvt8to6 to send 6-bit data to the host }
BEGIN
PFninst('cvt','cvt8',Err);
Pconnect ('Writeback',1,1,'cvt',Err);
Pconnect ('cvt',1,1, 'host message' Err);
PsndStr (CHR(36) 2 'cvt' JErr);
PsndFix (48,1, 'wrlteback' Err)
PNameNiI('screensave',Err);
PPurge(Err);
END;

{ Utility procedures}
PROCEDURE SIX to_eight(Inbuf : Max_line;
VAR Qutbuf : P VARYBUFTYPE)
{ Data}from PS 350 is in six-bit packed format. This procedure unpacks
data

CONST Base = 36;

TYPE
Cheat_4 = PACKED RECORD CASE Boolean OF
TRUE : (i: UNSIGNED);
FALSE : (c: PACKED ARRAY [1..4] OF CHAR);
END;

VAR
: Cheat 4;
c out cycle count,buf_index,il,tc : INTEGER;
first : BOOLEAN;

BEGIN
buf index := 1;
first := TRUE;
cycle_count := 1;
¢ out := 4;
outbuf := '';
WHILE buf_ |ndex <= len DO
BEGIN
tc := ORD(Inbuf[buf_index]) - base;
IF first THEN
IF tc < 0 THEN
c_out := 4+tc
ELSE
BEGIN
first := FALSE;
w.i := tc;
cycle_count :
END { ELSE tc >

I n
QU)

gC(cycIe count);

PS 300 Writeback Feature - 15

ELSE
BEGIN
W.i =w.i * (2*%6);
w.i = UOR(w.i ,tc);
cycle_count := SUCC(cycle_count);
END; { ELSE }
IF cycle_count > 6 THEN
BEGIN
FOR il := 4 DOWNTO (5-c_out) DO

Qutbuf := outbuf + w.c[il];
cycle_count := 1;
first := true;

END;
buf_index := SUCC(buf_index);
END; { WHILE }
END;

PROCEDURE Next_Block;
{ Get a block of data from the PS 350 and convert from six to eight}
{ bit format }

VAR Inbuff : Max_line;

BEGIN
PGETWAIT(Inbuff,err);
Index :=1;
Len := LENGTH(Inbuff);
Six_to_eight (Inbuff, Inline);
Len := LENGTH(Inline);

END;

PROCEDURE Get Value(VAR a : INT16);
{ Convert two bytes of input buffer to 16 bit integer }

VAR i : INTEGER;

BEGIN { Get_Value }
a :=0;
FOR i :=1T0 2 DO
BEGIN
Index := Index + 1;
IF Index > Len THEN
Next_Block;
a :=a * 256 + ORD(InlinelIndex]);
END;
END;{ Get_Value }

16 - PS 300 WRITEBACK FEATURE

{ Procedures for processing refresh buffer commands }

PROCEDURE Clear_DDA;
{ CLEAR DDA - %X0100 }
{ Parameters - None }

{ Indicates start of sequence to set viewport center }
{ This sequence is CLEAR DDA, CLEAR SAVE POINT, Vector, CLEAR SAVE POINT}

VAR a,b : Intl16;

BEGIN
In_DDA := TRUE;
Get value (a);
Get value (b);
WriteIn(Outfile,'{Clear DDA}');
END;

PROCEDURE Write LGS;

{ WRITE LINE GENERATOR STATUS - %X0200 }

{ Parameters - Status word (one word) }

{ Bit 8 : Dot mode. }

{Bit 6 : Fast sweep (Opposite of 7) }

{ Bits 5 - 4: Contrast selection (00-min,11-max)}
{ Bits 3 - 0: Scope select(1 disables,0 enables)}

VAR lIgs,a : Int16;

BEGIN

Get_value (Igs);

Get value (a);

WriteIn(Outfile,'{Write LGS:',HEX(Igs),'}');
END;

PROCEDURE Write Pick _Bound;
{ WRITE PICK BOUNDARY - %X0300 }
{ Parameters - Left, Right, Bottom, Top }

VAR |,r,b,t,a : Int16;

BEGIN
Get value (1
Get value (r

Get value (b

(t
a
i

Get value
Get_value (

);
);
);
);
);
(]

Writeln(Outfile,'{Write_Pick_bound:',HEX(1) ,HEX(r) HEX(b) ,HEX(t),'}');

END;

PS 300 Writeback Feature - 17

PROCEDURE Write Color;

{ WRITE COLOR - %X0400 }

{ Parameters - Color value (one Word) }
{ Bit 15 : Not Used }

{ Bits 14 - 8 : Hue (High order in 14)}
{ Bit 7 : Not Used }

{ Bits 6 - 3 : Sat (High order in 3) }
{ Bits 2 -0 : Not Used }

VAR c,a : Int16;

BEGIN
Get_value (c);
Get_value (a);
WriteIn(Qutfile,'{Write Color:',HEX(c),'}');

END;

PROCEDURE Write_Texture;

{ WRITE TEXTURE - %X0500 }

{ Parameters - Texture value (one word) }
{ Bits 15 - 7 : Not Used }

{ Bits 6 - 0 : Texture bit pattern }
VAR t,a : Int16;

BEGIN

Get_value (t);

Get value (a);

Writeln(Outfile,'{Write Texture:' HEX(t),'}');
END;

PROCEDURE Clear_Save Point;
{ CLEAR SAVE POTINT - %X0600 }
{ Parameters - None }

VAR a,b : Int16;

BEGIN
Get value (a);
Get value (b);
Writeln(Outfile,'{Clear_Save Point:}');

END;
PROCEDURE Set Pick_ld;
{ SET PICK ID - %X0700 }

{ Parameters - Pick Id Pointer (two words)}

VAR a,b : Int16;

18 - PS 300 WRITEBACK FEATURE

BEGIN

Get_value (a);

Get value (b);

Writeln(Outfile,'{Set_Pick_Id:' HEX(a),HEX(b),'}');
END;

PROCEDURE Set_Lightpen_Mode;

{ SET LIGHTPEN MODE - %X0800 }

{ Parameters - Control mask }
{ Tracking crossy }

{ Tracking cross x }

{ Delta distance }

{ Delta frames }

VAR cm,x,y,dd,df : Int16;

BEGIN
Get_value (cm);
Get_value (x);
Get_value (y);
Get_value (dd);

Get_value (df);
Writeln(Qutfile,'{Set_Lightpen_mode:',HEX(cm),HEX(x),HEX(y),
HEX(dd) ,HEX(df),'}');
END;

PROCEDURE Enable_Pick;
{ ENABLE PICK - %X0900}
{ Parameters - None }

VAR a,b : Int16;

BEGIN
Get_value (a);
Get_value (b);
WriteIn(Outfile,'{Enable Pick:}');
END;

PROCEDURE Disable Pick;
{ DISABLE PICK - %X0A00 }
{ Parameters - None }

VAR a,b : Int16;

BEGIN
Get_value (a);
Get_value (b);
Writeln(Outfile,'{Disable Pick:}');
END;

PS 300 Writeback Feature - 19

PROCEDURE Enable_Writeback;

{ ENABLE WRITEBACK - %X0B0O }
{ Parameters - Line Texture }
{ Line Gen Status}

VAR a,b : Int16;

BEGIN

Get value (a);

Get_value (b);

WriteIn(Outfile,'{Enable Writeback:',HEX(a),HEX(b),'}"');
END;

PROCEDURE Disable Writeback;
{ DISABLE WRITEBACK - %X0C00 }
{ Parameters - None }°

VAR a,b : Int16;

BEGIN
Get_value (a);
Get_value (b);
WriteIn(Outfile,'{Disable_Writeback:}');
END;

PROCEDURE Set_Blink_Rate;
{ SET BLINK RATE - %X0D00 }
{ Parameters - Blink rate }

VAR a,b : Int16;

BEGIN
Get_value (a);
Get_value (b);
Writeln(Outfile,'{Set Blink Rate:',HEX(a),'}');
END;

PROCEDURE Enable Blink;
{ ENABLE BLINK - %XO0EO00 }
{ Parameters - None }

VAR a,b : Int16;

BEGIN
Get_value (a);
Get_value (b);
WriteIn(Outfile,'{Enable Blink:}');
END;

20 - PS 300 WRITEBACK FEATURE

PROCEDURE Disablie Blink;
{ DISABLE BLINK - %XOF00 }
{ Parameters - None }

VAR a,b : Intl16;

BEGIN
Get value (a);
Get value (b);
Writeln(Outfile,'{Disable Blink:}');
END;

PROCEDURE End_Of Frame;
{ END OF FRAME - %X1700 }
{ Parameters - None }

VAR a,b : Int16;

BEGIN
Get_value (a);
Get_value (b);
Writeln(Outfile,'{End_Of Frame:}');

END; Q ’
PROCEDURE Viewport_Center;

{ VIEWPORT CENTER - %X1800}

{ Parameters - x center }

{ y center }
{ z center }

VAR xc,yc,zc,a,b : Int16;

BEGIN
Get_value (xc
Get_value (yc
Get_value (zc
Get value (a
Get_value (b);
VX = XC;
IF (vx >= 32768) THEN vx :
vx := vx/32767;

vx - 65536.0;

vy := yC;

IF (vy >= 32768) THEN vy :
vy := vy/32767;

vz := Z¢C;

IF (vz >= 32768) THEN vz :
vz := vz/32767;
WriteIn(Outfile,'{Viewport_Center:',vx:6:6,' ',vy:6:6,' ',vz:6:6,'}');

END; Qhﬁ)

vy - 65536.0;

vz - 65536.0;

PS 300 Writeback Feature - 21

PROCEDURE Process_Vector;

{ Vector - Bit 15 of command = 1 }
{ Word 1 (command) }

{ Bit 15 : Always one for vector }
{ Bit 14 : 1 = Draw, 0 = Move }

{ Bits 12 - 6 : Intensity/2 }

{ Bits 5 -0 : Not Used }

{ Word 2 (y coord) }

{ Bits 15 - 13: Not Used }

{ Bits 12 - 0: Y coordinate }

{ Word 3 (x coord) }

{ Bits 15 - 13: Not Used }

{ Bits 12 - 0: X coordinate }

VAR a,b : Int16;
n : UNSIGNED;
pl : CHAR;
int,x,y : REAL;

BEGIN

Get value (a);

Get value (b);

un:=command;

pl:='1"';

IF (UAND(un %X4000) = 0) THEN pl := 'p';

UAND(un ,%X1FC0);
int i= un;
IF In_DDA THEN
vz := int/8128.0
ELSE
int := (int/8128.0 + vz) * 2;

un := a;

un := UAND(un,%X1FFF);

= un;
IF (y >= %X1000) THEN y :
IF In_DDA THEN

vy :=y / %XFFF
ELSE

y :=y / %XFFF + vy;

b;
UAND (un ,%X1FFF);
X := un;
IF (x >= %¥X1000) THEN x :
IF In_DDA THEN
vx := x / %XFFF
ELSE
X := x / ¥XFFF + vx;
IF In_DDA THEN
BEGIN

y - %X2000;

un
un

x - %X2000;

22 - PS 300 WRITEBACK FEATURE

WriteIn(Outfile,'{New View Center:',vx:6:6,' ',vy:6:6,' ',vz:6:6,'}');
In DDA := FALSE;
END
ELSE
Writeln(Outfile,'{vVec ',pl,"' ',x,',"y," i=',int,'}');
END;

PROCEDURE Unknown;
VAR a,b : Inti16;

BEGIN

Get_value (a);

Get_value (b);

Writeln(Outfile,'{Unknown:' ,HEX(command),HEX(a),HEX(b),'}');
END;

BEGIN { Writeback}
Write ('Enter Output File Name:');
ReadIn(Outname);
Write ('Enter Writeback Operate Node Name:{WB$ is default mode}');
ReadIn(wbname);
open(Outfile,Outname,new);
rewrite(Outfile);

{ Look for file specifying line for pattach procedure }
{ Example of record in PSDEV.DAT: }

{ 'logdevnam=tt:/Phydevtyp=async' }
open(devfile,'psdev',old);

reset(devfile);

readIn(devfile,devspec);

close(devfile);

PATTACH(devspec,err); { Attach to PS 350 }
Setup; { Setup writeback network }

PNAMENIL('SCREENSAVE', ERR);
PPURGE (ERR) ;
PSndBoo | (TRUE,1,wbname, Err); { Trigger write back operate }

Next block; { Read in first block of writeback data}

Index := 0;

Command := 0;
VX
vy :
vz :

n uwn
oo o

.0;
.0;
.0;

{ Process writeback buffers until END OF FRAME or END WRITEBACK}
WHILE (Command <> %¥X0C00) AND (Command <> %X1700) DO

PS 300 Writeback Feature - 23

BEGIN
Get_value(Command) ;
IF (Command > 32767) THEN { If bit 15 of command if set}
Process_vector
ELSE
CASE (Command DIV 256) OF
%X01 : Clear_DDA;
%X02 : erte LGS;
%X03 : Write Plck Bound;
%X04 : Write “Color;
%X05 : Write Texture,
%X06 : Clear_Save Point;
%X07 : Set PICk Id;
%X08 : Set_ nghtpen Mode;
%X09 : Enable Pick;
%X0A : Disable_Pick;
%X0B : Enable_Writeback;
%X0C : Disable_Writeback;
%X0D : Set Blink_Rate;
%X0E : Enable Blink;
%XOF : Disable_Blink;
%X17 : End_Of_Frame;
(5!5 %X18 : V|ewport Center;
OTHERWISE Unknown;
END; { CASE }
END;
PFNINST('SCREENSAVE', 'SCREENSAVE', ERR PDETACH(ERR);
?;URGE(ERR):
END. { Writeback}

CHANGE PAGES FOR THE COMMAND SUMMARY, THE FUNCTION SUMMARY,
AND THE GRAPHICS SUPPORT ROUTINE MANUALS

m

PS 300 COMMAND SUMMARY RAWBLOCK

ADVANCED PROGRAMMING - Memory Allocation

Version A2.VO1

FORMAT

name := RAWBLOCK i;

DESCRIPTION

Used to allocate memory that can be directly managed by a user-written
function or by the physical I/0 capabilities of the Parallel or Ethernet Interfaces.

PARAMETERS

i - bytes available for use.

NOTES

1.

2.

The command carves a contiguous block of memory such that there are "i"
bytes available for use.

The block looks like an opertation node to the ACP. The descendant alpha
points to the next long word in the block. What the ACP expects in this
word is the .datum pointer of the alpha block. (The datum pointer points to
the first structure to be traversed by the ACP. This is the address in
memory where the data associated with a named entity is located.)

To use this block, the interface or user-written function fills in the
appropriate structure following the .datum pointer. When this is complete,
it changes the .datum pointer to the proper value and points to the beginning
of the data. After the ACP examines this structure, it displays the
newly-defined data. (Use the ACPPROOF procedure to change the .datum
pointer with a user-written function.)

More than one data structure at a time can exist in a RAWBLOCK. It is up
to the user to manage all data and pointers in RAWBLOCK.

A RAWBLOCK may be displayed or deleted like any other named data
structure in the PS 300. When a RAWBLOCK is returned to the free storage
pool, the PS 300 firmware recognizes that s is a RAWBLOCK and does not
delete any of the data structures linked to RAWBLOCK.

DISPLAY TREE NODE CREATED

Rawblock data node.

PS 300 COMMAND SUMMARY VECTOR_LIST
! MODELING - Primitives

Version A2.VO0l

FORMAT

name := VECtor list [options] [N=n] vectors;

DESCRIPTION

Defines an object by specifying the points comprising the geometry of the object
and their connectivity (topology).

PARAMETERS

name - Any legal PS 300 name.

options - Can be none, any, or all of the following five groups (but only one from
each group, and in the order specified):

f ’ 1. BLOCK_normalized - All vectors will be normalized to a single
common exponent.

2. COLOR - This option is used when specifying color-blended vectors
(refer to SET COLOR BLENDing command) to indicate that vector
colors will be specified in lieu of vector intensities. When the
COLOR option is used, the optional I=i clause used to specify the
intensity of a vector (refer to the vectors parameter below) is
replaced by the optional H=hue clause, where H is a number from 0
to 720 specifying the individual vector hues. The default is 0 (pure
blue).

The 0-720 scale for the H=hue clause is simply the SET COLOR
scale of 0-360 repeated over the interval 360-720. On this scale, 0
represents pure blue, 120 pure red, 240 pure green, 360 pure blue
again, 480 pure red again, 600 pure green again, and 720 pure blue.
This "double color wheel" allows for color blending either clockwise
or counterclockwise around the color wheel.

3. Connectivity:

A. CONNECTED_lines - The first vector is an undisplayed position
and the rest are endpoints of lines from the previous vector.

VECTOR_LIST

PS 300 COMMAND SUMMARY
MODELING - Primitives

Version A2.V0l

(continued)

PARAMETERS (continued)

B.
C.

SEParate_lines - The vectors are paired as line endpoints.
DOTs - Each vector specifies a dot.

ITEMized - Each vector is individually specified as a move to
position (P) or a line endpoint (L).

TABulated - This caluse is used to specify an entry into a table
that is used for specifying colors for raster lines and for
specifying colors, radii, diffuse, and specular attributes for
raster spheres. This option is also used to alter the attribute
table itself.

When the TABulated option is used, the T=t clause replaces
the I=i clause (for intensities) and the H=hue clause (for vector
hues). The default is 127 (table entry 127).

There are 0 to 127 entries into the Attribute table. The
Attribute table may be modified via input <l4> of the
SHADINGENVIRONMENT function.

4. Y and Z coordinate specifications (for constant or linearly changing
Y and/or Z values):

Y = y[DY=delta_yl[Z = z[DZ=delta_z1]

where y and z are default constants or beginning values, and
delta_y and delta_z are increment values for subsequent vectors.

5. INTERNAL units - Vector values are in the internal PS 300 units
[LENGTH]. Specifying this option speeds the processing of the vector
list, but this also requires P/L information to be specified for each
vector, and it doesn't allow default y values or specified intensities.

n - Estimated number of vectors.

PS 300 COMMAND SUMMARY VECTOR_LIST
MODELING - Primitives

Version A2.V0l1 (continued)

PARAMETERS (continued)

vectors -The syntax for individual vectors will vary depending on the options
specified in the options area. For all options except ITEMized, COLOR,
and TABulated the syntax is:
xcomp[,ycompl,zcompll[I=il
where xcomp, ycomp and zcomp are real or integer coordinates and i is
a real number (0.0 ¢ i < 1.0) specifying the intrinsic intensity for that
point (1.0 = full intensity).
For ITEMized vector lists the syntax is:
P xcompl,ycompl,zcompl]lI=i]
or
L xcompl,ycompl,zcompll[I=il

‘ ’ where P means a move-to—position and L means a line endpoint.

If default y and z values are specified in the options area, they are
not specified in the individual vectors.

For color-blended (COLOR) vector lists, the syntax is:
xcompl,ycompl,zcompll[H=hue]

where xcomp, ycomp and zcomp are real or integer coordinates and hue
is a real number between 0 and 720 specifying the hue of a vector.

For TABulated vector lists (TAB), the syntax is:

xcompl,ycompl,zcompll[T=t]

where t is an integer between 0 and 127 specifying a table entry.

VECTOR_LIST PS 300 COMMAND SUMMARY
MODELING - Primitives

Version A2.VO01 (continued)

DEFAULTS
If not specified, the options default to:
l. Vector normalized
2. Not color blended
3. Connected
4. No default y or z values are assumed (see note 5)
5. Expecting internal units
Non color-blended vectors default to:
xcomp,ycompl,zcompl[I=i]
If i is not specified, it defaults to 1.
Color-blended vectors default to:
xcomp, ycompl,zcompl[H=hue]
If hue is not specified, it defaults to 0 (pure blue).
Tabulated vectors default to:

xcomp,ycompl,zcompl[T=t]

If the table entry is not specified, it defaults to 127 (table entry 127).

NQOTES

I. If n is less than the actual number of vectors, insufficient allocation of
memory will result; if greater, more memory will be allocated than is used.
(The former is generally the more severe problem.)

2. All vectors in a list must have the same number of components.

3. If y is specified in the options area, Z must be specified in the options area.

PS 300 COMMAND SUMMARY VECTOR_LIST

MODELING - Primitives

Version A2.VOl (continued)

NOTES (continued)

4.

If no default is specified in the options area and no z components are
specified in the vectors area, the vector list is a 2D vector list. If a z
default is specified in the same case, the vector list is a 3D vector list.

The first vector must be a position (P) vector and will be forced to be a
position vector if not.

Options must be specified in the order given.
If CONNECTED lines, SEParate_lines, or DOTs are specified in the options
area but the vectors are entered using P/Ls, then the option specified takes

precedence.

Block normalized vector lists generally take longer to process into the
PS 300, but are processed faster for display once they are in the system.

DISPLAY TREE NGODE CREATED

Vector list data node.

VECTOR_LIST PS 300 COMMAND SUMMARY
MODELING - Primitives

Version A2.VOl (continued)

INPUTS FOR UPDATING NODE

name
Vector <last> Changes last vector
Integer < clear> Clears list

Integer——— < delete> Deletes from end

Vector < append > Appends to end
Boolean <i> True=Line; False=Position
Vector Replaces i-th vector

VECTOR LIST

1AS0632

NOTES ON INPUTS

l. Vector list nodes are in one of two forms:

A. If DOTs was specified in the options area of the command, a DOT mode
vector list node is created. The Boolean input to <i> is ignored in this
case as well as the P/L portion of input vectors, and all vectors input are
considered new positions for dots.

B. All other vector list nodes created can be considered to be 2D or 3D
ITEMized with intensity specifications after each vector, and if a 3D
vector is input to a 2D vector list node, the last component modifies the
intensity.

2. If a 2D vector is sent to a 3D vector list, the z value defaults to 0.

3. When you replace the i-th vector, the new vector is considered a line (L)
vector unless it was first changed to a position vector with F:POSITION LINE.

PS 300 COMMAND SUMMARY VECTOR_LIST
MODELING - Primitives

Version A2.VOl (continued)

EXAMPLES

A := VECtor_list BLOCK SEParate INTERNAL N=4
PLIL-I,lL-1,-1LI,-1;

B := VECtor_list n=5
1,1 -1,11=.5
-1,-1 1,-11=.75
L1

C := VECtor list ITEM N=5
PI1,l

L-1,1

L-1,-1

P1,-1

L 1,l;
Vv

PS 300 COMMAND SUMMARY WRITEBACK

SPECIAL

Version A2.VOl

FORMAT

name := WRITEBACK [APPLied to namell;

DESCRIPTION

The WRITEBACK command creates a WRITEBACK operation node and delineates
the data structure below the node for writeback operations. When the
WRITEBACK operation node is activated, writeback is performed for namel.

PARAMETERS

namel - The name of the structure or node to which writeback is applied.

NOTES

1.

This node delimits the structure from which writeback data will be retrieved.
Only the data nodes that are below the WRITEBACK operation node in the
data structure will be transformed, clipped, viewport scaled, and sent back to
the host.

Only a structure that is being displayed can be enabled for writeback. This
means that the WRITEBACK operation node must be traversed by the display
processor and so must be included in the displayed portion of the structure. If
the writeback of only a portion of the picture is desired, WRITEBACK nodes
must be placed appropriately in the display structure.

Any number of WRITEBACK nodes can be placed within a structure. Only one
writeback operation can occur at a time. If more than one node is triggered,
the writeback operations are performed in the order in which the
corresponding nodes were triggered. If the user creates any WRITEBACK
nodes (other than the WRITEBACK node created initially at boot-up), these
nodes must be displayed before being triggered. If the nodes are triggered
before being displayed, an error message will result.

The terminal emulator and message_display data will not be returned to the
host.

DISPLAY TREE NODE CREATED

The command creates a WRITEBACK operation node.

PS 300 Function
Initial Function Instance WRITEBACK

Version A2.V01

WRITEBACK

>l<1> <1>| ----Qpacket

PURPOSE

WRITEBACK is initialized by the system and is used to send encoded writeback
data to user function networks.

This function is not activated by the normal input queue triggering mechanism. It
is activated by sending a TRUE to any WRITEBACK operation node.

DESCRIPTION

INPUT
WRITEBACK has one input queue. Input <l> accepts integers specifying the
size of Qpackets to be output by the function. The default size is 512.
Minimum and maximum sizes are 16 and 1024. If the size specified on the
input is not within this range, the default size will be used.

OuUTPUT
WRITEBACK has one output queue. QOutput <l> passes the encoded writeback
data out as Qpackets.

NOTES

WRITEBACK will return all data that are under the WRITEBACK operation node.
Host-resident code will be responsible for recognizing the start-of-writeback and
end-of-writeback commands. Attribute information, such as color, must be
interpreted by host code to ensure that the hardcopy plots are correct.

On the PS 350, viewport translations have not been applied to the data. To
correctly compute the position of endpoints, the host program interpreting the
writeback code must add a viewport center to each endpoint. The initial viewport
center is established with a VIEWPORT CENTER command. The VIEWPORT
CENTER command is sent following the start-of-writeback command. Any
changes to the viewport center will be indicated through this sequence of
commands: CLEAR DDA, CLEAR SAVE POINT, position endpoint, CLEAR SAVE
POINT. The position endpoint becomes the new viewport center.

PS 300 DEC VAX/VMS PASCAL GSR PWRTBACK
Name := WRITEBACK

Version A2.VO0l

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PWrtBack (%DESCR Name : P_VaryingType;
%DESCR Namel : P_VaryingType;
PROCEDURE Error_Handler (Err : INTEGER));

DEFINITION
This procedure enables writeback in the data structure Namel. Writeback is

triggered by sending a TRUE to the WRITEBACK operation node created with this
procedure.

PARAMETERS

Namel - The name of the structure to which writeback is applied.

PS 300 COMMAND AND SYNTAX

name := WRITEBACK [APPLied to Namell;

PS 300 IBM PASCAL/VS GSR PWRTBACK
Name := WRITEBACK

Version A2.VO0l1

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PWrtBack (CONST Name : STRING;
CONST Namel : STRING;
PROCEDURE Error_Handler (Err : INTEGER));

DEFINITION
This procedure enables writeback in the data structure Namel. Writeback is

triggered by sending a TRUE to the WRITEBACK operation node created with this
procedure.

PARAMETERS

Namel - The name of the structure to which writeback is applied.

PS 300 COMMAND AND SYNTAX

name := WRITEBACK [APPLied to Namell;

PS 300 FORTRAN GSR PWRTBK
Name := WRITEBACK

Version A2.VOl

APPLICATION SUBROUTINE AND PARAMETERS

CALL PWRTBK (Name, Namel, Errhnd)
where:
Namel is a CHARACTER STRING
Errhnd is the user-defined error-handling subroutine
DEFINITION
This subroutine enables writeback in the data structure Namel. Writeback is

triggered by sending a TRUE to the WRITEBACK operation node created with this
procedure.

PARAMETERS

Namel - The name of the structure to which writeback is applied.

PS 300 COMMAND AND SYNTAX

name := WRITEBACK [APPLied to Namell;

PS 300 DEC VAX/VMS PASCAL GSR PATTACH
UTILITY PROCEDURE

Version A2.V01

UTILITY PROCEDURE AND PARAMETERS

PROCEDURE PAttach (%DESCR Modifiers : P_VaryingType;
PROCEDURE Error_Handler (Error : INTEGER));

DEFINITION
This procedure attaches the PS 300 to the communications channel.

If this procedure is not called prior to use of the Application Procedures, the error
code value corresponding to the name PSE NotAtt is generated, indicating that
the PS 300 communications link has not been established.

The parameter (Modify) must contain the phrases:
LOGDEVNAM=name/PHYDEVTYP=type

where '"name" refers to the logical name of the device that the GSRs will
communicate with, i.e. TTA6:, TTB2: XMEQ:, PS:, etc. and "type" refers to the
physical device type of the hardware interface that the GSRs will communicate
through. This last argument can only be one of the following four interfaces:

ASYNC (standard RS-232 asynchronous communication interface)
DMR-11 (DMR-11 high speed interface)

PARALLEL (Parallel interface option)

ETHERNET (DECnet Ethernet option)

The parameter string must contain EXACTLY one "/" and blanks are NOT allowed
to surround the "=" in the phrases. The PAttach parameter string is not sensitive
to upper or lower case.

Example: PAttach ('logdevnam=tta2:/phydevtyp=async', Error Handler);

where "tta2" is the logical device name of the PS 300, and the hardware interface
is standard asynchronous R5-232.

Example: PAttach ('logdevnam=ps:/phydevtyp=dmr-11', Error_Handler);

where the physical device type is a DMR-11 interface, and where the user has
informed the VAX that the logical symbol "ps" refers to the name of the logical
device that the GSRs will communicate with using the following ASSIGN
command:

$ ASSIGN XMDO0: PS
$ RUN <application-pgm>

PS 300 DEC VAX/VMS PASCAL GSR PVECBEGN

Name := VECTOR_LIST (no corresponding command)

Version A2.VO0l

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVecBegn (%DESCR Name : P_VaryingType;
VectorCount : INTEGER;
BlockNormalized : BOOLEAN;
ColorBlending : BOOLEAN;
Dimen . INTEGER;
Class : INTEGER;

PROCEDURE Error_Handler (Err : INTEGER));

DEFINITION

This procedure must be called to begin a vector list. To send a vector list, the
user must call the procedures:

PVecBegn

PVeclList (This procedure may be called multiple times for vector-normalized

ﬁ vector lists)

PVecEnd

It contains the following parametric definitions:
e Name specifies the name to be given to the vector list
e \ectorCount is the number of vectors to be created

. BlockNormalized is TRUE for Block Normalized and FALSE for Vector
Normalized

® (ColorBlending is TRUE for Color Blending and FALSE for normal depth
cueing

e Dimenis 2 or 3 (2 or 3 dimensions respectively)

¥Class corresponds to a vector class

e Error Handler is the user-defined error-handler procedure

(Continued on next page)

PS 300 DEC VAX/VMS PASCAL GSR PVECBEGN

Name := VECTOR_LIST (no corresponding command)

Version A2.VOl (continued)

Together, the above 3 procedures implement the PS 300 command:

Name := VECTOR___LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

NOTE
The dimension must be specified in the PVECBEGN

application procedure. In the PS 300 command, dimension is
implied by syntax.

* These mnemonics may be referenced directly by the user if PROCONST.PAS is
INCLUDED in the procedure.

Mnemonic Meaning INTEGER Value

P_Conn Connected 0
P Dots Dots l
P Item [temized 2
P Sepa Separate 3
P_Tab Tabulated 4

Note: If the vector list is class P_Tab, BlockNormalized must be FALSE,
and Dimen must be equal to 3; that is, tabulated vector lists must be
vector-normalized 3D vector lists.

PS 300 DEC VAX/VMS PASCAL GSR PVECLIST

Name := VECTOR_LIST (no corresponding command)

Version A2.VO0I]

APPLICATION PROCEDURE AND PARAMETERS

PROCEDURE PVecList (NumberOfVectors : INTEGER;
VAR Vectors : P_VectorListType;
PROCEDURE Error_Handler (Err : INTEGER));

DEFINITION

This procedure must be called to send a piece of a vector list. For
vector-normalized vector lists, this procedure can be called repeatedly to send
the vector list down in pieces. Multiple calls to this procedure are not permitted
for the block-normalized vector list case, unless the procedure PVecMax is called
first. To send a vector list, the user must call the procedures:

PVecBegn

PVeclList (This procedures may be called multiple times for
vector-normalized vector lists)

PVecEnd

Together, the above 3 procedures implement the PS 300 command:

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;

Vectors is the array containing the vectors of the vector list.

where: Vectors [n].V4[1] := Vector n x-component
Vectors [n].V4[2] := Vector n y-component
Vectors [n].V4[3] := Vector n z-component
Vectors [n].V4[4] := Vector n intensity (or hue)
0 «= vectors [nlV4[4] <=1 or O«=
Vectors[nl.V4[4] <«=127 if vector class is
tabulated.

Vectors [n].Draw := True if vector n is a draw/line vector.
Vectors [n].Draw := False if vector n is a move/position vector.

The fourth position of Vectors 1is the intensity of that vector if
vector-normalized, regardless of dimension. If block-normalized, the first
vector's fourth position is used as the entire vector list intensity.

PS 300 DEC VAX/VMS PASCAL GSR PVECLIST

Name := VECTOR_LIST (no corresponding command)

Version A2.VO1 (continued)

The fourth position of Vectors can be used to specify color in lieu of intensity
when specifying color-blended vectors (refer to PSETBLND). Use the following
algorithm to convert the acceptable range of hues (real numbers 0-720 for the
PS 300 VECTOR_LIST command) to the expected range of 0-1 for the PVECLIST
GSR procedure before sending.

e If the value is less than 0 or greater than 720, clamp it to the nearest
in-range value.

e If the value is greater than or equal to 360, subtract 360.
e Divide the value by 768.

e If the original value was greater than or equal to 360, add .5 to the result of
the division.

This has the effect of mapping hue values in the range (0-360) to (0-.46875), and
values in the range (360-720) to (.5-.96875). Values greater than .46875 and less
than .5 are out of range, and are interpreted as .5 (pure blue).

If the vector class is "tabulated," the fourth position of the VECTORS is an
INDEX. Users should specify whole numbers 0< index <127 in this case. The GSRs
will truncate the value supplied to an integer and force the value to be in range 0
to 127.

If specifying P_Conn, P_Dots, or P_Sepa) the vector's draw section of the vector
list is generated by the procedure. P_Item and P_Tab require that the move/draw
nature of each vector be defined by the user.

PS 300 DEC VAX/VMS PASCAL GSR PVECMAX

Name := VECTOR_LIST (no corresponding command)

Version A2.V01

APPLICATION PROCEDURE AND PARAMETERS

[GLOBAL, CHECK(NOBOUNDS)] PROCEDURE PVecMax (Maxcomp : REAL)
(PROCEDURE Error_Handler (Err : INTEGER));
DEFINITION
This procedure must be called to set the maximum component of a vector list for
multiple calls to PVeclList with block-normalized vectors. To send a vector list,
the user must call:

® PVecBegn

® PVecMax (If defining block-normalized vector with multiple calls to
PVeclist)

e PVeclist (This may be called multiple times.)
e PVecEnd (This is called last.)

Together, the above 4 procedures implement the PS 300 command

Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE)
N=n <vectors>;

PS 300 DEC VAX/VMS FORTRAN-77 GSR PATTCH
‘, N UTILITY SUBROUTINE

Version A2.VO01

UTILITY SUBROUTINE AND PARAMETERS

CALL PAttch (Modify, ErrHnd)

where:

Modify is a CHARACTER STRING
ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine attaches the PS 300 to the communications channel. If this
subroutine is not called prior to use of the Application Subroutines, the user's
error handler is invoked with the "The PS 300 communications link has not been
established" error code corresponding to the mnemonic: PSENOA:.

The parameter (Modify) must contain the phrases:
(, LOGDEVNAM=name/PHYDEVTYP=type

where "name" refers to the logical name of the device that the GSRs will
communicate with, i.e. TTA6:, TTB2: XMEQ:, PS:, etc. and "type" refers to the
physical device type of the hardware interface that the GSRs will communicate
through. This last argument can only be one of the following four interfaces:

ASYNC (standard RS-232 asynchronous communication interface)
DMR-11 (high-speed synchronous interface)

PARALLEL (high speed parallel interface

ETHERNET (DECnet Ethernet option),

The parameter string must contain EXACTLY 1 "/" and blanks are NOT allowed to
surround the "=" in the phrases. The Pattch parameter string is not sensitive to
upper or lower case.

Example: CALL PAttch ("logdevnam=tta2:/phydevtyp=async', Errhnd)

where "tta2" is the logical device name of the PS 300, and the hardware interface
is standard asynchronous RS-232,

(Continued on next page)

PS 300 DEC VAX/VMS FORTRAN-77 GSR PATTCH
UTILITY SUBROUTINE

Version A2.V0l1 (continued)

Example: CALL PAttch ('logdevnam=ps:/phydevtyp=dmr-11', ErrHnd)

where the physical device type is a DMR-I11 interface and where the user has
informed the VAX that the logical symbol "ps" refers to the name of the logical
device that the GSRs will communicate with using the following ASSIGN
command:

$ ASSIGN XMDQ0: PS:
$ RUN <application-pgm>

PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCBEG

Name := VECTOR_LIST (no corresponding command)

Version A2.VO0l1

APPLICATION SUBROUTINE AND PARAMETERS

CALL PVcBeg (Name, VecCou, BNorm, CBlend, Dimen, Class, ErrHnd)
where:
Name is a CHARACTER STRING defining the name of the vector list

VecCou is an INTEGER%*4 specifying the total number of vectors in the
vector list

BNorm is a LOGICAL*] defined: .TRUE. for Block Normalized, .FALSE. for
Vector Normalized

CBlend is a LOGICAL*] defined: .TRUE. for Color Blending, .FALSE. for
normal depth cueing

Dimen is an INTEGER*4 2 or 3 (2 or 3 dimensions respectively)
m *Class is an INTEGER*4 defining the class of the vector list
ErrHnd is the user-defined error-handler subroutine.

This subroutine must be called to begin a vector list. To send a vector list, the
user must call:

PVcBeg
PVcLis (This may be called multiple times for vector-normalized vector

lists.)
PVcEnd

Together, the above 3 subroutines implement the PS 300 command:
Name := VECTOR_LIST (DOTS, CONNECTED, ITEMIZED, SEPARATE,
TABULATED) N=n <vectors>;
NOTE
The dimension must be specified in the PVCBEG

application subroutine. In the PS300 command,
dimension is implied by syntax.

n (Continued on next page)

PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCBEG

Name := VECTOR_LIST (no corresponding command)

Version A2.VO01 (continued)

* These mnemonics may be referenced directly by the user if PROCONST.FOR is
INCLUDED in the subroutine. See the section on Programming Suggestions for
a description of PROCONST.FOR. A description of the vector classes and their
INTEGER*4 value is given below.

Mnemonic Meaning INTEGER*4 Value

PVCONN Connected 0
PVDOTS Dots l
PVITEM Itemized 2
PVSEPA Separate 3
PVTAB Tabulated 4

Note: If the vector list is class PVTAB, then the BNorm must be FALSE
and Dimen must be equal to 3; that is, tabulated vector lists must be
vector-normalized 3D vector lists.

PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCLIS
) Name := VECTOR_LIST (no corresponding command)

Version A2.VO1

APPLICATION SUBROUTINE AND PARAMETERS

CALL PVcLis (NVec, Vecs, PosLin, ErrHnd)
where:
NVec is the number of vectors in the vector list and is defined: INTEGER*4

Vecs is the array containing the vectors of the vector list and is defined:
REAL*4 (4, NVec)
where: Vecs(l,n) = vector n x-component
Vecs(2,n) = vector n y-component
Vecs(3,n) = vector n z-component
Vecs(4,n) = vector n intensity (or hue)
0 <= Vecs(4,n) <=1 or
0 <= Vecs(4,n) <=127 if vector
class is tabulated.

for each vector. PosLin is defined : LOGICAL*! PosLin(NVec)

m PosLin is the array containing the move/positive - draw/line information

If PosLin(n) = .TRUE. then vector n is a draw(line) vector.
If PosLin(n) = .FALSE. then vector n is a move(position) vector.

ErrHnd is the user-defined error-handler subroutine.

DESCRIPTION

This subroutine must be called to send a piece of a vector list. For
vector-normalized vector lists, this subroutine can be called multiple times to
send the vector list down in pieces. Multiple calls to this subroutine are not
permitted for the block-normalized vector list case, unless the subroutine
PVcMax is called first. To send a vector list, the user must call:

PVcBeg

PVclLis (This may be called multiple times for vector-normalized vector lists)

PVcEnd

(Continued on next page)

m

PS 300 DEC VAX/VMS FORTRAN-77 GSR PVCLIS

Name := VECTOR_LIST (no corresponding command)

Version A2.VOl1 (continued)

The POSLIN Array is always required, however the CLASS specified in PVcBeg
determines how it is used. For CONNECTED, DOTS, and SEPARATE, the user
need not specify the con<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>