
PS 300 DOCUMENT SEi

VOIUME 2b

GRAPHICS PROGRAMMING

The contents of this volume are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans &Sutherland.

Many concepts in this volume are proprietary to Evans &
Sutherland, and are protected as trade secrets or covered by
U.S. and foreign patents or patents pending.

Evans & Sutherland assumes no responsibility for errors or
inaccuracies in this document. It contains the most complete
and accurate information available at the time of
publication, and is subject to change without notice.

PSI, PS2, MPS, and PS 300 are trademarks of the Evans &
Sutherland Computer Corporation.

Copyright o 1984
EVA~IS &SUTHERLAND COMPUTER CORPORATION

P.O. Box 8.700, 580 Arapeen Drive
Salt Lake City, Utah 84121

PS 300 TUTORIAL VODULES

ADVANCED CONCEPTS

This volume consists of six tutorial modules which detail more advanced concepts of
PS 300 graphics programming. Because it builds on fundamental information detailed in
Volume 2A, you should read Volume 2A first.

Each tutorial module covers a PS 300 programming concept or group of related
concepts. Because each module details a separate, advanced skill, the modules may be
read in any order desired.

Note that this volume contains the module USING THE PS 340. This information is
specific to users of the PS 340; it need not be read by other users.

The following provides a capsule description of each module:

CONDITIONAL RE~E'EREiVCING describes how detail can be added to or deleted from a
view on the screen.

FUNCTION NETWORKS II describes more advanced ways to use function networks
(refer to FUNCTION NETWORKS I in Volume 2A for fundamental uses of function
networks). This includes multiple uses of dials (via function keys), labeling dial LEDs,
limiting a model's motion, and storing/retrieving variables.

TEXT MODELING details how to create character strings, how to use commands and
functions to manipulate character strings, and how to create and use different
character fonts.

PICKING describes how to use the data tablet to activate a given action by picking an
object being displayed.

TRANSFORMED DATA is the vector list or matrix representation of transformations
which have been applied to an object. This module details how to retrieve transformed
data so that it can be manipulated as a separate entity in the model's display tree or
retrieved by the host computer.

USING TI-IE PS 340 describes how to define polygonal objects, including how to perform
rendering operations for both vector and raster displays.

In addition to the tutorial modules, this volume contains reference material, including
sample programs illustrating various PS 300 programming techniques, and a glossary of
terminology specific to the PS 300.

The appendix contains a paper by Dr. Alan L. Davis. The PS 300 function network
facility bears a striking resemblance to data-flow concepts and theory that have been
the subject of research for numerous years. Dr. Davis was contracted to write a
self-contained tutorial discussion of data-driven programming in general and PS 300
function network programming in particular. It is hoped that this paper will assist the
PS 300 user in writing well-formed function network programs which are efficient, easy
to test and debug, and easy to modify.

CONDITIONAL REFERENCING

SELECTING PORTIONS OF A MODEL FOR flISPLAY

CONTENTS

INTRODUCTION 1

OBJECTIVES 3

PREREQUISITES 3

USING CONDITIONAL—BIT ATTRIBUTE SETTINGS 5

Exercise 9

USING LEVEL OF DETAIL CONDITIONAL REFERENCING 12

Determining the Order for Overlaying Detail 13
Using Level—Of —Detail Settings to Animate an Object 16
Exercise 17

CONDITIONAL REFERENCING

USING RATE ATTRIBUTE SETTINGS

Creating The Set Rate Node
Creating the IF PHASE Node
Exercise
Some Uses for Timed Blinking

SUMMARY

ILLUSTRATIONS

18

18
19
20
21

22

Figure 1. Display Tree Including Conditional Referencing Nodes 2
Figure Z. Car Display Trees 7
Figure 3. Molecule Display Tree 8
Figure 4. Display Tree For Conditional Referencing in Molecule 9
Figure 5. Function Network for Conditional Bit Control 10
Figure 6. Level—of —Detail Structure for the World 15
Figure 7. Turbine Blade Structure 16

CONDITIONAL REFERENCING - 1

This module introduces and explains Conditional Referencing--ways to display
selected branches of a display tree without displaying other branches.

Conditional referencing is useful, for example, if you have a model of an assembly that
you would like to add parts to or take parts from, showing various stages of
development or assembly.

There may be layers of detail in your model that you would like to be able to overlay
or strip off. An example of adding detail might start with an outline map of the
United States, then sequentially add major rivers, mountain ranges, state borders,
major cities, county borders, etc.

You might also want to display different views of an object at different times to
animate an object, or alternately display and blank an object at a selectable rate
(blinking).

These kinds of operations are achieved with conditional referencing, using three
methods: conditional-bit settings, level-of-detail settings, and rate settings.

To use conditional referencing, a minimum of two nodes must be placed in a display
tree. The first node (called a SET node) sets a condition:

THE CONDITION IS 1

The second node (called an IF node) tests the condition and makes the traversal of the
branch (and therefore the display of data indicated by that branch) dependent on the
condition set in the first type of node:

IF THE CONDITION IS 1 THEN DISPLAY Object 1

IF THE CONDITION IS 2 THEN DISPLAY Object2

Figure 1 shows these nodes in a display tree. These nodes are attribute nodes and
follow the same rules of placement and of use as operate nodes.

2 —CONDITIONAL REFERENCING

Cond Object

IAS039b

Figure 1. Display Tree Including Conditional Referencing Nodes

In the above example, displaying the SET node (Cond_Object) will result in
Object 1 being displayed and Object2 not being displayed. This is because the
condition is not satisfied for the branch with Object2. By _changing the
condition from 1 to 2 in the SET node, Object2 will be displayed and Objectl
will not be displayed.

The values in both the SET node (Cond_Object) and the IF nodes (Object 1,
Object2) can be changed interactively. For example, the two branches could be
alternately displayed by toggling the numbers in the SET node between I and 2.

The SET and IF nodes and the commands to create them are explained in
subsequent sections.

CONDITIONAL REFERENCING — 3

OBJECTIVES

In this module, you will learn to display selected parts of your display tree using:

■ Conditional—bit attribute settings

■ LeveZ—of—detail attribute settings

■ Rate attribute settings

PREREQUISITES

Before reading this module, you should be familiar with the rules for using
operation nodes in display structures ("Modeling" module) and the differences
between matrix operations and attribute operations ("Graphics Principles").
This module uses the Robot example created in the "Modeling" and "PS 300
Command Language" modules.

CONDITIONAL REFERENCING — 5

USING CONDITIONAL -BIT ATTRIBUTE SETTINGS

Conditional bits are used to display selected branches of a display tree,
independent of whether other branches are displayed. Branches of a display
tree that have IF nodes that are not satisfied by the condition are not traversed
by the display processor and are therefore excluded from displayed data.

The SET CONDITIONAL_BIT node is used to set any of 15 conditional bits
(0-14). By placing the SET CONDITIONAL BIT node above an instance node, bit
settings affect all branches under the instance node.

The SET node is created with the SET CONDITIONAL BIT comm-and. The
syntax is as follows:

Name := SET CONDITIONAL_BIT nswitch APPLIED TO Name1;

where:

n is an integer from 0 to 14, corresponding to the conditional bit to be
set ON or OFF.

switch is either ON or OFF.

Name1 is the descendent node of the conditional bit node.

all bits default to OFF.

For example, the following command creates a SET node and sets BIT 2 ON
applied to Car.

Pattern := SET CONDITIONAL_BIT 2 ON THEN Car;
Car := INSTANCE OF Body, Wheels;

When you create a SET node, you explicitly set one bit on or off. However, all
14 bits default to off. So if you enter the command:

Name := SET CONDITIONAL_BIT 1 ON APPLIED TO Namel;

then bit 1 is on, and bits 2-14 are off. All bits can be changed by sending values
to an input of the SET node.

6 —CONDITIONAL REFERENCING

Inputs to the SET CONDITIONAL_BIT node are as follows:

Boolean > < 1 > Sets the original bit (n) set
by the command to be ON
(T) or OFF (F).

Integer > < 2 > Sets bit number input (0-14)
ON.

Integer > < 3 > Sets bit number input (0-14)
OFF.

Integer > <4> Disables bit number input
(0-14) from being affected
by this node.

Integer > < 5 > Toggles bit number input
(0-14).

The SET node controls the states of the conditional bits and it is only through
the set node that the conditions of all 15 bits are changed. If bit 5 was
originally set to ON and then you want to set it to OFF, it could be done in any
of the following three ways:

• Sending the integer 5 to input < 3 > o f the SET node.

• Sending a false to input< 1 > of the SET node.

• Sending the integer 5 to input < 5 > of the SET node.

Of course, the SET node is useless unless you have an IF node that tests the
condition set by the SET node. The IF node tells under which condition a
branch will be traversed for display.

IF nodes are created with the IF CONDITIONAL_BIT command. -The syntax is
as follows:

where:

Name := IF CONDITIONAL_BIT nswitch APPLIED TO Name1;

n is an integer from 0 to 14, indicating which bit to test.

switch is the~~setting to be tested, ON or OFF.

namel is the descendent of the IF node.

CONDITIONAL REFERENCING — 7

The IF CONDITIONAL_BIT node has one input that accepts an integer (0-14) to
change the bit number in the node.

In the following command sequence, when Car is displayed Wheels would also be
displayed.

Set := SET CONDITIONAL_BIT 4 ON APPLIED TO Car;
PREFIX Wheels WITH IF BIT 4 IS ON;

If bit 4 Car is set to Off or the condition in Wheels is changed to Off, then the
test in Wheels would fail and Wheels would not be displayed.

The display tree for Car that this command sequence creates in shown in Figure
2.

Body

r rr ~
Wheel 1 2 3 4

B o.dy

(Original Display Tree} (After Conditional Referencing)

Figure 2. Car Display Trees

Figure 3 is a display tree for a molecule for which conditional referencing will
be implemented.

8 —CONDITIONAL REFERENCING

Figure 3. Molecule Display Tree

In Figure 3 notice that the Molecule is made up of an instance node pointing to
8 SET COLOR nodes for parts of the molecule. The eight parts can be
controlled separately for display by placing a SET node and eight IF nodes in the
structure.

The molecule will be set with the following conditions.

Bit No. Condition Result

1 Off Branch 1 (Molec 1_Color) will be displayed
2 Off Branch 2 (Molec2_Color) will be displayed
3 Off Branch 3 (Molec3_Color) will be displayed
4 Off Branch 4 (Molec4_Color) will be displayed
5 Off Branch 5 (Molec~_Color) will be displayed
6 Off Branch 6 (Molec6_Color) will be displayed
7 Off Branch 7 (Molec7_Color) will be displayed
8 Off Branch 8 (Molec8_Color) will be displayed

CONDITIONAL REFERENCING — 9

The display tree to implement this is shown in Figure 4.

Figure 4. Display Tree For Conditional Referencing in Molecule

Exercise

Add conditional—bit referencing to the display tree for Molecule. The first step
is to place a SET node above the instance node Molecule. Do this by entering:

Selector := SET CONDITIONAL_BIT 1 Off THEN Molecule;

10 —CONDITIONAL REFERENCING

Remember, even though the command says to set only conditional bit 1 off, this
one node may be used to separately control the on/off condition of all 15
conditional bits. Also, note that the condition of the other 14 bits defaults to
off.

Next place nodes at the top of each branch under the instance node so that the
branches will be separately selectable for display. To do this, redefine
Molecule as follows:

Molecule := BEGIN STRUCTURE

IF BIT 1 IS OFF THEN MolecO_Color;
IF BIT 2 IS OFF THEN Molec 1_Color;
IF BIT 3 IS OFF THEN Molec2_Color;
iF BIT 4 IS OFF THEN Molec3_Color;
IF BIT 5 IS OFF THEN Molec4_Color;
IF BIT 6 IS OFF THEN MolecS_Color;
IF BIT 7 IS OFF THEN Molec6_Color;
IF BIT 8 IS OFF THEN Molec7_Color;

END_STRUCTURE;

You have built the display tree that allows conditional—bit referencing in
Molecule. Notice that the molecule is displayed because all conditional bits are
set off. To remove parts of the molecule from display, bits must be set on.

To control the on/off condition of the eight bits that affect the branches of this
display tree, a function network can be used to connect the function keys to the
SET node named Selector. That network is shown in Figure 5.

FKEYS
<ly
<2>
<3>
<4~
<5>~
<6>
<7>~
<$>
<g>~

<lp,-
< 11 ~-
<1~~

<~>

IAS0400

Selector

Figure 5. Function Network for Conditional Bit Control

CONDITIONAL REFERENCING — 11

FKEYS will output integers corresponding to the number of the pressed function
key. Input<5> to the SET CONDITIONAL_BIT node toggles the setting of the bit
corresponding to the integer received. For example, if bit 6 is off, pressing
Function Key 6 will turn bit 6 on.

Enter the following commands to build the network.

CONNECT FKEYS< 1 >:<5>Selector;

The display tree is now designed to allow conditional display of parts of the
molecule (Molec0 through Molec7). Also, the function keys have been
connected to control this display.

One step remains in this particular case. The values used to define the
molecule are large. The molecule has a diameter of some 45,000 units. To see
the molecule, put a window around it and disable depth cueing by entering:

Molecule_View := WINDOW
X=-22500:22500
Y=-22500:22500
FRONT BOUNDARY =-22500
BACK. BOUNDARY = 22500 APPLIED TO Intensity;

Intensity := SET INTENSITY ON 1:l APPLIED TO Selector;

now,

DISPLAY Molecule_View;

Press SHIFT/LINE LOCAL to activate the function keys. Use keys F 1 through
F8 to toggle the display of the parts of the molecule.

When you are finished enter:

REMOVE Molecule_View;

12 —CONDITIONAL REFERENCING

USING LEVEL OF DETAIL CONDITIONAL REFERENCING

The conditional—bit method shown for the molecule is usually used when you
need to separately control the display- of branches of your display tree in a
variety of sequences. In the level—of —detail method, the parts of a model are
always displayed and removed in a predetermined sequence.

Level—of —detail is usually used to overlay detail on your picture. For example,
progressive detail could be added to an outline of a sphere (world) to add
continents, mountain ranges, states, etc.

Level—of —detail can also be used to run animation sequences comprised of a
series of separate picture definitions.

Unlike conditional—bit referencing where 15 variables (hits) are set, only one
variable is set using the level—of —detail method. All IF nodes are tested against
that one variable in the SET node.

The command to create a SET LEVEL OF DETAIL node is as follows.

Name := SET LEVEL_OF_DETAIL TO n APPLIED TO Name1;

where:

n is an integer from 0 to 32767 indicating the level of detail value.

Hamel is the descendent of the SET node.

the default level of detail (n) is 0.

Inputs for updating the SET LEVEL OF DETAIL node are as follows:

Integer > < 1 > Changes the level of detail
(0-32767) to the value of the
received integer.

CONDITIONAL REFERENCING — 13

Determining the Order for Overlaying Detail

Because level—of —detail controls the display of branches in a determined order,
the conditional statements are expressed as relationships rather that the
two—state (on/off) type used in conditional—bit references.

These relationships are:

Less Than <
Less Than Or Equal To <_
Equal To =
Not Equal To <>
Greater Than Or Equal To >_
Greater Than >

and are specified in the IF LEVEL_OF_DETAIL node. The command to create
this IF node is as follows:

Name := IF LEVEL_OF_DETAIL relationship n THEN Narnel;

where

relationship is the relationship to n to be tested (<, <_, _, < >, >_, >).

n is an integer from 0 to 32767 indicating the number (along with the
previous relationship) to compare against the current level of detail setting.

namel is the descendent of the IF LEVEL OF DETAIL node.

the default (n) is 0.

The IF LEVEL_OF_DETAIL node has one input that accepts an integer (0-32767)
to change the value in the node.

With the following command sequence,

A := SET LEVEL_OF_DETAIL to 3 THEN B;
B := IF LEVEL_OF_DETAIL = 3 THEN C;
C := VECTOR LIST ;

14 -CONDITIONAL REFERENCING

initially when A is displayed, C is also displayed. If the level of detail is
changed to something other than 3, then the test in B fails and C is not
displayed.

An example of adding detail is to start with a sphere and add continents,
mountain ranges, and countries. To display the parts of the world in this order
(and turn them of f in the reverse order):

Sphere
Continents
Mountain Ranges
Countries

the sphere needs to be displayed first and remain on while all subsequent parts
are displayed.

The Continents need to be added next, the Mountain Ranges and then the
Countries. If Sphere is displayed whenever there is a value of 1 or greater in
the SET NODE, and the subsequent parts are displayed for values equal or
greater than 2, 3, and 4, respectively, the desired effect is achieved.

The display tree that sets up such alevel-of-detail condition is shown in Figure
6.

CONDITIONAL REFERENCING — 15

Continents

~ ~

i ~
Countries

i ~ i
Mountain ~aso4oi

IRanges~i

Figure 6. Level-of-Detail Structure for the ~lorld

By changing the value of the integer in the SET node, the parts of the Sphere
can be laid on and stripped off. If the integer 2 is sent to the SET node, then
the Sphere and the Continents are both displayed because both branches of the
display tree meet the condition tested against the SET node. If the integer 3 is
sent to the SET node, the Sphere, the Continents, and the Mountain ranges are
all displayed. If the integer 4 is sent to the SET node, the entire structure is
displayed. The details of the Sphere can be stripped off by decreasing the value
in the SET node.

16 — CONflITIONAL REFERENCING

Using Level-Of-Detail Settings to Animate An Object

An example of using level—of —detail settings for animation is in the turbine
blade portion of the PS 300 Demonstration Package. The turbine blade is
defined as a sequence of turbine blades in slightly different positions. A cloak
is used to advance the level of detail settings resulting in the display sequence
and the apparent motion of the turbine blade. The structure that sets this up is
similar to the one shown in Figure 7.

Frame
1

Frame
2

Frame
3

Clock Values

Frame
4

Frarr~e
5

Figure 7. Turbine Blade Structure

Frame
8

Frame
7

Frame
6

IAS0402

The topmost node is the one supplied with clock values through a function
network to step through the sequence of pictures corresponding to the
referenced branches in the display tree.

CONDITIONAL REFERENCING — 17

Note that in animation, detail is not laid over a displayed picture. Instead,
sequences of pictures are displayed.

Exercise

Load the tutorial tape and select ANIMATED_CYLINDER from the menu on the
left side of the screen.

This demonstration is a good example of how level—of —detail settings can be
used for local animation.

18 -CONDITIONAL REFERENCING

USING RATE ATTRIBUTE SETTINGS

The third type of conditional referencing allows you to blink an object or
display tree branch under control of the refresh rate of the PS 300 display, an
internal PS 300 clock, or an external clock. This type of conditional
referencing can cause an object to blink or to be displayed alternately with
another object. (For example, one part might be displayed for one second, then
that part is removed while another part is displayed for a second, etc.)

Like the other types of conditional referencing, blinking requires two nodes.
One node sets a blink rate in terms of phase on and of f durations. The other if
node tells tell whether an object or branch will be displayed during the on phase
or the off phase.

Creating The Set Rate Node

The command to create the SET RATE node is:

Name := SET RATE phase_on phase off ~initiaZ state) ~deZay]
APPLIED TO Name1;

where:

phase_on phase off are integers designating the durations of the on and
of f phases, respectively, in refresh frames.

initial state is either ON or OFF, indicating the initial phase.

delay is an integer designating the number of refresh frames in the
initial state.

NameZ is the descendent of the SET RATE node.

the default [initial state] is OFF.

CONDITIONAL REFERENCING — 19

Inputs for updating the SET RATE node are as follows:

INTEGER

INTEGER

BOOLEAN

INTEGER

> < 1 > Changes the phase_on
value.

> <2> Changes the phase_ off
value.

> < 3 > Changes the initial_state
ON(T) / OFF(F).

> <4> Changes the delay.

A command similar to SET RATE, called SET RATE EXTERNAL, allows you to
alter the PHASE attribute via an external source such as a function network or
a message from the host computer. Refer to the Command ,Summary for
specific details of this command.

Creating the IF PHASE Nade

The command to create the IF node to test the ON/OFF state of the phase is
as follows:

Name := IF PHASE IS state THEN Name1;

where:

state is the phase setting under which Hamel is displayed (ON or OFF).

Hamel is the descendent of the IF PHASE node.

If there is no SET RATE node or SET RATE EXTERNAL node higher in
the structure, the "state" of the PHASE node will always be OFF.

For example, with the Comm-and sequence

Shape := SET RATE 10 15 THEN Blink_Shape;
Blink_Shape := IF PHASE ON THEN Sphere;
Sphere := VECTOR_LIST;

20 —CONDITIONAL REFERENCING

If Shape is displayed, Sphere will be displayed for 10 refresh frames and not
displayed for 15 refresh frames repeatedly.

If the command sequence is

Shape := SET RATE 10 15 THEN Blink_Shape;
Blink_Shape := If PHASE OFF THEN Sphere;
Sphere := VECTOR_LIST ;

If Shape is displayed, Sphere will be displayed for 15 refresh frames and not
displayed for 10 refresh frames repeatedly, since the condition is to display
the vector list when the phase is OFF.

Exercise

This exercise uses the Robot created in the "PS 300 Command Language"
module.

To demonstrate the effects of blinking, add blinking nodes above robot. The
blink rate in this exercise will be based on the PS 300 refresh rate. First,
define a node that sets the rate by entering:

Blink_Robot := SET RATE 120 60 APPLIED TO If_Robot;

This sets the ON phase to 120 refreshes and the OFF phase to 60 refreshes.

Now place a .node that determines whether the robot will be displayed in the
ON phase (and blanked in the OFF phase) or displayed in the OFF phase (and
blanked in the ON phase). Display robot in the ON phase, by entering:

If_Robot := IF PHASE IS ON THEN ROBOT;

Robot should now blink at a rate of about 2 seconds on and one second off,
when you:

DISPLAY Blink_Robot;

Then:

REMOVE Blink_Robot;

CONDITIONAL REFERENCING — 21

Some Uses for Timed Blinking

One practical use of the rate setting commands, other than the visual effects
produced, is that they can synchronize the refresh rate of the display to a
movie camera to make sure that the frame rate of the camera matches the
frame refresh rate of the screen, allowing the camera to always be taking a
frame as the picture is refreshed.

Stereo views can be created using a split screen (two viewports side by side);
each half containing the same image and viewed with the EYE projection
(refer to the "Viewing Operations" module). Then etch viewport can be
displayed alternately with the other viewport. By placing an opaque divider
between the viewports so each eye can see only one viewport, a 3D effect can
be generated.

22 -CONDITIONAL REFERENCING

SUMMARY

Conditional Referencing allows you display selected branches of a display tree
without displaying other branches. These kinds of .operations are achieved
using three methods: conditional-bit settings, level-of-detail settings, and
rate settings.

To use conditional referencing, a minimum of two nodes must be placed in a
display tree. The first node sets up the condition on which all subsequent
references are tested. The second sets up the condition to be tested against
the set condition.

Using

Conditional

Bit

Settings

The conditional-bit method shown is used when you need to separately control
the display of branches of your display tree in a variety of sequences.

The SET CONDITIONAL_BIT node sets any of 15 conditional bits (0-14). By
placing the set conditional bit node above an instance node, bit settings affect
all branches under the instance node.

This node is created with the SET CONDITIONAL_BIT command. The syntax is
as follows:

Name := SET CONDITIONAL_BIT nswitch APPLIED TO Name1;

where:

n is an integer from 0 to 14, corresponding to the conditional bit to
be set ON or OFF.

switch is either ON or OFF.

namel is the descendent node of the conditional bit node.

all .bits default to OFF.

CONDITIONAL REFERENCING - 23

IF nodes (to test the condition of the SET node) are created with the IF
CONDITIONAL_BIT Command. The syntax is as follows:

Name := IF CONDITIONAL_BIT nswitch APPLIED TO Namel;

where:

n is an integer from 0 to 14, indicating which bit to test.

switch is the setting to be tested, ON or OFF.

Hamel is the descendent of the IF node.

Using Level of Detail Conditional Referencing

When using the level-of-detail method, the parts of the model are always
displayed and removed in a set sequence. Level-of-detail is usually used to
overlay detail on your picture.

Level of detail can also be used to run animation sequences comprised of a
series of separate picture definitions.

Unlike conditional-bit referencing where 15 variables (bits) are set, only one
variable is set using the level-of-detail method. All IF nodes are tested against
that one variable in the SET node.

The command to create a set level-of-detail node is as follows.

Name := SET LEVEL_OF_DETAIL TO n APPLIED TO Name1;

where:

n is an integer from 0 to 32767 indicating the level-of-detail value.

Hamel is the descendent of the SET node.

the default level of detail (n) is 0.

24 -CONDITIONAL REFERENCING

Determining The Order for Overlaying Detail

Because level-of-detail controls the display of branches in a determined order,
the conditional statements are expressed as relationships rather that the
two-state (on/off) type used in conditional-bit references.

These relationships are:

Less Than <
Less Than O~r Equal To <_
Equal To =
Not Equal To <>
Greater Than Or Equal To >_
Greater Than >

and ,are specified in the IF LEVEL_OF_DETAIL node. The command to create
this IF node is as follows:

Name := IF LEVEL_OF_DETAIL relationship n THEN Name1;

where:

relationship is the relationship to be tested (<, <_, _, < >, >_, >).

n is an integer from 0 to 32767 indicating the number (along with the
previous relationship) to compare against the current level of detail
setting.

namel is the descendent of the IF LEVEL OF DETAIL node.

the default is (n) 0.

Using Level-Of-Detail Settings to Animate An Object

An example of using level-of-detail settings for animation is in the turbine
blade portion of the Ps 300 Demonstration Package. The turbine blade is
defined as a sequence of turbine blades in slightly different positions. A
clock is used to advance the level-of-detail settings resulting in the display
sequence and the apparent motion of the turbine blade.

CONDITIONAL REFERENCING — 25

Blinking and Alternately Displaying parts of an Object

The third type of conditional referencing, rate attribute settings, allows you to
blink an object or display tree branch under control of the refresh rate of the
PS 300 display, an internal PS 300 clock, or an external clock. This type of
conditional referencing can cause an object to blink or to be displayed
alternately with another object. (For example, one part might be displayed for
one second, then that part is removed while another part is displayed for a
second, etc.)

Like the other types of conditional referencing, blinking requires two nodes.
One node sets a blink rate in terms of .phase ON and OFF durations. The other
IF node tells whether an object or branch will b~e displayed during the ON phase
or the OFF phase.

Creating The Set Rate Node

The command to create the SET RATE node is:

Name := SET RATE phase_on phase off [initial state] [delay]
APPLIED TO Name1;

where:

phase_on phase off are integers designating the durations of the on and
off phases, respectively, in refresh frames.

initial state is either ON or OFF, indicating the initial phase.

deZat~ is an integer designating the number of refresh frames in the initial
state.

Hamel is the descendent of the SET RATE node.

the default [initial state] is OFF.

A command similar to SET RATE, called SET RATE EXTERNAL, allows you to
alter the PHASE attribute via an external source such as a function network or
a message from the host computer. Refer to the Command Summart~ for
specific details of this command.

26 —CONDITIONAL REFERENCING

Creating the IF PHASE Node

The command to create the IF node to test the ON/OFF state of the phase is as
follows:

Name := IF PHASE IS state THEN Name1;

where:

state is the phase setting to be tested (ON or OFF).

namel is the descendent of the SET RATE node.

If there is no SET RATE node or SET RATE EXTERNAL node higher in
the structure, the state of the PHASE node will always be OFF.

You now know how to make conditional references to parts of your display
tree. You know that two nodes are required for each conditional reference.
The first node sets up the condition on which all subsequent references are
tested. The second sets up the condition to be tested against the set condition.

The flexibility and ease of use of conditional referencing within the display
structure makes what is often a difficult operation on other graphics machines
easy on the PS 300.

FU\CTIO\ ETWORKS II

SWITCHING NETWORKS

CONTENTS

INTRODUCTION 1

OBJECTIVES 1

PREREQUISITES 2

MAKING A SINGLE INPUT DEVICE CONTROL MULTIPLE INTERACTIONS 3
Exercise 14

LABELLING THE CONTROL DIALS 25
Exercise 27

SETTING LIMITS ON THE MOTION OF A MODEL 32
Exercise 34

USING VARIABLE TO STORE VALUES 36
Exercise 39

SUMMARY 41

FUNCTION NETWORKS II

ILLUSTRATIONS

Figure 1. Robot Display Tree 3
Figure 2. F:CROUTE(n) Function 7
Figure 3. F:CROUTE(n) Network -- Example 1 7
Figure 4. F:CROUTE(n} Network -- Example 2 8
Figure 5. F:CROUTE(n) Network With Unused Outputs 8
Figure 6. Dial 1's F:CROUTE(n) Network 9
Figure 7. Dial 1's F:CROUTE(n) Network With Shared Functions 10
Figure 8. Final Network for Dials 1-3 1 1
Figure 9. Final Network for Dial 4 1 Z
Figure 10. Sample Function Network for Dial 5 12
Figure 11. Dial 5 Network With Shared Functions 13
Figure 12. Final Function Network for Dial 5 14
Figure 13. Final Function Network for Dials 1-8 16
Figure 14. RESET Function Network 23
Figure 15. DLABEL Function 25
Figure 16. F:INPUTS_CHOOSE(n) Function 26
Figure 17. LED Labels for Dial 1 27
Figure 18. LED Labels for Dials 2-8 28
Figure 19. Realistic Limitations of Leg Movement 32
Figure Z0. Limits for the Robot Leg 32
Figure 21. F:LIMIT Function 33
Figure 22. Function Network to Limit Movement 34
Figure 23. Function Networks to Limit the Robot Knee Movement 34
Figure 24. F:CONSTANT Function 36
Figure 25. F:FETCH Function 38
Figure 26. Routing Values From THIS Variable to the Host 38
Figure 27. Routing Values From MATRIX Variable to the Host 40

FUNCTION NETWORKS II — 1

This module consists of four sections that build on ideas about function networks
introduced in the "Function Networks I" module.

In "Function Networks I" you used the PS 300 dials to manipulate a robot. Each dial was
connected to a node in the robot display tree so that moving the dial caused Robot to
move in a specific way. One dial was needed for each manipulation.

In this module, you will learn how to use a dial for multiple interactions. This can be
done using function networks and PS 300 function keys. Pressing a function key allows
you to use the same dial for different kinds of interactions in different modes.

The module also details how to send a label to the LEDs above each dial. These labels
remind you of a dial's function and can change interactively each time a new function
key is pressed.

In addition, you will learn about several useful tasks which function networks can
perform. These include limiting the robot movement so that it remains "true to life,"
and using variables to store values coming from a network.

Because the function networks in this module will differ from those created in
"Function Networks I," it is suggested .that you save the code from this module in a
separate file on your host. To avoid errors, do not combine these two sets of code.

OBJECTIVES

In this module you will learn how to:

■ Make a single input device (the dials) control multiple interactions.

■ Label the dials so that the label changes when the dial's function changes.

■ Set limits on the motion of a model.

■ Use variables to store values.

2 —FUNCTION NETWORKS II

PREREQUISITES

Before beginning this module, you should be familiar with the concepts presented
in the following modules: "Modeling," "PS 300 Command Language," and
"Function Networks I."

FUNCTION NETWORKS II — 3

MAKING A SINGLE INPUT DEVICE CONTROL MULTIPLE INTERACTIONS

In "Function Networks I," you constructed a function network for the display tree
shown in Figure 1.

Y
C
~<
L
H-

Robot.Tran

Robot .Rot

Ro bo t. S c a l e

Right
Lower Leg

IAS0528

Figure 1. Robot Display Tree

4 —FUNCTION NETWORKS II

This function network supplied interactions for the top three nodes of the display
tree: Robot.Scale, Robot.Rot, and Robot.Tran. Seven dials were required. to
manipulate the robot: three to rotate it in the X, Y, and Z planes, three to
translate it in X, Y, and Z, and one dial to scale the model.

Only one free dial remains, but no other interactive nodes in the robot display
tree have yet been connected to functions. To supply X, Y, and/or Z rotations
for all the other interactive nodes would require dozens of other dials. This
section illustrates how to solve this problem by making one set of eight dials
perform like many sets.

The first step in doing this is to determine exactly how many additional dials you
will need (how many more interactions in the model you want to control). In
addition to Robot.Rot, the robot has 14 rotation nodes. Ten of them require
three dials each (three rotations for X, Y, and Z). The two nodes for elbows and
the two for knees only use X rotations, requiring only one dial each. The result
is a total of 34 additional interactions. To handle these interactions, each dial
would have to be connected to about six nodes.

There is nothing to prevent you from connecting a dial to more than one
destination. For example, you could hook dial 1, already updating X rotations for
the Robot.Rot node, to other rotate nodes. But of course turning that one dial
would cause multiple unrelated updates.

Following is one way the dials might logically be assigned to control the
interactions.

In Mode 1, the dials would work as presently assigned:

Whole model: 1. Xrot 2. Yrot 3. Zrot 4. Scale

5. Xtran 6. Ytran 7. Ztran 8. Not Assigned

Mode 2:

Head: 1. Xrot 2. Yrot 3. Zrot 4. Not Assigned

Trunk: 5. Xrot 6. Yrot 7. Zrot 8. Not Assigned

Mode 3:

Right arm:

Left arm:

1. Xrot 2. Yrot

5. Xrot 6. Yrot

3. Zrot 4. Elbow Xrot

7. Zrot 8. Elbow Xrot

FUNCTION NETWORKS II - 5

Mode 4:

Right hand: 1. Xrot 2. Yrot 3. Zrot 4. Not assigned

Left hand: 5. Xrot 6. Yrot 7. Zrot 8. Not assigned

Mode 5:

Right leg: 1. Xrot 2. Yrot 3. Zrot 4. Knee Xrot

Left leg: 5. Xrot 6. Yrot 7. Zrot 8. Knee Xrot

Mode 6:

Right foot: 1. Xrot 2. Yrot 3. Zrot 4. Not Assigned

Left foot: 5. Xrot 6. Yrot 7. Zrot 8. Not Assigned

This configuration leaves several dials unassigned in a few modes. Obviously,
you could assign every dial in every mode, but this organization establishes a
pattern that makes the dials' functions easy to remember.

Another way to diagram this same dial assignment would be as follows. The
names of the nodes on the right are linked to the dials on the left.

DIALSC 1) Xrot Whole body (1)
Head (2)
Right arm (3)
Right hand (4)
Right leg (5)
Right foot (6)

DIALSC2] Yrot Whole body (1)
Head (Z)
Right arm (3)
Right hand (4)
Right leg (5)
Right foot (6)

DIALSC3] Zrot Whole body (1)
Head (2)
Right arm (3)
Right hand (4)
Right leg (5)
Right foot (6)

6 -FUNCTION NETWORKS II

DIALS[4]

DIALS[5]

DIALS[6]

DIALS[7]

Whole body scale(1)
Right elbow Xrot (3)
Right knee Xrot (5)

Whole body Xtran (1)
Trunk Xrot (2)
Left arm Xrot (3)
Left hand Xrot (4)
Left leg Xrot (5)
Left foot Xrot (6)

Whole body Ytran (1)
Trunk Yrot (2)
Left arm Yrot (3)
Left hand Yrot (4)
Left leg Yrot (5)
Left foot Yrot (6)

Whole body Ztran (1)
Trunk Zrot (2)
Left arm Zrot (3)
Left hand Zrot (4)
Left leg Zrot (5)
Left foot Zrot (6)

DIALS[8] Left elbow Xrot (3)
Left knee Xrot (5)

If the connections were made from the dials as shown, a dial would control
several interactions simultaneously. If you turned Dial 4, for instance, the robot
would become larger or smaller, or its right knee and elbow would move. Dial 1,
connected to six nodes, would cause six separate X rotations in the model.

What is needed now is the equivalent of a switch in a railroad yard to route
values so that they are not routed down all function network paths at once. For
example, you might want to send values to the Robot.Rot node only in dials Mode
1, or just to Head.Rot node in Mode 2.

Associated with all the function keys is one system function, FKEYS. FKEYS
has one output. When you press a function key, the number of that key is
output. For example, pressing key ~~4 causes an integer 4 to be output.

FUNCTION NETWORKS II - ~l

The value could be output to an instance of function F:CROUTE~n) (see Figure
2). This switching function allows you to channel the values from the dials (or
anything else} to any number (n) of destinations.

F:CROUTE(n~

I
Any

<1> <~>~ Any

. ;
K s

<n>~ Ar~y
~As~S~

~~g~re ~. E:~RQ~TE~n~ ~~n~~~~n

Specifically, when F:CROUTE(n) receives an integer from 1 to ~ on input < 1 >~ it
routes what it receives on input ~ ~ } to the output with the same number as the
integer. SQ if you instance F:GROUTS, connect FKE1~S to input < 1 > of tie
function instance, connect the dials to input < ~ ~, and press Function Key 5, the
values from the dials arriving on input <~> will travel out on output <~~ (see
Figure 3}.

(Value from function key#5)

1FKEYS < 1 >

(DIALS <1>~--

F;CROUTE (6)
<1> ~1~

<2>
<3>
<4>

<2> ~5~
<6>

 ~F:MULC H F:XROTATE

Right Leg,Rot

 F:CMUL

IAS0572

Figure 3. F:C R OU TEtn~ Network -- Example 1

8 —FUNCTION NETWORKS II

Pressing Function Key 3 routes the values from Dial 1 to output <3> (Figure 4).

(Value from function key#3)

F:CROUTE(6)

`FKEYS <1>~<1> <1>
<2>
~ 3 >_.__~ F : MULC
<4>
<5>
<6>

I DIALS<1>}--«>

F:XROTAT E

Right Arm.Rot

F;CMUL

IAS0573

Figure 4. F: C R O U T Etn) Network -- E x a m p1e Z

In this example, the number of destinations from a routing function is the same
as the number of modes among the function switches. For Dial 1, that is six
modes, so Dial 1 will use an instance of F:CROUTE(6), as shown in the above
diagrams.

Not all dials need to work in all six modes. Dial 4, for example, only works in 3
modes, so you might try using an instance of F:CROUTE(2). Dial 4 has to
operate in Mode 5, however, so you must use 5 as a minimum value for n, as
shown below. The unused outputs (for modes in which Dial 4 is unassigned) are
left unconnected (Figure 5).

FKEYS <1>~-

DIALS <4

F:CROUTE (5)

<1> <1>

<2>

F:SCALE

Robot.Scale

<2>~ no connection

< 3 ~----1 F : MULC~ F : XROTAT E ~ F : CMUL

<4>

<5>

 no connection

~---~ F : MULC ~---{F : XROTA7 E ~ F : CMUL

Right Forearm .Rot

Right Lower.~Leg .Rot

IAS0574

Figure 5. F: C R 0 U T E(n~ Network With Unused 0 utputs

FUNCTION NETWORKS II — 9

The diagram indicates that the values from Dial 4 will be routed to the scaling
node, Robot.Scale, when FKEYS sends 1 to F:CROUTE(5) input < 1 >. Values from
Dial 4 will go to the right knee when a 5 arrives on input < 1 > and to the right
elbow when a 3 arrives. If you push Function Keys 2 or 4 to go into Mode 2 or 4,
Dial 4 has no effect.

Dial 8 is similar to Dial 4, but instead of working in three modes, it only works in
two. One of the two modes it works in is Mode 5, so be sure to use an instance
of F:CROUTE(5) with Dial 8 too.

Connect all six modes for Dial 1 to the outputs of F:CROUTE(6) so that FKEYS
will control routing for this dial. Figure 6 illustrates Dial 1's F:CROUTE(n)
network.

FKEYS < 1 >~-=

DIALS <1>~-.,

F:CROUTE(6)

<1> <1>

<Z> <2>--~ F:MULC

<3>---~ F:MULC

< 4 > -----~ F ;MULC

<5>--~F:MULC

F:XROTAT E

F:XROTATE

F:CMUL

Robot.Rot

Head.Rot

F:XROTATE

F :CMUL

Right Arm.Rot

 F:CMUL

F:XROTAT E

Right Hand.Rot

< b > F:MULC F:XROTATE

F:CMUL

Right Leg.Rot

Figure 6. Dial 1's F:C R 0 U T E(n) Network

Right Foot.Rot

IAS0575

Notice that the MULC and XROTATE functions in all six modes are exactly
alike. The CMUL functions are not, since each one accumulates rotations for a
different rotation node. What is exactly alike can be used once on the left side
of the routing function, as shown in Figure 7.

10 —FUNCTION NETWORKS II

FKEYS <1>

DIALS < 1 F :MULC F:XROTAT E

F:C ROUTE (6)

<1> <1>

<2> <2>

<3>

<4>

< 5 •>

<6>

 F:CMUL

 Rob^ Rot

F:CMUL

 F:CMUI

 F:CMUL

F:CMUL

 F:CMUL

Head.Rot

Ri h~ Arm.Rot 9

 O
Right Hand.Rot

Ri h~ Le .Rot 9 9

 O
Right Foot.Rot

IAS057b

Figure 1. Dial 1's F:C R 0 U TEtn) Network With Shared Functions

Either of the above two configurations would work. The second one is much Iess
trouble to diagram and program, since it requires only one instance of F:MULC
and F:XROTATE instead of six. The previous two diagrams show that a routing
function is necessary only when a path must split, and that occurs when functions
need to be unique, as in the case of the F:CMULs.

Now diagram networks Dials 2 and 3 using the diagram from Dial 1 as a guide.
Since all three dials have the same destination nodes, you can route them
through the same switching function, as in Figure 8.

FUNCTION NETWORKS II - 11

(number of function key being pressed)
F:CROUTE(6)

IFKEYS < 1 >

DIALS
<1>

<2>

<3>

--~ F:MULC HF:XROTATE }-

-~ f : MULC ~--~F : YROTATE }-

--~ F : MULC H F : ZROTAT E ~--

<1> <1>

<2>

<2>

<3>

<4>

<5>

<6>

F:CMUL

Robot.Rot

 F : CMUL

Nead.Rot

 F:CMUL

F:CMUL

~--I F:CMUL

 F:CMUL

Right Arm.Rot

Ri h~ Hand.Rot 9

Right Leg.Rot

 0
Right_Foot.Rot

IAS0577

Figure 8. Final Network for Dials 1-3

This diagram completely accounts for the first three dials in all six modes. To
implement it in the PS 300, you only need to fill in detail familiar from
"Function Networks 1 ": connections, function instance names, and so on.

Next, look at Dial 4. Since it performs rotations, you might think to use the
same rotation network for it as the first three dials, namely:

DIALS < 4 > F:MULC F:XROTAT E

Right Forearm.Rot

iAso578

No other dials feed into that node, though, or the other rotate node for the knee
that Dial 4 controls. So it would be simpler to use the F:DXROTATE function
here. It is the function that combines all features of F:MULC, F:XROT, and
F:CMUL into one package. The network for Dial 4 can be diagrammed as in
Figure 9.

12 -FUNCTION NETWORKS II

IFKEYS <1>

I DIALS <4>

F:CROUTE (5

<1>

<2>

<1>

<2>

<3>

<4>

<5>

Robot.Scale

—~F:DSCALE

 no connection Right_ Forearm.Rot

-~—~ F : DXROTATE

 no connection Right

 IF:DXROTATE

IAS0579

Figure 9. Final Network for Dial 4

ower _Leg •Rot

With Dial 4, there are no functions on the right of the routing function that can
be shared and moved over to the left, as with F:MULC and F:ROTATE functions
used with Dials 1, 2, and 3. The above diagram completely specifies what Dial 4
will do in all modes. And to implement it, you must supply function instance
names, initial values, and so on.

Dials 5, 6, and 7 do almost exactly what Dials 1, 2, and 3 do, but to the left side
of the model. And in Mode 1, they translate instead of rotate. In Mode 1, all
three dials feed into one node, Robot.Tran.

In the other five modes, they do X, Y, and Z rotations. Figure 10 illustrates how
a routing function for Dial 5 might work.

(number of function key being pressed);

FKEYS <1>~

I DIALS <5>~—

F:CROUTE (6)
<1> <1>

<2> <2>

<3>

<4>

<5>

--{F:XVECTOR~--IF:A000MULATE

F:MULC F:XROTAT E

--{ F : MULC ~--~ F : XROTAT E

--) F : MULC N F : XROTAT E

F : MULC ~---{ F : XROTAT E

~ 6 > --~ F : MULC NF : XROTAT E

IAS0580

Robot.Tran

 F:CMUL

Upper 6ody.Rot

F:CMUL

F:CMUL

Left~lrm. Rot

 Left Hand.Rot _.

Left Leg .Rot

Le~ft~oot. Rot

Figure 10. Sample Function Network for Dial 5

FUNCTION NETWORKS II — 13

Of course, the diagram would be similar for Dials 6 and 7, with Y and Z rotations
substituted for X.

Note that the MULC and XROT functions in Modes 2 through 6 above are exactly

the same and could be shared as in Figure 1 1.

(number of function key being pressed)

FKEYS < 1 >

(DIALS <5>~--

F:C ROUTE (6

<1> ~1'

<2> <2>

<3>

<4>

<5>

<6>

--IF:XVECTOR H F:A000MULATE

I AS0581

w

Robot.Tran

.-~ F : CMUL

~F:CMUL

Upper Body.Rot

Left Arm.Rot

O
Left Nand.Rot

F:CMUL

—~ F:CMUL

Left Leg.Rot

O
Left Foot.Rot

Figure i 1. Dial 5 Network With Shared Functions

This will save you having five sets of MULC and XROT functions when one can

do the job. But the output from XROT will have to be routed, so you'll need
another routing function. The final network for Dial 5 is shown in Figure 12.

14 —FUNCTION NETiNORKS II

FKEYS < 1 >

DIALS < 5 >

F:CROUTE (6)

<1> <1>

<2>

<2>

<3>

<4>

< 5>
<6>

—{ _F XVECTO

FKEYS<1>

F:A000MULATE

Robot.Tran

F:MULC F:XROTATE

F:ROUTE(6)

<1>

<2>

<2>

<3>

Upper Body.Rot

-.~ F:CMUL

F:CMUL

~4~
T

F:CMUL

~ 5~F:CMUL

F:CMUL

IAS0582

Left Arm. Rot

Left Hand .Rot

Leff Leg .Rot

Left Foot.Rot

Figure 12. Final Function Network for Dial 5

Functionally, this completely specifies what Dial 5 does.

Exercise

Complete the network for Dials 6 and 7 using Dial 5 as a pattern. Then diagram
the network for the Dial 8, using Dial 4 as a pattern.

Next, code the networks for all eight dials. Include all the details, such as
instancing functions, .connecting functions, and sending initial values to functions
when needed. Remember that the DIALS and FKEYS functions have already
been instanced by the system and do not need to be named by you. To save these
commands, do this in a text file.

FUNCTION NETWORKS II — 15

Once the commands to implement the network for one dial are detailed, you can
copy them over again for each of the other dials and delete or add only the
details you want. For example, all the commands to implement this network for
Dial 1 (X rotations) are the same as for Dial 2, except you need to change X to Y
and so on.

Figure 13 illustrates the final function network for Dials 1-8.

16 -FUNCTION NETWORKS II

1 FKEYS< 1.a

DIALS
<1>

<2>

<3>

—~ F : MULC

F:MULC

F:MULC

F;XROTATE

F:YROTATE

F:ZROTATE

F:CROUTE(5)
FKEYS < 1 > <1> <1>

<2>
DIALS<4> <2>

<3>

<4>

<5>

FKEYS< I y

F:CROUTE(6)

<1> <1>

Robot.Rot

F:CMUL

Head.Rot

<2> F:CMUL
<2>

 RightlArm.Rot

<3> F:CMUL
~-

 Righi;"Hand.Rot
~- <4> F:CMUL

Right'Ceg.Rot

<5> ~" F:CMUL

Right Foot.Rot

<6> F:CMUL

F:DSCALE
Robot.Scale

no connection

F:DXROTATE

Right Forearm .Rot

no connection

DIALS
<5>

FKEYS<

DIALS
<6>

FKEYS<1>

DIALS
<7>

FKEYS <1>

F:CROUTE(6)

 ~:OXROTATE

Right_ Lower .Leg.Rot

Robot.Tran

F:XVECTOR F:A000MULATE <1> <1>
<2>
<3>

<2> ~ F:XROTATE F C ROUTE(6 <4> - —~f:MULC :)
<5>
<6>

FKEYS<I> <1> <1> — no connection
Upper Body.Rot

F:CROUTE(6)
<1>

<2> <2>
F:CMUL

F:YVECTOR J <1> --) rm.Rot
<2> <3> F:CMUL
<3>

Left and.Rot <2> <4>
<5>

--~

F:MULC F:YROTATE~-
<4> F:CMUL

<6> Left't~g.Rot
< 5 > F:CMUL

F:CROUTE ~6)~
<1>

<2>
<3>

F;ZYECTOR

<6>
 Left_Foot.Rot
F:CMUL

< a > ~.~ F :MULC F : ZROTAT E~-
<2>

< 5 > ---
<6>---

DIALS <8>

F:CROUTE (5)

<1> < 1 > no connection
< 2 > ~-- no connection Left Fc~rearm.Rot

<~>
<3> -- i F:OXROTATE
< 4 > -- no connection Left Lower Leg.Rot
<5> ~—iF:DXROTATE

tASobo3

Figure 13. Final Function Network for Dials 1-8

FUNCTION NETWORKS II - 17

The following lists the commands needed to code the function network. The
code has been organized by dial, so that functions are instanced, connected, and
primed for each dial, or group of dials, before preceding to the next dial. The
names are suggestive of what each function instance does. Comment lines have
been provided for clarification.

{CODE FOR DIALS 1-3}

X_Mul_D 1 := F:MULC;
Y_Mul_D2 := F:MULC;
Z_Mul_D3 := F:MULC;

X_Rot_D 1 := F:XROT;
Y_Rot D2 := F:YROT;
Z_Rot_D3 := F:ZROT;

{Instance MULC and}
{ROT functions}

Switch 1 :_ F:CROUTE(6); {Instance SWITCH and}
{CMUL functions}

Acc Rot Robot := F:CMUL;
Acc_Rot_Head := F:CMUL;
Acc_Rt_Arm := F:CMUL;
Acc Rt Hand := F:CMUL;
Acc_Rt_Leg := F:CMUL;
Acc Rt Foot := F:CMUL;

CONNECT FKEYS< 1 >:< 1 >Switch l;

CONNECT DIALS < 1 > : < 1 > X_Mul_D 1;
CONNECT DIALS< 2 > : < 1 > Y_Mul_D2;
CONNECT DIALS < 3 > : < 1 > Z_Mu 1_D 3;

CONNECT X_Mul_D 1 < 1 > : < 1 > X_Rot_D l;
CONNECT Y_Mul_D2 < 1 > : < 1 > Y_Rot_D2;
CONNECT Z_M u 1_D 3 < 1 > : < 1 > Z_R o t_D 3 ;

CONNECT X_Rot_D 1 < 1 > : < 2 > Switch 1;
CONNECT Y Rot D2 < I > : < 2 > Switch 1;
CONNECT Z Rot D 3 < 1 > : < 2 > Switch 1;

CONNECT Switch 1 < 1 > : < 2 > Acc_Rot_Robot;
CONNECT Switch 1 < 2 > : < 2 > Acc_Rot_Head;
CONNECT Switch 1 < 3 > : < 2 > Acc_Rt_Arm;
CONNECT Switch 1 < 4> : < 2 > Acc_Rt_Hand;
CONNECT Switch 1 < 5 > : ~ 2 > Acc_Rt_Leg;
CONNECT Switch 1 < 6> : < 2 > ACC_Rt_Foot;

{Connect FKEYS and}
{DIALS}

{Connect rotation}
{accumulator to rotate}
{function}

{Connect rotate function}
{to switch}

{Connect switch to}
{X,Y,Z accumulator}

18 -FUNCTION NETWORKS II

CONNECT Acc_Rot_Robot< 1 > < 1 > Acc_Rot_Robot;
CONNECT Acc_Rot_Robot< 1 > : < 1 > Robot.Rot;

CONNECT Acc_Rot_Head< 1 > : < 1 > Acc_Rot_Head;
CONNECT Acc_Rot_Head< 1 > : < 1 > Head.Rot;

CONNECT Acc_Rt_Arm < 1 > : < 1 > Acc_Rt_Arm;
CONNECT Acc_Rt_Arm< 1 > : < 1 > Right_Arm.Rot;

CONNECT Acc_Rt_Hand < 1 > : < 1 > Acc_Rt_Hand;
CONNECT Acc_Rt_Hand< 1 > : < 1 > Right_Hand.Rot;

CONNECT Acc_Rt_Leg < 1 > : < 1 > Acc_Rt_Leg;
CONNECT Acc_Rt_Leg< 1 > : < 1 > Right_Leg.Rot;

CONNECT Acc_Rt_Foot < 1 > : < 1 > Acc_Rt_Foot;
CONNECT Acc_Rt_Foot< 1 > : < 1 > Right_Foot.Rot;

SEND 200 TO < 2 > X_Mul_D 1;
SEND 200 TO < 2 > Y_Mul_D2;
SEND Z00 TO < 2 > Z_Mul_D3;

SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Rot_Robot;
SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Rot_Head;
SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Rt_Arm;
SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Rt_Hand;
SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Rt_Leg;
SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Rt_Foot;

{CODE FOR DIAL 4}

Switch2:= F:CROUTE(6);

Scale_Robot:= F:DSCALE;
Rot_Rt_Elbow := F:DXROTATE;
Rot_Rt_Knee := F:DXROTATE;

CONNECT FKEYS< 1 > : < 1 >Switch2;

CONNECT DIALS<4> : <2>Switch2;

{Connect X,Y,Z}
{accumulator back to}
{self and to display tree}
{node}

{Prime MULC function}

{Prime CMUL function}

{Instance switch function}

{Instance scale &rot}
{functions}

{Connect FKEYS and}
{DIALS}

CONNECT Switch2< 1 > : < 1 >Scale_Robot; {Connect switch to scale}
CONNECT Switch2<3> : <I>Rot Rt Elbow; {and rot functions}

FUNCTION NETWORKS II — 19

CONNECT Switch2 < 5 > : < 1 > Rot_Rt_Knee;

CONNECT Scale_Robot< 1 > < 1 > Robot.Scale; {Connect scale &rot}
CONNECT Rot_Rt_Elbow< 1 > < 1 > Right_Forearm.Rot; {functions to display tree}
CONNECT Rot_Rt_Knee < 1 > < 1 > Right_Lower_Leg.Rot; {nodes}

SEND .075 TO < 2 > Scale_Robot;
SEND .02 TO < 3 > Scale_Robot;
SEND .l TO <4>Scale_Robot;
SEND .025 TO < 5 > Scale_Robot;

{Prime scale function}

SEND 0 TO <2>Rot_Rt_Elbow; {Prime rotation}
SEND 200 TO <3>Rot Rt Elbow; {functions}
SEND 0 TO <2>Rot_Rt_Knee;
SEND 200 TO < 3 > Rot_Rt_Knee;

{CODE FOR DIAL 5}

Switch3:= F:CROUTE(6);
Switch6:= F:CROUTE(6);

X_Vec_DS:= F:XVEC;
X_Mul_DS:=F:MULC;
X_Rot_DS := F:XROT;

Acc_Trans:= F:ACCUM;

Acc_Rot_Trunk:= F:CMUL;
Acc_Lt_Arm:=F:CMUL;
Acc_Lt_Hand:=F:CMUL;
Acc_Lt_Leg:= F:CMUL;
Acc Lt Foot:=F:CMUL;

CONNECT FKEYS< 1 > : < 1 >Switch3;
CONNECT FKEYS< 1 > < 1 >Switch6;
CONNECT DIALS< 5 > < 2 > Switch 3;

CONNECT Switch3 < 1 > : < 1 > X_Vec_D5;
CONNECT X_Vec_D5 < 1 > : < 1 > Acc_Trans;
CONNECT Acc_Trans< 1 > : < 1 > Robot.Tran;

CONNECT Switch3 < 2> : < 1 > X_Mul_D5;
CONNECT Switch3 < 3 > : < 1 > X_Mul_D5;

{Instance both switch}
{functions}

{Instance X vector for}
{translation}
{Instance MULC and}
{ROT functions}

{Instance tran}
{accumulate function}

{Instance CMUL}
{funct-ions}

{Connect FKEYS and}
{DIALS}

{Finish connections for}
{trans network}

{Connect switch to}
{MULC functions}

20 -FUNCTION NETWORKS II

CONNECT Switch3<4> : <1>X_Mul_D5;
CONNECT Switch3 < 5 > : < 1 > X_Mul_D5;
CONNECT Switch3<6> : < 1 >X_Mul_D5;
CONNECT X_Mul_DS < 1 > < 1 > X_Rot_D5;
CONNECT X_Rot_DS< 1 > <Z>Switch6;

CONNECT Switch6 < 2 > : < 2 > Acc_Rot_Trunk;
CONNECT Switch6 < 3 > < 2 > Acc Lt Arm;
CONNECT Switch6 < 4> : < 2 > Acc_Lt_Hand;
CONNECT Switch6 < 5 > : < 2 > Acc_Lt_Leg;
CONNECT Switch6 < 6 > : < 2 > Acc_Lt_Foot;

CONNECT Acc_Rot_Trunk < 1 > : < 1 > Acc_Rot_Trunk;
CONNECT Acc_Rot_Trunk < 1 > : < 1 > Upper_Body.Rot;

CONNECT Acc_Lt_Arm < 1 > < 1 > Acc_Lt_Arm;
CONNECT Acc_Lt_Arm< 1 > : < 1 >Left_Arm.Rot;

CONNECT Acc_Lt_Hand < 1 > : < 1 > Acc_Lt_Hand;
CONNECT Acc_Lt_Hand < 1 > : < 1 >Lef t_Hand.Rot;

CONNECT Acc_Lt_Leg < 1 > < 1 > Acc_Lt Leg;
CONNECT Acc_Lt_Leg< 1 > : < 1 >Left_Leg.Rot;

CONNECT Acc_Lt_Foot < 1 > : < 1 > Acc_Lt_Foot;
CONNECT Acc_Lt_Foot< 1 > : < 1 >Left_Foot.Rot;

SEND 200 TO < 2> X_Mul_D5;

SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Rot_Trunk;
SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Lt_Arm;
SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Lt_Hand;
SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Lt_Leg;
SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Lt_Foot;

SEND V3d (0,0,0) TO <2>Acc_Trans;

SEND 0 TO < 3 > Acc_Trans;
SEND 1 TO < 4> Acc_Trans;
SEND 10 TO < 5 > Acc_Trans;
SEND -10 TO <6>Acc_Trans;

{Connect MULC to}
{rotation function}
{Connect rotation}
{function to other switch}

{Connect switch to}
{CMUL functions}

{Connect CMUL}
{functions back to self}
{and to display tree
nodes}

{Prime MULC function}

{Prime CMUL function}

{Prime trans accumulate}
{function}

FUNCTION NETWORKS II — 21

{CODE FOR DIAL 6}

Switch4:= F:CROUTE(6);

Y_Mul_D6:=F:MULC;

Y_Rot_D6:= F:YROT;

CONNECT FKEYS< 1 > < 1 >Switch4;

CONNECT DIALS < 6 > : < 2 > Switch4;

CONNECT Switch4< 1 > < 1 > Y_Vec_D6;

CONNECT Y_Vec_D6 < 1 > < 1 > Acc_Trans;

CONNECT Switch4<2> < 1 >Y_Mul_D6;

CONNECT Switch4< 3 > < 1 > Y_Mul_D6;
CONNECT Switch4<4> < 1 > Y_Mul_D6;
CONNECT Switch4 < 5 > < 1 > Y_Mul_D6;
CONNECT Switch4<6> < 1 > Y_Mul_D6;

CONNECT Y_Mul_D6 < 1 > < 1 > Y_Rot_D6;

{Instance Switch}
{function. Note: 2nd}
{Switch already}
{instanced}

{Instance X vector for}
{translation}

{Instance MULC and}
{ROT functions}

{Connect FKEYS and}
{DIALS}

{Finish connections for}
{trans network}

{Connect switch to}
{MULC functions}

{Connect MULC to}
{rotation function}

CONNECT Y_Rot_D6< 1 > <2>Switch6; {Connect rotation}

SEND 200 TO < 2 > Y_Mul_D6;

{CODE FOR DIAL 7}

Switch5:= F:CRO~JTE(6);

{function to other switch}

{Prime MULC function}

{Instance Switch}
{function. Note: 2nd}
{Switch already}
{instanced}

22 —FUNCTION NETWORKS II

Z_Vec_D7:= F:ZVEC;

Z_MUL_D7:=F:MULC;

Z_ROT_D7 := F:ZROT;

CONNECT FKEYS< 1 > : < 1 >Switch5;

CONNECT DIALS<7> : <2>Switch5;

CONNECT Switch5 < 1 > : < 1 >Z_Vec_D7;

CONNECT Z_Vec_D7<1> : <1>Acc_Trans;

CONNECT Switch5<2> : < 1 >Z_Mul_D7;
CONNECT Switch5 < 3 > : < 1 > Z_Mul_D7;
CONNECT Switch5 <4> : < 1 >Z_Mul_D7;
CONNECT Switch5 < 5 > : < 1 > Z_Mul_D7;
CONNECT Switch5<6> : < 1 >Z_Mul_D7;

CONNECT Z_Mul_D7 < 1 > : < 1 > Z_Rot_D7;

CONNECT Z_Rot_D7 < 1 > : < 2> Switch6;

SEND 200 TO < 2 > Z_Mul_D7;

{CODE FOR DIAL 8}

Switch? := F:CROUTE(6};

Rot_Lt_Elbow:= F:DXROTATE;
Rot_Lt_Knee:= F:DXROTATE;

CONNECT FKEYS< 1 > : < 1 >Switch7;

CONNECT DIALS<8> <2>Switch7;

{Instance Z vector for}
{translation}

{Instance MULC and}
{ROTfunctions}

{Connect FKEYS and}
{DIALS}

{Finish connections for}
{trans network}

{Connect switch to}
{MULC functions}

{Connect MULC to}
{rotation function}

{Connect rotation}
{function to other}
{switch}

{Prime MULC function}

{Instance switch}
{function}

{Instance rotate}
{functions}

{Connect FKEYS and}
{DIALS}

CONNECT Switch 7< 3> : < 1 > Rot Lt Elbow {Connect switch to}
{rotate functions}

FUNCTION NETWORKS II — 23

CONNECT Switch7<5> < 1 >Rot_Lt_Knee;

CONNECT Rot_Lt_Elbow< 1 > < 1 >Left_Forearm.Rot;
CONNECT Rot_Lt_Knee< 1 > < 1 >Left_Lower_Leg.Rot;

SEND 0 TO <2>Rot Lt Elbow;
SEND 0 TO <2>Rot_Lt_Knee;
SEND 200 TO < 3 > Rot_Lt_Elbow;
SEND 200 TO < 3 > Rot_Lt_Knee;

{Connect rotate}
{function to display}
{tree node}

{Prime rotate functions}

The above includes all the necessary code fora function network which will
manipulate Robot. However, there is one other function you could add so that
you can interactively reset Robot to its original position, before any
transformations were applied, at any time. Connecting an F:XROTATE function
to the F:CMUL (rotation accumulator) functions will do this (see Figure 14).

Send ~ to Reset

RESET +~

F : XROTAT E

XROTATE

YROTATE

ZROTATE. ~--

F:CMUL

<1>C <1>

<2>

A

IAS0583

Figure 14. RESET Function Network

NODE

24 —FUNCTION NETWORKS II

Add the following code:

Reset := F:XROTATE;

CONNECT Reset < 1 > : < 1 > Acc_Rot_Robot;
CONNECT Reset < 1 > : < 1 > Acc_Rot_Head;
CONNECT Reset < 1 > : < 1 > Acc_Rt_Arm;
CONNECT Reset< 1 > : < 1 >Acc_Rt_Hand;
CONNECT Reset< 1 > : < 1 >Acc_Rt_Leg;
CONNECT Reset < 1 > : < 1 > Acc_Rt_Foot;
CONNECT Reset < 1 > : < 1 > Acc_Rot_Trunk;
CONNECT Reset < 1 > : < 1 > Acc_Lt_Arm;
CONNECT Reset < 1 > : < 1 > Acc_Lt_Hand;
CONNECT Reset < 1 > : < 1 > Acc_Lt_Leg;
CONNECT Reset < 1 > : < 1 > Acc_Lt_Foot;

This will reset the network value but not the robot's display nodes. The nodes
will be reset once the dials are moved again. To reset the display nodes at the
same time as you reset the network, also connect this reset function to all of the
rotation nodes in the display tree:

CONNECT Reset < 1 >
CONNECT Reset< 1 >
CONNECT Reset < 1 >
CONNECT Reset < 1 >
CONNECT Reset < 1 >
CONNECT Reset < 1 >
CONNECT Reset < 1 >
CONNECT Resets 1 >
CONNECT Reset < 1 >
CONNECT Reset< 1 >
CONNECT Reset < 1 >
CONNECT Reset < 1 >
CONNECT Reset<1>
CONNECT Reset < 1 >
CONNECT Reset < 1 >

< 1 > Robot.Rot;
< 1 > Head.Rot;
< 1 > Upper_Body.Rot;
< 1 > Right_Arm.Rot;
< 1 > Left_Arm.Rot;
< 1 > Right_Hand.Rot;
< 1 > Left_Hand.Rot;

< 1 > Right_Leg.Rot;

< 1 > Right_Foot.Rot;
< 1 > Right_Forearm.Rot;
< 1 > Le f t_Forearm. Ro t;
< 1 > Left Lower_Leg.Rot;
< 1 > Right_Lower_Leg.Rot;

To RESET Robot, then, simply enter:

SEND 0 TO <1>RESET;

FUNCTION NETWORKS II — 25

LABELLING THE CONTROL DIALS

The function network that labels the dials also involves routing, except that the
network's output will be routed to function instances associated with the control
dial labels instead of into display tree nodes.

The "Function Summary" explains that there are eight DLABEL function
instances, one for each dial, named DLABEL l...DLABEL8 (see Figure 15).

DLABELI...DLABEL8

S

B

B

<1>

<2>~

<3>C

Connected to
Dial Labels
a t System
Initial ization

~aso5s~

Figure 15. DLABEL Function

If you send the string of characters you want to appear in a dial's label to input
< 1 > of a DLABEL function, the string will appear in the LEDs above the dial.
(The second and third DLABEL inputs, not used in this example, allow you to
blink the label or left —justify it. The default is non—blinking and centered in the
available space above each dial.)

These character strings should be no more than 8 characters long. No
connections need to be made out of DLABEL function instances; their "outputs"
are the LEDs on the control dials box.

To build a function network using these functions, first determine what type of
output the network needs to produce; that is, what sort of values a DLABEL
function will accept. In this case, it is a string of characters. These strings need
to be sent to the DLABEL functions. Each time you change modes, you will want
a new set of LED labels to appear that correspond to the new operations handled
by the dials.

Begin with the first mode. Here, seven dials control overall movements for the
robot. Though the eighth dial is not labeled, a blank string is needed for the
eighth label to erase any existing labels above Dial 8 which appear in other
modes.

26 —FUNCTION NETWORKS II

The following are suggested labels that might appear in the dial LEDs during

Mode l:

1--XRot_Bod
2--XRot Hd
3--XR_Arm
4--XR Hand
S--XR_Leg
6--XR Foot

Once you identify labels to be sent to the LEDs, an efficient way to send them is

to use an instance of F:INPUTS CHOOSE(n) (Figure 16) for each DLABEL
function.

F:I^lPUTS CHOOSE(n)

Any

Any

I

<1>C

<n-1>c

<n>

<1> Any

~AS0585

Figure 1 fi. F:IN P U TS_C HOOSE(n) Function

Make n one number larger than the number of modes you need. With six modes,
use an instance of F:INPUTS CHOOSE(7).

This function can house six different labels on its first six inputs, one for each
mode. The seventh input is the "routing signal." An integer on input <7>
indicates which of the labels to send out. Connect FKEYS to that input.

Now when you press a function key, FKEYS not only switches the dials into a
different mode, it switches labels for the dials.

Figure 17 illustrates the network for Dial 1, with string outputs to DLABEL 1 and
integer inputs from FKEYS.

FUNCTION NETWORKS II — 27

' XROT BOD =-~

'XROT HD'
w

' XR ARM' --~

'XR HAND' ~

'XR LEG'

' X R FOOT'

Exercise

FKEYS ~---

F:INPUTS CHOOSE(7)

<1>C

<2>~

<~>C

<4>C

<5>C

C

<7>

<1>

DLABELI

<1>

iAS0586

Figure 17. LED Labels for Dial 1

The above diagram suggests how an instance of F:INPUTS CHOOSE(7) can handle
the labels for Dial 1 in all modes. Design a network with additional instances of
F:INPUTS_CHOOSE that will handle the other DLA~ELS2 through DLABELS8.
Design labels for the dials in each mode that use 8 or fewer characters to
describe the dials' functions.

Figure 18 illustrates the rest of the function network needed to label LEDs.
Following that is the code needed to implement the complete network.

28 -FUNCTION NETWORKS II

' Y ROT_60D'
t 1 YROT HD

'YR ARM'

`YR HAND'

YR LEG I

'YR FOOT'

I FKEYS

F:INPUTS CHOOSE(7)
<1>C

<2>C

<3>C

<4>C

<5>C

<6>C

<7>

<l ,

' ZROT 60D' _.
'ZROT HD' --~ .._.
'ZR ARM' ,
' ZR_HAND' -

I ZR LEG ~

' ZR FOOT'

FKEYS

F:INPUTS CHOOSE(7)
<1>~C
<2>C.

<3 >C

<4>C

<5>C

<6>C

<7>

<1>

DLABEL 2
<1>

' S ROBOT' ---

'xRoT RE'
I

' X ROT_R K'
i I

FKEYS

F:INPUTS CHOOSE(7)
<1>C <I>
<Z>C
<3>C
<4>C
<5>C
<6>C
<7>

DLABEL3
<1>

`XTRN BOD'--

'XROT TRK`

'XL ARM'

'XL HAND'

'XL LEG'

' X L FOOT' --

FKEYS

F:INPUTS CHOOSE(7)
<1>C <1~

<2>C

<3>C

<4>C

<5>C

<6>C

<7>

DLABEL4
< 1~ >

DLABEL5
<I>

~A5Q5$7

Figure 18. LED Labels for Dials 2-8

FUNCTION NETWORKS II — 29

' YTRN BOD' ----

' YROT TR K'

'YL ARM'

'YL HAND' -

'YL LEG'

' Y L FOOT'

FKEYS ~'

F:INPUTS CHOOSE(7)
<1>C

<2>C

<3>C

<4>C

<5>C

<6>C

<; >

<1~

' ZTRN BOD' ---~

' ZROT TR K'

'ZL ARM'

'ZL HAND'

'ZL LEG'

'ZL FOOT'

FKEYS }-

F:INPUTS CHOOSE(7)
<1>C

<2>C

<3 >C
<4>C

<5>C

<6>C

<7 >

<1>

DLABEL6
<1>

F:INPUTS CHOOSE (7

 <2>C

 ~<4>C

'XROT LK' <5>C

 <6> C

FKEYS ~ ~ ~'

<1~

OLABEL7
<1>

DLABEL 8
<1>

IAS0588

Figure 18. LED Labels for Dials 2-8 tcontinued)

30 —FUNCTION NETWORKS II

The code follows for the eight labels in all six possible modes. Note that the
DLABELS function does not have to be instanced by the user.

D 1_Leds := F:INPUTS_CHOOSE(7);
D2_Leds := F:INPUTS_CHOOSE(7);
D3_Leds := F:INPUTS_CHOOSE(7);
D4_Leds := F:INPUTS_CHOOSE(7);
D5_Leds := F:INPUTS_CHOOSE(7);
D6_Leds := F:INPUTS_CHOOSE(7);
D7_Leds := F:INPUTS_CHOOSE(7);
D8_Leds := F:INPUTS_CHOOSE(7);

CONNECT FKEYS< 1 >:<7>D 1_Leds;
CONNECT FKEYS< 1 >:<7>D2_Leds;
CONNECT FKEYS< 1 >:<7>D3_Leds;
CONNECT FKEYS< 1 >:< 7> D4_Leds;
CONNECT FKEYS< 1 >:<7>DS_Leds;
CONNECT FKEYS< 1 >:<7>D6_Leds;
CONNECT FKEYS< 1 >:<7>D7_Leds;
CONNECT FKEYS< 1 >:<7>D8 Leds;

CONNECT D 1 Leds< 1 >: < 1> Dlabel 1
CONNECT D2_Leds< 1 >:< 1 >Dlabel2
CONNECT D3_Leds< 1 >:< 1 >Dlabel3
CONNECT D4 Leds< 1 >:< 1 >Dlabel4
CONNECT DSa_Leds< 1 >:< 1 >D1abe15
CONNECT D6_Leds< 1 >: < 1 > Dlabel6
CONNECT D7_Leds< 1 >:< 1 >Dlabel7
CONNECT D8 Leds< 1 >: < 1 > Dlabel8

SEND 'XRot_BOD' TO < 1 >D 1_Leds;
SEND 'XRot_HD' TO <2>Dl_Leds;
SEND 'XR_ARM' TO <3>Dl_Leds;
SEND 'XR_HAND' TO <4>D I_Leds;
SEND 'XR_LEG' TO <5>D1_Leds;
SEND 'XR_FOOT' TO <6>D 1_Leds;

SEND 'YRot_BOD' TO < 1 > D2_Leds;
SEND 'YRot_HD' TO < 2> DZ_Leds;
SEND 'YR_ARM' TO < 3> D2_Leds;
SEND 'YR_HAND' TO <4> D2_Leds;
SEND 'YR_LEG' TO <5>D2_Leds;
SEND 'YR_FOOT' TO <6>D2_Leds;

{Instance the switch function}

{Connect FKEYS to switch}

{Connect switch to LEDs}

{Send characters}

FUNCTION NETWORKS II — 31

SEND 'ZRot_BOD` TO < 1 >D3_Leds;
SEND 'ZRot_HD' TO <2>D3_Leds;
SEND 'ZR_ARM' TO < 3 > D3_Leds;
SEND 'ZR_HAND' TO <4>D3_Leds;
SEND 'ZR_LEG' TO < 5 > D 3_Leds;
SEND 'ZR_FOOT' TO < 6 > D 3_Leds;

SEND 'S_Robot' TO < 1 > D4_Leds;
SEND ' ' TO < 2 > D4_Leds;
SEND 'XRot_RE' TO <3>D4_Leds;
SEND ' ' TO <4>D4_Leds;
SEND 'XRot_RK' TO <5>D4_Leds;
SEND ' ' TO < 6 > D4_Leds;

SEND 'XTRN_BOD' TO < 1 > D5_Leds;
SEND 'XRot_TRK' TO <2>DS_Leds;
SEND 'XL_ARM' TO < 3 > D5_Leds;
SEND 'XL_HAND' TO <4>D5_Leds;
SEND 'XL_LEG' TO < 5 > D5_Leds;
SEND 'XL_FOOT' TO D5_Leds;

SEND 'YTRN_BOD' TO < 1 > D6_Leds;
SEND 'YRot_TRK' TO <Z>D6_Leds;
SEND 'YL_ARM' TO < 3 > D6_Leds;
SEND 'YL_HAND' TO <4>D6_Leds;
SEND 'YL_LEG' TO < 5 > D6_Leds
SEND 'YL_FOOT' TO <6> D6_Leds;

SEND 'ZTRN_BOD' TO < l > D7_Leds;
SEND 'ZRot_TRK' TO <Z>D7_Leds;
SEND 'ZL_ARM' TO < 3 > D7_Leds;
SEND 'ZL_HAND' TO <4>D7_Leds;
SEND 'ZL_LEG' TO < 5 > D7_Leds;
SEND 'ZL_FOOT' TO <6> D7_Leds;

SEND ' ' TO < 1 > D8_Leds;
SEND ' ' TO < 2 > D8_Leds;
SEND 'XRot_LE' TO < 3 > D8_Leds;
SEND ' ' TO <4> D8_Leds;
SEND 'XRot_LK' TO <5>D8_Leds;
SEND ' ' TO <6>D8_Leds;

32 —FUNCTION NETWORKS II

SETTING LIMITS ON THE MOTION OF A MODEL

As the robot model now operates, its movements are unbounded: it can continue
bending its knees until they pass through its thigh and return to initial position.

This section demonstrates how to set a limit on that motion, so that a model will

more realistically imitate the movements of the object it represents.

The robot's knees provide a good illustration of how to do this. First, think of
how a real leg bends (Figure 19).

.~

`— 160°

~~ IAS0589

Figure 19. Realistic Limitations of Leg Movement

In a real leg, little or no forward bending is possible, but backward bending,
through nearly 180 degrees is. If you set a limit at 160 degrees, it would be
fairly realistic. Figure 20 shows how 160 degrees of "backward" movement in a
real leg corresponds to the rotation values in the robot's knee.

X

-Y I AS0590

Figure 20. Limits for the Robot Leg

FUNCTION NETWORKS II — 33

The rotations applied to it move it only around the X axis. Viewed from the
positive X axis (the way it is in the diagram above), the "backward" rotation is
counterclockwise. So the limits you want to impose are: no positive rotation in
X at all, and only up to 160 in negative X.

You can modify the rotation network in the function network diagram for the
robot. This requires the F:LIMIT function (see Figure 21). F:LIMIT will monitor
values for degrees of rotation for the ROTATE functions and pass through only
values between 0 and —160.

F:LIMIT

accumulated rotation value -

upper limit (0}-

lower limit (-160)

C

C

---value between the two 1 imi is

IAS0591

Figure 21. F: L I M I T F unction

In this example, any value larger than 0 will cause F:LIMIT to send out a 0;
anything less than —160 will output —160.

The network for robot's knees use F:DXROTATE functions because they require
rotations only in X. However, the accumulator is built into F:DXROTATE, so
you cannot tap into it for the input to F:LIMIT.

DIALS F : DXROTATE

To use F:LIMIT, begin with an XROT network such as the one used in "Function
Networks I":

DIALS F : MULC I--- F:XROTATE

34 —FUNCTION NETWORKS II

Then modify it to accumulate rotation values with an add function:

DIALS F:MULC F:ADD F:XROTATE

Finally, add the F:LIMIT function. With this network, a stream of values from
ADD (accumulated rotation values) can be output to F:LIMIT as shown in Figure
22.

DIALS F:MULC F:ADD F:LIP~IT
 ,~

F:XROTATE

Figure 2Z. Function Network to Limit Movement

IAS0592

~~ode

Though this network is bulkier (three functions now replace one), it allows you to
limit the motion in the knee joint.

Exercise

Figure 23 illustrates two modified function networks that will limit rotations in
both of the robot knees. Function instance names have been provided. Edit the
existing code for Robot to incorporate these changes. Do not repeat any existing
commands which create function instances; otherwise, all connections
established by the original command are broken.

DIALS<4> SWITCH2 X_MULC_D4

DIALS <8 > SWITCH? X MULC D8

ADD D4 LIMIT D4

LIMIT D8

Ri ght_Lowe r_Le g .Rot

X_ROT D4

Left Lower Leg.Rot

IAS0593

Figure 23. Function Networks to Limit the Robot Knee Movement

FUNCTION NETWORKS II - 35

X_Mulc_D4 := F:MULC;
X_Mulc_D8 := F:MULC;
Add_D4 := F:ADD;
Add_D8 := F:ADD;
Limit_D4 := F:LIMIT;
Limit_D8 := F:LIMIT;
X_Rot_D4 := F:XROTATE;
X_Rot_D8 := F:XROTATE;

DISCONNECT Switch2<5>:< 1 >Rot_Rt_Knee;
DISCONNECT Switch7<5>:< 1 >Rot Lt Knee;

CONNECT Switch2<5>:< 1 >X_Mulc_D4;
CONNECT Switch? < 5 >: < 1 > X_Mulc_D8;

CONNECT X_Mulc_D4< 1 >:< 1 >Add_D4;
CONNECT X_Mulc_D8 < 1 >: < 1 > Add_D8;

CONNECT Add_D4< 1 >:< 1 >Limit_D4;
CONNECT Add_D8< 1 >:< 1 >Limit_D8;

CONNECT Limit_D4 < 1 >: < 2 > Add_D4;
CONNECT Limit_D4< 1 >:< 1 > X_Rot_D4;
CONNECT Limit_D8 < 1 >: < 2 > Add_D8;
CONNECT Limit_D8 < 1 >: < 1 > X_Rot_D8;

{Instancing new functions}

{Creating new network}

CONNECT X_Rot_D4< 1 >:< 1 >Right_Lower_Leg.Rot;
CONNECT X_Rot_D8< 1 >:< 1 >Left_Lower_Leg.Rot;

SEND 200 TO < 2 > X_Mulc_D4;
SEND 200 TO <2> X_Mulc_D8;
SEND 0 TO < Z>Limit_D4;
SEND -160 TO < 3 > Lim it_D4;
SEND 0 TO < 2>Limit_D8;
SEND -160 TO < 3 > Limit_D8;

SEND 0 to <2>Add_D4;
SEND 0 to <2>Add_D8;

{Priming functions}

The next logical step would be to limit rotations in ALL of the robot's joints.
However, this is no trivial matter. The other rotate nodes accept
three-dimensional rotations which are all accumulated using matrices. Matrices
cannot go through an F:LIMIT function. This problem is not insurmountable, but
solutions can be complex. (For example, you could have three rotation nodes,
each limiting movement using the F:LIMIT function.)

36 —FUNCTION NETWORKS II

USING VARIABLES TO STORE VALUES

One difference between programming with PS 300 function networks and
programming a conventional language such as FORTRAN is that you almost
never need to use variables. In a conventional program, you may represent two
values to be added together as variables X and Y. In a function network, you
would add these using an ADD function. The "variables" are the function's two
inputs.

7

Sometimes, though, you may want to use avariable -value in a function network
in a more conventional way. Often, this can be done using a F:CONSTANT
function (see Figure 24).

F: CONSTANT ~--Destination 1

F: CONSTANT }--Destination 2

F: CONSTANT ~— Destination 3

IAS0599

Figure 24. F:CONSTANT Function

In this setup, the value you want to save is sent to the constant input of the
function. If you send a stream of values, each one will over—write the preceding
one, so the value on the constant input will always be current (the latest one
sent). When you need the variable somewhere else in the network, send any
value to trigger F:CONSTANT's input < 1 > and the value will fire out to wherever
you connect the output.

It may be the case, however, that several areas in a network need to access the
variable in an F:CONSTANT function. You might think that can be done by
making numerous output connections to all the destinations that may use the
variable.

F : CONSTAPJT
<1> <1>

<2>C
IAS0596

Destination 1
Destination 2
Destination 3

FUNCTION NETWORKS II — 37

However, this presents a problem of routing and selection. To send the variable
value to destination 1, you must trigger F:CONSTANT, which sends out values to
all destinations. One solution to this problem could be to use more instances of
F:CONSTANT.

F :CONSTANT

Trigger Value

From Network

<1>

<2>C

<1> Any

tAS0594

A more efficient solution is to use the VARIABLE command in conjunction with
the command STORE and the function F:FETCH: This section discusses how to
do that.

The VARIABLE command creates a "holding tank" for a single value, much the
same way the constant input of F:CONSTANT does. Look at the following
command:

VARIABLE This, That, The_Other;

This command creates three variables named This, That, and The_Other.
Variables have only one input and no outputs. Function networks can be
connected to them or they can receive values by means of the SEND command:

CONNECT Spinner< 1 >:< 1 >This;

SEND 4.5 TO < 1 >This;

If a network is connected to a variable, it can receive a stream of values and will
retain the last one sent.

An alternate way to send a value to a variable is to use the STORE command.
The following commands both do the same thing:

STORE 4.5 IN This;

SEND 4.5 TO < 1 >This;

38 -FUNCTION NETiNORKS II

There are two ways to retrieve a value stored in a variable: using the SEND
VALUE command or using a function network with F:FETCH. For example, if
you want to send a value from the variable "This" to the third input of a function
named ROT_X, you could enter:

SEND VALUE(This) TO < 3 > Rot_X;

Even more convenient is using F:FETCH (Figure 25).

F:FETCH

Any

S

<1>

<2>C

<1> Any

iAS0595

Figure 25. F:FETCH Funotion

F:FETCH accepts the name of the variable on its constant input (input 2). When
any value arrives on input 1, the function is triggered. It fetches the latest value
from that variable and sends it out.

For example, in Figure 26 below, values for the variable "This" are routed to the
host using the F:FETCH function. (User-assigned names are written above the
function box.)

DIALS
<5>
<6>
<7>

--X TRANSLATE NETWORK
---Y TRANSLATE~NETWORK
---Z TRANSLATE NETWORK

(Translation Network Already Defined)

GET THIS PRINTER

F:FETCH
F KEYS ~---, < 1 >

'This'--~

This

<2>C

IAS0597

F:PRINT

Figure 26. Routing Values From THIS Variable to the Host

HOSTOUT

FUNCTION NETWORKS II — 39

The variable This holds a ZD vector that indicates the accumulated translation
values sent out from ACC TRANS in Mode 1. (The translation network has
already been defined and coded in the Robot code.)

HOSTOUT has one input, which accepts a string and routes it to the host.
HOSTOUT is preceded by a function that turns PS 300 values into strings,
F:PRINT. (If the GSRs are being used, HOST_MESSAGE should be used in lieu of
HOSTOUT.)

The additional code needed for this network is:

VARIABLE This;

Get_This := F:FETCH;
Printer := F:PRINT;

CONNECT Acc_Trans < 1 >: < 1 > This;
CONNECT FKEYScI >:< 1 >Get_This;
CONNECT Get_This< 1 >: < 1 >Printer;
CONNECT Printer< 1 >: < 1 > Hostout

SEND 'This' to < 2 > Get_This;

Exercise

Using Figure 26 as a pattern, create a function network that uses a variable
named MATRIX which holds the most current rotation matrix from F:CMUL for
the robot's left arm (ACC LT ARM) in Mode 3. Retrieve this value and send it
to HOSTOUT using an instance of F:FETCH named Retrieve. Specify any
additional code needed (the rotation network for Robot has already been done).

Figure 27 illustrates the function network which retrieves values from the
variable MATRIX.

40 —FUNCTION NETWORKS II

RETRIEVE PRINTER

DIALS
<5>
<6>
<7>

SWITCH
6gCC LT ARM

--X ROTATION NETWORK—
~-Y ROTATION NETWORK---
-Z ROTATION NETWORIG—

(Rotation Network Al ready Defined)

 F: FETCH F:PRINT

F KE YS ~--- < 1 >

' Matri x' <2>C

Matri x

11ARIABLE~

Left Arm. Rot

IAS0598

HOSTOUT

Figure 2 7. Routing Values From MATRIX Variable to the Host

The additional code needed for this network is:

VARIABLE Matrix;

Retrieve := F:FETCH;
Printer := F:PRINT;

CONNECT Acc_Lt_Arm < 1 >: < 1 > Matrix;
CONNECT FKEYS< 1 >: < 1 > RETRIEVE;
CONNECT Retrieve < 1 >: < 1 > Printer;
CONNECT Printer< 1 >: < 1 > Hostout;

SEND 'Matrix' to <2> RETRIEVE;

FUNCTION NETWORKS II — 41

SUMMARY

This module illustrates how to expand a function network so that a single dial
can manipulate several movements of a model. This entails determining the
number of dials needed for interactions in the model and assigning each dial
several destinations (in this module, interactive nodes in the model's display tree
or LED labels).

Function keys and instances of F:CROUTE(n) are used to switch values from the,
dials to their various destinations. This prevents dial values from being routed to
all function network destinations at once.

Specifically, the initial function instance FKEYS is connected to input< 1 > of the
switching function F:CROUTE(n). Incoming values from the dials are connected
to input < 2>. The outputs of F:CROUTE(n) are connected to the various
destinations.

LEDs above the dials are labeled in each mode of operation. Specifically, labels
in every mode for that dial are sent to the constant inputs of
F:INPUTS_CHOOSE. FKEYS is connected to the last input of this function. The
output of F:INPUTS_CHOOSE is connected to the DLABEL function associated
with that dial. When the function key is pressed, to switch modes, the correct
label for the dial in that mode is routed to DLABEL, which outputs to the LEDs.

Functions can serve more than one purpose. For example, in addition to
controlling X rotations, the F:XROTATE function can be used to reset the model
back to its original position before any transformations were applied.

The F:LIMIT function can be inserted into a network to set limits on a model's
movement. F:LIMIT requires that you establish upper and lower limits for
transformation values. It then passes through only those values which lie within
this range.

Finally, the VARIABLE command and F:FETCH functions allow you to store and
retrieve a variable value in a function network.

TEXT VODELI\G A\D STRI\

CONTENTS

G HA\ DLI\G

INTRODUCTION 1

OBJECTIVES 1

PREREQUISITES Z

USING COMMANDS TO CREATE CHARACTER STRINGS 3

The CHARACTERS Command 3
Changing Starting Position and Spacing 4
Exercise 5
The LABELS Command 5

When to Use CHARACTERS and LABELS 6

USING COMMANDS TO MANIPULATE CHARACTER STRINGS 7

Character Rotations 7

Character Scales 7

The TEXT SIZE Command 10
Exercise 1 i

TEXT MODELING AND STRING HANDLING

Character Orientation

World-Oriented Characters
Screen-Oriented Characters
Screen-Oriented/Fixed Characters

11

13
13
14

USING FUNCTIONS TO MANIPULATE CHARACTERS AND STRINGS 15

Character and String Conversion Functions 15

String Formatting and Reformatting Functions 16

Miscellaneous String-Handling Functions 17

Character Transformation Functions 17

UPDATING CHARACTERS AND LABELS NODES 19

Updating With Commands 19
The COPY Command 19
The SEND Command ZO
Exercise 23

Updating With Functions 23

CREATING AND USING DIFFERENT CHARACTER FONTS 24

Creating an Alternate Font 24

Using an Alternate Font 26

The Character Font Editor Program 27

SUMMARY 28

TEXT MODELING AND STRING HANDLING

ILLUSTRATIONS

Figure 1. Default Window and Character Size 3
Figure 2. The Effect of the PREFIX Command 9
Figure 3. New Node Added With the PREFIX Command 9
Figure 4. Display Tree With TEXT SIZE Node 10
Figure 5. TEXT SIZE Node Prefixed With CHARACTER SCALE Node 11
Figure 6. Display Tree for a Labeled Cube 12
Figure 7. Inputs to a CHARACTERS Node 21
Figure 8. Inputs to a LABELS Node 22
Figure 9. Standard 'A' and Simplex Roman 'A' 25
Figure 10. Standard 'A' and Old English 'A' 25
Figure 11. Display Tree With CHARACTER FONT Node 27

TEXT MODELING AND STRING HANDLING - 1

Text is handled by the PS 300 in the same way as any other graphical item. Characters
are defined as data nodes consisting of a single string (a CHARACTERS node) or a block
of several strings or 1abeZs (a LABELS node). Just like other graphical items,
characters can be transformed through matrices. Because they are affected by 3X3
matrices, they can be transformed along with any three-dimensional object which
includes them in its definition. Characters can also be rotated and scaled using
commands that create 2X2 transformation matrices. These matrices transform text
while leaving other 2D and 3D graphical data unaffected.

Strings can be created and manipulated with commands. They can also be manipulated
interactively using function networks and interactive devices.

A standard character font comes with the PS 300. Commands exist which allow you to
design and use an unlimited number of alternate character fonts. A graphical character
font editor program, MAKEFONT, is also available for designing and modifying
character fonts. Refer to Volume 4 for information about this program.

Text and text-handling nodes are included in display trees. Text strings are data nodes
and text transformations are operation nodes. The current character font is an
attribute node which points to a look-up table for the vectors which comprise the font
in current use.

OBJECTIVES

In this module you will learn how to:

■ Use commands to create character strings.

■ Use commands to manipulate character strings.

■ Use functions to manipulate characters and strings.

■ Update characters and labels nodes.

■ Create and use different character fonts.

2 -TEXT MODELING AND STRING HANDLING

PREREQUISITES

Be at a PS 300 and have access to the Tutorial Demonstration programs. Be
familiar with the concepts covered in "Graphics Principles" and in the "Modeling"
and "PS 300 Command Language" modules. Also have at hand the Command
Summary and Function Summary in Volume 3A for reference to the commands and
functions you will be using.

Be sure that you have read User Operation and Communications in Volume 1 so
that you know how to put the PS 300 into and out ~of Command mode.

TEXT MODELING AND STRING HANDLING — 3

USING COMMANDS TO CREATE CHARACTER STRINGS

Two PS 300 commands create character strings: the CHARACTERS command
and the LABELS command.

The CHARACTERS Command

The CHARACTERS command lets you create a single string of up to 240
characters and specify the location of that string in the world coordinate system.

The simplest form of the command lets you create a string which starts at the
origin (the default location). The following command assigns the name String to

a character string. Put the PS 300 in Command Mode by pressing the CONTROL

and LINE LOCAL keys, and enter this command.

String := CHARACTERS 'The quality of mercy...';

Now DISPLAY String. All you can see at the moment is a large "T" in the

top—right quadrant and the vertical stroke of the "h". This is because each
character is defined in a square which, by default, is one unit on each side. The
default starting point for any string is the origin. Since the default window is
from —1 to 1 in X and Y, only the first letter is within the window. Figure 1

illustrates this.

Default Character
Size

Default ~i ndov~ >

I
I

I
0

-1

t AS0634

Figure 1. Default Window and Character Size

_ —
-1
i

4 —TEXT MODELING AND STRING HANDLING

To scale the characters to fit the default window and display the string at its
new size, enter the following commands.

Scale_String := SCALE BY .04 APPLIED TO String;
REMOVE String;
DISPLAY Scale_String;

The string should now appear in much smaller letters beginning at the center of
the screen. Notice that the characters which form the string in the
CHARACTERS command are enclosed in single quotation marks; however, when
String is displayed, only the characters appear. If you want quotation marks in
the text string, you must use three single quotation marks at the start and at the
end of the string. Redefine String by entering the following command.

String := CHARACTERS "'The quality of mercy..."';

The character string should now appear in single quotation marks.

To get a single quote to appear in a string (as an apostrophe, for example) you
must enter two single quotes. Redefine String with the following command.

String := CHARACTERS 'Love"s not time"s fool';

The string should appear with the contraction Love's and the possessive time's.

changing Starting Position and Spading

When the PS 300 displays a character string, the string is positioned by default
with the lower—left corner of the unit square enclosing the first character at the
origin of the world coordinate system. Characters are regularly spaced and
follow each other horizontally. Optional parameters in the command let you
specify the beginning coordinates of the string and change the horizontal and
vertical spacing of the characters to create vertical and diagonal text strings.

Enter the following command to redefine String as a new line of text positioned
of f the origin.

String := CHARACTERS 0,5,0 'Up a little';

TEXT MODELING AND STRING HANDLING - 5

This string starts at 0 on the X axis and 0 on the Z axis but 5 on the Y axis. The
X,1~',Z coordinate of the starting point can always be specified in this way. The
Z coordinate is optional and, if not supplied, defaults to zero.

The spacing between characters can be changed with a STEP clause. This clause
lets you specify the spacing between characters in X and Y as a value from -1 to
1. The default spacing is 1,0 or one unit in X and zero in Y for regular horizontal
spacing.

The vertical spacing can be changed by specifying the Y component of the STEP
clause as a value other than zero. Enter the following command to create a
string which descends diagonally from the origin tp the right.

String := CHARACTERS STEP 1,-1 'Stepping down';

Now redefine the string as a diagonal which ascends from the origin to the
upper-right.

String := CHARACTERS STEP 1,1 'Stepping up';

Exercise

Try different combinations of X and Y values to produce strings which descend
and ascend vertically from the origin.

The LABELS Command

The LABELS command, like CHARACTERS, defines character strings for
display. Whereas CHARACTERS defines a single string, LABELS combines any
number of character strings into a single block. Each character string in the
block is called a Zabel.

The command is quite straightforward to use. The following example combines
some of the text strings created earlier in this module into a single label block.

String := LABELS 0,0 'The quality of mercy...'
-1,2 "'The quality of mercy..."'

4,5 'Up a little'
2,-5 'Love"s not time"s fool';

6 —TEXT MODELING AND STRING HANDLING

Diagonal and vertical strings could not be included in the block, however,
because they specify different horizontal and vertical spacing between
characters. The LABELS command is not able to accommodate this. The only
clause in the command is the X,Y,Z coordinate of each label in the block.

When to Use CHARACTERS and LABELS

Both the CHARACTERS and the LABELS commands create data nodes in a
display tree. Whenever several character strings are defined as a single LABELS
node rather than as separate CHARACTERS nodes, there is a gain in display
capacity. If you are displaying a lot of text, it is best defined using the LABELS
command.

Character strings defined with the CHARACTERS command, however, are more
versatile. In deciding which command to use, keep the following in mind.

■ The CHARACTERS command lets you change the horizontal and vertical
spacing between characters. The LABELS command does not.

■ If text is created using CHARACTERS, you can manipulate any character in
the text string. If the LABELS command is used, the smallest entity you can
manipulate is a single text string.

TEXT MODELING AND STRING HANDLING — 7

USING COMMANDS TO MANIPULATE CHARACTER STRINGS

The CHARACTERS and LABELS commands create data nodes containing text.
Like any other primitive data, text can be transformed by having a matrix
applied to it. Text can be rotated and scaled using the ROTATE and SCALE
commands which transform any two—dimensional or three—dimensional
structures. In addition, characters can be transformed with their own rotate and
scale commands: CHARACTER ROTATE, CHARACTER SCALE, and TEXT
SIZE. These commands create 2X2 transformation matrices which only operate
on text.

Character

Rotations

The CHARACTER ROTATE command rotates a character string or label block
around the Z axis. When you look in the positive direction of the axis, the
rotation is counterclockwise.

To see the effect of this command, initialize the display, then rotate and display
the scaled labels block.

INITIALIZE DISPLAY;
Rot_Text := CHARACTER ROTATE 90 APPLIED TO Scale_String;
DISPLAY Rot_Text;

Each string in the block should be rotated 90 degrees to the left. Notice that
each label in the block is rotated around its own starting location. There is no
single point in a labels block around which the whole block rotates.

A character rotate node can be updated interactively by any 2X2 matrix. The
functions F:MATRIX2 and F:CROTATE (where C stands for character) are often
used to supply the new matrix to the node.

Character Scales

Characters can be scaled like any other primitive data by athree—dimensional
scale matrix using the SCALE command. There is also a CHARACTER SCALE
command which creates a 2X2 scale matrix for transforming text only.

8 -TEXT MODELING AND STRING HANDLING

There are two forms of the CHARACTER SCALE command, one for uniform
scaling and one for non-uniform scaling. Enter the following commands to
initialize the display and to uniformly scale by .05 and then display the
characters in the labels block.

INITIALIZE DISPLAY;
Char_Scale := CHARACTER SCALE .75 APPLIED TO Scale_String;
DISPLAY Char_Scale;

The scale factor is applied in both X and Y to the characters that compose
scale-string. Anon-uniform scale can be applied by specifying separate scale
factors in X and Y. Enter the following command to redefine Char_Scale and
make tall characters.

Char_Scale := CHARACTER SCALE .5,3 APPLIED TO Scale_String;

Characters in the strings are made tall and thin with this command.

When several CHARACTER SCALE commands are used, each is concatenated
with the next and a cumulative scaling matrix is applied to the characters. To
see this effect, initialize the display and create and display a text string called
Text.

INITIALIZE DISPLAY;
Text := CHARACTERS 'See Spot run.';
DISPLAY Text;

Since the characters are at the default size, only the capital 'S' and one line of
the first lowercase 'e' are visible in the top-right quadrant of the screen. Now
scale the string by prefixing it with a CHARACTER SCALE node.

PREFIX Text WITH CHARACTER SCALE .5;

The characters should now change to half their previous size, and the 'S', first
'e', and one line of the second 'e' should be visible. The PREFIX command
inserts a new node above the existing node and assigns the existing node's name
to the new node. Figure 2 shows the effect of the PREFIX command on the
display tree.

TEXT MODELING AND STRING HANDLING — 9

Text (~
I'i

i ASOb35

Figure 2. The Effect of the PREFIX Command

Use the PREFIX command again to create another scale node above the last one.

PREFIX Text WITH CHARACTER SCALE .l;

Notice that the size of the characters is now one tenth of what it was before,
not one tenth of the original default size. The actual size of the text is .5 times
.l, which is .05 of the default size. The new display tree is as shown in Figure 3.

Tex t

IAS0636

Figure 3. New Node Added With the PREFIX Command

The two character scales are concatenated and the combined scaling matrix is
applied to the characters.

10 -TEXT MODELING AND STRING HANDLING

The TEXT SIZE Command

Character sizes can also be changed with the TEXT SIZE command. This
command creates a text size which replaces the default size of 1. Text sizes are
expressed as multiples or fractions of the default size.

Like the CHARACTER SCALE command, TEXT SIZE creates a 2X2 scaling
matrix. However, this matrix is not concatenated with any other matrix. This
means that the command creates a node which overrides any 2X2 matrix nodes
above it in the same branch of the display tree.

To see the effect of the command, first remove the two CHARACTER SCALE
prefixes of the string called Text, then prefix Text with a TEXT SIZE node.

REMOVE PREFIX OF Text;
REMOVE PREFIX OF Text;
PREFIX Text WITH TEXT SIZE .5;

As you remove the prefixes, the characters being displayed should get larger
until they are back to the default size, and only the capital S is visible in the
top-right quadrant. Prefixing with the TEXT SIZE command should make the
letters half of the default size. The display tree for this structure is as shown in
Figure 4.

Text n

Text

IASOb37

Figure 4. Display Tree With TEXT SIZE Node

Now prefix Text with a CHARACTER SCALE node to scale the characters by
half again.

PREFIX Text WITH CHARACTER SCALE .5;

v

TEXT MODELING AND STRING HANDLING — 1 1

The text size does not change. This is because the effect of the CHARACTER
SCALE node is overridden by the TEXT SIZE node below it in the structure. The
display tree for the structure is shown in Figure 5.

Tex t

IAS0638

Figure 5. TEXT SIZE Node Prefixed With CHARACTER SCALE Node

Now prefix the CHARACTER SCALE node with a character rotation node.

PREFIX Text WITH CHARACTER ROTATE 90;

Again, nothing happens. The TEXT SIZE node overrides all 2X2 matrices above
it. Since a CHARACTER ROTATE node is a 2X2 matrix node, it too is cancelled
out like the character scale. You should take this into account when structuring
data.

Exercise

The TEXT SIZE node has no effect on 3X3 matrices, however. Try replacing the
CHARACTER ROTATE node with a ROTATE node, and the rotation will be
applied.

Character Orientation

If a transformation is applied to an object or part of an object which contains
text in its structure, the default condition is that the text will be transformed

too. Consider the display tree in Figure 6.

12 —TEXT MODELING AND STRING HANDLING

Dial s
moma~
mama
mo mo
mama

Cube

Labeled Cube

.~

~ IAS0639

Figure 6. Display Tree for a Labeled Cube

An instance node called Labeled_Cube groups a vector list defining a cube and
character strings which are scaled and positioned on each face to label the
FRONT, BACK, TOP, BOTTOM, LEFT, and RIGHT. A rotation node connected to three
dials through a function network allows Labeled Cube to be rotated
interactively. A scale node is also connected to a dial to allow interactive
scaling. Any rotation or scale that is applied to the cube is also applied to the
character strings.

To display the cube represented by the display tree in Figure 6, go to the
Tutorial Demonstration Menu and select the program called CHARACTERS.

The cube with its faces labeled will be displayed in three viewports. The
rotation node is connected to Dials 1, 2 and 3 for rotations in X, Y, and Z. Dial 4
is connected to the scale node. Use the dials to manipulate the cube.

TEXT MODELING AND STRING HANDLING - 13

Notice that as you rotate and scale the cube, the character strings on the faces
of the cube in viewport 1 are rotated and scaled also. Depth-cueing is
performed on the characters as well as on the lines that make up the cube.

As you manipulate the cube in viewport 1, the character strings which label its
faces are unreadable much of the time. They may be backwards, upside-down,
and too small to read. Notice that this is not the case with the characters in
viewports 2 and 3. These characters are unaffected by rotations and scales while
the object is being transformed. This is achieved by using the SET
CHARACTERS command. This command determines the orientation of
characters which are part of a model. It has an "orientation" clause with
three options: WORLD_ORIENTED, SCREEN_ORIENTED, and
SCREEN ORIENTED/FIXED.

World-Oriented Characters

World-oriented characters are what you are seeing with the cube in viewport 1.
The characters are transformed along with the object just like any other part of
it. When an object is rotated, translated, or scaled, the characters undergo the
same transformations. This is the default condition for any character string or
label block you create.

The syntax for this command is as follows.

Name := SET CHARACTERS WORLD_ORIENTED APPLIED TO Name l;

Screen-Oriented Characters

Screen-oriented characters are unaffected by ROTATE and SCALE nodes. The
SET CHARACTERS command can be used with the SCREEN ORIENTED clause
to maintain a readable orientation for character strings when an object is
transformed. The cube in viewport 2 has a SET CHARACTERS
SCREEN_ORIENTED node added. When this cube rotates, the names on the
cube's faces stay readable. They rotate around the three axes but they stay
parallel to the XY plane. When the cube is scaled, the character size remains
unchanged.

The syntax for this form of the command is as follows.

Name := SET CHARACTERS SCREEN_ORIENTED APPLIED TO Name l;

14 -TEXT MODELING AND STRING HANDLING

Screen-Oriented/Fixed Characters

Notice that with the screen-oriented characters in viewport 2, the intensity of
the characters varies with depth. If the cube were being displayed in perspective
projection, the size of the characters would vary too. In the cube's initial
position, the characters BACK on the back face of the cube would appear smaller
and dimmer than the characters FRONT. You can use the
SCREEN_ORIENTED/FIXED option of SET CHARACTERS to fix the size and
intensity at which characters are displayed.

.~
The cube in viewport 3 has a SET CHARACTERS node with the
SCREEN ORIENTED/FIXED option. Notice that when you rotate this cube,
depth-cueing is not performed on the characters, so they remain at full intensity.

The syntax for this form of the command follows.

Name := SET CHARACTERS SCREEN ORIENTED/FIXED
APPLIED TO Name 1;

TEXT MODELING AND STRING HANDLING - 15

USING FUNCTIONS TO MANIPULATE CHARACTERS AND STRINGS

There are several functions which are used for manipulating characters and
strings. These functions convert characters and strings to other types of data,
format and reformat strings, transform characters, and perform other
miscellaneous character and string-handling operations.

Complete information on these functions is contained in the Function Summary
in Volume 3A. The following sections summarize the functions and give a few
examples of their use.

ChdrdCter dnd String Conversion Functions

F:CHARCONVERT
Converts characters to integers. The function accepts a string and converts
each byte of the string (i.e., each character) to an integer. For example, the
string 'AB' will be converted to 65 66, the ASCII decimal equivalent of A and B.

F:CHARMASK
Masks each character in a string by ANDing each byte with a constant integer.
This is useful for converting one character or a string of characters to another,
for example, from upper to lower case or from anon-printable to a printable
character.

F:PRINT
Converts any data type to a string. For example, a Boolean input will generate
the string 'TRUE' or 'FALSE'; a 3D vector will generate a string such as '5,2,1'
and so on.

F:TRANS STRING
Translates one string into an output string using another string as a translation
table. For example, prime the function by sending 'ABCDEFGHIJKLMONPQRS
TUVWXYZ' as the translation table to input < 3 > of the function, and 97 (the
ASCII decimal equivalent of 'a') to input <2>. If a string of lowercase letters of
the alphabet is now sent to input < 1 >, the letters will be converted to uppercase
on output < 1 >.

16 -TEXT MODELING AND STRING HANDLING

F:STRING TO NUM
Converts a string to a real number or an integer.

F:GATHER STRING
Collects strings until a terminator arrives. It then packages them into one string
which may or may not include the terminator.

String Formatting and Reformatting F unctions

F:CONCATENATE
Concatenates strings. The string on input <2> of the function is appended to the
string on input < 1 > .

F:SPLIT
Compares two strings and splits them depending on the match. If a match
occurs, characters in the string on input < 1 > that precede the match are output
on output < 1 >. Matching characters are output on output <2>. Characters
following the matching characters are output on output < 3 >. And a Boolean
TRUE is output on output <4>. If no match is found, nothing is output on outputs
< 1 >, <2>, and <3>, and a Boolean FALSE is output on output <4>.

F:PUT STRING
Replaces characters in the string on input < 1 > with the string on input < 3 >,
starting at the position specified by the integer on input <2>.

F:TAKE STRING
Outputs a string consisting of the number of characters specified on input < 3 >
taken from the string on input < 1 >, starting at the position given on input <2>.

F:LINEEDITOR
Accepts a stream of characters and simple editing commands, accumulates the
characters in an internal line buffer, applies the commands to the contents of
the line buffer as they are received, and outputs the edited line when a specified
delimiter character is recognized.

TEXT MODELING AND STRING HANDLING — 17

F:LABEL
Creates a label to send to a LABELS node. A vector on input < 1 > of the function
indicates the location of the label in the coordinate system. A string on input
< 2 > is the text of the label. A Boolean value on input < 3 > indicates whether the
label is to be displayed or not. The data type output by this function can only be
used as input to a LABELS node.

Miscellaneous String-Handling Functions

F:LENGTH STRING
Accepts a string and outputs its length.

F:F1ND STRING
Determines whether the string on input < Z> is a substring of the string on input
< 1 >. Outputs the starting location of the substring if it is found.

F:COMP STRING
Compares two strings to determine if the string on input < 1 > is greater than, less
than, or equal to the string on input <2>.

F:LBL EXTRACT
Extracts information about a label in a LABELS node. An integer on input < 1 > is
an index into the LABELS block. A string on input <2> is the name of the node.
The function outputs the text of the label, its location in the coordinate system,
and a TRUE or FALSE to indicate if the label is displayed or not.

Character Transformation Functions

F:CROTATE
Uses an integer on input < 1 > which represents degrees of rotation to create a
2X2 Z—axis rotation matrix. This matrix can be used to update a CHARACTER
ROTATE node.

18 -TEXT MODELING AND STRING HANDLING

F:CSCALE
Uses a real number or a two-dimensional vector to create a uniform or
non-uniform 2X2 scaling matrix. The matrix can be used to update a
CHARACTER ROTATE node.

F:MATRIX2
Accepts two-dimensional vectors on inputs < 1 > and <2> and creates a 2X2
matrix. This matrix can be used to update a CHARACTER SCALE or
CHARACTER ROTATE node.

TEXT MODELING AND STRING HANDLING - 19

UPDATING CHARACTERS AND LABELS NODES

Both CHARACTERS and LABELS nodes can have their contents updated using
commands and functions.

Updating With Commands

The COPY and SEND commands can be used to change the contents of a
CHARACTERS or LABELS node.

The COPY Command

Labels can be copied from one labels node to another using the COPY command.
Note, however, that this command does not work with a CHARACTERS node.
The command has the following format:

Name := COPY Namel [START=] i [,] [COUNT=] n;

The parameters for this command are:

Name -The name of the labels node you are creating and copying into.

Name 1 -The name of the labels node you are copying from.

i -The number of the first label to be copied.

n - A count of the number of labels to be copied.

The command can be used as follows. First create a labels node called Limerick.

Limerick := LABELS -1,.75 'What"s wrong with this PS 300?'
-1,.5 'The frustrated programmer thundered'
-1,.25 'I"ve entered commands'
-1,0 'With the carefulest of hands'
-1,-.25 'But somehow I seem to have blundered!';

20 —TEXT MODELING AND STRING HANDLING

To see the limerick, scale the labels block by .05 and display it.

Scale Block := CHARACTER SCALE .05 THEN Limerick;
DISPLAY Limerick;

Now create a new labels block which starts at the third label and is three labels
long.

New Block := COPY Limerick START = 3, COUNT = 3;

The words START and COUNT and the equals signs are optional, so you could
have typed "COPY Limerick 3,3;" instead. If one word is used, however, both
must be used.

Now redefine Scale Block so that is refers to New Block.

Scale Block := CHARACTER SCALE .05 THEN New_Block;

The last three lines of the Limerick should now be displayed on the screen.

The SEND Command

Several forms of the SEND command can be used to update a LABELS or
CHARACTERS node. Both nodes have similar input queues. Figure 7 shows
inputs to a CHARACTERS node and Figure 8 shows inputs to a LABE-LS node.

TEXT MODELING AND STRING HANDLING - 21

name

Character -

2D , 3~ ,4~ vector
2D , 3D , 4~ vector

Integer

Integer

String

String

String

<last> Changes the last. character

< posi tion > Changes the starting position

<step> Changes the stepping
<cl ear> C1 ears the current string

< delete> Deletes n characters (from the end)

< append> Appends to end of current string

<i> Replaces current string with new string,
starting at the i-th character

<substi tute> Repl aces entire current string
with new string

CHARACTERS

Figure ~. Inputs to a CHARACTERS Node

 iAso~o~

22 -TEXT MODELING AND STRING HANDLING

name

String

~ n teger

Integer

Labe 1

600lean

String

< 1 ast> Changes 1 ast 1 abel

<cl ear > C1 ears 7 i st

<del ete > Deletes f r~om end

<append> Appends from end

< i > True=on ,False=off

<i> Replaces i-th label

LABELS

Figure 8. Inputs to a L A B E LS Node

1ASOb10

Unlike most other nodes, these nodes have inputs with names as well as
numbers. All data sent to these nodes are sent to a named input or to a numeric
input which indicates the position of a character within a string or a label within
a block.

The simplest form of the SEND command has the following format:

SEND option TO <n>name l;

The parameters in this command are as follows:

option - For sending to a LABELS node, this is a string enclosed in single
quotes. For sending to a CHARACTERS node, the. format is
CHARCnumber), where number is the ASCII decimal equivalent of a
single character.

n -The name or number of the input to the LABELS or CHARACTERS node.

name 1 -The name of the destination LABELS or CHARACTERS node.

TEXT MODELING AND STRING HANDLING — 23

You can use the command, for example, to send a new string to replace an
existing one. Create a string called Quote.

Quote := CHARACTERS —1,0 'If we had world enough and time';

Now scale the string by .OS so it will fit the default window.

Scale Quote := CHARACTER SCALE .05 THEN Quote;

Remove anything you are displaying and display Scale_Quote. Now use the SEND
command to replace this string with the second line of John Donne's poem to his
reluctant mistress.

SEND 'This coyness, mistress, were no crime' TO <substitute>Quote;

Exercise

Try SENDing to some of the other inputs of CHARACTERS and LABELS nodes.
For more information, refer to the Command Summart~ in Volume 3A.

Two other forms of the SEND command can be used with LABELS but not with
CHARACTERS: they are SEND VL and SEND number*mode. The SEND VL form
allows you to overwrite or append labels in a labels block. The SEND
number*mode form allows you to send a P or L identifier to a label to indicate if
a label is off (P) or on (L). Refer to the Command Summart~ for more details.

Updating ~lith Functions

You can create function networks to update a CHARACTERS or LABELS node.
Only four data types are accepted by the inputs to these nodes: an integer, a
vector (2D or 3D), a character string, and a Boolean value. Any function which
outputs one of these data types can be used to feed new values to anode
containing text. In particular, the output of the string handling functions
mentioned earlier can be used as .input to a text node.

The function F:LABEL is designed specifically for updating a LABELS node. The
data type output by this function is the only type accepted by input <append> of
a LABELS node.

24 -TEXT MODELING AND STRING HANDLING

CREATING AND USING DIFFERENT CHARACTER FONTS

A character font is a complete set of characters in the same size and type

face. The PS 300 has a standard font consisting of the 128-character ASCII set.

This is the default font for all textual displays. There are two commands which

let you create and use alternate character fonts: the BEGIN_FONT ... END_FO~IT

command and the CHARACTER FONT command.

Creating an Alternate Font

Alternate fonts are created as a sequence of itemized, two-dimensional vector
lists defining each character in the font. Up to 128 ASCII character codes can

be defined for each font.

Each character in the font is defined as follows.

C[i]: N=n vectors;

The parameters are:

[i] -The decimal ASCII code to be defined, i.e. a number from 0 to 128.

n -The number of vectors in the 2D vector list.

vectors -The vectors which make up the character.

The vectors which comprise a character must be itemized 2D vectors. Itemized
vectors are each preceded by P or L identifiers to indicate whether a vector is a
position or a line vector. The following is the definition of a capital 'A' in a font
called Simplex_Roman.

C[65]: N= 6
P 0.5455, 0.9545 L 0.1818, 0.0000
P 0.5455, 0.9545 L 0.9091, 0.0000
P 0.3182, 0.3182 L 0.7727, 0.3182;

TEXT MODELING AND STRING HANDLING - 25

The Simplex_Roman letter 'A' is compared to an 'A' in the standard font in
Figure 9.

tAS0643 ~ASOb41

Figure 9. Standard ' A' and Simplex Roman ' A'

In an Old English font, the definition of the same letter is much more complex.

C[65]: N=49
P 0.2727, 0.8182
L 0.5909, 0.9091
P 0.5000, 0.9091
L 0.9545, 0.0909
L 0.5000, 0.8636
L 0.9545, 0.0000
L 0.4091, 0.7273
L 0.4545, 0.6364
P 0.0455, 0.0000
L 0.4545, 0.0909
P 0.0455, 0.0000
L 0.45 45, 0.0909
L 0.7273, 0.3636;

L 0.3636, 0.9091
L 0.9091, 0.1818
L 0.5455, 0.8636
L 0.86 36, 0.1364
L 0.8182, 0.1364
L -1.0455, 0.1364
L 0.4545, 0.7273
P 0.3182, 0.6818
L 0.1364, 0.0909
P 0.1818, 0.0909
L 0.1818, 0.0455
P 0.5455, 0.7727

L 0.4545, 0.9545 L
L 0.9545, 0.1364 L
L 0.8636, 0.1364 L
P 0.3636, 0.9091 L
L 0.8636, 0.0455 L
P 0.2727, 0.6364 L
L 0.5000, 0.6818 P
L 0.4091, 0.6818 L
L 0.2273,.0.1364 L
L 0.3636, 0.0909 L
L 0.3182, 0.0455 L
L 0.2727, 0.1364 P

0.5455, 0.9545
1.0455, 0.1364
0.9091, 0.045 5
0.4545, 0.9091
0.9091, 0.0000
0.318 2, 0.6 818
0.4545, O.b818
0.4545, 0.5909
0.3636, 0.1364
0.4091, 0.0455
0.3636, 0.0000
0.3636, 0.3636

This letter 'A' is compared to the standard font 'A' in Figure 10.

i A506~t3 1 AS06~t2

Figure 1 a. Standard 'A' and Old English 'A'

26 -TEXT MODELING AND STRING HANDLING

A complete set of character definitions is enclosed in a BEGIN_FONT ...
END FONT structure with the following format.

New Font :_ BEGIN FONT

END FONT;

Notice that in the sample 2D vector lists given, the range of the vectors in X and
Y is between 0 and 1. There is no limit on the range of the vectors you use, but
you should keep within the range of 0 and 1 for the correct spacing and
orientation of adjacent characters.

Using an Alternate Font

The BEGIN_FONT ... END FONT command does not create a data node in a
display tree but alook-up table of alternate character definitions. To switch to
an alternate font in a structure, the CHARACTER FONT command is used to
create an attribute node which indicates the font look-up table that must be
read for the character definitions.

An alternate font called Old_English is included on the Tutorial Demonstration
Tape. To use this font in a structure, you must create a node which points to the
Old_English font and apply it to the text you want to display.

Create, scale, and display a character string.

Text := CHARACTERS -.5,0 'To be, or not to be';
Scale Text := CHARACTER SCALE .05 APPLIED TO Text;
DISPLAY Scale_Text;

Now apply a CHARACTER FONT command to the scaled string to display it in
the Old_English font.

New Font := CHARACTER FONT Old_English APPLIED TO Scale_Text;
REM01/E Scale_Text;
DISPLAY New_Font;

TEXT MODELING AND STRING HANDLING — 27

Hamlet's question should now be displayed in the Old_English font. If it is
displayed in the standard font instead, this means that the Old_English font was
not available.

The display tree for New_Font is shown in Figure 1 1.

_ Old English

~Asob~o

Figure 11. Display Tree With CHARACTER FONT Node

The Old_English font is shown as a look —up table which is not ,part of the actual
structure. The CHARACTER FONT node New Font points to this table as well

as to the CHARACTER SCALE and CHARACTERS node.

The Character Font Editor Program

Another way to create alternate character fonts is to use the program

MAKEFONT which is distributed on magnetic tape and is documented in Volume

4. MAKEFONT is a menu—driven, graphical character font editing program

which allows you to create a font from scratch by drawing each of the

characters, or to make changes to existing alternate fonts. Refer to the

MAKEFONT user's guide in Volume 4 for details.

28 -TEXT MODELING AND STRING HANDLING

SUMMARY

Two commands create data nodes containing text: CHARACTERS and LABELS.

Creating Text Nodes

The CHARACTERS command creates a single text string of up to 240

characters. Optional parameters allow you to specify the starting location of

the string and the horizontal and vertical spacing between characters. The
syntax of the command is as follows.

Name := CHARACTERS [x, ~t [,z]][STEP dx,dy] 'string';

The LABELS command creates a block of character strings or labels. Each label
can be given its own starting location. The syntax of the command is as follows.

Name := LABELS x, y [,z] 'string'

[xi,gi [,zi] 'string'];

Manipulating Text With Commands

Text nodes, just like any other data nodes, are affected by transformations.
They can be rotated and scaled by 3X3 transformation matrices (created by the
ROTATE and SCALE commands) or by exclusive 2X2 character transformation
matrices.

Transforming Text

The commands which create these matrices are CHARACTER ROTATE,
CHARACTER SCALE, and TEXT SIZE. The matrices which these commands
create have no effect on three-dimensional data or non-textual two-dimensional
data.

TEXT MODELING AND STRING HANDLING — 29

The CHARACTER ROTATE command creates a Z—rotation matrix from an angle
of rotation which is entered as parameter. The syntax of the command is as
follows.

Name := CHARACTER ROTATE angle [APPLIED TO Name 1];

The CHARACTER SCALE command creates a uniform or non—uniform scaling
matrix from the scale factor entered with the command. For non—uniform
scaling an X and Y scale factor is given. The syntax of the command is as
follows.

Name := CHARACTER SCALE s [APPLIED TO Namel];
Name := CHARACTER SCALE sx, sy [APPLIED TO Name 1];

The TEXT SIZE command creates a 2X2 matrix node which overrides any 2X2
matrix settings above it in the display tree. Any character scales or character
rotations are superseded by this command. The command establishes a character
size for text which is a multiple or fraction of the default character size of I.
The syntax of the command is as follows.

Name := TEXT SIZE x [APPLied to Namel];

Setting Character Orientation

When text forms .part of an object that is being displayed and manipulated, the
characters can be transformed with the object or they can remain unaffected by
object transformations. The SET CHARACTERS command lets you determine
the orientation of the text. The format of the command is as follows.

Name := SET CHARACTERS orientation [APPLIED TO Name 1];

Three types of orientation may be set:

WoRLD_oRIENTED — Characters are transformed just like any part of the
object containing them.

sCREEN_ORIENTED — Characters are not affected by ROTATE or SCALE
transformations. Intensity and size of characters still
vary with depth (Z—position).

sCREEN_ORIENTED/FIXED — Characters are not affected by ROTATE or
SCALE transformations. They are always
displayed with full size and intensity.

30 —TEXT MODELING AND STRING HANDLING

Manipulating Text With Functions

Several functions are available for manipulating text and strings. These
functions are listed below.

Character and String Conversion

F:CHARCONVERT
F:CHARMASK
F:GATHER STRING
F:PRINT
F:STRING TO NUM
F:TRANS STRING

String Formatting and Reformatting

F:CONCATENATE
F:LABEL
F:LINEEDITOR
F:PUT STRING
F:SPLIT
F:TAKE STRING

Miscellaneous String Handling Functions

F:COMP STRING
F:FIND STRING
F:LBL EXTRACT
F:LENGTH STRING

Character Transformation Functions

F:CROTATE
F:CSCALE
F:MATRIX2

TEXT MODELING AND STRING HANDLING — 31

Text

Nodes

The CHARACTERS and LABELS commands create data nodes containing text.
Both nodes have inputs which accept vectors, strings, integers, or Boolean values
to update the contents of the node.

Updating

Nodes

CHARACTERS and LABELS nodes can be updated using commands or the
functions listed earlier. The following commands are most frequently used to
update these nodes.

COPY
SEND
SEND vL
SEND number mode

Alternate

Character

Fonts

Character fonts other than the standard font can be created using the
BEGIN_FONT ... END_FONT command. The syntax for this command is as
follows.

Name := BEGIN FONT
[C[0]: N=n {itemized 2D vectors};]

[C[i]: N=n {itemized 2D vectors};]

[C[127]: N=n {itemized 2D vectors};]
END_FONT;

32 —TEXT MODELING AND STRING HANDLING

Each character in the font is defined as a vector list consisting of itemized ZD
vectors. The clause Chi]: identifies the ASCII character being defined; for
example, C~65]: indicates that the character is a capital 'A'. Up to 128
characters can be defined in an alternate font.

Alternate fonts are used by including CHARACTER FONT nodes in a display
tree. The syntax of the CHARACTER FONT command is as follows.

Name := CHARACTER FONT font name APPLIED TO Name l;

The parameter font name is the name of an alternate font defined with the
BEGIN FONT ... END FONT command.

PICKING

SELECTING DISPLAYED OBJECTS

CONTENTS

INTRODUCTION 1

OBJECTIVES 2

PREREQUISITES Z

USING PICKING ATTRIBUTE NODES 3

Set Picking ON and OFF
Using Picking Identifiers

USING INITIAL PICKING FUNCTIONS

3
5

8

USING THE PICKING FUNCTIONS IN A FUNCTION NETWORK 13

Examples of Picking
Exercise

14
17

SUMMARY 18

PICKING

ILLUSTRATIONS

Figure 1. Picking Selectable by Branch 4
Figure 2. Picking an Entire Structure 4
Figure 3. Display Tree with Car and Four Tires 6

Figure 4. Diagram of TABLETIN and PICK g

Figure 5. Typical TABLETIN and Pick Arrangement 12

Figure 6. F:PICKINFO (connected to PICK) 1 ~
Figure 7. Diagram of PICK through F:SUE~C Feeding a Bank of

F:ROUTE(n) Instances 1 ~

PICKING — 1

Picking allows you to retrieve information about a selection or pick made on
displayed data. This information contains details about the structure that makes up the
displayed data. Details can include the name of the data node that the picked portion
of the object is associated with, names of nodes along the branch of the display
structure that was selected by a pick, an index into the vector list, character string or
label that was picked, and the coordinate values of the location where the pick took
place. The information is available in a special format called the picklist.

Normally, picking is done by using the data tablet and the stylus to select any part of a
displayed object designed to allow for picking. The selection is made by moving the
stylus across the surface of the data tablet; this positions the cursor on the screen. (The
cursor is an X.) Picking is usually activated by pressing the tip of the stylus down when
the cursor is positioned over the appropriate line, dot, or text character. The
information that is returned when a pick takes place, the picklist, can be displayed,
used to drive a function network, or sent to the host. The amount and kind of
information received on the location of a pick is user—defineable.

An obvious use of picking is to make selections from a menu, where the cursor is
positioned over a line or the piece of text in the menu that is to be selected. By
pressing the stylus down, that item on the menu is "picked", and the appropriate
function can be performed (i.e., move to another menu, exit the menu, bring up a
displayable structure, etc.)

Central to the picking process is the initial function instance, PICK. PICK is enabled
by sending any message to input < 1 > of PICK. (Normally this message is the X,Y
location of the pick sent to PICK when the tipswitch of the stylus is depressed.) PICK
feeds this trigger message to the display processor, asking for any pick information
within the data structure being traversed to be sent back to PICK. If this information
is found (a pick occurs if there is data) the data associated with the pick, the picklist, is
placed on the queue of output < 1 > of PICK. The main responsibility of PICK is to signal
the display processor that picking has been enabled and to output the picklist that
contains information about the location of the pick.

Before picking can take place, the data structure that you want to be able to pick from
must contain certain nodes and pieces of information. Polygonal objects, because of
their construction, cannot be picked.

This module will define the various elements involved in picking; picking attribute
nodes and the commands that create them, and the picking functions.

This module will teach how to place and set the appropriate attribute nodes used in
picking and how to design a function network to use the information that is generated
when a pick occurs.

2 —PICKING

OBJECTIVES

In this module you will learn how to:

■ Use Picking Attribute Nodes
■ Use Initial Picking Functions
■ Use the Picking Functions in a Function Network

PREREQUISITES

Before using this module, you should be familiar with the following:

Designing display trees
Creating function networks
Using the PS 300 command language

PICKING — 3

USING PICKING ATTRIBUTE NODES

Before an object can be picked, the display tree of the object must contain
certain nodes and the object must be displayed. These nodes provide for picking
capabilities such as:

• Turning picking on and off

• Determining the portions of the object (or branches of the object's display
tree) that can be picked

• Selecting the name of the pick identifier that will be returned as part of

the picklist

Set Picking O N and O F F

The first picking attribute node that must appear in the display tree is the SET

PICKING ON/OFF node. This node must be above the parts of the display tree
where picking will take place. This node is turned on and of f by Boolean values;
a TRUE will enable picking in the data structure below the node, a FALSE will

disable it.

The command that creates the SET PICKING ON/OFF node is:

Name := SET PICKING OFF APPLIED TO Name 1;

The SET PICKING ON/OFF node is usually placed in the display tree in an "off"
condition and activated when the Boolean value TRUE is sent to input < 1 > of the
named node. As an example, the following two commands first create an

instance of a SET PICKING ON/OFF node, and then activate that node.

Pick Car := SET PICKING OFF APPLIED TO Car;

where Car is the name of the data structure, or the part of a data structure that
you want to be able to pick from,

SEND TRUE TO < 1 > Pick_Car;

activates picking for Car. (The Boolean value is normally sent by a network

connected to the node.)

4 —PICKING

In designing a pickable display tree, the placement of the SET PICKING ON/OFF
nodes is very important. As with any other attribute node, this node controls
only its descendants. In the structure in Figure 1, picking can be enabled and
disabled for each branch individually because of the placement of the SET
PICKING ON/OFF nodes. In Figure 2, picking is established for the whole
structure, but not for the individual branches.

This placement can be important in complicated display structures, where there
are close or overlapping data structures simultaneously displayed on the screen.
In molecular modeling graphics applications, it can be useful to disable picking
for specific parts of the molecule. This same principle holds for architectural or
engineering applications, where only specific parts of the entire display will be
used as pickable structures.

Set PICK Set PICK
ON OFF 0~~~

IAS0389

Figure 1. Picking Selectable by Branch

Set P CK
01([0 f

IAS0390

Figure 2. Picking an Entire Structure

PICKING — 5

Using Picking Identifiers

The other attribute node that must be placed in the display tree for picking is
the SET PICKING IDENTIFIER node. This pick identifier node determines how
detailed the information you get back in your picklist (output from the PICK
function) will be.

A picked object is identified by two types of names in the picklist (pick
information output from PICK). The first type of name is the picking identifier
or the pick ID. The second name is the name of the data node that contains the
picked vector or character (in the command shown above, "Car" would be the
name of the node that contains the picked vector).

The command to create a set picking identifier node is:

Name := SET PICKING IDENTIFIER = id_name APPLIED TO Name l;

This command assigns id_name to be the picking identifier (the reported
character string) to be output by PICK in the picklist if any part of Name 1 is
picked. Id_name can be the name of the data node, but in many cases, several
branches of a display structure terminate at the same data node. The names) of
the pick identifiers in the picklist in such cases show which branch was traversed
to get to the cor~~mon data node.

Example

Wheelpick 1 := SET PICKING IDENTIFIER =Wheel 1 APPLIED TO Wheel;

In this example, it is assumed that the display tree includes a car with four
tires. There are five branches, four of which include an instance of the vector
list for "Wheel". Each branch contains the appropriate translate and rotate
operation nodes required to position the tires. To determine which instance of
"Wheel" was picked, each branch must also contain a set pick identifier node
with a unique name. This is illustrated in Figure 3.

6 —PICKING

Wheell

PICK ~ Set PICK ON/OFF

PICKCARI - Set PICK ID

Car

Wheel

IAS0391

Wheel4

Figure 3. Display Tree With Car and Four Tires

Body

Assuming the right—front fire is Wheell, then the picklist generated when a pick
was made on the right—front fire would be:

<index> Wheell,Pickcarl Wheel

If there had been only one set picking identifier node directly below the SET
PICKING ON/OFF node in Figure 3, when you picked from any part of the
displayed object below the instance node, you would only get back the pick
identifier for the whole data structure:

<index> Pickcarl Wheel (or body)

PICKING — 7

The information in a picklist includes the names of ALL the set pick ID nodes
down the branch of the display structure that has been enabled for picking. The
picklist will also include the name of the picked data node. The picklist can be
reported as a character string with pick IDs on that branch separated by
commas. This list always starts with the name of the set pick ID node closest to
the picked vector or character.

The amount of detail about the display tree contained in information returned in
the picklist is determined by the location and number of the set pick IDs. In the
code below, the picklist is will contain only one pick identifier (Pickcar 1).

Display Car;

Car := BEGIN STRUCTURE
Pick := SET PICKING OFF;

SET PICKING IDENTIFIER = Pickcarl;
INSTANCE OF Body, Wheell,Wheel2,Wheel3,Whee14;
END_STRUCTURE;

Setting up the display tree to enable picking follows one simple rule:

For picking to take place, there must a SET PICKING ON/OFF node placed in
the display structure, followed by at least one SET PICK IDENTIFIER node down
each pickable path. However, one structure can contain multiple SET PICKING
ON/OFF nodes, and each SET PICKING ON/OFF node can be followed by
multiple SET PICKING IDENTIFIER nodes.

8 -PICKING

USING INITIAL PICKING FUNCTIONS

The initial system function PICK was briefly described in the introduction to the
module. The initial function network that should be built to make use of picking
is shown in Figure 4.

PICKING - 9

TABLETIN
(TABLETIN2)

Connected
to Data
Tab 1 et at
Initialization

<1>

<2>

<3>

<4>

<5>

<6>

DD

any message

Boolean for coordinate
Picking

2D Vector (position/line)

Boolean (Switch open/closed)

I

Boolean connected to SET
PICKING ON/OFF Node

B

2D (x,y position of the
cursor when the Tipswitch
goes from Open to Closed

Integer specifying
Ti meout Duration

PICK
(PICK2)

<1>

<2> C

<3> C

DD

<1>---Picklist
Sent Out

< 2 > -- Boolean ; FALSE
sent to SET
PICKING ON/OFF
node when
pick occurs

<3> -600lean;
sent to ON/OFF
node turns
picking
OFF after
time-out

lAS0392

Figure 4. Diagram of TABLETIN and PICK

10 —PICKING

The system has provided for picking with one other initial function, TABLETIN.
TABLETIN accepts the X,Y vectors that identify the position of the picking
location (and the center of the cursor cross) as the stylus moves across the data
tablet and uses them to position the cursor on the screen. TABLETIN identifies
the X,Y coordinates of the picking location that are output when the tipswitch
on the stylus is pressed. These coordinates are used to to determine if a pick has
occurred and if it has, the location of the pick is made available.

Output <4> of TABLETIN is typically connected to the SET PICKING ON/OFF
nodes in the display strucuture and is used to send Boolean values to the nodes.
When the tipswitch on the stylus is pressed, a TRUE is sent to the node, enabling
picking.

Input < 1 > of PICK accepts any message. Typically, this queue is connected to
TABLETIN<6> which supplies the 2D coordinates of the pick location when the
tipswitch is pressed. This arras the function, as the other two inputs to PICK are
constants. Output <2> of PICK should be connected to the same SET PICKING
ON/OFF nodes that are connected to output <4> of TABLETIN. This output
sends a FALSE whenever a pick occurs which turns picking of f until the tipswitch
is again pressed and a TRUE is sent from TABLETIN to the ON/OFF node. (This
false is sent to disable picking so that the picking process ceases until a pick
location is asked for.)

Input <2> of PICK accepts a Boolean value that allows you to select the kind of
picklist that will be sent out of output < 1 >. A FALSE sent to <2>PICK indicates
that the output picklist will be the pick ID names, the data node name, and an
index into the vector list or character string (the data node). A TRUE sent to
<2>PICK indicates that the picklist will include the pick ID names, the data node
name, an index to the data node, and the picked coordinates and the dimension
(2D or 3D) of the picked vector.

The format for the picklist then, with FALSE sent to <2>PICK is:

<index> pickid l,pickid2, _name of data node

where <index> is a pointer into the picked data node.

The chart below shows the data node types and the definition of the <index> that
is returned when the value of the <index> is the integer 3.

PICKING — 11

Data Node Type Index of 3 Definition

Vector list The third vector in the list was picked.

Character String The third character in the string was picked.

Label The third character string in the label was picked.

Polynomial or
Rational
polynomial curve

The value of the parameter (t) where the curve
was picked

The format for the picklist with TRUE sent to <2>PICK (coordinate picking) is:

<index> [x,y,z] picked l,pickid2, _name of data node

where x,y,z are the coordinate points of the picked vector.

• Performing coordinate picking on a character string returns an index into
the string, not its picked coordinates.

• Performing coordinate picking on a label block returns an index into the
label, not its picked coordinates.

• Coordinate picking cannot be performed on a vector over 500 units long.

The integer on <3>PICK is used to set a timeout interval for the PICK function
in refresh frames. Timing starts when the PICK function receives any message
on input < 1 >. This timing interval is used to determine if a pick occurs in the
specified period of time. The allowable integers on input <3> are from 4 through
60. This is a safeguard feature: it deactivates PICK if no pick occurs within the
timeout period.

Once the PICK function is armed (by receiving input on < 1 >PICK), if no pick
occurs within the specified time, PICK outputs a FALSE on PICK < 3 >. This
output should be connected to the ON/OFF nodes to disable picking when a
timeout occurs. Picking is enabled when the stylus is again pressed.

One other feature that is initialized by the system is the picking Zocation.
This is by default the center of the cursor. The picking location must be defined
within the current viewport and can be modified with the following command:

name := SET PICKING LOCATION x,y sizex,sizey APPLIED TO Name l;

12 -PICKING

where:

the 2D vector X,Y specifies the center of the picking location and the ZD vector
sizex,sizey specifies the size in X and Y from the center to the edge of the
picking location. Hamel is the current and applicable viewport name.

The pick location, then, specif ies a region within a screen. If the pick-sensitive
object (line, dot, or character) is within the pick location, it can be reported as
having been picked.

The pick location can be moved within the viewport by sending the 2D vector
that represents the coordinate location of the new set pick location to input < I >
of the set picking location node. In effect, picking can take place by positioning
the picking location over a displayed object (containing the appropriate picking
attribute nodes) and sending a TRUE to < 1 > PICK.

The following diagram is a typical arrangement of the TABLETIN and PICK
functions and their connections to the display structure.

TABLETIN

< 1>
<4>
<6>

--2D U ; default connection for pick 1 ocati on and cursor
~-B to SET PICK ON/OFF node
--2 D V

PICK

<1>anymessage <1>— picklist —
<2> C goof can <2> -- B
<3> C Integer <3>.— g

F:PICKINFO

<1> pi ckl i st
~Al l outputs to

user function
Networks

IAS4393

Figure 5. Typical TABLETIN and Pick Arrangement

PICKING - 13

USING THE PICKING FUNCTIONS IN A FUNCTION NETWORK

A function associated with picking is F:PICKINFO. This function converts the
picklist data type into character strings that are acceptable by other functions.

There is only one active input to F:PICKINFO, < 1 >, and it should be,connected to
output < 1 > of PICK.

any message

PICK

Boolean

Integer
Timeout
Duration

Picklist
from PICK

I-depth of
picklist

<1>

<2>C

<3>C

<1> Pickl i st to< 1 > F:PICKINFO

<2> —Boolean; FALSE to SET PICKING ON/OFF node

<3> Boolean; to SET PICKING ON/OFF node

F:PICKINFO

<1>

<2>~

<1>

<2>

<3>

<4>

<5>

<6>

<7>

<g >

Integer; to index of the pick

String; the pickids of the pick

i nsu 39~~

I nteger;Start 1 ocat i on of
character string
Integer; the dimension of the node

Boolean; coordinates reported

Real ; curve parameter, (t)

Integer ; data type code

Special ; name of picked element

Figure 6. F:PICKINFO (Connected to PICK)

14 -PICKING

The picklist output from PICK < 1 > can be connected to an instance of
F:PICKINFO to convert the picklist into a logically useful format. The picklist
can also be printed out or displayed by connecting PICK<1> to F:PRINT.
F:PRINT converts the picklist code to printable characters.

The constant input <2> of F:PICKINFO accepts an integer that specifies the
depth of the pick identifiers that will be output. Since the picklist contains all of

the set pick IDs in a picked branch of a display tree, this input allows you to
select the depth. For example, if there were four pick IDs active when a pick
occured and the integer 2 was input to <2>F:PICKINFO, then the two pick IDs
closest to the data node and the name of the data node itself would be output as
the string on F:PICKINFO<2>.

The output information from F:PICKINFO varies with the type of picklist
supplied on input < 1 >. If the PICK function has a TRUE on input <2>, then it
supplies a detailed coordinate picklist and most of F:PICKINFO outputs are
activated. If the PICK function has a FALSE on input < 2 > , a less detailed
picklist is supplied, and only outputs < 1 >, <2>, and <5> are active. Refer to the
Function Summary in Volume 3 fora complete description of the outputs of
F:PIC KINF O.

The best use of picking is ~Nhen the picklist is sent to an instance of

F:PICKINFO. Then information generated by the function can be used to drive
function networks that can be triggered by typical data types. Examples of what
this data can be used for are described in the next section.

Examples of Picking

The following example demonstrates how picking can be used to trigger a
switching network for an object designed to have parts with independent
motion. The control dials are normally used to rotate, translate, and scale
objects in three dimensions. If the designed object requires more than eight
elements of freedom (the maximum number that can be provided by one set of
control dials), a picking network can be set up to access a bank of switching
functions that control the output of the dials. This network will allow you to
point at the part that you want to manipulate and the picking information will
drive the function network that routes the dial outputs to various networks.

PICKING — 15

In this example, the display tree that defines a robot figure includes set pick IDs
in each branch of the figure networked for motion through a switch function to
DIALS. This is the same robot that was built in the "PS 300 Command Language"
module and it is connected to the function networks that were designed in the
Function Networking module. The function network provides for several modes
for the control dials. These modes provide the triggers to animate each part of
the robot that requires independent movement; i.e., rotation of each shoulder
joint, knee joints, torso, head, etc.

The picking network will use the data tablet to trigger the mode of the dials. In
the "Function Networks I" module, the Function Keys were used for dial mode
switching. If you examine the design of the robot, you will notice that there are
'n' degrees of freedom designed into the structure. This will require 'n modes' of
the dials. As the picking network will be used to trigger the dials mode, only 'n'
set pick ids need to be coded into the structure.

The picking network to switch the modes for dials that are connected to the
robot display structure works in the following manner. When the cursor is
positioned over a part of the robot with independent motion controlled by a dial
(like the shoulder) and the tipswitch of the stylus is pressed, the name of the
pickid in the shoulder branch of the display tree is sent from PICK to an instance
of F:PICKINFO. This instance of F:PICKINFO<2> is connected to an instance of
F:CHARCONVERT. F:CHARCONVERT converts the bytes of the string it
receives on input < 1 > into a stream of integers. If the pick id sent to
F:PICKINFO is an 'A', F:CHARCONI/ERT will translate 'A' to the ASCII 65. If
this is then sent to an instance of F:SUBC, it can subtract 64 and output the
integer 1 that can be used to trigger the appropriate bank of switches for the
dials.

Figure 7 illustrates the function network described above.

16 - PICKING

PICK

<1>
<2> F
<3>l0

<1> ~---pick 1 i s t-----

F:PICKINFO

<1>
<2>

<1>
<2> -- p i c k i d ---

F:CHARCONVERT~

<1>

<2>T

<1>~

F :SUBC

<1> <1

<2>64

DIALS

<1>
<2>
<3>
<4>
<5>
<6>
<7>
<8>

Integer to
route mode for

+ ---

The remaining outputs
of DIALS wou i d a 11 be
connected to instances
of F:ROUTE that accepted
an i nteger from F :SUBC
on i nput < 1 > -~

F:ROUTE

<1>I
<2~

<1>
<2>
<3>
<.>
<.>
<.>
<n>

F:ROUTE

<1>I
<2>

<1>
<2>
<,>
<. >
<.>
<.>
<n>

F:ROUTE

<1>I
<2>

<1>
<2>
<3>
<.>
<.>
<.>
<n>

to<1>of all
other instances
of F:ROUTE

Integer on
i nput < 1 >
routes message
from DIALS < 1 >
to function
network

Integer on
input<1>
routes message
from DIALS < 2 >
to function
network

IAS0395

Integer on
input<1>
routes message
from DIALS < 3 >
to function
network

Figure ~. Diagram of P I C K Through F:S U B C F eeding a 8 ank of F: R O U T Etn) Instances

PICKING — 17

To implement the previous example of picking as an exercise demonstrating the
placement of the picking attribute nodes and the connections that should be
made for- the picking network, use the source code supplied for the robot in the
"PS 300 Command Language" module. Picking attribute nodes can be set into
the display structure and then connected to the picking function network that is
used in the picking demonstration available on the Tutorial Demonstration tape.

Exercise

Design a pickable display structure with several instances of a primitive.

Design a function network that outputs the picklist to the screen. Use F:PRINT
and a character data node. Code your display structure and function network.
Display and pick each primitive.

18 —PICKING

SUMMARY

Picking allows you to retrieve information about a selection or "pick" made on
displayed data. The information is available in a special format called the
picklist. Before picking can take place, the data structure that you want to be
able to pick from must contain certain nodes and pieces of information.

Picking Attribute Nodes

The first picking attribute node that must appear in the display tree is the SET
PICKING ON/OFF node. This node must be above the parts of the display tree
where picking will take place. This node is turned on and of f by Boolean values;
a TRUE will enable picking in the data structure below the node, a FALSE will
disable it.

The command that creates the SET PICKING ON/OFF node is:

Name := SET PICKING OFF APPLIED TO Name 1;

The other attribute node that must be placed in the display tree for picking is
the SET PICKING IDENTIFIER node. This pick identifier node determines how
detailed the information you get back in your picklist (output from the PICK
function) will be.

A picked object is identified by two types of names in the picklist (pick
information output from PICK). The first type of name is the picking identifier
or the pick ID. The second name is the name of the data node that contains the
picked vector or character.

The command to create a set picking identifier node is:

Name := SET PICKING IDENTIFIER = id name APPLIED TO Name l;

For picking to take place, there must a SET PICKING ON/OFF node placed in
the display structure, followed by at least one SET PICK IDENTIFIER node down
each pickable path. However, one structure can contain multiple SET PICKING
ON/OFF nodes, and each SET PICKING ON/OFF node can be followed by
multiple SET PICKING IDENTIFIER nodes.

PICKING — 19

Puking Functions

An initial system function used for picking is PICK. Input < 1 > of PICK (usually
connected to TABLETIN<6>) accepts any message type as a trigger message to
activate picking. The data associated with the pick, the picklist, is placed on the
queue of output < 1 > of PICK. The main responsibility of PICK is to signal the
display processor that picking has been enabled and to output the picklist that
contains information about the location of the pick.

Another function associated with picking is F:PIC.KINFO. This function converts
the picklist data type into character strings that are acceptable by other
functions. There is only one active input to F:PICKINFO, < 1 >, and it should be
connected to output < 1 > of PICK.

TRA\SFORVED DATA

RETRIEVING TRANSFORMATION INFORMATION

CONTENTS

INTRODUCTION 1

OBJECTIVES 1

PREREQUISITES 2

RELEVANT PS 300 COMMANDS AND FUNCTIONS 3

The XFORM Node 3
The F:XFORMDATA Function 5
The F:LIST Function 6

EXCLUDING CERTAIN VIEWING TRANSFORMATIONS 7

Using F:SYNC(n) to Prevent Overlapping Requests 7

SPECIFYING VECTOR RANGES FOR TRANSFORMED—DATA RETRIEVAL 8

SAMPLE PROGRAM 9

SUMMARY 12

~~

TRANSFORMED DATA — 1

The PS 300 provides a means to retrieve transformed data. Transformed data is the
matrix or vector—list representation of transformation operations in a display tree.

After an object has been transformed on the PS 300, the transformed accummulated
data for that object can be:

(1) Established as a separate data or operation node in the display tree.

(2) Retrieved as ASCII information for transmission to the host computer.

Transformed data can be obtained either as transformed vectors or as a transformation
matrix which is the concatenation of transformations currently applied to the object.

If transformed vectors are requested, a data node can be created and an ASCII PS 300
VECTOR LIST ITEMIZED command can be generated. If a transformation matrix is
requested, an operation node can be created and an ASCII PS 300 MATRIX_4X4
command can be generated for transmission back to the host.

Once the node containing a transformed vector list or 4X4 matrix node is created, those
nodes can be used as primitive data nodes or operation nodes, and connections can be
made into the nodes just as for any other UECTOR_LIST ITEMIZED or 4X4_MATRIX
node.

Transformations explicitly reserved -for characters (CHAR ROTATE, etc.) are excluded
from both forms of retrieved transformed data.

OBJECTIVES

This discussion of transformed—data retrieval covers the following topics:

■ The .XFORM command and the F:XFORMDATA and F:LIST functions.

■ A note on excluding perspective and window transformations from
transformed vector lists.

■ A suggested function network to prevent successive transformed—data
requests from overlapping.

2 —TRANSFORMED DATA

■ A note on restricting transformed—data retrieval to a specified range of
vectors within a list.

■ A program example.

PREREQUISITES

Before reading this module, you need to know the basics of data structures and
function networks. These topics are covered in Volume 2A, in the "Modeling,"
"PS 300 Command Language," and "Function Networks I" modules, and in this
volume under "Function Networks II."

TRANSFORMED DATA — 3

RELEVANT PS 3~0 COMMANDS AND FUNCTIONS

To retrieve transformed data for a given data node (or set of data nodes):

• Mark the data node by applying an XFORM VECTOR or XFORM MATRIX
node.

• Request the transformed data using an instance of F:XFORMDATA.

• Optionally, convert the transformed data to an ASCII PS 300 command string
using an instance of F:LIST and send this ASCII information to the host
computer via HOST_MESSAGE.

The following paragraphs discuss these topics.

The XFORM Node

The XFORM node, a type of operation node, can be placed anywhere above the
data nodes) for which transformed data are to be retrieved; however, the
placement of the XFORM node with respect to other transformations is critical.

The syntax of the command that establishes an XFORM node is:

Name := XFORM specifier APPLIED TO node_name;

where:

specifier is either VECTOR or MATRIX. To retrieve a transformed vector

list, use VECTOR; to retrieve a transformation matrix, use MATRIX.
VECTOR may be abbreviated VEC.

If XFORM VECTOR is used, all transformations applied to the data nodes) are
taken into account, whether these transformations are above or below the
XFORM VECTOR node.

If XFORM MATRIX is used, however, only those transformations above the
XFORM MATRIX node are taken into account. To include all transformations
applied to the data node(s), then, XFORM MATRIX should be placed
immediately above the data node(s).

THEN may be substituted for APPLIED TO.

4 —TRANSFORMED DATA

Node name is the node to be marked for transformed data retrieval.
Admissible data nodes are vector lists and curves (rational polynomials,
polynomials, and B—splines). Transformed data cannot be retrieved for
characters and labels.

If data name is an instance node covering two or more data nodes and if
XFORM HECTOR is requested, then the transformed data for all nodes are
consolidated into a single vector list.

NOTE

The transformed counterparts of the original data nodes
do not necessarily appear in the same order in which the
INSTANCE command named those nodes. However,
vector integrity is maintained within each mode.

The transformed objects) must be DISPLAYed when transformed —data retrieval
is requested; otherwise, the request has no effect.

If transformed vector information is requested (XFORM UECTOR), no more than
2,048 consecutive transformed vectors may be retrieved.

— TRANSLATE, SCALE, ROTATE, and MATRIX_3X3 transformations applied to
data are taken into account when the transformed data are retrieved.

— Character transformations are NOT taken into account when the transformed
data are retrieved. These include CHAR ROTATE, CHAR SIZE, TEXT SIZE,
CHAR SCALE, and MATRIX_2X2.

— WINDOW, EYE, FIELD_OF_UIEW, MATRIX_4X3, MATRIX_4X4, and LOOK
transformations applied to data are taken into account when transformed data
are retrieved, but it is recommended that these six transformations be
removed from the object definition beforehand.

— A VIEWPORT specification has no effect on the transformed data.

TRANSFORMED DATA — 5

The F:XFORMDATA Function

Use an instance of F:XFORMDATA to request transformed data.
F:XFORMDATA has five inputs and one output. (Discussion of inputs <4> and
<5 >, which specif y a range of transformed vectors to be retrieved, is presented
in a subsequent section of this module.)

• Input < 1 > is the active input for this function. Any. message sent to this input
will begin retrieval of transformed data, if the other inputs have been
prepared correctly.

• Input <2> is a constant input which accepts a string message containing the
name of an XFORM node. Transformed data will be retrieved for the
objects) marked by this XFORM node.

• Input < 3 > is a constant input which accepts a string 'message containing the
name of the new data or operation node to be created. The name also
appears in the ASCII command string produced by F:LIST, if any.

If XFORM VECTOR is used and if the name at input <3> is identical to the
name of the original (untransformed) data node, the transformed data replace
the original data in the display structure. (The immediate effect of this
redefinition is to display the object with its transformations doubly
applied--once explicitly in the display data structure, and once implicitly in
the transformed vector list).

If XFORM MATRIX is used, specifying a name at input < 3 > creates an
operation node (4X4 matrix) with that name.

• Output < 1 > contains the transformed data. If ASCII PS 300 command
information is desired for the host, connect this output directly to F:LIST
(below). Do not attempt to connect this output to anything else (such as
another data node).

Output < 1 > may remain unconnected if no ASCII transformed data are
desired. (A data node can be created through XFORM VECTOR without any
connections from this output.)

6 —TRANSFORMED DATA

The F: L IS T Function

F:LIST converts the output of F:XFORMDATA into an ASCII PS 300 command
string suitable for storage on the host computer (and for retransmission back to
the PS 300). There is no need to instance F:LIST unless this ASCII information is
to be retrieved. F:LIST has one input and two outputs:

• Input < 1 > accepts the transformed data from F:XFORMDATA< 1 >.

• Output < 1 > contains the transformed data, reformatted as an ASCII PS 300
command string.

If a transformed vector list was requested, a UECTOR_LIST ITEMIZED
command is output. If a transformation matrix was requested, a
MATRIX 4X4 command is output.

The name of the command is the string that was on F:XFORMDATA<3> at
the time of the request.

• Output <2> is a Boolean TRUE completion indicator. Refer to the last
section of this module for a s~~r~~ple application of this completion indicator.

The ASCII command string from F :LIST may be sent to a host computer via
HOST_MESSAGE. .For details on HOST_i~/IESSAGE, refer to the Function
Summart~ in volume 3A.

TRANSFORMED DATA - 7

EXCLUDING CERTAIN VIEWING TRANSFORMATIONS

If WINDOW, EYE, FIELD_OF_VIEW, MATRIX_4X3, MATRIX_4X4, or LOOK
transformations are applied to an object, transformed data may include
inappropriate Z-information. It is therefore recommended that these
transformations be excluded from the object and replaced by a 4x4 identity
matrix before transformed data are retrieved.

Since the default window transformation matrix is not an identity matrix, this
practice is recommended even when no nodes for the above six transformations
have been included explicitly in the display tree.

The example at the end of this module illustrates one way to exclude these
viewing transformations while leaving others in effect during atransformed-data
request.

Using F:SY N C(n) to Prevent Overlapping Requests

After F:XFORMDATA is triggered, it begins supplying transformed data to
F:LIST, which in turn converts the data to ASCII format. Before this process is
finished, F:XFORMDATA could be triggered again, and F:XFORMDATA could
supply new data before F:LIST is finished with the old. The result could be a
nonsensical combination of the two requests.

A suggested network to prevent overlapping transformed—data requests is:

F•
SYNC(2)

F•
XFORMDATA

F'
LIST

This network must be initialized before use by sending any message to

The use of this network is illustrated in the example at the end of this module.

8 -TRANSFORMED DATA

SPECIFYING VECTOR RANGES FOR TRANSFORMED-DATA RETRIEVAL

Inputs <4> and <5> of F:XFORMDATA restrict the retrieval of transformed
vector data (XFORM VECTOR) to a specified range of vectors within the source
vector list(s).

Input <4> (used only for UECTOR_LIST) is an integer index specifying the place in
the vector list at which transformed-vector retrieval is to begin. The default
value is 1.

Input < 5 > (used only with UECTOR_LIST) specifies the number of consecutive
transformed vectors to be retrieved. The default value is 2,048. No more than
2,048 consecutive vectors may be retrieved.

If inputs <4> and/or <5> are used for matrix data, they are ignored.

If the XFORM VECTOR node is applied to an instance node, so that several data
nodes are within the scope of the XFORM VECTOR node, transformed vectors
can be retrieved from individual vector lists or portions of vector lists using the
range specification. Vectors are numbered in sequence, beginning with the first
vector list named in the INSTANCE command. For example, if the command
sequence

XFORMIT := XFORM VEC THEN Z;
Z := INSTANCE A,B,C,D;
A := UEC N=5 ... ;
B:=UEC N=6... ;
C:=UEC N=10... ;
D := UEC N=8 ... ;
XFORMDATA := F:XFORMDATA;

has been entered, then transformed vectors for list C may be requested by using
XFORMDATA inputs <4> and <5> as follows:

SEND FIX(12) TO < 4> XFO RMDATA;
SEND FIX(10) TO <5>XFORMDATA;

TRANSFORMED DATA - 9

SAMPLE PROGRAM

The following example illustrates both of the recommended features of a
network for retrieving transformed data using the XFORM command: the
exclusion of perspective and window transformations and the prevention of
overlapping transformed-data requests.

In this example, a conditional bit is used to switch between the perspective and
window mappings (applied while designing the object) and the identity matrix
(applied while sending the transformed object data). The untransformed object is
DATA; the transformed vector list to be created is XDATA.

10 —TRANSFORMED DATA

XFORM := BEGIN STRUCTURE {Set up switch mechanism}
X := SET CONDITIONAL_BIT 1 ON;

IF CONDITIONAL_BIT 1 IS ON THEN VIEW;
IF CONDITIONAL_BIT 1 IS OFF THEN TRAN;

END_STRUCTURE;

TRAN := BEGIN_STRUCTURE {To be used while getting transformed
data}

MAT RIX_4X4 1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1;
INSTANCE OF OBJ;

END_STRUCTURE;

VIEW := BEGIN_STRUCTURE {To be used while viewing and designing}
{Viewing commands: WINDOW, EYE,
FIELD_OF_VIEW, MATRIX_4X3, MATRIX_4X4,
LOOK}

INSTANCE OF OBJ;
END_STRUCTURE;

OBJ := BEGIN_STRUCTURE {Set up transformed—data request}
{Transformation commands: ROTATE, TRANSLATE,
SCALE, and/or MATRIX_3X3}
XFORM_REQUEST:= XFORM VECTOR;
INSTANCE OF DATA;

END_STRUCTURE;

XFORMDATA := F:XFORMDATA; {Build transformed—data network}
SYNC2 := F:SYNC(2);
LIST := F:LIST;
CONN SYNC2< 1 >:< 1 > XFORMDATA;
CONN XFORMDATA< 1 >:< 1 >LIST;
CONN LIST< 1 >:< 1 >HOST_MESSAGE; {Send transformed data to host}
CONN LIST<2>:<2>SYNC2; {"Task completed" flag}
SEND <any message> TO <2>SYNC2;
SEND 'OBJ.XFORM_REQUEST' TO <2>XFORMDATA;
SEND 'XDATA' TO < 3 > XFORMDATA;
DISPLAY XFORM;

TRANSFORMED DATA — 11

When the object has been designed and transformed properly and you are ready to
send data to the host, the commands

SEND FALSE TO < 1 > XFORM.X;
SEND <any message> TO < 1 >SYNC2;

(or an equivalent function network) send the transformed data to the host. Since
the perspective and window transformations are replaced by the identity matrix
during this time, the displayed object becomes distorted or disappears during
transmission. When the entire list has been sent, enter

SEND TRUE TO < 1 > XFORM.X;

(or -route F:LIST's completion indicator to this input) to redisplay the object and
continue designing).

12 —TRANSFORMED DATA

SUMMARY

Transformed data can be retrieved from a given data node and then established
as a separate data or operation node in the display tree. The transformed data
can also be converted to an ASCII PS 300 command string for transmission to the
host. To retrieve transformed data you must:

• Mark the data node by applying an XFORM 1/ECTOR or XFORM MATRIX
node in the display tree. The syntax for the XFORM node command is:

Name := XFORM specifier APPLIED TO node_name;

• Request the transformed data using an instance of the F:XFORMDATA
function.

To send the transformed data to the host you can convert the data to an ASCII
PS 300 command string with an instance of the F:LIST function and send the data
to the host via HOST MESSAGE.

USI\G THE PS 340

RENDERING OPERATIONS FOR SURFACES AND SOLIDS

CONTENTS

INTRODUCTION 1

Calligraphic Renderings 1
Hidden —Line Removal 2
Backface Removal 3
Sectioning 4
Cross Sectioning 5
Raster Renderings 6

OBJECTIVES 7

PREREQUISITES 7

DEFINING POLYGONAL OBJECTS 9

Using the Polygon Command 9
Constructing Surf aces and Solids 1 1
Specifying Vertices 13

Associating Outer and Inner Contours With Coplanar
Rules for Using the Coplanar Option

17
19

Defining Soft Edges 29
Defining Color and Intensity for Vector Displays 31
Defining Color and Highlights for Raster Displays 32
Specifying Normals 3 3

RENDERING OPERATIONS

ESTABLISHING A WORKSPACE IN MEMORY

Additional Memory Requirements

38

39

MARKING AN OBJECT FOR RENDERING 40

Non —Polygon Data Nodes Marked for Rendering 41
Admissible Descendants for Rendering Operate Nodes 41

Rendering Nodes Must Be Displayed Before Rendering 42

CREATING RENDERINGS 44

Rendering Node Connections 4~
Acceptable Values for Input < 1 > 48
Acceptable Values for Input < 2 > 48

Backface Removal
Exercise

Hidden Line Removal
Exercise

Sectioning

49
51

51
53

53

Establishing A Sectioning Plane 57
The Sectioning Plane's Data Definition 5 ~
Sectioning—Plane Node Must Be Displayed Before Rendering 60

Cross Sectioning
Exercise

61
62

Toggle Between the Rendering Object and the Original Object 62
Setting the View 62
Changing the Definition of the Object 63

SAUIIV=G AND COMPOUNDING RENDERINGS 64

How to Save a Rendering 64
Contents of a Saved Rendering 64
Common Uses of Saved Renderings 65

RENDERING OPERATIONS

Displaying a Saved Rendering 65
Displaying Saved Sectioned Renderings 66
Displaying Saved Backface and Hidden —Line Renderings 66
Exercise 67

DISPLAYING SHADED IMAGES 68

Specifying Attributes 69
Using the ATTRIBUTES Command 69
Color 70
Diffuse 71
Specular 71
And 71
Attribute Node Inputs 73

Specifying Light Sources
Illumination Node Inputs

The SHADINGENVIRONMENT Function

74
77

78

Ambient Color 78
Background Color 79
Raster Viewport 79
Exposure 79
Quality Level 80
Depth Cueing 80
Screen wash 80

SUMMARY 83

RENDERING OPERATIONS

ILLUSTRATIONS

Figure 1. Object Before and After Hidden-Line Removal 2
Figure 2. Object Before and After Backface Removal 3
Figure 3. Object Before and After Sectioning 4
Figure 4. Object Before and After Cross Sectioning 5
Figure 5. Surface Object 11
Figure 6. Solid Object 12
Figure 7. Surface With Three Common Edges 1 ~
Figure 8. Icosahedron With Correct Vertex Ordering 13
Figure 9. Right Hand Rule 14
Figure 10. Correctly-Constructed Icosahedron 15

Figure 11. Correct Vertex Ordering for Surfaces 16
Figure 12. Cube 17
Figure 13. Surface With Inner/Outer Contours 18
Figure 14. Solid With Correct Vertex Ordering 19
Figure 15. Object With Coplanar Polygon 20
Figure 16. Object With Inner/Outer Contours 21
Figure 17. Solid With a Cavity 21
Figure 18. Solid Without Inner Contours 22
Figure 19. Cube With a Tunnel 23

Figure 20. Objects With Coplanar Outer Contours 24
Figure 21. Solid With Protrusion 24
Figure 22. Solid Composed of Two Cubes 25
Figure 23. Invalid Solid 25
Figure 24. Correct Solid Construction 26
Figure 25. Hidden-Line Renderings of Objects

Without the Coplanar Specifier 27
Figure 26. Objects With Incorrect Vertex Ordering 28
Figure 27. Solid With Declared Soft Edges 29
Figure 28. Rendering of Solids With Soft Edges 30
Figure 29. Cylinder With Normals and Soft Edges Specified 34

RENDERING OPERATIONS

Figure 30. Path to Rendering Data 44
Figure 31. Path to Original Data 45
Figure 32. Path to Second Rendering 46
Figure 33. Solids Before and After Backface Removal 50
Figure 34. Solids Before and After Hidden-Line Removal 52
Figure 35. Solid Objects Before and After Sectioning 54
Figure 36. Hidden-Line Rendering of Sectioned Object 55
Figure 37. Sectioned Object With Capping Polygons 56
Figure 38. Sectioned Object With After Hidden-Line Removal 56
Figure 39. Sectioning Plane Definition 58

Figure 40. Data Structure of Sectioning Plane 59
Figure 41. Solids Before and After Cross Sectioning 61
Figure 42. Hierarchy With Illumination Node 76

RENDERING OPERATIONS — 1

This module explains how to use the POLYGON command to define objects eligible for
rendering and how to perform rendering operations on these objects. It is intended both
as an introduction to rendering concepts and as a detailed statement of the rules for
using the PS 340.

Objects composed of polygons defined by the POLYGON command are the only objects
that are eligible for rendering operations. Other data—definition commands, such as
VECTOR_LIST, CHARACTERS, LABELS, POLYNOMIAL, RATIONAL POLYNOMIAL,
BSPLINE, and RATIONAL BSPLINE, do not establish objects which can be rendered.
Their ordinary use, aside from rendering, is not affected.

There are two types of rendering operations: those applied to objects displayed on the
calligraphic screen and those applied to objects displayed on the raster screen. Once an
object has been correctly defined with the POLYGON command, it can be displayed on
either the calligraphic or the raster screen without any modification to the data
definition.

Calligraphic

Renderings

Rendering operations on the calligraphic display can remove hidden line
segments from an object, perform backface removal, section an object relative
to a sectioning plane, and obtain a cross section.

Following are brief descriptions and examples of the rendering operations for the
calligraphic display.

2 -RENDERING OPERATIONS

Hidden-Line Removal

Hidden-Line removal generates a view in which only the unobstructed portions of
an object are displayed.

(Before Hidden-Line Removal)

IAS0276

(After Hidden-Line Removal)

IAS0278

iAso279

Figure 1. Object Before and After Hidden-Line Removal

RE(\lDERII~IG OPERATIONS - 3

Backface Removal

Backface removal is an intermediate step in hidden-line removal in which all
polygons facing away from the viewer are removed.

(Before)

IAS0280

(After)

Figure 2. Object Before and After Backface Removal

iAS0281

4 —RENDERING OPERATIONS

Sectioning

This operation makes use of a sectioning plane passing through the object which
divides the object into two pieces. Upon sectioning, one piece is removed while
the other is remains displayed. For solids, capping polygons are generated to
maintain the integrity of the solid.

(Before)

IAS0332

(After)

{ AS4333

Figure 3. Object Before and After Sectioning

RENDERING OPERATIONS — 5

Cross Sectioning

The cross sectioning operation makes use of a def fined sectioning plane to create
a cross section of an object. When this operation is used, both sides of the object
are discarded and only the slice defined by the sectioning plane remains.

(Before)

iAso4o6

(After)

~aso4o7

Figure 4. Object Before and After Cross Sectioning

6 -RENDERING OPERATIONS

Raster

Renderings

Rendering operations that apply to objects on the raster screen are wash shading,

flat shading, and smooth shading.

Wash shading produces an object with area-filled colored polygons ignoring
normals, light sources, all lighting parameters, and all depth cueing parameters.
This operation does not product objects that simulate a curved surface.

The flat shading process considers color, one light source and depth cueing
to shade the polygons in the object accordingly. Flat shading can produce
objects that simulate a faceted surface.

Smooth shading is the most complex process. The color of a polygon is varied
across its surface, considering the normals at the polygon's vertices, the
direction and color of various active light sources, the polygon's attributes (both
color and highlights), and depth cueing. Objects that simulate a curved surface
can be produced with smooth shading.

RENDERING OPERATIONS - 7

OBJECTIVES

After reading this module, you should be able to:

■ Define a polygonal object with the POLYGON command using all the
command options (COPLANAR, NORMALS, S, OUTLINE, WITH
ATTRIBUTES).

■ Establish a workspace in memory.

■ Mark an object as a solid or a surface for rendering.

■ Create a rendering.

■ Save and co mpound a rendering.

■ Display a shaded object on the raster screen and change the shading
environment in which the object is displayed.

For those already familiar with the PS 340, a reference summary at the end of
this module lists important rules and guidelines.

PREREQUISITES

Before reading this module, you should be familiar with programming the
PS 300. It is helpful to have an understanding of the .representation of polygonal
objects in graphics applications. It is assumed that you have some method, such
as an application program, to automatically generate polygonal data structures.
If you will be using the Shading Firmware for the Raster System, it is assumed
that you have some knowledge of the parameters used in shading objects for
display on a raster screen.

RENDERING OPERATIONS - 9

DEFINING POLYGONAL OBJECTS

The first step in def fining a polygonal object is to determine what it looks like.
The next step is to determine the correct geometry to define that object in the
world coordinate space. This would typically be done by an application program
since determining the vertices of all the polygons of an object is too complex to
do manually.

The polygons that make up an object to be rendered must be defined in the
POLYGON command according to certain rules. If these rules are not followed,
the results of a rendering operation applied to that object are unpredictable and
usually incorrect, even though the object may appear correct when displayed.

A poZggon is defined by the coordinates of its vertices. The edges of the
polygon are defined by lines that connect those vertices. In the PS 340, a
polygon must have at least .three vertices and no more than 250, all of which
must lie in the same plane. Ensuring that the vertices in a polygon are coplanar
is the responsibility of the user.

Concave polygons are acceptable. Degenerate polygons (less than three
vertices) and Interpenetrating polygons (intersecting themselves or others)
are not acceptable. Polygons are not pickable and polygon data nodes have no
inputs to allow them to be modified by function networks.

Using the Polygon Command

A poZr~gon clause, part of the POLYGON command, defines an individual
polygon or face ~of an object by specifying the coordinates of its vertices. Since
an object has many faces, several polygon clauses are used to define the entire
object.

The syntax for the polygon clause is the word POLYGON and a set of x,y,z
coordinates. The number of polygon clauses in the POLYGON command is equal
to the number of polygons in the object. Each polygon in the object must be
defined with a polygon clause.

A named group of one or more polygon clauses, with a semicolon at the end,
constitutes a POLYGON data-definition command (or POLYGON command for
short). This command defines the data node in the data structure of that object.
There is no syntactical limit on the number of POLYGON clauses in the group.
POLYGON may be abbreviated POLYG.

10 —RENDERING OPERATIONS

An option of the POLYGON command declares polygons to be coplanar,
providing the capability to create objects with holes or protrusions. Other

options allow you to define the color of the edges of polygons and to declare

edges "soft" to simulate a curved surface on a calligraphic display.

There are additional POLYGON command options that associate characteristics

or "attributes" with polygons for use in creating shaded images on a color raster

screen. These options include color and the concentration of specular
highlights. Normals can be specified for the vertices of an object to create a
smooth—shaded image that simulates a curved surface. These options are shown

below and explained briefly; complete details are discussed throughout this
module.

Given,
<vertex> :_ [S] x,y,z [N x,y,z]
<polygon> :_ [WITH [ATTRIBUTES name2] [OUTLINE h]]

POLYGON [COPLANAR] <vertex> ... <vertex>

The polygon command is:

[Name :_] < Polygon > < Polygon > . . . < Polygon > ;

where:

• A vertex definition has the form [S] x,y,z [N x,y,z]

where

— S indicates that the edge drawn between the previous vertex and this
one represents a soft edge of the polygon (discussed in detail later in
this module). If the S specifier is used for the first vertex in a polygon
definition, the edge connecting the last vertex with the first is soft.

— N indicates a normal to the surface with each vertex of the polygon.
Normals are used only in smooth —shaded renderings. Normals must be
specified for all vertices of a polygon or for none of them. If no
normals are given for a polygon, they are defaulted to the same as the
plane equation for the polygon.

— x, y, and z are coordinates in a le f t —handed Cartesian system.

• WITH ATTRIBUTES is an option that assigns the attributes defined by name2
for all polygons until superseded by another WITH ATTRIBUTES clause.

RENDERING OPERATIONS — 11

~ 1NITH OUTLINE is an option that specifies the color of the edges of a polygon
on the color CSM display, or their intensity on a black and white display.

• COPLANAR declares that the specified polygon and the one immediately
preceding it have the same plane equation.

Constructing Surfaces and Solids

The PS 340 command language allows you to define two classes of polygons:
surfaces and solids. Solids enclose a volume of space, while surfaces do not.

Surfaces can have edges that belong to just one polygon. For example, in Figure
5, edge CD is a part of polygon 3 but not of any other polygon.

IAS0292

Figure 5. Surf ace 0 bject

12 -RENDERING OPERATIONS

In a solid, each edge of each polygon must coincide with the edge of an adjacent
polygon. For example, edge AB in Figure 6, is defined as ;part of polygon 1 and
as part of polygon 2, and each edge of each polygon is similarly repeated in
different polygons.

Figure 6. Solid Object

A solid cannot contain three or more polygons which have a single edge in
common, although surfaces like -the one in Figure 7 can:

~aso2e4

Figure 7. Surface With Three Common Edges

RENDERIi\IG OPERATIONS — 13

The nature of a polygonal object, representing a surface or a solid, is determined
not only by the construction but by placing it beneath a rendering node in the
PS 340 data structure created by the SOLID_RENDERING and
SURFACE RENDERING commands. These commands are discussed in detail in
the section titled, "Marking Objects For Rendering."

Specifying Vertices

By definition, polygons are closed implicitly, so the first vertex is not repeated
when defining a polygon. The system connects the last vertex given to the first
vertex.

In solids, the direction in which the vertices are ordered within each polygon
clause has important consequences for rendering operations. The vertices should
be listed so that if you start at any vertex and move to the next vertex (as
indicated by the order in the polygon clause), you are traveling around the edges
of the polygon in a clockwise direction.

There are no similar restrictions for surfaces. The vertices of a surface can be
listed in either a clockwise or a counterclockwise direction.

For example, let A (0,0,0), B (.5,.87,0) and C (1,0,0) be the vertices of one
triangular face of an icosahedron as shown below.

B

A

IAS0311

Figure 8. Icosahedron With Correct Vertex Ordering

14 -RENDERING OPERATIONS

Since the points A, B, and C have the arrangement indicated by the arrows when
the triangular face is viewed from the outside of the icosahedron, that triangle
could be defined correctly by any one of the following clauses, all of which
specify the vertices in clockwise order:

... POLYGON 0,0,0 .5,.87,0 1,0,0 ...

... POLYGON .5,.87,0 1,0,0 0,0,0 ...

... POLYGON 1,0,0 0,0,0 .5,.87,0 ...

However, the following definition is incorrect for this polygonal face because it
specifies the vertices in counterclockwise order:

... POLYGON 0,0,0 1,0,0 .5,.87,0 ...

Another method to determine the order of vertices is to use the right hand rule.
The right hand rule states that if you point the thumb of your right hand towards
the center of the object and rotate your fingers towards your wrist, the direction
that your fingers move indicate the order in which the vertices of that polygon
should be listed.

Figure 9. Right Hand Rule

RENDERING OPERATIONS — 15

Using arrows to show the- vertex order of each polygon, a correctly constructed
icosahedron -looks like this:

IAS0291

Figure 10. Correctly-Constructed icosahedron

In all correctly defined solids, each edge is repeated in two different polygons.
For each pair of adjacent polygons, their common edges run in opposite
directions. Each edge is associated with a pair of opposing arrows in Figure 10.
This is true for any edge of any correctly—defined solid, even if it contains inner
contours. For solids, all vertices must run clockwise and all common edges of
adjacent polygons must run in opposite directions.

For surfaces the vertex—ordering rule is less stringent. Vertices in surfaces do
not have to be ordered in a clockwise fashion but they should be ordered so that
common edges of adjacent polygons run in opposite directions.

16 —RENDERING OPERATIONS

For example, the edges should be ordered like this

(Correct)

i ASC~311~

not like this

(Incorrect)

IAS0315

Figure 11. Correct and Incorrect Vertex Ordering for Surfaces

Although for surfaces it is not required that vertices run clockwise, it is a good
idea to follow this rule when convenient since it allows surfaces to be easily
"upgraded" to solids (especially if the surface has what could be called an
interior). Assuming that polygon data are equally available in either form, it is
better to have a surface's vertices in a clockwise order.

RENDERING OPERATIONS - 17

Given the following object (cube}:

1,0,0 I,1,1

1,0,0

x

o,o,l

o,i,i

o,o,0 0,1,0

Figure 12. Cube

A correct syntax to define this object is as follows:

Cube := POLYGON 0,0,0 i3O,0 1,1,0 0,1,0
POLYGON 0,1,0 1,1,0 l,l,l 0,1,1
POLYGON l,l,l 1,0,1 0,0,1 0,1,1
POLYGON I ,0,1 0,0, I 0,0,0 1,0,0
POLYGON 1,0,0 1,0,1 l,l,l 1,1,0
POLYGON 0,1,0 0,1,1 0,0,1 0,0,0;

Associating Outer and Inner Contours With Coplanar

IASO404

A polygon that represents a face of an object is called an outer contour.

Some polygons, known as inner contours represent cavities, holes, or
protrusion sites in an object.

For the PS 340 to interpret inner contours properly, two things must be done.
One is to observe the vertex-ordering convention for inner and outer contours.
The other is to use the coplanar option in the POLYGON clause to associate
inner and outer contours.

18 —RENDERING OPERATIONS

The vertex ordering rule for inner and outer contours is as follows: vertices of
inner contours must run in the opposite sense to the corresponding outer
contour. For a solid this implies that the vertices of an inner contour run
counterclockwise while outer contours run clockwise when viewed.

The vertices of the following triangular polygon face (outer contour) with a hole
in it (inner contour) are ordered as follows.

0,0,0 0,1,0
1 ASO405

Figure 13. Surface With Inner/Outer Contours

A POLYGON command syntax for this object is

Object := POLYGON 0,0,0 .5,.5,0 1,0,0 {outer contour}
POLYGON COPLANAR .5,.33,0 .33,.165,0 .66,.165,0;
{inner contour}

Note that the vertices for the inner contour in the above example are listed in
the opposite order of those of the outer contour.

RENDERING OPERATIONS — 19

The following solid illustrates the rule that inner contours must run opposite to
outer contours.

IAS0313

Figure 14. Solid With Correct Vertex Ordering

Rules for Using the Coplanar Option

An inner contour is always coplanar with some surrounding outer contour. To
define an inner contour, you must associate it with the appropriate outer contour
by declaring an inner contour to be coplanar with the outer contour. The
COPLANAR specifier makes this declaration. COPLANAR is an option of the
polygon clause which declares that the specified polygon and the one
immediately preceding it have the same plane equation.

A polygon declared to be COPLANAR must lie in the same plane as the previous
polygon if correct renderings are to be obtained. The system does not check for
this condition.

All members of a set of consecutive COPLANAR polygons are taken to have the
same plane equation. The polygon without a COPLANAR specifier immediately
preceding the consecutive COPLANAR polygons is also taken to be in the set.

20 -RENDERING OPERATIONS.

Polygons that are coplanar can be included in the polygon list without the
COPLANAR specifier, but when outer and inner contours are being associated
the COPLANAR clause is required.

If COPLANAR is specified for the first polygon in a polygon list, it has no effect.

It is legal to define two coplanar polygons without specifying COPLANAR, as
long as the polygons are not to be associated as an outer/inner pair.

In the following example the second polygon is coplanar with the first polygon.
The third polygon is not coplanar with either of the two preceding polygons.

Object := POLYGON -.6,-.6, -.6 -.6,.6,-.6 .6,.6,-.6 .6,-.6,-.6 {1}
POLYGON COPLANAR -.3,-.3,-.6 .3,-.3,-.6 .3,.3,-.6 {2}

POLYGON -.6,-.6,-.6 .6,-.6,-.6 .6,-.6,.6 -.6,-.6,.6 {3}

Figure 15. Object With Coplanar Polygon

In the next example, the first four polygons are coplanar with each other. The
fifth polygon is not coplanar with any of the preceding polygons.

Object :_
{outer} POLYGON 1,1,0 1,0,0 -1,0,0 -1,1,0 {1}
{inner} POLYGON COPLANAR .4,.8,0 -.4,.8,0 -.4,.4,0 .4,.4,0 {2}
{inner} POLYGON COPLANAR 1,0,0 1,-1,0 -1,-1,0 -1,0,0 {3}
{inner} POLYGON COPLANAR .4,-.4,0 -.4,-.4,0 -.4,-.8,0 .4,-.8,0 {4}
{inner} POLYGON 1,1,0 1,-1,0 1,-1,l 1,1-1 {5}

RENDERING OPERATIONS — 21

Figure 1 fi. ObjeCt With Inner/Outer Contours

A solid object with a cavity usually includes an inner contour. In the following
object, one triangle is an inner contour and all other polygons are outer contours,
including the walls and back of the cavity. The back wall of the triangle is not an
inner contour.

lAS0299

Figure 17. Solid With
a

Cavity

The POLYGON command syntax for this object follows. Notice that there is only
one polygon declared COPLANAR, for the one inner contour on the object. The
polygon declared coplanar (inner contour) comes after the polygon clause for the
front face of the cube (outer contour).

22 -RENDERING OPERATIONS

Object :_
{Cube faces}
POLYGON -.6,-.6,.6 .6,-.6,.6 .6,.6,.6 -.6,.6,.6 {back}
POLYGON -.6,-.6,-.6 .6,-.6,-.6 .6,-.6,.6 -.6,-.6,.6 {bottom}
POLYGON .6,-.6,-.6 .6,.6,-.6 .6,.6,.6 .6,-.6,.6 {right}
POLYGON .6,.6,-.6 -.6,.6,-.6 -.6,.6,.6 .6,.6,.6 {top}
POLY G O N -.6,.6,-.6 -.6,-.6,-.6 -.6,~-.6,.6 -.6,.6,.6 {left}
{Cube face containing cavity}
POLYGON .6,.6,-.6 .6,-.6,-.6 -.6,-.6,-.6 -.6,.6,-.6
{Cavity openings}
POLYGON COPLANAR .6,.3,-.3 .6,-.3,-.3 .6,-.3,.3
{Cavity side walls}
POLYGON .6,.3,-.3 .6,-.3,-.3 .4,-.3,-.3 .4,.3,-.3
POLYGON .6,-.3,-.3 .6,-.3,.3 .4,-.3,.3 .4,-.3,-.3
POLYGON .6,-.3,.3 .6,.3,-.3 .4,.3,-.3 .4,-.3,.3
{Cavity rear wall}
POLYGON .4,.3,-.3 .4,-.3,.3 .4,-.3,-.3;

A polygon should not be defined as an inner contour, unless it is coplanar with a
surrounding contour. Tunnels, protrusions and holes do not need inner contours
unless this coplanar arrangement is present. For example, in Figure 18 neither of
the objects contains inner contours.

Figure 18. Solid Without Inner Contours

RENDERING OPERATIONS - 23

A cube with a tunnel running through it has two inner contours in its polygon
definition, one for each opening of the tunnel.

IAS0300

Figure 19. Cube With a Tunnel

A POLYGON command syntax for this object is:

Object :_
POLYGON -.6,-.6,.6 .6,-.6,.6 .6,.6,.6 -.6,.6,.6
POLYGON COPLANAR -.3,-.3,.6 -.3,.3,.6 .3,.3,.6 .3,-.3,.6
POLYGON -.6,-.6,-.6 .6,-.6,-.6 .6,-.6,.6 -.6,-.6,.6
POLYGON .6,-. 6,-.6 .6,.6,-.6 .6,.6,.6 .6,-.6,.6
POLYGON .6,.6,-.6 -.6,.6,-.6 -.6,.6,.6 .6,.6,.6
POLYGON -.6,.6,-.6 -.6,-.6,-.6 -.6,-.6,.6 -.6,.6,.6
POLYGON .6,.6,-.6 .6,-.6,-.6 -.6,-.6,-.6 -.6,.6,-.6
POLYGON COPLANAR -.3,.3,-.6 -.3,-.3,-.6 .3,-.3,-.6 .3,.3,-.6
POLYGON -.3,-.3,-.6 -.3,-.3,.6 .3,-.3,.6 .3,-.3,-.6
POLYGON .3,.3,-.6 .3,-.3,-.6 .3,-.3,.6 .3,.3,.6
POLYGON .3,.3,-.6 .3,.3,.6 -.3,.3,.6 -.3,.3,-.6
POLYGON -.3,.3,-.6 -.3,.3,.6 -.3,-.3,.6 -.3,-.3,-.6;

24 —RENDERING OPERATIONS

Objects with inner contours can often be defined without inner contours. For
example, the outer/inner contour pair in this object could be replaced by four
coplanar outer contours.

tAS0~04

Figure 20. Objects With Coplanar Outer Contours

~Aso3o5

Both objects are admissible and can be rendered correctly. However, all other
things being equal, the object with declared inner contours is processed
more efficiently.

For correct renderings, polygons may not intersect other polygons. (This
prohibition extends to polygons which just coincide, since numerical precision
constraints may result in the polygons intersecting.] For example, consider the
following solid, which contains a protrusion:

Figure 21. Solid With Protrusion

RENDERING OPERATIONS — 25

It seems that this solid can be constructed by putting two cubes together.

1 AS0285

Figure 22. Solid Composed of Two Cubes

However, this is incorrect because one face of the small cube coincides with a
portion of a face of the large cube. Another way of attempting to construct this
solid fails for the same reason (Figure 23).

IAS0286

Figure 23. Invalid Solid

In this formulation, four edges of the small box coincide with the interior of a
larger polygon making the solid invalid. Also, these edges violate the
requirement for solids that each polygon edge coincide with the edge of another
polygon.

26 -RENDERING OPERATIONS

The correct construction of this solid requires an inner contour at the site of the
protrusion (Figure 24).

IAS0324

Figure 24. Correct Solid Construction

In the correct construction of the solid cube with a smaller cube as a protrusion,
each edge of each polygon coincides with another polygon edge, and no~ portions
of any polygon intersects the interior of any polygon. Only this construction
guarantees correct renderings.

A correct POLYGON command to define this object would be as follows.

CUBEPROT :_
POLYGON -.3,-.3, .9 -.3,-.3, .6 .3,-.3, .6 .3,-.3, .9
POLYGON .3,-.3, .9 .3,-.3, .6 .3, .3, .6 .3, .3, .9
POLYGON .3, .3, .9 .3, .3, .6 -.3, .3, .6 -.3, .3, .9
POLYGON -.3, .3, .9 -.3, .3, .6 -.3,-.3, .6 -.3,-.3, .9
POLYGON -.6,-.6,-.6 -.6, .6,-.6 .6, .6,-.6 .6,-.6,-.6
POLYGON .3,-.3, .9 .3, .3, .9 -.3, .3, .9 -.3,-.3, .9
POLYGON -.6,-.6, .6 .6,-.6, .6 .6, .6, .6 -.6, .6, .6
POLYGON COPLANAR

-.3, .3, .6 .3, .3, .6 .3,-.3, .6 -.3,-.3, .6
POLYGON -.6,-.6,-.6 .6,-.6,-.6 .6,-.6, .6 -.6,-.6, .6
POLYGON .6,-.6,-.6 .6, .6,-.6 .6, .6, .6 .6,-.6, .6
POLYGON .6, .6,-.6 -.6, .6,-.6 ~-.6, .6, .6 .6, .6, .6
POLYGON -.6, .6,-.6 -.6,-.6,-.6 -.6,-.6, .6 -.6, .6, .6;

RENDERING OPERATIONS - 27

Failure to use the coplanar specifier in the polygons clause can result in
incorrect hidden-line renderings.

(Correct)

IAso3o7

IAS0309

(COPLANAR omitted)

IAso3as

IAS031(1

Figure 25. Hidden-Line Renderings of Objects Without the Coplanar Specifier

28 -RENDERING OPERATIONS.

In solids, misplaced capping polygons and extra missing lines are often traceable
to an outer contour defined with the wrong vertex order.

(Correct: clockwise)

1 ASO 3 ~ 8

i AS0320

(Incorrect: counterclockwise)

Figure 2fi. Objects With Incorrect Vertex Ordering

iAsa3~9

rAso32t

RENDERING OPERATIONS — 29

Defining Soft Edges

Soft edges, declared with the "S" specifier in the polygon clause, are invisible in
hidden —line renderings except when they make up part of the profile of an object
(or silhouette). They can, therefore, be used to approximate curved surfaces in
hidden—line renderings.

For example, suppose that the twelve vertical edges in this object are soft edges.

Figure 27. Solid With Declared Soft Edges

30 -RENDERING OPERATIONS

In a hidden-line rendering of this object, all soft edges become invisible, except
for the two that contribute to the object's silhouette or profile. The result is an
approximation of a cylinder's curved surface without intrusive edges which were
provided for construction purposes only.

Figure 28. Rendering a~ Solids With Soft Edges

The "S" option before a set of X,Y,Z coordinates indicates that the edge drawn
between the previous vertex and this one represents a sof t edge of the polygon.
If "S" is placed before the first set of X,Y,Z coordinates in a polygon clause, the
edge connecting the last vertex with the first is soft.

1Nhen using the "S" specifier in the POLYGON command to define an object,
there are some rules to remember about the way the system treats edges that
are declared to be soft.

An "S" specifier causes the system to apply a positioning operation rather than a
drawing operation to the associated polygon vertex. Therefore, if a single
polygon containing a soft edge is displayed, the soft edge is "invisible" on the
display.

RENDERING OPERATIONS - 31

Each polygon edge in a solid coincides with an edge. of a neighboring polygon so
that the solid is made up of common-edge pairs. If one edge of a common-edge
pair is declared as soft, and the other is declared as "hard," the system
considers the entire common edge pair to be soft in creating a hidden
Zine rendering. This convention allows a solid's entire structure to be visible
in its original view (since one edge in the pair is hard), but invisible in a
hidden-line rendering. This is generally the way soft edges are defined. It is
possible to define both edges of a common-edge pair as soft; in which case the
common-edge pair would be invisible even in the original object.

In surfaces, polygon edges lying on the outline do not coincide with any
neighboring polygon edges. All other polygon edges do belong to common-edge
pairs, and it is only these "interior" edges which would be made invisible in a
representation of a curved surface. In surfaces as well as solids, soft edges
should be members of common-edge pairs, and only one edge need be declared
soft.

In drawing a "hard" common-edge pair, the system line generator system strokes
the same vector twice. If one member of the pair is soft, the vector is only
stroked once; the result is slightly dimmer. This intensity variation indicates
which edges of an unrendered object are soft. Hardcopies of objects containing
edges will not show an intensity variation.

Remember the vertex ordering rule for polygons. Common-edge pairs should
always run in opposite directions. This is especially important when one edge is
soft. Otherwise, profile edges may be invisible in hidden-line renderings.

Defining
Color dnd Intensity

for

Vector

Displays

The color of the edges of a polygon on the CSM color display, or the intensity on
a monochrome display, is set by the optional WITH OUTLINE h clause in the
POLYGON command. (This has no effect on objects displayed on the raster
screen.) The characteristics defined by the WITH OUTLINE clause apply to all
subsequent polygons in the node until superseded by another WITH OUTLINE
clause. The WITH OUTLINE clause comes before the word POLYGON in the
polygon clause.

The parameter h sets the intensity or color, but how this parameter is
interpreted is controlled by the presence or absence of a SET COLOR
BLENDING node higher in the structure. For the rendered view to be displayed
in the same form, the SET COLOR BLENDING node must be at a higher
hierarchical level than the rendering operate node.

32 —RENDERING OPERATIONS

If h=0 or is in the range 1 <h < 360, it will be inserted in the structure in a f orm
suitable for interpretation as a hue (as in color blending for vectors); however, if
0 < h < 1, the value is inserted in such a way as to be properly interpreted as
intensity. If the SET COLOR BLENDING node is absent for the larger values of
h, or present for smaller, the results are unspecified.

Color or intensity are specified for complete polygons, not individual edges. The
hue (or intensity) of the capping polygon in a sectioning operation is inherited
from the color (or intensity) of the sectioning plane. The default color is blue.
The default intensity is 1.

You cannot specify white polygons on the CSlu~i color display, unless they are all
white. Also, there may be strange color effects if polygons sharing a common
edge are colored differently. The intention of the SET COLOR BLENDING node
and the WITH OUTLINE clause is to allow the use of color to distinguish
different bodies or parts of bodies, such as protrusions.

Following is a command sequence using the WITH OUTLINE clause to define an
object with color.

INIT disp;
DISP a;
a:= SET CONTRAST 0 THEN b;
b:= SET COLOR BLENDING 1 THEN c;
c := ROT Y 30 THEN Twosquares;
Twosquares :_

WITH OUTLINE 120 POLYGON
—1,1,0 0,1,0 0,-1,0 —1,-1,0
WITH OUTLINE 240 POLYGON
0,1,0 1,1,0 1,-1,0 0,-1,0;

{gives the square a red outline}

{gives the green a red outline}

Defining Color and Highlights for Raster Displays

Specifying the color, diffuse reflection, and specular highlights, (called
attributes) of a polygon in the raster image is done via the WITH ATTRIBUTES
clause of the POLYGON command.

RENDERING OPERATIONS - 33

The ATTRIBUTES command creates a named attribute node in mass memory
that defines specific qualities to be applied to polygons when referenced by the
polygon data structure. The attributes specified in a WITH ATTRIBUTES Name2
clause of a polygon command apply to all subsequent polygons until superseded
by another WITH ATTRIBUTES clause. If no WITH ATTRIBUTES option is given
fora polygon node, default attributes are assumed. The default attributes are
0,0,1 for color, 0.75 for diffuse, and 4 for specular.

Given the polygon syntax:

[name := J <polygon> <polygon> <polygon> ;

the attributes option is,

<polygon> :_ [WITH [ATTRIBUTES name2] [OUTLINE h]] polygon
<vertex>...<vertex>

The WITH ATTRIBUTES clause and the ATTRIBUTES command are explained in
the "Displaying Shaded Images" section.

Speeify~ng Normals

When a polygon is used to approximate a curved surface, the smooth appearance
of the surface can be restored in asmooth-shaded rendering by approximating a
surface using normals. Normals only apply to shaded renderings. A normal to
the surface is given with each vertex of the polygon specified N X,Y,Z. The
shaded-rendering process interpolates between these normals when rendering the
polygon. Normals must be specified for all vertices of a polygon or for none of
them, If no normals are given for a polygon, they are defaulted to the same as
the normals of the plane in which the polygon lies. Normals are needed only in
smooth-shaded renderings and should usually be used. If you do not use normals
and request a smooth-shaded rendering, the result will be a f lat-shaded
rendering (except that specular and diffuse attributes will apply).

The following is an example of a cylinder with the normals specified. Notice
that the first two polygons do not have normals so the normals default to the
polygon normal and no smoothing is done across these. These are the ends of the
cylinder. The rule is all polygons do not need to have normals (in which case
they default to the plane equation), but if any vertex of a polygon has a normal
then all vertices for the polygon must. The cylinder also has soft edges (for
display on the calligraphic display).

34 -RENDERING OPERATIONS

Figure 29. Cylinder With Normals and Soft Edges Specified

CYLINDER :_

POLYGON
1.00000, 0.00000, 1.00000
0.95106, 0.30902, 1.00000
0.80902, 0.58779, 1.00000
0.5 87 79, 0.8090 2, 1.00000
0.30902, 0.95106, 1.00000
0.00000, 1.00000, 1.00000

-0.30902, 0.95106, 1.00000
-0.58779, 0.80902, 1.00000
-0.80902, 0.58779, 1.00000
-0.95106, 0.30902, 1.00000
-1.00000, 0.00000, 1.00000
-0.95106, -0.30902, 1.00000
-0.80902, -0.58779, 1.00000
-0.58779, -0.80902, 1.00000
-0.30902, -0.95106, 1.00000
0.00000, -1.00000, 1.00000
0.30902, -0.95106, 1.00000
0.5 87 79, -0.8090 2, 1.00000
0.80902, -0.58779, 1.00000
0.95106, -0.30902, 1.00000

RENDERING OPERATIONS - 35

POLYGON
0.95106,
0.80902,
0.58779,
0.30902,
0.00000,

-0.30902,
-0.58779,
-0.80902,
-0.95106,
-1.00000:
-0.95106;
-0.80902,
-0.58779,
-0.30902
0.00000,
0.30902,
0.58779,
0.80902,
0.95106,
1.00000,

POLYGON
S 1.00000,

0.95106,
S 0.95106,

1.00000,

POLYGON
0.95106,
0.80902,

S 0.80902,
0.95106,

POLYGON
0.80902,
0.58779,

S 0.58779,
0.80902,

POLYGON
0.58779,
0.30902,

S 0.30902,
0.58779,

("1

-0.30902
-0.58779
-0.80902
-0.95106
-1.00000
-0.95106
-0.8090 2
-0.58779
-0.30902
0.00000;
0.30902,
0.58779,
0.80902,,
0.95106
1.00000.
0.95106.
0.80902
0.58779
0.30902
0.00000

o.00000,

0.30902,
0.30902,

o.00000,

0.30902,
0.58779,
0.58779,
0.30902,

0.58779,
0.80902,
0.8090 2,
0.58779,

0.80902,
0.9 510 6,
0.95106,
0.80902,

-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000

-1.00000
-1.00000
1.00000
1.00000

-1.00000
-1.00000
1.00000
1.00000

-1.00000
-1.00000
1.00000
1.00000

-1.00000
-1.00000
1.00000
1.00000

N 1.00000
N 0.95106
N 0.95106
N 1.00000

N 0.95106
N 0.8090 2
N 0.80902
N 0.95106

N 0.80902
N 0.58779
N 0.58779
N 0.80902

N 0.58779
N 0.30902
N 0.30902
N 0.58779

0.00000, 0.00000
0.30902, 0.00000
0.30902, 0.00000

o.00000,

o.00000

0.,30902, 0.00000
0.5 8 7 79, 0.00000
0.5 8 7 79, 0.00000
0.30902, 0.00000

0.58779, 0.00000
0.80902, 0.00000
0.80902, 0.00000
0.5 87 79, 0.00000

0.80902, 0.00000
0.95106, 0.00000
0.95106, 0.00000
0.80902, 0.00000

36 -RENDERING OPERATIONS

POLYGON
0.30902,

o.00000,

S 0.00000,
0.30902,

POLYGON
o.00000,

-0.30902,
S -0.30902,

0.00000,

POLYGON
-0.30902,
-0.58779,

S -0.58779,
-0.30902,

POLYGON
-0.5 8 7 79,
-0.80902,

S -0.80902,
-0.58779,

POLYGON
-0.80902,
-0.95106,

S -0.95106,
-0.80902,

POLYGON
-0.95106,
-1.00000,

S -1.00000,
-0.95106,

POLYGON
-1.00000,
-0.95106,

S -0.95106,
-1.00000,

POLYGON
-0.95106,
-0.80902,

S -0.80902,
-0.95106,

0.95106, -1.00000
1.00000, -1.00000
1.00000, 1.00000
0.95106, 1.00000

1.00000, -1.00000
0.95106, -1.00000
0.95106, 1.00000
1.00000, 1.00000

0.95106, -1.00000
0.8090 2, -1.00000
0.8090 2, 1.00000
0.95106, 1.00000

0.8090 2, -1.00000
0.58779, -1.00000
0.58 7 79, 1.00000
0.8090 2, 1.00000

0.58779, -1.00000
0.30902, -1.00000
0.30902, 1.00000
0.58779, 1.00000

0.30902, -1.00000
0.00000, -1.00000
0.00000, 1.00000
0.30902, 1.00000

0.00000, -1.00000
-0.30902, -1.00000
-0.30902, 1.00000

o.00000,

1.00000

-0.30902, -1.00000
-0.5 8 7 79, -1.00000
-0.58779, 1.00000
-0.30902, 1.00000

N 0.30902,
N

o.00000,

N 0.00000,
N 0.30902,

0.95106,
1.00000,
1.00000,
0.95106,

N 0.00000, 1.00000,
N -0.30902, 0.95106,
N -0.30902, 0.95106,
N 0.00000, 1.00000,

N -0.30902, 0.95106,
N -0.58779, 0.80902,
N -0.5 8 7 79, 0.80902,
N -0.30902, 0.95106,

N -0.58779, 0.80902,
N -0.80902, 0.58779,
N -0.80902, 0.58779,
N -0.58779, 0.80902,

N -0.80902, 0.58779,
N -0.95106, 0.30902,
N -0.95106, 0.30902,
N -0.80902, 0.58779,

N -0.95106, 0.30902,
N -1.00000, 0.00000,
N -1.00000, 0.00000,
N -0.951'06, 0.30902,

N -1.00000
N -0.95106
N -0.95106
N -1.00000

N -0.95106
N -0.80902
N -0.80902
N -0.95106

0.00000
0.00000

o.00000

0.00000

0.00000
o.00000

0.00000
0.00000

0.00000
0.00000
0.00000
0.00000

o.00000

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000
0.00000

0.00000
0.00000
0.00000
0.00000

o.00000,

o.00000

-0.30902, 0.00000
-0.30902, 0.00000

o.00000,

o.00000

-0.30902, 0.00000
-0.5 8 7 79, 0.00000
-0.5 8 7 79, 0.00000
-0.30902, 0.00000

RENDERING OPERATIONS - 37

POLYGON
-0.80902
-0.58779

S -0.58779
-0.80902

POLYGON
-0.58779
-0.30902

S -0.30902
-0.58779

POLYGON
-0.30902
0.00000,

S 0.00000,
-0.30902

POLYGON
0.00000,
0.30902,

S 0.30902,
0.00000,

POLYGON
0.30902,
0.58779,

S 0.58779,
0.30902,

POLYGON
0.58779,
0.80902,

S 0.8090 2,
0.58779,

POLYGON
0.8090 2,
0.95106,

S 0.95106,
0.80902,

POLYGON
0.95106,
1.00000,
1.00000,
0.95106,

-0.58779, -1.00000
-0.80902, -1.00000
-0.80902, 1.00000
-0.58779. 1.00000

-0.80902, -1.00000
-0.95106, -1.00000
-0.95106, 1.00000
-0.80902, 1.00000

-0.95106, -1.00000
-1.00000, -1.00000
-1.00000, 1.00000
-0.95106. 1.00000

-1.00000, -1.00000
-0.95106, -1.00000
-0.95106, 1.00000
-1.00000, 1.00000

-0.95106, -1.00000
-0.80902, -1.00000
-0.80902, 1.00000
-0.95106, 1.00000

-0.80902, -1.00000
-0.58779, -1.00000
-0.58779, 1.00000
-0.80902.

l.00000

-0.58779, -1.00000
-0.30902, -1.00000
-0.30902, 1.00000
-0.58779. l.00000

-0.30902, -1.00000
0.00000, -1.00000
0.00000, 1.00000

-0.30902, 1.00000

N -0.80902;
N -0.58779;
N -0.58779;
N -0.80902.

N -0.58779
N -0.30902
N -0.30902
N -0.58779

N -0.30902
N 0.00000,
N 0.00000,
N -0.30902

N 0.00000,
N 0.30902,
N 0.30902,
N 0.00000,

N 0.30902,
N 0.58778,
N 0.58778,
N 0.30902,

N 0.58778,
N 0.80902,
N 0.80902,
N 0.58778,

N 0.80902,
N 0.95106,
N 0.95106,
N 0.80902,

N 0.95106,
N 1.00000,
N 1.00000,
N 0.95106,

-0.58779, o.00000
-0.80902, 0.00000
-0.80902, 0.00000
-0.58779, 0.00000

-0.80902, 0.00000
-0.95106, 0.00000
-0.95106, 0.00000
-0.80902, 0.00000

-0.95106, 0.00000
-1.00000, 0.00000
-1.00000, 0.00000
-0.95106, 0.00000

-1.00000, 0.00000
-0.95106, 0.00000
-0.95106, 0.00000
-1.00000. 0.00000

-0.95106, 0.00000
-0.8090 2, 0.00000
-0.80902, 0.00000
-0.95106, 0.00000

-0.80902, 0.00000
-0.58779, 0.00000
-0.58779, 0.00000
-0.80902, 0.00000

-0.58779, 0.00000
-0.30902, 0.00000
-0.30902, 0.00000
-0.58779. 0.00000

-0.30902, 0.00000
o.00000,

o.00000

0.00000, 0.00000
-0.30902, 0.00000

38 -RENDERING OPERATIONS

ESTABLISHING A WORKSPACE IN MEMORY

The rendering process requires that a large contiguous block of mass memory be
available. This area is known as working storage and once reserved it is not
available for other uses. Before any rendering operations can be performed, you
must establish a workspace in mass memory. The best time to reserve working
storage is immediately after booting, when large requests can be filled more
easily.

Each polygon of a solid object with four vertices will require approximately 150
bytes of reserve working storage. Memory needs will vary from figure to figure
depending on the complexity of the object, the operations to be performed on the
data structure, and the view.

Working storage must be explicitly reserved with the
RESERVE WORKING STORAGE command.

The syntax for working storage command is as follows:

RESERVE_WORKING_STORAGE n;

where

the current working storage block is replaced with another containing at least
n bytes. If n is less than or equal to 0, no new block is allocated.

Typically, you should reserve 200,000 to 400,000 bytes of working storage when
you begin a session. The command to do this is:

RESERUE WORKING STORAGE 400,000;

After one working storage request is made, subsequent requests do not add to the
original working storage; they replace the original working storage.

Working storage is not freed by the INITIALIZE command. The only way to free
all working storage is to enter RESERVE_WORKING_STORAGE with a number
less than or equal to 0. If a working storage request is followed by another,
smaller request, an amount of memory equal to the difference between the two
requests is freed.

A previously allocated working storage area is released prior to filling the
request for a new working storage area. Thus, a request for 3 smaller working
storage area can always be fulfilled. However, because the working storage
must be a contiguous block of memory, even slight increases in the working
storage size may not be satisfied upon arbitrary request.

RENDERING OPERATIONS - 39

If a contiguous block of memory cannot be allocated, no working storage is
allocated and any previous storage is deallocated. If working storage is too small
or has not been reserved, the rendering request is ignored and an error message
is issued.

Additional Memory Requirements

In addition to the working storage space, extra mass memory is needed to create
hidden-line renderings. This memory is referred to as transient memory and
is automatically allocated and deallocated by the system. If adequate mass
memory is not available for transient storage, the hidden-line process will
terminate prematurely, and an error message will be generated. For this reason
E&S recommends 2Mb or more . of memory for renderings of objects with
numerous polygons.

For hidden-line removal, each polygon (with four vertices) in the object will
require approximately 150 bytes of transient storage.

40 -RENDERING OPERATIONS

MARKING AN OBJECT FOR RENDERING

An object must be defined to be a surface or a solid before rendering operations
can be applied. The commands to do this are:

SOLID RENDERING command. This command creates an operation node in

the data structure (a "solid-rendering node") which declares all of its
descendant polygon data nodes to define a solid.

SURFACE RENDERING command. This command creates an operation node
in the data structure (a "surface-rendering node") which declares all of its
descendant polygon data nodes to define a surface.

These commands declare a POLYGON data object to be either a solid or a
surface and mark it to perform renderings on it. The nodes they establish are
called rendering operation nodes.

Rendering nodes should never be multiply instanced either directly or indirectly.

Only polygon nodes are used in renderings. Vector and character nodes occurring
beneath a rendering node are ignored by the rendering operations.
Transformation nodes are not retained in the rendering, but their effect is
incorporated into the data nodes.

A sectioned rendering concatenates all transformations below the rendering node
into the rendering, backf ace and hidden-line renderings also incorporate the
current transformation matrix at the point of the rendering node. For this
reason, a saved hidden-line or backface removal rendering should be placed
beneath a

MATRIX_4X4 1,0,0,0 0,1,0,0 0,0,0,0 0,0,1,1;

command to be properly re-displayed. If this is not done, the rendering will have
two sets of transformations applied to it when it is re-displayed (the
transformations applied when the rendering was created and the transformations
again applied when the rendering is re-displayed).

While conditional nodes (IF) are not incorporated into renderings, the rendering
will account for the state of the conditional node when the rendering is created.

RENDERING OPERATIONS - 41

A POLYGON data node can be displayed by itself. However, if the POLYGON
data node is to be rendered, it must have a rendering node as an ancestor. All
rendering and display operations involving the object are done via the rendering
node rather than the data node itself.

Syntaxes for the rendering commands are:

name := SOLID RENDERING APPLIED TO name 1;

name := SURFACE RENDERING APPLIED TO name l;

where

• name 1 names either (a) a POLYGON node, or (b) an ancestor of one or
more POLYGON nodes.

• If (b) is the case, any rendering referring to name is performed on all of
the POLYGON objects descended from name 1 at once.

• SOLID and SURFACE are acceptable abbreviations for these commands.

Non-Polygon Data Nodes Marked for Rendering

If non-POLYGON data nodes (such as VECTOR_LIST, CHARACTERS, LABELS,
POLYNOMIALS, and B-SPLINES) are included in name 1, these data objects are
displayed along with the POLYGON objects prior to rendering but are omitted
from renderings. Rendering operations have no effect on these data nodes.

Admissible Descendants for Rendering 0 perate Nodes

IF and SET CONDITIONAL BIT, IF and SET LEVEL_OF_DETAIL, INCREMENT
LEVEL_OF_DETAIL, DECREMENT LEVEL_OF_DETAIL, IF PHASE, SET RATE,
SET RATE EXTERNAL, SET DEPTH_CLIPPING, and BEGIN_STRUCTURE...
END STRUCTURE may be placed between a rendering node and its data. A
rendering takes into account any effects of these nodes at the time the request
is made. For example, if IF PHASE and SET RATE are being used to blink an
object and that object is "off" at the moment the request is made, the object is
excluded from the rendering.

The nodes mentioned above can also be placed above the rendering node with the
same result.

42 -RENDERING OPERATIONS

The transformations ROTATE, TRANSLATE, SCALE, MATRIX_2X2,
MATRIX_3X3, MATRIX_4X3 and LOOK may be placed between a rendering node
and its data node(s). However, these nodes should be used with caution, since,
like the operate nodes mentioned above, their effects will be incorporated into
renderings, and precision problems may result.

Another potential problem with interposing these transformations between a
rendering node and the data arises when renderings are being saved.

Since most vertices in an object usually belong to more than one polygon, each
vertex should be defined with the same numerical value in each of its polygons;
otherwise, precision discrepancies may cause inaccurate renderings.

In general, the five nodes WINDOW, VIEWPORT, EYE, FIELD_OF_1/IEW, and
MATRIX 4X4 should NOT be made descendants of a rendering node. Like other
transformations, these five are incorporated into the output data from a
rendering operation. However, these rendered data are generally displayed
within a framework that already includes global 4x4-matrix transformations of
its own. Including these transformations as part of the rendering, then, usually
has the net effect of applying an unwanted double-WINDOW (double-1/IEWPORT,
etc.) to the rendered object.

SOLID_RENDERING and SURFACE_RENDERING may not be descendants of a
rendering node, especially if multiply-instanced rendering nodes are involved. If
this rule is not observed, bad renderings or a system crash may result. The
system does not check for this condition.

Other nodes, including character transformations and the SET nodes (SET RATE,
SET COLOR, SET PLOTTER) are not carried over by rendering operations into a
rendering when placed beneath a rendering node. Such nodes must be placed
above a rendering node to produce their customary effects on renderings.

Rendering Nodes Must Be Displayed Before Rendering

Before you can render an object, its rendering node must be part of a structure
which is displayed (using the DISPLAY command). If the object itself is
displayed but its rendering node is not, no renderings can be created.

RENDERING OPERATIONS — 43

For example, if the command sequence

A := SOLID_RENDERING APPLIED TO B;
B := POLYGON

has been entered, the DISPLAY command should be DISPLAY A; and not
DISPLAY B.

('1

44 - RENDERING OPERATIONS

CREATING RENDERINGS

An appropriate integer sent to a SOLID_RENDERING or SURFACE_RENDERING
node produces a rendering of that node's descendant polygon object. When a
rendering is first created for an object, a second set of data is created and
"grafted" just below the rendering node f or the original object. To display the
rendering, the Graphics Control Processor traverses the path to this new data.
This happens automatically when the rendering is requested. The original data
existent before the rendering was applied remain intact and are accessible via
input to the rendering node.

TRANSFOR-
MATIONS

i
ORIGINAL
POLYGON
DATA

REQUEST RENDERING)

SOLID-
RENDERING

~~

TRANSFOR- 1
\ NATIONS

~~

~ 1
ORIGINAL

I POLYGON I
DATA

~-~

Figure 30. Path to Rendering Data

RENDERING
DATA

IAS0275

RENDERING OPERATIONS — 45

1N hen the original object is re—displayed, the path to the original object is
traversed, however, the rendering data remains intact.

SOLID- ~
RENDERING

TRANSFOR-
MATIONS

ORIGINAL
POLYG01~
DATA

T~ - - 1
RENDERING ~

~ DATA

—J
~AS0273

Figure 31. Path to Original Data

At this point, the rendering can easily be displayed again, since its data still
exists.

46 —RENDERING OPERATIONS

When a second rendering is done on this object, it replaces the first rendering.

SOLID-
RENDERING

~_~

TRANSFOR-
~ NATIONS

\ /

r
I ORIGINAL I

POLYGON
I DATA I

--J

SECOND
RENDERING

DATA

IASQ274

Figure 32. Path to Second Rendering

The rendering whose data occupy this place in the structure at a particular time
is called the "current rendering." Thus, the current rendering is always the one
most recently created, even if it is not currently displayed. Each rendering node
has its own current rendering.

After requesting a rendering operation you cannot communicate with the host or
do any other PS 340 processing until the rendering is completed.

RENDERING OPERATIONS — 47

Rendering Node C onne~tions

Rendering nodes have two inputs. Input < 1 > accepts an integer, a Boolean, or a
string designating the rendering operation to be performed. Tokens sent to input
<1> of the rendering node cause a rendering to be created, saves a rendering
under a particular name, or toggles the display from the rendering to the original
object.

input <2> accepts a Boolean to change the object definition from a surface to a
solid or vice versa. After defining an object to be a surface or a solid with the
SOLID_RENDERING or SURFACE_RENDERING commands, you can change the
definition by sending a Boolean to input <2> of the rendering operate node. This
input allows you to have one rendering node (created with either command) and
alternate between a surface and a solid definition. A true sent to the input <2>
declares the object to be a solid; a false declares the object to be a surface.
Solids are always rendered correctly (although not as efficiently) as surf aces.
Surfaces are handled by the system as solids (they will not cause the system to
fail); however, they may not be rendered correctly.

Rendering nodes also have an output which outputs a true if the rendering is
displayed and a false if it is not displayed. You can connect this output via the
CONNECT command to trigger some other action that was waiting on
completion of the rendering process.

For example, the commands

A := SOLID RENDERING THEN B;
CONNECT A< 1 >:< I >C;

cause the output of a rendering node to be sent to input < 1 > of C.

Any input to input< 1 > of a rendering node causes an output. Inputs sent to
input<2> will not cause an output to be sent. If output< 1 > has not been
connected, and an integer, string, or Boolean is sent to input< i >, a message will
appear on the screen upon successful completion of the rendering operation. An
error message will appear if the rendering was not completed.

48 —RENDERING OPERATIONS

The connections for the SOLID_RENDERING and SURFACE RENDERING
operate nodes are:

I
Integer, > <1>
String, or
Boolean

Boolean =>

<1>

So1id_Rendering Applied To Hamel;
<2> Surface_Rendering Applied To Hamel;

Acceptable Values for Input ~1>

>Boolean
{True if displayed}
{False if not displayed}

0: Toggles between the current rendering and the original object.
l: Creates and displays across—section of an object defined by the sectioning

plane (solid only).
2: Creates and displays a sectioned rendering.
3: Creates and displays a rendering using backface removal (solid only).
4: Creates and displays a rendering using hidden--line removal.
5: Generates awash —shaded image on the raster display.
6: Generates aflat—shaded image on the raster display.
7: Generates asmooth—shaded image on the raster display.

String: Causes the current rendering to be saved under the name given in the
string.

False: Sets the original view. The original descendant structure of the
rendering operate node is displayed.

True: Sets the rendered view. The rendered view of the original descendent
structure of the rendering operate node.

Acceptable Values for Input (2>

True: Declares the object to be a solid.
False: Declares the object to be a surface.

These operations are discussed in the following sections.

RENDERING OPERATIONS - 49

Backface

Removal

Backface -removal is an intermediate step in hidden-line removal, during which
all polygons facing away from the viewer are removed. Since backface removal
takes considerably less time than hidden-line removal, this operation is provided
separately to allow you to see what chidden-line rendering will look like.

This operation is especially useful in obtaining quick previews of hidden-line
renderings of complex solids, when an appropriate viewing angle is being decided
upon by trial and error. The backface-removed rendering is an unfinished
hidden-line rendering. It is not identical to the end-product in every line
segment, but close enough to give a rough idea of the outcome.

Only solids can be subjected to backface removal; the operation has no visual
effect on surfaces.

Figure 33 is an example of a solid before and after backface removal.

50 -RENDERING OPERATIONS

(Before Backface Removal)

(After Backface Removal)

Figure 33. Solids Before and After Backface Removal

RENDERING OPERATIONS - 51

Sending an integer of 3 to input < 1 > of the rendering node creates a
backface-removed rendering in the working storage area.

Exercise

Load the PS 340 Cat demonstration diskette on the PS 340 and apply the
backface removal operation by selecting from the menu on the right side of the
screen. Refer to the PS 340 Installation Manual for instructions on loading
and operating the CAT program.

Hidden-Line Removal

Hidden-line removal generates a view in which only the unobstructed portions of
an object are displayed. All parts of the edges of polygons that would be
obscured by other polygons are removed.

Three steps are involved in the hidden-line removal process.

1. Back faces are removed or made front facing. This happens very quickly
(1-3 seconds), during which time the screen will appear blank.

2. The remaining polygons' edges are sorted by. their Y-coordinates. This
step takes approximately 30 seconds for 3,000 polygons, during which time
the backface picture is created. The time required for sorting depends on
the number of polygons and the order in which they are defined.

3. Edges are tested against polygons and clipped by those that obscure
them. During this time, the backface picture is removed and the final
hidden-line picture appears from top to bottom of the display.

This step may take 5 minutes or more for approximately 3,000 polygons,
depending on the number of polygons and the view. In general, it takes
more time to process polygons along the X and Z axis than those along the
Y axis.

Hidden-line removal may be performed on both solids and surfaces. Hidden-line
views cannot be subjected to further rendering operations.

52 —RENDERING OPERATIONS.

(Before Hidden —Line)

(After Hidden —Line)

Figure 34. Solids Before and After Hidden-Line Removal

RENDERING OPERATIONS — 53

Sending an integer of 4 to input < 1 > of the rendering node creates a hidden line
rendering in the working storage area.

Exercise

Use the PS 340 CAT demonstration program to see the effects of the hidden —line
operation on the various objects.

Sectioning

Sectioning yields a "cutaway view" of an object. This operation makes use of a
sectioning plane passing through the object and dividing the object into two
pieces. The half of the object that is behind the plane is discarded and only the
front section of the object is displayed.

54 —RENDERING OPERATIONS

(Before Sectioning)

(After Sectioning)

Figure 35. Solid Objects Before and After Sectioning

RENDERING OPERATIONS — 55

Both solids and surfaces can be sectioned. For solids, a capping polygon (or a set
of coplanar capping polygons) is generated where the sectioning plane intersects
the solid. Such capping polygons) "close off" the sectioned object so that it, too,
becomes a solid.

Sectioning does not generate capping polygons for surf aces.

A sectioned object may be saved and then subjected to further surface—rendering
operations such as, re—sectioning, hidden —line removal, or backface removal.

Figure 36. Hidden-Line Rendering of Sectioned Object

Although there is generally no immediate visual evidence that a capping polygon
has been produced, capping polygons become a part of the definition of the
sectioned solid, and further rendering can disclose their existence. For example,
suppose that a solid and a surface are each sectioned vertically, yielding the two
sectioned objects below. Assume that each object intersects with its sectioning
plane at its two right—most faces. It is impossible to tell which object is capped.

56 —RENDERING OPERATIONS

lAsozs~
lAS0~9b

Figure 3 ~. Sectioned Object With Capping Polygons

However, hidden —line removal shows that the object on the left is a solid, while
the object on the right is open at its right —most faces.

fAS029~
IASU295

Figure 38. Sectioned Object With After Hidden-Line Removal

RENDERING OPERATIONS - 57

Sectioning proceeds very rapidly (1-3 seconds); the display may blink briefly
while it is being performed.

Sectioned objects are also sliced along the planes of the viewing frustum. The
sectioning plane must be encountered by the display processor prior to the
rendering node. If a sectioning plane has not been found, the screen will blank
for 15 seconds and an appropriate error message will be generated.

Sending an integer of 2 to input < 1 > of the rendering node makes use of the
established sectioning plane to create a sectioned rendering in the working
storage area.

Using the PS 340 CAT demonstration program, apply the sectioning operation to
the objects available on the menu.

Establishing

a

Sectioning

Plane

Defining, displaying, and positioning a sectioning plane are the first steps in
producing a sectioned rendering of an object. Hidden-line removal and backface
removal do not require sectioning planes, but they can be applied when a
sectioned rendering is saved and subjected to further renderings.

The SECTIONING PLANE command creates a sectioning-plane node which
indicates that a descendant POLYGON is a sectioning plane. The syntax is:

name := SECTIONING PLANE APPLIED TO name 1;

where

• name 1 names either (a} a POLYGON command or (b) an ancestor of a
POLYGON command.

• SECTIONING PLANE may be abbreviated SECT.

The

Sectioning

Plane's Data

Definition

The data which actually def ine a sectioning plane are contained in a POLYGON
node; SECTIONING_PLANE simply indicates that a given POLYGON represents a
sectioning plane.

58 -RENDERING OPERATIONS

The sectioning plane is the plane in which a specified POLYGON lies. The
polygon itself need not intersect the object to be sectioned, as long as some part
of the plane does.

The sectioning plane is the plane containing the polygon defined by the first
POLYGON clause of the first polygon node encountered by the Display Processor

as it traverses the branch beneath asectioning-plane node.

If the polygon node has more than one POLYGON, only the first polygon

determines the sectioning plane. The other polygons have no effect on
sectioning operations, but are displayed along with the defining polygon. This
can be put to use in designing an indicator which shows the side of the plane at
which sectioning will remove (or preserve_) polygon data (below). For example,

the command

SPDATA :_
POLYGON -.9,-.9,0 -.9,.9,0 .9,.9,0

POLYGON .1,0,0 .1,0,-.3 .15,0,-.3
-.15,0,-.3 -.1,0,-.3 -.1,0,0

POLYGON 0,.1,0 0,.1,-.3 0,.15,-.3
0,-.15,-.3 0,-.1,-.3 0,-.1,

.9,-.9,0

0,0,-.45

0,0,-.45
0•

defines a sectioning plane with two polygonal arrow-indicators as shown in
Figure 39.

X

~'

x

z
1

Figure 39. Sectioning Pldne Definition

ASO?_93

RENDERING OPERATIONS - 59

Sectioning preserves those parts of an object lying in front of the plane, and
removes those parts lying in back of the plane. (The front side of a sectioning
plane is the side on which you see the vertices of the plane's defining polygon
running clockwise, where the vertices are considered in the order of their
appearance in the POLYGON clause.)

No SOLID RENDERING or SURFACE RENDERING operation node, whether
below or above the sectioning-plane node, may be an ancestor of a sectioning
plane's defining POLYGON. The PS 340 interprets such POLYGONs as objects
to be rendered rather than as sectioning-plane definitions, and issues a
"Sectioning plane not found" message when a sectioning attempt is made.

(Wrong)

1
.~

SECTIONING-
PLANE i

SURFACE-
RENDERING

1

IAS0270

(Wrong) (Right)

SECTIONING-
PLANE

~ ~►so27 ~

Figure 40. Data Structure of Sectioning Plane

SURFACE
RENDERING

~Aso2~2

60 -RENDERING OPERATIONS

Other nodes nodes which do not represent matrix viewing transformations, such
as SET RATE and SET PLOTTER, may be placed either above or below the
sectioning-plane node as needed.

Typically, you will want to orient the plane interactively, by connecting an
interactive device via function networks.

Sectioning-Plane Node Must Be Displayed before Rendering

Before an object can be sectioned, the sectioning-plane node must be part of a
structure which is DISPLAYed. If the plane's defining POLYGON is itself
DISPLAYed but its sectioning-plane node is not, no renderings can be created.

For example, if the command sequence

A := SECTIONING_PLANE APPLIED TO B;
B := POLYGON ... ;

has been entered, the DISPLAY command should be DISPLAY A; and not
DISPLAY B.

RENDERING OPERATIONS - b 1

Cross Sectioning

The cross sectioning operation makes use of a def fined sectioning plane to create
a cross section of an abject. When this operation is used, both sides of the object
are thrown away and only the slice of the object defined by the sectioning plane
remains. Essentially, the object is sectioned and only the capping polygons
remain.

Original Object
(Before Cross sectioning)

Rendered Object
(After Cross Sectioning)

Figure 41. Solids Before and After Cross Sectioning

Cross sections can only be created for solid rendering nodes. This operation
proceeds very rapidly (1-3 seconds), in which time the display blanks
momentarily while the object is being sectioned. The cross-section is also
clipped by the planes of the viewing frustum.

62 —RENDERING OPERATIONS

Sending an integer of 1 to Input < 1 > of the rendering node creates a cross section
in the working storage area.

Exercise

Use the PS 340 CAT demonstration program to experiment with the Cross
Sectioning operation, or send the integer 1 to the rendering node of a polygon

object you have created.

Toggle Between the Rendering Object and the Original Object

It is often useful to compare objects before and after rendering operations have
been applied. The TOGGLE operation allows you to do this. Sending a 0 to input
< 1 > of the rendering node toggles the display between the rendering and the
original object. Both the rendering and the original object are left intact and
can be redisplayed until overwritten or saved.

Setting the View

Sending a false to input < 1 > of the rendering operation node causes the original
descendent structure of the SOLID RENDERING or SURFACE RENDERING node
to be displayed (sets the view to the original structure). The rendered view is
not affected, other than being removed from the display. The rendered view can
be restored and displayed again by sending true or f ix(0) to the rendering
operation node.

Sending a true causes the rendered view (if any) to be displayed instead of the
original descendent structure of the rendering operation node (sets the view to
the rendered view). The original view remains intact, apart from being removed
from display.

RENDERING OPERATIONS - 63

Changing the Definition of the Object

Sending a Boolean to input <2> of the rendering node controls whether the
descendant polygons are to be treated as a solid or a surface, enabling a solid
rendering node to be converted to a surface rendering node and vice versa. True
sent to input <2> defines the node as aSOLID-RENDERING node whatever the
original state was. False defines the node as a SURFACE RENDERING node.
The default is determined by the word SOLID or SURFACE in the original
command that created the node.

64 -RENDERING OPERATIONS

SAVING AND COMPOUNDING RENDERINGS

To save a rendering is to give it a name by which it can be referenced.

Requesting and displaying a rendering creates rendering data, but does not
create a "node" i~~ the normal sense. It cannot be referenced nor subjected to
further rendering operations until it is "saved" by naming it. Saving the
rendering, which establishes a rendering as a separate named data node, is
therefore a prerequisite to compounded renderings, or further renderings of
the rendered object.

After a rendering is saved, it is no longer considered a "current" rendering.
Therefore, the toggle operation (Booleans anal a fix(0) sent to the rendering node)
no longer affect the rendering.

How to Save a Rendering

To save a rendering, send a string message to input < 1 > of the
SOLID_RENDERING or SURFACE_RENDERING operation node. All illegal
PS 300 names are rejected and an error message is generated.

The string should specify the name of the node which is to contain the
saved-rendering data. If the named node does not exist, it is created; if it does
exist, the saved-rendering data replace the original contents of the node.

All polygons in the rendering are taken into account in the saved rendering. It is
not possible to exclude selected polygons or polygon data nodes from saved
renderings.

Contents of a Saved Rendering

Backface removal and sectioned renderings are saved as polygon lists;
hidden-line renderings are saved as vector lists.

When a sectioned rendering is saved, all transformations between the rendering
operation node and the polygon data node are applied to the polygon data. The
result is stored in the new data node.

RENDERING OPERATIONS - 65

When a backface or hidden-line rendering is saved, aII ancestor
transformations of the polt~gon data node are applied to the polygon data
before the result is stored in the new node. This occurs even if those
transformations are above the rendering operation node.

Common Uses of Saved Renderings

The most common reason for saving a rendering is to create a compound
rendering from it.

Common types of compound renderings are: (a) re-sectioning of a sectioned
rendering and fib) hidden-line removal applied to a sectioned rendering. Backface
renderings, which are useful mainly for previewing time-consuming hidden-line
operations on complex objects, are not generally rendered further. Hidden-line
renderings cannot be rendered further because they are vector lists, and only
polygons can be rendered. (The example at the end of this module gives a
program which can be used to create compounded renderings.)

Saved renderings are also useful when multiple hidden-line renderings of the
same object, seen from different viewpoints, are to be displayed in separate
viewports. A sectioned rendering can be viewed from multiple viewpoints
without saving, but a hidden-line rendering is a vector list which loses its
hidden-line character when the viewpoint shifts. Therefore, a separate
hidden-line rendering must be saved for each view to be displayed.

Displaying a Saved Rendering

When displaying a saved rendering, the rendering already incorporates some or
all of the transformations which existed in the data structure at the time the
rendering was requested.

66 -RENDERING OPERATIONS

Displaying Saved Sectioned Renderings

Since sectioned renderings already incorporate the transformations which existed
between the rendering operation node and the original polygon data node, the
appropriate place to attach a saved sectioned rendering is either:

• at the same level as the rendering operate node, OR

• just below the rendering operate node (without intervening transformations).

Attaching the saved rendering further down than this (for example, at the same
level as the original polygon data node) causes a misleading display. Any
transformations lying between the rendering operation node and the saved
rendering will actually be applied twice. This will be applied once explicitly in

the data structure, and once implicitly in the saved-rendering data.

Attaching the saved rendering above the rendering operation node may also
cause a misleading display. This excludes some of the viewing (or other)
transformations globally applied to the original data.

It is not necessary to attach a saved rendering anywhere in the existing
structure. The rendering can be saved in a node apart from this hierarchy. Any
desired new transformations can then be applied to it. The program example at
the end of this module illustrates this guideline.

Displaying Saved Backface and Hidden-dine Renderings

Backface and hidden-line renderings incorporate all of the transformations which
are applied to the original data node. Saved Backface and hidden-line renderings
should be attached beneath the following matrix for proper display:

MATRIX_4X4 1,0,0,0
0,1,0,0
0,0,0,0
0,0,1,1 ;

RENDERING OPERATIONS — 67

No other transformations should be applied to the saved rendering. To include other
transformations is to raise the double—transformation problem discussed above for
saved sectioned renderings. The saved rendering and its matrix should be either (1)
attached at the very top of the existing display data structure (as shown in the
programming example at the end of this module) or (2) separated from that
structure altogether.

The purpose of the special MATRIX_4X4, is to display the object without Z—values
and perspective.

Exercise

Use the PS 340 CAT demonstration program or define an object of your own, apply a
rendering operation, and save the rendering.

68 -RENDERING OPERATIONS.

DISPLAYING SHADED IMAGES

The PS 340 optional raster system consists of a printed circuit card that outputs

static images to a pixel raster display. The raster system can be used as an

"image buffer" to display host-generated images or it can display "shaded

images" derived locally from PS 340 polygonal models.

When using the raster display as an image or frame buffer, the PS 340 is only

used as a communications link between the host and the raster system. Nq

standard PS 340 commands or data structures are used to display host generated
images.

This module deals only with displaying shaded images derived locally from PS 340
polygonal models. Run-length encoding, the process of displaying host generated
images, is documented in The PS 340 Raster Programmer Guide.

Requesting a shaded image computed locally on the PS 340 and displaying it on

the raster monitor requires that an integer be sent to the rendering node input of

the data structure. When a shaded image is requested, the hidden-line view of

the object is displayed concurrently on the calligraphic display.

Because the refresh processor is used to generate the raster image, the
calligraphic hidden-line image may flicker or disappear entirely while shaded
renderings are created.

There are three types of shaded renderings: wash shading, flat shading and
smooth shading.

Wash shading (area fill) generates a shaded image of the raster image buffer
concurrent to the generation of the hidden-line picture. In wash shading, the
color of each polygon is determined from the color given in the attribute node
corresponding to the polygon. All normals, light sources, other lighting
parameters, and depth cueing parameters are ignored. Sending the integer 5 to
input < 1 > of the rendering node creates awash-shaded object and displays it on
the raster screen.

Flat shading generates a flat shaded image on the raster image , buffer
concurrent to the generation of the hidden-line picture. The process considers
color, one light source, and the depth cueing parameter and shades the polygons
accordingly.

RENDERING OPERATIONS - 69

A polygon's color is affected by its orientation as well as the color and direction
of the light source, If specified in the polygon data definition, vertex normals
and the diffuse and specular highlight specifications are ignored. Sending the
integer 6 to input < 1 > of the rendering operation node displays the object with
flat shading.

Smooth shading generates a smooth-shaded image on the image buffer while
the hidden-line rendering is being created and displayed on the calligraphic
monitor. Smooth shading varies the color of the polygon across its surface
combined with the normals at the polygon's vertices, the color and direction of
various active light sources, the polygons' attributes, and the depth cueing
parameters. Sending the integer 7 to input < 1 > of the rendering operation node
displays a smooth shaded object.

Specifying Attributes

In the section "Defining Polygonal Objects," you were introduced to the WITH
ATTRIBUTES option. Attributes are applied to a collection of polygons by
specifying the name of the attribute node after WITH ATTRIBUTES in the
POLYGON command. If the WITH ATTRIBUTES option is not used in the
POLYGON clause, the default attributes 0,0,1 for color, 0.75 for diffuse, and 0
for specular are assumed.

Using the ATTRIBUTES Command

The ATTRIBUTES command specifies the various characteristics of polygons
used in the creation of shaded renderings. Attribute nodes are created with the
ATTRIBUTES command and exist in mass memory (not as part of the data
structure). The ATTRIBUTES command creates a named attribute node in mass
memory that defines specific attributes to be applied to data when this node is
referenced by the object's data structure.

When the display processor traverses the data structure with a polygon node
containing a WITH ATTRIBUTES name 1, the attributes in name 1 are assigned to
all polygons in the node until superseded with another WITH ATTRIBUTES
clause. The various attributes may be changed from a function network via
inputs to an attribute node or by reassigning the name, but the changes have no
affect until a new rendering is created. No type checking is done by the shading
process to ensure that WITH ATTRIBUTES indeed refers to an attribute node and
not some other entity. If it does refer to some other entity, the display
processor will interpret any values in that node as attributes, and display the
object incorrectly.

70 —RENDERING OPERATIONS

Given:

<attr> :_ [Color h [,s [,i])
[Diffuse d]
[Specular s

The ATTRIBUTES command is:

Name := ATTRIBUTES <attr> [AND <attr>] ;

Meaning:

Color

The color attribute sets the basic color for the surface of a polygon. This
attribute pertains only to shaded renderings on the raster display--it has no
effect on the color of a polygon's edges on the calligraphic display. (These are
changed using the WITH OUTLINE clause in the POLYGON command.) Color is
given as hue (h), saturation (s), and intensity (i) and will change according to such
things as shading style, light sources, orientation, depth cueing, ambient lighting,
and highlights.

Hue specifies degrees around the color circle with 0 being pure blue, 120 pure
red, and 240 pure green. Saturation varies from 0 for no saturation (grays) to 1
for full saturation. Intensity varies from 0 for no intensity (black) to 1 for full
intensity.

If no color is specified, the default is white (s=0, i=1). If not specified,
saturation and intensity default to 1. If only hue and saturation are specified,
intensity defaults to 1. Values greater than 1 or less than 0 for saturation or
intensity will become 1 or 0. Hue and saturation correspond to hue and
saturation in the SET COLOR command but have greater precision. Remember
that the color applies only to the shaded image; the color of the vector image
displayed on the CSM color screen is set using the WITH OUTLINE clause of the
POLYGON command.

RENDERING OPERATIONS - 71

Diffuse

Diffuse specifies the proportion of color contributed by diffuse reflection versus
that contributed by specular reflection. Increasing d reduces the intensity of
specular highlights, making the surface more matte; decreasing d makes the
surface more shiney with a value of 1 eliminating specular highlights entirely.
Values larger than 1 or less than 0 will be changed to 1 or 0. If no diffuse
attribute is given, it defaults to 0.75. The diffuse attribute only affects
smooth-shaded renderings.

Specular

The specular attribute adjusts the concentration of specular highlights, with
increasing values of s increasing their concentration. Specular is a property of
the object so the size of the highlight spot is not influenced by the light source,
only by the s value. The more metallic the object is, the more concentrated
the specular highlights. In the real world, objects are never completely specular
(or diffuse) so you will get artificial effects if you have these values at a
maximum.

Acceptable values of s are integers between 0 and 10, with values outside that
rounded to 0 or 10 and a default of 4. As with diffuse, the specular attribute
only affects smooth-shaded renderings.

And

A second set of attributes may be given after the word AND in the ATTRIBUTES
command which apply to the obverse side of the polygons) concerned; in other
words, the two sides of an object may have different attributes. The polygons
considered on the obverse (backfacing) side by the system are those seen in a
counterclockwise order for the view in which the rendering is carried out. The
second set of attributes will only be applied in surf ace renderings (not solid).

The attributes defined for the first < attr> specify attributes for front-facing
polygons. The <attr> after the AND specify the attributes of backfacing
polygons.

72 -RENDERING OPERATIONS

You are not required to include the AND <attri> to specify different attributes

for backfacing polygons. The command syntax for specifying just one set of

polygons is:

Name := ATTRIBUTES <attr> ;

If the WITH ATTRIBUTES clause in a structure refers to an attribute node with

two sets of attributes and no backfacing polygons exist for that object, the

second set is ignored.

In the following example, an attribute node is crated that defines the object to

be blue. Since only the hue is specified for the color parameter, the default

values for saturation and intensity (s=1, i=1) are assumed. The defaults for

diffuse and specular (d=.75, s=0) are also assumed.

Blue := ATTRIBUTES COLOR 120;
Object := WITH ATTRIBUTES Blue

POLYGON

POLYGON ;

All the polygons in the object are blue since the attribute clause assigns the

attributes defined by Blue for all polygons until superseded by another WITH
ATTRIBUTES clause.

In the following example, the <attri> before AND specify attributes for

front-facing polygons in the object and the < attri > after AND specify the

attributes for all backfacing polygons.

Red Green:= ATTRIBUTES COLOR 120,.5,.75 DIFFUSE .25 SPECULAR 1
AND COLOR 240,1,.25;

Object := WITH ATTRIBUTES Red_Green
POLYGON

POLYGON ;

All front-facing polygons are colored red with .5 saturation and .75 intensity.
The value for diffuse is .25 and the value for specular is 1. All backfacing
polygons are green with 0 saturation and .25 intensity. Since no values for
specular or diffuse are given in the second set of attributes, the defaults are
assumed.

RENDERING OPERATIONS - 73

The following object definition specifies attributes for display on the raster
screen and also specifies the color of the polygon's edges (using the WITH
OUTLINE clause) for display on the color calligraphic display.

Pastel Blue := ATTRIBUTES COLOR 3,.5,1 DIFFUSE .75 SPECULAR 5;
Object := WITH ATTRIBUTES Pastel_Blue Outline 0

POLYGON

POLYGON ;

In this example, the shaded polygons on the raster display would be blue, with
full saturation and .5 intensity. The specular value is .75 and the diffuse value is
5. The edges of the polygons are blue (Outline 0) when displayed on the CSM
display.

Attribute Node Inputs

Inputs to the attribute node are as follows:

< 1 > accepts a real number as hue, a 2D vector as hue and saturation, or a 3D
vector as hue, saturation, and intensity to specify COLOR for the front of the
appropriate polygons) or both sides if no obverse attributes are given.

< 2 > accepts a real number as DIFFUSE

< 3 > accepts an integer as SPECULAR

<4>....< 10> are undefined

< 1 1 >, < 12>, and < 13> correspond to < 1 >, <2>, and <3> but affect the obverse
attributes if they exist.

If you send to input < 1 > or input < 1 1 > changing only the hue, the saturation and
intensity return to the default values of s=1 and i=1. You cannot change just one
value and keep the remaining values as they were before you made the change.
Essentially, if you do not send a 3D vector, default values for the missing
variables will be assumed.

74 -RENDERING OPERATIONS

For example, with the data definition

Dim Red := ATTRIBUTES COLOR 130,1,.5 DIFFUSE .75 SPECULAR 8;
Object := WITH ATTRIBUTES Dim_Red

POLYGON

POLYGON;

If you sent 200 to input < 1 > of Dim_Red the resulting color parameter in the
attribute node would be 200,1, 1. To keep the saturation and intensity the same

and change only the hue, you would send 200,1,.5 to input < 1 > of Dim_Red. This

is the same if you want to change hue, saturation or intensity individually by
sending a -new value to the attribute node.

After changing the values in the attribute node, the changes will not be reflected
until another rendering is requested.

Specifying Light Sources

Lights sources are specified with the ILLUMINATION command which creates_
"illumination nodes." Illumination nodes may be placed anywhere in the
structure, allowing lights to be stationary or to rotate with the object or both.
Illumination nodes are ignored during the calligraphic refresh and only those
illumination nodes occurring in the descendent structure of a triggered solid- or

surface-rendering operation node have any affect in shaded renderings. An
unlimited number of light sources are valid for smooth-shaded renderings, but
only the last illumination node encountered is used in creating flat-shaded
renderings. Light sources are not used in wash-shaded (area-filled) images.

All light sources are presumed to be an infinite distance from the object;
however, you can specify the direction at which they hit the object. This
direction is multiplied by the current rotation matrix to determine the direction
to the light in image space. If, after transformation, the light source appears to
originate from behind the object, it will cause the whole object to be
unilluminated (appear black), except, perhaps "glancing" specular highlights near
the silhouette.

If no ILLUMINATION commands are given, a default white light at (0,0,-1) with
an ambient proportion of 1.0 is assumed. If not specified, intensity and saturation
default to 1. If only hue and saturation are specified, intensity defaults to 1.

RENDERING OPERATIONS — 75

Syntax:

[name :_] ILLUMINATION x,y,z [COLOR h [,s [,i]]] [AMBIENT a] ;

where

x,y,z is a vector from the origin pointing toward the light source.

COLOR specifies the color of the light source by defining hue, saturation, and
intensity. Color is specified identical to COLOR in -the ATTRIBUTES command;
the defaults are also the same.

AMBIENT controls the contribution of a light source to the ambient light. The
net ambient lighting is determined by taking the sum of the products of the color
and ambient proportion of each active light, dividing b,y the total number of
active lights and then combining the result with the ambient input of the
SHADINGENVIRONMENT function Cin the next section). AMBIENT is defined by
a real number between 0 and 1. Increasing a for one light increases its
contribution to ambient light. Values outside this range are changed to 0 or 1.
The default value for a is 1.0.

Changing the values of the SHADINGENVIRONMENT (explained in the next
section) allows you to increase or decrease the intensity and color of the ambient
light without the need to change each light source.

Whatever the values, if all active light sources have the same specified
proportion, then all lights will contribute equally to the ambient light.
Decreasing a for one light decreases its contribution to ambient light. Ualues
outside this range are changed to 0 or 1. The default value is 1.

In the following example, the ILLUMINATION command

Light := ILLUMINATION 1,1,-1 COLOR 180;

creates a node which defines a yellow light over the right shoulder. Since
saturation and intensity are not specified, the defaults s=1 and i=1 are assumed.
A default of 1.0 for the ambient proportion is also assumed.

Since the illumination node occurs in the data structure (unlike the attribute
node which exists alone in mass memory), it is not explicitly referenced by the
polygon data node.

76 -RENDERING OPERATIONS

The hierarchy with an illumination node is shown in Figure 42.

L

Window, Viewport,
Other 4x4 Matrix
Transforr~ati on Nodes

Rotate, Translate,
Scale Nodes

Solid Rendering
Node

Illumination
Node

Polygon Data Node

IASU~~Ia

Figure 4Z. Hierarchy With Illumination Node

The illumination node must be under the rendering node in the display structure
of the object.

Following is an example of how to use ILLUMINATION nodes. There are two
lights in the example: SUNLIGHT, which can be rotated independently of the
object, and MOONLIGHT, which rotates with the object. To achieve this:

1. Both lights are underneath the rendering node in the structure.

2. Placing the ILLUMINATION nodes underneath the rendering node implies that
they will have the object's transformations also applied to them. This is what
happens for MOON (sending a rotation to MOON.ROT will concatenate with
the object's transformations).

3. This is not desired for the sun, so a FIELD_OF_VIEW (FOU) is inserted before
the illumination node of SUN. This causes a rotation matrix sent to
SUN.ROT to be the only matrix applied to SUNLIGHT.

RENDERING OPERATIONS - 77

4. Inserting a 4D matrix (caused by the FOV) underneath a rendering node is not
recommended. To avoid any problems, the 4D matrix defined by SUN.PERSP
is identical to the 4D matrix defined by WORLD.PERSP and any change made
to one (e.g., by a function network) should be made to both. Failure to follow
this suggestion may result in bad renderings.

Sun :_ BEGIN STRUCTURE {a light which can be rotated independently}
Persp := FOV 90 FRONT=2.2 BACK=3.6;
LOOK AT 0,0,0 FROM 0,0,-3;
Rot := SCALE BY 1;
Light := ILLUMINATION 0,0,-1;
END_STRUCTURE;

Moon := BEGIN STRUCTURE {a light which rotates with the object}
Rot := SCALE BY l;
Light := ILLUMINATION 0,0,-1;
END_STRUCTURE;

World := BEGIN STRUCTURE
Persp := FOV 45 FRONT=2.2 BACK=3.6;
LOOK AT 0,0,0 FROM 0,0,-3;
viewport horizontal=-1: l vertical=- l : l intensity= l :0;
SET DEPTH CLIPPING ON;
Trans := TRANSLATE BY 0,0,0;
Rot := SCALE BY l;
Rendering := SURFACE_RENDERING; {rendering node}
instance object, Moon, Sun;
END_STRUCTURE;

DISPLAY World;

Illumination Node Inputs

Inputs to the illumination node are:

< 1 > accepts a 3D vector as direction

<2> accepts a real number as hue, a 2D vector as hue and saturation, and a 3D
vector as hue, saturation, and intensity.

< 3 > accepts a real number as the ambient proportion

Like the attribute node, if you send a real number to input < 2 > to change only
the hue, the saturation and intensity return to the default values of s=1 and i=1.
You cannot change just one value and keep the remaining values as they were
before you made the change. If you do not send a 3D vector, the defaults for the
variables not specified are assumed.

78 -RENDERING OPERATIONS

The SHADINGENVIRONMENT Function

An Initial Function Instance, called SHADINGENiIIRONMENT, allows you to
control various non-dynamic factors of shaded renderings displayed on the raster
screen. Sending values to the SHADINGENVIRONMENT function generally sets
a parameter for the next requested shaded rendering rather than taking
immediate effect. Note that SH~IDINGENVIRON1~iENT is different from other
Ps 340 functions in that any input wiZ1 activate the function

independent of the other inputs. SHADINGENVIRONMENT is like seven
separate functions each with one input, but bundled together.

SHADINGENVIRONMENT

Real/Vector ---> <1>

Real/Vector ---> <2>

Vector > <3>
, ~

Real ~=~---> <4~

Integer ~ <5>

Real > <6~

Boolean > <7~

<1~ > connected to the
shading process

The inputs to the SHADINGENI/IRONMENT function are as follows:

Ambient Color

< 1 > accepts a real number as hue, a 2D vector as hue and saturat-ion, and a 3D
vector as hue, saturation, and intensity, to specify the ambient color. Refer to
the COLOR parameter of the ATTRIBUTES command for the meaning of the
values. The ambient color is combined with the result obtained from the light
sources to determine the color of ambient light. The default ambient color is
white, with a default intensity of .25. The ambient color is analagous to the
color reflected of f a wall.

RENDERING OPERATIONS - 79

Background Color

<2> accepts a real number as hue, a 2D vector as hue and saturation, and or a 3D
vector as hue, saturation, and intensity to specify the background color. Refer
to the COLOR parameter of the ATTRIBUTES command for the meaning of the
values. The raster screen will be colored with the background color prior to any
shaded rendering. The default background color is black (0,0,0).

Raster Viewport

<3> accepts a 3D vector as the viewport on the raster image buffer where shaded
renderings will be displayed. Raster viewports are always square, the lower left
corner being given by the X and Y coordinates of the vector, and its size given
by the Z coordinate, such that the upper right corner is at (.x+z,y+z). Values are
rounded to the nearest pixel. The default viewport is (80,0,480). The viewport is
not intended for magnification of small parts of the calligraphic ir~~age, but for
mapping the square vector display onto the rectangular raster display.

The viewport is also intended to allow multiple images to be generated side by
side on the raster display. Thus, the largest recommended value for the viewport
is (0,-80,640). The actual largest viewport is somewhat larger and depends on

combinations of the three values. The image is clipped to the physical raster for
which 0 < X < 640 and 0 < Y < 480.

Exposure

<4> accepts a real number as the exposure, controlling the overall brightness of

the picture. The exposure is like that on a camera. If a picture is taken of an

object with a very bright specular highlight, it may be so bright that the rest of

the object is darkened. If three light sources exist, the object would be about
three times brighter, making the object too bright. The exposure should be
brought down to control this.

The exposure is r~ultiplied by the intensity at each pixel and the result clipped to
the maximum intensity. This enables the overall brightness of a rendering to be
increased without causing bright spots to exceed maximum intensity (instead
forming "plateaus" of maximum intensity). Note that this may cause changes in

color on a plateau, where color has reached its maximum, but the others have

not. Exposure values may vary between .3 and 3, values outside that range being

changed to .3 or 3. The default exposure is 1.

80 —RENDERING OPERATIONS

Quality Level

< 5 > accepts an integer as quality level. The quality controls the number of
pixels over which filtering applied. Jagged edges are characteristic of a raster
display, so the fuzzier the edges, the better quality the picture. Values of 1, 3,
5, and. 7 are allowed, meaning that the effect of coloring a pixel will be spread
over a square of pixels with that number on a side, centered on the colored
pixel. Because of anti—aliasing, pictures are good at quality 1. (The default
value 1 is the typical choice.) Values of 3, 5, and 7 produce better quality
renderings in terms of anti—aliasing but are time—consuming to process.

Depth Cueing

<6> accepts a real number in the range of 0 to 1 to control depth cueing in the
shaded image (0 specifying no depth cueing and 1 specifying maximum depth
cueing). As perceived depth from the viewer increases, the intensity of the
colors decreases from maximum (1) at the nearest point to the given proportion
of maximum at the farthest. Thus 0 gives a ramp ending in black at the back
clipping plane, while 1 turns off the effect of depth cueing. The default is 0.2
giving a fairly large depth cueing effect.

Screen Wash

<7> accepts a Boolean, and is the only input to cause a visual effect
immediately. True causes the whole physical raster screen to be filled with the
current background color, while false just fills the currently defined viewport
(clipped to the screen).

RENDERING OPERATIONS — 81

NOTE

If values are sent to the SHADINGENVIRONMENT function
and your PS 340 is not configured with a raster system, an
error message is issued. If values are again sent to the
SHADINGENVIRONMENT function and no raster system
exists, the function will destroy itself.

RENDERING OPERATIONS - 83

SUMMARY

The POLYGON command defines collections of polygons from which renderings
can be created. This is adata-definition command that creates a polygon data
node in the object's data structure.

Objects defined as polygons are the only objects that are eligible for rendering
operations.

Rendering operations for vector displays can obtain a cross section of a displayed
object, section an object relative to a sectioning plane, remove hidden line
segments, and create shaded images of the object on a color raster screen.

Rendering operations for raster displays are flat shading, wash shading, and
smooth shading.

Polygonal objects must be defined correctly to produce correct renderings.

POLYGON Command Syntax

Given,
<vertex> :_ [S J x,y,z [N x,y,z]
<polygon> :_ [WITH [ATTRIBUTES name2] [OUTLINE h]]

POLYGON [COPLANAR] <vertex> ... <vertex>

The polygon command is:

[Name :_] < Polygon > < Polygon > . . . < Polygon > ;

where:

• A vertex definition has the form [5] x,y,z [N x,y,z]

where

- S indicates that the edge drawn between the previous vertex and this one
represents a sof t edge of the polygon. If the S specifier is used for the
first vertex in a polygon definition, the edge connecting the last vertex
with the first is soft.

84 —RENDERING OPERATIONS

— N indicates a normal to the surface with each vertex of the polygon.
Normals are used only in smooth —shaded renderings. Normals must be
specified for all vertices of a polygon or for none of the vertices of a
polygon. Normals do not need to be present for all polygons in the object.
If no normals are given for a polygon, they are defaulted to the same as the
plane equation for the polygon.

— x, y, and z are coordinates in aleft—handed Cartesian system.

• WITH ATTRIBUTES is an option that assigns the attributes defined by the
ATTRIBUTES command for all polygons until superseded by another WITH
ATTRIBUTES clause.

• WITH OUTLINE is an option that specifies the color of the edges of a polygon
on the color CSM display, or their intensity on a black and white display. A
SET COLOR BLENDING node must be in the data structure to use this option.

• COPLANAR declares that the specified polygon and the one immediately
preceding it has the same plane equation.

Defining Polygonal Objects

There is no syntactical limit on the number of polygon clauses in the group.
POLYGON may be abbreviated POLYG.

Polygons are implicitly closed. The first vertex should not be repeated when
def fining a polygon.

No more than 250 vertices per polygon may be specified and no less than three.

The vertices of a polygon must be coplanar. Its plane equation is determined
from any three non—colinear vertices.

Concave polygons are acceptable. Degenerate polygons and polygons that
intersect themselves or others are not acceptable. No specific checks are made
for these conditions.

Polygons are not pickable and polygon nodes have no inputs from which they can
be modified with function networks.

RENDERING OPERATIONS — 85

Constructing Surf aces and Solids

Surfaces and solids can be defined. Solids enclose a volume of space, while
surfaces do not.

In a solid, every edge of every polygon must coincide with the edge of a
neighboring polygon.

For surfaces and solids, polygons are defined by listing their vertices in a
clockwise order in the polygon clause.

In a solid, the common edge where two polygons join must run in opposite
directions. This arrangement is essential to produce correct renderings. The
system does not check for this condition.

A solid cannot contain three or more polygons which have a single edge is
common, although surfaces may.

The SURFACE RENDERING and SOLID RENDERING commands determine the
nature of a polygonal object.

Using the COPLANAR Option

Inner contours may be defined to create objects with holes or protrusions.

Vertices of inner contours must be listed in the opposite direction to the
corresponding outer contour.

An inner contour should not be defined unless it is coplanar with some
surrounding outer contour.

All members of a set of consecutive COPLANAR polygons are taken to have the
same plane equation, that of the previous polygon not containing the
COPLANAR option.

If COPLANAR is specified for the first polygon in a polygon list, it has no effect.

86 -RENDERING OPERATIONS

Using the Oolor Option (for Vector Displays)

Color for polygons displayed on the CSM monitor or intensity on the monochror~ne

display are specified with the WITH OUTLINE h clause where h=0 or

1 <h< 360 for color, and 0 < h < 1 for intensity.

To use the WITH OUTLINE clause to specify color, you must use the SET COLOR

BLENDING command to create a node in the structure.

Color and intensity are specified for complete polygons, not individual edges. If

you specify white polygons to be displayed on the CSM, all polygons must be

white.

Using the Soft Edge Option (for Vector Displays)

The S specif ier before a set of X,Y,Z coordinates indicates that the edge drawn

between the previous vertex and this one represent a sof t edge of the polygon.

Soft edges, declared with the S specifier in the polygon clause are invisible in

hidden —line renderings except when they make up part of an object's profile.

Soft edges are positions in the original object.

If either edge of a common —edged pair is declared soft, the entire edge is

considered soft.

Memory Usage

The rendering process requires that a contiguous block of mass memory be
available as working storage. This memory must be explicitly reserved with the
command RESERI/E WORKING STORAGE n, where the current working

storage is replaced with another containing at least n bytes. If n is less than

or equal to 0 or there is insufficient memory to allocate a new block, the current
working storage is disposed and no new block is allocated.

RENDERING OPERATIONS - 87

The best time to reserve working storage is immediately after booting; typically,
you should reserve 200,000 to 400,000 bytes of working storage when you begin a
session.

Working storage is not freed by the INITIALIZATION command.

in addition to the working storage space, extra mass memory is needed to create
hidden-line renderings. This memory is referred to as transient memory and is
automatically allocated and deallocated by the system.

Declaring the Object a Solid or a Surface

Syntaxes for the rendering commands are:

name := SOLID RENDERING APPLIED TO name 1;

name := SURFACE RENDERING APPLIED TO name l;

where

• name 1 names either (a) a POLYGON node, or (b) an ancestor of one or more
POLYGON nodes.

• If (b) is the case, any rendering referring to name is performed on all of the
POLYGON objects descended from name 1 at once.

Only polygons nodes are used in renderings. Vector and character nodes
occurring beneath a rendering node are ignored by the rendering operations.

Transformation nodes are lost in the rendering, but their effect is incorporated
into the data nodes.

Rendering Node Connections

Rendering nodes have two inputs. Input < 1 > accepts an integer, a Boolean, or a
string designating the rendering operation to be performed.

88 —RENDERING OPERATIONS

Input <2> accepts a Boolean to change the object definition from a surface to a
solid or vice versa.

Rendering nodes also have an output which outputs a true if the rendering is
displayed and a false if it is not displayed. You can connect this output via the
CONNECT command to trigger some other action that was waiting on
completion of the rendering process.

Rendering Node Inputs

Acceptable values for input < 1 > are

0: Toggles between the current rendering and the original object.
l: Creates and displays across—section of an object defined by the sectioning

plane (solids only).
2: Creates and displays a sectioned rendering.
3: Creates and displays a rendering using backface removal (solids only).
4: Creates and displays a rendering using hidden —line removal.
5: Generates awash —shaded image on the raster display.
6: Generates aflat—shaded image on the raster display.
7: Generates asmooth—shaded image on the raster display.

String: Causes the current rendering to be saved under the name given in the
string.

False: Sets the original view. The original descendant structure of the
rendering operation node is displayed.

True: Sets the rendered view. The rendered view of the original descendent
structure of the rendering operation node.

Acceptable values for input <2> are

True: Declares the object to be a solid.
False: Declares the object to be a surface.

RENDERING OPERATIONS - 8~

Establishing a Sectioning Plane

The SECTIONING PLANE command creates a sectioning-plane node which

indicates that a descendant POLYGON is a sectioning plane. The syntax is:

name := SECTIONING PLANE APPLIED TO name 1;

where

• name 1 names either (_a) a POLYGON command or (b) an ancestor of a
POLYGON command.

• SECTIONING PLANE may be abbreviated SECT.

The Sectioning Plane's Data Definition

The sectioning plane is the plane containing the polygon defined by the first

POLYGON clause of the first polygon node encountered by the Display Processor

as it traverses the branch beneath asectioning-plane node.

The sectioning plane is the plane in which a specified POLYGON lies. The
polygon itself need not intersect the object to be sectioned, as long as some part

of the plane does.

No SOLID RENDERING or SURFACE RENDERING operation node, whether

below or above the sectioning-plane node, may be an ancestor of a sectioning

plane's defining POLYGON. The PS 340 interprets such polygons as objects to be

rendered rather than as sectioning-plane definitions, and issues a "Sectioning

plane not found" message when a sectioning attempt is made.

Saving a Rendering

A rendering is saved by a string sent to input < 1 > of the SOLID_RENDERING or

SURFACE RENDERING operation node. The string should specify the name of

the node which is to contain the saved-rendering data. If the named node sloes

not exist, it is created; if it does exist, the saved-rendering data replaces the

original contents of the node.

90 —RENDERING OPERATIONS

All polygons in the rendering are taken into account in the saved rendering. It is
not possible to exclude selected polygons or polygon data nodes from saved
renderings.

Specifying Color and Highlight$ for Raster Displays

Specifying color, specular, and diffuse highlights, (called attributes) of a polygon
for display on the raster screen, is done via the WITH ATTRIBUTES clause of the
POLYGON command.

Given the polygon syntax:

[name :_] <polygon> <polygon>

the attributes option is,

<polygon> :=

< polygon > ;

[WITH [ATTRIBUTES name2] [OUTLINE h]] polygon
<vertex>...<vertex>

The ATTRIBUTES Command

Given:

<attr> :_ [Color h [,s [,i]]]
[Diffuse d]
[Specular s]

The ATTRIBUTES command is:

Name := ATTRIBUTES <attr> [AND <attr>] ;

meaning:

Color

Hue (h) specifies degrees around the color circle with 0 being pure blue, 120 pure
red, and 240 pure green. Saturation (s) varies from 0 f or no saturation (grays) to
1 for full saturation. Intensity (i) varies from 0 for no intensity (black) to 1 for
full intensity.

RENDERING OPERATIONS — 91

If no color is specified, the default is white (s=0, i=1). If not specified,
saturation and intensity default to 1.

Diffuse

Diffuse specifies the proportion of color contributed by diffuse reflection versus
that contributed by specular reflection. Increasing d reduces the intensity of
specular highlights, making the surface more matte; decreasing the intensity of
specular highlights makes the surface more shiny with a value of 1 eliminating
specular highlights entirely.

Values larger than 1 or less than 0 will be changed to 1 or 0. If no diffuse
attribute is given, it defaults to 0.75.

The diffuse attribute only affects smooth —shaded renderings.

Specular

The specular attribute adjusts the concentration of specular highlights, with
increasing values of s increasing their concentration.

Acceptable values of s are integers between 0 and 10. As with diffuse, the
specular attribute only affects smooth —shaded renderings.

And

The attributes defined for the first <attr> specify attributes for front —facing
polygons. The <attr> after the AND specify the attributes of backfacing
polygons (applicable to surfaces only).

Attribute Node Inputs

Inputs to the attribute node are as follows:

< 1 > accepts a real number as hue, a 2D vector as hue and saturation, or a 3D
vector as hue, saturation, and intensity to specify COLOR for the front of the
appropriate polygons) or both sides if no obverse attributes are given.

92 —RENDERING OPERATIONS.

<2> accepts a real number as DIFFUSE

< 3 > accepts a real number as SPECULAR

<4>....< 10> are undefined

< 1 1 >, < 12>, and < 13> correspond to < 1 >, <2>, and <3> but affect the obverse
attributes if they exist.

Specifying N O R M A LS

When a polygon is used to approximate a curved surface, the smooth appearance
of the surface can be restored in asmooth—shaded rendering by approximating a
surface using normals. A normal to the surface is given with each vertex of the
polygon specified N x,y,z.

Specifying Light Sources

Lights may be stationary or rotate with the object or both.

If no ILLUMINATION commands are given, a default white light at (0,0,-1) with
an ambient proportion of .25 is assumed. If not specified, intensity and saturation
default to 1.

Syntax:

[name :_] ILLUMINATION x,y,z [COLOR h [,s [,i]]] [AMBIENT a] ;

where

x,y,z is a vector from the origin pointing toward the light source.

COLOR specifies the color of the light source by defining hue, saturation, and
intensity.

Color is specified identical to COLOR in the ATTRIBUTES command; the
defaults are also the same.

RENDERING OPERATIONS - 93

AMBIENT controls the contribution of a light source to the ambient light and is
defined by a real number between 0 and 1. Increasing a for one light,
increases its contribution to ambient light. The default value for a is 1.

Illumination Node Inputs

Inputs to the illumination node are:

< 1 > accepts a 3D vector as direction

< 2> accepts a real number as hue, a 2D vector as hue and saturation, and a 3D
vector as hue, saturation, and intensity.

< 3 > accepts a real number as the ambient proportion

Like the attribute node, if you send a real number to Input < 2 > to change only
the hue, the saturation and intensity return to the default values of s=1 and i=1.

The SHADINGENVIRONMENT Function

SHADINGENVIRONMENT

Real/Vector ---~ <1>

Real/Vector ---> <2>

Vector > <3>

Real ~- -> <~+>

Integer > <5>

Real > <6~

Boolean ~ ~7~

<1> ~ connected to the
shading process

94 -RENDERING OPERATIONS

The inputs to the SHADINGENVIRONMENT function are as follows:

Ambient Color

< 1 > accepts a real number as hue, a ZD vector as hue and saturation, and a 3D
vector as hue, saturation, and intensity, to specify the ambient color. The
default ambient color is white, with a default intensity of .25..

Background Color

<2> accepts a real number as hue, a 2D vector as hue and saturation, and or a 3D
vector as hue, saturation, and intensity to specify the background color. The
default background color is black (0,0,0).

Raster Viewport

<3> accepts a 3D vector as the viewport on the raster image buffer where shaded
renderings will be displayed. Raster viewports are always square, the lower left
corner being given by the X and Y coordinates of the vector, and its size given
by the Z coordinate, such that the upper right corner is at (x+z,y+z). Values are
rounded to the nearest pixel. The default viewport is (80,0,480.

Exposure

<4> accepts a real number as the exposure, controlling the overall brightness of
the picture. Exposure values may vary between .3 and 3, values outside that
range being changed to .3 or 3. The default exposure is 1.

Quality Level

<5> accepts an integer as quality level. The quality controls the number of
pixels over which filtering applied. Values of 1, 3, 5, and 7 are allowed, meaning
that the effect of coloring a pixel will be spread over a square of pixels with that
number on a side, centered on the colored pixel. Pictures are good at quality 1.

RENDERING OPERATIONS — 95

Depth Cueing

<6> accepts a real number in the range of 0 to 1 to control depth cueing in the
shaded image (0 specifying no depth cueing and 1 specifying maximum depth
cueing). The default is 0.2 giving a fairly large depth cueing effect.

Screen Wash

<7> accepts a Boolean, and is the only input to cause a visual effect
immediately. True causes the whole physical raster screen to be filled with the
current background color, while false just fills the currently defined viewport
(clipped to the screen).

PS 340 Systems Without a R aster Screen

If values are sent to the SHADINGENUIRONMENT function and your PS 340 is
not configured with a raster screen, an error message is issued. If values are
again sent to the shadingenvironment function and no raster system exists, the
function will destroy itself.

RENDERING OPERATIONS - 97

Programming Example

INITIALIZE;

{reserve memory for rendering}

RESERVE_WORKING_STORAGE 120000;

{define a sectioning plane which can be rotated independently}

Spattributes := ATTRIBUTES;

Sect := BEGIN STRUCTURE
SECTIONING_PLANE;
Trans := TRANSLATE BY 0,0,0;
Rot := ROTATE 0;
With ATTRIBUTES Spattributes
POLYGON -0.9,-0.9,0.0 -0,9,0.9,0.0 0.9,0.9,0.0 0.9,-0.9,0.0
POLYGON 0.1,0.0,0.0 0.1,0.0,-0.3 0.15,0.0,-0.3 0.0,0.0,-0.45

-0.15,0.0,-0.3 -0.1,0.0,-0.3 -0.1,0.0,0.0
POLYGON 0.0,0.1,0.0 0.0,0.1,-0.3 0.0,0.15,-0.3 0.0,0.0,-0.45

0.0,-0.15,-0.3 0.0,-0.1,-0.3 0.0,-0.1,0.0;
END_STRUCTURE;

{define a light which can be rotated independently}

Sunset := BEGIN STRUCTURE
FIELD OF VIEW 90 FRONT=2.2 BACK=3.6;
LOOK AT 0,0,0 FROM 0,0,-3;
SET DEPTH CLIPPING OFF;
Rot := ROTATE 0;
VECTOR N=2 0,0,-.9 0,0,0;
INSTANCE Sun;
TRANSLATE 0,0,-.9;
RATIONAL POLYNOMIAL .2,0,8 -.2,-.2,-8 0,.1,4 CHORDS=15;
RATIONAL POLYNOMIAL .2,0,-8 -.2,-.2,8 0,.1,-4 CHORDS=15;
VECTOR SEPARATE n=15 -.1,0 -.05,0 .05,0 .1,0 0,-. l 0,-.05 0,.05 0,.1

-.0707,-.0707 -.0354,-.0354 .0354,.0354 .0707,
.0707-.0707,.0707 -.0354,.0354 .0354,-.0354
.Q707,-.0707;

END_STRUCTURE;
Sun := ILLUMINATION 0,0,- l ;

{define a light which can be rotated with the object}

98 —RENDERING OPERATIONS

Moonset := BEGIN STRUCTURE
SET DEPTH_CLIPPING OFF;
Rot := ROTATE 0;
UECTOR N=2 0,0,—.9 0,0,0;
INSTANCE Moon;
TRANSLATE 0,0,—.9;
RATIONAL PO1YNOMIAL .2,0,4 —.2,—.2,-4 0,.1,2 CHORDS=15;
RATIONAL POLYNOMIAL .12,0,4 —.12,—.2,-4 0,.1,2 CHORDS=15;
END_STRUCTURE;

Moon := ILLUMINATION 0,0,— l ;

{set up a place to re—display a saved hidden—line picture}

Disphlview := MATRIX_4x4 1,0,0,0 0,1,0,0 0,0,0,0 0,0, 1, l THEN Hlview;

{set up initial display structure}

World := BEGIN STRUCTURE
Bits := SET CONDITION 1 ON;
IF CONDITION 1 OFF THEN Disphlview;
IF CONDITION 1 ON;
Persp := FIELD_OF_VIEW 45 FRONT=2.2 BACK=3.6;
LOOK AT 0,0,0 FROM 0,0,-3;
VIEWPORT HORIZONTAL=—l:l VERTICAL=-1:1 INTENSITY=1:1;
SET DEPTH_CLIPPING ON;
Trans := TRANSLATE by 0,0,0;
Rot := ROTATE 0;
IF CONDITION 2 ON THEN Sect;
Rendering := Surface; {rendering operation node, initially a surface }
IF CONDITION 3 ON THEN Sunset;
IF CONDITION 4 ON THEN Moonset;
INSTANCE Object;
END_STRUCTURE;

DISPLAY World;

{network to translate object}

A := F:ADDC;
CONNECT A < 1 > : < 1 > World.trans;
CONNECT A< 1 >:<2>A;
SEND U 3D(0,0,0) TO < 2 > A;

{network to rotate/scale object}

RENDERING OPERATIONS — 99

M := F:CMUL;
CONNECT M< 1 >:< 1 >World.rot;
CONNECT M < 1 > : < 1 > M;
SEND M 3 D(1,0,0 0,1,0 0,0,1) T O < 1 > M;

{network to translate sectioning plane}

A2 := F:ADDC;
CONNECT A2 < 1 >:< 1 > Sect.trans;
CONNECT A2< 1 >:<2>A2;
SEND V3D(0,0,0) TO < 2 > A2;

{network to rotate/scale sectioning plane}

M2 := F:CMUL;
CONNECT M2< 1 >:< 1 >Sect.rot;
CONNECT M2<1>:<1>M2;
SEND M 3 D(1,0,0 0,1,0 0,0,1) T O< 1> M 2;

{network to rotate sun}

Msun := F:CMUL;
CONNECT Msun < 1 >: < 1 > Sunset.rot;
CONNECT Msun < 1 >: < 1 > Msun;
SEND M 3 D(1,0,0 0,1,0 0,0,1) TO < 1 > Msu n;

{network to rotate moon}

Mmoon := F:CMUL;
CONNECT Mmoon< 1 >:< 1 >Moonset.rot;
CONNECT Mmoon< 1 >:< 1 >Mmoon;
SEND M3D(1,0,0 0,1,0 0,0,1) TO < 1 >Mmoon;

{network selecting original or rendered view}

Original := F:CONSTANT;
CONNECT Original< 1 >:< 1 >World.rendering;
SEND FALSE TO < 2 > Original; { to switch to original view }
CONNECT DIALS < 1 > : < 1 > Original;
CONNECT DIALS < 2 >: < 1 > Original;
CONNECT DIALS < 3 > : < 1 > Original;
CONNECT DIALS<4>:< 1 >Original;
CONNECT DIALS < 5 >: < 1 > Original;
CONNECT DIALS<6>:< 1 >Original;
CONNECT DIALS < 7 >: < 1 > Original;
CONNECT DIALS< 8 >: < 1 > Original;

100 -RENDERING OPERATIONS

{color network}

Tripcolor := F:SYNC(5);
SETUP CNESS TRUE <2>Tripcolor;
SETUP CNESS TRUE <3>Tripcolor;
SETUP CNESS TRUE <4>Tripcolor;
SETUP CNESS TRUE <5>Tripcolor;
CONNECT Tripcolor< 2>: < 3 >SHADINGENUIRONMENT;
CONNECT Tripcolor< 3 >: < 7>SHADINGENUIRONMENT;
CONNECT Tripcolor<4>:<3>SHADINGENUIRONMENT;
CONNECT Tripcolor<5>:<2>SHADINGENUIRONMENT;
SEND U3D(600,440,40) TO <2>Tripcolor;
SEND FALSE TO < 3 >Tripcolor;
SEND U 3D(0,0,0) TO < 5 >Tripcolor;

Suncolor := F:ACCUMULATE;
CONNECT Suncolor< 1 >:<2>Sun;
CONNECT Suncolor< 1 >:<2>SHADINGENUIRONMENT;
CONNECT Suncolor< 1 >:< 1 >Tripcolor;
SEND U3D(0,0,1) TO <2>Suncolor;
SEND 0 TO < 3 > Suncolor;
SEND U3D(20,.25,.25) TO <4>Suncolor;
SEND U3D(360,1,1) TO <5>Suncolor;
SEND U 3D(0,0,0) TO < 6 > Suncolor;

Mooncolor := F:ACCUMULATE;
CONNECT Mooncolor< 1 > : < 2 > Moon;
CONNECT Mooncolor< 1 >:<2>SHADINGENUIRONMENT;
CONNECT Mooncolor< 1 >:< 1 >Tripcolor;
SEND U3D(0,0,1) TO < Z>Mooncolor;
SEND 0 TO < 3 > Mooncolor;
SEND U3D(20,.25,.25) TO <4>Mooncolor;
SEND U 3D(3b0, l , l) TO < 5 > Mooncolor;
SEND U 3D(0,0,0) TO < 6 > Mooncolor;

Backgroundcolor := F:ACCUMULATE;
CONNECT Backgroundcolor< 1 >:<2>SHADINGENUIRONMENT;
CONNECT Backgroundcolor< 1 >:< 1 >Tripcolor;
CONNECT Backgroundcolor< 1 >: < 5 >Tripcolor;
SEND U3D(0,0,0) TO <2>Backgroundcolor;
SEND 0 TO <3>Backgroundcolor;
SEND U3D(20,.25,.25) TO <4>Backgroundcolor;
SEND U 3D(360,1,1) TO < 5 > Backgroundcolor;
SEND U 3D(0,0,0) TO < 6 > Backgroundcolor;

RENDERING OPERATIONS - 101

{mux the dials}

Dialmux := F:CROUTE(5);
CONNECT Dialmux< 1 >:< 1 >A;
CONNECT Dialmux<2>:< 1 >A2;
CONNECT Dialmux<3>:< 1 >Suncolor;
CONNECT Dialmux<4>:< 1 >Mooncolor;
CONNECT Dialmux<5>:< 1 >Backgroundcolor;

Dialmux2 := F:CROUTE(5);
CONNECT Dialmux2< 1 >:<2>M;
CONNECT Dialmux2<2>:<2>M2;
CONNECT Dialmux2<3>:<2>Msun;
CONNECT Dialmux2<4>:<2>Mmoon;

{network to translate in x}

Tx := F:XVEC;
CONNECT Tx< 1 >:<Z>Dialmux;
CONNECT DIALS< 1 >:< 1 >Tx;

{network to translate in y}

Ty := F:YVEC;
CONNECT Ty< 1 >:<2>Dialmux;
CONNECT DIALS< 2>:< 1 >Ty;

{network to translate in z}

Tz := F:ZVEC;
CONNECT Tz< 1 >:<2>Dialmux;
CONNECT DIALS< 3>:< 1 >Tz;

{network to scale}

S := F:SCALE;
CONNECT S< 1 >: < 2 > Dialmux2;

Sa := F:ADDC;
CONNECT Sa< 1 >:< 1 >S;
SEND 1 TO <2>Sa;
CONNECT DIALS<4>:< 1 >Sa;

{network to rotate in x}

102 -RENDERING OPERATIONS

Rx := F:XROTATE;
CONNECT Rx< 1 >:<2>Dialmux2;

Sx := F:MULC;
CONNECT Sx< 1 >:< 1 >Rx;
SEND 100 TO <2>Sx;
CONNECT DIALS<5>:< 1 >Sx;

{network to rotate in y}

Ry := F:YROTATE;
CONNECT Ry< 1 >:<2>Dialmux2;

Sy := F:MULC;
CONNECT Sy< 1 >:< 1 >Ry;
SEND 100 TO <2>Sy;
CONNECT DIALS<6>:< 1 >Sy;

{network to rotate in z}

Rz := F:ZROTATE;
CONNECT Rz< 1 >:<2>Dialmux2;

Sz := F:MULC;
CONNECT Sz< 1 >:< 1 > Rz;
SEND -100 TO < 2 >Sz;
CONNECT DIALS<7>:< 1 >Sz;

{network to adjust BACK clipping plane}

Backclip := F:FOV;
CONNECT Backclip < 1 >: < 1 > World.persp;
SEND 45 TO <2>Backclip;
SEND 2.2 TO < 3 > Backclip;

Backclipaccum := F:ACCUM;
CONNECT Backclipaccum< 1 >:< 1 >Backclip;
CONNECT Backclipaccum< 1 >:<4>Backclip;
CONNECT DIALS<8>:< 1 >Backclipaccum;
SEND 3.6 TO <2>Backclipaccum;
SEND 0 TO < 3 > Backclipaccu m;
SEND 1 TO <4>Backclipaccum;
SEND 30 TO < 5 > Backclipaccu m;
SEND 2.2 TO <6>Backclipaccum;

{network to reset transformations}

RENDERING OPERATIONS — 103

CONNECT Rs< 1 >:< 1 > World.trans;
CONNECT Rs< 1 >:<2>A;
CONNECT Rs<2>:< 1 >World.rot;
CONNECT Rs<2>:< 1 >M;
CONNECT Rs<2>:<2>Rs;
SEND M 3 D(1,0,0 0,1,0 0,0,1) TO < 2 > Rs;

Rs2 := F:SYNC(2);
CONNECT Rs2< 1 >:< 1 >Sect.trans;
CONNECT Rs2 < 1 >: < 2 > A2;
CONNECT Rs2<2>:< 1 >Sect.rot;
CONNECT Rs2<2>:< 1 >M2;
CONNECT Rs2<2>:<2>Rs2;
SEND M3D(1,0,0 0,1,0 0,0,1) TO <2>Rs2;

Rssun := F:CONSTANT;
CONNECT Rssun < 1 > : < 1 > Msun;
CONNECT Rssun< 1 >:< 1 >Sunset.rot;
SEND M3D(1,0,0 0,1,0 0,0,1) TO < 2 > Rssun;

Rsmoon := F:CONSTANT;
CONNECT Rsmoon< 1 >:< 1 >Mmoon;
CONNECT Rsmoon < 1 >: < 1 > Moonset.rot;
SEND M3D(1,0,0 0,1,0 0,0,1) TO < 2> Rsmoon;

CONNECT R < 1 >: < 1 > Rs;
CONNECT R<2>:< 1 >Rs2;
CONNECT R < 3 >: < 1 > Rssun;
CONNECT R<4>:< 1 > Rsmoon;

{network to turn bits on and off}

Bits := F:CONSTANT;
CONNECT Bits< 1 >: < 5 > World.bits;

{network to send to object or sectioning plane}

Waylabel := F:INPUTS_CHOOSE(6);
CONNECT Waylabel< 1 >:< 1 >Flabel l 2;
SEND 'OBJECT' TO < 1 > Waylabel;
SEND 'PLANE' TO < 2 > Waylabel;
SEND 'SUN' TO < 3 > Waylabel;
SEND 'MOON' TO < 4> Waylabel;
SEND 'BACK' TO < 5 > Waylabel;

104 -RENDERING OPERATIONS

Diallabel := F:SYNC(9);
CONNECT Diallabel< 1 >:< 1 >Dlabell;
CONNECT Diallabel< 1 >:< 1 >Diallabel;
CONNECT Diallabel<2>:< 1 >Dlabel2;
CONNECT Diallabel < 2 > : < 2 > Diallabel;
CONNECT Diallabel< 3 >: < 1 > Dlabel3;
CONNECT Diallabel< ~ >: < 3 > Diallabel;
CONNECT Diallabel<4>:< 1 >Dlabel4;
CONNECT Diallabel<4>:<4>Diallabel;
CONNECT Diallabel < 5 > : < 1 > Dlabel5;
CONNECT Diallabel< 5 >: < 5 > Diallabel;
CONNECT Diallabel<6>:< 1 >Dlabel6;
CONNECT Diallabel<6>:<6>Diallabel;
CONNECT Diallabel<7>:< 1 >Dlabel7;
CONNECT Diallabel < 7 > : < 7 > Diallabel;
CONNECT Diallabel< 8 >: < 1 > Dlabel8;
CONNECT Diallabel<8>:<8>Diallabel;
SEND 'X-TRANS' TO < 1 > Diallabel;
SEND 'X-TRANS' TO < 1 > Diallabel;
SEND 'HUE' TO < 1 > Diallabel;
SEND 'HUE' TO < 1 > Diallabel;
SEND 'HUE' TO < 1 > Diallabel;
SEND 'Y-TRANS' TO < 2 > Diallabel;
SEND 'Y-TRANS' TO < 2 > Diallabel;
SEND 'SAT' TO < 2 > Diallabel;
SEND 'SAT' TO < 2 > Diallabel;
SEND 'SAT' TO < 2 > Diallabel;
SEND 'Z-TRANS' TO < 3 > Diallabel;
SEND 'Z-TRANS' TO < 3 > Diallabel;
SEND 'INT' TO < 3 > Diallabel;
SEND 'INT' TO < 3 > Diallabel;
SEND 'INT' TO < 3 > Diallabel;
SEND 'SCALE' TO <4>Diallabel;
SEND 'X-ROT' TO < 5 > Diallabel;
SEND 'Y-ROT' TO <6>Diallabel;
SEND 'Z-ROT' TO < 7 > Diallabel;
SEND 'BACKCLIP' TO <8>Diallabel;

Way := F:SYNC(2);
CONNECT Way<2>:< 1 >Dialmux;
CONNECT Way<2>:< 1 >Dialmux2;
CONNECT Way<2>:<2>Way;
CONNECT Way<2>:< 1 >R;
CONNECT Way<2>:<6>Waylabel;
CONNECT Way<2>:<2>Bits;
CONNECT Way<2>:<9>Diallabel;

RENDERING OPERATIONS — 105

SEND FIX(1) TO < 2 > Way;
SEND FIX(2) TO <2>Way;
SEND FIX(3) TO <2>Way;
SEND FIX(4) TO < Z> Way;
SEND FIX(5) TO < 2 > Way;
SEND TRUE TO < 1 > Way; {activate it}

{network to change from solid to surface}

Sslabel := F:BOOLEAN CHOOSE;
CONNECT Sslabel < 1 >: < 1 > Flabel7;
SEND 'SOLID' TO < 2 > Sslabel;
SEND 'SURFACE' TO <3>Sslabel;

Issolid := F:NOP;
CONNECT Issolid < 1 > : < 2 > World.rendering;
CONNECT Issolid< 1 >:< 1 >Sslabel;

CONNECT Ss<2>:<2>Ss;
CONNECT Ss<2>:< 1 >Issolid;
SEND TRUE TO < 2 > Ss;
SEND FALSE TO <2>Ss;
SEND FALSE TO < 1 > Ss; { initially a surf ace }

{network to control rendering style}

Stylab := F:SYNC(2);
Styval := F:SYNC(2);
Style := F:CONST;
SEND 'HIDDEN' TO < 1 >Stylab;
SEND 'WASH' TO < 1 >Stylab;
SEND 'FLAT' TO < 1 > Stylab;
SEND 'SMOOTH' TO < 1 >Stylab;
SEND 'XSECTION' TO < 1 >Stylab;
SEND 'SECTION' TO < 1 >Stylab;
SEND 'gACKFACE' TO < 1 >Stylab;
SEND 'SAVE —SEC' TO < 1 >Stylab;
SEND 'SAVE —HL' TO < 1 >Stylab;
SEND FIX(4) TO < 1 >Styval;
SEND FIX(5) TO < 1 > Styval;
SEND FIX(6) TO < 1 > Styval;
SEND FIX(7) TO < 1 > Styval;
SEND FIX(1) TO <1>Styval;
SEND FIX(2) TO < 1 > Styval;

106 -RENDERING OPERATIONS

SEND FIX(3) TO < 1 >Styval;
SEND 'OBJECT' TO < 1 >Styval;
SEND 'HLUIEW' TO < 1 >Styval;
CONNECT Stylab<1>:<1>Stylab;
CONNECT Stylab< 1 >:< 1 >Flabel3;
CONNECT Styval< 1 >:< 1 >Styval;
CONNECT Styval< 1 >:<2>Style;

CONNECT Style < 1 >: < 1 > World.rendering;
SEND FIX(0) TO <2>Styval;
SEND FIX(0) TO < 2 > Stylab;

{ some useful viewports }

Piclab := F:SYNC(2);
Picval := F:SYNC(2);
SEND 'SQUARE' TO <1>Piclab;
SEND 'BIG-PIC' TO < 1 > Piclab;
SEND ' 1-OF-2' TO < 1 > Piclab;
SEND '2-OF-2' TO < 1 > Piclab;
SEND ' 1-OF-6' TO < 1 > Piclab;
SEND '2-OF-6' TO < 1 > Piclab;
SEND '3-OF-6' TO < 1 > Piclab;
SEND '4-OF-6' TO < 1 > Piclab;
SEND 'S-OF-6' TO <1>Piclab;
SEND '6-OF-6' TO < 1 > Piclab;
SEND U3D (80,0,480) TO < 1 >Picval;
SEND U 3D (0,-80,640) TO < 1 > Picval;
SEND U3D (0,80,320) TO < 1 >Picval;
SEND U3D (320,80,320) TO < 1 >Picval;
SEND U3D (5,240,210) TO < 1 >Picval;
SEND U 3D (215,240,210) TO < 1 > Picval;
SEND U 3D (425,240,210) TO < 1 > Picval;
SEND U 3D (5,30,210) TO < 1 > Picval;
SEND U3D (215,30,210) TO < 1 >Picval;
SEND U3D (425,30,210) TO < 1 >Picval;

CONNECT Piclab < 1 >: < 1 > Piclab;
CONNECT Piclab < 1 >: < 1 > Flabel2;
CONNECT Picval< 1 >:< 1 >Picval;
CONNECT Picval< 1 >:<3>SHADINGENUIRONMENT;
CONNECT Picval< 1 >:<4>Tripcolor;

SEND 1 TO < 2 > Piclab;
SEND 1 TO <2>Picval;

RENDERING OPERATIONS — 107

{ buttons ~

Fkmo := F:SWITCH;
CONNECT FKEYS< 1 >:< 1 >Fkmo;
CONNECT Fkmo< 1 >:< 1 >Style;
CONNECT Fkmo<2>:<2>Piclab;
CONNECT Fkmo<2>:<2>Picval;
CONNECT Fkmo<3>:<2>Stylab;
CONNECT Fkmo<3>:<2>styval;
CONNECT Fkmo<4>:< 1 >World.rendering;
CONNECT Fkmo<6>:<7>SHADINGENVIRONMENT;
CONNECT Fkmo<7>:< 1 >Ss;
CONNECT Fkmo< 10>:<2>R;
CONNECT Fkmo< 10>:< 1 >Original;
CONNECT Fkmo < 1 1 >: < 1 > Bits;
CONNECT Fkmo < 1 1 >: < 1 > Original;
CONNECT Fkmo < 12 >: < 1 > Way;

Fkm := F:INPUTS_CHOOSE(13);
CONNECT Fkm< 1 >:<2>Fkmo;
CONNECT FKEYS< 1 >:< 13>Fkm;
SEND FIX(1) TO < 1 > Fkm;
SEND FIX(2) TO <2>Fkm;
SEND FIX(3) TO <3>Fkm;
SEND FIX(0) TO <4>Fkm;
SEND FIX(0) TO < 5 > F k m;
SEND TRUE TO <6>Fkm;
SEND FIX(7) TO < 7 > F k m;
SEND FIX(0) TO < 8 > Fkm;
SEND FIX(9) TO < 9 > F k m;
SEND V3D(0,0,0) TO < 10>Fkm;
SEND FIX(1 1) TO < 1 1 > F k m;
SEND FIX(12) TO < 12 > F k m;

SEND 'RENDER' TO < 1 >Flabel l;
SEND 'TOGGLE' TO <1>Flabel4;
SEND 'CLEAR' TO < 1 >Flabel6;
SEND 'RESET' TO < 1 >Flabell0;
SEND 'ON/OFF' TO < 1 > Flabel 1 1;

{ some useful colors }

Blue := ATTRIBUTE COLOR 0;
Magenta := ATTRIBUTE COLOR 60;
Red := ATTRIBUTE COLOR 120;
Yellow := ATTRIBUTE COLOR 180;
Green := ATTRIBUTE COLOR 240;
Cyan := ATTRIBUTE COLOR 300;
White := ATTRIBUTE COLOR 0,0,1;

108 -RENDERING OPERATIONS

V

{some other names for shadingenvironment}

CONNECT Se< 1 >:< 1 >SHADINGENUIRONMENT;
CONNECT Se<2>:<2>SHADINGENUIRONMENT;
CONNECT Se<3>:<3>SHADINGENUIRONMENT;
CONNECT Se<4>:<4>SHADINGENUIRONMENT;
CONNECT Se<5>:<5>SHADINGENUIRONMENT;
CONNECT Se<6>:<6>SHADINGENUIRONMENT;
CONNECT Se<7>:<7>SHADINGENUIRONMENT;

Ambient := F:PASS(1);
CONNECT Ambient< 1 >:< 1 >SHADINGENUIRONMENT;
Background := F:PASS(1);
CONNECT Background < 1 >: < 2 > SHADINGENUIRONMENT;
Rasterviewport := F:PASS(1);
CONNECT Rasterviewport<1>:<3>SHADINGENUIRONMENT;
Exposure := F:PASS(1);
CONNECT Exposure< 1 >:<4>SHADINGENUIRONMENT;
Quality := F:PASS(1);
CONNECT Quality < 1 >: < 5 > SHADINGENUIRONMENT;
Depth := F:PASS(1);
CONNECT Depth < 1 >: < 6 > SHADINGENUIRONMENT;
Screenwash := F:PASS(1);
CONNECT Screenwash< 1 >:<7>SHADINGENUIRONMENT;

{ make PS300 come up in shift line/local }
SEND 'R' TO < 1 > KBHANDLER;

{EOF}

SAMPLE PROGRAMS

EVANS &SUTHERLAND

February 1985
E&S ~~90 1 1 72-095 P 1

The contents of this document are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans &Sutherland.

Evans & Sutherland assumes no responsibility for errors or
inaccuracies in this document. It contains the most
complete and accurate information available at the time of
publication, and is subject to change without notice.

PS 1, PS2, MPS, and PS 300 are trademarks of the Evans &
Sutherland Computer Corporation.

Copyright ©1985
EVANS &SUTHERLAND COMPUTER CORPORATION

P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84108

SAMPLE PROGRAMS

CONTENTS

INTRODUCTION 1

ADAM.300 3

ADAM.FUN 7

COLLISION.300 11

COLLISION.FUN 19

PROJECTN.300 31

PROJECTN.FUN 35

TRISQUARE.300 41

TRISQUARE.FUN 43

SETRATE 49

SAMPLE PROGRAMS — 1

INTRODUCTION

The sample programs in this section illustrate various applications of the PS 300 for
design and analysis. Each application has two programs: a data structure file with an
extension of .300 and a function network file with an extension of .FUN. A header
section in each file explains what the application does. General practices illustrated in
the sample programs can give you ideas for your own applications programs.

A great deal of care has been taken to make these programs examples of good PS 300
programming practices. In the data structure files, notice particularly the use of
BEGIN STRUCTURE ... END STRUCTURE versus explicit naming. Notice also that the
code is tabbed and commented in a way that makes it very easy to read.

The sample programs are listed on the following pages and also distributed in loadable
form on magnetic tape. A selection in the command file TUTORIALS.COM lets you
load the sample programs individually -from the host.

SAMPLE PROGRAMS — 3

ADAM.300

Programmed by: Neil Jon Harrington
Software Support Specialist
Evans & Sutherland
P.O. Box 8700
Salt Lake City, Utah 84108

Created: April 21, 1983
Last update:

Data Structure for an articulated anthropoid robot called ADAM (A Dial Activated
Man). The data nodes (vector lists) for the sphere and the cylinder are not included in
this file. The sphere has a radius of 1 and is centered at the origin. The base of the
cylinder is at the origin lying in the XZ plane with the cylinder centered about the
positive Y axis. The cylinder has a radius of 1 and a height of 1.

ADAM.FUN is the function network file that will articulate this structure.

INIT DISP;
DISP Adam;

Adam := BEGIN_S
WINDOW X=-8.5:8.5 Y=-8.5:5.5
FRONT=O BACK=10;

LOOK AT 0,0,0 FROM 0,0,-1;
Tran := TRAN 0,0,0;
Rot := ROT Y 0;
Scale := SCALE 1;
Pick := SET PICKING OFF;

INST Upper_Body,Lower_Body;
END S;

Upper_Body := BEGIN_S
SET PICK ID = B;

Rot := ROT 0;
{Chest} SCALE .8,2.4,.7 THEN Cylinder;

INST Right_Arm,Left_Arm,Head;
END S;

4 -SAMPLE PROGRAMS

Right_Arm := BEGIN_S
TRAN -1.15,2.4,0;

{ Right Shoulder Joint }
SET PICK ID = C;

Rot := ROT 0;
INST Upper_Arm,Right_Lower_Arm;

END S;

Upper_Arm := BEGIN_S
{Shoulder Ball} SCALE .3,.2,.2 THEN Sphere;

TRAN 0,-2.1,0;
SCALE .25,2.1,.25 THEN Cylinder;

END S;

Right_Lower_Arm := BEGIN_S
TRAM 0,-2.2,0;

Rot := ROT 0;
INST Lower_Arm,Right_Hand;

END S;

Lower_Arm := BEGIN_S
{Elbow} SCALE .2I9 THEN Sphere; {7/32 rad.}

TRAM 0,-1.8,0;
SCALE .225,1.7,.225 THEN Cylinder;

END S ;

Right_Hand := BEGIN_S
TRAN 0,-1.9,0;
SET PICK ID = D;

Rot := ROT 0 THEN Hand;
END S;

Hand := BEGIN_S
{Wrist} SCALE .175 THEN Sphere;
{Hand} TRAN 0,-.4,0;

SCALE .15,.4,.25 THEN Sphere;
END S;

Left Arm := BEGIN_S
IRAN 1.15,2.4,0;
SET PICK ID = C;

Rot := ROT 0;
INST Upper_Arm,Left_Lower_Arm;

END S;

SAMPLE PROGRAMS - 5

Left Lower Arm := BEGIN_S
TRAM 0,-2.2,0;

Rot := ROT 0;
INST Lower Arm,Left Hand;

END S;

Left Hand := BEGIN_S
TRAN 0,-1.9,0;
SET PICK ID = D;

Rot := ROT 0 THEN Hand;
END S;

Head := BEGIN S
TRAN 0, 2. ~+,0;
SET PICK ID = A;

Rot := ROT 0;
{Neck} SCALE .3,.6,.3 THEN Cylinder;
{Head} IRAN 0,1.5,0;

SCALE .6,1,.6 THEN Sphere;
END S;

Lower_Body := BEGIN_S
SET PICK ID = B;

Rot := ROT 0;
TRAN 0,-1,0;
INST Right_Leg,Left_Leg;

{Waist & Hips} SCALE .8,1,.7 THEN Cylinder;
END S;

Right_Leg := BEGIN_S
TRAM -.45,-.25;
SET PICK ID = E;

Rot := ROT 0;
INST Upper_Leg,Right_Lower_Leg;

END S;

Upper_Leg := BEGIN_S
{Hip Joint} SCALE .3 THEN Sphere;

TRAN 0,-2.5,0;
SCALE .35,2.5,.35 THEN Cylinder;

END S;

Right_Lower_Leg := BEGIN_S
TRAN 0,-2.6,0;

Rot := ROT x 0;
INST Lower_Leg,Right_Foot;

END S;

6 -SAMPLE PROGRAMS

Lower_Leg := BEGIN_S
INST Knee;
TRAN 0,-2.6,0;

{Limb} SCALE .3,2.5,.3 THEN Cylinder;
END S;

Knee := BEGIN_S
ROT 90;
TRAM 0,-.3,0;
SCALE .15,.6,.15 THEN Cylinder;

END S;

Right_Foot := BEGIN_S
TRAM 0,-2.75,0;
SET PICK ID = F;

Rot := ROT 0 THEN root;
END S;

Foot := BEGIN_S
{Ankle} SCALE .2 THEN Sphere;

TRAN 0,-.2,.2;
ROT x -90;
SCALE .3,1,.2 THEN Cylinder;

END S;

Lef t_Leg : = BEGINS
IRAN .~+5,-.25;
SET PICK ID = E;

Rot := ROT 0;
INST Upper_Leg,Left_Lower_Leg;

END S;

Left_Lower_Leg := BEGIN_S
TRAN 0,-2.6,0;

Rot := ROT x 0;
INST Lower_Leg,Left_Foot;

END S;

Left Foot := BEGIN S
TRAM 0,-2.75,0;
SET PICK ID = F;

Rot := ROT 0 THEN Foot;
END S;

SAMPLE PROGRAMS — 7

ADAM.FUN

Programmed by: Neil Jon Harrington
Software Support Specialist
Evans & Sutherland
P.O. Box 8700
Salt Lake City, Utah 84108

Created: October, 1982
Last update: February, 1985

Network to modify the structure in ADAM.300. Point at the joint you want to rotate
and the dials will be routed to modify that joint and others associated in that mode. If
you want to rotate and translate the whole robot, point at the head.

{ Code generated by Network Editor 1.07 }
{ ADAM }
{ Frame—Prefix Macro—Prefix }
{ Frame 2 : F2_ }
FZ_P4:=F:CROUTE(6);
F2 PS:=F:CROUTE(6);
F2_P6:=F:DXROTATE;
F2_P7:=F:DXROTATE;
F2 P8:=F:DXROTATE;
F2_P9:=F:DXROTATE;
CONN F2 P~+<3>: <1>F2 P6;
CONK F2 P~+cS>: <1>F2 P7;
CONN F2_PSc3>:cl>F2_P8;
CONK F2_P5c5>:<1>F2 P9;
CONN F2_P6cl>:cl>Right_Lower_Arm.Rot;
CONK F2~_P7c1>:cl>Right_Lower_Leg.Rot;
CONK F2_P8<1>:<1>Left Lower Arm.Rot;
CONN F2 P9cl>:cl>Left_Lower_Leg.Rot;
SEND 200 TO <3>F2 P7;
SEND 200 TO c3>F2_P8;
SEND 200 TO <3>F2 P9;
SEND 200 TO c3>F2_P6;
SEND 0 TO c2>F2_P7;
SEND 0 TO c2>F2 P8;
SEND 0 TO <2>F2 P9;
SEND 0 TO c2>FZ P6;

8 -SAMPLE PROGRAMS

{ Frame3:F3_ }
F3_P11:=F:MULC;
F3_P12:=F:MULC;
F3_P13:=F:MULC;
F3_P14:=F:XROTATE;
F3_P15:=F:YROTATE;
F3_P16:=F:ZROTATE;
F3_P17:=F:CROUTE(6);
F3_P18:=F:MULC;
F3_P19:=F:MULC;
F3_P20:=F:MULC;
F3_P21:=F:MULC;
F3_P22:=F:MULC;
F3_P23:=F:MULC;
CONK F3_P11<1>:<1>F3 P14;
CONN F3 P12c1>:<1>F3 P15;
CONK F3_P13<1>:<1>F3 P16;
CONK F3_P14c1>:<2>F3 P17;
CONK F3_P15<1>:<2>F3 P17;
CONK F3_P16<1>:c2>F3 P17;
CONN F3_P17<1>:cl>F3_P18;
CONK F3_P17<2>:<1>F3_P19;
CONK F3 P17c3>:<1>F3 P20;
CONN F3_P17c4>:<1>F3_P21;
CONK F3_P17c5>:<1>F3_P22;
CONK F3_P17<6>:<1>F3_P23;
CONN F3_P18<1>:<1>Head.Rot;
CONN F3_P18<1>:c2>F3 P18;
CONN F3_P19c1>:<1>Upper_Body.Rot;
CONK F3 P19<1>:c2>F3 P19;
CONN F3_P20c1>:<1>Right_Arm.Rot;
CONN F3 P20<1>:<2>F3 P20;
CONN F3_P21c1>:cl>Right_Hand.Rot;
CONN F3_P21<1>:c2>F3 P21;
CONN F3_P22c1>:<1>Right_Leg.Rot;
CONK F3_P22<1>:<2>F3 P22;
CONN F3_P23<1>:cl>Right_Foot.Rot;
CONK F3 P23<1>:<2>F3 P23;
SEND 200 TO c2>F3 P11;
SEND 200 TO c2>F3_P12;
SEND 200 TO c2>F3 P13;

SAMPLE PROGRAMS — 9

{ Frame4:F4 }
F4_P24:=F:MULC;
F4 P25:=F:MULC;
F4 P26:=F:MULC;
F4_P27:=F:XROTATE;
F4_P28:=F:YROTATE;
F4_P29:=F:ZROTATE;
F4_P30:=F:CROUTE(6);
F4_P31:=F:CMUL;
F4_P32:=F:MULC;
F4_P33:=F:MULC;
F4_P34:=F:MULC;
F4_P35:=F:MULC;
F4_P36:=F:MULC;
CONN F4_P24c1>:cl>F4 P27;
CONK F4_P25c1>:<1>F4 P28;
CONN F4 P26c1>:c1>F4 P29;
CONN F4_P27c1>:<2>F4 P30;
CONN F4_P28c1>:c2>F4_P30;
CONN F4_P29<1>:c2>F4 P30;
CONN F4 P30c1>:c2>F4 P31;
CONN F4_P30c2>:cl>F4_P32;
CONK F4 P30c3>:cl>F4 P33;
CONK F4 P30c4>:cl>F4 P34;
CONK F4_P30c5>:cl>F4_P35;
CONN F4_P30c6>:cl>F4_P36;
CONK F4_P31c1>:cl>Adam.Rot;
CONN F4_P31c1>:cl>F4 P31;
CONN F4_P32c1>:cl>Lower_Body.Rot;
CONN F4 P32c1>:c2>F4 P32;
CONN F4 P33c1>:cl>Left Arm.Rot;
CONN F4_'P33<1>:c2>F4_P33;
CONK F4_P34c1>:cl>Left_Hand.Rot;
CONN F4_P34<1>:c2>F4 P34;
CONN F4_P35c1>:cl>Left_Leg.Rot;
CONN F4_P35<1>:c2>F4_P35;
CONN F4_P36c1>:cl>Left Foot.Rot;
CONN F4_P36c1>:c2>F4_P36;
SEND 200 TO <2>F4 P25;
SEND 200 TO c2>F4_P26;
SEND 200 TO <2>F4 P24;
{ Picking Network:FS_ }
FS_P3:=F:PICKINFO;
F5_P39:=F:CHARCONVERT;
F5 P40: =-F: SUBC;

10 -SAMPLE PROGRAMS

CONN TABLETINc4>:cl>Adam.Pick;
CONN TABLETINc6>:cl>PICK;
CONN PICK<1>:cl>F5 P3;
CONK PICKc2>:cl>Adam.Pick;
CONK PICKc3>:cl>Adam.Pick;
CONN F5_P3<2>:<1>FS_P39;
CONN FS_P39c1>:cl>F5_P40;
SEND FIX(64) TO <2>FS P40;
SEND FIX(1) TO c2>F5_P3;
{ Framel:Fl }
{ Setup cness true c2-3>P10 }
Fl P10:=F:SYNC(3);
SETUP CNESS TRUE <2>F1 P10;
SETUP CNESS TRUE <3>F1 P10;
CONK Fl_P10c2>:c2>F2_P6;
CONN F1_P10<2>:c2>FZ P7;
CONN Fl_P10<2>:c2>F2 P8;
CONN F1_P10<2>:c2>F2 P9;
CONN F1_P10<3>:cl>Right_Lower_Arm.Rot;
CONK Fl_P10c3>:cl>Right_Lower_Leg.Rot;
CONN Fl_P10c3>:<1>Left_Lower_Arm.Rot;
CONN F1_P10<3>:cl>Left_Lower_Leg.Rot;
CONN F1_P10<3>:c2>F3_P18;
CONK F1_P10<3>:c2>F3_P19;
CONN F1_P10c3>:c2>F3_P20;
CONN F1_P10<3>:<2>F3_P21;
CONN Fl_P10c3>:c2>F3_P22;
CONK Fl_P10<3>:<2>F3_P23;
CONK Fl_P10<3>:cl>Head.Rot;
CONN F1_PlOc3>:cl>Upper_Body.Rot;
CONN Fl_P10<3>:cl>Right_Arm.Rot;
CONK Fl_P10c3>:<1>Right_Hand.Rot;
CONN F1_P10c3>:c1>Right_Leg.Rot;
CONN F1_P10c3>:<1>Right_Foot.Rot;
CONK F1_P10c3>:cl>F4_P31;
CONK Fl_PlOc3>:c2>F4_P32;
CONN F1_P10<3>:c2>F4_P33;
CONK F1_PlOc3>:c2>F4_P34;
CONN F1_P10<3>:c2>F4_P35;
CONN Fl_P10<3>:<2>F4_P36;
CONN F1_P10<3>:cl>Adam.Rot;
CONN F1_PlOc3>:cl>Lower_Body.Rot;
CONK F1_PlOc3>:cl>Left_Arm.Rot;
CONN F1_P10c3>:cl>Left_Hand.Rot;
CONN Fl_P10c3>:cl>Left_Leg.Rot;
CONN Fl_P10c3>:cl>Left_Foot.Rot;

SAMPLE PROGRAMS — 1 1

CONN FKEYS<1>:<1>F1 P10;
CONK DIALScl>:<1>F3 P11;
CONN DIALSc2>:<1>F3 P12;
CONN DIALS<3>:cl>F3 P13;
CONK DIALS<~+> : <2>F2 P4;
CONN DIALScS>:<1>F4 P24;
CONN DIALSc6>:<1>F4 P25;
CONN DIALSc7>:cl>F4_P26;
CONN DIALS<8>:<2>F2 P5;
CONK F5_P40c1>:cl>F2_P4;
C~ONN F5 P40c1> : <1>F2 P5;
CONN F5 P40c1>:<1>F3 P17;
CONN F5 P40<1>:<1>F4 P30;
SEND FIX(1) TO cl>F2_P4;
SEND FIX(1) TO cl>F2 P5;
SEND FIX(1) TO <1>F3 P17;
SEND FIX(1) TO <1>F4 P30;
SEND 0 TO c2>F1 P10;
SEND M3D(1,0,0 0,1,0 0,0,1) TO c3>F1 P10;
SEND M3D(1,0,0 0,1,0 0,0,1) TO <1>F1 P10;

12 —SAMPLE PROGRAMS

4

E
_1

6o
~

rs

8

li
rn

e
e
s

L
'o

n
~

ro
l

4 ~
~ a ~ ~ ~
+. '~ ~, d d
~ m ao cAA~,, ~
O , V W

q D O Q

ti
k
•v

4

D~ a

U
p
p
e
r

B
o
d
y

C
a
n
fr

o
l

a
Z

~ ~ N M
w ~, ~, '~.
/~ w ao ~
y 'V ~+i

o; D D D P.
e
s
e
 f

1

a
4

L
o
w

e
r

B
o
d
y

L
'o

r~
tr

o
l

a
2

~ h ~
~ ti ti ti
a ~o ~o co
0 ~ V ~ V

~ D D O P,
e
s
¢
 t

I

 l

M

4

P
ic

k
in

g

N
s
tw

a
rk

 1

~ /

N 1"7 ~' V1 O t+ OO

N
J

.-+
O

~ ~

~ ~

~) ~

~ ~

~ 01

.... .1

--^' ~---

t
;
S
Y
N
C
(
3
~

ti

a
,3

d
(1

,
0
,
0

a
,
!,
 0

0
,
0
,

l
~

Figure 1. ADAM.FUN (Sheet 1 of 5)
(Function Network for ADAM.300)

SAMPLE PROGRAMS - 13

E~
~
1
 sR

1
6

H
T

_
L

 O
h1

£R
_A

R
,N

.
R

O
T

0
4
N

~
~

I

~ L
 £

F
T

_
 L

 O
1d

E
R

_
~4

R
N

.
R

O
T

E~
E

~
1

 ~
L

£
F

 T
_

L
O

lJ
E

k
_

 E
 E

G
.

R
O

 T

W W W W
F- !-- !-- ~---
{
H

t
F-

C
F--

C

O O d O
DC
X K X X
O O O O

W la._ la.

C~ M N M N M ~ rt

l l

th

n
~4
...
W
1--

O
cr

~O
._.
W
H

O
a
U

L..

Figure 1. ADAM.FUN (Sheet 2 of 5)

4 '~
~ ~
d 41
H y
r d
~ ~
~~ C~

14 -SAMPLE PROGRAMS

~
~

 1
 ~ H

£A
13

.
R

O
 T

~
~

I

~
U

a
P

£
1
~

 B
D

D
r.

 R
O

T

~
!

~
R

~
61

Y
T

_
~R

17
.

R
O

T

~
~

1

 S
R

I&
ti

T
_H

A
N

J.
 R

D
T

f~
E

~
I

~
R

I6
H

T
_
L

E
G

.
R

O
T

f~
E

~
1

 ~
R

1
6

H
T

_
F

flf
lT

,
R

C
IT

u
J

Q

U
J

1 L... 1...

Q N Q ~— N

1

J
u
J

v
J

U
J

E E

L..
.- N O,

H

o,
4.

M
ti
Q

M 'rt ~A ~O

F
:
C
R
O
U
T
E
(
6
)

W
1--

F--
O

X

W

~.
ti

~V

O
h

`O

Q

U
rJ

F
:

Z
R

O
T

I~
T

E

ry

4
~V

4
~~

M
ti

~ V

O
~~

u

4
a

Figure 1. ADAM.FUN (Sheet 3 of 5)

SAMPLE PROGRAMS - 15

Figure 1. ADAM.FUf~I (Sheet 4 of 5)

16 —SAMPLE PROGRAMS

U
m

N

O
P

L~

t ~
~.

~o
.~

,y
. ~

rr
x

O.

D,

F
:

C
H

rtR
C

O
N

Y
E

R

.- N

F
:

P
IC

K
IN

fO

~' 1A ~O 1~

.- N

Y
V
w
a

r N NI

~- N l"f r' Vf ~O

Figure 1. ADAM.FUN (Sheet 5 of 5)

SAMPLE PROGRAMS — 17

COLLISION.300

Programmed by: Neil Jon Harrington
Software Support Specialist
Evans & Sutherland
P.O. Box 8700
Salt Lake City, Utah 84108

Created: October, 1984
Last update: February, 1985

PS 300 data structure, consisting of a ball in a box. The function network in
Collision fun modifies this structure to simulate the ball bouncing in the box with no
gravity and elastic collisions.

INIT DISP;
DISP Collision;

Collision := BEGIN_S
SET INTENSITY ON .75:1;
SET DEPTH_CLIPPING ON;
FOV 70 FRONT = 1.4 BACK = 5;
LOOK AT 0,0,0 FROM 1.5,1.3,-2.4;

Yrot := ROT 0;
SET COLOR 240,1 THEN Box;
SET COLOR 120,1 THEN Ball;
SET COLOR 0,1 THEN Path;

END S;

Box := SCALE 1 THEN Cube;

Ball := BEGIN_S
Tran := TRAN 0,0,0;
Rot := ROT 0;
Scale := SCALE .1 THEN Sphere;

END S;

18 -SAMPLE PROGRAMS

Path := VEC n=10000 0,0,0;

Cube : = VEC I tem n=16
P -1, 1,-1
L 1,-1,-1
P 1, 1,-1
L 1,-1, 1
P 1, 1, 1
L -1,-1, 1
P -1, 1, 1
L -1,-1,-1

SAMPLE PROGRAMS - 19

COLLISION.FUN

Programmed by: Neil Jon Harrington
Software Support Specialist
Evans & Sutherland
P.O. Box 8700
Salt Lake City, Utah 84108

Created: October, 1984
Last update: February, 1985

Network to modify structure created in Collision.300. See description in that file.

{ Code generated by Network Editor
{ COLLISION }
{ Frame-Prefix Macro-Prefix }
{ Framel:M1$F1 }
M1$F1 P1:=F:INPUTS CHOOSE(13);
M1$F1 P2:=F:ROUTE(12);
CONK M1$Fl Pl<1>:<2>Ml$F1 P2;
SEND TRUE TO
SEND TRUE TO
SEND TRUE TO
SEND TRUE TO
SEND TRUE TO
SEND TRUE TO
SEND TRUE TO
SEND TRUE TO
SEND TRUE TO
SEND TRUE TO
SEND TRUE TO
SEND TRUE TO

<1>M1$F1 P1;
<2>M1$F1 P1;
<3>M1$F1 P1;
<4>M1$F1 Pl;
<5>Ml$F1 Pl;
<6>M1$F1 P1;
<7>M1$F1 P1;
<8>M1$Fl P1;
<9>M1$F1 P1;
<10>M1$F1 P1;
<11>M1$F1 P1;
<12>M1$F1 P1;

{ Motion Control:F2
F2 P2:=F:SYNC(4);
F2_P6:=F:LIMIT;
F2_P7:=F:LIMIT;
F2_P8:=F:LIMIT;
F2_P9:=F:BROUTEC;
F2 P10:=F:BROUTEC;
FZ~P11:=F:BROUTEC;
F2 P12:=F:MULC;

}

1.07 }

20 —SAMPLE PROGRAMS

F2_P13:=F:MULC;
F2_P14:=F:MULCT
F2_P15:=F:XVECTOR;
F2_P16:=F:YVECTOR;
F2_P17:=F:ZVECTOR;
F2_P18:=F:ADD;
F2_P19:=F:ADD;
F2_P20:=F:ADD;
F2_P41:=F:ACCUMULATE;
F2_P42:=F:ACCUMULATE;
F2_P43:=F:ACCUMULATE;
F2_P38:=F:ADD;
F2_P39:=F:ADD;
CONK F2_P2c2>:cl>F2_P18;
CONN F2_P2c3>:cl>F2_P19;
CONN F2_P2<4>:cl>F2 P20;
CONN F2_P6c1>:cl>F2_P15;
CONN F2_P6c1>:c2>F2_P18;
CONK F2_P6c3>:<1>F2 P9;
CONK F2_P7c1>:<1>F2 Plb;
CONN F2_P7c1>:c2>F2 P19;
CONK F2_P7c3>:cl>F2_P10;
CONN F2_P8cl>:cl>F2_P17;
CONK F2_P8cl>:<2>F2 P20;
CONN F2_P8c3>:<1>F2 P11;
CONN F2_P9c1>:<2>F2 P2;
CONN F2_P9c2>:cl>F2_P12;
CONK F2_P10<1>:c3>F2 P2;
CONN F2_PlOc2>:cl>F2 P13;
CONK F2_Pllcl>:c4>F2_P2;
CONN F2_Pllc2>:<1>F2 P14;
CONK F2_P12c1>:<2>F2 P2;
CONK F2_P12<1>:c2>F2 P9;
CONN F2_P12<1>:c2>F2 P41;
CONK F2_P13c1>:c3>F2_P2;
CONN F2_P13c1>:<2>F2 P10;
CONN F2_P13<1>:c2>F2 P42;
CONK F2_P14c1>:<4>F2 P2;
CONN F2_P14<1>:c2>F2 P11;
CONN F2 P14c1>:c2>F2 P43;
CONN F2_P15<1>:cl>FZ P38;
CONN F2_P16c1>:c2>F2 P38;
CONN F2_P17c1>:c2>F2 P39;
CONN F2_P18c1>:cl>F2_Pb;
CONN F2_P19c1>:cl>F2_P7;
CONN F2_PZOcl>:cl>F2_P8;
CONK F2 P38c1>:cl>F2 P39;
CONK F2!_P39c1>:cl>Ba11.Tran;
CONN F2 P41c1>:c2>F2 P9;

SAMPLE PROGRAMS — 21

CONN F2 P~+2<1> : <2>F2 P10;
CONN F2 P43<1>:<2>F2 P11;
SEND —.9 TO <3>F2 P6;
SEND —.9 TO <3>F2 P7;
SEND —.9 TO <3>F2 P8;
SEND .9 TO <2>F2 P6;
SEND .9 TO <2>F2 P7;
SEND .9 TO <2>F2 P8;
SEND 0 TO c 6 >F2 P~+1;
SEND 0 TO <6>F2 P42;
SEND 0 TO <6>F2 P43;
SEND 10 TO <5>F2 P41;
SEND 10 TO <5>F2 P42;
SEND 10 TO <5>F2 P~+3;
SEND .l TO c~+>F2 P41;
SEND .1 TO <4>F2 P~+2;
SEND .l TO <4>F2 P43;
SEND 0 TO <3>F2 P~+1;
SEND 0 TO c3>F2_P42;
SEND 0 TO <3>F2 P~+3;
SEND .03 TO c4>F2_P2;
SEND .03 TO <2>F2 P11;
SEND .03 TO c2>F2_P43;
SEND .02 TO c3>F2_P2;
SEND . 02 TO c 2>F2 P10 ;
SEND .02 TO <2>F2 P42;
SEND .Ol TO c2>F2 P2;
SEND .Ol TO c2>F2_P9;
SEND .O1 TO <2>F2 P41;
SEND 0 TO <2>F2 P18;
SEND 0 TO <2>F2 P19;
SEND 0 TO c2>F2_P20;
SEND —1 TO <2>F2 P12;
SEND —1 TO c2>FZ_P13;
SEND —1 TO <2>F2 P14;
{ Clock Control:F3 }
F3_P1:=F:CLFRAMES;
F3_P22:=F:CONSTANT;
F3_P23:=F:EDGE DETECT;
F3_P25:=F:ACCUMULATE;
F3_P27:=F:FIX;
F3 P28:=F:XOR;
F3_P65:=F:XROTATE;
CONN F3_P1<2>:<1>F3 P22;

CONN F3 P1<2>:<1>F3 P65;
CONK F3_Plc2>:c5>F3 P1;

CONN F3 P22<1>:cl>F3 P23;
CONN F3 P25c1>:cl>F3 P27;
CONN F3 P27c1>:<1>F3 Pl;

22 —SAMPLE PROGRAMS

CONK F3 P28<1>:<6>F3 P1;
CONK F3_P28c1>:c2>F3_P28;
CONK F3_P65c1>:<1>Ba11.Rot;
SEND FIX(0) TO c2>F3_P1;
SEND FALSE TO c3>F3_Pl;
SEND FIX(1) TO c4>F3_P1;
SEND FIX(0) TO <5>F3 P1;
SEND FALSE TO c6>F3_P1;
SEND FIX(1) TO cl>F3_Pl;
SEND FALSE TO <1>F3 P23;
SEND TRUE TO c2>F3 P22;
SEND TRUE TO c~>F3 P23;
SEND 1 TO c2>F3_P25;
SEND 1 TO <3>F3 P25;
SEND 10 TO c4>F3 P25;
SEND 60 TO <5>F3 P25;
SEND 1 TO c6>F3_P25;
SEND FALSE TO c2>F3 P28;
{ Framel:M2$F1 }
{ Box Size }
M2$F1_P1:=F:ACCUMULATE;
M2$F1_P2:=F:XVECTOR;
M2$Fl_P3:=F:YVECTOR;
M2$F1_P4:=F:ZVECTOR;
M2$F1 PS:=F:CONSTANT;
M2$F1_P6:=F:NOP;
CONK M2$Fl_P2cl>:cl>M2$F1_Pl;
CONN M2$F1_P3cl>:<1>MZ$F1 P1;
CONN M2$Fl_P4cl>:cl>M2$F1 P1;
CONK M2$F1_PScl>:c2>M2$Fl_Pl;
SEND V3D(.01,.01,.01) TO c6>M2$Fl_P1;
SEND 1 TO c4>M2$Fl_P1;
SEND V3D(l,l,l) TO c2>M2$Fl_Pl;
SEND V3D(l,l,l) TO c2>M2$F1 P5;
SEND V3D(1,1,1) TO c5>M2$F1_Pl;
SEND V3D(1,1,1) TO <1>M2$F1 P6;
SEND 0 TO <3>M2$F1 P1;
{ Box/Ball Size:F4 }

F4_P31:=F:SUBC;
F~+ P 3 2 : =F :SCALE ;
F4_P33:=F:PARTS;
F4_P34:=F:PARTS;
F4_P35:=F:MULC;
F~+ P44 : =F : DSCALE ;
F4_P45:=F:VEC;
F4_P46:=F:VEC;
F~+ P4 7 : =F :FETCH ;
VAR Box Size;

SAMPLE PROGRAMS — 23

CONK M2$F1_P1cl>:<1>F4 P32;
CONK M2$F1_P1<1>:<1>F4 P31;
CONK M2$F1_Plcl>:cl>Box Size;
CONK M2$F1_P5<1>:<1>F4 P32;
CONN M2$Fl_P5c1>:cl>F4 P31;
CONN M2$F1_P5<1>:cl>Box Size;
CONK M2$F1_P6cl>:cl>F4 P32;
CONN M2$F1_P6c1>:cl>F4 P31;
CONK M2$F1_P6<1>:<1>Box Size;
CONK F4_P31c1>:<1>F4_P33;
CONN F4_P31c1>:cl>F4_P35;
CONN F4_P32c1>:cl>Box;
CONN F4_P35c1>:cl>F4 P34;
CONN F4_P44c1>:c1>Ball.Scale;
CONN F4_P44c2>:c3>F4 P44;
CONN F4_P44c2>:cl>F4_P45;
CONK F4_P44c2>:<2>F4 P45;
CONN F4_P44c2>:c2>F4_P46;
CONK F4_P45c1>:cl>F4 P46;
CONN F4_P46c1>:cl>F4 P47;
CONK F4_P46c1>:c2>F4_P31;
CONN F4 P47c1>:cl>F4 P31;
SEND V3D(1,1,1) TO cl>Box_Size;
SEND 'Box Size' TO c2>F4 P47;
SEND .OS TO c5>F4 P44;
SEND 1 TO <4>F4 P44;
SEND .l TO c2>F4_P44;
SEND .1 TO c3>F4 P44;
SEND V3D(.1,.1,.1) TO c2>F4_P31;
SEND —1 TO c2>F4_P35;
{ Path:FS }
FS_P49:=F:CBROUTE;
FS_P50:=F:XOR;
CONK FS_P49c1>:cappend>Path;
CONK F5_P50c1>:c2>FS_P50;
CONK FS_PSOcl>:cl>F5_P49;
SEND TRUE TO <2>F5 P50;
SEND TRUE TO cl>FS P49;
{ Labels:Fb }
SEND 'RESET' TO <1>FLABELII;
SEND 'STRT/STP' TO cl>FLABELIO;
SEND 'SLOWER' TO cl>FLABEL4;
SEND 'FASTER' TO cl>FLABEL3;
SEND 'CLR PATH' TO cl>FLABEL2;
SEND 'TRACE?' TO cl>FLABELl;
SEND 'BALLSIZE' TO cl>DLABEL8;
SEND 'Z VEL' TO cl>DLABEL7;
SEND 'Y VEL' TO cl>DLABEL6;

24 —SAMPLE PROGRAMS

SEND 'X VEL' TO cl>DLABEL5;
SEND 'OS Y ROTATE' TO <1>DLABEL4;
SEND 'Z SIZE' TO cl>DLABEL3;
SEND 'Y SIZE' TO cl>DLABEL2;
SEND 'X SIZE' TO <1>DLABELI;
{ Framel:F1 }
Fl_P48:=F:DYROTATE;
CONK DIALScl>:cl>M2$F1 P2;
CONK DIALS<2>:cl>M2$F1 P3;
CONK DIALS<3>:<1>M2$F1 P4;
CONK PTALSc4>:cl>F1_P48;
CONK DIALScS>:cl>F2_P41;
CONN DIALSc6>:<1>F2 P42;
CONK DIAL~~7>:<1>F2 P43;
CON? DIALSc8>:<1>F4 P44;
CONK Ml$Fl_P2<1>:<1>F5 P50;
CONN M1$Fl_P2<2>:cclear>Path;
CONK Ml$Fl_P2c3>:cl>F3_P25;
CONK M1$Fl_P2<4>:<1>F3 P25;
CONN M1$Fl_P2c10>:cl>F3_P28;
CONK M1$F1 P2c11~:c1>M2$F1 P5;
CONK FKEYScl>:<13>Ml$F1 P1;
CONN FKEYScl>:cl>Ml$Fl P2;
CONK F1_P48c1>:<1>Collision.Yrot;
CONK F2_P2cl>:cl>F3_P23;
CONK F2_P39<1>:<2>F5 P49;
CONK F3_P23<2>:cl>F2 P2;
CONK F4 P33c1>:c2>F2 P6;
CONK F4_P33<2>:<2>F2 P7;
CONK F4 P33c3>:c2>F2 P8;
CONN F4_P34c1>:<3>F2 P6;
CONN F4 P34c2>:c3>F2 P7;
CONN F4_P34c3>:c3>F2_P8;
SEND 2 TO <4>M1$F1 P1;
SEND —2 TO c3>M1$Fl_P1;
SEND FIX(10000) TO <2>Ml$F1 P1;
SEND 200 TO c3>F1_P48;
SEND 0 TO c2>F1 P48;

SAMPLE PROGRAMS — 25

1

Figure 2. COLLISION.FUN (Sheet 1 of 6)
(Function Network for COLLISION.300)

26 —SAMPLE PROGRAMS

V

b

v

1

•
1

4

v
Q
1

4
rfi.

~`~ ~~~

000

.y

1

►~-~4-~t~+~

O ~~

D .r

Figure 2. COLLISION.FUN (Sheet 2 of 6)

SAMPLE PROGRAMS - 27

Figure 2. COLLISION.FUN (Sheet 3 of 6)

28 —SAMPLE PROGRAMS

V
N .~
H

k
0

~
3
d
f ~

,
t,
 >

>

H

a

~E

~
I~

B
O

X

W
J

V
N

k
~0

`~

Y

k
y
`~

A

k
~0

w
h
Q

~-- N M rt

N

a

t~

N

u
J
a

~.

U

s
N

r N

x
0

.-~

O
V

N N1

w
0.

U
F•-
W
W

la.
r

W
v
z
V
h

U
W
:r

.— N

V
W

t...
N

/I

W
J

U
N
C]

W
~- N N1 r V1

u a a

r

N
. y

~o
f..J

1 1 h
N N N 'N 4

(~^
V

,
+
^

I ,wV

t _ J

~r

Y, V

a
N
.y

h
I

~C
O

Figure 2. COLLISION.FUN (Sheet 4 of 6)

SAMPLE PROGRAMS — 29

~E

~
e
p

p
~

n
d

~
P

R
T

N

o.

Q

W
r
a
0

m
u

ta.
-- N

x

~
'c

; e
a
r

~P
~

TH

4
a

r
4

~. q

e ~.
~ ~
~ o ~,
~ ~• o
~ L a

Figure 2. COLLISION.FUN (Sheet 5 of 6)

30 —SAMPLE PROGRAMS

Figure 2. COLLISION.FUN (Sheet 6 of 6)

SAMPLE PROGRAMS — 31

PROJECTN.300

Programmed by: Neil Jon Harrington
Software Support Specialist
Evans & Sutherland
P.O. Box 8700
Salt Lake City, Utah 84108

Created: July, 1982
Last update: February, 1985

Demonstrate X,Y, and Z planar projections using Matrix_3x3 command. The vector list
data node for SPHERE, which is referred to in this structure, is not included in this file.

INIT DISP;
DISP Projection;

Projection := BEGIN S
CHAR SCALE .65;
FONT Complex_Roman;
INST Isometric_View;
WINDOW x=-7.2:7.2 y=-7.2:7.2.;
INST Front_View,Side_View,Top_View;

END S;

Front_View := BEGIN S
VIEWPORT HOR=-1:0 VERT=-1:0;
LOOK AT 3,2,0 FROM 3,2,-12 THEN Object;

END S;

Side_View := BEGIN S
VIEWPORT HOR=0:1 VERT=-1:0;
LOOK AT 0,2,3 FROM 12,2,3 THEN Object;

END S;

Top_View := BEGIN_S
VIEWPORT HOR=-1:0 VERT=0:1;
LOOK AT 3,0,1 FROM 3,12,1 THEN Object;

END S;

32 -SAMPLE PROGRAMS

Isometric_View := BEGIN S
VIEWPORT HOR=0:1 VERT=0:1;
WINDOW x=-7:9 y=-7:9;

Rot := ROT 0;
ROT X -30;
ROT Y 40 THEN Object;

END S;

Object := BEGIN_S
SET COLOR 240,1;
SCALE 8 THEN WS Gnomon;
SET COLOR 0,0;
INST G1obe,Xplane,Yplane,Zplane;

END S;

Globe := BEGIN S
Rot := ROT 0;

SCALE 1.5;
SET COLOR 0,1 THEN Sphere;
SET COLOR 120,1;
SCALE 1.5 THEN Os Gnomon;

END S;

Xplane := BEGIN_S
TRAN 5,0,0;
INST Xprojection_Matrix;
ROT Y -90;
INST Square;
LABELS -2.5,-2.5 'YZ Plane';

END S;

Yplane := BEGIN_S
TRAM 0,5,0;
INST Yprojection_Matrix;
ROT X 90;
INST Square;
LABELS -2.5,-2.5 'XZ Plane';

END S;

Zplane := BEGIN_S
TRAM 0,0,-5;
INST Zprojection_Matrix,Square;
LABELS -2.5,-2.5 'XY Plane';

END S;

XProjection_Matrix := MATRIX_3X3 0,0,0
0,1,0
0,0,1 THEN Globe;

SAMPLE PROGRAMS - 33

YProjection_Matrix := MATRIX_3X3 1,0,0
0,0,0
0 , 0 , l THEN Globe ;

ZProjection_Matrix := MATRIX_3X3 1,0,0
0,1,0
0,0,0 THEN Globe;

Square := VEC n=5 3,3 -3,3 -3,-3 3,-3 3,3;

WS_Gnomon := BEGIN_S
TEXT SIZE .05;
SET CHARACTERS Screen Oriented;
FONT Triplex_Roman;
LABELS
l.l,-.05 'Wx'
-.05,1.1 'Wy'
-.05,-.05,1.1 'WZ'i

VEC ITEM n=5 P 0,.8,0 L 0,0,0 L .8,0,0
P 0,0,0 L 0,0,.8;

TRAM .8,0 THEN Xarrow;
TRAM 0,.8 THEN Arrow;
TRAM 0,0,.8 THEN Zarrow;

END S;

Xarrow := ROT z -90 THEN Arrow;
Arrow := SCALE .025,.2,.025 THEN Pyramid;
Zarrow := ROT x 90 THEN Arrow;

OS_Gnomon := BEGIN_S
CHARACTER SCALE .0375;
SET CHARACTERS Screen Oriented;
FONT Triplex_Roman;
LABELS
1.1,-.05 'Ox'
-.05,1.1

'oy'

-.05,-.05,1.1 'Oz';
WITH PATTERN 1 1 LEN .1
VEC ITEM n=5 P 0,.8,0 L 0,0,0 L .8,0,0
P 0,0,0 L 0,0,.8;

TRAM .8,0 THEN Xarrow;
TRAM 0,.8 THEN Arrow;
TRAM 0,0,.8 THEN Zarrow;

END S;

Pyramid := VEC BLOCK ITEM n=10
P 1,0, 1 L -1,0,1 L-1,0,-1 L 1,0,-1 L 1,0,1 L 0,1,0 L 1,0,-1

P -1,0,-1 L 0,1,0 L -1,o,l;

SAMPLE PROGRAMS — 35

PROJECTN.FUN

Program med by: Neil Jon Harrington
Software Support Specialist
Evans & Sutherland
P.O. Box 8700
Salt Lake City, Utah 84108

Created: July, 1982
Last update: February, 1985

Demonstrate X,Y, and Z planar projections using Matrix_3x3 command. The vector list
data node for SPHERE, which is referred to in this structure, is not included in this file.

{ Code generated by Network Editor 1.07 }

{ PROJECTN }
{ Frame-Prefix Macro-Prefix }
{ Framel:M2$F1 }

M2$F1 P1:=F:MULC;
M2$F1 P2:=F:MULC;
M2$F1 P3:=F:MULC;
M2$F1 P4:=F:XROTATE;
M2$F1 PS:=F:YROTATE;
M2$F1 P6:=F:ZROTATE;
CONK M2$F1 P1<1>:<1>M2$F1 P4;
CONK M2$F1 P2<1>:<1>M2$F1 P5;
CONK M2$F1 P3<1>:<1>M2$F1 P6;
SEND 200 TO <2>M2$F1 P2;
SEND 200 TO <2>M2$F1 Pl;
SEND 200 TO <2>M2$F1 P3;
{ Framel:M1$F1 }

{World Space Rotations}
M1$F1 P2:=F:CMUL;
M1$FI P3:=F:CONSTANT;
CONK M2$F1 P5<1>:<2>M1$F1 P2;
CONK M2$F1 P4<1>:<2>M1$F1 P2;

CONK M2$F1 P6<1>:<2>M1$F1 P2;
CONK M1$F1 P2<1>:<1>M1$F1 P2;
CONK M1$Fl P3<1>:<1>M1$F1 P2;
SEND M3D(1,0,0 0,1,0 0,0,1) TO <2>M1$F1 P3;
SEND M3D(1,0,0 0,1,0 0,0,1) TO <1>M1$F1_P2;

36 —SAMPLE PROGRAMS

{ Framel:M3$F1_ }
M3$F1_P1:=F:INPUTS_CHOOSE(13);
M3$F1_P2:=F:ROUTE(12);
CONN M3$Fl_P1<1>:<2>M3$F1 P2;
SEND TRUE TO <1>M3$F1 P1;
SEND TRUE TO c2>M3$F1 P1;
SEND TRUE TO <3>M3$F1 P1;
SEND TRUE TO c4>M3$Fl_P1;
SEND TRUE TO <5>M3$F1 P1;
SEND TRUE TO <6>M3$F1 P1;
SEND TRUE TO <7>M3$F1 P1;
SEND TRUE TO <8>M3$F1 P1;
SEND TRUE TO c9>M3$Fl_Fl;
SEND TRUE TO <10>M3$F1 P1;
SEND TRUE TO <11>M3$F1 P1;
SEND TRUE TO <1-,2>M3$F1 P1;
{ Labels:F2_ }
SEND 'RESET' TO cl>FLABELII;
SEND 'OS ROT' TO cl>FLABEL2;
SEND 'WS ROT' TO <1>FLABELI;
.SEND 'OBJ ZROT' TO <1>DLABEL7;
SEND 'OBJ YROT' TO cl>DLABEL6;
SEND 'OBJ XROT' TO <1>DLABEL5;
SEND 'VIEWZROT' TO cl>DLABEL3;
SEND 'VIEWYROT' TO cl>DLABEL2;
SEND 'VIEWXROT' TO cl>DLABELl;
{ Framel:F1 }
Fl_P2:=F:CROUTE(2);
Fl_P3:=F:MULC;
F1 P~+:=F:MULC;
Fl_PS:=F:MULCT
F1_P6:=F:XROTATE;
Fl_P7:=F:YROTATE;
Fl_P8:=F:ZROTATE;
F1_P9:=F:CMUL;
Fl_P10:=F:MULC;
F 1 P 1 ~+ : =F :CONSTANT ;
CONN Ml$F1_P2<1>:<1>Isometric_View.Rot;
CONN Ml$Fl_P3<1>:<1>Isometric_View.Rot;
CONK F1_P2c1>:<2>F1_P9;
CONK F1_P2c2>:cl>F1_P10;
CONK F1_P3cl>:<1>F1_P6;
CONK Fl_P4c1>:cl>F1_P7;
CONN F1_P5cl>:<1>F1_F8;
CONN F1_P6c1>:c2>F1_F2;
CONN F1_P7cl>:c2>F1_P2;
CONN Fl_P8cl>:<2>F1_P2;
CONK Fl_P9cl>:<1>G1obe.Rot;

SAMPLE PROGRAMS — 37

CONK F1_P9<1>:<2>F1 P10;
CONN F1 P9<1>:cl>F1 P9;
CONK F1 P10<1>:<1>F1 P9;
CONK F1_PlOcl>:<1>Globe.Rot;
CONN F1_P10<1>:<2>F1 P10;
CONN M3$F1_P2c1>:cl>F1 P2;
CONN M3$Fl_P2c2>:<1>F1 P2;
CONK M3$F1_P2<11>:cl>F1 P14;
CONN M3$Fl_P2c11>:<1>Ml$F1 P3;
CONK FKEYScl>:<13>M3$F1 P1;
CONN FKEYScl>:cl>M3$F1_P2;
CONN DIALS<1>:<1>M2$F1 P1;
CONK DIALSc2>:<1>M2$F1 P2;
CON1V DIALS<3>:<1>M2$F1 P3;
CONK DIALSc5>:<1>F1 P3;
CONN DIALS<6>:<1>F1 P4;
CONN DIALS<7>:<1>F1 P5;
CONK F1_P1.4<1>:<2>F1 P10;
CONN F1 P1~+<1>:<1>F1 P9;
CONK F1 P1~+<1>:<1>G1obe.Rot;
SEND FIX(2) TO c2>M3$F1_Pl;
SEND FIX(1) TO cl>M3$F1 P1;
SEND FIX(1) TO cl3>M3$Fl_P1;
SEND FIX(1) TO cl>M3$Fl_P2;
SEND M3D(1,0,0 0,1,0 0,0,1) TO c2>F1_P14;

SEND M3D(1,0,0 0,1,0 0,0,1) TO cl>F1_P9;
SEND M3D(1,0,0 0,1,0 0,0,1) TO <2>Fl_P10;

SEND 200 TO c2>F1 P3;
SEND 200 TO <2>F1 P~;
SEND 200 TO c2>F1 P5;

38 -SAMPLE PROGRAMS

4

w

d ~ •~
Y

N

1
,
1

5
~

~
f T

:J
IC

_
Y

If
X

.
R

A
T

r
0

•
a

0,

J
:J
1:
V

W

Q
O
O

v

X

[~
J

W

l

0.

~v

W
h-

O

u

N

W
r
r
r
Q
oc
n

u
J

o„
N

 Z

W
r
r
r
O
oc
r

r N
M

~-
1
~--
O
a
N

V
J

Y

V)
2
O
u

!. ~

I
N

~l ' f

~,

0

n

4

O

d

h
a

J
t

0
N

J
y

~a
`r~

O
~1
r~

ti

N

•+
U
Y

M
M

Z

~ N

M A

Figure 3. PROJECTN.FUN (Sheet 1 of 2)
(Function Network for PROJECTN.300)

SAMPLE PROGRAMS — 39

W
m
t
J
t~

r- N M

'
v
I
E
H
x
R
V
T
•

h
d

' V
 IE

!✓
Y

R
O

T
 '

W
h
W

' Y
 IE

lr
Z

R
O

 T
'

'0
8
J
 X

R
O

T
 '

'0
8
J
 Y

R
O

T
'

'0
8
1
 Z

R
O

T
 '

Figure 3. PROJECTN.FUN (Sheet 2 of 2)

SAMPLE PROGRAMS — 41

TRISQUARE.300

Programmed by: Neil Jon Harrington
Software Support Specialist
Evans & Sutherland
P.O. Box 8700
Salt Lake City, Utah 84108

r

Created: December, 1983
Last update: February, 1985

Demonstration to transform four pieces from an equilateral triangle to a square and
vice versa. Can be done either manually with the dials or automatically by starting a
clock. The control network is in TriSquare.fun.

INIT DISP;
DISP TriSquare;

TriSquare := BEGIN_S
WINDOW X=-5:5 Y=-5:5;
TRAM —2,2;

Rot := ROT 0;
SET COLOR 0,1 THEN Partl;
TRAM 1,-1.268;

P2_Rot := ROT 0;
SET COLOR 90,1 THEN Part2;
TRAM —1, —1.7 3 2 ;

P3 Rot := ROT 0;
SET COLOR 180,1 THEN Part3;
TRAN —1.5,.866;

P4_Rot := ROT 0;
SET COLOR 240,1 THEN Part4;

END S;

PART1 := VEC n=5 0,.4641 —.5,—.4019 —.2857,-1.5151 1,-1.268 0,.4641;

PART2 := VEC n=5 0,0 —1.2857,—.2471 —1,-1.732 1,-1.732 0,0;

PART3 := VEC n=5 0,0 —.2142,1.1135 —1.5,.866 —2,0 0,0;

PART4 := VEC n=4 0,0 1.2858,.2475 1,1.732 0,0;

SAMPLE PROGRAMS — 43

TRISQUARE.FUN

Programmed by: Neil Jon Harrington
Software Support Specialist
Evans & Sutherland
P.O. Box 8700
Salt Lake City, Utah 84108

Created: December, 1983
Last update: February, 1985

Network to control the structure created by TriSquare.300.

{ Code generated by Network Editor 1.07 }
{ TRISQUARE }
{ Frame-Prefix Macro-Prefix }
{ Clock Motion:F2_ }
{ first in que --- > }
F2_P13:=F:EQC;
F2_P14:=F:XOR;
F2_P15:=F:CLFRAMES;
F2_P16:=F:BROUTEC;
F2_P17:=F:SYNC(2);
CONK FKEYScl>:<1>FZ P13;
CONK F2_P13c1>:<1>F2 P14;
CONK F2_P14c1>:<2>F2 P14;
CONN F2_P14c1>:c6>F2_P15;
CONK F2_P15c2>:<5>F2 P15;
CONK F2_P15c3>:cl>F2 P16;
CONK F2 P16c2>:c2>F2 P15;
CONK F2_P16c2>:cl>F2_P17;
CONK F2_P17c2>:<4>F2_P15;
CONK F2_P17c2>:<2>F2 P17;
SEND FIX(1) TO c2>F2_P13;
SEND FALSE TO <2>F2 P14;
SEND FIX(-1) TO c2>F2 P17;
SEND FIX(1) TO <2>F2 P17;
SEND FIX(179) TO c2>F2_P16;
SEND FIX(0) TO c5>F2 P15;
SEND FIX(1) TO c4>F2 P15;
SEND FALSE TO <3>F2 P15;
SEND FALSE TO <6>FZ P15;
SEND FIX(179) TO c2>F2_P15;
SEND FIX(6) TO cl>F2 P15;

44 —SAMPLE PROGRAMS

{ Labels:F3_ }
SEND 'STRT/STP' TO <1>FLABELI;
SEND 'JOINT 3' TO cl>DLABEL3;
SEND 'JOINT 2' TO <1>DLABEL2;
SEND 'JOINT 1' TO <1>DLABELl;
{ Framel:Fl }
Fl_P1:=F:ACCUMULATE;
F1_P2:=F:ACCUMULATE;
F1_P3:=F:ACCUMULATE;
Fl P~+ : =F : ZROTATE ;
F1_PS:=F:ZROTATE;
Fl_P6:=F:ZROTATE;
CONK F1_Plcl>:<1>F1 P4;
CONN Fl_P2<1>:<1>Fl P5;
CONK F1_P3c1>:cl>Fl P6;
CONN Fl_P4c1>:<1>Trisquare.P2_Rot;
CONN Fl_P5c1>:<1>Trisquare.P3_Rot;
CONN F1_P6c1>:cl>Trisquare.P4_Rot;

CONN DIALS<1>:c1>F1 P1;
CONK DIALSc2>:cl>F1 P2;
CONK DIALSc3>:<1>F1 F3;
CONK F2_P15c2>:c1>F1 P4;
CONK F2_P15<2>:<1>F1 P5;
CONN F2_P15c2>:cl>F1 P6;
SEND 180 TO c5>F1 P1;
SEND 180 TO <5>F1 P2;
SEND 180 TO c5>F1_P3;
SEND 200 TO c4>F1_P1;
SEND 200 TO <~4>F1 P2;
SEND 200 TO c4>Fl_P3;
SEND 0 TO c2>Fl_P1;
SEND 0 TO c3>F1_Pl;
SEND 0 TO c6>Fl_P1;
SEND 0 TO <2>F1 P2;
SEND 0 TO c3>F1_P2;
SEND 0 TO c6>F1_P2;
SEND 0 TO c2>F1_P3;
SEND 0 TO c3>F1_P3;
SEND 0 TO c6>F1 P3;

SAMPLE PROGRAMS - 45

E~
E

~
l

~
tR

l S
Q

U
R

R
E

.
F

~
 R

O
T

F

:
Z

R
Q

T
I~

T
E

...

f~
E

~
1
 ~

tR
l S

~p
U

A
R

£.
 P

3
_

 A
PO

 T

w

K
H
O
a
N

f~
E

~
1
 }
 tR

IS
lJ

U
~

lR
£
.

F
f_

R
O

T

...
W
~-

J

r
v
v

w
.- r~ M ~ h ~- M IA ~O

t f

.p

1

r - ■

•- n e~ •r ~ o r. w

N

c

0

\ 1
N

Z'
V

r

C

C
lo

e
k

t~
lo

rt
i
o
n

0
Q

Figure 4. TRISQUARE.FUN (Sheet 1 of 3)
(Function Network for TRISQUARE.300)

46 -SAMPLE PROGRAMS

0

m

-- N

1

N
W
L

J
V

~- N M V N 'O

•

~I

V

z

('J

C y 7

''~
••.

'v
'1.

w

V

`O Q y •~ 0
~. ~ 1 ~. ~.
k `~ ~ k k

A k F w

~v
'~.

~`

Q

U
O'
W

i..

Figure 4. TRISQUARE.FUN (Sheet 2 of 3)

SAMPLE PROGRAMS — 47

Figure 4. TRISQUARE.FUN (Sheet 3 of 3)

SAMPLE PROGRAMS — 49

PROGRAM SetRate CInput,0utput);

Programmed by: Neil Jon Harrington
Software Support Specialist
Evans & Sutherland
P.O. Box 8700
Salt Lake City, Utah 84108

Created: November, 1984
Last update: February, 1985

PS 300 Set Rate programming example using the GSRs. Pascal version of
BLKLEVF.FOR created originally by A. Kerry Evans. To run this program compile it
and link it with the Pascal GSR library.

This program creates a PS 300 display structure that has many SET RATE nodes
cascaded by offsetting the starting time of each SET RATE node. This structure is
another way to create an animated sequence on the PS 300. A function network is not
needed, since the PHASE attribute value is modified by the DISPLAY PROCESSOR as a
function of the number of times a SET .RATE node is traversed.

CONST
DTheta = '0.1745329; { PI/18 }

INCLUDE 'gsrlib:ProConst.pas/nolist'

TYPE
9oINCLUDE 'gsrlib:ProTypes.pas/nolist'

VAR
Theta
Tran
I
Vecs
Front
Name

REAL;
P_VectorType;
INTEGER;
P_VectorListType;
P VectorListType;
P_VaryingType;

INCLUDE 'gsrlib:ProExtrn.pas/nolist'

PROCEDURE ErrHnd C Error INTEGER);
BEGIN

WRITELN C 'Error: ' ,Error:3);
END; { ErrHnd }

50 -SAMPLE PROGRAMS

PROCEDURE Calc Wave;
VAR

I,J INTEGER;
VecNum INTEGER;
VecNum2 : INTEGER;

BEGIN
VecNum :_ -1;
FOR I := 0 TO 49 DO BEGIN

VecNum := VecNum + 2;
VecNum2 := VecNum + 1;

Vecs[VecNum].v4[1] := I/50;
Vecs [VecNum] .v4 [2] : = 0.8~~EXP (-0.02~I)~'~COS (Theta-0.2513274123*I) ;
Vecs[VecNum].v4[3) := 0;
Vecs[VecNum].v4[4] := 1 - I/150;

Vecs[VecNum2].v4[1] := Vecs[VecNum].v4[1);
Vecs[VecNum2].v4[2] := 0;
Vecs[VecNum2].v4[3] := 0.5;
Vecs [VecNum2] .v4 [4] : = Vecs [VecNum] .v4 [4] ;

FOR J : = 1 TO ~+ DO
Front[I+1].v4[JJ := Vecs[VecNum].v4[J];

END; { FOR I }
END; { Calc Wave }

BEGIN
PAttach ('LogDevNam=tt:/PhyDevTyp=async',ErrHnd);

PInitC (ErrHnd);
PInitD (ErrHnd);

PTransBy ('Sine_Wave',Tran,'Inst',ErrHnd);
PInst ('Inst', " ,ErrHnd);
Theta :_ -DTheta;

SAMPLE PROGRAMS - 51

FOR I ;= 10 TO 46 DO BEGIN
Theta := Theta + DTheta;
WriteV (Name,'VecList',I:2);
WRITELN (Name);
Calc Wave;
PBeginS (Name, ErrHnd);

PSetR (",1,35,FALSE,I," ,ErrHnd};
P If Phase (" ,TRUE, " ,ErrHnd) ;
PVecBegn (",100,TRUE,FALSE,3,P_Sepa,ErrHnd);
PVecList (100,Vecs,ErrHnd);
PVecEnd (ErrHnd);
PVecBegn (" ,50,TRUE,FALSE,3,P Conn,ErrHnd);
PVecList (SO,Front,ErrHnd);
PVecEnd (ErrHnd);

PEndS (ErrHnd);
PIncl (Name,'Inst',ErrHnd);

END; { FOR I }

PDisplay ('Sine Wave',ErrHnd);
PDetach (ErrHnd);

END. { SetRate }

GLOSSARY OF TERVS

This glossary contains definitions of terms that might be unfamiliar to a novice graphics
programmer. It also contains terms that are specific to the PS 300 Graphics Systems.

Active Input -- An active input (or active queue) is one of two types of function input
queues. Data arrive at an active queue and are input to a function on a
first-in-first-out basis as soon as the function is activated. The data on active queues
are consumed by the function.

Arithmetic Control Processor (ACP) -- This is a subsystem in the PS 300's Display
Processor. The ACP includes a microprocessor that performs arithmetic and logical
functions on data in Mass Memory. The ACP traverses display trees, performs matrix
multiplication (rotation, scaling, and windowing), applies the matrix to the data nodes,
and outputs the transformed coordinates of the data to the Pipeline Subsystem.

Aspect Ratio -- This ratio is the relationship of height to width. The aspect ratios of
windows and viewports must be the same, or objects will appear distorted on the screen.

Attribute (Attribute node) -- An attribute is a characteristic that can be applied to
data in a manner similar to a transformation. Attributes, unlike transformations, do
not affect the location, orientation, size, or vector definitions associated with an
object. They are non-matrix operations. They set and change characteristics of the
displayed image, such as depth clipping, enabling picking and blinkir ~, intensity, or the
color of an object. An attribute command creates an operation node. This node
changes a bit setting in the ACP save-state block, rather than affecting the contents of
the current transformation matrix. Attribute nodes normally accept a Boolean value
and/or integers.

B-splicle -- A B-spline is a mathematical representation of a curve which
approximates and interpolates a specif ied set of points.

Baekfaee Removal -- Backface removal is an intermediate step in hidden-line
removal. It removes all polygons facing away from the viewer.

131oek-normalized Vectors -- When the components of all coordinate locations
(vectors) that comprise an object have a common exponent, they are said to be
block-normalized vectors.

Break Key -- A break key is used to send a break sequence to the host system. The
break key for PS 300/host communications (using the VT-100 Terminal Emulator) is
defined by the user in the SETUP mode of the keyboard.

2 — GLOSSARY

Calligraphic -- Calligraphic is a term used to describe a method of displaying dots,
characters, and lines on a CRT screen. It is also referred to as random stroke. In
contrast to the raster display of a typical TV screen, the electron gun traces the
displayed lines from endpoint to endpoint and does not scan each screen location every
refresh cycle.

Character Follt -- A character font is a set of characters of a particular style. A
standard 128 ASCII character set is provided with the PS 300 graphics system as the
Standard Font. Different fonts can be used instead of, or as a supplement to, the
standard font, by using the BEGIN_FONT ... END_FONT and CHARACTER FONT
commands.

Cl~araeters Node -- A characters node is a data node that consists of a single string
of up to 240 characters. These nodes are created by the CHARACTERS command.

Clipping' -- Clipping is a viewing operation that removes from the screen display lines
or parts of lines that are outside of the viewing area (window). If lines were not
clipped, they would wrap back onto the display.

ComlYiand Interpreter (CI) -- The PS 300 command interpreter is a system function
that is responsible for accepting a stream of tokens (messages) until it has enough to
act on (a complete command).

Command Mode -- The Command mode is also referred to as CI mode or local
command mode and is one of three types of communication modes available on any
style PS 300 keyboard. Command mode implies that data entered locally (as opposed to
data received from the host) are to be routed to the command interpreter. Command
mode displays the "~ ~" prompt on the screen.

Colnm~ulicatioll Modes -- There are three communication modes available with the
PS 300 terminal emulator; Terminal Emulator mode (TE), Command mode (CI), and
Interactive or Graphics mode (KB).

Compo~ulded Reltderi~ig's -- A rendered object that has had another rendering
operation applied to it is said to be a compounded rendering.

COIld1t10IlaI Re~erenein~ -- Conditional referencing is the referencing of data only
when certain conditions are met. Conditional referencing is set up in a display tree by
creating SET nodes which set any of fourteen conditional bits. IF nodes are placed
further down in the display tree to test for the condition set above. Data is referenced
if the condition is met.

Constal~t Ilipiit -- A constant input queue is an input of a function where only the last
message entered in the queue is input to the function. A message in a constant input
queue will be used and reused until another message is queued on that input to replace
it.

GLOSSARY - 3

Contrast -- Contrast is the difference in intensity from brightest to dimmest (near to
far) of the lines that compose an image. Contrast is used to impart the illusion of depth
in an object.

Control Dials -- The Control Dials Unit is one of the PS 300's interactive devices. It
consists of a bank of eight dials which can be programmed to control the orientation of
objects displayed on the screen. The dials send_ out numbers which are used as input to
function networks. The numbers are converted through the network to matrices which
update translation, rotation, and scale nodes in a display tree.

Cotltrol Key -- The Control Key (CTRL) on the PS 300 keyboard generates a control
sequence and is used in conjunction with other keys. Control Key sequences are used in
PS 300/host ANSI control and escape sequences. The character 'T' is used to represent
the control value of a key (the sequence that is generated when the Control Key is
pressed and a second key is pressed).

Coordi~tate Systettt -- All mathematical information that the designer enters to
create an object must be given in terms of athree—dimensional coordinate system. A
coordinate system is a way of specifying athree—dimensional space in which objects can
be modeled. The coordinate system used in programming the PS 300 is aleft—handed
Cartesian coordinate system, usually referred to as the "world coordinate system."

Coplanar -- For polygons, coplanar denotes that polygons have the same plane
equation. This equation is used in the PS 340 system to associate inner and outer
contours.

CroSS SeCtlOt1111g' -- Used in programming the PS 340, this rendering operation makes
use of a defined sectioning plane to create a cross section of an object. When this
operation is used, both sides of the object are discarded and only the slice defined by
the sectioning plane remains.

Ctirreilt Traj1s~orlYtatioll Matrix (CTM) -- When a series of transformations are
applied to graphical data, the matrices are concatenated. This means that each matrix
is pre-multiplied to a matrix called the current transformation matrix. The current
transformation matrix contains the accumulation of all transformations that are to be
applied to graphical data and preserves the order in which they are to be applied.

Data Node -- Data nodes are terminal nodes for the branches of a display tree. Data
nodes can contain vector lists, polygons, curves, and text. They are represented as
squares in a display tree.

Data St.rtietlire -- See misplay tree.

rata Strueturi~ig° Cotninalids -- These commands build or affect display trees. They
create structures that are stored in Mass Memory for later execution by the Display
Processor. Data structuring commands are not "saved" as files on the PS 300.

4 —GLOSSARY

Data Tablet -- The data tablet is one of the interactive devices, commonly used with
the PS 300. It is a f lat board used for inputting data, for pointing, and for picking items
from a graphics display. A data tablet typically provides two—dimensional positioning
data and is used in conjunction with a stylus or a puck.

Demultiplexillg' -- Demultiplexing is a communication operation where one input
accepts data from many sources, all of which have the same destination. A
demultiplexing operation can be performed by a port or a function.

Depth Clipping -- Depth clipping is a viewing operation that clips from the display
objects or parts of objects which extend beyond the Z (or depth) plane of a viewing
area. This is also known as Z—clipping.

Depth Cueing -- This operation imparts an illusion of depth to the image of a
three—dimensional object by decreasing the intensity of lines as they "recede" into the
distance (i.e., in positive Z).

Diffuse -- In shading polygons, this attribute is used to specify the proportion of
color contributed by diffuse reflection versus that contributed by specular reflection.

Display -- As a verb, display refers to the visibility of a graphical object on the
graphicG terminal screen. As a noun, display is used to refer to the terminal screen,
(i.e., PS 300 Display). "Display" is also used as a modif ier; display tree, display
structure, etc.

Display Data Structure -- See Display tree.

Display List -- The display list contains the names of all display trees that are
currently being traversed for display. Whenever anything is displayed, its name goes on
the display list.

Display Processor (DI') -- The Display Processor traverses display trees in Mass
Memory and processes the data for display. The Display Processor transforms the data
to be displayed; performs clipping, perspective projection, and viewport mapping.

Display Tree -- A display tree represents the structure of an object in mass memory.
Display trees are a hierarchical ordering of instance nodes, operation nodes, and data
nodes. They contain primitives and the transformations and attributes which are
applied to them. The Display Processor traverses the display tree of any object in the
display list.

Distribtit.ed Crap~lics -- Distributed graphics allows the graphical portion of an
application to be performed by the graphics system, without burdening the host
computer.

Ex-pos~~re -- Exposure is a shading parameter that controls the overall brightness of
an object displayed on the PS 340 raster display.

GLOSSARY - 5

Field-of-view Angle -- The field-of-view angle is the angle at the apex of the
viewing pyramid used to define a perspective viewing area. This angle is used as a
parameter of the FIELD_OF_VIEW command.

Flat S~lading -- Flat shading is applied to objects on a PS 340 raster display. This
process uses color, one light source, and depth cueing to shade the polygons in the
object accordingly. Flat shading can produce objects that simulate a f aceted surf ace.

Frustum -- This is a section of a viewing pyramid that is obtained by slicing through
the pyramid parallel to the base. The frustum encloses a portion of the world
coordinate system. Any objects contained in the frustum will be displayed in
perspective projection on the screen.

Fultetion -- A function is a procedure that performs one or more operations by
accepting input, processing input, and sending output. The PS 300 has three types of
functions: intrinsic functions, initial function instances, and user-written functions.

Ftinetio~l Insta~lee -- A function instance is a specific case of an intrinsic function
that is created and named by the user when the need for a particular function arises. A
function instance has a set of input sources and output destinations, specified by the
user. Function instances are combined into function networks.

FulletioIl Keys -- The PS 300 Function keys are the top row of keys on any style
PS 300 Keyboard. These keys are number F 1 through F 12. The character generated by
any function key is dependent on the mode of the keyboard. Function keys are
generally used to provide inputs to function networks. They are also used in the SETUP
mode of the keyboard.

Ftuletiojl Network -- A function network is a collection of interconnected function
instances. Function networks are the programmed path between an interactive device
and an interaction node in a display tree, or between the PS 300 and the host. One end
of a function network is usually connected to a node in a display tree and the other end
to the port associated with an interactive device or the host computer.

Geometry -- The geometry of an object is the location in the coordinate system of
the points that define the object.

Graph Key -- The GRAPH key is a toggle key on the left-hand keypad of any style
PS 300 keyboard. Pressing the GRAPH key displays or blanks pictures on the PS 300
screen.

Graphics Colrimand I.a.jig~~ag'e -- A graphics command language is the user-interface
to a graphics system. It is a high-level set of commands and instructions specifically
designed for graphical operations.

Grap~lics CoTitrol Processor (GCP) -- The GCP serves as the central controller for
the PS 300. It provides the interfaces to devices external to the system and manages
all internal system communications. The GCP also controls the display trees in Mass
Memory and initiates the display defined by these structures.

6 - GLOSSA R Y

Graphics Support Routines (GSRs) -- The GSRs are a collection of Pascal routines or
FORTRAN calls that pre-parse and package data on the host. There is a GSR routine
that corresponds to almost every PS 300 command.

Hardcopy Key -- The HARDCOPY key on the left-hand keypad of any style PS 300
keyboard is used to activate the hardcopy plotter. If no plotter is attached to the
system and the key is pressed, an error message is generated.

Hidden Line -- In aline-drawing model, a hidden line is one which would be obscured
by surfaces of the model.

Hidden-line Removal -- This PS 340 rendering operation generates a view in whic~i
only the unobstructed portions of an object are displayed.

Hierarchical Data Structure -- A hierarchical data structure is a structure that is
arranged in such a way that a hierarchical order is maintained between what precedes
and what follows any element in the structure. Complex models are designed as a
hierarchical structure called a display tree.

Hierarchy -- A hierarchy is a principled organization of components. The organizing
principle will vary depending on the relationship between components which the
hierarchy is designed to show.

I/O Suhroutiiles -- The PS 300 I/O Host-Resident Subroutines (PSIOs) are callable
FORTRAN subroutines designed to aid in host/PS 300 communications.

Identity Matrix -- An identity matrix is composed of ones and zeros, with the ones
running in a diagonal (top left to bottom right). Multiplying by an identity matrix is the
equivalent of multiplying by one: nothing changes. The current transformation matrix
(CTM) starts out as an identity matrix each time a display tree is traversed.

Illumination -- This attribute is used with the PS 340 raster system to specify light
sources applied to a shaded object.

Immediate Action Commands -- These commands cause an immediate result when
received by the system. Immediate action commands perform such actions as
initializing, naming, and displaying data.

Initial Function I~lsta~iee -- An initial function instance is a function that is
automatically instanced for use upon system initialization. Such a function may be
system-connected into an initial function network or user-connected to a user function
network. Examples of initial function instances are DIALS, TABLETIN, PICK, HOST
MESSAGE. Unlike intrinsic functions, initial function instances are not preceded by
"F:" and are not named by the user.

Initial Structure -- Initial structures are structures which are loaded into memory
with the PS 300 firmware. When the PS 300 is initialized, two initial structures are
loaded. CURSOR defines the cursor as an 'X', and PICK_LOCATION identifies the
pick-sensitive area as the center of the cursor.

GLOSSARY - 7

Ruler Colitotlr -- The inner contour of a polygon represents a cavity, hole, or
protrusion site in an object.

Illstanee -- An instance is a specific reference to any nameable entity. There is an
INSTANCE command which creates instance nodes in the display tree. Intrinsic
functions must be "instanced" (uniquely named) before they can be used in a function
network using the NAME:= function_name; command.

Ilistanee Nodes -- Instance nodes group primitives, transformations, and attributes
into single-named entities. They are represented as triangles in a display tree.

I~lteraetive Devices -- Interactive devices (also referred to as peripheral devices)
provide programmable interactive capabilities that allow an operator to interact with
graphical data on the screen. These devices include, but are not restricted to, the
control dials, a data tablet, the keyboard, and function buttons.

Intrinsic F~netions -- Intrinsic functions are the set of nameable functions that are
provided for constructing function networks. These functions have the 'F:' prefix and
must be instanced (i.e.., given a unique user-defined name) before they can be used in a
function network.

Labels -- Labels are data nodes that consist of a block of several character strings.

Left-hand Rule -- The left-hand rule is a mnemonic for the direction of rotation
around an axis in the PS 300's world coordinate system. Point the thumb of your left
hand in the positive direction of any axis, and your fingers will curl in the direction of
positive rotation.

Level-of-detail -- Level-of-detail settings are attributes that allow data to be
conditionally referenced for display based on a level-of-detail setting. A SET node is
created in a branch of a display tree to set the level-of-detail to a certain value. An IF
node created lower down in the structure tests for the condition set above and displays
data only if the condition is met.

Lille Generator System (LGS) -- The LGS is the final subsystem in the Display
Processor. After data have been processed in the Arithmetic Control Processor and the
Pipeline Subsystem, the LGS converts the X,Y, and intensity information into analog
signals that drive deflection and intensification circuitry in the PS 300 Display.

Lille Local Key -- The LINE LOCAL key (located on the left-hand keypad) is used in
conjunction with other keys to access the keyboard communication modes on the
VT-100 style PS 300 keyboard.

Local Aetioll -- Local action is the cumulative result of the operations of functions
in a function network. Generally, a local action determines how an interactive device
affects an image on the screen.

8 -GLOSSARY

Look At/From -- The terms "look at" and "look from" in viewing operations are used
to establish a line of sight in the world coordinate system. The PS 300 uses the line of
sight to perform a matrix operation which transforms the coordinates of an object to
produce the correct "view" on the screen. All points in the world coordinate system are
translated and rotated to place the "from" point at the world coordinate system origin
and the "at" point on the positive Z axis.

Mass Memory -- Mass Memory is memory in which display structures are stored and
managed by the Graphics Control Processor. These structures are accessed by the
Display Processor through a dedicated port. Mass Memory also stores function
instances, function connections, and function messages.

Memory Alert -- There is a memory alert display area at the bottom of the PS 300
Screen. This is connected to a system function that alerts a user by displaying the
amount of existing memory whenever available memory drops below an acceptable level.

Message -- A message is data input to and output from function instances.

Message Data Type -- A message data type is the specific data type associated with
a message to or from a function instance. Message data types include: Boolean,
character, character string, integer, real, 2D vector, 3D vector, 4D vector, 2D, 3D, 4D
position vector, 2D, 3D, 4D line vector, 2x2 matrix, 3x3 matrix, 4x4 matrix, and pick
list.

Modeling' -- Modeling is the process of defining graphical primitives and applying
modeling transformations to them. These transformed and untransf ormed primitives
are used as parts of complex models.

Modeling' Traslsforinatiolls -- These transformations move primitives to a new
location in the coordinate system or deform primitives to create new shapes. There are
three modeling transformations: rotation, translation, and scaling.

Multiplexing -- A multiplexing operation can be performed by a port or a function.
Multiplexing is a communication operation where one input accepts data from a single
source and distributes the data to various destinations.

Naming -- Naming is the process by which the user identifies a particular command
or group of commands. Once a name has been given, all data specified by the
commands) are referenced for use by referring to the assigned name. The name of
entity is equivalent to its "address" in memory.

Noel-luliform Sealing -- Non-uniform scaling consists of scaling an object by
different amounts in different dimensions.

Normal -- Normals are used with shaded renderings and are given with each vertex of
the polygon specified N X,Y,Z. The shaded-rendering process interpolates between
these normals when rendering the polygon to generate a smooth shaded image.

GLOSSARY - 9

Null U~jeet -- A null object is created when a name is referenced that has not
previously been defined.

Object Space Rotatioli -- An object is said to rotate in object space when it rotates
around its own set of axes.

Operation Nodes -- Transformations and attributes are represented by operation
nodes in a display tree. They are represented as circles. Operation nodes can be used
as points of interaction with a model. They can receive new values from interactive
devices such as dials or the data tablet. Operation nodes which are set up as
interaction points are shown as double circles in a display tree.

Orthog~raphie Projeetioll -- Orthographic projection is the two-dimensional projection
of a three-dimensional object in which lines that are parallel in the object always
appear parallel, without regard to relative distance from the eye. This form of
projection is also called parallel projection.

Outer Collt.our -- The outer contour of a polygon represents a face of an object.

Parallel Projeetioll -- See orthographic projection.

Perspective Projeetioli -- Perspective projection is a viewing projection that allows
spatial relations (distance and position) of three-dimensional objects to be represented
as they might appear to the eye. Parallel lines in the object appear to converge with
respect to relative distance or depth from the eye position.

Picts Ic~e~ltieier -- A pick identifier (pick ID) is auser-assigned name that allows data
to be reported as "picked".

Pick I.i._~t -- A pick list is the information returned when a pick occurs. A pick list
consists of an integer that represents the element of a vector list c ~~ a character in a
string that was picked, and a list of pick identifiers. A pick list can optionally contain
the picked coordinate location.

I~lcttlIlg' -- Picking is the ability to indicate with a pointing device such as a stylus or
light pen a displayed object or a portion of an object which is oriented in any manner.
When some part of the displayed image is picked, the PS 300 generates a pick list which
identifies the element picked.

i'ickil~g' Locatiolt -- The picking., location is a region within a viewport. If a
pick-sensitive entity (line, character, or dot) is within the pick location, it may be
reported as having been picked. When the PS 300 is initialized, the pick location is
established by the Initial Structure PICK_LOCATION as being the center of the
displayed cursor.

E'ipc~lil~e S~lbsystem (~'I.S) -- The PLS is a subsystem in the Display Processor. The
PLS accepts transformed coordinate data from the Arithmetic Control Processor and
performs clipping, perspective division, and viewport mapping on the data to be
displayed. The processed data are then output to the Line Generator Subsystem in the
form of X,Y locations and intensity values.

10 -GLOSSARY

Pixel -- A pixel is a picture element. It is the smallest element which can be
displayed on a raster display device.

Polygon -- A polygon is a closed —plane figure defined by the coordinates of its
vertices. The edges of the polygon are defined by lines that connect those vertices. In
the PS 340, a polygon must have at least three vertices and no more than 250, all of
which must lie in the same plane.

Polygon Clause -- This part of the POLYGON command defines an individual polygon
or face of an object by specifying the coordinates of its vertices.

Polygotlal Defillitioll -- The polygonal definition of an object specifies the association
of multiple points as parts of separate polygons.

Primitive -- This is the simplest object in a graphical data base. It consists entirely
of points and lines or planes. The points specify the geometry of the primitive, the
lines or planes specify fiche topology.

Quality Level -- Quality level is a shading parameter used with the PS 340. It
controls the number of pixels over which filtering is applied.

Raster -- Raster is or~~e technique used for producing an image on a CRT screen.
Raster images are generated with an intensity controlled, line-by-line sweep across the
screen, in contrast to calligraphic displays that trace only the displayed lines, dots, or
characters.

Raster SysteiYt -- The raster system is an option for the PS 340 system that consists
of a printed circuit card which outputs static images to a pixel raster display. The
raster system can be used as an "image buffer" to display host —generated images or it
can display "shaded images" derived locally from PS 340 polygonal models.

Real Tiirte -- The term "real time" is applied to high-performance computer graphics
systems which allow the operator to interact with a displayed object with no
perceptible delay. For exar~~ple, if a car is displayed on the screen and a dial rotates
the car around the vertical axis, real tir~~e interaction gives the illusion that the car
actually rotates with no perceptible delay as the dial is turned.

Refresh Buffer -- The refresh buffer is a memory buffer that temporarily stores
graphical data which has been processed for display.

Rendering Node -- A rendering node is an operation node created with the PS 340
SOLID RENDERING or SURFACE RENDERING command.

Rendering Operatiotls -- Rendering operations are performed with the PS 340 on
polygonal objects to remove hidden line segments, perform backface removal, section
an object relative to a sectioning plane, obtain a cross section, or display shaded objects
on a raster screen.

GLOSSA R Y - 1 1

Right-hated Rtile -- The right-hand rule for polygons states that if you point the
thumb of your right hand towards the center of a polygonally defined object and rotate
your fingers towards your wrist, the direction that your fingers move indicates the
order in which the vertices of that polygon should be listed in the polygon clause.

Rotate -- An object that is rotated around any of the three axes (X, Y, Z) in world
coordinate space is said to rotate "in" that axis. When an object is rotated in X, for
example, X values do not change; Y and Z do.

Rotation Atlgle -- The rotation angle is the angle (degrees) of rotation around a
particular axis.

Rotation Matrix -- A rotation matrix is a 3X3 matrix used to perform a rotation on
an object. The PS 300 uses the sine and cosine of the angle of rotation to create the
matrix, then applies the matrix to the coordinates of the points which define the object.

Scale -- To scale an object is to apply a factor to any or all dimensions of an object.
Scaling may or may not be proportional in all dimensions (X, Y, and Z). If the scale is
applied in all dimensions, this is uniform scaling. A dif f Brent scale factor applied in
different dimensions is known as non-uniform scaling.

Scaling Matrix -- The PS 300 creates a 3 X 3 scaling matrix which multiplies the
coordinates of the points which define the object by the scale factor. This determines
the new coordinates of the scaled object.

Seree~l-orie~lted Ctiaraeters -- Screen-oriented characters are not affected by
ROTATE and SCALE nodes that are applied to the object of which they are a part.
Screen-oriented characters maintain their size and their front-facing orientation when
other data is transformed.

Seetio~li~lg' -- Sectioning is a PS 340 rendering operation which cuts away parts of

polygons that extend beyond an arbitrarily positioned plane called the sectioning plane.
This plane passes through the object to divide the object into two pieces. When
sectioning is performed, the affected polygons are reconstructed so that they do not

extend beyond the sectioning plane; one piece is removed while the other remains
displayed.

Shaded Reilderi~lg's -- Shaded renderings are PS 340 operations which are used on the
raster screen to draw the surface of a polygonally defined object. Shaded operations
include wash shading, flat shading, and smooth shading.

Stlading -- Shading is the process of drawing the surface of a polygonally defined

object. "Flat" shading uniformly fills the interior of the polygons so that each polygon

is recognizable. "Smooth" shading fills the polygons in a non-uniform manner to give

the appearance of curvature to the object surface.

12 -GLOSSARY

Sinootll Shadilig' -- Smooth shading is a rendering operation applied to objects on a
PS 340 raster display. The color of a polygon is varied across its surface, affected by
the normals at the polygon's vertices, the direction and color of various active light
sources, the polygon's attributes (both color and highlights), and depth cueing. Objects
that simulate a curved surface can be produced with smooth shading.

Soft Edges -- An edge declared with the "S" specifier in the polygon clause of the
POLYGON command is a soft edge. Soft edges are invisible in hidden-line renderings
except when they make up part of the profile of an object or a silhouette.

Solid -- A solid is a polygonal object that encloses a volume of space. In a solid,
every edge of every polygon must coincide with an edge of a neighboring polygon.

Solid Fill -- Solid fill is the shading of the interior of polygons. This, along with
hidden line removal, makes an object appear solid.

Solid Model -- Solid models are representations of physical objects within a computer
so that nod only computer—generated pictures, but also physical characteristics, such as
center of gravity and moments of inertia, can be generated from the computer model.

Speeular -- This PS 340 polygon attribute is used in shading polygons to adjust the
concentration of specular highlights.

Sphere of Illflueilee -- Sphere of influence defines the influence one node has on
other nodes in the display tree. In general, any node in a hierarchical branch has
influence over nodes below it in the same branch. Spheres of influence are established
and maintained by instance nodes.

Stril~g -- A string is a sequence of characters and spaces enclosed in single quotation
marks. Strings can be displayed as text or can be used as inputs to function instances.

Strueturillg° -- Structuring using the BEGIN_STRUCTURE ... END_STRUCTURE;
command allows commands that must otherwise be named to be grouped without
naming the individual commands. It provides a method of applying transformations
without using the explicit APPLIED TO form of the command.

Surface -- A surface is a polygonal object that does not enclose a volume of space.

Term Key -- The TERM key is a toggle key on the left-hand keypad of any style
PS 300 keyboard. Pressing the TERM key displays or blanks terminal emulator text
(characters received from the host or local communication functions) on the PS 300
screen.

Teriniilal ETnulator -- The terminal emulator is a feature available over standard
interface lines that allows the PS 300 to be used as a host terminal. With the RS-232,
RS-4~l9, DMR-1 1 AE, DEC Parallel, and other ASCII interfaces, the PS 300 emulates a
DEC VT-100 terminal. With the IBM 3278 interface, the PS 300 emulates an IBM 3278
terminal.

GLOSSA R Y - 13

Toggle -- A toggle feature on a key or button means that pressing it once activates a
feature or function and pressing it a second time deactivates the feature or function.

Topology -- The topology of an object is the manner in which points specified in the
object's geometry are connected with lines or planes.

Transformed Data -- Transformed data is the matrix or vector-list representation of
transformation operations in a display tree.

Translate -- To translate an object is to relocate it in world coordinate space. An
object which is translated in X is moved in the X direction. An object translated in X
and Y is moved some distance in the X direction and some distance in the Y direction.

Traverse -- This is a process in which the ACP steps through the display tree in Mass
Memory to retrieve data and operation specifications necessary to generate a picture.

Uniform Sealing -- In uniform scaling, an object is scaled by the same amount in all
dimensions.

Variable -- A variable is a storage place for updating values for use in function
networks.

Vector -- A vector is a coordinate location that may or may not be the endpoint of a
line.

Vector-ilorinalized Data -- When the components (X, Y or X, Y, Z) of a single
coordinate (vector) location share a common exponent, they are said to be
vector-normalized.

Viewing Area -- This is athree-dimensional region of world coordinate space in
which objects can be viewed. A viewing area in which objects are viewed
orthographically is created by the WINDOW command. The EYE and FIELD_OF_1/IEW
commands create a viewing space for perspective projections of an object.

Viewing Pyramid -- A viewing pyramid def Ines a portion of world-coordinate space
for viewing objects in perspective. The actual viewing area is shaped like a frustum.
The pyramid is completed by extending the converging sides of the pyramid until they
meet. This point, the apex of the pyramid, is the eye point of the viewer.

Viewing Tra,Ilsforinatiorls -- Viewing transformations are matrix operations which
specify whether displayed objects appear in perspective or orthographic projection.
Viewing transformations also specify a point to look from and a direction to look in the
world coordinate system.

Viewport -- A viewport is the area of the PS 300 display screen in which pictures are
displayed. Multiple viewports can be displayed on the same screen so that the same
object may be viewed from different vantage points, different objects can be viewed,

text can be displayed, etc. The viewport specification is a ratio and proportion
calculation, unlike viewing transformations which are matrix operations. Viewport

specifications are not concatenated with the current transformation matrix.

14 -GLOSSARY

Viewport Mapping -- Viewport mapping is the projection of data from the world

coordinate system to a viewport.

Was~~ ~~ladiilg' -- Wash shading is applied to objects on a PS 340 raster display. It

produces an object with area-filled colored polygons. Wash shading ignores normals,

light sources, all lighting parameters, and all depth cueing parameters.

Window -- A window is the three-dimensional area of the world coordinate system in

which data is visible. A window can impose an orthographic or a perspective view on

objects within it. A window is identical to a "viewing area."

Working' Storage -- Working storage consists of large contiguous block of PS 340 mass

memory needed to create renderings. Working storage must be explicitly reserved with

the RESERI/E WORKING STORAGE command.

World Coordinate SysterYi -- The world coordinate system is the three-dimensional

space which the programmer uses for designing and modeling objects. It is a

left-handed Cartesian coordinate system.

World Space Rotatior1 -- An object is said to rotate in world space when it rotates
around any of the world coordinate system axes, as opposed to one of the object's own

axes.

World-oriented Characters -- Characters that are world-oriented are transformed

along with an object of which they are a part.

L-elippitig -- See depth clipping.

AN INTRODUCTION TO DATA-DRIVEN PROGRAMMING METHODOLOGY

FOR PS 300 USERS

by

A.L. DAVIS

IAS #115

Evans ~ Sutherland Computer Corporation
P . O. Box 8700, 580 Arapeen Drive

Salt Lake City, Utah 84108

PREFACE

An original design objective of the PS 300 family was to provide a way to
program a number of pars{lel activities that may be occurring at the same
time. Our experience at Evans ~ Sutherland with our other products (PS1,
PS2, and MPS graphics systems) showed that considerable application program
complexity resulted from handling such activities as:

• pol I i ng mu Itiple interactive devices to determine which ones have changed
and apply the necessary modifications to graphical data structures.

• gathering interactive device event records, sorting through them, and
applying modifications where necessary.

• performing updates from interactive device information in such a way that
responsiveness to operator interaction is predictable.

Such tasks were often performed by complex programs whose results were still
less than satisfactory -- responsiveness to operator interaction is hard to
guarantee in atime-sharing environment. An application program in such an
environment may have little or no control over the scheduling mechanism of
the programs that are to be executed .

It was recognized that such needs -were not unique in the computer industry.
Programming languages designed to address these needs (e. g. , Ada,
Concurrent Pascal, Modula 2) were emerging. These languages, however,
required that the application be written in one of the languages. Such a
requirement wou Id tend to I imit the market for the PS 300 and was deemed
unacceptable .

Instead, a mechanism was sought that would allow an application to be
partitioned into an application-specific piece with no real-time response
requirements and a graphics-specific piece, where real-time response is
require

The mechanism selected was one that would enable inherently parallel
operations to be programmed independently and would also allow the
graphics-specific portions of an application to be programmed without regard
for the particular language that the application was written i n . The
function network facilities provided in the PS 300 thus evolved.

iii

Recognizing that these function network faci I ities bore a striking
resemblance to the data-flow concepts and theory that had been the subject
of research for a number of years, we attempted to incorporate same
data-flow terminology and concepts into the PS 300. Also, since the
terminology, concepts, and data-flow programming methodology would be new to
almost all PS 300 users, Dr. Alan L. Davis was contracted to write a
document introducing same of the data-flow concepts, theory, and proper
programming practices that might prove useful in programming the PS 300's
function network facilities. This document is the result of his efforts.

It is not the intent of Evans ~ Sutherland to provide an entirely new
programming methodology and environment for the development of application
programs . We bet i~eve that this can best be done with standard programming
languages, in typical program development environments. But we do feel the
PS 300f s data-driven methodology is welt -suited for graphics-specific
operations, local handling of interactive devices, and other parallel
operations. Its capability, flexibility, and responsiveness will enable
sophisticated graphics programs to be written more simply and with
predictable results -- regardless of the particular host computer or
operating system .

It is unusual for Evans ~ Sutherland to distribute a document written by a
single individual, as we have done with An Introduction to Function Network
Programming for PS 30o Users. It has been a pleasure for us here at
Evans ~ Sutherland to be able to support AI Davis in this effort. He has
presented an introduction to data-driven methodology in a very readable, yet
thoroughly informative manner. I hope that the reader will find his efforts
as informative and useful as we have.

M . W. Mantle
Interactive Systems Engineering

iv

ABSTRACT

The PS 300 allows users to specify a variety of interactive methods by
writing function net programs. Function net programs have a rather
different semantic base than conventional (or von Neumann) sequential
programming languages.

Function net programming is based on data-driven semantics. The advantage
of this is that the user may partition a program in a much more natural way.
than would be possible using a conventional programming language.

The change in the semantic base does, however, require a slightly different
way of thinking and the acquisition of a new programming methodology.
Fortunately, experienced programmers wi i I find the new methodology to be
simpler and less restrictive than the von Neumann methodology with which
they are currently familiar.

The purpose of this document is to present a self-contained tutorial
discussion of data-driven programming in general, and PS 300 function net
programming in particular. The hope is that by reading and understanding
this material, the PS 300 user will be able to write well-formed, stylish,
function net programs which will be efficient, easy to test and debug, and
easy to modify.

v

T~iBLE OF C©NTENTS

1. INTRODUCTION

1.1 FUNCTIONS, FUNCTION NETS, AND THE PS 300 1-2

2. DATA-DRIVEN PROG~;AMMING

2.1 BASIC CONCEPTS 2-1
2.2 CONJUNCTIVE AND DISJUNCTIVE VERTICES 2-3
2.3 DISJUNCTIVE VERTICES AND DECISIONS 2-8
2.4 SYMMETRIC DECISION STRUCTURES 2-9
2.5 ITERATIONS 2-12
2.6 CALLS 2-15
2.7 FAN-IN AND FAN-OUT 2-15
2.8 ERRORS 2-18
2.9 CONSTANTS 2-20
2.10 I/O 2-21

3. NET PROPERTIES

3.1 PERSISTENCE 3-2
3.2 LIVENESS 3-2
3.3 BEING WELL-ORDERED 3-4
3.4 SAFETY 3-4
3.5 CLEAN 3-4
3.6 WELL-BEHAVED 3-5
3.7 OUTPUT FUNCTIONALITY 3-6
3.8 SOME FINAL REMARKS ON PROPERTIES 3-7

vi

4. SPECIFIC FGN LANGUAGE REFINEMENTS

4.1 ARC REFINEMENTS 4-2

4.2 TOKEN REFINEMENTS 4-2

4.3 VERTEX REFINEMENTS 4-3

4.4 INSCRIPTIONS 4-4

4.5 TOPOLOGY RESTRICTIONS 4-4

4.6 ERROR HANDLING 4-4

4.7 INITIAL MARKINGS 4-5

4.8 TEXT mss. GRAPHS 4-5

4.9 SOME FINAL REMARKS 4-5

5. PS 300 FUNCTION NET LANGUAGE

5.1 INITIAL STRATEGY 5-1

5.2 GENERAL PS 300 FUNCTION NET ISSUES 5-1
5.3 CLASSIFICATION OF PS 300 FUNCTIONS 5-4
5.3.1 C.0 Functions 5-5

5.3.2 C.D Functions 5-9
5.3.3 D . C Functions 5 -10
5.3.4 Sinks 5-11

BIBLIOGRAPHY

ABOUT THE AUTHOR

vii

TABLE OF F IGURES

Figure 2-1. Simple Hospital Inventory FGN 2-2

Figure 2-2. Simple Spatial Concurrency Example 2-4

Figure 2-3. Queue-arcs Permit Pipelining 2-6

Figure 2-4. DISTRIBUTE and SELECT Cells 2-9

Figure 2-5. FGN to Computer IF A [1 THEN A - 1 ELSE A + 1 2-10

Figure 2-6. Well-Behaved IF Example Under Pipelining 2-11

Figure 2-7. Simple WHILE Type Iterative Structure 2-13

Figure 2-8. 3 Styles of Arbiter Indications 2-16

Figure 2-9. Deterministic Arbiter used to Share
an Expensive Resource 2-17

Figure 2-10. Constant Specification Methods 2-20

Figure 3-1. Example of FGN Which May Die 3-2

Figure 3-2. Encapsulation of Random Behavior 3-7

1. INTRODUCTION

The purpose of this document is to provide a self-contained introduction to
data-driven programming and act as a tutorial on proper programming style.
As such this document will not contain the usual references to other manuals
and/or papers . For the reader who wants to dive head-first into the deeper
reaches of the subject, an annotated bibliography is provided which if
faithfully pursued should do at feast two things:

• Provide substantive material on the key issues of general net theory,
distributed asynchronous programming, and data-driven programming.

• Keep the zealous reader busy for a very long time.

This document takes a rather pragmatic view in that the goal is to produce
effective PS 300 programmers capable of writing efficient, clean code.
Theoretical issues will therefore be well-disguised in a practical
environment.

This document is organized into two major parts. The first is a general
discussion of the properties of data-driven programs and proper programming
style. The second part is a specific analysis of the PS 300 function net
language and a discussion of proper PS 300 function net programming style.

There is some overlap i n the content of the two parts . This is intentional;
the acquisition of a new programming methodology for a language with an
extremely unconventional semantic base is almost always confusing and
frustrating. It is hoped that the reader can make this transition more
smoothly by first understanding data-driven concepts in general and then
seeing them applied to PS 300 function net programs.

This document assumes prior programming experience, but not necessarily
prior PS 300 experience. In fact, it is hopefully the case that you are
reading this before you have the t'enlightening" experience of wondering what
on earth should be done with your function network, which has currently gone
off the wall in some unforeseen and definitely unplanned manner.

IrITROD~ICT ION ~ -1

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

The experienced PS 300 programmer may often find the suggestions contained
in this document a bit inefficient. The only justification for this is that
it should be clear to most modern programmers that good style and raw
efficiency of the resultant program are often not perfectly compatible. If
a programmer knows a!I the Witty gritty details of the operating system, the
compiler, and the hardware itself, then it is possible, by cheating just a
wee bit, to write many wondrous programs which are fast and/or small.

Unfortunately for such people, operating systems, compilers, and hardware
change as systems evolve and many "tricks" need constant updating in order
to keep programs functioning in the intended manner. These changes are
often substantial and, in a world where programs are created and modified by
an entire community, such tricks are usually an impediment to orderly
progress .

However, data-flow programming is less restrictive than strictly sequential
programming. Using function net programming can result in faster and more
natural programs which are easier to create, debug, modify, maintain, pass
on to others, and so on .

1.1 FUNCTIONS, FUNCTION NETS, AND THE PS 3oQ

The PS 300 system can be thought of as an interactive eye through which an
object ca I led the model is viewed . The model is created on a host machine
and is represented as a database of essentially graphical information . The
PS 300 eye can be used to view the model from an arbitrary position . The
key feature of the PS 300 is that eye movement can be control led by
twisting knobs and dials rather than by a program running on the host
machine. The result is a zoomed, scaled, or clipped view of the model.

Since users will likely want to define their own customized functions for
the controls, some interface must exist to allow them to do this. The
interface is in fact a type of programming language known as function nets.

A function net program or function network can be viewed as a program which
takes values generated by a knob (or a set of knobs) and produces graphical
transformations which modify how the model is displayed on the CRT. Usually
a single knob is insufficient to specify all of the desired transformations,
and several knobs need to be used. A simple example would be to use three
knobs to specify the X, Y, and Z position of the eye and a fourth knob to
indicate the depth of the viewed object.

It is easy to imagine numerous scenarios which would need even more
controls . Sometimes two sets of knobs might be desired where each set's
actions are ca~nsidered to be independent from the influence of the other
set. At other times complex interdependencies of individual controls are
desired .

1-2 INTRODUCTION

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

In addition, it is natural to view the controls as being used in an
unordered and asynchronous manner.

The PS 300 function net language was designed to fulfill these needs in a
direct and natu ra! fashion . It is possible to support such a rich and
complex variety of interactions using sequential programming languages such
as FORTRAN or Pascal in conjunction with an interrupt mechanism which could
supply changing control values. But this "von Neumann" approach is somewhat
unnatural because the sequence specified by the sequential program does not
reflect the additional control imposed by the interrupt facility.

I n particular, the need for complicated i nterdependencies and independencies
of the PS 300 controls does not map cleanly and clearly onto the sequential
program structure of a language like Pascal. This lack of clarity causes
errors, delays, and in the worst case may even hide an otherwise obvious
solution to a programming problem.

Fortu nately, function net programs do not suffer from these problems . These
programs can in fact clearly and succinctly represent arbitrary mixtures of
dependence and independence from a number of PS 300 controls changing in
complete asynchrony with each other.

The primary reason for this power and flexibility of function net programs
is that their semantics are based on a model entirely different from
languages such as Pascal. This basis is known as data-driven or data-flow
semantics (the terms are used synonymously both here and in the general
literature) .

A more detailed discussion of data-driven programs .and semantics will appear
later. The essential idea is that in data-driven programs, the arrival of
the operands at a function causes that function to be activated and send
output values to other functions. Thus, data "drives" the computational
process . Hence the name "data-driven . "

I n a data-driven program, there is no program counter or other central
control device to indicate "what shou id be done next. " Any number of
functions may be active at any particular point in time. Thus, data-driven
programs can support arbitrary amounts of concurrency or parallelism. (If
the hardware can support the available concurrency, the program may execute
much faster than its sequential counterparts. This is a future possibility
for PS 300 successors, but the main use right now of this concurrency
structure is that it permits a more natural and manageable program
structure.)

A function network is presently programmed textually, but it's easier to
think of it as a directed graph structure. The graph is composed of directed
arcs and vertices . Each arc carries data from the "producer" vertex to the
"consumer" vertex. This directed graph represents the function network that
is executed by the PS 300 hardware to transform the model database into a
viewable object.

INTRODUCTION 1-3

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

The complete set of PS 300 functions can be found i n the
PS 300 User's Manua! . These functions are characterized i n Chapter 5
of this document . Before returning to the PS 300 function nets
specifically, the nest chapter describes important aspects of data-driven
programming in general.

1-4 INTRODUCTION

2. DATA-DRIVEN PROGRAMMING

2.1 BASIC CONCEPTS

The simplest and easiest way to understand data-driven programs is to view
them as directed graphs . These graphs are composed of two basic entities
arcs and vertices . Arcs carry tokens of data i n the direction indicated
by the arrowhead. Arcs can be thought of as leaving from the output ports
of vertices and then going to the input ports of other vertices. Vertices
can be viewed as functions which consume data tokens arriving at their input
ports and produce data tokens at their output ports .

The directed graph program is actually a network of these vertices and arcs,
where the network topology is whatever the programmer creates . These
Function Graph Networks wi I I hereafter be referred to as FG Ns .

A large variety of data-driven FGN languages and notations exist, but it is
not the purpose of this document to enumerate them here. The interested
reader i s referred to the bibliography for pointers to the va riou s
descriptions of these schemata .

Data-driven FGN's have been created as high-level programming languages,
machine languages for custom hardware, meta-languages which are interpreted
by a variety of hardware architectures (the PS 300 FGN language is an
example of this), or as modeling notations for processes ranging from office
information systems to chemical flow in a nuclear power plant.

Figure Z-~ shows a simple FGN example that models the inventory control
system at a hospital. In this example the arcs carry data tokens which
correspond to forms. The process modeled in this diagram could as easily be
implemented by computers or turned into a set of job descriptions performed
by people. I n a computerized implementation, the forms could be formatted
digital messages or files.

DATA-DRIVEN PROGRAMMING 2-1

INTRODUCTION TO FUNCTION NETWORtt PROGRAMMING

WARD
~~ 1

USED SUPPLIES

Y

NURSING
STATION
SUPPLY ~~1

REJECTS

• ~ • •

NEED MORE ..

CENTRAL

STORES

1

SUPPLIES

TRUCKS
DELIVERY `

RECEIVING

~ ON ORDER
YES/NO QUERIES

T

,OUTSTANDING
P.O.'s

CLOSED
P.O.'s

 L

P . 0 . ARCHIVE

INVENTORY
UPDATES

WE--~ ARE OUT
ORDERS

MASTER
INVENTORY
DATABASE

INVENTORY
DATA

l AMOUNT

AUTOMATIC
REORDER

ORDERS

QUERIES

ITEM

--~-- SUPPLIER
& LEAD TIME

VENDOR
 INFORMATION

ITEM
USAGE RATE

~~

P.O. COPIES

AVERAGE
DAILY USE

P,O. GENERATION

Figure 2-1. Simple Hospital inventory FGN

P.O. ts

2-Z DATA-DRIVEN PROGRAMMING

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

Note the inherent clarity i n the diagram, which ~ is probably much clearer
than a formal specification, a Pascal program, or an English language
description of the process. The primary reason is that the graph is
visual. It quickly and succinctly indicates the structure of the process
whereas the alternative textual representations must be analyzed before the
structure can be understood .

For example, i n the FG N diagram of the hospital system it is easy to see
that price never seems to be a factor and an automatically reordered item
never gets questioned. Note also that the arc labels or inscriptions never
specify function but serve more as comments do i n conventional programs to
describe the nature of the transmitted information .

For any particular "flavor" of FGN, there will be a set of atomic vertices
corresponding to the system's functions . Vertices may or may not have
special shapes which mean something. And there may be several categories of
arcs. The data tokens transmitted may vary from simple numbers to
multi-dimensional matrices or other highly complex structures.

How these FGN components behave determines data typing, statement typing,
and so on . The choice of a particular set of vertices, arcs, tokens, and
rules for their use creates a specific FGN language with its associated
syntactic and semantic structure.

The syntax with which a programmer describes an FGN may be the graph itself
or a textual equivalent. Choice of syntax has a major impact on clarity and
user friendliness, but does not directly affect the expressive power of a
particular FGN language.

In data-driven programs, the arrival of the necessary set of tokens at the
input ports of a vertex causes that function to be activated. When a vertex
can be activated, it is said to be fireable. When it is active, it is said
to be firing and when it has completed its action, it is said to have
fired. The set of inputs which are needed to make a given vertex fireable
is called the firing set of that vertex.

2.2 CONJUNCTIVE AND DISJUNCTIVE VERTICES

Consider a particular vertex type which simply adds two integers to produce
an output integer. Such a vertex needs both of its inputs in order to do
anything meaningful. Hence the firing set of this addition vertex is all
inputs. When the firing set requires all input ports to have a token then
the firing set is termed conjunctive.

Non-conjunctive firing sets are called disjunctive. This distinction turns
out to be important and will be discussed shortly.

The terms conjunctive and disjunctive can also be used to describe the
output ports of a vertex . I f , after firing, a vertex places a token on al I
of its outputs then such a vertex is output conjunctive. If not, then it

DATA-DRIVEN PROGRAMMING Z-3

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

is output disjunctive. Output disjunctive functions are often said to
behave under a disjunctive output rule. Similarly an input disjunctive
function behaves under a disjunctive input rule. Similar meanings apply for
conjunctive input and output rules.

Function types which are conjunctive for both input and output are almost
trivial to use correctly, and that makes life easy for a programmer.
Unfortunately, the need exists for disjunctive vertices as well. For the
moment, the discussion will stay in the nice conjunctive domain in order to
present some important and fundamental FGN properties.

I n data-driven networks, each vertex can be viewed as an autonomous
processing element. As such it is not necessarily synchronized with other
vertices in the network. A network of vertices behaves as an asynchronous
processing ensemble. Due to the fact that each vertex is an independent
entity, these networks contain high levels of concurrency. Figure 2-2 shows
a simple network of addition functions.

C1

Both C1 and C~ are fireable

IAS0255

Figure 2-2. Simple Spatial concurrency Example

2-4 DATA-DRIVEN PROGRAMMING

INTRODUCTION TO FUNCTION NETIrYORK PROGRAMMING

At time 1 both vertices G1 and C2 are fireable, independent of each other.
Thrs is indicated in the graph by the lack of an arc connecting vertices C1
and C2. Actions in FGNs are sequenced only by the existence of data
dependency, which is indicated by an arc. If vertex C1 produces a value
needed by vertex C3, then C1 must fire before C3. This is the case in
Figure 2-2. No other sequencing mechanism is necessary.

C1 and C2 are independent -- there is no arc connecting them to indicate
data-dependency. I n this example, C1 and C2 fired between time 1 and time 2
but it may not have been possibte to determine the order in which they
fired . !f the time frame had been divided more finely (with points 1 .1,
1.2, and so on) , then a different sequence of events may have been
observed . Here are three such possible sequences

• C1 and C2 fired between time l.n and 1.(n+l). In this case C1 and C2
still appear to have been active simultaneously. However, if the time
line was viewed with an even finer grain set of observations, then this
may or may not continue to be the case.

• C1 may have fired between time 1 .3 and 1 .4 and CZ may have fired between
1.5 and 1.6. In this case the firing of C1 definitely preceded the
firing of C2.

• C2 may have fired between 1 .1 and 1 .5 and C1 may have fired between 1 .7
and 1.8. If this were the case then we have observed at a fine enough
grain to have seen, at times 1 .2 through 1.4, that C~ was firing but had
not delivered its output token until time 1 .5. I n this case, regardless
of the duration of C2's firing, C2 fired before C1 .

• C1 fired between time 1.1 and 1.6, and C2 fired between time 1.3 and
1.9. I n this case the independent firings overlapped in real time.

What is important to note is that regardless of which of the four
possibilities did actually take place, the result of the program is the
same. The actual firing order of independent vertices (those not connected
by a directed path of arcs) is unimportant. In fact, trying to figure out
which independent vertices fire first i n real time is an impediment to
proper thinking with respect to FGN languages.

This property of concu rrency is an important difference from traditional
languages, where exactly one instruction is active in any particular time
step. This exactly-one-instruction-at-a-time style is called a
total ordering. Totally ordered programs -- sequential programs -- clearly
do not contain any concu rrency structure.

FG N programs rep resent pa rtia I orderings of the actions rep resented by the
vertex functions . Vertices which are independent are unordered, white
vertices which are connected by arcs or paths are totally ordered .

DATA-DR i 1/EN PROGRAMMi t`tG Z-5

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

~/ertices C1 and C2 in the diagram are concurrent operations. in this
document, such instances of concurs ency due to vertex independence will be
called spatial concurrency. (Other terms for such structures which may
also be seen in the general literature are horizontal concurrency or
parallelism.)

As an aside, it is worthwhile to note the differences between the nature of
concurrency represented by the program and the concurrency which is
exploited at execution time. It is interesting that to date there has been
very little relationship between runtime and program concurrency.
Typically, a concurrent program written in a language such as Concurrent
Pascal has been executed on a one-instruction-at-a-time machine.
Conversely, concurrent execution on machines such as the CRAY-1,
IBM 360/91, and others has been done for totally ordered programming
languages such as FORTRAN .

I t i s not the purpose of this document to point out the large number of ways
that things cou Id be done better. It will suffice to point out that
concurrency in programs often leads to a mare natural expression of a
sol union to a problem, a I lows inherently more efficient algorithms to be
discovered, and may be more efficiently executed on computers of the future
which may well be able to take advantage of program concurrency. Execution
concurrency, on the other hand, is determined by the mach i ne a grog ram runs
on . It is useful primarily for speed.

The focus of this paper will be on program concurrency, since the PS 300
programmer cannot i nte! I igently control the actual execution speed of the
PS 300 hardware by creating any special concurrency structure.

The nature of the arcs in a FGN program has not been examined very closely.
They have been viewed simply as a register capable of storing a single input
token. But if an arc was a queue of indefinite length, it would be capable
of holding an arbitrary number of tokens.

The example in Figure- 2-3 shows the same FGN addition network as before but
with several tokens queued on the arcs.

c2

time: time: t2

13

time: t3

where tl is before t2 which is before t3

Figure 2-3. Queue-arcs Permit Pipelining

2-6 DATA-DRIVEN PROGRAMMING

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

At time t2 all three vertices are fireable. The queues allow the FGN
program to represent a pipelined execution style on streams of input
tokens. Pipelining contains a form of concurrency -- vertices which are
linked together in a line can fire at the same time, Vertices further down
the pipeline will be firing as a result of tokens which were sent by earlier
functions at the same time the earlier functions produce new tokens. This
concurrency is obviously different from spatial concurrency, in much the
same way that electric circuits i n parallel are different from circuits i n
series .

Pipelined concurrency will be called temporal concurrency because it Occurs
with linear streams of time-ordered, sequenced tokens. (The general
literature may also use terms such as vertical concurrency,
temporal parallelism, or just simply pipelining. The choice of terms is
not particularly important; spatial and temporal concurrency will be used
here.)

Figure 2-3 shows that if the, arcs behave like queues, then FGNs nicely
represent an arbitrary mixture of bath temporal and spatia! concurrency. In
some sense FGN programs of this form are maximally concurrent program
representations. This is due to the fact that actions in such programs are
sequenced only by the availability of their input data (operands) .

The argument could be carried further to claim that FGNs contain only the
sequencing constraints required by the algorithm and therefore allow the
most natural procedural representation of the algorithm possible. The
programmer only needs to worry about the things which are required to be
sequenced -- this is essentially what the programmer specifies when an arc
is drawn. Spatial concurrency does not need to be specified explicitly and
therefore just falls out for free.

This is a simplification, but experience has shown that certain amounts of
concurrency seem to just appear in a FGN program. This is certainly more
natural than worrying about what should be concurrent and what must be
sequenced, and then specifying both. Unfortunately, the ease and utility of
a programming representation is affected by other factors besides
sequencing. But with respect to sequencing the argument is valid.

Each vertex of a FGN program acts as an independent processing site which
operates in an isolated, self-controlled, and self-timed fashion. When the
firing set is present the vertex fires and sends out its resu Its on the
output arcs.

It does not matter in any functional sense whether or not the firing is slow
or fast. It also does not matter whether or not the outputs are sent in any
particular order or whether the inputs are used in any particular order. An
instance of firing is considered complete only after all of the firing set
tokens have been consumed and all the results have been sent. As long as
the firing time is finite, the functional properties of a FGN program are
not affected .

DATA-DRIVEN PROGRAMMING 2-7

INTRODUCTION TO FUNCTION NETI~YORK PROGRAMMING

This self-timed behavior is yet another freedom that FGN programmers have
that is not typically available in conventional programming languages . The
benefits of these freedoms are many and will be subsequently enumerated in
same detail.

Often in an FGN program there will be various types of inscriptions
scattered around the graph . I n Figures 2-2 and 2-3 the inscriptions C1, C2,
and C3 were used to label the individual addition vertices. These labels
had no semantic value and served only as comments. (Often comments can be
used in the normal sense to describe in natu ra! language some aspect of the
FGN.) Labels could also be attached to arcs to describe the nature of the
data tokens which pass over that arc.

i n same FGN languages, certain types of inscriptions may also have semantic
roles. For example, the inscription in the vertices C1, C2, and C3
indicates that these vertices perform an addition . Other possibilities
might indicate arc data types, input or output ports, and so on .

The discussion so far has taken a fairly purest view of FGN programs. Any
particular FGN language specifies certain vertex, arc, and inscription
semantics to create a hopefully useful programming language. These choices
may in fact destroy some of the nice properties discussed in this section if
they .are made carelessly. I n addition, restrictions may be made on FGN
topology to disallow certain types of undesirable behavior. Two examples of
such topological restrictions might be:

• Only one arc may be connected to a particular input port of a vertex.
This would prevent non-deterministic merging of data tokens at that port.

• If input and output data ports are typed, then it would make sense to
disallow an arc to connect ports of incompatible types.

2.3 DISJUNCTIVE VERTICES AND DECISIONS

FGN operation wou Id be simple if a I I vertices had conjunctive firing rules
and conjunctive output functions. Unfortunately if this were the case,
important program constructs like decisions would be difficult.

Conditional execution (that is, the FGN equivalent to an I F-THEN-ELSE
statement in a conventional programming language) is an essential aspect of
any usable programming language. I n data-driven languages, activities are
triggered into action by the arrival of the firing set tokens . I n order to
conditionally select f u nction A there are two mechanisms which can be used

• Send a token to A wh ich says do not do anything if the condition holds to
not perform A. Such a token might be called an omission token. If A was
to be selected then a regular or "commission' token would be sent. The
advantage of this app roach i s that firing rules cou Id remain conjunctive
and analysis of a FGN program would be made easier. The disadvantage is
that a second class of tokens -- omission tokens -- have to be created,
transmitted, observed, and so on . This may consume valuable resources
without directly producing any desired value as a result.

2-8 DATA-DRIVEN PROGRAMMING

INTRODUCTION TO FUNCTION NET1l1~ORK PROGRAMMING

• More typically FGN language designers conditionally route tokens to
vertices. The advantage of this method is that vertex firings are always
done with real data (so no omission tokens have to be created and
resources are not unnecessarily consumed). The disadvantage is that
conditional routing makes disjunctive vertex types necessary.

Discussion of the first mechanism -- using omission tokens -- will not be
pursued. The second mechanism -- conditional routing with disjunctive
vertices -- will prove more useful for PS 3Q0-style programming.

2.4 SYMMETRIC DEC I S ! ON STRUCTURES

Let us define two vertices: DISTRIBUTE (DIST) and SELECT (SEL).
Figure 2-4 shows them.

Input COIF D T-input F- inpu
COND

C DIST
T

T-output F-output Result

Distribute Select

Ffigure 2-4. DISTRIBUTE and SELECT Cells

DATA-DRIVEN PROGRAMMING 2-9

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

The arcs are labeled for reference. The COND arc carries a Boolean value.
The arcs labeled T carry the token produced by DIST or used by SEL if COND
is true. F indicates the paths used if GOND is false.

Both DIST and SEL simply pass the input to the output unchanged. DIST
conditionally distributes its input to the proper output arc (one-ta-many
distribution) . Conversely, SEL conditionally selects an input token to be
passed to its output (many-to-one selection) .

SEL has a disjunctive firing set and, since there is only one output anyway,
a conjunctive output set. COND is always needed for SEL to fire, but only
o~~e of the other twa inputs is needed (depending on the value an COND) .

DIST, on the other hand, has a conjunctive firing set and a disjunctive
output set, where the CON D input specifies the output arc which wi I I receive
the output token.

Figure 2-5 shows a FGN program which adds 1 to a number A if it is greater
than zero and subtracts 1 f rom A if it is less than or equal to zero.

0

A

T _ COND

merge point

Figure 2-5. FGN to Computer I F A <1 THEN A- 1 ELSE A+ 1

2-10 DATA-DRIVEN PROGRAMMING

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

Assume for now that the constants 0 and 1 are tokens which are never
destroyed - - as soon as they are consumed during the firing of the vertex,
they reappear. The output arcs from the subtraction and addition vertices
are simply merged together into a single result arc.

This merge works fine if exactly one value of A is put onto each of the two
A arcs . No knowledge of vertex firing speeds is necessary to understand
what the result will be. If, however, two identical streams of values are
sent into the two A arcs then the output order wi I I be affected by the
speeds of the two parallel paths which contain the add and subtract vertices.

Here's how that might work . Let's say the first token gets routed to the
add vertex. If the add vertex fires much slower than the subtract vertex in
the other path, it will still be processing that first token as the second
token gets routed to the subtract vertex and causes it to fire. The first
output would thus result from the second input -- the output order would
differ from the input order. 1f order was important in the network, that
would introduce a problem.

To insure the correct output order, you would need to take the execution
speeds of each parallel path into account, but that only comps icates
matters. A much better programming technique would be to disallow merged
arcs and the non-determinism they can introduce.

By placing a SEL at the merge point, which gets a copy of the conditional
value, the resultant FGN (shown in Figure 2-6) is once again nice and
well-behaved even with the pipelined behavior resulting from streams of
tokens .

0

Figure 2-6. well-Behaved IF Example Under Pipelining

DATA-DRIVEN PROGRAMMING 2-11

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

Note from the diagram that a new vertex type called COPY has been
introduced. COPY takes an input token and produces two identica! tokens on
each output. Also note the symmetry of the decision structure in this
example. The single stream fanned out to many streams at the DIST vertex,
which were then brought back into a single stream at the other end with a
SEL. Without becoming unnecessarily formal, it will suffice to say that
these symmetric decision structures are always well-behaved.

There are a number of ways to incorporate well-behaved decision structures
into FGN languages (it is the assumption here that nobody is all that
interested in non-well-behaved mechanisms -- which in fact are even easier
to invent) . Some possibilities are:

• Incorporation of high-level vertex types which implicitly contain
symmetric decision structures. The simplest would be an I F-THEN-ELSE
statement box, but better choices certainly exist.

• Allowing DIST and SEL type vertices to be used directly by the
programmer. Checking for legal decision structure could then be done by
the compiler in a fairly straightforward fashion. The main problem with
this approach is that if the value of the token on the COND arc is an
illegal value, then something weird may happen. In general, this scheme
only works with certain error-handling mechanisms since the compiler has
no way of anticipating run -time token values .

• Hope that the programmer gets it right and forgo proper design of the
compiler and vertex type set. This is clearly the worst choice but
unfortunately has been the most common approach.

Note that the PS 300 function net language has a function (F: SWITCH) which
is exactly the same as the DIST function shown here. There is no single
PS 300 function equivalent to the SEL function, but the SEL function can be
programmed as a small network using F: SWITCH and several F: SYNC functions
with an appropriate initial marking.

2.5 i TE RAT l ON S

Iterations are also performed differently in data-driven sytems than in
sequential programs. in a data-driven iteration an initial set of tokens
arrives at the net which performs the iteration . If something indicates the
iteration i s to run , these tokens are then sent through the part of the net
which corresponds to the body of the iteration .

The body produces a set of partial results of the iteration which are fed
back around into the iteration the same way the initial set was, and the
cycle repeats itself . The problem is that if pipeiined tokens can enter the
iterative network, the feedback stream and the initial stream must not be
interleaved -- this would introduce indeterminacy.

2-12 DATA-DRIVEN PROGRAMMING

INTRODUCTION TO FUNCTION NETWORK PROGR~4MMiNG

This separation of new tokens from iterated tokens can be done either
explicitly when the program is written or dynamically at run time. There
are a number of ways to do each, one of which is presented here. It should
also come as no surprise that the method presented here is in fact the one
that will prove directly applicable t0 PS 300 function net programs.

With this method, the programmer provides a decision structure to keep the
two streams separate. This means that a set of initial tokens is selected
(via a SEL function). If the predicate evaluates to TRUE (meaning do the
body of the iteration), then the tokens are distributed (via a DIST
function) to the body. New initial sets are blocked from the iteration to
allow the feedback token sets to iterate until the predicate becomes FALSE,
indicating that the iteration is done. The tokens are then distributed out
of the iteration net as results. A new initial set is then enabled to be
selected which will start up the next instance of the iteration.

INITIAL

C

FEEDBACK

SEL

data

data

DIST
F T

data

RESULTS

r

BODY

Figure 2-7. Simple VYH f LE Type Iterative Structure

DATA-DRIVEN PROGRAMMING 2-13

INTRODUCTION TO FUNCTION NETV~(t~RK PROGRAMMING

The detailed scenario of the actions performed by this iterative structure
IS:

1. When an INITIAL token arrives, SEL fires and the data is copied and sent
to PRED . The predicate then fires to decide whether or not the iteration
is to be started. Let's assume that the predicate produces a TRUE,
meaning that it does start .

2. The TRUE is copied and sent to SEL and DIST. At this point, even if a
new INITIAL token were to arrive, the SEL vertex could not fire because
its condition arc would contain a TRUE. Until a FEEDBACK token arrives
nothing can happen . It is precisely this blocking action of the SEL
vertex that prevents tokens on the INITIAL and FEEDBACK arcs from
getting mixed up.

3 . DIST fires and the data tokens are passed through the BODY of the
iteration, which in turn produces a set of new values. These are passed
back to the top into the T input of SEL. SEL already has a TRUE token on
its COND line, and so the recirculated values are passed on as in step 1.

4. This process continues until FALSE appears on the COND line of SEL. Then
the data is passed out the RESULTS side of the DIST vertex . Note that
when this happens, FALSE is left on the COND line of SEL. This is
identical to the initial configuration of the FGN -- the network is ready
to begin a new set of iterations with new initial values. This simple
network can thus respond to a pipelined stream of tokens entering it.

The tokens which are present on the arcs of an FGN program initially are
ca I led the initial marking of the graph . There Ilea r!y are some
restrictions on initial markings if a particular FGN program is to operate
properly. I n the previous example, for instance, if the initial value
placed on the COND line of the SEL vertex was a TRUE, then no vertex of the
program would ever be fireable and the net would be dead forever.

The theory of initial markings for a particular graph topology is
extensive. The next chapter will discuss the properties 'that determine what
sort of initial markings are allowable (that is, which initial markings will
lead to well-behaved FGN programs) .

-The iteration control mechanism in the example illustrates how FGN loops can
be constructed . As was pointed out with decision structures, other
possibilities certainly exist. Higher or lower level vertex types can be
used, but the basic style would be the same.

One iterative technique, however, is rather different. This style has been
called unraveled iteration or U-iteration. U-iteration allows an
arbitrary number of instantiations of the same iteration to proceed
concurrently. A new instance is started for every token arriving on the
I N IT1AL sine. This method does not need to block new I NlTIAL tokens while
the current iteration is active, as was the case in the previous example.

2-14 DA?`A-DRlvEN PROGRAMMING

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

U-iteration can be visualized from Figure 2-5 with only a minor change. By
breaking the feedback arc and grafting an identical but new version of the
net at the breakpoint every time a new initial token comes along, the graph
grows dynamically as long as it needs to. This allows full pipelining of
the iterative structure. Without waiting for a set of initial tokens to
finish looping through an iteration, a later set can begin.

An additional mechanism needs to be provided at runtime to make sure the
output order of RESULT tokens is correct far U-iteration, but as this paper
concentrates on linguistic mechanisms rather than execution requirements we
will leave the discussion of iteration at this point.

2.6 CALLS

The mechanism to do the equivalent of a CALL, be it recursive or not, is
similar to CALL mechanisms in conventional languages. Semantically,
however, there is an additional freedom with data-driven CALLs that is not
available in languages like Pascal or FORTRAN.

I n sequential programming, arguments or formal parameter values typically
are supplied from a single site such as the calling subprogram. A
data-driven CALL vertex is activated by the a rrivai of its firing set just
like any other vertex . These firing set tokens can be supplied from several
concurrently active subprograms if that is what is desired.

Most FGN CALL mechanisms behave like a CALL-by-value in a language like
Pascal. This is due to the fact that tokens are best thought of as values.
Some FGN language designers have created CALL mechanisms which are more
like CALL-by-reference or CALL-by-name, but in these cases they have also
made compromises to the basic data-driven semantics of their languages. For
our purposes here the CALL-by-value view will be the most productive.

2.7 FAN - I N AND FAN -OUT

We have seen two rather different views of fan-out in FGN programs.
Fan-out is a vertex output property. If a vertex has two output arcs then
it has afan-out of two.

If a vertex has a fan-out greater than 1, and the outputs all
(conjunctively) receive tokens when the vertex fires, then concurrency is
inherently created. It does not matter whether the tokens are copies of a
single value or are different values. The result -- tokens flowing down
different paths at the same time -- is a fundamental illustration of
concurrency.

The other form of fan-out is when only part of the output paths receive
tokens. This disjunctive fan-out is a fundamental indication of a decision
structure, and an example is the DIST vertex shown in the previous two
figures.

DATA-DRIVEN PROGRAMMING 2-~5

INTRODUCTION TO FUNCTION NETVrIORK PROGRAMMING

Fan-in, on the other hand, refers to the number of input arcs a vertex has.
Fan-in also has two fundamental characterizations:

• Synchronization. Conjunctive fan-in at a vertex with a conjunctive
firing set is an indication that concurrent activities ire being
synchronized at that vertex . All of the tokens must be there before any
are allowed to move on, and when they do move, they all move at the same
time.

• DECISION termination. Disjunctive fan-in, as we have seen, is the finish
for what began earlier as the result of a decision structure.

Fan-in is a way of merging tokens. There is an additional type of merge
that is quite different in nature from synchronization or decision
termination, and that is arbitration .

Arbitration is a type of token-merging where tokens arrive on a number of
input arcs and are passed out on a single output arc on a
f i rst-come-fi rst-served basis . Arbitration only arises when concurrent
activity is allowed (such as with data-driven programming) and as such is
not seen in conventional programming languages.

This can be an inherently non-deterministic operation and in most FGN
languages it is. If non-determinacy is allowed, then two or more arcs going
to the same input port is usually an implicit indication of a
non-deterministic arbiter.

However, non-deterministic program behavior is usually considered to be an
undesirable property. Figure 2-8 shows two forms of non-deterministic
arbitration (implicit and explicit) and an arbiter that can be used for
deterministic operation.

I1 I2

implicit
arbitration
point

I1 I2

`ARBITER

r
arbitrated stream arbitrated stream

I~'on-Deterministic I~'on-Deterministic
Implicit

Il I2

WHICH

arbitrated stream

Deterministic
Explicit Explicit

Figure 2-8. 3 Styles of Arbiter Indications

2-16 DATA-DRIVEN PROGRAMMING

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

In general, programmers are cautioned against using non-deterministic
arbiters of either type. Such usage almost always turns out to be a major
mistake. Unfortunately most FGN languages do not have primitives for
deterministic arbitration . There is a way around this problem, however, if
token types are flexible enough -- we'll discuss this in a moment.

The key to deterministic arbitration is to create another token stream
(WHICH in Figure 2-8) that indicates which input port (11. . . In) produced the
token placed on OUT. This identifies the input token so it can later be
matched with its output in the proper order.

An example will help to illustrate this point. Suppose that three
independent processes need to access a very expensive resource. I n order to
avoid duplicating the expensive resource, the three processes share it. Let
the processes be called P1, P2, and P3 and let us assume that they query a
huge data base created by the World Knowledge Corporation (WKC) , which
contains everything known about everything. Each of the processes gives the
WKC data base system (WKC-DBS in the diagram) a single word and receives in
return a token describing all that is known about the query.

The FGN program to do this is actually quite simple and is shown in Figure
2-9.

Pl

PL Query

P3

P2 Query / P3 Query

C ~ 2
ARBITER

P1 Answers

Query
Stream

WKC-DBS

DIS

\ ' L

WHICH

COND

t

P3 Answers

PZ Answers

Figure 2-9. Deterministic Arbiter used to
Share an Expensive Resource

DATA-DRIVEN PROGRAMMING 2-17

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

~n this example any of the three processes can at any time send out a QUERY
token, which is merged by the ARBITER and sent to the 1NKC-DBS. The REPLY
token is sent to the D 1ST . D l ST knows from the token on the A RB I TER's
1NHICH arc what process to send the REPLY token to. (Note that in this
case the semantics of the DIST vertex have been expanded somewhat --
distribution is determined by an integer rather than a Boolean value.)
Topologically this network can be thought of as an order-preserving,
parallel-to-serial-to-parallel FGN program.

n the hypothetical language used for the previous example, a special vertex
(with a WHICH arc) allowed you to match parallel input paths with parallel
output paths in a deterministic way.

I n FGN languages tacking a special vertex that allows deterministic
arbitration, the programmer can build something similar by creating token
values on the QUERY n Lines which are two-element lists. The first element
is the process number (which in the example was created by the arbiter), and
the second element is the actual QUERY token . The only danger with this
mechanism is that the language compiler must allow syntactically
non -deterministic programs to be compiled . The burden i s then on the
programmer to insure that the program's behavior is deterministic. Clearly
the best approach is to use another method that would not burden the
programmer, since that load is usually a heavy one to begin with !

2.8 ERRORS

Errors are a perennial problem in any programming methodology, but in FGN
programs the programmer must diagnose errors rather differently than he
would in traditional programs. VI(ith sequential programs, a programmer would
usually run the program and, if it does not work, run it again and observe
the actions more closely until the problem is found. With partially-ordered
programs (that is, FGN's) this does not necessarily work.

For example, if the. problem is caused by some relative-timing error between
two independent pieces of the FGN, then this timing discrepancy may not be
repeatable due to the concurrent nature of the two pieces of code. It is
therefore paramount to program in a way that prevents programs which exhibit
this type of behavior.

One of the aims of this document is to aid prospective PS 300 programmers to
develop such a style. The key is to never design programs which rely an
runtime speeds of topologically independent subgraphs (vertices which arentt
connected by arcs) . Synchronization, arbitration, and decision structures,
if used as described above, will usually insure that proper program
structures are designed .

Still, the art of FGN language design is new. There are some bad 1=GN
languages out there, which may lull the programmer into thinking that
intrinsically dangerous FGN programs will work. If you are unfortunate
enough to get a bad language as your vehicle, be very ca ref u I to analyze the
decision, synchronization, arbitration, and other fan-in and fan-out
structures provided by the particular language.

2-18 DATA-DRIVEN PROGRAMMING

INTRODUCTION TO FUNCTION NETV~IORK PROGRAMMING

Fortunately, there are many aspects of FGN languages which make them easier
to modify and debug ~ than conventional languages . The lack of global
variables, GOTO statements, and so on, make them inherently side-effect free.

The influence of one thing on another is also easy to see -- just follow
the input paths backwards and you will find all of the actions which can
affect the token values .

Runtime debugging facilities also affect the process regardless of the
language. Vile will not elaborate on this topic, however, since the theme
here is primarily language-oriented. Suffice it to say that there is no
reason why FGN languages should not have good runtime debugging
environments. The only thing that can negatively influence these claims is
an improper choice of vertex types; this topic will be discussed later.

There is one additional point that deserves discussion, and that is how can
errors be detected and represented . When a -vertex firing creates an error
there are a number of things that may have caused it. Two of the three
possibilities are:

• Incorrect token values

• Incorrect token type. This would not be the case in a strongly typed FGN
language where type-checking was performed at compile-time.

C~ealing with these errors is straightforward -- the previous discussion
indicates how they may be handled . The other poss ibi I ity, which is unique
to data-driven programs, is not an error of commission (as the previous ones
are) but an error of omission. That is, the vertex should have fired but
could not because something was left out. Errors of omission are always
caused by disjunctive fan-in or fan-out. The cure for this problem is
properly structured decisions, iterations, and arbitrations, which have been
previously discussed .

With errors of commission it is important that something be done, because if
nothing is done then the output arcs of an error firing vertex wi I I either:

• Receive incorrect values, which will propagate and cause other errors.
In the process, they will mask the site where something initially went
wrong,

• Or receive no tokens. This will essentially turn an error of commission
into an error of omission and will only add to the confusion .

A number of things can be done when an error is noticed at run-time; the two
most common and useful strategies are:

• To suspend execution and allow the programmer to examine the input tokens
of the vertex in error and possibly find what caused the error.

DATA-DRIVEN PROGRAMMING 2-19

INTRODUCTION TO FUNCTION NETU1fORK PROGRAMMING

• To place special error-valued output tokens on the output arcs (and
possibly into an error-log file, which holds the identification of the
error vertex and the values of the input tokens which caused the
problem). The advantage to this scheme is that the FGN can keep running,
propagating the error tokens which are passed through as NOP (no-op)
indications to the vertices they meet on the way to this final
destination. This allows concurrent pieces of the program to continue on
so that as much as possible can be tested before the programmer needs to
dive in and find the problem.

2.9 CONSTANTS

Constants are a special topic. Typically there are two ways that constants
have been treated . These methods are depicted in Figure 2-10.

Regeneration Loop

1

constant
arc

N+l

N
1

Figure 2-10. Constant Specification Methods

N

2-ZO DATA-DRIVEN PROGRAMMING

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

In the constant arc case, the arc is viewed as always containing a token
with the constant value. The firing set of vertices which contain a
constant arc is consequently reduced by 1. This is no problem unless a
vertex has all constant arcs as inputs. !n that case the vertex would be
firing continually, which could spell disaster for the program.

There is fortunately a simple solution to prevent vertices with all constant
inputs. At compile-time, execute the always fireable vertex and place the
results on .the output arcs which are now of constant type. The advantage of
the constant arc approach i n that no unnecessary vertex firings occur, but
the scheme requires the ability to handle two arc types: constant and
regular.

The other approach is called regeneration and involves making a copy of the
constant value as it moves on to its destination and passing that copy back
around to reprime the constant copy vertex. This scheme requires that the
loop arc be initially marked with the constant value. The advantage of this
scheme is that only one arc type is needed but the disadvantages are:

• Extra vertex firings are needed to regenerate the same value.

• I nitia! markings are required.

• Initially fireable vertices are also inherent in this scheme. They must
be found and executed even though no tokens have been delivered into the
I oa d ed network .

• Since regeneration is a closed Loop net, the regeneration part may fire
an arbitrary number of times causing an unbounded supply of constant
tokens to queue on the feedback loop. This consumes both storage and
processing resources, which is clearly not a particularly clever idea.

Other constant mechanisms exist, but these are the two types most frequently
found in existing FGN languages.

2.10 I/O

The final basic topic to be covered is I/O. I/O always seems to be a mess,
and most of the I/O problem arises from poor language design . Here we view
I /O as information which either comes into the program or leaves it. The
formatting problem is the same as with conventional languages, but there is
one important difference which deserves discussion.

Data-driven I/O should be pushed into activity by its firing set just as any
other vertex is activated. This means that vertices that perform I/O
functions should be initiated by tokens, and that tokens should be returned
to indicate completion . If this is done, then the nice self-timed behavior
is preserved. Unfortunately many FGN language designers do not understand
this, and so I/O presents a problem in some languages .

DATA-DRIVEN PROGRAMMING 2-21

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

For input, a prompt can be given and the input data is the indication of
completion of the input. For output the data itself initiates the task and
a dur~~my token indicating that the output operation completed should be the
response.

If this style is adhered to then inputs are easy to direct to the proper
part of the FG N program . outputs which may be generated concurrently wi I I
appear in the proper order on a shared-output device. Sharing I/O devices
by concurrent I/O operations can be structured similarly to the shared
resource example shown in Figure 2-9.

If input is viewed (albeit dangerously) as a token appearing on an arc
whenever it gets there, then the programmer must carefully analyze the
token-flow possibilities of the FGN to see that all possible actions will in
fact permit proper program behavior.

Similarly, if output is viewed as a token sink, the programmer must also be
careful to analyze the FGN to insure that errors of omission do nat result.
In general these methods are not all that bad as long as I/O resources are
not shared. If they are shared, the I/O actions should be encapsulated in
a program piece which allows proper sharing and synchronization of the
atomic actions. As usual a good programming style can go a long way toward
curing the problems caused by careless language design .

This concludes the discussion of FGN programming basics. A thorough
understanding of the topics presented in this section is necessary before
proceeding .

2-22 DATA-DRIVEN PROGRAMMING

3. NET PROPERTIES

In conventional programming languages, certain structural properties of a
program are important. These properties involve control structures such as
properly nested decisions or iterations, but also involve scope rules and
variable usage. Creating programs that contain these properties is what
good programming style is all about.

The advantages of such programs are widely touted i n the general I iteratu re,
and it wi I I suffice here to say that good programming style concerns itself
with the entire programming spectrum from human efficiency to runtime
speeds; and from program design through testing, modification, and on to the
point where future enhancements can be made efficiently by a totally new
programmer community .

FGN programs also have properties which should be the goal of proper
programming style. Due to the nature of data as tokens in FGN programs, the
proper variable structure, scope, and usage of conventional programs have no
direct FGN counterpart. The issue of proper use of branch statements, for
instance, simply does not come up in FGN programs. Properly nested
decisions and iterations are equally important in FGN programs as they are
in languages like Pascal or FORTRAN.

In addition, however, some new program properties must be understood before
a FGN programmer can develop a good programming style. These result from
the intrinsic concurrent and self -timed nature of FGN program actions . Somme
of these properties are influenced by improper FGN language design . Whether
the language itself makes things easier or harder, it is important for a
programmer to understand these properties and strive to create programs
which contain them .

Some reasonable questions to ask with respect to a given FGN program are:

• Does the program continue to run until it provides output tokens?

• If the program works for a single token on its firing set arcs, will it
always work as well if pipelined streams of tokens are sent to it?

NET PROPERTIES 3-1

INTRODUCTION TO FUNCTION NETYVORK PROGRAMMING

• Does the program always produce the same answers for a given set of input
va I u es?

• Is it possible for mysterious things to happen which cause the program to
behave differently from time to time?

The properties described in this section are the key to providing the
answers to these questions .

3.1 PERSISTENCE

It is important that tokens on arcs do not randomly disappear. If they did,
it would be extremely difficult to predict program behavior. Most FGN
tokens are defined to have the property of persistence. A token is
persistent if, when one is placed behind another token at the tail of an
arc, it persists on the arc until it is consumed at the other end of the arc
by the firing of a vertex. This is necessary to maintain locally-controlled
action at the vertices of an FGN program.

Persistence is threatened if the producer of a token can remove from an arc
a token that it has previously placed there. That could change the firing
set of another vertex dynamically. This could be disastrous -- the
receiving vertex could think it was f i reable and start to fire, only ~to
discover that a token has been removed.

Another threat fo persistence is allowing tokens to be overwritten by later
tokens . This creation and destruction of an unused data value may not be
disastrous -- the program structure may not care if values are overwritten .
But if the algorithm DOES care, then there is a problem. Persistence is a
necessary condition to insure deterministic behavior for a FGN network.

3.2 L I VEN ESS

It is important that, once started, a FGN program does not destroy its
tokens in a mysterious way which causes no vertex to be fireable. For
example, let us consider the program shown in Figure 3-1.

COND

~ Throw Away, assumed unused

RESULT

Figure 3-1. Example of FGN 1Nh ich t1Aay Die

3-2 NET PROPERTIES

INTRODUCTION TO FUNCTION NETVYORIt PROGRAMMING

The program is a silly one, but it illustrates the point. The programmer
expects the program to take positive values of N and produce a result that
is the value of N plus 1. The problem is what happens when N is not
positive. I n this case, the value of N is thrown away and no result ever
comes out of the program .

Clearly, the problem in Figure 3-1 is that the decision structure is not
symmetrically closed . The parallel arcs T and F that leave D I ST need to be
merged somehow.

n data-driven languages this problem is an insidious one due to the
self-timed nature of the semantic model. Data-driven programs, waiting for
the firing set to arrive -- not for a time to arrive -- is how things
happen. It is not particularly valid to say that something should have
happened "by now" .

Certainly there are some pragmatic things which could be done, but in a huge
net of a mi I I ion vertices containing a great deal of concu rrency, the
analysis of the total state of the system is an extremely counterproductive
activity. In fact, the view of distributed control concurrent systems in
terms of total system state is generally not productive.

Partially ordered, self-timed systems are nice because they permit analysis
of parts of the system which are known to be independent from the i of I uence
of other parts. There is no need to make the analysis combinatoricafly
intractable by worrying about the state of the entire system.

I n general, it is easy to ascertain whether or not a FGN is live if all of
the vertices are conjunctive for both input and output. The analysis
proceeds as follows:

• Assume the output arcs of the FGN are live.

• If this is true then all of the vertices which generate tokens on these
arcs are live, too.

• Since they are live, all of the input arcs to these vertices are live.

• Repeat the last two steps u nti I a I I that's left are input arcs into the
FGN.

If the input arcs that you have determined are live are the firing set of
the FGN, then the FGN itself is live. If however, the firing set of the FGN
contains more inputs than you can determine are live, the FGN is not live.

f"~

The liveness problem is always associated with vertices that are disjunctive
for input or output. This fortunately is easier to check than you may
imagine. If a disjunctive vertex is part of a subnet which has a symmetric
decision structure (as previously discussed), then the FGN is live. A
symmetric decision structure has conjunctive inputs and outputs. Inside any
subnet, if it is symmetric, the tokens will always flow to produce
conjunctive outputs regardless of the disjunction pattern .

IVET PROPERTIES 3-3

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

You may be tempted to make assumptions about what decision paths can be
taken in a given structure. These assumptions are always seeds for
disaster. Always assume that the decision may be made in any direction,
and symmetrically close the decision structure. Your program will perhaps
contain a few more vertices but it will also contain less surprises. (Like
airline travel, programming is one of those activities that is made less
pleasant by surprises.)

3.3 BEING YIIELL-ORDERED

The property of being well-ordered applies to arcs. In this discussion we
assume persistent tokens. A well-ordered arc delivers tokens to their
destination in the same order they were placed on the arc.

Hence, queues are the only storage tech ique which makes sense for FG Ns, with
the exception of how to deal with constants . The queues can be of length 1,
n, or indefinite. If the queues are of finite length, then the execution
environment must be capable of delaying placement of a token on an arc which
is full. The PS 300 employs arcs of indefinite length, limited only by the
amount of available mass memory.

3.4 SAFETY

An additional net property which is often seen in network schemas but rarely
has a direct application to FGN programming schemas is safety. A network
is safe if there is no chance for a token to be placed on an arc which is
full. The advantage of safe nets is that the execution environment would be
relieved of the duty of forcing vertices which were about to place a token
on a full arc to wait. Safe nets are designed so this just cannot happen.

Unfortunately, the ways i n which safety can be guaranteed i n FG N languages
varies with the language so much that a full explanation here would be too
lengthy. Suffice it to say that safety is only a necessary property if the
arcs have a fixed capacity, and if the execution environment is not capable
of delaying output placement to a full arc.

3.5 CLEAN

If a FGN is clean, then it exhibits no history-dependent behavior. After
doing its work, a clean FGN returns exactly to the way it was with exactly
the same initial markings. Sa if a set of input values produces a certain
set of output values, then the same input set will always produce the same
output values . I n addition, a clean FGN is safe to use with pipelined or
streamed inputs .

There is a theoretical topological analysis which can be made to determine
whether or not an FGN is clean, but an easier nuts-and-bolts method is to:

• Take a given FGN and its initial marking.

3-4 NET PROPERTIES

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

• Put exactly one token of the proper type (if strong typing is a feature
of the particular FGN language being used) on each arc of the FGN's
firing set.

• Run the net anti! no more vertices are fireable.

• Remove al I of the tokens from the output arcs of the FGN .

• Compare the resultant marking with the initial marking.

If the markings are the same then the FGN with the associated initial
marking is clean -- otherwise it's "dirty". The term dirty stems from the
residual garbage tokens (which affect future net behavior) which get trapped
in a di rty net.

(The FGN must be live for this procedure to have much practical value, but
it works in any case as a test for being clean.)

Note that the clean property applies to a FGN with an initial marking .
Constant arcs and an empty initial marking are correctly contained within
the scope of this procedural test.

Note also that vertices which when fired produce random output values are
assumed to be absent from such a net, if the functionality claim previously
made is to be true. If such randomness was present, non-deterministic
behavior is usually considered to be different from the non-deterministic
behavior exhibited by the garbage token non-determinacy nets which are
caused by nets which are not clean .

Finally note that only nets containing loops, iterations, or circular
directed paths have a non-trivial clean test. Circular paths in FGN
programs, as in electrical circuit structures, are the primary indicator
that static storage (in this case, the initial marking) is present.

3.6 WELL-BEHAVED

A FGN program is defined to be well-behaved if and only if

• tokens are persistent

• arcs are wel I -ordered

• the FGN and its initial marking is live, safe, and clean.

The goal of proper FGN programming is to create well-behaved FGN programs.

NET PROPERTIES 3-5

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

3.7 OUTPUT FUNCTIONALITY

Determinacy has been mentioned several times. With FGN programs,
determinacy has a slightly different flavor. Deterministic program
behavior has traditionally meant that if an atomic history of program
activity was kept, then the history wou Id be repeated if the program was ru n
again with the same input values.

Due to the concurrent and self-timed nature of FGN programs and the fact
that they represent partially-ordered computations rather than
totally-ordered ones, the repeatability of an atomic history does not make
any sense.

Usually the property which is used instead is output functionality. A FGN
program is output functional if, for a given initial marking, identica!
input streams produce identical output token streams.

The repeatability of program behavior is still the essence of this property,
but the focus has changed_ from the atomic history to the "big picture" --
the order and values of the input and output tokens. The question becomes,
"Is my FGN deterministic and repeatable overall" -- without worrying about
the ordering of small operations inside the FGN.

The next problem is how to insure that a FGN program is output functional.
If the program contains a vertex which, say, outputs random values
regardless of its firing set values, then life is indeed hard.

Usually programs which contain randomness of this type are not supposed to
be output functional. Fortunately most programs are supposed to be output
functional, and if such random actions are contained in the program then
they are encapsulated inside a program fragment which completely hides this
randomness.

An example of such behavior would be a program which randomly assigns pairs
of inputs to three different addition vertices called ADD1, ADD2, and ADD3.
This program is shown in Figure 3-2.

3-6 NET PROPERTIES

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

LEFT

TR~ IGGER

RIGHT

RESULT

COND

Figure 3-2. Encapsulation of Random Behavior

tAS0256

The vertex 1:3 RANDOM, regardless of the trigger value, generates at random
either a 1, 2, or 3. This causes the LEFT and RIGHT operands to be sent to
a random adder but the results are SELected in the same fashion as they were
DISTributed. This makes the entire FGN program appear as if it contained no
random action. Such random behavior may be called transparent randomness.

If a given FGN contains no randomness, no asymmetric decision structures,
all iterations are well-nested, tokens are persistent, I/O is symmetric, and
the FGN is I ive, clean, AND well -behaved then it wi II be output-f u nctionaf .
A formal proof of this fact is lengthy and somewhat complex but has been
done. The above criteria are both necessary and sufficient conditions to
establish output functionality.

3.8 SOME FINAL REMARKS ON PROPERTIES

As with all properties of "nice" programs, there is a big difference between
practice and theory. This is as true for FGN programming as it is for
Pascal .

NET PROPERTIES 3-7

INTRODUCTION TO FUNCTION NETVIiORK PROGRAMMING

A common scenario is for the programming methodology prophets to expound
endlessly on the merits of the new religion while presenting their
principles via laborious arguments and trivial program examples. The real
programmers, on the other hand, scoff at the prophets with a claim that if
that much analysis was required for each line of real code, then no useful
program could ever be written . There is however an element of truth in both
arguments, and quality and productivity can result from a proper balance of
the two views. Programmers can create complex, well-structured programs
without laboriously analyzing every atomic action in great detail.

l n general, good programmers understand the principles of good programming
practice and the properties which their programs should contain . I n the
past 30 years the art of programming has come a long way, and there is no
reason to go back to the dark ages and start all over with FGN languages.

If the PS 300 function network programmer can keep the principles and
properties discussed in this section in mind, the knowledge will go a long
way toward developing an efficient, surprise-free programming style. While
the ideas presented here may seem new to programmers who have previously
used sequential languages, the work on concurrent programming is actually
over 20 years old. It is a mature discipline which is new only in that it
has been applied to practical programming environments only recently .

3-8 NET PROPERTIES

4. SPECIFIC FGN LANGUAGE REFINEMENTS

The discussion has thus far presented all of the basic concepts which, if
understood, will provide a firm foundation for high-quality FGN
programming. It has not listed specific DO's and DON'Ts because each
particular FGN language is a bit different; a complete list would be
impossible. It would be easy enough at this point simply to describe the
PS 300 function networks and be done with it. But the philosophy here has
been to present general concepts, which will then allow FGN programmers to
develop their own practical principles list.

There are only two dangers in continuing the general discussion

• Boredom. If this gets you then please skip the remainder of this chapter
and proceed to the PS 300 stuff . If and when you get in trouble, then
come back and read it (it wi I I sti I I be here) - - who knows it may help !

• Confusion. It may be confusing to some readers who find it difficult to
assimilate abstract information without sitting down i n front of a
terminal and doing something concrete. If this is the case, then go do
something and come back. It will not help conceptually, but it may
relieve some frustration .

I n general, it is useful to analyze a particular FGN language in terms of
that language's types of tokens, arcs, and vertices with their associated
semantics . These specific choices are termed refinements i n th i s
document.

By analyzing these refinements and how they are related to general FG N
principles and properties, the programmer should be able to understand how
the particular language being used fits into the general framework of
data-driven languages. The programmer should also understand what practical
programming restrictions should be applied in order to produce high quality
code that is easy to debug, modify, understand, and hand off to others
without significant danger.

SPECIFIC FGN LANGUAGE REFINEMENTS 4-1

INTRODUCTION TO FUNCTION NETVIlORK PROGRAMMING

4.1 ARC REFINEMENTS

Typical arc refinements include typing. If a particular FGN language allows
different types to be mixed in a confusing way, the programmer must develop
restrictions to prevent this confusion . I n particular, usage must be
restricted so that only well-ordered programs can be created.

In some FGN languages type-checking occurs at the vertices at runtime. If
an input token is not compatible with a vertex it has been sent to, then
some mechanism must recognize that and indicate that there is an error.
Possible mechanisms for such error handling have been discussed.

in other languages, the arcs are considered to be strongly typed, in which
case type checking can be done at compile time. A less sophisticated
error-handling mechanism will be required for these languages.

I n cases where the language has well-ordered arcs with limited capacity, the
programmer must create safe programs, or the execution system must prevent
an output token from being placed on an arc until the arc can receive it.
Otherwise tokens may get lost -- and that would violate the persistence
property .

Some systems use a single arc to represent composite token-carrying paths.
This is similar to routing bundles of arcs. The advantage is more
simplified graph structure. Usually languages which allow composite arcs
also have vertex types which compose and dissect the bundles where needed.
This is not an issue that concerns the programmer, since it is a syntactic
nicety which either exists or is absent in a given FGN language.

4.2 TOKEN REFINEMENTS

What types of tokens does the language allow? Possibilities are:

• Simple integers, teals, and characters

• Complex tokens such as arrays, variable-length strings, I ist structures,
and so on.

• Streams of tokens, which may or may not require beginning- and
end-of -stream indicators .

If the language allows any type of token to hit any vertex then either the
compiler or execution environment shou Id be able to check if things go wrong
and provide a sufficiently powerful error mechanism which will allow the
programmer to find and correct the trouble spots.

Without this error-handling mechanism, the burden is on the programmer to
carefully check all FGN paths and insure that the wrong type token does not
get routed to a vertex which it will cause to go crazy. Crazy vertices are
a sad thing to observe. Crazy programmers, while being somewhat easier to
observe, are driven even crazier by crazy vertices.

4-2 SPECIFIC FGN LANGUAGE REFINEMENTS

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

The main property that should be guaranteed by the system is persistence.
If this is not done by the language and its runtime environment, then the
programmer must write programs which cause tokens to exist as if they were
persistent .

4.3 VERTEX REFINEMENTS

There are diverse possibi I ities for vertex refinements . Choosing them is
similar to choosing machine op-codes and language statement types. They
reflect the designer's view of what is needed for a particular set of target
applications or program styles. Deciding on vertex refinements is more of
an art -- or a matter of the designer's personal style -- than a science.
(A sort of Murphy's Law corollary states that no matter what the designer
did decide will be viewed by every other programmer as the wrong decision .
This is healthy, since complaining is a fun way to spend time when you can
not think of anything else that you would rather do.)

Vertex types may be indicated by their shape, by a combination of shape and
inscription, or even by their position in the graph. This is syntax stuff
and except for ease of use, does not affect behavior of the program. Some
languages only allow atomic vertices to be placed -- this inhibits
hierarchical program design except for the equivalent of doing subroutine
calls .

Other languages allow for non -atomic vertices to be defined . These
non-atomic vertices are essentially "black box" encapsulations of the FGN
which define its behavior. By opening the doors of the box, the
substructure can be examined or created. Usually there is a one-to-one
correspondence between the input and output arcs to the box and the arc
structure of the FG N which defines the box .

Another difference is whether or not vertices have fixed numbers of input
and output ports. This is not really something the programmer needs to
worry about, as it is more a reflection on the f lex i bi I ity of the compiler
and the execution environment.

Copying is usually provided for either explicitly, using a "copy" vertex
(this i s the method used i n the examples presented i n this document) . O r it
may be implicit, indicated by mu Iti ple arcs leaving an output port of the
vertex producing the value which is to be copied.

All that a programmer needs to be concerned about with copying is how to do
it i n the specific FG N language he's working with .

It is important to note which vertices do not behave in an output-functional
manner -- those which contain "state" and therefore exhibit a
history-dependent behavior, or those that generate random output values.
These vertices are not inherently worthless, but they do cause
non-deterministic behavior in the programs which contain them. If complete
determinacy is desired, then ail non-functional vertices must be
encapsulated as shown. in Figure 3-2 or via some similar technique which
preserves output functionality.

SPEC! F IC FGN LANGUAGE REFINEMENTS 4-3

INTRODUCTION TO FUNCTION NETINC)RK PROGRAMMING

ft's also important to note vertices which have disjunctive input or
output. These vertices must b~e used in a symmetric decision structure
fashion in order to preserve awell-behaved network.

4.4 INSCRIPTIONS

Inscriptions can be used without affecting program function to name arcs and
provide comments. These serve simply as ordinary comments do in
von Neumann languages to aid in the readability of the code. Some
inscriptions are used to type vertices, arcs, tokens, or act as global
constants which can be assigned by the compiler to the appropriate symbol.
Such inscriptions are not a need for concern, as they are just another
syntactic method for specifying what cou Id be represented i n other ways .

I n some FGN languages, vertices may contain inscriptions which are
programming instructions. ft is important that the programmer write these
mini-programs in a way that insures well-behaved function networks. The
advantage of this approach is that it allows the programmer to describe
actions that are normally thought of as a text string by simply writing the
text string. Algebraic expressions are an example.

4.5 TOPOLOGY RESTRICTTONS

Some languages do not allow more than one arc to end at the same vertex
input port. This is because a program that contains such merging is less
likely to be well-ordered. The only time using this kind of merge will
result in well-behaved programs is when token arrival on the merged arcs is
restricted to guarantee well-ordered arrival at the port -- that is, if the
input arcs are mutually exclusive. This means that if only one of the
parallel arcs can contain a token at any given time, then no "race" between
tokens in parallel arcs can occur. The resultant programs will still be
well-behaved. If such a merging is allowed, the best advice is to f~OT use
the capability. If you must use it for some reason, be c-~reful to restrict
arcs to avoid token races .

Other topology restrictions usually apply to strongly-typed languages where
the compiler or editor (even better) will complain if you assign an arc to
the wrong type of vertex port.

4.6 ERROR HANDLING

Many error mechanisms exist and they must be evaluated with respect to the
properties described in the previous section.

4-4 SPECIFIC FGN LANGUAGE REFINEMENTS

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

4.7 INITIAL MARKINGS

Some languages do not permit initial marking. If the one you are using
does, be careful to specify initial markings which result in well-behaved
programs. Be even more careful if the editor and compiler do not do
"property checking" -- if they don't check programs before they execute to
see they are well-ordered, safe, clean, correctly typed, and so on .

4.8 TEXT vs. GRAPHS

So far, this document has assumed that the programs are specified as
graphs. This is the clearest and most natural way to specify FGN programs.
Unfortunately, graphical editors are less commonly available and require a
more sophisticated terminal than text editors, which have been around for
years. Using a text editor won't affect programming methodology -- you'll
still have to pay attention to the FGN properties that have been discussed.
It will make actual programming more laborious, though . A graphical editor
allows you to SEE how the vertices in a graph are connected. It isn't
nearly as easy to visualize a FGN program disguised as a list of text
commands .

1t is always possible to provide a textual description of a graph via a set
of arc and vertex statements which contain connection information . I f
property checking is done by the system you are using then life is nice. If
it is up to you to do it, then in times of doubt draw pictures!

Fortunately, graphical specification is becoming more prevalent. System
designers are discovering the merits of systems which prevent errors and are
beginning to stop designing systems which promote error-creation . After
all, making mistakes is easy enough, so why should people work hard to make
it even easier?

A more philosophical issue is that there probably is no good reason why
program structure should be indicated in the same way that poetry is, i . e.
by some hokey indentation structure. A better view of program and poem
similarity is based on the fact that both words start with a "P"

4.9 SOME FINAL REMARKS

At this point the di I igent reader who has taken the time and effort to
digest this unfortunately lengthy treatise has all of the right tools to
grab a FGN language and do things properly. At least this will be the case
after a moderate amount of practice.

The function net language of the PS 300, quite frankly, contains features
which will not make your life as easy as it could be. With all FGN
principles in mind, however, you'll be able to create surprise-free PS 300
function net programs .

SPECIFIC FGN LANGUAGE REFINEMENTS 4-5

5. PS 300 FUNCTION NET LANGUAGE

5.1 INITIAL STRATEGY

This document is not intended to be a PS 300 function net language reference
manual, so the details of what each vertex type does is not included here.
The definitive document for that is the PS 300 User's Manual, and the
relevant chapter is Chapter 7, "Local Actions" . If you have not already done
so, you s hou Id go read that chapter prior to continuing with your study of
this document.

1Nhat follows are some very general tips on how to create well-behaved programs
using the PS 300 command language. !f your understanding of general FGN
properties is rather complete, then the remainder of this section wilt come
merely as a review of what you already know, or perhaps a confirmation of what
you expect to be true.

1f there are some issues discussed in this section which you do not expect,
then perhaps your understanding in this area is still a bit weak. This may be
due to the fact that you have little experience with a new programming model
or to a failure on the author's part to describe it in an way that is
understandable to you, given your particular programming experiences and
preferred terminology.

At any rate, you should list the areas in which you are weak and then perhaps
go back in this document and reread the areas which discuss these topics.

5.2 GENERAL PS 300 FUNCTION NET ISSUES

The first thing that you wi I I notice about the PS 300 function net languages is
the large number of vertex types -- or functions -- which have been defined.
Some of them are not absolutely necessary but have been provided as a
convenience, to permit more direct implementations of a desi red solution . The
actions _which the functions perform are specialized to allow the interactive
controls to modify the model for -viewing.

PS 300 FUNCTION NET LANGUAGE 5-1

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

It is not ageneral-purpose programming language, so some of the issues which
have been previously presented in this document are not directly applicable to
PS 300 prog rarnmi ng . They are, however, all relevant.

Conjunctive and disjunctive input and output rules were presented in the guise
of a decision structure which was hopefully similar to the types of program
decisions made in sequential programming languages. Several PS 300 functions
have disjunctive structure and all of the issues which apply to decision
structures apply to them, even though their use may not be i n a conventional
I F-THEN-ELSE decision .

Often, there are standard values for certain types of graphical
transformations. The PS 300 functions which are likely to incorporate these
'default values" allow the programmer to specify the default in a particularly
easy manner. I n such cases the input port, if left disconnected, will always
have the default input value. This is an entirely safe way to incorporate
def a u It constants .

Of course if the programmer wants to use a special value, then simply by using
the appropriate input port, the new values can be specified. The programmer
s hou Id not confuse this type of defa u It constant specification with the
constant queues type of arc or input port. Input ports which are labeled
with a C can be thought of as being driven by an arc, whose queue length is 1.

Constant queue inputs, labeled C in the manual and hereafter referred to as
C-inputs, are used by many of the PS 300 functions. C-inputs are a potential
source of problems to the PS 300 programmer. The C-input defines the
equivalent of a token register at the C-input port. As such the token which
it contains is not removed when the vertex function fires. This is not a
problem, as such a mechanism is similar to the well-behaved constant mechanism
discussed previously.

The problem arises because C-input tokens can be overwritten at anytime,
simply as the result of another token arriving at the C-input port. This
clearly violates the persistence principle. Without persistent tokens,
remember, some FG N programs may not be wel I -behaved .

For example, if a C-input value is sent to a function and is not used before
another value arrives and overwrites it, then the effect is the same as if the
first token was never generated at all . I n cases where every generated value
is supposed to be used, this disappearance would clearly be contrary to the
programmers intent.

Fortunately, there is a solution to the problem. This involves creating a
backsignal from the user of the C-input token to the producer of the token
which indicates that the value has been used. This 'used" signal can then be
part of the firing condition which will allow a subsequent value to be
generated .

5-2 PS 3C0 FUNCTION NET LANGUAGE

INTRODUCTION TO FUNCTION NETWORK PROGRAMMING

In other cases, the C-inputs cause no problem -- the program merely wants the
latest value and does not care about the intermediate values of that type.
Such an example might be the position of a dial. The program may fire when
another dial is moved and the latest value of a second dial is then used to
produce a new view on the screen .

The programmer must always keep in mind which of these two kinds of use is
desired when using vertices with C-inputs and then use the proper technique to
ensure that the desired behavior is created in the program structure.

Currently when an error occurs the PS 300 just stops, and prints out an error
message indicating the type of error and the f u nctian type which was being
executed when the error condition was observed .

Unfortunately the programmer can not conveniently examine the input tokens
which caused the error. Instead, the programmer must examine the program
structure in an attempt to visualize how that type of error could have
occurred .

Once the program has been corrected, the new net must be reloaded and
restarted for a subsequent run . There is currently no provision for
incremental error traps and restarts. This unfortunately implies that the
program must be run at least one time for every error it contains. This
primitive error faci I ity and lack of a runtime debugger implies that it is
paramount that program creation be done properly! This sentence should
probably be reread a few thousand times .

The most common error is a data token-type mismatch . I n the definition of the
PS 300 functions, arcs and therefore input ports contain type information.
Type checking is done at runtime, and if a non -conformable set of firing set
types is observed then BOOM an error condition occurs . The PS 300 function
net language can be viewed as a type-free language.

Some programmers have argued for years against the inflexibilities of strongly
typed languages while others have argued in favor of strongly typed languages
because they are easier to use to create correct programs. Both sides are
valid.

It is important to realize that the lack of strong typing with the PS 300
means the compiler cannot predict runtime type-mismatch errors. The
programmer should analyze all of the paths in the program graph to insure that
consistent typed tokens are provided in all possible cases. This is
especially true when certain conditions are present. Types must be
conformable under all possible disjunctive output rules if error-free
operation is to be the result.

You can make initial markings with PS 300 function graphs. After the program
graph is loaded, tokens can be sent to any function input to create the
initial marking. The programmer must do this with great caution. If a token
which should be an initial marking causes a vertex to fire then the net will
be ACTIVE. Usually this causes more firings and so on.

PS 300 FUNCTION NET LANGUAGE 5-3

INTRODUCT[ON TO FUNCTION NETII~ORK PROGRAMMING

In general, initial markings should not cause any vertex to fire. This is a
good practice since it is easier to know what the initial configuration is if
nothing changes . It is possible to have vertices which are always f i reable,
and if this is the case then similar caution must be exercised.

In addition there are a number of functions (the CLOCK function is an example)
that will fire at a real-time synchronous rate. This is a violation of the
usual data-driven self-timed behavior. Any time such a function is used, it
must be used in a manner that insures that the rate and nature of token
production will be handled by receiving functions. Any time these real-time
tokens go to C-inputs, special attention must be given to whether or not the
possible lack of persistence will cause a problem.

A final point: users of the PS 300 specify their graph programs as textual
descriptions. This is not a problem, but you are advised once again to draw
pictures if you are wondering what is going on. Graphs usually aid your
intuition t

5.3 CLASSIFICATION OF PS 300 FUNCTIONS

This section gives a function-by-function analysis in the form of tables.
Four classes of functions are defined:

• C.0 -- vertices with conjunctive input and output rules. These are
typically safe as long as types match and the proper discipline is
exercised for constant inputs.

• C. D -- vertices with conjunctive input rules and disjunctive output
rules. These vertices need to be embedded in a symmetric decision
structure, types must match, and constant inputs must be used properly.

• D. C -- vertices with disjunctive input rules and conjunctive output
rules . These vertices need to be embedded i n a symmetric decision
structure, types must match, and C-inputs must be used properly.

• Sinks -- these functions fire in the normal data-driven way but produce
no output which i s returned back to the function net program . I n some
sense these arcs can be viewed as program outputs; behavior is rather
simple to control.

The only problem is that the lack of an output means that if data
structure updates can happen concurrently then they must be sequenced if
there is a necessa ry order. This sequencing wi I I appear to be done
randomly, so if the intent is that the order matters, then vertices in
this class must be sequenced by a di rected path through the operations
which are to be ordered .

5-4 PS 300 FUNCTION NET LANGUAGE

INTRODUCTION TO FUNCTION NE'T'VYORK PROGRAMMING

r"1

r"1

5.3.1 C.0 FUNCTIONS

Function Inputs:0utputs Cautions

F:Ceiling 1:1

F:Fix 1:1

F:Float 1:1

F:Print 1:1

F:Round 1:1

F:Vec 2:1

F:CVec 2:1 C input discipline required

F:VecC 2:1 C input discipline required

F:XVector 1:1

F:YVector l:l

F:ZVector 1:1

F:Ceiling 1:1

F:Fix 1:1

F :Float 1:1

F:Add 2:1 Input types must conform

F:AddC 2:1 Input types must conform
C input discipline required

F:And 2:1

F:AndC 2:1 C input discipline required

F:Div 2:1 Input types must conform

F:DivC 2:1 C input discipline required
Input types must conform

F : CDiv 2:1 C input discipline required
Input types must conform

F:Average Z:2

F:Mod 2:1

PS 3~ FUNCTION NET LANGUAGE 5-5

INTRODUCTION TO FUNCTION NETWORK PROGRAMMfNG

Function Inputs:0utputs Cautions

F:ModC 2:1 C input discipline required

F:Mul 2:1 Input types must conform

F:Mu1C 2:1 C input discipline required
Input types must conform

F:Not 1: 1

F:Or 2:1

F:OrC 2:1 C input discipline required

F : SinCos 1: 2

F:Sub 2:1 Input types must conform

F:CSub 2:1 C input discipline required
Input types must conform

F:SubC 2:1 C input discipline required
Input types must conform

F:Xor 2:1

F:XorC 2:1 C input discipline required

F:Eq 2:1 Input types must conform

F:EgC 2:1 C input discipline required
Input types must conform

F:Ge

F:CGe

F:GeC

F:Gt

F:CGt

F:GtC

F:Le

2:1 Input types must conform

2:1 C input discipline required
Input types must conform

2:1 C input discipline required
Input types must conform

2:1 Input types must conform

2:1 C input discipline required
Input types must conform

2:1 C input discipline required
Input types must conform

2:1 Input types must conform

5-6 PS 3~ FUNCTION NET LANGUAGE

.INTRODUCTION TO FUNCTION NETYYORK PROGRAMMING

Function Inputs:0utputs

F : CLe

F:LeC

F:Lt

F:CLt

F:LtC

F:Fetch

F:Neq

F:NegC

Cautions

2:1 C input discipline required
Input types must conform

2:I C input discipline required
Input types must conform .

2:1 Input types must conform

2:1 C input discipline required
Input types must conform

2:1 C input discipline required
Input types must conform

2:1 C input discipline required

2:1 Input types must conform

2:1 C input discipline required
Input types must conform

~~~F: Concatenate 2 : 1 

F:CConcatenate 2:1 

F:ConcatenateC 2:1 

F :Delta 

F:Limit 

F : CXRot at e 

F : CYRotate 

F : C ZRot at e 

F:Scale 

F : XRotate 

F : YRot at e 

F:ZRotate 

F:CRot ate 

F:CScale 

C input discipline required 

C input discipline required 

2:1 

2:1 

3:2 C input discipline required 

3:2 C input discipline required 

3:2 C input discipline required 

1:1 

1:1 

1:1 

1:1 

1: 1 

1:1 

PS 300 FUNCTION NET LANGUAGE 5-7 



INTRODUCTION TO FUNCTION NET~1lORK PROGRAMIVIING 

Function Inputs:Dutputs Cautions 

F:FOV 4:1 C input discipline required 

F:Lookat 3:1 C input discipline required 

F: Lookfrom 3 : 1 C input discipline required 

F : w'indow 7 : 1 C input discipline required 

F: C 1 cSeconds 6: 1 C input discip 1 ine required 
Always fireable real time 
behavior possible 

F: C1Frames 6: 1 C input discipline required 
Always fireable real time 
behavior possible 

F: C 1Ticks 6: 1 C input discip 1 ine required 
Always fireable real time 
behavior possible 

F:Constant 2:1 C input discipline required 

F:Fetch 2:1 C input discipline required 

F:NOP 1:1 

F: Pickinfo 2 : 2 C input discipline required 

F :Position 1 ine 2: 1 C input discip 1 ine required 

F:Dials 1:8 Always fireable real time 
behavior possible 

F:Keys 0:1 Data source, fires on key hit 

Pick 1:2 

TabletIn 3:3 C input discipline required 

Errors 1:4 

Memory_Alert 3:1 

Memory_Monitor 3:3 

Message_Display 1:1 

F:Dscale 5:2 C input discipline required 

5-8 PS 300 FUNCTION NET LANGUAGE 



INTRODUCTION TO FUNCTION NETWORK PROGRAMMING 

The following functions available with the P5 version of the PS 300 Runtime 
Firmware a re~ also C . C . 

Function Inputs:0utputs 

FINE 2:1 

F:NEC 2:1 

Lineeditor 3:6 

F:DXRotate 3:2 

F:DYRotate 3:2 

F:DZRotate 3:2 

F;Parts 1:4 

F:SgRoot 1:1 

F:XFormData 5:1 

Charmask 2:1 

F:Charconvert 2:1 

F:Color 2:1 

F : Matrix2 2 :1 

F:Matrix 3 3:1 

F:Matrix 4 4:1 

5.3.2 C . D Function s 

Cautions 

C input discipline 

C input discipline 

C input d i s c ip 1 in e 

C input discipline 

required 

required 

required 

required 

C input discipline required 

C input discipline 

C input discipline 

C input discipline 

required 

required 

required 

All of these functions should be used in symmetric decision type network 
structure if streamed tokens can occur. If mutually exclusive decision 
branches are used then this restriction can be relaxed since the marking will 
not create races in a mutually exclusive environment. However, even if the 
well-ordering is thus insured, the programmer must still take care to create 
live nets . 

Function Inputs:0utputs Cautions 

F:Components 1:5 

F:RangeSelect 3:3 

F:Select 

Unused arcs depend on input type 

Input types must conform 
3rd output not sent if not in range 

2:1 C input discipline required 

PS 3~ FUNCTION NET LANGUAGE ~-9 



INTRODUCTION TO FUNCTION NETWORK PROGRAMMING 

Function Inputs:0utputs Cautions 

F:Split 2:4 C input discipline required 
2 outputs not sent if no match 

F:Switch 2:20 

F:CSwitch 2:20 C input discipline required 

F:SwitchC 2:20 C input discipline required 

F:Edge_Detect 2:2 C input discipline required 
This function is simply hard to 
use as it may produce no 
outputs for certain firings 

Keyboard 1:2 Output used depends on input type 

The following f unctions available with the P5 version of the PS 300 Graphics 
Firmware are also G.D. 

F:AtScale 3:1 C input discipline required 

F:Accumulate 6:1 C input discipline required 

F:CBRoute 2:1 C input discipline required 

F:Broute 2:2 

F:BrouteC 2:2 C input discipline required 

F:Limit 3:3 C input discipline required 

5.3.3 D . C Function s 

AI I of these f unction s s hou Id be u sed i n symmetric decision structures if 
streamed tokens can occur. If mutually exclusive decision branches are used 
then this restriction can be relaxed since the marking will not create races 
in a mutually exclusive environment. However even if the well ordering is 
thus insured, the programmer must still take care to create live nets. 

Function Inputs:0utputs Cautions 

F:Boolean_Choose 3:1 C input discipline required 

F:Choose 20:1 C input discipline required 

5-1D PS 30~ FUNCTION NET LANGUAGE 



INTRODUCTION TO FUNCTION NETWORK PROGRAMMING 

Function Inputs:0utputs Cautions 

F:Matrix 4:1 Input type specifies number of 
inputs used 

F:Timeout 2:1 Real Time Firing whether other 
input is used 

Possible disjunctive output also 
Be careful with this one ALWAYS 

The following f unctions avai table with the P5 version of the PS 300 Runtime 
Firmware are also D.C. 

Function Inputs:0utputs Cautions 

F:CMul 2:1 C input discipline required 

F:Inputs_choose N:1 C input discipline required 

5.3.4 Sinks 

The sink nodes are not necessarily a problem, however certain sequencing 
constraints, as mentioned previously, may require care in their use. 

Sink Nodes: 

All 8 DLabel functions (C input discipline required) . 

All 8 DSet functions (C input discipline required). 

All 12 Flabel functions (C input discipline required) . 

Hostout 

Set Conditional Bit 

Set Level of Detail 

Set Rate 

Viewport 

Matrix 4x3 

Look At 

Look From 

PS ~ 300 FUNCTION NET LANGUAGE 5-11 



INTRODUCTION TO FUNCTION NETWORK PROGRAMMING 

Sink Node (coast.) 

Matrix 4x4 

~ indow 

Eye Back 

Field of View 

Set Displays 

Set Depth_Clipping 

Vector List 

Characters 

Matrix 3x3 

Rotate 

Scale 

Matrix 2x2 

Character Size 

Set Picking 

Set Pick Location 

5-12 PS 300 FUNCTION NET LANGUAGE 



ANNOTATED BIBLIOGRAPHY 

The following is a list of references for the serious data-driven language 
student. The format is self-explanatory, with bibliographic information 
indented below a brief comment describing the publication . 

In the following MS thesis, an example of a particular FGN language is used 
to do a sound processing application. 

Author="J . A. Stanek", 
School="University of Utah", 
Month="September", 
Date="September 1979" , 
Department="Computer Science", 
Yea r=" 1979" , 
Title="Exploration of Concurrent Digital Sound Synthesis on a Prototype 
Data-Driven Machine" 

The following report describes a Lisp like FGN language. 

Author="R. M. Keller, B. Jayaraman, D. Rose, G. Lindstrom", 
Title="FGL -Function Graph Language", 
Number="AMPS Technical Memorandum #1 ", 
I nstitution="University of Utah, Computer Science Department", 
Date="July 1980" , 
Yea r=" 1980", 

The following discusses semantic issues of a particular FGN model. 

Author=" R . M . Keller" , 
Title="Semantics and Applications of Function Graphs", 
Number="UUCS-80-112", 
Institution="University of Utah, Computer Science Department", 
Date="October 1980" , 
Yea r=" 19$0" , 

BIBLIOGRAPHY 1 



INTRODUCTION TO FUNCTION NETWORK PROGRAMMING 

This report discusses a special purpose machine which was built, and which 
used an FGN language as its machine language. 

Author="A. L. Davis", 
Title="The Architecture of DDM1 : A Recursively Structured 
Data-Driven Machine", 
Institution=" University of Utah, Computer Science Dept. ", 
Date="October 1977" , 
Number="UUCS-77-113", 
Year="1977" 

This report discusses the machine language of the previously cited machine. 

Author="A. L. Davis", 
Title="Data-Driven Nets: A Maximally Concurrent, Procedural, 
Parallel Process Representation for Distributed Control Systems", 
Institution="University of Utah, Computer Science Dept. ", 
Date="July 1978" , 
Number="UUCS -78-108" , 
Year="197$" 

This PhD thesis was one of earliest reference to data-driven languages. 

Author="D. A. Adams", 
Institution="Stanford University, .Computer Science Dept. ", 
Title="A computation model with data flow sequencing", 
Date="December 1968", 
Year="1968", 
Number="CS117", 

This article discusses general data-driven issues. 

Author="J . B . Dennis", 
Title="Programming generality, parallelism, and computer 

Architecture" , 
Booktitle="Proceedings I F I PS Congress" , 
Organization=" I FI PS", 
Publisher="North Holland", 
Yea r=" 1969" , 
Pages="484-492", 

This report discusses a particular FGN language. 

Author="K. P. Gostelow", 
Title="Flow of Control, Resource Allocation, and the Proper Termination 

Of Programs" , 
Institution="UCLA Computer Science Dept. ", 
Number="UCLA-ENG-71790", 
Date="December 1971 " 

2 BIBLIOGRAPHY 



INTRODUCTION TO FUNCTION NETWORK PROGRAMMING 

This paper discusses a particular low level FGN language. 

Author="J. B. Dennis", 
Title="First version of a data flow procedure language" 
Date="September 1974", 
Yea r=" 1974" , 
BookTitle="Lecture Notes i n Computer Science", 
Organization="SPRINGER-VERLAG", 
Pages="362-376", 
Volume="19", 
Editor="B. Robinet", 

This paper describes ahigh-level 1=GN language. 

Author="1N. B . Ackerman, J . B . Dennis", 
Title="VAL - AValue-Oriented Algorithmic Language Preliminary 

Reference Manual", 
Institution="MIT, Computer Science Department", 
Number=" LCS/TR-218", 
Year="1979", 
Date= "June 1979" , 

This article discusses general network issues. 

Author="T. Agerwala, M. Flynn", 
Title="Comments on capabilities, limitations, and correctness of 

Petri Nets", 
BookTitle="Proc. First Annual Symposium on Computer Architecture", 
Organization="IEEE", 
Yea r=" 1973" , 
Pages="81-86", 
Date="December 1973" , 

This paper is a theoretical treatment of net languages. 

Author="M. Hack", 
Title="Petri net languages", 
I nstitution="MIT Laboratory for Computer Science", 
Year="1976", 
Number="161 ", 
Date= "June 1976" , 

BIBLIOGRAPHY 3 



INTRODUCTION TO FUNCTION NETWORK PROGRAMMING 

This paper is an excellent net modeling survey. 

Author="J . L. Peterson", 
Title="Petri Nets", 
Journal="Computing Surveys", 
VOlume="9", 
Year="1977", 
Number="3", 
Date="September 1977", 
Pages="223-252" , 

Petri in some sense was the father of the network ideas. This paper is an 
excellent introduction to the basic theory. 

Author="C. A. Petri", 
Title="General Net Theory", 
Organization="MIT Project MAC", 
Booktitle="Conference on Petri Nets and Related Methods", 
Date="July 1975", 
Pages="26-41 ", 
Yea r=" 1975" , 

More from the father. 

Author="C. A. Petri", 
Title="Fundamentals of a theory of asynchronous information flow", 
Booktitle="Information Processing 62", 
Publisher="-North Holland", 
Pages="386-391 ", 
Year="1962", 
Organization=" I F I PS" , 

This paper is an early theory of nets treatise. 

" M Karp, R E Miller", Author= R . 
Title="Parallel program schemata", 
Journal="Journal of Computing and System Sciences" 
Vo I u m e= "3 " , 
Number="2", 
Yea r=" 1969" , 
Pages=" 147-195" , 
Date="May 1969", 

4 BIBLIOGRAPHY 



INTRODUCTION TO FUNCTION NETWORK PROGRAMMING 

This work represents a thorough mathematical treatment of net ideas. 

Author="A. Holt, F. Commoner", 
Title="Events and Conditions", 
Booktitle="Record of the Project MAC conference on concurrent 

Systems and parallel computation", 
Organization="MIT Project MAC", 
Pages="3-52", 
Year="1970", 

This is required reading for people trying to break away from the bounds of 
total ly-ordered thinking . 

Author="J. Backus", 
Title="Can programming be liberated from the von Neumann style? 

A functional style and its algebra of programs", 
Journal="CACM", 
Vol ume="21 ", 
Number="8" , 
Pages="613-641 ", 
Date="August 1978" , 
Yea r=" 1978" , 

Another high level f=GN language. 

Author="Arvind, K. P. Gostelow, V11. Plouffe", 
Title="The Id Report: An Asynchronous Programming Language and 

Computing Machine" , 
Institution=" U n iv . Ca I if . Irvine Comp . Sci . Dept . ", 
Date="May 1978" , 
Number=" 114A" , 
Year="1978", 

A PhD thesis considered by many to be the beginning of modern data-driven 
thinking. 

Author="J. D. Rodriguez", 
Title="A Graph Model for Parallel Computation", 
Institution="MIT Project MAC" , 
Number="T R-64" , 
Date="September 1989" , 
Year="1969", 

BIBLIOGRAPHY 5 



fNTRODUCTION TO FUNCTION NETVYORK PROGRAMMING 

An excellent MS thesis discussing the nature of token streams . 

Author="K. S. Weng", 
Title="Stream-oriented Computation in Recursive Data-Flow Schemas", 
Institution="MIT LCS" , 
Year="1975", 
Date="October 1975" , 
Number="MIT/LCS/TM-68" , 

A seminal article on the theory of partially ordered program issues. 

Author="D. Scott" 
Title="Data types as lattices" 
Month="September", 
Year=" 1976", 
Date="September 1976" , 
Jou rna I="SIAM J . Comput . ", 
Number="3", 
Volume="5", 
Pages="522-587" 

A chapter of the VLS! bible, dedicated to the issues of self-timed systems 
thinking. 

Author="C . L. Seitz", 
Fullauthor="C. L. Seitz", 
Title="System Timing", 
Booktitle="Introduction to VLSI Systems, Chapter 7", 
Publisher="McGraw-Hill", 
Year="1979", 

Clearly there is more but if you understand these references, you won't need 
to read the others . 

6 B t BLtC3GRAPHY 



ABOUT THE AUTHOR 

Alan L. Davis is an associate professor of computer science at the 
University of Utah. His current research interests include distributed 
architecture, graphically concurrent programming languages, parallel program 
schemata, device integration, asynchronous circuits, and self -timed 
systems . He has been a National Academy of Science exchange visitor and a 
visiting scholar in the Soviet Union, as well as a guest research fellow at 
the Gesel Ischaft f uer Matemati k u nd Datenvera rbeitu ng i n West Germany . 

Davis received a BS degree in electrical engineering from MIT in 1909 and a 
PhD in computer science from the University of Utah in 1972. 




