PS300 DOCUMENT SET

VOLUME 2

GRAPHICS PROGRAMMING

The contents of this volume are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans & Sutherland.

Many concepts in this volume are proprietary to Evans &
Sutherland, and are protected as trade secrets or covered by
U.S. and foreign patents or patents pending.

Evans & Sutherland assumes no responsibility for errors or
inaccuracies in this document. It contains the most complete
and accurate information available at the time of
publication, and is subject to change without notice.

PS1, PS2, MPS, and PS 300 are trademarks of the Evans &
Sutherland Computer Corporation.

Copyright © 1984
EVANS & SUTHERLAND COMPUTER CORPORATION
P.0O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84121

P5300 TUTORIAL MODULES
ADVANCED CONCEPTS

This volume consists of six tutorial modules which detail more advanced concepts of
PS 300 graphics programming. Because it builds on fundamental information detailed in
Volume 2A, you should read Volume 2A first.

Each tutorial module covers a PS 300 programming concept or group of related

concepts. Because each module details a separate, advanced skill, the modules may be
read in any order desired.

Note that this volume contains the module USING THE PS 340. This information is
specific to users of the PS 340; it need not be read by other users.

The following provides a capsule description of each module:

CONDITIONAL REFERENCING describes how detail can be added to or deleted from a
view on the screen.

FUNCTION NETWORKS II describes more advanced ways to use function networks
(refer to FUNCTION NETWORKS I in Volume 2A for fundamental uses of function
networks). This includes multiple uses of dials (via function keys), labeling dial LEDs,
limiting a model's motion, and storing/retrieving variables.

TEXT MODELING details how to create character strings, how to use commands and
functions to manipulate character strings, and how to create and use different
character fonts.

PICKING describes how to use the data tablet to activate a given action by picking an
object being displayed.

TRANSFORMED DATA is the vector list or matrix representation of transformations
which have been applied to an object. This module details how to retrieve transformed
data so that it can be manipulated as a separate entity in the model's display tree or
retrieved by the host computer.

USING THE PS 340 describes how to define polygonal objects, including how to perform
rendering operations for both vector and raster displays.

In addition to the tutorial modules, this volume contains reference material, including
sample programs illustrating various PS 300 programming techniques, and a glossary of
terminology specific to the PS 300.

The appendix contains a paper by Dr. Alan L. Davis. The PS 300 function network
facility bears a striking resemblance to data-flow concepts and theory that have been
the subject of research for numerous years. Dr. Davis was contracted to write a
self-contained tutorial discussion of data-driven programming in general and PS 300
function network programming in particular. It is hoped that this paper will assist the
PS 300 user in writing well-formed function network programs which are efficient, easy
to test and debug, and easy to modify.

CONDITIONAL REFERENCING

SELECTING PORTIONS OF A MODEL FOR DISPLAY

CONTENTS

INTRODUCTION
OBJECTIVES
PREREQUISITES

USING CONDITIONAL-BIT ATTRIBUTE SETTINGS

Exercise

USING LEVEL _OF DETAIL CONDITIONAL REFERENCING

Determining the Order for Overlaying Detail
Using Level-Of-Detail Settings to Animate an Object
Exercise

12

13
16
17

CONDITIONAL REFERENCING

USING RATE ATTRIBUTE SETTINGS

Creating The Set Rate Node
Creating the IF PHASE Node
Exercise

Some Uses for Timed Blinking

SUMMARY

ILLUSTRATIONS

Figure 1. Display Tree Including Conditional Referencing Nodes
Figure 2. Car Display Trees

Figure 3. Molecule Display Tree

Figure 4. Display Tree For Conditional Referencing in Molecule
Figure 5. Function Network for Conditional Bit Control

Figure 6. Level-of-Detail Structure for the World

Figure 7. Turbine Blade Structure

18

18
19
20
21

22

——
NV O Voo IN

CONDITIONAL REFERENCING - 1

This module introduces and explains Conditional Referencing--ways to display
selected branches of a display tree without displaying other branches.

Conditional referencing is useful, for example, if you have a model of an assembly that
you would like to add parts to or take parts from, showing various stages of
development or assembly.

There may be layers of detail in your model that you would like to be able to overlay
or strip off. An example of adding detail might start with an outline map of the
United States, then sequentially add major rivers, mountain ranges, state borders,
major cities, county borders, etc.

You might also want to display different views of an object at different times to
animate an object, or alternately display and blank an object at a selectable rate
(blinking).

These kinds of operations are achieved with conditional referencing, using three
methods: conditional-bit settings, level-of-detail settings, and rate settings.

To use conditional referencing, a minimum of two nodes must be placed in a display
tree. The first node (called a SET node) sets a condition:

THE CONDITION IS 1
The second node (called an IF node) tests the condition and makes the traversal of the
branch (and therefore the display of data indicated by that branch) dependent on the
condition set in the first type of node:

IF THE CONDITION IS | THEN DISPLAY Objectl

IF THE CONDITION IS 2 THEN DISPLAY Object?2

Figure | shows these nodes in a display tree. These nodes are attribute nodes and
follow the same rules of placement and of use as operate nodes.

2 - CONDITIONAL REFERENCING

Cond_Object

Objectl Object2

1AS0396

Figure 1. Display Tree Including Conditional Referencing Nodes

In the above example, displaying the SET node (Cond Object) will result in
Object] being displayed and Object2 not being displayed. This is because the
condition is not satisfied for the branch with Object2. By changing the
condition from | to 2 in the SET node, Object2 will be displayed and Objectl
will not be displayed.

The values in both the SET node (Cond Object) and the IF nodes (Objectl,
Object2) can be changed interactively. For example, the two branches could be
alternately displayed by toggling the numbers in the SET node between | and 2.

The SET and IF nodes and the commands to create them are explained in
subsequent sections.

CONDITIONAL REFERENCING - 3

OBJECTIVES

In this module, you will learn to display selected parts of your display tree using:
m Conditional-bit attribute settings
m Level-of-detail attribute settings

B Rate attribute settings

PREREQUISITES

Before reading this module, you should be familiar with the rules for using
operation nodes in display structures ("Modeling" module) and the differences
between matrix operations and attribute operations ("Graphics Principles").
This module uses the Robot example created in the "Modeling"” and "PS 300

Command Language" modules.

CONDITIONAL REFERENCING -5

USING CONDITIONAL=-BIT ATTRIBUTE SETTINGS

Conditional bits are used to display selected branches of a display tree,
independent of whether other branches are displayed. Branches of a display
tree that have IF nodes that are not satisfied by the condition are not traversed
by the display processor and are therefore excluded from displayed data.

The SET CONDITIONAL BIT node is used to set any of 15 conditional bits
(0-14). By placing the SET CONDITIONAL BIT node above an instance node, bit
settings affect all branches under the instance node.

The SET node is created with the SET CONDITIONAL BIT command. The
syntax is as follows:

Name := SET CONDITIONAL BIT n switch APPLIED TO Namel;

m where:

n is an integer from 0 to 14, corresponding to the conditional bit to be
set ON or OFF.

switch is either ON or OFF.
Namel is the descendent node of the conditional bit node.

all bits default to OFF.

For example, the following command creates a SET node and sets BIT 2 ON
applied to Car.

Pattern := SET CONDITIONAL BIT 2 ON THEN Car;
Car := INSTANCE OF Body, Wheels;

When you create a SET node, you explicitly set one bit on or off. However, all
14 bits default to off. So if you enter the command:

Name := SET CONDITIONAL BIT 1 ON APPLIED TO Namel;

then bit 1 is on, and bits 2-14 are off. All bits can be changed by sending values
to an input of the SET node.

6 - CONDITIONAL REFERENCING

Inputs to the SET CONDITIONAL BIT node are as follows:

Boolean————————————- > <> Sets the original bit (n) set
by the command to be ON
(T) or OFF (F).

Integer-———————————- > 2> Sets bit number input (0-14)
ON.

Integer———————————— > <3 Sets bit number input (0-14)
OFF.

Integer - > <> Disables bit number input

(0-14) from being affected
by this node.

Integer-———————————- > <5 Toggles bit number input
(0-14).
The SET node controls the states of the conditional bits and it is only through ‘ '

the set node that the conditions of all 15 bits are changed. If bit 5 was
originally set to ON and then you want to set it to OFF, it could be done in any
of the following three ways:

® Sending the integer 5 to input<3> of the SET node.

® Sending a false to input<l> of the SET node.

® Sending the integer 5 to input<5> of the SET node.

Of course, the SET node is useless unless you have an IF node that tests the
condition set by the SET node. The IF node tells under which condition a
branch will be traversed for display.

IF nodes are created with the IF CONDITIONAL BIT command. The syntax is
as follows:

Name := IF CONDITIONAL BIT n switch APPLIED TO Namel;
where:
nis an integer from 0 to 14, indicating which bit to test.
switch is the'setting to be tested, ON or OFF. (2

namel is the descendent of the IF node.

CONDITIONAL REFERENCING - 7

The IF CONDITIONAL BIT node has one input that accepts an integer (0-14) to
change the bit number in the node.

In the following command sequence, when Car is displayed Wheels would also be
displayed.

Set := SET CONDITIONAL BIT 4 ON APPLIED TO Car;
PREFIX Wheels WITH IF BIT 4 IS ON;

If bit 4 Car is set to Off or the condition in Wheels is changed to Off, then the
test in Wheels would fail and Wheels would not be displayed.

The display tree for Car that this command sequence creates in shown in Figure

2.
Car Set (Set)y
' Body Car
71T N Body IF
Wheel 1 23 4
Wheels
1AS0397
(Original Display Tree) (After Conditional Referencing)

Figure 2. Car Display Trees

Figure 3 is a display tree for a molecule for which conditional referencing will
be implemented.

8 - CONDITIONAL REFERENCING

1AS0398

Figure 3. Molecule Display Tree

In Figure 3 notice that the Molecule is made up of an instance node pointing to
8 SET COLOR nodes for parts of the molecule. The eight parts can be
controlled separately for display by placing a SET node and eight IF nodes in the
structure.

The molecule will be set with the following conditions.

Bit No. Condition Result
| Off Branch | (Molec! Color) will be displayed
2 off Branch 2 (Molec2 Color) will be displayed
3 Off Branch 3 (Molec3 Color) will be displayed
4 off Branch 4 (Molec4 Color) will be displayed
5 Off Branch 5 (Molec5_Color) will be displayed
6 off Branch 6 (Molecé _Color) will be displayed
7 Off Branch 7 (Molec7 Color) will be displayed
8 Off Branch 8 (Molec8 Color) will be displayed

CONDITIONAL REFERENCING - 9

The display tree to implement this is shown in Figure 4.

Selector

a @ Molec7
olecule
@ @ 1AS0399

Figure 4. Display Tree For Conditional Referencing in Molecule

Exercise

Add conditional-bit referencing to the display tree for Molecule. The first step
is to place a SET node above the instance node Molecule. Do this by entering:

Selector := SET CONDITIONAL BIT 1 Off THEN Molecule;

10 - CONDITIONAL REFERENCING

Remember, even though the command says to set only conditional bit 1 off, this
one node may be used to separately control the on/off condition of all 15
conditional bits. Also, note that the condition of the other 14 bits defaults to

off.

Next place nodes at the top of each branch under the instance node so that the
branches will be separately selectable for display. To do this, redefine
Molecule as follows:

Molecule := BEGIN STRUCTURE

IF BIT 1 IS OFF THEN Molec0 Color;
IF BIT 2 IS OFF THEN Molec! Color;
IF BIT 3 IS OFF THEN Molec2 Color;
IF BIT 4 IS OFF THEN Molec3 Color;
IF BIT 5 IS OFF THEN Molec4 Color;
IF BIT 6 IS OFF THEN Molec5 Color;
IF BIT 7 IS OFF THEN Molec6 Color;
IF BIT 8 IS OFF THEN Molec7 Color;

END STRUCTURE;

You have built the display tree that allows conditional-bit referencing in
Molecule. Notice that the molecule is displayed because all conditional bits are
set off. To remove parts of the molecule from display, bits must be set on.

To control the on/off condition of the eight bits that affect the branches of this
display tree, a function network can be used to connect the function keys to the
SET node named Selector. That network is shown in Figure 5.

FKEYS
<1
<2>
<3
<4
<5 Selector
<6
<7
<8>
<9>

<10

:%% 1ASO400

Figure 5. Function Network for Conditional Bit Control

CONDITIONAL REFERENCING - 11

FKEYS will output integers corresponding to the number of the pressed function
key. Input<5> to the SET CONDITIONAL BIT node toggles the setting of the bit
corresponding to the integer received. For example, if bit 6 is off, pressing
Function Key 6 will turn bit 6 on.

Enter the following commands to build the network.
CONNECT FKEYS«<l>:<5>Selector;

The display tree is now designed to allow conditional display of parts of the
molecule (MolecO through Molec7). Also, the function keys have been
connected to control this display.

One step remains in this particular case. The values used to define the
molecule are large. The molecule has a diameter of some 45,000 units. To see
the molecule, put a window around it and disable depth cueing by entering:

Molecule View := WINDOW
X=-22500:22500
Y=-22500:22500
FRONT BOUNDARY =-22500
BACK BOUNDARY = 22500 APPLIED TO Intensity;
Intensity := SET INTENSITY ON 1I:1 APPLIED TO Selector;

now,
DISPLAY Molecule View;

Press SHIFT/LINE LOCAL to activate the function keys. Use keys F1 through

F8 to toggle the display of the parts of the molecule.

When you are finished enter:

REMOVE Molecule View;

12 - CONDITIONAL REFERENCING

USING LEVEL_OF_DETAIL CONDITIONAL REFERENCING

The conditional-bit method shown for the molecule is usually used when you
need to separately control the display of branches of your display tree in a
variety of sequences. In the level-of-detail method, the parts of a model are
always displayed and removed in a predetermined sequence.

Level-of-detail is usually used to overlay detail on your picture. For example,
progressive detail could be added to an outline of a sphere (world) to add
continents, mountain ranges, states, etc.

Level-of-detail can also be used to run animation sequences comprised of a
series of separate picture definitions.

Unlike conditional-bit referencing where 15 variables (bits) are set, only one
variable is set using the level-of-detail method. All IF nodes are tested against
that one variable in the SET node.

The command to create a SET LEVEL OF DETAIL node is as follows.

Name := SET LEVEL _OF DETAIL TO n APPLIED TO Namel;
where:

n is an integer from 0 to 32767 indicating the level of detail value.

Namel is the descendent of the SET node.

the default level of detail (n) is 0.
Inputs for updating the SET LEVEL OF DETAIL node are as follows:

Integer-————————————- > «<Il> Changes the level of detail
(0-32767) to the value of the
received integer.

CONDITIONAL REFERENCING - 13

Determining the Order for Overlaying Detail
Because level-of-detail controls the display of branches in a determined order,

the conditional statements are expressed as relationships rather that the
two-state (on/off) type used in conditional-bit references.

These relationships are:

Less Than <
Less Than Or Equal To <=
Equal To =
Not Equal To <

v

Greater Than Or Equal To >
Greater Than >

and are specified in the IF LEVEL OF DETAIL node. The command to create

this IF node is as follows:

{ s Name := IF LEVEL OF DETAIL relationship n THEN Namel;
where
relationship is the relationship to n to be tested (<, <=, =, <>, >=, >).

n is an integer from 0 to 32767 indicating the number (along with the
previous relationship) to compare against the current level of detail setting.

namel is the descendent of the IF LEVEL _OF DETAIL node.

the default (n) is 0.
The IF LEVEL _OF DETAIL node has one input that accepts an integer (0-32767)
to change the value in the node.

With the following command sequence,

A := SET LEVEL OF DETAIL to 3 THEN B;
IF LEVEL OF DETAIL = 3 THEN C;
VECTOR LIST ..o

B:
C:

14 - CONDITIONAL REFERENCING

initially when A is displayed, C is also displayed. If the level of detail is
changed to something other than 3, then the test in B fails and C is not

displayed.

An example of adding detail is to start with a sphere and add continents,
mountain ranges, and countries. To display the parts of the world in this order
(and turn them off in the reverse order):

Sphere
Continents
Mountain Ranges
Countries

the sphere needs to be displayed first and remain on while all subsequent parts
are displayed.

The Continents need to be added next, the Mountain Ranges and then the
Countries. If Sphere is displayed whenever there is a value of | or greater in
the SET NODE, and the subsequent parts are displayed for values equal or
greater than 2, 3, and 4, respectively, the desired effect is achieved.

The display tree that sets up such a level-of-detail condition is shown in Figure
6.

CONDITIONAL REFERENCING - 15

Sphere Countries

Mountain 1ASO40T

Figure 6. Level-of-Detail Structure for the World

By changing the value of the integer in the SET node, the parts of the Sphere
can be laid on and stripped off. If the integer 2 is sent to the SET node, then
the Sphere and the Continents are both displayed because both branches of the
display tree meet the condition tested against the SET node. If the integer 3 is
sent to the SET node, the Sphere, the Continents, and the Mountain ranges are
all displayed. If the integer 4 is sent to the SET node, the entire structure is
displayed. The details of the Sphere can be stripped off by decreasing the value
in the SET node.

16 - CONDITIONAL REFERENCING

Using Level-0f-Detail Settings to Animate An Object

An example of using level-of-detail settings for animation is in the turbine
blade portion of the PS 300 Demonstration Package. The turbine blade is
defined as a sequence of turbine blades in slightly different positions. A clock
is used to advance the level of detail settings resulting in the display sequence
and the apparent motion of the turbine blade. The structure that sets this up is
similar to the one shown in Figure 7.

Clock Values —— Sit
IF ‘ IF Frame
Frame LO
1 L:O—D urbin =8 8
- Blad
IF | éFD
Frame L;g—D L;‘7"‘ Frame
2 7
IF IF
L 0D L 0D
Frame - Frame
3 IF IF 6
L 0D L 0D
iy 1ASOL02
Frame Frame
4 5

Figure 7. Turbine Blade Structure

The topmost node is the one supplied with clock values through a function
network to step through the sequence of pictures corresponding to the
referenced branches in the display tree.

CONDITIONAL REFERENCING - 17

Note that in animation, detail is not laid over a displayed picture. Instead,
sequences of pictures are displayed.

Exercise

Load the tutorial tape and select ANIMATED CYLINDER from the menu on the
left side of the screen.

This demonstration is a good example of how level-of-detail settings can be
used for local animation.

18 - CONDITIONAL REFERENCING

USING RATE ATTRIBUTE SETTINGS

The third type of conditional referencing allows you to blink an object or
display tree branch under control of the refresh rate of the PS 300 display, an
internal PS 300 clock, or an external clock. This type of conditional
referencing can cause an object to blink or to be displayed alternately with
another object. (For example, one part might be displayed for one second, then
that part is removed while another part is displayed for a second, etc.)

Like the other types of conditional referencing, blinking requires two nodes.
One node sets a blink rate in terms of phase on and off durations. The other if

node tells tell whether an object or branch will be displayed during the on phase
or the off phase.

Creating The Set Rate Node

The command to create the SET RATE node is:

Name := SET RATE phase _on phase off [initial state] [delay]
APPLIED TO Namel;

where:

phase _on phase off are integers designating the durations of the on and
off phases, respectively, in refresh frames.

initial_state is either ON or OFF, indicating the initial phase.

delay is an integer designating the number of refresh frames in the
initial state.

Namel is the descendent of the SET RATE node.

the default [initial state] is OFF.

CONDITIONAL REFERENCING - 19

Inputs for updating the SET RATE node are as follows:

INTEGER-- - <> Changes the phase on
value.

INTEGER > <2> Changes the phase off
value.

BOOLEAN — > <3> Changes the initial state

ON(T) / OFF(F).

INTEGER - > <> Changes the delay.

A command similar to SET RATE, called SET RATE EXTERNAL, allows you to
alter the PHASE attribute via an external source such as a function network or
a message from the host computer. Refer to the Command Summary for
specific details of this command.

™y Creating the IF PHASE Node

The command to create the IF node to test the ON/OFF state of the phase is
as follows:

Name := IF PHASE IS state THEN Namel;

where:
state is the phase setting under which namel is displayed (ON or OFF).
namel is the descendent of the IF PHASE node.

If there is no SET RATE node or SET RATE EXTERNAL node higher in
the structure, the "state" of the PHASE node will always be OFF.

For example, with the command sequence

Shape := SET RATE 10 15 THEN Blink Shape;
Blink Shape := IF PHASE ON THEN Sphere;
Sphere := VECTOR LIST;

20 - CONDITIONAL REFERENCING

If Shape is displayed, Sphere will be displayed for 10 refresh frames and not
displayed for 15 refresh frames repeatedly.

If the command sequence is
Shape := SET RATE 10 15 THEN Blink Shape;
Blink Shape := If PHASE OFF THEN Sphere;
Sphere := VECTOR_LIST;

If Shape is displayed, Sphere will be displayed for 15 refresh frames and not
displayed for 10 refresh frames repeatedly, since the condition is to display
the vector list when the phase is OFF.

Exercise

This exercise uses the Robot created in the "PS 300 Command Language"
module.

To demonstrate the effects of blinking, add blinking nodes above robot. The

blink rate in this exercise will be based on the PS 300 refresh rate. First,
define a node that sets the rate by entering:

Blink Robot := SET RATE 120 60 APPLIED TO If Robot;

This sets the ON phase to 120 refreshes and the OFF phase to 60 refreshes.
Now place a node that determines whether the robot will be displayed in the

ON phase (and blanked in the OFF phase) or displayed in the OFF phase (and
blanked in the ON phase). Display robot in the ON phase, by entering:

If Robot := IF PHASE IS ON THEN ROBOT;
Robot should now blink at a rate of about 2 seconds on and one second off,

when you:

DISPLAY Blink Robot;

Then:

REMOVE Blink Robot;

CONDITIONAL REFERENCING - 21

Some Uses for Timed Blinking

One practical use of the rate setting commands, other than the visual effects
produced, is that they can synchronize the refresh rate of the display to a
movie camera to make sure that the frame rate of the camera matches the
frame refresh rate of the screen, allowing the camera to always be taking a
frame as the picture is refreshed.

Stereo views can be created using a split screen (two viewports side by side);
each half containing the same image and viewed with the EYE projection
(refer to the "Viewing Operations" module). Then each viewport can be
displayed alternately with the other viewport. By placing an opaque divider
between the viewports so each eye can see only one viewport, a 3D effect can
be generated.

22 - CONDITIONAL REFERENCING

SUMMARY

Conditional Referencing allows you display selected branches of a display tree
without displaying other branches. These kinds of .operations are achieved
using three methods: conditional-bit settings, level-of-detail settings, and

rate settings.

To use conditional referencing, a minimum of two nodes must be placed in a
display tree. The first node sets up the condition on which all subsequent
references are tested. The second sets up the condition to be tested against
the set condition.

Using Conditional Bit Settings

The conditional-bit method shown is used when you need to separately control
the display of branches of your display tree in a variety of sequences.

The SET CONDITIONAL BIT node sets any of 15 conditional bits (0-14). By
placing the set conditional bit node above an instance node, bit settings affect
all branches under the instance node.

This node is created with the SET CONDITIONAL BIT command. The syntax is
as follows:

Name := SET CONDITIONAL BIT n switch APPLIED TO Namel;

where:

n is an integer from 0 to l4, corresponding to the conditional bit to
be set ON or OFF.

switch is either ON or OFF.
namel is the descendent node of the conditional bit node.

all bits default to OFF.

CONDITIONAL REFERENCING - 23

IF nodes (to test the condition of the SET node) are created with the IF
CONDITIONAL BIT Command. The syntax is as follows:

Name := IF CONDITIONAL BIT n switch APPLIED TO Namel;
where:

n is an integer from 0 to 14, indicating which bit to test.

switch is the setting to be tested, ON or OFF.

namel is the descendent of the IF node.

Using Level of Detail Conditional Referencing

When using the level-of-detail method, the parts of the model are always
displayed and removed in a set sequence. Level-of-detail is usually used to
overlay detail on your picture.

Level of detail can also be used to run animation sequences comprised of a
series of separate picture definitions.

Unlike conditional-bit referencing where 15 variables (bits) are set, only one
variable is set using the level-of-detail method. All IF nodes are tested against
that one variable in the SET node.

The command to create a set level-of-detail node is as follows.

Name := SET LEVEL OF DETAIL TO n APPLIED TO Namel;

where:
n is an integer from 0 to 32767 indicating the level-of-detail value.
namel is the descendent of the SET node.

the default level of detail (n) is 0.

24 - CONDITIONAL REFERENCING

Determining The Order for Overlaying Detail

Because level-of-detail controls the display of branches in a determined order,
the conditional statements are expressed as relationships rather that the
two-state (on/off) type used in conditional-bit references.

These relationships are:

Less Than

Less Than Or Equal To
Equal To

Not Equal To

Greater Than Or Equal To
Greater Than

v v Al A A
v

and are specified in the IF LEVEL_OF DETAIL node. The command to create
this IF node is as follows:

Name := IF LEVEL OF DETAIL relationship n THEN Namel;

where:
relationship is the relationship to be tested (<, <=, =, <>, >=, >).

n is an integer from 0 to 32767 indicating the number (along with the
previous relationship) to compare against the current level of detail
setting.

namel is the descendent of the IF LEVEL OF DETAIL node.

the default is (n) 0.

Using Level-0f-Detail Settings to Animate An Object

An example of using level-of-detail settings for animation is in the turbine
blade portion of the PS 300 Demonstration Package. The turbine blade is
defined as a sequence of turbine blades in slightly different positions. A
clock is used to advance the level-of-detail settings resulting in the display
sequence and the apparent motion of the turbine blade.

CONDITIONAL REFERENCING - 25

Blinking and Alternately Displaying parts of an Object

The third type of conditional referencing, rate attribute settings, allows you to
blink an object or display tree branch under control of the refresh rate of the
PS 300 display, an internal PS 300 clock, or an external clock. This type of
conditional referencing can cause an object to blink or to be displayed
alternately with another object. (For example, one part might be displayed for
one second, then that part is removed while another part is displayed for a
second, etc.)

Like the other types of conditional referencing, blinking requires two nodes.
One node sets a blink rate in terms of phase ON and OFF durations. The other

IF node tells whether an object or branch will be displayed during the ON phase
or the OFF phase.

Creating The Set Rate Node
m The command to create the SET RATE node is:
Name := SET RATE phase on phase off [initial state] [delay]
APPLIED TO Namel;
where:

phase on phase off are integers designating the durations of the on and
off phases, respectively, in refresh frames.

initial state is either ON or OFF, indicating the initial phase.

delay is an integer designating the number of refresh frames in the initial
state.

namel is the descendent of the SET RATE node.

the default [initial state] is OFF.

A command similar to SET RATE, called SET RATE EXTERNAL, allows you to
alter the PHASE attribute via an external source such as a function network or
a message from the host computer. Refer to the Command Summary for
specific details of this command.

26 - CONDITIONAL REFERENCING

Creating the IF PHASE Node

The command to create the IF node to test the ON/OFF state of the phase is as
follows:

Name := IF PHASE IS state THEN Namel;
where:
state is the phase setting to be tested (ON or OFF).
namel is the descendent of the SET RATE node.

If there is no SET RATE node or SET RATE EXTERNAL node higher in
the structure, the state of the PHASE node will always be OFF.

You now know how to make conditional references to parts of your display
tree. You know that two nodes are required for each conditional reference.
The first node sets up the condition on which all subsequent references are
tested. The second sets up the condition to be tested against the set condition.

The flexibility and ease of use of conditional referencing within the display
structure makes what is often a difficult operation on other graphics machines
easy on the PS 300.

FUNCTION NETWORKS I

SWITCHING NETWORKS

CONTENTS

INTRODUCTION
OBJECTIVES
PREREQUISITES

MAKING A SINGLE INPUT DEVICE CONTROL MULTIPLE INTERACTIONS
Exercise

LABELLING THE CONTROL DIALS
Exercise

SETTING LIMITS ON THE MOTION OF A MODEL
Exercise

USING VARIABLE TO STORE VALUES
Exercise

SUMMARY

25
27

32
34

36
39

41

FUNCTION NETWORKS 1I

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure l4.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.

ILLUSTRATIONS

Robot Display Tree

F:CROUTE(n) Function

F:CROUTE(n) Network —— Example |

F:CROUTE(n) Network —— Example 2
F:CROUTE(n) Network With Unused Outputs

Dial 1's F:CROUTE(n) Network

Dial 1's F:CROUTE(n) Network With Shared Functions
Final Network for Dials 1-3

Final Network for Dial 4

Sample Function Network for Dial 5

Dial 5 Network With Shared Functions

Final Function Network for Dial 5

Final Function Network for Dials 1-8

RESET Function Network

DLABEL Function

F:INPUTS CHOOSE(n) Function

LED Labels for Dial 1

LED Labels for Dials 2-8

Realistic Limitations of Leg Movement
Limits for the Robot Leg

F:LIMIT Function

Function Network to Limit Movement

Function Networks to Limit the Robot Knee Movement
F:CONSTANT Function

F:FETCH Function

Routing Values From THIS Variable to the Host
Routing Values From MATRIX Variable to the Host

FUNCTION NETWORKS 1II - 1

This module consists of four sections that build on ideas about function networks
introduced in the "Function Networks I" module.

In "Function Networks I" you used the PS 300 dials to manipulate a robot. Each dial was
connected to a node in the robot display tree so that moving the dial caused Robot to
move in a specific way. One dial was needed for each manipulation.

In this module, you will learn how to use a dial for multiple interactions. This can be
done using function networks and PS 300 function keys. Pressing a function key allows
you to use the same dial for different kinds of interactions in different modes.

The module also details how to send a label to the LEDs above each dial. These labels
remind you of a dial's function and can change interactively each time a new function
key is pressed.

In addition, you will learn about several useful tasks which function networks can
perform. These include limiting the robot movement so that it remains "true to life,"
and using variables to store values coming from a network.

Because the function networks in this module will differ from those created in

"Function Networks I," it is suggested that you save the code from this module in a
separate file on your host. To avoid errors, do not combine these two sets of code.

OBJECTIVES

In this module you will learn how to:

m Make a single input device (the dials) control multiple interactions.

m Label the dials so that the label changes when the dial's function changes.
m Set limits on the motion of a model.

m Use variables to store values.

2 - FUNCTION NETWORKS 1I

PREREQUISITES

Before beginning this module, you should be familiar with the concepts presented
in the following modules: "Modeling,"” "PS 300 Command Language,” and
"Function Networks L."

FUNCTION NETWORKS II - 3

MAKING A SINGLE INPUT DEVICE CONTROL MULTIPLE INTERACTIONS

In "Function Networks I," you constructed a function network for the display tree
shown in Figure 1.

Trunk

LRight
Leg

Upper Arm

Right
Lower Leg

v~

A

>0
Forearm

Right
g%ot

l/

1AS0528

Figure 1. Raobot Display Tree

4 - FUNCTION NETWORKS 1I

This function network supplied interactions for the top three nodes of the display
tree: Robot.Scale, Robot.Rot, and Robot.Tran. Seven dials were required to
manipulate the robot: three to rotate it in the X, Y, and Z planes, three to
translate it in X, Y, and Z, and one dial to scale the model.

Only one free dial remains, but no other interactive nodes in the robot display
tree have yet been connected to functions. To supply X, VY, and/or Z rotations
for all the other interactive nodes would require dozens of other dials. This
section illustrates how to solve this problem by making one set of eight dials
perform like many sets.

The first step in doing this is to determine exactly how many additional dials y0l,.l
will need (how many more interactions in the model you want to control). In
addition to Robot.Rot, the robot has 14 rotation nodes. Ten of them require
three dials each (three rotations for X, Y, and Z). The two nodes for elbows and
the two for knees only use X rotations, requiring only one dial each. The result
is a total of 34 additional interactions. To handle these interactions, each dial
would have to be connected to about six nodes.

There is nothing to prevent you from connecting a dial to more than one
destination. For example, you could hook dial 1, already updating X rotations for
the Robot.Rot node, to other rotate nodes. But of course turning that one dial
would cause multiple unrelated updates.

Following is one way the dials might logically be assigned to control the
interactions.

In Mode 1, the dials would work as presently assigned:
Whole model: 1. Xrot 2. Yrot 3. Zrot 4. Scale

5. Xtran 6. Ytran 7. Ztran 8. Not Assigned

Mode 2:
Head: l. Xrot 2. Yrot 3. Zrot 4. Not Assigned

Trunk: 5. Xrot 6. Yrot 7. Zrot 8. Not Assigned

Moade 3:
Right arm: 1. Xrot 2. Yrot 3. Zrot 4, Elbow Xrot

Left arm: 5. Xrot 6. Yrot 7. Zrot 8. Elbow Xrot

FUNCTION NETWORKS II-5

Mode 4:
Right hand:

Left hand:

Mode 5:
Right leg:

Left leg:

Mode 6:
Right foot:

Left foot:

This configuration leaves several dials unassigned in a few modes.

l. Xrot

5. Xrot

l. Xrot

5. Xrot

1. Xrot

5. Xrot

2. Yrot 3. Zrot 4, Not assigned
6. Yrot 7. Zrot 8. Not assigned
2. Yrot 3. Zrot 4. Knee Xrot
6. Yrot 7. Zrot 8. Knee Xrot
2. Yrot 3. Zrot 4. Not Assigned
6. Yrot 7. Zrot 8. Not Assigned

Obviously,

you could assign every dial in every mode, but this organization establishes a
pattern that makes the dials' functions easy to remember.

Another way to diagram this same dial assignment would be as follows.

The

names of the nodes on the right are linked to the dials on the left.

DIALS[1]-———--

DIALS[2]-———--

DIALS[3]--—-—-

Zrot

Whole body (1)
Head (2)

Right arm (3)
Right hand (4)
Right leg (5)
Right foot (6)

Whole body (1)
Head (2)

Right arm (3)
Right hand (4)
Right leg (5)
Right foot (6)

Whole body (1)
Head (2)
Right arm (3)
Right hand (4)
Right leg (5)
Right foot (6)

6 - FUNCTION NETWORKS 1I

DIALS[4] Whole body scale(l)
Right elbow Xrot (3)
Right knee Xrot (5)

DIALS[5] Whole body Xtran (1)
Trunk Xrot (2)
Left arm Xrot (3)
Left hand Xrot (4)
Left leg Xrot (5)
Left foot Xrot (6)

DIALS[6] Whole body Ytran (1)
Trunk Yrot (2)
Left arm Yrot (3)
Left hand Yrot (4)
Left leg Yrot (5)
Left foot Yrot (6)

DIALS[7] Whole body Ztran (1)
Trunk Zrot (2)
Left arm Zrot (3)
Left hand Zrot (4)
Left leg Zrot (5)
Left foot Zrot (6)

DIALS[8] Left elbow Xrot (3)
Left knee Xrot (5)

If the connections were made from the dials as shown, a dial would control
several interactions simultaneously. If you turned Dial 4, for instance, the robot
would become larger or smaller, or its right knee and elbow would move. Dial I,
connected to six nodes, would cause six separate X rotations in the model.

What is needed now is the equivalent of a switch in a railroad yard to route
values so that they are not routed down all function network paths at once. For
example, you might want to send values to the Robot.Rot node only in dials Mode
1, or just to Head.Rot node in Mode 2.

Associated with all the function keys is one system function, FKEYS. FKEYS
has one output. When you press a function key, the number of that key is
output. For example, pressing key #4 causes an integer 4 to be output.

FUNCTION NETWORKS II - 7

The value could be output to an instance of function F:CROUTE(n) (see Figure
2). This switching function allows you to channel the values from the dials (or
anything else) to any number (n) of destinations.

F:CROUTE(n)
] —<1> <1>——Any
Any <2> <2> Any
<n>| Any | asos71

Figure 2. F:CROUTE(n) Function

Specifically, when F:CROUTE(n) receives an integer from 1 to n on input <l>, it
routes what it receives on input <2> to the output with the same number as the
integer. So if you instance F:CROUTE, connect FKEYS to input <l> of the
function instance, connect the dials to input <2>, and press Function Key 5, the
values from the dials arriving on input <2> will travel out on output <5> (see
Figure 3).

(value from function key#5)
F:CROUTE(6)
FREvs <o k1> <>

<2>
<3> Right_Leg.Rot
<4>

DIALS <1>p—<2> (5 F:MULC }—{ F: XROTATE F:CMUL
<6>

1AS0572

Figure 3. F:CROUTE(n) Network -- Example 1

8 - FUNCTION NETWORKS 1I

Pressing Function Key 3 routes the values from Dial | to output <3> (Figure 4).

(value from function key#3)

| 5[F:CROVTE(6) Right_Arm.Rot
FKEYS<1>|—-<1> <%>
| <Z>
<3 F:MULC F:XROTATE F:CMUL O
<4>
DIALS <1>}—<2> (55 1AS0573
<6>

Figure 4. F:CROUTE(n) Network -- Example 2

In this example, the number of destinations from a routing function is the same
as the number of modes among the function switches. For Dial 1, that is six
modes, so Dial 1 will use an instance of F:CROUTE(6), as shown in the above
diagrams.

Not all dials need to work in all six modes. Dial 4, for example, only works in 3
modes, so you might try using an instance of F:CROUTE(2). Dial 4 has to
operate in Mode 5, however, so you must use 5 as a minimum value for n, as
shown below. The unused outputs (for modes in which Dial 4 is unassigned) are
left unconnected (Figure 5).

F:CROUTE(5) Robot.Scale
FKEYS <1> 5 <1> <1 F:SCALE |
<2>——no connection Right_ Forearm.Rot
DIALS <4%—<2> <3>1—{F:MILC}{F:XROTATE F:CMUL

<4 >‘}——— no connection Right_Lower_Leg .Rot

<5 F :MULC |—F : XROTATE F:CMUL O

1ASO574

Figure 5. F:CROUTE(n) Network With Unused Outputs

FUNCTION NETWORKS II-9

The diagram indicates that the values from Dial 4 will be routed to the scaling
node, Robot.Scale, when FKEYS sends | to F:CROUTE(S) input <1>. Values from
Dial 4 will go to the right knee when a 5 arrives on input <l> and to the right
elbow when a 3 arrives. If you push Function Keys 2 or 4 to go into Mode 2 or 4,
Dial 4 has no effect.

Dial 8 is similar to Dial 4, but instead of working in three modes, it only works in
two. One of the two modes it works in is Mode 5, so be sure to use an instance
of F:CROUTE(5) with Dial 8 too.

Connect all six modes for Dial 1 to the outputs of F:CROUTE(6) so that FKEYS
will control routing for this dial. Figure 6 illustrates Dial 1's F:CROUTE(n)

network.
F:CROUTE (6 Robot.Rot
FKEYS <15b—<1> <1>—{F:muLc F:XROTATE F:CMUL
. Head.Rot
DIALS <15}<2> <25 F:MuLC |—{F:XROTATE F:CMUL
Right_Arm.Rot
<3>—{F:muLc - F: XROTATE F:CMUL O
Right_Hand.Rot
<a>—{F:muc F{F:xroTATE F:CMUL Q
Right_Leg.Rot
<5>—{F:muLc }—{F:xroTATE Fow] L ()
Right_Foot.Rot
<6 F:MULC —F : XROTATE EIF:CMUL Q

1AS0575

Figure 6. Dial 1's F:CROUTE(n) Network

Notice that the MULC and XROTATE functions in all six modes are exactly
alike. The CMUL functions are not, since each one accumulates rotations for a
different rotation node. What is exactly alike can be used once on the left side
of the routing function, as shown in Figure 7.

10 - FUNCTION NETWORKS II

F:CROUTE(6) . Robot.Rot
FKEYS <1> # 1> <1> F:CMUL
Head.Rot
DIALS <15 F:MULC| F:XROTATE 2> <2> F:CMUL Q
Right_Arm.Rot
<3 F:CMUL

Right_Hand.Rot

b FromL Q
Right_Leg.Rot

5o —Fom L ()
Right_Foot.Rot
< o L ()
1AS0576

Figure 7. Dial 1's F:CROUTE(n) Network With Shared Functions

Either of the above two configurations would work. The second one is much less
trouble to diagram and program, since it requires only one instance of F:MULC
and F:XROTATE instead of six. The previous two diagrams show that a routing
function is necessary only when a path must split, and that occurs when functions
need to be unique, as in the case of the F:CMULs.

Now diagram networks Dials 2 and 3 using the diagram from Dial 1 as a guide.
Since all three dials have the same destination nodes, you can route them
through the same switching function, as in Figure 8.

m FUNCTION NETWORKS 1II - 11

(number of function key being pressed)
F:CROUTE(6) Robot.Rot
FKEYS <1> # 1> <1>—F:oml
Head.Rot
F:CMUL
DIALS<1> F:MULC |HF :XROTATE <2>

Right_Arm.Rot

<2>H{FmcHF:yrotaTE HH<2> o3, T F:CMUL Q
Right_Hand.Rot

<3> F:MULC | F: ZROTATE . vy Q
<4> :
Right Leg.Rot

ght_
<5> _l_—:lF:CMUL

Right_Foot.Rot

O

oo | ()
1AS0577
) Figure 8. Final Network for Dials 1-3

This diagram completely accounts for the first three dials in all six modes. To
implement it in the PS 300, you only need to fill in detail familiar from
"Function Networks 1": connections, function instance names, and so on.

Next, look at Dial 4. Since it performs rotations, you might think to use the
same rotation network for it as the first three dials, namely:

Right Forearm.Rot

DIALS <4> F:MULC F:XROTATE F:CMUL

1AS0578

No other dials feed into that node, though, or the other rotate node for the knee
that Dial 4 controls. So it would be simpler to use the F:DXROTATE function
here. It is the function that combines all features of F:MULC, F:XROT, and
F:CMUL into one package. The network for Dial 4 can be diagrammed as in
Figure 9.

12 - FUNCTION NETWORKS 1I

F:CROUTE(5) Robot.Scale
FKEYS <1> -1—<1> <1>}— F:DSCALE
<2>}——no connection Right_Forearm.Rot
DIALS <4> <2> <3> F:DXROTATE
<4>——no connection Right_Lower_Leg.Rot
<5>1— F:DXROTATE
1AS0579

Figure 3. Final Network for Dial 4

With Dial 4, there are no functions on the right of the routing function that can
be shared and moved over to the left, as with F:MULC and F:ROTATE functions
used with Dials 1, 2, and 3. The above diagram completely specifies what Dial 4
will do in all modes. And to implement it, you must supply function instance
names, initial values, and so on.

Dials 5, 6, and 7 do almost exactly what Dials 1, 2, and 3 do, but to the left side
of the model. And in Mode 1, they translate instead of rotate. In Mode 1, all
three dials feed into one node, Robot.Tran.

In the other five modes, they do X, Y, and Z rotations. Figure 10 illustrates how
a routing function for Dial 5 might work.
(number of function key being pressed),

F:CROUTE(G) Robot.Tran
FREYS <1obtd<1> <15} {F:xvecTorRl—{F:AcCUMULATE

Upper_Body.Rot

DIALS <55—<2> <2sk{F:muc}{F:xRoTATE F:CMUL Q
Left_Arm.Rot
<3sh{FmuccJF:xroTaTeE | S F:cmuL
: Left Hand.Rot
<45k Tr.muLc I F:xroTATE. F:CMUL
Left_Leg.Rot
<55 F:MULC]—]F:XROTATE F:CMULL Q
i Left Foot.Rot
<> F:MmuLc|{F:xroTATE F:CMUL O
1AS0580

Figure 10. Sample Function Network for Dial 5

m FUNCTION NETWORKS II - 13

Of course, the diagram would be similar for Dials 6 and 7, with Y and Z rotations
substituted for X.

Note that the MULC and XROT functions in Modes 2 through 6 above are exactly
the same and could be shared as in Figure 11.

(number of function key being pressed)

!F:CROUTE(S) Robot.Tran

FREYs <15 PH<1> <1> HF:xvecTorR} F:AcCuMULATE

l

Upper_Body.Rot

DIALS <5>}H<2> <2>|- F:CMUL Q
 Left_Arm.Rot
<3>H F:CMUL {)
 Left_Hand.Rot
<4> LHF:MULC | F: XROTATE F:CMUL
Left_Leg.Rot
m <5> H F:CMUL
Left_Foot.Rot

1AS0581

Figure 11. Dial 5 Network With Shared Functions

This will save you having five sets of MULC and XROT functions when one can
do the job. But the output from XROT will have to be routed, so you'll need
another routing function. The final network for Dial 5 is shown in Figure 12.

14 - FUNCTION NETWORKS 1I

FKEYS <1> 1>

DIALS <5> <2>

F:CROUTE (6)

Robot.Tran

<1>H{F:XVECTOR F :ACCUMULATE
, F:ROUTE(6) Upper_Body.Rot
FKEYS<1 > 1>
<25 F:cmuL
<2> Left Arm.Rot
<3> <L dFomil ()
<4>|H{ F:MULC |{F:XROTATE |{<2> Left_Hand.Rot
5 : ‘) |
<5> <> F:CMUL
<6> Left Leg.Rot
<55 F:CMUL
E__4_.Left_Foot -Rot
<651 F:CMUL
1AS0582

Figure 12. Final Function Network for Dial §

Functionally, this completely specifies what Dial 5 does.

Exercise

Complete the network for Dials 6 and 7 using Dial 5 as a pattern. Then diagram
the network for the Dial 8, using Dial 4 as a pattern.

Next, code the networks for all eight dials.

Include all the details, such as

instancing functions, connecting functions, and sending initial values to functions

when needed.

Remember that the DIALS and FKEYS functions have already

been instanced by the system and do not need to be named by you. To save these
commands, do this in a text file.

FUNCTION NETWORKS II-15

Once the commands to implement the network for one dial are detailed, you can
copy them over again for each of the other dials and delete or add only the
details you want. For example, all the commands to implement this network for
Dial | (X rotations) are the same as for Dial 2, except you need to change X to Y
and so on.

Figure 13 illustrates the final function network for Dials 1-8.

16 - FUNCTION NETWORKS 1I

F :CROUTE(6) Robot.Rot
< # <l> <1l> .
[Frevs<1 'I 1 > S FomiH
Head.Rot
DIALS <25 IF:CMULI '
<1>}—F:MULC [—{F:XROTATE |{<2> A
Pﬂ Right_Arm.Rot
<2>{—{FMuLC|-{ F:YROTATE <o
Right_Hand.Rot
<35 F:MULC|—{F: ZROTATE <4> roomi] ‘
Right eg.Rot
<55 F:CMUL ‘II'
Fﬂ Right_Foot.Rot
<65 F :CMUL
4 F:CROUTE(5) Robot.Scale

FKEYS <1> <l> <1y F:DSCALE '

TIALS <0> s <2>F— no connection Right_Forearm.Rot
<35] F :DXROTATE ‘
<4>F—no connection Right_Lower_ Leg.Rot
55| :DXROTATE '

F:CROUTE(6)

F : XVECTOR }——{F : ACCUMULATE

FREVS< I ——<1> <1>p]
<2>

DTALS <3>:|
<5> <2> <4>
<5>

<6>

F:CROUTE(6)

l FKEYS<1>i-—# <1> <15
<2>

DIALS <3>
<6> 2> <4>
<5>

<6>

4 [FCROVTETE
FKEYS<1> <1> <2
< 3>

DIALS <4>
<7> <2> <5>
<6>

.

F:CROUTE(5)

Bl

pd F:ZVECTOR

F:MULC }—{F : XROTATE |-

Robot.Tran
F: CROUTE(6
Frevsp]Ha> g,
<2>

F:MULC |- F:YROTATEH

F:muLcl—[F:zroTATEH

<1> <1>}—no connection
<2>l—no connection
2> <3> F:DXROTATE
<4>}——no connection
<5> F:DXROTATE
1AS0603

<3>

<4>

—no connection

F:CMULI

Upper_Body.Rot

Left_Forearm.Rot

Left_Lower_Leg.Rot

Figure 13. Final Function Network for Dials 1-8

m FUNCTION NETWORKS II-17

The following lists the commands needed to code the function network. The
code has been organized by dial, so that functions are instanced, connected, and
primed for each dial, or group of dials, before preceding to the next dial. The
names are suggestive of what each function instance does. Comment lines have
been provided for clarification.

{CODE FOR DIALS -3}

X Mul DI := F:MULC; {Instance MULC and}
Y Mul DZ = F:MULCGC; {ROT functions}
Z Mul D3 :=F: MULC;

X Rot DI := F:XROT;
Y Rot D2 := F:YROT;
Z Rot D3 := F:ZROT;

Switchl := F:CROUTE(6); {Instance SWITCH and}
{CMUL functions}

m Acc_Rot_Robot := F:CMUL;
Acc _Rot Head := F:CMUL;
Acc Rt Arm := F:CMUL;
Acc Rt Hand := F:CMUL;
Acc Rt Leg := F:CMUL;
Acc Rt Foot := F:CMUL;

CONNECT FKEYS«<l>:<1>Switchly {Connect FKEYS and}
{DIALS}

CONNECT DIALS<1»> : <1>X Mul D1;
CONNECT DIALS<2> : <1>Y Mul_ D2
CONNECT DIALS<3> : <1>Z Mul D3;

CONNECT X Mul Dl<1> : <I>X_Rot Dl; {Connect rotation}
CONNECT Y Mul D2<1> : <l>Y_R0t_D2' {accumulator to rotate}
CONNECT Z Mul D3¢1> : <1>Z_Rot D3; {function}
CONNECT X Rot Dl<1> : <2>Switchl; {Connect rotate function}
CONNECT Y Rot D2<1> : <2>Switchl; {to switch}
CONNECT Z Rot D3¢1> : <2>Switchl;
CONNECT Switchl<l> : <2>Acc_Rot_Robot; {Connect switch to}
CONNECT Switchl<2> : <2>Acc_Rot Head; {X,Y,Z accumulator}
, CONNECT Switchl<3> : <2>Acc_Rt_Arm;
m CONNECT Switchl<4> : <2>Acc_Rt_Hand;

CONNECT Switchl<5> : <2>Acc_Rt_Leg;
CONNECT Switchl<6> : <2>ACC_Rt Foot;

18 - FUNCTION NETWORKS 1I

CONNECT Acc Rot Robot<l> ¢

Rot <1> Acc Rot Robot;
CONNECT Acc Rot Robot<1> :

<1> Robot.Rot;

CONNECT Acc_Rot Head<l1> :
CONNECT Acc_Rot Head<l>» :

<l> Acc_Rot_Head;
<1> Head.Rot;

CONNECT Acc_ Rt Arm«<l> :
CONNECT Acc Rt Arm«1> :

<l> Acc_Rt_Arm;
<l> Right Arm.Rot;

CONNECT Acc Rt Hand«<l> :
CONNECT Acc Rt Hand«<l1> :

<«l> Acc Rt Hand;
<l> Right_Hand.Rot;

CONNECT Acc Rt Leg<l>
CONNECT Acc Rt Leg<l> :

<l> Acc_Rt_Leg;
<l> Right Leg.Rot;

CONNECT Acc Rt Foot<l> :

_ <l>Acc Rt Foot;
CONNECT Acc Rt Foot<l> :

<l >Rigﬁt_F_oot.Rot;

SEND 200 TO <2>X_ Mul D1
SEND 200 TO <2>Y_Mul D2;
SEND 200 TO <2>Z Mul D3;

SEND M3d (1,0,0 0,1,0 0,0,1) TO <1>Acc Rot Robot;
SEND M3d (1,0,0 0,1,0 0,0,1) TO <1>Acc_Rot Head;
SEND M3d (1,0,0 0,1,0 0,0,1) TO <1>Acc Rt Arm;
SEND M3d (1,0,0 0,1,0 0,0,1) TO <1>Acc Rt Hand;
SEND M3d (1,0,0 0,1,0 0,0,1) TO <1>Acc Rt Leg;
SEND M3d (1,0,0 0,1,0 0,0,1) TO <1>Acc Rt Foot;

{CODE FOR DIAL 4}

Switch2:= F:CROUTE(6);

Scale Robot:= F:DSCALE;
Rot Rt Elbow := F:DXROTATE;
Rot Rt Knee := F:DXROTATE;

CONNECT FKEYS«<l»> : <1>Switch2;

CONNECT DIALS«<45> : <2>Switch?2;

CONNECT Switch2<I> :
CONNECT Switch2<3> :

<1>Scale Robot;
<I>Rot_Rt Elbow;

{Connect X,Y,Z}
{accumulator back to}
{self and to display tree}
{node}

{Prime MULC function}

{Prime CMUL function}

{Instance switch function}

{Instance scale & rot}
{functions}

{Connect FKEYS and}
{DIALS}

{Connect switch to scale}
{and rot functions}

FUNCTION NETWORKS II - 19

CONNECT Switch2<5> : <1>Rot Rt Knee;

CONNECT Scale Robot<l> : <1> Robot.Scale; {Connect scale & rot}
CONNECT Rot Rt Elbow<1> : <1>Right Forearm.Rot; {functions to display tree}
CONNECT Rot_Rt Knee<l> : <1> Right Lower Leg.Rot; {nodes}

SEND .075 TO <2>Scale Robot;
SEND .02 TO <3>Scale Robot;
SEND .1 TO <4>Scale Robot;
SEND .025 TO <5>Scale Robot;

SEND 0 TO <25Rot Rt Elbow;
SEND 200 TO <3>Rot Rt Elbow;
SEND 0 TO <2>Rot Rt Knee;
SEND 200 TO <35> Rot Rt Knee;

{CODE FOR DIAL 5}

Switch3:= F:CROUTE(6);
Switch6:= F:CROUTE(6);

X _Vec_D5:= F:XVEC;
X Mul D5:=F:MULC;
X _Rot D5 := F:XROT;

Acc_Trans:= F:ACCUM;

Acc_Rot_Trunk:= F:CMUL;
Acc Lt Arm:=F:CMUL;
Acc Lt Hand:=F:CMUL;
Acc Lt Leg:= F:CMUL;
Acc_Lt Foot:=F:CMUL;

CONNECT FKEYS«<1>
CONNECT FKEYS«<1>
CONNECT DIALS<5> :

«1>Switch3;
<1>Switché;
<2>Switch3;

CONNECT Switch3<1> : <1>X Vec D5;
CONNECT X Vec D5<1> : <l>Acc_Trans;
CONNECT Acc_Trans<l»> : <l>Robot.Tran;

CONNECT Switch3¢2> :
CONNECT Switch3<3>

<1>X Mul D5;
<1>X Mul D5;

{Prime scale function}

{Prime rotation}
{functions}

{Instance both switch}
{functions}

{Instance X vector for}
{translation}

{Instance MULC and}
{ROT functions}

{Instance tran}
{accumulate function}

{Instance CMUL}
{functions}

{Connect FKEYS and}

{DIALS}

{Finish connections for}
{trans network}

{Connect switch to}
{MULC functions}

20 - FUNCTION NETWORKS 1I

CONNECT Switch3<4> @
CONNECT Switch3<¢5> : <1>X Mul D5;
CONNECT Switch3<¢6> : <1>X Mul D5;
CONNECT X Mul D5<¢1> : <1>X Rot D53
CONNECT X Rot D5¢1> : <2>Switché;

<1>X_Mul D5;

CONNECT Switch6<¢2> : <2>Acc_Rot_Trunk;
CONNECT Switch6<¢3> : <2>Acc_Lt_ Arm;
CONNECT Switch6<4> : <2>Acc Lt Hand;
CONNECT Switch6<5> : <2>Acc Lt Leg;
CONNECT Switché6<6> : <2>Acc Lt Foot;

CONNECT Acc_Rot Trunk<l> : <1>Acc_Rot_Trunk;
CONNECT Acc_Rot _Trunk<l> : <I>Upper Body.Rot;

CONNECT Acc Lt Arm«<l>

Lt <I>Acc Lt Arm;
CONNECT Acc Lt Arm«<l> @

<>Left Arm.Rot;

CONNECT Acc_ Lt Hand<1>
CONNECT Acc Lt Hand<1>

: <I>Acc_Lt Hand;
: <I>Left Hand.Rot;

CONNECT Acc Lt Legcl> :
CONNECT Acc Lt Legcl>:

<I>Acc Lt Leg;
<l>Left Leg.Rot;

CONNECT Acc_Lt Foot<l> :
CONNECT Acc Lt Foot<l> :

<I>Acc Lt Foot;
<l>Left Foot.Rot;

SEND 200 TO <2>X Mul D5;

SEND M3d (1,0,
SEND M3d (1,0,

1,0,0 0,1,0 0,0,1) TO <1>Acc_Rot_Trunk;
1,0,0 0,1,0 0,0
SEND M3d (1,0,0 0,1,0 0,0
1,0,0 0,1,0 0,0
1,0,0 0,1,0 0,0

) TO <1>Acc Lt Arm;
) TO <1>Acc Lt Hand;
) TO <1>Acc Lt Leg;

) TO <l>Acc Lt Foot;

b

SEND M3d (1,0,
SEND M3d (1,0,

b

[U -

b

SEND V3d (0,0,0) TO <2>Acc _Trans;

SEND 0 TO <3>Acc _Trans;
SEND | TO <4>Acc _Trans;
SEND 10 TO <5>Acc_Trans;
SEND -10 TO <6>Acc_Trans;

{Connect MULC to}
{rotation function}
{Connect rotation}
{function to other switch}

{Connect switch to}
{CMUL functions}

{Connect CMUL}
{functions back to self}
{and to display tree
nodes}

{Prime MULC function}

{Prime CMUL function}

{Prime trans accumulate}
{function}

FUNCTION NETWORKS 1II - 21

{CODE FOR DIAL 6}

Switch4:= F:CROUTE(6);

Y Vec Dé6:= F:YVEC;
Y _Mul Dé6:=F:MULC;

Y Rot Dé6:= F:YRQOT;

CONNECT FKEYS«<1> : <1>Switchd;
CONNECT DIALS<6> : <2>Switché4;
CONNECT Switch4<ls : <1>Y Vec D6;
CONNECT Y _Vec Dé6<l> : <I>Acc_Trans;
CONNECT Switch4<2> : <1>Y Mul D63
CONNECT Switch4<35 : <1>Y_Mul D6;
CONNECT Switch4<4s : <1>Y Mul Dé;
CONNECT Switch4<5> : <1>Y_Mul D6;
CONNECT Switch4<6> : <1>Y Mul D6y

CONNECT Y _Mul D6<1> : <1>Y_Rot Dé;
CONNECT Y _Rot D6<1> : <2>Switché;

SEND 200 TO <2>Y _Mul Dé;

{Instance Switch}
{function. Note: 2nd}
{Switch already}
{instanced}

{Instance X vector for}
{translation}

{Instance MULC and}
{RQOT functions}

{Connect FKEYS and}
{DIALS}

{Finish connections for}
{trans network}

{Connect switch to}
{MULC functions}

{Connect MULC to}
{rotation function}

{Connect rotation}
{function to other switch}

{Prime MULC function}

{CODE FOR DIAL 7}

Switch5:= F:CROUTE(6);

{Instance Switch}
{function. Note: 2nd}
{Switch alreadys}
{instanced}

22 - FUNCTION NETWORKS 1II

Z \Vec D7:= F:ZVEC;
Z MUL D7:=F:MULC;

Z ROT D7 := F:ZROT;

CONNECT FKEYS<I> : <I>Switch5;
CONNECT DIALS<7> : <2>Switch5;
CONNECT Switch5<1> : <1>Z Vec D7;
CONNECT Z Vec D7<1> : <I>Acc_Trans;
CONNECT Switch5¢<2> : <1>Z Mul D7;
CONNECT Switch5¢3> : <1>Z Mul D7;
CONNECT Switch5<4> : <1>Z Mul D7;
CONNECT Switch5¢5> : <1>Z Mul D7;
CONNECT Switch5<6> : <1>Z Mul D7;

CONNECT Z Mul D7<1> : <1>Z Rot D7;

CONNECT Z Rot D7<1> : <2>Switché;

SEND 200 TO <2>Z Mul D7;

{CODE FOR DIAL 8}
Switch7 := F:CROUTE(6);
Rot Lt Elbow:= F:DXROTATE;
Rot Lt Knee:= F:DXROTATE;

CONNECT FKEYS<Il> : <1>Switch7;

CONNECT DIALS«8> : <2>Switch7;

CONNECT Switch 7¢3> : <1>Rot Lt Elbow

{Instance Z vector for}
{translation}

{Instance MULC and}
{ROTfunctions}

{Connect FKEYS and}
{DIALS}

{Finish connections for}
{trans network}

{Connect switch to}
{MULC functions}

{Connect MULC to}
{rotation function}

{Connect rotation}
{function to other}
{switch}

{Prime MULC function}

{Instance switch}
{function}

{Instance rotate}
{functions}

{Connect FKEYS and}
{DIALS}

{Connect switch to}
{rotate functions}

FUNCTION NETWORKS 1II - 23

CONNECT Switch7<55 : <1>Rot Lt Knee;

CONNECT Rot Lt Elbow<]> : <I>Left Forearm.Rot; {Connect rotate}
CONNECT Rot Lt Knee<l»> : <l>Left Lower Leg.Rot; {function to display}
{tree node}

SEND 0 TO <2>Rot Lt Elbow; {Prime rotate functions}
SEND 0 TO <2>Rot Lt Knee;

SEND 200 TO <3>Rot Lt Elbow;

SEND 200 TO <3>Rot Lt Knee;

The above includes all the necessary code for a function network which will
manipulate Robot. However, there is one other function you could add so that
you can interactively reset Robot to its original position, before any
transformations were applied, at any time. Connecting an F:XROTATE function
to the F:CMUL (rotation accumulator) functions will do this (see Figure 14).

Send @ to Reset

RESET Y F:CMUL 1
F:XROTATE <1>C <1 NODE
XROTATE —]
YROTATE -J <2>
ZROTATE
1AS0583

Figure 14. RESET Function Network

24 - FUNCTION NETWORKS 1I

Add the following code:
Reset := F:XROTATE;

CONNECT Reset<l> : <1>Acc_Rot Robot;
CONNECT Reset<l> : <l>Acc Rot Head;
CONNECT Reset<l> : <1>Acc Rt Arm
CONNECT Reset<l> : <l>/—\cc Rt Hand
CONNECT Reset<l> : <1>Acc Rt Leg;
CONNECT Reset<l> : <1>Acc_ Rt _Foot;
CONNECT Reset<l> : <1>Acc Rot Trunk
CONNECT Reset<l» : <1>Acc Lt Arm
CONNECT Reset<l> : <l1>Acc Lt Hand
CONNECT Reset<l> : <1>Acc Lt Leg;
CONNECT Reset<l> : Acc Lt _Foot;

This will reset the network value but not the robot's display nodes. The nodes
will be reset once the dials are moved again. To reset the display nodes at the
same time as you reset the network, also connect this reset function to all of the
rotation nodes in the display tree:

CONNECT Reset<l> : <1> Robot.Rot;
CONNECT Reset<l> : <1> Head.Rot;
CONNECT Reset«l> : <1> Upper Body.Rot;
CONNECT Reset<l> : <1> Right Arm.Rot;
CONNECT Reset<l> : <1> Left Arm.Rot;
CONNECT Resetcl> : <1>» nght Hand. Rot
CONNECT Reset<1> : <1> Left Hand.Rot;
CONNECT Reset<«l> : <1> Left Leg.Rot;
CONNECT Reset«1> : <> Right Leg.Rot;
CONNECT Reset<1> : <1> Left Foot.Rot;
CONNECT Reset<l> : <1> Right Foot.Rot;
CONNECT Reset<«l> : <1> Right Forearm.Rot;
CONNECT Reset<l> : <1> Left Forearm.Rot;
CONNECT Reset<l> : <1> Left Lower_Leg.Rot;
CONNECT Reset<l> : <1> Right Lower Leg.Rot;

To RESET Robot, then, simply enter:

SEND 0 TO «<1>RESET;

m FUNCTION NETWORKS 1II - 25

LABELLING THE CONTROL DIALS

The function network that labels the dials also involves routing, except that the
network's output will be routed to function instances associated with the control
dial labels instead of into display tree nodes.

The "Function Summary" explains that there are eight DLABEL function
instances, one for each dial, named DLABELI...DLABELS8 (see Figure 15).

DLABEL1...DLABELS
S —«<1> Connected to
Dial Labels
B <2>C at System
B —<3>C Initialization

- 1AS0584

Figure 15. DLABEL Function

If you send the string of characters you want to appear in a dial's label to input
<> of a DLABEL function, the string will appear in the LEDs above the dial.
(The second and third DLABEL inputs, not used in this example, allow you to
blink the label or left—justify it. The default is non-blinking and centered in the
available space above each dial.)

These character strings should be no more than 8 characters long. No
connections need to be made out of DLABEL function instances; their "outputs"
are the LEDs on the control dials box.

To build a function network using these functions, first determine what type of
output the network needs to produce; that is, what sort of values a DLABEL
function will accept. In this case, it is a string of characters. These strings need
to be sent to the DLABEL functions. Each time you change modes, you will want
a new set of LED labels to appear that correspond to the new operations handled
by the dials.

Begin with the first mode. Here, seven dials control overall movements for the
robot. Though the eighth dial is not labeled, a blank string is needed for the
m eighth label to erase any existing labels above Dial 8 which appear in other

modes.

26 - FUNCTION NETWORKS 1I

The following are suggested labels that might appear in the dial LEDs during

Mode 1:
1--XRot Bod
2--XRot_Hd
3——XR_Arm
4--XR Hand
5--XR Leg
6—-XR Foot

Once you identify labels to be sent to the LEDs, an efficient way to send them is
to use an instance of F:INPUTS CHOOSE(n) (Figure 16) for each DLABEL
function.

F:INPUTS_CHOOSE(n)
Any —<1>C <1> Any
Any ——<n-1>C
I —<n>
1AS0585

Figure 16. F:INPUTS_CHOOSE(n) Function

Make n one number larger than the number of modes you need. With six modes,
use an instance of F:INPUTS CHOOSE(7).

This function can house six different labels on its first six inputs, one for each
mode. The seventh input is the "routing signal." An integer on input <7>
indicates which of the labels to send out. Connect FKEYS to that input.

Now when you press a function key, FKEYS not only switches the dials into a
different mode, it switches labels for the dials.

Figure 17 illustrates the network for Dial 1, with string outputs to DLABEL1 and
integer inputs from FKEYS.

FUNCTION NETWORKS 1II - 27

F:INPUTS_CHOOSE(7) DLABEL1
'XROT_BOD=——<1>C <1 <1>
'XROT_HD' —<2>C
'XR_ARM' —<3>C
'XR_HAND' —<4>C
'XR_LEG' —<5>C
'XR_FOOT' —<6>C

FKEYS <7>
1AS0586

Figure 17. LED Labels for Dial

Exercise

The above diagram suggests how an instance of F:INPUTS CHOOSE(7) can handle
the labels for Dial 1 in all modes. Design a network with additional instances of
F:INPUTS_CHOOSE that will handle the other DLABELS2 through DLABELSS.

Design labels for the dials in each mode that use 8 or fewer characters to
describe the dials' functions.

Figure 18 illustrates the rest of the function network needed to label LEDs.
Following that is the code needed to implement the complete network.

28 - FUNCTION NETWORKS 1I

F:INPUTS_CHOOSE(7) DLABEL?2
'YROT_BOD'—<1>C <1 1>
'YROT_HD' —<2>C
'YR_ARM' ——<3>C
'YR_HAND' —<4>C
'YR_LEG" —<5>C
‘YR_FOOT' —<6>C

FKEYS <7>

F:INPUTS_CHOOSE(7) DLABEL 3
'ZROT_BOD'—<1>C <1> 1>
'ZROT_HD' —<2>C
'ZR_ARM' —<3>C
'"IR_HAND' —<4>C
'ZR_LEG' —<5>C
'ZR_FOOT' —<6>C

FKEYS <7>

F:INPUTS_CHOOSE(7) DLABEL 4

‘S_ROBOT' —1>C <1 <1>
' —d<2>C

"XROT_RE'—<3>C
" —<4>C

'XROT_RK' —<5>C
P —6>C

FKEYS L2

F:INPUTS_CHOOSE(7) DLABEL5
‘XTRN_BOD'——<1>C <1 1>
'XROT_TRK'—<2>C
'XL_ARM' —<3>C
'XL_HAND' —<4>C
'XL_LEG' ——<5>C
'XL_FOOT' ——<6>C

FKEYS <7> 1AS0587

Figure 18. LED Labels for Dials 2-8

FUNCTION NETWORKS 1II - 29

F:INPUTS_CHOOSE(7) DLABEL®6
'YTRN_BOD'—<1>C <1 <1>
'YROT_TRK'—(<2>C
'YL_ARM!' <3>C
'YL_HAND' —{<4>C
'YL_LEG' —<5>C
'YL_FOOT' —<6>C

FKEYS <7>

F:INPUTS_CHOOSE(7) DLABEL7
'"ZTRN_BOD'— <1>C <1> 1>
'"ZROT_TRK'—<2>(C
'ZL_ARM' —<3>C

ﬁ 'ZL_HAND' —<4>C
'ZL_ LEG' ——<5>C
'ZL_FOOT' —<6>C
FKEYS <7>
F:INPUTS_CHOOSE(7) DLABELS
t—<1>C <1 1>
P —<2>C
'XROT_LE'—4<3>C
P <45
'XROT_LK' ——<5>C
P —<E>C
FKEYS <7> 1AS0588

Figure 18. LED Labels for Dials 2-8 (continued)

30 - FUNCTION NETWORKS 1I

The code follows for the eight labels in all six possible modes. Note that the
DLABELS function does not have to be instanced by the user.

DI Leds := F:INPUTS CHOOSE(7);
D2 Leds := F:INPUTS CHOOSE(7);

D3 Leds := F:INPUTS CHOOSE(7);
D4 Leds := F:INPUTS CHOOSE(7); {Instance the switch function}
D5 Leds := F:INPUTS CHOOSE(7);
D6 _Leds := F:INPUTS CHOOSE(7);
D7 Leds := F:INPUTS CHOOSE(7);
D8 Leds := F:INPUTS CHOOSE(7);

CONNECT FKEYS«<1>:<7>D1 Leds;
CONNECT FKEYS<15:<7>D2 Leds;
CONNECT FKEYS<1>:<7>D3 Leds;
CONNECT FKEYS«<1>:<7>D4 Leds; {Connect FKEYS to switch}
CONNECT FKEYS<1>:<7>D5 Leds;
CONNECT FKEYS<1>:<7>D6 Leds;
CONNECT FKEYS<1>:<7>D7 Leds;
CONNECT FKEYS<l>:<7>D8 Leds;

CONNECT D1 Leds<l>:<l>Dlabell;
CONNECT D2 Leds<l>:<1>Dlabel?;
CONNECT D3 Leds<l>:<1>Dlabel3;
CONNECT D4 Leds<l>:<1>Dlabel4; {Connect switch to LEDs}
CONNECT D5 Leds< I>:<1>Dlabel5;
CONNECT D6 Leds<1l>:«<1 >Dlab616
CONNECT D7 Leds<1>:<1>Dlabel?;
CONNECT D8_Leds<l>:<l>DlabelB;

SEND 'XRot BOD' TO «1>D1 Leds; {Send characters}
SEND XRot HD' TO <2>Dl Leds

SEND 'XR ARM' TO <¢3>DlI Leds

SEND 'XR_HAND' T0 <4>D1_Leds

SEND 'XR LEG' TO <5>D1 Leds;

SEND 'XR FOOT' TO <6>D1 Leds;

SEND 'YRot BOD' TO <1>D2 Leds;
SEND 'YRot HD' TO <2>D2 Leds;
SEND 'YR ARM' TO <3,D2 Leds;
SEND 'YR'HAND' TO <4>D2 Leds;
SEND 'YRLEG' TO <5>D2 Leds;
SEND 'YR FOOT' TO <6>D2 Leds;

ﬁ FUNCTION NETWORKS 1II - 31

SEND 'ZRot BOD' TO «1>D3 Leds;
SEND 'ZRot HD' TO <2>D3 Leds;
SEND 'ZR ARM' TO <35D3 Leds
SEND 'ZR HAND TO <4>D3 Leds
SEND 'ZR LEG TO <5>D3 Leds;
SEND 'ZR FOOT' TO <6>D3 Leds

SEND 'S Robot' TO <1>D4 Leds;
SEND ' " TO <2>D4 Leds;

SEND 'XRot RE' TO <3>D4 Leds;
SEND ' ' TO <4>D4 Leds;

SEND 'XRot RK' TO <5>D4 Leds;
SEND ' ' TO <6>D4 Leds;

SEND 'XTRN BOD' TO «<1>D5 Leds;
SEND 'XRot TRK TO <25D5 Leds,
SEND 'XL_ARM' TO <35D5 _Leds;
SEND 'XL_ HAND' TO <4>D5 Leds;
SEND 'XL LEG TO <5>D5 Leds;
SEND 'XL FOOT' TO <6>D5 Leds

ﬁ SEND 'YTRN BQOD' TO <1>D6 Leds;
SEND 'YRot_ TRK' TO <2>D6 Leds,
SEND 'YL _ ARM' TO <35D6 Leds;
SEND 'YL HAND' TO <4>D6 Leds
SEND 'YL LEG' TO <5>D6 _Leds;
SEND 'YL FOOT' TO <6>D6_Leds

SEND '"ZTRN BOD' TO <1>D7 Leds;
SEND 'ZRot TRK' TO <2>D7 Leds;
SEND 'ZL_ ARM' TO <3>D7 Leds,
SEND 'ZL HAND' TO <4>D7 _Leds;
SEND 'ZL LEG' TO <5>D7 Leds;
SEND 'ZL FOOT' TO <6>D7_Leds

SEND ' ' TO «1>D8 Leds;
SEND ' ' TO <2>D8 Leds;
SEND 'XRot LE' TO <3>D8 Leds;
SEND ' ' TO <4>D8 Leds;
SEND 'XRot LK' TO <5>D8 _Leds;
SEND ' ' TO <6>D8 _Leds;

32 - FUNCTION NETWORKS 1I

SETTING LIMITS ON THE MOTION OF A MODEL

As the robot model now operates, its movements are unbounded: it can continue
bending its knees until they pass through its thigh and return to initial position.
This section demonstrates how to set a limit on that motion, so that a model will
more realistically imitate the movements of the object it represents.

The robot's knees provide a good illustration of how to do this. First, think of
how a real leg bends (Figure 19).

160°

1AS0589

Figure 19. Realistic Limitations of Leg Movement

In a real leg, little or no forward bending is possible, but backward bending,
through nearly 180 degrees is. If you set a limit at 160 degrees, it would be
fairly realistic. Figure 20 shows how 160 degrees of "backward" movement in a
real leg corresponds to the rotation values in the robot's knee.

+Y =X
/\‘,\
NVa'd
A

Q- "
/.160‘

Q]

+X
-Y 1AS0590

Figure 20. Limits for the Robot Leg

FUNCTION NETWORKS 1II - 33

The rotations applied to it move it only around the X axis. Viewed from the
positive X axis (the way it is in the diagram above), the "backward" rotation is
counterclockwise. So the limits you want to impose are: no positive rotation in
X at all, and only up to 160 in negative X.

You can modify the rotation network in the function network diagram for the
robot. This requires the F:LIMIT function (see Figure 21). F:LIMIT will monitor
values for degrees of rotation for the ROTATE functions and pass through only
values between 0 and -160.

F:LIMIT
accumulated rotation value — ——value between the two limits
upper limit (0}—C

Tower limit (-160)— C

1AS0591

Figure 21. F:LIMIT Function

In this example, any value larger than 0 will cause F:LIMIT to send out a 0;
anything less than -160 will output -160.

The network for robot's knees use F:DXROTATE functions because they require
rotations only in X. However, the accumulator is built into F:DXROTATE, so
you cannot tap into it for the input to F:LIMIT.

DIALS F:DXROTATE Node
1AS0600

To use F:LIMIT, begin with an XROT network such as the one used in "Function
Networks I'":

DIALS F:MULC F:XROTATE

1AS0601

34 - FUNCTION NETWORKS 11

Then modify it to accumulate rotation values with an add function:

DIALS F:MULC F:ADD F:XROTATE

1AS0602

Finally, add the F:LIMIT function. With this network, a stream of values from
ADD (accumulated rotation values) can be output to F:LIMIT as shown in Figure
22.

1
L1

DIALS F:MULC 4 F:ADD F:LIMIT F:XROTATE Node

1AS0592

Figure 22. Function Network to Limit Movement

Though this network is bulkier (three functions now replace one), it allows you to
limit the motion in the knee joint.

Exercise

Figure 23 illustrates two modified function networks that will limit rotations in
both of the robot knees. Function instance names have been provided. Edit the
existing code for Robot to incorporate these changes. Do not repeat any existing
commands which create function instances; otherwise, all connections
established by the original command are broken.

Right Lower Leg.Rot

DIALS<4>H SWITCH2 x_MULc_D4[£| ADD D4 | LIMIT__D4T1| X_ROT_D4
— Left_Lower Leg.Rot

DIALS <8> SWITCH7 X MuLC_D8| JADD D8 | {LIMIT_ D8 IJ_[X_ROT_D8

1AS0593

Figure 23. Function Networks to Limit the Robot Knee Movement

FUNCTION NETWORKS 1II - 35

X Mulec D4 := F:MULC;

X Mulc D8 :=F: MULC;

Add D4 :=F: ADD;

Add D8 :=F: ADD {Instancing new functions}
lelt D4 :=F: LIMIT

Limit_ D8 :=F: LIMIT

X Rot D4 :=F: XROTATE

X _Rot D8 :=F: XROTATE;

DISCONNECT Switch2<55>:<1>Rot Rt Knee;
DISCONNECT Switch7<5>:<1>Rot Lt Knee;

CONNECT Switch2<¢55>:<1>X Mulc D43
CONNECT Switch7<¢55:<13X Mulc D8

CONNECT X _Mulec D4cl>:<1>Add D4y
CONNECT X Mulc D8<l> <l>Add D8;

CONNECT Add_Dé4c<l>:<l>Limit D4, {Creating new network}
CONNECT Add D8«<15:<1 >Limit_ Ds;

CONNECT Limit D4<15>:¢2>Add D4,
CONNECT Limit Dé4cl>:<15X Rot_ Dll
CONNECT Limit D8¢1>»: <2>Add_D8
CONNECT Limit D8<1>:<1>X Rot D8;

CONNECT X _Rot_D4<l>:<1>Right Lower Leg.Rot;
CONNECT X _Rot D8«<l>:<l>Left Lower Leg.Rot;

SEND 200 TO <25X Mulc_Dé4;

SEND 200 TO <2>X Mulc D8,

SEND 0 TO <2>Limit D4; {Priming functions}
SEND -160 TO <3>Limit D4

SEND 0 TO «<2>Limit D8;

SEND -160 TO <3>L1m1t_D8;

SEND 0 to <2>Add D4;
SEND 0 to <2>Add D8;

The next logical step would be to limit rotations in ALL of the robot's joints.
However, this is no trivial matter. The other rotate nodes accept
three-dimensional rotations which are all accumulated using matrices. Matrices
cannot go through an F:LIMIT function. This problem is not insurmountable, but
solutions can be complex. (For example, you could have three rotation nodes,
each limiting movement using the F:LIMIT function.)

36 - FUNCTION NETWORKS 1II

USING VARIABLES TO STORE VALUES

One difference between programming with PS 300 function networks and
programming a conventional language such as FORTRAN is that you almost
never need to use variables. In a conventional program, you may represent two
values to be added together as variables X and Y. In a function network, you
would add these using an ADD function. The "variables" are the function's two
inputs.

1
Sometimes, though, you may want to use a variable value in a function network
in a more conventional way. Often, this can be done using a F:CONSTANT
function (see Figure 24).

F:CONSTANT |—Destination 1

F:CONSTANT Destination 2

F:CONSTANT Destination 3
1AS0599

Figure 24. F:CONSTANT Function

In this setup, the value you want to save is sent to the constant input of the
function. If you send a stream of values, each one will over-write the preceding
one, so the value on the constant input will always be current (the latest one
sent). When you need the variable somewhere else in the network, send any
value to trigger F:CONSTANT's input <1> and the value will fire out to wherever
you connect the output.

It may be the case, however, that several areas in a network need to access the
variable in an F:CONSTANT function. You might think that can be done by
making numerous output connections to all the destinations that may use the
variable.

F:CONSTANT Destination 1

—J<1> <1 Destination 2
—<25C Destination 3

1AS0596

FUNCTION NETWORKS 1I - 37

However, this presents a problem of routing and selection. To send the variable
value to destination 1, you must trigger F:CONSTANT, which sends out values to
all destinations. One solution to this problem could be to use more instances of
F:CONSTANT.

F:CONSTANT

Trigger Value <1> <1>——Any

<2>C

From Network
1AS0O594

A more efficient solution is to use the VARIABLE command in conjunction with
the command STORE and the function F:FETCH. This section discusses how to
do that.

The VARIABLE command creates a "holding tank" for a single value, much the
same way the constant input of F:CONSTANT does. Look at the following
command:

VARIABLE This, That, The Other;
This command creates three variables named This, That, and The Other.
Variables have only one input and no outputs. Function networks can be
connected to them or they can receive values by means of the SEND command:
CONNECT Spinner<ls>:<1>This;
SEND 4.5 TO <1>This;
If a network is connected to a variable, it can receive a stream of values and will

retain the last one sent.

An alternate way to send a value to a variable is to use the STORE command.
The following commands both do the same thing:

STORE 4.5 IN This;

SEND 4.5 TO <1>This;

38 - FUNCTION NETWORKS 1I

There are two ways to retrieve a value stored in a variable: using the SEND
VALUE command or using a function network with F:FETCH. For example, if
you want to send a value from the variable "This" to the third input of a function
named ROT_X, you could enter:

SEND VALUE(This) TO <3>Rot_X;

Even more convenient is using F:FETCH (Figure 25).

F:FETCH

Any—]<1> <1>—— Any
S——<2>C

1AS0595

Figure 25. F:FETCH Function

F:FETCH accepts the name of the variable on its constant input (input 2). When
any value arrives on input 1, the function is triggered. It fetches the latest value
from that variable and sends it out.

For example, in Figure 26 below, values for the variable "This" are routed to the
host using the F:FETCH function. (User-assigned names are written above the
function box.)

GET_THIS PRINTER
F:FETCH| [F:PRINT} [HOSTOU

iz

"This'—<2>C
This
VARIABLE
ACC_TRANS
DIALS F-ACCUM Robot.Tran

<5>p—X TRANSLATE NETWORK
<6>F—Y TRANSLATE NETWORK <1> <1>
<7>Z TRANSLATE NETWORK

1AS0597

(Translation Network Already Defined)

Figure 26. Routing Values From THIS Variable to the Host

FUNCTION NETWORKS 1II - 39

The variable This holds a 2D vector that indicates the accumulated translation
values sent out from ACC TRANS in Mode 1. (The translation network has
already been defined and coded in the Robot code.)

HOSTOUT has one input, which accepts a string and routes it to the host.
HOSTOUT is preceded by a function that turns PS 300 values into strings,
F:PRINT. (If the GSRs are being used, HOST MESSAGE should be used in lieu of
HOSTOUT.)

The additional code needed for this network is:
VARIABLE This;

Get This := F:FETCH;
Printer := F:PRINT;

CONNECT Acc _Trans<l>:<1>This;
CONNECT FKEYS<I1»>:<1>Get This;
CONNECT Get _This<l>: <1>Printer;
CONNECT Printer<l>:<l>Hostout

SEND 'This' to <2> Get_This;

Exercise

Using Figure 26 as a pattern, create a function network that uses a variable
named MATRIX which holds the most current rotation matrix from F:CMUL for
the robot's left arm (ACC LT _ARM) in Mode 3. Retrieve this value and send it
to HOSTOUT using an instance of F:FETCH named Retrieve. Specify any
additional code needed (the rotation network for Robot has already been done).

Figure 27 illustrates the function network which retrieves values from the
variable MATRIX.

40 - FUNCTION NETWORKS 1I

RETRIEVE PRINTER

F:FETCH] |F:PRINT| |HOSTOUT

'Matrix' —q<2>C

Matri x

ACC_LT ARM| teft_Arm.Rot

oo

DIALS SWITCH 6
<5>p=X ROTATION NETNORE_F:ROUTE

<6>Y ROTATION NETWOR <35

<7>F7 ROTATION NETWOR 1AS0598

(Rotation Network Already Defined)

Figure 27. Routing Values From MATRIX Variable to the Host

The additional code needed for this network is:
VARIABLE Matrix;

Retrieve := F:FETCH;
Printer := F:PRINT;

CONNECT Acc Lt Arm<l>:<1>Matrix;
CONNECT FKEYS«<1>:<1>RETRIEVE;
CONNECT Retrievec<l»>: <1>Printer;
CONNECT Printer<l>:<1l>Hostout;

SEND 'Matrix' to <2> RETRIEVE;

FUNCTION NETWORKS 1II - 41

SUMMARY

This module illustrates how to expand a function network so that a single dial
can manipulate several movements of a model. This entails determining the
number of dials needed for interactions in the model and assigning each dial
several destinations (in this module, interactive nodes in the model's display tree
or LED labels).

Function keys and instances of F:CROUTE(n) are used to switch values from the
dials to their various destinations. This prevents dial values from being routed to
all function network destinations at once.

Specifically, the initial function instance FKEYS is connected to input<l> of the
switching function F:CROUTE(n). Incoming values from the dials are connected
to input «<2>. The outputs of F:CROUTE(n) are connected to the various
destinations.

LEDs above the dials are labeled in each mode of operation. Specifically, labels
in every mode for that dial are sent to the constant inputs of
F:INPUTS CHOQOSE. FKEYS is connected to the last input of this function. The
output of F:INPUTS CHOOSE is connected to the DLABEL function associated
with that dial. When the function key is pressed, to switch modes, the correct
label for the dial in that mode is routed to DLABEL, which outputs to the LEDs.

Functions can serve more than one purpose. For example, in addition to
controlling X rotations, the F:XROTATE function can be used to reset the model
back to its original position before any transformations were applied.

The F:LIMIT function can be inserted into a network to set limits on a model's
movement. F:LIMIT requires that you establish upper and lower limits for
transformation values. It then passes through only those values which lie within
this range.

Finally, the VARIABLE command and F:FETCH functions allow you to store and
retrieve a variable value in a function network.

TEXT MODELING AND STRING HANDLING

CONTENTS
INTRODUCTION 1
OBJECTIVES 1
PREREQUISITES 2
‘, ' USING COMMANDS TO CREATE CHARACTER STRINGS 3
The CHARACTERS Command 3
Changing Starting Position and Spacing 4
Exercise 5
The LABELS Command 5
When to Use CHARACTERS and LABELS 6
‘ USING COMMANDS TO MANIPULATE CHARACTER STRINGS 7
‘ Character Rotations 7
Character Scales 7
The TEXT SIZE Command 10
Exercise 11

TEXT MODELING AND STRING HANDLING

Character Orientation

World-Oriented Characters
Screen-0riented Characters
Screen-0Oriented/Fixed Characters

USING FUNCTIONS TO MANIPULATE CHARACTERS AND STRINGS

Character and String Conversion Functions
String Formatting and Reformatting Functions
Miscellaneous String-Handling Functions

Character Transformation Functions

UPDATING CHARACTERS AND LABELS NODES
Updating With Commands

The COPY Command

The SEND Command

Exercise

Updating With Functions

CREATING AND USING DIFFERENT CHARACTER FONTS
Creating an Alternate Font
Using an Alternate Font

The Character Font Editor Program

SUMMARY

11
13
13
14
15
15
16
17

17

19
19
19
20
23

23

24

24

26

27

28

TEXT MODELING AND STRING HANDLING

Figure l.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.

ILLUSTRATIONS

Default Window and Character Size

The Effect of the PREFIX Command

New Node Added With the PREFIX Command
Display Tree With TEXT SIZE Node

TEXT SIZE Node Prefixed With CHARACTER SCALE Node
Display Tree for a Labeled Cube

Inputs to a CHARACTERS Node

Inputs to a LABELS Node

Standard 'A' and Simplex Roman 'A’
Standard 'A' and Old English 'A’

Display Tree With CHARACTER FONT Node

10
11
12
21
22
25
25
27

TEXT MODELING AND STRING HANDLING - 1

Text is handled by the PS 300 in the same way as any other graphical item. Characters
are defined as data nodes consisting of a single string (a CHARACTERS node) or a block
of several strings or labels (a LABELS node). Just like other graphical items,
characters can be transformed through matrices. Because they are affected by 3X3
matrices, they can be transformed along with any three-dimensional object which
includes them in its definition. Characters can also be rotated and scaled using
commands that create 2XZ2 transformation matrices. These matrices transform text
while leaving other 2D and 3D graphical data unaffected.

Strings can be created and manipulated with commands. They can also be manipulated
interactively using function networks and interactive devices.

A standard character font comes with the PS 300. Commands exist which allow you to
design and use an unlimited number of alternate character fonts. A graphical character
font editor program, MAKEFONT, is also available for designing and modifying
character fonts. Refer to Volume 4 for information about this program.

Text and text-handling nodes are included in display trees. Text strings are data nodes
and text transformations are operation nodes. The current character font is an

attribute node which points to a look-up table for the vectors which comprise the font
in current use.

OBJECTIVES

In this module you will learn how to:

m Use commands to create character strings.

m Use commands to manipulate character strings.

m Use functions to manipulate characters and strings.
m Update characters and labels nodes.

m Create and use different character fonts.

2 - TEXT MODELING AND STRING HANDLING

PREREQUISITES

Be at a PS 300 and have access to the Tutorial Demonstration programs. Be
familiar with the concepts covered in "Graphics Principles" and in the "Modeling"
and "PS 300 Command Language" modules. Also have at hand the Command
Summary and Function Summary in Volume 3A for reference to the commands and
functions you will be using.

Be sure that you have read User Operation and Communications in Volume | so
that you know how to put the PS 300 into and out of Command mode.

TEXT MODELING AND STRING HANDLING - 3

USING COMMANDS TO CREATE CHARACTER STRINGS

Two PS 300 commands create character strings: the CHARACTERS command
and the LABELS command.

The CHARACTERS Command

The CHARACTERS command lets you create a single string of up to 240
characters and specify the location of that string in the world coordinate system.

The simplest form of the command lets you create a string which starts at the
origin (the default location). The following command assigns the name String to
a character string. Put the PS 300 in Command Mode by pressing the CONTROL
and LINE LOCAL keys, and enter this command.

‘ . String := CHARACTERS 'The quality of mercy...";

Now DISPLAY String. All you can see at the moment is a large "T" in the
top-right quadrant and the vertical stroke of the "h". This is because each
character is defined in a square which, by default, is one unit on each side. The
default starting point for any string is the origin. Since the default window is
from -1 to | in X and Y, only the first letter is within the window. Figure 1
illustrates this.

Default Character
Size

____!_____}

|
Default Window — :6 |
al == 3 1IN _|

4 ’ 1AS0634

-1
Figure 1. Default Window and Character Size

4 — TEXT MODELING AND STRING HANDLING

To scale the characters to fit the default window and display the string at its
new size, enter the following commands.

Scale String := SCALE BY .04 APPLIED TO String;
REMOVE String;
DISPLAY Scale String;

The string should now appear in much smaller letters beginning at the center of
the screen. Notice that the characters which form the string in the
CHARACTERS command are enclosed in single quotation marks; however, when
String is displayed, only the characters appear. If you want quotation marks in
the text string, you must use three single quotation marks at the start and at the
end of the string. Redefine String by entering the following command.

String := CHARACTERS '""'The quality of mercy..."";

The character string should now appear in single quotation marks.

To get a single quote to appear in a string (as an apostrophe, for example) you
must enter two single quotes. Redefine String with the following command.

String := CHARACTERS 'Love''s not time''s fool';

The string should appear with the contraction Love’s and the possessive time’s.

Changing Starting Position and Spacing

When the PS 300 displays a character string, the string is positioned by default
with the lower-left corner of the unit square enclosing the first character at the
origin of the world coordinate system. Characters are regularly spaced and
follow each other horizontally. Optional parameters in the command let you
specify the beginning coordinates of the string and change the horizontal and
vertical spacing of the characters to create vertical and diagonal text strings.

Enter the following command to redefine String as a new line of text positioned
off the origin.

String := CHARACTERS 0,5,0 'Up a little';

TEXT MODELING AND STRING HANDLING -5

This string starts at 0 on the X axis and 0 on the Z axis but 5 on the Y axis. The
X,Y,Z coordinate of the starting point can always be specified in this way. The
Z coordinate is optional and, if not supplied, defaults to zero.

The spacing between characters can be changed with a STEP clause. This clause
lets you specify the spacing between characters in X and Y as a value from -1 to
I. The default spacing is 1,0 or one unit in X and zero in Y for regular horizontal
spacing.

The vertical spacing can be changed by specifying the Y component of the STEP
clause as a value other than zero. Enter the following command to create a
string which descends diagonally from the origin to the right.

String := CHARACTERS STEP 1,-1 'Stepping down';

Now redefine the string as a diagonal which ascends from the origin to the
upper-right.

String := CHARACTERS STEP 1,1 'Stepping up';

Exercise

Try different combinations of X and Y values to produce strings which descend
and ascend vertically from the origin.

The LABELS Command

The LABELS command, like CHARACTERS, defines character strings for
display. Whereas CHARACTERS defines a single string, LABELS combines any
number of character strings into a single block. Each character string in the
block is called a label.

The command is quite straightforward to use. The following example combines
some of the text strings created earlier in this module into a single label block.
String := LABELS 0,0 'The quality of mercy..."
-1,2 '""'The quality of mercy..."""
4,5 'Up a little'
-

,~5 'Love''s not time''s fool";

6 — TEXT MODELING AND STRING HANDLING

Diagonal and vertical strings could not be included in the block, however,
because they specify different horizontal and vertical spacing between
characters. The LABELS command is not able to accommodate this. The only
clause in the command is the X,Y,Z coordinate of each label in the block.

When to Use CHARACTERS and LABELS

Both the CHARACTERS and the LABELS commands create data nodes in a
display tree. Whenever several character strings are defined as a single LABELS
node rather than as separate CHARACTERS nodes, there is a gain in display
capacity. If you are displaying a lot of text, it is best defined using the LABELS
command.

Character strings defined with the CHARACTERS command, however, are more
versatile. In deciding which command to use, keep the following in mind.

m The CHARACTERS command lets you change the horizontal and vertical
spacing between characters. The LABELS command does not.

m If text is created using CHARACTERS, you can manipulate any character in
the text string. If the LABELS command is used, the smallest entity you can
manipulate is a single text string.

TEXT MODELING AND STRING HANDLING -7

USING COMMANDS TO MANIPULATE CHARACTER STRINGS

The CHARACTERS and LABELS commands create data nodes containing text.
Like any other primitive data, text can be transformed by having a matrix
applied to it. Text can be rotated and scaled using the ROTATE and SCALE
commands which transform any two-dimensional or three-dimensional
structures. In addition, characters can be transformed with their own rotate and
scale commands: CHARACTER ROTATE, CHARACTER SCALE, and TEXT
SIZE. These commands create 2X2 transformation matrices which only operate
on text.

Character Rotations

The CHARACTER ROTATE command rotates a character string or label block
around the Z axis. When you look in the positive direction of the axis, the
f ‘ rotation is counterclockwise.

To see the effect of this command, initialize the display, then rotate and display
the scaled labels block.

INITIALIZE DISPLAY;
Rot Text := CHARACTER ROTATE 90 APPLIED TO Scale String;
DISPLAY Rot Text;

Each string in the block should be rotated 90 degrees to the left. Notice that
each label in the block is rotated around its own starting location. There is no
single point in a labels block around which the whole block rotates.

A character rotate node can be updated interactively by any 2X2 matrix. The
functions F:MATRIX2 and F:CROTATE (where C stands for character) are often
used to supply the new matrix to the node.

Character Scales

m Characters can be scaled like any other primitive data by a three-dimensional
scale matrix using the SCALE command. There is also a CHARACTER SCALE
command which creates a 2X2 scale matrix for transforming text only.

8 - TEXT MODELING AND STRING HANDLING

There are two forms of the CHARACTER SCALE command, one for uniform
scaling and one for non-uniform scaling. Enter the following commands to
initialize the display and to uniformly scale by .05 and then display the
characters in the labels block.

INITIALIZE DISPLAY;
Char Scale := CHARACTER SCALE .75 APPLIED TO Scale String;
DISPLAY Char Scale;

The scale factor is applied in both X and Y to the characters that compose
scale-string. A non-uniform scale can be applied by specifying separate scale
factors in X and Y. Enter the following command to redefine Char Scale and
make tall characters.

Char Scale := CHARACTER SCALE .5,3 APPLIED TO Scale_String;

Characters in the strings are made tall and thin with this command.

When several CHARACTER SCALE commands are used, each is concatenated
with the next and a cumulative scaling matrix is applied to the characters. To
see this effect, initialize the display and create and display a text string called
Text.

INITIALIZE DISPLAY;
Text := CHARACTERS 'See Spot run.';
DISPLAY Text;

Since the characters are at the default size, only the capital 'S' and one line of
the first lowercase 'e' are visible in the top-right quadrant of the screen. Now
scale the string by prefixing it with a CHARACTER SCALE node.

PREFIX Text WITH CHARACTER SCALE .5;

The characters should now change to half their previous size, and the 'S', first
'e', and one line of the second 'e' should be visible. The PREFIX command
inserts a new node above the existing node and assigns the existing node's name
to the new node. Figure 2 shows the effect of the PREFIX command on the
display tree.

m TEXT MODELING AND STRING HANDLING - 9

Text
Cs

1AS0635
Figure 2. The Effect of the PREFIX Command
Use the PREFIX command again to create another scale node above the last one.
PREFIX Text WITH CHARACTER SCALE .13

m Notice that the size of the characters is now one tenth of what it was before,
not one tenth of the original default size. The actual size of the text is .5 times
.1, which is .05 of the default size. The new display tree is as shown in Figure 3.

Text /' CS

cs s

Text | ¢ S—

1AS0636

Figure 3. New Node Added With the PREFIX Command

The two character scales are concatenated and the combined scaling matrix is
applied to the characters.

10 - TEXT MODELING AND STRING HANDLING

The TEXT SIZE Command

Character sizes can also be changed with the TEXT SIZE command. This
command creates a text size which replaces the default size of 1. Text sizes are
expressed as multiples or fractions of the default size.

Like the CHARACTER SCALE command, TEXT SIZE creates a 2X2 scaling
matrix. However, this matrix is not concatenated with any other matrix. This
means that the command creates a node which overrides any 2X2 matrix nodes
above it in the same branch of the display tree.

To see the effect of the command, first remove the two CHARACTER SCALE
prefixes of the string called Text, then prefix Text with a TEXT SIZE node.

REMOVE PREFIX OF Texts
REMOVE PREFIX OF Text;
PREFIX Text WITH TEXT SIZE .5;

As you remove the prefixes, the characters being displayed should get larger
until they are back to the default size, and only the capital S is visible in the
top-right quadrant. Prefixing with the TEXT SIZE command should make the
letters half of the default size. The display tree for this structure is as shown in
Figure 4.

Text

Text| ¢ —_— | C

1AS0637

Figure 4. Display Tree With TEXT SIZE Node

Now prefix Text with a CHARACTER SCALE node to scale the characters by
half again.

PREFIX Text WITH CHARACTER SCALE .5;

TEXT MODELING AND STRING HANDLING - 11

The text size does not change. This is because the effect of the CHARACTER
SCALE node is overridden by the TEXT SIZE node below it in the structure. The
display tree for the structure is shown in Figure 5.

Text

Text | ¢ —_— [C

1AS0638

Figure 5. TEXT SIZE Node Prefixed With CHARACTER SCALE Node

Now prefix the CHARACTER SCALE node with a character rotation node.
PREFIX Text WITH CHARACTER ROTATE 90;

Again, nothing happens. The TEXT SIZE node overrides all 2X2 matrices above

it. Since a CHARACTER ROTATE node is a 2X2 matrix node, it too is cancelled

out like the character scale. You should take this into account when structuring
data.

Exercise

The TEXT SIZE node has no effect on 3X3 matrices, however. Try replacing the
CHARACTER ROTATE node with a ROTATE node, and the rotation will be
applied.

Character Orientation

If a transformation is applied to an object or part of an object which contains
text in its structure, the default condition is that the text will be transformed
too. Consider the display tree in Figure 6.

12 - TEXT MODELING AND STRING HANDLING

Dials
o0o0
ogod
oood
©0 oJd|

Labeled_Cube

T
cs
Cube C C C C C C
‘:’5 £ J? "é ‘1’5 "é 1AS0639

Figure 6. Display Tree for a Labeled Cube

An instance node called Labeled Cube groups a vector list defining a cube and
character strings which are scaled and positioned on each face to label the
FRONT, BACK, TOP, BOTTOM, LEFT, and RIGHT. A rotation node connected to three
dials through a function network allows Labeled Cube to be rotated
interactively. A scale node is also connected to a dial to allow interactive
scaling. Any rotation or scale that is applied to the cube is also applied to the
character strings.

To display the cube represented by the display tree in Figure 6, go to the
Tutorial Demonstration Menu and select the program called CHARACTERS.

The cube with its faces labeled will be displayed in three viewports. The
rotation node is connected to Dials 1, 2 and 3 for rotations in X, Y, and Z. Dial 4
is connected to the scale node. Use the dials to manipulate the cube.

TEXT MODELING AND STRING HANDLING - 13

Notice that as you rotate and scale the cube, the character strings on the faces
of the cube in viewport | are rotated and scaled also. Depth-cueing is
performed on the characters as well as on the lines that make up the cube.

As you manipulate the cube in viewport 1, the character strings which label its
faces are unreadable much of the time. They may be backwards, upside-down,
and too small to read. Notice that this is not the case with the characters in
viewports 2 and 3. These characters are unaffected by rotations and scales while
the object 1is being transformed. This is achieved by wusing the SET
CHARACTERS command. This command determines the orientation of
characters which are part of a model. It has an "orientation" clause with
three options: WORLD ORIENTED, SCREEN ORIENTED, and
SCREEN ORIENTED/FIXED.

World-Oriented Characters

World-oriented characters are what you are seeing with the cube in viewport I.
The characters are transformed along with the object just like any other part of
it. When an object is rotated, translated, or scaled, the characters undergo the
same transformations. This is the default condition for any character string or
label block you create.

The syntax for this command is as follows.

Name := SET CHARACTERS WORLD ORIENTED APPLIED TO Namel;

Screen-Oriented Characters

Screen-oriented characters are unaffected by ROTATE and SCALE nodes. The
SET CHARACTERS command can be used with the SCREEN ORIENTED clause
to maintain a readable orientation for character strings when an object is
transformed. The cube in viewport 2 has a SET CHARACTERS
SCREEN ORIENTED node added. When this cube rotates, the names on the
cube's faces stay readable. They rotate around the three axes but they stay
parallel to the XY plane. When the cube is scaled, the character size remains
unchanged.

The syntax for this form of the command is as follows.

Name := SET CHARACTERS SCREEN ORIENTED APPLIED TO Namel;

14 - TEXT MODELING AND STRING HANDLING

Screen-0riented/Fixed Characters

Notice that with the screen-oriented characters in viewport 2, the intensity of
the characters varies with depth. If the cube were being displayed in perspective
projection, the size of the characters would vary too. In the cube's initial
position, the characters BACK on the back face of the cube would appear smaller
and dimmer than the characters FRONT. You can use the
SCREEN ORIENTED/FIXED option of SET CHARACTERS to fix the size and
intensity at which characters are displayed.

The cube in viewport 3 has a SET CHARACTERS node with the
SCREEN ORIENTED/FIXED option. Notice that when you rotate this cube,
depth-cueing is not performed on the characters, so they remain at full intensity.

The syntax for this form of the command follows.

Name := SET CHARACTERS SCREEN ORIENTED/FIXED
APPLIED TO Namel;

TEXT MODELING AND STRING HANDLING - 15

USING FUNCTIONS TO MANIPULATE CHARACTERS AND STRINGS

There are several functions which are used for manipulating characters and
strings. These functions convert characters and strings to other types of data,
format and reformat strings, transform characters, and perform other
miscellaneous character and string—-handling operations.

Complete information on these functions is contained in the Function Summary
in Volume 3A. The following sections summarize the functions and give a few
examples of their use.

Character and String Conversion Functions

F:CHARCONVERT
m Converts characters to integers. The function accepts a string and converts
‘ each byte of the string (i.e., each character) to an integer. For example, the
string 'AB' will be converted to 65 66, the ASCII decimal equivalent of A and B.

F:CHARMASK

Masks each character in a string by ANDing each byte with a constant integer.
This is useful for converting one character or a string of characters to another,
for example, from upper to lower case or from a non-printable to a printable
character.

F:PRINT
Converts any data type to a string. For example, a Boolean input will generate
the string 'TRUE" or 'FALSE"; a 3D vector will generate a string such as '5,2,1"
and so on.

F:TRANS STRING

Translates one string into an output string using another string as a translation
table. For example, prime the function by sending 'ABCDEF GHIJKLMONPQRS
TUVWXYZ' as the translation table to input <3> of the function, and 97 (the
ASCII decimal equivalent of 'a') to input <2>. If a string of lowercase letters of
the alphabet is now sent to input <l>, the letters will be converted to uppercase
on output <l>.

16 - TEXT MODELING AND STRING HANDLING

F:STRING_TO_NUM

Converts a string to a real number or an integer.

F:GATHER_STRING

Collects strings until a terminator arrives. It then packages them into one string
which may or may not include the terminator.

String Formatting and Reformatting Functions

F:CONCATENATE

Concatenates strings. The string on input <2> of the function is appended to the
string on input <1l>.

F:SPLIT

Compares two strings and splits them depending on the match. If a match
occurs, characters in the string on input <l> that precede the match are output
on output <l>. Matching characters are output on output <2>. Characters
following the matching characters are output on output <3>. And a Boolean
TRUE is output on output <4>. If no match is found, nothing is output on outputs
<l>, <25, and <3>, and a Boolean FALSE is output on output <4>.

F:PUT STRING

Replaces characters in the string on input <l> with the string on input <3>,
starting at the position specified by the integer on input <2>.

F:TAKESTRING

Outputs a string consisting of the number of characters specified on input <3»
taken from the string on input <1», starting at the position given on input <2>.

F:LINEEDITOR

Accepts a stream of characters and simple editing commands, accumulates the
characters in an internal line buffer, applies the commands to the contents of
the line buffer as they are received, and outputs the edited line when a specified
delimiter character is recognized.

m TEXT MODELING AND STRING HANDLING - 17

F:LABEL

Creates a label to send to a LABELS node. A vector on input <l> of the function
indicates the location of the label in the coordinate system. A string on input
<2> is the text of the label. A Boolean value on input <3»> indicates whether the
label is to be displayed or not. The data type output by this function can only be
used as input to a LABELS node.

Miscellaneous String-Handling Functions

F:LENGTHSTRING

Accepts a string and outputs its length.

F:FIND STRING
m Determines whether the string on input <2> is a substring of the string on input
<l>. Outputs the starting location of the substring if it is found.

F:COMP_STRING
Compares two strings to determine if the string on input <1> is greater than, less
than, or equal to the string on input <2>.

F:LBL EXTRACT

Extracts information about a label in a LABELS node. An integer on input <l> is
an index into the LABELS block. A string on input <2> is the name of the node.
The function outputs the text of the label, its location in the coordinate system,
and a TRUE or FALSE to indicate if the label is displayed or not.

Character Transformation Functions

F:CROTATE

Uses an integer on input <l> which represents degrees of rotation to create a
2X2 Z-axis rotation matrix. This matrix can be used to update a CHARACTER

m ROTATE node.

18 - TEXT MODELING AND STRING HANDLING

F:CSCALE

Uses a real number or a two-dimensional vector to create a uniform or
non-uniform 2X2 scaling matrix. The matrix can be used to update a
CHARACTER ROTATE node.

F:MATRIX2

Accepts two-dimensional vectors on inputs <l> and <2> and creates a 2X2
matrix. This matrix can be used to update a CHARACTER SCALE or
CHARACTER ROTATE node.

TEXT MODELING AND STRING HANDLING - 19

UPDATING CHARACTERS AND LABELS NODES

Both CHARACTERS and LABELS nodes can have their contents updated using
commands and functions.

Updating With Commands

The COPY and SEND commands can be used to change the contents of a
CHARACTERS or LABELS node.

The COPY Command

Labels can be copied from one labels node to another using the COPY command.
Note, however, that this command does not work with a CHARACTERS node.
The command has the following format:

Name := COPY Namel [START=] i [,] [COUNT=] n;

The parameters for this command are:
Name - The name of the labels node you are creating and copying into.
Namel - The name of the labels node you are copying from.
i - The number of the first label to be copied.

n - A count of the number of labels to be copied.

The command can be used as follows. First create a labels node called Limerick.

Limerick := LABELS -1,.75 'What''s wrong with this PS 3007?"'

-1,.5 'The frustrated programmer thundered’
-1,.25 'I''ve entered commands'
-1,0 'With the carefulest of hands’

-1,-.25 'But somehow I seem to have blundered!’;

20 - TEXT MODELING AND STRING HANDLING

To see the limerick, scale the labels block by .05 and display it.

Scale Block := CHARACTER SCALE .05 THEN Limerick;

DISPLAY Limerick;
Now create a new labels block which starts at the third label and is three labels
long.

New Block := COPY Limerick START = 3, COUNT = 3;
The words START and COUNT and the equals signs are optional, so you could
have typed "COPY Limerick 3,3;" instead. If one word is used, however, both
must be used.

Now redefine Scale Block so that is refers to New _Block.

Scale Block := CHARACTER SCALE .05 THEN New Block;

The last three lines of the Limerick should now be displayed on the screen.

The SEND Command

Several forms of the SEND command can be used to update a LABELS or
CHARACTERS node. Both nodes have similar input queues. Figure 7 shows
inputs to a CHARACTERS node and Figure 8 shows inputs to a LABELS node.

TEXT MODELING AND STRING HANDLING - 21

name

Character——— <last> Changes the last character
2D,3D,4D vector—— <position>Changes the starting position
2D,3D,4D vector— <step> Changes the stepping

Integer <clear> Clears the current string

Integer < delete> Deletes n characters (from the end)

String < append> Appends to end of current string

String <i> Replaces current string with new string,
starting at the i-th character

String <substitute>Replaces entire current string

with new string

CHARACTERS

1AS060

Figure 7. Inputs to a CHARACTERS Node

22 - TEXT MODELING AND STRING HANDLING

name

String <last> Changes last label
Integer <clear> Clears list
Integer <delete> Deletes from end

Label ———]<append> Appends from end

Boolean <i> True=on,False=off

String <i> Replaces i-th label

LABELS

1AS0610

Figure 8. Inputs to a LABELS Node

Unlike most other nodes, these nodes have inputs with names as well as
numbers. All data sent to these nodes are sent to a named input or to a numeric
input which indicates the position of a character within a string or a label within
a block.

The simplest form of the SEND command has the following format:

SEND option TO <n>namel;

The parameters in this command are as follows:
option - For sending to a LABELS node, this is a string enclosed in single
quotes. For sending to a CHARACTERS node, the format is
CHAR(number), where number is the ASCII decimal equivalent of a
single character.
n - The name or number of the input to the LABELS or CHARACTERS node.

namel — The name of the destination LABELS or CHARACTERS node.

TEXT MODELING AND STRING HANDLING - 23

You can use the command, for example, to send a new string to replace an
existing one. Create a string called Quote.

Quote := CHARACTERS -1,0 'If we had world enough and time";

Now scale the string by .05 so it will fit the default window.

Scale Quote := CHARACTER SCALE .05 THEN Quote;

Remove anything you are displaying and display Scale Quote. Now use the SEND
command to replace this string with the second line of John Donne's poem to his
reluctant mistress.

SEND 'This coyness, mistress, were no crime' TO <substitute>Quote;

Exercise

m Try SENDing to some of the other inputs of CHARACTERS and LABELS nodes.
For more information, refer to the Command Summary in Volume 3A.

Two other forms of the SEND command can be used with LABELS but not with
CHARACTERS: they are SEND VL and SEND number*mode. The SEND VL form
allows you to overwrite or append labels in a labels block. The SEND
number*mode form allows you to send a P or L identifier to a label to indicate if
a label is of f (P) or on (L). Refer to the Command Summary for more details.

Updating With Functions

You can create function networks to update a CHARACTERS or LABELS node.
Only four data types are accepted by the inputs to these nodes: an integer, a
vector (2D or 3D), a character string, and a Boolean value. Any function which
outputs one of these data types can be used to feed new values to a node
containing text. In particular, the output of the string handling functions
mentioned earlier can be used as input to a text node.

The function F:LABEL is designed specifically for updating a LABELS node. The
data type output by this function is the only type accepted by input <append> of

m a LABELS node.

24 - TEXT MODELING AND STRING HANDLING

CREATING AND USING DIFFERENT CHARACTER FONTS

A character font is a complete set of characters in the same size and type
face. The PS 300 has a standard font consisting of the 128-character ASCII set.
This is the default font for all textual displays. There are two commands which
let you create and use alternate character fonts: the BEGIN_FONT ... END_FONT
command and the CHARACTER FONT command.

Creating an Alternate Font

Alternate fonts are created as a sequence of itemized, two-dimensional vector
lists defining each character in the font. Up to 128 ASCII character codes can
be defined for each font.

Each character in the font is defined as follows.

C[i]: N=n vectors;

The parameters are:
[i] - The decimal ASCII code to be defined, i.e. a number from 0 to 128.
n - The number of vectors in the 2D vector list.

vectors — The vectors which make up the character.

The vectors which comprise a character must be itemized 2D vectors. Itemized
vectors are each preceded by P or L identifiers to indicate whether a vector is a
position or a line vector. The following is the definition of a capital "A" in a font
called Simplex Roman.

CI65]: N=6

P 0.5455, 0.9545 L 0.1818, 0.0000
P 0.5455, 0.9545 L 0.9091, 0.0000
P 0.3182,0.3182 L 0.7727,0.3182;

TEXT MODELING AND STRING HANDLING - 25

The Simplex Roman letter 'A' is compared to an 'A' in the standard font in

Figure 9.

1ASO643

1ASO641

Figure 9. Standard ‘A’ and Simplex Roman ‘A’

In an Old English font, the definition of the same letter is much more complex.

Cl65]: N=49

rCrorrorrrrrrOrDor o

0.2727, 0.8182
0.5909, 0.9091
0.5000, 0.9091
0.9545, 0.0909
0.5000, 0.8636
0.9545, 0.0000
0.4091, 0.72753
0.4545, 0.6364
0.0455, 0.0000
0.4545, 0.0909
0.0455, 0.0000
0.4545, 0.0909
0.7273, 0.3636;

vrruovrorrrrrr -

0.3636, 0.9091
0.9091, 0.1818
0.5455, 0.8636
0.8636, 0.1364
0.8182, 0.1364

-1.0455, 0.1364

0.4545, 0.7273
0.3182, 0.6818
0.1364, 0.0909
0.1818, 0.0909
0.1818, 0.0455
0.5455, 0.7727

rrrrrOorrorrr

0.4545, 0.9545
0.9545, 0.1364
0.8636, 0.1364
0.3636, 0.9091
0.8636, 0.0455
0.2727, 0.6364
0.5000, 0.6818
0.4091, 0.6818
0.2273, 0.1364
0.3636, 0.0909
0.3182, 0.0455
0.2727, 0.1364

otrrrrroobrrerrerrr

0.5455, 0.9545
1.0455, 0.1364
0.9091, 0.0455
0.4545, 0.9091
0.9091, 0.0000
0.3182, 0.6818
0.4545, 0.6818
0.4545, 0.5909
0.3636, 0.1364
0.4091, 0.0455
0.3636, 0.0000
0.3636, 0.3636

This letter 'A' is compared to the standard font 'A' in Figure 10.

Figure 10. Standard ‘A’ and Old English ‘A’

1ASO643

1ASO6U2

26 - TEXT MODELING AND STRING HANDLING

A complete set of character definitions is enclosed in a BEGIN FONT ...
END FONT structure with the following format.

New Font := BEGIN FONT
Cl0): N=n P, L, L, ... L3
Clnl: N=n P, L, L, ... L;
Cl127)} N=n P, L, L, ... L;

END FONT;

Notice that in the sample 2D vector lists given, the range of the vectors in X and
Y is between 0 and 1. There is no limit on the range of the vectors you use, but
you should keep within the range of 0 and 1 for the correct spacing and
orientation of adjacent characters.

Using an Alternate Font

The BEGIN FONT ... END FONT command does not create a data node in a
display tree but a look-up table of alternate character definitions. To switch to
an alternate font in a structure, the CHARACTER FONT command is used to
create an attribute node which indicates the font look-up table that must be
read for the character definitions.

An alternate font called Old English is included on the Tutorial Demonstration
Tape. To use this font in a structure, you must create a node which points to the
Old English font and apply it to the text you want to display.

Create, scale, and display a character string.

Text := CHARACTERS -.5,0 'To be, or not to be';
Scale Text := CHARACTER SCALE .05 APPLIED TO Text;
DISPLAY Scale Text;

Now apply a CHARACTER FONT command to the scaled string to display it in
the Old English font.

New Font := CHARACTER FONT 0Old_English APPLIED TO Scale_Text;
REMOVE Scale_Text;
DISPLAY New Font;

TEXT MODELING AND STRING HANDLING - 27

Hamlet's question should now be displayed in the Old English font. If it is
displayed in the standard font instead, this means that the Old English font was
not available.

The display tree for New _Font is shown in Figure 11.

New_Font CF

~ . 01d English
~

Scale_Text
cs

Text | C

1AS0640

Figure 11. Display Tree With CHARACTER FONT Node

The Old English font is shown as a look-up table which is not part of the actual
structure. The CHARACTER FONT node New Font points to this table as well
as to the CHARACTER SCALE and CHARACTERS node.

The Character Font Editor Program

Another way to create alternate character fonts is to use the program
MAKEFONT which is distributed on magnetic tape and is documented in Volume
4. MAKEFONT is a menu-driven, graphical character font editing program
which allows you to create a font from scratch by drawing each of the
characters, or to make changes to existing alternate fonts. Refer to the
MAKEFONT user's guide in Volume 4 for details.

28 - TEXT MODELING AND STRING HANDLING

SUMMARY

Two commands create data nodes containing text: CHARACTERS and LABELS.

Creating Text Nodes

The CHARACTERS command creates a single text string of up to 240
characters. Optional parameters allow you to specify the starting location of
the string and the horizontal and vertical spacing between characters. The
syntax of the command is as follows.

Name := CHARACTERS [x, y[,z]I[STEP dx,dy] ’'string’;

The LABELS command creates a block of character strings or labels. Each label
can be given its own starting location. The syntax of the command is as follows.

Name := LABELS x,yl[,z] 'string’

[xi,yil,zi] 'string’];

Manipulating Text With Commands

Text nodes, just like any other data nodes, are affected by transformations.
They can be rotated and scaled by 3X3 transformation matrices (created by the
ROTATE and SCALE commands) or by exclusive 2X2 character transformation
matrices.

Transforming Text

The commands which create these matrices are CHARACTER ROTATE,
CHARACTER SCALE, and TEXT SIZE. The matrices which these commands
create have no effect on three—dimensional data or non-textual two-dimensional
data.

TEXT MODELING AND STRING HANDLING - 29

The CHARACTER ROTATE command creates a Z-rotation matrix from an angle
of rotation which is entered as parameter. The syntax of the command is as
follows.

Name := CHARACTER ROTATE angle [APPLIED TO Namell;

The CHARACTER SCALE command creates a uniform or non-uniform scaling
matrix from the scale factor entered with the command. For non-uniform
scaling an X and Y scale factor is given. The syntax of the command is as
follows.

Name := CHARACTER SCALE s [APPLIED TO Namell;
Name := CHARACTER SCALE sx,sy [APPLIED TO Namell;

The TEXT SIZE command creates a 2X2 matrix node which overrides any 2X2
matrix settings above it in the display tree. Any character scales or character
rotations are superseded by this command. The command establishes a character
size for text which is a multiple or fraction of the default character size of I.
The syntax of the command is as follows.

Name := TEXT SIZE x [APPLied to Namell;

Setting Character Qrientation

When text forms part of an object that is being displayed and manipulated, the
characters can be transformed with the object or they can remain unaffected by
object transformations. The SET CHARACTERS command lets you determine
the orientation of the text. The format of the command is as follows.

Name := SET CHARACTERS orientation [APPLIED TO Namell;

Three types of orientation may be set:

WORLD ORIENTED — Characters are transformed just like any part of the
object containing them.

SCREEN_ORIENTED - Characters are not affected by ROTATE or SCALE
transformations. Intensity and size of characters still
vary with depth (Z-position).

SCREEN_ORIENTED/FIXED - Characters are not affected by ROTATE or
SCALE transformations. They are always
displayed with full size and intensity.

30 - TEXT MODELING AND STRING HANDLING

Manipulating Text With Functions

Several functions are available for manipulating text and strings.
functions are listed below.

Character and String Conversion

F:CHARCONVERT
F:CHARMASK
F:GATHER STRING
F:PRINT
F:STRING_ TO_ NUM
F:TRANS STRING

String Formatting and Reformatting

F:CONCATENATE
F:LABEL
F:LINEEDITOR
F:PUT STRING
F:SPLIT

F:TAKE STRING

Miscellaneous String Handling Functions

F:COMP STRING
F:FIND STRING
F:LBL EXTRACT
F:LENGTH STRING

Character Transformation Functions

F:CROTATE
F:CSCALE
F:MATRIX2

These

—

TEXT MODELING AND STRING HANDLING - 31

Text Nodes

The CHARACTERS and LABELS commands create data nodes containing text.
Both nodes have inputs which accept vectors, strings, integers, or Boolean values
to update the contents of the node.

Updating Nodes

CHARACTERS and LABELS nodes can be updated using commands or the
functions listed earlier. The following commands are most frequently used to
update these nodes.

COPY

SEND

SEND VL

SEND number*mode

Alternate Character Fonts

Character fonts other than the standard font can be created using the
BEGIN FONT ... END FONT command. The syntax for this command is as
follows.

Name := BEGIN_FONT
[CI0): N=n{itemized 2D vectors};]

[Cli): N=n{itemized 2D vectors};]

[C[127]): N=n {itemized 2D vectors};]
END FONT;

32 - TEXT MODELING AND STRING HANDLING

Each character in the font is defined as a vector list consisting of itemized 2D
vectors. The clause C[1]: identifies the ASCII character being defined; for
example, C[65]: indicates that the character is a capital 'A'. Up to 128
characters can be defined in an alternate font.

Alternate fonts are used by including CHARACTER FONT nodes in a display
tree. The syntax of the CHARACTER FONT command is as follows.

Name := CHARACTER FONT font _name APPLIED TO Namel;

The parameter font name is the name of an alternate font defined with the
BEGIN FONT ... END FONT command.

PICKING

SELECTING DISPLAYED OBJECTS

CONTENTS

INTRODUCTION

OBJECTIVES

PREREQUISITES

USING PICKING ATTRIBUTE NODES
Set Picking ON and OFF
Using Picking Identifiers

USING INITIAL PICKING FUNCTIONS

USING THE PICKING FUNCTIONS IN A FUNCTION NETWORK
Examples of Picking

Exercise

SUMMARY

13

14
17

18

PICKING

Figure .
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

ILLUSTRATIONS

Picking Selectable by Branch

Picking an Entire Structure

Display Tree with Car and Four Tires

Diagram of TABLETIN and PICK

Typical TABLETIN and Pick Arrangement
F:PICKINFO (connected to PICK)

Diagram of PICK through F:SUBC Feeding a Bank of
F:ROUTE(n) Instances

(Vo o) W o o)

16

PICKING -1

Picking allows you to retrieve information about a selection or pick made on
displayed data. This information contains details about the structure that makes up the
displayed data. Details can include the name of the data node that the picked portion
of the object is associated with, names of nodes along the branch of the display
structure that was selected by a pick, an index into the vector list, character string or
label that was picked, and the coordinate values of the location where the pick took
place. The information is available in a special format called the picklist.

Normally, picking is done by using the data tablet and the stylus to select any part of a
displayed object designed to allow for picking. The selection is made by moving the
stylus across the surface of the data tablet; this positions the cursor on the screen. (The
cursor is an X.) Picking is usually activated by pressing the tip of the stylus down when
the cursor is positioned over the appropriate line, dot, or text character. The
information that is returned when a pick takes place, the picklist, can be displayed,
used to drive a function network, or sent to the host. The amount and kind of
information received on the location of a pick is user-defineable.

An obvious use of picking is to make selections from a menu, where the cursor is
positioned over a line or the piece of text in the menu that is to be selected. By
pressing the stylus down, that item on the menu is "picked", and the appropriate
function can be performed (i.e., move to another menu, exit the menu, bring up a
displayable structure, etc.)

Central to the picking process is the initial function instance, PICK. PICK is enabled
by sending any message to input <l> of PICK. (Normally this message is the X,Y
location of the pick sent to PICK when the tipswitch of the stylus is depressed.) PICK
feeds this trigger message to the display processor, asking for any pick information
within the data structure being traversed to be sent back to PICK. If this information
is found (a pick occurs if there is data) the data associated with the pick, the picklist, is
placed on the queue of output <1> of PICK. The main responsibility of PICK is to signal
the display processor that picking has been enabled and to output the picklist that
contains information about the location of the pick.

Before picking can take place, the data structure that you want to be able to pick from
must contain certain nodes and pieces of information. Polygonal objects, because of
their construction, cannot be picked.

This module will define the various elements involved in picking: picking attribute
nodes and the commands that create them, and the picking functions.

This module will teach how to place and set the appropriate attribute nodes used in
picking and how to design a function network to use the information that is generated
when a pick occurs.

2 - PICKING

OBJECTIVES

In this module you will learn how to:
m Use Picking Attribute Nodes

m Use Initial Picking Functions
m Use the Picking Functions in a Function Network

PREREQUISITES

Before using this module, you should be familiar with the following:

Designing display trees
Creating function networks
Using the PS 300 command language

PICKING - 3

USING PICKING ATTRIBUTE NODES

Before an object can be picked, the display tree of the object must contain
certain nodes and the object must be displayed. These nodes provide for picking
capabilities such as:

® Turning picking on and off

e Determining the portions of the object (or branches of the object's display
tree) that can be picked

e Selecting the name of the pick identifier that will be returned as part of
the picklist

Set Picking ON and OFF
The first picking attribute node that must appear in the display tree is the SET
PICKING ON/OFF node. This node must be above the parts of the display tree
where picking will take place. This node is turned on and off by Boolean values;

a TRUE will enable picking in the data structure below the node, a FALSE will
disable it.

The command that creates the SET PICKING ON/OFF node is:

Name := SET PICKING OFF APPLIED TO Namel;
The SET PICKING ON/OFF node is usually placed in the display tree in an "off"
condition and activated when the Boolean value TRUE is sent to input <l> of the
named node. As an example, the following two commands first create an
instance of a SET PICKING ON/OFF node, and then activate that node.

Pick Car := SET PICKING OFF APPLIED TQO Car;

where Car is the name of the data structure, or the part of a data structure that
you want to be able to pick from,

SEND TRUE TO «<1>Pick_Car;

activates picking for Car. (The Boolean value is normally sent by a network
connected to the node.)

4 - PICKING

In designing a pickable display tree, the placement of the SET PICKING ON/OFF
nodes is very important. As with any other attribute node, this node controls
only its descendants. In the structure in Figure 1, picking can be enabled and
disabled for each branch individually because of the placement of the SET
PICKING ON/OFF nodes. In Figure 2, picking is established for the whole
structure, but not for the individual branches.

This placement can be important in complicated display structures, where there
are close or overlapping data structures simultaneously displayed on the screen.
In molecular modeling graphics applications, it can be useful to disable picking
for specific parts of the molecule. This same principle holds for architectural or
engineering applications, where only specific parts of the entire display will be
used as pickable structures.

Set PICK Set PICK Sét PICK
ONL(L/FF ONﬁOT/F ON/OFE
1AS0389

Figure 1. Picking Selectable by Branch

Set PICK

o

R BN

1AS0390

Figure 2. Picking an Entire Structure

| PICKING - 5

Using Picking Identifiers

The other attribute node that must be placed in the display tree for picking is
the SET PICKING IDENTIFIER node. This pick identifier node determines how
detailed the information you get back in your picklist (output from the PICK
function) will be.

A picked object is identified by two types of names in the picklist (pick

information output from PICK). The first type of name is the picking identifier
| or the pick ID. The second name is the name of the data node that contains the
| picked vector or character (in the command shown above, "Car" would be the
| name of the node that contains the picked vector).

The command to create a set picking identifier node is:

Name := SET PICKING IDENTIFIER = id name APPLIED TO Namel;

This command assigns id name to be the picking identifier (the reported
character string) to be output by PICK in the picklist if any part of Namel is
ﬁ picked. Id name can be the name of the data node, but in many cases, several
' branches of a display structure terminate at the same data node. The name(s) of
the pick identifiers in the picklist in such cases show which branch was traversed
to get to the common data node.

Example

Wheelpickl := SET PICKING IDENTIFIER = Wheell APPLIED TO Wheel;

In this example, it is assumed that the display tree includes a car with four
tires. There are five branches, four of which include an instance of the vector
list for "Wheel". Each branch contains the appropriate translate and rotate
operation nodes required to position the tires. To determine which instance of
"Wheel" was picked, each branch must also contain a set pick identifier node
with a unique name. This is illustrated in Figure 3.

6 - PICKING

PICK Set PICK ON/OFF

PICKCAR1 Set PICK ID

Car

Body

Wheel3 Wheeld

Wheell Wheel?2

&
(s O
OO, ()

OO OO0

Wheel

1AS0391

Figure 3. Display Tree With Car and Four Tires

Assuming the right-front tire is Wheell, then the picklist generated when a pick
was made on the right-front tire would be:

<index> Wheell,Pickcarl Wheel
If there had been only one set picking identifier node directly below the SET
PICKING ON/OFF node in Figure 3, when you picked from any part of the
displayed object below the instance node, you would only get back the pick

identifier for the whole data structure:

<index> Pickcarl Wheel (or body)

PICKING -7

The information in a picklist includes the names of ALL the set pick ID nodes
down the branch of the display structure that has been enabled for picking. The
picklist will also include the name of the picked data node. The picklist can be
reported as a character string with pick IDs on that branch separated by
commas. This list always starts with the name of the set pick ID node closest to
the picked vector or character.

The amount of detail about the display tree contained in information returned in
the picklist is determined by the location and number of the set pick IDs. In the
code below, the picklist is will contain only one pick identifier (Pickcarl).

Display Car;

Car:= BEGIN STRUCTURE

Pick := SET PICKING OFF;
SET PICKING IDENTIFIER = Pickcarl;
INSTANCE OF Body, Wheell,Wheel2,Wheel3,Wheel4;
END STRUCTURE;

Setting up the display tree to enable picking follows one simple rule:

For picking to take place, there must a SET PICKING ON/OFF node placed in
the display structure, followed by at least one SET PICK IDENTIFIER node down
each pickable path. However, one structure can contain multiple SET PICKING
ON/OFF nodes, and each SET PICKING ON/OFF node can be followed by
multiple SET PICKING IDENTIFIER nodes.

8 - PICKING

USING INITIAL PICKING FUNCTIONS

The initial system function PICK was briefly described in the introduction to the
module. The initial function network that should be built to make use of picking
is shown in Figure 4.

PICKING -9

TABLETIN
(TABLETIN2)
<1> 2D Vector (position/line)
Connected
to Data <2> Boolean (Switch open/closed)
Tablet at
Initialization| <3> I
<4> Boolean connected to SET
PICKING ON/OFF Node
<5> B
<6> 2D (x,y position of the
cursor when the Tipswitch
DD goes from Open to Closed
PICK
(PICK2)
any message <1> <1>p—Picklist
Sent Out
qulgan for coordinate <2>C <2>FBoolean; FALSE
Picking sent to SET
PICKING ON/OFF
node when
pick occurs
Integer specifying <3>C <3>F—Boolean;
Timeout Duration sent to ON/OFF
node turns
picking
DD OFF after
time-out

1AS0392

Figure 4. Diagram of TABLETIN and PICK

10 - PICKING

The system has provided for picking with one other initial function, TABLETIN.
TABLETIN accepts the X,Y vectors that identify the position of the picking
location (and the center of the cursor cross) as the stylus moves across the data
tablet and uses them to position the cursor on the screen. TABLETIN identifies
the X,Y coordinates of the picking location that are output when the tipswitch
on the stylus is pressed. These coordinates are used to to determine if a pick has
occurred and if it has, the location of the pick is made available.

Output <4> of TABLETIN is typically connected to the SET PICKING ON/OFF
nodes in the display strucuture and is used to send Boolean values to the nodes.
When the tipswitch on the stylus is pressed, a TRUE is sent to the node, enabling
picking.

Input <1> of PICK accepts any message. Typically, this queue is connected to
TABLETIN<6> which supplies the 2D coordinates of the pick location when the
tipswitch is pressed. This arms the function, as the other two inputs to PICK are
constants. Output <2> of PICK should be connected to the same SET PICKING
ON/OFF nodes that are connected to output <4> of TABLETIN. This output
sends a FALSE whenever a pick occurs which turns picking off until the tipswitch
is again pressed and a TRUE is sent from TABLETIN to the ON/OFF node. (This
false is sent to disable picking so that the picking process ceases until a pick
location is asked for.)

Input <2> of PICK accepts a Boolean value that allows you to select the kind of
picklist that will be sent out of output <l>. A FALSE sent to <2>PICK indicates
that the output picklist will be the pick ID names, the data node name, and an
index into the vector list or character string (the data node). A TRUE sent to
<2>PICK indicates that the picklist will include the pick ID names, the data node
name, an index to the data node, and the picked coordinates and the dimension
(2D or 3D) of the picked vector.

The format for the picklist then, with FALSE sent to <2>PICK is:
<index»> pickidl,pickid2, name of data node
where <index> is a pointer into the picked data node.

The chart below shows the data node types and the definition of the <index> that
is returned when the value of the <index> is the integer 3.

PICKING - 11

Data Node Type Index of 3 Definition

Vector list The third vector in the list was picked.

Character String The third character in the string was picked.
Label The third character string in the label was picked.
Polynomial or The value of the parameter (t) where the curve
Rational was picked

polynomial curve

The format for the picklist with TRUE sent to <2>PICK (coordinate picking) is:
<index> [x,y,z] pickidl,pickid2, name of data node
where x,y,z are the coordinate points of the picked vector.

® Performing coordinate picking on a character string returns an index into
ﬁ the string, not its picked coordinates.

e Performing coordinate picking on a label block returns an index into the
label, not its picked coordinates.

® Coordinate picking cannot be performed on a vector over 500 units long.

The integer on <3>PICK is used to set a timeout interval for the PICK function
in refresh frames. Timing starts when the PICK function receives any message
on input <l>. This timing interval is used to determine if a pick occurs in the
specified period of time. The allowable integers on input <35> are from 4 through
60. This is a safeguard feature: it deactivates PICK if no pick occurs within the
timeout period.

Once the PICK function is armed (by receiving input on <1>PICK), if no pick
occurs within the specified time, PICK outputs a FALSE on PICK<3>. This
output should be connected to the ON/OFF nodes to disable picking when a
timeout occurs. Picking is enabled when the stylus is again pressed.

One other feature that is initialized by the system is the picking location.
This is by default the center of the cursor. The picking location must be defined
within the current viewport and can be modified with the following command:

name := SET PICKING LOCATION x,y sizex,sizey APPLIED TO Namel;

12 - PICKING

TN

where:

the 2D vector X,Y specifies the center of the picking location and the 2D vector
sizex,sizey specifies the size in X and Y from the center to the edge of the
picking location. Namel is the current and applicable viewport name.

The pick location, then, specifies a region within a screen. If the pick-sensitive
object (line, dot, or character) is within the pick location, it can be reported as

having been picked.

The pick location can be moved within the viewport by sending the 2D vector
that represents the coordinate location of the new set pick location to input <l>
of the set picking location node. In effect, picking can take place by positioning
the picking location over a displayed object (containing the appropriate picking
attribute nodes) and sending a TRUE to <1>PICK.

The following diagram is a typical arrangement of the TABLETIN and PICK
functions and their connections to the display structure.

TABLETIN

<6>F2D V

<1>2D V; default connection for pick location and cursor
<4>B to SET PICK ON/OFF node-————l

Set

<1>picklist

PICK
1>anymessage <1>— picklist -
k2>C Boolean <2> B
<3>C Integer <3 B
F:PICKINFO

L A11 outputs to
user function

Figure 5. Typical TABLETIN and Pick Arrangement

Networks

Picking
ON/OFF

1AS0393

PICKING - 13

m

USING THE PICKING FUNCTIONS IN A FUNCTION NETWORK
\

A function associated with picking is F:PICKINFO. This function converts the
picklist data type into character strings that are acceptable by other functions.
There is only one active input to F:PICKINFO, <l>, and it should be connected to
output <1»> of PICK.

any message

PICK
<1> <1>—Picklist =—— to<1>F:PICKINFO
Boolean <2>C <2>—Boolean; FALSE to SET PICKING ON/OFF node
Integer <3>C <3>F——Boolean; to SET PICKING ON/OFF node
Timeout
m Duration
F:PICKINFO
Picklist ,
from PICK <1> <1 Integer; to index of the pick
I-depth of —1<2>C <2> String; the pickids of the pick
picklist
<3 Integer;Start location of
character string
<4> Integer; the dimension of the node
<5> Boolean; coordinates reported
<6> Real; curve parameter, (t)
<7 Integer; data type code
<8> Special; name of picked element

ﬁ 1AS0391

Figure 6. F:PICKINFO (Connected to PICK)

14 - PICKING

The picklist output from PICK<l> can be connected to an instance of
F:PICKINFO to convert the picklist into a logically useful format. The picklist
can also be printed out or displayed by connecting PICK<l> to F:PRINT.
F:PRINT converts the picklist code to printable characters.

The constant input <2> of F:PICKINFO accepts an integer that specifies the
depth of the pick identifiers that will be output. Since the picklist contains all of
the set pick IDs in a picked branch of a display tree, this input allows you to
select the depth. For example, if there were four pick IDs active when a pick
occured and the integer 2 was input to «2>F:PICKINFO, then the two pick IDs
closest to the data node and the name of the data node itself would be output as
the string on F:PICKINFQO«<2>.

The output information from F:PICKINFO varies with the type of picklist
supplied on input <l>. If the PICK function has a TRUE on input <2>, then it
supplies a detailed coordinate picklist and most of F:PICKINFO outputs are
activated. If the PICK function has a FALSE on input <2>, a less detailed
picklist is supplied, and only outputs <l>, <25, and «5> are active. Refer to the
Function Summary in Volume 3 for a complete description of the outputs of
F:PICKINFO.

The best use of picking is when the picklist is sent to an instance of
F:PICKINFO. Then information generated by the function can be used to drive
function networks that can be triggered by typical data types. Examples of what
this data can be used for are described in the next section.

Examples of Picking

The following example demonstrates how picking can be used to trigger a
switching network for an object designed to have parts with independent
motion. The control dials are normally used to rotate, translate, and scale
objects in three dimensions. If the designed object requires more than eight
elements of freedom (the maximum number that can be provided by one set of
control dials), a picking network can be set up to access a bank of switching
functions that control the output of the dials. This network will allow you to
point at the part that you want to manipulate and the picking information will
drive the function network that routes the dial outputs to various networks.

PICKING - 15

In this example, the display tree that defines a robot figure includes set pick IDs
in each branch of the figure networked for motion through a switch function to
DIALS. This is the same robot that was built in the "PS 300 Command Language"
module and it is connected to the function networks that were designed in the
Function Networking module. The function network provides for several modes
for the control dials. These modes provide the triggers to animate each part of
the robot that requires independent movement; i.e., rotation of each shoulder
joint, knee joints, torso, head, etc.

The picking network will use the data tablet to trigger the mode of the dials. In
the "Function Networks I" module, the Function Keys were used for dial mode
switching. If you examine the design of the robot, you will notice that there are
'n' degrees of freedom designed into the structure. This will require 'n modes' of
the dials. As the picking network will be used to trigger the dials mode, only 'n’
set pick ids need to be coded into the structure.

The picking network to switch the modes for dials that are connected to the
robot display structure works in the following manner. When the cursor is
positioned over a part of the robot with independent motion controlled by a dial
(like the shoulder) and the tipswitch of the stylus is pressed, the name of the
pickid in the shoulder branch of the display tree is sent from PICK to an instance
of F:PICKINFQO. This instance of F:PICKINFO«2> is connected to an instance of
F:CHARCONVERT. F:CHARCONVERT converts the bytes of the string it
receives on input <l»> into a stream of integers. If the pick id sent to
F:PICKINFO is an 'A', F:CHARCONVERT will translate 'A' to the ASCII 65. If
this is then sent to an instance of F:SUBC, it can subtract 64 and output the
integer | that can be used to trigger the appropriate bank of switches for the
dials.

Figure 7 illustrates the function network described above.

16 - PICKING

F:PICKINFO

F :CHARCONVERT]

PICK
1> <1>p—picklist—<1> <1>
<2>F <2> <2>5—pickid—<«1> <1
<3>10 <2>T
F:SUBC F:ROUTE Integer on
<1> <1>Integer to +—{<1>1 <1>| input<l>
<2>64 route mode for —<2> <2>| routes message
<3>| from DIALS <1>
<.>! to function
<. > network
<. >
DIALS <n>
<1>
p— <2
<3> F:ROUTE
<4> Integer on
<5> +—<1>1 <1> input <1>
<6> +—| [<2> zgi routes message
<7> =7 from DIALS<2>
<8>) . 3| to function
——1 < S| network
<n>
The remaining outputs ——
of DIALS would all be
connected to instances
of F:ROUTE that accepted F :ROUTE
an integer from F:SUBC {nteger on
on input<1> +—<1>I <13 input<l1>
<2> <23 routes message
<3>| from DIALS<3>
2'; to function
< 3 network
<n>

Figure 7. Diagram of PICK Through F:SUBC Feeding a Bank of F:ROUTE(n) Instances

to<1>o0f all

other instances

of F:ROUTE

1AS0395

PICKING - 17

To implement the previous example of picking as an exercise demonstrating the
placement of the picking attribute nodes and the connections that should be
made for the picking network, use the source code supplied for the robot in the
"PS 300 Command Language" module. Picking attribute nodes can be set into
the display structure and then connected to the picking function network that is
used in the picking demonstration available on the Tutorial Demonstration tape.

Exercise

Design a pickable display structure with several instances of a primitive.

Design a function network that outputs the picklist to the screen. Use F:PRINT
and a character data node. Code your display structure and function network.
Display and pick each primitive.

18 - PICKING

SUMMARY

Picking allows you to retrieve information about a selection or "pick" made on
displayed data. The information is available in a special format called the
picklist. Before picking can take place, the data structure that you want to be
able to pick from must contain certain nodes and pieces of information.

Picking Attribute Nodes

The first picking attribute node that must appear in the display tree is the SET
PICKING ON/OFF node. This node must be above the parts of the display tree
where picking will take place. This node is turned on and off by Boolean values;
a TRUE will enable picking in the data structure below the node, a FALSE will
disable it.

The command that creates the SET PICKING ON/OFF node is:

Name := SET PICKING OFF APPLIED TO Namel;

The other attribute node that must be placed in the display tree for picking is
the SET PICKING IDENTIFIER node. This pick identifier node determines how
detailed the information you get back in your picklist (output from the PICK
function) will be.

A picked object is identified by two types of names in the picklist (pick
information output from PICK). The first type of name is the picking identifier
or the pick ID. The second name is the name of the data node that contains the
picked vector or character.

The command to create a set picking identifier node is:

Name := SET PICKING IDENTIFIER = id name APPLIED TO Namel;

For picking to take place, there must a SET PICKING ON/OFF node placed in
the display structure, followed by at least one SET PICK IDENTIFIER node down
each pickable path. However, one structure can contain multiple SET PICKING
ON/OFF nodes, and each SET PICKING ON/OFF node can be followed by
multiple SET PICKING IDENTIFIER nodes.

PICKING - 19

Picking Functions

An initial system function used for picking is PICK. Input <l> of PICK (usually
connected to TABLETIN«6>) accepts any message type as a trigger message to
activate picking. The data associated with the pick, the picklist, is placed on the
queue of output <l> of PICK. The main responsibility of PICK is to signal the
display processor that picking has been enabled and to output the picklist that
contains information about the location of the pick.

Another function associated with picking is F:PICKINFO. This function converts
the picklist data type into character strings that are acceptable by other
functions. There is only one active input to F:PICKINFO, <l>, and it should be
connected to output <l> of PICK.

TRANSFORMED DATA

RETRIEVING TRANSFORMATION INFORMATION

CONTENTS

INTRODUCTION

OBJECTIVES

PREREQUISITES

RELEVANT PS 300 COMMANDS AND FUNCTIONS
The XFORM Node

The F:XFORMDATA Function
The F:LIST Function

EXCLUDING CERTAIN VIEWING TRANSFORMATIONS

Using F:SYNC(n) to Prevent Overlapping Requests
SPECIFYING VECTOR RANGES FOR TRANSFORMED-DATA RETRIEVAL
SAMPLE PROGRAM

SUMMARY

12

C

TRANSFORMED DATA -1

The PS 300 provides a means to retrieve transformed data. Transformed data is the
matrix or vector-list representation of transformation operations in a display tree.

After an object has been transformed on the PS 300, the transformed accummulated
data for that object can be:

(1) Established as a separate data or operation node in the display tree.
(2) Retrieved as ASCII information for transmission to the host computer.

Transformed data can be obtained either as transformed vectors or as a transformatioq
matrix which is the concatenation of transformations currently applied to the object.

If transformed vectors are requested, a data node can be created and an ASCII PS 300
VECTOR LIST ITEMIZED command can be generated. If a transformation matrix is
requested, an operation node can be created and an ASCII PS 300 MATRIX 4X4
command can be generated for transmission back to the host.

Once the node containing a transformed vector list or 4X4 matrix node is created, those
nodes can be used as primitive data nodes or operation nodes, and connections can be
made into the nodes just as for any other VECTOR_LIST ITEMIZED or 4X4 MATRIX
node.

Transformations explicitly reserved for characters (CHAR ROTATE, etc.) are excluded
from both forms of retrieved transformed data.

OBJECTIVES

This discussion of transformed-data retrieval covers the following topics:
m The XFORM command and the F:XFORMDATA and F:LIST functions.

m A note on excluding perspective and window transformations from
transformed vector lists.

m A suggested function network to prevent successive transformed-data
requests from overlapping.

2 - TRANSFORMED DATA

m A note on restricting transformed-data retrieval to a specified range of
vectors within a list.

m A program example.

PREREQUISITES

Before reading this module, you need to know the basics of data structures and
function networks. These topics are covered in Volume 2A, in the "Modeling,"
"PS 300 Command Language," and "Function Networks I" modules, and in this
volume under "Function Networks IL."

m TRANSFORMED DATA -3

RELEVANT PS 300 COMMANDS AND FUNCTIONS

To retrieve transformed data for a given data node (or set of data nodes):

e Mark the data node by applying an XFORM VECTOR or XFORM MATRIX
node.

e Request the transformed data using an instance of F:XFORMDATA.
e Optionally, convert the transformed data to an ASCII PS 300 command string
using an instance of F:LIST and send this ASCII information to the host

computer via HOST MESSAGE.

The following paragraphs discuss these topics.

The XFORM Node

The XFORM node, a type of operation node, can be placed anywhere above the
data node(s) for which transformed data are to be retrieved; however, the
placement of the XFORM node with respect to other transformations is critical.

The syntax of the command that establishes an XFORM node is:

Name := XFORM specifier APPLIED TO node_name;

where:

specifier is either VECTOR or MATRIX. To retrieve a transformed vector
list, use VECTOR; to retrieve a transformation matrix, use MATRIX.
VECTOR may be abbreviated VEC.

If XFORM VECTOR is used, all transformations applied to the data node(s) are
taken into account, whether these transformations are above or below the
XFORM VECTOR node.

If XFORM MATRIX is used, however, only those transformations above the
XFORM MATRIX node are taken into account. To include all transformations
applied to the data node(s), then, XFORM MATRIX should be placed
immediately above the data node(s).

m THEN may be substituted for APPLIED TO.

4 - TRANSFORMED DATA

Node name is the node to be marked for transformed data retrieval.
Admissible data nodes are vector lists and curves (rational polynomials,
polynomials, and B-splines). Transformed data cannot be retrieved for
characters and labels.

If data name is an instance node covering two or more data nodes and if
XFORM VECTOR is requested, then the transformed data for all nodes are
consolidated into a single vector list.

NOTE

The transformed counterparts of the original data nodes
do not necessarily appear in the same order in which the
INSTANCE command named those nodes. However,
vector integrity is maintained within each mode.

The transformed object(s) must be DISPLAYed when transformed-data retrieval
is requested; otherwise, the request has no effect.

If transformed vector information is requested (XFORM VECTOR), no more than
2,048 consecutive transformed vectors may be retrieved.

TRANSLATE, SCALE, ROTATE, and MATRIX 3X3 transformations applied to
data are taken into account when the transformed data are retrieved.

Character transformations are NOT taken into account when the transformed
data are retrieved. These include CHAR ROTATE, CHAR SIZE, TEXT SIZE,
CHAR SCALE, and MATRIX 2X2.

WINDOW, EYE, FIELD OF VIEW, MATRIX 4X3, MATRIX 4X4, and LOOK
transformations applied to data are taken into account when transformed data
are retrieved, but it is recommended that these six transformations be
removed from the object definition beforehand.

A VIEWPORT specification has no effect on the transformed data.

TRANSFORMED DATA -5

The F:XFORMDATA Function

Use an instance of F:XFORMDATA to request transformed data.
F:XFORMDATA has five inputs and one output. (Discussion of inputs <4> and
<55, which specify a range of transformed vectors to be retrieved, is presented
in a subsequent section of this module.)

Input <1> is the active input for this function. Any. message sent to this input
will begin retrieval of transformed data, if the other inputs have been
prepared correctly.

Input <2> is a constant input which accepts a string message containing the
name of an XFORM node. Transformed data will be retrieved for the
object(s) marked by this XFORM node.

Input <3> is a constant input which accepts a string ‘message containing the
name of the new data or operation node to be created. The name also
appears in the ASCII command string produced by F:LIST, if any.

If XFORM VECTOR is used and if the name at input <3»> is identical to the
name of the original (untransformed) data node, the transformed data replace
the original data in the display structure. (The immediate effect of this
redefinition is to display the object with its transformations doubly
applied—-once explicitly in the display data structure, and once implicitly in
the transformed vector list).

If XFORM MATRIX is used, specifying a name at input <3> creates an
operation node (4X4 matrix) with that name.

Output <l> contains the transformed data. If ASCII PS 300 command
information is desired for the host, connect this output directly to F:LIST
(below). Do not attempt to connect this output to anything else (such as
another data node).

Output <l> may remain unconnected if no ASCII transformed data are
desired. (A data node can be created through XFORM VECTOR without any
connections from this output.)

6 - TRANSFORMED DATA

The F:LIST Function

F:LIST converts the output of F:XFORMDATA into an ASCII PS 300 command
string suitable for storage on the host computer (and for retransmission back to
the PS 300). There is no need to instance F:LIST unless this ASCII information is
to be retrieved. F:LIST has one input and two outputs:

[]

Input <1> accepts the transformed data from F:XFORMDATA«<I>.

Output <l> contains the transformed data, reformatted as an ASCII PS 300
command string.

If a transformed vector list was requested, a VECTOR LIST ITEMIZED
command is output. If a transformation matrix was requested, a
MATRIX 4X4 command is output.

The name of the command is the string that was on F:XFORMDATA<3> at
the time of the request.

Output <2> is a Boolean TRUE completion indicator. Refer to the last
section of this module for a sample application of this completion indicator.

The ASCII command string from F:LIST may be sent to a host computer via
HOST MESSAGE. For details on HOST MESSAGE, refer to the Function
Summary in Volume 3A.

TRANSFORMED DATA -7

EXCLUDING CERTAIN VIEWING TRANSFORMATIONS

If WINDOW, EYE, FIELD OF VIEW, MATRIX 4X3, MATRIX 4X4, or LOOK
transformations are applied to an object, transformed data may include
inappropriate Z-information. It is therefore recommended that these
transformations be excluded from the object and replaced by a 4x4 identity
matrix before transformed data are retrieved.

Since the default window transformation matrix is not an identity matrix, this
practice is recommended even when no nodes for the above six transformations
have been included explicitly in the display tree.

The example at the end of this module illustrates one way to exclude these
viewing transformations while leaving others in effect during a transformed-data
request.

‘) Using F:SYNC(n) to Prevent Overlapping Requests

After F:XFORMDATA is triggered, it begins supplying transformed data to
F:LIST, which in turn converts the data to ASCII format. Before this process is
finished, F:XFORMDATA could be triggered again, and F:XFORMDATA could
supply new data before F:LIST is finished with the old. The result could be a
nonsensical combination of the two requests.

A suggested network to prevent overlapping transformed-data requests is:

——————— > —————=> —————> —_—————>
F: - F: F:
———>| SYNC(2) ——->| XFORMDATA LIST —_——>—
.._) T
—_—>
—-—>
< <

This network must be initialized before use by sending any message to

m <«2>F:SYNC(2).

The use of this network is illustrated in the example at the end of this module.

8 - TRANSFORMED DATA

SPECIFYING VECTOR RANGES FOR TRANSFORMED-DATA RETRIEVAL

Inputs <4> and <5> of F:XFORMDATA restrict the retrieval of transformed
vector data (XFORM VECTOR) to a specified range of vectors within the source
vector list(s).

Input <4> (used only for VECTOR LIST) is an integer index specifying the place in
the vector list at which transformed-vector retrieval is to begin. The default
value is 1.

Input <5> (used only with VECTOR LIST) specifies the number of consecutive
transformed vectors to be retrieved. The default value is 2,048. No more than
2,048 consecutive vectors may be retrieved.

If inputs <4> and/or <5»> are used for matrix data, they are ignored.

If the XFORM VECTOR node is applied to an instance node, so that several data
nodes are within the scope of the XFORM VECTOR node, transformed vectors
can be retrieved from individual vector lists or portions of vector lists using the
range specification. Vectors are numbered in sequence, beginning with the first
vector list named in the INSTANCE command. For example, if the command
sequence

XFORMIT := XFORM VEC THEN Z;
Z := INSTANCE A,B,C,D;

A :=VEC N=5 ...

B := VEC N=6 ... ;

C := VEC N=10 ... ;

D := VEC N=8 ... ;

XFORMDATA := F:XFORMDATA;

has been entered, then transformed vectors for list C may be requested by using
XFORMDATA inputs <4> and <5»> as follows:

SEND FIX(12) TO <4>XFORMDATA;
SEND FIX(10) TO <5>XFORMDATA;

m TRANSFORMED DATA -9

SAMPLE PROGRAM

The following example illustrates both of the recommended features of a
network for retrieving transformed data using the XFORM command: the
exclusion of perspective and window transformations and the prevention of
overlapping transformed-data requests.

In this example, a conditional bit is used to switch between the perspective and
window mappings (applied while designing the object) and the identity matrix
(applied while sending the transformed object data). The untransformed object is
DATA; the transformed vector list to be created is XDATA.

10 - TRANSFORMED DATA

XFORM := BEGIN STRUCTURE {Set up switch mechanism}
X := SET CONDITIONAL BIT 1 ON;
IF CONDITIONAL BIT I IS ON THEN VIEW;
IF CONDITIONAL BIT 1 IS OFF THEN TRAN;
END STRUCTURE;

TRAN := BEGIN STRUCTURE {To be used while getting transformed
data}
MATRIX 4X4 1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1;
INSTANCE OF 0BJ;
END STRUCTURE;

VIEW := BEGIN STRUCTURE {To be used while viewing and designing}
{Viewing commands: WINDOW, EYE,
FIELD OF VIEW, MATRIX 4X3, MATRIX 4X4,
LOOK}
INSTANCE OF 0OBJ;
END STRUCTURE;

0BJ := BEGIN STRUCTURE {Set up transformed-data request}
{Transformation commands: ROTATE, TRANSLATE,
SCALE, and/or MATRIX 3X3}
XFORM REQUEST:= XFORM VECTOR;
INSTANCE OF DATA;
END STRUCTURE;

XFORMDATA := F:XFORMDATA; {Build transformed-data network}
SYNC?2 := F:SYNC(2);
LIST := F:LIST;

CONN SYNC2<¢1>:<1>XFORMDATA;

CONN XFORMDATA<1>:<1>LIST;

CONN LIST«<15>:<1>HOST MESSAGE; {Send transformed data to host}
CONN LIST<25>:<2>SYNC2; {"Task completed" flag}

SEND <any message> TO <2>SYNC2;

SEND 'OBJ.XFORM REQUEST' TO <2>XFORMDATA;

SEND 'XDATA' TO <3>XFORMDATA;

DISPLAY XFORM;

m TRANSFORMED DATA - 11

When the object has been designed and transformed properly and you are ready to
send data to the host, the commands

SEND FALSE TO <1>XFORM.X;
SEND <any message> TO <1>SYNC2;

(or an equivalent function network) send the transformed data to the host. Since
the perspective and window transformations are replaced by the identity matrix
during this time, the displayed object becomes distorted or disappears during
transmission. When the entire list has been sent, enter

SEND TRUE TO <1>XFORM.X;

(or route F:LIST's completion indicator to this input) to redisplay the object and
continue designing).

12 - TRANSFORMED DATA

SUMMARY

Transformed data can be retrieved from a given data node and then established
as a separate data or operation node in the display tree. The transformed data
can also be converted to an ASCII PS 300 command string for transmission to the
host. To retrieve transformed data you must:

e Mark the data node by applying an XFORM VECTOR or XFORM MATRIX
node in the display tree. The syntax for the XFORM node command is:

Name := XFORM specifier APPLIED TO node name;

® Request the transformed data using an instance of the F:XFORMDATA
function.

To send the transformed data to the host you can convert the data to an ASCII
PS 300 command string with an instance of the F:LIST function and send the data
to the host via HOST MESSAGE.

USING THE P53 340

RENDERING OPERATIONS FOR SURFACES AND SOLIDS

CONTENTS

INTRODUCTION

Calligraphic Renderings
Hidden-Line Removal
Backface Removal
Sectioning

Cross Sectioning
Raster Renderings

OBJECTIVES
PREREQUISITES

DEFINING POLYGONAL OBJECTS

Using the Polygon Command
Constructing Surfaces and Solids
Specifying Vertices

Associating Outer and Inner Contours With Coplanar
Rules for Using the Coplanar Option

Defining Soft Edges

Defining Color and Intensity for Vector Displays
Defining Color and Highlights for Raster Displays
Specifying Normals

OB WN —

11
13

17
19

29
31
32
33

RENDERING OPERATIONS

ESTABLISHING A WORKSPACE IN MEMORY

Additional Memory Requirements

MARKING AN OBJECT FOR RENDERING

Non-Polygon Data Nodes Marked for Rendering
Admissible Descendants for Rendering Operate Nodes
Rendering Nodes Must Be Displayed Before Rendering

CREATING RENDERINGS

Rendering Node Connections
Acceptable Values for Input <1>»
Acceptable Values for Input <2>

Backface Removal
Exercise

Hidden Line Removal
Exercise

Sectioning

Establishing A Sectioning Plane
The Sectioning Plane's Data Definition
Sectioning-Plane Node Must Be Displayed Before Rendering

Cross Sectioning
Exercise

Toggle Between the Rendering Object and the Original Object
Setting the View
Changing the Definition of the Object

SAVING AND COMPOUNDING RENDERINGS

How to Save a Rendering
Contents of a Saved Rendering
Common Uses of Saved Renderings

38

39

40

41
41
42

44

47
48
48

49
51

51
53

53

57
57
60

61
62

62
62
63

64

64

64
65

[

RENDERING OPERATIONS

Displaying a Saved Rendering
Displaying Saved Sectioned Renderings
Displaying Saved Backface and Hidden-Line Renderings
Exercise

DISPLAYING SHADED IMAGES

Specifying Attributes
Using the ATTRIBUTES Command
Color
Diffuse
Specular
And
Attribute Node Inputs

Specifying Light Sources
[llumination Node Inputs

The SHADINGENVIRONMENT Function

Ambient Color
Background Color
Raster Viewport
Exposure

Quality Level
Depth Cueing
Screen Wash

SUMMARY

65
66
66
67

68

69
69
70
71
71
71
73

T4
77

78

78
79
79
79
80
80
80

83

RENDERING OPERATIONS

Figure I.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.

Figure 11.
Figure 12.
Figure 13.
Figure l4.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.

Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.

Figure 26.
Figure 27.
Figure 28.
Figure 29.

ILLUSTRATIONS

Object Before and After Hidden-Line Removal
Object Before and After Backface Removal
Object Before and After Sectioning

Object Before and After Cross Sectioning
Surface Object

Solid Object

Surface With Three Common Edges
Icosahedron With Correct Vertex Ordering
Right Hand Rule

Correctly-Constructed Icosahedron

Correct Vertex Ordering for Surfaces
Cube

Surface With Inner/Outer Contours
Solid With Correct Vertex Ordering
Object With Coplanar Polygon

Object With Inner/Outer Contours
Solid With a Cavity

Solid Without Inner Contours

Cube With a Tunnel

Objects With Coplanar Outer Contours
Solid With Protrusion

Solid Composed of Two Cubes

Invalid Solid

Correct Solid Construction
Hidden-Line Renderings of Objects
Without the Coplanar Specifier

Objects With Incorrect Vertex Ordering
Solid With Declared Soft Edges
Rendering of Solids With Soft Edges
Cylinder With Normals and Soft Edges Specified

RENDERING OPERATIONS

Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.

Figure 40.
Figure 41.
Figure 42.

Path to Rendering Data

Path to Original Data

Path to Second Rendering

Solids Before and After Backface Removal

Solids Before and After Hidden-Line Removal
Solid Objects Before and After Sectioning
Hidden-Line Rendering of Sectioned Object
Sectioned Object With Capping Polygons
Sectioned Object With After Hidden-Line Removal
Sectioning Plane Definition

Data Structure of Sectioning Plane
Solids Before and After Cross Sectioning
Hierarchy With Illumination Node

44
45
46
50
52
54
55
56
56
58

59
61
76

RENDERING OPERATIONS -1

This module explains how to use the POLYGON command to define objects eligible for
rendering and how to perform rendering operations on these objects. It is intended both
as an introduction to rendering concepts and as a detailed statement of the rules for
using the PS 340.

Objects composed of polygons defined by the POLYGON command are the only objects
that are eligible for rendering operations. Other data-definition commands, such as
VECTOR LIST, CHARACTERS, LABELS, POLYNOMIAL, RATIONAL POLYNOMIAL,
BSPLINE, and RATIONAL BSPLINE, do not establish objects which can be rendered.
Their ordinary use, aside from rendering, is not affected.

There are two types of rendering operations: those applied to objects displayed on the
calligraphic screen and those applied to objects displayed on the raster screen. Once an
object has been correctly defined with the POLYGON command, it can be displayed on
either the calligraphic or the raster screen without any modification to the data
definition.

Calligraphic Renderings

Rendering operations on the calligraphic display can remove hidden line
segments from an object, perform backface removal, section an object relative
to a sectioning plane, and obtain a cross section.

Following are brief descriptions and examples of the rendering operations for the
calligraphic display.

2 - RENDERING OPERATIONS

Hidden-Line Removal
Hidden-Line removal generates a view in which only the unobstructed portions of

an object are displayed.

(Before Hidden-Line Removal)

g \@
\J 1AS0277

1AS0276

(After Hidden-Line Removal)

LT
L)

I

1AS0278

1AS0279

Figure 1. Object Before and After Hidden-Line Removal

RENDERING OPERATIONS - 3

Backface Removal

Backface removal is an intermediate step in hidden-line removal in which all
polygons facing away from the viewer are removed.

(Before) (After)

—_—

1AS0281

1AS0280

Figure 2. QObject Before and After Backface Removal

4 - RENDERING OPERATIONS

Sectioning

This operation makes use of a sectioning plane passing through the object which
divides the object into two pieces. Upon sectioning, one piece is removed while
the other is remains displayed. For solids, capping polygons are generated to

maintain the integrity of the solid.

(Before) (After)

1AS0332
1AS0333

Figure 3. Object Before and After Sectioning

RENDERING OPERATIONS -5

Cross Sectioning
The cross sectioning operation makes use of a defined sectioning plane to create

a cross section of an abject. When this operation is used, both sides of the object
are discarded and only the slice defined by the sectioning plane remains.

(Before)

A
&7

1ASOL06
(After)
LASOLUO7

Figure 4. Object Before and After Cross Sectioning

6 - RENDERING OPERATIONS

Raster Renderings

Rendering operations that apply to objects on the raster screen are wash shading,
flat shading, and smooth shading.

Wash shading produces an object with area-filled colored polygons ignoring
normals, light sources, all lighting parameters, and all depth cueing parameters.
This operation does not product objects that simulate a curved surface.

The flat shading process considers color, one light source and depth cueing
to shade the polygons in the object accordingly. Flat shading can produce
objects that simulate a faceted surface.

Smooth shading is the most complex process. The color of a polygon is varied
across its surface, considering the normals at the polygon's vertices, the
direction and color of various active light sources, the polygon's attributes (both
color and highlights), and depth cueing. Objects that simulate a curved surface
can be produced with smooth shading.

RENDERING OPERATIONS -7

OBJECTIVES

After reading this module, you should be able to:

m Define a polygonal object with the POLYGON command using all the
command options (COPLANAR, NORMALS, S, OUTLINE, WITH
ATTRIBUTES).

m Establish a workspace in memory.

m Mark an object as a solid or a surface for rendering.

m Create a rendering.

m Save and compound a rendering.

m Display a shaded object on the raster screen and change the shading

environment in which the object is displayed.

For those already familiar with the PS 340, a reference summary at the end of
this module lists important rules and guidelines.

PREREQUISITES

Before reading this module, you should be familiar with programming the
PS 300. It is helpful to have an understanding of the representation of polygonal
objects in graphics applications. It is assumed that you have some method, such
as an application program, to automatically generate polygonal data structures.
If you will be using the Shading Firmware for the Raster System, it is assumed
that you have some knowledge of the parameters used in shading objects for
display on a raster screen.

RENDERING OPERATIONS -9

DEFINING POLYGONAL OBJECTS

The first step in defining a polygonal object is to determine what it looks like.
The next step is to determine the correct geometry to define that object in the
world coordinate space. This would typically be done by an application program

since determining the vertices of all the polygons of an object is too complex to
do manually.

The polygons that make up an object to be rendered must be defined in the
POLYGON command according to certain rules. If these rules are not followed,
the results of a rendering operation applied to that object are unpredictable and
usually incorrect, even though the object may appear correct when displayed.

A polygon is defined by the coordinates of its vertices. The edges of the
polygon are defined by lines that connect those vertices. In the PS 340, a
polygon must have at least three vertices and no more than 250, all of which
must lie in the same plane. Ensuring that the vertices in a polygon are coplanar
is the responsibility of the user.

Concave polygons are acceptable. Degenerate polygons (less than three
vertices) and Interpenetrating polygons (intersecting themselves or others)
are not acceptable. Polygons are not pickable and polygon data nodes have no
inputs to allow them to be modified by function networks.

Using the Polygon Command

A polygon clause, part of the POLYGON command, defines an individual
polygon or face of an object by specifying the coordinates of its vertices. Since
an object has many faces, several polygon clauses are used to define the entire
object.

The syntax for the polygon clause is the word POLYGON and a set of x,y,z
coordinates. The number of polygon clauses in the POLYGON command is equal
to the number of polygons in the object. Each polygon in the object must be
defined with a polygon clause.

A named group of one or more polygon clauses, with a semicolon at the end,
constitutes a POLYGON data-definition command (or POLYGON command for
short). This command defines the data node in the data structure of that object.
There is no syntactical limit on the number of POLYGON clauses in the group.
POLYGON may be abbreviated POLYG.

10 - RENDERING OPERATIONS

An option of the POLYGON command declares polygons to be coplanar,
providing the capability to create objects with holes or protrusions. Other
options allow you to define the color of the edges of polygons and to declare
edges "soft" to simulate a curved surface on a calligraphic display.

There are additional POLYGON command options that associate characteristics
or "attributes" with polygons for use in creating shaded images on a color raster
screen. These options include color and the concentration of specular
highlights. Normals can be specified for the vertices of an object to create a
smooth-shaded image that simulates a curved surface. These options are shown
below and explained briefly; complete details are discussed throughout this
module.

Given,
<vertex> :=[S1x,y,z[Nx,y,z]
<polygon> := [WITH [ATTRIBUTES name2] [OUTLINE h]]
POLYGON [COPLANAR] <vertex> ... <vertex>

The polygon command is:

[Name :=] <Polygon> <Polygon> ... <Polygon> ;
where:

e A vertex definition has the form [S] x,y,z [N x,y,z]

where

- S indicates that the edge drawn between the previous vertex and this
one represents a soft edge of the polygon (discussed in detail later in
this module). If the S specifier is used for the first vertex in a polygon
definition, the edge connecting the last vertex with the first is soft.

— N indicates a normal to the surface with each vertex of the polygon.
Normals are used only in smooth-shaded renderings. Normals must be
specified for all vertices of a polygon or for none of them. If no
normals are given for a polygon, they are defaulted to the same as the
plane equation for the polygon.

- X, Y, and z are coordinates in a left-handed Cartesian system.

e WITH ATTRIBUTES is an option that assigns the attributes defined by name?2
for all polygons until superseded by another WITH ATTRIBUTES clause.

RENDERING OPERATIONS - 11

e WITH OUTLINE is an option that specifies the color of the edges of a polygon
on the color CSM display, or their intensity on a black and white display.

® COPLANAR declares that the specified polygon and the one immediately
preceding it have the same plane equation.

Constructing Surfaces and Solids
The PS 340 command language allows you to define two classes of polygons:
surfaces and solids. Solids enclose a volume of space, while surfaces do not.

Surfaces can have edges that belong to just one polygon. For example, in Figure
5, edge CD is a part of polygon 3 but not of any other polygon.

1AS0292

Figure 5. Surface Object

12 - RENDERING OPERATIONS

In a solid, each edge of each polygon must coincide with the edge of an adjacent
polygon. For example, edge AB in Figure 6, is defined as part of polygon | and
as part of polygon 2, and each edge of each polygon is similarly repeated in

different polygons.

Figure 6. Solid Object

1AS0290

A solid cannot contain three or more polygons which have a single edge in
common, although surfaces like the one in Figure 7 can:

1AS0284

Figure 7. Surface With Three Common Edges

RENDERING OPERATIONS - 13

The nature of a polygonal object, representing a surface or a solid, is determined
not only by the construction but by placing it beneath a rendering node in the
PS 340 data structure created by the SOLID RENDERING and
SURFACE RENDERING commands. These commands are discussed in detail in
the section titled, "Marking Objects For Rendering."

Specifying Vertices

By definition, polygons are closed implicitly, so the first vertex is not repeated
when defining a polygon. The system connects the last vertex given to the first
vertex.

In solids, the direction in which the vertices are ordered within each polygon

clause has important consequences for rendering operations. The vertices should

be listed so that if you start at any vertex and move to the next vertex (as

indicated by the order in the polygon clause), you are traveling around the edges
m of the polygon in a clockwise direction.

There are no similar restrictions for surfaces. The vertices of a surface can be
listed in either a clockwise or a counterclockwise direction.

For example, let A (0,0,0), B (.5,.87,0) and C (1,0,0) be the vertices of one
triangular face of an icosahedron as shown below.

1AS0311

Figure 8. lcosahedron With Correct Vertex QOrdering

14 - RENDERING OPERATIONS

Since the points A, B, and C have the arrangement indicated by the arrows when
the triangular face is viewed from the outside of the icosahedron, that triangle
could be defined correctly by any one of the following clauses, all of which
specify the vertices in clockwise order:

... POLYGON 0,0,0 .5,.87,0 1,0,0 ...
... POLYGON .5,.87,0 1,0,0 0,0,0 ...
... POLYGON 1,0,0 0,0,0 .5,.87,0 ...

However, the following definition is incorrect for this polygonal face because it
specifies the vertices in counterclockwise order:

... POLYGON 0,0,0 1,0,0 .5,.87,0 ...

Another method to determine the order of vertices is to use the right hand rule.
The right hand rule states that if you point the thumb of your right hand towards
the center of the object and rotate your fingers towards your wrist, the direction
that your fingers move indicate the order in which the vertices of that polygon
should be listed.

S

1ASO403

Figure 3. Right Hand Rule

RENDERING OPERATIONS - 15

Using arrows to show the vertex order of each polygon, a correctly constructed
icosahedron looks like this:

1AS0291

Figure 10. Correctly-Constructed Icosahedron

In all correctly defined solids, each edge is repeated in two different polygons.
For each pair of adjacent polygons, their common edges run in opposite
directions. Each edge is associated with a pair of opposing arrows in Figure 10.
This is true for any edge of any correctly-defined solid, even if it contains inner
contours. For solids, all vertices must run clockwise and all common edges of
adjacent polygons must run in opposite directions.

For surfaces the vertex—ordering rule is less stringent. Vertices in surfaces do
not have to be ordered in a clockwise fashion but they should be ordered so that
common edges of adjacent polygons run in opposite directions.

16 - RENDERING OPERATIONS

For example, the edges should be ordered like this

(Correct)

1ASO314

not like this

(Incorrect)

1AS0315

Figure 11. Correct and Incorrect Vertex Ordering for Surfaces

Although for surfaces it is not required that vertices run clockwise, it is a good
idea to follow this rule when convenient since it allows surfaces to be easily
"upgraded" to solids (especially if the surface has what could be called an
interior). Assuming that polygon data are equally available in either form, it is
better to have a surface's vertices in a clockwise order.

RENDERING OPERATIONS - 17

Given the following object (cube):

1,0,0 1,1,1
Y
1,0,0 1,1
0,0,1 0,1,1
0,0,0 0,1,0 1ASOUOL

Figure 12. Cube

A correct syntax to define this object is as follows:

Cube := POLYGON
POLYGON
POLYGON
POLYGON
POLYGON
POLYGON

b

»
’t
b
bl

b

0
0
|
l
l
0

oco—+—oo

0
l
1
0
0
l

b}

Associating Quter and Inner Contours With Coplanar

A polygon that represents a face of an object is called an outer contour.

Some polygons, known

as

protrusion sites in an object.

inner

contours

represent cavities, holes, or

For the PS 340 to interpret inner contours properly, two things must be done.
One is to observe the vertex-—ordering convention for inner and outer contours.
The other is to use the coplanar option in the POLYGON clause to associate

inner and outer contours.

18 - RENDERING OPERATIONS

The vertex ordering rule for inner and outer contours is as follows: vertices of
inner contours must run in the opposite sense to the corresponding outer
contour. For a solid this implies that the vertices of an inner contour run
counterclockwise while outer contours run clockwise when viewed.

The vertices of the following triangular polygon face (outer contour) with a hole
in it (inner contour) are ordered as follows.

.5,.5,0

.33,.165,0 .66,.165,

0,0,0 0,1,0
1ASQ405

Figure 13. Surface With Inner/Quter Contours

A POLYGON command syntax for this object is:

Object := POLYGON 0,0,0 .5,.5,0 1,0,0 {outer contour}
POLYGON COPLANAR .5,.33,0 .33,.165,0 .66,.165,0;
{inner contour}

Note that the vertices for the inner contour in the above example are listed in
the opposite order of those of the outer contour.

RENDERING OPERATIONS - 19

The following solid illustrates the rule that inner contours must run opposite to
outer contours.

1AS0313

Figure 14. Solid With Correct Vertex Ordering

Rules for Using the Coplanar Qption

An inner contour is always coplanar with some surrounding outer contour. To
define an inner contour, you must associate it with the appropriate outer contour
by declaring an inner contour to be coplanar with the outer contour. The
COPLANAR specifier makes this declaration. COPLANAR is an option of the
polygon clause which declares that the specified polygon and the one
immediately preceding it have the same plane equation.

A polygon declared to be COPLANAR must lie in the same plane as the previous
polygon if correct renderings are to be obtained. The system does not check for
this condition.

All members of a set of consecutive COPLANAR polygons are taken to have the
same plane equation. The polygon without a COPLANAR specifier immediately
preceding the consecutive COPLANAR polygons is also taken to be in the set.

20 - RENDERING OPERATIONS

Polygons that are coplanar can be included in the polygon list without the
COPLANAR specifier, but when outer and inner contours are being associated

the COPLANAR clause is required.

If COPLANAR is specified for the first polygon in a polygon list, it has no effect.

It is legal to define two coplanar polygons without specifying COPLANAR, as
long as the polygons are not to be associated as an outer/inner pair.

In the following example the second polygon is coplanar with the first polygon.

The third polygon is not coplanar with either of the two preceding polygons.

Object := POLYGON —.6,-.6, -6 —.6,.6,.6 .6,.6,~.6 .6,-.6,~

~.3,.3,-.6
POLYGON -.6,-.6,-.6 .6,-.6,-.6 .6,~.6,.6 —.6,-.6
13
24

S

1ASOL08

Figure 15. Object With Coplanar Polygon

In the next example, the first four polygons are coplanar with each other.

.6
POLYGON COPLANAR -.3,-.3,-.6 .3,-.3,-.6 .3,.3,-.6

56

fifth polygon is not coplanar with any of the preceding polygons.

Object :=
{outer} POLYGON 1,1,0 1,0,0 1,0,0 -1,1,0
0

{inner} POLYGON COPLANAR .4,.8,0 -.4,.8,0 -.4,.4,0 .4
{inner} POLYGON COPLANAR 1,0,0 1,10 -1,-1,0 -1,0
{inner} POLYGON COPLANAR .4,-.4,0 -.4,-.4,0 -.4,-.8,0
{inner} POLYGON 1,1,0 1,-1,0 1,-1,1 1,1-1

y Ty b

24,0

,0

e

.8,0

The

{1}
{2}
{3}
{4}
{5}

RENDERING OPERATIONS - 21

5

AS0L09

Figure 16. Object With Inner/Quter Contours

A solid object with a cavity usually includes an inner contour. In the following
object, one triangle is an inner contour and all other polygons are outer contours,
including the walls and back of the cavity. The back wall of the triangle is not an

inner contour.

~1

1AS0299

Figure 17. Solid With a Cavity

The POLYGON command syntax for this object follows. Notice that there is only
one polygon declared COPLANAR, for the one inner contour on the object. The
polygon declared coplanar (inner contour) comes after the polygon clause for the
front face of the cube (outer contour).

22 - RENDERING OPERATIONS

Object :=
{Cube faces}

POLYGON —.6,-.6,.6 .6,-.6,.6 .6,.6,.6 —.6,.6,.6 {back}
POLYGON —.6,-.6,-.6 .6,-.6,-.6 .6,-.6,.6 —.6,-.6,.6 {bottom}
POLYGON .6,-.6,-.6 -6 .6,.6,.6 .6,-.6,.6 {right}

6,.6,~.6
POLYGON .6..6,-.6 —.6..6,-.6 -.6,.6,.6
POLYGON =.6,.6,.6 —.b,-.6,-.6 -.6,-.6,
{Cube face containing cavity}

POLYGON .6,.6,.6 .6,-.6,~.6 —.6,=.6,~.6 ~.6,.6,~.6
{Cavity openings}

POLYGON COPLANAR .6,.3,-.3 .6,-.3,-.3 .6,-.3,.3
{Cavity side walls}

POLYGON .6,.3,-.3 .6,-.3,-.3 .4,-.3,-.3 .4,.3,-.3
POLYGON .6,-.3,-.3 .6,-.3,.3 .4,-.3,.3 .4,-.3,-.3
POLYGON .6.-.3..3 .6,.3,-.3 .4,.3,~.3 .4,-.3.3
{Cavity rear wall}

POLYGON .4,.3,-.3 .4,-.3,.3 .4,-.3,-.3;

.6
.6,.6,.6 {top}
6 —6,.6,.6 {left}

A polygon should not be defined as an inner contour unless it is coplanar with a
surrounding contour. Tunnels, protrusions and holes do not need inner contours
unless this coplanar arrangement is present. For example, in Figure 18 neither of
the objects contains inner contours.

1AS0302

1AS0303

Figure 18. Solid Without Inner Contours

RENDERING OPERATIONS - 23

A cube with a tunnel running through it has two inner contours in its polygon
definition, one for each opening of the tunnel.

]
e

1AS0300

Figure 19. Cube With a Tunnel

A POLYGON command syntax for this object is:

Object :=

POLYGON -.6,-.6,.6 .6,-.6,.6 .6,.6,.6 -.6,.6,.6

POLYGON COPLANAR -.3,-.3,.6 - 3 3,.6 .3,.3,.6 .3,-.3,.6
POLYGON -.6,-.6,-.6 .6,-.6,-.6 .6,- 6, 6 -.6,-.6,.6

POLYGON .6,-.6,-.6 .6,.6,~.6 .6,.6,.6 .6,-.6,.6

POLYGON .6,.6,~.6 -.6,.6,-.6 -.6,.6,.6 6, 6,.6

POLYGON -.6,.6,-.6 -.6,~.6,-.6 -.6,-.6,.6 -.6,.6,.6

POLYGON .6, 6 6 .6,— 6 .6 —.6,~.6,-.6 —.6,.6,—-.6

POLYGON COPLANAR -3,.3,-.6 -.3,-3,-.6 .3,-.3,-.6 .3,3,-.6

POLYGON —.3,-.3,-.6 -.3,-3,.6 .3,-.3,.6 .3,~.3,-.6
POLYGON .3,.3,-.6 .3,-.3,-.6 .3,-.3,.6 .3,.3

POLYGON .3,.3,—.6 .3,.3,.6 -.3,.3,.6 -.3,.3,-
POLYGON -.3,.3,-.6 -.3,.3,.6 =-.3,-.3,.6 =.3,-.3,-.6;

yb
.6

24 - RENDERING OPERATIONS

Objects with inner contours can often be defined without inner contours. For
example, the outer/inner contour pair in this object could be replaced by four
coplanar outer contours.

1AS0304 1AS0305

Figure 20. Objects With Coplanar Outer Contours

Both objects are admissible and can be rendered correctly. However, all other
things being equal, the object with declared inner contours 1s processed
more efficiently.

For correct renderings, polygons may not intersect other polygons. (This
prohibition extends to polygons which just coincide, since numerical precision
constraints may result in the polygons intersecting.) For example, consider the
following solid, which contains a protrusion:

—

|

1ASOU10

Figure 21. Solid With Protrusion

RENDERING OPERATIONS - 25

It seems that this solid can be constructed by putting two cubes together.

/

/ 1AS0285

Figure 22. Solid Composed of Two Cubes

‘However, this is incorrect because one face of the small cube coincides with a
portion of a face of the large cube. Another way of attempting to construct this
solid fails for the same reason (Figure 23).

\\ 1AS0286

Figure 23. Invalid Solid

In this formulation, four edges of the small box coincide with the interior of a
larger polygon making the solid invalid. Also, these edges violate the
requirement for solids that each polygon edge coincide with the edge of another
polygon.

26 - RENDERING OPERATIONS

The correct construction of this solid requires an inner contour at the site of the
protrusion (Figure 24).

—

% "I
\/ 1AS0320

Figure 24. Correct Solid Construction

In the correct construction of the solid cube with a smaller cube as a protrusion,
each edge of each polygon coincides with another polygon edge, and no portions
of any polygon intersects the interior of any polygon. Only this construction
guarantees correct renderings.

A correct POLYGON command to define this object would be as follows.

CUBEPROT :=

POLYGON -.3,-.3,.9 ~3,-.3, .6 3,3, 3,-.3,.9
POLYGON .3,-.3,.9 3,13, .6 3,3, 3,.3,.9
PCLYGON .3,.3,.9 3,.3,.6 -.3,.3, _.3,.3,
POLYGON -.3,.3,.9 - .6 -

3,3 3,
POLYGON —.6,-.6,~.6 —.6, .6,-.6 .6, .6,
3 3

POLYGON .3,-.3,.9 3, .3, .9 _.3,.3, _.3,-.3,
POLYGON -.6,-.6, .6 6,-.6, .6 .6, .6, .6, .6,
POLYGON COPLANAR

_.3,.3,.6 3,.3,.6 3,3, .6 ~3,-.3, .6
POLYGON —.6,-.6,-.6 6,-.6,-.6 6,-.6, .6 —6,-.6, .6
POLYGON .6,-.6,-.6 6, .6,-.6 .6, .6, .6 6,-.6, .6
POLYGON .6, .6,-.6 —6, 6,6 —.b,.6,.6 6, .6, .6
POLYGON —.6, .6,-.6 6,66 —6,-.6, .6 —.6, .6, .63

RENDERING OPERATIONS - 27

Failure to use the coplanar specifier in the polygons clause can result in
incorrect hidden-line renderings.

(Correct) (COPLANAR omitted)

/ i

d

1AS0307 1AS0308

]]

1AS0309 1AS0310

Figure 25. Hidden-Line Renderings of Objects Without the Coplanar Specifier

28 - RENDERING OPERATIONS

In solids, misplaced capping polygons and extra missing lines are often traceable
to an outer contour defined with the wrong vertex order.

(Correct: clockwise) (Incorrect: counterclockwise)
1
1AS0318 1AS0319

\J \

1AS0320 1AS0321

Figure 26. Objects With Incorrect Vertex Ordering

RENDERING OPERATIONS - 29

Defining Soft Edges

Soft edges, declared with the "S" specifier in the polygon clause, are invisible in
hidden-line renderings except when they make up part of the profile of an object
(or silhouette). They can, therefore, be used to approximate curved surfaces in
hidden-line renderings.

For example, suppose that the twelve vertical edges in this object are soft edges.

1T
L
—|

/

S

/

\
)
\J/_——J/msoszs

Figure 27. Solid With Declared Soft Edges

30 - RENDERING OPERATIONS

In a hidden-line rendering of this object, all soft edges become invisible, except
for the two that contribute to the object's silhouette or profile. The result is an
approximation of a cylinder's curved surface without intrusive edges which were
provided for construction purposes only.

T
]

1AS0326

Figure 28. Rendering of Solids With Soft Edges

The "S" option before a set of X,Y,Z coordinates indicates that the edge drawn
between the previous vertex and this one represents a soft edge of the polygon.
If "S" is placed before the first set of X,Y,Z coordinates in a polygon clause, the
edge connecting the last vertex with the first is soft.

When using the "S" specifier in the POLYGON command to define an object,
there are some rules to remember about the way the system treats edges that
are declared to be soft.

An "S" specifier causes the system to apply a positioning operation rather than a
drawing operation to the associated polygon vertex. Therefore, if a single
polygon containing a soft edge is displayed, the soft edge is "invisible" on the
display.

m RENDERING OPERATIONS - 31

Each polygon edge in a solid coincides with an edge of a neighboring polygon so
that the solid is made up of common-edge pairs. If one edge of a common-edge
pair is declared as soft, and the other is declared as "hard," the system
considers the entire common edge pair to be soft in creating a hidden
line rendering. This convention allows a solid's entire structure to be visible
in its original view (since one edge in the pair is hard), but invisible in a
hidden-line rendering. This is generally the way soft edges are defined. It is
possible to define both edges of a common-edge pair as soft; in which case the
common-edge pair would be invisible even in the original object.

In surfaces, polygon edges lying on the outline do not coincide with any
neighboring polygon edges. All other polygon edges do belong to common-edge
pairs, and it is only these "interior" edges which would be made invisible in a
representation of a curved surface. In surfaces as well as solids, soft edges
should be members of common-edge pairs, and only one edge need be declared
soft.

In drawing a "hard" common-edge pair, the system line generator system strokes
the same vector twice. If one member of the pair is soft, the vector is only
stroked once; the result is slightly dimmer. This intensity variation indicates

m which edges of an unrendered object are soft. Hardcopies of objects containing
edges will not show an intensity variation.

Remember the vertex ordering rule for polygons. Common-edge pairs should
always run in opposite directions. This is especially important when one edge is
soft. Otherwise, profile edges may be invisible in hidden-line renderings.

Defining Color and Intensity for Vector Displays

The color of the edges of a polygon on the CSM color display, or the intensity on
a monochrome display, is set by the optional WITH OUTLINE h clause in the
POLYGON command. (This has no effect on objects displayed on the raster
screen.) The characteristics defined by the WITH OUTLINE clause apply to all
subsequent polygons in the node until superseded by another WITH OUTLINE
clause. The WITH OUTLINE clause comes before the word POLYGON in the
polygon clause.

The parameter h sets the intensity or color, but how this parameter is
interpreted is controlled by the presence or absence of a SET COLOR
BLENDING node higher in the structure. For the rendered view to be displayed
in the same form, the SET COLOR BLENDING node must be at a higher
hierarchical level than the rendering operate node.

32 - RENDERING OPERATIONS

If h=0 or is in the range 1<h<360, it will be inserted in the structure in a form
suitable for interpretation as a hue (as in color blending for vectors); however, if
O0<h<l, the value is inserted in such a way as to be properly interpreted as
intensity. If the SET COLOR BLENDING node is absent for the larger values of
h, or present for smaller, the results are unspecified.

Color or intensity are specified for complete polygons, not individual edges. The
hue (or intensity) of the capping polygon in a sectioning operation is inherited
from the color (or intensity) of the sectioning plane. The default color is blue.
The default intensity is 1.

You cannot specify white polygons on the CSM color display, unless they are all
white. Also, there may be strange color effects if polygons sharing a common
edge are colored differently. The intention of the SET COLOR BLENDING node
and the WITH OQOUTLINE clause is to allow the use of color to distinguish
different bodies or parts of bodies, such as protrusions.

Following is a command sequence using the WITH OUTLINE clause to define an
object with color.

INIT disp;

DISP a;

a:= SET CONTRAST 0 THEN b;

b:= SET COLOR BLENDING | THEN c;
c:=ROT Y 30 THEN Twosquares;
Twosquares :=

WITH QUTLINE 120 POLYGON {gives the square a red outline}
-1,1,0 0,1,0 0,-1,0 -1,-1,0
WITH OUTLINE 240 POLYGON {gives the green a red outline}

0,1,01,1,0 1,-1,0 0,-1,0;

Defining Color and Highlights for Raster Displays

Specifying the color, diffuse reflection, and specular highlights, (called
attributes) of a polygon in the raster image is done via the WITH ATTRIBUTES
clause of the POLYGON command.

m RENDERING OPERATIONS - 33

The ATTRIBUTES command creates a named attribute node in mass memory
that defines specific qualities to be applied to polygons when referenced by the
polygon data structure. The attributes specified in a WITH ATTRIBUTES Name?2
clause of a polygon command apply to all subsequent polygons until superseded
by another WITH ATTRIBUTES clause. If no WITH ATTRIBUTES option is given
for a polygon node, default attributes are assumed. The default attributes are
0,0,1 for color, 0.75 for diffuse, and 4 for specular.

Given the polygon syntax:
[name :=1 <polygon> «<polygon> . . . <polygon> ;
the attributes option is,

<polygon> := [WITH [ATTRIBUTES name2] [OUTLINE h]] polygon
<vertexr...<cvertex»

The WITH ATTRIBUTES clause and the ATTRIBUTES command are explained in
the "Displaying Shaded Images" section.

Specifying Normals

When a polygon is used to approximate a curved surface, the smooth appearance
of the surface can be restored in a smooth-shaded rendering by approximating a
surface using normals. Normals only apply to shaded renderings. A normal to
the surface is given with each vertex of the polygon specified N X,Y,Z. The
shaded-rendering process interpolates between these normals when rendering the
polygon. Normals must be specified for all vertices of a polygon or for none of
them. If no normals are given for a polygon, they are defaulted to the same as
the normals of the plane in which the polygon lies. Normals are needed only in
smooth-shaded renderings and should usually be used. If you do not use normals
and request a smooth-shaded rendering, the result will be a flat-shaded
rendering (except that specular and diffuse attributes will apply).

The following is an example of a cylinder with the normals specified. Notice
that the first two polygons do not have normals so the normals default to the
polygon normal and no smoothing is done across these. These are the ends of the
cylinder. The rule is all polygons do not need to have normals (in which case
they default to the plane equation), but if any vertex of a polygon has a normal
then all vertices for the polygon must. The cylinder also has soft edges (for
display on the calligraphic display).

34 - RENDERING OPERATIONS

Figure 29. Cylinder With Normals and Soft Edges Specified

CYLINDER :=
POLYGON
1.00000, 0.00000, 1.00000
0.95106, 0.30902, 1.00000
0.80902, 0.58779, 1.00000
0.58779, 0.80902, 1.00000
0.30902, 0.95106, 1.00000
0.00000, 1.00000, 1.00000
~0.30902, 0.95106, 1.00000
~0.58779, 0.80902, 1.00000
-0.80902, 0.58779, 1.00000
~0.95106, 0.30902, 1.00000
~1.00000, 0.00000, 1.00000
-0.95106, -0.30902, 1.00000
-0.80902, -0.58779, 1.00000
~0.58779, -0.80902, 1.00000
~0.30902, -0.95106, 1.00000
0.00000, -1.00000, 1.00000
0.30902, -0.95106, 1.00000
0.58779, -0.80902, 1.00000
0.80902, -0.58779, 1.00000
0.95106, -0.30902, 1.00000

RENDERING OPERATIONS - 35

POLYGON
0.95106,
0.80902,
0.58779,
0.30902,
0.00000,
-0.30902,
~0.58779,
~0.80902,
~0.95106,
~1.00000,
~0.95106,
-0.80902,
-0.58779,
~0.30902,
0.00000,
0.30902,
0.58779,
0.80902,
0.95106,
1.00000,

POLYGON
S 1.00000,
0.95106,
S 0.95106,
1.00000,

POLYGON
0.95106,
0.80902,

S 0.80902,
0.95106,

POLYGON
0.80902,
0.58779,

S 0.58779,
0.80902,

POLYGON
0.58779,
0.30902,

S 0.30902,
0.58779,

~0.30902,
~0.58779,
-0.80902,
~0.95106,
~1.00000,
~0.95106,
~0.80902,
~0.58779,
-0.30902,
0.00000,
0.30902,
0.58779,
0.80902,
0.95106,
1.00000,
0.95106,
0.80902,
0.58779,
0.30902,
0.00000,

0.00000,
0.30902,
0.30902,
0.00000,

0.30902,
0.58779,
0.58779,
0.30902,

0.58779,
0.80902,
0.80902,
0.58779,

0.80902,
0.95106,
0.95106,
0.80902,

-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000
-1.00000

-1.00000
-1.00000
1.00000
1.00000

-1.00000
-1.00000
1.00000
1.00000

-1.00000
-1.00000
1.00000
1.00000

-1.00000
-1.00000
1.00000
1.00000

z2z2z2z2Z 22Z22Z2Z 2222

2222

1.00000,
0.95106,
0.95106,
1.00000,

0.95106,
0.80902,
0.80902,
0.95106,

0.80902,
0.58779,
0.58779,
0.80902,

0.58779,
0.30902,
0.30902,
0.58779,

0.00000,
0.30902,
0.30902,
0.00000,

0.30902,
0.58779,
0.58779,
0.30902,

0.58779,
0.80902,
0.80902,
0.58779,

0.80902,
0.95106,
0.95106,
0.80902,

0.00000
0.00000
0.00000
0.00000

0.00000
0.00000
0.00000
0.00000

0.00000
0.00000
0.00000
0.00000

0.00000
0.00000
0.00000
0.00000

36 - RENDERING OPERATIONS

POLYGON
0.30902,
0.00000,

S 0.00000,
0.30902,

POLYGON
0.00000,
-0.30902,

S -0.30902,
0.00000,

POLYGON
-0.30902,
-0.58779,

S -0.58779,
-0.30902,

POLYGON
~0.58779,
~0.80902,

S -0.80902,
~0.58779,

POLYGON
~0.80902,
~0.95106,

S -0.95106,
-0.80902,

POLYGON
~0.95106,
~1.00000,

S -1.00000,
~0.95106,

POLYGON
~1.00000,
~0.95106,

S -0.95106,
~1.00000,

POLYGON
~0.95106,
~0.80902,

S -0.80902,
~0.95106,

0.95106, -1.00000
1.00000, -1.00000
1.00000, 1.00000
0.95106, 1.00000
1.00000, -1.00000
0.95106, -1.00000
0.95106, 1.00000
1.00000, 1.00000
0.95106, -1.00000
0.80902, -1.00000
0.80902, 1.00000
0.95106, 1.00000
0.80902, -1.00000
0.58779, -1.00000
0.58779, 1.00000
0.80902, 1.00000
0.58779, -1.00000
0.30902, -1.00000
0.30902, 1.00000
0.58779, 1.00000
0.30902, -1.00000
0.00000, -1.00000
0.00000, 1.00000
0.30902, 1.00000
0.00000, -1.00000
~0.30902, -1.00000
~0.30902, 1.00000
0.00000, 1.00000
-0.30902, -1.00000
~0.58779, -1.00000
-0.58779, 1.00000
~0.30902, 1.00000

z22Z22Z22Z z222z2Z z2z2zZ2Z z2zzZzZ z2z2zZzZz z2z22Z2Z

z2z22Z2Z

0.30902, 0.95106,
0.00000, 1.00000,
0.00000, 1.00000,
0.30902, 0.95106,
0.00000, 1.00000,
~0.30902, 0.95106,
~0.30902, 0.95106,
0.00000, 1.00000,
-0.30902, 0.95106,
-0.58779, 0.80902,
~0.58779, 0.80902,
-0.30902, 0.95106,
-0.58779, 0.80902,
-0.80902, 0.58779,
-0.80902, 0.58779,
~0.58779, 0.80902,
-0.80902, 0.58779,
~0.95106, 0.30902,
~0.95106, 0.30902,
-0.80902, 0.58779,
-0.95106, 0.30902,
~1.00000, 0.00000,
~1.00000, 0.00000,
-0.95106, 0.30902,
~1.00000, 0.00000,
~0.95106, -0.30902,
~0.95106, -0.30902,
~1.00000, 0.00000,
-0.95106, -0.30902,
-0.80902, -0.58779,
-0.80902, -0.58779,
~0.95106, -0.30902,

0.00000
0.00000
0.00000
0.00000

0.00000
0.00000
0.00000
0.00000,

0.00000
0.00000
0.00000
0.00000

0.00000
0.00000
0.00000
0.00000

0.00000
0.00000
0.00000
0.00000

0.00000
0.00000
0.00000
0.00000

0.00000
0.00000
0.00000
0.00000

0.00000
0.00000
0.00000
0.00000

U

U

RENDERING OPERATIONS - 37

POLYGON
-0.80902, -0.58779, -1.00000 N -0.80902, -0.58779, 0.00000
-0.58779, -0.80902, -1.00000 N -0.58779, -0.80902, 0.00000
S -0.58779, -0.80902, 1.00000 N -0.58779, -0.80902, 0.00000
-0.80902, -0.58779, 1.00000 N -0.80902, -0.58779, 0.00000
POLYGON
-0.58779, -0.80902, -1.00000 N -0.58779, -0.80902, 0.00000
-0.30902, -0.95106, -1.00000 N -0.30902, -0.95106, 0.00000
S -0.30902, -0.95106, 1.00000 N -0.30902, -0.95106, 0.00000
-0.58779, -0.80902, 1.00000 N -0.58779, -0.80902, 0.00000
POLYGON
-0.30902, -0.95106, -1.00000 N -0.30902, -0.95106, 0.00000
0.00000, -1.00000, -1.00000 N 0.00000, -1.00000, 0.00000
S 0.00000, -1.00000, 1.00000 N 0.00000, -1.00000, 0.00000
-0.30902, -0.95106, 1.00000 N -0.30902, -0.95106, 0.00000
POLYGON
0.00000, -1.00000, -1.00000 N 0.00000, -1.00000, 0.00000
‘ 0.30902, -0.95106, -1.00000 N 0.30902, -0.95106, 0.00000
("\ S 0.30902, -0.95106, 1.00000 N 0.30902, -0.95106, 0.00000
0.00000, -1.00000, 1.00000 N 0.00000, -1.00000, 0.00000
POLYGON
0.30902, -0.95106, -1.00000 0.30902, -0.95106, 0.00000
0.58779, -0.80902, -1.00000 0.58778, -0.80902, 0.00000

S 0.58779, -0.80902, 1.00000
0.30902, -0.95106, 1.00000

0.58778, -0.80902, 0.00000
0.30902, -0.95106, 0.00000

z2zzZ22Z

POLYGON

0.58779, -0.80902, -1.00000 N 0.58778, -0.80902, 0.00000
0.80902, -0.58779, -1.00000 N 0.80902, -0.58779, 0.00000
S 0.80902, -0.58779, 1.00000 N 0.80902, -0.58779, 0.00000
0.58779, -0.80902, 1.00000 N 0.58778, -0.80902, 0.00000
POLYGON
0.80902, -0.58779, -1.00000 0.80902, -0.58779, 0.00000

0.95106, -0.30902, -1.00000
S 0.95106, -0.30902, 1.00000
0.80902, -0.58779, 1.00000

0.95106, -0.30902, 0.00000
0.95106, -0.30902, 0.00000
0.80902, -0.58779, 0.00000

2z22Z22

POLYGON
0.95106, -0.30902, -1.00000
1.00000, 0.00000, -1.00000
1.00000, 0.00000, 1.00000
(ﬂﬂw 0.95106, -0.30902, 1.00000

0.95106, -0.30902, 0.00000
1.00000, 0.00000, 0.00000
1.00000, 0.00000, 0.00000
0.95106, -0.30902, 0.00000

z2zz2Z

38 - RENDERING OPERATIONS

ESTABLISHING A WORKSPACE IN MEMORY

The rendering process requires that a large contiguous block of mass memory be
available. This area is known as working storage and once reserved it is not
available for other uses. Before any rendering operations can be performed, you
must establish a workspace in mass memory. The best time to reserve working
storage is immediately after booting, when large requests can be filled more
easily.

Each polygon of a solid object with four vertices will require approximately 150
bytes of reserve working storage. Memory needs will vary from figure to figure
depending on the complexity of the object, the operations to be performed on the
data structure, and the view.

Working storage must be explicitly reserved with the
RESERVE WORKING STORAGE command.

The syntax for working storage command is as follows:
RESERVE WORKING STORAGE n;
where

the current working storage block is replaced with another containing at least
nbytes. If nis less than or equal to 0, no new block is allocated.

Typically, you should reserve 200,000 to 400,000 bytes of working storage when
you begin a session. The command to do this is:

RESERVE WORKING STORAGE 400,000;

After one working storage request is made, subsequent requests do not add to the
original working storage; they replace the original working storage.

Working storage is not freed by the INITIALIZE command. The only way to free
all working storage is to enter RESERVE WORKING STORAGE with a number
less than or equal to 0. If a working storage request is followed by another,
smaller request, an amount of memory equal to the difference between the two
requests is freed.

A previously allocated working storage area is released prior to filling the
request for a new working storage area. Thus, a request for a smaller working
storage area can always be fulfilled. However, because the working storage
must be a contiguous block of memory, even slight increases in the working
storage size may not be satisfied upon arbitrary request.

RENDERING OPERATIONS - 39

If a contiguous block of memory cannot be allocated, no working storage is
allocated and any previous storage is deallocated. If working storage is too small
or has not been reserved, the rendering request is ignored and an error message
is issued.

Additional Memory Requirements

In addition to the working storage space, extra mass memory is needed to create
hidden-line renderings. This memory is referred to as transient memory and
is automatically allocated and deallocated by the system. If adequate mass
memory is not available for transient storage, the hidden-line process will
terminate prematurely, and an error message will be generated. For this reason
E&S recommends 2Mb or more of memory for renderings of objects with
numerous polygons.

For hidden-line removal, each polygon (with four vertices) in the object will
require approximately 150 bytes of transient storage.

40 - RENDERING OPERATIONS

MARKING AN O0BJECT FOR RENDERING

An object must be defined to be a surface or a solid before rendering operations
can be applied. The commands to do this are:

SOLID RENDERING command. This command creates an operation node in
the data structure (a "solid-rendering node") which declares all of its
descendant polygon data nodes to define a solid.

SURFACE RENDERING command. This command creates an operation node
in the data structure (a "surface-rendering node") which declares all of its
descendant polygon data nodes to define a surface.

These commands declare a POLYGON data object to be either a solid or a
surface and mark it to perform renderings on it. The nodes they establish are
called rendering operation nodes.

Rendering nodes should never be multiply instanced either directly or indirectly.

Only polygon nodes are used in renderings. Vector and character nodes occurring
beneath a rendering node are ignored by the rendering operations.
Transformation nodes are not retained in the rendering, but their effect is
incorporated into the data nodes.

A sectioned rendering concatenates all transformations below the rendering node
into the rendering, backface and hidden-line renderings also incorporate the
current transformation matrix at the point of the rendering node. For this
reason, a saved hidden-line or backface removal rendering should be placed
beneath a S

MATRIX 4X4 1,0,0,0 0,1,0,0 0,0,0,0 0,0,1,1;

command to be properly re-displayed. If this is not done, the rendering will have
two sets of transformations applied to it when it is re-displayed (the
transformations applied when the rendering was created and the transformations
again applied when the rendering is re-displayed).

While conditional nodes (IF) are not incorporated into renderings, the rendering
will account for the state of the conditional node when the rendering is created.

RENDERING OPERATIONS - 41

A POLYGON data node can be displayed by itself. However, if the POLYGON
data node is to be rendered, it must have a rendering node as an ancestor. All
rendering and display operations involving the object are done via the rendering
node rather than the data node itself.

Syntaxes for the rendering commands are:
name := SOLID RENDERING APPLIED TO namel;
name := SURFACE RENDERING APPLIED TO namel;

where

® namel names either (a) a POLYGON node, or (b) an ancestor of one or
more POLYGON nodes.

e If (b) is the case, any rendering referring to name is performed on all of
the POLYGON objects descended from namel at once.

® SOLID and SURFACE are acceptable abbreviations for these commands.

Non-Polygon Data Nodes Marked for Rendering

If non-POLYGON data nodes (such as VECTOR LIST, CHARACTERS, LABELS,
POLYNOMIALS, and B-SPLINES) are included in namel, these data objects are
displayed along with the POL YGON objects prior to rendering but are omitted
from renderings. Rendering operations have no effect on these data nodes.

Admissible Descendants for Rendering Operate Nodes

IF and SET CONDITIONAL BIT, IF and SET LEVEL OF DETAIL, INCREMENT
LEVEL OF DETAIL, DECREMENT LEVEL OF DETAIL, IF PHASE, SET RATE,
SET RATE EXTERNAL SET DEPTH_ CLIPPING, and BEGIN STRUCTURE
END STRUCTURE may be placed between a renderlng node and its data. A
rendering takes into account any effects of these nodes at the time the request
is made. For example, if IF PHASE and SET RATE are being used to blink an
object and that object is "off" at the moment the request is made, the object is
excluded from the rendering.

The nodes mentioned above can also be placed above the rendering node with the
same result.

42 - RENDERING OPERATIONS

The transformations ROTATE, TRANSLATE, SCALE, MATRIX 2X2,
MATRIX 3X3, MATRIX 4X3 and LOOK may be placed between a rendering node
and its data node(s). However, these nodes should be used with caution, since,
like the operate nodes mentioned above, their effects will be incorporated into
renderings, and precision problems may result.

Another potential problem with interposing these transformations between a
rendering node and the data arises when renderings are being saved.

Since most vertices in an object usually belong to more than one polygon, each
vertex should be defined with the same numerical value in each of its polygons;
otherwise, precision discrepancies may cause inaccurate renderings.

In general, the five nodes WINDOW, VIEWPORT, EYE, FIELD OF VIEW, and
MATRIX 4X4 should NOT be made descendants of a rendering node. Like other
transformations, these five are incorporated into the output data from a
rendering operation. However, these rendered data are generally displayed
within a framework that already includes global 4x4-matrix transformations of
its own. Including these transformations as part of the rendering, then, usually
has the net effect of applying an unwanted double-WINDOW (double-VIEWPORT,
etc.) to the rendered object.

SOLID RENDERING and SURFACE RENDERING may not be descendants of a
rendering node, especially if multiply-instanced rendering nodes are involved. If
this rule is not observed, bad renderings or a system crash may result. The
system does not check for this condition.

Other nodes, including character transformations and the SET nodes (SET RATE,
SET COLOR, SET PLOTTER) are not carried over by rendering operations into a
rendering when placed beneath a rendering node. Such nodes must be placed
above a rendering node to produce their customary effects on renderings.

Rendering Nodes Must Be Displayed Before Rendering

Before you can render an object, its rendering node must be part of a structure
which is displayed (using the DISPLAY command). If the object itself is
displayed but its rendering node is not, no renderings can be created.

RENDERING OPERATIONS - 43

For example, if the command sequence

= SOLID RENDERING APPLIED TO B;
B := POLYGON .

. oo,

has been entered, the DISPLAY command should be DISPLAY Aj; and not
DISPLAY B.

44 - RENDERING OPERATIONS

CREATING RENDERINGS

An appropriate integer sent to a SOLID RENDERING or SURFACE_RENDERING
node produces a rendering of that node's descendant polygon object. When a
rendering is first created for an object, a second set of data is created and
"grafted" just below the rendering node for the original object. To display the
rendering, the Graphics Control Processor traverses the path to this new data.
This happens automatically when the rendering is requested. The original data
existent before the rendering was applied remain intact and are accessible via
input to the rendering node. '

SOLID-
RENDERING

TRANSFOR-
MATIONS

ORIGINAL
POLYGON
DATA

SOLID-
RENDERING

—4L

/ AN

[TRANSFOR-
MATIONS

\7_’/
=
| ORIGINAL |

POLYGON '
DATA

L |

(REQUEST RENDERING),
7

Figure 30. Path to Rendering Data

RENDERING
DATA

1AS0275

RENDERING OPERATIONS - 45

When the original object is re-displayed, the path to the original object is
traversed, however, the rendering data remains intact.

SOLID-
RENDERING

\
e

| RENDERING |
TRANSFOR-

MAT IONS | DATA |

L

1AS0273

ORIGINAL
POLYGON
DATA

Figure 31. Path to Original Data

At this point, the rendering can easily be displayed again, since its data still
exists.

46 - RENDERING OPERATIONS

When a second rendering is done on this object, it replaces the first rendering.

SOLID-
RENDERING
/'“/\
/ SECOND
[TRANSFOR- \ RENDERING
\ MATIONS / DATA
AN e

; 1AS0274

]
F_ 7]
ORIGINAL |
POLYGON
DATA |

L

Figure 32. Path to Second Rendering

The rendering whose data occupy this place in the structure at a particular time
is called the "current rendering." Thus, the current rendering is always the one
most recently created, even if it is not currently displayed. Each rendering node
has its own current rendering.

After requesting a rendering operation you cannot communicate with the host or
do any other PS 340 processing until the rendering is completed.

RENDERING OPERATIONS - 47

Rendering Node Connections

Rendering nodes have two inputs. Input <l> accepts an integer, a Boolean, or a
string designating the rendering operation to be performed. Tokens sent to input
<l> of the rendering node cause a rendering to be created, saves a rendering
under a particular name, or toggles the display from the rendering to the original
object.

Input <2> accepts a Boolean to change the object definition from a surface to a
solid or vice versa. After defining an object to be a surface or a solid with the
SOLID RENDERING or SURFACE RENDERING commands, you can change the
definition by sending a Boolean to input <2> of the rendering operate node. This
input allows you to have one rendering node (created with either command) and
alternate between a surface and a solid definition. A true sent to the input <2>
declares the object to be a solid; a false declares the object to be a surface.
Solids are always rendered correctly (although not as efficiently) as surfaces.
Surfaces are handled by the system as solids (they will not cause the system to
fail); however, they may not be rendered correctly.

Rendering nodes also have an output which outputs a true if the rendering is
displayed and a false if it is not displayed. You can connect this output via the
CONNECT command to trigger some other action that was waiting on
completion of the rendering process.

For example, the commands

A := SOLID RENDERING THEN B;
CONNECT Acl>:<1>Cy

cause the output of a rendering node to be sent to input <l»> of C.

Any input to input<l> of a rendering node causes an output. Inputs sent to
input<2> will not cause an output to be sent. If output<l> has not been
connected, and an integer, string, or Boolean is sent to input<l>, a message will
appear on the screen upon successful completion of the rendering operation. An
error message will appear if the rendering was not completed.

48 - RENDERING OPERATIONS

The connections for the SOLID RENDERING and SURFACE_RENDERING
operate nodes are:

Integer,----- >l <> <> i ——————— sBoolean

String, or {True if displayed}

Boolean | {False if not displayed}
Solid_Rendering Applied To namel;

Boolean-----=>| <¢2> Surface_Rendering Applied To namel;

Acceptable Values for Input (1)

—
e

~N OV BN

Toggles between the current rendering and the original object.

Creates and displays a cross-section of an object defined by the sectioning
plane (solid only).

Creates and displays a sectioned rendering.

Creates and displays a rendering using backface removal (solid only).

Creates and displays a rendering using hidden-line removal.

Generates a wash-shaded image on the raster display.

Generates a flat-shaded image on the raster display.

Generates a smooth-shaded image on the raster display.

String: Causes the current rendering to be saved under the name given in the

string.

False: Sets the original view. The original descendant structure of the

rendering operate node is displayed.
True: Sets the rendered view. The rendered view of the original descendent
structure of the rendering operate node.

Acceptable Values for Input (2)

True: Declares the object to be a solid.
False: Declares the object to be a surface.

These operations are discussed in the following sections.

RENDERING OPERATIONS - 49

Backface Removal

Backface removal is an intermediate step in hidden-line removal, during which
all polygons facing away from the viewer are removed. Since backface removal
takes considerably less time than hidden-line removal, this operation is provided
separately to allow you to see what a hidden-line rendering will look like.

This operation is especially useful in obtaining quick previews of hidden-line
renderings of complex solids, when an appropriate viewing angle is being decided
upon by trial and error. The backface-removed rendering is an unfinished
hidden-line rendering. It is not identical to the end-product in every line
segment, but close enough to give a rough idea of the outcome.

Only solids can be subjected to backface removal; the operation has no visual
effect on surfaces.

Figure 33 is an example of a solid before and after backface removal.

50 - RENDERING OPERATIONS

(Before Backface Removal)
(After Backface Removal)

Figure 33. Solids Before and After Backface Removal

RENDERING OPERATIONS - 51

Sending an integer of 3 to input <«l»> of the rendering node creates a
backface-removed rendering in the working storage area.

Exercise

Load the PS 340 Cat demonstration diskette on the PS 340 and apply the
backface removal operation by selecting from the menu on the right side of the
screen. Refer to the PS 340 Installation Manual for instructions on loading
and operating the CAT program.

Hidden-Line Removal

Hidden-line removal generates a view in which only the unobstructed portions of
an object are displayed. All parts of the edges of polygons that would be
m obscured by other polygons are removed.

Three steps are involved in the hidden-line removal process.

1. Back faces are removed or made front facing. This happens very quickly
(1-3 seconds), during which time the screen will appear blank.

2. The remaining polygons' edges are sorted by their Y-coordinates. This
step takes approximately 30 seconds for 3,000 polygons, during which time
the backface picture is created. The time required for sorting depends on
the number of polygons and the order in which they are defined.

3. Edges are tested against polygons and clipped by those that obscure
them. During this time, the backface picture is removed and the final
hidden-line picture appears from top to bottom of the display.

This step may take 5 minutes or more for approximately 3,000 polygons,
depending on the number of polygons and the view. In general, it takes
more time to process polygons along the X and Z axis than those along the
Y axis.

Hidden-line removal may be performed on both solids and surfaces. Hidden-line
views cannot be subjected to further rendering operations.

-Line)

(Before Hidden

52 - RENDERING OPERATIONS

/ . 4 // \\\ i
i e E
ANy,

/

2
4

N \\\\\\\

Figure 34. Solids Before and After Hidden-Line Removal

RENDERING OPERATIONS - 53

Sending an integer of 4 to input <l> of the rendering node creates a hidden line
rendering in the working storage area.

Exercise

Use the PS 340 CAT demonstration program to see the effects of the hidden-line
operation on the various objects.

Sectioning

Sectioning yields a "cutaway view" of an object. This operation makes use of a
sectioning plane passing through the object and dividing the object into two
pieces. The half of the object that is behind the plane is discarded and only the
front section of the object is displayed.

54 - RENDERING OPERATIONS

e/ Y Qs

(Before Sectioning)
(After Sectioning)

Figure 35. Solid Objects Before and After Sectioning

RENDERING OPERATIONS - 55

Both solids and surfaces can be sectioned. For solids, a capping polygon (or a set
of coplanar capping polygons) is generated where the sectioning plane intersects
the solid. Such capping polygon(s) "close of f" the sectioned object so that it, too,
becomes a solid.

Sectioning does not generate capping polygons for surfaces.

A sectioned object may be saved and then subjected to further surface-rendering
operations such as, re-sectioning, hidden-line removal, or backface removal.

Figure 36. Hidden-Line Rendering of Sectioned Object

Although there is generally no immediate visual evidence that a capping polygon
has been produced, capping polygons become a part of the definition of the
sectioned solid, and further rendering can disclose their existence. For example,
suppose that a solid and a surface are each sectioned vertically, yielding the two
sectioned objects below. Assume that each object intersects with its sectioning
plane at its two right-most faces. It is impossible to tell which object is capped.

56 - RENDERING OPERATIONS

1AS0282 1AS0296

Figure 37. Sectioned Object With Capping Polygons

However, hidden-line removal shows that the object on the left is a solid, while
the object on the right is open at its right-most faces.

1AS0294 1 AS0295

Figure 38. Sectioned Object With After Hidden-Line Removal

RENDERING OPERATIONS - 57

Sectioning proceeds very rapidly (1-3 seconds); the display may blink briefly
while it is being performed.

Sectioned objects are also sliced along the planes of the viewing frustum. The
sectioning plane must be encountered by the display processor prior to the
rendering node. If a sectioning plane has not been found, the screen will blank
for 15 seconds and an appropriate error message will be generated.

Sending an integer of 2 to input <l> of the rendering node makes use of the

established sectioning plane to create a sectioned rendering in the working
storage area.

Using the PS 340 CAT demonstration program, apply the sectioning operation to
the objects available on the menu.

Establishing a Sectioning Plane

Defining, displaying, and positioning a sectioning plane are the first steps in
producing a sectioned rendering of an object. Hidden-line removal and backface
removal do not require sectioning planes, but they can be applied when a
sectioned rendering is saved and subjected to further renderings.

The SECTIONING PLANE command creates a sectioning-plane node which
indicates that a descendant POLYGON is a sectioning plane. The syntax is:

name := SECTIONING PLANE APPLIED TO namel;
where

® namel names either (@) a POLYGON command or (b) an ancestor of a
POLYGON command.

e SECTIONING PLANE may be abbreviated SECT.

The Sectioning Plane's Data Definition

The data which actually define a sectioning plane are contained in a POLYGON
node; SECTIONING PLANE simply indicates that a given POLYGON represents a
sectioning plane.

58 - RENDERING OPERATIONS

The sectioning plane is the plane in which a specified POLYGON lies. The
polygon itself need not intersect the object to be sectioned, as long as some part
of the plane does.

The sectioning plane is the plane containing the polygon defined by the first
POLYGON clause of the first polygon node encountered by the Display Processor
as it traverses the branch beneath a sectioning-plane node.

If the polygon node has more than one POLYGON, only the first polygon
determines the sectioning plane. The other polygons have no effect on
sectioning operations, but are displayed along with the defining polygon. This
can be put to use in designing an indicator which shows the side of the plane at
which sectioning will remove (or preserve) polygon data (below). For example,
the command

SPDATA :=

POLYGON ~.9,-.9,0 ~.9,.9,0 .9,.9,0 .9,-.9,0

POLYGON .1,0,0 .1,0,-.3 .15,0,-.3 0,0,-.45
~.15,0,-.3 ~.1,0,-.3 ~.1,0,0

POLYGON 0,.1,0 0,.1,-.3 0,.15,-.3 0,0,-.45
0,-.15,-.3 0,-.1,-.3 0,-.1, 0;

defines a sectioning plane with two polygonal arrow-indicators as shown in
Figure 39.

1AS0293

Figure 39. Sectioning Plane Definition

RENDERING OPERATIONS - 59

Sectioning preserves those parts of an object lying in front of the plane, and
removes those parts lying in back of the plane. (The front side of a sectioning
plane is the side on which you see the vertices of the plane's defining polygon
running clockwise, where the vertices are considered in the order of their
appearance in the POLYGON clause.)

No SOLID RENDERING or SURFACE RENDERING operation node, whether
below or above the sectioning-plane node, may be an ancestor of a sectioning
plane's defining POLYGON. The PS 340 interprets such POLYGONSs as objects
to be rendered rather than as sectioning-plane definitions, and issues a
"Sectioning plane not found" message when a sectioning attempt is made.

(Wrong) (Wrong) (Right)
. . .

SURFACE-
RENDERING

SURFACE-
RENDERING

1AS0272

SURFACE-
RENDERING

1AS0270 1AS0271

Figure 40. Data Structure of Sectioning Plane

60 - RENDERING OPERATIONS

Other nodes nodes which do not represent matrix viewing transformations, such
as SET RATE and SET PLOTTER, may be placed either above or below the
sectioning-plane node as needed.

Typically, you will want to orient the plane interactively, by connecting an
interactive device via function networks.

Sectioning-Plane Node Must Be Displayed Before Rendering

Before an object can be sectioned, the sectioning-plane node must be part of a
structure which is DISPLAYed. If the plane's defining POLYGON is itself
DISPLAYed but its sectioning-plane node is not, no renderings can be created.

For example, if the command sequence

A := SECTIONING PLANE APPLIED TO B;
B := POLYGON ...}

has been entered, the DISPLAY command should be DISPLAY A; and not
DISPLAY B.

RENDERING OPERATIONS - 61

Cross Sectioning

The cross sectioning operation makes use of a defined sectioning plane to create
a cross section of an object. When this operation is used, both sides of the object
are thrown away and only the slice of the object defined by the sectioning plane
remains. Essentially, the object is sectioned and only the capping polygons
remain.

Original Object Rendered Object
(Before Cross sectioning) (After Cross Sectioning)

2\

A\

ﬁy@»

Figure 41. Solids Before and After Cross Sectioning

Cross sections can only be created for solid rendering nodes. This operation

proceeds very rapidly (1-3 seconds), in which time the display blanks

momentarily while the object is being sectioned. The cross-section is also
m clipped by the planes of the viewing frustum.

62 - RENDERING OPERATIONS

Sending an integer of 1 to Input <1> of the rendering node creates a cross section
in the working storage area.

Exercise

Use the PS 340 CAT demonstration program to experiment with the Cross
Sectioning operation, or send the integer | to the rendering node of a polygon
object you have created.

Toggle Between the Rendering Object and the QOriginal Object

It is often useful to compare objects before and after rendering operations have
been applied. The TOGGLE operation allows you to do this. Sending a 0 to input
<1> of the rendering node toggles the display between the rendering and the
original object. Both the rendering and the original object are left intact and
can be redisplayed until overwritten or saved.

Setting the View

Sending a false to input <1> of the rendering operation node causes the original
descendent structure of the SOLID RENDERING or SURFACE_RENDERING node
to be displayed (sets the view to the original structure). The rendered view is
not affected, other than being removed from the display. The rendered view can
be restored and displayed again by sending true or fix(0) to the rendering
operation node.

Sending a true causes the rendered view (if any) to be displayed instead of the
original descendent structure of the rendering operation node (sets the view to
the rendered view). The original view remains intact, apart from being removed
from display.

RENDERING OPERATIONS - 63

Changing the Definition of the Object

Sending a Boolean to input <2> of the rendering node controls whether the
descendant polygons are to be treated as a solid or a surface, enabling a solid
rendering node to be converted to a surface rendering node and vice versa. True
sent to input <2> defines the node as a SOLID-RENDERING node whatever the
original state was. False defines the node as a SURFACE RENDERING node.
The default is determined by the word SOLID or SURFACE in the original
command that created the node.

64 - RENDERING OPERATIONS

SAVING AND COMPOUNDING RENDERINGS

To save a rendering is to give it a name by which it can be referenced.

Requesting and displaying a rendering creates rendering data, but does not
create a "node" in the normal sense. It cannot be referenced nor subjected to
further rendering operations until it is "saved" by naming it. Saving the
rendering, which establishes a rendering as a separate named data node, is
therefore a prerequisite to compounded renderings, or further renderings of
the rendered object.

After a rendering is saved, it is no longer considered a "current" rendering.
Therefore, the toggle operation (Booleans and a fix(0) sent to the rendering node)
no longer affect the rendering.

How to Save a Rendering

To save a rendering, send a string message to input «<l> of the
SOLID RENDERING or SURFACE RENDERING operation node. All illegal
PS 300 names are rejected and an error message is generated.

The string should specify the name of the node which is to contain the
saved-rendering data. If the named node does not exist, it is created; if it does
exist, the saved-rendering data replace the original contents of the node.

All polygons in the rendering are taken into account in the saved rendering. It is
not possible to exclude selected polygons or polygon data nodes from saved
renderings.

Contents of a Saved Rendering

Backface removal and sectioned renderings are saved as polygon lists;
hidden-line renderings are saved as vector lists.

When a sectioned rendering is saved, all transformations between the rendering
operation node and the polygon data node are applied to the polygon data. The
result is stored in the new data node.

RENDERING OPERATIONS - 65

When a backface or hidden-line rendering is saved, all ancestor
transformations of the polygon data node are applied to the polygon data
before the result is stored in the new node. This occurs even if those
transformations are above the rendering operation node.

Common Uses of Saved Renderings

The most common reason for saving a rendering is to create a compound
rendering from it.

Common types of compound renderings are: (a) re-sectioning of a sectioned
rendering and (b) hidden-line removal applied to a sectioned rendering. Backface
renderings, which are useful mainly for previewing time-consuming hidden-line
operations on complex objects, are not generally rendered further. Hidden-line
renderings cannot be rendered further because they are vector lists, and only
polygons can be rendered. (The example at the end of this module gives a
program which can be used to create compounded renderings.)

Saved renderings are also useful when multiple hidden-line renderings of the
same object, seen from different viewpoints, are to be displayed in separate
viewports. A sectioned rendering can be viewed from multiple viewpoints
without saving, but a hidden-line rendering is a vector list which loses its
hidden-line character when the viewpoint shifts. Therefore, a separate
hidden-line rendering must be saved for each view to be displayed.

Displaying a Saved Rendering

When displaying a saved rendering, the rendering already incorporates some or
all of the transformations which existed in the data structure at the time the
rendering was requested.

66 - RENDERING OPERATIONS

Displaying Saved Sectioned Renderings

Since sectioned renderings already incorporate the transformations which existed
between the rendering operation node and the original polygon data node, the
appropriate place to attach a saved sectioned rendering is either:

® at the same level as the rendering operate node, OR
® just below the rendering operate node (without intervening transformations).

Attaching the saved rendering further down than this (for example, at the same
level as the original polygon data node) causes a misleading display. Any
transformations lying between the rendering operation node and the saved
rendering will actually be applied twice. This will be applied once explicitly in
the data structure, and once implicitly in the saved-rendering data.

Attaching the saved rendering above the rendering operation node may also
cause a misleading display. This excludes some of the viewing (or other)
transformations globally applied to the original data.

It is not necessary to attach a saved rendering anywhere in the existing
structure. The rendering can be saved in a node apart from this hierarchy. Any
desired new transformations can then be applied to it. The program example at
the end of this module illustrates this guideline.

Displaying Saved Backface and Hidden-Line Renderings

Backface and hidden-line renderings incorporate all of the transformations which
are applied to the original data node. Saved backface and hidden-line renderings
should be attached beneath the following matrix for proper display:

MATRIX 4X4

RENDERING OPERATIONS - 67

No other transformations should be applied to the saved rendering. To include other
transformations is to raise the double-transformation problem discussed above for
saved sectioned renderings. The saved rendering and its matrix should be either (1)
attached at the very top of the existing display data structure (as shown in the
programming example at the end of this module) or (2) separated from that
structure altogether.

The purpose of the special MATRIX 4X4, is to display the object without Z-values
and perspective.

Exercise

Use the PS 340 CAT demonstration program or define an object of your own, apply a
rendering operation, and save the rendering.

68 - RENDERING OPERATIONS

DISPLAYING SHADED IMAGES

The PS 340 optional raster system consists of a printed circuit card that outputs
static images to a pixel raster display. The raster system can be used as an
"image buffer" to display host-generated images or it can display "shaded
images" derived locally from PS 340 polygonal models.

When using the raster display as an image or frame buffer, the PS 340 is only
used as a communications link between the host and the raster system. Ng
standard PS 340 commands or data structures are used to display host generated
images.

This module deals only with displaying shaded images derived locally from PS 340
polygonal models. Run-length encoding, the process of displaying host generated
images, is documented in The PS 340 Raster Programmer Guide.

Requesting a shaded image computed locally on the PS 340 and displaying it on
the raster monitor requires that an integer be sent to the rendering node input of
the data structure. When a shaded image is requested, the hidden-line view of
the object is displayed concurrently on the calligraphic display.

Because the refresh processor is used to generate the raster image, the
calligraphic hidden-line image may flicker or disappear entirely while shaded
renderings are created.

There are three types of shaded renderings: wash shading, flat shading and
smooth shading.

Wash shading (area fill) generates a shaded image of the raster image buffer
concurrent to the generation of the hidden-line picture. In wash shading, the
color of each polygon is determined from the color given in the attribute node
corresponding to the polygon. All normals, light sources, other lighting
parameters, and depth cueing parameters are ignored. Sending the integer 5 to
input <1> of the rendering node creates a wash-shaded object and displays it on
the raster screen.

Flat shading generates a flat shaded image on the raster image buffer
concurrent to the generation of the hidden-line picture. The process considers
color, one light source, and the depth cueing parameter and shades the polygons
accordingly.

RENDERING OPERATIONS - 69

A polygon's color is affected by its orientation as well as the color and direction
of the light source. If specified in the polygon data definition, vertex normals
and the diffuse and specular highlight specifications are ignored. Sending the
integer 6 to input <l> of the rendering operation node displays the object with
flat shading.

Smooth shading generates a smooth-shaded image on the image buffer while
the hidden-line rendering is being created and displayed on the calligraphic
monitor. Smooth shading varies the color of the polygon across its surface
combined with the normals at the polygon's vertices, the color and direction of
various active light sources, the polygons' attributes, and the depth cueing
parameters. Sending the integer 7 to input <l> of the rendering operation node
displays a smooth shaded object.

Specifying Attributes

" In the section "Defining Polygonal Objects,"” you were introduced to the WITH
m ATTRIBUTES option. Attributes are applied to a collection of polygons by
specifying the name of the attribute node after WITH ATTRIBUTES in the
POLYGON command. If the WITH ATTRIBUTES option is not used in the
POLYGON clause, the default attributes 0,0,1 for color, 0.75 for diffuse, and 0

for specular are assumed.

Using the ATTRIBUTES Command

The ATTRIBUTES command specifies the various characteristics of polygons
used in the creation of shaded renderings. Attribute nodes are created with the
ATTRIBUTES command and exist in mass memory (not as part of the data
structure). The ATTRIBUTES command creates a named attribute node in mass
memory that defines specific attributes to be applied to data when this node is
referenced by the object's data structure.

When the display processor traverses the data structure with a polygon node
containing a WITH ATTRIBUTES namel, the attributes in namel are assigned to
all polygons in the node until superseded with another WITH ATTRIBUTES
clause. The various attributes may be changed from a function network via
inputs to an attribute node or by reassigning the name, but the changes have no
affect until a new rendering is created. No type checking is done by the shading
process to ensure that WITH ATTRIBUTES indeed refers to an attribute node and
not some other entity. If it does refer to some other entity, the display

m processor will interpret any values in that node as attributes, and display the
object incorrectly.

70 - RENDERING OPERATIONS

Given:

cattr> :== [Colorh[,s[,i]1]]
[Diffuse d]
[Specular s]

The ATTRIBUTES command is:

Name := ATTRIBUTES <attr> [AND «<attr>]

Meaning:

Color

The color attribute sets the basic color for the surface of a polygon. This
attribute pertains only to shaded renderings on the raster display--it has no
effect on the color of a polygon's edges on the calligraphic display. (These are
changed using the WITH OUTLINE clause in the POLYGON command.) Color is
given as hue (h), saturation (s), and intensity (i) and will change according to such
things as shading style, light sources, orientation, depth cueing, ambient lighting,
and highlights.

Hue specifies degrees around the color circle with 0 being pure blue, 120 pure
red, and 240 pure green. Saturation varies from 0 for no saturation (grays) to |
for full saturation. Intensity varies from 0 for no intensity (black) to 1 for full
intensity.

If no color is specified, the default is white (s=0, i=1l). If not specified,
saturation and intensity default to l. If only hue and saturation are specified,
intensity defaults to 1. Values greater than | or less than 0 for saturation or
intensity will become | or 0. Hue and saturation correspond to hue and
saturation in the SET COLOR command but have greater precision. Remember
that the color applies only to the shaded image; the color of the vector image
displayed on the CSM color screen is set using the WITH OUTLINE clause of the
POLYGON command.

RENDERING OPERATIONS - 71

Diffuse

Diffuse specifies the proportion of color contributed by diffuse reflection versus
that contributed by specular reflection. Increasing d reduces the intensity of
specular highlights, making the surface more matte; decreasing d makes the
surface more shiney with a value of 1 eliminating specular highlights entirely.
Values larger than 1| or less than 0 will be changed to | or 0. If no diffuse
attribute is given, it defaults to 0.75. The diffuse attribute only affects
smooth-shaded renderings.

Specular

The specular attribute adjusts the concentration of specular highlights, with
increasing values of s increasing their concentration. Specular is a property of
the object so the size of the highlight spot is not influenced by the light source,
only by the s value. The more metallic the object is, the more concentrated
the specular highlights. In the real world, objects are never completely specular
(or diffuse) so you will get artificial effects if you have these values at a
maximum.

Acceptable values of s are integers between 0 and 10, with values outside that
rounded to 0 or 10 and a default of 4. As with diffuse, the specular attribute
only affects smooth-shaded renderings.

And

A second set of attributes may be given after the word AND in the ATTRIBUTES
command which apply to the obverse side of the polygon(s) concerned; in other
words, the two sides of an object may have different attributes. The polygons
considered on the obverse (backfacing) side by the system are those seen in a
counterclockwise order for the view in which the rendering is carried out. The
second set of attributes will only be applied in surface renderings (not solid).

The attributes defined for the first cattr> specify attributes for front-facing
polygons. The «<attr> after the AND specify the attributes of backfacing
polygons.

72 - RENDERING OPERATIONS —

You are not required to include the AND «<attri> to specify different attributes
for backfacing polygons. The command syntax for specifying just one set of
polygons is:

Name := ATTRIBUTES <attr» 3

If the WITH ATTRIBUTES clause in a structure refers to an attribute node with
two sets of attributes and no backfacing polygons exist for that object, the
second set is ignored.

In the following example, an attribute node is created that defines the object to
be blue. Since only the hue is specified for the color parameter, the default
values for saturation and intensity (s=1, i=1) are assumed. The defaults for
diffuse and specular (d=.75, s=0) are also assumed.

Blue := ATTRIBUTES COLOR 1204
Object := WITH ATTRIBUTES Blue
POLYGON

POLYGON ;

All the polygons in the object are blue since the attribute clause assigns the
attributes defined by Blue for all polygons until superseded by another WITH
ATTRIBUTES clause.

In the following example, the «cattri> before AND specify attributes for
front-facing polygons in the object and the <attri> after AND specify the
attributes for all backfacing polygons.

Red Green:= ATTRIBUTES COLOR 120,.5,.75 DIFFUSE .25 SPECULAR 1
AND COLOR 240,1,.25;
Object := WITH ATTRIBUTES Red_Green
POLYGON

POLYGON ;

All front-facing polygons are colored red with .5 saturation and .75 intensity.
The value for diffuse is .25 and the value for specular is 1. All backfacing
polygons are green with 0 saturation and .25 intensity. Since no values for
specular or diffuse are given in the second set of attributes, the defaults are
assumed.

u

RENDERING OPERATIONS - 73

The following object definition specifies attributes for display on the raster
screen and also specifies the color of the polygon's edges (using the WITH
OUTLINE clause) for display on the color calligraphic display.

Pastel Blue := ATTRIBUTES COLOR 3,.5,1 DIFFUSE .75 SPECULAR 5;

Object := WITH ATTRIBUTES Pastel Blue Outline 0
POLYGON

POLYGON ;
In this example, the shaded polygons on the raster display would be blue, with
full saturation and .5 intensity. The specular value is .75 and the diffuse value is

5. The edges of the polygons are blue (Outline 0) when displayed on the CSM
display.

Attribute Node Inputs

Inputs to the attribute node are as follows:

<1> accepts a real number as hue, a 2D vector as hue and saturation, or a 3D
vector as hue, saturation, and intensity to specify COLOR for the front of the
appropriate polygon(s) or both sides if no obverse attributes are given.

<2> accepts a real number as DIFFUSE

<3> accepts an integer as SPECULAR

<4>....<10> are undefined

<115, <125, and <13> correspond to <l>, <25, and <3> but affect the obverse
attributes if they exist.

If you send to input <l> or input <ll> changing only the hue, the saturation and
intensity return to the default values of s=1 and i=l. You cannot change just one
value and keep the remaining values as they were before you made the change.
Essentially, if you do not send a 3D vector, default values for the missing
variables will be assumed.

74 - RENDERING OPERATIONS

For example, with the data definition

Dim Red := ATTRIBUTES COLOR 130,1,.5 DIFFUSE .75 SPECULAR 8;
Object := WITH ATTRIBUTES Dim_Red
POLYGON

POLYGON;

If you sent 200 to input <l> of Dim_Red the resulting color parameter in the
attribute node would be 200,1,1. To keep the saturation and intensity the same
and change only the hue, you would send 200,1,.5 to input <l> of Dim_Red. This
is the same if you want to change hue, saturation or intensity individually by
sending a new value to the attribute node.

After changing the values in the attribute node, the changes will not be reflected
until another rendering is requested.

Specifying Light Sources

Lights sources are specified with the ILLUMINATION command which creates
"illumination nodes." Illumination nodes may be placed anywhere in the
structure, allowing lights to be stationary or to rotate with the object or both.
Illumination nodes are ignored during the calligraphic refresh and only those
illumination nodes occurring in the descendent structure of a triggered solid- or
surface-rendering operation node have any affect in shaded renderings. An
unlimited number of light sources are valid for smooth-shaded renderings, but
only the last illumination node encountered is used in creating flat-shaded
renderings. Light sources are not used in wash-shaded (area-filled) images.

All light sources are presumed to be an infinite distance from the object;
however, you can specify the direction at which they hit the object. This
direction is multiplied by the current rotation matrix to determine the direction
to the light in image space. If, after transformation, the light source appears to
originate from behind the object, it will cause the whole object to be
unilluminated (appear black), except, perhaps "glancing" specular highlights near
the silhouette.

If no ILLUMINATION commands are given, a default white light at (0,0,-1) with
an ambient proportion of 1.0 is assumed. If not specified, intensity and saturation
default to 1. If only hue and saturation are specified, intensity defaults to 1.

RENDERING OPERATIONS - 75

Syntax:

[name :=] ILLUMINATION x,y,z [COLOR h[,s[,i11] [AMBIENT a];

where
x,y,z is a vector from the origin pointing toward the light source.

COLOR specifies the color of the light source by defining hue, saturation, and
intensity. Color is specified identical to COLOR in the ATTRIBUTES command;
the defaults are also the same.

AMBIENT controls the contribution of a light source to the ambient light. The
net ambient lighting is determined by taking the sum of the products of the color
and ambient proportion of each active light, dividing by the total number of
active lights and then combining the result with the ambient input of the
SHADINGENVIRONMENT function (in the next section). AMBIENT is defined by
a real number between 0 and 1. Increasing a for one light increases its
contribution to ambient light. Values outside this range are changed to 0 or I.
The default value for a is 1.0.

Changing the values of the SHADINGENVIRONMENT (explained in the next
section) allows you to increase or decrease the intensity and color of the ambient
light without the need to change each light source.

Whatever the values, if all active light sources have the same specified
proportion, then all lights will contribute equally to the ambient light.
Decreasing a for one light decreases its contribution to ambient light. Values
outside this range are changed to 0 or l. The default value is 1.

In the following example, the ILLUMINATION command
Light := ILLUMINATION 1,1,-1 COLOR 180;
creates a node which defines a yellow light over the right shoulder. Since

saturation and intensity are not specified, the defaults s=1 and i=1 are assumed.
A default of 1.0 for the ambient proportion is also assumed.

Since the illumination node occurs in the data structure (unlike the attribute
node which exists alone in mass memory), it is not explicitly referenced by the
polygon data node.

76 - RENDERING OPERATIONS

The hierarchy with an illumination node is shown in Figure 42.

Window, Viewport,
Other 4x4 Matrix
Transformation Nodes

Rotate, Translate,
Scale Nodes

Solid Rendering
Node

ITTumination
Node

Polygon Data Node

IASOL418

Figure 42. Hierarchy With Mlumination Node

The illumination node must be under the rendering node in the display structure
of the object.

Following is an example of how to use ILLUMINATION nodes. There are two
lights in the example: SUN.LIGHT, which can be rotated independently of the
object, and MOON.LIGHT, which rotates with the object. To achieve this:

1. Both lights are underneath the rendering node in the structure.

2. Placing the ILLUMINATION nodes underneath the rendering node implies that
they will have the object's transformations also applied to them. This is what

happens for MOON (sending a rotation to MOON.ROT will concatenate with
the object's transformations).

3. This is not desired for the sun, so a FIELD OF VIEW (FOV) is inserted before
the illumination node of SUN. This causes a rotation matrix sent to
SUN.ROT to be the only matrix applied to SUN.LIGHT.

RENDERING OPERATIONS - 77

4. Inserting a 4D matrix (caused by the FOV) underneath a rendering node is not
recommended. To avoid any problems, the 4D matrix defined by SUN.PERSP
is identical to the 4D matrix defined by WORLD.PERSP and any change made
to one (e.qg., by a function network) should be made to both. Failure to follow
this suggestion may result in bad renderings.

Sun := BEGIN STRUCTURE {a light which can be rotated independently}
Persp := FOV 90 FRONT=2.2 BACK=3.6;
LOOK AT 0,0,0 FROM 0,0,-3;
Rot := SCALE BY 1;
Light := ILLUMINATION 0,0,-1;
END STRUCTURE;

Moon := BEGIN STRUCTURE {a light which rotates with the object}
Rot := SCALE BY I[;
Light := ILLUMINATION 0,0,-1;
END STRUCTURE;

World := BEGIN STRUCTURE
Persp := FOV 45 FRONT=2.2 BACK=3.6;
LOOK AT 0,0,0 FROM 0,0,-3;

m viewport horizontal=-1:1 vertical=-1:1 intensity=1:0;

SET DEPTH CLIPPING ON;
Trans := TRANSLATE BY 0,0,0;
Rot :=SCALE BY 1I;
Rendering := SURFACE RENDERING; {rendering node}
instance object, Moon, Sun;
END STRUCTURE;

DISPLAY World;

Mumination Node Inputs
Inputs to the illumination node are:
<1> accepts a 3D vector as direction

<2> accepts a real number as hue, a 2D vector as hue and saturation, and a 3D
vector as hue, saturation, and intensity.

<3> accepts a real number as the ambient proportion

Like the attribute node, if you send a real number to input <2> to change only
the hue, the saturation and intensity return to the default values of s=1 and i=I.

m You cannot change just one value and keep the remaining values as they were
before you made the change. If you do not send a 3D vector, the defaults for the
variables not specified are assumed.

78 - RENDERING OPERATIONS

The SHADINGENVIRONMENT Function

An Initial Function Instance, called SHADINGENVIRONMENT, allows you to
control various non-dynamic factors of shaded renderings displayed on the raster
screen. Sending values to the SHADINGENVIRONMENT function generally sets
a parameter for the next requested shaded rendering rather than taking
immediate effect. Note that SHADINGENVIRONMENT is different from other
PS 340 functions In that any input will activate the function
independent of the other inputs. SHADINGENVIRONMENT is like seven
separate functions each with one input, but bundled together.

SHADINGENVIRONMENT

Real/Vector ———> | <1> <> |-————- > connected to the
shading process

Real/Vector ———> | <«2>

Vector ———————- > 3>

Real ————;%i———> b>

Integer —————— > 5>

Real ————————- > <6>

Boolean ——————~ > <7>

The inputs to the SHADINGENVIRONMENT function are as follows:

Ambient Color

<l> accepts a real number as hue, a 2D vector as hue and saturation, and a 3D
vector as hue, saturation, and intensity, to specify the ambient color. Refer to
the COLOR parameter of the ATTRIBUTES command for the meaning of the
values. The ambient color is combined with the result obtained from the light
sources to determine the color of ambient light. The default ambient color is
white, with a default intensity of .25. The ambient color is analagous to the
color reflected off a wall.

RENDERING OPERATIONS - 79

Background Color

<2> accepts a real number as hue, a 2D vector as hue and saturation, and or a 3D
vector as hue, saturation, and intensity to specify the background color. Refer
to the COLOR parameter of the ATTRIBUTES command for the meaning of the
values. The raster screen will be colored with the background color prior to any
shaded rendering. The default background color is black (0,0,0).

Raster Viewport

<3> accepts a 3D vector as the viewport on the raster image buffer where shaded
renderings will be displayed. Raster viewports are always square, the lower left
corner being given by the X and Y coordinates of the vector, and its size given
by the Z coordinate, such that the upper right corner is at (x+z,y+z). Values are
rounded to the nearest pixel. The default viewport is (80,0,480). The viewport is
not intended for magnification of small parts of the calligraphic image, but for
mapping the square vector display onto the rectangular raster display.

The viewport is also intended to allow multiple images to be generated side by
side on the raster display. Thus, the largest recommended value for the viewport
is (0,-80,640). The actual largest viewport is somewhat larger and depends on
combinations of the three values. The image is clipped to the physical raster for
which 0<X<640 and 0<Y<480.

Exposure

<4> accepts a real number as the exposure, controlling the overall brightness of
the picture. The exposure is like that on a camera. If a picture is taken of an
object with a very bright specular highlight, it may be so bright that the rest of
the object is darkened. If three light sources exist, the object would be about
three times brighter, making the object too bright. The exposure should be
brought down to control this.

The exposure is multiplied by the intensity at each pixel and the result clipped to
the maximum intensity. This enables the overall brightness of a rendering to be
increased without causing bright spots to exceed maximum intensity (instead
forming "plateaus" of maximum intensity). Note that this may cause changes in
color on a plateau, where color has reached its maximum, but the others have
not. Exposure values may vary between .3 and 3, values outside that range being
changed to .3 or 3. The default exposure is 1.

80 - RENDERING OPERATIONS

Quality Level

<5> accepts an integer as quality level. The quality controls the number of
pixels over which filtering applied. Jagged edges are characteristic of a raster
display, so the fuzzier the edges, the better quality the picture. Values of 1, 3,
5, and 7 are allowed, meaning that the effect of coloring a pixel will be spread
over a square of pixels with that number on a side, centered on the colored
pixel. Because of anti-aliasing, pictures are good at quality 1. (The default
value 1 is the typical choice.) Values of 3, 5, and 7 produce better quality
renderings in terms of anti-aliasing but are time-consuming to process.

Depth Cueing

<6> accepts a real number in the range of 0 to | to control depth cueing in the
shaded image (0 specifying no depth cueing and | specifying maximum depth
cueing). As perceived depth from the viewer increases, the intensity of the
colors decreases from maximum (1) at the nearest point to the given proportion
of maximum at the farthest. Thus 0 gives a ramp ending in black at the back
clipping plane, while 1 turns off the effect of depth cueing. The default is 0.2
giving a fairly large depth cueing effect.

Screen Wash

<7> accepts a Boolean, and is the only input to cause a visual effect
immediately. True causes the whole physical raster screen to be filled with the
current background color, while false just fills the currently defined viewport
(clipped to the screen).

C

m RENDERING OPERATIONS - 81

NOTE

If values are sent to the SHADINGENVIRONMENT function
and your PS 340 is not configured with a raster system, an
error message is issued. If values are again sent to the
SHADINGENVIRONMENT function and no raster system
exists, the function will destroy itself.

RENDERING OPERATIONS - 83

SUMMARY

The POLYGON command defines collections of polygons from which renderings
can be created. This is a data—definition command that creates a polygon data
node in the object's data structure.

Objects defined as polygons are the only objects that are eligible for rendering
operations.

Rendering operations for vector displays can obtain a cross section of a displayed
object, section an object relative to a sectioning plane, remove hidden line
segments, and create shaded images of the object on a color raster screen.

Rendering operations for raster displays are flat shading, wash shading, and
smooth shading.

Polygonal objects must be defined correctly to produce correct renderings.

POLYGON Command Syntax

Given,
<vertex> :=[S51x,y,z[N x,y,z]
<polygon> := [WITH [ATTRIBUTES name?2] [OUTLINE h]]
POLYGON [COPLANAR] <vertex> ... <vertex
The polygon command is:
[Name :=] <Polygon> <Polygon> ... <Polygon> ;
where:

® A vertex definition has the form [S] x,y,z [N x,y,z]

where

- S indicates that the edge drawn between the previous vertex and this one
represents a soft edge of the polygon. If the S specifier is used for the
first vertex in a polygon definition, the edge connecting the last vertex
with the first is soft.

84 - RENDERING OPERATIONS

— N indicates a normal to the surface with each vertex of the polygon.
Normals are used only in smooth-shaded renderings. Normals must be
specified for all vertices of a polygon or for none of the vertices of a
polygon. Normals do not need to be present for all polygons in the object.
If no normals are given for a polygon, they are defaulted to the same as the
plane equation for the polygon.

- X, Y, and z are coordinates in a left-handed Cartesian system.
e WITH ATTRIBUTES is an option that assigns the attributes defined by the

ATTRIBUTES command for all polygons until superseded by another WITH
ATTRIBUTES clause.

e WITH OUTLINE is an option that specifies the color of the edges of a polygon
on the color CSM display, or their intensity on a black and white display. A
SET COLOR BLENDING node must be in the data structure to use this option.

e COPLANAR declares that the specified polygon and the one immediately
preceding it has the same plane equation.

Defining Polygonal Objects
There is no syntactical limit on the number of polygon clauses in the group.
POLYGON may be abbreviated POLYG.

Polygons are implicitly closed. The first vertex should not be repeated when
defining a polygon.

No more than 250 vertices per polygon may be specified and no less than three.

The vertices of a polygon must be coplanar. Its plane equation is determined
from any three non-colinear vertices.

Concave polygons are acceptable. Degenerate polygons and polygons that
intersect themselves or others are not acceptable. No specific checks are made
for these conditions.

Polygons are not pickable and polygon nodes have no inputs from which they can
be modified with function networks.

RENDERING OPERATIONS - 85

Constructing Surfaces and Solids

Surfaces and solids can be defined. Solids enclose a volume of space, while
surfaces do not.

In a solid, every edge of every polygon must coincide with the edge of a
neighboring polygon.

For surfaces and solids, polygons are defined by listing their vertices in a
clockwise order in the polygon clause.

In a solid, the common edge where two polygons join must run in opposite
directions. This arrangement is essential to produce correct renderings. The

system does not check for this condition.

A solid cannot contain three or more polygons which have a single edge is
common, although surfaces may.

The SURFACE RENDERING and SOLID RENDERING commands determine the
ﬁ nature of a polygonal object.

Using the COPLANAR Option

Inner contours may be defined to create objects with holes or protrusions.

Vertices of inner contours must be listed in the opposite direction to the
corresponding outer contour.

An inner contour should not be defined unless it is coplanar with some
surrounding outer contour.

All members of a set of consecutive COPLANAR polygons are taken to have the

same plane equation, that of the previous polygon not containing the
COPLANAR option.

If COPLANAR is specified for the first polygon in a polygon list, it has no effect.

86 - RENDERING OPERATIONS

Using the Color Option (for Vector Displays)

Color for polygons displayed on the CSM monitor or intensity on the monochrome
display are specified with the WITH OUTLINE h clause where h=0 or
1 <h<360 for color, and O<h¢l for intensity.

To use the WITH OUTLINE clause to specify color, you must use the SET COLOR
BLENDING command to create a node in the structure.

Color and intensity are specified for complete polygons, not individual edges. If
you specify white polygons to be displayed on the CSM, all polygons must be
white.

Using the Soft Edge Option (for Vector Displays)

The S specifier before a set of X,Y,Z coordinates indicates that the edge drawn
between the previous vertex and this one represent a soft edge of the polygon.

Soft edges, declared with the S specifier in the polygon clause are invisible in
hidden-line renderings except when they make up part of an object's profile.

Soft edges are positions in the original object.

If either edge of a common-edged pair is declared soft, the entire edge is
considered soft.

Memory Usage

The rendering process requires that a contiguous block of mass memory be
available as working storage. This memory must be explicitly reserved with the
command RESERVE WORKING STORAGE n, where the current working
storage is replaced with another containing at least n bytes. If n is less than
or equal to 0 or there is insufficient memory to allocate a new block, the current
working storage is disposed and no new block is allocated.

RENDERING OPERATIONS - 87

The best time to reserve working storage is immediately after booting; typically,
you should reserve 200,000 to 400,000 bytes of working storage when you begin a
session.

Working storage is not freed by the INITIALIZATION command.

In addition to the working storage space, extra mass memory is needed to create

hidden-line renderings. This memory is referred to as transient memory and is
automatically allocated and deallocated by the system.

Declaring the Object a Solid or a Surface

Syntaxes for the rendering commands are:
name := SOLID RENDERING APPLIED TO namel;
name := SURFACE RENDERING APPLIED TO namel;
where

e namel names either (a) a POLYGON node, or (b) an ancestor of one or more
POLYGON nodes.

e If (b) is the case, any rendering referring to name is performed on all of the
POLYGON objects descended from namel at once.

Only polygons nodes are used in renderings. Vector and character nodes
occurring beneath a rendering node are ignored by the rendering operations.

Transformation nodes are lost in the rendering, but their effect is incorporated
into the data nodes.

Rendering Node Connections

Rendering nodes have two inputs. Input <l> accepts an integer, a Boolean, or a
string designating the rendering operation to be performed.

88 - RENDERING OPERATIONS

Input <2> accepts a Boolean to change the object definition from a surface to a
solid or vice versa.

Rendering nodes also have an output which outputs a true if the rendering is
displayed and a false if it is not displayed. You can connect this output via the
CONNECT command to trigger some other action that was waiting on
completion of the rendering process.

Rendering Node Inputs

Acceptable values for input <l»> are:

0: Toggles between the current rendering and the original object.

Creates and displays a cross-section of an object defined by the sectioning
plane (solids only).

Creates and displays a sectioned rendering.

Creates and displays a rendering using backface removal (solids only).

Creates and displays a rendering using hidden-line removal.

Generates a wash-shaded image on the raster display.

Generates a flat-shaded image on the raster display.

Generates a smooth-shaded image on the raster display.

—
.o

~N OB wWN

.e

String: Causes the current rendering to be saved under the name given in the
string.
False: Sets the original view. The original descendant structure of the
rendering operation node is displayed.
True: Sets the rendered view. The rendered view of the original descendent
structure of the rendering operation node.

Acceptable values for input <2> are :

True: Declares the object to be a solid.
False: Declares the object to be a surface.

RENDERING OPERATIONS - 89

Establishing a Sectioning Plane

The SECTIONING PLANE command creates a sectioning-plane node which
indicates that a descendant POLYGON is a sectioning plane. The syntax is:

name := SECTIONING PLANE APPLIED TO namel;

where

® namel names either (a) a POLYGON command or (b) an ancestor of a
POLYGON command.

e SECTIONING PLANE may be abbreviated SECT.

m The Sectioning Plane's Data Definition

Saving

The sectioning plane is the plane containing the polygon defined by the first
POLYGON clause of the first polygon node encountered by the Display Processor
as it traverses the branch beneath a sectioning-plane node.

The sectioning plane is the plane in which a specified POLYGON lies. The
polygon itself need not intersect the object to be sectioned, as long as some part
of the plane does.

No SOLID RENDERING or SURFACE RENDERING operation node, whether
below or above the sectioning-plane node, may be an ancestor of a sectioning
plane's defining POLYGON. The PS 340 interprets such polygons as objects to be
rendered rather than as sectioning-plane definitions, and issues a "Sectioning
plane not found" message when a sectioning attempt is made.

a Rendering

A rendering is saved by a string sent to input <l> of the SOLID RENDERING or
SURFACE RENDERING operation node. The string should specify the name of
the node which is to contain the saved-rendering data. If the named node does
not exist, it is created; if it does exist, the saved-rendering data replaces the
original contents of the node.

90 - RENDERING OPERATIONS

All polygons in the rendering are taken into account in the saved rendering. It is
not possible to exclude selected polygons or polygon data nodes from saved
renderings.

Specifying Color and Highlights for Raster Displays

Specifying color, specular, and diffuse highlights, (called attributes) of a polygon
for display on the raster screen, is done via the WITH ATTRIBUTES clause of the
POLYGON command.

Given the polygon syntax:

[name :=] <polygon> <polygon> . . . <polygon> ;

the attributes option is,

<polygon> := [WITH [ATTRIBUTES name?2] [OUTLINE h]] polygon
<vertexy...cvertex»

The ATTRIBUTES Command

Given:

cattr> := [Colorh[,s[,i]1]]
[Diffuse d]
[Specular s]

The ATTRIBUTES command is:

Name := ATTRIBUTES «<attr> [AND <attr>]

b4
meaning:

Color

Hue (h) specifies degrees around the color circle with 0 being pure blue, 120 pure
red, and 240 pure green. Saturation (s) varies from 0 for no saturation (grays) to
| for full saturation. Intensity (i) varies from 0 for no intensity (black) to | for
full intensity.

m RENDERING OPERATIONS - 91

If no color is specified, the default is white (s=0, i=1). If not specified,
saturation and intensity default to 1.

Diffuse

Diffuse specifies the proportion of color contributed by diffuse reflection versus
that contributed by specular reflection. Increasing d reduces the intensity of
specular highlights, making the surface more matte; decreasing the intensity of
specular highlights makes the surface more shiny with a value of 1 eliminating
specular highlights entirely.

Values larger than 1 or less than 0 will be changed to | or 0. If no diffuse
attribute is given, it defaults to 0.75.

The diffuse attribute only affects smooth-shaded renderings.

m Specular

The specular attribute adjusts the concentration of specular highlights, with
increasing values of s increasing their concentration.

Acceptable values of s are integers between 0 and 10. As with diffuse, the
specular attribute only affects smooth-shaded renderings.

And

The attributes defined for the first <attr> specify attributes for front-facing
polygons. The <attr> after the AND specify the attributes of backfacing
polygons (applicable to surfaces only).

Attribute Node Inputs

Inputs to the attribute node are as follows:

<l> accepts a real number as hue, a 2D vector as hue and saturation, or a 3D
vector as hue, saturation, and intensity to specify COLOR for the front of the
m appropriate polygon(s) or both sides if no obverse attributes are given.

92 - RENDERING OPERATIONS

<2> accepts a real number as DIFFUSE
<3> accepts a real number as SPECULAR
<b4>....<10> are undefined

<Il>, <125, and <135 correspond to <l>, <2>, and <«3> but affect the obverse
attributes if they exist.

Specifying NORMALS

When a polygon is used to approximate a curved surface, the smooth appearance
of the surface can be restored in a smooth-shaded rendering by approximating a
surface using normals. A normal to the surface is given with each vertex of the
polygon specified N x,y,z.

Specifying Light Sources

Lights may be stationary or rotate with the object or both.

If no ILLUMINATION commands are given, a default white light at (0,0,-1) with
an ambient proportion of .25 is assumed. If not specified, intensity and saturation
default to 1.

Syntax:

[name :=] ILLUMINATION x,y,z [COLORh[,s[,i]1]] [AMBIENT a];

where
x,¥,z is a vector from the origin pointing toward the light source.

COLOR specifies the color of the light source by defining hue, saturation, and
intensity.

Color is specified identical to COLOR in the ATTRIBUTES command; the
defaults are also the same.

RENDERING OPERATIONS - 93

AMBIENT controls the contribution of a light source to the ambient light and is
defined by a real number between 0 and 1. Increasing a for one light,
increases its contribution to ambient light. The default value for a is I.

Mumination Node Inputs

Inputs to the illumination node are:
<1> accepts a 3D vector as direction

<2> accepts a real number as hue, a 2D vector as hue and saturation, and a 3D
vector as hue, saturation, and intensity.

<3> accepts a real number as the ambient proportion

Like the attribute node, if you send a real number to Input <2> to change only
the hue, the saturation and intensity return to the default values of s=1 and i=1l.

The SHADINGENVIRONMENT Function

SHADINGENVIRONMENT
Real/Vector ——> | <1> <> |-———- > connected to the
shading process
Real/Vector ———> 2>
Vector ——————-- > 3>
Real ———----—- -=>
Integer ——————- > <5>
Real —————————- > <6>
Boolean ——————- > <7>

94 - RENDERING OPERATIONS

The inputs to the SHADINGENVIRONMENT function are as follows:

Ambient Color

<l> accepts a real number as hue, a 2D vector as hue and saturation, and a 3D
vector as hue, saturation, and intensity, to specify the ambient color. The
default ambient color is white, with a default intensity of .25..

Background Color

<2> accepts a real number as hue, a 2D vector as hue and saturation, and or a 3D
vector as hue, saturation, and intensity to specify the background color. The
default background color is black (0,0,0).

Raster Viewport

<3> accepts a 3D vector as the viewport on the raster image buffer where shaded
renderings will be displayed. Raster viewports are always square, the lower left
corner being given by the X and Y coordinates of the vector, and its size given
by the Z coordinate, such that the upper right corner is at (x+z,y+2z). Values are
rounded to the nearest pixel. The default viewport is (80,0,480).

Exposure

<4> accepts a real number as the exposure, controlling the overall brightness of
the picture. Exposure values may vary between .3 and 3, values outside that
range being changed to .3 or 3. The default exposure is I.

Quality Level

<5> accepts an integer as quality level. The quality controls the number of
pixels over which filtering applied. Values of 1, 3,5, and 7 are allowed, meaning
that the effect of coloring a pixel will be spread over a square of pixels with that -
number on a side, centered on the colored pixel. Pictures are good at quality l.

RENDERING OPERATIONS - 95

Depth Cueing

<6> accepts a real number in the range of 0 to | to control depth cueing in the
shaded image (0 specifying no depth cueing and | specifying maximum depth
cueing). The default is 0.2 giving a fairly large depth cueing effect.

Screen Wash

<7> accepts a Boolean, and is the only input to cause a visual effect
immediately. True causes the whole physical raster screen to be filled with the
current background color, while false just fills the currently defined viewport
(clipped to the screen).

PS 340 Systems Without a Raster Screen

If values are sent to the SHADINGENVIRONMENT function and your PS 340 is
not configured with a raster screen, an error message is issued. If values are
again sent to the shadingenvironment function and no raster system exists, the
function will destroy itself.

RENDERING OPERATIONS - 97

Programming Example

INITIALIZE;
{reserve memory for rendering}
RESERVE WORKING STORAGE 120000;
{define a sectioning plane which can be rotated independently}
Spattributes := ATTRIBUTES;
Sect := BEGIN STRUCTURE
SECTIONING PLANE;
Trans := TRANSLATE BY 0,0,0;

Rot := ROTATE 0;
With ATTRIBUTES Spattributes

POLYGON -0.9,-0.9,0.0 -0.9,0.9,0.0 0.9,0.9,0.0 0.9,-0.9,0.0
POLYGON 0.1.0.0,0.0 0.1,0.0,-0.3 0.15.0.0,-0.3 0.0,0.0,-0.45
-0.15,0.0,-0.3 -0.1,0.0,-0.3 -0.1,0.0,0.0
POLYGON 0.0,0.1,0.0 0.0,0.1,-0.3 0.0,0.15,-0.3 0.0,0.0,-0.45

0.0,-0.15,-0.3 0.0,-0.1,-0.3 0.0,-0.1,0.0;

END STRUCTURE;
{define a light which can be rotated independently}

Sunset := BEGIN STRUCTURE
FIELD OF VIEW 90 FRONT=2.2 BACK=3.6;
LOOK AT 0,0,0 FROM 0,0,-3;
SET DEPTH CLIPPING OFF;
Rot := ROTATE 0;
VECTOR N=2 0,0,-.9 0,0,0;
INSTANCE Sun;
TRANSLATE 0,0,-.9;
RATIONAL POLYNOMIAL .2,0,8 -.2,-.2,-8 0,.1,4 CHORDS=15;
RATIONAL POLYNOMIAL .2,0,-8 —.2,-.2,8 0,.1,-4 CHORDS=15;
VECTOR SEPARATE n=15 -.1,0 -.05,0 .05,0 .1,0 0,-.1 0,-.05 0,.05 0,.1
~.0707,-.0707 -.0354,-.0354 .0354,.0354 .0707,
.0707-.0707,.0707 -.0354,.0354 .0354,-.0354
.0707,-.0707;
END STRUCTURE;
Sun := ILLUMINATION 0,0,-1;

{define a light which can be rotated with the object}

98 - RENDERING OPERATIONS

Moonset := BEGIN STRUCTURE
SET DEPTH _CLIPPING OFF}
Rot := ROTATE 0;
VECTOR N=2 0,0,-.9 0,0,0;
INSTANCE Moon;
TRANSLATE 0,0,-.9;
RATIONAL POLYNOMIAL .2,0,4 -.2,-.2,-4 0,.1,2 CHORDS=15;
RATIONAL POLYNOMIAL .12,0,4 -.12,-.2,-4 0,.1,2 CHORDS=15;
END STRUCTURE;
Moon := ILLUMINATION 0,0,-1;

{set up a place to re-display a saved hidden-line picture}
Disphlview := MATRIX 4x4 1,0,0,0 0,1,0,0 0,0,0,0 0,0,1,1 THEN Hlview;
{set up initial display structure}

World := BEGIN STRUCTURE
Bits := SET CONDITION 1 ON;
IF CONDITION | OFF THEN Disphlview;
IF CONDITION 1 ON;
Persp := FIELD OF VIEW 45 FRONT=2.2 BACK=3.6;
LOOK AT 0,0,0 FROM 0,0,-3;
VIEWPORT HORIZONTAL=-1:1 VERTICAL=-1:1 INTENSITY=1:1;
SET DEPTH _CLIPPING ON;
Trans := TRANSLATE by 0,0,0;
Rot := ROTATE 0y
IF CONDITION 2 ON THEN Sect;
Rendering := Surface; { rendering operation node, initially a surface }
IF CONDITION 3 ON THEN Sunset;
[F CONDITION 4 ON THEN Moonset;
INSTANCE Object;
END STRUCTURE;
DISPLAY World;

{network to translate object}
A :=F:ADDC;
CONNECT Ac<l>:<l>World.trans;

CONNECT Ac<l>:<2>A;
SEND V3D(0,0,0) TO <2>A;

{network to rotate/scale object}

RENDERING OPERATIONS - 99

M := F:CMUL;

CONNECT M«<1>:<1>World.rot;
CONNECT Mcl>:cl>M;

SEND M3D(1,0,0 0,1,0 0,0,1) TO <1>M;

{network to translate sectioning plane}

A2 := F:ADDC;

CONNECT A2<¢l>:<1>Sect.trans;
CONNECT A2<¢15:<2>A2;

SEND V3D(0,0,0) TO <2>A2;

{network to rotate/scale sectioning plane}

M2 := F:CMUL;

CONNECT M2<1»:<1>Sect.rot;
CONNECT M2<1>:<1>M2;

SEND M3D(1,0,0 0,1,0 0,0,1) TO <1>M2;

{network to rotate sun}

m Msun := F:CMUL;
CONNECT Msun«<ls:<1>Sunset.rot;
CONNECT Msun<!ly:<1>Msun;
SEND M3D(1,0,0 0,1,0 0,0,1) TO <1>Msun;

{network to rotate moon}

Mmoon := F:CMUL;

CONNECT Mmoon<l>:<1>Moonset.rot;
CONNECT Mmoon«<!l>:<I>Mmoon;

SEND M3D(1,0,0 0,1,0 0,0,1) TO <1>Mmoon;

{network selecting original or rendered view}

Original := F:CONSTANT;

CONNECT Original<l>:<1>World.rendering;
SEND FALSE TO «2>0riginal; { to switch to original view }
CONNECT DIALS<I>:<1>0riginal;
CONNECT DIALS<25>:<1>0riginal;
CONNECT DIALS<35:<1>0riginal;
CONNECT DIALS<4>:<1>0riginal;
CONNECT DIALS<55>:<1>0riginal;
CONNECT DIALS<6>:<1>0Original;
CONNECT DIALS<75:<1>0riginal;
CONNECT DIALS<85:<1>0riginal;

100 - RENDERING OPERATIONS

{color network}

Tripcolor := F:SYNC(5);

SETUP CNESS TRUE «2>Tripcolor;

SETUP CNESS TRUE <3»>Tripcolor;

SETUP CNESS TRUE <4>Tripcolor;

SETUP CNESS TRUE <5>Tripcolor;

CONNECT Tripcolor<2>:<3>SHADINGENVIRONMENT;
CONNECT Tripcolor<3>:<7>SHADINGENVIRONMENT;
CONNECT Tripcolor<4>:<3>SHADINGENVIRONMENT;
CONNECT Tripcolor<55>:<2>SHADINGENVIRONMENT;
SEND V3D(600,440,40) TO <2>Tripcolor;

SEND FALSE TO «<3»>Tripcolor;

SEND V3D(0,0,0) TO <5>Tripcolor;

Suncolor := F:ACCUMULATE;

CONNECT Suncolor<l>:<2>Sun;

CONNECT Suncolor<1>:<2>SHADINGENVIRONMENT;
CONNECT Suncolor<ls:<1>Tripcolor;

SEND V3D(0,0,1) TO <2>Suncolor;

SEND 0 TO <3»>Suncolor;

SEND V3D(20,.25,.25) TO <4>Suncolor;

SEND V3D(360,1,1) TO <5>Suncolor;

SEND V3D(0,0,0) TO <6>Suncolor;

Mooncolor := F:ACCUMULATE;

CONNECT Mooncolor<1>:<2>Moon;

CONNECT Mooncolor<l>:<2>SHADINGENVIRONMENT;
CONNECT Maooncolor<ls>:<l>Tripcolor;

SEND V3D(0,0,1) TO <2>Mooncolor;

SEND 0 TO <3>Mooncolor;

SEND V3D(20,.25,.25) TO <4>Mooncolor;

SEND V3D(360,1,1) TO <5>Mooncolor;

SEND Vv3D(0,0,0) TO <6>Mooncolor;

Backgroundcolor := F:ACCUMULATE;

CONNECT Backgroundcolor<l>:<2>SHADINGENVIRONMENT;
CONNECT Backgroundcolor<l>:<l>Tripcolor;

CONNECT Backgroundcolor<l>:<5>Tripcolor;

SEND V3D(0,0,0) TO <2>Backgroundcolor;

SEND 0 TO <3>Backgroundcolor;

SEND V3D(20,.25,.25) TO <4>Backgroundcolor;

SEND V3D(360,1,1) TO <5>Backgroundcolor;

SEND V3D(0,0,0) TO <6>Backgroundcolor;

RENDERING OPERATIONS - 101

{mux the dials}

Dialmux := F:CROUTE(5);

CONNECT Dialmuxc<l>:<l>Ay

CONNECT Dialmux<2>:<1>A2;

CONNECT Dialmux<3»>:<1>Suncolor;
CONNECT Dialmux<4>:<1>Mooncolor;
CONNECT Dialmux<5>:<1>Backgroundcolor;

Dialmux2 := F:CROUTE(5);
CONNECT Dialmux2<l>:<2>M;
CONNECT Dialmux2<2>:<2>M2;
CONNECT Dialmux2<¢3>:<2>Msun;
CONNECT Dialmux2<45>:<2>Mmoon;

{network to translate in x}

Tx := F:XVEC;
CONNECT Tx<!>:<2>Dialmux;
CONNECT DIALS«<1>:<1>Tx;

{network to translate in y}

Ty := F:YVEC;
CONNECT Ty«<l>:<2>Dialmux;
CONNECT DIALS<2>:<1>Ty;

{network to translate in z}

Tz := F:ZVEC;
CONNECT Tz<1»>:<2>Dialmux;
CONNECT DIALS<¢3>:<1>Tz;

{network to scale}

S := F:SCALE;
CONNECT S<1l>:<2>Dialmux2;

Sa := F:ADDC;

CONNECT Sac<l>:<155;
SEND 1 TO <2>Sa;
CONNECT DIALS<45>:<15Sa;

{network to rotate in x}

102 - RENDERING OPERATIONS

Rx := F:XROTATE;
CONNECT Rx<1>:<2>Dialmux2;

Sx := F:MULC;

CONNECT Sx<l>:<1>Rx;
SEND 100 TO <2>Sx;
CONNECT DIALS<5>:¢1>5x;

{network to rotate in y}

Ry := F:YROTATE;
CONNECT Ry«<l>:<2>Dialmux2;

Sy := F:MULC;

CONNECT Sy«<ls:<1>Ry;
SEND 100 TO <2>Sy;
CONNECT DIALS<6>:<15>Sy;

{network to rotate in z}

Rz := F:ZROTATE;
CONNECT Rz<l>:<2>Dialmux2;

Sz := F:MULC;

CONNECT Sz«<l»>:<1>Rz;
SEND -100 TO <2>Sz;
CONNECT DIALS<7>:<15Sz;

{network to adjust BACK clipping plane}

Backcelip := F:FQOV;

CONNECT Backcelip<l>:<1>World.persp;
SEND 45 TO <2>Backelip;

SEND 2.2 TO «<3>Backcelips

Backclipaccum := F:ACCUM;

CONNECT Backclipaccum«<ls>:<1>Backclip;
CONNECT Backelipaccum«<l>:<4>Backcelip;
CONNECT DIALS<8>:<1>Backclipaccum;
SEND 3.6 TO <2>Backclipaccum;

SEND 0 TO <3»>Backclipaccum;

SEND | TO <4>Backclipaccum;

SEND 30 TO <5>Backclipaccum;

SEND 2.2 TO <6>Backclipaccum;

{network to reset transformations}

RENDERING OPERATIONS - 103

Rs := F:SYNC(2);

CONNECT Rs<l»>:<1>World.trans;
CONNECT Rs<l»>:<2>A;

CONNECT Rs«<2>:<1>World.rot;
CONNECT Rs<2>:<1>M;3

CONNECT Rs<25>:<2>Rs;

SEND M3D(1,0,0 0,1,0 0,0,1) TO <2>Rs;

Rs2 := F:SYNC(2);

CONNECT Rs2<¢l>:<1>Sect.trans;
CONNECT Rs2<¢1>:<2>A2;

CONNECT Rs2<¢25>:<1>Sect.rot;
CONNECT Rs2<¢25:<1>M2;

CONNECT Rs2¢2>:<2>Rs2;

SEND M3D(1,0,0 0,1,0 0,0,1) TO <2>Rs2;

Rssun := F:CONSTANT;

CONNECT Rssunc<l>:<1>Msun;

CONNECT Rssun<l»>:<1>Sunset.rot;

SEND M3D(1,0,0 0,1,0 0,0,1) TO <2>Rssun;

Rsmoon := F:CONSTANT;

CONNECT Rsmoon<l>:<1>Mmoon;
CONNECT RsMoon<l»>:<1>Moonset.rot;
SEND M3D(1,0,0 0,1,0 0,0,1) TO <2>Rsmoon;

R := F:CROUTE(5);
CONNECT R<l>:<1>Rs;
CONNECT R«<2>:<1>Rs2;
CONNECT R«<3>:<1>Rssun;
CONNECT R<4>:<1>Rsmoon;

{network to turn bits on and off}

Bits := F:CONSTANT;
CONNECT Bits<15:<5>World.bits;

{network to send to object or sectioning plane}

Waylabel := F:INPUTS CHOOSE(6);
CONNECT Waylabel<ls:<1>Flabell2;
SEND 'OBJECT' TO <l>Waylabel;
SEND 'PLANE' TO <2>Waylabel;
SEND 'SUN' TO <3>Waylabel;

SEND 'MOON' TO <4>Waylabel;
SEND 'BACK' TO <5>Waylabel;

104 - RENDERING OPERATIONS

Diallabel := F:SYNC(9);

CONNECT Diallabel<l>:<1>Dlabell;
CONNECT Diallabel<1>:<1>Diallabel;
CONNECT Diallabel<2>:<1>Dlabel?;
CONNECT Diallabel<2>:<2>Diallabel;
CONNECT Diallabel<3>:<1>Dlabel3;
CONNECT Diallabel<3>:<3>Diallabel;
CONNECT Diallabel<4>:<1>Dlabel4;
CONNECT Diallabel<4>:<45>Diallabel;
CONNECT Diallabel<55>:<1>Dlabel5;
CONNECT Diallabel<55>:<5>Diallabel;
CONNECT Diallabel<6>:<1>Dlabel6;
CONNECT Diallabel<6>:<6>Diallabel;
CONNECT Diallabel<«7>:<1>Dlabel7;
CONNECT Diallabel<75>:<7>Diallabel;
CONNECT Diallabel<8>:<1>Dlabel8;
CONNECT Diallabel<8>:<8>Diallabel;
SEND 'X-TRANS' TO «l>Diallabel;
SEND 'X-TRANS' TO <l>Diallabel;
SEND '"HUE"' TO <1>Diallabel;

SEND "HUE"' TO <«l>Diallabel;

SEND 'HUE' TO «!1>Diallabel;

SEND 'Y-TRANS' TO <2>Diallabel;
SEND 'Y-TRANS' TO «2>Diallabel;
SEND 'SAT' TO <2>Diallabel;

SEND 'SAT' TO «2>Diallabel;

SEND 'SAT' TO «2>Diallabel;

SEND 'Z-TRANS' TO «3>Diallabel;
SEND 'Z-TRANS' TO <3>Diallabel;
SEND 'INT' TO «3>Diallabel;

SEND 'INT' TO «<3>Diallabel;

SEND 'INT' TO <3»>Diallabel;

SEND 'SCALE' TO <4>Diallabel;
SEND 'X-ROT' TO <5»>Diallabel;
SEND 'Y-ROT' TO <6>Diallabel;
SEND 'Z-ROT' TO <7>Diallabel;
SEND 'BACKCLIP' TO <8>Diallabel;

Way := F:SYNC(2);

CONNECT Way«<2>:<1>Dialmux;
CONNECT Way<2>:<1>Dialmux2;
CONNECT Way<2>:<2>Ways;
CONNECT Way«<2>:<1>R;
CONNECT Way«<2>:<6>Waylabel;
CONNECT Way<2>:<2>Bits;
CONNECT Way«<2>:<9>Diallabel;

RENDERING OPERATIONS - 105

SEND FIX(1) TO <2>Way;
SEND FIX(2) TO <2>Way;
SEND FIX(3) TO <2>Ways;
SEND FIX(4) TQ <2>Way;
SEND FIX(5) TO <2>Way;
SEND TRUE TO <1>Way; {activate it}

{network to change from solid to surface}

Sslabel := F:BOOLEAN CHOOSE;
CONNECT Sslabel<l>:<1>Flabel7;
SEND 'SOLID' TO «2>Sslabel;

SEND 'SURFACE' TO <3»>Sslabel;

Issolid := F:NQOP;
CONNECT Issolid<1>:<2>World.rendering;
CONNECT Issolid<1>:<1>Sslabel;

Ss := F:SYNC(2);

CONNECT Ss<25>:¢2>S5s;

CONNECT Ss«<2>:<1>Issolid;

SEND TRUE TO <25Ss;

SEND FALSE TO <255s;

SEND FALSE TO «<15Ss; { initially a surface }

{network to control rendering style}

Stylab := F:SYNC(2);

Styval := F:SYNC(2);

Style := F:CONST;

SEND 'HIDDEN' TO <1>Stylab;
SEND '"WASH' TO <1>Stylab;
SEND 'FLAT' TO <1>Stylab;
SEND 'SMOOTH' TO <1>Stylab;
SEND 'XSECTION' TO «<1>Stylab;
SEND 'SECTION' TO «1>Stylab;
SEND 'BACKFACE"' TO <1>Stylab;
SEND 'SAVE-SEC' TO «<1>Stylab;
SEND 'SAVE-HL' TO «<1>Stylab;
SEND FIX(4) TO <1>Styval;
SEND FIX(5) TO <1>Styval;
SEND FIX(6) TO «1>Styval;
SEND FIX(7) TO <1>Styval;
SEND FIX(1) TO <1>Styval;
SEND FIX(2) TO «1>Styval;

106 - RENDERING OPERATIONS

SEND FIX(3) TO «1>Styval;
SEND 'OBJECT' TO «1l>Styval;
SEND "HLVIEW' TO «<1>Styval;
CONNECT Stylab<l»>:<1>Stylab;
CONNECT Stylabcl»>:<1>Flabel3;
CONNECT Styvalcl>:icl>Styvals
CONNECT Styvalc<l»>:<¢2>Style;

CONNECT Style<l»>:<1>World.rendering;
SEND FIX(0) TO «2>Styval;
SEND FIX(0) TO <2>Stylab;

{ some useful viewports }

Piclab := F:SYNC(2);

Picval := F:SYNC(2);

SEND 'SQUARE' TO «l>Piclab;
SEND 'BIG-PIC' TO <l1»>Piclab;

SEND 'I-0OF-2' TO <1>Piclab;

SEND '2-0OF-2' TO «l1»>Piclab;

SEND '"1-0OF-6" TO <1>Piclab;

SEND '2-0OF-6' TO <l>Piclab;

SEND '3-0OF-6"' TO «1>Piclab;

SEND '4-0OF-6"' TO <1»>Piclab;

SEND '5-0F-6' TO <1>Piclab;

SEND '6-0F-6' TO <1>Piclab;

SEND V3D (80,0,480) TO <l>Picval;
SEND V3D (0,-80,640) TO <1>Picval;
SEND V3D (0,80,320) TO <1 >Picval;
SEND V3D (320,80,320) TO <1>Picval;
SEND V3D (5,240,210) TO <1>Picval;
SEND V3D (215,240,210) TO <1>Picval;
SEND V3D (425,240,210) TO <1>Picval;
SEND V3D (5,30,210) TO <1»>Picval;
SEND V3D (215,30,210) TO <!1>Picval;
SEND V3D (425,30,210) TO <1>Picval;

CONNECT Piclab<l»>:<1>Piclab;

CONNECT Piclab<l>:<1>Flabel2;

CONNECT Picval<l>:<1>Picval;

CONNECT Picvalc«1>:<3>SHADINGENVIRONMENT;
CONNECT Picval<l>:<4>Tripcolor;

SEND | TO «2>Piclab;
SEND 1 TO «2>Picval;

RENDERING OPERATIONS - 107

{ buttons }

Fkmo := F:SWITCH;

CONNECT FKEYS«<l>:<1>Fkmo;s
CONNECT Fkmo<l»>:<1>Style;
CONNECT Fkmo<2»>:<2>Piclab;
CONNECT Fkmo<25>:<2>Picval;
CONNECT Fkmo<35>:<2>Stylab;
CONNECT Fkmo<35>:<2>styval;
CONNECT Fkmo<4>:<1>World.rendering;
CONNECT Fkmo<6>:<7>SHADINGENVIRONMENT;
CONNECT Fkmo<75>:<1>Ss;

CONNECT Fkmo<10>:<2>R;

CONNECT Fkmo<10»>:<1>Qriginal;
CONNECT Fkmoc<l1>:<1>Bits;
CONNECT Fkmo«<l1>:<1>QOriginal;
CONNECT Fkmo<12>:<1>Ways;

Fkm := F:INPUTS CHOOSE(13);
CONNECT Fkm<l>:<2>Fkmo;
CONNECT FKEYS<l>:<135Fkm;
SEND FIX(1) TO <1>Fkm;
SEND FIX(2) TO <2>Fkm;
SEND FIX(3) TO <3>Fkm;
SEND FIX(0) TO <4>Fkm;
SEND FIX(0) TO <5>Fkm;
SEND TRUE TO <6>Fkm;
SEND FIX(7) TO <7>Fkm;
SEND FIX(0) TO <8>Fkm;
SEND FIX(9) TO <9>Fkm;
SEND V3D(0,0,0) TO < 10>Fkm;
SEND FIX(11) TO <11>Fkm;
SEND FIX(12) TO <125Fkm;

SEND 'RENDER' TO «<1>Flabell;
SEND 'TOGGLE' TO «1>Flabels;
SEND 'CLEAR' TO «<1>Flabelé;
SEND 'RESET' TO <1>Flabell0;
SEND 'ON/OFF' TO <1>Flabelll;

{ some useful colors }

Blue :=ATTRIBUTE COLOR 0;
Magenta := ATTRIBUTE COLOR 60;
Red := ATTRIBUTE COLOR 120;
Yellow := ATTRIBUTE COLOR 180;
Green := ATTRIBUTE COLOR 240;
Cyan := ATTRIBUTE COLOR 300;
White := ATTRIBUTE COLOR 0,0,1;

108 - RENDERING OPERATIONS

{some other names for shadingenvironment}

Se := F:PASS();

CONNECT Sec<l>:<1>SHADINGENVIRONMENT;
CONNECT Se<2>:<2>SHADINGENVIRONMENT;
CONNECT Sec<3>:<3>SHADINGENVIRONMENT;
CONNECT Se<4>:<4>SHADINGENVIRONMENT;
CONNECT Se<55>:<5>SHADINGENVIRONMENT;
CONNECT Sec<6>:<6>SHADINGENVIRONMENT;
CONNECT Se<7>:<7>SHADINGENVIRONMENT;

Ambient := F:PASS(1);

CONNECT Ambient<l>:<1>SHADINGENVIRONMENT;
Background := F:PASS(1);

CONNECT Background<15>:<2>SHADINGENVIRONMENT;
Rasterviewport := F:PASS(1);

CONNECT Rasterviewport<l>:<3>SHADINGENVIRONMENT;
Exposure := F:PASS(1);

CONNECT Exposure<1>:<4>SHADINGENVIRONMENT;
Quality := F:PASS(1);

CONNECT Quality<l>:<5>SHADINGENVIRONMENT;
Depth := F:PASS(1);

CONNECT Depth<l>:<6>SHADINGENVIRONMENT;
Screenwash := F:PASS(1);

CONNECT Screenwash«<1>:<7>SHADINGENVIRONMENT;

{ make PS300 come up in shift line/local }
SEND 'R' TO <1 >KBHANDLER;

{EOF}

SAMPLE PROGRAMS

EVANS & SUTHERLAND

February 1985

E&S #901172-095 Pl

The contents of this document are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans & Sutherland.

Evans & Sutherland assumes no responsibility for errors or
inaccuracies in this document. It contains the most
complete and accurate information available at the time of
publication, and is subject to change without notice.

PS1, PS2, MPS, and PS 300 are trademarks of the Evans &
Sutherland Computer Corporation.

Copyright © 1985
EVANS & SUTHERLAND COMPUTER CORPORATION
P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84108

SAMPLE PROGRAMS

CONTENTS
INTRODUCTION ..ottt i et e e 1
ADAM. 300 ..ttt e e e 3
ADAM . FUN ot i i i i e e i e 7
COLLISION.300 . iiinteiei ittt ittt iaaaaaeneanens 17
COLLISION.FUN ittt i it e e et taaeae e 19
PROJECTN.300 . iitititeei ittt it it ee i aaaeneaeenenns 31
PROJECTN.FUN ittt it ettt it e eeaeaaenn 35
TRISQUARE.300 .ttt tieie ittt ettt enenaananeneanens 41
TRISQUARE.FUN ottt i it e e eeen 43

SETRATE ottt e e e e it e e 49

SAMPLE PROGRAMS -1

INTRODUCTION

The sample programs in this section illustrate various applications of the PS 300 for
design and analysis. Each application has two programs: a data structure file with an
extension of .300 and a function network file with an extension of .FUN. A header
section in each file explains what the application does. General practices illustrated in
the sample programs can give you ideas for your own applications programs.

A great deal of care has been taken to make these programs examples of good PS 300
programming practices. In the data structure files, notice particularly the use of
BEGIN STRUCTURE ... END STRUCTURE versus explicit naming. Notice also that the
code is tabbed and commented in a way that makes it very easy to read.

The sample programs are listed on the following pages and also distributed in loadable
form on magnetic tape. A selection in the command file TUTORIALS.COM lets you
load the sample programs individually from the host.

SAMPLE PROGRAMS -3

ADAM. 300

Programmed by: Neil Jon Harrington
Software Support Specialist

Evans & Sutherland

P.0O. Box 8700

Salt Lake City, Utah 84108

Created: April 21, 1983
Last update:

Data Structure for an articulated anthropoid robot called ADAM (A Dial Activated
Man). The data nodes (vector lists) for the sphere and the cylinder are not included in
this file. The sphere has a radius of | and is centered at the origin. The base of the
cylinder is at the origin lying in the XZ plane with the cylinder centered about the
positive Y axis. The cylinder has a radius of | and a height of .

ADAM.FUN is the function network file that will articulate this structure.

INIT DISP;
DISP Adam;

Adam := BEGIN_S
WINDOW X=-8.5:8.5 Y=-8.5:5.5
FRONT=0 BACK=10;
LOOK AT 0,0,0 FROM 0,0,-1;
Tran := TRAN 0,0,0;
Rot := ROT Y O3
Scale := SCALE 1;
Pick := SET PICKING OFF;
INST Upper_ Body,Lower_Body;
END S;

Upper_Body := BEGIN_S
SET PICK ID = Bj;
Rot := ROT O3
{Chest} SCALE .8,2.4,.7 THEN Cylinder;
INST Right Arm,Left Arm,Head;
END_S;

4 - SAMPLE PROGRAMS

Right Arm := BEGIN_S
TRAN -1.15,2.4,0;
{ Right Shoulder Joint }
SET PICK ID = C;
Rot := ROT 0O;
INST Upper_Arm,Right Lower_ Arm;
END_S;

Upper_Arm := BEGIN_S
{Shoulder Ball} SCALE .3,.2,.2 THEN Sphere;
TRAN 0,-2.1,0;
SCALE .25,2.1,.25 THEN Cylinder;
END_S;

Right Lower_ Arm := BEGIN_S
TRAN 0,-2.2,0;
Rot := ROT O3
INST Lower_ Arm,Right Handj
END_S;

Lower_Arm := BEGIN_S
{Elbow} SCALE .219 THEN Sphere; {7/32 rad.}
TRAN 0,-1.8,0;
SCALE .225,1.7,.225 THEN Cylinder;
END_S;

Right Hand := BEGIN_S
TRAN 0,-1.9,0;
SET PICK ID = D;
Rot := ROT O THEN Hand;
END_S;

Hand := BEGIN S
{Wrist} SCALE .175 THEN Sphere;
{Hand} TRAN 0,-.4,0;
SCALE .15,.4,.25 THEN Sphere;
END_S;

Left_Arm := BEGIN_S
TRAN 1.15,2.4,0;
SET PICK ID = C;
Rot := ROT O3
INST Upper_Arm,Left Lower Armj;
END_S;

SAMPLE PROGRAMS -5

Left Lower Arm := BEGIN S
TRAN 0,-2.2,0;
Rot := ROT O3
INST Lower_ Arm,Left Hand;
END S;

Left_Hand := BEGIN_ S
TRAN 0,-1.9,03
SET PICK ID = D;
Rot := ROT O THEN Handj;
END_S;

Head := BEGIN_S
TRAN 0,2.4,0;
SET PICK ID =
Rot := ROT O3
{Neck} SCALE .3,.6,.3 THEN Cylinder;
{Head} TRAN 0,1.5,0;
SCALE .6,1,.6 THEN Sphere;
END_S;

L

Lower_Body := BEGIN_S
SET PICK ID = B;
Rot := ROT 03
TRAN 0,-1,0;
INST Right Leg,Left Leg;
{Waist & Hips} SCALE .8,1,.7 THEN Cylinder;
END_S;

Right_Leg := BEGIN_S
TRAN -.45,-.25;
SET PICK ID = E;
Rot := ROT O3
INST Upper Leg,Right Lower_Leg;
END S;

Upper_Leg := BEGIN_S
{Hip Joint} SCALE .3 THEN Sphere;
TRAN 0,-2.5,0;
SCALE .35,2.5,.35 THEN Cylinder;
END_S;

Right_Lower Leg := BEGIN_S
TRAN 0,-2.6,0;
Rot := ROT x 03
INST Lower_Leg,Right Foot;
END S;

6 - SAMPLE PROGRAMS

Lower_Leg := BEGIN_S
INST Knee;
TRAN 0,-2.6,0;
{Limb} SCALE .3,2.5,.3 THEN Cylinder;
END S;

Knee := BEGIN_S
ROT 90;
TRAN 0,-.3,0;
SCALE .15,.6,.15 THEN Cylinder;
END_S;

Right Foot := BEGIN S
TRAN 0,-2.75,0;
SET PICK ID = F;
Rot := ROT O THEN Foot;
END S;

Foot := BEGIN_ S
{Ankle} SCALE .2 THEN Sphere;
TRAN 0,-.2,.2;
ROT x -90;
SCALE .3,1,.2 THEN Cylinder;
END_S;

Left Leg := BEGIN S
TRAN .45,-.25;3
SET PICK ID = E;
Rot := ROT O;
INST Upper_Leg,Left Lower Leg;
END_S;

Left_Lower_Leg := BEGIN_S
TRAN 0,-2.6,0;

Rot := ROT x O3
INST Lower Leg,Left Foot;
END_S;

Left Foot := BEGIN_S
TRAN 0,-2.75,0;
SET PICK ID = F;
Rot := ROT O THEN Foot;
END_S;

SAMPLE PROGRAMS -7

ADAM.FUN

Programmed by: Neil Jon Harrington
Software Support Specialist

Evans & Sutherland

P.O. Box 8700

Salt Lake City, Utah 84108

Created: October, 1982
Last update: February, 1985

Network to modify the structure in ADAM.300. Point at the joint you want to rotate
and the dials will be routed to modify that joint and others associated in that mode. If
you want to rotate and translate the whole robot, point at the head.

(!.3 { Code generated by Network Editor 1.07 }
{ ApAM }
{ Frame-Prefix Macro-Prefix }
{ Frame2:F2_ }
F2_P4:=F:CROUTE(6);
F2 _P5:=F:CROUTE(6);
F2_P6:=F:DXROTATE;
F2 P7:=F:DXROTATE;
F2_P8:=F:DXROTATE;
F2_P9:=F:DXROTATE;
CONN F2 _P4<3>:<1>F2 _P6;
CONN F2_P4<5>:<1>F2_P7;
CONN F2_P5¢3>:<1>F2_P8;
CONN F2_P5¢5>:<1>F2 _P9;
CONN F2_P6<1>:<1>Right_Lower_Arm.Rot;
CONN F2 P7<1>:<1>Right_Lower_ Leg.Rot;
CONN F2 P8<1>:<1>Left Lower Arm.Rot;
CONN F2 _P9<1>:<1>Left_Lower_ Leg.Rot;
SEND 200 TO <3>F2 P7;
SEND 200 TO ¢3>F2 P8;
SEND 200 TO «3>F2 P9;
SEND 200 TO <3>F2 P6;
SEND 0 TO <2>F2 P7;
SEND 0 TO <2>F2_P8;
SEND 0 TO <2>F2 P9;

') SEND 0 TO <2>F2_P6;

8 - SAMPLE PROGRAMS

{ Frame3:F3_ }
F3_P11:=F:MULC;

F3 P12:=F:MULC;

F3 P13:=F:MULC;

F3 P14:=F:XROTATE;
F3_P15:=F:YROTATE;
F3 P16:=F:ZROTATE;
F3_P17:=F:CROUTE(6);
F3 P18:=F:MULC;

F3 P19:=F:MULC;
F3_P20:=F:MULC;
F3_P21:=F:MULC;
F3_P22:=F:MULC;
F3_P23:=F:MULC;

CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
SEND
SEND
SEND

F3 P11<1>:<1>F3 Pl4;

F3 _P12<1>:<1>F3_P15;
F3_P13<1>:<1>F3_Pl6;

F3 P1l4<1>:<2>F3 P17;
F3_P15<¢1>:<2>F3 P17;
F3_P16<1>:<2>F3 P17;
F3_P17<1>:<1>F3 P18;
F3_P17¢2>:<1>F3_P19;
F3_P17<¢3>:<1>F3_P20;
F3_P17<4>:<1>F3_P21;
F3_P17<¢5>:<1>F3_P22;
F3_P17<6>:<1>F3 P23;
F3_P18<1>:<1>Head.Rot;
F3_P18«¢1>:<¢2>F3_P18;

F3 _P19<1>:<1>Upper_ Body.Rot;
F3_P19<¢1>:<2>F3_P19;
F3_P20<1>:<1>Right Arm.Rot;
F3_P20<1>:<2>F3_P20;

F3 P21<1>:<1>Right Hand.Rot;
F3 P21<1>:<2>F3_P21;
F3_P22<1>:<1>Right Leg.Rot;
F3_P22<1>:<2>F3_P22;
F3_P23<¢1>:<1>Right_Foot.Rot;
F3_P23<1>:<2>F3_P23;

200 TO <2>F3_Pl1;

200 TO <2>F3_P12;

200 TO <2>F3 P13;

SAMPLE PROGRAMS -9

{ Frame4:F4_}
F4_P24:=F:MULC;

F4 P25:=F:MULC;

F4 P26:=F:MULC;

F4 P27:=F:XROTATE;

F4 P28:=F:YROTATE;

F4 P29:=F:ZROTATE;

F4 P30:=F:CROUTE(6);

F4 P31:=F:CMUL;

F4 P32:=F:MULC;

F4 P33:=F:MULC;

F4 P34:=F:MULC;

F4 P35:=F:MULC;

F4 P36:=F:MULC;

CONN F4 P24<1>:<1>F4_P27;
CONN F4 P25<1>:<1>F4 _P28;
CONN F4 P26<¢1>:<1>F4 P29;
CONN F4 P27<1>:<2>F4_P30;
CONN F4 P28<1>:<2>F4 P30;
CONN F4 P29<1>:<2>F4_P30;
CONN F4 P30<1>:<2>F4_P31;
CONN F4_P30<2>:<1>F4_P32;
CONN F4 P30<3>:<1>F4 P33;
CONN F4 P30<4>:<1>F4_P34;
CONN F4 P30<5>:<1>F4_P35;
CONN F4 P30<¢6>:<1>F4 P36;
CONN F4 P31<1>:<1>Adam.Rot;
CONN F4 P31<1>:<1>F4_P31;

CONN F4 P32<¢1l>:<1l>Lower_Body.Rotj;

CONN F4_P32<¢1>:<2>F4 P32

CONN F4 P33<¢1>:<1>Left_Arm.Rot;

CONN F4 P33<1>:<2>F4 P33

CONN F4 P34<1>:<1>Left Hand.Rotj

CONN F4 P34<1>:¢2>F4 P34;

CONN F4 P35<¢1>:<1>Left_Leg.Rot;

CONN F4 P35<1>:<2>F4 P35;

CONN F4 P36<1>:<1>Left_Foot.Rot;

CONN F4 P36<1>:<2>F4_P363
SEND 200 TO <2>F4 P25;
SEND 200 TO <2>F4_P26;
SEND 200 TO <2>F4 P24

{ Picking Network:F5_ }
F5 P3:=F:PICKINFO;

F5 P39:=F:CHARCONVERT;
F5_P40:=F:SUBC;

10 - SAMPLE PROGRAMS

CONN TABLETIN<4>:<1>Adam.Pick;
CONN TABLETIN<6>:<1>PICK;

CONN PICK<1>:<1>F5 P3;

CONN PICK<2>:<1>Adam.Pick;

CONN PICK<3>:<1>Adam.Pick;

CONN F5_P3<2>:<1>F5 P39;

CONN F5_P39<1>:<1>F5 P40;

SEND FIX(64) TO <2>F5 P40;

SEND FIX(1) TO <2>F5 P3;

{ Framel:F1_}

{ Setup cness true <2-3>P10 }

F1 P10:=F:SYNC(3);

SETUP CNESS TRUE <2>F1 P10;

SETUP CNESS TRUE <3>F1 P10;

CONN F1_P10<¢2>:<2>F2 P6;

CONN F1_P10<2>:<2>F2 P7;

CONN F1_P10<2>:<2>F2_P8;

CONN F1_P10<2>:<2>F2 P9;

CONN F1_P10<3>:<1>Right_Lower Arm.Rot;
CONN F1_P10<¢3>:<1>Right Lower Leg.Rot;
CONN F1_P10<3>:<1>Left Lower_ Arm.Rot;
CONN F1_P10<3>:<1>Left Lower Leg.Rot;
CONN F1_P10<¢3>:<2>F3 P18;

CONN F1_P10<¢3>:<2>F3 P19;

CONN F1_P10<3>:<2>F3 _P20;

CONN F1_P10<¢3>:<2>F3 P21;

CONN F1_P10<¢3>:<2>F3_P22;

CONN F1_P10<3>:<2>F3_P23;

CONN F1_P10<¢3>:<1>Head.Rot;

CONN F1_P10<3>:<1>Upper_Body.Rot}
CONN F1_P10<3>:<1>Right Arm.Rot;
CONN F1_P10<¢3>:<1>Right Hand.Rot;
CONN F1_P10<3>:<1>Right Leg.Rot;
CONN F1_P10<3>:<1>Right Foot.Rot;
CONN F1_P10<3>:<1>F4 P31;

CONN F1_P10<3>:<2>F4_P32;

CONN F1. P10<3>:<2>F4 P33;

CONN F1_P10<¢3>:<2>F4 _P34;

CONN F1_P10<3>:<2>F4 P35;

CONN F1_P10<3>:<2>F4 P36;

CONN F1_P10<¢3>:<1>Adam.Rot;

CONN F1_P10<3>:<1>Lower_Body.Rot;
CONN F1_P10<¢3>:<1>Left_Arm.Rot;
CONN F1_P10<3>:<1l>Left_Hand.Rot;
CONN F1_P10<3>:<1>Left_Leg.Rot;
CONN F1_P10<3>:<1>Left_Foot.Rot;

SAMPLE PROGRAMS - 11

CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
SEND
SEND
SEND
SEND
SEND
SEND
SEND

FKEYS<1>:<1>F1 _P10;
DIALS<1>:<1>F3 P11;
DIALS<2>:<1>F3 P12;
DIALS<3>:<1>F3_P13;
DIALS<4>:<2>F2 P4;
DIALS<5>:<1>F4 P24
DIALS<6>:<1>F4 P25;
DIALS<7>:<1>F4 P26;
DIALS<8>:¢2>F2 P5;

F5_P40<1>:
F5 P40«<1>:
F5_P40<1>:
F5 P40<1>:

FIX(1) TO
FIX(1) TO
FIX(1) TO
FIX(1) TO

<1>F2 P4;
<1>F2_P5;
<1>F3_P17;
<1>F4 P30;
<1>F2_P4;
<1>F2_P5;
<1>F3_P17;
<1>F4 P30;

0 TO <2>F1_P10;
m3p(1,0,0 0,1,0 0,0,
m3p(1,0,0 0,1,0 0,0,

- -

) TO <3>F1_P10;
) TO <1>F1_P10;

12 - SAMPLE PROGRAMS

29L0svI

7 2esay
Zrerg
7r8!g
srelg

wnyN arnoy

Jo+u0y Apog 4amoy

g

(EIINAS "4

b 6o

g7

7 13sey
crelg
zre:a
1re:q

wny a3noy

Jo43u0y Apog saddp

€
z k4
|

) A@ 4

(L°0°0 ¢7°1°¢ 0°671)PEwW

CAING

aid

OLdNVIWNY <&
OLdNINY 2>

sivia,

~—NEM T WO~

£ 0d

—an

[iasay
orasay
8rera
kr8lag

wnpyN arnoy

[@43u03 sesuy p S#O0G[37

andy
2nay

Z bq

AT

A@ C1ixrs

ury arnoy

y40mray 6ury21y4

s €d

N

ssauo dnjpag| -
ssauo dniag| -\

(Function Network for ADAM.300)

Figure 1. ADAM.FUN (Sheet | of 5)

SAMPLE PROGRAMS - 13

108 937174INC T L1477 L +Cf—4

108 ‘Hov¥INO 77147 T< 11—

108 93783M0 17 1HI1Y ¢ 1 >EpF—4

108 KoV HIN0 T LHT Y 1]

Trosay \
yi
4 grasay\
upfomxaim N A
]
4o H ;
S
>
£ (9)31n0¥3 "4 . {
¢ ¢ g7910 \
1 —II/
5o
aviowxaia [N
1
7d
ST
31v10¥X0 uN <]
I
Zd H ,
S
1]
ﬁ S (9yainowdy, /
£ 1820
! ! any arnoy \
e}

I1vio¥xa 4] ™

3

9d

0o0c

Figure 1. ADAM.FUN (Sheet 2 of 5)

14 - SAMPLE PROGRAMS

~ SRUTEFI u\
108 10057 1HITY < 1 Gp | X
T2

109937 LHIIY < 1 5G]

108 ONYHTIHIIY <1 G}

LOY WYV TLHIFY< [»AMT

N\

100 4208 43dan < 1 <3P

~N®w 0o

[23say

—] 00z

onuhnomo»uu

i

N\

108 "a¥3H < 1 <G

Lid

3LY10¥Z 4 MM,)
! ! 7%
9T £1d
ILVIO¥A S CRUTEFI)
! ! zre:g
Sid Zid
ILVI0¥X:4 RUTEF R)
! ! 17820
Fid 774
¥

wny 2300y \

Figure 1. ADAM.FUN (Sheet 3 of 5)

SAMPLE PROGRAMS - 15

108 1004714371 »@w

J70H "..Nll\

284

1099377143741

u._:znumllll\

5&d

108 OnVH™193T 1 3<p

u..::".&u A

vsd

.y .tuw:tu?t@wg

3NKW ..A_N|\

£&€d

104 400940 T £

108 RYOY <L)

u..:z..gwll\

(___/
L

(9231n0¥3 74,

[rosay

—| 00z

L

Z&d

NI "._N

t£d

24

ILVL0¥Z 4 MK 4|/)
! ! O
524 924
ILVI0¥A S JNK4_|
/ L m /
S F 9rerg\
rEZ] $7d
3LV10¥X:4 3K 3|/)
_ ! I
724 52d
/

wny @300y \

Figure 1. ADAM.FUN (Sheet 4 of 5)

16 - SAMPLE PROGRAMS

N

\tb\\ 2n08"

aans "LNIR& (69} x4

Ord

»au>zoum<:uuu~

6&d

—NM TV ON®

N €
EZCGZ.LN; ﬂHN

Ct)>24

€
xumnn

~ N Mmoo

14

z:u._m:M

)

1 t

NI WYOV <l »@

ADAM.FUN (Sheet 5 of 5)

Figure 1.

SAMPLE PROGRAMS - 17

COLLISION. 300

Programmed by: Neil Jon Harrington
Software Support Specialist

Evans & Sutherland

P.0. Box 8700

Salt Lake City, Utah 84108

Created: October, 1984
Last update: February, 1985

PS 300 data structure, consisting of a ball in a box. The function network in
Collision.fun modifies this structure to simulate the ball bouncing in the box with no
gravity and elastic collisions.

INIT DISP;
DISP Collision;

Collision := BEGIN_S

SET INTENSITY ON .75:1;

SET DEPTH_CLIPPING ON;

FOV 70 FRONT = 1.4 BACK = 53

LOOK AT 0,0,0 FROM 1.5,1.3,-2.4;
Yrot := ROT O3

SET COLOR 240,1 THEN Box;

SET COLOR 120,1 THEN Ballj

SET COLOR 0,1 THEN Path;

END_S;

Box := SCALE 1 THEN Cube;

Ball := BEGIN_S

Tran := TRAN 0,0,0;

Rot := ROT O3

Scale := SCALE .1 THEN Sphere;
END_S;

18 - SAMPLE PROGRAMS

Path := VEC n=10000 0,0,0;

VEC Item n=16

Cube :

SAMPLE PROGRAMS - 19

COLLISION.FUN

Programmed by: Neil Jon Harrington

Software Support Specialist
Evans & Sutherland

P.O. Box 8700

Salt Lake City, Utah 84108

Created: October, 1984
Last update: February, 1985

Network to modify structure created in Collision.300. See description in that file.

{ Code generated by Network Editor 1.07 }
{ COLLISION }
{ Frame-Prefix Macro-Prefix }

{ Framel:M1$F1_ }

M1$F1 P1:=F:INPUTS CHOOSE(13);

M1$F1_P2:=F:ROUTE(12);

CONN
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND

M1$F1 P1<1>:<¢2>M1$F1 P2;

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO

<1>M1$F1_P1;
<2>M1$F1 P1;
<3>M14$F1_P1;
<4>M1$F1 P1;
<5>M1$F1 _P1;
<6>M1$F1 P1;
<7>M1$F1 P1;
<8>M1$F1 P1;
<9>M1$F1 P1;
<10>M1$F1_P1;
<11>M1$F1 P1;
<12>M1$F1_P1;

{ Motion Control:F2_ }
F2 P2:=F:SYNC(4);

F2 P6:=F:LIMIT;
F2_P7:=F:LIMIT;

F2 P8:
F2 P9:

=F:LIMIT;
=F:BROUTEC

F2_P10:=F:BROUTEC;
F2_P11:=F:BROUTEC;
F2 _P12:=F:MULC;

20 - SAMPLE PROGRAMS

F2 P13:=F:MULC;

F2 P14:=F:MULC;

F2 P15:=F:XVECTOR;
F2_P16:=F:YVECTOR;

F2 P17:=F:ZVECTOR;

F2 P18:=F:ADD;
F2_P19:=F:ADD;

F2 P20:=F:ADD;
F2_P41:=F:ACCUMULATE;
F2 P42:=F:ACCUMULATE;
F2 P43:=F:ACCUMULATE;

F2 P38:=F:ADD;
F2 P39:=F:ADD;

CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN

F2_P2¢2>:<1>F2_P18;
F2_P2<¢3>:<1>F2_P19;
F2 P2<4>:<1>F2_P20;
F2 P6<1>:<1>F2_P15;
F2 P6<1>:<2>F2_P18;
F2 P6<3>:<1>F2_P9;

F2 _P7<1>:<1>F2_Pl6;
F2_P7<1>:<2>F2_P19;
F2 P7<¢3>:<1>F2_P10;
F2 _P8<1>:<1>F2_P17;
F2_P8<1>:¢<2>F2 P20;
F2 _P8¢3>:<1>F2_Pl1;
F2 P9<1>:<2>F2_P2;

F2 P9<2>:<1>F2 P12;
F2 _P10<1>:<3>F2_P2;
F2 P10<2>:<1>F2_P13
F2 P11<1>:<4>F2 P23
F2 P11<2>:<1>F2 P14
F2 P12<1>:<2>F2 P2
F2_P12<1>:<2>F2_P9;
F2 P12<1>:<2>F2_P4l;
F2 P13<1>:<3>F2_P2;
F2 P13<1>:<2>F2 P10
F2 P13<1>:<2>F2 P42
F2 P1l4c<l>:<4>F2 P25
F2_Pl4<1>:<2>F2_ P11
F2 Pl4cl>:<2>F2 P43
F2 _P15<1>:<1>F2 P38
F2 P16<1>:<2>F2 P38
F2_P17<¢1>:<2>F2 P39
F2 P18<1>:<1>F2 P6;
F2 P19<1>:<1>F2 P7;
F2 P20<1>:<1>F2_P8;
F2 P38<1>:<1>F2 P39;

F2 P39<1>:<1>Ball.Tran;
F2 P41<¢1>:¢<2>F2 P9Y;

we

we

e we

we we ve we we

SAMPLE PROGRAMS - 21

CONN F2 P42<1>:<¢2>F2 P10;
CONN F2_P43<1>:¢2>F2 Pl1;
SEND -.9 TO <3>F2 P6;
SEND —-.9 TO <3>F2_P7;
SEND -.9 TO <3>F2 P8;
SEND .9 TO <2>F2 P6;
SEND .9 TO <2>F2 P7;
SEND .9 TO <2>F2_P8;
SEND O TO <6>F2 P4l;
SEND 0 TO <6>F2 P42;
SEND 0 TO <6>F2 P43;
SEND 10 TO <5>F2 P4l;
SEND 10 TO <5>F2 P42;
SEND 10 TO <5>F2_P43;
SEND .1 TO <4>F2_P4l;
SEND .1 TO <4>F2 P42;
SEND .1 TO <4>F2 P43;
SEND 0 TO <3>F2 P41,
SEND 0 TO <3>F2_P42;
SEND 0 TO <3>F2_P43;
(qn\ SEND .03 TO <4>F2_P2;
SEND .03 TO <2>F2_P11;
SEND .03 TO <2>F2_P43;
SEND .02 TO <3>F2_P2;
SEND .02 TO <2>F2 P10;
SEND .02 TO <2>F2_P42;
SEND .01 TO <2>F2_P2;j
SEND .01 TO <2>F2_P9;
SEND .01 TO <2>F2_P4l;
SEND 0 TO <2>F2 P18;
SEND 0 TO <2>F2 P19;
SEND 0 TO <2>F2_P20;
SEND -1 TO <2>F2_P12;
SEND -1 TO <2>F2 _P13;
SEND -1 TO <2>F2 Pl4;
{ Clock Control:F3 '}
F3_Pl:=F:CLFRAMES;
F3 P22:=F:CONSTANT;
F3 P23:=F:EDGE DETECT;
F3_P25:=F:ACCUMULATE;
F3 P27:=F:FIX;
F3_P28:=F:XOR;
F3 _P65:=F:XROTATE;
CONN F3_P1<2>:<1>F3_P22;
CONN F3 P1<¢2>:<1>F3_P65;
CONN F3 P1<2>:<5>F3_Pl;
(”!3 CONN F3 P22<¢1>:<1>F3_P23;
CONN F3 P25¢1>:<1>F3_P27;
CONN F3 P27<1>:<1>F3_P1;

22 - SAMPLE PROGRAMS

CONN F3_P28<1>:<6>F3_P1;

CONN F3 P28<1>:<2>F3_P28;

CONN F3_P65<1>:<1>Ball.Rot;
SEND FIX(0) TO <2>F3_Pl;

SEND FALSE TO <3>F3_P1;

SEND FIX(1) TO <4>F3 _Pl;

SEND FIX(0) TO <5>F3_Pl;

SEND FALSE TO <6>F3 P1;

SEND FIX(1) TO <1>F3_Pl;

SEND FALSE TO <1>F3 P23;

SEND TRUE TO <2>F3_P22;

SEND TRUE TO <2>F3_P23;

SEND 1 TO <2>F3_P25;

SEND 1 TO <3>F3_P25;

SEND 10 TO <4>F3 P25;

SEND 60 TO <5>F3_P25;

SEND 1 TO <6>F3_P25;

SEND FALSE TO <2>F3_P28;

{ Framel:M2$F1 }

{ Box Size }
M2$F1_P1:=F:ACCUMULATE;
M2$F1_P2:=F:XVECTOR;
M2$F1_P3:=F:YVECTOR;
M2$F1_P4:=F:ZVECTOR;

M2$F1 P5:=F:CONSTANT;
M2$F1_P6:=F:NOP;

CONN M2$F1 P2<1>:<1>M2$F1_P1;
CONN M2$F1 P3<¢1>:<1>M2$F1_P1;
CONN M2$F1 P4<l>:<1>M2$F1_P1;
CONN M2$F1 P5¢1>:¢2>M2$F1_Pl;
SEND V3D(.01,.01,.01) TO <6>M2$F1 P1;
SEND 1 TO <4>M2$F1_Pl;

SEND V3D(1,1,1) TO <2>M2$F1_Pl;
SEND V3D(1,1,1) TO <2>M2$F1_P5;
SEND V3D(1,1,1) TO <5>M2$F1_Pl;
SEND V3D(1,1,1) TO <1>M2$F1_Pé6;
SEND 0 TO <3>M2$F1_P1;

{ Box/Ball Size:F4_ }
F4_P31:=F:SUBC;

F4 P32:=F:SCALE;

F4 P33:=F:PARTS;

F4 P34:=F:PARTS;

F4 P35:=F:MULC;

F4 Pu44:=F:DSCALE;

F4 P45:=F:VEC;

F4 PL6:=F:VEC;

F4 P47:=F:FETCH;

VAR Box_Size;

SAMPLE PROGRAMS - 23

CONN M2$F1 Pl<1>:<1>F4 P32;
CONN M2$F1_P1l<1>:<1>F4 P31;
CONN M2$F1 Pl<1l>:<1>Box Size;
CONN M2$F1 P5¢1>:<1>F4 P32;
CONN M2$F1 P5¢1>:<1>F4 P31;
CONN M2$F1_P5<1>:<1>Box Size;
CONN M2$F1 _P6<1>:<1>F4 P32;
CONN M2$F1_P6<1>:<1>F4 P31;
CONN M2$F1 P6<1>:<1>Box Size;
CONN F4_P31<1>:<1>F4_P33;

CONN F4 P31<1>:<1>F4_P35;

CONN F4 P32<¢1>:<1>Box;

CONN F4 P35<1>:<1>F4 P34;

CONN F4_ P44c¢l>:<¢1>Ball.Scale;
CONN F4 PA4L4<2>:<3>F4_PLl4;

CONN F4 PA44¢2>:<1>F4_P45;

CONN F4 P4L¢2>:<¢2>F4_P45;

CONN F4_P4L<¢2>:<2>F4_PLb;

CONN F4 P45<¢1>:<1>F4_PLb;

CONN F4 P46<1>:<1>F4_P47;

CONN F4 P46<¢1>:<2>F4_P31;

CONN F4 P47<¢1>:<1>F4 P31;

SEND V3D(1,1,1) TO <1l>Box Size;
SEND 'Box_Size' TO <2>F4_P47;
SEND .05 TO <5>F4 P44

SEND 1 TO <4>F4 Phij

SEND .1 TO <2>F4_Pi44;

SEND .1 TO <3>F4_P4l4;

SEND V3D(.1,.1,.1) TO <2>F4 P31;
SEND -1 TO <2>F4 P35;

{ Path:F5_}
F5_P49:=F:CBROUTE;

F5 P50:=F:X0R;

CONN F5_P49<¢1>:<append>Path;
CONN F5_P50¢<1>:<2>F5_P50;

CONN F5_P50¢1>:<1>F5_P49;

SEND TRUE TO <2>F5_P50;

SEND TRUE TO <1>F5_P49;

{ Labels:F6_ }

SEND 'RESET' TO <1>FLABEL11l;
SEND 'STRT/STP' TO <1>FLABEL10;
SEND 'SLOWER' TO <1>FLABEL4;
SEND 'FASTER' TO <1>FLABEL3;
SEND 'CLR PATH' TO <1>FLABEL2;
SEND 'TRACE?' TO <1>FLABELL;
SEND 'BALLSIZE' TO <1>DLABELS;
SEND 'Z VEL' TO <1>DLABEL7;
SEND 'Y VEL' TO <1>DLABEL6;

24 - SAMPLE PROGRAMS

SEND
SEND
SEND
SEND
SEND

'X VEL' TO <1>DLABEL5;
'0S Y ROTATE' TO <1>DLABEL4;
'Z SIZE' TO <1>DLABEL3;
'Y SIZE' TO <1>DLABEL2;
'X SIZE' TO <1>DLABELL;

{ Framel:F1_}
F1_P48:=F:DYROTATE;

CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
SEND
SEND
SEND
SEND
SEND

DIALS<1>:<¢1>M2$F1 P2;
DIALS<2>:<1>M2$F1 P3;
DIALS<3>:<1>M2$F1 P4;
PIALS<4>:<1>F1 P48;
DIALS<5>:<1>F2 P41;
DIALS<6>:<1>F2 P42;
DIALS (7>:<1>F2_P43;
DIALS<8>:<1>F4 P44;
M1$F1 _P2<¢1>:<1>F5 P50;
M1$F1_P2¢2>:<clear>Path;
M1$F1_P2¢3>:<1>F3 P25;
M1$F1_P2<4>:<1>F3 P25;
M1$F1_P2<¢10>:<1>F3 P28;
M1$F1 P2<¢11>:<¢1>M2$F1 P5;
FKEYS<1>:<13>M1$F1 P1;
FKEYS<1>:<¢1>M1$F1_P2;
F1_P48<1>:«<1>Collision.Yrot;
F2 P2<1>:<1>F3 P23;

F2 P39<¢1>:<2>F5_P49;
F3_P23¢2>:<1>F2_P2;

F4 P33¢1>:<2>F2_P6;

F4 P33¢2>:<2>F2 P7;

F4 P33¢3>:¢<2>F2_P8;

F4 P34<¢1>:¢<3>F2_P63

F4 P34<¢2>:¢<3>F2_P7;

F4 P34¢3>:¢3>F2_P8;

2 TO <4>M1$F1 P1;

-2 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>