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PS 300 TUTORIAL VODULES 

ADVANCED CONCEPTS 

This volume consists of six tutorial modules which detail more advanced concepts of 
PS 300 graphics programming. Because it builds on fundamental information detailed in 
Volume 2A, you should read Volume 2A first. 

Each tutorial module covers a PS 300 programming concept or group of related 
concepts. Because each module details a separate, advanced skill, the modules may be 
read in any order desired. 

Note that this volume contains the module USING THE PS 340. This information is 
specific to users of the PS 340; it need not be read by other users. 

The following provides a capsule description of each module: 

CONDITIONAL RE~E'EREiVCING describes how detail can be added to or deleted from a 
view on the screen. 

FUNCTION NETWORKS II describes more advanced ways to use function networks 
(refer to FUNCTION NETWORKS I in Volume 2A for fundamental uses of function 
networks). This includes multiple uses of dials (via function keys), labeling dial LEDs, 
limiting a model's motion, and storing/retrieving variables. 

TEXT MODELING details how to create character strings, how to use commands and 
functions to manipulate character strings, and how to create and use different 
character fonts. 

PICKING describes how to use the data tablet to activate a given action by picking an 
object being displayed. 

TRANSFORMED DATA is the vector list or matrix representation of transformations 
which have been applied to an object. This module details how to retrieve transformed 
data so that it can be manipulated as a separate entity in the model's display tree or 
retrieved by the host computer. 

USING TI-IE PS 340 describes how to define polygonal objects, including how to perform 
rendering operations for both vector and raster displays. 



In addition to the tutorial modules, this volume contains reference material, including 
sample programs illustrating various PS 300 programming techniques, and a glossary of 
terminology specific to the PS 300. 

The appendix contains a paper by Dr. Alan L. Davis. The PS 300 function network 
facility bears a striking resemblance to data-flow concepts and theory that have been 
the subject of research for numerous years. Dr. Davis was contracted to write a 
self-contained tutorial discussion of data-driven programming in general and PS 300 
function network programming in particular. It is hoped that this paper will assist the 
PS 300 user in writing well-formed function network programs which are efficient, easy 
to test and debug, and easy to modify. 
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CONDITIONAL REFERENCING - 1 

This module introduces and explains Conditional Referencing--ways to display 
selected branches of a display tree without displaying other branches. 

Conditional referencing is useful, for example, if you have a model of an assembly that 
you would like to add parts to or take parts from, showing various stages of 
development or assembly. 

There may be layers of detail in your model that you would like to be able to overlay 
or strip off. An example of adding detail might start with an outline map of the 
United States, then sequentially add major rivers, mountain ranges, state borders, 
major cities, county borders, etc. 

You might also want to display different views of an object at different times to 
animate an object, or alternately display and blank an object at a selectable rate 
(blinking). 

These kinds of operations are achieved with conditional referencing, using three 
methods: conditional-bit settings, level-of-detail settings, and rate settings. 

To use conditional referencing, a minimum of two nodes must be placed in a display 
tree. The first node (called a SET node) sets a condition: 

THE CONDITION IS 1 

The second node (called an IF node) tests the condition and makes the traversal of the 
branch (and therefore the display of data indicated by that branch) dependent on the 
condition set in the first type of node: 

IF THE CONDITION IS 1 THEN DISPLAY Object 1 

IF THE CONDITION IS 2 THEN DISPLAY Object2 

Figure 1 shows these nodes in a display tree. These nodes are attribute nodes and 
follow the same rules of placement and of use as operate nodes. 
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Cond Object 

IAS039b 

Figure 1. Display Tree Including Conditional Referencing Nodes 

In the above example, displaying the SET node (Cond_Object) will result in 
Object 1 being displayed and Object2 not being displayed. This is because the 
condition is not satisfied for the branch with Object2. By _changing the 
condition from 1 to 2 in the SET node, Object2 will be displayed and Objectl 
will not be displayed. 

The values in both the SET node (Cond_Object) and the IF nodes (Object 1, 
Object2) can be changed interactively. For example, the two branches could be 
alternately displayed by toggling the numbers in the SET node between I and 2. 

The SET and IF nodes and the commands to create them are explained in 
subsequent sections. 
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OBJECTIVES 

In this module, you will learn to display selected parts of your display tree using: 

■ Conditional—bit attribute settings 

■ LeveZ—of—detail attribute settings 

■ Rate attribute settings 

PREREQUISITES 

Before reading this module, you should be familiar with the rules for using 
operation nodes in display structures ("Modeling" module) and the differences 
between matrix operations and attribute operations ("Graphics Principles"). 
This module uses the Robot example created in the "Modeling" and "PS 300 
Command Language" modules. 
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USING CONDITIONAL -BIT ATTRIBUTE SETTINGS 

Conditional bits are used to display selected branches of a display tree, 
independent of whether other branches are displayed. Branches of a display 
tree that have IF nodes that are not satisfied by the condition are not traversed 
by the display processor and are therefore excluded from displayed data. 

The SET CONDITIONAL_BIT node is used to set any of 15 conditional bits 
(0-14). By placing the SET CONDITIONAL BIT node above an instance node, bit 
settings affect all branches under the instance node. 

The SET node is created with the SET CONDITIONAL BIT comm-and. The 
syntax is as follows: 

Name := SET CONDITIONAL_BIT nswitch APPLIED TO Name1; 

where: 

n is an integer from 0 to 14, corresponding to the conditional bit to be 
set ON or OFF. 

switch is either ON or OFF. 

Name1 is the descendent node of the conditional bit node. 

all bits default to OFF. 

For example, the following command creates a SET node and sets BIT 2 ON 
applied to Car. 

Pattern := SET CONDITIONAL_BIT 2 ON THEN Car; 
Car := INSTANCE OF Body, Wheels; 

When you create a SET node, you explicitly set one bit on or off. However, all 
14 bits default to off. So if you enter the command: 

Name := SET CONDITIONAL_BIT 1 ON APPLIED TO Namel; 

then bit 1 is on, and bits 2-14 are off. All bits can be changed by sending values 
to an input of the SET node. 
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Inputs to the SET CONDITIONAL_BIT node are as follows: 

Boolean > < 1 > Sets the original bit (n) set 
by the command to be ON 
(T) or OFF (F). 

Integer > < 2 > Sets bit number input (0-14) 
ON. 

Integer > < 3 > Sets bit number input (0-14) 
OFF. 

Integer > <4> Disables bit number input 
(0-14) from being affected 
by this node. 

Integer > < 5 > Toggles bit number input 
(0-14). 

The SET node controls the states of the conditional bits and it is only through 
the set node that the conditions of all 15 bits are changed. If bit 5 was 
originally set to ON and then you want to set it to OFF, it could be done in any 
of the following three ways: 

• Sending the integer 5 to input < 3 > o f the SET node. 

• Sending a false to input< 1 > of the SET node. 

• Sending the integer 5 to input < 5 > of the SET node. 

Of course, the SET node is useless unless you have an IF node that tests the 
condition set by the SET node. The IF node tells under which condition a 
branch will be traversed for display. 

IF nodes are created with the IF CONDITIONAL_BIT command. -The syntax is 
as follows: 

where: 

Name := IF CONDITIONAL_BIT nswitch APPLIED TO Name1; 

n is an integer from 0 to 14, indicating which bit to test. 

switch is the~~setting to be tested, ON or OFF. 

namel is the descendent of the IF node. 
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The IF CONDITIONAL_BIT node has one input that accepts an integer (0-14) to 
change the bit number in the node. 

In the following command sequence, when Car is displayed Wheels would also be 
displayed. 

Set := SET CONDITIONAL_BIT 4 ON APPLIED TO Car; 
PREFIX Wheels WITH IF BIT 4 IS ON; 

If bit 4 Car is set to Off or the condition in Wheels is changed to Off, then the 
test in Wheels would fail and Wheels would not be displayed. 

The display tree for Car that this command sequence creates in shown in Figure 
2. 

Body 

r rr ~ 
Wheel 1 2 3 4 

B o.dy 

(Original Display Tree} (After Conditional Referencing) 

Figure 2. Car Display Trees 

Figure 3 is a display tree for a molecule for which conditional referencing will 
be implemented. 
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Figure 3. Molecule Display Tree 

In Figure 3 notice that the Molecule is made up of an instance node pointing to 
8 SET COLOR nodes for parts of the molecule. The eight parts can be 
controlled separately for display by placing a SET node and eight IF nodes in the 
structure. 

The molecule will be set with the following conditions. 

Bit No. Condition Result 

1 Off Branch 1 (Molec 1_Color) will be displayed 
2 Off Branch 2 (Molec2_Color) will be displayed 
3 Off Branch 3 (Molec3_Color) will be displayed 
4 Off Branch 4 (Molec4_Color) will be displayed 
5 Off Branch 5 (Molec~_Color) will be displayed 
6 Off Branch 6 (Molec6_Color) will be displayed 
7 Off Branch 7 (Molec7_Color) will be displayed 
8 Off Branch 8 (Molec8_Color) will be displayed 
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The display tree to implement this is shown in Figure 4. 

Figure 4. Display Tree For Conditional Referencing in Molecule 

Exercise 

Add conditional—bit referencing to the display tree for Molecule. The first step 
is to place a SET node above the instance node Molecule. Do this by entering: 

Selector := SET CONDITIONAL_BIT 1 Off THEN Molecule; 
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Remember, even though the command says to set only conditional bit 1 off, this 
one node may be used to separately control the on/off condition of all 15 
conditional bits. Also, note that the condition of the other 14 bits defaults to 
off. 

Next place nodes at the top of each branch under the instance node so that the 
branches will be separately selectable for display. To do this, redefine 
Molecule as follows: 

Molecule := BEGIN STRUCTURE 

IF BIT 1 IS OFF THEN MolecO_Color; 
IF BIT 2 IS OFF THEN Molec 1_Color; 
IF BIT 3 IS OFF THEN Molec2_Color; 
iF BIT 4 IS OFF THEN Molec3_Color; 
IF BIT 5 IS OFF THEN Molec4_Color; 
IF BIT 6 IS OFF THEN MolecS_Color; 
IF BIT 7 IS OFF THEN Molec6_Color; 
IF BIT 8 IS OFF THEN Molec7_Color; 

END_STRUCTURE; 

You have built the display tree that allows conditional—bit referencing in 
Molecule. Notice that the molecule is displayed because all conditional bits are 
set off. To remove parts of the molecule from display, bits must be set on. 

To control the on/off condition of the eight bits that affect the branches of this 
display tree, a function network can be used to connect the function keys to the 
SET node named Selector. That network is shown in Figure 5. 

FKEYS 
<ly 
<2> 
<3> 
<4~ 
<5>~ 
<6> 
<7>~ 
<$> 
<g>~ 

<lp,-
< 11 ~-
<1~~ 

<~> 

IAS0400 

Selector 

Figure 5. Function Network for Conditional Bit Control 
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FKEYS will output integers corresponding to the number of the pressed function 
key. Input<5> to the SET CONDITIONAL_BIT node toggles the setting of the bit 
corresponding to the integer received. For example, if bit 6 is off, pressing 
Function Key 6 will turn bit 6 on. 

Enter the following commands to build the network. 

CONNECT FKEYS< 1 >:<5>Selector; 

The display tree is now designed to allow conditional display of parts of the 
molecule (Molec0 through Molec7). Also, the function keys have been 
connected to control this display. 

One step remains in this particular case. The values used to define the 
molecule are large. The molecule has a diameter of some 45,000 units. To see 
the molecule, put a window around it and disable depth cueing by entering: 

Molecule_View := WINDOW 
X=-22500:22500 
Y=-22500:22500 
FRONT BOUNDARY =-22500 
BACK. BOUNDARY = 22500 APPLIED TO Intensity; 

Intensity := SET INTENSITY ON 1:l APPLIED TO Selector; 

now, 

DISPLAY Molecule_View; 

Press SHIFT/LINE LOCAL to activate the function keys. Use keys F 1 through 
F8 to toggle the display of the parts of the molecule. 

When you are finished enter: 

REMOVE Molecule_View; 
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USING LEVEL OF DETAIL CONDITIONAL REFERENCING 

The conditional—bit method shown for the molecule is usually used when you 
need to separately control the display- of branches of your display tree in a 
variety of sequences. In the level—of —detail method, the parts of a model are 
always displayed and removed in a predetermined sequence. 

Level—of —detail is usually used to overlay detail on your picture. For example, 
progressive detail could be added to an outline of a sphere (world) to add 
continents, mountain ranges, states, etc. 

Level—of —detail can also be used to run animation sequences comprised of a 
series of separate picture definitions. 

Unlike conditional—bit referencing where 15 variables (hits) are set, only one 
variable is set using the level—of —detail method. All IF nodes are tested against 
that one variable in the SET node. 

The command to create a SET LEVEL OF DETAIL node is as follows. 

Name := SET LEVEL_OF_DETAIL TO n APPLIED TO Name1; 

where: 

n is an integer from 0 to 32767 indicating the level of detail value. 

Hamel is the descendent of the SET node. 

the default level of detail (n) is 0. 

Inputs for updating the SET LEVEL OF DETAIL node are as follows: 

Integer > < 1 > Changes the level of detail 
(0-32767) to the value of the 
received integer. 
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Determining the Order for Overlaying Detail 

Because level—of —detail controls the display of branches in a determined order, 
the conditional statements are expressed as relationships rather that the 
two—state (on/off) type used in conditional—bit references. 

These relationships are: 

Less Than < 
Less Than Or Equal To <_ 
Equal To = 
Not Equal To <> 
Greater Than Or Equal To >_ 
Greater Than > 

and are specified in the IF LEVEL_OF_DETAIL node. The command to create 
this IF node is as follows: 

Name := IF LEVEL_OF_DETAIL relationship n THEN Narnel; 

where 

relationship is the relationship to n to be tested (<, <_, _, < >, >_, >). 

n is an integer from 0 to 32767 indicating the number (along with the 
previous relationship) to compare against the current level of detail setting. 

namel is the descendent of the IF LEVEL OF DETAIL node. 

the default (n) is 0. 

The IF LEVEL_OF_DETAIL node has one input that accepts an integer (0-32767) 
to change the value in the node. 

With the following command sequence, 

A := SET LEVEL_OF_DETAIL to 3 THEN B; 
B := IF LEVEL_OF_DETAIL = 3 THEN C; 
C := VECTOR LIST  ; 
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initially when A is displayed, C is also displayed. If the level of detail is 
changed to something other than 3, then the test in B fails and C is not 
displayed. 

An example of adding detail is to start with a sphere and add continents, 
mountain ranges, and countries. To display the parts of the world in this order 
(and turn them of f in the reverse order): 

Sphere 
Continents 
Mountain Ranges 
Countries 

the sphere needs to be displayed first and remain on while all subsequent parts 
are displayed. 

The Continents need to be added next, the Mountain Ranges and then the 
Countries. If Sphere is displayed whenever there is a value of 1 or greater in 
the SET NODE, and the subsequent parts are displayed for values equal or 
greater than 2, 3, and 4, respectively, the desired effect is achieved. 

The display tree that sets up such alevel-of-detail condition is shown in Figure 
6. 
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Continents 

~ ~ 

i ~ 
Countries 

i ~ i 
Mountain ~aso4oi 

IRanges~i 

Figure 6. Level-of-Detail Structure for the ~lorld 

By changing the value of the integer in the SET node, the parts of the Sphere 
can be laid on and stripped off. If the integer 2 is sent to the SET node, then 
the Sphere and the Continents are both displayed because both branches of the 
display tree meet the condition tested against the SET node. If the integer 3 is 
sent to the SET node, the Sphere, the Continents, and the Mountain ranges are 
all displayed. If the integer 4 is sent to the SET node, the entire structure is 
displayed. The details of the Sphere can be stripped off by decreasing the value 
in the SET node. 
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Using Level-Of-Detail Settings to Animate An Object 

An example of using level—of —detail settings for animation is in the turbine 
blade portion of the PS 300 Demonstration Package. The turbine blade is 
defined as a sequence of turbine blades in slightly different positions. A cloak 
is used to advance the level of detail settings resulting in the display sequence 
and the apparent motion of the turbine blade. The structure that sets this up is 
similar to the one shown in Figure 7. 

Frame 
1 

Frame 
2 

Frame 
3 

Clock Values 

Frame 
4 

Frarr~e 
5 

Figure 7. Turbine Blade Structure 

Frame 
8 

Frame 
7 

Frame 
6 

IAS0402 

The topmost node is the one supplied with clock values through a function 
network to step through the sequence of pictures corresponding to the 
referenced branches in the display tree. 
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Note that in animation, detail is not laid over a displayed picture. Instead, 
sequences of pictures are displayed. 

Exercise 

Load the tutorial tape and select ANIMATED_CYLINDER from the menu on the 
left side of the screen. 

This demonstration is a good example of how level—of —detail settings can be 
used for local animation. 
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USING RATE ATTRIBUTE SETTINGS 

The third type of conditional referencing allows you to blink an object or 
display tree branch under control of the refresh rate of the PS 300 display, an 
internal PS 300 clock, or an external clock. This type of conditional 
referencing can cause an object to blink or to be displayed alternately with 
another object. (For example, one part might be displayed for one second, then 
that part is removed while another part is displayed for a second, etc.) 

Like the other types of conditional referencing, blinking requires two nodes. 
One node sets a blink rate in terms of phase on and of f durations. The other if 
node tells tell whether an object or branch will be displayed during the on phase 
or the off phase. 

Creating The Set Rate Node 

The command to create the SET RATE node is: 

Name := SET RATE phase_on phase off ~initiaZ state) ~deZay] 
APPLIED TO Name1; 

where: 

phase_on phase off are integers designating the durations of the on and 
of f phases, respectively, in refresh frames. 

initial state is either ON or OFF, indicating the initial phase. 

delay is an integer designating the number of refresh frames in the 
initial state. 

NameZ is the descendent of the SET RATE node. 

the default [initial state] is OFF. 



CONDITIONAL REFERENCING — 19 

Inputs for updating the SET RATE node are as follows: 

INTEGER 

INTEGER 

BOOLEAN 

INTEGER 

> < 1 > Changes the phase_on 
value. 

> <2> Changes the phase_ off 
value. 

> < 3 > Changes the initial_state 
ON(T) / OFF(F). 

> <4> Changes the delay. 

A command similar to SET RATE, called SET RATE EXTERNAL, allows you to 
alter the PHASE attribute via an external source such as a function network or 
a message from the host computer. Refer to the Command ,Summary for 
specific details of this command. 

Creating the IF PHASE Nade 

The command to create the IF node to test the ON/OFF state of the phase is 
as follows: 

Name := IF PHASE IS state THEN Name1; 

where: 

state is the phase setting under which Hamel is displayed (ON or OFF). 

Hamel is the descendent of the IF PHASE node. 

If there is no SET RATE node or SET RATE EXTERNAL node higher in 
the structure, the "state" of the PHASE node will always be OFF. 

For example, with the Comm-and sequence 

Shape := SET RATE 10 15 THEN Blink_Shape; 
Blink_Shape := IF PHASE ON THEN Sphere; 
Sphere := VECTOR_LIST ....; 
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If Shape is displayed, Sphere will be displayed for 10 refresh frames and not 
displayed for 15 refresh frames repeatedly. 

If the command sequence is 

Shape := SET RATE 10 15 THEN Blink_Shape; 
Blink_Shape := If PHASE OFF THEN Sphere; 
Sphere := VECTOR_LIST .... ; 

If Shape is displayed, Sphere will be displayed for 15 refresh frames and not 
displayed for 10 refresh frames repeatedly, since the condition is to display 
the vector list when the phase is OFF. 

Exercise 

This exercise uses the Robot created in the "PS 300 Command Language" 
module. 

To demonstrate the effects of blinking, add blinking nodes above robot. The 
blink rate in this exercise will be based on the PS 300 refresh rate. First, 
define a node that sets the rate by entering: 

Blink_Robot := SET RATE 120 60 APPLIED TO If_Robot; 

This sets the ON phase to 120 refreshes and the OFF phase to 60 refreshes. 

Now place a .node that determines whether the robot will be displayed in the 
ON phase (and blanked in the OFF phase) or displayed in the OFF phase (and 
blanked in the ON phase). Display robot in the ON phase, by entering: 

If_Robot := IF PHASE IS ON THEN ROBOT; 

Robot should now blink at a rate of about 2 seconds on and one second off, 
when you: 

DISPLAY Blink_Robot; 

Then: 

REMOVE Blink_Robot; 
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Some Uses for Timed Blinking 

One practical use of the rate setting commands, other than the visual effects 
produced, is that they can synchronize the refresh rate of the display to a 
movie camera to make sure that the frame rate of the camera matches the 
frame refresh rate of the screen, allowing the camera to always be taking a 
frame as the picture is refreshed. 

Stereo views can be created using a split screen (two viewports side by side);
each half containing the same image and viewed with the EYE projection 
(refer to the "Viewing Operations" module). Then etch viewport can be 
displayed alternately with the other viewport. By placing an opaque divider 
between the viewports so each eye can see only one viewport, a 3D effect can 
be generated. 
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SUMMARY 

Conditional Referencing allows you display selected branches of a display tree 
without displaying other branches. These kinds of .operations are achieved 
using three methods: conditional-bit settings, level-of-detail settings, and 
rate settings. 

To use conditional referencing, a minimum of two nodes must be placed in a 
display tree. The first node sets up the condition on which all subsequent 
references are tested. The second sets up the condition to be tested against 
the set condition. 

Using 

Conditional 

Bit 

Settings 

The conditional-bit method shown is used when you need to separately control 
the display of branches of your display tree in a variety of sequences. 

The SET CONDITIONAL_BIT node sets any of 15 conditional bits (0-14). By 
placing the set conditional bit node above an instance node, bit settings affect 
all branches under the instance node. 

This node is created with the SET CONDITIONAL_BIT command. The syntax is 
as follows: 

Name := SET CONDITIONAL_BIT nswitch APPLIED TO Name1; 

where: 

n is an integer from 0 to 14, corresponding to the conditional bit to 
be set ON or OFF. 

switch is either ON or OFF. 

namel is the descendent node of the conditional bit node. 

all .bits default to OFF. 
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IF nodes (to test the condition of the SET node) are created with the IF 
CONDITIONAL_BIT Command. The syntax is as follows: 

Name := IF CONDITIONAL_BIT nswitch APPLIED TO Namel; 

where: 

n is an integer from 0 to 14, indicating which bit to test. 

switch is the setting to be tested, ON or OFF. 

Hamel is the descendent of the IF node. 

Using Level of Detail Conditional Referencing 

When using the level-of-detail method, the parts of the model are always 
displayed and removed in a set sequence. Level-of-detail is usually used to 
overlay detail on your picture. 

Level of detail can also be used to run animation sequences comprised of a 
series of separate picture definitions. 

Unlike conditional-bit referencing where 15 variables (bits) are set, only one 
variable is set using the level-of-detail method. All IF nodes are tested against 
that one variable in the SET node. 

The command to create a set level-of-detail node is as follows. 

Name := SET LEVEL_OF_DETAIL TO n APPLIED TO Name1; 

where: 

n is an integer from 0 to 32767 indicating the level-of-detail value. 

Hamel is the descendent of the SET node. 

the default level of detail (n) is 0. 
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Determining The Order for Overlaying Detail 

Because level-of-detail controls the display of branches in a determined order, 
the conditional statements are expressed as relationships rather that the 
two-state (on/off) type used in conditional-bit references. 

These relationships are: 

Less Than < 
Less Than O~r Equal To <_ 
Equal To = 
Not Equal To <> 
Greater Than Or Equal To >_ 
Greater Than > 

and ,are specified in the IF LEVEL_OF_DETAIL node. The command to create 
this IF node is as follows: 

Name := IF LEVEL_OF_DETAIL relationship n THEN Name1; 

where: 

relationship is the relationship to be tested (<, <_, _, < >, >_, >). 

n is an integer from 0 to 32767 indicating the number (along with the 
previous relationship) to compare against the current level of detail 
setting. 

namel is the descendent of the IF LEVEL OF DETAIL node. 

the default is (n) 0. 

Using Level-Of-Detail Settings to Animate An Object 

An example of using level-of-detail settings for animation is in the turbine 
blade portion of the Ps 300 Demonstration Package. The turbine blade is 
defined as a sequence of turbine blades in slightly different positions. A 
clock is used to advance the level-of-detail settings resulting in the display 
sequence and the apparent motion of the turbine blade. 
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Blinking and Alternately Displaying parts of an Object 

The third type of conditional referencing, rate attribute settings, allows you to 
blink an object or display tree branch under control of the refresh rate of the 
PS 300 display, an internal PS 300 clock, or an external clock. This type of 
conditional referencing can cause an object to blink or to be displayed 
alternately with another object. (For example, one part might be displayed for 
one second, then that part is removed while another part is displayed for a 
second, etc.) 

Like the other types of conditional referencing, blinking requires two nodes. 
One node sets a blink rate in terms of .phase ON and OFF durations. The other 
IF node tells whether an object or branch will b~e displayed during the ON phase 
or the OFF phase. 

Creating The Set Rate Node 

The command to create the SET RATE node is: 

Name := SET RATE phase_on phase off [initial state] [delay] 
APPLIED TO Name1; 

where: 

phase_on phase off are integers designating the durations of the on and 
off phases, respectively, in refresh frames. 

initial state is either ON or OFF, indicating the initial phase. 

deZat~ is an integer designating the number of refresh frames in the initial 
state. 

Hamel is the descendent of the SET RATE node. 

the default [initial state] is OFF. 

A command similar to SET RATE, called SET RATE EXTERNAL, allows you to 
alter the PHASE attribute via an external source such as a function network or 
a message from the host computer. Refer to the Command Summart~ for 
specific details of this command. 
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Creating the IF PHASE Node 

The command to create the IF node to test the ON/OFF state of the phase is as 
follows: 

Name := IF PHASE IS state THEN Name1; 

where: 

state is the phase setting to be tested (ON or OFF). 

namel is the descendent of the SET RATE node. 

If there is no SET RATE node or SET RATE EXTERNAL node higher in 
the structure, the state of the PHASE node will always be OFF. 

You now know how to make conditional references to parts of your display 
tree. You know that two nodes are required for each conditional reference. 
The first node sets up the condition on which all subsequent references are 
tested. The second sets up the condition to be tested against the set condition. 

The flexibility and ease of use of conditional referencing within the display 
structure makes what is often a difficult operation on other graphics machines 
easy on the PS 300. 
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This module consists of four sections that build on ideas about function networks 
introduced in the "Function Networks I" module. 

In "Function Networks I" you used the PS 300 dials to manipulate a robot. Each dial was 
connected to a node in the robot display tree so that moving the dial caused Robot to 
move in a specific way. One dial was needed for each manipulation. 

In this module, you will learn how to use a dial for multiple interactions. This can be 
done using function networks and PS 300 function keys. Pressing a function key allows 
you to use the same dial for different kinds of interactions in different modes. 

The module also details how to send a label to the LEDs above each dial. These labels 
remind you of a dial's function and can change interactively each time a new function 
key is pressed. 

In addition, you will learn about several useful tasks which function networks can 
perform. These include limiting the robot movement so that it remains "true to life," 
and using variables to store values coming from a network. 

Because the function networks in this module will differ from those created in 
"Function Networks I," it is suggested .that you save the code from this module in a 
separate file on your host. To avoid errors, do not combine these two sets of code. 

OBJECTIVES 

In this module you will learn how to: 

■ Make a single input device (the dials) control multiple interactions. 

■ Label the dials so that the label changes when the dial's function changes. 

■ Set limits on the motion of a model. 

■ Use variables to store values. 
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PREREQUISITES 

Before beginning this module, you should be familiar with the concepts presented 
in the following modules: "Modeling," "PS 300 Command Language," and 
"Function Networks I." 
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MAKING A SINGLE INPUT DEVICE CONTROL MULTIPLE INTERACTIONS 

In "Function Networks I," you constructed a function network for the display tree 
shown in Figure 1. 

Y 
C 
~< 
L 
H-

Robot.Tran 

Robot .Rot 

Ro bo t. S c a l e 

Right 
Lower Leg 

IAS0528 

Figure 1. Robot Display Tree 
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This function network supplied interactions for the top three nodes of the display 
tree: Robot.Scale, Robot.Rot, and Robot.Tran. Seven dials were required. to 
manipulate the robot: three to rotate it in the X, Y, and Z planes, three to 
translate it in X, Y, and Z, and one dial to scale the model. 

Only one free dial remains, but no other interactive nodes in the robot display 
tree have yet been connected to functions. To supply X, Y, and/or Z rotations 
for all the other interactive nodes would require dozens of other dials. This 
section illustrates how to solve this problem by making one set of eight dials 
perform like many sets. 

The first step in doing this is to determine exactly how many additional dials you 
will need (how many more interactions in the model you want to control). In 
addition to Robot.Rot, the robot has 14 rotation nodes. Ten of them require 
three dials each (three rotations for X, Y, and Z). The two nodes for elbows and 
the two for knees only use X rotations, requiring only one dial each. The result 
is a total of 34 additional interactions. To handle these interactions, each dial 
would have to be connected to about six nodes. 

There is nothing to prevent you from connecting a dial to more than one 
destination. For example, you could hook dial 1, already updating X rotations for 
the Robot.Rot node, to other rotate nodes. But of course turning that one dial 
would cause multiple unrelated updates. 

Following is one way the dials might logically be assigned to control the 
interactions. 

In Mode 1, the dials would work as presently assigned: 

Whole model: 1. Xrot 2. Yrot 3. Zrot 4. Scale 

5. Xtran 6. Ytran 7. Ztran 8. Not Assigned 

Mode 2: 

Head: 1. Xrot 2. Yrot 3. Zrot 4. Not Assigned 

Trunk: 5. Xrot 6. Yrot 7. Zrot 8. Not Assigned 

Mode 3: 

Right arm: 

Left arm: 

1. Xrot 2. Yrot 

5. Xrot 6. Yrot 

3. Zrot 4. Elbow Xrot 

7. Zrot 8. Elbow Xrot 
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Mode 4: 

Right hand: 1. Xrot 2. Yrot 3. Zrot 4. Not assigned 

Left hand: 5. Xrot 6. Yrot 7. Zrot 8. Not assigned 

Mode 5: 

Right leg: 1. Xrot 2. Yrot 3. Zrot 4. Knee Xrot 

Left leg: 5. Xrot 6. Yrot 7. Zrot 8. Knee Xrot 

Mode 6: 

Right foot: 1. Xrot 2. Yrot 3. Zrot 4. Not Assigned 

Left foot: 5. Xrot 6. Yrot 7. Zrot 8. Not Assigned 

This configuration leaves several dials unassigned in a few modes. Obviously, 
you could assign every dial in every mode, but this organization establishes a 
pattern that makes the dials' functions easy to remember. 

Another way to diagram this same dial assignment would be as follows. The 
names of the nodes on the right are linked to the dials on the left. 

DIALSC 1) Xrot Whole body (1) 
Head (2) 
Right arm (3) 
Right hand (4) 
Right leg (5) 
Right foot (6) 

DIALSC2] Yrot Whole body (1) 
Head (Z) 
Right arm (3) 
Right hand (4) 
Right leg (5) 
Right foot (6) 

DIALSC3] Zrot Whole body (1) 
Head (2) 
Right arm (3) 
Right hand (4) 
Right leg (5) 
Right foot (6) 
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DIALS[4] 

DIALS[5 ] 

DIALS[6] 

DIALS[7] 

Whole body scale(1) 
Right elbow Xrot (3) 
Right knee Xrot (5) 

Whole body Xtran (1) 
Trunk Xrot (2) 
Left arm Xrot (3) 
Left hand Xrot (4) 
Left leg Xrot (5) 
Left foot Xrot (6) 

Whole body Ytran (1) 
Trunk Yrot (2) 
Left arm Yrot (3) 
Left hand Yrot (4) 
Left leg Yrot (5) 
Left foot Yrot (6) 

Whole body Ztran (1) 
Trunk Zrot (2) 
Left arm Zrot (3) 
Left hand Zrot (4) 
Left leg Zrot (5) 
Left foot Zrot (6) 

DIALS[8] Left elbow Xrot (3) 
Left knee Xrot (5) 

If the connections were made from the dials as shown, a dial would control 
several interactions simultaneously. If you turned Dial 4, for instance, the robot 
would become larger or smaller, or its right knee and elbow would move. Dial 1, 
connected to six nodes, would cause six separate X rotations in the model. 

What is needed now is the equivalent of a switch in a railroad yard to route 
values so that they are not routed down all function network paths at once. For 
example, you might want to send values to the Robot.Rot node only in dials Mode 
1, or just to Head.Rot node in Mode 2. 

Associated with all the function keys is one system function, FKEYS. FKEYS 
has one output. When you press a function key, the number of that key is 
output. For example, pressing key ~~4 causes an integer 4 to be output. 
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The value could be output to an instance of function F:CROUTE~n) (see Figure 
2). This switching function allows you to channel the values from the dials (or 
anything else} to any number (n) of destinations. 

F:CROUTE(n~ 

I 
Any 

<1> <~>~ Any 

. ; 
K s 

<n>~ Ar~y 
~As~S~ 

~~g~re ~. E:~RQ~TE~n~ ~~n~~~~n 

Specifically, when F:CROUTE(n) receives an integer from 1 to ~ on input < 1 >~ it 
routes what it receives on input ~ ~ } to the output with the same number as the 
integer. SQ if you instance F:GROUTS, connect FKE1~S to input < 1 > of tie 
function instance, connect the dials to input < ~ ~, and press Function Key 5, the 
values from the dials arriving on input <~> will travel out on output <~~ (see 
Figure 3}. 

(Value from function key#5) 

1FKEYS < 1 > 

(DIALS <1>~--

F;CROUTE (6 ) 
<1> ~1~ 

<2> 
<3> 
<4> 

<2> ~5~ 
<6> 

 ~F:MULC H F:XROTATE 

Right Leg,Rot 

  F:CMUL 

IAS0572 

Figure 3. F:C R OU TEtn~ Network -- Example 1 



8 —FUNCTION NETWORKS II 

Pressing Function Key 3 routes the values from Dial 1 to output <3> (Figure 4). 

(Value from function key#3) 

F:CROUTE(6) 

`FKEYS <1>~<1> <1> 
<2> 
~ 3 >_.__~ F : MULC 
<4> 
<5> 
<6> 

I DIALS<1>}--«> 

F:XROTAT E 

Right Arm.Rot 

F;CMUL 

IAS0573 

Figure 4. F: C R O U T Etn) Network -- E x a m p1e Z 

In this example, the number of destinations from a routing function is the same 
as the number of modes among the function switches. For Dial 1, that is six 
modes, so Dial 1 will use an instance of F:CROUTE(6), as shown in the above 
diagrams. 

Not all dials need to work in all six modes. Dial 4, for example, only works in 3 
modes, so you might try using an instance of F:CROUTE(2). Dial 4 has to 
operate in Mode 5, however, so you must use 5 as a minimum value for n, as 
shown below. The unused outputs (for modes in which Dial 4 is unassigned) are 
left unconnected (Figure 5). 

FKEYS <1>~-

DIALS <4 

F:CROUTE (5) 

<1> <1> 

<2> 

F:SCALE 

Robot.Scale 

<2>~ no connection 

< 3 ~----1 F : MULC~ F : XROTAT E ~  F : CMUL 

<4> 

<5> 

 no connection 

~---~ F : MULC ~---{F : XROTA7 E ~  F : CMUL 

Right Forearm .Rot 

Right Lower.~Leg .Rot 

IAS0574 

Figure 5. F: C R 0 U T E(n~ Network With Unused 0 utputs 
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The diagram indicates that the values from Dial 4 will be routed to the scaling 
node, Robot.Scale, when FKEYS sends 1 to F:CROUTE(5) input < 1 >. Values from 
Dial 4 will go to the right knee when a 5 arrives on input < 1 > and to the right 
elbow when a 3 arrives. If you push Function Keys 2 or 4 to go into Mode 2 or 4, 
Dial 4 has no effect. 

Dial 8 is similar to Dial 4, but instead of working in three modes, it only works in 
two. One of the two modes it works in is Mode 5, so be sure to use an instance 
of F:CROUTE(5) with Dial 8 too. 

Connect all six modes for Dial 1 to the outputs of F:CROUTE(6) so that FKEYS 
will control routing for this dial. Figure 6 illustrates Dial 1's F:CROUTE(n) 
network. 

FKEYS < 1 >~-= 

DIALS <1>~-., 

F:CROUTE(6) 

<1> <1> 

<Z> <2>--~ F:MULC 

<3>---~ F:MULC 

< 4 > -----~ F ;MULC 

<5>--~F:MULC 

F:XROTAT E 

F:XROTATE 

F:CMUL 

Robot.Rot 

Head.Rot 

F:XROTATE 

F :CMUL 

Right Arm.Rot 

  F:CMUL 

F:XROTAT E 

Right Hand.Rot 

< b > F:MULC F:XROTATE 

F:CMUL 

Right Leg.Rot 

Figure 6. Dial 1's F:C R 0 U T E(n) Network 

Right Foot.Rot 

IAS0575 

Notice that the MULC and XROTATE functions in all six modes are exactly 
alike. The CMUL functions are not, since each one accumulates rotations for a 
different rotation node. What is exactly alike can be used once on the left side 
of the routing function, as shown in Figure 7. 
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FKEYS <1> 

DIALS < 1 F :MULC F:XROTAT E 

F:C ROUTE (6 ) 

<1> <1> 

<2> <2> 

<3> 

<4> 

< 5 •> 

<6> 

  F:CMUL

 Rob^ Rot 

F:CMUL 

  F:CMUI 

  F:CMUL

F:CMUL 

  F:CMUL

Head.Rot 

Ri h~ Arm.Rot 9 

 O 
Right Hand.Rot 

Ri h~ Le .Rot 9 9 

 O 
Right Foot.Rot 

IAS057b 

Figure 1. Dial 1's F:C R 0 U TEtn) Network With Shared Functions 

Either of the above two configurations would work. The second one is much Iess 
trouble to diagram and program, since it requires only one instance of F:MULC 
and F:XROTATE instead of six. The previous two diagrams show that a routing 
function is necessary only when a path must split, and that occurs when functions 
need to be unique, as in the case of the F:CMULs. 

Now diagram networks Dials 2 and 3 using the diagram from Dial 1 as a guide. 
Since all three dials have the same destination nodes, you can route them 
through the same switching function, as in Figure 8. 
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(number of function key being pressed) 
F:CROUTE(6) 

IFKEYS < 1 > 

DIALS 
<1> 

<2> 

<3> 

--~ F:MULC HF:XROTATE }- 

-~ f : MULC ~--~F : YROTATE }- 

--~ F : MULC H F : ZROTAT E ~--

<1> <1> 

<2> 

<2> 

<3> 

<4> 

<5> 

<6> 

F:CMUL 

Robot.Rot 

  F : CMUL 

Nead.Rot 

  F:CMUL 

F:CMUL 

~--I F:CMUL 

  F:CMUL 

Right Arm.Rot 

Ri h~ Hand.Rot 9 

Right Leg.Rot 

 0 
Right_Foot.Rot 

IAS0577 

Figure 8. Final Network for Dials 1-3 

This diagram completely accounts for the first three dials in all six modes. To 
implement it in the PS 300, you only need to fill in detail familiar from 
"Function Networks 1 ": connections, function instance names, and so on. 

Next, look at Dial 4. Since it performs rotations, you might think to use the 
same rotation network for it as the first three dials, namely: 

DIALS < 4 > F:MULC F:XROTAT E 

Right Forearm.Rot 

iAso578 

No other dials feed into that node, though, or the other rotate node for the knee 
that Dial 4 controls. So it would be simpler to use the F:DXROTATE function 
here. It is the function that combines all features of F:MULC, F:XROT, and 
F:CMUL into one package. The network for Dial 4 can be diagrammed as in 
Figure 9. 
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IFKEYS <1> 

I DIALS <4> 

F:CROUTE (5 

<1> 

<2> 

<1> 

<2> 

<3> 

<4> 

<5> 

Robot.Scale 

—~F:DSCALE 

 no connection Right_ Forearm.Rot 

-~—~ F : DXROTATE

 no connection Right 

 IF:DXROTATE

IAS0579 

Figure 9. Final Network for Dial 4 

ower _Leg •Rot 

With Dial 4, there are no functions on the right of the routing function that can 
be shared and moved over to the left, as with F:MULC and F:ROTATE functions 
used with Dials 1, 2, and 3. The above diagram completely specifies what Dial 4 
will do in all modes. And to implement it, you must supply function instance 
names, initial values, and so on. 

Dials 5, 6, and 7 do almost exactly what Dials 1, 2, and 3 do, but to the left side 
of the model. And in Mode 1, they translate instead of rotate. In Mode 1, all 
three dials feed into one node, Robot.Tran. 

In the other five modes, they do X, Y, and Z rotations. Figure 10 illustrates how 
a routing function for Dial 5 might work. 

(number of function key being pressed);

FKEYS <1>~ 

I DIALS <5>~—

F:CROUTE (6) 
<1> <1> 

<2> <2> 

<3> 

<4> 

<5> 

--{F:XVECTOR~--IF:A000MULATE 

F:MULC F:XROTAT E 

--{ F : MULC ~--~ F : XROTAT E 

--) F : MULC N  F : XROTAT E 

F : MULC ~---{ F : XROTAT E 

~ 6 > --~ F : MULC NF : XROTAT E 

IAS0580 

Robot.Tran 

  F:CMUL 

Upper 6ody.Rot 

F:CMUL 

F:CMUL 

Left~lrm. Rot 

 Left Hand.Rot _. 

Left Leg .Rot 

Le~ft~oot. Rot 

Figure 10. Sample Function Network for Dial 5 



FUNCTION NETWORKS II — 13 

Of course, the diagram would be similar for Dials 6 and 7, with Y and Z rotations 
substituted for X. 

Note that the MULC and XROT functions in Modes 2 through 6 above are exactly 

the same and could be shared as in Figure 1 1. 

(number of function key being pressed) 

FKEYS < 1 > 

(DIALS <5>~--

F:C ROUTE (6 

<1> ~1' 

<2> <2> 

<3> 

<4> 

<5> 

<6> 

--IF:XVECTOR H  F:A000MULATE

I AS0581 

w 

Robot.Tran 

.-~ F : CMUL 

~F:CMUL 

Upper Body.Rot 

Left Arm.Rot 

O 
Left Nand.Rot 

F:CMUL

—~ F:CMUL

Left Leg.Rot 

O 
Left Foot.Rot 

Figure i 1. Dial 5 Network With Shared Functions 

This will save you having five sets of MULC and XROT functions when one can 

do the job. But the output from XROT will have to be routed, so you'll need 
another routing function. The final network for Dial 5 is shown in Figure 12. 



14 —FUNCTION NETiNORKS II 

FKEYS < 1 > 

DIALS < 5 > 

F:CROUTE (6) 

<1> <1> 

<2> 

<2> 

<3> 

<4> 

< 5> 
<6> 

—{ _F XVECTO 

FKEYS<1> 

F:A000MULATE 

Robot.Tran 

F:MULC F:XROTATE 

F:ROUTE(6) 

<1> 

<2> 

<2> 

<3> 

Upper Body.Rot 

-.~ F:CMUL  

F:CMUL 

~4~
T 

F:CMUL 

~ 5~F:CMUL

F:CMUL 

IAS0582 

Left Arm. Rot 

Left Hand .Rot 

Leff Leg .Rot 

Left Foot.Rot 

Figure 12. Final Function Network for Dial 5 

Functionally, this completely specifies what Dial 5 does. 

Exercise 

Complete the network for Dials 6 and 7 using Dial 5 as a pattern. Then diagram 
the network for the Dial 8, using Dial 4 as a pattern. 

Next, code the networks for all eight dials. Include all the details, such as 
instancing functions, .connecting functions, and sending initial values to functions 
when needed. Remember that the DIALS and FKEYS functions have already 
been instanced by the system and do not need to be named by you. To save these 
commands, do this in a text file. 
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Once the commands to implement the network for one dial are detailed, you can 
copy them over again for each of the other dials and delete or add only the 
details you want. For example, all the commands to implement this network for 
Dial 1 (X rotations) are the same as for Dial 2, except you need to change X to Y 
and so on. 

Figure 13 illustrates the final function network for Dials 1-8. 
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1 FKEYS< 1.a 

DIALS 
<1> 

<2> 

<3> 

—~ F : MULC

F:MULC 

F:MULC 

F;XROTATE 

F:YROTATE 

F:ZROTATE 

F:CROUTE(5) 
FKEYS < 1 > <1> <1> 

<2> 
DIALS<4> <2> 

<3> 

<4> 

<5> 

FKEYS< I y 

F:CROUTE(6) 

<1> <1> 

Robot.Rot 

F:CMUL 

Head.Rot 

<2> F:CMUL 
<2> 

 RightlArm.Rot 

<3> F:CMUL 
~-

 Righi;"Hand.Rot 
~- <4> F:CMUL 

Right'Ceg.Rot 

<5> ~" F:CMUL 

Right Foot.Rot 

<6> F:CMUL 

F:DSCALE 
Robot.Scale 

no connection 

F:DXROTATE 

Right Forearm .Rot 

no connection 

DIALS 
<5> 

FKEYS< 

DIALS 
<6> 

FKEYS<1>

DIALS 
<7> 

FKEYS <1> 

F:CROUTE(6) 

 ~:OXROTATE

Right_ Lower .Leg.Rot 

Robot.Tran 

F:XVECTOR F:A000MULATE <1> <1> 
<2> 
<3> 

<2> ~ F:XROTATE F C ROUTE(6 <4> - —~f:MULC : ) 
<5> 
<6> 

FKEYS<I> <1> <1> — no connection 
Upper Body.Rot 

F:CROUTE(6) 
<1> 

<2> <2> 
F:CMUL 

F:YVECTOR J <1> --) rm.Rot 
<2> <3> F:CMUL 
<3> 

Left and.Rot <2> <4> 
<5> 

--~ 
____ 

F:MULC F:YROTATE~-
<4> F:CMUL 

<6> Left't~g.Rot 
< 5 > F:CMUL  

F:CROUTE ~6)~ 
<1> 

<2> 
<3> 

F;ZYECTOR 

<6> 
 Left_Foot.Rot 
F:CMUL  

< a > ~.~ F :MULC F : ZROTAT E~-
<2> 

< 5 > ---
<6>---

DIALS <8> 

F:CROUTE (5) 

<1> < 1 > no connection 
< 2 > ~-- no connection Left Fc~rearm.Rot 

<~> 
<3> -- i F:OXROTATE 
< 4 > -- no connection Left Lower Leg.Rot 
<5> ~—iF:DXROTATE 

tASobo3 

Figure 13. Final Function Network for Dials 1-8 
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The following lists the commands needed to code the function network. The 
code has been organized by dial, so that functions are instanced, connected, and 
primed for each dial, or group of dials, before preceding to the next dial. The 
names are suggestive of what each function instance does. Comment lines have 
been provided for clarification. 

{CODE FOR DIALS 1-3} 

X_Mul_D 1 := F:MULC; 
Y_Mul_D2 := F:MULC; 
Z_Mul_D3 := F:MULC; 

X_Rot_D 1 := F:XROT; 
Y_Rot D2 := F:YROT; 
Z_Rot_D3 := F:ZROT; 

{Instance MULC and} 
{ROT functions} 

Switch 1 :_ F:CROUTE(6); {Instance SWITCH and} 
{CMUL functions} 

Acc Rot Robot := F:CMUL; 
Acc_Rot_Head := F:CMUL; 
Acc_Rt_Arm := F:CMUL; 
Acc Rt Hand := F:CMUL; 
Acc_Rt_Leg := F:CMUL; 
Acc Rt Foot := F:CMUL; 

CONNECT FKEYS< 1 >:< 1 >Switch l; 

CONNECT DIALS < 1 > : < 1 > X_Mul_D 1; 
CONNECT DIALS< 2 > : < 1 > Y_Mul_D2; 
CONNECT DIALS < 3 > : < 1 > Z_Mu 1_D 3; 

CONNECT X_Mul_D 1 < 1 > : < 1 > X_Rot_D l; 
CONNECT Y_Mul_D2 < 1 > : < 1 > Y_Rot_D2; 
CONNECT Z_M u 1_D 3 < 1 > : < 1 > Z_R o t_D 3 ; 

CONNECT X_Rot_D 1 < 1 > : < 2 > Switch 1; 
CONNECT Y Rot D2 < I > : < 2 > Switch 1; 
CONNECT Z Rot D 3 < 1 > : < 2 > Switch 1; 

CONNECT Switch 1 < 1 > : < 2 > Acc_Rot_Robot; 
CONNECT Switch 1 < 2 > : < 2 > Acc_Rot_Head; 
CONNECT Switch 1 < 3 > : < 2 > Acc_Rt_Arm; 
CONNECT Switch 1 < 4> : < 2 > Acc_Rt_Hand; 
CONNECT Switch 1 < 5 > : ~ 2 > Acc_Rt_Leg; 
CONNECT Switch 1 < 6> : < 2 > ACC_Rt_Foot; 

{Connect FKEYS and} 
{DIALS} 

{Connect rotation} 
{accumulator to rotate} 
{function} 

{Connect rotate function} 
{to switch} 

{Connect switch to} 
{X,Y,Z accumulator} 



18 -FUNCTION NETWORKS II 

CONNECT Acc_Rot_Robot< 1 > < 1 > Acc_Rot_Robot; 
CONNECT Acc_Rot_Robot< 1 > : < 1 > Robot.Rot; 

CONNECT Acc_Rot_Head< 1 > : < 1 > Acc_Rot_Head; 
CONNECT Acc_Rot_Head< 1 > : < 1 > Head.Rot; 

CONNECT Acc_Rt_Arm < 1 > : < 1 > Acc_Rt_Arm; 
CONNECT Acc_Rt_Arm< 1 > : < 1 > Right_Arm.Rot; 

CONNECT Acc_Rt_Hand < 1 > : < 1 > Acc_Rt_Hand; 
CONNECT Acc_Rt_Hand< 1 > : < 1 > Right_Hand.Rot; 

CONNECT Acc_Rt_Leg < 1 > : < 1 > Acc_Rt_Leg; 
CONNECT Acc_Rt_Leg< 1 > : < 1 > Right_Leg.Rot; 

CONNECT Acc_Rt_Foot < 1 > : < 1 > Acc_Rt_Foot; 
CONNECT Acc_Rt_Foot< 1 > : < 1 > Right_Foot.Rot; 

SEND 200 TO < 2 > X_Mul_D 1; 
SEND 200 TO < 2 > Y_Mul_D2; 
SEND Z00 TO < 2 > Z_Mul_D3; 

SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Rot_Robot; 
SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Rot_Head; 
SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Rt_Arm; 
SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Rt_Hand; 
SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Rt_Leg; 
SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Rt_Foot; 

{CODE FOR DIAL 4} 

Switch2:= F:CROUTE(6); 

Scale_Robot:= F:DSCALE; 
Rot_Rt_Elbow := F:DXROTATE; 
Rot_Rt_Knee := F:DXROTATE; 

CONNECT FKEYS< 1 > : < 1 >Switch2; 

CONNECT DIALS<4> : <2>Switch2; 

{Connect X,Y,Z} 
{accumulator back to} 
{self and to display tree} 
{node} 

{Prime MULC function} 

{Prime CMUL function} 

{Instance switch function} 

{Instance scale &rot} 
{functions} 

{Connect FKEYS and} 
{DIALS} 

CONNECT Switch2< 1 > : < 1 >Scale_Robot; {Connect switch to scale} 
CONNECT Switch2<3> : <I>Rot Rt Elbow; {and rot functions} 
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CONNECT Switch2 < 5 > : < 1 > Rot_Rt_Knee; 

CONNECT Scale_Robot< 1 > < 1 > Robot.Scale; {Connect scale &rot} 
CONNECT Rot_Rt_Elbow< 1 > < 1 > Right_Forearm.Rot; {functions to display tree} 
CONNECT Rot_Rt_Knee < 1 > < 1 > Right_Lower_Leg.Rot; {nodes} 

SEND .075 TO < 2 > Scale_Robot; 
SEND .02 TO < 3 > Scale_Robot; 
SEND .l TO <4>Scale_Robot; 
SEND .025 TO < 5 > Scale_Robot; 

{Prime scale function} 

SEND 0 TO <2>Rot_Rt_Elbow; {Prime rotation} 
SEND 200 TO <3>Rot Rt Elbow; {functions} 
SEND 0 TO <2>Rot_Rt_Knee; 
SEND 200 TO < 3 > Rot_Rt_Knee; 

{CODE FOR DIAL 5} 

Switch3:= F:CROUTE(6); 
Switch6:= F:CROUTE(6); 

X_Vec_DS:= F:XVEC; 
X_Mul_DS:=F:MULC; 
X_Rot_DS := F:XROT; 

Acc_Trans:= F:ACCUM; 

Acc_Rot_Trunk:= F:CMUL; 
Acc_Lt_Arm:=F:CMUL; 
Acc_Lt_Hand:=F:CMUL; 
Acc_Lt_Leg:= F:CMUL; 
Acc Lt Foot:=F:CMUL; 

CONNECT FKEYS< 1 > : < 1 >Switch3; 
CONNECT FKEYS< 1 > < 1 >Switch6; 
CONNECT DIALS< 5 > < 2 > Switch 3; 

CONNECT Switch3 < 1 > : < 1 > X_Vec_D5; 
CONNECT X_Vec_D5 < 1 > : < 1 > Acc_Trans; 
CONNECT Acc_Trans< 1 > : < 1 > Robot.Tran; 

CONNECT Switch3 < 2> : < 1 > X_Mul_D5; 
CONNECT Switch3 < 3 > : < 1 > X_Mul_D5; 

{Instance both switch} 
{functions} 

{Instance X vector for} 
{translation} 
{Instance MULC and} 
{ROT functions} 

{Instance tran} 
{accumulate function} 

{Instance CMUL} 
{funct-ions} 

{Connect FKEYS and} 
{DIALS} 

{Finish connections for} 
{trans network} 

{Connect switch to} 
{MULC functions} 
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CONNECT Switch3<4> : <1>X_Mul_D5; 
CONNECT Switch3 < 5 > : < 1 > X_Mul_D5; 
CONNECT Switch3<6> : < 1 >X_Mul_D5; 
CONNECT X_Mul_DS < 1 > < 1 > X_Rot_D5; 
CONNECT X_Rot_DS< 1 > <Z>Switch6; 

CONNECT Switch6 < 2 > : < 2 > Acc_Rot_Trunk; 
CONNECT Switch6 < 3 > < 2 > Acc Lt Arm; 
CONNECT Switch6 < 4> : < 2 > Acc_Lt_Hand; 
CONNECT Switch6 < 5 > : < 2 > Acc_Lt_Leg; 
CONNECT Switch6 < 6 > : < 2 > Acc_Lt_Foot; 

CONNECT Acc_Rot_Trunk < 1 > : < 1 > Acc_Rot_Trunk; 
CONNECT Acc_Rot_Trunk < 1 > : < 1 > Upper_Body.Rot; 

CONNECT Acc_Lt_Arm < 1 > < 1 > Acc_Lt_Arm; 
CONNECT Acc_Lt_Arm< 1 > : < 1 >Left_Arm.Rot; 

CONNECT Acc_Lt_Hand < 1 > : < 1 > Acc_Lt_Hand; 
CONNECT Acc_Lt_Hand < 1 > : < 1 >Lef t_Hand.Rot; 

CONNECT Acc_Lt_Leg < 1 > < 1 > Acc_Lt Leg; 
CONNECT Acc_Lt_Leg< 1 > : < 1 >Left_Leg.Rot; 

CONNECT Acc_Lt_Foot < 1 > : < 1 > Acc_Lt_Foot; 
CONNECT Acc_Lt_Foot< 1 > : < 1 >Left_Foot.Rot; 

SEND 200 TO < 2> X_Mul_D5; 

SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Rot_Trunk; 
SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Lt_Arm; 
SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Lt_Hand; 
SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Lt_Leg; 
SEND Mad (1,0,0 0,1,0 0,0,1) TO < 1 > Acc_Lt_Foot; 

SEND V3d (0,0,0) TO <2>Acc_Trans; 

SEND 0 TO < 3 > Acc_Trans; 
SEND 1 TO < 4> Acc_Trans; 
SEND 10 TO < 5 > Acc_Trans; 
SEND -10 TO <6>Acc_Trans; 

{Connect MULC to} 
{rotation function} 
{Connect rotation} 
{function to other switch} 

{Connect switch to} 
{CMUL functions} 

{Connect CMUL} 
{functions back to self} 
{and to display tree 
nodes} 

{Prime MULC function} 

{Prime CMUL function} 

{Prime trans accumulate} 
{function} 
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{CODE FOR DIAL 6} 

Switch4:= F:CROUTE(6); 

Y_Mul_D6:=F:MULC; 

Y_Rot_D6:= F:YROT; 

CONNECT FKEYS< 1 > < 1 >Switch4; 

CONNECT DIALS < 6 > : < 2 > Switch4; 

CONNECT Switch4< 1 > < 1 > Y_Vec_D6; 

CONNECT Y_Vec_D6 < 1 > < 1 > Acc_Trans; 

CONNECT Switch4<2> < 1 >Y_Mul_D6; 

CONNECT Switch4< 3 > < 1 > Y_Mul_D6; 
CONNECT Switch4<4> < 1 > Y_Mul_D6; 
CONNECT Switch4 < 5 > < 1 > Y_Mul_D6; 
CONNECT Switch4<6> < 1 > Y_Mul_D6; 

CONNECT Y_Mul_D6 < 1 > < 1 > Y_Rot_D6; 

{Instance Switch} 
{function. Note: 2nd} 
{Switch already} 
{instanced} 

{Instance X vector for} 
{translation} 

{Instance MULC and} 
{ROT functions} 

{Connect FKEYS and} 
{DIALS} 

{Finish connections for} 
{trans network} 

{Connect switch to} 
{MULC functions} 

{Connect MULC to} 
{rotation function} 

CONNECT Y_Rot_D6< 1 > <2>Switch6; {Connect rotation} 

SEND 200 TO < 2 > Y_Mul_D6; 

{CODE FOR DIAL 7} 

Switch5:= F:CRO~JTE(6); 

{function to other switch} 

{Prime MULC function} 

{Instance Switch} 
{function. Note: 2nd} 
{Switch already} 
{instanced} 
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Z_Vec_D7:= F:ZVEC; 

Z_MUL_D7:=F:MULC; 

Z_ROT_D7 := F:ZROT; 

CONNECT FKEYS< 1 > : < 1 >Switch5; 

CONNECT DIALS<7> : <2>Switch5; 

CONNECT Switch5 < 1 > : < 1 >Z_Vec_D7; 

CONNECT Z_Vec_D7<1> : <1>Acc_Trans; 

CONNECT Switch5<2> : < 1 >Z_Mul_D7; 
CONNECT Switch5 < 3 > : < 1 > Z_Mul_D7; 
CONNECT Switch5 <4> : < 1 >Z_Mul_D7; 
CONNECT Switch5 < 5 > : < 1 > Z_Mul_D7; 
CONNECT Switch5<6> : < 1 >Z_Mul_D7; 

CONNECT Z_Mul_D7 < 1 > : < 1 > Z_Rot_D7; 

CONNECT Z_Rot_D7 < 1 > : < 2> Switch6; 

SEND 200 TO < 2 > Z_Mul_D7; 

{CODE FOR DIAL 8} 

Switch? := F:CROUTE(6}; 

Rot_Lt_Elbow:= F:DXROTATE; 
Rot_Lt_Knee:= F:DXROTATE; 

CONNECT FKEYS< 1 > : < 1 >Switch7; 

CONNECT DIALS<8> <2>Switch7; 

{Instance Z vector for} 
{translation} 

{Instance MULC and} 
{ROTfunctions} 

{Connect FKEYS and} 
{DIALS} 

{Finish connections for} 
{trans network} 

{Connect switch to} 
{MULC functions} 

{Connect MULC to} 
{rotation function} 

{Connect rotation} 
{function to other} 
{switch} 

{Prime MULC function} 

{Instance switch} 
{function} 

{Instance rotate} 
{functions} 

{Connect FKEYS and} 
{DIALS} 

CONNECT Switch 7< 3> : < 1 > Rot Lt Elbow {Connect switch to} 
{rotate functions} 
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CONNECT Switch7<5> < 1 >Rot_Lt_Knee; 

CONNECT Rot_Lt_Elbow< 1 > < 1 >Left_Forearm.Rot; 
CONNECT Rot_Lt_Knee< 1 > < 1 >Left_Lower_Leg.Rot; 

SEND 0 TO <2>Rot Lt Elbow; 
SEND 0 TO <2>Rot_Lt_Knee; 
SEND 200 TO < 3 > Rot_Lt_Elbow; 
SEND 200 TO < 3 > Rot_Lt_Knee; 

{Connect rotate} 
{function to display} 
{tree node} 

{Prime rotate functions} 

The above includes all the necessary code fora function network which will 
manipulate Robot. However, there is one other function you could add so that 
you can interactively reset Robot to its original position, before any 
transformations were applied, at any time. Connecting an F:XROTATE function 
to the F:CMUL (rotation accumulator) functions will do this (see Figure 14). 

Send ~ to Reset 

RESET  +~ 

F : XROTAT E 

XROTATE 

YROTATE 

ZROTATE. ~--

F:CMUL 

<1>C <1> 

<2> 

A 

IAS0583 

Figure 14. RESET Function Network 

NODE 
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Add the following code: 

Reset := F:XROTATE; 

CONNECT Reset < 1 > : < 1 > Acc_Rot_Robot; 
CONNECT Reset < 1 > : < 1 > Acc_Rot_Head; 
CONNECT Reset < 1 > : < 1 > Acc_Rt_Arm; 
CONNECT Reset< 1 > : < 1 >Acc_Rt_Hand; 
CONNECT Reset< 1 > : < 1 >Acc_Rt_Leg; 
CONNECT Reset < 1 > : < 1 > Acc_Rt_Foot; 
CONNECT Reset < 1 > : < 1 > Acc_Rot_Trunk; 
CONNECT Reset < 1 > : < 1 > Acc_Lt_Arm; 
CONNECT Reset < 1 > : < 1 > Acc_Lt_Hand; 
CONNECT Reset < 1 > : < 1 > Acc_Lt_Leg; 
CONNECT Reset < 1 > : < 1 > Acc_Lt_Foot; 

This will reset the network value but not the robot's display nodes. The nodes 
will be reset once the dials are moved again. To reset the display nodes at the 
same time as you reset the network, also connect this reset function to all of the 
rotation nodes in the display tree: 

CONNECT Reset < 1 > 
CONNECT Reset< 1 > 
CONNECT Reset < 1 > 
CONNECT Reset < 1 > 
CONNECT Reset < 1 > 
CONNECT Reset < 1 > 
CONNECT Reset < 1 > 
CONNECT Resets 1 > 
CONNECT Reset < 1 > 
CONNECT Reset< 1 > 
CONNECT Reset < 1 > 
CONNECT Reset < 1 > 
CONNECT Reset<1> 
CONNECT Reset < 1 > 
CONNECT Reset < 1 > 

< 1 > Robot.Rot; 
< 1 > Head.Rot; 
< 1 > Upper_Body.Rot; 
< 1 > Right_Arm.Rot; 
< 1 > Left_Arm.Rot; 
< 1 > Right_Hand.Rot; 
< 1 > Left_Hand.Rot; 

< 1 > Right_Leg.Rot; 

< 1 > Right_Foot.Rot; 
< 1 > Right_Forearm.Rot; 
< 1 > Le f t_Forearm. Ro t; 
< 1 > Left Lower_Leg.Rot; 
< 1 > Right_Lower_Leg.Rot; 

To RESET Robot, then, simply enter: 

SEND 0 TO <1>RESET; 
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LABELLING THE CONTROL DIALS 

The function network that labels the dials also involves routing, except that the 
network's output will be routed to function instances associated with the control 
dial labels instead of into display tree nodes. 

The "Function Summary" explains that there are eight DLABEL function 
instances, one for each dial, named DLABEL l...DLABEL8 (see Figure 15). 

DLABELI...DLABEL8 

S 

B 

B 

<1> 

<2>~ 

<3>C 

Connected to 
Dial Labels 
a t System 
Initial ization 

~aso5s~ 

Figure 15. DLABEL Function 

If you send the string of characters you want to appear in a dial's label to input 
< 1 > of a DLABEL function, the string will appear in the LEDs above the dial. 
(The second and third DLABEL inputs, not used in this example, allow you to 
blink the label or left —justify it. The default is non—blinking and centered in the 
available space above each dial.) 

These character strings should be no more than 8 characters long. No 
connections need to be made out of DLABEL function instances; their "outputs" 
are the LEDs on the control dials box. 

To build a function network using these functions, first determine what type of 
output the network needs to produce; that is, what sort of values a DLABEL 
function will accept. In this case, it is a string of characters. These strings need 
to be sent to the DLABEL functions. Each time you change modes, you will want 
a new set of LED labels to appear that correspond to the new operations handled 
by the dials. 

Begin with the first mode. Here, seven dials control overall movements for the 
robot. Though the eighth dial is not labeled, a blank string is needed for the 
eighth label to erase any existing labels above Dial 8 which appear in other 
modes. 
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The following are suggested labels that might appear in the dial LEDs during 

Mode l: 

1--XRot_Bod 
2--XRot Hd 
3--XR_Arm 
4--XR Hand 
S--XR_Leg 
6--XR Foot 

Once you identify labels to be sent to the LEDs, an efficient way to send them is 

to use an instance of F:INPUTS CHOOSE(n) (Figure 16) for each DLABEL 
function. 

F:I^lPUTS CHOOSE(n) 

Any 

Any 

I 

<1>C 

<n-1>c 

<n> 

<1> Any 

~AS0585 

Figure 1 fi. F:IN P U TS_C HOOSE(n) Function 

Make n one number larger than the number of modes you need. With six modes, 
use an instance of F:INPUTS CHOOSE(7). 

This function can house six different labels on its first six inputs, one for each 
mode. The seventh input is the "routing signal." An integer on input <7> 
indicates which of the labels to send out. Connect FKEYS to that input. 

Now when you press a function key, FKEYS not only switches the dials into a 
different mode, it switches labels for the dials. 

Figure 17 illustrates the network for Dial 1, with string outputs to DLABEL 1 and 
integer inputs from FKEYS. 
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' XROT BOD =-~ 

'XROT HD'  
w 

' XR ARM' --~ 

'XR HAND'  ~ 

'XR LEG'  

' X R FOOT'  

Exercise 

FKEYS ~---

F:INPUTS CHOOSE(7) 

<1>C 

<2>~ 

<~>C 

<4>C 

<5>C 

<b>C 

<7> 

<1> 

DLABELI 

<1> 

iAS0586 

Figure 17. LED Labels for Dial 1 

The above diagram suggests how an instance of F:INPUTS CHOOSE(7) can handle 
the labels for Dial 1 in all modes. Design a network with additional instances of 
F:INPUTS_CHOOSE that will handle the other DLA~ELS2 through DLABELS8. 
Design labels for the dials in each mode that use 8 or fewer characters to 
describe the dials' functions. 

Figure 18 illustrates the rest of the function network needed to label LEDs. 
Following that is the code needed to implement the complete network. 
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' Y ROT_60D' 
t 1 YROT HD 

'YR ARM' 

`YR HAND' 

YR LEG I 

'YR FOOT' 

I FKEYS 

F:INPUTS CHOOSE(7) 
<1>C 

<2>C 

<3>C 

<4>C 

<5>C 

<6>C 

<7> 

<l , 

' ZROT 60D' _. 
'ZROT HD' --~ .._. 
'ZR ARM'  , 
' ZR_HAND' - 

I ZR LEG  ~ 

' ZR FOOT'  

FKEYS 

F:INPUTS CHOOSE(7) 
<1>~C 
<2>C. 

<3 >C 

<4>C 

<5>C 

<6>C 

<7> 

<1> 

DLABEL 2 
<1> 

' S ROBOT' ---

'xRoT RE'  
I 

' X ROT_R K'  
i I 

FKEYS 

F:INPUTS CHOOSE(7) 
<1>C <I> 
<Z>C 
<3>C 
<4>C 
<5>C 
<6>C 
<7> 

DLABEL3 
<1> 

`XTRN BOD'--

'XROT TRK` 

'XL ARM'  

'XL HAND'  

'XL LEG'  

' X L FOOT' --

FKEYS 

F:INPUTS CHOOSE(7) 
<1>C <1~ 

<2>C 

<3>C 

<4>C 

<5>C 

<6>C 

<7> 

DLABEL4 
< 1~ > 

DLABEL5 
<I> 

~A5Q5$7 

Figure 18. LED Labels for Dials 2-8 
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' YTRN BOD' ----

' YROT TR K' 

'YL ARM'  

'YL HAND' -

'YL LEG'  

' Y L FOOT'  

FKEYS ~' 

F:INPUTS CHOOSE(7) 
<1>C 

<2>C 

<3>C 

<4>C 

<5>C 

<6>C 

<; > 

<1~ 

' ZTRN BOD' ---~ 

' ZROT TR K' 

'ZL ARM'  

'ZL HAND'  

'ZL LEG'  

'ZL FOOT'  

FKEYS }-

F:INPUTS CHOOSE(7) 
<1>C 

<2>C 

<3 >C 
<4>C 

<5>C 

<6>C 

<7 > 

<1> 

DLABEL6 
<1> 

F:INPUTS CHOOSE (7 

 <2>C 

 ~<4>C 

'XROT LK' <5>C 

 <6> C 

FKEYS ~ ~ ~' 

<1~ 

OLABEL7 
<1> 

DLABEL 8 
<1> 

IAS0588 

Figure 18. LED Labels for Dials 2-8 tcontinued) 
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The code follows for the eight labels in all six possible modes. Note that the 
DLABELS function does not have to be instanced by the user. 

D 1_Leds := F:INPUTS_CHOOSE(7); 
D2_Leds := F:INPUTS_CHOOSE(7); 
D3_Leds := F:INPUTS_CHOOSE(7); 
D4_Leds := F:INPUTS_CHOOSE(7); 
D5_Leds := F:INPUTS_CHOOSE(7); 
D6_Leds := F:INPUTS_CHOOSE(7); 
D7_Leds := F:INPUTS_CHOOSE(7); 
D8_Leds := F:INPUTS_CHOOSE(7); 

CONNECT FKEYS< 1 >:<7>D 1_Leds; 
CONNECT FKEYS< 1 >:<7>D2_Leds; 
CONNECT FKEYS< 1 >:<7>D3_Leds; 
CONNECT FKEYS< 1 >:< 7> D4_Leds; 
CONNECT FKEYS< 1 >:<7>DS_Leds; 
CONNECT FKEYS< 1 >:<7>D6_Leds; 
CONNECT FKEYS< 1 >:<7>D7_Leds; 
CONNECT FKEYS< 1 >:<7>D8 Leds; 

CONNECT D 1 Leds< 1 >: < 1> Dlabel 1 
CONNECT D2_Leds< 1 >:< 1 >Dlabel2 
CONNECT D3_Leds< 1 >:< 1 >Dlabel3 
CONNECT D4 Leds< 1 >:< 1 >Dlabel4 
CONNECT DSa_Leds< 1 >:< 1 >D1abe15 
CONNECT D6_Leds< 1 >: < 1 > Dlabel6 
CONNECT D7_Leds< 1 >:< 1 >Dlabel7 
CONNECT D8 Leds< 1 >: < 1 > Dlabel8 

SEND 'XRot_BOD' TO < 1 >D 1_Leds; 
SEND 'XRot_HD' TO <2>Dl_Leds; 
SEND 'XR_ARM' TO <3>Dl_Leds; 
SEND 'XR_HAND' TO <4>D I_Leds; 
SEND 'XR_LEG' TO <5>D1_Leds; 
SEND 'XR_FOOT' TO <6>D 1_Leds; 

SEND 'YRot_BOD' TO < 1 > D2_Leds; 
SEND 'YRot_HD' TO < 2> DZ_Leds; 
SEND 'YR_ARM' TO < 3> D2_Leds; 
SEND 'YR_HAND' TO <4> D2_Leds; 
SEND 'YR_LEG' TO <5>D2_Leds; 
SEND 'YR_FOOT' TO <6>D2_Leds; 

{Instance the switch function} 

{Connect FKEYS to switch} 

{Connect switch to LEDs} 

{Send characters} 
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SEND 'ZRot_BOD` TO < 1 >D3_Leds; 
SEND 'ZRot_HD' TO <2>D3_Leds; 
SEND 'ZR_ARM' TO < 3 > D3_Leds; 
SEND 'ZR_HAND' TO <4>D3_Leds; 
SEND 'ZR_LEG' TO < 5 > D 3_Leds; 
SEND 'ZR_FOOT' TO < 6 > D 3_Leds; 

SEND 'S_Robot' TO < 1 > D4_Leds; 
SEND ' ' TO < 2 > D4_Leds; 
SEND 'XRot_RE' TO <3>D4_Leds; 
SEND ' ' TO <4>D4_Leds; 
SEND 'XRot_RK' TO <5>D4_Leds; 
SEND ' ' TO < 6 > D4_Leds; 

SEND 'XTRN_BOD' TO < 1 > D5_Leds; 
SEND 'XRot_TRK' TO <2>DS_Leds; 
SEND 'XL_ARM' TO < 3 > D5_Leds; 
SEND 'XL_HAND' TO <4>D5_Leds; 
SEND 'XL_LEG' TO < 5 > D5_Leds; 
SEND 'XL_FOOT' TO <b> D5_Leds; 

SEND 'YTRN_BOD' TO < 1 > D6_Leds; 
SEND 'YRot_TRK' TO <Z>D6_Leds; 
SEND 'YL_ARM' TO < 3 > D6_Leds; 
SEND 'YL_HAND' TO <4>D6_Leds; 
SEND 'YL_LEG' TO < 5 > D6_Leds 
SEND 'YL_FOOT' TO <6> D6_Leds; 

SEND 'ZTRN_BOD' TO < l > D7_Leds; 
SEND 'ZRot_TRK' TO <Z>D7_Leds; 
SEND 'ZL_ARM' TO < 3 > D7_Leds; 
SEND 'ZL_HAND' TO <4>D7_Leds; 
SEND 'ZL_LEG' TO < 5 > D7_Leds; 
SEND 'ZL_FOOT' TO <6> D7_Leds; 

SEND ' ' TO < 1 > D8_Leds; 
SEND ' ' TO < 2 > D8_Leds; 
SEND 'XRot_LE' TO < 3 > D8_Leds; 
SEND ' ' TO <4> D8_Leds; 
SEND 'XRot_LK' TO <5>D8_Leds; 
SEND ' ' TO <6>D8_Leds; 
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SETTING LIMITS ON THE MOTION OF A MODEL 

As the robot model now operates, its movements are unbounded: it can continue 
bending its knees until they pass through its thigh and return to initial position. 

This section demonstrates how to set a limit on that motion, so that a model will 

more realistically imitate the movements of the object it represents. 

The robot's knees provide a good illustration of how to do this. First, think of 
how a real leg bends (Figure 19). 

.~ 

`— 160° 

~~ IAS0589 

Figure 19. Realistic Limitations of Leg Movement 

In a real leg, little or no forward bending is possible, but backward bending, 
through nearly 180 degrees is. If you set a limit at 160 degrees, it would be 
fairly realistic. Figure 20 shows how 160 degrees of "backward" movement in a 
real leg corresponds to the rotation values in the robot's knee. 

X 

-Y I AS0590 

Figure 20. Limits for the Robot Leg 
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The rotations applied to it move it only around the X axis. Viewed from the 
positive X axis (the way it is in the diagram above), the "backward" rotation is 
counterclockwise. So the limits you want to impose are: no positive rotation in 
X at all, and only up to 160 in negative X. 

You can modify the rotation network in the function network diagram for the 
robot. This requires the F:LIMIT function (see Figure 21). F:LIMIT will monitor 
values for degrees of rotation for the ROTATE functions and pass through only 
values between 0 and —160. 

F:LIMIT 

accumulated rotation value -

upper limit (0}-

lower limit (-160) 

C 

C 

---value between the two 1 imi is 

IAS0591 

Figure 21. F: L I M I T F unction 

In this example, any value larger than 0 will cause F:LIMIT to send out a 0; 
anything less than —160 will output —160. 

The network for robot's knees use F:DXROTATE functions because they require 
rotations only in X. However, the accumulator is built into F:DXROTATE, so 
you cannot tap into it for the input to F:LIMIT. 

DIALS F : DXROTATE 

To use F:LIMIT, begin with an XROT network such as the one used in "Function 
Networks I": 

DIALS F : MULC I--- F:XROTATE 
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Then modify it to accumulate rotation values with an add function: 

DIALS F:MULC F:ADD   F:XROTATE 

Finally, add the F:LIMIT function. With this network, a stream of values from 
ADD (accumulated rotation values) can be output to F:LIMIT as shown in Figure 
22. 

DIALS F:MULC F:ADD F:LIP~IT 
 ,~ 

F:XROTATE 

Figure 2Z. Function Network to Limit Movement 

IAS0592 

~~ode 

Though this network is bulkier (three functions now replace one), it allows you to 
limit the motion in the knee joint. 

Exercise 

Figure 23 illustrates two modified function networks that will limit rotations in 
both of the robot knees. Function instance names have been provided. Edit the 
existing code for Robot to incorporate these changes. Do not repeat any existing 
commands which create function instances; otherwise, all connections 
established by the original command are broken. 

DIALS<4> SWITCH2 X_MULC_D4 

DIALS <8 > SWITCH? X MULC D8 

ADD D4 LIMIT D4 

LIMIT D8 

Ri ght_Lowe r_Le g .Rot 

X_ROT D4 

Left Lower Leg.Rot 

IAS0593 

Figure 23. Function Networks to Limit the Robot Knee Movement 



FUNCTION NETWORKS II - 35 

X_Mulc_D4 := F:MULC; 
X_Mulc_D8 := F:MULC; 
Add_D4 := F:ADD; 
Add_D8 := F:ADD; 
Limit_D4 := F:LIMIT; 
Limit_D8 := F:LIMIT; 
X_Rot_D4 := F:XROTATE; 
X_Rot_D8 := F:XROTATE; 

DISCONNECT Switch2<5>:< 1 >Rot_Rt_Knee; 
DISCONNECT Switch7<5>:< 1 >Rot Lt Knee; 

CONNECT Switch2<5>:< 1 >X_Mulc_D4; 
CONNECT Switch? < 5 >: < 1 > X_Mulc_D8; 

CONNECT X_Mulc_D4< 1 >:< 1 >Add_D4; 
CONNECT X_Mulc_D8 < 1 >: < 1 > Add_D8; 

CONNECT Add_D4< 1 >:< 1 >Limit_D4; 
CONNECT Add_D8< 1 >:< 1 >Limit_D8; 

CONNECT Limit_D4 < 1 >: < 2 > Add_D4; 
CONNECT Limit_D4< 1 >:< 1 > X_Rot_D4; 
CONNECT Limit_D8 < 1 >: < 2 > Add_D8; 
CONNECT Limit_D8 < 1 >: < 1 > X_Rot_D8; 

{Instancing new functions} 

{Creating new network} 

CONNECT X_Rot_D4< 1 >:< 1 >Right_Lower_Leg.Rot; 
CONNECT X_Rot_D8< 1 >:< 1 >Left_Lower_Leg.Rot; 

SEND 200 TO < 2 > X_Mulc_D4; 
SEND 200 TO <2> X_Mulc_D8; 
SEND 0 TO < Z>Limit_D4; 
SEND -160 TO < 3 > Lim it_D4; 
SEND 0 TO < 2>Limit_D8; 
SEND -160 TO < 3 > Limit_D8; 

SEND 0 to <2>Add_D4; 
SEND 0 to <2>Add_D8; 

{Priming functions} 

The next logical step would be to limit rotations in ALL of the robot's joints. 
However, this is no trivial matter. The other rotate nodes accept 
three-dimensional rotations which are all accumulated using matrices. Matrices 
cannot go through an F:LIMIT function. This problem is not insurmountable, but 
solutions can be complex. (For example, you could have three rotation nodes, 
each limiting movement using the F:LIMIT function.) 
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USING VARIABLES TO STORE VALUES 

One difference between programming with PS 300 function networks and 
programming a conventional language such as FORTRAN is that you almost 
never need to use variables. In a conventional program, you may represent two 
values to be added together as variables X and Y. In a function network, you 
would add these using an ADD function. The "variables" are the function's two 
inputs. 

7 

Sometimes, though, you may want to use avariable -value in a function network 
in a more conventional way. Often, this can be done using a F:CONSTANT 
function (see Figure 24). 

F: CONSTANT ~--Destination 1 

F: CONSTANT }--Destination 2 

F: CONSTANT ~— Destination 3 

IAS0599 

Figure 24. F:CONSTANT Function 

In this setup, the value you want to save is sent to the constant input of the 
function. If you send a stream of values, each one will over—write the preceding 
one, so the value on the constant input will always be current (the latest one 
sent). When you need the variable somewhere else in the network, send any 
value to trigger F:CONSTANT's input < 1 > and the value will fire out to wherever 
you connect the output. 

It may be the case, however, that several areas in a network need to access the 
variable in an F:CONSTANT function. You might think that can be done by 
making numerous output connections to all the destinations that may use the 
variable. 

F : CONSTAPJT 
<1> <1> 

<2>C 
IAS0596 

Destination 1 
Destination 2 
Destination 3 
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However, this presents a problem of routing and selection. To send the variable 
value to destination 1, you must trigger F:CONSTANT, which sends out values to 
all destinations. One solution to this problem could be to use more instances of 
F:CONSTANT. 

F :CONSTANT 

Trigger Value 

From Network 

<1> 

<2>C 

<1> Any 

tAS0594 

A more efficient solution is to use the VARIABLE command in conjunction with 
the command STORE and the function F:FETCH: This section discusses how to 
do that. 

The VARIABLE command creates a "holding tank" for a single value, much the 
same way the constant input of F:CONSTANT does. Look at the following 
command: 

VARIABLE This, That, The_Other; 

This command creates three variables named This, That, and The_Other. 
Variables have only one input and no outputs. Function networks can be 
connected to them or they can receive values by means of the SEND command: 

CONNECT Spinner< 1 >:< 1 >This; 

SEND 4.5 TO < 1 >This; 

If a network is connected to a variable, it can receive a stream of values and will 
retain the last one sent. 

An alternate way to send a value to a variable is to use the STORE command. 
The following commands both do the same thing: 

STORE 4.5 IN This; 

SEND 4.5 TO < 1 >This; 
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There are two ways to retrieve a value stored in a variable: using the SEND 
VALUE command or using a function network with F:FETCH. For example, if 
you want to send a value from the variable "This" to the third input of a function 
named ROT_X, you could enter: 

SEND VALUE(This) TO < 3 > Rot_X; 

Even more convenient is using F:FETCH (Figure 25). 

F:FETCH 

Any 

S 

<1> 

<2>C 

<1> Any 

iAS0595 

Figure 25. F:FETCH Funotion 

F:FETCH accepts the name of the variable on its constant input (input 2). When 
any value arrives on input 1, the function is triggered. It fetches the latest value 
from that variable and sends it out. 

For example, in Figure 26 below, values for the variable "This" are routed to the 
host using the F:FETCH function. (User-assigned names are written above the 
function box.) 

DIALS 
<5> 
<6> 
<7> 

--X TRANSLATE NETWORK 
---Y TRANSLATE~NETWORK 
---Z TRANSLATE NETWORK 

(Translation Network Already Defined) 

GET THIS PRINTER 

F:FETCH 
F KEYS ~---, < 1 > 

'This'--~ 

This 

<2>C 

IAS0597 

F:PRINT 

Figure 26. Routing Values From THIS Variable to the Host 

HOSTOUT 
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The variable This holds a ZD vector that indicates the accumulated translation 
values sent out from ACC TRANS in Mode 1. (The translation network has 
already been defined and coded in the Robot code.) 

HOSTOUT has one input, which accepts a string and routes it to the host. 
HOSTOUT is preceded by a function that turns PS 300 values into strings, 
F:PRINT. (If the GSRs are being used, HOST_MESSAGE should be used in lieu of 
HOSTOUT.) 

The additional code needed for this network is: 

VARIABLE This; 

Get_This := F:FETCH; 
Printer := F:PRINT; 

CONNECT Acc_Trans < 1 >: < 1 > This; 
CONNECT FKEYScI >:< 1 >Get_This; 
CONNECT Get_This< 1 >: < 1 >Printer; 
CONNECT Printer< 1 >: < 1 > Hostout 

SEND 'This' to < 2 > Get_This; 

Exercise 

Using Figure 26 as a pattern, create a function network that uses a variable 
named MATRIX which holds the most current rotation matrix from F:CMUL for 
the robot's left arm (ACC LT ARM) in Mode 3. Retrieve this value and send it 
to HOSTOUT using an instance of F:FETCH named Retrieve. Specify any 
additional code needed (the rotation network for Robot has already been done). 

Figure 27 illustrates the function network which retrieves values from the 
variable MATRIX. 
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RETRIEVE PRINTER 

DIALS 
<5> 
<6> 
<7> 

SWITCH 
6gCC LT ARM 

--X ROTATION NETWORK—
~-Y ROTATION NETWORK---
-Z ROTATION NETWORIG—

( Rotation Network Al ready Defined) 

  F: FETCH F:PRINT 

F KE YS ~--- < 1 > 

' Matri x' <2>C 

Matri x 

11ARIABLE~ 

Left Arm. Rot 

IAS0598 

HOSTOUT 

Figure 2 7. Routing Values From MATRIX Variable to the Host 

The additional code needed for this network is: 

VARIABLE Matrix; 

Retrieve := F:FETCH; 
Printer := F:PRINT; 

CONNECT Acc_Lt_Arm < 1 >: < 1 > Matrix; 
CONNECT FKEYS< 1 >: < 1 > RETRIEVE; 
CONNECT Retrieve < 1 >: < 1 > Printer; 
CONNECT Printer< 1 >: < 1 > Hostout; 

SEND 'Matrix' to <2> RETRIEVE; 
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SUMMARY 

This module illustrates how to expand a function network so that a single dial 
can manipulate several movements of a model. This entails determining the 
number of dials needed for interactions in the model and assigning each dial 
several destinations (in this module, interactive nodes in the model's display tree 
or LED labels). 

Function keys and instances of F:CROUTE(n) are used to switch values from the, 
dials to their various destinations. This prevents dial values from being routed to 
all function network destinations at once. 

Specifically, the initial function instance FKEYS is connected to input< 1 > of the 
switching function F:CROUTE(n). Incoming values from the dials are connected 
to input < 2>. The outputs of F:CROUTE(n) are connected to the various 
destinations. 

LEDs above the dials are labeled in each mode of operation. Specifically, labels 
in every mode for that dial are sent to the constant inputs of 
F:INPUTS_CHOOSE. FKEYS is connected to the last input of this function. The 
output of F:INPUTS_CHOOSE is connected to the DLABEL function associated 
with that dial. When the function key is pressed, to switch modes, the correct 
label for the dial in that mode is routed to DLABEL, which outputs to the LEDs. 

Functions can serve more than one purpose. For example, in addition to 
controlling X rotations, the F:XROTATE function can be used to reset the model 
back to its original position before any transformations were applied. 

The F:LIMIT function can be inserted into a network to set limits on a model's 
movement. F:LIMIT requires that you establish upper and lower limits for 
transformation values. It then passes through only those values which lie within 
this range. 

Finally, the VARIABLE command and F:FETCH functions allow you to store and 
retrieve a variable value in a function network. 
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Text is handled by the PS 300 in the same way as any other graphical item. Characters 
are defined as data nodes consisting of a single string (a CHARACTERS node) or a block 
of several strings or 1abeZs ( a LABELS node). Just like other graphical items, 
characters can be transformed through matrices. Because they are affected by 3X3 
matrices, they can be transformed along with any three-dimensional object which 
includes them in its definition. Characters can also be rotated and scaled using 
commands that create 2X2 transformation matrices. These matrices transform text 
while leaving other 2D and 3D graphical data unaffected. 

Strings can be created and manipulated with commands. They can also be manipulated 
interactively using function networks and interactive devices. 

A standard character font comes with the PS 300. Commands exist which allow you to 
design and use an unlimited number of alternate character fonts. A graphical character 
font editor program, MAKEFONT, is also available for designing and modifying 
character fonts. Refer to Volume 4 for information about this program. 

Text and text-handling nodes are included in display trees. Text strings are data nodes 
and text transformations are operation nodes. The current character font is an 
attribute node which points to a look-up table for the vectors which comprise the font 
in current use. 

OBJECTIVES 

In this module you will learn how to: 

■ Use commands to create character strings. 

■ Use commands to manipulate character strings. 

■ Use functions to manipulate characters and strings. 

■ Update characters and labels nodes. 

■ Create and use different character fonts. 
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PREREQUISITES 

Be at a PS 300 and have access to the Tutorial Demonstration programs. Be 
familiar with the concepts covered in "Graphics Principles" and in the "Modeling" 
and "PS 300 Command Language" modules. Also have at hand the Command 
Summary and Function Summary in Volume 3A for reference to the commands and 
functions you will be using. 

Be sure that you have read User Operation and Communications in Volume 1 so 
that you know how to put the PS 300 into and out ~of Command mode. 
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USING COMMANDS TO CREATE CHARACTER STRINGS 

Two PS 300 commands create character strings: the CHARACTERS command 
and the LABELS command. 

The CHARACTERS Command 

The CHARACTERS command lets you create a single string of up to 240 
characters and specify the location of that string in the world coordinate system. 

The simplest form of the command lets you create a string which starts at the 
origin (the default location). The following command assigns the name String to 

a character string. Put the PS 300 in Command Mode by pressing the CONTROL 

and LINE LOCAL keys, and enter this command. 

String := CHARACTERS 'The quality of mercy...'; 

Now DISPLAY String. All you can see at the moment is a large "T" in the 

top—right quadrant and the vertical stroke of the "h". This is because each 
character is defined in a square which, by default, is one unit on each side. The 
default starting point for any string is the origin. Since the default window is 
from —1 to 1 in X and Y, only the first letter is within the window. Figure 1 

illustrates this. 

Default Character 
Size 

Default ~i ndov~ > 

I 
I 

I 
0 

-1 

---

t AS0634 

Figure 1. Default Window and Character Size 

_ — 
-1 
i 
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To scale the characters to fit the default window and display the string at its 
new size, enter the following commands. 

Scale_String := SCALE BY .04 APPLIED TO String; 
REMOVE String; 
DISPLAY Scale_String; 

The string should now appear in much smaller letters beginning at the center of 
the screen. Notice that the characters which form the string in the 
CHARACTERS command are enclosed in single quotation marks; however, when 
String is displayed, only the characters appear. If you want quotation marks in 
the text string, you must use three single quotation marks at the start and at the 
end of the string. Redefine String by entering the following command. 

String := CHARACTERS "'The quality of mercy..."'; 

The character string should now appear in single quotation marks. 

To get a single quote to appear in a string (as an apostrophe, for example) you 
must enter two single quotes. Redefine String with the following command. 

String := CHARACTERS 'Love"s not time"s fool'; 

The string should appear with the contraction Love's and the possessive time's. 

changing Starting Position and Spading 

When the PS 300 displays a character string, the string is positioned by default 
with the lower—left corner of the unit square enclosing the first character at the 
origin of the world coordinate system. Characters are regularly spaced and 
follow each other horizontally. Optional parameters in the command let you 
specify the beginning coordinates of the string and change the horizontal and 
vertical spacing of the characters to create vertical and diagonal text strings. 

Enter the following command to redefine String as a new line of text positioned 
of f the origin. 

String := CHARACTERS 0,5,0 'Up a little'; 
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This string starts at 0 on the X axis and 0 on the Z axis but 5 on the Y axis. The 
X,1~',Z coordinate of the starting point can always be specified in this way. The 
Z coordinate is optional and, if not supplied, defaults to zero. 

The spacing between characters can be changed with a STEP clause. This clause 
lets you specify the spacing between characters in X and Y as a value from -1 to 
1. The default spacing is 1,0 or one unit in X and zero in Y for regular horizontal 
spacing. 

The vertical spacing can be changed by specifying the Y component of the STEP 
clause as a value other than zero. Enter the following command to create a 
string which descends diagonally from the origin tp the right. 

String := CHARACTERS STEP 1,-1 'Stepping down'; 

Now redefine the string as a diagonal which ascends from the origin to the 
upper-right. 

String := CHARACTERS STEP 1,1 'Stepping up'; 

Exercise 

Try different combinations of X and Y values to produce strings which descend 
and ascend vertically from the origin. 

The LABELS Command 

The LABELS command, like CHARACTERS, defines character strings for 
display. Whereas CHARACTERS defines a single string, LABELS combines any 
number of character strings into a single block. Each character string in the 
block is called a Zabel. 

The command is quite straightforward to use. The following example combines 
some of the text strings created earlier in this module into a single label block. 

String := LABELS 0,0 'The quality of mercy...' 
-1,2 "'The quality of mercy..."' 

4,5 'Up a little' 
2,-5 'Love"s not time"s fool'; 
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Diagonal and vertical strings could not be included in the block, however, 
because they specify different horizontal and vertical spacing between 
characters. The LABELS command is not able to accommodate this. The only 
clause in the command is the X,Y,Z coordinate of each label in the block. 

When to Use CHARACTERS and LABELS 

Both the CHARACTERS and the LABELS commands create data nodes in a 
display tree. Whenever several character strings are defined as a single LABELS 
node rather than as separate CHARACTERS nodes, there is a gain in display 
capacity. If you are displaying a lot of text, it is best defined using the LABELS 
command. 

Character strings defined with the CHARACTERS command, however, are more 
versatile. In deciding which command to use, keep the following in mind. 

■ The CHARACTERS command lets you change the horizontal and vertical 
spacing between characters. The LABELS command does not. 

■ If text is created using CHARACTERS, you can manipulate any character in 
the text string. If the LABELS command is used, the smallest entity you can 
manipulate is a single text string. 
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USING COMMANDS TO MANIPULATE CHARACTER STRINGS 

The CHARACTERS and LABELS commands create data nodes containing text. 
Like any other primitive data, text can be transformed by having a matrix 
applied to it. Text can be rotated and scaled using the ROTATE and SCALE 
commands which transform any two—dimensional or three—dimensional 
structures. In addition, characters can be transformed with their own rotate and 
scale commands: CHARACTER ROTATE, CHARACTER SCALE, and TEXT 
SIZE. These commands create 2X2 transformation matrices which only operate 
on text. 

Character 

Rotations 

The CHARACTER ROTATE command rotates a character string or label block 
around the Z axis. When you look in the positive direction of the axis, the 
rotation is counterclockwise. 

To see the effect of this command, initialize the display, then rotate and display 
the scaled labels block. 

INITIALIZE DISPLAY; 
Rot_Text := CHARACTER ROTATE 90 APPLIED TO Scale_String; 
DISPLAY Rot_Text; 

Each string in the block should be rotated 90 degrees to the left. Notice that 
each label in the block is rotated around its own starting location. There is no 
single point in a labels block around which the whole block rotates. 

A character rotate node can be updated interactively by any 2X2 matrix. The 
functions F:MATRIX2 and F:CROTATE (where C stands for character) are often 
used to supply the new matrix to the node. 

Character Scales 

Characters can be scaled like any other primitive data by athree—dimensional 
scale matrix using the SCALE command. There is also a CHARACTER SCALE 
command which creates a 2X2 scale matrix for transforming text only. 
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There are two forms of the CHARACTER SCALE command, one for uniform 
scaling and one for non-uniform scaling. Enter the following commands to 
initialize the display and to uniformly scale by .05 and then display the 
characters in the labels block. 

INITIALIZE DISPLAY; 
Char_Scale := CHARACTER SCALE .75 APPLIED TO Scale_String; 
DISPLAY Char_Scale; 

The scale factor is applied in both X and Y to the characters that compose 
scale-string. Anon-uniform scale can be applied by specifying separate scale 
factors in X and Y. Enter the following command to redefine Char_Scale and 
make tall characters. 

Char_Scale := CHARACTER SCALE .5,3 APPLIED TO Scale_String; 

Characters in the strings are made tall and thin with this command. 

When several CHARACTER SCALE commands are used, each is concatenated 
with the next and a cumulative scaling matrix is applied to the characters. To 
see this effect, initialize the display and create and display a text string called 
Text. 

INITIALIZE DISPLAY; 
Text := CHARACTERS 'See Spot run.'; 
DISPLAY Text; 

Since the characters are at the default size, only the capital 'S' and one line of 
the first lowercase 'e' are visible in the top-right quadrant of the screen. Now 
scale the string by prefixing it with a CHARACTER SCALE node. 

PREFIX Text WITH CHARACTER SCALE .5; 

The characters should now change to half their previous size, and the 'S', first 
'e', and one line of the second 'e' should be visible. The PREFIX command 
inserts a new node above the existing node and assigns the existing node's name 
to the new node. Figure 2 shows the effect of the PREFIX command on the 
display tree. 
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Text (~ 
I'i 

i ASOb35 

Figure 2. The Effect of the PREFIX Command 

Use the PREFIX command again to create another scale node above the last one. 

PREFIX Text WITH CHARACTER SCALE .l; 

Notice that the size of the characters is now one tenth of what it was before, 
not one tenth of the original default size. The actual size of the text is .5 times 
.l, which is .05 of the default size. The new display tree is as shown in Figure 3. 

Tex t 

IAS0636 

Figure 3. New Node Added With the PREFIX Command 

The two character scales are concatenated and the combined scaling matrix is 
applied to the characters. 
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The TEXT SIZE Command 

Character sizes can also be changed with the TEXT SIZE command. This 
command creates a text size which replaces the default size of 1. Text sizes are 
expressed as multiples or fractions of the default size. 

Like the CHARACTER SCALE command, TEXT SIZE creates a 2X2 scaling 
matrix. However, this matrix is not concatenated with any other matrix. This 
means that the command creates a node which overrides any 2X2 matrix nodes 
above it in the same branch of the display tree. 

To see the effect of the command, first remove the two CHARACTER SCALE 
prefixes of the string called Text, then prefix Text with a TEXT SIZE node. 

REMOVE PREFIX OF Text; 
REMOVE PREFIX OF Text; 
PREFIX Text WITH TEXT SIZE .5; 

As you remove the prefixes, the characters being displayed should get larger 
until they are back to the default size, and only the capital S is visible in the 
top-right quadrant. Prefixing with the TEXT SIZE command should make the 
letters half of the default size. The display tree for this structure is as shown in 
Figure 4. 

Text n 

Text 

IASOb37 

Figure 4. Display Tree With TEXT SIZE Node 

Now prefix Text with a CHARACTER SCALE node to scale the characters by 
half again. 

PREFIX Text WITH CHARACTER SCALE .5; 

v 
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The text size does not change. This is because the effect of the CHARACTER 
SCALE node is overridden by the TEXT SIZE node below it in the structure. The 
display tree for the structure is shown in Figure 5. 

Tex t 

IAS0638 

Figure 5. TEXT SIZE Node Prefixed With CHARACTER SCALE Node 

Now prefix the CHARACTER SCALE node with a character rotation node. 

PREFIX Text WITH CHARACTER ROTATE 90; 

Again, nothing happens. The TEXT SIZE node overrides all 2X2 matrices above 
it. Since a CHARACTER ROTATE node is a 2X2 matrix node, it too is cancelled 
out like the character scale. You should take this into account when structuring 
data. 

Exercise 

The TEXT SIZE node has no effect on 3X3 matrices, however. Try replacing the 
CHARACTER ROTATE node with a ROTATE node, and the rotation will be 
applied. 

Character Orientation 

If a transformation is applied to an object or part of an object which contains 
text in its structure, the default condition is that the text will be transformed 

too. Consider the display tree in Figure 6. 
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Dial s 
moma~ 
mama 
mo mo 
mama 

Cube 

Labeled Cube 

.~ 

~ IAS0639 

Figure 6. Display Tree for a Labeled Cube 

An instance node called Labeled_Cube groups a vector list defining a cube and 
character strings which are scaled and positioned on each face to label the 
FRONT, BACK, TOP, BOTTOM, LEFT, and RIGHT. A rotation node connected to three 
dials through a function network allows Labeled Cube to be rotated 
interactively. A scale node is also connected to a dial to allow interactive 
scaling. Any rotation or scale that is applied to the cube is also applied to the 
character strings. 

To display the cube represented by the display tree in Figure 6, go to the 
Tutorial Demonstration Menu and select the program called CHARACTERS. 

The cube with its faces labeled will be displayed in three viewports. The 
rotation node is connected to Dials 1, 2 and 3 for rotations in X, Y, and Z. Dial 4 
is connected to the scale node. Use the dials to manipulate the cube. 
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Notice that as you rotate and scale the cube, the character strings on the faces 
of the cube in viewport 1 are rotated and scaled also. Depth-cueing is 
performed on the characters as well as on the lines that make up the cube. 

As you manipulate the cube in viewport 1, the character strings which label its 
faces are unreadable much of the time. They may be backwards, upside-down, 
and too small to read. Notice that this is not the case with the characters in 
viewports 2 and 3. These characters are unaffected by rotations and scales while 
the object is being transformed. This is achieved by using the SET 
CHARACTERS command. This command determines the orientation of 
characters which are part of a model. It has an "orientation" clause with 
three options: WORLD_ORIENTED, SCREEN_ORIENTED, and 
SCREEN ORIENTED/FIXED. 

World-Oriented Characters 

World-oriented characters are what you are seeing with the cube in viewport 1. 
The characters are transformed along with the object just like any other part of 
it. When an object is rotated, translated, or scaled, the characters undergo the 
same transformations. This is the default condition for any character string or 
label block you create. 

The syntax for this command is as follows. 

Name := SET CHARACTERS WORLD_ORIENTED APPLIED TO Name l; 

Screen-Oriented Characters 

Screen-oriented characters are unaffected by ROTATE and SCALE nodes. The 
SET CHARACTERS command can be used with the SCREEN ORIENTED clause 
to maintain a readable orientation for character strings when an object is 
transformed. The cube in viewport 2 has a SET CHARACTERS 
SCREEN_ORIENTED node added. When this cube rotates, the names on the 
cube's faces stay readable. They rotate around the three axes but they stay 
parallel to the XY plane. When the cube is scaled, the character size remains 
unchanged. 

The syntax for this form of the command is as follows. 

Name := SET CHARACTERS SCREEN_ORIENTED APPLIED TO Name l; 
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Screen-Oriented/Fixed Characters 

Notice that with the screen-oriented characters in viewport 2, the intensity of 
the characters varies with depth. If the cube were being displayed in perspective 
projection, the size of the characters would vary too. In the cube's initial 
position, the characters BACK on the back face of the cube would appear smaller 
and dimmer than the characters FRONT. You can use the 
SCREEN_ORIENTED/FIXED option of SET CHARACTERS to fix the size and 
intensity at which characters are displayed. 

.~ 
The cube in viewport 3 has a SET CHARACTERS node with the 
SCREEN ORIENTED/FIXED option. Notice that when you rotate this cube, 
depth-cueing is not performed on the characters, so they remain at full intensity. 

The syntax for this form of the command follows. 

Name := SET CHARACTERS SCREEN ORIENTED/FIXED 
APPLIED TO Name 1; 
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USING FUNCTIONS TO MANIPULATE CHARACTERS AND STRINGS 

There are several functions which are used for manipulating characters and 
strings. These functions convert characters and strings to other types of data, 
format and reformat strings, transform characters, and perform other 
miscellaneous character and string-handling operations. 

Complete information on these functions is contained in the Function Summary 
in Volume 3A. The following sections summarize the functions and give a few 
examples of their use. 

ChdrdCter dnd String Conversion Functions 

F:CHARCONVERT 
Converts characters to integers. The function accepts a string and converts 
each byte of the string (i.e., each character) to an integer. For example, the 
string 'AB' will be converted to 65 66, the ASCII decimal equivalent of A and B. 

F:CHARMASK 
Masks each character in a string by ANDing each byte with a constant integer. 
This is useful for converting one character or a string of characters to another, 
for example, from upper to lower case or from anon-printable to a printable 
character. 

F:PRINT 
Converts any data type to a string. For example, a Boolean input will generate 
the string 'TRUE' or 'FALSE'; a 3D vector will generate a string such as '5,2,1' 
and so on. 

F:TRANS STRING 
Translates one string into an output string using another string as a translation 
table. For example, prime the function by sending 'ABCDEFGHIJKLMONPQRS 
TUVWXYZ' as the translation table to input < 3 > of the function, and 97 (the 
ASCII decimal equivalent of 'a') to input <2>. If a string of lowercase letters of 
the alphabet is now sent to input < 1 >, the letters will be converted to uppercase 
on output < 1 >. 
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F:STRING TO NUM 
Converts a string to a real number or an integer. 

F:GATHER STRING 
Collects strings until a terminator arrives. It then packages them into one string 
which may or may not include the terminator. 

String Formatting and Reformatting F unctions 

F:CONCATENATE 
Concatenates strings. The string on input <2> of the function is appended to the 
string on input < 1 > . 

F:SPLIT 
Compares two strings and splits them depending on the match. If a match 
occurs, characters in the string on input < 1 > that precede the match are output 
on output < 1 >. Matching characters are output on output <2>. Characters 
following the matching characters are output on output < 3 >. And a Boolean 
TRUE is output on output <4>. If no match is found, nothing is output on outputs 
< 1 >, <2>, and <3>, and a Boolean FALSE is output on output <4>. 

F:PUT STRING 
Replaces characters in the string on input < 1 > with the string on input < 3 >, 
starting at the position specified by the integer on input <2>. 

F:TAKE STRING 
Outputs a string consisting of the number of characters specified on input < 3 > 
taken from the string on input < 1 >, starting at the position given on input <2>. 

F:LINEEDITOR 
Accepts a stream of characters and simple editing commands, accumulates the 
characters in an internal line buffer, applies the commands to the contents of 
the line buffer as they are received, and outputs the edited line when a specified 
delimiter character is recognized. 
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F:LABEL 
Creates a label to send to a LABELS node. A vector on input < 1 > of the function 
indicates the location of the label in the coordinate system. A string on input 
< 2 > is the text of the label. A Boolean value on input < 3 > indicates whether the 
label is to be displayed or not. The data type output by this function can only be 
used as input to a LABELS node. 

Miscellaneous String-Handling Functions 

F:LENGTH STRING 
Accepts a string and outputs its length. 

F:F1ND STRING 
Determines whether the string on input < Z> is a substring of the string on input 
< 1 >. Outputs the starting location of the substring if it is found. 

F:COMP STRING 
Compares two strings to determine if the string on input < 1 > is greater than, less 
than, or equal to the string on input <2>. 

F:LBL EXTRACT 
Extracts information about a label in a LABELS node. An integer on input < 1 > is 
an index into the LABELS block. A string on input <2> is the name of the node. 
The function outputs the text of the label, its location in the coordinate system, 
and a TRUE or FALSE to indicate if the label is displayed or not. 

Character Transformation Functions 

F:CROTATE 
Uses an integer on input < 1 > which represents degrees of rotation to create a 
2X2 Z—axis rotation matrix. This matrix can be used to update a CHARACTER 
ROTATE node. 
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F:CSCALE 
Uses a real number or a two-dimensional vector to create a uniform or 
non-uniform 2X2 scaling matrix. The matrix can be used to update a 
CHARACTER ROTATE node. 

F:MATRIX2 
Accepts two-dimensional vectors on inputs < 1 > and <2> and creates a 2X2 
matrix. This matrix can be used to update a CHARACTER SCALE or 
CHARACTER ROTATE node. 
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UPDATING CHARACTERS AND LABELS NODES 

Both CHARACTERS and LABELS nodes can have their contents updated using 
commands and functions. 

Updating With Commands 

The COPY and SEND commands can be used to change the contents of a 
CHARACTERS or LABELS node. 

The COPY Command 

Labels can be copied from one labels node to another using the COPY command. 
Note, however, that this command does not work with a CHARACTERS node. 
The command has the following format: 

Name := COPY Namel [START=] i [,] [COUNT=] n; 

The parameters for this command are: 

Name -The name of the labels node you are creating and copying into. 

Name 1 -The name of the labels node you are copying from. 

i -The number of the first label to be copied. 

n - A count of the number of labels to be copied. 

The command can be used as follows. First create a labels node called Limerick. 

Limerick := LABELS -1,.75 'What"s wrong with this PS 300?' 
-1,.5 'The frustrated programmer thundered' 
-1,.25 'I"ve entered commands' 
-1,0 'With the carefulest of hands' 
-1,-.25 'But somehow I seem to have blundered!'; 
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To see the limerick, scale the labels block by .05 and display it. 

Scale Block := CHARACTER SCALE .05 THEN Limerick; 
DISPLAY Limerick; 

Now create a new labels block which starts at the third label and is three labels 
long. 

New Block := COPY Limerick START = 3, COUNT = 3; 

The words START and COUNT and the equals signs are optional, so you could 
have typed "COPY Limerick 3,3;" instead. If one word is used, however, both 
must be used. 

Now redefine Scale Block so that is refers to New Block. 

Scale Block := CHARACTER SCALE .05 THEN New_Block; 

The last three lines of the Limerick should now be displayed on the screen. 

The SEND Command 

Several forms of the SEND command can be used to update a LABELS or 
CHARACTERS node. Both nodes have similar input queues. Figure 7 shows 
inputs to a CHARACTERS node and Figure 8 shows inputs to a LABE-LS node. 
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name 

Character -

2D , 3~ ,4~ vector 
2D , 3D , 4~ vector 

Integer 

Integer 

String 

String 

String 

<last> Changes the last. character 

< posi tion > Changes the starting position 

<step> Changes the stepping 
<cl ear> C1 ears the current string 

< delete> Deletes n characters (from the end) 

< append> Appends to end of current string 

<i> Replaces current string with new string, 
starting at the i-th character 

<substi tute> Repl aces entire current string 
with new string 

CHARACTERS 

Figure ~. Inputs to a CHARACTERS Node 

 iAso~o~ 
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< 1 ast> Changes 1 ast 1 abel 

<cl ear > C1 ears 7 i st 

<del ete > Deletes f r~om end 

<append> Appends from end 

< i > True=on ,False=off 

<i> Replaces i-th label 

LABELS 

Figure 8. Inputs to a L A B E LS Node 

1ASOb10 

Unlike most other nodes, these nodes have inputs with names as well as 
numbers. All data sent to these nodes are sent to a named input or to a numeric 
input which indicates the position of a character within a string or a label within 
a block. 

The simplest form of the SEND command has the following format: 

SEND option TO <n>name l; 

The parameters in this command are as follows: 

option - For sending to a LABELS node, this is a string enclosed in single 
quotes. For sending to a CHARACTERS node, the. format is 
CHARCnumber), where number is the ASCII decimal equivalent of a 
single character. 

n -The name or number of the input to the LABELS or CHARACTERS node. 

name 1 -The name of the destination LABELS or CHARACTERS node. 
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You can use the command, for example, to send a new string to replace an 
existing one. Create a string called Quote. 

Quote := CHARACTERS —1,0 'If we had world enough and time'; 

Now scale the string by .OS so it will fit the default window. 

Scale Quote := CHARACTER SCALE .05 THEN Quote; 

Remove anything you are displaying and display Scale_Quote. Now use the SEND 
command to replace this string with the second line of John Donne's poem to his 
reluctant mistress. 

SEND 'This coyness, mistress, were no crime' TO <substitute>Quote; 

Exercise 

Try SENDing to some of the other inputs of CHARACTERS and LABELS nodes. 
For more information, refer to the Command Summart~ in Volume 3A. 

Two other forms of the SEND command can be used with LABELS but not with 
CHARACTERS: they are SEND VL and SEND number*mode. The SEND VL form 
allows you to overwrite or append labels in a labels block. The SEND 
number*mode form allows you to send a P or L identifier to a label to indicate if 
a label is off (P) or on (L). Refer to the Command Summart~ for more details. 

Updating ~lith Functions 

You can create function networks to update a CHARACTERS or LABELS node. 
Only four data types are accepted by the inputs to these nodes: an integer, a 
vector (2D or 3D), a character string, and a Boolean value. Any function which 
outputs one of these data types can be used to feed new values to anode 
containing text. In particular, the output of the string handling functions 
mentioned earlier can be used as .input to a text node. 

The function F:LABEL is designed specifically for updating a LABELS node. The 
data type output by this function is the only type accepted by input <append> of 
a LABELS node. 
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CREATING AND USING DIFFERENT CHARACTER FONTS 

A character font is a complete set of characters in the same size and type 

face. The PS 300 has a standard font consisting of the 128-character ASCII set. 

This is the default font for all textual displays. There are two commands which 

let you create and use alternate character fonts: the BEGIN_FONT ... END_FO~IT 

command and the CHARACTER FONT command. 

Creating an Alternate Font 

Alternate fonts are created as a sequence of itemized, two-dimensional vector 
lists defining each character in the font. Up to 128 ASCII character codes can 

be defined for each font. 

Each character in the font is defined as follows. 

C[i]: N=n vectors; 

The parameters are: 

[i] -The decimal ASCII code to be defined, i.e. a number from 0 to 128. 

n -The number of vectors in the 2D vector list. 

vectors -The vectors which make up the character. 

The vectors which comprise a character must be itemized 2D vectors. Itemized 
vectors are each preceded by P or L identifiers to indicate whether a vector is a 
position or a line vector. The following is the definition of a capital 'A' in a font 
called Simplex_Roman. 

C[65]: N= 6 
P 0.5455, 0.9545 L 0.1818, 0.0000 
P 0.5455, 0.9545 L 0.9091, 0.0000 
P 0.3182, 0.3182 L 0.7727, 0.3182; 
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The Simplex_Roman letter 'A' is compared to an 'A' in the standard font in 
Figure 9. 

tAS0643 ~ASOb41 

Figure 9. Standard ' A' and Simplex Roman ' A' 

In an Old English font, the definition of the same letter is much more complex. 

C[65]: N=49 
P 0.2727, 0.8182 
L 0.5909, 0.9091 
P 0.5000, 0.9091 
L 0.9545, 0.0909 
L 0.5000, 0.8636 
L 0.9545, 0.0000 
L 0.4091, 0.7273 
L 0.4545, 0.6364 
P 0.0455, 0.0000 
L 0.4545, 0.0909 
P 0.0455, 0.0000 
L 0.45 45, 0.0909 
L 0.7273, 0.3636; 

L 0.3636, 0.9091 
L 0.9091, 0.1818 
L 0.5455, 0.8636 
L 0.86 36, 0.1364 
L 0.8182, 0.1364 
L -1.0455, 0.1364 
L 0.4545, 0.7273 
P 0.3182, 0.6818 
L 0.1364, 0.0909 
P 0.1818, 0.0909 
L 0.1818, 0.0455 
P 0.5455, 0.7727 

L 0.4545, 0.9545 L 
L 0.9545, 0.1364 L 
L 0.8636, 0.1364 L 
P 0.3636, 0.9091 L 
L 0.8636, 0.0455 L 
P 0.2727, 0.6364 L 
L 0.5000, 0.6818 P 
L 0.4091, 0.6818 L 
L 0.2273,.0.1364 L 
L 0.3636, 0.0909 L 
L 0.3182, 0.0455 L 
L 0.2727, 0.1364 P 

0.5455, 0.9545 
1.0455, 0.1364 
0.9091, 0.045 5 
0.4545, 0.9091 
0.9091, 0.0000 
0.318 2, 0.6 818 
0.4545, O.b818 
0.4545, 0.5909 
0.3636, 0.1364 
0.4091, 0.0455 
0.3636, 0.0000 
0.3636, 0.3636 

This letter 'A' is compared to the standard font 'A' in Figure 10. 

i A506~t3 1 AS06~t2 

Figure 1 a. Standard 'A' and Old English 'A' 
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A complete set of character definitions is enclosed in a BEGIN_FONT ... 
END FONT structure with the following format. 

New Font :_ BEGIN FONT 

END FONT; 

Notice that in the sample 2D vector lists given, the range of the vectors in X and 
Y is between 0 and 1. There is no limit on the range of the vectors you use, but 
you should keep within the range of 0 and 1 for the correct spacing and 
orientation of adjacent characters. 

Using an Alternate Font 

The BEGIN_FONT ... END FONT command does not create a data node in a 
display tree but alook-up table of alternate character definitions. To switch to 
an alternate font in a structure, the CHARACTER FONT command is used to 
create an attribute node which indicates the font look-up table that must be 
read for the character definitions. 

An alternate font called Old_English is included on the Tutorial Demonstration 
Tape. To use this font in a structure, you must create a node which points to the 
Old_English font and apply it to the text you want to display. 

Create, scale, and display a character string. 

Text := CHARACTERS -.5,0 'To be, or not to be'; 
Scale Text := CHARACTER SCALE .05 APPLIED TO Text; 
DISPLAY Scale_Text; 

Now apply a CHARACTER FONT command to the scaled string to display it in 
the Old_English font. 

New Font := CHARACTER FONT Old_English APPLIED TO Scale_Text; 
REM01/E Scale_Text; 
DISPLAY New_Font; 
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Hamlet's question should now be displayed in the Old_English font. If it is 
displayed in the standard font instead, this means that the Old_English font was 
not available. 

The display tree for New_Font is shown in Figure 1 1. 

_ Old English 

~Asob~o 

Figure 11. Display Tree With CHARACTER FONT Node 

The Old_English font is shown as a look —up table which is not ,part of the actual 
structure. The CHARACTER FONT node New Font points to this table as well 

as to the CHARACTER SCALE and CHARACTERS node. 

The Character Font Editor Program 

Another way to create alternate character fonts is to use the program 

MAKEFONT which is distributed on magnetic tape and is documented in Volume 

4. MAKEFONT is a menu—driven, graphical character font editing program 

which allows you to create a font from scratch by drawing each of the 

characters, or to make changes to existing alternate fonts. Refer to the 

MAKEFONT user's guide in Volume 4 for details. 
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SUMMARY 

Two commands create data nodes containing text: CHARACTERS and LABELS. 

Creating Text Nodes 

The CHARACTERS command creates a single text string of up to 240 

characters. Optional parameters allow you to specify the starting location of 

the string and the horizontal and vertical spacing between characters. The 
syntax of the command is as follows. 

Name := CHARACTERS [x, ~t [,z]][STEP dx,dy] 'string'; 

The LABELS command creates a block of character strings or labels. Each label 
can be given its own starting location. The syntax of the command is as follows. 

Name := LABELS x, y [,z] 'string' 

[xi,gi [,zi] 'string']; 

Manipulating Text With Commands 

Text nodes, just like any other data nodes, are affected by transformations. 
They can be rotated and scaled by 3X3 transformation matrices (created by the 
ROTATE and SCALE commands) or by exclusive 2X2 character transformation 
matrices. 

Transforming Text 

The commands which create these matrices are CHARACTER ROTATE, 
CHARACTER SCALE, and TEXT SIZE. The matrices which these commands 
create have no effect on three-dimensional data or non-textual two-dimensional 
data. 
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The CHARACTER ROTATE command creates a Z—rotation matrix from an angle 
of rotation which is entered as parameter. The syntax of the command is as 
follows. 

Name := CHARACTER ROTATE angle [APPLIED TO Name 1 ]; 

The CHARACTER SCALE command creates a uniform or non—uniform scaling 
matrix from the scale factor entered with the command. For non—uniform 
scaling an X and Y scale factor is given. The syntax of the command is as 
follows. 

Name := CHARACTER SCALE s [APPLIED TO Namel]; 
Name := CHARACTER SCALE sx, sy [APPLIED TO Name 1 ]; 

The TEXT SIZE command creates a 2X2 matrix node which overrides any 2X2 
matrix settings above it in the display tree. Any character scales or character 
rotations are superseded by this command. The command establishes a character 
size for text which is a multiple or fraction of the default character size of I. 
The syntax of the command is as follows. 

Name := TEXT SIZE x [APPLied to Namel]; 

Setting Character Orientation 

When text forms .part of an object that is being displayed and manipulated, the 
characters can be transformed with the object or they can remain unaffected by 
object transformations. The SET CHARACTERS command lets you determine 
the orientation of the text. The format of the command is as follows. 

Name := SET CHARACTERS orientation [APPLIED TO Name 1 ]; 

Three types of orientation may be set: 

WoRLD_oRIENTED — Characters are transformed just like any part of the 
object containing them. 

sCREEN_ORIENTED — Characters are not affected by ROTATE or SCALE 
transformations. Intensity and size of characters still 
vary with depth (Z—position). 

sCREEN_ORIENTED/FIXED — Characters are not affected by ROTATE or 
SCALE transformations. They are always 
displayed with full size and intensity. 
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Manipulating Text With Functions 

Several functions are available for manipulating text and strings. These 
functions are listed below. 

Character and String Conversion 

F:CHARCONVERT 
F:CHARMASK 
F:GATHER STRING 
F:PRINT 
F:STRING TO NUM 
F:TRANS STRING 

String Formatting and Reformatting 

F:CONCATENATE 
F:LABEL 
F:LINEEDITOR 
F:PUT STRING 
F:SPLIT 
F:TAKE STRING 

Miscellaneous String Handling Functions 

F:COMP STRING 
F:FIND STRING 
F:LBL EXTRACT 
F:LENGTH STRING 

Character Transformation Functions 

F:CROTATE 
F:CSCALE 
F:MATRIX2 
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Text 

Nodes 

The CHARACTERS and LABELS commands create data nodes containing text. 
Both nodes have inputs which accept vectors, strings, integers, or Boolean values 
to update the contents of the node. 

Updating 

Nodes 

CHARACTERS and LABELS nodes can be updated using commands or the 
functions listed earlier. The following commands are most frequently used to 
update these nodes. 

COPY 
SEND 
SEND vL 
SEND number mode 

Alternate 

Character 

Fonts 

Character fonts other than the standard font can be created using the 
BEGIN_FONT ... END_FONT command. The syntax for this command is as 
follows. 

Name := BEGIN FONT 
[C[0]: N=n {itemized 2D vectors};] 

[C[i]: N=n {itemized 2D vectors};] 

[C[ 127]: N=n {itemized 2D vectors};] 
END_FONT; 
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Each character in the font is defined as a vector list consisting of itemized ZD 
vectors. The clause Chi]: identifies the ASCII character being defined; for 
example, C~65]: indicates that the character is a capital 'A'. Up to 128 
characters can be defined in an alternate font. 

Alternate fonts are used by including CHARACTER FONT nodes in a display 
tree. The syntax of the CHARACTER FONT command is as follows. 

Name := CHARACTER FONT font name APPLIED TO Name l; 

The parameter font name is the name of an alternate font defined with the 
BEGIN FONT ... END FONT command. 



PICKING 

SELECTING DISPLAYED OBJECTS 

CONTENTS 

INTRODUCTION 1 

OBJECTIVES 2 

PREREQUISITES Z 

USING PICKING ATTRIBUTE NODES 3 

Set Picking ON and OFF 
Using Picking Identifiers 

USING INITIAL PICKING FUNCTIONS 

3 
5 

8 

USING THE PICKING FUNCTIONS IN A FUNCTION NETWORK 13 

Examples of Picking 
Exercise 

14 
17 

SUMMARY 18 



PICKING 

ILLUSTRATIONS 

Figure 1. Picking Selectable by Branch 4
Figure 2. Picking an Entire Structure 4
Figure 3. Display Tree with Car and Four Tires 6 

Figure 4. Diagram of TABLETIN and PICK g 

Figure 5. Typical TABLETIN and Pick Arrangement 12 

Figure 6. F:PICKINFO (connected to PICK) 1 ~ 
Figure 7. Diagram of PICK through F:SUE~C Feeding a Bank of 

F:ROUTE(n) Instances 1 ~ 



PICKING — 1 

Picking allows you to retrieve information about a selection or pick made on 
displayed data. This information contains details about the structure that makes up the 
displayed data. Details can include the name of the data node that the picked portion 
of the object is associated with, names of nodes along the branch of the display 
structure that was selected by a pick, an index into the vector list, character string or 
label that was picked, and the coordinate values of the location where the pick took 
place. The information is available in a special format called the picklist. 

Normally, picking is done by using the data tablet and the stylus to select any part of a 
displayed object designed to allow for picking. The selection is made by moving the 
stylus across the surface of the data tablet; this positions the cursor on the screen. (The 
cursor is an X.) Picking is usually activated by pressing the tip of the stylus down when 
the cursor is positioned over the appropriate line, dot, or text character. The 
information that is returned when a pick takes place, the picklist, can be displayed, 
used to drive a function network, or sent to the host. The amount and kind of 
information received on the location of a pick is user—defineable. 

An obvious use of picking is to make selections from a menu, where the cursor is 
positioned over a line or the piece of text in the menu that is to be selected. By 
pressing the stylus down, that item on the menu is "picked", and the appropriate 
function can be performed (i.e., move to another menu, exit the menu, bring up a 
displayable structure, etc.) 

Central to the picking process is the initial function instance, PICK. PICK is enabled 
by sending any message to input < 1 > of PICK. (Normally this message is the X,Y 
location of the pick sent to PICK when the tipswitch of the stylus is depressed.) PICK 
feeds this trigger message to the display processor, asking for any pick information 
within the data structure being traversed to be sent back to PICK. If this information 
is found (a pick occurs if there is data) the data associated with the pick, the picklist, is 
placed on the queue of output < 1 > of PICK. The main responsibility of PICK is to signal 
the display processor that picking has been enabled and to output the picklist that 
contains information about the location of the pick. 

Before picking can take place, the data structure that you want to be able to pick from 
must contain certain nodes and pieces of information. Polygonal objects, because of 
their construction, cannot be picked. 

This module will define the various elements involved in picking; picking attribute 
nodes and the commands that create them, and the picking functions. 

This module will teach how to place and set the appropriate attribute nodes used in 
picking and how to design a function network to use the information that is generated 
when a pick occurs. 
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OBJECTIVES 

In this module you will learn how to: 

■ Use Picking Attribute Nodes 
■ Use Initial Picking Functions 
■ Use the Picking Functions in a Function Network 

PREREQUISITES 

Before using this module, you should be familiar with the following: 

Designing display trees 
Creating function networks 
Using the PS 300 command language 
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USING PICKING ATTRIBUTE NODES 

Before an object can be picked, the display tree of the object must contain 
certain nodes and the object must be displayed. These nodes provide for picking 
capabilities such as: 

• Turning picking on and off 

• Determining the portions of the object (or branches of the object's display 
tree) that can be picked 

• Selecting the name of the pick identifier that will be returned as part of 

the picklist 

Set Picking O N and O F F 

The first picking attribute node that must appear in the display tree is the SET 

PICKING ON/OFF node. This node must be above the parts of the display tree 
where picking will take place. This node is turned on and of f by Boolean values; 
a TRUE will enable picking in the data structure below the node, a FALSE will 

disable it. 

The command that creates the SET PICKING ON/OFF node is: 

Name := SET PICKING OFF APPLIED TO Name 1; 

The SET PICKING ON/OFF node is usually placed in the display tree in an "off" 
condition and activated when the Boolean value TRUE is sent to input < 1 > of the 
named node. As an example, the following two commands first create an 

instance of a SET PICKING ON/OFF node, and then activate that node. 

Pick Car := SET PICKING OFF APPLIED TO Car; 

where Car is the name of the data structure, or the part of a data structure that 
you want to be able to pick from, 

SEND TRUE TO < 1 > Pick_Car; 

activates picking for Car. (The Boolean value is normally sent by a network 

connected to the node.) 
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In designing a pickable display tree, the placement of the SET PICKING ON/OFF 
nodes is very important. As with any other attribute node, this node controls 
only its descendants. In the structure in Figure 1, picking can be enabled and 
disabled for each branch individually because of the placement of the SET 
PICKING ON/OFF nodes. In Figure 2, picking is established for the whole 
structure, but not for the individual branches. 

This placement can be important in complicated display structures, where there 
are close or overlapping data structures simultaneously displayed on the screen. 
In molecular modeling graphics applications, it can be useful to disable picking 
for specific parts of the molecule. This same principle holds for architectural or 
engineering applications, where only specific parts of the entire display will be 
used as pickable structures. 

Set PICK Set PICK 
ON OFF 0~~~ 

IAS0389 

Figure 1. Picking Selectable by Branch 

Set P CK 
01([0 f 

IAS0390 

Figure 2. Picking an Entire Structure 
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Using Picking Identifiers 

The other attribute node that must be placed in the display tree for picking is 
the SET PICKING IDENTIFIER node. This pick identifier node determines how 
detailed the information you get back in your picklist (output from the PICK 
function) will be. 

A picked object is identified by two types of names in the picklist (pick 
information output from PICK). The first type of name is the picking identifier 
or the pick ID. The second name is the name of the data node that contains the 
picked vector or character (in the command shown above, "Car" would be the 
name of the node that contains the picked vector). 

The command to create a set picking identifier node is: 

Name := SET PICKING IDENTIFIER = id_name APPLIED TO Name l; 

This command assigns id_name to be the picking identifier (the reported 
character string) to be output by PICK in the picklist if any part of Name 1 is 
picked. Id_name can be the name of the data node, but in many cases, several 
branches of a display structure terminate at the same data node. The names) of 
the pick identifiers in the picklist in such cases show which branch was traversed 
to get to the cor~~mon data node. 

Example 

Wheelpick 1 := SET PICKING IDENTIFIER =Wheel 1 APPLIED TO Wheel; 

In this example, it is assumed that the display tree includes a car with four 
tires. There are five branches, four of which include an instance of the vector 
list for "Wheel". Each branch contains the appropriate translate and rotate 
operation nodes required to position the tires. To determine which instance of 
"Wheel" was picked, each branch must also contain a set pick identifier node 
with a unique name. This is illustrated in Figure 3. 
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Wheell 

PICK ~ Set PICK ON/OFF 

PICKCARI - Set PICK ID 

Car 

Wheel 

IAS0391 

Wheel4 

Figure 3. Display Tree With Car and Four Tires 

Body 

Assuming the right—front fire is Wheell, then the picklist generated when a pick 
was made on the right—front fire would be: 

<index> Wheell,Pickcarl Wheel 

If there had been only one set picking identifier node directly below the SET 
PICKING ON/OFF node in Figure 3, when you picked from any part of the 
displayed object below the instance node, you would only get back the pick 
identifier for the whole data structure: 

<index> Pickcarl Wheel (or body) 
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The information in a picklist includes the names of ALL the set pick ID nodes 
down the branch of the display structure that has been enabled for picking. The 
picklist will also include the name of the picked data node. The picklist can be 
reported as a character string with pick IDs on that branch separated by 
commas. This list always starts with the name of the set pick ID node closest to 
the picked vector or character. 

The amount of detail about the display tree contained in information returned in 
the picklist is determined by the location and number of the set pick IDs. In the 
code below, the picklist is will contain only one pick identifier (Pickcar 1). 

Display Car; 

Car := BEGIN STRUCTURE 
Pick := SET PICKING OFF; 

SET PICKING IDENTIFIER = Pickcarl; 
INSTANCE OF Body, Wheell,Wheel2,Wheel3,Whee14; 
END_STRUCTURE; 

Setting up the display tree to enable picking follows one simple rule: 

For picking to take place, there must a SET PICKING ON/OFF node placed in 
the display structure, followed by at least one SET PICK IDENTIFIER node down 
each pickable path. However, one structure can contain multiple SET PICKING 
ON/OFF nodes, and each SET PICKING ON/OFF node can be followed by 
multiple SET PICKING IDENTIFIER nodes. 
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USING INITIAL PICKING FUNCTIONS 

The initial system function PICK was briefly described in the introduction to the 
module. The initial function network that should be built to make use of picking 
is shown in Figure 4. 
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Figure 4. Diagram of TABLETIN and PICK 
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The system has provided for picking with one other initial function, TABLETIN. 
TABLETIN accepts the X,Y vectors that identify the position of the picking 
location (and the center of the cursor cross) as the stylus moves across the data 
tablet and uses them to position the cursor on the screen. TABLETIN identifies 
the X,Y coordinates of the picking location that are output when the tipswitch 
on the stylus is pressed. These coordinates are used to to determine if a pick has 
occurred and if it has, the location of the pick is made available. 

Output <4> of TABLETIN is typically connected to the SET PICKING ON/OFF 
nodes in the display strucuture and is used to send Boolean values to the nodes. 
When the tipswitch on the stylus is pressed, a TRUE is sent to the node, enabling 
picking. 

Input < 1 > of PICK accepts any message. Typically, this queue is connected to 
TABLETIN<6> which supplies the 2D coordinates of the pick location when the 
tipswitch is pressed. This arras the function, as the other two inputs to PICK are 
constants. Output <2> of PICK should be connected to the same SET PICKING 
ON/OFF nodes that are connected to output <4> of TABLETIN. This output 
sends a FALSE whenever a pick occurs which turns picking of f until the tipswitch 
is again pressed and a TRUE is sent from TABLETIN to the ON/OFF node. (This 
false is sent to disable picking so that the picking process ceases until a pick 
location is asked for.) 

Input <2> of PICK accepts a Boolean value that allows you to select the kind of 
picklist that will be sent out of output < 1 >. A FALSE sent to <2>PICK indicates 
that the output picklist will be the pick ID names, the data node name, and an 
index into the vector list or character string (the data node). A TRUE sent to 
<2>PICK indicates that the picklist will include the pick ID names, the data node 
name, an index to the data node, and the picked coordinates and the dimension 
(2D or 3D) of the picked vector. 

The format for the picklist then, with FALSE sent to <2>PICK is: 

<index> pickid l,pickid2, _name of data node 

where <index> is a pointer into the picked data node. 

The chart below shows the data node types and the definition of the <index> that 
is returned when the value of the <index> is the integer 3. 
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Data Node Type Index of 3 Definition 

Vector list The third vector in the list was picked. 

Character String The third character in the string was picked. 

Label The third character string in the label was picked. 

Polynomial or 
Rational 
polynomial curve 

The value of the parameter (t) where the curve 
was picked 

The format for the picklist with TRUE sent to <2>PICK (coordinate picking) is: 

<index> [x,y,z] picked l,pickid2, _name of data node 

where x,y,z are the coordinate points of the picked vector. 

• Performing coordinate picking on a character string returns an index into 
the string, not its picked coordinates. 

• Performing coordinate picking on a label block returns an index into the 
label, not its picked coordinates. 

• Coordinate picking cannot be performed on a vector over 500 units long. 

The integer on <3>PICK is used to set a timeout interval for the PICK function 
in refresh frames. Timing starts when the PICK function receives any message 
on input < 1 >. This timing interval is used to determine if a pick occurs in the 
specified period of time. The allowable integers on input <3> are from 4 through 
60. This is a safeguard feature: it deactivates PICK if no pick occurs within the 
timeout period. 

Once the PICK function is armed (by receiving input on < 1 >PICK), if no pick 
occurs within the specified time, PICK outputs a FALSE on PICK < 3 >. This 
output should be connected to the ON/OFF nodes to disable picking when a 
timeout occurs. Picking is enabled when the stylus is again pressed. 

One other feature that is initialized by the system is the picking Zocation. 
This is by default the center of the cursor. The picking location must be defined 
within the current viewport and can be modified with the following command: 

name := SET PICKING LOCATION x,y sizex,sizey APPLIED TO Name l; 
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where: 

the 2D vector X,Y specifies the center of the picking location and the ZD vector 
sizex,sizey specifies the size in X and Y from the center to the edge of the 
picking location. Hamel is the current and applicable viewport name. 

The pick location, then, specif ies a region within a screen. If the pick-sensitive 
object (line, dot, or character) is within the pick location, it can be reported as 
having been picked. 

The pick location can be moved within the viewport by sending the 2D vector 
that represents the coordinate location of the new set pick location to input < I > 
of the set picking location node. In effect, picking can take place by positioning 
the picking location over a displayed object (containing the appropriate picking 
attribute nodes) and sending a TRUE to < 1 > PICK. 

The following diagram is a typical arrangement of the TABLETIN and PICK 
functions and their connections to the display structure. 

TABLETIN 

< 1> 
<4> 
<6> 

--2D U ; default connection for pick 1 ocati on and cursor 
~-B to SET PICK ON/OFF node 
--2 D V 

PICK 

<1>anymessage <1>— picklist —
<2> C goof can <2> -- B 
<3> C Integer <3>.— g 

F:PICKINFO 

<1> pi ckl i st 
~Al l outputs to 

user function 
Networks 

IAS4393 

Figure 5. Typical TABLETIN and Pick Arrangement 
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USING THE PICKING FUNCTIONS IN A FUNCTION NETWORK 

A function associated with picking is F:PICKINFO. This function converts the 
picklist data type into character strings that are acceptable by other functions. 

There is only one active input to F:PICKINFO, < 1 >, and it should be,connected to 
output < 1 > of PICK. 

any message 

PICK 

Boolean 

Integer 
Timeout 
Duration 

Picklist 
from PICK 

I-depth of 
picklist 

<1> 

<2>C 

<3>C 
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<2> —Boolean; FALSE to SET PICKING ON/OFF node 
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F:PICKINFO 

<1> 

<2>~ 

<1> 

<2> 

<3> 

<4> 

<5> 

<6> 
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i nsu 39~~ 

I nteger;Start 1 ocat i on of 
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Integer; the dimension of the node 

Boolean; coordinates reported 

Real ; curve parameter, (t) 

Integer ; data type code 

Special ; name of picked element 

Figure 6. F:PICKINFO (Connected to PICK) 
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The picklist output from PICK < 1 > can be connected to an instance of 
F:PICKINFO to convert the picklist into a logically useful format. The picklist 
can also be printed out or displayed by connecting PICK<1> to F:PRINT. 
F:PRINT converts the picklist code to printable characters. 

The constant input <2> of F:PICKINFO accepts an integer that specifies the 
depth of the pick identifiers that will be output. Since the picklist contains all of 

the set pick IDs in a picked branch of a display tree, this input allows you to 
select the depth. For example, if there were four pick IDs active when a pick 
occured and the integer 2 was input to <2>F:PICKINFO, then the two pick IDs 
closest to the data node and the name of the data node itself would be output as 
the string on F:PICKINFO<2>. 

The output information from F:PICKINFO varies with the type of picklist 
supplied on input < 1 >. If the PICK function has a TRUE on input <2>, then it 
supplies a detailed coordinate picklist and most of F:PICKINFO outputs are 
activated. If the PICK function has a FALSE on input < 2 > , a less detailed 
picklist is supplied, and only outputs < 1 >, <2>, and <5> are active. Refer to the 
Function Summary in Volume 3 fora complete description of the outputs of 
F:PIC KINF O. 

The best use of picking is ~Nhen the picklist is sent to an instance of 

F:PICKINFO. Then information generated by the function can be used to drive 
function networks that can be triggered by typical data types. Examples of what 
this data can be used for are described in the next section. 

Examples of Picking 

The following example demonstrates how picking can be used to trigger a 
switching network for an object designed to have parts with independent 
motion. The control dials are normally used to rotate, translate, and scale 
objects in three dimensions. If the designed object requires more than eight 
elements of freedom (the maximum number that can be provided by one set of 
control dials), a picking network can be set up to access a bank of switching 
functions that control the output of the dials. This network will allow you to 
point at the part that you want to manipulate and the picking information will 
drive the function network that routes the dial outputs to various networks. 
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In this example, the display tree that defines a robot figure includes set pick IDs 
in each branch of the figure networked for motion through a switch function to 
DIALS. This is the same robot that was built in the "PS 300 Command Language" 
module and it is connected to the function networks that were designed in the 
Function Networking module. The function network provides for several modes 
for the control dials. These modes provide the triggers to animate each part of 
the robot that requires independent movement; i.e., rotation of each shoulder 
joint, knee joints, torso, head, etc. 

The picking network will use the data tablet to trigger the mode of the dials. In 
the "Function Networks I" module, the Function Keys were used for dial mode 
switching. If you examine the design of the robot, you will notice that there are 
'n' degrees of freedom designed into the structure. This will require 'n modes' of 
the dials. As the picking network will be used to trigger the dials mode, only 'n' 
set pick ids need to be coded into the structure. 

The picking network to switch the modes for dials that are connected to the 
robot display structure works in the following manner. When the cursor is 
positioned over a part of the robot with independent motion controlled by a dial 
(like the shoulder) and the tipswitch of the stylus is pressed, the name of the 
pickid in the shoulder branch of the display tree is sent from PICK to an instance 
of F:PICKINFO. This instance of F:PICKINFO<2> is connected to an instance of 
F:CHARCONVERT. F:CHARCONVERT converts the bytes of the string it 
receives on input < 1 > into a stream of integers. If the pick id sent to 
F:PICKINFO is an 'A', F:CHARCONI/ERT will translate 'A' to the ASCII 65. If 
this is then sent to an instance of F:SUBC, it can subtract 64 and output the 
integer 1 that can be used to trigger the appropriate bank of switches for the 
dials. 

Figure 7 illustrates the function network described above. 
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To implement the previous example of picking as an exercise demonstrating the 
placement of the picking attribute nodes and the connections that should be 
made for- the picking network, use the source code supplied for the robot in the 
"PS 300 Command Language" module. Picking attribute nodes can be set into 
the display structure and then connected to the picking function network that is 
used in the picking demonstration available on the Tutorial Demonstration tape. 

Exercise 

Design a pickable display structure with several instances of a primitive. 

Design a function network that outputs the picklist to the screen. Use F:PRINT 
and a character data node. Code your display structure and function network. 
Display and pick each primitive. 
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SUMMARY 

Picking allows you to retrieve information about a selection or "pick" made on 
displayed data. The information is available in a special format called the 
picklist. Before picking can take place, the data structure that you want to be 
able to pick from must contain certain nodes and pieces of information. 

Picking Attribute Nodes 

The first picking attribute node that must appear in the display tree is the SET 
PICKING ON/OFF node. This node must be above the parts of the display tree 
where picking will take place. This node is turned on and of f by Boolean values; 
a TRUE will enable picking in the data structure below the node, a FALSE will 
disable it. 

The command that creates the SET PICKING ON/OFF node is: 

Name := SET PICKING OFF APPLIED TO Name 1; 

The other attribute node that must be placed in the display tree for picking is 
the SET PICKING IDENTIFIER node. This pick identifier node determines how 
detailed the information you get back in your picklist (output from the PICK 
function) will be. 

A picked object is identified by two types of names in the picklist (pick 
information output from PICK). The first type of name is the picking identifier 
or the pick ID. The second name is the name of the data node that contains the 
picked vector or character. 

The command to create a set picking identifier node is: 

Name := SET PICKING IDENTIFIER = id name APPLIED TO Name l; 

For picking to take place, there must a SET PICKING ON/OFF node placed in 
the display structure, followed by at least one SET PICK IDENTIFIER node down 
each pickable path. However, one structure can contain multiple SET PICKING 
ON/OFF nodes, and each SET PICKING ON/OFF node can be followed by 
multiple SET PICKING IDENTIFIER nodes. 



PICKING — 19 

Puking Functions 

An initial system function used for picking is PICK. Input < 1 > of PICK (usually 
connected to TABLETIN<6>) accepts any message type as a trigger message to 
activate picking. The data associated with the pick, the picklist, is placed on the 
queue of output < 1 > of PICK. The main responsibility of PICK is to signal the 
display processor that picking has been enabled and to output the picklist that 
contains information about the location of the pick. 

Another function associated with picking is F:PIC.KINFO. This function converts 
the picklist data type into character strings that are acceptable by other 
functions. There is only one active input to F:PICKINFO, < 1 >, and it should be 
connected to output < 1 > of PICK. 
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The PS 300 provides a means to retrieve transformed data. Transformed data is the 
matrix or vector—list representation of transformation operations in a display tree. 

After an object has been transformed on the PS 300, the transformed accummulated 
data for that object can be: 

(1) Established as a separate data or operation node in the display tree. 

(2) Retrieved as ASCII information for transmission to the host computer. 

Transformed data can be obtained either as transformed vectors or as a transformation 
matrix which is the concatenation of transformations currently applied to the object. 

If transformed vectors are requested, a data node can be created and an ASCII PS 300 
VECTOR LIST ITEMIZED command can be generated. If a transformation matrix is 
requested, an operation node can be created and an ASCII PS 300 MATRIX_4X4 
command can be generated for transmission back to the host. 

Once the node containing a transformed vector list or 4X4 matrix node is created, those 
nodes can be used as primitive data nodes or operation nodes, and connections can be 
made into the nodes just as for any other UECTOR_LIST ITEMIZED or 4X4_MATRIX 
node. 

Transformations explicitly reserved -for characters (CHAR ROTATE, etc.) are excluded 
from both forms of retrieved transformed data. 

OBJECTIVES 

This discussion of transformed—data retrieval covers the following topics: 

■ The .XFORM command and the F:XFORMDATA and F:LIST functions. 

■ A note on excluding perspective and window transformations from 
transformed vector lists. 

■ A suggested function network to prevent successive transformed—data 
requests from overlapping. 
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■ A note on restricting transformed—data retrieval to a specified range of 
vectors within a list. 

■ A program example. 

PREREQUISITES 

Before reading this module, you need to know the basics of data structures and 
function networks. These topics are covered in Volume 2A, in the "Modeling," 
"PS 300 Command Language," and "Function Networks I" modules, and in this 
volume under "Function Networks II." 
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RELEVANT PS 3~0 COMMANDS AND FUNCTIONS 

To retrieve transformed data for a given data node (or set of data nodes): 

• Mark the data node by applying an XFORM VECTOR or XFORM MATRIX 
node. 

• Request the transformed data using an instance of F:XFORMDATA. 

• Optionally, convert the transformed data to an ASCII PS 300 command string 
using an instance of F:LIST and send this ASCII information to the host 
computer via HOST_MESSAGE. 

The following paragraphs discuss these topics. 

The XFORM Node 

The XFORM node, a type of operation node, can be placed anywhere above the 
data nodes) for which transformed data are to be retrieved; however, the 
placement of the XFORM node with respect to other transformations is critical. 

The syntax of the command that establishes an XFORM node is: 

Name := XFORM specifier APPLIED TO node_name; 

where: 

specifier is either VECTOR or MATRIX. To retrieve a transformed vector 

list, use VECTOR; to retrieve a transformation matrix, use MATRIX. 
VECTOR may be abbreviated VEC. 

If XFORM VECTOR is used, all transformations applied to the data nodes) are 
taken into account, whether these transformations are above or below the 
XFORM VECTOR node. 

If XFORM MATRIX is used, however, only those transformations above the 
XFORM MATRIX node are taken into account. To include all transformations 
applied to the data node(s), then, XFORM MATRIX should be placed 
immediately above the data node(s). 

THEN may be substituted for APPLIED TO. 
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Node name is the node to be marked for transformed data retrieval. 
Admissible data nodes are vector lists and curves (rational polynomials, 
polynomials, and B—splines). Transformed data cannot be retrieved for 
characters and labels. 

If data name is an instance node covering two or more data nodes and if 
XFORM HECTOR is requested, then the transformed data for all nodes are 
consolidated into a single vector list. 

NOTE 

The transformed counterparts of the original data nodes 
do not necessarily appear in the same order in which the 
INSTANCE command named those nodes. However, 
vector integrity is maintained within each mode. 

The transformed objects) must be DISPLAYed when transformed —data retrieval 
is requested; otherwise, the request has no effect. 

If transformed vector information is requested (XFORM UECTOR), no more than 
2,048 consecutive transformed vectors may be retrieved. 

— TRANSLATE, SCALE, ROTATE, and MATRIX_3X3 transformations applied to 
data are taken into account when the transformed data are retrieved. 

— Character transformations are NOT taken into account when the transformed 
data are retrieved. These include CHAR ROTATE, CHAR SIZE, TEXT SIZE, 
CHAR SCALE, and MATRIX_2X2. 

— WINDOW, EYE, FIELD_OF_UIEW, MATRIX_4X3, MATRIX_4X4, and LOOK 
transformations applied to data are taken into account when transformed data 
are retrieved, but it is recommended that these six transformations be 
removed from the object definition beforehand. 

— A VIEWPORT specification has no effect on the transformed data. 
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The F:XFORMDATA Function 

Use an instance of F:XFORMDATA to request transformed data. 
F:XFORMDATA has five inputs and one output. (Discussion of inputs <4> and 
<5 >, which specif y a range of transformed vectors to be retrieved, is presented 
in a subsequent section of this module.) 

• Input < 1 > is the active input for this function. Any. message sent to this input 
will begin retrieval of transformed data, if the other inputs have been 
prepared correctly. 

• Input <2> is a constant input which accepts a string message containing the 
name of an XFORM node. Transformed data will be retrieved for the 
objects) marked by this XFORM node. 

• Input < 3 > is a constant input which accepts a string 'message containing the 
name of the new data or operation node to be created. The name also 
appears in the ASCII command string produced by F:LIST, if any. 

If XFORM VECTOR is used and if the name at input <3> is identical to the 
name of the original (untransformed) data node, the transformed data replace 
the original data in the display structure. (The immediate effect of this 
redefinition is to display the object with its transformations doubly 
applied--once explicitly in the display data structure, and once implicitly in 
the transformed vector list). 

If XFORM MATRIX is used, specifying a name at input < 3 > creates an 
operation node (4X4 matrix) with that name. 

• Output < 1 > contains the transformed data. If ASCII PS 300 command 
information is desired for the host, connect this output directly to F:LIST 
(below). Do not attempt to connect this output to anything else (such as 
another data node). 

Output < 1 > may remain unconnected if no ASCII transformed data are 
desired. (A data node can be created through XFORM VECTOR without any 
connections from this output.) 
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The F: L IS T Function 

F:LIST converts the output of F:XFORMDATA into an ASCII PS 300 command 
string suitable for storage on the host computer (and for retransmission back to 
the PS 300). There is no need to instance F:LIST unless this ASCII information is 
to be retrieved. F:LIST has one input and two outputs: 

• Input < 1 > accepts the transformed data from F:XFORMDATA< 1 >. 

• Output < 1 > contains the transformed data, reformatted as an ASCII PS 300 
command string. 

If a transformed vector list was requested, a UECTOR_LIST ITEMIZED 
command is output. If a transformation matrix was requested, a 
MATRIX 4X4 command is output. 

The name of the command is the string that was on F:XFORMDATA<3> at 
the time of the request. 

• Output <2> is a Boolean TRUE completion indicator. Refer to the last 
section of this module for a s~~r~~ple application of this completion indicator. 

The ASCII command string from F :LIST may be sent to a host computer via 
HOST_MESSAGE. .For details on HOST_i~/IESSAGE, refer to the Function 
Summart~ in volume 3A. 
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EXCLUDING CERTAIN VIEWING TRANSFORMATIONS 

If WINDOW, EYE, FIELD_OF_VIEW, MATRIX_4X3, MATRIX_4X4, or LOOK 
transformations are applied to an object, transformed data may include 
inappropriate Z-information. It is therefore recommended that these 
transformations be excluded from the object and replaced by a 4x4 identity 
matrix before transformed data are retrieved. 

Since the default window transformation matrix is not an identity matrix, this 
practice is recommended even when no nodes for the above six transformations 
have been included explicitly in the display tree. 

The example at the end of this module illustrates one way to exclude these 
viewing transformations while leaving others in effect during atransformed-data 
request. 

Using F:SY N C(n) to Prevent Overlapping Requests 

After F:XFORMDATA is triggered, it begins supplying transformed data to 
F:LIST, which in turn converts the data to ASCII format. Before this process is 
finished, F:XFORMDATA could be triggered again, and F:XFORMDATA could 
supply new data before F:LIST is finished with the old. The result could be a 
nonsensical combination of the two requests. 

A suggested network to prevent overlapping transformed—data requests is: 

F• 
SYNC(2) 

F• 
XFORMDATA 

F' 
LIST 

This network must be initialized before use by sending any message to 

The use of this network is illustrated in the example at the end of this module. 
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SPECIFYING VECTOR RANGES FOR TRANSFORMED-DATA RETRIEVAL 

Inputs <4> and <5> of F:XFORMDATA restrict the retrieval of transformed 
vector data (XFORM VECTOR) to a specified range of vectors within the source 
vector list(s). 

Input <4> (used only for UECTOR_LIST) is an integer index specifying the place in 
the vector list at which transformed-vector retrieval is to begin. The default 
value is 1. 

Input < 5 > (used only with UECTOR_LIST) specifies the number of consecutive 
transformed vectors to be retrieved. The default value is 2,048. No more than 
2,048 consecutive vectors may be retrieved. 

If inputs <4> and/or <5> are used for matrix data, they are ignored. 

If the XFORM VECTOR node is applied to an instance node, so that several data 
nodes are within the scope of the XFORM VECTOR node, transformed vectors 
can be retrieved from individual vector lists or portions of vector lists using the 
range specification. Vectors are numbered in sequence, beginning with the first 
vector list named in the INSTANCE command. For example, if the command 
sequence 

XFORMIT := XFORM VEC THEN Z; 
Z := INSTANCE A,B,C,D; 
A := UEC N=5 ... ; 
B:=UEC N=6... ; 
C:=UEC N=10... ; 
D := UEC N=8 ... ; 
XFORMDATA := F:XFORMDATA; 

has been entered, then transformed vectors for list C may be requested by using 
XFORMDATA inputs <4> and <5> as follows: 

SEND FIX(12) TO < 4> XFO RMDATA; 
SEND FIX(10) TO <5>XFORMDATA; 
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SAMPLE PROGRAM 

The following example illustrates both of the recommended features of a 
network for retrieving transformed data using the XFORM command: the 
exclusion of perspective and window transformations and the prevention of 
overlapping transformed-data requests. 

In this example, a conditional bit is used to switch between the perspective and 
window mappings (applied while designing the object) and the identity matrix 
(applied while sending the transformed object data). The untransformed object is 
DATA; the transformed vector list to be created is XDATA. 
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XFORM := BEGIN STRUCTURE {Set up switch mechanism} 
X := SET CONDITIONAL_BIT 1 ON; 

IF CONDITIONAL_BIT 1 IS ON THEN VIEW; 
IF CONDITIONAL_BIT 1 IS OFF THEN TRAN; 

END_STRUCTURE; 

TRAN := BEGIN_STRUCTURE {To be used while getting transformed 
data} 

MAT RIX_4X4 1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1; 
INSTANCE OF OBJ; 

END_STRUCTURE; 

VIEW := BEGIN_STRUCTURE {To be used while viewing and designing} 
{Viewing commands: WINDOW, EYE, 
FIELD_OF_VIEW, MATRIX_4X3, MATRIX_4X4, 
LOOK} 

INSTANCE OF OBJ; 
END_STRUCTURE; 

OBJ := BEGIN_STRUCTURE {Set up transformed—data request} 
{Transformation commands: ROTATE, TRANSLATE, 
SCALE, and/or MATRIX_3X3} 
XFORM_REQUEST:= XFORM VECTOR; 
INSTANCE OF DATA; 

END_STRUCTURE; 

XFORMDATA := F:XFORMDATA; {Build transformed—data network} 
SYNC2 := F:SYNC(2); 
LIST := F:LIST; 
CONN SYNC2< 1 >:< 1 > XFORMDATA; 
CONN XFORMDATA< 1 >:< 1 >LIST; 
CONN LIST< 1 >:< 1 >HOST_MESSAGE; {Send transformed data to host} 
CONN LIST<2>:<2>SYNC2; {"Task completed" flag} 
SEND <any message> TO <2>SYNC2; 
SEND 'OBJ.XFORM_REQUEST' TO <2>XFORMDATA; 
SEND 'XDATA' TO < 3 > XFORMDATA; 
DISPLAY XFORM; 
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When the object has been designed and transformed properly and you are ready to 
send data to the host, the commands 

SEND FALSE TO < 1 > XFORM.X; 
SEND <any message> TO < 1 >SYNC2; 

(or an equivalent function network) send the transformed data to the host. Since 
the perspective and window transformations are replaced by the identity matrix 
during this time, the displayed object becomes distorted or disappears during 
transmission. When the entire list has been sent, enter 

SEND TRUE TO < 1 > XFORM.X; 

(or -route F:LIST's completion indicator to this input) to redisplay the object and 
continue designing). 
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SUMMARY 

Transformed data can be retrieved from a given data node and then established 
as a separate data or operation node in the display tree. The transformed data 
can also be converted to an ASCII PS 300 command string for transmission to the 
host. To retrieve transformed data you must: 

• Mark the data node by applying an XFORM 1/ECTOR or XFORM MATRIX 
node in the display tree. The syntax for the XFORM node command is: 

Name := XFORM specifier APPLIED TO node_name; 

• Request the transformed data using an instance of the F:XFORMDATA 
function. 

To send the transformed data to the host you can convert the data to an ASCII 
PS 300 command string with an instance of the F:LIST function and send the data 
to the host via HOST MESSAGE. 
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This module explains how to use the POLYGON command to define objects eligible for 
rendering and how to perform rendering operations on these objects. It is intended both 
as an introduction to rendering concepts and as a detailed statement of the rules for 
using the PS 340. 

Objects composed of polygons defined by the POLYGON command are the only objects 
that are eligible for rendering operations. Other data—definition commands, such as 
VECTOR_LIST, CHARACTERS, LABELS, POLYNOMIAL, RATIONAL POLYNOMIAL, 
BSPLINE, and RATIONAL BSPLINE, do not establish objects which can be rendered. 
Their ordinary use, aside from rendering, is not affected. 

There are two types of rendering operations: those applied to objects displayed on the 
calligraphic screen and those applied to objects displayed on the raster screen. Once an 
object has been correctly defined with the POLYGON command, it can be displayed on 
either the calligraphic or the raster screen without any modification to the data 
definition. 

Calligraphic 

Renderings 

Rendering operations on the calligraphic display can remove hidden line 
segments from an object, perform backface removal, section an object relative 
to a sectioning plane, and obtain a cross section. 

Following are brief descriptions and examples of the rendering operations for the 
calligraphic display. 
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Hidden-Line Removal 

Hidden-Line removal generates a view in which only the unobstructed portions of 
an object are displayed. 

(Before Hidden-Line Removal) 

IAS0276 

(After Hidden-Line Removal) 

IAS0278 

iAso279 

Figure 1. Object Before and After Hidden-Line Removal 
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Backface Removal 

Backface removal is an intermediate step in hidden-line removal in which all 
polygons facing away from the viewer are removed. 

(Before) 

IAS0280 

(After) 

Figure 2. Object Before and After Backface Removal 

iAS0281 
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Sectioning 

This operation makes use of a sectioning plane passing through the object which 
divides the object into two pieces. Upon sectioning, one piece is removed while 
the other is remains displayed. For solids, capping polygons are generated to 
maintain the integrity of the solid. 

(Before) 

IAS0332 

(After) 

{ AS4333 

Figure 3. Object Before and After Sectioning 
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Cross Sectioning 

The cross sectioning operation makes use of a def fined sectioning plane to create 
a cross section of an object. When this operation is used, both sides of the object 
are discarded and only the slice defined by the sectioning plane remains. 

(Before) 

iAso4o6 

(After) 

~aso4o7 

Figure 4. Object Before and After Cross Sectioning 
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Raster 

Renderings 

Rendering operations that apply to objects on the raster screen are wash shading, 

flat shading, and smooth shading. 

Wash shading produces an object with area-filled colored polygons ignoring 
normals, light sources, all lighting parameters, and all depth cueing parameters. 
This operation does not product objects that simulate a curved surface. 

The flat shading process considers color, one light source and depth cueing 
to shade the polygons in the object accordingly. Flat shading can produce 
objects that simulate a faceted surface. 

Smooth shading is the most complex process. The color of a polygon is varied 
across its surface, considering the normals at the polygon's vertices, the 
direction and color of various active light sources, the polygon's attributes (both 
color and highlights), and depth cueing. Objects that simulate a curved surface 
can be produced with smooth shading. 
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OBJECTIVES 

After reading this module, you should be able to: 

■ Define a polygonal object with the POLYGON command using all the 
command options (COPLANAR, NORMALS, S, OUTLINE, WITH 
ATTRIBUTES). 

■ Establish a workspace in memory. 

■ Mark an object as a solid or a surface for rendering. 

■ Create a rendering. 

■ Save and co mpound a rendering. 

■ Display a shaded object on the raster screen and change the shading 
environment in which the object is displayed. 

For those already familiar with the PS 340, a reference summary at the end of 
this module lists important rules and guidelines. 

PREREQUISITES 

Before reading this module, you should be familiar with programming the 
PS 300. It is helpful to have an understanding of the .representation of polygonal 
objects in graphics applications. It is assumed that you have some method, such 
as an application program, to automatically generate polygonal data structures. 
If you will be using the Shading Firmware for the Raster System, it is assumed 
that you have some knowledge of the parameters used in shading objects for 
display on a raster screen. 
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DEFINING POLYGONAL OBJECTS 

The first step in def fining a polygonal object is to determine what it looks like. 
The next step is to determine the correct geometry to define that object in the 
world coordinate space. This would typically be done by an application program 
since determining the vertices of all the polygons of an object is too complex to 
do manually. 

The polygons that make up an object to be rendered must be defined in the 
POLYGON command according to certain rules. If these rules are not followed, 
the results of a rendering operation applied to that object are unpredictable and 
usually incorrect, even though the object may appear correct when displayed. 

A poZggon is defined by the coordinates of its vertices. The edges of the 
polygon are defined by lines that connect those vertices. In the PS 340, a 
polygon must have at least .three vertices and no more than 250, all of which 
must lie in the same plane. Ensuring that the vertices in a polygon are coplanar 
is the responsibility of the user. 

Concave polygons are acceptable. Degenerate polygons (less than three 
vertices) and Interpenetrating polygons (intersecting themselves or others) 
are not acceptable. Polygons are not pickable and polygon data nodes have no 
inputs to allow them to be modified by function networks. 

Using the Polygon Command 

A poZr~gon clause, part of the POLYGON command, defines an individual 
polygon or face ~of an object by specifying the coordinates of its vertices. Since 
an object has many faces, several polygon clauses are used to define the entire 
object. 

The syntax for the polygon clause is the word POLYGON and a set of x,y,z 
coordinates. The number of polygon clauses in the POLYGON command is equal 
to the number of polygons in the object. Each polygon in the object must be 
defined with a polygon clause. 

A named group of one or more polygon clauses, with a semicolon at the end, 
constitutes a POLYGON data-definition command (or POLYGON command for 
short). This command defines the data node in the data structure of that object. 
There is no syntactical limit on the number of POLYGON clauses in the group. 
POLYGON may be abbreviated POLYG. 
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An option of the POLYGON command declares polygons to be coplanar, 
providing the capability to create objects with holes or protrusions. Other 

options allow you to define the color of the edges of polygons and to declare 

edges "soft" to simulate a curved surface on a calligraphic display. 

There are additional POLYGON command options that associate characteristics 

or "attributes" with polygons for use in creating shaded images on a color raster 

screen. These options include color and the concentration of specular 
highlights. Normals can be specified for the vertices of an object to create a 
smooth—shaded image that simulates a curved surface. These options are shown 

below and explained briefly; complete details are discussed throughout this 
module. 

Given, 
<vertex> :_ [ S ] x,y,z [ N x,y,z ] 
<polygon> :_ [WITH [ATTRIBUTES name2] [OUTLINE h]] 

POLYGON [COPLANAR] <vertex> ... <vertex> 

The polygon command is: 

[ Name :_ ] < Polygon > < Polygon > . . . < Polygon > ; 

where: 

• A vertex definition has the form [S] x,y,z [N x,y,z] 

where 

— S indicates that the edge drawn between the previous vertex and this 
one represents a soft edge of the polygon (discussed in detail later in 
this module). If the S specifier is used for the first vertex in a polygon 
definition, the edge connecting the last vertex with the first is soft. 

— N indicates a normal to the surface with each vertex of the polygon. 
Normals are used only in smooth —shaded renderings. Normals must be 
specified for all vertices of a polygon or for none of them. If no 
normals are given for a polygon, they are defaulted to the same as the 
plane equation for the polygon. 

— x, y, and z are coordinates in a le f t —handed Cartesian system. 

• WITH ATTRIBUTES is an option that assigns the attributes defined by name2 
for all polygons until superseded by another WITH ATTRIBUTES clause. 
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~ 1NITH OUTLINE is an option that specifies the color of the edges of a polygon 
on the color CSM display, or their intensity on a black and white display. 

• COPLANAR declares that the specified polygon and the one immediately 
preceding it have the same plane equation. 

Constructing Surfaces and Solids 

The PS 340 command language allows you to define two classes of polygons: 
surfaces and solids. Solids enclose a volume of space, while surfaces do not. 

Surfaces can have edges that belong to just one polygon. For example, in Figure 
5, edge CD is a part of polygon 3 but not of any other polygon. 

IAS0292 

Figure 5. Surf ace 0 bject 
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In a solid, each edge of each polygon must coincide with the edge of an adjacent 
polygon. For example, edge AB in Figure 6, is defined as ;part of polygon 1 and 
as part of polygon 2, and each edge of each polygon is similarly repeated in 
different polygons. 

Figure 6. Solid Object 

A solid cannot contain three or more polygons which have a single edge in 
common, although surfaces like -the one in Figure 7 can: 

~aso2e4 

Figure 7. Surface With Three Common Edges 
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The nature of a polygonal object, representing a surface or a solid, is determined 
not only by the construction but by placing it beneath a rendering node in the 
PS 340 data structure created by the SOLID_RENDERING and 
SURFACE RENDERING commands. These commands are discussed in detail in 
the section titled, "Marking Objects For Rendering." 

Specifying Vertices 

By definition, polygons are closed implicitly, so the first vertex is not repeated 
when defining a polygon. The system connects the last vertex given to the first 
vertex. 

In solids, the direction in which the vertices are ordered within each polygon 
clause has important consequences for rendering operations. The vertices should 
be listed so that if you start at any vertex and move to the next vertex (as 
indicated by the order in the polygon clause), you are traveling around the edges 
of the polygon in a clockwise direction. 

There are no similar restrictions for surfaces. The vertices of a surface can be 
listed in either a clockwise or a counterclockwise direction. 

For example, let A (0,0,0), B (.5,.87,0) and C (1,0,0) be the vertices of one 
triangular face of an icosahedron as shown below. 

B 

A 

IAS0311 

Figure 8. Icosahedron With Correct Vertex Ordering 
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Since the points A, B, and C have the arrangement indicated by the arrows when 
the triangular face is viewed from the outside of the icosahedron, that triangle 
could be defined correctly by any one of the following clauses, all of which 
specify the vertices in clockwise order: 

... POLYGON 0,0,0 .5,.87,0 1,0,0 ... 

... POLYGON .5,.87,0 1,0,0 0,0,0 ... 

... POLYGON 1,0,0 0,0,0 .5,.87,0 ... 

However, the following definition is incorrect for this polygonal face because it 
specifies the vertices in counterclockwise order: 

... POLYGON 0,0,0 1,0,0 .5,.87,0 ... 

Another method to determine the order of vertices is to use the right hand rule. 
The right hand rule states that if you point the thumb of your right hand towards 
the center of the object and rotate your fingers towards your wrist, the direction 
that your fingers move indicate the order in which the vertices of that polygon 
should be listed. 

Figure 9. Right Hand Rule 
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Using arrows to show the- vertex order of each polygon, a correctly constructed 
icosahedron -looks like this: 

IAS0291 

Figure 10. Correctly-Constructed icosahedron 

In all correctly defined solids, each edge is repeated in two different polygons. 
For each pair of adjacent polygons, their common edges run in opposite 
directions. Each edge is associated with a pair of opposing arrows in Figure 10. 
This is true for any edge of any correctly—defined solid, even if it contains inner 
contours. For solids, all vertices must run clockwise and all common edges of 
adjacent polygons must run in opposite directions. 

For surfaces the vertex—ordering rule is less stringent. Vertices in surfaces do 
not have to be ordered in a clockwise fashion but they should be ordered so that 
common edges of adjacent polygons run in opposite directions. 
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For example, the edges should be ordered like this 

(Correct) 

i ASC~311~ 

not like this 

(Incorrect) 

IAS0315 

Figure 11. Correct and Incorrect Vertex Ordering for Surfaces 

Although for surfaces it is not required that vertices run clockwise, it is a good 
idea to follow this rule when convenient since it allows surfaces to be easily 
"upgraded" to solids (especially if the surface has what could be called an 
interior). Assuming that polygon data are equally available in either form, it is 
better to have a surface's vertices in a clockwise order. 
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Given the following object (cube}: 

1,0,0 I,1,1 

1,0,0 

x 

o,o,l 

o,i,i 

o,o,0 0,1,0 

Figure 12. Cube 

A correct syntax to define this object is as follows: 

Cube := POLYGON 0,0,0 i3O,0 1,1,0 0,1,0 
POLYGON 0,1,0 1,1,0 l,l,l 0,1,1 
POLYGON l,l,l 1,0,1 0,0,1 0,1,1 
POLYGON I ,0,1 0,0, I 0,0,0 1,0,0 
POLYGON 1,0,0 1,0,1 l,l,l 1,1,0 
POLYGON 0,1,0 0,1,1 0,0,1 0,0,0; 

Associating Outer and Inner Contours With Coplanar 

IASO404 

A polygon that represents a face of an object is called an outer contour. 

Some polygons, known as inner contours represent cavities, holes, or 
protrusion sites in an object. 

For the PS 340 to interpret inner contours properly, two things must be done. 
One is to observe the vertex-ordering convention for inner and outer contours. 
The other is to use the coplanar option in the POLYGON clause to associate 
inner and outer contours. 
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The vertex ordering rule for inner and outer contours is as follows: vertices of 
inner contours must run in the opposite sense to the corresponding outer 
contour. For a solid this implies that the vertices of an inner contour run 
counterclockwise while outer contours run clockwise when viewed. 

The vertices of the following triangular polygon face (outer contour) with a hole 
in it (inner contour) are ordered as follows. 

0,0,0 0,1,0 
1 ASO405 

Figure 13. Surface With Inner/Outer Contours 

A POLYGON command syntax for this object is 

Object := POLYGON 0,0,0 .5,.5,0 1,0,0 {outer contour} 
POLYGON COPLANAR .5,.33,0 .33,.165,0 .66,.165,0; 
{inner contour} 

Note that the vertices for the inner contour in the above example are listed in 
the opposite order of those of the outer contour. 
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The following solid illustrates the rule that inner contours must run opposite to 
outer contours. 

IAS0313 

Figure 14. Solid With Correct Vertex Ordering 

Rules for Using the Coplanar Option 

An inner contour is always coplanar with some surrounding outer contour. To 
define an inner contour, you must associate it with the appropriate outer contour 
by declaring an inner contour to be coplanar with the outer contour. The 
COPLANAR specifier makes this declaration. COPLANAR is an option of the 
polygon clause which declares that the specified polygon and the one 
immediately preceding it have the same plane equation. 

A polygon declared to be COPLANAR must lie in the same plane as the previous 
polygon if correct renderings are to be obtained. The system does not check for 
this condition. 

All members of a set of consecutive COPLANAR polygons are taken to have the 
same plane equation. The polygon without a COPLANAR specifier immediately 
preceding the consecutive COPLANAR polygons is also taken to be in the set. 
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Polygons that are coplanar can be included in the polygon list without the 
COPLANAR specifier, but when outer and inner contours are being associated 
the COPLANAR clause is required. 

If COPLANAR is specified for the first polygon in a polygon list, it has no effect. 

It is legal to define two coplanar polygons without specifying COPLANAR, as 
long as the polygons are not to be associated as an outer/inner pair. 

In the following example the second polygon is coplanar with the first polygon. 
The third polygon is not coplanar with either of the two preceding polygons. 

Object := POLYGON -.6,-.6, -.6 -.6,.6,-.6 .6,.6,-.6 .6,-.6,-.6 {1} 
POLYGON COPLANAR -.3,-.3,-.6 .3,-.3,-.6 .3,.3,-.6 {2} 

POLYGON -.6,-.6,-.6 .6,-.6,-.6 .6,-.6,.6 -.6,-.6,.6 {3} 

Figure 15. Object With Coplanar Polygon 

In the next example, the first four polygons are coplanar with each other. The 
fifth polygon is not coplanar with any of the preceding polygons. 

Object :_ 
{outer} POLYGON 1,1,0 1,0,0 -1,0,0 -1,1,0 {1} 
{inner} POLYGON COPLANAR .4,.8,0 -.4,.8,0 -.4,.4,0 .4,.4,0 {2} 
{inner} POLYGON COPLANAR 1,0,0 1,-1,0 -1,-1,0 -1,0,0 {3} 
{inner} POLYGON COPLANAR .4,-.4,0 -.4,-.4,0 -.4,-.8,0 .4,-.8,0 {4} 
{inner} POLYGON 1,1,0 1,-1,0 1,-1,l 1,1-1 {5} 
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Figure 1 fi. ObjeCt With Inner/Outer Contours 

A solid object with a cavity usually includes an inner contour. In the following 
object, one triangle is an inner contour and all other polygons are outer contours, 
including the walls and back of the cavity. The back wall of the triangle is not an 
inner contour. 

lAS0299 

Figure 17. Solid With 
a 

Cavity 

The POLYGON command syntax for this object follows. Notice that there is only 
one polygon declared COPLANAR, for the one inner contour on the object. The 
polygon declared coplanar (inner contour) comes after the polygon clause for the 
front face of the cube (outer contour). 
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Object :_ 
{Cube faces} 
POLYGON -.6,-.6,.6 .6,-.6,.6 .6,.6,.6 -.6,.6,.6 {back} 
POLYGON -.6,-.6,-.6 .6,-.6,-.6 .6,-.6,.6 -.6,-.6,.6 {bottom} 
POLYGON .6,-.6,-.6 .6,.6,-.6 .6,.6,.6 .6,-.6,.6 {right} 
POLYGON .6,.6,-.6 -.6,.6,-.6 -.6,.6,.6 .6,.6,.6 {top} 
POLY G O N -.6,.6,-.6 -.6,-.6,-.6 -.6,~-.6,.6 -.6,.6,.6 {left} 
{Cube face containing cavity} 
POLYGON .6,.6,-.6 .6,-.6,-.6 -.6,-.6,-.6 -.6,.6,-.6 
{Cavity openings} 
POLYGON COPLANAR .6,.3,-.3 .6,-.3,-.3 .6,-.3,.3 
{Cavity side walls} 
POLYGON .6,.3,-.3 .6,-.3,-.3 .4,-.3,-.3 .4,.3,-.3 
POLYGON .6,-.3,-.3 .6,-.3,.3 .4,-.3,.3 .4,-.3,-.3 
POLYGON .6,-.3,.3 .6,.3,-.3 .4,.3,-.3 .4,-.3,.3 
{Cavity rear wall} 
POLYGON .4,.3,-.3 .4,-.3,.3 .4,-.3,-.3; 

A polygon should not be defined as an inner contour, unless it is coplanar with a 
surrounding contour. Tunnels, protrusions and holes do not need inner contours 
unless this coplanar arrangement is present. For example, in Figure 18 neither of 
the objects contains inner contours. 

Figure 18. Solid Without Inner Contours 
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A cube with a tunnel running through it has two inner contours in its polygon 
definition, one for each opening of the tunnel. 

IAS0300 

Figure 19. Cube With a Tunnel 

A POLYGON command syntax for this object is: 

Object :_ 
POLYGON -.6,-.6,.6 .6,-.6,.6 .6,.6,.6 -.6,.6,.6 
POLYGON COPLANAR -.3,-.3,.6 -.3,.3,.6 .3,.3,.6 .3,-.3,.6 
POLYGON -.6,-.6,-.6 .6,-.6,-.6 .6,-.6,.6 -.6,-.6,.6 
POLYGON .6,-. 6,-.6 .6,.6,-.6 .6,.6,.6 .6,-.6,.6 
POLYGON .6,.6,-.6 -.6,.6,-.6 -.6,.6,.6 .6,.6,.6 
POLYGON -.6,.6,-.6 -.6,-.6,-.6 -.6,-.6,.6 -.6,.6,.6 
POLYGON .6,.6,-.6 .6,-.6,-.6 -.6,-.6,-.6 -.6,.6,-.6 
POLYGON COPLANAR -.3,.3,-.6 -.3,-.3,-.6 .3,-.3,-.6 .3,.3,-.6 
POLYGON -.3,-.3,-.6 -.3,-.3,.6 .3,-.3,.6 .3,-.3,-.6 
POLYGON .3,.3,-.6 .3,-.3,-.6 .3,-.3,.6 .3,.3,.6 
POLYGON .3,.3,-.6 .3,.3,.6 -.3,.3,.6 -.3,.3,-.6 
POLYGON -.3,.3,-.6 -.3,.3,.6 -.3,-.3,.6 -.3,-.3,-.6; 
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Objects with inner contours can often be defined without inner contours. For 
example, the outer/inner contour pair in this object could be replaced by four 
coplanar outer contours. 

tAS0~04 

Figure 20. Objects With Coplanar Outer Contours 

~Aso3o5 

Both objects are admissible and can be rendered correctly. However, all other 
things being equal, the object with declared inner contours is processed 
more efficiently. 

For correct renderings, polygons may not intersect other polygons. (This 
prohibition extends to polygons which just coincide, since numerical precision 
constraints may result in the polygons intersecting.] For example, consider the 
following solid, which contains a protrusion: 

Figure 21. Solid With Protrusion 
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It seems that this solid can be constructed by putting two cubes together. 

1 AS0285 

Figure 22. Solid Composed of Two Cubes 

However, this is incorrect because one face of the small cube coincides with a 
portion of a face of the large cube. Another way of attempting to construct this 
solid fails for the same reason (Figure 23). 

IAS0286 

Figure 23. Invalid Solid 

In this formulation, four edges of the small box coincide with the interior of a 
larger polygon making the solid invalid. Also, these edges violate the 
requirement for solids that each polygon edge coincide with the edge of another 
polygon. 
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The correct construction of this solid requires an inner contour at the site of the 
protrusion (Figure 24). 

IAS0324 

Figure 24. Correct Solid Construction 

In the correct construction of the solid cube with a smaller cube as a protrusion, 
each edge of each polygon coincides with another polygon edge, and no~ portions 
of any polygon intersects the interior of any polygon. Only this construction 
guarantees correct renderings. 

A correct POLYGON command to define this object would be as follows. 

CUBEPROT :_ 
POLYGON -.3,-.3, .9 -.3,-.3, .6 .3,-.3, .6 .3,-.3, .9 
POLYGON .3,-.3, .9 .3,-.3, .6 .3, .3, .6 .3, .3, .9 
POLYGON .3, .3, .9 .3, .3, .6 -.3, .3, .6 -.3, .3, .9 
POLYGON -.3, .3, .9 -.3, .3, .6 -.3,-.3, .6 -.3,-.3, .9 
POLYGON -.6,-.6,-.6 -.6, .6,-.6 .6, .6,-.6 .6,-.6,-.6 
POLYGON .3,-.3, .9 .3, .3, .9 -.3, .3, .9 -.3,-.3, .9 
POLYGON -.6,-.6, .6 .6,-.6, .6 .6, .6, .6 -.6, .6, .6 
POLYGON COPLANAR 

-.3, .3, .6 .3, .3, .6 .3,-.3, .6 -.3,-.3, .6 
POLYGON -.6,-.6,-.6 .6,-.6,-.6 .6,-.6, .6 -.6,-.6, .6 
POLYGON .6,-.6,-.6 .6, .6,-.6 .6, .6, .6 .6,-.6, .6 
POLYGON .6, .6,-.6 -.6, .6,-.6 ~-.6, .6, .6 .6, .6, .6 
POLYGON -.6, .6,-.6 -.6,-.6,-.6 -.6,-.6, .6 -.6, .6, .6; 
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Failure to use the coplanar specifier in the polygons clause can result in 
incorrect hidden-line renderings. 

(Correct) 

IAso3o7 

IAS0309 

(COPLANAR omitted) 

IAso3as 

IAS031(1 

Figure 25. Hidden-Line Renderings of Objects Without the Coplanar Specifier 
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In solids, misplaced capping polygons and extra missing lines are often traceable 
to an outer contour defined with the wrong vertex order. 

(Correct: clockwise) 

1 ASO 3 ~ 8 

i AS0320 

(Incorrect: counterclockwise) 

Figure 2fi. Objects With Incorrect Vertex Ordering 

iAsa3~9 

rAso32t 
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Defining Soft Edges 

Soft edges, declared with the "S" specifier in the polygon clause, are invisible in 
hidden —line renderings except when they make up part of the profile of an object 
(or silhouette). They can, therefore, be used to approximate curved surfaces in 
hidden—line renderings. 

For example, suppose that the twelve vertical edges in this object are soft edges. 

Figure 27. Solid With Declared Soft Edges 
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In a hidden-line rendering of this object, all soft edges become invisible, except 
for the two that contribute to the object's silhouette or profile. The result is an 
approximation of a cylinder's curved surface without intrusive edges which were 
provided for construction purposes only. 

Figure 28. Rendering a~ Solids With Soft Edges 

The "S" option before a set of X,Y,Z coordinates indicates that the edge drawn 
between the previous vertex and this one represents a sof t edge of the polygon. 
If "S" is placed before the first set of X,Y,Z coordinates in a polygon clause, the 
edge connecting the last vertex with the first is soft. 

1Nhen using the "S" specifier in the POLYGON command to define an object, 
there are some rules to remember about the way the system treats edges that 
are declared to be soft. 

An "S" specifier causes the system to apply a positioning operation rather than a 
drawing operation to the associated polygon vertex. Therefore, if a single 
polygon containing a soft edge is displayed, the soft edge is "invisible" on the 
display. 
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Each polygon edge in a solid coincides with an edge. of a neighboring polygon so 
that the solid is made up of common-edge pairs. If one edge of a common-edge 
pair is declared as soft, and the other is declared as "hard," the system 
considers the entire common edge pair to be soft in creating a hidden 
Zine rendering. This convention allows a solid's entire structure to be visible 
in its original view (since one edge in the pair is hard), but invisible in a 
hidden-line rendering. This is generally the way soft edges are defined. It is 
possible to define both edges of a common-edge pair as soft; in which case the 
common-edge pair would be invisible even in the original object. 

In surfaces, polygon edges lying on the outline do not coincide with any 
neighboring polygon edges. All other polygon edges do belong to common-edge 
pairs, and it is only these "interior" edges which would be made invisible in a 
representation of a curved surface. In surfaces as well as solids, soft edges 
should be members of common-edge pairs, and only one edge need be declared 
soft. 

In drawing a "hard" common-edge pair, the system line generator system strokes 
the same vector twice. If one member of the pair is soft, the vector is only 
stroked once; the result is slightly dimmer. This intensity variation indicates 
which edges of an unrendered object are soft. Hardcopies of objects containing 
edges will not show an intensity variation. 

Remember the vertex ordering rule for polygons. Common-edge pairs should 
always run in opposite directions. This is especially important when one edge is 
soft. Otherwise, profile edges may be invisible in hidden-line renderings. 

Defining 
Color dnd Intensity 

for 

Vector 

Displays 

The color of the edges of a polygon on the CSM color display, or the intensity on 
a monochrome display, is set by the optional WITH OUTLINE h clause in the 
POLYGON command. (This has no effect on objects displayed on the raster 
screen.) The characteristics defined by the WITH OUTLINE clause apply to all 
subsequent polygons in the node until superseded by another WITH OUTLINE 
clause. The WITH OUTLINE clause comes before the word POLYGON in the 
polygon clause. 

The parameter h sets the intensity or color, but how this parameter is 
interpreted is controlled by the presence or absence of a SET COLOR 
BLENDING node higher in the structure. For the rendered view to be displayed 
in the same form, the SET COLOR BLENDING node must be at a higher 
hierarchical level than the rendering operate node. 
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If h=0 or is in the range 1 <h < 360, it will be inserted in the structure in a f orm 
suitable for interpretation as a hue (as in color blending for vectors); however, if 
0 < h < 1, the value is inserted in such a way as to be properly interpreted as 
intensity. If the SET COLOR BLENDING node is absent for the larger values of 
h, or present for smaller, the results are unspecified. 

Color or intensity are specified for complete polygons, not individual edges. The 
hue (or intensity) of the capping polygon in a sectioning operation is inherited 
from the color (or intensity) of the sectioning plane. The default color is blue. 
The default intensity is 1. 

You cannot specify white polygons on the CSlu~i color display, unless they are all 
white. Also, there may be strange color effects if polygons sharing a common 
edge are colored differently. The intention of the SET COLOR BLENDING node 
and the WITH OUTLINE clause is to allow the use of color to distinguish 
different bodies or parts of bodies, such as protrusions. 

Following is a command sequence using the WITH OUTLINE clause to define an 
object with color. 

INIT disp; 
DISP a; 
a:= SET CONTRAST 0 THEN b; 
b:= SET COLOR BLENDING 1 THEN c; 
c := ROT Y 30 THEN Twosquares; 
Twosquares :_ 

WITH OUTLINE 120 POLYGON 
—1,1,0 0,1,0 0,-1,0 —1,-1,0 
WITH OUTLINE 240 POLYGON 
0,1,0 1,1,0 1,-1,0 0,-1,0; 

{gives the square a red outline} 

{gives the green a red outline} 

Defining Color and Highlights for Raster Displays 

Specifying the color, diffuse reflection, and specular highlights, (called 
attributes) of a polygon in the raster image is done via the WITH ATTRIBUTES 
clause of the POLYGON command. 



RENDERING OPERATIONS - 33 

The ATTRIBUTES command creates a named attribute node in mass memory 
that defines specific qualities to be applied to polygons when referenced by the 
polygon data structure. The attributes specified in a WITH ATTRIBUTES Name2 
clause of a polygon command apply to all subsequent polygons until superseded 
by another WITH ATTRIBUTES clause. If no WITH ATTRIBUTES option is given 
fora polygon node, default attributes are assumed. The default attributes are 
0,0,1 for color, 0.75 for diffuse, and 4 for specular. 

Given the polygon syntax: 

[ name := J <polygon> <polygon> <polygon> ; 

the attributes option is, 

<polygon> :_ [WITH [ATTRIBUTES name2] [OUTLINE h]] polygon 
<vertex>...<vertex> 

The WITH ATTRIBUTES clause and the ATTRIBUTES command are explained in 
the "Displaying Shaded Images" section. 

Speeify~ng Normals 

When a polygon is used to approximate a curved surface, the smooth appearance 
of the surface can be restored in asmooth-shaded rendering by approximating a 
surface using normals. Normals only apply to shaded renderings. A normal to 
the surface is given with each vertex of the polygon specified N X,Y,Z. The 
shaded-rendering process interpolates between these normals when rendering the 
polygon. Normals must be specified for all vertices of a polygon or for none of 
them, If no normals are given for a polygon, they are defaulted to the same as 
the normals of the plane in which the polygon lies. Normals are needed only in 
smooth-shaded renderings and should usually be used. If you do not use normals 
and request a smooth-shaded rendering, the result will be a f lat-shaded 
rendering (except that specular and diffuse attributes will apply). 

The following is an example of a cylinder with the normals specified. Notice 
that the first two polygons do not have normals so the normals default to the 
polygon normal and no smoothing is done across these. These are the ends of the 
cylinder. The rule is all polygons do not need to have normals (in which case 
they default to the plane equation), but if any vertex of a polygon has a normal 
then all vertices for the polygon must. The cylinder also has soft edges (for 
display on the calligraphic display). 
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Figure 29. Cylinder With Normals and Soft Edges Specified 

CYLINDER :_ 

POLYGON 
1.00000, 0.00000, 1.00000 
0.95106, 0.30902, 1.00000 
0.80902, 0.58779, 1.00000 
0.5 87 79, 0.8090 2, 1.00000 
0.30902, 0.95106, 1.00000 
0.00000, 1.00000, 1.00000 

-0.30902, 0.95106, 1.00000 
-0.58779, 0.80902, 1.00000 
-0.80902, 0.58779, 1.00000 
-0.95106, 0.30902, 1.00000 
-1.00000, 0.00000, 1.00000 
-0.95106, -0.30902, 1.00000 
-0.80902, -0.58779, 1.00000 
-0.58779, -0.80902, 1.00000 
-0.30902, -0.95106, 1.00000 
0.00000, -1.00000, 1.00000 
0.30902, -0.95106, 1.00000 
0.5 87 79, -0.8090 2, 1.00000 
0.80902, -0.58779, 1.00000 
0.95106, -0.30902, 1.00000 
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POLYGON 
0.95106, 
0.80902, 
0.58779, 
0.30902, 
0.00000, 

-0.30902, 
-0.58779, 
-0.80902, 
-0.95106, 
-1.00000:
-0.95106;
-0.80902, 
-0.58779, 
-0.30902 
0.00000, 
0.30902, 
0.58779, 
0.80902, 
0.95106, 
1.00000, 

POLYGON 
S 1.00000, 

0.95106, 
S 0.95106, 

1.00000, 

POLYGON 
0.95106, 
0.80902, 

S 0.80902, 
0.95106, 

POLYGON 
0.80902, 
0.58779, 

S 0.58779, 
0.80902, 

POLYGON 
0.58779, 
0.30902, 

S 0.30902, 
0.58779, 

("1 

-0.30902 
-0.58779 
-0.80902 
-0.95106 
-1.00000 
-0.95106 
-0.8090 2 
-0.58779 
-0.30902 
0.00000;
0.30902, 
0.58779, 
0.80902,, 
0.95106 
1.00000. 
0.95106. 
0.80902 
0.58779 
0.30902 
0.00000 

o.00000, 

0.30902, 
0.30902, 

o.00000, 

0.30902, 
0.58779, 
0.58779, 
0.30902, 

0.58779, 
0.80902, 
0.8090 2, 
0.58779, 

0.80902, 
0.9 510 6, 
0.95106, 
0.80902, 

-1.00000 
-1.00000 
-1.00000 
-1.00000 
-1.00000 
-1.00000 
-1.00000 
-1.00000 
-1.00000 
-1.00000 
-1.00000 
-1.00000 
-1.00000 
-1.00000 
-1.00000 
-1.00000 
-1.00000 
-1.00000 
-1.00000 
-1.00000 

-1.00000 
-1.00000 
1.00000 
1.00000 

-1.00000 
-1.00000 
1.00000 
1.00000 

-1.00000 
-1.00000 
1.00000 
1.00000 

-1.00000 
-1.00000 
1.00000 
1.00000 

N 1.00000 
N 0.95106 
N 0.95106 
N 1.00000 

N 0.95106 
N 0.8090 2 
N 0.80902 
N 0.95106 

N 0.80902 
N 0.58779 
N 0.58779 
N 0.80902 

N 0.58779 
N 0.30902 
N 0.30902 
N 0.58779 

0.00000, 0.00000 
0.30902, 0.00000 
0.30902, 0.00000 

o.00000, 

o.00000 

0.,30902, 0.00000 
0.5 8 7 79, 0.00000 
0.5 8 7 79, 0.00000 
0.30902, 0.00000 

0.58779, 0.00000 
0.80902, 0.00000 
0.80902, 0.00000 
0.5 87 79, 0.00000 

0.80902, 0.00000 
0.95106, 0.00000 
0.95106, 0.00000 
0.80902, 0.00000 



36 -RENDERING OPERATIONS 

POLYGON 
0.30902, 

o.00000, 

S 0.00000, 
0.30902, 

POLYGON 
o.00000, 

-0.30902, 
S -0.30902, 

0.00000, 

POLYGON 
-0.30902, 
-0.58779, 

S -0.58779, 
-0.30902, 

POLYGON 
-0.5 8 7 79, 
-0.80902, 

S -0.80902, 
-0.58779, 

POLYGON 
-0.80902, 
-0.95106, 

S -0.95106, 
-0.80902, 

POLYGON 
-0.95106, 
-1.00000, 

S -1.00000, 
-0.95106, 

POLYGON 
-1.00000, 
-0.95106, 

S -0.95106, 
-1.00000, 

POLYGON 
-0.95106, 
-0.80902, 

S -0.80902, 
-0.95106, 

0.95106, -1.00000 
1.00000, -1.00000 
1.00000, 1.00000 
0.95106, 1.00000 

1.00000, -1.00000 
0.95106, -1.00000 
0.95106, 1.00000 
1.00000, 1.00000 

0.95106, -1.00000 
0.8090 2, -1.00000 
0.8090 2, 1.00000 
0.95106, 1.00000 

0.8090 2, -1.00000 
0.58779, -1.00000 
0.58 7 79, 1.00000 
0.8090 2, 1.00000 

0.58779, -1.00000 
0.30902, -1.00000 
0.30902, 1.00000 
0.58779, 1.00000 

0.30902, -1.00000 
0.00000, -1.00000 
0.00000, 1.00000 
0.30902, 1.00000 

0.00000, -1.00000 
-0.30902, -1.00000 
-0.30902, 1.00000 

o.00000, 

1.00000 

-0.30902, -1.00000 
-0.5 8 7 79, -1.00000 
-0.58779, 1.00000 
-0.30902, 1.00000 

N 0.30902, 
N 

o.00000, 

N 0.00000, 
N 0.30902, 

0.95106, 
1.00000, 
1.00000, 
0.95106, 

N 0.00000, 1.00000, 
N -0.30902, 0.95106, 
N -0.30902, 0.95106, 
N 0.00000, 1.00000, 

N -0.30902, 0.95106, 
N -0.58779, 0.80902, 
N -0.5 8 7 79, 0.80902, 
N -0.30902, 0.95106, 

N -0.58779, 0.80902, 
N -0.80902, 0.58779, 
N -0.80902, 0.58779, 
N -0.58779, 0.80902, 

N -0.80902, 0.58779, 
N -0.95106, 0.30902, 
N -0.95106, 0.30902, 
N -0.80902, 0.58779, 

N -0.95106, 0.30902, 
N -1.00000, 0.00000, 
N -1.00000, 0.00000, 
N -0.951'06, 0.30902, 

N -1.00000 
N -0.95106 
N -0.95106 
N -1.00000 

N -0.95106 
N -0.80902 
N -0.80902 
N -0.95106 

0.00000 
0.00000 

o.00000 

0.00000 

0.00000 
o.00000 

0.00000 
0.00000 

0.00000 
0.00000 
0.00000 
0.00000 

o.00000 

0.00000 
0.00000 
0.00000 

0.00000 
0.00000 
0.00000 
0.00000 

0.00000 
0.00000 
0.00000 
0.00000 

o.00000, 

o.00000 

-0.30902, 0.00000 
-0.30902, 0.00000 

o.00000, 

o.00000 

-0.30902, 0.00000 
-0.5 8 7 79, 0.00000 
-0.5 8 7 79, 0.00000 
-0.30902, 0.00000 
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POLYGON 
-0.80902 
-0.58779 

S -0.58779 
-0.80902 

POLYGON 
-0.58779 
-0.30902 

S -0.30902 
-0.58779 

POLYGON 
-0.30902 
0.00000, 

S 0.00000, 
-0.30902 

POLYGON 
0.00000, 
0.30902, 

S 0.30902, 
0.00000, 

POLYGON 
0.30902, 
0.58779, 

S 0.58779, 
0.30902, 

POLYGON 
0.58779, 
0.80902, 

S 0.8090 2, 
0.58779, 

POLYGON 
0.8090 2, 
0.95106, 

S 0.95106, 
0.80902, 

POLYGON 
0.95106, 
1.00000, 
1.00000, 
0.95106, 

-0.58779, -1.00000 
-0.80902, -1.00000 
-0.80902, 1.00000 
-0.58779. 1.00000 

-0.80902, -1.00000 
-0.95106, -1.00000 
-0.95106, 1.00000 
-0.80902, 1.00000 

-0.95106, -1.00000 
-1.00000, -1.00000 
-1.00000, 1.00000 
-0.95106. 1.00000 

-1.00000, -1.00000 
-0.95106, -1.00000 
-0.95106, 1.00000 
-1.00000, 1.00000 

-0.95106, -1.00000 
-0.80902, -1.00000 
-0.80902, 1.00000 
-0.95106, 1.00000 

-0.80902, -1.00000 
-0.58779, -1.00000 
-0.58779, 1.00000 
-0.80902. 

l.00000 

-0.58779, -1.00000 
-0.30902, -1.00000 
-0.30902, 1.00000 
-0.58779. l.00000 

-0.30902, -1.00000 
0.00000, -1.00000 
0.00000, 1.00000 

-0.30902, 1.00000 

N -0.80902;
N -0.58779;
N -0.58779;
N -0.80902. 

N -0.58779 
N -0.30902 
N -0.30902 
N -0.58779 

N -0.30902 
N 0.00000, 
N 0.00000, 
N -0.30902 

N 0.00000, 
N 0.30902, 
N 0.30902, 
N 0.00000, 

N 0.30902, 
N 0.58778, 
N 0.58778, 
N 0.30902, 

N 0.58778, 
N 0.80902, 
N 0.80902, 
N 0.58778, 

N 0.80902, 
N 0.95106, 
N 0.95106, 
N 0.80902, 

N 0.95106, 
N 1.00000, 
N 1.00000, 
N 0.95106, 

-0.58779, o.00000 
-0.80902, 0.00000 
-0.80902, 0.00000 
-0.58779, 0.00000 

-0.80902, 0.00000 
-0.95106, 0.00000 
-0.95106, 0.00000 
-0.80902, 0.00000 

-0.95106, 0.00000 
-1.00000, 0.00000 
-1.00000, 0.00000 
-0.95106, 0.00000 

-1.00000, 0.00000 
-0.95106, 0.00000 
-0.95106, 0.00000 
-1.00000. 0.00000 

-0.95106, 0.00000 
-0.8090 2, 0.00000 
-0.80902, 0.00000 
-0.95106, 0.00000 

-0.80902, 0.00000 
-0.58779, 0.00000 
-0.58779, 0.00000 
-0.80902, 0.00000 

-0.58779, 0.00000 
-0.30902, 0.00000 
-0.30902, 0.00000 
-0.58779. 0.00000 

-0.30902, 0.00000 
o.00000, 

o.00000 

0.00000, 0.00000 
-0.30902, 0.00000 
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ESTABLISHING A WORKSPACE IN MEMORY 

The rendering process requires that a large contiguous block of mass memory be 
available. This area is known as working storage and once reserved it is not 
available for other uses. Before any rendering operations can be performed, you 
must establish a workspace in mass memory. The best time to reserve working 
storage is immediately after booting, when large requests can be filled more 
easily. 

Each polygon of a solid object with four vertices will require approximately 150 
bytes of reserve working storage. Memory needs will vary from figure to figure 
depending on the complexity of the object, the operations to be performed on the 
data structure, and the view. 

Working storage must be explicitly reserved with the 
RESERVE WORKING STORAGE command. 

The syntax for working storage command is as follows: 

RESERVE_WORKING_STORAGE n; 

where 

the current working storage block is replaced with another containing at least 
n bytes. If n is less than or equal to 0, no new block is allocated. 

Typically, you should reserve 200,000 to 400,000 bytes of working storage when 
you begin a session. The command to do this is: 

RESERUE WORKING STORAGE 400,000; 

After one working storage request is made, subsequent requests do not add to the 
original working storage; they replace the original working storage. 

Working storage is not freed by the INITIALIZE command. The only way to free 
all working storage is to enter RESERVE_WORKING_STORAGE with a number 
less than or equal to 0. If a working storage request is followed by another, 
smaller request, an amount of memory equal to the difference between the two 
requests is freed. 

A previously allocated working storage area is released prior to filling the 
request for a new working storage area. Thus, a request for 3 smaller working 
storage area can always be fulfilled. However, because the working storage 
must be a contiguous block of memory, even slight increases in the working 
storage size may not be satisfied upon arbitrary request. 
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If a contiguous block of memory cannot be allocated, no working storage is 
allocated and any previous storage is deallocated. If working storage is too small 
or has not been reserved, the rendering request is ignored and an error message 
is issued. 

Additional Memory Requirements 

In addition to the working storage space, extra mass memory is needed to create 
hidden-line renderings. This memory is referred to as transient memory and 
is automatically allocated and deallocated by the system. If adequate mass 
memory is not available for transient storage, the hidden-line process will 
terminate prematurely, and an error message will be generated. For this reason 
E&S recommends 2Mb or more . of memory for renderings of objects with 
numerous polygons. 

For hidden-line removal, each polygon (with four vertices) in the object will 
require approximately 150 bytes of transient storage. 
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MARKING AN OBJECT FOR RENDERING 

An object must be defined to be a surface or a solid before rendering operations 
can be applied. The commands to do this are: 

SOLID RENDERING command. This command creates an operation node in 

the data structure (a "solid-rendering node") which declares all of its 
descendant polygon data nodes to define a solid. 

SURFACE RENDERING command. This command creates an operation node 
in the data structure (a "surface-rendering node") which declares all of its 
descendant polygon data nodes to define a surface. 

These commands declare a POLYGON data object to be either a solid or a 
surface and mark it to perform renderings on it. The nodes they establish are 
called rendering operation nodes. 

Rendering nodes should never be multiply instanced either directly or indirectly. 

Only polygon nodes are used in renderings. Vector and character nodes occurring 
beneath a rendering node are ignored by the rendering operations. 
Transformation nodes are not retained in the rendering, but their effect is 
incorporated into the data nodes. 

A sectioned rendering concatenates all transformations below the rendering node 
into the rendering, backf ace and hidden-line renderings also incorporate the 
current transformation matrix at the point of the rendering node. For this 
reason, a saved hidden-line or backface removal rendering should be placed 
beneath a 

MATRIX_4X4 1,0,0,0 0,1,0,0 0,0,0,0 0,0,1,1; 

command to be properly re-displayed. If this is not done, the rendering will have 
two sets of transformations applied to it when it is re-displayed (the 
transformations applied when the rendering was created and the transformations 
again applied when the rendering is re-displayed). 

While conditional nodes (IF) are not incorporated into renderings, the rendering 
will account for the state of the conditional node when the rendering is created. 
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A POLYGON data node can be displayed by itself. However, if the POLYGON 
data node is to be rendered, it must have a rendering node as an ancestor. All 
rendering and display operations involving the object are done via the rendering 
node rather than the data node itself. 

Syntaxes for the rendering commands are: 

name := SOLID RENDERING APPLIED TO name 1; 

name := SURFACE RENDERING APPLIED TO name l; 

where 

• name 1 names either (a) a POLYGON node, or (b) an ancestor of one or 
more POLYGON nodes. 

• If (b) is the case, any rendering referring to name is performed on all of 
the POLYGON objects descended from name 1 at once. 

• SOLID and SURFACE are acceptable abbreviations for these commands. 

Non-Polygon Data Nodes Marked for Rendering 

If non-POLYGON data nodes (such as VECTOR_LIST, CHARACTERS, LABELS, 
POLYNOMIALS, and B-SPLINES) are included in name 1, these data objects are 
displayed along with the POLYGON objects prior to rendering but are omitted 
from renderings. Rendering operations have no effect on these data nodes. 

Admissible Descendants for Rendering 0 perate Nodes 

IF and SET CONDITIONAL BIT, IF and SET LEVEL_OF_DETAIL, INCREMENT 
LEVEL_OF_DETAIL, DECREMENT LEVEL_OF_DETAIL, IF PHASE, SET RATE, 
SET RATE EXTERNAL, SET DEPTH_CLIPPING, and BEGIN_STRUCTURE... 
END STRUCTURE may be placed between a rendering node and its data. A 
rendering takes into account any effects of these nodes at the time the request 
is made. For example, if IF PHASE and SET RATE are being used to blink an 
object and that object is "off" at the moment the request is made, the object is 
excluded from the rendering. 

The nodes mentioned above can also be placed above the rendering node with the 
same result. 



42 -RENDERING OPERATIONS 

The transformations ROTATE, TRANSLATE, SCALE, MATRIX_2X2, 
MATRIX_3X3, MATRIX_4X3 and LOOK may be placed between a rendering node 
and its data node(s). However, these nodes should be used with caution, since, 
like the operate nodes mentioned above, their effects will be incorporated into 
renderings, and precision problems may result. 

Another potential problem with interposing these transformations between a 
rendering node and the data arises when renderings are being saved. 

Since most vertices in an object usually belong to more than one polygon, each 
vertex should be defined with the same numerical value in each of its polygons; 
otherwise, precision discrepancies may cause inaccurate renderings. 

In general, the five nodes WINDOW, VIEWPORT, EYE, FIELD_OF_1/IEW, and 
MATRIX 4X4 should NOT be made descendants of a rendering node. Like other 
transformations, these five are incorporated into the output data from a 
rendering operation. However, these rendered data are generally displayed 
within a framework that already includes global 4x4-matrix transformations of 
its own. Including these transformations as part of the rendering, then, usually 
has the net effect of applying an unwanted double-WINDOW (double-1/IEWPORT, 
etc.) to the rendered object. 

SOLID_RENDERING and SURFACE_RENDERING may not be descendants of a 
rendering node, especially if multiply-instanced rendering nodes are involved. If 
this rule is not observed, bad renderings or a system crash may result. The 
system does not check for this condition. 

Other nodes, including character transformations and the SET nodes (SET RATE, 
SET COLOR, SET PLOTTER) are not carried over by rendering operations into a 
rendering when placed beneath a rendering node. Such nodes must be placed 
above a rendering node to produce their customary effects on renderings. 

Rendering Nodes Must Be Displayed Before Rendering 

Before you can render an object, its rendering node must be part of a structure 
which is displayed (using the DISPLAY command). If the object itself is 
displayed but its rendering node is not, no renderings can be created. 
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For example, if the command sequence 

A := SOLID_RENDERING APPLIED TO B; 
B := POLYGON ... ... . . 

has been entered, the DISPLAY command should be DISPLAY A; and not 
DISPLAY B. 

('1 
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CREATING RENDERINGS 

An appropriate integer sent to a SOLID_RENDERING or SURFACE_RENDERING 
node produces a rendering of that node's descendant polygon object. When a 
rendering is first created for an object, a second set of data is created and 
"grafted" just below the rendering node f or the original object. To display the 
rendering, the Graphics Control Processor traverses the path to this new data. 
This happens automatically when the rendering is requested. The original data 
existent before the rendering was applied remain intact and are accessible via 
input to the rendering node. 

TRANSFOR-
MATIONS 

i 
ORIGINAL 
POLYGON 
DATA 

REQUEST RENDERING) 

SOLID-
RENDERING 

~~ 

TRANSFOR- 1 
\ NATIONS 

~~ 

~ 1 
ORIGINAL 

I POLYGON I
DATA 

~-~ 

Figure 30. Path to Rendering Data 

RENDERING 
DATA 

IAS0275 
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1N hen the original object is re—displayed, the path to the original object is 
traversed, however, the rendering data remains intact. 

SOLID- ~ 
RENDERING 

TRANSFOR-
MATIONS 

ORIGINAL 
POLYG01~ 
DATA 

T~ - - 1 
RENDERING ~ 

~ DATA 

—J 
~AS0273 

Figure 31. Path to Original Data 

At this point, the rendering can easily be displayed again, since its data still 
exists. 



46 —RENDERING OPERATIONS 

When a second rendering is done on this object, it replaces the first rendering. 

SOLID-
RENDERING 

~_~ 

TRANSFOR-
~ NATIONS 

\ / 

r 
I ORIGINAL I 

POLYGON 
I DATA I 

--J 

SECOND 
RENDERING 

DATA 

IASQ274 

Figure 32. Path to Second Rendering 

The rendering whose data occupy this place in the structure at a particular time 
is called the "current rendering." Thus, the current rendering is always the one 
most recently created, even if it is not currently displayed. Each rendering node 
has its own current rendering. 

After requesting a rendering operation you cannot communicate with the host or 
do any other PS 340 processing until the rendering is completed. 
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Rendering Node C onne~tions 

Rendering nodes have two inputs. Input < 1 > accepts an integer, a Boolean, or a 
string designating the rendering operation to be performed. Tokens sent to input 
<1> of the rendering node cause a rendering to be created, saves a rendering 
under a particular name, or toggles the display from the rendering to the original 
object. 

input <2> accepts a Boolean to change the object definition from a surface to a 
solid or vice versa. After defining an object to be a surface or a solid with the 
SOLID_RENDERING or SURFACE_RENDERING commands, you can change the 
definition by sending a Boolean to input <2> of the rendering operate node. This 
input allows you to have one rendering node (created with either command) and 
alternate between a surface and a solid definition. A true sent to the input <2> 
declares the object to be a solid; a false declares the object to be a surface. 
Solids are always rendered correctly (although not as efficiently) as surf aces. 
Surfaces are handled by the system as solids (they will not cause the system to 
fail); however, they may not be rendered correctly. 

Rendering nodes also have an output which outputs a true if the rendering is 
displayed and a false if it is not displayed. You can connect this output via the 
CONNECT command to trigger some other action that was waiting on 
completion of the rendering process. 

For example, the commands 

A := SOLID RENDERING THEN B; 
CONNECT A< 1 >:< I >C; 

cause the output of a rendering node to be sent to input < 1 > of C. 

Any input to input< 1 > of a rendering node causes an output. Inputs sent to 
input<2> will not cause an output to be sent. If output< 1 > has not been 
connected, and an integer, string, or Boolean is sent to input< i >, a message will 
appear on the screen upon successful completion of the rendering operation. An 
error message will appear if the rendering was not completed. 
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The connections for the SOLID_RENDERING and SURFACE RENDERING 
operate nodes are: 

I 
Integer, > <1> 
String, or 
Boolean 

Boolean => 

<1> 

So1id_Rendering Applied To Hamel; 
<2> Surface_Rendering Applied To Hamel; 

Acceptable Values for Input ~1> 

>Boolean 
{True if displayed} 
{False if not displayed} 

0: Toggles between the current rendering and the original object. 
l: Creates and displays across—section of an object defined by the sectioning 

plane (solid only). 
2: Creates and displays a sectioned rendering. 
3: Creates and displays a rendering using backface removal (solid only). 
4: Creates and displays a rendering using hidden--line removal. 
5: Generates awash —shaded image on the raster display. 
6: Generates aflat—shaded image on the raster display. 
7: Generates asmooth—shaded image on the raster display. 

String: Causes the current rendering to be saved under the name given in the 
string. 

False: Sets the original view. The original descendant structure of the 
rendering operate node is displayed. 

True: Sets the rendered view. The rendered view of the original descendent 
structure of the rendering operate node. 

Acceptable Values for Input (2> 

True: Declares the object to be a solid. 
False: Declares the object to be a surface. 

These operations are discussed in the following sections. 
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Backface 

Removal 

Backface -removal is an intermediate step in hidden-line removal, during which 
all polygons facing away from the viewer are removed. Since backface removal 
takes considerably less time than hidden-line removal, this operation is provided 
separately to allow you to see what chidden-line rendering will look like. 

This operation is especially useful in obtaining quick previews of hidden-line 
renderings of complex solids, when an appropriate viewing angle is being decided 
upon by trial and error. The backface-removed rendering is an unfinished 
hidden-line rendering. It is not identical to the end-product in every line 
segment, but close enough to give a rough idea of the outcome. 

Only solids can be subjected to backface removal; the operation has no visual 
effect on surfaces. 

Figure 33 is an example of a solid before and after backface removal. 
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(Before Backface Removal) 

(After Backface Removal) 

Figure 33. Solids Before and After Backface Removal 
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Sending an integer of 3 to input < 1 > of the rendering node creates a 
backface-removed rendering in the working storage area. 

Exercise 

Load the PS 340 Cat demonstration diskette on the PS 340 and apply the 
backface removal operation by selecting from the menu on the right side of the 
screen. Refer to the PS 340 Installation Manual for instructions on loading 
and operating the CAT program. 

Hidden-Line Removal 

Hidden-line removal generates a view in which only the unobstructed portions of 
an object are displayed. All parts of the edges of polygons that would be 
obscured by other polygons are removed. 

Three steps are involved in the hidden-line removal process. 

1. Back faces are removed or made front facing. This happens very quickly 
(1-3 seconds), during which time the screen will appear blank. 

2. The remaining polygons' edges are sorted by. their Y-coordinates. This 
step takes approximately 30 seconds for 3,000 polygons, during which time 
the backface picture is created. The time required for sorting depends on 
the number of polygons and the order in which they are defined. 

3. Edges are tested against polygons and clipped by those that obscure 
them. During this time, the backface picture is removed and the final 
hidden-line picture appears from top to bottom of the display. 

This step may take 5 minutes or more for approximately 3,000 polygons, 
depending on the number of polygons and the view. In general, it takes 
more time to process polygons along the X and Z axis than those along the 
Y axis. 

Hidden-line removal may be performed on both solids and surfaces. Hidden-line 
views cannot be subjected to further rendering operations. 
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(Before Hidden —Line) 

(After Hidden —Line) 

Figure 34. Solids Before and After Hidden-Line Removal 
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Sending an integer of 4 to input < 1 > of the rendering node creates a hidden line 
rendering in the working storage area. 

Exercise 

Use the PS 340 CAT demonstration program to see the effects of the hidden —line 
operation on the various objects. 

Sectioning 

Sectioning yields a "cutaway view" of an object. This operation makes use of a 
sectioning plane passing through the object and dividing the object into two 
pieces. The half of the object that is behind the plane is discarded and only the 
front section of the object is displayed. 
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(Before Sectioning) 

(After Sectioning) 

Figure 35. Solid Objects Before and After Sectioning 
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Both solids and surfaces can be sectioned. For solids, a capping polygon (or a set 
of coplanar capping polygons) is generated where the sectioning plane intersects 
the solid. Such capping polygons) "close off" the sectioned object so that it, too, 
becomes a solid. 

Sectioning does not generate capping polygons for surf aces. 

A sectioned object may be saved and then subjected to further surface—rendering 
operations such as, re—sectioning, hidden —line removal, or backface removal. 

Figure 36. Hidden-Line Rendering of Sectioned Object 

Although there is generally no immediate visual evidence that a capping polygon 
has been produced, capping polygons become a part of the definition of the 
sectioned solid, and further rendering can disclose their existence. For example, 
suppose that a solid and a surface are each sectioned vertically, yielding the two 
sectioned objects below. Assume that each object intersects with its sectioning 
plane at its two right—most faces. It is impossible to tell which object is capped. 
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lAsozs~ 
lAS0~9b 

Figure 3 ~. Sectioned Object With Capping Polygons 

However, hidden —line removal shows that the object on the left is a solid, while 
the object on the right is open at its right —most faces. 

fAS029~ 
IASU295 

Figure 38. Sectioned Object With After Hidden-Line Removal 
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Sectioning proceeds very rapidly (1-3 seconds); the display may blink briefly 
while it is being performed. 

Sectioned objects are also sliced along the planes of the viewing frustum. The 
sectioning plane must be encountered by the display processor prior to the 
rendering node. If a sectioning plane has not been found, the screen will blank 
for 15 seconds and an appropriate error message will be generated. 

Sending an integer of 2 to input < 1 > of the rendering node makes use of the 
established sectioning plane to create a sectioned rendering in the working 
storage area. 

Using the PS 340 CAT demonstration program, apply the sectioning operation to 
the objects available on the menu. 

Establishing 

a 

Sectioning 

Plane 

Defining, displaying, and positioning a sectioning plane are the first steps in 
producing a sectioned rendering of an object. Hidden-line removal and backface 
removal do not require sectioning planes, but they can be applied when a 
sectioned rendering is saved and subjected to further renderings. 

The SECTIONING PLANE command creates a sectioning-plane node which 
indicates that a descendant POLYGON is a sectioning plane. The syntax is: 

name := SECTIONING PLANE APPLIED TO name 1; 

where 

• name 1 names either (a} a POLYGON command or (b) an ancestor of a 
POLYGON command. 

• SECTIONING PLANE may be abbreviated SECT. 

The 

Sectioning 

Plane's Data 

Definition 

The data which actually def ine a sectioning plane are contained in a POLYGON 
node; SECTIONING_PLANE simply indicates that a given POLYGON represents a 
sectioning plane. 
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The sectioning plane is the plane in which a specified POLYGON lies. The 
polygon itself need not intersect the object to be sectioned, as long as some part 
of the plane does. 

The sectioning plane is the plane containing the polygon defined by the first 
POLYGON clause of the first polygon node encountered by the Display Processor 

as it traverses the branch beneath asectioning-plane node. 

If the polygon node has more than one POLYGON, only the first polygon 

determines the sectioning plane. The other polygons have no effect on 
sectioning operations, but are displayed along with the defining polygon. This 
can be put to use in designing an indicator which shows the side of the plane at 
which sectioning will remove (or preserve_) polygon data (below). For example, 

the command 

SPDATA :_ 
POLYGON -.9,-.9,0 -.9,.9,0 .9,.9,0 

POLYGON .1,0,0 .1,0,-.3 .15,0,-.3 
-.15,0,-.3 -.1,0,-.3 -.1,0,0 

POLYGON 0,.1,0 0,.1,-.3 0,.15,-.3 
0,-.15,-.3 0,-.1,-.3 0,-.1, 

.9,-.9,0 

0,0,-.45 

0,0,-.45 
0• 

defines a sectioning plane with two polygonal arrow-indicators as shown in 
Figure 39. 

X 

~' 

x 

z 
1 

Figure 39. Sectioning Pldne Definition 

ASO?_93 
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Sectioning preserves those parts of an object lying in front of the plane, and 
removes those parts lying in back of the plane. (The front side of a sectioning 
plane is the side on which you see the vertices of the plane's defining polygon 
running clockwise, where the vertices are considered in the order of their 
appearance in the POLYGON clause.) 

No SOLID RENDERING or SURFACE RENDERING operation node, whether 
below or above the sectioning-plane node, may be an ancestor of a sectioning 
plane's defining POLYGON. The PS 340 interprets such POLYGONs as objects 
to be rendered rather than as sectioning-plane definitions, and issues a 
"Sectioning plane not found" message when a sectioning attempt is made. 

(Wrong) 

1 
.~ 

SECTIONING-
PLANE i

SURFACE-
RENDERING 

1 

IAS0270 

(Wrong) (Right) 

SECTIONING-
PLANE 

~ ~►so27 ~ 

Figure 40. Data Structure of Sectioning Plane 

SURFACE 
RENDERING 

~Aso2~2 
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Other nodes nodes which do not represent matrix viewing transformations, such 
as SET RATE and SET PLOTTER, may be placed either above or below the 
sectioning-plane node as needed. 

Typically, you will want to orient the plane interactively, by connecting an 
interactive device via function networks. 

Sectioning-Plane Node Must Be Displayed before Rendering 

Before an object can be sectioned, the sectioning-plane node must be part of a 
structure which is DISPLAYed. If the plane's defining POLYGON is itself 
DISPLAYed but its sectioning-plane node is not, no renderings can be created. 

For example, if the command sequence 

A := SECTIONING_PLANE APPLIED TO B; 
B := POLYGON ... ; 

has been entered, the DISPLAY command should be DISPLAY A; and not 
DISPLAY B. 
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Cross Sectioning 

The cross sectioning operation makes use of a def fined sectioning plane to create 
a cross section of an abject. When this operation is used, both sides of the object 
are thrown away and only the slice of the object defined by the sectioning plane 
remains. Essentially, the object is sectioned and only the capping polygons 
remain. 

Original Object 
(Before Cross sectioning) 

Rendered Object 
(After Cross Sectioning) 

Figure 41. Solids Before and After Cross Sectioning 

Cross sections can only be created for solid rendering nodes. This operation 
proceeds very rapidly (1-3 seconds), in which time the display blanks 
momentarily while the object is being sectioned. The cross-section is also 
clipped by the planes of the viewing frustum. 
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Sending an integer of 1 to Input < 1 > of the rendering node creates a cross section 
in the working storage area. 

Exercise 

Use the PS 340 CAT demonstration program to experiment with the Cross 
Sectioning operation, or send the integer 1 to the rendering node of a polygon 

object you have created. 

Toggle Between the Rendering Object and the Original Object 

It is often useful to compare objects before and after rendering operations have 
been applied. The TOGGLE operation allows you to do this. Sending a 0 to input 
< 1 > of the rendering node toggles the display between the rendering and the 
original object. Both the rendering and the original object are left intact and 
can be redisplayed until overwritten or saved. 

Setting the View 

Sending a false to input < 1 > of the rendering operation node causes the original 
descendent structure of the SOLID RENDERING or SURFACE RENDERING node 
to be displayed (sets the view to the original structure). The rendered view is 
not affected, other than being removed from the display. The rendered view can 
be restored and displayed again by sending true or f ix(0) to the rendering 
operation node. 

Sending a true causes the rendered view (if any) to be displayed instead of the 
original descendent structure of the rendering operation node (sets the view to 
the rendered view). The original view remains intact, apart from being removed 
from display. 
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Changing the Definition of the Object 

Sending a Boolean to input <2> of the rendering node controls whether the 
descendant polygons are to be treated as a solid or a surface, enabling a solid 
rendering node to be converted to a surface rendering node and vice versa. True 
sent to input <2> defines the node as aSOLID-RENDERING node whatever the 
original state was. False defines the node as a SURFACE RENDERING node. 
The default is determined by the word SOLID or SURFACE in the original 
command that created the node. 
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SAVING AND COMPOUNDING RENDERINGS 

To save a rendering is to give it a name by which it can be referenced. 

Requesting and displaying a rendering creates rendering data, but does not 
create a "node" i~~ the normal sense. It cannot be referenced nor subjected to 
further rendering operations until it is "saved" by naming it. Saving the 
rendering, which establishes a rendering as a separate named data node, is 
therefore a prerequisite to compounded renderings, or further renderings of 
the rendered object. 

After a rendering is saved, it is no longer considered a "current" rendering. 
Therefore, the toggle operation (Booleans anal a fix(0) sent to the rendering node) 
no longer affect the rendering. 

How to Save a Rendering 

To save a rendering, send a string message to input < 1 > of the 
SOLID_RENDERING or SURFACE_RENDERING operation node. All illegal 
PS 300 names are rejected and an error message is generated. 

The string should specify the name of the node which is to contain the 
saved-rendering data. If the named node does not exist, it is created; if it does 
exist, the saved-rendering data replace the original contents of the node. 

All polygons in the rendering are taken into account in the saved rendering. It is 
not possible to exclude selected polygons or polygon data nodes from saved 
renderings. 

Contents of a Saved Rendering 

Backface removal and sectioned renderings are saved as polygon lists; 
hidden-line renderings are saved as vector lists. 

When a sectioned rendering is saved, all transformations between the rendering 
operation node and the polygon data node are applied to the polygon data. The 
result is stored in the new data node. 
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When a backface or hidden-line rendering is saved, aII ancestor 
transformations of the polt~gon data node are applied to the polygon data 
before the result is stored in the new node. This occurs even if those 
transformations are above the rendering operation node. 

Common Uses of Saved Renderings 

The most common reason for saving a rendering is to create a compound 
rendering from it. 

Common types of compound renderings are: (a) re-sectioning of a sectioned 
rendering and fib) hidden-line removal applied to a sectioned rendering. Backface 
renderings, which are useful mainly for previewing time-consuming hidden-line 
operations on complex objects, are not generally rendered further. Hidden-line 
renderings cannot be rendered further because they are vector lists, and only 
polygons can be rendered. (The example at the end of this module gives a 
program which can be used to create compounded renderings.) 

Saved renderings are also useful when multiple hidden-line renderings of the 
same object, seen from different viewpoints, are to be displayed in separate 
viewports. A sectioned rendering can be viewed from multiple viewpoints 
without saving, but a hidden-line rendering is a vector list which loses its 
hidden-line character when the viewpoint shifts. Therefore, a separate 
hidden-line rendering must be saved for each view to be displayed. 

Displaying a Saved Rendering 

When displaying a saved rendering, the rendering already incorporates some or 
all of the transformations which existed in the data structure at the time the 
rendering was requested. 



66 -RENDERING OPERATIONS 

Displaying Saved Sectioned Renderings 

Since sectioned renderings already incorporate the transformations which existed 
between the rendering operation node and the original polygon data node, the 
appropriate place to attach a saved sectioned rendering is either: 

• at the same level as the rendering operate node, OR 

• just below the rendering operate node (without intervening transformations). 

Attaching the saved rendering further down than this (for example, at the same 
level as the original polygon data node) causes a misleading display. Any 
transformations lying between the rendering operation node and the saved 
rendering will actually be applied twice. This will be applied once explicitly in 

the data structure, and once implicitly in the saved-rendering data. 

Attaching the saved rendering above the rendering operation node may also 
cause a misleading display. This excludes some of the viewing (or other) 
transformations globally applied to the original data. 

It is not necessary to attach a saved rendering anywhere in the existing 
structure. The rendering can be saved in a node apart from this hierarchy. Any 
desired new transformations can then be applied to it. The program example at 
the end of this module illustrates this guideline. 

Displaying Saved Backface and Hidden-dine Renderings 

Backface and hidden-line renderings incorporate all of the transformations which 
are applied to the original data node. Saved Backface and hidden-line renderings 
should be attached beneath the following matrix for proper display: 

MATRIX_4X4 1,0,0,0 
0,1,0,0 
0,0,0,0 
0,0,1,1 ; 
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No other transformations should be applied to the saved rendering. To include other 
transformations is to raise the double—transformation problem discussed above for 
saved sectioned renderings. The saved rendering and its matrix should be either (1) 
attached at the very top of the existing display data structure (as shown in the 
programming example at the end of this module) or (2) separated from that 
structure altogether. 

The purpose of the special MATRIX_4X4, is to display the object without Z—values 
and perspective. 

Exercise 

Use the PS 340 CAT demonstration program or define an object of your own, apply a 
rendering operation, and save the rendering. 



68 -RENDERING OPERATIONS. 

DISPLAYING SHADED IMAGES 

The PS 340 optional raster system consists of a printed circuit card that outputs 

static images to a pixel raster display. The raster system can be used as an 

"image buffer" to display host-generated images or it can display "shaded 

images" derived locally from PS 340 polygonal models. 

When using the raster display as an image or frame buffer, the PS 340 is only 

used as a communications link between the host and the raster system. Nq 

standard PS 340 commands or data structures are used to display host generated 
images. 

This module deals only with displaying shaded images derived locally from PS 340 
polygonal models. Run-length encoding, the process of displaying host generated 
images, is documented in The PS 340 Raster Programmer Guide. 

Requesting a shaded image computed locally on the PS 340 and displaying it on 

the raster monitor requires that an integer be sent to the rendering node input of 

the data structure. When a shaded image is requested, the hidden-line view of 

the object is displayed concurrently on the calligraphic display. 

Because the refresh processor is used to generate the raster image, the 
calligraphic hidden-line image may flicker or disappear entirely while shaded 
renderings are created. 

There are three types of shaded renderings: wash shading, flat shading and 
smooth shading. 

Wash shading (area fill) generates a shaded image of the raster image buffer 
concurrent to the generation of the hidden-line picture. In wash shading, the 
color of each polygon is determined from the color given in the attribute node 
corresponding to the polygon. All normals, light sources, other lighting 
parameters, and depth cueing parameters are ignored. Sending the integer 5 to 
input < 1 > of the rendering node creates awash-shaded object and displays it on 
the raster screen. 

Flat shading generates a flat shaded image on the raster image , buffer 
concurrent to the generation of the hidden-line picture. The process considers 
color, one light source, and the depth cueing parameter and shades the polygons 
accordingly. 
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A polygon's color is affected by its orientation as well as the color and direction 
of the light source, If specified in the polygon data definition, vertex normals 
and the diffuse and specular highlight specifications are ignored. Sending the 
integer 6 to input < 1 > of the rendering operation node displays the object with 
flat shading. 

Smooth shading generates a smooth-shaded image on the image buffer while 
the hidden-line rendering is being created and displayed on the calligraphic 
monitor. Smooth shading varies the color of the polygon across its surface 
combined with the normals at the polygon's vertices, the color and direction of 
various active light sources, the polygons' attributes, and the depth cueing 
parameters. Sending the integer 7 to input < 1 > of the rendering operation node 
displays a smooth shaded object. 

Specifying Attributes 

In the section "Defining Polygonal Objects," you were introduced to the WITH 
ATTRIBUTES option. Attributes are applied to a collection of polygons by 
specifying the name of the attribute node after WITH ATTRIBUTES in the 
POLYGON command. If the WITH ATTRIBUTES option is not used in the 
POLYGON clause, the default attributes 0,0,1 for color, 0.75 for diffuse, and 0 
for specular are assumed. 

Using the ATTRIBUTES Command 

The ATTRIBUTES command specifies the various characteristics of polygons 
used in the creation of shaded renderings. Attribute nodes are created with the 
ATTRIBUTES command and exist in mass memory (not as part of the data 
structure). The ATTRIBUTES command creates a named attribute node in mass 
memory that defines specific attributes to be applied to data when this node is 
referenced by the object's data structure. 

When the display processor traverses the data structure with a polygon node 
containing a WITH ATTRIBUTES name 1, the attributes in name 1 are assigned to 
all polygons in the node until superseded with another WITH ATTRIBUTES 
clause. The various attributes may be changed from a function network via 
inputs to an attribute node or by reassigning the name, but the changes have no 
affect until a new rendering is created. No type checking is done by the shading 
process to ensure that WITH ATTRIBUTES indeed refers to an attribute node and 
not some other entity. If it does refer to some other entity, the display 
processor will interpret any values in that node as attributes, and display the 
object incorrectly. 
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Given: 

<attr> :_ [ Color h [ ,s [ ,i ]) 
[ Diffuse d] 
[ Specular s 

The ATTRIBUTES command is: 

Name := ATTRIBUTES <attr> [AND <attr> ] ; 

Meaning: 

Color 

The color attribute sets the basic color for the surface of a polygon. This 
attribute pertains only to shaded renderings on the raster display--it has no 
effect on the color of a polygon's edges on the calligraphic display. (These are 
changed using the WITH OUTLINE clause in the POLYGON command.) Color is 
given as hue (h), saturation (s), and intensity (i) and will change according to such 
things as shading style, light sources, orientation, depth cueing, ambient lighting, 
and highlights. 

Hue specifies degrees around the color circle with 0 being pure blue, 120 pure 
red, and 240 pure green. Saturation varies from 0 for no saturation (grays) to 1 
for full saturation. Intensity varies from 0 for no intensity (black) to 1 for full 
intensity. 

If no color is specified, the default is white (s=0, i=1). If not specified, 
saturation and intensity default to 1. If only hue and saturation are specified, 
intensity defaults to 1. Values greater than 1 or less than 0 for saturation or 
intensity will become 1 or 0. Hue and saturation correspond to hue and 
saturation in the SET COLOR command but have greater precision. Remember 
that the color applies only to the shaded image; the color of the vector image 
displayed on the CSM color screen is set using the WITH OUTLINE clause of the 
POLYGON command. 
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Diffuse 

Diffuse specifies the proportion of color contributed by diffuse reflection versus 
that contributed by specular reflection. Increasing d reduces the intensity of 
specular highlights, making the surface more matte; decreasing d makes the 
surface more shiney with a value of 1 eliminating specular highlights entirely. 
Values larger than 1 or less than 0 will be changed to 1 or 0. If no diffuse 
attribute is given, it defaults to 0.75. The diffuse attribute only affects 
smooth-shaded renderings. 

Specular 

The specular attribute adjusts the concentration of specular highlights, with 
increasing values of s increasing their concentration. Specular is a property of 
the object so the size of the highlight spot is not influenced by the light source, 
only by the s value. The more metallic the object is, the more concentrated 
the specular highlights. In the real world, objects are never completely specular 
(or diffuse) so you will get artificial effects if you have these values at a 
maximum. 

Acceptable values of s are integers between 0 and 10, with values outside that 
rounded to 0 or 10 and a default of 4. As with diffuse, the specular attribute 
only affects smooth-shaded renderings. 

And 

A second set of attributes may be given after the word AND in the ATTRIBUTES 
command which apply to the obverse side of the polygons) concerned; in other 
words, the two sides of an object may have different attributes. The polygons 
considered on the obverse (backfacing) side by the system are those seen in a 
counterclockwise order for the view in which the rendering is carried out. The 
second set of attributes will only be applied in surf ace renderings (not solid). 

The attributes defined for the first < attr> specify attributes for front-facing 
polygons. The <attr> after the AND specify the attributes of backfacing 
polygons. 
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You are not required to include the AND <attri> to specify different attributes 

for backfacing polygons. The command syntax for specifying just one set of 

polygons is: 

Name := ATTRIBUTES <attr> ; 

If the WITH ATTRIBUTES clause in a structure refers to an attribute node with 

two sets of attributes and no backfacing polygons exist for that object, the 

second set is ignored. 

In the following example, an attribute node is crated that defines the object to 

be blue. Since only the hue is specified for the color parameter, the default 

values for saturation and intensity (s=1, i=1) are assumed. The defaults for 

diffuse and specular (d=.75, s=0) are also assumed. 

Blue := ATTRIBUTES COLOR 120; 
Object := WITH ATTRIBUTES Blue 

POLYGON 

POLYGON ; 

All the polygons in the object are blue since the attribute clause assigns the 

attributes defined by Blue for all polygons until superseded by another WITH 
ATTRIBUTES clause. 

In the following example, the <attri> before AND specify attributes for 

front-facing polygons in the object and the < attri > after AND specify the 

attributes for all backfacing polygons. 

Red Green:= ATTRIBUTES COLOR 120,.5,.75 DIFFUSE .25 SPECULAR 1 
AND COLOR 240,1,.25; 

Object := WITH ATTRIBUTES Red_Green 
POLYGON 

POLYGON ; 

All front-facing polygons are colored red with .5 saturation and .75 intensity. 
The value for diffuse is .25 and the value for specular is 1. All backfacing 
polygons are green with 0 saturation and .25 intensity. Since no values for 
specular or diffuse are given in the second set of attributes, the defaults are 
assumed. 
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The following object definition specifies attributes for display on the raster 
screen and also specifies the color of the polygon's edges (using the WITH 
OUTLINE clause) for display on the color calligraphic display. 

Pastel Blue := ATTRIBUTES COLOR 3,.5,1 DIFFUSE .75 SPECULAR 5; 
Object := WITH ATTRIBUTES Pastel_Blue Outline 0 

POLYGON 

POLYGON ; 

In this example, the shaded polygons on the raster display would be blue, with 
full saturation and .5 intensity. The specular value is .75 and the diffuse value is 
5. The edges of the polygons are blue (Outline 0) when displayed on the CSM 
display. 

Attribute Node Inputs 

Inputs to the attribute node are as follows: 

< 1 > accepts a real number as hue, a 2D vector as hue and saturation, or a 3D 
vector as hue, saturation, and intensity to specify COLOR for the front of the 
appropriate polygons) or both sides if no obverse attributes are given. 

< 2 > accepts a real number as DIFFUSE 

< 3 > accepts an integer as SPECULAR 

<4>....< 10> are undefined 

< 1 1 >, < 12>, and < 13> correspond to < 1 >, <2>, and <3> but affect the obverse 
attributes if they exist. 

If you send to input < 1 > or input < 1 1 > changing only the hue, the saturation and 
intensity return to the default values of s=1 and i=1. You cannot change just one 
value and keep the remaining values as they were before you made the change. 
Essentially, if you do not send a 3D vector, default values for the missing 
variables will be assumed. 
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For example, with the data definition 

Dim Red := ATTRIBUTES COLOR 130,1,.5 DIFFUSE .75 SPECULAR 8; 
Object := WITH ATTRIBUTES Dim_Red 

POLYGON 

POLYGON; 

If you sent 200 to input < 1 > of Dim_Red the resulting color parameter in the 
attribute node would be 200,1, 1. To keep the saturation and intensity the same 

and change only the hue, you would send 200,1,.5 to input < 1 > of Dim_Red. This 

is the same if you want to change hue, saturation or intensity individually by 
sending a -new value to the attribute node. 

After changing the values in the attribute node, the changes will not be reflected 
until another rendering is requested. 

Specifying Light Sources 

Lights sources are specified with the ILLUMINATION command which creates_ 
"illumination nodes." Illumination nodes may be placed anywhere in the 
structure, allowing lights to be stationary or to rotate with the object or both. 
Illumination nodes are ignored during the calligraphic refresh and only those 
illumination nodes occurring in the descendent structure of a triggered solid- or 

surface-rendering operation node have any affect in shaded renderings. An 
unlimited number of light sources are valid for smooth-shaded renderings, but 
only the last illumination node encountered is used in creating flat-shaded 
renderings. Light sources are not used in wash-shaded (area-filled) images. 

All light sources are presumed to be an infinite distance from the object; 
however, you can specify the direction at which they hit the object. This 
direction is multiplied by the current rotation matrix to determine the direction 
to the light in image space. If, after transformation, the light source appears to 
originate from behind the object, it will cause the whole object to be 
unilluminated (appear black), except, perhaps "glancing" specular highlights near 
the silhouette. 

If no ILLUMINATION commands are given, a default white light at (0,0,-1) with 
an ambient proportion of 1.0 is assumed. If not specified, intensity and saturation 
default to 1. If only hue and saturation are specified, intensity defaults to 1. 
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Syntax: 

[ name :_ ] ILLUMINATION x,y,z [ COLOR h [ ,s [ ,i ] ] ] [ AMBIENT a ] ; 

where 

x,y,z is a vector from the origin pointing toward the light source. 

COLOR specifies the color of the light source by defining hue, saturation, and 
intensity. Color is specified identical to COLOR in -the ATTRIBUTES command; 
the defaults are also the same. 

AMBIENT controls the contribution of a light source to the ambient light. The 
net ambient lighting is determined by taking the sum of the products of the color 
and ambient proportion of each active light, dividing b,y the total number of 
active lights and then combining the result with the ambient input of the 
SHADINGENVIRONMENT function Cin the next section). AMBIENT is defined by 
a real number between 0 and 1. Increasing a for one light increases its 
contribution to ambient light. Values outside this range are changed to 0 or 1. 
The default value for a is 1.0. 

Changing the values of the SHADINGENVIRONMENT (explained in the next 
section) allows you to increase or decrease the intensity and color of the ambient 
light without the need to change each light source. 

Whatever the values, if all active light sources have the same specified 
proportion, then all lights will contribute equally to the ambient light. 
Decreasing a for one light decreases its contribution to ambient light. Ualues 
outside this range are changed to 0 or 1. The default value is 1. 

In the following example, the ILLUMINATION command 

Light := ILLUMINATION 1,1,-1 COLOR 180; 

creates a node which defines a yellow light over the right shoulder. Since 
saturation and intensity are not specified, the defaults s=1 and i=1 are assumed. 
A default of 1.0 for the ambient proportion is also assumed. 

Since the illumination node occurs in the data structure (unlike the attribute 
node which exists alone in mass memory), it is not explicitly referenced by the 
polygon data node. 
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The hierarchy with an illumination node is shown in Figure 42. 

L 

Window, Viewport, 
Other 4x4 Matrix 
Transforr~ati on Nodes 

Rotate, Translate, 
Scale Nodes 

Solid Rendering 
Node 

Illumination 
Node 

Polygon Data Node 

IASU~~Ia 

Figure 4Z. Hierarchy With Illumination Node 

The illumination node must be under the rendering node in the display structure 
of the object. 

Following is an example of how to use ILLUMINATION nodes. There are two 
lights in the example: SUNLIGHT, which can be rotated independently of the 
object, and MOONLIGHT, which rotates with the object. To achieve this: 

1. Both lights are underneath the rendering node in the structure. 

2. Placing the ILLUMINATION nodes underneath the rendering node implies that 
they will have the object's transformations also applied to them. This is what 
happens for MOON (sending a rotation to MOON.ROT will concatenate with 
the object's transformations). 

3. This is not desired for the sun, so a FIELD_OF_VIEW (FOU) is inserted before 
the illumination node of SUN. This causes a rotation matrix sent to 
SUN.ROT to be the only matrix applied to SUNLIGHT. 
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4. Inserting a 4D matrix (caused by the FOV) underneath a rendering node is not 
recommended. To avoid any problems, the 4D matrix defined by SUN.PERSP 
is identical to the 4D matrix defined by WORLD.PERSP and any change made 
to one (e.g., by a function network) should be made to both. Failure to follow 
this suggestion may result in bad renderings. 

Sun :_ BEGIN STRUCTURE {a light which can be rotated independently} 
Persp := FOV 90 FRONT=2.2 BACK=3.6; 
LOOK AT 0,0,0 FROM 0,0,-3; 
Rot := SCALE BY 1; 
Light := ILLUMINATION 0,0,-1; 
END_STRUCTURE; 

Moon := BEGIN STRUCTURE {a light which rotates with the object} 
Rot := SCALE BY l; 
Light := ILLUMINATION 0,0,-1; 
END_STRUCTURE; 

World := BEGIN STRUCTURE 
Persp := FOV 45 FRONT=2.2 BACK=3.6; 
LOOK AT 0,0,0 FROM 0,0,-3; 
viewport horizontal=-1: l vertical=- l : l intensity= l :0; 
SET DEPTH CLIPPING ON; 
Trans := TRANSLATE BY 0,0,0; 
Rot := SCALE BY l; 
Rendering := SURFACE_RENDERING; {rendering node} 
instance object, Moon, Sun; 
END_STRUCTURE; 

DISPLAY World; 

Illumination Node Inputs 

Inputs to the illumination node are: 

< 1 > accepts a 3D vector as direction 

<2> accepts a real number as hue, a 2D vector as hue and saturation, and a 3D 
vector as hue, saturation, and intensity. 

< 3 > accepts a real number as the ambient proportion 

Like the attribute node, if you send a real number to input < 2 > to change only 
the hue, the saturation and intensity return to the default values of s=1 and i=1. 
You cannot change just one value and keep the remaining values as they were 
before you made the change. If you do not send a 3D vector, the defaults for the 
variables not specified are assumed. 
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The SHADINGENVIRONMENT Function 

An Initial Function Instance, called SHADINGENiIIRONMENT, allows you to 
control various non-dynamic factors of shaded renderings displayed on the raster 
screen. Sending values to the SHADINGENVIRONMENT function generally sets 
a parameter for the next requested shaded rendering rather than taking 
immediate effect. Note that SH~IDINGENVIRON1~iENT is different from other 
Ps 340 functions in that any input wiZ1 activate the function 

independent of the other inputs. SHADINGENVIRONMENT is like seven 
separate functions each with one input, but bundled together. 

SHADINGENVIRONMENT 

Real/Vector ---> <1> 

Real/Vector ---> <2> 

Vector  > <3> 
, ~ 

Real  ~=~---> <4~ 

Integer  ~ <5> 

Real  > <6~ 

Boolean  > <7~ 

<1~ > connected to the 
shading process 

The inputs to the SHADINGENI/IRONMENT function are as follows: 

Ambient Color 

< 1 > accepts a real number as hue, a 2D vector as hue and saturat-ion, and a 3D 
vector as hue, saturation, and intensity, to specify the ambient color. Refer to 
the COLOR parameter of the ATTRIBUTES command for the meaning of the 
values. The ambient color is combined with the result obtained from the light 
sources to determine the color of ambient light. The default ambient color is 
white, with a default intensity of .25. The ambient color is analagous to the 
color reflected of f a wall. 
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Background Color 

<2> accepts a real number as hue, a 2D vector as hue and saturation, and or a 3D 
vector as hue, saturation, and intensity to specify the background color. Refer 
to the COLOR parameter of the ATTRIBUTES command for the meaning of the 
values. The raster screen will be colored with the background color prior to any 
shaded rendering. The default background color is black (0,0,0). 

Raster Viewport 

<3> accepts a 3D vector as the viewport on the raster image buffer where shaded 
renderings will be displayed. Raster viewports are always square, the lower left 
corner being given by the X and Y coordinates of the vector, and its size given 
by the Z coordinate, such that the upper right corner is at (.x+z,y+z). Values are 
rounded to the nearest pixel. The default viewport is (80,0,480). The viewport is 
not intended for magnification of small parts of the calligraphic ir~~age, but for 
mapping the square vector display onto the rectangular raster display. 

The viewport is also intended to allow multiple images to be generated side by 
side on the raster display. Thus, the largest recommended value for the viewport 
is (0,-80,640). The actual largest viewport is somewhat larger and depends on 

combinations of the three values. The image is clipped to the physical raster for 
which 0 < X < 640 and 0 < Y < 480. 

Exposure 

<4> accepts a real number as the exposure, controlling the overall brightness of 

the picture. The exposure is like that on a camera. If a picture is taken of an 

object with a very bright specular highlight, it may be so bright that the rest of 

the object is darkened. If three light sources exist, the object would be about 
three times brighter, making the object too bright. The exposure should be 
brought down to control this. 

The exposure is r~ultiplied by the intensity at each pixel and the result clipped to 
the maximum intensity. This enables the overall brightness of a rendering to be 
increased without causing bright spots to exceed maximum intensity (instead 
forming "plateaus" of maximum intensity). Note that this may cause changes in 

color on a plateau, where color has reached its maximum, but the others have 

not. Exposure values may vary between .3 and 3, values outside that range being 

changed to .3 or 3. The default exposure is 1. 



80 —RENDERING OPERATIONS 

Quality Level 

< 5 > accepts an integer as quality level. The quality controls the number of 
pixels over which filtering applied. Jagged edges are characteristic of a raster 
display, so the fuzzier the edges, the better quality the picture. Values of 1, 3, 
5, and. 7 are allowed, meaning that the effect of coloring a pixel will be spread 
over a square of pixels with that number on a side, centered on the colored 
pixel. Because of anti—aliasing, pictures are good at quality 1. (The default 
value 1 is the typical choice.) Values of 3, 5, and 7 produce better quality 
renderings in terms of anti—aliasing but are time—consuming to process. 

Depth Cueing 

<6> accepts a real number in the range of 0 to 1 to control depth cueing in the 
shaded image (0 specifying no depth cueing and 1 specifying maximum depth 
cueing). As perceived depth from the viewer increases, the intensity of the 
colors decreases from maximum (1) at the nearest point to the given proportion 
of maximum at the farthest. Thus 0 gives a ramp ending in black at the back 
clipping plane, while 1 turns off the effect of depth cueing. The default is 0.2 
giving a fairly large depth cueing effect. 

Screen Wash 

<7> accepts a Boolean, and is the only input to cause a visual effect 
immediately. True causes the whole physical raster screen to be filled with the 
current background color, while false just fills the currently defined viewport 
(clipped to the screen). 
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NOTE 

If values are sent to the SHADINGENVIRONMENT function 
and your PS 340 is not configured with a raster system, an 
error message is issued. If values are again sent to the 
SHADINGENVIRONMENT function and no raster system 
exists, the function will destroy itself. 
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SUMMARY 

The POLYGON command defines collections of polygons from which renderings 
can be created. This is adata-definition command that creates a polygon data 
node in the object's data structure. 

Objects defined as polygons are the only objects that are eligible for rendering 
operations. 

Rendering operations for vector displays can obtain a cross section of a displayed 
object, section an object relative to a sectioning plane, remove hidden line 
segments, and create shaded images of the object on a color raster screen. 

Rendering operations for raster displays are flat shading, wash shading, and 
smooth shading. 

Polygonal objects must be defined correctly to produce correct renderings. 

POLYGON Command Syntax 

Given, 
<vertex> :_ [ S J x,y,z [ N x,y,z ] 
<polygon> :_ [WITH [ATTRIBUTES name2] [OUTLINE h]] 

POLYGON [COPLANAR] <vertex> ... <vertex> 

The polygon command is: 

[ Name :_ ] < Polygon > < Polygon > . . . < Polygon > ; 

where: 

• A vertex definition has the form [5] x,y,z [N x,y,z] 

where 

- S indicates that the edge drawn between the previous vertex and this one 
represents a sof t edge of the polygon. If the S specifier is used for the 
first vertex in a polygon definition, the edge connecting the last vertex 
with the first is soft. 
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— N indicates a normal to the surface with each vertex of the polygon. 
Normals are used only in smooth —shaded renderings. Normals must be 
specified for all vertices of a polygon or for none of the vertices of a 
polygon. Normals do not need to be present for all polygons in the object. 
If no normals are given for a polygon, they are defaulted to the same as the 
plane equation for the polygon. 

— x, y, and z are coordinates in aleft—handed Cartesian system. 

• WITH ATTRIBUTES is an option that assigns the attributes defined by the 
ATTRIBUTES command for all polygons until superseded by another WITH 
ATTRIBUTES clause. 

• WITH OUTLINE is an option that specifies the color of the edges of a polygon 
on the color CSM display, or their intensity on a black and white display. A 
SET COLOR BLENDING node must be in the data structure to use this option. 

• COPLANAR declares that the specified polygon and the one immediately 
preceding it has the same plane equation. 

Defining Polygonal Objects 

There is no syntactical limit on the number of polygon clauses in the group. 
POLYGON may be abbreviated POLYG. 

Polygons are implicitly closed. The first vertex should not be repeated when 
def fining a polygon. 

No more than 250 vertices per polygon may be specified and no less than three. 

The vertices of a polygon must be coplanar. Its plane equation is determined 
from any three non—colinear vertices. 

Concave polygons are acceptable. Degenerate polygons and polygons that 
intersect themselves or others are not acceptable. No specific checks are made 
for these conditions. 

Polygons are not pickable and polygon nodes have no inputs from which they can 
be modified with function networks. 
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Constructing Surf aces and Solids 

Surfaces and solids can be defined. Solids enclose a volume of space, while 
surfaces do not. 

In a solid, every edge of every polygon must coincide with the edge of a 
neighboring polygon. 

For surfaces and solids, polygons are defined by listing their vertices in a 
clockwise order in the polygon clause. 

In a solid, the common edge where two polygons join must run in opposite 
directions. This arrangement is essential to produce correct renderings. The 
system does not check for this condition. 

A solid cannot contain three or more polygons which have a single edge is 
common, although surfaces may. 

The SURFACE RENDERING and SOLID RENDERING commands determine the 
nature of a polygonal object. 

Using the COPLANAR Option 

Inner contours may be defined to create objects with holes or protrusions. 

Vertices of inner contours must be listed in the opposite direction to the 
corresponding outer contour. 

An inner contour should not be defined unless it is coplanar with some 
surrounding outer contour. 

All members of a set of consecutive COPLANAR polygons are taken to have the 
same plane equation, that of the previous polygon not containing the 
COPLANAR option. 

If COPLANAR is specified for the first polygon in a polygon list, it has no effect. 
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Using the Oolor Option (for Vector Displays) 

Color for polygons displayed on the CSM monitor or intensity on the monochror~ne 

display are specified with the WITH OUTLINE h clause where h=0 or 

1 <h< 360 for color, and 0 < h < 1 for intensity. 

To use the WITH OUTLINE clause to specify color, you must use the SET COLOR 

BLENDING command to create a node in the structure. 

Color and intensity are specified for complete polygons, not individual edges. If 

you specify white polygons to be displayed on the CSM, all polygons must be 

white. 

Using the Soft Edge Option (for Vector Displays) 

The S specif ier before a set of X,Y,Z coordinates indicates that the edge drawn 

between the previous vertex and this one represent a sof t edge of the polygon. 

Soft edges, declared with the S specifier in the polygon clause are invisible in 

hidden —line renderings except when they make up part of an object's profile. 

Soft edges are positions in the original object. 

If either edge of a common —edged pair is declared soft, the entire edge is 

considered soft. 

Memory Usage 

The rendering process requires that a contiguous block of mass memory be 
available as working storage. This memory must be explicitly reserved with the 
command RESERI/E WORKING STORAGE n, where the current working 

storage is replaced with another containing at least n bytes. If n is less than 

or equal to 0 or there is insufficient memory to allocate a new block, the current 
working storage is disposed and no new block is allocated. 
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The best time to reserve working storage is immediately after booting; typically, 
you should reserve 200,000 to 400,000 bytes of working storage when you begin a 
session. 

Working storage is not freed by the INITIALIZATION command. 

in addition to the working storage space, extra mass memory is needed to create 
hidden-line renderings. This memory is referred to as transient memory and is 
automatically allocated and deallocated by the system. 

Declaring the Object a Solid or a Surface 

Syntaxes for the rendering commands are: 

name := SOLID RENDERING APPLIED TO name 1; 

name := SURFACE RENDERING APPLIED TO name l; 

where 

• name 1 names either (a) a POLYGON node, or (b) an ancestor of one or more 
POLYGON nodes. 

• If (b) is the case, any rendering referring to name is performed on all of the 
POLYGON objects descended from name 1 at once. 

Only polygons nodes are used in renderings. Vector and character nodes 
occurring beneath a rendering node are ignored by the rendering operations. 

Transformation nodes are lost in the rendering, but their effect is incorporated 
into the data nodes. 

Rendering Node Connections 

Rendering nodes have two inputs. Input < 1 > accepts an integer, a Boolean, or a 
string designating the rendering operation to be performed. 
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Input <2> accepts a Boolean to change the object definition from a surface to a 
solid or vice versa. 

Rendering nodes also have an output which outputs a true if the rendering is 
displayed and a false if it is not displayed. You can connect this output via the 
CONNECT command to trigger some other action that was waiting on 
completion of the rendering process. 

Rendering Node Inputs 

Acceptable values for input < 1 > are 

0: Toggles between the current rendering and the original object. 
l: Creates and displays across—section of an object defined by the sectioning 

plane (solids only). 
2: Creates and displays a sectioned rendering. 
3: Creates and displays a rendering using backface removal (solids only). 
4: Creates and displays a rendering using hidden —line removal. 
5: Generates awash —shaded image on the raster display. 
6: Generates aflat—shaded image on the raster display. 
7: Generates asmooth—shaded image on the raster display. 

String: Causes the current rendering to be saved under the name given in the 
string. 

False: Sets the original view. The original descendant structure of the 
rendering operation node is displayed. 

True: Sets the rendered view. The rendered view of the original descendent 
structure of the rendering operation node. 

Acceptable values for input <2> are 

True: Declares the object to be a solid. 
False: Declares the object to be a surface. 
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Establishing a Sectioning Plane 

The SECTIONING PLANE command creates a sectioning-plane node which 

indicates that a descendant POLYGON is a sectioning plane. The syntax is: 

name := SECTIONING PLANE APPLIED TO name 1; 

where 

• name 1 names either (_a) a POLYGON command or (b) an ancestor of a 
POLYGON command. 

• SECTIONING PLANE may be abbreviated SECT. 

The Sectioning Plane's Data Definition 

The sectioning plane is the plane containing the polygon defined by the first 

POLYGON clause of the first polygon node encountered by the Display Processor 

as it traverses the branch beneath asectioning-plane node. 

The sectioning plane is the plane in which a specified POLYGON lies. The 
polygon itself need not intersect the object to be sectioned, as long as some part 

of the plane does. 

No SOLID RENDERING or SURFACE RENDERING operation node, whether 

below or above the sectioning-plane node, may be an ancestor of a sectioning 

plane's defining POLYGON. The PS 340 interprets such polygons as objects to be 

rendered rather than as sectioning-plane definitions, and issues a "Sectioning 

plane not found" message when a sectioning attempt is made. 

Saving a Rendering 

A rendering is saved by a string sent to input < 1 > of the SOLID_RENDERING or 

SURFACE RENDERING operation node. The string should specify the name of 

the node which is to contain the saved-rendering data. If the named node sloes 

not exist, it is created; if it does exist, the saved-rendering data replaces the 

original contents of the node. 
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All polygons in the rendering are taken into account in the saved rendering. It is 
not possible to exclude selected polygons or polygon data nodes from saved 
renderings. 

Specifying Color and Highlight$ for Raster Displays 

Specifying color, specular, and diffuse highlights, (called attributes) of a polygon 
for display on the raster screen, is done via the WITH ATTRIBUTES clause of the 
POLYGON command. 

Given the polygon syntax: 

[ name :_ ] <polygon> <polygon> 

the attributes option is, 

<polygon> := 

< polygon > ; 

[WITH [ATTRIBUTES name2] [OUTLINE h]] polygon 
<vertex>...<vertex> 

The ATTRIBUTES Command 

Given: 

<attr> :_ [ Color h [ ,s [ ,i ] ] ] 
[ Diffuse d] 
[ Specular s ] 

The ATTRIBUTES command is: 

Name := ATTRIBUTES <attr> [AND <attr> ] ; 

meaning: 

Color 

Hue (h) specifies degrees around the color circle with 0 being pure blue, 120 pure 
red, and 240 pure green. Saturation (s) varies from 0 f or no saturation (grays) to 
1 for full saturation. Intensity (i) varies from 0 for no intensity (black) to 1 for 
full intensity. 
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If no color is specified, the default is white (s=0, i=1). If not specified, 
saturation and intensity default to 1. 

Diffuse 

Diffuse specifies the proportion of color contributed by diffuse reflection versus 
that contributed by specular reflection. Increasing d reduces the intensity of 
specular highlights, making the surface more matte; decreasing the intensity of 
specular highlights makes the surface more shiny with a value of 1 eliminating 
specular highlights entirely. 

Values larger than 1 or less than 0 will be changed to 1 or 0. If no diffuse 
attribute is given, it defaults to 0.75. 

The diffuse attribute only affects smooth —shaded renderings. 

Specular 

The specular attribute adjusts the concentration of specular highlights, with 
increasing values of s increasing their concentration. 

Acceptable values of s are integers between 0 and 10. As with diffuse, the 
specular attribute only affects smooth —shaded renderings. 

And 

The attributes defined for the first <attr> specify attributes for front —facing 
polygons. The <attr> after the AND specify the attributes of backfacing 
polygons (applicable to surfaces only). 

Attribute Node Inputs 

Inputs to the attribute node are as follows: 

< 1 > accepts a real number as hue, a 2D vector as hue and saturation, or a 3D 
vector as hue, saturation, and intensity to specify COLOR for the front of the 
appropriate polygons) or both sides if no obverse attributes are given. 
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<2> accepts a real number as DIFFUSE 

< 3 > accepts a real number as SPECULAR 

<4>....< 10> are undefined 

< 1 1 >, < 12>, and < 13> correspond to < 1 >, <2>, and <3> but affect the obverse 
attributes if they exist. 

Specifying N O R M A LS 

When a polygon is used to approximate a curved surface, the smooth appearance 
of the surface can be restored in asmooth—shaded rendering by approximating a 
surface using normals. A normal to the surface is given with each vertex of the 
polygon specified N x,y,z. 

Specifying Light Sources 

Lights may be stationary or rotate with the object or both. 

If no ILLUMINATION commands are given, a default white light at (0,0,-1) with 
an ambient proportion of .25 is assumed. If not specified, intensity and saturation 
default to 1. 

Syntax: 

[ name :_ ] ILLUMINATION x,y,z [ COLOR h [ ,s [ ,i ] ] ] [ AMBIENT a ] ; 

where 

x,y,z is a vector from the origin pointing toward the light source. 

COLOR specifies the color of the light source by defining hue, saturation, and 
intensity. 

Color is specified identical to COLOR in the ATTRIBUTES command; the 
defaults are also the same. 
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AMBIENT controls the contribution of a light source to the ambient light and is 
defined by a real number between 0 and 1. Increasing a for one light, 
increases its contribution to ambient light. The default value for a is 1. 

Illumination Node Inputs 

Inputs to the illumination node are: 

< 1 > accepts a 3D vector as direction 

< 2> accepts a real number as hue, a 2D vector as hue and saturation, and a 3D 
vector as hue, saturation, and intensity. 

< 3 > accepts a real number as the ambient proportion 

Like the attribute node, if you send a real number to Input < 2 > to change only 
the hue, the saturation and intensity return to the default values of s=1 and i=1. 

The SHADINGENVIRONMENT Function 

SHADINGENVIRONMENT 

Real/Vector ---~ <1> 

Real/Vector ---> <2> 

Vector  > <3> 

Real  ~- -> <~+> 

Integer  > <5> 

Real  > <6~ 

Boolean  ~ ~7~ 

<1> ~ connected to the 
shading process 
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The inputs to the SHADINGENVIRONMENT function are as follows: 

Ambient Color 

< 1 > accepts a real number as hue, a ZD vector as hue and saturation, and a 3D 
vector as hue, saturation, and intensity, to specify the ambient color. The 
default ambient color is white, with a default intensity of .25.. 

Background Color 

<2> accepts a real number as hue, a 2D vector as hue and saturation, and or a 3D 
vector as hue, saturation, and intensity to specify the background color. The 
default background color is black (0,0,0). 

Raster Viewport 

<3> accepts a 3D vector as the viewport on the raster image buffer where shaded 
renderings will be displayed. Raster viewports are always square, the lower left 
corner being given by the X and Y coordinates of the vector, and its size given 
by the Z coordinate, such that the upper right corner is at (x+z,y+z). Values are 
rounded to the nearest pixel. The default viewport is (80,0,480. 

Exposure 

<4> accepts a real number as the exposure, controlling the overall brightness of 
the picture. Exposure values may vary between .3 and 3, values outside that 
range being changed to .3 or 3. The default exposure is 1. 

Quality Level 

<5> accepts an integer as quality level. The quality controls the number of 
pixels over which filtering applied. Values of 1, 3, 5, and 7 are allowed, meaning 
that the effect of coloring a pixel will be spread over a square of pixels with that 
number on a side, centered on the colored pixel. Pictures are good at quality 1. 
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Depth Cueing 

<6> accepts a real number in the range of 0 to 1 to control depth cueing in the 
shaded image (0 specifying no depth cueing and 1 specifying maximum depth 
cueing). The default is 0.2 giving a fairly large depth cueing effect. 

Screen Wash 

<7> accepts a Boolean, and is the only input to cause a visual effect 
immediately. True causes the whole physical raster screen to be filled with the 
current background color, while false just fills the currently defined viewport 
(clipped to the screen). 

PS 340 Systems Without a R aster Screen 

If values are sent to the SHADINGENUIRONMENT function and your PS 340 is 
not configured with a raster screen, an error message is issued. If values are 
again sent to the shadingenvironment function and no raster system exists, the 
function will destroy itself. 
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Programming Example 

INITIALIZE; 

{reserve memory for rendering} 

RESERVE_WORKING_STORAGE 120000; 

{define a sectioning plane which can be rotated independently} 

Spattributes := ATTRIBUTES; 

Sect := BEGIN STRUCTURE 
SECTIONING_PLANE; 
Trans := TRANSLATE BY 0,0,0; 
Rot := ROTATE 0; 
With ATTRIBUTES Spattributes 
POLYGON -0.9,-0.9,0.0 -0,9,0.9,0.0 0.9,0.9,0.0 0.9,-0.9,0.0 
POLYGON 0.1,0.0,0.0 0.1,0.0,-0.3 0.15,0.0,-0.3 0.0,0.0,-0.45 

-0.15,0.0,-0.3 -0.1,0.0,-0.3 -0.1,0.0,0.0 
POLYGON 0.0,0.1,0.0 0.0,0.1,-0.3 0.0,0.15,-0.3 0.0,0.0,-0.45 

0.0,-0.15,-0.3 0.0,-0.1,-0.3 0.0,-0.1,0.0; 
END_STRUCTURE; 

{define a light which can be rotated independently} 

Sunset := BEGIN STRUCTURE 
FIELD OF VIEW 90 FRONT=2.2 BACK=3.6; 
LOOK AT 0,0,0 FROM 0,0,-3; 
SET DEPTH CLIPPING OFF; 
Rot := ROTATE 0; 
VECTOR N=2 0,0,-.9 0,0,0; 
INSTANCE Sun; 
TRANSLATE 0,0,-.9; 
RATIONAL POLYNOMIAL .2,0,8 -.2,-.2,-8 0,.1,4 CHORDS=15; 
RATIONAL POLYNOMIAL .2,0,-8 -.2,-.2,8 0,.1,-4 CHORDS=15; 
VECTOR SEPARATE n=15 -.1,0 -.05,0 .05,0 .1,0 0,-. l 0,-.05 0,.05 0,.1 

-.0707,-.0707 -.0354,-.0354 .0354,.0354 .0707, 
.0707-.0707,.0707 -.0354,.0354 .0354,-.0354 
.Q707,-.0707; 

END_STRUCTURE; 
Sun := ILLUMINATION 0,0,- l ; 

{define a light which can be rotated with the object} 
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Moonset := BEGIN STRUCTURE 
SET DEPTH_CLIPPING OFF; 
Rot := ROTATE 0; 
UECTOR N=2 0,0,—.9 0,0,0; 
INSTANCE Moon; 
TRANSLATE 0,0,—.9; 
RATIONAL PO1YNOMIAL .2,0,4 —.2,—.2,-4 0,.1,2 CHORDS=15; 
RATIONAL POLYNOMIAL .12,0,4 —.12,—.2,-4 0,.1,2 CHORDS=15; 
END_STRUCTURE; 

Moon := ILLUMINATION 0,0,— l ; 

{set up a place to re—display a saved hidden—line picture} 

Disphlview := MATRIX_4x4 1,0,0,0 0,1,0,0 0,0,0,0 0,0, 1, l THEN Hlview; 

{set up initial display structure} 

World := BEGIN STRUCTURE 
Bits := SET CONDITION 1 ON; 
IF CONDITION 1 OFF THEN Disphlview; 
IF CONDITION 1 ON; 
Persp := FIELD_OF_VIEW 45 FRONT=2.2 BACK=3.6; 
LOOK AT 0,0,0 FROM 0,0,-3; 
VIEWPORT HORIZONTAL=—l:l VERTICAL=-1:1 INTENSITY=1:1; 
SET DEPTH_CLIPPING ON; 
Trans := TRANSLATE by 0,0,0; 
Rot := ROTATE 0; 
IF CONDITION 2 ON THEN Sect; 
Rendering := Surface; {rendering operation node, initially a surface } 
IF CONDITION 3 ON THEN Sunset; 
IF CONDITION 4 ON THEN Moonset; 
INSTANCE Object; 
END_STRUCTURE; 

DISPLAY World; 

{network to translate object} 

A := F:ADDC; 
CONNECT A < 1 > : < 1 > World.trans; 
CONNECT A< 1 >:<2>A; 
SEND U 3D(0,0,0) TO < 2 > A; 

{network to rotate/scale object} 
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M := F:CMUL; 
CONNECT M< 1 >:< 1 >World.rot; 
CONNECT M < 1 > : < 1 > M; 
SEND M 3 D(1,0,0 0,1,0 0,0,1) T O < 1 > M; 

{network to translate sectioning plane} 

A2 := F:ADDC; 
CONNECT A2 < 1 >:< 1 > Sect.trans; 
CONNECT A2< 1 >:<2>A2; 
SEND V3D(0,0,0) TO < 2 > A2; 

{network to rotate/scale sectioning plane} 

M2 := F:CMUL; 
CONNECT M2< 1 >:< 1 >Sect.rot; 
CONNECT M2<1>:<1>M2; 
SEND M 3 D(1,0,0 0,1,0 0,0,1) T O< 1> M 2; 

{network to rotate sun} 

Msun := F:CMUL; 
CONNECT Msun < 1 >: < 1 > Sunset.rot; 
CONNECT Msun < 1 >: < 1 > Msun; 
SEND M 3 D(1,0,0 0,1,0 0,0,1) TO < 1 > Msu n; 

{network to rotate moon} 

Mmoon := F:CMUL; 
CONNECT Mmoon< 1 >:< 1 >Moonset.rot; 
CONNECT Mmoon< 1 >:< 1 >Mmoon; 
SEND M3D(1,0,0 0,1,0 0,0,1) TO < 1 >Mmoon; 

{network selecting original or rendered view} 

Original := F:CONSTANT; 
CONNECT Original< 1 >:< 1 >World.rendering; 
SEND FALSE TO < 2 > Original; { to switch to original view } 
CONNECT DIALS < 1 > : < 1 > Original; 
CONNECT DIALS < 2 >: < 1 > Original; 
CONNECT DIALS < 3 > : < 1 > Original; 
CONNECT DIALS<4>:< 1 >Original; 
CONNECT DIALS < 5 >: < 1 > Original; 
CONNECT DIALS<6>:< 1 >Original; 
CONNECT DIALS < 7 >: < 1 > Original; 
CONNECT DIALS< 8 >: < 1 > Original; 
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{color network} 

Tripcolor := F:SYNC(5); 
SETUP CNESS TRUE <2>Tripcolor; 
SETUP CNESS TRUE <3>Tripcolor; 
SETUP CNESS TRUE <4>Tripcolor; 
SETUP CNESS TRUE <5>Tripcolor; 
CONNECT Tripcolor< 2>: < 3 >SHADINGENUIRONMENT; 
CONNECT Tripcolor< 3 >: < 7>SHADINGENUIRONMENT; 
CONNECT Tripcolor<4>:<3>SHADINGENUIRONMENT; 
CONNECT Tripcolor<5>:<2>SHADINGENUIRONMENT; 
SEND U3D(600,440,40) TO <2>Tripcolor; 
SEND FALSE TO < 3 >Tripcolor; 
SEND U 3D(0,0,0) TO < 5 >Tripcolor; 

Suncolor := F:ACCUMULATE; 
CONNECT Suncolor< 1 >:<2>Sun; 
CONNECT Suncolor< 1 >:<2>SHADINGENUIRONMENT; 
CONNECT Suncolor< 1 >:< 1 >Tripcolor; 
SEND U3D(0,0,1) TO <2>Suncolor; 
SEND 0 TO < 3 > Suncolor; 
SEND U3D(20,.25,.25) TO <4>Suncolor; 
SEND U3D(360,1,1) TO <5>Suncolor; 
SEND U 3D(0,0,0) TO < 6 > Suncolor; 

Mooncolor := F:ACCUMULATE; 
CONNECT Mooncolor< 1 > : < 2 > Moon; 
CONNECT Mooncolor< 1 >:<2>SHADINGENUIRONMENT; 
CONNECT Mooncolor< 1 >:< 1 >Tripcolor; 
SEND U3D(0,0,1) TO < Z>Mooncolor; 
SEND 0 TO < 3 > Mooncolor; 
SEND U3D(20,.25,.25) TO <4>Mooncolor; 
SEND U 3D(3b0, l , l) TO < 5 > Mooncolor; 
SEND U 3D(0,0,0) TO < 6 > Mooncolor; 

Backgroundcolor := F:ACCUMULATE; 
CONNECT Backgroundcolor< 1 >:<2>SHADINGENUIRONMENT; 
CONNECT Backgroundcolor< 1 >:< 1 >Tripcolor; 
CONNECT Backgroundcolor< 1 >: < 5 >Tripcolor; 
SEND U3D(0,0,0) TO <2>Backgroundcolor; 
SEND 0 TO <3>Backgroundcolor; 
SEND U3D(20,.25,.25) TO <4>Backgroundcolor; 
SEND U 3D(360,1,1) TO < 5 > Backgroundcolor; 
SEND U 3D(0,0,0) TO < 6 > Backgroundcolor; 
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{mux the dials} 

Dialmux := F:CROUTE(5); 
CONNECT Dialmux< 1 >:< 1 >A; 
CONNECT Dialmux<2>:< 1 >A2; 
CONNECT Dialmux<3>:< 1 >Suncolor; 
CONNECT Dialmux<4>:< 1 >Mooncolor; 
CONNECT Dialmux<5>:< 1 >Backgroundcolor; 

Dialmux2 := F:CROUTE(5); 
CONNECT Dialmux2< 1 >:<2>M; 
CONNECT Dialmux2<2>:<2>M2; 
CONNECT Dialmux2<3>:<2>Msun; 
CONNECT Dialmux2<4>:<2>Mmoon; 

{network to translate in x} 

Tx := F:XVEC; 
CONNECT Tx< 1 >:<Z>Dialmux; 
CONNECT DIALS< 1 >:< 1 >Tx; 

{network to translate in y} 

Ty := F:YVEC; 
CONNECT Ty< 1 >:<2>Dialmux; 
CONNECT DIALS< 2>:< 1 >Ty; 

{network to translate in z} 

Tz := F:ZVEC; 
CONNECT Tz< 1 >:<2>Dialmux; 
CONNECT DIALS< 3>:< 1 >Tz; 

{network to scale} 

S := F:SCALE; 
CONNECT S< 1 >: < 2 > Dialmux2; 

Sa := F:ADDC; 
CONNECT Sa< 1 >:< 1 >S; 
SEND 1 TO <2>Sa; 
CONNECT DIALS<4>:< 1 >Sa; 

{network to rotate in x} 



102 -RENDERING OPERATIONS 

Rx := F:XROTATE; 
CONNECT Rx< 1 >:<2>Dialmux2; 

Sx := F:MULC; 
CONNECT Sx< 1 >:< 1 >Rx; 
SEND 100 TO <2>Sx; 
CONNECT DIALS<5>:< 1 >Sx; 

{network to rotate in y} 

Ry := F:YROTATE; 
CONNECT Ry< 1 >:<2>Dialmux2; 

Sy := F:MULC; 
CONNECT Sy< 1 >:< 1 >Ry; 
SEND 100 TO <2>Sy; 
CONNECT DIALS<6>:< 1 >Sy; 

{network to rotate in z} 

Rz := F:ZROTATE; 
CONNECT Rz< 1 >:<2>Dialmux2; 

Sz := F:MULC; 
CONNECT Sz< 1 >:< 1 > Rz; 
SEND -100 TO < 2 >Sz; 
CONNECT DIALS<7>:< 1 >Sz; 

{network to adjust BACK clipping plane} 

Backclip := F:FOV; 
CONNECT Backclip < 1 >: < 1 > World.persp; 
SEND 45 TO <2>Backclip; 
SEND 2.2 TO < 3 > Backclip; 

Backclipaccum := F:ACCUM; 
CONNECT Backclipaccum< 1 >:< 1 >Backclip; 
CONNECT Backclipaccum< 1 >:<4>Backclip; 
CONNECT DIALS<8>:< 1 >Backclipaccum; 
SEND 3.6 TO <2>Backclipaccum; 
SEND 0 TO < 3 > Backclipaccu m; 
SEND 1 TO <4>Backclipaccum; 
SEND 30 TO < 5 > Backclipaccu m; 
SEND 2.2 TO <6>Backclipaccum; 

{network to reset transformations} 
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CONNECT Rs< 1 >:< 1 > World.trans; 
CONNECT Rs< 1 >:<2>A; 
CONNECT Rs<2>:< 1 >World.rot; 
CONNECT Rs<2>:< 1 >M; 
CONNECT Rs<2>:<2>Rs; 
SEND M 3 D(1,0,0 0,1,0 0,0,1) TO < 2 > Rs; 

Rs2 := F:SYNC(2); 
CONNECT Rs2< 1 >:< 1 >Sect.trans; 
CONNECT Rs2 < 1 >: < 2 > A2; 
CONNECT Rs2<2>:< 1 >Sect.rot; 
CONNECT Rs2<2>:< 1 >M2; 
CONNECT Rs2<2>:<2>Rs2; 
SEND M3D(1,0,0 0,1,0 0,0,1) TO <2>Rs2; 

Rssun := F:CONSTANT; 
CONNECT Rssun < 1 > : < 1 > Msun; 
CONNECT Rssun< 1 >:< 1 >Sunset.rot; 
SEND M3D(1,0,0 0,1,0 0,0,1) TO < 2 > Rssun; 

Rsmoon := F:CONSTANT; 
CONNECT Rsmoon< 1 >:< 1 >Mmoon; 
CONNECT Rsmoon < 1 >: < 1 > Moonset.rot; 
SEND M3D(1,0,0 0,1,0 0,0,1) TO < 2> Rsmoon; 

CONNECT R < 1 >: < 1 > Rs; 
CONNECT R<2>:< 1 >Rs2; 
CONNECT R < 3 >: < 1 > Rssun; 
CONNECT R<4>:< 1 > Rsmoon; 

{network to turn bits on and off} 

Bits := F:CONSTANT; 
CONNECT Bits< 1 >: < 5 > World.bits; 

{network to send to object or sectioning plane} 

Waylabel := F:INPUTS_CHOOSE(6); 
CONNECT Waylabel< 1 >:< 1 >Flabel l 2; 
SEND 'OBJECT' TO < 1 > Waylabel; 
SEND 'PLANE' TO < 2 > Waylabel; 
SEND 'SUN' TO < 3 > Waylabel; 
SEND 'MOON' TO < 4> Waylabel; 
SEND 'BACK' TO < 5 > Waylabel; 
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Diallabel := F:SYNC(9); 
CONNECT Diallabel< 1 >:< 1 >Dlabell; 
CONNECT Diallabel< 1 >:< 1 >Diallabel; 
CONNECT Diallabel<2>:< 1 >Dlabel2; 
CONNECT Diallabel < 2 > : < 2 > Diallabel; 
CONNECT Diallabel< 3 >: < 1 > Dlabel3; 
CONNECT Diallabel< ~ >: < 3 > Diallabel; 
CONNECT Diallabel<4>:< 1 >Dlabel4; 
CONNECT Diallabel<4>:<4>Diallabel; 
CONNECT Diallabel < 5 > : < 1 > Dlabel5; 
CONNECT Diallabel< 5 >: < 5 > Diallabel; 
CONNECT Diallabel<6>:< 1 >Dlabel6; 
CONNECT Diallabel<6>:<6>Diallabel; 
CONNECT Diallabel<7>:< 1 >Dlabel7; 
CONNECT Diallabel < 7 > : < 7 > Diallabel; 
CONNECT Diallabel< 8 >: < 1 > Dlabel8; 
CONNECT Diallabel<8>:<8>Diallabel; 
SEND 'X-TRANS' TO < 1 > Diallabel; 
SEND 'X-TRANS' TO < 1 > Diallabel; 
SEND 'HUE' TO < 1 > Diallabel; 
SEND 'HUE' TO < 1 > Diallabel; 
SEND 'HUE' TO < 1 > Diallabel; 
SEND 'Y-TRANS' TO < 2 > Diallabel; 
SEND 'Y-TRANS' TO < 2 > Diallabel; 
SEND 'SAT' TO < 2 > Diallabel; 
SEND 'SAT' TO < 2 > Diallabel; 
SEND 'SAT' TO < 2 > Diallabel; 
SEND 'Z-TRANS' TO < 3 > Diallabel; 
SEND 'Z-TRANS' TO < 3 > Diallabel; 
SEND 'INT' TO < 3 > Diallabel; 
SEND 'INT' TO < 3 > Diallabel; 
SEND 'INT' TO < 3 > Diallabel; 
SEND 'SCALE' TO <4>Diallabel; 
SEND 'X-ROT' TO < 5 > Diallabel; 
SEND 'Y-ROT' TO <6>Diallabel; 
SEND 'Z-ROT' TO < 7 > Diallabel; 
SEND 'BACKCLIP' TO <8>Diallabel; 

Way := F:SYNC(2); 
CONNECT Way<2>:< 1 >Dialmux; 
CONNECT Way<2>:< 1 >Dialmux2; 
CONNECT Way<2>:<2>Way; 
CONNECT Way<2>:< 1 >R; 
CONNECT Way<2>:<6>Waylabel; 
CONNECT Way<2>:<2>Bits; 
CONNECT Way<2>:<9>Diallabel; 
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SEND FIX(1) TO < 2 > Way; 
SEND FIX(2) TO <2>Way; 
SEND FIX(3) TO <2>Way; 
SEND FIX(4) TO < Z> Way; 
SEND FIX(5) TO < 2 > Way; 
SEND TRUE TO < 1 > Way; {activate it} 

{network to change from solid to surface} 

Sslabel := F:BOOLEAN CHOOSE; 
CONNECT Sslabel < 1 >: < 1 > Flabel7; 
SEND 'SOLID' TO < 2 > Sslabel; 
SEND 'SURFACE' TO <3>Sslabel; 

Issolid := F:NOP; 
CONNECT Issolid < 1 > : < 2 > World.rendering; 
CONNECT Issolid< 1 >:< 1 >Sslabel; 

CONNECT Ss<2>:<2>Ss; 
CONNECT Ss<2>:< 1 >Issolid; 
SEND TRUE TO < 2 > Ss; 
SEND FALSE TO <2>Ss; 
SEND FALSE TO < 1 > Ss; { initially a surf ace } 

{network to control rendering style} 

Stylab := F:SYNC(2); 
Styval := F:SYNC(2); 
Style := F:CONST; 
SEND 'HIDDEN' TO < 1 >Stylab; 
SEND 'WASH' TO < 1 >Stylab; 
SEND 'FLAT' TO < 1 > Stylab; 
SEND 'SMOOTH' TO < 1 >Stylab; 
SEND 'XSECTION' TO < 1 >Stylab; 
SEND 'SECTION' TO < 1 >Stylab; 
SEND 'gACKFACE' TO < 1 >Stylab; 
SEND 'SAVE —SEC' TO < 1 >Stylab; 
SEND 'SAVE —HL' TO < 1 >Stylab; 
SEND FIX(4) TO < 1 >Styval; 
SEND FIX(5) TO < 1 > Styval; 
SEND FIX(6) TO < 1 > Styval; 
SEND FIX(7) TO < 1 > Styval; 
SEND FIX(1) TO <1>Styval; 
SEND FIX(2) TO < 1 > Styval; 
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SEND FIX(3) TO < 1 >Styval; 
SEND 'OBJECT' TO < 1 >Styval; 
SEND 'HLUIEW' TO < 1 >Styval; 
CONNECT Stylab<1>:<1>Stylab; 
CONNECT Stylab< 1 >:< 1 >Flabel3; 
CONNECT Styval< 1 >:< 1 >Styval; 
CONNECT Styval< 1 >:<2>Style; 

CONNECT Style < 1 >: < 1 > World.rendering; 
SEND FIX(0) TO <2>Styval; 
SEND FIX(0) TO < 2 > Stylab; 

{ some useful viewports } 

Piclab := F:SYNC(2); 
Picval := F:SYNC(2); 
SEND 'SQUARE' TO <1>Piclab; 
SEND 'BIG-PIC' TO < 1 > Piclab; 
SEND ' 1-OF-2' TO < 1 > Piclab; 
SEND '2-OF-2' TO < 1 > Piclab; 
SEND ' 1-OF-6' TO < 1 > Piclab; 
SEND '2-OF-6' TO < 1 > Piclab; 
SEND '3-OF-6' TO < 1 > Piclab; 
SEND '4-OF-6' TO < 1 > Piclab; 
SEND 'S-OF-6' TO <1>Piclab; 
SEND '6-OF-6' TO < 1 > Piclab; 
SEND U3D (80,0,480) TO < 1 >Picval; 
SEND U 3D (0,-80,640) TO < 1 > Picval; 
SEND U3D (0,80,320) TO < 1 >Picval; 
SEND U3D (320,80,320) TO < 1 >Picval; 
SEND U3D (5,240,210) TO < 1 >Picval; 
SEND U 3D (215,240,210) TO < 1 > Picval; 
SEND U 3D (425,240,210) TO < 1 > Picval; 
SEND U 3D (5,30,210) TO < 1 > Picval; 
SEND U3D (215,30,210) TO < 1 >Picval; 
SEND U3D (425,30,210) TO < 1 >Picval; 

CONNECT Piclab < 1 >: < 1 > Piclab; 
CONNECT Piclab < 1 >: < 1 > Flabel2; 
CONNECT Picval< 1 >:< 1 >Picval; 
CONNECT Picval< 1 >:<3>SHADINGENUIRONMENT; 
CONNECT Picval< 1 >:<4>Tripcolor; 

SEND 1 TO < 2 > Piclab; 
SEND 1 TO <2>Picval; 
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{ buttons ~ 

Fkmo := F:SWITCH; 
CONNECT FKEYS< 1 >:< 1 >Fkmo; 
CONNECT Fkmo< 1 >:< 1 >Style; 
CONNECT Fkmo<2>:<2>Piclab; 
CONNECT Fkmo<2>:<2>Picval; 
CONNECT Fkmo<3>:<2>Stylab; 
CONNECT Fkmo<3>:<2>styval; 
CONNECT Fkmo<4>:< 1 >World.rendering; 
CONNECT Fkmo<6>:<7>SHADINGENVIRONMENT; 
CONNECT Fkmo<7>:< 1 >Ss; 
CONNECT Fkmo< 10>:<2>R; 
CONNECT Fkmo< 10>:< 1 >Original; 
CONNECT Fkmo < 1 1 >: < 1 > Bits; 
CONNECT Fkmo < 1 1 >: < 1 > Original; 
CONNECT Fkmo < 12 >: < 1 > Way; 

Fkm := F:INPUTS_CHOOSE(13); 
CONNECT Fkm< 1 >:<2>Fkmo; 
CONNECT FKEYS< 1 >:< 13>Fkm; 
SEND FIX(1) TO < 1 > Fkm; 
SEND FIX(2) TO <2>Fkm; 
SEND FIX(3) TO <3>Fkm; 
SEND FIX(0) TO <4>Fkm; 
SEND FIX(0) TO < 5 > F k m; 
SEND TRUE TO <6>Fkm; 
SEND FIX(7) TO < 7 > F k m; 
SEND FIX(0) TO < 8 > Fkm; 
SEND FIX(9) TO < 9 > F k m; 
SEND V3D(0,0,0) TO < 10>Fkm; 
SEND FIX(1 1) TO < 1 1 > F k m; 
SEND FIX(12) TO < 12 > F k m; 

SEND 'RENDER' TO < 1 >Flabel l; 
SEND 'TOGGLE' TO <1>Flabel4; 
SEND 'CLEAR' TO < 1 >Flabel6; 
SEND 'RESET' TO < 1 >Flabell0; 
SEND 'ON/OFF' TO < 1 > Flabel 1 1; 

{ some useful colors } 

Blue := ATTRIBUTE COLOR 0; 
Magenta := ATTRIBUTE COLOR 60; 
Red := ATTRIBUTE COLOR 120; 
Yellow := ATTRIBUTE COLOR 180; 
Green := ATTRIBUTE COLOR 240; 
Cyan := ATTRIBUTE COLOR 300; 
White := ATTRIBUTE COLOR 0,0,1; 
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V 

{some other names for shadingenvironment} 

CONNECT Se< 1 >:< 1 >SHADINGENUIRONMENT; 
CONNECT Se<2>:<2>SHADINGENUIRONMENT; 
CONNECT Se<3>:<3>SHADINGENUIRONMENT; 
CONNECT Se<4>:<4>SHADINGENUIRONMENT; 
CONNECT Se<5>:<5>SHADINGENUIRONMENT; 
CONNECT Se<6>:<6>SHADINGENUIRONMENT; 
CONNECT Se<7>:<7>SHADINGENUIRONMENT; 

Ambient := F:PASS(1); 
CONNECT Ambient< 1 >:< 1 >SHADINGENUIRONMENT; 
Background := F:PASS(1); 
CONNECT Background < 1 >: < 2 > SHADINGENUIRONMENT; 
Rasterviewport := F:PASS(1); 
CONNECT Rasterviewport<1>:<3>SHADINGENUIRONMENT; 
Exposure := F:PASS(1); 
CONNECT Exposure< 1 >:<4>SHADINGENUIRONMENT; 
Quality := F:PASS(1); 
CONNECT Quality < 1 >: < 5 > SHADINGENUIRONMENT; 
Depth := F:PASS(1); 
CONNECT Depth < 1 >: < 6 > SHADINGENUIRONMENT; 
Screenwash := F:PASS(1); 
CONNECT Screenwash< 1 >:<7>SHADINGENUIRONMENT; 

{ make PS300 come up in shift line/local } 
SEND 'R' TO < 1 > KBHANDLER; 

{EOF} 
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INTRODUCTION 

The sample programs in this section illustrate various applications of the PS 300 for 
design and analysis. Each application has two programs: a data structure file with an 
extension of .300 and a function network file with an extension of .FUN. A header 
section in each file explains what the application does. General practices illustrated in 
the sample programs can give you ideas for your own applications programs. 

A great deal of care has been taken to make these programs examples of good PS 300 
programming practices. In the data structure files, notice particularly the use of 
BEGIN STRUCTURE ... END STRUCTURE versus explicit naming. Notice also that the 
code is tabbed and commented in a way that makes it very easy to read. 

The sample programs are listed on the following pages and also distributed in loadable 
form on magnetic tape. A selection in the command file TUTORIALS.COM lets you 
load the sample programs individually -from the host. 
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ADAM.300 

Programmed by: Neil Jon Harrington 
Software Support Specialist 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: April 21, 1983 
Last update: 

Data Structure for an articulated anthropoid robot called ADAM (A Dial Activated 
Man). The data nodes (vector lists) for the sphere and the cylinder are not included in 
this file. The sphere has a radius of 1 and is centered at the origin. The base of the 
cylinder is at the origin lying in the XZ plane with the cylinder centered about the 
positive Y axis. The cylinder has a radius of 1 and a height of 1. 

ADAM.FUN is the function network file that will articulate this structure. 

INIT DISP; 
DISP Adam; 

Adam := BEGIN_S 
WINDOW X=-8.5:8.5 Y=-8.5:5.5 
FRONT=O BACK=10; 

LOOK AT 0,0,0 FROM 0,0,-1; 
Tran := TRAN 0,0,0; 
Rot := ROT Y 0; 
Scale := SCALE 1; 
Pick := SET PICKING OFF; 

INST Upper_Body,Lower_Body; 
END S; 

Upper_Body := BEGIN_S 
SET PICK ID = B; 

Rot := ROT 0; 
{Chest} SCALE .8,2.4,.7 THEN Cylinder; 

INST Right_Arm,Left_Arm,Head; 
END S; 
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Right_Arm := BEGIN_S 
TRAN -1.15,2.4,0; 

{ Right Shoulder Joint } 
SET PICK ID = C; 

Rot := ROT 0; 
INST Upper_Arm,Right_Lower_Arm; 

END S; 

Upper_Arm := BEGIN_S 
{Shoulder Ball} SCALE .3,.2,.2 THEN Sphere; 

TRAN 0,-2.1,0; 
SCALE .25,2.1,.25 THEN Cylinder; 

END S; 

Right_Lower_Arm := BEGIN_S 
TRAM 0,-2.2,0; 

Rot := ROT 0; 
INST Lower_Arm,Right_Hand; 

END S; 

Lower_Arm := BEGIN_S 
{Elbow} SCALE .2I9 THEN Sphere; {7/32 rad.} 

TRAM 0,-1.8,0; 
SCALE .225,1.7,.225 THEN Cylinder; 

END S ; 

Right_Hand := BEGIN_S 
TRAN 0,-1.9,0; 
SET PICK ID = D; 

Rot := ROT 0 THEN Hand; 
END S; 

Hand := BEGIN_S 
{Wrist} SCALE .175 THEN Sphere; 
{Hand} TRAN 0,-.4,0; 

SCALE .15,.4,.25 THEN Sphere; 
END S; 

Left Arm := BEGIN_S 
IRAN 1.15,2.4,0; 
SET PICK ID = C; 

Rot := ROT 0; 
INST Upper_Arm,Left_Lower_Arm; 

END S; 
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Left Lower Arm := BEGIN_S 
TRAM 0,-2.2,0; 

Rot := ROT 0; 
INST Lower Arm,Left Hand; 

END S; 

Left Hand := BEGIN_S 
TRAN 0,-1.9,0; 
SET PICK ID = D; 

Rot := ROT 0 THEN Hand; 
END S; 

Head := BEGIN S 
TRAN 0, 2. ~+,0; 
SET PICK ID = A; 

Rot := ROT 0; 
{Neck} SCALE .3,.6,.3 THEN Cylinder; 
{Head} IRAN 0,1.5,0; 

SCALE .6,1,.6 THEN Sphere; 
END S; 

Lower_Body := BEGIN_S 
SET PICK ID = B; 

Rot := ROT 0; 
TRAN 0,-1,0; 
INST Right_Leg,Left_Leg; 

{Waist & Hips} SCALE .8,1,.7 THEN Cylinder; 
END S; 

Right_Leg := BEGIN_S 
TRAM -.45,-.25; 
SET PICK ID = E; 

Rot := ROT 0; 
INST Upper_Leg,Right_Lower_Leg; 

END S; 

Upper_Leg := BEGIN_S 
{Hip Joint} SCALE .3 THEN Sphere; 

TRAN 0,-2.5,0; 
SCALE .35,2.5,.35 THEN Cylinder; 

END S; 

Right_Lower_Leg := BEGIN_S 
TRAN 0,-2.6,0; 

Rot := ROT x 0; 
INST Lower_Leg,Right_Foot; 

END S; 
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Lower_Leg := BEGIN_S 
INST Knee; 
TRAN 0,-2.6,0; 

{Limb} SCALE .3,2.5,.3 THEN Cylinder; 
END S; 

Knee := BEGIN_S 
ROT 90; 
TRAM 0,-.3,0; 
SCALE .15,.6,.15 THEN Cylinder; 

END S; 

Right_Foot := BEGIN_S 
TRAM 0,-2.75,0; 
SET PICK ID = F; 

Rot := ROT 0 THEN root; 
END S; 

Foot := BEGIN_S 
{Ankle} SCALE .2 THEN Sphere; 

TRAN 0,-.2,.2; 
ROT x -90; 
SCALE .3,1,.2 THEN Cylinder; 

END S; 

Lef t_Leg : = BEGINS 
IRAN .~+5,-.25; 
SET PICK ID = E; 

Rot := ROT 0; 
INST Upper_Leg,Left_Lower_Leg; 

END S; 

Left_Lower_Leg := BEGIN_S 
TRAN 0,-2.6,0; 

Rot := ROT x 0; 
INST Lower_Leg,Left_Foot; 

END S; 

Left Foot := BEGIN S 
TRAM 0,-2.75,0; 
SET PICK ID = F; 

Rot := ROT 0 THEN Foot; 
END S; 
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ADAM.FUN 

Programmed by: Neil Jon Harrington 
Software Support Specialist 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: October, 1982 
Last update: February, 1985 

Network to modify the structure in ADAM.300. Point at the joint you want to rotate 
and the dials will be routed to modify that joint and others associated in that mode. If 
you want to rotate and translate the whole robot, point at the head. 

{ Code generated by Network Editor 1.07 } 
{ ADAM } 
{ Frame—Prefix Macro—Prefix } 
{ Frame 2 : F2_ } 
FZ_P4:=F:CROUTE(6); 
F2 PS:=F:CROUTE(6); 
F2_P6:=F:DXROTATE; 
F2_P7:=F:DXROTATE; 
F2 P8:=F:DXROTATE; 
F2_P9:=F:DXROTATE; 
CONN F2 P~+<3>: <1>F2 P6; 
CONK F2 P~+cS>: <1>F2 P7; 
CONN F2_PSc3>:cl>F2_P8; 
CONK F2_P5c5>:<1>F2 P9; 
CONN F2_P6cl>:cl>Right_Lower_Arm.Rot; 
CONK F2~_P7c1>:cl>Right_Lower_Leg.Rot; 
CONK F2_P8<1>:<1>Left Lower Arm.Rot; 
CONN F2 P9cl>:cl>Left_Lower_Leg.Rot; 
SEND 200 TO <3>F2 P7; 
SEND 200 TO c3>F2_P8; 
SEND 200 TO <3>F2 P9; 
SEND 200 TO c3>F2_P6; 
SEND 0 TO c2>F2_P7; 
SEND 0 TO c2>F2 P8; 
SEND 0 TO <2>F2 P9; 
SEND 0 TO c2>FZ P6; 
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{ Frame3:F3_ } 
F3_P11:=F:MULC; 
F3_P12:=F:MULC; 
F3_P13:=F:MULC; 
F3_P14:=F:XROTATE; 
F3_P15:=F:YROTATE; 
F3_P16:=F:ZROTATE; 
F3_P17:=F:CROUTE(6); 
F3_P18:=F:MULC; 
F3_P19:=F:MULC; 
F3_P20:=F:MULC; 
F3_P21:=F:MULC; 
F3_P22:=F:MULC; 
F3_P23:=F:MULC; 
CONK F3_P11<1>:<1>F3 P14; 
CONN F3 P12c1>:<1>F3 P15; 
CONK F3_P13<1>:<1>F3 P16; 
CONK F3_P14c1>:<2>F3 P17; 
CONK F3_P15<1>:<2>F3 P17; 
CONK F3_P16<1>:c2>F3 P17; 
CONN F3_P17<1>:cl>F3_P18; 
CONK F3_P17<2>:<1>F3_P19; 
CONK F3 P17c3>:<1>F3 P20; 
CONN F3_P17c4>:<1>F3_P21; 
CONK F3_P17c5>:<1>F3_P22; 
CONK F3_P17<6>:<1>F3_P23; 
CONN F3_P18<1>:<1>Head.Rot; 
CONN F3_P18<1>:c2>F3 P18; 
CONN F3_P19c1>:<1>Upper_Body.Rot; 
CONK F3 P19<1>:c2>F3 P19; 
CONN F3_P20c1>:<1>Right_Arm.Rot; 
CONN F3 P20<1>:<2>F3 P20; 
CONN F3_P21c1>:cl>Right_Hand.Rot; 
CONN F3_P21<1>:c2>F3 P21; 
CONN F3_P22c1>:<1>Right_Leg.Rot; 
CONK F3_P22<1>:<2>F3 P22; 
CONN F3_P23<1>:cl>Right_Foot.Rot; 
CONK F3 P23<1>:<2>F3 P23; 
SEND 200 TO c2>F3 P11; 
SEND 200 TO c2>F3_P12; 
SEND 200 TO c2>F3 P13; 
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{ Frame4:F4 } 
F4_P24:=F:MULC; 
F4 P25:=F:MULC; 
F4 P26:=F:MULC; 
F4_P27:=F:XROTATE; 
F4_P28:=F:YROTATE; 
F4_P29:=F:ZROTATE; 
F4_P30:=F:CROUTE(6); 
F4_P31:=F:CMUL; 
F4_P32:=F:MULC; 
F4_P33:=F:MULC; 
F4_P34:=F:MULC; 
F4_P35:=F:MULC; 
F4_P36:=F:MULC; 
CONN F4_P24c1>:cl>F4 P27; 
CONK F4_P25c1>:<1>F4 P28; 
CONN F4 P26c1>:c1>F4 P29; 
CONN F4_P27c1>:<2>F4 P30; 
CONN F4_P28c1>:c2>F4_P30; 
CONN F4_P29<1>:c2>F4 P30; 
CONN F4 P30c1>:c2>F4 P31; 
CONN F4_P30c2>:cl>F4_P32; 
CONK F4 P30c3>:cl>F4 P33; 
CONK F4 P30c4>:cl>F4 P34; 
CONK F4_P30c5>:cl>F4_P35; 
CONN F4_P30c6>:cl>F4_P36; 
CONK F4_P31c1>:cl>Adam.Rot; 
CONN F4_P31c1>:cl>F4 P31; 
CONN F4_P32c1>:cl>Lower_Body.Rot; 
CONN F4 P32c1>:c2>F4 P32; 
CONN F4 P33c1>:cl>Left Arm.Rot; 
CONN F4_'P33<1>:c2>F4_P33; 
CONK F4_P34c1>:cl>Left_Hand.Rot; 
CONN F4_P34<1>:c2>F4 P34; 
CONN F4_P35c1>:cl>Left_Leg.Rot; 
CONN F4_P35<1>:c2>F4_P35; 
CONN F4_P36c1>:cl>Left Foot.Rot; 
CONN F4_P36c1>:c2>F4_P36; 
SEND 200 TO <2>F4 P25; 
SEND 200 TO c2>F4_P26; 
SEND 200 TO <2>F4 P24; 
{ Picking Network:FS_ } 
FS_P3:=F:PICKINFO; 
F5_P39:=F:CHARCONVERT; 
F5 P40: =-F: SUBC; 
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CONN TABLETINc4>:cl>Adam.Pick; 
CONN TABLETINc6>:cl>PICK; 
CONN PICK<1>:cl>F5 P3; 
CONK PICKc2>:cl>Adam.Pick; 
CONK PICKc3>:cl>Adam.Pick; 
CONN F5_P3<2>:<1>FS_P39; 
CONN FS_P39c1>:cl>F5_P40; 
SEND FIX(64) TO <2>FS P40; 
SEND FIX(1) TO c2>F5_P3; 
{ Framel:Fl } 
{ Setup cness true c2-3>P10 } 
Fl P10:=F:SYNC(3); 
SETUP CNESS TRUE <2>F1 P10; 
SETUP CNESS TRUE <3>F1 P10; 
CONK Fl_P10c2>:c2>F2_P6; 
CONN F1_P10<2>:c2>FZ P7; 
CONN Fl_P10<2>:c2>F2 P8; 
CONN F1_P10<2>:c2>F2 P9; 
CONN F1_P10<3>:cl>Right_Lower_Arm.Rot; 
CONK Fl_P10c3>:cl>Right_Lower_Leg.Rot; 
CONN Fl_P10c3>:<1>Left_Lower_Arm.Rot; 
CONN F1_P10<3>:cl>Left_Lower_Leg.Rot; 
CONN F1_P10<3>:c2>F3_P18; 
CONK F1_P10<3>:c2>F3_P19; 
CONN F1_P10c3>:c2>F3_P20; 
CONN F1_P10<3>:<2>F3_P21; 
CONN Fl_P10c3>:c2>F3_P22; 
CONK Fl_P10<3>:<2>F3_P23; 
CONK Fl_P10<3>:cl>Head.Rot; 
CONN F1_PlOc3>:cl>Upper_Body.Rot; 
CONN Fl_P10<3>:cl>Right_Arm.Rot; 
CONK Fl_P10c3>:<1>Right_Hand.Rot; 
CONN F1_P10c3>:c1>Right_Leg.Rot; 
CONN F1_P10c3>:<1>Right_Foot.Rot; 
CONK F1_P10c3>:cl>F4_P31; 
CONK Fl_PlOc3>:c2>F4_P32; 
CONN F1_P10<3>:c2>F4_P33; 
CONK F1_PlOc3>:c2>F4_P34; 
CONN F1_P10<3>:c2>F4_P35; 
CONN Fl_P10<3>:<2>F4_P36; 
CONN F1_P10<3>:cl>Adam.Rot; 
CONN F1_PlOc3>:cl>Lower_Body.Rot; 
CONK F1_PlOc3>:cl>Left_Arm.Rot; 
CONN F1_P10c3>:cl>Left_Hand.Rot; 
CONN Fl_P10c3>:cl>Left_Leg.Rot; 
CONN Fl_P10c3>:cl>Left_Foot.Rot; 
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CONN FKEYS<1>:<1>F1 P10; 
CONK DIALScl>:<1>F3 P11; 
CONN DIALSc2>:<1>F3 P12; 
CONN DIALS<3>:cl>F3 P13; 
CONK DIALS<~+> : <2>F2 P4; 
CONN DIALScS>:<1>F4 P24; 
CONN DIALSc6>:<1>F4 P25; 
CONN DIALSc7>:cl>F4_P26; 
CONN DIALS<8>:<2>F2 P5; 
CONK F5_P40c1>:cl>F2_P4; 
C~ONN F5 P40c1> : <1>F2 P5; 
CONN F5 P40c1>:<1>F3 P17; 
CONN F5 P40<1>:<1>F4 P30; 
SEND FIX(1) TO cl>F2_P4; 
SEND FIX(1) TO cl>F2 P5; 
SEND FIX(1) TO <1>F3 P17; 
SEND FIX(1) TO <1>F4 P30; 
SEND 0 TO c2>F1 P10; 
SEND M3D(1,0,0 0,1,0 0,0,1) TO c3>F1 P10; 
SEND M3D(1,0,0 0,1,0 0,0,1) TO <1>F1 P10; 
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Figure 1. ADAM.FUN (Sheet 1 of 5) 
(Function Network for ADAM.300) 
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Figure 1. ADAM.FUN (Sheet 3 of 5) 
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Figure 1. ADAM.FUf~I (Sheet 4 of 5) 
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COLLISION.300 

Programmed by: Neil Jon Harrington 
Software Support Specialist 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: October, 1984 
Last update: February, 1985 

PS 300 data structure, consisting of a ball in a box. The function network in 
Collision fun modifies this structure to simulate the ball bouncing in the box with no 
gravity and elastic collisions. 

INIT DISP; 
DISP Collision; 

Collision := BEGIN_S 
SET INTENSITY ON .75:1; 
SET DEPTH_CLIPPING ON; 
FOV 70 FRONT = 1.4 BACK = 5; 
LOOK AT 0,0,0 FROM 1.5,1.3,-2.4; 

Yrot := ROT 0; 
SET COLOR 240,1 THEN Box; 
SET COLOR 120,1 THEN Ball; 
SET COLOR 0,1 THEN Path; 

END S; 

Box := SCALE 1 THEN Cube; 

Ball := BEGIN_S 
Tran := TRAN 0,0,0; 
Rot := ROT 0; 
Scale := SCALE .1 THEN Sphere; 

END S; 



18 -SAMPLE PROGRAMS 

Path := VEC n=10000 0,0,0; 

Cube : = VEC I tem n=16 
P -1, 1,-1 
L 1,-1,-1 
P 1, 1,-1 
L 1,-1, 1 
P 1, 1, 1 
L -1,-1, 1 
P -1, 1, 1 
L -1,-1,-1 
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COLLISION.FUN 

Programmed by: Neil Jon Harrington 
Software Support Specialist 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: October, 1984 
Last update: February, 1985 

Network to modify structure created in Collision.300. See description in that file. 

{ Code generated by Network Editor 
{ COLLISION } 
{ Frame-Prefix Macro-Prefix } 
{ Framel:M1$F1 } 
M1$F1 P1:=F:INPUTS CHOOSE(13); 
M1$F1 P2:=F:ROUTE(12); 
CONK M1$Fl Pl<1>:<2>Ml$F1 P2; 
SEND TRUE TO 
SEND TRUE TO 
SEND TRUE TO 
SEND TRUE TO 
SEND TRUE TO 
SEND TRUE TO 
SEND TRUE TO 
SEND TRUE TO 
SEND TRUE TO 
SEND TRUE TO 
SEND TRUE TO 
SEND TRUE TO 

<1>M1$F1 P1; 
<2>M1$F1 P1; 
<3>M1$F1 P1; 
<4>M1$F1 Pl; 
<5>Ml$F1 Pl; 
<6>M1$F1 P1; 
<7>M1$F1 P1; 
<8>M1$Fl P1; 
<9>M1$F1 P1; 
<10>M1$F1 P1; 
<11>M1$F1 P1; 
<12>M1$F1 P1; 

{ Motion Control:F2 
F2 P2:=F:SYNC(4); 
F2_P6:=F:LIMIT; 
F2_P7:=F:LIMIT; 
F2_P8:=F:LIMIT; 
F2_P9:=F:BROUTEC; 
F2 P10:=F:BROUTEC; 
FZ~P11:=F:BROUTEC; 
F2 P12:=F:MULC; 

} 

1.07 } 
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F2_P13:=F:MULC; 
F2_P14:=F:MULCT 
F2_P15:=F:XVECTOR; 
F2_P16:=F:YVECTOR; 
F2_P17:=F:ZVECTOR; 
F2_P18:=F:ADD; 
F2_P19:=F:ADD; 
F2_P20:=F:ADD; 
F2_P41:=F:ACCUMULATE; 
F2_P42:=F:ACCUMULATE; 
F2_P43:=F:ACCUMULATE; 
F2_P38:=F:ADD; 
F2_P39:=F:ADD; 
CONK F2_P2c2>:cl>F2_P18; 
CONN F2_P2c3>:cl>F2_P19; 
CONN F2_P2<4>:cl>F2 P20; 
CONN F2_P6c1>:cl>F2_P15; 
CONN F2_P6c1>:c2>F2_P18; 
CONK F2_P6c3>:<1>F2 P9; 
CONK F2_P7c1>:<1>F2 Plb; 
CONN F2_P7c1>:c2>F2 P19; 
CONK F2_P7c3>:cl>F2_P10; 
CONN F2_P8cl>:cl>F2_P17; 
CONK F2_P8cl>:<2>F2 P20; 
CONN F2_P8c3>:<1>F2 P11; 
CONN F2_P9c1>:<2>F2 P2; 
CONN F2_P9c2>:cl>F2_P12; 
CONK F2_P10<1>:c3>F2 P2; 
CONN F2_PlOc2>:cl>F2 P13; 
CONK F2_Pllcl>:c4>F2_P2; 
CONN F2_Pllc2>:<1>F2 P14; 
CONK F2_P12c1>:<2>F2 P2; 
CONK F2_P12<1>:c2>F2 P9; 
CONN F2_P12<1>:c2>F2 P41; 
CONK F2_P13c1>:c3>F2_P2; 
CONN F2_P13c1>:<2>F2 P10; 
CONN F2_P13<1>:c2>F2 P42; 
CONK F2_P14c1>:<4>F2 P2; 
CONN F2_P14<1>:c2>F2 P11; 
CONN F2 P14c1>:c2>F2 P43; 
CONN F2_P15<1>:cl>FZ P38; 
CONN F2_P16c1>:c2>F2 P38; 
CONN F2_P17c1>:c2>F2 P39; 
CONN F2_P18c1>:cl>F2_Pb; 
CONN F2_P19c1>:cl>F2_P7; 
CONN F2_PZOcl>:cl>F2_P8; 
CONK F2 P38c1>:cl>F2 P39; 
CONK F2!_P39c1>:cl>Ba11.Tran; 
CONN F2 P41c1>:c2>F2 P9; 
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CONN F2 P~+2<1> : <2>F2 P10; 
CONN F2 P43<1>:<2>F2 P11; 
SEND —.9 TO <3>F2 P6; 
SEND —.9 TO <3>F2 P7; 
SEND —.9 TO <3>F2 P8; 
SEND .9 TO <2>F2 P6; 
SEND .9 TO <2>F2 P7; 
SEND .9 TO <2>F2 P8; 
SEND 0 TO c 6 >F2 P~+1; 
SEND 0 TO <6>F2 P42; 
SEND 0 TO <6>F2 P43; 
SEND 10 TO <5>F2 P41; 
SEND 10 TO <5>F2 P42; 
SEND 10 TO <5>F2 P~+3; 
SEND .l TO c~+>F2 P41; 
SEND .1 TO <4>F2 P~+2; 
SEND .l TO <4>F2 P43; 
SEND 0 TO <3>F2 P~+1; 
SEND 0 TO c3>F2_P42; 
SEND 0 TO <3>F2 P~+3; 
SEND .03 TO c4>F2_P2; 
SEND .03 TO <2>F2 P11; 
SEND .03 TO c2>F2_P43; 
SEND .02 TO c3>F2_P2; 
SEND . 02 TO c 2>F2 P10 ; 
SEND .02 TO <2>F2 P42; 
SEND .Ol TO c2>F2 P2; 
SEND .Ol TO c2>F2_P9; 
SEND .O1 TO <2>F2 P41; 
SEND 0 TO <2>F2 P18; 
SEND 0 TO <2>F2 P19; 
SEND 0 TO c2>F2_P20; 
SEND —1 TO <2>F2 P12; 
SEND —1 TO c2>FZ_P13; 
SEND —1 TO <2>F2 P14; 
{ Clock Control:F3 } 
F3_P1:=F:CLFRAMES; 
F3_P22:=F:CONSTANT; 
F3_P23:=F:EDGE DETECT; 
F3_P25:=F:ACCUMULATE; 
F3_P27:=F:FIX; 
F3 P28:=F:XOR; 
F3_P65:=F:XROTATE; 
CONN F3_P1<2>:<1>F3 P22; 

CONN F3 P1<2>:<1>F3 P65; 
CONK F3_Plc2>:c5>F3 P1; 

CONN F3 P22<1>:cl>F3 P23; 
CONN F3 P25c1>:cl>F3 P27; 
CONN F3 P27c1>:<1>F3 Pl; 
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CONK F3 P28<1>:<6>F3 P1; 
CONK F3_P28c1>:c2>F3_P28; 
CONK F3_P65c1>:<1>Ba11.Rot; 
SEND FIX(0) TO c2>F3_P1; 
SEND FALSE TO c3>F3_Pl; 
SEND FIX(1) TO c4>F3_P1; 
SEND FIX(0) TO <5>F3 P1; 
SEND FALSE TO c6>F3_P1; 
SEND FIX(1) TO cl>F3_Pl; 
SEND FALSE TO <1>F3 P23; 
SEND TRUE TO c2>F3 P22; 
SEND TRUE TO c~>F3 P23; 
SEND 1 TO c2>F3_P25; 
SEND 1 TO <3>F3 P25; 
SEND 10 TO c4>F3 P25; 
SEND 60 TO <5>F3 P25; 
SEND 1 TO c6>F3_P25; 
SEND FALSE TO c2>F3 P28; 
{ Framel:M2$F1 } 
{ Box Size } 
M2$F1_P1:=F:ACCUMULATE; 
M2$F1_P2:=F:XVECTOR; 
M2$Fl_P3:=F:YVECTOR; 
M2$F1_P4:=F:ZVECTOR; 
M2$F1 PS:=F:CONSTANT; 
M2$F1_P6:=F:NOP; 
CONK M2$Fl_P2cl>:cl>M2$F1_Pl; 
CONN M2$F1_P3cl>:<1>MZ$F1 P1; 
CONN M2$Fl_P4cl>:cl>M2$F1 P1; 
CONK M2$F1_PScl>:c2>M2$Fl_Pl; 
SEND V3D(.01,.01,.01) TO c6>M2$Fl_P1; 
SEND 1 TO c4>M2$Fl_P1; 
SEND V3D(l,l,l) TO c2>M2$Fl_Pl; 
SEND V3D(l,l,l) TO c2>M2$F1 P5; 
SEND V3D(1,1,1) TO c5>M2$F1_Pl; 
SEND V3D(1,1,1) TO <1>M2$F1 P6; 
SEND 0 TO <3>M2$F1 P1; 
{ Box/Ball Size:F4 } 

F4_P31:=F:SUBC; 
F~+ P 3 2 : =F :SCALE ; 
F4_P33:=F:PARTS; 
F4_P34:=F:PARTS; 
F4_P35:=F:MULC; 
F~+ P44 : =F : DSCALE ; 
F4_P45:=F:VEC; 
F4_P46:=F:VEC; 
F~+ P4 7 : =F :FETCH ; 
VAR Box Size; 
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CONK M2$F1_P1cl>:<1>F4 P32; 
CONK M2$F1_P1<1>:<1>F4 P31; 
CONK M2$F1_Plcl>:cl>Box Size; 
CONK M2$F1_P5<1>:<1>F4 P32; 
CONN M2$Fl_P5c1>:cl>F4 P31; 
CONN M2$F1_P5<1>:cl>Box Size; 
CONK M2$F1_P6cl>:cl>F4 P32; 
CONN M2$F1_P6c1>:cl>F4 P31; 
CONK M2$F1_P6<1>:<1>Box Size; 
CONK F4_P31c1>:<1>F4_P33; 
CONN F4_P31c1>:cl>F4_P35; 
CONN F4_P32c1>:cl>Box; 
CONN F4_P35c1>:cl>F4 P34; 
CONN F4_P44c1>:c1>Ball.Scale; 
CONN F4_P44c2>:c3>F4 P44; 
CONN F4_P44c2>:cl>F4_P45; 
CONK F4_P44c2>:<2>F4 P45; 
CONN F4_P44c2>:c2>F4_P46; 
CONK F4_P45c1>:cl>F4 P46; 
CONN F4_P46c1>:cl>F4 P47; 
CONK F4_P46c1>:c2>F4_P31; 
CONN F4 P47c1>:cl>F4 P31; 
SEND V3D(1,1,1) TO cl>Box_Size; 
SEND 'Box Size' TO c2>F4 P47; 
SEND .OS TO c5>F4 P44; 
SEND 1 TO <4>F4 P44; 
SEND .l TO c2>F4_P44; 
SEND .1 TO c3>F4 P44; 
SEND V3D(.1,.1,.1) TO c2>F4_P31; 
SEND —1 TO c2>F4_P35; 
{ Path:FS } 
FS_P49:=F:CBROUTE; 
FS_P50:=F:XOR; 
CONK FS_P49c1>:cappend>Path; 
CONK F5_P50c1>:c2>FS_P50; 
CONK FS_PSOcl>:cl>F5_P49; 
SEND TRUE TO <2>F5 P50; 
SEND TRUE TO cl>FS P49; 
{ Labels:Fb } 
SEND 'RESET' TO <1>FLABELII; 
SEND 'STRT/STP' TO cl>FLABELIO; 
SEND 'SLOWER' TO cl>FLABEL4; 
SEND 'FASTER' TO cl>FLABEL3; 
SEND 'CLR PATH' TO cl>FLABEL2; 
SEND 'TRACE?' TO cl>FLABELl; 
SEND 'BALLSIZE' TO cl>DLABEL8; 
SEND 'Z VEL' TO cl>DLABEL7; 
SEND 'Y VEL' TO cl>DLABEL6; 
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SEND 'X VEL' TO cl>DLABEL5; 
SEND 'OS Y ROTATE' TO <1>DLABEL4; 
SEND 'Z SIZE' TO cl>DLABEL3; 
SEND 'Y SIZE' TO cl>DLABEL2; 
SEND 'X SIZE' TO <1>DLABELI; 
{ Framel:F1 } 
Fl_P48:=F:DYROTATE; 
CONK DIALScl>:cl>M2$F1 P2; 
CONK DIALS<2>:cl>M2$F1 P3; 
CONK DIALS<3>:<1>M2$F1 P4; 
CONK PTALSc4>:cl>F1_P48; 
CONK DIALScS>:cl>F2_P41; 
CONN DIALSc6>:<1>F2 P42; 
CONK DIAL~~7>:<1>F2 P43; 
CON? DIALSc8>:<1>F4 P44; 
CONK Ml$Fl_P2<1>:<1>F5 P50; 
CONN M1$Fl_P2<2>:cclear>Path; 
CONK Ml$Fl_P2c3>:cl>F3_P25; 
CONK M1$Fl_P2<4>:<1>F3 P25; 
CONN M1$Fl_P2c10>:cl>F3_P28; 
CONK M1$F1 P2c11~:c1>M2$F1 P5; 
CONK FKEYScl>:<13>Ml$F1 P1; 
CONN FKEYScl>:cl>Ml$Fl P2; 
CONK F1_P48c1>:<1>Collision.Yrot; 
CONK F2_P2cl>:cl>F3_P23; 
CONK F2_P39<1>:<2>F5 P49; 
CONK F3_P23<2>:cl>F2 P2; 
CONK F4 P33c1>:c2>F2 P6; 
CONK F4_P33<2>:<2>F2 P7; 
CONK F4 P33c3>:c2>F2 P8; 
CONN F4_P34c1>:<3>F2 P6; 
CONN F4 P34c2>:c3>F2 P7; 
CONN F4_P34c3>:c3>F2_P8; 
SEND 2 TO <4>M1$F1 P1; 
SEND —2 TO c3>M1$Fl_P1; 
SEND FIX(10000) TO <2>Ml$F1 P1; 
SEND 200 TO c3>F1_P48; 
SEND 0 TO c2>F1 P48; 



SAMPLE PROGRAMS — 25 

1 

Figure 2. COLLISION.FUN (Sheet 1 of 6) 
(Function Network for COLLISION.300) 
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Figure 2. COLLISION.FUN (Sheet 3 of 6) 
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Figure 2. COLLISION.FUN (Sheet 6 of 6) 
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PROJECTN.300 

Programmed by: Neil Jon Harrington 
Software Support Specialist 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: July, 1982 
Last update: February, 1985 

Demonstrate X,Y, and Z planar projections using Matrix_3x3 command. The vector list 
data node for SPHERE, which is referred to in this structure, is not included in this file. 

INIT DISP; 
DISP Projection; 

Projection := BEGIN S 
CHAR SCALE .65; 
FONT Complex_Roman; 
INST Isometric_View; 
WINDOW x=-7.2:7.2 y=-7.2:7.2.; 
INST Front_View,Side_View,Top_View; 

END S; 

Front_View := BEGIN S 
VIEWPORT HOR=-1:0 VERT=-1:0; 
LOOK AT 3,2,0 FROM 3,2,-12 THEN Object; 

END S; 

Side_View := BEGIN S 
VIEWPORT HOR=0:1 VERT=-1:0; 
LOOK AT 0,2,3 FROM 12,2,3 THEN Object; 

END S; 

Top_View := BEGIN_S 
VIEWPORT HOR=-1:0 VERT=0:1; 
LOOK AT 3,0,1 FROM 3,12,1 THEN Object; 

END S; 
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Isometric_View := BEGIN S 
VIEWPORT HOR=0:1 VERT=0:1; 
WINDOW x=-7:9 y=-7:9; 

Rot := ROT 0; 
ROT X -30; 
ROT Y 40 THEN Object; 

END S; 

Object := BEGIN_S 
SET COLOR 240,1; 
SCALE 8 THEN WS Gnomon; 
SET COLOR 0,0; 
INST G1obe,Xplane,Yplane,Zplane; 

END S; 

Globe := BEGIN S 
Rot := ROT 0; 

SCALE 1.5; 
SET COLOR 0,1 THEN Sphere; 
SET COLOR 120,1; 
SCALE 1.5 THEN Os Gnomon; 

END S; 

Xplane := BEGIN_S 
TRAN 5,0,0; 
INST Xprojection_Matrix; 
ROT Y -90; 
INST Square; 
LABELS -2.5,-2.5 'YZ Plane'; 

END S; 

Yplane := BEGIN_S 
TRAM 0,5,0; 
INST Yprojection_Matrix; 
ROT X 90; 
INST Square; 
LABELS -2.5,-2.5 'XZ Plane'; 

END S; 

Zplane := BEGIN_S 
TRAM 0,0,-5; 
INST Zprojection_Matrix,Square; 
LABELS -2.5,-2.5 'XY Plane'; 

END S; 

XProjection_Matrix := MATRIX_3X3 0,0,0 
0,1,0 
0,0,1 THEN Globe; 
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YProjection_Matrix := MATRIX_3X3 1,0,0 
0,0,0 
0 , 0 , l THEN Globe ; 

ZProjection_Matrix := MATRIX_3X3 1,0,0 
0,1,0 
0,0,0 THEN Globe; 

Square := VEC n=5 3,3 -3,3 -3,-3 3,-3 3,3; 

WS_Gnomon := BEGIN_S 
TEXT SIZE .05; 
SET CHARACTERS Screen Oriented; 
FONT Triplex_Roman; 
LABELS 
l.l,-.05 'Wx' 
-.05,1.1 'Wy' 
-.05,-.05,1.1 'WZ'i 

VEC ITEM n=5 P 0,.8,0 L 0,0,0 L .8,0,0 
P 0,0,0 L 0,0,.8; 

TRAM .8,0 THEN Xarrow; 
TRAM 0,.8 THEN Arrow; 
TRAM 0,0,.8 THEN Zarrow; 

END S; 

Xarrow := ROT z -90 THEN Arrow; 
Arrow := SCALE .025,.2,.025 THEN Pyramid; 
Zarrow := ROT x 90 THEN Arrow; 

OS_Gnomon := BEGIN_S 
CHARACTER SCALE .0375; 
SET CHARACTERS Screen Oriented; 
FONT Triplex_Roman; 
LABELS 
1.1,-.05 'Ox' 
-.05,1.1 

'oy' 

-.05,-.05,1.1 'Oz'; 
WITH PATTERN 1 1 LEN .1 
VEC ITEM n=5 P 0,.8,0 L 0,0,0 L .8,0,0 
P 0,0,0 L 0,0,.8; 

TRAM .8,0 THEN Xarrow; 
TRAM 0,.8 THEN Arrow; 
TRAM 0,0,.8 THEN Zarrow; 

END S; 

Pyramid := VEC BLOCK ITEM n=10 
P 1,0, 1 L -1,0,1 L-1,0,-1 L 1,0,-1 L 1,0,1 L 0,1,0 L 1,0,-1 

P -1,0,-1 L 0,1,0 L -1,o,l; 
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PROJECTN.FUN 

Program med by: Neil Jon Harrington 
Software Support Specialist 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: July, 1982 
Last update: February, 1985 

Demonstrate X,Y, and Z planar projections using Matrix_3x3 command. The vector list 
data node for SPHERE, which is referred to in this structure, is not included in this file. 

{ Code generated by Network Editor 1.07 } 

{ PROJECTN } 
{ Frame-Prefix Macro-Prefix } 
{ Framel:M2$F1 } 

M2$F1 P1:=F:MULC; 
M2$F1 P2:=F:MULC; 
M2$F1 P3:=F:MULC; 
M2$F1 P4:=F:XROTATE; 
M2$F1 PS:=F:YROTATE; 
M2$F1 P6:=F:ZROTATE; 
CONK M2$F1 P1<1>:<1>M2$F1 P4; 
CONK M2$F1 P2<1>:<1>M2$F1 P5; 
CONK M2$F1 P3<1>:<1>M2$F1 P6; 
SEND 200 TO <2>M2$F1 P2; 
SEND 200 TO <2>M2$F1 Pl; 
SEND 200 TO <2>M2$F1 P3; 
{ Framel:M1$F1 } 

{World Space Rotations} 
M1$F1 P2:=F:CMUL; 
M1$FI P3:=F:CONSTANT; 
CONK M2$F1 P5<1>:<2>M1$F1 P2; 
CONK M2$F1 P4<1>:<2>M1$F1 P2; 

CONK M2$F1 P6<1>:<2>M1$F1 P2; 
CONK M1$F1 P2<1>:<1>M1$F1 P2; 
CONK M1$Fl P3<1>:<1>M1$F1 P2; 
SEND M3D(1,0,0 0,1,0 0,0,1) TO <2>M1$F1 P3; 
SEND M3D(1,0,0 0,1,0 0,0,1) TO <1>M1$F1_P2; 
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{ Framel:M3$F1_ } 
M3$F1_P1:=F:INPUTS_CHOOSE(13); 
M3$F1_P2:=F:ROUTE(12); 
CONN M3$Fl_P1<1>:<2>M3$F1 P2; 
SEND TRUE TO <1>M3$F1 P1; 
SEND TRUE TO c2>M3$F1 P1; 
SEND TRUE TO <3>M3$F1 P1; 
SEND TRUE TO c4>M3$Fl_P1; 
SEND TRUE TO <5>M3$F1 P1; 
SEND TRUE TO <6>M3$F1 P1; 
SEND TRUE TO <7>M3$F1 P1; 
SEND TRUE TO <8>M3$F1 P1; 
SEND TRUE TO c9>M3$Fl_Fl; 
SEND TRUE TO <10>M3$F1 P1; 
SEND TRUE TO <11>M3$F1 P1; 
SEND TRUE TO <1-,2>M3$F1 P1; 
{ Labels:F2_ } 
SEND 'RESET' TO cl>FLABELII; 
SEND 'OS ROT' TO cl>FLABEL2; 
SEND 'WS ROT' TO <1>FLABELI; 
.SEND 'OBJ ZROT' TO <1>DLABEL7; 
SEND 'OBJ YROT' TO cl>DLABEL6; 
SEND 'OBJ XROT' TO <1>DLABEL5; 
SEND 'VIEWZROT' TO cl>DLABEL3; 
SEND 'VIEWYROT' TO cl>DLABEL2; 
SEND 'VIEWXROT' TO cl>DLABELl; 
{ Framel:F1 } 
Fl_P2:=F:CROUTE(2); 
Fl_P3:=F:MULC; 
F1 P~+:=F:MULC; 
Fl_PS:=F:MULCT 
F1_P6:=F:XROTATE; 
Fl_P7:=F:YROTATE; 
Fl_P8:=F:ZROTATE; 
F1_P9:=F:CMUL; 
Fl_P10:=F:MULC; 
F 1 P 1 ~+ : =F :CONSTANT ; 
CONN Ml$F1_P2<1>:<1>Isometric_View.Rot; 
CONN Ml$Fl_P3<1>:<1>Isometric_View.Rot; 
CONK F1_P2c1>:<2>F1_P9; 
CONK F1_P2c2>:cl>F1_P10; 
CONK F1_P3cl>:<1>F1_P6; 
CONK Fl_P4c1>:cl>F1_P7; 
CONN F1_P5cl>:<1>F1_F8; 
CONN F1_P6c1>:c2>F1_F2; 
CONN F1_P7cl>:c2>F1_P2; 
CONN Fl_P8cl>:<2>F1_P2; 
CONK Fl_P9cl>:<1>G1obe.Rot; 
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CONK F1_P9<1>:<2>F1 P10; 
CONN F1 P9<1>:cl>F1 P9; 
CONK F1 P10<1>:<1>F1 P9; 
CONK F1_PlOcl>:<1>Globe.Rot; 
CONN F1_P10<1>:<2>F1 P10; 
CONN M3$F1_P2c1>:cl>F1 P2; 
CONN M3$Fl_P2c2>:<1>F1 P2; 
CONK M3$F1_P2<11>:cl>F1 P14; 
CONN M3$Fl_P2c11>:<1>Ml$F1 P3; 
CONK FKEYScl>:<13>M3$F1 P1; 
CONN FKEYScl>:cl>M3$F1_P2; 
CONN DIALS<1>:<1>M2$F1 P1; 
CONK DIALSc2>:<1>M2$F1 P2; 
CON1V DIALS<3>:<1>M2$F1 P3; 
CONK DIALSc5>:<1>F1 P3; 
CONN DIALS<6>:<1>F1 P4; 
CONN DIALS<7>:<1>F1 P5; 
CONK F1_P1.4<1>:<2>F1 P10; 
CONN F1 P1~+<1>:<1>F1 P9; 
CONK F1 P1~+<1>:<1>G1obe.Rot; 
SEND FIX(2) TO c2>M3$F1_Pl; 
SEND FIX(1) TO cl>M3$F1 P1; 
SEND FIX(1) TO cl3>M3$Fl_P1; 
SEND FIX(1) TO cl>M3$Fl_P2; 
SEND M3D(1,0,0 0,1,0 0,0,1) TO c2>F1_P14; 

SEND M3D(1,0,0 0,1,0 0,0,1) TO cl>F1_P9; 
SEND M3D(1,0,0 0,1,0 0,0,1) TO <2>Fl_P10; 

SEND 200 TO c2>F1 P3; 
SEND 200 TO <2>F1 P~; 
SEND 200 TO c2>F1 P5; 
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Figure 3. PROJECTN.FUN (Sheet 1 of 2) 
(Function Network for PROJECTN.300) 
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TRISQUARE.300 

Programmed by: Neil Jon Harrington 
Software Support Specialist 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

r 

Created: December, 1983 
Last update: February, 1985 

Demonstration to transform four pieces from an equilateral triangle to a square and 
vice versa. Can be done either manually with the dials or automatically by starting a 
clock. The control network is in TriSquare.fun. 

INIT DISP; 
DISP TriSquare; 

TriSquare := BEGIN_S 
WINDOW X=-5:5 Y=-5:5; 
TRAM —2,2; 

Rot := ROT 0; 
SET COLOR 0,1 THEN Partl; 
TRAM 1,-1.268; 

P2_Rot := ROT 0; 
SET COLOR 90,1 THEN Part2; 
TRAM —1, —1.7 3 2 ; 

P3 Rot := ROT 0; 
SET COLOR 180,1 THEN Part3; 
TRAN —1.5,.866; 

P4_Rot := ROT 0; 
SET COLOR 240,1 THEN Part4; 

END S; 

PART1 := VEC n=5 0,.4641 —.5,—.4019 —.2857,-1.5151 1,-1.268 0,.4641; 

PART2 := VEC n=5 0,0 —1.2857,—.2471 —1,-1.732 1,-1.732 0,0; 

PART3 := VEC n=5 0,0 —.2142,1.1135 —1.5,.866 —2,0 0,0; 

PART4 := VEC n=4 0,0 1.2858,.2475 1,1.732 0,0; 
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TRISQUARE.FUN 

Programmed by: Neil Jon Harrington 
Software Support Specialist 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: December, 1983 
Last update: February, 1985 

Network to control the structure created by TriSquare.300. 

{ Code generated by Network Editor 1.07 } 
{ TRISQUARE } 
{ Frame-Prefix Macro-Prefix } 
{ Clock Motion:F2_ } 
{ first in que --- > } 
F2_P13:=F:EQC; 
F2_P14:=F:XOR; 
F2_P15:=F:CLFRAMES; 
F2_P16:=F:BROUTEC; 
F2_P17:=F:SYNC(2); 
CONK FKEYScl>:<1>FZ P13; 
CONK F2_P13c1>:<1>F2 P14; 
CONK F2_P14c1>:<2>F2 P14; 
CONN F2_P14c1>:c6>F2_P15; 
CONK F2_P15c2>:<5>F2 P15; 
CONK F2_P15c3>:cl>F2 P16; 
CONK F2 P16c2>:c2>F2 P15; 
CONK F2_P16c2>:cl>F2_P17; 
CONK F2_P17c2>:<4>F2_P15; 
CONK F2_P17c2>:<2>F2 P17; 
SEND FIX(1) TO c2>F2_P13; 
SEND FALSE TO <2>F2 P14; 
SEND FIX(-1) TO c2>F2 P17; 
SEND FIX(1) TO <2>F2 P17; 
SEND FIX(179) TO c2>F2_P16; 
SEND FIX(0) TO c5>F2 P15; 
SEND FIX(1) TO c4>F2 P15; 
SEND FALSE TO <3>F2 P15; 
SEND FALSE TO <6>FZ P15; 
SEND FIX(179) TO c2>F2_P15; 
SEND FIX(6) TO cl>F2 P15; 
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{ Labels:F3_ } 
SEND 'STRT/STP' TO <1>FLABELI; 
SEND 'JOINT 3' TO cl>DLABEL3; 
SEND 'JOINT 2' TO <1>DLABEL2; 
SEND 'JOINT 1' TO <1>DLABELl; 
{ Framel:Fl } 
Fl_P1:=F:ACCUMULATE; 
F1_P2:=F:ACCUMULATE; 
F1_P3:=F:ACCUMULATE; 
Fl P~+ : =F : ZROTATE ; 
F1_PS:=F:ZROTATE; 
Fl_P6:=F:ZROTATE; 
CONK F1_Plcl>:<1>F1 P4; 
CONN Fl_P2<1>:<1>Fl P5; 
CONK F1_P3c1>:cl>Fl P6; 
CONN Fl_P4c1>:<1>Trisquare.P2_Rot; 
CONN Fl_P5c1>:<1>Trisquare.P3_Rot; 
CONN F1_P6c1>:cl>Trisquare.P4_Rot; 

CONN DIALS<1>:c1>F1 P1; 
CONK DIALSc2>:cl>F1 P2; 
CONK DIALSc3>:<1>F1 F3; 
CONK F2_P15c2>:c1>F1 P4; 
CONK F2_P15<2>:<1>F1 P5; 
CONN F2_P15c2>:cl>F1 P6; 
SEND 180 TO c5>F1 P1; 
SEND 180 TO <5>F1 P2; 
SEND 180 TO c5>F1_P3; 
SEND 200 TO c4>F1_P1; 
SEND 200 TO <~4>F1 P2; 
SEND 200 TO c4>Fl_P3; 
SEND 0 TO c2>Fl_P1; 
SEND 0 TO c3>F1_Pl; 
SEND 0 TO c6>Fl_P1; 
SEND 0 TO <2>F1 P2; 
SEND 0 TO c3>F1_P2; 
SEND 0 TO c6>F1_P2; 
SEND 0 TO c2>F1_P3; 
SEND 0 TO c3>F1_P3; 
SEND 0 TO c6>F1 P3; 
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Figure 4. TRISQUARE.FUN (Sheet 1 of 3) 
(Function Network for TRISQUARE.300) 
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Figure 4. TRISQUARE.FUN (Sheet 3 of 3) 
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PROGRAM SetRate CInput,0utput); 

Programmed by: Neil Jon Harrington 
Software Support Specialist 
Evans & Sutherland 
P.O. Box 8700 
Salt Lake City, Utah 84108 

Created: November, 1984 
Last update: February, 1985 

PS 300 Set Rate programming example using the GSRs. Pascal version of 
BLKLEVF.FOR created originally by A. Kerry Evans. To run this program compile it 
and link it with the Pascal GSR library. 

This program creates a PS 300 display structure that has many SET RATE nodes 
cascaded by offsetting the starting time of each SET RATE node. This structure is 
another way to create an animated sequence on the PS 300. A function network is not 
needed, since the PHASE attribute value is modified by the DISPLAY PROCESSOR as a 
function of the number of times a SET .RATE node is traversed. 

CONST 
DTheta = '0.1745329; { PI/18 } 

INCLUDE 'gsrlib:ProConst.pas/nolist' 

TYPE 
9oINCLUDE 'gsrlib:ProTypes.pas/nolist' 

VAR 
Theta 
Tran 
I 
Vecs 
Front 
Name 

REAL; 
P_VectorType; 
INTEGER; 
P_VectorListType; 
P VectorListType; 
P_VaryingType; 

INCLUDE 'gsrlib:ProExtrn.pas/nolist' 

PROCEDURE ErrHnd C Error INTEGER); 
BEGIN 

WRITELN C 'Error: ' ,Error:3); 
END; { ErrHnd } 
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PROCEDURE Calc Wave; 
VAR 

I,J INTEGER; 
VecNum INTEGER; 
VecNum2 : INTEGER; 

BEGIN 
VecNum :_ -1; 
FOR I := 0 TO 49 DO BEGIN 

VecNum := VecNum + 2; 
VecNum2 := VecNum + 1; 

Vecs[VecNum].v4[1] := I/50; 
Vecs [VecNum] .v4 [ 2] : = 0.8~~EXP (-0.02~I)~'~COS (Theta-0.2513274123*I) ; 
Vecs[VecNum].v4[3) := 0; 
Vecs[VecNum].v4[4] := 1 - I/150; 

Vecs[VecNum2].v4[1] := Vecs[VecNum].v4[1); 
Vecs[VecNum2].v4[2] := 0; 
Vecs[VecNum2].v4[3] := 0.5; 
Vecs [VecNum2] .v4 [4] : = Vecs [VecNum] .v4 [4] ; 

FOR J : = 1 TO ~+ DO 
Front[I+1].v4[JJ := Vecs[VecNum].v4[J]; 

END; { FOR I } 
END; { Calc Wave } 

BEGIN 
PAttach ('LogDevNam=tt:/PhyDevTyp=async',ErrHnd); 

PInitC (ErrHnd); 
PInitD (ErrHnd); 

PTransBy ('Sine_Wave',Tran,'Inst',ErrHnd); 
PInst ('Inst', " ,ErrHnd); 
Theta :_ -DTheta; 
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FOR I ;= 10 TO 46 DO BEGIN 
Theta := Theta + DTheta; 
WriteV (Name,'VecList',I:2); 
WRITELN (Name); 
Calc Wave; 
PBeginS (Name, ErrHnd); 

PSetR (",1,35,FALSE,I," ,ErrHnd}; 
P If Phase (" ,TRUE, " ,ErrHnd) ; 
PVecBegn (",100,TRUE,FALSE,3,P_Sepa,ErrHnd); 
PVecList (100,Vecs,ErrHnd); 
PVecEnd (ErrHnd); 
PVecBegn (" ,50,TRUE,FALSE,3,P Conn,ErrHnd); 
PVecList (SO,Front,ErrHnd); 
PVecEnd (ErrHnd); 

PEndS (ErrHnd); 
PIncl (Name,'Inst',ErrHnd); 

END; { FOR I } 

PDisplay ('Sine Wave',ErrHnd); 
PDetach (ErrHnd); 

END. { SetRate } 





GLOSSARY OF TERVS 

This glossary contains definitions of terms that might be unfamiliar to a novice graphics 
programmer. It also contains terms that are specific to the PS 300 Graphics Systems. 

Active Input -- An active input (or active queue) is one of two types of function input 
queues. Data arrive at an active queue and are input to a function on a 
first-in-first-out basis as soon as the function is activated. The data on active queues 
are consumed by the function. 

Arithmetic Control Processor (ACP) -- This is a subsystem in the PS 300's Display 
Processor. The ACP includes a microprocessor that performs arithmetic and logical 
functions on data in Mass Memory. The ACP traverses display trees, performs matrix 
multiplication (rotation, scaling, and windowing), applies the matrix to the data nodes, 
and outputs the transformed coordinates of the data to the Pipeline Subsystem. 

Aspect Ratio -- This ratio is the relationship of height to width. The aspect ratios of 
windows and viewports must be the same, or objects will appear distorted on the screen. 

Attribute (Attribute node) -- An attribute is a characteristic that can be applied to 
data in a manner similar to a transformation. Attributes, unlike transformations, do 
not affect the location, orientation, size, or vector definitions associated with an 
object. They are non-matrix operations. They set and change characteristics of the 
displayed image, such as depth clipping, enabling picking and blinkir ~, intensity, or the 
color of an object. An attribute command creates an operation node. This node 
changes a bit setting in the ACP save-state block, rather than affecting the contents of 
the current transformation matrix. Attribute nodes normally accept a Boolean value 
and/or integers. 

B-splicle -- A B-spline is a mathematical representation of a curve which 
approximates and interpolates a specif ied set of points. 

Baekfaee Removal -- Backface removal is an intermediate step in hidden-line 
removal. It removes all polygons facing away from the viewer. 

131oek-normalized Vectors -- When the components of all coordinate locations 
(vectors) that comprise an object have a common exponent, they are said to be 
block-normalized vectors. 

Break Key -- A break key is used to send a break sequence to the host system. The 
break key for PS 300/host communications (using the VT-100 Terminal Emulator) is 
defined by the user in the SETUP mode of the keyboard. 
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Calligraphic -- Calligraphic is a term used to describe a method of displaying dots, 
characters, and lines on a CRT screen. It is also referred to as random stroke. In 
contrast to the raster display of a typical TV screen, the electron gun traces the 
displayed lines from endpoint to endpoint and does not scan each screen location every 
refresh cycle. 

Character Follt -- A character font is a set of characters of a particular style. A 
standard 128 ASCII character set is provided with the PS 300 graphics system as the 
Standard Font. Different fonts can be used instead of, or as a supplement to, the 
standard font, by using the BEGIN_FONT ... END_FONT and CHARACTER FONT 
commands. 

Cl~araeters Node -- A characters node is a data node that consists of a single string 
of up to 240 characters. These nodes are created by the CHARACTERS command. 

Clipping' -- Clipping is a viewing operation that removes from the screen display lines 
or parts of lines that are outside of the viewing area (window). If lines were not 
clipped, they would wrap back onto the display. 

ComlYiand Interpreter (CI) -- The PS 300 command interpreter is a system function 
that is responsible for accepting a stream of tokens (messages) until it has enough to 
act on (a complete command). 

Command Mode -- The Command mode is also referred to as CI mode or local 
command mode and is one of three types of communication modes available on any 
style PS 300 keyboard. Command mode implies that data entered locally (as opposed to 
data received from the host) are to be routed to the command interpreter. Command 
mode displays the "~ ~" prompt on the screen. 

Colnm~ulicatioll Modes -- There are three communication modes available with the 
PS 300 terminal emulator; Terminal Emulator mode (TE), Command mode (CI), and 
Interactive or Graphics mode (KB). 

Compo~ulded Reltderi~ig's -- A rendered object that has had another rendering 
operation applied to it is said to be a compounded rendering. 

COIld1t10IlaI Re~erenein~ -- Conditional referencing is the referencing of data only 
when certain conditions are met. Conditional referencing is set up in a display tree by 
creating SET nodes which set any of fourteen conditional bits. IF nodes are placed 
further down in the display tree to test for the condition set above. Data is referenced 
if the condition is met. 

Constal~t Ilipiit -- A constant input queue is an input of a function where only the last 
message entered in the queue is input to the function. A message in a constant input 
queue will be used and reused until another message is queued on that input to replace 
it. 
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Contrast -- Contrast is the difference in intensity from brightest to dimmest (near to 
far) of the lines that compose an image. Contrast is used to impart the illusion of depth 
in an object. 

Control Dials -- The Control Dials Unit is one of the PS 300's interactive devices. It 
consists of a bank of eight dials which can be programmed to control the orientation of 
objects displayed on the screen. The dials send_ out numbers which are used as input to 
function networks. The numbers are converted through the network to matrices which 
update translation, rotation, and scale nodes in a display tree. 

Cotltrol Key -- The Control Key (CTRL) on the PS 300 keyboard generates a control 
sequence and is used in conjunction with other keys. Control Key sequences are used in 
PS 300/host ANSI control and escape sequences. The character 'T' is used to represent 
the control value of a key (the sequence that is generated when the Control Key is 
pressed and a second key is pressed). 

Coordi~tate Systettt -- All mathematical information that the designer enters to 
create an object must be given in terms of athree—dimensional coordinate system. A 
coordinate system is a way of specifying athree—dimensional space in which objects can 
be modeled. The coordinate system used in programming the PS 300 is aleft—handed 
Cartesian coordinate system, usually referred to as the "world coordinate system." 

Coplanar -- For polygons, coplanar denotes that polygons have the same plane 
equation. This equation is used in the PS 340 system to associate inner and outer 
contours. 

CroSS SeCtlOt1111g' -- Used in programming the PS 340, this rendering operation makes 
use of a defined sectioning plane to create a cross section of an object. When this 
operation is used, both sides of the object are discarded and only the slice defined by 
the sectioning plane remains. 

Ctirreilt Traj1s~orlYtatioll Matrix (CTM) -- When a series of transformations are 
applied to graphical data, the matrices are concatenated. This means that each matrix 
is pre-multiplied to a matrix called the current transformation matrix. The current 
transformation matrix contains the accumulation of all transformations that are to be 
applied to graphical data and preserves the order in which they are to be applied. 

Data Node -- Data nodes are terminal nodes for the branches of a display tree. Data 
nodes can contain vector lists, polygons, curves, and text. They are represented as 
squares in a display tree. 

Data St.rtietlire -- See misplay tree. 

rata Strueturi~ig° Cotninalids -- These commands build or affect display trees. They 
create structures that are stored in Mass Memory for later execution by the Display 
Processor. Data structuring commands are not "saved" as files on the PS 300. 
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Data Tablet -- The data tablet is one of the interactive devices, commonly used with 
the PS 300. It is a f lat board used for inputting data, for pointing, and for picking items 
from a graphics display. A data tablet typically provides two—dimensional positioning 
data and is used in conjunction with a stylus or a puck. 

Demultiplexillg' -- Demultiplexing is a communication operation where one input 
accepts data from many sources, all of which have the same destination. A 
demultiplexing operation can be performed by a port or a function. 

Depth Clipping -- Depth clipping is a viewing operation that clips from the display 
objects or parts of objects which extend beyond the Z (or depth) plane of a viewing 
area. This is also known as Z—clipping. 

Depth Cueing -- This operation imparts an illusion of depth to the image of a 
three—dimensional object by decreasing the intensity of lines as they "recede" into the 
distance (i.e., in positive Z). 

Diffuse -- In shading polygons, this attribute is used to specify the proportion of 
color contributed by diffuse reflection versus that contributed by specular reflection. 

Display -- As a verb, display refers to the visibility of a graphical object on the 
graphicG terminal screen. As a noun, display is used to refer to the terminal screen, 
(i.e., PS 300 Display). "Display" is also used as a modif ier; display tree, display 
structure, etc. 

Display Data Structure -- See Display tree. 

Display List -- The display list contains the names of all display trees that are 
currently being traversed for display. Whenever anything is displayed, its name goes on 
the display list. 

Display Processor (DI') -- The Display Processor traverses display trees in Mass 
Memory and processes the data for display. The Display Processor transforms the data 
to be displayed; performs clipping, perspective projection, and viewport mapping. 

Display Tree -- A display tree represents the structure of an object in mass memory. 
Display trees are a hierarchical ordering of instance nodes, operation nodes, and data 
nodes. They contain primitives and the transformations and attributes which are 
applied to them. The Display Processor traverses the display tree of any object in the 
display list. 

Distribtit.ed Crap~lics -- Distributed graphics allows the graphical portion of an 
application to be performed by the graphics system, without burdening the host 
computer. 

Ex-pos~~re -- Exposure is a shading parameter that controls the overall brightness of 
an object displayed on the PS 340 raster display. 
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Field-of-view Angle -- The field-of-view angle is the angle at the apex of the 
viewing pyramid used to define a perspective viewing area. This angle is used as a 
parameter of the FIELD_OF_VIEW command. 

Flat S~lading -- Flat shading is applied to objects on a PS 340 raster display. This 
process uses color, one light source, and depth cueing to shade the polygons in the 
object accordingly. Flat shading can produce objects that simulate a f aceted surf ace. 

Frustum -- This is a section of a viewing pyramid that is obtained by slicing through 
the pyramid parallel to the base. The frustum encloses a portion of the world 
coordinate system. Any objects contained in the frustum will be displayed in 
perspective projection on the screen. 

Fultetion -- A function is a procedure that performs one or more operations by 
accepting input, processing input, and sending output. The PS 300 has three types of 
functions: intrinsic functions, initial function instances, and user-written functions. 

Ftinetio~l Insta~lee -- A function instance is a specific case of an intrinsic function 
that is created and named by the user when the need for a particular function arises. A 
function instance has a set of input sources and output destinations, specified by the 
user. Function instances are combined into function networks. 

FulletioIl Keys -- The PS 300 Function keys are the top row of keys on any style 
PS 300 Keyboard. These keys are number F 1 through F 12. The character generated by 
any function key is dependent on the mode of the keyboard. Function keys are 
generally used to provide inputs to function networks. They are also used in the SETUP 
mode of the keyboard. 

Ftuletiojl Network -- A function network is a collection of interconnected function 
instances. Function networks are the programmed path between an interactive device 
and an interaction node in a display tree, or between the PS 300 and the host. One end 
of a function network is usually connected to a node in a display tree and the other end 
to the port associated with an interactive device or the host computer. 

Geometry -- The geometry of an object is the location in the coordinate system of 
the points that define the object. 

Graph Key -- The GRAPH key is a toggle key on the left-hand keypad of any style 
PS 300 keyboard. Pressing the GRAPH key displays or blanks pictures on the PS 300 
screen. 

Graphics Colrimand I.a.jig~~ag'e -- A graphics command language is the user-interface 
to a graphics system. It is a high-level set of commands and instructions specifically 
designed for graphical operations. 

Grap~lics CoTitrol Processor (GCP) -- The GCP serves as the central controller for 
the PS 300. It provides the interfaces to devices external to the system and manages 
all internal system communications. The GCP also controls the display trees in Mass 
Memory and initiates the display defined by these structures. 
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Graphics Support Routines (GSRs) -- The GSRs are a collection of Pascal routines or 
FORTRAN calls that pre-parse and package data on the host. There is a GSR routine 
that corresponds to almost every PS 300 command. 

Hardcopy Key -- The HARDCOPY key on the left-hand keypad of any style PS 300 
keyboard is used to activate the hardcopy plotter. If no plotter is attached to the 
system and the key is pressed, an error message is generated. 

Hidden Line -- In aline-drawing model, a hidden line is one which would be obscured 
by surfaces of the model. 

Hidden-line Removal -- This PS 340 rendering operation generates a view in whic~i 
only the unobstructed portions of an object are displayed. 

Hierarchical Data Structure -- A hierarchical data structure is a structure that is 
arranged in such a way that a hierarchical order is maintained between what precedes 
and what follows any element in the structure. Complex models are designed as a 
hierarchical structure called a display tree. 

Hierarchy -- A hierarchy is a principled organization of components. The organizing 
principle will vary depending on the relationship between components which the 
hierarchy is designed to show. 

I/O Suhroutiiles -- The PS 300 I/O Host-Resident Subroutines (PSIOs) are callable 
FORTRAN subroutines designed to aid in host/PS 300 communications. 

Identity Matrix -- An identity matrix is composed of ones and zeros, with the ones 
running in a diagonal (top left to bottom right). Multiplying by an identity matrix is the 
equivalent of multiplying by one: nothing changes. The current transformation matrix 
(CTM) starts out as an identity matrix each time a display tree is traversed. 

Illumination -- This attribute is used with the PS 340 raster system to specify light 
sources applied to a shaded object. 

Immediate Action Commands -- These commands cause an immediate result when 
received by the system. Immediate action commands perform such actions as 
initializing, naming, and displaying data. 

Initial Function I~lsta~iee -- An initial function instance is a function that is 
automatically instanced for use upon system initialization. Such a function may be 
system-connected into an initial function network or user-connected to a user function 
network. Examples of initial function instances are DIALS, TABLETIN, PICK, HOST 
MESSAGE. Unlike intrinsic functions, initial function instances are not preceded by 
"F:" and are not named by the user. 

Initial Structure -- Initial structures are structures which are loaded into memory 
with the PS 300 firmware. When the PS 300 is initialized, two initial structures are 
loaded. CURSOR defines the cursor as an 'X', and PICK_LOCATION identifies the 
pick-sensitive area as the center of the cursor. 
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Ruler Colitotlr -- The inner contour of a polygon represents a cavity, hole, or 
protrusion site in an object. 

Illstanee -- An instance is a specific reference to any nameable entity. There is an 
INSTANCE command which creates instance nodes in the display tree. Intrinsic 
functions must be "instanced" (uniquely named) before they can be used in a function 
network using the NAME:= function_name; command. 

Ilistanee Nodes -- Instance nodes group primitives, transformations, and attributes 
into single-named entities. They are represented as triangles in a display tree. 

I~lteraetive Devices -- Interactive devices (also referred to as peripheral devices) 
provide programmable interactive capabilities that allow an operator to interact with 
graphical data on the screen. These devices include, but are not restricted to, the 
control dials, a data tablet, the keyboard, and function buttons. 

Intrinsic F~netions -- Intrinsic functions are the set of nameable functions that are 
provided for constructing function networks. These functions have the 'F:' prefix and 
must be instanced (i.e.., given a unique user-defined name) before they can be used in a 
function network. 

Labels -- Labels are data nodes that consist of a block of several character strings. 

Left-hand Rule -- The left-hand rule is a mnemonic for the direction of rotation 
around an axis in the PS 300's world coordinate system. Point the thumb of your left 
hand in the positive direction of any axis, and your fingers will curl in the direction of 
positive rotation. 

Level-of-detail -- Level-of-detail settings are attributes that allow data to be 
conditionally referenced for display based on a level-of-detail setting. A SET node is 
created in a branch of a display tree to set the level-of-detail to a certain value. An IF 
node created lower down in the structure tests for the condition set above and displays 
data only if the condition is met. 

Lille Generator System (LGS) -- The LGS is the final subsystem in the Display 
Processor. After data have been processed in the Arithmetic Control Processor and the 
Pipeline Subsystem, the LGS converts the X,Y, and intensity information into analog 
signals that drive deflection and intensification circuitry in the PS 300 Display. 

Lille Local Key -- The LINE LOCAL key (located on the left-hand keypad) is used in 
conjunction with other keys to access the keyboard communication modes on the 
VT-100 style PS 300 keyboard. 

Local Aetioll -- Local action is the cumulative result of the operations of functions 
in a function network. Generally, a local action determines how an interactive device 
affects an image on the screen. 
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Look At/From -- The terms "look at" and "look from" in viewing operations are used 
to establish a line of sight in the world coordinate system. The PS 300 uses the line of 
sight to perform a matrix operation which transforms the coordinates of an object to 
produce the correct "view" on the screen. All points in the world coordinate system are 
translated and rotated to place the "from" point at the world coordinate system origin 
and the "at" point on the positive Z axis. 

Mass Memory -- Mass Memory is memory in which display structures are stored and 
managed by the Graphics Control Processor. These structures are accessed by the 
Display Processor through a dedicated port. Mass Memory also stores function 
instances, function connections, and function messages. 

Memory Alert -- There is a memory alert display area at the bottom of the PS 300 
Screen. This is connected to a system function that alerts a user by displaying the 
amount of existing memory whenever available memory drops below an acceptable level. 

Message -- A message is data input to and output from function instances. 

Message Data Type -- A message data type is the specific data type associated with 
a message to or from a function instance. Message data types include: Boolean, 
character, character string, integer, real, 2D vector, 3D vector, 4D vector, 2D, 3D, 4D 
position vector, 2D, 3D, 4D line vector, 2x2 matrix, 3x3 matrix, 4x4 matrix, and pick 
list. 

Modeling' -- Modeling is the process of defining graphical primitives and applying 
modeling transformations to them. These transformed and untransf ormed primitives 
are used as parts of complex models. 

Modeling' Traslsforinatiolls -- These transformations move primitives to a new 
location in the coordinate system or deform primitives to create new shapes. There are 
three modeling transformations: rotation, translation, and scaling. 

Multiplexing -- A multiplexing operation can be performed by a port or a function. 
Multiplexing is a communication operation where one input accepts data from a single 
source and distributes the data to various destinations. 

Naming -- Naming is the process by which the user identifies a particular command 
or group of commands. Once a name has been given, all data specified by the 
commands) are referenced for use by referring to the assigned name. The name of 
entity is equivalent to its "address" in memory. 

Noel-luliform Sealing -- Non-uniform scaling consists of scaling an object by 
different amounts in different dimensions. 

Normal -- Normals are used with shaded renderings and are given with each vertex of 
the polygon specified N X,Y,Z. The shaded-rendering process interpolates between 
these normals when rendering the polygon to generate a smooth shaded image. 
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Null U~jeet -- A null object is created when a name is referenced that has not 
previously been defined. 

Object Space Rotatioli -- An object is said to rotate in object space when it rotates 
around its own set of axes. 

Operation Nodes -- Transformations and attributes are represented by operation 
nodes in a display tree. They are represented as circles. Operation nodes can be used 
as points of interaction with a model. They can receive new values from interactive 
devices such as dials or the data tablet. Operation nodes which are set up as 
interaction points are shown as double circles in a display tree. 

Orthog~raphie Projeetioll -- Orthographic projection is the two-dimensional projection 
of a three-dimensional object in which lines that are parallel in the object always 
appear parallel, without regard to relative distance from the eye. This form of 
projection is also called parallel projection. 

Outer Collt.our -- The outer contour of a polygon represents a face of an object. 

Parallel Projeetioll -- See orthographic projection. 

Perspective Projeetioli -- Perspective projection is a viewing projection that allows 
spatial relations (distance and position) of three-dimensional objects to be represented 
as they might appear to the eye. Parallel lines in the object appear to converge with 
respect to relative distance or depth from the eye position. 

Picts Ic~e~ltieier -- A pick identifier (pick ID) is auser-assigned name that allows data 
to be reported as "picked". 

Pick I.i._~t -- A pick list is the information returned when a pick occurs. A pick list 
consists of an integer that represents the element of a vector list c ~~ a character in a 
string that was picked, and a list of pick identifiers. A pick list can optionally contain 
the picked coordinate location. 

I~lcttlIlg' -- Picking is the ability to indicate with a pointing device such as a stylus or 
light pen a displayed object or a portion of an object which is oriented in any manner. 
When some part of the displayed image is picked, the PS 300 generates a pick list which 
identifies the element picked. 

i'ickil~g' Locatiolt -- The picking., location is a region within a viewport. If a 
pick-sensitive entity (line, character, or dot) is within the pick location, it may be 
reported as having been picked. When the PS 300 is initialized, the pick location is 
established by the Initial Structure PICK_LOCATION as being the center of the 
displayed cursor. 

E'ipc~lil~e S~lbsystem (~'I.S) -- The PLS is a subsystem in the Display Processor. The 
PLS accepts transformed coordinate data from the Arithmetic Control Processor and 
performs clipping, perspective division, and viewport mapping on the data to be 
displayed. The processed data are then output to the Line Generator Subsystem in the 
form of X,Y locations and intensity values. 
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Pixel -- A pixel is a picture element. It is the smallest element which can be 
displayed on a raster display device. 

Polygon -- A polygon is a closed —plane figure defined by the coordinates of its 
vertices. The edges of the polygon are defined by lines that connect those vertices. In 
the PS 340, a polygon must have at least three vertices and no more than 250, all of 
which must lie in the same plane. 

Polygon Clause -- This part of the POLYGON command defines an individual polygon 
or face of an object by specifying the coordinates of its vertices. 

Polygotlal Defillitioll -- The polygonal definition of an object specifies the association 
of multiple points as parts of separate polygons. 

Primitive -- This is the simplest object in a graphical data base. It consists entirely 
of points and lines or planes. The points specify the geometry of the primitive, the 
lines or planes specify fiche topology. 

Quality Level -- Quality level is a shading parameter used with the PS 340. It 
controls the number of pixels over which filtering is applied. 

Raster -- Raster is or~~e technique used for producing an image on a CRT screen. 
Raster images are generated with an intensity controlled, line-by-line sweep across the 
screen, in contrast to calligraphic displays that trace only the displayed lines, dots, or 
characters. 

Raster SysteiYt -- The raster system is an option for the PS 340 system that consists 
of a printed circuit card which outputs static images to a pixel raster display. The 
raster system can be used as an "image buffer" to display host —generated images or it 
can display "shaded images" derived locally from PS 340 polygonal models. 

Real Tiirte -- The term "real time" is applied to high-performance computer graphics 
systems which allow the operator to interact with a displayed object with no 
perceptible delay. For exar~~ple, if a car is displayed on the screen and a dial rotates 
the car around the vertical axis, real tir~~e interaction gives the illusion that the car 
actually rotates with no perceptible delay as the dial is turned. 

Refresh Buffer -- The refresh buffer is a memory buffer that temporarily stores 
graphical data which has been processed for display. 

Rendering Node -- A rendering node is an operation node created with the PS 340 
SOLID RENDERING or SURFACE RENDERING command. 

Rendering Operatiotls -- Rendering operations are performed with the PS 340 on 
polygonal objects to remove hidden line segments, perform backface removal, section 
an object relative to a sectioning plane, obtain a cross section, or display shaded objects 
on a raster screen. 
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Right-hated Rtile -- The right-hand rule for polygons states that if you point the 
thumb of your right hand towards the center of a polygonally defined object and rotate 
your fingers towards your wrist, the direction that your fingers move indicates the 
order in which the vertices of that polygon should be listed in the polygon clause. 

Rotate -- An object that is rotated around any of the three axes (X, Y, Z) in world 
coordinate space is said to rotate "in" that axis. When an object is rotated in X, for 
example, X values do not change; Y and Z do. 

Rotation Atlgle -- The rotation angle is the angle (degrees) of rotation around a 
particular axis. 

Rotation Matrix -- A rotation matrix is a 3X3 matrix used to perform a rotation on 
an object. The PS 300 uses the sine and cosine of the angle of rotation to create the 
matrix, then applies the matrix to the coordinates of the points which define the object. 

Scale -- To scale an object is to apply a factor to any or all dimensions of an object. 
Scaling may or may not be proportional in all dimensions (X, Y, and Z). If the scale is 
applied in all dimensions, this is uniform scaling. A dif f Brent scale factor applied in 
different dimensions is known as non-uniform scaling. 

Scaling Matrix -- The PS 300 creates a 3 X 3 scaling matrix which multiplies the 
coordinates of the points which define the object by the scale factor. This determines 
the new coordinates of the scaled object. 

Seree~l-orie~lted Ctiaraeters -- Screen-oriented characters are not affected by 
ROTATE and SCALE nodes that are applied to the object of which they are a part. 
Screen-oriented characters maintain their size and their front-facing orientation when 
other data is transformed. 

Seetio~li~lg' -- Sectioning is a PS 340 rendering operation which cuts away parts of 

polygons that extend beyond an arbitrarily positioned plane called the sectioning plane. 
This plane passes through the object to divide the object into two pieces. When 
sectioning is performed, the affected polygons are reconstructed so that they do not 

extend beyond the sectioning plane; one piece is removed while the other remains 
displayed. 

Shaded Reilderi~lg's -- Shaded renderings are PS 340 operations which are used on the 
raster screen to draw the surface of a polygonally defined object. Shaded operations 
include wash shading, flat shading, and smooth shading. 

Stlading -- Shading is the process of drawing the surface of a polygonally defined 

object. "Flat" shading uniformly fills the interior of the polygons so that each polygon 

is recognizable. "Smooth" shading fills the polygons in a non-uniform manner to give 

the appearance of curvature to the object surface. 
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Sinootll Shadilig' -- Smooth shading is a rendering operation applied to objects on a 
PS 340 raster display. The color of a polygon is varied across its surface, affected by 
the normals at the polygon's vertices, the direction and color of various active light 
sources, the polygon's attributes (both color and highlights), and depth cueing. Objects 
that simulate a curved surface can be produced with smooth shading. 

Soft Edges -- An edge declared with the "S" specifier in the polygon clause of the 
POLYGON command is a soft edge. Soft edges are invisible in hidden-line renderings 
except when they make up part of the profile of an object or a silhouette. 

Solid -- A solid is a polygonal object that encloses a volume of space. In a solid, 
every edge of every polygon must coincide with an edge of a neighboring polygon. 

Solid Fill -- Solid fill is the shading of the interior of polygons. This, along with 
hidden line removal, makes an object appear solid. 

Solid Model -- Solid models are representations of physical objects within a computer 
so that nod only computer—generated pictures, but also physical characteristics, such as 
center of gravity and moments of inertia, can be generated from the computer model. 

Speeular -- This PS 340 polygon attribute is used in shading polygons to adjust the 
concentration of specular highlights. 

Sphere of Illflueilee -- Sphere of influence defines the influence one node has on 
other nodes in the display tree. In general, any node in a hierarchical branch has 
influence over nodes below it in the same branch. Spheres of influence are established 
and maintained by instance nodes. 

Stril~g -- A string is a sequence of characters and spaces enclosed in single quotation 
marks. Strings can be displayed as text or can be used as inputs to function instances. 

Strueturillg° -- Structuring using the BEGIN_STRUCTURE ... END_STRUCTURE; 
command allows commands that must otherwise be named to be grouped without 
naming the individual commands. It provides a method of applying transformations 
without using the explicit APPLIED TO form of the command. 

Surface -- A surface is a polygonal object that does not enclose a volume of space. 

Term Key -- The TERM key is a toggle key on the left-hand keypad of any style 
PS 300 keyboard. Pressing the TERM key displays or blanks terminal emulator text 
(characters received from the host or local communication functions) on the PS 300 
screen. 

Teriniilal ETnulator -- The terminal emulator is a feature available over standard 
interface lines that allows the PS 300 to be used as a host terminal. With the RS-232, 
RS-4~l9, DMR-1 1 AE, DEC Parallel, and other ASCII interfaces, the PS 300 emulates a 
DEC VT-100 terminal. With the IBM 3278 interface, the PS 300 emulates an IBM 3278 
terminal. 
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Toggle -- A toggle feature on a key or button means that pressing it once activates a 
feature or function and pressing it a second time deactivates the feature or function. 

Topology -- The topology of an object is the manner in which points specified in the 
object's geometry are connected with lines or planes. 

Transformed Data -- Transformed data is the matrix or vector-list representation of 
transformation operations in a display tree. 

Translate -- To translate an object is to relocate it in world coordinate space. An 
object which is translated in X is moved in the X direction. An object translated in X 
and Y is moved some distance in the X direction and some distance in the Y direction. 

Traverse -- This is a process in which the ACP steps through the display tree in Mass 
Memory to retrieve data and operation specifications necessary to generate a picture. 

Uniform Sealing -- In uniform scaling, an object is scaled by the same amount in all 
dimensions. 

Variable -- A variable is a storage place for updating values for use in function 
networks. 

Vector -- A vector is a coordinate location that may or may not be the endpoint of a 
line. 

Vector-ilorinalized Data -- When the components (X, Y or X, Y, Z) of a single 
coordinate (vector) location share a common exponent, they are said to be 
vector-normalized. 

Viewing Area -- This is athree-dimensional region of world coordinate space in 
which objects can be viewed. A viewing area in which objects are viewed 
orthographically is created by the WINDOW command. The EYE and FIELD_OF_1/IEW 
commands create a viewing space for perspective projections of an object. 

Viewing Pyramid -- A viewing pyramid def Ines a portion of world-coordinate space 
for viewing objects in perspective. The actual viewing area is shaped like a frustum. 
The pyramid is completed by extending the converging sides of the pyramid until they 
meet. This point, the apex of the pyramid, is the eye point of the viewer. 

Viewing Tra,Ilsforinatiorls -- Viewing transformations are matrix operations which 
specify whether displayed objects appear in perspective or orthographic projection. 
Viewing transformations also specify a point to look from and a direction to look in the 
world coordinate system. 

Viewport -- A viewport is the area of the PS 300 display screen in which pictures are 
displayed. Multiple viewports can be displayed on the same screen so that the same 
object may be viewed from different vantage points, different objects can be viewed, 

text can be displayed, etc. The viewport specification is a ratio and proportion 
calculation, unlike viewing transformations which are matrix operations. Viewport 

specifications are not concatenated with the current transformation matrix. 
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Viewport Mapping -- Viewport mapping is the projection of data from the world 

coordinate system to a viewport. 

Was~~ ~~ladiilg' -- Wash shading is applied to objects on a PS 340 raster display. It 

produces an object with area-filled colored polygons. Wash shading ignores normals, 

light sources, all lighting parameters, and all depth cueing parameters. 

Window -- A window is the three-dimensional area of the world coordinate system in 

which data is visible. A window can impose an orthographic or a perspective view on 

objects within it. A window is identical to a "viewing area." 

Working' Storage -- Working storage consists of large contiguous block of PS 340 mass 

memory needed to create renderings. Working storage must be explicitly reserved with 

the RESERI/E WORKING STORAGE command. 

World Coordinate SysterYi -- The world coordinate system is the three-dimensional 

space which the programmer uses for designing and modeling objects. It is a 

left-handed Cartesian coordinate system. 

World Space Rotatior1 -- An object is said to rotate in world space when it rotates 
around any of the world coordinate system axes, as opposed to one of the object's own 

axes. 

World-oriented Characters -- Characters that are world-oriented are transformed 

along with an object of which they are a part. 

L-elippitig -- See depth clipping. 
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PREFACE 

An original design objective of the PS 300 family was to provide a way to 
program a number of pars{lel activities that may be occurring at the same 
time. Our experience at Evans ~ Sutherland with our other products (PS1, 
PS2, and MPS graphics systems) showed that considerable application program 
complexity resulted from handling such activities as: 

• pol I i ng mu Itiple interactive devices to determine which ones have changed 
and apply the necessary modifications to graphical data structures. 

• gathering interactive device event records, sorting through them, and 
applying modifications where necessary. 

• performing updates from interactive device information in such a way that 
responsiveness to operator interaction is predictable. 

Such tasks were often performed by complex programs whose results were still 
less than satisfactory -- responsiveness to operator interaction is hard to 
guarantee in atime-sharing environment. An application program in such an 
environment may have little or no control over the scheduling mechanism of 
the programs that are to be executed . 

It was recognized that such needs -were not unique in the computer industry. 
Programming languages designed to address these needs (e. g. , Ada, 
Concurrent Pascal, Modula 2) were emerging. These languages, however, 
required that the application be written in one of the languages. Such a 
requirement wou Id tend to I imit the market for the PS 300 and was deemed 
unacceptable . 

Instead, a mechanism was sought that would allow an application to be 
partitioned into an application-specific piece with no real-time response 
requirements and a graphics-specific piece, where real-time response is 
require 

The mechanism selected was one that would enable inherently parallel 
operations to be programmed independently and would also allow the 
graphics-specific portions of an application to be programmed without regard 
for the particular language that the application was written i n . The 
function network facilities provided in the PS 300 thus evolved. 
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Recognizing that these function network faci I ities bore a striking 
resemblance to the data-flow concepts and theory that had been the subject 
of research for a number of years, we attempted to incorporate same 
data-flow terminology and concepts into the PS 300. Also, since the 
terminology, concepts, and data-flow programming methodology would be new to 
almost all PS 300 users, Dr. Alan L. Davis was contracted to write a 
document introducing same of the data-flow concepts, theory, and proper 
programming practices that might prove useful in programming the PS 300's 
function network facilities. This document is the result of his efforts. 

It is not the intent of Evans ~ Sutherland to provide an entirely new 
programming methodology and environment for the development of application 
programs . We bet i~eve that this can best be done with standard programming 
languages, in typical program development environments. But we do feel the 
PS 300f s data-driven methodology is welt -suited for graphics-specific 
operations, local handling of interactive devices, and other parallel 
operations. Its capability, flexibility, and responsiveness will enable 
sophisticated graphics programs to be written more simply and with 
predictable results -- regardless of the particular host computer or 
operating system . 

It is unusual for Evans ~ Sutherland to distribute a document written by a 
single individual, as we have done with An Introduction to Function Network 
Programming for PS 30o Users. It has been a pleasure for us here at 
Evans ~ Sutherland to be able to support AI Davis in this effort. He has 
presented an introduction to data-driven methodology in a very readable, yet 
thoroughly informative manner. I hope that the reader will find his efforts 
as informative and useful as we have. 

M . W. Mantle 
Interactive Systems Engineering 
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ABSTRACT 

The PS 300 allows users to specify a variety of interactive methods by 
writing function net programs. Function net programs have a rather 
different semantic base than conventional (or von Neumann) sequential 
programming languages. 

Function net programming is based on data-driven semantics. The advantage 
of this is that the user may partition a program in a much more natural way. 
than would be possible using a conventional programming language. 

The change in the semantic base does, however, require a slightly different 
way of thinking and the acquisition of a new programming methodology. 
Fortunately, experienced programmers wi i I find the new methodology to be 
simpler and less restrictive than the von Neumann methodology with which 
they are currently familiar. 

The purpose of this document is to present a self-contained tutorial 
discussion of data-driven programming in general, and PS 300 function net 
programming in particular. The hope is that by reading and understanding 
this material, the PS 300 user will be able to write well-formed, stylish, 
function net programs which will be efficient, easy to test and debug, and 
easy to modify. 
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1. INTRODUCTION 

The purpose of this document is to provide a self-contained introduction to 
data-driven programming and act as a tutorial on proper programming style. 
As such this document will not contain the usual references to other manuals 
and/or papers . For the reader who wants to dive head-first into the deeper 
reaches of the subject, an annotated bibliography is provided which if 
faithfully pursued should do at feast two things: 

• Provide substantive material on the key issues of general net theory, 
distributed asynchronous programming, and data-driven programming. 

• Keep the zealous reader busy for a very long time. 

This document takes a rather pragmatic view in that the goal is to produce 
effective PS 300 programmers capable of writing efficient, clean code. 
Theoretical issues will therefore be well-disguised in a practical 
environment. 

This document is organized into two major parts. The first is a general 
discussion of the properties of data-driven programs and proper programming 
style. The second part is a specific analysis of the PS 300 function net 
language and a discussion of proper PS 300 function net programming style. 

There is some overlap i n the content of the two parts . This is intentional; 
the acquisition of a new programming methodology for a language with an 
extremely unconventional semantic base is almost always confusing and 
frustrating. It is hoped that the reader can make this transition more 
smoothly by first understanding data-driven concepts in general and then 
seeing them applied to PS 300 function net programs. 

This document assumes prior programming experience, but not necessarily 
prior PS 300 experience. In fact, it is hopefully the case that you are 
reading this before you have the t'enlightening" experience of wondering what 
on earth should be done with your function network, which has currently gone 
off the wall in some unforeseen and definitely unplanned manner. 
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INTRODUCTION TO FUNCTION NETWORK PROGRAMMING 

The experienced PS 300 programmer may often find the suggestions contained 
in this document a bit inefficient. The only justification for this is that 
it should be clear to most modern programmers that good style and raw 
efficiency of the resultant program are often not perfectly compatible. If 
a programmer knows a!I the Witty gritty details of the operating system, the 
compiler, and the hardware itself, then it is possible, by cheating just a 
wee bit, to write many wondrous programs which are fast and/or small. 

Unfortunately for such people, operating systems, compilers, and hardware 
change as systems evolve and many "tricks" need constant updating in order 
to keep programs functioning in the intended manner. These changes are 
often substantial and, in a world where programs are created and modified by 
an entire community, such tricks are usually an impediment to orderly 
progress . 

However, data-flow programming is less restrictive than strictly sequential 
programming. Using function net programming can result in faster and more 
natural programs which are easier to create, debug, modify, maintain, pass 
on to others, and so on . 

1.1 FUNCTIONS, FUNCTION NETS, AND THE PS 3oQ 

The PS 300 system can be thought of as an interactive eye through which an 
object ca I led the model is viewed . The model is created on a host machine 
and is represented as a database of essentially graphical information . The 
PS 300 eye can be used to view the model from an arbitrary position . The 
key feature of the PS 300 is that eye movement can be control led by 
twisting knobs and dials rather than by a program running on the host 
machine. The result is a zoomed, scaled, or clipped view of the model. 

Since users will likely want to define their own customized functions for 
the controls, some interface must exist to allow them to do this. The 
interface is in fact a type of programming language known as function nets. 

A function net program or function network can be viewed as a program which 
takes values generated by a knob (or a set of knobs) and produces graphical 
transformations which modify how the model is displayed on the CRT. Usually 
a single knob is insufficient to specify all of the desired transformations, 
and several knobs need to be used. A simple example would be to use three 
knobs to specify the X, Y, and Z position of the eye and a fourth knob to 
indicate the depth of the viewed object. 

It is easy to imagine numerous scenarios which would need even more 
controls . Sometimes two sets of knobs might be desired where each set's 
actions are ca~nsidered to be independent from the influence of the other 
set. At other times complex interdependencies of individual controls are 
desired . 
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In addition, it is natural to view the controls as being used in an 
unordered and asynchronous manner. 

The PS 300 function net language was designed to fulfill these needs in a 
direct and natu ra! fashion . It is possible to support such a rich and 
complex variety of interactions using sequential programming languages such 
as FORTRAN or Pascal in conjunction with an interrupt mechanism which could 
supply changing control values. But this "von Neumann" approach is somewhat 
unnatural because the sequence specified by the sequential program does not 
reflect the additional control imposed by the interrupt facility. 

I n particular, the need for complicated i nterdependencies and independencies 
of the PS 300 controls does not map cleanly and clearly onto the sequential 
program structure of a language like Pascal. This lack of clarity causes 
errors, delays, and in the worst case may even hide an otherwise obvious 
solution to a programming problem. 

Fortu nately, function net programs do not suffer from these problems . These 
programs can in fact clearly and succinctly represent arbitrary mixtures of 
dependence and independence from a number of PS 300 controls changing in 
complete asynchrony with each other. 

The primary reason for this power and flexibility of function net programs 
is that their semantics are based on a model entirely different from 
languages such as Pascal. This basis is known as data-driven or data-flow
semantics (the terms are used synonymously both here and in the general 
literature) . 

A more detailed discussion of data-driven programs .and semantics will appear 
later. The essential idea is that in data-driven programs, the arrival of 
the operands at a function causes that function to be activated and send 
output values to other functions. Thus, data "drives" the computational 
process . Hence the name "data-driven . " 

I n a data-driven program, there is no program counter or other central 
control device to indicate "what shou id be done next. " Any number of 
functions may be active at any particular point in time. Thus, data-driven 
programs can support arbitrary amounts of concurrency or parallelism. (If 
the hardware can support the available concurrency, the program may execute 
much faster than its sequential counterparts. This is a future possibility 
for PS 300 successors, but the main use right now of this concurrency 
structure is that it permits a more natural and manageable program 
structure. ) 

A function network is presently programmed textually, but it's easier to 
think of it as a directed graph structure. The graph is composed of directed 
arcs and vertices . Each arc carries data from the "producer" vertex to the 
"consumer" vertex. This directed graph represents the function network that 
is executed by the PS 300 hardware to transform the model database into a 
viewable object. 
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The complete set of PS 300 functions can be found i n the 
PS 300 User's Manua! . These functions are characterized i n Chapter 5 
of this document . Before returning to the PS 300 function nets 
specifically, the nest chapter describes important aspects of data-driven 
programming in general. 
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2. DATA-DRIVEN PROGRAMMING 

2.1 BASIC CONCEPTS 

The simplest and easiest way to understand data-driven programs is to view 
them as directed graphs . These graphs are composed of two basic entities 
arcs and vertices . Arcs carry tokens of data i n the direction indicated 
by the arrowhead. Arcs can be thought of as leaving from the output ports 
of vertices and then going to the input ports of other vertices. Vertices 
can be viewed as functions which consume data tokens arriving at their input 
ports and produce data tokens at their output ports . 

The directed graph program is actually a network of these vertices and arcs, 
where the network topology is whatever the programmer creates . These 
Function Graph Networks wi I I hereafter be referred to as FG Ns . 

A large variety of data-driven FGN languages and notations exist, but it is 
not the purpose of this document to enumerate them here. The interested 
reader i s referred to the bibliography for pointers to the va riou s 
descriptions of these schemata . 

Data-driven FGN's have been created as high-level programming languages, 
machine languages for custom hardware, meta-languages which are interpreted 
by a variety of hardware architectures (the PS 300 FGN language is an 
example of this), or as modeling notations for processes ranging from office 
information systems to chemical flow in a nuclear power plant. 

Figure Z-~ shows a simple FGN example that models the inventory control 
system at a hospital. In this example the arcs carry data tokens which 
correspond to forms. The process modeled in this diagram could as easily be 
implemented by computers or turned into a set of job descriptions performed 
by people. I n a computerized implementation, the forms could be formatted 
digital messages or files. 
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Note the inherent clarity i n the diagram, which ~ is probably much clearer 
than a formal specification, a Pascal program, or an English language 
description of the process. The primary reason is that the graph is 
visual. It quickly and succinctly indicates the structure of the process 
whereas the alternative textual representations must be analyzed before the 
structure can be understood . 

For example, i n the FG N diagram of the hospital system it is easy to see 
that price never seems to be a factor and an automatically reordered item 
never gets questioned. Note also that the arc labels or inscriptions never 
specify function but serve more as comments do i n conventional programs to 
describe the nature of the transmitted information . 

For any particular "flavor" of FGN, there will be a set of atomic vertices 
corresponding to the system's functions . Vertices may or may not have 
special shapes which mean something. And there may be several categories of 
arcs. The data tokens transmitted may vary from simple numbers to 
multi-dimensional matrices or other highly complex structures. 

How these FGN components behave determines data typing, statement typing, 
and so on . The choice of a particular set of vertices, arcs, tokens, and 
rules for their use creates a specific FGN language with its associated 
syntactic and semantic structure. 

The syntax with which a programmer describes an FGN may be the graph itself 
or a textual equivalent. Choice of syntax has a major impact on clarity and 
user friendliness, but does not directly affect the expressive power of a 
particular FGN language. 

In data-driven programs, the arrival of the necessary set of tokens at the 
input ports of a vertex causes that function to be activated. When a vertex 
can be activated, it is said to be fireable. When it is active, it is said 
to be firing and when it has completed its action, it is said to have 
fired. The set of inputs which are needed to make a given vertex fireable 
is called the firing set of that vertex. 

2.2 CONJUNCTIVE AND DISJUNCTIVE VERTICES 

Consider a particular vertex type which simply adds two integers to produce 
an output integer. Such a vertex needs both of its inputs in order to do 
anything meaningful. Hence the firing set of this addition vertex is all 
inputs. When the firing set requires all input ports to have a token then 
the firing set is termed conjunctive.

Non-conjunctive firing sets are called disjunctive. This distinction turns 
out to be important and will be discussed shortly. 

The terms conjunctive and disjunctive can also be used to describe the 
output ports of a vertex . I f , after firing, a vertex places a token on al I 
of its outputs then such a vertex is output conjunctive. If not, then it 
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is output disjunctive. Output disjunctive functions are often said to 
behave under a disjunctive output rule. Similarly an input disjunctive 
function behaves under a disjunctive input rule. Similar meanings apply for 
conjunctive input and output rules. 

Function types which are conjunctive for both input and output are almost 
trivial to use correctly, and that makes life easy for a programmer. 
Unfortunately, the need exists for disjunctive vertices as well. For the 
moment, the discussion will stay in the nice conjunctive domain in order to 
present some important and fundamental FGN properties. 

I n data-driven networks, each vertex can be viewed as an autonomous 
processing element. As such it is not necessarily synchronized with other 
vertices in the network. A network of vertices behaves as an asynchronous 
processing ensemble. Due to the fact that each vertex is an independent 
entity, these networks contain high levels of concurrency. Figure 2-2 shows 
a simple network of addition functions. 

C1 

Both C1 and C~ are fireable 

IAS0255 

Figure 2-2. Simple Spatial concurrency Example 
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At time 1 both vertices G1 and C2 are fireable, independent of each other. 
Thrs is indicated in the graph by the lack of an arc connecting vertices C1 
and C2. Actions in FGNs are sequenced only by the existence of data 
dependency, which is indicated by an arc. If vertex C1 produces a value 
needed by vertex C3, then C1 must fire before C3. This is the case in 
Figure 2-2. No other sequencing mechanism is necessary. 

C1 and C2 are independent -- there is no arc connecting them to indicate 
data-dependency. I n this example, C1 and C2 fired between time 1 and time 2 
but it may not have been possibte to determine the order in which they 
fired . !f the time frame had been divided more finely (with points 1 .1, 
1.2, and so on) , then a different sequence of events may have been 
observed . Here are three such possible sequences 

• C1 and C2 fired between time l.n and 1.(n+l). In this case C1 and C2 
still appear to have been active simultaneously. However, if the time 
line was viewed with an even finer grain set of observations, then this 
may or may not continue to be the case. 

• C1 may have fired between time 1 .3 and 1 .4 and CZ may have fired between 
1.5 and 1.6. In this case the firing of C1 definitely preceded the 
firing of C2. 

• C2 may have fired between 1 .1 and 1 .5 and C1 may have fired between 1 .7 
and 1.8. If this were the case then we have observed at a fine enough 
grain to have seen, at times 1 .2 through 1.4, that C~ was firing but had 
not delivered its output token until time 1 .5. I n this case, regardless 
of the duration of C2's firing, C2 fired before C1 . 

• C1 fired between time 1.1 and 1.6, and C2 fired between time 1.3 and 
1.9. I n this case the independent firings overlapped in real time. 

What is important to note is that regardless of which of the four 
possibilities did actually take place, the result of the program is the 
same. The actual firing order of independent vertices (those not connected 
by a directed path of arcs) is unimportant. In fact, trying to figure out 
which independent vertices fire first i n real time is an impediment to 
proper thinking with respect to FGN languages. 

This property of concu rrency is an important difference from traditional 
languages, where exactly one instruction is active in any particular time 
step. This exactly-one-instruction-at-a-time style is called a 
total ordering. Totally ordered programs -- sequential programs -- clearly 
do not contain any concu rrency structure. 

FG N programs rep resent pa rtia I orderings of the actions rep resented by the 
vertex functions . Vertices which are independent are unordered, white 
vertices which are connected by arcs or paths are totally ordered . 
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~/ertices C1 and C2 in the diagram are concurrent operations. in this 
document, such instances of concurs ency due to vertex independence will be 
called spatial concurrency. (Other terms for such structures which may 
also be seen in the general literature are horizontal concurrency or 
parallelism.)

As an aside, it is worthwhile to note the differences between the nature of 
concurrency represented by the program and the concurrency which is 
exploited at execution time. It is interesting that to date there has been 
very little relationship between runtime and program concurrency. 
Typically, a concurrent program written in a language such as Concurrent 
Pascal has been executed on a one-instruction-at-a-time machine. 
Conversely, concurrent execution on machines such as the CRAY-1, 
IBM 360/91, and others has been done for totally ordered programming 
languages such as FORTRAN . 

I t i s not the purpose of this document to point out the large number of ways 
that things cou Id be done better. It will suffice to point out that 
concurrency in programs often leads to a mare natural expression of a 
sol union to a problem, a I lows inherently more efficient algorithms to be 
discovered, and may be more efficiently executed on computers of the future 
which may well be able to take advantage of program concurrency. Execution 
concurrency, on the other hand, is determined by the mach i ne a grog ram runs 
on . It is useful primarily for speed. 

The focus of this paper will be on program concurrency, since the PS 300 
programmer cannot i nte! I igently control the actual execution speed of the 
PS 300 hardware by creating any special concurrency structure. 

The nature of the arcs in a FGN program has not been examined very closely. 
They have been viewed simply as a register capable of storing a single input 
token. But if an arc was a queue of indefinite length, it would be capable 
of holding an arbitrary number of tokens. 

The example in Figure- 2-3 shows the same FGN addition network as before but 
with several tokens queued on the arcs. 

c2 

time: time: t2 

13 

time: t3 

where tl is before t2 which is before t3 

Figure 2-3. Queue-arcs Permit Pipelining 
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At time t2 all three vertices are fireable. The queues allow the FGN 
program to represent a pipelined execution style on streams of input 
tokens. Pipelining contains a form of concurrency -- vertices which are 
linked together in a line can fire at the same time, Vertices further down 
the pipeline will be firing as a result of tokens which were sent by earlier 
functions at the same time the earlier functions produce new tokens. This 
concurrency is obviously different from spatial concurrency, in much the 
same way that electric circuits i n parallel are different from circuits i n 
series . 

Pipelined concurrency will be called temporal concurrency because it Occurs 
with linear streams of time-ordered, sequenced tokens. (The general 
literature may also use terms such as vertical concurrency, 
temporal parallelism, or just simply pipelining. The choice of terms is 
not particularly important; spatial and temporal concurrency will be used 
here.) 

Figure 2-3 shows that if the, arcs behave like queues, then FGNs nicely 
represent an arbitrary mixture of bath temporal and spatia! concurrency. In 
some sense FGN programs of this form are maximally concurrent program 
representations. This is due to the fact that actions in such programs are 
sequenced only by the availability of their input data (operands) . 

The argument could be carried further to claim that FGNs contain only the 
sequencing constraints required by the algorithm and therefore allow the 
most natural procedural representation of the algorithm possible. The 
programmer only needs to worry about the things which are required to be 
sequenced -- this is essentially what the programmer specifies when an arc 
is drawn. Spatial concurrency does not need to be specified explicitly and 
therefore just falls out for free. 

This is a simplification, but experience has shown that certain amounts of 
concurrency seem to just appear in a FGN program. This is certainly more 
natural than worrying about what should be concurrent and what must be 
sequenced, and then specifying both. Unfortunately, the ease and utility of 
a programming representation is affected by other factors besides 
sequencing. But with respect to sequencing the argument is valid. 

Each vertex of a FGN program acts as an independent processing site which 
operates in an isolated, self-controlled, and self-timed fashion. When the 
firing set is present the vertex fires and sends out its resu Its on the 
output arcs. 

It does not matter in any functional sense whether or not the firing is slow 
or fast. It also does not matter whether or not the outputs are sent in any 
particular order or whether the inputs are used in any particular order. An 
instance of firing is considered complete only after all of the firing set 
tokens have been consumed and all the results have been sent. As long as 
the firing time is finite, the functional properties of a FGN program are 
not affected . 
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This self-timed behavior is yet another freedom that FGN programmers have 
that is not typically available in conventional programming languages . The 
benefits of these freedoms are many and will be subsequently enumerated in 
same detail. 

Often in an FGN program there will be various types of inscriptions 
scattered around the graph . I n Figures 2-2 and 2-3 the inscriptions C1, C2, 
and C3 were used to label the individual addition vertices. These labels 
had no semantic value and served only as comments. (Often comments can be 
used in the normal sense to describe in natu ra! language some aspect of the 
FGN.) Labels could also be attached to arcs to describe the nature of the 
data tokens which pass over that arc. 

i n same FGN languages, certain types of inscriptions may also have semantic 
roles. For example, the inscription in the vertices C1, C2, and C3 
indicates that these vertices perform an addition . Other possibilities 
might indicate arc data types, input or output ports, and so on . 

The discussion so far has taken a fairly purest view of FGN programs. Any 
particular FGN language specifies certain vertex, arc, and inscription 
semantics to create a hopefully useful programming language. These choices 
may in fact destroy some of the nice properties discussed in this section if 
they .are made carelessly. I n addition, restrictions may be made on FGN 
topology to disallow certain types of undesirable behavior. Two examples of 
such topological restrictions might be: 

• Only one arc may be connected to a particular input port of a vertex. 
This would prevent non-deterministic merging of data tokens at that port. 

• If input and output data ports are typed, then it would make sense to 
disallow an arc to connect ports of incompatible types. 

2.3 DISJUNCTIVE VERTICES AND DECISIONS 

FGN operation wou Id be simple if a I I vertices had conjunctive firing rules 
and conjunctive output functions. Unfortunately if this were the case, 
important program constructs like decisions would be difficult. 

Conditional execution (that is, the FGN equivalent to an I F-THEN-ELSE 
statement in a conventional programming language) is an essential aspect of 
any usable programming language. I n data-driven languages, activities are 
triggered into action by the arrival of the firing set tokens . I n order to 
conditionally select f u nction A there are two mechanisms which can be used 

• Send a token to A wh ich says do not do anything if the condition holds to 
not perform A. Such a token might be called an omission token. If A was 
to be selected then a regular or "commission' token would be sent. The 
advantage of this app roach i s that firing rules cou Id remain conjunctive 
and analysis of a FGN program would be made easier. The disadvantage is 
that a second class of tokens -- omission tokens -- have to be created, 
transmitted, observed, and so on . This may consume valuable resources 
without directly producing any desired value as a result. 
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• More typically FGN language designers conditionally route tokens to 
vertices. The advantage of this method is that vertex firings are always 
done with real data (so no omission tokens have to be created and 
resources are not unnecessarily consumed). The disadvantage is that 
conditional routing makes disjunctive vertex types necessary. 

Discussion of the first mechanism -- using omission tokens -- will not be 
pursued. The second mechanism -- conditional routing with disjunctive 
vertices -- will prove more useful for PS 3Q0-style programming. 

2.4 SYMMETRIC DEC I S ! ON STRUCTURES 

Let us define two vertices: DISTRIBUTE (DIST) and SELECT (SEL). 
Figure 2-4 shows them. 

Input COIF D T-input F- inpu 
COND 

C DIST 
T 

T-output F-output Result 

Distribute Select 

Ffigure 2-4. DISTRIBUTE and SELECT Cells 
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The arcs are labeled for reference. The COND arc carries a Boolean value. 
The arcs labeled T carry the token produced by DIST or used by SEL if COND 
is true. F indicates the paths used if GOND is false. 

Both DIST and SEL simply pass the input to the output unchanged. DIST 
conditionally distributes its input to the proper output arc (one-ta-many 
distribution) . Conversely, SEL conditionally selects an input token to be 
passed to its output (many-to-one selection) . 

SEL has a disjunctive firing set and, since there is only one output anyway, 
a conjunctive output set. COND is always needed for SEL to fire, but only 
o~~e of the other twa inputs is needed (depending on the value an COND) . 

DIST, on the other hand, has a conjunctive firing set and a disjunctive 
output set, where the CON D input specifies the output arc which wi I I receive 
the output token. 

Figure 2-5 shows a FGN program which adds 1 to a number A if it is greater 
than zero and subtracts 1 f rom A if it is less than or equal to zero. 

0 

A 

T _ COND 

merge point 

Figure 2-5. FGN to Computer I F A <1 THEN A- 1 ELSE A+ 1 
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Assume for now that the constants 0 and 1 are tokens which are never 
destroyed - - as soon as they are consumed during the firing of the vertex, 
they reappear. The output arcs from the subtraction and addition vertices 
are simply merged together into a single result arc. 

This merge works fine if exactly one value of A is put onto each of the two 
A arcs . No knowledge of vertex firing speeds is necessary to understand 
what the result will be. If, however, two identical streams of values are 
sent into the two A arcs then the output order wi I I be affected by the 
speeds of the two parallel paths which contain the add and subtract vertices. 

Here's how that might work . Let's say the first token gets routed to the 
add vertex. If the add vertex fires much slower than the subtract vertex in 
the other path, it will still be processing that first token as the second 
token gets routed to the subtract vertex and causes it to fire. The first 
output would thus result from the second input -- the output order would 
differ from the input order. 1f order was important in the network, that 
would introduce a problem. 

To insure the correct output order, you would need to take the execution 
speeds of each parallel path into account, but that only comps icates 
matters. A much better programming technique would be to disallow merged 
arcs and the non-determinism they can introduce. 

By placing a SEL at the merge point, which gets a copy of the conditional 
value, the resultant FGN (shown in Figure 2-6) is once again nice and 
well-behaved even with the pipelined behavior resulting from streams of 
tokens . 

0 

Figure 2-6. well-Behaved IF Example Under Pipelining 
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Note from the diagram that a new vertex type called COPY has been 
introduced. COPY takes an input token and produces two identica! tokens on 
each output. Also note the symmetry of the decision structure in this 
example. The single stream fanned out to many streams at the DIST vertex, 
which were then brought back into a single stream at the other end with a 
SEL. Without becoming unnecessarily formal, it will suffice to say that 
these symmetric decision structures are always well-behaved.

There are a number of ways to incorporate well-behaved decision structures 
into FGN languages (it is the assumption here that nobody is all that 
interested in non-well-behaved mechanisms -- which in fact are even easier 
to invent) . Some possibilities are: 

• Incorporation of high-level vertex types which implicitly contain 
symmetric decision structures. The simplest would be an I F-THEN-ELSE 
statement box, but better choices certainly exist. 

• Allowing DIST and SEL type vertices to be used directly by the 
programmer. Checking for legal decision structure could then be done by 
the compiler in a fairly straightforward fashion. The main problem with 
this approach is that if the value of the token on the COND arc is an 
illegal value, then something weird may happen. In general, this scheme 
only works with certain error-handling mechanisms since the compiler has 
no way of anticipating run -time token values . 

• Hope that the programmer gets it right and forgo proper design of the 
compiler and vertex type set. This is clearly the worst choice but 
unfortunately has been the most common approach. 

Note that the PS 300 function net language has a function (F: SWITCH) which 
is exactly the same as the DIST function shown here. There is no single 
PS 300 function equivalent to the SEL function, but the SEL function can be 
programmed as a small network using F: SWITCH and several F: SYNC functions 
with an appropriate initial marking. 

2.5 i TE RAT l ON S 

Iterations are also performed differently in data-driven sytems than in 
sequential programs. in a data-driven iteration an initial set of tokens 
arrives at the net which performs the iteration . If something indicates the 
iteration i s to run , these tokens are then sent through the part of the net 
which corresponds to the body of the iteration . 

The body produces a set of partial results of the iteration which are fed 
back around into the iteration the same way the initial set was, and the 
cycle repeats itself . The problem is that if pipeiined tokens can enter the 
iterative network, the feedback stream and the initial stream must not be 
interleaved -- this would introduce indeterminacy. 
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This separation of new tokens from iterated tokens can be done either 
explicitly when the program is written or dynamically at run time. There 
are a number of ways to do each, one of which is presented here. It should 
also come as no surprise that the method presented here is in fact the one 
that will prove directly applicable t0 PS 300 function net programs. 

With this method, the programmer provides a decision structure to keep the 
two streams separate. This means that a set of initial tokens is selected 
(via a SEL function). If the predicate evaluates to TRUE (meaning do the 
body of the iteration), then the tokens are distributed (via a DIST 
function) to the body. New initial sets are blocked from the iteration to 
allow the feedback token sets to iterate until the predicate becomes FALSE, 
indicating that the iteration is done. The tokens are then distributed out 
of the iteration net as results. A new initial set is then enabled to be 
selected which will start up the next instance of the iteration. 

INITIAL 

C 

FEEDBACK 

SEL 

data 

data 

DIST 
F  T 

data 

RESULTS 

r 

BODY 

Figure 2-7. Simple VYH f LE Type Iterative Structure 
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The detailed scenario of the actions performed by this iterative structure 
IS: 

1. When an INITIAL token arrives, SEL fires and the data is copied and sent 
to PRED . The predicate then fires to decide whether or not the iteration 
is to be started. Let's assume that the predicate produces a TRUE, 
meaning that it does start . 

2. The TRUE is copied and sent to SEL and DIST. At this point, even if a 
new INITIAL token were to arrive, the SEL vertex could not fire because 
its condition arc would contain a TRUE. Until a FEEDBACK token arrives 
nothing can happen . It is precisely this blocking action of the SEL 
vertex that prevents tokens on the INITIAL and FEEDBACK arcs from 
getting mixed up. 

3 . DIST fires and the data tokens are passed through the BODY of the 
iteration, which in turn produces a set of new values. These are passed 
back to the top into the T input of SEL. SEL already has a TRUE token on 
its COND line, and so the recirculated values are passed on as in step 1. 

4. This process continues until FALSE appears on the COND line of SEL. Then 
the data is passed out the RESULTS side of the DIST vertex . Note that 
when this happens, FALSE is left on the COND line of SEL. This is 
identical to the initial configuration of the FGN -- the network is ready 
to begin a new set of iterations with new initial values. This simple 
network can thus respond to a pipelined stream of tokens entering it. 

The tokens which are present on the arcs of an FGN program initially are 
ca I led the initial marking of the graph . There Ilea r!y are some 
restrictions on initial markings if a particular FGN program is to operate 
properly. I n the previous example, for instance, if the initial value 
placed on the COND line of the SEL vertex was a TRUE, then no vertex of the 
program would ever be fireable and the net would be dead forever. 

The theory of initial markings for a particular graph topology is 
extensive. The next chapter will discuss the properties 'that determine what 
sort of initial markings are allowable (that is, which initial markings will 
lead to well-behaved FGN programs) . 

-The iteration control mechanism in the example illustrates how FGN loops can 
be constructed . As was pointed out with decision structures, other 
possibilities certainly exist. Higher or lower level vertex types can be 
used, but the basic style would be the same. 

One iterative technique, however, is rather different. This style has been 
called unraveled iteration or U-iteration. U-iteration allows an 
arbitrary number of instantiations of the same iteration to proceed 
concurrently. A new instance is started for every token arriving on the 
I N IT1AL sine. This method does not need to block new I NlTIAL tokens while 
the current iteration is active, as was the case in the previous example. 
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U-iteration can be visualized from Figure 2-5 with only a minor change. By 
breaking the feedback arc and grafting an identical but new version of the 
net at the breakpoint every time a new initial token comes along, the graph 
grows dynamically as long as it needs to. This allows full pipelining of 
the iterative structure. Without waiting for a set of initial tokens to 
finish looping through an iteration, a later set can begin. 

An additional mechanism needs to be provided at runtime to make sure the 
output order of RESULT tokens is correct far U-iteration, but as this paper 
concentrates on linguistic mechanisms rather than execution requirements we 
will leave the discussion of iteration at this point. 

2.6 CALLS 

The mechanism to do the equivalent of a CALL, be it recursive or not, is 
similar to CALL mechanisms in conventional languages. Semantically, 
however, there is an additional freedom with data-driven CALLs that is not 
available in languages like Pascal or FORTRAN. 

I n sequential programming, arguments or formal parameter values typically 
are supplied from a single site such as the calling subprogram. A 
data-driven CALL vertex is activated by the a rrivai of its firing set just 
like any other vertex . These firing set tokens can be supplied from several 
concurrently active subprograms if that is what is desired. 

Most FGN CALL mechanisms behave like a CALL-by-value in a language like 
Pascal. This is due to the fact that tokens are best thought of as values. 
Some FGN language designers have created CALL mechanisms which are more 
like CALL-by-reference or CALL-by-name, but in these cases they have also 
made compromises to the basic data-driven semantics of their languages. For 
our purposes here the CALL-by-value view will be the most productive. 

2.7 FAN - I N AND FAN -OUT 

We have seen two rather different views of fan-out in FGN programs. 
Fan-out is a vertex output property. If a vertex has two output arcs then 
it has afan-out of two. 

If a vertex has a fan-out greater than 1, and the outputs all 
(conjunctively) receive tokens when the vertex fires, then concurrency is 
inherently created. It does not matter whether the tokens are copies of a 
single value or are different values. The result -- tokens flowing down 
different paths at the same time -- is a fundamental illustration of 
concurrency. 

The other form of fan-out is when only part of the output paths receive 
tokens. This disjunctive fan-out is a fundamental indication of a decision 
structure, and an example is the DIST vertex shown in the previous two 
figures. 
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Fan-in, on the other hand, refers to the number of input arcs a vertex has. 
Fan-in also has two fundamental characterizations: 

• Synchronization. Conjunctive fan-in at a vertex with a conjunctive 
firing set is an indication that concurrent activities ire being 
synchronized at that vertex . All of the tokens must be there before any 
are allowed to move on, and when they do move, they all move at the same 
time. 

• DECISION termination. Disjunctive fan-in, as we have seen, is the finish 
for what began earlier as the result of a decision structure. 

Fan-in is a way of merging tokens. There is an additional type of merge 
that is quite different in nature from synchronization or decision 
termination, and that is arbitration . 

Arbitration is a type of token-merging where tokens arrive on a number of 
input arcs and are passed out on a single output arc on a 
f i rst-come-fi rst-served basis . Arbitration only arises when concurrent 
activity is allowed (such as with data-driven programming) and as such is 
not seen in conventional programming languages. 

This can be an inherently non-deterministic operation and in most FGN 
languages it is. If non-determinacy is allowed, then two or more arcs going 
to the same input port is usually an implicit indication of a 
non-deterministic arbiter. 

However, non-deterministic program behavior is usually considered to be an 
undesirable property. Figure 2-8 shows two forms of non-deterministic 
arbitration (implicit and explicit) and an arbiter that can be used for 
deterministic operation. 

I1 I2 

implicit 
arbitration 
point 

I1 I2 

`ARBITER 

r 
arbitrated stream arbitrated stream 

I~'on-Deterministic I~'on-Deterministic 
Implicit 

Il I2 

WHICH 

arbitrated stream 

Deterministic 
Explicit Explicit 

Figure 2-8. 3 Styles of Arbiter Indications 

2-16 DATA-DRIVEN PROGRAMMING 



INTRODUCTION TO FUNCTION NETWORK PROGRAMMING 

In general, programmers are cautioned against using non-deterministic 
arbiters of either type. Such usage almost always turns out to be a major 
mistake. Unfortunately most FGN languages do not have primitives for 
deterministic arbitration . There is a way around this problem, however, if 
token types are flexible enough -- we'll discuss this in a moment. 

The key to deterministic arbitration is to create another token stream 
(WHICH in Figure 2-8) that indicates which input port (11. . . In) produced the 
token placed on OUT. This identifies the input token so it can later be 
matched with its output in the proper order. 

An example will help to illustrate this point. Suppose that three 
independent processes need to access a very expensive resource. I n order to 
avoid duplicating the expensive resource, the three processes share it. Let 
the processes be called P1, P2, and P3 and let us assume that they query a 
huge data base created by the World Knowledge Corporation (WKC) , which 
contains everything known about everything. Each of the processes gives the 
WKC data base system (WKC-DBS in the diagram) a single word and receives in 
return a token describing all that is known about the query. 

The FGN program to do this is actually quite simple and is shown in Figure 
2-9. 
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PL Query 

P3 

P2 Query / P3 Query 

C ~ 2 
ARBITER 

P1 Answers 

Query 
Stream 

WKC-DBS 
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COND 
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P3 Answers 

PZ Answers 

Figure 2-9. Deterministic Arbiter used to 
Share an Expensive Resource 
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~n this example any of the three processes can at any time send out a QUERY 
token, which is merged by the ARBITER and sent to the 1NKC-DBS. The REPLY 
token is sent to the D 1ST . D l ST knows from the token on the A RB I TER's 
1NHICH arc what process to send the REPLY token to. (Note that in this 
case the semantics of the DIST vertex have been expanded somewhat --
distribution is determined by an integer rather than a Boolean value. ) 
Topologically this network can be thought of as an order-preserving, 
parallel-to-serial-to-parallel FGN program. 

n the hypothetical language used for the previous example, a special vertex 
(with a WHICH arc) allowed you to match parallel input paths with parallel 
output paths in a deterministic way. 

I n FGN languages tacking a special vertex that allows deterministic 
arbitration, the programmer can build something similar by creating token 
values on the QUERY n Lines which are two-element lists. The first element 
is the process number (which in the example was created by the arbiter), and 
the second element is the actual QUERY token . The only danger with this 
mechanism is that the language compiler must allow syntactically 
non -deterministic programs to be compiled . The burden i s then on the 
programmer to insure that the program's behavior is deterministic. Clearly 
the best approach is to use another method that would not burden the 
programmer, since that load is usually a heavy one to begin with ! 

2.8 ERRORS 

Errors are a perennial problem in any programming methodology, but in FGN 
programs the programmer must diagnose errors rather differently than he 
would in traditional programs. VI(ith sequential programs, a programmer would 
usually run the program and, if it does not work, run it again and observe 
the actions more closely until the problem is found. With partially-ordered 
programs (that is, FGN's) this does not necessarily work. 

For example, if the. problem is caused by some relative-timing error between 
two independent pieces of the FGN, then this timing discrepancy may not be 
repeatable due to the concurrent nature of the two pieces of code. It is 
therefore paramount to program in a way that prevents programs which exhibit 
this type of behavior. 

One of the aims of this document is to aid prospective PS 300 programmers to 
develop such a style. The key is to never design programs which rely an 
runtime speeds of topologically independent subgraphs (vertices which arentt 
connected by arcs) . Synchronization, arbitration, and decision structures, 
if used as described above, will usually insure that proper program 
structures are designed . 

Still, the art of FGN language design is new. There are some bad 1=GN 
languages out there, which may lull the programmer into thinking that 
intrinsically dangerous FGN programs will work. If you are unfortunate 
enough to get a bad language as your vehicle, be very ca ref u I to analyze the 
decision, synchronization, arbitration, and other fan-in and fan-out 
structures provided by the particular language. 
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Fortunately, there are many aspects of FGN languages which make them easier 
to modify and debug ~ than conventional languages . The lack of global 
variables, GOTO statements, and so on, make them inherently side-effect free. 

The influence of one thing on another is also easy to see -- just follow 
the input paths backwards and you will find all of the actions which can 
affect the token values . 

Runtime debugging facilities also affect the process regardless of the 
language. Vile will not elaborate on this topic, however, since the theme 
here is primarily language-oriented. Suffice it to say that there is no 
reason why FGN languages should not have good runtime debugging 
environments. The only thing that can negatively influence these claims is 
an improper choice of vertex types; this topic will be discussed later. 

There is one additional point that deserves discussion, and that is how can 
errors be detected and represented . When a -vertex firing creates an error 
there are a number of things that may have caused it. Two of the three 
possibilities are: 

• Incorrect token values 

• Incorrect token type. This would not be the case in a strongly typed FGN 
language where type-checking was performed at compile-time. 

C~ealing with these errors is straightforward -- the previous discussion 
indicates how they may be handled . The other poss ibi I ity, which is unique 
to data-driven programs, is not an error of commission (as the previous ones 
are) but an error of omission. That is, the vertex should have fired but 
could not because something was left out. Errors of omission are always 
caused by disjunctive fan-in or fan-out. The cure for this problem is 
properly structured decisions, iterations, and arbitrations, which have been 
previously discussed . 

With errors of commission it is important that something be done, because if 
nothing is done then the output arcs of an error firing vertex wi I I either: 

• Receive incorrect values, which will propagate and cause other errors. 
In the process, they will mask the site where something initially went 
wrong, 

• Or receive no tokens. This will essentially turn an error of commission 
into an error of omission and will only add to the confusion . 

A number of things can be done when an error is noticed at run-time; the two 
most common and useful strategies are: 

• To suspend execution and allow the programmer to examine the input tokens 
of the vertex in error and possibly find what caused the error. 

DATA-DRIVEN PROGRAMMING 2-19 



INTRODUCTION TO FUNCTION NETU1fORK PROGRAMMING 

• To place special error-valued output tokens on the output arcs (and 
possibly into an error-log file, which holds the identification of the 
error vertex and the values of the input tokens which caused the 
problem). The advantage to this scheme is that the FGN can keep running, 
propagating the error tokens which are passed through as NOP (no-op) 
indications to the vertices they meet on the way to this final 
destination. This allows concurrent pieces of the program to continue on 
so that as much as possible can be tested before the programmer needs to 
dive in and find the problem. 

2.9 CONSTANTS 

Constants are a special topic. Typically there are two ways that constants 
have been treated . These methods are depicted in Figure 2-10. 

Regeneration Loop 
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Figure 2-10. Constant Specification Methods 
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In the constant arc case, the arc is viewed as always containing a token 
with the constant value. The firing set of vertices which contain a 
constant arc is consequently reduced by 1. This is no problem unless a 
vertex has all constant arcs as inputs. !n that case the vertex would be 
firing continually, which could spell disaster for the program. 

There is fortunately a simple solution to prevent vertices with all constant 
inputs. At compile-time, execute the always fireable vertex and place the 
results on .the output arcs which are now of constant type. The advantage of 
the constant arc approach i n that no unnecessary vertex firings occur, but 
the scheme requires the ability to handle two arc types: constant and 
regular. 

The other approach is called regeneration and involves making a copy of the 
constant value as it moves on to its destination and passing that copy back 
around to reprime the constant copy vertex. This scheme requires that the 
loop arc be initially marked with the constant value. The advantage of this 
scheme is that only one arc type is needed but the disadvantages are: 

• Extra vertex firings are needed to regenerate the same value. 

• I nitia! markings are required. 

• Initially fireable vertices are also inherent in this scheme. They must 
be found and executed even though no tokens have been delivered into the 
I oa d ed network . 

• Since regeneration is a closed Loop net, the regeneration part may fire 
an arbitrary number of times causing an unbounded supply of constant 
tokens to queue on the feedback loop. This consumes both storage and 
processing resources, which is clearly not a particularly clever idea. 

Other constant mechanisms exist, but these are the two types most frequently 
found in existing FGN languages. 

2.10 I/O 

The final basic topic to be covered is I/O. I/O always seems to be a mess, 
and most of the I/O problem arises from poor language design . Here we view 
I /O as information which either comes into the program or leaves it. The 
formatting problem is the same as with conventional languages, but there is 
one important difference which deserves discussion. 

Data-driven I/O should be pushed into activity by its firing set just as any 
other vertex is activated. This means that vertices that perform I/O 
functions should be initiated by tokens, and that tokens should be returned 
to indicate completion . If this is done, then the nice self-timed behavior 
is preserved. Unfortunately many FGN language designers do not understand 
this, and so I/O presents a problem in some languages . 
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For input, a prompt can be given and the input data is the indication of 
completion of the input. For output the data itself initiates the task and 
a dur~~my token indicating that the output operation completed should be the 
response. 

If this style is adhered to then inputs are easy to direct to the proper 
part of the FG N program . outputs which may be generated concurrently wi I I 
appear in the proper order on a shared-output device. Sharing I/O devices 
by concurrent I/O operations can be structured similarly to the shared 
resource example shown in Figure 2-9. 

If input is viewed (albeit dangerously) as a token appearing on an arc 
whenever it gets there, then the programmer must carefully analyze the 
token-flow possibilities of the FGN to see that all possible actions will in 
fact permit proper program behavior. 

Similarly, if output is viewed as a token sink, the programmer must also be 
careful to analyze the FGN to insure that errors of omission do nat result. 
In general these methods are not all that bad as long as I/O resources are 
not shared. If they are shared, the I/O actions should be encapsulated in 
a program piece which allows proper sharing and synchronization of the 
atomic actions. As usual a good programming style can go a long way toward 
curing the problems caused by careless language design . 

This concludes the discussion of FGN programming basics. A thorough 
understanding of the topics presented in this section is necessary before 
proceeding . 
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3. NET PROPERTIES 

In conventional programming languages, certain structural properties of a 
program are important. These properties involve control structures such as 
properly nested decisions or iterations, but also involve scope rules and 
variable usage. Creating programs that contain these properties is what 
good programming style is all about. 

The advantages of such programs are widely touted i n the general I iteratu re, 
and it wi I I suffice here to say that good programming style concerns itself 
with the entire programming spectrum from human efficiency to runtime 
speeds; and from program design through testing, modification, and on to the 
point where future enhancements can be made efficiently by a totally new 
programmer community . 

FGN programs also have properties which should be the goal of proper 
programming style. Due to the nature of data as tokens in FGN programs, the 
proper variable structure, scope, and usage of conventional programs have no 
direct FGN counterpart. The issue of proper use of branch statements, for 
instance, simply does not come up in FGN programs. Properly nested 
decisions and iterations are equally important in FGN programs as they are 
in languages like Pascal or FORTRAN. 

In addition, however, some new program properties must be understood before 
a FGN programmer can develop a good programming style. These result from 
the intrinsic concurrent and self -timed nature of FGN program actions . Somme 
of these properties are influenced by improper FGN language design . Whether 
the language itself makes things easier or harder, it is important for a 
programmer to understand these properties and strive to create programs 
which contain them . 

Some reasonable questions to ask with respect to a given FGN program are: 

• Does the program continue to run until it provides output tokens? 

• If the program works for a single token on its firing set arcs, will it 
always work as well if pipelined streams of tokens are sent to it? 
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• Does the program always produce the same answers for a given set of input 
va I u es? 

• Is it possible for mysterious things to happen which cause the program to 
behave differently from time to time? 

The properties described in this section are the key to providing the 
answers to these questions . 

3.1 PERSISTENCE 

It is important that tokens on arcs do not randomly disappear. If they did, 
it would be extremely difficult to predict program behavior. Most FGN 
tokens are defined to have the property of persistence. A token is 
persistent if, when one is placed behind another token at the tail of an 
arc, it persists on the arc until it is consumed at the other end of the arc 
by the firing of a vertex. This is necessary to maintain locally-controlled 
action at the vertices of an FGN program. 

Persistence is threatened if the producer of a token can remove from an arc 
a token that it has previously placed there. That could change the firing 
set of another vertex dynamically. This could be disastrous -- the 
receiving vertex could think it was f i reable and start to fire, only ~to 
discover that a token has been removed. 

Another threat fo persistence is allowing tokens to be overwritten by later 
tokens . This creation and destruction of an unused data value may not be 
disastrous -- the program structure may not care if values are overwritten . 
But if the algorithm DOES care, then there is a problem. Persistence is a 
necessary condition to insure deterministic behavior for a FGN network. 

3.2 L I VEN ESS 

It is important that, once started, a FGN program does not destroy its 
tokens in a mysterious way which causes no vertex to be fireable. For 
example, let us consider the program shown in Figure 3-1. 

COND 

~ Throw Away, assumed unused 

RESULT 

Figure 3-1. Example of FGN 1Nh ich t1Aay Die 
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The program is a silly one, but it illustrates the point. The programmer 
expects the program to take positive values of N and produce a result that 
is the value of N plus 1. The problem is what happens when N is not 
positive. I n this case, the value of N is thrown away and no result ever 
comes out of the program . 

Clearly, the problem in Figure 3-1 is that the decision structure is not 
symmetrically closed . The parallel arcs T and F that leave D I ST need to be 
merged somehow. 

n data-driven languages this problem is an insidious one due to the 
self-timed nature of the semantic model. Data-driven programs, waiting for 
the firing set to arrive -- not for a time to arrive -- is how things 
happen. It is not particularly valid to say that something should have 
happened "by now" . 

Certainly there are some pragmatic things which could be done, but in a huge 
net of a mi I I ion vertices containing a great deal of concu rrency, the 
analysis of the total state of the system is an extremely counterproductive 
activity. In fact, the view of distributed control concurrent systems in 
terms of total system state is generally not productive. 

Partially ordered, self-timed systems are nice because they permit analysis 
of parts of the system which are known to be independent from the i of I uence 
of other parts. There is no need to make the analysis combinatoricafly 
intractable by worrying about the state of the entire system. 

I n general, it is easy to ascertain whether or not a FGN is live if all of 
the vertices are conjunctive for both input and output. The analysis 
proceeds as follows: 

• Assume the output arcs of the FGN are live. 

• If this is true then all of the vertices which generate tokens on these 
arcs are live, too. 

• Since they are live, all of the input arcs to these vertices are live. 

• Repeat the last two steps u nti I a I I that's left are input arcs into the 
FGN. 

If the input arcs that you have determined are live are the firing set of 
the FGN, then the FGN itself is live. If however, the firing set of the FGN 
contains more inputs than you can determine are live, the FGN is not live. 

f"~ 

The liveness problem is always associated with vertices that are disjunctive 
for input or output. This fortunately is easier to check than you may 
imagine. If a disjunctive vertex is part of a subnet which has a symmetric 
decision structure (as previously discussed), then the FGN is live. A 
symmetric decision structure has conjunctive inputs and outputs. Inside any 
subnet, if it is symmetric, the tokens will always flow to produce 
conjunctive outputs regardless of the disjunction pattern . 
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You may be tempted to make assumptions about what decision paths can be 
taken in a given structure. These assumptions are always seeds for 
disaster. Always assume that the decision may be made in any direction, 
and symmetrically close the decision structure. Your program will perhaps 
contain a few more vertices but it will also contain less surprises. (Like 
airline travel, programming is one of those activities that is made less 
pleasant by surprises. ) 

3.3 BEING YIIELL-ORDERED 

The property of being well-ordered applies to arcs. In this discussion we 
assume persistent tokens. A well-ordered arc delivers tokens to their 
destination in the same order they were placed on the arc. 

Hence, queues are the only storage tech ique which makes sense for FG Ns, with 
the exception of how to deal with constants . The queues can be of length 1, 
n, or indefinite. If the queues are of finite length, then the execution 
environment must be capable of delaying placement of a token on an arc which 
is full. The PS 300 employs arcs of indefinite length, limited only by the 
amount of available mass memory. 

3.4 SAFETY 

An additional net property which is often seen in network schemas but rarely 
has a direct application to FGN programming schemas is safety. A network 
is safe if there is no chance for a token to be placed on an arc which is 
full. The advantage of safe nets is that the execution environment would be 
relieved of the duty of forcing vertices which were about to place a token 
on a full arc to wait. Safe nets are designed so this just cannot happen. 

Unfortunately, the ways i n which safety can be guaranteed i n FG N languages 
varies with the language so much that a full explanation here would be too 
lengthy. Suffice it to say that safety is only a necessary property if the 
arcs have a fixed capacity, and if the execution environment is not capable 
of delaying output placement to a full arc. 

3.5 CLEAN 

If a FGN is clean, then it exhibits no history-dependent behavior. After 
doing its work, a clean FGN returns exactly to the way it was with exactly 
the same initial markings. Sa if a set of input values produces a certain 
set of output values, then the same input set will always produce the same 
output values . I n addition, a clean FGN is safe to use with pipelined or 
streamed inputs . 

There is a theoretical topological analysis which can be made to determine 
whether or not an FGN is clean, but an easier nuts-and-bolts method is to: 

• Take a given FGN and its initial marking. 
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• Put exactly one token of the proper type (if strong typing is a feature 
of the particular FGN language being used) on each arc of the FGN's 
firing set. 

• Run the net anti! no more vertices are fireable. 

• Remove al I of the tokens from the output arcs of the FGN . 

• Compare the resultant marking with the initial marking. 

If the markings are the same then the FGN with the associated initial 
marking is clean -- otherwise it's "dirty". The term dirty stems from the 
residual garbage tokens (which affect future net behavior) which get trapped 
in a di rty net. 

(The FGN must be live for this procedure to have much practical value, but 
it works in any case as a test for being clean. ) 

Note that the clean property applies to a FGN with an initial marking . 
Constant arcs and an empty initial marking are correctly contained within 
the scope of this procedural test. 

Note also that vertices which when fired produce random output values are 
assumed to be absent from such a net, if the functionality claim previously 
made is to be true. If such randomness was present, non-deterministic 
behavior is usually considered to be different from the non-deterministic 
behavior exhibited by the garbage token non-determinacy nets which are 
caused by nets which are not clean . 

Finally note that only nets containing loops, iterations, or circular 
directed paths have a non-trivial clean test. Circular paths in FGN 
programs, as in electrical circuit structures, are the primary indicator 
that static storage (in this case, the initial marking) is present. 

3.6 WELL-BEHAVED 

A FGN program is defined to be well-behaved if and only if 

• tokens are persistent 

• arcs are wel I -ordered 

• the FGN and its initial marking is live, safe, and clean. 

The goal of proper FGN programming is to create well-behaved FGN programs. 
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3.7 OUTPUT FUNCTIONALITY 

Determinacy has been mentioned several times. With FGN programs, 
determinacy has a slightly different flavor. Deterministic program 
behavior has traditionally meant that if an atomic history of program 
activity was kept, then the history wou Id be repeated if the program was ru n 
again with the same input values. 

Due to the concurrent and self-timed nature of FGN programs and the fact 
that they represent partially-ordered computations rather than 
totally-ordered ones, the repeatability of an atomic history does not make 
any sense. 

Usually the property which is used instead is output functionality. A FGN 
program is output functional if, for a given initial marking, identica! 
input streams produce identical output token streams. 

The repeatability of program behavior is still the essence of this property, 
but the focus has changed_ from the atomic history to the "big picture" --
the order and values of the input and output tokens. The question becomes, 
"Is my FGN deterministic and repeatable overall" -- without worrying about 
the ordering of small operations inside the FGN. 

The next problem is how to insure that a FGN program is output functional. 
If the program contains a vertex which, say, outputs random values 
regardless of its firing set values, then life is indeed hard. 

Usually programs which contain randomness of this type are not supposed to 
be output functional. Fortunately most programs are supposed to be output 
functional, and if such random actions are contained in the program then 
they are encapsulated inside a program fragment which completely hides this 
randomness. 

An example of such behavior would be a program which randomly assigns pairs 
of inputs to three different addition vertices called ADD1, ADD2, and ADD3. 
This program is shown in Figure 3-2. 
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LEFT 

TR~ IGGER 

RIGHT 

RESULT 

COND 

Figure 3-2. Encapsulation of Random Behavior 

tAS0256 

The vertex 1:3 RANDOM, regardless of the trigger value, generates at random 
either a 1, 2, or 3. This causes the LEFT and RIGHT operands to be sent to 
a random adder but the results are SELected in the same fashion as they were 
DISTributed. This makes the entire FGN program appear as if it contained no 
random action. Such random behavior may be called transparent randomness. 

If a given FGN contains no randomness, no asymmetric decision structures, 
all iterations are well-nested, tokens are persistent, I/O is symmetric, and 
the FGN is I ive, clean, AND well -behaved then it wi II be output-f u nctionaf . 
A formal proof of this fact is lengthy and somewhat complex but has been 
done. The above criteria are both necessary and sufficient conditions to 
establish output functionality. 

3.8 SOME FINAL REMARKS ON PROPERTIES 

As with all properties of "nice" programs, there is a big difference between 
practice and theory. This is as true for FGN programming as it is for 
Pascal . 
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A common scenario is for the programming methodology prophets to expound 
endlessly on the merits of the new religion while presenting their 
principles via laborious arguments and trivial program examples. The real 
programmers, on the other hand, scoff at the prophets with a claim that if 
that much analysis was required for each line of real code, then no useful 
program could ever be written . There is however an element of truth in both 
arguments, and quality and productivity can result from a proper balance of 
the two views. Programmers can create complex, well-structured programs 
without laboriously analyzing every atomic action in great detail. 

l n general, good programmers understand the principles of good programming 
practice and the properties which their programs should contain . I n the 
past 30 years the art of programming has come a long way, and there is no 
reason to go back to the dark ages and start all over with FGN languages. 

If the PS 300 function network programmer can keep the principles and 
properties discussed in this section in mind, the knowledge will go a long 
way toward developing an efficient, surprise-free programming style. While 
the ideas presented here may seem new to programmers who have previously 
used sequential languages, the work on concurrent programming is actually 
over 20 years old. It is a mature discipline which is new only in that it 
has been applied to practical programming environments only recently . 
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4. SPECIFIC FGN LANGUAGE REFINEMENTS 

The discussion has thus far presented all of the basic concepts which, if 
understood, will provide a firm foundation for high-quality FGN 
programming. It has not listed specific DO's and DON'Ts because each 
particular FGN language is a bit different; a complete list would be 
impossible. It would be easy enough at this point simply to describe the 
PS 300 function networks and be done with it. But the philosophy here has 
been to present general concepts, which will then allow FGN programmers to 
develop their own practical principles list. 

There are only two dangers in continuing the general discussion 

• Boredom. If this gets you then please skip the remainder of this chapter 
and proceed to the PS 300 stuff . If and when you get in trouble, then 
come back and read it (it wi I I sti I I be here) - - who knows it may help ! 

• Confusion. It may be confusing to some readers who find it difficult to 
assimilate abstract information without sitting down i n front of a 
terminal and doing something concrete. If this is the case, then go do 
something and come back. It will not help conceptually, but it may 
relieve some frustration . 

I n general, it is useful to analyze a particular FGN language in terms of 
that language's types of tokens, arcs, and vertices with their associated 
semantics . These specific choices are termed refinements i n th i s 
document. 

By analyzing these refinements and how they are related to general FG N 
principles and properties, the programmer should be able to understand how 
the particular language being used fits into the general framework of 
data-driven languages. The programmer should also understand what practical 
programming restrictions should be applied in order to produce high quality 
code that is easy to debug, modify, understand, and hand off to others 
without significant danger. 
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4.1 ARC REFINEMENTS 

Typical arc refinements include typing. If a particular FGN language allows 
different types to be mixed in a confusing way, the programmer must develop 
restrictions to prevent this confusion . I n particular, usage must be 
restricted so that only well-ordered programs can be created. 

In some FGN languages type-checking occurs at the vertices at runtime. If 
an input token is not compatible with a vertex it has been sent to, then 
some mechanism must recognize that and indicate that there is an error. 
Possible mechanisms for such error handling have been discussed. 

in other languages, the arcs are considered to be strongly typed, in which 
case type checking can be done at compile time. A less sophisticated 
error-handling mechanism will be required for these languages. 

I n cases where the language has well-ordered arcs with limited capacity, the 
programmer must create safe programs, or the execution system must prevent 
an output token from being placed on an arc until the arc can receive it. 
Otherwise tokens may get lost -- and that would violate the persistence 
property . 

Some systems use a single arc to represent composite token-carrying paths. 
This is similar to routing bundles of arcs. The advantage is more 
simplified graph structure. Usually languages which allow composite arcs 
also have vertex types which compose and dissect the bundles where needed. 
This is not an issue that concerns the programmer, since it is a syntactic 
nicety which either exists or is absent in a given FGN language. 

4.2 TOKEN REFINEMENTS 

What types of tokens does the language allow? Possibilities are: 

• Simple integers, teals, and characters 

• Complex tokens such as arrays, variable-length strings, I ist structures, 
and so on. 

• Streams of tokens, which may or may not require beginning- and 
end-of -stream indicators . 

If the language allows any type of token to hit any vertex then either the 
compiler or execution environment shou Id be able to check if things go wrong 
and provide a sufficiently powerful error mechanism which will allow the 
programmer to find and correct the trouble spots. 

Without this error-handling mechanism, the burden is on the programmer to 
carefully check all FGN paths and insure that the wrong type token does not 
get routed to a vertex which it will cause to go crazy. Crazy vertices are 
a sad thing to observe. Crazy programmers, while being somewhat easier to 
observe, are driven even crazier by crazy vertices. 
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The main property that should be guaranteed by the system is persistence. 
If this is not done by the language and its runtime environment, then the 
programmer must write programs which cause tokens to exist as if they were 
persistent . 

4.3 VERTEX REFINEMENTS 

There are diverse possibi I ities for vertex refinements . Choosing them is 
similar to choosing machine op-codes and language statement types. They 
reflect the designer's view of what is needed for a particular set of target 
applications or program styles. Deciding on vertex refinements is more of 
an art -- or a matter of the designer's personal style -- than a science. 
(A sort of Murphy's Law corollary states that no matter what the designer 
did decide will be viewed by every other programmer as the wrong decision . 
This is healthy, since complaining is a fun way to spend time when you can 
not think of anything else that you would rather do. ) 

Vertex types may be indicated by their shape, by a combination of shape and 
inscription, or even by their position in the graph. This is syntax stuff 
and except for ease of use, does not affect behavior of the program. Some 
languages only allow atomic vertices to be placed -- this inhibits 
hierarchical program design except for the equivalent of doing subroutine 
calls . 

Other languages allow for non -atomic vertices to be defined . These 
non-atomic vertices are essentially "black box" encapsulations of the FGN 
which define its behavior. By opening the doors of the box, the 
substructure can be examined or created. Usually there is a one-to-one 
correspondence between the input and output arcs to the box and the arc 
structure of the FG N which defines the box . 

Another difference is whether or not vertices have fixed numbers of input 
and output ports. This is not really something the programmer needs to 
worry about, as it is more a reflection on the f lex i bi I ity of the compiler 
and the execution environment. 

Copying is usually provided for either explicitly, using a "copy" vertex 
(this i s the method used i n the examples presented i n this document) . O r it 
may be implicit, indicated by mu Iti ple arcs leaving an output port of the 
vertex producing the value which is to be copied. 

All that a programmer needs to be concerned about with copying is how to do 
it i n the specific FG N language he's working with . 

It is important to note which vertices do not behave in an output-functional 
manner -- those which contain "state" and therefore exhibit a 
history-dependent behavior, or those that generate random output values. 
These vertices are not inherently worthless, but they do cause 
non-deterministic behavior in the programs which contain them. If complete 
determinacy is desired, then ail non-functional vertices must be 
encapsulated as shown. in Figure 3-2 or via some similar technique which 
preserves output functionality. 
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ft's also important to note vertices which have disjunctive input or 
output. These vertices must b~e used in a symmetric decision structure 
fashion in order to preserve awell-behaved network. 

4.4 INSCRIPTIONS 

Inscriptions can be used without affecting program function to name arcs and 
provide comments. These serve simply as ordinary comments do in 
von Neumann languages to aid in the readability of the code. Some 
inscriptions are used to type vertices, arcs, tokens, or act as global 
constants which can be assigned by the compiler to the appropriate symbol. 
Such inscriptions are not a need for concern, as they are just another 
syntactic method for specifying what cou Id be represented i n other ways . 

I n some FGN languages, vertices may contain inscriptions which are 
programming instructions. ft is important that the programmer write these 
mini-programs in a way that insures well-behaved function networks. The 
advantage of this approach is that it allows the programmer to describe 
actions that are normally thought of as a text string by simply writing the 
text string. Algebraic expressions are an example. 

4.5 TOPOLOGY RESTRICTTONS 

Some languages do not allow more than one arc to end at the same vertex 
input port. This is because a program that contains such merging is less 
likely to be well-ordered. The only time using this kind of merge will 
result in well-behaved programs is when token arrival on the merged arcs is 
restricted to guarantee well-ordered arrival at the port -- that is, if the 
input arcs are mutually exclusive. This means that if only one of the 
parallel arcs can contain a token at any given time, then no "race" between 
tokens in parallel arcs can occur. The resultant programs will still be 
well-behaved. If such a merging is allowed, the best advice is to f~OT use 
the capability. If you must use it for some reason, be c-~reful to restrict 
arcs to avoid token races . 

Other topology restrictions usually apply to strongly-typed languages where 
the compiler or editor (even better) will complain if you assign an arc to 
the wrong type of vertex port. 

4.6 ERROR HANDLING 

Many error mechanisms exist and they must be evaluated with respect to the 
properties described in the previous section. 
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4.7 INITIAL MARKINGS 

Some languages do not permit initial marking. If the one you are using 
does, be careful to specify initial markings which result in well-behaved 
programs. Be even more careful if the editor and compiler do not do 
"property checking" -- if they don't check programs before they execute to 
see they are well-ordered, safe, clean, correctly typed, and so on . 

4.8 TEXT vs. GRAPHS 

So far, this document has assumed that the programs are specified as 
graphs. This is the clearest and most natural way to specify FGN programs. 
Unfortunately, graphical editors are less commonly available and require a 
more sophisticated terminal than text editors, which have been around for 
years. Using a text editor won't affect programming methodology -- you'll 
still have to pay attention to the FGN properties that have been discussed. 
It will make actual programming more laborious, though . A graphical editor 
allows you to SEE how the vertices in a graph are connected. It isn't 
nearly as easy to visualize a FGN program disguised as a list of text 
commands . 

1t is always possible to provide a textual description of a graph via a set 
of arc and vertex statements which contain connection information . I f 
property checking is done by the system you are using then life is nice. If 
it is up to you to do it, then in times of doubt draw pictures! 

Fortunately, graphical specification is becoming more prevalent. System 
designers are discovering the merits of systems which prevent errors and are 
beginning to stop designing systems which promote error-creation . After 
all, making mistakes is easy enough, so why should people work hard to make 
it even easier? 

A more philosophical issue is that there probably is no good reason why 
program structure should be indicated in the same way that poetry is, i . e. 
by some hokey indentation structure. A better view of program and poem 
similarity is based on the fact that both words start with a "P" 

4.9 SOME FINAL REMARKS 

At this point the di I igent reader who has taken the time and effort to 
digest this unfortunately lengthy treatise has all of the right tools to 
grab a FGN language and do things properly. At least this will be the case 
after a moderate amount of practice. 

The function net language of the PS 300, quite frankly, contains features 
which will not make your life as easy as it could be. With all FGN 
principles in mind, however, you'll be able to create surprise-free PS 300 
function net programs . 
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5. PS 300 FUNCTION NET LANGUAGE 

5.1 INITIAL STRATEGY 

This document is not intended to be a PS 300 function net language reference 
manual, so the details of what each vertex type does is not included here. 
The definitive document for that is the PS 300 User's Manual, and the 
relevant chapter is Chapter 7, "Local Actions" . If you have not already done 
so, you s hou Id go read that chapter prior to continuing with your study of 
this document. 

1Nhat follows are some very general tips on how to create well-behaved programs 
using the PS 300 command language. !f your understanding of general FGN 
properties is rather complete, then the remainder of this section wilt come 
merely as a review of what you already know, or perhaps a confirmation of what 
you expect to be true. 

1f there are some issues discussed in this section which you do not expect, 
then perhaps your understanding in this area is still a bit weak. This may be 
due to the fact that you have little experience with a new programming model 
or to a failure on the author's part to describe it in an way that is 
understandable to you, given your particular programming experiences and 
preferred terminology. 

At any rate, you should list the areas in which you are weak and then perhaps 
go back in this document and reread the areas which discuss these topics. 

5.2 GENERAL PS 300 FUNCTION NET ISSUES 

The first thing that you wi I I notice about the PS 300 function net languages is 
the large number of vertex types -- or functions -- which have been defined. 
Some of them are not absolutely necessary but have been provided as a 
convenience, to permit more direct implementations of a desi red solution . The 
actions _which the functions perform are specialized to allow the interactive 
controls to modify the model for -viewing. 
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It is not ageneral-purpose programming language, so some of the issues which 
have been previously presented in this document are not directly applicable to 
PS 300 prog rarnmi ng . They are, however, all relevant. 

Conjunctive and disjunctive input and output rules were presented in the guise 
of a decision structure which was hopefully similar to the types of program 
decisions made in sequential programming languages. Several PS 300 functions 
have disjunctive structure and all of the issues which apply to decision 
structures apply to them, even though their use may not be i n a conventional 
I F-THEN-ELSE decision . 

Often, there are standard values for certain types of graphical 
transformations. The PS 300 functions which are likely to incorporate these 
'default values" allow the programmer to specify the default in a particularly 
easy manner. I n such cases the input port, if left disconnected, will always 
have the default input value. This is an entirely safe way to incorporate 
def a u It constants . 

Of course if the programmer wants to use a special value, then simply by using 
the appropriate input port, the new values can be specified. The programmer 
s hou Id not confuse this type of defa u It constant specification with the 
constant queues type of arc or input port. Input ports which are labeled 
with a C can be thought of as being driven by an arc, whose queue length is 1. 

Constant queue inputs, labeled C in the manual and hereafter referred to as 
C-inputs, are used by many of the PS 300 functions. C-inputs are a potential 
source of problems to the PS 300 programmer. The C-input defines the 
equivalent of a token register at the C-input port. As such the token which 
it contains is not removed when the vertex function fires. This is not a 
problem, as such a mechanism is similar to the well-behaved constant mechanism 
discussed previously. 

The problem arises because C-input tokens can be overwritten at anytime, 
simply as the result of another token arriving at the C-input port. This 
clearly violates the persistence principle. Without persistent tokens, 
remember, some FG N programs may not be wel I -behaved . 

For example, if a C-input value is sent to a function and is not used before 
another value arrives and overwrites it, then the effect is the same as if the 
first token was never generated at all . I n cases where every generated value 
is supposed to be used, this disappearance would clearly be contrary to the 
programmers intent. 

Fortunately, there is a solution to the problem. This involves creating a 
backsignal from the user of the C-input token to the producer of the token 
which indicates that the value has been used. This 'used" signal can then be 
part of the firing condition which will allow a subsequent value to be 
generated . 
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In other cases, the C-inputs cause no problem -- the program merely wants the 
latest value and does not care about the intermediate values of that type. 
Such an example might be the position of a dial. The program may fire when 
another dial is moved and the latest value of a second dial is then used to 
produce a new view on the screen . 

The programmer must always keep in mind which of these two kinds of use is 
desired when using vertices with C-inputs and then use the proper technique to 
ensure that the desired behavior is created in the program structure. 

Currently when an error occurs the PS 300 just stops, and prints out an error 
message indicating the type of error and the f u nctian type which was being 
executed when the error condition was observed . 

Unfortunately the programmer can not conveniently examine the input tokens 
which caused the error. Instead, the programmer must examine the program 
structure in an attempt to visualize how that type of error could have 
occurred . 

Once the program has been corrected, the new net must be reloaded and 
restarted for a subsequent run . There is currently no provision for 
incremental error traps and restarts. This unfortunately implies that the 
program must be run at least one time for every error it contains. This 
primitive error faci I ity and lack of a runtime debugger implies that it is 
paramount that program creation be done properly! This sentence should 
probably be reread a few thousand times . 

The most common error is a data token-type mismatch . I n the definition of the 
PS 300 functions, arcs and therefore input ports contain type information. 
Type checking is done at runtime, and if a non -conformable set of firing set 
types is observed then BOOM an error condition occurs . The PS 300 function 
net language can be viewed as a type-free language. 

Some programmers have argued for years against the inflexibilities of strongly 
typed languages while others have argued in favor of strongly typed languages 
because they are easier to use to create correct programs. Both sides are 
valid. 

It is important to realize that the lack of strong typing with the PS 300 
means the compiler cannot predict runtime type-mismatch errors. The 
programmer should analyze all of the paths in the program graph to insure that 
consistent typed tokens are provided in all possible cases. This is 
especially true when certain conditions are present. Types must be 
conformable under all possible disjunctive output rules if error-free 
operation is to be the result. 

You can make initial markings with PS 300 function graphs. After the program 
graph is loaded, tokens can be sent to any function input to create the 
initial marking. The programmer must do this with great caution. If a token 
which should be an initial marking causes a vertex to fire then the net will 
be ACTIVE. Usually this causes more firings and so on. 

PS 300 FUNCTION NET LANGUAGE 5-3 



INTRODUCT[ON TO FUNCTION NETII~ORK PROGRAMMING 

In general, initial markings should not cause any vertex to fire. This is a 
good practice since it is easier to know what the initial configuration is if 
nothing changes . It is possible to have vertices which are always f i reable, 
and if this is the case then similar caution must be exercised. 

In addition there are a number of functions (the CLOCK function is an example) 
that will fire at a real-time synchronous rate. This is a violation of the 
usual data-driven self-timed behavior. Any time such a function is used, it 
must be used in a manner that insures that the rate and nature of token 
production will be handled by receiving functions. Any time these real-time 
tokens go to C-inputs, special attention must be given to whether or not the 
possible lack of persistence will cause a problem. 

A final point: users of the PS 300 specify their graph programs as textual 
descriptions. This is not a problem, but you are advised once again to draw 
pictures if you are wondering what is going on. Graphs usually aid your 
intuition t 

5.3 CLASSIFICATION OF PS 300 FUNCTIONS 

This section gives a function-by-function analysis in the form of tables. 
Four classes of functions are defined: 

• C.0 -- vertices with conjunctive input and output rules. These are 
typically safe as long as types match and the proper discipline is 
exercised for constant inputs. 

• C. D -- vertices with conjunctive input rules and disjunctive output 
rules. These vertices need to be embedded in a symmetric decision 
structure, types must match, and constant inputs must be used properly. 

• D. C -- vertices with disjunctive input rules and conjunctive output 
rules . These vertices need to be embedded i n a symmetric decision 
structure, types must match, and C-inputs must be used properly. 

• Sinks -- these functions fire in the normal data-driven way but produce 
no output which i s returned back to the function net program . I n some 
sense these arcs can be viewed as program outputs; behavior is rather 
simple to control. 

The only problem is that the lack of an output means that if data 
structure updates can happen concurrently then they must be sequenced if 
there is a necessa ry order. This sequencing wi I I appear to be done 
randomly, so if the intent is that the order matters, then vertices in 
this class must be sequenced by a di rected path through the operations 
which are to be ordered . 
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r"1 

r"1 

5.3.1 C.0 FUNCTIONS 

Function Inputs:0utputs Cautions 

F:Ceiling 1:1 

F:Fix 1:1 

F:Float 1:1 

F:Print 1:1 

F:Round 1:1 

F:Vec 2:1 

F:CVec 2:1 C input discipline required 

F:VecC 2:1 C input discipline required 

F:XVector 1:1 

F:YVector l:l 

F:ZVector 1:1 

F:Ceiling 1:1 

F:Fix 1:1 

F :Float 1:1 

F:Add 2:1 Input types must conform 

F:AddC 2:1 Input types must conform 
C input discipline required 

F:And 2:1 

F:AndC 2:1 C input discipline required 

F:Div 2:1 Input types must conform 

F:DivC 2:1 C input discipline required 
Input types must conform 

F : CDiv 2:1 C input discipline required 
Input types must conform 

F:Average Z:2 

F:Mod 2:1 
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Function Inputs:0utputs Cautions 

F:ModC 2:1 C input discipline required 

F:Mul 2:1 Input types must conform 

F:Mu1C 2:1 C input discipline required 
Input types must conform 

F:Not 1: 1 

F:Or 2:1 

F:OrC 2:1 C input discipline required 

F : SinCos 1: 2 

F:Sub 2:1 Input types must conform 

F:CSub 2:1 C input discipline required 
Input types must conform 

F:SubC 2:1 C input discipline required 
Input types must conform 

F:Xor 2:1 

F:XorC 2:1 C input discipline required 

F:Eq 2:1 Input types must conform 

F:EgC 2:1 C input discipline required 
Input types must conform 

F:Ge 

F:CGe 

F:GeC 

F:Gt 

F:CGt 

F:GtC 

F:Le 

2:1 Input types must conform 

2:1 C input discipline required 
Input types must conform 

2:1 C input discipline required 
Input types must conform 

2:1 Input types must conform 

2:1 C input discipline required 
Input types must conform 

2:1 C input discipline required 
Input types must conform 

2:1 Input types must conform 
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Function Inputs:0utputs 

F : CLe 

F:LeC 

F:Lt 

F:CLt 

F:LtC 

F:Fetch 

F:Neq 

F:NegC 

Cautions

2:1 C input discipline required 
Input types must conform 

2:I C input discipline required 
Input types must conform .

2:1 Input types must conform 

2:1 C input discipline required 
Input types must conform 

2:1 C input discipline required 
Input types must conform 

2:1 C input discipline required 

2:1 Input types must conform 

2:1 C input discipline required 
Input types must conform 

~~~F: Concatenate 2 : 1 

F:CConcatenate 2:1 

F:ConcatenateC 2:1 

F :Delta 

F:Limit 

F : CXRot at e 

F : CYRotate 

F : C ZRot at e 

F:Scale 

F : XRotate 

F : YRot at e 

F:ZRotate 

F:CRot ate 

F:CScale 

C input discipline required 

C input discipline required 

2:1 

2:1 

3:2 C input discipline required 

3:2 C input discipline required 

3:2 C input discipline required 

1:1 

1:1 

1:1 

1:1 

1: 1 

1:1 
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Function Inputs:Dutputs Cautions 

F:FOV 4:1 C input discipline required 

F:Lookat 3:1 C input discipline required 

F: Lookfrom 3 : 1 C input discipline required 

F : w'indow 7 : 1 C input discipline required 

F: C 1 cSeconds 6: 1 C input discip 1 ine required 
Always fireable real time 
behavior possible 

F: C1Frames 6: 1 C input discipline required 
Always fireable real time 
behavior possible 

F: C 1Ticks 6: 1 C input discip 1 ine required 
Always fireable real time 
behavior possible 

F:Constant 2:1 C input discipline required 

F:Fetch 2:1 C input discipline required 

F:NOP 1:1 

F: Pickinfo 2 : 2 C input discipline required 

F :Position 1 ine 2: 1 C input discip 1 ine required 

F:Dials 1:8 Always fireable real time 
behavior possible 

F:Keys 0:1 Data source, fires on key hit 

Pick 1:2 

TabletIn 3:3 C input discipline required 

Errors 1:4 

Memory_Alert 3:1 

Memory_Monitor 3:3 

Message_Display 1:1 

F:Dscale 5:2 C input discipline required 
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The following functions available with the P5 version of the PS 300 Runtime 
Firmware a re~ also C . C . 

Function Inputs:0utputs 

FINE 2:1 

F:NEC 2:1 

Lineeditor 3:6 

F:DXRotate 3:2 

F:DYRotate 3:2 

F:DZRotate 3:2 

F;Parts 1:4 

F:SgRoot 1:1 

F:XFormData 5:1 

Charmask 2:1 

F:Charconvert 2:1 

F:Color 2:1 

F : Matrix2 2 :1 

F:Matrix 3 3:1 

F:Matrix 4 4:1 

5.3.2 C . D Function s 

Cautions 

C input discipline 

C input discipline 

C input d i s c ip 1 in e 

C input discipline 

required 

required 

required 

required 

C input discipline required 

C input discipline 

C input discipline 

C input discipline 

required 

required 

required 

All of these functions should be used in symmetric decision type network 
structure if streamed tokens can occur. If mutually exclusive decision 
branches are used then this restriction can be relaxed since the marking will 
not create races in a mutually exclusive environment. However, even if the 
well-ordering is thus insured, the programmer must still take care to create 
live nets . 

Function Inputs:0utputs Cautions 

F:Components 1:5 

F:RangeSelect 3:3 

F:Select 

Unused arcs depend on input type 

Input types must conform 
3rd output not sent if not in range 

2:1 C input discipline required 
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Function Inputs:0utputs Cautions 

F:Split 2:4 C input discipline required 
2 outputs not sent if no match 

F:Switch 2:20 

F:CSwitch 2:20 C input discipline required 

F:SwitchC 2:20 C input discipline required 

F:Edge_Detect 2:2 C input discipline required 
This function is simply hard to 
use as it may produce no 
outputs for certain firings 

Keyboard 1:2 Output used depends on input type 

The following f unctions available with the P5 version of the PS 300 Graphics 
Firmware are also G.D. 

F:AtScale 3:1 C input discipline required 

F:Accumulate 6:1 C input discipline required 

F:CBRoute 2:1 C input discipline required 

F:Broute 2:2 

F:BrouteC 2:2 C input discipline required 

F:Limit 3:3 C input discipline required 

5.3.3 D . C Function s 

AI I of these f unction s s hou Id be u sed i n symmetric decision structures if 
streamed tokens can occur. If mutually exclusive decision branches are used 
then this restriction can be relaxed since the marking will not create races 
in a mutually exclusive environment. However even if the well ordering is 
thus insured, the programmer must still take care to create live nets. 

Function Inputs:0utputs Cautions 

F:Boolean_Choose 3:1 C input discipline required 

F:Choose 20:1 C input discipline required 
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Function Inputs:0utputs Cautions 

F:Matrix 4:1 Input type specifies number of 
inputs used 

F:Timeout 2:1 Real Time Firing whether other 
input is used 

Possible disjunctive output also 
Be careful with this one ALWAYS 

The following f unctions avai table with the P5 version of the PS 300 Runtime 
Firmware are also D.C. 

Function Inputs:0utputs Cautions 

F:CMul 2:1 C input discipline required 

F:Inputs_choose N:1 C input discipline required 

5.3.4 Sinks 

The sink nodes are not necessarily a problem, however certain sequencing 
constraints, as mentioned previously, may require care in their use. 

Sink Nodes: 

All 8 DLabel functions (C input discipline required) . 

All 8 DSet functions (C input discipline required). 

All 12 Flabel functions (C input discipline required) . 

Hostout 

Set Conditional Bit 

Set Level of Detail 

Set Rate 

Viewport 

Matrix 4x3 

Look At 

Look From 

PS ~ 300 FUNCTION NET LANGUAGE 5-11 



INTRODUCTION TO FUNCTION NETWORK PROGRAMMING 

Sink Node (coast.) 

Matrix 4x4 

~ indow 

Eye Back 

Field of View 

Set Displays 

Set Depth_Clipping 

Vector List 

Characters 

Matrix 3x3 

Rotate 

Scale 

Matrix 2x2 

Character Size 

Set Picking 

Set Pick Location 
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ANNOTATED BIBLIOGRAPHY 

The following is a list of references for the serious data-driven language 
student. The format is self-explanatory, with bibliographic information 
indented below a brief comment describing the publication . 

In the following MS thesis, an example of a particular FGN language is used 
to do a sound processing application. 

Author="J . A. Stanek", 
School="University of Utah", 
Month="September", 
Date="September 1979" , 
Department="Computer Science", 
Yea r=" 1979" , 
Title="Exploration of Concurrent Digital Sound Synthesis on a Prototype 
Data-Driven Machine" 

The following report describes a Lisp like FGN language. 

Author="R. M. Keller, B. Jayaraman, D. Rose, G. Lindstrom", 
Title="FGL -Function Graph Language", 
Number="AMPS Technical Memorandum #1 ", 
I nstitution="University of Utah, Computer Science Department", 
Date="July 1980" , 
Yea r=" 1980", 

The following discusses semantic issues of a particular FGN model. 

Author=" R . M . Keller" , 
Title="Semantics and Applications of Function Graphs", 
Number="UUCS-80-112", 
Institution="University of Utah, Computer Science Department", 
Date="October 1980" , 
Yea r=" 19$0" , 
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This report discusses a special purpose machine which was built, and which 
used an FGN language as its machine language. 

Author="A. L. Davis", 
Title="The Architecture of DDM1 : A Recursively Structured 
Data-Driven Machine", 
Institution=" University of Utah, Computer Science Dept. ", 
Date="October 1977" , 
Number="UUCS-77-113", 
Year="1977" 

This report discusses the machine language of the previously cited machine. 

Author="A. L. Davis", 
Title="Data-Driven Nets: A Maximally Concurrent, Procedural, 
Parallel Process Representation for Distributed Control Systems", 
Institution="University of Utah, Computer Science Dept. ", 
Date="July 1978" , 
Number="UUCS -78-108" , 
Year="197$" 

This PhD thesis was one of earliest reference to data-driven languages. 

Author="D. A. Adams", 
Institution="Stanford University, .Computer Science Dept. ", 
Title="A computation model with data flow sequencing", 
Date="December 1968", 
Year="1968", 
Number="CS117", 

This article discusses general data-driven issues. 

Author="J . B . Dennis", 
Title="Programming generality, parallelism, and computer 

Architecture" , 
Booktitle="Proceedings I F I PS Congress" , 
Organization=" I FI PS", 
Publisher="North Holland", 
Yea r=" 1969" , 
Pages="484-492", 

This report discusses a particular FGN language. 

Author="K. P. Gostelow", 
Title="Flow of Control, Resource Allocation, and the Proper Termination 

Of Programs" , 
Institution="UCLA Computer Science Dept. ", 
Number="UCLA-ENG-71790", 
Date="December 1971 " 
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This paper discusses a particular low level FGN language. 

Author="J. B. Dennis", 
Title="First version of a data flow procedure language" 
Date="September 1974", 
Yea r=" 1974" , 
BookTitle="Lecture Notes i n Computer Science", 
Organization="SPRINGER-VERLAG", 
Pages="362-376", 
Volume="19", 
Editor="B. Robinet", 

This paper describes ahigh-level 1=GN language. 

Author="1N. B . Ackerman, J . B . Dennis", 
Title="VAL - AValue-Oriented Algorithmic Language Preliminary 

Reference Manual", 
Institution="MIT, Computer Science Department", 
Number=" LCS/TR-218", 
Year="1979", 
Date= "June 1979" , 

This article discusses general network issues. 

Author="T. Agerwala, M. Flynn", 
Title="Comments on capabilities, limitations, and correctness of 

Petri Nets", 
BookTitle="Proc. First Annual Symposium on Computer Architecture", 
Organization="IEEE", 
Yea r=" 1973" , 
Pages="81-86", 
Date="December 1973" , 

This paper is a theoretical treatment of net languages. 

Author="M. Hack", 
Title="Petri net languages", 
I nstitution="MIT Laboratory for Computer Science", 
Year="1976", 
Number="161 ", 
Date= "June 1976" , 
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This paper is an excellent net modeling survey. 

Author="J . L. Peterson", 
Title="Petri Nets", 
Journal="Computing Surveys", 
VOlume="9", 
Year="1977", 
Number="3", 
Date="September 1977", 
Pages="223-252" , 

Petri in some sense was the father of the network ideas. This paper is an 
excellent introduction to the basic theory. 

Author="C. A. Petri", 
Title="General Net Theory", 
Organization="MIT Project MAC", 
Booktitle="Conference on Petri Nets and Related Methods", 
Date="July 1975", 
Pages="26-41 ", 
Yea r=" 1975" , 

More from the father. 

Author="C. A. Petri", 
Title="Fundamentals of a theory of asynchronous information flow", 
Booktitle="Information Processing 62", 
Publisher="-North Holland", 
Pages="386-391 ", 
Year="1962", 
Organization=" I F I PS" , 

This paper is an early theory of nets treatise. 

" M Karp, R E Miller", Author= R . 
Title="Parallel program schemata", 
Journal="Journal of Computing and System Sciences" 
Vo I u m e= "3 " , 
Number="2", 
Yea r=" 1969" , 
Pages=" 147-195" , 
Date="May 1969", 
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This work represents a thorough mathematical treatment of net ideas. 

Author="A. Holt, F. Commoner", 
Title="Events and Conditions", 
Booktitle="Record of the Project MAC conference on concurrent 

Systems and parallel computation", 
Organization="MIT Project MAC", 
Pages="3-52", 
Year="1970", 

This is required reading for people trying to break away from the bounds of 
total ly-ordered thinking . 

Author="J. Backus", 
Title="Can programming be liberated from the von Neumann style? 

A functional style and its algebra of programs", 
Journal="CACM", 
Vol ume="21 ", 
Number="8" , 
Pages="613-641 ", 
Date="August 1978" , 
Yea r=" 1978" , 

Another high level f=GN language. 

Author="Arvind, K. P. Gostelow, V11. Plouffe", 
Title="The Id Report: An Asynchronous Programming Language and 

Computing Machine" , 
Institution=" U n iv . Ca I if . Irvine Comp . Sci . Dept . ", 
Date="May 1978" , 
Number=" 114A" , 
Year="1978", 

A PhD thesis considered by many to be the beginning of modern data-driven 
thinking. 

Author="J. D. Rodriguez", 
Title="A Graph Model for Parallel Computation", 
Institution="MIT Project MAC" , 
Number="T R-64" , 
Date="September 1989" , 
Year="1969", 
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An excellent MS thesis discussing the nature of token streams . 

Author="K. S. Weng", 
Title="Stream-oriented Computation in Recursive Data-Flow Schemas", 
Institution="MIT LCS" , 
Year="1975", 
Date="October 1975" , 
Number="MIT/LCS/TM-68" , 

A seminal article on the theory of partially ordered program issues. 

Author="D. Scott" 
Title="Data types as lattices" 
Month="September", 
Year=" 1976", 
Date="September 1976" , 
Jou rna I="SIAM J . Comput . ", 
Number="3", 
Volume="5", 
Pages="522-587" 

A chapter of the VLS! bible, dedicated to the issues of self-timed systems 
thinking. 

Author="C . L. Seitz", 
Fullauthor="C. L. Seitz", 
Title="System Timing", 
Booktitle="Introduction to VLSI Systems, Chapter 7", 
Publisher="McGraw-Hill", 
Year="1979", 

Clearly there is more but if you understand these references, you won't need 
to read the others . 
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