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PREFACE

This practical reference text is written for students who require a thorough knowledge of pro-
gramming and interfacing of the Intel family of microprocessors. Today, anyone functioning or
striving to function in a field of study that uses computers must understand assembly language
programming, a version of C language, and interfacing. Intel microprocessors have gained wide,
and at times exclusive, application in many areas of electronics, communications, and control
systems, particularly in desktop computer systems. A major addition to this eighth edition
explains how to interface C/C++ using Visual C++ Express, which is a free download from
Microsoft, with assembly language for both the older DOS and the Windows environments.
Many applications include Visual C++ as a basis for learning assembly language using the inline
assembler. Updated sections that detail new events in the fields of microprocessors and micro-
processor interfacing have been added.

ORGANIZATION AND COVERAGE

To cultivate a comprehensive approach to learning, each chapter begins with a set of objectives
that briefly define its content. Chapters contain many programming applications and examples
that illustrate the main topics. Each chapter ends with a numerical summary, which doubles as a
study guide, and reviews the information just presented. Questions and problems are provided
for reinforcement and practice, including research paper suggestions.

This text contains many example programs using the Microsoft Macro Assembler program
and the inline assembler in the Visual C++ environment, which provide a learning opportunity to
program the Intel family of microprocessors. Operation of the programming environment
includes the linker, library, macros, DOS function, BIOS functions, and Visual C/C++ program
development. The inline assembler (C/C++) is illustrated for both the 16- and 32-bit program-
ming environments of various versions of Visual C++. The text is written to use Visual C++
Express 2005 or 2008 as a development environment, but any version of Visual Studio can also
be used with almost no change.

This text also provides a thorough description of family members, memory systems, and
various I/O systems that include disk memory, ADC and DAC, 16550 UART, PIAs, timers, key-
board/display controllers, arithmetic coprocessors, and video display systems. Also discussed are
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the personal computer system buses (AGP, ISA, PCI, PCI Express, USB, serial ports, and parallel
port). Through these systems, a practical approach to microprocessor interfacing can be learned.

APPROACH

Because the Intel family of microprocessors is quite diverse, this text initially concentrates on
real mode programming, which is compatible with all versions of the Intel family of micro-
processors. Instructions for each family member, which include the 80386, 80486, Pentium,
Pentium Pro, Pentium II, Pentium III, and Pentium 4 processors, are compared and contrasted
with those for the 8086/8088 microprocessors. This entire series of microprocessors is very sim-
ilar, which allows more advanced versions and their instructions to be learned with the basic
8086/8088. Please note that the 8086/8088 are still used in embedded systems along with their
updated counterparts, the 80186/80188 and 80386EX embedded microprocessor.

This text also explains the programming and operation of the numeric coprocessor, MMX
extension, and the SIMD extension, which function in a system to provide access to floating-
point calculations that are important in control systems, video graphics, and computer-aided
design (CAD) applications. The numeric coprocessor allows a program to access complex
arithmetic operations that are otherwise difficult to achieve with normal microprocessor pro-
gramming. The MMX and SIMD instructions allow both integer and floating-point data to be
manipulated in parallel at very high speed.

This text also describes the pin-outs and function of the 8086—80486 and all versions of the
Pentium microprocessor. First, interfacing is explained using the 8086/8088 with some of the
more common peripheral components. After explaining the basics, a more advanced emphasis is
placed on the 80186/80188, 80386, 80486, and Pentium through Pentium 4 microprocessors.
Coverage of the 80286, because of its similarity to the 8086 and 80386, is minimized so the
80386, 80486, and Pentium versions can be covered in complete detail.

Through this approach, the operation of the microprocessor and programming with the
advanced family members, along with interfacing all family members, provides a working and
practical background of the Intel family of microprocessors. Upon completing a course using
this text, you will be able to:

1. Develop software to control an application interface microprocessor. Generally, the software
developed will also function on all versions of the microprocessor. This software also
includes DOS-based and Windows-based applications. The main emphasis is on developing
inline assembly and C++ mixed language programs in the Windows environment.

2. Program using MFC controls, handlers, and functions to use the keyboard, video display
system, and disk memory in assembly language and C++.

3. Develop software that uses macro sequences, procedures, conditional assembly, and flow

control assembler directives that are linked to a Visual C++ program.

Develop software for code conversions using lookup tables and algorithms.

Program the numeric coprocessor to solve complex equations.

Develop software for the MMX and SIMD extensions.

Explain the differences between the family members and highlight the features of each member.

Describe and use real and protected mode operation of the microprocessor.

Interface memory and I/O systems to the microprocessor.

Provide a detailed and comprehensive comparison of all family members and their software

and hardware interfaces.

11. Explain the function of the real-time operating system in an embedded application.

12. Explain the operation of disk and video systems.

13. Interface small systems to the ISA, PCI, serial ports, parallel port, and USB bus in a personal

computer system.

SO A
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CONTENT OVERVIEW

Chapter 1 introduces the Intel family of microprocessors with an emphasis on the microprocessor-
based computer system: its history, operation, and the methods used to store data in a
microprocessor-based system. Number systems and conversions are also included. Chapter 2
explores the programming model of the microprocessor and system architecture. Both real and
protected mode operations are explained.

Once an understanding of the basic machine is grasped, Chapters 3 through 6 explain how
each instruction functions with the Intel family of microprocessors. As instructions are
explained, simple applications are presented to illustrate the operation of the instructions and
develop basic programming concepts.

Chapter 7 introduces the use of Visual C/C++ Express with the inline assembler and sepa-
rate assembly language programming modules. It also explains how to configure Visual C++
Express for use with assembly language applications.

After the basis for programming is developed, Chapter 8 provides applications using the
Visual C++ Express with the inline assembler program. These applications include programming
using the keyboard and mouse through message handlers in the Windows environment. Disk
files are explained using the File class, as well as keyboard and video operations on a personal
computer system through Windows. This chapter provides the tools required to develop virtually
any program on a personal computer system through the Windows environment.

Chapter 9 introduces the 8086/8088 family as a basis for learning basic memory and I/O
interfacing, which follow in later chapters. This chapter shows the buffered system as well as the
system timing.

Chapter 10 explains memory interface using both integrated decoders and programmable
logic devices using VHDL. The 8-, 16-, 32-, and 64-bit memory systems are provided so the
8086-80486 and the Pentium through Pentium 4 microprocessors can be interfaced to memory.

Chapter 11 provides a detailed look at basic I/O interfacing, including PIAs, timers, the
16550 UART, and ADC/DAC. It also describes the interface of both DC and stepper motors.

Once these basic I/O components and their interface to the microprocessor are understood,
Chapters 12 and 13 provide detail on advanced I/O techniques that include interrupts and direct
memory access (DMA). Applications include a printer interface, real-time clock, disk memory,
and video systems.

Chapter 14 details the operation and programming for the 8087—Pentium 4 family of arith-
metic coprocessors, as well as MMX and SIMD instructions. Today few applications function
efficiently without the power of the arithmetic coprocessor. Remember that all Intel micro-
processors since the 80486 contain a coprocessor; since the Pentium, an MMX unit; and since
the Pentium II, an SIMD unit.

Chapter 15 shows how to interface small systems to the personal computer through the use
of the parallel port, serial ports, and the ISA, and PCI bus interfaces.

Chapters 16 and 17 cover the advanced 80186/80188—-80486 microprocessors and explore
their differences with the 8086/8088, as well as their enhancements and features. Cache memory,
interleaved memory, and burst memory are described with the 80386 and 80486 microproces-
sors. Chapter 16 also covers real-time operating systems (RTOS), and Chapter 17 also describes
memory management and memory paging.

Chapter 18 details the Pentium and Pentium Pro microprocessors. These microprocessors
are based upon the original 8086/8088.

Chapter 19 introduces the Pentium II, Pentium III, Pentium 4, and Core2 microprocessors.
It covers some of the new features, package styles, and the instructions that are added to the orig-
inal instruction set.

Appendices are included to enhance the text. Appendix A provides an abbreviated listing
of the DOS INT 21H function calls because the use of DOS has waned. It also details the use of
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the assembler program and the Windows Visual C++ interface. A complete listing of all
8086—Pentium 4 and Core? instructions, including many example instructions and machine cod-
ing in hexadecimal as well as clock timing information, is found in Appendix B. Appendix C
provides a compact list of all the instructions that change the flag bits. Answers for the even-
numbered questions and problems are provided in Appendix D.

To access supplementary materials online, instructors need to request an instructor access
code. Go to www.pearsonhighered.com/irc, where you can register for an instructor access
code. Within 48 hours after registering, you will receive a confirming e-mail, including an
instructor access code. Once you have received your code, go to the site and log on for full
instructions on downloading the materials you wish to use.
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CHAPTER 1

Introduction to the Microprocessor
and Computer

INTRODUCTION

This chapter provides an overview of the Intel family of microprocessors. Included is a discus-
sion of the history of computers and the function of the microprocessor in the microprocessor-
based computer system. Also introduced are terms and jargon used in the computer field, so
that computerese is understood and applied when discussing microprocessors and computers.
The block diagram and a description of the function of each block detail the operation of
a computer system. Blocks, in the block diagram, show how the memory and input/output (I/O)
system of the personal computer interconnect. Detailed is the way data are stored in the mem-
ory so each data type can be used as software is developed. Numeric data are stored as integers,
floating-point, and binary-coded decimal (BCD); alphanumeric data are stored by using the
ASCII (American Standard Code for Information Interchange) code and the Unicode.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

1. Converse by using appropriate computer terminology such as bit, byte, data, real memory
system, protected mode memory system, Windows, DOS, I/O, and so forth.

2. Briefly detail the history of the computer and list applications performed by computer
systems.

. Provide an overview of the various 80X86 and Pentium family members.

. Draw the block diagram of a computer system and explain the purpose of each block.

. Describe the function of the microprocessor and detail its basic operation.

. Define the contents of the memory system in the personal computer.

. Convert between binary, decimal, and hexadecimal numbers.

. Differentiate and represent numeric and alphabetic information as integers, floating-point,
BCD, and ASCII data.
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1-1

A HISTORICAL BACKGROUND

This first section outlines the historical events leading to the development of the microprocessor
and, specifically, the extremely powerful and current 80X86,! Pentium, Pentium Pro, Pentium III,
Pentium 4,2 and Core2 microprocessors. Although a study of history is not essential to understand
the microprocessor, it furnishes interesting reading and provides a historical perspective of the
fast-paced evolution of the computer.

The Mechanical Age

The idea of a computing system is not new—it has been around long before modem electrical and
electronic devices were developed. The idea of calculating with a machine dates to 500 BC when
the Babylonians, the ancestors of the present-day Iraqis, invented the abacus, the first mechanical
calculator. The abacus, which uses strings of beads to perform calculations, was used by the
ancient Babylonian priests to keep track of their vast storehouses of grain. The abacus, which was
used extensively and is still in use today, was not improved until 1642, when mathematician
Blaise Pascal invented a calculator that was constructed of gears and wheels. Each gear contained
10 teeth that, when moved one complete revolution, advanced a second gear one place. This is the
same principle that is used in the automobile’s odometer mechanism and is the basis of all
mechanical calculators. Incidentally, the PASCAL programming language is named in honor of
Blaise Pascal for his pioneering work in mathematics and with the mechanical calculator.

The arrival of the first practical geared mechanical machines used to automatically com-
pute information dates to the early 1800s. This is before humans invented the lightbulb or before
much was known about electricity. In this dawn of the computer age, humans dreamed of
mechanical machines that could compute numerical facts with a program—not merely calculat-
ing facts, as with a calculator.

In 1937 it was discovered through plans and journals that one early pioneer of mechanical com-
puting machinery was Charles Babbage, aided by Augusta Ada Byron, the Countess of Lovelace.
Babbage was commissioned in 1823 by the Royal Astronomical Society of Great Britain to produce
a programmable calculating machine. This machine was to generate navigational tables for the Royal
Navy. He accepted the challenge and began to create what he called his Analytical Engine. This
engine was a steam-powered mechanical computer that stored a thousand 20-digit decimal num-
bers and a variable program that could modify the function of the machine to perform various calcu-
lating tasks. Input to his engine was through punched cards, much as computers in the 1950s and
1960s used punched cards. It is assumed that he obtained the idea of using punched cards from Joseph
Jacquard, a Frenchman who used punched cards as input to a weaving machine he invented in 1801,
which is today called Jacquard’s loom. Jacquard’s loom used punched cards to select intricate weav-
ing patterns in the cloth that it produced. The punched cards programmed the loom.

After many years of work, Babbage’s dream began to fade when he realized that the
machinists of his day were unable to create the mechanical parts needed to complete his work.
The Analytical Engine required more than 50,000 machined parts, which could not be made with
enough precision to allow his engine to function reliably.

The Electrical Age

The 1800s saw the advent of the electric motor (conceived by Michael Faraday); with it came a
multitude of motor-driven adding machines, all based on the mechanical calculator developed by
Blaise Pascal. These electrically driven mechanical calculators were common pieces of office

180X86 is an accepted acronym for 8086, 8088, 80186, 80188, 80286, 80386, and 80486 microprocessors
and also include the Pentium series.

2Pentium, Pentium Pro, Pentium II, Pentium III, Pentium 4, and Core2 are registered trademarks of Intel Corporation.
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equipment until well into the early 1970s, when the small handheld electronic calculator, first
introduced by Bomar Corporation and called the Bomar Brain, appeared. Monroe was also a
leading pioneer of electronic calculators, but its machines were desktop, four-function models
the size of cash registers.

In 1889, Herman Hollerith developed the punched card for storing data. Like Babbage, he
too apparently borrowed the idea of a punched card from Jacquard. He also developed a mechan-
ical machine—driven by one of the new electric motors—that counted, sorted, and collated
information stored on punched cards. The idea of calculating by machinery intrigued the United
States government so much that Hollerith was commissioned to use his punched-card system to
store and tabulate information for the 1890 census.

In 1896, Hollerith formed a company called the Tabulating Machine Company, which
developed a line of machines that used punched cards for tabulation. After a number of mergers,
the Tabulating Machine Company was formed into the International Business Machines
Corporation, now referred to more commonly as IBM, Inc. The punched cards used in early
computer systems are often called Hollerith cards, in honor of Herman Hollerith. The 12-bit
code used on a punched card is called the Hollerith code.

Mechanical machines driven by electric motors continued to dominate the information
processing world until the construction of the first electronic calculating machine in 1941.
A German inventor named Konrad Zuse, who worked as an engineer for the Henschel Aircraft
Company in Berlin, invented the first modern electromechanical computer. His Z3 calculating
computer, as pictured in Figure 1-1, was probably invented for use in aircraft and missile design
during World War II for the German war effort. The Z3 was a relay logic machine that was
clocked at 5.33 Hz (far slower than the latest multiple GHz microprocessors). Had Zuse been
given adequate funding by the German government, he most likely would have developed a
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The Z3 computer developed by Konrad Zuse uses a 5.33 hertz clocking frequency. (Photo courtesy

of Horst Zuse, the son of Konrad.)
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much more powerful computer system. Zuse is today finally receiving some belated honor for
his pioneering work in the area of digital electronics, which began in the 1930s, and for his Z3
computer system. In 1936 Zuse constructed a mechanical version of his system and later in 1939
Zuse constructed his first electromechanical computer system, called the Z2.

It has recently been discovered (through the declassification of British military documents)
that the first electronic computer was placed into operation in 1943 to break secret German mili-
tary codes. This first electronic computing system, which used vacuum tubes, was invented by
Alan Turing. Turing called his machine Colossus, probably because of its size. A problem with
Colossus was that although its design allowed it to break secret German military codes generated
by the mechanical Enigma machine, it could not solve other problems. Colossus was not
programmable—it was a fixed-program computer system, which today is often called a special-
purpose computer.

The first general-purpose, programmable electronic computer system was developed in
1946 at the University of Pennsylvania. This first modem computer was called the ENIAC
(Electronic Numerical Integrator and Calculator). The ENIAC was a huge machine, con-
taining over 17,000 vacuum tubes and over 500 miles of wires. This massive machine weighed
over 30 tons, yet performed only about 100,000 operations per second. The ENIAC thrust
the world into the age of electronic computers. The ENIAC was programmed by rewiring its
circuits—a process that took many workers several days to accomplish. The workers changed
the electrical connections on plug-boards that looked like early telephone switchboards.
Another problem with the ENIAC was the life of the vacuum tube components, which required
frequent maintenance.

Breakthroughs that followed were the development of the transistor on December 23, 1947
at Bell Labs by John Bardeen, William Shockley, and Walter Brattain. This was followed by the
1958 invention of the integrated circuit by Jack Kilby of Texas Instruments. The integrated
circuit led to the development of digital integrated circuits (RTL, or resistor-to-transistor logic)
in the 1960s and the first microprocessor at Intel Corporation in 1971. At that time, Intel engi-
neers Federico Faggin, Ted Hoff, and Stan Mazor developed the 4004 microprocessor (U.S.
Patent 3,821,715)—the device that started the microprocessor revolution that continues today at
an ever-accelerating pace.

Programming Advancements

Now that programmable machines were developed, programs and programming languages
began to appear. As mentioned earlier, the first programmable electronic computer system was
programmed by rewiring its circuits. Because this proved too cumbersome for practical applica-
tion, early in the evolution of computer systems, computer languages began to appear in order to
control the computer. The first such language, machine language, was constructed of ones and
zeros using binary codes that were stored in the computer memory system as groups of instruc-
tions called a program. This was more efficient than rewiring a machine to program it, but it was
still extremely time-consuming to develop a program because of the sheer number of program
codes that were required. Mathematician John von Neumann was the first modern person to
develop a system that accepted instructions and stored them in memory. Computers are often
called von Neumann machines in honor of John von Neumann. (Recall that Babbage also had
developed the concept long before von Neumann.)

Once computer systems such as the UNIVAC became available in the early 1950s,
assembly language was used to simplify the chore of entering binary code into a computer as
its instructions. The assembler allows the programmer to use mnemonic codes, such as ADD for
addition, in place of a binary number such as 0100 0111. Although assembly language was an
aid to programming, it wasn’t until 1957, when Grace Hopper developed the first high-level
programming language called FLOWMATIC, that computers became easier to program. In the
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same year, IBM developed FORTRAN (FORmula TRANslator) for its computer systems. The
FORTRAN language allowed programmers to develop programs that used formulas to solve
mathematical problems. Note that FORTRAN is still used by some scientists for computer
programming. Another similar language, introduced about a year after FORTRAN, was ALGOL
(ALGOrithmic Language).

The first truly successful and widespread programming language for business applications
was COBOL (COmputer Business Oriented Language). Although COBOL usage has dimin-
ished considerably in recent years, it is still a player in some large business and government
systems. Another once-popular business language is RPG (Report Program Generator), which
allows programming by specifying the form of the input, output, and calculations.

Since these early days of programming, additional languages have appeared. Some of the
more common modern programming languages are BASIC, C#, C/C++, Java, PASCAL, and
ADA. The BASIC and PASCAL languages were both designed as teaching languages, but have
escaped the classroom. The BASIC language is used in many computer systems and may be one
of the most common programming languages today. The BASIC language is probably the easiest
of all to learn. Some estimates indicate that the BASIC language is used in the personal computer
for 80% of the programs written by users. In the past decade, a new version of BASIC, Visual
BASIC, has made programming in the Windows environment easier. The Visual BASIC lan-
guage may eventually supplant C/C++ and PASCAL as a scientific language, but it is doubtful.
It is more apparent that the C# language is gaining headway and may actually replace C/C++ and
most other languages including Java and may eventually replace BASIC. This of course is con-
jecture and only the future will show which language eventually becomes dominant.

In the scientific community, primarily C/C++ and occasionally PASCAL and FORTRAN
appear as control programs. One recent survey of embedded system developers showed that C
was used by 60% and that 30% used assembly language. The remainder used BASIC and JAVA.
These languages, especially C/C++, allow the programmer almost complete control over the pro-
gramming environment and computer system. In many cases, C/C++ is replacing some of the
low-level machine control software or drivers normally reserved for assembly language. Even so,
assembly language still plays an important role in programming. Many video games written for
the personal computer are written almost exclusively in assembly language. Assembly language
is also interspersed with C/C++ to perform machine control functions efficiently. Some of the
newer parallel instructions found on the newest Pentium and Core2 microprocessors are only
programmable in assembly language.

The ADA language is used heavily by the Department of Defense. The ADA language was
named in honor of Augusta Ada Byron, Countess of Lovelace. The Countess worked with
Charles Babbage in the early 1800s in the development of software for his Analytical Engine.

The Microprocessor Age

The world’s first microprocessor, the Intel 4004, was a 4-bit microprocessor—programmable con-
troller on a chip. It addressed a mere 4096, 4-bit-wide memory locations. (A bit is a binary digit
with a value of one or zero. A 4-bit-wide memory location is often called a nibble.) The 4004
instruction set contained only 45 instructions. It was fabricated with the then-current state-of-
the-art P-channel MOSFET technology that only allowed it to execute instructions at the slow
rate of 50 KIPs (kilo-instructions per second). This was slow when compared to the 100,000
instructions executed per second by the 30-ton ENIAC computer in 1946. The main difference
was that the 4004 weighed much less than an ounce.

At first, applications abounded for this device. The 4-bit microprocessor debuted in early
video game systems and small microprocessor-based control systems. One such early video game,
a shuffleboard game, was produced by Bailey. The main problems with this early microprocessor
were its speed, word width, and memory size. The evolution of the 4-bit microprocessor ended
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TABLE 1-1 Early 8-bit

MiCroprocessors. Manufacturer Part Number
Fairchild F-8
Intel 8080
MOS Technology 6502
Motorola MC6800
National Semiconductor IMP-8
Rockwell International PPS-8
Zilog Z-8

when Intel released the 4040, an updated version of the earlier 4004. The 4040 operated at a
higher speed, although it lacked improvements in word width and memory size. Other companies,
particularly Texas Instruments (TMS-1000), also produced 4-bit microprocessors. The 4-bit
microprocessor still survives in low-end applications such as microwave ovens and small control
systems and is still available from some microprocessor manufacturers. Most calculators are still
based on 4-bit microprocessors that process 4-bit BCD (binary-coded decimal) codes.

Later in 1971, realizing that the microprocessor was a commercially viable product, Intel
Corporation released the 8008—an extended 8-bit version of the 4004 microprocessor. The
8008 addressed an expanded memory size (16K bytes) and contained additional instructions
(a total of 48) that provided an opportunity for its application in more advanced systems.
(A byte is generally an 8-bit-wide binary number and a K is 1024. Often, memory size is spec-
ified in K bytes.)

As engineers developed more demanding uses for the 8008 microprocessor, they discov-
ered that its somewhat small memory size, slow speed, and instruction set limited its usefulness.
Intel recognized these limitations and introduced the 8080 microprocessor in 1973—the first of
the modem 8-bit microprocessors. About six months after Intel released the 8080 microproces-
sor, Motorola Corporation introduced its MC6800 microprocessor. The floodgates opened and
the 8080—and, to a lesser degree, the MC6800—ushered in the age of the microprocessor. Soon,
other companies began to introduce their own versions of the 8-bit microprocessor. Table 1-1 lists
several of these early microprocessors and their manufacturers. Of these early microprocessor
producers, only Intel and Motorola (IBM also produces Motorola-style microprocessors) continue
successfully to create newer and improved versions of the microprocessor. Motorola has sold its
microprocessor division, and that company is now called Freescale Semiconductors, Inc. Zilog
still manufactures microprocessors, but remains in the background, concentrating on microcon-
trollers and embedded controllers instead of general-purpose microprocessors. Rockwell has all
but abandoned microprocessor development in favor of modem circuitry. Motorola has declined
from having nearly 50% share of the microprocessor market to a much smaller share. Intel today
has nearly 100% of the desktop and notebook market.

What Was Special about the 8080? Not only could the 8080 address more memory and exe-
cute additional instructions, but it executed them 10 times faster than the 8008. An addition that
took 20 us (50,000 instructions per second) on an 8008-based system required only 2.0 us
(500,000 instructions per second) on an 8080-based system. Also, the 8080 was compatible with
TTL (transistor-transistor logic), whereas the 8008 was not directly compatible. This made inter-
facing much easier and less expensive. The 8080 also addressed four times more memory
(64K bytes) than the 8008 (16K bytes). These improvements are responsible for ushering in the
era of the 8080 and the continuing saga of the microprocessor. Incidentally, the first personal
computer, the MITS Altair 8800, was released in 1974. (Note that the number 8800 was proba-
bly chosen to avoid copyright violations with Intel.) The BASIC language interpreter, written for
the Altair 8800 computer, was developed in 1975 by Bill Gates and Paul Allen, the founders of
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Microsoft Corporation. The assembler program for the Altair 8800 was written by Digital
Research Corporation, which once produced DR-DOS for the personal computer.

The 8085 Microprocessor. 1In 1977, Intel Corporation introduced an updated version of the
8080—the 8085. The 8085 was to be the last 8-bit, general-purpose microprocessor developed
by Intel. Although only slightly more advanced than an 8080 microprocessor, the 8085 executed
software at an even higher speed. An addition that took 2.0 us (500,000 instructions per second
on the 8080) required only 1.3 us (769,230 instructions per second) on the 8085. The main
advantages of the 8085 were its internal clock generator, internal system controller, and higher
clock frequency. This higher level of component integration reduced the 8085’s cost and
increased its usefulness. Intel has managed to sell well over 100 million copies of the 8085
microprocessor, its most successful 8-bit, general-purpose microprocessor. Because the 8085 is
also manufactured (second-sourced) by many other companies, there are over 200 million
of these microprocessors in existence. Applications that contain the 8085 will likely continue to
be popular. Another company that sold 500 million 8-bit microprocessors is Zilog Corporation,
which produced the Z-80 microprocessor. The Z-80 is machine language—compatible with the
8085, which means that there are over 700 million microprocessors that execute 8085/Z-80
compatible code!

The Modern Microprocessor

In 1978, Intel released the 8086 microprocessor; a year or so later, it released the 8088. Both
devices are 16-bit microprocessors, which executed instructions in as little as 400 ns (2.5 MIPs,
or 2.5 millions of instructions per second). This represented a major improvement over the exe-
cution speed of the 8085. In addition, the 8086 and 8088 addressed 1M byte of memory, which
was 16 times more memory than the 8085. (A 1M-byte memory contains 1024K byte-sized
memory locations or 1,048,576 bytes.) This higher execution speed and larger memory size
allowed the 8086 and 8088 to replace smaller minicomputers in many applications. One other
feature found in the 8086/8088 was a small 4- or 6-byte instruction cache or queue that
prefetched a few instructions before they were executed. The queue sped the operation of many
sequences of instructions and proved to be the basis for the much larger instruction caches found
in modem microprocessors.

The increased memory size and additional instructions in the 8086 and 8088 have led to
many sophisticated applications for microprocessors. Improvements to the instruction set
included multiply and divide instructions, which were missing on earlier microprocessors.
In addition, the number of instructions increased from 45 on the 4004, to 246 on the 8085, to well
over 20,000 variations on the 8086 and 8088 microprocessors. Note that these microprocessors
are called CISC (complex instruction set computers) because of the number and complexity of
instructions. The additional instructions eased the task of developing efficient and sophisticated
applications, even though the number of instructions are at first overwhelming and time-
consuming to learn. The 16-bit microprocessor also provided more internal register storage
space than the 8-bit microprocessor. The additional registers allowed software to be written more
efficiently.

The 16-bit microprocessor evolved mainly because of the need for larger memory systems.
The popularity of the Intel family was ensured in 1981, when IBM Corporation decided to use
the 8088 microprocessor in its personal computer. Applications such as spreadsheets, word
processors, spelling checkers, and computer-based thesauruses were memory-intensive and
required more than the 64K bytes of memory found in 8-bit microprocessors to execute effi-
ciently. The 16-bit 8086 and 8088 provided 1M byte of memory for these applications. Soon,
even the IM-byte memory system proved limiting for large databases and other applications.
This led Intel to introduce the 80286 microprocessor, an updated 8086, in 1983.
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The 80286 Microprocessor. The 80286 microprocessor (also a 16-bit architecture microprocessor)
was almost identical to the 8086 and 8088, except it addressed a 16M-byte memory system instead
of a IM-byte system. The instruction set of the 80286 was almost identical to the 8086 and 8088,
except for a few additional instructions that managed the extra 15M bytes of memory. The clock
speed of the 80286 was increased, so it executed some instructions in as little as 250 ns (4.0 MIPs)
with the original release 8.0 MHz version. Some changes also occurred to the internal execution of
the instructions, which led to an eightfold increase in speed for many instructions when compared to
8086/8088 instructions.

The 32-Bit Microprocessor. Applications began to demand faster microprocessor speeds, more
memory, and wider data paths. This led to the arrival of the 80386 in 1986 by Intel Corporation.
The 80386 represented a major overhaul of the 16-bit 8086—-80286 architecture. The 80386 was
Intel’s first practical 32-bit microprocessor that contained a 32-bit data bus and a 32-bit memory
address. (Note that Intel produced an earlier, although unsuccessful, 32-bit microprocessor called
the iapx-432.) Through these 32-bit buses, the 80386 addressed up to 4G bytes of memory. (1G of
memory contains 1024M, or 1,073,741,824 locations.) A 4G-byte memory can store an astound-
ing 1,000,000 typewritten, double-spaced pages of ASCII text data. The 80386 was available in a
few modified versions such as the 80386SX, which addressed 16M bytes of memory through a
16-bit data and 24-bit address bus, and the 80386SL/80386SLC, which addressed 32M bytes of
memory through a 16-bit data and 25-bit address bus. An 80386SLC version contained an internal
cache memory that allowed it to process data at even higher rates. In 1995, Intel released the
80386EX microprocessor. The 80386EX microprocessor is called an embedded PC because it
contains all the components of the AT class personal computer on a single integrated circuit. The
80386EX also contains 24 lines for input/output data, a 26-bit address bus, a 16-bit data bus, a
DRAM refresh controller, and programmable chip selection logic.

Applications that require higher microprocessor speeds and large memory systems include
software systems that use a GUI, or graphical user interface. Modem graphical displays often
contain 256,000 or more picture elements (pixels, or pels). The least sophisticated VGA
(variable graphics array) video display has a resolution of 640 pixels per scanning line with
480 scanning lines (this is the resolution used when the computer boots and display the boot
screen). To display one screen of information, each picture element must be changed, which
requires a high-speed microprocessor. Virtually all new software packages use this type of video
interface. These GUI-based packages require high microprocessor speeds and accelerated video
adapters for quick and efficient manipulation of video text and graphical data. The most striking
system, which requires high-speed computing for its graphical display interface, is Microsoft
Corporation’s Windows.> We often call a GUI a WYSIWYG (what you see is what you get)
display.

The 32-bit microprocessor is needed because of the size of its data bus, which transfers
real (single-precision floating-point) numbers that require 32-bit-wide memory. In order to effi-
ciently process 32-bit real numbers, the microprocessor must efficiently pass them between itself
and memory. If the numbers pass through an 8-bit data bus, it takes four read or write cycles;
when passed through a 32-bit data bus, however, only one read or write cycle is required. This
significantly increases the speed of any program that manipulates real numbers. Most high-level
languages, spreadsheets, and database management systems use real numbers for data storage.
Real numbers are also used in graphical design packages that use vectors to plot images on
the video screen. These include such CAD (computer-aided drafting/design) systems as
AUTOCAD, ORCAD, and so forth.

3Windows is a registered trademark of Microsoft Corporation and is currently available as Windows 98, Windows 2000,
Windows ME, and Windows XP.
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Besides providing higher clocking speeds, the 80386 included a memory management unit
that allowed memory resources to be allocated and managed by the operating system. Earlier
microprocessors left memory management completely to the software. The 80386 included hard-
ware circuitry for memory management and memory assignment, which improved its efficiency
and reduced software overhead.

The instruction set of the 80386 microprocessor was upward-compatible with the earlier
8086, 8088, and 80286 microprocessors. Additional instructions referenced the 32-bit registers
and managed the memory system. Note that memory management instructions and techniques
used by the 80286 are also compatible with the 80386 microprocessor. These features allowed
older, 16-bit software to operate on the 80386 microprocessor.

The 80486 Microprocessor. 1In 1989, Intel released the 80486 microprocessor, which incorpo-
rated an 80386-like microprocessor, an 80387-like numeric coprocessor, and an 8K-byte cache
memory system into one integrated package. Although the 80486 microprocessor was not radi-
cally different from the 80386, it did include one substantial change. The internal structure of the
80486 was modified from the 80386 so that about half of its instructions executed in one clock
instead of two clocks. Because the 80486 was available in a 50 MHz version, about half of the
instructions executed in 25 ns (50 MIPs). The average speed improvement for a typical mix
of instructions was about 50% over the 80386 that operated at the same clock speed. Later
versions of the 80486 executed instructions at even higher speeds with a 66 MHz double-clocked
version (80486DX2). The double-clocked 66 MHz version executed instructions at the rate of
66 MHz, with memory transfers executing at the rate of 33 MHz. (This is why it was called a
double-clocked microprocessor.) A triple-clocked version from Intel, the 80486DX4, improved
the internal execution speed to 100 MHz with memory transfers at 33 MHz. Note that the
80486DX4 microprocessor executed instructions at about the same speed as the 60 MHz Pentium.
It also contained an expanded 16K-byte cache in place of the standard 8K-byte cache found on
earlier 80486 microprocessors. Advanced Micro Devices (AMD) has produced a triple-clocked
version that runs with a bus speed of 40 MHz and a clock speed of 120 MHz. The future promises
to bring microprocessors that internally execute instructions at rates of up to 10 GHz or higher.

Other versions of the 80486 were called OverDrive* processors. The OverDrive processor
was actually a double-clocked version of the 80486DX that replaced an 80486SX or slower-
speed 80486DX. When the OverDrive processor was plugged into its socket, it disabled or
replaced the 80486SX or 80486DX, and functioned as a doubled-clocked version of the micro-
processor. For example, if an 80486SX, operating at 25 MHz, was replaced with an OverDrive
microprocessor, it functioned as an 80486DX2 50 MHz microprocessor using a memory transfer
rate of 25 MHz.

Table 1-2 lists many microprocessors produced by Intel and Motorola with information
about their word and memory sizes. Other companies produce microprocessors, but none have
attained the success of Intel and, to a lesser degree, Motorola.

The Pentium Microprocessor. The Pentium, introduced in 1993, was similar to the 80386 and
80486 microprocessors. This microprocessor was originally labeled the P5 or 80586, but Intel
decided not to use a number because it appeared to be impossible to copyright a number. The two
introductory versions of the Pentium operated with a clocking frequency of 60 MHz and
66 MHz, and a speed of 110 MIPs, with a higher-frequency 100 MHz one and one-half clocked
version that operated at 150 MIPs. The double-clocked Pentium, operating at 120 MHz and
133 MHz, was also available, as were higher-speed versions. (The fastest version produced by
Intel is the 233 MHz Pentium, which is a three and one-half clocked version.) Another difference
was that the cache size was increased to 16K bytes from the 8K cache found in the basic version

4OverDrive is a registered trademark of Intel Corporation.
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TABLE 1-2 Many modern Intel and Motorola microprocessors.

Manufacturer Part Number Data Bus Width Memory Size
Intel 8048 8 2K internal
8051 8 8K internal
8085A 8 64K
8086 16 M
8088 8 M
8096 16 8K internal
80186 16 M
80188 8 M
80251 8 16K internal
80286 16 16M
80386EX 16 64M
80386DX 32 4G
80386SL 16 32M
80386SLC 16 32M + 8K cache
80386SX 16 16M
80486DX/DX2 32 4G + 8K cache
80486SX 32 4G + 8K cache
80486DX4 32 4G + 16 cache
Pentium 64 4G + 16K cache
Pentium OverDrive 32 4G + 16K cache
Pentium Pro 64 64G + 16K L1 cache +
256K L2 cache
Pentium Il 64 64G + 32K L1 cache +
256K L2 cache
Pentium Il 64 64G + 32K L1 cache +
256K L2 cache
Pentium 4 64 64G+32K L1 cache+
512K L2 cache (or larger)
(1T for 64-bit extensions)
Pentium4 D 64 1T + 32K L1 cache + 2 or
(Dual Core) 4 M L2 cache
Core2 64 1T + 32K L1 cache + a shared
2 or4 M L2 cache
Itanium (Dual Core) 128 1T + 2.5 M L1 and L2 cache
+ 24 M L3 cache
Motorola 6800 8 64K
6805 8 2K
6809 8 64K
68000 16 16M
68008D 8 4M
68008Q 8 M
68010 16 16M
68020 32 4G
68030 32 4G + 256 cache
68040 32 4G + 8K cache
68050 32 Proposed, but never released
68060 64 4G + 16K cache
PowerPC 64 4G + 32K cache
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of the 80486. The Pentium contained an 8K-byte instruction cache and an 8K-byte data cache,
which allowed a program that transfers a large amount of memory data to still benefit from a
cache. The memory system contained up to 4G bytes, with the data bus width increased from the
32 bits found in the 80386 and 80486 to a full 64 bits. The data bus transfer speed was either
60 MHz or 66 MHz, depending on the version of the Pentium. (Recall that the bus speed of the
80486 was 33 MHz.) This wider data bus width accommodated double-precision floating-point
numbers used for modem high-speed, vector-generated graphical displays. These higher bus
speeds should allow virtual reality software and video to operate at more realistic rates on current
and future Pentium-based platforms. The widened data bus and higher execution speed of the
Pentium allow full-frame video displays to operate at scan rates of 30 Hz or higher—comparable
to commercial television. Recent versions of the Pentium also included additional instructions,
called multimedia extensions, or MMX instructions. Although Intel hoped that the MMX
instructions would be widely used, it appears that few software companies have used them. The
main reason is there is no high-level language support for these instructions.

Intel had also released the long-awaited Pentium OverDrive (P24T) for older 80486 systems
that operate at either 63 MHz or 83 MHz clock. The 63 MHz version upgrades older 80486DX2
50 MHz systems; the 83 MHz version upgrades the 80486DX2 66 MHz systems. The upgraded
83 MHz system performs at a rate somewhere between a 66 MHz Pentium and a 75 MHz
Pentium. If older VESA local bus video and disk-caching controllers seem too expensive to toss
out, the Pentium OverDrive represents an ideal upgrade path from the 80486 to the Pentium.

Probably the most ingenious feature of the Pentium is its dual integer processors. The
Pentium executes two instructions, which are not dependent on each other, simultaneously
because it contains two independent internal integer processors called superscaler technology.
This allows the Pentium to often execute two instructions per clocking period. Another feature
that enhances performance is a jump prediction technology that speeds the execution of program
loops. As with the 80486, the Pentium also employs an internal floating-point coprocessor to
handle floating-point data, albeit at a five times speed improvement. These features portend
continued success for the Intel family of microprocessors. Intel also may allow the Pentium to
replace some of the RISC (reduced instruction set computer) machines that currently execute
one instruction per clock. Note that some newer RISC processors execute more than one instruc-
tion per clock through the introduction of superscaler technology. Motorola, Apple, and IBM
produce the PowerPC, a RISC microprocessor that has two integer units and a floating-point
unit. The PowerPC certainly boosts the performance of the Apple Macintosh, but at present is
slow to efficiently emulate the Intel family of microprocessors. Tests indicate that the current
emulation software executes DOS and Windows applications at speeds slower than the 80486DX
25 MHz microprocessor. Because of this, the Intel family should survive for many years in per-
sonal computer systems. Note that there are currently 6 million Apple Macintosh’ systems and
well over 260 million personal computers based on Intel microprocessors. In 1998, reports
showed that 96% of all PCs were shipped with the Windows operating system.

Recently Apple computer replaced the PowerPC with the Intel Pentium in most of its com-
puter systems. It appears that the PowerPC could not keep pace with the Pentium line from Intel.

In order to compare the speeds of various microprocessors, Intel devised the iCOMP-
rating index. This index is a composite of SPEC92, ZD Bench, and Power Meter. The iCOMP1
rating index is used to rate the speed of all Intel microprocessors through the Pentium.
Figure 1-2 shows relative speeds of the 80386DX 25 MHz version at the low end to the Pentium
233 MHz version at the high end of the spectrum.

Since the release of the Pentium Pro and Pentium II, Intel has switched to the iCOMP2-rating
index, which is scaled by a factor of 10 from the iCOMP1 index. A microprocessor with an index of
1000 using iCOMP1 is rated as 100 using iCOMP2. Another difference is the benchmarks used for

SMacintosh is a registered trademark of Apple Computer Corporation.
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FIGURE 1-2 The Intel
iCOMP-rating index.
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the scores. Figure 1-3 shows the iCOMP?2 index listing the Pentium III at speeds up to 1000 MHz.
Figure 1-4 shows SYSmark 2002 for the Pentium III and Pentium 4. Unfortunately Intel has not
released any benchmarks that compare versions of the microprocessor since the SYSmark 2002.
Newer benchmarks are available, but they do not compare one version with another.

Pentium Pro Processor. A recent entry from Intel is the Pentium Pro processor, formerly
named the P6 microprocessor. The Pentium Pro processor contains 21 million transistors, integer
units, as well as a floating-point unit to increase the performance of most software. The basic
clock frequency was 150 MHz and 166 MHz in the initial offering made available in late 1995.
In addition to the internal 16K level-one (L1) cache (8K for data and 8K for instructions) the
Pentium Pro processor also contains a 256K level-two (L2) cache. One other significant change
is that the Pentium Pro processor uses three execution engines, so it can execute up to three
instructions at a time, which can conflict and still execute in parallel. This represents a
change from the Pentium, which executes two instructions simultaneously as long as they do not
conflict. The Pentium Pro microprocessor has been optimized to efficiently execute 32-bit code;
for this reason, it was often bundled with Windows NT rather than with normal versions of
Windows 95. Intel launched the Pentium Pro processor for the server market. Still another
change is that the Pentium Pro can address either a 4G-byte memory system or a 64G-byte mem-
ory system. The Pentium Pro has a 36-bit address bus if configured for a 64G memory system.

Pentium Il and Pentium Xeon Microprocessors. The Pentium II microprocessor (released in
1997) represents a new direction for Intel. Instead of being an integrated circuit as with prior ver-
sions of the microprocessor, Intel has placed the Pentium I on a small circuit board. The main
reason for the change is that the L2 cache found on the main circuit board of the Pentium was not
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fast enough to function properly with the Pentium II. On the Pentium system, the L2 cache oper-
ates at the system bus speed of 60 MHz or 66 MHz. The L2 cache and microprocessor are on a
circuit board called the Pentium II module. This onboard L2 cache operates at a speed of
133 MHz and stores 512K bytes of information. The microprocessor on the Pentium II module is
actually Pentium Pro with MMX extensions.

In 1998, Intel changed the bus speed of the Pentium II. Because the 266 MHz through the
333 MHz Pentium II microprocessors used an external bus speed of 66 MHz, there was a bottle-
neck, so the newer Pentium II microprocessors use a 100 MHz bus speed. The Pentium II micro-
processors rated at 350 MHz, 400 MHz, and 450 MHz all use this higher 100 MHz memory bus
speed. The higher speed memory bus requires the use of 8 ns SDRAM in place of the 10 ns
SDRAM found in use with the 66 MHz bus speed.
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FIGURE 1-4 Intel
microprocessor
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In mid-1998 Intel announced a new version of the Pentium II called the Xeon,® which was
specifically designed for high-end workstation and server applications. The main difference between
the Pentium II and the Pentium II Xeon is that the Xeon is available with a L1 cache size of 32K
bytes and a L2 cache size of either 512K, 1M, or 2M bytes. The Xeon functions with the 440GX
chip set. The Xeon is also designed to function with four Xeons in the same system, which is similar
to the Pentium Pro. This newer product represents a change in Intel’s strategy: Intel now produces a
professional version and a home/business version of the Pentium II microprocessor.

Pentium Il Microprocessor. The Pentium IIT microprocessor uses a faster core than the
Pentium II, but it is still a P6 or Pentium Pro processor. It is also available in the slot 1 version
mounted on a plastic cartridge and a socket 370 version called a flip-chip, which looks like the
older Pentium package. Intel claims the flip-chip version costs less. Another difference is that the
Pentium III is available with clock frequencies of up to 1 GHz. The slot 1 version contains a
512K cache and the flip-chip version contains a 256K cache. The speeds are comparable because
the cache in the slot 1 version runs at one-half the clock speed, while the cache in the flip-chip
version runs at the clock speed. Both versions use a memory bus speed of 100 MHz, while the
Celeron’ uses memory bus clock speed of 66 MHz.

The speed of the front side bus, the connection from the microprocessor to the memory
controller, PCI controller, and AGP controller, is now either 100 MHz or 133 MHz. Although the
memory still runs at 100 MHz, this change has improved performance.

Pentium 4 and Core2 Microprocessors. The Pentium 4 microprocessor was first made
available in late 2000. The most recent version of the Pentium is called the Core2 by Intel. The
Pentium 4 and Core2, like the Pentium Pro through the Pentium III, use the Intel P6 architecture.
The main difference is that the Pentium 4 is available in speeds to 3.2 GHz and faster and the
chip sets that support the Pentium 4 use the RAMBUS or DDR memory technologies in place of
once standard SDRAM technology. The Core2 is available at speeds of up to 3 GHz. These
higher microprocessor speeds are made available by an improvement in the size of the internal

6Xeon is a registered trademark of Intel Corporation.
TCeleron is a trademark of Intel Corporation.
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TABLE 1-3 Intel

microprocessor core (P) Core (P) Version Microprocessor
versions.
P1 8086 and 8088 (80186 and 80188)
P2 80286
P3 80386
P4 80486
P5 Pentium
P6 Pentium Pro, Pentium Il, Pentium lll,

Pentium 4, and Core2
P7 ltanium

integration, which at present is the 0.045 micron or 45 nm technology. It is also interesting to
note that Intel has changed the level 1 cache size from 32K to 8K bytes and most recently to 64K.
Research must have shown that this size is large enough for the initial release version of the
microprocessor, with future versions possibly containing a 64K L1 cache. The level 2 cache
remains at 256K bytes as in the Pentium coppermine version with the latest versions containing
a 512K cache. The Pentium 4 Extreme Edition contains a 2M L2 cache and the Pentium 4e con-
tains a 1M level 2 cache, whereas the Core2 contains either a 2M or 4M L2 cache.

Another change likely to occur is a shift from aluminum to copper interconnections inside
the microprocessor. Because copper is a better conductor, it should allow increased clock fre-
quencies for the microprocessor in the future. This is especially true now that a method for using
copper has surfaced at IBM Corporation. Another event to look for is a change in the speed of the
front side bus, which will likely increase beyond the current maximum 1033 MHz.

Table 1-3 shows the various Intel P numbers and the microprocessors that belong to each
class. The P versions show what internal core microprocessor is found in each of the Intel micro-
processors. Notice that all of the microprocessors since the Pentium Pro use the same basic
MiCroprocessor core.

Pentium 4 and Core2, 64-hit and Multiple Core Microprocessors. Recently Intel has included
new modifications to the Pentium 4 and Core?2 that include a 64-bit core and multiple cores. The
64-bit modification allows the microprocessor to address more than 4G bytes of memory through
a wider 64-bit address. Currently, 40 address pins in these newer versions allow up to 1T (ter-
abytes) of memory to be accessed. The 64-bit machine also allows 64-bit integer arithmetic, but
this is much less important than the ability to address more memory.

The biggest advancement in the technology is not the 64-bit operation, but the inclusion of
multiple cores. Each core executes a separate task in a program, which increases the speed of
execution if a program is written to take advantage of the multiple cores. Programs that do this
are called multithreaded applications. Currently, Intel manufactures dual and quad core ver-
sions, but in the future the number of cores will likely increase to eight or even sixteen. The prob-
lem faced by Intel is that the clock speed cannot be increased to a much higher rate, so multiple
cores are the current solution to providing faster microprocessors. Does this mean that higher
clock speeds are not possible? Only the future portends whether they are or are not.

Intel recently demonstrated a version of the Core2 that contains 80 cores that uses the 45 nm
fabrication technology. Intel expects to release an 80-core version some time in the next 5 years. The
fabrication technology will become slightly smaller with 35 nm and possibly 25 nm technology.

The Future of Microprocessors. No one can really make accurate predictions, but the success of
the Intel family should continue for quite a few years. What may occur is a change to RISC tech-
nology, but more likely are improvements to a new technology jointly by Intel and Hewlett-Packard
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FIGURE 1-5 Conceptual
views of the 80486,
Pentium Pro, Pentium I,
Pentium Ill, Pentium 4, and
Core2 microprocessors.
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called hyper-threading technology. Even this new technology embodies the CISC instruction set of
the 80X86 family of microprocessors, so that software for the system will survive. The basic
premise behind this technology is that many microprocessors communicate directly with each
other, allowing parallel processing without any change to the instruction set or program. Currently,
the superscaler technology uses many microprocessors, but they all share the same register set. This
new technology contains many microprocessors, each containing its own register set that is linked
with the other microprocessors’ registers. This technology offers true parallel processing without
writing any special program.

The hyper-threading technology should continue into the future, bringing even more paral-
lel processors (at present two processors). There are suggestions that Intel may also incorporate
the chip set into the microprocessor package.

In 2002, Intel released a new microprocessor architecture that is 64 bits in width and has
a 128-bit data bus. This new architecture, named the Itanium,8 is a joint venture called
EPIC (Explicitly Parallel Instruction Computing) of Intel and Hewlett-Packard. The Itanium
architecture allows greater parallelism than traditional architectures, such as the Pentium III or
Pentium 4. These changes include 128 general-purpose integer registers, 128 floating-point
registers, 64 predicate registers, and many execution units to ensure enough hardware resources
for software. The Itanium is designed for the server market and may or may not trickle down to
the home/business market in the future.

Figure 1-5 is a conceptual view, comparing the 80486 through Pentium 4 microprocessors.
Each view shows the internal structure of these microprocessors: the CPU, coprocessor, and

CPU Coprocessor CPU1| CPU2 | Copro
8K
L1 Cache 16K L1 Cache
80486DX Pentium
CPU1| CPU2 |CPU3| Copro CPU1| CPU2 |CPU3| Copro
16K L1 Cache 32K L1 Cache
256K L2 Cache

512K L2 Cache
Pentium Pro or
236K L2 Cache

Pentium I, Pentium I,
Pentium 4, or Core2 Module

8]tanium is a trademark of Intel Corporation.
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cache memory. This illustration shows the complexity and level of integration in each version of
the microprocessor.

Because clock frequencies seemed to have peaked and the surge to multiple cores
has begun, about the only major change to the Pentium will probably be a wider memory path
(128 bits). Another consideration is the memory speed. Today, dynamic RAMs are the mainstay,
but the speed of dynamic RAM memory has not changed for many years. A push to static RAM
memory will eventually appear and will increase the performance of the PC. The main problem
today with large static RAM is heat. Static RAM operates 50 times faster than dynamic RAM.
Imagine a computer that contains a memory composed of static RAM.

Another problem is the speed of the mass storage connected to a computer. The transfer
speed of hard disk drives has changed little in the past few years. A new technology is needed for
mass storage. Flash memory could be a solution, because its write speed is comparable to hard
disk memory. One change that would increase the speed of the computer system is the placement
of possibly 4G bytes of flash memory to store the operation system for common applications.
This would allow the operating system to load in a second or two instead of the many seconds
required to boot a modern computer system.

THE MICROPROCESSOR-BASED PERSONAL COMPUTER SYSTEM

Computer systems have undergone many changes recently. Machines that once filled large areas
have been reduced to small desktop computer systems because of the microprocessor. Although
these desktop computers are compact, they possess computing power that was only dreamed of a
few years ago. Million-dollar mainframe computer systems, developed in the early 1980s, are
not as powerful as the Pentium Core2-based computers of today. In fact, many smaller compa-
nies have replaced their mainframe computers with microprocessor-based systems. Companies
such as DEC (Digital Equipment Corporation, now owned by Hewlett-Packard Company) have
stopped producing mainframe computer systems in order to concentrate their resources on
microprocessor-based computer systems.

This section shows the structure of the microprocessor-based personal computer system.
This structure includes information about the memory and operating system used in many
microprocessor-based computer systems.

See Figure 1-6 for the block diagram of the personal computer. This diagram also applies to
any computer system, from the early mainframe computers to the latest microprocessor-based
systems. The block diagram is composed of three blocks that are interconnected by buses. (A bus
is the set of common connections that carry the same type of information. For example, the
address bus, which contains 20 or more connections, conveys the memory address to the mem-
ory.) These blocks and their function in a personal computer are outlined in this section of the text.

The Memory and 1/0 System

The memory structure of all Intel-based personal computers is similar. This includes the first per-
sonal computers based upon the 8088, introduced in 1981 by IBM, to the most powerful high-
speed versions of today, based on the Pentium 4 or Core2. Figure 1-7 illustrates the memory map
of a personal computer system. This map applies to any IBM personal computer or to any of the
many IBM-compatible clones that are in existence.

The memory system is divided into three main parts: TPA (transient program area), system
area, and XMS (extended memory system). The type of microprocessor in your computer deter-
mines whether an extended memory system exists. If the computer is based upon a really old
8086 or 8088 (a PC or XT), the TPA and systems area exist, but there is no extended memory
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Buses
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-—
Dynamic RAM (DRAM) 8086 Printer
Static RAM (SRAM) 8088 Serial communications
Cache 80186 Floppy disk drive
Read-only (ROM) 80188 Hard disk drive
Flash memory 80286 Mouse
EEPROM 80386 CD-ROM drive
SDRAM 80486 Plotter
RAMBUS Pentium Keyboard
DDR DRAM Pentium Pro Monitor
Pentium Il Tape backup
Pentium 111 Scanner
Pentium 4 DVD
Core2

FIGURE 1-6 The block diagram of a microprocessor-based computer system.

area. The PC and XT computers contain 640K bytes of TPA and 384K bytes of system memory,
for a total memory size of 1M bytes. We often call the first 1M byte of memory the real or con-
ventional memory system because each Intel microprocessor is designed to function in this area
by using its real mode of operation.

Computer systems based on the 80286 through the Core2 not only contain the TPA (640K
bytes) and system area (384K bytes), they also contain extended memory. These machines are

FIGURE 1-7 The memory
map of a personal computer.
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often called AT class machines. The PS/l and PS/2, produced by IBM, are other versions of the
same basic memory design. Sometimes, these machines are also referred to as ISA (industry
standard architecture) or EISA (extended ISA) machines. The PS/2 is referred to as a micro-
channel architecture system, or ISA system, depending on the model number.

A change beginning with the introduction of the Pentium microprocessor and the ATX
class machine is the addition of a bus called the PCI (peripheral component interconnect) bus,
now being used in all Pentium through Core2 systems. Extended memory contains up to 15M
bytes in the 80286 and 80386SX-based computers, and up to 4095M bytes in the 80386DX,
80486, and Pentium microprocessors, in addition to the first IM byte of real or conventional
memory. The Pentium Pro through Core2 computer systems have up to 1M less than 4G or | M
less than 64G of extended memory. Servers tend to use the larger 64G memory map, while
home/business computers use the 4G-byte memory map. The ISA machine contains an 8-bit
peripheral bus that is used to interface 8-bit devices to the computer in the 8086/8088-based
PC or XT computer system. The AT class machine, also called an ISA machine, uses a 16-bit
peripheral bus for interface and may contain the 80286 or above microprocessor. The EISA bus
is a 32-bit peripheral interface bus found in a few older 80386DX- and 80486-based systems.
Note that each of these buses is compatible with the earlier versions. That is, the 8-bit interface
card functions in the 8-bit ISA, 16-bit ISA, or 32-bit EISA bus system. Likewise, a 16-bit inter-
face card functions in the 16-bit ISA or 32-bit EISA system.

Another bus type found in many 80486-based personal computers is called the VESA local
bus, or VL bus. The local bus interfaces disk and video to the microprocessor at the local bus
level, which allows 32-bit interfaces to function at the same clocking speed as the microproces-
sor. A recent modification to the VESA local bus supports the 64-bit data bus of the Pentium
microprocessor and competes directly with the PCI bus, although it has generated little, if any,
interest. The ISA and EISA standards function at only 8 MHz, which reduces the performance of
the disk and video interfaces using these standards. The PCI bus is either a 32- or 64-bit bus that
is specifically designed to function with the Pentium through Core2 microprocessors at a bus
speed of 33 MHz.

Three newer buses have appeared in ATX class systems. The first to appear was the USB
(universal serial bus). The universal serial bus is intended to connect peripheral devices such as
keyboards, a mouse, modems, and sound cards to the microprocessor through a serial data path
and a twisted pair of wires. The main idea is to reduce system cost by reducing the number of
wires. Another advantage is that the sound system can have a separate power supply from the
PC, which means much less noise. The data transfer rates through the USB are 10 Mbps at pre-
sent for USB1; they increase to 480 Mbps in USB2.

The second newer bus is the AGP (advanced graphics port) for video cards. The
advanced graphics port transfers data between the video card and the microprocessor at higher
speeds (66 MHz, with a 64-bit data path, or 533M bytes per second) than were possible through
any other bus or connection. The latest AGP speed is 8X or 2G bytes per second. This video sub-
system change has been made to accommodate the new DVD players for the PC.

The latest new buses to appear are the serial ATA interface (SATA) for hard disk drives and
the PCI Express bus for the video card. The SATA bus transfers data from the PC to the hard disk
drive at rates of 150M bytes per second or 300M bytes for SATA-2. The serial ATA standard will
eventually reach speeds of 450M bytes per second. Today PCI Express bus video cards operate at
16X speeds.

The TPA. The transient program area (TPA) holds the DOS (disk operating system)
operating system and other programs that control the computer system. The TPA is a DOS con-
cept and not really applicable in Windows. The TPA also stores any currently active or inactive
DOS application programs. The length of the TPA is 640K bytes. As mentioned, this area
of memory holds the DOS operating system, which requires a portion of the TPA to function.
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In practice, the amount of memory remaining for application software is about 628K bytes if
MSDOS? version 7.x is used as an operating system. Earlier versions of DOS required more of
the TPA area and often left only 530K bytes or less for application programs. Figure 1-8 shows
the organization of the TPA in a computer system running DOS.

The DOS memory map shows how the many areas of the TPA are used for system pro-
grams, data, and drivers. It also shows a large area of memory available for application pro-
grams. To the left of each area is a hexadecimal number that represents the memory addresses
that begin and end each data area. Hexadecimal memory addresses or memory locations are
used to number each byte of the memory system. (A hexadecimal number is a number repre-
sented in radix 16 or base 16, with each digit representing a value from 0 to 9 and A to F. We
often end a hexadecimal number with an H to indicate that it is a hexadecimal value. For exam-
ple, 1234H is 1234 hexadecimal. We also represent hexadecimal data as 0x1234 for a 1234
hexadecimal.)

9MSDOS is a trademark of Microsoft Corporation and version 7.x is supplied with Windows XP.
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The Interrupt vectors access various features of the DOS, BIOS (basic I/O system), and
applications. The system BIOS is a collection of programs stored in either a read-only (ROM) or
flash memory that operates many of the I/O devices connected to your computer system. The
system BIOS and DOS communications areas contain transient data used by programs to access
I/0 devices and the internal features of the computer system. These are stored in the TPA so they
can be changed as the DOS operates.

The IO.SYS is a program that loads into the TPA from the disk whenever an MSDOS sys-
tem is started. The IO.SYS contains programs that allow DOS to use the keyboard, video display,
printer, and other I/O devices often found in the computer system. The I0.SYS program links
DOS to the programs stored on the system BIOS ROM.

The size of the driver area and number of drivers changes from one computer to another.
Drivers are programs that control installable I/O devices such as a mouse, disk cache, hand scan-
ner, CD-ROM memory (Compact Disk Read-Only Memory), DVD (Digital Versatile Disk),
or installable devices, as well as programs. Installable drivers are programs that control or drive
devices or programs that are added to the computer system. DOS drivers are normally files that
have an extension of .SYS, such as MOUSE.SYS; in DOS version 3.2 and later, the files have an
extension of .EXE, such as EMM386.EXE. Note that even though these files are not used by
Windows, they are still used to execute DOS applications, even with Windows XP. Windows
uses a file called SYSTEM.INI to load drivers used by Windows. In newer versions of Windows
such as Windows XP, a registry is added to contain information about the system and the drivers
used by the system. You can view the registry with the REGEDIT program.

The COMMAND.COM program (command processor) controls the operation of the
computer from the keyboard when operated in the DOS mode. The COMMAND.COM program
processes the DOS commands as they are typed from the keyboard. For example, if DIR is typed,
the COMMAND.COM program displays a directory of the disk files in the current disk direc-
tory. If the COMMAND.COM program is erased, the computer cannot be used from the key-
board in DOS mode. Never erase COMMAND.COM, 10.SYS, or MSDOS.SYS to make room
for other software, or your computer will not function.

The System Area. The DOS system area, although smaller than the TPA, is just as important.
The system area contains programs on either a read-only memory (ROM) or flash memory, and
areas of read/write (RAM) memory for data storage. Figure 1-9 shows the system area of a
typical personal computer system. As with the map of the TPA, this map also includes the hexa-
decimal memory addresses of the various areas.

The first area of the system space contains video display RAM and video control programs
on ROM or flash memory. This area starts at location AOOOOH and extends to location C7FFFH.
The size and amount of memory used depends on the type of video display adapter attached to
the system. Display adapters generally have their video RAM located at AOOOOH-AFFFFH,
which stores graphical or bit-mapped data, and the memory at BOOOOH-BFFFFH stores text
data. The video BIOS, located on a ROM or flash memory, is at locations COO0O0H-C7FFFH and
contains programs that control the DOS video display.

The area at locations C8000H-DFFFFH is often open or free. This area is used for the
expanded memory system (EMS) in a PC or XT system, or for the upper memory system in an
AT system. Its use depends on the system and its configuration. The expanded memory system
allows a 64K-byte page frame of memory to be used by application programs. This 64K-byte
page frame (usually locations DOOOOH through DFFFFH) is used to expand the memory system
by switching in pages of memory from the EMS into this range of memory addresses.

Memory locations EOOOOH-EFFFFH contain the cassette BASIC language on ROM found in
early IBM personal computer systems. This area is often open or free in newer computer systems.

Finally, the system BIOS ROM is located in the top 64K bytes of the system area
(FOOOOH-FFFFFH). This ROM controls the operation of the basic I/O devices connected to the
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computer system. It does not control the operation of the video system, which has its own BIOS
ROM at location COOOOH. The first part of the system BIOS (FOOOOH-F7FFFH) often contains
programs that set up the computer; the second part contains procedures that control the basic I/O
system.

Windows Systems. Modern computers use a different memory map with Windows than the
DOS memory maps of Figures 1-8 and 1-9. The Windows memory map appears in Figure 1-10
and has two main areas, a TPA and a system area. The difference between it and the DOS
memory map are the sizes and locations of these areas.

The Windows TPA is the first 2G bytes of the memory system from locations 00000000H
to 7FFFFFFFH. The Windows system area is the last 2G bytes of memory from locations
80000000H to FFFFFFFFH. It appears that the same idea used to construct the DOS memory
map was also used in a modern Windows-based system. The system area is where the system
BIOS is located and also the video memory. Also located in the system area is the actual
Windows program and drivers. Every program that is written for Windows can use up to 2G
bytes of memory located at linear addresses 00000000H through 7FFFFFFFH. This is even true
in a 64-bit system, which does allow access to more memory, but not as a direct part of Windows.
Information that is larger than 2G must be swapped into the Windows TPA area from another
area of memory. In future versions of Windows and the Pentium, this will most likely be
changed. The current version of Windows 64 (which is now a part of Windows Vista) supports
up to 8G bytes of Windows memory.
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FIGURE 10 Tromeny gy
Windows Systems Area
80000000
7FFFFFFF
Windows Transient Program Area
00000000

Does this mean that any program written for Windows will begin at physical address
00000000H? No, the memory system physical map is much different for the linear programming
model shown in Figure 1-10. Every process in a Windows Vista, Windows XP, or Windows 2000
system has its own set of page tables, which define where in the physical memory each 4K-byte
page of the process is located. This means that the process can be located anywhere in the mem-
ory, even in noncontiguous pages. Page tables and the paging structure of the microprocessor are
discussed later in this chapter and are beyond the scope of the text at this point. As far as an
application is concerned, you will always have 2G bytes of memory even if the computer has less
memory. The operating system (Windows) handles assigning physical memory to the application
and if not enough physical memory exists, it uses the hard disk drive for any that is not available.

I/0 Space. The I/O (input/output) space in a computer system extends from I/O port 0000H to
port FFFFH. (An I/O port address is similar to a memory address, except that instead
of addressing memory, it addresses an I/O device.) The I/O devices allow the microprocessor to
communicate between itself and the outside world. The I/O space allows the computer to access
up to 64K different 8-bit I/O devices, 32K different 16-bit devices, or 16K different 32-bit
devices. The 64-bit extensions support the same I/O space and I/O sizes as the 32-bit version and
does not add 64-bit I/O devices to the system. A great number of these locations are available for
expansion in most computer systems. Figure 1-11 shows the I/O map found in many personal
computer systems. To view the map on your computer in Windows, go to the Control Panel,
Performance and Maintenance, System, Hardware tab, Device Manager, View tab, then select
resources by type and click on the plus next to Input/Output (I/O).
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-4l Input/output (10)

----- g [00000000 - 0000000F] Direct memary access conkraller
i [00000000 - 00000CF7] PCT bus

(00000010 - 0000001F] Motherboard resources
(00000020 - 00000021] Prograrmmable interrupt controller
(00000022 - 00000020] Motherboard resources
[D0OD00ZE - 0000002F] Motherboard resources
(00000030 - D000003F] Motherboard resources
(00000040 - 00000043] Syskem kimer

(00000044 - 000000SF] Motherboard resources

-4 (00000050 - 00000060] Easy Interrmet Keyboard

----- iy (00000061 - 000000617 Syskem speaker

----- iy (00000062 - 00000063] Motherboard resources

- (00000064 - 00000064] Easy Internet Kevboard

iy (00000065 - 0000006F] Motherboard resources
(00000070 - 00000073] System CMOS/real time clock,
(00000074 - 0000007F] Motherboard resources
[D0ODDDOS0 - 00000090] Direct memory access controller
[D0D0DDY - 00000093] Motherboard resources
(00000094 - 0000009F] Direct memory access conkroller
[D00D00A0 - 00000A1] Programmable interrupt contraller
[D0O000AZ - N00000BF] Motherboard resources
(0000000 - 0000000F] Direct memary access controller
[000000ED - DO000Q0EF] Motherboard resources
[DOODDDOFO - DODO0OFF] Mumetic data processor

--izy [00000170 - 00000177] Secandary IDE Channel

-z [000001F0 - 000001F7] Primary IDE Channel

----- ') ), (00000200 - 00000207] Standard Game Port

----- " (00000274 - 00000277] ISAPNP Read Data Port

----- s (00000279 - 00000279] ISAPNP Read Data Port

----- G_}f [000002FE - D00002FF] Communications Port (COM2)
(00000376 - 00000376] Secondary IDE Channel

----- [00000375 - 0000037F] Printer Pork (LPT1)

[DOODO3E0 - 000003EE] ALL-IM-WOMDER 9700 SERIES
(00000350 - 000003EE] InteliR) S2845G/GL{GE/PE/GY Processar ko AGP Contraller - 2561
(0000030 - 0000030F] ALL-IN-\WONMDER 9700 SERIES
(0000030 - O000030F] Inkel(R) S2645G,GL/GE(PEJGY Processar ta AGP Cantraller - 2561
[000003F0 - 000003F1] Motherboard resources

-y [000003F2 - 000003FS] Standard Floppy disk contraller
--i=Zy [D00003FE - 000003FE] Primary IDE Channel

[DOODO3FT - 000003F7] Standard Floppy disk controller

----- [D0O003FS - 000003FF] Communications Pork (COMI1)

Wy [000004D0 - 00000401] Matherboard resources
(00000406 - 00000406] Maotherboard resources
[00000A79 - 00000A79] ISAPMP Read Data Port
(00000000 - DO0OFFFF] PCI bus

----- @ ), [00005400 - 0000543F] SoundMAs Inkegrated Digital Audio

The I/O area contains two major sections. The area below I/O location 0400H is consid-
ered reserved for system devices; many are depicted in Figure 1-11. The remaining area is
available I/O space for expansion that extends from I/O port 0400H through FFFFH. Generally,
I/O addresses between 0000H and O0FFH address components on the main board of the com-
puter, while addresses between 0100H and 03FFH address devices located on plug-in cards (or
on the main board). Note that the limitation of I/O addresses between 0000 and 03FFH comes
from the original PC standard, as specified by IBM. When using the ISA bus, you must only use
addresses between 0000H and O3FFH. The PCI bus uses I/O address between 0400H and
FFFFH.

Various I/O devices that control the operation of the system are usually not directly addressed.
Instead, the system BIOS ROM addresses these basic devices, which can vary slightly in location
and function from one computer to the next. Access to most I/O devices should always be made
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through Windows, DOS, or BIOS function calls to maintain compatibility from one computer
system to another. The map shown in Figure 1-11 is provided as a guide to illustrate the I/O space in
the system.

The Microprocessor

At the heart of the microprocessor-based computer system is the microprocessor integrated
circuit. The microprocessor, sometimes referred to as the CPU (central processing unit), is the
controlling element in a computer system. The microprocessor controls memory and I/O through
a series of connections called buses. The buses select an I/O or memory device, transfer data
between an I/O device or memory and the microprocessor, and control the I/O and memory
system. Memory and I/O are controlled through instructions that are stored in the memory and
executed by the microprocessor.

The microprocessor performs three main tasks for the computer system: (1) data transfer
between itself and the memory or I/O systems, (2) simple arithmetic and logic operations, and
(3) program flow via simple decisions. Although these are simple tasks, it is through them that
the microprocessor performs virtually any series of operations or tasks.

The power of the microprocessor is in its capability to execute billions of millions of
instructions per second from a program or software (group of instructions) stored in the mem-
ory system. This stored program concept has made the microprocessor and computer system
very powerful devices. (Recall that Babbage also wanted to use the stored program concept in his
Analytical Engine.)

Table 1-4 shows the arithmetic and logic operations executed by the Intel family of micro-
processors. These operations are very basic, but through them, very complex problems are solved.
Data are operated upon from the memory system or internal registers. Data widths are variable
and include a byte (8 bits), word (16 bits), and doubleword (32 bits). Note that only the 80386
through the Core2 directly manipulate 8-, 16-, and 32-bit numbers. The earlier 808680286
directly manipulated 8- and 16-bit numbers, but not 32-bit numbers. Beginning with the 80486,
the microprocessor contained a numeric coprocessor that allowed it to perform complex arith-
metic using floating-point arithmetic. The numeric coprocessor, which is similar to a calculator
chip, was an additional component in the 8086- through the 80386-based personal computer. The
numeric coprocessor is also capable of performing integer operations on quadwords (64 bits).
The MMX and SIMD units inside the Pentium through Core2 function with integers and floating-
point number in parallel. The SIMD unit requires numbers stored as octalwords (128 bits).

Another feature that makes the microprocessor powerful is its ability to make simple
decisions based upon numerical facts. For example, a microprocessor can decide if a number is
zero, if it is positive, and so forth. These simple decisions allow the microprocessor to modify the

TABLE 1-4 Simple

arithmetic and logic Operation Comment
operations.
Addition
Subtraction
Multiplication
Division
AND Logical multiplication
OR Logic addition
NOT Logical inversion
NEG Arithmetic inversion
Shift

Rotate




26

CHAPTER 1

TABLE 1-5 Decisions -
found in the 8086 through ~ Decision Comment
Core2 microprocessors.

Zero Test a number for zero or not-zero

Sign Test a number for positive or negative

Carry Test for a carry after addition or a borrow after
subtraction

Parity Test a number for an even or an odd number of
ones

Overflow Test for an overflow that indicates an invalid result

after a signed addition or a signed subtraction

program flow, so that programs appear to think through these simple decisions. Table 1-5 lists
the decision-making capabilities of the Intel family of microprocessors.

Buses. A bus is a common group of wires that interconnect components in a computer system.
The buses that interconnect the sections of a computer system transfer address, data, and control
information between the microprocessor and its memory and I/O systems. In the microprocessor-
based computer system, three buses exist for this transfer of information: address, data, and con-
trol. Figure 1-12 shows how these buses interconnect various system components such as the
microprocessor, read/write memory (RAM), read-only memory (ROM or flash), and a few I/O
devices.

The address bus requests a memory location from the memory or an I/O location from the
1/O devices. If 1/0 is addressed, the address bus contains a 16-bit I/O address from 0000H
through FFFFH. The 16-bit I/O address, or port number, selects one of 64K different I/O devices.
If memory is addressed, the address bus contains a memory address, which varies in width with
the different versions of the microprocessor. The 8086 and 8088 address 1M byte of memory,
using a 20-bit address that selects locations 00000H-FFFFFH. The 80286 and 80386SX address
16M bytes of memory using a 24-bit address that selects locations 000000H-FFFFFFH. The
80386SL, 80386SLC, and 80386EX address 32M bytes of memory, using 25-bit address that
selects locations 0000000H—-1FFFFFFH. The 80386DX, 80486SX, and 80486DX address

Address bus
< [ | | | | [ | | :>
—
—
—

up Data bus
MWTC 7/
MRDC
fOWC
TORC . Ly L,
\4 Yy v

Read-only Read/write
memory memory Keyboard Printer
ROM RAM

FIGURE 1-12 The block diagram of a computer system showing the address, data, and
control bus structure.
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TABLE 1-6 The Intel family of microprocessor bus and memory sizes.

Microprocessor Data Bus Width Address Bus Width Memory Size
8086 16 20 M
8088 8 20 1M
80186 16 20 1M
80188 8 20 M
80286 16 24 16M
80386SX 16 24 16M
80386DX 32 32 4G
80386EX 16 26 64M
80486 32 32 4G
Pentium 64 32 4G
Pentium Pro—Core2 64 32 4G
Pentium Pro—Core2 64 36 64G
(if extended addressing is enabled)
Pentium 4 and Core2 64 40 1T
with 64-bit extensions enabled
ltanium 128 40 1T

4G bytes of memory, using a 32-bit address that selects locations 00000000H-FFFFFFFFH. The
Pentium also addresses 4G bytes of memory, but it uses a 64-bit data bus to access up to 8 bytes
of memory at a time. The Pentium Pro through Core2 microprocessors have a 64-bit data bus and
a 32-bit address bus that address 4G of memory from location 00000000H-FFFFFFFFH, or a
36-bit address bus that addresses 64G of memory at locations 000000000H-FFFFFFFFFH,
depending on their configuration. Refer to Table 1-6 for complete listing of bus and memory
sizes of the Intel family of microprocessors.

The 64-bit extensions to the Pentium family provide 40 address pins in its current version
that allow up to 1T byte of memory to be accessed through its 10 digit hexadecimal address.
Note that 2% is 1 terra. In future editions of the 64-bit microprocessors Intel plans to expand the
number of address bits to 52, and ultimately to 64 bits. A 52-bit address bus allows 4P (Peta)
bytes of memory to be accessed and a 64-bit address bus allows 16E (Exa) bytes of memory.

The data bus transfers information between the microprocessor and its memory and I/O
address space. Data transfers vary in size, from 8 bits wide to 64 bits wide in various members of
the Intel microprocessor family. For example, the 8088 has an 8-bit data bus that transfers 8 bits
of data at a time. The 8086, 80286, 80386SL, 80386SX, and 80386EX transfer 16 bits of data
through their data buses; the 80386DX, 80486SX, and 80486DX transfer 32 bits of data; and the
Pentium through Core2 microprocessors transfer 64 bits of data. The advantage of a wider data
bus is speed in applications that use wide data. For example, if a 32-bit number is stored in mem-
ory, it takes the 8088 microprocessor four transfer operations to complete because its data bus
is only 8 bits wide. The 80486 accomplishes the same task with one transfer because its data
bus is 32 bits wide. Figure 1-13 shows the memory widths and sizes of the 8086-80486 and
Pentium through Core2 microprocessors. Notice how the memory sizes and organizations differ
between various members of the Intel microprocessor family. In all family members, the mem-
ory is numbered by byte. Notice that the Pentium through Core2 microprocessors all contain a
64-bit-wide data bus.

The control bus contains lines that select the memory or I/O and cause them to perform a
read or write operation. In most computer systems, there are four control bus connections: MRDC
(memory read control), MWTC (memory write control), IORC (I/O read control), and IOWC
(I/O write control). Note that the overbar indicates that the control signal is active-low; that is,
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it is active when a logic zero appears on the control line. For example, if IJOWC = 0, the
microprocessor is writing data from the data bus to an I/O device whose address appears on
the address bus. Note that these control signal names are slightly different in various versions of

the microprocessor.

The microprocessor reads the contents of a memory location by sending the memory an
address through the address bus. Next, it sends the memory read control signal (MRDC) to cause
the memory to read data. Finally, the data read from the memory are passed to the microproces-
sor through the data bus. Whenever a memory write, I/O write, or I/O read occurs, the same
sequence ensues, except that different control signals are issued and the data flow out of the

microprocessor through its data bus for a write operation.

~6—— 8 bits —>

1M byte

D7-D0
8088 microprocessor

Bank 3

~6—— 8 bits —>

1G byte

D31-D24
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FFFFFFFA
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FFFFFF
FFFFFD
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00000001
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FFFFFC
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80286 microprocessor
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FFFFFFF8
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The physical memory systems of the 8086 through the Core2 microprocessors.
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Pentium—Core2 microprocessors
FIGURE 1-13 (continued)

The use of the microprocessor requires a working knowledge of binary, decimal, and hexadeci-
mal numbering systems. This section of the text provides a background for those who are unfa-
miliar with these numbering systems. Conversions between decimal and binary, decimal and
hexadecimal, and binary and hexadecimal are described.

Digits

Before numbers are converted from one number base to another, the digits of a number system
must be understood. Early in our education, we learned that a decimal (base 10) number is
constructed with 10 digits: O through 9. The first digit in any numbering system is always zero.

For example, a base 8 (octal) number contains 8 digits: 0 through 7; a base 2 (binary) number
contains 2 digits: 0 and 1. If the base of a number exceeds 10, the additional digits use the
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letters of the alphabet, beginning with an A. For example, a base 12 number contains 10 digits:
0 through 9, followed by A for 10 and B for 11. Note that a base 10 number does contain a
10 digit, just as a base 8 number does not contain an 8§ digit. The most common numbering
systems used with computers are decimal, binary, and hexadecimal (base 16). (Many years ago
octal numbers were popular.) Each of these number systems are described and used in this
section the chapter.

Positional Notation

Once the digits of a number system are understood, larger numbers are constructed by using
positional notation. In grade school, we learned that the position to the left of the units position
is the tens position, the position to the left of the tens position is the hundreds position, and so
forth. (An example is the decimal number 132: This number has 1 hundred, 3 tens, and 2 units.)
What probably was not learned was the exponential value of each position: The units position
has a weight of 109, or 1; the tens position has weight of 10L, or 10; and the hundreds position has
a weight of 10%, or 100. The exponential powers of the positions are critical for understanding
numbers in other numbering systems. The position to the left of the radix (number base) point,
called a decimal point only in the decimal system, is always the units position in any number sys-
tem. For example, the position to the left of the binary point is always 2°, or 1; the position to the
left of the octal point is 8%, or 1. In any case, any number raised to its zero power is always 1, or
the units position.

The position to the left of the units position is always the number base raised to the first
power; in a decimal system, this is 10!, or 10. In a binary system, it is 21 or 2; and in an octal
system, it is 8l or 8. Therefore, an 11 decimal has a different value from an 11 binary. The deci-
mal number is composed of 1 ten plus 1 unit, and has a value of 11 units; while the binary
number 11 is composed of 1 two plus 1 unit, for a value of 3 decimal units. The 11 octal has a
value of 9 decimal units.

In the decimal system, positions to the right of the decimal point have negative powers.
The first digit to the right of the decimal point has a value of 10~, or 0.1. In the binary system the
first digit to the right of the binary point has a value of 27!, or 0.5. In general, the principles that
apply to decimal numbers also apply to numbers in any other number system.

Example 1-1 shows 110.101 in binary (often written as 110.101,). It also shows the
power and weight or value of each digit position. To convert a binary number to decimal, add
weights of each digit to form its decimal equivalent. The 110.101, is equivalent to a 6.625 in
decimal (4 + 2 + 0.5 + 0.125). Notice that this is the sum of 22 (or 4) plus 2! (or 2), but 2°
(or 1) is not added because there are no digits under this position. The fraction part is com-
posed of 271 (.5) plus 273 (or .125), but there is no digit under the 272 (or .25) so .25 is not
added.

EXAMPLE 1-1

Power 22 21 20 271 272 273

Weight 4 2 1 5 .25 .125

Number 1 1 0 1 0 1

Numeric Value 4 + 2 + 0 + 5 + 0 + .125 = 6.625

Suppose that the conversion technique is applied to a base 6 number, such as 25.2..
Example 1-2 shows this number placed under the powers and weights of each position. In the
example, there is a 2 under 6!, which has a value of 12 10 (2 X 6), and a 5 under 69, which has
a value of 5 (5 X 1). The whole number portion has a decimal value of 12 + 5, or 17. The num-
ber to the right of the hex point is a 2 under 67!, which has a value of .333 (2 X .167). The
number 25.2, therefore, has a value of 17.333.
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EXAMPLE 1-2
Power 6t 60 g1

Weight 6 1 .167

Number 2 5 .2

Numeric Value 12 + 5 + .333 = 17.333

Conversion to Decimal

The prior examples have shown that to convert from any number base to decimal, determine the
weights or values of each position of the number, and then sum the weights to form the decimal
equivalent. Suppose that a 125.7¢ octal is converted to decimal. To accomplish this conversion,
first write down the weights of each position of the number. This appears in Example 1-3. The
value of 125.7; is 85.875 decimal, or 1 X 64 plus 2 X 8 plus 5 X 1 plus 7 X .125.

EXAMPLE 1-3

Power 82 gl g0 g1

Weight 64 8 1 .125

Number 1 2 5 .7

Numeric Value 64 + 16 + 5 + .875 = 85.875

Notice that the weight of the position to the left of the units position is 8. This is 8 times 1.
Then notice that the weight of the next position is 64, or 8 times 8. If another position existed, it
would be 64 times 8, or 512. To find the weight of the next higher-order position, multiply the
weight of the current position by the number base (or &, in this example). To calculate the
weights of position to the right of the radix point, divide by the number base. In the octal system,
the position immediately to the right of the octal point is !/, or .125. The next position is 12/s,
or .015625, which can also be written as //64. Also note that the number in Example 1-3 can also
be written as the decimal number 857/s.

Example 1-4 shows the binary number 11011.0111 written with the weights and powers of
each position. If these weights are summed, the value of the binary number converted to decimal
is 27.4375.

EXAMPLE 1-4

Power 24 23 22 21 20 o1 22 273 274

Weight 16 8 4 2 1 .5 .25 .125 .0625

Number 1 1 0 1 1.0 1 1 1

Numeric Value 16 + 8 + 0 + 2 + 1 + 0 + .25 + .125 + .0625 = 27.4375

It is interesting to note that 271 is also Y2, 272 is 14, and so forth. It is also interesting to
note that 274 is Y16, or .0625. The fractional part of this number is /16 or .4375 decimal. Notice
that 0111 is a 7 in binary code for the numerator and the rightmost one is in the /16 position for
the denominator. Other examples: The binary fraction of .101 is /s and the binary fraction of
001101 is 3/6a.

Hexadecimal numbers are often used with computers. A 6A.CH (H for hexadecimal) is
illustrated with its weights in Example 1-5. The sum of its digits is 106.75, or 106%. The whole
number part is represented with 6 X 16 plus 10 (A) X 1. The fraction part is 12 (C) as a numer-
ator and 16 (1671) as the denominator, or /16, which is reduced to 3/4.
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EXAMPLE 1-5

Power 161 169 1671

Weight 16 1 .0625
Number 6 A . C

Number Value 96 + 10 + .75 = 106.75

Conversion from Decimal

Conversions from decimal to other number systems are more difficult to accomplish than con-
version to decimal. To convert the whole number portion of a number to decimal, divide by 1
radix. To convert the fractional portion, multiply by the radix.

Whole Number Conversion from Decimal. To convert a decimal whole number to another
number system, divide by the radix and save the remainders as significant digits of the result. An
algorithm for this conversion as is follows:

1. Divide the decimal number by the radix (number base).
2. Save the remainder (first remainder is the least significant digit).
3. Repeat steps 1 and 2 until the quotient is zero.

For example, to convert a 10 decimal to binary, divide it by 2. The result is 5, with a remain-
der of 0. The first remainder is the units position of the result (in this example, a 0). Next divide
the 5 by 2. The result is 2, with a remainder of 1. The 1 is the value of the twos (2!) position.
Continue the division until the quotient is a zero. Example 1-6 shows this conversion process. The
result is written as 1010, from the bottom to the top.

EXAMPLE 1-6
2) 10 remainder = 0
2) 5 remainder = 1
2) 2 remainder = 0
2) 1 remainder = 1 result = 1010
0

To convert a 10 decimal into base 8, divide by 8, as shown in Example 1-7. A 10 decimal
is a 12 octal.

EXAMPLE 1-7

8) 10 remainder = 2

8) 1 remainder = result = 12
0

Conversion from decimal to hexadecimal is accomplished by dividing by 16. The remain-
ders will range in value from O through 15. Any remainder of 10 through 15 is then converted to
the letters A through F for the hexadecimal number. Example 1-8 shows the decimal number 109
converted to a 6DH.

EXAMPLE 1-8

16) 109 remainder = 13 (D)

16 6 remainder = 6 result = 6D
0

Converting from a Decimal Fraction. Conversion from a decimal fraction to another number
base is accomplished with multiplication by the radix. For example, to convert a decimal fraction
into binary, multiply by 2. After the multiplication, the whole number portion of the result is
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saved as a significant digit of the result, and the fractional remainder is again multiplied by the
radix. When the fraction remainder is zero, multiplication ends. Note that some numbers are
never-ending (repetend). That is, a zero is never a remainder. An algorithm for conversion from
a decimal fraction is as follows:

1. Multiply the decimal fraction by the radix (number base).

2. Save the whole number portion of the result (even if zero) as a digit. Note that the first result
is written immediately to the right of the radix point.

3. Repeat steps 1 and 2, using the fractional part of step 2 until the fractional part of step 2 is zero.

Suppose that a .125 decimal is converted to binary. This is accomplished with multiplica-
tions by 2, as illustrated in Example 1-9. Notice that the multiplication continues until the
fractional remainder is zero. The whole number portions are written as the binary fraction
(0.001) in this example.

EXAMPLE 1-9

.125

x 2
0.25 digit is 0

.25

X 2
0.5 digit is 0

.5

X 2

1.0 digit is 1 result = 0.001,

This same technique is used to convert a decimal fraction into any number base. Example 1-10
shows the same decimal fraction of .125 from Example 1-9 converted to octal by multiplying by 8.

EXAMPLE 1-10

.125
X 8

1.0 digit is 1 result = 0.1,
Conversion to a hexadecimal fraction appears in Example 1-11. Here, the decimal .046875

is converted to hexadecimal by multiplying by 16. Note that .046875 is 0.0CH.

EXAMPLE 1-11

.046875
x 16
0.75 digit is 0
.75
x 16
12.0 digit is 12(C) result = 0.0C,,

Binary-Coded Hexadecimal

Binary-coded hexadecimal (BCH) is used to represent hexadecimal data in binary code.
A binary-coded hexadecimal number is a hexadecimal number written so that each digit is repre-
sented by a 4-bit binary number. The values for the BCH digits appear in Table 1-7.

Hexadecimal numbers are represented in BCH code by converting each digit to BCH code
with a space between each coded digit. Example 1-12 shows a 2AC converted to BCH code.
Note that each BCH digit is separated by a space.
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TABLE 1-7 Binary-coded
hexadecimal (BCH) code. Hexadecimal Dlglt BCH Code

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

TMUOUOW>»OONOOOMWN-—=O

EXAMPLE 1-12
2AC = 0010 1010 1100

The purpose of BCH code is to allow a binary version of a hexadecimal number to be
written in a form that can easily be converted between BCH and hexadecimal. Example 1-13
shows a BCH coded number converted back to hexadecimal code.

EXAMPLE 1-13

1000 0011 1101 . 1110 = 83D.E

Complements

At times, data are stored in complement form to represent negative numbers. There are two systems
that are used to represent negative data: radix and radix — 1 complements. The earliest system was
the radix —1 complement, in which each digit of the number is subtracted from the radix —1 to gen-
erate the radix —1 complement to represent a negative number.

Example 1-14 shows how the 8-bit binary number 01001100 is one’s (radix —1) comple-
mented to represent it as a negative value. Notice that each digit of the number is subtracted
from one to generate the radix —1 (one’s) complement. In this example, the negative of
01001100 is 10110011. The same technique can be applied to any number system, as illustrated
in Example 1-15, in which the fifteen’s (radix —1) complement of a SCD hexadecimal is com-
puted by subtracting each digit from a fifteen.

EXAMPLE 1-14

1111 1111
— 0100 1100
1011 0011

EXAMPLE 1-15
15 15 15
- 5 C D

a 3 2
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Today, the radix —1 complement is not used by itself; it is used as a step for finding the
radix complement. The radix complement is used to represent negative numbers in modem com-
puter systems. (The radix —1 complement was used in the early days of computer technology.)
The main problem with the radix —1 complement is that a negative or a positive zero exists; in the
radix complement system, only a positive zero can exist.

To form the radix complement, first find the radix —1 complement, and then add a one to
the result. Example 1-16 shows how the number 0100 1000 is converted to a negative value by
two’s (radix) complementing it.

EXAMPLE 1-16

1111 1111
— 0100 1000

1011 0111 (one’s complement)
+ 1

1011 1000 (two’s complement)

To prove that a 0100 1000 is the inverse (negative) of a 1011 1000, add the two together to
form an 8-digit result. The ninth digit is dropped and the result is zero because a 0100 1000 is a
positive 72, while a 1011 1000 is a negative 72. The same technique applies to any number system.
Example 1-17 shows how the inverse of a 345 hexadecimal is found by first fifteen’s complement-
ing the number, and then by adding one to the result to form the sixteen’s complement. As before,
if the original 3-digit number 345 is added to the inverse of CBB, the result is a 3-digit 000.
As before, the fourth bit (carry) is dropped. This proves that 345 is the inverse of CBB. Additional
information about one’s and two’s complements is presented with signed numbers in the next
section of the text.

EXAMPLE 1-17

15 15 15
- 3 4 5
C B A (fifteen’s complement)
+ 1
C B B (sixteen’s complement)
1-4 COMPUTER DATA FORMATS

Successful programming requires a precise understanding of data formats. In this section, many
common computer data formats are described as they are used with the Intel family of micro-
processors. Commonly, data appear as ASCII, Unicode, BCD, signed and unsigned integers, and
floating-point numbers (real numbers). Other forms are available, but are not presented here
because they are not commonly found.

ASCII and Unicode Data

ASCII (American Standard Code for Information Interchange) data represent alphanumeric
characters in the memory of a computer system (see Table 1-8). The standard ASCII code is a 7-bit
code, with the eighth and most significant bit used to hold parity in some antiquated systems.
If ASCII data are used with a printer, the most significant bits are a O for alphanumeric printing and
1 for graphics printing. In the personal computer, an extended ASCII character set is selected by
placing a 1 in the leftmost bit. Table 1-9 shows the extended ASCII character set, using code
80H-FFH. The extended ASCII characters store some foreign letters and punctuation, Greek
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TABLE 1-8 ASCII code.

Second

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XD XE XF
First
0X NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO Ssi
1X DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EMS SUB ESC FS GS RS US

2X SP ! “ # $ % & ’ ( ) * + , - . /

3X 0 1 2 3 4 5 6 7 8 9 : < = > ?
4X @ A B C D E F G H | J K L M N (0]
5X P Q R S T U \ w X Y z [ \ | A _
6X ‘ a b c d e f g h i j k | m n o]
7X p q r s t u v w X y z { | } ~ o

TABLE 1-9 Extended ASCII code, as printed by the IBM ProPrinter.

First Second
X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XA XB XC XDXE XF

0X © © ¥ ¢ &# 4 e OO @ JF 2 ) A B
X » <« ¢ § m ¥ 1 1 - « L o a v
8X C i é 4 4 a & ¢ & & e 1 1 1 A A
X E @ 26 6 60 &« uy OU ¢ £ ¥ P f
AXéi(’)l’lﬁNaoérﬁl/z%i«»
BX & % | i 4] 1
cx Ll %]}Lf-ww-
px L + ¢ b L ¢ + r|l|i'
EX « B I' m 2 0 py @ 0 Q38 « § € n
FXEizsr.J+z° J n 2 =

characters, mathematical characters, box-drawing characters, and other special characters. Note
that extended characters can vary from one printer to another. The list provided is designed to be
used with the IBM ProPrinter, which also matches the special character set found with most word
processors.

The ASCII control characters, also listed in Table 1-8, perform control functions in a com-
puter system, including clear screen, backspace, line feed, and so on. To enter the control codes
through the computer keyboard, hold down the Control key while typing a letter. To obtain the
control code 01H, type a Control-A; a 02H is obtained by a Control-B, and so on. Note that the
control codes appear on the screen, from the DOS prompt, as *A for Control-A, *B for Control-B,
and so forth. Also note that the carriage return code (CR) is the Enter key on most modem key-
boards. The purpose of CR is to return the cursor or print head to the left margin. Another code
that appears in many programs is the line feed code (LF), which moves the cursor down one line.

To use Table 1-8 or 1-9 for converting alphanumeric or control characters into ASCII
characters, first locate the alphanumeric code for conversion. Next, find the first digit of the
hexadecimal ASCII code. Then find the second digit. For example, the capital letter “A” is
ASCII code 41H, and the lowercase letter “a” is ASCII code 61H. Many Windows-based appli-
cations, since Windows 95, use the Unicode system to store alphanumeric data. This system
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stores each character as 16-bit data. The codes 0000H-OOFFH are the same as standard ASCII
code. The remaining codes, 0100H-FFFFH, are used to store all special characters from
many worldwide character sets. This allows software written for the Windows environment
to be used in many countries around the world. For complete information on Unicode, visit
http://www.unicode.org.

ASCII data are most often stored in memory by using a special directive to the assembler
program called define byte(s), or DB. (The assembler is a program that is used to program a
computer in its native binary machine language.) An alternative to DB is the word BYTE. The
DB and BYTE directives, and several examples of their usage with ASCII-coded character
strings, are listed in Example 1-18. Notice how each character string is surrounded by apostro-
phes (*)—never use the quote (). Also notice that the assembler lists the ASCII-coded value for
each character to the left of the character string. To the far left is the hexadecimal memory loca-
tion where the character string is first stored in the memory system. For example, the character
string WHAT is stored beginning at memory address 001D, and the first letter is stored as
57 (W), followed by 68 (H), and so forth. Example 1-19 shows the same three strings defined as
String” character strings for use with Visual C++ Express 2005 and 2008. Note that Visual C++
uses quotes to surround strings. If an earlier version of C++ is used, then the string is defined
with a CString for Microsoft Visual C++ instead of a String”. The ” symbol indicates that String
is a member of the garbage collection heap for managing the storage. A garbage collector cleans
off the memory system (frees unused memory) when the object falls from visibility or scope in a
C++ program and it also prevents memory leaks.

EXAMPLE 1-18

0000 42 61 72 72 79 NAMES DB ‘Barry B. Brey’
20 42 2E 20 42
72 65 79
000D 57 68 65 20 63 MESS DB ‘Where can it be?’

20 63 61 6E 20
69 74 20 62 65
3F
001D 57 69 20 74 20 WHAT DB ‘What is on first.’
69 73 20 6F 6E
20 66 69 72 73
74 2E

EXAMPLE 1-19

String” NAMES = “Barry B. Brey” // C++ Express version
String” MESS = “Where can it be?”

String” WHAT “What is on first.”

BCD (Binary-Coded Decimal) Data

Binary-coded decimal (BCD) information is stored in either packed or unpacked forms. Packed
BCD data are stored as two digits per byte and unpacked BCD data are stored as one digit per
byte. The range of a BCD digit extends from 0000, to 1001,, or 0-9 decimal. Unpacked BCD
data are returned from a keypad or keyboard. Packed BCD data are used for some of the instruc-
tions included for BCD addition and subtraction in the instruction set of the microprocessor.

Table 1-10 shows some decimal numbers converted to both the packed and unpacked BCD
forms. Applications that require BCD data are point-of-sales terminals and almost any device
that performs a minimal amount of simple arithmetic. If a system requires complex arithmetic,
BCD data are seldom used because there is no simple and efficient method of performing
complex BCD arithmetic.
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TABLE 1-10 Packed and unpacked BCD data.

Decimal Packed Unpacked

12 0001 0010 0000 0001 0000 0010
623 00000110 0010 0011 00000110 0000 0010 0000 0011
910 0000 1001 0001 0000 0000 1001 0000 0001 0000 0000

Example 1-20 shows how to use the assembler to define both packed and unpacked
BCD data. Example 1-21 shows how to do this using Visual C++ and char or bytes. In all
cases, the convention of storing the least-significant data first is followed. This means that to
store 83 into memory, the 3 is stored first, and then followed by the 8. Also note that with
packed BCD data, the letter H (hexadecimal) follows the number to ensure that the assem-
bler stores the BCD value rather than a decimal value for packed BCD data. Notice how the
numbers are stored in memory as unpacked, one digit per byte; or packed, as two digits
per byte.

EXAMPLE 1-20

;Unpacked BCD data (least-significant data first)

0000 03 04 05 NUMB1 DB

3,4,5 ;defines number 543
0003 07 08 NUMB2 DB 7,8

;defines number 87
;Packed BCD data (least-significant data first)

0005 37 34 NUMB3 DB 37H,34H ;defines number 3437
0007 03 45 NUMB4 DB 3,45H ;defines number 4503

EXAMPLE 1-21

//Unpacked BCD data (least-significant data first)
//

char Numbl = 3,4,5; ;defines number 543
char Numb2 = 7,8 ;defines number 87
//

//Packed BCD data (least-significant data first)
//

char Numb3 = 0x37,0x34 ;defines number 3437
char Numb4 = 3,0x45 ;defines number 4503

Byte-Sized Data

Byte-sized data are stored as unsigned and signed integers. Figure 1-14 illustrates both the
unsigned and signed forms of the byte-sized integer. The difference in these forms is the weight
of the leftmost bit position. Its value is 128 for the unsigned integer and minus 128 for the
signed integer. In the signed integer format, the leftmost bit represents the sign bit of the num-
ber, as well as a weight of minus 128. For example, 80H represents a value of 128 as
an unsigned number; as a signed number, it represents a value of minus 128. Unsigned integers
range in value from O0H to FFH (0-255). Signed integers range in value from —128 to
0to +127.

Although negative signed numbers are represented in this way, they are stored in the two’s
complement form. The method of evaluating a signed number by using the weights of each bit
position is much easier than the act of two’s complementing a number to find its value. This is
especially true in the world of calculators designed for programmers.
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128 64 32 16 8 4 2 1 -<——— Binary weights

Unsigned byte

-128 64 32 16 8 4 2 1

Binary weights

Signed byte

FIGURE 1-14 The unsigned and signed bytes illustrating the weights of each binary-bit position.

Whenever a number is two’s complemented, its sign changes from negative to positive or
positive to negative. For example, the number 00001000 is a +8. Its negative value (—8) is found
by two’s complementing the +8. To form a two’s complement, first one’s complement the
number. To one’s complement a number, invert each bit of a number from zero to one or from
one to zero. Once the one’s complement is formed, the two’s complement is found by adding a
one to the one’s complement. Example 1-22 shows how numbers are two’s complemented using
this technique.

EXAMPLE 1-22

+ 8 = 00001000

11110111 (one’s complement)
+ 1
— 8 =11111000 (two'’s complement)

Another, and probably simpler, technique for two’s complementing a number starts with
the rightmost digit. Start by writing down the number from right to left. Write the number
exactly as it appears until the first one. Write down the first one, and then invert all bits to its left.
Example 1-23 shows this technique with the same number as in Example 1-22.

EXAMPLE 1-23

+8 = 00001000
1000 (write number to first 1)
1111 (invert the remaining bits)
-8 = 11111000

To store 8-bit data in memory using the assembler program, use the DB directive as in
prior examples or char as in Visual C++ examples. Example 1-24 lists many forms of 8-bit num-
bers stored in memory using the assembler program. Notice in the example that a hexadecimal
number is defined with the letter H following the number, and that a decimal number is written
as is, without anything special. Example 1-25 shows the same byte data defined for use with a
Visual C++ program. In C/C++ the hexadecimal value is preceded by a Ox to indicate a hexadec-
imal value.
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EXAMPLE 1-24

;Unsigned byte-sized data

0000 FE DATA1l DB 254 ;define 254 decimal

0001 87 DATA2 DB 87H ;define 87 hexadecimal

0002 47 DATA3 DB 71 ;define 71 decimal
;Signed byte-sized data

0003 9C DATA4 DB -100 ;define -100 decimal

0004 64 DARAS5 DB +100 ;define +100 decimal
0005 FF DATA6 DB -1 ;define -1 decimal
0006 38 DATA7 DB 56 ;define 56 decimal

EXAMPLE 1-25

//Unsigned byte-sized data
//

unsigned char Datal = 254; //define 254 decimal
unsigned char Data2 = 0x87; //define 87 hexadecimal
unsigned char Data3 = 71 //define 71 decimal

//

//Signed byte-sized data

//

char Data4 = -100; //define -100 decimal
char Data5 = +100; //define +100 decimal
char Data6 = -1; //define -1 decimal
char Data7 = 56; //define 56 decimal

Word-Sized Data

A word (16-bits) is formed with two bytes of data. The least significant byte is always stored in the
lowest-numbered memory location, and the most significant byte is stored in the highest. This
method of storing a number is called the little endian format. An alternate method, not used with
the Intel family of microprocessors, is called the big endian format. In the big endian format,
numbers are stored with the lowest location containing the most significant data. The big endian
format is used with the Motorola family of microprocessors. Figure 1-15 (a) shows the weights of
each bit position in a word of data, and Figure 1-15 (b) shows how the number 1234H appears
when stored in the memory locations 3000H and 3001H. The only difference between a signed
and an unsigned word in the leftmost bit is position. In the unsigned form, the leftmost bit is
unsigned and has a weight of 32,768; in the signed form, its weight is —32,768. As with byte-
sized signed data, the signed word is in two’s complement form when representing a negative
number. Also, notice that the low-order byte is stored in the lowest-numbered memory location
(3000H) and the high-order byte is stored in the highest-numbered location (3001H).

Example 1-26 shows several signed and unsigned word-sized data stored in memory using
the assembler program. Example 1-27 shows how to store the same numbers in a Visual C++

EXAMPLE 1-26

;Unsigned word-sized data

7

0000 O09FO DATAl DwW 2544 ;define 2544 decimal
0002 87AC DATA2 DwW 87ACH ;define 87AC hexadecimal

0004 02C6 DATA3 DW 710 ;define 710 decimal
;Signed word-sized data

0006 CBAS8 DATA4 DW -13400 ;define -13400 decimal

0008 00C6 DATAS5 DwW +198 ;define +198 decimal

000A FFFF DATA6 DW -1 ;define -1 decimal
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~ «—— Binary weights

32,768
16,384
8192
4096
2048
1024
512
256
128
64
32
16
8
4
2

(a) Unsigned word

/—\/—\_/

3003H
3002H
3001H 12H High-order byte
3000H 34H -~— Low-order byte
2FFFH

/\_/\_/

(b) The contents of memory location 3000H and 3001H are the word 1234H.

FIGURE 1-15 The storage format for a 16-bit word in (a) a register and (b) two bytes of memory.

EXAMPLE 1-27

//Unsigned word-sized data
//

unsigned short Datal = 2544; //define 2544 decimal
unsigned short Data2 = 0x87AC //define 87AC hexadecimal
unsigned short Data3 = 710; //define 710 decimal

//

//Signed word-sized data

//

short Data4 = -13400; //define -13400 decimal
short Data5 = +198; //define +198 decimal
short Data6 = -1; //define -1 decimal

program (assuming version 5.0 or newer), which uses the short directive to store a 16-bit integer.
Notice that the define word(s) directive, or DW, causes the assembler to store words in the
memory instead of bytes, as in prior examples. The WORD directive can also be used to define a
word. Notice that the word data is displayed by the assembler in the same form as entered. For
example, a I1000H is displayed by the assembler as a 1000. This is for our convenience because
the number is actually stored in the memory as 00 10 in two consecutive memory bytes.

Doubleword-Sized Data

Doubleword-sized data requires four bytes of memory because it is a 32-bit number. Doubleword
data appear as a product after a multiplication and also as a dividend before a division. In the 80386
through the Core2, memory and registers are also 32 bits in width. Figure 1-16 shows the form
used to store doublewords in the memory and the binary weights of each bit position.

When a doubleword is stored in memory, its least significant byte is stored in the lowest
numbered memory location, and its most significant byte is stored in the highest-numbered
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Binary weights
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(a) Unsigned doubleword
00103H 12H <——— High-order byte
00102H 34H
00101H 56H
00100H 78H ~<——— Lowe-order byte
000FFH

(b) The contents of memory location 00100H-00103H are the doubleword 12345678H.

FIGURE 1-16 The storage format for a 32-bit word in (a) a register and (b) 4 bytes of memory.

memory location using the little endian format. Recall that this is also true for word-sized data.
For example, 12345678H that is stored in memory locations 00100H-00103H is stored with the
78H in memory location 00100H, the 56H in location 00101H, the 34H in location 00102H, and

the 12H in location 00103H.

To define doubleword-sized data, use the assembler directive define doubleword(s), or
DD. (You can also use the DWORD directive in place of DD.) Example 1-28 shows both signed
and unsigned numbers stored in memory using the DD directive. Example 1-29 shows how to

define the same doublewords in Visual C++ using the int directive.

EXAMPLE 1-28

0000 0003E1CO
0004 87AC1234
0008 00000046

000C FFEB8058
0010 000000C6
0014 FFFFFFFF

EXAMPLE 1-29

;Unsigned doubleword-sized data

DATA1l DD 254400 ;define
DATA2 DD 87AC1234H ;define
DATA3 DD 70 ;define

;Signed doubleword-sized data
DATA4 DD -1343400 ;define

DATA5 DD +198 ;define
DATA6 DD -1 ;define

//Unsigned doubleword-sized data

/7

254400 decimal
87AC1234 hexadecimal
70 decimal

-1343400 decimal
+198 decimal
-1 decimal

unsigned int Datal = 254400; //define 254400 decimal
unsigned int Data2 = 0x87AC1234; //define 87AC1234 hexadecimal
unsigned int Data3 = 70; //define 70 decimal

//

//Signed doubleword-sized data

//

int Datad4 = -1343400; //define -1342400 decimal

int Data5 = +198; //define +198 decimal

int Data6 = -1; //define -1 decimal
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Integers may also be stored in memory that is of any width. The forms listed here are
standard forms, but that doesn’t mean that a 256-byte wide integer can’t be stored in the memory.
The microprocessor is flexible enough to allow any size of data in assembly language. When non-
standard-width numbers are stored in memory, the DB directive is normally used to store them. For
example, the 24-bit number 123456H is stored using a DB 56H, 34H, 12H directive. Note that this
conforms to the little endian format. This could also be done in Visual C++ using the char directive.

Real Numbers

Because many high-level languages use the Intel family of microprocessors, real numbers are
often encountered. A real number, or a floating-point number, as it is often called, contains two
parts: a mantissa, significand, or fraction; and an exponent. Figure 1-17 depicts both the 4- and
8-byte forms of real numbers as they are stored in any Intel system. Note that the 4-byte number
is called single-precision and the 8-byte form is called double-precision. The form presented
here is the same form specified by the IEEE! standard, IEEE-754, version 10.0. The standard
has been adopted as the standard form of real numbers with virtually all programming languages
and many applications packages. The standard also applies the data manipulated by the numeric
coprocessor in the personal computer. Figure 1-17 (a) shows the single-precision form that
contains a sign-bit, an 8-bit exponent, and a 24-bit fraction (mantissa). Note that because appli-
cations often require double-precision floating-point numbers [see Figure 1-17 (b)], the
Pentium—Core2 with their 64-bit data bus perform memory transfers at twice the speed of the
80386/80486 microprocessors.

Simple arithmetic indicates that it should take 33 bits to store all three pieces of data. Not
true—the 24-bit mantissa contains an implied (hidden) one-bit that allows the mantissa to repre-
sent 24 bits while being stored in only 23 bits. The hidden bit is the first bit of the normalized real
number. When normalizing a number, it is adjusted so that its value is at least 1, but less than 2.
For example, if 12 is converted to binary (1100,), it is normalized and the resultis 1.1 X 23 The
whole number 1 is not stored in the 23-bit mantissa portion of the number; the 1 is the hidden
one-bit. Table 1-11 shows the single-precision form of this number and others.

The exponent is stored as a biased exponent. With the single-precision form of the real
number, the bias is 127 (7FH) and with the double-precision form, it is 1023 (3FFH). The bias

31 30 23 22 0
S Exponent Significand
[ ]
(@)
63 62 52 51 0
S Exponent Significand

(b)

FIGURE 1-17 The floating-point numbers in (a) single-precision using a bias of 7FH and
(b) double-precision using a bias of 3FFH.

I0JEEE is the Institute of Electrical and Electronic Engineers.
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TABLE 1-11 Single-precision real numbers.

Decimal Binary  Normalized Sign Biased Exponent Mantissa

+12 1100 1.1 x 28 0 10000010 10000000 00000000 00000000

-12 1100 {14 x 93 1 10000010 10000000 00000000 00000000
+100 1100100 {1001 x 26 O 10000101 10010000 00000000 00000000
-1.75 1.11 141 x 20 1 01111111 11000000 00000000 00000000
+0.25 0.01 1.0 x 22 0 01111101 00000000 00000000 00000000
+00 0 0 0 00000000 00000000 00000000 00000000

and exponent are added before being stored in the exponent portion of the floating-point number.
In the previous example, there is an exponent of 23, represented as a biased exponent of 127 + 3
or 130 (82H) in the single-precision form, or as 1026 (402H) in the double-precision form.

There are two exceptions to the rules for floating-point numbers. The number 0.0 is stored
as all zeros. The number infinity is stored as all ones in the exponent and all zeros in the man-
tissa. The sign-bit indicates either a positive or a negative infinity.

As with other data types, the assembler can be used to define real numbers in both single-
and double-precision forms. Because single-precision numbers are 32-bit numbers, use the DD
directive or use the define quadword(s), or DQ, directive to define 64-bit double-precision real
numbers. Optional directives for real numbers are REAL4, REALS, and REALI10 for defining
single-, double-, and extended precision real numbers. Example 1-30 shows numbers defined in
real number format for the assembler. If using the inline assembler in Visual C++ single-
precision numbers are defined as float and double-precision numbers are defined as double as
shown in Example 1-31. There is no way to define the extended-precision floating-point number
for use in Visual C++.

EXAMPLE 1-30

;single-precision real numbers

0000 3F9DF3B6 NUMB1 DD 1.234 ;define 1.234

0004 C1BB3333 NUMB2 DD -23.4 ;define -23.4

0008 43D20000 NUMB3 REAL4 4.2E2 ;define 420
;double-precision real numbers

000C 405ED9999999999A NUMB4 DO 123.4 ;define 123.4
0014 C1BB333333333333 NUMB5 REAL8 -23.4 ;define -23.4

H
;Extended-precision real numbers

001C 4005F6CCCCCCCCcCccceD NUMB6 REAL10 123.4 ;define 123.4

EXAMPLE 1-31

//Single-precision real numbers
//

float Numbl = 1.234;

float Numb2 = -23.4;

float Numb3 = 4.3e2;

/7

//Double-precision real numbers
/7

double Numb4 = 123.4;

double Numb5 = -23.4;
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1-5 SUMMARY

10.

11.

. The mechanical computer age began with the advent of the abacus in 500 B.C. This first

mechanical calculator remained unchanged until 1642, when Blaise Pascal improved it. An
early mechanical computer system was the Analytical Engine developed by Charles
Babbage in 1823. Unfortunately, this machine never functioned because of the inability to
create the necessary machine parts.

. The first electronic calculating machine was developed during World War II by Konrad

Zuse, an early pioneer of digital electronics. His computer, the Z3, was used in aircraft and
missile design for the German war effort.

. The first electronic computer, which used vacuum tubes, was placed into operation in 1943

to break secret German military codes. This first electronic computer system, the Colossus,
was invented by Alan Turing. Its only problem was that the program was fixed and could not
be changed.

. The first general-purpose, programmable electronic computer system was developed in

1946 at the University of Pennsylvania. This first modern computer was called the ENIAC
(Electronics Numerical Integrator and Calculator).

. The first high-level programming language, called FLOWMATIC, was developed for the

UNIVAC I computer by Grace Hopper in the early 1950s. This led to FORTRAN and other
early programming languages such as COBOL.

. The world’s first microprocessor, the Intel 4004, was a 4-bit microprocessor—a program-

mable controller on a chip—that was meager by today’s standards. It addressed a mere 4096
4-bit memory locations. Its instruction set contained only 45 different instructions.

. Microprocessors that are common today include the 8086/8088, which were the first 16-bit

microprocessors. Following these early 16-bit machines were the 80286, 80386, 80486,
Pentium, Pentium Pro, Pentium II, Pentium III, Pentium 4, and Core2 processors. The archi-
tecture has changed from 16 bits to 32 bits and, with the Itanium, to 64 bits. With each newer
version, improvements followed that increased the processor’s speed and performance. From
all indications, this process of speed and performance improvement will continue, although
the performance increases may not always come from an increased clock frequency.

. The DOS-based personal computers contain memory systems that include three main areas:

TPA (transient program area), system area, and extended memory. The TPA hold: applica-
tion programs, the operating system, and drivers. The system area contains memory used for
video display cards, disk drives, and the BIOS ROM. The extended memory area is only
available to the 80286 through the Core2 microprocessor in an AT-style or ATX-style per-
sonal computer system. The Windows-based personal computers contain memory systems
that include two main areas: TPA and systems area.

. The 8086/8088 address 1M byte of memory from locations 00000H-FFFFFH. The 80286 and

80386SX address 16M bytes of memory from locations 000000H-FFFFFFH. The 80386SL
addresses 32M bytes of memory from locations 0000000H-1FFFFFFH. The 80386DX
through the Core2 address 4G bytes of memory from locations 00000000H-FFFFFFFFH.
In addition, the Pentium Pro through the Core2 can operate with a 36-bit address and access
up to 64G bytes of memory from locations 000000000H-FFFFFFFFFH. A Pentium 4 or
Core2 operating with 64-bit extensions addresses memory from locations 0000000000H-
FFFFFFFFFFH for 1T byte of memory.

All versions of the 8086 through the Core2 microprocessors address 64K bytes of I/O address
space. These 1/O ports are numbered from 0000H to FFFFH with I/O ports 0000H-03FFH
reserved for use by the personal computer system. The PCI bus allows ports 0400H-FFFFH.
The operating system in early personal computers was either MSDOS (Microsoft disk operat-
ing system) or PCDOS (personal computer disk operating system from IBM). The operating
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

system performs the task of operating or controlling the computer system, along with its I/O
devices. Modern computers use Microsoft Windows in place of DOS as an operating system.
The microprocessor is the controlling element in a computer system. The microprocessor
performs data transfers, does simple arithmetic and logic operations, and makes simple deci-
sions. The microprocessor executes programs stored in the memory system to perform com-
plex operations in short periods of time.

All computer systems contain three buses to control memory and I/O. The address bus is used to
request a memory location or I/O device. The data bus transfers data between the microproces-
sor and its memory and I/O spaces. The control bus controls the memory and I/O, and requests
reading or writing of data. Control is accomplished with /ORC (I/O read control), /OWC (1/O
write control), M RDC (memory read control), and MWTC (memory write control).

Numbers are converted from any number base to decimal by noting the weights of each
position. The weight of the position to the left of the radix point is always the units position
in any number system. The position to the left of the units position is always the radix times
one. Succeeding positions are determined by multiplying by the radix. The weight of the
position to the right of the radix point is always determined by dividing by the radix.
Conversion from a whole decimal number to any other base is accomplished by dividing by
the radix. Conversion from a fractional decimal number is accomplished by multiplying by
the radix.

Hexadecimal data are represented in hexadecimal form or in a code called binary-coded
hexadecimal (BCH). A binary-coded hexadecimal number is one that is written with a 4-bit
binary number that represents each hexadecimal digit.

The ASCII code is used to store alphabetic or numeric data. The ASCII code is a 7-bit code;
it can have an eighth bit that is used to extend the character set from 128 codes to 256 codes.
The carriage return (Enter) code returns the print head or cursor to the left margin. The line
feed code moves the cursor or print head down one line. Most modern applications use
Unicode, which contains ASCII at codes 0000H-OOFFH.

Binary-coded decimal (BCD) data are sometimes used in a computer system to store deci-
mal data. These data are stored either in packed (two digits per byte) or unpacked (one digit
per byte) form.

Binary data are stored as a byte (8 bits), word (16 bits), or doubleword (32 bits) in a com-
puter system. These data may be unsigned or signed. Signed negative data are always stored
in the two’s complement form. Data that are wider than 8 bits are always stored using the
little endian format. In 32-bit Visual C++ these data are represented with char (8 bits), short
(16 bits) and int (32 bits).

Floating-point data are used in computer systems to store whole, mixed, and fractional num-
bers. A floating-point number is composed of a sign, a mantissa, and an exponent.

The assembler directives DB or BYTE define bytes, DW or WORD define words, DD or
DWORD define doublewords, and DQ or QWORD define quadwords.

QUESTIONS AND PROBLEMS

Nk b=

Who developed the Analytical Engine?

The 1890 census used a new device called a punched card. Who developed the punched card?
Who was the founder of IBM Corporation?

Who developed the first electronic calculator?

The first electronic computer system was developed for what purpose?

The first general-purpose, programmable computer was called the

The world’s first microprocessor was developed in 1971 by
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Who was the Countess of Lovelace?

Who developed the first high-level programming language called FLOWMATIC?
What is a von Neumann machine?

Which 8-bit microprocessor ushered in the age of the microprocessor?

The 8085 microprocessor, introduced in 1977, has sold copies.
Which Intel microprocessor was the first to address 1M bytes of memory?
The 80286 addresses bytes of memory.

How much memory is available to the 80486 microprocessor?
When did Intel introduce the Pentium microprocessor?

When did Intel introduce the Pentium Pro processor?

When did Intel introduce the Pentium 4 microprocessor?
Which Intel microprocessor addresses 1T of memory?

What is the acronym MIPs?

What is the acronym CISC?

A binary bit stores a(n) or a(n) .

A computer K (pronounced kay) is equal to bytes.

A computer M (pronounced meg) is equal to K bytes.
A computer G (pronounced gig) is equal to M bytes.
A computer P (pronounced peta) is equal to T bytes.

How many typewritten pages of information are stored in a 4G-byte memory?
The first 1M byte of memory in a DOS-based computer system contains a(n)
and a(n) area.

How large is the Windows application programming area?

How much memory is found in the DOS transient program area?

How much memory is found in the Windows systems area?

The 8086 microprocessor addresses bytes of memory.
The Core2 microprocessor addresses bytes of memory.
Which microprocessors address 4G bytes of memory?

Memory above the first 1M byte is called memory.
What is the system BIOS?

What is DOS?

What is the difference between an XT and an AT computer system?
What is the VESA local bus?

The ISA bus holds -bit interface cards.

What is the USB?

What is the AGP?

What is the XMS?

What is the SATA interface and where is it used in a system?

A driver is stored in the area.

The personal computer system addresses bytes of I/O space.

What is the purpose of the BIOS?

Draw the block diagram of a computer system.

What is the purpose of the microprocessor in a microprocessor-based computer?
List the three buses found in all computer systems.

Which bus transfers the memory address to the I/O device or to the memory?
Which control signal causes the memory to perform a read operation?

What is the purpose of the JORC signal?

If the MRDC signal is a logic 0, which operation is performed by the microprocessor?
Define the purpose of the following assembler directives:

(a) DB

(b) DQ
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56.

57.

58.

59.

60.

61.

62.

63.

64.

(c) DW

(d) DD

Define the purpose of the following 32-bit Visual C++ directives:
(a) char

(b) short

(c) int

(d) float

(e) double

Convert the following binary numbers into decimal:

(a) 1101.01

(b) 111001.0011

(c) 101011.0101

(d) 111.0001

Convert the following octal numbers into decimal:

(a) 234.5

(b) 12.3

(c) 7767.07

(d) 123.45

(e) 72.72

Convert the following hexadecimal numbers into decimal:

(a) A33

(b) 129.C

(c) AC.DC

(d) FAB.3

(e) BB8.0OD

Convert the following decimal integers into binary, octal, and hexadecimal:
(a) 23

(b) 107

(c) 1238

(d) 92

(e) 173

Convert the following decimal numbers into binary, octal, and hexadecimal:
(a) 0.625

(b) .00390625

(c) .62890625

(d) 0.75

(e) .9375

Convert the following hexadecimal numbers into binary-coded hexadecimal code (BCH):
(a) 23

(b) AD4

(c) 34.AD

(d) BD32

(e) 234.3

Convert the following binary-coded hexadecimal numbers into hexadecimal:
(a) 1100 0010

(b) 0001 0000 1111 1101

(c) 1011 1100

(d) 0001 0000

(e) 1000 1011 1010

Convert the following binary numbers to the one’s complement form:
(a) 1000 1000

(b) 0101 1010
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78.

79.

80.

(c) 01110111

(d) 1000 0000

Convert the following binary numbers to the two’s complement form:

(a) 1000 0001

(b) 1010 1100

(c) 10101111

(d) 1000 0000

Define byte, word, and doubleword.

Convert the following words into ASCII-coded character strings:

(a) FROG

(b) Arc

(c) Water

(d) Well

What is the ASCII code for the Enter key and what is its purpose?

What is the Unicode?

Use an assembler directive to store the ASCII-character string “What time is it?” in the memory.
Convert the following decimal numbers into 8-bit signed binary numbers:
(a) +32

(b) —12

(c) +100

(d) —92

Convert the following decimal numbers into signed binary words:

(a) +1000

(b) —120

(c) +800

(d) —3212

Use an assembler directive to store byte-sized —34 into the memory.

Create a byte-sized variable called Fred1 and store a —34 in it in Visual C++.
Show how the following 16-bit hexadecimal numbers are stored in the memory system (use
the standard Intel little endian format):

(a) 1234H

(b) A122H

(c) B100OH

What is the difference between the big endian and little endian formats for storing numbers
that are larger than 8 bits in width?

Use an assembler directive to store a 123A hexadecimal into memory.
Convert the following decimal numbers into both packed and unpacked BCD forms:
(a) 102

(b) 44

(c) 301

(d) 1000

Convert the following binary numbers into signed decimal numbers:

(a) 10000000

(b) 00110011

(c) 10010010

(d) 10001001

Convert the following BCD numbers (assume that these are packed numbers) to decimal
numbers:

(a) 10001001

(b) 00001001

(c) 00110010

(d) 00000001
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Convert the following decimal numbers into single-precision floating-point numbers:

(a) +1.5

(b) -10.625

(c) +100.25

(d) -1200

Convert the following single-precision floating-point numbers into decimal numbers:

(a) 010000000 11000000000000000000000

(b) 101111111 00000000000000000000000

(c) 010000010 10010000000000000000000

Use the Internet to write a short report about any one of the following computer pioneers:
(a) Charles Babbage

(b) Konrad Zuse

(c) Joseph Jacquard

(d) Herman Hollerith

Use the Internet to write a short report about any one of the following computer languages:
(a) COBOL

(b) ALGOL

(c) FORTRAN

(d) PASCAL

Use the Internet to write a short report detailing the features of the Itanium 2 microprocessor.
Use the Internet to detail the Intel 45 nm (nanometer) fabrication technology.



CHAPTER 2
The Microprocessor and Its Architecture

INTRODUCTION

This chapter presents the microprocessor as a programmable device by first looking at its
internal programming model and then how its memory space is addressed. The architecture of
the family of Intel microprocessors is presented simultaneously, as are the ways that the family
members address the memory system.

The addressing modes for this powerful family of microprocessors are described for the real,
protected, and flat modes of operation. Real mode memory (DOS memory) exists at locations
00000H-FFFFFH, the first 1M byte of the memory system, and is present on all versions of the
microprocessor. Protected mode memory (Windows memory) exists at any location in the entire
protected memory system, but is available only to the 80286—Core2, not to the earlier 8086 or 8088
microprocessors. Protected mode memory for the 80286 contains 16M bytes; for the 80386—
Pentium, 4G bytes; and for the Pentium Pro through the Core2, either 4G or 64G bytes. With the
64-bit extensions enabled, the Pentium 4 and Core2 address 1T byte of memory in a flat memory
model. Windows Vista or Windows 64 is needed to operate the Pentium 4 or Core2 in 64-bit mode
using the flat mode memory to access the entire 1T byte of memory.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

1. Describe the function and purpose of each program-visible register in the 8086—Core2
microprocessors, including the 64-bit extensions.

. Detail the flag register and the purpose of each flag bit.

. Describe how memory is accessed using real mode memory-addressing techniques.

. Describe how memory is accessed using protected mode memory-addressing techniques.

. Describe how memory is accessed using the 64-bit flat memory model.

. Describe the program-invisible registers found within the 80286 through Core2 microprocessors.

. Detail the operation of the memory-paging mechanism.

~N O\ W

INTERNAL MICROPROCESSOR ARCHITECTURE

Before a program is written or any instruction investigated, the internal configuration of the micro-
processor must be known. This section of the chapter details the program-visible internal architec-
ture of the 8086—Core2 microprocessors. Also detailed are the function and purpose of each of these
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internal registers. Note that in a multiple core microprocessor each core contains the same program-
ming model. The only difference is that each core runs a separate task or thread simultaneously.

The Programming Model

The programming model of the 8086 through the Core2 is considered to be program visible
because its registers are used during application programming and are specified by the instructions.
Other registers, detailed later in this chapter, are considered to be program invisible because they
are not addressable directly during applications programming, but may be used indirectly during
system programming. Only the 80286 and above contain the program-invisible registers used to
control and operate the protected memory system and other features of the microprocessor.

Figure 2-1 illustrates the programming model of the 8086 through the Core2 microproces-
sor including the 64-bit extensions. The earlier 8086, 8088, and 80286 contain 16-bit internal

FIGURE 2-1 The programming 64-bit Names 32-bit Names ~ 16-bit Names 8-bit Names
model of the 8086 through the
Core2 microprocessor including / \ \
the 64-bit extensions. RAX EAX AX AH AL
RBX EBX BX gy BL
RCX ECX CX  ch oL
RDX EDX DX  py DL
RBP EBP BP
RSI ESI S|
RDI EDI DI
RSP ESP SP
64 bits
32 bits
«~—— 16 bits —
R8
R9
R10
R11
R12
R13
R14
R15
RFLAGS | |  eraes  |rLacs |
RIP | | EIP |IP |
cs
DS
ES
Ss
FS
GS
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architectures, a subset of the registers shown in Figure 2—1. The 80386 through the Core2
microprocessors contain full 32-bit internal architectures. The architectures of the earlier 8086
through the 80286 are fully upward-compatible to the 80386 through the Core2. The shaded areas
in this illustration represent registers that are found in early versions of the 8086, 8088, or 80286
microprocessors and are provided on the 80386—Core2 microprocessors for compatibility to the
early versions

The programming model contains 8-, 16-, and 32-bit registers. The Pentium 4 and Core2
also contain 64-bit registers when operated in the 64-bit mode as illustrated in the programming
model. The 8-bit registers are AH, AL, BH, BL, CH, CL, DH, and DL and are referred to when
an instruction is formed using these two-letter designations. For example, an ADD AL,AH
instruction adds the 8-bit contents of AH to AL. (Only AL changes due to this instruction.) The
16-bit registers are AX, BX, CX, DX, SP, BP, DI, SI, IP, FLAGS, CS, DS, ES, SS, FS, and GS.
Note that the first 4 16 registers contain a pair of 8-bit registers. An example is AX, which con-
tains AH and AL. The 16-bit registers are referenced with the two-letter designations such as
AX. For example, an ADD DX, CX instruction adds the 16-bit contents of CX to DX. (Only DX
changes due to this instruction.) The extended 32-bit registers are EAX, EBX, ECX, EDX, ESP,
EBP, EDI, ESI, EIP, and EFLAGS. These 32-bit extended registers, and 16-bit registers FS and
GS, are available only in the 80386 and above. The 16-bit registers are referenced by the desig-
nations FS or GS for the two new 16-bit registers, and by a three-letter designation for the 32-bit
registers. For example, an ADD ECX, EBX instruction adds the 32-bit contents of EBX to ECX.
(Only ECX changes due to this instruction.)

Some registers are general-purpose or multipurpose registers, while some have special
purposes. The multipurpose registers include EAX, EBX, ECX, EDX, EBP, EDI, and ESI. These
registers hold various data sizes (bytes, words, or doublewords) and are used for almost any pur-
pose, as dictated by a program.

The 64-bit registers are designated as RAX, RBX, and so forth. In addition to the renam-
ing of the registers for 64-bit widths, there are also additional 64-bit registers that are called
R8 through R15. The 64-bit extensions have multiplied the available register space by more
than 8 times in the Pentium 4 and the Core2 when compared to the original microprocessor
architecture as indicated in the shaded area in Figure 2—1. An example 64-bit instruction is
ADD RCX, RBX, instruction, which adds the 64-bit contents of RBX to RCX. (Only RCX
changes due to this instruction.) One difference exists: these additional 64-bit registers (R8
through R15) are addressed as a byte, word, doubleword, or quadword, but only the rightmost
8 bits is a byte. R8 through R15 have no provision for directly addressing bits 8 through 15 as
a byte. In the 64-bit mode, a legacy high byte register (AH, BH, CH, or DH) cannot be
addressed in the same instruction with an R8 through R15 byte. Because legacy software does
not access R8 through R15, this causes no problems with existing 32-bit programs, which
function without modification.

Table 2—1 shows the overrides used to access portions of a 64-bit register. To access the
low-order byte of the RS register, use R8B (where B is the low-order byte). Likewise, to access
the low-order word of a numbered register, such as R10, use R10W in the instruction. The letter
D is used to access a doubleword. An example instruction that copies the low-order doubleword
from R8 to R11 is MOV R11D, R8D. There is no special letter for the entire 64-bit register.

TABLE 2-1 Flat
mode 64-bit access to Register Size  Override  Bits Accessed Example

numbered registers.

8 bits B 7-0 MOV R9B, R10B
16 bits W 15-0 MOV R10W, AX
32 bits D 31-0 MOV R14D, R15D
64 bits — 63-0 MOV R13, R12
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Multipurpose Registers

RAX
(accumulator)

RBX
(base index)

RCX
(count)

RDX
(data)

RBP

(base pointer)

RDI

(destination index)

RSI
(source index)

RS through R15

RAX is referenced as a 64-bit register (RAX), a 32-bit register
(EAX), a 16-bit register (AX), or as either of two 8-bit registers (AH
and AL). Note that if an 8- or 16-bit register is addressed, only that
portion of the 32-bit register changes without affecting the remaining
bits. The accumulator is used for instructions such as multiplication,
division, and some of the adjustment instructions. For these
instructions, the accumulator has a special purpose, but is generally
considered to be a multipurpose register. In the 80386 and above, the
EAX register may also hold the offset address of a location in the
memory system. In the 64-bit Pentium 4 and Core2, RAX holds a 64-
bit offset address, which allows 1T (terra) byte of memory to be
accessed through a 40-bit address bus. In the future, Intel plans to
expand the address bus to 52 bits to address 4P (peta) bytes of memory.

RBX is addressable as RBX, EBX, BX, BH, or BL. The BX register
sometimes holds the offset address of a location in the memory
system in all versions of the microprocessor. In the 80386 and
above, EBX also can address memory data. In the 64-bit Pentium 4
and Core2, RBX can also address memory data.

RCX, which is addressable as RCX, ECX, CX, CH, or CL, is a
general-purpose register that also holds the count for various
instructions. In the 80386 and above, the ECX register also can hold
the offset address of memory data. In the 64-bit Pentium 4, RCX can
also address memory data. Instructions that use a count are the
repeated string instructions (REP/REPE/REPNE); and shift, rotate,
and LOOP/LOOPD instructions. The shift and rotate instructions use
CL as the count, the repeated string instructions use CX, and the
LOOP/LOOQOPD instructions use either CX or ECX. If operated in the
64-bit mode, LOOP uses the 64-bit RCX register for the loop counter.

RDX, which is addressable as RDX, EDX, DX, DH, or DL, is a
general-purpose register that holds a part of the result from a
multiplication or part of the dividend before a division. In the 80386
and above, this register can also address memory data.

RBP, which is addressable as RBP, EBP, or BP, points to a memory
location in all versions of the microprocessor for memory data transfers.

RDI, which is addressable as RDI, EDI, or DI, often addresses
string destination data for the string instructions.

RSI is used as RSI, ESI, or SI. The source index register often
addresses source string data for the string instructions. Like RDI,
RST also functions as a general-purpose register. As a 16-bit
register, it is addressed as SI; as a 32-bit register, it is addressed as
ESI; and as a 64-bit register, it is addressed as RSIL.

These registers are only found in the Pentium 4 and Core?2 if 64-bit
extensions are enabled. As mentioned, data in these registers are
addressed as 64-, 32-, 16-, or 8-bit sizes and are of general purpose.
Most applications will not use these registers until 64-bit processors
are common. Please note that the 8-bit portion is the rightmost 8-bit
only; bits 8 to 15 are not directly addressable as a byte.
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Special-Purpose Registers. The special-purpose registers include RIP, RSP, and RFLAGS;
and the segment registers include CS, DS, ES, SS, FS, and GS.

RIP
(instruction pointer)

RSP
(stack pointer)

RFLAGS

RIP addresses the next instruction in a section of memory defined as
a code segment. This register is IP (16 bits) when the microprocessor
operates in the real mode and EIP (32 bits) when the 80386 and
above operate in the protected mode. Note that the 8086, 8088, and
80286 do not contain an EIP register and only the 80286 and above
operate in the protected mode. The instruction pointer, which points
to the next instruction in a program, is used by the microprocessor to
find the next sequential instruction in a program located within the
code segment. The instruction pointer can be modified with a jump
or a call instruction. In the 64-bit mode, RIP contains a 40-bit
address at present to address a 1T flat address space.

RSP addresses an area of memory called the stack. The stack memory
stores data through this pointer and is explained later in the text with
the instructions that address stack data. This register is referred to as
SP if used as a 16-bit register and ESP if referred to as a 32-bit register.

RFLAGS indicate the condition of the microprocessor and control
its operation. Figure 2-2 shows the flag registers of all versions of the
microprocessor. (Note the flags are upward-compatible from the
8086/8088 through the Core2 microprocessors.) The 8086—-80286
contain a FLAG register (16 bits) and the 80386 and above contain an
EFLAG register (32-bit extended flag register). The 64-bit RFLAGS
contain the EFLAG register, which is unchanged in the 64-bit version.

The rightmost five flag bits and the overflow flag change after many arithmetic and logic
instructions execute. The flags never change for any data transfer or program control operation.
Some of the flags are also used to control features found in the microprocessor. Following is a list of
each flag bit, with a brief description of their function. As instructions are introduced in subsequent
chapters, additional detail on the flag bits is provided. The rightmost five flags and the overflow flag
are changed by most arithmetic and logic operations, although data transfers do not affect them.

C (carry)

P (parity)

Carry holds the carry after addition or the borrow after subtraction. The
carry flag also indicates error conditions, as dictated by some programs
and procedures. This is especially true of the DOS function calls.
Parity is a logic O for odd parity and a logic 1 for even parity. Parity is
the count of ones in a number expressed as even or odd. For example,
if a number contains three binary one bits, it has odd parity. If a
number contains no one bits, it has even parity. The parity flag finds
little application in modern programming and was implemented in
early Intel microprocessors for checking data in data communications
environments. Today parity checking is often accomplished by the
data communications equipment instead of the microprocessor.



56

CHAPTER 2

A (auxiliary carry)

7. (zero)

S (sign)

T (trap)

I (interrupt)

D (direction)

O (overflow)

IOPL
(I/O privilege level)

NT (nested task)

RF (resume)

VM (virtual mode)

The auxiliary carry holds the carry (half-carry) after addition or the
borrow after subtraction between bit positions 3 and 4 of the result.
This highly specialized flag bit is tested by the DAA and DAS
instructions to adjust the value of AL after a BCD addition or
subtraction. Otherwise, the A flag bit is not used by the
microprocessor or any other instructions.

The zero flag shows that the result of an arithmetic or logic operation is
zero. If Z = 1, the result is zero; if Z = 0, the result is not zero. This
may be confusing, but that is how Intel decided to name this flag.

The sign flag holds the arithmetic sign of the result after an arithmetic
or logic instruction executes. If S = 1, the sign bit (leftmost bit of a
number) is set or negative; if S = 0, the sign bit is cleared or positive.

The trap flag enables trapping through an on-chip debugging
feature. (A program is debugged to find an error or bug.) If the T
flag is enabled (1), the microprocessor interrupts the flow of the
program on conditions as indicated by the debug registers and
control registers. If the T flag is a logic 0, the trapping (debugging)
feature is disabled. The Visual C++ debugging tool uses the trap
feature and debug registers to debug faulty software.

The interrupt flag controls the operation of the INTR (interrupt
request) input pin. If I = 1, the INTR pin is enabled; if I = 0, the
INTR pin is disabled. The state of the I flag bit is controlled by the
STI (set I flag) and CLI (clear I flag) instructions.

The direction flag selects either the increment or decrement mode
for the DI and/or SI registers during string instructions. If D = 1,
the registers are automatically decremented; if D = 0, the registers
are automatically incremented. The D flag is set with the STD (set
direction) and cleared with the CLD (clear direction) instructions.

Overflows occur when signed numbers are added or subtracted. An
overflow indicates that the result has exceeded the capacity of the
machine. For example, if 7FH (+127) is added—using an 8-bit
addition—to O1H (+1), the result is 8OH (—128). This result represents
an overflow condition indicated by the overflow flag for signed
addition. For unsigned operations, the overflow flag is ignored.

IOPL is used in protected mode operation to select the privilege
level for I/O devices. If the current privilege level is higher or more
trusted than the IOPL, I/O executes without hindrance. If the IOPL
is lower than the current privilege level, an interrupt occurs, causing
execution to suspend. Note that an IOPL of 00 is the highest or most
trusted and an IOPL of 11 is the lowest or least trusted.

The nested task flag indicates that the current task is nested within
another task in protected mode operation. This flag is set when the
task is nested by software.

The resume flag is used with debugging to control the resumption of
execution after the next instruction.

The VM flag bit selects virtual mode operation in a protected mode
system. A virtual mode system allows multiple DOS memory
partitions that are 1M byte in length to coexist in the memory
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AC
(alignment check)

VIF
(virtual interrupt)

VIP (virtual
interrupt pending)

ID (identification)

Segment Registers.

system. Essentially, this allows the system program to execute
multiple DOS programs. VM is used to simulate DOS in the
modern Windows environment.

The alignment check flag bit activates if a word or doubleword is
addressed on a non-word or non-doubleword boundary. Only the
80486SX microprocessor contains the alignment check bit that is
primarily used by its companion numeric coprocessor, the
80487SX, for synchronization.

The VIF is a copy of the interrupt flag bit available to the Pentium—
Pentium 4 microprocessors.

VIP provides information about a virtual mode interrupt for the
Pentium—Pentium 4 microprocessors. This is used in multitasking
environments to provide the operating system with virtual interrupt
flags and interrupt pending information.

The ID flag indicates that the Pentium—Pentium 4 microprocessors
support the CPUID instruction. The CPUID instruction provides the
system with information about the Pentium microprocessor, such as
its version number and manufacturer.

Additional registers, called segment registers, generate memory

addresses when combined with other registers in the microprocessor. There are either
four or six segment registers in various versions of the microprocessor. A segment register func-
tions differently in the real mode when compared to the protected mode operation of the micro-
processor. Details on their function in real and protected mode are provided later in this chapter.
In the 64-bit flat model, segment registers have little use in a program except for the code seg-
ment register. Following is a list of each segment register, along with its function in the system:

CS (code)

DS (data)

ES (extra)

SS (stack)

The code segment is a section of memory that holds the code
(programs and procedures) used by the microprocessor. The code
segment register defines the starting address of the section of memory
holding code. In real mode operation, it defines the start of a 64K-
byte section of memory; in protected mode, it selects a descriptor that
describes the starting address and length of a section of memory
holding code. The code segment is limited to 64K bytes in the
8088-80286, and 4G bytes in the 80386 and above when these
microprocessors operate in the protected mode. In the 64-bit mode,
the code segment register is still used in the flat model, but its use
differs from other programming modes as explained in Section 2-5.

The data segment is a section of memory that contains most data used
by a program. Data are accessed in the data segment by an offset
address or the contents of other registers that hold the offset address.
As with the code segment and other segments, the length is limited to
64K bytes in the 8086-80286, and 4G bytes in the 80386 and above.

The extra segment is an additional data segment that is used by
some of the string instructions to hold destination data.

The stack segment defines the area of memory used for the stack.
The stack entry point is determined by the stack segment and stack
pointer registers. The BP register also addresses data within the
stack segment.
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FS and GS The FS and GS segments are supplemental segment registers available
in the 80386—Core2 microprocessors to allow two additional memory
segments for access by programs. Windows uses these segments for
internal operations, but no definition of their usage is available.

REAL MODE MEMORY ADDRESSING

The 80286 and above operate in either the real or protected mode. Only the 8086 and 8088 operate
exclusively in the real mode. In the 64-bit operation mode of the Pentium 4 and Core2, there is no
real mode operation. This section of the text details the operation of the microprocessor in the real
mode. Real mode operation allows the microprocessor to address only the first 1M byte of memory
space—even if it is the Pentium 4 or Core2 microprocessor. Note that the first IM byte of memory is
called the real memory, conventional memory, or DOS memory system. The DOS operating sys-
tem requires that the microprocessor operates in the real mode. Windows does not use the real mode.
Real mode operation allows application software written for the 8086/8088, which only contains 1M
byte of memory, to function in the 80286 and above without changing the software. The upward
compatibility of software is partially responsible for the continuing success of the Intel family of
microprocessors. In all cases, each of these microprocessors begins operation in the real mode by
default whenever power is applied or the microprocessor is reset. Note that if the Pentium 4 or Core2
operate in the 64-bit mode, it cannot execute real mode applications; hence, DOS applications will
not execute in the 64-bit mode unless a program that emulates DOS is written for the 64-bit mode.

Segments and Offsets

A combination of a segment address and an offset address accesses a memory location in the
real mode. All real mode memory addresses must consist of a segment address plus an offset
address. The segment address, located within one of the segment registers, defines the begin-
ning address of any 64K-byte memory segment. The offset address selects any location within
the 64K byte memory segment. Segments in the real mode always have a length of 64K bytes.
Figure 2-3 shows how the segment plus offset addressing scheme selects a memory location.
This illustration shows a memory segment that begins at location 10000H and ends at location
IFFFFH—64K bytes in length. It also shows how an offset address, sometimes called a
displacement, of FOOOH selects location 1FOOOH in the memory system. Note that the offset
or displacement is the distance above the start of the segment, as shown in Figure 2-3.

The segment register in Figure 2-3 contains 1000H, yet it addresses a starting segment at
location 10000H. In the real mode, each segment register is internally appended with a O0H on its
rightmost end. This forms a 20-bit memory address, allowing it to access the start of a segment.
The microprocessor must generate a 20-bit memory address to access a location within the first
1M of memory. For example, when a segment register contains 1200H, it addresses a 64K-byte
memory segment beginning at location 12000H. Likewise, if a segment register contains 1201H,
it addresses a memory segment beginning at location 12010H. Because of the internally
appended OH, real mode segments can begin only at a 16-byte boundary in the memory system.
This 16-byte boundary is often called a paragraph.

Because a real mode segment of memory is 64K in length, once the beginning address is
known, the ending address is found by adding FFFFH. For example, if a segment register con-
tains 3000H, the first address of the segment is 30000H, and the last address is 30000H + FFFFH
or 3FFFFH. Table 2-2 shows several examples of segment register contents and the starting and
ending addresses of the memory segments selected by each segment address.

The offset address, which is a part of the address, is added to the start of the segment to
address a memory location within the memory segment. For example, if the segment address is
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FIGURE 2-3 The real Real mode memory
mode memory-addressing FFFFF
scheme, using a segment

address plus an offset.

1FFFF

1F000 Offset = FO00

64K-byte
segment
Segment register

10000 . I1000|

00000

1000H and the offset address is 2000H, the microprocessor addresses memory location 12000H.
The offset address is always added to the starting address of the segment to locate the data. The
segment and offset address is sometimes written as 1000:2000 for a segment address of 1000H
with an offset of 2000H.

In the 80286 (with special external circuitry) and the 80386 through the Pentium 4, an extra
64K minus 16 bytes of memory is addressable when the segment address is FFFFH and the
HIMEM.SYS driver for DOS is installed in the system. This area of memory (OFFFFOH-
10FFEFH) is referred to as high memory. When an address is generated using a segment address
of FFFFH, the A20 address pin is enabled (if supported in older systems) when an offset is added.
For example, if the segment address is FFFFH and the offset address is 4000H, the machine
addresses memory location FFFFOH + 4000H or 103FFOH. Notice that the A20 address line is
the one in address 103FFOH. If A20 is not supported, the address is generated as 03FFOH because
A20 remains a logic zero.

Some addressing modes combine more than one register and an offset value to form an
offset address. When this occurs, the sum of these values may exceed FFFFH. For example, the
address accessed in a segment whose segment address is 4000H and whose offset address is
specified as the sum of FOOOH plus 3000H will access memory location 42000H instead of loca-
tion 52000H. When the FOOOH and 3000H are added, they form a 16-bit (modulo 16) sum of
2000H used as the offset address; not 12000H, the true sum. Note that the carry of 1
(FOOOH + 3000H = 12000H) is dropped for this addition to form the offset address of 2000H.
The address is generated as 4000:2000 or 42000H.

TABLE 2-2 Example

of real mode segment Segment Register Starting Address Ending Address
addresses.
2000H 20000H 2FFFFH
2001H 20010H 3000FH
2100H 21000H 30FFFH
ABOOH ABOOOH BAFFFH

1234H 12340H 2233FH
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Default Segment and Offset Registers

The microprocessor has a set of rules that apply to segments whenever memory is addressed.
These rules, which apply in the real and protected mode, define the segment register and off-
set register combination. For example, the code segment register is always used with the
instruction pointer to address the next instruction in a program. This combination is CS:IP or
CS:EIP, depending upon the microprocessor’s mode of operation. The code segment regis-
ter defines the start of the code segment and the instruction pointer locates the next instruction
within the code segment. This combination (CS:IP or CS:EIP) locates the next instruction exe-
cuted by the microprocessor. For example, if CS = 1400H and IP/EIP = 1200H, the micro-
processor fetches its next instruction from memory location 14000H + 1200H or 15200H.

Another of the default combinations is the stack. Stack data are referenced through the
stack segment at the memory location addressed by either the stack pointer (SP/ESP) or the
pointer (BP/EBP). These combinations are referred to as SS:SP (SS:ESP), or SS:BP (SS:EBP).
For example, if SS = 2000H and BP = 3000H, the microprocessor addresses memory location
23000H for the stack segment memory location. Note that in real mode, only the rightmost 16 bits
of the extended register address a location within the memory segment. In the 80386—Pentium 4,
never place a number larger than FFFFH into an offset register if the microprocessor is operated
in the real mode. This causes the system to halt and indicate an addressing error.

Other defaults are shown in Table 2-3 for addressing memory using any Intel micro-
processor with 16-bit registers. Table 2—4 shows the defaults assumed in the 80386 and above
using 32-bit registers. Note that the 80386 and above have a far greater selection of segment/
offset address combinations than do the 8086 through the 80286 microprocessors.

The 8086—80286 microprocessors allow four memory segments and the 80386—Core2
microprocessors allow six memory segments. Figure 2—4 shows a system that contains four mem-
ory segments. Note that a memory segment can touch or even overlap if 64K bytes of memory are
not required for a segment. Think of segments as windows that can be moved over any area of
memory to access data or code. Also note that a program can have more than four or six segments,
but only access four or six segments at a time.

Suppose that an application program requires 1000H bytes of memory for its code, 190H
bytes of memory for its data, and 200H bytes of memory for its stack. This application does not
require an extra segment. When this program is placed in the memory system by DOS, it is loaded in
the TPA at the first available area of memory above the drivers and other TPA program. This area is
indicated by a free-pointer that is maintained by DOS. Program loading is handled automatically by
the program loader located within DOS. Figure 2-5 shows how an application is stored in the
memory system. The segments show an overlap because the amount of data in them does not require
64K bytes of memory. The side view of the segments clearly shows the overlap. It also shows how
segments can be moved over any area of memory by changing the segment starting address.
Fortunately, the DOS program loader calculates and assigns segment starting addresses.

Segment and Offset Addressing Scheme Allows Relocation

The segment and offset addressing scheme seems unduly complicated. It is complicated, but it also
affords an advantage to the system. This complicated scheme of segment plus offset addressing

Segment Offset Special Purpose
CS IP Instruction address
SS SP or BP Stack address
DS BX, DI, Sl, an 8- or 16-bit number Data address

ES DI for string instructions String destination address
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Segment Offset Special Purpose
CS EIP Instruction address
SS ESP or EBP Stack address
DS EAX, EBX, ECX, EDX, ESI, EDI, Data address
an 8- or 32-bit number
ES EDI for string instructions String destination address
FS No default General address
GS No default General address

allows DOS programs to be relocated in the memory system. It also allows programs written to func-
tion in the real mode to operate in a protected mode system. A relocatable
program is one that can be placed into any area of memory and executed without change.
Relocatable data are data that can be placed in any area of memory and used without any change to

FIGURE 2-4 A memory
system showing the place-
ment of four memory
segments.
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the program. The segment and offset addressing scheme allows both programs and data to be relo-
cated without changing a thing in a program or data. This is ideal for use in a general-purpose com-
puter system in which not all machines contain the same memory areas. The personal computer
memory structure is different from machine to machine, requiring relocatable software and data.
Because memory is addressed within a segment by an offset address, the memory seg-
ment can be moved to any place in the memory system without changing any of the offset
addresses. This is accomplished by moving the entire program, as a block, to a new area and
then changing only the contents of the segment registers. If an instruction is 4 bytes above the
start of the segment, its offset address is 4. If the entire program is moved to a new area of mem-
ory, this offset address of 4 still points to 4 bytes above the start of the segment. Only the con-
tents of the segment register must be changed to address the program in the new area of mem-
ory. Without this feature, a program would have to be extensively rewritten or altered before it
is moved. This would require additional time or many versions of a program for the many
different configurations of computer systems. This concept also applies to programs written to
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execute in the protected mode for Windows. In the Windows environment all programs are writ-
ten assuming that the first 2G of memory are available for code and data. When the program is
loaded, it is placed in the actual memory, which may be anywhere and a portion may be located
on the disk in the form of a swap file.

INTRODUCTION TO PROTECTED MODE MEMORY ADDRESSING

Protected mode memory addressing (80286 and above) allows access to data and programs located
above the first IM byte of memory, as well as within the first 1M byte of memory. Protected mode
is where Windows operates. Addressing this extended section of the memory system requires a
change to the segment plus an offset addressing scheme used with real mode memory addressing.
When data and programs are addressed in extended memory, the offset address is still used to
access information located within the memory segment. One difference is that the segment address,
as discussed with real mode memory addressing, is no longer present in the protected mode. In
place of the segment address, the segment register contains a selector that selects a descriptor from
a descriptor table. The descriptor describes the memory segment’s location, length, and access
rights. Because the segment register and offset address still access memory, protected mode
instructions are identical to real mode instructions. In fact, most programs written to function in the
real mode will function without change in the protected mode. The difference between modes is in
the way that the segment register is interpreted by the microprocessor to access the memory seg-
ment. Another difference, in the 80386 and above, is that the offset address can be a 32-bit number
instead of a 16-bit number in the protected mode. A 32-bit offset address allows the microproces-
sor to access data within a segment that can be up to 4G bytes in length. Programs that are written
for the 32-bit protected mode execute in the 64-bit mode of the Pentium 4.

Selectors and Descriptors

The selector, located in the segment register, selects one of 8192 descriptors from one of two
tables of descriptors. The descriptor describes the location, length, and access rights of the seg-
ment of memory. Indirectly, the segment register still selects a memory segment, but not directly
as in the real mode. For example, in the real mode, if CS = 0008H, the code segment begins at
location 00080H. In the protected mode, this segment number can address any memory location
in the entire system for the code segment, as explained shortly.

There are two descriptor tables used with the segment registers: one contains global descrip-
tors and the other contains local descriptors. The global descriptors contain segment definitions
that apply to all programs, whereas the local descriptors are usually unique to an application. You
might call a global descriptor a system descriptor and call a local descriptor an application
descriptor. Each descriptor table contains 8192 descriptors, so a total of 16,384 total descriptors
are available to an application at any time. Because the descriptor describes a memory segment,
this allows up to 16,384 memory segments to be described for each application. Since a memory
segment can be up to 4G bytes in length, this means that an application could have access to
4G X 16,384 bytes of memory or 64T bytes.

Figure 2—6 shows the format of a descriptor for the 80286 through the Core2. Note that
each descriptor is 8 bytes in length, so the global and local descriptor tables are each a maximum
of 64K bytes in length. Descriptors for the 80286 and the 80386—Core2 differ slightly, but the
80286 descriptor is upward-compatible.

The base address portion of the descriptor indicates the starting location of the memory
segment. For the 80286 microprocessor, the base address is a 24-bit address, so segments begin
at any location in its 16M bytes of memory. Note that the paragraph boundary limitation is
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a1 80286 0
0000 0000 0000 0000 Access Rights Base 4
B23 B16
Base Limit 0
B15 BO | L15 LO
Offset
a1 80386—-P4 o
Base G|D|o C Limit Access Rights Base 4
B31 B24 L19  L1§ B23 B16
Base Limit 0
B15 BO | L15 Lo
Offset
a1 64—bit P4 o
0000 0000 G|D|L C 0000 Access Rights 0000 0000 4
0000 0000 0000 0000 0000 0000 0000 0000 0

Offset
FIGURE 2-6 The 80286 through Core2 64-bit descriptors.

removed in these microprocessors when operated in the protected mode so segments may begin
at any address. The 80386 and above use a 32-bit base address that allows segments to begin at
any location in its 4G bytes of memory. Notice how the 80286 descriptor’s base address is
upward-compatible to the 80386 through the Pentium 4 descriptor because its most-significant
16 bits are 0000H. Refer to Chapters 18 and 19 for additional detail on the 64G memory space
provided by the Pentium Pro through the Core?2.

The segment limit contains the last offset address found in a segment. For example, if a segment
begins at memory location FOOOOOH and ends at location FOOOFFH, the base address is FOOOOOH and
the limit is FFH. For the 80286 microprocessor, the base address is FOOOOOH and the limit is 0OOFFH.
For the 80386 and above, the base address is 0OFOO000OH and the limit is 0OOOFFH. Notice that the
80286 has a 16-bit limit and the 80386 through the Pentium 4 have a 20-bit limit. An 80286 can
access memory segments that are between 1 and 64K bytes in length. The 80386 and above access
memory segments that are between 1 and 1M byte, or 4K and 4G bytes in length.

There is another feature found in the 80386 through the Pentium 4 descriptor that is not
found in the 80286 descriptor: the G bit, or granularity bit. If G = 0, the limit specifies a seg-
ment limit of 00000H to FFFFFH. If G = 1, the value of the limit is multiplied by 4K bytes
(appended with FFFH). The limit is then 00000FFFFH to FFFFFFFFH, if G = 1. This allows a
segment length of 4K to 4G bytes in steps of 4K bytes. The reason that the segment length is 64K
bytes in the 80286 is that the offset address is always 16 bits because of its 16-bit internal archi-
tecture. The 80386 and above use a 32-bit architecture that allows an offset address, in the pro-
tected mode operation, of the 32 bits. This 32-bit offset address allows segment lengths of 4G
bytes and the 16-bit offset address allows segment lengths of 64K bytes. Operating systems oper-
ate in a 16- or 32-bit environment. For example, DOS uses a 16-bit environment, while most
Windows applications use a 32-bit environment called WIN32.

In the 64-bit descriptor, the L bit (probably means large, but Intel calls it the 64-bit)
selects 64-bit addresses in a Pentium 4 or Core2 with 64-bit extensions when L = 1 and 32-bit
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compatibility mode when L = 0. In 64-bit protected operation, the code segment register is still
used to select a section of code from the memory. Notice that the 64-bit descriptor has no limit
or base address. It only contains an access rights byte and the control bits. In the 64-bit mode,
there is no segment or limit in the descriptor and the base address of the segment, although not
placed in the descriptor, is 00 0000 0000H. This means that all code segments start at address
zero for 64-bit operation. There are no limit checks for a 64-bit code segment.

Example 2-1 shows the segment start and end if the base address is 10000000H, the limit
is 001FFH, and the G bit = 0.

EXAMPLE 2-1
Base = Start = 10000000H
G=0

End = Base + Limit = 10000000H + 001FFH = 100001FFH

Example 2-2 uses the same data as Example 2-1, except that the G bit = 1. Notice that the
limit is appended with FFFH to determine the ending segment address.

EXAMPLE 2-2
Base = Start = 10000000H
G=1

End = Base + Limit = 10000000H + O01FFFFFH = 101FFFFFH

The AV bit, in the 80386 and above descriptor, is used by some operating systems to indicate
that the segment is available (AV = 1) or not available (AV = 0). The D bit indicates how the
80386 through the Core2 instructions access register and memory data in the protected or real mode.
If D = 0, the instructions are 16-bit instructions, compatible with the 8086—80286 microprocessors.
This means that the instructions use 16-bit offset addresses and 16-bit register by default. This mode
is often called the 16-bit instruction mode or DOS mode. If D = 1, the instructions are 32-bit
instructions. By default, the 32-bit instruction mode assumes that all offset addresses and all registers
are 32 bits. Note that the default for register size and offset address is overridden in both the 16- and
32-bit instruction modes. Both the MSDOS and PCDOS operating systems require that the instruc-
tions are always used in the 16-bit instruction mode. Windows 3.1, and any application that was writ-
ten for it, also requires that the 16-bit instruction mode is selected. Note that the instruction mode is
accessible only in a protected mode system such as Windows Vista. More detail on these modes and
their application to the instruction set appears in Chapters 3 and 4.

The access rights byte (see Figure 2—7) controls access to the protected mode segment.
This byte describes how the segment functions in the system. The access rights byte allows
complete control over the segment. If the segment is a data segment, the direction of growth is
specified. If the segment grows beyond its limit, the microprocessor’s operating system program
is interrupted, indicating a general protection fault. You can even specify whether a data segment
can be written or is write-protected. The code segment is also controlled in a similar fashion and
can have reading inhibited to protect software. Again, note that in 64-bit mode there is only a
code segment and no other segment descriptor types. A 64-bit flat model program contains its
data and stacks in the code segment.

Descriptors are chosen from the descriptor table by the segment register. Figure 2—8 shows
how the segment register functions in the protected mode system. The segment register contains
a 13-bit selector field, a table selector bit, and a requested privilege level field. The 13-bit
selector chooses one of the 8192 descriptors from the descriptor table. The TI bit selects either
the global descriptor table (TT = 0) or the local descriptor table (TT = 1). The requested privi-
lege level (RPL) requests the access privilege level of a memory segment. The highest privilege
level is 00 and the lowest is 11. If the requested privilege level matches or is higher in priority
than the privilege level set by the access rights byte, access is granted. For example, if the
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7 6 5 4 3 2 1 0

P DPL S| E |EDIRW| A
: /C

L A =0 Segment not accessed
A =1 Segment has been accessed

= | E =0 Descriptor describes a data segment
ED = 0 Segment expands upward (data segment)
ED =1 Segment expands downward (stack segment)

W =0 Data may not be written
W =1 Data may be written

E =1 Descriptor describes code segment
C =0 Ignore descriptor privilege level

C =1 Abide by privilege level

R =0 Code segment may not be read

R =1 Code segment may be read

S =0 System descriptor
S =1 Code or data segment descriptor

DLP = Sets the descriptor privilege level

P = 0 Descriptor is undefined
P =1 Segment contains a valid base and limit

Note: Some of the letters used to describe the bits in the access rights bytes vary in Intel documentation.

FIGURE 2-7 The access rights byte for the 80286 through Core2 descriptor.

requested privilege level is 10 and the access rights byte sets the segment privilege level at 11,
access is granted because 10 is higher in priority than privilege level 11. Privilege levels are used
in multiuser environments. Windows uses privilege level 00 (ring 0) for the kernel and driver
programs and level 11 (ring 3) for applications. Windows does not use levels 01 or 10. If privi-
lege levels are violated, the system normally indicates an application or privilege level violation.

Figure 2-9 shows how the segment register, containing a selector, chooses a descriptor from the
global descriptor table. The entry in the global descriptor table selects a segment in the memory sys-
tem. In this illustration, DS contains 0008H, which accesses the descriptor number 1 from the global
descriptor table using a requested privilege level of 00. Descriptor number 1 contains a descriptor that
defines the base address as 00100000H with a segment limit of 000FFH. This means that a value of
0008H loaded into DS causes the microprocessor to use memory locations 00100000H-001000FFH
for the data segment with this example descriptor table. Note that descriptor zero is called the null
descriptor, must contain all zeros, and may not be used for accessing memory.

15 32 10
Selector Tl| RPL
| |

RPL = Requested privilege level where
00 is the highest and 11 is the lowest
Tl =0 Global descriptor table
Tl =1 Local descriptor table
Selects one descriptor from 8192 descriptors

in either the global or the local descriptor table

FIGURE 2-8 The contents of a segment register during protected mode operation of the
80286 through Core2 microprocessors.
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Memory system

FFFFFF
Global descriptor table
N
—
L —~—
—~——~—__ ]
100100
1000FF
00 — Data segment
00
Descriptor 1 9 2
— 100000
OFFFFF
00
DS 00
0008 FF — -
/\_/
N—
000000

FIGURE 2-9 Using the DS register to select a description from the global descriptor table. In this
example, the DS register accesses memory locations 00100000H—-001000FFH as a data segment.

Program-Invisible Registers

The global and local descriptor tables are found in the memory system. In order to access and
specify the address of these tables, the 80286—Core2 contain program-invisible registers. The
program-invisible registers are not directly addressed by software so they are given this name
(although some of these registers are accessed by the system software). Figure 2—10 illustrates
the program-invisible registers as they appear in the 80286 through the Core2. These registers
control the microprocessor when operated in protected mode.

Each of the segment registers contains a program-invisible portion used in the protected
mode. The program-invisible portion of these registers is often called cache memory because
cache is any memory that stores information. This cache is not to be confused with the level 1
or level 2 caches found with the microprocessor. The program-invisible portion of the segment
register is loaded with the base address, limit, and access rights each time the number segment
register is changed. When a new segment number is placed in a segment register, the micro-
processor accesses a descriptor table and loads the descriptor into the program-invisible portion
of the segment register. It is held there and used to access the memory segment until the seg-
ment number is again changed. This allows the microprocessor to repeatedly access a memory
segment without referring to the descriptor table (hence the term cache).

The GDTR (global descriptor table register) and IDTR (interrupt descriptor table reg-
ister) contain the base address of the descriptor table and its limit. The limit of each descriptor
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Segment registers Descriptor cache

Cs Base address Limit Access
DS '
ES
SS
FS
GS

: TR Base address Limit Access
! LDTR

Descriptor table addresses

GDTR Base address Limit o
i Program invisible

IDTR

Notes:
1. The 80286 does not contain FS and GS nor the program-invisible portions of these registers.
2. The 80286 contains a base address that is 24-bits and a limit that is 16-bits.
3. The 80386/80486/Pentium/Pentium Pro contain a base address that is 32-bits and a limit that is 20-bits.
4. The access rights are 8-bits in the 80286 and 12-bits in the 80386/80486/Pentium—Core2.

FIGURE 2-10 The program-invisible register within the 80286—Core2 microprocessors.

table is 16 bits because the maximum table length is 64K bytes. When the protected mode oper-
ation is desired, the address of the global descriptor table and its limit are loaded into the GDTR.

Before using the protected mode, the interrupt descriptor table and the IDTR must also be
initialized. More detail is provided on protected mode operation later in the text. At this point,
programming and additional description of these registers are impossible.

The location of the local descriptor table is selected from the global descriptor table. One of the
global descriptors is set up to address the local descriptor table. To access the local descriptor table,
the LDTR (local descriptor table register) is loaded with a selector, just as a segment register is
loaded with a selector. This selector accesses the global descriptor table and loads the address, limit,
and access rights of the local descriptor table into the cache portion of the LDTR.

The TR (task register) holds a selector, which accesses a descriptor that defines a task. A task
is most often a procedure or application program. The descriptor for the procedure or application
program is stored in the global descriptor table, so access can be controlled through the privilege
levels. The task register allows a context or task switch in about 17 us. Task switching allows the
microprocessor to switch between tasks in a fairly short amount of time. The task switch allows
multitasking systems to switch from one task to another in a simple and orderly fashion.

2-4

MEMORY PAGING

The memory paging mechanism located within the 80386 and above allows any physical memory
location to be assigned to any linear address. The linear address is defined as the address gener-
ated by a program. The physical address is the actual memory location accessed by a program.
With the memory paging unit, the linear address is invisibly translated to any physical address,
which allows an application written to function at a specific address to be relocated through the
paging mechanism. It also allows memory to be placed into areas where no memory exists. An
example is the upper memory blocks provided by EMM386.EXE in a DOS system.
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The EMM386.EXE program reassigns extended memory, in 4K blocks, to the system
memory between the video BIOS and the system BIOS ROMS for upper memory blocks.
Without the paging mechanism, the use of this area of memory is impossible.

In Windows, each application is allowed a 2G linear address space from location
00000000H-7FFFFFFFH even though there may not be enough memory or memory available at
these addresses. Through paging to the hard disk drive and paging to the memory through the
memory paging unit, any Windows application can be executed.

Paging Registers

The paging unit is controlled by the contents of the microprocessor’s control registers. See Figure
2-11 for the contents of control registers CRO through CR4. Note that these registers are available to
the 80386 through the Core2 microprocessors. Beginning with the Pentium, an additional control
register labeled CR4 controls extensions to the basic architecture provided in the Pentium or newer
microprocessor. One of these features is a 2M- or a 4M-byte page that is enabled by controlling CR4.

The registers important to the paging unit are CR0 and CR3. The leftmost bit (PG) position
of CRO selects paging when placed at a logic 1 level. If the PG bit is cleared (0), the linear
address generated by the program becomes the physical address used to access memory. If the
PG bit is set (1), the linear address is converted to a physical address through the paging mecha-
nism. The paging mechanism functions in both the real and protected modes.

CR3 contains the page directory base or root address, and the PCD and PWT bits. The PCD
and PWT bits control the operation of the PCD and PWT pins on the microprocessor. If PCD is set
(1), the PCD pin becomes a logic one during bus cycles that are not paged. This allows the exter-
nal hardware to control the level 2 cache memory. (Note that the level 2 cache memory is an inter-
nal [on modern versions of the Pentium] high-speed memory that functions as a buffer between
the microprocessor and the main DRAM memory system.) The PWT bit also appears on the PWT
pin during bus cycles that are not paged to control the write-through cache in the system. The page
directory base address locates the directory for the page translation unit. Note that this address
locates the page directory at any 4K boundary in the memory system because it is appended inter-
nally with 000H. The page directory contains 1024 directory entries of 4 bytes each. Each page
directory entry addresses a page table that contains 1024 entries.

) N o
M| [P|D|T|P|V
C s|e|s|v|M| CR4 Pentium, Pentium Pro,
E E Dl |E Pentium I, Pentium I,
Pentium 4 and Core2.
PP
Page directory base address C|w CRS3
DIT
Page fault linear address CR2
Reserved CR1
P|CIN Al W N|E|T|E|M|P
G|pjw VI E[T|s|m|P|E[ CRO
[e2) ©
FIGURE 2—-11 The control register structure of the microprocessor.
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Directory Page table Offset

(a)

31
12

6543210

D|A|P|P|U|W|P
Address ClW

DIT

L—» Present
L= Writable
—— User defined
— > Write-through
—— > Cache disable

—— Accessed

(b) Dirty (0 in page directory)

FIGURE 2-12 The format for the linear address (a) and a page directory or page table entry (b).

The linear address, as it is generated by the software, is broken into three sections that are
used to access the page directory entry, page table entry, and memory page offset address.
Figure 2—12 shows the linear address and its makeup for paging. Notice how the leftmost 10 bits
address an entry in the page directory. For linear address 00000000H-003FFFFFH, the first page
directory is accessed. Each page directory entry represents or repages a 4M section of the memory
system. The contents of the page directory select a page table that is indexed by the next 10 bits of
the linear address (bit positions 12-21). This means that address 00000000H-00000FFFH selects
page directory entry of O and page table entry of 0. Notice this is a 4K-byte address range. The off-
set part of the linear address (bit positions 0—11) next selects a byte in the 4K-byte memory page.
In Figure 2—-12, if the page table entry O contains address 00100000H, then the physical address is
00100000H-00100FFFH for linear address 00000000H-00000FFFH. This means that when the
program accesses a location between 00000000H and 00000FFFH, the microprocessor physically
addresses location 00100000H-00100FFFH.

Because the act of repaging a 4K-byte section of memory requires access to the page direc-
tory and a page table, which are both located in memory, Intel has incorporated a special type of
cache called the TLB (translation look-aside buffer). In the 80486 microprocessor, the cache
holds the 32 most recent page translation addresses. This means that the last 32 page table trans-
lations are stored in the TLB, so if the same area of memory is accessed, the address is already
present in the TLB, and access to the page directory and page tables is not required. This speeds
program execution. If a translation is not in the TLB, the page directory and page table must be
accessed, which requires additional execution time. The Pentium—Pentium 4 microprocessors
contain separate TLBs for each of their instruction and data caches.

The Page Directory and Page Table

Figure 2—-13 shows the page directory, a few page tables, and some memory pages. There is only
one page directory in the system. The page directory contains 1024 doubleword addresses that
locate up to 1024 page tables. The page directory and each page table are 4K bytes in length. If
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FIGURE 2-13 The paging mechanism in the 80386 through Core2 microprocessors.

FIGURE 2-14 The page
directory, page table 0, and
two memory pages. Note
how the address of page
000C8000-000C9000 has
been moved to
00110000-00110FFF.
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the entire 4G byte of memory is paged, the system must allocate 4K bytes of memory for the
page directory, and 4K times 1024 or 4M bytes for the 1024 page tables. This represents a con-
siderable investment in memory resources.

The DOS system and EMM386.EXE use page tables to redefine the area of memory
between locations C8000H-EFFFFH as upper memory blocks. This is done by repaging
extended memory to backfill this part of the conventional memory system to allow DOS access
to additional memory. Suppose that the EMM386.EXE program allows access to 16M bytes of
extended and conventional memory through paging and locations C8000H-EFFFFH must be
repaged to locations 110000—138000H, with all other areas of memory paged to their normal
locations. Such a scheme is depicted in Figure 2—14.

Here, the page directory contains four entries. Recall that each entry in the page directory
corresponds to 4M bytes of physical memory. The system also contains four page tables with
1024 entries each. Recall that each entry in the page table repages 4K bytes of physical memory.
This scheme requires a total of 16K of memory for the four page tables and 16 bytes of memory
for the page directory.

As with DOS, the Windows program also repages the memory system. At present, Windows
version 3.11 supports paging for only 16M bytes of memory because of the amount of memory
required to store the page tables. Newer versions of Windows repage the entire memory system.
On the Pentium—Core2 microprocessors, pages can be 4K, 2M, or 4M bytes in length. In the 2M
and 4M variations, there is only a page directory and a memory page, but no page table.

FLAT MODE MEMORY

The memory system in a Pentium-based computer (Pentium 4 or Core2) that uses the 64-bit exten-
sions uses a flat mode memory system. A flat mode memory system is one in which there is no seg-
mentation. The address of the first byte in the memory is at 00 0000 0000H and the last location is
at FF FFFF FFFFH (address is 40-bits). The flat model does not use a segment register to address a
location in the memory. The CS segment register is used to select a descriptor from the descriptor
table that defines the access rights of only a code segment. The segment register still selects the
privilege level of the software. The flat model does not select the memory address of a segment
using the base and limit in the descriptor (see Figure 2—6). In 64-bit mode the actual address is not
modified by the descriptor as in 32-bit protected mode. The offset address is the actual physical
address in 64-bit mode. Refer to Figure 2—15 for the flat mode memory model.

This form of addressing is much easier to understand, but offers little protection to the sys-
tem, through the hardware, as did the protected mode system discussed in Section 2.3. The real
mode system is not available if the processor operates in the 64-bit mode. Protection and paging
are allowed in the 64-bit mode. The CS register is still used in the protected mode operation in
the 64-bit mode.

In the 64-bit mode if set to IA32 compatibility (when the L bit —0 is in the descriptor), an
address is 64-bits, but since only 40 bits of the address are brought out to the address pins, any
address above 40 bits is truncated. Instructions that use a displacement address can only use a 32-
bit displacement, which allows a range of £2G from the current instruction. This addressing
mode is called RIP relative addressing, and is explained in Chapter 3. The move immediate
instruction allows a full 64-bit address and access to any flat mode memory location. Other
instructions do not allow access to a location above 4G because the offset address is still 32-bits.

If the Pentium is operated in the full 64-bit mode (where the L = 1 in the descriptor), the
address may be 64-bits or 32-bits. This is shown in examples in the next chapter with addressing
modes and in more detail in Chapter 4. Most programs today are operated in the IA32 compati-
ble mode so current versions of Windows software operates properly, but this will change in a



THE MICROPROCESSOR AND ITS ARCHITECTURE 73

FIGURE 2-15 The 64-bit FFFFFFFFFF

flat mode memory model.

Linear Address

00000F0000 00000F0000

0000000000

few years as memory becomes larger and most people have 64-bit computers. This is another
example of how the industry makes the software obsolete as the hardware changes.

2-6 SUMMARY

1.

The programming model of the 8086 through 80286 contains 8- and 16-bit registers. The
programming model of the 80386 and above contains 8-, 16-, and 32-bit extended registers
as well as two additional 16-bit segment registers: FS and GS.

. The 8-bit registers are AH, AL, BH, BL, CH, CL, DH, and DL. The 16-bit registers are AX,

BX, CX, DX, SP, BP, DI, and SI. The segment registers are CS, DS, ES, SS, FS, and GS. The
32-bit extended registers are EAX, EBX, ECX, EDX, ESP, EBP, EDI, and ESI. The 64-bit
registers in a Pentium 4 with 64-bit extensions are RAX, RBX, RCX, RDX, RSP, RBP, RDI,
RSI, and R8 through R15. In addition, the microprocessor contains an instruction pointer
(IP/EIP/RIP) and flag register (FLAGS, EFLAGS, or RFLAGS).

. All real mode memory addresses are a combination of a segment address plus an offset

address. The starting location of a segment is defined by the 16-bit number in the segment
register that is appended with a hexadecimal zero at its rightmost end. The offset address is
a 16-bit number added to the 20-bit segment address to form the real mode memory address.
All instructions (code) are accessed by the combination of CS (segment address) plus IP or
EIP (offset address).

. Data are normally referenced through a combination of the DS (data segment) and either an

offset address or the contents of a register that contains the offset address. The 8086—Core2
use BX, DI, and SI as default offset registers for data if 16-bit registers are selected. The
80386 and above can use the 32-bit registers EAX, EBX, ECX, EDX, EDI, and ESI as
default offset registers for data.
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6.

10.

11.

12.

13.

Protected mode operation allows memory above the first 1M byte to be accessed by the
80286 through the Core2 microprocessors. This extended memory system (XMS) is
accessed via a segment address plus an offset address, just as in the real mode. The differ-
ence is that the segment address is not held in the segment register. In the protected mode,
the segment starting address is stored in a descriptor that is selected by the segment register.
A protected mode descriptor contains a base address, limit, and access rights byte. The base
address locates the starting address of the memory segment; the limit defines the last location of
the segment. The access rights byte defines how the memory segment is accessed via a program.
The 80286 microprocessor allows a memory segment to start at any of its 16M bytes of memory
using a 24-bit base address. The 80386 and above allow a memory segment to begin at any of its
4G bytes of memory using a 32-bit base address. The limit is a 16-bit number in the 80286 and a
20-bit number in the 80386 and above. This allows an 80286 memory segment limit of 64K
bytes, and an 80386 and above memory segment limit of either IM bytes (G = 0) or 4G bytes
(G = 1). The L bit selects 64-bit address operation in the code descriptor.

. The segment register contains three fields of information in the protected mode. The left-

most 13 bits of the segment register address one of 8192 descriptors from a descriptor table.
The TI bit accesses either the global descriptor table (TI = 0) or the local descriptor table
(TT = 1). The rightmost 2 bits of the segment register select the requested priority level for
the memory segment access.

. The program-invisible registers are used by the 80286 and above to access the descriptor

tables. Each segment register contains a cache portion that is used in protected mode to hold
the base address, limit, and access rights acquired from a descriptor. The cache allows the
microprocessor to access the memory segment without again referring to the descriptor table
until the segment register’s contents are changed.

A memory page is 4K bytes in length. The linear address, as generated by a program, can be
mapped to any physical address through the paging mechanism found within the 80386
through the Pentium 4 microprocessor.

Memory paging is accomplished through control registers CR0O and CR3. The PG bit of CRO
enables paging, and the contents of CR3 addresses the page directory. The page directory
contains up to 1024 page table addresses that are used to access paging tables. The page
table contains 1024 entries that locate the physical address of a 4K-byte memory page.

The TLB (translation look-aside buffer) caches the 32 most recent page table translations.
This precludes page table translation if the translation resides in the TLB, speeding the exe-
cution of the software.

The flat mode memory contains 1T byte of memory using a 40-bit address. In the future, Intel
plans to increase the address width to 52 bits to access 4P bytes of memory. The flat mode is
only available in the Pentium 4 and Core2 that have their 64-bit extensions enabled.

QUESTIONS AND PROBLEMS

WA s W=

What are program-visible registers?

The 80286 addresses registers that are 8 and bits wide.
The extended registers are addressable by which microprocessors?
The extended BX register is addressed as

Which register holds a count for some instructions?

What is the purpose of the IP/EIP register?

The carry flag bit is not modified by which arithmetic operations?
Will an overflow occur if a signed FFH is added to a signed 01H?
A number that contains 3 one bits is said to have parity.
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10.
11.
12.
13.

14.

15.
16.

17.

18.

19.
20.

21.

22.
23.
24.
25.
26.
217.

28.

Which flag bit controls the INTR pin on the microprocessor?

Which microprocessors contain an FS segment register?

What is the purpose of a segment register in the real mode operation of the microprocessor?

In the real mode, show the starting and ending addresses of each segment located by the fol-

lowing segment register values:

(a) 1000H

(b) 1234H

(c) 2300H

(d) EOOOH

(e) ABOOH

Find the memory address of the next instruction executed by the microprocessor, when oper-

ated in the real mode, for the following CS:IP combinations:

(a) CS = 1000H and IP = 2000H

(b) CS = 2000H and IP = 1000H

(c) CS = 2300H and IP = 1A00H

(d) CS = 1AO00H and IP = BOOOH

(e) CS = 3456H and IP = ABCDH

Real mode memory addresses allow access to memory below which memory address?

Which register or registers are used as an offset address for the string instruction destination

in the microprocessor?

Which 32-bit register or registers are used to hold an offset address for data segment data in

the Pentium 4 microprocessor?

The stack memory is addressed by a combination of the
offset.

If the base pointer (BP) addresses memory, the segment contains the data.

Determine the memory location addressed by the following real mode 80286 register

combinations:

(a) DS = 1000H and DI = 2000H

(b) DS = 2000H and SI = 1002H

(c) SS = 2300H and BP = 3200H

(d) DS = AOOOH and BX = 1000H

(e) SS = 2900H and SP = 3A00H

Determine the memory location addressed by the following real mode Core2 register

combinations:

(a) DS = 2000H and EAX = 00003000H

(b) DS = 1A00H and ECX = 00002000H

(¢) DS = COOOH and ESI = 0000A000H

(d) SS = 8000H and ESP = 00009000H

(e) DS = 1239H and EDX = 0000A900H

Protected mode memory addressing allows access to which area of the memory in the 80286

microprocessor?

Protected mode memory addressing allows access to which area of the memory in the

Pentium 4 microprocessor?

What is the purpose of the segment register in protected mode memory addressing?

How many descriptors are accessible in the global descriptor table in the protected mode?

For an 80286 descriptor that contains a base address of AOOOOOH and a limit of 1000H, what

starting and ending locations are addressed by this descriptor?

For a Core2 descriptor that contains a base address of 01000000H, a limit of OFFFFH, and

G = 0, what starting and ending locations are addressed by this descriptor?

For a Core2 descriptor that contains a base address of 00280000H, a limit of 00010H, and

G = 1, what starting and ending locations are addressed by this descriptor?

segment plus
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29.

30.
31.

32.
33.

34.

35.
36.
37.

38.
39.
40.
41.

42.
43.
44.
45.

46.
47.

48.

49.
50.

If the DS register contains 0020H in a protected mode system, which global descriptor table
entry is accessed?

If DS = 0103H in a protected mode system, the requested privilege level is

If DS = 0105H in a protected mode system, which entry, table, and requested pr1v1lege
level are selected?

What is the maximum length of the global descriptor table in the Pentium 4 microprocessor?
Code a descriptor that describes a memory segment that begins at location 210000H and
ends at location 21001FH. This memory segment is a code segment that can be read. The
descriptor is for an 80286 microprocessor.

Code a descriptor that describes a memory segment that begins at location 03000000H and
ends at location OSFFFFFFH. This memory segment is a data segment that grows upward in
the memory system and can be written. The descriptor is for a Pentium 4 microprocessor.
Which register locates the global descriptor table?

How is the local descriptor table addressed in the memory system?

Describe what happens when a new number is loaded into a segment register when the
microprocessor is operated in the protected mode.

What are the program-invisible registers?

What is the purpose of the GDTR?

How many bytes are found in a memory page?

What register is used to enable the paging mechanism in the 80386, 80486, Pentium,
Pentium Pro, Pentium 4, and Core2 microprocessors?

How many 32-bit addresses are stored in the page directory?

Each entry in the page directory translates how much linear memory into physical memory?
If the microprocessor sends linear address 00200000H to the paging mechanism, which pag-
ing directory entry is accessed, and which page table entry is accessed?

What value is placed in the page table to redirect linear address 20000000H to physical
address 30000000H?

What is the purpose of the TLB located within the Pentium class microprocessor?

Using the Internet, write a short report that details the TLB. Hint: You might want to go to
the Intel Web site and search for information.

Locate articles about paging on the Internet and write a report detailing how paging is used
in a variety of systems.

What is the flat mode memory system?

A flat mode memory system in the current version of the 64-bit Pentium 4 and Core?2 allow
these microprocessors to access bytes of memory.



CHAPTER 3
Addressing Modes

INTRODUCTION

Efficient software development for the microprocessor requires a complete familiarity with
the addressing modes employed by each instruction. In this chapter, the MOV (move data)
instruction is used to describe the data-addressing modes. The MOV instruction transfers bytes
or words of data between two registers or between registers and memory in the 8086 through
the 80286. Bytes, words, or doublewords are transferred in the 80386 and above by a MOV.

In describing the program memory-addressing modes, the CALL and JUMP instructions

show how to modify the flow of the program.

The data-addressing modes include register, immediate, direct, register indirect, base-
plus index, register-relative, and base relative-plus-index in the 8086 through the 80286 micro-
processor. The 80386 and above also include a scaled-index mode of addressing memory data.
The program memory-addressing modes include program relative, direct, and indirect. This
chapter explains the operation of the stack memory so that the PUSH and POP instructions and
other stack operations will be understood.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

1. Explain the operation of each data-addressing mode.

2. Use the data-addressing modes to form assembly language statements.

3. Explain the operation of each program memory-addressing mode.

4. Use the program memory-addressing modes to form assembly and machine language

statements.

Select the appropriate addressing mode to accomplish a given task.

6. Detail the difference between addressing memory data using real mode and protected mode
operation.

7. Describe the sequence of events that place data onto the stack or remove data from the
stack.

8. Explain how a data structure is placed in memory and used with software.

e

7”7
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DATA-ADDRESSING MODES

Because the MOV instruction is a very common and flexible instruction, it provides a basis for
the explanation of the data-addressing modes. Figure 3—1 illustrates the MOV instruction and
defines the direction of data flow. The source is to the right and the destination is to the left, next
to the opcode MOV. (An opcode, or operation code, tells the microprocessor which operation to
perform.) This direction of flow, which is applied to all instructions, is awkward at first. We nat-
urally assume that things move from left to right, whereas here they move from right to left.
Notice that a comma always separates the destination from the source in an instruction. Also,
note that memory-to-memory transfers are not allowed by any instruction except for the MOVS
instruction.

In Figure 3-1, the MOV AX, BX instruction transfers the word contents of the source reg-
ister (BX) into the destination register (AX). The source never changes, but the destination
always changes.! It is crucial to remember that a MOV instruction always copies the source data
into the destination. The MOV never actually picks up the data and moves it. Also, note the flag
register remains unaffected by most data transfer instructions. The source and destination are
often called operands.

Figure 3-2 shows all possible variations of the data-addressing modes using the MOV
instruction. This illustration helps to show how each data-addressing mode is formulated with
the MOV instruction and also serves as a reference on data-addressing modes. Note that these are
the same data-addressing modes found with all versions of the Intel microprocessor, except for
the scaled-index-addressing mode, which is found only in the 80386 through the Core2. The RIP
relative addressing mode is not illustrated and is only available on the Pentium 4 and the Core2
when operated in the 64-bit mode. The data-addressing modes are as follows:

Register Register addressing transfers a copy of a byte or word from the source

addressing register or contents of a memory location to the destination register or
memory location. (Example: The MOV CX, DX instruction copies the
word-sized contents of register DX into register CX.) In the 80386 and
above, a doubleword can be transferred from the source register or
memory location to the destination register or memory location.
(Example: The MOV ECX, EDX instruction copies the doubleword-
sized contents of register EDX into register ECX.) In the Pentium 4
operated in the 64-bit mode, any 64-bit register is also allowed. An
example is the MOV RDX, RCX instruction that transfers a copy of the
quadword contents of register RCX into register RDX.

Immediate Immediate addressing transfers the source, an immediate byte, word,

addressing doubleword, or quadword of data, into the destination register or
memory location. (Example: The MOV AL, 22H instruction copies a
byte-sized 22H into register AL.) In the 80386 and above, a
doubleword of immediate data can be transferred into a register or

FIGURE 3-1 The MOV

instruction showing the source, MOV AX,BX
destination, and direction of
data flow. T
o Source
Destination

IThe exceptions are the CMP and TEST instructions, which never change the destination. These instructions are
described in later chapters.
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Type Instruction

Register MOV AX,BX
Immediate MOV CH,3AH
Direct MOV [1234H],AX

Register indirect MOV [BX],CL

Base-plus-index MOV [BX+SI],BP

Register relative

MOV CL,[BX+4]

Base relative-plus-index

MOV ARRAY[BX+SI],DX

Scaled index MOV [EBX+2 x ESI],AX

Source

Address Generation

Register
BX

Destination

Data
3AH

Register
AX

Register
AX

= DSx1OH+DISP

10000H + 1234H

Register
CL

DSx10H+BX

10000H + 0300H

Register
SP

DS x 10H + BX + Sl
10000H + 0300H + 0200H

e —_—

Memory
address
10304H

» DSx10H+BX +4 ,

10000H + 0300H + 4

Register
DX

| . DSx10H+ ARRAY +BX + Sl

10000H + 1000H + 0300H + 0200H

Register
AX

DS x 10H + EBX + 2 x ESI

10000H + 00000300H + 00000400H

Notes: EBX = 00000300H, ESI = 00000200H, ARRAY = 1000H, and DS = 1000H

FIGURE 3-2 8086—Core2 data-addressing modes.

Register
CH

Memory
address
11234H

Memory
address
10300H

Memory
address
10500H

Register
CL

Memory
address
11500H

Memory
address
10700H
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Direct
addressing

Register indirect
addressing

Base-plus-index
addressing

Register relative
addressing

memory location. (Example: The MOV EBX, 12345678H instruction
copies a doubleword-sized 12345678H into the 32-bit-wide EBX
register.) In 64-bit operation of the Pentium 4 or Core2, only a MOV
immediate instruction allows access to any location in the memory
using a 64-bit linear address.

Direct addressing moves a byte or word between a memory location
and a register. The instruction set does not support a memory-to-
memory transfer, except with the MOVS instruction. (Example: The
MOV CX, LIST instruction copies the word-sized contents of
memory location LIST into register CX.) In the 80386 and above, a
doubleword-sized memory location can also be addressed. (Example:
The MOV ESI, LIST instruction copies a 32-bit number, stored in
four consecutive bytes of memory, from location LIST into register
ESI.) The direct memory instructions in the 64-bit mode use a full
64-bit linear address.

Register indirect addressing transfers a byte or word between a
register and a memory location addressed by an index or base register.
The index and base registers are BP, BX, DI, and S1. (Example: The
MOV AX, [BX] instruction copies the word-sized data from the data
segment offset address indexed by BX into register AX.) In the 80386
and above, a byte, word, or doubleword is transferred between a
register and a memory location addressed by any register: EAX, EBX,
ECX, EDX, EBP, EDI, or ESI. (Example: The MOV AL, [ECX]
instruction loads AL from the data segment offset address selected by
the contents of ECX.) In 64-bit mode, the indirect address remains 32
bits in size, which means this form of addressing at present only allows
access to 4G bytes of address space if the program operates in the 32-
bit compatible mode. In the full 64-bit mode, any address is accessed
using either a 64-bit address or the address contained in a register.

Base-plus-index addressing transfers a byte or word between a
register and the memory location addressed by a base register (BP or
BX) plus an index register (DI or SI). (Example: The MOV [BX+DI],
CL instruction copies the byte-sized contents of register CL into the
data segment memory location addressed by BX plus DI.) In the
80386 and above, any two registers (EAX, EBX, ECX, EDX, EBP,
EDI, or ESI) may be combined to generate the memory address.
(Example: The MOV [EAX+EBX], CL instruction copies the byte-
sized contents of register CL into the data segment memory location
addressed by EAX plus EBX.)

Register relative addressing moves a byte or word between a register
and the memory location addressed by an index or base register plus a
displacement. (Example: MOV AX,[BX+4] or MOV AX,ARRAY[BX].
The first instruction loads AX from the data segment address formed by
BX plus 4. The second instruction loads AX from the data segment
memory location in ARRAY plus the contents of BX.) The 80386 and
above use any 32-bit register except ESP to address memory. (Example:
MOV AX,[ECX+4] or MOV AX,ARRAY[EBX]. The first instruction
loads AX from the data segment address formed by ECX plus 4. The
second instruction loads AX from the data segment memory location
ARRAY plus the contents of EBX.)
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Base relative-plus-  Base relative-plus-index addressing transfers a byte or word between a

index addressing register and the memory location addressed by a base and an index
register plus a displacement. (Example: MOV AX, ARRAY[BX+DI]
or MOV AX, [BX+DI+4]. These instructions load AX from a data
segment memory location. The first instruction uses an address formed
by adding ARRAY, BX, and DI and the second by adding BX, DI, and
4.) In the 80386 and above, MOV EAX, ARRAY[EBX+ECX] loads
EAX from the data segment memory location accessed by the sum of
ARRAY, EBX, and ECX.

Scaled-index Scaled-index addressing is available only in the 80386 through the

addressing Pentium 4 microprocessor. The second register of a pair of registers is
modified by the scale factor of 2%, 4, or 8x to generate the operand
memory address. (Example: A MOV EDX, [EAX+4*EBX] instruction
loads EDX from the data segment memory location addressed by EAX
plus four times EBX.) Scaling allows access to word (2x), doubleword
(4x), or quadword (8x) memory array data. Note that a scaling factor
of 1X also exists, but it is normally implied and does not appear
explicitly in the instruction. The MOV AL, [EBX+ECX] is an example
in which the scaling factor is a one. Alternately, the instruction can be
rewritten as MOV AL, [EBX+ I*ECX]. Another example is a MOV
AL, [2*EBX] instruction, which uses only one scaled register to
address memory.

RIP relative This addressing mode is only available to the 64-bit extensions on the

addressing Pentium 4 or Core2. This mode allows access to any location in the
memory system by adding a 32-bit displacement to the 64-bit contents
of the 64-bit instruction pointer. For example, if RIP = 1000000000H
and a 32-bit displacement is 300H, the location accessed is 1000000300H.
The displacement is signed so data located within +2G from the
instruction is accessible by this addressing mode.

Register Addressing

Register addressing is the most common form of data addressing and, once the register names are
learned, is the easiest to apply. The microprocessor contains the following 8-bit register names
used with register addressing: AH, AL, BH, BL, CH, CL, DH, and DL. Also present are the fol-
lowing 16-bit register names: AX, BX, CX, DX, SP, BP, SI, and DI. In the 80386 and above, the
extended 32-bit register names are: EAX, EBX, ECX, EDX, ESP, EBP, EDI, and ESI. In the 64-
bit mode of the Pentium 4, the register names are: RAX, RBX, RCX, RDX, RSP, RBP, RDI, RSI,
and R8 through R15. With register addressing, some MOV instructions and the PUSH and POP
instructions also use the 16-bit segment register names (CS, ES, DS, SS, FS, and GS). It is
important for instructions to use registers that are the same size. Never mix an 8-bit register with
a 16-bit register, an 8-bit register with a 32-bit register, or a 16-bit register with a 32-bit register
because this is not allowed by the microprocessor and results in an error when assembled.
Likewise never mix 64-bit registers with any other size register. This is even true when a MOV
AX, AL (MOV EAX, AL) instruction may seem to make sense. Of course, the MOV AX, AL or
MOV EAX, AL instructions are not allowed because the registers are of different sizes. Note that
a few instructions, such as SHL DX, CL, are exceptions to this rule, as indicated in later chapters.
It is also important to note that none of the MOV instructions affect the flag bits. The flag bits are
normally modified by arithmetic or logic instructions.

Table 3—1 shows many variations of register move instructions. It is impossible to show all
combinations because there are too many. For example, just the 8-bit subset of the MOV instruction
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TABLE 3-1 Examples

CHAPTER 3

of register-addressed Assembly Language Size Operation
instructions.

MOV AL,BL 8 bits Copies BL into AL

MOV CH,CL 8 bits Copies CL into CH

MOV R8B,CL 8 bits Copies CL to the byte portion of R8 (64-bit mode)

MOV R8B,CH 8 bits Not allowed

MOV AX,CX 16 bits Copies CX into AX

MOV SP,BP 16 bits Copies BP into SP

MOV DS,AX 16 bits Copies AX into DS

MOV BP,R10W 16 bits Copies R10 into BP (64-bit mode)

MOV SI,DI 16 bits Copies Dl into SI

MOV BX,ES 16 bits Copies ES into BX

MOV ECX,EBX 32 bits Copies EBX into ECX

MOV ESPEDX 32 bits Copies EDX into ESP

MOV EDX,R9D 32 bits Copies R9 into EDX (64-bit mode)

MOV RAX,RDX 64 bits Copies RDX into RAX

MOV DS,CX 16 bits Copies CX into DS

MOV ES,DS — Not allowed (segment-to-segment)

MOQV BL,DX — Not allowed (mixed sizes)

MOV CS,AX — Not allowed (the code segment register may not

be the destination register)

has 64 different variations. A segment-to-segment register MOV instruction is about the only
type of register MOV instruction not allowed. Note that the code segment register is not normally
changed by a MOV instruction because the address of the next instruction is found by both
IP/EIP and CS. If only CS were changed, the address of the next instruction would be unpre-
dictable. Therefore, changing the CS register with a MOV instruction is not allowed.

Figure 3-3 shows the operation of the MOV BX, CX instruction. Note that the source reg-
ister’s contents do not change, but the destination register’s contents do change. This instruction
moves (copies) a 1234H from register CX into register BX. This erases the old contents
(76 AFH) of register BX, but the contents of CX remain unchanged. The contents of the desti-
nation register or destination memory location change for all instructions except the CMP and
TEST instructions. Note that the MOV BX, CX instruction does not affect the leftmost 16 bits
of register EBX.

FIGURE 3-3 The effect Register array

of executing the MOV BX,

CX instruction at the point EAX
just before the BX register

changes. Note that only the
rightmost 16 bits of register EBX

EBX change.

ECX 11AC 1 2 3 4 1 234
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Example 3—1 shows a sequence of assembled instructions that copy various data between
8-, 16-, and 32-bit registers. As mentioned, the act of moving data from one register to another
changes only the destination register, never the source. The last instruction in this example
(MOV CS,AX) assembles without error, but causes problems if executed. If only the contents of
CS change without changing IP, the next step in the program is unknown and therefore causes the
program to go awry.

EXAMPLE 3-1

0000 8B C3 MOV AX, BX ;copy contents of BX into AX
0002 8A CE MOV CL,DH ;copy contents of DH into CL
0004 8A CD MOV CL,CH ;copy contents of CH into CL
0006 66|8B C3 MOV EAX,EBX ;copy contents of EBX into EAX
0009 66|8B D8 MOV EBX,EAX ;copy contents of EAX into EBX
oo0o0cC 66|8B Cc8 MOV ECX,EAX ;copy contents of EAX into ECX
000F 66|8B DO MOV EDX,EAX ;copy contents of EAX into EDX
0012 8C C8 MOV AX,CS ;copy CS into DS (two steps)
0014 8E D8 MOV DS, AX

0016 8E C8 MOV CS,AX ;copy AX into CS (causes problems)

Immediate Addressing

Another data-addressing mode is immediate addressing. The term immediate implies that the
data immediately follow the hexadecimal opcode in the memory. Also note that immediate data
are constant data, whereas the data transferred from a register or memory location are variable
data. Immediate addressing operates upon a byte or word of data. In the 80386 through the
Core2 microprocessors, immediate addressing also operates on doubleword data. The MOV
immediate instruction transfers a copy of the immediate data into a register or a memory loca-
tion. Figure 3—4 shows the operation of a MOV EAX,13456H instruction. This instruction
copies the 13456H from the instruction, located in the memory immediately following the
hexadecimal opcode, into register EAX. As with the MOV instruction illustrated in Figure 3-3,
the source data overwrites the destination data.

In symbolic assembly language, the symbol # precedes immediate data in some assemblers.
The MOV AX,#3456H instruction is an example. Most assemblers do not use the # symbol, but
represent immediate data as in the MOV AX,3456H instruction. In this text, the # symbol is not
used for immediate data. The most common assemblers—Intel ASM, Microsoft MASM,2 and
Borland TASM3—do not use the # symbol for immediate data, but an older assembler used with
some Hewlett-Packard logic development system does, as may others.

As mentioned, the MOV immediate instruction under 64-bit operation can include a 64-bit
immediate number. An instruction such as MOV RAX,123456780A311200H is allowed in the
64-bit mode.

The symbolic assembler portrays immediate data in many ways. The letter H appends
hexadecimal data. If hexadecimal data begin with a letter, the assembler requires that the data

of the MOV EAX,3456H
instruction. This instruction
copies the immediate data

FIGURE 3-4 The operation Register array Program
EAX 3 333 6 2 9 1 ‘L MOV EAX,13456H
EBX 13456H <—j

(13456H) into EAX.

ZMASM (MACRO assembler) is a trademark of Microsoft Corporation.
3TASM (Turbo assembler) is a trademark of Borland Corporation.
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TABLE 3—-2 Examples of immediate addressing using the MOV instruction.

Assembly Language Size Operation

MOV BL,44 8 bits Copies 44 decimal (2CH) into BL

MOV AX,44H 16 bits Copies 0044H into AX

MOV SI,0 16 bits Copies 0000H into SI

MOV CH,100 8 bits Copies 100 decimal (64H) into CH

MOV ALA’ 8 bits Copies ASCII A into AL

MOV AH,1 8 bits Not allowed in 64-bit mode, but allowed in 32-
or 16-bit modes

MOV AX,AB’ 16 bits Copies ASCII BA* into AX

MOV CL,11001110B 8 bits Copies 11001110 binary into CL

MOV EBX,12340000H 32 bits Copies 12340000H into EBX

MOV ESI,12 32 bits Copies 12 decimal into ESI

MOV EAX,100B 32 bits Copies 100 binary into EAX

MOV RCX,100H 64 bits Copies 100H into RCX

*Note: This is not an error. The ASCII characters are stored as BA, so exercise care when using word-sized
pairs of ASCII characters.

start with a 0. For example, to represent a hexadecimal F2, OF2H is used in assembly language.
In some assemblers (though not in MASM, TASM, or this text), hexadecimal data are repre-
sented with an ’h, as in MOV AX,#h1234. Decimal data are represented as is and require no
special codes or adjustments. (An example is the 100 decimal in the MOV AL,100 instruction.)
An ASClII-coded character or characters may be depicted in the immediate form if the ASCII
data are enclosed in apostrophes. (An example is the MOV BH, ‘A’ instruction, which moves an
ASClII-coded letter A [41H] into register BH.) Be careful to use the apostrophe () for ASCII
data and not the single quotation mark (‘). Binary data are represented if the binary number is
followed by the letter B, or, in some assemblers, the letter Y. Table 3-2 shows many different
variations of MOV instructions that apply immediate data.

Example 3-2 shows various immediate instructions in a short assembly language program
that places 0000H into the 16-bit registers AX, BX, and CX. This is followed by instructions that
use register addressing to copy the contents of AX into registers SI, DI, and BP. This is a com-
plete program that uses programming models for assembly and execution with MASM. The
.MODEL TINY statement directs the assembler to assemble the program into a single code seg-
ment. The .CODE statement or directive indicates the start of the code segment; the .STARTUP
statement indicates the starting instruction in the program; and the .EXIT statement causes the
program to exit to DOS. The END statement indicates the end of the program file. This program
is assembled with MASM and executed with CodeView* (CV) to view its execution. Note
that the most recent version of TASM will also accept MASM code without any changes. To
store the program into the system use the DOS EDIT program, Windows NotePad,”> or
Programmer’s WorkBench® (PWB). Note that a TINY program always assembles as a command
(.COM) program.

4CodeView is a registered trademark of Microsoft Corporation.
SNotePad is a registered trademark of Microsoft Corporation.
6Programmer’s WorkBench is a registered trademark of Microsoft Corporation.
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EXAMPLE 3-2
.MODEL TINY ;choose single segment model
0000 .CODE ;start of code segment
.STARTUP ;start of program
0100 B8 0000 MOV AX,0 ;place 0000H into AX
0103 BB 0000 MOV BX, 0 ;place 0000H into BX
0106 B9 0000 MOV CX,0 ;place 0000H into CX
0109 8B FO MOV SI,AX ;copy AX into SI
010B 8B F8 MOV DI,AX ;copy AX into DI
010D 8B E8 MOV BP,AX ;copy AX into BP
EXIT ;exit to DOS
END ;end of program

Each statement in an assembly language program consists of four parts or fields, as illus-
trated in Example 3-3. The leftmost field is called the label and it is used to store a symbolic
name for the memory location that it represents. All labels must begin with a letter or one of the
following special characters: @, $, -, or ? A label may be of any length from 1 to 35 characters.
The label appears in a program to identify the name of a memory location for storing data and for
other purposes that are explained as they appear. The next field to the right is called the opcode
field; it is designed to hold the instruction, or opcode. The MOV part of the move data instruction
is an example of an opcode. To the right of the opcode field is the operand field, which contains
information used by the opcode. For example, the MOV AL,BL instruction has the opcode MOV
and operands AL and BL. Note that some instructions contain between zero and three operands.
The final field, the comment field, contains a comment about an instruction or a group of instruc-
tions. A comment always begins with a semicolon (;).

EXAMPLE 3-3
Label Opcode Operand Comment
DATAL DB 23H ;define DATAl as a byte of 23H
DATA2 Dw 1000H ;define DATA2 as a word of 1000H
START: MOV AL, BL ;copy BL into AL

MOV BH, AL ;copy AL into BH

MOV CX,200 ;copy 200 into CX

When the program is assembled and the list (.LST) file is viewed, it appears as the program
listed in Example 3-2. The hexadecimal number at the far left is the offset address of the instruction
or data. This number is generated by the assembler. The number or numbers to the right of the off-
set address are the machine-coded instructions or data that are also generated by the assembler. For
example, if the instruction MOV AX,0 appears in a file and it is assembled, it appears in offset
memory location 0100 in Example 3-2. Its hexadecimal machine language form is B8 0000. The
B8 is the opcode in machine language and the 0000 is the 16-bit-wide data with a value of zero.
When the program was written, only the MOV AX,0 was typed into the editor; the assembler gen-
erated the machine code and addresses, and stored the program in a file with the extension .LST.
Note that all programs shown in this text are in the form generated by the assembler.

EXAMPLE 3-4

int MyFunction(int temp)
{
_asm
{
mov eax, temp
add eax,20h
mov temp, eax
}

return temp; // return a 32-bit integer
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Programs are also written using the inline assembler in some Visual C++ programs.
Example 3—4 shows a function in a Visual C++ program that includes some code written with the
inline assembler. This function adds 20H to the number returned by the function. Notice that the
assembly code accesses C++ variable temp and all of the assembly code is placed in an _asm code
block. Many examples in this text are written using the inline assembler within a C++ program.

Direct Data Addressing

Most instructions can use the direct data-addressing mode. In fact, direct data addressing is applied
to many instructions in a typical program. There are two basic forms of direct data addressing:
(1) direct addressing, which applies to a MOV between a memory location and AL, AX, or EAX,
and (2) displacement addressing, which applies to almost any instruction in the instruction set.
In either case, the address is formed by adding the displacement to the default data segment
address or an alternate segment address. In 64-bit operation, the direct-addressing instructions
are also used with a 64-bit linear address, which allows access to any memory location.

Direct Addressing. Direct addressing with a MOV instruction transfers data between a mem-
ory location, located within the data segment, and the AL (8-bit), AX (16-bit), or EAX (32-bit)
register. A MOV instruction using this type of addressing is usually a 3-byte long instruction. (In
the 80386 and above, a register size prefix may appear before the instruction, causing it to exceed
3 bytes in length.)

The MOV AL,DATA instruction, as represented by most assemblers, loads AL from the
data segment memory location DATA (1234H). Memory location DATA is a symbolic memory
location, while the 1234H is the actual hexadecimal location. With many assemblers, this instruc-
tion is represented as a MOV AL,[1234H]7 instruction. The [1234H] is an absolute memory loca-
tion that is not allowed by all assembler programs. Note that this may need to be formed as MOV
AL, DS:[1234H] with some assemblers, to show that the address is in the data segment. Figure 3-5
shows how this instruction transfers a copy of the byte-sized contents of memory location 11234H
into AL. The effective address is formed by adding 1234H (the offset address) and 10000H (the
data segment address of 1000H times 10H) in a system operating in the real mode.

Table 3-3 lists the direct-addressed instructions. These instructions often appear in programs,
so Intel decided to make them special 3-byte-long instructions to reduce the length of programs. All
other instructions that move data from a memory location to a register, called displacement-
addressed instructions, require 4 or more bytes of memory for storage in a program.

Displacement Addressing. Displacement addressing is almost identical to direct addressing,
except that the instruction is 4 bytes wide instead of 3. In the 80386 through the Pentium 4,

Memory
11235H
AH AL
EAX 8AH < 8AH 8 A | {1234H
EBX 11233H
ECX 11232H
_ANVW_’ \’\A

FIGURE 3-5 The operation of the MOV AL,[1234H] instruction when DS = 1000H.

"This form may be typed into a MASM program, but it most often appears when the debugging tool is executed.
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addressed instructions Assembly Language Size Operation
using EAX, AX, and AL ] ]
and RAX in 64-bit mode. MOV AL,NUMBER 8 bits Copies the byte contents of data segment
memory location NUMBER into AL
MQV AX,COW 16 bits Copies the word contents of data segment
memory location COW into AX
MOV EAX,WATER* 32 bits Copies the doubleword contents of data
segment location WATER into EAX
MOV NEWS,AL 8 bits Copies AL into byte memory location NEWS
MOV THERE,AX 16 bits Copies AX into word memory location THERE
MOV HOME,EAX* 32 bits Copies EAX into doubleword memory location
HOME
MOV ES:[2000H],AL 8 bits Copies AL into extra segment memory at
offset address 2000H
MOV AL,MOUSE 8 bits Copies the contents of location MOUSE into AL;
in 64-bit mode MOUSE can be any address
MOV RAX,WHISKEY 64 bits Copies 8 bytes from memory location WHISKEY
into RAX

*Note: The 80386—Pentium 4 at times use more than 3 bytes of memory for 32-bit instructions.

this instruction can be up to 7 bytes wide if both a 32-bit register and a 32-bit displacement are
specified. This type of direct data addressing is much more flexible because most instructions
use it.

If the operation of the MOV CL,DS:[1234H] instruction is compared to that of the MOV
AL,DS:[1234H] instruction of Figure 3—5, we see that both basically perform the same operation
except for the destination register (CL versus AL). Another difference only becomes apparent
upon examining the assembled versions of these two instructions. The MOV AL,DS:[1234H]
instruction is 3 bytes long and the MOV CL,DS:[1234H] instruction is 4 bytes long, as illustrated
in Example 3-5. This example shows how the assembler converts these two instructions into
hexadecimal machine language. You must include the segment register DS: in this example,
before the [offset] part of the instruction. You may use any segment register, but in most cases,
data are stored in the data segment, so this example uses DS:[1234H].

EXAMPLE 3-5
0000 A0 1234 R MOV AL,DS: [1234H]
0003 BA OE 1234 R MOV CL,DS:[1234H]

Table 3—4 lists some MOV instructions using the displacement form of direct addressing.
Not all variations are listed because there are many MOV instructions of this type. The segment
registers can be stored or loaded from memory.

Example 3-6 shows a short program using models that address information in the data segment.
Note that the data segment begins with a .DATA statement to inform the assembler where the data
segment begins. The model size is adjusted from TINY, as shown in Example 3-3, to SMALL so that
a data segment can be included. The SMALL model allows one data segment and one code segment.
The SMALL model is often used whenever memory data are required for a program. A SMALL
model program assembles as an execute (.EXE) program file. Notice how this example allocates
memory locations in the data segment by using the DB and DW directives. Here the .STARTUP state-
ment not only indicates the start of the code, but it also loads the data segment register with the
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TABLE 3-4 Examples of direct data addressing using a displacement.

Assembly Language Size Operation

MOV CH,DOG 8 bits Copies the byte contents of data segment memory
location DOG into CH

MOV CH,DS:[1000H]* 8 bits Copies the byte contents of data segment memory offset
address 1000H into CH

MOV ES,DATA6 16 bits Copies the word contents of data segment memory
location DATAG into ES

MOV DATA7,BP 16 bits Copies BP into data segment memory location DATA7

MOV NUMBER,SP 16 bits Copies SP into data segment memory location NUMBER

MOV DATA1,EAX 32 bits Copies EAX into data segment memory location DATA1

MOV EDI,SUM1 32 bits Copies the doubleword contents of data segment memory

location SUM1 into EDI

*This form of addressing is seldom used with most assemblers because an actual numeric offset address is
rarely accessed.

segment address of the data segment. If this program is assembled and executed with CodeView, the
instructions can be viewed as they execute and change registers and memory locations.

EXAMPLE 3-6

.MODEL SMALL ;choose small model
0000 .DATA ;start data segment
0000 10 DATAl DB 10H ;place 10H into DATA1
0001 00 DATA2 DB 0 ;place 00H into DATA2
0002 0000 DATA3 DW O ;place 0000H into DATA3
0004 AAAA DATA4 DW OAAAAH ;place AAAAH into DATA4
0000 .CODE ;start code segment

. STARTUP ;start program
0017 A00000 R MOV AL, DATAl ;copy DATAl1l into AL
001A 8A 26 0001 R MOV AH, DATA2 ;copy DATA2 into AH
001E A3 0002 R MOV DATA3,AX ;copy AX into DATA3
0021 8B 1E 0004 R MOV BX,DATA4 ;copy DATA4 into BX

CEXTIT; exit to DOS

END; end program listing

Register Indirect Addressing

Register indirect addressing allows data to be addressed at any memory location through an offset
address held in any of the following registers: BP, BX, DI, and SI. For example, if register BX con-
tains 1000H and the MOV AX,[BX] instruction executes, the word contents of data segment offset
address 1000H are copied into register AX. If the microprocessor is operated in the real mode and
DS = 0100H, this instruction addresses a word stored at memory bytes 2000H and 2001H, and
transfers it into register AX (see Figure 3-6). Note that the contents of 2000H are moved into AL
and the contents of 2001H are moved into AH. The [ ] symbols denote indirect addressing in
assembly language. In addition to using the BP, BX, DI, and SI registers to indirectly address mem-
ory, the 80386 and above allow register indirect addressing with any extended register except ESP.
Some typical instructions using indirect addressing appear in Table 3-5. If a Pentium 4 or Core2 is
available that operates in the 64-bit mode, any 64-bit register is used to hold a 64-bit linear address.
In the 64-bit mode, the segment registers serve no purpose in addressing a location in the flat model.
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_/wf
00002002
EAX AH, AL, % 34 00002001
EBX 1 00 —>(1000 T>—>2000 12 00002000

ECX

/V

M _ﬁ/\’\/—
00001002
cs 00001001

*1000

DS 0100 > 00001000

*After DS is appended with a 0.

FIGURE 3—6 The operation of the MOV AX,[BX] instruction when BX = 1000H and DS = 0100H.
Note that this instruction is shown after the contents of memory are transferred to AX.

The data segment is used by default with register indirect addressing or any other address-
ing mode that uses BX, DI, or SI to address memory. If the BP register addresses memory, the
stack segment is used by default. These settings are considered the default for these four index and
base registers. For the 80386 and above, EBP addresses memory in the stack segment by default;
EAX, EBX, ECX, EDX, EDI, and ESI address memory in the data segment by fault. When using a
32-bit register to address memory in the real mode, the contents of the 32-bit register must never

TABLE 3-5 Examples of register indirect addressing.

Assembly Language Size Operation

MOV CX,[BX] 16 bits Copies the word contents of the data segment memory
location addressed by BX into CX

MOV [BP],DL* 8 bits Copies DL into the stack segment memory location
addressed by BP

MOV [DI],BH 8 bits Copies BH into the data segment memory location
addressed by DI

MOV [DI],[BX] — Memory-to-memory transfers are not allowed except with
string instructions

MOV AL,[EDX] 8 bits Copies the byte contents of the data segment memory
location addressed by EDX into AL

MQV ECX,[EBX] 32 bits Copies the doubleword contents of the data segment
memory location addressed by EBX into ECX

MOV RAX,[RDX] 64 bits Copies the quadword contents of the memory location

address by the linear address located in RDX into RAX
(64-bit mode)

*Note: Data addressed by BP or EBP are by default in the stack segment, while other indirect addressed
instructions use the data segment by default.
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exceed 0000FFFFH. In the protected mode, any value can be used in a 32-bit register that is used
to indirectly address memory, as long as it does not access a location outside of the segment, as
dictated by the access rights byte. An example 80386—Pentium 4 instruction is MOV
EAX,[EBX]. This instruction loads EAX with the doubleword-sized number stored at the data
segment offset address indexed by EBX. In the 64-bit mode, the segment registers are not used in
the address calculation because the register contains the actual linear memory address.

In some cases, indirect addressing requires specifying the size of the data. The size is spec-
ified by the special assembler directive BYTE PTR, WORD PTR, DWORD PTR, or QWORD
PTR. These directives indicate the size of the memory data addressed by the memory pointer
(PTR). For example, the MOV AL,[DI] instruction is clearly a byte-sized move instruction, but
the MOV [DI],10H instruction is ambiguous. Does the MOV [DI],10H instruction address a
byte-, word-, doubleword-, or quadword-sized memory location? The assembler can’t determine
the size of the 10H. The instruction MOV BYTE PTR [DI],10H clearly designates the location
addressed by DI as a byte-sized memory location. Likewise, the MOV DWORD PTR [DI],10H
clearly identifies the memory location as doubleword-sized. The BYTE PTR, WORD PTR,
DWORD PTR, and QWORD PTR directives are used only with instructions that address a mem-
ory location through a pointer or index register with immediate data, and for a few other instruc-
tions that are described in subsequent chapters. Another directive that is occasionally used is the
QWORD PTR, where a QWORD is a quadword (64-bits mode). If programs are using the SIMD
instructions, the OWORD PTR, an octal word, is also used to represent a 128-bit-wide number.

Indirect addressing often allows a program to refer to tabular data located in the memory
system. For example, suppose that you must create a table of information that contains 50 sam-
ples taken from memory location 0000:046C. Location 0000:046C contains a counter in DOS
that is maintained by the personal computer’s real-time clock. Figure 3—7 shows the table and the
BX register used to sequentially address each location in the table. To accomplish this task, load
the starting location of the table into the BX register with a MOV immediate instruction. After
initializing the starting address of the table, use register indirect addressing to store the 50 sam-
ples sequentially.

The sequence shown in Example 3—7 loads register BX with the starting address of the table
and it initializes the count, located in register CX, to 50. The OFFSET directive tells the assembler
to load BX with the offset address of memory location TABLE, not the contents of TABLE. For
example, the MOV BX,DATAS instruction copies the contents of memory location DATAS into BX,
while the MOV BX,OFFSET DATAS instruction copies the offset address DATAS into BX. When
the OFFSET directive is used with the MOV instruction, the assembler calculates the offset address
and then uses a MOV immediate instruction to load the address in the specified 16-bit register.

FIGURE 3-7 An array Memory
(TABLE) containing 50 bytes —~— ]
that are indirectly addressed
through register BX.

Table + 49

Table + 2

Table + 1

EBX 0000 TABLE > Table




ADDRESSING MODES N

EXAMPLE 3-7

.MODEL SMALL ;select small model
0000 .DATA ;start data segment
0000 0032 [ DATAS DW 50 DUP(?) ;setup array of 50 words

0000
]

0000 .CODE ;start code segment

. STARTUP ;start program
0017 B8 0000 MOV AX,0
001A 8E CO MOV ES,AX ;address segment 0000 with ES
001C B8 0000 R MOV BX,OFFSET DATAS ;address DATAS array with BX
001F B9 0032 MOV CX,50 ;load counter with 50
0022 AGAIN:
0022 26:A1 046C MOV AX,ES:[046CH] ;get clock value
0026 89 07 MOV  [BX],AX ;save clock value in DATAS
0028 43 INC BX ;increment BX to next element
0029 43 INC BX
002A E2 F6 LOOP AGAIN ;repeat 50 times

CEXIT ;exit to DOS

END ;end program listing

Once the counter and pointer are initialized, a repeat-until CX = 0 loop executes. Here data
are read from extra segment memory location 46CH with the MOV AX,ES:[046CH] instruction
and stored in memory that is indirectly addressed by the offset address located in register BX.
Next, BX is incremented (1 is added to BX) twice to address the next word in the table. Finally,
the LOOP instruction repeats the LOOP 50 times. The LOOP instruction decrements (subtracts 1
from) the counter (CX); if CX is not zero, LOOP causes a jump to memory location AGAIN. If
CX becomes zero, no jump occurs and this sequence of instructions ends. This example copies the
most recent 50 values from the clock into the memory array DATAS. This program will often
show the same data in each location because the contents of the clock are changed only 18.2 times
per second. To view the program and its execution, use the CodeView program. To use CodeView,
type CV XXXX.EXE, where XXXX.EXE is the name of the program that is being debugged. You
can also access it as DEBUG from the Programmer’s WorkBench program under the RUN menu.
Note that CodeView functions only with .EXE or .COM files. Some useful CodeView switches
are /50 for a 50-line display and /S for use of high-resolution video displays in an application. To
debug the file TEST.COM with 50 lines, type CV /50 /S TEST.COM at the DOS prompt.

Base-Plus-Index Addressing

Base-plus-index addressing is similar to indirect addressing because it indirectly addresses mem-
ory data. In the 8086 through the 80286, this type of addressing uses one base register (BP or
BX) and one index register (DI or SI) to indirectly address memory. The base register often holds
the beginning location of a memory array, whereas the index register holds the relative position
of an element in the array. Remember that whenever BP addresses memory data, both the stack
segment register and BP generate the effective address.

In the 80386 and above, this type of addressing allows the combination of any two 32-bit
extended registers except ESP. For example, the MOV DL,[EAX +EBX] instruction is an exam-
ple using EAX (as the base) plus EBX (as the index). If the EBP register is used, the data are
located in the stack segment instead of in the data segment.

Locating Data with Base-Plus-Index Addressing. Figure 3-8 shows how data are addressed by
the MOV DX,[BX+DI] instruction when the microprocessor operates in the real mode. In this
example, BX = 1000H, DI = 0010H, and DS = 0100H, which translate into memory address
02010H. This instruction transfers a copy of the word from location 02010H into the DX register.
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02014H
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AB |03 VM—""1%os
N 03 02010H <—
0200FH
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1000H
0010H v 2010H
0010 + +
1010H
? 1000H
DS x 10H

FIGURE 3-8 An example showing how the base-plus-index addressing mode functions for the MOV DX,[BX+DI]
instruction. Notice that memory address 02010H is accessed because DS = 0100H, BX = 100H, and DI = 0010H.

Table 3-6 lists some instructions used for base-plus-index addressing. Note that the Intel assem-
bler requires that this addressing mode appear as [BX][DI] instead of [BX+DI]. The MOV
DX,[BX+DI] instruction is MOV DX,[BX][DI] for a program written for the Intel ASM assem-
bler. This text uses the first form in all example programs, but the second form can be used in
many assemblers, including MASM from Microsoft. Instructions like MOV DL[BX+DI] will
assemble, but will not execute correctly.

Locating Array Data Using Base-Plus-Index Addressing. A major use of the base-plus-index
addressing mode is to address elements in a memory array. Suppose that the elements in an array

TABLE 3-6 Examples of base-plus-index addressing.

Assembly Language Size Operation

MQV CX,[BX+DlI] 16 bits Copies the word contents of the data segment memory
location addressed by BX plus DI into CX

MOV CH,[BP+SI] 8 bits Copies the byte contents of the stack segment memory
location addressed by BP plus Sl into CH

MOV [BX+SI],SP 16 bits Copies SP into the data segment memory location
addressed by BX plus Sl

MOQV [BP+DI],AH 8 bits Copies AH into the stack segment memory location
addressed by BP plus DI

MQV CL,[EDX+EDI] 8 bits Copies the byte contents of the data segment memory

location addressed by EDX plus EDI into CL

MOV [EAX+EBX],ECX 32 bits Copies ECX into the data segment memory location
addressed by EAX plus EBX

MOV [RSI+RBX],RAX 64 bit Copies RAX into the linear memory location addressed
by RSI plus RBX (64-bit mode)
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Memory
/—-__,/f“\\\_
ARRAY +5
bl ARRAY + 4
Element ARRAY +3
ARRAY + 1
ARRAY ARRAY
W\/\/‘

FIGURE 3-9 An example of the base-plus-index addressing mode. Here an element (DI) of an
ARRAY (BX) is addressed.

located in the data segment at memory location ARRAY must be accessed. To accomplish this,
load the BX register (base) with the beginning address of the array and the DI register (index)
with the element number to be accessed. Figure 3—9 shows the use of BX and DI to access an ele-
ment in an array of data.

A short program, listed in Example 3-8, moves array element 10H into array element 20H.
Notice that the array element number, loaded into the DI register, addresses the array element. Also
notice how the contents of the ARRAY have been initialized so that element 10H contains 29H.

EXAMPLE 3-8
.MODEL SMALL ;select small model
0000 .DATA ;start data segment
0000 0010 [ ARRAY DB 16 DUP(?) ;setup array of 16 bytes
00
]
0010 29 DB 29H ;element 10H
0011 O001lE [ DB 20 dup(?)
00
]
0000 .CODE ;start code segment
. STARTUP
0017 B8 0000 R MOV BX,OFFSET ARRAY ;address ARRAY
001A BF 0010 MOV DI, 10H ;address element 10H
001D 8a 01 MOV AL, [BX+DI] ;get element 10H
001F BF 0020 MOV DI, 20H ;address element 20H
0022 88 01 MOV  [BX+DI],AL ;save in element 20H
EXIT ;exit to DOS
END ;end program

Register Relative Addressing

Register relative addressing is similar to base-plus-index addressing and displacement
addressing. In register relative addressing, the data in a segment of memory are addressed by
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FIGURE 3-10 The operation Memory
of the MOV AX, [BX+1000H] — |
instructon, when BX = 0100H
and DS = 0200H.

Register array

N _— | A0 |03101H

EAX 2222 AO | 76 \‘%
EBX 0000 01] 00 7 6 03100H

| 0100H
1000H
1100H
DS x 10H +
2000H 3100H

adding the displacement to the contents of a base or an index register (BP, BX, DI, or SI).
Figure 3—10 shows the operation of the MOV AX,[BX+1000H] instruction. In this example,
BX = 0100H and DS = 0200H, so the address generated is the sum of DS X OH, BX, and the
displacement of 1000H, which addresses location 03100H. Remember that BX, DI, or SI
addresses the data segment and BP addresses the stack segment. In the 80386 and above, the
displacement can be a 32-bit number and the register can be any 32-bit register except the ESP
register. Remember that the size of a real mode segment is 64K bytes long. Table 3—7 lists a
few instructions that use register relative addressing

The displacement is a number added to the register within the [ ], as in the MOV
AL,[DI+2] instruction, or it can be a displacement is subtracted from the register, as in MOV
AL,[SI-]]. A displacement also can be an offset address appended to the front of the [ ], as in
MOV AL,DATA[DI]. Both forms of displacements also can appear simultaneously, as in the
MOV AL,DATA[DI+3] instruction. Both forms of the displacement add to the base or base plus
index register within the [ ] symbols. In the 8086—-80286 microprocessors, the value of the dis-
placement is limited to a 16-bit signed number with a value ranging between +32,767 (7FFFH)

TABLE 3-7 Examples of register relative addressing.

Assembly Language Size Operation

MOV AX,[DI+100H] 16 bits Copies the word contents of the data segment memory location
addressed by DI plus 100H into AX

MOV ARRAYI[SI],BL 8 bits Copies BL into the data segment memory location addressed by
ARRAY plus Sl

MOV LIST[SI+2],CL 8 bits Copies CL into the data segment memory location addressed by the
sum of LIST, SI, and 2

MOV DI,SET_IT[BX] 16 bits Copies the word contents of the data segment memory location
addressed by SET_IT plus BX into DI

MOV DI,[EAX+10H] 16 bits Copies the word contents of the data segment location addressed by
EAX plus 10H into DI

MOV ARRAY[EBX],EAX 32 bits Copies EAX into the data segment memory location addressed by
ARRAY plus EBX

MOV ARRAY[RBX],AL 8 bits Copies AL into the memory location ARRAY plus RBX (64-bit mode)

MOV ARRAY[RCX],EAX 32 bits Copies EAX into memory location ARRAY plus RCX (64-bit mode)
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Memory

ARRAY +6
ARRAY +5
ARRAY +4
Element ARRAY +3

Displacement ARRAY +2
ARRAY + 1

ARRAY

ARRAY

————

FIGURE 3-11 Register relative addressing used to address an element of ARRAY. The dis-
placement addresses the start of ARRAY, and DI accesses an element.

and -32,768 (8000H); in the 80386 and above, a 32-bit displacement is allowed with a value
ranging between +2,147,483,647 (TFFFFFFFH) and —2,147,483,648 (80000000H).

Addressing Array Data with Register Relative. 1t is possible to address array data with register
relative addressing, such as one does with base-plus-index addressing. In Figure 3-11, register
relative addressing is illustrated with the same example as for base-plus-index addressing.
This shows how the displacement ARRAY adds to index register DI to generate a reference to an
array element.

Example 3-9 shows how this new addressing mode can transfer the contents of array ele-
ment 10H into array element 20H. Notice the similarity between this example and Example 3-8.
The main difference is that, in Example 3-9, register BX is not used to address memory ARRAY;
instead, ARRAY is used as a displacement to accomplish the same task.

EXAMPLE 3-9
.MODEL SMALL ;select small model
0000 .DATA ;start data segment
0000 0010 [ ARRAY DB 16 dup(?) ;setup ARRAY
00
]
0010 29 DB 29 ;element 10H
0011 O001lE [ DB 30 dup(?)
00
]
0000 .CODE ;start code segment
.STARTUP ;start program
0017 BF 0010 MOV DI, 10H ;address element 10H
001A 8A 85 0000 R MOV AL,ARRAY[DI] ;get ARRAY element 10H
001E BF 0020 MOV DI, 20H ;address element 20H
0021 88 85 0000 R MOV ARRAY[DI],AL ;save it in element 20H
CEXIT ;exit to DOS

END ;end of program
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EAX A3|16 A316
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EBX 00|20
ECX
EDX
0020H

ESP
EBP , 0030H 0130H

— ——
ESI 0010 + +

0010H 10130H

0100H ps x 10H

FIGURE 3-12 An example of base relative-plus-index addressing using a MOV AX,[BX+SI+100H]
instruction. Note: DS = 1000H.

Base Relative-Plus-Index Addressing

The base relative-plus-index addressing mode is similar to base-plus-index addressing, but it
adds a displacement, besides using a base register and an index register, to form the memory
address. This type of addressing mode often addresses a two-dimensional array of memory data.

Addressing Data with Base Relative-Plus-Index. Base relative-plus-index addressing is the
least-used addressing mode. Figure 3—12 shows how data are referenced if the instruction exe-
cuted by the microprocessor is MOV AX,[BX+SI+100H]. The displacement of 100H adds to
BX and SI to form the offset address within the data segment. Registers BX = 0020H,
SI = 0100H, and DS = 1000H, so the effective address for this instruction is 10130H—the sum
of these registers plus a displacement of 100H. This addressing mode is too complex for frequent
use in programming. Some typical instructions using base relative-plus-index addressing appear
in Table 3-8. Note that with the 80386 and above, the effective address is generated by the sum
of two 32-bit registers plus a 32-bit displacement.

TABLE 3-8 Example base relative-plus-index instructions.

Assembly Language Size Operation

MOV DH,[BX+DI+20H] 8 bits Copies the byte contents of the data segment memory location
addressed by the sum of BX, DI and 20H into DH

MOV AX,FILE[BX+DlI] 16 bits Copies the word contents of the data segment memory location
addressed by the sum of FILE, BX and DI into AX

MOV LIST[BP+DI],CL 8 bits Copies CL into the stack segment memory location addressed
by the sum of LIST, BP, and DI

MOV LIST[BP+SI+4],DH 8 bits Copies DH into the stack segment memory location addressed
by the sum of LIST, BP, SI, and 4

MOV EAX,FILE[EBX+ECX+2] 32 bits Copies the doubleword contents of the memory location

addressed by the sum of FILE, EBX, ECX, and 2 into EAX
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FIGURE 3-13 Base relative-
plus-index addressing used to
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Addressing Arrays with Base Relative-Plus-Index. Suppose that a file of many records exists in
memory and each record contains many elements. The displacement addresses the file, the base
register addresses a record, and the index register addresses an element of a record. Figure 3—13
illustrates this very complex form of addressing.
Example 3-10 provides a program that copies element O of record A into element 2
of record C by using the base relative-plus-index mode of addressing. This example FILE
contains four records and each record contains 10 elements. Notice how the THIS BYTE
statement is used to define the label FILE and RECA as the same memory location.

EXAMPLE 3-10

0000
0000
0000

000A

0014

001E

0000

0017
001Aa
001D
0021
0024
0027

0000

000Aa [

00

000A [

00

000Aa [

00

000A [

BB
BF
8A
BB
BF
88

00

0000 R
0000

81 0000 R
0014 R
0002

81 0000 R

FILE
RECA

RECB

RECC

RECD

.MODE

L SMALL

.DATA

EQU
DB 1

DB 1

DB 1

DB 1

.CODE
.STAR
MOV
MOV
MOV
MOV
MOV
MOV
.exit
end

THIS BYTE
0 dup(?)

0 dup(?)

0 dup(?)

0 dup(?)

TUP
BX,OFFSET RECA
DI,O
AL,FILE[BX+DI]
BX,OFFSET RECC
DI,2
FILE[BX+DI], AL

;select small model
;start data segment
;assign FILE to this byte
;10 bytes for record A

;10 bytes for record B

;10 bytes for record C

;10 bytes for record D

;start code segment
;start program
;address record A
;address element 0
;get data

;address record C
;address element 2
;save data

;exit to DOS

;end of program
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TABLE 3-9 Examples of scaled-index addressing.

Assembly Language Size Operation

MOV EAX,[EBX+4*ECX] 32 bits  Copies the doubleword contents of the data segment memory
location addressed by the sum of 4 times ECX plus EBX into EAX

MOV [EAX+2*EDI+100H],CX 16 bits  Copies CX into the data segment memory location addressed by the
sum of EAX, 100H, and 2 times EDI

MOV AL,[EBP+2*EDI+2] 8 bits Copies the byte contents of the stack segment memory location
addressed by the sum of EBP, 2, and 2 times EDI into AL

MOV EAX,ARRAY[4*ECX] 32 bits  Copies the doubleword contents of the data segment memory

location addressed by the sum of ARRAY and 4 times ECX into EAX

Scaled-Index Addressing

Scaled-index addressing is the last type of data-addressing mode discussed. This data-addressing
mode is unique to the 80386 through the Core2 microprocessors. Scaled-index addressing uses
two 32-bit registers (a base register and an index register) to access the memory. The second
register (index) is multiplied by a scaling factor. The scaling factor can be 1x,2x, 4%, or 8.
A scaling factor of 1x is implied and need not be included in the assembly language instruction
(MOV AL,[EBX+ECX]). A scaling factor of 2 is used to address word-sized memory arrays,
a scaling factor of 4x is used with doubleword-sized memory arrays, and a scaling factor of
8x is used with quadword-sized memory arrays.

An example instruction is MOV AX,[EDI+2*ECX]. This instruction uses a scaling factor
of 2x, which multiplies the contents of ECX by 2 before adding it to the EDI register to form the
memory address. If ECX contains a 00000000H, word-sized memory element O is addressed; if
ECX contains a 00000001H, word-sized memory element 1 is accessed, and so forth. This scales
the index (ECX) by a factor of 2 for a word-sized memory array. Refer to Table 3-9 for some
examples of scaled-index addressing. As you can imagine, there are an extremely large number
of the scaled-index addressed register combinations. Scaling is also applied to instructions that
use a single indirect register to access memory. The MOV EAX,[4*EDI] is a scaled-index
instruction that uses one register to indirectly address memory. In the 64-bit mode, an instruction
such as MOV RAX,[8*RDI] might appear in a program.

Example 3-11 shows a sequence of instructions that uses scaled-index addressing to access
a word-sized array of data called LIST. Note that the offset address of LIST is loaded into register
EBX with the MOV EBX,OFFSET LIST instruction. Once EBX addresses array LIST, the ele-
ments (located in ECX) of 2, 4, and 7 of this word-wide array are added, using a scaling factor of
2 to access the elements. This program stores the 2 at element 2 into elements 4 and 7. Also notice
the .386 directive to select the 80386 microprocessor. This directive must follow the .MODEL
statement for the assembler to process 80386 instructions for DOS. If the 80486 is in use, the .486
directive appears after the . MODEL statement; if the Pentium is in use, then use .586; and if the
Pentium Pro, Pentium II, Pentium III, Pentium 4, or Core?2 is in use, then use the .686 directive. If
the microprocessor selection directive appears before the .MODEL statement, the microprocessor
executes instructions in the 32-bit protected mode, which must execute in Windows.

EXAMPLE 3-11

.MODEL SMALL ;select small model

.386 ;select 80386 microprocessor
0000 .DATA ;start data segment
0000 0000 0001 0002 LIST opw 0,1,2,3,4 ;define array LIST

0003 0004
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000A 0005 0006 0007 ow 5,6,7,8,9
0008 0009
0000 .CODE ;start code segment
0010 66|BB 00000000 R MOV EBX,OFFSET LIST ;address array LIST
0016 66|B9 00000002 MOV ECX, 2 ;address element 2
001C 67&8B 04 4B MOV AX,EBX+2*ECX] ;get element 2
0020 66|B9 00000004 MOV ECX, 4 ;address element 4
0026 67&89 04 4B MOV [EBX+2*ECX],AX ;store in element 4
002A 66|B9 00000007 MOV ECX,7 ;address element 7
0030 67&89 04 4B MOV [EBX+2*ECX],AX ;store in element 7
.exit ;exit to DOS
end

RIP Relative Addressing

This form of addressing uses the 64-bit instruction pointer register in the 64-bit mode to address
a linear location in the flat memory model. The inline assembler program available to Visual
C++ does not contain any way of using this addressing mode or any other 64-bit addressing
mode. The Microsoft Visual C++ does not at present support developing 64-bit assembly code.
The instruction pointer is normally addressed using a * as in *+34, which is 34 bytes ahead in a
program. When Microsoft finally places an inline assembler into Visual C++ for the 64-bit
mode, this most likely will be the way that RIP relative addressing will appear.

One source is Intel, which does produce a compiler with an inline assembler for 64-bit
code (http://www.intel.com/cd/software/products/asmo-na/eng/compilers/cwin/279582.htm).

Data Structures

A data structure is used to specify how information is stored in a memory array and can be quite
useful with applications that use arrays. It is best to think of a data structure as a template for
data. The start of a structure is identified with the STRUC assembly language directive and the
end with the ENDS statement. A typical data structure is defined and used three times in
Example 3-12. Notice that the name of the structure appears with the STRUC and with ENDS
statement. The example shows the data structure as it was typed without the assembled version.

EXAMPLE 3-12

;define the INFO data structure

;NFO STRUC

NAMES DB 32 dup(* ;reserve 32 bytes for a name

(?)
STREET DB 32 dup(?) ;reserve 32 bytes for the street address
CITY DB 16 dup(?) ;reserve 16 bytes for the city
(?)
(?)

STATE DB 2 dup(? ;reserve 2 bytes for the state

ZIP DB 5 dup(* ;reserve 5 bytes for the zipcode

INFO ENDS

NAME1 INFO <'Bob Smith', '123 Main Street', 'Wanda', 'OH',6 '44444'>
NAME2 INFO <'Steve Doe', '222 Moose Lane', 'Miller', 'PA', '18100'>
NAME3 INFO <'Jim Dover', '303 Main Street', 'Orender', 'CA', '90000'>

The data structure in Example 3—12 defines five fields of information. The first is 32 bytes
long and holds a name; the second is 32 bytes long and holds a street address; the third is 16 bytes
long for the city; the fourth is 2 bytes long for the state; the fifth is 5 bytes long for the ZIP code.
Once the structure is defined (INFO), it can be filled, as illustrated, with names and addresses.
Three example uses for INFO are illustrated. Note that literals are surrounded with apostrophes
and the entire field is surrounded with < > symbols when the data structure is used to define data.


http://www.intel.com/cd/software/products/asmo-na/eng/compilers/cwin/279582.htm
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When data are addressed in a structure, use the structure name and the field name to select
a field from the structure. For example, to address the STREET in NAME2, use the operand
NAME2.STREET, where the name of the structure is first followed by a period and then by the
name of the field. Likewise, use NAME3.CITY to refer to the city in structure NAMES3.

A short sequence of instructions appears in Example 3-13 that clears the name field in
structure NAME]1, the address field in structure NAME?2, and the ZIP code field in structure
NAME3. The function and operation of the instructions in this program are defined in later chap-
ters in the text. You may wish to refer to this example once you learn these instructions.

EXAMPLE 3-13

;clear NAMES in array NAME1

0000 B9 0020 MOV CX,32

0003 BO 00 MOV AL, O
0005 BE 0000 R MOV DI,OFFSET NAMEL.NAMES
0008 F3/AA REP STOSB

;clear STREET in array NAME2

000A B9 0020 MOV CX, 32

000D BO 00 MOV AL,O0
000F BE 0077 R MOV DI,OFFSET NAME2.STREET
0012 F3/AA REP STOSB

;clear ZIP in NAME3

0014 B9 0005 MOV CX,5

0017 BO 00 MOV AL, 0
0019 BE 0100 R MOV DI,OFFSET NAME3.ZIP
001C F3/AA REP STOSB

PROGRAM MEMORY-ADDRESSING MODES

Program memory-addressing modes, used with the JMP (jump) and CALL instructions, consist
of three distinct forms: direct, relative, and indirect. This section introduces these three address-
ing forms, using the JMP instruction to illustrate their operation.

Direct Program Memory Addressing

Direct program memory addressing is what many early microprocessors used for all jumps and
calls. Direct program memory addressing is also used in high-level languages, such as the
BASIC language GOTO and GOSUB instructions. The microprocessor uses this form of
addressing, but not as often as relative and indirect program memory addressing are used.

The instructions for direct program memory addressing store the address with the opcode.
For example, if a program jumps to memory location 10000H for the next instruction, the address
(10000H) is stored following the opcode in the memory. Figure 3—14 shows the direct intersegment
JMP instruction and the 4 bytes required to store the address 10000H. This JMP instruction loads
CS with 1000H and IP with 0000H to jump to memory location 10000H for the next instruction.
(An intersegment jump is a jump to any memory location within the entire memory system.) The
direct jump is often called a far jump because it can jump to any memory location for the next

FIGURE 3-14 The 5-byte Opcode Offset (low)  Offset (high) Segment (low) Segment (high)

machine language version of
a JMP [10000H] instruction. E A 00 00 00 10
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FIGURE 3-15 A JMP [2] 10000 EB
instruction. This instruction 10001 02 } IMP 2]
skips over the 2 bytes of 10002 —

memory that follow the JMP 10003 —

instruction. 10004

instruction. In the real mode, a far jump accesses any location within the first 1M byte of memory
by changing both CS and IP. In protected mode operation, the far jump accesses a new code seg-
ment descriptor from the descriptor table, allowing it to jump to any memory location in the entire
4G-byte address range in the 80386 through Core2 microprocessors.

In the 64-bit mode for the Pentium 4 and Core2, a jump or a call can be to any memory
location in the system. The CS segment is still used, but not for the address of the jump or the
call. The CS register contains a pointer to a descriptor that describes the access rights and privi-
lege level of the code segment, but not the address of the jump or call.

The only other instruction that uses direct program addressing is the intersegment or far
CALL instruction. Usually, the name of a memory address, called a label, refers to the location
that is called or jumped to instead of the actual numeric address. When using a label with the
CALL or JMP instruction, most assemblers select the best form of program addressing.

Relative Program Memory Addressing

Relative program memory addressing is not available in all early microprocessors, but it is avail-
able to this family of microprocessors. The term relative means “relative to the instruction
pointer (IP).” For example, if a JMP instruction skips the next 2 bytes of memory, the address in
relation to the instruction pointer is a 2 that adds to the instruction pointer. This develops the
address of the next program instruction. An example of the relative JMP instruction is shown in
Figure 3—15. Notice that the JMP instruction is a 1-byte instruction, with a 1-byte or a 2-byte dis-
placement that adds to the instruction pointer. A 1-byte displacement is used in short jumps, and
a 2-byte displacement is used with near jumps and calls. Both types are considered to be
intrasegment jumps. (An intrasegment jump is a jump anywhere within the current code seg-
ment.) In the 80386 and above, the displacement can also be a 32-bit value, allowing them to use
relative addressing to any location within their 4G-byte code segments.

Relative JMP and CALL instructions contain either an 8-bit or a 16-bit signed displacement
that allows a forward memory reference or a reverse memory reference. (The 80386 and above can
have an 8-bit or 32-bit displacement.) All assemblers automatically calculate the distance for the dis-
placement and select the proper 1-, 2- or 4-byte form. If the distance is too far for a 2-byte displace-
ment in an 8086 through an 80286 microprocessor, some assemblers use the direct jump. An 8-bit
displacement (short) has a jump range of between +127 and —128 bytes from the next instruction;
a 16-bit displacement (near) has a range of +32K bytes. In the 80386 and above, a 32-bit displace-
ment allows a range of £2G bytes. The 32-bit displacement can only be used in the protected mode.

Indirect Program Memory Addressing

The microprocessor allows several forms of program indirect memory addressing for the JMP
and CALL instructions. Table 3—10 lists some acceptable program indirect jump instructions,
which can use any 16-bit register (AX, BX, CX, DX, SP, BP, DI, or SI); any relative register
([BP], [BX], [DI], or [SI]); and any relative register with a displacement. In the 80386 and above,
an extended register can also be used to hold the address or indirect address of a relative JMP or
CALL. For example, the JMP EAX jumps to the location address by register EAX.

If a 16-bit register holds the address of a JMP instruction, the jump is near. For example, if
the BX register contains 1000H and a JMP BX instruction executes, the microprocessor jumps to
offset address 1000H in the current code segment.
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TABLE 3—-10 Examples of indirect program memory addressing.

Assembly Language Operation
JMP AX Jumps to the current code segment location addressed by the contents of AX
JMP CX Jumps to the current code segment location addressed by the contents of CX

JMP NEAR PTR[BX]
JMP NEAR PTR[DI+2]
JMP TABLE[BX]

JMP ECX
JMP RDI

Jumps to the current code segment location addressed by the contents of the data
segment location addressed by BX

Jumps to the current code segment location addressed by the contents of the data
segment memory location addressed by DI plus 2

Jumps to the current code segment location addressed by the contents of the data
segment memory location address by TABLE plus BX

Jumps to the current code segment location addressed by the contents of ECX
Jumps to the linear address contained in the RDI register (64-bit mode)

FIGURE 3-16 A jump table TABLE DW LOCO
that stores addresses of various DW LOC1
programs. The exact address DW LOC2
chosen from the TABLE is DW LOGC3
determined by an index stored

with the jump instruction.

If a relative register holds the address, the jump is also considered to be an indirect jump. For
example, JMP [BX] refers to the memory location within the data segment at the offset address con-
tained in BX. At this offset address is a 16-bit number that is used as the offset address in the intraseg-
ment jump. This type of jump is sometimes called an indirect-indirect or double-indirect jump.

Figure 3—16 shows a jump table that is stored, beginning at memory location TABLE. This
jump table is referenced by the short program of Example 3—14. In this example, the BX register
is loaded with a 4 so, when it combines in the JMP TABLE[BX] instruction with TABLE, the
effective address is the contents of the second entry in the 16-bit-wide jump table.

EXAMPLE 3-14

;Using indirect addressing for a jump

0000 BB 0004 MOV BX, 4 ;address LOC2
0003 FF A7 23Al1 R JMP TABLE [BX] ;jump to LOC2

3-3

STACK MEMORY-ADDRESSING MODES

The stack plays an important role in all microprocessors. It holds data temporarily and stores the
return addresses used by procedures. The stack memory is an LIFO (last-in, first-out) memory,
which describes the way that data are stored and removed from the stack. Data are placed onto
the stack with a PUSH instruction and removed with a POP instruction. The CALL instruction
also uses the stack to hold the return address for procedures and a RET (return) instruction to
remove the return address from the stack.

The stack memory is maintained by two registers: the stack pointer (SP or ESP) and the stack
segment register (SS). Whenever a word of data is pushed onto the stack [see Figure 3—-17(a)],
the high-order 8 bits are placed in the location addressed by SP — 1. The low-order 8 bits are placed
in the location addressed by SP — 2. The SP is then decremented by 2 so that the next word of data
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Memory
Register array —— ]
EAX \
EBX 12|34 1234 12
4 |
ECX \/ 8
EDX
/_/V\
ESP —()
'__’_/\__’_/—" ?
SS x 10H
(a)
Register array Memory
EAX — ]
EBX =

ECX 12 34” 12
EDX N——ow« | 34

ESP 4?
_/\/—_"v—

SS x 10H
(b)

FIGURE 3-17 The PUSH and POP instructions: (a) PUSH BX places the contents of BX onto
the stack; (b) POP CX removes data from the stack and places them into CX. Both instructions
are shown after execution.

is stored in the next available stack memory location. The SP/ESP register always points to an area
of memory located within the stack segment. The SP/ESP register adds to SS X 10H to form the
stack memory address in the real mode. In protected mode operation, the SS register holds a selec-
tor that accesses a descriptor for the base address of the stack segment.

Whenever data are popped from the stack [see Figure 3—17(b)], the low-order 8 bits are
removed from the location addressed by SP. The high-order 8 bits are removed from the location
addressed by SP + 1. The SP register is then incremented by 2. Table 3—11 lists some of the
PUSH and POP instructions available to the microprocessor. Note that PUSH and POP store or
retrieve words of data—never bytes—in the 8086 through the 80286 microprocessors. The 80386
and above allow words or doublewords to be transferred to and from the stack. Data may be
pushed onto the stack from any 16-bit register or segment register; in the 80386 and above, from
any 32-bit extended register. Data may be popped off the stack into any register or any segment
register except CS. The reason that data may not be popped from the stack into CS is that this only
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TABLE 3-11 Example PUSH and POP instructions.

Assembly Language Operation

POPF Removes a word from the stack and places it into the flag register

POPFD Removes a doubleword from the stack and places it into the
EFLAG register

PUSHF Copies the flag register to the stack

PUSHFD Copies the EFLAG register to the stack

PUSH AX Copies the AX register to the stack

POP BX Removes a word from the stack and places it into the BX register

PUSH DS Copies the DS register to the stack

PUSH 1234H Copies a word-sized 1234H to the stack

POP CS This instruction is illegal

PUSH WORD PTR[BX]

Copies the word contents of the data segment memory location
addressed by BX onto the stack

PUSHA Copies AX, CX, DX, BX, SP, BP, DI, and Sl to the stack

POPA Removes the word contents for the following registers from the
stack: SI, DI, BP, SP, BX, DX, CX, and AX

PUSHAD Copies EAX, ECX, EDX, EBX, ESP, EBP, EDI, and ESI to the stack

POPAD Removes the doubleword contents for the following registers from
the stack: ESI, EDI, EBP, ESP, EBX, EDX, ECX, and EAX

POP EAX Removes a doubleword from the stack and places it into the EAX
register

POP RAX Removes a quadword from the stack and places it into the RAC
register (64-bit mode)

PUSH EDI Copies EDI to the stack

PUSH RSI Copies RSl into the stack (64-bit mode)

PUSH QWORD PTR[RDX] Copies the quadword contents of the memory location addressed
by RDX onto the stack

changes part of the address of the next instruction. In the Pentium 4 or Core2 operated in 64-bit
mode, the 64-bit registers can be pushed or popped from the stack, but they are 8 bytes in length.
The PUSHA and POPA instructions either push or pop all of the registers, except segment
registers, onto the stack. These instructions are not available on the early 8086/8088 processors.
The push immediate instruction is also new to the 80286 through the Core2 microprocessors. Note
the examples in Table 3—11, which show the order of the registers transferred by the PUSHA and
POPA instructions. The 80386 and above also allow extended registers to be pushed or popped. The
64-bit mode for the Pentium 4 and Core2 does not contain a PUSHA or POPA instruction.
Example 315 lists a short program that pushes the contents of AX, BX, and CX onto the stack.
The first POP retrieves the value that was pushed onto the stack from CX and places it into AX. The
second POP places the original value of BX into CX. The last POP places the value of AX into BX.

EXAMPLE 3-15

.MODEL TINY ;select tiny model
0000 .CODE ;start code segment
. STARTUP ;start program
0100 B8 1000 MOV AX,1000H ;load test data

0103 BB 2000 MOV BX,2000H
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0106 B9 3000 MOV CX,3000H
0109 50 PUSH AX ;1000H to stack
010A 53 PUSH BX ;2000H to stack
010B 51 PUSH CX ;3000H to stack
0l0C 58 POP AX ;3000H to AX
010D 59 POP CX ;2000H to CBX
010E 5B POP BX ;1000H to BX
.exit ;exit to DOS
end ;end program

1. The data-addressing modes include register, immediate, direct, register indirect, base-
plus-index, register relative, and base relative-plus-index addressing. The 80386 through
the Pentium 4 microprocessors have an additional addressing mode called scaled-index
addressing.

2. The program memory-addressing modes include direct, relative, and indirect addressing.

3. Table 3-12 lists all real mode data-addressing modes available to the 8086 through the
80286 microprocessors. Note that the 80386 and above use these modes, plus the many
defined through this chapter. In the protected mode, the function of the segment register is to
address a descriptor that contains the base address of the memory segment.

4. The 80386 through Core2 microprocessors have additional addressing modes that allow the
extended registers EAX, EBX, ECX, EDX, EBP, EDI, and ESI to address memory.
Although these addressing modes are too numerous to list in tabular form, in general, any of
these registers function in the same way as those listed in Table 3—12. For example, the
MOV AL,TABLE[EBX+2*ECX+10H] is a valid addressing mode for the 80386—Core2
MiCIrOprocessors.

5. The 64-bit mode for the Pentium 4 and Core2 microprocessors use the same addressing
modes as the Pentium 4 or Core2 in 32-bit mode, except the registers contain a linear
address and they are 64 bits in width. An additional addressing mode called RIP relative
exists for the 64-bit mode that addresses data relative to the address in the instruction
pointer.

6. The MOV instruction copies the contents of the source operand into the destination operand.
The source never changes for any instruction.

7. Register addressing specifies any 8-bit register (AH, AL, BH, BL, CH, CL, DH, or DL) or
any 16-bit register (AX, BX, CX, DX, SP, BP, SI, or DI). The segment registers (CS, DS, ES,
or SS) are also addressable for moving data between a segment register and a 16-bit regis-
ter/memory location or for PUSH and POP. In the 80386 through the Core2 microproces-
sors, the extended registers also are used for register addressing; they consist of EAX, EBX,
ECX, EDX, ESP, EBP, EDI, and ESI. Also available to the 80386 and above are the FS and
GS segment registers. In the 64-bit mode, the registers are RAX, RBX, RCX, RDX, RSP,
RBP, RDI, RSI, and R8 through R15.

8. The MOV immediate instruction transfers the byte or word that immediately follows the
opcode into a register or a memory location. Immediate addressing manipulates constant
data in a program. In the 80386 and above, doubleword immediate data may also be loaded
into a 32-bit register or memory location.

9. The MODEL statement is used with assembly language to identify the start of a file and the
type of memory model used with the file. If the size is TINY, the program exists in one seg-
ment, the code segment, and is assembled as a command (.COM) program. If the SMALL
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TABLE 3-12 Example
real mode data-addressing Assembly Language
modes.
MOV AL,BL
MOV AX,BX
MOV EAX,ECX
MQV DS,DX
MOV AL,LIST

10.

MOV CH,DATA1

MOV ES,DATA2

MOV AL,12

MOV AL,[BP]

MOV AL,[BX]

MOV AL,[DI]

MOV AL,[SI]

MOV AL,[BP+2]

MOV AL,[BX—4]

MOV AL,[ DI+1000H]
MOV AL,[ SI+300H]
MOV AL,LIST[BP]

MOV AL,LIST[BX]

MOV AL,LIST[DI]

MOV AL,LIST[SI]

MOV AL,LIST[BP+2]
MOV AL,LIST[BX-6]
MOV AL,LIST[DI+100H]
MOV AL,LIST[SI+200H]
MOV AL,[ BP+DI]

MOV AL,[BP+SI]

MOV AL,[BX+DI]

MOV AL,[BX+Sl]

MOV AL,[BP+DI+8]
MOV AL,[BP+SI-8]
MOV AL,[BX+DI+10H]
MOV AL,[BX+SI-10H]
MOV AL,LIST[BP+DI]
MOV AL,LIST[BP+SI]
MOV AL,LIST[BX+DI]
MOV AL,LIST[BX+SI]
MOV AL,LIST[BP+DI+2]
MOV AL,LIST[BP+SI-7]
MOV AL,LIST[BX+DI+3]
MOV AL,LIST[BX+SI-2]

8-bit register addressing
16-bit register addressing
32-bit register addressing
Segment register addressing
(DS x 10H) + LIST

(DS x 10H) + DATA1

(DS x 10H) + DATA2
Immediate data of 12

(SS x 10H) + BP

(DS x 10H) + BX
(DS x 10H) + DI

(DS x 10H) + SI
(SSx10H) +BP + 2
(DS x 10H) + BX -4
(DS x 10H) + DI + 1000H

(DS x 10H) + Sl + 300H

(SS x 10H) + LIST + BP

(DS x 10H) + LIST + BX

(DS x 10H) + LIST + DI

(DS x 10H) + LIST + SI
(SSx10H) + LIST+BP + 2
(DS x 10H) + LIST + BX -6
(DS x 10H) + LIST + DI + 100H
(DS x 10H) + LIST + SI + 200H
(SS x 10H) + BP + DI

(SS x 10H) + BP + Sl

(DS x 10H) + BX + DI

(DS x 10H) + BX + SI
(SSX1OH)+BP+DI+8

(SS x 10H) + BP + SI —

(DS x 10H) + BX + DI + 1OH
(DS x 10H) + BX + SI — 10H
(SS x 10H) + LIST + BP + DI

(SS x 10H) + LIST + BP + SI
(DS x 10H) + LIST + BX + DI
(DS x 10H) + LIST + BX + Sl
(SS x 10H) + LIST + BP + DI + 2
(SS x 10H) + LIST + BP + Sl -
(DS x 10H) + LIST + BX + DI + 3
(DS x 10H) + LIST + BX + Sl —

model is used, the program uses a code and data segment and assembles as an execute
(.EXE) program. Other model sizes and their attributes are listed in Appendix A.

Direct addressing occurs in two forms in the microprocessor: (1) direct addressing and (2)
displacement addressing. Both forms of addressing are identical except that direct address-
ing is used to transfer data between EAX, AX, or AL and memory; displacement addressing
is used with any register-memory transfer. Direct addressing requires 3 bytes of memory,
whereas displacement addressing requires 4 bytes. Note that some of these instructions in
the 80386 and above may require additional bytes in the form of prefixes for register and

operand sizes.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Register indirect addressing allows data to be addressed at the memory location pointed to
by either a base (BP and BX) or index register (DI and SI). In the 80386 and above,
extended registers EAX, EBX, ECX, EDX, EBP, EDI, and ESI are used to address memory
data.

Base-plus-index addressing often addresses data in an array. The memory address for this
mode is formed by adding a base register, index register, and the contents of a segment reg-
ister times 10H. In the 80386 and above, the base and index registers may be any 32-bit reg-
ister except EIP and ESP.

Register relative addressing uses a base or index register, plus a displacement to access
memory data.

Base relative-plus-index addressing is useful for addressing a two-dimensional memory
array. The address is formed by adding a base register, an index register, displacement, and
the contents of a segment register times 10H.

Scaled-index addressing is unique to the 80386 through the Core2. The second of two regis-
ters (index) is scaled by a factor of 2X, 4X, or 8X to access words, doublewords, or quad-
words in memory arrays. The MOV AX,[EBX +2*ECX] and the MOV [4*ECX],EDX are
examples of scaled-index instructions.

Data structures are templates for storing arrays of data and are addressed by array name and
field. For example, array NUMBER and field TEN of array NUMBER is addressed as
NUMBER.TEN.

Direct program memory addressing is allowed with the JMP and CALL instructions to any
location in the memory system. With this addressing mode, the offset address and segment
address are stored with the instruction.

Relative program addressing allows a JMP or CALL instruction to branch forward or
backward in the current code segment by £32K bytes. In the 80386 and above, the 32-bit
displacement allows a branch to any location in the current code segment by using a dis-
placement value of £2G bytes. The 32-bit displacement can be used only in protected
mode.

Indirect program addressing allows the JMP or CALL instructions to address another por-
tion of the program or subroutine indirectly through a register or memory location.

The PUSH and POP instructions transfer a word between the stack and a register or mem-
ory location. A PUSH immediate instruction is available to place immediate data on the
stack. The PUSHA and POPA instructions transfer AX, CX, DX, BX, BP, SP, SI, and DI
between the stack and these registers. In the 80386 and above, the extended register and
extended flags can also be transferred between registers and the stack. A PUSHFD stores
the EFLAGS, whereas a PUSHF stores the FLAGS. POPA and PUSHA are not available
in the 64-bit mode.

3-5 QUESTIONS AND PROBLEMS

1.

2.

What do the following MOV instructions accomplish?

(a) MOV AX,BX

(b) MOV BX,AX

(c¢) MOV BL,CH

(d) MOV ESPEBP

(e) MOV RAX,RCX

List the 8-bit registers that are used for register addressing.
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3. List the 16-bit registers that are used for register addressing.
4. List the 32-bit registers that are used for register addressing in the 80386 through the Core2
MiCroprocessors.
5. List the 64-bit registers available to the 64-bit mode of the Pentium 4 and Core2.
6. List the 16-bit segment registers used with register addressing by MOV, PUSH, and POP.
7. What is wrong with the MOV BL,CX instruction?
8. What is wrong with the MOV DS,SS instruction?
9. Select an instruction for each of the following tasks:
(a) copy EBX into EDX
(b) copy BL into CL
(c) copy Slinto BX
(d) copy DS into AX
(e) copy AL into AH
() copy R8 into R10
10. Select an instruction for each of the following tasks:
(a) move 12H into AL
(b) move 123AH into AX
(¢) move OCDH into CL
(d) move 1000H into RAX
(e) move 1200A2H into EBX
11. What special symbol is sometimes used to denote immediate data?
12. What is the purpose of the MODEL TINY statement?
13. What assembly language directive indicates the start of the CODE segment?
14. What is a label?
15. The MOV instruction is placed in what field of a statement?
16. A label may begin with what characters?
17. What is the purpose of the .EXIT directive?
18. Does the MODEL TINY statement cause a program to assemble as an execute (.EXE)
program?
19. What tasks does the .STARTUP directive accomplish in the small memory model?
20. What is a displacement? How does it determine the memory address in a MOV
DS:[2000H],AL instruction?
21. What do the symbols [ ] indicate?
22. Suppose that DS = 0200H, BX = 0300H, and DI = 400H. Determine the memory address
accessed by each of the following instructions, assuming real mode operation:
(a) MOV AL,[1234H]
(b) MOV EAX,[BX]
(c) MOV [DI], AL
23. What is wrong with a MOV [BX],[DI] instruction?
24. Choose an instruction that requires BYTE PTR.
25. Choose an instruction that requires WORD PTR.
26. Choose an instruction that requires DWORD PTR.
27. Select an instruction that requires QWORD PTR.
28. Explain the difference between the MOV BX,DATA instruction and the MOV BX,OFFSET
DATA instruction.
29. Suppose that DS = 1000H, SS = 2000H, BP = 1000H, and DI = 0100H. Determine the

memory address accessed by each of the following instructions, assuming real mode
operation:
(a) MOV AL,[BP+DI]
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30.
3L

32.

33.

34.
35.

36.
37.
38.
39.

40.
41.

42.
43.
44.

45.

46.
47.

48.

(b) MOV CX,[D]]

(c) MOV EDX,[BP]

What, if anything, is wrong with a MOV AL,[BX][SI] instruction?

Suppose that DS = 1200H, BX = 0100H, and SI = 0250H. Determine the address accessed
by each of the following instructions, assuming real mode operation:

(a) MOV [100H],DL

(b) MOV [SI+100H],EAX

(¢) MOV DL,[BX+100H]

Suppose that DS = 1100H, BX = 0200H, LIST = 0250H, and SI = 0500H. Determine
the address accessed by each of the following instructions, assuming real mode operation:
(a) MOV LIST[SI],LEDX

(b) MOV CL,LIST[BX+SI]

(c) MOV CH,[BX+SI]

Suppose that DS = 1300H, SS = 1400H, BP = 1500H, and SI = 0100H. Determine the
address accessed by each of the following instructions, assuming real mode operation:

(a) MOV EAX,[BP+200H]

(b) MOV AL,[BP+SI—200H]

(c) MOV AL,[SI-0100H]

Which base register addresses data in the stack segment?

Suppose that EAX = 00001000H, EBX = 00002000H, and DS = 0010H. Determine the
addresses accessed by the following instructions, assuming real mode operation:

(a) MOV ECX,[EAX+EBX]

(b) MOV [EAX+2*EBX],CL

(c) MOV DH,[EBX+4*EAX+1000H]

Develop a data structure that has five fields of one word each named Fl, F2, F3, F4, and F5
with a structure name of FIELDS.

Show how field F3 of the data structure constructed in question 36 is addressed in a program.
What are the three program memory-addressing modes?

How many bytes of memory store a far direct jump instruction? What is stored in each of
the bytes?

What is the difference between an intersegment and intrasegment jump?

If a near jump uses a signed 16-bit displacement, how can it jump to any memory location
within the current code segment?

The 80386 and above use a -bit displacement to jump to any location within
the 4G-byte code segment.

What is a far jump?

If a JMP instruction is stored at memory location 100H within the current code segment, it
cannot be a jump if it is jumping to memory location 200H within the current
code segment.

Show which JMP instruction assembles (short, near, or far) if the JIMP THERE instruction is
stored at memory address 10000H and the address of THERE is:

(a) 10020H

(b) 11000H

(c) OFFFEH

(d) 30000H

Form a JMP instruction that jumps to the address pointed to by the BX register.

Select a JMP instruction that jumps to the location stored in memory at the location TABLE.
Assume that it is a near JMP.

How many bytes are stored on the stack by a PUSH AX?
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49.
50.
51.
52.
53.

Explain how the PUSH [DI] instruction functions.

What registers are placed on the stack by the PUSHA instruction? In what order?
What does the PUSHAD instruction accomplish?

Which instruction places the EFLAGS on the stack in the Pentium 4 microprocessor?
Is a PUSHA available in the 64-bit mode of the Pentium 4 or the Core2?



CHAPTER 4

Data Movement Instructions

INTRODUCTION

This chapter concentrates on the data movement instructions. The data movement instructions
include MOV, MOVSX, MOVZX, PUSH, POP, BSWAP, XCHG, XLAT, IN, OUT, LEA, LDS,
LES, LES, LGS, LSS, LAHF, SAHF, and the string instructions MOVS, LODS, STOS, INS,
and OUTS. The latest data transfer instruction implemented on the Pentium Pro and above is
the CMOV (conditional move) instruction. The data movement instructions are presented first
because they are more commonly used in programs and are easy to understand.

The microprocessor requires an assembler program, which generates machine language,
because machine language instructions are too complex to efficiently generate by hand. This
chapter describes the assembly language syntax and some of its directives. [This text assumes
that the user is developing software on an IBM personal computer or clone. It is recommended
that the Microsoft MACRO assembler (MASM) be used as the development tool, but the Intel
Assembler (ASM), Borland Turbo assembler (TASM), or similar software function equally as
well. The most recent version of TASM completely emulates the MASM program. This text
presents information that functions with the Microsoft MASM assembler, but most programs
assemble without modification with other assemblers. Appendix A explains the Microsoft
assembler and provides detail on the linker program.] As a more modern alternative, the Visual
C++ Express compiler and its inline assembler program may also be used as a development
system. Both are explained in detail in the text.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

1. Explain the operation of each data movement instruction with applicable addressing modes.

2. Explain the purposes of the assembly language pseudo-operations and key words such as
ALIGN, ASSUME, DB, DD, DW, END, ENDS, ENDP, EQU, .MODEL, OFFSET, ORG,
PROC, PTR, SEGMENT, USEI6, USE32, and USES.

3. Select the appropriate assembly language instruction to accomplish a specific data move-
ment task.

4. Determine the symbolic opcode, source, destination, and addressing mode for a hexadeci-
mal machine language instruction.

5. Use the assembler to set up a data segment, stack segment, and code segment.

111
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6. Show how to set up a procedure using PROC and ENDP.

7. Explain the difference between memory models and full-segment definitions for the
MASM assembler.

8. Use the Visual C++ online assembler to perform data movement tasks.

MOV REVISITED

The MOV instruction, introduced in Chapter 3, explains the diversity of 8086—Core2 addressing
modes. In this chapter, the MOV instruction introduces the machine language instructions available
with various addressing modes and instructions. Machine code is introduced because it may occa-
sionally be necessary to interpret machine language programs generated by an assembler or inline
assembler of Visual C++ . Interpretation of the machine’s native language (machine language)
allows debugging or modification at the machine language level. Occasionally, machine language
patches are made by using the DEBUG program available with DOS and also in Visual C++ for
Windows, which requires some knowledge of machine language. Conversion between machine and
assembly language instructions is illustrated in Appendix B.

Machine Language

Machine language is the native binary code that the microprocessor understands and uses as its
instructions to control its operation. Machine language instructions for the 8086 through the
Core2 vary in length from 1 to as many as 13 bytes. Although machine language appears
complex, there is order to this microprocessor’s machine language. There are well over 100,000
variations of machine language instructions, meaning that there is no complete list of these vari-
ations. Because of this, some binary bits in a machine language instruction are given, and the
remaining bits are determined for each variation of the instruction.

Instructions for the 8086 through the 80286 are 16-bit mode instructions that take the form
found in Figure 4-1(a). The 16-bit mode instructions are compatible with the 80386 and above if
they are programmed to operate in the 16-bit instruction mode, but they may be prefixed, as
shown in Figure 4—-1(b). The 80386 and above assume that all instructions are 16-bit mode
instructions when the machine is operated in the real mode (DOS). In the protected mode
(Windows), the upper byte of the descriptor contains the D-bit that selects either the 16- or 32-bit
instruction mode. At present, only Windows 95 through Windows XP and Linux operate in the
32-bit instruction mode. The 32-bit mode instructions are in the form shown in Figure 4-1(b).

16-bit instruction mode

Opcode
1-2 bytes

MOD-REG-R/M| | Displacement Immediate
0-1 bytes 0-1 bytes 0-2 bytes

FIGURE 4-1

(a)

32-bit instruction mode (80386 through Pentium 4 only)

! Address size : : Register size :|  Opcode MOD-REG-R/M| : Scaled-index : | Displacement | | Immediate
0—1 bytes

0-1bytes :| 1-2bytes 0-1bytes |: 0-1bytes : 0-4 bytes 0-4 bytes

The formats of the 8086—Core2 instructions. (a) The 16-bit form and (b) the 32-bit form.
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FIGURE 4-2 Byte 1 of : : : : :
many machine language O D|WwW
instructions, showing the R S S S
position of the D- and W-bits.

Opcode

These instructions occur in the 16-bit instruction mode by the use of prefixes, which are
explained later in this chapter.

The first 2 bytes of the 32-bit instruction mode format are called override prefixes because
they are not always present. The first modifies the size of the operand address used by the instruc-
tion and the second modifies the register size. If the 80386 through the Pentium 4 operate as 16-bit
instruction mode machines (real or protected mode) and a 32-bit register is used, the register-size
prefix (66H) is appended to the front of the instruction. If operated in the 32-bit instruction mode
(protected mode only) and a 32-bit register is used, the register-size prefix is absent. If a 16-bit
register appears in an instruction in the 32-bit instruction mode, the register-size 16-bit instruction
mode, the register-size prefix is present to select a 16-bit register. The address size-prefix (67H) is
used in a similar fashion, as explained later in this chapter. The prefixes toggle the size of the reg-
ister and operand address from 16-bit to 32-bit or from 32-bit to 16-bit for the prefixed instruction.
Note that the 16-bit instruction mode uses 8- and 16-bit registers and addressing modes, while the
32-bit instruction mode uses 8- and 32-bit registers and addressing modes by default. The prefixes
override these defaults so that a 32-bit register can be used in the 16-bit mode or a 16-bit register
can be used in the 32-bit mode. The mode of operation (16 or 32 bits) should be selected to func-
tion with the current application. If 8- and 32-bit data pervade the application, the 32-bit mode
should be selected; likewise, if 8- and 16-bit data pervade, the 16-bit mode should be selected.
Normally, mode selection is a function of the operating system. (Remember that DOS can operate
only in the 16-bit mode, where Windows can operate in both modes.)

The Opcode. The opcode selects the operation (addition, subtraction, move, and so on) that is
performed by the microprocessor. The opcode is either 1 or 2 bytes long for most machine lan-
guage instructions. Figure 4-2 illustrates the general form of the first opcode byte of many, but
not all, machine language instructions. Here, the first 6 bits of the first byte are the binary
opcode. The remaining 2 bits indicate the direction (D)—not to be confused with the instruction
mode bit (16/32) or direction flag bit (used with string instructions)—of the data flow, and indi-
cate whether the data are a byte or a word (W). In the 80386 and above, words and doublewords
are both specified when W = 1. The instruction mode and register-size prefix (66H) determine
whether W represents a word or a doubleword.

If the direction bit (D) =1, data flow fo the register REG field from the R/M field located
in the second byte of an instruction. If the D-bit=0 in the opcode, data flow to the R/M field
from the REG field. If the W-bit =1, the data size is a word or doubleword; if the W-bit =0, the
data size is always a byte. The W-bit appears in most instructions, while the D-bit appears mainly
with the MOV and some other instructions. Refer to Figure 4-3 for the binary bit pattern of the
second opcode byte (reg-mod-r/m) of many instructions. Figure 4-3 shows the location of the
MOD (mode), REG (register), and R/M (register/memory) fields.

FIGURE 4-3 Byte 2 of MOD REG R/M
many machine language : : : : :
instructions, showing the
position of the MOD, REG,
and R/M fields.
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TABLE 4-1 MOD field for "
the 16-bit instruction mode. MOD Function
00 No displacement
01 8-bit sign-extended displacement
10 16-bit signed displacement
11 R/M is a register

MOD Field. The MOD field specifies the addressing mode (MOD) for the selected instruction.
The MOD field selects the type of addressing and whether a displacement is present with the
selected type. Table 4—1 lists the operand forms available to the MOD field for 16-bit instruction
mode, unless the operand address-size override prefix (67H) appears. If the MOD field contains
an 11, it selects the register-addressing mode. Register addressing uses the R/M field to specify a
register instead of a memory location. If the MOD field contains a 00, 01, or 10, the R/M field
selects one of the data memory-addressing modes. When MOD selects a data memory address-
ing mode, it indicates that the addressing mode contains no displacement (00), an 8-bit sign-
extended displacement (01), or a 16-bit displacement (10). The MOV AL,[DI] instruction is an
example that contains no displacement, a MOV AL,[DI+2] instruction uses an 8-bit displace-
ment (+2), and a MOV AL,[DI+1000H] instruction uses a 16-bit displacement ( +1000H).

All 8-bit displacements are sign-extended into 16-bit displacements when the micro-
processor executes the instruction. If the 8-bit displacement is 00H-7FH (positive), it is sign-
extended to 0000H-007FH before adding to the offset address. If the 8-bit displacement is
80H-FFH (negative), it is sign-extended to FFSOH-FFFFH. To sign-extend a number, its sign-bit
is copied to the next higher-order byte, which generates either a 00H or an FFH in the next
higher-order byte. Some assembler programs do not use the 8-bit displacements and in place
default to all 16-bit displacements.

In the 80386 through the Core2 microprocessors, the MOD field may be the same as
shown in Table 4—1 for 16-bit instruction mode; if the instruction mode is 32 bits, the MOD field
is as it appears in Table 4-2. The MOD field is interpreted as selected by the address-size over-
ride prefix or the operating mode of the microprocessor. This change in the interpretation of the
MOD field and instruction supports many of the numerous additional addressing modes allowed
in the 80386 through the Core2. The main difference is that when the MOD field is a 10, this
causes the 16-bit displacement to become a 32-bit displacement, to allow any protected mode
memory location (4G bytes) to be accessed. The 80386 and above only allow an 8- or 32-bit dis-
placement when operated in the 32-bit instruction mode, unless the address-size override prefix
appears. Note that if an 8-bit displacement is selected, it is sign-extended into a 32-bit displace-
ment by the microprocessor.

Register Assignments. Table 4-3 lists the register assignments for the REG field and the R/M
field (MOD = 11). This table contains three lists of register assignments: one is used when the
W bit =0 (bytes), and the other two are used when the W bit=1 (words or doublewords). Note
that doubleword registers are only available to the 80386 through the Core2.

TABLE 4-2 MOD field for ]
the 32-bit instruction mode MOD Function
(80386—Core2 only).

00 No displacement
01 8-bit sign-extended displacement
10 32-bit signed displacement

11 R/M is a register
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TABLE 4-3 REG and
R/M (when) MOD = 11 Code W = 0 (Byte) W =1 (Word) W = 1 (Doubleword)

assignments.

000 AL AX EAX
001 CL CX ECX
010 DL DX EDX
011 BL BX EBX
100 AH SP ESP
101 CH BP EBP
110 DH SI ESI

111 BH DI EDI

Suppose that a 2-byte instruction, 8BECH, appears in a machine language program.
Because neither a 67H (operand address-size override prefix) nor a 66H (register-size override
prefix) appears as the first byte, the first byte is the opcode. If the microprocessor is operated in the
16-bit instruction mode, this instruction is converted to binary and placed in the instruction format
of bytes 1 and 2, as illustrated in Figure 4—4. The opcode is 100010. If you refer to Appendix B,
which lists the machine language instructions, you will find that this is the opcode for a MOV
instruction. Notice that both the D and W bits are a logic 1, which means that a word moves into
the destination register specified in the REG field. The REG field contains a 101, indicating regis-
ter BP, so the MOV instruction moves data into register BP. Because the MOD field contains a 11,
the R/M field also indicates a register. Here, R/M = 100 (SP); therefore, this instruction moves
data from SP into BP and is written in symbolic form as a MOV BP,SP instruction.

Suppose that a 668BESH instruction appears in an 80386 or above, operated in the 16-bit
instruction mode. The first byte (66H) is the register-size override prefix that selects 32-bit
register operands for the 16-bit instruction mode. The remainder of the instruction indicates that
the opcode is a MOV with a source operand of EAX and a destination operand of EBP. This
instruction is a MOV EBP,EAX. The same instruction becomes a MOV BP,AX instruction in the
80386 and above if it is operated in the 32-bit instruction mode, because the register-size override
prefix selects a 16-bit register. Luckily, the assembler program keeps track of the register- and
address-size prefixes and the mode of operation. Recall that if the .386 switch is placed before
the MODEL statement, the 32-bit mode is selected; if it is placed after the . MODEL statement,
the 16-bit mode is selected. All programs written using the inline assembler in Visual C++ are
always in the 32-bit mode.

R/M Memory Addressing. 1f the MOD field contains a 00, 01, or 10, the R/M field takes on a
new meaning. Table 4—4 lists the memory-addressing modes for the R/M field when MOD is a
00, 01, or 10 for the 16-bit instruction mode.

Opcode D W MOD REG R/M

1:0i0:0:1:0]1]1 1:1]1i0i1]|1i0i0

Opcode = MOV

D = Transfer to register (REG)
W = Word

MOD = R/M is a register

REG = BP

R/M = SP

FIGURE 4-4 The 8BEC instruction placed into bytes 1 and 2 formats from Figures 4-2 and
4-3. This instruction is a MOV BP,SP.
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TABLE 4-4 16-bit R/M

memory-addressing modes. R/M Code Addressing Mode
000 S:[BX+SI]
001 S:[BX+DI]
010 S:[BP+SI]
011 S:[BP+DI]
100 DS [SI]
101 DS:[DI]
110 SS:[BP]*
111 DS:[BX]

*Note: See text section, Special Addressing
Mode.

All of the 16-bit addressing modes presented in Chapter 3 appear in Table 4—4. The dis-
placement, discussed in Chapter 3, is defined by the MOD field. If MOD =00 and R/M =101,
the addressing mode is [DI]. If MOD =01 or 10, the addressing mode is [DI+ 33H ], or LIST
[DI + 22H] for the 16-bit instruction mode. This example uses LIST, 33H, and 22H as arbitrary
values for the displacement.

Figure 4-5 illustrates the machine language version of the 16-bit instruction MOV
DL,[DI] or instruction (8AISH). This instruction is 2 bytes long and has an opcode 100010,
D=1 (to REG from R/M), W =0 (byte), MOD =00 (no displacement), REG=010 (DL), and
R/M = 101 ([DI]). If the instruction changes to MOV DL,[ DI + 1], the MOD field changes to 01
for an 8-bit displacement, but the first 2 bytes of the instruction otherwise remain the same. The
instruction now becomes 8AS5501H instead of 8 A15H. Notice that the 8-bit displacement
appends to the first 2 bytes of the instruction to form a 3-byte instruction instead of 2 bytes. If the
instruction is again changed to a MOV DL,[DI + 1000H ], the machine language form becomes
8A750010H. Here, the 16-bit displacement of 1000H (coded as 0010H) appends the opcode.

Special Addressing Mode. There is a special addressing mode that does not appear in Tables
4-2,4-3, or 4-4. It occurs whenever memory data are referenced by only the displacement mode
of addressing for 16-bit instructions. Examples are the MOV [1000H],DL and MOV NUMB,DL
instructions. The first instruction moves the contents of register DL into data segment memory
location 1000H. The second instruction moves register DL into symbolic data segment memory
location NUMB.

Whenever an instruction has only a displacement, the MOD field is always a 00 and the
R/M field is always 110. As shown in the tables, the instruction contains no displacement and uses
addressing mode [BP]. You cannot actually use addressing mode [BP] without a displacement in
machine language. The assembler takes care of this by using an 8-bit displacement (MOD =01)

Opcode D W MOD REG R/M
1i0i0i0:i1:0(1]o0 oiofloitiofl1io0i1
Opcode = MOV
D = Transfer to register (REG)
W = Byte
MOD = No displacement
REG = DL
R/M = DS:[DI]

FIGURE 4-5 A MOV DL,[DI] instruction converted to its machine language form.
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Opcode D W MOD REG R/M
1i0i0i0:i1:0]0]o0 o:o0|lo:1io0|l1i1:0
Byte 1 Byte 2
Displacement—Ilow Displacement—high
0:0:0:0:0:0:0:0 0:0:0i1:0:0:0:0
Byte 3 Byte 4

Opcode = MOV

D = Transfer from register (REG)

W = Byte

MOD = because R/M is [BP] (special addressing)
REG = DL

R/M = DS:[BP]

Displacement = 1000H

FIGURE 4-6 The MOV [1000H],DI instruction uses the special addressing mode.

of OOH whenever the [BP] addressing mode appears in an instruction. This means that the [BP]
addressing mode assembles as a [BP + 0], even though a [BP] is used in the instruction. The same
special addressing mode is also available for the 32-bit mode.

Figure 4-6 shows the binary bit pattern required to encode the MOV [1000H],DL instruc-
tion in machine language. If the individual translating this symbolic instruction into machine
language does not know about the special addressing mode, the instruction would incorrectly
translate to a MOV [BP],DL instruction. Figure 4-7 shows the actual form of the MOV [BP],.DL
instruction. Notice that this is a 3-byte instruction with a displacement of 00H.

Opcode D W MOD REG R/M
1 0 0:0 1 o|lo]oO 0 1 0 1 0 1 1 0
Byte 1 Byte 2

Opcode = MOV

D = Transfer from register (REG)

W = Byte

MOD = because R/M is [BP] (special addressing)
REG = DL

R/M = DS:[BP]

Displacement = 00H

FIGURE 4-7 The MOV [BP],DL instruction converted to binary machine language.
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TABLE 4-5 32-bit address-

ing modes selected by R/M. R/M Code Function

000 DSIEAX]

001 DS:ECX]

010 DS:[EDX]

011 DS:EBX]

100 Uses scaled-index byte
101 SS{EBPJ*

110 DSIESI]

111 DS:[EDI]

*Note: See text section, Special Addressing Mode.

32-Bit Addressing Modes. The 32-bit addressing modes found in the 80386 and above are
obtained by either running these machines in the 32-bit instruction mode or in the 16-bit instruc-
tion mode by using the address-size prefix 67H. Table 4-5 shows the coding for R/M used to
specify the 32-bit addressing modes. Notice that when R/M = 100, an additional byte called a
scaled-index byte appears in the instruction. The scaled-index byte indicates the additional forms
of scaled-index addressing that do not appear in Table 4-5. The scaled-index byte is mainly used
when two registers are added to specify the memory address in an instruction. Because the
scaled-index byte is added to the instruction, there are 7 bits in the opcode and 8 bits in the
scaled-index byte to define. This means that a scaled-index instruction has 215 (32K) possible
combinations. There are over 32,000 different variations of the MOV instruction alone in the
80386 through the Core2 microprocessors.

Figure 4-8 shows the format of the scaled-index byte as selected by a value of 100 in the
R/M field of an instruction when the 80386 and above use a 32-bit address. The leftmost 2 bits
select a scaling factor (multiplier) of 1x, 2%, 4X, or 8x. Note that a scaling factor of 1x is
implicit if none is used in an instruction that contains two 32-bit indirect address registers. The
index and base fields both contain register numbers, as indicated in Table 43 for 32-bit registers.

The instruction MOV EAX,[EBX+4*ECX] is encoded as 67668B048BH. Notice that
both the address size (67H) and register size (66H) override prefixes appear in the instruction.
This coding (67668B048BH) is used when the 80386 and above microprocessors are operated in
the 16-bit instruction mode for this instruction. If the microprocessor operates in the 32-bit
instruction mode, both prefixes disappear and the instruction becomes an 8BO48BH instruction.
The use of the prefixes depends on the mode of operation of the microprocessor. Scaled-index
addressing can also use a single register multiplied by a scaling factor. An example is the MOV
AL,[2*ECX] instruction. The contents of the data segment location addressed by two times ECX
are copied into AL.

An Immediate Instruction. Suppose that the MOV WORD PTR [BX+1000H],1234H instruc-
tion is chosen as an example of a 16-bit instruction using immediate addressing. This instruction
moves a 1234H into the word-sized memory location addressed by the sum of 1000H, BX, and

FIGURE 4-8 The scaled- s s Index Base
index byte. : : : : :
SS
00= x1
01=x2
10= x4

11=x8
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Opcode w MOD R/M
1i1i0i0:i0:i1:1]1 1io0|loioio| 1i1i1
Byte 1 Byte 2
Displacement—low Displacement—high
0i0i0i0i0 000 0:0:0:1:0:0i0:0
Byte 3 Byte 4
Data—low Data—high
0i0i1i1i0:1i0:0 0:0:0:1:0:0i1:0
Byte 5 Byte 6

Opcode = MOV (immediate)

W = Word

MOD = 16-bit displacement

REG = 000 (not used in immediate addressing)
R/M = DS:[BX]

Displacement = 1000H

Data = 1234H

FIGURE 4-9 A MOV WORD PTR [BX + 1000H], 1234H instruction converted to binary
machine language.

DS x 10H. This 6-byte instruction uses 2 bytes for the opcode, W, MOD, and R/M fields. Two
of the 6 bytes are the data of 1234H; 2 of the 6 bytes are the displacement of 1000H. Figure 4-9
shows the binary bit pattern for each byte of this instruction.

This instruction, in symbolic form, includes WORD PTR. The WORD PTR directive indi-
cates to the assembler that the instruction uses a word-sized memory pointer. If the instruction
moves a byte of immediate data, BYTE PTR replaces WORD PTR in the instruction. Likewise,
if the instruction uses a doubleword of immediate data, the DWORD PTR directive replaces
BYTE PTR. Most instructions that refer to memory through a pointer do not need the BYTE
PTR, WORD PTR, or DWORD PTR directives. These directives are necessary only when it is
not clear whether the operation is a byte, word, or doubleword. The MOV [BX],AL instruction is
clearly a byte move; the MOV [BX],9 instruction is not exact, and could therefore be a byte-,
word-, or doubleword-sized move. Here, the instruction must be coded as MOV BYTE PTR
[BX],9, MOV WORD PTR [BX],9, or MOV DWORD PTR [BX],9. If not, the assembler flags it
as an error because it cannot determine the intent of the instruction.

Segment MOV Instructions. 1f the contents of a segment register are moved by the MOV,
PUSH, or POP instructions, a special set of register bits (REG field) selects the segment register
(see Table 4-6).

Figure 4-10 shows a MOV BX,CS instruction converted to binary. The opcode for this
type of MOV instruction is different for the prior MOV instructions. Segment registers can be
moved between any 16-bit register or 16-bit memory location. For example, the MOV [DI],DS
instruction stores the contents of DS into the memory location addressed by DI in the data
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TABLE 4-6 Segment reg-
ister selection. Code Segment Register
000 ES
001 cs*
010 SS
011 DS
100 FS
101 GS
*Note: MOV CS,R/M and POP CS are not
allowed.
Opcode MOD REG R/M
1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 1

Opcode = MOV

MOD = R/M is a register
REG =CS

R/M = BX

FIGURE 4-10 A MOV BX,CS instruction converted to binary machine language.

segment. An immediate segment register MOV is not available in the instruction set. To load a
segment register with immediate data, first load another register with the data and then move it to
a segment register.

Although this discussion has not been a complete coverage of machine language coding, it
provides enough information for machine language programming. Remember that a program
written in symbolic assembly language (assembly language) is rarely assembled by hand into
binary machine language. An assembler program converts symbolic assembly language into
machine language. With the microprocessor and its over 100,000 instruction variations, let us
hope that an assembler is available for the conversion, because the process is very time-consuming,
although not impossible.

The 64-Bit Mode for the Pentium 4 and Core2

None of the information presented thus far addresses the issue of 64-bit operation of the Pentium
4 or Core2. In the 64-bit mode, an additional prefix called REX (register extension) is added.
The REX prefix, which is encoded as a 40H—4FH, follows other prefixes and is placed immedi-
ately before the opcode to modify it for 64-bit operation. The purpose of the REX prefix is to
modify the reg and r/m fields in the second byte of the instruction. REX is needed to be able to
address registers R8 through R15. Figure 4—11 illustrates the structure of REX and also its appli-
cation to the second byte of the opcode.

The register and memory address assignments for the rrrr and mmmm fields are shown in
Table 4-7 for 64-bit operations. The reg field can only contain register assignments as in other
modes of operation and the r/m field contains either a register or memory assignment.

Figure 4—12 shows the scaled-index byte with the REX prefix for more complex address-
ing modes and also for using a scaling factor in the 64-bit mode of operation. As with 32-bit
instructions, the modes allowed by the scaled-index byte are fairly all conclusive allowing pairs
of registers to address memory and also an index factor of 2X, 4, or 8X. An example is the
instruction MOV RAXW,[RDX+RCX~—12], which requires the scaled-index byte with an
index of 1, which is understood but never entered into the instruction.
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The application Second byte of opcode
of REX without scaled index. REX prefix Opcode MOD REG R/M

0100 W[R|O|M MiM:iM

i

S <

=<
=<
=<

W
W

1 (64 bits)
0 (CS descriptor)

TABLE 4-7 The 64-bit reg-
ister and memory designators Code Register Memory
for rrrr and mmmm.

0000 RAX [RAX]
0001 RCX [RCX]
0010 RDX [RDX]
0011 RBX [RBX]
0100 RSP See note
0101 RBP [RBP]
0110 RSI [RSI]
0111 RDI [RDI]
1000 R8 [R8]
1001 R9 [R9]
1010 R10 [R10]
1011 R11 [R11]
1100 R12 [R12]
1101 R13 [R13]
1110 R14 [R14]
1111 R15 [R15]

Note: This addressing mode specifies the inclusion
of the scaled-index byte.

REX prefix Opcode Second byte of opcode Scaled index
MOD REG R/M Scale Index  Base
1:0:0

W
w

I

T -

B

I =
us)
us)

b

=1 (64 bits)
= 0 (CS descriptor)

FIGURE 4-12 The scaled-index byte and REX prefix for 64-bit operations.
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4-2

PUSH/POP

The PUSH and POP instructions are important instructions that store and retrieve data from
the LIFO (last-in, first-out) stack memory. The microprocessor has six forms of the PUSH
and POP instructions: register, memory, immediate, segment register, flags, and all registers.
The PUSH and POP immediate and the PUSHA and POPA (all registers) forms are not avail-
able in the earlier 8086/8088 microprocessors, but are available to the 80286 through the
Core?2.

Register addressing allows the contents of any 16-bit register to be transferred to or
from the stack. In the 80386 and above, the 32-bit extended registers and flags (EFLAGS) can
also be pushed or popped from the stack. Memory-addressing PUSH and POP instructions
store the contents of a 16-bit memory location (or 32 bits in the 80386 and above) on the
stack or stack data into a memory location. Immediate addressing allows immediate data to
be pushed onto the stack, but not popped off the stack. Segment register addressing allows the
contents of any segment register to be pushed onto the stack or removed from the stack (ES
may be pushed, but data from the stack may never be popped into ES). The flags may be
pushed or popped from that stack, and the contents of all the registers may be pushed or

popped.

PUSH

The 8086-80286 PUSH instruction always transfers 2 bytes of data to the stack; the 80386
and above transfer 2 or 4 bytes, depending on the register or size of the memory location.
The source of the data may be any internal 16- or 32-bit register, immediate data, any seg-
ment register, or any 2 bytes of memory data. There is also a PUSHA instruction that copies
the contents of the internal register set, except the segment registers, to the stack. The
PUSHA (push all) instruction copies the registers to the stack in the following order: AX,
CX, DX, BX, SP, BP, SI, and DI. The value for SP that is pushed onto the stack is whatever
it was before the PUSHA instruction executed. The PUSHF (push flags) instruction copies
the contents of the flag register to the stack. The PUSHAD and POPAD instructions push
and pop the contents of the 32-bit register set found in the 80386 through the Pentium 4. The
PUSHA and POPA instructions do not function in the 64-bit mode of operation for the
Pentium 4.

Whenever data are pushed onto the stack, the first (most-significant) data byte moves to
the stack segment memory location addressed by SP — 1. The second (least-significant) data
byte moves into the stack segment memory location addressed by SP — 2. After the data
are stored by a PUSH, the contents of the SP register decrement by 2. The same is true for a
doubleword push, except that 4 bytes are moved to the stack memory (most-significant byte
first), after which the stack pointer decrements by 4. Figure 4-13 shows the operation of the
PUSH AX instruction. This instruction copies the contents of AX onto the stack where address
SS:[SP — 1]=AH, SS:[SP — 2] = AL , and afterwards SP = SP — 2. In 64-bit mode,
8 bytes of the stack are used to store the number pushed onto the stack.

The PUSHA instruction pushes all the internal 16-bit registers onto the stack, as illustrated
in Figure 4-14. This instruction requires 16 bytes of stack memory space to store all eight 16-bit
registers. After all registers are pushed, the contents of the SP register are decremented by 16.
The PUSHA instruction is very useful when the entire register set (microprocessor environment)
of the 80286 and above must be saved during a task. The PUSHAD instruction places the 32-bit
register set on the stack in the 80386 through the Core2. PUSHAD requires 32 bytes of stack
storage space.



DATA MOVEMENT INSTRUCTIONS

123

Stack segment

12FFF
\/V
_/——’\
03800
6 A 037FF
EAX 6 AB3 6 AB3
/ B 3 037FE <—
M 7
T SN——
ESP 07FE
A_/_\,_f__,
Cs 03000
DS 07FE
Y
Ss 0300 L @
3000 37FE
’;\/\

FIGURE 4-13 The effect of the PUSH AX instruction on ESP and stack memory locations
37FFH and 37FEH. This instruction is shown at the point after execution.

The PUSH immediate data instruction has two different opcodes, but in both cases, a 16-
bit immediate number moves onto the stack; if PUSHD is used, a 32-bit immediate datum is
pushed. If the values of the immediate data are 00H—FFH, the opcode is a 6AH; if the data are
0100H-FFFFH, the opcode is 68H. The PUSH 8 instruction, which pushes 0008H onto the

FIGURE 4-14 The opera-
tion of the PUSHA instruction,
showing the location and

order of stack data.

SP after PUSHA ——— DI

<— 16-bits —»

AX

CX

DX

BX

SP

BP

Sl

—
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TABLE 4-8 The PUSH

instruction.

CHAPTER 4
Symbolic Example Note
PUSH reg16 PUSH BX 16-bit register
PUSH reg32 PUSH EDX 32-bit register
PUSH mem16 PUSH WORD PTR[BX] 16-bit pointer
PUSH mem32 PUSH DWORD PTRI[EBX] 32-bit pointer
PUSH mem64 PUSH QWORD PTR[RBX] 64-bit pointer (64-bit mode)
PUSH seg PUSH DS Segment register
PUSH imm8 PUSH ‘R’ 8-bit immediate
PUSH imm16 PUSH 1000H 16-bit immediate
PUSHD imm32 PUSHD 20 32-bit immediate
PUSHA PUSHA Save all 16-bit registers
PUSHAD PUSHAD Save all 32-bit registers
PUSHF PUSHF Save flags
PUSHFD PUSHFD Save EFLAGS

stack, assembles as 6A08H. The PUSH 1000H instruction assembles as 680010H. Another
example of PUSH immediate is the PUSH ‘A’ instruction, which pushes a 0041H onto the stack.
Here, the 41H is the ASCII code for the letter A.

Table 4-8 lists the forms of the PUSH instruction that include PUSHA and PUSHF. Notice
how the instruction set is used to specify different data sizes with the assembler.

POP

The POP instruction performs the inverse operation of a PUSH instruction. The POP instruction
removes data from the stack and places it into the target 16-bit register, segment register, or a 16-
bit memory location. In the 80386 and above, a POP can also remove 32-bit data from the stack
and use a 32-bit address. The POP instruction is not available as an immediate POP. The POPF
(pop flags) instruction removes a 16-bit number from the stack and places it into the flag regis-
ter; the POPFD removes a 32-bit number from the stack and places it into the extended flag reg-
ister. The POPA (pop all) instruction removes 16 bytes of data from the stack and places them
into the following registers, in the order shown: DI, SI, BP, SP, BX, DX, CX, and AX. This is the
reverse order from the way they were placed on the stack by the PUSHA instruction, causing the
same data to return to the same registers. In the 80386 and above, a POPAD instruction reloads
the 32-bit registers from the stack.

Suppose that a POP BX instruction executes. The first byte of data removed from the stack
(the memory location addressed by SP in the stack segment) moves into register BL. The second
byte is removed from stack segment memory location SP + 1 and is placed into register BH.
After both bytes are removed from the stack, the SP register is incremented by 2. Figure 4-15
shows how the POP BX instruction removes data from the stack and places them into register BX.

The opcodes used for the POP instruction and all of its variations appear in Table 4-9.
Note that a POP CS instruction is not a valid instruction in the instruction set. If a POP CS
instruction executes, only a portion of the address (CS) of the next instruction changes. This
makes the POP CS instruction unpredictable and therefore not allowed.

Initializing the Stack

When the stack area is initialized, load both the stack segment (SS) register and the stack pointer
(SP) register. It is normal to designate an area of memory as the stack segment by loading SS
with the bottom location of the stack segment.
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Stack segment

OFFFF
_—
A~
EAX 01008 <—
] 39 01007
EBX 392F < 392F > F 01006
 o~———
—~— —
ESP 1008
M
cS
DS 1008 00000
A
Ss 0000 ,@
00000 1008
"'\—-\.’-\/

FIGURE 4-15 The POP BX instruction, showing how data are removed from the stack. This
instruction is shown after execution.

TABLE 4-9 The POP

instructions. Symbolic Example Note
POP reg16 POP CX 16-bit register
POP reg32 POP EBP 32-bit register
POP mem16 POP WORD PTR[BX+1] 16-bit pointer
POP mem32 POP DATA3 32-bit memory address
POP mem64 POP FROG 64-bit memory address (64-bit mode)
POP seg POP FS Segment register
POPA POPA Pops all 16-bit registers
POPAD POPAD Pops all 32-bit registers
POPF POPF Pops flags
POPFD POPFD Pops EFLAGS

For example, if the stack segment is to reside in memory locations 10000H—1FFFFH, load SS
with a 1000H. (Recall that the rightmost end of the stack segment register is appended with a OH for
real mode addressing.) To start the stack at the top of this 64K-byte stack segment, the stack pointer
(SP) is loaded with a 0000H. Likewise, to address the top of the stack at location 10FFFH, use a
value of 1000H in SP. Figure 4—16 shows how this value causes data to be pushed onto the top of the
stack segment with a PUSH CX instruction. Remember that all segments are cyclic in nature—that
is, the top location of a segment is contiguous with the bottom location of the segment.

In assembly language, a stack segment is set up as illustrated in Example 4-1. The first
statement identifies the start of the stack segment and the last statement identifies the end of the
stack segment. The assembler and linker programs place the correct stack segment address in SS
and the length of the segment (top of the stack) into SP. There is no need to load these registers
in your program unless you wish to change the initial values for some reason.
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EAX
EBX Stack segment
N 1FFFF
ECX A037 A037 1EFFE
N
ESP 0000
M/d
Cs ]
— S—
DS 0000
A
SS 1000 4,@3
10000
o—
10000
10000 <—

FIGURE 4-16 The PUSH CX instruction, showing the cyclical nature of the stack segment. This
instruction is shown just before execution, to illustrate that the stack bottom is contiguous to the top.

EXAMPLE 4-1
0000 STACK_SEG SEGMENT STACK
0000 0100][ DW 100H DUP (?)
22?2
]
0200 STACK_SEG ENDS

An alternative method for defining the stack segment is used with one of the memory mod-
els for the MASM assembler only (refer to Appendix A). Other assemblers do not use models; if
they do, the models are not exactly the same as with MASM. Here, the .STACK statement, fol-
lowed by the number of bytes allocated to the stack, defines the stack area (see Example 4-2).
The function is identical to Example 4-1. The .STACK statement also initializes both SS and SP.
Note that this text uses memory models that are designed for the Microsoft Macro Assembler
program MASM.

EXAMPLE 4-2

.MODEL SMALL
.STACK 200H ;set stack size

If the stack is not specified by using either method, a warning will appear when the pro-
gram is linked. The warning may be ignored if the stack size is 128 bytes or fewer. The system
automatically assigns (through DOS) at least 128 bytes of memory to the stack. This memory
section is located in the program segment prefix (PSP), which is appended to the beginning of
each program file. If you use more memory for the stack, you will erase information in the PSP
that is critical to the operation of your program and the computer. This error often causes the
computer program to crash. If the TINY memory model is used, the stack is automatically
located at the very end of the segment, which allows for a larger stack area.
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LOAD-EFFECTIVE ADDRESS

There are several load-effective address instructions in the microprocessor instruction set. The LEA
instruction loads any 16-bit register with the offset address, as determined by the addressing mode
selected for the instruction. The LDS and LES variations load any 16-bit register with the offset
address retrieved from a memory location, and then load either DS or ES with a segment address
retrieved from memory. In the 80386 and above, LFS, LGS, and LSS are added to the instruction set,
and a 32-bit register can be selected to receive a 32-bit offset from memory. In the 64-bit mode for
the Pentium 4, the LDS and LES instructions are invalid and not used because the segments have no
function in the flat memory model. Table 4-10 lists the load-effective address instructions.

LEA

The LEA instruction loads a 16- or 32-bit register with the offset address of the data specified by
the operand. As the first example in Table 4-9 shows, the operand address NUMB is loaded into
register AX, not the contents of address NUMB.

By comparing LEA with MOV, we observe that LEA BX,[DI] loads the offset address
specified by [DI] (contents of DI) into the BX register; MOV BX,[DI] loads the data stored at the
memory location addressed by [DI] into register BX.

Earlier in the text, several examples were presented by using the OFFSET directive. The
OFFSET directive performs the same function as an LEA instruction if the operand is a dis-
placement. For example, the MOV BX,OFFSET LIST performs the same function as LEA
BX,LIST. Both instructions load the offset address of memory location LIST into the BX regis-
ter. See Example 4-3 for a short program that loads SI with the address of DATA1 and DI with
the address of DATAZ2. It then exchanges the contents of these memory locations. Note that the
LEA and MOV with OFFSET instructions are both the same length (3 bytes).

EXAMPLE 4-3
.MODEL SMALL ;select small model
0000 .DATA ;start data segment
0000 2000 DATA1  DW 2000H ;define DATA1
0002 3000 DATA2  DW 3000H ;define DATA2
0000 .CODE ;start code segment
. STARTUP ijstart program
0017 BE 0000 R LEA SI,DATAl ;address DATA1 with SI
001A BF 0002 R MOV DI,OFFSET DATA2 ;address DATA2 with DI
001D 8B 1C MOV BX, [SI] ;exchange DAT1 with DATA2
001F 8B 0D MOV CX, [DI]
0021 89 0OC MOV [SI],CX
0023 89 1D MOV [DI],BX
.EXIT
END
TABLE 4-10 Load-effective address instructions.
Assembly Language Operation
LEA AX,NUMB Loads AX with the offset address of NUMB
LEA EAX,NUMB Loads EAX with the offset address of NUMB
LDS DI,LIST Loads DS and DI with the 32-bit contents of data segment memory location LIST
LDS EDI,LISTA Loads the DS and EDI with the 48-bit contents of data segment memory location LIST1
LES BX,CAT Loads ES and BX with the 32-bit contents of data segment memory location CAT
LFS DI,DATA1 Loads FS and DI with the 32-bit contents of data segment memory location DATA1
LGS SI,DATA5 Loads GS and Sl with the 32-bit contents of data segment memory location DATAS
LSS SPMEM Loads SS and SP with the 32-bit contents of data segment memory location MEM
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But why is the LEA instruction available if the OFFSET directive accomplishes the same
task? First, OFFSET only functions with simple operands such as LIST. It may not be used for an
operand such as [DI], LIST [SI], and so on. The OFFSET directive is more efficient than the
LEA instruction for simple operands. It takes the microprocessor longer to execute the LEA
BX,LIST instruction than the MOV BX,OFFSET LIST. The 80486 microprocessor, for example,
requires two clocks to execute the LEA BX,LIST instruction and only one clock to execute MOV
BX,OFFSET LIST. The reason that the MOV BX,OFFSET LIST instruction executes faster is
because the assembler calculates the offset address of LIST, whereas the microprocessor calcu-
lates the address for the LEA instruction. The MOV BX,OFFSET LIST instruction is actually
assembled as a move immediate instruction and is more efficient.

Suppose that the microprocessor executes an LEA BX,[DI] instruction and DI contains a
1000H. Because DI contains the offset address, the microprocessor transfers a copy of DI into
BX. A MOV BX,DI instruction performs this task in less time and is often preferred to the LEA
BX,[DI] instruction.

Another example is LEA SI,[BX + DI]. This instruction adds BX to DI and stores the sum
in the SI register. The sum generated by this instruction is a modulo-64K sum. (A modulo-64K
sum drops any carry out of the 16-bit result.) If BX = 1000H and DI = 2000H, the offset
address moved into SI is 3000H. If BX = 1000H and DI = FFOOH, the offset address is OFOOH
instead of 10FOOH. Notice that the second result is a modulo-64K sum of OFOOH.

LDS, LES, LFS, LGS, and LSS

The LDS, LES, LFS, LGS, and LSS instructions load any 16-bit or 32-bit register with an offset
address, and the DS, ES, FS, GS, or SS segment register with a segment address. These instruc-
tions use any of the memory-addressing modes to access a 32-bit or 48-bit section of memory
that contains both the segment and offset address. The 32-bit section of memory contains a 16-
bit offset and segment address, while the 48-bit section contains a 32-bit offset and a segment
address. These instructions may not use the register addressing mode (MOD = 11). Note that
the LFS, LGS, and LSS instructions are only available on 80386 and above, as are the 32-bit
registers.

Figure 4-17 illustrates an example LDS BX,[DI] instruction. This instruction transfers the
32-bit number, addressed by DI in the data segment, into the BX and DS registers. The LDS,
LES, LFS, LGS, and LSS instructions obtain a new far address from memory. The offset address
appears first, followed by the segment address. This format is used for storing all 32-bit memory
addresses.

A far address can be stored in memory by the assembler. For example, the ADDR DD FAR
PTR FROG instruction stores the offset and segment address (far address) of FROG in 32 bits of
memory at location ADDR. The DD directive tells the assembler to store a doubleword (32-bit
number) in memory address ADDR.

In the 80386 and above, an LDS EBX,[DI] instruction loads EBX from the 4-byte section
of memory addressed by DI in the data segment. Following this 4-byte offset is a word that is
loaded to the DS register. Notice that instead of addressing a 32-bit section of memory, the 80386
and above address a 48-bit section of the memory whenever a 32-bit offset address is loaded to a
32-bit register. The first 4 bytes contain the offset value loaded to the 32-bit register and the last
2 bytes contain the segment address.

The most useful of the load instructions is the LSS instruction. Example 4—4 shows a short
program that creates a new stack area after saving the address of the old stack area. After execut-
ing some dummy instructions, the old stack area is reactivated by loading both SS and SP with
the LSS instruction. Note that the CLI (disable interrupt) and STI (enable interrupt) instruc-
tions must be included to disable interrupts. (This topic is discussed near the end of this chapter.)
Because the LSS instruction functions in the 80386 or above, the .386 statement appears after
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FIGURE 4-17 The LDS BX,[DI] instruction loads register BX from addresses 11000H and
11001H and register DS from locations 11002H and 11003H. This instruction is shown at the
point just before DS changes to 3000H and BX changes to 127AH.

the .MODEL statement to select the 80386 microprocessor. Notice how the WORD PTR direc-
tive is used to override the doubleword (DD) definition for the old stack memory location. If an
80386 or newer microprocessor is in use, it is suggested that the .386 switch be used to develop
software for the 80386 microprocessor. This is true even if the microprocessor is a Pentium,
Pentium Pro, Pentium II, Pentium III, Pentium 4, or Core2. The reason is that the 80486—Core2
microprocessors add only a few additional instructions to the 80386 instruction set, which are
seldom used in software development. If the need arises to use any of the CMPXCHG, CMPX-
CHGS8 (new to the Pentium), XADD or BSWAP instructions, select either the .486 switch for the
80486 microprocessor of the .586 switch for the Pentium. You can even specify the Pentium II
—Core?2 using the .686 switch.

EXAMPLE 4-4

0000
0000
0004

2004
0000

0010
0011
0013
0016
0018

00000000

1000 [
??7?7?

= 2004

FA

8B C4

A3 0000 R
8C DO

A3 0002 R

]

.MODEL SMALL

.386

.DATA
SADDR DD
SAREA DW

STOP

?

1000H DUP(?)

EQU THIS WORD
.CODE

.STARTUP

CLI

MOV AX, SP

MOV WORD PTR SADDR, AX

MOV AX,SS
MOV WORD PTR SADDR+2,AX

;select small model
;select 80386
;start data segment
;o0ld stack address
;new stack area

;define top of new stack
;jstart code segment
;start program

;disable interrupts
;save old SP

;save old SS
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001B 8C D8 MOV AX,DS ;load new SS
001D 8E DO MOV SS,AX
O01lF B8 2004 R MOV AX,OFFSET STOP ;load new SP
0022 8B EO MOV SP,AX
0024 FB STI ;enable interrupts
0025 8B CO MOV AX,AX ;do some dummy instructions
0027 8B CO MOV AX,AX
0029 9F B2 26 0000 R LSS SP, SADDR ;get old stack
.EXIT ;exit to DOS
END ;end program listing

4-4

STRING DATA TRANSFERS

There are five string data transfer instructions: LODS, STOS, MOVS, INS, and OUTS. Each
string instruction allows data transfers that are either a single byte, word, or doubleword (or if
repeated, a block of bytes, words, or doublewords). Before the string instructions are presented,
the operation of the D flag-bit (direction), DI, and SI must be understood as they apply to the
string instructions. In the 64-bit mode of the Pentium 4 and Core2, quadwords are also used with
the string instructions such as LODSQ.

The Direction Flag

The direction flag (D, located in the flag register) selects the auto-increment (D = 0) or
the auto-decrement (D = 1) operation for the DI and SI registers during string operations.
The direction flag is used only with the string instructions. The CLD instruction clears the D
flag (D = 0) and the STD instruction sets it (D = 1). Therefore, the CLD instruction selects
the auto-increment mode (D = 0) and STD selects the auto-decrement mode (D = 1).

Whenever a string instruction transfers a byte, the contents of DI and/or SI are incremented
or decremented by 1. If a word is transferred, the contents of DI and/or SI are incremented or
decremented by 2. Doubleword transfers cause DI and/or SI to increment or decrement by 4. Only
the actual registers used by the string instruction are incremented or decremented. For example,
the STOSB instruction uses the DI register to address a memory location. When STOSB executes,
only the DI register is incremented or decremented without affecting SI. The same is true of the
LODSB instruction, which uses the SI register to address memory data. A LODSB instruction
will only increment or decrement SI without affecting DI.

DI and SI

During the execution of a string instruction, memory accesses occur through either or both of the DI
and SI registers. The DI offset address accesses data in the extra segment for all string instructions
that use it. The SI offset address accesses data, by default, in the data segment. The segment assign-
ment of SI may be changed with a segment override prefix, as described later in this chapter. The DI
segment assignment is always in the extra segment when a string instruction executes. This assign-
ment cannot be changed. The reason that one pointer addresses data in the extra segment and the
other in the data segment is so that the MOVS instruction can move 64K bytes of data from one seg-
ment of memory to another.

When operating in the 32-bit mode in the 80386 microprocessor or above, the EDI and ESI
registers are used in place of DI and SI. This allows string using any memory location in the
entire 4G-byte protected mode address space of the microprocessor.

LODS

The LODS instruction loads AL, AX, or EAX with data stored at the data segment offset address
indexed by the SI register. (Note that only the 80386 and above use EAX.) After loading AL with
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Assembly Language Operation

LODSB AL = DS:[SI]; SI = SI + 1

LODSW AX = DS:[SI};SI =Sl + 2

LODSD EAX = DS:[SI } =Sl +4

LODSQ RAX = [RSI]; RSI = RSI + 8 (64-bit mode)

LODS LIST AL = DS:[SI]; SI = SI + 1 (if LIST is a byte)

LODS DATA1 AX = DS:[SI]; SI = SI + 2 (if DATA1 is a word)

LODS FROG EAX = DS:[SI } = Sl + 4 (if FROG is a doubleword)

Note: The segment register can be overridden with a segment override prefix as in LODS
ES:DATA4.

a byte, AX with a word, or EAX with a doubleword, the contents of SI increment, if D = 0 or
decrement, if D = 1. A 1 is added to or subtracted from SI for a byte-sized LODS, a 2 is added or
subtracted for a word-sized LODS, and a 4 is added or subtracted for a doubleword-sized LODS.

Table 4-11 lists the permissible forms of the LODS instruction. The LODSB (loads a byte)
instruction causes a byte to be loaded into AL, the LODSW (loads a word) instruction causes
a word to be loaded into AX, and the LODSD (loads a doubleword) instruction causes a double-
word to be loaded into EAX. Although rare, as an alternative to LODSB, LODSW, LODSD,
and LODSQ, the LODS instruction may be followed by a byte-, word- or doubleword-sized
operand to select a byte, word, or doubleword transfer. Operands are often defined as bytes
with DB, as words with DW, and as doublewords with DD. The DB pseudo-operation defines
byte(s), the DW pseudo-operation defines word(s), and the DD pseudo-operations define
doubleword(s).

Figure 4-18 shows the effect of executing the LODSW instruction if the D flag = 0,
SI = 1000H, and DS = 1000H. Here, a 16-bit number stored at memory locations 11000H
and 11001H moves into AX. Because D = 0 and this is a word transfer, the contents of SI incre-
ment by 2 after AX loads with memory data.

STOS

The STOS instruction stores AL, AX, or EAX at the extra segment memory location addressed
by the DI register. (Note that only the 80386—Core2 use EAX and doublewords.) Table 4—12 lists
all forms of the STOS instruction. As with LODS, a STOS instruction may be appended with a
B, W, or D for byte, word, or doubleword transfers. The STOSB (stores a byte) instruction
stores the byte in AL at the extra segment memory location addressed by DI. The STOSW
(stores a word) instruction stores AX in the extra segment memory location addressed by DI. A
doubleword is stored in the extra segment location addressed by DI with the STOSD (stores a
doubleword) instruction. After the byte (AL), word (AX), or doubleword (EAX) is stored, the
contents of DI increment or decrement.

STOS with a REP. The repeat prefix (REP) is added to any string data transfer instruction,
except the LODS instruction. It doesn’t make any sense to perform a repeated LODS operation.
The REP prefix causes CX to decrement by 1 each time the string instruction executes. After CX
decrements, the string instruction repeats. If CX reaches a value of 0, the instruction terminates
and the program continues with the next sequential instruction. Thus, if CX is loaded with 100
and a REP STOSB instruction executes, the microprocessor automatically repeats the STOSB
instruction 100 times. Because the DI register is automatically incremented or decremented after
each datum is stored, this instruction stores the contents of AL in a block of memory instead of a
single byte of memory. In the Pentium 4 operated in 64-bit mode, the RCX register is used with
the REP prefix.



132

CHAPTER 4
Data segment
1FFFF
-W\/
v\
N 11001
EAX AO32 \% 11000 <—
\—V\_\’_\_—
——/\’_\_‘—
-\——-
ESP
EBP
ESI 1000
EDI 10000
—\—/_\’_\_’_
1000
CS
10000 ) 11000
DS| 1000 2O,
.

FIGURE 4-18 The operation of the LODSW instruction if DS = 1000H, D = 0, 11000H = 32,
and 11001H = AOQ. This instruction is shown after AX is loaded from memory, but before S
increments by 2.

Suppose that the STOSW instruction is used to clear an area of memory called Buffer
using a count called Count and the program is to function call ClearBuffer in the C+ + envi-
ronment using the inline assembler. (See Example 4-5.) Note that both the Count and Buffer
address are transferred to the function. The REP STOSW instruction clears the memory
buffer called Buffer. Notice that Buffer is a pointer to the actual buffer that is cleared by this

function.

TABLE 4-12 Forms of the

STOS instruction.

Assembly Language Operation

STOSB ES:[DI] = AL; DI = DI + 1

STOSW ES:[DI] = AX; Dl = DI + 2

STOSD ES:[DI] = EAX;DI = DI + 4

STOSQ [RDI] = RAX; RDI = RDI + 8 (64-bit mode)

STOS LIST ES:[DI] = AL; DI = DI + 1 (if LIST is a byte)

STOS DATA3 ES:[DI] = AX; DI = DI + 2 (if DATAS is a word)

STOS DATA4 ES:[DI] = EAX; DI = DI + 4 (if DATA4 is a doubleword)
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EXAMPLE 4-5
void ClearBuffer (int count, short* buffer)
{
_asm{
push edi ;save registers
push es
push ds

mov ax,0
mov ecx, count
mov edi, buffer

pop es ;load ES with DS
rep stosw jclear Buffer

pop es ;restore registers
pop edi

The operands in a program can be modified by using arithmetic or logic operators such as
multiplication (*). Other operators appear in Table 4-13.

MOVS

One of the more useful string data transfer instructions is MOVS, because it transfers data from
one memory location to another. This is the only memory-to-memory transfer allowed in the
8086—Pentium 4 microprocessors. The MOVS instruction transfers a byte, word, or doubleword
from the data segment location addressed by SI to the extra segment location addressed by SI. As
with the other string instructions, the pointers then are incremented or decremented, as dictated
by the direction flag. Table 4—14 lists all the permissible forms of the MOVS instruction. Note
that only the source operand (SI), located in the data segment, may be overridden so that another
segment may be used. The destination operand (DI) must always be located in the extra segment.

It is often necessary to transfer the contents of one area of memory to another. Suppose that
we have two blocks of doubleword memory, blockA and blockB, and we need to copy blockA
into blockB. This can be accomplished using the MOVSD instruction as illustrated in Example
4-6, which is a C+ + language function written using the inline assembler. The function receives
three pieces of information from the caller: blockSize and the addresses of blockA and blockB.
Note that all data are in the data segment in a Visual C+ + program so we need to copy DS into
ES, which is done using a PUSH DS followed by a POP ES. We also need to save all registers
that we changed except for EAX, EBX, ECX, and EDX.

Example 4-7 shows the same function written in C++ exclusively, so the two methods
can be compared and contrasted. Example 4-8 shows the assembly language version of

TABLE 4-13 Common operand modifiers.

Operator Example Comment
+ MOV AL,6+3 Copies 9 into AL
MOV AL,6—3 Copies 3 into AL
* MOV AL,4*3 Copies 12 into AL
/ MOV AX,12/5 Copies 2 into AX (remainder is lost)
MOD MOV AX,12 MOD 7 Copies 5 into AX (quotient is lost)
AND MOV AX,12 AND 4 Copies 4 into AX (1100 AND 0100 = 0100)
OR MOV EAX,12 OR 1 Copies 13 into EAX (1100 OR 0001 = 1101)
NOT MOV AL,NOT 1 Copies 254 into AL (NOT 0000 0001 = 1111 1110 or 254)
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TABLE 4-14 Forms of the MOVS instruction.

Assembly Language Operation

MOVSB ES:[DI] = DS:[SI]; DI = DI + 1; Sl = Sl + 1 (byte transferred)
MOVSW ES:[DI] = DS:[SI]; DI = DI + 2; Sl = Sl + 2 (word transferred)
MQOVSD ES:[DI] = DS:[SI]; DI = DI + 4; SI = S| + 4 (doubleword transferred)
MOVSQ [RDI] = [RSI]; RDI = RDI + 8; RSI = RSI + 8 (64-bit mode)

MOVS BYTE1, BYTE2 ES:[DI] = DS:[SI]; DI = DI + 1; Sl = Sl + 1 (byte transferred if

BYTE1 and BYTE2 are bytes)

MOVS WORD1,WORD2 ES:[DI] = DS:[SI]; DI = DI + 2; Sl = S| + 2 (word transferred if
WORD1 and WORD2 are words)

MOVS TED,FRED ES:[DI] = DS:[SI]; DI = DI + 4; Sl = Sl + 4 (doubleword transferred
if TED and FRED are doublewords)

Example 4-7 for comparison to Example 4—6. Notice how much shorter the assembly language
version is compared to the C+ + version generated in Example 4—8. Admittedly the C+ + ver-
sion is a little easier to type, but if execution speed is important, Example 4—-6 will run much
faster than Example 4-7.

EXAMPLE 4-6
//Function that copies blockA into blockB using the inline assembler
//
void TransferBlocks (int blockSize, int* blockA, int* blockB)
{
_asm{
push es ;save registers
push edi
push esi
push ds ;copy DS into ES
pop es
mov esi, blockA ;address blockA
mov edi, blockB ;address blockB
mov ecx, blockSize ;load count
rep movsd ;move data
pop esi
pop edi
pop es ;restore registers
}
}
EXAMPLE 4-7

//C++ version of Example 4-6

/7

void TransferBlocks (int blockSize, int* blockA, int* blockB)

{

for (int a = 0; a < blockSize; a++)

{

blockA = blockB++;
blockA++;
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EXAMPLE 4-8

void TransferBlocks (int blockSize, int* blockA, int* blockB)

004136A0 push ebp
004136A1 moVv ebp, esp
004136A3 sub esp, 0D8h
004136A9 push ebx
004136AA push esi
004136AB push edi
004136AC push ecx
004136AD lea edi, [ebp-0D8h]
004136B3 mov ecx,36h
004136B8 mov eax, 0CCCCCCCCh
004136BD rep stos dword ptr [edi]
004136BF pop ecx
004136C0 mov dword ptr [ebp-8],ecx
for( int a = 0; a < blockSize; a++ )
004136C3 mov dword ptr [a],O0
004136CA jmp TransferBlocks+35h (4136D5h)
004136CC mov eax,dword ptr [a]
004136CF add eax, 1
004136D2 mov dword ptr [a],eax
004136D5 mov eax,dword ptr [a]
004136D8 cmp eax,dword ptr [blockSize]
004136DB jge TransferBlocks+57h (4136F7h)
{
blockA = blockB++;
004136DD mov eax,dword ptr [blockB]
004136E0 mov dword ptr [blockA],eax
004136E3 mov ecx,dword ptr [blockB]
004136E6 add ecx,4
004136E9 mov dword ptr [blockB],ecx
blockA++;
004136EC mov eax,dword ptr [blockA]
004136EF add eax, 4
004136F2 mov dword ptr [blockA],eax
004136F5 jmp TransferBlocks+2Ch (4136CCh)
004136F7 pop edi
004136F8 pop esi
004136F9 pop ebx
004136FA mov esp, ebp
004136FC pop ebp
004136FD ret 0Ch
INS

The INS (input string) instruction (not available on the 8086/8088 microprocessors) transfers a
byte, word, or doubleword of data from an I/O device into the extra segment memory location
addressed by the DI register. The I/O address is contained in the DX register. This instruction is
useful for inputting a block of data from an external I/O device directly into the memory. One
application transfers data from a disk drive to memory. Disk drives are often considered and
interfaced as I/O devices in a computer system.

As with the prior string instructions, there are three basic forms of the INS. The INSB
instruction inputs data from an 8-bit I/O device and stores it in the byte-sized memory location
indexed by SI. The INSW instruction inputs 16-bit I/O data and stores it in a word-sized mem-
ory location. The INSD instruction inputs a doubleword. These instructions can be repeated
using the REP prefix, which allows an entire block of input data to be stored in the memory
from an I/O device. Table 4-15 lists the various forms of the INS instruction. Note that in the
64-bit mode there is no 64-bit input, but the memory address is 64 bits and located in RDI for
the INS instructions.
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TABLE 4-15 Forms of the

INS instruction.

TABLE 4-16 Forms of the
OUTS instruction.

CHAPTER 4
Assembly Language Operation
INSB ES:[DI] = [DX]; DI = DI + 1 (byte transferred)
INSW ES:[DI] = [DX]; DI = DI + 2 (word transferred)
INSD ES:[DI] = [DX]; DI = DI + 4 (doubleword transferred)
INS LIST ES:[DI] = [DX]; DI = DI = 1 (if LIST is a byte)
INS DATA4 ES:[DI] = [DX]; DI = DI + 2 (if DATA4 is a word)
INS DATA5 ES:[DI] = [DX]; DI = DI + 4 (if DATA5 is a doubleword)

Note: [DX] indicates that DX is the I/O device address. These instructions are not available
on the 8086 and 8088 microprocessors.

Example 4-9 shows a sequence of instructions that inputs 50 bytes of data from an I/O
device whose address is 03ACH and stores the data in extra segment memory array LISTS. This
software assumes that data are available from the I/O device at all times. Otherwise, the software
must check to see if the I/O device is ready to transfer data precluding the use of a REP prefix.

EXAMPLE 4-9

;Using the REP INSB to input data to a memory array

0000 BF 0000 R MOV DI,OFFSET LISTS jaddress array

0003 BA 03AC MOV DX, 3ACH ;address I/O
0006 FC CLD ;auto-increment
0007 B9 0032 MOV CX,50 ;load counter
000A F3/6C REP INSB ;input data
ouTsS

The OUTS (output string) instruction (not available on the 8086/8088 microprocessors) transfers
a byte, word, or doubleword of data from the data segment memory location address by SI to an
I/0O device. The I/0 device is addressed by the DX register as it is with the INS instruction. Table
4-16 shows the variations available for the OUTS instruction. In the 64-bit mode for the Pentium
4 and Core2, there is no 64-bit output, but the address in RSI is 64 bits wide.

Example 4-10 shows a short sequence of instructions that transfer data from a data seg-
ment memory array (ARRAY) to an I/O device at I/O address 3ACH. This software assumes that
the I/O device is always ready for data.

EXAMPLE 4-10

;Using the REP OUTSB to output data from a memory array

7

0000 BE 0064 R MOV SI,OFFSET ARRAY ;address array

0003 BA 03AC MOV DX, 3ACH ;address I/O

0006 FC CLD ;auto-increment

0007 B9 0064 MOV CX,100 ;load counter

000A F3/6E REP OUTSB ;output data
Assembly Language Operation
OouTSB [DX] = DS:[SI]; SI = Sl + 1 (byte transferred)
OouTSw [DX] = DS:[SI]; SI = Sl + 2 (word transferred)
OUTSD [DX] = DS:[SI]; SI = Sl + 4 (doubleword transferred)
OUTS DATA7 [DX] = DS:[SI]; SI = Sl + 1 (if DATA7? is a byte)
OUTS DATA8 [DX] = DS:[SI]; SI = SI + 2 (if DATAS8 is a word)
OUTS DATA9 [DX] = DS:[SI]; SI = SI + 4 (if DATA9 is a doubleword)

Note: [DX] indicates that DX is the I/O device address. These instructions are not available
on the 8086 and 8088 microprocessors.
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4-5

MISCELLANEOUS DATA TRANSFER INSTRUCTIONS

Don’t be fooled by the term miscellaneous; these instructions are used in programs. The data
transfer instructions detailed in this section are XCHG, LAHF, SAHF, XLAT, IN, OUT, BSWAP,
MOVSX, MOVZX, and CMOV. Because the miscellaneous instructions are not used as often as
a MOV instruction, they have been grouped together and presented in this section.

XCHG

The XCHG (exchange) instruction exchanges the contents of a register with the contents of
any other register or memory location. The XCHG instruction cannot exchange segment regis-
ters or memory-to-memory data. Exchanges are byte-, word-, or doubleword-sized (80386 and
above), and they use any addressing mode discussed in Chapter 3, except immediate address-
ing. Table 4-17 shows some examples of the XCHG instruction. In the 64-bit mode, data sizes
may also be 64 bits for the exchange instruction.

The XCHG instruction, using the 16-bit AX register with another 16-bit register, is the
most efficient exchange. This instruction occupies 1 byte of memory. Other XCHG instructions
require 2 or more bytes of memory, depending on the addressing mode selected.

When using a memory-addressing mode and the assembler, it doesn’t matter which
operand addresses memory. The XCHG AL,[DI] instruction is identical to the XCHG [DI],AL
instruction, as far as the assembler is concerned.

If the 80386 through the Core2 microprocessor is available, the XCHG instruction can
exchange doubleword data. For example, the XCHG EAX,EBX instruction exchanges the con-
tents of the EAX register with the EBX register.

LAHF and SAHF

The LAHF and SAHEF instructions are seldom used because they were designed as bridge
instructions. These instructions allowed 8085 (an early 8-bit microprocessor) software to be
translated into 8086 software by a translation program. Because any software that required trans-
lation was completed many years ago, these instructions have little application today. The LAHF
instruction transfers the rightmost 8 bits of the flag register into the AH register. The SAHF
instruction transfers the AH register into the rightmost 8 bits of the flag register.

At times, the SAHF instruction may find some application with the numeric coprocessor.
The numeric coprocessor contains a status register that is copied into the AX register with the
FSTSW AX instruction. The SAHF instruction is then used to copy from AH into the flag regis-
ter. The flags are then tested for some of the conditions of the numeric coprocessor. This is
detailed in Chapter 14, which explains the operation and programming of the numeric coproces-
sor. Because LAHF and LAFH are legacy instructions, they do not function in the 64-bit mode
and are invalid instructions.

TABLE 4-17 Forms of the XCHG instruction.

Assembly Language Operation
XCHG AL,CL Exchanges the contents of AL with CL
XCHG CX,BP Exchanges the contents of CX with BP
XCHG EDX,ESI Exchanges the contents of EDX with ESI

XCHG AL,DATA2 Exchanges the contents of AL with data segment memory location DATA2
XCHG RBX,RCX Exchange the contents of RBX with RCX (64-bit mode)
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FIGURE 4-19 The operation of the XLAT instruction at the point just before 6DH is loaded
into AL.

XLAT

The XLAT (translate) instruction converts the contents of the AL register into a number stored in
a memory table. This instruction performs the direct table lookup technique often used to convert
one code to another. An XLAT instruction first adds the contents of AL to BX to form a memory
address within the data segment. It then copies the contents of this address into AL. This is the
only instruction that adds an 8-bit number to a 16-bit number.

Suppose that a 7-segment LED display lookup table is stored in memory at address
TABLE. The XLAT instruction then uses the lookup table to translate the BCD number in AL to
a 7-segment code in AL. Example 4-11 provides a sequence of instructions that converts from a
BCD code to a 7-segment code. Figure 4—19 shows the operation of this example program if
TABLE = 1000H, DS = 1000H, and the initial value of AL = 05H (5 BCD). After the trans-
lation, AL = 6DH.

EXAMPLE 4-11

TABLE DB 3FH, 06H, 5BH, 4FH ijlookup table
DB 66H, 6DH, 7DH, 27H
DB 7FH, 6FH

0017 BO 05 LOOK: MOV AL,5 ;load AL with 5 (a test number)
0019 BB 1000 R MOV BX,OFFSET TABLE ;address lookup table

001C D7 XLAT ;jconvert

IN and OUT

Table 4—18 lists the forms of the IN and OUT instructions, which perform I/O operations. Notice
that the contents of AL, AX, or EAX are transferred only between the I/O device and the micro-
processor. An IN instruction transfers data from an external I/O device into AL, AX, or EAX; an
OUT transfers data from AL, AX, or EAX to an external I/O device. (Note that only the 80386
and above contain EAX.)

Two forms of I/O device (port) addressing exist for IN and OUT: fixed port and variable
port. Fixed-port addressing allows data transfer between AL, AX, or EAX using an 8-bit I/O port
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TABLE 4-18 Inand OUT

instructions. Assembly Language Operation
IN AL,p8 8 bits are input to AL from 1/O port p8
IN AX,p8 16 bits are input to AX from I/O port p8
IN EAX,p8 32 bits are input to EAX from 1/O port p8
IN AL,DX 8 bits are input to AL from I/O port DX
IN AX,DX 16 bits are input to AX from 1/O port DX
IN EAX,DX 32 bits are input to EAX from 1/O port DX
OUT p8,AL 8 bits are output to 1/0 port p8 from AL
OUT p8,AX 16 bits are output to I/O port p8 from AX
OUT p8,EAX 32 bits are output to I/O port p8 from EAX
OUT DX,AL 8 bits are output to I/0O port DX from AL
OUT DX,AX 16 bits are output to 1/O port DX from AX
OUT DX,EAX 32 bits are output to I/O port DX from EAX

Note: p8 = an 8-bit I/O port number (0000H to 00FFH) and DX = the 16-bit I/O
port number (0000H to FFFFH) held in register DX.

address. It is called fixed-port addressing because the port number follows the instruction’s
opcode, just as it did with immediate addressing. Often, instructions are stored in ROM. A fixed-
port instruction stored in ROM has its port number permanently fixed because of the nature of
read-only memory. A fixed-port address stored in RAM can be modified, but such a modification
does not conform to good programming practices.

The port address appears on the address bus during an I/O operation. For the 8-bit
fixed-port I/O instructions, the 8-bit port address is zero-extended into a 16-bit address. For
example, if the IN AL,6AH instruction executes, data from I/O address 6AH are input to AL.
The address appears as a 16-bit 006AH on pins AO-A15 of the address bus. Address bus
bits A16—-A19 (8086/8088), A16—-A23 (80286/80386SX), A16-A24 (80386SL/80386SLC/
80386EX), or A16—-A31 (80386—Core2) are undefined for an IN or OUT instruction. Note
that Intel reserves the last 16 I/O ports (FFFOH-FFFFH) for use with some of its peripheral
components.

Variable-port addressing allows data transfers between AL, AX, or EAX and a 16-bit port
address. It is called variable-port addressing because the I/O port number is stored in register DX,
which can be changed (varied) during the execution of a program. The 16-bit I/O port address
appears on the address bus pin connections AO—A15. The IBM PC uses a 16-bit port address to
access its I/0 space. The ISA bus 1/O space for a PC is located at I/O port 0000H-03FFH. Note
that PCI bus cards may use I/O addresses above 03FFH.

Figure 4-20 illustrates the execution of the OUT 19H,AX instruction, which transfers
the contents of AX to I/O port 19H. Notice that the I/O port number appears as a 0019H on
the 16-bit address bus and that the data from AX appears on the data bus of the microproces-
sor. The system control signal IOWC (I/0O write control) is a logic zero to enable the 1/0
device.

A short program that clicks the speaker in the personal computer appears in Example
4-12. The speaker (in DOS only) is controlled by accessing I/O port 61H. If the rightmost
2 bits of this port are set (11) and then cleared (00), a click is heard on the speaker. Note that
this program uses a logical OR instruction to set these 2 bits and a logical AND instruction to
clear them. These logic operation instructions are described in Chapter 5. The MOV
CX,8000H instruction, followed by the LOOP L1 instruction, is used as a time delay. If the
count is increased, the click will become longer; if shortened, the click will become shorter.
To obtain a series of clicks that can be heard, the program must be modified to repeat many
times.
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Microprocessor-based system
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FIGURE 4-20 The signals found in the microprocessor-based system for an OUT 19H,AX
instruction.

EXAMPLE 4-12

.MODEL TINY ;select tiny model
0000 .CODE ;jstart code segment
.STARTUP ;start program
0100 E4 61 IN AL,61H ;read I/0 port 61H
0102 0C 03 OR AL, 3 ;set rightmost two bits
0104 E6 61 OUT 61H,AL ;jspeaker on
0106 B9 8000 MOV CX,8000H ;load delay count
0109 Ll:
0109 E2 FE LOOP L1 ;time delay
010B E4 61 IN AL,61H ;jspeaker off
010D 24 FC AND AL, OFCH
010F E6 61 OUT 61H,AL
.EXIT
END

MOVSX and MOVZX

The MOVSX (move and sign-extend) and MOVZX (move and zero-extend) instructions are
found in the 80386—Pentium 4 instruction sets. These instructions move data, and at the same time
either sign- or zero-extend it. Table 4-19 illustrates these instructions with several examples of each.

When a number is zero-extended, the most significant part fills with zeros. For example, if
an 8-bit 34H is zero-extended into a 16-bit number, it becomes 0034H. Zero-extension is often
used to convert unsigned 8- or 16-bit numbers into unsigned 16- or 32-bit numbers by using the
MOVZX instruction.

A number is sign-extended when its sign-bit is copied into the most significant part. For
example, if an 8-bit 84H is sign-extended into a 16-bit number, it becomes FF84H. The sign-bit
of an 84H is a 1, which is copied into the most significant part of the sign-extended result. Sign-
extension is most often used to convert 8- or 16-bit signed numbers into 16- or 32-bit signed
numbers by using the MOV SX instruction.

BSWAP

The BSWAP (byte swap) instruction is available only in the 80486—Pentium 4 microproces-
sors. This instruction takes the contents of any 32-bit register and swaps the first byte with
the fourth, and the second with the third. For example, the BSWAP EAX instruction with
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TABLE 4-19 The MOVSX

and MOVZX instructions. Assembly Language

Operation

MOVSX CX,BL
MOVSX ECX,AX
MOVSX BX,DATA1
MOVSX EAX,[EDI]

MOVSX RAX,[RDI]

MOVZX DX,AL
MOVZX EBP,DI
MOVZX DX,DATA2

Sign-extends BL into CX
Sign-extends AX into ECX
Sign-extends the byte at DATA1 into BX

Sign-extends the word at the data segment memory
location addressed by EDI into EAX

Sign-extends the doubleword at address RDI into

RAX (64-bit mode)

Zero-extends AL into DX
Zero-extends Dl into EBP
Zero-extends the byte at DATA2 into DX

Zero-extends the word at DATAS3 into EAX
Zero-extends ECX into RBX

MOVZX EAX,DATA3
MOVZX RBX,ECX

EAX = 00112233H swaps bytes in EAX, resulting in EAX = 33221100H. Notice that the
order of all 4 bytes is reversed by this instruction. This instruction is used to convert data
between the big and little endian forms. In 64-bit operation for the Pentium 4, all 8 bytes in
the selected operand are swapped.

CMov

The CMOV (conditional move) class of instruction is new to the Pentium Pro—Core?2 instruction
sets. There are many variations of the CMOV instruction. Table 4-20 lists these variations

TABLE 4-20 The conditional move instructions.

Assembly Language Flag(s) Tested Operation

CMOVB C=1 Move if below

CMOVAE C=0 Move if above or equal

CMOVBE Z=1orC=1 Move if below or equal

CMOVA Z=0andC=0 Move of above

CMOQOVE or CMOVZ Z=1 Move if equal or move if zero
CMOVNE or CMOVNZ Z=0 Move if not equal or move if not zero
CMOVL S!I=0 Move if less than

CMOVLE Z=10orS!=0 Move if less than or equal

CMOVG Z=0andS=0 Move if greater than

CMOVGE S=0 Move if greater than or equal
CMOQOVS S=1 Move if sign (negative)

CMOVNS S=0 Move if no sign (positive)

CMOvVC C=1 Move if carry

CMOVNC C=0 Move if no carry

CMOVO O=1 Move if overflow

CMOVNO 0=0 Move if no overflow

CMOQVP or CMOVPE P=1 Move if parity or move if parity even
CMOVNP or CMOVPO P=0 Move if no parity or move if parity odd




142

TABLE 4-21 Instructions

that include segments
override prefixes.

CHAPTER 4

Assembly Language Segment Accessed Default Segment
MOV AX,DS:[BP] Data Stack

MOV AX,ES:[BP] Extra Stack

MOV AX,SS:[DlI] Stack Data

MOV AX,CS:LIST Code Data

MOV ES:[SI],AX Extra Data

LODS ES:DATA1 Extra Data

MOV EAX,FS:DATA2 FS Data

MOV GS:[ECX],BL GS Data

of CMOV. These instructions move the data only if the condition is true. For example, the
CMOVZ instruction moves data only if the result from some prior instruction was a zero. The
destination is limited to only a 16- or 32-bit register, but the source can be a 16- or 32-bit regis-
ter or memory location.

Because this is a new instruction, you cannot use it with the assembler unless the .686
switch is added to the program.

4-6

SEGMENT OVERRIDE PREFIX

The segment override prefix, which may be added to almost any instruction in any memory-
addressing mode, allows the programmer to deviate from the default segment. The segment over-
ride prefix is an additional byte that appends the front of an instruction to select an alternate
segment register. About the only instructions that cannot be prefixed are the jump and call instruc-
tions that must use the code segment register for address generation. The segment override is also
used to select the FS and GS segments in the 80386 through the Core2 microprocessors.

For example, the MOV AX,[DI] instruction accesses data within the data segment by
default. If required by a program, this can be changed by prefixing the instruction. Suppose that
the data are in the extra segment instead of in the data segment. This instruction addresses the
extra segment if changed to MOV AX,ES:[DI].

Table 4-21 shows some altered instructions that address different memory segments that
are different from normal. Each time an instruction is prefixed with a segment override prefix,
the instruction becomes 1 byte longer. Although this is not a serious change to the length of the
instruction, it does add to the instruction’s execution time. It is usually customary to limit the use
of the segment override prefix and remain in the default segments so that shorter and more effi-
cient software is written.

4-7

ASSEMBLER DETAIL

The assembler (MASM)! for the microprocessor can be used in two ways: (1) with models that
are unique to a particular assembler, and (2) with full-segment definitions that allow complete
control over the assembly process and are universal to all assemblers. This section of the text pre-

IThe assembler used throughout this text is the Microsoft MACRO assembler called MASM, version 6.1X.
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sents both methods and explains how to organize a program’s memory space by using the assem-
bler. It also explains the purpose and use of some of the more important directives used with this
assembler. Appendix A provides additional detail about the assembler.

In most cases, the inline assembler found in Visual C+ + is used for developing assembly
code for use in a C+ + program, but there are occasions that require separate assembly modules
writing using the assembler. This section of the text contrasts, where possible, the inline assem-
bler and the assembler.

Directives

Before the format of an assembly language program is discussed, some details about the direc-
tives (pseudo-operations) that control the assembly process must be learned. Some common
assembly language directives appear in Table 4-22. Directives indicate how an operand or sec-
tion of a program is to be processed by the assembler. Some directives generate and store infor-
mation in the memory; others do not. The DB (define byte) directive stores bytes of data in the
memory, whereas the BYTE PTR directive never stores data. The BYTE PTR directive indicates
the size of the data referenced by a pointer or index register. Note that none of the directives
function in the inline assembler program that is a part of Visual C+ +. If you are using the inline
assembler exclusively, you can skip this part of the text. Be aware that complex sections of
assembly code are still written using MASM.

Note that by default the assembler accepts only 8086/8088 instructions, unless a program
is preceded by the .686 or .686P directive or one of the other microprocessor selection switches.
The .686 directive tells the assembler to use the Pentium Pro instruction set in the real mode, and
the .686P directive tells the assembler to use the Pentium Pro protected mode instruction set.
Most modern software is written assuming that the microprocessor is a Pentium Pro or newer, so
the .686 switch is often used. Windows 95 was the first major operating system to use a 32-bit
architecture that conforms to the 80386. Windows XP requires a Pentium class machine (.586
switch) using at least a 233MHz microprocessor.

Storing Data in a Memory Segment. The DB (define byte), DW (define word), and DD
(define doubleword) directives, first presented in Chapter 1, are most often used with MASM to
define and store memory data. If a numeric coprocessor executes software in the system, the DQ
(define quadword) and DT (define ten bytes) directives are also common. These directives
label a memory location with a symbolic name and indicate its size.

Example 4-13 shows a memory segment that contains various forms of data definition
directives. It also shows the full-segment definition with the first SEGMENT statement to indicate
the start of the segment and its symbolic name. Alternately, as in past examples in this and prior
chapters, the SMALL model can be used with the .DATA statement. The last statement in this
example contains the ENDS directive, which indicates the end of the segment. The name of the
segment (LIST_SEG) can be anything that the programmer desires to call it. This allows a pro-
gram to contain as many segments as required.

EXAMPLE 4-13

;Using the DB, DW, and DD directives

7

0000 LIST SEG SEGMENT

0000 01 02 03 DATAl1 DB 1,2,3 ;define bytes
0003 45 DB 45H ;hexadecimal
0004 41 DB 'A! ;ASCII

0005 FO DB 11110000B ;jbinary

0006 000C 000D DATA2 DW 12,13 ;define words

000A 0200 DW LIST1 jsymbolic
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TABLE 4-22 Common MASM directives.

Directive Function

.286 Selects the 80286 instruction set

.286P Selects the 80286 protected mode instruction set
.386 Selects the 80386 instruction set

.386P Selects the 80386 protected mode instruction set
.486 Selects the 80486 instruction set

.486P Selects the 80498 protected mode instruction set
.586 Selects the Pentium instruction set

.586P Selects the Pentium protected mode instruction set
.686 Selects the Pentium Pro—Core2 instruction set

.686P Selects the Pentium Pro—Core2 protected mode instruction set
.287 Selects the 80287 math coprocessor

.387 Selects the 80387 math coprocessor

.CODE Indicates the start of the code segment (models only)
.DATA Indicates the start of the data segment (models only)
EXIT Exits to DOS (models only)

.MODEL Selects the programming model

.STACK Selects the start of the stack segment (models only)
.STARTUP Indicates the starting instruction in a program (models only)
ALIGN n Align to boundary n (n = 2 for words, n = 4 for doublewords)
ASSUME Informs the assembler to name each segment (full segments only)
BYTE Indicates byte-sized as in BYTE PTR

DB Defines byte(s) (8 bits)

DD Defines doubleword(s) (32 bits)

DQ Defines quadwords(s) (64 bits)

DT Defines ten byte(s) (80 bits)

DUP Generates duplicates

DW Define word(s) (16 bits)

DWORD Indicates doubleword-sized, as in DWORD PTR

END Ends a program file

ENDM Ends a MACRO sequence

ENDP Ends a procedure

ENDS Ends a segment or data structure

EQU Equates data or a label to a label

FAR Defines a far pointer, as in FAR PTR

MACRO Designates the start of a MACRO sequence

NEAR Defines a near pointer, as in NEAR PTR

OFFSET Specifies an offset address

ORG Sets the origin within a segment

OWORD Indicates octalwords, as in OWORD PTR

PROC Starts a procedure

PTR Designates a pointer

QWORD Indicates quadwords, as in QWORD PTR

SEGMENT Starts a segment for full segments

STACK Starts a stack segment for full segments

STRUC Defines the start of a data structure

USES Automatically pushes and pops registers

USE16 Uses 16-bit instruction mode

USE32 Uses 32-bit instruction mode

WORD Indicates word-sized, as in WORD PTR
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000C 2345 DW 2345H ;hexadecimal
000E 00000300 DATA3 DD 300H ;define doubleword
0012 4007DF3B DD 2.123 ;real
0016 544269E1 DD 3.34E+12 ;real
001A 00 LISTA DB ? ;reserve 1 byte
001B 0O0O0A[ LISTB DB 10 DUP(?) ;reserve 10 bytes
27
1
0025 00 ALIGN 2 ;set word boundary
0026 0100([
0000
] LISTC DW 100H DUP(0) ;reserve 100H words
0226 0016 [ LISTD DD 22 DUP(?) ;reserve 22 doublewords
?2??7?2?2°2°2°
1
027E 0064 [ SIXES DB 100 DUP(6) ;reserve 100 bytes
06
1
02E2 LIST SEG ENDS

Example 4-13 shows various forms of data storage for bytes at DATA1. More than 1 byte
can be defined on a line in binary, hexadecimal, decimal, or ASCII code. The DATA2 label
shows how to store various forms of word data. Doublewords are stored at DATA3; they include
floating-point, single-precision real numbers.

Memory is reserved for use in the future by using a question mark (?) as an operand for a
DB, DW, or DD directive. When a ? is used in place of a numeric or ASCII value, the assembler
sets aside a location and does not initialize it to any specific value. (Actually, the assembler usu-
ally stores a zero into locations specified with a?.) The DUP (duplicate) directive creates an
array, as shown in several ways in Example 4-12. A 10 DUP (?) reserves 10 locations of mem-
ory, but stores no specific value in any of the 10 locations. If a number appears within the () part
of the DUP statement, the assembler initializes the reserved section of memory with the data
indicated. For example, the LIST2 DB 10 DUP (2) instruction reserves 10 bytes of memory for
array LIST2 and initializes each location with a 02H.

The ALIGN directive, used in this example, makes sure that the memory arrays are stored
on word boundaries. An ALIGN 2 places data on word boundaries and an ALIGN 4 places them
on doubleword boundaries. In the Pentium—Pentium 4, quadword data for double-precision
floating-point numbers should use ALIGN 8. It is important that word-sized data are placed at
word boundaries and doubleword-sized data are placed at doubleword boundaries. If not,
the microprocessor spends additional time accessing these data types. A word stored at an odd-
numbered memory location takes twice as long to access as a word stored at an even-numbered
memory location. Note that the ALIGN directive cannot be used with memory models because
the size of the model determines the data alignment. If all doubleword data are defined first, fol-
lowed by word-sized and then byte-sized data, the ALIGN statement is not necessary to align
data correctly.

ASSUME, EQU, and ORG. The equate directive (EQU) equates a numeric, ASCII, or label to
another label. Equates make a program clearer and simplify debugging. Example 4—14 shows
several equate statements and a few instructions that show how they function in a program.

EXAMPLE 4-14

;Using equate directive

00A TEN EQU 10

=0
= 0009 NINE EQU 9
0000 BO OA MOV AL, TEN

0002 04 09 ADD AL,NINE
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The THIS directive always appears as THIS BYTE, THIS WORD, THIS DWORD, or
THIS QWORD. In certain cases, data must be referred to as both a byte and a word. The assem-
bler can only assign either a byte, word, or doubleword address to a label. To assign a byte label
to a word, use the software listed in Example 4—15.

EXAMPLE 4-15

;Using the THIS and ORG directives

0000 DATA SEG SEGMENT

0300 ORG 300H
= 0300 DATA1 EQU THIS BYTE
0300 DATA2 DW ?
0302 DATA SEG ENDS
0000 CODE_SEG SEGMENT 'CODE'
ASSUME CS:CODE_SEG, DS:DATA SEG
0000 8A 1E 0300 R MOV BL,DATAl
0004 Al 0300 R MOV AX,DATA2
0007 8A 3E 0301 R MOV BH,DATAl+1
000B CODE_SEG ENDS

This example also illustrates how the ORG (origin) statement changes the starting off-
set address of the data in the data segment to location 300H. At times, the origin of data or the
code must be assigned to an absolute offset address with the ORG statement. The ASSUME
statement tells the assembler what names have been chosen for the code, data, extra, and
stack segments. Without the ASSUME statement, the assembler assumes nothing and auto-
matically uses a segment override prefix on all instructions that address memory data. The
ASSUME statement is only used with full-segment definitions, as described later in this sec-
tion of the text.

PROC and ENDP. The PROC and ENDP directives indicate the start and end of a procedure
(subroutine). These directives force structure because the procedure is clearly defined. Note that
if structure is to be violated for whatever reason, use the CALLF, CALLN, RETF, and RETN
instructions. Both the PROC and ENDP directives require a label to indicate the name of the pro-
cedure. The PROC directive, which indicates the start of a procedure, must also be followed with
a NEAR or FAR. A NEAR procedure is one that resides in the same code segment as the
program. A FAR procedure may reside at any location in the memory system. Often the call
NEAR procedure is considered to be local, and the call FAR procedure is considered to be
global. The term global denotes a procedure that can be used by any program; local defines a
procedure that is only used by the current program. Any labels that are defined within the proce-
dure block are also defined as either local (NEAR) or global (FAR).

Example 4-16 shows a procedure that adds BX, CX, and DX and stores the sum in regis-
ter AX. Although this procedure is short and may not be particularly useful, it does illustrate how
to use the PROC and ENDP directives to delineate the procedure. Note that information about
the operation of the procedure should appear as a grouping of comments that show the registers
changed by the procedure and the result of the procedure.

EXAMPLE 4-16

;A procedure that adds BX, CX, and DX with the
;eum stored in AX

0000 ADDEM PROC FAR ;jstart of procedure
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0000 03 D9 ADD BX, CX

0002 03 DA ADD BX,DX

0004 8B C3 MOV AX,BX

0006 CB RET

0007 ADDEM ENDP ;end of procedure

If version 6.x of the Microsoft MASM assembler program is available, the PROC directive
specifies and automatically saves any registers used within the procedure. The USES statement
indicates which registers are used by the procedure, so that the assembler can automatically save
them before your procedure begins and restore them before the procedure ends with the RET
instruction. For example, the ADDS PROC USES AX BX CX statement automatically pushes
AX, BX, and CX on the stack before the procedure begins and pops them from the stack before
the RET instruction executes at the end of the procedure. Example 4—17 illustrates a procedure
written using MASM version 6.x that shows the USES statement. Note that the registers in the
list are not separated by commas, but by spaces, and the PUSH and POP instructions are dis-
played in the procedure listing because it was assembled with the .LIST ALL directive. The
instructions prefaced with an asterisk (*) are inserted by the assembler and were not typed in the
source file. The USES statement appears elsewhere in this text, so if MASM version 5.10 is in
use, the code will need to be modified.

EXAMPLE 4-17

;A procedure that includes the USES directive to
;save BX, CX, and DX on the stack and restore them
;before the return instruction.

0000 ADDS PROC NEAR USES BX CX DX
0000 53 * push bx
0001 51 * push cx
0002 52 * push dx
0003 03 D8 ADD BX,AX
0005 03 CB ADD CX,BX
0007 03 D1 ADD DX, CX
0009 8B C2 MOV AX,DX
RET
000B 5A * pop dx
000C 59 * pop cx
000D 5B * pop bx
000E C3 * ret 0000h
000F ADDS ENDP

Memory Organization

The assembler uses two basic formats for developing software: One method uses models and the
other uses full-segment definitions. Memory models, as presented in this section and briefly in
earlier chapters, are unique to the MASM assembler program. The TASM assembler also uses
memory models, but they differ somewhat from the MASM models. The full-segment defini-
tions are common to most assemblers, including the Intel assembler, and are often used for soft-
ware development. The models are easier to use for simple tasks. The full-segment definitions
offer better control over the assembly language task and are recommended for complex pro-
grams. The model was used in early chapters because it is easier to understand for the beginning
programmer. Models are also used with assembly language procedures that are used by high-
level languages such as C/C+ +. Although this text fully develops and uses the memory model
definitions for its programming examples, realize that full-segment definitions offer some advan-
tages over memory models, as discussed later in this section.
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Models. There are many models available to the MASM assembler, ranging from tiny to huge.
Appendix A contains a table that lists all the models available for use with the assembler. To des-
ignate a model, use the .MODEL statement followed by the size of the memory system. The
TINY model requires that all software and data fit into one 64K-byte memory segment; it is use-
ful for many small programs. The SMALL model requires that only one data segment be used
with one code segment for a total of 128K bytes of memory. Other models are available, up to the
HUGE model.

Example 4-18 illustrates how the .MODEL statement defines the parameters of a short
program that copies the contents of a 100-byte block of memory (LISTA) into a second 100-
byte block of memory (LISTB). It also shows how to define the stack, data, and code seg-
ments. The .EXIT 0 directive returns to DOS with an error code of 0 (no error). If no para-
meter is added to .EXIT, it still returns to DOS, but the error code is not defined. Also note
that special directives such as @DATA (see Appendix A) are used to identify various seg-
ments. If the .STARTUP directive is used (MASM version 6.x), the MOV AX, @DATA fol-
lowed by MOV DS,AX statements can be eliminated. The .STARTUP directive also elimi-
nates the need to store the starting address next to the END label. Models are important with
both Microsoft Visual C++ and Borland C+ + development systems if assembly language is
included with C+ + programs. Both development systems use inline assembly programming
for adding assembly language instructions and require an understanding of programming
models.

EXAMPLE 4-18

.MODEL SMALL ;select small model
.STACK 100H ;define stack
.DATA ;start data segment
0000 0064 [ LISTA DB 100 DUP(?)
?2?
]
0064 0064 [ LISTB DB 100 DUP(?)
??
]
.CODE ;jstart code segment
0000 B9 — ? HERE: MOV AX,@DATA ;load ES and DS
0003 8E CO MOV ES,AX
0005 8E D8 MOV DS, AX
0007 FC CLD ;move data
0008 BE 0000 R MOV SI,OFFSET LISTA
000B BF 0064 R MOV DI,OFFSET LISTB
O00E B9 0064 MOV CX,100
0011 F3/n4 REP MOVSB
0013 .EXIT O ;exit to DOS
END HERE

Full-Segment Definitions. Example 4-19 illustrates the same program using full segment defini-
tions. Full-segment definitions are also used with the Borland and Microsoft C/C+ + environments
for procedures developed in assembly language. The program in Example 4-19 appears longer than
the one pictured in Example 4-18, but it is more structured than the model method of setting up a
program. The first segment defined is the STACK_SEG, which is clearly delineated with the SEG-
MENT and ENDS directives. Within these directives, a DW 100 DUP (?) sets aside 100H words for
the stack segment. Because the word STACK appears next to SEGMENT, the assembler and linker
automatically load both the stack segment register (SS) and stack pointer (SP).
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EXAMPLE 4-19

0000 STACK_SEG SEGMENT ' STACK'
0000 0064 [ DW 100H DUP(?)
2?7?27
]
0200 STACK_SEG ENDS
0000 DATA SEG SEGMENT 'DATA'
0000 0064 [ LISTA DB 100 DUP(?)
?27?
]
0064 0064 [ LISTB DB 100 DUP(?)
?7?
]
00CB DATA SEG ENDS
0000 CODE_SEG SEGMENT 'CODE"'

ASSUME CS:CODE_SEG, DS:DATA SEG
ASSUME SS:STACK SEG

0000 MAIN PROC FAR
0000 B8 — R MOV AX,DATA_ SEG ;load DS and ES
0003 8E CO MOV ES, AX
0005 8E D8 MOV DS, AX
0007 FC CLD ;save data
0008 BE 0000 R MOV SI,OFFSET LISTA
000B BF 0064 R MOV DI,OFFSET LISTB
O00E B9 0064 MOV CX,100
0011 F3/24 REP MOVSB
0013 B4 4cC MOV AH,4CH ;exit to DOS
0015 CD 21 INT 21H
0017 MAIN ENDP
0017 CODE_SEG ENDS
END MAIN

Next, the data are defined in the DATA_SEG. Here, two arrays of data appear as LISTA and
LISTB. Each array contains 100 bytes of space for the program. The names of the segments in this
program can be changed to any name. Always include the group name ‘DATA’, so that the
Microsoft program CodeView can be effectively used to symbolically debug this software.
CodeView is a part of the MASM package used to debug software. To access CodeView, type CV,
followed by the file name at the DOS command line; if operating from Programmer’s
WorkBench, select Debug under the Run menu. If the group name is not placed in a program,
CodeView can still be used to debug a program, but the program will not be debugged in symbolic
form. Other group names such as ‘STACK’, ‘CODE’, and so forth are listed in Appendix A.
You must at least place the word ‘CODE’ next to the code segment SEGMENT statement if you
want to view the program symbolically in CodeView.

The CODE_SEG is organized as a far procedure because most software is procedure-
oriented. Before the program begins, the code segment contains the ASSUME statement. The
ASSUME statement tells the assembler and linker that the name used for the code segment
(CS) is CODE_SEQG:; it also tells the assembler and linker that the data segment is
DATA_SEG and the stack segment is STACK_SEG. Notice that the group name ‘CODE’ is
used for the code segment for use by CodeView. Other group names appear in Appendix A
with the models.

After the program loads both the extra segment register and data segment register with the
location of the data segment, it transfers 100 bytes from LISTA to LISTB. Following this is a
sequence of two instructions that return control back to DOS (the disk operating system). Note
that the program loader does not automatically initialize DS and ES. These registers must be
loaded with the desired segment addresses in the program.
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The last statement in the program is END MAIN. The END statement indicates the end of
the program and the location of the first instruction executed. Here, we want the machine to exe-
cute the main procedure so the MAIN label follows the END directive.

In the 80386 and above, an additional directive is found attached to the code segment. The
USE16 or USE32 directive tells the assembler to use either the 16- or 32-bit instruction modes for
the microprocessor. Software developed for the DOS environment must use the USE16 directive
for the 80386 through the Core2 program to function correctly because MASM assumes that all
segments are 32 bits and all instruction modes are 32 bits by default.

A Sample Program

Example 4-20 provides a sample program, using full-segment definitions, that reads a character
from the keyboard and displays it on the CRT screen. Although this program is trivial, it illus-
trates a complete workable program that functions on any personal computer using DOS, from
the earliest 8088-based system to the latest Core2-based system. This program also illustrates the
use of a few DOS function calls. (Appendix A lists the DOS function calls with their parame-
ters.) The BIOS function calls allow the use of the keyboard, printer, disk drives, and everything
else that is available in your computer system.

This example program uses only a code segment because there is no data. A stack segment
should appear, but it has been left out because DOS automatically allocates a 128-byte stack for
all programs. The only time that the stack is used in this example is for the INT 21H instructions
that call a procedure in DOS. Note that when this program is linked, the linker signals that no
stack segment is present. This warning may be ignored in this example because the stack is fewer
than 128 bytes.

Notice that the entire program is placed into a far procedure called MAIN. It is good pro-
gramming practice to write all software in procedural form, which all