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PREFACE 


This book has been designed as a complete self-contained text for 
learning programming, using the Z80. It can be used by a person who 
has never programmed before, and should also be of value to anyone 
using the Z80. 

For the person who has already programmed, this book will teach 
specific programming techniques using (or working around) the speci­
fic characteristics of the Z80. This text covers the elementary to inter­
mediate techniques required to start programming effectively. 

This text aims at providing a true level of competence to the person 
who wishes to program using this microprocessor. Naturally, no book 
will effectively teach how to program, unless one actually practices. 
However, it is hoped that this book will take the reader to the point 
where he feels that he can start programming by himself and can solve 
simple or even moderately complex problems using a microcomputer. 

This book is based on the author's experience in teaching more than 
1000 persons how to program microcomputers. As a result, it is strongly 
structured. Chapters normally go from the simple to the complex. For 
readers who have already learned elementary programming, the intro­
ductory chapter may be skipped. For others who have never program­
med, the final sections of some chapters may require a second reading. 
The book has been designed to take the reader systematically through 
all the basic concepts and techniques required to build increasingly 
complex programs. It is, therefore, strongly suggested that the ordering 
of the chapters be followed. In addition, for effective results, it is 
important that the reader attempt to solve as many exercises as possible. 
The difficulty within the exercises has been carefully graduated. They 
are designed to verify that the material which has been presented is 
really understood. Without doing the programming exercises, it will 
not be possible to realize the full value of this book as an educational 
medium. Several of the exercises may require time, such as the multi­
plication exercise. However, by doing them, you will actually program 
and learn by doing. This is indispensable. 

For those who have acquired a taste for programming when reaching 
the end of this volume, a companion volume is planned: the Z80 Ap­
plications Book. 
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Other books in this series cover programming for other popular 
microprocessors. 

For those who wish to develop their hardware knowledge, it is sug­
gested that the reference books From Chips to Systems: an Introduction 
to Microprocessors (ref. C201A) and Microprocessor Inter/acing 
Techniques (ref. C207) be consulted. 

The contents of this book have been checked carefully and are 
believed to be reliable. However, inevitably, some typographical or 
other errors will be found. The author will be grateful for any comments 
by alert readers so that future editions may benefit from their experience. 
Any other suggestions for improvements, such as other programs 
desired, developed, or found of value by readers, will be appreciated. 

14 
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BASIC CONCEPTS 

INTRODUCTION 

This chapter will introduce the basic concepts and definitions re­
lating to computer programming. The reader already familiar with 
these concepts may want to glance quickly at the contents of this 
chapter and then move on to Chapter 2. It is suggested, however, 
that even the experienced reader look at the contents of this intro­
ductory chapter. Many significant concepts are presented here in­
cluding, for example, two's complement, BCD, and other represen­
tations. Some of these concepts may be new to the reader; others 
may improve the knowledge and skills of experienced programmers. 

WHAT IS PROGRAMMING? 

Given a problem, one must first devise a solution. This solution, 
expressed as a step-by-step procedure, is called an algorithm. An 
algorithm is a step-by-step specification of the solution to a given 
problem. It must terminate in a finite number of steps. This 
algorithm may be expressed in any language or symbolism. A sim­
ple example of an algorithm is: 

I-insert key in the keyhole 
2-turn key one full turn to the left 
3-seize doorknob 
4-turn doorknob left and push the door 

15 



PROGRAMMING THE ZSO 

At this point, if the algorithm is correct for the type of lock in­
volved, the door will open. This four-step procedure qualifies as an 
algorithm for door opening. 

Once a solution to a problem has been expressed in the form of 
an algorithm, the algorithm must be executed by the computer. 
Unfortunately, it is now a well-established fact that computers 
cannot understand or execute ordinary spoken English (or any 
other human language). The reason lies in the syntactic ambiguity 
of all common human languages. Only a well-defined subset of 
natural language can be "understood" by the computer. This is 
called a programming language. 

Converting an algorithm into a sequence of instructions in a pro­
gramming language is called programming. To be more specific, 
the actual translation phase of the algorithm into the program­
ming language is called coding. Programming really refers not just 
to the coding but also to the overall design of the programs and 
"data structures" which will implement the algorithm. 

Effective programming requires not only understanding the 
possible implementation techniques for standard algorithms, but 
also the skillful use of all the computer hardware resources, such as 
internal registers, memory, and peripheral devices, plus a creative 
use of appropriate data structures. These techniques will be 
covered in the next chapters. 

Programming also requires a strict documentation discipline, so 
that the programs are understandable to others, as well as to the 
author. Documentation must be both internal and external to the 
program. 

Internal program documentation refers to the comments placed 
in the body of a program, which explain its operation. 

External -aocumentation refers to the design documents which 
are separate from the program: written explanations, manuals, 
and flowcharts. 

FLOWCHARTING 

One intermediate step is almost always used between the 
algorithm and the program. It is called a flowchart. A flowchart is 
simply a symbolic representation of the algorithm expressed as a 
sequence of rectangles and diamonds containing the steps of the 
algorithm. Rectangles are used for commands, or "executable 
statements." Diamonds are used for tests such as: If information 
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BASIC CONCEPTS 

X is true, then take action A, else B. Instead of presenting a formal 
definition of flowcharts at this point, we will introduce and discuss 
flowcharts later on in the book when we present programs. 

Flowcharting is a highly recommended intermediate step be­
tween the algorithm specification and the actual coding of the solu­
tion. Remarkably, it has been observed that perhaps 10% of the 
programming population can write a program successfully with­
out having to flowchart. Unfortunately, it has also been observed 
that 900/0 of the population believes it belongs to this 10% I The 
result: 80% of these programs, on the average, will fail the first 
time they are run on a computer. (These percentages are naturally 
not meant to be accurate.) In short, most novice programmers sel­
dom see the necessity of drawing a flowchart. This usually results 
in "unclean" or erroneous programs. They must then spend a long 
time testing and correcting their program (this is called the 

START 

2 

NO 

(ROOM 
TOO COLD) 

YES 

(ROOM 
TOO HOTl) 

4 5 

(OPTIONAL DELAY) 

Fig. 1.1: A Flowchart for Keeping Room Temperature Constant 
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PROGRAMMING THE ZSO 

debugging phase). The discipline of flowcharting is therefore 
highly recommended in all cases. I t will require a small amount of 
additional time prior to the coding, but will usually result in a clear 
program which executes correctly and quickly. Once flowcharting 
is well understood, a small percentage of programmers will be able 
to perform this step mentally without having to do it on paper. Un­
fortunately, in such cases the programs that they write will usual­
ly be hard to understand for anybody else without the documenta­
tion provided by flowcharts. As a result, it is universally recom­
mended that flowcharting be used as a strict discipline for any 
significant program. Many examples will be provided throughout 
the book. 

INFORMATION REPRESENTATION 

All computers manipulate information in the form of numbers or 
in the form of characters. Let us examine here the external and 
internal representations of information in a computer. 

INTERNAL REPRESENTATION OF INFORMATION 

All information in a computer is stored as groups of bits. A bit 
stands for a binary digit("O" or "1"). Because of the limitations 
of conventional electronics, the only practical representation of infor­
mation uses two-state logic (the representation of the state "0" and 
"1"). The two states of the circuits used in digital electronics 
are generally "on" or "off". and these are represented logi­
cally by the symbols "0" or " 1". Because these circuits are 
used to implement "logical" functions, they are called "binary 
logic." As a result, virtually all information-processing today is 
performed in binary format. In the case of microprocessors in 
general, and of the Z80 in particular, these bits are structured. in 
groups of eight. A group of eight bits is called a byte. A group of 
four bits is called a nibble. 

Let us now examine how information is represented internally in 
this binary format. Two entities must be represented inside the 
computer. The first one is the program, which is a sequence of 
instructions. The second one is the data on which the program will 
operate, which may include numbers or alphanumeric text. We will 
discuss below three representations: program, numbers, and alpha­
numerics. 
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BASIC CONCEPTS 

Program Representation 

All instructions are represented internally as single or multiple 
bytes. A so-called "short instruction" is represented by a single 
byte. A longer instruction will be represented by two or more 
bytes. Because the Z80 is an eight-bit microprocessor, it fetches 
bytes successively from its memory. Therefore, a single-byte 
instruction always has a potential for executing faster than a two­
or three-byte instruction. It will be seen later that this is an impor­
tant feature of the instruction set of any microprocessor and in 
particular the Z80, where a special effort has been made to pro­
vide as many single-byte instructions as possible in order to im­
prove the efficiency of the program execution. However, the limita­
tion to 8 bits in length has resulted in important restrictions which 
will be outlined. This is a classic example of the compromise be­
tween speed and flexibility in programming. The binary code used 
to represent instructions is dictated by the manufacturer. The 
Z80, like any other microprocessor, comes equipped with a, fixed 
instruction set. These instructions are defined by the manufac­
turer and are listed at the end of this book, with their code. Any 
program will be expressed as a sequence of these binary instruc­
tions. The Z80 instructions are presented in Chapter 4. 

Representing Numeric Data 

Representing numbers is not quite straightforward, and several 
cases must be distinguished. We must first represent integers, then 
signed numbers, i.e., positive and negative numbers, and finally we 
must be able to represent decimal numbers. Let us now address 
these requirements and possible solutions. 

Representing integers may be performed by using a direct 
binary representation. The direct binary representation is simply 
the representation of the decimal value of a number in the bjnary 
system. In the binary system, the right-most bit represents 2 to 
the power O. The next one to the left represents 2 to the power I, 
the next represents 2 to the power 2, and the left-most bit 
represents 2 to the power 7 = 128. 

b7b6bsb4b3b2b,bo 

represents 


b727 + bs26 + b525 + b424 + b323 + b222 + b ,2' + bo2° 
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The powers of 2 are: 


27 = 128, 26 = 64, 26 = 32, 24 = 16, 23 = 8, 22 = 4, 21 = 2, 2° = 1 


The binary representation is analogous to the decimal representa­
tion of numbers, where "123" represents: 

1 X 100 = 100 
+ 2 X 10 = 20 
+3X 1= 3 

= 123 

Note that 100 = 102, 10 = 101, 1 = 10°. 

In this "positional notation," each digit represents a power of 1 O. 

In the binary system, each binary digit or "bit" represents a power 

of 2, instead of a power of 10 in the decimal system. 


Example: "00001001" in binary represents: 

1 X 1 = 1 (2°) 
o X 2 = 0 (21) 
o X 4 = 0 (22) 
1 X 8 = 8 (2 3) 

o X 16 = 0 (24) 
o X 32 = 0 (2 6) 

o X 64 = 0 (26) 

o X 128 = 0 (27) 

in decimal: = 9 

Let us examine some more examples: 

"10000001" represents: 

1 X 1= 1 
OX 2= 0 
OX 4= 0 
OX 8= 0 
OX 16 = 0 
OX 32 = 0 
OX 64 = 0 
1 X 128 = 128 

in decimal: = 129 

''10000001'' represents, therefore, the decimal number 129. 
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BASIC CONCEPTS 

By examining the binary representation of numbers, you will 
understand why bits are numbered from 0 to 7, going from right to 
left. Bit 0 is "bo" and corresponds to 2°. Bit 1 is "b/' and cor­
responds to 2 1, and so on. 

Decimal Binary Decimal Binary 

0 00000000 32 00100000 
1 00000001 33 00100001 
2 00000010 · 3 00000011 • 
4 00000100 · 5 00000101 63 00111111 
6 00000110 64 01000000 
7 00000111 65 01000001 
8 00001000 · 
9 00001001 · 

10 00001010 127 01111111 
11 00001011 128 10000000 
12 00001100 129 10000001 
13 00001101 
14 00001110 • 
15 00001111 

16 00010000 · 

17 00010001 · 

• 

• 


· 254 11111110 
31 00011111 255 11111111 

Fig. 1.2: Decimal-Binary Table 

The binary equivalents of the numbers from 0 to 255 are shown 
in Fig. 1-2. 

Exercise 1.1: What is the decimal value of "111111()()"? 
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Decimal to Binary 

Conversely, let us compute the binary equivalent of "11" 
decimal: 

11 + 2 =5 remains 1 - 1 (LSB) 
5 + 2 = 2 remains 1 -1 
2 -;.-2= 1 remains 0 -0 
1+2=0 remains 1 -1 (MSB) 

The binary equivalent is 1011 (read right-most column from bot­

tom to top). 

The binary equivalent of a decimal number may be obtained by 

dividing successively by 2 until a quotient of 0 is obtained. 


Exercise 1.2: What is the binary for 257? 

Exercise 1.3: Convert 19 to binary, then back to decimaL 

Operating on Binary Data 

The arithmetic rules for binary numbers are straightforward. 
The rules for addition are: 

0+0= 0 
0+ 1= 1 
1+0=. 1 
1+ 1= (1) 0 

where (1) denotes a "carry" of 1 (note that "10" -is the binary 
equivalent of "2" decimal). Binary subtraction will be performed 
by "adding the complement" and will be explained once we learn 
how to represent negative numbers. 

Example: 

(2) 10 
+(1) +01 

=(3) 11 

Addition is performed just like in decimal, by adding columns, 
from right to left: 

Adding the right-most column: 

19 
+01 

(0 + 1 = 1. No carry.) 
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BASIC CONCEPTS 

Adding the next column: 

J.O 
+tn 

11 (1 + 0 =1. No carry.) 

Exercise 1.4: Compute 5 + 10 in binary. Verify that the result is 15. 

Some additional examples of binary addition: 

0010 (2) 0011 (3) 

+0001 (1) +0001 (1) 

=0011 (3) =0100 (4) 

This last example illustrates the role of the carry. 


Looking at the right-most bits: 1 + 1 = (1) 0 

A carry of 1 is generated, which must be added to the next bits: 


001 - column 0 has just been added 
+000 ­
+ 1 (carry) 

= (1)0 - where (1) indicates a new 
carry into column 2. 

The final result is: 0100 

Another example: 

0111 
+0011 

(7) 
+ (3) 

1010 =(10) 

In chis example, a carry is again generated, up to the left-most co­
lumn. 

Exercise 1.5: Compute the result of: 

1111 
+0001 

=1 
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Does the result hold in four bits? 

With eight bits, it is therefore possible to represent directly the 
numbers "00000000" to "11111111," i.e., "0" to "255". Two 
obstacles should be visible immediately. First, we are only 
representing positive numbers. Second, the magnitude of these 
numbers is limited to 255 if we use only eight bits. Let us address 
each of these problems in turn. 

Signed Binary 

In a signed binary representation, the left-most bit is used to in­
dicate the sign of the number. Traditionally, "0" is used to denote 
a positive number while "1" is used to denote a negative number.· 
Now "11111111" will represent -127, while "01111111" will 
represent +127. We can now represent positive and negative 
numbers, but we have reduced the maximum magnitude of these 
numbers to 127. 

Example: "0000 0001" represents + 1 (the leading "0" is "+", 
followed by "000 0001" = 1). 

"1000 0001" is - 1 (the leading "1" is "-"). 

Exercise 1.6: What is the representation of "-5" in signed binary? 

Let us now address the magnitude problem: in order to represent 
larger numbers, it will be necessary to use a larger number of bits. 
For example, if we use sixteen bits (two bytes) to represent 
numbers, we will be able to represent numbers from -32K to 
+32K in signed binary (IK in computer jargon represents 1,024). 
Bit 15 is used for the sign, and the remaining 15 bits (bit 14 to bit 
0) are used for the magnitude: 215 = 32K. If this magnitude is still 
too small, we will use 3 bytes or more. If we wish to represent large 
integers, it will be necessary to use a larger number of bytes inter­
nally to represent them. This is why most simple BASICs, and 
other languages, provide only a limited precision for integers. This 
way, they can use a shorter internal format for the numbers which 
they manipulate. Better versions of BASIC, or of these other 
languages, provide a larger number of significant decimal digits at 
the expense of a large number of bytes for each number. 

Now let us solve another problem, the one of speed efficiency. 
Weare going to attempt performing an addition in the signed 
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BASIC CONCEPTS 

binary representation which we have introduced. Let us add" -5" 
and" +7". 

+7 is represented by 00000111 
-5 is represented by 10000101 

The binary sum is: 10001100, or -12 

This is not the correct result. The correct result should be +2. In 
order to use this representation, special actions must be taken, de­
pending on the sign. This results in increased complexity and re­
duced performance. In other words, the binary addition of signed 
numbers does not "work correctly." This is annoying. Clearly, the 
computer must not only represent information, but also perform 
arithmetic on it. 

The solution to this problem is called the two's complement 
representation, which will be used instead of the signed binary 
representation. In order to introduce two's complement let us first 
introduce an intermediate step: one's complement. 

One's Complement 

In the one's complement representation, all positive integers are 
represented in their correct binary format. For example "+3" is 
represented as usual by 00000011. However, its complement "-3" 
is obtained by complementing every bit in the original representa­
tion. Each 0 is transformed into a 1 and each 1 is transformed into 
a o. In our example, the one's complement representation of" -3" 
will be 11111100. 

Another example: 

+2 is 00000010 
-2 is 11111101 

Note that, in this representation, positive numbers start with a 
"0" on the left, and negative ones with a "I" on the left. 

Exercise 1. 7: The representation of "+6" is "()()()()()1l0". What is 
the representation of "-6" in one's complement? 

As a test, let us add minus 4 and plus 6: 
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-4 is 11111011 
+6 is 00000110 

the sum is: (1) 00000001 	 where (1) indicates a 
carry 

The "correct result" should be "2", or "00000010". 

Let us try again: 

- 3 is 11111100 
- 2 is 11111101 

The sum is: (1) 11111001 

or "-6," plus a carry. The correct result should be "-." The 
representation of "- 5" is 11111010. It did not work. 

This representation does represent positive and negative 
numbers. However the result of an ordinary addition does not 
always come out "correctly." We will use still another representa­
tion. It is evolved from the one's complement and is called the 
two's complement representation. 

Two's Complement Representation 

In the two's complement representation, positive numbers are 
still represented, as usual, in signed binary, just like in one's com­
plement. The difference lies in the representation of negative 
numbers. A negative number represented in two's complement is 
obtained by first computing the one's complement, and then ad­
ding one. Let us examine this in an example: 

+3 is represented in signed binary by 00000011. Its one's com­
plement representation is 11111100. The two's complement is ob­
tained by adding one. It is 111111 0 1. 

Let us try an addition: 

(3) 00000011 
+(5) +00000101 

=(8) =00001000 

The result is correct. 
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Let us try a subtraction: 

(3) 00000011 
(-5) +11111011 

=11111110 

Let us identify the result by computing the two's complement: 

the one's complement of 11111110 is 00000001 
Adding 1 + 1 

therefore the two's complement is 00000010 or +2 

Our result above, "11111110" represents" - 2". It is correct. 

We have now tried addition and subtraction, and the results were correct 
(ignoring the carry). It seems that two's complement works! 

Exercise 1.8: What is the two's complement representation of 

"+127"? 


Exercise 1.9: What lS the two's complement representation of 

'!...-128 "? 


Let us now add +4 and -3 (the subtraction is performed by add­
ing the two's complement): 

+4 is 00000100 
-3 is 11111101 

The result is: (1) 00000001 

If we ignore the carry, the result is 00000001, i.e., "1" in decimal. 
This is the correct result. Without giving the complete mathe­
matical proof, let us simply state that this representation does 
work. In two's complement, it is possible to add or subtract signed 
numbers regardless of the sign. Using the usual rules of binary addi­
tion, the result comes out correctly, including the sign. The carry 
is ignored. This is a very significant advantage. If it were not the 
case, one would have to correct the result for sign every time, caus­
ing a much slower addition or subtraction time. 

For the sake of completeness, let us state that two's complement 
is simply the most convenient representation to use for simpler 
processors such as microprocessors. On complex processors, other 
representations may be used. For example, one's complement may 
be used, but it requires special circuitry to "correct the result." 
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From this point on, all signed integers will implicitly be represented 
internally in two's complement notation. See Fig. 1. 3 for a table of 
two's complement numbers. 

Exercise 1.10: What are the smallest and the largest numbers 
which one may represent in two's complement notation, using only 
one byte? 

Exercise 1.11: Compute the two's complement of 20. Then com­
pute the two's complement of your result. Do you find 20 again? 

The following examples will serve to demonstrate the rules of two's 
complement. In particular, C denotes a possible carry (or borrow) 
condition. (It is bit 8 of the result.) 

V denotes a two's complement overflow, i.e., when the sign of the 
result is changed "accidentally" because the numbers are too 
large. It is an essentially internal carry from bit 6 into bit 7 (the 
sign bit). This will be clarified below. 

Let us now demonstrate the role of the carry "C" and the overflow 
"V". 

The Carry C 

Here is an example of a carry: 

(128) 10000000 
+(129) + 10000001 

(257) = (1) 00000001 

where (1) indicates a carry. 

The result requires a ninth bit (bit "8", since the right-most bit is 
"0"). It is the carry bit. 

If we assume that the carry is the ninth bit of the result, we 
recognize the result as being 100000001 = 257. 

However, the carry must be recognized and handled with care. 
Inside the microprocessor, the registers used to hold information 
are generally only eight-bit wide,When storing the result, only bits 0 to 
7 will be preserved. 

A carry, therefore, always requires special action: it must be 
detected by special instructions, then processed. Processing the 
carry means either storing it somewhere (with a special instruc­
tion), or ignoring it, or deciding that it is an error (if the largest 
authorized result is "11111111"). 
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+ 

+ 127 

+ 126 

+ 125 

· .. 

+65 
+64 
+63 
· .. 
+ 33 

+32 

+ 31 

· .. 
+ 17 

+ 16 

+ 15 

+ 14 

+ 13 

+ 12 

+ I I 

+10 

+9 

+8 

+7 

+6 

+5 

+4 

+3 

+2 

+ I 

+0 


2's complement 
code 

01111111 
01111110 
01111101 

01000001 
01000000 
00111111 

00100001 
00100000 
00011111 

00010001 
00010000 
00001111 
00001110 
00001101 
00001100 
00001011 
00001010 
00001001 
00001000 
00000111 
00000110 
00000101 
00000100 
00000011 
00000010 
00000001 
00000000 

-

-128 
-127 
-126 
-125 

· .. 
-65 
-64 
-63 
· .. 
- 33 
- 32 
-31 
· .. 
-17 
-16 
-15 
-- 14 
- 13 
-12 
- II 
-10 
-9 
-8 
-7 
-6 
-5 
-4 
-3 
-2 
-I 

2's complement 
code 

10000000 

10000001 

10000010 

10000011 


10111111 

11000000 

11000001 


11011111 

11100000 

11100001 


11101111 

11110000 

11110001 

11110010 

11110011 

11110100 

11110101 

11110110 

11110111 

11111000 

11111001 

III I 1010 

II I 1101 I 

11111100 

I I I I I 101 

11111110 

11111111 


Fig. 1.3: 2's Complement Table 
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Overflow V 

Here is an example of overflow: 

bit 6 
bit 7 ,~ 

01000000 (64) 
+01000001 +(65) 

=10000001 =(-127) 

An internal carry has been generated from bit 6 into bit 7. This is 
called an overflow. 

The result is now negative, "by accident." This situation must 
be detected, so that it can be corrected. 

Let us examine another situation: 

11111111 (-1) 
+ 11111111 +(-1) 

=(1) 11111110 =(-2) 
Y 

carry 

In this case, an internal carry has been generated from bit 6 into 
bit 7, and also from bit 7 into bit 8 (the formal "Carry" C we have 
examined in the preceding section). The rules of two's complement 
arithmetic specify that this carry should be ignored. The result is 
then correct. 

This is because the carry from bit 6 into bit 7 did not change the 
sign bit. 

This is not an overflow condition. When operating on negative 
numbers, the overflow is not simply a carry from bit 6 into bit 7. 
Let us examine one more example. 

11000000 (-64) 
+10111111 (-65) 

=(1) 01111111 (+ 127) 
Y 

carry 

This time, there has been no internal carry from bit 6 into bit 7, but 
there has been an external carry. The result is incorrect, as bit 7 
has been changed. An overflow condition should be indicated. 
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Overflow will occur in four situations: 

I-adding large positive numbers 
2-adding large negative numbers 
3-subtracting a large positive number from a large negative 

number 
4-subtracting a large negative number from a large positive 

number. 

Let us now improve our definition of the overflow: 

Technically, the overflow indicator, a special bit reserved for this 
purpose, and called a "flag," will be set when there is a carry from 
bit 6 into bit 7 and no external carry, or else when there is no carry 
from bit 6 into bit 7 but there is an external carry. This indicates 
that bit 7, i.e., the sign of the result, has been accidentally 
changed. For the technically-minded reader, the overflow flag is 
set by Exclusive ORing the carry-in and carry-out of bit 7 (the sign 
bit). Practically every microprocessor is supplied with a special 
overflow flag to automatically detect this condition, which re­
quires corrective action. 

Overflow indicates that the result of an addition or a subtraction 
requires more bits than are available in the standard eight-bit 
register used to contain the result. 

The Carry and the Overflow 

The carry and the overflow bits are called "flags." They are pro­
vided in every microprocessor, and in the next chapter we will 
learn to use them for effective programming. These two indicators 
are located in a special register called the flags or "status" 
register. This register also contains additional indicators whose 
function will be clarified in Chapter 4. 

Examples 

Let us now illustrate the operation of the carry and the overflow 
in actual examples. In each example, the symbol V denotes the 
overflow, and C the carry. 

If there has been no overflow, V = O. If there has been an 
overflow, V = 1 (same for the carry C). Remember that the rules of 
two's complement specify that the carry be ignored. (The 
mathematical proof is not supplied here.) 
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Positive-Positive 

00000110 (+6) 
+ 00001000 (+8) 


= 00001110 (+14) V:O C:O 


(CORRECT) 

Positive-Positive with Overflow 

01111111 (+127) 
+ 00000001 (+1) 


= 10000000 (-128) V:1 C:O 


The above is invalid because an overflow has occurred. 


(ERROR) 

Positive-Negative (result positive) 

00000100 (+4) 
+ 11111110 (-2) 


=(1)00000010 (+2) V:O C:1 (disregard) 


(CORRECT) 

Positive-Negative (result negative) 

00000010 (+2) 
+ 	 11111100 (-4) 


11111110 (-2) V:O C:O 


(CORRECT) 

Negative-Negative 

11111110 (-2) 
+ 11111100 (-4) 


=(1)11111010 (-6) V:O C:1 (disregard) 


(CORRECT) 

Negative-Negative with Overflow 

10000001 (-127) 
+ 11000010 (-62) 


=(1)01000011 (67) V:1 C:1 


(ERROR) 
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This time an "underflow" has occurred, by adding two large 
negative numbers. The result would be -189, which is too large to 
reside in eight bits. 

Exercise 1.12: Complete the following additions. Indicate the 
result, the carry C, the overflow V, and whether the result is correct 
or not: 

10111111 (-) 11111010 (-) 
+11000001 (-) +11111001 (-) 

= V:_ C:_ = V:_ C:_ 
D CORRECT D ERROR D CORRECT D ERROR 

00010000 (-) 01111110 (-) 
+01000000 (-) +00101010 (-) 

= V:_ C:_ = V:_ C:_ 
D CORRECT D ERROR D CORRECT D ERROR 

Exercise 1.13: Can you show an example of overflow when adding a 
positive and a negative number? Why? 

Fixed Format Representation 

Now we know how to represent signed integers. However, we 
have not yet resolved the problem of magnitude. If we want to 
represent larger integers, we will need several bytes. In order to 
perform arithmetic operations efficiently, it is necessary to use a 
fixed number of bytes rather than a variable one. Therefore, once 
the number of bytes is chosen, the maximum magnitude of the 
number which can be represented is fixed. 

Exercise 1.14: What are the largest and the smallest numbers 
which may be represented in two bytes using two's complement? 

The Magnitude Problem 

When adding numbers we have restricted ourselves to eight bits 
because the processor we will use operates internally on eight bits 
at a time. However, this restricts us to the numbers in the range 
-128 to +127. Clearly, this is not sufficient for many applications. 

Multiple precision will be used to increase the number of digits 
which can be represented. A two-, three-, or N-byte format may 
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then be used. For example, let us examine a 16-bit, "double-pre­
cision" format: 

00000000 00000000 is "0" 
00000000 00000001 is "1" 

01111111 11111111 is "32767" 
11111111 11111111 is "-1" 
11111111 11111110 is "-2" 

Exercise 1.15: What is the largest negative integer which can be 
represented in a two's complement triple-precision format? 

However, this method will result in disadvantages. When adding 
two numbers, for example, we will generally have to add them 
eight bits at a time. This will be explained in Chapter 3 (Basic Pro­
gramming Techniques). It results in slower processing. Also, this 
representation uses 16 bits for any number, even if it could be 
represented with only eight bits. I t is, therefore, common to use 16 
or perhaps 32 bits, but seldom more. 

Let us consider the following important point: whatever the 
number of bits N chosen for the two's complement representation, 
it is fixed. If any result or intermediate computation should 
generate a number requiring more than N bits, some bits will be 
lost. The program normally retains the N left-most bits (the most 
significant) and drops the low-order ones. This is called truncating 
the result. 

Here is an example in the decimal system, using a six digit 
representation: 

123456 
X 1.2 

246912 
123456 

=148147.2 

The result requires 7 digits! The "2" after the decimal point will be 
dropped and the final result will be 148147. It has been truncated. 
Usually, as long as the position of the decimal point is not lost, this 
method is used to extend the rang«;l of the operations which may be 
performed, at the expense of precision. 

The problem is the same in binary. The details of a binary multi­
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plication will be shown in Chapter 4. 
This fixed-format representation may cause a loss of precision, 

but it may be sufficient for usual computations or mathematical 
operations. 

Unfortunately, in the case of accounting, no loss of precision is 
tolerable. For example, if a customer rings up a large total on a 
cash register, it would not be acceptable to have a five figure 
amount to pay, which would be approximated to the dollar. 
Another representation must be used wherever precision in the 
result is essential. The solution normally used is BCD, or 
binary-coded decimal. 

BCD Representation 

The principle used in representing numbers in BCD is to encode 
each decimal digit separately, and to use as many bits as necessary 
to represent the complete number exactly. In order to encode each 
of the digits from 0 through 9, four bits are necessary. Three bits 
would only supply eight combinations, and can therefore not en­
code the ten digits. Four bits allow sixteen combinations and are 
therefore sufficient to encode the digits "0" through "9". It can 
also be noted that six of the possible codes will not be used in the 
BCD representation (see Fig. 1-4). This will result later on in a potential 
problem during additions and subtractions, which we will have to solve. 

BCD BCD 
CODE SYMBOL CODE SYMBOL 

0000 0 1000 8 
0001 1 1001 9 
0010 2 1010 unused 
0011 3 1011 unused 
0100 4 1100 unused 
0101 5 1101 unused 
0110 6 1110 unused 
0111 7 1111 unused 

Fig. 1.4: BCD Table 
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Since only four bits are needed to encode a BCD digit, two BCD digits 
may be encoded in every byte. This is called "packed BCD. " 

As an example, "00000000" will be "00" in BCD. "10011001" 
will be "99". 

A BCD code is read as follows: 

0010 0001 

BCD digit "2" .J j
BCD digit "1" .....1----­

BCD number "21" 

Exercise 1.16: What is the BCD representation for "29"? "91"? 

Exercise 1.17: Is "10100000" a valid BCD representation? Why? 

As many bytes as necessary will be used to represent all BCD 
digits. Typically, one or more nibbles will be used at the beginning 
of the representation to indicate the total number of nibbles, i.e., 
the total number of BCD digits used. Another nibble or byte will 
be used to denote the position of the decimal point. However, con­
ventions may vary. 

Here is an example of a representation for multibyte BCD in­
tegers: 

3 + 2 2 ] (3bytes) 

+ 1 --------­number "221"number 
of digits 

(up to 255) sign 

This represents +221 
(The sign may be represented by 0000 for +, and 0001 for -, for 
example.) 

Exercise 1.18: Using the same convention, represent "-23123". 
Show it in BCD format, as above, then in binary. 

Exercise 1.19: Show the BCD for "222" and "111 to, then for the re­
sult of222 X 111. (Compute the result by hand, then show it in the 
above representation.) 

The BCD representation can easily accommodate decimal 
numbers. 
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For example, +2.21 may be represented by: 

digit 3 digit 2 digit 1 

3 2 + :s I 
~ l 

2 1 

3 digits "." is on the + 
left of digit 2 

The advantage of BCD is that it yields absolutely correct 
results. Its disadvantage is that it uses a large amount of memory 
and results in slow arithmetic operations. This is acceptable only 
in an accounting environment and is normally not used in other 
cases. 

Exercise 1.20: How many bits are required to encode "9999" in 
BCD? And in two's complement? 

We have now solved the problems associated with the represen­
tation of integers, signed integers and even large integers. We 
have even already presented one possible method of representing 
decimal numbers, with BCD representation. Let us now examine 
the problem of representing decimal numbers in a fixed length for­
mat. 

Floating-Point Representation 

The basic principle is that decimal numbers must be represented 
with a fixed format. In order not to waste bits, the representation 
will normalize all the numbers. 

For example, "0.000123" wastes three zeros on the left of the 
number, which have no meaning except to indicate the position of 
the decimal point. Normalizing this number results in .123 X 10-3• 

".123" is called a normalized mantissa, "-3" is called the expo­
nent. We have normalized this ~umber by eliminating all the meaning­
less zeros on the left of it and adjusting the exponent. 

Let us consider another example: 

22.1 is normalized as .221 x 102 

or M X 10E where M is the mantissa, and E is the exponent. 
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It can be readily seen that a normalized number is characterized 
by a mantissa less than 1 and greater or equal to .1 in all cases 
where the number is not zero. In other words, this can be repre­
sented mathematically by: 

.1 ~ M < 1 or 10-1 ~ M < 100 

Similarly, in the binary representation: 

2-I~M<2° (or .5~M<I) 

Where M is the absolute value of the mantissa (disregarding the 
sign). 

For example: 

111.01 is normalized as: .11101 X 23. 

The mantissa is 11101. 

The exponent is 3. 

Now that we have defined the principle of the representation, 
let us examine the actual format. A typical floating-point represeJ).­
tation appears below. 

31 24 23 16 15 8 7 o 
M ~ N---T-----S~~---A---------, 

EXP 

Fig. 1.5: Typical Floating-Point Representation 

In the representation used in this example, four bytes are used 
for a total of 32 bits. The first byte on the left of the illustration is 
used to represent the exponent. Both the exponent and the man­
tissa will be represented in two's complement. As a result, the 
maximum exponent will be - 128. "S" in Fig. 1-5 denotes the sign 
bit. 

Three bytes are used to represent the mantissa. Since the first 
bit in the two's complement representation indicates the sign, this 
leaves 23 bits for the representation of the magnitude of the man­
tissa. 
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Exercise 1.21: How many decimal digits can the mantissa repre­
sent with the 23 bits? 

This is only one example of a floating point representation. It is 
possible to use only three bytes, or it is possible to use more. The 
four-byte representation proposed above is just a common one 
which represents a reasonable compromise in terms of accuracy, 
magnitude of numbers, storage utilization, and efficiency in 
arithmetic operation. 

We have now explored the problems associated with the rep­
resentation of numbers and we know how to represent them in in­
teger form, with a sign, or in decimal form. Let us now examine 
how to represent alphanumeric data internally. 

Representing Alphanumeric Data 

The representation of alphanumeric data, i.e. characters, is com­
pletely straightforward: all characters are encoded in an eight-bit 
code. Only two codes are in general use in the computer world, the 
ASCII Code, and the EBCDIC Code. ASCII stands for "American 
Standard Code for Information Interchange," and is universally 
used in the world of microprocessors. EBCDIC is a variation of 
ASCII used by IBM, and therefore not used in the microcomputer 
world unless one interfaces to an IBM terminal. 

Let us briefly examine the ASCII encoding. We must encode 26 
letters of the alphabet for both upper and lower case, plus 10 
numeric symbols, plus perhaps 20 additional special symbols. This 
can be easily accomplished with 7 bits, which allow 128 possible 
codes. (See Fig.1-6.) All characters are therefore encoded in 7 bits. 
The eighth bit, when it is used, is the parity bit. Parity is a tech­
nique for verifying that the contents of a byte have not been ac­
cidentally changed. The number of 1 's in the byte is counted and 
the eighth bit is set to one if the count was odd, thus making the 
total even. This is called even parity. One can also use odd parity, 
i.e. writing the eighth bit (the left-most) so that the total number of 
l's in the byte is odd. 

Example: letus compute the parity bit for "0010011" using even 
parity. The number of l's is 3. The parity bit must therefore be a 1 
so that the total number of bits is 4, i.e. even. The result is 
10010011, where the leading 1 is the parity bit and 0010011 iden­
tifies the character. 

39 



PROGRAMMING THE zao 

The table of 7-bit ASCII codes is shown in Fig. 1-6. In practice, it 
is used "as is," i.e. without parity, by adding a 0 in the left-most 
position, or else with parity, by adding the appropriate extra bit on 
the left. 

Exercise 1.22: Compute the 8-bit representation of the digits "0" 
through "9", using even parity. (This code will be used in applica­
tion examples of Chapter 8.) 

Exercise 1.23: Same for the letters "A" through "P". 

Exercise 1.24: Using a non-parity ASCII code (where the left-most 
bit is "0"), indicate the binary contents of the 4 characters below: 

.. ~ JJ 

II?" 
If3 " 
fIb" 

HEX MSD 0 1 2 3 4 5 6 7 

LSD BITS 000 001 010 011 100 101 110 111 
0 0000 NUL OLE SPACE 0 @ P P 
1 0001 SOH DC1 ! 1 A Q a q 
2 0010 STX DC2 " 2 B A b r 
3 0011 ETX DC3 # 3 C S c s 
4 0100 EOT DC4 $ 4 D T d t 
5 0101 ENQ NAK % 5 E U e u 
6 0110 ACK SYN & 6 F V f v 

7 0111 BEL ETB 7 G W 9 w 
8 1000 BS CAN ( 8 H X h x 

9 
A 

1001 
1010 

HT 
LF 

EM 
SUB 

). 9 I 
J 

Y 
Z 

i 
j 

Y 
z 

B 1011 VT ESC + . K [ k { 
C 1100 FF FS . < L \ I -­

0 
E 

1101 
1110 

CA 
SO 

GS 
AS 

- = 

> 
M 
N 

] 
1\ 

m 
n 

}-F 1111 SI US / ? 0 ~ 0 DEL 

Fig. 1.6: ASCII Conversion Table 
(see Appendix B fOr abbreviations); 

In specialized situations such as telecommunications, other 
codings may be used such as error-correcting codes. However they 
are beyond the scope of this book. 
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We have examined the usual representations for both program 
and data inside the computer. Let us now examine the possible ex­
ternal representations. 

EXTERNAL REPRESENTATION OF INFORMATION 

The external representation refers to the way information is pre­
sented to the user, i.e. generally to the programmer. Information 
may be presented externally in essentially three formats: binary, 
octal or hexadecimal and symbolic. 

1. Binary 

It has been seen that information is stored internally in bytes, 
which are sequences of eight bits (O's or 1 's). It is sometimes 
desirable to display this internal information directly in its binary 
format and this is called binary representation. One simple exam­
ple is provided by Light Emitting Diodes (LEDs) which are essen­
tially miniature lights, on the front panel of the microcomputer. In 
the case of an eight-bit microprocessor, a front panel will typically 
be equipped with eight LEDs to display the contents of any inter­
nal register. (A register is used to hold eight bits of information 
and will be described in Chapter 2). A lighted LED indicates a one. 
A zero is indicated by an LED which is not lighted. Such a binary 
representation may be used for the fine debugging of a complex 
program, especially if it involves input/output, but is naturally 
impractical at the human level. This is because in most cases, one 
likes to look at information in symbolic form. Thus "9" is much 
easier to understand or remember than "1001". More convenient 
representations have been devised, which improve the person­
machine interface. 

2. Octal and Hexadecimal 

"Octal" and "hexadecimal" encode respectively three and four 
binary bits into a unique symbol. In the octal system, any 
combination of three binary bits is represented by a number be­
tween 0 and 7. 

"Octal" is a format using three bits, where each combination of 
three bits is represented by a symbol between 0 and 7: 
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binary octal 

000 0 
001 1 
010 2 
011 3 
100 4 
101 5 
110 6 
111 7 

Fig. 1.7: Octal Symbols 

For example, "00 100 100" binary is represented by:, , , 
044 

or "044" in octal. 

Another example: 11 111 111 is: , , , 
3 7 7 

or "377" in octal. 

Conversely, the octal "211" represents: 

010 001 001 

or "10001001" binary. 

Octal has traditionally been used on older computers which were 
employing various numbers of bits ranging from 8 to perhaps 64. 
More recently, with the dominance of eight-bit microprocessors, 
the eight-bit format has become the standard, and another more 
practical representation is used. This is hexadecimal. 

In the hex decimal representation, a group of four bits is en­
coded as one hexadecimal digit. Hexadecimal digits are 
represented by the symbols from 0 to 9, and by the letters A, B, C, 
D, E, F. For example, "0000" is represented by "0", "0001" is 
represented by "I" and "1111" is represented by the letter "F" 
(see Fig. 1-8). 
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DECIMAL BINARY HEX OCTAL 

0 0000 0 0 


1 0001 1 1 


2 0010 2 2 


3 0011 3 3 


4 0100 4 4 


5 0101 5 5 


6 0110 6 6 


7 0111 7 7 


8 1000 8 10 


9 1001 9 11 


10 1010 A 12 


11 1011 B 13 


12 1100 C 14 


13 1101 0 15 


14 1110 E 16 


15 1111 F 17 


.'ig. 1.8: Hexadecimal Codes 
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Example: 1010 0001 in binary is represented by 

A 1 in hexadecimal. 

Exercise 1.25: What is the hexadecimal representation of 
"10101010?' 

Exercise 1.26: Conversely, what is the binary equivalent of "FA" 
hexadecimal? 

Exercise 1.27: What is the octal of "01()()()()()1"? 

Hexadecimal offers the advantage of encoding eight bits into on­
ly two digits. This is easier to visualize or memorize and faster to 
type into a computer than its binary equivalent. Therefore, on 
most new microcomputers, hexadecimal is the preferred method of 
representation for groups of bits. 

Naturally, whenever the information present in the memory has 
a meaning, such as representing text or numbers, hexadecimal is 
not convenient for representing the meaning of this information 
when it is brought out for use by humans. 

Symbolic Representation 

Symbolic representation refers to the external representation of 
information in actual symbolic form. For example, decimal num­
bers are represented as decimal numbers, and not as sequences of 
hexadecimal symbols or bits. Similarly, text is represented as 
such. Naturally, symbolic representation is most practical to the 
user. It is used whenever an appropriate display device is 
available, such as a CRT display or a printer. (A CRT display is a 
television-type screen used to display text or graphics.) Unfortu­
nately, in smaller systems such as one-board microcomputers, it is 
uneconomical to provide such displays, and the user is restricted 
to hexadecimal communication with the computer. 

Summary of External Representations 

Symbolic representation of information is the most desirable 
since it is the most natural for a human user. However, it requires 
an expensive interface in the form of an alphanumeric keyboard, 
plus a printer or a CRT display. For this reason, it may not be 
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available on the less expensive systems. An alternative type of rep­
resentation is then used. and in this case hexadecimal is the domi­
nant representation. Only in rare cases relating to fine de-bugging 
at the hardware or the software level is the binary representation 
used. Binary directly displays the contents of registers of memory 
in binary format. 

(The utility of a direct binary display on a front panel has always 
been the subject of a heated emotional controversy. which will not 
be debated here.) 

We have seen how to represent information internally and exter­
nally. We will now examine the actual microprocessor which will 
manipulate this information. 

Additional Exercises 

Exercise 1.28: What is the advantage of two's complement over 
other representations used to represent signed numbers? 

Exercise 1.29: How would you represent "1024" in direct binary? 
Signed binary? Two's complement? 

Exercise 1.30: What is the V-bit? Should the programmer test it 
after an addition or subtraction? 

Exercise 1.31: Compute the two's complement of "+16", "+17", 
"+18", "-16", "-17", "-18". 

Exercise 1.32: Show the hexadecimal representation of the follow­
ing text, which has been stored internally in ASCII format, with 
no parity: = "MESSAGE". 
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Z80 HARDWARE ORGANIZATION 


INTRODUCTION 

In order to program at an elementary level, it is not necessary to 
understand in detail the internal structure of the processor that one is 
using. However, in order to do efficient programming, such an 
understanding is required. The purpose of this chapter is to present the 
basic hardware concepts necessary for understanding the operation of 
the Z80 system. The complete microcomputer system includes not only 
the microprocessor unit (here the Z80), but also other components. 
This chapter presents the Z80 proper, while the other devices (mainly 
input/output) will be presented in a separate chapter (Chapter 7). 

We will review here the basic architecture of the microcomputer 
system, then study more closely the internal organization of the Z80. 
We will examine, in particular, the various registers. We will then study 
the program execution and sequencing mechanism. From a hardware 
standpoint, this chapter is only a simplified presentation. The reader in­
terested in gaining detailed understanding is referred to our book ref. 
C201 ("Microprocessors," by the same author). 

The Z80 was designed as a replacement for the Intel 8080, and to of­
fer additional capabilities. A number of references will be made in this 
chapter to the 8080 design. 

SYSTEM ARCHITECTURE 

The architecture of the microcomputer system appears in Figure 2.1. 
The microprocessor unit (MPU), which will be a Z80 here, appears on 
the left of the illustration. It implements the functions of a central­
processing unit (CPU) within one chip: it includes an arithmetic-logical 
unit (ALU), plus its internal registers, and a control unit (CU), in 
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charge of sequencing the system. Its operation will be explained in this 
chapter. 

~ 

POOl" 
d 

1--
zeo 

RST 

T 

PORT B 

.,.~v GNO 

Fig. 2.1: Standard ZSO System 

The MPU creates three buses: an 8-bit bidirectional data bus, which 
appears at the top of the illustration, a 16-bit unidirectional address 
bus, and a control bus, which appears at the bottom of the illustration. 
Let us describe the function of each of the buses. 

The data bus carries the data being exchanged by the various ele­
ments of the system. Typically, it will carry data from the memory to 
the MPU or from the MPU to the memory or from the MPU to an in­
put/output chip. (An input/output chip is a component in charge of 
communicating with an external device.) 

The address bus carries an address generated by the MPU, which will 
select one internal register within one of the chips attached to the 
system. This address specifies the source, or the destination, of the data 
which will transit along the data bus. 

The control bus carries the various synchronization signals required 
by the system. 

Having described the purpose of buses, let us now connect the addi­
tional components required for a complete system. 

Every MPU requires a precise timing reference, which is supplied by 
a clock and a crystal. In most "older" microprocessors, the clock-oscil­
lator is external to the MPU and requires an extra chip. In most recent 
microprocessors, the clock-oscillator is usually incorporated within the 
MPU. The quartz crystal, however, because of its bulk, is always exter­
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nal to the system. The crystal and the clock appear on the left of the 
MPU box in Figure 2.1. 

Let us now turn our attention to the other elements of the system. 
Going from left to right on the illustration, we distinguish: 

The ROM is the read-only memory and contains the program for the 
system. The advantage of the ROM memory is that its contents are per­
manent and do not disappear whenever the system is turned off. The 
ROM, therefore, always contains a bootstrap or a monitor program 
(their function will be explained later) to permit initial system opera­
tion. In a process-control environment, nearly all the programs will 
reside in ROM, as they will probably never be changed. In such a case, 
the industrial user has to protect the system against power failures; pro­
grams must not be volatile. They must be in ROM. 

However, in a hobbyist environment, or in a program-development 
environment (when the programmer tests his program), most of the 
programs will reside in RAM so that they can be easily changed. Later, 
they may remain in RAM, or be transferred into ROM, if desired. 
RAM, however, is volatile. Its contents are lost when power is turned 
off. 

The RAM (random-access memory) is the read/write memory for the 
system. In the case of a control system, the amount of RAM will 
typically be small (for data only). On the other hand, in a program­
development environment, the amount of RAM will be large, as it will 
contain programs plus development software. All RAM contents must 
be loaded prior to use from an external device. 

Finally the system will contain one or more interface chips so that it 
may communicate with the external world. The most frequently used 
interface chip is the PIO or parallel input/output chip. It is the one 
shown on the illustration. This PIO, like all other chips in the system, 
connects to all three buses and provides at least two 8-bit ports for 
communication with the outside world. For more details on how an ac­
tual PIO works, refer to book C201 or, for specifics of the Z80 system, 
refer to Chapter 7 (Input/Output Devices). 

All the chips are connected to all three buses, including the control 
bus. 

The functional modules which have been described need not 
necessarily reside on a single LSI chip. In fact, we could use combina­
tion chips, which may include both PIO and a limited amount of ROM 
or RAM. 

Still more components will be required to build a real system. In par­
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ticular, the buses usually need to be buffered. Also, decoding logic may 
be used for the memory RAM chips, and, finally, some signals may 
need to be amplified by drivers. These auxiliary circuits will not be 
described here as they are not relevant to programming. The reader in­
terested in specific assembly and interfacing techniques is referred to 
book C207 "Microprocessor Interfacing Techniques." 

INSIDE A MICROPROCESSOR 

The large majority of all microprocessor chips on the market today 
implement the same architecture. This "standard" architecture will be 
described here. It is shown in Figure 2.2. The modules of this standard 
microprocessor will now be detailed, from right to left. 

EXTERNAL DATA BUS 

SP PC 

8BITbATA 
REGiSTERS 

EXTERNAL 
ADDRESSBU5 

(168IT5) 

Fig. 2.2: "Standard" Microprocessor Architecture 

The control box on the right represents the control unit which syn­
chronizes the entire system. Its role will be clarified within the re­
mainder of this chapter. 
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The ALU performs arithmetic and logic operations. A special 
register equips one of the inputs of the ALU, the left input here. It is 
called the accumulator. (Several accumulators may be provided.) The 
accumulator may be referenced both as input and output (source and 
destination) within the same instruction. 

The ALU must also provide shift and rotate facilities. 
A shift operation consists of moving the contents of a byte by one or 

more positions to the left or to the right. This is illustrated in Figure 
2.3. Each bit has been moved to the left by one position. The details of 
shifts and rotations will be presented in the next chapter. 

SHIFTlEFT 

ROTATE LEFT 

Note: Some Shift and Rotate instructions do not include the Carry. 

Fig. 2.3: Shift and Rotate 

The shifter may be on the ALU output, as illustrated in Figure 2.2, or 
may be on the accumulator input. 

To the left of the ALU, the/lags or status register appear. Their role 
is to store exceptional conditions within the microprocessor. The con­
tents of the flags register may be tested by specialized instructions, or 
may be read on the internal data bus. A conditional instruction will 
cause the execution of a new program, depending on the value of one of 
these bits. 

The role of the status bits in the Z80 will be examined later in this 
chapter. 
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Setting Flags 

Most of the instructions executed by the processor will modify some 
or all of the flags. It is important to always refer to the chart provided 
by the manufacturer listing which bits will be modified by the instruc­
tions. This is essential in understanding the way a program is being ex­
ecuted. Such a chart for the Z80 is shown in Figure 4-17. 

The Registers 

Let us look now at Figure 2.2. On the left of the illustration, the reg­
isters of the microprocessor appear. Conceptually, one can distinguish 
the general purpose registers and the address registers. 

The General-Purpose Registers 

General-purpose registers must be provided in order for the ALU to 
manipulate data at high speed. Because of restrictions on the number of 
bits which it is reasonable to provide within an instruction, the number 
of (directly addressable) registers is usually limited to fewer than eight. 
Each of these registers is a set of eight flip-flops, connected to the 
bidirectional internal data bus. These eight bits can be transferred 
simultaneously to or from the data bus. The implementation of these 
registers in MOS flip-flops provides the fastest level of memory 
available, and their contents can be accessed within tens of 
nanoseconds. 

Internal registers are usually labelled from 0 to n. The role of these 
registers is not defined in advance: they are said to be "general 
purpose." They may contain any data used by the program. 

These general-purpose registers will normally be used to store eight­
bit data. On some microprocessors, facilities exist to manipulate two of 
these registers at a time. They are then called "register pairs." This ar­
rangement facilitates the storage of 16-bit quantities, whether data or 
addresses. 

The Address Registers 

Address registers are 16-bit registers intended for the storage of ad­
dresses. They are also often called data counters or pointers. They are 
double registers, i.e., two eight-bit registers. Their essential 
characteristic is to be connected to the address bus. The address 
registers create the address bus. The address bus appears on the left and 
the bottom part of the illustration in Figure 2.4. 
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The only way to load the contents of these 16-bit registers is via the 
data bus. Two transfers will be necessary along the data bus in order to 
transfer 16 bits. In order to differentiate between the lower half and the 
higher half of each register, they are usually labelled as L (low) or H 
(high), denoting bits 0 through 7, and 8 through 15 respectively. This 
label is used whenever it is necessary to differentiate the halves of these 
registers. At least two address registers are present within most 
microprocessors. "MUX" in Fig. 2.4 stands for multiplexer. 

DATA BUS (8) 

INDEX I REGISTER 
16-BIT 

STACK I PO IrHER 
ADDRESS REGISTERS 

PROGRAM I COUNTER 

ADDRESS BUS (16) 

Fig. 2.4: The 16-bit Address Registers Create the Address Bus 

Program Counter (PC) 

The program counter must be present in any processor. It contains 
the address of the next instruction to be executed. The presence of the 
program counter is indispensable and fundamental to program execu­
tion. The mechanism of program execution and the automatic sequenc­
ing implemented with the program counter will be described in the next 
section. Briefly, execution of a program is normally sequential. In 
order to access the next instruction, it is necessary to bring it from the 
memory into the microprocessor. The contents of the PC will be 
deposited on the address bus, and transmitted towards the memory. 
The memory will then read the contents specified by this address and 
send back the corresponding word to the MPU. This is the instruction. 
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In a few exceptional microprocessors, such as the two-chip F8, there is 
no PC on the microprocessor. This does not mean that the system does 
not have a program counter. The PC happens to be implemented direct­
lyon the memory chip, for reasons of efficiency. 

Stack Pointer (SP) 

The stack has not been introduced yet and will be described in the 
next section. In most powerful, general-purpose microprocessors, the 
stack is implemented in "software," i.e., within the memory. In order 
to keep track of the top of this stack within the memory, a 16-bit 
register is dedicated to the stack pointer or SP. The SP contains the ad­
dress of the top of the stack within the memory. It will be shown that 
the stack is indispensable for interrupts and for subroutines. 

Index Register (IX) 

Indexing is a memory-addressing facility which is not always pro­
vided in microprocessors. The various memory-addressing techniques 
will be described in Chapter 5. Indexing is a facility for accessing blocks 
of data in the memory with a single instruction. An index register will 
typically contain a displacement which will be automatically added to a 
base (or it might contain a base which would be added to a displace­
ment). In short, indexing is used to access any word within a block of 
data. 

The Stack 

A stack is formally called an LIFO structure (last-in, first-out). A 
stack is a set of registers, or memory locations, allocated to this data 
structure. The essential characteristic of this structure is that it is a 
chronological structure. The first element introduced into the stack is 
always at the bottom of the stack. The element most recently deposited 
in the stack is on the top of the stack. The analogy can be drawn with a 
stack of plates on a restaurant counter. There is a hole in the counter 
with a spring in the bottom. Plates are piled up in the hole. With this 
organization, it is guaranteed that the plate which has been put first in 
the stack (the oldest) is always at the bottom. The one that has been 
placed most recently on the stack is the one which is on top of it. This 
example also illustrates another characteristic of the stack. In normal 
use, a stack is only accessible via two instructions: "push" and "pop" 
(or "pull"). The push operation results in depositing one element on 
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top of the stack (two in the case of the Z80). The pull operation consists 
of removing one element from the stack. In the case of a 
microprocessor, it is the accumulator that will be deposited on top of 
the stack. The pop will result in a transfer of the top element of the 
stack into the accumulator. Other specialized instructions may exist to 
transfer the top of the stack between other specialized registers, such as 
the status register. The Z80 is more versatile than most in this respect. 

The availability of a stack is required to implement three program­
ming facilities within the computer system: subroutines, interrupts, and 
temporary data storage. The role of the stack during subroutines will be 
explained in Chapter 3 (Basic Programming Techniques). The role of 
the stack during interrupts will be explained in Chapter 6 (Input/Out­
put Techniques). Finally, the role of the stack in saving data at high 
speed will be explained during specific application programs. 

We will simply assume at this point that the stack is a required facility 
in every computer system. A stack may be implemented in two ways: 

1. A fixed number of registers may be provided within the micro­
processor itself. This is a "hardware stack." It has the advantage of 
high speed. However, it has the disadvantage of a limited number of 
registers. 

2. Most general-purpose microprocessors choose another approach, 
the software stack, in order not to restrict the stack to a very small 
number of registers. This is the approach chosen in the Z80. In the soft­
ware approach, a dedicated register within the microprocessor, here 
register SP, stores the stack pointer, i.e., the address of the top element 
of the stack (or, sometimes, the address of the top element of the stack 
plus one). The stack is then implemented as an area of memory. The 
stack pointer will therefore require 16 bits to point anywhere in the 
memory. 

MICROPROCESSOR 
r---------,
I REGISTER I 

I I 
I I 
I I 

7 MEMORY 

D 
0 

I 
I 
I 1 
I 
I STACK 
I 
I BASE 
L­ ________ ~ 

Fig. 2.5: The Two-Stack Manipulation Instructions 
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The Instruction Execution Cycle 

Let us refer now to Figure 2.6. The microprocessor unit appears on 
the left, and the memory appears on the right. The memory chip may be 
a ROM or a RAM, or any other chip which happens to contain 
memory. The memory is used to store instructions and data. Here, we 
will fetch one instruction from the memory to illustrate the role of the 
program counter. We assume that the program counter has valid con­
tents. It now holds a I6-bit address which is the address of the next in­
struction to fetch in the memory. Every processor proceeds in three 
cycles: 

I-fetch the next instruction 
2-decode the instruction 
3-execute the instruction 

Fetch 

Let us now follow the sequence. In the first cycle, the contents of the 
program counter are deposited on the address bus and gated to the 
nemory (on the address bus). Simultaneously, a read signal may be 
issued on the control bus of the system, if required. The memory will 
receive the address. This address is used to specify one location within 
the memory. Upon receiving the read signal, the memory will decode 
the address it has received, through internal decoders, and will select 
the location specified by the address. A few hundred nanoseconds later, 
the memory will deposit the eight-bit data corresponding to the 
specified address on its data bus. This eight-bit word is the instruction 
that we want to fetch. In our illustration, this instruction will be 
deposited the data bus on top of the MPU box. 

Let us briefly summarize the sequencing: the contents of the program 
counter are output on the address bus. A read signal is generated. The 
memory cycles, and perhaps 300 nanoseconds later, the instruction at 
the specified address is deposited on the data bus (assuming a single 
byte instruction). The microprocessor then reads the data bus and 
deposits its contents into a specialized internal register, the IR register. 
The IR is the instruction register: it is eight-bits wide and is used to con­
tain the instruction just fetched from the memory. The fetch cycle is 
now completed. The 8 bits of the instruction are now physically in the 
special internal register of the MPU, the IR register. The IR appears on 
the left of Figure 2.7. It is not accessible to the programmer. 
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MPU ROM/RAM 

PC 

PC: 

ADDRESS BUS 

Fig. 2.6: I'etching an Instruction from the Memory 

Decoding and Execution 

Once the instruction is contained in JR, the control unit of the 
microprocessor will decode the contents and will be able to generate the 
correct sequence of internal and external signals for the execution of the 
specified instruction. There is, therefore, a short decoding delay fol­
lowed by an execution phase, the length of which depends on the nature 
of the instruction specified. Some instructions will execute entirely 
within the MPU. Other instructions will fetch or deposit data from or 
into the memory. This is why the various instructions of the MPU re­
quire various lengths of time to execute. This duration is expressed as a 
number of (clock) cycles. Refer to Chapter 4 for the number of 

MPU 

Fig. 2.7: Automatic Sequencing 
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cycles required by each instruction. Since various clock rates may be 
used, speed of execution is normally expressed in number of cycles 
rather than in number of nanoseconds. 

EXTERNAL 1'----____....t.LJ..LWlIma.~.uII"'________.., 

BUS 

R" Rl 
REGISTERS 

••• 

RN 

RESULT <DESTINATION) BUS 

Fig. 2.8: Single-Bus Architecture 

Fetching the Next Instruction 

We have described how, using the program counter, an instruction 
can be fetched from the memory. During the execution of a program, 
instructions are fetched in sequence from the memory. An automatic 
mechanism must therefore be provided to fetch instructions in se­
quence. This task is performed by a simple incrementer attached to the 
program counter. This is illustrated in Figure 2.7. Every time that the 
contents of the program counter (at the bottom of the illustration) are 
placed on the address bus, its contents will be incremented and written 
back into the program counter. As an example, if the program counter 
contained the value "0", the value "0" would be output on the address 
bus. Then the contents of the program counter would be incremented 
and the value" 1" would be written back into the program counter. In 
this way, the next time that the program counter is used, it is the in­
struction at address 1 that will be fetched. We have just impiemeHted an 
automatic mechanism for sequencing instructions. 

It must be stressed that the above descriptions are simplified. In reali­
ty, some instructions may be two- or even three-bytes long, so that suc­
cessive bytes will be fetched in this manner from the memory. However, 
the mechanism is identical. The program counter is used to fetch 
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successive bytes of an instruction as well as to fetch successive instruc­
tions themselves. The program counter, together with its incrementer, 
provides an automatic mechanism for pointing to successive memory 
locations. 

INTERNAL MTA BUS 

EXTERNAL 
BUS 

••• 

REG ISTERS 

Fig. 2.9: Execution of an Addition-RO into ACC 

EXTERNAL 
BUS 

INTERNAL DATA BUS 

RN 

Fig. 2.10: Addition-Second Register Rl into ALU 
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We will now execute an instruction within the MPU (see Figure 2.8). 
A typical instruction will be, for example: RO = RO + RI. This means: 
"ADD the contents of RO and R 1, and store the results in RO." To per­
form this operation, the contents of RO will be read from register RO, 
carried via the single bus to the left input of the ALU, and stored in the 
buffer register there. R 1 will then be selected and its contents will be 
read onto the bus, then transferred to the right input of the ALU. This 
sequence is illustrated in Figures 2.9 and 2.10. At this point, 
the right input of the ALU is conditioned by RI, and the left 
input of the ALU is conditioned by the buffer register, containing the 
previous value of RO. The operation can be performed. The addition is 
performed by the ALU, and the results appear on the ALU output, in 
the lower right-hand corner of Fig. 2.11. The results will be deposited 
on the single bus, and will be propagated back to RO. This means, in 
practice, that the input latch of RO will be enabled, so that data can be 
written into it. Execution of the instruction is now complete. The 
results of the addition are in RO. It should be noted that the contents of 
RI have not been modified by this operation. This is a general prin­
ciple: the contents of a register, or of any read/write memory, are not 
modified by a read operation. 

The buffer register on the left input of the ALU was necessary in 
order to memorize the contents of RO, so that the single bus could be 
used again for another transfer. However, a problem remains. 

EXTERNAL INTERNAL DATA BUS 
BUS C:~~~~~~~~::Z~:::;;::::;-;:::=:::;l 

••• 

ACC + Rl- R0 

Fig. 2.11: Result Is Generated and Goes into RO 
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The Critical Race Problem 

The simple organization shown in Figure 2.8 will not function cor­
rectly. 

Question: What is the timing problem? 

Answer: The problem is that the result which will be propagated out 
of the ALU will be deposited back on the single bus. It will not pro­
pagate just in the direction of RO, but along all of the bus. In particular, 
it will recondition the right input of the ALU, changing the result coming 
out of it a few nanoseconds later. This is a critical race. The output of 
the ALU must be isolated from its input (see Figure 2.12). 

Several solutions are possible which will isolate the input of the ALU 
from the output. A buffer register must be used. The buffer register 
could be placed on the output of the ALU, or on its input. It is usually 
placed on the input of the ALU. Here it would be placed on its right in­
put. The buffering of the system is now sufficient for a correct opera­
tion. It will be shown later in this chapter that if the left register which 
appears in this illustration is to be used as an accumulator (permitting 
the use of one-byte long instructions), then the accumulator will require 
a buffer too, as shown in Figure 2.13 . 

Rl 
REGISTERS 

Fig. 2.12: The Critical Race Problem 
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EXTERNAL INTERNAL DATA BUS 

BUS ~----------------~~~~~~------------, 

R0 

••• 

Rl 

REGISTERS 
RN 

Fig. 2.13: Two Buffers Are Required (Temp Registers) 

INTERNAL ORGANIZATION OF THE Z80 

The terms necessary in order to understand the internal elements of 
the microprocessor have been defined. We will now examine in more 
detail the Z80 itself, and describe its capabilities. The internal organiza­
tion of the Z80 is shown in Figure 2.14. This diagram presents a logical 
description of the device. Additional interconnections may exist but are 
not shown. Let us examine the diagram from right to left. 

On the right part of the illustration, the arithmetic-logical unit (the 
ALU) may be recognized by its characteristic "V" shape. The accumu­
lator register, which has been described in the previous section, is iden­
tified as A on the right input path of the ALU. It has been shown in the 
previous section that the accumulator should be equipped with a buffer 
register. This is the register labeled ACT (temporary accumulator). 
Here, the left input of the ALU is also equipped with a temporary 
register, called TMP. The operation of the ALU will become clear in the 
next section, where we will describe the execution of actual instructions. 
Theflags registeriscalled"F" in the Z80,and is shown on the right of the 

accumulator register. The contents of the flags register are essentially 
conditioned by the ALU, but it will be shown that some of its bits may 
also be conditioned by other modules or events. 

The accumulator and the flags registers are shown as double registers 
labelled respectively A, A' and F, F'. This is because the Z80 is 
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equipped internally with two sets of registers: A + F, and A' + F'. 
However, only one set of these registers may be used at anyone time. A 
special instruction is provided to exchange the contents of A and F with 
A' and F'. In order to simplify the explanations, only A and F will be 
shown on most of the diagrams which follow. The reader should 
remember that he has the option of switching to the alternate register 
set A' and F' if desired. 

The role of each flag in the flags register will be described in Chapter 
3 (Basic Programming Techniques). 

A large block of registers is shown at the center of the illustration. On 
top of the block of registers, two identical groups can be recognized. 
Each one includes six registers labeled B, C, D, E, H, L. These are the 
general-purpose eight-bit registers of the Z80. There are two peculiari­
ties of the Z80 with respect to the standard microprocessor which has 
been described at the beginning of this chapter. 

First, the Z80 is equipped with two banks of registers, i.e., two iden­
tical groups of 6 registers. Only six registers may be used at anyone 
time. However, special instructions are provided to switch between the 
two banks of registers. One bank, therefore, behaves as an internal 
memory, while the other one behaves as a working set of internal 
registers. The possible uses of this special facility will be described in 
the next chapter. 

Conceptually, it will be assumed, for the time being, that there are 
only six working registers, B, C, D, E, H, and L, and the second 
register bank will temporarily be ignored, in order to avoid confusion. 

The MUX symbol which appears above the memory bank is an ab­
breviation for multiplexer. The data coming from the internal data bus 
will be gated through the multiplexer to the selected register. However, 
only one of these registers can be connected to the internal data bus at 
anyone time. 

A second characteristic of these six registers, in addition to being 
general-purpose eight-bit registers, is that they are equipped with a con­
nection to the address bus. This is why they have been grouped in 
pairs. For example, the contents of Band C can be gated simultaneous­
ly onto the 16-bit address bus which appears at the bottom of the illustra­
tion. As a result, this group of 6 registers may be used to store either 
eight-bit data or else 16-bit pointers for memory addressing. 

The third group of registers, which appears below the two previous 
ones in the middle of Figure 2.14, contains four "pure" address 
registers. As in any microprocessor, we find the program counter (PC) 
and the stack pointer (SP). Recall that the program counter contains 
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the address of the next instruction to be executed. 
The stack pointer points to the top of the stack in the memory. In the 

case of the Z80, the stack pointer points to the last actual entry in the 
stack. (In other microprocessors, the stack pointer points just above the 
last entry.) Also, the stack grows "downwards, "i.e. towards the lower 
addresses. 

This means that the stack pointer must be decremented any time a 
new word is pushed on the stack. Conversely, whenever a word is 
removed (popped) from the stack, the stack pointer must be in­
cremented by one. In the case of the Z80, the "push" and "pop" 
always involve two words at the same time, so that the contents of the 
stack pointer will be decremented or incremented by two. 

Looking at the remaining two registers of this group of four registers, 
we find a new type of register which has not been described yet: two 
index-registers, labeled IX (Index Register X) and IY (Index Register 
Y). These two registers are equipped with a special adder shown as a 
miniature V-shaped ALU on the right of these registers in Figure 2.14. 
A byte brought along the internal data bus may be added to the con­
tents of IX or IY. This byte is called the displacement, when using an in­
dexed instruction. Special instructions are provided which will 
automatically add this displacement to the contents of IX or IY and 
generate an address. This is called indexing. It allows convenient access 
to any sequential block of data. This important facility will be des­
cribed in Chapter 5 on addressing techniques. 

Finally, a special box labeled" ± 1" appears below and to the left of the 
block of registers. This is an increment! decrement. The contents of any 
of the register pairs SP, PC, BC, DE, HL (the "pure address" registers) 
may be automatically incremented or decremented every time they depos­
it an address on the internal address bus. This is an essential facility for 
implementing automated program loops which will be described in the 
next section. Using this feature it will be possible to access successive 
memory locations conveniently. 

Let us move now to the left of the illustration. One register pair is 
shown, isolated on the left: I and R. The I register is called the interrupt­
page address register. Its role will be described in the section on inter­
rupts of Chapter 6 (Input/Output Techniques). It is used only in a 
special mode where an indirect call to a memory location is generated in 
response to an interrupt. The I register is used to store the high-order 
part of the indirect address. The lower part of the address is supplied by 
the device which generated the interrupt. 
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The R register is the memory-refresh register. It is provided to refresh 
dynamic memories automatically. Such a register has traditionally been 
located outside the microprocessor, since it is associated with the 
dynamic memory. It is a convenient feature which minimizes the 
amount of external hardware for some types of dynamic memories. It will 
not be used here for any programming purposes, as it is essentially a 
hardware feature (see reference C207 "Microprocessor Interfacing 
Techniques" for a detailed description of memory refresh techniques). 
However, it is possible to use it as a software clock, for example. 

Let us move now to the far left of the illustration. There the control 
section of the microprocessor is located. From top to bottom, we find 
first the instruction register IR, which will contain the instruction to be 
executed. The IR register is totally distinct from the" I, R" register pair 
described above. The instruction is received from the memory via the 
data bus, is transmitted along the internal data bus and is finally 
deposited into the instruction register. Below the instruction register ap­
pears the decoder which will send signals to the controller-sequencer 
and cause the execution of the instruction within the microprocessor 
and outside it. The control section generates and manages the control 
bus which appears at the bottom part of the illustration. 

The three buses managed or generated by the system, i.e., the data 
bus, the address bus, and the control bus, propagate outside the 
microprocessor through its pins. The external connections are shown 
on the right-most part of the illustration. The buses are isolated from 
the outside through buffers shown in Figur~ 2.14. 

All the logical elements of the Z80 have now been described. It is not 
essential to understand the detailed operation of the Z80 in order to 
start writing programs. However, for the programmer who wishes to 
write efficient codes, the speed of a program and its size will depend 
upon the correct choice of registers as well as the correct choice of 
techniques. To make a correct choice, it is necessary to understand how 
instructions are executed within the microprocessor. We will therefore 
examine here the execution of typical instructions inside the Z80 to 
demonstrate the role and use of the internal registers and buses. 
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INSTRUCTION FORMATS 

The Z80 instructions are listed in Chapter 4. Z80 instructions may 
be formated in one, two, three or four bytes. An instruction specifies 
the operation to be performed by the microprocessor. From a 
simplified standpoint, every instruction may be represented as an op­
code followed by an optional literal or address field, comprising one or 
two words. The opcode field specifies the operation to be carried out. 
In strict computer terminology, the opcode represents only those bits 
which specify the operation to be performed, exclusive of the register 
pointers that might be necessary. In the microprocessor world, it is con­
venient to call opcode the operation code itself, as well as any register 
pointers which it might incorporate. This "generalized opcode" must 
reside in an eight-bit word for efficiency (this is the limiting factor on 
the number of instructions available in a microprocessor). 

The 8080 uses instructions which may be one, two, three, bytes long 
(see Figure 2.15). However, the Z80 is equipped with additional indexed 
instructions, which require one more byte. In the case of the Z80, op­
codes are, in general, one byte long, except for special instructions 
which require a two-byte opcode. 

Some instructions require that one byte of data follow the opcode. In 
such a case, the instruction will be a two-byte instruction, the second 
byte of which is data (except for indexing, which adds an extra byte). 

In other cases, the instruction might require the specification of an 
address. An address requires 16 bits and, therefore, two bytes. In that 
case, the instruction will be a three-byte or a four-byte instruction. 

For each byte of the instruction, the control unit will have to perform 
a memory fetch, which will require four clock cycles. The shorter the 
instruction, the faster the execution. 

A One-Word Instruction 

One-word instructions are, in principle, fastest and are favored by 
the programmer. A typical such instruction for the Z80 is: 

LD r, r' 

This instruction means: "Transfer the contents of register r' into r." 
This is a typical "register-to-register" operation. Every microprocessor 
must be equipped with such instructions, which allow the programmer 
to transfer information from any of the machine's registers into 
another one. Instructions referencing special registers of the machine, 
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7 PJ 

2-WORD 
GENERALIZED OPCODE p-WORD

INSTRN 

IIlSTRN 
OPTIONAL DATA OR 

HORD 

ADDRESS 
INSTRN 

OPT IONAl ADDRESS 

Fig. 2.15 Typical Instruction Formats 

such as the accumulator or other special-purpose registers, may have a 
special opcode. 

After execution of the above instruction, the contents of r will be 
equal to the contents of r'. The contents of r' will not have been 
modified by the read operation. 

Every instruction must be represented internally in a binary format. 
The above representation "LD r,r' " is symbolic or mnemonic. It is 
called the assembly-language representation of an instruction. It is 
simply meant as a convenient symbolic representation of the actual 
binary encoding for that instruction. The binary code which will repre­
sent this instruction inside the memory is: OlD DDS S S (bits 0 to 7). 

This representation is still partially symbolic. Each of the letters S 
and D stands for a binary bit. The three D's, "D D D", represent the 
three bits pointing to the destination register. Three bits allow selection 
of one out of eight possible registers. The codes for these registers ap­
pear in Figure 2.16. For example, the code for register B is "000", the 
code for register C is "0 0 1", and so on. 

Similarly, "S S S" represents the three bits pointing to the source 
register. The convention here is that register r' is the source, and that 
register r is the destination. The placement of the bits in the binary 
representation of an instruction is not meant for the convenience of the 
programmer, but for the convenience of the control section of the 
microprocessor, which must decode and execute the instruction. The 
assembly-language representation, however, is meant for the conve­
nience of the programmer. It could be argued that LD r ,r' should really 
mean: "Transfer contents of r into r'." However, the convention has 
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been chosen in order to maintain compatibility with the binary 
representation in this case. It is naturally arbitrary. 

Exercise 2.1: Write below the binary code which will transfer the con­
tents of register C into register B. Consult Fig. 2.16 for the codes cor­
responding to C and B. 

Another simple example of a one-word instruction is: 

ADD A, r 

This instruction will result in adding the contents of a specified 
register (r) to the accumulator (A). Symbolically, this operation may be 
represented by: A = A + r. It can be verified in Chapter 4 that the 
binary representation of this instruction is: 

10000SSS 

where S S S specifies the register to be added to the accumulator. Again, 
the register codes appear in Figure 2.16. 

Exercise 2.2: What is the binary code of the instruction which will add 
the contents of register D to the accumulator? 

CODE REGISTER 

o0 0 B 

o 0 1 C 

010 0 

o 1 1 E 
1 0 0 H 

101 L 

1 1 0 - (MEMORY) 
1 1 1 A 

Fig. 2.16: The Register Codes 

A Two-Word Instruction 

ADD A, n 

This simple two-word instruction will add the contents of the second 
byte of the instruction to the accumulator. The contents of the second 
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word of the instruction are said to be a "literal." They are data and are 
treated as eight bits without any particular significance. They could 
happen to be a character or numerical data. This is irrelevant to the 
operation. The code for this instruction is: 

1 1 000 1 1 0 followed by the 8-bit byte "n" 

This is an immediate operation. "Immediate," in most programming 
languages, means that the next word, or words, within the instruction 
contains a piece of data which should not be interpreted (the wayan op­
code is). It means that the next one or two words are to be treated as a 
litera/. 

The control unit is programmed to "know" how many words each 
instruction has. It will, therefore, always fetch and execute the right 
number of words for each instruction. However, the longer the possible 
number of words for the instruction, the more complex it is for the con­
trol unit to decode. 

A Three-Word Instruction 

LD A, (nn) 

The instruction requires three words. It means: "Load the ac­
cumulator from the memory address specified in the next two bytes of 
the instruction." Since addresses are 16-bits long, they require two 
words. In binary, this instruction is represented by: 

o0 1 1 1 0 1 0: 8 bits for the opcode 
Low address: 8 bits for the lower part of the address 
High address: 8 bits for the upper part of the address 

EXECUTION OF INSTRUCTIONS WITHIN THE Z80 

We have seen that all instructions are executed in three phases: 
FETCH, DECODE, EXECUTE. We now need to introduce some 
definitions. Each of these phases will require several clock cycles. The 
Z80 executes each phase in one or more logical cycles, called a 
"machine cycle." The shortest machine cycle lasts three clock cycles. 

Accessing the memory requires three cycles for any operands, four 
clock cycles for the initial fetch. Since each instruction must be fetched 
first from the memory, the fastest instruction will require four clock 
cycles. Most instructions will require mor.e. 

Each machine cycle is labeled as M 1, M2, etc., and will require three 
or more clock cycles, or "states," labeled T 1, T2, etc. 
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The FETCH Phase 

The FETCH phase of an instruction is implemented during the first 
three states of machine cycle M 1; they are called Tl, T2, and T3. These 
three states are common to all instructions of the microprocessor, as all 
instructions must be fetched prior to execution. The FETCH 
mechanism is the following: 

Tl : PC OUT 

The first step is to present the address of the next instruction to the 
memory. This address is contained in the program counter (PC). As the 
first step of any instruction fetch, the contents of the PC are placed on 
the address bus (see Figure 2.17). At this point, an address is presented 
to the memory, and the memory address decoders will decode this ad­
dress in order to select the appropriate location within the memory. 
Several hundred ns (a nanosecond is 10-9 second) will elapse before the 
contents of the selected memory location become available on the out-

DATA BUS 

Fig. 2.17: Instruction Fetch-(PC) Is Sent to the Memory 
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put pins of the memory, which are connected to the data bus. It is standard 
computer design to use the memory read time to perform an operation 
within the microprocessor. This operation is the incrementation of the 
program counter: 

T2: PC = PC + 1 

While the memory is reading, the contents of the PC are incremented 
by 1 (see Figure 2.18). At the end of state T2, the contents of the 
memory are available and can be transferred within the micro­
processor: 

T3 : INST into IR 

DATA BUS 

Fig 2.18: PC Is Incremented 

The DECODE and EXECUTE Phases 

During state T3, the instruction which has been read out of the 
memory is deposited on the data bus and transferred into the instruc­
tion register of the Z80, from which point it is decoded. 
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BUS 

L~~~~~~~~~~~~~~~~~~~~l CONTROLSIGIIALS 

Fig. 2.19: The Instruction Arrives from the Memory into IR 

It should be noted that state T4 of M1 will always be required. Once 
the instruction has been deposited into IR during T3, it is necessary to 
decode and execute it. This will require at least one machine state, T4. 

A few instructions require an extra state of M1 (state T5). It will be 
skipped by the processor for most instructions. Whenever the execution 
of an instruction requires more than M1, i.e., MI, M2 or more cycles, 
the transition will be directly from state T4 of M1 into state TI of M2. 
Let us examine an example. The detailed internal sequencing for each 
example is shown in the tables of Figure 2.27. As these tables have not been 
released for the Z80, the 8080 tables are used instead. They provide an in­
depth understanding of instruction execution. 

LDD,C 

This corresponds to MOV rI, r2 for the 8080. Refer to line 1 of Fig. 2.27. 
By coincidence, the destination register in this example happens to be 

named "D". The transfer is illustrated in Figure 2.20. 
This instruction has been described in the previous section. It 

transfers the contents of register C, denoted by "C", into register D. 
The first three states of cycle M 1 are used to fetch the instruction 

from the memory. At the end of T3, the instruction is in IR, the In­
struction Register, from which point it can be decoded (see Figure 2.19). 

During T4: (S S S) ~ TMP. 

The contents of C are deposited into TMP (See Figure 2.21). 
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During T5: (TMP) ~ DOD. 

The contents of TMP are deposited into D. This is shown in Figure 2.22. 

D C 

o 0 0 1 000 1 1 000 1 0 00 

BEFORE 

D Ii II c 
1000100010001000 

AFTER 

Fig. 2.20: Transferring C into D 

DATA BUS 

Fig. 2.21: The Contents of C Are Deposited into TMP 
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~ATA e% 

Fig. 2.22: The Contents of TMP are Deposited into D 

Execution of the instruction is now complete. The contents of 
register C have been transferred into the specified destination register 
D. This terminates execution of the instruction. The other machine 
cycles M2, M3, M4, and M5 will not be necessary and execution stops 
with MI. 

It is possible to compute the duration of this instruction easily. The 
duration of every state for the standard Z80 is the duration of the clock: 
500 ns. The duration of this instruction is the duration of five states, or 
5 X 500 = 2500 ns = 2.5 us. With a 400 ns clock,S x 400 = 2000 ns 
= 2.0 us. 

Question: Why does this instruction require two states, T4 and T5, 
in order to trJlT/sfer the contents C into D, rather than just one? It' 
transfers the contents ofC into TMP, and then the contents ofTMP in­
to D. Wouldn't it be simpler to transfer the contents of C into D direct­
ly within a single state? 

Answer: This is not possible because of the implementation chosen 
for the internal registers. All the internal registers are, in fact, part of a 
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single RAM, a read/write memory internal to the microprocessor chip. 
Only one word may be addressed or selected at a time within an RAM 
(single-port). For this reason, it is not possible to both read and write 
into, or from, an RAM at two different locations. Two RAM cycles are 
required. It becomes necessary first to read the data out of the register 
RAM, and store it in a temporary register, TMP, then, to write it back 
into the final destination register, here D. This is a design inadequacy. 
However, this limitation is common to virtually all monolithic 
microprocessors. A dual-port RAM would be required to solve the 
problem. This limitation is not intrinsic to microprocessors and it normally 
does not exist in the case of bit-slice devices. It is a result of the constant 
search for logic density on the chip and may be eliminated in the future. 

Important Exercise: 

At this point, it is highly recommended that the user review by him­
self the sequencing of this simple instruction before we proceed to more 
complex ones. For this purpose, go back to Figure 2.14. Assemble a few 
small-sized "symbols" such as matches, paperclips, etc. Then move the 
symbols on Figure 2.14 to simulate the flow of data from the registers 
into the buses. For example, deposit a symbol into PC. Tl will move 
the symbol contained in PC out on the address bus towards the 
memory. Continue simulated execution in this fashion until you feel 
comfortable with the transfers along the buses and between the 
registers. At this point, you should be ready to proceed. 

Progressively more complex instructions will now be studied: 

ADD A, r 

This instruction means: "Add the contents of register r (specified by 
a binary code S S S) to the accumulator (A), and deposit the result in 
the accumulator." This is an implicit instruction. It is called implicit as 
it does not explicitly reference a second register. The instruction expli­
citly refers only to register r. It implies that the other register involved 
in the operation is the accumulator. The accumulator, when used in 
such an implicit instruction, is referenced both as source and destina­
tion. Data will be deposited in the accumulator as a result of this addi­
tion. The advantage of such an implicit instruction is that its complete 
opcode is only eight bits in length. It requires only a three-bit register 
field for the specification of r. This is a fast way to perform an addition 
operation. 

Other implicit instructions exist in the system which will reference 
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other specialized registers. More complex examples of such implicit in­
structions are, for example, the PUSH and POP operations, which will 
transfer information between the top of the stack and the accumulator, 
and will at the same time update the stack pointer (SP), decrementing it 
or incrementing it. They implicitly manipulate the SP register. 

The execution of the ADD A, r instruction will now be examined in 
detail. This instruction will require two machine cycles, M 1 and M2. As 
usual, during the first three states of Ml, the instruction is fetched from 
the memory and deposited in the IR register. At the beginning of T4, it 
is decoded and can be executed. It will be assumed here that register B is 
added to the accumulator. The code for the instruction will then be: 
1 0 0 0 0 0 0 0 (the code for register B is 0 0 0). The 8080 equivalent is 
ADD r. 

T4: (S S S) ~ TMP, (A) ~ ACT 

DATA BUS 

BUS 

Fig. 2.23: Two Transfers Occur Simultaneously 

Two transfers will be executed simultaneously. First, the contents of 
the specified source register (here B) are transferred into TMP, i.e., to 
the right input of the ALU (see Fig. 2.23). At the same time, the con­
tents of the accumulator are transferred to the temporary accumulator 
(ACT). By inspecting Fig. 2.23, you will ascertain that those transfers 
can occur in parallel. They use d.ifferent paths within the system. The 
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transfer from B to TMP uses the internal data bus. The transfer from 
ACT uses a short internal path independent of this data bus. In order to 
gain time, both transfers are done simultaneously. At this point, both 
the left and the right input of the ALU are correctly conditioned. The 
left input of the ALU is now conditioned by the accumulator contents, 
and the right input of the ALU is conditioned by the contents of register 
B. We are ready to perform the addition. We would normally expect to 
see the addition take place during state T5 of M1. However, this state is 
simply not used. The addition is not performed! We will enter machine 
cycle M2. During state T 1, nothing happens! It is only in state T2 of M2 
that the addition takes place (refer to ADD r in Figure 2.27): 

T2 of M2: (ACT) + (TMP) .. A 

The contents of ACT are added to the contents of TMP, and the 
result is finally deposited in the accumulator. See Figure 2.24. The 
operation is now complete. 

DATA BUS 

Fig. 2.24: End of ADD r 

Question: Why was the completion of the addition deferred until 
state T2 ofmachine cycle M2, rather than taking place during state T5 
ofMl? (This is a difficult question, which requires an understanding of 
CPU design. However, the technique involved is fundamental to clock­
synchronous CPU design. Try to see what happens.) 
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Answer: This is a standard design "trick" used in most CPU's. It is 
called "fetch/execute overlap." The basic idea is the following: looking 
back at Figure 2.23 it can be seen that the actual execution of the addi­
tion will only require the use of the ALU and of the data bus. In parti­
cular, it will not access the register RAM (register block). We (or the 
control unit) know that the next three states which will be executed after 
completion of any instruction will be n, T2, T3 of machine cycle Ml 
of the next instruction. Looking back at the execution of these three 
states, it can be seen that their execution will only require access to the 
program counter (PC) and use of the address bus. Access to the pro­
gram counter will require access to the register RAM. (This explains 
why the same trick could not be used in the instruction LD r,r'.) It is 
therefore possible to use simultaneously the shaded area in Figure 2.17 
and the shaded area in Figure 2.24. 

The data bus is used during state Tl of Ml to carry status informa­
tion out. It cannot be used for the addition that we wish to perform. 
For that reason, it becomes necessary to wait until state T2 before the 
addition can be effectively carried out. This is what occurred in the 
chart: the addition is completed during state T2 of M2. The mechanism 
has now been explained. The advantage of this approach should now be 
clear. Let us assume that we had implemented a straightforward 
scheme, and performed the addition during state T5 of machine cycle 

~~ 
~ : ~ .r-- REAL 

INSTRUCTION N I Tl I T2 I T3 I T4 I: I Tl I T2 I' END 
I 

f.- FETCH ---I>~-".--tl-EXECUTE---+i 

INSTRUCTION N +1: ___________ ; I Tl I T2 I T3 I T4 I 
I I 
I 
~ETCH'--"- EXECUTE­
I I

:rMl\: 
I~I 
I. OVERLAP ~ I 
I I 

Fig. 2.25: FETCH-EXECUTE Overlap during TI-T2 

Ml. The duration of the ADD instruction would have been 5 x 500 = 
2500 ns. With the overlap approach which has been implemented, once 
state T4 has been executed, the next instruction is initiated. In a manner 
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that is invisible to this next instruction, the "clever" control unit will 
use state T2 to carry out the end of the addition. On the chart T2 is 
shown as part of M2. Conceptually. M2 will be the second machine cy­
cle of the addition. In fact, this M2 will be overlapped, i.e., be identical 
to machine cycle M 1 of the next instruction. For the programmer, the 
delay introduced by ADD will be only four states, i.e., 4 x 500 = 2000 
ns, instead of 2500 ns using the "straightforward" approach. The 
speed improvement is 500 ns, or 20OJo! 

The overlap technique is illustrated on Figure 2.25. It is used when­
ever possible to increase the apparent execution speed of the micropro­
cessor. Naturally, it it not possible to overlap in all cases. Required 
buses or facilities must be available without conflict. The control unit 
"knows" whether an overlap is possible. 

NOTES: 

1. The first memory cycle (M 1) is 'Iways an instruction 
fetch; the first (or only) byte, containing the op code, is 
fetched during this cycle. 

2. 	 If the READY input from memory is not high during 
T2 of each memory cycle, the processor wilt enter a wait 
state (TW) until READY is sampled.5 high. 

3. States T4 and T5 are present, as required, for opera· 
tions which are completely internal to the CPU. The con­
tents of the internal bus during T4 and T5 are available at 
the data bus; this is designed for testing purposes only. An 
"X" denotes that the state is pr-esent. but is only used for 
such internal operations as instruction dKOding. 

4. Only register pairs rp =B (registers Band CI or rp'" 0 
(registers 0 and EI may be specified. 

5. 	 These states are skipped. 

6. Memory read sub-cycles; an instruction or data word 
will be read. 

7. 	 Memory write sub-cycle_ 

8. The READY signal is not required during the second 
and third sub·cycles (M2and M31. The HOLD signal is 
accepted during M2 and M3. The SYNC signal is not gene· 
rated during M2 and M3. During the execution of DAD. 
M2 and M3 •• required for an internal register-pair add; 
memory is not referenced. 

9. The results of these arithmetic. logical or rotate in· 
structions are not moved into the acc::umulator (AI until 
state T2 of the next instruction cycle. That is. A is loaded 
while the next instruction is bejng fetched; this overlapping 
of operations allows for f.ster processing. 

10. If the value of the least significant 4·bits of the accumu· 
lator is greater than 9 ~ jf the auxiliary carry bit is set, 6 
is added to the accumulator _If the value of the most signifi­
cant 4-bits of the accumulator is now greater than 9, or if 
the carry bit is set. 6 is added to the most significant ­
4-bits of the accumulator. 

11. This represents the first sub-cycle (the instructton 
fetch) of the next instruction cycle. 

12. If the condition was met, tne contents of the register 
pair WZ are output on the address lines lAO-lSi instead of 
the contents of the program counter (PCI. 

13. If the condition was not met, sub-cycles M4 and M5 
are skipped; the processor instead proceeds immediately to 
the instruction fetch IM1) of the next instruction cycle. 

14. If the condition was not met. sub-cycles M2 and M3 
are skipped; the processor instead proceeds immediate,ly to 
the instruction fetch (M11 of the next instruction cycle. 

15. Stick read sub·cycle. 

16. Stack ~ite sub-cycle. 

17. 	CONDITION eee 
NZ - not zero (Z • 0) 000 

Z - zero IZa 11 001 
NC - no carry fey =0) 010 

C - carry (CY = 1) 011 
PO - parity odd /P '" 0) 100 
PE - parity even (P = 1) 10' 

P - plus IS • 0) 110 

M - minus (Sa 1) 
 '11 

18. I/O sub-cycle: the 110 port's 8-bit select code is dupli· 
cated on address lines 0-7 {Ao-71 and S.15 fAa.lsl. 

19. Output sub-cycle. 

20. The processor will remain idle in the hilt state until 
an interrupt, a reset or a hold is accepted. When a hold re­
quest is accepted. the CPU enters the hold mode; after the 
hold mode is terminated. the processor returns to the halt 
state. After a reset is accepted, the processor begins execu­
tion at memory location zero. After an interrupt isacCtpttd. 
the processor executes the instruction forced onto the data 
bus (usually a restart instruction). 

Fig. 2.26: Intel Abbreviations 
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Fig. 2.27: Intel Instruction Formats 
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Fig. 2.27: Intel Instruction Formats (continued) 
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Fig. 2.271: Intel Instruction Formats (continued) 
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Fig. 2.271: Intel Instruction Formats (continued) 
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Question: Would it be possible to go further using this scheme, and 
to also use state T3 ofM2 if we have to execute a longer instruction? 

In order to clarify the internal sequencing mechanism, it is suggested 
that you examine Figure 2.27, which shows the detailed instruction 
execution for the 8080. The Z80 includes all 8080 instructions, and 
more. The information presented in Figure 2.27 is not available for the 
Z80. It is shown here for its educational value in understanding the in­
ternal operation of this microprocessor. The equivalence between Z80 and 
8080 instructions is shown in Appendices F and O. 

A more complex instruction will now be examined: 

ADD A, (HL) 

The opcode for this instruction is 10000110. This instruction means 
"add to the accumulator the contents of memory location (HL)." The 
memory location is specified through a rather strange system. It is the 
memory location whose address is contained in registers Hand L. This 
instruction assumes that these two special registers (HL) have been 
loaded with contents prior to executing the instruction. The 16-bit con­
tents of. these registers will now specify the address in the memory 
where data resides. This data will be added to the accumulator, and the 
result will be left in the accumulator. 

This instruction has a history. It has been supplied in order to pro­
vide compatibility between the early 8008, and its successor, the 8080. 
The early 8008 was not equipped with a direct-memory addressing 
capability! The procedure used to access the contents of the memory 
was to load the two registers Hand L, and then execute an instruction 
referencing Hand L. ADD A, (HL) is just such an instruction. It must 
be stressed that the 8080 and the Z80 are not limited in the same way as 
the 8008 in memory-addressing capability. They do have direct-memory 
addressing. The facility for using the Hand L registers becomes an 
added advantage, not a drawback, as was the case with the 8008. 

Let us now follow the execution of this instruction (it is called 
ADD M for the 8080 and is the 16th instruction on Figure 2.27). States 
T1, T2, and T3 of Ml will be used, as usual, to fetch the instruction. 
During state T4, the contents of the accumulator are transferred to its 
buffer register, ACT, and the left input of the ALU is conditioned. 

Memory must be accessed in order to provide the second byte of data 
which will be added to the accumulator. The address of this byte of 
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data is contained in Hand L. The contents of Hand L will therefore 
have to be transferred onto the address bus, where they will be gated to 
the memory. Let us do it. 

Fig. 2.18: Transfer Contents of HL to Address Bus 

During machine cycle M2, we read: HL OUT. Hand L are deposited on 
the address bus, in the same way PC used to be deposited there in 
previous instructions. As a remark, it has already been indicated 
that during state T1 status is output on the data bus, but no use of 
this will be made ~ere. From a simplified standpoint, it will require two 
states: one for the memory to read its data, and one for the data to 
become available and transferred onto the right input of the ALU, 
TMP. 

Both inputs of the ALU are now conditioned. The situation is analo­
gous to the one we were in with the previous instruction ADDA, r: both 
inputs of the ALU are conditioned. We simply have to ADD as before. 
A fetch/execute overlap technique will be used, and, instead of exe­
cuting the addition within state T4 of M2, final execution is postponed 
until state T2 of M3. It can be seen in Figure 2.27 that during T2 we in­
deed have: ACT + TMP-A. The addition is finally performed, the 
contents of ACT are added to TMP, and the result deposited into the 
accumulator A. 
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Question: What is the apparent execution time (to the programmer) for 
this instruction? Using a 2.5 Mhz clock, is it 3.6 us? 2.8 us? 

Another more complex instruction will now be examined which is a 
direct-memory addressing instruction using two invisible Wand Z 
registers: 

LDA,(nn) 

The opcode is 00111010. The 8080 equivalent is LDA addr. As usual, 
states Tl, T2, T3 of M 1 will be used to fetch the instruction from the 
memory. T4 is used, but no visible result can be described. During state 
T4, the instruction is in fact decoded. The control unit then finds out 
that it has to fetch the next two bytes of this instruction in order to ob­
tain the address from which the accumulator will be loaded. The effect 
of this instruction is to load the accumulator from the memory contents 
whose address is specified in bytes 2 and 3 of the instruction. Note that 
state T4 is necessary to decode the instruction. It could be considered a 
waste of time since only part of the state is necessary to do the 
decoding. It is. However, this is the philosophy of C/ock-synchonous 
logic. Because microinstructions are used internally to perform the 
decoding and execution, this is the penalty that has to be paid in return 
for the advantages of microprogramming. The structure of this instruc­
tion appears in Figure 2.29. 

N: LOA (Bll :OPCODE 

N+1: (82) !16-8IT 
~ADDRESS_ 

N+2: (B3) ADDRESS 

Fig. 2.29: LD A, (ADDRESS) Is a 3-Word Instruction 

The next two bytes of instruction will now be fetched. They will 
specify an address (see Figure 2.30). 
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(hex) 
A (HEX>

!l 1 1 1 0 lOY 100 : ...... ~~:-:-":"":"-:---t LDA (3A) 

1002 (02)10 0 0 0 0 0 0 yo 0 0 0 0 0 0q 101 :~~~~~"'!""I"--t 1(HEX> (10)PC 1021-__;;....;;..;..,.;...-......_-1 

REGISTERS MEMORY 

Fig. 1.30: Before Execution of LD A 

100: 00111010 
101 0000·0010 
102 0 0 0 1 0 0 0 0 , 

/0 0 0 0 0 0 0 ~O 0 0 0 0 0 1 11 
PC 

REGISTERS MEMORY 

Fig. 1.31: After Execution of LD A 

The effect of the instruction is shown in Figures 2.30 and 2.31 above. 
Two special registers are available to the control unit within the Z80 

(but not to the programmer). They are "W" and "Z", and are shown 
in Figure 2.28. 
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Second Machine Cycle M2: As usual, the first 2 states, Tl and T2, are 
used to fetch the contents of memory location PC. During T2, the pro­
gram counter, PC, is incremented. Sometime by the end of T2, data be­
comes available from the memory, and appears on the data bus. By the 
end of T3, the word which has been fetched from memory address PC 
(B2, second byte of the instruction) is available on the data bus. It must 
now be stored in a temporary register. It is deposited into Z: B2 .. Z 
(see Figure 2.32). 

B2~Z 

rlPU 

ADDRESS 

Z80~Z80 

Fig. 2.32: Second Byte of Instruction Goes into Z 

Machine Cycle M3: Again, PC is deposited on the address bus, incre­
mented, and finally the third byte, B3, is read from the memory and de­
posited into register W of the microprocessor. At this point, i.e., by the 
end of state T3 of M3, registers Wand Z inside the microprocessor con­
tain B2 and B3, i.e., the complete 16-bit address which was originally 
contained in the two words following the instruction in the memory. 
Execution can now be completed. Wand Z contain an address. This ad­
dress will have to be sent t6 the memory, in order to extract the data. 
This is done in the next memory cycle: 

Machine Cycle M4: This time, Wand Z are output on the address bus. 
The 16-bit address is sent to the memory, and by the end of state T2, 
data corresponding to the contents of the specified memory location 
becomes available. It is finally deposited in A at the end of state T3. 
This terminates execution of this instruction. 
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This illustrates the use of an immediate instruction. This instruction 
required three bytes in order to store a two-byte explicit address. This 
instruction also required four memory cycles, as it needed to go to the 
memory three times in order to extract the three bytes of this three­
word instruction, plus one more memory access in order to fetch the 
data specified by the address. It is a long instruction. However, it is also 
a basic one for loading the accumulator with specified contents residing 
at a known memory location. It can be noted that this instruction re­
quires the use of Wand Z registers. 

Question: Could this instruction have used other registers than W, Z 
within the system? 

Answer: No. If this instruction had used other registers, for example 
the Hand L registers, it would have modified their contents. After ex­
ecution of this instruction, the contents of Hand L would have been 
lost. It is always assumed in a program that an instruction will not 
modify any registers other than those it is explicitly using. An instruc­
tion loading the accumulator should not destroy the contents of any 
other register. For this reason, it becomes necessary to supply the extra 
two registers, Wand Z, for the internal use of the control unit. 

Question: Would it be possible to use PC instead of Wand Z? 

Answer: Positively not. This would be suicidal. The reader should ana­
lyze this. 

One more type of instruction will be studied now: a branch or jump 
instruction, which modifies the sequence in which instructions are 
executed within the program. So far, we have assumed that instructions 
were executed sequentially. Instructions exist which allow the pro­
grammer to jump out of sequence to another instruction within the 
program, or in practical terms, to jump to another area of the memory 
containing the program, or to another address. One such instruction is: 

JP nn 

This instruction appears on Line 18 of Figure 2.27' as "JMP addr." 
Its execution will be described by following the horizontal line 
of the Table. This is again a three-word instruction. The first word 
is the opcode, and contains 11000011. The next two words contain the 
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16-bit address, to which the jump will be made. Conceptually, the ef­
fect of this instruction is to replace the contents of the program counter 
with the 16 bits following the"JUMP" opcode. In practice, a some­
what different approach will be implemented, for reasons of efficiency. 

As before, the first three states of Ml correspond to the instruction­
fetch. During state T4 the instruction is decoded and no other event is 
recorded (X). The next two machine cycles are used to fetch bytes B2 
and B3 of the instruction. During M2, B2 is fetched and deposited into 
internal register Z. The next two steps will be implemented by the pro­
cessor during the next instruction-fetch, as was the case already with the 
addition. They will be executed instead of the usual steps for Tl and T2 
of the next instruction. Let us look at them. 

The next two steps will be: WZ OUT and (WZ) + 1 ~ PC. In other 
words, the contents of WZ will be used instead of the contents of PC 
during the next instruction-fetch. The control unit will have recorded 
the fact that a jump was being executed and will execute the beginning 
of the next instruction differently. 

The effect of these two extra states is the following: 
The address placed on the address bus of the system will be the ad­

dress contained in Wand Z. In other words, the next instruction will be 
fetched from the address that was contained in Wand Z. This is effec­
tively ajump. In addition, the contents of WZ will be incremented by 1 
and deposited in the program counter, so that the next instruction will 
be fetched correctly by using PC as usual. The effect is therefore cor­
rect. 

'Question: Why have we not loaded the contents of PC directly? Why 
use the intermediate Wand Z registers? 

Answer: It is not possible to use PC. If we had loaded the lower part 
of PC (PCL) with B2, instead of using Z, we would have destroyed PC! 
It would then have become impossible to fetch B3. 

Question: Would it be possible to use just Z, instead of Wand Z? 

Answer: Yes, but it would be slower. We could have loaded Z with 
B2, then fetched B3, and deposited it into the high order half of PC 
(PCH). However, it would then have become necessary to transfer Z in­
to PCL, before using the contents of PC. This would slow down the 
process. For this reason, both Wand Z should be used. Further, and in 
order to save time, Wand Z are not transferred into Pc. They are 
directly gated to the address bus in order to fetch the next instruction. 
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Understanding this point is crucial to the understanding of efficient ex­
ecution of instructions within the microprocessor. 

Question: (For the alert and informed reader only). What happens 
in the case ofan interrupt at the end ofM3? (If instruction execution is 
suspended at this point, the program counter points to the instruction 
following the jump, and the jump address, contained in Wand Z, will 
be lost.) 

The answer is left as an interesting exercise for the alert reader. 

The detailed descriptions we have presented for the execution of 
typical instructions should clarify the role of the registers and of 
the internal buses. A second reading of the preceding section may 
help in gaining a detailed understanding of the internal operation 
of the Z80. 

CLOCK ~ 6 
AO 

30 to 40 ADDRESS 

BUSBUS {BUSRQ 25 and 

1 to 5CONTROL BUSAK 23 A15 

t' 17 

INT 
 16


MPU WAiT 24 

CONTROL 
 HALT 18 

R'ESE'f 7 10 1526 DO DATA 
(except 11) D7 BUS 

MREQ 19 
Mi

MEMORY 
10RQ 20 

AND 1/0 REi 21
CONTROL ~ 22 


RFSR 28 

29 11 


GND +5V 
POWER 

Fig. 2.33: Z80 MPU Pinout 

TheZ80Chip 

For completeness, the signals of the Z80 microprocessor chip will be 
examined here. It is not indispensable to understand the functions of 
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the Z80 signals in order to be able to program it. The reader who is not 
interested in the details of hardware may therefore skip this section. 
The pinout of the Z80 appears on Fig. 2.33. On the right side of the 
illustration, the address bus and the data bus perform their usual role, 
as described at the beginning of this chapter. We will describe here the 
function of the signals on the control bus. They are shown on the left of 
Figure 2.33. 

The control signals have been partitioned in four groups. They will be 
described, going from the top of Figure 2.33 towards the bottom. 

The clock input is <1>. The Z80 requires an external 330-0hm pull-up 
resistor. It is connected to the <I> input and to 5 volts. However, at 4 
MHz, an external clock driver is required. 

The two bus-control signals, BUSRQ and BUSAK, are used to dis­
connect the Z80 from its busses. They are mainly used by the DMA, but 
could also be used by another processor in the system. BUSRQ is the 
bus-request signal. It is issued to the Z80. In response, the Z80 will place 
its address bus, data bus, and tristate output control signals in the high­
impedance state, at the end of the current machine cycle. BUSAK is the 
acknowledge signal issued by the Z80 once the busses have been placed 
in the high-impedance state. 

Six Z80 control signals are related to its internal status or to its se­
quencing: 

INT and NMJ are the two interrupt signals. INT is the usual interrupt 
request. Interrupts will be described in Chapter 6. A number of in­
put/output devices may be connected to the INT interrupt line. When­
ever an interrupt request is present on this line, and when the internal 
interrupt enable flip-flop (IFF) is enabled, the Z80 will accept the inter­
rupt (provided the BUSRQ is not active). It will then generate an 
acknowledge signal: 10RQ (issued during the Ml state). The rest of the 
sequence of events is described in Chapter 6. 

NMI is the non-maskable interrupt. It is always accepted by the Z80, 
and it forces the Z80 to jump to location 0066 hexadecimal. It too is 
described in Chapter 6. (It also assumes that BUSRQ is not active.) 

WAIT is a signal used to synchronize the Z80 with slow memory or 
input/output devices. When active, this signal indicates that the 
memory or the device is not yet ready for the data transfer. The Z80 
CPU will then enter a special wait state until the WAIT signal becomes 
inactive. It will then resume normal sequencing. 

HAL T is the acknowledge signal supplied by the Z80 after it has ex­
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ecuted the HALT instruction. In this state, the Z80 waits for an exter­
nal interrupt and keeps executing NOPs to continually refresh memory. 

RESET is the signal which usually initializes the MPU. It sets the 
program counter, register I and R to "0". It disables the interrupt 
enable flip-flop and sets the interrupt mode to "0". It is normally used 
after power is applied to the board. 

Memory and 110 Control 

Six memory and 1/0 control signals are generated by the Z80. They are: 
MREQ is the memory request signal. It indicates that the address pres­
ent on the address bus is valid. A read or write operation can then be 
performed on the memory. 

M 1 is machine cycle I. This cycle corresponds to the fetch cycle of an 
instruction. 

10RQ is the input/output request. It indicates that the 1/0 address 
present on bits 0-7 of the address bus is valid. An 1/0 read or write 
operation can then be carried out. IORQ is also generated together with 
Ml when the Z80 acknowledges an interrupt. This information may be 
used by external chips to place the interrupt response vector on the data 
bus. (Normal I/O operations never occur during the Ml state. The 
combination 10RQ plus MI indicates an interrupt-acknowledge situa­
tion.) 

RD is the read signal. * It indicates the Z80 is ready to read the con­
tents of the data bus into an internal register. It can be used by any ex­
ternal chip, whether memory or 1/0, to deposit data onto the data bus. 

WR is the write signal. * It indicates that the data bus holds valid 
data, ready to be written into the specified device. 

RFSH is the refresh signal. When RFSH is active, the lower seven 
bits of the address bus contain a refresh address for dynamic memories. 
The MREQ signal is then used to perform the refresh by reading the 
memory. 

HARDWARE SUMMARY 

This completes our description of the internal organization of the 
Z80. The exact hardware details of the Z80 are not important here. 
However, the role of each of the registers is important and should be 
fully understood before proceeding to the next chapters. The actual in­
structions available on the Z80 will now be introduced, and basic pro­
gramming techniques for the Z80 will be presented. 

*used in conjunction with MREQ or IOREQ, 
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BASIC PROGRAMMING 
TECHNIQUES 

INTRODUCTION 

The purpose of this chapter is to present the basic techniques neces­
sary in order to write a program using the Z80. This chapter will intro­
duce new concepts such as register management, loops, and sub­
routines. It will focus on programming techniques using only the inter­
nat Z80 resources, i.e., the registers. Actual programs will be de­
veloped, such as arithmetic programs. These programs will serve to il­
lustrate the various concepts presented so far and will use actual in­
structions. Thus, it will be seen how instructions may be used to 
manipulate the information between the memory and the MPU, as well 
as to manipulate information within the MPU itself. The next chapter 
will then discuss in complete detail the instructions available on the Z80. 
Chapter 5 will present Addressing Techniques, and Chapter 6 will pre­
sent the techniques available for manipulating information outside the 
Z80: the Input/Output Techniques. 

In this chapter, we will essentially learn by "doing." By examining 
programs of increasing complexity, we will learn the role of the various 
instructions, of the registers, and we will apply the concepts developed 
so far. However, one important concept will not be presented here; it is 
the concept of addressing techniques. Because of its apparent complexi­
ty, it will be presented separately in Chapter 5. 

Let us immediately start writing some programs for the Z80. We will 
start with arithmetic programs. The "programmer's model" of the Z80 
registers is shown in Figure 3.0. 
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MAIN SET ALTERNATE SET 

(111) 
A 

(accumulator) 
F 

(flags) A' F' 

(000) B C (001) B' e' 
GENERAL­

(010) 0 E (011 ) 0' E' PURPOSE 
REGISTERS 

(100) H L (101 ) H' L' 

I )1 R
(interrup' vector) (mem refresh) 

IX !INDEX 
REGISTERSIV 

SP 
(stack pointer) 

PC 
(program counter) 

Fig. 3.0: The Z80 Registers 

ARITHMETIC PROGRAMS 

Arithmetic programs include addition, subtraction, multiplication, 
and division. The programs presented here will operate on integers. 
These integers may be positive binary integers or may be expressed in 
two's complement notation, in which case the left-most bit is the sign 
bit (see Chapter 1 for a description of the two's complement notation). 

8-Bit Addition 

We will add two 8-bit operands called OPI and OP2, respectively 
stored at memory address ADRI, and ADR2. The sum will be called 
RES and will be stored at memory address ADR3. This is illustrated in 
Figure 3.1. The program which will perform this addition is the follow­
ing: 

Instructions Comments 

LD A, (ADR1) LOAD OPI INTO A 
LD HL, ADR2 LOAD ADDRESS OF OP2 INTO HL 
ADD A, (HL) ADD OP2 TO OPI 
LD (ADR3),A SA VE RESULT RES AT ADR3 
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MEMORY 

ADR1---......~1 OPl (FIRST OPERAND) 

ADR2 ---.......1 OP2 (SECOND OPERAND) 


ADR3 ---.......1 RES (RESULT) 


ADDRESSES 

Fig. 3.1: Eight-Bit Addition RES = OPI + OP2 

This is our first program. The instructions are listed on the left and 
comments appear on the right. Let us now examine the program. It is a 
four-instruction program. Each line is called an instruction and is ex­
pressed here in symbolic form. Each such instruction will be translated 
by the assembler program into one, two, three or four binary bytes. We 
will not concern ourselves here with the translation and will only look at 
the symbolic representation. 

The first line specifies loading the contents of ADR1 into the accu­
mulator A. Referring to Figure 3.1, the contents of ADRI are the first 
operand, "OP1". This first instruction therefore results in transferring 
OPI from the memory into the accumulator. This is shown in Figure 
3.2. "ADRl" is a symbolic representation for the actual 16-bit address 
in the memory. Somewhere else in the program, the ADRI symbol will 
be defined. It could, for example, be defined as being equal to the ad­
dress "100". 

This load instruction will result in a read operation from address 100 
(see Figure 3.2), the contents of which will be transferred along the data 
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DATA IUS 

~~~~--:.:::-:----; 
1-01'1) -: !· · ·.. .
· . 

AIlOIIfSS IUS 

Fig. 3.2: LD A, (ADRl): OPR is Loaded from Memory 

bus and deposited inside the accumulator. You will recall from the pre­
vious chapter that arithmetic and logical operations operate on the 
accumulator as one of the source operands. (Refer to the previous 
chapter for more details.) Since we wish to add the two values OPI and 
OP2 together, we must first load OPI into the accumulator. Then, we 
will be able to add the contents of the accumulator, i.e., add OPI to 
OP2. The right-most field of this instruction is called a comment field. 
It is ignored by the assembler program at translation time, but is pro­
vided for program readability. In order to understand what the pro­
gram does, it is of paramount importance to use good comments. T.his 
is called documenting a program. 

Here the comment is self-explanatory: the value of OPl, which is 
located at address ADRl, is loaded into the accumulator A. 

The result of this first instruction is illustrated by Figure 3.2. The 
second instruction of our program is: 

LDHL, ADR2 
It specifies: "Load ADR2 into registers H and L." In order to read the 

second operand, OP2, from the memory, we must first place its address 
into a register pair of the Z80, such as H and L. Then, we can add the 
contents of the memory location whose address is in H and L to the 
accumulator. 

ADD A, (HL) 

Referring to Figure 3.1, the contents of memory location ADR2 are 
OP2, our second operand. The contents of the accumulator are now 
OPl, our first operand. As a result of the execution of this instruction, 
OP2 will be fetched from the memory and added to OPI. This is il­
lustrated in Figure 3.3 
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zao 
DATA8US. 

~~--~~~---I :(_0., ) , I 
I ' , I 

ADR2 

(AO.2) 

ADDRESS BUS 

Fig. 3.3: ADD A, (HL) 

The sum will be deposited in the accumulator. The reader will 
remember that, in the case of the Z80, the results of the arithmetic oper­
ation are deposited back into the accumulator. In other processors, it 
may be possible to deposit these results in other registers, or back into 
the memory. 

The sum of OPt and OP2 is now contained in the accumulator. To 
complete our program, we simply have to transfer the contents of the 
accumulator into memory location ADR3, in order to store the results 
at the specified location. This is performed by the fourth instruction of 
our program: 

LD (ADR3), A 

This instruction loads the contents of A into the specified address 
ADR3. The effect of this final instruction is illustrated by Figure 3.4. 

zao 

------, 

II 

-----( ,


DATA BUS I 
I I 

l 
I I 

RES IA II , 
I 

I 

I 

II 

V 
~ 

ADR3 
. R" .~ ~ 

(AOR3 

ADOJUSS BuS 

Fig. 3.4: LD (ADR3), A (Save Accumulator in Memory) 
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Before execution of the ADD operation, the accumulator contained 
OPI (see Figure 3.3). After the addition, a new result has been written 
into the accumulator. It is "OPI + OP2". Recall that the contents of 
any register within the microprocessor, as well as any memory location, 
remain the same after a read operation has been performed on this 
register. In other words, reading the contents of a register or memory 
location does not change its contents. It is only, and exclusively, a write 
operation into this register location that will change its contents. In this 
example, the contents of memory locations ADRI and ADR2 remain 
unchanged throughout the program. However, after the ADD instruc­
tion, the contents of the accumulator will have been modified, because 
the output of the ALU has been written into the accumulator. The 
previous contents of A are then lost. 

Actual numerical addresses may be used instead of ADRI, ADR2, 
and ADR3. In order to keep symbolic addresses, it will be necessary to 
use so-called "pseudo-instructions" which specify the value of these 
symbolic addresses, so that the assembly program may, during transla­
tion, substitute the actual physical addresses. Such pseudo-instructions 
could be, for example: 

ADRI lOOH 
ADR2 I20H 
ADR3 200H 

Exercise 3.1: Now close this book. Refer only to the list of instructions 
at the end of the book. Write a program which will add two numbers 
stored at memory locations LOC1 and LOC2. Deposit the results at 
memory location LOC3. Then, compare your program to the one 
above. 

16-Bit Addition 

An 8-bit addition will only allow the addition of 8-bit numbers, i.e., 
numbers between 0 and 255, if absolute binary is used. For most prac­
tical applications it is necessary to add numbers having 16 bits or more, 
i.e., to use multiple precision. We will here present examples of arith­
metic on I6-bit numbers. They can be readily extended to 24,32 bits or 
more (always multiples of 8 bits). We will assume that the first operand 
is stored at memory locations ADRI and ADRI-I. Since OPI is a 16-bit 
number this time, it will require two 8-bit memory locations. Similarly, 
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OP2 will be stored at ADR2 and ADR2-1. The result is to be depo,ited 
at memory addresses ADR3 and ADR3-1. This is illmtrated ill ligurc 
3.5. H indicates the high half (bits 8 through 15), while I illdi~·atcs the 
low half (bits 0 through 7). 

AOR\ - 1 (OPI)H 

""., IOPI)l 

ADR7-1 (OP2)H 

""., (OP2)l 

A{)RJ-l (RES)H 

(IU5)l""." 

Fig. 3.5: 16-Bit Addition-The Operands 

The logic of the program is exactly like the previous one. First, the 
lower half of the two operands will be added, since the microprocessor 
can only add on 8 bits at a time. Any carry generated by the addition of 
these low order bytes will automatically be stored in the internal carry 
bit ("C"). Then, the high order half of the two operands will be added 
together along with any carry, and the result will be saved in the 
memory. The program appears below: 

LD A, (ADRl) LOAD LOW HALF OF OPI 
LD HL, ADR2 ADDRESS OF LOW HALF OF OP2 
ADD A, (HL), ADD OPI AND OP2 LOW 
LD (ADR3), A STORE RESULT, LOW 
LD A, (ADRI-I) LOAD HIGH HALF OF OPI 
DEC HL ADDRESS OF HIGH HALF OF OP2 
ADC A, (HL) (OPI + OP2) HIGH + CARRY 
LD (ADR3-1), A STORE RESULT, HIGH 
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The first four instructions of this program are identical to the ones 
used for the 8-bit addition in the previous section. They result in adding 
the least significant halves (bits 0-7) of OPI and OP2. The sum, called 
"RES" is stored at memory location ADR3 (see Figure 3.5). 

Automatically, whenever an addition is performed, any resulting 
carry (whether "0" or "1") is saved in the carry bit C of the flags 
register (register F). If the two numbers do generate a carry, then the C 
bit will be equal to "1" (it will be set). If the two 8-bit numbers do not 
generate any carry, the value of the carry bit will be "0". 

The next four instructions of the program are essentially like those 
used in the previous 8-bit addition program. This time they add 
together the most significant half (or high half, i.e., bits 8-15) of OPI 
and OP2, plus any carry, and store the result at address ADR3-1. 

After execution of this 8-instruction program, the 16-bit result is 
stored at memory locations ADR3 and ADR3-1, as specified. Note, 
however, that there is one difference between the second half of this 
program and the first half. The "ADD" instruction which has been 
used is not the same as in the first half. In the first half of this program 
(the 3rd instruction), we had used the"ADD" instruction. This instruc­
tion adds the two operands, regardless of the carry. In the second half, 
we use the "ADC" instruction, which adds the two operands together, 
plus any carry that may have been generated. This is necessary in order 
to obtain the correct result. The addition initially performed on the low 
operands may result in a carry. Such a possible carry must be taken into 
account in the second half of the addition. 

The question which comes naturally then is: what if the addition of 
the high hal f of the operands also results in a carry? There are two pos­
sibilities: the first one is to assume that this is an error. This program is 
then designed to work for results of only up to 16 bits, but not 17. The 
other one is to include additional instructions to test explicitly for the 
possibility of a carry at the end of this program. This is a choice which 
the programmer must make, the first of many choices. 

Note: we have assumed here that the high part of the operand is 
stored "on top of" the lower part, i.e., at the lower memory address. 
This need not necessarily be the case. In fact, addresses are stored by 
the Z80 in the reverse manner: the low part is first saved in the memory, 
and the high part is saved in the next memory location. In order to use a 
common convention for both addresses and data, it is recommended 
that data also be kept with the low part on top of the high part. This is 
illustrated in Figure 3.6. 
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AOR I (OP1)L 


AORlof- , (OP1)H 


AOO' (OP2)L 

I (OP2)H 

ADlt3 {RES~ 

_3+ I {RESIH 

Fig. 3.6: Storing Operands in Reverse Order 

When operating on multibyte operand, it is important to keep in mind 
two essential conventions: 

-the order in which data is stored in the memory. 
-where data pointers are pointing: low byte or high byte. 
Exercises 3.2 and 3.3 are designed to clarify this point. 

Exercise 3.2: Rewrite the i6-bit addition program above with the 
memory layout indicated in Figure 3.6. 

Exercise 3.3: Assume now that ADRI does not point to the lower half 
ojOP} (as in Figures 3.5 or 3.6). but points to the higher part ojOPi. 
This is illustrated in Figure 3.7. Again. write the corresponding pro­
gram. 
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.ORl·' (OP1)L 

(OP1)H 

ADfl2·' (OP2)L 

(0P2)H 

"0113-1 IRES~ 

IRES)H 

.'ig. 3.7: Pointing to the High Byte 

It is the programmer, i.e., you, who must decide how to store 16-bit 
numbers (i.e., low part or high part first) and also whether your address 
references point to the lower or to the higher half of such numbers. This 
is another choice which you will learn to make when designing 
algorithms or data structures. 

The programs presented above are traditional programs, using the 
accumulator. We will now present an alternative program for the 16-bit 
addition that does not use the accumulator, but instead uses some of 
the special 16-bit instructions available on the Z80. Operands will be 
assumed to be stored as indicated in Figure 3.5. The program is: 

LD HL, (ADRI) LOAD HL WITH OPI 
LD Be, (ADR2) LOAD BC WITH OP2 
ADD HL, BC ADD 16 BITS 
LD (ADR3), HL STORE RES INTO ADR3 

Note how much shorter this program is, compared to our previous ver­
sion. I t is more' 'elegant." /11 a limited manlier, the Z80 allows registers 
Hand L to be used as a /6-bit accumulator. 

103 



PROGRAMMING THE zao 

Exercise 3.4: Using the J6-bit instructions which have just been intro­
duced, write an addition program for 32-bit operands, assuming that 
operands are stored as shown in Figure 3.B. (The answer appears 
below.) 

Answer: 

LD HL, (ADR1) 

LD BC, (ADR2) 

ADDHL, BC 

LD (ADR3) 

LD HL, (ADRI +2) 

LD BC, (ADR2 +2) 

ADC HL, BC 

LD (ADR3+2) 


MEMORY 

ADR1+3 HIGH 

OPRI 

ADRI lOW 

HIGH 

OPR2 

ADR2 lOW 

HIGH 

RES 

ADR3 lOW 

Fig. 3.8: A 32·8it Addition 
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Now that we have learned to perform a binary additIOn, let us turn to 
subtraction. 

Subtracting 16-Bit Numbers 

Doing an 8-bit subtract would be too simple. Let us keep it as an ex­
ercise and directly perform a l6-bit subtract. As usual, our two num­
bers, OPI and OP2, are stored at addresses ADRI and ADR2. The 
memory layout will be assumed to be that of Figure 3.6. In order to 
subtract, we will use a subtract operation (SBC) instead of an add 
operation (ADD). 

Exercise 3.5: Now write a subtraction program. 

The program appears below. The data paths are shown in Figure 3.9. 

LD HL, (ADRI) OPI INTO HL 
LD DE, (ADR2) OP2lNTO DE 
ANDA CLEAR CARRY 
SBC HL, DE OPI - OP2 
LD (ADR3), HL RES INTO ADR3 

The program is essentially like the one developed for 16-bit addition. 
However, the Z80 instruction-set has two types of additions on double 
registers: ADD and ADC, but only one type of subtraction: SBC. 

As a result, two changes can be noted. 
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MEMORY 

H l 

I (OP1)H I (OP1)l I 
~I i~ 

(OPI)l ADRI 

(OP1)H ADRI + 1 

.'ig. 3.9: 16-Bit Load - LD HL, (ADRl) 

A first change is the use of SBC instead of ADD. 
The other change is the"AND A" instruction, used to clear the carry 

flag prior to the subtraction. This instruction does not modify the value 
of A. 

This precaution is necessary because the Z80 is equipped with two 
modes of addition, with and without carryon the Hand L register, but 
with only one mode of subtraction, the SBe instruction of "subtract 
with carry" when operating on the HL register pair. Because SBe auto­
matically takes into account the value of the carry bit, it must be set to 0 
prior to starting the subtraction. This is the role of the "AND A" in­
struction. 

Etercise 3.6: Rewrite the subtractioll program without /Ising the 
speciali;.ed /6-bit illstructiull. 

Eterdse 3.7: Write the sublrael program fur 8-bil operands. 

It must be remembered that in the case of two's complement arithme­
tic, the final value of the carry flag has no meaning. I f an overflow con­
dition has occurred as a result of the subtraction, then the overflow bit 
(bit V) of the nags register will have been set. It can then be tested. 
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The examples just presented are simple binary additions or subtrac­
tions. However, another type of arithmetic may be necessary; it is BCD 
arithmetic. 

BCD ARITHMETIC 

8-Bit BCD Addition 

The concept of BCD arithmetic has been presented in Chapter 1. Let 
us recall its features. It is essentially used for business applications 
where it is imperative to retain every significant digit in a result. In the 
BCD notation, a 4-bit nibble is used to store one decimal digit (0 
through 9). As a result, every 8-bit byte may store two BCD digits. 
(This is called packed BCD). Let us now add two bytes each containing 
two BCD digits. 

In order to identify the problems, let us try some numeric examples 
first. 

Let us add "01" and "02": 

"01" is represented by: 0000 0001 
"02" is represented by: 0000 0010 

The result is: 00000011 

This is the BCD representation for "03". (If you feel unsure of the 
BCD equivalent, refer to the conversion table at the end of the book.) 
Everything worked very simply in this case. Let us now try another ex­
ample. 

"08" is represented by 0000 1000 
"03" is represented by 0000 0011 

Exercise 3.8: Compute the sum of the two numbers above in the BCD 
representation. What do you obtain? (answer follows) 

I f you obtain "0000 1011", you have computed the binary sum of 8 
and 3. You have indeed obtained 11 in binary. Unfortunately, "1011" 
is an illegal code in BCD. You should obtain the BCD representation of 
"II", i.e., 0001 OOOI! 

The problem stems from the fact that the BCD representation uses 
only the first ten combinations of4 digits in order to encode the decimal 
symbols 0 through 9. The remaining six possible combinations of 4 
digits are unused, and the illegal" 1011" is one such combination. In 
other words, whenever the sum of two BCD digits is greater than 9, 
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then one must add 6 to the result in order to skip over the 6 unused 
codes. 

Add the binary representation of "6" to 1011: 

1011 (illegal binary result) 
+ 0110 (+6) 

The result is: 0001 0001 

This is, indeed, "II" in the BCD notation! We now have the correct 
result. 

This example illustrates one of the basic difficulties of the BCD 
mode. One must compensate for the six missing codes. A special in­
struction, "DAA", called "decimal adjust," must be used to adjust the 
result of the binary addition. (Add 6 if the result is greater than 9.) 

The next problem is illustrated by the same example. In our example, 
the carry will be generated from the lower BCD digit (the right-most 
one) into the left-most one. This internal carry must be taken into ac­
count and added to the second BCD digit. The addition instruction 
takes care of this automatically. However, it is often convenient to 
detect this internal carry from bit 3 to bit 4 (the "half-carry"). The H 
flag is provided for this purpose. 

As an example, here is a program to add the BCD numbers" II" and 
"22": 

LD A,IIH LOAD LITERAL BCD' II' 
ADDA,22H ADD LITERAL BCD '22' 
DAA DECIMAL ADJUST RESULT 
LD (ADR), A STORE RESULT 

In this program, we are using a new symbol "H". The "H" sign 
within the operand field of the instruction specifies that the data it 
follows is expressed in hexadecimal notation. The hexadecimal and the 
BCD representations for digits "0" through "9" are identical. Here we 
wish to add the literals (or constants) "11" and "22". The result is 
stored at the address ADR. When the operand is specified as part of the 
instruction, as it is in the above example, this is called immediate ad­
dressing. (The various addressing modes will be discussed in detail in 
Chapter 5.) Storing the result at a specified address, such as LD (ADR), A 
is called absolute addressing when ADR represents a 16-bit address. 
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MEMO~Y 

I 
I I 


I 


:[ 
2 2 

(RESULT) (ADR) 

Fig. 3.10: Storing BCD Digits 

This program is analogous to the 8-bit binary addition, but uses a 
new instruction: "DAA". Let us illustrate its role in an example. We 
will first add" 11" and "22" in BCD: 

00010001 (11) 
+ 00100010 (22) 

= 00110011 (33) 

3 3 
The result is correct, using the rules of binary addition. 

Let us now add "22" and "39", by using the rules of binary addi­
tion: 

00100010 (22) 
+ 00111001 (39) 

= 01011011 

5 ? 

"10 II" is an illegal BCD code. This is because BCD uses only the 
first 10 binary codes, and "skips over" the next 6. We must do the 
same, i.e. add 6 to the result: 

01011011 (binary result) 
+ 0110 (6) 

01100001 (61) 
~---6 I 

This is the correct BCD result. 
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Exercise 3.9: Could we move the DAA instruction in the program after 
the instruction LD (ADR), A? 

BCD Subtraction 

BCD subtraction is, in appearance, complex. In order to perform a 
BCD subtraction, one must add the ten's complement of the number, 
just a~ one adds the two's complement of a number to perform a binary 
subtract. The ten's complement is obtained by computing the comple­
ment to 9, then adding "I". This requires typically three to four opera­
tions on a standard microprocessor. However, the Z80 is equipped with 
a powerful DAA instruction which simplifies the program. 

The DAA instruction automatically adjusts the value of the result in 
the accumulator, depending on the value of the C, Hand N flags before 
DAA, to the correct value. (See the next chapter for more details on 
DAA.) 

16-Bit BCD Addition 

16-bit addition is performed just as simply as in the binary case. The 
program for such an addition appears below: 

LD A, (ADRI) LOAD (OPI) L INTO A 
LD HL, (ADR2) LOAD ADR2 INTO HL 
ADD A, (HL) (OPI + OP2) LOW 
DAA DECIMAL ADJUST 
LD (ADR3), A STORE (RESULT) LOW 
LD A, (ADRI + I) LD (OPI) H INTO A 
INC HL POINT TO ADR2 + 1 
ADC A, (HL) (OPI + OP2) HIGH + CARRY 
DAA DECIMAL ADJUST 
LD (ADR3 + I), A STORE (RESULT) HIGH 

Packed BCD Subtract 

Elementary BCD addition and subtraction have been described. 
However, in actual practice, BCD numbers include any number of 
bytes. As a simplified example of a packed BCD subtract, we will 
assume that the two numbers N I and N2 include the same number of 
BCD bytes. The number of bytes is called COUNT. The register and 
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memory allocation is shown in Figure 3.11. The program appears 
below: 

BCDPAK LD B, COUNT 
LD DE,N2 
LD HL, Nl 
AND A 

MINUS LD A, (DE) 
SBC A, (HL) 
DAA 
LD (HL), A 
INC DE 
INC HL 
DJNZ MINUS 

COUNTB I 
D N2 

H 

CLEAR CARRY 
N2 BYTE 
N2 - Nl 

STORE RESULT 

DEC B, LOOP UNTIL B = o. 

N2 

lCOONT 

Nl 

Nl 

Fig. 3.11: Packed BCD Subtract: Nl-4- N 2 - Nl 

N1 and N2 represent the addresses where the BCD numbers are stored. 
These addresses will be loaded in register pairs DE and HL: 

BCDPAK 	LD B, COUNT 
LD DE, N2 
LD HL, Nl 
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Then, in anticipation of the first subtraction, the carry bit must be 
cleared. It has been pointed out that the carry bit can be cleared in a 
number of equivalent ways. Here, for example, we use: 

AND A 
The first byte of N2 is loaded into the accumulator, then the first byte 
of N 1 is subtracted from it. The DAA instruction is then used, to obtain 
the correct BCD value: 

MINUS LD A, (DE) 
SBC A, (HL) 
DAA 

The result is then stored into N 1: 

LD (HL), A 

Finally, the pointers to the current byte are incremented: 

INC DE 
INC HL 

The counter is decremented and the subtraction loop is executed until it 
reaches the value "0": 

DJNZ MINUS 

The DJNZ instruction is a special Z80 instruction which decrements 
register B and jumps if it is not zero, in a single instruction. 

Exercise 3.10: Compare the program above to the one for the /6-bit 
binary addition. What is the difference? 

I:xercise 3.11: Can you exchange the roles of Dc' and HL? (Hint: Be 
carejiil with SBC.) 

cxercise 3.11: Write the subtraction program for a /6-hit BCD. 

BCD l'lag!l 

In BCD mode, the carry flag set as the result of an addition indicates 
the fact that the result is larger than 99. This is not like the two's com­
plement situation, since BCD digits are represented in true binary. Con­
versely, the presence of the carry flag after a subtraction indicates a 
borrow. 

Instruction Types 

We have now used two types of microprocessor instructions. We 
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have used LD, which loads the accumulator from the memory address, 
or stores its contents at the specified address. This is a data transfer in­
struction. 

Next, we have used arithmetic instructions, such as ADD, SUB, 
AOC and SBe. They perform addition and subtraction operations. 
More ALU instructions will be introduced soon in this chapter. 

Still other types of instructions are available within the micropro­
cessor which we have not used yet. They arc in particular "jump" in­
structions, which will modify the order in which the program is being 
executed. This new type of instruction will be introduced in our next ex­
ample. Note that jump instructions are often called "branch" for con­
ditional situations, i.e. instances where there is a logical choice in the 
program. The "branch" derives its name from the analogy to a tree, 
and implies a fork in the representation of the program. 

MULTIPLICATION 

Let us now examine a more complex arithmetic problem: the multi­
plication of binary numbers. In order to introduce the algorithm for a 
binary multiplication, let us start by examining a usual decimal multi­
plication: We will multiply 12 by 23. 

12 (Multiplicand) 
x 23 (Multiplier) 

36 (Partial Product) 
+ 24 

276 (Final Result) 

The multiplication is performed by multiplying the right-most digit of 
the multiplier by the multiplicand, i.e., "3" x "12". The partial prod­
uct is "36". Then one multiplies the next digit of the multiplier, i.e., 
"2", by "12". "24" is then added to the partial product. 

But there is one more operation: 24 is offset to the left by one posi­
tion. We will say that 24 is shifted left by one position. Equivalently, we 
could have said that the partial product (36) had been shifted one posi­
tion to the right before adding. 

The two numbers, correctly shifted, are then added and the sum is 
276. This is simple. The binary multiplication is performed in exactly 
the same way. 
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Let us look at an example. We will'multiply 5 x 3: 


(5) 101 (MPD) 
(3) x 011 (MPR) 

101 (PP) 
101 

000 

(IS) 01111 (RES) 

In order to perform the multiplication, we operate exactly as we did 
above. The formal representation of this algorithm appears in Figure 
3-12. It is' a flowchart for the algorithm, our first flowchart. Let us ex­
amine it more closely. 

NO 

NO 

DONE 

Fig. 3.12: The Basic Multiplication Algorithm-Flowchart 

This flowchart is a symbolic representation of the algorithm we have 
just presented. Every rectangle represents an order to be carried out. It 
will be translated into one or more program instructions. Every 
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diamond-shaped symbol represents a test being performed. This will be 
a branching point in the program. If the test succeeds, we will branch to 
a specified location. If the test does not succeed, we will branch to 
another location. The concept of branching will be explained later, in 
the program itself. The reader should now examine this flowchart and 
ascertain that it does indeed exactly represent the algorithm which has 
been presented. Note that there is an arrow coming out of the last dia­
mond at the bottom of the flowchart, back to the first diamond on top. 
This is because the same portion of the flowchart will be executed eight 
times, once for every bit of the multiplier. Such a situation, where ex­
ecution will restart at the same point, is called a program loop for ob­
vious reasons. 

f.xercise 3.13: Multiply "4" by "7" in binary, using the powchart, and 
verify that you obtain "28". If you do not, try again. It is only if you 
obtain the correct result that you are ready to translate this flowchart 
into a program. 

8-By-8 Multiplication 

Let us now translate this flowchart into a program for the Z80. The 
complete program appears in Figure 3.13. We are going to study it in 
detail. As you will recall from Chapter I, programming consists here of 
translating the flowchart of Figure 3.12 into the program of Figure 
3.13. Each of the boxes in the flowchart will be translated by one or 
more 	instructions. 

It is assumed that MPR and MPD already have a value. 

MPY88 LD BC, (MPRAD) LOAD MULTIPLIER INTO C 
LD B,8 B IS BIT COUNTER 
LD DE, (MPDAD) LOAD MULTIPLICAND INTO E 
LD 0,0 CLEAR 0 
LD HL,O SET RESULT TO 0 

MULT SRL C SHIFT MULTIPLIER BIT INTO 
CARRY 

JR NC,NOADD TEST CARRY 
ADD HL,DE ADD MPD TO RESULT 

NOADD SLA E SHIFT MPD LEFT 
RL D SAVE BIT IN D 
DEC B DECREMENT SHIFT COUNTER 
JP NZ,MULT DO IT AGAIN IF COUNTER :/= 0 
LD (RESAD), HL STORE RESULT 

I·ig. 3.13: 8 x 8 Multiplication Program 
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The first box of the flowchart is an initialization box. It is necessary 
to set a number of registers or memory locations to "0", as this pro­
gram will require their use. The registers which will be used by the 
multiplication program appear in Figure 3.14. 

(RESAD) 

Fig 3.14: 8 x 8 Multiplication-The Registers 

Three register pairs of the Z80 are used for the multiplication pro­
gram. The 8-bit multiplier is assumed to reside at memory address 
MPRAD. The multiplicand MPD is assumed to reside at memory ad­
dress MPDAD. The multiplier and the multiplicand respectively will be 
loaded into registers C and E (see Figure 3.14). Register B will be used 
as a counter. 

Registers D and E will hold the multiplicand as it is shifted left one 
bit at a time. 

Note that, even though only C and E need to be loaded initially, a 16­
bit load must be used, so that Band D will also be loaded from memory, 
and will have to be reset respectively to "8" and to "0". 
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Finally, the results of an 8-bit by 8-bit multiplication may require up 
to 16 bits. This is because 2' x 2' = 216. Two registers must therefore 
be reserved for the result. They are registers Hand L, as indicated on 
Figure 3.14. 

The first step is to load registers B, e, and E with the appropriate 
contents, and to initialize the result (the partial product) to the value 
"0" as specified by the flowchart of Figure 3.12. This is accomplished 
by the following instructions: 

MPY88 LD Be, (MPRAD) 
LD B, 8 
LD DE, (MPDAD) 
LD D,O 
LD HL, 0 

The first three instructions respectively load MPR into the register pair 
Be, the value "8" into register B, and MPD into the register pair DE. 
Since MPR and MPD are 8-bit words, they are, in fact, loaded into 
registers e and E respectively, while the next words in the memory after 
MPR and MPD get loaded into Band D. This is shown in Figure 3.15 
and 3.16. The next instruction will zero the contents of D. 

In this multiplication program, the multiplicand will be shifted left 
before being added LO the result (remember that, optionally, it is pos­
sible to shift the result right instead, as indicated in the fourth box of 
the flowchart of Figure 3.12). The multiplicand MPD will be shifted in­
to register D at each step. This register D must therefore be initialized to 
the value "0". This is accomplished by the fourth instruction. Finally, 
the fifth instruction sets the contents of registers Hand L to 0 in a single 
instruction. 

MEMORY 

MPRAD 

Fig. 3.15: LD Be, (MPRAD) 
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MEMORY 

MPDAD 

I 
~ 

Fig. 3.16: LD DE, (MPDAD) 

Referring back to the flowchart of Figure 3.12. the next step is to test 
the least significant bit (the right-most bit)of the multiplier MPR. If this 
bit is a "I". then the value of MPD must be added to the partial result, 
otherwise it will not be added. This is accomplished by the next three in­
structions: 

MULT 	SRL C 

JR NC, NOADD 

ADD HL.DE 


The first problem we must solve is how to test the least significant bit of 
the multiplier, contained in register C. We could here use the BIT in­
struction of the Z80, which allows testing any bit in any register. How­
ever, in this case, we would like to construct a program as simple as 
possible, using a loop. If we were using the BIT instruction here, we 
would first test bit 0, then later test bit I, and so on until we reached bit 
7. This would require a different instruction every time. and a simple 
loop could not be used. In order to shorten the length of the program, 
we must use a different instruction. Here we are using a shift instruc­
tion. 

Note: There is a way to use the BIT instruction and a loop, but this 
would require the program to modify itself, a practice we will avoid. 
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SRL is a new type of operation within the arithemetic and logical 
unit. It stands for "shift right logical." A logical shift to the right is 
characterized by the fact tnat a' '0" comes into bit position 7. This can 
be contrasted to an arithemtic shift to the right, where the bit coming 
into position 7 is identical to the previous value of bit 7. The djfferent 
types of shift operations will be described in the next chapter. The 
effect of the SRL C instruction is illustrated in Figure 3.14 by an arrow 
coming out of register C and into the square used to designate the carry 
bit (also called "C"). At this point, the right-most bit of the MPR will 
be in the carry bit C, where it can be tested. 

The next instruction, "JR NC, NOADD", is a jump operation. It 
means "jump on no carry" (NC) to the address (the label) NOADD. If 
the contents of the carry bit are "0" (no carry), then the program will 
jump to the address NOADD. If the contents of C are "I" (the carry 
bit is set), then no branch will occur, and tlie next sequential instruction 
will be executed, i.e., the instruction "ADD HL, DE" will be executed. 

This instruction specifies that the contents of D and E be added to H 
and L, with the result in Hand L. Since E contains the multiplicand 
MPD (see Figure 3.14), this adds the multiplicand to the partial result. 

At this point, regardless of whether MPD has been added to the 
result or not, the multiplicand must be shifted left (this is the fourth box 
in the flowchart of Figure 3.12). This is accomplished by: 

NOADD SLA E 

SLA stands for "shift left arithmetic." It has just been explained above 
that there are two types of shift operations, a logical shift and an arith­
metic shift. This is the arithmetic one. In the case of a left shift, an SLA 
specifies that the bit coming into the right part of the register (the least 
significant bit) be a "0" (just as in the case of an SRL before). 

As an example, let us assume that the initial contents of register E 
were 00001001. After the SLA instruction, the contents of E will be 
00010010. And the contents of the carry bit will be O. 

However, looking back at Figure 3.14, we really want to shift the 
most significant bit (called the MSB) of E directly into D (this is il­
lustrated by the arrow on the illustration coming from E into D). 
However, there is no instruction which wili shift a double register such 
as D and E in one operation. Once the contents of E have been shifted, 
the left-most bit has "fallen into" the carry bit. We must collect this bit 
from the carry bit and shift it into register D. This is accomplished by 
the next instruction: 

RL D 
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RL is still another type of shift operation. It stands for "rotate left." 
In a rotation operation, as opposed to a shift operation, this bit coming 
into the register is the contents of the carry bit C (see Figure 3.17). This 
is exactly what we want. The contents of the carry bit C are loaded into 
the right-most part of D, and we have effectively transferred the left­
most bit of E. 

This sequence of two instructions is illustrated in Figure 3.18. It can 
be seen that the bit marked by an X in the most significant position of E 
will first be transferred into the carry bit, then into the least significant 
position of D. Effectively, it will have been shifted from E into D. 

At this point, referring back to the flowchart of Figure 3.12, we must 
point to the next bit of MPR and check for the eighth bit. This is ac­
complished by decrementing the byte counter, contained in register B 
(see Figure 3.14). The register is decremented by: 

DEC B 

This is a decrement instruction, which has the obvious effect. 
Finally, we must check whether the counter has decremented to the 

value zero. This is accomplished by checking the value of the Z bit. The 
reader will recall that the Z (zero) flag indicates whether the previous 
arithmetic operation (such as a DEC operation) has produced a zero 
result. However, note that DEC HL, DEC BC, DEC DE, DEC IX, 
DEC SP do not affect the Z flag. If the counter is not "0", the opera­
tion is not finished, and we must execute this program loop again. This 
is accomplished by the next instruction: 

lP NZ MULT 
SHIFT LEFT 

~ 111~1113-'
CARRY 

ROTATE lEFT 

~~11~11~) 

\ RlC instruction / 

..... _--------------, 
Fig. 3.17: Shift and Rotate 
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c 

~D x~~x
E 

Fig. 3.18: Shifting from E into D 

This is a jump instruction which specifies that whenever the Z bit is 
not set (NZ stands for non-zero), a jump occurs to location MULT. This 
is the program loop, which will be executed repeatedly until B decre­
ments to the value O. Whenever B decrements to the value 0, the Z bit 
will be set, and the J P NZ instruction will fail. This will result in the 
next sequential instruction being executed, namely: 

LD (RESAD), HL 

This instruction merely saves the contents of Hand L, i.e., the result of 
the multiplication, at address RESAD, the address specified for the 
result. Note that this instruction will transfer the contents of both regis­
ters Hand L into two consecutive memory locations, corresponding to 
addresses RESAD and RESAD + 1. It saves 16 bits at a time. 

I:xercise 3.14: Could you write the same multiplication program using 
the BIT instruction (described in the next chapter) instead of the SRL C 
instruction? What would be the disadvantage? 

Let us now improve the program, if possible: 

Exercise 3.15: Can JR be substituted for JP at the end of the program? 
If so, what is the advantage? 

Exercise 3.16: Can you use DJNZ to shorten the end of the program? 
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Exercise 3.17: Examine the two instructions: LD D, 0 and LD HL, 0 at 
the beginning of the program. Can you substitute: 

XOR A 
LD D, A 
LD H, A 
LD L, A 

If so, what is the impact on size (number of bytes) and speed? 

Note that, in most cases, the program that we have just developed 
will be a subroutine and the final instruction in the subroutine will be 
RET (return). The subroutine mechanism will be explained later in this 
ohapter. 

Important Self-Test 

This is the first significant program we have encountered so far. It in­
cludes many different types of instructions, including transfer instruc­
tions (LD), arithmetic operations (ADD), logical operations (SRL, 
SLA, RL), and jump operations (JR, JP). It also implements a pro­
gram loop, in which the lower seven instructions, starting at address 
MULT, are executed repeatedly. In order to understand programming, 
it is essential to understand the operation of such a program in com­
plete detail. The program is much longer than the previous simple arith­
metic programs we have developed so far, and it should be studied in 
detail. An important exercise will now be proposed. The reader is 
strongly urged to do this exercise completely and correctly before pro­
ceeding. This will be the only real proof that the concepts presented so 
far have been understood. If a correct result is obtained, it will mean 
that you have really understood the mechanism by which instructions 
manipulate information in the microprocessor, transfer it between the 
memory and the registers, and process it. If you do not obtain the cor­
rect result, or if you do not do this exercse, it is likely that you will ex­
perience difficulties later in writing programs yourself. Learning to pro­
gram requires personal practice. Please pause now, take a piece of 
paper, or use the illustration of Figure 3.19, and do the following exer­
cise: 

Exercise 3.18: Every time that a program is written, it should be verified 
by hand, in order to ascertain that its results will be correct. We are go­
ing to do just that: the goal of this exercise is to fill in the table ofFigure 
3.19 completely and accurately. 
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LABEL INSTRUCTION B C C D E H L 
ICARRYl 

Fig. 3.19: Form for Multiplication Exercise 

You may want to write directly on Figure 3.19 or make a copy of it. 
You must determine the contents of every relevant register in the Z80 
after the execution of each instruction in the program, from beginning 
to eno:- All the registers used by the program of Figure 3.13 are shown 
in Figure 3.19. From left to right, they are registers Band C, the carry 
C, registers D and E, and, finally, registers Hand L. On the left part of 
this illustration, fill in the label, if applicable, and then the instructions 
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being executed. On the right of the instruction, fill in the contents of 
each register after execution of the instruction. Whenever the contents 
of a register are not known (indefinite), you may use dashes to repre­
sent its contents. Let us start filling in this table together. You will then 
have to fill it out by yourself until the end. The first line appears below: 

LABEL INSTRUCTION B C C D E H l 

-­ -­ - -­ -­ -­ -­
MPY88 LD BC, (0200) 00 03 - -­ -­ -­ -­

Fig. 3.20: Multiplication: After One Instruction 

We will assume here that we are multiplying "3" (MPR) by "5" 
(MPD). 

The first instruction to be executed is "LD BC, (MPRAD)". The 
contents of memory location MPRAD is loaded into registers Band C. 
It has been assumed that MPR is equal to 3, i.e., ''00000011''. After ex­
ecution of this instruction, the contents of register C have been set to 
"3". Note that this instruction will also result in loading register B with 
whatever followed MPR in the memory. However, the next instruction 
in the program will take care of this by loading register B with "8", as 
shown in Figure 3.21. Note that, at this point, the contents of D and E 
and Hand L are still undefined, and this is indicated by dashes. The LD 
instruction does not condition the carry bit, so that the contents of the 
carry bit C are undefined. This is also indicated by a dash. 

LABEL INSTRUCTION B C C D E H l 

MPY88 LD BC, (0200) 00 03 - -- -- -- -­
LD B 08 08 03 - -- -- -- -­

Fig. 3.21: Multiplication: After Two Instructions 

The situation after the execution of the first five instructions of the 
program Uust before the MULT) is shown in Figure 3.22. 
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LABEL INSTRUCTION B C C D E H L 

-­ -­ - -­ -­ -­ -­
MPY88 LD BC, (0200) 00 03 - -­ -­ -­ -­

LD B,08 08 03 - -­ -­ -­ -­
LD DE,(0202) 08 03 - 00 05 -­ -­
LD D, 00 08 03 - 00 05 -­ -­
LD HL,OOOQ 08 03 - 00 05 00 00 

Fig. 3.22: Multiplication: After Five Instructions 

The SRL instruction will perform a logical shift right, and the right­
most bit of MPR will fall into the carry bit. You can see in Figure 3.23 
that the contents of MPR after the shift is "0000 0001". The carry bit C 
is now set to "1". The other registers are unchanged by this operation. 
Please continue to flll out the chart by yourself. 

A second iteration is shown at the end of this chapter in Fig. 3.41. 

LABEL INSTRUCTION B C C D E H l 

MPY88 LD BC,(0200) 00 03 - -- -- -- -­
LD B,08 08 03 - -- -- -- -­
LD DE, (0202) 08 03 - 00 05 -- -­
LD D, 00 08 03 - 00 05 -- -­
LD HL,OOOO 08 03 - 00 05 00 00 

MULT SRLC 08 01 1 00 05 00 00 
JR NC,0114 08 01 1 00 05 00 00 
ADD HL,DE 08 01 0 00 05 00 05 

NOADD SLAE 08 01 0 00 OA 00 05 
RlD 08 01 0 00 OA 00 05 
DECB 07 01 0 00 OA 00 05 
JP NZ,010F 07 01 a 00 OA 00 05 

Fig. 3.23: One Pass Through The Loop. 
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A complete listing showing the contents of all the Z80 registers and 
the flags is shown in Fig. 3.39 at the end of this chapter for the complete 
multiplication. A hex or decimal listing is shown in Fig. 3.40. 

Programming Alternatives 

The program that we have just developed could have been written.in 
many other ways. As a general rule, every programmer can usually find 
ways to modify, and often improve, a program. For example, we have 
shifted the multiplicand left before adding. It would have been mathe­
matically equivalent to shift the result one position to the right before 
adding it to the multiplicand. As a matter of fact, this is an interesting 
exercise! 

Exercise 3.19: Write an 8 x 8 multiplication program using the same 
algorithm, but shifting the result one position to the right instead of 
shifting the multiplicand by one position to the left. Compare it 10 the 
previous program, and determine whether this different approach 
would be faster or slower than the preceding one. The speeds of the Z80 
instructions are given in the next chapter. 

Improved Multiplication Program 

The program that we have just developed is a straightforward trans­
lation of the algorithm to code. However. effective programming re­
quires close attention to detail, and the length of the program can often 
be reduced or its execution speed can be improved. We are now going to 
study alternatives designed to improve this basic program. 

Step I 

A first possible improvement lies in the better utilization of the Z80 
instruction set. The second-to-last instruction as well as the preceding 
one can be replaced by a single instruction: 

DJNZLOOP 

This is a special Z80 "automated jump" which decrements the B register 
and branches to a specified location if it is not "0". To be absolutely 
correct, the instruction is not completely identical to the previous pair 

DECB 
jp NZ, MULT 
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fror it specifies a displacement, and one can only jump within the range 
of - 126 to + 129. However, we must here jump to a location which is 
only a few bytes away, and this improvement is legitimate. The 
resulting program is shown in Figure 3.24 below: 

MPY88B LD DE, (MPDAD) 
LD BC, (MPRAD) 
LD B,8 BIT COUNTER 
LD HL,O 

MULT SRL C 
JR NC,NOADD 
ADD HL, DE 

NOADD SLA E 
RL 0 
DJNZ MULT 
LD (RESAD), HL 
RET 

Fig. 3.24: Improved Multiply, Step 1 

Step 2 

In order to improve this mUltiplication program further, we will 
observe that three different shift operations are used in the initial pro­
gram of Figure 3.13. The multiplier is shifted right, then the multipli­
cand MPD is shifted left, in two operations, by first shifting register E 
left, then rotating register 0 to the left. This is time-consuming. A stan­
dard programming "trick" used in the case of multiplication is based 
on the following observation: every time that the multiplier is shifted by 
one bit position, another bit position becomes available in the multi­
plier register. For example, assuming that the multiplier shifts right (in 
the previous example), a bit position becomes available on the left. 
Simultaneously, it can be observed that the first partial product (or 
"result") will use, at most, 9 bits. If a single register had been allocated 
to the result in the beginning of the program, we could then use the bit 
position that has been vacated by the multiplier to store the ninth bit of 
the result. 

After the next shift of the MPR, the size of the partial product will be 
increased by just one bit again. In other words, a single register can be 
reserved intially for the partial product, and the bit positions which are 
being freed by the multiplier can then be used as the MPR is being 
shifted. In order to improve the program, we are therefore going to 
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assign MPR and RES to a register pair. Ideally, they should be shifted 
together in a single operation. Unfortunately, the Z80 shifts only 8-bit 
registers at a time. Like most other 8-bit microprocessors, it has no in­
struction that allows shifting 16 bits at a time. 

However, another trick can be used. The Z80 (like the 8080) is 
equipped with special 16-bit add instructions that we have already used. 
Provided that the multiplier and the result are stored in the register pair 
Hand L, we can use the instruction: 

ADD HL, HL 

which adds the contents of Hand L to itself. Adding a number to 
itself is doubling it. Doubling a number in the binary system is equiva­
lent to a left shift. We have just obtained a 16-bit shift in a single in­
struction. Unfortunately, the shift occurs to the left when we would ~ke 
it to occur to the right. This is not a problem. 

Conceptually, the MPR can be shifted either left or right. We have 
used a right shift algorithm because this is the one which is used in or­
dinary addition. However, it does not necessarily need to be so. The 
addition operation is commutative, and the order can be reversed: shif­
ting the MPR to the left is just as valid. 

In order to take advantage of this simulated 16-bit shift, we will have 
to shift the MPR to the left. Therefore, the MPR will reside in register 
H and the result in register L. The resulting register configuration is 
shown in Figure 3.25. 

BI COUNTER 

E 
MPDo 

MPR RES 

Fig. 3.25: Registers for Improved Multiply 
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The rest of the program is essentially identical to the previous one. 
The resulting program appears below: 

MUL88C LD HL, (MPRAD-I) 
LD L,O 
LD DE, (MPDAD) 
LD D,O 
LD B,8 COUNTER 

MULT ADD HL,HL SHIFT LEFT 
JR NC,NOADD 
ADD HL,DE 

NOADD DJNZ MULT 
LD (RESAD), HL 
RET 

Fig. 3.26: Improved Multiply, Step 2 

When comparing this program to the previous one, it can be seen that 
the length of the multiplication loop (the number of instructions be­
tween MULT and the jump) has been reduced. This program has been 
written in fewer instructions and this will usually result in faster execu­
tion. This shows the advantage of selecting the correct registers to con­
tain the information. 

A straightforward design will generally result in a program that 
works. It will not result in a program that is optimized. It is therefore 
important to understand and use the available registers and instructions 
in the best possible way. These examples illustrate a rational approach 
to register selection and instruction selection for maximum efficiency. 

Exercise 3.20: Compute the speed of a multiplication operation using 
this last program. Assume that a branch will occur in 50% of the cases. 
Look up the number ofcycles required by every instruction in the index 
section. Assume a clock rate of 2 MHz (one cycle = 0.5 us). 

I::.xercise 3.2/: NOle Ihal here we have used the register pair D and E to 
contain the multiplicand. How would the above program be changed if 
we had used the register pair Band C instead? (Hint: this would r(!­
quire a modificalion at the end.) 

Exercise 3.22: Why did we have to bother zeroing register D when 
loading MPD into E? 

Finally, let us address a detail which may look irritating to the pro­
grammer who is not yet familiar with the Z80. The reader will have 
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noticed that, in order to loaf:! MPD into E from the memory, we had to 
load both registers D and E at the same time from a memory address. 
This is because, unless the address is contained in registers Hand L, 
there is no way to fetch a single byte directly and load it into register E. 
This is a feature carried over from the early 8008', which had no direct 
addressing mode, The feature was carried forward into the 8080, with 
some improvements, and improved still further in the Z80, where it is 
possible to fetch 16 bits directly from a given memory address (but not 
8 bits - except toward register A). 

Now, having solved this possible mystery, let us execute a more 
complex multiplication. 

A 16 X 16 Multiplication 

In order to put our newly acquired skills to a test, we will multiply 
two 16-bit numbers. However, we will assume that the result requires 
only 16 bits, so that it can be contained in one of the register pairs. 

The result, as in our first multiplication example, is contained' in 
registers Hand L (see Figure 3.27). The multiplicand MPD is contained 
in registers D and E. 

c 

D 

H 

Fig. 3.27: 16 X 16 Multiply-The Registers 
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It would be tempting to deposit a multiplier into register Band C. 
However, if we want to take advantage of the DJNZ instruction, 
register B must be allocated to the counter. As a result, half of the 
multiplier will be in register C, and the other half in register A (see 
Figure 3.27). The multiplication program appears below: 

MULl6 LD A, (MPRAD + I) MPR, HIGH 
LD C,A 
LD A, (MPRAD) MPR, LOW 
LD B, 16 COUNTER 
LD DE, (MPDAD) MPD 
LD HL,O 

MULT SRL C RIGHT SHIFT MPR, 
HIGH 

RRA ROTATE RIGHT MPR, 
LOW 

JR NC, NOADD TEST CARRY 
ADD HL,DE ADD MPD TO RESULT 

NOADD EX DE,HL 
ADD HL, HL DOUBLE - SHIFT MPD 

LEFT 
EX DE,HL 
DJNZ MULT 
RET 

Fig. 3.28: 16 X 16 Multiplication Program 

The program is analogous to those we have developed before. The 
first six instructions (from label MULl6 to label MULT) perform the 
initialization of registers with the appropriate contents. One complica­
tion is introduced here by the fact that the two halves of MPR must be 
loaded in separate operations. It is assumed that MPRAD points to the 
low part of the MPR in the memory, followed in the next sequential 
memory location by the high part. (Note that the reverse convention 
can be used.) Once the high part of MPR has been read into A, it must 
be transferred into C: 

LD A, (MPRAD + 1) 
LD C,A 

Finally, the low part of MPR can be read directly into the accumulator: 

LD A, (MPRAD) 
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The rest of the registers, B, D, E, H, and L are initialized as usual: 

LD B, 16 

LD DE, (MPDAD) 

LD HL,O 


A 16-bit shift must be performed on the multiplier. It requires two 
separate shift or rotate operations on registers C and A: 

MULT 	 SRL C 
RRA 

After the 16-bit shift, the right-most bit of the MPR, i.e., the LSB, is 
contained in the carry bit C where it can be tested: 

JR NC, NOADD 

As usual, the multiplicand is not added to the result if the carry bit is 
"0", and is added to the result if the carry bit is "1": 

ADD HL, DE 

Next, the multiplicand MPD must be shifted by one position to the left. 
However, the Z80 does not have an instruction which will shift the 

contents of register D and E simultaneously to the left by one bit posi­
tion, and it can also not add the contents of D and E to itself. The con­
tents of D and E will therefore first be transferred into Hand L, then 
doubled, and transferred back to D and E. This is accomplished by the 
next three instructions: 

NOADD 	 EX DE,HL 

ADD HL, HL 

EX DE,HL 


Finally, the counter B is decremented and a jump occurs to the begin­
ning of the loop as long as it does not decrement to "0": 

DJNZ MULT 

As usual, it is possible to consider other register allocations which may 
(or may not) result in shorter codes: 

exercise 3.23: Load the multiplier into registers Band C. Place the 
counter in A. Write the corresponding multiplication program and 
discuss the advantages or disadvantages oj this register al/ocation. 
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t.xercise 3.24: Referring to the uriginal /6-bit multiplication program 
of Figure 3.28, can you propose a way to shift the MPD, contained in 
registers D and £, without transferring it into registers Hand L? 

Erercise 3.25: Write a 16-by-16 /llultiplication program which detects 
the fact that the result has more than 16 bits. This is a silllple illlprove­
ment of our basic progralll. 

Erercise 3.26: Write a 16-by-/6 multiplication progralll with a 32-bit 
result. The suggested register allocation appears in Figure 3.29. 
Remember that the initial result aJier the first additioll in the loop will 
require only /6 bits, alld tliat the lIIultiplier will free one bit for each 
subsequent iteration. 

B 11..____M-Lr_D___....J1 C 

D I M~R IE 
RESULT 
AFTER 
MULTIPLICATION 

H I RES IL 

Fig. 3.29: 16 x 16 Multiply with 32-Bit Result 

Let us now examine the last usual arithmetic operation, the division. 

BINARY DIVISION 

The algorithm for binary division is analogous to the one which has 
been used for the multiplication. The divisor is successively subtracted 
from the high order bits of the dividend. After each subtraction, the 
result is used instead of the initial dividend. The value of the quotient is 
simultaneously increased by 1 every time. Eventually, the result of the 
subtraction is negative. This is called an overdraw. One must then 
restore the partial result by adding the divisor back to it. Naturally, the 
quotient must be simultaneously decremented by 1. Quotient and divi­
dend are then shifted by one bit position to the left and the algorithm is 
repeated. The flow-chart is shown in Figure 3.30. 

The method just described is called the restoring iller/IUd. A variation 
of this method which yields an improved speed of execution is called the 
non-restoring method. 
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INITIALIZE 

QUOTIENT = 0 


SHIFTCOUNTER = 4 


SHIFTlEFT 

DIVIDEND 


(WITH 8 LEADING O's) 

AND QUOTIENT 


TRIAL SUBTRACT: 

LECT (DIVIDEND)-DIVISOR 


RESTORE: 
ADD DIVISOR 

N0 

Fig. 3.30: 8-Bit Binary Division 1;lowchart 

B ICOUNTER: IC 

END (REMAINDER IN LEFT (DIVIDEND) 

Fig. 3.31: 16/8 Division-The Registers 
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16-by-8 Division 

As an example, let us here examine a 16-by-8 division, which will 
yield an 8-bit quotient and an 8-bit remainder dividend. The register 
allocation is shown in Figure 3.31. 

The program appears below: 

DIV168 LD A, (DVSAD) LOAD DIVISOR 
LD D,A INTO D 
LD E,O 
LD HL, (DVDAD) LOAD 16-BIT DIVIDEND 
LD B,8 INITIALIZE COUNTER 

DIV XOR A CLEAR C BIT 
SBC HL,DE DIVIDEND - DIVISOR 
INC HL QUOTIENT = QUOTIENT + 
JP P,NOADD TEST IF REMAINDER 

POSITIVE 
ADD HL,DE RESTORE IF NECESSARY 
DEC HL QUOTIENT = QUOTIENT - I 

NOADD ADD HL,HL SHIFT DIVIDEND LEFT 
DJNZ DIV LOOP UNTIL B = 0 
RET 

Fig. 3.32: 	16/8 Division Program 

The first five instructions in the program load the divisor and the divi,­
dend respectively into the appropriate registers. They also initialize the 
counter, in register B, to the value 8. Note again that register B is a pre­
ferred location for a counter if the specialized Z80 instruction DJNZ is 
to be used: 

DIV168 	 LD A, (DVSAD) 
LD D,A 
LD E,O 
LD HL, (DVDAD) 
LD B,8 

Next, the divisor is subtracted from the dividend. Since an SBC in­
struction must be used (there is no 16-bit subtract without carry), the 
carry must be set to the value "0" before subtracting. Thi" can be ac­
complished in a number of ways. The carry can be cleared by perform­
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ing instructions such as: 

XORA 
AND A 
ORA 

Here, an XOR is used: 

DIV XOR A 

The subtraction can then be performed: 

SBC HL, DE 

It is anticipated that the subtraction will be successful, i.e., that the re­
mainder will be positive. This is called the "trial subtract" step (refer to 
the flowchart of Figure 3.30). The quotient is therefore incremented by 
one. If the subtraction has in fact failed (i.e., if the remainder is 
negative), the quotient will have to be decremented by one later on: 

INC HL 

The resuit of the subtraction is then tested: 

JP P, NOADD 

If the remainder is positive or zero, the subtraction has been successful, 
and it is not necessary to store it. The program jumps to address 
NOADD. Otherwise, the current dividend must be restored to its 
previous value, by adding the divisor back to it, and the quotient must 
be decremented by one. This is performed by the next instructions: 

ADD HL, DE 
DEC HL 

Finally, the resulting dividend is shifted left, in anticipation of the 
next trial subtract operation. Finally, the B counter is decremented and 
tested for the value "0". As long as B is not zero, this loop is executed: 

NOADD ADD HL, HL 
DJNZ DIV 
RET 

Exercise 3.27: Verify the operation of this division program by hand, 
by filling out the table ofFigure 3.33, as in Exercise 3.18 for the multi­
plication. Note that the contents ofD need not be entered on the form 
of Figure 3.33, since they are never modified. 
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LABEl INSTRUCtiON B H 

Fig. 3.33: Form for Division Program 

8-Bit Division 

The following program uses a restoring method, and leaves a com­
plemented quotient in A. It divides 8 bits by 8 bits (unsigned). 

E IS DIVIDEND 
C IS DIVISOR 
A IS QUOTIENT 
B IS REMAINDER 

DIV88 	 XOR 
LD 

LOOP88 	 RL 

RLA 
SUB 
JR 
ADD 
DJNZ 
LD 
LD 
RLA 
CPL 
RET 

A 
B,8 
E 

C 
NC, $ + 3 
A,C 
LOOP88 
B,A 
A,E 

CLEAR ACCUMULATOR 
LOOP COUNTER 
ROTATE CY INTO ACC­
DIVIDEND 
CY WILL BE OFF 
TRIAL SUBTRACT DIVISOR 
SUBTRACT OK 
RESTORE ACCUM, SET CY 

PUT REMAINDER IN B 
GET QUOTIENT 
SHIFT IN LAST RESULT BIT 

COMPLEMENT BITS 

Note: the "$" symbol in the sixth instruction represents the value of the 
program counter. 
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Non Restori~g Division 

The following program performs a I6-bit by I5-bit integer division, 
using a non-restoring technique. IX points to the dividend, IY to the 
divisor (not zero). (see Figure 3 ..34.). 

DVD,HIAI I 

COUNTER DVD,LOBI Ic1'1 

DI DiViSOR IE 

REMHI 1L 

DVDADDRESSIxl 

Iyl DVSADDR 

Fig. 3.34: Non-Restoring Division-The Registers 

Register B is used as a counter, initially set to 16. 

A and C contain the dividend. 

D and E contain the divisor. 

Hand L contain the result. 

The 16-bit dividend is shifted left by: 


RL C 
RLA 

The remainder is shifted left by: 
ADC HL, HL. 

The final quotient is left in B, C, with the remainder in HL. The 
program follows. 
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DIV16 LD B, (IX + 1) 
LD C, (IX) 
LD D,(lY + 1) 
LD E, (IY) 
LD A,D 
OR E (DIVISOR) HIGH OR 

(DIVISOR) LOW 
JR Z,ERROR CHECK FOR DIVISOR = 

ZERO 
LD A,B GET (DVD)HI 
LD HL,O CLEAR RESULT 
LD B,16 COUNTER 

TRIALSB RL C ROTATE RESULT + ACC 
LEFT 

RLA 
ADC HL,HL LEFT SHIFT. NEVER SETS 

CARRY. 
SBC HL,DE MINUS DIVISOR 

NULL CCF RESULT BIT 
JR NC,NGV ACCUMULATOR 

NEGATIVE? 
PTV DJNZ TRIALSB COUNTER ZERO? 

JP DONE 
RESTOR RL C ROTATE RESULT + ACC 

LEFT 
RLA 
ADC HL,HL AS ABOVE 
AND A 
ADC HL,DE RESTORE BY ADDING DVSR 
JR C,PTV RESULT POSITIVE 
JR Z, NULL RESULT ZERO 

NGV DJNZ RESTOR COUNTER ZERO? 
DONE RL C SHIFT IN RESULT BIT 

RLA 
ADD HL,DE CORRECT REMAINDER 
LD B,A QUOTIENT IS IN B, C 
RET 
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Exercise 3.28: Compare the previous program to thejollowing one, us­
ing a restoring technique: 

DIVIDEND IN AC 
DIVISOR IN DE 
QUOTIENT IN AC 
REMAINDER IN HL 

DIV16 LD HL,O CLEAR ACCUMULATOR 
LD B,16 SET COUNTER 

LOOP16 RL C ROT ACC-RESULT LEFT 
RLA 
ADC HL,HL LEFT SHIFT 
SBC HL,DE TRIAL SUBTRACT DIVISOR 
JR NC, $ + 3 SUB WAS OK 
ADD HL,DE RESTORE ACCUM 
CCF CALC RESULT BIT 
DJNZ LOOP16 COUNTER NOT ZERO 
RL C SHIFT IN LAST RESULT BIT 
RLA 
RET 

Note: The symbol "$" means "current location" (eighth instruction). 

LOGICAL OPERATIONS 

The other class of instructions which can be executed by the ALU in­
side the microprocessor is the set of logical instructions. They include: 
AND, OR and exclusive OR (XOR). In addition, one can also include 
here the shift and rotate operations which have already been utilized, 
and the comparison instruction, called CP for the Z80. The individual 
use of AND, OR, XOR, will be described in Chapter 4 on the instruc­
tion set. 

Let us now develop a brief program which will check whether a given 
memory location called LOC contains the value "0", the value" 1 " , or 
something else. 

The program will introduce the comparison instruction, and perform 
a series of logical tests. Depending on the result of the comparison, one 
program segment or another will be executed. 
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The program appears below: 

LD A, (LOC) READ CHARACTER IN 
LOC 

CP DOH COMPARE TO ZERO 
jp Z, ZERO IS IT A O? 
CP OlH COMPARE TO ONE 
jp Z, ONE 

NONEFOUND 

ZERO 

ONE 

The first instruction: "LD A, (LOC)" reads the contents of memory 
location LOC, and loads it into the accumulator. This is the character 
we want to test. It is compared to the value 0 by the following instruc­
tion: 

CP DOH 

This instruction compares the contents of the accumulator to the hex­
adecimal value "00", i.e., the bit pattern "0000 0000". This compari­
son instruction will set the Z bit in the flags register to the value" I", if 
it succeeds. This bit can then be tested by the next instruction: 

JP Z, ZERO 

The jump instruction tests the value of the Z bit. If the comparison suc­
ceeds, the Z bit has been set to one, and the jump will succeed. The pro­
gram will then jump to the address ZERO. If the test fails, then the next 
sequential instruction will be executed: 

CP OlH 

Similarly, the following jump instruction will branch to location ONE 
if the comparison succeeds. If none of the comparisons succeed, then 
the instruction at location NONEFOUND will be executed. 

jp Z, ONE 
NONEFOUND ... 
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This program was introduced to demonstrate the value of the com­
parison inst ruction folIowed by a jump. This combinat ion will be used 
in many of the following programs. 

E\'ercis(! 3.29: Refer to the definition (~t"the LD A, (LOC) instruction in 
the lIex/ chap/cr. Entlllille the (~/lec/ (~I/his ins/ruction Oil the }lags, if 
any. Is the second instruction of this program necessary (ep OOH)? 

Fxercise 3.3(): Write the program which will read tl/e contellls of 
memory locatiol/ "24" and branch to all address called':<)7A R"{t" there 
was a "*" ill lIlefllo/Y location 24. The hit pal/ern for a "*,, in hinary 
I/o/a/ioll will be assufIled to he represellled hy "()OIOIOIO". 

INSTRUCTION SUMMARY 

We have now sludied most of t he important instruct ions of the Z80 
by using them. We have transferred values between the memory and the 
registers. We have performed arithmetic and logical operations on such 
data. We have tested ii, and depending on the results of these tests, 
have executed various portions of the program. In particular, special 
"automated" Z80 instructions such as DJNZ have been used to shorten 
programs. Other automated instructions: LDDR, CPIR, INIR will be 
introduced throughout the remainder of this book. 

Full use has been made of spe.::ial Z80 features, such as 16-bit register 
instructions to simplify the programs, and the reader should be careful 
not to usc these programs on an 8080: they have been optimized for the 
Z80. 

We have also introduced a structure called a loop. Another impor­
tant programming structure will be introduced now: the subroutine. 

SUBROUTINES 

In concept, a subroutine is simply a block of instructions which has 
been given a name by the programmer. From a practical standpoint, a 
subroutine must start with a special instruction called a subrou/ille 
dec/amlioll, which identifies it as such for the assembler. It is also ter­
minated by another special instruction called a relum. Let us first il­
IU\lrate thc use of a subroutine in a program in order to demonstrate its 
value. Theil, we will examine how it is actually implemented. 
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MAIN PIK>G~AM 

s,u8~TINE 

.'ig. 3.35: Subroutine Calls 

The use of a subroutine is illustrated in Figure 3.35. The main pro­
gram appears on the left of the illustration. The subroutine is shown 
symbolically on the right. Let us examine the subroutine mechanism. 
The lines of the main program are executed successively until a new in­
struction "CALL SUB" is met. This special instruction is the 
subroutine call and results in a transfer to the subroutine. This means 
that the next instruction to be executed after the CALL SUB is the first 
instruction within the subroutine. This is illustrated by arrow I on the 
ill ustration. 

Then, the subprogram within the subroutine executes just like any 
other program. We will assume that the subroutine docs not contain 
any of her calls. The last instruct ion of t his subroutine is a RETU R N. 
This is a special instruction which will cause a return to the main pro­
gram. The next instruction to be executed after the RETURN is the one 
following the CALL SUB in the main program. This is illustrated by ar­
ro\\ 3 on the illustration. Program execution continues then, as il­
11Iqrated by arrow 4. 

In the body of the main program a second CALL SUB appears. A 
ne\\ transfer occurs, shown by arrow 5. This means that the body of the 
subllllltine is again executed following the CALL SUB instruction. 

Whenever the RETURN within the subroutine i-; encountered, a 
return occurs to the instruction following the CALL SUB in question. 
This is illustrated by arrow 7. Following the return to the main pro­
gram, program execution proceeds normally, as illustrated by arrow 8. 

The effect of the two "pecial instructions CALL SUB and RETURN 
should now be clear. \\'hat is the value of the subroutine mechanism? 

Thl' essential value of the subroutine is that it can be called from any 
number of points in the main program, and used repeatedly without 
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rewriting it. A first advantage is that this approach saves memory 
space, since there is no need to rewrite the subroutine every time. A se­
cond advantage is that the programmer can design a specific subroutine 
only once and then use it repeatedly. This is a significant simplification 
in program design. 

Exercise 3.31: What is the //lain disadvantage ofa suhroutine? (Answer 
follows.) 

The disadvantage of the subroutine should be clear just by examining 
the flow of execution between the main program and the subroutine. A 
subroutine results in a slower execution, since extra instructions must 
be executed: the CALL SUB and the RETURN. 

Im~.lementation of the Subroutine Mechanism 

We will examine here how the two special instructions, CALL SUB 
and RETURN, are implemented internally within the processor. The 
effect of the CALL SUB instruction is to cause the next instruction to 
be fetched at a new address. You will remember (or else read Chapter 
I again) that the address of the next instruction to be executed in a 
computer is contained in the program counter (PC). This means that 
the effect of the CALL SUB is to substitute new contents in register Pc. 
Its effect is to load the start address of the subroutine in thc program 
counter. Is that realty sufficient? 

To answer this question, let us consider the other instruction which 
has to be implemented: the RETURN. The RETURN must cause, as its 
name indicates, a return to the instruction that follows the CALL SUB. 
This is possible only if the address of this instruction has been preserved 
somewhere. This address happens to be the value of the program 
counter at the lime that the CALL SUB was encountered. This is 
because the program counter is automatically incremented every time it 
is used (read Chapter I again). This is precisely the address that we want 
to preserve, so that we can later perform the RETURN. 

The next problem is: where can we save this return address? This ad­
dress must be saved in a location where it is guaranteed that it will not 
be erased. 

However, let us now consider the folloWing situation, illustrated by 
Figure 3.36. In this example, subroutine 1 contains a call to SUB2. Our 
mechanism should work in this case as well. Naturally, there might even 
bc more than two subroutines, say N "nested" calls. Whenever a new 
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CALL is encountered, the mechanism must therefore again store the 
program counter. This implies that we need at least 2N memory loca­
tions for this mechanism. Additionally, we will need to return from 
SUB2 first and SUB) next. In other words, we need a structure which 
can preserve the chronological ordering in which addresses have been 
saved. 

The structure has a name and has already been introduced. It is the 
stack. Figure 3.38 shows the actual contents of the stack during suc­
cessive subroutine calls. Let us look at the main program first. At ad­
dress 100, the first call is encountered: CALL SUB\. We will assume 
thal, in this microprocessor, the subroutine call uses 3 bytes (RST is an 
exception). The next sequential address is therefore not "101", but 
"103". The CALL instruction uses addresses "100", "101", "102". 
Because the control unit of the Z80 "knows" that it is a 3-byte instruc­
tion, the value of the program counter, when the call has been com­
pletely decoded, will be "103". The effect of the call will be to load the 
value "280" in the program counter. "280" is the starting address of 
SUB). 

Fig. 3.36: Nested Calls 

We are now ready to demonstrate the effect of the RETURN instruc­
tion and the correct operation of our stack mechanism. Execution pro­
ceeds within SUB2 until the RETURN instruction is encountered at 
time 3. The effect of the RETURN instruction is simply to pop the top 
of t he stack into the program counter. In other words, the program 
counter is restored to its value prior to the entry into the subroutine. 
The top of the stack in our example is "303". Figure 3.38 shows that, at 
time 3, value "303" has been removed from the stack and has been put 
back inlo the program counter. As a result, instruction execution pro­
ceeds from address "303". At time 4, the RETURN of SUB I is encoun­
tered. The value on top of the stack is "103". It is popped and is in­
stalled in the program counter. As a result, program execution will pro­
ceed from location" 103" on within the main program. This is, indeed, 
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the effect that we wanted. Figure 3.38 shows that at time 4 the stack is 
again empty. The mechanism works. 

The subroutine call mechanism works up to the maximum dimension 
of the stack. This is why early microprocessors which had a 4- or 
8-register stack were essentially limited to 4 or 8 levels of subroutine 
calls. 

Note that, on Figures 3.36 and 3.37, the subroutines have been 
shown to the right of the main program. This is only for the clarity of 
the diagram. In reality, the subroutines are typed by the user as regular 
instructions of the program. On a sheet of paper, when producing the 
listing of the complete program, the subroutines may be at the begin­
ning of the text, in its middle, or at the end. This is why they are pre­
ceded by a subroutine declaration: they must be identified. The special 
instructions tell the assembler that what follows should be treated as a 
subroutine. Such assembler direclives will be discussed in Chapter 10. 

ADDRESS (MAIN) 

100. CAll sue I 
(SUB 1)103 ~ 2BOi' 

(SUB 2)(3) 900 

300, CALLSUB2 

303' 

RETURN

0 
~ RETURN 

Fig. 3.37: The Subroutine Calls 

STACK: TIME CD T1ME@ TIMEG) TIME 0 I 
103 103 103 

303 

Fig. 3.38: Stack vs. Time 
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Z80 Subroutines 

The basic concepts relating to subroutines have now been presented. 
It has been shown that the stack is required in order to implement this 
mechanism. The Z80 is equipped with a 16-bit stack-pointer register. 
The stack can therefore reside anywhere within the memory and may 
have up to 64K (lK = 1024) bytes, assuming they are available for that 
purpose. In practice, the start address for the stack, as well as its max­
imum dimension, will be defined by the programmer before writing his 
program. A memory area will then be reserved for the stack. 

The subroutine-call instruction, in the case of the Z80, is called 
CALL, and comes in two versions; the dircct or unconditional call, 
such as CALL ADDRESS, is the one we have already described. In ad­
dition, the Z80 is equipped with a conditional call instruction which will 
call a subroutine if a condition is met. For example: CALL NZ, SUBl 
will result in a call to subroutine 1 if the Z flag is zero at the time of the 
test. This is a powerful facility, since many subroutine calls are 
conditional, i.e., occur only if some specific condition is met. 

CALL CC, NN is executed only if thc condition specified by "CC" 
is true. CC is a set of three bits (bits 3, 4, and 5 of the opcode) which 
may specify up to eight conditions. They correspond respectively to the 
four flags "Z", "C", "P/V" , "S" aeing either zero or non-zero. 

Similarly, two types of return instructions are provided: RET and 
RET CC. 

RET is the basic return instruction. It occupies one byte, and causes 
the top two bytes of the stack to be re-installed in the program counter. 
It is unconditional. 

RET CC has the same effect except that it is executed only if the con­
ditions specified by CC are truc. The condition bits are thc same as for 
the CALL instruction just described. 

Additionally, two specialized types of return are available which are 
used to terminate interrupt routines: RETI, RETN. They are described 
in the section on the Z80 instructions as well as in the section on inter­
rupts. 

Finally, one more specialized instruction is provided which is analo­
gous to a subroutine call, but allows the program to branch to only one 
of eight starting locations located in page zero. This is the RST P in­
struction. This is a one-byte instruction which automatically preserves 
the program counter in the stack, and causes a branch to the address 
specified by the three-bit P field. The P field corresponds to bits 3, 4 
and 5 of the insrtuction, multiplied by eight. 
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In other words, if bits 3, 4, 5 are "000" , the jump will occur to loca­
tion OOH. I f these bits are "00 I", the branch will occur to OSH, etc. up 
to Ill, which will cause a branch to location 38H. The RST instruction 
is very efficient in terms of speed since it is a single-byte instruction. 
However, it can jump to only eight locations, in page o. Additionally, 
these addresses in page 0 are only eight bytes apart. This instruction is a 
carry-over from the 8080 and was extensively used for interrupts. This 
will be described in the interrupt section. However, this instruction may 
be used for any other purpose by the programmer, and should be con­
sidered as a possible specialized subroutine call. 

Subroutine Examples 

Most of the programs that we have developed and are going to 
develop would usually be written as subroutines. For example, the 
multiplication program is likely to be used by many areas of the pro­
gram. In order to facilitate and clarify program development, it is 
therefore convenient to define a subroutine whose name would be, for 
example, MULT. At the end of this subroutine we would simply add 
the instruction RET. 

Exercise 3.32: If MUL T is used as a subroutine, would it "damage" 
any internal flags or registers? 

Recursion 

Recursion is a word used to indicate that a subroutine is calling itself. 
If you have understood the implementation mechanism, you should 
now be able to answer the following question: 

Exercise 3.33: Is if legal to let a subroutine call itself? (In other words, 
will everything work even if a subroutine calls itself?) If you are not 
sure, draw the stack and fill it with the successive addresses. Then, look 
at the registers and memory (see Exercise 3.18) and determine if a pro­
blem exists. 

Interrupts will be discussed in the input/output chapter (Chapter 6). 
All returns except returns from interrupts are one-byte instructions; all 
calls are 3-byte instructions (except RST). 

Exercise 3.34: Look at the execution times of the CALL and the Rl:.T 
instructions in the next chapter. Why is the return from a subroutine so 
much faster than the CALL? (Hint: if the answer is not obvious, look 
again at the stack implementation of the subroutine mechanism, and 
analyze the internal operations that must be performed.) 
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Subroutine Parameters 

When calling a subroutine, one normally expects the subroutine to 
work on some data. For example, in the case of multiplication, one 
wants to transmit two numbers to the subroutine which will perform 
the multiplication. We saw in the case of the multiplication routine that 
this subroutine expected to find the multiplier and the multiplicand in 
given memory locations. This illustrates one method of passing para­
meters: through memory. Two other techniques are used, so that we 
have three ways of passing parameters. 

I-through registers 
2-through memory 
3-through the stack 

Registers can be used to pass parameters. This is an advantageous 
solution, provided that registers are available, since one does not need 
to use a fixed memory location: the subroutine remains memory-inde­
pendent. If a fixed memory location is used, any other user of the sub­
routine must be very careful that he uses the same convention and that 
the memory location is indeed available (look at Exercise 3.19 above). 
This is why, in many cases, a block of memory locations is reserved 
simply to pass parameters among various subroutines. 

Using memory has the advantage of greater flexibility (more data), 
but results in poorer performance and also in tying the subroutine to a 
given memory area. 

Depositing parameters in the stack has the same advantage as using 
registers: it is memory-independent. The subroutine simply knows that 
it is supposed to receive, say, two parameters which are stored on top of 
the stack. Naturally, it has disadvantages: it clutters the stack with data 
and, therefore, reduces the number of possible levels of subroutine 
calls. It also significantly complicates the use of the stack, and may re­
quire multiple stacks. 

The choice is up to the programmer. In general, one wishes to remain 
independent from actual memory locations as long as possible. 

If registers are not available, a possible solution is the stack. How­
ever, if a large quantity of information should be passed to a sub­
routine, this information may have to reside directly in the memory. An 
elegant way around the problem of passing a block of data is simply to 
transmit a pointer to the information. A pointer is the address of the 
beginning of the block. A pointer can be transmitted in a register, or in 
the stack (two-stack locations can be used to store a 16-bit address), or 
in a given memory location(s). 
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Finally, if neither of the two solutions is applicable, then an agree­
ment may be made with the subroutine that the data will be at some 
fixed memory location (the "mail-box"). 

Exercise 3.35: Which of the three methods above is best for recursion? 

Subroutine Library 

There is a strong advantage to structuring portions of a program into 
identifiable subroutines: they can be debugged independently and can 
have a mnemonic name. Provided that they will be used in other areas 
of the program, they become shareable, and one can thus build a 
library of useful subroutines. However, there is no general panacea in 
computer programming. Using subroutines systematically for any 
group of instructions that can be grouped by function may also result in 
poor efficiency. The alert programmer will have to weigh the advan­
tages against the disadvantages. 

SUMMARY 

This chapter has presented the way information is manipulated inside 
the Z80 by instructions. Increasingly complex algorithms have been in­
troduced and translated into programs. The main types of instructions 
have been used and explained. 

Important structures such as loops, stacks and subroutines, have 
been defined. 

You should now have acquired a basic understanding of program­
ming, and of the major techniques used in standard applications. Let 
us study the instructions available. 
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A ''''00 B'""O()OO j)'''OO()() H'""OO()() X·' ()()OO Y"'OO()O I"'OO 
N (,-=00 BC"'04()O DI:>'OO~;O HL=-O()()F S::::()300 P-'''O:L19 O!.:l';· ,.IF' ',Z,():LOF 

A'-=()() B' '''OO()() D'"OOO() H''''OO()() X "O()OO Y'''OOOO I ,"O() '.O:LO!'" ) 
N A=OO ItC"'0400 DE>OO50 HL=OOOF' E);' ();l00 P'''010F' 01()F' SI:~L. f"~ 

A'=OO B'",oO()O [1''''0000 H',,,OOOO X '0000 Y'"OOOO 1=00 

Fig. 3.39: Multiplication: A Complete Trace 
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z v (,)'''00 BC=0400 DE'''OO50 HL=OOOF "'''0]00 P'=Otll OUt' .JR Nt::. 01 :14 
A' "00 H""'O()OO D "=OO()O H' "'0000 X',()()()O y·"OOOO 1"'00 (01:1.4') 

1 V A='O() BC=0400 nF"'()O~.lO HL'O()OF B"O;300 P',OJ.14 OU4.' nLA E 
A' "00 B"'OOOO [I' "0000 H',OOOO X",()OOO Y()()()O 1'00 

S V A"O() BC'=040() nF':oOOAO HL"OOOF ~:;"0300 P"()116 Ollf.,' 1'<1.. D 
A' '=00 [<"'0000 [1'=0000 H'=OO()() X='OOOO Y=()()OO 1"00 

1 V A"'OO BC>0400 [lE=OOAO HL=OOOF S.:O:lOO 1::"'0118 OU.B' DEC B 
A'",OO B'''OOf\O D '=,O()OO H' "'O()O() X'=O()()O Y=,OOO() 1""00 

N A"OO Br>:O]OO DE>OO(')O HL"OO()F fJ"0300 f""OJ.:I. '? Olt'?' .JI" NZ.Ol()F' 
A'=OO B' '''O()()O D ',,,()()OO H'""OOO() X=()OOO Y",()()OO I'''O() (O:l.()"'·.' ) 

N A=O() Bl>03()O [lE>O()A() HL"'O()OF S',,()]OO P"OIOI" OIOF' SI:~L r' 
A'=()O B' '=0000 D'=OO()O H' ='OO()() X",()()OO Y'OOOO 1"00 

Z V A"OO BC'=O]OO DE=OOA() HL=O()OF G"030() F"'Oll I 0Ill. ' "If( Nt:: .O:L:I.4 
A'=OO B',,,()O()O [1'=0000 II' "'0000 X"'OOOO Y=OOOO 1"00 (0 :ll.4' ) 

I V A=OO BC>O~WO DE"OOAO HL.'"O()()F S=0300 P=O:l :1..4 Ol14' SL.A E 
A' '''00 B'""OOOO J)'"OOOO H',,,()OOO X 0000 Y"O()()() 1=00 

C A"'OO E!I>():IOO DE"'0040 HL"()()OI" n'''O;300 P'''OI :1.6 OUt..' r~L. II 
(-~I/=OO B'=OOOO [1'=0000 H'=OOOO X"'O()OO Y"OOOO r ..,()() 

A"'OO BC=030() DE"O:l.40 HL""OOOF S=O;300 I:""OJ.IO OIIB' [1[::<:: B 
A',,,O() E!'=OOOO [I '""OO()O H'O()OO X""OOOO Y""O()()O 1'00 

N A·"'OO BI>0200 DE"'0140 HL"OOOF S""0300 P''''Oll'l 0:1.1 'I' ,.II'" NZ,OlOF 
A' '''00 B'""OOO() [1'=0000 H' ,,,()()O() X=()()()O Y'''OOOO l>OO (OlOF' ) 

N A=OO B(>OO200 DE=0140 HL'=OOOF S'''0300 P'''OJ.OF Ol.()F'" SHL C 
A',,,()O B'=OOOO D'=OOOO H',OOO() X"OOOO Y"'OOOO I=O() 

Z V A=()O BC=0200 DE'''0140 HL'OO()F S=0300 P=0111 0lll' ,.IF;: NC,OU4 
A'",OO B'=OOOO D',,,·()OOO H' ""OOO() X"OOOO Y"OOOO 1'00 (0114') 

Z V A"'OO B(>'O:'()O m",'O:l40 HL'''OOOF n,,,,O;300 P"Ol14 0:1.14' ~;;L.A I':: 
A'=OO B'"OO()O [I ',,()OOO H'",OOO() X,OOOO Y'''OOO() 1"'00 


f:) A=O() BC>0200 n~:>:0:l80 Hl..=OOOF S=0300 P"01l6 Ol1. 6' RL. it 

A'=OO })' ,,,O()OO [I'=OO()O H'=OOOO X",()OOO Y',OOOO 1",00 


A=OO [<[>0200 DE=0280 HL""O()OF S=0300 1"=011.0 Ol1. 0' DEC F.< 
A' "00 B' '''0000 [0""0000 H'=OOO() X"OOOO Y"OO()O J '''00 

N A""OO F.<1>0100 DE"O::!30 HL'''OOOF ~:;'O~lOO P'''Ol19 OU.9' ,.IF' Nl.OlOF 
A'",OO B'",OOOO [0' "'0000 H""OOOo X"'OOOO Y=OO()O 1'''00 (010F') 

N A='OO F.<C=0100 m>0280 HL=OOOF "'''0300 P"OIOF 01.0F' nr~L c 
A'=OO B'=OOOO D',,,OOOO H' "0000 x,,,oOOO Y"'OOOO 1=00 

Z V A=OO BC'''0100 [lE=02BO HL=OOOF !l=O300 P"0111 0111 ' ,.m NC,Ol14 
A'=OO B'",O()OO D""OOOO H'=OOOO X"OOOO Y"'OOOO I='OO (OU4' ) 

Z V A=OO BC'0100 [lE=0280 HL=:OOOF 8'''0;500 r:',o.O:L:l.4 O:ll4 ' 8LA E 
A'",OO B',,,,O()OO [1""0000 H',,,OOOO X'''OOOO Y'OOOO 1'''00 

Z V C A"'OO BC=0100 [1[",'0200 HL'''OOOF 8'-'0300 P"'Ol16 01.16 ' r(L V 
A'=,OO B':=OOOO D'=OOOO H'=OOOO X"OOOO Y=OOOO 1='00 

V A=OO BC"0100 (IE=0500 HL=OOOF S=O;'lOO P"'0118 0:11 !3' DEC B 
A',OO B',,,OOOO [1'=0000 H""OOOO X"OOOO Y"OOOO 1"'00 

Z N A=:OO BC'''OOOO DE"0500 HL.=OOOF !l='O300 P=01l9 OJ. 1 '?' ,.IF' NZ,010F' 
A'"OO B',,,O()OO [I' '=0000 H'=OOOO X=OOOO y=OOOO l>O() (OI0F') 

z N A=OO BC"'OOOO [lE'''0500 HL=OO()F 8=O~~O() F:'o.'O:I.IC O:l1C' L.D (0204) d·IL 
A'=OO B'=OOOO D'=OOOO H' '=0000 x""OOOO Y"OOOO I=OO (0;'04' ) 

z N A'''OO BC=OOOO [lE=0500 HL=OOOF fJ"O]OO F'''''011F 011F' NOP 
A'=OO [1'=0000 V'=OOOO H' '''0000 X"OOOO Y"'OOO() 1'00 

Fig. 3.39: Multiplication: A Complete Trace (continued) 
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BASIC PROGRAMMING TECHNIQUES 

ANSWERS TO EXERCISE 3.18 (MULTIPLICATION): 
CROMEMCfJ eDOS Z80 ASSEMI!I...ER ver<;;ion O;:.l. :1.5 F'AG[ OOfd 

0000' 0001 OF;:[J OlOOH 
(0200) 0002 MPRAD DL 0200H 
(0202) 0003 MPDAD DL 0202H 
(0204) 0004 REGAD Ol. 0204H 

0005 ; 
0100 ED49000:? 0006 MP488 L:D fie, (MF'RAr!) a.OAr.1 MULTH'LIEF~ INTO f' 

0104 0608 0007 1...[1 Bd:l ;9 18 BIT C()UNTFF~ 

0106 ED5B0202 0008 LII DE~ (HP[lAD) H.DAD MLnTPLICAND INTO E 
010A 1600 0009 LD Ih 0 ,CLEAI::: tI 
0101: 210000 0010 LD HL,O ; '][T RESI.Il."r TO 0 
OIOF CB39 00l.! HULT SRL C ;SHIFT MUl.'T TPLJER B1'1 INTU CARRY 
0111 3001 0012 JR NC ~ NOA(J[I vTEST CARRY 
OU3 19 0013 AnD HL.,(lE ;Ann MPD TO RESULT 
0114 CB23 00j4 NOADD SLA E- j;SHIF'T MF'D LEFT 
0116 C91~ 0015 RL II ;SAVE. BIT" IN II 
0118 O~ 0016 I)£C Ll ~ nECREMLN \' SH tF'" COlJNTEIi: 
011 r,. C20FOl 0017 JR NZ""IULT ,no TT AGAJN IF COUNTER 0 
011e 220402 0018 LD (RESAD) ,HL ; STOI:;:E HESUL T 

OUF (0000) 0019 END 

Errors 0 

Fig. 3.40: The Multiplication Program (Hex) 

LABEL INSTRUCTION B C C
I (CARRY) 

D E H l 

00 00 ° 00 00 00 00 

MP488 LD BC, (0200) 00 03 0 00 00 00 00 

LD B,08 08 03 ° 00 00 00 00 

LD DE, (0202) 08 03 ° 00 05 00 00 

LD D, 00 08 03 0 00 05 00 00 

LD HL,OOOO 08 03 ° 00 05 00 00 

MULT SRLC 08 01 1 00 05 00 00 

JR NC,0114 08 01 1 00 05 00 00 

ADDHL,DE 08 01 ° 00 05 00 05 

NOADD SLAE 08 01 0 00 OA 00 05 

RLD 08 01 0 00 OA 00 05 

DECB 07 01 ° 00 OA 00 05 

JP NZ,010F 07 01 0 00 OA 00 05 

MULT SRLC 07 00 1 00 OA 00 05 

JR NC,0114 07 00 1 00 OA 00 05 

ADD Hl,DE 07 00 0 00 OA 00 OF 

NOADD SLA E 07 00 0 00 14 00 OF 

RL D 07 00 0 00 14 00 OF 

DECB 06 00 0 00 14 00 OF 

JP NZ,010F 06 00 0 00 14 00 OF 

Fig. 3.41: Two Iterations Through the Loop 

153 



4 

THE Z80 INSTRUCTION SET 

INTRODUCTION 

This chapter will first analyze the various classes of instructions 
which should be available in a general-purpose computer. It will then 
analyze one by one all of the instructions available for the Z8Q, and ex­
plain in detail their purpose and the manner in which they affect flags 
or can be used in conjunction with various addressing modes. A de­
tailed discussion of addressing techniques will be presented in Chapter 
5. 

CLASSES OF INSTRUCTIONS 

Instructions may be classified in many ways, and there is no stan­
dard. We will here distinguish five main categories of instructions: 

I-data transfers 

2-data processing 

3-test and branch 

4-input!output 

5-control 


Let us now examine each of these classes of instructions in turn. 

Data Transfers 

Data transfer instructions will transfer data between registers, or be­
tween a register and memory, or between a register and an input/output 
device. Specialized transfer instructions may exist for registers which 
playa specific role. For example, push and pop operations 
are provided for efficient stack operation. They will move a word of 
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data between the top of the stack and the accumulator in a single in­
struction, while automatically updating the stack-pointer register. 

Data Processing 

Data processing instructions fall into five general categories: 

I-arithmetic operations (such as plus/minus) 
2-bit manipulation (set and reset) 
3-increment and decrement 
4-logical operations (such as AND, OR, exclusive OR) 
5-skew and shift operations (such as shift, rotate) 

It should be noted that, for efficient data processing, it is desirable to 
have powerful arithmetic instructions, such as multiply and divide. 
Unfortunately, they are not available on most microprocessors. It is 
also desirable to have powerful shift and skew instructions, such as 
shift n bits, or a nibble exchange, where the right half and the left half 
of the byte are exchanged. These are also usually unavailable on most 
microprocessors. 

Before examining the actual Z80 instructions, let us recall the dif­
ference between a shift and a rotation. The shift will move the contents 
of a register or a memory location by one bit location to the left or to 
the right. The bit falling out of the register will go into the carry bit. 
The bit coming in on the other side will be a "0" except in the case of an 
"arithmetic shift right," where the MSB will be duplicated. 

In the case of a rotation, the bit coming out still goes in the carry. 
However, the bit coming in is the previous value which was in the carry 
bit. This corresponds to a 9-bit rotation. It is often desirable to have a 
true 8-bit rotation where the bit coming in on one side is the one falling 
from the other side. This is not provided on most microprocessors 
but is available on the Z80 (see Figure 4.1). 

Finally, when shifting a word to the right, it is convenient to have one 
more type of shift, called a sign extension or an "arithmetic shift 
right." When doing operations on two's complement numbers, parti­
cularly when implementing floating-point routines, it is often necessary 
to shift a negative number to the right. When shifting a two's comple­
ment number to the right, the bit which must come in on the left side 
should be a "1" (the sign should get repeated as many times as needed 
by the successive shifts). This is the arithmetic shift right. 
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SHIFT LEFT 

CARRY 

ROTATE LEFT 

Fig. 4.1: Shift and Rotate 

Test and Jump 

The test instructions will test bits in the specified register for "0" or 
"I", or combinations. At a minimum, it must be possible to test the 
flags register. It is, therefore, desirable to have as many flags as pos­
sible in this register. In addition, it is convenient to be able to test for 
combinations of such bits with a single instruction. Finally, it is 
desirable to be able to test any bit position in any register, and to test 
the value of a register compared to the value of any other register 
(greater than, less than, equal). Microprocessor test instructions are 
usually limited to testing single bits of the flags register. The 280, how­
ever, offers better facilities than most. 

The jump instructions that may be available generally fall into 
three categories: 

I-the jump, which specifies a full I6-bit address 
2-the relative jump, which often is restricted to an 8-bit displace­

ment field 
3-the call, which is used with subroutines 
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It is convenient to have two- or even three-way jumps, depending, for 
example, on whether the result of a comparison is "greater than," "less 
than," or "equal." It is also convenient to have skip operations, which 
will jump forward or backwards by a few instructions. However, a 
"skip" is equivalent to a "jump." Finally, in most loops, there is 
usually a decrement or increment operation at the end, followed by a 
test-and-branch. The availability of a single-instruction increment! 
decrement plus test-and-branch is, therefore, a significant advan­
tage for efficient loop implementation. This is not available in most 
microprocessors. Only simple branches, combined with simple tests,are 
available. This, naturally, complicates programming and reduces effi­
ciency. In the case of the Z80, a "decrement and jump" instruction is 
available. However, it only tests a specific register (B) for zero. 

Input/Output 

Input/output instructions are specialized instructions for the hand­
ling of input/output devices. In practice, a majority of the 8-bit micro­
processors use memory-mapped liD: input/output devices are con­
nected to the address bus just like memory chips, and addressed as 
such. They appear to the programmer as memory locations. All 
memory-type operations normally require 3 bytes and are, therefore, 
slow. For efficient input/output handling in such an environment, it is 
desirable to have a short addressing mechanism available so that 110 
devices whose handling speed is crucial may reside in page 0. However, 
if page °addressing is available, it is usually used for RAM memory, 
which prevents its effective use for input/output devices. The 
Z80, like the 8080, is equipped with specialized 110 instructions. As a 
result, in the case of the Z80, the designer may use either method: in­
put/output devices may be addressed as memory devices, or else as in­
put/output devices, using the 110 instructions. 

They will be described later in this chapter. 

Control Instructions 

Control instructions supply synchronization signals and may suspend 
or interrupt a program. They can also function as a break or a simu­
lated interrupt. (Interrupts will be described in Chapter 6 on In­
put/Output Techniques.) 
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THE Z80 INSTRUCTION SET 

Introduction 

The Z80 microprocessor was designed to be a replacement for the 
8080, and to offer additional capabilities. As a result of this design 
philosophy, the Z80 offers all the instructions of the 8080, plus addi­
tional instructions. In view of the limited number of bits available in an 
8-bit opcode, one may wonder how the designers of the Z80 succeeded 
in implementing many additional ones. They did so by using a few 
unused 8080 opcodes and by adding an additional byte to the opcode 
for indexed operations. This is why some of the Z80 instructions oc­
cupy up to five bytes in the memory. 

It is important to remember that any program can be written in many 
different ways. A thorough knowledge and understanding of the in­
struction set is indispensable for achieving efficient programming. 
However, when learning how to program, it is not essential to write op­
timized programs. During a first reading of this chapter, it is therefore 
unimportant to remember all the various instructions. It is important to 
remember the categories of instructions and to study typical examples. 
Then, when writing programs, the reader should consult the Z80 
instruction-set description, and select the instructions best suited to his 
needs. The various instructions of the Z80 will therefore be reviewed in 
this section with the intent of simplifying them and grouping them in 
logical categories. The reader interested in exploring the capabilities of 
the various instructions is referred to the individual descriptions of the 
instructions. 

We will now examine the capabilities provided by the Z80 in terms of 
the five classes of instructions which have been defined at the beginning 
of this chapter. 

Data Transfer Instructions 

Data transfer instructions on the Z80 may be classified in four 
categories: 8-bit transfers, l6-bit transfers, stack operations, and 
block transfers. Let us examine them. 

Eight-Bit Data Transfers 

All eight-bit data transfers are accomplished by load instructions. 
The format is: 

LD destination, source 
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For example, the accumulator A may be loaded from register B by 
using the instructions: 

LD A,B 

Direct transfers may be accomplished between any two of the 
working registers (ABCDEHL). 

In order to load any of the working registers, except for the accu­
mulator, from a memory loca tion, the address of this memory loca-­
tion must first be loaded into the H-L register pair. 

For example, in order to load register C from memory location 1234, 
register Hand L will first have to be loaded with the value" 1234". (A 
load instruction operating on 16 bits will be used. This is described in 
the following section.) 

Then, the instruction LD C, (HL) will be used and will accomplish 
the desired result. 

The accumulator is an exception. It can be loaded directly from any 
specified memory location. This is called the extended addressing 
mode. For example, in order to load the accumulator with the contents 
of memory location 1234, the following instruction will be used: 

LD A, (1234H) (Note the use of "()" to denote "contents of.") 

The instruction will be stored in the memory as follows: 

address 	 PC :3A (opcode) 

PC + 1:34 (low order half of the address) 

PC + 2:12 (high order half of the address) 


Note that the address is stored in "reverse order" in the instruction 
itself: 

3A I 	low addr Ihigh addr I 
All the working registers may also be loaded with any specified eight-bit 
value, or "literal," contained in the second byte of the instruction (this 
is called immediate addressing). An example is: 

LD E, 12H 

which loads register E with the value 12 hexadecimal. 
In the memory, the instruction appears as: 

PC: IE (ope ode) 
PC + 1: 12 (literal operand) 
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As a result of this instruction, the immediate operand, or literal value 
will be contained in register E. 

The indexed addressing mode is also available for loading register 
contents, and will be fully described in the next chapter on addressing 
techniques. Other miscellaneous possibilities exist for loading specific 
registers, and a table listing all the possibilities is shown in Figure 4.2 
(tables supplied by Zilog, Inc.). The grey areas show instructions 
common with the 8080A. 

EO 

47 


"lIED ~--1--l-----1--l-----1--l-----1--.J..-.-I--.J..-.-I--.J..-.-+-+--+-+--I 
EO 

" 

Fig. 4.2: Eight-Bit Load Group-'LD' 

16-Bit Data Transfers 

Basically, any of the 16-bit register pairs, BC, DE, HL, SP, IX, IY, 
may be loaded with a literal 16-bit operand, or from a specified 
memory address (extended addressing), or from the top of the stack, 
i.e., from the address contained in SP. Conversely, the contents of these 
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register pairs may be stored in the same manner at a specified memory 
address or on top of the stack. Additionally, the SP register may be 
loaded from HL, IX, and IY. This facilitates creating multiple stacks. 
The register pair AF may also be pushed on top of the stack. 

The table listing all the possibilities is shown in Figure 4.3. The stack 
push and pop operations are included as parts of the 16-bit data 
transfers. All stack operations transfer the contents of a register pair to 
or from the stack. Note that there are no single push and pop instruc­
tions for saving individual eight-bit registers. 

SOURCE 

Af 

BC 

R DE 
E 

G 

I 
 HL
S

DEITINATION T 

E 

R 
 SP 

IX 

IV 

EXT. IMl 
ADDR. 

NOTE: The "'III • Pop Instructions "ju.t 
the SP.tter 'nry locution pop 

INSTRUCTIONS 

Fig. 4.3: 16-Bit Load Group-'LD', 'PUSH' and 'POP' 

A double-byte push or pop is always executed on a register pair: AF, 
BC, DE, HL, IX, IY (see the bottom row and right-most column in 
Figure: 4.3). 

When operating on AF, BC, DE, HL, a single-byte is required for the 
instruction. resulting in good efficie'ncy. For example, assume that the 
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stack pointer SP contains the value "0100". The following instruc­
tion is executed: 

PUSH AF 

When pushing the contents of the register pair on the stack, the stack 
pointer SP is first decremented, then the contents of register A are de­
posited on top of the stack. Then the SP is decremented again, and the 
contents of F are deposited on the stack. At the end of the stack trans­
fer, SP points to the top element of the stack, which in our example 
is the value of F. 

It is important to remember that, in the case of the Z80, the SP 
points to the top of the stack and the SP is decremented whenever a 
register pair is pushed. Other conventions are often used in other pro­
cessors, and this may be a source of confusion. 

IMPLIED ADDRESSING 

AF Be', DE' & HL HL IX IV 

AF 08 

BC, 

DE 


09& 

HL 


IMPLIE 

DE 

REG. (SP) DD FD 

INDIR. E3 E3 


Fig. 4.4: Exchanges 'EX' and 'EXX' 

Exchange Instructions 

Additionally, a specialized mnemonic EX has been reserved for ex­
change operations. EX is not a simple data transfer, but a dual data 
transfer. It actually changes the contents of two specified locations. EX 
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may be used to exchange the top of the stack with HL, IX, IY and also 
to swap the contents of DE and HL and AF and AF' (remember that 
AF' stands for the other AF register pair available in the Z80). 

Finally, a special EXX instruction is available to exchange the con­
tents of Be, DE, HL with the contents of the corresponding registers in 
the second register bank of the Z80. 

The possible exchanges are summarized in Figure 4.4. 

SOURCE 
-
REG. 
INDIR. 
-
(HL) 

ED 'LDI' - Load (DE)_(HL) 
AO Inc HL & DE, Dec BC 

ED 'LDIR: ­ Load (DE)_(HL) 

DESTINATlON 
REG. 
INDIR. (DE) 

BO Inc HL & DE, Dec BC, Repeat until Be =0 

ED 'LDD' ­ Load (DE)_(HL) 
AS Dec HL & DE, Dec Be 

ED 'LDDR' - Load (DE)-(HL) 
B8 Dec HL & DE, Dec Be, Repeat until Be =0 

Reg HL points to source 
Reg DE points to destination 
Reg Be is byte counter 

Fig. 4.5: Block Transfer Group 

Block Transfer Instructions 

Block transfer instructions are instructions which will result in the 
transfer of a block of data rather than a single or double byte. Block 
transfer instructions are more complex for the manufacturer to imple­
ment than most instructions and are usually not provided on micropro­
cessors. They are convenient for programming, and may improve the 

163 



PROGRAMMING THE laO 

performance of a program, especially during input/output operation. 
Their use and advantages will be demonstrated throughout this book. 
Some automatic block transfer instructions are available in the case of 
the Z80. They use specific conventions. 

All block transfer instructions require the use of three pairs of 
registers: BC, DE, HL: 

BC is used as a 16-bit counter. This means that up to 216 = 64K bytes 
may be moved automatically. HL is used as the source pointer. It may 
point anywhere in the memory. DE is used as the destination pointer 
and may point anywhere in the memory. 

Four block transfer instructions are provided: 

LDD, LDDR, LDl, LDlR 

All of them decrement the counter register BC with each transfer. Two 
of them decrement the pointer registers DE and HL, LDD and LDDR, 
while the two others increment DE and HL, LDI and LDIR. For each 
of these two groups of instructions, the letter R at the end of the 
mnemonic indicates an automatic repeat. Let us examine these instruc­
tions. 

LDI stands for "load and increment." It transfers one byte from the 
memory location pointed to by Hand L to the destination in the 
memory pointed to by D and E. It also decrements Be. It will automati­
cally increment Hand Land D and E so that all register pairs are pro­
perly conditioned to perform the next byte transfer whenever required. 

LDIR stands for "load increment and repeat," i.e., execute LDI 
repeatedly until the counter registers BC reach the value "0". It is used 
to move a continuous block of data automatically from one memory 
area to another. 

LDD and LDDR operate in the same way except that the address 
pointer is decremented rather than incremented. The transfer therefore 
starts at the highest address in the block instead of the lowest. The ef­
fect of the four instructions is summarized in Figure 4,5. 

Similar automated instructions are available for CP (compare) and 
are summarized in Figure 4.6. 

Data Processing Instructions 

Arithmetic 

Two main arithmetic operations are provided: addition and subtrac­
tion. They have been used extensively in the previous chapter. There are 
two types of addition, with and without carry, ADC and ADD respec­
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SEARCH 

LOCATION 


REG, 
INDIR, 

e--- ­
(HLI 

r---- .-------------, 
ED 'CPI' 
A1 Inc HL, Dec BC 

ED 'CPIR', Inc HL, Dec BC 
B1 r.peat until BC = 0 or find match 

ED 'CPO' Dec H L & Be
A9 

f--- - -.-----.- -----------­

ED' 'I 'CPOR' D.c HL & BC 
99 Repeat until BC = a or find match 

'----_. --.-------.-.-- --------' 

HL points to iocation in memory 
to be cum pared with accumulator 
contents 

Be is byte counter 

Fig. 4.6: Block Search Group 

tively, Similarly, two types of subtraction are provided with and 
without carry. They are SBC and SUB. 

Additionally, three special instructions are provided: DAA, CPL, 
and NEG, The Decimal Adjust Accumulator instruction DAA has been 
used to implement BCD operations. It is normally used for each BCD 
add or subtract. Two complementation instructions also are available, 
CPL will compute the one's complement of the accumulator, and NEG 
will negate the accumulator into its complement format (two's comple­
ment). 

All the previous instructions operate on eight-bit data, 16-bit opera­
tions are more restricted. ADD, ADC, and SBC are available on 
specific registers, as described in Figure 4.8. 

Finally, increment and decrement instructions are available which 
operate on all the registers, both in an eight-bit and a 16-bit format. 
They are listed in Figure 4.7 (eight-bit operations) and 4.8 (l6-bit opera­
tions). 
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SOURCE 

REG. 
REGISTER ADDRESSING INDIR. 

A B C o (HL) IIX+d) 

'ADD' 81 
DD 
86 
d 

FD 
86 
d 

ADD w CARRY 
'ADC' 

sa 
DD 
8E 
d 

FD 
8E 
d 

SUBTRACT 
'SUB' 

SUBwCARRY 
'SSC' 

'AND' 

'XOR' 

'OR' 

COMPARE 
'CP' 

INCREMENT 
'INC' 

FD 
DECREMENT 35 

'DEC' d 

Fig. 4.7: Eight-Bit Arithmetic and Logic 

Note that, in general, all arithmetic operations modify some of the 
flags. Their effect is fully described in the instruction descriptions later 
in this chapter. However, it is important to note that the INC and DEC 
instructions which operate on register pairs do not modify any of the flags. 
This detail is important to keep in mind. This means that if you incre­
ment or decrement one of the register pairs to the vallIe "0", the Z-bit 
in the flags register F will not be set. The value of the register must be 
explicitly tested for the value "0" in the program. 

Also, it is important to remember that the instructions ADC and SBC 
always affect all the flags. This does not mean that all the flags will 
necessarily be different after their execution. However, they might. 
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SOURCE 

BC DE HL SP IX IY 

, 
HL ~\ oe 19 28 3!l:, 

,> 

o 
z 'ADD' IX DO DO DD DO 


09 19 39 29 
~ z 
IY FD FD FD FD~ w 	 09 19 39 29 

o 
ADD WITH CARRY AND HL ED ED ED ED 

SET FLAGS 'AOC' 4A 5A 6A 7A 


SUB WITH CARRY AND HL ED ED ED ED 

SET FLAGS 'SBC' 42 52 62 72 


INCREMENT 'INC' 03 13 23 33 	 DO FD 
23 23 

DECREMENT 'DEC' 08 18 28 3B 	 DD FD 
28 28 

Fig. 4.8: Sixteen-Bit Arithmetic and Logic 

Logical 

Three logical operations are provided: AND, OR (inclusive) and 
XOR (exclusive), plus a comparison instruction CP. They all operate 
exclusively on eight-bit data. Let us examine them in turn. (A table list­
ing all the possibilities and operation codes for these instructions is part 
of Figure 4.7.) 

AND 

Each logical operation is characterized by a truth table, which ex­
presses the logical value of the result in function of the inputs. The 
truth table for AND appears below: 
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OANDO =0 AND 0 1 
OAND I = 0 

0 0 01 ANDO = 0 or 
1 AND 1 = 1 1 0 1 

The AND operation is characterized by the fact that the output is 
"1" only if both inputs are" 1". In other words, if one of the inputs is 
"0", it is guaranteed that the result is "0". This feature is used to zero 
a bit position in a word. This is called "masking." 

One of the important uses of the AND instruction is to clear or 
"mask out" one or more specified bit positions in a word. Assume for 
example that we want to zero the right-most four-bit positions in a 
word. This will be performed by the following program: 

LD A, WORD WORD CONTAINS '10101010' 

AND 11 ll0000B '11110000' IS MASK 


Let us assume that WORD is equal to '10101010'. The result of this 
program is to leave the value '10100000' in the accumulator. "B" is 
used to indicate a binary value. 

Exercise 4.1: Write a three-line program which will zero bits 1 and 6 oj 
WORD. 

Exercise 4.2: What happens with a MASK = '11111111 '? 

OR 

This instruction is the inclusive OR operation. It is characterized by 
the following truth table: 

oOR 0 =0 OR 0 1 
oOR 1 1 

or 0 101 OR 0 1 
lOR 1 = 1 1 1 

The logical OR is characterized by the fact that if one of the operands 
is "1", then the result is always "1". The obvious use of ORis to set 
any bit in a word to "1". 

Let us set the right-most four bits of WORD to 1'so The program is: 

LD A, WORD 

OR OOOOll1lB 
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Let us assume that WORD did contain '10101010'. The final value of 
the accumulator will be '10101111'. 

Exercise 4.3: What would happen if we were to use the instruction 
OR 10101111 B? 

Exercise 4.4: What is the effect of ORing with uFF" hexadecimal? 

XOR 

XOR ~tands for "exclusive OR." The exclusive OR differs from the 
inclusive OR that we have just described in one respect: the result is 
"1" only if one, and only one, of the operands is equal to "1". If both 
operands are equal to "1", the normal OR would give a "1" result. 
The exclusive OR gives a "0" result. The truth table is: 

OXORO =0 XOR a 1 
OXOR 1 = 1 a 0 11 XORO = 1 or 
1 XOR 1 = a 1 1 a 

The exclusive OR is used for comparisons. If any bit is different, the 
exclusive OR of two words will be non-zero. In addition, in the case of 
the Z80, the exclusive OR may be used to complement a word, since 
there is no complement instruction on anything but the accumulator. 
This is done by performing the XOR of a word with all ones. The pro­
gram appears below: 

LDA, WORD 
XOR, 11111111 B 

Let us assume that WORD contained" 10101010". The final value of 
the register will be "01010101". You can verify that this is the comple­
ment of the original value. 

XOR can be used to advantage as a "bit toggle." 

Exercise 4.5: What is the effect ofXOR using a register with HOO" hex­
adecimal? 

Skew Operations (Shift and Rotate) 

Let us first differentiate between the shift and the rotate operations, 
which are illustrated in Figure 4.9. In a shift operation, the contents of 
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the register are shifted to the left or to the right by one bit position. The 
bit which falls out of the register goes into the carry bit C, and the bit 
which comes in is zero. This was explained in the previous section. 

(111~'111t. 


(11 g'!11~ 

Fig. 4.9: Shift and Rotate 

One exception exists: it is the shift-right-arithmetic. When perform­
ing operations on negative numbers in the two's complement format, 
the left-most bit is the sign bit. In the case of negative numbers it is 
"1". When dividing a negative number by "2" by shifting it to the 
right, it should remain negative, i.e., the left-most bit should remain a 
" 1 ". This is performed automatically by the SRA instruction or Shift 
Right Arithmetic. In this arithmetic shift right, the bit which comes in 
on the left is identical to the sign bit. It is "0" if the left-most bit was a 
"0", and "1" if the left-most bit was a "1". This is illustrated on the 
right of Figure 4.10, which shows all the possible shift and rotate opera­
tions. 

Rotations 

A rotation differs from a shift by the fact that the bit coming into the 
register is the one which will fall from either the other end of the 
register or the carry bit. Two types of rotations are supplied in the case 
of the Z80: an eight-bit rotation and a nine-bit rotation. 

The nine-bit rotation is illustrated in Figure 4.11. For example, in the 
case of a right rotation, the eight bits of the register are shifted right by 
one bit position. The bit which falls off the right part of the register 
goes, as usual, into the carry bit. At this time the bit which comes in on 
the left end of the register is the previous value of the carry bit (before it 
is overwritten with the bit falling out.) In mathematics this is called a 
nine-bit rotation since the eight bits of the register plus the ninth bit (the 
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carry bit) are rotated to the right by one bit position. Conversely, the 
left rotation accomplishes the same result in the opposite direction. 

Soo.o ... _Oo.,,,..,,,,,, . . , , IHLJ !IX *d UV +dl 

" '" "., ~ " '" " 00 '" ~ '".. '" '" " " Ii. 
m 

". '" 
. 

" " " '" " ~ " OA " " " oc " 00 " " 
00 

". 
" 

'" " 
" 

RRCA • 

no... 
ROTATE 
0' 
SHIFT 

'" .. " " 
" 

" " 
co 

" 

" " 
" '" 
;g 

" " 

" 

'" " 
" " 
" " 

" " " " 
" ".. " 
'" " " ~co,. 

" 

" " 
" " 
" 

-ii 

'".­

'" W 

'" " 
~ 

" " 
" 0> 

;: 
co 

" 

"' >0 

" ".,. 
~f: 

00 >0 

" '"., 
" " co >0 

"~, 1. 

'" 
'" 

.. 

.. 

co 

" '" " 
co 

" 
co " " "- ­ ~-

co 

" '"., '" " 
00 

'" 3. 
m 
co 

" 
'0 
.> 

" "' 

Fig. 4.10: Rotates and Shifts 

7 REGISTER a c 

RIGHTiL--­ tDJ 

7 REGISTER a C 

LEFT Q~I~------;tDJ 

Fig. 4.11: Nine-Bit Rotation 

The eight-bit rotation operates in a similar way. Bit 0 is copied into 
bit seven, or else bit seven is copied into bit 0, depending on the direc­
tion of the rotation. In addition, the bit coming out of the register is 
also copied in the carry bit. This is illustrated by Figure 4.12. 

ilL- _O~ nRIGHT~~ ILJ 

LEFT y,--~__m 
Fig. 4.12: Eight-Bit Rotation 
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Special Digit Instructions 

Two special digit-rotate instructions are provided to facilitate BCD 
arithmetic. The result is a four-bit rotation between two digits con­
tained in the memory location pointed to by the HL registers and one 
digit in the lower half of the accumulator. This is illustrated by Figure 
4.13. 

MEMORY 

A 

RIGHT: 

H ADDRESS 

MEMORYA 

LEFT: I T- I 

Fig. 4.13: Digit Rotate Instructions (Rotate Decimal) 

Bit Manipulation 

It has been shown above how the logical operations may be used to set 
or reset bits or groups of bits in the accumulator. However, it is conve­
nient to set or reset any bit in any register or memory location with a 
single instruction. This facility requires a, considerable number of opcodes 
and is therefore usually not provided on most microprocessors. However, 
the Z80 is equipped with extensive bit-manipulation facilities. They are 
shown in Figure 4.14. This table also includes the test instructions which 
will be described only in the next section. 

Two special instructions are also available for operating on the carry 
flag. They are CCF (Complement Carry Flag) and SCF (Set Carry 
Flag). They are shown in Figure 4.15. 

Test and Jump 

Since testing operations rely heavily on the use of the flags register, 
we will here describe in detail the role of each of the flags. The contents 
of the flags register appear in Figure 4.16. 
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REG. 
REGISTER ADDRESSING INDIR. INDEXED 

A S C 0 E H L (Hll OX+dl (lY+d) 
SIT 

DO FD 
0 CB 

47 
CB.., CB., CB 

42 
CS 
43 

CB.. CS 
45 

CB 
46 

CS 
d 
46 

CB 
d 
46 

DO FD 
1 CB CS CS CS CS CS CS CS CS CS 

4F 46 .0 4A 4B .C 40 4E d 
'E 

d 
4E 

DO FD 
2 CB CB CS CB CS CB CB C8 C8 C8 

57 50 51 52 53 54 55 56 d 
66 

d 
56 

3 CB CS C8 ca C8 ca CS CD 
DO 
CS 

FD ca 
TEST 
'BIT' 

4 

SF 

CB 

58 

CS 

59 

CB 

SA 

CB 

58 

CB 

SC 

CB 

50 

CB 

5E 

CS 

d 
5E 

DO 
C8 

d 
5E 

FD 
CS 

67 SO 61 62 63 64 55 66 d 
66 

d 
66 

6 CD C8 CS CD CD CB CS CD 
DO 
CS 

FD 
CB 

6F 68 68 6A 68 6C 60 6' d 
6E 

d 
6E 

6 CB CS CB CS C8 CS CB CS 
DO 
CS 

FD 
CS 

77 70 71 72 73 7. 75 76 d d 
76 76 

7 C8 CB CS CB CS C8 CS CS 
DO 
CS 

FD 
C8 

7F 18 79 1A 7S 1C 7D 1E d d 
1E 7E 

0 CB CS C8 CS C8 CS C8 CS 
00 
C8 

FO 
CS 

81 eo 81 82 83 84 85 86 d 
86 

d 
86 

1 CB 
8F 

CB 
BB 

CS 
B9 

C8 
SA 

C8 
8S 

C8 
8C 

C8 
aD 

CB 
BE 

00 
CS 
d 

FD 
CB 
d 

8E 8E 

2 C8 CS CS CS CS CS CD CS 
DO 
CB 

FO 
CS 

01 90 91 92 93 94 96 96 d 
96 

d 
96 

RESET 
BIT 

3 C8 
BF 

CB 
!II 

ca.. C8 
OA 

CS 
98 

CD 
9C 

CB 
90 

CB 

O' 

DO 
CS 
d 
9E 

FD 
C8 
d 
9E 

'RES' • C8 
A1 

CS 
AO 

CS 
Al 

CS 
A2 

CS 
A3 

CS 
A. 

CB 
AS 

CS 
A6 

DO 
CS 
d 

FD 
CS 
d 

AS A6 

5 CS 
AF 

CB 
AB 

CB 
AO 

CD 
AA 

CS 
AB 

CB 
AC 

cs 
AD 

CB 
AE 

DO 
CB 
d 

FD 
CB 
d 

AE AE 

6 C8 CS CB CS CB cs CB CS 
DO 
CB 

FD 
CB 

B1 SO Bl S7 B3 54 B5 S6 d d 
B6 S6 

1 CB 
SF 

CB 
BB 

CS 
BO 

CB 
aA 

CB 
SB 

CB 
BC 

CS 
BD 

CB 
BE 

00 
CB 
d 

~. 
d 

BE BE 

DO FO 
0 CB 

C1 
CS 
co 

CS 
Cl 

CS 
C2 

CS 
C3 

CS 
C4 

CB 
CS 

CS 
C6 

ca 
d 
C8 

CS 
d 
C8 

DO FO 
1 CS CB CS CS CS CB CS CB CS CB 

CF CB co CA CS CC CD C. d 
CE 

d 
CE 

2 CB 
01 

CB 
DO 

CB 
01 

CS 
02 

CS 
03 

CS 
D. 

CB 
OS 

CS 
06 

00 
CB 
d 
06 

FD 
CS 
d 
06 

DO FD 
3 CB CB CB CB CS CB CS CS CS C8 

SET 
SIT 

OF 08 DO OA OS DC DO DE d 
DE 

d 
DE 

'SET' • CB 
E1 

CD 
EO 

CB 
El 

ca 
E2 

CB 
E3 

CD 
E. 

CS 
E5 

CS 
E6 

00 
CS 
d 
E6 

FD 
CB 
d 
E6 

5 CB CS CS CS CS CS CS CD 
DO 
CS 

FD 
CS 

EF EI EO EA ES Ee ED EE d 
EE 

d 
EE 

DO FD 
6 CS C6 CB CB CB CB eB CB CB CB 

F1 FO Fl F2 F3 F. F5 F6 d 
F6 

d 
F6 

7 CB CB CB CS CB C8 CS CS 
DO 
CS 

Fe 
CS 

FF FB F9 FA FB Fe FO FE d d 
FE FE 

Fig. 4.14: Bit Manipulation Group 
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Decimal Adiust Ace, 'DAA' 


Complement Acc, 'CPL' 


Negate Ace, 'NEG' 

(2's complement) 


Complement Carry Flag, 'CCF' 


Set Carry Flag, 'SCF' 


Fig. 4.15: General-Purpose AF Operations 

7 6 5 4 3 2 0 

I s z I - I H IPIV I N I C 

(T) (T) (T) (T) 

Fig. 4.16: The Flags Register 

C is the carry, N is add or subtract, P/V is parity or overflow, H is half 
carry, Z is zero, S is sign. Bits 3 and 5 of the flags register are not used 
(" - "). The two flags H and N are used for BCD arithmetic and cannot 
be tested. The other four flags (C, P IV, Z, S) can be tested in conjunc­
tion with conditional jump or call instructions. 

The role of each flag will now be described. 

Carry (C) 

In the case of nearly all microprocessors, and of the Z80 in par­
ticular, the carry bit assumes a dual role. First, it is used to indicate 
whether an addition or subtraction operation has resulted in a carry (or 
borrow). Secondly, it is used as a ninth bit in the case of shift and rotate 
operations. Using a single bit to perform both roles facilitates some 
operations, such as a multiplication operation. This should be clear 
from the explanation of the multiplication which has been presented in 
the previous chapter. 
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When learning to use the carry bit, it is important to remember that 
all arithmetic operations will either set it or reset it, depending on the 
result of the instructions. Similarly, all shift and rotation operations use 
the carry bit and will either set it or reset it, depending on the value of 
the bit which comes out of the register. 

In the case of logical instructions (AND, OR, XOR), the carry bit 
will always be reset. They may be used to zero the carry explicitly. 

Instructions which affect the carry bit are: ADD A,s; ADC A,s; 
SUB s; SBC A,s; CP s; NEG; AND s; OR s; XOR s; ADD DD,ss; ADC 
HL,ss; SBC HL,ss; RLA; RLCA; RRA; RRCA; RL m; RLC m; RR m; 
RRC m; SLA m; SRA m; SRL m; DAA; SCF; CCF. 
Subtract (N) 

This flag is normally not used by the programmer, and is used by the 
Z80 itself during BCD operations. The reader will remember from the 
previous chapter that, following a BCD add or subtract, a DAA 
(Decimal Adjust Accumulator) instruction is executed to obtain the 
valid BCD results. However, the "adjustment" operation is different 
after an addition and after a subtraction. The DAA therefore executes 
differently depending on the value of the N flag. The N flag is set to 
"0" after an addition and is set to a "1" after a subtraction. 

The symbol used for this flag, "N", may be confusing to program­
mers who have used other processors, since it may be mistaken for the 
sign bit. It is an internal operation sign bit. 

N is set to "0" by: ADD A,s; ADC A,s;ANDs;ORs; XORs; INCs; 
ADD DD,ss; ADC HL,ss; RLA; RLCA; RRA; RRCA; RL m; RLC m; 
RR m; RRC m; SLA m; SRA m; SRL m; RLD; RRD; SCF; CCF; IN r, 
(C); LDI; LDD; LDIR; LDDR; LD A, I; LD A, R; BIT b, s. 

N is set to "1" by: SUB s; SBC A,s; CPs; NEG; DEC m; SBC HL, ss; 
CPL; INI; IND; OUTI; OUTD; INIR; INDR; OTIR; OTDR; CPI; 
CPIR; CPD; CPDR. 

Parity/Overflow (P/ V) 
The parity/overflow flag performs two different functions. Specific 

instructions will set or reset this flag depending on the parity of the 
result; parity is determined by counting the total number of ones in the 
result. If this number is odd, the parity bit will be set to "0" (odd pari­
ty). If it is even, the parity bit will be set to "1" (even parity). Parity is 
most frequently used on blocks of characters (usually in the ASCII for­
mat). The parity bit is an additional bit which is added to the seven-bit 
code representing the character, in order to verify the integrity of data 
which has been stored in a memory device. For example, if one bit in 
the code representing the character has been changed by accident, due 

175 



PROGRAMMING THE ZSO 

to a malfunction in the memory device (such as a disk or RAM 
memory), or during transmission, then the total number of ones in the 
seven-bit code will have been changed. By checking the parity bit, the 
discrepancy will be detected, and an error will be flagged. In particular, 
the flag is used with logical and rotate instructions. Also, naturally, 
during an input operation from an I/O device, the parity flag will in­
dicate the parity of the data being read. 

For the reader familiar with the Intel 8080, note that the parity flag in 
the 8080 is used exclusively as such. In the case of the Z80, it is used for 
several additional functions. This flag should therefore be handled with 
care when going from one of the microprocessors to the other. 

In the case of the Z80, the second essential use of this flag is as an 
overflow flag (not available in the 8080). The overflow flag has been de­
scribed in Chapter I, when the two's complement notation was intro­
duced. It detects the fact that, during an addition or subtraction, the 
sign of the result is "accidentally"changed due to the overflow of the 
result into the sign bit. (Recall that, using an eight-bit representation, 
the largest positive number is + 127, and the smallest negative number 
is -128 in two's complement.) 

Finally, this bit is also used, in the case of the Z80, for two unrelated 
functions. 

During the block transfer instructions (LDD, LDDR, LDI, LDIR), 
and during the search instructions (CPD, CPDR, CPI, CPIR), this flag 
is used to detect whether the counter register B has attained the value 
"0". With decrementing instructions, this flag is reset to "0" if the 
byte counter register pair is "0". When incrementing, it is reset if BC ­
1 = 0 at the beginning of the instruction, i.e., if BC will be decremented 
to "0" by the instruction. 

Finally, when executing the two special instructions LD A, I and LD 
A,R, the P/V flag reflects the value of the interrupt enable flip-flop 
(IFF2). This feature can be used to preserve or test this value. 

The P flag is affected by: AND s; OR s; XOR s; RL m; RLC m; RR m; 
RRC m; SLA m; SRA m; SRL m; RLD; RRD; DAA; IN r,(C). 

The V flag is affected by: ADD A,s; ADC A,s; SUB s; SBC A,s; CP s; 
NEG; INC s; DEC m; ADC HL,ss; SBC HL,ss. 

It is also used by: LDIR; LDDR (set to "0"); LDI; LDD; CPI; 
CPIR; CPD; CPDR. 

The Half-Carry Flag (H) 

The half-carry flag indicates a possible carry from bit 3 into bit 4 dur­
ing an arithmetic operation. In other words, it represents the carry from 
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the low-order nibble (group of 4 bits) into the high order one. Clearly, it 
is primarily used for BCD operations. In particular, it is used internally 
within the microprocessor by the Decimal Adjust Accumulator (DAA) 
instruction in order to adjust the result to its correct value. 

This flag will be set during an addition when there is a carry from bit 
3 to bit 4 and reset when there is no carry. Conversely, during a subtract 
operation, it will be set if there is a borrow from bit 4 to bit 3, and reset 
if there is no borrow. 

The flag will be conditioned by addition, subtraction, increment, 
decrement, comparisons, and logical operations. 

Instructions which affect the H bit are: ADD A,r ; ADC A,s; SUB s; 
SBC A,s; CP s; NEG; AND s; OR s; XOR s; INC s; DEC m; RLA; 
RLCA; RRA; RRCA; RL m; RLC m; RR m; RRC m; SLA m; SR m; 
SRL m; RLD; RRD; DAA; CPL; SCF; IN r,(C); LDI; LLD; LDIR; 
LDDR; LD A; LD A,R; BIT b,r; CPI; CPIR; CPD; CPDR. 

Note that the H bit is randomly affected by the 16-bit add and sub­
tract instructions, and by block input and output instructions. 

Zero (Z) 

The Z flag is used to indicate whether the value of a byte which has 
been computed, or is being transferred, is zero. It is also used with com­
parison instructions to indicate a match, and for other miscellaneous 
functions. 

In the case of an operation resulting in a zero result, or of a data 
transfer, the Z bit is set to "I" whenever the byte is zero. Z is reset to 
"0" otherwise. 

In the case of comparison instructions, the Z bit is set to "I" when­
ever the comparison succeeds and to "0" otherwise. 

Additionally,in the case of the Z80, it is used for three more functions: 
it is used with the BIT instruction to indicate the value of a bit being 
tested. It is set to "I" if the specified bit is "0" and reset otherwise. 

With the special "block input-output instructions" (lNI, IND, 
OUTI, OUTD), the Z flag is set if D - I = 0, and reset otherwise; it is 
s~t if the byte counter will decrement to "0" (lNIR, INDR, OTIR, 
OTDR). 

Finally, with the special instructions IN r,(C), the Z flag is set to "I" 
to indicate that the input byte has the value "0". 

In summary, the following instructions condition the value of the Z 
bit: ADD A,s; ADC A,s;SUB s; SBC A,s; CP s; NEG;AND s;OR s; 
XOR s; INC s; DEC m; ADC HL, ss; SBC HL,ss; RL m; RLC m; 
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RR m; RRC m; SLA m; SRA m; SRL m; RLD; RRD; DAA; IN r,(C); 
INI; IND; OUTI; OUTD; INIR; INDR; OTIR; OTDR; CPI; CPIR; 
CPD; CPDR; LD A, I; LD A, R; BIT b,s; NEG s. 

Usual instructions which do not affect the Z bit are: ADD DD,ss; 
RLA; RLCA; RRA; RRCA; CPL; SCF; CCF; LDI; LDD; LDIR; 
LDDR; INC DD; DEC DD. 

Sign (S) 

This flag reflects the value of the most significant bit of a result or of 
a byte being transferred (bit seven). In two's complement notation, the 
most significant bit is used to represent the sign. "0" indicates a posi­
tive number and a "1" indicates a negative number. As a result, bit 
seven is called the sign bit. 

In the case of most microprocessors, the sign bit plays an important 
role when communicating with input/output devices. Most micropro­
cessors are not equipped with a BIT instruction for testing the contents 
of any bits in a register or the memory. As a result, the sign bit is usual­
ly the most convenient bit to test. When examining the status of an in­
put/output device, reading the status register will automatically condi­
tion the sign bit, which will be set to the value of bit seven of the status 
register. It can then be tested conveniently by the program. This is why 
the status register of most input/output chips connected to micropro­
cessor systems have their most important indicator (usually ready/not 
ready) in bit position seven. 

A special BIT instruction is provided in the case of the Z80. 
However, in order to test a memory location (which may be the address 
of an 110 status register), the address must first be loaded into registers 
IX, IY or HL. There is no bit instruction provided to test a specified 
memory address directly (i.e., no direct addressing mode for this in­
struction). The value of positioning an input/output ready flag in bit 
position seven, therefore, remains intact, even in the case of the Z80. 

Finally, the sign flag is used by the special instruction IN, (C) to in­
dicate the sign of the data being read. 

Instructions which affect the sign bit are: ADD A,s; SUB s; SBC A,s; 
CP s; NEG; AND s; OR s; XOR s; INC s; DEC m; ADC HL, ss; SBC 
HL, ss; RL m; RLC m; RR m; RRC m; SLA m; SRA m; SRL m; RLD ; 
RRD; DAA; IN r,(C); CPI; CPIR; CPD; CPDR; LD A,I;LD A,r; 
NEG, ADC A,s. 
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Summary of the Flags 

The flag bits are used to automatically detect special conditions with­
in the ALU of the microprocessor. They can be conveniently tested by 
specialized instructions, so that specific action can be taken in response 
to the condition detected. It is important to understand the role of the 
various indicators available, since most decisions taken within the pro­
gram will be taken in function of these flag bits. All jumps executed 
within a program will jump to specified locations depending on the 
status of these flags. The only exception involves the interrupt 
mechanism, which will be described in the chapter on input/output and 
may cause jumping to specific locations whenever a hardware signal is 
received on specialized pins of the Z80. 

At this point, it is only necessary to remember the main function of 
each of these bits. When programming, the reader can refer to the de­
scription of the instruction later in this chapter to verify the effect of 
every instruction of the various flags. Most flags can be ignored most of 
the time, and the reader who is not yet familiar with them should not 
feel intimidated by their apparent complexity. Their use will become 
clearer as we examine more application programs. 

A summary of the six flags and the way they are set or reset by the 
various instructions is shown in Figure 4.17. 

The Jump Instructions 

A branch instruction is an instruction which causes a forced bran­
ching to a specified program address. It changes the normal flow of 
execution of the program from a sequential mode into one where a dif­
ferent segment of the program is suddenly executed. Jumps may be 
conditional or unconditional. An unconditional jump is one in which 
the branching occurs to a specific address, regardless of any other con­
dition. 

A conditional jump is one which occurs to a specific address only if 
one or more conditions are met. This is the type of jump instruction 
used to make decisions based upon data or computed results. 

In order to explain the conditional jump instructions, it is necessary 
to understand the role of the flags register, since all branching decisions 
are based upon these flags. This was the purpose of the preceding sec­
tion. We can now examine in more detail the jump instructions pro­
vided by the Z80. 

Two main types of jump instructions are provided: jump instructions 
within the main program (they are called "jumps"), and the special 
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INSTRUCTION C z \ s N H COMMENTS 

ADD A••; ADC A•• I ! V t 0 I a-bit add or add with carry 

SUB .; sac A, s. CP " NEG I I V ! 1 ! 8-blt subtract. subtr.ct with 
carry, compare and 
negate accumulator 

ANO, 0 : p t a 1 Logical operatIons 

OR s; XOR s 0 I P : 0 0 And seU different flags 


INC s ; V : 0 : a-bit Increment 


DEC m · ; V : 1 : 8-blt decrement 


ADD DO... ·: 0 X 16-btt add 


AOC"HL, ss : · • • 
; 0 X
: V 16-btt add with carry 

sac Hl,. : : V : 1 X 16-blt subtract with carry 

RLA;RLCA.RRA.RRCA ! • 0 0 0 0 Rotate accumulator 

RL m; Rle m; RR m; RRC m : : p : 0 0 Rotate and shIft locatIon m 

SLA m; SRA m; SAL m 

RLD. RRD 0 : p ; 0 0 Rotate dIgit left and tIght 

DAA ! ; p ! 0 ; Decimal adlust accumulator 
CPL • . 1 1 Complement accumul.tor 

SCF ·1 · 0 0 0 Set carry 

CCF 0 0 Complement carry 

IN r. Ie) : ·p : 0 0 Input register mdlrect 

INI; INO; OUTI; OUTD · ! X X 1 X I Block Input and output 

INIR; INDR; OTIR; OTDR ·0 1 X X 1 X Z "" 0 ,f 8 F- 0 otherWise Z • 1 

LOt, LOD X : X 0 0 Block transfer InstructionS 

I · · 0 X 

I 
LOIR. LOOR · X 0 X 0 0 I P/V'" 1 If Be ~ 0, otherWise 

PIV·O 

CPl. CPIR. CPO. CPOR 0 : : I 1 X Block search instructions 
Z'" 1 If A = (HLl, 

otherWise Z ;: 0 
PIV -= 1 If BC t:- 0, 

otherWise PIV .. 0 

LD A. I; LO A. R : IFF : 0 0 The content of the Interrupt 

· 

enable flip-flop tI F F) is 
COPied Into the PIV flag 

· 
· The complement of bit b of 

location IS copied Into the 
BIT b, S : X X 0 1 

Z flagNEG : ; V : 1 ; 
Negate accumulator 

Th. foUowtn, not.tlon II used in this table: 

SYMBOL OPERATION 

C c.rrv/link fl... C., if the operltlon produ~ _ carry from the MSB of the operand or result_ 

Z Z.ro fla9- Z-1 if the result of the operation IS zerO. 

S Sign fla,. S-l if the MSa of thl result is on•. 

PIV 	 PI,ity or o .... ,flow flav. P.ritv (PI .nd overflow (V) sh,r. the larM fleV_ loticaloper'tlons 

affect thil fl•• With the ~'ity of the ,.,ult while 'flthmetic oper.tionllff.ct th's 'I,V with 
the overflow of the ,tlult. If PN holds .."ty, P/V-, if the '.Iult of the oper.tlon is .ven, 
PN"O If resuit it odd. If PIV holds o"erflow, P/V-' if the rewlt of the operation produced 
an overllow. 

H Half~carrv fl.,. H-t if the add or subtract operation produced a carry IOto or borrow'rom 
bit 4 of the Kcumuletor_ 

N Add/Subtrect flag. No.1 I' the pr,vlous operation was a subtrac:t. 

Hand N flags .re ulld In conjunction with the deCimal adjust Instruction IDAAI to properly 

correct the result IOto packed BCD 'orm.t follOWing addition or subtraction uSing operands 

WIth Picked BCD fOlmlt. 

The flag is affected accordin, to the re.ult of the operation. 

The flag IS unchanged by the operltlon. 

The nag IS reset by the oper.tion. 


, The flag IS set by the operation. 

X Th. fl•• IS a "don't car.... 

V P/V fla,.ffected according to the overflow result of the operation, 

P P/v fla,affected .ccordinv to the p.rity re,ult of the operation. 


Anyon. of the CPU registers A. B, C. D. E, H. l. 

Any 8-bit IOeltion for all the addresSing modes allowed for the Plrtlcular instruction. 

Any 16-bit 10ellrion for.1I the addressIR9 modes allowed for that instruction. 

Anyon. of the two index r_visten I X or I Y. 


R R.fresh count.r. 
S-bit value In range <0, 255>. 
16-blt valu. in ran1Jl <0. 65535>. 
Any 8-bit locatIon for all the addressin, modes allowed for the p.-yicul.r instruction. 

Fig. 4.17: Summary of Flag Operation 
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type of branch instructions used to jump to a subroutine and to return 
from it ("call" and "return"). As a result of any jump instruction, the 
program counter PC will be reloaded with a new address, and the usual 
program execution will resume from this point on. The full power of 
the various jump instructions can be understood only in the context of 
the various addressing modes provided by the microprocessor. This 
part of the discussion will be deferred until the next chapter, where the 
addressing modes are discussed. We will only consider here the other 
aspects of these instructions. 

Jumps may be unconditional (branching to a specified memory ad­
dress) or else conditional. In the case of a conditional jump, one of four 
flag bits may be tested. They are the Z, C, P/V, and S flags. Each of 
them may be tested for the value "0" or "1". 

The corresponding abbreviations are: 

Z = zero (Z = 1) 
NZ = non zero (Z = 0) 
C = carry (C = 1) 
NC = no carry (C = 0) 
PO = odd parity 
PE = even parity 
P = positive (S = 0) 
M = minus (S = 1) 

In addition, a special combination instruction is available in the Z80 
which will decrement the B register and jump to a specified memory ad­
dress as long as it is not zero. This is a powerful instruction used to ter­
minate a loop, and it has already been used several times in the previous 
chapter: it is the DJNZ instruction. 

Similarly, the CALL and the RET (return) instructions may be condi­
tional or unconditional. They test the same flags as the branch instruc­
tion which we have already described. 

The availability of conditional branches is a powerful resource in a 
computer and is generally not provided on other eight-bit micropro­
cessors. It improves the efficiency of programs by implementing in a 
single instruction what requires two instructions otherwise. 

Finally, two special return instructions have been provided in the case 
of interrupt routines. They are RETI and RETN. They will be described 
in the section of Chapter 6 on interrupts. 

The addressing modes and the opcodes for the various branches 
available are shown in Figure 4.18. 
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CONDITION 

.-- ­ ~-- - ­
UN~ 

CONo CARRY 
NON 
CARRY ZEAO 

NON 
ZERO 

PARITY 1PARITY 
EVEN 000 

SIGN 
NEG 

SIGN 
POS 

REG.-. 
r ­ -

C3 DA 02 CA C2 EA E2 FA F2 
JUMP 'JP' IMMEO. nn n n n n n n n n n 

EXT. n n n n n n n n 0 

JUMP 'JR' RELATIVE PC.. 18 38 30 28 20 
~2 ~2 .. 2 .. 2 ~2 

JUMP 'JP' IHll 	 E9 

~-~-

JuMP 'JP' 	 REG. (lXI DO 
INOIR. E9 

~-~-

JUMI' 'JP' (lVI 	 FD 
E9 

CD DC D4 CC C4 EC E( FC F4 
~~-

'CAlL' IMMED. no 0 n n 0 n 0 0 0 0 
EXT. n 0 0 0 n n n 0 0 

DECREMENT 8, 
JUMP IF NON 	 RELATIVE PC" 10 
ZERO 'OJNZ' 	 ~2 

RETURN REGISTER IsPI C9 DB DO C8 CO E8 EO Fa FO 1 
'RET' 	 INDIR. IsP+lI 

RETURN FROM 	 REG, ISPI ED 
INT'RET.· 	 INOIR. ISP+ll 40 

RETURN FROM 
REG. ISPI ED 
INOIR. 45 

NON MASKAB LE 
(SP..."INT"RETN' 

Fig. 4.18: 	Jump Instructions 

A detailed discussion of the various addressing modes is presented 
in Chapter 5, 

By examining Figure 4.18, it becomes apparent that many ad­
dressing modes are restricted. For example, the absolute jump lP nn 
can test four flags, while lR can only test two flags. 

Note an important observation: lR tends to be used whenever 
possIble as it is shorter than lP (one less byte) and facilitates program 
relocation. However, JR and JP are not interchangeable: JR cannot 
test the parity or the sign flags. 
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One more type of specialized branch is available; this is the restart or 
RST instruction. It is a one-byte instruction which allows jumping to 
anyone of eight starting addresses at the low end of the memory. Its 
starting addresses are, in decimal, 0, 8, 16,24, 32, 40, 48 and 56. It is a 
powerful instruction because it is implemented in a single byte. It pro­
vides a fast branch, and for this reason is used essentially to respond to 
interrupts. However, it is also available to the programmer for other 
uses. A summary of the opcodes for this instruction is shown in Figure 
4.19. 

'RSTO' 

'RSTS' 

C 'RST 16' 

A 'RST 24' 

0 
0 
R 
E 'RST 32' 

S 
S 

'RST 40' 

'RST 4S' 

'RST 56' 

A 
L 
L 

H Indlcat.. a hexldeclmal number. 


Fig. 4.19: Restart Group 


Input/Output Instructions 

Input/output techniques will be described in detail in Chapter 6. 
Simply, input/output devices may be addressed in two ways: as 
memory locations, using anyone of the instructions that have already 
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been described, or using specific input/output instructions. Usual 
memory addressing instructions use three bytes: one byte for the op­
code and two bytes for the address. As a result, they are slow to ex­
ecute, since they require three memory accesses. The main purpose of 
specialized input/output instructions is to provide shorter and, 
therefore faster, instructions. However, input/output instructions have 
two disadvantages. 

First, they "waste" several of the precious few opcodes available 
(since usually only 8 bits are used to supply all opcodes necessary for a 
microprocessor). Secondly, they require the generation of one or more 
specialized input/output signals, and therefore "waste" one or more of 
the few pins available in the microprocessor. The number of pins is 
usually limited to 40. Because of these possible disadvantages, specific 
input/output instructions are not provided on most microprocessors. 
They are, however, provided on the original 8080 (the first powerful 
eight-bit general-purpose microprocessor introduced) and on the Z80, 
which we know is compatible with the 8080. 

The advantage of input/output instructions is to execute faster by re­
quiring only two bytes. However, a similar result can be obtained by 
supplying a special addressing mode called "page 0" addressing, where 
the address is limited to a field of eight bits. This solution is often 
chosen in other microprocessors. 

The two basic input/output instructions are IN and OUT. They 
transfer either the contents of the specified 110 locations into any of 
the working registers or the contents of the register into the 110 device. 
They are naturally two bytes long. The first byte is reserved for the op­
code, the second byte of the instruction forms the low part of the ad­
dress. The accumulator is used to supply the upper part of the address. 
It is therefore possible to select one of the 64K devices. However, this 
requires that the accumulator be loaded with the appropriate contents 
every time, and this may slow the execution. 

Additionally, the Z80 provides a register-indirect mode, plus four 
specialized block-transfer instructions for input and output. 

In the register-input mode, whose format is IN r, (C), the register 
pair Band C is used as a pointer to the I/O device. The contents of B 
are placed on the high-order part of the address bus. The contents of 
the specified I/O device are then loaded into the register designated by 
r. 

The same applies to the OUT instruction. 
The four block-transfer instructions on input are: INI, INIR 

(repeated INI), INO and INOR (repeated INO). Similarly, on output, 
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they are: OUTI, OTIR, OUTD, and OTDR. 
In this automated block transfer, the register pair Hand L is used as 

a destination pointer. Register C is used as the 110 device selector (one 
out of 256 devices). In the case of the output instruction, Hand L point 
to the source. Register B is used as a counter and can be incremented 
or decremented. The corresponding instructions on input are INI 
when incrementing and IND when decrementing. 

INI is an automated single-byte transfer. Register C selects the input 
device. A byte is read from the device and is transferred to the memory 
address pointed to by Hand L. Hand L are then incremented by 1, and 
the counter B is decremented by 1. 

INIR is the same instruction, automated. It is executed repeatedly 
until the counter decrements to "0". Thus, up to 256 bytes may be 
transferred automatically. Note that to achieve a total transfer of exact­
ly 256, register B should be set to the value "0" prior to executing this 
instruction. 

The opcodes for the input and output instructions are summarized in 
Figures 4.20 and 4.21. 

Control Instructions 

Control instructions are instructions which modify the operating 
mode of the CPU or manipulate its internal status information. Seven 
such instructions are provided. 

The NOP instruction is a no-operation instruction which does 
nothing for one cycle. It is typically used either to introduce a deliberate 
delay (4 states = 2 microseconds with a 2MHz clock), or to fill the gaps 
created in a program during the debugging phase. In order to facilitate 
program debugging, the opcode for the NOP is traditionally all O's. 
This is because, at execution time, the memory is often cleared, i.e., all 
O's. Executing NOP's is guaranteed to cause no damage and will not 
stop the program execution. 

The HALT instruction is used in conjunction with interrupts or a 
reset. It actually suspends the operation of the CPU. The CPU will then 
resume operation whenever either an interrupt or a reset signal is re­
ceived. In this mode, the CPU keeps executing NOP's. A halt is often 
placed at the end of programs during the debugging phase, as there is 
usually nothing else to be done by the main program. The program 
must then be explicitly restarted. 

Two specialized instructions are used to disable and enable the inter­
nal interrupt flag. They are EI and Dl. Interrupts will be described in 
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SOURCE 

REG. 
REGISTER IND. 

A B C 0 E H L IHL) 

IMMED. (n) I~~ 
'OUT 

REG. IC) ED ED ED ED ED ED ED 

IND. 79 41 49 51 59 61 69 


'OUTI' - OUTPUT REG. IC) ED 
Inc HL, Dec b IND. A3 

'OTIR' - OUTPUT, Inc HL. REG. IC) 	 ED
Doc _, REPEAT IF...., IND. 	 B3 BLOCK 

OUTPUT 
'OUTD' - OUTPUT REG. Ie) ED ~ANDI 
Doc HL& B IND. AB 

'OTDR' - OUTPUT, o.c HL REG. Ie) 	 ED 
• B, REPEAT IF B*O IND. 	 BB 

'----v------" 
PORT 

DESTINATION 

ADDRESS 


Fig. 4.20: Output Group 

SOURCE 
PORT ADDRESS 

MMED 	 REG. 
INDIA. 

(n) Ie, 

A D8 ED 
n 78 

8 ..ED 

•• C ..ED 

'r.PUT ',N' 

G 

A 
0 
0 0 	 ED 

50••• ED 
I 	 OIlINPUT •

DESTINATION G 
H 	 ED 


80 


L ..ED 

"N" - INPVT. ED 
InI; Hl, OK B A2 

'INIR'-INP, Inc til, ED 
0..: 8, Rt-PEAT IF 8->00 82.... IHll BLOCK INPUT

IMOIA 
'INO'-INP\JT. ED COMMANDS 
Dote Hl, OK. 	 M 

liNDA'-'NPUT OIK HI.., EDo.c'o RfPUT IF 8-0 8A 

Fig. 4.21: Input Group 
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Chapter 6. The interrupt flag is used to authorize or not authorize the 
interruption of a program. To prevent interrupts from occurring during 
any specific portion of a program, the interrupt flip-flop (flag) may be 
disabled by this instruction. It will be used in Chapter 6. These in­
structions are shown in Figure 4.22. 

'NOP' 

'HALT' 

DISABLE INT '(DI)' 

ENABLE INT '(EI)' 

SET INT MODE 0 
'1Ma' 

ED 
46 8080AMODE 

SET INT MODE 1 
'IM1' 

ED 
56 CALL TO LOCATION 0038H 

SET INT MODE 2 ED INDIRECT CALL USING REGISTER 
'IM2' 5E I AND 8 BITS FROM INTERRUPTING 

DEVICE AS A POINTER. 

Fig. 4.22: Miscellaneous CPU Control 

Finally, three interrupt modes are provided in the Z80. (Only one is 
available on the 8080). Interrupt mode 0 is the 8080 mode, interrupt 1 is 
a call to location 038H, and interrupt mode 2 is an indirect call which 
uses the contents of the special register I, plus 8 bits provided by the in­
terrupting device as a pointer to the memory location whose contents 
are the address of the interrupt routine. These modes will be explained 
in Chapter 6. 
which will also be explained in Chapter 6. They are the IRQ and the 
NMI pins. 
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SUMMARY 

The five categories of instructions available on the Z80 have now 
been described. The details on individual instructions are supplied in 
the following section of the book. It is not necessary to understand the 
role of each instruction in order to start to program. The knowledge of 
a few essential instructions of each type is sufficient at the beginning. 
However, as you begin to write programs by yourself, you should learn 
about all the instructions of the Z80 if you want to write good pro­
grams. Naturally, at the beginning, efficiency is not important, and this 
is why most instructions can be ignored. 

One important aspect has not yet been described. This is the set of 
addressing techniques implemented on the Z80 to facilitate the retrieval 
of data within the memory space. These addressing techniques will be 
studied in the next chapter. 
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THE Z80 INSTRUCTIONS: INDIVIDUAL DESCRIPTION 

ABBREVIATIONS 

FLAG ON OFF 

Carry C (carry) NC (no carry) 
Sign M (minus) P (plus) 
Zero Z(zero) NZ (non zero) 
Parity PE (even) PO (odd) 

• changed functionally according to operation 
o flag is set to zero 
1 flag is set to one 
? flag is set randomly by operation 
X special case, see accompanying note on that page 

bit positions 3 and 5 are always random 
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ADCA,s 	 Add accumulator and specified operand with 
carry. 

Function: A+-A+s+C 


Format: ~: may be r, n, (HL),(IX + d), or (IY + d) 


r 11 10 1 0 1 0 11 1~ <-I 
n 11 11 1 0 1 011 11 11 1 01 	 byte 1: CE 

byte 2: immediate I.. : : 7 : : ;. 1 data 

(HL) 11 1 0 1 0 1 0 11 1 1 11 1 0 1 8E 

(IX + d) 11 11 10 11 11 11 10 11 1 byte 1: DD 

11 1 0 1 0 1 0 11 11 11 1 0 1 byte 2: 8E 

1 .: : : ~ : : :. 1 byte 3: offset value 

(lY + d) 11 11 11 11 1 1 1 1 1 0 1 1 1 byte 1: FD 

11 1 0 1 0 10 11 11 \1 1 0 1 byte 2: 8E 

byte 3: offset valueI'; : : 1 : : : 

r may be anyone of: 

A - 111 E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - 010 
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Description: 	 The operand s and the carry flag C from the status 
register are added to the accumulator, and the 
result is stored in the accumulator. s is defined in 
the description of the similar ADD instructions. 

Data Flow: 
r---------------~ 

DI--__-+-__~ 
HL-__.....l....__--l 

Timing: 	 usec 
s: M cycles: T states: @2MHz: 

r 1 4 2 
n 2 7 3.5 
(HL) 2 7 3.5 
(IX + d) 5 19 9.5 
(IY + d) 5 19 9.5 

Addressing Mode: 	 r: implicit; n: immediate; (HL): indirect; (IX + 
d), (IY + d): indexed. 

Byte Codes: ADC A,r r: ABC 0 E H L 

ISF ISSIS91SA ISB Isc Iso I 

Flags: s z H P,@ N C 

'-I-I 

Example: 	 ADC A,1A 

Before: 	 After: 

AI-I__06_.....l...._1_3_....IFhrl 
~ 
OBJECT CODE 
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ADC HL,ss 

Function: 

Format: 

Description: 

Data Flow: 

Add with carry HL and register pair ss. 

HL +- HL + ss + C 

11 11 11 1 0 11 11 1 0 11 1 byte 1: ED 

10111<5111011101 byte 2 

The contents of the H L register pair are added to 
the contents of the speci fied register pair, and then 
the contents of the carry flag are added. The final 
result is stored back in HL. ss may be anyone of: 

BC - 00 HL 10 

DE - 01 SP - 11 


sp I......______---' 

Timing: 4 M cycles; 15 T states: 75 usec @ 2 MHz 

Addressing Mode: Implicit. 

Byte Codes: ss: Be DE HL SP 

ED-14AISAI6AI7AI 
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Flags: 

Example: 

~ 

e3


OBJECT 

CODE 


s z H PA5il N C 

1-1-1 111 1_101_1 
H is set if there is a carry from bit 11. 

ADC HL, DE 

Before: After: 

~ I-I---~=~~~---I~ D 

H 
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ADD A, (HL) Add accumulator with indirectly addressed 
memory location (HL). 

Function: A +- A + (HL) 

Format: 

Descript ion: 	 The contents of the accumulator are added to the 
contents of the memory location addressed by the 
H L register pair. The result is stored in the ac­
cumulator. 

A 

B 
1----+------1 

DI-__-+___---1 
H L-__-----'-___-' 

C 	

MEMORY 

Timing: 2 M cycles; 7 T states: 3.5 usec @ 2 MHz 

Addressing Mode: Indirect. 

Flags: s z H p;(2) N C 

I_I \_10\_1 
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Example: ADD A, (HL) 

Before: After: 

A 1 02 

H 1'--__9_6_20__--' H LI___9_6_20__--' 

~~~ 

OBJECT CODE 
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ADD A, (IX + d) 	 Add accumulator with indexed addressed 

memory location (IX + d) 

Function: 	 A'- A + (IX + d) 

Format: 
I 111 I 0 11 11 11 I 0 11 I byte 1: DD 

I 1I 0 I 0 I 0 I 0 11 11 I 0 I byte 2: 86 

I ' : :d : byte 3: offset value 

Description: 	 The contents of the accumulator are added to the 
contents of the memory location addressed by the 
contents of the IX register plus the immediate off­
set value. The result is stored in the accumulator. 

A 

B1-----+-----1 
D
1-----+-----1 

H 
'-----'------' 

IXC===~-----~ 

Timing: 5 M cycles; 19 T states: 9.5 usec @ 2 MHz 

Addressing Mode: Indexed. 

Flags: S Z H P;@ N C 

1_101_\ 
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Example: ADD A, (IX + 3) 

Before: 

A .....I __ll_-, 

I x ....1 ___0_B6_1__---l 

After: 

A_WM 

Ix ....1 ___0_B6_1__---l 

DD 
B6 

03 

OBJECT CODE 

0861 
0862 
0863 
0864 

04 
B2 
36 

91 

OB61 
OB62 
OB63 
OB64 

04 

B2 
36 
91 
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ADD A, (IY + d) 	 Add accumulator with indexed addressed 
memory location (IY + d) 

Function: 	 A -- A + (IY + d) 

Format: 
1 1 11 1 1 1 1 1 1 1 1 1 0 1 1 I byte 1: FD 

1 1 I0 I 0 10 I 0 11 	 11 I0 I byte 2: 86 

1 : ~ : byte 3: offset value 

Description: 	 The contents of the accumulator are added to the 
contents of the memory location addressed by the 
contents of the IY register plus the given offset 
value. The result is stored in the accumulator. 

A DATA 

B C 

D E 

H 

lO 
IV 

d
ADD 

Timing: 	 5 M cycles; 19 T states; 9.5 usee @ 2 MHz 

Addressing Mode: 	 Indexed. 

Flags: S Z H PA'Y! N C 

\_\01_\ 
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Example: 

FD 

86 

01 

OBJECT 

CODE 


ADD A, (lY + 1) 

Before: 

A 3_1---.JLI__ 

IX 1'--__00:..:..:.:2B__---I 

0028 h==1002C[2g 

THE'Zao INSTRUCTION SET 

After: 

A 

IX IL....___00.:...:..::..:28=---_---1 

M0028 

002C~ 
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ADDA,n Add accumulator with immediate data n. 

Function: A+-A+n 

Format: 
11 11 I 0 I 0 I 0 11 11 I 0 I byte 1: C6 

I· : : 7 : I byte 2: immediate 
data 

Description: The contents of the accumulator are added to the 
contents of the memory location immediately 
following the op code. The result is stored in the 
accumulator. 

Data Flow: 

A 

B 

,-----------------, 

D I-------+--------i 

H "-­____----L______--' 

ADD 
n 

Timing: 2 M cycles; 7 T states: 3.5 usee @ 2 MHz 

Addressing Mode: Immediate. 

PIG) N CFlags: 	 S Z H 

Example: 	 ADD A, E2 

Before: After: 

M A L-I_-"43'-----' 

~ 
OBJECT CODE 
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ADDA,r 

Function: 

Format: 

Description: 

Data Flow: 

Add accumulator with register r. 

A+-A+r 

11 I0I0I0I0I~ r ~I 

The contents of the accumulator are added with 
the contents of the specified register. The result is 
placed in the accumulator. r may be anyone of: 

A-Ill E - 011 
B - 000 H 100 
C - 001 L - 101 
D - 010 

A 

B 

D 

H 

r-----t-----i 

f----+------j 

'---::::====~:::::::::::::-' 

Timing: 1 M cycle; 4 T states: 2 usec @ 2 MHz. 


Addressing Mode: Implicit. 


Byte Codes: r: ABC D E H l 


187180 181 182183184 185 I 

Flags: s z H P/® N C 
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PROGRAMMING THE ZSO 

Example: ADD A, B 

Before: After: 

AI A3D 

B I 02 BI 02 

OBJECT CODE 
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ADD HL,ss Add HL and register pair SiS. 


Function: HL +- HL + ss-


Format: 


Description: 	 The contents of the specified register pair are 
added to the contents of the HL register pair and 
the result is stored in HL. ss may be anyone of: 

BC - 00 HL - 10 
DE - 01 SP - 11 

Data Flow: .----------------------------, 

SP 1-1_____---' 

Timing: 3 M cycles; 11 T states: 5.5 usec @ 2 MHz 

Addressing Mode: Implicit. 

Byte Codes: ss: BC DE HL SP 

1091191291391 

Flags: s z H PlY N C 

1 1 

C is set by carry from bit 15, reset otherwise. 

H is set by a carry from bit 11 
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Example: 	 ADD HL, HL 

Before: After: 

HLI__~06:.::..Bl~_--.-..JIL H_Q,9§.¥.WML 

~ 
OBJECT 

CODE 
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ADD IX, rr Add IX with register pair rr. 

Function: IX +- IX + rr 

Format: 
,--I1-,-1_1--,-1_o-1-1_1.L-I1-,1_1--1...1_0-,-I------,11byte I: D D 

,--10--,-1_°-".-1---"<-.1-1_1L-I°-,1_°--,-1---,11byte 2 

Description: The contents of the IX register are added to the 
contents of the specified register pair and the 
result is stored back in IX. rr may be anyone of: 

Be - 00 
DE - 01 

IX 10 
SP - 11 

Data Flow: 

A 

{ ~r------4------~ 

H '-­____--1.______-' 

sp/
'-----------------' 

Timing: 4 M cycles; 15 T states: 7.5 usec @ 2 MHz 

Addressing Mode: Implicit. 

Byte Codes: 
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Flags: S Z H PN N C 

I? I 101_1 
H is set by carry out of bit 11. 
e is set by carry from bit 15. 

Example: 

~ 

~ 


OBJECT 

CODE 


ADD IX, SP 


Before: 


Ixl,-___0000___--' 

spl,-___3_02_1__--' 

After: 

IXw;;,;;M@W#fiNdid 

spi 3021 
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ADDIY, rr 	 Add IY and register pair rr. 

Function: 	 IY +- IY + rr 

Format: 
I 1 I 1 1 1 I 1 1 1 1 1 1 0 1 1 1byte 1: FD 


I 0 I 0 1 r : r I 1 I 0 I 0 1 1 I byte 2 


Description: 	 The contents of the IY register are added to the 
contents of the specified register pair and the 
result is stored back in IY. rr may be anyone of: 

Be - 00 IY 10 

DE - 01 SP 11 


Data Flow: 

{ 
A 
~ ]------+-------, 

H 

SPL...I______-' 

Timing: 4 M cycles; 15 T states: 7.5 usec @ 2 MHz 

Addressing Mode: Implicit. 

Byte Codes: rr: Be DE IV sp 

FD- I09119\29\391 
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Flags: 

Example: 

h;=1

E29


OBJECT 

CODE 


s z H PN N C , , I? I 101_' 
H is set by carry out of bit 11. 

e is set by carry out of bit 15. 


ADD IY, DE 

After: 

D~I_____6_12_2____~IE DI~_____6_12_2____~IE 

Before: 

IviL._____3_o5_1____-l 
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AND S 	 Logical AND accumulator with operand s. 

Function: 

Format: 	 s: may be r, n, (HL), (IX + d), or (IY + d) 

r 11 1011 101 0I~ r7-1 

n 1 1 1 1 1 1 1 0 I0 1 1 1 1 I0 1 byte 1: E6 

I. : : : 	7 : : : 1 ~~~~ 2: immediate 

(HL) 11 1 0 11 1 0 1 0 11 11 I0I A6 

(IX + d) 11 11 1 0 11 11 11 1 0 11 1 byte 1: DD 

11 1 0 1 1 1 0 1 0 11 1 1 1 0 I byte 2: A6 

I·: : : ~ : : : ·1 byte 3: offset value 

(IY + d) 	 1 1 1 1 I1 1 1 11 1 1 1 0 1 1 1 byte 1: FD 

1 1 1 0 11 1 0 I 0 1 1 1 1 1 0 1 byte 2: A6 

I·: : : ~ : : : ·1 byte 3: offset value 

r may be anyone of: 

A - 111 E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - 010 

Description: 	 The accumulator and the specified operand are 
logically 'and'ed and the result is stored in the ac­
cumulator. s is defined in the description of the 
similar ADD instructions. 
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Data Flow: 

~----I

Timing: 	 usec I 
s: M cycles: T states: @ 2 MHz: 

r 	 1 4 2 
in 	 2 7 3.5 
(HL) 2 7 3.5 
(IX + d) 5 19 
(lY + d) 5 19 J_ ~~~ ___ 

Addressing Mode: 	 r: implicit; n: immediate; (HL): indirect; (IX + 
d), (IY + d): indexed. 

Byte Codes: 	 AND r r: ABC D E H L 

IA71AOIAIIA21A31A41ASI 

Flags: s z H CBYv N C 

1-1-1 III 1-10101 

Example: 	 AND4B 

Before: 	 After: 

~ 

~ 


OBJECT 
CODE 
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THE zao INSTRUCTION SET 

BIT b, (HL) 	 Test bit b of indirectly addressed memory location 
(HL) 

Function: 	 z +- (HL)b 

Format: 
011 11 10 10 11 1 	11 11 1byte 1: CB 

I 0 	 1 011 l--+b+--11 11 1 byte 2 

Description: 	 The specified bit of the memory location address­
ed by the contents of the HL register pair is tested 
and the Z flag is set according to the result. b may 
be anyone of: 

0-000 4 - 100 
1 - 001 5 - 101 
2 - 010 6 - 110 
3 - 011 7 III 

Data Flow: 
A ___---+-----""""'----1 

~f---+---------l: 111'--------' 

Timing: 3 M cycles; 12 T states; 6 usec @ 2 MHz 

Addressing Mode: Indirect. 

5 Z H P/V 	 N CFlags: I~?.-'=--1.-'-1-'--':'11':'-1---r-I?TOJ] 
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Byte Codes: b: 	 0 1 2 3 4 S 6 7 

CB- I4614E IS61SE 166 16E 17617E I 

Example: 	 BIT 3, (HL) 

Before: After: 

00 IF ~~~F 
, L HI 6A42 	 IL HI 6A42 

OBJECT CODE 
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BIT b, (IX + d) 	Test bit b of indexed addressed memory location 
(IX + d) 

Function: 	 Z - (IX + d)b 

Format: GJ 1 1 0 11 11 11 	 10 11 I byte 1: DD 

1 1 1 1 1 0 1 0 11 1 0 	 11 11 I byte 2: CB 

---- ~: : .1 byte 3: offset value 

1 0 1 1 1-+ b +--1 1 	 11 10 1 byte 4 

Description: 	 The specified bit of the memory location address­
ed by the contents of the IX register plus the given 
offset value is tested and the Z flag is set according 
to the result. b may be anyone of: 

0-000 5 - 101 
1 - 001 6 110 
2 - 010 7 - III 
3 - 011 
4 - 100 

Data Flow: 
A 

1------+---""''''''------1 c 

B 1-----+-------1 

D 
\-----+-------1 

H 
'------'-----' 

IXL-________r------------~ 

BIT 

d 

b 
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s z H PN N C 

Timing: 5 M cycles; 20 T states: 10 usec @ 2 MHz 

Addressing Mode: Indexed. 

Byte Codes: b: 0 1 2 3 4 S 6 7 

OO-CB-d- \46\4E \56\SE \66\6E \76 17E I 
Flags: 

Example: BIT 6, (IX + 0) 

Before: After: _If_FCl IF 

IX I AAll ~ IX I AAll 

DO 
CB 
o 
76 

OBJECT CODE 

I 
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BIT b, (lY + d) Test bit b of the indexed addressed memory loca­
tion (IY + d) 

Function: 	 Z - (IY + d)b 

Format: 
1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 byte 1: FD 

1 1 1 1 1 0 1 0 1 1 1 0 	 11 1 i 1 byte 2: CB 

I,: : .~ 1: :,1 byte 3: offset value 

1 0 1 1 1-+b+-I 1 11 I0 I byte 4 

Description: 	 The specified bit of the memory location ad­
dressed by the contents of the IY register plus the 
given offset value is tested and the Z flag is set ac­
cording to the result. b may be anyone of: 

0-000 4 - 100 
1 - 001 5 - 101 
2 - 010 6 - 110 
3 - 011 7 - 111 

Data Flow: 

AI--__-+-..-.:"--~ F 
B 	 C 

D 	 E 
H 
'------"-----' 

1YL-__________-Y------------------~ 

BIT 

d 

b 
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Timing: 	 5 M cycles; 20 T states; 10 usec @ 2 MHz 

Addressing Mode: Indexed. 


Byte Codes: b ; 0 I 2 3 4 S 6 7 


FD_CB_d_1 46 14E IS61SE 166 16E 176 17E I 

Flags: 	 s Z H PN N C 

I? I-I II I I ? I0 I I 

Example: 	 BIT 0, (IY + 1) 

Before: After: 

92 IF _I?Q_F 
Iyl FFI2 =:::J Iyl FF12 I 

FD FF12~ FFI2M 
CB FF13~ FF13~ 
01 

46 

OBJECT CODE 
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BIT b, r 	 Test bit b of register r. 

Function: 

Format: I 1 I 1 I0 I0 11 I0 11 11 I byte 1: CB 

1011 I-+b+-I-+,+-I byte 2 

Description: 	 The specified bit of the given register is tested and 
the zero flag is set according to the results. band r 
may be anyone of: 

b: 	 0-000 4 - 100 
1 - 001 5 - 101 
2 - 010 6 - 110 
3 - 011 7 - III 

r: 	 A - III E - 011 
B - 000 H - 100 
C - 001 L - 101 
0-010 

Data Flow: t~ 	 1L 
A 	 F 

\ /
~.f1 

B 	 c 
D 	 E ALU 
H 	 L ----r- I I 

Timing: 	 2 M cycles; 8 T states; 4 usec @ 2 MHz 

Addressing Mode: 	 Implicit. 
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Byte Codes: b: r· ABC D E H L 

CB- 0 47 40 41 42 43 44 45 

4F 48 49 4A 4B 4C 4D 

2 57 50 51 52 53 54 55 

3 5F 58 59 5A 5B 5C 5D 

4 67 60 61 62 63 64 65 

5 6F 68 69 6A 6B 6C 6D 

6 n 70 71 72 73 74 75 

7 7F 78 79 7A 7B 7C 7D 

Flags: S Z H PIV N C 

Example: BIT 4, B 

Before: After: 

BLI_.:..:61_--1BLI_...:::6.:....1---.J 

OBJECT CODE 
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CALL CC, pq 

Function: 

Format: 

Description: 

Call subroutine on condition. 

if cc true: (SP - 1) .- PChigh; (SP - 2) .­
Pqow; SP .- SP - 2; PC ..- pq 

If cc false: PC ..- PC + 3 

byte 111 11 l-+cc~11 10 I 0 I 
byte 2: address, I,: : : ~-:-i-:-·I low order 
byte 3: address, Ii: : f-i-i-i-I high order 

If the condition is met, the contents of the pro­
gram counter are pushed onto the stack as de­
scribed for the PUSH instructions. Then, the con­
tents of the memory location immediately follow­
ing the opcode are loaded into the low order of the 
PC and the contents of the second memory loca­
tion after the the opcode are loaded into the high 
order half of the Pc. The next instruction fetched 
will be from this new address. If the condition is 
not met, the address pq is ignored and the follow­
ing instruction is executed. cc may be anyone of: 

NZ - 000 PO - 100 
Z - 001 PE - 101 

NC - 010 P 100 
C - 011 MIll 

An RET instruction can be used at the end of the 
subroutine being called to restore the Pc. 

219 



PROGRAMMING THE laO 

Dala Flow: 

f----+------1 
f------+----I 

f------+----I 

'------'-------' 

sP •••••-i 

A 


B 


D 

H 

PC 

Timing: usee 
M cycles: T states: @2MHz 

condition 
true: 5 17 8.5 
condition 
not true: 3 10 5 

Addressing Mode: Immediate. 

CC: NZ. Z NC C PO PE P MByte Codes: 
E@T4 1 DC I E4 fECJ!4FJ -q-p 

Flags: S Z H PIV N C

[Ir-IT I I I (no effect) 
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Example: CALL Z, B042 

Before: After: 

'--_s_5_---.J1 F 85 IF 

PC OBO_l__----'LI___ 

SP -=-=BB:..:..:12=--_--1 SP LI__--=B:..:..:B.;.::12__----.JLI__ 

CC BBlO SF BB1°1----=.:.8F_--I 

BBll 04 BBll 04 
1------1 

BB12 32 BB12 1--_32_--1 

OBJECT CODE 
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CALL pq 

Function: 


Format: 


Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Call subroutine at location pq. 

(SP - 1) +- PChigh; (SP - 2) +- PCJow; SP +- SP 
2; PC +- pq 

I 1 I 1 I 0 I 0 11 11 I 0 11 I byte 1: CD 

-----~ : ·1 byte 2: address, low order 

E~_~~L~_~i=J byte 3: address, high order 

The contents of the program counter are pushed 
onto the stack as described for the PUSH instruc­
tions. The contents of the memory location im­
mediately following the opcode are then loaded in­
to the low order half of the PC and the contents of 
the second memory location after the opcode are 
loaded in the high order half of the Pc. The next 
instruction will be fetched from this new address. 

A 

SP 

5 M cycles; 17 T states: 8.5 usec @ 2 MHz 

Immediate. 

"-----I----~
B"-__--I-___~ 

D~--~---~ 
H "--__---'___....J 

pc ••••• 
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Flags: 

Example: 

CD 

B1 

40 

OBJECT CODE 

THE zao INSTRUCTION SET 

PlY N C 

I I I (no effect) 

CALL 

Before: 

PC I 


SP I 


OB12 9A 

OB13 01 

OB14 F4 

40BI 

After: 

AA40 

OB14 

OB12 

OB13 

OB14 f-----l 
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CCF Compl~ment carry flag. 


Function: C +- C 


Format: 


Description: The carry flag is complemented. 

Data Flow: 

Timing: 1 M cycle; 4 T states: 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: 5 Z H PlY N C 

I I I 
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CP s 	 Compare operand s to accumulator. 

Function: 	 A - s 

Format: 	 s: may be T, n, (HL), (IX + d), or (IY + d). 

r 11 I 0 I 1 11 11 l~r71 

n 11 11 11 11 11 11 11 I 0 I FE 

byte 2: immediate I,: : : 7 : : : I data 


(HL) I 1 I 0 I 1 I 1 I 1 I 1 I 1 I 0 I byte 1: BE 


(IX + d} 11 11 I 0 11 11 11 I 0 11 I byte 1: DD 

11 10 11 11 11 11 \1 I 0 I byte 2: BE 

I,: : : 1 : : : I byte 3: offset value 

(IY + d) 	 I 1 I 1 I 1 I 1 I 1 I 1 I 0 I 1 I byte 1: FD 

11 I 0 11 11 11 11 I 1 I 0 I byte 2: BE 

I,: : : 1 : : : I byte 3: offset value 

r may be anyone of: 

A - III E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - 010 

Description: 	 The specified operand is subtracted from the ac­
cumulator, and the result is discarded. s is defined 
in the description of the similar ADD instructions. 
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Data Flow: .-----'-'-­

Timing: usec 
s: M cycles: T states: @2MHz: 

r 1 4 2 
n 2 7 3.5 
(HL) 2 7 3.5 
(IX + d) 5 19 9.5 
(IY + d) 5 19 9.5 

Addressing Modes: r: implicit; n: immediate; (HL): indirect; 
(IX + d), (IY + d): indexed 

Byte Codes: CP r: r:ABCDEHL

IBF IB8 IB9 IBA IBB IBC IBD I 
Flags: s Z H PASO N c 

1-1-1 I-I 1_111_1 


Example: CP (HL) 

Before: After: 

96 36 AAI IF 

B203HI IL HI B203 IL 

§j 

F 

OBJECT 
CODE 
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CPD 	 Compare with decrement. 

Function: 	 A-[HL];HL-HL-l;BC -BC-l 

Format: 
I 11 1 I 1 I 0 I 1 I 1 I 0 I 1 I byte 1: ED 

[ 1 I 0 I 1 I 0 I 1 I 0 I 0 11 I byte 2: A9 

Description: 	 The contents of the memory location addressed by 
the HL register pair are subtracted from the con­
tents of the accumulator and the result is discarded. 
Then both the HL register pair and the BC register 
pair are decremented. 

Data Flow: r--------------, 

A 

B 
D 

H~~. 

Timing: 4 M cycles; 16 T states: 8 usec @ 2 MHz 

Addressing Mode: indirect. 

Flags: 
S Z H PIV N C

I_I xI I_I Ix 11 I I r-: Reset ifBe = 0 after execution; set otherwise 
t • ~ Set if A = [HL] 
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Example: CPD 

Before: After: 

~ 1-1-=-2A~-31L54-..:..:06=------11 ~ A 

B C 

F 

H LI__....::.8.:..:6B..:..:5__---.J1 L H...~[1~ L 

~ 
bB 
OBJECT CODE 
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CPDR 

Function: 

Format: 

Description: 

DataFlow: 

A 


B 


D 

Block compare with decrement. 

A- [HL); HL- HL-I; BC- BC-I; 
Repeat until BC = 0 or A = [HL) 

I 1 I 1 I 1 I 0 I 1 I 1 I 0 I 1 I byte I: ED 

I 1 I 0 I 1 I 1 I 1 I 0 I 0 I 1 I byte 2: B9 

The contents of the memory location addressed by 
the HL register pair are subtracted from the con­
tents of the accumulator and the result is discard­
ed. Then both the BC register pair and the HL 
register pair are decremented. If BC ~ 0 and A F 
[HL], the program counter is decremented by two 
and the instruction is re-executed. 

H~~. 

Timing: 	 BC = 0 or A = [HL]: 4 M cycles; 16 T states: 
8 usee @ 2 MHz 
BC '* 0 and A '* [HL]: 5 M cycles; 21 T states: 
to.5 usee @ 2 MHz 

Reset ifBe = 0 after
Flags: execution; set otherwise 

L ___=====~ Set if A = [HLJ 
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H 

Example: CPDR 

Before: After: 

9A 00 A 

0002 B~I I~ 

6100HI IL 

60FE 1----=..:08~~hrl 60FEis 
60FF 00 60FF ~--=":OO~-It;g 6100 2A 6100 1--_2_A-'---I 

OBJECT CODe 
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Timing: 4 M cycles; 16 T states: 8 usec @ 2 MHz 


Addressing Mode: indirect. 


Flags: 


S Z H PIV N CI_I x I I_I Ix I 1 I I r- Reset ifBe = 0 after execution set otherwise 
t • I I Set if A = [HL) 

CPI 

Function: 

Format: 

Descript ion: 

Data Flow: 

A 

B 

D

HFIA 


Compare with increment. 

A-[HL);HL-HL+ I;BC-BC-I 

I 1 I 1 I 1 I 0 I 1 I 1 I 0 I 1 I byte I: ED 

11 I 0 I 1 I 0 I 0 I 0 I 0 I 1 byte 2: Al 

The contents of the memory location addressed by 
the HL register pair are subtracted from the con­
tents of the accumulator and the result is discarded. 
The HL register pair is incremented and the BC 
register pair is decremented. 
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Example: 	 CPI 

Before: After: 

~ 00 	 A F 

0510 B 	 C~I 	 I~ 
HI 86B9 	 IL HWM'Mi~. 

~ ~,,~ ~9~
Al 

OBJECT CODE 
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CPIR 

Function: 

Description: 

DataFlow: 

A 

B 

D 

H 

THE 180 INSTRUCTION SET 

Block compare with increment. 

A-[HL];HL- HL + l;BC-BC -1; 
Repeat until BC = 0 or A = [HL] 

1 I 1 I 1 I 0 I 1 I 1 I 0 I 1 byte 1: ED 

I 1 I 0 I I 1 I 0 I 0 I 0 I 1 I byte 2: B1 

The contents of the memory location addressed by 
the HL register pair are subtracted from the con­
tents of the accumulator and the result is discarded. 
Then the HL register pair is incremented and the 
BC register pair is decremented. If BC ;tf. 0 and A 
rf:. [HL], then the program counter is decremented 
by 2 and the instruction is re-executed. 

Timing: 	 BC = 0 or A = [HL] : 4 M cycles; 16 T states: 
8usec@2MHz 
BC t= 0 and A ~ [HL] : 5 M cycles; 21 T states: 
10.5 usee @ 2 MHz 

Addressing Mode: 	 indirect. 
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Flags: 

S Z H PIV N CI_I xI I_I Ix 11 I I ~Reset ifBe = 0 after execution; set otherwise 
f • IJ Set if A = [HL] 

Example: CPIR 

Before: After: 

:1 
 9B 00 A 


0051 B 

039BHI I L 

B1 039C 9B 039C 9B 

039D 06 039D 06 


OBJECT CODE 


fij ='i ""i 
H~mp,"'L 
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CPL 	 Complement accumulator. 

Function: 

Format: 

Description: 	 The contents of the accumulator are com­
plemented, or inverted, and the result is stored 
back in the accumulator (one's complement). 

Data Flow: 

Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

s z H PIV N CFlags: 

Example: 	 CPL 

Before: After: 

OBJECT 
CODE 
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DAA Decimal adjust accumulator. 

Function: See below. 

Format: 
I 0 I 0 I 1 I 0 I 0 I 1 I 1 I 1 I 27 

Description: The instruction conditionally adds "6" to the right 
and/or left nibble of the accumulator, based on the 
status register, for BCD conversion after arithmetic 
operations. 

N C 
value of 

high nibble H 
value of 

low nibble 
# added 

to A 
C after 

execution 

0 
(ADD, 
ADC, 
INC) 

0 
0 
0 
0 
0 
0 
1 
1 
1 

0-9 
0-8 
0-9 

A-F 
9-F 

A-F 
0-2 
0-2 
0-3 

0 
0 
1 
0 
0 
1 
0 
0 
1 

0-9 
A-F 
0-3 
0-9 
A-F 
0-3 
0-9 

A-F 
0-3 

00 
06 
06 
60 
66 
66 
60 
66 
66 

0 
0 
0 
1 
1 
1 
1 
1 
1 

1 
(SUB, 
SBC, 
DEC, 
NEG) 

0 
0 
1 
1 

0-9 
0-8 
7-F 
6-F 

0 
1 
0 
1 

0-9 
6-F 
0-9 
6-F 

00 
FA 
AO 
9A 

0 
0 
1 
1 

Data Flow: 
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Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: S Z H 0v N C 

I-I I-I 

Example: 	 DAA 

Before: After: 

~ 
OBJECT 
CODE 
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DEem Decrement operand m. 


Function: m+-m-l 

Format: m: may ber, (HL), (IX+d), (lY+d ) 

r I 0 I 0 l--;-r~1 1 I0 I 1 I 
(HL) 1 0 1 0 11 11 1 0 11 1 0 1 1 I 35 

(IX + d) 11 11 1 0 11 11 11 1 0 1 1 1 byte I: DD 

1 0 1 0 11 11 1 0 11 1 0 1 1 1 byte 2: 35 

I·: : : 1 : : :' 1byte 3: offset value 

(IY + d) 11 11 11 11 11 11 1 0 11 1 byte 1: FD 

1 0 1 0 11 11 1 0 11 1 0 11 1 byte 2: 35 

I,: : : 1 : : : ·1 byte 3: offset value 

r may be anyone of: 

A - III E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - 010 

Description: The contents of the location addressed by the 
specific operand are decremented and stored back 
at that location. m is defined in the description of 
the similar INC instructions. 

Data Flow: 
~--

AI--__t--_--. 
B C 

o E 

H l 
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Timing: 	 usee 
m: M cycles: T slales: @ 2 MHz: 

r 1 4 2 
(HL) 3 1 I 5.5 
(IX + d) 6 23 11.5 
(lY + d) 6 23 11.5 

Addressing Mode: 	 r: implicit; (HL): indirect; (IX + d), (lY + d): in­
dexed. 

Byte Codes: 	 DEC r r: ABC D E H l 

I3D I05 1 aD 1 15 IlD I25 1 2D I 

Flags: s Z H PM N C 

I-I '_Ill I'-1-' 
Example: 	 DEC C 

Before: After: 

Ic 
__C 

§j OF 

OBJECT 

CODE 
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PROGRAMMING THE lSO 

DEC rr 	 Decrement register pair rr. 

Function: rr~rr-I 

Format: 

Description: 	 The contents of the specified register pair are 
decremented and the result is stored back in the 
register pair. rr may be anyone of: 

Be - 00 HL 10 
DE - 01 SP - II 

Data Flow: 

splL-______....J 

Timing: 	 I M cycle; 6 T states; 3 usec @ 2 MHz 

Addressing Mode: 	 Implicit. 

Byte Codes: rr : Be DE HL SP 

1OB 11 B12B 138 1 
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Flags: S Z H P/V N C 

I I I I I (no effect). 
~~~~~~~~~ 

Example: DEC BC 

Before: After: 

OBJECT CODE 
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DEC IX 

Function: 


Format: 


Description: 

Decrement IX. 

IX -- IX - 1 

1 1 1 1 1 0 1 1 11 11 10 11 1 byte 1: DD 

1 0 1 0 1 1 1 0 11 10 11 11 1 byte 2: 2B 

The contents of the IX register are decremented 
and the result is stored back in IX. 

Data Flow: 
A 
1-----+-----,

B C 
DI-----+---~ E 

H 
'-------'-------' 

Timing: 2 M cycles; 10 T states; 5 usec @ 2 MHz 

Addressing Modes: Implicit. 

PlY N CFlags: s z H 

(no effect). 
1 1 

Example: DEC IX 

Before: After: 

IXLI___6_11_4___ 

~ 

~ 

OBJECT CODE 
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DEC IY 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Flags: 

Example: 

~ 

~ 

OBJECT CODE 

THE laO INSTRUCTION SET 

Decrement IY. 

IY'- IY - 1 

1 1 I 1 1 1 1 1 1 1 1 1 1 0 11 I byte 1: FD 

1 0 1 0 1 1 1 0 I 1 1 0 I 1 11 I byte 2: 2B 

The contents of the IY register are decrement eo 
and the result is stored back in IY. 

A 
Br-----~-------,C 

D 
H1-------+-------, 

IY 

2 M cycles; 10 T states; 5 usec @ 2 MHz 

Implicit. 

s Z H PIV N C 

I'----'--I-----"-----'-I---L~I W (no effect). 

DEC IY 

Before: After: 

IY L___900_F___---' 
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DI 

Function: 

Format: 

Description: 

Timing: 

Addressing Mode: 

Flags: 

Disable interrupts. 

IFF +- 0 

The interrupt flip-flops are reset, thereby disabling 
all maskable interrupts. It is reenabled by an EI 
instruction. 

1 M cycle; 4 T states; 2 usec @ 2 MHz 

Implicit. 

s z H PN N C 

I (no effect). I I 
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D 

H 

Timing: 	 B i= 0: 3 M cycles; 13 T states; 6.5 usec @ 2 MHz. 
B = 0: 2 M cycles; 8 T states; 4 usec @ 2 MHz 

Addressing Modes: 	 Immediate. 

DJNZ e 

Function: 


Format: 


Description: 

Data Flow: 

THE zao INSTRUCTION SET 

Decrement B and jump e relative on no zero. 

B +- B-1; if B i= 0: PC +- PC + e 

I 0 I 0 I 0 I 1 I 0 I 0 	 10 10 I byte 1: 10 

I·: : e;2 : 	 : : I byte 2: offset value 

The B register is decremented. If the result is not 
zero, the immediate offset value is added to the 
program counter using two's complement 
arithmetic so as to enable both forward and 
backward jumps. The offset value is added to the 
value of PC + 2 (after the jump). As a result, the 
effective offset is -126 to + 129 bytes. The as­
sembler automatically subtracts from the source 
offset value to generate the hex code. 

DJNZ 

e-2 
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Flags: s z H PIV N C 

I I I I I I I (no effect) 

Example: DJNZ $ - 5 ($ = current PC) 

Before: After: 

51 IBM pcl OOE1 PC 

~ 

OBJECT CODE 
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EI 

Function: 

Format: 

Description: 

Timing: 

Addressing Mode: 

Flags: 

Example: 

Enable interrupts. 

IFF +- 1 

The interrupt flip- flops are set, thereby enabling 
maskable interrupts after the execution of the in­
struction following the EI instruction. In the mean­
time maskable interrupts are disabled. 

1 M cycle; 4 T states; 2 usec @ 2 MHz 

Implicit. 

S Z H PN N C 

IL--LI----'------L---'--.L-I----,-1---,-1---,I (no effect). 

A usual sequence at the end of an interrupt routine is: 

EI 

RET! 

The maskable interrupt is re-enabled following 

completion of RET!. 
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EX AF, AF' 	 Exchange accumulator and flags with alternate 
registers. 

Function: 

Format: 
I 0 I 0 I 0 I 0 I 1 I 0 I 0 I0 I 08 

Description: 	 The contents of the accumulator and status 
register are exchanged with the contents of the 
alternate accumulator and status register. 

Data Flow: 

B ~ ¢:) B' ~:£:2i:£:2i~~:£:2i~'"4 C' 
f-----+---~ 

D D' E' 

H H' L' 

Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: S Z H PN N C 

1-1-1-1-1-1-1-1-1 

Example: 	 EX AF. AFI 

Before: 	 After: 

04 	 90AI 81 IF AI I .3A>/=1~"1 F 

All 90 3A IF' AI [ o~" I :8!'D£lFI 

OBJECT CODE 
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EXDE,HL 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Flags: 

Example: 

OBJECT CODE 

Exchange the HL and DE registers. 

DE-HL 

11 I 1 11 1 0 I 1 1 0 11 11 1 EB 

The contents of the register pairs DE and HL are 
exchanged. 

1 M cycle; 4 T states; 2 usec @ 2 MHz 

Implicit. 

s Z H PlY N C 

(no effect). I 1 1 1 1 1 1 

EX DE, HL 

Before: After: 

A4E6 D 9604 E1"~~""~··""3DI I~ L-···--·-~--·---H A4E6HL 9604 
.-~.~~'"~. 

L 

249 



PROGRAMMING THE Z80 

EX (SP), HL Exchange HL with top of stack. 

Function: (SP) --L; (SP + 1) + H 

Format: 
E3 

Description: 

Data Flow: 

The contents of the L register are exchanged with 
the contents of the memory location addressed by 
the stack pointer. The contents of the H register 
are exchanged with the contents of the memory 
location immediately following the one addressed 
by the stack pointer. 

A~____-+______~ 
B~____-+______--1 
D 

H 

Timing: 5 M cycles; 19 T states; 9.5 usee @ 2 MHz 

Addressing Mode: Indirect. 

Flags: S Z H P/v N C 

L-I---,-1-----"-----,--------"------,---1-----,I------LI-----.ll (no effect). 
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Example: 	 EX (SP), HL 

Before: After 

HI 8290 I L H~§rff~L 
spl spl8409 	 8409 

840A OE 840A 82 


OBJECT CODE 


~ -§J -~ 
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EX (SP), IX Exchange IX with top of stack. 

Function: 

Format: 
1 1 1 1 1 0 11 11 11 1 0 11 byte 1: DD 

[i 1 1 1 1 0 1 0 1 0 11 11 byte 2: E3 

Description: The contents of the low order of the IX register 
are exchanged with the contents of the memory 
location addressed by the stack pointer. The con­
tents of the high order of the IX register are ex­
changed with the contents of the memory location 
immediately following the one addressed by the 
stack pointer. 

Data Flow: 
A 

B 

D 

H 

C 

IX 

spC====:}-,
<--------' 

Timing: 6 M cycles; 23 T states; 11.5 usec @ 2 MHz 

Addressing Mode: Indirect. 

Flags: s z H PN N C 

(no effect). 
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Example: 

w 

~ 

OBJECT CODE 

EX (SP), IX 

Before: 

IxLI___9_2.:....34__---' 

SPLI___0_4_02__---' 

0~2brl 
0403~ 

After: 

Ixll....4........_0"'"'16... .. ~·""JB_ry"";@""z~"'-;@""' 

splL,-__0_~_2__---, 
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EX (SP),IY 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Flags: 

Exchange IY with top of stack. 

(SP) ++ IYlow; (SP + 1) ++ lYhigh 

1 1 1 1 1 1 1 11 11 1 0 11 1 byte I: FD 

1 1 1 1 1 1 0 1 0 1 0 11 11 I byte 2: E3 

The contents of the low order of the IY register 
are exchanged with the contents of the memory 
location addressed by the stack pointer. The con­
tents of the high order of the IY register are ex­
changed with the contents of the memory location 
immediately following the one addressed by the 
stack pointer. 

A 
B~-----+------~c 

D 
H~-----+------~ 

IY 

SP! 
'---------------' 

6 M cycles; 23 T states; 11.5 usee @ 2 MHz 

Indirect. 

s Z H PIV N C 


[J 1 (no effect).
1 1 1 1 
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Example: 

~ 

~ 

OBJECT CODE 

EX (SP),IY 

Before: 

IY 1'--_----:B:.;,..FO=-::3'--_----' 

SP L....I___62_11__---' 

6211~ 
6212~ 

THE zao INSTRUCTION SET 

After: 

SPL....I___62_1_1__---' 

6211~ 
6212~ 
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EXX 	 Exchange alternate registers. 

Function: 

Format: 

Description: 	 The contents of the general purpose registers are 
exchanged with the contents of the corresponding 
alternate registers. 

Data Flow: 
A 

B 

D 

H 

Timing: 	 1 M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: 	 Implicit. 

Flags: s z H PN N e 

I I I I I I I I (no effect). 

Example: 	 EXX 

Before: 	 After: 

A 04 2B F 

B 39 26 e 
D 54 02 

H Fl DO 

ba AI 3F 2A FI A 1 3F 2A FI 

BI 8e 00 e l BI 39 26 CII~ 
DI 93 DO EI DI 54 02 u EI 

OBJECT HI 4F E3 LI H1 Fl ."'00 //,/.;; LI 
CODE 
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HALT 

Function: 

Format: 

Description: 

Timing: 

Addressing Mode: 

Flags: 

Halt CPU. 

CPU suspended. 

CPU suspends operation and executes NOP's so 
as to continue memory refresh cycles, until in­
terrupt or reset is received. 

1 M cycle; 4 T states; 2 usec @ 2 MHz + inde­
finite Nop's. 

Implicit. 

s z H PIV N C 


I I I I I I I (no effect). 
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IMO 	 Set interrupt mode 0 condition. 

Function: Internal interrupt control. 

Format: 
I 1 11 11 I 0 11 I 1 I 0 I 1 I byte I: ED 

I 0 11 I 0 I 0 I 0 11 11 I 0 I byte 2: 46 

Description: 	 Sets interrupt mode O. In this condition, the in­
terrupting device may insert one instruction onto 
the data bus for execution, the first byte of which 
must occur during the interrupt acknowledge cycle. 

Timing: 	 2 M cycle; 8 T states; 4 usec @ 2 MHz 

Addressing Mode: 	 Implicit. 

Flags: S Z H PN N C 

I'----LI----,-----,I-----,----,--I----,-I--L-I---II (no effect). 
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IMl 

Function: 

Format: 

Description: 

DataFlow: 

Timing: 

Addressing Mode: 

Flags: 

Set interrupt mode 1 condition. 

Internal interrupt control. 

[ 1 [ 1 [ 1 [ 0 [ 1 [ 1 [ 0 [ 1 [ byte 1: ED 

I 0 I 1 I 0 I 1 I 0 11 11 I 0 I byte 2: 56 

Sets interrupt mode 1. A RST 0038H instruction 
will be executed when an interrupt occurs. 

0038 I NT 

ROUTINE 

(at time of interrupt) 

h;ri 
~ 

STACK 

2 M cycles; 8 T states; 4 usec @ 2 MHz 

Implicit. 

5 Z H PlY N C 

[ [ I [ I (no effect). 

259 



PROGRAMMING THE zao 

1M2 

Function: 

Format: 

Description: 

Timing: 

Addressing Mode: 

Flags: 

Set interrupt mode 2 condition. 

Internal interrupt control. 

I 1I 1I 1I 0 I 1I 1I 0 I 1I byte I: ED 

I0 11 I0 11 11 11 11 I0 I byte 2: 5E 

Set interrupt mode 2. When an interrupt occurs, 
one byte of data must be provided by the peripheral 
which is used as the low order of an address. The 
high order of this vector address is taken from the 
contents of the I register. This points to a second 
address stored in memory,which is loaded into the 
program counter and begins execution. 

2 M cycles; 8 T states; 4 usec @ 2 MHz 

Implicit. 

s z H P/v N C 

I I I I I I I (no effect) 
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IN r, (C) 

Function: 

Formar: 

Description: 

Dara Flow: 

Timing: 

Addressing Mode: 

Byre Codes: 

THE zao INSTRUCTION SET 

Load register r from port(C) 

r - (C) 

Cl::I~ Ld~I~J~I~8 byte 1: ED 

[yTlJ~-1 0 loG byte 2 

The peripheral device addressed by the contents of 

the C register is read and the result is loaded into 

the specified register. 

C provides bits AO to A 7 of the address bus. 

B provides bits A8 to A15. 


A 
Br---­ c 

PORT 

I 
D E 
Hr---­

L 

(t--­
r may be anyone of: 

A-Ill E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - 010 

3 M cycles; 12 T states; 6 usec @ 2 MHz 

External. 

r: ABC D E H L 

ED ~81 40 I 48 [;({58 L60 ~ 
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Flags: S Z H ®-v N C

1_1°1 , 
It is important to note that INA,(N) does not have 
any effect on the flags, while IN r, (C) does. 

Example: IN 0, (C) 

Before: After: 

A5 A5Ie Ie
6A I PORT D_~~_ 6A IpORT 

AS A5 

OBJECT CODE 
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IN A, (N) Load accumulator from input port N. 

Function: A+- (N) 

Format: 
I 1 I 1 I 

FT: 
0 1 1 1 

: ~ 
1 I 0 1 1 1 1 1 byte I: DB 

: : : ·1 byte 2: port address 

Description: The peripheral device N is read and the result is 
loaded into the accumulator. 
The literal N is placed on lines AO to A7 of the 
address bus. A supplies bits A8 to A15. 

Data Flow: 

Timing: 3 M cycles; II T states; 5.5 usec @ 2 MHz 

Addressing Mode: External. 

Flags: S Z H P/v N C 

(no effect). 1 1LLI I I 

Example: IN A, (B2) 

Before: After: 

84MAl A.n_'--_Fl_---.JI PORT '------,--,Fl_-.JlpORT 
B2 B2 

E29 
OBJECT CODE 
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INC r Increment register r. 

Function: r+-r+l 

Format: 

Description: The contents of the specified register 
cremented. r may be anyone of: 

A-Ill 
B - 000 
C - 001 
D - 010 

E - 011 
H - 100 
L - 101 

are in­

Data Flow: 

Timing: 

Addressing Mode: 

Byte Codes: 

Flags: 

Example: 

§g 

1 M cycle; 4 T states; 2 usec @ 2 MHz 

Implicit. 

r: ABC D E H l 

13C 104 1oc 114 11C 124 12C I 

s z H P,@ N C 

I_I 1_101 I 
INC D 


Before: After: 


D I 06 D 

OBJECT 
CODE 
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Addressing Mode: Implicit. 

Byte Codes: rr: Be. DE HL SP 

1031131231331 

INC rr 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Increment register pair rr. 

rr +- rr + 1 

The contents of the specified register pair are in­
cremented and the result is stored back in the 
register pair. rr may be anyone of: 

Be - 00 HL - 10 
DE - 01 SP - 11 

~ ~I I: l 
spl I 

1 M cycle; 6 T states; 3 usec @ 2 MHz 

265 



PROGRAMMING THE zao 

S Z H PN N CFlags: 
<--I--,--I_IL--L-I----,I--L-I----,1--1-1~I (no effect). 

Example: INC HL 

Before: After: 

OBJECT 
CODE 
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INC (HL) 

Function: 


Format: 


Description: 

THE lao INSTRUCTION SET 

Increment indirectly addressed memory location 
(HL). 

(HL) +- (HL) + 1 

The contents of the memory location addressed by 
the HL register pair are incremented and stored 
back at that location. 

Data Flow: 
.-----~ 

A 
B~---+----'C 

D 
H~---+-------1 

Timing: 3 M cycles; 11 T states; 5.5 usee @ 2 MHz 

Addressing Mode: Indirect. 

Flags: S Z H pNJ N C 

1_101 I 

Example: 	 INC (HL) 

Before: After: 

H....1 ___06:..:.B::....:l______Jll HLI___06~Bl______JIL 

§j ~,,§§ 
OBJECT 
CODE 
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Data Flow: 
.-----, 
~I----+------,c 
D E 

HL...-__--'-__---' 

IXC===~-I 

Timing: 6 M cycles; 23 T states; 11.5 usee @ 2 MHz 

Addressing Mode: Indexed. 

Flags: S Z H pA2) N C 

1_101 I 

INC (IX + d) 

Function: 

Format: 

Description: 

Increment indexed addressed memory location 
(IX + d). 

(IX + d) +- (IX + d) + 1 

11 11 I 0 11 11 11 I 0 11 I byte 1: DD 

I p I 0 I 1 I 1 I 0 ! 1 I 0 I 0 I byte 2: 34 

----1 ., byte 3: offset value 

The contents of the memory location addressed by 
the contents of the IX register plus the given offset 
value are incremented and stored back at that 
location. 
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Example: 	 INC (IX + 2) 

Before: After: 

IX I__--'0:..:..3B::..:1__--1 Ixl~___03_B_1__~ L 

DO 03B1 03B1 
34 03B2 03B2 
02 03B3 03B3 

OBJECT 
CODE 
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INC (IY + d) 

Function: 

Format: 

Description: 

Increment indexed addressed memory location (IY 
+ d). 

(IY +d) -- (lY + d) + 1 

11 11 11 11 11 11 Iali] byte 1: FD 

I a I a 11 11 I a 11 I a I a I byte 2: 34 

~---:-1 byte 3: offset value 

The contents of the memory location addressed by 
the contents of the IY register plus the given offset 
value are incremented and stored back at that 
location. 

Data Flow: 
Ar------, 

B C 
Df-----+------1E 

H 
'------'--------' 

lyL_____r-i 

Timing: 6 M cycles; 23 T states; 11.5 usec @ 2 MHz 


Addressing Mode: Indexed. 


Flags: 
 pA5£) N C 

1-101 I 
S Z H 
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Example: INC (IY + 0) 

Before: After: 

IY,-i__~060:...:..:....1__---I Iyi 0601 
'--------' 

D 0601M 0601~ 
34 

0602eg 0602~ ~00 

OBJECT 

CODE 
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INC IX 


Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Flags: 

Example: 

~ 
l29 
OBJECT CODE 

Increment IX. 

IX +- IX + 1 


11 11 10 11 11 11 10 11 1byte 1: DD 


10 10 11 10 10 10 11 11 1byte 2: 23 


The contents of the IX register are incremented 

and the result is stored back in IX. 


A 
"-----1---_ 

B "--__-I-__--4c 
D E 

IX 


Hl..-__....L.---.:..._---.J 

2 M cycles; 10 T states; 5 usec @ 2 MHz 


Implicit. 


S Z H P/V N C 

LI-L1----L--lI----L---L-1....J.I--L.I_I (no effect). 

INC IX 


Before: After: 

IX LI__-.:B=-.:.'_____---'BO 
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INC IY 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Flags: 

Example: 

~ 

~ 

OBJECT CODE 

Increment IY 

IY +- IY + 1 

I 1 I 1 I 1 I 1 I 1 I 1 I 0 I 1 Ibyte 1: FD 

I 0 I 0 I I I 0 I 0 I 0 I I I I Ibyte 2: 23 

The contents of the IY register are incremented 
and the result is stored back in IY. 

A 

B C 
D 


H 


IV 

2 M cycles; 10 T states; 5 usec @ 2 MHz 

Implicit. 

s Z H P/v N C 


1L-L1_1L-.L-L.....--1...I-L.....1--1...1---,1 (no effect). 


INC IY 

Before: After: 

IY ,I-___3_6_B1__---' 
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IND 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Input with decrement. 

(HL) +- (C); B +- B-1; HL +- HL - 1 

1 1 1 1 1 1 1 0 1 1 11 1 0 11 1 byte 1: ED 

[1JYTlJ 0 11 1 0 I0 I byte 2: AA11 

The peripheral device addressed by the C register 

is read and the result is loaded into the memory 

location addressed by the HL register pair. The B 

register and the HL register pair are then each 

decremented. 


A G2:J 
~ ~E~t==~c --IL.-PO-R--=-T.....J~J 


4 M cycles; 16 T states; 8 usec @ 2 MHz 

External. 

Flags: S Z H PN N C 
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Example: IND 

Before: After: 

Al 65 Ie 6 [8:69:. Ie 
HI 066A IL H_f1jjPDMJL 

61 65 

26 IPORT 26 IPORT 

65 B5 

OBJECT CODE 
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A 

H 

PROGRAMMING THE ZSO 

3 

2 

Timing: B = 0:4 M cycles; 16 T states; 8 usec @ 2 MHz. 
B f; 0:5 M cycles; 21 T states; to.5 usec @ 2 MHz. 

Addressing Mode: External 

Flags: S Z H 

INDR 

Function: 

Format: 

Description: 

Data Flow: 

Block input with decrement. 

(HL) 4- (C); B 4- B-1; HL 4- HL - 1 
Repeat until B = 0 

I 1 I 1 I 1 I 0 I 1 I 1 I 0 I 1 I byte 1: ED 

[1 ! 0 I 1 I 1 11 I 0 11 I 0 I byte 2: BA 

The peripheral device addressed by the C register 
is read and the result is loaded into the memory 
location addressed by the HL register pair. Then 
the B register and the HL register pair are 
decremented. If B is not zero, the program 
counter is decremented by 2 and the instruction is 
re-execu ted. 
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Example: INDR 

Before: After: 

BI 03 56 Ie B~09_ 56 Ie 

09F2HI I L HWlAw.:~f.'" L 

86 IPORT BF IPORT 

56 56 

~BA 

09EF 

09FO 

6A 

EB 

09EF 

09FO 

09Fl 48 09Fl 

OBJECT CODE 09F2 9A 09F2 
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INI 

Function: 

Format: 

Description: 

Input with increment. 

(HL) ... (C); B ... B-1; HL ... HL + 1 

1 1 1 1 1 1 1 a 1 1 1 1 1 a 1 1 1 byte 1: ED 

1 1 1 a 1 1 1 a 1 a I a 11 1 a Ibyte 2: A2 

The peripheral device addressed by the C register 
is read and the result is loaded into the memory 
location addressed by the HL register pair. The B 
register is decremented and the HL register pair is 
incremented. 

The contents of C are placed on the low half of the 
address bus. The contents of B are placed on the 
high half. 1/0 selection is generally made by C, 
i.e., by AO to A 7. B is a byte counter. 

Data Flow: 

Timing: 

Addressing Mode: 

Flags: 

4 M cycles; 16 T states; 8 usec @ 2 MHz 

External. 

S Z H PIV N C 

I ? 1 x I I? 1 
Z is set if B = 0 after execution, 
Reset otherwise 
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Example: INI 

Before: After: 

BL-I__09_----'---_2_1_---'Ie 

86 IpORTL-_8c:-:-6_---'1 PORT 
21 21 


OBJECT eODE 
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INIR 	 Block input with increment. 

Function: 	 (HL)"" (C); B"" B-1; HL"" HL + 1; Repeat 
until B = 0 

Format: 
I 1I 1 I 1 I 0 I 1 I' I 0 11 byte I: ED 

I 1 I 0 I' I' I 0 I0 I' I 0 I byte 2: B2 

Description: 	 The peripheral device addressed by the C register 
is read and the result is loaded into the memory 
location addressed by the HL register pair. The B 
register is decremented and the HL register pair is 
incremented. If B is not zero, the program counter 
is decremented by 2 and the instruction is re­
executed. 

Data Flow: 
A 

D 

H 

B '='===/------, 

Timing: B = 0: 4 M cycles; 16 T states; 8 used @ 2 MHz. 
B *0: 5 M cycles; 21 T states; 10.5 usec @ 2 MHz. 

Addressing Mode: External. 

Flags: s z H PN N C 
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Example: INIR 

Before: After: 

51Ie BEQ§B Ie 

L--__"----_---'Il H..mW.';S8 l 

IPORT .~~_ PORT 
'------:;-:--' 51 

91A5 

91A6 

91A7 
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JP CC, pq 	 Jump on condition to location pq. 

Function: 	 if cc true: PC +- pq 

Format: 

byte 2: address, 
I--:--~ :-1 low order 

byte 3: address, 
--~ : I high order 

Description: 	 If the specified condition is true, the two-byte ad­
dress immediately following the opcode will be 
loaded into the program counter with the first byte 
following the opcode being loaded into the low 
order of the PC. If the condition is not met, the 
address is ignored. cc may be anyone of: 

NZ - 000 no zero 
Z - 001 zero 

NC - 010 no carry 
C - 011 carry 

PO 100 parity odd 
PE 101 parity even 

P 110 plus 
M- III minus 

byte 1 

Data Flow: 
A 
B 1------+----jC 

D 
H 1-----+----1 

PC 
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Timing: 3 M cycles; 10 T states; 5 usec @ 2 MHz 

Addressing Mode: Immediate. 


Byte Codes: NZ Z NC C PO PE P M
cc 
IQI~I~IMlul~I~I~1 

H PIV N CFlags: s Z 

l.----1--L--L----1---1I----LI--LI----,1 (no effect) 

Example: lP C,3B24 

Before: After: 

'----_5=-1_---'1 F 


DA pcj 0032

'-----------' 

24 

3B 


OBJECT CODE 
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JP pq 

Function: 


Format: 


Description: 

Data Flow: 

Jump to location pq. 

PC +-- pq 

I 1 I 1 I 0 I 0 I 0 I 0 I 1 11 I byte 1: C3 

byte 2: address, 

---~ : I low order 


byte 3: address, 

--~ :·1 high order 


The contents of the memory location immediately 
following the opcode are loaded into the low order 
half of the program counter and the contents of 
the second memory location immediately follow­
ing the opcode are loaded into the high order of 
the program counter. The next instruction will be 
fetched from this new address. 

A 1------+----, 
B 	 C 

D 	 E 

H L-__----L___--l 

PC 

Timing: 3 M cycles; 10 T states; 5 usee @ 2 MHz 

Addressing Mode: Immediate. 

s Z H PIV N CFlags: 
,(No effect)I I I I 

Example: 	 JP 3025 

Before: After: 

PC I 5520 PC 

OBJECT CODE 

284 



THE ZSO INSTRUCTION SET 

JP (HL) Jump to HL. 

Function: PC - HL 

Format: 
11 11 11 1 0 11 I0 1 0 11 i E9 

Description: 	 The contents of the HL register pair are loaded in­
to the program counter. The next instruction is 
fetched from this new address. 

Data Flow: 
A 

B C 

D 

H 

u u 
PC 

Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: s Z H PIV N C 

1 1 1 1 1 I (no effect). 

Example: JP (HL) 

Before: After: 

HI 0411 Il HI 0411 Il 

PC I BOO1 PC F¥'.A§~)J~ 


OBJECT CODE 
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JP (IX) 

Function: 

Format: 

Descript ion: 

Data flow: 

Timing: 

Addressing Mode: 

Flags: 

Example: 

M 
~ 

Jump to IX. 

PC +- IX 

[ 1 [1 1 0 11 11 11 10 11 I byte I: DO 

I 1 I 1 1 1 I 0 11 1 0 1 0 11 1 byte 2: E9 

The contents of the IX register are loaded into the 
program counter. The next instruction is fetched 
from this new address. 

A 
f------t-----, 


Bf--__--t___~C 


D 

Hf------t------j 


Ix ,---I-r-r--L-----.-.-----'

U UPC_ 
2 M cycles; 8 T states; 4 usec @ 2 MHz 


Implicit. 


s z H PlY N C 


1 1 1 1 1 1 1(no effect). 


jp (IX) 

Before: After: 

L...I___IX BO_F_1__---' IX 1 BOF1 

PC 1 3B4A 
'------------' 

OBJECT CODE 
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JP (IY) 

Function: 

Formal: 

Description: 

Dala Flow: 

Timing: 

Addressing Mode: 

Flags: 

Example: 

M 
~ 
OBJECT CODE 

THE ZSO INSTRUCTION SET 

Jump to IY. 

PC --- IY 

[ I [ I [ I [I EliaEliJ byte I: FD 

[ I [ I [ I [ 0 [ I [ 0 [ 0 [ I [ byte 2: E9 

The contents of the IY register are moved into the 
program counter. The next instruction will be fet­
ched from this new address. 

A 

B C 

D E 
H 

Iyl 

U U 
PC __ 

2 M cycles; 8 T states; 4 usec @ 2 MHz 

Implicit. 

s z H PIV N C 

L---'-----'-----L-[-L---L[----,-I--1-[----' (n0 effeet) . 

JP (lY) 

Before: After: 

Iyl AA4B Iyl AA4B 

pcl E410 PC ~e;;a&VIAl 
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JR CC, e 	 Jump e relative on condition. 

Function: 	 if cc true, PC +- PC + e 

Format: 
~ I 0 I 1 Ie: c I 0 I 0 I 0 I byte I 

---i-e;2--'--:---'---'-I_., byte 2: offset value 

Description: 	 If the specified condition is met, the given offset 
value is added to the program counter using two's 
complement arithmetic so as to enable both for­
ward and backward jumps. The offset value is 
added to the value of PC + 2 (after the jump). As 
a result, the effective offset is -126 to +129 bytes. 
The assembler automatically subtracts 2 from the 
source offset value to generate the hex code. If the 
condition is not met, the offset value is ignored 
and instruction execution continues in sequence. 
cc may anyone of: 

NZ - 00 	 NC - 10 
Z - 01 	 C 11 

Data Flow: 
,..------,------, 

A 
Br---~----~C 

D 
I-----+----~ 

H 
'------'-----' 

PC 

Timing: usec 
M cycles: T states: @ 2 MHz: 

condition 
met: 3 12 6 
condition 
not met: 2 7 3.5 

288 



THE zao INSTRUCTION SET 

Addressing Mode: Relative. 

Byte Codes: 

Flags: 

Example: 

M 

~ 

OBJECT CODE 

~ 
cc: NZ Z NC C 

/20/28/30/38/ 

S Z H PIV N C 

,-I---1./----1....----1-/....1....--'-/_/1--1-/----'1 (no effect). 


JR NC, $ - 3 $ = current PC 


Before: After: 


00 1F 

PC 1-1___B_OOO__--' PC 
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PROGRAMMI NG THE ZSO 


JRe Jump e relative. 

Function: PC ...... PC + e 

Format: I 0 1 0 1 0 11 11 1 0 1 0 1 0 1 byte 1: 18 

byte 2: offset value 

The given offset value is added to the programDescription: 
counter using two's complement arithmetic so asto 
enable both forward and backward jumps. The off­
set value is added to the value of PC + 2 (after the 
jump). As a result, the effective offset is -126 to 
+ 129 bytes. The assembler automatically subtracts 
2 from the source offset value to generate the hex 
code. 

Data Flow: 
A 
B~-----+------~C 

D 
I---------+------~ 

H 
L------;:=====---.J 

PC 

Timing: 3 M cycles; 12 T states; 6 usec @ 2 MHz 

Addressing Mode: Relative. 

Flags: S Z H PlY N C 

I'------.J...I---,-­-,I-----,-­-----,-I----,-1----,-'---,1 (no effect) 

Example: JR D4 

Before: After: 

PC 1'--____---"B-'-'l00'-"--____---' 

~ (This is a backwards jump.) 

~ 

OBJECT CODE 
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LDdd, (nn) 	 Load register pair dd from memory locations ad­
dressed by nn. 

Function: ddlow .... (nn); ddhigh .... (nn + 1) 

Format: 
[ 1 [ 1 [ 1 [ 0 [ 1 [1 	 [0 [1 1byte 1: ED 

[ d : d I 1 i 0 11 [1 	 I byte 2 

I: 
 I 
 1byte 3: address, 
.--.---n-----. low order 

1
_,-:--_~_+__' -·1 byte 4: address, 
L.---L. .---L_L-..i... .---L._L---'----....J. high order 

Description: 	 The contents of the memory location addressed by 
the memory locations immediately following the 
opcode are loaded into the low order of the 
specified register pair. The contents of the 
memory location immediately following the one 
previously loaded are then loaded into the 
high order of the register pair. The low order byte 
of the nn address immediately follows the opcode. 
dd may be anyone of: 

Be - 00 HL 10 
DE - 01 SP 11 

Data Flow: 

ED 

___--, 
B c n 

n 

SP I : 

A 1­ __-1­

D
HI----I-------l 

~--r------:------i 
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Timing: 6 M cycles; 20 T states; 10 usec @ 2 MHz 

Addressing Mode: Direct. 

Byte Codes: 

Flags: 

Example: 

ED 
5B 

21 

50 

OBJECT CODE 

did: BC DE HL SP 

ED- 14BI5BI6BI7BI 

s z H 

LD DE, (5021) 

Before: 

P/v N C 

(no effect) 

After: 

5021r=ri 5021~ 
5022~ 5022~ 
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LDdd, DD 	 Load register pair d d with immediate data nn. 

Function: dd +- nn 

Format: 
lolol<dlololiliJ byte 1 

byte 2: immediateI· : ~: :' I data, low order 

byte 3: immediate--:---~7: :' I data, high order 

Description: 	 The contents of the two memory locations im­
mediately following the opcode are loaded into the 
specified register pair. The lower order byte of the 
data occurs immediately after the opcode. dd may 
be anyone of: 

Be - 00 HL 10 
DE - 01 SP 11 

Data Flow: 
A 


B 


D 
n 

H 
n:\~ LD 

spi 	 I 

Timing: 	 3 M cycles; 10 T states; 5 usec @ 2 MHz 

Addressing Mode: 	 Immediate. 

Byte Codes: dd: BC DE HL SP 

I 01 111 121 I 31 1 

Flags: 5 Z H PIV N C 

L..-I-L1-----'----1I----L--L-1-LI-----,-I---1 (no effect) 
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Example: LD DE,4131 

Before: After: 

DC'- D .r!1~ E__-'0..:..c39-..:4__---'IE __ 

11 

31 


41 


OBJECT CODE 
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LDr,n 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Byte Codes: 

Flags: 

Load register r with immediate data n. 

10 10 1---+ ,-+-1 1 11 10 1byte 1 

---I- ~ ~--:_. Ibyte 2: immediate data 

The contents of the memory location immediately 
following the opcode location are loaded into the 
specified register. r may be anyone of: 

A-Ill E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - 010 

A 
B f-----t-----, C LD 

n
D 
Hf-----t-------i 

2 M cycles; 7 T states; 3.5 usec @ 2 MHz 

Immediate. 

r: ABC D E H l 

13E 106 1OE 11611E 12612E 1 

s z H PIV N C 

1 I 1 I 1 1 I (no effect). 
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Example: LD C,3B 

Before: After: 

C I 01 

~ 
e=J 
OBJECT CODE 
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THE ZSO INSTRUCTION SET 

LD r, r' 

Function: 


Format: 


Description: 

Data Flow: 

Load register r from register r'. 

I 0 11 1----+ r~I-+r'+-I 
The contents of the specified source register are 
loaded into the specified destination register. rand 
r' may be anyone of: 

A 
B 
C 
D 

- III 
- 000 
- 001 
- 010 

E 
H 
L 

- 011 
100 

- 101 

~~======~======~: \ 


Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

ABC D E H l ~=~e)
Byte Codes: 

A 7F 78 79 7A 78 7C 7D 

8 47 40 41 42 43 44 45 

C 4F 48 49 4A 48 4C 4D 

D 57 50 51 52 53 54 55 

E 5F 58 59 SA 5B 5C 5D 

H 67 60 61 62 63 64 65 

L 6F 68 69 6A 68 6C 6D 

(desl. ) 

PN N CFlags: s z H 

(no effect). I I I I I 
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Example: LD H,A 

Before: After: 

AI BC AI BC 

HI BD HEBC" 

OBJECT CODE 
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LD(BC), A Load indirectly addressed memory location (BC) 
from the accumulator. 

Function: (BC) +- A 

Format: 

Description: The contents of the accumulator are loaded into 
the memory location addressed by the contents of 
the Be register pair. 

Data Flow: 

Timing: 2 M cycles; 7 T states; 3.5 usee @ 2 MHz 

Addressing Mode: Indirect. 

Flags: s z H PN N C 

(no effect). 

Example: 	 LD (BC), A 

Before: After: 

AB 	~__3_F_-'-__---, AS ~_..::.:3F_--J.___--' 
~.___4_10_9__~lc ~.___4_1~___~lc 

,,~eE3 "~E23 
OBJECT CODE 
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A~_____~~~~~----~ 

PROGRAMMING THE lao 

LD (DE), A 	 Load indirectly addressed memory location (DE) 
from the accumulator. 

Function: (DE) +- A 

Format: I0 I0 I 0 II I0 I0 II I0 112 

Description: 	 The contents of the accumulator are loaded into 
the memory location addressed by the contents of 
the DE register pair. 

Data Flow: 

B1---------1-------1 C 
o 	 E 
HL-____-L____------.J 

Timing: 	 2 M cycles; 7 T states; 3.5 usec @ 2 MHz 

Addressing Mode: 	 Indirect. 

Flags: s Z H P/V N C 

(no effect) I I I I 

Example: 	 LD (DE), A 

Before: After: 

AI ED AI ED 

DI 0392 IE 01 0392 IE 

§3 oon§3 ~e 

OBJECT CODE 
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LD(HL), n 

Function: 


Format: 


Description: 

Data Flow: 

Load immediate data n into the indirectly ad­
dressed memory location (HL). 

(HL) +- n 

[~~I~[~ToJ~l __ [. ~_I~ byte 1: 36 
'--1---- r-T-'---l-T-r~ byte 2: immediate 
L~ ---.L ~ I I I:J data 

The contents of the memory location immediately 
following the opcode are loaded into the memory 
location indirectly addressed by the HL data 
pointer 

Timing: 3 M cycles; 10 T states; 5 usec @ 2 MHz 

Addressing Mode: Immediate/indirect. 

Flags: s z H PIV N C 

(no effect). I I I I 
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Example: LD (HL),5A 

Before: After: 

HI'-___A_3_42__----'ll HIL___A_3_42__---'ll 

OBJECT CODE 
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H t-----I---~ 

Timing: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz 

Addressing Mode: Indirect. 

r: A seD E H lByte Codes: 
1771701711721731741751 

LD (HL), r 

Function: 

Format: 

Description: 

Data Flow: 

THE zao INSTRUCTION SET 

Load indirectly addressed memory location (HL) 
from register r. 

(HL) +- r 

1 0 11 11 11 1 0 I-+r+-I 

The contents of the specified register are loaded 
into the memory location addressed by the HL 
register pair. r may be anyone of: 

A-Ill E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - 010 

A 
st-----+-----, 

o 
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Flags: s z H P/V N C 

I I I I I I (no effect). 

Example: LD (HL), B 

Before: After: 

B I 81 B I 81 

H~I_____C_50_1____~ll HL�____~C=50~1____~ll 

OBJECT CODE 
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LD 

d 

THE ISO INSTRUCTION SET 

LD r, (IX + d) 	 Load register r indirect from indexed memory 
location (IX + d) 

Function: 	 r - (IX + d) 

Format: 
11 I1I 0 11 11 11 I0 11 I byte 1: DD 

I 0 11 1-+ r ~Il 11 I0 I byte 2 

I.: : : ~ : : : ·1 byte 3: offset value 

Description: 	 The contents of the memory location addressed by 
the IX index register plus the given offset value, 
are loaded into the specified register. r may be any 
one of: 

A - III E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - 010 

Data Flow: 
A
Br----+-----,C 
o
Hr----+-----I 

IXC===:J-_-.J 

Timing: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz 

Addressing Mode: Indexed. 

Byte Codes: r:ABCDEHL 

D~lnl~I~I~I~I~I~I~ 
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Flags: 

Example: 

DO 

5E 

05 

OBJECT CODE 

s z H PlY N C 

I I I I I (no effect). 

LD E, (IX + 5) 

Before: After: 

IX ,--I___30_20____' IX --'-'30;;:;,20~_ __'1....1__ 

3020 2A 3020 
f.---~ 

3025 15 3025 

2A 
f-----I 

15 
f--~--I 
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Data Flow: 
A 

B c ) 
D ~ )H 

IY 

Timing: 5 M cycles, 19 T states; 9.5 usec @ 2 MHz 

Addressing Mode: Indexed. 

LD r, (lY + d) 

Function: 

Format: 

Description: 

Load register r indirect from indexed memory 
location (lY + d) 

r +- (IY + d) 

I 1 I 1 I 1 I 1 I 1 11 I 0 11 I byte 1: FD 

I 0 11 I-~r~:11 11 10 I byte 2 

I.: : : ~ : : ,. I byte 3: offset value 

The contents of the memory location addressed by 
the IY index register plus the given offset value, 
are loaded into the specified register. r may be any 
one of: 

A-Ill E - 011 
B - ()()() H 100 
C - 001 L - 101 
D - 010 

307 



PROGRAMMING THE lao 

r: ABC D E H LByte Codes: 
FD-'7E '46'4E '56 [~16616E 1- d 

Flags: 5 Z H PIV N C 

Example: LD A, (IY + 2) 

Before: 

A I E3 

IV IL.....___BOO_5__-, 

After: 

IV 1L-.._---:.BOO~5__-' 

FD 

7E 
B005 1----.....;6_1--I 

B007 1----_F9_---l 

B005 1---_6_1---l 

B007 I--_F _ 9 ---I 

OBJECT CODE 
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LD (IX + d), n 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Flags: 

THE lao INSTRUCTION SET 

Load indexed addressed memory location (IX + 
d) with immediate data n. 

(IX + d) +- n 

, 1 , 1 , 0 , 1 , 1 , 1 , 0 , 1 , byte 1: DD 

, 0 1 0' 1 1 1 1 0' 1 , 1 , 0 I byte 2: 36 

1--:---1---:-·1 byte 3: offset value 

1 . :: 1 :=1 byte 4: immediate 
~...l----'--J_1-------L----'-__--'---...J data 

The contents of the memory location immediately 
following the offset are transferred into the 
memory location addressed by the contents of the 
index register plus the given offset value. 

A
f-----+----,

B 
Dr----+---~ 

HL-__---L___-' 

Ixl~______-' 

d 

n 

5 M cycles; 19 T states; 9.5 usee @ 2 MHz 

Indexed/immediate. 

s z H PIV N C 

1 , 1 (no effect). 
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Example: LD (IX + 4), FF 

Before: After: 

IX ''--___B_l_09__---' IX ''--___Bl_09__---' 

DO B109 60 B109 60 
I-----i I-----f 

36 


04 


B100 1----..,;,;;4E'----i 


OBJECT CODE 
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LD (IY + d), n 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Flags: 

Load indexed addressed memory location (lY + 
d) with immediate data n. 

(IY + d) +- n 

1 1 1 1 1 1 1 1 11 11 10 11 I byte 1: FD 

I0 I0 I byte 2: 361 0 1 0 11 11 11 11 

I,: : : 1 : : : ·1 byte 3: offset value 

I·: : : 7 : : :. 1~~~: 4: immediate 

The contents of the memory location immediately 
following the offset are transferred into the me­
mory location addressed by the contents of the 
index register plus the given offset value. 

LD 

d 

n 

IY I~_____-, 

5 M cycles; 19 T states; 9.5 usee @ 2 MHz 

Indexed/immediate. 

s z H PN N C 

1 I 1 1 1 1 1 1 I(no effect). 
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Example: LD (IY + 3), BA 

Before: After: 

IY LI__--=..:01..:.;00=--_---1 IY LI___0.:...:1..:..:00=--_--1 

FD 

36 

03 

BA 

0100 

0103 

D2 

62 

OF 

04 

0100 

0103 

OBJECT CODE 
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LD (IX + d), r 

Function: 

Format: 

Description: 

Data Flow: 
A 

B 

D 

H 

IX 

Timing: 

THE ZSO INSTRUCTION SET 

Load indexed addressed memory location (IX + 
d) from register r. 

(IX + d)~r 

I 1 I 1 1 0 I 1 11 11 I 0 I 1 I byte 1: D D 

I 0 11 11 11 10 I-+,--+-I byte 2 

I,: : : d: : : :. I byte 3: offset value 

The contents of specified register are loaded into 
the memory location addressed by the contents of 
the index register plus the given offset value. r may 
be anyone of: 

A
B 
C 
D 

-Ill 
- 000 
- 001 
- 010 

E 
H 
L 

- 011 
- 100 
- 101 

c ) 
E I 

L ) 


5 M cycles; 19 T states; 9.5 usec @ 2 MHz 
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Addressing Mode: Indexed. 

Byte Codes: r: A 6 C D E H L 

DD-I77 170 1711721731741751- d 

Flags: s z H PIV N C 

(no effect). 1 1 1 I I I 

Example: LD (IX + 1), C 

Before: After: 

6B 66Ie Ie 

4462 IX 1,--__44_62__---,Ixl'------_....... 


4462~ 4462~DD 

71 4463~ 4463~ 
01 

OBJECT CODE 

314 



THE ZSO INSTRUCTION SET 

LD (IY + d), r 	 Load indexed addressed memory location (IY + 
d) from register r. 

Function: 	 (IY + d) +- r 

Format: 
1 1 11 11 11 11 11 10 11 1 byte I: FD 

10 I 1 I 1 11 I 0 1-+r+--I byte 2 

I·: : : 1 : : : ·1 byte 3: offset value 

Description: 	 The contents of the specified register are loaded 
into the memory location addressed by the con­
tents of the index register plus the given offset 
value. r may be anyone of: 

A - III E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - 010 

Data Flow: 
A 

B 

0 

H 

C 

E 

IY 

Timing: 5 M cycles; 19 T states; 9.5 usee @ 2 MHz 

Addressing Mode: Indexed. 

Byte Codes: r: ABC 0 E H L 

FO-I n 170 171 In1731741751-d 
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Flags: S Z H P/V N C 

L---LI--LI------L-..---L......-L-I----1[----L[----.J[ (no effect). 

Example: LD (IY + 3), A 

Before: After: 

A1-1_.::.:3E~-l AI 3E 

1YI-I__--.:5:.:...A.::...B4__--.J 5AB4lyl 

FD 5AB4~_21_~ 

77 

03 

5AB7 5A 

OBJECT CODE 
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LD A, (nn) 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Load accumulator from the memory location 
(nn). 

A+- (nn) 

I 0 I 0 11 I 1 11 I 0 11 I 0 I byte 1: 3A 

>I byte 2: address, low 1-: : 7: order byte 
byte 3: address, high 
order byte 

The contents of the memory location addressed by 
the contents of the 2 memory locations immediate­
ly following the opcode are loaded into the ac­
cumulator. The low byte of the address occurs im­
mediately after the opcode. 

A 

B~____~______~C 

D ~____--+______---< 
H L-____---1______---.J 

LD 

n 

n 

4 M cycles; 13 T states; 6.5 usec @ 2 MHz 

Direct. 
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Flags: s z H PIV N C 

I I I (no effect). 

Example: LD A, (3301) 

Before: After: 

A~ 

3A 


01 


33 

OBJECT CODE 
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LD (nn),A 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Load directly addressed memory location (nn) 
from accumulator. 

(nn) +- A 

I 0 I 0 I 1 I 1 I 0 I 0 11 I 0 I byte 1: 32 

--:------:------;-:_ ~ ----;-..:--:-----7-:..... 1 ~~~~r2: address, low 

----'----'----'-- ~ ---'----'--'-I_I byte 3: address, high 
L---L--L---'-_L.---'-_-'----'.----.J. order 

The contents of the accumulator are loaded into 
the memory location addressed by the contents of 
the memory locations immediately following the 
opcode. The low byte of the address immediately 
follows the opcode. 

A 

B C 
D E 
H L 

LD 

q 

p 

4 M cycles; 13 T states; 6.5 usec @ 2 MHz 

Direct. 
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Flags: s z H PlY N C 

~~~~-ITn (no effect) 

Example: 	 LD (0321), A 

Before: After: 

32 

21 

03 

OBJECT CODE 
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LD (nn), dd Load memory locations addressed by nn from 
register pair rr. 

Function: 

Format: 

Descriptions: 

Data Flow: 

[i]~I~roJ 1 11 1o:EJ byte 1: ED 

1 0 1 lid: d 1 0 1 0 11 11 1 byte 2 

---~-:--

byte 3: address, 
low order 
byte 4: address, 
high order 

The contents of the low order of the specified 
register pair are loaded into the memory location 
addressed by the memory locations immediately 
following the opcode. The contents of the high 
order of the register pair are loaded into the 
memory location immediately following the one 
loaded from the low order. The low order of the 
nn address occurs immediately after the opcode.dd 
may be anyone of: 

BC - 00 HL 10 
DE - 01 SP 11 

A 
B f-----+-----, c 

D 
H t-----t----i 

321 
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PROGRAMMING THE zao 

Timing: 6 M cycles; 20 T states; 10 usec @ 2 MHz 

Addressing Mode: Direct. 

Byte Codes: dd: BC DE HL SP 

ED-I 431 531 631 73 1 

Flags: S Z H PIV N C 

,--I---L.---'---.L.I----'---LI-----LI---,----,I (n0 effect). 

Example: LD (040B) , Be 

Before: After: 

B[ 0221 [c B! 0221 [c 

ED 040B~B~
43 040C AB 040C 

OB 
04 

OBJECT 
CODE 
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LD (nn), HL 

Function: 

Format: 

Description: 

Data Flow: 

THE ZSO INSTRUCTION SET 

Load the memory locations addressed by nn from 
HL. 

(nn) +- L; (nn + 1) +- H 

I 0 I 0 I 1 I 0 I 0 I 0 11 I 0 1byte 1: 22 

l::i= ' , n '--'---I byte 2: address,~ 

---L.~--"~-L----'-----1 low order 
___:_---.--r_n - , '~ byte 3: address, 
'----'----'__~_L_L~ high order 

The contents of the L register are loaded into the 
memory location addressed by the memory loca­
tions immediately following the opcode. The con­
tents of the H register are loaded into the memory 
location immediately following the location 
loaded from the L register. The low order of the 
no address occurs immediately after the opcode. 

A 
f------+-~----, 

B C 
Df-------+------~ 

H 

Timing: 5 M cycles; 16 T states; 8 usee @ 2 MHz 

Addressing Mode: Direct. 
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Flags: 

Example: 

22 

B9 

40 

OBJECT 
CODE 

s z H PlY N C 

'---1-----'----'------1_----1-I-L1---,---I-----' (no effect). 

LD (40B9), HL 


Before: After: 


40B9bd 40B9~ 
40BA~ 4OBA~ 
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LD (nn), IX 

Function: 

Format: 

Description: 

Data Flow: 

Load memory locations addressed by nn from IX. 

(nn) +- IXlow; (nn + 1) +- IXhigh 

1 1 1 1 1 0 11 11 11 I 0 11 1 byte 1: DO 

1 0 1 0 11 1 0 1 0 1 0 11 1 0 1 byte 2: 22 

I ; , I byte 3: address,I • 

."--,---n-----. low order 

I:: I ~ : I byte 4: address, 
.~-.---I-, -.----+-.. high order 

The contents of the low order of the IX register 
are loaded into the memory location addressed by 
the contents of the memory location immediately 
following the opcode. The contents of the high 
order of the IX register are loaded into the 
memory location immediately following the one 
loaded from the low order. The low order of the 
nn address occurs immediately after the op code. 

A 
B f-----j------,c 

D E 

H 
"---------'------' 

Timing: 6 M cycles; 20 T states; 10 usee @ 2 MHz 

Addressing Mode: Direct. 
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PROGRAMMING THE zao 

Flags: 
(no effect). 

Example: LD (012B), IX 

Before: After: 

IX C_~ 04.~06~~---, IX LI___0~40~6__---, 

DD 012B~ 
22 012C~ 
2B 


01 


OBJECT 
CODE 

012B~ 

012C~ 
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LD (nn),IY 	 Load memory locations addressed by nn from IY. 

Function: 	 (nn) ..... 1Ylow; (nn + 1) ..... 1Yhigh 

Format: 
ITl!J!J!JilOIiJ byte 1: FD 

liI~l Torn L~I~]~ byte 2: 22 

1_'-:--:-~--:---'-,3 ~~!e:;d:~dress, 
I,--'~'-:-_~--=--:'--=-L-~---,-I---,----,-I--"I~r~~ !~~~rdress, 

Description: 	 The contents of the low order of the IY register are 
loaded into the memory location addressed by the 
contents of the memory locations immediately 
following the opcode. The contents of the high 
order of the IY register are loaded into the 
memory location immediately following the one 
loaded from the low order. The low order of the 
nn address occurs immediately after the opcode. 

Data Flow: 

A 

o 
H 

IY 

B r-----+---------, c 

I-----___+_ 

Timing: 6 M cycles; 20 T states; 10 usec @ 2 MHz 

Addressing Mode: Direct. 
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Flags: S Z H PIV N C 

1-1--I-..-L---L-L...-1I---LI-.L..1---ll (no effect) 

Example: LD (BOO4), IY 

Before: After: 

D204 D204IVC= IV I 

FD BD04 

22 BD05 96 BD05 '~~ 

04 

BD 

OBJECT CODE 
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LDA, (BC) 

Function: 

Format: 

Description: 

THE laO INSTRUCTION SET 

Load accumulator from the memory location in­
directly addressed by the BC register pair. 

A+- (BC) 

I 0 I 0 I 0 I 0 11 I~iEJ OA 

The contents of the memory location addressed 
by the contents of the BC register pair are loaded 
into the accumulator. 

Data Flow: 

Timing: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz 

Addressing Mode: Indirect. 

Flags: 5 Z H PIV N C 

(no effect). I I I 

Example: LD A, (BC) 

Before: After: 

AB ~__AB_-..J.___--, 
L.__~3=2D~1__~lc 

OBJECT CODE 
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LD A, (DE) 	 Load the accumulator from the memory location 
indirectly addressed by the DE register pair. 

Function: 	 A'" (DE) 

Format: 
1 0 1 0 1 0 11 11 1 0 11 1 0 IIA 

Description: 	 The contents of the memory location addressed by 
the contents of the DE register pair are loaded into 
the accumulator. 

Timing: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz 

Addressing Mode: Indirect. 

s z H PN N CFlags: 
I I 1 I 1 I 1 (No effect). 

Example: LD A, (DE) 

Before: After: 

A_§?:D 
D 1'-___60_5_1__~1 E DI,-___60_51__--'1 E 

A 1 D2 

Data Flow: 
A 

B
1------+-----1 

D 
Hr---~-----~ 

~ ~,~ 

OBJECT CODE 
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LD A, I 	 Load accumulator from interrupt vector register 1. 

Function: 

Format: 
81~rB~I~.. [~_8 byte I: ED 

~T~r~J_l]~E]}I!J byte 2: 57 

Description: 	 The contents of the interrupt vector register are 
loaded into the accumulator. 

Data Flow: 
A 

B 

H 

D 1------+..-----1 

Timing: 2 M cycles; 9 T states; 4.5 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: s Z H PlY N C 

[iE! 101 Ix I0 I '1-Set to the contents 
4____ of IFF2 

Example: LD A, I 

Before: 	 After: 

AI 30 II 4B A~~_II 4B 

~ 

~ 

OBJECT CODE 
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LD I,A 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Flags: 

Example: 

~ 

~ 


Load Interrupt Vector register I from the ac­
cumulator. 

I-A 

I 1 I 1 I 1 I 0 11 11 I 0 11 I byte 1: ED 


I 0 11 I a I a I a 11 11 11 I byte 2: 47 


The contents of the accumulator are loaded into 
the Interrupt Vector register. 

A 

B C 

D E 

H l 

I~<=-

2 M cycles; 9 T states; 4.5 usee @ 2 MHz 

Implicit. 

s Z H PN N C 


I (no effect) 
I I I I I I 

LD I, A 

Before: After: 

A! 06 II I D2 I AI 06 IIWgJf~ 

OBJECT CODE 
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LD A,R Load accumulator from Memory Refresh register 
R. 

Function: 

Format: 
[ 1 I 1 I 1 [ 0 I 1 [ 1 [ 0 11 I byte 1: ED 

I 0 I 1 I 0 I 1 I 1 11 ITI byte 2: SF 

Description: The contents of the Memory Refresh register are 
loaded into the accumulator. 

Data Flow: 
A 


B 


D 

f-----+---~ 

H~-----4------~ 

Timing: 2 M cycles; 9 T states; 4.5 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: 5 Z H PlY N C 

1<------1--1-.L-I..1..-.:-10 L I x 10 I 
~ set to contents of IFF2 

Example: LD A, R 

Before: After: 

A~_Rl 4A 
~ 
~ 
OBJECT CODE 
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LD HL, (nn) 	 Load HL register from memory locations addres­
sed by nn. 

Function: 	 L +- (nn); H +- (nn + 1) 

Format: 
~oll I 0 11 I0 	 II 10 I byte 1: 2A 

: ' I 
byte 2: address, low I· : : ~ : order 

: ' I byte 3: address, high [. : : ~ order 

Descript ion: 	 The contents of the memory location addressed by 
the memory locations immediately after the op­
code are loaded into the L register. The contents 
of the memory location after the one loaded into 
the L register are loaded into the H register. The 
low byte of the nn address occurs immediately 
after the opcode. 

Data Flow: 
A 
B 1-----+----, C 

E 
H 

Timing: 5 M cycles, 16 T states; 8 usee @ 2 MHz 

Addressing Mode: Direct. 

Flags: 5 Z H PlY N C

0-- ITD_L_D (no effect) 
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Example: LD HL, (0024) 

Before: After: 

HI~_____0_8B_F____~IL H~F~L 

2A 0024[d0024~ 
24 0025~ 0025~ 
00 

OBJECT CODE 

335 



C 

PROGRAMMING THE zao 

LD IX, nn 

Function: 

Format: 

Load IX register with immediate data nn. 

IX +- nn 

1 11 I 0 11 11 11 I 0 11 I byte 1: DD 

I 0 I 0 11 I 0 I 0 I 0 I 0 11 I byte 2: 21 

Description: 	 The contents of the memory locations immediate­
ly following the opcode are loaded into the IX 
register. The low order byte occurs immediately 
after the opcode. 

Data Flow: 
A 

B 


D 


H 

IX 

Timing: 4 M cycles; 14 T states; 7 usee @ 2 MHz 

Addressing Mode: Immediate. 

Flags: s z 

I I 
H PIV N C

I I I I I I (no effect) 
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Example: LD IX, BOB 1 

Before: After: 

IX I 306F 

DD 

21 

B1 

80 

OBJECT CODE 
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LD IX, (nn) 

Function: 

Format: 

Descript ions: 

Data Flow: 

Load IX register from memory locations ad­
dressed by nn. 

IXlow -- (nn); 1Xhigh +- (nn + 1) 

~EEI~liI~I~ byte 1: DD 

~T~Tl-ET!l-;;-Til~ byte 2: 2A 

I: : : ,I byte 3: address, I 

'-.~_---'--.~~:-:~~~~~_----1-_---.-. low order 

I -~--'----'-3 b~te 4: address, E_ high orderI I I I I 

The contents of the memory location addressed by 
the memory locations immediately following the 
opcode are loaded into the low order of the IX 
register. The contents of the memory location im­
mediately following the one loaded into the low 
order are loaded into the high order of the IX reg­
ister. The low order of the nn address immediately 
follows the opcode. 

LD 

A :-----t------,
B C 

n 

D f-----+--------j n 

H~~~~~~ 

Timing: 6 M cycles; 20 T states; 10 usec @ 2 MHz 

Addressing Mode: Direct. 
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Flags: 

Example: 

01 

OBJECT CODE 

LD IX, (01OB) 

Before: 

IxiL__LFF.....:4B~_---' 

01OB~ 
01OC~ 

S Z H PIV N C 

L..-[-LO--'--T-L-IL..---LI_IL..---LI-----.J (no effect). 

After: 

01OB~ 

010C~ 
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LD IY, nn Load IY register with immediate data nn. 

Function: IY +- nn 

Format: 
11 11 11 11 11 11 	 10 11 I byte I: FD 

I 0 I011 fa I0 I0 liE byte 2: 21 

I byte 3: immediateI· : : : ~ : : : 	 data, low order 
byte 4: immediate I : : : ~--:------ data, high order 

Description: 	 The contents of the memory locations immediate­
ly following the opcode are loaded into the IY 
register. The low order byte occurs immediately 
after the opcode. 

Data Flow: 
A 

IY 

B 1------+"----­
c 

D 
H 1------+----­

Timing: 4 M cycles; 14 T states; 7 usee @ 2 MHz 

Addressing Mode: Immediate. 
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Flags: S Z H PN N C 

<--I-L...I_IL--L.---'----'---I_IL-J....Il_ (no effect) 

Example: LD IY,21 

Before: After: 

FD 

21 

21 

00 

OBJECT CODE 

341 



PROGRAMMING THE Z80 

LD IY, (nn) 

Function: 

Format: 

Description: 

Data Flow: 

Load register IY from memory locations addressed 
bynn. 

1Ylow +- (nn); 1Yhigh +- (nn + I) 

ITI 1 11 11 11 I 0 11 II byte 1: FD 

I 0 I 0 11 I 0 11 I 0 11 8 byte 2: 2A 

1-'-:--:-7 -:---, I ~~~e ::d~~dress, 
1_'-:--:- ~: • I byte 4: address, 
L_----'---'---'-----'---"-- --'----'----'­ high order 

The contents of the memory location addressed by 
the memory locations immediately following the 
opcode are loaded into the low order of the IY 
register. The contents of the memory location im­
mediately following the one loaded into the low 
order are loaded into the high order of the IY 
register. The low order of the nn address im­
mediately follows the opcode. 

LD 

A 
~---+-----, n 

B 1--__-+___-1 C n 
o E 
HL-__---'-___--' 
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Timing: 6 M cycles; 20 T states; 10 usee @ 2 MHz 

Addressing Mode: Direct. 

Flags: S Z H PlY N C 

1-1----'-------L--,-I---'_----<1----1...1--'---'1 (no effect). 

Example: LD IY, (5000) 

Before: After: 

IY L-I____600_2_--,lly~ji%" 

FD 500D83 500Dt;d 
2A 

OD 
500E~ 500E~ 

50 

OBJECT 
CODE 
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PROGRAMMING THE lSO 

LD R,A 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Flags: 

Example: 

~ 
E23 
OBJECT CODE 

Load Memory Refresh register R from the ac­
cumulator. 

I 1 I 1 I 1 I0 11 11 I0 I byte 1: ED11 

I 0 I 1 I 0 I a 11 11 11 11 I byte 2: 4F 

The contents of the accumulator are loaded into 
the Memory Refresh register. 

A 
B C 

D E 
H L 

R~<=-

2 M cycles; 9 T states; 4.5 usec @ 2 MHz 

Implicit. 

s z H PN N C 

I I I I I I I (no effect) 

LD R, A 

Before: After: 
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LD SP,HL Load stack pointer from HL. 

Function: SP +- HL 

Format: 

Description: 	 The contents of the HL register pair are loaded in­
to the stack pointer. 

Data Flow: 
A 
f------+------, 

B C 
DI------+------1 

H 	 l~ 

SP~<===J 

Timing: 1 M cycles; 6 T states; 3 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: 5 Z H P/v N C 

LLLLLJ_UJ (no effect) 

Example: LD SP, HL 

Before: After: 

H [ ___06_A_F___l l H ,-I___06_A_F___,Il 

SP L-I__D_Bo_E__---J1 sP~~ 
OBJECT 
CODE 

345 
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LD SP, IX 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Flags: 

Example: 

~ 
~ 


Load stack pointer from IX register. 

Sp ..... IX 

LiI1 1 11 11 liIil2J byte 1: DD0 

[2I~I~2J1TO]~E byte 2: F9 

The contents of the IX register are loaded into the 
stack pointer. 

A f------' ____ 
B C 

D 
f-------I--------1 

H 

2 M cycles; 10 T states; 5 usec @ 2 MHz 


Implicit. 


S Z H PlY N C 

[1_1_r ~~_[T=rJ (no effect) 

LD SP, IX 


Before: After: 


Ix l-I__---'-O_9D_2 ___-" O9D2'xL 
Spll--__5_4_A~O___~ SP~9?9?~ 

OBJECT 
CODE 
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LD SP,IY 	 Load stack pointer from IY register. 

Function: SP +- IY 

Format: 
Lill I 1 lIE 11 I0 11 Ibyte 1: FD 

LiIl] 1I 1I iT~ byte 2: F9 

Description: 	 The contents of the IY register are loaded into the 
stack pointer. 

Data Flow: 
A 

1------+------,
B 	 C 
Dt------+------1 

H 

Timing: 2 M cycles; 10 T states; 5 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: s z H PN N C 

I I I I I I I (no effect) 

Example: LD SP,IY 

Before: After: 

bd IV l___09_A_B__----' Ivi 09AB 

~ SP,-I___600_4__---'1 SP f§§§f@}Jm~ 
OBJECT CODE 
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LDD 

Function: 

Format: 

Description: 

Block load with decrement. 

(DE) -- (HL); DE -- DE - 1; HL -- HL - 1; 
Be -- Be - 1 

I 1 I 1 I 1 I0 I 1 I 1 I0 I 1 byte 1: ED 

I 1 I 0 I 1 I 0 I 1 I 0 I 0 I 0 I byte 2: A8 

The contents of the memory location addressed by 
HL are loaded into the memory location address­
ed by DE. Then Be, DE, and HL are all 
decremented. 

Data Flow: 
A 

B 

D 

H 

Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz 

Addressing Modes: Indirect. 

Flags: s z H PN N C 

I 101 IXlol I 
t Reset if Be == 0 after 

execution, set otherwise. 
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C 

Example: 	 LDD 

Before: After: 

~I 
0804 

6211 

843B I; 

AS 
~,,~ ~,,~~ 

OBJECT CODE 

~~~ -~ 
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LDDR 

Function: 

Format: 

Description: 

Repeating block load with decrement. 

(DE) +- (HL); DE +- DE - 1; HL +- HL - 1; 
Be +- Be - 1; Repeat until Be = 0 

11 11 11 I 0 11 11 I 0 I 1 I byte 1: ED 

\1 \ 0 \1 11 \1 I 0 \ 0 I 0 I byte 2: B8 

The contents of the memory location addressed by 
HL are loaded into the memory location address­
ed by DE. Then DE, HL, and Be are all 
decremented. If BC i- 0, then the program counter 
is decremented by 2 and the instruction re­
executed. 

Data Flow: 
A 

B 

D 

H 

Timing: Be i- 0: 5 M cycles; 21 T states; 10.5 usec @ 2 
MHz. 
BC = 0: 4 M cycles; 16 T states; 8 usec @ 2 MHz 

Addressing Mode: Indirect. 

Flags: 5 Z H 

[0 101 
PlY N C 

10jQLJ 
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Example: LDDR 

Before: After: 

0003 C B 

06B2 0 

9035 H:II 

t8 O6AF Bl 06AF 

O6BO 04 O6BO 

O6Bl OF O6Bl 

O6B2 36 06B2 

OBJECT CODE 


9032 92 9032 1--_92_--j
r--------1 

9033 DE 9033 ~_DE'---j1--------1 
9034 El 90341--_E1_--j 
9035 r-----:BF:-----1 

9035 f----_BF_-l1-------1 

C 
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LDI 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Flags: 

Block load with increment. 

(DE) +- (HL); DE +- DE + 1; HL +- HL + 1; 
Be +- Be - 1 

I 1 I 1 1 1 10 I 1 1 1 10 I 1 1 byte 1: ED 

1 1 10 I 1 I 0 I 0 I 0 I 0 I 0 1 byte 2: AO 

The contents of the memory location addressed by 
HI are loaded into the memory location addressed 
by DE. Then both DE and HL are incremented, 
and the register pair Be is decremented. 

DATA 
A /1~0~
B 

D E 

H 

4 M cycles; 16 T states; 8 usec @ 2 MHz 

Indirect. 

5 Z H P/v N C 

101 Ixlol 11 1 •'---- Reset if Be = 0 after 
execution, set otherwise. 
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Example: LDI 

Before: After: 

OBJECT CODE 
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PROGRAMMING THE zao 

LDIR 

Function: 

Format: 

Description: 

Data Flow: 
A 

B 

D 

H 

Timing: 

Addressing Mode: 

Repeating block load with increment. 

(DE) +- (HL); DE +- DE + 1; HL +- HL + 1; 
Be +- Be - 1; Repeat until Be = 0 

11 1 1 11 1 0 1 1 1 1 1 0 I 1 I byte 1: ED 

1 1 1 0 11 I 1 1 0 1 0 1 0 1 0 I byte 2: BO 

The contents of the memory location addressed by 
HL are loaded into the memory location ad­
dressed by DE. Then both DE and HL are in­
cremented. Be is decremented. If Be #: o. ,then 
the program counter is decremented by 2 and the 
instruction is re-executed. 

For Be #: 0: 5M cycles; 21 T states; 10.5 usec @ 2 
MHz. 
For Be = 0: 4 M cycles; 16 T states; 8 usec @ 2 
MHz 

Indirect. 
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Flags: s z H PN N C 

\ \ \0\ 10\0\ I 

Example: LDIR 

Before: After: 

~I 
0002 

I~4A03 

962A 

4A03 12 

BO 4A04 F4 


4A05 AA 
~ 
OBJECT CODE 

962A 3B 

962B 90 
962A 1--_3=B__-I 

962B 1---_90'--..-..1/------1
962C 6E 962C 6E 

f------j 
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LD r, (HL) 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Byte Codes: 

Load register r indirect from memory location 
(HL). 

r +- (HL) 

I 0 11 I-+r--+-Il 11 I 0 I 

The contents of the memory location addressed by 
HL are loaded into the specified register. r 
may be anyone of: 

A - III E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - OlO 

2 M cycles; 7 T states; 3.5 usee @ 2 MHz 

Indirect. 

r: ABC D E H L 

I 7EI461 4EI 5615E!6616EI 
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Flags: 5 Z H PIV N C 

(no effect). I I I I I I 

Example: LO 0, (HL) 

Before: After: 

HD ~----=30:.:....:AC-.J.----, 
. 32 , L H L---=-:OC=--...L1_..::..32=--.....Ill 

OBJECT CODE 
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NEG 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Flags: 

Example: 

~ 

~ 


Negate accumulator. 

A-O-A 

, 1 , 1 , 1 , 0 , 1 , 1 , 0' 1 1 byte I: ED 

I0 '1 I0 , 0 , 0 11 I0 , 0 I byte 2: 44 

The contents of the accumulator are subtracted 
from zero (two's complement) and the result is 
stored back in the accumulator. 

H'--__-L-__--' 

2 M cycles; 8 T states; 4 usec @ 2 MHz 

Implicit. 

s z H eN N C 

'-I-I '_I '_Ill_I 
C will be set if A was 0 before the instruction. 

P will be set if A was SOH. 


NEG 


Before: After: 


AI A_~_ 

32 

OBJECT 
CODE 
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NOP No operation. 

Function: Delay. 

Format: 
I 0 I 0 I 0 I 0 I 0 I 0 1 0 1 0 I OK) 

Description: Nothing is done for 1 M cycle. 

Data Flow: 
A No action 

B C 

Dr------+------~ 

H L-____----'-______-' 

Timing: I M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: Implicit 

s z H PIV N CFlags: 
I I I I I (no effect). 

I I I 
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OR s 	 Logical or accumulator and operand s. 

Function: 	 A+-AVs 

Format: 	 .§.: may be r, n, (HL), (IX + d), or (lY + d) 

r I 1I 0 I 111 I 0 1-+ r~1 

n 11 I111 I1I0 I111 I 0 I byte 1: F6 

I·: : : 7 : : : ·1 ~~~~ 2: immediate 

(HL) I 1I 0 11 11 I 0 11 I 1I 0 I byte 1: 86 

(IX + d) 	 11 11 I 0 I 1I 1I 1I 0 I 1I byte 1: DO 

11 I 0 11 11 I 0 I 1I 1I 0 I byte 2: 86 

I·: : : 4 : : : I byte 3: offset value 

(lY + d) I 1I 1I 1I 1I 1I 1I 0 I 1I byte 1: FD 

I 1I 0 I 1I 1I 0 I 1I 1I 0 I byte 2: 86 

: : : ~ : : :' I byte 3: offset value 

r may be anyone of: 

A-Ill 	 E - 011 
B - ()()() H - 100 
C - 001 L - 101 
0-010 

Description: 	 The accumulator and the specified operand are 
logically 'or'ed, and the result is stored in the ac­
cumulator. s is defined in the description of the 
similar ADD instructions. 
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Data Flow: 

Timing: 	 usec 
s: M cycles: T states: @2MHz: 

r 1 4 4 
n 2 7 3.5 
(HL) 2 7 3.5 
(IX + d) 5 19 9.5 
(lY + d) 5 19 9.5 

Addressing Mode: 	 r: implicit; n: immediate; (HL): indirect; (IX + 
d), (IY + d): indexed. 

Byte Codes: 	 OR r r' ABC 0 E H L 

., B7' so , 81 IB21 831 841 85 1 

Flags: 5 Z H ®'v N C 

'el_1 101 lelolol 
Example: 	 OR B 

Before: 	 After: 

A~ 

B~ 


OBJECT 

CODE 
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OTDR Block output with decrement 

Function: 

Format: 

(C)-(HL); B +B - 1; HL~HL - 1; 
Repeat until B = O. 

I 1 I 1 I 1 I 0 I 1 I 1 I 0 I 1 I byte 1: ED 

11 I 0 11 11 11 I0 11 11 I byte 2: BB 

Description: The contents of the memory location addressed by 
the HL register pair are output to the peripheral 
device addressed by the contents of the C register. 
Both the B register and the HL register pair are 
then decremented. If B :I- 0, the program counter 
is decremented by 2 and the instruction is re­
executed. C supplies bits AO to A7 of the address 
bus. B supplies (after decrementation) bits AS to 
A15. 

Data Flow: 

DATA 

r--­
A 

B~~~~----'C----~~~~ 
i c== ::i---~ 
1 

D E 

H 

Timing: 	 B = 0: 4 M cycles; 16 T states; S usee @ 2 MHz. 
B :I- 0: 5 M cycles; 21 T states; 10.5 usee @ 2 MHz 

Addressing Mode: 	 External. 

Flags: S Z H P/v N C 

I ? 11 I I? I I? I 1 I 
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Example: OTDR 
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Block output with increment. OTIR 

Function: 


Format: 


Description: 

Data Flow: 

A 

B 


D 


H 

(C) +- (HL); B +- B-1; HL +- HL + 1; Repeat 
until B = 0 

[!T~ ~I 1 I 0 I 1 I 1 [OJ!] byte 1: ED 

11 I 0 11 11 I 0 I o 11 11 I byte 2: B3U 

The contents of the memory location addressed by 
the HL register pair are output to the peripheral 
device addressed by the contents of the C register. 
The B register is decremented and the HL register 
pair is incremented. If B ::f: 0, the program counter 
is decremented by 2 and the instruction is re­
executed. C supplies bits AO to A 7 of the address 
bus. B supplies (after decrementation) bits AS to 
A15. 

Timing: B = 0: 4 M cycles; 16 T states; 8 usec @ 2 MHz. 
B ::f: 0: 5 M cycles; 21 T states; 10.5 usec @ 2 MHz 

Addressing Mode: External. 

S Z H PIV N CFlags: 
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Example: OTlR 

Before: After: 

BI 03 AO Ie B_qss~ AO Ie 

HI 5550 Il H~r~3WMl 

B5 I PORT Eg8PORT 

AO AO 

5550 6B5550 6B 
5551 02B3 5551 02 
5552 9A5552 ~ 
5553 65OBJECT CODE 5553 
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OUT (e), r 	 Output register r to port C. 

Function: 	 (C) -- r 

Format: 
[ 1 [ 1 I 1 [ 0 [ 1 [I [0 [I I byte 1: ED 

I 0 I 1 I~ r ~ I 0 [ 0 11 Ibyte 2 

Description: 	 The contents of the specified register are output to 
the peripheral device addressed by the contents of 
the C register. r may be anyone of: 

A - III E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - 010 

Register C supplies bits AO to A 7 of the address 
bus. Register B supplies bits AS to A15. 

Data Flow: 
J PORT 

D I 
H I 

A 

B 

-------- I~ 'rI 

Timing: 	 3 M cycles; 12 T states; 6 usec @ 2 MHz 

Addressing Mode: 	 External. 

Flags: s z H Ply N C 

[ I [ [ [[ (no effect). 

Byte Codes: r; ABC D E H l 

ED- 179141 [49[51 [59161 1691 
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Example: OUT (C), B 

Before: After: 

BI~_~__~~~Fl__~lc B~I___~__-L___Fl__~lc 

~ B8 IPORT _9?_PORT 

Fl Fl~ 
OBJECT CODE 
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OUT (N),A 

Function: 

Format: 

Description: 

Data Flow: 

Output accumulator to peripheral port N. 

(N) +- A 

1 1 1 1 1 0 1 1 1 0 10 11 11 1byte 1: D3 

1 .: : : ~ : : :. I byte 2: port address 

The contents of the accumulator are output to the 
peripheral device addressed by the contents of the 
memory location immediately following the op­
code. 

Timing: 3 M cycles, 11 T states; 5.5 usee @ 2 MHz 

Addressing Mode: External. 

Flags: s z H PIV N C 

1 1 1 1 (no effect). 

Example: OUT (OA), A 

Before: After: 

51 I I FF IpORT ALI------=5~1___l _~:j_PORT~AI 
OA OA 

~ 
OBJECT CODE 
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OUTD 	 Output with decrement. 

Function: 	 (C) +- (HL); BC +- B-1; HL +- HL - I 

Format: 
I 1 I 1 I 1 I 0 I 1 11 	 I0 11 I byte I: ED 

I 1 I 0 I 1 I 0 I 1 I 0 	 11 11 I byte 2: AB 

Description: 	 The contents of the memory location addressed by 
the HL register pair are output to the peripheral 
device addressed by the contents of the C register. 
Then both the B register and the HL register pair 
are decremented. C supplies bits AO to A 7 of the 
address bus. B supplies (after decrementation) A8 
to A15. 

Timing: 	 4 M cycles; 16 T states; 8 usec @ 2 MHz 

Addressing Mode: 	 External. 

Flags: 
S Z H PlY 	 N C 

Data Flow: 
A 
~~~t---..., 

B ~~;';';;';';<4-__-IC 
D 

H 
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Example: OUTD 

Before: After: 

B~I__~30~-L__~AA__~lc B~2F~ 9A Ic 

H I 22BF IL H ~f(EIWM L 

,--_o_6__-,1 PORT _$aPORT 

9A 

OBJECT CODE 
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OUTI 

Function: 

Format: 

Description: 

Data Flow: 
,....----, 

~~~~___~c 

Output with increment. 

(C) +- (HL); B +- B-1; HL +- HL + 1 

byte 1: ED 

11 1 0 11 1 0 1 0 1 0 11 11 1 byte 2: A3 

The contents of the memory location addressed by 

the HL register pair are output to the peripheral 

device addressed by the C register. The B register 

is decremented and the HL register pair is incre­

mented. 


C supplies bits AO to A7 of the address bus. 

B (after decrementation) supplies bits AS to A15. 


--_•• 

Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz 


Addressing Mode: External. 


Flags: 


Set if B = 0 after execution, 
reset otherwise. 

s z H PN N C 
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Example: OUTI 

Before: After: 

B,-I__9A_-,-_B_B_-,1 e B_~. BB Ie 

02 IPORT 

BB BB 

OBJECT CODE 
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POPqq 	 Pop register pair qq from stack. 

Function: 	 qq low +- (SP); qqhigh+- (SP + I); SP+- SP + 2 

Format: 
Li 11 ±l£JiIlJ1 q : 

Description: 	 The contents of the memory location addressed by 
the stack pointer are loaded into the low order of 
the specified register pair and then the stack 
pointer is incremented. The contents of the 
memory location now addressed by the stack 
pointer are loaded into the high order of the 
register pair, and the stack pointer is again in­
cremented. qq may be anyone of: 

Be - 00 HL - 10 
DE - 01 AF - II 

Data Flow: 
A 	 F
BI----+-----I C 

01-__-+___-1 

H L-.__---'-___-' 

UFJse.- -- J 
Timing: 	 3 M cycles; 10 T states; 5 usec @ 2 MHz 

Addressing Mode: 	 Indirect. 

Byte Codes: qq; BC DE HL AF 


1Cl I01 IEl I Fl I 
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Flags: 5 Z H PN N C 

n~=[~[I=I~rn (no effect). 

Example: POP Be 

Before: After: 

BI B90A'--_____--.Jlc 
SP I 015B 

BWlJj420A-. C 

~ 
OBJECT COOE 

015B 

015C 

0150 

OA 
42 

03 

015B 

015C 

0150 

OA 

42 

03 
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POP IX 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

THE ZSO INSTRUCTION SET 

POP IX register from stack. 

IX I +- (SP); IX h· h +- (SP + 1); SP +- SP + 2 
ow 19 

1 11 1 a 1 1 11 11 1a 11 1 byte 1: DD 

I 1 I 1 1 1 I a I a I a I 0 11 1 byte 2: EI 

The contents of the memory location addressed by 
the stack pointer are loaded into the low order of 
the IX register, and the stack pointer is in­
cremented. The contents of the memory location 
now addressed by the stack pointer are loaded in­
to the high order of the IX register, and the stack 
pointer is again incremented. 

A~------B -~-=jC
D E 

H L 

SP~ 

4 M cycles; 14 T states; 7 usee @ 2 MHz 

Addressing Mode: Indirect. 
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Flags: S Z H PN N C 

,--I---'..I-L-----.L--L--L-f-LI---,-I---,I (no effect). 

Example: POP IX 

Before: After: 

IX 000_1__--JLI___ IX~9I~ 

SPLi__-=09O.:...:.=:...B__---' sP~§§l?" 

@J O9OB 36 O9OB 36 

El 090C 04 
 090C 04 

O9OD B2 B2O9OD 

OBJECT CODE 
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POPIY 	 POP IY register from stack. 

Function: 	 IY I - (SP); IY h' h - (SP + I); SP - SP + 2ow Ig 

Format: 
I I I I I I I I I I I I 	 I 0 I 1 I byte I: FD 

Li I I 11 I 0 I 0 I 0 I 0 11 I byte 2: El 

Description: 	 The contents of the memory location addressed by 
the stack pointer are loaded into the low order of 
the IY register, and then the stack pointer is incre­
mented. The contents of the memory location now 
addressed by the stack pointer are loaded into the 
high order of the I Y register, and the stack pointer 
is again incremented. 

Data Flow: -- ­
A 
B----- ----'c 
D ----- E 
H ------- f------ L 

DATA 

Timing: 4 M cycles; 14 T states; 2 usec @ 2 MHz 

Addressing Mode: Indirect. 

Flags: S Z H PlY 	 N C 

1--1--Ll---,---,I----,----,-I--LI---,-I--II (no effect). 
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Example: POP IY 

Before: After: 

lylL__....:0:::::3.::.2A~_---l IY~&;X~ 

S~L___3:::::00.::.:4=--_---I SP~~ 

3004 61 3004 61 

3005 40 3005 40f?j 3006 39 3006 39 

OBJECT CODE 
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Timing: 3 M cycles; II T states; 6.5 usec @ 2 MHz 

Addressing Mode: Indirect. 

Byte Codes: qq: BC DE Hl AF 

IC51 D5\ E5 IF5 I 

PUSH qq 

Function: 

Format: 

Description: 

Data Flow: 

THE ZSO INSTRUCTION SET 

Push register pair onto stack. 

(SP - I) -qqhigh; (SP - 2) +-qqlow; 

SP +- SP - 2 


Lilil~Jilil~ 
The stack pointer is decremented and the contents 
of the high order of the specified register pair are 
then loaded into the memory location addressed 
by the stack pointer. The stack pointer is again 
decremented and the contents of the low order of 
the register pair are loaded into the memory loca­
tion currently addressed by the stack pointer. qq 
may be anyone of: 

Be - 00 HL IO 
DE - 01 AF II 

A 
I------+-----l 

BI--__ C
-----1 

D 

H 
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Flags: 5 Z H PN N C 

I I I I I I I (no effect). 

Example: PUSH DE 

Before: After: 

01 OA03 1E 01 

SP 1 00B1 SP 

,OA03 1E 

OOAF B6 OOAF 

OOBO 9A OOBO ~ OOB1 OF OOB1 

OBJECT CODE 
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PUSH IX 	 Push IX onto stack. 

Function: (SP - I) -- IXhigh; (SP - 2) +- IXlow; 

SP -- SP - 2 


Format: 
i I II I0 I'J'HL~1~ byte I: DO 

I I I I I QiI~iEJ byte 2: E5 

Description: 	 The stack pointer is decremented, and the contents 
of the high order of the IX register are loaded into 
the memory location addressed by the stack 
pointer. The stack pointer is again decremented 
and then the contents of the low order of the IX 
register are loaded into the memory location ad­
dressed by the stack pointer. 

Data Flow: 
A 
B 1-----_+------, C 

D 
H~----+------

------'-----' 

IX ,-I--.-.----'-_--.---.-_~-___>J 

SP~~ I 

Timing: 	 4 M cycles; IS T states; 7.5 usec @ 2 MHz 

Addressing Mode: 	 Indirect. 

II'------~ II-------Il 
_ 

Flags: 	 S Z H PIV N C

[rCr -I_~ r rl~ (no effect) 
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Example: PUSH IX 

Before: After: 

IX I ___O_4A_2__--l IX I 04A2 J
L-'____L 

spiL __-=00.;::9-=.6 __---1 sp~ 

@J 0094 8B 0094 

E5 0095 9F 0095 

0096 04 0096 

OBJECT CODE 
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PUSH IV 

Function: 

Format: 

Descript ion: 

Data Flow: 

Push IY onto stack. 

(SP - 1) +- IY high; (SP - 2) +- lYlow ; 

SP +- SP - 2 


8Q!I1 11 11]~ byte 1: FD 

I 1I 1I 1I 0 I 0 ! 1I 0 11 I byte 2: E5 

The stack pointer is decremented and the contents 
of the high order of the IY register are loaded into 
the memory location addressed by the stack 
pointer. The stack pointer is again decremented 
and the contents of the low order of the IY register 
are loaded into the memory location addressed by 
the stack pointer. 

A I 
B cl 
D I 

H I 

IY 

SP 

Timing: 3 M cycles; 15 T states; 7.5 usee @ 2 MHz 

Addressing Mode: Indirect. 

S Z H PlY N CFlags: 
(no effect) 
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Example: PUSH IY 

Before: After: 

IY I 90BF IY I 90BF 


SP I 0086 SP~~~ 


0084 FF OOB4 

E5 OOB5 85 OOB5 

0086 90 00B6 ~ 
OBJECT CODE 

1-----1 
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RES b, S Reset bit b of operand s. 

Function: sb +- 0 

Format: s: 

r I 1 I 1 I 0 I 0 I 1 I 0 11 11 i byte 1: CB 

I 1 I 0 1-+b+-I-+ r +-1 byte 2 

(HL) 1 I 1 I 0 I 0 11 I 0 1 11 I byte 1: CB 

I I 0 I--+b+--I 1 1 I 0 I byte 2 

(IX + d) 1 I 1 I 0 11 11 11 011 I byte 1: DD 

111 101011 I 0 IE byte 2: CB 

I : : : ~: : byte 3: offset value 

I 1 0 l--+b~1 1I 1 0 byte 4 

(IY + d) 1 1 I1I1I I I I I0 I byte 1: FD 

I I I 0I0I I I0I I I byte 2: CB 

: : : 1 : :: byte 3: offset value 

I I 0 I~~I I I I I 0 byte 4 

b may be anyone of: 

0-000 4 - 100 
1 - 001 5 - 101 
2 - 010 6 - 110 
3 - 011 7 - 111 

r may be anyone of: 

A-Ill E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - 010 
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Description: 	 The specified bit of the location determined by s is 
reset. s is defined in the description of the similar 
BIT instructions. 

Data Flow: ,----....,
A 
f------+---~ 

B 	 C 
Dr----;---~ 

H 
'-------'------' 

Timing: usec 
s: M cycles: T states: @2MHz: 

r 2 8 4 
(HL) 4 15 7.5 
(IX + d) 6 23 11.5 
(IY + d) 6 23 11.5 

Addressing 'Mode: 	 r: implicit; (HL): indirect; (IX + d), (IY + d): in­
dexed. 

Byte Codes: 	 RES b, r 
BCD E H L 

CB- o 87 80 81 82 83 84 85 

8F 88 89 8A 8B 8C 8D 

2 97 90 91 92 93 94 95 

3 9F 98 99 9A 9B 9C 9D 

4 A7 AO Al A2 A3 A4 A5 

5 AF A8 A9 AA AB AC AD 

6 B7 80 Bl B2 B3 B4 B5 

7 BF B8 B9 BAI BB BC BD 

b: r: A 

~ 0 1 2 3 4 567 

RES b, (HL) CB-18618E19619EIA61AEIB61BEI 
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RES b, (IX + d) DOCB - b: 0 1 2 3 4 5 6 7 

RES rl (HL) CB ­ ~ 196 19E 1A61 AE 1661 BE 1RES b, (IY + d) FOCB ­

S Z H PIV N CFlags: 
L-I--LI----L-I--LI----L-I-,-1--,-1-,-1__1(No effect) 

Examples: RES 1, H 

Before: After: 

M
Eg
OBJECT CODE 
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RET 

Function: 

Format: 

Description: 

Data Flow: 

Return from subroutine 

PClow +- (SP); PChigh +- (SP + 1); SP +- SP + 2 

The program counter is popped off the stack as 
described for the POP instructions. The next in­
struction fetched is from the location pointed to 
byPC. 

A~____~______~ 


B C 


D~____-+______~ 
HL-____~______~ 

PC 

SP 

Timing: 3 M cycles; 10 T states; 5 usec @ 2 MHz 

Addressing Mode: Indirect. 

Flags: s z H PN N C 

I I I I I I I I (no effect) 
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Example: 

OBJECT CODE 

RET 


Before: 


PC 08_B_l__--'1-1___ 

SP 1L..-__ __~3....:.3---'10 

3310~ 
3311~ 

THE zao INSTRUCTION SET 

After: 

PC "'(i~jW8A 

sp"'mJ~ 

3310~ 
3311~ 
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RETcc 	 Return from subroutine on condition. 

Function: 	 If cc true: Pctow +- (SP); PChigh +- (SP + 1); 
SP-SP + 2 

Format: 
1 1 11 1 0 1 0 1I-Tcc+-I 0 

Description: 	 If the condition is met, the contents of the pro­
gram counter are popped off the stack as described 
for the POP instructions. The next instruction is 
fetched from the address in PC. If the condition is 
not met, instruction execution continues in 
sequence. 

Data Flow: 

F 
f----I-----I C 

LOGIC 
PC 

SP 

cc may be anyone of: 

NZ - 000 PO 100 
Z - 001 PE 101 

NC - 010 P 110 
C - 011 M III 

Timing: 	 Condition met: 3 M cycles; 11 T states; 6.5 usec @ 
2 MHz. 
Condition not met: 1 M cycle; 5 T states; 2.5 usec 
@2MHz 

Addressing Mode: 	 Indirect. 
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Byte Codes: 

Flags: 

Example: 

~ 

OBJECT CODE 

CC: NZ Z NC C PO PE P M 

Imlalool~lffilffilffil~1 

s Z H PlY N C 

I I I I I I I (no effect) 

RET NC 

Before: After: 

PC 0_12_4__......J PC ..'gXi~L...I___ 

sP'-I__---=8:.=-51'-'-.1__---' sPWIA§%Jl~ 

8511~ 8511~ 
8512f;2g 8512~ 
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RETI 

Function: 

Format: 

Description: 

Data Flow: 

Return from interrupt. 

PCJow +- (SP); PChigh +- (SP + 1); SP +- SP + 2 

11 11 11 I 0 [ 1 11 [0 [1 I byte 1: ED 

[ 0 I 1 [ 0 [ 0 11 11 I 0 I 1 I byte 2: 4D 

The program counter is popped off the stack as 
described for the POP instructions. This instruc­
tion is recognized by Zilog peripheral devices as 
the end of a peripheral service routine so as to 
allow proper control of nested priority interrupts. 
An EI instruction must be executed prior to RETI 
in order to re-enable interrupts. 

A 

B C 

D 

H 

PC 

SP 

Timing: 4 M cycles; 14 T states; 7 usec @ 2 MHz 


Addressing Modes: Indirect. 


Flags: 
 S Z H PlY N C 

~I--<-[--"------.LI__IlI IJ (no effect). 
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Example: RET! 

Before: After: 

pcl 84E1 

spl 89B2 

89B2M 

40 89B3 B1 ~~ 89B3~~ 
OBJECT CODE 
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RETN 

Function: 

Format: 

Description: 

Data Flow: 

Return from non-mask able interrupt. 

PCJow ~ (SP); PChigh ~ (SP + 1); SP +- SP + 
2; IFF'I ~ IFF2 

1 1 1 1 1 1 1 0 11 11 1 0 11 byte 1: ED 


1011101010111011 byte 2: 45 


The program counter is popped off the stack as 
described for the POP instructions. Then the con­
tents of the IFF2 (storage flip-flop) is copied back 
into the IFFl to restore the state of the interrupt 
flag before the non-maskable interrupt. 

A 

B C 

D 

H 

PC 

SP 

Timing: 4 M cycles; 14 T states; 7 usec @ 2 MHz 

Addressing Mode: Indirect. 
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Flags: 

Example: 

~ 

~ 

OBJECT CODE 

s z H PlY N C 

I I I I I I I (no effect). 


RETN 


Before: After: 


PC 1L..-__ 5F_ __-l PC "'f,~2IWMA..::.... 1 


SP 8_84_C__-,
,-I___ spWMl!1tWM 

8B4C~ 8B4C~ 
8B4D t;.88B4D~ 
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RL s 	 Rotate left through carry operand s. 

Function: 

Format: s: 
r 11 1 0 0 1 I 0 I 1 I 1 Ibyte 1: CB 

I 0 o 0 1 0 1-+ r 7-1 byte 2 


(HL) I 1 1 0 0 1 I0 11 1 byte 1: CB 


I 0 0 0 1 0 I 1 11 0 byte 2: 16 

(IX + d) I 1 1 0 1 11 11 I0 1 byte 1: DD 

I 1 I 1 0 0 11 I0 1 1 byte 2: CB 

I :: 1: byte 3: offset value 

I 0 I 0 I 0 11 I 0 1 1 0 byte 4: 16 

(IY + d) 	 1 I 1 11 III1 1 0 1 byte 1: FD 

1 11 I 0 I 0 11 0 11 1 byte 2: CB 

. I: 1 1 i·: i' byte 3: offset value 

o I 0 I 0 I 1 I 0 11 11 I 0 byte 4: 16 

r may be anyone of: 

A - 111 E - 011 
B - ()()() H - 100 
C - 001 L - 101 
D - 010 

Description: 	 The contents of the location of the specific 
operand are shifted left one bit place. The con­
tents of the carry flag are moved to bit 0 and the 
contents of bit 7 are moved to the carry flag. The 
final result is stored back in the originaiiocation. s 
is defined in the description of the similar RLC in­
structions. 
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Data Flow: 

A 

Bt-----t------1L~ 


D 

H t-----j----i 


Timing: 	 usec 
s: M cycles: T states: @2MHz: 

r 2 8 4 
(HL) 4 15 7.5 
(IX + d) 6 23 11.5 
(IY + d) 6 23 11.5 

Addressing Mode: 	 r: implicit; (HL): indirect; (IX + d), (IY + d): in­
dexed. 

Byte Codes: 	 RL r r: ABC D E H t 

CBi 17110 111 11 21 131 141151 

Flags: S Z H ®'V N C 

1_1_1 101 1_101_1 
C is set by bit 7 of source. 

Example: RL E 

Before: After: 

h=1 41 IF _~1_F 

Eg 6E IE _§.§'_E 
OBJECT CODE 
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RLA 	 Rotate accumulator left through· carry flag. 

Function: 

Format: 

Description: 	 The contents of the accumulator are shifted left 
one bit position. The contents of the carry flag are 
moved into bit 0 and the original contents of bit 7 
are moved into the carry flag. (9 bit rotation.) 

Data Flow: 

A 


B 


D 


H 


Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

S Z H PIV 	 N C 
Flags: I I 101 I 101_1 

C is set by bit 7 of A. 

Example: RLA 

Before: After: 

ALI__oF_---'-_O_l_-'1 F 

OBJECT CODE 
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RLCA 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Flags: 

Example: 

~ 

OBJECT CODE 

Rotate accumulator left with branch carry. 

The contents of the accumulator are rotated left 
one bit position. The original contents of bit 7 is 
moved to the carry flag as well as to bit o. 

1 M cycle; 4 T states; 2 usec @ 2 MHz 

Implicit. 

s z H PN N C 

I I 101 I 101_1 
C is set by bit 7 of A. 


RLCA 


Before: After: 


ALI__6B_--'--__01_----'1 F 

Note: 	This instruction is identical to RLC A, ex­
cept for the flags. It is provided for compat­
ibility with the 8080. 
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RLC r 

Function: 

Format: 

Description: 

Data Flow: 

Rotate register r left with branch carry. 

1 1 1 1 1 0 1 0 1 1 1 0 1 1 11 1byte 1: CB 

1 0 1 0 1 0 1 0 1 (} 1-;-,-71 byte 2 

The contents of the specified register are rotated 
left. The original contents of bit 7 are moved to 
the carry flag as well as bit o. r may be anyone of: 

A - III E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - 010 

A C F 
BI----+--~C 

D E 

Timing: 2 M cycles; 8 T states; 4 usec @ 2 MHz 

Addressing Mode: Implicit. 

Byte Codes: r: ABC D E H L 

CB-I 071 00 I01 1021 03 104 1os 1 
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Flags: S Z H <bv N C

1_[_[ 101 [_10[_[ 
C is set by bit 7 of source register. 

Example: RLC B 

Before: After: 

B I 62 I I 56 IF 

OBJECT CODE 
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RLC (HL) 	 Rotate left with branch carry memory location 
(HL). 

Function: 

Format: 
byte 1: CB 

I 0 I 0 , 0 \ 0 , 0 I 1 \1 \ 0 I byte 2: 06 

Description: 	 The contents of the memory location addressed by 
the contents of the HL register pair are rotated left 
one bit position and the result is stored back at 
that location. The contents of bit 7 are moved to 
the carry flag as well as to bit O. 

Data Flow: 

A 	 ~c F 

B 	 C 
D~---t------iE 

H~L l'-------__ 
Timing: 	 4 M cycles; 15 T states; 7.5 usec @ 2 MHz 

Addressing Mode: 	 Indirect. 

Flags: s z H ®V N C 

10\ 1_\01_' 
C is set by bit 7 of the memory location. 

l 
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Example: RLC (HL) 

Before: After: 

D3 IF 

H~I_____6~1~14~__~IL H~I_____6_1_14____~IL 

OBJECT CODE 
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RLC (IX + d) Rotate left with branch carry memory location (IX 
+ d) 

Function: 

Format: 
11 11 I 0 11 11 11 I 0 11 Ibyte 1: DD 

I 1 11 I 0 I 0 11 I 0 I 1 11 Ibyte 2: CB 

I, : ~ Ibyte 3: offset value 

I 0 I 0 I0 I 0 I 0 11 11 I 0 Ibyte 4: 06 

Description: 	 The contents of the memory location addressed by 
the contents of the IX register plus the given offset 
value are rotated left and the result is stored back 
at that location. The contents of bit 7 are moved 
to the carry flag as well as to bit o. 

Data Flow: 

A 	 C F 
B'----l---~ 

I--__-l-__~C 


D 	 E 
H 

IxC====:J--i 
RLC 

d 
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Timing: 

Addressing Mode: 

6 M cycles; 23 T states; 11.5 usec @ 2 MHz 

Indexed. 

Flags: 

Example: 

s z H 0'v N C 

101 1_101_1 
C is set by bit 7 of memory location. 

RLC (IX + 1) 

Before: After: 

42 IF 

IxLI___04_BI__---1 IxlL___04_Bl__---' 

DD O4Bl~ 04Bl~ 
04B2~ 04B2~ 

OBJECT CODE 

CB 
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RLC (IY + d) 	 Rotate left with carry memory location (lY + d). 

Function: 

D~~7.~~O~ 
C [ IY + d] 

Format: 
/ 1 /1 / 1 / 1 / 1 /1 / 0 / 1 / byte 1: FD 

/1 11 / 0 / 0 /1 / 0 /1 /1 / byte 2: CB 

---:-~ ------I byte 3: offset value 

1 0 1 0 1 0 1 0 1 0 11 11 / 0 1 byte 4: 06 

Description: 	 The contents of the memory location addressed by 
the contents of the IY register plus the given offset 
value are rotated left and the result is stored back 
at the location. The contents of bit 7 are moved to 
the carry flag as well as bit o. 

Data Flow: 

A 1--__--+-__-"'C""4 F 


BI--__-+-__---jc 

D 
HI-----+------j 

IYL_____j--i 

+ 


RLC 

d 
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Timing: 6 M cycles; 23 T states; 11.5 usec @ 2 MHz 

Addressing Mode: Indexed. 

Flags: SZ H ®'V NC 

'---'• ...1-'• ......1-1--11_01 1·101·1 
C is set by bit 7 of memory location. 

Example: RLC (lY + 2) 

Before: After: 

,--_c_4_--,1 F 

Iyl IY __---'0021 c...1___00~21 
'------------' 

FD 

CB 

02 

06 

0021 

0022 

0023 

05 

B1 

A2 

0021 

0022 

0023 

OBJECT CODE 

407 



PROGRAMMING THE zao 

RLD 	 Rotate left decimal. 

Function: 

Format: byte 1: ED 

byte 2: 6F 

Description: 	 The 4 low order bits of the memory location ad­
dressed by the contents of HL are moved to the 
high order bit positions of that same location. The 
4 high order bits are moved to the 4 low order bits 
of the accumulator. The low order of the ac­
cumulator is moved to the 4 low order bits of the 
memory location originally specified. All of these 
operations occur simultaneously. 

Data Flow: 

A 

B 
D 1-----+------1 

H 
'--------'-----' 

Timing: 5 M cycles; 18 T states; 9 usec @ 2 MHz 

Addressing Mode: Indirect. 
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Flags: SZ H ®'VNC

reT.·=-01-1,--0-,-----1--'=-1.----'-10---'-1---' 

Examples: RLD 

Before: After: 

H _____I B_4F_2__---.JI L H 1'---__B4_F_2__-,I L 

OBJECT CODE 
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RR s 

Function: 

Format: 

r 


(HL) 


(IX + d) 


(IY + d) 

Description: 

Rotate right s through carry. 

q7-0kj] 
S c 

I' 1I 1I 0I 0 1I 0I 111 I 

I 0I 0I 011 1--+r~1 
I 1I 1I 0I 0 1 011 11 I 

1010 0 111 o I 
111 I 

1

0 1 110 1 
111 I 0 o 11 o 11 

.. 
: : i 1 : : : . 

0 o I 011 11 11 11 I 0 
111 11 11 11 I 011 

I 1 1I 0I 01 1I 0 I 111 
1---: -f-+-+--T-i-:--1 
I 0 I 0 I 0 11 11 11 11 10 I 

r may be anyone of: 

A-Ill E - 011 
B - 000 H - 100 
C - 001 L - 101 
0-010 

byte 1: CB 

byte 2 

byte 1: CB 

byte 2: IE 

byte 1: DO 

byte 2: CB 

byte 3: offset value 

byte 4: IE 

byte 1: FO 

byte 2: CB 

byte 3: offset value 

byte 4: IE 

The contents of the location determined by the 
specific operand are shifted right. The contents of 
the carry flag are moved to bit 7 and the contents 
of bit 0 are moved to the carry flag. The final 
result is stored back in the original location. s is 
defined in the description of the similar RLC in­
structions. 
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Data Flow: 
r--.---r---....,b,!. 

Af--__-+-__~C~ F 

B C 

Df--__-+-__~ 
H L--__--'-__--.J 

Timing: 	 usec 
s: M cycles: T states: @ 2 MHz: 

r 2 8 4 
(HL) 4 15 7.5 
(IX + d) 6 23 11.5 
(lY + d) 6 23 11.5 

Addressing Mode: 	 r: implicit; (HL): indirect; (IX + d), (IY + d): in­
dexed. 

Byte Codes: 	 RR r: r: ABC D E H L 

CB.\1 F \18 \19 \1 A \1 B \1 C \10 \ 

Flags: S Z H PN N C 

C is set by bit 0 of source data. 

Example: 	 RR H 

Before: 	 After: 

HI I I 6B 41 ~ 

~ 

OBJECT CODE 
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RRA 

Function: 

Format: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Flags: 

Example: 

OBJECT CODE 

Rotate accumulator right through carry. 

LIr-7====::;"~of-.GJ7 

A Cf 

The contents of the accumulator are shifted right­
one bit position. The contents of the carry flag 
are moved to bit 7 and the contents of bit 0 are 
moved to the carry flag (9-bit rotation). 

1 M cycle; 4 T states; 2 usec @ MHz 

Implicit. 

s z H PlY N C 

I I 101 I 101_1 
Cis set by bit 0 of A. 


RRA 


Before: After: 


AIL_~F4~--.L._9:..::5_....J1 F 

Note: This instruction is almost identical to RR A. It 
is provided for 8080 compatibility. 
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RRC s 	 Rotate right with branch carry s. 

Function: 
L:j7-0kJ 

S c 

Format: s: s is any of r, (HL), (IX + d), (IY + d). 

r [1 0 0 1 1 0 11 11 1 byte 1: CB 

10 0 0 0 1 l--+r~1 byte 2 


(HL) 1 1 0 0 1 0 1 11 1 byte 1: CB 


1 0 0 0 	 0 1 1 1 0 1 byte 2: OE 

(IX + d) 	 1 1 11 0 1 0 11 1 byte 1: DD 

1 1 1 1 0 0 11 0 1 11 byte 2: CB 

I...: : : ~ : • byte 3: offset value 

o1 0 0 0 10 11 byte 4: OE 

(lY + d) 1 1 1 1 1 1 1 o 1 byte 1: FD 

11 0 10 11 0 1 	 byte 2; CB 

byte 3: offset value 1-: : 	 : ~--:-
1 0 ! 0 1 0 	 10 11 11 11 10 byte 4: OE 

r may be anyone of: 

A - 111 E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - 010 

Description: 	 The contents of the location determined by the 
specified operand are rotated right and the result 
is stored back in the original location. The con­
tents of bit 0 are moved to the carry flag as well as 
to bit 7. s is defined in the description of the 
similar RLC instructions. 
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Timing: 	 usee 
s: M cycles: T slales: @ 2 MHz: 

r 2 8 4 
(HL) 4 15 7.5 
(IX + d) 6 23 11.5 
(IY + d) 6 23 11.5 

Addressing Mode: 	 r: implicit; (HL): indirect; (IX + d), (IY + d): in­
dexed. 

Byte codes: 	 RRC r r: ABC D E H l 

CB-I OF IOS I091O~T~B IOCIOD] 

s z H ®IV N CFlags: 

C is set by bit 0 of source data. 

Example: 	 RRC (HL) 

Before: 	 After: 

~ 
~ 

__F 

H=__3F_F2__-----'1 L 

OBJECT CODE 
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RRCA 

Function: 

Formal: 

Description: 

Data Flow: 

Timing: 

Addressing Mode: 

Flags: 

Example: 

Rotate accumulator right with branch carry. 

I 0 I 0 I 0 ! 0 I 1 I 1 ! 1 I 1 I OF 

The contents of the accumulator are rotated right 
one bit position. The contents of bit 0 are moved 
to the carry flag as well as to bit 7. 

B 

D 

H 

A~£=~ 
C 

I M cycle; 4 T states; 2 usec @ 2 MHz 

Implicit. 

s z H PIV N C 

101 101_1 

C is set by bit 0 of A. 


RRCA 


Before: After: 


AIL___D_4__~__5_1_·~IF 

OBJECT CODE 
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RRD Rotate right decimal. 

Function: 

Format: I 1 I 1 \1 I 0 11 11 I 0 11 byte 1: ED 

I 0 I 1 I 1 I 0 I 0 i 1 11 11 byte 2: 67 

Description: The 4 high order bits of the memory location ad­
dressed by the contents of the HL register pair are 
moved to the low order 4 bits of that location. The 
4 low order bits are moved to the 4 low order bits 
of the accumulator. The low order bits of the ac­
cumulator are moved to the 4 high order bit posi­
tions of the memory location originally specified. 
All of the above operations occur simultaneously. 

Data Flow: 

D 
Hr------+------~ 

Timing: 5 M cycles; 18 T states; 9 usec @ 2 MHz 

Addressing Mode: Indirect. 
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Flags: S Z H ®v N C 

Example: RRD 

Before: After: 

OBJECT CODE 
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RST p 

Function: 

Format: 

/)escription: 

Data Flow: 

Restart at p. 

(SP - 1) +- PChigh; (SP - 2) +- Pqow; SP +- SP 
- 2; PChigh +- 0; PClow +- p 

l 1 I 1 I-+p;-'\ 1 I 1 I11 

The contents of the program counter are pushed 
onto the stack as described for the PUSH instruc­
tions. The specified value for p is then loaded into 
the PC and the next instruction is fetched from 
this new address. p may be anyone of: 

OOH - 000 20H - 100 
08H - 001 28H - 101 
IOH - 010 30H 110 
18H - 011 38H - 111 

This instruction performs a jump to any of eight 
starting addresses in low memory and requires only 
a single byte. It may be used as a fast response to 
an interrupt. 

A 
1-----+------, 

B f------+----I C 
D
1-----+----1 

H '--__-----'.___....J 
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Timing: 3 M cycles; II T states; 5.5 usec @ 2 MHz 

Addressing Mode: Indirect. 

Byte Codes: p: 00 08 10 18 20 28 30 38 

Iell CF ID71 DF IE7 IEF IF7 IFF I 

Flags: s z H PN N C 

I I I I I (no effect). 

Example: RST 38H 

Before: After: 

PC IL ___4_4_1A_.__---' pc~9§%~:" 

SP ,-I___02_6B__-----' SP":9%~?~ 

0269 

026A f--_B_F_--1 

0269 f--_S=-,-I_--1 
026A 

OBJECT CODE 026B026B f--_O=-,-3_--1 
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SHeA, s 	 Subtract with borrow accumulator and specified 
operand. 

Function: 	 A+-A-s-C 

Format: 	 s: may be r, n, (HL), (IX + d), or (IY + d) 

r II I0 I0 II II I-+r-+--I 
n 11 II I 0 11 11 11 II I0 I 	byte I: DE 

byte 2: immediate 
I : : On: : : .. I data 


(HL) 11 I 0 I 0 II 11 II II I0 I byte 1: 9 E 


(IX+ d) II II I 0 II II II I 0 II I byte 1: DO 

1 I I 0 I0 I I I 1 11 I1 I 0 I 9E 

I : : :d: : : : I byte 3: offset value 

(IY + d) I I II I I I I I I I 1 I0 I I I byte I: FD 

II I0 I0 II II II II I0 I byte 2: 9E 

I.: : : d: : : :. I byte 3: offset value 

r may be anyone of: 

A-III E - 011 
B - 000 H - 100 
C - 001 L - 101 
0-010 

Description: 	 The specified operand s, summed with the con­
tents of the carry flag, is subtracted from the con­
tents of the accumulator, and the result is placed 
in the accumulator. s is defined in the description 
of the similar ADD instructions. 

420 



THE laO INSTRUCTION SET 

Data Flow: 

Timing: usee I 
s: IM cycles: T states: @ 2 MHz: 

r 1 4 
n 2 7I
(HL) 2 7 3.5I 
(IX + d) 5 19 9.5III 

'-
(IY + d) I 5 19 9.5 i. -. 

Addressing Mode: 	 r: implicit; n: immediate; (HL): indirect; (IX + 
d), (lY + d): indexed. 

Byte Codes: SBC A, r 	 r: ABC D E H l

I9F 19B 199 1 9A 19B -I 9C 1 9D I 
pJ@ NFlags: 	 S Z H C 

I_Ill_I 

Example: 	 SBC A, (HL) 

Before: 	 After: 

AI 	 IFB2 51 A 

H IL-__36_OO__----lll H IL-_---=-36=OO=---_---.Jll 

OBJECT CODE 
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Data Flow: r-----------------, 

A !,c
f------+------'--I 

B 
Dr----+---~E 

H 

SP,-I______-' 

Timing: 4 M cycles; 15 T states; 7.5 usec @ 2 MHz 

Addressing Mode: Implicit. 

Byte Codes: ss: Be DE HL SP 

ED-- 1421521621721 

SHe HL, ss 

Function: 

Format: 

Description: 

Subtract with borrow HL and register pair ss. 

HL'- HL - ss - C 

1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1byte 1: ED 

1 0 1 lis : s 1 0 1 0 1 1 1 0 1 byte 2 

The contents of the specified register pair plus the 
contents of the carry flag are subtracted from the 
contents of the HL register pair and the result is 
stored back in HL. ss may be anyone of: 

BC - 00 HL - 10 

DE - 01 SP - 11 
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Flags: S Z H p,(j) N C1-'-' ,? , '_Ill_I 
H is set if borrow from bit 12. 
e is set if borrow. 

Example: SBe HL, DE 

Before: After: 

~ 
DH ~___06_B_9---ll El D~06B9 ~ E 

~ . 3142 . H~_l 
OBJECT 


CODE 
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SCF Set carry flag. 

Function: 

Formal: 

Description: The carry flag is set. 

Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz 

Addressing Mode: Implicit. 

Flags: s z 

I I 
H P/V N C 

37 
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SETb, S Set bit b of operand s 

Function: sb +- 1 

Format: s: 

r 1 11 I 0 I0 11 \ 0 \1 11 I 
111 I--i-b+-I-i-, +-­

(HL) 1 11 I0 I0 11 I0 11 1 

111 I-+b+-Il 11 0 

(IX + d) 11 11 10 11 11 11 10 1 

11 11 I0 I0 11 I0 11 1 

I ; : ; 1 ; ; : I 
1 11 I--+b+-Il 1 I0 I 

(IY + d) 111 11 11 11 11 0 11 I 
111 I0 I0 11 I0 1 11 I 
. ; ; : 1: : ·1 

1111 I-+b+-Il 	11 10 1 

r may be anyone of: 

A-Ill E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - 010 

b may be anyone of: 

0-000 4 - 100 
1 - 001 5 - 101 
2 - 010 6 - 110 
3 - 011 7 - 111 

byte 1: CB 

byte 2 

byte 1: CB 

byte 2 

byte 1: DD 

byte 2: CB 

byte 3: offset value 

byte 4 

byte 1: FD 

byte 2: CB 

byte 3: offset value 

byte 4 

Description: 	 The specified bit of the location determined by s is 
set. s is defined in the description of the similar 
BIT instructions. 
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Data Flow: 
,.::..:....:..:...:.....-~ 

A1--__-1-__---, 
B C 

D E 

HL-__--L__--..J 

Timing: 	 usec 
s: M cycles: T states: @2MHz: 

r 2 8 4 
(HL) 4 15 7.5 
(IX + d) 6 23 11.5 
(IY + d) 6 23 11.5 

Addressing Mode: 	 r: implicit; (HL): indirect; (IX + d), (lY + d): in­
dexed. 

Byte Codes: 	 SET b, r 

b: r: ABC D E 	 H l 

CB- 0 C7 CO C1 C2 C3 C4 C5 

CF C8 C9 CA CB CC CD 

2 D7 DO D1 D2 D3 D4 D5 

3 DF D8 D9 DA DB DC DD 

4 E7 I EO E1 E2 E3 E4 E5 

5 EF E8 E9 EA EB EC ED 

6 F7 FO F1 F2 F3 F4 F5 

7 FF F8 F9 FA FB FC FD 

SET b, (HL) 

b: 0 1 2 3 4 	 5 6 7 

SET b, (IX + d) lalal~I~I~lffl~I~1 

SET b, (lY + d) 
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s z PIV 	 N CFlags: 	 H 

L-J-------'--'---'---L---,---,-I--,I (no effect) 

Example: 	 SET 7, A 

Before: After: 

A8f_ 

e ~ 
OBJECT CODE 
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SLA s Arithmetic shift left operand s. 

Function: 
D---17_01--0 

c s 
Format: s: 

r 
0 0 1 1 0 11 11 1 byte 1: CB 

0 0 1 0 0 ~r+- byte 2 

(HL) 0 0 1 o 11 byte 1: CB 

0 0 0 0 1 11 0 byte 2: 26 

(IX + d) 1 11 1 0 1 1 0 byte 1: DD 

1 11 1 0 0 o 11 byte 2: CB 

I.. : : : : : : -I byte 3: offset value 

1 0 1 0 1 0 o 11 1 
1 0 byte 4: 26 

(lY + d) 11 11 1 11 o 11 byte 1: FD 

11 I 1 0 0 1 1 0 1 11 byte 2: CB 

I- i : : i : : - byte 3: offset value 

I 0 1 0 11 1 0 1 0 11 11 10 byte 4: 26 

r may be anyone of: 

A-Ill E - 011 
B - 000 H 100 
C - 001 L - 101 
D - 010 

Description: 	 The contents of the location determined by the 
specific operand are arithmetically shifted left with 
the contents of bit 7 being moved to the carry flag 
and a 0 being forced into bit O. The final result is 
stored back in the original location. s is defined in 
the description of the similar RLC instructions. 
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Timing: 	 usec 
s: M cycles: T slales: @ 2 MHz: 

r 2 8 4 
(HL) 4 IS 7.5 
(IX + d) 6 23 11.5 
(lY + d) 6 23 11.5 

Addressing Mode: 	 r: implicit; (HL): indirect; (IX + d), (lY + d): in­
dexed. 

Byle Codes: SLA r 

s z H @}v N CFlags: 

C is set by bit 7 of source data. 

Example: SLA (HL) 

Before: After: 

10 IF _]_F 

HI OFF2 IL HI OFF2 IL 

OBJECT CODE 
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SRA s 	 Shift right arithmetic s. 

Function: 
~j -o~D 
L..:::j s c 

Format: s: 
r 1 ]1 I 0 I 0 1 I 0 11 11 I byte 1: CB 

0 o 11 I 0 1 -+r+- byte 2 

(HL) 1 I 0 0 0 byte 1: CB 

0 o ! 1 0 0 byte 2: 2E 

(IX + d) 1 I 0 0 byte 1: DD 

1 I 0 o ]1 0 byte 2: CB 

... : .. byte 3: offset value: : : 1 : : 

o I 0 11 I 0 11 11 11 I 0 I byte 4: 2E 

(lY + d) 1 11 11 11 11 11 I 0 11 I byte 1: FD 

1 11 I 0 I 0 11 I 0 11 11 I byte 2: CB 

byte 3: offset value]---::----f- ~ --:-:--+-1 

I 0 I 0 ]1 I 0 11 11 11 I 0 I byte 4: 2E 

r may be anyone of: 

A-Ill E - 011 
B - ()()() H - 100 
C - DOl L - 101 
D - 010 

Description: 	 The contents of the location determined by the 
specific operand are arithmetically shifted right. 
The contents of bit 0 are moved to the carry flag 
and the contents of bit 7 remain unchanged. The 
final result is stored at the original location. s is 
defined in the description of the similar RLC in­
structions. 
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Data Flow: 
A I 	 fC 
BI 

ID 

Hl 

Timing: usee 
s: M cycles: T states: @ 2 MHz: 

r 2 8 4 
(HL) 4 15 7.5 
(IX + d) 6 23 11.5 
(lY + d) 6 23 IJ.5 
~ 

Addressing Mode: 	 r: implicit; (HL): indirect; (IX + d), (lY + d): in­
dexed. 

Byte Codes: 	 SRA r 

SZ H (ihtNCFlags: 
1'-.--'-1.---'---1---'1-0neTo~ 
C is set by bit 0 of source data. 

Example: SRA A 

Before: After: 

A 1"---_BB_-"-_O_4_-'1F~ 

~ 

OBJECT CODE 
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SRL s 	 Logical shift right s. 

Function: 

c 

Format: s:
r [1J}]ololllolllll byte 1: CB 

I0 1011 II 11 I-+r-+-I byte 2 

(HL) 11 1I 0 I0 I 1 I0 11 I 1 I byte 1: CB 

I 0 0 11 II 11 II II 0 I byte 2: 3E 

(IX + d) 	 I 1 1I 0 I 1I 1 I 1 I0 1 I byte 1: DD 

I I I I 0 I 0 11 I0 II 1 I byte 2: CB 

E: : :~: :~I byte 3: offset value 

[D] 0 11 II 11 11 liJiJ byte 4: 3E 

(IY + d) L1iJ I I 1 I 1 I 1 lill byte 1: FD 

I I I 1I 0 I 0 I I I 0 I 1 11 I byte 2: CB 

E±J : 1-:+---71 byte 3: offset value 

liJ ol 1 111111111 0 1 byte 4: 3E 

r may be anyone of: 

A-Ill E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - 010 

Description: 	 The contents of the location determined by the 
specific operand are logically shifted right. A zero 
is moved into bit 7 and the contents of bit 0 are 
moved into the carry flag. The final result is stored 
back in the original location. 
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Timing: 	 usee 
s: M cycles: T slales: @ 2 MHz: 

r 2 8 4 
(HL) 4 15 7.5 
(IX + d) 6 23 11.5 
(lY + d) 6 23 11.5 

-. ~-----

Addressing Mode: 	 r: implicit; (HL): indirect; (IX + d), (lY + d): in­
dexed. 

Byte Codes: 	 SRL r r" ABC D E H L 

CB1~1~1~1~1~lxlml 

Flags: SZ H (ilYvNC 

1-1-1 101 '-IOJi] 
C is set by bit 0 of source data. 

Example: 	 SRL E 

Before: 	 After: 

01 IF 	 _~F~ 
02 IE _2)_E~ 

OBJECT CODE 
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SUB s Subtract operand s from accumulator. 

Function: 	 A +- A - s 

Format: 	 s: may be r, n, (HL), (IX + d) or (IY + d) 

r 11 10 I0 11 I0 	l~r71 

n I 1 I 1 I 0 I 1 10 I 1 I 1 I 0 I 	 byte 1: D6 

byte 2: immediate I., : : ~ : : ;'1 data 

(HL) 11 I 0 I 0 11 I 0 11 11 I 0 I 96 

(IX + d) 11 11 I 0 11 11 11 I 0 I 1 I byte 1: DD 

I 1I 0 I 0 I 1 I 0 I 1 I 1I 0 I byte 2: 96 

I.: : : 9 : : : - I byte 3: offset value 

(IY + d) I 1 I 1 I 1 11 I 1 I 1 I 0 I 1I byte 1: FD 

I 1 I 0 I 0 11 I 0 11 I 1 I 0 I byte 2: 96 

1+-:-; ~ : : : -I byte 3: offset value 

r may be anyone of: 

A - 111 E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - 010 

Description: 	 The specified operand s is subtracted from the ac­
cumulator and the result is stored in the ac­
cumulator. The operand s is defined in the 
description of the similar ADD instructions. 
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Data Flow: 

H'- ­ __--'-­ __...J 

Timing: 	 usec 
s: M cycles: T states: @2MHz. 

r 	 1 4 2 
n 	 2 7 3.5 
(HL) 2 7 3.5 
(IX + d) 5 19 9.5 
(IX + d) 5 19 9.5 

Addressing Mode: 	 r: implicit; n: immediate; (HL): indirect; (IX + 
d), (IY + d): indexed 

Byte Codes: 	 SUB r r: ABC D E H l 

197190 191 192193194195\ 

Flags: S Z H P,@ N C 

I_Ill_I 

Example: 	 SUB B 

Before: 	 After: 

A~ A~ 
B~ B~ 

OBJECT CODE 
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XOR s Exclusive or accumulator and s. 

Function: A-A-V-s 

Format: §.: may be r, n, (HL), (IX + d), or (lY + d) 

r 11IoI1IoI11~r7--1 

n 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 byte 1: EE 

byte 2: immediateI,: : : 7 : : : ·1 data 

(HL) 11 1 0 11 10 1 1 1 1 1 1 1 0 1 AE 

(IX + d) 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 byte 1: D D 

11 10 11 10 11 11 11 10 1 byte 2: AE 

I,: : : 4 : : : 1 byte 3: offset value 

(IY + d) 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 byte 1: FD 

1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 byte 2: AE 

I : : : 1 : : :' 1 byte 3: offset value 

r may be anyone of: 

A-Ill E - 011 
B - 000 H - 100 
C - 001 L - 101 
D - 010 

Description: 	 The accumulator and the specified operand s are 
exclusive 'or'ed, and the result is stored in the ac­
cumulator. s is defined in the description of the 
similar ADD instructions. 
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Date Flow: 

Timing: usec 
s: M cycles: T states: @2MHz: 

r 1 4 2 
n 2 7 3.5 
(HL) 2 7 3.5 
(IX + d) 5 19 9.5 
(lY + d) 5 19 9.5 

Addressing Modes: r: implicit; n: immediate; (HL): indirect; (IX + 
d), (lY + d): indexed 

Byte Codes: 	 XOR r r: ABC D E H L 

IAFIAsIA91AAIABIAciADI 

Flags: 	 S Z H ®'V N C 

1_10101 

Example: 	 XOR B1H 

Before: After: 

~ 	AI 36 

Ra 
OBJECT CODE 
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ADDRESSING TECHNIQUES 

INTRODUCTION 

This chapter will present the general theory of addressing and the 
various techniques which have been developed to facilitate the retrieval 
of data. In a second section, the specific addressing modes available in 
the Z80 will be reviewed, along with their advantages and limitations. 
Finally, in order to familiarize the reader with the various trade-oft's 
possible, an applications section will demonstrate possible trade-offs 
between the various addressing techniques by studying specific applica­
tion programs. 

Because the Z80 has several 16-bit registers, in addition to the pro­
gram counter, which can be used to specify an address, it is important 
that the Z80 user understand the various addressing modes, and in par­
ticular, the use of the index registers. Complex retrieval modes may be 
omitted at the beginning stage. However, all the addressing modes are 
useful in developing programs for this microprocessor. Let us now 
study the various alternatives available. 

POSSIBLE ADDRESSING MODES 

Addressing refers to the specification, within an instruction, of the 
location of the operand on which the instruction will operate. The main 
addressing methods will now be examined. They are all illustrated in 
Figure 5.1. 

Implicit Addressing (or "Implied," or "Register") 

Instructions which operate exclusively on registers normally use im­
plicit addressing. This is illustrated in Figure 5.1. An implicit instruc­
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tion derives its name from the fact that it does not specifically contain 
the address of the operand on which it operates. Instead, its opcode 
specifies one or more registers, usually the accumulator, or else any 
other re!!ister(s). Since internal registers are usually few in number 
(commo'tly eight), this will require a small number of bits. As an exam­
ple, three bits within the instruction will point to one out of eight inter­
nal registers. Such instructions can, therefore, normally be encoded 
within eight bits. This is an important advantage, since an eight-bit in­
struction normally executes faster than any two- or three-byte instruc­
tion. 

An example of an implicit instruction is: 

LOA, B 

which specifies' 'transfer the contents of B into A" (Load A from B.) 

Immediate Addressing 

Immediate addressing is illustrated in Figure 5.1. The eight-bit op­
code is followed by an 8- or 16-bit literal (a constant). This type of 
instruction is needed, for example, to load an eight-bit value in an 
eight-bit register. Since the microprocessor is equipped with 16-bit reg­
isters, it may also be necessary to load 16-bit literals. An example of an 
immediate instruction is: 

ADD A, OH 

The second word of this instruction contains the literal "0", which is 
added to the accumulator. 

Absolute Addressing 

Absolute addressing usually refers to the way in which data is retrieved 
from or placed in memory, in which an opcode is followed by a 16-bit 
address. Absolute addressing, therefore, requires three-byte instruc­
tions. An example of absolute addressing is: 

LD (l234H), A 

It specifies that the contents of the accumulator are to be stored at 
memory location" 1234" hexadecimal. 

The disadvantage of absolute addressing is to require a three-byte in­
struction. In order to improve the efficiency of the microprocessor, 
another addressing mode may be made available, whereby only one 
word is used for the address: direct addressing. 
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IMPLICITIIMPLIED 

IMMEDIATE 

EXTENDEDIABSOLUTE 

DIRECT/SHORT 

INDEXED 

7 o 

OPCODEA 


OPCODE 

lITERAL 

I 
I LITERAL I'-___________ _ J 

OPCODE 


FULL 16-BIT 
 -
ADDRESS 


OPCODE 


SHORT ADDRESS 


r-------- --, 
I OPCODE I 

OPCODE IXREG 

DISPLACEMENT 

I OR ADDRESS IL.. ___________ .J 

Fig. 5.1: Basic Addressing Modes 
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Direct Addressing (or "Short," or "Relative") 

In this addressing mode, the opcode is followed by an eight-bit ad­
dress. This is also illustrated in Figure 5.1. The advantage of this ap­
proach is to require only two bytes instead of three for absolute ad­
dressing. The disadvantage is to limit all addressing within this mode to 
addresses 0 to 255 or else - 128 to + 127. When using 0 to 255 ("page 
zero"), this is also called short addressing, or O-page addressing. When­
ever short addressing is available, absolute addressing is often called ex­
tended addressing by contrast. The range - 128 to + 127 is used with 
branch instructions. This is called relative addressing. 

Relative Addressing 

Normal jump or branch instructions require eight bits for the op­
code, plus the 16-bit address to which the program has to jump. Just as 
in the preceding example, this mode has the disadvantage of requiring 
three words, i.e., three memory cycles. To provide more efficient 
branching, relative addressing uses only a two-word format. The first 
word is the branch specification, usually along with the test it is imple­
menting. The second word is a displacement. Since the displacement 
must be positive or negative, a relative branching instruction allows a 
branch forward to 127 locations (seven-bits) or a branch backwards to 
128 locations (usually + 129 or -126, since PC will have been incre­
cremented by 2). Because most loops tend to be short, relative branch­
ing can be used most of the time and results in significantly improved 
performance for such short routines. As an example, we have already 
used the instruction JR NC, which specifies a "jump if no carry" to a 
location within 127 words of the branch instruction (more precisely 
+ 129 to - 126). 

The two advantages of relative addressing are improved performance 
(fewer bytes used) and program relocatability (independence from ab­
solute addresses). 

Indexed Addressing 

Indexed addressing is a technique used to access the elements of a 
block or of a table successively. This will be illustrated by examples 
later in this chapter. The principle of indexed addressing is that the in­
struction specifies both an index register and an address. The contents 
of the register are added to the address to provide the final address. In 
this way, the address could be the beginning of a table in the memory. 
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The index register would then be used to access all the elements of a 
table successively in an efficient way. (This requires the availability of 
increment/decrement instructions for the index register). In practice, 
restrictions often exist which may limit the size of the index register, or 
the size of the address or displacement field. 

INDEX REGISTER 

BASE 

BASE --..

I 
d.splacemen I 

MEMORY 

Fig. 5.2: Addressing (Pre-indexing) 

Pre-Indexing and Post-Indexing 

Two modes of indexing may be distinguished. Pre-indexing is the 
usual indexing mode in which the final address is the sum of a displace­
ment or address and of the contents of the index register. It is shown in 
Figure 5.2, assuming an 8-bit displacement field and a 16-bit index 
register. 

Post-indexing treats the contents of the displacement field like the 
address of the actual displacement, rather than the displacement itself. 
This is illustrated in Figure 5.3. In post-indexing, the final address is the 
sum of the contents of the index register plus the contents of the mem­
ory word designated by the displacement field. This feature utilizes, in 
fact, a combination of indirect addressing and pre-indexing. But we 
have not defined indirect addressing yet. Let us do that. 
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MEMORV Y(index) 

I N I 
OPCOOE 

ADDRESS 


r-- POINTER ­
r-­ 8 

MEMORY 

I- ­
FINAL 
16BIT 

ADDRESS 

OATAN -POINTER =BASE ­

Fig. 5.3: Indirect Indexed Addressing (Post-Indexing) 

Indirect Addressing 

We have already seen that two subroutines may wish to exchange a 
large quantity of data stored in the memory. More generally, several 
programs, or several subroutines, may need to access a common block 
of information. To preserve the generality of the program, it is desira­
ble not to keep such a block at a fixed memory location. In particular, 
the size of this block might grow or shrink dynamically, and it may 
have to reside in various areas of the memory, depending on its size. It 
would, therefore, be impractical to try to access this block using abso­
lute addresses, that is without rewriting the program every time. 

The solution to this problem lies in depositing the starting address of 
the block at a fixed memory location. This is analogous to a situation in 
which several persons need to get into a house, and only one key exists. 
By convention, the key to the house will be hidden under the mat. Every 
user will then know where to look (under the mat) to find the key to the 
house (or, perhaps, to find the address of the scheduled meeting, to 
propose a stricter analogy). Indirect addressing, therefore, normally 
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uses an opcode followed by a 16-bit address. This address is used to 
retrieve a word from the memory. Usually, it will be a 16-bit word (in 
our case, two bytes) within the memory since it is an address. This is il­
lustrated by Figure 5.4. The two bytes at the specified address Al con­
tain "A2". A2 is then interpreted as the actual address of the data that 
one wishes to access. 

INSTRUCTION MEMORY 

OPCODE 

INDIRECT (A,) FINAL 

- ADDRESS A, ADDRESS (A,) - ­

A, DATA +­

Fig. 5.4: Indirect Addressing 

Indirect addressing is particularly useful any time that pointers are 
used. Various areas of the program can then refer to these pointers to 
access a word or a block of data conveniently and elegantly. The final 
address may also be obtained by pointing within the instruction to a 
16-bit register in which it is contained. This is called "register indirect." 

Combinations of Modes 

The above addressing modes may be combined. In particular, it 
should be possible in a completely general addressing scheme to use 
many levels of indirection. The address A2 could be interpreted as an 
indirect address again, and so on. 

Indexed addressing can also be combined with indirect access. This 
allows the efficient access to word n of a block of data, provided one 
knows where the pointer to the starting address is (see figure 5.2). 
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We have now become familiar with all usual addressing modes that 
can be provided in a system. Most microprocessor systems, because of 
the limitation on the complexity of an MPU, which must be realized 
within a single chip, do not provide all possible modes but only a small 
subset of these. The Z80 provides a good subset of possibilities. Let us 
examine them now. 

Z80 ADDRESSING MODES 

Implied Addressing (Z80) 

Implied addressing is essentially used by single-byte instructions 
which operate on internal registers. Whenever implicit instructions 
operate exclusively on internal registers, they require only one machine 
cycle to execute. 

Examples of instructions using implied (or "register") addressing 
are: LD r,r'; ADD A,r; ADC A,s; SUB s; SBC A,s; AND s; OR s; 
XOR s; CPs; INC r. 

Zilog further distinguishes between "register addressing" and "im­
plied addressing." Implied addressing is then limited, in that definition, 
to instructions that do not have a specific field to point to an internal 
register. This introduces one more addressing mode. This is one reason 
why the number of addressing modes is insufficient to characterize the 
capabilities of a microprocessor. 

Immediate Addressing (Z80) 

Since the Z80 has both single-length registers (eight bits), and double­
length register pairs (16 bits), it provides two types of immediate ad­
dressing, both with 8- bit and 16- bit literals. Instructions are then 
either two or three bytes long. The second (and sometimes the third) 
byte contains the opcode, followed by the constant, or literal, to be 
loaded in a register or used for an operation. Exceptions are LD IX and 
LD IY, which require 16-bit opcodes. 

Examples of instructions using the immediate addressing mode are: 

LD r,n (two bytes) 
LD dd,nn (three bytes) 

and 
ADD A,n (two bytes) 

When the literal is two bytes long, the mode is called "immediate ex­
tended," in the case of the Z80. 
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Absolute or "Extended" Addressing (Z80) 

By definition, absolute addressing requires three bytes. The first byte 
is the opcode and the next two bytes are the 16-bit address specifying 
the memory location (the "absolute address"). 

By contrast with "short addressing" (eight-bit address), this mode is 
also called "extended addressing." 

Examples of instructions using extended addressing are: 

LD HL, (nn) and JP nn 

where nn represents the 16-bit memory address, and (nn) represents the 
contents of the specified location. 

Modified Zero-Page Addressing (Z80) 

Zero-page addressing is not available in the Z80, except through the 
RST instruction. The special addressing mode used by this instruction 
is called "modified zero-page addresing." 

The RST instruction contains a 3-bit field in bit position b, b4 bl us­
ed to pint to one of 8 locations in page 0 memory. The effective 
address is b5b4b3000 and is loaded into PC. Since it requires only a 
single byte, this instruction executes rapidly, and is easily generated in 
hardware. It was generally used to respond to multiple interrupts (up to 
8.) Its disadvantage is either to limit the execution sequence to 8 loca­
tions, or to require a jump eliminating the speed advantage. This is 
because each of the 8 branch addresses are 8-bytes apart. 

Relative Addressing (Z80) 

By definition, relative addressing requires two bytes. The first one is 
the "jump relative" opcode, whereas the second one specifies the dis­
placement and its sign. 

In order to differentiate this mode from the absolute jump instruc­
tion, it is labeled"JR". 

From a timing standpoint, this instruction should be examined with 
caution. Whenever a test fails, i.e., whenever there is no branch, this in­
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struction requires only seven "T cycles." This is because the next 
instruction to oe executed is already pointed to by the program counter. 

However, when the test succeeds, i.e., whenever the jump takes 
place, this instruction requires 12 "T-states"; a new effective address 
must be computed and loaded into the program counter. 

When computing the duration of the execution of a program seg­
ment, caution must be exercised. Whenever one is not sure whether or 
not the jump will succeed, one must take into consideration the fact 
that sometimes the jump will require 12 T-states, (condition me!), 
sometimes 7 (condition not met). 

When designing a loop, execution will, therefore, be faster using a 
JR(JumpRelative) testing a condition usually not met, such as a non­
zero condition for the counter. 

When JR's are used outside of loops, and the condition under test is 
unknown, an average timing value is often used for the duration 
of JR. 

This timing problem does not apply to the unconditional jump JR e. It 
does not test any condition, and always lasts 12 T-states. 

Indexed Addressing (Z80) 

This addressing mode did not exist in the 8080, and was added to the 
Z80 (as well as the two index registers). As a result, it became necessary 
to add an extra byte to the opcode, making it a 16-bit opcode in the Z80 
instruction set (LDIR is another example of a 16-bit opcode). The 
structure of an indexed instruction is shown on Figure 5.5. 

OPCODE BYTE 1 

OPCODE BYTE 2 

DISPLACEMENT BYTE 3 

LITERAL BYTE 4L___________-' 

Fig. 5.5: Indexed Addressing Has 2-byte Opcode 
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Instructions allowing indexed addressing are: 

LD, ADD, INC, RLC, BIT, SET, CP, and others. 

This mode will be used extensively in the programs operating on 
blocks of data, tables or lists. 

Indirect Addressing (Z80) 

The Z80 provides a limited indirect addressing capability called 
"Register Indirect Addressing." In this mode, each of the 16-bit regis­
ter pairs BC, DE, HL may be used as a memory address. 

Whenever they point to 16-bit data, they point to the lower part. The 
higher part resides at the next (higher) sequential address. 

Combinations of Modes 

Combinations of modes are essentially non-existent, except that in­
structions referring to two operands may use a different type of ad­
dressing for each. 

Thus, a load or an arithmetic instruction may access one operand in 
the immediate mode, and the other one through an indexed access. 

Also, the bit addressing mechanism may access the eight-bit byte 
through one of the three addressing modes, as explained in the follow­
ing paragraph. The specific addressing modes available for each in­
struction are indicated in the tables of the preceding chapter. 

Bit Addressing 

Bit addressing is generally not considered an addressing mode if ad­
dressing is defined as accessing a byte. However, whether defined as a 
mode or a group of instructions, it is a valuable facility. Since it is de­
fined as an "addressing mode" in Zilog nomenclature, it will be so de­
scribed here. It is specific to the Z80 and was not provided on the 8080. 

Bit addressing refers to the access mechanism to specified bits. The 
Z80 is equipped with special instructions for setting, resetting and test­
ing specified bits in a memory location or a register. The specified byte 
may be accessed through one of three addressing modes: register, regis­
ter-indirect, and indexed. Three bits are used within the opcode to select 
one of eight bits. 
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USING THE Z80 ADDRESSING MODES 

Long and Short Addressing 

We have already used relative jump instructions in various programs 
that we have developed. They are self-explanatory. One interesting 
question is: What can we do if the permissible range for branching is 
not sufficient for our needs? On many microprocessors, the solution is 
to use a so called long jump. This is simply a jump to a location which 
contains an absolute or "long" jump specification: 

JRNC, $ + 3 BRANCH TO CURRENT ADDRESS 

+3 IF C CLEAR 


JP FAR OTHERWISE JUMP TO FAR 


(NEXT INSTRUCTION) 

The two-line program above will result in branching to location FAR 
whenever the carry is set. In the case of the Z80, JP may be used instead 
of JR to test all conditions and removes this problem. 

Use of Indexing for SequenHal Block Accesses 

Indexing is primarily used to address successive locations within a 
table. The restriction is that the maximum length must be less than 256 
so that the displacement can reside in an eight-bit index register. 

We have learned to check for a character. Now w~ will search a table 
of 100 elements for the presence of a '*'. The starting address for this 
table is called BASE. The table has only 100 elements. The program ap­
pears below: (see flowchart on Figure 5.6): 

SEARCH LD IX, BASE 
LD A, '*' 
LD B,COUNT 

TEST CP (IX) 
JR Z, FOUND 
INC IX 
DEC B 
JR NZ, TEST 

NOTFND 

An improved program will be presented below in the section on 
Block Transfer, using OJ NZ. 

449 



PROGRAMMING THE laO 

YES
1------STARFOUND 

NO 

NOT FOUND 

Fig. 5.6: Character Search Flowchart 

A Block Transfer Routine for Fewer Than 256 Elements 

We will call "COUNT" the number of elements in the block to be 
moved. The number is assumed to be less than 256. FROM is the base 
address of the block. TO is the base of the memory area where it should 
be moved. The algorithm is quite simple: we will move a word at a time, 
keeping track of which word we are moving by storing its position in 
the counter C. The program appears below: 

BLKMOV LD IX, FROM 
LD IY, TO 
LD BC,COUNT 

NEXT LD A, (IX) GET WORD 
LD (lY), A 
INC IX 
INC IY 
DEC C 
JR NZ,NEXT 

Let us examine it: 

BLKMOV LD IX, FROM 
LD IY,TO 
LD C,COUNT 

These three instructions initialize registers IX, IY, and C respectively, as 
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{J II:1Al "'<r 	 MEMORY 

Ii 
I i 

cj COUNT I, 11 

1 _ll-~!::--'i':'~l1_'"~ 
Ixi SOURCE'--__:....::....c'--'..:.___---'t--	 " FROM 

IYI DESTINATION 

I --'/~L(:{;';; ,'1,,;,::,;//79, TO 

L------+----=>-.(r 

Fig. 5.7: Block Transfer: Initializing the Register 

illustrated in Figure 5.7. Index register IX is used as the source pointer, 
and will be incremented regularly. Index register IY is used as the desti­
nation pointer, and would be incremented regularly. Register C is load­
ed with the maximum number of elements to be transferred (limited to 
256 since this is an eight-bit register) and will be decremented regularly. 
Whenever C decrements to zero, all elements have been transferred. 
The next two instructions: 

NEXT 	 LD A, (IX) 

LD (IY), A 


load the contents of the memory location pointed to by IX into the ac­
cumulator, then transfer it into the memory location pointed to by reg­
ister IY. In other words, these two instructions transfer an element of 
the source block into the destination block. The two index registers are 
then incremented: 

INC IX 

INC IY 


And the counter register is decremented: 

DEC C 

Finally, as long as the counter is not 0, the program loops back to the 
label NEXT: 

JR NZ, NEXT 
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This is an example of the possible utilization of index registers. How­
ever, let us compare it to the same program written for another micro­
processor, the MOS Technology 6502, which is also equipped with an 
indexing capability, but uses different conventions (i.e., has different 
limitations on a general-purpose indexing facility). The program appears 
below: 

LOX #NUMBER 
NEXT LOA FROM, X 

STA TO, X 
OEX 
BNE NEXT 

Without going into the details of the above program, the reader will 
immediately notice how much shorter it is than the previous one. This is 
because the index register X is used as a variable displacement, whereas 
FROM and TO are used as the fixed source and destination addresses. 

This example should point out that although in theory indexing is a 
powerful facility, it does not necessarily lead to efficient coding, due to 
the addressing limitations imposed on it in the case of various micro­
processors. Truly general-purpose indexing requires the possibility of a 
16-bit displacement or address field as well as a 16-bit index register. 

However, it should be noted that this specific problem is solved, in 
the Z80 by the presence of specialized instructions. A general-purpose 
block transfer will now be described which can be implemented in just 
four instructions. However, to be fair to the Z80, let us suggest addi­
tional exercises for the reader: 

Exercise 5. J: Write the block transfer program for the Z80 in the style 
of the above program for the 6502, i.e., assuming that the index register 
contains a displacement. Assume that the source and the destination 
block are located in page 0, i.e., at addresses 0 to 256. Naturally, it will 
be assumed that the number of elements within each block is small 
enough that they do not overlap. 

Exercise 5.2: Assume now that the source and the destination blocks are 
located anywhere in the memory, except that they are both within the 
same page. Rewrite the above program in that case. (Is there a dif­
ference, i.e., does page zero play any role for the Z80?) 

Generalized Block Transfer Routine (More Than 256 Elements) 

The register allocation and the memory map are shown in Figure 5.8. 
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The program is shown below: 

LD BC, COUNT NUMBER OF BYTES 
LD DE, TO DESTINATION ADDRESS 
LD HL, FROM START ADDRESS 
LDIR TRANSFER ALL BYTES 

Memory used: 11 bytes 
Timing: 21 cycles/byte transferred 

The first instruction is: 

LD BC, COUNT 

It loads the number of elements to be transferred (a 16-bit value) into 
the register pair BC. The next two instructions initialize the register pair 
DE and the register pair HL respectively: 

LD DE, TO 
LD HL, FROM 

Finally the fourth instruction: 

LDIR 

performs the complete transfer. 
LDIR is an automated block-transfer instruction. Its power should 

be obvious from this example. LDIR results in the following sequence: 
The contents of the memory location pointed to by Hand L are trans­
ferred into the memory location pointed to by DE: (DE) = (HL). Next, 
DE is incremented: DE = DE + 1. Then, HL is incremented: HL = 
HL + 1. Next, BC is decremented: BC = BC - 1. If BC becomes 0, the 
instruction is terminated. Otherwise, the instruction is repeated. 

CB COUNTER 

D DESTINATION 

H SOURCE ~ 

REGISTeRS 

MEMORY 

Fig. 5.8: A Block Transfer-Memory Map 
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The value and power of the LOIR instruction should be apparent at 
this point without further comments. Similarly, our search for the char­
acter "star"can be improved by the use of an automated instruction, 
CPIR, special to the Z80. The corresponding program appears below: 

LOA, 'Ijr' 
LO BC, COUNT 
LO HL, STRING 

STAR CPIR 
JR Z, STAR 

NOSTAR 

The first instruction loads the accumulator with the code for the 
character star. Next, the register pair BC is initialized to the count of 
the number of words to be searched within the block: 

LO BC, COUNT 

The register pair Hand L is set to the starting address of the block to 
be searched (STRING). The automated instruction is then executed: 

LO HL, STRING 
CPIR 

The CPIR instruction is an automated compare instruction. The con­
tents of the memory location specified by the address contained in H 
and L is compared to the contents of the accumulator. If the compari­
son succeeds, then Z of the flags register will be set to I. Then, the reg­
ister pair Hand L is incremented and the register pair BC is 
decremented. The instruction is repeated until either the pair BC goes to 
o or else the comparison succeeds. After the instruction CPIR is ex­
ecuted, it is therefore necessary to test the Z flag to determine whether 
the comparison has succeeded (the CPIR might have looped through 
64K words without success in the extreme case). This is the purpose of 
the last instruction of the program: 

JR Z, STAR 

Exercise 5.3: Rewrite the above program so that a search proceeds 
backwards. (Hint: Use the CPDR instruction) Continue the block 
transfer until 'Ijr' is found. 

Let us now develop a program combining the features of the two pre­
vious ones. We will implement the block transfer from location FROM 
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to location TO, which shall stop automatically whenever an escape 
character, "star", is found. The program appears below: 

LD BC, COUNT 
LD HL, FROM 
LD DE, TO 
LD A'"'", DELIMITER (ESCAPE CHAR) 

TEST CP (HL) COMPARE WITH MEMORY 
CHARACTER 

JR Z, END END IF SUCCESS 
LDl TRANSFER CHARACTER AND 

UPDATE POINTERS AND 
COUNT 

JP PE,TEST KEEP TESTING UNLESS DONE 
P/V INDICATES WHETHER BC = 0 

The first three instructions of the program perform the usual initiali­
zation, setting up the counter registers and the source and destination 
pointers: 

LD BC, COUNT 
LD HL, FROM 
LD DE, TO 

The star character is deposited, "as usual" into the accumulator, so 
that it can be compared to the character read from a memory location. 

LD A, '.' 

This is exactly what is done by the next instruction: 

TEST CP (HL) 

The success or failure of the comparison is determined by testing the Z 
bit. The Z bit will have been set if the comparison has succeeded. This is 
performed by the next instruction: 

JR Z, END 

The next instruction is an automated transfer instruction: 

LDl 

This instruction transfers the character, and updates the pointers and 
the count in a single instruction. LDI transfers the contents pointed to 
by Hand L into the memory location pointed to by D and E: (DE) = 

(HL). It increments DE and HL: 

DE = DE + 1 
HL = HL + 1 
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Finally, it decrements BC: BC becomes BC - 1. The particularity of 
this instruction is that the P IV flag is cleared if BC decrements to "0" 
and set otherwise. This will be explicitly tested by the last instruction in 
the program to determine whether exit should occur: 

JP PE, TEST 

Adding Two Blocks 

A program will be developed here to add element by· element two 
blocks starting respectively at addresses BLK 1, and BLK2, and having 
equal numbers of elements, COUNT. The program is shown below: 

BLKADD LD IX, BLKI 
LD IY, BLK2 
LD B, COUNT 
XOR A 

LOOP LD A, (IX + 0) 
ADC A, (IY + 0) 
LD (IX), A 
DEC IX 
DEC IY 
DEC B 
JR NZ,LOOP 

61 COUNTER 

IX 
~------~---------1

IY 

REGISTERS 

MEMORY 

Fig. 5.9: Adding Two Blocks: BLKI = BLKI + BLK2 
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The memory layout is shown in Figure 5.9. The program is straightfor­
ward. The number of elements to be added is loaded into the counter 
register B, and the two index registers IX and IY are initialized to their 
values BLKI and BLK2: 

BLK ADD LD IX, BLKI 
LD IY,BLK2 
LD B, COUNT 

The carry bit is then cleared in anticipation of the first addition: 

XOR A 

The first element is loaded into the accumulator: 

LOOP LD A, (IX + 0) 

The corresponding element of BLK2 is then added to it: 

ADC A, (lY +0) 

and finally saved into the element of BLKI: 

LD (IX), A 

The two pointer registers X and Yare decremented: 

DEC IX 
DEC IY 

as well as the counter register: 

DEC B 

As long as the counter register is not 0, the addition loop is executed: 

JR NZ, LOOP 

Exercise 5.4: Can you use the above program to perform a 32-bit addi­

tion? 


Exercise 5.5: Can you use the above program to perform a 64-bit addi­

tion? 

Exercise 5.6: Modify the above program so that the result is stored in a 
separate block starting at address BLK3. 

Exercise 5.7: Modify the above program to perform a subtraction 
rather than an addition. 
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Exercise 5.8: Modify the original program above so that BLKI and 
BLK2 are at the top ofeach block rather than the bottom (see Fig.5.lO). 

FROM-l-____~ 

COUNT = N ! SOURCE BLOCK 


TRANSFER 


A x 

I ELEMENT COUNTERI 

Fig. 5.10: Memory Organization for Block Transfer 

SUMMARY 

A complete description of addressing modes has been presented. It· 
has been shown that the Z80 offers many possible mechanisms, and the 
specific addressing modes available on the Z80 have been analyzed. 
Finally, several application programs have been presented to demon­
strate the value of the various addressing mechanisms. Programming 
the Z80 efficiently requires an understanding of these mechanisms. 
They will be used throughout the programs in the remainder of this 
book. 

EXERCISES 

5.9: Write a program to add the first 10 bytes of a table stored at loca­
tion "BASE". The result will have 16 bits. (This is a checksum com­
putation). 
5.10: Can you solve the same problem without using the indexing 
mode? 
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5.11: Reverse the order of the 10 bytes of this table. Store the result 
at address "REVER". 

5.12: Search the same table for its largest element. Store it at memory 
address "LARGE". 

5.13: Add together the corresponding elements of three tables, whose 
bases are BASEl, BASE2, BASE3. The length of these tables is stored 
at address "LENGTH". 
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INTRODUCTION 

We have learned so far how to exchange information between the 
memory and the various registers of the processor. We have learned to 
manage the registers and to use a variety of instructions to manipulate 
the data. We must now learn to communicate with the external world. 
This is called input/output. 

Input refers to the capture of data from outside peripherals (key­
board, disk, or physical sensor). Output refers to the transfer of data 
from the microprocessor or the memory to external devices such as a 
printer, a CRT, a disk, or actual sensors and relays. 

We will proceed in two steps. First, we will learn to perform the input/ 
output operations required by common devices. Secondly, we will 
learn to manage several input/output devices simultaneously, i.e., to 
schedule them. This second part will cover, in particular, polling vs. in­
terrupts. 

INPUT/OUTPUT 

In this section we will learn to sense or to generate simple signals, 
such as pulses. Then we will study techniques for enforcing or measur­
ing correct timing. We will then be ready for more complex types of in­
put/output, such as high-speed serial and parallel transfers. 

The Z80 Input/Output Instructions 

The Z80 is equipped with a special set of input and output instruc­
tions. Most eight-bit microprocessors are not equipped with a special 
set of input and output instructions, and use the general instruction set 
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on input/output devices. The Z80, like the 8080, is equipped with basic 
input and output instructions. However, the Z80 is also equipped with 
additional 110 instructions. These will be described in more detail here 
in order to facilitate understanding of the programs that will be pre­
sented throughout this section. 

The basic input and output instructions are respectively: IN A, (n) 
and OUT (n),A. These two instructions are inherited from the 8080. 
They will respectively read or write one byte between the selected port 
and the accumulator. The actual addressing process is such that the 1,0 
device address "n" is gated on lines AO through A7 of the address bus, 
while the contents of the accumulator appear on address lines A8 through 
A15. When only 256 devices are addressed, it may be necessary to zero 
the contents of the accumulator explicitly if any of the address lines AS 
through Al5 may be decoded by an 110 device. In the simple examples 
that follow, we will assume that fewer than 256 devices are present and 
that they are not connected to addresses A8 through A15, so that it will 
not be necessary to zero the contents of the accumulator explicitly, for 
example prior to using the IN instruction. 

A special input instruction: IN r, (C), allows using the contents of 
register C as the 110 device~address. When using this instruction, the 
contents of register B automatically provide the top part of the address 
(AS through Al5). The specified register r is loaded from the specified 
address. "r" may be any of the usual seven general-purpose registers. 

Generate a Signal 

In the simplest case, an output device will be turned off (or on) from 
the computer. In order to change the state of the output device, the pro­
grammer will merely change a level from a logical "0" to a logical "1", 
or from "1" to "0". Let us assume that an external relay is connected 
to bit "0" of a register called "OUT1". In order to turn it on, we will 
simply write a "l" into the appropriate bit position of the register. We 
assume here that OUTl represents the address of this output register 
within our system. A program which will turn the relay on is: 

TURNON LD A, OOOOOOOlB LOAD PATTERN INTO A 
OUT (OUTI), A OUTPUT IT TO DEVICE 

where OUT is the output instruction. 
We have assumed that the state of the other seven bits of the register 

OUTl is irrelevant. However, this is often not the case. These bits 
might be connected to other relays. Let us, therefore, improve this sim­
ple program. We want to turn the relay on, without changing the state 
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of any other bit within this register. We will assume that it is possible to 
read and write the contents of this register. Our improved program now 
becomes: 

TURNON IN 
OR 
OUT 

A, (OUT1) 
OOOoooolB 
(OUTl), A 

READ CONTENTS OF OUT! 
FORCE BIT "0" TO "1" IN A 

The program first reads the contents of location OUT1, then per­
forms an inclusive OR on its contents. This only changes bit position 0 
to "1", and leaves the rest of the register intact. (For more details on 
the OR operation, refer to Chapter 4.) This is illustrated by Figure 6.1. 

BEFORE AFTER 

DATA BUS 

o 

RElAY 

OFF -DON 
OUT 1 

Fig. 6.1: Turning on a Relay 
Pulses 

Generating a pulse is accomplished exactly as in the case of the level 
above. An output bit is first turned on, then later turned off. This re­
sults in a pulse. This is illustrated in Figure 6.2. This time, however, an 
additional problem must be solved: one must generate the pulse for the 
correct length of time. Let us, therefore, study the generation of a com­
puted delay. 

SIGNALCPU OUTPUT PORT 
REGISTER 

___ NUSEC ~ 

~o 
O~l I~;) 

THE PROGRAM, SElECT OUTPUT PORT 
lOADourpUT PORT REGISTER WITH PATTERN 
WAtl (LOOP FOR N USEe) 
LOAD OUl PU: PORT WITH ZERO 
RnU~N 

Fig. 6.2: A Programmed Pulse 
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Delay Generation and Measurement 

A delay may be generated by software or by hardware methods. We 
will here study the way to perform it by program, and later show how it 
can also be accomplished with a hardware counter, called a program­
mable interval timer (PIT). 

Programmed delays are achieved by counting. A counter register is 
loaded with a value, then is decremented. The program loops on itself 
and keeps decrementing until the counter reaches the value "0". The 
total length of time used by this process will implement the required 
delay. As an example, let us generate a delay of 82 clock cycles: 

DELAY LD A,5 A IS COUNTER 
NEXT DEC A DECREMENT 

JR NZ,NEXT NEXT TEST 

This program loads A with the value 5. The next instruction decre­
ments A and the following instruction will cause a branch to NEXT to 
occur as long as A does not decrement to "0". When A finally decre­
ments to zero, the program will exit from this loop and execute what­
ever instruction follows. The logic of the program is simple and appears 
in the flowchart of Figure 6.3. 

Let us now compute the effective delay which will be implemented by 
the program. In Chapter 4 of the book, we will look up the number of 
cycles required by each of these instructions: 

LD in the immediate mode requires seven clock cycles. DEC will use 
four cycles. Finally, JR will use 12 cycles except during the last itera­
tion, where it will use 7 cycles. When looking up the number of cycles 
for JR in the table, verify that two possibilities exist: if the branch does 
not occur, JR will only require seven cycles. If the branch does succeed, 
which will usually be the case during the loop, then 12 cycles are re­
quired. 

The timing is, therefore, seven cycles for the first instruction, plus 11 
cycles for the next two, multiplied by the number of times the loop will 
be executed, minus an extra five-cycle delay for the last unsuccessful JR: 

Delay = 7 + 16 x 5 - 5 = 82 cycles. 

Assuming a .5 microsecond cycle, this programming delay will be 41 
microseconds. 
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COUNTER=VALUE 

DECREMENT COUNTER 

NO 

OUT 

Fig. 6.3: Basic Delay Flowchart 

The delay loop which has been described is used by most input/output 
programs. It should be well understood. Try to do the following exercises: 

Exercise 6.1: What are the maximum and the minimum delays which 
can be implemented with these three instructions? 

Exercise 6.2: Modify the program to obtain a delay ofabout 100 micro­
seconds. 

If one wishes to implement a longer ~elay, a simple solution is to add 
extra instructions in the program, before DEC. The simplest way to do 
so is to add NOP instruction. (The NOP does nothing for four cycles.) 

Longer Delays 

Generating longer delays by software can be achieved through using 
a wider counter. A register pair ca.' be used to hold a 16-bit count. To 
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simplify, let us assume that the lower count is "0". The lower byte 
will be loaded with "0", the maximum count, then go through a 
decrementation loop. Since the first decrementation results in OO-FF 
and does not affect the Z flag whenever it is decremented to "0", the 
upper byte of the counter will be decremented by 1. Whenever the up­
per byte is decremented to the value "0", the program terminates. If 
more precision is required in the delay generation, the lower count can 
have a non-null value. In this case, we would write the program just as 
explained and add at the end the three-line delay generation program, 
which has been described above. 

A 24-bit delay program appears below: 
DEL24 LD B, COUNTH COUNTER HIGH (8 BITS) 
DELl 6 LD DE, -1 
LOOPA LD HL,COUNTL COUNTER LOW 
LOOPB ADD HL,DE DECREMENT IT 

JR C, LOOPB GO ON UNTIL NULL 
DJNZ LOOPA DECREMENT B AND JUMP 

Note that DE is loaded with" - 1", and used to decrement the 16-bit 
counter HL. 

Naturally, still longer delays could be generated by using more than 
three words. This is analogous to the wayan odometer works on a car. 
When the right-most wheel goes from "9" to "0" , the next wheel to the 
left is incremented by I. This is the general principle when counting 
with multiple discrete units. 

However, the main disadvantage of this method is that when one is 
counting delays, the microprocessor will be doing nothing else for hun­
dreds of milliseconds or even seconds. If the computer has nothing else 
to do, this is perfectly acceptable. However, in general the microcom­
puter should be available for other tasks, so that longer delays are nor­
mally not implemented by software. In fact, even short delays may be 
objectionable in a system if it is to provide some guaranteed response 
time in given situations. Hardware delays must then be used. In addi­
tion, if interrupts are used, timing accuracy may be lost if the counting 
loop can be interrupted. 

Exercise 6.3: Write a program to implement a 100 ms delay (typical ofa 
Teletype). 

Hardware Delays 

Hardware delays are implemented by using a programmable interval 
timer or "timer" in short. A register of the timer is loaded with a value. 
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The difference is that the timer will automatically decrement the 
counter periodically. The period can usually be adjusted or selected by 
the programmer. Whenever the timer has decremented to "0", it will 
normally send an interrupt to the microprocessor. It may also set a 
status bit which can be sensed periodically by the computer. The use of 
interrupts will be explained later in this chapter. 

Other timer operating modes may include starting from "0" and 
counting the duration of the signal, or, counting the number of pulses 
received. When functioning as an interval timer, the timer is said to 
operate in a one-shot mode. When counting pulses, it is said to operate 
in a pulse counting mode. Some timer devices may even include mul­
tiple registers and a number of optional facilities which the programmer 
can select. 

Sensing Pulses 

The problem with sensing pulses is the reverse of that of generating 
pulses, and includes one more difficulty: whereas an output pulse is 
generated under program control, input pulses occur asynchronously 
with the program. In order to detect a pulse, two methods may be used: 
polling and interrupts. Interrupts will be discussed later in this chapter. 

Let us now consider the polling technique. Using this technique, the 
program reads the value of a given input register continuously, testing a 
bit position, perhaps bit O. It will be assumed that bit 0 is originally 
"0". Whenever a pulse is received, this bit will take the value" 1". The 
program continuously monitors bit 0 until it takes the value" 1". When 
a "1" is found, the pulse has been detected. The program appears 
below: 

POLL IN A, (INPUT) READ INPUT REGISTER 
ON BIT 0, A TEST FORO 

JR Z,POLL KEEP POLLING IFO 

Conversely, let us assume that the input line is normally" I" and that 
we wish to detect a "0". This is the usual case for detecting a START 
bit, when monitoring a line connected to a Teletype. The program ap­
pears below: 

POLL IN A, (INPUT) READ INPUT REGISTER 
BIT 0, A SET Z FLAG 
JR NZ, POLL TEST IS REVERSED 

START 
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Monitoring the Duration 

Monitoring the duration of the pulse may be accomplished in the 
same way as computing the duration of an output pulse. Either a hard­
ware or a software technique may be used. When monitoring a pulse by 
software, a counter is regularly incremented by 1, then the presence of 
the pulse is verified. If the pulse is still present, the program loops upon 
itself. Whenever the pulse disappears, the count contained in the 
counter register is used to compute the effective duration of the pulse. 
The program appears below: 

OURTN LO B,O CLEAR COUNTER 
AGAIN IN A, (INPUT) REAOINPUT 

BIT 0, A MONITOR BIT 0 
JR Z, AGAIN WAIT FOR A "1" 

LONGER INC B INCREMENT COUNTER 
IN A, (INPUT) CHECK BIT 0 
BIT 0, A 
JR NZ, LONGER WAIT FOR A "0" 

Naturally, we assume that the maximum duration of the pulse will 
not cause register B to overflow. If this were the case, the program 
would have to be changed to take that into account (or else it would be a 
programming error!). 

Since we now know how to sense and generate pulses, let us capture 
or transfer larger amounts of data. Two cases will be distinguished: 
serial data and parallel data. Then we will apply this knowledge to ac­
tual input/output devices. 

PARALLEL WORD TRANSFER 

It is assumed here that eight bits of transfer data are available in par­
allel at address "INPUT" (see Fig. 6.4). The microprocessor must read 
the data word at this location whenever a status word indicates that it is 
valid. The status information will be assumed to be contained in bit 7 of 
address "STATUS". We will here write a program which will read and 
automatically save each word of data as it comes in. To simplify, we 
will assume that the number of words to be read is known in advance 
and is contained in location "COUNT". If this information were not 
available, we would test for a so-called break character, such as a 
rubout, or perhaps the character "*". We have learned to do this al­
ready. 
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COUNT 

STATUS 

INPUT \.r-----" 1/0 DEVICE 
~===~'""""'i 

Fig. 6.4: Parallel Word Transfer - The Memory 

The flowchart appears in Figure 6.5. It is quite straightforward. We 
test the status information until it becomes" 1 " , indicating that a word 
is ready. When the word is ready, we read it and save it at. an appropri­
ate memory location. We then decrement the counter and test whether 
it has decremented to "0". If so, we are finished; if not, we read the 
next word. A simple program which implements this algorithm appears 
below: 

PARAL LD A, (COUNT) READ COUNT INTO A 
LD B,A BISCOUNTER 

WATCH IN A, (STATUS) LOOK FOR 'DATA READY' 
TRUE 

BIT 7, A BIT 7 IS "1" IF DATA READY 
JR Z, WATCH DATA VALID? 
IN A, (INPUT) READ DATA 
PUSH AF SAVE DATA INTO STACK 
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DEC B DECREMENT COUNT 
JR NZ, WATCH DO IT UNTIL ZERO 

It is assumed that the "data ready" flag is automatically cleared when 
STATUS is read. 

The first two instructions initialize the counter register B: 

PARAL 	 LD A, (COUNT) 

LD B,A 


Note that there is no easy way to load B only from memory. One must 
either load A, then transfer its contents to B, or load Band C 
simultaneously. 

POLLING OR SERVICE REQUEST 

TRANSFER 

WORD 


DECREMENT 


COUNTER 


NO 

NO 

OUT 

Fig. 6.S: Parallel Word Transfer: Flowchart 
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The next three instructions of the program read the status informa­
tion and cause a loop to occur as long as bit seven of the status register 
is "0". (It is the sign bit, i.e., bit N.) 

IN A, (STATUS) 
BIT 7, A "IN" DOES NOT SET THE FLAGS 
JR Z, WATCH 

When JP fails, data is valid and we can read it: 

IN A, (INPUT) 

The word has now been read from address INPUT where it was, and 
must be saved. Assuming that a sufficient stack area is available, we 
can use: 

PUSH AF 

which saves A (and F) in the stack. If the stack is full, or the number of 
words to be transferred is large, we could not push them on the stack 
and we would have to transfer them to a designated memory area, us­
ing, for example, an indexed instruction. However, this would require 
an extra instruction to increment or decrement the index register. 
PUSH is faster (only II clock cycles). 

The word of data has now been read and saved. We will simply decre­
ment the word counter and test whether we are finished: 

DEC B 

JR NZ,WATCH 

This nine-instruction program can be called a benchmark. A benchmark 
program is a carefully optimized program designed to test the capabilities 
of a given processor in a specific situation. Parallel transfers are one such 
typical situation. This program has been designed for maximum speed and 
efficiency. Let us now compute the maximum transfer speed of this pro­
gram. We will assume that COUNT is contained in memory. The duration 
of every instruction is determined by inspecting the tables in Chapter Four 
and is found to be the following: 

PARAL LD A, (COUNT) 13 
LD B,A 4 

WATCH IN A, (STATUS) II 
BIT 7, A 8 
JR Z, WATCH 7/12 
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IN A, (INPUT) II 
PUSH AF I 1 
DEC B 4 
JR NZ, WATCH 7/12 

The minimum execution time is obtained by assuming that data is 
available every time that we sample STATUS. In other words, the first 
JP will be assumed to fail every time. Timing is then: 

13 + 4 + (11 + 8 + 7 + 11 + 4 + 12)· COUNT 

Neglecting the first 17 cycles necessary to initialize the counter regis­
ter, the time used to transfer one word is 64 clock cycles or 32 
microseconds with a 2 MHz clock. 

The maximum data transfer rate is, therefore: 

= 31 K bytes per second 

exercise 6.4: Assume that the number of words to be transferred is 
greater {han 256. Modify the program accordingly and determine the 
impact on the maximum dala transfer rate. 

I:xercise 6.5: l'vfodijy {his program in order to try Iii improve its speed: 
I-using JR ins{ead of JP 
2-using DJNZ 
3-using INI or IND 

Was the above program truly optimal? 

We have now learned to perform high speed parallel transfers. Let us 
consider a more complex case. 

BIT SERIAL TRANS.'ER 

A serial input is one in which the bits of information (O's or I 's) come 
in successively on a line. These bits may come in at regular intervals. 
This is normally called synchronous transmission. Or, they may come 
as bursts of data at random intervals. This is called asynchronous trans­
mission. We will develop a program which can work in both cases. The 
principle of the capture of sequential data is simple: we will watch an 
input line, which will be assumed to be line O. When a bit of data is de­
tected on this line, we will read the bit in, and shift it into a holding reg­
ister. Whenever eight bits have been assembled, we will preserve the 
byte of data into the memory and assemble the next one. In order to 
simplify, we will assume that the number of bytes to be received is 
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known in advance. Otherwise, we might, for example, have to watch 
for a special break character, and stop the bit-serial transfer at this 
point. We have learned to do that. The flowchart for this program ap­
pears in Figure 6.6. The program appears below: 

SERIAL LD C,O CLEAR INPUT WORD 
LD A, (COUNT) LOAD B WITH BYTE COUNT 
LD B,A 

LOOP IN A, (INPUT) READ PORT 
BIT 7, A BIT 7 IS STATUS, BIT 0 IS DATA 
JR Z, LOOP WAIT FOR A "1" 
SRL A SHIFT DATA BIT INTO CARRY 
RL C SAVE INPUT B INTO C 
JR NC, LOOP CONTINUE UNTIL 8 BITS IN 

POLLING OR SERVICE REQUEST 

STORE BIT 
iNCREMENT COUNTER 

NO 

STORE WORD 

RESET BIT COUNTER 


DECREMENT WORD COUNT 


NO 

DONE 

NO 

Fig. 6.6: Bit Serial Transfer-Flowchart 
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PUSH BC SAVE WORD IN STACK 
LD C, 01 H RESET MARKER BIT 
DEC B DECREMENT BYTE COUNTER 
JR NZ, LOOP ASSEMBLE NEXT WORD 

This program has been designed for efficiency and will use new tech­
niques which we will explain (see Fig. 6.7). 

The conventions are the following: memory location COUNT is as­
sumed to contain a count of the number of words to be transferred. 
Register C will be used to assemble eight consecutive bits coming in. 
Address INPUT refers to an input register. It is assumed that bit posi­
tion 7 of this register is a status flag, or a clock bit. When it is "0", data 
is not valid. When it is "1", the data is valid. The data itself will be as­
sumed to appear in bit position 0 of this same address. In many in­
stances, the status information will appear on a different register than 
the data register. It should be a simple task, then, to modify this pro­
gram accordingly. In addition, we will assume that the first bit of data 
to be received by this program is guaranteed to be a "1". It indicates 
that the real data follows. I f this were not the case, we will later see an 
obvious modification to take care of it. The program corresponds ex­
actly to the flowchart of Fig. 6.6. The first few lines of the program im­
plement a waiting loop which tests whether a bit is ready. To determine 
whether a bit is ready, we read the input register, then test the zero bit 
(Z). As long as this bit is "0", the instruction JR will succeed, and we 
will branch back to the loop. Whenever the status (or clock) bit 
becomes true (" I"), then JR will fail and the next instruction will be 
executed. 

This initial sequence of instructions corresponds to arrow 1 in Fig. 
6.7. 

At this point, the accumulator contains a "I" in bit position 7 and 
the actual data bit in bit position o. The first data bit to arrive is going 
to be a" 1". However, the following bits may be either "0" or "1". We 
now wish to preserve the data bit which has been collected in position O. 
The instruction: 

SRL A 

shifts the contents of the accumulator right by one position. This causes 
the right-most bit of A, which is our data bit, to fall into the carry bit. 
We will now preserve this data bit into register C (this process is illus­
trated by arrows 2 and 3 in Fig. 6.7): 

RL C 
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STATUS 
~-----1 OR 

CLOCK 

SERIAL 

DATA 


IN 


L____0~1~___r~00~~~1 

o 

Fig. 6.7: Serial-to-Parallel: The Registers 

The effect of this instruction is to read the carry bit into the right-most 
bit position of C. At the same time, the left-most bit of C falls into the 
carry bit. (If you have any doubts about the rotation operation, refer to 
Chapter 4!) 

It is important to remember that a rotation with carry operation will 
both save the carry bit, here into the right-most bit position, and also 
recondition the carry bit with the value of bit 7 (or bit 0). 

Here, a "0" will fall into the carry. The next instruction: 

JR NC, LOOP 

tests the carry and branches back to address LOOP as long as the carry 
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is "0". This is our automatic bit counter. It can readily be seen that, as a 
result of the first RL, C will contain "00000001". Eight shifts later, the 
"I" will finally fall into the carry bit and stop the branching. This is an 
ingenious way to implement an automatic loop counter without having 
to waste an instruction to decrement the contents of an index register. 
This technique is used in order to shorten the program and improve its 
performance. 

When JR NC finally fails, 8 bits will have been assembled into C. 
This value should be preserved in the memory. This is accomplished by 
the next instruction (arrow 4 on Fig. 6.7): 

PUSH BC 

We are here saving the contents of Band C into the stack. Saving into 
the stack is possible only if there is enough room in the stack. Provided 
that this condition is met, it is usually the fastest way to preserve a word 
in the memory, even though we save an unnecessary register (B). The 
stack pointer is updated automatically. If we were not pushing a word 
in the stack, we would have to use one more instruction to update a 
memory pointer. We could equivalently perform an indexed addressing 
operation, but that would also involve decrementing or incrementing 
the index, using extra time. 

After the first word of data has been saved, there is no longer any 
guarantee that the first data bit to come in will be a "I". It can be any­
thing. We must, therefore, reset the contents to ''00000001'' so that we 
can keep using it as a bit counter. This is performed by the next instruc­
tion: 

LD C,OIH 

Finally, we will decrement the word counter, since a word has been 
assembled, and test whether we have reached the end of the transfer. 
This is accomplished by the next two instructions: 

DEC B 
JR NZ, LOOP 

The above program has been designed for speed, so that one may 
capture a fast input stream of data bits. Once the program terminates, 
it is naturally advisable to immediately read away from the stack the 
words that have been saved there and transfer them elsewhere into the 
memory. We have already learned to perform such a block transfer in 
Chapter 2. 
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Exercise 6.6: Compute the maximum speed at which this program will 
be able to read serial bits. Look up the number of cycles required by 
every instruction in the table at the end of this book, then compute the 
time which will elapse during execution of this program. To compute 
the length of time which will be used by a loop, simply multiply the 
total duration of this loop, expressed in microseconds, by the number 
of times if will be executed. Also, when computing the maximum speed, 
assume that a dafa bit will be ready every time that the input location is 
sensed. 

This program is more difficult to understand than the previous ones. 
Let us look at it again (refer to Fig. 6.6) in more detail, examining some 
trade-offs. 

A bit of data comes into bit position 0 of "INPUT" from time to 
time. There might be, for example, three "Is" in succession. We must, 
therefore, differentiate between the successive bits coming in. This is 
the function of the "clock" signal. 

The clock (or STATUS) signal tells us that the input bit is now valid. 
Before reading a bit, we will therefore first test the status bit. If the 
status is "0", we must wait. If it is "1", then the data bit is good. 

We assume here that the status signal is connected to bit 7 of register 
INPUT. 

Exercise 6. 7: Can you explain why bit 7 is used for status, and bit 0 for 
data? Does it matter? 

Once we have captured a data bit, we want to preserve it in a safe 
location, then shift it left, so that we can get the next bit. 

Unfortunately, the accumulator is used to read and test both data 
and status in this program. If we were to accumulate data in the accu­
mulator, bit position 7 would be erased by the status bit. 

Exercise 6.8: Can you suggest a way to test status without erasing the 
contents of the accumulator (a special instruction)? If this can be done, 
could we use the accul1lulator to accumulate the successive bits coming 
in? Can you improve speed by using an "automated jump"? 

Exercise 6.9: Rewrite the program, using the accumulator to store fhe 
bits coming in. Compare it to the previous one in terms of speed and 
number of instructions. 

Let us address two more possible variations. 
We have assumed that, in our particular example, the very first bit to 

come in would be a special signal, guaranteed to be "1". However, in 
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general, it may be anything. 

f-xercise 6.10: Modify the program above, assuming that the very first 
bit to come in is valid data (not to be discarded), and can be "0" or 
"f". Hint: our "bit counter" should still work correctly, if you initial­
ize it with the correct value. 

Finally, we have been saving the assembled word in the stack, to gain 
time. We could naturally save it in a specified memory area. 

f-xercise 6. f I: Modify the program above, and save {he assembled word 
in the memory area starting at BASE. 

f-xercise 6.12: Modify the program above so that the transfer will stop 
when {he character "s" is detected in the input stream. 

The Hardware Alternative 

As usual for most standard input/output algorithms, it is possible to 
implement this procedure by hardware. The chip is called a UART. It 
will automatically accumulate the bits. However, when one wishes to 
reduce the component count, this program, or a variation of it, will be 
used instead. 

Exercise 6. /3: Modifv the program, assuming that data is available in bit 
position 0 oflocation INPUT, while the status information is available 
in bit position 0 ofaddress INPUT + 1. 

BASIC I/O SUMMARY 

We have now learned to perform elementary input/output opera­
tions as well as to manage a stream of parallel data or serial bits. We are 
now ready to communicate with real input/output devices. 

COMMUNICATING WITH INPUT/OUTPUT DEVICES 

In order to exchange data with input/output devices, we will first 
have to ascertain whether data is available, if we want to read it; or 
whether the device is ready to accept data, if we want to send it. Two 
procedures may be used: handshaking and interrupts. Let us study 
handshaking first. 

Handshaking 

Handshaking is generally used to communicate between any two 
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READY? 

(READ STATUS 

STATUS) 
 REGISTERD
YES/NO 

D 
OUTPUT 

MPU DATA DEVICE 

OUTPUT 
REGISTER 

I/QCHIP 

Fig. 6.8: Handshaking (Output) 

asynchronous devices, i.e., between any two devices which are not syn­
chronized. For example, if we want to send a word to a parallel printer, 
we must first make sure that the input buffer of this printer is available. 
We will, therefore, ask the printer: Are you ready? The printer will say 
"yes" or "no." If it is not ready we will wait. If it is ready, we will send 
the data (see Fig. 6.8). 

DATA 

INPUT 0KREGISTER 

INPUT 

MPU DEVICE 

~ READY? DSTATUS 
REGISTER 

--vEsiNo 

Fig. 6.8a: Handshaking (Input) 

Conversely, before reading data from an input device, we will verify 
whether the data is valid. We will ask: "Is data valid?" And the device 
will tell us "yes" or "no." The "yes or no" may be indicated by status 
bits, or by other means (see Fig. 6.8a). 

As an analogy, whenever you wish to exchange information with 
someone who is independent and might be doing something else at the 
time, you should ascertain that he is ready to communicate with you. 
The usual rule of courtesy is to shake his hand. Data exchange may then 
follow. This is the procedure normally used in communicating with in­
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put!output devices. 
Let us now illustrate this procedure with a simple example. 

Sending a Character To The Printer 

The character will be assumed to be contained in memory location 
CHAR. The program to print it appears below: 

WAIT IN A, (STATUS) 
BIT 7, A TEST IF READY 
JR Z, WAIT OTHERWISE WAIT 
LD A, (CHAR) GET CHARACTER 
OUT (PRNTD), A PRINT IT 
JR WAIT GO FOR NEXT 

The print program is straightforward and uses the handshaking pro­
cedure which has been described above. The data paths are shown in 
Figure 6.9. 

CHAR DATA 

STATUS 

PRNTD 

PRINTER 

MEMORY Z80 

.'ig. 6.9: Printer-Data Paths 

The character (called OAT A) is located at memory location CHAR. 
First, the status of the printer is checked. Whenever bit 7 of the status 
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register becomes 1, it indicates that the printer ready for input, i.e., its 
input buffer is available. At this point, the character is loaded into 
the accumulator, then output to the printer, via thc accumulator. As 
long as thc stalus bit remain~ 0, thc program will rcmain in a loop, 
called WAIT in the program. 

Exercise 6.14: How many instructions would be saved in the above pro­
gram by loading data directly into register C as well as outputing the con­
tents of register C directly? 

l:xercise 6.15: When using an actual printer, it is usually necessary to 
send a start order before using the device. Modify Ihis program to gen­
erate such an order, assuming that the start command is obtained by 
writing a 1 in bit position 0 of the STA TUS register, which is assumed 
to be bidirecl ional. 

Exercise 6.16: ~r the BIT instruction were not available, could you use 
another instruction instead, in line 2 of the program? If so, explain the 
advantage of using the BIT jnstruction, if any. 

Exercise 6.17: Modify the program above 10 print a string oj n charac­
ters, where n will be assumed 10 be less than 255. 

Exercise 6.18: Modify the above program /0 prim a string ojcharacters 
until a "carriage-re/urn" code is encountered. 

Let us now complicate thc output proccdure by requiring a code con­

version and by outputting to several devices at a time: 


Output To a Seven-Segment LED 

A traditional seven-segment light-emitting diode (LED) may display 
the digits "0" through "9", or even "0" through "F" hexadecimal by 
lighting combinations of its 7 segments. A seven-segment LED is shown 
in Figurc 6.10. The characters that may be generated with this LED 
appear in Figurc 6.11. 

The segments of an LED are labeled "a" through "g" in Figure 6.10. 
For example, dO" will be displayed by lighting the segments abcdef. 

Let us assume, now, that bit "0" of an output pan is connected to seg­
ment "a", that "1" i~ connected to segment "b", and so on. Bit 7 is 
not u~ed. The binary codc required to light up fedcba (to display "0") 
is, therefore, "0111111". In hexadecimal this is "3 F". Do the follow­
i ng cxerci,c. 
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A 

/'Vf A/ 
/'../ A./,

I
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Fig. 6.10: Seven-Segment LED 
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Fig. 6.11: Hexadecimal Characters Generated 
with a Seven-Segment LED 
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Exercise 6.19: Compute the seven-segment equivalent jor the hexadeci­
mal digits "0" through "F". Fill out the table below: 

Hex LED code Hex LED code Hex LED code Hex LED code 
0 3F 4 8 C 
1 5 9 D 
2 6 A E 
3 7 B F 

Let us now display hexadecimal values on several LED's. 

Driving Multiple LED's 

An LED has no memory. It will display the data only as long as its 
segment lines are active. In order to keep the cost of an LED display 
low, the microprocessor will display information on each oj the LED's 
in turn. The rotation between the LED's must be fast enough so that 
there is no apparent blinking. This implies that the time spent from one 
LED to the next is less than 100 milliseconds. Let us design a program 
which will accomplish this. Register C will be used to point to the LED 
on which we want to display a digit. The accumulator is assumed to 
contain the hexadecimal value to be displayed on the LED. Our first 
concern is to convert the hexadecimal value into its seven-segment rep­
resentation. In the preceding section, we have built the equivalence 
table. Since we are accessing a table, we will use the indexed addressing 
mode, where the displacement index will be provided by the h~adeci­
mal value. This means that the seven-segment code for hexadecimal 
digit "3" is obtained by looking up the third element of the table after 
the base. The address of the base will be called SEGBAS. The program 
appears below: 

LEDS 	 LD 
LD 
LD 
ADD 
LD 
LD 

DELAY 	OUT 
DEC 

E,A 
D,O 
HL, SEGBAS 
HL,DE 
A, (HL) 
B,50H 

(C), A 
B 

A CONTAINS HEX DIGIT 
USE "DE" AS DISPLACEMENT 
USE "HL" AS INDEX 
TABLE ADDRESS 
READ CODE FROM TABLE 
DELA Y VALUE = ANY 
LARGE NBR 
OUTPUT FOR SET DURATION 
DELAY COUNTER 
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JR NZ,DELAY KEEP LOOPING 
LD A,C C IS PORT NUMBER 
DEC C 
CP MINLED DONE FOR LAST LED? 
JR NZ, OUT 
LD BC, (MAXLED) IF SO, RESET C TO TOP LED 

OUT RET 

The program assumes that register C contains the address of the LED 
to be illuminated next, and that the accumulator A contains the digit to 
be displayed. 

The program first looks up the seven-segment code corresponding to 
the hexadecimal value contained in the accumulator. Registers D and E 
are used as a displacement field, and registers Hand L are used as a 
16-bit index register. The hexadecimal digit is added to the base address 
of the table: 

LEDS LD E,A 7-SEGMENT CODE 
LD D,O 
LD HL, SEGBAS 
ADD HL, DE 

A delay loop is then implemented, so that the code obtained from the 
table is displayed for an appropriate duration. Here the constant "50" 
hexadecimal has been arbitrarily chosen: 

LD A, (HL) READ CODE FROM TABLE 
LD B, SOH DELAY VALUE 

The delay is accomplished using a classic delay loop. the first instruc­
tiow 

DELAY OUT (C), A 

outputs the contents of the accumulator at the I/O port pointed to by 
register C (the LED number). The next two instructions implement the 
delay loop: 

DEC B 
JR NZ. DELAY 

Once the delay has been implemented, we must simply decrement the 
LED pointer, and make sure that we loop around to the highest LED 
address if the smallest LED address has been reached: 

LD A,C 
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DEC C 
CP MINLED 
JR NZ, OUT 
LD Be, (MAXLED) 

OUT RET 

It is assumed here that the above program has been written as a sub­
routine, and the last instruction is then RET:" return from subroutine" 

Exercise 6.20: It is usually necessary to turn off the segment drivers for 
the LED prior to displaying the digit. Modify the above program by 
adding the necessary instructions (output "00" as the character code 
prior to outputting the character). 

Exercise 6.21: What would happen to the display if the DELA Y label 
were moved up by one line position? Would this change the timing? 
Would this change the appearance of the display? 

Exercise 6.22: You will notice that the first four instructions of the pro­
gram are, in fact, performing a J6-bit indexed memory access. How­
ever, it seems'c1umsy, without using the indexing mechanism. Assume 
that the SEGBAS address is known in advance. Call SEGBSH the 
high-order part of this address, and SEGBSL the low part of this ad­
dress. Store SEGBSH in the high-order part of the JX register. Now 
write the above program, using the Z80 index-addressing mechanism, 
and using SEGBSL as the displacement field of the instrucion. What 
are the advantages and disadvantages of this approach? 

Exercise 6.23: Assuming that the above program is a subroutine, you 
will notice that it uses registers B, D, E, Hand L internally, and modi­
fies their contents. If the subroutine may freely use the memory area 
designated by address TJ, T2, T3, T4, T5, could you add instructions at 
the beginning and at the end of this program which will guarantee that, 
when the subroutine returns, the contents ofregisters B, D, E, Hand L 
will be the same as when the subroutine was entered? 

Exercise 6.24: Same exercise as above, but assume that the memory 
area TJ, etc., is not available to the subroutine. (Hint: remember that 
there is a built-in mechanism in every computer for preserving informa­
tion in a chronological order.) 

We have now solved common input/output problems. Let us con­
sider the case of a common peripheral: the Teletype. 
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Teletype Input-Output 

The Teletype is a serial device. It both sends and receives words of in­
formation in a serial format. Each character is encoded in an 8-bit 
ASCII format (the ASCII table appears at the end of this book). In ad­
dition, every character is preceded by a "start" bit, and terminated by 
two "stop" bits. In the so-called 20-milliamp current loop interface, 
which is most frequently used, the state of the line is normally a "1". 
This is used to indicate to the processor that the line has not been cut. A 
start is a "1"-to-"O" transition. It indicates to the receiving device that 
data bits follow. The standard Teletype is a lO-characters-per-second 
device. We have just established that each character requires 11 bits. 
This means that the Teletype will transmit 110 bits per second. It is said 
to be a IIO-baud device. We will design a program to serialize bits out 
to the Teletype at the correct speed. 

MARK STAjPU'" S~I 
sp~::~-~ til 12 13 14 151 6 171 81 9 10 

I 
I 

9.09MS -I 
I 
I 

Fig. 6.12: Format of a Teletype Word 

One-hundred-and-ten bits per second implies that bits are separated 
by 9.09 milliseconds. This will have to be the duration of the delay loop 
to be implemented between successive bits. The format of a Teletype 
word appears in Figure 6.12. The flowchart for bit input appears in 
Figure 6.13. The program follows: 

TTYIN IN A, (STATUS) 
BIT 7, A DATA READY? 
JR Z, TTYIN OTHERWISE WAIT 
CALL DELAYI CENTER OF PULSE 
IN A, (TTYBIT) START BIT 
OUT (TTYBIT), A ECHO IT 
CALL DELAY9 NEXT PULSE (9 MS) 
LD B,08H BIT COUNT 

NEXT IN A, (TTYBIT) READ DATA BIT 
OUT (TTY BIT), A ECHO IT 
SRL A SA VE IT IN CARRY 
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TTYIN 

YES 

WAIT 4.5ms 

ECHO START BIT 

WAIT9.09ms 

SHIFT IN DATA BIT 

ECHO IT 

NO 

YES 

WAIT9.09ms 

OUTPUT STOP BIT 

WAIT 13.59ms 

Fig. 6.13: TTY Input with Echo 
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RR C PRESERVE IT INTO C 
CALL DELAY9 NEXT PULSE (9 MS) 
DEC B DECREMENT BIT COUNT 
JR NZ,NEXT 
IN A, (TTY BIT) READ STOP BIT 
OUT (TTYBIT), A ECHO IT 
CALL DELAY9 SKIP SECOND STOP 
RET 

Fig. 6.14: Teletype Program 

Let us examine the program in detail. First, the status of the Teletype 
must be tested to determine if a character is available: 

TTYIN IN A, (STATUS) 
BIT 7, A 
JR Z, TTYIN 

The "BIT" instruction is a useful Z80 facility which allows testing 
any bit in any data register. It does not modify the contents of the regis­
ter under test. The Z flag is set if the specified bit is 0, and reset other­
wise. 

This program will, therefore, loop until the status finally becomes 
"I". It is a classic polling loop. 

Note that, since the STATUS does not need to be preserved, we 
could also use 

AND l()()()()()ooB 
instead of 

BIT 7, A 

However, using the AND instruction destroys the contents of A 
(acceptable here). 

When optimizing a program, remember that each new instruction 
may introduce side-effects. 

Next, a 4.5 ms delay is implemented in order to sense the start bit in 
the middle of the pulse. 

CALL DELAY I 

where DELA YI is the delay subroutine implementing the required 
delay. The first bit to come is the start bit. It should be echoed to the 
Teletype, but otherwise ignored. This is done by the next instructions: 

TTYIN 	 IN A, (TTYBIT) 
OUT (TTYBIT), A 
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We must then wait for the first data bit. The necessary delay is equal to 
9.09 milliseconds and is implemented by a subroutine: 

CALL DELAY9 

Register B is used as a counter and is loaded with the value 8 in order to 
capture the 8 data bits: 

LD B,08H 

Next, each data bit will be read in turn into the accumulator, then 
echoed. It is assumed to arrive in bit position 0 of the accumulator. The 
data bit will then be preserved into register C, where it will be shifted in. 
The transfer from A to C is performed through the carry bit: 
NEXT IN A, (TTY BIT) 

OUT (TTYBIT), A 

SRL A 

RR C 


This sequence is illustrated in Figure 6.15. 

A 1/0 SPACE 

x 

x 
TELETYPE 

DATA 

B C 


TTYBIT 
COUNTER X 

Fig. 6.15: Teletype Input 

Next, the usual 9 millisecond delay is implemented, the bit-counter is dec­
remented, and the loop is entered again as long as the eight bits have 
not been captured: 

CALL DELAY9 

DEC B 

JR NZ, NEXT 


Finally, the STOP bit is captured, and echoed. It is usually sufficient to 
send a single STOP bit, however both could be sent back using two 
more instructions: 

IN A, (TTY BIT) 

OUT (TTY BIT), A 

CALL DELAY9 

RET 
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The program should be examined with attention. The logic is quite 
simple. The new fact is that whenever a bit is read from the Teletype (at 
address TTYBIT), it is echoed back to the Teletype. This is a standard 
feature of the Teletype. Whenever a user presses a key, the information 
is transmitted to the processor and then back to the printing mechanism 
of the Teletype. This verifies that the transmission lines are working 
and that the processor is operating when a character is, indeed, printing 
correctly on the paper. 

Fig. 6.16: Teletype Output 

Exercise 6.25: Write the delay routine which results in the 9.09 millisec­
ond delay. (DELA Y subroutine) 

Exercise 6.26: Using the example of the program developed above, 
write a PRINTC program which will print on the Teletype the contents 
of memory location CHAR (see Fig. 6.15). 

The answer appears below: 

PRINTC LD B,l1 COUNTER = 11 BITS 
LD A, (CHAR) GET CHARACTER 
OR A CLEAR CARRY = START BIT 
RLA CARRY INTO A 
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NEXT OUT (TTYBIT), A OUTPUT 
CALL DELAY 
RRA NEXT BIT 
SCF CARRY = 1 (STOP BIT) 
DEC B BIT COUNT 
JR NZ, NEXT 
RET 

Register B is used as a bit counter for the transmission. The contents 
of bit 0 of A will be sent to the Teletype line ("TTYBIT"). Note how 
the carry is used to provide a ninth bit (the START bit). Also, note that 
the carry is cleared by: 

OR A 

At the end of the program, the carry is set to one by: 

SCF 

in order to generate a stop bit. 

Exercise 6.27: Modify the program so that it waits for a START bit in­
stead of a STATUS bit. 

Printing a String of Characters 

We will assume that the PRINTC routine (see Exercise 6.26) takes 
care of printing a character on our printer, or display, or any output de­
vice. We will here printthe contents of memory locations (START) to 
(START + N). 

The program is straightforward (see Figure 6.17): 

PSTRING LD B,NBR LENGTH OF STRING 
LD HL, START BASE ADDRESS 

NEXT LD A, (HL) GET CHARACTER 
CALL PRINTC PRINT IT 
INC HL NEXT ELEMENT 
DEC B 
JR NZ,NEXT DO IT AGAIN 
RET 

490 



INPUT/OUTPUT TECHNIQUES 

MEMORY 

B A 

COUNTER 

TO PRINTER 

Fig. 6.17: Printing a Memory Block 

PERIPHERAL SUMMARY 

We have now described the basic programming techniques used to 
communicate with typical input/output devices. In addition to the data 
transfer, it will be necessary to condition one or more control registers 
within each 110 device in order to condition the transfer speeds, the in­
terrupt mechanism, and the various other options correctly. The man­
ual for each device should be consulted. (For more details on the spe­
cific algorithms for exchanging information with all the usual peripher­
als, the reader is referred to our book, C207, Microprocessor Interfac­
ing Techniques.) 

We have now learned to manage single devices. However, in a real 
system, all peripherals are connected to the buses, and may request 
service simultaneously. How are we going to schedule the processor's 
time? 

INPUT/OUTPUT SCHEDULING 

Since input/output requests may occur simultaneously, a scheduling 
mechanism must be implemented in every system to determine in which 
order service will be granted. Three basic input/output techniques are 
used, which can be combined with each other. They are: polling, inter­
rupt, DMA. Polling and interrupts will be described here. DMA is 
purely a hardware technique, and as such will not be described here. (It 
is covered in the reference books C201 and C207.) 
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Polling 

Conceptually, polling is the simplest method for managing multiple 
peripherals. With this strategy, the processor interrogates the devices 
connected to the buses in turn. If a device requests service, the service 
is granted. If it does not request service, the next peripheral is exam­
ined. Polling is used not just for the devices, but for any device service 
routine. 

As an example, if the system is equipped with a Teletype, a tape re­
corder, and a CRT display, the polling routine would interrogate the 
Teletype: "Do you have a character to transmit?" It would interrogate 
the Teletype output routine, asking: "Do you have a character to 
send?" Then, assuming that the answers are negative so far, it would 
interrogate the tape-recorder routines, and finally the CRT display. If 
only one device is connected to a system, polling will be used as well to 
determine whether it needs service. As an example, the flowcharts for 
reading a paper-tape reader and for printing on a printer appear in Fig­
ures 6.20 and 6.21. 

DATA BUS 

V'------~'------------." POLLING 

DMA 

?L- _______ _ 

L- - - - _________ - - - - --J 

I---------"""T"-r-----r~-- INTERRUPT 

Fig. 6.18: Three Methods of I/O Control 
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Example: a polling loop for devices 1, 2, 3, 4 (see Fig. 6.19): 

POLL4 IN A, (STATUS 1) GET STATUS OF DEVICE 1 
BIT 7, A SER VICE REQUEST? 
CALL NZ,ONE BIT 7 = I? 
IN A, (ST A TUS2) DEVICE 2 
BIT 7, A 
CALL NZ, TWO 
IN A, (STATUS3) DEVICE 3 
BIT 7, A 
CALL NZ, THREE 
IN A, (ST ATUS4) DEVICE 4 
BIT 7, A 
CALL NZ, FOUR 
JR POLL4 NO REQUEST, TRY AGAIN 

Bit 7 of the status register for each device is "1" when it wants serv­
ice. When a request is sensed, this program branches to the device 
handler, at address ONE for device 1, TWO for device 2, etc. 

A fine point is worth noting here. For each instruction, it is impor­
tant to verify carefully the way in which it affects the condition codes. 
It should be noted that the IN A instruction does not change the flags. 
If an IN r instruction has been used instead of an IN A instruction, bit 7 
of the input would automatically be reflected as the SIGN bit in the 
flags register. The special instruction "BIT 7,A" would become un­
necessary. However, because the IN A instruction does not change the 
flags, this extra test must be included in the program. 

In some hardware implementations, input/output devices may be 
treated as memory devices for purposes of addressing. This is called 
memory-mapped input/output. In this case, the IN instruction would 
be replaced by an LD instruction and the rest of the program would be 
as above, since LD does not affect the flags. 

The advantages of polling are obvious: iris simple, does not require 
any hardware assistance, and keeps all input/output synchronous with 
the program operation. Its disadvantage is just as obvious: most of the 
processor's time is wasted looking at devices that do not need service. 
In addition, by wasting so much time, the processor might give service 
to a device too late. 

Another mechanism is, therefore, desirable in order to guarantee that 
the processor's time can be used to perform useful computations rather 
than polling devices needlessly all the time. However, let us stress that 
polling is used extensively whenever a microprocessor has nothing bet­
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Fig. 6.19: Polling Loop Flowchart 

SET READER 
ENABLE ON 

Fig. 6.20: Reading from a Paper-Tape Reader 
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NO 

LOAD PUNCH 

OR PRINTER 


BUFFER 


TRANSMIT 

DATA 


Fig. 6.21: Printing on a Punch or Printer 

ter to do, as it keeps the overall organization simple. Let us examine the 
essential alternative to polling: interrupts. 

Interrupts 

The concept of interrupts is illustrated in Figure 6.18. A special hard­
ware line, the interrupt line, is connected to a specialized pin of the mi­
croprocessor. Multiple input/output devices may be connected to this 
interrupt line. When anyone of them needs service, it sends a level or a 
pulse on this line. An interrupt signal is the service request from an in­
put/output device to the processor. Let us examine the response of the 
processor to this interrupt. 

In any case, the processor completes the instruction that it was cur­
rently executing; otherwise, this would create chaos inside the micro­
processor. Next, the microprocessor should branch to an interrupt-han­
dling routine which will process the interrupt. Branching to such a sub­
routine implies that the contents of the program counter must be saved 
on the stack. An interrupt must, therefore, cause the automatic preser­
vation of the program counter on the stack. In addition, the flag regis­
ter F should be also preserved automatically, as its contents will be 
altered by any subsequent instruction. Finally, if the interrupt-handling 
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routine should modify any internal registers, these internal registers 
should also be preserved on the stack (see Figures 6.22 and 6.23). 

SP ~ It----:~----II 
Fig. 6.22: Z80 Stack After Interruption 

E 

D 


c 
B 


A 


Fig. 6.23: Saving Some Working Registers 

After all these registers have been preserved, one can branch to the 
appropriate interrupt-handling address. At the end of this routine, all 
the registers should be restored, and a special interrupt return should be 
executed so that the main program will resume execution. Let us exam­
ine in more detail the interrupt lines of the Z80. 

Z80 Interrupts 

An interrupt is a signal sent to the microprocessor, which may re­
quest service at any time and is asynchronous to the program. When­
ever a program branches to a subroutine, such branching is synchron­
ous to program execution, i.e., scheduled by the program. An inter­
rupt, however, may occur at any time, and will generally suspend the 
execution of the current program (without the program knowing it). 
Because it may happen at any time relative to program execution, it is 
called asynchronous. 

Three interruption mechanisms are provided on the Z80: the bus re­
quest (BUSRQ), the non-maskable interrupt (NMI) and the usual inter­
rupt (lNT). 

Let us examine these three types. 
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The Bus Request 

The bus request is the highest priority interrupt mechanism on the 
Z80. The interrupt sequence for the Z80 is shown in Figure 6.24. As a 
general rule, no interrupt will be sensed by the Z80 until the current 
machine cycle is completed. The NMI and INT interrupts will not be 
taken into account until the current instruction is finished. However, 
the BUSRQ will be handled at the end of the current machine cycle, 
without necessarily waiting for the end of the instruction. It is used for 

LASI 

1---------...:........:..'< ~~;~;i,~~ 
O::'\E 

&~I51~' J---"'::'1°--.--J.••••,,~,F 

~,~~'o~_________1 

~ "IL...'_51_''_T_',_'-.J 

r.,,:: yES MASl,ABLt] 
lNTEIlRUPT 

MODE 

Fig. 6.24: Interrupt Sequence 
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a direct memory access (DMA), and will cause the Z80 to go into DMA 
mode (see ref. C201 for an explanation of the DMA mechanism). If the 
end of an instruction has been reached, and if any NMI or INT were 
pending, they would be memorized internally in the Z80 by setting spe­
cialized flip-flops: the NMI flip-flop, and the INT flip-flop. In DMA 
mode, the Z80 suspends operation and releases its data-bus and 
address-bus in the high-impedance state. This mode is normally used by 
a DMA controller to perform transfers between a high-speed input­
output device and the memory, using the microprocessor data-bus and 
address-bus. The end of a DMA operation is indicated to the Z80 by 
BUSRQ changing levels. At this point, the Z80 will resume normal 
operation. In particular, it will first check whether its internal NMI or 
INT flip-flops had been set and, if so, execute the corresponding inter­
rupts. 

The DMA should normally not be of concern to the programmer, un­
less timing is important. If a DMA controller is present in the system, 
the programmer must understand that the DMA may delay the 
response to an NMI or an INT. 

The Non-Maskable Interrupt 

This type of interrupt cannot be inhibited by the programmer. It is 
therefore said to be non-maskable, hence its name. It will always be ac­
cepted by the Z80 upon completion of the current instruction, assuming 
no bus request was received. (If an NMI is received during a BUSRQ, 
it will set the internal NMI flip-flop, and will be processed at the end of 
the instruction following the end of the BUSRQ.) 

The NMI will cause an automatic push of the program counter into 
the stack and branch to address 0066H: the two bytes representing the 
address 0066H will be installed in the program counter. They represent 
the start address of the handling routine for the NMI (see figure 6.25). 

This interrupt mechanism has been designed for speed. as it is used in 
case of "emergencies" . Therefore, it does not offer the flexibility of the 
maskable interrupt mode, described below. 

Note also that an interrupt routine must have been loaded at address 
0066H prior to using the NMI. 

NMI will first cause: 
sp -SP - 1 

(SP) - PCH push PC 
sp -SP - 1 


(SP) -PCL 
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MEMORY 

IFFI IFF2 

O~D ·0 0066 

NMI 

0066 HANDLER 

0 
" ~ 

l 
PC 

I 

(0 U 
PC stock 

Fig. 6.25: NMI Forces Automatic Vectoring 

Then, NMI causes an automatic restart at location 0066H. The com­
plete sequence of events is the following: 

PC • STACK (preserve program counter) 
IFF! • IFF2 (preserve IFF) 
o .. IFFl (reset IFF) 
JUMP TO 0066H (execute interrupt handler) 

Also, the status of interrupt-mask-bit flip-flop (IFF!) at the time that 
NMI was received is preserved automatically into IFF2. Then, IFF! is re­
set in order to prevent any further interrupts. This feature is important to 
prevent the loss of lower-priority INT's and simplifies the external hard­
ware: the status of a pending INT is preserved internally in the Z80. 

The NMI interrupt is normally used for high priority events such as a 
real-time clock or a power failure. 

The return from an NMI is accomplished by a special instruction, RETN: 
"return from non-maskable interrupt." The contents of IFFI are restored 
from IFF2, and the contents of the program counter PC are restored from 
their location in the stack. Since IFF! had been reset during execution 
of the NMI, no external INT's could be accepted during the NMI 
(unless the programmer uses an EI instruction within the NMI routine): 
there has been no loss of information. 
Upon termination of the interrupt handler, the sequence is: 

IFF2 .. IFFl (restore IFF) 
STACK .. PC (restore program counter) 

Note that, once IFF! is restored, maskable interrupt enable status is 
restored. 
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Interrupt 

The ordinary, maskable, interrupt INT may operate in one of three 
modes. They are specific to the Z80, as the 8080 is equipped with only a 
single interrupt mode. The ordinary interrupt INT may also be masked 
selectively by the programmer. Setting the interrupt flip-flops IFFl and 
IFF2 to a "l" will authorize interruptions. Setting them to a "0" 
(masking them) will prevent detection of INT. The EI instruction is 
used to set them, and the DI instruction is used to reset them. IFF! and 
IFF2 are set or reset simultaneously. During execution of theEI and DI 
instructions, INT's are disabled in order to prevent any loss of informa­
tion. 

Let us now examine the three interrupt modes: 

Interrupt Mode 0 

This mode is identical to the 8080 interrupt mode. The Z80 will 
operate in interrupt mode 0 either when initially started (when the RE­
SET signal has been applied) or else when an IMO instruction has been 
executed. Once mode 0 has been set, an interrupt will be recognized if 
the interrupt enable flip-flop IFFl is set to l, provided no bus-request 
or non-maskable interrupt occurs at the same time. The interrupt will 
be detected only at the end of an instruction. Essentially, the Z80 will 
respond to the interrupt by generating an IORQ (and an Ml signal), 
and then do nothing, except wait. 

It is the responsibility of an external device to recognize the IORQ 
and Ml (this is called an interrupt acknowledge or INTA) and to place 
an instruction on the data-bus. The Z80 expects an instruction to be 
placed on its data bus by the external device within the next cycle. Typi­
cally, an RST or a CALL instruction is placed on the bus. Both of these 
instructions automatically preserve the program-counter in the stack, 
and cause branching to a specific address. The advantage of the RST in­
struction is that it resides within a single byte, i.e., it executes rapidly. 
Its disadvantage is to branch to only one of eight possible locations in 
page zero (addresses 0 through 255). The advantage of the CALL in­
struction is that it is a general-purpose branch instruction which speci­
fies a full16-bit address. However, it requires three bytes and therefore 
executes less rapidly. 

Note that once the interrupt processing starts, all further interrupts 
are disabled. IFF! and IFF2 are automatically set to "0". It is then the 
responsibility of the programmer to insert an EI instruction (Enable In­
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terrupts) at the appropriate location within his program if he wishes to 
enable interrupts, and, in any case, before returning from the interrupt. 

The detailed sequence corresponding to the mode 0 interrupt is 
shown in Figure 6.26. 

MOOED MOD< 1 MODE 2 

Fig. 6.26: Interrupt Modes 

The return from the interrupt is accomplished by an RETI instruc­
tion. Let us remind the programmer at this point that he/she is usually 
responsible for explicitly clearing the interrupt which has been serviced 
on the I/O device, and always for restoring the interrupt disable flag in­
side the Z80. However, the peripheral controller may use the INTA sig­
nal to clear the INT request, thus freeing the programmer of this chore. 

In addition, should the interrupt-handling routine modify the con­
tents of any of the internal registers, the programmer is specifically re­
sponsible for preserving these registers in the stack prior to executing 
the interrupt-handling routine. Otherwise, the contents of these regis­
ters will be destroyed, and when the interrupted program resumes exe­
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cution, it will fail. For example, assuming that registers A, B, e, D, E, 
Hand L will be used within the interrupt handler, they will have to be 
saved (see Figure 6.27). 

lS 

H 

E 

DECREASINGD 
ADDRESSES 

C 

B 

F 

A 

PCl 

PCH 

STACK 

Fig. 6.27: Saving the Registers 

The corresponding program is: 

SA VREG 	 PUSH AF 
PUSH Be 
PUSH DE 
PUSH HL 

Upon completion of the interrupt-handling routine, these registers must 
be restored. The interrupt handler will terminate with the following se­
quence of instructions: 

POP HL 
POP DE 
POP Be 
POP AF 
EI (unless EI was used earlier in 

the routine) 

Additionally, if registers IX and IY are used by the routine they must 
also be preserved, then restored. 
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Interrupt Mode I 

This interrupt mode is set by executing the 1M 1 instruction. It is an 
automated interrupt handler which causes an automatic branch to loca­
tion 0038H. It is therefore essentially analogous to the NMI interrupt 
mechanism except that it may be masked. The Z80 automatically pre­
serves the contents of PC into the stack (see Figure 6.28). 

or------,
INTIMl 

automatic INTERRUPT 
vectoring f------i ROUTINE 

PROGRAM 

LOCATION OF 

PC C~~:J!O=:!:=~~~~====;~=~~=j INTERRUPTION 

Fig. 6.28: Mode 1 Interrupt 

This automated interrupt response, which "vectors" all interrupts to 
memory location 38H, stems from the early 8080's requirement to 
minimize the amount of external hardward necessary for using inter­
rupts. Its possible disadvantage is to cause a branch to a single memory 
location. In case several devices are connected to the INT line, the pro­
gram starting at location 38H will be responsible for determining which 
device requested service. This problem will be addressed below. 

One precaution must be taken with respect to the timing of this inter­
rupt: when performing programmed input/output transfers, the Z80 
will ignore any data that may be present in the data bus during the cycle 
which follows the interrupt (the interrupt acknowledge cycle). 
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Interrupt Mode 2 (Vectored Interrupts) 

This mode is set by executing an 1M2 instruction. It is a powerful 
mode which allows automatic vectoring of interrupts. The interrupt 
vector is an address supplied by the peripheral device which generated 
the interrupt, and used as a memory pointer to the start address of the 
interrupt-handling routine. The addresssing mechanism provided by 
the Z80 in mode 2 is indirect, rather than direct. Each peripheral sup­
plies a seven-bit branching address which is appended to the 8-bit ad­
dress contained in the special 1 register in the Z80. The right-most bit of 
the final 16-bit address bit 0 is set to "0". This resulting address points 
to an entry in a table anywhere in the memory. This table may contain 
up to 128 double-word entries. Each of these double words is the ad­
dress of the interrupt handler for the corresponding device. This is il­
lustrated in Figures 6.29 and 6.30. 

,------­[-"NT 
2X VECTOR

DEVICE 
7 BIT VECTOR o-~ 

START 
ADDRESS r-­

[I'" 
W I I 

DEVICE 
HANDLER -­
MEMORY 

Fig. 6.29: Mode 2 Interrupt 

The interrupt table may have up to 128 double-word entries. 
In this mode, the Z80 also automatically pushes the contents of the 

program counter into the stack. This is obviously necessary, since PC 
will be reloaded with the contents of the interrupt table entry corre­
sponding to the vector provided by the device. 

Interrupt Overhead 

For a graphic comparison of the polling process vs. the interrupt 
process, refer to Figure 6.18, where the polling process is illustrated on 
the top, and the interrupt process underneath. It can be seen that in the 
polling technique the program wastes a lot of time waiting. 
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0152 

05I I 
01 52PC I 

VECTOR -.0500 
TABLE 

10 00Spi 
0504BEFORE 

MEMORY 

Fig. 6.30: Mode 2,- A Practical Example 

Using interrupts, the program is interrupted, the interrupt is serviced, 
then the program resumes. However, the obvious disadvantage of an 
interrupt is to introduce several additional instructions at the beginning 
and at the end, resulting in a delay before the first instruction of the de­
vice handler can be executed. This is additional overhead. 

Exercise 6.28:Using the tables indicating the number of cycles per in­
struction, in Chapter 4, compute how much time will be lost to save and 
then restore registers A, B, D, H. 

Having clarified the operation of the interrupt lines, let us now con­
sider two important remaining problems: 

I-How do we resolve the problem of multiple devices triggering an 
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interrupt at the same time? 
2-How do we resolve the problem of an interrupt occurring while 

another interrupt is being serviced? 

Multiple Devices Connected to a Single Interrupt Line 

Whenever an interrupt occurs, the processor branches to a specified 
address. Before it can do any effective processing, the interrupt han­
dling routine must determine which device triggered the interrupt. Two 
methods are available to identify the device, as usual: a software 
method and a hardware method. 

In the software method, polling is used: the microprocessor interro­
gates each of the devices in turn and asks them, "Did you trigger the in­
terrupt?" If the answer is negative, it interrogates the next one. This 
process is illustrated in Figure 6.31. A sample program is: 

POLINT 	 IN A, (STATUSl) READ STATUS 
BIT 7, A DID DEVICE REQlJEST INT? 
lP NZ,ONE HANDLE IT IF SO 
IN A, (STATUS2) 
BIT 7, A 
lP NZ, TWO 
etc. 

The hardward method provides the address of the interrupting device 
simultaneously with the interrupt request. 

INT 1 POLLING 	 INTERRUPT VECTORED-L 
POLLING 3

WHICH 2 ROUTiNE I ­DEVICE? 

- SERVICE 
ROUTINE P 

SERVICE 
ROUTINE 

-

SERVICE 
ROUTI NE N 

Fig. 6.31: Polled vs. Vectored Interrupt 
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To be more precise, when operating in mode 0, the peripheral device 
controller will supply a one-byte RST or a three-byte CALL on the data 
bus in response to the interrupt acknowledge, thus automating the in­
terrupt vectoring, and minimizing the overhead. 

Note that a subroutine call instruction is required as the Z80 does not 
save the PC when operating in mode O. 

In most cases, the speed of reaction to an interrupt is not crucial, and 
a polling approach is used. If response time is a primary consideration, 
a hardware approach must be used. 

Simultaneous Interrupts 

The next problem which may occur is that a new interrupt can be trig­
gered during the execution of an interrupt-handling routine. Let us 
examine what happens and how the stack is used to solve the problem. 
We have indicated in Chapter 2 that this was another essential role of 
the stack, and the time has come now to demonstrate its use. We will 
refer to Figure 6.33 to illustrate multiple interrupts. Time elapses from 
left to right in the illustration. The contents of the stack are shown at 
the bottom of the illustration. Looking at the left, at time TO, program 
P is in execution. Moving to the right, at time T 1, interrupt II occurs. 
We will assume that the interrupt mask was enabled, authorizing 11. 
Program P will be suspended. This is shown at the bottom of the illus­
tration. The stack will contain the program counter and the status reg­
ister of program P, at least, plus any optional registers that might be 
saved by the interrupt handler or II itself. 

MPU 
INT 

'--____---'.......,. ...... ___~ INT. 

Fig. 6.32: Several Devices May Use the Same Interrupt Line 

At time TI, interrupt II starts executing until time T2. At time T2, in­
terrupt 12 occurs. We will assume that interrupt 12 has a higher priority 
than interrupt II. If it had a lower priority, it would be ignored until Il 
had been completed. At time T2, the registers for II are stacked, and 
this appears at the bottom of the illustration. Again, the contents of the 
program counter and AF are pushed into the stack. In addition, the 
routine for 12 might decide to save an additional few registers. 12 will 
now execute to completion at time T3. 
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When 12 terminates (with an RETI), the contents of the stack are 
automatically popped back into the Z80, and this is illustrated at the 
bottom of Figure 6.33. Thus, automatically 11 resumes execution. Un­
fortunately, at time T4, an interrupt 13 of higher priority occurs again. 
We can see at the bottom of the illustration that again the registers for 
11 are pushed into the stack. Interrupt 13 executes from T4 to T5 and 

TIME T, T, T, 

------­
T, T. T. T.-­PROGRAMP 

I 

INTERRUPT 1 , I' 1-------1 I----~---.. 

INTERRUPT 1, 

INTERRUPT 1, 

I 

1 I 

I 

STACK [] 
I I 

[]~ ~ ffi 
, 

T1 T, T, T. T, 

Fig. 6.33: Stack Contents During Multiple Interrupts 

terminates at T5. At that time, the contents of the stack are popped into 
Z80, and interrupt 11 resumes execution. This time it runs to comple­
tion and terminates at T6. At T6, the remaining registers that have been 
saved in the stack are popped into Z80, and progam P may resume ex­
ecution. The reader will verify that the stack is empty at this point. In 
fact, the number of dashed lines indicating program suspension in­
dicates at the same time how many levels there are in the stack. 

Exercise 6.29: Assume that the area available to the stack is limited to 
300 locations in a specific program. Assume that all the registers must 
a/ways be saved and that the programmer allows interrupts to be nest­
ed, i.e., to interrupt each other. Which is the maximum number of 
simultaneous interrupts that can be handled? Will any other facto.' con­
tribute to still reduce further the maximum number ofsimultanem·s in­
terrupts? 

It must be stressed, however, that, in practice, microprocessor sys­
tems are normally connected to a small number of devices using inter­
rupts. It is, therefore, unlikely that a high number of simultaneous in­
terrupts will occur in such a system. 

We have now solved ali the problems usually associated with inter­
rupts. Their use is, in fact, simple and they should be employed to ad­
vantage even by the novice programmer. 
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SUMMARY 

In this chapter we have presented the range of techniques used to 
communicate with the outside world. From elementary input/output 
routines to more complex programs for communication with actual 
peripherals, we have learned to develop all the usual programs and have 
even examined the efficiency of benchmark programs in the case of a 
parallel transfer and a parallel-to-serial conversion. Finally, we have 
learned to schedule the operation of multiple peripherals by using poll­
ing and interrupts. Naturally, many other exotic input/output devices 
might be connected to a system. With the array of techniques which 
have been presented so far, and with an understanding of the peripher­
als involved, it should be possible to solve most common problems. 

In the next chapter, we will examine the actual characteristics of the 
input/output interface chips usually connected to a Z80. Then, we will 
consider the basic data structures that the programmer may use. 

Exercise 6.30: Compute the overhead when operating in mode 0, as­
suming that all registers are saved, and that an RST is received in re­
sponse to the interrupt acknowledge. The overhead is defined as the 
total delay incurred, exclusive of the instructions required to implement 
the interrupt processing proper. 

Exercise 6.31: A 7-segment LED display can also display digits other 
than the hex alphabet. Compute the codes for: H, I, J, L, 0, P, S, U, 
Y, g, h, i, j, I, n, 0, p, r, t, u, y. 

Exercise 6.32: The flowchart for interrupt management appears in Fig­
ure 6.34 Answer the following questions: 

a-What is done by hardware, what is done by software? 
b-What is the use of the mask? 
c-How many registers should be preserved? 
d-How is the interrupting device identified? 
e-What does the RET1 instruction do? How does it differ from a 

subroutine return? 
f-Suggest a way to handle a stack overflow situation. 
g- What is the overhead ("lost time") introduced by the interrupt 

mechanism? 
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RETURN 

Fig. 6.34: Interrupt Logic 
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INPUT/OUTPUT DEVICES 

INTRODUCTION 

We have learned how to program the Z80 microprocessor in most 
usual situations. However, we should make a special mention of the 
input/output chips normally connected to the microprocessor. Be­
cause of the progress in LSI integration, new chips have been intro­
duced which did not exist before. As a result, programming a system 
requires, naturally, first to program a microprocessor itself, and then 
to program the input/output chips. In fact, it is often more difficult 
to remember how to program the various control options of an input/ 
output chip than to program the microprocessor itself! This is not be­
cause the programming in itself is more difficult, but because each of 
these devices has its own idiosyncrasies. We are going to examine here 
first the most general input/output device, the programmable input/ 
output chip (in short a "PIO"), then some Zilog I/O devices. 

The "Standard PIO" 

There is no "standard PIO". However, each PIOdevice is essentially 
analogous in function to all similar PIO's produced by other 
manufacturers for the same purpose. The purpose of a PIO is to 
provide a multiport connection for input/output devices. (A "port" is 
simply a set of 8 input/output lines.) Each PIO provides at least 
two sets of 8-bit lines for I/O devices. Each I/O device needs a data 
buffer in order to stabilize the contents of the data bus on output at 
least. Our PIO will, therefore, be equipped at a minimum with a 
buffer for each port. 

In addition, we have established that the microcomputer will use 
a handshaking procedure, or else interrupts to communicate with the 
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I/O device. The PIO will also use a similar procedure to communicate 
with the peripheral. Each PIO must, therefore, be equipped with at 
least two control lines per port to implement the handshaking 
function. 

The microprocessor will also need to be able to read the status of 
each port. Each port must be equipped with one or more status bits. 
Finally, a number of options will exist within each PIO to configure its 
resources. The programmer must be able to access a special register 
within the PIO to specify the programming options. This is the 
control-register. In some cases the status information is part of the 
control register. 

CAlCRA DORA PDRA r-CA2
;0 n ;02 ;0 m" m;oo mo;o01 0 Glm» Gl»~- ZDATA BU- v---y' Ul -I PORTA 
-I ;0 ~g> ~>~ mo m ;0
~ ~ ;oz ;0 » 

r-

CRB DDRB "ORB 

0 

II II 8 
0_ 
cz PORTB

REGISTER I RS9J -I""cSELECT I RSl S-I 

IROA CB2 
CBlIROB 

Fig. 7.1: Typical PIO 

One essential faculty of the PIO is the fact that each line may be 
configured as either an input or an output line. The diagram of 
a PIO appears in illustration 7. 1. The programmer may specify 
whether any line will be input or output. In order to program the 
direction of the lines, a data-direction register is provided for each 
port. On many PIO's, "0" in a bit position of the data-direction 
register specifies an input. A "1" specifies an output. Zilog uses the 
reverse convention. 

It may be surprising to see that a "0" is used for input and a "1" 
for output when really "0" should correspond to output and" 1" to 
input. This is quite deliberate: whenever power is applied to the 
system, it is of great importance that all the I/O lines be configured as 
input. Otherwise, if the microcomputer is connected to some 
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dangerous peripheral, it might activate it by accident. When a reset is 
applied, all registers are normally zeroed and that will result in con­
figuring all input lines of the PIO as inputs. The connection to the 
microprocessor appears on the left of the illustration. The PIO 
naturally connects to the 8-bit data bus, the microprocessor address 
bus, and the microprocessor control-bus. The programmer will simply 
specify the address of any register that it wishes to access within the 
PIO. 

The Internal Control Register 

The Control Register of the PIO provides a.number of options for 
./

generating or sensing interrupts, or for implementing automatic hand­
shake functions. The complete description of the facilities provided is 
not necessary here. Simply, the user of any practical system which uses 
a PIO will have to refer to the data-sheet showing the effect of setting 
the various bits of the control register. Whenever the system is 
initialized, the programmer will have to load the control register of the 
PIO with the correct contents for the expected application. 

IRQ.A I------------=~~ 

PA~-PA7 
CONTROL 

(CHIP SElECT PB!Il-PB7 

.REGISTERI SELECT 

CB 1IRQB4------------LUlli!J CB2 

Fig. 7.2: Using a PIO-Load Control Register 
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IROA -jt-------------=~4fuJ 


DO-D7 


pM-PAl 
(ONTROL 


(CHIP SELECT 
 PB0-PB7 

IREGISTER 
SELECT 

CBl 
IROB --!-----------~fJi~ CB2 

Fig. 7.3: Using a PIO-Load Data Direction 

Fig. 7.4: Using a PIO-Read Status 
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00-D7 

IRQA II------------U~U 

CONTROL 

(CHIP SELECT 

IREGISTER 
SELECT 

Fig. 7.5: Using a PIO Read INPUT 

Programming a PIO 

A typical sequence, when using a PIOchannel, is the following (as­
suming an input): 

Load the control register 
This is accomplished by a programmed transfer between a Z80 re­

gister (usually the accumulator) and the PIO control register. This sets 
the options and operating mode of the PIO (see Figure 7.2). It is nor­
mally done only once at the beginning of a program. 

Load the direction register 
This specifies the direction in which the 110 lines will be used. (See 

Figure 7.3.) 

Read the status 
The status register indicates whether a valid byte is available on in­

put. (See Figure 7.4). 

Read the port 
The byte is read into the Z80. (See Figure 7.5). 

515 



PROGRAMMING THE zao 

ARDY 

AsTs 
DATA 

AOBUS 
PORTAAl 
1/0A2 

A3 

A4 

PORT BIA SEl AS 
CONTROl/DATA SEl A6Z80- PIO 


PIO {
 A7 

CONTROl CHIP ENABLE 


Ml 
lORa BO 

RD B 1 

B2 
INT B3INTERRUPT{ 

INT ENABLE IN B4CONTROL PORTB 
INT ENABLE OUT B5 1/0 

B6 

CLOCK 
 B7<P 

BRDY 

< 
+5VPOWER 

GND 
 "BsTs 

Fig. 7.6: Z80 PIO pinout 

The Zilog Z80 PIO 

The Z80 PIO is a two-port PIO whose architecture is essentially 
compatible with the standard model we have described. The actual 
pinout is shown in Figure 7. 6, and a block diagram is shown in Figure 
7.7. 

Each PIO port has six registers: an 8-bit input register, an 8-bit out­
put register, a 2-bit mode-control register, an 8-bit mask register, an 
8-bit input/output select (direction register), and a 2-bit mask-control 
register. The last three registers are used only when the port is program­
med to operate in the bit mode. 

Each port may operate in one of four modes, as selected by the con­
tents of the mode-control registers (2 bits). They are: byte output, byte 
input, byte bidirectional bus, and bit mode. 

The two bits of the mask control register are loaded by the program­
mer, and specify the high or low state of a peripheral device which is to 
be monitored, and conditions for which an interrupt can be generated. 
generated. 

The 8-bit input/output select register allows any pin to be either an 
input or an output when operating in the bit mode. 

516 



INPUT/OUTPUT DEVICES 

B 

DATA 
BUS 

U 
F 
F 
E 
R 

2 

DATA 
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CONTROL STROr ", 

DATA 
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 OUT 

INTE-OUT 
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READY 
STROBEHANDSHAKE I 
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Fig. 7.7: ZSO PIO Block Diagram 
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Programming the Zilog PIO 

A typical sequence for using a PIO, say in bit mode, would be the 
following: 

Load the mode control register to specify the bit mode. 
Load the input/output select register of port A to specify that 

lines 0-5 are inputs and lines 6 and 7 are outputs. 
Then a word would be read by (eading the contents of the input 

buffer. 
Additionally, the mask register could be used to specify the status 

conditions. 
For a detailed description of the operation of the PIO, the reader is 

referred to the companion volume in this series, the Z80 Applications 
Book. 

The Z80 SIO 

The SIO(Serial Input/Output) is a dual-channel peripheral chip de­
signed to facilitate asynchronous communications in serial form. It in­
cludes a UART, i.e., a universal asynchronous receiver-transmitter. 
Its essential function is serial-to-parallel and parallel-to-serial conver­
sion. However, this chip is equipped with sophisticated capabilities, 
like automatic handling of complex byte-oriented protocols, such as 
IBM bisync as well as HDLe and SDLe, two bit-oriented protocols. 

Additionally, it can operate in synchronous mode like a USRT, and 
generate and check eRe codes. It offers a choice of polling, interrupt, 
and block-transfer modes. The complete description of this device is 
beyond the scope of this introductory book and appears in the Z80 Ap­
plications Book. 

Other 1/0 Chips 

Because the Z80 is commonly used as a replacement for the 8080, it 
has been designed so that it can be associated with almost any of the 
usual 8080 input/output chips, as well as the specific I/O chips manu­
factured by Zilog. All the 8080 inputloutput chips may be considered 
for use in a Z80 system. 
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SUMMARY 

In order to make effective use of input/output components it is 
necessary to understand in detail the function of every bit, or group of bits, 
within the various control registers. These complex new chips automate a 
number of procedures that had to be carried out by software or special 
logic before. In particular, a good deal of the handshaking procedures are 
automated within components such as an SIO. Also, interrupt handling 
and detection may be internal. With the information that has been pre­
sented in the preceding chapter, the reader should be able to understand 
what the functions of the basic signals and registers are. Naturally, still 
newer components are going to be introduced which will offer a hardware 
implementation of still more complex algorithms. 
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APPLICATION EXAMPLES 

INTRODUCTION 

This chapter is designed to test your new programming skills by pre­
senting a collection of utility programs. These programs or "routines" 
are frequently encountered in applications, and are generally called 
"utility routines." They will require a synthesis of the knowledge and 
techniques presented so far. 

We are going to fetch characters from an 110 device and process 
them in various ways. But first, let us clear an area of the memory (this 
may not be necessary-each of these programs is only presented as a 
programming example). 

CLEARING A SECTION OF MEMORY 

We want to clear (zero) the contents of the memory from address 
BASE to address BASE ± LENGTH, where LENGTH is less than 256. 

The program is: 

ZEROM LD B,LENGTH LOAD B WITH LENGTH 
LD A,O CLEAR A 
LD HL, BASE POINT TO BASE 

CLEAR LD (HL), A CLEAR A LOCATION 
INC HL POINT TO NEXT 
DEC B DECREMENT COUNTER 
JR NZ,CLEAR END OF SECTION? 
RET 

In the above program, the length of the section of memory is as­
sumed to be equal to LENGTH. The register pair HL is used as a point­
er to the current word which will be cleared. Register B is used, as 
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usual, as a counter. 
The accumulator A is loaded only once with the value 0 (all zeros), 

then copied into the successive memory locations. 
In a memory test program, for example, this utility routine could be 

used to zero the contents of a block. Then the memory test program 
would usually verify that its contents remained O. 

The above was a straightforward implementation of a clearing rou­
tine. Let us improve on it. 

The improved program appears below. 

ZEROM LD B, LENGTH 
LD HL, BASE 

LOOP LD (HL),O 
INC HL 
DJNZ LOOP 
RET 

The two improvements were obtained by eliminating the LD A, 0 in­
struction and loading a "zero" directly into the location pointed to by H 
and L, and also by using the special Z80 instruction DJNZ. 

This improvement example should demonstrate that every time a 
program is written, even though it may be correct, it can usually be im­
proved by examining it carefully. Familiarity with the complete instruc­
tion set is essential for bringing about such improvements. These im­
provements are not just cosmetic. They improve the execution time of 
the program, require fewer instructions and therefore less memory 
space, and also generally improve the readability of the program and, 
therefore, its chances of being correct. 

Exercise 8.1: Write a memory test program which zeroes a 256-word 
block, then verifies that each location is O. Then, it will write alii's and 
verify the contents of the block. Then it will write 01010101 and verify 
the contents. Finally, it will write 10101010, and verify the contents. 

Exercise 8.2: Modify the above program so that it will fil/the memory 
section with alternating O's and I's (all O's, then all I's). 

Let us now poll our liD devices to find which one needs service. 

POLLING 1/0 DEVICES 

We will assume that those 110 devices are connected to our sys­
tem. Their status registers are located at addresses STATUSl, 
STATUS2, STATUS3. The program is: 
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TEST 	 IN A, (STATUSl) READ 10 STATUSI 
BIT 7, A TEST "READY" BIT (BIT 7) 
JP NZ, FOUNDl JUMP TO HANDLER 1 
IN A, (STATUS2) SAME FOR DEVICE 2 
BIT 7, A 
JP NZ, FOUND2 
IN A, (ST ATUS3) SAME FOR DEVICE 3 
BIT 7, A 
JP NZ, FOUND3 
(failure exit) 

As a result of the BIT instruction, the Z bit of the status flags will be set 
to 1 if STATUS is zero. The JP NZ instruction Uump if non-equal to 
zero) will then result in a branch to the appropriate FOUND routine. 

GETTING CHARACTERS IN 

Assume we have just found that a character is ready at the keyboard. 
Let us accumulate characters in a memory area called BUFFER until we 
encounter a special character called SPC, whose code has been previ­
ously defined. 

The subroutine GETCHAR will fetch one character from the key­
board (see Chapter 6 for more details) and leave it in the accumulator. 
We assume that 256 characters maximum will be fetched before an SPC 
character is found. 

STRING LD HL, BUFFER POINT TO BUFFER 
NEXT CALL GETCHAR GET A CHARACTER 

CP SPC CHECK FOR SPECIAL CHAR 
JR Z,OUT FOUND IT? 
LD (HL), A STORE CHAR IN BUFFER 
INC HL NEXT BUFFER LOCATION 
JR NEXT GET NEXT CHAR 

OUT RET 

Exercise 8.3: Let us improve this basic routine: 

a-Echo the character back to the device (for a Teletype, for example). 

b-Check that the input string is no longer than 256 characters. 


We now have a string of characters in a memory buffer. Let us proc­
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ess them in various ways. 

TESTING A CHARACTER 

Let us determine if the character at memory location LOC is equal to 
0, 1, or 2: 

ZOT LD 
CP 
JP 
CP 
JP 
CP 
JP 
JP 

A, (LOC) 
00 
Z,ZERO 
01 
Z,ONE 
02 
Z, TWO 
NOTFND 

GET CHARACTER 
IS IT A ZERO? 
JUMP TO ROUTINE 
A ONE? 

A TWO? 

FAILURE 

We simply read the character, then use the CP instruction to check its 
value. 

Let us run a different test now. 

BRACKET TESTING 

Let us determine if the ASCII character at memory location LOC is a 
digit between 0 and 9: 

BRACK LD 
AND 
CP 
JR 
CP 
JR 
CP 

OUT RET 

A, (LOC) 
7FH 
30H 
C,OUT 
39H 
NC,OUT 
A 
EXIT 

GET CHARACTER 
MASK OUT PARITY BIT 
ASCII 0 
CHAR TOO LOW? 
ASCII 9 
CHAR TOO HIGH? 
FORCE ZERO FLAG 

ASCII "0" is represented in hexadecimal by "30" or by "80". 
depending upon whether the parity bit is used or not. Similarly, ASCII 
"9" is represented in hexadecimal by "39" or by "89". 

The purpose of the second instruction of the program is to delete bit 
7, the parity bit, in case it was used, so that the program is applicable to 
both cases. The value of the character is then compared to the ASCII 
values for "0" and "9". When using a comparison instruction, the Z 
flag is set if the comparison succeeds. The carry bit is set in the case of 
borrow, and reset otherwise. In other words, when using the CP in­
struction, the carry bit will be set if the value of the literal that appears 
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in the instruction is greater than the value contained in the accumu­
lator. It will be reset ("0") if less than or equal. 

The last instruction, CP A, forces a "1" into the Z flag. The Z flag is 
used to indicate to the calling routine that the character in CHAR was 
indeed in the interval (0, 9). Other conventions can be used, such as 
loading a digit in the accumulator in order to indicate the result of the 
test. 

Exercise 8.4: Is the following program equivalent to the one above?: 

LD A, (CHAR) 
SUB 30H 
JP M, OUT 
SUB 10 
JP P, OUT 
ADD 10 

Exercise 8.5: Determine ifan ASCII character contained in the accumu­
lator is a letter of the alphabet. 

When using an ASCII table, you will notice that parity is often used. 
For example, the ASCII for "0" is "0110000", a 7-bit code. However, 
if we use odd parity, for example, we guarantee that the total number 
of ones in a word is odd; then the code becomes: "10110000". An extra 
"1" is added to the left. This is "BO" in hexadecimal. Let us therefore 
develop a program to generate parity. 

PARITY GENERATION 

This program will generate an even parity with bit position 7: 

PARITY LD A, (CHAR) GET CHARACTER 
AND 7FH CLEAR PARITY BIT 
JP PE,OUT CHECK IF PARITY 

ALREADY EVEN 
OR SOH SET PARITY BIT 

OUT LD (LOC), A STORE RESULT 

The program uses the internal parity detection circuit available in the 
ZSO. 

The third instruction: JP PE, OUT checks whether parity of the 
word in the accumulator is already even. This instruction will succeed if 
the parity is even, "PE", and will exit. 

If the parity is not even, Le., if the jump instruction failed, then the 
parity is odd, and a "1" must be written in bit position 7. This is the 
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purpose of the fourth instruction: 

OR SOH 

Finally, the resulting value is saved in memory location LOC. 

Exercise 8.6: The above problem was too simple to solve, using the in­
ternal parity detection circuitry. As an exercise, you are requested to 
solve the same problem without using this circuitry. Shift the contents 
of the accumulator, and count the number of 1's in order to determine 
which bit should be written into the parity position. 

Exercise 8.7: Using the above program as an example, verify the parity 
ofa word. You must compute the correct parity, then compare it to the 
one expected. 

CODE CONVERSION: ASCII TO BCD 

Converting ASCII to BCD is very simple. We will observe that the 
hexadecimal representation of ASCII characters 0 to 9 is 30 to 39 or BO 
to B9, depending on parity. The BCD representation is simply obtained 
by dropping the "3" or the "B", i.e., masking off the left nibble (4 
bits): 

ASCBCD 	CALL BRACK CHECK THAT CHAR IS 0 TO 9 
JP NZ, ILLEGAL EXIT IF ILLEGAL CHAR 
AND OFH MASK HIGH NIBBLE 
LD (BCDCHAR), A STORE RESULT 

Exercise 8.8: Write a program to convert BCD to ASCll. 


Exercise 8.9: Write a program to convert BCD to binary (more diffi­

cult). 

Hint:N3NzNI No in BCDis«(N3 x 10) + N z) x 10 + NI) x 10 + No in 

binary. 


To multiply by 10, use a left shift (= x 2), another left shift (= x 4), 
an ADC ( = x 5), another left shift (= x 10). 

In full BCD notation, the first word may contain the count of BCD 
digits, the next nibble contain the sign, and every successive nibble con­
tain a BCD digit (we assume no decimal point). The last nibble of the 
block may be unused. 

CONVERT HEX TO ASCII 

"1\' contains one hexadecimal digit. We simply need to add a "3" (or a 
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"B") into the left nibble: 

AND OFH ZERO LEFT NIBBLE (optional) 
ADD A,30H ASCII 
CP 3AH CORRECTION NECESSARY? 
JP M,OUT 
ADD A,7 CORRECTION FOR A TO F 

Exercise 8.10: Convert HEX to ASCII, assuming a packed format (two 
hex digits in A). 

FINDING THE LARGEST ELEMENT OF A TABLE 

The beginning address of the table is contained at memory address 
BASE. The first entry of the table is the number of bytes it contains. 
This program will search for the largest element of the table. Its value 
will be left in A, and its position will be stored in memory location IN­
DEX. 

This program uses registers A, F, B, Hand L, and will use indirect 
addressing, so that it can search a table anywhere in the memory (see 
Figure 8.1). 

MAX LD 
LD 
LD 
INC 

HL, BASE 
B, (HL) 
A, 0 
HL 

TABLE ADDRESS 
NBR OF BYTES IN TABLE 
CLEAR MAXIMUM VALUE 
INITIALIZE INDEX 

LOOP 
LD 
CP 

(INDEX), HL 
(HL) 

NEXT ENTRY 
COMPARE ENTRY 

JR NC, NOSWITCH JUMP IF LESS THAN MAX 
LD A, (HL) LOAD NEW MAX VALUE 
LD (INDEX), HL LOAD NEW MAX VALUE 

NOSWITCH 	 INC HL POINT TO NEXT ENTRY 
DEC B DECREMENT COUNTER 
JR NZ, LOOP KEEP GOING IF NOT ZERO 
RET 

This program tests the nth entry first. If it is greater than 0, the entry 
goes in A, and its location is remembered into INDEX. The (n-l)st en­
try is then tested, etc. 

This program works for positive integers. 

Exercise 8.ll: Modify the program so that it works also for negative 
numbers in two's complement. 

Exercise 8.12: 	Will this program also work for ASCII characters? 

Exercise 8.13: Write a program which will sort n numbers in ascending 
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INDEX 

A I CURRENT MAX 
BASE 

ELEMENT 1 

B I COUNTER 

HL 

••• INCREASING 
ADDRESSES 

ELEMENT N 

Fig. 8.1: Largest Element in a Table 

order. 

Exercise 8.14: Write a program which will sort n names (3 characters 
each) in alphabetical order. 

SUM OF N ELEMENTS 

This program will compute the 16-bit sum of N positive entries of a 
table. The starting address of the table is contained at memory address 
BASE. The first entry of the table contains the number of elements N. 
The 16-bit sum will be left in memoy locations SUMLO and SUMHI. If 
the sum should require more than 16 bits, only the lower 16 will be 
kept. (The high order bits are said to be truncated.) 

This program will modify registers A, F, B, H, L, IX. It assumes 256 
elements maximum (see Figure 8.2). 

SUMN LD HL, BASE POINT TO TABLE BASE 
LD B, (HL) READ LENGTH INTO 

COUNTER 
SUMIG INC HL POINT TO FIRST ENTRY 

LD IX, SUMLO POINT TO RESULT, LOW 
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LD (IX + 0), 0 CLEAR RESULT LOW 
LD (IX + 1), 0 AND HIGH 

ADLOOP 	 LD A, (HL) GET TABLE ENTRY 
ADD A, (IX +0) COMPUTE PARTIAL SUM 
LD (IX+O), A STORE IT AWAY 
JR NC, NOCARRY CHECK FOR CARRY 
INC (IX + 1) ADD CARRY TO HIGH BYTE 

NOCARRY 	 INC HL POINT TO NEXT ENTRY 
DEC B DECREMENT BYTE COUNT 
JR NZ, ADLOOP KEEP ADDING TILL END 
RET 

.A 

COUNTBI 	 I~ 	 I 

LENGTH=N 	 BASE,.rHL r BASE 	 ELEMENT 1 

IX r 	 l- ••• 
ELEMENT N 

.. 	 SUMLO 

SUMHI 

Fig. 8.2: Sum of N Elements 

This program is straightforward and should be self-explanatory. 

Exercise 8.15: Modify this program to: 

a-compute a 24-bit sum 

b-compute a 32-bit sum 

c-detect any overflow. 


A CHECKSUM COMPUTATION 

A checksum is a digit or set of digits computed from a block of suc­
cessive characters. The checksum is computed at the time the data is 
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stored and put at the end. In order to verify the integrity of the data, the 
data is read, then the checksum is recomputed and compared against 
the stored value. A discrepancy indicates an error or a failure. 

Several algorithms are used. Here, we will exclusive-OR all bytes in a 
table of N elements, and leave the result in the accumulator. As usual, 
the base of the table is stored at address BASE. The first entry of the 
table is its number of elements N. The program modifies A, F, B, H, L. 
N must be less than 256 

CHKSUM LD HL, BASE LOAD ADDRESS OF TABLE 
INTO HL 

LD B, (HL) GET N = LENGTH 
XOR A CLEAR CHECKSUM 
INC HL POINT TO FIRST ELEMENT 

CHLOOP XOR (HL) COMPUTE CHECKSUM 
INC HL POINT TO NEXT ELEMENT 
DEC B DECREMENT COUNTER 
JR NZ, CHLOOP DO IT AGAIN IF NOT END 
LD (CHECKSUM),A PRESERVE CHECKSUM 
RET 

COUNT THE ZEROES 

This program will count the number of zeroes in our usual table, and 
leave it in location TOTAL. It modifies A, B, C, H, L, F. 

ZEROS LD HL, BASE POINT TO TABLE 
LD B, (HL) READ LENGTH INTO COUNTER 
LD C,O ZERO TOTAL 
INC HL POINT TO FIRST ENTRY 

ZLOOP LD A, (HL) GET ELEMENT 
OR 0 SET ZERO FLAG 
JR NZ,NOTZ IS IT A ZERO? 
INC C IF SO, INCREMENT ZERO COUNT 

NOTZ INC HL POINT TO NEXT ENTRY 
DEC B DECREMENT LENGTH COUNTER 
JR NZ, ZLOOP 
LD A,C 
LD (TOTAL), A SAVE IT 

Exercise 8.16: Modify this program to count 
a-the number of stars (the character "*") 
b-the number of letters of the alphabet 
c-the number of digits between "0" and "9" 
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BLOCK TRANSFER 

Let us pick up every third entry in the source block at address FROM 
and store it into a block at address TO: 

FER3 LD HL, FROM 
LD DE, TO SET UP POINTERS 
LD BC, SIZE 

LOOP LDI AUTOMATED TRANSFER 
INC HL 
INC HL SKIP 2 ENTRIES 
JP PE, LOOP 

BCD BLOCK TRANSFER 

We will push up BCD digits in the memory, i.e, shift 4-bit nibbles 
(see Figure 8.3). The program appears below: 

AI I 
COUNTBI I 


H BLOCK 
COUNT 

Fig. 8.3: BCD Block Transfer -The Memory 

DMOV 

LOOP 

LD 
LD 
XOR 
RLD 
DEC 
DJNZ 

B,COUNT 
HL, BLOCK 
A 

HL 
LOOP 

A = 0 

POINT TO NEXT BYTE 
DEC COUNT LOOP UNTIL ZERO 
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The program uses the RLD instruction, which we have not used yet. 
RLD rotates a BCD digit left between A and (HL). (HL) or M designate 
the contents of the memory location pointed to by Hand L. 

M LOW goes into M HIGH 
M HIGH goes into A LOW 
A LOW goes into M LOW 

Here, "low" and "high" refer to a 4-bit nibble. 
In order to use the powerful DJNZ instruction, register B is used as 

the digit counter. HL is set to point to the beginning of the block. 
A is used to store the left digit displaced by each rotation between 

two successive accesses to the block. 
By convention, "0" will be entered at the bottom of the block. 

COMPARE TWO SIGNED 16-BIT NUMBERS 

IX points to the first number Nl. 
IY points to N2 (see Figure S.4). 

The program sets the carry bit ifNI< N2, and the Z bit if NI = N2. 
CaMP LD B, (IX + I) GET SIGN OF NI 

LD A,B 
AND SOH TEST SIGN, CLEAR CY 
JR NZ, NEGMI NIISNEG 
BIT 7, (IY + 1) 
RET NZ N2 IS NEG 
LD A,B 
CP (IY + 1) SIGNS ARE BOTH pas 
RET NZ 
LD A, (IX) 
CP (lY) 
RET 

NEGMl XOR (IY + I) 
RLA SIGN BIT INTO CY 
RET C SIGNS DIFFERENT 
LD A,B 
CP (IY + I) BOTH SIGNS NEG 
RET NZ 
LD A, (IX) 
CP (IY) 
RET 

The program first tests the signs of Nl and N2. If Nl is negative, a 
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jump occurs to NEGM\. Otherwise, the top of the program is executed. 

MEMORY 

IX 

1HIGH ADDRESSES 

IY 

Fig. 8.4: Comparing Two Signed Numbers 

Note that the BIT instruction is used in the 5th line to test directly the 
sign bit of N2 in the memory: 

BIT 7, (lY + 1) 

The same could have been done for Nl, except that we will need the 
value of Nl shortly. It is therefore simpler to read Nl from memory 
and preserve it into B: 

COMP LD B, (IX + 1) 

It is necessary to preserve Nl into B because the AND may destroy the 
contents of A: 

LD A,B 
AND 80H 

Note also that a conditional return is used (line 6): 

RET NZ 
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This is a powerful feature of the Z80 which simplifies programming. 
Note that the comparison instruction executes directly on the con­

tents of memory, in indexed mode: 

CP (IY + 1) 

When comparing the two numbers, the most significant byte is com­
pared first, the least significant one second. 

Note the extensive use of the indexing mechanism in this program, 
which results in efficient code. 

BUBBLE-SORT 

Bubble-sort is a sorting technique used to arrange the elements of a 
table in ascending or descending order. The bubble-sort technique de­
rives its name from the fact that the smallest element "bubbles up" to 
the top of the table. Every time it "collides" with a "heavier" element, 
it jumps over it. 

A practical example of a bubble-sort is shown on Figure 8.5 The list 
to be sorted contains: (10, 5,0, 2, 100), and must be sorted in descend­
ing order ("0" on top). The algorithm is simple, and the flowchart is 
shown on Figure 8.7 

The top two (or else bottom two) elements are compared. If the lower 
one is less ("lighter") than the top one, they are exchanged. Otherwise 
not. For practical purposes, the exchange, if it occurs, will be remem­
bered in a flag called "EXCHANGED". The process is then repeated 
on the next pair of elements, etc., until all elements have been com­
pared two by two. 

This first pass is illustrated by steps 1,2,3,4,5,6 on Figure 8.5, go­
ing from the bottom up. (Equivalently we could go from the top down.) 

If no elements have been exchanged, the sort is complete. If an ex­
change has occurred, we start all over again. 

Looking at Figure 8.6, it can be seen that four passes are necessary in 
this example. 

The process is simple, and is widely used. 
One additional complication resides in the actual mechanism of the 

exchange. 
When exchanging A and B, one may not write 

A=B 

B=A 


as this would result in the loss of the previous value of A (try it on an 
example). 
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5 1=2 

0 ~ 1=3 ~ -,=3 

2 1=. 2 1=. 

100 1=5 100 100 

51= W= m=

100> 2 2>0; 0<5 


NO CHANGE NO CHANGE EXCHANGE' 


0 0 (2) 

o _'2 

5§t §f'"' §f
2 

100 100 100 

0< 10· EXCHANGE 0EXCHANGED 
EXCHANGE! END Of PASS 1 

0 0) CD 
END Of PASS 1 

10 10 

5 5 _'=3 


2 1=. 2 _,=. 


100 1=5 100 100
1= I ~ 

100>2; 2<5; EXCHANGED

NO CHANGE EXCHANGE' 

0 CD 0) 

2 1=2 

2 1=3 §fH10 


5 
 51=='-' ~ 100 100 100 

2<10; 2>0;

EXCHANGE 
 EXCHANGED NO CHANGE 

@ @ @ 
END OF PASS 2 

Fig. 8.5: Bubble-Sort Example: Phases 1 to 12 
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0 0 	 o 
2 	 2 

~-

10 10 	 5 

1 4 	 ­
5 - 5 	 10 

lao I 5 lao 	 lao 

lao) 5 	 5,~ 10 EXCHANGEDNO CHANGE EXCHANGE I 

@ e 

-	 1= 10 0 0 


l 2 2
1=2 

5 ~ 5 5 


10 10 10 
 -+- 1=4 

lao lao lao ~ 1=5 

5 --' 2: 	 2>0: 100)10: 
NO CHANGE NO CHANGE NO CHANGE 

@ 	 0) @ 
END OF PASS 3 

1=1o 	 0 0 f ­
1=2 1=22 	 2 r-­2 

1=3 	 1=35 	 55 

1=410 10 	 10 

lao lao lao 


10)5: 5) 2: 2)0: 

NO CHANGE NO CHANGE NO CHANGE 

e 	 @ @ 
END 

Fig. 8.6: Bubble-Sort Example: Phases 13 to 21 

The correct solution is to use a temporary variable or location to pre­
serve the value of A: 

TEMP A 

A B 

B TEMP 


It works (try it on an example). This is called a circular permutation. 
This is the way all programs implement the exchange. This technique 

is illustrated on the flowchart of Figure 8.7, 
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t 
GET NUMBER OF 

ELEMENTS N 
I=N 

YESYES 

DONE 

EXCHANGE E AND E" 

TEMP = E(I) 

E(I) = E'(I) 


E'(I) = TEMP 


Fig. 8.7: Bubble-Sort Flowchart 
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1E 

~ 

COUNT 

EXCHANGE/NOT 

cD FLAG IN H ,------..,
A ___---l 

B 1....__P_TR__....II COUNT IC TEMP 

D I NEXT CURRENTI I 

H L--________~________ 

IXL___-L.____~=~ 

Fig. 8.8: Bubble- Sort 

The register and memory assignments are shown on Figure 8.8, and 
the program is: 

BUBBLE 	 LD (TEMP), HL TEMP = (HL) 
AGAIN 	 LD IX, (TEMP) IX = (HL) 

RES FLAG, H EXCHANGED FLAG =0 
LD B,C 
DEC B 

NEXT 	 LD A, (IX) 
LD D,A D = CURRENT ENTRY 
LD E, (IX + 1) E = NEXT ENTRY 
CP E COMPARE 
JR NC, NOSWITCH GO TO NOSWITCH IF 

CURRENT ~ NEXT 
XCHANGE LD (IX), E STORE NEXT INTO 

CURRENT 
LD (IX + 1), D STORE CURRENT INTO 

NEXT 
SET FLAG, H EXCHANGED FLAG = 1 
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NOSWITCH INC IX NEXT ENTRY 
DJNZ NEXT DEC B, CONTINUE UNTIL 

ZERO 
BIT FLAG, H EXCHANGED = I? 
JR NZ, AGAIN RESTART IF FLAG =1 
RET 

SUMMARY 

Common utility routines have been presented in this chapter which 
use combinations of the techniques we have described in the previous 
chapters. They should allow you to start designing your own programs 
now. Many of these routines have used a special data structure, the 
table. Other possibilities exist for structuring data, and will now be re­
viewed. 
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DATA STRUCTURES 

P ART I - THEORY 

INTRODUCTION 

The design of a good program involves two tasks: algorithm design 
and data structures design. In most simple programs, no significant 
data structures are involved, so the main objective in learning program­
ming is designing algorithms and coding them efficiently in a given 
machine language. This is what we have accomplished here. However, 
designing more complex programs also requires an understanding of 
data structures. Two data structures have already been used through­
out the book: the ta.ble and the stack. The purpose of this chapter is to 
present other, more general, data structures that you may want 
to use. This chapter is completely independent of the microprocessor, 
or even the computer, selected. It is theoretical and involves the logical 
organization of data in the system. Specialized books exist on the topic 
of data structures, just as specialized books exist on the subject of 
efficient multiplication, division or other usual algorithms. This 
chapter, therefore, will be limited to essentials only. It does not claim 
to be complete. The most common data structures will now be reviewed. 

POINTERS 

A pointer is a number which is used to designate the location of the 
actual data. Every pointer is an address. However, every address is not 
necessarily called a pointer. An address is a pointer only if it points at 
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some type of data or at structured information. We have already en­
countered a typical pointer: the stack pointer, which points to the top 
of the stack (or usually just over the top of the stack). We will see that 
the stack is a common data structure, called an LIFO structure. 

As another example, when using indirect addressing, the indirect ad­
dress is always a pointer to the data that one wishes to retrieve. 

Exercise 9.1: Examine Fig. 9.1. At address 15 in the memory, there is a 
pointer to Table T. Table T starts at address 500. What are the actual 
contents of the pointer to T? 

15 
t- POINTER TOT 

16 

.-­
500 

TABLE T 

Fig. 9.1: An Indirection Pointer 

LISTS 

Almost all data structures are organized as lists of various kinds. 

Sequential Lists 

A sequential list, or table, or block, is probably the simplest data 
structure, and is one that we have already used. Tables are normally 
ordered in function of a specific criterion, such as alphabetical ordering 
or numerical ordering. It is then easy to retrieve an element in a table, 
using, for example, indexed addressing, as we have done. A block nor­
mally refers to a group of data which has definite limits but whose con­
tents are not ordered. It may contain a string of characters; it may 
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be a sector on a disk; or it may be some logical area (called segment) of 
the memory. In such cases, it may not be easy to access a random ele­
ment of the block. 

In order to facilitate the retrieval of blocks of information, directo­
ries are used. 

Directories 

A directory is a list of tables or blocks. For example, the file system 
will normally use a directory structure. As a simple example, the master 
directory of the system may include a list of the users' names. This is il­
lustrated in Figure 9.2. The entry for user "John" points to John's file 
directory. The file directory is a table which contains the names of all of 
John's files and their location. This is, again, a table of pointers. In this 
case, we have just designed a two-level directory. A flexible directory 
system will allow the inclusion of additional intermediate directories, as 
may be found convenient by the user. 

USER DtRECTOtlV 

JOHN'S 
FILE DIRECTORY 

JOHN 
JOHN'S FILE 

ALPHA 

ALPHA 

SIGMA 1- DATA 

SIGMA 

"--­

Fig. 9.2: A Directory Structure 

Linked List 

In a system there are often blocks of information which represent 
data, events, or other structures which cannot be moved around eas­
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ily. If they could, we would probably assemble them in a table in order 
to sort or structure them. The problem now is that we wish to leave 
them where they are and still establish an ordering among them such as 
first, second, third, fourth. A linked list will be used to solve this prob­
lem. The concept of a linked list is illustrated by Figure 9.3. On the il­
lustration, we see that a list pointer, called FIRSTBLOCK, points to the 
beginning of the first block. A dedicated location within Block 1 such 
as, perhaps, the first or the last word in it, contains a pointer to Block 
2, called PTRI. The process is then repeated for Block 2 and Block 3. 
Since Block 3 is the last entry in the list, PTR3, by convention, either 
contains a special "nil" value, or points to itself, so that the end of the 
list can be detected. This structure is economical, as it requires only a 
few pointers (one per block) and frees the user from having to physi­
cally move the blocks in the memory. 

:~::;KI~__B_LOC_Kl_--L-I~...IK "'oc" 

Fig. 9.3: A Linked List 

Let us examine, for example, how a new block will be inserted. This 
is illustrated by Figure 9.4. Let us assume that the new block is at ad­
dress NEWBLOCK, and is to be inserted between Block 1 and Block 2. 
Pointer PTRI is simply changed to the value NEWBLOCK, so that it 
now points to Block X. PTRX will contain the former value of PTRI, 
i.e., it will point to Block 2. The other pointers in the structure are left 
unchanged. We can see that the insertion of a new block has simply re­
quired updating two pointers in the structure. This is clearly efficient. 

Exercise 9.2: Draw a diagram showing how Block 2 would be removed 
from this structure. 

BLOCK L..-____-L::.J 

BLOCK X 

FIRST 
BLOCK I BLOCK2 

L..-__BL_OC_K_3__~I~~~ 

Fig. 9.4: Inserting a New Block 
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Several types of lists have been developed to facilitate specific types 
of access, insertions, and deletions to and from the list. Let us examine 
some of the most frequently used types of linked lists. 

Queue 

A queue is formally called a FIFO, or first-in-first-out list. A queue 
is illustrated in Figure 9.5. To clarify the diagram, we can assume, for 
example, that the block on the left is a service routine for an output 
device, such as a printer. The blocks appearing on the right are the re­
quest blocks from various programs or routines, to print characters. 
The order in which they will be serviced is the order established by the 
waiting queue. It can be seen that the first event which will obtain serv­
ice is Block I, the next one is Block 2, and the following one is Block 3. 
In a queue, the convention is that any new event arriving in the queue 
will be inserted at the end. Here it will be inserted after PTR3. This 
guarantees that the first block to be inserted in the queue will be the 
first one to be serviced. It is quite common in a computer system to 
have queues for a number of events whenever they must wait for a 
scarce resource, such as the processor or some input/output device. 

SERVICE ROUTINE BLOCKl ~NEXT PTR 1 

-

BLOCK 3 

[ 
PTR3 

- • 

BLOCK 2 

PTR2 1­

Fig. 9.5: A Queue 
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Stack 

The stack structure has already been studied in detail throughout the 
book. It is a last-in-first-out structure (LIFO). The last element depos­
ited on top is the first one to be removed. A stack may either be im­
plemented as a sorted block, or it may be implemented as a list. Because 
most stacks in microprocessors are used for high-speed events, such as 
subroutines and interrupts, a continuous block is usually allocated to 
the stack instead of using a linked list. 

Linked List vs. Block 

Similarly, the queue could be implemented as a block of reserved 
locations. The advantage of using a continuous block is fast retrieval 
and the elimination of the pointers. The disadvantage is that it is usu­
ally necessary to dedicate a fairly large block to accommodate the 
worst-case size of the structure. Also, it makes it difficult or impractical 
to insert or remove elements from within the block. Since memory is 
traditionally a scarce resource, blocks have usually been reserved for 
fixed-size structures or structures requiring the maximum speed of re­
trieval, such as the stack. 

Circular List 

"Round robin" is a common name for a circular list. A circular list is 
a linked list in which the last entry points back to the first one. This is il­
lustrated in Figure 9.6. In the case of a circular list, a current-block 
pointer is often kept. In the case of events, or programs, waiting for 
service, the current-event pointer will be moved by one position to the 
left or to the right every time. A round robin usually corresponds to a 
structure in which all blocks are assumed to have the same priority. 
However, a circular list may also be used as a subcase of other struc­
tures simply to facilitate the retrieval of the first block after the last 
one, when performing a search. 

As an example of a circular list, a polling program usually goes in a 
round robin fashion, interrogating all peripherals and then coming 
back to the first one. 

Trees 

Whenever a logical relationship exists among all elements of a struc­
ture (this is usually called a syntax), a tree structure may be used. A sim­
ple example of a tree structure is a descendant, or genealogical, tree. 
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~1...__ E~VE:-NT_2_---,~ ... -11...__EV_EN_T_l_--,r--l...l__ EV_EN_T_N_--,0 

CURRENT EVENT 

Fig. 9.6: Round Robin is Circular List 

This is illustrated in Figure 9.7. It can be seen that Smith has two chil­
dren: a son, Robert, and a daughter, Jane. Jane, in turn, has three 
children: Liz, Tom and Phil. Tom, in turn, has two more children: Max 
and Chris. However, Robert, on the left of the illustration, has no de­
scendants. 

This is a structured tree. We have, in fact, already encountered an ex­
ample of a simple tree in Figure 9.2. The directory structure is a two­
level tree. Trees are used to advantage whenever elements may be classi­
fied according to a fixed structure. This facilitates insertion and re­
trieval. In addition, they may establish groups of information in a 
structured way which may be required for later processing, such as in a 
compiler or interpreter design. 

Fig. 9.7: Genealogical Tree 

Doubly-Linked Lists 

Additional links may be established between elements of a list. The 
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simplest example is the doubly-linked list. This is illustrated in Figure 
9.8. We can see that we have the usual sequence of links from left to 
right, plus another sequence of links from right to left. The goal is to 
allow easy retrieval of the element just before the one which is being 
processed, as well as just after it. This costs an extra pointer per block. 

BLOCK 3 

Fig. 9.8: Doubly-Linked List 

SEARCHING AND SORTING 

Searching and sorting elements of a list depends directly on the type 
of structure which has been used for the list. Many searching algo­
rithms have been developed for the most frequently used data struc­
tures. We have already used indexed addressing. This is possible when­
ever the elements of a table are ordered in function of a known 
criterion. Such elements may then be retrieved by their numbers. 

Sequential searching refers to the linear scanning of an entire block. 
This is clearly inefficient but may have to be used when no better tech­
nique is available, for lack of ordering of the elements. 

Binary, or logarithmic, searching attempts to find an element in a 
sorted list by dividing the search interval in half at every step. Assum­
ing that we are searching an alphabetical list, one might start, for exam­
ple, in the middle of a table and determine if the name we are looking 
for is before or after this point. If it is after this point, we will eliminate 
the first half of the table and look at the middle element of the second 
half. We compare this entry again to the one we are looking for, and we 
restrict our search to one of the two halves, and so on. The maximum 
length of a search is then guaranteed to be log2n, where n is the number 
of elements in the table. 

Many other search techniques exist. 

SECTION SUMMARY 

This section was intended as only a brief presentation of usual data 
structures which may be used by a programmer. Although most com­
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mon data structures have been organized in types and given a name, the 
overall organization of data in a complex system may use any combina­
tion of them, or require the programmer to invent more appropriate 
structures. The array of possibilities is only limited by the imagination 
of the programmer. Similarly, a number of well-known sorting and 
searching techniques have been developed for coping with the usual 
data structures. A comprehensive description is beyond the scope of 
this book. The contents of this section were intended to stress the im­
portance of designing appropriate section structures for the data to be 
manipulated and to provide the basic tools to that effect. 

Actual programming examples will now be presented in detail. 
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PART II - DESIGN EXAMPLES 

INTRODUCTION 

Actual design examples will be presented here for typical data struc­
tures: table, sorted list, linked list. Practical searching and insertion and 
deletion algorithms will be programmed for these structures. 

The reader interested in these advanced programming techniques is 
encouraged to analyze in detail the programs presented in this section. 

However, the beginning programmer may skip this section initially, 
and come back to it when he feels ready for it. 

A good understanding of the concepts presented in the first part of 
this chapter is necessary to follow the design examples. Also, the pro­
grams will use all of the addressing modes of the Z80, and integrate 
many of the concepts and techniques presented in the previous chapters. 

Three structures will now be introduced: a simple list, an alphabetical 
list and a linked-list plus directory. For each structure, three programs 
will be developed: search, enter and delete. 

DATA REPRESENTATION FOR THE LIST 

Both the simple list and the alphabetic list will use a common repre­
sentation for each list element: 

~_C__L-_C__L-_C__~_D__~_D__~I_~~ ~L-~I__D__~_D__~ 
3-byte label Data 
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ENTLEN LENG TH OF ENTRYM= 

TABLEN NUMBER OF ENTRIESN= 

TAB BASE 

LABE,L 

ENTRY M BYTES 

DATA 

ENTER NEW ELEMENT 

Fig. 9.9: The Table Structure 

c 

C LABEL 

\ 
C 

D 
ELEMENT 

1 

I 
D I"" 

ENTlEN 

c 

C !LABEL 

C ) 
mM'" \ D 

ENTLEN
2 

I~"" 
Fig 9.10: Typical List Entries in the Memory 
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Each element, or "entry", includes a 3-byte label, and an n-byte block 
of data, with n between 1 and 253. Thus, at most, each entry uses one 
page (256 bytes). Within each list, all elements have the same length (see 
Figure 9.10). The programs operating on these two simple lists use some 
common variable conventions: 

ENTLEN is the length of an element. For example, if each element 
has 10 bytes of data, ENTLEN = 3 + 10 = 13 

T ABASE is the base of the list or table in the memory 
POINTR is a running pointer to the current element 
OBJECT is the current entry to be located, inserted or deleted 
T ABLEN is the number of entries. 

All labels are assumed to be distinct. Changing this convention would 
require a minor change in the programs. 

TABASE 

POINTR 

FREE SPACE 

ElEMENT 1 

ELEMENT 2 

CURRENT 
ElEMENT 

OBJECT 
TO BE INSERTED 

tLENGTH '" 
ENTlEN 

Fig. 9.11: The Simple List 
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A SIMPLE LIST 

The simple list is organized as a table of n elements. The elements are 
not sorted (see Figure 9.11). When searching, one must scan through 
the list until an entry is found or the end of the table is reached. When 
inserting, new entries are appended to the existing ones. When an entry 
is deleted, the entries in higher memory locations, if any, will be shifted 
up to keep the table continuous. 

Searching 

A serial search technique is used. Each entry's label field is compared 
in turn to the OBJECT's label, letter by letter. 

The running pointer POINTR is initialized to the value of T ABASE. 

SEARCH 

YES>---. EMPTY LIST 

YES FOUND 
(SET A TO "FF") 

YES>---. FAllUREEXIT 

Fig. 9.12: Table Search Flowchart 
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The search proceeds in the obvious way, and the corresponding flow­
chart is shown on Figure 9.12. The program appears on Figure 9.16 
at the end of this section (program "SEARCH"). A sample run of the 
program is shown in Figure 9.17. 

Inserting 

When inserting a new element, the first available memory block of 
(ENTLEN) bytes at the end of the list is used (see Figure 9.11). 

The program first checks that the new entry is not already in the list 
(all labels are assumed to be distinct in this example). If not, it incre­
ments the list length T ABLEN, and moves the OBJECT to the end of 
the list. The corresponding flowchart is shown in Figure 9.13. 

The program is shown in Figure 9.16. It is called "NEW" and resides 
at memory locations 0135 to 015E. 

The index register IY points to the source. HL and DE are destina­
tion pointers. 

>---,-,YE""S__ EXIT 

t 
END 

Fig. 9.13: Table Insertion Flowchart 
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Deleting 

In order to delete an element from the list, the elements following it 
in the list at higher addresses are merely moved up by one element posi­
tion. The length of the list is decremented. This is illustrated on Figure 
9.14. 

The corresponding program is straightforward and appears on Fig­
ure 9.16. It is called "DELETE", and resides at memory addresses 
015Fto 0187. The flowchart is shown in Figure 9.15. 

Memory location TEMPTR is used as a temporary pointer pointing 
to the element to be moved up. 

During the transfer, POINTR always points to the "hole" in the list, 
i.e., the destination of the next block transfer. 

The Z flag is used to indicate a successful deletion upon exit. 
Note how the LDIR instruction is used for efficient automated block 

transfer (refer to address 0178 in Figure 9.16). 

LD A, B BLOCK COUNTER 
NEWBLOC LD BC, (ENTLEN) BLOCK LENGTH 

LDIR 
DEC A 
lP NZ, NEW BLOC 

BEFORE AFTER 

8 8 
0 0) 
0) 0) 

DELETE 
MOVE8 0 

TEMPTR 0 G 
8 

MOVE 

Fig. 9.14: Deleting an Entry (Simple List) 
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FIND ENTRY 

NO 
>---.... OUT 

DECREMENT TABLE LENGTH 

YES 
>---.... EXIT 

DECREASE COUNT OF 
ENTRIES REMAINING 
AFTER THE ONE SHIFTED 

NO 
>---.... OUT 

Fig. 9.15: Table Deletion Flowchart 
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0000 ORG OIOOH 
(0187) 
(0189) 
(OISA)
(018C) 

ENTLEN 
TABLEN 
TAIIASE 
TEMP 

IlL 
Dt. 
DI.. 
['L 

ENDER 
ENDER+2 
ENDERt3 
ENDERtS 

0100 
0102 
0105 

1600 
3A8901 
A7 

SEARCH LD 
LD 
AND 

[1,0 
A, <TABLEN) 
A 

;CLEAR D 
ICHECK FOR 
; SET FLAGS 

A ZERO TABLE LENGTH 

0106 C8 RET Z 
0107 
0108 
OIOC 
010F 

47 
DD2A8AOI 
D[17[00 
HBEOO 

LOOP 

LD 
LD 
LD 
CP 

B,A 
I X ,( TABASE ) 
A,(IXtO)
( IHO) 

,STORE TABLE LENGTH 
IPIJT BASE AIIDR. IN IX 
;CHECK FIRST LETTER OF ENTRY 

0112 C22701 JP NZ,NEXTONE 
0115 
0118 
OllB 

D['7EOI
FDBEOI 
C22701 

LD 
CP 
JP 

A,(IX+l) 
(IY+! ) 
NZ,NEXTONE 

ICHECK 2ND LETTER 

OIIE 
0121 

[I[l7E02 
FDBE02 

LD 
CP 

AdIX+2) 
(IY+2) 

;CHECK 3RD LETTER 

0124 
0127 

CA3201 
05 NEXTONE 

JP 
DEC 

Z,FOUND 
B 

; EXIT IF ALL LETTERS MATCH 
;DECREMENT TABLE LENGTH COUNTER 

0128 C8 RET Z IEXIT IF AT END OF TABLE 
0129 EDSB8701 LD [IE, (ENTLEN) ;SET IX TO NEXT ENTRY A[iDR. 
012[1 
012F 

[1(119 
C30COI 

ADD 
.JP 

IX,DE 
LOOP ;TRY AGAIN 

0132 
0134 

16FF 
C9 

FOLIND LD 
RET 

D,OFFH ;5ET £0 TO SHOW 
; •• OF ENTRY IN 

IX CONTAINS 
TABLE 

ADDR. 

01:35 CDOOOI NEW CALL SEARCH iSEE IF OBJECT IS THERE 
0138 14 INC £0 
0139 
013C 
013F 
0140 

CASEOI 
3A8901 
SF 
3C 

JP 
L£O 
L£o 
INC 

Z,OllTE 
A, nABLEN)
E,A 
A 

;IF D WAS FF, EXIT 

;LOAD E WITH TABLE LENGTH 

0141 
0144 

328901 
1600 

LD 
LD 

(TABLEN) ,A 
0,0 

I INCREMENT TABLE LENGTH 

0146 
0149 
014D 

2A8AOl 
ED4B8701 
41 

L£O 
LI' 
LD 

HL, (TABASE) 
BC'( ENTLEN) 
B,C 

;5£T B TO LENGTH OF AN ENTRY 

014E 
()14F 
0151 
0155 
0157 

19 
10FIo 
ED4B8701 
FDE5 
DI 

LOOF'E ADn 
[iJNZ 
l..D 
PUSH 
POP 

HL,DE 
LOOF'E 
BC,(ENTLEN) 
IY 
DE 

IADD HL TO (ENTLEN"TABLEN) 

;MOVE IY TO DE 

0158 EII EX DE,Hl. 
0159 EDBO LDIR IMOVE MEMORY FROM OBJECT TO END 
015B OIFFFF LD BC,OFFFFH ; •• OF TABLE 
OISE C9 OUTE RET 

015F 
016:! 
0163 
0166 
0169 

CDOOOI 
14 
C28601 
3A8901 
3D 

DELETE CALL 
INC 
JF' 
LD 
DEC 

SEARCH 
[0 

NZ,OUT 
A, (TABLEN) 
A 

;FIND ENTRY TO BE DELETED 
;SEE IF IT WAS FOUND 

;DECREMENT TABLE LENGTH 

016A 328901 LI' (TABLEN) ,A 
016[1 
016E 
0171 
0173 

05 
CA8301 
DDE5 
01 

[lEC 
JP 
PUSH 
POP 

B 
Z,EXIT 
IX 
DE 

;,B NOW=. 
i •• AFTER 
IMOVE IX 

OF ENTRIES LEFT IN 
ONE TO BE DELETED 
TO DE 

TABLE 

0174 
0177 
0178 
0179 
017D 
017F 

2A8701 
19 
78 
E£o4B8701 
EDBO 
3D 

NEWBLOC 

LD 
ADD 
LD 
L£o 
LDIR 
DEC 

HL,(ENTLEN) 
HL,DE 
A,B 
BC'( ENTLEN) 

A 

,SET HL ONE ENTRY AHEAD OF 

;SET BLOCK COUNTER 
;5£T BLOCK LENGTH COUNTER 
;SHIFT I ENTRY OF TABLE 

DE 

0180 
0183 
0186 

C27901 
OIFFFF 
C9 

EXIT 
OUT 

JP 
LD 
RET 

NZ,NEWBLOC 
BC,OFFFFH 

;SHIFT ANOTHER BLOCK 
;SHOW THAT IT WAS DONE 

0197 (0000) ENDER END 

Fig. 9.16: Simple List-The Programs 
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SYMBOL TABLE 

DELETE 015F EN['ER 01117 EN Tl.. EN 0187 EXIT 0183 FOUND 0132 
LOOP 010e LOOPE 014E NEW 0135 NEWBLO 0179 NEXTON 0127 
OUT 0186 OUTE 01SE SEARCH 0100 TABA5E 018A TABLEN 0189 
TEMP 01BC 

Fig. 9.16: Simple List-,The Programs (cont.) 

Listing of Objects 
with their locations 
in memory 

--DM300 
0300 53 4F 4E 31 31 31 31 31--31 31 31 31 31 00 00 00 SON11ll111111 ••• 
0310 44 41 44 32 32 32 32 32-32 32 32 32 32 00 00 00 DAD???222222? •• 
0320 4D 4F 4D 33 33 33 33 33-3:, 33 33 33 33 00 00 00 MIlM3:n3333333 ••• 
0330 55 4E 43 34 34 34 34 34-34 34 34 34 34 00 00 00 lINC4444444444 ••• 
0340 41 4E 54 35 35 35 35 ~~5--35 35 35 35 35 00 00 00 ANT5555555555 .... 
03~jO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 

Display Memory 

0360 00 00 00 00 00 00 00 00-,,00 00 00 00 00 00 00 00 ................ 

0370 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 

--5Y 

Y=OOOO 300 Set IY to 0300H (pointer to OBJECT) 


-G193/196 

P=0196 0196' Run 'INSERT' 
Table configuration 
after program run 

-[lM400 
0400 53 4F 4E 31 31 31 31 31-,,31 31 31 31- 31 00 00 00 SONll11111111 ••• 
0410 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
0420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
0430 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 

0440 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00 ................ 

0450 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00 ................ 

0460 00 00 00 00 00 00 00 00---00 00 00 00 00 00 00 00 ................ 

0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 

--sy 
Y=0300 310 Set IY to 0310H (next OBJECT) 

---GI93/196 

P=0196 0196' Run 'INSERT' 

Table configuration 
after second insert 

·~nM400 
0400 53 4F 4E 31 31 31 31 31 ..·31 :11 31 .11 31 44 41 44 SONli ll111111DAD 
0410 32 32 32 32 32 32 32 32-32 32 00 00 00 00 00 00 2222222222 •••••• 
0420 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
0430 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00 ................ 

0440 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00 ................ 

0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 

0460 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ••••••••• t •••••• 

. .
(More insertions) Table configuration 

after several inserts 
--['MOO 
0400 53 4F 4E 31 31 31 31 :!l--31 :51 31 31 31 44 41 44 SONll11111111DAD 
0410 32 32 32 32 32 32 32 32·-32 32 55 4E 43 34 34 34 2222222222UNC444 
0420 34 34 34 34 34 34 34 4D-4F 4D 33 33 33 33 33 33 4444444MOM333333 
0430 33 33 33 33 41 4E 54 35-35 35 35 35 35 35 35 35 3333ANT55555!:J555 
0440 35 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 5 ••••••••••••••• 
0450 00 00 00 00 00 00 00 00---00 00 00 00 00 00 00 00 ................ 
0460 00 00 00 00 00 00 00 00·-00 00 00 00 00 00 00 00 •• t ••••••••••••• 

0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 

Fig. 9.17: Simple List-A Sample Run 
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·'·SY 
V:::0340 320 
-GI90/19:1 

f'~()193 01'1:l' Run 'SEARCH' 

I Reg D shows that Object was found 

Realsler conlents -DR 
Z N A'=4D ElC=02FF DE=FFOD HL'-034[1 S=0100 P=OI93 0193' CALL 0135 

A' =00 B I :::0000 D I =0000 H' '"'0000 X""0427 Y~:()320 :(=00 (0135' ) 

LAddress of Objett 

'-G196/199 

P==0199 0199' Run 'DELETE' 	 Table confilluralion 
after deletion 

-DM400 
0400 53 4F 4E 31 31 31 :11 31 .. 31 :'11 31 :31 :J 1. 44 41 44 SON:f1 till I II ! DAD 
0410 3;"'~ 32 32 32 32 3::'~ 32 3? 'J;.! 32 55 4E 43 34 34 34 2222222222UNC444 
0420 34 34 34 34 34 34 34 41 ··AE 54 35 35 35 35 35 35 4444444ANT555:"i55 
0430 35 3:'.'; 3~j 35 41 4E 54 35 <J5 35 35 35 3::'i 35 35 35 ~J~! ~j 5 ANT 55 5 ~j55555 
0440 35 00 00 00 00 00 00 00 ·00 00 00 00 00 00 00 00 :::i ••••••••••••••• 
0450 00 00 00 00 00 00 00 00 ·00 00 00 00 00 00 00 00 ................ 
0460 00 00 00 00 00 00 00 00 ·00 00 00 00 00 00 00 00 ................ 
0470 00 00 00 00 00 00 O() 00· 00 00 00 00 00 00 00 00 ................ 

-SY 
Y=0240 340 I
····G196/199 Delete last entry in table Note: no apparent 

P;:;:0199 0199' chanae in labl, 
configuration

'-DM400 
0400 53 4F 4E 31 31 31 31 31·'-;ll :11 :Jl. 31 31 44 41 44 SON 1111111111DAD 
0410 32 32 32 32 32 32 32 32'·'32 32 ~5:5 4E 43 34 34 34 2222222222UNC444 
0420 34 34 34 34 34 34 34 41-4E 54 3!:'i 35 35 35 35 :!5 4444444ANTSS55S5 
04:30 35 35 35 35 41 4E 54 35-35 35 3:5 35 35 35 35 35 	 5555ANrS55S555S:5 
0440 35 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 5 ............... 

0450 00 00 00 00 00 00 00 00·-00 00 00 00 00 00 00 ()O ................ 

0460 00 00 00 00 00 00 00 00,-00 00 00 00 00 00 00 00 ................ 

0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 	 ................ 

-DM189S1 

~~nOA~3 - Memory location 'TABLEN' - shows true length of table 

P-019] 0193' Run 'SEARCH' for deleted Object 

~ShOWS that Object was not found 
·_·DR 

Z N A~::55 Bc,""oon· DE"OOOD HL."0441 8,,'0100 P=0193 0193' CALL 0135 

A' -00 f" '''0000 [1'-0000 H'-OOOO X-041A Y-0340 1=00 (0135') 


Fig. 9.17: Simple List- A Sample Run (cont.) 
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ALPHABETIC LIST 

The alphabetic list, or "table," unlike the previous one, keeps all 
its elements sorted in alphabetic order. This allows the use of fast­
er search techniques than the linear one. A binary search is used here. 

Searching 
The search algorithm is a classic binary search. Let us recall that 

the technique is essentially analogous to the one used to find a name in 
a telephone book. One usually starts somewhere in the middle of the 
book, and then, depending on the entries found there, goes either back­
wards or forward to find the desired entry. This method is fast and 
reasonably simple to implement. 

The binary seach flowchart is shown in Fig. 9.18, and the program is 
shown in Fig. 9.23. 

This list keeps the entries in alphabetical order and retrieves them by 
using a binary or "logarithmic" search. An example is shown in Figure 
9.19. The search is somewhat complicated by the need to keep track of 
several conditions. The major problem to be avoided is searching for an 
object that is not there. In such a case, the entries with immediately 
higher and lower alphabetic values could be alternately tested forever. 
To avoid this, a flag is maintained in the program to preserve the value 
of the carry flag after an unsuccessful comparison. When the INCMNT 
value, which shows by how much the pointer will next be incremented 
reaches a value of "1", another flag called "CLOSENOW", which we 
will abbreviate to "CLOSE", is set to the value of the COMPRES 
flag Thus, since all further increments will be "1", if the pointer goes 
past the point where the object should be, COMPRES will no longer 
equal CLOSE and the search will terminate. This feature also enables 
the NEW routine to determine where the logical and physical pointers 
are located, relative to where the object will go. 

Thus, if the OBJECT searched for is not in the table, and the running 
pointer is incremented by one, the CLOSE flag will be set. On the next 
pass of the routine, the result of the comparison will be opposite to the 
previous one. The two flags will no longer match, and the program will 
exit indicating "not found". 
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FLAGS = 0 

LOGICAL POSITION = 
INCREMENT VALUE = 
TABLE LENGTH I 2 
(ADD 1 IF IT WAS ODD) 

.:>---.... NOT FOUND 

'------T--r====----(ENTRY) 

YES 
.:>---~ FOUND 

YES 

(NEXT TEST) (LAST ONE) 

Fig. 9.18: Binary Search Flowchart 
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INEXTTEST) ltAST ONE) 

(ENTRY) 

YES Will INCRfN.ENT r-------c GO PAST END 

NOT 
FOUND 

Of TABlE? 

Fig. 9.18: Binary Search Flowchart (cont.) 
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The other major problem that must be dealt with is the possibility of 
running off one end of the table when adding or subtracting the incre­
ment value. This is solved by performing a test "add" or "subtract" 
using the logical pointer and length value which record the actual num­
ber of entries, not the physical positions in memory used by the physical 
pointers. 

In summary, two flags are used by the program to memorize infor­

(0121) LD A, C 
SRL A 
ADC 0 

LD C, A 

9 "SYB" 

TABASE 

AAA 

SAC 

Fll TES'~ 

TES XYZ r' 

XYZ 

FIRST TRY SECOND TRY 
SEARCH INTERVAL = 5 SEARCH INTERVAL = 2 

Fig. 9.19: A Binary Search 
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mation: COMPRES and CLOSE. The COMPRES flag is used to preserve 
the fact that the carry was either "0" or "1" after the most recent com­
parison. This determines if the element under test was larger or smaller 
than the one with which it was compared. The C indicates the relation. 
Whenever the carry C was "1", and the element was smaller than the 
object COMPRES is set to "1". Whenever the carry C was "0", indi­
cating that the element was greater than the object, COMPRES will be 
set to "FF" . 

The second flag used by the program is CLOSE. This flag is set equal 
to COMPRESS when the search increment INCMNT becomes equal to 
"1". It will detect the fact that the element has not been found if 
COMPRES is not equal to CLOSE the next time around. 

Other variables used by the program are: 

LOGPOS which indicates the logical position in the table 
(element number) 

INCMNT which represents the value by which the running 
pointer will be incremented or decremented if 
the next comparison fails 

T ABLEN represents as usual the total length of the list. 

LOGPOS and INCMNT will be compared to TABLEN in order to 
assure that the limits of the list are not exceeded. 

The program called "SEARCH" is shown on Figure 9.23. It resides 
at memory locations 0100 to OICF, and deserves to be studied with care, 
as it is much more complex than in the case of a linear search. 

An additional complication is due to the fact that the search interval 
may at times be either even or odd. When it is odd, a correction must 
be introduced. (It cannot, for instance, point to the middle element of a 
four-element list.) When it is odd, a "trick" is used to point to the 
middle element: the division by 2 is accomplished by a right shift. The 
bit "falling off" into the carry after the SRL instruction will be "1" if 
the interval was odd. It is merely added to the pointer. 

The OBJECT is then matched against the entry in the middle of the 
new search interval. If the comparison succeeds, the program exits. 
Otherwise ("NOGOOD"), the carry is set to "0" if the OBJECT is less 
than the entry. Whenever the INCMNT becomes" 1", the CLOSE flag 
(which had been initialized to "0") is then checked to see if it was set. If 
it was not, it gets set. If it was set, a check is run to determine whether we 
passed the location where the OBJECT should have been but is not. 
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Also note that when the carry was" 1 " , the running pointer will point 
to the entry below the OBJECT. 

Element Insertion 

In order to insert a new element, a binary search is conducted. If the 
element is found in the table, it does not need to be inserted. (We 
assume here that all elements are distinct). If the element was not found 
in the table, it must be inserted immediately before or immediately after 
the last element to which it was compared. The value of the COMPRES 
flag after the search indicates whether it should be inserted immediately 
before or immediately afterwards. All the elements following the new 
location where it is going to be placed are moved down by one block 
position, and the new element is inserted. 

BEFORE AFTER 

TABASE­ AAA AAA 

ABC ABC 

BAT BAC 

TAR BAT 

ZAP TAR 

ZAP 

OBJECT -tL..-__B_A_C__....1MOVE DOWN 

Fig. 9.20: Insert: "BAC" 

ELNEW 
EMENT 
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The insertion process is illustrated in Figure 9.20, and the corre­
sponding program appears in Figure 9.23. 

The program is called NEW, and starts at memory location 0IDO. 
Note that the automatedZ80 instructions LDDR and LDIR are used for 
efficient block transfers. 

Element Deletion 

Similarly, a binary search is conducted to find the object. I f the 
search fails, it does not need to be deleted. I f the search succeeds, the 
element is deleted, and all the following elements are moved up by one 
block position. A corresponding example is shown in Figure 9.21, and 
the program appears in Figure 9.23. The flowchart is shown in Fig. 
9.22. 

The program is called "DELETE" and resides at address 0221. 

A sample run of the above programs is shown in Fig. 9.24. 


BEFORE AFTER 

AAA AAA 

MOVE UP ABC ABC 

BAC r-- BAT 

BAT TAR 

TAR ZAP 

ZAP 

DelETE 

Fig. 9.21: Delete "HAC" 
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DElETE 

NO 

~----- UUlj 

COUNT HOW MANY 

ElEMENTS FOLLOW THE 


ONE TO BE DElETED 


YES 

POINT TO NEXT ENTRY 

POINTER; TEMP ,SOURCE, 


TRANSFER IT UP ONE BLOCK 


POINT TO NEXT ENTRY 

POINTER = POINTER IDESTINATlON, 


NO 

RTS 

Fig. 9.22: Deletion Flowchart (Alphabetic List) 
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0000 ORG o lOOH 
(024A) CL(]SENllW £It FND[[r 
(024Fc) CIlMPRES DI.. ENflFD+-1 
(024C) 
(024[1) 

TAfeLEN 
TAMSE 

fit 
[It. 

FNDF:'[I+'2 
EN[I[[I+:3 

(O:)4F) [NTI, FN [II [N[lEJ)-+~1 

0100 3[00 GFAr(CH I. D A,O 
()102 ~"i24AO:-,) UI (CLOSFNfJW) • A ; l[f.;() FI AU LO[r'l r.r UN:-; 
()105 324£10;'.) Lll (COMF'f~ES) , A 
oloa 
0109 

~57 

2A4DO:! 
1..[1 

I. n 
lI,A 
HI._ , (TAHAr3E) ;INTTlAI..flL HI 

Oloe 
OlOF 

3A4r;02 
CB3f 

I D 
~; r" I 

A, (rABI...E:N) 
A ;l! rV,[I"lF: BY 

Olll C[OO ADr: 0 ;ADD 1 1"1 I I ElliCK IN 
011:3 
0114 

4F 
47 

l.V 
1,,[1 

C,A 
F.I,A 

;STm;:[ 
; STORF 

A~;; 

A~1 

TNcr;;FMFNT VALUr" 
I. UG1CAL F'[H'_~ITlnN l.,'ALtH:­

011:5 CABAOI ,JF' Z,NOTFOUND ; CHECK TF I.. FNGTH H; lF~{n 

OIlS 
QU.I? 

5F 
1[1 

I.n 
[lfC 

E,A 
E­

;MUL rtF-I.. Y (F····1 ):-:F:NTtTN 

011A CDB[rOl CALl MUll 
011.[1 
OUE 

19 
FS ENTRY 

ADD 
PUSH 

HI." ,[IF 
HL 

;m:r HL TO MIDDLE 
; I.. OAJ'I HL INTIl IX 

OF TABLE 

OllF fiDEl POP IX 
0121 79 t..[J A,C ; 1'lrVI[IE INCREMENT VAL UE BY TWit 
0:1.22 CB3F SRI.. A 
0124 CEOO ADC 0 
0126 4F LD C,A 
0127 [lD7EOO LV A.(IX+O) ; COMPARE FIRST LETTER 
()12A EDBEOO CP ( tytO) 
012D C24201 .JP NI,NOGOOD 
0130 DD7EOl 1..[1 A, (IX+l ) jCOMF'ARE 2ND LETTER 
0133 EDDEOI CP (IYtl) 
0136 C24201. JP Nl,NO[l()O[l 
OLl9 D[l7E02 I .. II A'(IX+2) jCOMF'AI':E 3RD LETTER 
0t:3C FDBF02 CF' (IY+2) 
01~lF CABCOI . IF' Z,F/JUND 
0142 3FOl NDGO()[I Lft Ad ;S[T CilMPAR, f\E~;lJL T FLAG HI 
0144 DA4901 ,Jf" C,TESTS ; •• RI:'~_:;IJLT (JF CDMF'Ar';;F (1. FF ) 

0147 
0149 

3EFF 
324B02 rESTS 

Lfl 
I...D 

A,OFFH 
(C()MPF~ES) ~ A 

014C 
014D 

"79 
3[1 

LD 
fiEr: 

A,C 
A 

;IS INCREMENT VALUE 1? 

014E C26901 .IF' NZ,NEXT[ST 
0151 3A4{\O~) LD A,(CLOSENOW) ;YE!3. [5 CL.OSE FL.AG SFT? 
0154 A7 AND A 
0155 CA6301 ,IF' Z,NOTCLOSE 
0158 57 LD IF,A ; YES. SEE IF HAVE F'ASSED WHEf(F 
0159 3A4D02 LIt A,(COMPR[S) ; •• ENTRY SHOULD BE BUT ISN'T 
O15e 92 SUB D 
()15D CA6901 .JE' Z ,NEXTES'! 
0160 C3BAOl .JP NOTFOUND 
01.63 3A4[t02 NOleLnSE LD A, (C()MPRE~;) ;SET CLOSE FLAG TO DIREGTlON OF· 
0166 324A02 L[I (CLOSENOW) , A ; •• SEARCH TO PREVENT REPETITION 
0169 DDE5 NEXTEST PUSH IX ;F'REPARE HL ANn DE nm ADO Df( 
016B El POP HI.. ; •• SUB OF INCHLMLNT VALUE 
016C 59 L[t E,C 
016D CDEDOI CALl. MULl 
0170 3A4B02 LI) A, (COMF-'RFS) ;TEST IF WANT TO ADD DR SUE! 
0173 3C INC A 
0174 C29601 .JP NZ,ADDIT 
017"1 
01713 

78 
91 

LD 
SUB 

A,B 
C 

;TE5T TO SEE IF SIJB WJLL 
~ •• OfT BOTTOM OF TABII' 

I:~UN 

0179 CA8~j01. JF' Z,TOOLOW 
01.7C DA8501 ,JP C,TOOLOW 
017F 
0180 

47 
E[l5:') 

LD 
SBC 

't1,A 
HL,I)E 

;SE"' NEW LOGICAL LUN 
;CHANGE A[lIJF(E~';~:l I T~3FLF 

VALUe 

0182 C31.E:Ol ,Jr' ENTRY 
0185 7[J fOOl.OW !. D Ad:1 ;8E[ [F PD~3IT:lDN I ~:; I. 
0186 3D DEC A 
0187 
018A 
OlaF 

CABAOl 
ED~iB4F02 

37 

,.IF' 
LD 
SCF 

l,NOTFOlJNIt 
DE,(ENTLEN) 

;rr ~:;n , [XII 
;JUfd SUB I ENn~Y r-:'n~3TTl()N 

018F 3F ccr 
01.90 EIIs:? Sf~C HL,DE 
01<12 05 DEC B ;CHANGE L(JGICAL pm;; I nUN 
0193 C3AFOl ,JF' REALCLOS 

Fig. 9.23: Binary Search Program 
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0196 
0199 
019A 
019B 
OJ(?I:: 
01t?F 
OIAO 
OJ AJ 
01A:~ 

O:l.A5 
01A6 
OlA9 
01AD 
OIAE 
OJ AF 
()U~'I 

OJ B4 
01 El7 
()1.BA 
OlBC 

01 nn 
()IF!E 
01BI-'= 
0.1 C l 
0-1 C4 

0lC8 
0'1 C9 

01 CA 
01[C 
01 ell 
f) I CF. 
01 Cf 

OlltO 
01 [1,3 

01 [14 
OlIO 
OlDA 
0] DB 
OUIE 
OJF! 
()If:'> 
OJ 1:'5 
01 FI? 
OJ EA 
01E"r1 
01ET 
01r", 

01F:? 
01 F5 
01!="6 
01F9 
01 FA 
01 FB 
0.1 Fe 
01 FF 
0200 
0201 
0205 
O:~07 

0::>08 
020Fl 
()20C 
020E 
020F 
0210 
0214 
0216 
0219 
O~'l A 
021 [l 
():~:~o 

3A4C02 
90 
'11 
[IAA~'!Ol 

19 
78 
81 
47 
C3HO! 
Elj 
CABAOj 
ED5Ec4F02 
19 

04 

OEO! 

3A4BO? 

324A02 
C31EOj 
16fT 
[9 

:,>.1 OOOD 
E 114H4F' 0;> 
4 j 

1'1 
lOF[1 
[j 

LH 
E 1 
e9 

cnOOOl 
14 
C::'>:')OO;,) 
~~A4CO:' 
A7 
CAOC02 
3A4BO? 
3C 
CA[lIOl 
El"15H4F 0:_' 
j 9 
C:nTOl 

JA4CO~ 

90 
CAoeo:'_) 
SF 
[[IFlDOt 
19 
2ft 
FB 
2A4FO::) 
19 
FB 

3D 
C20 I 0;) 
23 
FDE5 
[01 

rB 
ED4f'14F 0:) 
E[tBO 
3A4C02 
3C 
3::)4C02 
OIFFFF 
C9 

A[JDll 

IU(lHJ(lH 

RFIIl,CJ..()S 

NO fF DUNn 
I'UUND 

MULl 

NF W 

HI [fIE: 

SFllJP 

MOVEM 

D(n 

LIt 
SUB 
SUB 
.JP 
AVO 
Lfi 
AliI) 

II' 
.If 
(dill 

.J' 
Ln 
()1![J 

INC 
1.. 1'1 
Ln 
I",D 
.W 
I. 1.1 
I-,;E I 

PUSH 
PUSH 
L[I 
1.[1 
Ltl 
l.fI 
ArlJI 
I.I,.JNZ 
PDP 
EX 
P[)~' 

RE' 

CAL I 
TNC 
ff' 

1.11 
ANI I 
,H 
I..J'I 
rNC 
,J ~-, 

In 
AnII 
,jf" 

DEC 
L.[I 
SUlI 
..jp 

Lfl 
CAL.L 
A[II) 

DEC 
EX 
I...D 
ADI) 
EX 
I... II 
LDDR 
nEe 
,)F' 

INC 
PUSH 
F'OF' 

LIJ 
LDIR 
L.fl 
TNC 
LD 
Lfl 
RFT 

A.(TABLt.:N) 
B 
C 
C,TO()HlGH 

A,B 
C 
B,A 
E-Nn~y 

r: 
1, N(J1TOUNfi 
DFp([NTl.EN) 
HI"d.lF 

r:.1 
n, (CDMF'R[S) 
(CI"OSf.::NnW) , A 
[N fRY 
II.OFF'H 

HI 
Be 
n,o 
HL,OOOO 

B,e 
HL. , vr 
ADIWM 
BC 
DE:',HI 
HI 

~;F'()RCH 

I' 
N?¥[)IJ"T 
(). ( TI"IBt. r:N) 
A 
1.1 NSER"T 
A. (COMPRf'S) 
A 
7. Hl!31f1f 
DE~(F'NTI,FN) 

HL • [If 
SE f'lH' 
II 
A,(lflHL[N) 
B 
7,INSCFn 
F.,A 
MUL 1 
HL,fIF 
Hl 
m:,HI 
HI, ,( ENTI. r'N) 
HL,IH 
DE,HI 
Be, (FNTI"FN) 

A 
Nl.!10VFM 
HI 
IY 
[IE 
fir. HL 
f_H~, (ENTLEN) 

A, (fABL.EN) 
A 
(fABLFN) ,A 
BC ~ OFF'FTH 

;'T[~:;T TU SEE IF CURRENT POSI"YON 
; •• f'I.IJS rNCREMFNl WILL GO PAST 
; ••• [-_'NI,I Df" fHE: 1 ABLE 

;]S OK, r:HANGE ACTUAl ADDR[SS 
;CHANGE L.CHjICI"lI roDS. VAL.IJr 

;SEF TF F'O~3I'1 l.f.lN I<:; AT I'(W 01: 
, •• 1 AFILF U;AMF- A~) I Ani FN"'Fl) 
;AVfl 1 ENTRY 1':'D!:JrT [ON 

;; TNCI:~EMLN'I LurHL:nl 1-'O;3T I TUN 
HW'T rNCRI: MI- NI T() I 
;HET CLOSE 1'"1 f"l{'] ru U1MF'Ma 
; •• f~E:!3I.JL T 

.MUI II.F'I fES E fly n::NTL.EN), 
; • VrH.ur IN nF [IN [Xli 

j ~;H [f DB,H f: I I c; AI 1-·:r,AIIY J'H[}d 

;CHFCI, nll'·,· () I ()I-H,f 

~CDMf-'RF~;:;::J ':,FI I-j{ Afl(JVf WHI",f.:f 
; •• DB,JFC T SHOUt II (;0 

jCOMPRES=O. 5[1 B tOR SUB'TRACl 
; ~a;T HOW MANY ENTRE'S ARF I..TFl 

;~:;F" Hl 1"0 LAST PDSlrION IN LAST 
, •• FN-Th·Y 

; SF', I"IE~ 1 ENTRY ABOVE HL 

jSHTr"1 UP ONE ENTRY OF MEMORY 

jREPEAl rF NECCE,SSA~Y 

; HI. IS FRON', 01 NOW EMPTY ~;PACE 

H .. OAB OB,.JFCT INTO EMPTY ~:lF"ACf. 

; INCF~EMEN"T T'ABLE I F,NflT'H 

; SHOW THAl I T WAS [lONE: 

Fig. 9.23: Binary Search Program (cont.) 
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0221 
0224 
0225 

CDOOOI 
14 
CA4902 

DELETE CALL 
INC 
JF' 

SEARCH 
D 
Z,OUTE 

;GET 
;SEE 

ADDRESS OF OBJECT 
IF OB,JEeT IS THERE 

0228 EDSEt4F02 LD DE,(ENTLEN) 
022C 
022[1 

EB 
19 

EX 
ADD 

DE,HL 
HL,[lE PDE IS LOC. OF OBJECT, HL IS 

022E 
0231 

3A4C02 
90 

LD 
SUB 

A,(TABLEN) 
B 

; •• ONE ENTRY OBOVE 
;SEE HOW MANY ENTRIES ARE LEFT 

0232 CA3F02 JP Z,DOWNTAB 
0235 ED4B4F02 SHIFTIN l.D BC,(ENTLEN) 
0239 EDIIO LDIR ISHIFT DOWN 1 ENTRY LENGTH 
023Et 3[1 DEC A 
onc C23502 JP NZ,SHIFTIN 
023F 
0242 

3A4C02 
3D 

DOWNTAB LD 
DEC 

A'(TAIILEN) 
A 

;DECREMENT TAIILE LENGTH 

0243 
0246 
0249 

324C02 
01FFFF 
C9 OUTE 

LD 
LD 
RET 

(TABLEN) ,A 
BC,OFFFFH ;SHOW THAT ACTION WAS TAKEN 

; 
024A (0000) ENDED END 

SYMBOL TABLE 

ADDEH 01C9 ADDlT 0196 CLOSEN 024A COMPRE 024B DELETE 0221 
DOWNTA 023F ENDHI 024A ENTLEN 024F ENTRY 011E FOUND OiBC 
HISIDE 01ED INSERT 020C MOVEM 0201 MULT 01BD NEW 0100 
NEXTES 0169 NOGOOD 0142 NOTCLO 0163 NOTFOU 01BA OUT 0220 
OUTE 0249 REALCL OlAF SEARCH 0100 SETUP 01EE SHIFT! 0235 
TABASE 024It TABLEN 024C TESTS 0149 TOOHIG 01A5 TOOLOW 0185 

Fig. 9.23: Binary Search Program (cont.) 

LINKED LIST 

The linked list is assumed to contain, as usual, the three alphanu­
meric characters for the label, followed by one to 250 bytes of data, fol­
lowed by a two-byte pointer which contains the starting address of the 
next entry, and lastly followed by a one-byte marker. Whenever this 
one-byte marker is set to "1", it will prevent the insert-routine from 
substituting a new entry in the place of the existing one. 

Further, a directory contains a pointer to the first entry for each let­
ter of the alphabet, in order to facilitate retrieval. It is assumed in the 
program that the labels are ASCII alphabetic characters. All pointers at 
the end of the list are set to a NIL value which has been chosen here to 
be equal to the table base, as this value should never occur within the 
linked list. 

The insertion and the deletion programs perform the obvious pointer 
manipulations. They use the flag INDEXED to indicate if a pointer 
pointing to an object came from a previous entry in the list or from the 
directory table. The corresponding programs are shown in Figure 9.29. 

The data structure is shown in Figure 9.25. 
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Iniliallllbll' 
0400 00 00 00 00 00 00 00 00 -00 00 00 00 00 00 00 00 
0410 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0420 00 00 DO 00 00 00 00 00-00 00 00 00 00 00 00 00 
0430 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0440 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00 
()450 00 DO 00 00 00 00 00 00,,-00 00 00 00 00 00 00 00 
0460 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0470 00 00 00 00 DO 00 00 00--00 00 00 00 00 00 00 00 

-DM400 

UstinK of Objects 
and their IOt'ations 
in memory 

~[lM300 

0300 53 4F 4E 31 31 31 31 31- 31 31 31 31 31 00 00 00 SON 1111111111 •• , 
0,310 44 41 44 32 32 32 32 ~2 32 32 32 32 32 00 00 00 lIA[l222:22:':'2222 ••• 
0320 4D 4F 4033 333333 33-33 33 3] 33 33 00 00 00 MOM3333333333 •• , 
0~,;10 55 4£ 43 34 34 34 34 34 34 34 34 34 34 00 00 00 UNC4444444444 ••• 
0340 41 4E: 54 J5 35 3~) 3~, :~5·"·35 :35 35 35 :35 00 00 00 ANT~j5555555:=j:=j ••• 
0350 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0360 00 00 00 00 00 00 00 00,-,00 00 00 O() 00 00 00 00 
()370 00 00 00 00 00 00 00 00 ---00 00 00 00 00 00 00 00 

y==oooo 3'10-SY I
-G~63;;>6(> _ Run 'INSERT' 
p" ()~),t)6 O~~66' 

Table after insertion 
0400 4D 4f 4[1 3:3 :n 33 33 333:3 :n 33 33 33 00 00 00 MOM333333333:3 ••• 
-nM400 

041.0 00 00 00 00 00 00 00 00 .... 00 00 00 00 00 00 00 00 
0420 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00 
0430 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00 
0440 00 00 00 00 00 00 00 00-00 00 00 00 00 DO 00 00 
04:7iO 00 00 00 00 00 00 00 00--00 00 00 00 00 00 00 00 
04bO 00 00 00 00 00 DO 00 00,-,00 00 00 00 00 00 00 00 
0470 00 00 00 00 00 00 00 00 .. 00 00 00 00 00 00 00 00 

..-SY IY=0320 310 

r:::::~:2::66' Run 'INSERT' on another Object 
Listing of table after 
Insertion_ Note: table 
is kept alphabetic 

-ItM400 

0400 44 41 44 32 32 32 32 32-32 32 32 32 32 4D 4F 4D DAD2222222222MOH 
()410 33 33 33 :33 33 33 33 33-33 33 00 00 00 00 00 00 3333333333 •••••• 
04:>0 00 DO DO 00 00 00 00 00-00 00 00 00 00 00 00 00 
0430 00 00 00 00 ()O 0<> 00 00,,-00 ()O 00 00 00 00 00 00 
0440 00 00 00 O(l 00 00 00 00-00 00 00 00 00 00 00 00 
0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0460 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0470 00 00 00 00 00 00 00 00 .. 00 00 00 00 00 00 00 00 

••• (additional inserts) ••• 

Fig. 9.24: Alphabetic List-A Sample Run 
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Table <oaflKuration 
otter au Objeds 

-DMOO bave beea laserted 
0400 41 4E 54 35 35 35 35 35-35 35 35 35 35 44 41 44 ANT5555555555DAD 
0410 32 32 32 32 32 32 32 32-32 32 4D 4F 4D 33 33 33 2222222222HOM333 
0420 33 33 33 33 33 33 33 53-4F 4E 31 31 31 31 31 31 333333380Nl11111 
0430 31 31 31 31 55 4E 43 34-34 34 34 34 34 34 34 34 l111UNC444444444 
0440 34 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 4 ................ 
0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
0460 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 
-8Y 
Y=0340 

300-G260/263 IRun 'SEARCH' for "SON" (at address 0300) 
P=0263 0263' 

-DR r--Found 
Z N A=4E BC=0401 D£=OdOD HL=0427 8=0100.P=0263 0263' CALL 01DO 


A'=OO B'=OOOO 11'=0000 H'=OOOO X=0427 Y=0300 1=00 (OlDO') 


~Address of Object in table 
(verify in Table above that it is "SON") 

-G266/269 

Run 'DELETE' on "SON"
P=0269 0269~ Table connKuntioD 

after deletion. Note: 
that UNC was shifted 
up. The last UNC 
entry must be 
dl.....rded 

0400 41 4E 54 35 35 35 35 35-35 35 35 35 35 44 41 44 ANT5555555555DAD 
0410 32 32 32 32 32 32 32 32-32 32 4D 4F 4D 33 33 33 2222222222HOH333 
0420 33 33 33 33 33 33 33 55-4E 43 34 34 34 34 34 34 3333333IJNC444444 
0430 34 34 34 34 55 4E 43 34-34 34 34 34 34 34 34 34 4444UNC444444444 
0440 34 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 4 .............. . 
0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0460 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

-DM400 

-G260/263 
Try run of "SEARCH" again (on "SON") 

P=0263 0263' 

··DR ...c:;- Not found 
8 N A=FE BC=0401 DE=FFOD HL=0427 8=0100 P=0263 0263' CALL 01DO 

A'=OO B'=OOOO D'=OOOO H'=OOOO X=0427 Y=0300 1=00 (OIDO') 
-G263/266 

Re-insert Object ("SON")
P=0266 0266' 

Current lable 
conn.untlon. 
Compa.. to tbe ODe 
prior 10 the 
DELETE-DM400 

0400 41 4£ 54 35 35 35 35 35-35 35 35 35 35 44 41 44 ANT5555555555DAD 
0410 32 32 32 32 32 32 32 32-32 32 4D 4F 4D 33 33 33 2222222222MOM333 
0420 33 33 33 33 33 33 33 53-4F 4E 31 31 31 31 31 31 3333333S0Nl111U 
0430 31 31 31 31 55 4E 43 34-34 34 34 34 34 34 34 34 l111UNC444444444 
0440 34 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 4 ••••••••••••••• 
0450 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 

0460 00 00 00 00 00 00 00 00··-00 00 00 00 00 00 00 00 ................ 

0470 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................ 


~ Shows that action was executed 

A=05 BC=FFFF DE=0434 HL-030D 8=0100 P=0266 0266' CALL 0221 
A'=OO B'=OOOO D' =0000 H'=OOOO X"'0427 Y=0300 I=OO (0221') 

Fig. 9.24: Alphabetic List-A Sample Run (cont.) 
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DIRECTORY 

"A" 

iL
POINTER 

A 

APOINTER rt. 
§ NIL 

"R" POINTER 

NIL 

Fig. 9.25: Linked List Structure 

An application for this data structure would be a computerized ad­
dress book, where each person is represented by a unique three-letter 
code (perhaps the usual initials) and the data field contains a simplified 
address, plus the telephone number (up to 250 characters). Let us exam­
ine the structure in more detail. The entry format is: 

C C C D D p p oI> S I D 
.,,;

V' - '-- v" - ;::::1
unique label data (1 to 250 bytes) 

(ASCII) 
 next '.occupIed 

As usual the conventions are: 

ENTLEN: total element length (in bytes) 
T ABASE: address of base of list 

The address of the OBJECT is always assumed to reside in the IY register 
prior to entering the program. Here, REFBASE points to the base ad­
dress ofthe directory, or "reference table." 

Each two-byte address within this directory points to the first occur­
rence of the letter to which it corresponds in the list. Thus, each group 
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of entries with an identical first letter in their labels actually forms a sep­
arate list within the whole structure. This feature facilitates searching 
and is analogous to an address book. Note that no data are moved dur­
ing an insert or delete. Only pointers are changed, as in every well­
behaved linked list structure. 

If no entry starting with a specific letter is found, or if there is no en­
try alphabetically following an existing one, their pointers will point to 
the beginning of the table (= "NIL"). At the bottom of the table, by 
convention a value is stored such that the absolute value of the differ­
ence between it and "Z" is greater than the difference between "A" 
and "Z". This represents an End Of Table (EOT) marker. The EOT 
value is assumed here to occupy the same amount of memory as a nor­
mal entry but could be just one byte if desired. The letters are assumed 
to be alphabetic letters in ASCII code. Changing this would re­
quire changing the constant in the PRET AB routine. 

The end-of-table marker is set to the value of the beginning of the 
table ("NIL"). 

By convention, the "NIL pointers", found at the end of a string, or 
within a directory location which does not point to a string, are set to 
the value of the table base to provide a unique identification. Another 
convention could be used. In particular, a different marker for EOT 
results in some space savings, as no NIL entries need be kept for non­
existing entries. 

Insertion and deletion are performed in the usual way (see Part I of 
this chapter) by merely modifying the required pointers. The 
INDEXED flag is used to indicate if the pointer to the object is in the 
reference table or another string element. 

Searching 
The SEARCH program resides at memory locations 0100 to 0155 

an uses subroutine PRETAB at address 0102. 
The search principle is straightforward: 
I-Get the directory entry corresponding to the letter of the alphabet 

in the first position of the OBJECT's label. 
2-Get the pointer. Access the element. If NIL, the entry does not 

exist. 
3-If not NIL, match the element against the OBJECT. If a match is 

found, the search has succeeded. If not, get the pointer to the next entry 
down the list. 

4-Go back to 2. 
An example is shown in Figure 9.26. 
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A-POINTER 


B-POINTER 


(FOUND) 

(d STEPS REQUIRED) 

06JECT If-__A_ZC_--i 

Fig. 9.26: Linked List-A Search 

Inserting 

The insertion is essentially a search followed by an insertion once a 
"NIL" has been found. 

A block of storage for the new entry is allocated past the EOT 
marker by looking for an occupancy marker set at "available". 

The program is called "NEW" in Figure 9.29 and resides at ad­
dresses 0156 to lA3. An example is shown in Figure 9.27. 

BEfORE 

A·POINTER 

8·POINTER 

C·POINTU 

CBS OBJECT14 
NIL 

AFTER 

A·POINTER 

I-POINTER 

C-POINTER 

Fig. 9.27: Linked List: Example of Insertion 
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Deleting 

The element is deleted by setting its occupancy marker to "available" 
and adjusting the pointer to it from the directory or else the previous 
element. 

The program is called "DELETE", and resides at addresses OlA4 to 
OlDl. 

An example of a deletion is shown in Figure 9.28. 

1BEFORE I 

A 
B 
~ 
D 

OAF POINTER 

DELETE 

IAFTEIi!) 

A 
B ~ 

C 
D ­

DOC POINTER "DOC" I 
NILI Jr------­

I OAF I _______ .1 

NOTE OAF IS NOT ERASED, BUT "INVISIBLE" 

Fig. 9.28: Example of Deletion (Linked List) 
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O()()() , nr·:G OIOOH 
(0-1 F""l) rNDF:XI..II III I.. NIII·.I,: 

(OLUn 
(OI[A) 

Tt"1I!Mil 
r~f..I: j-IAsr 

III 
!"II 

E NilE kr I 
f.."NrIFI·~ t .~ 

(O:lFC) FNTt.J.·N 01 r:: NIlE I:,: t' 

0100 3[00 SLAf((~H I..n (),() V I N I 1'1 (\1 rIf r \..AGS 

010;:' 47 II' fl. II 
OJ 0.3 3C INf' C, 
0104 3::'T}Ol 1.. 11 (rNIIFXrll) ~() 
0l0? CnIl?O l CAl I Pf([·Tr"lB ;GF"T tlT1nf,; DI rNnr·.x F'orNTEF' 

OlOA I" 1.11 (I, (In· ) ; M(")l)F r'CH NTn~ CONTENl s rn HI 
01 OI~ 6F II"! 
010C 13 1 NC 
0'] orr IA I.. 1"1 (I. (I!!: ) 

01 DE 61 IV H ,() 
010F F5 r'W~H HI.. 
0110 nDE I I'm' IX 
() 1 1 :~ VDlLOO L" A v (rx to) ; I .. (]f)1\ AT FH(~:) r L["TTEf..' OF ENH:Y 
o 1 ,I ~:! ~- E7C Cf' lCH ;~;FE ff r~:i ["n·l MAI:~I\Frc' 

O~ J ? [I2:,)~JOl ..JF' NC ~ NU IT DIJNIr 
011 A 
0.11ft 
OJ 20 

nfl7E' 00 
FliflE 00 
[I()3[ 01 

L[' 
CF 
,IF' 

A,(fXH» 
(TY+() 
C,Nor;uon 

;COH~'ARE FIRS·, LrrrER!l 

0123 L"5~.~O I Nl, Nil I nJUNII 
01 ::6 r.1[OEOl I..I"I A y( r x t ·1 ) 
01.:.'(;1 FIHiFOl Cf ( f yt 1 ) 

012C IIA:5FOl JF' C;,NUr-iD{)11 
012F 
0.13:") 

C25:,O 1 
nn7[ 0:: 

,JF 
L 1"1 

N!, N[)"ITOUNII 
t\, ( I xt-::' ) 

0.1 ,:~~) f-'ftBFO? Cf' ( fY·L".» 
OJ JD CA5301 IF' Z ,1"··r.JUNII 
OllB n::)~:i~fO 1 ,JF' NC ~ ND T"r OlINI' 
o I ,~F. ItrlF~J Noc;nO[1 PUSH IX 
0140 III [IE 

0141 2A[TOl III.. , ([NTI..FN) LIUMF' T"U f'OTN·T[f( m LNTF.'Y 
OJ 44 19 AflIl HL .nE 
r,)J 45 4F \.II I; .(HI ) ;r'UT F'n!NTFt:~ VAl t.IE rN }'Ie 

0146 :)3 INC III 
0'141 46 tfl £1 ~ (HI.. ) 
0148 co; r'l/SH t'lI:: 'LOA" IX WITH POINTER 
0149 [1[lF1 F'I)I' IX 
()~4f1 

014I1 
~EOO 

l:'llOl 
LI"I 
Ln 

A,O 
( 1 N[rf xnl > ~ A 

0.1 ~:)O C,3J :?O I ,JF UJMF'AI:':I 
0153 OM f FnUNfi tTl fl,()FTH 
() 1 ~:~~'1 1::9 NU rr-DUNfl 1:":[·, 

01 :,6 CDOO()l NLW CAI .. I SH)~~LH ; SEE WHEfd:· (H.~,JEC"I !:iHOUI. D GO 
015'1 04 TNC H 
01 ?,A CAA301 Jf' Zyrll.JI 

F'USH J.r[ ; STORE:" ADDR. 01 PRCV rOUS FN·r RY 
01 '_jl­
()1.'J l 

:',)AE HO I 
f f{ Nf: X T ONF. 

LfJ 
EY. 

HI .• ( 'AHA~;;I 1 

nt v HI 
;FJNl! 
;MOVI 

SPACE fN TABl_E 
TO FND Of NE·XT 

F·(JR NFW 
t:NTRY 

0')16:-' :-_)M COl I II HI • II::NTI. EN) 
o1 6 ~~ :._l,.~ lNC HI. ;; ('II"I!I :.~ FUR h:F At.. I..ENGTH OF CNTF<Y 
()166 ?3 I NC HI.. 
0167 :'"'>3 fNC HI 
OJ /)8 19 A[1D HI.. ,II[ 
016''/ /1 LI"I A. (HI J 

() ll!A 311 (Il.e {j 

O~6I~ L/"dIJOI Jf' 7,NFX·I0Nr. ;"1"1 ~}nH["THINf:, T!:; THFRE., lf~Y AGAIN 
()16f. 1,3 J NC ll[ 
01M F'I}SH flF ;SAVf PQSfT.I()N 01 EMPTY SPArr 
0170 !"'USH IY .MCl\.,,lj: TY Tn til 
017:') 1··'ClF' HI.. 
017,) [[l4r~!::'COl UI Fn:, ([N1Lr·N) ; M()!Jf OEurc 1 fNTfl rAPIJ 
0:1 TJ E[IF(O UIH~ 
017'? IlilC", r'USH r x ; F'! J T AI!IH';: Of" ENTRY AF TEF' DEUEl:: r 
O-I?H t 1 r'm HI ; •• AT f-'OTNTI.·f.; PIY;.r T rON 
OI}C E B L.X DE,Ht 
017f1 /J 1...11 (HL),f 
01 7E ~),~ lNe HI.. 
017F I:.) LV (HI) ,11 
OJ BO :·\3 ]NC HI. 
ot81 3c)OI I. n (HI), 1 ; SL r OCCUF'ANCY MARt,JT' 

Fig. 9.29: Linked List-The Programs 
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018:1 
0184 
0187 

El 
3AE701 
3D 

POP 
lD 
DEC 

HL 
A,(INDEXED) 
A 

GET AnDf~ 
:1FF WHAT 
•• HE SF"' 

OF WHERE 
PREVIOUS 

fHIS SFACE 15 
F'OINTEHS MIWT 

0188 
01BB 
018C 
0190 
0191 
0192 
0193 

CA9801 
£3 
ED~jBECOl 

19 
01 
73 
23 

,JP 
EX 
LIt 
Af.!P 
POP 
LD 
INC 

Z,SFTINX 
(SP) ,HL 
DE,(ENTLEN) 
HL,DE 
tiE 
(HL) ,E 
HL 

;O[T ADDr.;: OF ENTRY PREV:£(lUS 
; •• DB,JEer & M()VE TO r-CltNTER 

"':E:TRIEVE AD[lR OF OBJECT 
; F'!.J"J IT AT f"OWHR POSI1'l(IN 

111 
AF~EA 

0194 72 tn (HL) ,[1 

0195 C3AOOI JP FINISH 
0198 
0199 
019C 
019D 
019E 

Cl 
C[!fl201 
EB 
73 
23 

SETINX POP 
CALL. 
EX 
LD 
INC 

BC 
PREfAB 
DE,Hl 
<Hl.) ,E 
Hl 

;CLEAR OUT BrAe" 
;OET I NI"I[X ADDRESS 
;LOAft HI INTO 11 

019E 72 LD (HL) ,.D 
01AO OIFFEF FINISH ttl BC,OFFFFH ;:SHOW THAT II' WAS DONE 
01A3 C9 OUT RET 

OIM 
01A7 
01A8 

eDOOOI 
04 
C2DI01 

IIELETE CALI.. 
INC 
./F' 

SEARCH 
B 
NZ,OUTr:: 

;OET 
;SEE 

ADVR[SS m~ DB.JEer 
IF fT I ~:; fHERE 

01AB 
01Al! 

DDE5 
El 

PUSH 
POP 

IX 
Hl 

;SF"T HI.. TO POINTEH AREA OF DBJ[ C'I 

01AE E[l4BECOl LII Be, (ENTLEN) 
on~2 09 ADD HL,BC 
01B3 
01B4 

4E 
23 

LV 
TNC 

C, (HI 
HL 

) ;F~FTRJFVF: r-nTNTFR 

01Ic5 46 L.I:t Eh (HI...) 
01B6 ~~3 INC HL 
OlB7 3600 1..1:1 (HI...) ,0 ;REMOVF OCCUPANCY MAf~KEF~ 
OlB9 
OlflC 

3Af.701 
3D 

LII 
[lEC 

A,(INDEXED) 
i\ 

;SEF IF [NDEX Nr:E[I~~ CHANGI:NG 

OlBD C2C"101 JP NZ1CHANGEM 
Oleo 
01C:l 
01C4 

cnD~Ol 

EB 
C:;CBOI 

CALL. 
FX 
elF' 

PRETAf.! 
[lE,Ht 
MaVIN 

;YES~PUT ADnf, [NIO HI 

01C? 
OICA 

2AECOI 
19 

CHANGFM LD 
ADO 

HI..., (ENTl..EN) 
HL,IW 

;SFT HL. TO POINTER OF F'RE'}lOUf) 

01C8 
01ec 
Olen 
OICE 

71 
23 
70 
OIFFFF 

MOVIN l..D 
INC 
LD 
LD 

(HL) ,C 

HL 
(HI...) ,B 
BC,OFFFFH 

,r'UT ftDDR OF: NEX'T IN'! () WHATE1./r:R 
; •• (EIlHFt:;; rNDEX OR lNTf(Y) 

OlD:I C9 DOTE RET 

; 
O:lD:;~ F~i F-'RFTAB PUSH HI 
0103 
01[16 

F[I?E:OO 
:m 

LD 
[tEC 

A,(IYtO) 
A 

; GFl FTRST LETTER OF [)B.JECT 
;REMnVF- l~SCI T L.EADER 

0:11"17 D640 BUB 40H 
():lD9 
():ffJB 

C827 
2AEAOl 

SLA 
LD "HI.. ~ (f~FFf.{ASE) 

;MULTIPLY BY 

OWE 85 ADD I.. 
()l!JF 6E LD L,A 
OlEO [I:?F40j ,JF' NC,FIXUP 
011'3 24 INC H 
OtE4 EB FIXUP EX [If: • HI. 
01F!:'j F1 POP HI 
OlE6 C9 RET 

OlE? (0000) FNItER EN[I 

SYMBOL TAfIl.F 

CHANGF 01e7 COHPAR 0112 DFEE'TE 01A4 ENDER 01E7 ENTl.EN OlEC 
FINISH 01AO FIXLIP 01E4 ~OUN[I ()153 INDEXE 01E7 MIJVIN ()lCB 
NEW 0156 NEXTON 0161 Nflt:/OO[l O1.3F NtllFOIJ 0155 01.11 01A3 
flUTE OtItl PRETAB OH1~ REFBAS OlEA SEARCH 0100 SElINX 01913 
fABASE" 01E8 

Fig. 9.29: Linked List-The Programs (cont.) 
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LislinK of Objects 

and Iheir locallonsThe Objects in memory 
in memory 

tlM300 
0:100 :B 4r 4'" :l:l ~l :ll 31 31 31 :11 31 ,11 ,31 DO 00 00 SCIN III I 11 ! 111 .•• 
03tO 44 41 44 :~:') 32 :~:'.) J2 3:",> 32 J;') '52 J? :~::.) 00 00 00 
0320 4D 4F 4D 33 33 13 33 33~3 33 33 33 33 00 00 00 MOMJ:l.3:J333333 ••• 
03:'.W 55 4E 43 34 34 34 34 34-34 34 ~4 34 34 00 00 00 UNC4444444444 ••• 
0340 41 4E ~_:;4 3:"; 3~j 3~j 35 3~_)' 3~! 35 35 35 35 00 00 00 ANT~,'j5555!:i55~j5 ••• 
O~~5() 41 41 41 36 36 36 36 36-36 36 36 36 36 00 00 00 AAA6666666666 ••• 
0360 41 SA 5A 37 37 37 37 37· 37 37 37 37 ~7 00 00 00 AZZ'l7"?"?7?77"?"? •• 
OJ'70 ~,';3 49 44 ~i8 "W 38 :'J;g 38 38 :~8 .3H .·~8 JB 00 00 00 S Jl'll'InBB8881l88 ••• 

-EOT character inrinWalt.ble 
DM4()O 

0400 7l.! 00 00 00 00 00 00 O() 00 00 00 00 00 00 00 00 ( ............. .. 
0410 00 00 00 00 00 00 00 00 ·00 00 00 00 00 ()O 00 00 
04:?O 00 DO 00 00 00 00 00 00,,00 00 00 00 ()O 00 00 00 
0430 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0440 00 00 00 DO 00 00 00 00-00 00 DO 00 00 00 00 00 
04:-;0 00 00 DO 00 00 00 DO DO-DO 00 00 00 00 00 00 00 
0460 00 00 00 00 00 00 00 00 00 00 O() DO 00 00 00 00 
0470 00 00 00 00 00 co 00 {)()"'oo 00 O() 00 00 00 00 00 

-DM:::iOO Initilll Uirectur) 
0500 00 04 00 04 00 04 00 04"00 04 00 04 00 04 00 04 
O~:'l 0 00 04 00 04 00 04 00 04 ---()O 04 O{) 04 00 04 00 04 
O~;:10 00 04 00 04 00 04 00 04,,,00 ()4 00 04 00 04 00 04 
0530 00 04 00 04 00 00 00 DO-DO 00 00 00 O() 00 00 00 
O~:;40 00 00 00 O() 00 00 00 00-'--00 00 00 00 00 00 00 00 
0550 00 00 00 00 00 00 00 00-00 00 00 00 DO 00 00 00 
0560 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
O~;70 00 00 00 O() 00 O() 00 00-00 00 00 00 00 00 00 00 

Occupancy markers--, 

Table confiaurationP.I",~~ 1
srler several 
insertions.

!iM400 
04()() 7Fl 00 00 00 00 00 00 00 00 00 00 00 00 'DO J00 00 c ............. . 
04.1 0 4 l 4r ~:14 :3~"j ,'~~I ,3~;', ~~5 3~:'j ,~~~I 3''') J~5 :'~~::j ;'5~:1 70 04 0 'I AN T "I !',) ~"; 5 c;; ~:;i ~"j ~,:; ~,:; ~:) r--, • 
04::'0 44 41. 44 :~2 ,3<) -p 3'") :~::'" 3~) 3~.' ~2 32 32 00 04 01 DAn22:';-)2~.!:?2:'>:) ••• 
04J() 41 41 4J 36 36 ~6 36 36·36 36 J6 .36 ;~6 lO 04 01 ()AA 61> 6 fJl:l 666 t.d, ••• 
044() ~i3 4f 4C 31 31 :~.1 3.1 31 -:~J 3'1 3'1 31 :Jl 00 04 01 SON 111111 11 11. •.• 
')4!,)O 4£1 4F 4ft :u ,:n 3] 33 :~.3 3~~ ~B 33 33 33 00 04 01 MOM:B:B:B3:33:l ••• 
0460 53 49 44 38 38 3B :3f:l :~8 :38 3B 38 31l 3fl 40 04 Ot ST[lB8BB888888@. •• 
0470 41 5A ~A 37 l7 37 37 37-17 ~~ '37 "1;7 37 00 04 01 Al17T77/7T177 • •• 

YQU60 310~;y I 
Delete an entry 1'l2;,!f.I:'29..·. '. 

P=:O;:,'29 0;':)9 I 

DM400 Only change 
040() lB ()O 00 00 00 00 00 00-00 00 00 00 00 00 00 ( •••••.••••••••• 
04:10 41 4E 54 35 ,3~,'j 35 ~~~.'i 3=j·· 35 ]5 3~) 35 J~j 70 04 
0420 44 41 44 J~ ~2 3~ 32 ~2 32 3' 32 32 32 00 04 
0430 41 41 41363636 36 ~6-36 36 36 ~6 36 LO 04 01 AAA6666666666 •.• 
()440 53 4F" M- 31 31 :'~j 3-1 31-<~:1 ,H :'q :q 'q 000401 r;ONi:l.11111."111.. •• 
0450 4D 4r 4D 33 3~ 33 33 33·33 33 33 33 31 00 04 0] MOM3333333333 ••• 
04t.)() ~':\ 49 44 3FI ~~8 30 38 3B--3F.l '~B 38 'hl 38 40 04 01 !;)JDn888F.H1F.}888In •• 
0470 41 ~iA ~JA 3/ '.'p .~/ 3"7 37 --3"7 37 TJ 3/ 'p 00 04 01 AZlT7T177lTJ/ ••• 

Fig. 9.30: Linked List-A Sample Run 
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-G2:~O/223 

Run 'SEARCH' for deleted entry 

-Not found
···DR 

N A"<37 m:-OOFF DE::::0400 HL::::OOOO ~:;",():l.OO F';o:0223 0223' CALl O:l7t 
A'=OO w,,,OOOO D' "0000 W=OOOO X=0400 Y='0310 T='OO (0171') 

Y'O:ll 0 340"SY 1 
~GnO/223 Run "SEARCH" for an existent entry 

F''''-0223 OX.~3 I 

.. ~r, rcc"J,~~::::;l:O:~~)4;lE S='0100 f""022J 022:3' CALLN A"54 ()! 71 
A'=OO £<'=0000 D'""'OOOO W=OOOO X=~ Y=0340 J=()O (017l') 

··G226n29 Delete I--Address of entry in table 
F":::()229 0229' 

Note: Changes In 
pointers.-DM400 

0400 n. 00 00 00 00 00 00 00··00 00 00 00 00 00 00 00 {, ............. . 

ANT~j!7J55:::j~Y,):S55p ••g:~i~ :!:~~: ~~ ~; ~~; :~; ~;-~:~; ~~: ~~~ ~~~ ~?, ~g ~: ~g nAD22::'2222~)22 ••• 

0430 41 41 41 36 36 36 36 36--36 3A 36 36 36 70 04 01 AAAt,f.dd.lb6666fJr·> •• 
0440 ~j3 4F 4E 31 31 31. 31 31---,31 31 31 31. ;31 "'0"0""0'401 SON111U 11. t 11 ••• 
0450 4D 4F 4D 33 33 33 33 33-33 33 33 33 33 00 04 01 MOM:H333:I:l:B:l ••• 
0460 53 49 44 3D 38 313 38 38·_·3fJ 38 38 38 38 40 04 ()1 SI DBBB8H888BB@ •• 
0470 41 5A ~jA 37 37 37 :37 37-:~7 37 1:7 37 37 00 04 01 Al7"777"7"77T177 • •• 

Fig. 9.30: Linked List- A Sample Run (cont.) 

SUMMARY 

The beginning programmer need not concern himself yet with the 
details of data structures implementation and management. However, 
efficient programming of non-trivial algorithms requires a good under­
standing of data structures. The actual examples presented in this 
chapter should help the reader achieve such an understanding and solve 
all the common problems encountered with reasonable data structures. 
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PROGRAM DEVELOPMENT 

INTRODUCTION 

All the programs we have studied and developed so far have been 
developed by hand without the aid of any software or hardware re­
source. The only improvement over straight binary coding has been the 
use of mnemonic symbols, those of the assembly language. For effec­
tive software -development, it is necessary to understand the range of 
hardware and software development aids. It is the purpose of this chap­
ter to present and evaluate these aids. 

BASIC PROGRAMMING CHOICES 

Three basic alternatives exist: writing a program in binary or hexa­
decimal, writing it in assembly-level language, or writing it in a high­
level language. Let us review these alternatives. 

Hexadecimal Coding 

The program will normally be written using assembly language mne­
monics. However, most low-cost, one-board computer systems do not 
provide an assembler. The assembler is the program which will auto­
matically translate the mnemonics used for the program into the re­
quired binary codes. When no assembler is available, this translation 
from mnemonics into binary must be performed by hand. Binary is 
unpleasant to use and error-prone, so that hexadecimal is normally 
used. It has been shown in Chapter 1 that one hexadecimal digit will 
represent four binary bits. Two hexadecimal digits will, therefore, be 
used to represent the contents of every byte. As an example, the table 
showing the hexadecimal equivalent of the Z80 instructions appears in 
the Appendix. 
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In short, whenever the resources of the user are limited and no assem­
bler is available, he will have to translate the program by hand into hex­
adecimal. This can reasonably be done for a small number of instruc­
tions, such as, perhaps, 10 to 100. For larger programs, this process is 
tedious and error-prone, so that it tends not to be used. However, near­
ly all single-board microcomputers require the entry of programs in 
hexadecimal mode. They are not equipped with an assembler and a full 
alphanumeric keyboard, in order to limit their cost. 

In summary, hexadecimal coding is not a desirable way to enter a 
program in a computer. It is simply an economical one. The cost of an 
assembler and the required alphanumeric keyboard is traded-off 
against increased labor required to enter the program in the memory. 
However, this does not change the way the program itself is written. 
The program is still written in assembly-level language so that it can be 
examined by the human programmer and be meaningful. 

Assembly Language Programming 

Assembly-level programming covers both programs that may be 
entered in hexadecimal and those that may be entered in symbolic 
assembly-level form in the system. Let us now examine the entry of a 
program directly in its assembly language representation. An assembler 
program must be available. The assembler will read each of the mne­
monic instructions of the program and translate it into the required bit 
pattern using 1 to 5 bytes, as specified by the encoding of the instruc­
tions. In addition, a good assembler will offer a number of additional 
facilities for writing the program. These will be reviewed in the section 
on the assembler below. In particular, directives are available which 
will modify the value of symbols. Symbolic addressing may be used and 
a branch to a symbolic location may be specified. During the debugging 
phase, when a user may remove or add instructions, it will not be neces­
sary to rewrite the entire program if an extra instruction is inserted be­
tween a branch and the point to which it branches, as long as symbolic 
labels are used. The assembler will take care of automatically adjusting 
all the labels during the translation process. In addition, an assembler 
allows the user to debug his program in symbolic form. A disassembler 
may be used to examine the contents of a memory location and recon­
struct the assembly-level instruction that it represents. The various soft­
ware resources normally available on a system will be reviewed below. 
Let us now examine the third alternative. 
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HEXADECIMAl/ )
OCTAL 

\ MACHINE-lEVEL 

BINARY 

Fig. 10.1: Programming Levels 

High-Level Language 

A program may be written in a high-level language such as BASIC, 
APL, PASCAL, or others. Techniques for programming in these vari­
ous languages are covered by specific books and will not be reviewed 
here. We will, therefore, only briefly review this mode of program­
ming. A high-level language offers powerful instructions which make 
programming much easier and faster. These instructions must then be 
translated by a complex program into the final binary representation 
that a microcomputer can execute. Typically, each high-level instruc­
tion will be translated into a large number of individual binary instruc­
tions. The program which performs this automatic translation is called 
a compiler or an interpreter. A compiler will translate all the instruc­
tions of a program in sequence into object code. In a separate phase, 
the resulting code will then be executed. By contrast, an interpreter will 
interpret a single instruction, then execute it, then "translate" the next 
one, then execute it. An interpreter offers the advantage of interactive 
response, but results in low efficiency compared to a compiler. These 
topics will not be studied further here. Let us revert to the programming 
of an actual microprocessor in the assembly-level language. 
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SOFTWARE SUPPORT 

We will review here the main software facilities which are (or should 
be) available in the complete system for convenient software develop­
ment. Some of the definitions have already been introduced. They will 
be summarized here and the rest of the important programs will be de­
fined before we proceed. 

The assembler is the program which translates the mnemonic repre­
sentation of instructions into their binary equivalent. It normally trans­
lates one symbolic instruction into one binary instruction (which may 
occupy 1, 2 or 3 bytes). The resulting binary code is called object code. 
It is directly executable by the microcomputer. As a side effect, the 
assembler will also produce a complete symbolic listing of the program, 
as well as the equivalence tables to be used by the programmer and the 
symbol occurrence list in the program. Examples will be presented later 
in this chapter. 

In addition, the assembler will list syntax errors such as instructions 
misspelled or illegal, branching errors, duplicate labels or missing 
labels. 

It will not delete logical errors (this is your problem). 
A compiler is the program which translates high-level language in­

structions into their binary form. 
An interpreter is a program similar to a compiler, which also trans­

lates high-level instructions into their binary form but does not keep the 
intermediate representation and executes them immediately. In fact, it 
often does not even generate any intermediate code, but rather executes 
the high-level instructions directly. 

A monitor is the basic program which is indispensable for using the 
hardware resources of this system. It continuously monitors the input 
devices for input and manages the rest of the devices. As an example, a 
minimal monitor for a single-board microcomputer, equipped with a 
keyboard and with LED's, must continuously scan the keyboard for a 
user input and display the specified contents on the light-emitting 
diodes. In addition, it must be capable of understanding a number of 
limited commands from the keyboard, such as START, STOP, CON­
TINUE, LOAD MEMORY, EXAMINE MEMORY. On a large sys­
tem, the monitor is often qualified as the executive program, when 
complex file management or task scheduling is also provided. The over­
all set of facilities is called an operating system. If files are residing on a 
disk, the operating system is qualified as the disk operating system, or 
DOS. 
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An editor is the program designed to facilitate the entry and the mod­
ification of text or progams. It allows the user to enter characters con­
veniently, append them, insert them, add lines, remove lines, search for 
characters or strings. It is an important resource for convenient and ef­
fective text entry. 

A debugger is a facility necessary for debugging programs. When a 
program does not work correctly, there may typically be no indication 
whatsoever of the cause. The programmer, therefore, wishes to insert 
breakpoints in his program in order to suspend the execution of the 
program at specified addresses, and to be able to examine the contents 
of registers or memory at this point. This is the primary function of a 
debugger. The debugger allows for the possibility of suspending a pro­
gram, resuming execution, examining, displaying and modifying the 
contents of registers or memory. A good debugger will be equipped 
with a number of additional facilities, such as the ability to examine 
data in symbolic form, hex, binary, or other usual representations, as 
well as to enter data in this format. 

A loader, or linking loader, will place various blocks of object code 
at specified positions in the memory and adjust their respective sym­
bolic pointers so that they can reference each other. It is used to relocate 
programs or blocks in various memory areas. A simulator or an emu­
lator program is used to simulate the operation of a device, usually the 
microprocessor, in its absence, when developing a program on a simu­
lated processor prior to placing it on the actual board. Using this ap­
proach, it becomes possible to suspend the program, modify it, and 
keep it in RAM memory. The disadvantages of a simulator are that: 

I-It usually simulates only the processor itself, not input/output 
devices 

2-The execution speed is slow, and one operates in simulated time. 
It is therefore not possible to test real-time devices, and synchronization 
problems may still occur even though the logic of the program may be 
found correct. 

An emulator is essentially a simulator in real time. It uses one proces­
sor to simulate another one, and simulates it in complete detail. 

Utility routines are essentially all the routines which are necessary in 
most applications and that the user wishes the manufacturer had pro­
vided! 

They may include multiplication, division and other arithmetic oper­
ations, block move routines, character tests, input/output device han­
dlers (or "drivers"), and more. 
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THE PROGRAM DEVELOPMENT SEQUENCE 

We will now examine a typical sequence for developing an assembly­
level program. We will assume that all the usual software facilities are 
available in order to demonstrate their value. If they should not be 
available in a particular system, it will still be possible to develop pro­
grams, but the convenience will be decreased and, therefore, the 
amount of time necessary to debug the program is likely to be in­
creased. 

The normal approach is to first design an algorithm and define the 
data structures for the problem to be solved. Next, a comprehensive set 
of flowcharts is developed which represents the program flow. Finally, 
the flowcharts are translated into the assembly-level language for the 
microprocessor; this is the coding phase. 

Next, the program has to be entered on the computer. We will exam­
ine in the next section the hardware options to be used in this phase. 

The program is entered in RAM memory of the system under the 
control of the editor. Once a section of the program, such as one or 
more subroutines, has been entered, it will be tested. 

First, the assembler will be used. If the assembler did not already 
reside in the system, it would be loaded from an external memory, such 
as a disk. Then, the program will be assembled, i.e., translated into a 
binary code. This results in the object program, ready to be executed. 

One does not normally expect a program to work correctly the first 
time. To verify its correct operation, a number of breakpoints will nor­
mally be set at crucial locations where it is easy to test whether the inter­
mediate results are correct. The debugger will be used for this purpose. 
Breakpoints will be specified at selected locations. A "Go" command 
will then be issued so that program execution is started. The program 
will automatically stop at each of the specified breakpoints. The pro­
grammer can then verify, by examining the contents of the registers, or 
memory, that the data so far is correct. If it is correct, we proceed until 
the next breakpoint. Whenever we find incorrect data, an error in the 
program has been detected. At this point, the programmer normally 
refers to his program listing and verifies whether his coding has been 
correct. If no error can be found in the programming, the error might 
be a logical one and one might refer to the flowchart. We will assume 
here that the flowcharts have been checked by hand and are assumed to 
be reasonably correct. The error is likely to come from the coding. It 
will, therefore, be necessary to modify a section of the program. If the 
symbolic representation of the program is still in the memory, we will 
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simply re-enter the editor and modify the required lines, then go 
through the preceding sequence again. In some systems, the memory 
available may not be large enough, so that it is necessary to flush out 
the symbolic representation of the program onto a disk or cassette prior 
to executing the object code. Naturally, in such a case, one would have 
to reload the symbolic representation of the program from its support 
medium prior to entering the editor again. 

The above procedure will be repeated as long as necessary until the 
results of the program are correct. Let us stress that prevention is much 
more effective than cure. A correct design will typically result in a pro­
gram which runs correctly very soon after the usual typing mistakes or 
obvious coding errors have been removed. However, sloppy design may 
result in programs which will take an extremely long time to be de­
bugged. The debugging time is generally considered to be much longer 
than the actual design time. In short, it is always worth investing more 
time in the design in order to shorten the debugging phase. 

However, using this approach, it is possible to test the overall organi­
zation of the program, but not to test it in real time with input/output 
devices. If input/output devices are to be tested, the direct solution con­
sists of transferring the program onto EPROM's and installing it on the 
board and then watching whether it works. 

There is a better solution. It is the use of an in-circuit emulator. An 
in-circuit emulator uses the Z80 microprocessor (or any other one) to 
emulate a Z80 in (almost) real time. It emulates the Z80 physically. The 
emulator is equipped with a cable terminated by a 40-pin connector, ex­
actly identical to the pin-out of a Z80. This connector can then be in­
serted on the real application board that one is developing. The signals 
generated by the emulator will be exactly those of the Z80, only perhaps 
a little slower. The essential advantage is that the program under test 
will still reside in the RAM memory of the development system. It will 
generate the real signals which will communicate with the real in­
put/output devices that one wishes to use. As a result, it becomes possi­
ble to keep developing the program using all the resources of the devel­
opment system (editor, debugger, symbolic facilities, file system) while 
testing input/output in real time. 

In addition, a good emulator will provide special facilities, such as a 
trace. A trace is a recording of the last instructions or status of various 
data busses in the system prior to a breakpoint. In short, a trace pro­
vides the film of the events that occurred prior to the breakpoint or the 
malfunction. It may even trigger a scope at a specified address or upon 
the occurrence of a specified combination of bits. Such a facility is of 
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great value, since when an error is found it is usually too late. The in­
struction, or the data, which caused the error has occurred prior to the 
detection. The availability of a trace allows the user to find which seg­
ment of the program caused the error to occur. If the trace is not long 
enough, we will simply set an earlier breakpoint. 

'OM 'AM 

ASSEMBLER 

O' 
COMPilER 

O' 
INTERPt1ETER 

BOOTSTRAP 

KEYBOARD DOS 
DR!VeR 

WllOR 
o.

DISPLAY 
DEBUGGtR

DRIVER 
O' 
SIMUlAfOR 

SYSTEMTTY 
WOR"-SPACEDRivER 
(ANOSiACK) 

CASSETTE USER 
DRIVER PROGRAM 

USERCOMMAND 
WORl(SPACEINTERPRETER 

UTltlTv 
ROUTIN£S 

ElEMENTARY 
DtBUGGER 

ElEMENTAlh' 
EDITOR 

Fig. 10.2: A Typical Memory Map 

This completes our description of the usual sequence of events in­
volved in developing a program. Let us now review the hardware alter­
natives available for developing programs. 
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HARDWARE ALTERNATIVES 

Single-Board Microcomputer 

The single-board microcomputer offers the lowest cost approach to 
program development. It is normally equipped with a hexadecimal key­
board, plus some function keys, plus 6 LED's which can display ad­
dress and data. Since it is equipped with a small amoun t of memory, an 
assembler is not usually available. At best, it has a small monitor and 
virtually no editing or debugging facilities, except for a very few com­
mands. All programs must, therefore, be entered in hexadecimal form. 
They will also be displayed in hexadecimal form on the LED's. A sin­
gle-board microcomputer has, in theory, the same hardware power as 
any other computer. Simply because of its restricted memory size and 
keyboard, it does not support all the usual facilities of a larger system 
and makes program development much longer. Because it is tedious to 
develop programs in hexadecimal format, a single board microcom­
puter is best suited for education and training' where programs of lim­
ited length have to be developed and their short length is not an obstacle 
to programming. Single-boards are probably the cheapest way to learn 
programming by doing. However, they cannot be used for complex 
program development unless additional memory boards are attached 
and the usual software aids are made available. 

The Development System 

A development system is a microcomputer system equipped with a 
significant amount of RAM memory (32K, 48K) as well as the required 
input/output devices, such as a CRT display, a printer, disks, and, usu­
ally, a PROM programmer-;1fs well as, perhaps, an in-circuit emulator. 
A development system is specifically designed to facilitate program 
development in an industrial environment. It normally offers all, or 
most, of the software facilities that we have mentioned in the preceding 
section. In principle, it is the ideal software development tool. 

The limitation of a microcomputer development system is that it may 
not be capable of supporting a compiler or an interpreter. This is be­
cause a compiler typically requires a very large amount of memory, 
often more than is available on the system. However, for developing 
programs in assembly-level language, it offers all the required facilities. 
But because development systems sell in relatively small numbers com­
pared to hobby computers, their cost is significantly higher. 
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Hobby-Type Microcomputers 

The hobby-type microcomputer hardware is naturally exactly analo­
gous to that of a development system. The main difference lies in the 
fact that it is normally not equipped with the sophisticated software 
development aids which are available on an industrial development sys­
tem. As an example, many hobby-type microcomputers offer only ele­
mentary assemblers, minimal editors, minimal file systems, no facilities 
to attach a PROM programmer, no in-circuit emulator, no powerful 
debugger. They represent, therefore, an intermediate step between the 
single-board microcomputer and the full microprocessor development 
system. For a user who wishes to develop programs of modest complex­
ity, they are probably the best compromise, since they offer the advan­
tage of low cost and a reasonable array of software development tools, 
even though they are quite limited as to their convenience. 

Time-Sharing System 

It is possible to rent terminals from several companies which will con­
nect to time-sharing networks. These terminals share the time of the 
larger computer and benefit from all the advantages of large installa­
tions. Cross assemblers are available for all microcomputers on vir­
tually all commercial time-sharing systems. A cross assembler is, simply 
an assembler for, say, a Z80 which resides, for example, in an IBM370. 
Formally, a cross assembler is an assembler for microprocessor X, 
which resides on processor Y. The nature of the compu ter being used is 
irrelevant. The user still writes a program in Z80 assembly-level lan­
guage, and the cross assembler translates it into the appropriate binary 
pattern. The difference, however, is that the program cannot be ex­
ecuted at this point. It can be executed by a simulated processor, if one 
is available, provided it does not use any input/output resources. This 
solution is used, therefore, only in industrial environments. 

In-House Computer 

Whenever a large in-house computer is available, cross assemblers 
may also be available to facilitate program development. If such a com­
puter offers time-shared service, this option is essentially analogous to 
the one above. If it offers only batch service, this is probably one of the 
most inconvenient methods of program development, since submitting 
programs in batch mode at the assembly level for a microprocessor re­
sults in a very long development time. 
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Front Panel or No Front Panel? 

The front panel is a hardware accessory often used to facilitate pro­
gram debugging. It has traditionally been a tool for conveniently dis­
playing the binary contents of a register or of memory. However, all the 
functions of the control panel may be accomplished from a terminal, 
and the dominance of CRT displays now offers a service almost equiva­
lent to the control panel by displaying the binary value of bits. The ad­
ditional advantage of using the CRT display is that one can switch at 
will from binary representation to hexadecimal, to symbolic, to decimal 
(if the appropriate conversion routines are available, naturally). The 
disadvantage of the CRT is that one must hit several keys to obtain the 
appropriate display rather than turn a knob. However, since the cost of 
providing a control panel is quite substantial, most recent microcom­
puters have abandoned this debugging tool. The value of the control 
panel is often considered more on the basis of emotional arguments in­
fluenced by one's own past experience than by the use of reason. It is 
not indispensable. 

Summary of Hardware Resources 

Three broad cases may be distinguished. If you have only a minimal 
budget and if you wish to learn how to program, buy a single-board 
microcomputer. Using it, you will be able to develop all the simple pro­
grams in this book and many more. Eventually, however, when you 
want to develop programs of more than a few hundred instructions, 
you will feel the limitations of this approach. 

If you are an industrial user, you will need a full development system. 
Any solution short of the full development system will cause a signifi­
cantly longer development time. The trade-off is clear: hardware re­
sources vs. programming time. Naturally, if the programs to be devel­
oped are quite simple, a less expensive approach may be used. How­
ever, if complex programs are to be developed, it is difficult to justify 
any hardware savings when buying a development system, since the 
programming costs will be by far the dominant cost of the project. 

For a personal computerist, a hobby-type microcomputer will typi­
cally offer sufficient, although minimal, facilities. Good development 
software is still to come for many of the hobby computers. The user will 
have to evaluate his system in view of the comments presented in this 
chapter. 

Let us now analyze in more detail the most indispensable resource: 
the assembler. 
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THE ASSEMBLER 

We have used assembly-level language throughout this book without 
presenting the formal syntax or definition of assembly-level language. 
The time has come to present this definition. An assembler is designed 
to allow the convenient symbolic representation of the user program, 
and yet to make it simple for the assembler program to convert these 
mnemonics into their binary representation. 

Assembler Fields 

When typing in a program for the assembler, we have seen that fields 
are used. They are: 

The label field, optional, which may contain a symbolic address for 
the instruction that follows. 

The instruction field, which includes the opcode and any operands. 
(A separate operand field may be distinguished.) 

The comment field, far to the right, which is optional and is intended 
to clarify the program. 

These fields are shown on the programming form in Figure 10.3. 

Once the program has been fed to the assembler, the assembler will 
produce a listing of it. When generating a listing, the assembler will 
provide three additional fields, usually on the left of the page. An ex­
ample appears on Figure 10.4. On the far left is the line number. Each 
line which has been typed by the programmer is assigned a symbolic line 
number. 

The next field to the right is the actual address field, which shows in 
hexadecimal the value of the program counter which will point to that 
instruction. 

Moving still further to the right, we find the hexadecimal representa­
tion of the instruction. 

This shows one of the possible uses of an assembler. Even if we are 
designing programs for a single-board microcomputer which accepts 
only hexadecimal, we should still write the program in assembly-level 
language, providing we have access to a system equipped with an as­
sembler. We can then run the programs on the system, using the assem­
bler. The assem bier will automatically generate the correct hexadecimal 
codes on our system. This shows, in a simple example, the value of ad­
ditional software resources. 
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Fig. 10.3: Microprocessor Programming Form 
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Tables 

When the assembler translates the symbolic program into its binary 
representation, it performs two essential tasks: 

I-It translates the mnemonic instructions into their binary en­
coding. 

2-It translates the symbols used for constants and addresses into 
their binary representation. 

In order to facilitate program debugging, the assembler shows at the 
end of the listing the equivalence between the symbol used and its hexa­
decimal value. This is called the symbol table. 

Some symbol tables will not only list the symbol and its value, but 
also the line numbers where the symbol occurs, thereby providing an 
additional facility. 

Error Messages 

During the assembly process, the assembler will detect syntax errors 
and include them as part of the final listing. Typical diagnostics in­
clude: undefined symbols, label already defined, illegal opcode, illegal 
address, illegal addressing mode. Many more detailed diagnostics are 
naturally desirable and are usually provided. They vary with each as­
sembler. 

The Assembly Language 

Opcodes have already been defined. We will here define the symbols, 
constants and operators which may be used as part of the assembler 
syntax. 

Symbols 

Symbols are used to represent numerical values, either data or ad­
dresses. Symbols may include up to six characters, and must start with 
an alphabetical character. The characters are restricted to letters of the 
alphabet and numbers. Also, the user may not choose names identical 
to the opcodes utilized by the Z80, the names of registers such as A,B, 
C,D,E,H,L, Be, DE, HL, AF, BC, DE, IX, IY, SP, as well as the 
various short names used as pseudo-operators by the assembler. The 
names of these assembler "directives" are listed below in the corre­
sponding sections. Also, the abbreviations used to designate the flags 
should not be used as symbols: C,Z,N,PE,NC,P,PO,NZ,M. 

592 



PROGRAM DEVELOPMENT 


Assigning a Value to a Symbol 

Labels are special symbols whose values do not need to be defined by 
the programmer. The value will automatically be defined by the assem­
bler program whenever it finds that label. The label value thus auto­
matically corresponds to the address of the instruction generated at the 
line where it appears. Special pseudo-instructions are available to force 
a new starting value for labels, or to assign them a specific value. 

CROMEMC[) enos zno ASSE"HBLEFi VeT'~;lOn O:? > 15 F'A(Jl- 0001 

0000' 0001 ORG OlOOH 
(0200) 0002 MPRAD [lL 0200H 
(0202) 0003 HF'DAD [IL 0202H 
(0204 ) 0004 RE!3AII nL.. O?()4H 

0005 ; 
0100 E[l4BOOO::! 0006 MF'488 LD Be y (HPRAfl) ; LOAIt HULl [PLIER INTO C 
0104 0608 0007 LD 9.8 ;8 IS BIT COUNTER 
0106 ED580202 0008 LII DE, (MF-DAII) ;LOAD MllTIPLlCAND INTO E 
010A 1600 0009 LD D.O ;ClEAR D 
Oloe 210000 0010 Lt. HL,O ;SET RESUl.l TO 0 
OlOP CB39 001. 1 MULT SRL C ; SHIFT MULl [PUER BIl INTO CARRY 
0111 3001 0012 JR Nt , NOAO'!) ; TEST CARRY 
0113 19 0013 ADD HL,DE ;A(JD MPD TO RESUL T 
0114 CB23 0014 NOADD SLA F ,SHIFT MPD LEFT 
0116 C:812 0015 RL D ;SAVE BIT IN D 
011.8 O~ 0016 DEC B ,DECREMEN1 SHIFT COUNTER 
0119 C20F'01 0017 JF' NZ,MULT ;DO rr AGAIN IF COUNTER 0 
011e 22040::! 0018 LV (RESI-Ul) ,HL ;STDRE RESUL 1 
011F (0000) 0019 END 

Errors 0 

Fig. 10.4: Assembler Output-An Example 
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However, other symbols used for constants or memory addresses 
must be defined by the programmer prior to their use. 

A special assembler directive may be used to assign a value to any 
symbol. A directive is essentially an instruction to the assembler which 
will not be translated into an executable statement. For example, the 
constant LOG will be defined as: 

LOG EQU 3002H 

This assigns the value 3002 hexadecimal to the variable LOG. The 
assembler directives will be examined in detail in a later section. 

Constants or Literals 

Constants may traditionally be expressed either in decimal, in hexa­
decimal, in octal, or in binary, or as alphanumeric strings. In order to 
differentiate between the base used to represent the number, a symbol 
must be used. To load "0" into the accumulator, we will simply write: 

LO A,O 

Optionally a "0" may be used at .the end of the constant. 
A hexadecimal number will be terminated by the symbol "H". To 

load the value "FF" into the accumulator, we will write: 

LO A,OFFH 

An octal symbol is terminated by the symbol "0" or "Q". A binary 
symbol is terminated by "B". 

For example, in order to load the value" 11111111" into the accumu­
lator, we will write: 

LO A, 11111111 B 

Literal ASCII characters may also be used in the literal field. The 
ASCII symbol must be enclosed in single quotes. 

For example, in order to load the symbol "S" into the accumulator, 
we will write: 

LD A, oS' 

Exercise 10.1: Will the following two instructions load the same value 
in the accumulator: LD A, '5', and LD A, 5H? 
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Note that in the Zilog convention, parentheses denote an address. 
For example: 

LD A, (10) 

specifies that the accumulator is loaded from the contents of memory 
location 10 (decimal). 

Operators 

In order to further facilitate the writing of symbolic programs, as­
semblers allow the use of operators. At a minimum, they should allow 
plus and minus so that one can specify, for example: 

LD A, (ADDRESS) 
LD A, (ADDRESS + 1) 

It is important to understand that the expression ADDRESS + 1 will 
be computed by the assembler in order to determine the actual memory 
address which must be inserted as the binary equivalent. It will be com­
puted at assembly time, not at program-execution time. 

In addition, more operators may be available, such as multiply and 
divide, a convenience when accessing tables in memory. More special­
ized operators may be also available, such as greater than and less 
than, which truncate a two-byte value respectively into its high and low 
byte. 

Naturally, an expression must evaluate to a positive value. Negative 
numbers may normally not be used and should be expressed in a hexa­
decimal format. 

Finally, a special symbol is traditionally used to represent the current 
value of the address of the line: "$". This symbol should be interpreted 
as "current location" (value of PC). 

Exercise /0.1: What is the difference between the following instruc­
tions? 

LD A, 101010108 

LD A, (101010108) 


Exercise /0.3: What is the effect of the following instruction? 

JR NC, $ - 2 

Expressions 

The Z80 assembler specifications allow a wide range of expressions 
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with arithmetic and logical operations. The assembler will evaluate the 
expressions in a left-to-right manner, using the priorities specified by 
the table in Figure 10.5. Parentheses may be used to enforce a specific 
order of evaluation. However, the outermost parentheses will denote 
that the contents are to be treated as an address. 

Assembler Directives 

Directives are special orders given by the programmer to the assem­
bier, which result either in storing values into symbols or into the mem­
ory, or in controlling the execution or printing modes of the assembler. 
The set of commands'which specifically controls the printing modes of 
the assembler is also called "commands" and is described in a separate 
section. 

To provide a specific example, let us review here the II assembler 
directives available on the Zilog development system: 

ORG nn 

This directive will set the assembler address counter to the value nn. In 
other words, the first executable instruction encountered after this 
directive will reside at the value nn. It can be used to locate different 
segments of a program at different memory locations. 

EQU nn 

This directive is used to assign a value to a label. 

DEFL nn 

This directive also assigns a value nn to a label, but may be repeated 
within the program with different values for the same label, whereas 
EQU may be used only once. 

DEFBn 

This directive assigns eight-bit contents to a byte residing at the current 
reference counter. 

DEFB'S' 

assigns the ASCII value of "S" to the byte. 

DEFW nn 

This assigns the value nn to the two-byte word residing at the current 
reference counter and the following location. 
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OPERATOR FUNCTION PRIORITY 

+ UNARY PLUS 1 

- UNARY MINUS 1 

.NOT. or \ LOGICAL NOT 1 

.RES. RESULT 1 

** EXPONENTIATION 2 

* MULTIPLICATION 3 

I DIVISION 3 

.MOD. MODULO 3 

.SHR. LOGICAL SHIFT RIGHT 3 

.SHL. LOGICAL SH IFT LEFT 3 


+ ADDITION 4 

- SUBTRACTION 4 

.AND. or & LOGICAL AND 5 

.OR. or 1 LOGICAL OR 6 


.XOR. LOGICALXOR 6 


.EQ. or = EQUALS 7 


.GT. or > GREATER THAN 7 


.LT. or < LESS THAN 7 


.UGT. UNSIGNED GREATER THAN 7 


.ULT. UNSIGNED LESS THAN 7 


Fig. 10.5: Operator Precedence 

DEFS nn 

reserves a block of memory size nn bytes, starting at the current value 
of the reference counter. 

DEFM'S' 

stores into memory the string'S' starting at the current reference coun­
ter. It must be less than 63 in length. 

MACRO PO PI. .. Pn 

is used to define a label as a macro, and to define its formal parameter 
list. Macros are defined in another section below. 

END 

indicates the end of the program. Any other statements following it will 
be ignored. 

ENDM 

is used to mark the end of a macro definition. 
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Assembler Commands 

Commands are used to modify the format of the listing to control the 
printing modes of the assembler. All commands start with a star in col­
umn one. Seven commands are provided by the Z80 assembler. Typical 
examples are: 

EJECT 

which causes the listing to move to the top of the next page; and 

LIST OFF 

which causes the printing to be suspended, effective with this com­
mand. The others are: "*HEADING S", "*LIST ON", "*MACLIST 
ON", "*MACLIST OFF", "*INc::LUDE FILENAME". 

Macros 

A macro is simply a name assigned to a group of instructions. It is a 
convenience to the programmer. If a group of instructions is used sev­
eral times in a program, we could define a macro to represent them, in­
stead of always having to write this group of instructions. 

As an example, we could write: 

SA VREG MACRO 

PUSH AF 

PUSH BC 

PUSH DE 

PUSH HL 

ENDM 


then simply write the name "SAVREG" instead of the above instruc­
tions. Any time that we write SA VREG, the five corresponding lines 
will get substituted instead of the name. An assembler equipped with a 
macro facility is called a macro-assembler. When the macro assembler 
encounters a SA VREG, it performs a mere physical substitution of 
equivalent lines. 

Macro or Subroutine? 

At this point, a macro may seem to operate in a way analogous to a 
subroutine. This is not the case. When the assembler is used to produce 
the object code, any time that a macro name is encountered, it will be 
replaced by the actual instructions that it stands for. At execution time, 
the group of instructions will appear as many times as the name of the 
macro did. 
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By contrast, a subroutine is defined only once, and then it can be 
used repeatedly; the program will jump to the subroutine address. A 
macro is called an assembly-time facility. A subroutine is an execution­
time facility. Their operation is quite different. 

Macro Parameters 

Each macro may be equipped with a number of parameters. As an 
example, let us consider the following macro: 

SWAP MACRO #M,UN,1fT 
LD A,#M ; M INTO A 
LD 1fT, A ; A INTO T (=M) 
LD A, UN ; N INTO A 
LD #M,A ; A INTO M (= N) 
LD A, 1fT ; T INTO A 
LD UN, A ; A INTO N (=T) 
END M 

This macro will result in swapping (exchanging) the contents of mem­
ory locations M and N. A swap between two registers, or two memory 
locations, is an operation which is not provided by the Z80. A macro 
may be used to implement it. "T" in this instance is simply the name 
for a temporary storage location required by the program. As an exam­
ple, let us swap the contents of memory locations ALPHA and BETA. 
The instruction which does this appears below: 

SWAP (ALPHA), (BETA), (TEMP) 

In this instruction, TEMP is the name of some temporary storage 
location, which we know to be available and which can be used by the 
macro. The resulting expansion of the macro appears below: 

LD A, (ALPHA) 
LD (TEMP), A 
LD A, (BETA) 
LD (ALPHA), A 
LD A, (TEMP) 
LD (BETA), A 

The value of a macro should now be apparent: it is convenient for the 
programmer to use pseudo-instructions, which have been defined with 
macros. In this way, the apparent instruction set of the Z80 can be ex­
panded at will. Unfortunately, one must bear in mind that each macro 
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directive will expand into whatever number of instructions were used. A 
macro will, therefore, run more slowly than any single instruction. Be­
cause of its convenience for the development of any long program, a 
macro facility is highly desirable for such applications. 

Additional Macro Facilities 

Many other directives and syntactic facilities may be added to a sim­
ple macro facility; macros may be nested, i.e., a macro call may appear 
within a macro definition. Using this facility, a macro may modify it­
self with a nested definition! A first call will produce one expansion, 
whereas subsequent calls will produce a modified expansion of the same 
macro. This is allowed by the Z80 assembler, but nested definitions are 
not allowed. 

CONDITIONAL ASSEMBLY 

Conditional assembly is another facility provided in the Z80 assem­
bly. With a conditional assembly facility, the programmer can devise 
programs for a variety of cases, and then conditionally assemble the 
segments of codes required by a specific application. As an example, an 
industrial user might design programs to take care of any number of 
traffic lights at an intersection, for a variety of control algorithms. He 
will then receive the specifications from the local traffic engineer, who 
specifies how many traffic lights there should be and which algorithms 
should be used. The programmer will then simply set parameters in his 
program and assemble conditionally. The conditional assembly will 
result in a "customized" program which will retain only those routines 
which are necessary for the solution to the problem. 

Conditional assembly is, therefore, of specific value to industrial 
program generation in an environment where many options exist and 
where the programmer wishes to assemble portions of programs quick­
ly and automatically in response to external parameters. 

Only two conditional pseudo-OPs are provided in the standard 
micro-assembler version supplied by Zilog. They are respectively: 

COND NN and ENDC 

where NN represents an expression. The pseudo-OP "COND NN" will 
result in the evaluation of the expression NN. As long as the expression 
evaluates to a true value (non-zero), the statement following the COND 
will be assembled. However, if the expression should be false, i.e., eval­
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uate to a zero value, the assembly of all subsequent statements will be 
disabled up to the ENDC instruction. 

ENDC is used to terminate a COND, so that the assembly of subse­
quent statements is re-enabled. The COND pseudo-OP's cannot be 
nested. 

In theory, more powerful conditional assembly facilities could exist, 
with "IF" and "ELSE" specification. They may become available in 
future versions of the assembler. 

SUMMARY 

This chapter has presented the techniques and the hardware and soft­
ware tools required to develop a program, along with the various trade­
offs and alternatives. 

These range at the hardware level from the single-board microcom­
puter to the full development system; at the software level, from binary 
coding to high-level programming. 

You will have to select them on the basis of your goals and resources. 
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CONCLUSION 


We have now covered all important aspects of programming, from 
definitions and basic concepts to the internal manipulation of the Z80 
registers, to the management of input/output devices, as well as the 
characteristics of software development aids. What is the next step? 
Two views can be offered, the first one relating to the development of 
technology, the second one relating to the development of your own 
knowledge and skill. Let us address these two points. 

TECHNOLOGICAL DEVELOPMENT 

The progress of integration in MOS technology makes it possible to 
implement more and more complex chips. The cost of implementing the 
processor function itself is constantly decreasing. The result is that 
many of the input/output chips or the peripheral-controller chips used 
in a system now incorporate a simple processor. This means that most 
LSI chips in the system are becoming programmable. An interesting 
conceptual dilemma is now developing. In order to simplify the soft­
ware design task, as well as to reduce the component count, the new 
110 chips now incorporate sophisticated programmable capabilities: 
many programmed algorithms are now integrated within the chip. 
However, as a result, the development of programs is complicated by 
the fact that all these input/output chips are radically different and 
need to be studied in detail by the programmer'! Programming the 
system is no longer programming the microprocessor alone, but also 
programming all the other chips attached to it. The learning time for 
every chip can be significant. 

Naturally, this is only an apparent dilemma. If these chips were not 
available, the complexity of the interface to be realized, as well as of the 
corresponding programs, would be still greater. The new complexity 
that is introduced is the need to program more than just a processor, 
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and to learn the various features of the different chips in a system. How­
ever, it is hoped that the techniques and concepts presented in this book 
will make this a reasonably easy task. 

THE NEXT STEP 

You have now learned the basic techniques required to program sim­
ple applications on paper. That was the goal of this book. The next step 
is actual practice for which there is no substitute. It is impossible to learn 
programming completely on paper; experience is required. You should 
now be in a position to start writing your own programs. It is hoped 
that this journey will be a pleasant one. 
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HEXADECIMAL CONVERSION TABLE 

HEX 0 1 2 3 4 5 6 7 ~ ~ ABC ·0 E F 00 OO!L 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0 

1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 256 4096 

2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 512 8192 

3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 768 12288 

4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 1024 16384 

5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 1280 20480 

6 96 97 98 99 100 101 102 103 104 105 106 107 106 109 110 111 1536 24576 

7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 1792 28672 

8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 2048 32768 

9 ~M5M6M7M8148150 1~ 1~153ffi41~1561~ffi8ffi9 2304 36864 

A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 2560 40960 

B 176 177 178 179 180 181 13< 183 184 185 186 187 188 189 190 191 2816 45056 

C 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 3072 49152 

0 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 3328 53248 

E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 3584 57344 

F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 3840 61440 


5 4 3 2 I 0 

HEXI DEC HEXI DEC HEXl DEC HEX I DEC HEXI DEC HEXI DEC 

0 0 0 0 0 0 0 0 0 0 0 0 
1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1 
2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2 
3 3,145,728 3 196.608 3 12.288 3 768 3 48 3 3 
4 4.194.304 4 262.144 4 16.384 4 1,024 4 64 4 4 
5 5,242.880 5 327.680 5 20.480 5 1,280 5 80 5 5 
6 6.291,456 6 393.216 6 24,576 6 1,536 6 96 6 6 
7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7 
8 8,388,608 8 524,288 8 32,768 8 2.048 8 128 8 8 
9 9.437.184 9 589,824 9 36.864 9 2,304 9 144 9 9 
A 10,485.760 A 655.360 A 40.960 A 2,560 A 160 A 10 
B 11,534.336 B 720.896 B 45.056 B 2.816 B 176 B 11 
C 12,582,912 C 786,432 C 49,152 C 3.072 C 192 C 12 
D 13,631.488 D 851.968 D 53.248 D 3,328 0 208 0 13 
E 14,680,064 E 917.504 E 57,344 E 3.584 E 224 E 14 
F 15.728.640 F 983.040 F 61.440 F 3.840 F 240 F 15 
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ASCII CONVERSION TABLE 

HEX MSD 0 1 2 3 4 5 6 7 
LSD BITS 000 001 010 Ot1 tOO 101 110 111 

0 0000 NUL DLE r SPACE '- O· @' P ~ P 
1 0001 I" SOH I 1 A Q a qDC1 '" ..2 0010 " STX DC2 2 B R b r 
3 0011 ETX DC3 # 3 C S C s 
4 0100 > EOT DC4- $ 4 D T d t 
5 0101 i~ ENQ NAK J % 5 E U e u 
6 0110 ACK SYN 'J & 6 F V f vC 

,
7 0111 > BEL ETB·· 7 G W 9 w 
8 1000 ' BS CAN" ( 8 H X h x 
9 10.01 HT EM ) 9 I Y j Y 
A 1010 LF SUB · J Z j z 
B 1011 - VT ESC + ; K [ k { 
C 1100 FF FS < L \ I -­
D 1101 p' CR GS -· = M ] m } 
E 1110 SO RS > N n· 
F 1111 ', SI US I ? 0 ~ " 0 DEL­

THE ASCII SYMBOLS 

NUL -NuH DLE -Data Link Escape 
SOH -Start of Heading DC -Device Control 
STX - Start of Text NAK - Negative Acknowledge 
ETX - End of Text SYN - Synchronous Idle 
EOT - End of Tranemlasion ETB - End of Tranemisaion Block 
ENQ -Enquiry CAN -Cancel 
ACK -Acknowledge EM - End of Medium 
BEL -Bell SUB -Substitute 
BS - Backspace ESC -Eacape 
HT -Horizontal Tebulation FS - File Separator 
LF -Line Feed GS -Group Separator 
VT - Vertical Tabulation RS - Record Separator 
FF - Form Feed US - Unit Separator 
CR -Carriage Return SP -Space (Blank) 
SO -Shift Out DEL -Delete 
SI -Shift In 
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RELATIVE BRANCH TABLES 

FORWARD RELATIVE BRANCH TABLE 

0 I 2 3 4 5 6 7 8 9 A B C 0 E F~ 
0 0 I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 
I 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 
5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 

7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 

BACKWARD RELATIVE BRANCH TABLE 

~ 0 I 2 3 4 5 6 7 8 9 A B C 0 E FMS 
8 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 
9 112 III 110 109 108 107 106 105 104 103 102 101 100 99 98 97 
A 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 

B 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 
C 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 
0 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 
E 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 
F 16 15 14 13 12 II 10 9 8 7 6 5 4 3 2 I 
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DECIMAL TO BCD CONVERSION 

DECIMAL BCD 

0 0000 
1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 
8 1000 


9 1001 


DEC 

10 

11 

12 

13 


14 


15 


16 


17 


18 

19 


BCD 

00010000 
00010001 
00010010 
00010011 

00010100 

00010101 

00010110 

00010111 

00011000 
00011001 

DEC BCD 

90 10010000 


91 10010001 


92 10010010 


93 10010011 


94 10010100 


95 10010101 


96 10010110 


97 10010111 


98 10011000 


99 10011001 
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ZSO INSTRUCTION CODES 


(The literal d is shown as 05 in the object code.) 

r---------~--------_OBJ SOURCE OBJ SOURCE 

CODE STATEMENT CODE STATEMENT 

8E ADC A.IHLI E620 AND n 
DD8E05 ADC A.IIX+d) CB46 BIT O,(HL) 
FD8E05 ADC A.IIY+d) DDCB0546 BIT O,IIX+d) 
8F ADC A.A FDCB0546 BIT O,IIY+d) 
88 ADC A.B CB47· BIT O,A 
89 ADC A,C CB40 BIT O,B 
8A ADC A.D CB41 BIT O,C 
8B ADC A,E CB42 BIT O,D 
8C ADC A,H CB43 BIT O,E 
8D ADC A.L CB44 BIT O,H 
CE20 ADC A,n CB45 BIT O,L 
ED4A ADC HL,BC CB4E BIT lIHL) 
ED5A ADC HL,DE DDCB054E BIT 1,IIX+d) 
ED6A ADC HL,HL FDCB054E BIT 1,IIY+d) 
ED7A ADC HL,SP CB4F BIT 1,A 
86 ADD A,IHLI CB48 BIT 1,B 
DD8605 ADD A,IIX+d) CB49 BIT 1,C 
FD8605 ADD A,IIY+d) CB4A BIT 1,D 
87 ADD A,A CB4B BIT 1,E 
80 ADD A,B CB4C BIT 1,H 
81 ADD A,C CB4D BIT 1,L 
82 ADD A,D CB56 BIT 2,IHL) 
83 ADD A,E DDCB0556 BIT 2,IIX+d) 
84 ADD A,H FDCB0556 BIT 2,IIY+d) 
85 ADD A,L CB57 BIT 2,A 
C620 ADD A,n CB50 BIT 2,B 
09 ADD HL,BC CB51 BIT 2,C 
19 ADD HL,DE CB52 BIT 2,0 
29 ADD HL,HL CB53 BIT 2,E 
39 ADD HL,SP CB54 BIT 2,H 

DD09 ADD IX,BC CB55 BIT 2,L 
DD19 ADD IX,DE CB5E BIT 3,(HL) 

DD29 ADD IX,IX DDCB055E BIT 3,IIX+d) 

DD39 ADD IX,SP FDCB055E BIT 3,IIY+d) 

FD09 ADD IY,IlC CB5F BIT 3,A 
CB58 BIT 3,BFD19 ADD IY,DE 
CB59 BIT 3,CFD29 ADD IY,IY 
CB5A BIT 3,DFD39 ADD IY,SP 
CB5B BIT 3,EA6 AND (HL) 

DDA605 AND IIX+d) CB5C BIT 3,H 
FDA605 AND IIY+d) CB5D BIT 3,L 
A7 AND A CB66 BIT 4,IHLI 
AO AND B DDCB0566 BIT 4,IIX+dl 
Al AND C FDCB0566 BIT 4,IIY+d) 
A2 AND D CB67 BIT 4,A 

A3 AND E CB60 BIT 4,B 
A4 AND H CB61 81T 4,C 
A5 AND L CB62 BIT 4,D 
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OBJ SOURCE OBJ SOURCE 

CODE STATEMENT CODE STATEMENT 


CB63 BIT 4,E 
CB64 BIT 4,H 
CB65 BIT 4,L 
CB6E BIT 5,IHU 
DDCB056E BIT 5,(IX+dl 
FDCB056E BIT 5,(lV+d) 
CB6F BIT 5,A 
CB68 BIT 5,B 
C869 BIT S,C 
C86A BIT 5,D 
CB6B BIT 5,E 
CB6C BIT S,H 
CB6D BIT 5,L 
C876 BIT 6,IHLI 
DDCB0576 81T 6,(lX+d) 
FDCB0576 BIT 6,(lV+d) 
C877 BIT 6,A 
CB70 BIT 6,B 
CB71 BIT 6,C 
CB72 BIT 6,D 
CB73 81T 6,E 
CB74 BIT 6,H 
CB75 BIT 6,L 
CB7E BIT 7,IHU 
DDCB057E BIT 7,UX+d) 
FDCB057E BIT 7,IIV l-d) 
CB7F BIT 7.A 
CB78 BIT 7,B 
CB79 BIT 7,C 
CB7A BIT 7,D 
CB7B BIT 7,E 
CB7C BIT 7,H 
CB7D BIT 7,L 
DC8405 CALL C,nn 

FC8405 CALL M,nn 

D48405 CALL NC,nn 

C48405 CALL NZ,nn 
F48405 CALL P,nn 
EC8405 CALL PE,nn 
E48405 CALL PO,nn 
CC8405 CALL Z,nn 
CD8405 CALL nn 
3F CCF 
BE CP IHU 
DDBE05 CP (lX+d) 
FDBE05 CP (lV+d) 
BF CP A 
B8 CP B 
B9 CP C 
BA CP D 
BB CP E 
BC CP H 
BD CP L 
FE20 CP n 
EDA9 CPD 
EDB9 CPDR 

EDBI CPIR 
EDAI CPI 
2F CPL 
27 DAA 
35 DEC IHLl 
DD3505 DEC (lX+d) 
FD3505 DEC (lV+d) 

3D DEC A 
05 DEC B 
OB DEC BC 
aD DEC C 
15 DEC D 
lB DEC DE 
lD DEC E 
25 DEC H 
2B DEC HL 
DD2B DEC IX 
F02B DEC IV 
2D OEC L 
3B DEC SP 
F3 01 
102E OJNZ 
FB EI 
E3 EX ISP),HL 
DDE3 EX (SP),IX 
FDE3 EX ISP),IY 
08 EX AF,AF' 
EB EX DE,HL 
D9 EXX 
76 HALT 
ED46 1M a 
ED56 1M 1 
EDSE 1M 2 
ED78 IN A,(C) 
ED40 IN B,IC) 
ED48 IN C,(C) 
ED50 IN D,IC) 
ED58 IN E,IC) 
ED60 IN H,IC) 
EDB8 IN L,IC) 
34 INC IHLI 
DD3405 INC (lX+d) 
FD3405 INC (lV+d) 
3C INC A 
04 INC B 
03 INC BC 
OC INC C 
14 INC 0 
13 INC DE 
1C INC E 
24 INC H 
23 INC HL 
D023 INC IX 
F023 INC ,IY 
2C INC L 
33 INC SP 
OB20 IN A,lnl 
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PROGRAMMING THE l80 

OBJ SOURCE OBJ SOURCE 
CODE STATEMENT CODE STATEMENT 

EOAA IND DD7E05 LD A,(lX+dl 
EDBA INOR FD7E05 LD A,IIY+dl 
EOA2 
EOB2 

C38405 

E9 
00E9 
FOE9 
DA8405 
FA8405 
028405 

INI 
INIR 
jp 

jp 

JP 
JP 
JP 
JP 
jp 

nn 
IHLI 
!IX) 

IIYI 
C,nn 
M,nn 

NC,nn 

3A8405 
7F 

78 
79 
7A 
7B 
7C 
E057 
7D 

LO 
LO 
LD 
LO 
LO 
LO 
LD 
LO 
LD 

A,lnnl 
A,A 
A,B 
A,C 
A,D 
A,E 
A,H 
A,I 
A,L 

C28405 JP NZ,nn 3E20 LD A,n 
F28405 JP P,nn ED5F LO A,R 
EA8405 JP PE,nn 46 LO B,IHLI 
E28405 JP PO,nn DD4605 LD B,IIX+dl 
CA8405 JP Z,nn F04605 LO B,IIY+dl 
382E JR C,e 47 LD BA 
302E JR NC,e 40 LD B,B 
202E JR NZ,e 41 lD B,C 
282E 
182E 

JR 
JR 

Z,e 
I,lL 

42 
43 

LD 
LO 

B,D 
B,E 

02 LO ItlCI,A 44 LD B,H 
12 LO IDE),A 45 LD B,L 

77 LO IHLI,A 0620 LO B,n 

70 LO IHLI,B ED4B8405 LD BC,lnnl 

71 LD IHLI,C 018405 LD BC,nn 

72 LO IHLI,D 4E LD C,IHLI 

73 LD IHLI,E OD4E05 LD C,IIX+dl 

74 LD IHU,H FD4E05 LD C,IIY+dl 

75 LD IHLI,L 4F LD C,A 

3620 LD IHLI,n 48 LD C,B 

DD7705 LD IIX+dl.A 49 LD C,C 

OD7005 LD IIX+dl,B 4A LD C,D 
007105 LD IIX+dl,e 4B LD C,E 

DD7205 LD IIX+dl,O 4C LD C,H 
D07305 LD IIX+dl,E 4D LO C,L 

D07405 LD IIX+dl,H OE20 LO e,n 
007505 LO IIX+di,L 56 LD D,IHLI 
OD360520 LO IIX+dl,n OD5605 LD D,ilX+dl 
FDn05 LO IIY+dl,A FD5605 LD D,IIY+dl 
FD7005 LD IIY+dl,B 57 LD D,A 
F07105 LD IIY+dl,C 50 LD D,B 
FD7205 LD IIY+dI.D 51 LD D,C 
FD7305 LD IIY+dl,E 52 LO D,D 
F07405 LD IIY+dl,H 53 LD O,E 
F07505 LO IIY+dl,L 54 LD D,H 
F0360520 LO IIY+d),n 55 LD D,L 
328405 LD Innl,A 1620 LD D,n 
E0438405 LO Innl,Be ED5B8405 LO OE,lnnl 
E0538405 LD Innl,DE 118405 LD DE,nn 
228405 LO Innl,HL 5E LO E,IHU 
OD228405 LO Innl,IX D05E05 LD E,IIX+dl 
FD228405 LD Innl,lY F05E05 LO E,IIY+dl 
E0738405 LD (nnl,SP 5F LD E,A 
OA 
lA 

LD 
LO 

A,IBC) 
A,IDEI 

58 
59 

LD 
LD 

E,B 
E,C 

7E LD A,IHU 5A LD E,D 
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OBJ SOURCE OBJ SOURCE 

CODE STATEMENT CODE STATEMENT 


5B LO E,E EDB3 OTIR 

5C LO E,H E079 OUT (C),A 

50 LO E,L E041 OUT (C),B 

1 E20 LO E,n E049 OUT (CI,C 
66 LO H,(HLI E051 OUT (C),O 

006605 LO H,(lX+d) ED59 OUT (C),E 

FD6605 LD H,(lY+d) E061 OUT (C),H 

67 LD H,A ED69 OUT (C),L 

60 LO H,B D320 OUT (nLA 
61 LD H,C EDAB OUTO 
62 LO H,O EOA3 OUTI 
63 LD H.E F1 POP AF 
64 LD H.H C1 POP BC 
65 LO H,L 01 POP DE 
2620 LO H,n E1 POP HL 
2A8405 LD HL,(nn) DOE1 POP IX 
218405 LO Hl,nn FOE1 POP IY 
E047 LD I,A F5 PUSH AF 
002A8405 LD IX,(nn) C5 PUSH BC 
00218405 LO IX,nn 05 PUSH DE 
F02A8405 LO IY,(nn) E5 PUSH HL 
F0218405 LO IY,nn 00E5 PUSH IX 
6E LO L,(HLI FOE5 PUSH IY 

006E05 LO L,(lX+d) CB86 RES O,(HLI 

F06E05 LO L,(lY+d) 00CB0586 RES O,(lX+d) 

6F LO L,A FOCB0586 RES O,(lY+d) 
68 LO L,B CB87 RES O,A 
69 LO L,C CB80 RES O,B 
6A LO L,O CB81 RES O,C 
6B LO L,E CB82 RES 0,0 
6C LO L,H CB83 RES O,E 
60 LO L,L CBB4 RES O,H 
2E20 
E04F 

LO 
LO 

L,n 
R,A 

CB85 
CB8E 

RES 
RES 

O,L 
1,(Hl) 

ED7B8405 
F9 

LO 
LO 

SP,(nn) 
SP,HL 

00CB058E 
FOCB058E 

RES 
RES 

UIX+d) 
1,(lY+d) 

00F9 
FOF9 
318405 
EOAB 
EOB8 
EDAO 
EOBO 
E044 
00 
B6 
00B605 

LO 
LO 
LO 
LOO 
LOOR 
LOI 
LDIR 
NEG 
NOP 
OR 
OR 

SP,IX 
SP,IY 
SP,nn 

(HLI 
(lX+d) 

CB8F 
CB88 
CB89 
CB8A 
CB8B 
CBSC 
CB80 
CB96 
DDCB0596 
FOCB0596 

RES 
RES 
RES 
RES 
RES 
RES 
RES 
RES 
RES 
RES 

1,A 
1,B 
1,C 
1,0 
1,E 
1,H 
1,L 
2,IHU 
2,(lX+d) 
2,(lY+d) 

FOBS05 OR (lY+dJ CB97 RES 2,A 

B7 OR A CB90 RES 2,B 

BO OR B CB91 RES 2,C 

B1 OR C CB92 RES 2,0 

B2 OR D CB93 RES 2,E 

B3 OR E CB94 RES 2,H 

B4 OR H CB95 RES 2,L 

B5 OR L CB9E RES 3,(HL) 

F620 OR n DDCB059E RES 3,(lX+d) 

ED8B OTDR FDCB059E RES 3,(lY+dJ 
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PROGRAMMING THE zeo 

OBJ SOURCE OBJ SOURCE 
CODE STATEMENT CODE STATEMENT 

CB9F RES 3,A E040 RETI 
CB98 RES 3,B E045 RETN 
CB99 RES 3,C CB16 RL (HLI 
CB9A RES 3,0 DOCB0516 RL (lX+dl 

CB9B RES 3,E FDCB0516 RL IIV+dl 
CB9C RES 3,H CB17 RL A 
CB90 RES 3,L CB10 RL B 
CBA6 RES 4,(HL) CB11 RL C 
00CB05A6 RES 4,ClX+d) CB12 RL 0 

FOCB05A6 RES 4,ClV+d) CB13 RL E 
CBA7 RES 4,A CB14 RL H 
CBAO RES 4,B CB15 RL L 
CBA1 RES 4,C 17 RLA 

CBA2 RES 4,0 CB06 RLC (HLI 

CBA3 RES 4,E DDCB0506 RLC (lX+dl 

CBA4 RES 4,H FDCB0506 RLC (lV+d) 

CBA5 RES 4,L CB07 RLC A 

CBAE RES 5,(HL) CBOO RLC B 

ODCB05AE 
FDCB05AE 

RES 
RES 

5,ClX+d) 
5,ClV+d) 

CB01 
CB02 

RLC 
RLC 

C 
0 

CBAF RES 5,A CB03 RLC E 

CBA8 RES 5,B CB04 RLC H 

CBA9 RES 5,C CB05 RLC L 

CBAA 
CBAB 
CBAC 
CBAO 
CBB6 
DOCB05B6 
FDCB05B6 
CBB7 
CBBO 
CBB1 
CBB2 
CBB3 
CBB4 
CBB5 
CBBE 
DOCB05BE 
FOCB05BE 
CBBF 
CBBB 
CBB9 
CBBA 
CBBB 
CBBC 

RES 
RES 
RES 
RES 
RES 

RES 
RES 
RES 
RES 
RES 
RES 
RES 
RES 
RES 
RES 
RES 
RES 
RES 
RES 
RES 
RES 
RES 
RES 

5,0 
5,E 
5,H 
5,L 
6,(HL) 

6,ClX+dl 
6,(lV+dl 
6,A 
6,B 
6,C 
6,0 
6,E 
6,H 
6,L 
7,(HL) 

7,ClX+dl 
7,ClV+dl 
7,A 
7,B 
7.C 
7,0 
7,E 
7,H 

07 
E06F 
CB1E 
ODCB051E 
FOCB051 E 
CB1F 
CB18 
CB19 
CB1A 
CB1B 
C81C 
CBW 
1F 
C80E 
OOCB050E 
FOCB050E 
CBOF 
CBOB 
CB09 
CBOA 
CBOB 
C80C 
CBOO 
OF 

RLCA 
RLD 
RR 
RR 
RR 
RR 
RR 
RR 
RR 
RR 
RR 
RR 
RRA 
RRC 
RRC 
RRC 
RRC 
RRC 
RRC 
RRC 
RRC 
RRC 
RRC 
RRCA 

(HLI 
(lX+dl 
(lV+dl 
A 
B 
C 
0 
E 
H 
L 

(HLI 
(lX+dl 
(lV+dl 
A 
B 
C 
0 
E 
H 
L 

CBBO RES 7,L E067 RRD 
C9 RET C7 RST OOH 
08 RET C CF RST 08H 
F8 RET M 07 RST 10H 
DO RET NC OF RST 18H 
CO RET NZ E7 RST 20H 
FO RET P EF RST 28H 
EB RET PE F7 RST 30H 
EO RET PO FF RST 38H 
C8 RET Z DE20 SBC A,n 
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OBJ SOURCE OBJ SOURCE 
CODE STATEMENT CODE STATEMENT 

9E sec A,IHLI 00CB05E6 SET 4,IIX+d) 
DD9E05 SBC A,IIX+dl FOCB05E6 SET 4,IIY+dl 
FD9E05 SBC A,IIY+dl CBE7 SET 4,A 
9F sec A,A CBEO SET 4,B 
98 SSC A,S CBEl SET 4,C 
99 sec A,C CBE2 SET 4,D 
9A sec A,O CBE3 SET 4,E 
9B SBC A,E CBE4 SET 4,H 
9C SBC A,H CBE5 SET 4,L 
90 SBC A,L CBEE SET 5,IHLI 
E042 SBC HL,BC 00CB05EE SET 5,IIX+dl 
ED52 SBC HL,DE FOCB05EE SET 5,(IY+d) 
E062 SBC HL,HL CBEF SET 5,A 
E072 SBC HL,SP CBES SET 5,B 
37 
ceC6 
00ce05C6 
FDCB05C6 
CBC7 
CBCO 
CBCl 
CBC2 
CBC3 
CBC4 
CBC5 
CBCE 
00CB05CE 
FOCB05CE 
CBCF 
CBCB 
CBC9 
CBCA 
CBCB 
CBCC 
CBCO 

SCF 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 

O,IHLI 
O,OX+dl 
O,IIY+d) 
O,A 
O,B 
O,C 
0,0 
O,E 
O,H 
O,L 
l,(HLI 
1,IIX+d) 
l,IIY+dl 
l,A 
1,B 
l,C 
1,0 
1,E 
l,H 
l,L 

CBE9 
CBEA 
CBEB 
CBEC 
CBEO 
CBF6 
00CB05F6 
FOCB05F6 
CBF7 
CBFO 
CBF1 
CBF2 
CBF3 
CBF4 
CBF5 
CBFE 
ODCB05FE 
FDCB05FE 
CBFF 
CBF8 
CBF9 

SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 
SET 

5,C 
5,0 
5,E 
5,H 
5,L 
6,IHLI 
6,IIX+d) 
6,IIY+dl 
6,A 
6,B 
6,C 
6,0 
6,E 
6,H 
6,L 
7,(HLI 
7,IIX+d) 
7,IIY+d) 
7,A 
7,B 
7,C 

CB06 SET 2,(HLI CBFA SET 7,D 
00CB0506 SET 2,IIX+d) CBFB SET 7,E 
FOCB0506 SET 2,IIY+d) CBFC SET 7,H 
CB07 SET 2,A CBFO SET 7,L 
CBOO SET 2,B C826 SLA IHLI 
CBOl SET 2,C ODCB0526 SLA IIX+d) 
CB02 SET 2,0 FDCB0526 SLA IIY+d) 
CB03 SET 2,E CB27 SLA A 
CB04 SET 2,H CB20 SLA B 
CB05 SET 2,L CB21 SLA C 
CB08 SET 3,B CB22 SLA D 
ceDE SET 3,IHLI CB23 SLA E 
00CB050E SET 3,IIX+d) CB24 SLA H 
FDCB05DE 
CBOF 

SET 
SET 

3,IIY+d) 
3,A 

CB25 
CB2E 

SLA 
SRA 

L 
IHLI 

CB09 SET 3,C DDCB052E SRA IIX+d) 
CBOA 
ceOB 

SET 
SET 

3,0 
3,E 

FDCB052E 
CB2F 

SRA 
SRA 

IIY+d) 
A 

CBDC SET 3,H CB28 SRA B 
CBOO 
CBE6 

SET 
SET 

3,L 
4,(HLI 

CB29 
CB2A 

SRA 
SRA 

C 
D 
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PROGRAMMING THE zao 

OBJ 


CODE 


CB2B 
CB2C 
CB2D 
CB3E 
DDCB053E 
FDCB053E 
CB3F 
CB38 
CB39 
CB3A 
CB3B 
CB3C 
CB3D 
96 
DD9605 
FD9605 
97 
90 
91 
92 
93 
94 
95 
D620 
AE 
DDAE05 
FDAE05 
AF 
A8 
A9 
AA 
AB 
AC 
AD 
EE20 

SOURCE 

STATEMENT 


SRA E 
SRA H 
SRA L 
SRL IHLI 
SRL (lX+dl 
SRL (IY+dl 
SRL A 
SRL B 
SRL C 
SRL D 
SRL E 
SRL H 
SRL L 
SUB (HLI 
SUB (iX+dl 
SUB (lY+dl 
SUB A 
SUB B 
SUB C 
SUB D 
SUB E 
SUB H 
SUB L 
SUB 
XOR (HLI 
XOR (lX+d) 
XOR (lY+dl 
XOR A 
XOR B 
XOR C 
XOR D 
XOR E 
XOR H 
XOR L 
XOR 

(Courtesy ofZilog Inc.) 
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APPENDIXF 

Z80 to 8080 EQUIVALENCE 

Z80 8080 Z80 8080 Z80 8080 

ADCA, (HLI ADCM EX (SPI, HL XTHL ORn ORI [B2] 

ADCA, n ACI [B2] HALT HLT ORr ORAr 

ADCA, r ADCr INA, (n) IN [B2] OR (HLI ORAM 

ADDA, (HL) ADDM INCBC INXB OUT (n), A OUT [82] 

ADDA, n ADI [82] INC DE INX 0 POPAF POPPSW 

ADDA,r ADDr INCHL INXH POPBC POPB 

ADD HL, BC DADB INCr INRr POP DE POPD 

ADD HL, DE 

ADD HL, HL 

DADD 

DADH 

INCSP 

INC (HL) 

INXSP 

INRM 

POPHL 

PUSH AF 

POPH 

PUSH PSW 
,. 

ADDHL, SP DADSP JP (, nn JC [62] [63] PUSH 6C PUSH 6 

ANDn ANI [62] JPM, nn JM [82][83] PUSH DE PUSHD 

ANDr ANAr JP NC, nn JNC [62] [63] PUSH HL PUSH H 

AND (HLI ANAM JP nn JMP [62] [63] RET RET 

CALLC, nn CC [62] [B3J JP NZ, nn JNZ [82J [B3) RETC RC 

CALLM, nn CM [82} [B3} JP P, nn JP [B2] [83] RETM RM 

CALL NC, nn CNC [82] [B3] JP PE, nn JPE [82][B3] RETNC RNC 

CAll nn CALL JP PO, nn JPO [B2][B3] RET NZ RNZ 

CALLNZ, nn CNZ [62] [63] JP Z, nn JZ [82] [83] RET P RP 

CALL P, nn CP [82J [83} JP (HL) PCHL RET PE RPE 

CAll PE, nn CPE [82] [B3J LD A, (DE) LDAX RET PO RPO 

CALL PO, nn CPO [62] [83] LOA, (nn) LDA [82J [B3] RETZ RZ 

CALLZ, nn CZ [B2] [83] LO DE, nn LXID, [B2J [83J RLA RAL 

CCF 

CPr 

CP(HL) 

CMC 

CMPr 

CMPM 

LD SP, nn 
LD (8C), A 

LD (DE), A 

LXI SP, [82J [83J 

STAX8 

STAXD 

RLCA 

RRA 

RRCA 

RLC 

RAR 

RRC 

CPL 

CP n 
DAA 

DEC8C 

CMA 

CPI [B2] 
DAA 

DCXB 

LD (HL), r 

LD (nnl, A 

LD (nn), HL 

LDA, (BC) 

MOVM,r 

STA [82J [63J 

SHLD [82J [B3J 

LDAXB 

RSTP 

SBCA, (HL) 

SBCA, n 

S6CA, r 

RSTP 

S8BM 

S81 [B2J 
SSB r 

DEC DE 

DECHL 

DECr 

DECSP 

DEC (HL) 

01 

DCXD 

DCX H 

DCRr 

DCXSP 

DCRM 

01 

lD BC, nn 

LDHL, (nn) 

LD HL, nn 

LDr, (HC) 

LDr, n 
LD r, r I 

LXI8, [B2) [B3J 

LHLD [B2J [63J 

LXI H [B2] [B3] 

MOVI,M 

MVlr, [82] 

MOVrl, r2 

SCF 

SUBn 

SUBr 

SUB(HL) 

XORn 

XORr 

STC 

SUI [B2] 
SUBr 

SU8M 

XRI [82] 

XRAr 

EI EI LD SP, HL SPHL XOR(HLI XRAM 

EX DE, HL XCHG NOP NOP 
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APPENDIXG 

8080 to Z80 EQUIVALENCE 

8080 Z80 8080 Z80 8080 Z80 

ACI [B2J ADCA, n IN [62J INA, (n) POPH POPHL 

ADCM ADCA, (HL) INRM INC (HL) POPPSW POPAF 

ADCr ADCA, r INRr INCr PUSH 6 PUSH 6C 
ADDM ADD A, (HL) INX6 INCBC PUSH 0 PUSH DE 
ADDr ADDA, r INXD INCDE PUSHH PUSH HL 

ADI [B2J ADDA, n INX H INCHL PUSH PSW PUSH AF 

ANAM AND(HL) INXSP INCSP RAL RLA 

ANAr ANDr JC [62J [63J JPC, nn RAR RRA 

ANI [B2J ANDn JM [62J [63J JP M, nn RC RETC 

CALL CALL nn JMP [62J [63J JP nn RET RET 

CC [82] [83] CALLC, nn JNC [82] [83] JP NC, nn RLC RLCA 

CM [82] [63] CALLM, nn JNZ [82] [63] JP NZ, nn RM RET M 

CMA CPl JP [82J [83J JP P, nn RNC RETNC 

CMC CCF JPE [82] [B3] JP PE, nn RNZ RETNZ 

CMPM CP(HL) JPO [82J [B3] jp po, nn RP RET P 

CMPr 

CNC [62J [83J 

CPr 

CALL NC, nn 
JZ [82] [63] 

LDA [B2J [63] 

JP Z, nn 

lD A, (nn) 

RPE 

RPO 

RET PE 

RET PO 

CNZ [B2J [63J CAll NZ, nn LDAX B lOA, (BC) RRC RRCA 

CP [82] [B3J CALL P, nn LDAXD LDA, (DE) RST RSTP 

CPE [62] [83] CALL PE, nn lH lD [82] [B3J LDHL, (nn) RZ RETZ 

CPI [62] CP n lXI 6 [62) [83J lD SC, nn SBBM SBCA, (HL) 

CPO [82] [83] CAll PO, nn LDID [62J [83] LD DE, nn S6B r SBCA, r 

cz [62J [B3J CALL Z, nn LXI H [82] [83] LD HL, nn S81 [62) S6CA, n 

DAA DAA LXI SP [82J [83J LD SP, nn SHLD [82J [63J LD (nn), Hl 

DAD 8 ADD HL, BC MOVM,r LD (Hl), r SPHl lDSP, Hl 

DADD 

DADH 

ADDHL, DE 

ADD Hl, Hl 
MOVr,M 

MOVrl,r2 

LOr, (Hl) 

lD f, r 
, 

STA [62J [63] 

STAX6 

lD (nnJ, A 

LD (BC), A 

DADSP ADD Hl, SP MV1M.lf'l lD (Hl), n STAXD LO (DE), A 

DCRM DEC (Hl) MVlr[62J LD r, n STC SCF 

DCRr DECr NOP NOP SUBM SUB (Hl) 

DCXB DECBC ORAM. OR{HL) SUBr SUBr 

DCXD DEC DE ORAr ORr SUI [B2J SUBn 

DCX H DECHL ORI [62J ORn XCHG EX DE, HL 

DCXSP DECSP OUT [B2J OUT (n), A XRAM XOR (Hl) 

DI 

EI 

DI 

EI 
PCHL 

POPB 

JP(HL) 

POP8C 

XRAr 

XRI [B2) 

XORr 

XORn 

HALT HlT POPD POP DE XTHl EX (SP), Hl 
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INDEX 


A 
absolute addressing J08, 439, 446 

ACT 61 

accumulator 439 

ADC 101 

ADC,A,s 190 

ADC HL, ss 192 

ADD 101 

ADD A, (HL) 84, 194 

ADD A, (IX + d) 196 

ADDA,(lY + d) 198 

ADDA, n 67,200 

ADDA,r 67,75,76,201 

ADD HL, ss 203 

ADD IX, rr 205 

ADD IY, rr 207 

addition 58,95, 100, 105 

address bus 47 

address registers 51 

addressing 438,442 

addressing modes 438,440,444,445 

addressing techniques 438 

algorithm 15, 16, 114,539 

alphabetic list 558,565,569,570 

alphanumeric data 39 

ALU 46, 77,85 

AND 166,167 

ANDs 2~ 


application examples 520 

arithmetic-logical unit 46, 61 

arithmetic programs 94 

arithmetic shift 119 

ASCII 39, 524,525 

ASCII conversion table 40 

assembler 96, 582, 590 

assembler directives 596, 598 

assembler fields 590 

assembly-language 67,580,592 

assigning a value 593 

asynchronous 471,496,518 

automated Z80 


instructions 142,453,455 

B 
B 62 

banks of registers 62 

BASIC 24 

basic architecture 46 

basic concepts IS 

basic programming choices 579 

basic programming techniques 94 

BCD 35,37,525 

BCD addition 107, 110 

BCD arithmetic 107 

BCD block transfers 530 

BCD flags 112 

BCD representation 35 

BCD subtraction 110 

BCD table 35 

benchmark 470 

binary 20,21,22,41,45 

binary code 19 

binary digit 18 

binary division 133 

binary logic 18 

binary representation 41 

binary search 546,558,559,560, 


561, 566, 567,568 

BIT b, (HL) 211 

BIT b, (IX + d) 213 

BIT b, (lY + d) 215 

BITb, r 217 

bit 18,20,41 

bit addressing 448 

bit manipulation 172,173 

bit serial transfer 471,472 

block 540,542,544 

block transfer 450,451,453,458,530 

block transfer 


instructions 163,450,452 

bootstrap 48 

bracket testing 523 

branch instruction 441 

branching point 115 

break character 467 
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breakpoint 584,586 

bubble-sort 533,534,535,536,537 

buffer register 59,61 

buffered 49 

buffers 61 

bus request 497 

BUSRQ 92,497 

byte 18,19,41,444 


C 

C 28, 30, 31, 62, 73 

CALL 145,156,446,500 

CALLcc, pq 219 

CALLpq 222 

CCF 224 

CALL SUB 143, 144, 145 

carry 22,23,26,28,30,174 

central-processing unit 46 

checksum computation 528 

circular list 544,545 

classes of instructions 154 

clearing memory 520 

clock 47 

clock cycles 69 

clock-synchronous logic 86 

code conversion 525 

coding 16 

combination chips 48 

commands 16 

comment field 590 

compare 531 

compiler 545,581,582 

COND 600 

conclusion 602 

conditional assembly 600 

conditional instruction 50 

constants 439,445,594 

control box 49 

control bus 47 

control instructions 157,185 

~ontrol registers 512,513,515 


·-control signals 91 

control unit 46 

count the zeroes 529 

counter 463,465 

CP 166 

CPs 225 

CPD 227 

CPDR 229 


CPI 231 

CPIR 233 

CPL 165,235 

CPU 46, 187 

critical race 60 

CRT display 44,587 

crystal 47 

CU 46 


D 
D 62,74 

DAA 109,236 

data buffer 511 

data bus 47 

data counters 51 

data direction register 512 

data processing 155 

data processing instructions 164 

data ready 469 

data representation 548 

data structures 539 

data transfers 154, 158, 160 

debugger 583 

debugging 18 

decimal 20,21,22 

DECm 238 

DECrr 240 

DEC IX 242 

DECIY 243 

decode 71,86 

decoding 56 

decoding logic 49 

decrement 164,442 

DEFB 596 

DEFL 596 

DEFM 597 

DEFS 597 

DEFW 596 

delay generation 463 

delay loop 464,483 

deleting 553,565,574 

design examples 548 

destination register 67 

development systems 587 

DFB 596 

DI 244 

direct addressing 439,441 

direct binary 19 

direction register 515 
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INDEX 

directives 146,571,580,594 F 
directories 541,545 F 61 
disk operating system 541,582 fetch 55,70,84 
displacement 63 fetch-execute overlap 78 
displacement field 442 FIFO 543 
DJNZe 245 file directory 541 
DMA 491,498 flags 31,50,51,179,180 
documenting 97 flags register 61 
DOS 582 flip-flops 51 
doubly-linked lists 545,546 floating point representation 37,38 
double-precision format 34 flowcharting 16,17,114, 
drivers 49 450,464,469,494,559 

front panel 45,589 

G 
general purpose registers 51 

E getting characters in 522 
E 62 
EBCDIC 39 H 
echo 486 H 62,176 
editor 583 half-carry flag (H) 176 
EI 247 HALT 92,185,257 
8-bit addition 95 handshaking 477,478,511 
8-bit division 134,137 hardware 93 
element deletion 564 hardware delays 465 
element insertion 550,563 hardware organization 46 
emulator 583 hardware resources 587,589 
END 597 HEX 525 
ENDC 600 hexadecimal 41,42,481 
ENDM 597 hexadecimal coding 43,579 
EPROM's 585 high byte 103 
EQU 596 high level language 581 
error 586 
error messages 592 
EXAF,AFl 162 63 
exchaI:1ge instructions 162 IFFI 499 
Exclusive ORing 31 IFF2 499 
EXDE,HL 249 illegal code 107 
executable statements 16 IMO 258 
execute 71 1M I 259 
execution 56,69,599 1M2 260 
execution cycle 55 immediate addressing 108,159,439,445 
exponent 37,38 immediate operation '69·' 
EX (SP), HL 250 implicit addressing 438,445 
EX(SP),IX 252 implied addressing 438 
EX(~P),IY 254 improved multiplication 126, 128, 129 
extended addressing 160,441,446 IN r, (C) 261 
external representation INA, (N) 263 

of information 41,44 in-circuit emulator 585 
EXX 256 INC (HL) 267 
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INCr 264 
increment 164,442 
incrementer 57 
INCrr 265 
INC (IX + d) 268 
INC (lY + d) 270 
INC IX 272 
INC IY 273 
INO 274 
index register 53,63,441,442 
indexed addressing 160,441,447,540 
indexing 63 
indirect addressing 443,444,448, 540 
indirect indexed addressing 443 
indirect memory access 499 
IN OR 276 
information representation 18 
in-house computer 588 
INI 278 
INIR 280 
input/output 157,460,518 
input/output devices 511,521 
input/output instructions 183,460 
input register 466 
inserting 552,573 
instruction 96 
instruction field 590 
instruction formats 66 
instruction register 55,64 
instruction set 154 
instruction types 112 
INT 91 
internal control registers 51,513 
internal representation 

of information 18 
interpreted 69 
interpreter 545,581,582 
interrupt 466,496,497,500,505, 

508,509,511 
interrupt acknowledge 500 
interrupt flag 187 
interrupt handler 502 
interrupt logic 510 
interrupt-mask-bit 499 
interrupt mode 0 500 
interrupt mode I 503 
interrupt mode 2 504 
interrupt overhead 504 
interrupt-page addressing register 63 

interrupt table 

interrupt vector 

interrupts 

I/O control 

10RQ 

IR 

IX 

IY 


J 
IPcc, pq 
IPnn 
IPpq 
IP(HL) 
IP (IX) 
IP (lY) 
IR cc, e 
IRe 
JUMP 
jump instruction 
jump relative (JR) 

K 
IK 

L 
L 
label field 
largest element 
LOA, (n, n) 
LOO,C 
LOO 
LOOR 
LDI 
LDIR 
LOdd, (nn) 
LOdd, nn 
LOr,n 
LOr, r 
LOr, rl 

LO(BC),A 
LO(OE),A 
LO(HL), n 
LO(HL), r 
LOr, (HL) 
LOr, (IX + d) 
LOr,(lY + d) 
LO(IX + d), n 
LO(IY + d), n 

504 
498 
495 
92 

92,500 
55 

53,63 
63 

282 
89 

284 
285 
286 
287 
288 
290 

90,172,179,441 
156, 182 
446,447/ 

24 

62 
590 

526,527 
69,86 

72 
164 
164 
164 

142, 164 
291 
293 
295 
66 

297 
299 
300 
301 
303 
356 
305 
307 
309 
311 
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LD(lX + d), r 
LD(lY + d), r 
LD(nn), A 
LD (nn), A 
LD (nn), dd 
LD(nn), HL 
LD(nn), IX 
LD(nn),IY 
LDA, (BC) 
LDA, (DE) 
LDA, I 
LDI,A 
LDA,R 
LD HL, (nn) 
LD IX, nn 
LD IX, (nn) 
LD IY, (nn) 
LD IY, nn 
LDR,A 
LDSP, HL 
LD SP, IX 
LDSP,IY 
LDD 
LDDR 
LDI 
LDIR 
LED 
LIFO structure 
light emitting diodes 
linked list 542, 544, 568, 571, 573, 

574,577,578 
linked loader 583 
list 540,548,549,550,555,556,557 

313 
315 
317 
319 
321 
323 
325 
327 
329 
330 
331 
332 
333 
334 
336 
338 
340 
342 
344 
345 
346 
347 
348 
350 
352 
354 

41,480 
540, 544 

41 

listing 
list pointer 
literal 
load 
loader 
logarithmic searching 
logical 
logical errors 
logical operations 
logical shift 
long addressing 
longer delay 

M 

machine cycle 

MACRO 


590 
542 

69,439,455,594 
%,106 

583 
546,562 
166,558 

582 
141 
119 
449 
464 

69 
597,598,600 

mantissa 
MASK 
memory cycles 
memory map 
memory-mapped I/O 
memory-refresh register 
micro instructions 
mnemonic 
Ml 
modes 
monitor 
monitoring 
MOS Technology 6502 
MPU 
MPU pinout 
MREQ 
mUltiple devices 
mUltiple LED's 
multiple precision 
mUltiplexer 
multiplication 

MUX 

N 

N 

NEG 
negative 
nested calls 
nibble 
NMI 

INDEX 

38 
168,522 

55 
453,586 

157 
64 
86 

67,579 
92 

444 
48,582 

467 
452 

52,59 
91 
92 

506 
482 

98 
52,62 

113, 114, 115, 116, 
124, 151, 152, 153 

52,62 

34 
358 

24,26,32 
145 

18,36 
91,92,498 

nonmaskable interrupt 498 
nonrestoring method 133 
NOP 359 
NOPs 92 
normalize 37 
normalized mantissa 37 

o 
octal 
odometer 
one's complement 
one-shot 
opcode 
operand 
operating system 

41,42 
465 

25 
466 

66,86,439,444,446 
100, 102,438,439 

582 
operator precedence 587 
OR 166, 168 
ORs 360 
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pulse 462,467 
pulse counting 466 
punch 495 
PUSHqq 379 
PUSH IX 381 
PUSHIY 383 
push 53,76,154 

Q 
queue 543,544 

R 
R 64 
RAM 48,75,584,587 
random element 541 
RLCA 385 
RD 92 
read operation 96,515 
read-only memory 48 
read-write memory 48, 75 
recursion 148 
reference table 571 
register addressing 438 
regIster indirect addressing 444,448 
register-interrupt 184 
register pairs 51 
registers 31,51,149,439,474 
relative addressing 441,446 
relative jump 156 
relays 461,462 
request blocks 543 
RESb, s 386 
RESET 92 
restoring method 133 
RET 389 
RETcc 391 
RETI 181,393,501 
RETN 181,395,499 
RETURN 144, 145 
RFSH 93 
RLs 397 
RLA 399 
RLCr 103 
RLC(HL) 402 
RLC (IX + d) 404 
RLC(IY + d) 406 
RLD 408 
ROM 48 
rotation 120,155,170,171 

ORG 
OTDR 
OTIR 
OUT(C), r 
OUT(N),A 
OUTD 
OUT I 
output register 
overdraw 
overflow 
overlap technique 

P 
packed BCD 
packed BCD subtract 
paper-tape readers 
parallel input/output 
parallel work transfer 
parity bit 
parity generation 
parity/overflow (P/V) 
PC 
PIC 
PIO 48,511,512,513,514,515,518 
pointers 51,62,444,539, 544, 550, 551 
polling 466,469,492,521,544 

596 
362 
364 
366 
368 
369 
371 
461 
133 

28,30,31,32 
79 

36,107 
llO, III 

494 
48 

467,468,469 
39,40 

524 
175 
52 

446,506 

polling loop 
POPqq 
POP IX 
POPIY 
pop 
port 
positional notation 
positive 
post-indexing 
power failures 
pre-indexing 
printer 
program 
program counter 

493,494 
373 
375 
377 

53,76, 154 
511,515,516 

20 
24,26,32 
442,443 

48 
442 

44,479,495 
16,48 

52 
program development 579,584 
program loops 63, 121 
programmable input/output chip 511 
programmable interval 

timer (PIT) 463,465 
programmer's model 94 
programming 15,16,515,518,602 
programming language 16 
pseudo-instructions 98 
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rotate 50, 156 

round robin 544,545 

RRs 410 

RRA 412 

RRCs 413 

RRCA 415 

RRD 416 

RST 183,500 

RSTp 418 

rubout 467 


S 

S 178 

saving the registers 502 

SBCA, s 420 

SBCHL, ss 422 

SCF 424 

scheduling 491 

searching 551,558,572 

segment drivers 484 

segments 480,541 

sensing pulses 466 

sequential lists 540 

sequential searching 546 

service routing 492 

SETb, s 425 

seven-segment light-emitting 


diode (LED) 480, 481 

shift 50, 118, 120, 155, 156 

short addressing 441,446,449 

short instruction 19 

sign 178 

signal 461 

signed binary 24, 25 

signed numbers 532 

simple list 551 

simulator 583 

simultaneous interrupts 507 

single-board microcomputers 587 

16-bit accumulator 103 

16 by 8 division 134, 135 

16 by 16 mUltiplication 130,131 

skew operations 169 

skip 157 

SLAs 428 

software aids 582, 587 

SP 53 

special digit instructions 172 

speed 476 


INDEX 

SRAs 430 

SRLs 432 

stack 53,146,149,496,508,539,544 

stack pointer 53,540 

standard architecture 49 

standard PIO 511 

status 31,85,476,515 

status bits 50, 512 

status register 50 

storing operands 102 

string of characters 490 

SUB A, s 434 

subroutine call 143, 146 

subroutine library 150 

subroutine mechanism 144 

subroutine parameters 149 

subroutines 142, 147,443, 598 

subtraction 104 

subtract (N) 175 

sum of N elements 527, 528 

symbolic 41,44 

symbols 592, 593 

synchronous 471,496 

syntactic ambiguity 16 

syntax 544 

system architecture 46 


T 
tables 526,539, 540, 551, 554, 592 

technological development 602 

teletype 466, 485, 487, 488, 489 

temporary register 61 

test 16, 156, 172 

testing a character 523 

timer 465 

time-sharing system 588 

timing 463 

trace 585 

transfers 52 

trees 544,545 

truncating 34 

truth table 167 

two's complement 25,26,27,29 

two-level directory 541 


U 
UART 477,518 

underflow 32 

utility routines 583 
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V X 
V 28,30,31 XOR 166, 169 
$ 137 XORs 436 
vectoring of interrupts 504 

Z 
W Z 87, 177 
W 87 Z80 registers 95 
WAIT 92 zero 177 
working registers 496 zero page addressing 441,446 
WR 92 Zilog Z80 PIO 516,517 

Zilog Z80 SIO 518 
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The SYBEX Library 


BASIC PROGRAMS FOR 
SCIENTISTS AND ENGINEERS 
by Alan R. Miller 340 pp., 120 illustr., Ref. B240 
This second book in the "Programs for Scientists 
and Engineers" series provides a library ofproblem 
solving programs while developing proficiency in 
BASIC, 

INSIDE BASIC GAMES 
by Richard Mateoslan 
350 pp., 240 IIIuSlr., Ref. B245 
Teaches interactive BASIC programming through 
games, Games are written in Microsoft BASIC 
and can run on the TRS-80, APPLE II and 
PET/CBM. 

FIFTY BASIC EXERCISES 
by J.P. Lamoltler 240 pp., 195 mustr., Ref. B250 
Teaches BASIC by actual practice using gradu­
ated exercises drawn from everyday applications. 
All programs written in Microsoft BASIC. 

EXECUTIVE PLANNING 
WITH BASIC 
by X.T. Bul 192 pp., 19 illustr., Ref. B380 
An important collection ofbusiness management 
decision models in BASIC, including Inventory 
Management (EOQ), Critical Path Analysis and 
PERT, Financial Ratio Analysis, Portfolio Man­
agement, and much more. 

BASIC FOR BUSINESS 
by Douglas Hergert 
250 pp., 15 illustr., Ref. B390 
A logically organized, no-nonsense introduction 
to BASIC programming for business applications. 
Includes many fully explained accounting pro­
grams, and shows you how to write them. 

BASIC EXERCISES 
FOR THE APPLE 
by J.P. Lamoltler 230 pp., 80 illustr., Ref. BSoo 
For all Apple users, this learn-by-doing book is 
written in APPLESOFT II BASIC. Exercises 
have been chosen for their educational value and 
application to math, physics, games, business, 
accounting, and statistics. 

YOUR FIRST COMPUTER 
by Rodnay Zaks 260 pp., 150 IlIustr., Ref. C200A 
The most popular introduction to small com­
puters and their peripherals: what they do and 
how to buy one. 

DON'T 

(or How to Care for Your Computer) 

by Rodnay Zaks 220 pp., 100 lIIustr., Ref. C400 
The correct way to handle and care for all 
elements of a computer system including what to 
do when something doesn't work. 

INTRODUCTION TO WORD 
PROCESSING 
by Hal Glatzer 200 pp., 70 iIIustr., Ref. WIOI 
Explains in plain language what a word processor 
can do, how it improves productivity, how to use 
a word processor and how to buy one wisely. 

INTRODUCTION TO WORDSTAR 
by Arthur Naiman 200 pp., 30 iIIustr., Ref. WI05 
Makes it easy to learn how to use WordStar, a 
powerful word processing program for personal 
computers. 

FROM CHIPS TO SYSTEMS: 
AN INTRODUCTION TO 
MICROPROCESSORS 
by Rodnay Zaks 560 pp., 25S iIIustr., Ref. C20lA 
A simple and comprehensive introduction to 
microprocessors from both a hardware and soft­
ware standpoint: what they are, how they 
operate, how to assemble them into a complete 
system. 

MICROPROCESSOR 
INTERFACING TECHNIQUES 
by Rodnay Zaks and Austin Lesea 
460 pp., 400 Illustr., Ref. C207 
Complete hardware and software interconnect 
techniques including D to A conversion, periph­
erals, standard buses and troubleshooting. 

PROGRAMMING THE 6502 
by Rodnay Zaks 390 pp., 160 JIlustr., Ref. C202 
Assembly language programming for the 6502, 
from basic concepts to advanced data structures. 

6502 APPLICATIONS BOOK 
by Rodnay Zaks 280 pp., 205 IIIustr., Ref. 0302 
Real life application techniques: the input/out­
put book for the 6502. 



ADVANCED 6502 PASCAL PROGRAMS FOR 
PROGRAMMING SCIENTISTS AND ENGINEERS 
by Rodnay Zaks 300 pp., 140 JlJustr., Ref. 0402 
Third in the 6502 series. Teaches more advanced 
progriunming techniques, using games as a frame­
work for learning. 

PROGRAMMING THE Z80 
by Rodnay Zaks 620 pp., 200 IlIustr., Ref. C280 
A complete course in programming the Z80 
microprocessor and a thorough introduction to 
assembly language. 

PROGRAMMING THE Z8000 
by Richard Mateosian 
300 pp., 125 JlJustr., Ref. C2S1 
How'to program the Z8000 16-bit micropro­
cessor. Includes a description of the architecture 
and flinction of the Z8000 and its family ofsupport 
chips. 

THECP/M HANDBOOK 
(withMP/M) 
by Rodnay Zaks. 330 pp., 100 llIustr., Ref. C300 
An indispensable reference and guide to CPIM­
the most widely used operating system for small 
computers. 

INTRODUCTION TO PASCAL 
(Including UCSD PASCAL) 
by Rodnay Zaks 420 pp., 130 Illustr., Ref. P310 
A step-by-step introduction for anyone wanting 
to learn the Pascal language. Describes UCSD 
and Standard Pascals. No technical background 
is assumed. 

THE PASCAL HANDBOOK 
by Jacques Tiberghien 
490 pp., 350 Illustr., Ref. P320 
A dictionary of the Pascal language, defining 
every reserved word, operator, procedure and 
function found in all major versions of Pascal. 

by Alan Miller 400 pD., 80 Illustr., Ref. P340 
A comprehensive cdflection of frequently used 
algorithms for scientific and technical applications, 
programmed in Pascal. Includes such programs as 
curve-fitting, integrals and statistical techniques. 

APPLE PASCAL GAMES 
by Douglas Hergert and Joseph T. Kalash 
380 pp., 40 iIlustr.. Ref. P360 
A collection of the most popular computer games 
in Pascal challenging the reader not only to play 
but to investigate how games are implemented on 
the computer. 

INTRODUCTION TO UCSD 
PASCAL SYSTEMS 
by Charles T. Grant and Jon Butah 
300 pp., 1 JO iIlustr., Ref. P370 
A simple, clear introduction to the UCSD Pascal 
Operating System for beginners through experi­
enced programmers. 

INTERNATIONAL 
MICROCOMPUTER 
DICTIONARY 
140 pp., Ref. X2 
All the definitions and acronyms of microcom­
puter jargon defined in a handy pocket-size 
edition. Includes translations of the most popular 
terms into ten languages. 

MICROPROGRAMMED APL 
IMPLEMENTATION 
by Rodnay Zaks 350 pp., Ref. ZIO 
An expert-level text presenting the complete 
conceptual analysis and design of an APL inter­
preter, and actual listings of the microcode. 

FOR A COMPLETE CATALOG OF OUR PUBLICATIONS 


U.S.A. 
2344 Sixth Street 
Berkeley, 
California 94710 
Tel: (415) 848-8233 
Telex: 336311 

SYBEX-EUROPE 
4 Place Felix-Eboue 
75583 Paris Cedex 12 
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Tel: 11347-30-20 
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