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PREFACE

This book has been designed as a complete self-contained text for
learning programming, using the Z80. It can be used by a person who
has never programmed before, and should also be of value to anyone
using the Z80.

For the person who has already programmed, this book will teach
specific programming techniques using (or working around) the speci-
fic characteristics of the Z80. This text covers the elementary to inter-
mediate techniques required to start programming effectively.

This text aims at providing a true level of competence to the person
who wishes to program using this microprocessor. Naturally, no book
will effectively teach how to program, unless one actually practices.
However, it is hoped that this book will take the reader to the point
where he feels that he can start programming by himself and can solve
simple or even moderately complex problems using a microcomputer.

This book is based on the author’s experience in teaching more than
1000 persons how to program microcomputers. As a result, it is strongly
structured. Chapters normally go from the simple to the complex. For
readers who have already learned elementary programming, the intro-
ductory chapter may be skipped. For others who have never program-
med, the final sections of some chapters may require a second reading.
The book has been designed to take the reader systematically through
all the basic concepts and techniques required to build increasingly
complex programs. It is, therefore, strongly suggested that the ordering
of the chapters be followed. In addition, for effective results, it is
important that the reader attempt to solve as many exercises as possible.
The difficulty within the exercises has been carefully graduated. They
are designed to verify that the material which has been presented is
really understood. Without doing the programming exercises, it will
not be possible to realize the full value of this book as an educational
medium. Several of the exercises may require time, such as the multi-
plication exercise. However, by doing them, you will actually program
and learn by doing. This is indispensable.

For those who have acquired a taste for programming when reaching
the end of this volume, a companion volume is planned: the Z80 Ap-
plications Book.

13



Other books in this series cover programming for other popular
microprocessors.

For those who wish to develop their hardware knowledge, it is sug-
gested that the reference books From Chips to Systems: an Introduction
to Microprocessors (ref. C201A) and Microprocessor Interfacing
Techniques (ref. C207) be consulted.

The contents of this book have been checked carefully and are
believed to be reliable. However, inevitably, some typographical or
other errors will be found. The author will be grateful for any comments
by alert readers so that future editions may benefit from their experience.
Any other suggestions for improvements, such as other programs
desired, developed, or found of value by readers, will be appreciated.

14



1
BASIC CONCEPTS

INTRODUCTION

This chapter will introduce the basic concepts and definitions re-
lating to computer programming. The reader already familiar with
these concepts may want to glance quickly at the contents of this
chapter and then move on to Chapter 2. It is suggested, however,
that even the experienced reader look at the contents of this intro-
ductory chapter. Many significant concepts are presented here in-
cluding, for example, two’s complement, BCD, and other represen-
tations. Some of these concepts may be new to the reader; others
may improve the knowledge and skills of experienced programmers.

WHAT IS PROGRAMMING?

Given a problem, one must first devise a solution. This solution,
expressed as a step-by-step procedure, is called an algorithm. An
algorithm is a step-by-step specification of the solution to a given
problem. It must terminate in a finite number of steps. This
algorithm may be expressed in any language or symbolism. A sim-
ple example of an algorithm is:

1—insert key in the keyhole

2—turn key one full turn to the left
3—seize doorknob

4—turn doorknob left and push the door

15



PROGRAMMING THE Z80

At this point, if the algorithm is correct for the type of lock in-
volved, the door will open. This four-step procedure qualifies as an
algorithm for door opening.

Once a solution to a problem has been expressed in the form of
an algorithm, the algorithm must be executed by the computer.
Unfortunately, it is now a well-established fact that computers
cannot understand or execute ordinary spoken English (or any
other human language). The reason lies in the syntactic ambiguity
of all common human languages. Only a well-defined subset of
natural language can be ‘‘understood’” by the computer. This is
called a programming language.

Converting an algorithm into a sequence of instructions in a pro-
gramming language is called programming. To be more specific,
the actual translation phase of the algorithm into the program-
ming language is called coding. Programming really refers not just
to the coding but also to the overall design of the programs and
‘““data structures” which will implement the algorithm.

Effective programming requires not only understanding the
possible implementation techniques for standard algorithms, but
also the skillful use of all the computer hardware resources, such as
internal registers, memory, and peripheral devices, plus a creative
use of appropriate data structures. These techniques will be
covered in the next chapters.

Programming also requires a strict documentation discipline, so
that the programs are understandable to others, as well as to the
author. Documentation must be both internal and external to the
program.

Internal program documentation refers to the comments placed
in the body of a program, which explain its operation.

External documentation refers to the design documents which
are separate from the program: written explanations, manuals,
and flowcharts.

FLOWCHARTING

One intermediate step is almost always used between the
algorithm and the program. It is called a flowchart. A flowchart is
simply a symbolic representation of the algorithm expressed as a
sequence of rectangles and diamonds containing the steps of the
algorithm. Rectangles are used for commands, or ‘“‘executable
statements.”” Diamonds are used for tests such as: If information

16



BASIC CONCEPTS

X is true, then take action A, else B. Instead of presenting a formal
definition of flowcharts at this point, we will introduce and discuss
flowcharts later on in the book when we present programs.
Flowcharting is a highly recommended intermediate step be-
tween the algorithm specification and the actual coding of the solu-
tion. Remarkably, it has been observed that perhaps 10% of the
programming population can write a program successfully with-
out having to flowchart. Unfortunately, it has also been observed
that 90% of the population believes it belongs to this 10%! The
result: 80% of these programs, on the average, will fail the first
time they are run on a computer. (These percentages are naturally
not meant to be accurate.) In short, most novice programmers sel-
dom see the necessity of drawing a flowchart. This usually results
in “unclean’ or erroneous programs. They must then spend a long
time testing and correcting their program (this is called the

START

READ TEMPERATURE SETTING “T~
ON THERMOSTAT BOX

I '
READ ACTUAL ROOM TEMPERATURE “R”
FROM THERMOMETER OR OTHER SENSOR

NO

(ROOM
TOO COLD) TOO HOT!)
HEATERON |4 5| HEATER OFF
(OPTIONAL DELAY) (OPTIONAL DELAY)

Fig. 1.1: A Flowchart for Keeping Room Temperature Constant
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PROGRAMMING THE Z80

debugging phase). The discipline of flowcharting is therefore
highly recommended in all cases. It will require a small amount of
additional time prior to the coding, but will usually result in a clear
program which executes correctly and quickly. Once flowcharting
is well understood, a small percentage of programmers will be able
to perform this step mentally without having to do it on paper. Un-
fortunately, in such cases the programs that they write will usual-
ly be hard to understand for anybody else without the documenta-
tion provided by flowcharts. As a result, it is universally recom-
mended that flowcharting be used as a strict discipline for any
significant program. Many examples will be provided throughout
the book.

INFORMATION REPRESENTATION

All computers manipulate information in the form of numbers or
in the form of characters. Let us examine here the external and
internal representations of information in a computer.

INTERNAL REPRESENTATION OF INFORMATION

All information in a computer is stored as groups of bits. A bit
stands for a binary digit(*‘0”’ or *‘1’’). Because of the limitations
of conventional electronics, the only practical representation of infor-
mation uses two-state logic (the representation of the state ‘0’ and
“1’’). The two states of the circuits used in digital electronics
are generally ‘‘on”” or ‘“‘off”’, and these are represented logi-
cally by the symbols ‘0’ or ‘1’’. Because these circuits are
used to implement ‘‘logical”’ functions, they are called ‘“‘binary
logic.” As a result, virtually all information-processing today is
performed in binary format. In the case of microprocessors in
general, and of the Z80 in particular, these bits are structured in
groups of eight. A group of eight bits is called a byte. A group of
four bits is called a nibble.

Let us now examine how information is represented internally in
this binary format. Two entities must be represented inside the
computer. The first one is the program, which is a sequence of
instructions. The second one is the data on which the program will
operate, which may include numbers or alphanumeric text. We will
discuss below three representations: program, numbers, and alpha-
numerics.

18



BASIC CONCEPTS

Program Representation

All instructions are represented internally as single or multiple
bytes. A so-called “short instruction” is represented by a single
byte. A longer instruction will be represented by two or more
bytes. Because the Z80 is an eight-bit microprocessor, it fetches
bytes successively from its memory. Therefore, a single-byte
instruction always has a potential for executing faster than a two-
or three-byte instruction. It will be seen later that this is an impor-
tant feature of the instruction set of any microprocessor and in
particular the Z80, where a special effort has been made to pro-
vide as many single-byte instructions as possible in order to im-
prove the efficiency of the program execution. However, the limita-
tion to 8 bits in length has resulted in important restrictions which
will be outlined. This is a classic example of the compromise be-
tween speed and flexibility in programming. The binary code used
to represent instructions is dictated by the manufacturer. The
7280, like any other microprocessor, comes equipped with a- fixed
instruction set. These instructions are defined by the manufac-
turer and are listed at the end of this book, with their code. Any
program will be expressed as a sequence of these binary instruc-
tions. The Z80 instructions are presented in Chapter 4.

Representing Numeric Data

Representing numbers is not quite straightforward, and several
cases must be distinguished. We must first represent integers, then
signed numbers, i.e., positive and negative numbers, and finally we
must be able to represent decimal numbers. Let us now address
these requirements and possible solutions.

Representing integers may be performed by using a direct
binary representation. The direct binary representation is simply
the representation of the decimal value of a number in the binary
system. In the binary system, the right-most bit represents 2 to
the power 0. The next one to the left represents 2 to the power 1,
the next represents 2 to the power 2, and the left-most bit
represents 2 to the power 7=128.

b;bsb.bb;sb,b,b,

represents
b,2" + be2¢ + b,2° + b,2* + b,2° + b,22 + b, 2! + b,2°
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PROGRAMMING THE Z80

The powers of 2 are:
2" =128,2°=64,2"=32,2'=16,2°= 8,22 =4,2'=2,2'=

The binary representation is analogous to the decimal representa-
tion of numbers, where ‘123"’ represents:

1 X 100 = 100
+2X 10= 20
+3X 1= 3

= 123

Note that 100 = 10?% 10 = 10!, 1 = 10°

In this “‘positional notation,’’ each digit represents a power of 10.
In the binary system, each binary digit or ‘‘bit’’ represents a power
of 2, instead of a power of 10 in the decimal system.

Example: ‘“00001001°’ in binary represents:

1xX 1=1 (2°
00X 2=0 (29
00X 4=0 (29
1X 8=8 (29
00X 16=0 (29
0X 32=0 (29
00X 64=0 (29
0X128=0 (27
in decimal: =9
Let us examine some more examples:
*“10000001"’ represents:
1X 1= 1
o0X 2= 0
00X 4= 0
00X 8= 0
00X 16= 0
00X 32= 0
00X 64= 0
1 X 128 =128
in decimal: =129

10000001’ represents, therefore, the decimal number 129.

20



BASIC CONCEPTS

By examining the binary representation of numbers, you will
understand why bits are numbered from 0 to 7, going from right to
left. Bit 0 is “‘b,” and corresponds to 2°. Bit 1 is “‘b,” and cor-
responds to 2!, and so on.

Decimal Binary Decimal Binary
0| 00000000 32 | 00100000
1| 00000001 33 | 00100001
21 00000010 .
3| 00000011 .

41 00000100 .

51 00000101 63 | 00111111
6| 00000110 64 | 01000000
71 00000111 65 | 01000001
81 00001000 .

91 00001001 °

10 | 00001010 127 | 01111111
11 | 00001011 128 | 10000000
12 1 00001100 129 | 10000001
13 |1 00001101

14 | 00001110 .

15 | 00001111 .

16 | 00010000

17 | 00010001 .

. 254 | 11111110
31 ) 00011111 255 | 11111111

Fig. 1.2: Decimal-Binary Table

The binary equivalents of the numbers from 0 to 255 are shown
in Fig. 1-2.

Exercise 1.1: What is the decimal value of “11111100"?

21



PROGRAMMING THE Z80

Decimal to Binary

2]

Conversely, let us compute the binary equivalent of ‘11
decimal:
11+2=35 remains 1 —=1 (LSB)
5+2=2 remains 1 —=1
2 +2=1 remains 0 —=0
1+2=0 remains 1 —1 (MSB)

The binary equivalent is 1011 (read right-most column from bot-
tom to top).

The binary equivalent of a decimal number may be obtained by
dividing successively by 2 until a quotient of 0 is obtained.

Exercise 1.2: What is the binary for 257?

Exercise 1.3: Convert 19 to binary, then back to decimal.
Operating on Binary Data

The arithmetic rules for binary numbers are straightforward.
The rules for addition are:

0+0= 0
O+1= 1
1+0=. 1
1+1=(1) 0

where (1) denotes a ‘“‘carry” of 1 (note that ‘“10” is the binary
equivalent of “2” decimal). Binary subtraction will be performed
by ‘“‘adding the complement’’ and will be explained once we learn
how to represent negative numbers.

Example:
(2) 10
+(1) +01
=(3) 11

Addition is performed just like in decimal, by adding columns,
from right to left:

Adding the right-most column:
10
+01
(0 + 1 = 1. No carry.)
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BASIC CONCEPTS

Adding the next column:
10
+91
11 (1 + 0 =1. No carry.)

Exercise 1.4: Compute 5 + 10 in binary.Verify that the result is 15.

Some additional examples of binary addition:

0010 2) 0011 (3)
+0001 (1) +0001 (1)
=0011 (3) =0100 (4)

This last example illustrates the role of the carry.

Looking at the right-most bits: 1 + 1 = (1) 0
A carry of 1 is generated, which must be added to the next bits:

001 — column 0 has just been added
+000 —
+ 1 (carry)
= (1)0 — where (1) indicates a new
carry into column 2.

The final result is: 0100

Another example:

0111 (7)
+0011  + (3)
1010 =(10)

In chis example, a carry is again generated, up to the left-most co-
lumn.

Exercise 1.5: Compute the result of

1111
+0001

=?

23



PROGRAMMING THE Z80

Does the result hold in four bits?

With eight bits, it is therefore possible to represent directly the
numbers “00000000” to *‘11111111,” i.e., “0” to *“255”. Two
obstacles should be visible immediately. First, we are only
representing positive numbers. Second, the magnitude of these
numbers is limited to 255 if we use only eight bits. Let us address
each of these problems in turn.

Signed Binary

In a signed binary representation, the left-most bit is used to in-
dicate the sign of the number. Traditionally, ‘0’ is used to denote
a positive number while 1" is used to denote a negative number.-
Now “11111111” will represent —127, while “01111111" will
represent +127. We can now represent positive and negative
numbers, but we have reduced the maximum magnitude of these
numbers to 127.

Example: ‘0000 0001” represents +1 (the leading “0” is “+",
followed by “000 0001 = 1).

1000 0001 is ~—1 (the leading “1”" is “—"").

Exercise 1.6: What is the representation of *‘—5"" in signed binary?

Let us now address the magnitude problem: in order to represent
larger numbers, it will be necessary to use a larger number of bits.
For example, if we use sixteen bits (two bytes) to represent
numbers, we will be able to represent numbers from —32K to
+32K in signed binary (1K in computer jargon represents 1,024).
Bit 15 is used for the sign, and the remaining 15 bits (bit 14 to bit
0) are used for the magnitude: 2'* = 32K. If this magnitude is still
too small, we will use 3 bytes or more. If we wish to represent large
integers, it will be necessary to use a larger number of bytes inter-
nally to represent them. This is why most simple BASICs, and
other languages, provide only a limited precision for integers. This
way, they can use a shorter internal format for the numbers which
they manipulate. Better versions of BASIC, or of these other
languages, provide a larger number of significant decimal digits at
the expense of a large number of bytes for each number.

Now let us solve another problem, the one of speed efficiency.
We are going to attempt performing an addition in the signed

24



BASIC CONCEPTS

’

binary representation which we have introduced. Let us add “‘—5
and “+7".

+7 is represented by 00000111
—5 is represented by 10000101

The binary sum is: 10001100, or —12

This is not the correct result. The correct result should be +2. In
order to use this representation, special actions must be taken, de-
pending on the sign. This results in increased complexity and re-
duced performance. In other words, the binary addition of signed
numbers does not ‘‘work correctly.” This is annoying. Clearly, the
computer must not only represent information, but also perform
arithmetic on it.

The solution to this problem is called the two’s complement
representation, which will be used instead of the signed binary
representation. In order to introduce two’s complement let us first
introduce an intermediate step: one’s complement.

One’s Complement

In the one’s complement representation, all positive integers are
represented in their correct binary format. For example “+3” is
represented as usual by 00000011. However, its complement ‘“—3”’
is obtained by complementing every bit in the original representa-
tion. Each 0 is transformed into a 1 and each 1 is transformed into
a 0. In our example, the one’s complement representation of *‘—3"’
will be 11111100.

Another example:

+2 is 00000010
—2is 11111101

Note that, in this representation, positive numbers start with a
“0”’ on the left, and negative ones with a ‘1"’ on the left.

Exercise 1.7: The representation of “+6" is “00000110°. What is
the representation of ‘‘—6’’ in one’s complement?

As a test, let us add minus 4 and plus 6:
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PROGRAMMING THE Z80

—41is 11111011
+6 is 00000110

the sum is: (1) 00000001 where (1) indicates a
carry

The “‘correct result’’ should be ‘2", or ‘00000010,

Let us try again:

—3is 11111100
—2is 11111101

The sum is: (1) 11111001

or ‘“—6,” plus a carry. The correct result should be ‘‘—.”> The
representation of ‘‘—5’ is 11111010. It did not work.

This representation does represent positive and negative
numbers. However the result of an ordinary addition does not
always come out ‘‘correctly.” We will use still another representa-
tion. It is evolved from the one’s complement and is called the
two’s complement representation.

Two’s Complement Representation

In the two’s complement representation, positive numbers are
still represented, as usual, in signed binary, just like in one’s com-
plement. The difference lies in the representation of negative
numbers. A negative number represented in two’s complement is
obtained by first computing the one’s complement, and then ad-
ding one. Let us examine this in an example:

+3 is represented in signed binary by 00000011. Its one’s com-
plement representation is 11111100. The two’s complement is ob-
tained by adding one. It is 11111101.

Let us try an addition:

(3) 00000011
+(5) +00000101

=(8) =00001000

The result is correct.
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BASIC CONCEPTS

Let us try a subtraction:

(3) 00000011
(—5) +11111011

=11111110
Let us identify the result by computing the two’s complement:

the one’s complement of 11111110 is 00000001
Adding1 + 1

therefore the two’s complement is 00000010 or +2
Our result above, “11111110" represents ‘‘—2". It is correct.

We have now tried addition and subtraction, and the results were correct
(ignoring the carry). It seems that two’s complement works!

Exercise 1.8:  What is the two’'s complement representation of
“+1272

Exercise 1.9: What is the two’s complement representation of
‘12877

Let us now add +4 and —3 (the subtraction is performed by add-
ing the two’s complement):

+4 is 00000100
—3is 11111101

The result is: (1) 00000001

If we ignore the carry, the result is 00000001, i.e., “1”’ in decimal.
This is the correct result. Without giving the complete mathe-
matical proof, let us simply state that this representation does
work. In two’s complement, it is possible to add or subtract signed
numbers regardless of the sign. Using the usual rules of binary addi-
tion, the result comes out correctly, including the sign. The carry
is ignored. This is a very significant advantage. If it were not the
case, one would have to correct the result for sign every time, caus-
ing a much slower addition or subtraction time.

For the sake of completeness, let us state that two's complement
is simply the most convenient representation to use for simpler
processors such as microprocessors. On complex processors, other
representations may be used. For example, one’s complement may
be used, but it requires special circuitry to ‘‘correct the result.”

27



PROGRAMMING THE Z80

From this point on, all signed integers will implicitly be represented
internally in two’s complement notation.. See Fig. 1.3 for a table of
two’s complement numbers.

Exercise 1.10: What are the smallest and the largest numbers
which one may represent in two’s complement notation, using only
one byte?

Exercise 1.11: Compute the two’s complement of 20. Then com-
pute the two’s complement of your result. Do you find 20 again?

The following examples will serve to demonstrate the rules of two’s
complement. In particular, C denotes a possible carry (or borrow)
condition. (It is bit 8 of the result.)

V denotes a two’s complement overflow, i.e., when the sign of the
result is changed ‘‘accidentally’’ because the numbers are too
large. It is an essentially internal carry from bit 6 into bit 7 (the
sign bit). This will be clarified below.

Let us now demonstrate the role of the carry “C’’ and the overflow
“Vi,‘

The Carry C

Here is an example of a carry:

(128) 10000000
+(129) +10000001

(257) = (1) 00000001
where (1) indicates a carry.

The result requires a ninth bit (bit ‘“‘8”, since the right-most bit is
“0”). It is the carry bit.

If we assume that the carry is the ninth bit of the result, we
recognize the result as being 100000001 = 257.

However, the carry must be recognized and handled with care.
Inside the microprocessor, the registers used to hold information
are generally only eight-bit wide:When storing the result, only bits O to
7 will be preserved.

A carry, therefore, always requires special action: it must be
detected by special instructions, then processed. Processing the
carry means either storing it somewhere (with a special instruc-
tion), or ignoring it, or deciding that it is an error (if the largest
authorized result is “11111111").
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BASIC CONCEPTS

2’s complement

2’s complement

code - code
+ 127 01111111 - 128 10000000
+126 01111110 - 127 10000001
+125 01111101 - 126 10000010
- 125 10000011
+65 01000001 —65 10111111
+ 64 01000000 - 64 11000000
+63 00111111 —63 11000001
+33 00100001 -33 11011111
+32 00100000 -32 11100000
+31 00011111 =31 11100001
+17 00010001 -17 11101111
+16 00010000 -16 11110000
+15 00001111 -15 11110001
+ 14 00001110 - 14 11110010
+13 00001101 -13 11110011
+12 00001100 -12 11110100
+11 00001011 —11 11110101
+10 00001010 -10 11110110
+9 00001001 -9 11110111
+8 00001000 -8 11111000
+7 00000111 -7 11111001
+6 00000110 -6 11111010
+5 00000101 -5 11111011
+4 00000100 -4 11111100
+3 00000011 -3 11111101
+2 00000010 -2 11111110
+1 00000001 -1 11111111
+0 00000000

Fig. 1.3: 2’s Complement Table
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PROGRAMMING THE Z80

Overflow V

Here is an example of overflow:

bit 6
bit 7*}

01000000 (64)
+ 01000001 +(65)
=10000001 =(—127)

An internal carry has been generated from bit 6 into bit 7. This is
called an overflow.

The result is now negative, ‘‘by accident.” This situation must
be detected, so that it can be corrected.

Let us examine another situation:

11111111 (—1)
+11111111 +(-1)

=(1) 11111110 =(—2)

carry

In this case, an internal carry has been generated from bit 6 into
bit 7, and also from bit 7 into bit 8 (the formal ““Carry’”’ C we have
examined in the preceding section). The rules of two’s complement
arithmetic specify that this carry should be ignored. The result is
then correct.

This is because the carry from bit 6 into bit 7 did not change the
sign bit.

This is not an overflow condition. When operating on negative
numbers, the overflow is not simply a carry from bit 6 into bit 7.
Let us examine one more example.

11000000 (—64)
+10111111 (—65)

=(1) 01111111 (+127)

carry

This time, there has been no internal carry from bit 6 into bit 7, but
there has been an external carry. The result is incorrect, as bit 7
has been changed. An overflow condition should be indicated.
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Overflow will occur in four situations:

1—adding large positive numbers

2—adding large negative numbers

3—subtracting a large positive number from a large negative
number

4—subtracting a large negative number from a large positive
number.

Let us now improve our definition of the overflow:

Technically, the overflow indicator, a special bit reserved for this
purpose, and called a ‘“‘flag,”’” will be set when there is a carry from
bit 6 into bit 7 and no external carry, or else when there is no carry
from bit 6 into bit 7 but there is an external carry. This indicates
that bit 7, i.e., the sign of the result, has been accidentally
changed. For the technically-minded reader, the overflow flag is
set by Exclusive ORing the carry-in and carry-out of bit 7 (the sign
bit). Practically every microprocessor is supplied with a special
overflow flag to automatically detect this condition, which re-
quires corrective action.

Overflow indicates that the result of an addition or a subtraction
requires more bits than are available in the standard eight-bit
register used to contain the result.

The Carry and the Querflow

The carry and the overflow bits are called ‘‘flags.”” They are pro-
vided in every microprocessor, and in the next chapter we will
learn to use them for effective programming. These two indicators
are located in a special register called the flags or ‘‘status”
register. This register also contains additional indicators whose
function will be clarified in Chapter 4.

Examples

Let us now illustrate the operation of the carry and the overflow
in actual examples. In each example, the symbol V denotes the
overflow, and C the carry.

If there has been no overflow, V = 0. If there has been an
overflow, V = 1 (same for the carry C). Remember that the rules of
two’s complement specify that the carry be ignored. (The
mathematical proof is not supplied here.)

31



PROGRAMMING THE Z80

Positive-Positive

00000110 (+86)
+ 00001000 (+8)

= 00001110 (+14) V:0 C:0
(CORRECT)
Positive-Positive with Overflow

01111111 (+127)
+ 00000001 (+1)

= 10000000 (—128) V:1 C.0

The above is invalid because an overflow has occurred.
(ERROR)

Positive-Negative (result positive)

00000100 (+4)
+ 11111110 (—2)

=(1)00000010 (+2) V:0 C:1 (disregard)
(CORRECT)
Positive-Negative (result negative)

00000010 (+2)
+ 11111100 (—4)

= 11111110 (—2) V:0 C:0
(CORRECT)
Negative-Negative

11111110 (—2)
+ 11111100 (—4)

=(1)11111010 (—6) V:0 C:1 (disregard)
(CORRECT)
Negative-Negative with Overflow

10000001 (—127)
+ 11000010 (—62)

=(1)01000011 (67) V:1 C:1
(ERROR)
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This time an ‘‘underflow” has occurred, by adding two large
negative numbers. The result would be —189, which is too large to
reside in eight bits.

Exercise 1.12:  Complete the following additions. Indicate the
result, the carry C, the overflow V, and whether the result is correct
or not:

10111111 (—) 11111010 ()
+11000001 () +11111001 —)
= V: C: = V. C:
OO0 CORRECT O ERROR 0 CORRECT 0 ERROR
00010000 () 01111110 ()
+01000000 (—) +00101010 ()
= V. C: = V: C:
0 CORRECT OO ERROR 0 CORRECT 0O ERROR

Exercise 1.13: Can you show an example of overflow when adding a
Dpositive and a negative number? Why?

Fixed Format Representation

Now we know how to represent signed integers. However, we
have not yet resolved the problem of magnitude. If we want to
represent larger integers, we will need several bytes. In order to
perform arithmetic operations efficiently, it is necessary to use a
fixed number of bytes rather than a variable one. Therefore, once
the number of bytes is chosen, the maximum magnitude of the
number which can be represented is fixed.

Exercise 1.14: What are the largest and the smallest numbers
which may be represented in two bytes using two’s complement?

The Magnitude Problem

When adding numbers we have restricted ourselves to eight bits
because the.processor we will use operates internally on eight bits
at a time. However, this restricts us to the numbers in the range
—128 to +1217. Clearly, this is not sufficient for many applications.

Multiple precision will be used to increase the number of digits
which can be represented. A two-, three-, or N-byte format may
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then be used. For example, let us examine a 16-bit, ‘‘double-pre-
cision’’ format:

00000000 00000000  is “‘0”
00000000 00000001 is “1”

01111111 11111111 is ‘32767
11111111 11111111 is “—1"
11111111 11111110 is ‘=27

Exercise 1.15: What is the largest negative integer which can be
represented in a two’s complement triple-precision format?

However, this method will result in disadvantages. When adding
two numbers, for example, we will generally have to add them
eight bits at a time. This will be explained in Chapter 3 (Basic Pro-
gramming Techniques). It results in slower processing. Also, this
representation uses 16 bits for any number, even if it could be
represented with only eight bits. It is, therefore, common to use 16
or perhaps 32 bits, but seldom more.

Let us consider the following important point: whatever the
number of bits N chosen for the two’s complement representation,
it is fixed. If any result or intermediate computation should
generate a number requiring more than N bits, some bits will be
lost. The program normally retains the N left-most bits (the most
significant) and drops the low-order ones. This is called truncating
the result.

Here is an example in the decimal system, using a six digit
representation:

123456
X 1.2

246912
123456

=1481472

The result requires 7 digits! The ‘2" after the decimal point will be
dropped and the final result will be 148147. It has been truncated.
Usually, as long as the position of the decimal point is not lost, this
method is used to extend the range of the operations which may be
performed, at the expense of precision.

The problem is the same in binary. The details of a binary multi-
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plication will be shown in Chapter 4.

This fixed-format representation may cause a loss of precision,
but it may be sufficient for usual computations or mathematical
operations.

Unfortunately, in the case of accounting, no loss of precision is
tolerable. For example, if a customer rings up a large total on a
cash register, it would not be acceptable to have a five figure
amount to pay, which would be approximated to the dollar.
Another representation must be used wherever precision in the
result is essential. The solution normally used is BCD, or
binary-coded decimal.

BCD Representation

The principle used in representing numbers in BCD is to encode
each decimal digit separately, and to use as many bits as necessary
to represent the complete number exactly. In order to encode each
of the digits from 0 through 9, four bits are necessary. Three bits
would only supply eight combinations, and can therefore not en-
code the ten digits. Four bits allow sixteen combinations and are
therefore sufficient to encode the digits ‘0"’ through “9”. It can
also be noted that six of the possible codes will not be used in the
BCD representation (see Fig. 1-4). This will result later on in a potential
problem during additions and subtractions, which we will have to solve.

BCD BCD
CODE SYMBOL CODE SYMBOL

0000 0 1000 8

0001 1 1001 9

0010 2 1010 unused
0011 3 1011 unused
0100 4 1100 unused
0101 5 1101 unused
0110 6 1110 unused
0111 7 1111 unused

Fig. 1.4: BCD Table
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Since only four bits are needed to encode a BCD digit, two BCD digits
may be encoded in every byte. This is called “packed BCD.*’

As an example, “00000000"’ will be 00"’ in BCD. *“10011001”
will be 99",

A BCD code is read as follows:
0010 0001
BCD digit “2”
BCD digit “1” «——
BCD number ¢“21”
Exercise 1.16: What is the BCD representation for *'29''? *‘91°'?
Exercise 1.17: Is *’10100000”’ a valid BCD representation? Why?

As many bytes as necessary will be used to represent all BCD
digits. Typically, one or more nibbles will be used at the beginning
of the representation to indicate the total number of nibbles, i.e.,
the total number of BCD digits used. Another nibble or byte will
be used to denote the position of the decimal point. However, con-
ventions may vary.

Here is an example of a representation for multibyte BCD in-
tegers:

[ [ 3 [ + [ 2 | 2 | 1 ] (3bytes)
e —— T ————
nunfber l number ‘221"
of digits

(up to 255) sign

This represents +221
(The sign may be represented by 0000 for +, and 0001 for —, for
example.)

Exercise 1.18: Using the same convention, represent ‘‘—23123".
Show it in BCD format, as above, then in binary.

Exercise 1.19: Show the BCD for 222" and *‘111", then for the re-
sult of 222 X 111. (Compute the result by hand, then show it in the
above representation.)

The BCD representation can easily accommodate decimal
numbers.
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For example, +2.21 may be represented by:
digit 3 digit 2 digit 1

3 | 2 | +] 2 [ 2 [ 1 |
N — N —

i l l 221

3 digits “.”" is on the +

left of digit 2

The advantage of BCD is that it yields absolutely correct
results. Its disadvantage is that it uses a large amount of memory
and results in slow arithmetic operations. This is acceptable only
in an accounting environment and is normally not used in other
cases.

Exercise 1.20: How many bits are required to encode ‘9999 in
BCD? And in two's complement?

We have now solved the problems associated with the represen-
tation of integers, signed integers and even large integers. We
have even already presented one possible method of representing
decimal numbers, with BCD representation. Let us now examine
the problem of representing decimal numbers in a fixed length for-
mat.

Floating-Point Representation

The basic principle is that decimal numbers must be represented
with a fixed format. In order not to waste bits, the representation
will normalize all the numbers.

For example, “0.000123” wastes three zeros on the left of the
number, which have no meaning except to indicate the position of
the decimal point. Normalizing this number results in .123 X 107,
123" is called a normalized mantissa, ‘‘—3" is called the expo-
nent. We have normalized this number by eliminating all the meaning-
less zeros on the left of it and adjusting the exponent.

Let us consider another example:

22.1 is normalized as .221 x 10?

or M X 10F where M is the mantissa, and E is the exponent.
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It can be readily seen that a normalized number is characterized
by a mantissa less than 1 and greater or equal to .1 in all cases
where the number is not zero. In other words, this can be repre-
sented mathematically by:

1<M<lorl0'<M<10°
Similarly, in the binary representation:
2-'<M<2° (or .5<MK1)

Where M is the absolute value of the mantissa (disregarding the
sign).

For example:

111.01 is normalized as: .11101 X 23,
The mantissa is 11101.
The exponent is 3.

Now that we have defined the principle of the representation,
let us examine the actual format. A typical floating-point represen-
tation appears below.

31 24 23 16 15 8 7 0

| I
S EXP s M A N T I S S A
|

Fig. 1.5: Typical Floating-Point Representation

In the representation used in this example, four bytes are used
for a total of 32 bits. The first byte on the left of the illustration is
used to represent the exponent. Both the exponent and the man-
tissa will be represented in two’'s complement. As a result, the
maximum exponent will be —128. ¢‘S” in Fig. 1-5 denotes the sign
bit.

Three bytes are used to represent the mantissa. Since the first
bit in the two’s complement representation indicates the sign, this
leaves 23 bits for the representation of the magnitude of the man-
tissa.
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Exercise 1.21: How many decimal digits can the mantissa repre-
sent with the 23 bits?

This is only one example of a floating point representation. It is
possible to use only three bytes, or it is possible to use more. The
four-byte representation proposed above is just a common one
which represents a reasonable compromise in terms of accuracy,
magnitude of numbers, storage utilization, and efficiency in
arithmetic operation.

We have now explored the problems associated with the rep-
resentation of numbers and we know how to represent them in in-
teger form, with a sign, or in decimal form. Let us now examine
how to represent alphanumeric data internally.

Representing Alphanumeric Data

The representation of alphanumeric data, i.e. characters, is com-
pletely straightforward: all characters are encoded in an eight-bit
code. Only two codes are in general use in the computer world, the
ASCII Code, and the EBCDIC Code. ASCII stands for ‘*‘ American
Standard Code for Information Interchange,” and is universally
used in the world of microprocessors. EBCDIC is a variation of
ASCII used by IBM, and therefore not used in the microcomputer
world unless one interfaces to an IBM terminal.

Let us briefly examine the ASCII encoding. We must encode 26
letters of the alphabet for both upper and lower case, plus 10
numeric symbols, plus perhaps 20 additional special symbols. This
can be easily accomplished with 7 bits, which allow 128 possible
codes. (See Fig.1-6.) All characters are therefore encoded in 7 bits.
The eighth bit, when it is used, is the parity bit. Parity is a tech-
nique for verifying that the contents of a byte have not been ac-
cidentally changed. The number of 1’s in the byte is counted and
the eighth bit is set to one if the count was odd, thus making the
total even. This is called even parity. One can also use odd parity,
i.e. writing the eighth bit (the left-most) so that the total number of
1’s in the byte is odd.

Example: let us compute the parity bit for **0010011’’ using even
parity. The number of 1’s is 3. The parity bit must therefore be a 1
so that the total number of bits is 4, i.e. even. The result is
10010011, where the leading 1 is the parity bit and 0010011 iden-
tifies the character.
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The table of 7-bit ASCII codes is shown in Fig. 1-6. In practice, it
is used “‘as is,”’ i.e. without parity, by adding a 0 in the left-most

position, or else with parity, by adding the appropriate extra bit on
the left.

Exercise 1.22: Compute the 8-bit representation of the digits ‘0"
through ‘9", using even parity. (This code will be used in applica-
tion examples of Chapter 8.)

Exercise 1.23: Same for the letters ‘A" through “F".

Exercise 1.24: Using a non-parity ASCII code (where the left-most
bit is ““0”’), indicate the binary contents of the 4 characters below:

(uA R
((?’)
‘l'3 »
f(b 2
HEX __MSD 0 1 2 3 4 5 6 7
ISD | BITS | 000 001 010 011 100 101 110 111
0 0000 | NUL DLE SPACE 0 @ P - p
1 0001 | SOH DCi ! 1 A Q a g
2 0010 | STX DC2 “ 2 B R b r
3 0011 ETX  DC3 # 3 C S ¢ s
4 0100 | EOT  DC4 $ 4 D T d t
5 0101 | ENQ  NAK % 5 E U e u
6 0110 | ACK  SYN & 6 F VvV f v
7 0111 BEL ETB 7 G W g w
8 1000 BS CAN ( 8 H X h x
9 1001 HT EM ) 9 | Y [ y
A 1010 LF  suB * : b Z z
B 1011 VT ESC + ; K [ k {
c 1100 FF FS , < L A\ I
D 1101 CR GS - = M ] m }
E 1110 SO RS . > N A n
F 1111 ] us / ? 0O <« o DEL

Fig. 1.6: ASCII Conversion Table

(see Appendix B for abbreviations),

In specialized situations such as telecommunications, other
codings may be used such as error-correcting codes. However they
are beyond the scope of this book.
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We have examined the usual representations for both program
and data inside the computer. Let us now examine the possible ex-
ternal representations.

EXTERNAL REPRESENTATION OF INFORMATION

The external representation refers to the way information is pre-
sented to the user, i.e. generally to the programmer. Information
may be presented externally in essentially three formats: binary,
octal or hexadecimal and symbolic.

1. Binary

It has been seen that information is stored internally in bytes,
which are sequences of eight bits (0’s or 1’s). It is sometimes
desirable to display this internal information directly in its binary
format and this is called binary representation. One simple exam-
ple is provided by Light Emitting Diodes (LEDs) which are essen-
tially miniature lights, on the front panel of the microcomputer. In
the case of an eight-bit microprocessor, a front panel will typically
be equipped with eight LEDs to display the contents of any inter-
nal register. (A register is used to hold eight bits of information
and will be described in Chapter 2). A lighted LED indicates a one.
A zero is indicated by an LED which is not lighted. Such a binary
representation may be used for the fine debugging of a complex
program, especially if it involves input/output, but is naturally
impractical at the human level. This is because in most cases, one
likes to look at information in symbolic form. Thus ‘9" is much
easier to understand or remember than ‘“1001”’. More convenient
representations have been devised, which improve the person-
machine interface.

2. Octal and Hexadecimal

“Octal” and ‘‘hexadecimal”’ encode respectively three and four
binary bits into a unique symbol. In the octal system, any
combination of three binary bits is represented by a number be-
tween 0 and 7.

“QOctal’” is a format using three bits, where each combination of
three bits is represented by a symbol between 0 and 7:
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binary | octal

000
001
010
011
100
101
110
111

OO AW~ O

Fig. 1.7: Octal Symbols

For example, “00 100 100" binary is represented by:

Yy v v
0 4 4

or ‘044" in octal.

Another example: 11 111 111 is:

vy v \J
3 7 7

or “377" in octal.
Conversely, the octal ‘211"’ represents:
010 001 001
or “10001001” binary.

Octal has traditionally been used on older computers which were
employing various numbers of bits ranging from 8 to perhaps 64.
More recently, with the dominance of eight-bit microprocessors,
the eight-bit format has become the standard, and another more
practical representation is used. This is hexadecimal.

In the hexdecimal representation, a group of four bits is en-
coded as one hexadecimal digit. Hexadecimal digits are
represented by the symbols from 0 to 9, and by the letters A, B, C,
D, E, F. For example, 0000 is represented by ‘0", ““0001” is
represented by ‘“1” and ‘“1111” is represented by the letter “F”’
(see Fig. 1-8).
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DECIMAL BINARY HEX OCTAL
0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 o111 7 7
8 1000 8 10
9 1001 9 1
10 1010 A 12
1 1011 B 13
12 1100 Cc 14
13 1101 D 15
14 1110 E 16
15 1111 F 17

Fig. 1.8: Hexadecimal Codes

43



PROGRAMMING THE Z80

Example: 1010 0001 in binary is represented by

A 1 in hexadecimal.

Exercise 1.25: What is the hexadecimal representation of
“10101010?°

Exercise 1.26: Conversely, what is the binary equivalent of “FA"’
hexadecimal?

Exercise 1.27: What is the octal of “01000001"?

Hexadecimal offers the advantage of encoding eight bits into on-
ly two digits. This is easier to visualize or memorize and faster to
type into a computer than its binary equivalent. Therefore, on
most new microcomputers, hexadecimal is the preferred method of
representation for groups of bits.

Naturally, whenever the information present in the memory has
a meaning, such as representing text or numbers, hexadecimal is
not convenient for representing the meaning of this information
when it is brought out for use by humans.

Symbolic Representation

Symbolic representation refers to the external representation of
information in actual symbolic form. For example, decimal num-
bers are represented as decimal numbers, and not as sequences of
hexadecimal symbols or bits. Similarly, text is represented as
such. Naturally, symbolic representation is most practical to the
user. It is used whenever an appropriate display device is
available, such as a CRT display or a printer. (A CRT display is a
television-type screen used to display text or graphics.) Unfortu-
nately, in smaller systems such as one-board microcomputers, it is
uneconomical to provide such displays, and the user is restricted
to hexadecimal communication with the computer.

Summary of External Representations

Symbolic representation of information is the most desirable
since it is the most natural for a human user. However, it requires
an expensive interface in the form of an alphanumeric keyboard,
plus a printer or a CRT display. For this reason, it may not be
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available on the less expensive systems. An alternative type of rep-
resentation is then used, and in this case hexadecimal is the domi-
nant representation. Only in rare cases relating to fine de-bugging
at the hardware or the software level is the binary representation
used. Binary directly displays the contents of registers of memory
in binary format.

(The utility of a direct binary display on a front panel has always
been the subject of a heated emotional controversy, which will not
be debated here.)

We have seen how to represent information internally and exter-
nally. We will now examine the actual microprocessor which will
manipulate this information.

Additional Exercises
Exercise 1.28: What is the advantage of two’s complement over
other representations used to represent signed numbers?

Exercise 1.29: How would you represent ‘1024 in direct binary?
Signed binary? Two’s complement?

Exercise 1.30: What is the V-bit? Should the programmer test it
after an addition or subtraction?

Exercise 1.31: Compute the two’s complement of “‘+16", “+17,
‘t+18"’ t6_167’, “_17’7’ “_18’,‘

Exercise 1.32: Show the hexadecimal representation of the follow-
ing text, which has been stored internally in ASCII format, with
no parity: = “MESSAGE".
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Z80 HARDWARE ORGANIZATION

INTRODUCTION

In order to program at an elementary level, it is not necessary to
understand in detail the internal structure of the processor that one is
using. However, in order to do efficient programming, such an
understanding is required. The purpose of this chapter is to present the
basic hardware concepts necessary for understanding the operation of
the Z80 system. The complete microcomputer system includes not only
the microprocessor unit (here the Z80), but also other components.
This chapter presents the Z80 proper, while the other devices (mainly
input/output) will be presented in a separate chapter (Chapter 7).

We will review here the basic architecture of the microcomputer
system, then study more closely the internal organization of the Z80.
We will examine, in particular, the various registers. We will then study
the program execution and sequencing mechanism. From a hardware
standpoint, this chapter is only a simplified presentation. The reader in-
terested in gaining detailed understanding is referred to our book ref.
C201 (‘‘Microprocessors,”’’ by the same author).

The Z80 was designed as a replacement for the Intel 8080, and to of-
fer additional capabilities. A number of references will be made in this
chapter to the 8080 design.

SYSTEM ARCHITECTURE

The architecture of the microcomputer system appears in Figure 2.1.
The microprocessor unit (MPU), which will be a Z80 here, appears on
the left of the illustration. It implements the functions of a central-
processing unit (CPU) within one chip: it includes an arithmetic-logical
unit (ALU), plus its internal registers, and a control! unit (CU), in
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charge of sequencing the system. Its operation will be explained in this
chapter.

] C DATA BUS ﬁ

" 280
‘%—/—q RST
T

ROM RAM PIO

o <:>PORT B
e

ADDRESS  BUS >

3 <5 -
< CONIROL  BUS >

MREQ

+5¢  GND

Fig. 2.1: Standard Z80 System

The MPU creates three buses: an 8-bit bidirectional data bus, which
appears at the top of the illustration, a 16-bit unidirectional address
bus, and a control bus, which appears at the bottom of the illustration.
Let us describe the function of each of the buses.

The data bus carries the data being exchanged by the various ele-
ments of the system. Typically, it will carry data from the memory to
the MPU or from the MPU to the memory or from the MPU to an in-
put/output chip. (An input/output chip is a component in charge of
communicating with an external device.)

The address bus carries an address generated by the MPU, which will
select one internal register within one of the chips attached to the
system. This address specifies the source, or the destination, of the data
which will transit along the data bus.

The control bus carries the various synchronization signals required
by the system.

Having described the purpose of buses, let us now connect the addi-
tional components required for a complete system.

Every MPU requires a precise timing reference, which is supplied by
a clock and a crystal. In most ‘‘older’’ microprocessors, the clock-oscil-
lator is external to the MPU and requires an extra chip. In most recent
microprocessors, the clock-oscillator is usually incorporated within the
MPU. The quartz crystal, however, because of its bulk, is always exter-
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nal to the system. The crystal and the clock appear on the left of the
MPU box in Figure 2.1.

Let us now turn our attention to the other elements of the system.
Going from left to right on the illustration, we distinguish:

The ROM is the read-only memory and contains the program for the
system. The advantage of the ROM memory is that its contents are per-
manent and do not disappear whenever the system is turned off. The
ROM, therefore, always contains a boofstrap or a monitor program
(their function will be explained later) to permit initial system opera-
tion. In a process-control environment, nearly all the programs will
reside in ROM, as they will probably never be changed. In such a case,
the industrial user has to protect the system against power failures; pro-
grams must not be volatile. They must be in ROM.

However, in a hobbyist environment, or in a program-development
environment (when the programmer tests his program), most of the
programs will reside in RAM so that they can be easily changed. Later,
they may remain in RAM, or be transferred into ROM, if desired.
RAM, however, is volatile. Its contents are lost when power is turned
off.

The RAM (random-access memory) is the read/write memory for the
system. In the case of a control system, the amount of RAM will
typically be small (for data only). On the other hand, in a program-
development environment, the amount of RAM will be large, as it will
contain programs plus development software. All RAM contents must
be loaded prior to use from an external device.

Finally the system will contain one or more interface chips so that it
may communicate with the external world. The most frequently used
interface chip is the P1O or parallel input/output chip. It is the one
shown on the illustration. This PIO, like all other chips in the system,
connects to all three buses and provides at least two 8-bit ports for
communication with the outside world. For more details on how an ac-
tual PIO works, refer to book C201 or, for specifics of the Z80 system,
refer to Chapter 7 (Input/Output Devices).

All the chips are connected to all three buses, including the control
bus.

The functional modules which have been described need not
necessarily reside on a single LSI chip. In fact, we could use combina-
tion chips, which may include both PIO and a limited amount of ROM
or RAM.

Still more components will be required to build a real system. In par-
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ticular, the buses usually need to be buffered. Also, decoding logic may
be used for the memory RAM chips, and, finally, some signals may
need to be amplified by drivers. These auxiliary circuits will not be
described here as they are not relevant to programming. The reader in-
terested in specific assembly and interfacing techniques is referred to
book C207 ‘‘Microprocessor Interfacing Techniques.”’

INSIDE A MICROPROCESSOR

The large majority of all microprocessor chips on the market today
implement the same architecture. This ‘‘standard’’ architecture will be
described here. It is shown in Figure 2.2. The modules of this standard
microprocessor will now be detailed, from right to left.

EXTERNAL DATA BUS
INTERNAL BUS ﬁ (8 BITS)

T 0 O
I l R R
£ £
sp PC G] ?
S cee S S
7 E N
E T
R R o
0 N :
| HL
|- ;
T s
EXTERNAL
ADDRESS BUS

(16 BITS)

Fig. 2.2: ‘‘Standard’’ Microprocessor Architecture

The control box on the right represents the control unit which syn-
chronizes the entire system. Its role will be clarified within the re-
mainder of this chapter.
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The ALU performs arithmetic and logic operations. A special
register equips one of the inputs of the ALU, the left input here. It is
called the accumulator. (Several accumulators may be provided.) The
accumulator may be referenced both as input and output (source and
destination) within the same instruction.

The ALU must also provide shift and rotate facilities.

A shift operation consists of moving the contents of a byte by one or
more positions to the left or to the right. This is illustrated in Figure
2.3. Each bit has been moved to the left by one position. The details of
shifts and rotations will be presented in the next chapter.

SHIFT LEFT

MNP MDD PP d

-d
Q CARRY

ROTATE LEFT

LN DD D DD
< CARRY

Note: Some Shift and Rotate instructions do not include the Carry.

Fig. 2.3: Shift and Rotate

The shifter may be on the ALU output, as illustrated in Figure 2.2, or
may be on the accumulator input.

To the left of the ALU, the flags or status register appear. Their role
is to store exceptional conditions within the microprocessor. The con-
tents of the flags register may be tested by specialized instructions, or
may be read on the internal data bus. A conditional instruction will
cause the execution of a new program, depending on the value of one of
these bits.

The role of the status bits in the Z80 will be examined later in this
chapter.
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Setting Flags

Most of the instructions executed by the processor will modify some
or all of the flags. It is important to always refer to the chart provided
by the manufacturer listing which bits will be modified by the instruc-
tions. This is essential in understanding the way a program is being ex-
ecuted. Such a chart for the Z80 is shown in Figure 4-17.

The Registers

Let us look now at Figure 2.2. On the left of the illustration, the reg-
isters of the microprocessor appear. Conceptually, one can distinguish
the general purpose registers and the address registers.

The General-Purpose Registers

General-purpose registers must be provided in order for the ALU to
manipulate data at high speed. Because of restrictions on the number of
bits which it is reasonable to provide within an instruction, the number
of (directly addressable) registers is usually limited to fewer than eight.
Each of these registers is a set of eight flip-flops, connected to the
bidirectional internal data bus. These eight bits can be transferred
simultaneously to or from the data bus. The implementation of these
registers in MOS flip-flops provides the fastest level of memory
available, and their contents can be accessed within tens of
nanoseconds.

Internal registers are usually labelled from O to n. The role of these
registers is not defined in advance: they are said to be ‘‘general
purpose.”’ They may contain any data used by the program.

These general-purpose registers will normally be used to store eight-
bit data. On some microprocessors, facilities exist to manipulate two of
these registers at a time. They are then called *‘register pairs.”’ This ar-
rangement facilitates the storage of 16-bit quantities, whether data or
addresses.

The Address Registers

Address registers are 16-bit registers intended for the storage of ad-
dresses. They are also often called data counters or pointers. They are
double registers, i.e., two eight-bit registers. Their essential
characteristic is to be connected to the address bus. The address

registers create the address bus. The address bus appears on the left and
the bottom part of the illustration in Figure 2.4.
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The only way to load the contents of these 16-bit registers is via the
data bus. Two transfers will be necessary along the data bus in order to
transfer 16 bits. In order to differentiate between the lower half and the
higher half of each register, they are usually labelled as L (low) or H
(high), denoting bits 0 through 7, and 8 through 15 respectively. This
label is used whenever it is necessary to differentiate the halves of these
registers. At least two address registers are present within most
microprocessors. ‘“MUX’’ in Fig. 2.4 stands for multiplexer.

DATA BUS (8)

MUX

INDEX ! REGISTER
STACK 1 POINTER

PROGRAM ! COUNTER

| mx |

l 16-BIT
i ADDRESS REGISTERS

ADDRESS BUS (16)

>

Fig. 2.4: The 16-bit Address Registers Create the Address Bus

Program Counter (PC)

The program counter must be present in any processor. It contains
the address of the next instruction to be executed. The presence of the
program counter is indispensable and fundamental to program execu-
tion. The mechanism of program execution and the automatic sequenc-
ing implemented with the program counter will be described in the next
section. Briefly, execution of a program is normally sequential. In
order to access the next instruction, it is necessary to bring it from the
memory into the microprocessor. The contents of the PC will be
deposited on the address bus, and transmitted towards the memory.
The memory will then read the contents specified by this address and
send back the corresponding word to the MPU. This is the instruction.
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In a few exceptional microprocessors, such as the two-chip F8, there is
no PC on the microprocessor. This does not mean that the system does
not have a program counter. The PC happens to be implemented direct-
ly on the memory chip, for reasons of efficiency.

Stack Pointer (SP)

The stack has not been introduced yet and will be described in the
next section. In most powerful, general-purpose microprocessors, the
stack is implemented in ‘‘software,’’ i.e., within the memory. In order
to keep track of the top of this stack within the memory, a 16-bit
register is dedicated to the stack pointer or SP. The SP contains the ad-
dress of the top of the stack within the memory. It will be shown that
the stack is indispensable for interrupts and for subroutines.

Index Register (I1X)

Indexing is a memory-addressing facility which is not always pro-
vided in microprocessors. The various memory-addressing techniques
will be described in Chapter 5. Indexing is a facility for accessing blocks
of data in the memory with a single instruction. An index register will
typically contain a displacement which will be automatically added to a
base (or it might contain a base which would be added to a displace-
ment). In short, indexing is used to access any word within a block of
data.

The Stack

A stack is formally called an LIFO structure (last-in, first-out). A
stack is a set of registers, or memory locations, allocated to this data
structure. The essential characteristic of this structure is that it is a
chronological structure. The first element introduced into the stack is
always at the bottom of the stack. The element most recently deposited
in the stack is on the top of the stack. The analogy can be drawn with a
stack of plates on a restaurant counter. There is a hole in the counter
with a spring in the bottom. Plates are piled up in the hole. With this
organization, it is guaranteed that the plate which has been put first in
the stack (the oldest) is always at the bottom. The one that has been
placed most recently on the stack is the one which is on top of it. This
example also illustrates another characteristic of the stack. In normal
use, a stack is only accessible via two instructions: “‘push’’ and ‘‘pop”’
(or ““pull’’). The push operation results in depositing one element on
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top of the stack (two in the case of the Z80). The pul/l operation consists
of removing one element from the stack. In the case of a
microprocessor, it is the accumulator that will be deposited on top of
the stack. The pop will result in a transfer of the top element of the
stack into the accumulator. Other specialized instructions may exist to
transfer the top of the stack between other specialized registers, such as
the status register. The Z80 is more versatile than most in this respect.

The availability of a stack is required to implement three program-
ming facilities within the computer system: subroutines, interrupts, and
temporary data storage. The role of the stack during subroutines will be
explained in Chapter 3 (Basic Programming Techniques). The role of
the stack during interrupts will be explained in Chapter 6 (Input/Out-
put Techniques). Finally, the role of the stack in saving data at high
speed will be explained during specific application programs.

We will simply assume at this point that the stack is a required facility
in every computer system. A stack may be implemented in two ways:

1. A fixed number of registers may be provided within the micro-
processor itself. This is a ‘‘hardware stack.’’ It has the advantage of
high speed. However, it has the disadvantage of a limited number of
registers.

2. Most general-purpose microprocessors choose another approach,
the software stack, in order not to restrict the stack to a very small
number of registers. This is the approach chosen in the Z80. In the soft-
ware approach, a dedicated register within the microprocessor, here
register SP, stores the stack pointer, i.e., the address of the top element
of the stack (or, sometimes, the address of the top element of the stack
plus one). The stack is then implemented as an area of memory. The
stack pointer will therefore require 16 bits to point anywhere in the
memory.
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Fig. 2.5: The Two-Stack Manipulation Instructions
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The Instruction Execution Cycle

Let us refer now to Figure 2.6. The microprocessor unit appears on
the left, and the memory appears on the right. The memory chip may be
a ROM or a RAM, or any other chip which happens to contain
memory. The memory is used to store instructions and data. Here, we
will fetch one instruction from the memory to illustrate the role of the
program counter. We assume that the program counter has valid con-
tents. It now holds a 16-bit address which is the address of the next in-
struction to fetch in the memory. Every processor proceeds in three
cycles:

1—fetch the next instruction
2—decode the instruction
3—execute the instruction

Fetch

Let us now follow the sequence. In the first cycle, the contents of the
program counter are deposited on the address bus and gated to the
memory (on the address bus). Simultaneously, a read signal may be
issued on the control bus of the system, if required. The memory will
receive the address. This address is used to specify one location within
the memory. Upon receiving the read signal, the memory will decode
the address it has received, through internal decoders, and will select
the location specified by the address. A few hundred nanoseconds later,
the memory will deposit the eight-bit data corresponding to the
specified address on its data bus. This eight-bit word is the instruction
that we want to fetch. In our illustration, this instruction will be
deposited the data bus on top of the MPU box.

Let us briefly summarize the sequencing: the contents of the program
counter are output on the address bus. A read signal is generated. The
memory cycles, and perhaps 300 nanoseconds later, the instruction at
the specified address is deposited on the data bus (assuming a single
byte instruction). The microprocessor then reads the data bus and
deposits its contents into a specialized internal register, the IR register.
The IR is the instruction register: it is eight-bits wide and is used to con-
tain the instruction just fetched from the memory. The fetch cycle is
now completed. The 8 bits of the instruction are now physically in the
special internal register of the MPU, the IR register. The IR appears on
the left of Figure 2.7. It is not accessible to the programmer.
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Fig. 2.6: Fetching an Instruction from the Memory

Decoding and Execution

Once the instruction is contained in IR, the control umit of the
microprocessor will decode the contents and will be able to generate the
correct sequence of internal and external signals for the execution of the
specified instruction. There is, therefore, a short decoding delay fol-
lowed by an execution phase, the length of which depends on the nature
of the instruction specified. Some instructions will execute entirely
within the MPU. Other instructions will fetch or deposit data from or
into the memory. This is why the various instructions of the MPU re-
quire various lengths of time to execute. This duration is expressed as a
number of (clock) cycles. Refer to Chapter 4 for the number of
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Fig. 2.7: Automatic Sequencing
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cycles required by each instruction. Since various clock rates may be
used, speed of execution is normally expressed in number of cycles
rather than in number of nanoseconds.

EXTERNAL A INTERNAL DATA BUS
BUS <

g a7

ACCUMULATOR

RO R1 Rn
REGISTERS

RESULT (DESTINATION) BUS
Fig. 2.8: Single-Bus Architecture

Fetching the Next Instruction

We have described how, using the program counter, an instruction
can be fetched from the memory. During the execution of a program,
instructions are fetched in sequence from the memory. An automatic
mechanism must therefore be provided to fetch instructions in se-
quence. This task is performed by a simple incrementer attached to the
program counter. This is illustrated in Figure 2.7. Every time that the
contents of the program counter (at the bottom of the illustration) are
placed on the address bus, its contents will be incremented and written
back into the program counter. As an example, if the program counter
contained the value ‘0”’, the value ‘‘0’’ would be output onthe address
bus. Then the contents of the program counter would be incremented
and the value ‘“1’’ would be written back into the program counter. In
this way, the next time that the program counter is used, it is the in-
struction at address 1 that will be fetched. We have just implemented an
automatic mechanism for sequencing instructions.

It must be stressed that the above descriptions are simplified. In reali-
ty, some instructions may be two- or even three-bytes long, so that suc-
cessive bytes will be fetched in this manner from the memory. However,
the mechanism is identical. The program counter is used to fetch
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successive bytes of an instruction as well as to fetch successive instruc-
tions themselves. The program counter, together with its incrementer,

provides an automatic mechanism for pointing to successive memory
locations.
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Fig. 2.9: Execution of an Addition—R0 into ACC
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Fig. 2.10: Addition—Second Register R1 into ALU
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We will now execute an instruction within the MPU (see Figure 2.8).
A typical instruction wiil be, for example: RO = RO + R1. This means:
‘“ADD the contents of RO and R1, and store the results in R0.”’ To per-
form this operation, the contents of RO will be read from register RO,
carried via the single bus to the left input of the ALU, and stored in the
buffer register there. R1 will then be selected and its contents will be
read onto the bus, then transferred to the right input of the ALU. This
sequence is illustrated in Figures 2.9 and 2.10. At this point,
the right input of the ALU is conditioned by Rl1, and the left
input of the ALU is conditioned by the buffer register, containing the
previous value of RO. The operation can be performed. The addition is
performed by the ALU, and the results appear on the ALU output, in
the lower right-hand corner of Fig. 2.11. The results will be deposited
on the single bus, and will be propagated back to RO. This means, in
practice, that the input latch of RO will be enabled, so that data can be
written into it. Execution of the instruction is now complete. The
results of the addition are in RO. It should be noted that the contents of
R1 have not been modified by this operation. This is a general prin-
ciple: the contents of a register, or of any read/write memory, are not
modified by a read operation.

The buffer register on the left input of the ALU was necessary in
order to memorize the contents of RO, so that the single bus could be
used again for another transfer. However, a problem remains.

EXTERNAL INTERNAL DATA BUS
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N
_SeS \.‘4\

R R1 RN
ACC + R1—> RO

Fig. 2.11: Result Is Generated and Goes into R0
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The Critical Race Problem

The simple organization shown in Figure 2.8 will not function cor-
rectly.

Question: What is the timing problem?

Answer: The problem is that the result which will be propagated out
of the ALU will be deposited back on the single bus. It will not pro-
pagate just in the direction of RO, but along all of the bus. In particular,
it will recondition the right input of the ALU, changing the result coming
out of it a few nanoseconds later. This is a critical race. The output of
the ALU must be isolated from its input (see Figure 2.12).

Several solutions are possible which will isolate the input of the ALU
from the output. A buffer register must be used. The buffer register
could be placed on the output of the ALU, or on its input. It is usually
placed on the input of the ALU. Here it would be placed on its right in-
put. The buffering of the system is now sufficient for a correct opera-
tion. It will be shown later in this chapter that if the left register which
appears in this illustration is to be used as an accumulator (permitting
the use of one-byte long instructions), then the accumulator will require
a buffer too, as shown in Figure 2.13.
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Fig. 2.12: The Critical Race Problem
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EXTERNAL INTERNAL DATA BUS
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Fig. 2.13: Two Buffers Are Required (Temp Registers)

INTERNAL ORGANIZATION OF THE Z380

The terms necessary in order to understand the internal elements of
the microprocessor have been defined. We will now examine in more
detail the Z80 itself, and describe its capabilities. The internal organiza-
tion of the Z80 is shown in Figure 2.14. This diagram presents a logical
description of the device. Additional interconnections may exist but are
not shown. Let us examine the diagram from right to left.

On the right part of the illustration, the arithmetic-logical unit (the
ALU) may be recognized by its characteristic ‘‘V’’ shape. The accumu-
lator register, which has been described in the previous section, is iden-
tified as A on the right input path of the ALU. It has been shown in the
previous section that the accumulator should be equipped with a buffer
register. This is the register labeled ACT (temporary accumulator).
Here, the left input of the ALU is also equipped with a temporary
register, called TMP. The operation of the ALU will become clear in the
next section, where we will describe the execution of actual instructions.

The flags register iscalled*‘F*’inthe Z80,and is shown on the right of the
accumulator register. The contents of the flags register are essentially
conditioned by the ALU, but it will be shown that some of its bits may
also be conditioned by other modules or events.

The accumulator and the flags registers are shown as double registers
labelled respectively A, A’ and F, F’. This is because the Z80 is
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equipped internally with two sets of registers: A + F, and A’ + F’.
However, only one set of these registers may be used at any one time. A
special instruction is provided to exchange the contents of A and F with
A’ and F’. In order to simplify the explanations, only A and F will be
shown on most of the diagrams which follow. The reader should
remember that he has the option of switching to the alternate register
set A’ and F’ if desired.

The role of each flag in the flags register will be described in Chapter
3 (Basic Programming Techniques).

A large block of registers is shown at the center of the illustration. On
top of the block of registers, two identical groups can be recognized.
Each one includes six registers labeled B, C, D, E, H, L. These are the
general-purpose eight-bit registers of the Z80. There are two peculiari-
ties of the Z80 with respect to the standard microprocessor which has
been described at the beginning of this chapter.

First, the Z80 is equipped with two banks of registers, i.e., two iden-
tical groups of 6 registers. Only six registers may be used at any one
time. However, special instructions are provided to switch between the
two banks of registers. One bank, therefore, behaves as an internal
memory, while the other one behaves as a working set of internal
registers. The possible uses of this special facility will be described in
the next chapter.

Conceptually, it will be assumed, for the time being, that there are
only six working registers, B, C, D, E, H, and L, and the second
register bank will temporarily be ignored, in order to avoid confusion.

The MUX symbol which appears above the memory bank is an ab-
breviation for multiplexer. The data coming from the internal data bus
will be gated through the multiplexer to the selected register. However,
only one of these registers can be connected to the internal data bus at
any one time.

A second characteristic of these six registers, in addition to being
general-purpose eight-bit registers, is that they are equipped with a con-
nection to the address bus. This is why they have been grouped in
pairs. For example, the contents of B and C can be gated simultaneous-
ly onto the 16-bit address bus which appears at the bottom of the illustra-
tion. As a result, this group of 6 registers may be used to store either
eight-bit data or else 16-bit pointers for memory addressing.

The third group of registers, which appears below the two previous
ones in the middle of Figure 2.14, contains four ‘‘pure’’ address
registers. As in any microprocessor, we find the program counter (PC)
and the stack pointer (SP). Recall that the program counter contains
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the address of the next instruction to be executed.

The stack pointer points to the top of the stack in the memory. In the
case of the Z80, the stack pointer points to the /ast actual entry in the
stack. (In other microprocessors, the stack pointer points just above the
last entry.) Also, the stack grows ‘‘downwards,’’i.e. towards the lower
addresses.

This means that the stack pointer must be decremented any time a
new word is pushed on the stack. Conversely, whenever a word is
removed (popped) from the stack, the stack pointer must be in-
cremented by one. In the case of the Z80, the ‘‘push’’ and ‘‘pop”’
always involve two words at the same time, so that the contents of the
stack pointer will be decremented or incremented by two.

Looking at the remaining two registers of this group of four registers,
we find a new type of register which has not been described yet: two
index-registers, labeled IX (Index Register X) and IY (Index Register
Y). These two registers are equipped with a special adder shown as a
miniature V-shaped ALU on the right of these registers in Figure 2.14.
A byte brought along the internal data bus may be added to the con-
tents of IX or IY. This byte is called the displacement, when using an in-
dexed instruction. Special instructions are provided which will
automatically add this displacement to the contents of IX or 1Y and
generate an address. This is called indexing. It allows convenient access
to any sequential block of data. This important facility will be des-
cribed in Chapter 5 on addressing techniques.

Finally, a special box labeled *‘ + 1°* appears below and to the left of the
block of registers. This is an increment/decrement. The contents of any
of the register pairs SP, PC, BC, DE, HL (the ‘‘pure address’’ registers)
may be automatically incremented or decremented every time they depos-
it an address on the internal address bus. This is an essential facility for
implementing automated program loops which will be described in the
next section. Using this feature it will be possible to access successive
memory locations conveniently.

Let us move now to the left of the illustration. One register pair is
shown, isolated on the left: I and R. The I register is called the inferrupt-
page address register. Its role will be described in the section on inter-
rupts of Chapter 6 (Input/Output Techniques). It is used only in a
special mode where an indirect call to a memory location is generated in
response to an interrupt. The I register is used to store the high-order
part of the indirect address. The lower part of the address is supplied by
the device which generated the interrupt.
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The R register is the memory-refresh register. It is provided to refresh
dynamic memories automatically. Such a register has traditionally been
located outside the microprocessor, since it is associated with the
dynamic memory. It is a convenient feature which minimizes the
amount of external hardware for some types of dynamic memories. It will
not be used here for any programming purposes, as it is essentially a
hardware feature (see reference C207 ‘‘Microprocessor Interfacing
Techniques’’ for a detailed description of memory refresh techniques).
However, it is possible to use it as a software clock, for example.

Let us move now to the far left of the illustration. There the control
section of the microprocessor is located. From top to bottom, we find
first the instruction register IR, which will contain the instruction to be
executed. The IR register is totally distinct from the ¢‘I, R’’ register pair
described above. The instruction is received from the memory via the
data bus, is transmitted along the internal data bus and is finally
deposited into the instruction register. Below the instruction register ap-
pears the decoder which will send signals to the controller-sequencer
and cause the execution of the instruction within the microprocessor
and outside it. The control section generates and manages the control
bus which appears at the bottom part of the illustration.

The three buses managed or generated by the system, i.e., the data
bus, the address bus, and the control bus, propagate outside the
microprocessor through its pins. The external connections are shown
on the right-most part of the illustration. The buses are isolated from
the outside through buffers shown in Figure 2.14.

All the logical elements of the Z80 have now been described. It is not
essential to understand the detailed operation of the Z80 in order to
start writing programs. However, for the programmer who wishes to
write efficient codes, the speed of a program and its size will depend
upon the correct choice of registers as well as the correct choice of
techniques. To make a correct choice, it is necessary to understand how
instructions are executed within the microprocessor. We will therefore
examine here the execution of typical instructions inside the Z80 to
demonstrate the role and use of the internal registers and buses.
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INSTRUCTION FORMATS

The Z80 instructions are listed in Chapter 4. Z80 instructions may
be formated in one, two, three or four bytes. An instruction specifies
the operation to be performed by the microprocessor. From a
simplified standpoint, every instruction may be represented as an op-
code followed by an optional literal or address field, comprising one or
two words. The opcode field specifies the operation to be carried out.
In strict computer terminology, the opcode represents only those bits
which specify the operation to be performed, exclusive of the register
pointers that might be necessary. In the microprocessor world, it is con-
venient to call opcode the operation code itself, as well as any register
pointers which it might incorporate. This ‘‘generalized opcode’’ must
reside in an eight-bit word for efficiency (this is the limiting factor on
the number of instructions available in a microprocessor).

The 8080 uses instructions which may be one, two, three, bytes long
(see Figure 2.15). However, the Z80 is equipped with additional indexed
instructions, which require one more byte. In the case of the Z80, op-
codes are, in general, one byte long, except for special instructions
which require a two-byte opcode.

Some instructions require that one byte of data follow the opcode. In
such a case, the instruction will be a two-byte instruction, the second
byte of which is data (except for indexing, which adds an extra byte).

In other cases, the instruction might require the specification of an
address. An address requires 16 bits and, therefore, two bytes. In that
case, the instruction will be a three-byte or a four-byte instruction.

For each byte of the instruction, the control unit will have to perform
a memory fetch, which will require four clock cycles. The shorter the
instruction, the faster the execution.

A One-Word Instruction

One-word instructions are, in principle, fastest and are favored by
the programmer. A typical such instruction for the Z80 is:

LDr,r

This instruction means: ‘‘Transfer the contents of register r’ intor.”’
This is a typical ‘‘register-to-register’’ operation. Every microprocessor
must be equipped with such instructions, which allow the programmer
to transfer information from any of the machine’s registers into
another one. Instructions referencing special registers of the machine,
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Fig. 2.15 Typical Instruction Formats

such as the accumulator or other special-purpose registers, may have a
special opcode.

After execution of the above instruction, the contents of r will be
equal to the contents of r’. The contents of r’ will not have been
modified by the read operation.

Every instruction must be represented internally in a binary format.
The above representation ‘LD r,r’ >’ is symbolic or mnemonic. It is
called the assembly-language representation of an instruction. It is
simply meant as a convenient symbolic representation of the actual
binary encoding for that instruction. The binary code which will repre-
sent this instruction inside the memory is: 01 DD D S S S (bits 0 to 7).

This representation is still partially symbolic. Each of the letters S
and D stands for a binary bit. The three D’s, ‘“‘D D D’’, represent the
three bits pointing to the destination register. Three bits allow selection
of one out of eight possible registers. The codes for these registers ap-
pear in Figure 2.16. For example, the code for register Bis ‘00 0”’, the
code for register C is ‘0 0 1’’, and so on.

Similarly, ““S S S”’ represents the three bits pointing to the source
register. The convention here is that register r’ is the source, and that
register r is the destination. The placement of the bits in the binary
representation of an instruction is not meant for the convenience of the
programmer, but for the convenience of the control section of the
microprocessor, which must decode and execute the instruction. The
assembly-language representation, however, is meant for the conve-
nience of the programmer. It could be argued that LD r,r’ should really
mean: ‘‘Transfer contents of r into r’.”” However, the convention has
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been chosen in order to maintain compatibility with the binary
representation in this case. It is naturally arbitrary.

Exercise2.1: Write below the binary code which will transfer the con-
tents of register C into register B. Consult Fig. 2.16 for the codes cor-
responding to C and B.

Another simple example of a one-word instruction is:
ADD A,

This instruction will result in adding the contents of a specified
register (r) to the accumulator (A). Symbolically, this operation may be
represented by: A = A + r. It can be verified in Chapter 4 that the
binary representation of this instruction is:

10000SSS

where S S S specifies the register to be added to the accumulator. Again,
the register codes appear in Figure 2.16.

Exercise 2.2: What is the binary code of the instruction which will add
the contents of register D to the accumulator?

CODE REGISTER

000
001
010
011
100
101
110
111 (A

~Q xT M O O W™

(MEMORY)

Fig. 2.16: The Register Codes

A Two-Word Instruction
ADD A, n

This simple two-word instruction will add the contents of the second
byte of the instruction to the accumulator. The contents of the second
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word of the instruction are said to be a “‘literal.”” They are data and are
treated as eight bits without any particular significance. They could
happen to be a character or numerical data. This is irrelevant to the
operation. The code for this instruction is:

11000110 followed by the 8-bit byte ‘‘n”’

This is an immediate operation. ‘‘Immediate,”’ in most programming
languages, means that the next word, or words, within the instruction
contains a piece of data which should not be interpreted (the way an op-
code is). It means that the next one or two words are to be treated as a
literal.

The control unit is programmed to ‘‘know’’ how many words each
instruction has. It will, therefore, always fetch and execute the right
number of words for each instruction. However, the longer the possible
number of words for the instruction, the more complex it is for the con-
trol unit to decode.

A Three-Word Instruction
LD A, (nn)

The instruction requires three words. It means: ‘“‘Load the ac-
cumulator from the memory address specified in the next two bytes of
the instruction.”” Since addresses are 16-bits long, they require two
words. In binary, this instruction is represented by:

00111010: 8 bits for the opcode
Low address: 8 bits for the lower part of the address
High address: 8 bits for the upper part of the address

EXECUTION OF INSTRUCTIONS WITHIN THE Z80

We have seen that all instructions are executed in three phases:
FETCH, DECODE, EXECUTE. We now need to introduce some
definitions. Each of these phases will require several clock cycles. The
780 executes each phase in one or more logical cycles, called a
““machine cycle.”” The shortest machine cycle lasts three clock cycles.

Accessing the memory requires three cycles for any operands, four
clock cycles for the initial fetch. Since each instruction must be fetched
first from the memory, the fastest instruction will require four clock
cycles. Most instructions will require more.

Each machine cycle is labeled as M1, M2, etc., and will require three
or more clock cycles, or ‘‘states,’’ labeled T1, T2, etc.
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The FETCH Phase

The FETCH phase of an instruction is implemented during the first
three states of machine cycle M1; they are called T1, T2, and T3. These
three states are common to all instructions of the microprocessor, as all
instructions must be fetched prior to execution. The FETCH
mechanism is the following:

T1: PC OUT

The first step is to present the address of the next instruction to the
memory. This address is contained in the program counter (PC). As the:
first step of any instruction fetch, the contents of the PC are placed on
the address bus (see Figure 2.17). At this point, an address is presented
to the memory, and the memory address decoders will decode this ad-
dress in order to select the appropriate location within the memory.
Several hundred ns (a nanosecond is 10~ second) will elapse before the
contents of the selected memory location become available on the out-

BmnmC

j@ DATA BUS

w
—imle |~

CONTROLLER

SEQUENCER

NN

SP
%
TO MEMORY

H |
‘ —

Fig. 2.17: Instruction Fetch—(PC) Is Sent to the Memory

CONTROL
SIGNALS
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put pins of the memory, which are connected to the data bus. It is standard
computer design to use the memory read time to perform an operation
within the microprocessor. This operation is the incrementation of the
program counter:

T2:PC = PC + 1

While the memory is reading, the contents of the PC are incremented
by 1 (see Figure 2.18). At the end of state T2, the contents of the
memory are available and can be transferred within the micro-
processor:

T3 : INST into IR

omwmC

YLILIITITITIT TSI ST, L k22222> DATA BUS
4 »

U/ 4k / &4, f\

V85585 Mux

CONTROLLER

x|o|= |x
~lm e~

SEQUENCER s

PC

B
u
16 | ¢
4 ADDRESS BUS

CONTROL
SIGHALS

D

v

Fig 2.18: PC Is Incremented

The DECODE and EXECUTE Phases
During state T3, the instruction which has been read out of the

memory is deposited on the data bus and transferred into the instruc-
tion register of the Z80, from which point it is decoded.
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FROM

AT MEMORY

P ,9?2?2253

509105089,

8,

CONTROLLER

SEQUENCER

B
u
16 | F
I3
€

ADDRESS BUS

CONTROL
SIGHALS

L 4

Fig. 2.19: The Instruction Arrives from the Memory into IR

It should be noted that state T4 of M1 will always be required. Once
the instruction has been deposited into IR during T3, it is necessary to
decode and execute it. This will require at least one machine state, T4.

A few instructions require an extra state of M1 (state T5). It will be
skipped by the processor for most instructions. Whenever the execution
of an instruction requires more than M1, i.e., M1, M2 or more cycles,
the transition will be directly from state T4 of M1 into state T1 of M2.
Let us examine an example. The detailed internal sequencing for each
example is shown in the tables of Figure 2.27. As these tables have not been
released for the Z80, the 8080 tables are used instead. They provide an in-
depth understanding of instruction execution.

ILDD,C

This corresponds to MOV 1, r2 for the 8080. Refer to line 1 of Fig. 2.27.

By coincidence, the destination register in this example happens to be
named ‘“D’’. The transfer is illustrated in Figure 2.20.

This instruction has been described in the previous section. It
transfers the contents of register C, denoted by ‘‘C”’, into register D.

The first three states of cycle M1 are used to fetch the instruction
from the memory. At the end of T3, the instruction is in IR, the In-
struction Register, from which point it can be decoded (see Figure 2.19).

During T4: (SS S) » TMP.
The contents of C are deposited into TMP (See Figure 2.21).
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During T5: (TMP) » DDD.
The contents of TMP are deposited into D. This is shown in Figure 2.22.

D C
[ooocitoo01l [ 10001000 |
BEFORE

Dl; iC

[Toootoo0 ] 10001000 ]
AFTER

Fig. 2.20: Transferring C into D

. »
DATA BUS
»

mmwnc

INST. REG. A
L]
DECODER ACT
8
D 3
CONTROLLER
K L
SEQUENCER FLAGS A
sP
pC
&
¢l :
% |*
£ DRESS BUS
CONTROL
D | stouas

Fig. 2.21: The Contents of C Are Deposited into TMP
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DATA BUS

|-mnmca

y:
y;

CONTROLLER

SEQUENCER

8
- u
.
l \ £ INanoRess BUs

CONTROL
,>I

| stenaLs

Fig. 2.22: The Contents of TMP are Deposited into D

Execution of the instruction is now complete. The contents of
register C have been transferred into the specified destination register
D. This terminates execution of the instruction. The other machine

cycles M2, M3, M4, and M5 will not be necessary and execution stops
with M1.

It is possible to compute the duration of this instruction easily. The
duration of every state for the standard Z80 is the duration of the clock:
500 ns. The duration of this instruction is the duration of five states, or
5 X 500 = 2500 ns = 2.5 us. With a 400 ns clock, 5 x 400 = 2000 ns
= 2.0 us.

Question: Why does this instruction require two states, T4 and T3,
in order to transfer the contents C into D, rather than just one? It
transfers the contents of C into TMP, and then the contents of TMP in-
to D. Wouldn't it be simpler to transfer the contents of C into D direct-
ly within a single state?

Answer: This is not possible because of the implementation chosen
for the internal registers. All the internal registers are, in fact, partof a
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single RAM, a read/write memory internal to the microprocessor chip.
Only one word may be addressed or selected at a time within an RAM
(single-port). For this reason, it is not possible to both read and write
into, or from, an RAM at two different locations. Two RAM cycles are
required. It becomes necessary first to read the data out of the register
RAM, and store it in a temporary register, TMP, then, to write it back
into the final destination register, here D. This is a design inadequacy.
However, this limitation is common to virtually all monolithic
microprocessors. A dual-port RAM would be required to solve the
problem. This limitation is not intrinsic to microprocessors and it normally
does not exist in the case of bit-slice devices. It is a result of the constant
search for logic density on the chip and may be eliminated in the future.

Important Exercise:

At this point, it is highly recommended that the user review by him-
self the sequencing of this simple instruction before we proceed to more
complex ones. For this purpose, go back to Figure 2.14. Assemble a few
small-sized ‘‘symbols’’ such as matches, paperclips, etc. Then move the
symbols on Figure 2.14 to simulate the flow of data from the registers
into the buses. For example, deposit a symbol into PC. T1 will move
the symbol contained in PC out on the address bus towards the
memory. Continue simulated execution in this fashion until you feel
comfortable with the transfers along the buses and between the
registers. At this point, you should be ready to proceed.

Progressively more complex instructions will now be studied:

ADD A, r

This instruction means: ‘‘Add the contents of register r (specified by
a binary code S S S) to the accumulator (A), and deposit the result in
the accumulator.”’ This is an implicit instruction. It is called implicit as
it does not explicitly reference a second register. The instruction expli-
citly refers only to register r. It implies that the other register involved
in the operation is the accumulator. The accumulator, when used in
such an implicit instruction, is referenced both as source and destina-
tion. Data will be deposited in the accumulator as a result of this addi-
tion. The advantage of such an implicit instruction is that its complete
opcode is only eight bits in length. It requires only a three-bit register
field for the specification of r. This is a fast way to perform an addition
operation.

Other implicit instructions exist in the system which will reference

75



PROGRAMMING THE Z80

other specialized registers. More complex examples of such implicit in-
structions are, for example, the PUSH and POP operations, which will
transfer information between the top of the stack and the accumulator,
and will at the same time update the stack pointer (SP), decrementing it
or incrementing it. They implicitly manipulate the SP register.

The execution of the ADD A, r instruction will now be examined in
detail. This instruction will require two machine cycles, M1 and M2. As
usual, during the first three states of M1, the instruction is fetched from
the memory and deposited in the IR register. At the beginning of T4, it
is decoded and can be executed. It will be assumed here that register B is
added to the accumulator. The code for the instruction will then be:
10000000 (the code for register B is 0 0 0). The 8080 equivalent is
ADD .

T4: (SSS) » TMP, (A) » ACT

—_—
DATA B
>

INST. REG. l

mmmwE

DECODER

o
~im]e |~

CONTROLLER

SEQUENCER " FLAGS AL

PC

21
16

mnnc o

ADDRESS BUS

CONTROL

g}l SIGUALS
Fig. 2.23: Two Transfers Occur Simultaneously

Two transfers will be executed simultaneously. First, the contents of
the specified source register (here B) are transferred into TMP, i.e., to
the right input of the ALU (see Fig. 2.23). At the same time, the con-
tents of the accumulator are transferred to the temporary accumulator
(ACT). By inspecting Fig. 2.23, you will ascertain that those transfers
can occur in parallel. They use different paths within the system. The
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transfer from B to TMP uses the internal data bus. The transfer from
ACT uses a short internal path independent of this data bus. In order to
gain time, both transfers are done simultaneously. At this point, both
the left and the right input of the ALU are correctly conditioned. The
left input of the ALU is now conditioned by the accumulator contents,
and the right input of the ALU is conditioned by the contents of register
B. We are ready to perform the addition. We would normally expect to
see the addition take place during state TS5 of M1. However, this state is
simply not used. The addition is not performed! We will enter machine
cycle M2. During state T1, nothing happens! It is only in state T2 of M2
that the addition takes place (refer to ADD r in Figure 2.27):

T2 of M2: (ACT) + (TMP) » A

The contents of ACT are added to the contents of TMP, and the
result is finally deposited in the accumulator. See Figure 2.24. The
operation is now complete.

RO

Bﬁ DATA BUS
N

INST. REG. M
‘ ¥ 14
B C
CONTROLLER 2 £
H L
SEQUENCER
5P N
N
Pe Anat
] H
21 ] 5 |3
t DRESS BUS

CONTROL
STGHALS

D

v

Fig. 2.24: End of ADD r

Question: Why was the completion of the addition deferred until
state T2 of machine cycle M2, rather than taking place during state TS
of M1? (This is a difficult question, which requires an understanding of
CPU design. However, the technique involved is fundamental to clock-
synchronous CPU design. Try to see what happens.)
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Answer: This is a standard design ‘‘trick’’ used in most CPU’s. It is
called ‘‘fetch/execute overlap.’’ The basic idea is the following: looking
back at Figure 2.23 it can be seen that the actual execution of the addi-
tion will only require the use of the ALU and of the data bus. In parti-
cular, it will not access the register RAM (register block). We (or the
control unit) know that the next three states which will be executed after
completion of any instruction will be T1, T2, T3 of machine cycle M1
of the next instruction. Looking back at the execution of these three
states, it can be seen that their execution will only require access to the
program counter (PC) and use of the address bus. Access to the pro-
gram counter will require access to the register RAM. (This explains
why the same trick could not be used in the instruction LD r,r’.) It is
therefore possible to use simultaneously the shaded area in Figure 2.17
and the shaded area in Figure 2.24.

The data bus is used during state T1 of M1 to carry status informa-
tion out. It cannot be used for the addition that we wish to perform.
For that reason, it becomes necessary to wait until state T2 before the
addition can be effectively carried out. This is what occurred in the
chart: the addition is completed during state T2 of M2. The mechanism
has now been explained. The advantage of this approach should now be
clear. Let us assume that we had implemented a straightforward
scheme, and performed the addition during state T5 of machine cycle

|

|
INSTRUCTION N: [LTl } 12 =T3T|T4 J‘:I T1 I T2 %/ END
1

o FETCH —<———FXECUTE—

I
INSTRUCTIONN 4 1: = — = o o o | T2 } TL| T4 {

LN

I

r¢——FETCH T <—— EXECUTE~

! |
! t
t 1
O
VERLAP

{ I
Fig. 2.25: FETCH-EXECUTE Overlap during T1-T2

M1. The duration of the ADD instruction would have been 5 X 500 =
2500 ns. With the overlap approach which has been implemented, once
state T4 has been executed, the next instruction is initiated. In a manner
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that is invisible to this next instruction, the ‘‘clever’’ control unit will
use state T2 to carry out the end of the addition. On the chart T2 is
shown as part of M2. Conceptually, M2 will be the second machine cy-
cle of the addition. In fact, this M2 will be overlapped, i.e., be identical
to machine cycle M1 of the next instruction. For the programmer, the
delay introduced by ADD will be only four states, i.e., 4 X 500 = 2000
ns, instead of 2500 ns using the ‘‘straightforward’’ approach. The
speed improvement is 500 ns, or 20%!

The overlap technique is illustrated on Figure 2.25. It is used when-
ever possible to increase the apparent execution speed of the micropro-
cessor. Naturally, it it not possible to overlap in all cases. Required
buses or facilities must be available without conflict. The control unit
“‘knows’’ whether an overlap is possible.

NOTES:

1. The first memory cycie {M1) is always an instruction
fetch; the first (or only) byte, containing the op code, is
fetched during this cycle.

2. If the READY input from memory is not high during
T2 of each memory cycle, the processor will enter a wait
state (TW) until READY is sampled as high.

3. States T4 and T5 are present, as required, for opera-
tions which are completely internal to the CPU. The con-
tents of the internal bus during T4 and T5 are available at
the data bus; this is designed for testing purposes only. An
X" denotes that the state is present, but is only used for
such internal operations as instruction decoding.

4. Only register pairs rp = B (registers Band C) or rp=D
(registers D and E} may be specified.

B. These states are skipped.

6. Memory read sub-cycies; an instruction or data word
will be read.

7. Memory write sub-cycle.

8. The READY signal is not required during the second
and third sub-cycles (M2 and M3). The HOLD signal is
accepted during M2 and M3. The SYNC signat is not gene-
rated during M2 and M3. During the execution of DAD,
M2 and M3 are required for an internal register-pair add;
memory is not referenced.

9. The results of these arithmetic, logical or rotate in-
structions are not moved into the accumulator (A) until
state T2 of the next instruction cycle. That is, A is loaded
while the next instruction is being fetched; this overlapping
of operations allows for faster processing.

10. If the value of the least significant 4-bits of the accumu-

lator is greater than 9 or if the auxiliary carry bit is set, 6

is added to the accumulator. If the value of the most signifi-

cant 4-bits of the accumulator is now greater than 9, or it
the carry bit is set, 6 is added to the most significant
4-bits of the accumulator.

11. This represents the first sub-cycle (the instruction
fetch) of the next instruction cycle.

12. i the condition was met, the contents of the register
pair WZ are output on the address lines {Ag.5) instead of
the contents of the program counter (PC).

13. I the condition was not met, sub-cycles M4 and M5
are skipped; the processor instead proceeds immediately to
the instruction fetch {M1) of the next instruction cycle.
14, If the condition was not met, sub-cycies M2 and M3
are skipped; the processor instead proceeds immediately 1o
the instruction fetch {M1) of the next instruction cycle.
15. Stack read sub-cycle.

16. Stack write sub-cycle.

17. CONDITION cce
NZ — not zero {Z = 0) 000

Z — zero(Z=1) 001

NC — no carry (CY =0) 010

C — carry (CY = 1) 011

PO — parity odd (P =0) 100

PE — parity even (P=1) 101

P — plus {S=0} 110

M — minus (S=1) m

18. 1/0 sub-cycle: the 1/O port’s B-bit select code is dupli-
cated on address lines 0-7 (Ag.7) and 815 (Ag.y5).

19. Output sub-cycle.

20. The processor will remain idle in the halt state until

an interrupt, a reset or a hold is accepted. When a hold re-
quest is accepted, the CPU enters the hold mode; after the
hold mode is terminated, the processor returns to the hait
state. After a reset is accepted, the processor begins execu-
tion at memory location zero. After an interrupt is accepted,
the processor executes the instruction forced onto the data
bus (usuatly a restart instruction).

$SS or DDD Value T ep T Value
L A 111 ] H 00
— Too0 o T o ]
L. 00 L H
[s) 010 Jf [ N L
E o1 |
H T 100 |
L L 101 ]

Fig. 2.26: Intel Abbreviations
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MNEMONIC OP CODE wilt]l [
D7DgDgDg | D3B30y Dy T T2 3 T ™ T T
MOV r1,r2 61 DD DS S§Ss PCOUT PC = PC +1 [INST-TMP/IR 18S5)-TMP (TMP}DDD
STATUS s
MOV, M c1po D110 ¥ PE] 571 HLOUT DATA—-DDD
| 4 STATUS!S!
MOV M, ¢ o011 0588 o T
(3851 TMP % JaCREA (TMP)—{»DATA BUS
sPHL 1111 (1001 U _ 3
MVI <, data oo0oDD (D110 | x PCOUT 82 —{»-DDDD
| & STATUSIE]
MVI M, deta 001 01 o x B2 —=TMP
X1 rp, data 00RP [0001 x PCaPCH 82 Jort
-
LDA addr 001t (1010 x ‘Fc-rcn 82— eZ
STA sddr 001t loo1o X Tecmpcet B2—jez
; 7
LHLD addr 601to0 1010 x v PC=PC+1
SHLD sddr oo1t1o 60710 X g PCOUT PCePC+1 824‘-1
Fvd sTaTuste
LDAX rpl4l VOREP 1010 x p OUT DATA—»A
i statuste)
sTaxrpld 0O0RP [DD1O x Se pouT (A} —{»-DATA BUS
4 Frarustn
XCHG 1150 to1 {HL—(D8)
ADD ¢ 1000 [08sS (SSSI-TMP ] ACTIH{TMP)-+A
| (AleACT
ADD M 1000 oy teo tal--actT HLOUT DATA-—e-TMP
sTATUSIE
ADI dora 1100 (0110 (AlACT Pc OUT PCPC+1 B2~fe-TMP
sTatustel
ADCe 1000 [185s (SSSTMP Sy ] (ACTI+(TMPICY-A
(a)acT
ADCM 1000 (1110 tAbeACT HLOUT
STATUSIE
AC! data ttoo0l1110 | {AlvACT PCOUT PC=PCH1 82w TMP
i sTaTUSIE
susr too01 losss 1S8S)~TMP ssd @ (ACT)-(TMP}=A
(A}-ACT
SUBM to01 o110 (Al+ACT HL OUT DATA~—1e-TMP
STATUSIS!
LT 1101 (0110 (AeACT PCOUT PCPC+1 82—{eTMP
S STATUS!S)
saB ¢ 100t 15558 {s5SI-TMP L] ACTI-{TMPI-CY-+A
(Al-ACT
588 M 1001 1110 {Al-ACT HLOUT DATA—1»TMP
sTATUSIS!
Bl caa 11011110 a)=ACT PCouT PCmPCHY 22— THP
STATUSIS
R ¢ 0ooD0D|D100O DDO}=TMP b
(TMP} + 1=ALU
wa M 0011|0100 X HLOUT DATA —jo- TMP
STATUSIE! TTMPI+1 o= ALY
DCR Y co0oDOD 01901 (DOD)+TMP ALU-DDD
TMPI41~ALUY
DCR M 001 01071 X HL OUT DATA T™MP
sTaTustel (TMP)-1 o ALU
INX ooRP |OD Y v (RP)+1 LRp 3
ocx coRrRP 1011 "R -1 LR
0AD rpllt coRP|1001 x (O-ACT | {L=TMP, ALUL CY
g i (RCTIHTMPIALU
DAA 0010 {0111 DAA-+A, FLAGSI10} P2
ANA 1010 0sss S8S)+TMP 180 (ACT}H{TMPI+A
ArACT
ANAM 1010 01 10| PCOUT | pCapCet| INST-TMPAR | (A)eACT % HLOUT DATAe- TP
STATUS 2 sTaTusié
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[ ™ "
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sTaTusi®l . 3
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STATUSI
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© Intel. Reproduced by permission.

Fig. 2.27: Intel Instruction Formats (continued)
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MNEMONIC OF CODE i1l M2
D7 DgDy 04 ] 030204 Dg n T2 3 Te ™ ™ Tald 13
ANt data t110 01 PCOUT | PC=PC+1|INST-TMPAR | (Al-ACT PCOUT PC=PC+1 821, THP
STATUS sTatustsl
XRA ¢ Ttoto | s ¥ ¥ {A1=ACT ] (ACTI+(TPMI~A
| 1ss81~TMP 3
XRA M tove | 1 H (AlACT HLOUT DATA —{eTMP
| sTATUS(El
XA dats IREENEE T (AIACT PC OUT PCaPC1 82w TMP
sTATUSIS!
ORA~ RN EE] | 1 (AJ+ACT ] (ACTI+TMPI-A 5
i N (555}=TMP -
ORA M 01y o1 i i (Al~ACT HLOUT DATA = THF
N N STATUSIS!
ORi et IEEREX . (Al-ACT FeouT | PePC e 82> TMP
H _ STATUS! _
cnre 011 [ 18 j i (Al~ACT 10 IACT)-(TMP), FLAGS |~ =
{ (58SI-TMP .
cwe M ’EENIEE ] (AI~ACT HLOuT DATA —|aTMP
| | sTatuslel
Pl cats IEEEREE I | (a1-ACT eCOUT PC-PCet 82 JeTvP
| sTATUSIE!
RLC o000 |01 I (Al=ALY ALU=A, CY .
AOTATE 5,
RRC 6000 | 11 T (AIAL ALU-A, GV e
i AOTAT N
AL 'EXEBEX (AL CY—ALY ALU-A CY 5
i ROTATE
— -
) XEERER (A} CY=-ALY ALU-A.CY ¢
1 ROTATE L
oMA 0o v | 1 i RheA HEEE e
cMe Fo EEREE i E-cv T
: ;
stc 001+t | 01 T-cY 5
]
IMP agor v100 |00 i x fo PC OUT PCaPCl 82 lez
i | . sTATUSIE!
Joandasarl? [ 11 cc | co JUDGE CONDITION PC QUT #CaPC41 82 {w2
| STATUSIS
CALL acr v1o0 | 1 i SPesp-t eCOUT | PC-PCe1 B2 (-2
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Question: Would it be possible to go further using this scheme, and
to ailso use state T3 of M2 if we have to execute a longer instruction?

In order to clarify the internal sequencing mechanism, it is suggested
that you examine Figure 2.27, which shows the detailed instruction
execution for the 8080. The Z80 includes all 8080 instructions, and
more. The information presented in Figure 2.27 is not available for the
Z80. It is shown here for its educational value in understanding the in-
ternal operation of this microprocessor. The equivalence between Z80 and
8080 instructions is shown in Appendices F and G.

A more complex instruction will now be examined:

ADD A, (HL)

The opcode for this instruction is 10000110. This instruction means
‘‘add to the accumulator the contents of memory location (HL).”’ The
memory location is specified through a rather strange system. It is the
memory location whose address is contained in registers H and L. This
instruction assumes that these two special registers (HL) have been
loaded with contents prior to executing the instruction. The 16-bit con-
tents of these registers will now specify the address in the memory
where data resides. This data will be added to the accumulator, and the
result will be left in the accumulator.

This instruction has a history. It has been supplied in order to pro-
vide compatibility between the early 8008, and its successor, the 8080.
The early 8008 was not equipped with a direct-memory addressing
capability! The procedure used to access the contents of the memory
was to load the two registers H and L, and then execute an instruction
referencing H and L. ADD A, (HL) is just such an instruction. It must
be stressed that the 8080 and the Z80 are not limited in the same way as
the 8008 in memory-addressing capability. They do have direct-memory
addressing. The facility for using the H and L registers becomes an
added advantage, not a drawback, as was the case with the 8008.

Let us now follow the execution of this instruction (it is called
ADD M for the 8080 and is the 16th instruction on Figure 2.27). States
T1, T2, and T3 of M1 will be used, as usual, to fetch the instruction.
During state T4, the contents of the accumulator are transferred to its
buffer register, ACT, and the left input of the ALU is conditioned.

Memory must be accessed in order to provide the second byte of data
which will be added to the accumulator. The address of this byte of
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data is contained in H and L. The contents of H and L will therefore
have to be transferred onto the address bus, where they will be gated to

the memory. Let us do it.
['}
E}@ DATA BUS
:

INST. REG. HUX

y

[CONTROLLER]

SEQUENCER

7 — 16 B TO MEMORY
f////////omﬂp////////,y////m///m“/, DDRESS BUS
CONTROL

1 stonas

nd

Fig. 2.28: Transfer Contents of HL to Address Bus

During machine cycle M2,weread: HL. OUT. H and L are deposited on
the address bus, in the same way PC used to be deposited there in
previous instructions. As a remark, it has already been indicated
that during state T1 status is output on the data bus, but no use of
this will be made here. From a simplified standpoint, it will require two
states: one for the memory to read its data, and one for the data to
become available and transferred onto the right input of the ALU,
TMP.

Both inputs of the ALU are now conditioned. The situation is analo-
gous to the one we were in with the previous instruction ADDA, r: both
inputs of the ALU are conditioned. We simply have to ADD as before.
A fetch/execute overlap technique will be used, and, instead of exe-
cuting the addition within state T4 of M2, final execution is postponed
until state T2 of M3. It can be seen in Figure 2.27 that during T2 we in-
deed have: ACT + TMP—=A. The addition is finally performed, the
contents of ACT are added to TMP, and the result deposited into the
accumulator A.
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Question: What is the apparent execution time (to the programmer) for
this instruction? Using a 2.5 Mhz clock, is it 3.6 us? 2.8 us?

Another more complex instruction will now be examined which is a
direct-memory addressing instruction using two invisible W and Z
registers:

LD A,(nn)

The opcode is 00111010. The 8080 equivalent is LDA addr. As usual,
states T1, T2, T3 of M1 will be used to fetch the instruction from the
memory. T4 is used, but no visible result can be described. During state
T4, the instruction is in fact decoded. The control unit then finds out
that it has to fetch the next two bytes of this instruction in order to ob-
tain the address from which the accumulator will be loaded. The effect
of this instruction is to load the accumulator from the memory contents
whose address is specified in bytes 2 and 3 of the instruction. Note that
state T4 is necessary to decode the instruction. It could be considered a
waste of time since only part of the state is necessary to do the
decoding. It is. However, this is the philosophy of clock-synchonous
logic. Because microinstructions are used internally to perform the
decoding and execution, this is the penalty that has to be paid in return
for the advantages of microprogramming. The structure of this instruc-
tion appears in Figure 2.29.

N: LDA (B1) :0PCODE

N+1: (B2) {16-BIT
p— ADDRESS =

N+2: (B3) )ADDRESS

Fig. 2.29: LD A, (ADDRESS) Is a 3-Word Instruction

The next two bytes of instruction will now be fetched. They will
specify an address (see Figure 2.30).
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M—"\/\’\

00111010

00000010

00010000

W

MEMORY

Fig. 2.30: Before Execution of LD A

100: 00111010
101 00000010
102 00010000,

M

W
A
G000111
[Coooooofooooo1] V\/\ﬂ
PC ) 00001111
REGISTERS MEMORY

Fig. 2.31: After Execution of LD A

LD A
1002
(HEX)

(hex)

(34)
(02)
(10

The effect of the instruction is shown in Figures 2.30 and 2.31 above.
Two special registers are available to the control unit within the Z80
(but not to the programmer). They are ‘““W’’ and ““Z’’, and are shown

in Figure 2.28.
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Second Machine Cycle M2: As usual, the first 2 states, T1 and T2, are
used to fetch the contents of memory location PC. During T2, the pro-
gram counter, PC, is incremented. Sometime by the end of T2, data be-
comes available from the memory, and appears on the data bus. By the
end of T3, the word which has been fetched from memory address PC
(B2, second byte of the instruction) is available on the data bus. It must
now be stored in a temporary register. It is deposited into Z: B2 » Z
(see Figure 2.32).

B2 —p7
» U —
Py
M4
z
Pe
| [
4(/ W ADDRESS DECODER
780 — 780 MEMORY

Fig. 2.32: Second Byte of Instruction Goes into Z

Machine Cycle M3: Again, PC is deposited on the address bus, incre-
mented, and finally the third byte, B3, is read from the memory and de-
posited into register W of the microprocessor. At this point, i.e., by the
end of state T3 of M3, registers W and Z inside the microprocessor con-
tain B2 and B3, i.e., the complete 16-bit address which was originally
contained in the two words following the instruction in the memory.
Execution can now be completed. W and Z contain an address. This ad-
dress will have to be sent té the memory, in order to extract the data.
This is done in the next memory cycle:

Machine Cycle M4: This time, W and Z are output on the address bus.
The 16-bit address is sent to the memory, and by the end of state T2,
data corresponding to the contents of the specified memory location
becomes available. It is finally deposited in A at the end of state T3.
This terminates execution of this instruction.
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This illustrates the use of an immediate instruction. This instruction
required three bytes in order to store a two-byte explicit address. This
instruction also required four memory cycles, as it needed to go to the
memory three times in order to extract the three bytes of this three-
word instruction, plus one more memory access in order to fetch the
data specified by the address. It is a long instruction. However, it is also
a basic one for loading the accumulator with specified contents residing
at a known memory location. It can be noted that this instruction re-
quires the use of W and Z registers.

Question: Could this instruction have used other registers than W, Z
Wwithin the system?

Answer: No. If this instruction had used other registers, for example
the H and L registers, it would have modified their contents. After ex-
ecution of this instruction, the contents of H and L would have been
lost. It is always assumed in a program that an instruction will not
modify any registers other than those it is explicitly using. An instruc-
tion loading the accumulator should not destroy the contents of any
other register. For this reason, it becomes necessary to supply the extra
two registers, W and Z, for the internal use of the control unit.

Question: Would it be possible to use PC instead of W and Z?

Answer: Positively not. This would be suicidal. The reader should ana-
lyze this.

One more type of instruction will be studied now: a branch or jump
instruction, which modifies the sequence in which instructions are
executed within the program. So far, we have assumed that instructions
were executed sequentially. Instructions exist which allow the pro-
grammer to jump out of sequence to another instruction within the
program, or in practical terms, to jump to another area of the memory
containing the program, or to another address. One such instruction is:

JP nn

This instruction appears on Line 18 of Figure 2.27' as “‘JMP addr.”’
Its execution will be described by following the horizontal line
of the Table. This is again a three-word instruction. The first word
is the opcode, and contains 11000011. The next two words contain the
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16-bit address, to which the jump will be made. Conceptually, the ef-
fect of this instruction is to replace the contents of the program counter
with the 16 bits following the ‘“JUMP’’ opcode. In practice, a some-
what different approach will be implemented, for reasons of efficiency.

As before, the first three states of M1 correspond to the instruction-
fetch. During state T4 the instruction is decoded and no other event is
recorded (X). The next two machine cycles are used to fetch bytes B2
and B3 of the instruction. During M2, B2 is fetched and deposited into
internal register Z. The next two steps will be implemented by the pro-
cessor during the next instruction-fetch, as was the case already with the
addition. They will be executed instead of the usual steps for T1 and T2
of the next instruction. Let us look at them.

The next two steps will be: WZ OUT and (WZ) + 1 » PC. In other
words, the contents of WZ will be used instead of the contents of PC
during the next instruction-fetch. The control unit will have recorded
the fact that a jump was being executed and will execute the beginning
of the next instruction differently.

The effect of these two extra states is the following:

The address placed on the address bus of the system will be the ad-
dress contained in W and Z. In other words, the next instruction will be
fetched from the address that was contained in W and Z. This is effec-
tively a jump. In addition, the contents of WZ will be incremented by 1
and deposited in the program counter, so that the next instruction will
be fetched correctly by using PC as usual. The effect is therefore cor-
rect.

‘Question: Why have we not loaded the contents of PC directly? Why
use the intermediate W and Z registers?

Answer: It is not possible to use PC, If we had loaded the lower part
of PC (PCL) with B2, instead of using Z, we would have destroyed PC!
It would then have become impossible to fetch B3.

Question: Would it be possible to use just Z, instead of W and Z?

Answer: Yes, but it would be slower. We could have loaded Z with
B2, then fetched B3, and deposited it into the high order half of PC
(PCH). However, it would then have become necessary to transfer Z in-
to PCL, before using the contents of PC. This would slow down the
process. For this reason, both W and Z should be used. Further, and in
order to save time, W and Z are not transferred into PC. They are
directly gated to the address bus in order to fetch the next instruction,
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Understanding this point is crucial to the understanding of efficient ex-
ecution of instructions within the microprocessor.

Question: (For the alert and informed reader only). What happens
in the case of an interrupt at the end of M3? (If instruction execution is
suspended at this point, the program counter points to the instruction
following the jump, and the jump address, contained in W and Z, will
be lost.)

The answer is left as an interesting exercise for the alert reader.

The detailed descriptions we have presented for the execution of
typical instructions should clarify the role of the registers and of
the internal buses. A second reading of the preceding section may
help in gaining a detailed understanding of the internal operation
of the Z80.

CLoCK d —»lo6
AO
30 to 40 . ADDRESS
BUS BUSRG——{ 25 and : BUS
CONTROL | BUSAK — 23 Tt 5 Als
NMI —d 17
INT —»] 16
MPU WAIT ——»] 24
CONTROL ) FATT <—1 18
RESET ——3=] 26 7115 DO DATA
(except 11) D7 BUS
MREQ ~gp—d 19
M
MEMORY
TORQ) <t~
AND 1/0 §% ;?
CONTROL WR * 22
RFSA ~— 28
29 11
GND +5v

POWER
Fig. 2.33: 280 MPU Pinout

The Z80 Chip

For completeness, the signals of the Z80 microprocessor chip will be
examined here. It is not indispensabie to understand the functions of
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the Z80 signals in order to be able to program it. The reader who is not
interested in the details of hardware may therefore skip this section.
The pinout of the Z80 appears on Fig. 2.33. On the right side of the
illustration, the address bus and the data bus perform their usual role,
as described at the beginning of this chapter. We will describe here the
function of the signals on the control bus. They are shown on the left of
Figure 2.33.

The control signals have been partitioned in four groups. They will be
described, going from the top of Figure 2.33 towards the bottom,

The clock input is ®. The Z80 requires an external 330-ohm pull-up
resistor. It is connected to the @& input and to § volts. However, at 4
MHz, an external clock driver is required.

The two bus-control signals, BUSRQ and BUSAK, are used to dis-
connect the Z80 from its busses. They are mainly used by the DMA, but
could also be used by another processor in the system. BUSRQ is the
bus-request signal. It is issued to the Z80. In response, the Z80 will place
its address bus, data bus, and tristate output control signals in the high-
impedance state, at the end of the current machine cycle. BUSAK is the
acknowledge signal issued by the Z80 once the busses have been placed
in the high-impedance state.

Six Z80 control signals are related to its internal status or to its se-
quencing:

INT and NMI are the two interrupt signals. INT is the usual interrupt
request. Interrupts will be described in Chapter 6. A number of in-
put/output devices may be connected to the INT interrupt line. When-
ever an interrupt request is present on this line, and when the internal
interrupt enable flip-flop (IFF) is enabled, the Z80 will accept the inter-
rupt (provided the BUSRQ is not active). It will then generate an
acknowledge signal: IORQ (issued during the M1 state). The rest of the
sequence of events is described in Chapter 6.

NMI is the non-maskable interrupt. It is always accepted by the Z80,
and it forces the Z80 to jump to location 0066 hexadecimal. It too is
described in Chapter 6. (It also assumes that BUSRQ is not active.)

WAIT is a signal used to synchronize the Z80 with slow memory or
input/output devices. When active, this signal indicates that the
memory Or the device is not yet ready for the data transfer. The Z80
CPU will then enter a special wait state until the WAIT signal becomes
inactive. It will then resume normal sequencing.

HALT is the acknowledge signal supplied by the Z80 after it has ex-
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ecuted the HALT instruction. In this state, the Z80 waits for an exter-
nal interrupt and keeps executing NOPs to continually refresh memory.

RESET is the signal which usually initializes the MPU. It sets the
program counter, register I and R to 0. It disables the interrupt
enable flip-flop and sets the interrupt mode to ‘‘0’’. It is normally used
after power is applied to the board.

Memory and 1/0 Control

Six memory and I/0 control signals are generated by the Z80. They are:
MREQ is the memory request signal. It indicates that the address pres-
ent on the address bus is valid. A read or write operation can then be
performed on the memory.

M1 is machine cycle 1. This cycle corresponds to the fetch cycle of an
instruction.

IORQ is the input/output request. It indicates that the /0O address
present on bits 0-7 of the address bus is valid. An I/0 read or write
operation can then be carried out. IORQ is also generated together with
M1 when the Z80 acknowledges an interrupt. This information may be
used by external chips to place the interrupt response vector on the data
bus. (Normal I/0O operations never occur during the M1 state. The
combination IORQ plus M1 indicates an interrupt-acknowledge situa-
tion.)

RD is the read signal.* It indicates the Z80 is ready to read the con-
tents of the data bus into an internal register. It can be used by any ex-
ternal chip, whether memory or 1/0, to deposit data onto the data bus.

WR is the write signal.* It indicates that the data bus holds valid
data, ready to be written into the specified device.

RFSH is the refresh signal. When RFSH is active, the lower seven
bits of the address bus contain a refresh address for dynamic memories.
The MREQ signal is then used to perform the refresh by reading the
memory.

HARDWARE SUMMARY

This completes our description of the internal organization of the
Z80. The exact hardware details of the Z80 are not important here.
However, the role of each of the registers is important and should be
fully understood before proceeding to the next chapters. The actual in-
structions available on the Z80 will now be introduced, and basic pro-
gramming techniques for the Z80 will be presented.

*used in conjunction with MREQ or IOREQ),
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BASIC PROGRAMMING
TECHNIQUES

INTRODUCTION

The purpose of this chapter is to present the basic techniques neces-
sary in order to write a program using the Z80. This chapter will intro-
duce new concepts such as register management, loops, and sub-
routines. It will focus on programming techniques using only the inter-
nal Z80 resources, i.e., the registers. Actual programs will be de-
veloped, such as arithmetic programs. These programs will serve to il-
lustrate the various concepts presented so far and will use actual in-
structions. Thus, it will be seen how instructions may be used to
manipulate the information between the memory and the MPU, as well
as to manipulate information within the MPU itself. The next chapter
will then discuss in complete detail the instructions available on the Z80.
Chapter 5§ will present Addressing Techniques, and Chapter 6 will pre-
sent the techniques available for manipulating information outside the
Z80: the Input/Output Techniques.

In this chapter, we will essentially learn by ‘‘doing.”’ By examining
programs of increasing complexity, we will learn the role of the various
instructions, of the registers, and we will apply the concepts developed
so far. However, one important concept will not be presented here; it is
the concept of addressing techniques. Because of its apparent complexi-
ty, it will be presented separately in Chapter 5.

Let us immediately start writing some programs for the Z80. We will
start with arithmetic programs. The ‘‘programmer’s model’’ of the Z80
registers is shown in Figure 3.0.
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MAIN SET ALTERNATE SET
A F , }
mm (accumulator) {flags) A F
(000) B c (oot) B’ (o4
GENERAL-—
(010) D E (011) v E PURPOSE
REGISTERS
(100) H L (101) H v
| R
(interrupt vector)| (mem refresh)
1X
INDEX
Iy REGISTERS
SP

(stack pointer)

PC

(program counter)

Fig. 3.0: The Z30 Registers

ARITHMETIC PROGRAMS

Arithmetic programs include addition, subtraction, multiplication,
and division. The programs presented here will operate on integers.
These integers may be positive binary integers or may be expressed in
two’s complement notation, in which case the left-most bit is the sign
bit (see Chapter 1 for a description of the two’s complement notation).

8-Bit Addition
We will add two

8-bit operands called OP1 and OP2, respectively

stored at memory address ADR1, and ADR2. The sum will be called
RES and will be stored at memory address ADR3. This is illustrated in
Figure 3.1. The program which will perform this addition is the follow-

ing:
Instructions

LD A, (ADRI)
LD HL, ADR2
ADD A, (HL)

LD (ADR3), A

Comments

LOAD OP1 INTO A

LOAD ADDRESS OF OP2 INTO HL
ADD OP2 TO OP1

SAVE RESULT RES AT ADR3
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MEMORY

NSNS

ADR] ————— OP1 (FIRST OPERAND)
ADR2 ——————= OP2 (SECOND OPERAND)
ADR3 - RES (RESULT)

ADDRESSES V\/\/\\/W

Fig. 3.1: Eight-Bit Addition RES = OP1 + OP2

This is our first program. The instructions are listed on the left and
comments appear on the right. Let us now examine the program. Itis a
four-instruction program. Each line is called an instruction and is ex-
pressed here in symbolic form. Each such instruction will be translated
by the assembler program into one, two, three or four binary bytes. We
will not concern ourselves here with the translation and will only look at
the symbolic representation.

The first line specifies loading the contents of ADRI1 into the accu-
mulator A. Referring to Figure 3.1, the contents of ADRI1 are the first
operand, ‘“OP1”’. This first instruction therefore results in transferring
OP1 from the memory into the accumulator. This is shown in Figure
3.2. ““ADR1”’ is a symbolic representation for the actual 16-bit address
in the memory. Somewhere else in the program, the ADR1 symbol will
be defined. It could, for example, be defined as being equal to the ad-
dress ‘1007,

This load instruction will result in a read operation from address 100
(see Figure 3.2), the contents of which will be transferred along the data
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DATA BUS
D R

(=-0P1)

N

(ADR1)

ADDRESS BUS

Fig. 3.2: LD A, (ADR1): OPR is Loaded from Memory

bus and deposited inside the accumulator. You will recall from the pre-
vious chapter that arithmetic and logical operations operate on the
accumulator as one of the source operands. (Refer to the previous
chapter for more details.) Since we wish to add the two values OP1 and
OP2 together, we must first load OP1 into the accumulator. Then, we
will be able to add the contents of the accumulator, i.e., add OPI to
OP2. The right-most field of this instruction is called a comment field.
It is ignored by the assembler program at translation time, but is pro-
vided for program readability. In order to understand what the pro-
gram does, it is of paramount importance to use good comments. This
is called documenting a program.

Here the comment is self-explanatory: the value of OP1, which is
located at address ADRI, is loaded into the accumulator A.

The result of this first instruction is illustrated by Figure 3.2. The
second instruction of our program is:

LD HL, ADR2

It specifies: ‘‘Load ADR2 into registers H and L.”’ In order to read the
second operand, OP2, from the memory, we must first place its address
into a register pair of the Z80, such as H and L. Then, we can add the
contents of the memory location whose address is in H and L to the
accumulator.

ADD A, (HL)

Referring to Figure 3.1, the contents of memory location ADR2 are
OP2, our second operand. The contents of the accumulator are now
OP1, our first operand. As a result of the execution of this instruction,
OP2 will be fetched from the memory and added to OP1. This is il-
lustrated in Figure 3.3
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DATA BUS

(~-—or2 )

ADR2

(ADR2)

ADDRESS BUS

Fig. 3.3: ADD A, (HL)

The sum will be deposited in the accumulator. The reader will
remember that, in the case of the Z80, the results of the arithmetic oper-
ation are deposited back into the accumulator. In other processors, it
may be possible to deposit these results in other registers, or back into
the memory.

The sum of OP1 and OP2 is now contained in the accumulator. To
complete our program, we simply have to transfer the contents of the
accumulator into memory location ADR3, in order to store the results
at the specified location. This is performed by the fourth instruction of
our program:

LD (ADR3), A

This instruction loads the contents of A into the specified address
ADR3. The effect of this final instruction is illustrated by Figure 3.4.

280 MEMORY
D I
DATABUS ¥ 1y
b
Pt
i t
A RES V!
¢ |
| t
A4
AoRs |1 RS
{ADR3

ADDRESS BUS

Fig. 3.4: LD (ADR3), A (Save Accumulator in Memory)
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Before execution of the ADD operation, the accumulator contained
OP1 (see Figure 3.3). After the addition, a new result has been written
into the accumulator. It is ““OP1 + OP2”’. Recall that the contents of
any register within the microprocessor, as well as any memory location,
remain the same after a read operation has been performed on this
register. In other words, reading the contents of a register or memory
location does not change its contents. It is only, and exclusively, a write
operation into this register location that will change its contents. In this
example, the contents of memory locations ADR1 and ADR2 remain
unchanged throughout the program. However, after the ADD instruc-
tion, the contents of the accumulator will have been modified, because
the output of the ALU has been written into the accumulator. The
previous contents of A are then lost.

Actual numerical addresses may be used instead of ADR1, ADR2,
and ADR3. In order to keep symbolic addresses, it will be necessary to
use so-called ‘‘pseudo-instructions’” which specify the value of these
symbolic addresses, so that the assembly program may, during transla-
tion, substitute the actual physical addresses. Such pseudo-instructions
could be, for example:

ADRI1 = 100H
ADR2 = 120H
ADR3 = 200H

Exercise 3.1: Now close this book. Refer only to the list of instructions
at the end of the book. Write a program which will add two numbers
stored at memory locations LOCI and LOC?2. Deposit the results at
memory location LOC3. Then, compare your program to the one
above.

16-Bit Addition

An 8-bit addition will only allow the addition of 8-bit numbers, i.e.,
numbers between 0 and 255, if absolute binary is used. For most prac-
tical applications it is necessary to add numbers having 16 bits or more,
i.e., to use multiple precision. We will here present examples of arith-
metic on 16-bit numbers. They can be readily extended to 24, 32 bits or
more (always multiples of 8 bits). We will assume that the first operand
is stored at memory locations ADR1 and ADR1-1. Since OP1 is a 16-bit
number this time, it will require two 8-bit memory locations. Similarly,
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OP2 will be stored at ADR2 and ADR2-1. The result is to be deposited
at memory addresses ADR3 and ADR3-1. This is illustrated in Figure
3.5. H indicates the high half (bits 8 through 15), while I indicates the
low halt (bits O through 7).

MEMORY

ADR! - 1 (OPV)H
ADR1 (OPI )L

ADR2 -1 (OP2)H
ADR2 (OP2)L
ADR3 -1 (RESH
ADR3 (RESK

Fig. 3.5: 16-Bit Addition—The Operands

The logic of the program is exactly like the previous one. First, the
lower half of the two operands will be added, since the microprocessor
can only add on 8 bits at a time. Any carry generated by the addition of
these low order bytes will automatically be stored in the internal carry
bit (‘‘C’’). Then, the high order half of the two operands will be added
together along with any carry, and the result will be saved in the
memory. The program appears below:

LD A, (ADRI) LOAD LOW HALF OF OP1

LD HL, ADR2 ADDRESS OF LOW HALF OF OP2
ADD A, (HL), ADD OP1 AND OP2 LOW

LD (ADR3), A STORE RESULT, LOW

LD A, (ADRI-1) LOAD HIGH HALF OF OP1

DEC HL ADDRESS OF HIGH HALF OF OP2
ADC A, (HL) (OP1 + OP2) HIGH + CARRY

LD (ADR3-1),A STORE RESULT, HIGH
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The first four instructions of this program are identical to the ones
used for the 8-bit addition in the previous section. They result in adding
the least significant halves (bits 0-7) of OP1 and OP2. The sum, called
“RES”’ is stored at memory location ADR3 (see Figure 3.5).

Automatically, whenever an addition is performed, any resulting
carry (whether ‘0’ or *‘1”’) is saved in the carry bit C of the flags
register (register F). If the two numbers do generate a carry, then the C
bit will be equal to ¢‘1’’ (it will be set). If the two 8-bit numbers do not
generate any carry, the value of the carry bit will be ‘‘0”’.

The next four instructions of the program are essentially like those
used in the previous 8-bit addition program. This time they add
together the most significant half (or high half, i.e., bits 8-15) of OP1
and OP2, plus any carry, and store the result at address ADR3-1.

After execution of this 8-instruction program, the 16-bit result is
stored at memory locations ADR3 and ADR3-1, asspecified. Note,
however, that there is one difference between the second half of this
program and the first half. The ““ADD”’ instruction which has been
used is not the same as in the first half. In the first half of this program
(the 3rd instruction), we had used the ‘*‘ADD”’ instruction. This instruc-
tion adds the two operands, regardless of the carry. In the second half,
we use the ““ADC”’ instruction, which adds the two operands together,
plus any carry that may have been generated. This is necessary in order
to obtain the correct result. The addition initially performed on the low
operands may result in a carry. Such a possible carry must be taken into
account in the second half of the addition.

The question which comes naturally then is: what if the addition of
the high half of the operands also results in a carry? There are two pos-
sibilities: the first one is to assume that this is an error. This program is
then designed to work for results of only up to 16 bits, but not 17. The
other one is to include additional instructions to test explicitly for the
possibility of a carry at the end of this program. This is a choice which
the programmer must make, the first of many choices.

Note: we have assumed here that the high part of the operand is
stored ‘‘on top of”’ the lower part, i.e., at the lower memory address.
This need not necessarily be the case. In fact, addresses are stored by
the Z80 in the reverse manner: the low part is first saved in the memory,
and the high part is saved in the next memory location. In order to use a
common convention for both addresses and data, it is recommended
that data also be kept with the low part on top of the high part. This is
illustrated in Figure 3.6.
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MEMORY
ADR1 (OP1)L
ADRI +1 (OP1)H
ADR2 (OP2)L
ADR2+ | (OP2)H
ADR3 (RESH
ADR3+1 (RESH

Fig. 3.6: Storing Operands in Reverse Order

When operating on multibyte operand, it is important to keep in mind
two essential conventions:

—the order in which data is stored in the memory.
—where data pointers are pointing: low byte or high byte.
Exercises 3.2 and 3.3 are designed to clarify this point.

Exercise 3.2: Rewrite the 16-bit addition program above with the
memory layout indicated in Figure 3.6.

Exercise 3.3: Assume now that ADRI does not point to the lower half
of OPI (as in Figures 3.5 or 3.6), but points to the higher part of OPI.

This is illustrated in Figure 3.7. Again, write the corresponding pro-
gram.
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MEMORY

ADR1-1 (OPI)L
— ADRI (OP1)H
ADR2-} (OP2)L
i ADR2 (OP2)H
ADR-1 (RESH
s i (RESIH

Fig. 3.7: Pointing to the High Byte

It is the programmer, i.e., you, who must decide how to store 16-bit
numbers (i.e., low part or high part first) and also whether your address
references point to the lower or to the higher half of such numbers. This
is another choice which you will learn to make when designing
algorithms or data structures.

The programs presented above are traditional programs, using the
accumulator. We will now present an alternative program for the 16-bit
addition that does not use the accumulator, but instead uses some of
the special 16-bit instructions available on the Z80. Operands will be
assumed to be stored as indicated in Figure 3.5. The program is:

LD HL,(ADRI) LOAD HL WITH OP1
LD BC,(ADR2) LOAD BC WITH OP2
ADD HL, BC ADD 16 BITS

LD (ADR3),HL STORE RES INTO ADR3

Note how much shorter this program is, compared to our previous ver-
sion. 1t is more ‘‘elegant.”’ In a limited manner, the Z80 allows registers
H and L to be used as a 16-bit accumulator.
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Exercise 3.4: Using the 16-bit instructions which have just been intro-
duced, write an addition program for 32-bit operands, assuming that
operands are stored as shown in Figure 3.8. (The answer appears
below.)

Answer :

LD HL, (ADRI)
LD BC, (ADR2)
ADD HL, BC

LD (ADR3)

LD HL, (ADRI+2)
LD BC, (ADR2+2)
ADC HL, BC

LD (ADR3+2)

MEMORY

ADR1+3 HIGH
OPR1

ADR1 LOW
HIGH

OPR2

ADR2 LOW
HIGH

RES

ADR3 LOW

Fig. 3.8: A 32-Bit Addition
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Now that we have learned to perform a binary addition, let us turn to
subtraction.

Subtracting 16-Bit Numbers

Doing an 8-bit subtract would be too simple. Let us keep it as an ex-
ercise and directly perform a 16-bit subtract. As usual, our two num-
bers, OP1 and OP2, are stored at addresses ADR1 and ADR2. The
memory layout will be assumed to be that of Figure 3.6. In order to
subtract, we will use a subtract operation (SBC) instead of an add
operation (ADD).

Exercise 3.5: Now write a subtraction program.

The program appears below. The data paths are shown in Figure 3.9.

LD HL, (ADR1) OP! INTO HL
LD DE, (ADR2) OP2 INTO DE
AND A CLEAR CARRY
SBC HL, DE OP1 — OP2

LD (ADR3),HL RES INTO ADR3

The program is essentially like the one developed for 16-bit addition.
However, the Z80 instruction-set has two types of additions on double
registers: ADD and ADC, but only one type of subtraction: SBC.

As a result, two changes can be noted.
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MEMORY
H L
(OP1)H (oPI)L
(OP1)L ADR!
(OPTH ADRI + 1

Fig. 3.9: 16-Bit Load — LD HL, (ADR1)

A first change is the use of SBC instead of ADD.

The other change is the ““AND A’’ instruction, used to clear the carry
flag prior to the subtraction, This instruction does not modify the value
of A.

This precaution is necessary because the Z80 is equipped with two
modes of addition, with and without carry on the H and L register, but
with only one mode of subtraction, the SBC instruction of *‘subtract
with carry’’ when operating on the HL register pair. Because SBC auto-
matically takes into account the value of the carry bit, it must be set to 0
prior to starting the subtraction. This is the role of the ““AND A’ in-
struction.

Exercise 3.6: Rewrite the subtraction program without using the
specialized 16-bit instruction.
Exercise 3.7: Write the subtract program for 8-bit operands.

It must be remembered that in the case of two’s complement arithme-
tic, the final value of the carry flag has no meaning. If an overflow con-

dition has occurred as a result of the subtraction, then the overflow bit
(bit V) of the flags register will have been set. It can then be tested.
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The examples just presented are simple binary additions or subtrac-
tions. However, another type of arithmetic may be necessary; it is BCD
arithmetic.

BCD ARITHMETIC
8-Bit BCD Addition

The concept of BCD arithmetic has been presented in Chapter 1. Let
us recall its features. It is essentially used for business applications
where it is imperative to retain every significant digit in a result. In the
BCD notation, a 4-bit nibble is used to store one decimal digit (0
through 9). As a result, every 8-bit byte may store two BCD digits.
(This is called packed BCD). Let us now add two bytes each containing
two BCD digits.

In order to identify the problems, let us try some numeric examples
first.

Let us add ¢‘01°’ and ““02”’;

““01”’ is represented by: 0000 0001
““02”’ is represented by: 0000 0010

The result is: 0000 0011

This is the BCD representation for ¢‘03’’. (If you feel unsure of the
BCD equivalent, refer to the conversion table at the end of the book.)
Everything worked very simply in this case. Let us now try another ex-
ample.

““08”’ is represented by 0000 1000
‘03’ is represented by 0000 0011

Exercise 3.8: Compute the sum of the two numbers above in the BCD
representation. What do you obtain? (answer follows)

If you obtain ‘0000 1011”’, you have computed the birnary sum of 8
and 3. You have indeed obtained 11 in binary. Unfortunately, ¢‘1011”’
is an illegal code in BCD. You should obtain the BCD representation of
“11”, i.e., 0001 0001!

The problem stems from the fact that the BCD representation uses
only the first ten combinations of 4 digits in order to encode the decimal
symbols 0 through 9. The remaining six possible combinations of 4
digits are unused, and the illegal ‘“1011”’ is one such combination. In
other words, whenever the sum of two BCD digits is greater than 9,
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then one must add 6 to the result in order to skip over the 6 unused
codes.
Add the binary representation of ‘‘6’’ to 1011:

1011 (illegal binary result)
+ 0110 (+6)

The result is: 0001 0001

This is, indeed, ‘“11°’ in the BCD notation! We now have the correct
result.

This example illustrates one of the basic difficulties of the BCD
mode. One must compensate for the six missing codes. A special in-
struction, ‘““DAA”’, called ‘‘decimal adjust,’’ must be used to adjust the
result of the binary addition. (Add 6 if the result is greater than 9.)

The next problem is illustrated by the same example. In our example,
the carry will be generated from the lower BCD digit (the right-most
one) into the left-most one. This internal carry must be taken into ac-
count and added to the second BCD digit. The addition instruction
takes care of this automatically. However, it is often convenient to
detect this internal carry from bit 3 to bit 4 (the ‘‘half-carry’’). The H
flag is provided for this purpose.

As an example, here is a program to add the BCD numbers ‘11’ and
€227

LD A,llH LOAD LITERAL BCD ‘I1’
ADD A, 22H ADD LITERAL BCD ‘22’
DAA DECIMAL ADJUST RESULT
LD (ADR), A STORE RESULT

In this program, we are using a new symbol ‘“H”’. The ‘“H’’ sign
within the operand field of the instruction specifies that the data it
follows is expressed in hexadecimal notation. The hexadecimal and the
BCD representations for digits ‘‘0”’ through ‘9’ are identical. Here we
wish to add the literals (or constants) ‘“11°* and ¢‘22’’. The result is
stored at the address ADR. When the operand is specified as part of the
instruction, as it is in the above example, this is called immediate ad-
dressing. (The various addressing modes will be discussed in detail in
Chapter 5.) Storing the result at a specified address, such as LD (ADR), A
is called absolute addressing when ADR represents a 16-bit address.
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MEMORY

- -

~ =

ADR

(RESULT) (ADR)

Fig. 3.10: Storing BCD Digits

This program is analogous to the 8-bit binary addition, but uses a
new instruction: ““DAA’’. Let us illustrate its role in. an example. We
will first add “11’” and ““22”’ in BCD:

00010001 (1D
+ 00100010 (22)

= 00110011 (33)
N g

3 3

The result is correct, using the rules of binary addition.
Let us now add ‘‘22’° and ‘“39”’, by using the rules of binary addi-

tion: 00100010 (22)
+ 00111001 (39)

=01011011
Nt .
5 2

““1011” is an illegal BCD code. This is because BCD uses only the
first 10 binary codes, and ‘‘skips over” the next 6. We must do the
same, i.e. add 6 to the result:

01011011 (binary result)
+ 0110 (6)

= 01100001 (61)
N~

6 1
This is the correct BCD result.
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Exercise 3.9: Could we move the DAA instruction in the program after
the instruction LD (ADR), A?

BCD Subtraction

BCD subtraction is, in appearance, complex. In order to perform a
BCD subtraction, one must add the ten’s complement of the number,
just as one adds the two’s complement of a number to perform a binary
subtract. The ten’s complement is obtained by computing the comple-
ment to 9, then adding ‘‘1"°. This requires typically three to four opera-
tions on a standard microprocessor. However, the Z80 is equipped with
a powerful DAA instruction which simplifies the program.

The DAA instruction automatically adjusts the value of the result in
the accumulator, depending on the value of the C, H and N flags before
DAA, to the correct value. (See the next chapter for more details on
DAA.)

16-Bit BCD Addition

16-bit addition is performed just as simply as in the binary case. The
program for such an addition appears below:

LD A, (ADRI) LOAD (OP1) L INTO A

LD HL,’ADR2) LOAD ADR2 INTO HL

ADD A, (HL) (OP1 + OP2) LOW

DAA DECIMAL ADJUST

LD (ADR3), A STORE (RESULT) LOW

LD A,(ADRI +1) LD (OPI1)H INTO A

INC HL POINT TO ADR2 + 1

ADC A, (HL) (OP1 + OP2) HIGH + CARRY
DAA DECIMAL ADJUST

LD (ADR3 + 1),A STORE (RESULT) HIGH

Packed BCD Subtract

Elementary BCD addition and subtraction have been described.
However, in actual practice, BCD numbers include any number of
bytes. As a simplified example of a packed BCD subtract, we will
assume that the two numbers N1 and N2 include the same number of
BCD bytes. The number of bytes is called COUNT. The register and
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below:

BCDPAK LD

MINUS

LD
LD
AND
LD
SBC
DAA
LD
INC
INC
DINZ

COUNT

BASIC PROGRAMMING TECHNIQUES

is shown in Figure 3.11. The program appears

B, COUNT
DE, N2
HL, N1

A

A, (DE)

A, (HL)

(HL), A
DE
HL
MINUS

CLEAR CARRY

N2 BYTE
N2 - N1

STORE RESULT

DEC B, LOOP UNTIL B = 0.

Y

Y

COUNT

NI

Fig. 3.11: Packed BCD Subtract: N1<«— N 2 - N1

N1 and N2 represent the addresses where the BCD numbers are stored.
These addresses will be loaded in register pairs DE and HL:

BCDPAK LD

LD
LD

B, COUNT
DE, N2
HL, Ni
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Then, in anticipation of the first subtraction, the carry bit must be
cleared. It has been pointed out that the carry bit can be cleared in a
number of equivalent ways. Here, for example, we use:

AND A

The first byte of N2 is loaded into the accumulator, then the first byte
of N1 is subtracted from it. The DAA instruction is then used, to obtain
the correct BCD value:

MINUS LD A, (DE)

SBC A, (HL)
DAA
The result is then stored into N1:
LD (HL), A
Finally, the pointers to the current byte are incremented:
INC DE
INC HL

The counter is decremented and the subtraction loop is executed until it
reaches the value *‘0’":

DINZ MINUS

The DJINZ instruction is a special Z80 instruction which decrements
register B and jumps if it is not zero, in a single instruction.

Exercise 3.10: Compare the program above to the one for the 16-bit
binary addition. What is the difference?

Exercise 3.11: Can you exchange the roles of DE and HL? (Hini: Be
careful with SBC.)

Exercise 3.12: Write the subtraction program for a 16-bit BCD.

BCD Flags

In BCD mode, the carry flag set as the result of an addition indicates
the fact that the result is larger than 99. This is not like the two’s com-
plement situation, since BCD digits are represented in true binary. Con-
versely, the presence of the carry flag after a subtraction indicates a
borrow.

Instruction Types

We have now used two types of microprocessor instructions. We
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have used LD, which loads the accumulator from the memory address,
or stores its contents at the specified address. This is a dara transfer in-
struction.

Next, we have used arithmetic instructions, such as ADD, SUB,
ADC and SBC. They perform addition and subtraction operations.
More ALU instructions will be introduced soon in this chapter.

Still other types of instructions are available within the micropro-
cessor which we have not used yet. They are in particular ‘‘jump’’ in-
structions, which will modify the order in which the program is being
executed. This new type of instruction will be introduced in our next ex-
ample. Note that jump instructions are often called *‘branch for con-
ditional situations, i.e. instances where there is a logical choice in the
program. The “‘branch’ derives its name from the analogy to a tree,
and implies a fork in the representation of the program.

MULTIPLICATION

Let us now examine a more complex arithmetic problem: the multi-
plication of binary numbers. In order to introduce the algorithm for a
binary multiplication, let us start by examining a usual decimal multi-
plication: We will multiply 12 by 23.

12 (Multiplicand)
X 23 (Multiplier)

36 (Partial Product)
+ 24

= 276 (Final Result)

The multiplication is performed by multiplying the right-most digit of
the multiplier by the multiplicand, i.e., ‘3’ X ““12”’. The partial prod-
uct is ““36’’. Then one multiplies the next digit of the multiplier, i.e.,
2, by ““12”°, ‘24" is then added to the partial product.

But there is one more operation: 24 is offset to the left by one posi-
tion. We will say that 24 is shifted left by one position. Equivalently, we
could have said that the partial product (36) had been shifted one posi-
tion to the right before adding.

The two numbers, correctly shifted, are then added and the sum is
276. This is simple. The binary multiplication is performed in exactly
the same way.
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Let us look at an example. We will' multiply 5 x 3:

5) 101 (MPD)
3) x 011 (MPR)
101 (PP)
101
000

(15) 01111 (RES)

In order to perform the multiplication, we operate exactly as we did
above. The formal representation of this algorithm appears in Figure
3-12. It is-a flowchart for the algorithm, our first flowchart. Let us ex-
amine it more closely.

i

SET RESULT TO ZERO

YES

RESULT =
RESULT + MPD

LEFT SHIFT (1) MPD
OR RIGHT SHIFT (1) RES

!

NEXT LSB (MPR)

DONE FOR 8 BITS?,

YES

DONE

Fig. 3.12: The Basic Multiplication Algorithm—Flowchart

This flowchart is a symbolic representation of the algorithm we have
just presented. Every rectangle represents an order to be carried out, It
will be translated into one or more program instructions. Every
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diamond-shaped symbol represents a test being performed. This will be
a branching point in the program. If the test succeeds, we will branch to
a specified location. If the test does not succeed, we will branch to
another location. The concept of branching will be explained later, in
the program itself. The reader should now examine this flowchart and
ascertain that it does indeed exactly represent the algorithm which has
been presented. Note that there is an arrow coming out of the last dia-
mond at the bottom of the flowchart, back to the first diamond on top.
This is because the same portion of the flowchart will be executed eight
times, once for every bit of the multiplier. Such a situation, where ex-
ecution will restart at the same point, is called a program loop for ob-
vious reasons.

Exercise 3.13: Multiply ‘4’ by ‘7" in binary, using the flowchart, and
verify that you obtain 28’ If you do not, try again. It is only if you
obtain the correct result that you are ready to translate this flowchart
into a program.
8-By-8 Multiplication

Let us now translate this flowchart into a program for the Z80. The
complete program appears in Figure 3.13. We are going to study it in
detail. As you will recall from Chapter 1, programming consists here of
translating the flowchart of Figure 3.12 into the program of Figure
3.13. Each of the boxes in the flowchart will be translated by one or
more instructions.

It is assumed that MPR and MPD already have a value.

MPY88 LD BC,(MPRAD) LOAD MULTIPLIER INTO C

LD B,8 B IS BIT COUNTER

LD DE,(MPDAD) LOAD MULTIPLICAND INTO E

LD D,0 CLEAR D

LD HL,0 SET RESULT TO 0
MULT SRL C SHIFT MULTIPLIER BIT INTO

CARRY

JR NC, NOADD TEST CARRY

ADD HL, DE ADD MPD TO RESULT
NOADD SLA E SHIFT MPD LEFT

RL D SAVE BIT IN D

DEC B DECREMENT SHIFT COUNTER

JP NZ, MULT DO IT AGAIN IF COUNTER # 0
LD (RESAD), HL STORE RESULT

Fig. 3.13: 8 x 8 Multiplication Program
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The first box of the flowchart is an initialization box. It is necessary
to set a number of registers or memory locations to “‘0’’, as this pro-
gram will require their use. The registers which will be used by the
multiplication program appear in Figure 3.14.

8777

Aaan

J RES (RESAD)

T (RESULT)

(MPRAD)

LI

MPD (MPDAD)

Fig 3.14: 8 x 8 Multiplication—The Registers

Three register pairs of the Z80 are used for the multiplication pro-
gram. The 8-bit multiplier is assumed to reside at memory address
MPRAD. The multiplicand MPD is assumed to reside at memory ad-
dress MPDAD. The multiplier and the multiplicand respectively will be
loaded into registers C and E (see Figure 3.14). Register B will be used
as a counter,

Registers D and E will hold the multiplicand as it is shifted left one
bit at a time.

Note that, even though only C and E need to be loaded initially, a 16-
bit load must be used, so that B and D will also be loaded from memory,
and will have to be reset respectively to ‘‘8’’ and to “‘0*’.
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Finaily, the results of an 8-bit by 8-bit multiplication may require up
to 16 bits. This is because 2* x 2* = 2'¢, Two registers must therefore
be reserved for the result. They are registers H and L, as indicated on
Figure 3.14.

The first step is to load registers B, C, and E with the appropriate
contents, and to initialize the result (the partial product) to the value
‘0’ as specified by the flowchart of Figure 3.12. This is accomplished
by the following instructions:

MPY88 LD BC, (MPRAD)

LD B,8

LD DE, (MPDAD)
LD D,0

LD HL, 0

The first three instructions respectively load MPR into the register pair
BC, the value ‘‘8” into register B, and MPD into the register pair DE.
Since MPR and MPD are 8-bit words, they are, in fact, loaded into
registers C and E respectively, while the next words in the memory after
MPR and MPD get loaded into B and D. This is shown in Figure 3.15
and 3.16. The next instruction will zero the contents of D.

In this multiplication program, the multiplicand will be shifted left
before being added to the result (remember that, optionally, it is pos-
sible to shift the result right instead, as indicated in the fourth box of
the flowchart of Figure 3.12). The multiplicand MPD will be shifted in-
to register D at each step. This register D must therefore be initialized to
the value “‘0”’. This is accomplished by the fourth instruction. Finally,
the fifth instruction sets the contents of registers H and L to Oin a single

instruction.
MEMORY

2077 - V%7

Fig. 3.15: LD BC, (MPRAD)
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MEMORY

MPDAD

NN

Fig. 3.16: LD DE, (MPDAD)

Referring back to the flowchart of Figure 3.12, the next step is to test
the least significant bit (the right-most bit) of the multiplier MPR. If this
bit is a *‘1’*, then the value of MPD must be added to the partial result,
otherwise it will not be added. This is accomplished by the next three in-
structions:

MULT SRL C
JR  NC, NOADD
ADD HL, DE

The first problem we must solve is how to test the least significant bit of
the multiplier, contained in register C. We could here use the BIT in-
struction of the Z80, which allows testing any bit in any register. How-
ever, in this case, we would like to construct a program as simple as
possible, using a loop. If we were using the BIT instruction here, we
would first test bit 0, then later test bit 1, and so on until we reached bit
7. This would require a different instruction every time, and a simple
loop could not be used. In order to shorten the length of the program,
we must use a different instruction. Here we are using a shift instruc-
tion.

Note: There is a way to use the BIT instruction and a loop, but this
would require the program to modify itself, a practice we will avoid.
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SRL is a new type of operation within the arithemetic and logical
unit. It stands for ‘‘shift right logical.”’ A logical shift to the right is
characterized by the fact tnat a‘‘0’’> comes into bit position 7. This can
be contrasted to an arithemtic shift to the right, where the bit coming
into position 7 is identical to the previous value of bit 7. The different
types of shift operations will be described in the next chapter. The
effect of the SRL C instruction is illustrated in Figure 3.14 by an arrow
coming out of register C and into the square used to designate the carry
bit (also called ‘“C’’). At this point, the right-most bit of the MPR will
be in the carry bit C, where it can be tested.

The next instruction, ‘‘JR NC, NOADD”’, is a jump operation. It
means ‘‘jump on no carry’’ (NC) to the address (the label) NOADD. If
the contents of the carry bit are “‘0”’ (no carry), then the program will
jump to the address NOADD. If the contents of C are ‘‘1’’ (the carry
bit is set), then no branch will occur, and the next sequential instruction
will be executed, i.e., the instruction “ADD HL, DE”’ will be executed.

This instruction specifies that the contents of D and E be added to H
and L, with the result in H and L. Since E contains the multiplicand
MPD (see Figure 3.14), this adds the multiplicand to the partial result.

At this point, regardless of whether MPD has been added to the
result or not, the multiplicand must be shifted left (this is the fourth box
in the flowchart of Figure 3.12). This is accomplished by:

NOADD SLA E

SLA stands for “‘shift left arithmetic.”’ It has just been explained above
that there are two types of shift operations, a logical shift and an arith-
metic shift. This is the arithmetic one. In the case of a left shift, an SLA
specifies that the bit coming into the right part of the register (the least
significant bit) be a *‘0”’ (just as in the case of an SRL before).

As an example, let us assume that the initial contents of register E
were 00001001. After the SLA instruction, the contents of E will be
00010010. And the contents of the carry bit will be 0.

However, looking back at Figure 3.14, we really want to shift the
most significant bit (called the MSB) of E directly into D (this is il-
lustrated by the arrow on the illustration coming from E into D).
However, there is no instruction which will shift a double register such
as D and E in one operation. Once the contents of E have been shifted,
the left-most bit has ‘“fallen into’’ the carry bit. We must collect this bit
from the carry bit and shift it into register D. This is accomplished by
the next instruction:

RL D
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RL is still another type of shift operation. It stands for *‘rotate left.’’
In a rotation operation, as opposed to a shift operation, this bit coming
into the register is the contents of the carry bit C (see Figure 3.17). This
is exactly what we want. The contents of the carry bit C are loaded into
the right-most part of D, and we have effectively transferred the left-
most bit of E.

This sequence of two instructions is illustrated in Figure 3.18. It can
be seen that the bit marked by an X in the most significant position of E
will first be transferred into the carry bit, then into the least significant
position of D. Effectively, it will have been shifted from E into D.

At this point, referring back to the flowchart of Figure 3.12, we must
point to the next bit of MPR and check for the eighth bit. This is ac-
complished by decrementing the byte counter, contained in register B
(see Figure 3.14). The register is decremented by:

DEC B

This is a decrement instruction, which has the obvious effect.

Finally, we must check whether the counter has decremented to the
value zero. This is accomplished by checking the value of the Z bit. The
reader will recall that the Z (zero) flag indicates whether the previous
arithmetic operation (such as a DEC operation) has produced a zero
result. However, note that DEC HL, DEC BC, DEC DE, DEC IX,
DEC SP do not affect the Z flag. If the counter is not ‘‘0’’, the opera-
tion is not finished, and we must execute this program loop again. This
is accomplished by the next instruction:

JP NZ MULT SHIFT LEFT

LD DD d

Q CARRY

ROTATE LEFT

LN DD DN -

e

\ RLC instruction /

Fig. 3.17: Shift and Rotate
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Fig. 3.18: Shifting from E into D

This is a jump instruction which specifies that whenever the Z bit is
not set (NZ stands for non-zero), a jump occurs to location MULT. This
is the program loop, which will be executed repeatedly until B decre-
ments to the value 0. Whenever B decrements to the value 0, the Z bit
will be set, and the JP NZ instruction will fail. This will result in the
next sequential instruction being executed, namely:

LD (RESAD), HL

This instruction merely saves the contents of H and L, i.e., the result of
the multiplication, at address RESAD, the address specified for the
result. Note that this instruction will transfer the contents of both regis-
ters H and L into two consecutive memory locations, corresponding to
addresses RESAD and RESAD + 1. It saves 16 bits at a time.

Exercise 3.14: Could you write the same multiplication program using
the BIT instruction (described in the next chapter) instead of the SRL C
instruction? What would be the disadvantage?

Let us now improve the program, if possible:

Exercise 3.15: Can JR be substituted for JP at the end of the program?
If so, what is the advantage?

Exercise 3.16: Can you use DJINZ to shorten the end of the program?
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Exercise 3.17: Examine the two instructions: LD D, 0 and LD HL, 0 at
the beginning of the program. Can you substitute:

XOR A

LD DA
LD H A
LD L, A

If so, what is the impact on size (number of bytes) and speed?

Note that, in most cases, the program that we have just developed
will be a subroutine and the final instruction in the subroutine will be
RET (return). The subroutine mechanism will be explained later in this
chapter.

Important Self-Test

This is the first significant program we have encountered so far. It in-
cludes many different types of instructions, including transfer instruc-
tions (LD), arithmetic operations (ADD), logical operations (SRL,
SLA, RL), and jump operations (JR, JP). It also implements a pro-
gram loop, in which the lower seven instructions, starting at address
MULT, are executed repeatedly. In order to understand programming,
it is essential to understand the operation of such a program in com-
plete detail. The program is much longer than the previous simple arith-
metic programs we have developed so far, and it should be studied in
detail. An important exercise will now be proposed. The reader is
strongly urged to do this exercise completely and correctly before pro-
ceeding. This will be the only real proof that the concepts presented so
far have been understood. If a correct result is obtained, it will mean
that you have really understood the mechanism by which instructions
manipulate information in the microprocessor, transfer it between the
memory and the registers, and process it. If you do not obtain the cor-
rect result, or if you do not do this exercse, it is likely that you will ex-
perience difficulties later in writing programs yourself. Learning to pro-
gram requires personal practice. Please pause now, take a piece of
paper, or use the illustration of Figure 3.19, and do the following exer-
cise:

Exercise 3.18: Every time that a program is written, it should be verified
by hand, in order to ascertain that its results will be correct. We are go-
ing to do just that: the goal of this exercise is to fill in the table of Figure
3.19 completely and accurately.
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LABEL |INSTRUCTION| B C C D E H L

CARRY)

Fig. 3.19: Form for Multiplication Exercise

You may want to write directly on Figure 3.19 or make a copy of it.
You must determine the contents of every relevant register in the Z80
after the execution of each instruction in the program, from beginning
to end: All the registers used by the program of Figure 3.13 are shown
in Figure 3.19. From left to right, they are registers B and C, the carry
C, registers D and E, and, finally, registers H and L. On the left part of
this illustration, fill in the label, if applicable, and then the instructions
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being executed. On the right of the instruction, fill in the contents of
each register after execution of the instruction. Whenever the contents
of a register are not known (indefinite), you may use dashes to repre-
sent its contents. Let us start filling in this table together. You will then
have to fill it out by yourself until the end. The first line appears below:

LABEL |INSTRUCTION| B C C D E H L

mpyss | bec, 02000 oo | 03 | - | -] - | - | --

Fig. 3.20: Multiplication: After One Instruction

We will assume here that we are multiplying ‘3’ (MPR) by ‘5"
(MPD).

The first instruction to be executed is ‘LD BC, (MPRAD)’’. The
contents of memory location MPRAD is loaded into registers B and C.
It has been assumed that MPR is equal to 3, i.e., *“00000011°. After ex-
ecution of this instruction, the contents of register C have been set to
“3”’. Note that this instruction will also result in loading register B with
whatever followed MPR in the memory. However, the next instruction
in the program will take care of this by loading register B with *‘8°’, as
shown in Figure 3.21. Note that, at this point, the contents of D and E
and H and L are still undefined, and this is indicated by dashes. The LD
instruction does not condition the carry bit, so that the contents of the
carry bit C are undefined. This is also indicated by a dash.

LABEL |INSTRUCTION| B Cc C D E H L

MPYS88 | LD BC,(0200)] 00 03 - - -- e | =-
LD B, 08 08 03 - -- -- we | ==

Fig. 3.21: Multiplication: After Two Instructions

The situation after the execution of the first five instructions of the
program (just before the MULT) is shown in Figure 3.22.
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LABEL |INSTRUCTION| B | ¢ | ¢ | D | E | H [ L
mpyss | LDBC,(0200)] 00 | 03 | - | == | - | == | --
LD B, 08 o8 |o3 | - | -] - |-]-
LDDE,(0202)| 08 { 03 | - [ 00 | 05 | == | --

LD D, 00 o8 {03 | - oo o5 | --1|--
LDHL0000 | 08 | 03 | - | oo | o5 | 0o 00

Fig. 3.22: Multiplication: After Five Instructions

The SRL instruction will perform a logical shift right, and the right-
most bit of MPR will fall into the carry bit. You can see in Figure 3.23
that the contents of MPR after the shift is <0000 0001°°. The carry bit C
is now set to ““1’’. The other registers are unchanged by this operation.
Please continue to fill out the chart by yourself. )

A second iteration is shown at the end of this chapter in Fig. 3.41.

LABEL [INSTRUCTION| B C C D E H L

mPyss | LDBC,(0200)f 00 | 03 | = [ == | == | == | -- r
LD B, 08 08 | o3| - | =] = ]-]-
LDDE,(0202) 08 | 03 | - | oo | o5 | == | --
LD D, 00 08|03 | - [oo| o5 ||~
LDHLO000 | 08 | 03 [ - | 00| o5 | 00 | 00

MULT | SRLC 08 o1 [ 1 [o0o| o5 |00} 00
JRNC,0114 | 08 |01 | 1 [ o0 | 05 | 00| 00
ADDHLDE | 08 |01 | o [ 00| 05 | 00| 05

NOADD | SLAE 08 [01 | o |00 | oa|00] 05
RLD 08 |01 | o |oo}| oa| 00| 05
DEC B 07|01 | o |]oo|o0A] 00| 05

0 | 00 00 | 05

JP NZ,010F 07 | 01

Fig. 3.23: One Pass Through The Loop.
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A complete listing showing the contents of all the Z80 registers and
the flags is shown in Fig. 3.39 at the end of this chapter for the complete
multiplication. A hex or decimal listing is shown in Fig. 3.40.

Programming Alternatives

The program that we have just developed could have been written.in
many other ways. As a general rule, every programmer can usually find
ways to modify, and often improve, a program. For example, we have
shifted the multiplicand left before adding. It would have been mathe-
matically equivalent to shift the result one position to the right before
adding it to the multiplicand. As a matter of fact, this is an interesting
exercise!

Exercise 3.19: Write an 8 x 8 multiplication program using the same
algorithm, but shifting the result one position to the right instead of
shifting the multiplicand by one position to the left. Compare it to the
previous program, and determine whether this different approach
would be faster or slower than the preceding one. The speeds of the Z80
instructions are given in the next chapter.

Improved Multiplication Program

The program that we have just developed is a straightforward trans-
lation of the algorithm to code. However, effective programming re-
quires close attention to detail, and the length of the program can often
be reduced or its execution speed can be improved. We are now going to
study alternatives designed to improve this basic program.

Step 1

A first possible improvement lies in the better utilization of the Z80
instruction set. The second-to-last instruction as well as the preceding
one can be replaced by a single instruction:

DINZ LOOP

This is a special Z80 ‘‘automated jump’’ which decrementsthe B register
and branches to a specified location if it is not “0’’. To be absolutely
correct, the instruction is not completely identical to the previous pair

DECB
JP NZ, MULT
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for it specifies a displacement, and one can only jump within the range
of — 126 to + 129. However, we must here jump to a location which is
only a few bytes away, and this improvement is legitimate. The
resulting program is shown in Figure 3.24 below:

MPYS88B LD DE, (MPDAD)
LD BC, (MPRAD)

LD B, 8 BIT COUNTER
LD HL, 0

MULT  SRL C
JR NC, NOADD

ADD HL, DE
NOADD SLA E

RL D

DINZ MULT

LD (RESAD), HL
RET

Fig. 3.24: Improved Multiply, Step 1
Step 2

In order to improve this multiplication program further, we will
observe that three different shift operations are used in the initial pro-
gram of Figure 3.13. The multiplier is shifted right, then the multipli-
cand MPD is shifted left, in two operations, by first shifting register E
left, then rotating register D to the left. This is time-consuming. A stan-
dard programming ‘‘trick’’ used in the case of multiplication is based
on the following observation: every time that the multiplier is shifted by
one bit position, another bit position becomes available in the multi-
plier register. For example, assuming that the multiplier shifts right (in
the previous example), a bit position becomes available on the left.
Simultaneously, it can be observed that the first partial product (or
“‘result’’) will use, at most, 9 bits. If a single register had been allocated
to the result in the beginning of the program, we could then use the bit
position that has been vacated by the multiplier to store the ninth bit of
the result.

After the next shift of the MPR, the size of the partial product will be
increased by just one bit again. In other words, a single register can be
reserved intially for the partial product, and the bit positions which are
being freed by the multiplier can then be used as the MPR is being
shifted. In order to improve the program, we are therefore going to
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assign MPR and RES to a register pair. Ideally, they should be shifted
together in a single operation. Unfortunately, the Z80 shifts only 8-bit
registers at a time. Like most other 8-bit microprocessors, it has no in-
struction that allows shifting 16 bits at a time.

However, another trick can be used. The Z80 (like the 8080) is
equipped with special 16-bit add instructions that we have already used.
Provided that the multiplier and the result are stored in the register pair
H and L, we can use the instruction:

ADD HL, HL

which adds the contents of H and L to itself. Adding a number to
itself is doubling it. Doubling a number in the binary system is equiva-
lent to a left shift. We have just obtained a 16-bit shift in a single in-
struction. Unfortunately, the shift occurs to the left when we would Lke
it to occur to the right. This is not a problem.

Conceptually, the MPR can be shifted either left or right. We have
used a right shift algorithm because this is the one which is used in or-
dinary addition. However, it does not necessarily need to be so. The
addition operation is commutative, and the order can be reversed: shif-
ting the MPR to the left is just as valid.

In order to take advantage of this simulated 16-bit shift, we will have
to shift the MPR to the left. Therefore, the MPR will reside in register
H and the result in register L. The resulting register configuration is
shown in Figure 3.25.

B| COUNTER |

ol o | wmp

RES

V]

Fig. 3.25: Registers for Improved Mulitiply

128



BASIC PROGRAMMING TECHNIQUES

The rest of the program is essentially identical to the previous one.
The resulting program appears below:

MULSSC LD HL, (MPRAD-1)

LD L,O

LD DE, (MPDAD)

LD D, 0

LD B, 8 COUNTER
MULT ADD HL, HL SHIFT LEFT

JR NC, NOADD

ADD  HL, DE
NOADD DIJNzZ MULT

LD (RESAD), HL

RET

Fig. 3.26: Improved Multiply, Step 2

When comparing this program to the previous one, it can be seen that
the length of the multiplication loop (the number of instructions be-
tween MULT and the jump) has been reduced. This program has been
written in fewer instructions and this will usually result in faster execu-
tion. This shows the advantage of selecting the correct registers to con-
tain the information.

A straightforward design will generally result in a program that
works. It will not result in a program that is optimized. 1t is therefore
important to understand and use the available registers and instructions
in the best possible way. These examples illustrate a rational approach
to register selection and instruction selection for maximum efficiency.

Exercise 3.20: Compute the speed of a multiplication operation using
this last program. Assume that a branch will occur in 50% of the cases.
Look up the number of cycles required by every instruction in the index
section. Assume a clock rate of 2 MHz (one cycle = 0.5 us).

Exercise 3.21: Note that here we have used the register pair D and E to
contain the multiplicand. How would the above program be changed if
we had used the register pair B and C instead? (Hint: this would re-
quire a modification at the end.)

Exercise 3.22: Why did we have to bother zeroing register D when
loading MPD into E?

Finally, let us address a detail which may look irritating to the pro-
grammer who is not yet familiar with the Z80. The reader will have
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noticed that, in order to load MPD into E from the memory, we had to
load both registers D and E at the same time from a memory address.
This is because, unless the address is contained in registers H and L,
there is no way to fetch a single byte directly and load it into register E.
This is a feature carried over from the early 8008, which had no direct
addressing mode. The feature was carried forward into the 8080, with
some improvements, and improved still further in the Z80, where it is
possible to fetch 16 bits directly from a given memory address (but not
8 bits - except toward register A),

Now, having solved this possible mystery, let us execute a more
complex multiplication.

A 16 X 16 Multiplication

In order to put our newly acquired skills to a test, we will multiply
two 16-bit numbers. However, we will assume that the result requires
only 16 bits, so that it can be contained in one of the register pairs.

The result, as in our first multiplication example, is contained in
registers H and L (see Figure 3.27). The multiplicand MPD is contained
in registers D and E.

B C

A
MPR, LOW

COUNTER MPR, HIGH

T
H RESULT

T

Fig. 3.27: 16 X 16 Multiply—The Registers
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It would be tempting to deposit a multiplier into register B and C.
However, if we want to take advantage of the DJNZ instruction,
register B must be allocated to the counter., As a result, halt of the
multiplier will be in register C, and the other half in register A (see
Figure 3.27). The multiplication program appears below:

MULI16 LD A,(MPRAD + 1) MPR, HIGH
LD C A
LD A, (MPRAD) MPR, LOW
LD B, 16 COUNTER
LD DE, (MPDAD) MPD
LD HL, 0
MULT SRL C RIGHT SHIFT MPR,
HIGH
RRA ROTATE RIGHT MPR,
LOW
JR NC, NOADD TEST CARRY
ADD HL, DE ADD MPD TO RESULT
NOADD EX DE, HL
ADD HL, HL DOUBLE - SHIFT MPD
LEFT
EX DE, HL
DINZ MULT
RET

Fig. 3.28: 16 X 16 Multiplication Program

The program is analogous to those we have developed before. The
first six instructions (from label MUL16 to label MULT) perform the
initialization of registers with the appropriate contents. One complica-
tion is introduced here by the fact that the two halves of MPR must be
loaded in separate operations. It is assumed that MPRAD points to the
low part of the MPR in the memory, followed in the next sequential
memory location by the high part. (Note that the reverse convention
can be used.) Once the high part of MPR has been read into A, it must
be transferred into C:

LD A, (MPRAD + 1)
LD C A

Finally, the low part of MPR can be read directly into the accumulator:
LD A, (MPRAD)
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The rest of the registers, B, D, E, H, and L are initialized as usual:

LD B, 16
LD  DE, (MPDAD)
LD HL,0

A 16-bit shift must be performed on the multiplier. It requires two
separate shift or rotate operations on registers C and A:

MULT SRL C
RRA

After the 16-bit shift, the right-most bit of the MPR, i.e., the LSB, is
contained in the carry bit C where it can be tested:

JR NC, NOADD

As usual, the multiplicand is not added to the result if the carry bit is
““0”’, and is added to the result if the carry bit is “‘1°":

ADD HL, DE

Next, the multiplicand MPD must be shifted by one position to the left.

However, the Z80 does not have an instruction which will shift the
contents of register D and E simultaneously to the left by one bit posi-
tion, and it can also not add the contents of D and E to itself. The con-
tents of D and E will therefore first be transferred into H and L, then
doubled, and transferred back to D and E. This is accomplished by the
next three instructions:

NOADD EX DE, HL
ADD HL, HL
EX DE, HL

Finally, the counter B is decremented and a jump occurs to the begin-
ning of theloop as long as it does not decrement to ““0’’:

DINZ MULT

As usual, it is possible to consider other register allocations which may
(or may not) result in shorter codes:

Exercise 3.23: Load the multiplier into registers B and C. Place the
counter in A. Write the corresponding multiplication program and
discuss the advantages or disadvantages of this register allocation.
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Exercise 3.24: Referring to the original 16-bit multiplication program
of Figure 3.28, can you propose a way to shift the MPD, contained in
registers D and E, without transferring it into registers H and L?

Exercise 3.25: Write a 16-by-16 multiplication program which detects
the fact that the result has more than 16 bits. This is a simple improve-
ment of our basic prograin.

Exercise 3.26: Write a 16-by-16 multiplication program with a 32-bit
result. The suggested register allocation appears in Figure 3.29.
Remember that the initial result after the first addition in the loop will
require only 16 bits, and that the multiplier will free one bit for each
subsequent iteration.

I
B MPD C
|
T
D MPR E
| RESULT
AFTER
MULTIPLICATION
H RES

Fig. 3.29: 16 x 16 Multiply with 32-Bit Result

Let us now examine the last usual arithmetic operation, the division.

BINARY DIVISION

The algorithm for binary division is analogous to the one which has
been used for the multiplication. The divisor is successively subtracted
from the high order bits of the dividend. After each subtraction, the
result is used instead of the initial dividend. The value of the quotient is
simultaneously increased by 1 every time. Eventually, the result of the
subtraction is negative. This is called an overdraw. One must then
restore the partial result by adding the divisor back to it. Naturally, the
quotient must be simultaneously decremented by 1. Quotient and divi-
dend are then shifted by one bit position to the left and the algorithm is
repeated. The flow-chart is shown in Figure 3.30.

The method just described is called the restoring method. A variation
of this method which yields an improved speed of execution is called the
non-restoring method.
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INITIALIZE
QUOTIENT = 0
SHIFTCOUNTER = 4

i

SHIFT LEFT
DIVIDEND
(WITH 8 LEADING 0's)
AND QUOTIENT

i

TRIAL SUBTRACT:
LECT (DIVIDEND)-DIVISOR

YES
BORROW?
NO

RESTORE:
[QUOTIENT = QUOTIENT +1 ADD DIVISOR
1 J
1

ICOUNTER = COUNTER— 1

NO

YES
END (REMAINDER IN LEFT (DIVIDEND)

Fig. 3.30: 8-Bit Binary Division Flowchart

B | COUNTER c
o[ ovs | o ]

—

H | DIVIDEND/QUOTIENT

Fig. 3.31: 16/8 Division—The Registers
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16-by-8 Division

As an example, let us here examine a 16-by-8 division, which will
yield an 8-bit quotient and an 8-bit remainder dividend. The register
allocation is shown in Figure 3.31.

The program appears below:

DIVie8 LD A, (DVSAD) LOAD DIVISOR
LD D, A INTO D
LD E, 0
LD HL, (DVDAD) LOAD 16-BIT DIVIDEND
LD B, 8 INITIALIZE COUNTER
DIV XOR A CLEAR C BIT
SBC HL, DE DIVIDEND — DIVISOR
INC HL QUOTIENT = QUOTIENT + 1
JP P, NOADD TEST IF REMAINDER
POSITIVE
ADD HL, DE RESTORE IF NECESSARY
DEC HL QUOTIENT = QUOTIENT - 1
NOADD ADD HL, HL SHIFT DIVIDEND LEFT
DIJNZ DIV LOOP UNTIL B = 0
RET

Fig. 3.32: 16/8 Division Program

The first five instructions in the programload the divisor and the divi-
dend respectively into the appropriate registers. They also initialize the
counter, in register B, to the value 8. Note again that register B is a pre-
ferred location for a counter if the specialized Z80 instruction DJNZ is
to be used:

DIV168§ LD A, (DVSAD)

LD DA ,
LD E,0
LD  HL, (DVDAD)
LD B8

Next, the divisor is subtracted from the dividend. Since an SBC in-
struction must be used (there is no 16-bit subtract without carry), the
carry must be set to the value ‘0’ before subtracting. This can be ac-
complished in a number of ways. The carry can be cleared by perform-
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ing instructions such as:

XOR A
AND A
OR A
Here, an XOR is used:
DIV XOR A

The subtraction can then be performed:
SBC HL, DE

It is anticipated that the subtraction will be successful, i.e., that the re-
mainder will be positive. This is called the ‘‘trial subtract’’ step (refer to
the flowchart of Figure 3.30). The quotient is therefore incremented by
one. If the subtraction has in fact failed (i.e., if the remainder is
negative), the quotient will have to be decremented by one later on:

INC HL
The resuit of the subtraction is then tested:
JpP P, NOADD

If the remainder is positive or zero, the subtraction has been successful,
and it is not necessary to store it. The program jumps to address
NOADD. Otherwise, the current dividend must be restored to its
previous value, by adding the divisor back to it, and the quotient must
be decremented by one. This is performed by the next instructions:

ADD HL, DE
DEC HL

Finally, the resulting dividend is shifted left, in anticipation of the
next trial subtract operation. Finally, the B counter is decremented and
tested for the value “‘0”’. As long as B is not zero, this loop is executed:

NOADD ADD HL, HL
DINZ DIV
RET

Exercise 3.27: Verify the operation of this division program by hand,
by filling out the table of Figure 3.33, as in Exercise 3.18 for the multi-
plication. Note that the contents of D need not be entered on the form
of Figure 3.33, since they are never modified.
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LABEL INSTRUCTION B H L

Fig. 3.33: Form for Division Program
8-Bit Division

The following program uses a restoring method, and leaves a com-
plemented quotient in A. It divides 8 bits by 8 bits (unsigned).

E IS DIVIDEND

C IS DIVISOR

A 1S QUOTIENT
B IS REMAINDER

DIV88 XOR A CLEAR ACCUMULATOR
LD B,8 LOOP COUNTER

LOOP88 RL E ROTATE CY INTO ACC-

DIVIDEND

RLA CY WILL BE OFF
SUB C TRIAL SUBTRACT DIVISOR
JR NC,$ +3 SUBTRACT OK
ADD A,C RESTORE ACCUM, SET CY
DINZ LOOPS8
LD B, A PUT REMAINDER IN B
LD AE GET QUOTIENT
RLA SHIFT IN LAST RESULT BIT
CPL COMPLEMENT BITS
RET

Note: the “‘$’’ symbol in the sixth instruction represents the value of the
program counter.
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Non Restoring Division

The following program performs a 16-bit by 15-bit integer division,
using a non-restoring technique. 1X points to the dividend, 1Y to the
divisor (not zero). (see Figure 3.34.).

A DvD,HI |

B counter || bvplO |c

D DIVISOR |e
H REM L
IX DVD ADDRESS

iy|]  DvsSADDR

Fig. 3.34: Non-Restoring Division—The Registers

Register B is used as a counter, initially set to 16.
A and C contain the dividend.
D and E contain the divisor.
H and L contain the resuit.
The 16-bit dividend is shifted left by:
RL C
RLA
The remainder is shifted left by:
ADC HL, HL.
The final quotient is left in B, C, with the remainder in HL. The
program follows.
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DIVieé

TRIALSB

NULL

PTV

RESTOR

NGV
DONE

LD
LD
LD
LD
LD
OR

JR

LD
LD
LD
RL

RLA
ADC

SBC
CCF
JR

DINZ
JP
RL

RLA
ADC
AND
ADC
JR
JR
DINZ
RL
RLA
ADD
LD
RET

B, (IX + 1)
C, (IX)
D,(lY + 1)
E, (1Y)

A, D

E

Z, ERROR
A,B
HL,0

B, 16

C

HL, HL
HL, DE
NC, NGV
TRIALSB
DONE

C

HL, HL
HL, DE
C,PTV

Z,NULL
RESTOR

HL, DE
B, A

BASIC PROGRAMMING TECHNIQUES

(DIVISOR) HIGH OR
(DIVISOR) LOW
CHECK FOR DIVISOR =
ZERO

GET (DVD) HI

CLEAR RESULT
COUNTER

ROTATE RESULT + ACC
LEFT

LEFT SHIFT. NEVER SETS
CARRY.

MINUS DIVISOR

RESULT BIT
ACCUMULATOR
NEGATIVE?

COUNTER ZERO?

ROTATE RESULT + ACC
LEFT

AS ABOVE

RESTORE BY ADDING DVSR
RESULT POSITIVE

RESULT ZERO

COUNTER ZERO?

SHIFT IN RESULT BIT

CORRECT REMAINDER
QUOTIENT IS IN B, C
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Exercise 3.28: Compare the previous program to the following one, us-
ing a restoring technique:

DIVIDEND IN AC
DIVISOR IN DE
QUOTIENT IN AC
REMAINDER IN HL

DIV1é LD HL,0 CLEAR ACCUMULATOR
LD B, 16 SET COUNTER

LOOP16 RL C ROT ACC-RESULT LEFT
RLA
ADC HL,HL LEFT SHIFT
SBC HL,DE TRIAL SUBTRACT DIVISOR
JR NC,$ + 3 SUB WAS OK
ADD HL,DE RESTORE ACCUM
CCF CALC RESULT BIT
DINZ LOOPI16 COUNTER NOT ZERO
RL C SHIFT IN LAST RESULT BIT
RLA
RET

Note: The symbol ¢‘$’’ means ‘‘current location’’ (eighth instruction).

LOGICAL OPERATIONS

The other class of instructions which can be executed by the ALU in-
side the microprocessor is the set of logical instructions. They include:
AND, OR and exclusive OR (XOR). In addition, one can also include
here the shift and rotate operations which have already been utilized,
and the comparison instruction, called CP for the Z80. The individual
use of AND, OR, XOR, will be described in Chapter 4 on the instruc-
tion set.

Let us now develop a brief program which will check whether a given
memory location called LOC contains the value ‘“0’’, the value ‘1", or
something else.

The program will introduce the comparison instruction, and perform
a series of logical tests. Depending on the resuit of the comparison, one
program segment or another will be executed.
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The program appears below:

LD A, (LOC) READ CHARACTER IN

LOC
CP  O00H COMPARE TO ZERO
JP Z,ZERO ISIT A0?
CP 0lH COMPARE TO ONE
JP Z, ONE
NONEFOUND ...
ZERO
ONE

The first instruction: ““LD A, (LOC)’’ reads the contents of memory
location LOC, and loads it into the accumulator. This is the character
we want to test. It is compared to the value 0 by the following instruc-
tion:

CP 00H

This instruction compares the contents of the accumulator to the hex-
adecimal value ‘00, i.e., the bit pattern ‘0000 0000’’. This compari-
son instruction will set the Z bit in the flags register to the value ““1°°, if
it succeeds. This bit can then be tested by the next instruction:

JP Z, ZERO

The jump instruction tests the value of the Z bit. If the comparison suc-
ceeds, the Z bit has been set to one, and the jump will succeed. The pro-
gram will then jump to the address ZERO. If the test fails, then the next
sequential instruction will be executed:

CP O01H

Similarly, the following jump instruction will branch to location ONE
if the comparison succeeds. If none of the comparisons succeed, then
the instruction at location NONEFOUND will be executed.

JP Z, ONE
NONEFOUND ...
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This program was introduced to demonstrate the value of the com-
parison instruction followed by a jump. This combination will be used
in many of the following programs.

Exercise 3.29: Refer to the definition of the LD A, (LOC) instruction in
the next chapter. Examine the effect of this instruction on the flags, if
any. Is the second instruction of this program necessary (CP 00H)?

Exercise 3.30: Write the program which will read the contents of
memory location 24" and branch to an address called *“STAR’if there
was a **’7 in memory location 24. The bit pattern for a **** in binary
notation will be assumed to be represented by *“‘00101010°.

INSTRUCTION SUMMARY

We have now studied most of the important instructions of the Z80
by using them. We have transferred values between the memory and the
registers. We have performed arithmetic and logical operations on such
data. We have tested it, and depending on the results of these tests,
have executed various portions of the program. In particular, special
‘‘automated’’ Z80 instructions such as DJNZ have been used to shorten
programs. Other automated instructions: LDDR, CPIR, INIR will be
introduced throughout the remainder of this book.

Full use has been made of special Z80 features, such as 16-bit register
instructions to simplify the programs, and the reader should be careful
not to use these programs on an 8080: they have been optimized for the
7.80.

We have also introduced a structure called a loop. Another impor-
tant programming structure will be introduced now: the subroutine.

SUBROUTINES

In concept, a subroutine is simply a block of instructions which has
been given a name by the programmer. From a practical standpoint, a
subroutine must start with a special instruction called a subroutine
declaration, which identifies it as such for the assembler. It is also ter-
minated by another special instruction called a return. Let us first il-
lustrate the use of a subroutine in a program in order to demonstrate its
value. Then, we will examine how it is actually implemented.
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MAIN PROGRAM

|

SUBROQUTINE

CALL SUB —_—— —_

[y 6’ R
- =g | ————

CALL SUB I A ! RETURN

Fig. 3.35: Subroutine Calls

The use of a subroutine is illustrated in Figure 3.35. The main pro-
gram appears on the left of the illustration. The subroutine is shown
symbolically on the right. Let us examine the subroutine mechanism.
The lines of the main program are exccuted successively until a new in-
struction *““CALL SUB’ is met. This special instruction is the
subroutine call and results in a transfer to the subroutine. This means
that the next instruction to be executed after the CALL SUB is the first
instruction within the subroutine. This is illustrated by arrow 1 on the
illustration.

Then, the subprogram within the subroutine executes just like any
other program. We will assume that the subroutine does not contain
any other calls. The last instruction of this subroutine is a RETURN.
This is a special instruction which will cause a return to the main pro-
gram. The next instruction to be ¢xccuted after the RETURN is the one
following the CALL SUB in the main program. This is illustrated by ar-
row 3 on the illustration. Program cxecution continues then, as il-
lustrated by arrow 4.

In the body of the main program a seccond CALL SUB appears. A
new transfer occurs, shown by arrow 5. This means that the body of the
subroutine is again executed following the CALL SUB instruction.

Whenever the RETURN within the subroutine is encountered, a
return occurs to the instruction following the CALL SUB in question.
This is illustrated by arrow 7. Following the return to the main pro-
gram, program execution proceeds normally, as illustrated by arrow 8.

The ceftect of the two special instructions CALL SUB and RETURN
should now be clear. What is the value of the subroutine mechanism?

The essential value of the subroutine is that it can be called from any
number of points in the main program, and used repeatedly without
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rewriting if. A first advantage is that this approach saves memory
space, since there is no need to rewrite the subroutine every time. A se-
cond advantage is that the programmer can design a specific subroutine
only once and then use it repeatedly. This is a significant simplification
in program design.

Exercise 3.31: What is the main disadvantage of a subroutine? (Answer
follows.)

The disadvantage of the subroutine should be clear just by examining
the flow of execution between the main program and the subroutine. A
subroutine results in a slower execution, since extra instructions must
be exccuted: the CALL SUB and the RETURN.

Implementation of the Subroutine Mechanism

We will examine here how the two special instructions, CALL SUB
and RETURN, are implemented internally within the processor. The
effect of the CALL SUB instruction is to cause the next instruction to
be fetched at a new address. You will remember (or else read Chapter
1 again) that the address of the next instruction to be executed in a
computer is contained in the program counter (PC). This means that
the effect of the CALL SUB is to substitute new contents in register PC.
Its effect is to load the start address of the subroutine in the program
counter. Is that really sufficient?

To answer this question, let us consider the other instruction which
has to be implemented: the RETURN. The RETURN must cause, as its
name indicates, a return to the instruction that follows the CALL SUB.
This is possible only if the address of this instruction has been preserved
somewhere. This address happens to be the value of the program
counter at the time that the CALL SUB was encountered. This is
because the program counter is automatically incremented every time it
is used (read Chapter 1 again). This is preciscly the address that we want
to preserve, so that we can later perform the RETURN.

The next problem is: where can we save this return address? This ad-
dress must be saved in a location where it is guaranteed that it will not
be erased.

However, let us now consider the following situation, illustrated by
Figure 3.36. In this example, subroutine 1 contains a call to SUB2. Our
mechanism should work in this case as well. Naturally, there might even
be more than two subroutines, say N ‘“‘nested’’ calls. Whenever a new
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CALL is encountered, the mechanism must thereforc again store the
program counter. This implies that we need at least 2N memory loca-
tions for this mechanism. Additionally, we will need to return from
SUB2 first and SUBI next. In other words, we need a structure which
can preserve the chronological ordering in which addresses have been
saved.

The structure has a name and has already been introduced. It is the
stack. Figure 3.38 shows the actual contents of the stack during suc-
cessive subroutine calls. Let us look at the main program first. At ad-
dress 100, the first call is encountered: CALL SUBI. We will assume
that, in this microprocessor, the subroutine call uses 3 bytes (RST is an
exception). The next sequential address is therefore not ‘‘101’°, but
¢103’’. The CALL instruction uses addresses ‘“100°’, ‘‘101°°, “102’’.
Because the control unit of the Z80 ‘‘knows’’ that it is a 3-byte instruc-
tion, the value of the program counter, when the call has been com-
pletely decoded, will be ¢‘103”’. The effect of the call will be to load the
value ‘280"’ in the program counter. ‘280"’ is the starting address of
SUBI.

U SUs 2

N
‘ Ay

RETURN

Fig. 3.36: Nested Calls

We are now ready to demonstrate the effect of the RETURN instruc-
tion and the correct operation of our stack mechanism. Execution pro-
ceeds within SUB2 until the RETURN instruction is encountered at
time 3. The effect of the RETURN instruction is simply to pop the top
of the stack into the program counter. In other words, the program
counter is restored to its value prior to the entry into the subroutine.
The top of the stack in our example is ‘303°’. Figure 3.38 shows that, at
time 3, value ‘303"’ has been removed from the stack and has been put
back into the program counter. As a result, instruction execution pro-
ceeds from address ¢“303°’, At time 4, the RETURN of SUBI is encoun-
tered. The value on top of the stack is ¢‘103°’. It is popped and is in-
stalled in the program counter. As a result, program execution will pro-
ceed from location *“103’’ on within the main program. This is, indeed,
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the effect that we wanted. Figure 3.38 shows that at time 4 the stack is
again empty. The mechanism works.

The subroutine call mechanism works up to the maximum dimension
of the stack. This is why early microprocessors which had a 4- or
8-register stack were essentially limited to 4 or 8 levels of subroutine
calls.

Note that, on Figures 3.36 and 3.37, the subroutines have been
shown to the right of the main program. This is only for the clarity of
the diagram. In reality, the subroutines are typed by the user as regular
instructions of the program. On a sheet of paper, when producing the
listing of the complete program, the subroutines may be at the begin-
ning of the text, in its middle, or at the end. This is why they are pre-
ceded by a subroutine declaration: they must be identified. The special
instructions tell the assembler that what follows should be treated as a
subroutine. Such assembler directives will be discussed in Chapter 10.

ADDRESS (MAIN}
100 CALLSUB |
103.

O (suB 1)
280

CAtLSUB 2

l

@ %00 (SUB 2}

R RETURN

Fig. 3.37: The Subroutine Calls

RETURN

I

I

stack: | ime (D) | TMED) | TMe R) | TimE (@)

103 103 103

303

Fig. 3.38: Stack vs. Time
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Z80 Subroutines

The basic concepts relating to subroutines have now been presented.
It has been shown that the stack is required in order to implement this
mechanism. The Z80 is equipped with a 16-bit stack-pointer register.
The stack can therefore reside anywhere within the memory and may
have up to 64K (1K = 1024) bytes, assuming they are available for that
purpose. In practice, the start address for the stack, as well as its max-
imum dimension, will be defined by the programmer before writing his
program. A memory area will then be reserved for the stack.

The subroutine-call instruction, in the case of the Z80, is called
CALL, and comes in two versions; the direct or unconditional call,
such as CALL ADDRESS, is the one we have already described. In ad-
dition, the Z80 is equipped with a conditional call instruction which will
call a subroutine if a condition is met. For example: CALL NZ, SUBI
will result in a call to subroutine 1 if the Z flag is zero at the time of the
test. This is a powerful facility, since many subroutine calls are
conditional, i.e., occur only if some specific condition is met.

CALL CC, NN is executed only it the condition specified by *‘CC"
is true. CC is a set of three bits (bits 3, 4, and 5 of the opcode) which
may specify up to eight conditions. They correspond respectively to the
four flags ““Z”°, ““C”’, “P/V”’, ““S” oeing either zero or non-zero.

Similarly, two types of return instructions are provided: RET and
RET CC.

RET is the basic return instruction. It occupies one byte, and causes
the top two bytes of the stack to be re-installed in the program counter.
It is unconditional.

RET CC has the same effect except that it is executed only if the con-
ditions specified by CC are true. The condition bits are the same as for
the CALL instruction just described.

Additionally, two specialized types of return are available which are
used to terminate interrupt routines: RETI, RETN. They are described
in the section on the Z80 instructions as well as in the section on inter-
rupts.

Finally, one more specialized instruction is provided which is analo-
gous to a subroutine call, but allows the program to branch to only one
of eight starting locations located in page zero. This is the RST P in-
struction. This is a one-byte instruction which automatically preserves
the program counter in the stack, and causes a branch to the address
specified by the three-bit P field. The P field corresponds to bits 3, 4
and 5 of the insrtuction, multiplied by eight.
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In other words, if bits 3, 4, 5 are *‘000”’, the jump will occur to loca-
tion OOH. If these bits are ‘001", the branch will occur to 08H, etc. up
to 111, which will cause a branch to location 38H. The RST instruction
is very efficient in terms of speed since it is a single-byte instruction.
However, it can jump to only eight locations, in page 0. Additionally,
these addresses in page 0 are only eight bytes apart. This instruction is a
carry-over from the 8080 and was extensively used for interrupts. This
will be described in the interrupt section. However, this instruction may
be used for any other purpose by the programmer, and should be con-
sidered as a possible specialized subroutine call.

Subroutine Examples

Most of the programs that we have developed and are going to
develop would usually be written as subroutines. For example, the
multiplication program is likely to be used by many areas of the pro-
gram. In order to facilitate and clarify program development, it is
therefore convenient to define a subroutine whose name would be, for
example, MULT. At the end of this subroutine we would simply add
the instruction RET.

Exercise 3.32: If MULT is used as a subroutine, would it ‘‘damage’’
any internal flags or registers?

Recursion

Recursion is a word used to indicate that a subroutine is calling itself.
If you have understood the implementation mechanism, you should
now be able to answer the following question:

Exercise 3.33: Is it legal to let a subroutine call itself? (In other words,
will everything work even if a subroutine calls itself?) If you are not
sure, draw the stack and fill it with the successive addresses. Then, look
at the registers and memory (see Exercise 3.18) and determine if a pro-
blem exists.

Interrupts will be discussed in the input/output chapter (Chapter 6).
All returns except returns from interrupts are one-byte instructions; all
calls are 3-byte instructions (except RST).

Exercise 3.34: Look at the execution times of the CALL and the RET
instructions in the next chapter. Why is the return from a subroutine so
much faster than the CALL? (Hint: if the answer is not obvious, look
again at the stack implementation of the subroutine mechanism, and
analyze the internal operations that must be performed.)
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Subroutine Parameters

When calling a subroutine, one normally expects the subroutine to
work on some data. For example, in the case of multiplication, one
wants to transmit two numbers to the subroutine which will perform
the multiplication. We saw in the case of the multiplication routine that
this subroutine expected to find the multiplier and the multiplicand in
given memory locations. This illustrates one method of passing para-
meters: through memory. Two other techniques are used, so that we
have three ways of passing parameters.

1—through registers
2—through memory
3—through the stack

Registers can be used to pass parameters. This is an advantageous
solution, provided that registers are available, since one does not need
to use a fixed memory location: the subroutine remains memory-inde-
pendent. If a fixed memory location is used, any other user of the sub-
routine must be very careful that he uses the same convention and that
the memory location is indeed available (look at Exercise 3.19 above).
This is why, in many cases, a block of memory locations is reserved
simply to pass parameters among various subroutines.

Using memory has the advantage of greater flexibility (more data),
but results in poorer performance and also in tying the subroutine to a
given memory area.

Depositing parameters in the stack has the same advantage as using
registers: it is memory-independent. The subroutine simply knows that
it is supposed to receive, say, two parameters which are stored on top of
the stack. Naturally, it has disadvantages: it clutters the stack with data
and, therefore, reduces the number of possible levels of subroutine
calls. It also significantly complicates the use of the stack, and may re-
quire multiple stacks.

The choice is up to the programmer. In general, one wishes to remain
independent from actual memory locations as long as possible.

If registers are not available, a possible solution is the stack. How-
ever, if a large quantity of information should be passed to a sub-
routine, this information may have to reside directly in the memory. An
elegant way around the problem of passing a block of data is simply to
transmit a pointer to the information. A pointer is the address of the
beginning of the block. A pointer can be transmitted in a register, or in
the stack (two-stack locations can be used to store a 16-bit address), or
in a given memory location(s).
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Finally, if neither of the two solutions is applicable, then an agree-
ment may be made with the subroutine that the data will be at some
fixed memory location (the ‘‘mail-box’’).

Exercise 3.35: Which of the three methods above is best for recursion?

Subroutine Library

There is a strong advantage to structuring portions of a program into
identifiable subroutines: they can be debugged independently and can
have a mnemonic name. Provided that they will be used in other areas
of the program, they become shareable, and one can thus build a
library of useful subroutines. However, there is no general panacea in
computer programming. Using subroutines systematically for any
group of instructions that can be grouped by function may also result in
poor efficiency. The alert programmer will have to weigh the advan-
tages against the disadvantages.

SUMMARY

This chapter has presented the way information is manipulated inside
the Z80 by instructions. Increasingly complex algorithms have been in-
troduced and translated into programs. The main types of instructions
have been used and explained.

Important structures such as loops, stacks and subroutines, have
been defined.

You should now have acquired a basic understanding of program-
ming, and of the major techniques used in standard applications. Let
us study the instructions available.
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BC=0000
B/=0000
EC=0003
B =0000
803

I’ =0000

B =0000
BC=0803
B =0000
BC=0801

DE=0005
I =0000

RC=0801
B =0000
BC=0801
B=0000
= DF :000A
07 =0000

Z
H’ =0000
Z BC=0700
R’*OOOO

/20000
BC=0600

B =0000
BC=0%500
&7 =0000

~
< < <

I’ =0000

B7=0000

i ML=

BASIC PROGRAMMING TECHNIQUES

HL=0000 §=0300 01007
H’=0000 X=0000 I=00
HL=0000 $=0300 01047
H’=0000 X=0000 I=00
= 01067
H I=00
HL=0000 ¢ 0104
H”=0000 I=00
5 HL=0000 P"OlOC o1oC”
H’=0000 I=00
HL=0000 010F~
H’=0000 I=
=0000 ol1L
H7=0000 I=00
E 0113’
E I=00
F=0114 01147
H’=0000 Y=0000 I=00
HL=000% F=0116 011647
H"OOOO Y=0000 I=00
F=0118 0118
Y 0000 I=00
E 01197

I=00

H7=0000
HL=Q00% ¢
H’=0000
HL=000%
H7=0000
HL=000F
H?=0000

H’“OOOO
HL=000F
H’=0000
HL=000F
H*=0000
L. OOOI

011467
I=00

HL=00Q0F
H=0000
HL=000F
H’=0000

HL=000F
H’=0000

ML=
M=

=Q00F
0000

'OJOI’
=00

Y O()()()

LI
LI
Lo

L

SRI.
JR

ADD

SRI

JR

GL.A

Fig. 3.39: Multiplication: A Complete Trace

BCy (0200)
(02007
By 08

DEy (0202)
0202
Ly 00

HL.y Q000
(Q0007)
c

NCyOLL4
(01147
HL » DE

E
I
B
NZyOLOF
(QLOF”)
W
NCyO114

01147)
WLy DE

NZ e O1OF
(QLOF ")
C

NGrOLLA
01147)
|i:'
n
B
NZyQLOF
(OLOF )
™

NCyOL14
147

]

NZsQ
LOLOF
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zv BC=0400 F=0111 01114 JR  NCy0114
Y=0000 =00 O1147)
(AR 01147 SLa E
=00
g v 01167 Rl I
1=00
FARY HL=000F $=0300 3/ DEC R
H/=0000 X=0000
N HL=000F §=0300 SR 2y 010F
H’=0000 COLOF )
N HL=000F ¢ SR
H’=0000
zZv HL=000F JRONCyOLL4
H’ =0000 01147)
yARY HL=000F sSLaF
H'mpooo
[ HL"OOOI K. I
I
N JFEONZyOLOF
) COLOF )
N FOLOFY SRL ©
1=00
zv 01117 UK NCy0l14
1=00 (01L147)
Z v 01147 GLa E
=00
8 HL=000F 01167 R I
=0000 =00
HL=000F 01187 K
N NZyO10F
(O10F )
N [»
zv |u< NCyOL14
(01147)
yARY HL. E
H/=0000
A Y HL=000F ¢ I
H’=0000
v HL.=000F 0L187 DEC B
H’=0000 =00
Z N HL.=000F 01197 JF NZy010F
H’=0000 COLOF )
Z N HL=000F T 0l 1.0 (0204) rHL
B’=0000 H’=0000 X= Y=0000 (02047)
Z N =0000 HL=000F §=0300 F=011F NOF

B =0000 [l’==0600 H’=0000 X=0000 Y=0000

Fig. 3.39: Multiplication: A Complete Trace (continued)
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ANSWERS TO EXERCISE 3.18 MULTIPLICATION):

CROMEMCO CDOS Z80 ASSEMRLER version 02,15 FAGE 0001

0000 0001 ORG 0100H

0200) 0002 MFRAD oL 0200H

(0202> 0003 MFDAL DL Q202H

0204) 0004 REGAD m. Q204H

0005 §

0100 ED4R0002 0006 MF488 LI RCy (MFRAD FLOAD MULTIPLIER INTO C
0104 0608 o007 Lo B8 B IS BIT COUNTER
0106 EDSEO202 0008 LD LEy (MPDALD $1.0A0 MUTIFLICANIDY INTO E
010A 1600 0009 Lo DyQ PCLEAR I
010 210000 0010 Lo HL.rQ RESULT TO O
Q10F CR39 0011 MULT SRL. G FEHIFT MULTIFLIER RTT INTO CARRY
0111 3001 ootz JR NGy NOADR FTEST CARRY
0113 19 0013 ALID Hi. ¢ TIE FADD MFD TO RESULT
0114 CB23 0014 NOADD SLA E FEHIFT MPD LEFT
0116 CB12 0015 RL It SSAVE RIT IN D
0118 0% 0016 DEC B STECREMENT SHIFT COUNTER
0119 C20FO1 Q017 JE NZyMULT D0 OTT AGAIN IF COUNTER < O
0110 220402 0018 Lo (RESAL) sHL FOTORE RESULT
011F (0000 0019 END
Errors [

Fig. 3.40: The Multiplication Program (Hex)

LABEL [INSTRUCTION| B | C Dl E|HI|L
(CARRY) i

00 o |00 00| oo oo

MP488 | LDBC,(0200)| 00 | 03 | o [ 00 | 00 | 0o | 00
LDB,08 08 | 03| o |00 | oo oo o0
LDDE,0202) [ 08 | 03 | o [ 0o | o5 | 00 | 00

LD D, 00 08 |03 { o |00 ] 05| 00]o00
LDHL0000 | 08 | 03 | o [ 00 | o5 | 0o | 00

MULT | sRLC o8 o1 | 1 |oo| 05 ]00] 00
JRNC,0114 | 08 | 01 [ 1+ | oo | o5 | 00| 00
ADDHLDE [ 08 |01 | o | oo | o5 | 00| 05

NOADD | SLAE o8 |01 | o |oo|oa|o00] o5
RLD 08 |o1 | o |oo| oa|oo] o5

DECB 07 |]o1 | o |]oo| oa]oo]| o5
JPNzoioF | 07 | o1 | o | 00 | oA | 00| 05

MULT | SRLC 07 oo | 1 |oo|oAa]|oo]| o5
JRNC,0114 | 07 |00 | 1+ [ 00 | oA | 00| 05
ADDHLDE | 07 |00 | o | 00 | oA ]| 00| OF

NOADD | SLA E 07 |oo | o |00 | 14| 00| OF
RL D 07 |00 | o | oo | 14 |o00]oF

DECB 06 |oo | o | oo | 14| o00]o0F
JPNZ,010F | 06 [00 | 0 | 00 | 14 [ 00| OF

Fig. 3.41: Two Iterations Through the Loop
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4
THE Z80 INSTRUCTION SET

INTRODUCTION

This chapter will first analyze the various classes of instructions
which should be available in a general-purpose computer. It will then
analyze one by one all of the instructions available for the Z80, and ex-
plain in detail their purpose and the manner in which they affect flags
or can be used in conjunction with various addressing modes. A de-
tailed discussion of addressing techniques will be presented in Chapter
5.

CLASSES OF INSTRUCTIONS

Instructions may be classified in many ways, and there is no stan-
dard. We will here distinguish five main categories of instructions:

1—data transfers
2—data processing
3—test and branch
4—input/output
S—control

Let us now examine each of these classes of instructions in turn.

Data Transfers

Data transfer instructions will transfer data between registers, or be-
tween a register and memory, or between a register and an input/output
device. Specialized transfer instructions may exist for registers which
play a specific role. For example, push and pop operations
are provided for efficient stack operation. They will move a word of
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data between the top of the stack and the accumulator in a single in-
struction, while automatically updating the stack-pointer register.

Data Processing

Data processing instructions fall into five general categories:

1 —arithmetic operations (such as plus/minus)

2—bit manipulation (set and reset)

3—increment and decrement

4—logical operations (such as AND, OR, exclusive OR)
5—skew and shift operations (such as shift, rotate)

It should be noted that, for efficient data processing, it is desirable to
have powerful arithmetic instructions, such as multiply and divide.
Unfortunately, they are not available on most microprocessors. It is
also desirable to have powerful shift and skew instructions, such as
shift n bits, or a nibble exchange, where the right half and the left half
of the byte are exchanged. These are also usually unavailable on most
MiCTOProcessors.

Before examining the actual Z80 instructions, let us recall the dif-
ference between a shift and a rotation. The shift will move the contents
of a register or a memory location by one bit location to the left or to
the right. The bit falling out of the register will go into the carry bit.
The bit coming in on the other side will be a ¢‘0’’ except in the case of an
““arithmetic shift right,”” where the MSB will be duplicated.

In the case of a rotation, the bit coming out still goes in the carry.
However, the bit coming in is the previous value which was in the carry
bit. This corresponds to a 9-bit rotation. It is often desirable to have a
true 8-bit rotation where the bit coming in on one side is the one falling
from the other side. This is not provided on most microprocessors
but is available on the Z80 (see Figure 4.1).

Finally, when shifting a word to the right, it is convenient to have one
more type of shift, called a sign extension or an ‘‘arithmetic shift
right.”” When doing operations on two’s complement numbers, parti-
cularly when implementing floating-point routines, it is often necessary
to shift a negative number to the right. When shifting a two’s comple-
ment number to the right, the bit which must come in on the left side
should be a ““1’’ (the sign should get repeated as many times as needed
by the successive shifts). This is the arithmetic shift right.
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SHIFT LEFT

LN DN DD DD 4

CARRY

ROTATE LEFT

M DD

R

Fig. 4.1: Shift and Rotate

Test and Jump

The test instructions will test bits in the specified register for ‘‘0’’ or
‘“1”’, or combinations. At a minimum, it must be possible to test the
flags register. It is, therefore, desirable to have as many flags as pos-
sible in this register. In addition, it is convenient to be able to test for
combinations of such bits with a single instruction. Finally, it is
desirable to be able to test any bit position in any register, and to test
the value of a register compared to the value of any other register
(greater than, less than, equal). Microprocessor test instructions are
usually limited to testing single bits of the flags register. The Z80, how-
ever, offers better facilities than most.

The jump instructions that may be available generally fall into
three categories:

1—the jump, which specifies a full 16-bit address

2—the relative jump, which often is restricted to an 8-bit displace-
ment field

3—the call, which is used with subroutines
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It is convenient to have two- or even three-way jumps, depending, for
example, on whether the result of a comparison is ‘‘greater than,’’ ‘‘less
than,”” or ‘“‘equal.”” It is also convenient to have skip operations, which
will jump forward or backwards by a few instructions. However, a
‘“‘skip’’ is equivalent to a ‘‘jump.”’ Finally, in most loops, there is
usually a decrement or increment operation at the end, followed by a
test-and-branch. The availability of a single-instruction increment/
decrement plus test-and-branch is, therefore, a significant advan-
tage for efficient loop implementation. This is not available in most
microprocessors. Only simple branches, combined with simple tests,are
available. This, naturally, complicates programming and reduces effi-
ciency. In the case of the Z80, a ‘‘decrement and jump’’ instruction is
available. However, it only tests a specific register (B) for zero.

Input/Output

Input/output instructions are specialized instructions for the hand-
ling of input/output devices. In practice, a majority of the 8-bit micro-
processors use memory-mapped 1/0: input/output devices are con-
nected to the address bus just like memory chips, and addressed as
such. They appear to the programmer as memory locations. All
memory-type operations normally require 3 bytes and are, therefore,
slow. For efficient input/output handling in such an environment, it is
desirable to have a short addressing mechanism available so that 1/0
devices whose handling speed is crucial may reside in page 0. However,
if page 0 addressing is available, it is usually used for RAM memory,
which prevents its effective use for input/output devices. The
780, like the 8080, is equipped with specialized 1/0 instructions. As a
result, in the case of the Z80, the designer may use either method: in-
put/output devices may be addressed as memory devices, or else as in-
put/output devices, using the 1/0 instructions.

They will be described later in this chapter.

Control Instructions

Control instructions supply synchronization signals and may suspend
or interrupt a program. They can also function as a break or a simu-
lated interrupt. (Interrupts will be described in Chapter 6 on In-
put/Output Techniques.)
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THE Z80 INSTRUCTION SET

Introduction

The Z80 microprocessor was designed to be a replacement for the
8080, and to offer additional capabilities. As a result of this design
philosophy, the Z80 offers all the instructions of the 8080, plus addi-
tional instructions. In view of the limited number of bits available in an
8-bit opcode, one may wonder how the designers of the Z80 succeeded
in implementing many additional ones. They did so by using a few
unused 8080 opcodes and by adding an additional byte to the opcode
for indexed operations. This is why some of the Z80 instructions oc-
cupy up to five bytes in the memory.

It is important to remember that any program can be written in many
different ways. A thorough knowledge and understanding of the in-
struction set is indispensable for achieving efficient programming.
However, when learning how to program, it is not essential to write op-
timized programs. During a first reading of this chapter, it is therefore
unimportant to remember all the various instructions. It is important to
remember the categories of instructions and to study typical examples.
Then, when writing programs, the reader should consult the Z80
instruction-set description, and select the instructions best suited to his
needs. The various instructions of the Z80 will therefore be reviewed in
this section with the intent of simplifying them and grouping them in
logical categories. The reader interested in exploring the capabilities of
the various instructions is referred to the individual descriptions of the
instructions.

We will now examine the capabilities provided by the Z80 in terms of
the five classes of instructions which have been defined at the beginning
of this chapter.

Data Transfer Instructions

Data transfer instructions on the Z80 may be classified in four
categories: 8-bit transfers, 16-bit transfers, stack operations, and
block transfers. Let us examine them.

Eight-Bit Data Transfers

All eight-bit data transfers are accomplished by load instructions.
The format is:

LD destination, source
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For example, the accumulator A may be loaded from register B by
using the instructions:

LD A,B

Direct transfers may be accomplished between any two of the
working registers (ABCDEHL).

In order to load any of the working registers, except for the accu-
mulator, from a memory location, the address of this memory loca-
tion must first be loaded into the H-L register pair.

For example, in order to load register C from memory location 1234,
register H and L will first have to be loaded with the value “1234”’. (A
load instruction operating on 16 bits will be used. This is described in
the following section.)

Then, the instruction LD C, (HL) will be used and will accomplish
the desired result.

The accumulator is an exception. It can be loaded directly from any
specified memory location. This is called the extended addressing
mode. For example, in order to load the accumulator with the contents
of memory location 1234, the following instruction will be used:

LD A, (1234H) (Note the use of “()”’ to denote ‘‘contents of.”’)
The instruction will be stored in the memory as follows:

address PC 3A (opcode)
PC + 1:34 (low order half of the address)
PC + 2:12 (high order half of the address)

Note that the address is stored in ‘‘reverse order’’ in the instruction
itself:

3A | low addr | high addr |

All the working registers may also be loaded with any specified eight-bit
value, or “‘literal,”’ contained in the second byte of the instruction (this
is called immediate addressing). An example is:

LD E, 12H

which loads register E with the value 12 hexadecimal.
In the memory, the instruction appears as:

PC: 1E (opcode)
PC + 1: 12 (literal operand)
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As a result of this instruction, the immediate operand, or literal value
will be contained in register E.

The indexed addressing mode is also available for loading register
contents, and will be fully described in the next chapter on addressing
techniques. Other miscellaneous possibilities exist for loading specific
registers, and a table listing all the possibilities is shown in Figure 4.2
( tables supplied by Zilog, Inc.). The grey areas show instructions
common with the 8080A.

SOURCE
T EXT,
IMPLIED REGISTER REG INDIRECT INDEXED | ADDR.| IMME.
| _tmeLieo
| R | A [ 8 ] c D | € ] L | w0 6c) [ 08 Jux+afuyea)| (m) | o
L oo | f0 i
A e | e i 7€ | 7E
57 SF |t d d
o0 | FD
[ 46 | 48
d d
oD | FD
c 4 |
d d
oo | fo
REGISTER | D 56 | 56
d d
o0 | FD
3 se | se
d d
oD | FD
" 66 | 66
d d
o0 | fD
L 6 | 6E
d d
; [
& nea
&| womecy | (8¢
(0€)
o0 | oo | oo | oo | oo | oo | oo 4
IX+d) 7 70 n 72 73 74 7% d
d d
INDEXED < 4 < G U o
FD | FO | FD | FD | FO | FD | FD J3
(1Y +d) ” 70 n 72 73 74 7% d
d d d d d d d
EXT. ADOR | (ne)
' €0
47
MPLIED
n 33
3

Fig. 4.2: Eight-Bit Load Group—‘LD’

16-Bit Data Transfers

Basically, any of the 16-bit register pairs, BC, DE, HL, SP, IX, 1Y,
may be loaded with a literal 16-bit operand, or from a specified
memory address (extended addressing), or from the top of the stack,
i.e., from the address contained in SP. Conversely, the contents of these
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register pairs may be stored in the same manner at a specified memory
address or on top of the stack. Additionally, the SP register may be
loaded from HL, IX, and 1Y. This facilitates creating multiple stacks.
The register pair AF may also be pushed on top of the stack.

The table listing all the possibilities is shown in Figure 4.3. The stack
push and pop operations are included as parts of the 16-bit data
transfers. All stack operations transfer the contents of a register pair to
or from the stack. Note that there are no single push and pop instruc-
tions for saving individual eight-bit registers.

SOURCE
IMM. | EXT. | REG.
REGISTER EXT. | ADDR.|INDIR.
AF BC DE HL sP X 1y nn (nn) (SP)
AF
Tl
BC M 5
n S
ED
R DE 5B
E n
G n
s I
DESTINATION T
E
R €D
sP DD FD 78
F9 F9 n
n
DD DD
IX pal 2A oD
n n E1
n n
FD | FD
1y 21 2A FD
n n €1
n n
€D ED ED 0D FD
EXT. () 43 53 73 22 22
ADDR, n n n n n
n n n n n
PUSH » | REG. (sP)
INSTRUCTIONS IND. gSD ESD
NOTE: The Push & Pop Instructions adjust ’
the SP after every exscution PoP
INSTRUCTIONS

Fig. 4.3: 16-Bit Load Group—‘LD’, ‘PUSH’ and ‘POP’

A double-byte push or pop is always executed on a register pair: AF,
BC, DE, HL, IX, IY (see the bottom row and right-most column in
Figure: 4.3).

When operating on AF, BC, DE, HL, a single-byte is required for the
instruction, resulting in good efficiency. For example, assume that the
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stack pointer SP contains the value ‘‘0100°’. The foilowing instruc-
tion is executed:

PUSH AF

When pushing the contents of the register pair on the stack, the stack
pointer SP is first decremented, then the contents of register A are de-
posited on top of the stack. Then the SP is decremented again, and the
contents of F are deposited on the stack. At the end of the stack trans-
fer, SP points to the top element of the stack, which in our example
is the value of F.,

It is important to remember that, in the case of the Z80, the SP
points to the fop of the stack and the SP is decremented whenever a
register pair is pushed. Other conventions are often used in other pro-
cessors, and this may be a source of confusion.

IMPLIED ADDRESSING
AF |BC,DE'&HL'| HL | Ix 1%

AF 08

BC,
DE
& Dg

HL

iMPLIED

DE

FD
E3

REG. (SP)
INDIR.

Fig. 4.4: Exchanges ‘EX’ and ‘EXX’

Exchange Instructions

Additionally, a specialized mnemonic EX has been reserved for ex-
change operations. EX is not a simple data transfer, but a dual data
transfer. It actually changes the contents of fwo specified locations. EX
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may be used to exchange the top of the stack with HL, IX, IY and also
to swap the contents of DE and HL and AF and AF’ (remember that
AF’ stands for the other AF register pair available in the Z80).
Finally, a special EXX instruction is available to exchange the con-
tents of BC, DE, HL with the contents of the corresponding registers in
the second register bank of the Z80.
The possible exchanges are summarized in Figure 4.4.

SOURCE
REG.
INDIR.
(HL)
ED ‘LDI’ — Load (DE )=s—(HL)
AD Inc HL & DE, Dec BC
ED ‘LDIR,’ — Load (DE)-e—(HL)
REG BO Inc HL & DE, Dec BC, Repeat until BC=0
DESTINATION INDI‘R. (DE)
ED ‘LDD’ — Load (DE)-e—(HL)
A8 Dec HL & DE, Dec BC
ED ‘LDDR’ - Load (DE)-#—(HL)
B8 Dec HL & DE, Dec BC, Repeat untiil BC=0

Reg HL points to source
Reg DE points to destination
Reg BC is byte counter

Fig. 4.5: Block Transfer Group

Block Transfer Instructions

Block transfer instructions are instructions which will result in the
transfer of a block of data rather than a single or double byte. Block
transfer instructions are more complex for the manufacturer to imple-
ment than most instructions and are usually not provided on micropro-
cessors. They are convenient for programming, and may improve the
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performance of a program, especially during input/output operation.
Their use and advantages will be demonstrated throughout this book.
Some automatic block transfer instructions are available in the case of
the Z80. They use specific conventions.

All block transfer instructions require the use of three pairs of
registers: BC, DE, HL:

BC is used as a 16-bit counter. This means that up to 2'* = 64K bytes
may be moved automatically. HL is used as the source pointer. It may
point anywhere in the memory. DE is used as the destination pointer
and may point anywhere in the memory.

Four block transfer instructions are provided:

LDD, LDDR, LDI, LDIR

All of them decrement the counter register BC with each transfer. Two
of them decrement the pointer registers DE and HL, LDD and LDDR,
while the two others increment DE and HL, LDI and LDIR. For each
of these two groups of instructions, the letter R at the end of the
mnemonic indicates an automatic repeat. Let us examine these instruc-
tions.

LDI stands for ‘‘load and increment.’’ It transfers one byte from the
memory location pointed to by H and L to the destination in the
memory pointed to by D and E. It also decrements BC. It will automati-
cally increment H and L and D and E so that all register pairs are pro-
perly conditioned to perform the next byte transfer whenever required.

LDIR stands for ‘‘load increment and repeat,”’ i.e., execute LDI
repeatedly until the counter registers BC reach the value ‘‘0’’. It is used
to move a continuous block of data automatically from one memory
area to another.

LDD and LDDR operate in the same way except that the address
pointer is decremented rather than incremented. The transfer therefore
starts at the highest address in the block instead of the lowest. The ef-
fect of the four instructions is summarized in Figure 4.5.

Similar automated instructions are available for CP (compare) and
are summarized in Figure 4.6.

Data Processing Instructions

Arithmetic

Two main arithmetic operations are provided: addition and subtrac-
tion. They have been used extensively in the previous chapter. There are
two types of addition, with and without carry, ADC and ADD respec-
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SEARCH
LOCATION
REG.
INDIR.
(HL)
ED ‘CPI’
Al inc HL, Dec BC
ED ‘CPIR’, Inc HL, Dec BC
B1 repeat until BC = 0 or find match
ED ‘CPD’ Dec HL & BC
A8
ED" ‘CPDR’ Dec HL & BC
BS Repeatuntil BC = 0 or find match

HL points to iocation in memory
to be compared with accumulator
contents

BC is byte counter

Fig. 4.6: Block Search Group

tively. Similarly, two types of subtraction are provided with and
without carry. They are SBC and SUB.

Additionally, three special instructions are provided: DAA, CPL,
and NEG. The Decimal Adjust Accumulator instruction DAA has been
used to implement BCD operations. It is normally used for each BCD
add or subtract. Two complementation instructions also are available.
CPL will compute the one’s complement of the accumulator, and NEG
will negate the accumulator into its complement format(two’s comple-
ment).

All the previous instructions operate on eight-bit data. 16-bit opera-
tions are more restricted. ADD, ADC, and SBC are available on
specific registers, as described in Figure 4.8.

Finally, increment and decrement instructions are available which
operate on all the registers, both in an eight-bit and a 16-bit format.
They are listed in Figure 4.7 (eight-bit operations) and 4.8 (16-bit opera-
tions).
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SOURCE
REG.
REGISTER ADDRESSING INDIR.| INDEXED |IMMED.
A B c D E H L (HL) | ax+d) | QY+d) [ n

i R =i § - oo |FD

*ADD’ ” : 8t [ 23 o - o4 |% 1o |86 86
. ) ] d d

, s ; DD | FD

ADD w CARRY . x - | 8E 8E
‘ADC’ . d
DD FD

SUBTRACT 96
“SUB’ d

3 FD

SUB w CARRY 9E
*$BC’ d

FO

‘AND’ A6
d

FO

‘XOR* AE
d

FD

‘OR’ B6
s d

FD

COMPARE BE
‘P’ d

FD

INCREMENT 34
‘INC’ d

FD

DECREMENT 35
‘DEC’ d

Fig. 4.7: Eight-Bit Arithmetic and Logic

Note that, in general, all arithmetic operations modify some of the
flags. Their effect is fully described in the instruction descriptions later
in this chapter. However, it is important to note that the INC and DEC
instructions which operate on register pairs do not modify any of the flags.

This detail is important to keep in mind. This means that if you incre-
ment or decrement one of the register pairs to the value *‘0’’, the Z-bit
in the flags register F will not be set. The value of the register must be
explicitly tested for the value ‘“0’’ in the program.

Also, it is important to remember that the instructions ADC and SBC
always affect all the flags. This does not mean that all the flags will
necessarily be different after their execution. However, they might.
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SOURCE
BC DE | HL | sP IX %
HL | 09 1 2 | 3¢
g | ‘apD’ 1X DD | DD oo | DD
[ 09 19 39 29
«
4
P Iy FD | FD FD FD
] 09 19 39 29
Q
ADD WITH CARRY AND | HL ED | ED | ED | ED
SET FLAGS  ‘ADC’ aA | 5A | B8A | 7A
SUBWITHCARRYAND | HL | ED | ED | ED | ED
SET FLAGS  ‘SBC’ 42 52 62 72
INCREMENT  “INC’ o 13 23 | 3 DD FD
23 23
DECREMENT 'DEC’ o8 ® 28 | 38 | DD FD
2B 28
Fig. 4.8: Sixteen-Bit Arithmetic and Logic
Logical

Three logical operations are provided: AND, OR (inclusive) and
XOR (exclusive), plus a comparison instruction CP. They all operate
exclusively on eight-bit data. Let us examine them in turn. (A table list-
ing all the possibilities and operation codes for these instructions is part
of Figure 4.7.)

AND

Each logical operation is characterized by a truth table, which ex-
presses the logical value of the result in function of the inputs. The
truth table for AND appears below:
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0AND O =0 AND| 0 | 1
0AND1 =0

1 ANDO = 0 6 jo} o
1ANDI = 1 1 o | 1

The AND operation is characterized by the fact that the output is
““1’” only if both inputs are ‘“1”’, In other words, if one of the inputs is
““0”’, it is guaranteed that the result is ‘‘0”’. This feature is used to zero
a bit position in a word. This is called ‘‘masking.”

One of the important uses of the AND instruction is to clear or
‘““mask out’’ one or more specified bit positions in a word. Assume for
example that we want to zero the right-most four-bit positions in a
word. This will be performed by the following program:

LD A, WORD WORD CONTAINS ‘10101010’
AND 11110000B ‘11110000’ IS MASK

Let us assume that WORD is equal to ‘10101010°. The result of this
program is to leave the value ‘10100000’ in the accumulator. “B” is
used to indicate a binary value.

Exercise 4.1: Write a three-line program which will zero bits 1 and 6 of
WORD.

Exercise 4.2: What happens with a MASK = ‘11111111°7
OR

This instruction is the inclusive OR operation. It is characterized by
the following truth table:

OORO =0 OR [ o 1
OOR1 = 1

1o0R0=1 % 0 | 0 1
10R1 = 1 ) ) "

The logical OR is characterized by the fact that if one of the operands
is *“1”’, then the result is always ‘“1’’. The obvious use of OR is to set
any bit in a word to ““1”’.

Let us set the right-most four bits of WORD to 1’s. The program is:

LD A, WORD
OR 00001111B
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Let us assume that WORD did contain ‘10101010’. The final value of
the accumulator will be ‘10101111°.

Exercise 4.3: What would happen if we were to use the instruction
OR 10101111 B?

Exercise 4.4: What is the effect of ORing with “FF*’ hexadecimal?

XOR

XOR stands for “‘exclusive OR.”’ The exclusive OR differs from the
inclusive OR that we have just described in one respect: the result is
‘1>’ only if one, and only one, of the operands is equal to ““1’’. If both
operands are equal to ‘‘1”’, the normal OR would give a ‘‘1’’ result.
The exclusive OR gives a ‘‘0’’ result. The truth table is:

0 XOR 0 =0 xor| o | 1
0XOR1 = 1

{XORO=1 °F | 0 |01
1XOR1 =0 1 | 1] o

The exclusive OR is used for comparisons. If any bit is different, the
exclusive OR of two words will be non-zero. In addition, in the case of
the Z80, the exclusive OR may be used to complement a word, since
there is no complement instruction on anything but the accumulator.
This is done by performing the XOR of a word with all ones. The pro-
gram appears below:

LD A, WORD
XOR, 11111111 B

Let us assume that WORD contained ‘‘ 10101010’ The final value of
the register will be “01010101°°. You can verify that this is the comple-
ment of the original value.

XOR can be used to advantage as a ‘‘bit toggle.”’

Exercise 4.5: What is the effect of XOR using a register with ‘00’ hex-
adecimal?

Skew Operations (Shift and Rotate)

Let us first differentiate between the shift and the rotate operations,
which are illustrated in Figure 4.9. In a shift operation, the contents of
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the register are shifted to the left or to the right by one bit position. The
bit which falls out of the register goes into the carry bit C, and the bit
which comes in is zero. This was explained in the previous section.

SHIFT LEFT

LD NN 4

( CARRY

ROTATE LEFT

LD DD P 4

e R

| G-

Fig. 4.9: Shift and Rotate

One exception exists: it is the shift-right-arithmetic. When perform-
ing operations on negative numbers in the two’s complement format,
the left-most bit is the sign bit. In the case of negative numbers it is
“1”’. When dividing a negative number by ‘2 by shifting it to the
right, it should remain negative, i.e., the left-most bit should remain a
““1°’. This is performed automatically by the SRA instruction or Shift
Right Arithmetic. In this arithmetic shift right, the bit which comes in
on the left is identical to the sign bit. It is ¢‘0”” if the left-most bit was a
“0”’, and ‘1"’ if the left-most bit was a ““1°°. This is illustrated on the
right of Figure 4.10, which shows all the possible shift and rotate opera-
tions.

Rotations

A rotation differs from a shift by the fact that the bit coming into the
register is the one which will fall from either the other end of the
register or the carry bit. Two types of rotations are supplied in the case
of the Z80: an eight-bit rotation and a nine-bit rotation.

The nine-bit rotation is illustrated in Figure 4.11. For example, in the
case of a right rotation, the eight bits of the register are shifted right by
one bit position. The bit which falls off the right part of the register
goes, as usual, into the carry bit. At this time the bit which comes in on
the left end of the register is the previous value of the carry bit (before it
is overwritten with the bit falling out.) In mathematics this is called a
nine-bit rotation since the eight bits of the register plus the ninth bit (the
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carry bit) are rotated to the right by one bit position. Conversely, the
left rotation accomplishes the same result in the opposite direction.

Source snd Destinanion

X H Rotate
aAle e o] e | w | t | mulmioees A = Do Corcutar
e | ca | c8 | s | o8| ce | caioca| e | 2§ | & Acal o
o7 | o0 [ or | % | o3 | o4 | 05 | 06 | d d . Rotate
il g1k | 0 e
Anc:| c8 | ca | c8 | ca| o c8 | ca | co |G| c8 mAca | oF
OF o8 09 oA 08 oc oo Of d d
o (e = &
‘a | ce | ca | ca | ca| e | e8| csloca | | B A | w u
7| n 7| 13 N 5 16 | d d
® | %
o | f0 Rotate
#r | cs | o8| ce | ce| 8 | ce | ca | co 2 | &8
Tere Qe | o f | e || o] b RRA | W Rt
ROTATE £ 1e
" T smtt
OR SLA 8 c8 c8 =3 cB e <8 c8 C| -—
SHIFT a || n oz ||| x|% : E: :’ © Lattanthmenc
sAa| co | c8 | ca | c8 | c8 | ca | ca | cs | &8 | o8 it
2F E) 2 2a | 28 x ° | % d g Right Artthmetic
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Fig. 4.10: Rotates and Shifts

7 REGISTER 0 C
l
RIGHT r’l - " _’
7 REGISTER 0 C
LEFT r v ™~

Fig. 4.11: Nine-Bit Rotation

The eight-bit rotation operates in a similar way. Bit 0 is copied into
bit seven, or else bit seven is copied into bit 0, depending on the direc-
tion of the rotation. In addition, the bit coming out of the register is
also copied in the carry bit. This is illustrated by Figure 4.12.

7 o
RIGHT
7 0
LEFT l_. led L

Fig. 4.12: Eight-Bit Rotation

0

0
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Special Digit Instructions

Two special digit-rotate instructions are provided to facilitate BCD
arithmetic. The result is a four-bit rotation between two digits con-
tained in the memory location pointed to by the HL registers and one
digit in the lower half of the accumulator. This is illustrated by Figure
4.13.

MEMORY

— N\

RIGHT: ' ; N > @

H ADDRESS - W

A MEMORY

LEFT: ’ Q@ <+——1T—@ =

Fig. 4.13: Digit Rotate Instructions (Rotate Decimal)

A

Bit Manipulation

It has been shown above how the logical operations may be used to set
or reset bits or groups of bits in the accumulator. However, it is conve-
nient to set or reset any bit in any register or memory location with a
single instruction. This facility requires a considerable number of opcodes
and is therefore usually not provided on most microprocessors. However,
the Z80 is equipped with extensive bit-manipulation facilities. They are
shown in Figure 4.14. This table also includes the test instructions which
will be described only in the next section.

Two special instructions are also available for operating on the carry
flag. They are CCF (Complement Carry Flag) and SCF (Set Carry
Flag). They are shown in Figure 4.15.

Test and Jump

Since testing operations rely heavily on the use of the flags register,
we will here describe in detail the role of each of the flags. The contents
of the flags register appear in Figure 4.16.
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REG.
REGISTER ADDRESSING INDIR. INDEXED
A B [ o] E H L (HL) | (IX+d) | (1Y +d)
BIT
DD FD
0 c8 cB c8 CcB CcB cB8 CcB cs SE SB
4 4
47 40 1 Q2 43 4“4 5 46 % %
DD FD
1 [>:] cB cs cs cB [=:] cB cB EB SB
4F 48 49 4A 48 4C 40 4 S S
0o FD
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1 55
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[s]0]

£D
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D7
Do | D1 D2 D3 | D4 | b5 | D6 4 | B
DD | FD
3 8 [ ce | c8 | cB c8 | c8 | c8 | cB ce | cB
SET DF 08 D9 | DA DB bC oD | DE g d
BIT DE | DE
SET DD | FD
4 c8 | cB | c8 [ c8 | c8 | c8 | c8 | c e | o8
E7 €0 E1 E2 E3 | E4 Es | E6 i a4
0D | FD
5 c8 | c8 [ ca | cB c8 | c8 | cs | c c8 | c8
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o0 | FD
[ c8 | cB | c8 | cB c8 | cB | cB | cB ¢ | ¢
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Fig. 4.14: Bit Manipulation Group
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Decimal Adjust Acc, ‘DAA’

Complement Acc, ‘CPL’

Negate Acc, ‘NEG’
(2’s complement)

Complement Carry Flag, ‘'CCF’

Set Carry Flag, ‘SCF’

Fig. 4.15: General-Purpose AF Operations

S Z — H — | PV N C

m M ) M

Fig. 4.16: The Flags Register

C is the carry, N is add or subtract, P/V is parity or overflow, H is half
carry, Z is zero, S is sign. Bits 3 and 5 of the flags register are not used
(*“=""). The two flags H and N are used for BCD arithmetic and cannot
be tested. The other four flags (C, P/V, Z, S) can be tested in conjunc-
tion with conditional jump or call instructions.

The role of each flag will now be described.

Carry (C)

In the case of nearly all microprocessors, and of the Z80 in par-
ticular, the carry bit assumes a dual role. First, it is used to indicate
whether an addition or subtraction operation has resulted in a carry (or
borrow). Secondly, it is used as a ninth bit in the case of shift and rotate
operations. Using a single bit to perform both roles facilitates some
operations, such as a multiplication operation. This should be clear
from the explanation of the multiplication which has been presented in
the previous chapter.
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When learning to use the carry bit, it is important to remember that
all arithmetic operations will either set it or reset it, depending on the
result of the instructions. Similarly, all shift and rotation operations use
the carry bit and will either set it or reset it, depending on the value of
the bit which comes out of the register.

In the case of logical instructions (AND, OR, XOR), the carry bit
will always be reset. They may be used to zero the carry explicitly.

Instructions which affect the carry bit are: ADD A,s; ADC A,s;
SUB s; SBC A,s; CP s; NEG; AND s; OR s; XOR s; ADD DD,ss; ADC
HL,ss; SBC HL,ss; RLA; RLCA; RRA; RRCA; RL m; RLC m; RR m;
RRC m; SLA m; SRA m; SRL m; DAA; SCF; CCF.

Subtract (N)

This flag is normally not used by the programmer, and is used by the
280 itself during BCD operations. The reader will remember from the
previous chapter that, following a BCD add or subtract, a DAA
(Decimal Adjust Accumulator) instruction is executed to obtain the
valid BCD results. However, the ‘‘adjustment’’ operation is different
after an addition and after a subtraction. The DAA therefore executes
differently depending on the value of the N flag. The N flag is set to
““0”’ after an addition and is set to a ‘‘1’’ after a subtraction.

The symbol used for this flag, ‘“‘N’’, may be confusing to program-
mers who have used other processors, since it may be mistaken for the
sign bit. It is an internal operation sign bit.

N is set to ‘0>’ by: ADD A,s; ADC A,s; ANDs;ORs; XORs; INCs;
ADD DD,ss; ADC HL,ss; RLA; RLCA; RRA; RRCA; RL m; RLC m;
RR m; RRC m; SLA m; SRA m; SRL m; RLD; RRD; SCF; CCF; INT,
(C); LDI; LDD; LDIR; LDDR; LD A, I; LD A, R; BIT b, s.

Nis set to 1>’ by: SUB s; SBC A,s; CP s; NEG; DEC m; SBC HL, ss;
CPL; INI; IND; OUTI; OUTD; INIR; INDR; OTIR; OTDR; CPI;
CPIR; CPD; CPDR.

Parity/Overflow (P/V)

The parity/overflow flag performs two different functions. Specific
instructions will set or reset this flag depending on the parity of the
result; parity is determined by counting the total number of ones in the
result. If this number is odd, the parity bit will be set to ‘‘0’’ (odd pari-
ty). If it is even, the parity bit will be set to ‘“1°’ (even parity). Parity is
most frequently used on blocks of characters (usually in the ASCII for-
mat). The parity bit is an additional bit which is added to the seven-bit
code representing the character, in order to verify the integrity of data
which has been stored in a memory device. For example, if one bit in
the code representing the character has been changed by accident, due
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to a malfunction in the memory device (such as a disk or RAM
memory), or during transmission, then the total number of ones in the
seven-bit code will have been changed. By checking the parity bit, the
discrepancy will be detected, and an error will be flagged. In particular,
the flag is used with logical and rotate instructions. Also, naturally,
during an input operation from an 1/0 device, the parity flag will in-
dicate the parity of the data being read.

For the reader familiar with the Intel 8080, note that the parity flag in
the 8080 is used exclusively as such. In the case of the Z80, it is used for
several additional functions. This flag should therefore be handled with
care when going from one of the microprocessors to the other.

In the case of the Z80, the second essential use of this flag is as an
overflow flag (not available in the 8080). The overflow flag has been de-
scribed in Chapter 1, when the two’s complement notation was intro-
duced. It detects the fact that, during an addition or subtraction, the
sign of the result is‘‘accidentally’’changed due to the overflow of the
result into the sign bit. (Recall that, using an eight-bit representation,
the largest positive number is + 127, and the smallest negative number
is — 128 in two’s complement.)

Finally, this bit is also used, in the case of the Z80, for two unrelated
functions.

During the block transfer instructions (LDD, LDDR, LDI, LDIR),
and during the search instructions (CPD, CPDR, CPI, CPIR), this flag
is used to detect whether the counter register B has attained the value
““0”’. With decrementing instructions, this flag is reset to ‘0’ if the
byte counter register pair is ‘0’’. When incrementing, it is reset if BC —
1 = 0 at the beginning of the instruction, i.e., if BC will be decremented
to ‘‘0”’ by the instruction.

Finally, when executing the two special instructions LD A,I and LD
A,R, the P/V flag reflects the value of the interrupt enable flip-flop
(IFF2). This feature can be used to preserve or test this value.

The P flag is affected by: AND s; OR s; XOR s; RL m; RLC m; RR m;
RRC m; SLA m; SRA m; SRL m; RLD; RRD; DAA; INr,(C).

The V flag is affected by: ADD A,s; ADC A,s;SUB s; SBC A,s;CP's;
NEG; INC s; DEC m; ADC HL,ss; SBC HL,ss.

It is also used by: LDIR; LDDR (set to ‘‘0’’); LDI; LDD; CPI;
CPIR; CPD; CPDR.

The Half-Carry Flag (H)

The half-carry flag indicates a possible carry from bit 3 into bit 4 dur-
ing an arithmetic operation. In other words, it represents the carry from
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the low-order nibble (group of 4 bits) into the high order one. Clearly, it
is primarily used for BCD operations. In particular, it is used internally
within the microprocessor by the Decimal Adjust Accumulator (DAA)
instruction in order to adjust the result to its correct value.

This flag will be set during an addition when there is a carry from bit
3 to bit 4 and reset when there is no carry. Conversely, during a subtract
operation, it will be set if there is a borrow from bit 4 to bit 3, and reset
if there is no borrow.

The flag will be conditioned by addition, subtraction, increment,
decrement, comparisons, and logical operations.

Instructions which affect the H bit are;: ADD A,r ; ADC A,s; SUBss;
SBC A,s; CP s; NEG; AND s; OR s; XOR s; INC s; DEC m; RLA;
RLCA; RRA; RRCA; RL m; RLC m; RR m; RRC m; SLA m; SR m;
SRL m; RLD; RRD; DAA; CPL; SCF; INr,(C); LDI; LLD; LDIR;
LDDR; LD A; LD A,R; BIT b,r; CPI; CPIR; CPD; CPDR.

Note that the H bit is randomly affected by the 16-bit add and sub-
tract instructions, and by block input and output instructions.

Zero (Z)

The Z flag is used to indicate whether the value of a byte which has
been computed, or is being transferred, is zero. It is also used with com-
parison instructions to indicate a match, and for other miscellaneous
functions.

In the case of an operation resulting in a zero result, or of a data
transfer, the Z bit is set to ‘‘1’’ whenever the byte is zero. Z is reset to
““0”’ otherwise.

In the case of comparison instructions, the Z bit is set to *‘1’’ when-
ever the comparison succeeds and to ‘‘0’’ otherwise.

Additionally, in the case of the Z80, it is used for three more functions:
it is used with the BIT instruction to indicate the value of a bit being
tested. It is set to ““1”’ if the specified bit is *‘0’’ and reset otherwise.

With the special ‘‘block input-output instructions’’ (INI, IND,
OUTI, OUTD), the Z flag is set if D — 1 = 0, and reset otherwise; it is
set if the byte counter will decrement to “‘0”’ (INIR, INDR, OTIR,
OTDR).

Finally, with the special instructions IN r,(C), the Z flag is set to “‘1”’
to indicate that the input byte has the value “‘0”’.

In summary, the following instructions condition the value of the Z
bit: ADD A,s; ADC A,s;SUB s; SBC A,s; CP s; NEG;AND s;OR s;
XOR s; INC s; DEC m; ADC HL, ss; SBC HL,ss; RL m; RLC m;
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RR m; RRC m; SLA m; SRA m; SRL m; RLD; RRD; DAA; IN 1,(C);
INI; IND; OUTI; OUTD; INIR; INDR; OTIR; OTDR; CPI; CPIR;
CPD; CPDR; LD A, I; LD A, R; BIT b,s; NEGs.

Usual instructions which do not affect the Z bit are: ADD DD,ss;
RLA; RLCA; RRA; RRCA; CPL; SCF; CCF; LDI; LDD; LDIR;
LDDR; INC DD; DEC DD.

Sign (S)

This flag reflects the value of the most significant bit of a result or of
a byte being transferred (bit seven). In two’s complement notation, the
most significant bit is used to represent the sign. ‘‘0’’ indicates a posi-
tive number and a ‘“1”’ indicates a negative number. As a result, bit
seven is called the sign bit.

In the case of most microprocessors, the sign bit plays an important
role when communicating with input/output devices. Most micropro-
cessors are not equipped with a BIT instruction for testing the contents
of any bits in a register or the memory. As a result, the sign bit is usual-
ly the most convenient bit to test. When examining the status of an in-
put/output device, reading the status register will automatically condi-
tion the sign bit, which will be set to the value of bit seven of the status
register. It can then be tested conveniently by the program. This is why
the status register of most input/output chips connected to micropro-
cessor systems have their most important indicator (usually ready/not
ready) in bit position seven.

A special BIT instruction is provided in the case of the Z80.
However, in order to test a memory location (which may be the address
of an 1/0 status register), the address must first be loaded into registers
IX, IY or HL. There is no bit instruction provided to test a specified
memory address directly (i.e., no direct addressing mode for this in-
struction). The value of positioning an input/output ready flag in bit
position seven, therefore, remains intact, even in the case of the Z80.

Finally, the sign flag is used by the special instruction IN, (C) to in-
dicate the sign of the data being read.

Instructions which affect the sign bit are: ADD A,s; SUBs; SBC A,s;
CP s; NEG; AND s; OR s; XOR s; INC s; DEC m; ADC HL, ss; SBC
HL, ss; RL m; RLC m; RR m; RRC m; SLA m; SRA m; SRL m; RLD;
RRD; DAA; IN r,(C); CPI; CPIR; CPD; CPDR; LD A,[;LD A,r;
NEG, ADC A,s.
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Summary of the Flags

The flag bits are used to automatically detect special conditions with-
in the ALU of the microprocessor. They can be conveniently tested by
specialized instructions, so that specific action can be taken in response
to the condition detected. It is important to understand the role of the
various indicators available, since most decisions taken within the pro-
gram will be taken in function of these flag bits. All jumps executed
within a program will jump to specified locations depending on the
status of these flags. The only exception involves the interrupt
mechanism, which will be described in the chapter on input/output and
may cause jumping to specific locations whenever a hardware signal is
received on specialized pins of the Z80.

At this point, it is only necessary to remember the main function of
each of these bits. When programming, the reader can refer to the de-
scription of the instruction later in this chapter to verify the effect of
every instruction of the various flags. Most flags can be ignored most of
the time, and the reader who is not yet familiar with them should not
feel intimidated by their apparent complexity. Their use will become
clearer as we examine more application programs.

A summary of the six flags and the way they are set or reset by the
various instructions is shown in Figure 4.17.

The Jump Instructions

A branch instruction is an instruction which causes a forced bran-
ching to a specified program address. It changes the normal flow of
execution of the program from a sequential mode into one where a dif-
ferent segment of the program is suddenly executed. Jumps may be
conditional or unconditional. An unconditional jump is one in which
the branching occurs to a specific address, regardless of any other con-
dition.

A conditional jump is one which occurs to a specific address only if
one or more conditions are met. This is the type of jump instruction
used to make decisions based upon data or computed results.

In order to explain the conditional jump instructions, it is necessary
to understand the role of the flags register, since all branching decisions
are based upon these flags. This was the purpose of the preceding sec-
tion. We can now examine in more detail the jump instructions pro-
vided by the Z80.

Two main types of jump instructions are provided: jump instructions
within the main program (they are called ‘‘jumps’’), and the special

179



PROGRAMMING THE Z80
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INSTRUCTION clz{%|s|nln COMMENTS
ADD A, s; ADCA, s tjvit]oy: 8-bit add or add with carry
SUBs;SBC A, s, CPs, NEG eVt 8-bit subtract, subtract with

carry, compare and
negate accumulator
AND s ojsjePjt]jo|1 Logical operations
OR s; XOR 3 ojt (P |tjo]oO And sets different flags
INCs slilvi]t]o]: 8-bit increment
DECm el vt} 8-bit decrement
ADD DD, 53 ile|ejelo] X 16-bit add
ADCHL, ss tpryviyiyoix 16~-brt add with carry
SBC HL, ss vy vliprx 16-bit subtract with carry
RLA; RLCA, RRA, RRCA tje|e |ejO]oO Rotate accumulator
RLm;RLCm;RRm;RRCm| ! | |P {:]O]O Rotate and shift location m
SLA m; SRAm:SRL m
RLD, RRD et lp|i]oO]fO Rotate digit left and right
DAA tleer{t)e]t Decimal adjust accumutator
CPL eleo e ol 1| Complement accumulator
SCF 1]e e |e]O}O Set carry
CCF t]le|®fe]0]|X Complement carry
IN¢, (C) el P jt]olo Input register inchrect
INL; IND; OUTI; OUTD o |t X IX]¥]|X } Block input and output
INIR; INDR; OTIR; OTDR el X |X]1]|X 2=08 #0otherwise Z=1
LD, LDD | X | |X]0]0 || Block transfer instructions
LDIR, LDDR e|XxX]|]O |X]O}O [ P/V=1#BC « 0, otherwise
P/V =0
CPI1, CPIR, CPD, CPDR e | H sl X Block search instructions
Z= 1A= (HL),
otherwise Z = 0
P/V=1.48C =0,
otherwise P/V = 0
LDA ILLDAR e | [IFF|: ofo The content of the interrupt
enable fhp-flop (IFF} is
copied nto the P/V flag
BITb, s o | X Ixlo|1 The compiement of bit b of
location is copied into the
NEG ) O AV FO IR I Z flag
Negate accumulator

The following notation is used in this table:

SYMBOL OPERATION

[ Carry/link flag. C=1if the operation produced a carry from the MSB of the operand or resuit.

Z Zero fiag. Z=1 if the result of the operation i1 zero.

s Sign ftag. S=1if the MSB of the resuit is one.

PIV Parity or overfiow flag. Parity (P) and overflow {V) share the same fiag. Logical operations
affect this flag with the parity of the resuit while arithmetic operations affact this flag with
the overfiow of the resuit. If P/V holds parity, P/V=1 if the result of the operation is sven,
P/V=0 if result is odd. If P/V holds overflow, P/V=1 if the result of the operation produced
an overflow.

H Haif-carry flag. H=1 if the add or subtract operation produced a carry into or borrow from
bit 4 of the accumulator.

N Add/Subtract flag. N=1 if the previous operation was a subtract.

H and N flags are used in conjunction with the decimal adjust instruction (DAA) to properly
correct the result into packed BCD format f g addition or using ops d:
with packed BCD format.

H The flag is affected according to the result of the operation.

. The fiag 1s unchanged by the operation.

o The flag 1s reset by the aperation.

1 The flag is set by the operation.

X The flag 13 » “don’t care.””

v P/V flag atfected according to the overfiow resuit of the operation.

P P/V fiag atfected according to the parity result of the operation.

3 Any one of the CPU registers A, B,C, D, E, H, L.

s Any 8-bit location for all the addressing modes allowed for the particutar instruction.

s Any 16-bit location for aif the addressing modes allowed for that instruction.

i Any one of the two index registers IX or 1Y,

R Refresh counter.

n 8-bit value in range <0, 265>.

nn 16-bit value in range <0, 65535>.

m Any 8-bit location for all the addressing modes allowed for the paticular instruction.

Fig. 4.17: Summary of Flag Operation

Courtesy of Zilog, Inc.
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type of branch instructions used to jump to a subroutine and to return
from it (‘*‘call’’ and “‘return’’). As a result of any jump instruction, the
program counter PC will be reloaded with a new address, and the usual
program execution will resume from this point on. The full power of
the various jump instructions can be understood only in the context of
the various addressing modes provided by the microprocessor. This
part of the discussion will be deferred until the next chapter, where the
addressing modes are discussed. We will only consider here the other
aspects of these instructions.

Jumps may be unconditional (branching to a specified memory ad-
dress) or else conditional. In the case of a conditional jump, one of four
flag bits may be tested. They are the Z, C, P/V, and S flags. Each of
them may be tested for the value ‘0’ or 1.

The corresponding abbreviations are:

Z =zr0(Z =1)

NZ = non zero (Z = 0)
C =carry(C =1)
NC= no carry (C =0)

PO = odd parity

PE = even parity

P positive (S = 0)
M = minus (S = 1)

In addition, a special combination instruction is available in the Z80
which will decrement the B register and jump to a specified memory ad-
dress as long as it is not zero. This is a powerful instruction used to ter-
minate a loop, and it has already been used several times in the previous
chapter: it is the DJNZ instruction.

Similarly, the CALL and the RET (return) instructions may be condi-
tional or unconditional. They test the same flags as the branch instruc-
tion which we have already described.

The availability of conditional branches is a powerful resource in a
computer and is generally not provided on other eight-bit micropro-
cessors. It improves the efficiency of programs by implementing in a
single instruction what requires two instructions otherwise.

Finally, two special return instructions have been provided in the case
of interrupt routines. They are RETI and RETN. They will be described
in the section of Chapter 6 on interrupts.

The addressing modes and the opcodes for the various branches
available are shown in Figure 4.18.
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CONDITION
UN- NON NON [PARITY |PARITY | SIGN | SIGN | REG
COND. | CARRY | CARRY| ZzERO | ZERO |EVEN |oDD NEG | POS 820
c3 DA D2 CA c2 EA E2 FA F2
JUMP P IMMED, nn n n n n n n n n n
EXT. n n n n n n n n n
JUMP  JR" RELATIVE | PCte 18 38 30 28 20
e2 e2 e2 e2 &2
JUMP WP’ (HL} ES
JUMP  UP’ REG. (X} DD
INDIR. E9
JUMP WP’ iy} FD
E9
co oc D4 cC c4 EC E4 FC F4
‘CALL" IMMED. nn n n n n n n " n n
EXT. n n n n n n n n n
OECREMENT B,
JUMP {F NON RELATIVE | PC+e 10
ZERO '‘DINZ’ e2
RETURN REGISTER | (SP) c9 D8 oo | cs co E8 EO F8 Fo 3
‘RET’ INDIR, (SP+1)
RETURN FROM | REG. {sP) ED
INT ‘RETF INDIR, (sP+1)) 4D
RETURN FROM
NON MASKABLE | REG- ‘s"'” ED
INT ‘RETN' INDIR, (SP+ 45

Fig. 4.18: Jump Instructions

A detailed discussion of the various addressing modes is presented
in Chapter 5.
By examining Figure 4.18, it becomes apparent that many ad-
dressing modes are restricted. For example, the absolute jump JP nn

can test four flags, while JR can only test two flags.

Note an important observation: JR tends to be used whenever
possible as it is shorter than JP (one less byte) and facilitates program
relocation. However, JR and JP are not interchangeable: JR cannot
test the parity or the sign flags.
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One more type of specialized branch is available; this is the restart or
RST instruction. It is a one-byte instruction which allows jumping to
any one of eight starting addresses at the low end of the memory. Its
starting addresses are, in decimal, 0, 8, 16, 24, 32, 40, 48 and 56. Itis a
powerful instruction because it is implemented in a single byte. It pro-
vides a fast branch, and for this reason is used essentially to respond to
interrupts. However, it is also available to the programmer for other
uses. A summary of the opcodes for this instruction is shown in Figure
4.19,

‘RST O’

‘RST 8

‘RST 16’

‘RST 24°

‘RST 32’

©wemuoOOU» rrpeo

‘RST 40’

‘RST 48’

‘RST 56’

H indicates a hexidecimal number.

Fig. 4.19: Restart Group

Input/Output Instructions

Input/output techniques will be described in detail in Chapter 6.
Simply, input/output devices may be addressed in two ways: as
memory locations, using any one of the instructions that have already
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been described, or using specific input/output instructions. Usual
memory addressing instructions use three bytes: one byte for the op-
code and two bytes for the address. As a result, they are slow to ex-
ecute, since they require three memory accesses. The main purpose of
specialized input/output instructions is to provide shorter and,
therefore faster, instructions. However, input/output instructions have
two disadvantages.

First, they ‘‘waste”” several of the precious few opcodes available
(since usually only 8 bits are used to supply all opcodes necessary for a
microprocessor). Secondly, they require the generation of one or more
specialized input/output signals, and therefore ‘‘waste’’ one or more of
the few pins available in the microprocessor. The number of pins is
usually limited to 40. Because of these possible disadvantages, specific
input/output instructions are not provided on most microprocessors.
They are, however, provided on the original 8080 (the first powerful
eight-bit general-purpose microprocessor introduced) and on the Z80,
which we know is compatible with the 8080.

The advantage of input/output instructions is to execute faster by re-
quiring only two bytes. However, a similar result can be obtained by
supplying a special addressing mode called ‘‘page 0’’ addressing, where
the address is limited to a field of eight bits. This solution is often
chosen in other microprocessors.

The two basic input/output instructions are IN and OUT. They
transfer either the contents of the specified 1/0 locations into any of
the working registers or the contents of the register into the 1/0 device.
They are naturally two bytes long. The first byte is reserved for the op-
code, the second byte of the instruction forms the low part of the ad-
dress. The accumulator is used to supply the upper part of the address.
It is therefore possible to select one of the 64K devices. However, this
requires that the accumulator be loaded with the appropriate contents
every time, and this may slow the execution.

Additionally, the Z80 provides a register-indirect mode, plus four
specialized block-transfer instructions for input and output.

In the register-input mode, whose format is IN r, (C), the register
pair B and C is used as a pointer to the I/0O device. The contents of B
are placed on the high-order part of the address bus. The contents of
the specified 1/0 device are then loaded into the register designated by
r.

The same applies to the QUT instruction.

The four block-transfer instructions on input are: INI, INIR
(repeated INI), IND and INDR (repeated IND). Similarly, on output,
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they are: OUTI, OTIR, OUTD, and OTDR.

In this automated block transfer, the register pair H and L is used as
a destination pointer. Register C is used as the 1/O device selector (one
out of 256 devices). In the case of the output instruction, H and L point
to the source. Register B is used as a counter and can be incremented
or decremented. The corresponding instructions on input are INI
when incrementing and IND when decrementing.

INI is an automated single-byte transfer. Register C selects the input
device. A byte is read from the device and is transferred to the memory
address pointed to by H and L. H and L are then incremented by 1, and
the counter B is decremented by 1.

INIR is the same instruction, automated. It is executed repeatedly
until the counter decrements to ‘0”’. Thus, up to 256 bytes may be
transferred automatically. Note that to achieve a total transfer of exact-
ly 256, register B should be set to the value ‘‘0’’ prior to executing this
instruction.

The opcodes for the input and output instructions are summarized in
Figures 4.20 and 4.21.

Control Instructions

Control instructions are instructions which modify the operating
mode of the CPU or manipulate its internal status information. Seven
such instructions are provided.

The NOP instruction is a no-operation instruction which does
nothing for one cycle. It is typically used either to introduce a deliberate
delay (4 states = 2 microseconds with a 2MHz clock), or to fill the gaps
created in a program during the debugging phase. In order to facilitate
program debugging, the opcode for the NOP is traditionally all 0’s.
This is because, at execution time, the memory is often cleared, i.e., all
0’s. Executing NOP’s is guaranteed to cause no damage and will not
stop the program execution.

The HALT instruction is used in conjunction with interrupts or a
reset. It actually suspends the operation of the CPU. The CPU will then
resume operation whenever either an interrupt or a reset signal is re-
ceived. In this mode, the CPU keeps executing NOP’s. A halt is often
placed at the end of programs during the debugging phase, as there is
usually nothing else to be done by the main program. The program
must then be explicitly restarted.

Two specialized instructions are used to disable and enable the inter-
nal interrupt flag. They are El and DI. Interrupts will be described in

185



PROGRAMMING THE Z80

SOURCE
REG.
REGISTER IND.
A B c D E H L (HL)
immED.| (n)
ouT*
REG.| () | &0 | €ED | €D | €D | ED | ED | ED
IND. 79 | & 49 51 | 59 | 61 60
‘QUTI — OUTPUT REG. | (C) ED )
Inc HL, Dec b IND. A3
‘OTIR’ — OUTPUT, IncHL, | REG. [ (C) ED
Dec B, REPEAT IF B#0 IND. B3
‘OUTD’ - OUTPUT REG. | (C) €D
Dec HL & B IND. AB
‘OTDR’ — OUTPUT, DecHL | REG. | (O ED
& B, REPEAT IF B40 IND. 88
/
\_.w_./
PORT
DESTINATION
ADDRESS
Fig. 4.20: Output Group
SOURCE
PORT ADDRESS
IMME D.{ REG.
INDIR,
(n) | 1©
A oe | e
n 78
[ €0
40
L}
£ le €0
]
INPUT 'IN° s
5 | o ED
A 50
£
Ple 0
i 58
INPUT N
DESTINATION S Iw €0
0
L €D
68
‘INT' ~ INPUT & ED
Inc ML, Dec 8 A2
INtR'— INP, lnc ML, ED
Dec B, REPEAT IF 820 82
REG | BLOCK INPUT
IND'- INFUT & €D COMMANDS
Owc HL, Dec B AA
INDR - INPUT Dec HL, €D
Duwc B, REPEAT iF B BA

Fig. 4.21: Input Group
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Chapter 6. The interrupt flag is used to authorize or not authorize the
interruption of a program. To prevent interrupts from occurring during
any specific portion of a program, the interrupt flip-flop (flag) may be
disabled by this instruction. It will be used in Chapter 6. These in-
structions are shown in Figure 4.22.

‘NOP’
'HALT’
DISABLE INT ‘(DY)

ENABLE INT ‘(EV’

SET INT MODE 0
‘IM0’

8080A MODE
T INT MOD
SETINNMODET | B | cALL TO LOCATION 0038,
SET INT MODE 2 ED INDIRECT CALL USING REGISTER
"z SE | IAND 8BITS FROM INTERRUPTING

DEVICE AS A POINTER.

Fig. 4.22: Miscellaneous CPU Control

Finally, three interrupt modes are provided in the Z80. (Only one is
available on the 8080). Interrupt mode 0 is the 8080 mode, interrupt 1 is
a call to location 038H, and interrupt mode 2 is an indirect call which
uses the contents of the special register I, plus 8 bits provided by the in-
terrupting device as a pointer to the memory location whose contents
are the address of the interrupt routine. These modes will be explained
in Chapter 6.

which will also be explained in Chapter 6. They are the IRQ and the
NMI pins.
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SUMMARY

The five categories of instructions available on the Z80 have now
been described. The details on individual instructions are supplied in
the following section of the book. It is not necessary to understand the
role of each instruction in order to start to program. The knowledge of
a few essential instructions of each type is sufficient at the beginning.
However, as you begin to write programs by yourself, you should learn
about all the instructions of the Z80 if you want to write good pro-
grams. Naturally, at the beginning, efficiency is not important, and this
is why most instructions can be ignored.

One important aspect has not yet been described. This is the set of
addressing techniques implemented on the Z80 to facilitate the retrieval
of data within the memory space. These addressing techniques will be
studied in the next chapter.
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THE Z80 INSTRUCTIONS: INDIVIDUAL DESCRIPTION

ABBREVIATIONS
| FLAG ON OFF
Carry C (carry) NC (no carry)
Sign M (minus) P (plus)
Zero Z (zero) NZ (non zero)
Parity PE (even) PO (odd)

changed functionally according to operation
flag is set to zero

flag is set to one

flag is set randomly by operation

special case, see accompanying note on that page

X""—‘O.

bit positions 3 and 5 are always random
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ADCA,s Add accumulator and specified operand with
carry.
Function: A<A+s+C
Format: s:may ber, n, (HL),(IX + d), or (IY + d)
r D fofefo ] ~]

nﬁjllo]o‘lp]lm byte 1: CE
— T T T T b 2:1 diat
L, e 1Al d};[tea immediate
@ [oTele[ [ 1]e]
IxX + dy |u_[1|oj1|1|1|o|1| byte 1: DD
|_1Jo|o[oll|1[1*o] byte 2: 8E

[_: —— 4 —————| byte 3: offset value

(1Y + d) |1J1[1|1|1J1|01j byte 1: FD
LTl ] oy 2

l T T T T T T T

— 9 T/ | byte 3: offset value

o0

E

]

E

r may be any one of:

A - 111 E - 011
B - 000 H - 100
C - 001 L - 101
D - 010
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Description: The operand s and the carry flag C from the status
register are added to the accumulator, and the
result is stored in the accumulator. s is defined in
the description of the similar ADD instructions.

Data Flow:

A

B

D E ALU | |
H L +C

Timing: usec
s M cycles: | T states: | @ 2 MHZ:
r 1 4 2
n 2 7 3.5
(HL) 2 7 3.5
(IX + d) 5 19 9.5
(1Y + d) 5 19 9.5

Addressing Mode: r: implicit; n: immediate; (HL): indirect; (IX +
d), (IY + d): indexed.

Byte Codes: ADC Ar r A B C D E H L

!aFlea]s‘;laAleB‘scl_sEI

Flags: sz H PO N C
o]e] o] [@[C[@]

Example: ADC A, 1A
Before: After:

T~ - -

Al_w [ 3 ¢ A 7 8 F
CE )
1A

V\_’j

OBJECT CODE
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ADC HL,ss Add with carry HL and register pair ss.

Function: HL < HL + ss + C

Format:

G ol ol bver:
LT Tel o] by

Description: The contents of the HL register pair are added to
the contents of the specified register pair, and then
the contents of the carry flag are added. The final
result is stored back in HL. ss may be any one of:

BC - 00 HL - 10
DE - 01 SP - 11
Data Flow:
A <) * > \/
B C
D E ALU
. I_H L +
sp|
Timing: 4 M cycles; 15 T states: 75 usec @ 2 MHz

Addressing Mode: Implicit.

BC DE HL SP

SS:
to [in]snex 1]

Byte Codes:

192



THE Z80 INSTRUCTION SET

Flags: s Z H PO N C
o{®] [’] [@[O]e®]
H is set if there is a carry from bit 11.
Example: ADC HL, DE
Before: After:
[« T
ED D 3291 E D 3291 £
SA H OF18 Y
OBJECT

CODE
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ADD A, (HL) Add accumulator with indirectly addressed
memory location (HL).

Function: A < A + (HL)

Format:

L fofofoofr]r]o] 386

Description: The contents of the accumulator are added to the
contents of the memory location addressed by the
HL register pair. The result is stored in the ac-

cumulator.
Data Flow: {L i}
A \/ DATA J
B c ALU
D E + V\
H 'L‘| MEMORY
Timing: 2 M cycles; 7 T states: 3.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags:

S Z H PPN C
o/e] o] [@[Cle]
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Example: ADD A, (HL)
Before: After:
A ~ T
H 9620 | W[ 9620 ]
T~ /_\__ N~
86 9620 B 9620 Bl
T~ b~

OBJECT CODE
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ADD A, (IX + d) Add accumulator with indexed addressed

memory location (IX + d)

Function: A< A+ (IX +4d)
Format:
[1|1]o|1|1[1|o]1] byte 1: DD
[ |o[o|o]o|1[1|0J byte 2: 86
B — d ————— I byte 3: offset value
1 L 1 I I 1 .

Description: The contents of the accumulator are added to the
contents of the memory location addressed by the
contents of the IX register plus the immediate off-
set value. The result is stored in the accumulator.

Data Flow:

A ‘ TN
B c DATA
D E ALU
H L +
/\_)
ADD
ix| } -
d
/\/
Timing: 5 M cycles; 19 T states: 9.5 usec @ 2 MHz

Addressing Mode:

Flags:

196
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Example: ADD A, (IX + 3)
Before: After:
A ] N
x| 0B61 | x[ 0861 ]
DD 0B61 04 0B61 04
86 0B62 B2 0B62 B2
03 0863 36 0B63 36
0B64 91 0B64 91
/‘\—/
OBJECT CODE TN TN
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ADD A, (IY + d)  Add accumulator with indexed addressed
memory location (IY + d)

Function: A< A+ (Y + d)

Format:

LD [iJe]1] byte1:FD
Lrfofofofo] [1]o] byte2:86

| ———— 9 —————| byte 3: offset value
SRS S S| T T .

Description: The contents of the accumulator are added to the
contents of the memory location addressed by the
contents of the 1Y register plus the given offset
value. The result is stored in the accumulator.

Data Flow:
{L N
A ‘ DATA
A - \/
D E ALU
H L + TN
N
o |
Y] | —
d
ADD
f\-/
Timing: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Addressing Mode: Indexed.

Flags: H PON C

o] o] Jo[Gle]
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Example:

T~

FD

86

01

T~

OBJECT
CODE

THE Z80 INSTRUCTION SET

ADD A, (IY +1)

Before: After:
AL ] S Y
IX] 0028 ] IX| 002B ]
T~
0028 06 0028 06
002C 9A oo2c| A
V"~ T~ |
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ADDA,n Add accumulator with immediate data n.
Function: A<A +n
Format:
[1|1|oloLoJ1lﬂo] byte 1: C6
[ LA N S L ] byte 2: immediate
] 1 1 1 1 1 1 data
Description: The contents of the accumulator are added to the
contents of the memory location immediately
following the op code. The result is stored in the
accumulator.
Data Flow:
A
B C
D E
H L
MEMORY
Timing: 2 M cycles; 7 T states: 3.5 usec @ 2 MHz
Addressing Mode: Immediate.
Flags: s z H PPON C
o/0] [o] [@[O]e]
Example: ADD A, E2
Before: After:
c6
E2

OBJECT CODE
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ADDA,r

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Byte Codes:

Flags:

I U o >

THE Z80 INSTRUCTION SET

Add accumulator with register r.

A<“<A+r

Lifefofofol—rr]

The contents of the accumulator are added with
the contents of the specified register. The result is
placed in the accumulator. r may be any one of:

A — 111 E - 011
B — 000 H - 100
C - 001 L - 101
D - 010
W;c \
E ALU
L +
1

1 M cycle; 4 T states: 2 usec @ 2 MHz.
Implicit.

o TooTo Tor oo oe oo |

s z H @ N C
oje] @ ®[Cle|
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Example:

OBJECT CODE

202

ADD A, B

Before:

After:

i
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ADD HL,ss Add HL and register pair ss.

Function: HL < HL + ss

Format:

[ofofs si]ofe]1]

Description: The contents of the specified register pair are
added to the contents of the HL register pair and
the result is stored in HL. ss may be any one of:

BC — 00 HL - 10
DE - 01 SP - 11
Data Flow:
: \/
D E ALU
{ W +
se[ |
Timing: 3 M cycles; 11 T states: 5.5 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes: ss: BC DE HL SP

P/V N C

s z H
LI [ [-] [ I0]e]

C s set by carry from bit 15, reset otherwise.
His set by a carry from bit 11

Flags:

203



PROGRAMMING THE Z80

Example: ADD HL, HL
Before:
~— H 06B1 Ju

29

OBJECT
CODE

204

After:

WO 25"


http:06:.::..Bl
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ADDIX, rr Add IX with register pair rr.

Function: IX<IX + rr

Format:
[ Jo] ][] ]o] 1 |byte1: DD
[oToT T iTo ol Jbwe2

Description: The contents of the IX register are added to the

contents of the specified register pair and the
result is stored back in IX. rr may be anyone of:

BC - 00 IX - 10
DE - 01 SP - 11
Data Flow: {} 5:
A
B C
{ D E ALU
H L +
- L=
sp[ ]
Timing: 4 M cycles; 15 T states: 7.5 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes: rr; BC DE |X SP

DD- nn 2
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Flags:

Example:

DD

39

¥ ~—_

OBJECT
CODE

ENERERE0

H is set by carry out of bit 11.
Cis set by carry from bit 15.

ADD IX, SP
Before: After:
x| o000 | X% 0

T 1 s 3021 ]
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ADDI1Y, rr Add 1Y and register pair rr.

Function: IY < 1Y + rr

Format:

viv|prpryr)1jol|bytel: FD
[OLO’rLrLI]OB[I‘by[ez

Description: The contents of the IY register are added to the
contents of the specified register pair and the
- result is stored back in 1Y. rr may be any one of:

BC - 00 1Y — 10
DE - 01 SP - 11
Data Flow: @ F
A
K TV
D E ALU
H L +
Y
sp| |
Timing: 4 M cycles; 15 T states: 7.5 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes: rr: BC DE IY spP

- [w] ][]
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Flags:

Example:

FD

19

OBJECT
CODE

208

H PV N C

(T [oe)

H is set by carry out of bit 11.
C is set by carry out of bit 15.

ADD 1Y, DE

Before: After:

D| 6122 —le o| 6122 Je
v | W57

O,
=
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AND s Logical AND accumulator with operand s.
Function: A< AAs
Format: s: may ber, n, (HL), (IX + d), or (IY + d)

ro o 1o]ol=r]
n L||1L110|0T1|1L0J byte 1: E6

P —— ] byte 2: immediate
| ! data

@y [ [ele[ ] ]s] as
ax +d [Ji]Je[i[t[1]e]1] byte1: DD
[Tl ol o] byte: a6

LI ——d—— lbete3: offset value

1 L I L

av + & [ [Tel1] byee1: FD
[T Teol [ Te] brie2: as

L;: j L'L ' : }byte3: offset value

1 L

r may be any one of:

A - 111 E - 011
B — 000 H - 100
C - 001 L - 101
D - 010
Description: The accumulator and the specified operand are

logically ‘and’ed and the result is stored in the ac-
cumulator. s is defined in the description of the
similar ADD instructions.
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Data Flow:
A
B C
D E [ s
H L
Timing: usec |
s M cycles: | T states: | @ 2 MHz:
r 1 4 2
n 2 7 3.5
(HL) 2 7 3.5
(IX + d) S 19 9.5
Yy + d) 5 19 9.5 |

Addressing Mode: r: implicit; n: immediate; (HL): indirect; (IX +
d), (IY + d): indexed.

Byte Codes: AND r A B C D E H

T Taa e e[ ad] ]

Flags: S Z H_ @V N C
lee] |'] |e[O|0]
Example: AND 4B
Before: After:
A B
T~
E6
4B
OBJECT
CODE
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BIT b, (HL) Test bit b of indirectly addressed memory location
(HL)
Function: Z <« (HL)p
Format:
L[ Jefofr[ofv ] ] byter:cn
Lo ol [1 o] byte2
Description: The specified bit of the memory location address-
ed by the contents of the HL register pair is tested
and the Z flag is set according to the result. b may
be any one of:
0 — 000 4 — 100
1 — 001 5 — 101
2 — 010 6 — 110
3 -o011 7 111
Data Flow: ]
A 7 F DATA
B C
D E ALU
H L I~
Timing: 3 M cycles; 12 T states; 6 usec @ 2 MHz
Addressing Mode: Indirect.
Flags: PV N C

el o] 12 [o] ]
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Byte Codes: b: 0 1 2 3 4 5 6 7
CB- r«sl AEJ &ﬂ 5E l 66 [és [76 PEJ
Example: BIT 3, (HL)
Before: After:
[ o Jr D70

H 6A42 L W 6A42 Ju

/\T/\—‘ T~

CcB 6A42 05 6A42 05
SE L\/ /‘\__

OBJECT CODE
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BIT b, (IX + d) Test bit b of indexed addressed memory location

(IX + d)
Function: Z < (IX + d)p
Format:
Ll u{o‘1t]1 ’0]1_' byte 1: DD
l]|1]o]o{1 ‘0’1 L1 ‘ byte 2: CB
| : A . ] byte 3: offset value
o[ v [—ei=[r 1 ]o] bytea
Description: The specified bit of the memory location address-
ed by the contents of the IX register plus the given
offset value is tested and the Z flag is set according
to the result. b may be any one of:
0 — 000 5 - 101
1 — 001 6 — 110
2 - 010 7 — 111
3 - 011
4 — 100
Data Flow: J ;
A 7 F /\
DATA
B C
D E ALU
H L J V‘\—
IX F o
BIT
d
b
o~
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Timing: 5 M cycles; 20 T states: 10 usec @ 2 MHz

Addressing Mode: Indexed.

Byte Codes: b: 0 1 2 3 4 5 7
DD-CB-d- L%IAE l.%lss léé yee |76 |7E |

Flags: s zZ H PV N C
1

@] [+] [=]o] ]

Example: BIT 6, (X + 0)
Before: After:
F . 700F
X[ aAn | x| AATI ]

e T

DD AA11 42 AATT 42
0
76

OBJECT CODE
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BIT b, (IY + d) Test bit b of the indexed addressed memory loca-

Function:

Format:

Description:

Data Flow:

tion (IY + d)
Z < (1Y + dy

!1'1’1]1‘1|1|0\_1J byte 1: FD
I]J]]oTo%Io]ﬂi} byte 2: CB

L: - q.r: ' 'LJ byte 3: offset value

1 | !

L Te] by

The specified bit of the memory location ad-
dressed by the contents of the 1Y register plus the
given offset value is tested and the Z flag is set ac-
cording to the result. b may be any one of:

0 — 000 4 — 100
1 - 001 5 - 101
2 — 010 6 — 110
3 - 011 7 - 111

B C
D E ALU
1Y jr +
BIT
d
b
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Timing:

5 M cycles; 20 T states; 10 usec @ 2 MHz

Addressing Mode: Indexed.

Byte Codes: b:

Flags:

Example:

/\

FD
CB
01
46

Vo~
OBJECT CODE

216

0 1 2 3 4 5 6

7

FD-CB-d- | 46 4E|56l5E Iéé |6E Po 7E|

S z H PV N C

Lo [+ [e]o] |

BIT 0, dY + 1)

Before:
F
Y[ P2 |
T~
FF12 61
FF13 B2
b~

After:

FF12
FF13




BIT b,r

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

I O w »

THE Z80 INSTRUCTION SET

Test bit b of register r.

Z <

[1]1]0J0|1|0|1|1| byte 1: CB

T o] bwe

The specified bit of the given register is tested and
the zero flag is set according to the results. band r
may be any one of:

b: 0 — 000 4 — 100
1 — 001 5 — 101
2 — 010 6 — 110
3 - 011 7 — 111

r: A — 111 E — 011
B — 000 H - 100
C - 001 L — 101
D - 010

ALU

=

2 M cycles; 8 T states; 4 usec @ 2 MHz

Implicit.
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Byte Codes: b: A B C D E H L
CB- O [47|140|41142|43|44]|45
1 4F | 48 1 49| 4A| 4B | 4C| 4D
2 57150 51| 52]| 53| 54|55
3 |5F|58|59|5A|58|5¢|5D
4 |67|60|61|62]63]64]65
5 |eF|e68leo|onleBlec|ep
6 |77|70| 7| 72|73 (74|75
7 |7F| 78| 79| 7A| 7B 7C| 7D
Flags: s z H PV N C
Llof T [7]o] |
Example: BIT 4, B
Before: After:
T~ 7
s e ] [ o Jr e[ 1 EZZZEF
c;:
o
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CALL cc, pq

Function:

Format:

Description:

THE Z80 INSTRUCTION SET
Call subroutine on condition.
if cc true: (SP — 1) « PChighi SP — 2) <«

PCiow: SP < SP — 2; PC < pq
If cc false: PC < PC + 3

L Low ordeéd
T yte 3: address,
I l—] high order

If the condition is met, the contents of the pro-
gram counter are pushed onto the stack as de-
scribed for the PUSH instructions. Then, the con-
tents of the memory location immediately follow-
ing the opcode are loaded into the low order of the
PC and the contents of the second memory loca-
tion after the the opcode are loaded into the high
order half of the PC. The next instruction fetched
will be from this new address. If the condition is
not met, the address pq is ignored and the follow-
ing instruction is executed. cc may be any one of:

NZ - 000 PO - 100
Z — 001 PE - 101
NC - 010 P - 100
C - 011 M - 111

An RET instruction can be used at the end of the
subroutine being called to restore the PC.
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Data Flow:
A F
B C /\_
D g [controy
" L EO_GI_C L CALL
c‘: g e
| R .
7
P
Timing: usec
M cycles: | T states: | @ 2 MHz
condition
true: 5 17 8.5
condition
not true: 3 10 5
Addressing Mode: Immediate.

Byte Codes: CC:NZ.Z NC C PO PE P M
Lcﬂcclnaloc}a ‘EC |F4 |Fc1-q-p
Flags: P/V N C

CTIT
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Example:

cC

42

BO

/-\_‘,
OBJECT CODE

THE Z80 INSTRUCTION SET

CALL Z, B042

Before: After:
F F
PC| 0BO1 | ec
P BBI2 | se] BBI2 ]
(\_ /—\_T
BB10 8F BB10 8F
BB11 04 BBI1 04
BB12 32 BB12 32
b~
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CALL pgq Call subroutine at location pq.

Function: (SP — 1) <= PChjgh; (SP — 2) < PCjgy; SP <SP
- 2; PC < pq

Format:
[ 1 1100 (1 1101 ] by[e 1: CD

1 byte 2: address, low order

] byte 3: address, high order

Description: The contents of the program counter are pushed
onto the stack as described for the PUSH instruc-
tions. The contents of the memory location im-
mediately following the opcode are then loaded in-
to the low order half of the PC and the contents of
the second memory location after the opcode are
loaded in the high order half of the PC. The next
instruction will be fetched from this new address.

Data Flow: T~

[ q

~_ |
Dk

I O w >
g}

[

PC ///////////%

|
ssWliiiiiiri

Timing: S M cycles; 17 T states: 8.5 usec @ 2 MHz

Addressing Mode: Immediate.
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Flags: s z H P/VN C

LI T T T T T T ] moeffec

Example: CALL 40B1
Before: After:
Pc AA4D |

sp[ 0B14 j PO 6

(T (™
cD 0B12 9A il 748777
B1 0B13 01 0B13 %// //%
0 oBl4|  F4 0B14

/\_ /_\__

OBJECT CODE
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CCF Complement carry flag.
Function: C «C
Format:

CICIENENENENENANE

Description: The carry flag is complemented.
Data Flow:
A 77
B C
D E
H L
Timing: 1 M cycle; 4 T states: 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: s _z PV N C

EEEOEEEO
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CPs Compare operand s to accumulator.
Function: A —s
Format: s: may ber, n, (HL), (IX + d), or IY + d).

ro e ]

n M1|i11‘1[1|1|0| FE

T . T T byte 2: immediate
| v J data

@y [To[ [ [ [ o] bytel:BE

ax+d [ ][ ][] ]o]1] bye1:DD
(llollllllllllm byte 2: BE
| — T

avy+d [ [ [ ] [ ]o[1] byer:FD

L T T |

byte 3: offset value

|‘|°|‘|“1]1|1|0J byte 2: BE

I : ' .r ‘:’ , I byte 3: offset value
r may be any one of:

A — 111 E - 011

B — 000 H - 100

C - 001 L - 101

D - 010
Description: The specified operand is subtracted from the ac-

cumulator, and the result is discarded. s is defined
in the description of the similar ADD instructions.
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PROGRAMMING THE Z80

Data Flow: é é

F
D| E ALU | S |
H L —
Timing: usec
KN M cycles: | T states: |@ 2 MHz
r 1 4 2
n 2 7 3.5
(HL) 2 7 3.5
(IxX + d) 5 19 9.5
Yy + d) 5 19 9.5
Addressing Modes: r: implicit; n: immediate; (HL): indirect;
(IX + d), Y + d): indexed
Byte Codes: CP r: r E L
IBF |Bs IB9|BAIBB|BC‘BDI
Flags: s Z H PO N C
ole] o] |o'|@®]
Example: CP (HL)
Before: After:
Al [ 36 JF Al 9o U777 7ZF
W[ B203 L H B203 It
/\ /\T
BE B203 42 B203 42
V\_J
OBJECT
CODE

226



THE Z80 INSTRUCTION SET

CPD Compare with decrement.
Function: A —[HL]; HL =——HL — 1; BC «——BC —1
Format:

{1[1|1I0|1[1]0u byte 1: ED
I_\lo]1|0‘1|0|011| byte 2: A9

Description: The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discarded.
Then both the HL register pair and the BC register
pair are decremented.

Data Flow:

////////////////////// L
_ E AlLU
1 — =

Timing: 4 M cycles; 16 T states: 8 usec @ 2 MHz

Addressing Mode: indirect.

FlagS'
P/VN C R 7 BC c ) "
x| JQ] [x]1] ] eset if BC = 0 after execution; set otherwise
i__r[_'Set if A = [HL]
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Example:

o T~

ED
A9

OBJECT CODE

228

CPD

Before:

After:

A 24 | o6

B 3154

H 86B5 JrooH

-

A
B

O

86B5 2A 86B5

ok

NS E
) -

T~
2A
T~
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CPDR Block compare with decrement.

Function: A —[HL]; HL=— HL —1; BC+—BC—1;
Repeat until BC = Oor A = [HL]

Format:

Llrfrfef [ ifo] 1] byter:ED
el ] i]efo]1] byte2:B9

Description: The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discard-
ed. Then both the BC register pair and the HL
register pair are decremented. If BC # 0 and A #
[HL], the program counter is decremented by two
and the instruction is re-executed.

Data Flow:

. c

_—

Timing: BC = 0 or A = [HL]: 4 M cycles; 16 T states:
8 usec @ 2 MHz
BC # 0 and A # [HL]: 5 M cycles; 21 T states:
10.5 usec @ 2 MHz

H

Reset if BC = 0 after
PPV N C execution; set otherwise

l.l"] l‘l <[] ] [Setif A = [HL]

Flags:

229



PROGRAMMING THE 280

Example:

I T~

ED
B9

OBJECT CODE

230

A
B

H

60FE
60FF
6100

CPDR

Before:

oA ]

-

A

0002

(o]

BY

[ 6100

—

H

08

2A

60FE
60FF
6100

After:

o

F
Z4C

D520

)

08

2A

)



CPI

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

THE Z80 INSTRUCTION SET

Compare with increment.

— [HL}; HL=-—HL + 1;BC =—BC —1

['|‘|'[°lll'|0|lJ byte 1: ED

[1[0‘1‘0[(&0’0[1' byte 2: Al

The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discarded.
The HL register pair is incremented and the BC
register pair is decremented.

7

] o

C

LW T~

4 M cycles; 16 T states: 8 usec @ 2 MHz

indirect.

Setif A = [HL]

l.l X l JO [ x[ | Reset if BC = 0 after execution set otherwise
+_J?
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Example: CPI
Before: After:
Ao [ w |r [ o pmmmme
B 0510 c 8y ]C
H| 86B9 v W65
/*\\T T ~——
ED 8689 9B 86B9 98
Al ~—_ T~

OBJECT CODE
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CPIR

Function:

Description:

Data Flow:

THE Z80 INSTRUCTION SET

Block compare with increment.

A —[HL; HL=— HL + 1; BC-—BC —1;
Repeat until BC = Oor A = [HL]

|1|1[1|o|1[1|0Mbyte1:ED
[1]o] 1] 1]o]o]o]1] byte2:B1

The contents of the memory location addressed by
the HL register pair are subtracted from the con-
tents of the accumulator and the result is discarded.
Then the HL register pair is incremented and the
BC register pair is decremented. If BC # 0 and A
# [HL], then the program counter is decremented
by 2 and the instruction is re-executed.

Timing:

Addressing Mode:

7
8Y) %%/

O DATA

/c -

I -
L

.

BC = 0or A = [HL] : 4 M cycles; 16 T states:
8 usec @ 2 MHz

BC # 0Oand A # [HL]: 5 M cycles; 21 T states:
10.5 usec @ 2 MHz

indirect.
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Flags:

|:| ,Z( | |:| r;v| T | < ] .Reset if BC = 0 after execution; set otherwise
1 [} [Setif A = [HL]

Example: CPIR
Before: After:
Al 8 | o Al [
B 0051 8%

H 0398 L WO o0

T ~— T~
ED 0398 2A 0398 2A
B1 039C 98 039C 98
L 039D 06 039D 06
OBJECT CODE | ——_ | ——
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CPL Complement accumulator.
Function: A< A
Format:

Lofel Je[o ][] 2F

Description: The contents of the accumulator are com-
plemented, or inverted, and the result is stored
back in the accumulator (one’s complement).

Data Flow:
m_@——:‘“

A
B C
D E ALU
H L
Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz
Addressing Mode: Implicit.
F/ags_- S YA H PV N C
HEREEREE
Example: CPL
Before: After:
T — A QME N
oF
OBJECT
CODE
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DAA Decimal adjust accumulator.
Function: See below.
Format:
[o[o]1|o[o]1[1]1‘27
Description: The instruction conditionally adds ‘‘6’’ to the right
and/or left nibble of the accumulator, based on the
status register, for BCD conversion after arithmetic
operations.
value of value of | # added | C after
N C | high nibble | H | low nibble to A execution
0 0 0-9 0 0-9 00 0
(ADD, | O 0-8 0 A-F 06 0
ADC, | 0 0-9 1 0-3 06 0
INC) | O A-F 0 0-9 60 1
0 9-F 0 A-F 66 1
0 A-F {1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 i
1 0 0-9 0 0-9 00 0
(SUB, | 0 0-8 1 6-F FA 0
SBC, 1 7-F 0 0-9 AO 1
DEC, 1 6-F 1 6-F 9A 1
NEG)
Data Flow:
A 06 F
B c \/
D E ALU
H L DAA

236




THE Z80 INSTRUCTION SET

Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: s 7 H ®vV N C
o/e] [ [o [o]
Example: DAA
Before: After:
o~
z AL, [ s ral 5

OBJECT
CODE
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DECm Decrement operand m.
Function: m<m- |
Format: m: may ber, (HL), (IX+d), (IY+d )

rolofofre—] o]}
@ Lol %
ax +d [1[1]o][1]1]1]{o]1] byte1: DD
el [ To T [o]] boee

l_: 4‘ : ‘:’ T,r Jr lbyte 3: offset value

w

5

dY + d) |J1|1|1|1|1‘0|1| byte 1: FD

m<ﬂ1l1|0Jj0| 1]byte2:35
[g‘ : : {i i . . ] byte 3: offset value
r may be any one of:
A - 111 E - 011
B - 000 H - 100
C - 001 L — 101
D - 010

Description: The contents of the location addressed by the

specific operand are decremented and stored back
at that location. mis defined in the description of
the similar INC instructions.

Data Flow:

Al

: \/

D ALU M
H -1

—

[e)

m

—
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Timing: usec
m. M cycles: | T states: @ 2 MHZ:
r 1 4 2
(HL) 3 11 5.5
(IX + d) 6 23 11.5
(Y + d) € 23 11.5

Addressing Mode: r: implicit; (HL): indirect; (IX + d), (IY + d): in-
dexed.

Byte Codes: DECTr r:

[es oo = o )

Flags: sz H PO N C
o/e] [o] [® ] |
Example: DEC C
Before: After:
[ o e 87
oD
OBJECT
CODE
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DEC rr

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Byte Codes: Ir:

240

Decrement register pair rr.

r<rr -1

Lofofr i Trfo]r]]

The contents of the specified register pair are
decremented and the result is stored back in the
register pair. rr may be any one of:

BC - 00 HL - 10
DE — 0l SP — 11
A
B
D E ALU
H y
sp[ ]

1 M cycle; 6 T states; 3 usec @ 2 MHz
Implicit.

BC DE HL SP

[o0 [ 20 o]



Flags:

Example:

T

0B

OBJECT CODE

THE Z80 INSTRUCTION SET

S 7 H PV N C

l ] ’ ‘ l , [ ]_J (no effect).

DEC BC
Before: After:
BF 3811 ]c B c
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DECIX Decrement IX.
Function: IX«<IX -1
Format:

ll'ljoljl‘l[ﬂllbytel:DD

MO|1|0{1|0|1j11byte2:2B

Description: The contents of the IX register are decremented
and the result is stored back in IX.

Data Flow:
A
B
D E ALU
H -1
X <
Timing: 2 M cycles; 10 T states; S usec @ 2 MHz

Addressing Modes: Implicit,

Flags: [l z T [H ] |PN| N | c | osfrecn,
Example: DEC IX

Before: After:
/? X[ eia | Y5577

2B

OBJECT CODE
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DEC 1Y

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

T~

FD
2B

OBJECT CODE

THE Z80 INSTRUCTION SET

Decrement 1Y.
IY < 1IY - 1

LILI‘ lhbrl Lo!l_]bytel:FD
Lo o To [T e 2: 2

The contents of the 1Y register are decrementea
and the result is stored back in 1Y.

A
L 1\ VY
-1

2 M cycles; 10 T states; S usec @ 2 MHz

Implicit.

PV N C

[[‘ ‘H\ [ T 1 1 (oeffect).

DEC 1Y

Before: After:
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DI Disable interrupts.
Function: IFF <0
Format:

‘ll1|1]|Jo]olll1| F3

Description: The interrupt flip-flops are reset, thereby disabling
all maskable interrupts. It is reenabled by an EI
instruction.

Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

PN N C

[SIZJ ]HJ | [] ] (no effect).

Flags:
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DIJNZ e

Function:

Format:

Description:

Data Flow:

THE Z80 INSTRUCTION SET

Decrement B and jump e relative on no zero.

B<B —-1;ifB#0: PC<PC + ¢

| 0

o|o[|LoLo|o[ betel:lO

T T

L . . ||byte2: offset value

The B register is decremented. If the result is not
zero, the immediate offset value is added to the
program counter using two’s complement
arithmetic so as to enable both forward and
backward jumps. The offset value is added to the
value of PC + 2 (after the jump). As a result, the
effective offset is -126 to +129 bytes. The as-
sembler automatically subtracts from the source
offset value to generate the hex code.

DINZ
e-2

PC

D7)

200

Timing:

B # 0: 3 M cycles; 13 T states; 6.5 usec @ 2 MHz.
B = 0: 2 M cycles; 8 T states; 4 usec @ 2 MHz

Addressing Modes: Immediate.

245



PROGRAMMING THE Z80

Flags: s 7 H PV N

C
[TTTTTT T ]moeffe

Example: DINZ $ — 5 ($ = current PC)
Before: After:
(T B 2k
o [ ) T
T~
OBJECT CODE

246



El

Function:

Format:

Description:

Timing:

Addressing Mode:

Flags:

Example:

THE Z80 INSTRUCTION SET

Enable interrupts.

IFF < 1

HEENEEIEE::

The interrupt flip-flops are set, thereby enabling
maskable interrupts after the execution of the in-
struction following the EI instruction. In the mean-
time maskable interrupts are disabled.

1 M cycle; 4 T states; 2 usec @ 2 MHz
Implicit.

S Z H PV N C

[ J l ’ ’ | I l ] (no effect).

A usual sequence at the end of an interrupt routine is:
EI

RETI

The maskable interrupt is re-enabled following
completion of RETI.
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EX AF, AF’ Exchange accumulator and flags with alternate

registers.
Function: AF=»APF
Format:
[ofofofe]r]ofo]o] o8
Description: The contents of the accumulator and status
register are exchanged with the contents of the
alternate accumulator and status register.
Data Flow: —
N <:> N sk
B c 8"
D E D’ 3
H L H! L
Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: S H PPVN C

e[e]e]e]e]e[o]o]

Example: EX AF, AF'
Before: After:
/\/ Al 04 | 8l |F Al 0 1 3 ]F
. A w T e a[ e 18
OBJECT CODE

248



EX DE, HL

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

N

EB

TN

OBJECT CODE

I O w >

THE Z80 INSTRUCTION SET

Exchange the HL and DE registers.

DE -— HL

Dl fofelifoln V] EB

The contents of the register pairs DE and HL are

exchanged.

C
e
I

1 M cycle; 4 T states; 2 usec @ 2 MHz

Implicit.
sz H PV N C
‘ l l ‘ ’ ‘ ‘ ‘ | (no effect).
EX DE, HL
Before: After:
D A4ES6 E D 9604
9604 L H A4E6
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EX (SP), HL  Exchange HL with top of stack.

Function: (SP) <~L; (SP + 1) « H

Format: Ll frfofelofr] ] k3

Description: The contents of the L register are exchanged with
the contents of the memory location addressed by
the stack pointer. The contents of the H register
are exchanged with the contents of the memory
location immediately following the one addressed
by the stack pointer.

Data Flow:
. c
W27 -
.'
T,
sp[ 4|—| N
Timing: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: s z H PV N C

|_| | | | ‘ | | ] (no effect).
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Example:

SN~

E3

T~

OBJECT CODE

THE Z80 INSTRUCTION SET

EX (SP), HL
Before: After
H &0 v K
sl B409 | sp| B409 |
T
B409 3F 5409
B40A OF B4OA ////W
— —~__
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EX (SP),IX

Function:

Format:

Description:

Data Flow:

Timing:

Exchange IX with top of stack.

(SP) < IX|gw; (SP + 1) elxhigh

MI10|1|1|1|0|11 byte 1: DD
bj1|1|o|o|0|l|1] byte 2: E3

The contents of the low order of the IX register
are exchanged with the contents of the memory
location addressed by the stack pointer. The con-
tents of the high order of the 1X register are ex-
changed with the contents of the memory location
immediately following the one addressed by the
stack pointer.

I O w >
(@}

sp| |——| N

6 M cycles; 23 T states; 11.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags:

252
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Example:

DD

E3

—~__

OBJECT CODE

THE Z80 INSTRUCTION SET

EX (SP), IX
Before: After:
X[ 9234 | w{ o7
SP| 0402 | se[ 0402 ]
/_\_/
0402] 6B 0402{ 77734,
0403| 01 0d03) 927,
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EX (SP), 1Y Exchange 1Y with top of stack.

Function: (SP) < 1Y 5w; (SP + 1) < [Yhigh

Format:

L1]1|1[1|1|1]0[1| byte 1: FD

L] ]efefo] ] byte2: E3

Description: The contents of the low order of the 1Y register
are exchanged with the contents of the memory
location addressed by the stack pointer. The con-
tents of the high order of the 1Y register are ex-
changed with the contents of the memory location
immediately following the one addressed by the
stack pointer.

Data Flow:

A

B C

D E

H L

MR I ]

/\/
DATA

sp[ }————-I TN

Timing: 6 M cycles; 23 T states; 11.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags:
s Z H PV N C

[T TTTTTT ] oeffe.
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Example:

N

FD
E3

OBJECT CODE

THE Z80 INSTRUCTION SET

EX (SP), 1Y

Before: After:
Iy | BFO3 | 4
sp| 6211 1 se 6211 |

6211
6212

6212 /////W

s
’\)
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EXX

Function:

Format:

Description:

Data Flow:

Timing:

Exchange aiternate registers.

BC «~BC'; DE «<-DE's HL <~HL'

Lol [r]efe] ]

The contents of the general purpose registers are
exchanged with the contents of the corresponding
alternate registers.

A

87 777 c
’////W//////ﬂ/ 78
S s

1 M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags:

Example:

o~

D9

b~

OBJECT
CODE

256

4 H PV N C

[TTTTT T T toetrecn.

EXX

Before: After:
A 04 28 F A 28 F
B 39 26 cC B 00 C
D 54 02 E DY DO E
H Fl DO L H E3 L
Al 3F 2A Flo Al 3F 2A
B! 8C 00 c' 39 26
D! 93 DO E!' DI 54 027,
H! 4 E3 R R DO




HALT

Function:

Format:

Description:

Timing:

Addressing Mode:

Flags:

THE Z80 INSTRUCTION SET

Halt CPU.

CPU suspended.

Lol [ [ el ]r]o] 76

CPU suspends operation and executes NOP’s so
as to continue memory refresh cycles, until in-
terrupt or reset is received.

1 M cycle; 4 T states; 2 usec @ 2 MHz + inde-
finite Nop’s.

Implicit.

S Z H P’V N C

[TTTTTTT] oeffey.
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IMO Set interrupt mode 0 condition.
Function: Internal interrupt control.
Format:

L1_I1I|To]1lllo]1| byte 1: ED
Lojwlo’ojollpjol byte 2: 46

Description: Sets interrupt mode 0. In this condition, the in-
terrupting device may insert one instruction onto
the data bus for execution, the first byte of which
must occur during the interrupt acknowledge cycle.

Timing: 2 M cycle; 8 T states; 4 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: s 7 H PV N C

I_I l l LJ L | l (no effect).
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M1

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

THE Z80 INSTRUCTION SET

Set interrupt mode 1 condition.

Internal interrupt control.

[ ][ Je] o] v]o] 1] byte1: ED

Iol1io’1|o[1|1to| byte 2: 56

Sets interrupt mode 1. A RST 0038H instruction
will be executed when an interrupt occurs.

00 38
el
0038 [ INT
L | |

ROUTINE

(at time of interrupt)

S~

PCH
PCL

STACK
2 M cycles; 8 T states; 4 usec @ 2 MHz
Implicit.

S Z H PVN C

LL LT T 1T 1 1] moeffet.

259



PROGRAMMING THE Z80

IM2

Function:

Format:

Description:

Timing:
Addressing Mode:

Flags:

260

Set interrupt mode 2 condition.

Internal interrupt control.

[1|1’1|o’1|1|oi1] byte 1: ED
Lo_l1]o]1|1|u|1|o| byte 2: SE

Set interrupt mode 2. When an interrupt occurs,
one byte of data must be provided by the peripheral
which is used as the low order of an address. The
high order of this vector address is taken from the
contents of the I register. This points to a second
address stored in memory,which is loaded into the
program counter and begins execution.

2 M cycles; 8 T states; 4 usec @ 2 MHz
Implicit.

S Z H PV N C

UIllllll(noeffect)
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IN r, (C) Load register r from port(C)
Function: r < (O
Format:

[l [ fo]v[r [ |bytet:ED
] o| 1 l*—lr—]l——>l 0 1 om byte 2

Description: The peripheral device addressed by the contents of
the C register is read and the result is loaded into
the specified register.

C provides bits A0 to A7 of the address bus.

B provides bits A8 to Al1S5.
Data Flow:
A PORT
B c
D E
H L
r may be any one of:
A —~ 111 E — 011
B — 000 H - 100
C — 001 L - 101
D - 010
Timing: 3 M cycles; 12 T states; 6 usec @ 2 MHz

Addressing Mode: External.

Byte Codes:

rr A B C D E H L
ED| 78 .ﬂasksoLse{co 68
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Flags: s z H ®v N C

®/®] @ [®[o] |

It is important to note that INA,(N) does not have

any effect on the flags, while IN r, (C) does.
Example: IN D, (O

Before: After:
T — [ e % e
iz of 9| [[_ean_|rort OZZZA77A | A Jpomr
A5 A5

~—

OBJECT CODE
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IN A, (N) Load accumulator from input port N.
Function: A< (N)
Format:

‘[]{‘!Of‘l']rﬂl[‘lbytel:DB

’:" Jl : ‘ byte 2: port address

Description: The peripheral device N is read and the result is
loaded into the accumulator.
The literal N is placed on lines A0 to A7 of the
address bus. A supplies bits A8 to A1S5.

Data Flow: T~
AWF ; l
B C IN
D E [ | = N
H L
PORT w
Timing: 3 M cycles; 11 T states; 5.5 usec @ 2 MHz
Addressing Mode: External.
Flags: sz H PV N C
L [ ‘ L L L i [T (no effect).
Example: IN A, (B2)
Before: After:
T~— a8 | [ Jeort AT PORT
B2
DB

B2

OBJECT CODE
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INCr Increment register r.
Function: r<r+1
Format: Lelof—=r—=[1]e]e]
Description: The contents of the specified register are in-
cremented. r may be any one of:
A — 111 E - 011
B — 000 H - 100
C - 001 L - 101
D - 010
Data Flow: i ;
Al
B c \/
D E ALU
H L +1
Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz
Addressing Mode: Implicit.
Byte Codes: I A B C D E H L
Isc |o4 |0c|14 |1CJ24 lﬁl
Flags: s z H PY N C
o[e] [o] [@[O] ]
Example: INC D
Before: After:
14
OBJECT
CODE
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INC rr Increment register pair rr.
Function: mreirr + 1
Format:

Lofofr rfofofr]]

Description: The contents of the specified register pair are in-
cremented and the result is stored back in the
register pair. rr may be any one of:

BC - 00 HL - 10
DE - 01 SP — 11
Data Flow: 1}
A
B
D E ALU
H +
sP| ]
Timing: 1 M cycle; 6 T states; 3 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes: rr: BC. DE HL SP
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Flags:

Example:

23

OBJECT
CODE

266

S Z H PN N C

LT T 1T 1 11 [ | @moeffey.

INC HL

Before: After:

H| 0814 B eSS
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INC (HL) Increment indirectly addressed memory location
(HL).
Function: (HL) < (HL) + 1
Format:
Lofo[r[rfo]r]ofo] 34
Description: The contents of the memory location addressed by
the HL register pair are incremented and stored
back at that location.
Data Flow:
A
° ¢ v 7
¥ _| + L9
Timing: 3 M cycles; 11 T states; 5.5 usec @ 2 MHz
Addressing Mode: Indirect.
Flags: S 7 H PO N C
o/e] [o] [@[O] |
Example: INC (HL)
Before: After:
H[ 0681 L H 0681 R
/\‘ T~
34 06B1 3B 06B1
OBJECT
CODE
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INC (IX + d) Increment indexed addressed memory location
(Ix + d).
Function: IX +d)«<dX +d) +1
Format:
[T el [ [ Tel ] bve 1: oD
BJ o[ 11 1]01 1 l oTo] byte 2: 34
B J' : {if :; J byte 3: offset value
Description: The contents of the memory location addressed by
the contents of the IX register plus the given offset
value are incremented and stored back at that
location.
Data Flow: ,- ]
A i
B c | -oaTA |
D 3
H L
IX —
/\/
Timing: 6 M cycles; 23 T states; 11.5 usec @ 2 MHz
Addressing Mode: Indexed.
Flags: H PON C

268
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Example: INC (IX + 2)

Before: After:

ix[ 0381 ] x [ 03B1

/\- /\—
bD 03B1 B1 0381 B1
34 03B2 85 03B2 85
02 03B3 B9 03B3
V\__/
OBJECT
CODE
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INC (IY + d) Increment indexed addressed memory location (IY
+ d).
Function: (Y +d) < dY +d) + 1
Format:
Db fe]r] bytet:FD
ILI°|] |||o|1|o|ol byte 2: 34
[ : r . é . : . | byte 3: offset value
Description: The contents of the memory location addressed by
the contents of the 1Y register plus the given offset
value are incremented and stored back at that
location.
Data Flow:
A
B C
D E
H L
Iy
d
/\_J
Timing: 6 M cycles; 23 T states; 11.5 usec @ 2 MHz
Addressing Mode: Indexed.
Flags:

270

sz H PO N C
o/e] (o] [®[O] |




Example:

FD

34

OBJECT
CODE

THE Z80 INSTRUCTION SET

INC (dAY + 0)
Before: After:
| 0601 ] [ 0601 1
S~
0601 51 Y
os02] B0 o602 8O |
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INC IX Increment IX.
Function: IX<IX + 1
i [T e ] bwe 1 o
e TTe e ol T byee 2: 2
Description: The contents of the IX register are incremented

and the result is stored back in IX.

Data Flow:
A
B
D E ALU
H + 1
<A <—— |
Timing: 2 M cycles; 10 T states; S usec @ 2 MHz

Addressing Mode: Implicit.

Flags.‘ s Z H PV N C
Ll T T 1| | | |moeffect).
Example: INC IX
Before: After:
T~ X[ BIBO 1 <
2
b~
OBJECT CODE
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INC 1Y

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

T~

FD
28

T —
OBJECT CODE

THE Z80 INSTRUCTION SET

Increment 1Y

IY < 1Y + 1

L1|1L1|111|110L1|byte1:FD
Lo,olluLold 1[1|byte2:23

The contents of the IY register are incremented
and the result is stored back in 1Y.

——=}

C
E ALU
L + 1

A8 —

I 9w >

2 M cycles; 10 T states; 5 usec @ 2 MHz

Implicit.

S Z PV N C

L [ !WHI I LL] (no effect).

INC 1Y

Before: After:

[ 36B1 | Y3277/
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IND Input with decrement.
Function: (HL) <« (C); BB — 1; HL < HL -1
Format:

[1J1’14|o|1‘1j0lﬂ byte 1: ED
[ ]ov]o]1]o]1]o] byte2: AA

Description: The peripheral device addressed by the C register
is read and the result is loaded into the memory
location addressed by the HL register pair. The B
register and the HL register pair are then each
decremented.

Data Flow:

E
L

(o]
]

H

Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Mode: External.

Flags: S

z H c
t» Jx |J ?] [P:V] T [ J [A Set if B = 0 after execution
{

Reset otherwise
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Example:

/\

ED
AA

OBJECT CODE

THE Z80 INSTRUCTION SET

IND

Before: After:

sl a1 [ e ¢ e{RT) s c
H 06BA |« N

B5 B5
(T (™
osBA| 00 %Y,
— ~_|
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INDR Block input with decrement.
Function: (HL) <« (C); B« B — 1; HL < HL -1
Repeat until B = 0
Format:
b] 1| 1|o|1|1!o[1l byte 1: ED
L To] ][ ]o]1]o] byte2: BA
Description: The peripheral device addressed by the C register
is read and the result is loaded into the memory
location addressed by the HL register pair. Then
the B register and the HL register pair are
decremented. If B is not zero, the program
counter is decremented by 2 and the instruction is
re-executed.
Data Flow:
—
A r—C:’
3 Y COUNTER 7 c 7////////////
E L~ |
W i
Timing: B = 0:4 M cycles; 16 T states; 8 usec @ 2 MHz.

B # 0:5 M cycles; 21 T states; 10.5 usec @ 2 MHz.

Addressing Mode: External

Flags: 4 P/VN

DOROREDN
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Example:

s

ED
BA

OBJECT CODE

INDR

Before:

THE Z80 INSTRUCTION SET

After:

| s o o770 > |c

H_ 09F2 v Nk "
56 56
0%F|  6A O9EF
09F0 EB 0r07 87
09F1 48 R 7 2
oF2[ oA 09F20 s
—_ I~ |
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INI Input with increment.
Function: (HL) <« (C); B<B — I; HL <« HL + 1
Format:

'_'l‘l'|°"|ﬂ°{‘]byte1:ED
[Jo[JoJo]o] 1]o]byte2: A2

Description: The peripheral device addressed by the C register
is read and the result is loaded into the memory
location addressed by the HL register pair. The B
register is decremented and the HL register pair is
incremented.

The contents of C are placed on the low half of the
address bus. The contents of B are placed on the
high half. I/0 selection is generally made by C,
i.e., by AOto A7. B is a byte counter.

Data Flow:

PORT

(o]

Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Mode: External.

Flags:

sz H PVN C
BREOEDDE

Z is set if B = 0 after execution,
Reset otherwise
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Example:

T~

ED
A2

Vo~
OBJECT CODE

THE Z80 INSTRUCTION SET

INI

Before: After:

B 09 2 |c o870 2> ]c
H Al12 L A/

21 21
s ([
AlI2 09 A2 a7
e~ ~
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INIR

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

280

A

B

H

Block input with increment.

(HL) < (C); B< B — I; HL < HL + 1; Repeat
untilB = 0

[1[1]1‘0’1[%0\1‘bytel:ED

MOM’l[olOJllﬂ byte 2: B2

The peripheral device addressed by the C register
is read and the result is loaded into the memory
location addressed by the HL register pair. The B
register is decremented and the HL register pair is
incremented. If B is not zero, the program counter
is decremented by 2 and the instruction is re-
executed.

(o
Wi

[
E PORT - ‘//////////////
L Wi

R

-42
-=3

 —

B = 0: 4 M cycles; 16 T states; 8 used @ 2 MHz.
B # 0: 5 M cycles; 21 T states; 10.5 usec @ 2 MHz.

External.

P’V N C

CTT T 1




Example:

o~
ED
B2

Vo~
OBJECT CODE

THE Z80 INSTRUCTION SET

INIR

Before: After:

s > 1c sl 7% 5 \<
.5 A

W e [
T

el -
T~
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JP cc, pq

Function:

Format:

Description:

Data Flow:

282

A

B
D
H

il i

Jump on condition to-location pq.

if cc true: PC < pq

nnE==0nols
T T T T T T byte 2: address,
l 1 ] 1 ql 1 L L low order
T T T T T T byte 3: address,
I I SRR R ] high order

If the specified condition is true, the two-byte ad-
dress immediately following the opcode will be
loaded into the program counter with the first byte
following the opcode being loaded into the low
order of the PC. If the condition is not met, the
address is ignored. cc may be any one of:

NZ - 000 no zero
Z — 001 zero
NC - 010 no carry
C - 011 carry
PO - 100 parity odd
PE — 101 parity even
P - 110 plus
M - 111 minus
vy
F CONTROL
c LOGIC JP CC
E T q
L TTooos p




Timing:

Addressing Mode:

Byte Codes:

Flags:

Example:

T

DA
24
38

o ~—
OBJECT CODE

PC

THE Z80 INSTRUCTION SET

3 M cycles; 10 T states; 5 usec @ 2 MHz

Immediate.

ccC

NZ Z NC C PO PE P

IE[CA!DZ ID/:[EJEA'W I FAJ

S Z H PV N C

LI LT T T T [ |moeffecy

JP C, 3B24

Before: After:
s ) R
0032 | 5
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JP pq
Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

T~

C3
25
30

OBJECT CODE

284

Jump to location pq.

PC < pq
L] ]o]ofo]o] ] 1] byte1:C3
[ — T T T 1 1T byte 2: address,
] 1 PR ! | | low order
T T byte 3: address,
[_n 1 : ':: L 1 I high order

The contents of the memory location immediately
following the opcode are loaded into the low order
half of the program counter and the contents of
the second memory location immediately follow-
ing the opcode are loaded into the high order of
the program counter. The next instruction will be
fetched from this new address.

T~
A
B c JP
D E q
H L P

3 M cycles; 10 T states; 5 usec @ 2 MHz

Immediate.
S z H PV N C
LL LT LT[ ovoeffect
JP 3025
Before: After:
pC | 5520 1 <O




JP (HL)

Function:

Format:

Description:

Data Flow:

Timing:

Jump to HL.

PC < HL

THE Z80 INSTRUCTION SET

Lllll]lo‘l]OlOl]J' E9

The contents of the HL register pair are loaded in-
to the program counter. The next instruction is
fetched from this new address.

C

E

I O @ >»

L

87/ %%

1 M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit.

Flags:

Example:

——

E9

T~ ]
OBJECT CODE

S Z H

P/V N C

LI T T T T I(noeffect)-

JP (HL)

Before: After:
H 0411 JL H 0411 R
el mo ] el
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JP (IX) Jump to IX.
Function: PC < IX
Format:
IIILIO!I |1 11 lo ’1 ] byte 1: DD
[1] 1[1Loly‘o]o II—’ byte 2: E9
Description: The contents of the 1X register are loaded into the

program counter. The next instruction is fetched
from this new address.

Data Flow:
A ¢
v f
x| I |
v U
W
Timing: 2 M cycles; 8 T states; 4 usec @ 2 MHz
Addressing Mode: Implicit.
Flags: sz H_ PNV N C

LLT LT LT Jmoeffee.

Example: JP  (IX)
Before: After:
T~ X | 80F1 | x| 8OF1 |
2‘; rc [ 3B4A | 755 777

OBJECT CODE
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JP (1Y)

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

S~

FD
E9

OBJECT CODE

THE Z80 INSTRUCTION SET

Jump to 1Y.
PC - 1Y

‘1|1\1‘1JJ1[0‘1} byte I: FD
LL|1|0 1[0 m byte 2: E9

The contents of the 1Y register are moved into the
program counter. The next instruction will be fet-
ched from this new address.

I U w >
[3)

v [

|
VIR
7/

2 M cycles; 8 T states; 4 usec @ 2 MHz

Implicit.
S z H PV N C
LL LT LT[ ] moetfecy.
JP (1Y)
Before: After:
M| AA4B | Y| AA4B |

Pc| E410 |
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JR cc,e

Function:

Format:

Description:

Data Flow:

Jump e relative on condition.

if cc true, PC < PC + ¢

oTo[TeTeTeTo o] bye

EJ' : : e2—— lj] byte 2: offset value

| i 1 L

If the specified condition is met, the given offset
value is added to the program counter using two’s
complement arithmetic so as to enable both for-
ward and backward jumps. The offset value is
added to the value of PC + 2 (after the jump). As
a result, the effective offset is -126 to +129 bytes.
The assembler automatically subtracts 2 from the
source offset value to generate the hex code. If the
condition is not met, the offset value is ignored
and instruction execution continues in sequence.
cc may any one of:

NZ - 00 NC - 10
Z - 01 C -1l

A

B
D
H

- m 0 T

+ /-\__

re i —— -~~~ -~~~

Timing:

288

—= —~
jV L:z

CONTROL | !
LOGIC !+
|

usec
M cycles: | T states: | @ 2 MHz:

condition
met: 3 12 6

condition
not met: 2 7 3.5




Addressing Mode:

Byte Codes:

Flags:

Example:

FB

OBJECT CODE

THE Z80 INSTRUCTION SET

Relative. ¥ NoT Bogo

*
cc: NZ Z NC C

S Z H P/V N C

L L L LT T 1] moeffect).

JR NC,$ -3 $ = current PC
Before: After:
[ o ¢ o Jr
S B0 | A
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JRe Jump e relative.
Function: PC<PC + ¢
Format: [eToo[[1[oo o] byet:1s
'L : : —e2 : : : J' byte 2: offset value
Description: The given offset value is added to the program

counter using two’s complement arithmetic so asto
enable both forward and backward jumps. The off-
set value is added to the value of PC + 2 (after the
jump). As a result, the effective offset is -126 to
+ 129 bytes. The assembler automatically subtracts
2 from the source offset value to generate the hex

code.
Data Flow:
A /\_
B JR
D E ALU e-2
H +

2 N —
Timing: 3 M cycles; 12 T states; 6 usec @ 2 MHz
Addressing Mode: Relative.

Flags: S Z H PV N C

| | l | I | | I_—l (no effect)

Example: JR D4
Before: After:
pc B100 |
['): (This is a backwards jump.)

OBJECT CODE
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LD dd, (nn)

Function:

Format:

Description:

Data Flow:

THE Z80 INSTRUCTION SET

Load register pair dd from memory locations ad-
dressed by nn.

ddjow < (nn); ddpjgh < (nn +1)

I O @ >

L1|1|1|0‘1]1 ’OlLIbytel:ED

Lollld;d{l‘:o% |1 | byte 2

T T T T T T T b 3: add N
rer————— | lg]\;eordzr e
L S S ] byte 4: address,
L 1+ v v+ 1| high order

The contents of the memory location addressed by
the memory locations immediately following the
opcode are loaded into the low order of the
specified register pair. The contents of the
memory location immediately following the one
previously loaded are then loaded into the
high order of the register pair. The low order byte
of the nn address immediately follows the opcode.
dd may be any one of:

BC - 00 HL - 10
DE - 01 SP - 11
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Timing:

6 M cycles; 20 T states; 10 usec @ 2 MHz

Addressing Mode: Direct.

Byte Codes:

Flags:

Example:

ED

5B

21

OBJECT CODE

292

dd: BC DE HL SP

- 5] ee] 7

z H P’V N C

[T T T T LT Gosten

LD DE, (5021)

Before: After:

of DBE2 Y 5 L&

(N — s

5021 F4 5021 F4
5022 30 5022 30



LD dd, nn

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Byte Codes:

Flags:

THE Z80 INSTRUCTION SET

L.oad register pair dd with immediate data nn.

dd < nn

[ofoleiafofofo]r ] by

[T T 17 1 1T T 71 | byte 2: immediate

T T 1T " 1T 1 11 data, low order

T 1T T T 1T T \byte3: immediate
L1 data, high order

The contents of the two memory locations im-
mediately following the opcode are loaded into the
specified register pair. The lower order byte of the
data occurs immediately after the opcode.dd may
be any one of’:

BC - 00 HL - 10
DE - 01 Sp - 11

TN

LD
n

I O @ >
’_'r"n

n

SP[ ] /\/

3 M cycles; 10 T states; 5 usec @ 2 MHz

Immediate.

dd: BC DE HL SP

KIEIEIE

Z H PV N C

[I l ] ‘ ] | |J (no effect)
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Example: LD DE, 4131

Before: After:

S e N

1
31
41

OBJECT CODE
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LDr,n

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Byte Codes:

Flags:

THE Z80 INSTRUCTION SET

Load register r with immediate data n.

r<n

|°|°|'—f.—-lll [ o] byte

| — n ._I byte 2: immediate data

The contents of the memory location immediately
following the opcode location are loaded into the
specified register. r may be any one of:

A — 111 E - 011
B — 000 H - 100
C - 001 L — 101
D - 010
A /\7
8 c LD
D E<__ n

2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Immediate.

I'Aa B C D E H L
Las Ioo IOE | wl 1E I zolzsj

4 H PV N C

[ l I | | | l | J (no effect).
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Example: LD C, 3B
Before: After:
s c W=7
®
—

OBJECT CODE
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LDr,r

Function:

Format:

Description:

Data Flow:

Timing:
Addressing Mode:

Byte Codes: A
B
C
D
E
H
L
(dest.)
Flags:

THE 280 INSTRUCTION SET

Load register r from register r’.

r<r

Lo = e

The contents of the specified source register are
loaded into the specified destination register. r and
r’ may be any one of:

A - 111 E - 011
B — 000 H - 100
C - 001 L - 101
D - 010

A

B c ( —

D E

H

e

7~

1 M cycle; 4 T states; 2 usec @ 2 MHz

Implicit.

A B C D E H L (source)

7F | 78| 79| 7A| 78] 7C| 7D
47 | 40| 41 | 42| 43| 44} 45
4F 49 | 4A| 4B | 4C| 4D
57 51152|53]|54]55
5F 59 | 5A| 5B | 5C| 5D
67 61 | 62| 63|64) 65
6F 69 | 6A| 6B | 6C| 6D

588|385

l , ] | | LL LI (no effect).
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Example: LD H, A

Before: After:

Al sc ] Al sc ]

W e | T

67

TN~—
OBJECT CODE
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LD (BO), A Load indirectly addressed memory location (BC)
from the accumulator.

Function: (BC) < A

Format:

roTo;o!olo‘olWO_] 02

Description: The contents of the accumulator are loaded into
the memory location addressed by the contents of
the BC register pair.

Data Flow:

A

B

D a

H 7
Timing: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: s z W PVN c

(T1 11T ot
Example: LD (BQC), A

Before: After:

A 3F A 3F |

B 4109 lc B 4109 |c
N N

02 4109 1€ 4109
/_\/

OBJECT CODE
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LD (DE), A Load indirectly addressed memory location (DE)
from the accumulator.
Function: (DE) <~ A
Format: MO]olllo[oll[ﬂlz
Description: The contents of the accumulator are loaded into
the memory location addressed by the contents of
the DE register pair.

Data Flow:

A

B

D a

H .
Timing: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz
Addressing Mode: Indirect.
Flags: s Z H PV N C

[TTTTI[1] Gt
Example: LD (DE), A
Before: After:

A Al e ]

D | 0392 | p 0392 E
/‘.\./ /—\_/

12 0392 F7 0392

OBJECT CODE
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LD (HL), n Load immediate data n into the indirectly ad-
dressed memory location (HL).

Function: (HL) < n
Format: __.
[olo[ ] T] D byte 1: 36
[ BN T byte 2: immediate
T data
Description: The contents of the memory location immediately

following the opcode are loaded into the memory
location indirectly addressed by the HL data
pointer

Data Flow:

I O w >

Timing: 3 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Immediate/indirect.

F[ags: S Z H P’V N C

LI T T T TT ] oeffe.
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Example: LD (HL), SA

Before: After:

H| A342 ] S| A342

(\_ T~
3% A342 20 A3 5h
5A P~ ~
VT~

OBJECT CODE
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LD (HL), r Load indirectly addressed memory location (HL)
from register r.

Function: (HL) < r

Format:

Ll ][ Jol=r1]

Description: The contents of the specified register are loaded
into the memory location addressed by the HL
register pair. r may be any one of:

A — 111 E - 011
B — 000 H - 100
C - 001 L — 101
D - 010
Data Flow:
A
B C
> e [ owi
H L 2%
I —
Timing: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Addressing Mode: Indirect.

Byte Codes: r

A B C D E H L
BlJOI7l|72l73|J4 75
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Flags:

Example:

S~

70

/\_‘
OBJECT CODE

304

A H PV N C
f J I J I [ [ J J (no effect).
LD (HL), B
Before: After:
B ;
H csl |1 H] 501
(T
C501 2A C501
o~




LDr, (X + d)

THE Z80 INSTRUCTION SET

Load register r indirect from indexed memory
location (IX + d)

Function: r<(IX + d
Format:
MIIOLI [1 UIOLI ] byte 1: DD
lol 1 -——'—r'——ll |1 ol byte 2
L‘l : T. QL " j. ;] byte 3: offset value
Description: The contents of the memory location addressed by
the IX index register plus the given offset value,
are loaded into the specified register. r may be any
one of:
A — 111 E - 011
B — 000 H - 100
C - 001 L — 101
D - 010
DATA
Data Flow: A /\_"_'
B C o~
D E
H L LD
r
I { } d
b~
Timing: 5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Addressing Mode:

Byte Codes:

Indexed.

A B C D E H L

DD- [7E146[4E156|5E Lbb[ael-d
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Flags:

Example:

N

DD

5E

05

|

OBJECT CODE

306

s z H PV N C

lJ TJ l I I I J (no effect).

LD E, (IX + 5)

Before: After:
[ e A
X[ 3020 | x[ 3020 ]

/\—‘(-\——‘

3020 2A 3020 2A
3025 15 3025 15
b —



LDr,(IY + d)

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

I O w >

THE Z80 INSTRUCTION SET

Load register r indirect from indexed memory
location (1Y + d)

r< (Y + d)

L‘l‘[‘]‘['l‘[ot‘]bytel:FD
Lol [=—r——=[r]']o] byte2
[ — ' ‘;L : : Il Ibyte 3: offset value

1 L

The contents of the memory location addressed by
the 1Y index register plus the given offset value,
are loaded into the specified register. r may be any
one of:

A — 111 E — 011
B — 000 H - 100
C - 001 L — 101
D - 010
S~
DATA
) V\“‘—‘
C /-\__‘
E
L LD
- d
V\,

5 M cycles, 19 T states; 9.5 usec @ 2 MHz

Indexed.
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Byte Codes:

Flags:

Example:

T~

FD
7E
02

OBJECT CODE

308

r A B C D E
FD‘I_H46|4E|56[5QI66|§EJ

S z PV N C

| I ] J ]J r I J(noeffect).

LD A, (Y + 2)

Before: After:
A N AsY
| BOO5 ] [ 8005 |
S
BOOS 61 BOOS 61
BOO7 Fo B0O7 F9
b~ T~




THE Z80 INSTRUCTION SET

LD (X + d),n Load indexed addressed memory location (IX +

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

. <:
g | I~
H L T~
x| ] .
3
T~

d) with immediate data n.

(X + d)<n

qu‘othlﬂOMbytel:DD
Lo[o, 1L\[o[1[1lﬂbyte2:36

L 'L — c:i L 'L : ]| byte 3: offset value
r L S LA J byte 4: immediate
1 | I [ I | I data

The contents of the memory location immediately
following the offset are transferred into the
memory location addressed by the contents of the
index register plus the given offset value.

5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Indexed/immediate.

S Z H PPV N C

[ ‘ I I [ | ] I } (no effect).
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Example:

/\7

DD

36

04

FF

T —
OBJECT CODE

310

LD (X + 4), FF

Before: After:

ix[ B109 | x[ B109

S~

B109 60 B109

B10D 4E BiOD




THE Z80 INSTRUCTION SET

LD (Y + d),n Load indexed addressed memory location (IY +

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

d) with immediate data n.

(Y + d)<n

DT [ Jo]1] byte1: FD
bullb]ﬂll1Mbyte2:36

[ : { : éL ][ : } J byte 3: offset value
L T T T T T 1 J byte 4: immediate
I 1 /"1 1T 17| data

The contents of the memory location immediately
following the offset are transferred into the me-
mory location addressed by the contents of the
index register plus the given offset value.

T~

LD

I O @ P
13
[e]

(" oari ]
]

5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Indexed/immediate.

S Z H PV N C

' ] [ l L ‘ L] (no effect).
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Example:

FD
36
03
BA

OBJECT CODE

312

LD (1Y + 3), BA

Before:

Y|

0100

0100

0103

(=]

62

OF

04

After:
Iy |
0100 D2
62
OF
0103 BA




LD (X + d)r

Function:

Format:

Description:

Data Flow:

Timing:

THE Z80 INSTRUCTION SET

Load indexed addressed memory location (IX +
d) from register r.

(IX + dye—r

|1’ 1|0L1L1 1l0‘1] byte 1:DD

|
Lo ILI | 1 I 1 Lo 1[<——':r'—— byte 2

._I byte 3: offset value

| | L L -

The contents of specified register are loaded into
the memory location addressed by the contents of
the index register plus the given offset value. r may
be any one of:

A — 111 E — 011
B - 000 H - 100
C — 001 L - 101
D - 010

( owa—
W

%
R |
B C) o~
D E |
H L) D
X | | d
b

5 M cycles; 19 T states; 9.5 usec @ 2 MHz
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Addressing Mode: Indexed.

Byte Codes: rPm A B C D E H L

DD-{7L| 70 |7IJ 72 |73J7d75j- d

Flags: S z H PVN C
L_I I | l I [ l I (no effect).
Example: LD (X + 1),C
Before: After:
c &
X 4462 1 X[ 4462 |

DD 4462
71 4463
01

4462

745
4463 4
L~

/\_/\T
—~

T~
OBJECT CODE

314



LDAY + d),r

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Byte Codes:

THE Z80 INSTRUCTION SET

Load indexed addressed memory location (1Y +
d) from register r.

Y + d)«<r

1!‘]"&“0]" byte 1: FD
o fof=r=] byte2
.r ‘:1 ) IL : 1 byte 3: offset value

]
]

=

The contents of the specified register are loaded
into the memory location addressed by the con-
tents of the index register plus the given offset
value. r may be any one of:

A - 111 E - 011
B - 000 H - 100
C - 001 L - 101
D - 010

i

% %
A I~
B C [ — /-\4
D E
H L LD
r
[ d

5 M cycles; 19 T states; 9.5 usec @ 2 MHz

Indexed.

r A B C D E H L

FD-Iil?OIﬂ |72 |73174 |75 |»d
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Flags:

Example:

A

FD

77

03

~—— |
OBJECT CODE

316

S Z H

PPV N C

LI LD LT ] ]moeffen.

LD (Y + 3),A

Before: After:
N N
1 Y| 5AB4 J 1 Y|
N /\_
5AB4 21 5AB4 21
5aB7|  5A 58870737
/\_/ ~




THE Z80 INSTRUCTION SET

LD A, (nn) Load accumulator from the memory location
(nn).

Function: A < (nn)

Format:

T ] byte 2: address, low

1]1[0

[1]0] byte1:3A
T
|

} n
L ! order byte
’ ,5, "J byte 3: address, high
— order byte
Description: The contents of the memory location addressed by

the contents of the 2 memory locations immediate-
ly following the opcode are loaded into the ac-
cumulator. The low byte of the address occurs im-
mediately after the opcode.

Data Flow: N
B C -
" E TN
H L
/—\)
D
n
n
Timing: 4 M cycles; 13 T states; 6.5 usec @ 2 MHz

Addressing Mode: Direct.
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Flags:

Example:

3A

33

OBJECT CODE

318

S Z H P/VN C

LT T T T T] woeffee.

LD A, (3301)

Before: After:

/_\/ /\/
3301 2B 3301 28

/‘\/ /\/



LD (nn), A

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

I O w >»

THE 280 INSTRUCTION SET

Load directly addressed memory location (nn)
from accumulator.

(nn) < A

I byte 2: address, low
1| order
I byte 3: address, high
'—] order

11|Olbytel:32
: J
1
1

The contents of the accumulator are loaded into
the memory location addressed by the contents of
the memory locations immediately following the
opcode. The low byte of the address immediately
follows the opcode.

LD

f\/

4 M cycles; 13 T states; 6.5 usec @ 2 MHz

Direct.
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Flags:

Example:

32
21

03

OBJECT CODE

320

S Z

H Pv N C

u ‘ l ‘ I ‘ l—\(ﬂoeffect)

LD (0321), A
Before: After:
Al _a ] 2

0321

06




LD (mn), dd

Function:

Format:

Descriptions:

Data Flow:

THE Z80 INSTRUCTION SET

Load memory locations addressed by nn from
register pair rr.

(nn) <ddjoy; (nn + 1) <ddhigh

D[1J1i0|1plotlj byte 1: ED
o[ Jalaofo]r 1] byte2

[ T T T

l i 1 1

T byte 3: address,
L1 1 low order

— T byte 4: address,
.+ | high order

T
n
L

| T T T

l 1 1 1 ‘E\

The contents of the low order of the specified
register pair are loaded into the memory location
addressed by the memory locations immediately
following the opcode. The contents of the high
order of the register pair are loaded into the
memory location immediately following the one
loaded from the low order. The low order of the
nn address occurs immediately after the opcode.dd
may be anyone of:

BC - 00 HL - 10
DE - 01 SP - 11
/—\/
A D
5 c dd
D E N
H L n
sp| ]

.

321


http:opcode.dd

PROGRAMMING THE Z80

Timing:

6 M cycles; 20 T states; 10 usec @ 2 MHz

Addressing Mode: Direct.

Byte Codes:

Flags:

Example:

ED
43
0B
04

OBJECT
CODE

322

dd: BC DE HL SP

@ (][]

S 7 H P/V N

[TTT T 11T ] woeten.

LD (040B), BC

Before: After:

B[ 0221 lc sl 0221 c

040B 06 -y
040C AB osoc




LD (nn), HL

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

I O @ >

THE Z80 INSTRUCTION SET

Load the memory locations addressed by nn from
HL.

(nn) < L;(mn + 1)< H

I_o[o[ |0L0|o 1|0bete1:22
T T T T T T byte 2: address,
C T [ low order
LS S \ byte 3: address,
I - high order

The contents of the L register are loaded into the
memory location addressed by the memory loca-
tions immediately following the opcode. The con-
tents of the H register are loaded into the memory
location immediately following the location
loaded from the L register. The low order of the
nn address occurs immediately after the opcode.

/_\/

LD

T «
O

5 M cycles; 16 T states; 8 usec @ 2 MHz

Direct.
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Flags:

Example:

22

B9

40

OBJECT
CODE

324

H PPV N C

[5’2} ‘ ‘ | [Jj(noeffect).

LD (40B9), HL

Before: After:

H| 304A Jed 304A L

I =T

40B9 20 4089 4A
40BA 9F 40BA 30 /

~_




LD (nn), IX

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

I O W »

THE Z80 INSTRUCTION SET

Load memory locations addressed by nn from IX.

(nn) < IX|ow; (nn + 1) < IXhigh

[1[1]0]1&11‘[0]11byte1:DD
LOIJ’J1F°]°I°1]M byte 2: 22

— T T T T byte 3: address,
n
[ 1 1 1 L L L 1| low order

T 71 7| byte 4: address,
L L 1o ] high order

The contents of the low order of the IX register
are loaded into the memory location addressed by
the contents of the memory location immediately
following the opcode. The contents of the high
order of the IX register are loaded into the
memory location immediately following the one
loaded from the low order. The low order of the
nn address occurs immediately after the op code.

7

6 M cycles; 20 T states; 10 usec @ 2 MHz

Direct.

325
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Flags:

Example:

DD
22
2B
01

OBJECT
CODE

326

S _Z H PV N _C

L [ l I 1} I ’ ] (no effect).

LD (012B), IX

Before: After:

X[ o406 [ 0406

0128 D3 0128 06
012C 9A 012C 04



THE Z80 INSTRUCTION SET

LD (nn),IY Load memory locations addressed by nn from 1Y.

Function: (o> < 1Y|gy; (mn + 1) < IYhjgh

utliltllt[ot]bytel:FD
LOLOJ 1 IETO IO [I [ﬂ byte 2: 22

Format:

17 ] byte 3: address,
' L T low order
l L L AN L S S | 'byte 4: address,
il 1 I 1 T hlgh order
Description: The contents of the low order of the Y register are

loaded into the memory location addressed by the
contents of the memory locations immediately
following the opcode. The contents of the high
order of the 1Y register are loaded into the
memory location immediately following the one
loaded from the low order. The low order of the
nn address occurs immediately after the opcode.

Data Flow: LD
: S
D E
H L N
qs [
7
Timing: 6 M cycles; 20 T states; 10 usec @ 2 MHz

Addressing Mode: Direct.
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Flags: s zZ H PV N C

[ l ' U ’ l [J (no effect)

Example: LD (BD04), 1Y

Before: After:

[ D204 ] 1y | D204

2 U N

FD BDO4 A5 B004 047
22 BDOS 96 BDOS W /
5 g

OBJECT CODE

328



LD A, (BO)

Function:

Format:

Description:

Data Flow:

Timing:

I O @ >

Addressing Mode:

Flags:

Example:

TN

0A

N

OBJECT CODE

3201

THE Z80 INSTRUCTION SET

Load accumulator from the memory location in-
directly addressed by the BC register pair.

A < (BO)

Lofofefofr[e]r]o] 0a

The contents of the memory location addressed
by the contents of the BC register pair are loaded
into the accumulator.

1C
i 13 ‘ DATA
| L

2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Indirect.

S 2z H PPV N C

| J [ l ' l l | —I (no effect).
LD A, (BC)

Before: After:

N o el
c 8 32D1 c

32D1
41 3201 41
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LD A, (DE) Load the accumulator from the memory location
indirectly addressed by the DE register pair.

Function: A < (DE)

Format:

Lelofol i ]o]r]o]1a

Description: The contents of the memory location addressed by
the contents of the DE register pair are loaded into
the accumulator.

Data Flow:

K -

B C E;\TA\—

D E—

H L T~
Timing: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Addressing Mode: Indirect.

S Z H PV N C

e (T T T T T T tNoeffe.
Example: LD A, (DE)
Before: After:
a2 ] 57

o[ 6051 ] 6051 i

T~

1A 6051 09 6051 09

OBJECT CODE
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THE Z80 INSTRUCTION SET

LD Al Load accumulator from interrupt vector register I.
Function: A<l
Format:

Lo lofofr[r[o]r] byter:ED
Lol Lol v [o] i [0] 1] byte2: 57

Description: The contents of the interrupt vector register are
loaded into the accumulator.

Data Flow:

Timing: 2 M cycles; 9 T states; 4.5 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: s 7 H PV N C q \
olel <O —Set to the contents
[e]e] [O] LA_I | }f of 1FF2
Example: LD A,I
Before: After:
N Al 30 1| 48 | A %77 ,
ED

57

OBJECT CODE

331
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LD ILA

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

ED
47

OBJECT CODE

332

Load Interrupt Vector register 1 from the ac-
cumulator.

<A
Ll lel v [ folr ] byte1: ED
[o[1]o]o]o]i]1]1] byte2:47

The contents of the accumulator are loaded into
the Interrupt Vector register.

I O ® >

2 M cycles; 9 T states; 4.5 usec @ 2 MHz

Implicit.

s z H PN NC

LITT I T[] tmoeffet

LD I, A

Before: After:

Al [ 2 1A w | B




THE Z80 INSTRUCTION SET

LD AR Load accumulator from Memory Refresh register
R.

Function: A <R

Format:

L1‘1]1{011]1]0J1]byte1:ED
[T o [ [ 1] bye 2 5%

Description.: The contents of the Memory Refresh register are
loaded into the accumulator.

Data Flow:

T ——

I O W >
@]

Timing: 2 M cycles; 9 T states; 4.5 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: s 2z H PV N C
(®[®] [o] [x[o] |
A ser to contents of IFF2
Example: LD A,R

Before: After:

N Al R[ an | AEZZZZ R[4 |

ED
5F

OBJECT CODE
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LD HL,(nn) Load HL register from memory locations addres-
sed by nn.

Function: L<@);H<(n+1

Format:

rﬂojl]olllolnyoj byte 1: 2A
R L S L J byte 2: address, low
—_— order

LI N SR 'bete3:address,high
order

Description: The contents of the memory location addressed by
the memory locations immediately after the op-
code are loaded into the L register. The contents
of the memory location after the one loaded into
the L register are loaded into the H register. The
low byte of the nn address occurs immediately
after the opcode.

/

Data Flow: Lo

R

I 0O ® »

(A

Timing: 5 M cycles, 16 T states; 8 usec @ 2 MHz
Addressing Mode: Direct.

P/VN C

(T LT LT[ 1] woeiesy

Flags:
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THE Z80 INSTRUCTION SET

Example: LD HL, (0024)

Before: After:

2A 0024| 69 0024] 69
L 24 0025 4D 0025 4D
> TN/ /-\_)

OBJECT CODE

335



PROGRAMMING THE Z80

LD IX, nn Load IX register with immediate data nn.
Function: IX < nn
Format:

L1|1l0J1[1J1J0|1 |byte1:DD
[oToT i oTe oo bwte 2

1 byte 3: immediate

W, P

I
1 l I

[

L L J data, low order

L A | T J byte 4: immediate

Lo T 1 data, high order
Description: The contents of the memory locations immediate-

ly following the opcode are loaded into the 1X
register. The low order byte occurs immediately
after the opcode.

Data Flow:

Timing: 4 M cycles; 14 T states; 7 usec @ 2 MHz

Addressing Mode: Immediate.

Flags: S Z H PV N C

l ]JJ I I [ ,J(noeffect)
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THE Z80 INSTRUCTION SET

Example: LD IX,B0B1
Before: After:
X[ 306F | X727 /8817

DD
2
B1
BO

T~
OBJECT CODE
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PROGRAMMING THE Z80

LD IX, (nn) Load IX register from memory locations ad-
dressed by nn.

Function: IXjow <= (nn); IXpjgh < (nn + 1)

T el [ e T] bwte 1: b
CLl T T ez 2

— 1 byte 3: address,

Format:

. " | low order
( T T J byte 4: address,
T R high order
Descriptions: The contents of the memory location addressed by

the memory locations immediately following the
opcode are loaded into the low order of the IX
register. The contents of the memory location im-
mediately following the one loaded into the low
order are loaded into the high order of the 1X reg-
ister. The low order of the nn address immediately
follows the opcode.

Data Flow: N
D
—

o ® >
[e]

I

x i,
ﬁ ﬁ N
~_

Timing: 6 M cycles; 20 T states; 10 usec @ 2 MHz

Addressing Mode: Direct.
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THE Z80 INSTRUCTION SET

Flags: s z H PV N C

[ Ll [ 1[ | ](noeffect).

Example: LD IX, (010B)

Before: After:

e ] PSS

DD 0108 00 0108 00
2A 010C 32 010C 32
0B

OBJECT CODE

339



PROGRAMMING THE 280

LD1Y, nn Load 1Y register with immediate data nn.
Function: IY < nn
Format:

L[ [ [ Jo]r ] byter: FD
[°I°|‘l°l°l°[°[ﬂ byte 2: 21

{_I' LA AL ‘ byte 3: immediate
RN R N E E data, low order

{ T T 7T '}\ IR S J byte 4: immediate
B | il 1 t 1 i

data, high order

Description: The contents of the memory locations immediate-
ly following the opcode are loaded into the 1Y
register. The low order byte occurs immediately
after the opcode.

Data Flow: N
A {
B C LD
D E -
H L n
n
" ~_

Timing: 4 M cycles; 14 T states; 7 usec @ 2 MHz

Addressing Mode: Immediate.
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Flags:

Example:

FD
21
21

OBJECT CODE

THE Z80 INSTRUCTION SET

H PV N C

LSFZT L[ LI [ l(noeffect)

LD 1Y, 21

Before: After:

Y I'“—hv 0698 h:l 'YW%OON W
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LD 1Y, (nn)

Function:

Format:

Description:

Data Flow:

342

Load register 1Y from memory locations addressed
by nn.

IYjow < (nn); IYhigh < (nn+ 1)

MHJ]JIJIIOII}‘byKCI!FD
[O‘Ol] ]o IJOJI ‘ﬂbyteZ 2A

l ( bete 3: address,
DR A low order

AL T ]byte4: address,
L high order

1 I} 1 I I

' T
L

The contents of the memory location addressed by
the memory locations immediately following the
opcode are loaded into the low order of the IY
register. The contents of the memory location im-
mediately following the one loaded into the low
order are loaded into the high order of the 1Y
register. The low order of the nn address im-
mediately follows the opcode.

A  —
B c

D E

H

YO i

TN
L ./
™~/




THE Z80 INSTRUCTION SET

Timing: 6 M cycles; 20 T states; 10 usec @ 2 MHz

Addressing Mode: Direct.

Flags: s z H PV N _C

[T T T T T T T moeffec.

Example: LD 1Y, (500D)
Before: After:
Iy | 6002 | YO s
N
FD 500D 03 500D 03
2A 500E 44 500E 44
oD
50 /\/
OBJECT
CODE

343



PROGRAMMING THE Z80

LD R,A

Function:

Format:

Description:

Data Flow:

Timing:
Addressing Mode:

Flags:

Example:

ED
4F

OBJECT CODE

344

Load Memory Refresh register R from the ac-
cumulator.

R <A
[1J1|1J0!1l1]ojd byte 1: ED
loJ1|o[o|1[1|1T1‘byte2:4F

The contents of the accumulator are loaded into
the Memory Refresh register.

I O @ >

2 M cycles; 9 T states; 4.5 usec @ 2 MHz
Implicit.

S Z PV N C

lJ IJH[ { I [ ](noeffect)

LD R, A

Before: After:

§
\

Al of | R[ a0 JA[ oF R




THE Z80 INSTRUCTION SET

LD SP, HL Load stack pointer from HL.
Function: SP < HL
Format: ;
Ll fele ] o
Description: The contents of the HL register pair are loaded in-
to the stack pointer.
Data Flow:
A
B o
D E
H L]
% W<E
Timing: 1 M cycles; 6 T states; 3 usec @ 2 MHz
Addressing Mode: Implicit.
Flags: s z H PV N C
LLT T L T[] moeffey
Example: LD SP, HL
Before: After:
TN
H[ ObAF JL H f 06AF IL
F9
sp ’ DBOE ‘ SPW OAF %
OBJECT
CODE

345



PROGRAMMING THE Z80

LD SP,IX Load stack pointer from IX register.
Function: SP < IX
Format:

t[ l(O'lJIJ] [olljbytelzDD
CT T oo [ Jbwee s

Description: The contents of the IX register are loaded into the
stack pointer.

Data Flow:
A
B C
D E
"1 L
1X l | ——
5P W
Timing: 2 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: sz H_ PV NC
LT LT L L[] ] moeffecy
Example: LD SP, IX
Before: After:
T IX | 0902 o 09D2 ]
DD
Fo sP | 54A0 | s T Z o2 %
/}Ea)
CODE
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THE Z80 INSTRUCTION SET

LD SP,1IY Load stack pointer from 1Y register.
Function: SP < 1Y
Format:

[1]1‘1‘1|1I]10l1Ibytel:FD
[1]1L]ll!llOIOll]byt622F9

Description: The contents of the 1Y register are loaded into the
stack pointer.

Data Flow:
A
B C
D E
H L
iy | J_“
Timing: 2 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Implicit.

Flags: c 7 n wn c
[T T TTTT T[] moeffect
Example: LD SP,IY
Before: After:
N
s ] 09AB | ] 09AB [

TN | 6004 | v e

OBJECT CODE

347
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LDD

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Modes:

Flags:

348

Block load with decrement.

(DE) < (HL); DE <~ DE - 1; HL < HL - I;
BC < BC ~-1

l1|1r1]0]1|1|0|14| byte 1: ED
|1]o|1|ojj010|ﬂ byte 2: A8

The contents of the memory location addressed by
HL are loaded into the memory location address-
ed by DE. Then BC, DE, and HL are all
decremented.

[ oma ]
=
]

e
kssy )5
70 _F

Wikl

B
D
H

T~
™~

4 M cycles; 16 T states; 8 usec @ 2 MHz

Indirect.

PV N C

Ll | l@ [x[o] |
Reset if BC = 0 after
execution, set otherwise.




Example:

OBJECT CODE

LDD

Before:

O

6211

H 8438

6211 98

—m

THE Z80 INSTRUCTION SET

After:

H

[
62N 627
o~

T~
6438 62
/\_J

s,
sy
Wi

E
L

N

349
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LDDR Repeating block load with decrement.
Function: (DE) < (HL); DE < DE — I; HL < HL - 1;
BC < BC - 1; Repeat until BC = 0
Format:
Ll fefr[rJefr] byer:ED
MOlllxllloJo‘ﬂ byte 2: B8
Description: The contents of the memory location addressed by
HL are loaded into the memory location address-
ed by DE. Then DE, HL, and BC are all
decremented. If BC # 0, then the program counter
is decremented by 2 and the instruction re-
executed.
______ A
IIInyT !
Data Flow: i ! i
o
[ :
i1
b
1|
[
I3
J
Timing: BC # 0: 5 M cycles; 21 T states; 10.5 usec @ 2

MHz.
BC = 0: 4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: PV @

CT 1 Tol Tolol |

350
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Example: LDDR

Before: After:

B 0003 c 80750777 Ac
D 0682 e oy %A )t
Hl 9035 Y s

™ (M
I @ 06AF B OAF | Bl
58 0680 04 osso /0e 77
0681 DF 0681 7///// )
OBJECT CODE 0682 2 L
./
/_\/ /\/
9032 92 9032 92
9033 DE 9033 DE
9034 £l 9034 £l
9035 BF 9035 BF
\/

351



PROGRAMMING THE Z80

LDI Block load with increment.

Function: (DE) <~ (HL); DE < DE + 1; HL < HL + 1;
BC <« BC -1

Format:
U Jel e 1] byte1: ED

uoleo]o[o[ﬂo] byte 2: A0

Description: The contents of the memory location addressed by
HI are loaded into the memory location addressed
by DE. Then both DE and HL are incremented,
and the register pair BC is decremented.

Flow: L
Data Flow )
T~/
Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: 4 H PV N C
L1 [ lo]l [x[o] |
| M

Reset if BC = 0 after
execution, set otherwise.

352



Example:

/—\/

ED

A0

I~

OBJECT CODE

LDI

Before:

o

34B1

I

3902

34B1

0A

42

— m ()

THE Z80 INSTRUCTION SET

After:

S
o ek
W L1398%7 /3

(™
s\ O
~__|

3902

353
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LDIR Repeating block load with increment.

Function: (DE) < (HL); DE < DE + 1; HL < HL + 1;
BC < BC - 1; Repeat until BC = 0

Format:
[ Je]']1]o]1] byte1: ED
L1|o|1|1|o‘0|010] byte 2: BO
Description: The contents of the memory location addressed by

HL are loaded into the memory location ad-
dressed by DE. Then both DE and HL are in-
cremented. BC is decremented. If BC # Q. ‘then
the program counter is decremented by 2 and the
instruction is re-executed.

2 2
Data Flow: 2. - 1o
A ] B % - f_. |
B T —_ s
———’/_\—‘ __________ -
Timing: For BC # 0: 5M cycles; 21 T states; 10.5 usec @ 2
MHz.
For BC = 0: 4 M cycles; 16 T states; 8 usec @ 2
MHz

Addressing Mode: Indirect.

354



Flags:

Example:

N

ED
BO

~__

OBJECT CODE

THE Z80 INSTRUCTION SET

s z PV N C
L] IOJ 10[o] |

LDIR

Before: After:

B 0002 c sy W&  c
D 4A03 E /////// F
H 962A L W%

N
4A03 12 4;%
4A04 F4 % M
4A05 AA
962A 3B 962A 3B
9628 90 9628 %0
962C 6F 962C 6F
/\/

355
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LDr, (HL) Load register r indirect from memory location
(HL).

Function: r < (HL)

Format:

Lol [ ] ]o]

Description: The contents of the memory location addressed by
HL are loaded into the specified register. r
may be any one of:

A — 111 E — 011
B - 000 H - 100
C - 001 L - 101
D - 010
Data Flow:
A
B c T~
D E
H L——— DATA
5 — ]
Timing: 2 M cycles; 7 T states; 3.5 usec @ 2 MHz

Addressing Mode: Indirect.

C D E H L

Byte Codes: r:
| 7] 4] AEI 56| 5 [ oo o]

356
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Flags: sz H PV N C

LI | | ] | ] ] | (no effect).

Example: LD D, (HL)

Before: After:

D A | ol
H oc 2 Ju H oc , 32 L

/\._ /-\_.
56 0C32 24 0C32 24

OBJECT CODE

357


http:L---=-:OC=--...L1_..::..32

PROGRAMMING THE Z80

NEG

Function:

Format:

Description:

Data Flow:

Timing:
Addressing Mode:

Flags:

Example:

T

ED
44

OBJECT
CODE

358

Negate accumulator.

A<0-A

[IEIIL°|‘|'N°|‘| byte 1: ED
LOL‘IOIOLOMIOILI byte 2: 44

The contents of the accumulator are subtracted
from zero (two’s complement) and the result is
stored back in the accumulator.

C

E ALU

2 M cycles; 8 T states; 4 usec @ 2 MHz
Implicit.

ole[ To[ [o 0]

C will be set if A was 0 before the instruction.
P will be set if A was 80H.

NEG
Before: After:
A s,



THE Z80 INSTRUCTION SET

NOP No operation.
Function: Delay.
Format:

[olofofofo]ofo]o] 00

Description: Nothing is done for 1 M cycle.
Data Flow: .
ata Flow A No action
B C
D E
H L
Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz

Addressing Mode: Implicit

Flags: S Z H PV N C

[TTTT T T ] moeffe.

359
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OR s Logical or accumulator and operand s.
Function: A< AVs
Format: s: may be r, n, (HL), (IX+ d), or (IY + d)

e (e o =]
o [T Lo ]To] bytet: s

T T T T
n
A

T byte 2: immediate
e data

(HL) |1 o[1|1|o[1|1|i| byte 1: B6
(IX +d) Il[lJo|1|1|1|ﬂv| byte 1: DD
[Tl Tl To] byie 2: 6
[ : : Jlj : . : |byte3: offset value
ay+d P [r]ef1] byter: FD
Ltfof ] fof 1 [1]o] vye2:B6
I : [ :j : l :—| byte 3: offset value
r may be any one of:
A - 111 E - 011
B — 000 H - 100
C - 001 L - 101
D - 010
Description: The accumulator and the specified operand are

logically ‘or’ed, and the result is stored in the ac-
cumulator. s is defined in the description of the
similar ADD instructions.



THE Z80 INSTRUCTION SET

Data Flow:
A
B
D E ALY | s
H L v
Timing: usec
N M cycles: | T states: |@ 2 MHz:
r 1 4 4
n 2 7 35
(HL) 2 7 3.5
(IX + d) 5 19 9.5
(Y + d) 5 19 9.5

Addressing Mode:

Byte Codes:

Flags:

Example:

T~

BO

OBJECT
CODE

r: implicit; n: immediate; (HL): indirect; (IX +
d), (IY + d): indexed.

OR r r: A B C D

E H L
iB—7[BOJBllB2|BS|BAIBS'

S Z H &V N C
[o/e] [O] [@[0[Q]

OR B
Before: After:
I

361
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OTDR

Function:

Format:

Description:

Data Flow:

Block output with decrement

(O)<(HL); B<B — I; HL<HL - 1;
Repeat until B = 0.

\1]1]1‘0|qq0‘1jbytel:ED
Llo|1|1tllor llbeICZ:BB

The contents of the memory location addressed by
the HL register pair are output to the peripheral
device addressed by the contents of the C register.
Both the B register and the HL register pair are
then decremented. If B # 0, the program counter
is decremented by 2 and the instruction is re-
executed. C supplies bits A0 to A7 of the address
bus. B supplies (after decrementation) bits AS8 to
AlS.

DATA

| - 3

Timing:

Addressing Mode:

Flags:

362

c 1
E PORT ~__
L

0: 4 M cycles; 16 T states; 8 usec @ 2 MHz.

B =
B # 0: 5 M cycles; 21 T states; 10.5 usec @ 2 MHz

External.

H P’V N C
?

T T 1 ]




Example:

T~

ED

BB

OBJECT CODE

THE Z80 INSTRUCTION SET

OTDR
Before: After:
8 o2 [ e Jc eP7ZZ5%77] & |c
H 0051 Y 4%
PORT Y557/ PORT
E5 E5
T~ T~
004F 02 004F 02
0050 6B 0050 B
0051 9A 0051 9A
b~ T~
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OTIR Block output with increment.

Function: (C) < (HL); B< B - 1; HL < HL + 1; Repeat
until B = 0

Format:

Ll [ ol [rTo]t ] byter: ED
[ Jo] Jr]o]o[1]1]byte2:B3

Description: The contents of the memory location addressed by
the HL register pair are output to the peripheral
device addressed by the contents of the C register.
The B register is decremented and the HL register
pair is incremented. If B # 0, the program counter
is decremented by 2 and the instruction is re-
executed. C supplies bits AQto A7 of the address
bus. B supplies (after decrementation) bits A8 to
AlS.

Data Flow:

c— [ 1

E PORT 1] -2
=

L —— L] =43

T~

0: 4 M cycles; 16 T states; 8 usec @ 2 MHz.

Timing: B =
B #0: 5 M cycles; 21 T states; 10.5 usec @ 2 MHz

Addressing Mode: External.

Flags: s z PN N C
1

T T T ']
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Example: OTIR

Before: After:

B o3 [ a0 Jc e@7747A o |c

H 5550 I Hl )"
PORT ) o
AC A0
ED 5550 6B sss0| 6B
B3 5551 02 5551 02
5552 9A 5552 9A
OBJECT CODE 5553 65 5553 65

365



PROGRAMMING THE Z80

OouT O, r Output register r to port C.

Function: O <«r

Format:

|
o] 1][-—r—]o]o]1]byte2

1}1|1|0J1|1|0\Ilbyte1:ED

Description: The contents of the specified register are output to
the peripheral device addressed by the contents of
the C register. r may be any one of:

A - 111 E - 011
B — 000 H - 100
C - 001 L - 101
D - 010

Register C supplies bits A0 to A7 of the address
bus. Register B supplies bits A8 to AlS5.

Data Flow:
A PORT
B c
D E
H L
l [
Timing: 3 M cycles; 12 T states; 6 usec @ 2 MHz

Addressing Mode: External.

Flags: S Z H PV N C

[ l l | \ IJ |J (no effect).

Byte Codes:

o [s[ale]n]w]o]e]




Example:

(T

ED

41

OBJECT CODE

THE Z80 INSTRUCTION SET

OUT (C), B
Before: After:
B oo T m Jo B[ o [ R Jc
[ 88 JroR 77/l
Fi Fi

367
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OUT (N), A Output accumulator to peripheral port N.

Function: N) <A

Format:

.u;[o’1!o!o!1||lbyte1:D3

U : U byte 2: port address

Description: The contents of the accumulator are output to the
peripheral device addressed by the contents of the
memory location immediately following the op-

code.
Data Flow: T ~—
A
B C out
D E N
H L PORT
/\__,
Timing: 3 M cycles, 11 T states; 5.5 usec @ 2 MHz
Addressing Mode: External.
Flags: s z H PPV N C
[TTTTTT1] toette.
Example: OUT (0A), A
Before: After:

M~—_ a5 | [_F__Tort A5 | Vlsror
0A

D3
0A

T ~— ]
OBJECT CODE
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OouUTD Output with decrement.
Function: (C)«< HL); BC+~B — I; HL+< HL -1
Format:

[ To]v [ o] ] byte 1: ED
["To] Jo] 1 Jo] 1 1] byte 2: AB

Description: The contents of the memory location addressed by
the HL register pair are output to the peripheral
device addressed by the contents of the C register.
Then both the B register and the HL register pair
are decremented. C supplies bits A0 to A7 of the
address bus. B supplies (after decrementation) A8

to AlS.
Data Flow:
A DATA
B £ COUNTER C —
D E PORT

Wil i

Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz

Addressing Mode: External.

Flags:
4 H PN N C
[2]x] [*] 7] ] | — Serif B = 0 after execution,
L reset otherwise.
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Example:

T~

ED

AB

b — ]
OBJECT CODE

370

OUTD
Before: After:
Bl 30 | 9 Jc sPZZFE7] oA |c
H 228F v Wl s "
PORT oA /) rorT
9A
/\__ /\___
22BF A 22BF 4A
b~ | b~
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OouTI Output with increment.
Function: (C) < HL); B« B - 1; HL < HL + 1
Format:

bh]]]obhlobj byte 1: ED

|1Lo,|[olo|o|1|1| byte 2: A3

Description: The contents of the memory location addressed by
the HL register pair are output to the peripheral
device addressed by the C register. The B register
is decremented and the HL register pair is incre-
mented.

C supplies bits A0 to A7 of the address bus.
B (after decrementation) supplies bits A8 to AlS.

Data Flow: ~_

DATA

C ———
E PORT
L

i ik
Timing: 4 M cycles; 16 T states; 8 usec @ 2 MHz
Addressing Mode: External.

Flags:
H PPV N C

sz
t?lx} ]"I l?lll 1 —— Set if B = 0 after execution,
{

reset otherwise.

3N
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After:

807 e |c

H

Example: OUTI
Before:
B[ oA | BB
] OF9A
PORT
BB
T~
£ OF9A A oron
A3 p—
b~

OBJECT CODE

372

s
S APoRT
BB

—~__

6A
T~
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POP qq Pop register pair qq from stack.
Function: 494w < (SP); 99hjgh+ (SP + 1); SP<SP + 2
Format.

L[ fa afofo]o]

Description: The contents of the memory location addressed by
the stack pointer are loaded into the low order of
the specified register pair and then the stack
pointer is incremented. The contents of the
memory location now addressed by the stack
pointer are loaded into the high order of the
register pair, and the stack pointer is again in-
cremented. ggmay be any one of:

BC - 00 HL - 10
DE - 01 AF — 11
Data Flow: .
. c
Y 2
Timing: 3 M cycles; 10 T states; S usec @ 2 MHz

Addressing Mode: Indirect.

Byte Codes: qa BC DE HL AF

a]o]e]n]

373
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Flags: s z H PV N C
LLI L LT [ ] ] moeffee.
Example: POP BC
Before: After:
B[ B9OA e

s 0158 | SP 9\

c 0158 0A 0158 oA
o~ 015C 2 015C -
OBJECT CODE 015D D3 0150 03

374



POP 1X

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

THE Z80 INSTRUCTION SET

POP IX register from stack.

IX ow (SP); ]Xhigh <SP + 1); SP<SP +2

1

Lifr]of]v]rlo]r ] bytel: DD

il’li\io\oto“owu' byte 2: El

The contents of the memory location addressed by
the stack pointer are loaded into the low order of
the IX register, and the stack pointer is in-
cremented. The contents of the memory location
now addressed by the stack pointer are loaded in-
to the high order of the IX register, and the stack
pointer is again incremented.

I O w >
[3)

W ZZZ "/

SPW////%—T

4 M cycles; 14 T states; 7 usec @ 2 MHz

Indirect.
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Flags: s 7 H PV N

L| l ' l l l [CT (no effect).

Example: POP IX
Before: After:
X[ 0001 | x5
sl o908 | se

N
. o (™

3% 090B 36
dl 090C| o4 090C 04
090D B2 ooop| B2
OBJECT CODE N ~__
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POP 1Y

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

I O o >

THE Z80 INSTRUCTION SET

POP 1Y register from stack.

1Y 10w*—(SP); IYhigh‘—(SP + 1); SP<SP + 2

ul|1|1]1l‘|0|_'_| byte 1: FD
[1]1]1}0‘0[010]_11 byte 2: El

The contents of the memory location addressed by
the stack pointer are loaded into the low order of
the 1Y register, and then the stack pointer is incre-
mented. The contents of the memory location now
addressed by the stack pointer are loaded into the
high order of the 1Y register, and the stack pointer
is again incremented.

e
E
T

4 M cycles; 14 T states; 2 usec @ 2 MHz

Indirect.

S Z H P/V N C

IFW ' T I } ‘ | ](noeffect).

31



PROGRAMMING THE Z80

Example: POP 1Y
Before: After:
0| 032A | YO 45

s 3004 ) N

FD 3004 61 3004 61

Bl 3005 40 3005| 40
/\/ 3006 39 3006 39
OBJECT CODE TN TN

378



PUSH qq

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Byte Codes:

spZ ////////A—‘

THE Z80 INSTRUCTION SET

Push register pair onto stack.

(SP — 1) <qqhigh’ (SP — 2) < dqlows
SP <SP -2

Ll farslel o] ]

The stack pointer is decremented and the contents
of the high order of the specified register pair are
then loaded into the memory location addressed
by the stack pointer. The stack pointer is again
decremented and the contents of the low order of
the register pair are loaded into the memory loca-
tion currently addressed by the stack pointer.qq
may be any one of:

BC - 00 HL - 10
DE - 01 AF — 11
A F
B c
D E
H )t

-
_

N

jj

\

3 M cycles; 11 T states; 6.5 usec @ 2 MHz

Indirect.

q9q: BC DE HL AF

o]
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Flags: s z H PV N C
’—[ ] l | l l I ‘ (no effect).
Example: PUSH DE
Before: After:
D 0A03 | E D| 0A03 ] e
e o8l ] P50
N N
D5 00AF B6
0080 9A
TN 008l oOF
OBJECT CODE

380




PUSH IX

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode :

Flags:

THE Z80 INSTRUCTION SET

Push IX onto stack.

SP - 1)« lxhigh; (SP = 2) < IX|ows
SP<SP-2

[ o] ][ o] |byte1: DD
F]I]I]TOIOJ'Jol'lbyteZ:ES

The stack pointer is decremented, and the contents
of the high order of the IX register are loaded into
the memory location addressed by the stack
pointer. The stack pointer is again decremented
and then the contents of the low order of the IX
register are loaded into the memory location ad-
dressed by the stack pointer.

I O »
O

——

4 M cycles; 15 T states; 7.5 usec @ 2 MHz

Indirect.

H PV N _C

CT T ET ] @oefteey

381
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Example: PUSH IX
Before: Aftcr:
X l— 04A2 ] x| 04A2 ]
s ome ] Y Z S
DD 0094 88
ES 0095 9F
- 0096 04
OBJECT CODE TN

382



PUSH 1Y

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

THE Z80 INSTRUCTION SET

Push 1Y onto stack.

(SP — 1) < IY pigh; (SP = 2) < IYjouw;
SP <SP - 2

‘1'1]1[111[1Iolﬂbytel:FD

}1!1[1|oio!1%oLU’byteZ:ES

The stack pointer is decremented and the contents
of the high order of the 1Y register are loaded into
the memory location addressed by the stack
pointer. The stack pointer is again decremented
and the contents of the low order of the 1Y register
are loaded into the memory location addressed by
the stack pointer.

A

B c
D | E
H L
2 1 ‘

3 M cycles; 15 T states; 7.5 usec @ 2 MHz

Indirect.

S Z H PV N C

L L] T T [ | ] (moeffeey

383
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Example:

N

FD
E5

I~

OBJECT CODE

384

PUSH 1Y
Before: After:
v 90BF 1] 90BF ]
Pl ooms | w5777
N
00B4 FF
0085 85
00B6 9

N




THE Z80 INSTRUCTION SET

RES b, s Reset bit b of operand s.
Function: sp <0
Format: s:
e L fofofrfe]r ]
o=
@y [ fefofifo]r]r]
L lof—=rr— ][]
(IX + d) [1|1|o’1 1[ |o||_|
Ll fofof fo] ]}
| T T T I T T T
97— I
(o [ o]
ay+d) [ [ ] ]e]]
Lrffefofrfof ][]
T T 1 1 T ) T
’ ] | 1 Ll‘ | 1 | I
L[ of=e—] 1 [ 1] o]
b may be any one of:
0 — 000 4 — 100
1 - 001 5 — 101
2 - 010 6 — 110
3 -011 7 - 111
r may be any one of’:
A - 111 E - 011
B - 000 H — 100
C - 001 L — 101
D - 010

byte 1:
byte 2
byte 1:
byte 2
byte 1:
byte 2:
byte 3:
byte 4
byte 1:
byte 2:
byte 3:
byte 4

CB

CB

DD

CB
offset value

FD

CB

offset value
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Description: The specified bit.of the location determined by s is
reset. s is defined in the description of the similar
BIT instructions.
Data Flow:
A
B C ‘;
D E
H L ALU
Timing: usec
s M cycles: | T states: | @ 2 MHz:
r 2 8 4
(HL) 4 15 7.5
(IX + d) 6 23 11.5
ay + d) 6 23 11.5
Addressing Mode: r:implicit; (HL): indirect; (IX + d), (IY + d): in-
dexed.
Byte Codes: RES b,r
b: rA B C D E H L
CB— o0 |87|80|81|82|83|84(85
1 | eF| 88|89 |8A|88B|8C|8D
2 1 97|90|91 |92 |93 |94 |95
3 |9F|98|99|9A|9B|9oc|9D
4 | A7| AO| A1 | A2| A3 | A4 |AS
5 | AF| A8| A9 | AA|AB |AC|AD
6 | B7|B0O|B1|B2|B3|B4|B5
7 | BF | B8 |B9|BA!BB [BC|BD
b: 0 1 2 3 4 5 6 7
RES b, (HL) CB— L86|8E|%|9E|A6|AE|56|BEI

386
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RES b,(IX+d) opbcsa— .

g 0 1 2 3 4 5 6 7
H —_
Ut R

Flags: s Z _H_ PV N C
LIT T T T T Javoetfeet
Examples: RES 1, H
Before: After:
(T W e ] W7
&

8C

OBJECT CODE

387
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RET Return from subroutine
Function: PClow = (SP); PChigh < (SP + 1); SP <SP + 2
Format:

lllllolo|1|o|o|1[C9

Description: The program counter is popped off the stack as
described for the POP instructions. The next in-
struction fetched is from the location pointed to
by PC.

Data Flow:
g
Timing: 3 M cycles; 10 T states; 5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: sz H PV N C

LI LT [T T ] Jwostten
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Example: RET

Before: After:

Pcl___ oe (WSS,
se Wi i

sp| 3310 ]
9 3310 21 3310 21
3311 B4 331 B4
OBJECT CODE o~
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RET cc Return from subroutine on condition.

Function: If cc true: PCjoyw < (SP); PChigh < (SP + 1);
SP-SP + 2

Format: —

BE |'—r“|—’l° [o]o]

Description: If the condition is met, the contents of the pro-
gram counter are popped off the stack as described
for the POP instructions. The next instruction is
fetched from the address in PC. If the condition is
not met, instruction execution continues in
sequence.

Data Flow:

A F
B C
D E
H L
CONTROL
LOGIC
STACK
" PCL
- PCH
7 b~
S
cc may be any one of:
NZ - 000 PO - 100
Z — 001 PE - 101
NC - 010 P - 110
C - 011 M - 111
Timing: Condition met: 3 M cycles; 11 T states; 6.5 usec @
2 MHz.
Condition not met: 1 M cycle; 5 T states; 2.5 usec
@ 2 MHz
Addressing Mode: Indirect.
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Byte Codes:

Flags:

Example:

2
OBJECT CODE

THE Z80 INSTRUCTION SET

CC: NZ Z NCC PO PE P M

[cﬂcalmloaleolsalm[ﬂ

S Z H PV N _C
L l l ] ] ] I | T (no effect)
RET NC
Before: After:
F F
PC [ 0124 ik SESi

|
sp[ ssu___ | Sl i

(\- T~

8511 85 8511 85

8512 B1 8512 B1
V\J /\J
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RETI Return from interrupt.
Function: PCjow <= (SP); PChjgh <~ (SP + 1); SP <SP + 2
Format:
Lll | [o][1]1]o || I byte 1: ED
MI,OIOIIJIIOII—I byte 2: 4D
Description: The program counter is popped off the stack as

described for the POP instructions. This instruc-
tion is recognized by Zilog peripheral devices as
the end of a peripheral service routine so as to
allow proper control of nested priority interrupts.
An EI instruction must be executed prior to RETI
in order to re-enable interrupts.

Data Flow:
STACK
PCL
PCH
SP ~——
Timing: 4 M cycles; 14 T states; 7 usec @ 2 MHz
Addressing Modes: Indirect.
F[ags: S Z H PV N C
LIT T T T[] moeffen.

392



Example:

S~

ED

4D

" ~—_J
OBJECT CODE

RETI

Before:

rc| 84E1

| 8982

|

89B2 A4
89B3 Bl

THE Z80 INSTRUCTION SET

After:

Sy
s iz

89B2
8983

S~

A4

B1

b~
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RETN

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

394

I O @ >

Return from non-maskable interrupt.

PCiow + (SP); PChigh + (SP + 1); SP <SP +
2; IFF'1 < IFF2

|_1|1|1|o‘1‘1‘0‘1‘ byte 1: ED
]o|1|o[o[o]1|o‘1’ byte 2: 45

The program counter is popped off the stack as
described for the POP instructions. Then the con-
tents of the IFF2 (storage flip-flop) is copied back
into the IFF1to restore the state of the interrupt
flag before the non-maskable interrupt.

4 M cycles; 14 T states; 7 usec @ 2 MHz

Indirect.



Flags:

Example:

T~

ED
45

e

OBJECT CODE

THE Z80 INSTRUCTION SET

PPV N C

LS‘Z‘ iH T L[_] (no effect).

RETN

Before: After:

Pc | ASF1 | P
sp| 8B4C ] RS

8B4C 01 8B4C o1
8B4D 9A 8B4D 9A
T~ V\__
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RL s Rotate left through carry operand s.
Function:
B
c s
Fo N N
ormat * r[1|1|o|o|1IolllljbyteI:CB

Lo]o|o|||o]<—:—rﬂbyte2
@HL) [7]1]o o1 o]1]1]byte1: CB
|olo]oF]o]1|1|i]byte2:l6
aX +d) [ [ Jo]1[1[1]o]1|byte1: DD

]_]1|o|o]1]ol1|_bete 2: CB

’ : : l 9' , : ll bete3 offset value
’o|o|o|1|.0|1|1|0bete4:16
avy +d [ [ [ [ Jo]v ] byte1: FD
|_1|1]o[oj1]o[1|1jbyte2:CB
- l " c% :Il: bete 3: offset value
Lo|o|o[1|o|1]lT bete4:16
r may be any one of:
A - 111 E - 011
B — 000 H - 100
C - 001 L - 101
D - 010
Description: The contents of the location of the specific

operand are shifted left one bit place. The con-
tents of the carry flag are moved to bit 0 and the
contents of bit 7 are moved to the carry flag. The
final result is stored back in the original location. s
is defined in the description of the similar RLC in-
structions.
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Data Flow:

I O ® >»

Timing:

Addressing Mode:

Byte Codes:

Flags:

Example:

cB

OBJECT CODE

THE Z80 INSTRUCTION SET

usec

s M cycles: | T states: | @ 2 MHZ:
r 2 8 4
(HL) 4 15 7.5
(IX +d) 6 23 11.5
Iy + d) 6 23 11.5

r: implicit; (HL): indirect; IX + d), IY + d):in-

dexed.

RL rr A B C D E H 1L
ca{wbo]n]ﬂm]um
®v N C

LOM O] [e[O]e]

C is set by bit 7 of source.

RL E

Before After:

I ; 057

[ e sk
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RLA Rotate accumulator left through- carry flag.
Function:
L e fp—a<
13 A
Format:
Lelefelnfe [P0 ] 17
Description: The contents of the accumulator are shifted left
one bit position. The contents of the carry flag are
moved into bit 0 and the original contents of bit 7
are moved into the carry flag. (9 bit rotation.)
Data Flow: u
A Icle
B C
D E ALU
H L -~
Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz
Addressing Mode: Implicit.
A s z H PV N C
ags:
& LI [ o] [ [O]e]
Cisset by bit 7 of A.
Example: RLA
Before: After:

(_\

17

OBJECT CODE

398
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RLCA

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

07

o~
OBJECT CODE

THE Z80 INSTRUCTION SET

Rotate accumulator left with branch carry.

MO]0|0‘Q]1L1I1J 07

The contents of the accumulator are rotated left
one bit position. The original contents of bit 7 is
moved to the carry flag as well as to bit 0.

T O o >
~— m O,

1 M cycle; 4 T states; 2 usec @ 2 MHz

Implicit.

P/V N C

[T T lol 1 [ofe)

C is set by bit 7 of A.

RLCA

Before: After:

Al e ] o Jf NS Y L

Note: This instruction is identical to RLC A, ex-
cept for the flags. It is provided for compat-
ibility with the 8080.
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RICr Rotate register r left with branch carry.

Function:

Format:

[ [1o]ofr]o]1]1]byte1:CB

Lofolofo]eferrrr]byte2

Description: The contents of the specified register are rotated
left. The original contents of bit 7 are moved to
the carry flag as well as bit 0. r may be any one of:

A — 111
B - 000
C - 001
D - 010

Data Flow:

E - 011
H - 100
L - 101

| r

I O w >

~— mO™m

R/

\/

ALU

-

2

Timing: 2 M cycles; 8 T states; 4 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes: r:

. A B C D E H L
ca-|o7Joﬂ01|02|03[04[05J

400



Flags:

Example:

N~

cB

00

T~
OBJECT CODE

THE Z80 INSTRUCTION SET

H ®V N C
DOmEROE0

C is set by bit 7 of source register.

RLC B
Before: After:
B[ 62 | [ s JF B k7)) O 5 F
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RLC (HL) Rotate left with branch carry memory location
(HL).
Function:
(HL)
Format:
Dl Tofo o] 1] byter:cB

Lofofofofeft] o] byte2:06

Description: The contents of the memory location addressed by
the contents of the HL register pair are rotated left
one bit position and the result is stored back at
that location. The contents of bit 7 are moved to
the carry flag as well as to bit 0.

Data Flow:
; &r <= Al
B c .
b E .
H L — | —DATA |
Timing: 4 M cycles; 15 T states; 7.5 usec @ 2 MHz

Addressing Mode: Indirect.

Flags: H ®v N C
e[e] O] [e[0[e]

C is set by bit 7 of the memory location.
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Example:

(™

CcB

06

~——__J
OBJECT CODE

THE Z80 INSTRUCTION SET

RLC (HL)
Before: After:
% 2 )
H 6114 v wf 6114 It
T~
6114 c5 s4 887
T~ -
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RLC (IX + d) Rotate left with branch carry memory location (IX

Function:

Format:

Description:

Data Flow:

+ d)
mEte——
cf

(IX + d)

["[hTe] [ ] Jo]1]byte1: DD
uqlTo[ol'[ﬂJ‘lbytez:CB

|4: : Ij : :T 1byte3:offsetvalue
MOJ°|°|°[‘|‘|°‘byte4:O6

The contents of the memory location addressed by
the contents of the IX register plus the given offset
value are rotated left and the result is stored back
at that location. The contents of bit 7 are moved
to the carry flag as well as to bit 0.

I O @ >
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Timing:

THE Z80 INSTRUCTION SET

6 M cycles; 23 T states; 11.5 usec @ 2 MHz

Addressing Mode: Indexed.

Flags:

Example:

T~

DD

CB

01
06

T~

OBJECT CODE

o] [0 [8[0[®]

C is set by bit 7 of memory location.

RLC (IX + 1)
Before: After:
[« Jr S
IX| 04B1 R 0481 |
T
04B1| 63
0482 94
/\_/

405



PROGRAMMING THE Z80

RLC (IY + d) Rotate left with carry memory location (IY + d).

Function:
(- g
c [y +d]
Format:
L[] ][] [o]1]byte1: FD
[1]1]0]0]1]0[1 llbetCZZCB
}_: : : c:! : : : J byte 3: offset value
|o]o|o|o‘o‘1 ‘v |0bete4:06
Description: The contents of the memory location addressed by
the contents of the IY register plus the given offset
value are rotated left and the result is stored back
at the location. The contents of bit 7 are moved to
the carry flag as well as bit O.
Data Flow:
A
B
D
H
iv[
RLC
™~




THE Z80 INSTRUCTION SET

Timing: 6 M cycles; 23 T states; 11.5 usec @ 2 MHz

Addressing Mode: Indexed.

Flags: sz H ®V N C
(oo [O[ [e[O]e]
C is set by bit 7 of memory location.
Example: RLC dY + 2)
Before: After:
F .57 F

Iy 0021 ][ 0021 ]
/\T .

FD 0021 05 0021 05
CB 0022 Bi 0022 B1

02 0023 A2 0023
06 b ~——

OBJECT CODE
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RLD Rotate left decimal.

Function: A7 43 o [7 43 o[HL]

Format GO LT[ [o]1] byeet:Ep
[oThJo[0 [ [1 ][] byte2:6F

Description: The 4 low order bits of the memory location ad-

dressed by the contents of HL are moved to the
high order bit positions of that same location. The
4 high order bits are moved to the 4 low order bits
of the accumulator. The low order of the ac-
cumulator is moved to the 4 low order bits of the
memory location originally specified. All of these
operations occur simultaneously.

Data Flow:
A m;
B C
D E - —
H L 7//////////////////4
} | oA
Timing: 5 M cycles; 18 T states; 9 usec @ 2 MHz

Addressing Mode: Indirect.
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Flags:

Examples:

ED
6F

OBJECT CODE

B4F2

H

THE Z80 INSTRUCTION SET

®V N C

(e8] [o Te[0] |

RLD

Before:

L

After:

H | B4F2

B4F2

[
]
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RR s Rotate right s through carry.
Function:
7 —o =] |
s C
Format:
r [lll[oyouoll[ll byte 1: CB
DEDNDEEER N
(HL) Ll]v‘o‘ol_ﬂﬂ\\ﬂ byte 1: CB
[010’0!1l1‘1|1j0} byte 2: 1E
(IX + d) yLl1TOJ1J1‘1IO||| bytel:Db
[1!1'0'0‘1J0‘1‘1| byte 2: CB
[ : Ir: c.{l ]r : 'I | byte 3: offset value
ololol [ [ ]o] briea: iE
ay +d) [ [ ][] [ ]e][1] bytel:FD
[_1]1 o]o‘1]o|1|l| byte 2: CB
E‘:‘ :,TI-?A: J' -—=  byte 3: offset value
[o}o]cﬂlll‘lbm byte 4: 1E
r may be any one of:
A — 111 E — 011
B — 000 H - 100
C - 001 L — 101
D - 010
Description: The contents of the location determined by the

specific operand are shifted right. The contents of
the carry flag are moved to bit 7 and the contents
of bit 0 are moved to the carry flag. The final
result is stored back in the original location. s is
defined in the description of the similar RLC in-
structions.
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Data Flow:
A
B
D
H
Timing: usec
s: M cycles: | T states: | @ 2 MHz:
r 2 8 4
(HL) 4 15 7.5
(IX + d) 6 23 11.5
a1y + d) 6 23 11.5
Addressing Mode: r: implicit; (HL): indirect; (IX + d), 1Y + d): in-
dexed.
Byte Codes: RR r: r A B L
ca-Ln: ]18 \19 I]A ||a |1c |1D ‘
Flags: s z H PV N C
e[®] [O] [@[O]e]
C is set by bit 0 of source data.
Example: RR H
Before: After:
T e 1 U D
cB
1C
T~
OBJECT CODE
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RRA

Function:

Format:

Description:

Data Flow:

Timing:

Addressing Mode:

Flags:

Example:

S~
1F

Vo —
OBJECT CODE

412

Rotate accumulator right through carry.

e~

A cf

Lofofof [ [r[rfn] 1

The contents of the accumulator are shifted right-
one bit position. The contents of the carry flag
are moved to bit 7 and the contents of bit O are
moved to the carry flag (9-bit rotation).

I U w >
~ m O m

1 M cycle; 4 T states; 2 usec @ MHz

Implicit.

S Z P’V N C

[T T To[ [ [0l

C s set by bit 0 of A.

RRA
Before: After:

al_r T o ¢ AR5 70¢

Note: This instructionis almost identicalto RR A. It
is provided for 8080 compatibility.



Function:

Format: S:

(HL)

(IX + d)

(IY + d)

Description:

THE Z80 INSTRUCTION SET

Rotate right with branch carry s.

-7 o' [ ]

S C

sisany of r, (HL), (IX + d), IY + d).

l1|1|o‘o|1 ’0|1 ]IJ byte 1: CB
[ﬂo|o|o|1 \<—:r:—;*J byte 2

[1|1|o|o|1 |o|1 IlbeteI:CB
MOT0|0|1 |1]1 IonyteZ:OE

m17|0‘1]1|1|0|11byte1:DD

[1|1|o|o|1|o‘1‘1]byte2:CB

}4: : 1 <:1 : : :~J byte 3: offset value
lofofofo]1]1]1]0] byted: OE

F] 1]1]1|1]0]1_bete1:FD
[1]1|o|o‘1]o|1ubyte2:CB

|T: : : <:i : I : ]byte3: offset value
[ofofofo] 11 [1]o] byte4: oE

r may be any one of:

A - 111 E - 011

B — 000 H — 100

C - 001 L — 101

D - 010

The contents of the location determined by the
specified operand are rotated right and the result
is stored back in the original location. The con-
tents of bit 0 are moved to the carry flag as well as
to bit 7. s is defined in the description of the
similar RLC instructions.
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Data Flow:
A FCoF
B C
D E ALU
H L ——
Timing: usec
N M cvcles: | T states: | @ 2 MHz:
r 2 8 4
(HL) 4 15 7.5
(IX + d) 6 23 11.5
(IY + d) 6 23 11.5

Addressing Mode:

r: implicit; (HL): indirect; (IX + d), (IY + d):in-
dexed.

Byte codes: RRC r » A B C D E H L
cs-[wloeioo[oﬂoerock)o}
Flags: s 2 H W N ¢
lo[e] [O] |@[Ole@]
C is set by bit 0 of source data.
Example: RRC (HL)
Before: After:
[ s 57 ¢
H[ 3FF2 JL H[ 3FF2 It
/\ (_\‘
cB 3FF2 06 32l )
OF
V\J

OBJECT CODE
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RRCA Rotate accumulator right with branch carry.
Function:
7 —»0 D
A C
Format:
Lofofolofr[rir]i]oF
Description: The contents of the accumulator are rotated right
one bit position. The contents of bit 0 are moved
to the carry flag as well as to bit 7.
Data Flow: O
A CA4F
B C
D E ALU
H L —
Timing: 1 M cycle; 4 T states; 2 usec @ 2 MHz
Addressing Mode: Implicit.
Flags: s z H PV N C
L[ [ o] [ [ole]
Cis set by bit 0 of A.
Example: RRCA
Before: After:

OF

OBJECT CODE
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RRD Rotate right decimal.
, g N
Function: Al7 43 o] [7 4J3 o|[H]

Format: ‘I ! ! °| ! j ! |0 bl byte 1: ED

T
L
ol t[rfefofr [ ] bye2:67

Description: The 4 high order bits of the memory location ad-
dressed by the contents of the HL register pair are
moved to the low order 4 bits of that location. The
4 low order bits are moved to the 4 low order bits
of the accumulator. The low order bits of the ac-
cumulator are moved to the 4 high order bit posi-
tions of the memory location originally specified.
All of the above operations occur simultaneously.

Data Flow:

I O @ >»

C
E ALU
L

Timing: 5 M cycles; 18 T states; 9 usec @ 2 MHz

Addressing Mode: Indirect.
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Flags:

Example:

T~

ED
67

b~
OBJECT CODE

THE Z80 INSTRUCTION SET

H ®V N C

oTe[ o] Je[o] |

RRD
Before: After
A N

H| FEB1 v H

e

FEB1

1/

FEB1 FEB1
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RST p

Function:

Format:

Description:

Data Flow:

Restart at p.

SP — 1)« PChigh; (SP = 2) < PCjpw; SP <SP
-2 PChigh < 0; PCloyw < P

e ]

The contents of the program counter are pushed
onto the stack as described for the PUSH instruc-
tions. The specified value for p is then loaded into
the PC and the next instruction is fetched from
this new address. p may be any one of:

00H - 000 20H - 100
08H — 001 28H - 101
I0H - 010 30H - 110
18H - 011 38H - 111

This instruction performs a jump to any of eight
starting addresses in low memory and requires only

a single byte. It may be used as a fast response to

an interrupt.

I O wm >
e]

o

418
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Timing: 3 M cycles; 11 T states; 5.5 usec @ 2 MHz
Addressing Mode: Indirect.

Byte Codes: p: 00 08 10 18 20 28 30 38

\CJ CFlD?‘DF‘E?{EF ‘F? IFFJ

Flags: s 7 H PAV N_C

(’ ‘J I ‘ ’ u (no effect).

Example: RST 38H

Before: After:

pc | VY ] ec

sp | 0268 55
T~ T
FF 0269 51 029 1A
026A BF 026A W///
OBJECT CODE 0268 03 0268 | 03 |
T~
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SBCA, s

Function:

Format:

(HL)

(IX+d)

(IY + d)

Subtract with borrow accumulator and specified

operand.

A<A-s-C

s: may be r, n, (HL), (IX + d), or (IY + d)

L lefofr [y [~r]
Ll fol e[ fo]
rr————
Llefefrfofeffeo]
Ll fefr o] fofr]
Llofofr e ]r]o]
[ ——r—

HEREDECE
Llofor ] [r]r]o]
r——r——

LI 1 T l
L

r may be any one of:

Description:

420

A - 111 E — 011
B — 000 H - 100
C - 001 L - 101
D - 010

byte 1: DE

byte 2: immediate
data

byte 1: 9E

byte 1: DD

9E

byte 3: offset value
byte 1: FD |

byte 2: 9E

byte 3: offset value

The specified operand s, summed with the con-
tents of the carry flag, is subtracted from the con-
tents of the accumulator, and the result is placed
in the accumulator. s is defined in the description
of the similar ADD instructions.



THE Z80 INSTRUCTION SET

Data Flow: {L
Al
B C
D E ALU S
H L -c
Timing: usec |
s M cycles: | T states: | @ 2 MHz:
r 1 4 2
n 2 7 3.5
(HL) 2 7 3.5
(IX + d) 5 19 9.5
HAY + d) S 19 9.5 |
Addressing Mode: r: implicit; n: immediate; (HL): indirect; (IX +
d), (IY + d): indexed.
Byte Codes: SBC A,r nA B C D E H 1L
m%[‘?‘?‘ 9Al 95" 9c] 9@
Flags: s z H PO N C
o/e] o] o] |0
Example: SBC A, (HL)
Before: After:
aAl_s [ s [ A
H 3600 L H 3600 v
9 3600 OF 3600 OF
L\_/ TN~ TN~

OBJECT CODE
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SBC HL,ss Subtract with borrow HL and register pair ss.

Function: HL <~ HL - ss — C
o [ ToTeT o] ] bwe 1: 0
(o5 s oL 1]o] bwe:
Description: The contents of the specified register pair plus the

contents of the carry flag are subtracted from the
contents of the HL register pair and the result is
stored back in HL. ss may be any one of:

BC - 00 HL - 10
DE — 01 SP - 11
Data Flow: i} ?
A [<le —>
B c \/
5 ¢ ALU
l_l_ H 7 7 7 L -C
sp| |
Timing: 4 M cycles; 15 T states; 7.5 usec @ 2 MHz

Addressing Mode: Implicit.

Byte Codes: SS: BC DE HL SP

- [a[s2]a] ]
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Flags:

Example:

ED

52

OBJECT
CODE

THE Z80 INSTRUCTION SET

H PO N C
uol 7] [@]]@]

H is set if borrow from bit 12.

Cis set if borrow.

SBC HL, DE

Before: After:
(I 20558

06B9 E 06B9

E
3142 //////// i

-~
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SCF

-~

Function:

Format:

Description:

Timing:

Addressing Mode:

Flags:

424

Set carry flag.

C <1

elolr [ e[ [0]r] 3

The carry flag is set.
1 M cycle; 4 T states; 2 usec @ 2 MHz
Implicit.

H PV N C

[TTTo[ 1 o]
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SET b,s Set bit b of operand s
Function: sp < 1
Format: s

bl ] byte2

|

ofofrfoli]v] byer:cB
|
|

—b—[1[1Jo] byte2
1 o]1[1t|°|‘l byte 1: DD
o fefeli ol [V ] pytea: cB

T T T T T T ]
|

Ix + d)

%
HL) |
l
|
I

I%lLO!O‘I‘ODL} byte 1: CB
|
|
|
l

T | byte 3: offset value

Dl [ o] byted
av +d¢y L[ Te[r] byter:ED
."'IO](’]‘IO!‘L‘! byte 2: CB

T T ¥

l 1 :?.‘ | Dbyte 3: offset value
(ol [ ]o] byes

r may be any one of:

A - 111 E - 011
B — 000 H - 100
C - 001 L — 101
D - 010
b may be any one of:
0 - 000 4 - 100
1 — 001 5 - 101
2 - 010 6 — 110
3 - 011 7 — 111
Description: The specified bit of the location determined by s is

set. s is defined in the description of the similar
BIT instructions.
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Data Flow:
A
: -/
D E ALU
H L
Timing: usec
s M cycles: | T states: | @ 2 MHz.
r 2 8 4
(HL) 4 15 7.5
(Ix + d) 6 23 11.5
Iy + d) 6 23 11.5
Addressing Mode: r: implicit; (HL): indirect; IX + d), IY + d):in-
dexed.
Byte Codes: SET b,r
b:A B C D E H L
CcB- 0 |c7|colci|ca|ca|calcs
1 |CF|c8{co|calce|cc|cD
2 | b7{ DO| D1 | D2| D3| D4 D5
3 |DF| D8|D9{DA|DB|DC|DD
4 |E7{EO|EV|[E2 | E3|E4|E5
5 |EF |E8 [E9 | EA| EB | EC | ED
6 | F7|FO|F1|F2 | F3|F4|Fs5
7 |FF|F8|Fo |FA|FB |FC |FD
SET b, (HL)
b:

SET b, (IX + d)

SET b, (IY + d)

426
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Flags.' S Z H PV N C

l ‘ I ’ I ‘ l ‘ ‘(noeffect)

Example: SET 7, A
Before: After:
(T — A N5
CB
FF
b~

OBJECT CODE
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SLA s

Function:

Format: KN

(HL)

IxX + d)

M(IY + d)

Description:

428

Arithmetic shift left operand s.

[={r=—0}=o

C

L[ oo o] ][]
DODDOSES
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r may be any one of:
A - 111 E - 011
B — 000 H - 100
C - 001 L — 101
D - 010

byte 1:
byte 2
byte 1:
byte 2:
byte 1:
byte 2:
byte 3:
byte 4:
byte 1:
byte 2:
byte 3:
byte 4:

CB

CB

26

DD

CB

offset value
26

FD

CB

offset value

26

The contents of the location determined by the
specific operand are arithmetically shifted left with
the contents of bit 7 being moved to the carry flag
and a 0 being forced into bit 0. The final result is
stored back in the original location. s is defined in
the description of the similar RLC instructions.



Data Flow:
A
B
D
H

Timing:
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