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Preface 

Since its appearance in 1956, the FORTRAN programming language has been so widely 
adopted that only a very few of today's computer manufacturers venture to market their 
processing systems without some type of FORTRAN support. This apparent univer­
sality, while providing strong endorsement of the language's simplicity and directness, 
hides the fact that the continued use of FORTRAN has required numerous compromises, 
many of them serious. As implied by the name FORTRAN (FORmula TRANslation), 
the designers' primary intent was to provide a convenient vehicle for specifying programs 
to perform scientific computations. The original language design reflects the state of 
computer science and technology in the 1950s and the perception of scientific computa­
tion at that time. Since then, there have been numerous attempts to expand the language 
so that its users could take advantage of the major advances in the field. These efforts 
often were spectacularly diverse, resulting in a proliferation of FORTRAN dialects. 
Some of these came to be used very widely, but many more remained very local, often 
finding use only at the installations that developed them. This continuing divergence 
emphasized the need for a recognized language standard whose enforcement would 
guarantee some level of consistency across a wide range of computing machinery and 
installations. 

Such a standard, developed under the auspices of the influential American National 
Standards Institute, was published in 1966. This provided a set of language features and 
rules which had to be met if producers of FORTRAN programs were to market their 
wares to a broad range of customers. By implication, then, it meant that FORTRAN 
compilers, i.e., the language processing programs that convert FORTRAN programs 
into equivalent sequences of computer operations, had to meet these same requirements. 
(A particular version of that language might be extended to include other features, but 
programs using these features would not be applied so easily to different types of 
computers.) 

As the standard took hold, people ran into difficulty interpreting some of its specifica­
tions, thereby necessitating a series of revisions and amendments. More significantly, 
advancements in computer science and technology continued at an accelerated pace. It is 
no surprise, therefore, that work on a new standard began to intensify, coming to fruition 
in 1977 with official acceptance occurring in the following year. It is this newly defined 
standardized version of FORTRAN, and extensions to it defined by Hewlett Packard, 
that will be the central focus of this book. 

While it is not crucial here to construct a history of the developments that produced 
FOR TRAN 77, one growth factor in computer science should be discussed because of its 
influence on the language. During the mid-60s, inquiries into the process of writing and 
testing programs began to produce stronger and stronger arguments against the relatively 
undisciplined nature of programming. The basic contention was that traditional practices 
encourage the production of programs that are unnecessarily complex and, therefore, 
inherently difficult to analyze, correct, and modify. Moreover, a methodology was taking 
shape whereby the development of a program could be handled in a systematic way, with xvii 
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the design, implementation and testing following a well-controlled course. By now this 

orderly approach, which has come to be called structured programming, has been applied 

successfully over a sufficiently wide range of problems to place its effectiveness beyond 

dispute. 
A crucial aspect of structured programming lies in a set of building blocks from which 

well-structured programs are formed. Availability of these structural elements varies 

from one programming language to another; thus, recently developed languages provide 

extensive support for structured programming as an explicit design objective. In older 

languages, the inclusion of structured programming features is essentially accidental. 

When it came to FORTRAN (including the 1966 standard version) there was little to be 

found in direct support of structured programming. Attempts to follow this discipline 

within the available language characteristics led to awkward contrivances which, in some 

instances, intensified the complexity they were supposed to relieve. 
Acknowledgment of these difficulties, together with the recognition of structured 

programming's advantages, provided important motivation for many of the major fea­

tures introduced in FORTRAN 77. Agreement was not unanimous on the extent to 

which the language should be changed. Consequently, the resulting standard can be 

viewed as a somewhat cautious step forward, with individual implementers enhancing the 

language as they saw fit. HP has taken a more decisive approach by providing extensions 

that strengthen FORTRAN's support of structured programming. Thus, HP FORTRAN 

77 and structured programming are bound together and this book emphasizes that 

interrelation. Accordingly, we shall describe the features of HP FORTRAN 77 by 

illustrating their use in numerous well-structured examples. In this way, the character­

istics of the language and the principles and techniques of structured programming 

reinforce each other. Since the HP extensions blend smoothly and logically into the fabric 

of the language, the book does not make an explicit distinction between the standard 

features and the enhancements to them. The result is an attractive text for users of HP 

FORTRAN 77 regardless of the extent of their previous FORTRAN background. For 

those students with programming background in any language, the book is an orderly 

presentation of HP FORTRAN 77 emphasizing effective design and implementation 

programs through the use of good, clear, logical structure. 
There is no intent to give equal weight to all of HP FORTRAN 77's features. (A 

complete definition is given in the FORTRAN 77 Reference Manual supplied with your 

system. Many of the features are in the language because they were always there, despite 

the addition of improvements meant to replace them, so that earlier FORTRAN pro­

grams still can be compiled. Accordingly, such features receive minimal attention, in 

some cases only a brief mention in an appendix. The practices they forced programmers 

to adopt receive no mention at all. There is no reason to memorialize poor technique. 

Other features, while not particularly "good" or "bad," tend to be rather specialized, so 

that their use is likely to be infrequent. As a matter of convenience, these features have 

been placed in separate parts of the book, so that the instructor may choose to address 

them or to bypass them without undue effect. Chapters 16, 17, 18, 19, and Appendix A 

are cases in point. Chapter 1 provides specific information to support routine program 

preparation and execution on HP operating systems, with particular emphasis on HP's 

powerful interactive facilities. A more complete description of these ancillary facilities is 

given in the appropriate Getting Started Manual for your HP system. 
People familiar with introductory programming concepts may find it appropriate to 

skip either or both of the first two chapters, and they may do so without loss of continuity. 

Each concept and feature is well illustrated by means of procedural fragments and 

complete programs. After fulfilling its tutorial purpose, the book can continue to serve as 

a comprehensive reference for HP FORTRAN 77 and its effective use. There is an 

unusually wide selection of problems and exercises so that the instructor can select those 

that are most consistent with the background and interests of the particular class. 
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1 
Introductory 
Concepts 

We shall be considering organizational concepts and logical techniques which provide a 
set of powerful tools for developing programs-sequences of instructions that control the 
activities of a computer. These notions, which formed and developed over recent years, 
have crystallized into a way of designing and writing programs known as structured 
programming. HP FORTRAN 77, the language in which we shall write programs, was 
designed to make it convenient to take advantage of the structured programming ap­
proach. HP FORTRAN 77 fully implements the American National Standards Institute 
X3. 9-1978 standard (ANSI 77) for FORTRAN. It has many extensions to provide a more 
structured approach to program development and more flexibility in computing for 
scientific applications. As part of its extensions, HP FORTRAN 77 fully implements the 
MIL-STD-1753 Military Standard FORTRAN. 

Successful use of a computer to solve a problem will depend on a combination of two 
basic factors: 

1. Our understanding of the problem and our ability to describe its solution clearly 
and precisely. 

2. Our ability to express that solution as a clear, correct program. 

By learning and applying structured programming principles, the job of writing good, 
reliable programs will tum out to be a surprisingly easy one. There is nothing magic about 
this. The ideas in structured programming simply provide guidelines that help us attack a 
problem in an orderly way, making sure that we know what problem we are solving before 
we write a program to solve it. Another factor that makes the programming process easier 
than it was lies in the language itself. HP FORTRAN 77 enables us to specify complicated 
computations in simple ways. Thus, once we know what we want to do, we shall not have 
much difficulty in directing the computer to do it. 

To help build a useful perception of the programming process as a whole, we shall 
examine briefly the overall functional principles of an HP computer system and the role of 
FORTRAN 77 in the use of such a system. 

Figure l.lA shows an HP 1000 processing system and Figure 1.lB shows an HP 9000 
desktop computer system. Figure 1.2 shows the major functional components of a 
computer and how they are related to each other. We shall be referring to Figure 1.2 as we 
examine each of the functional components in tum. 

1.1. 1 The Central Processing Unit (CPU) 

The heart of the computer system is the processor, that component where the actual 
computing is performed. The capabilities of a particular processor are embodied in its 
machine language, a collection of instruction types that the processor is designed to 
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(a) (b) 

FIGURE 1.1 (a) HP 1000 Computer System. (b) HP 9000 Computer System. 
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recognize and execute. Each instruction represents a particular type of activity. Examples 
of such instruction types include the following: 

"Add these two values together." 

"Compare these two values and set a signal if they are equal." 

"Copy this value into that part of the machine." 

HP processors recognize well over one hundred instruction types, with single instructions 
describing relatively complicated mathematical or logical activities. When we want to do 
anything on the processor, therefore, we must specify that task as a sequence of instruc­
tions (i.e., a program) in the particular machine language for the processor to be used. 
Later in this chapter we shall discuss the automatic mechanisms that relieve us of the 
inconvenience involved in preparing such specifications. 

1. 1.2 Main Storage 

Whenever any processor does anything, it is running (executing) a program. Certain 
processors, designed to do the same specific job each time they are activated, will have the 
program specifying that job built into the circuitry. These special purpose systems appear 
in a wide variety of devices including such diverse items as typewriters, burglar alarms, 
sewing machines, and video games. HP computer systems are general purpose processing 
systems where the type of job done by the processor depends on the particular program it 
is running. There is no limit to the number or diversity of programs that can be designed 
for it, and a given program can replace any other program in an instant. 

Earlier, we said that programs are sequences of instructions. Thus, in order for a 
program to be run, its instructions have to be brought to the processor where each one is 
examined, decoded, and executed in turn. The component that supplies these instruc­
tions is called main storage or main memory. Unlike the processor, this component is 
passive in that it does not do anything. Rather, it acts very much like a library, supplying 
instructions to the processor on demand. When the processor executes one of these 
instructions, some particular operation is performed on data available in the processor. 
These data also are brought to the processor from main storage when they are needed and 
returned to main storage when they are not. 

Main storage on HP processors is divided into individual cells, with each one uniquely 
identified within the system design. This identification is expressed as a permanent 
address used by the processor to refer to a desired part of main storage. Thus, a 
processor's reference to main storage, when represented in human terms, might say 
something like "Give me the information currently stored in the cell located at address 
568." As a result, the information in the specified cell will be copied and that copy will be 
delivered to the processor. The original information, still retained in the cell at address 
568, may be copied again and again, on demand, until we replace it with other infor­
mation. 

Each cell in HP main storage is designed to hold a single character of information (a 
numerical digit, a letter of the alphabet, a punctuation symbol, or some other special 
character). Storage that can accommodate a single character of information is called a 
byte. Main storage also is divided into words, where each word is two bytes long for HP's 
16-bit computers and four bytes long for HP's 32-bit computers. The HP hardware and 
FORTRAN 77 build on these fundamental organizational properties to provide capabili­
ties for dealing with multiple-word groupings as single computational entities. 

One of the principal ways of expressing the size of a computing system is to report the 
number of addressable cells in main storage (i.e., the number of different addresses for 
which the system is equipped with storage cells). HP main storage can accommodate as 
many as 4 million individually addressable bytes. 

The speed of a computer depends to a considerable extent on the design and physical 
construction of the processor and main storage circuitry. A common basis for comparison 

3 
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FIGURE 1.3 HP 2647 A CRT Terminal. 

is to report the time it takes to perform an elementary operation (i.e., adding two 
numbers together). HP processors can execute in excess of one million such instructions 
per second. 

1.1.3 Input/Output Components 

To complete a general purpose computer system it is necessary to include facilities that 
enable the central processor to communicate with the outside world. A wide variety of 
input devices are available from which processors can read programs and/or data on 
which those programs operate. As indicated in Figure 1.2, the information thus read is 
placed in main storage. Similarly, when a program directs the processor to send out some 
product of its computational labors, the resulting activity will write the specified informa­
tion from main storage onto an output device. The enormous variety of input/output 
devices make a complete description totally impractical. (As you read this sentence, 
approximately 18.73 new input and/or output devices are being announced.) However, 
we shall mention a few of the more common types. 

1. 1.3.1 Keyboard Devices A good deal of the input supplied to computers is prepared 
originally on some type of device equipped with a keyboard much like a typewriter. One 
such device, has the keyboard as part of a cathode ray tube (CRT) (Figure 1.3). The 
keystrokes are converted into electronic impulses for direct reading by the processor. At 
the same time, the CRT produces a visual image on a screen. The image may be a direct 
transcript of the information typed on the keyboard or it may be information sent to the 
screen from the processor in response to the signals received (by the processor) from the 
keyboard. 

1.1.3.2 Printing Devices There are many situations in which computers are pro­
grammed to control other machines. In such cases the computed results take the form of 
electronic signals which, in tum, influence the activity of some automatic device. Here, 
however, our interests will focus on those types of processes in which the results are to be 
examined by humans. Accordingly, there is a wide range of printing devices which can be 
connected directly to the HP processor. One such device is shown in Figure 1.4. The video 
terminal serves double duty in that it will display the processor's output (when directed to 
do so) as well as typed input. In addition, there are printing devices (such as the one in 
Figure 1.5) designed to produce graphic output with sufficiently high resolution to serve as 
engineering drawings. 
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FIGURE 1.4 HP 2608 Line Printer. FIGURE 1.5 HP 7585A Graphics Plotter. 

FIGURE 1.6 HP 7970E Magnetic Tape Drive. 
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FIGURE 1.7 HP 7933 and HP 7912 Disk 
Drives. 

1.2 PROGRAMS 
AND 

PROGRAMMING 
LANGUAGES 

1.1.3.3. Secondary Storage In addition to these devices, HP systems are equipped with 
auxiliary storage devices which have both input and output capabilities. These devices use 
some type of magnetic material for storing large amounts of data which can be transmitted 
rapidly to and from main storage on demand. Main storage, though also magnetic, is 
constructed differently. Of greater importance is the fact that main storage is the only 
place from which instructions can be delivered to the processor. Popular forms for such 
magnetic secondary storage include reels of magnetic tape, flat circular disks with mag­
netic surfaces, and tape cassettes. Every HP system is equipped with a library of pro­
grams, any one of which may be required for use at some time. Attempts to keep such a 
library in main storage would require far greater capacity than is available even in the 
largest systems. Instead, the library is stored on an auxiliary device (such as a magnetic 
disk unit). Then, when a particular program is needed, it is copied from the disk into main 
storage. Another example is seen in the situation where a program, in the course of its 
activity, produces an enormous amount of data. As these data are generated, they are 
sent out of main storage and written onto a magnetic medium for later use, thereby 
making that part of main storage available for the next set of data items. In this situation, 
the auxiliary unit serves as an output device. Moreover, HP's magnetic disk units 
incorporate their own "secondary" storage device in the form of a magnetic tape cartridge 
to which the disk's contents can be copied easily. When the program concludes, the 
magnetic tape can be removed from its unit and stored for subsequent use. Later on, that 
same tape can be installed on the device from which it was removed for use as input. 
Examples of tape and disk units are shown in Figures 1. 6 and 1. 7, respectively. 

To provide a processor with instructions that its circuits can execute, each instruction has 
to be stored in main memory as a coded string of ones and zeros. As was pointed out 
earlier, many of these machine language instructions represent relatively simple activities, 
so that any type of substantial computation is likely to require an extensive program. 



1.2 PROGRAMS AND PROGRAMMING LANGUAGES 

When computers first were introduced, people had to write programs in machine 
language. Suppose a single simple instruction on one of these machines appeared as 
follows: 

11110010001001010011000000011110 

This example is not unrealistic. With that in mind, imagine the trouble required to 
prepare and keep track of several hundred such strings. It is not surprising, then, that 
many programmers were happy to promote the image that programming was Highly 
Exotic and Mysterious Work performable only by those who had been given the Special 
Key to Open the Great Lock. 

1.2.1 Properties of a High Level Language 

Relief for the machine language programmer did not come from drastic changes in 
machine languages. Rather, a growing understanding of information processing brought 
help in the form of high level languages. By using such a language, a programmer can 
"instruct" the machine in a more convenient form much closer to natural language. 
Instead of expressing a procedure in terms of the minute operations that the machine can 
interpret, the task can be specified as a sequence of steps that reflect the requirements of 
the problem being solved. For example, suppose we wanted to compute the distance 
DISTANCE covered in time TIME by a moving object with starting velocity 
INITIAL_ VEL and acceleration ACCEL. The result is obtained by means of the simple 
formula 

DISTANCE= INITIAL_VEL x (TIME) + 0.5 x (ACCEL) x (TIME) 

Ifwe had to break this down into the elementary activities required at the machine's level, 
a rough translation of the machine language instructions would be as follows: 

l. "Move INITIAL_ VEL from main storage to the machine's computational com­
ponent." 

2. "Multiply INITIAL_ VEL by TIME." 
3. "Move the product INITIAL_ VEL x TIME out of the computational com-

ponent for temporary storage." 
4. "Move ACCEL into the computational component." 
5. "Multiply ACCEL by TIME." 

6. "Multiply the value just computed by TIME" 
7. "Multiply the value just completed in step 6 by 0.5." 
8. "Add the product INITIAL_ VEL x TIME to the value just computed." 
9. "Assign the value just computed to the variable DISTANCE." 

The same computation, when expressed in the FORTRAN 77 language, can be written 
like this: 

DISTANCE= INITIAL_VEL *TIME+ 0.5 * ACCEL *TIME* TIME 

While this does not look exactly like the formula given before, it comes close enough so 
that it is a simple matter for us to adapt from traditional algebraic forms to those required 
by the high level language. 

Thus, a high level language gives us a vehicle for expression that can be more 
comprehensive (and more meaningful, in our terms) than the simple machine instruction. 
Each unit of expression in a high level language is called a statement. It is basically the 
same as a sentence in a natural language. A program written in a high level language is 
called a source program. 

7 
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PROGRAM 
REAL 

EX101 
INITIAL_VEL, TIME, ACCEL, DISTANCE 

PRINT * , ' SUBMIT VALUES FOR INITIAL_ VEL, ACCEL, AND TIME. ' 
READ*, INITIAL_VEL, ACCEL, TIME 

DISTANCE= INITIAL_ VEL *TIME+ 0. 5 *ACCEL *TIME *TIME 

PRINT*, I INITIAL VELOCITY: I , INITIAL_ VEL 
PRINT* , I ACCELERATION: I , ACCEL 
PRINT * , I TRAVEL TIME: I , TIME 
PRINT*, 'RESULTINGDISTANCE; I , DISTANCE 

PRINT*, 'RUN COMPLETED. I 

STOP 
END 

FIGURE 1.8 FORTRAN Statements for Example 1.1 

Example 1.1 To illustrate the convenience of a high level language, we shall take a look at our first 
FORTRAN PROGRAM (Figure 1.8). This program, named EXlOl, computes a distance DISTANCE for a 
set of INITIAL_ VEL, ACCEL, and TIME submitted to it, using the formula that was shown earlier in this 
section. At the program's start, the variables INITIAL_ VEL, TIME, ACCEL and DISTANCE are defined, 
and the user is asked to submit input values for INITIAL_ VEL, ACCEL, and TIME. These are typed in by 
the user, and the program brings them into the processor. Then, DISTANCE is computed and the program 
displays five lines of output: Each of the input values is produced on a separate line, along with a brief 
description of its meaning. For example, the statement 

PRINT*, I TRAVEL TIME: I ' TIME 

displays the actual message inside the apostrophes, followed by TIME's value. The computed result 
(DISTANCE) is printed on the fourth line, and a final line indicates that the program has finished 
processing. A sample run for this program is shown in Figure 1.9. 

SUBMIT VALUES FOR INITIAL_VEL, ACCEL, AND TIME. 
100. 5 12. 6 21. 8 [RETURN] (typed by user) 
INITIALVELOCITY: 0.1005000E 03 
ACCELERATION: 0.1260000E 02 
TRAVEL TIME: 0.2180000E 02 
RESULTING DISTANCE: 0.5047572E 04 
RUN COMPLETED. 

FIGURE 1.9 Sample Run for Example 1.1 

Of course, this little program is unrealistically simple, but it does give some idea of the 
flavor of the language. We shall find that other language features are equally convenient 
and easy to understand. 

1.2.2 The High Level Language Compiler 

Since we have already noted that the computer itself is not equipped to recognize and 
handle anything as complicated as a statement in a high level language, there must be 
something between the high level language and the computer that transforms such 
statements into groups of machine language instructions which, when used together, 
perform the same activity. This conversion is done by a program called a compiler that 
analyzes each statement to determine the type of activities it specifies. The analytical 
process is supported by a dictionary and a set of rules, both of which are built into the 
compiler, thereby enabling it to determine what kind of statement has been submitted 
and whether or not its construction follows the rules of the language. Another set of 
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internal rules guides the compiler in defining the machine instructions required to carry 
out the intent of the statement. The result of the compiling process is a new program (the 
one that the machine actually will execute) in which each statement has been replaced by 
the equivalent activity expressed in terms of individual machine instructions. This new 
program is called an object program. 

Figure 1.10 gives an overview of the general process: The source program, shown in 
the figure as having been prepared by the programmer on a terminal, is submitted to the 
processor via its telecommunication lines. That program is analyzed and processed by the 
compiler, which was copied into the processor from a program library stored on a 
magnetic disk. As a result of its work, the compiler produces a set of machine language 
instructions (the object program) which are sent to a disk for temporary storage. Then, 
the completed object program is brought back into the processor (once the compiler is no 
longer needed and has been cleared out), where it executes. The output produced by that 
program is shown as being sent to a printing device or (alternatively) to the terminal from 
which the program (and data) originated. 

From these concepts we can form a picture of a programming system consisting of two 
parts: 

1. The high level language itself, providing a vehicle for describing computerized 
procedures in convenient and meaningful form. 

2. A compiler for automatically converting high level language descriptions to 
programs that the machine can execute. 

If the compiler is designed properly, it will be invisible to its users. That is, its entire range 
of activities will be submerged within the computer's operating environment so that the 
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programmer working in a high level language will be able to write programs as if the 
machine were executing them directly in that language. The HP FORTRAN 77 pro­
gramming system falls into this category. It can be used quite successfully without 
knowing a great deal about the nature or structure of the machine language that the 
compiler produces. 

A modern computer's power and versatility cannot be fully exploited without a constella­
tion of software to mediate between the user and the machinery. The HP FORTRAN 77 
compiler is just one of many software products that interact to provide a hospitable 
environment for the preparation, storage, use, and maintenance of a program. This 
section introduces these aspects of the HP software resources that are directly involved in 
the development of FORTRAN 77 programs. 

1.3.1 FORTRAN 77 and the HP Operating System 

The integrated collection of software that oversees a computing system's activities is 
called an operating system. HP's operating systems include facilities that enable the 
FORTRAN 77 programmer to gain access to a wide range of the system's resources 
conveniently and "naturally." By this we mean that the programmer can oeprate success­
fully under the illustion that the HP machinery itself "understands" FORTRAN. The 
multiple layers of software between user and hardware intercommunicate smoothly and 
automatically so that they do not intrude to upset this illusion. 

Example 1.2 To get some idea of the relation between FORTRAN 77 and the operating system, we 
shall take a look at a modified version of Example 1.1. This time, we shall place the program in context as 
an item to be manipulated by the operating system. The program itself will be modified to enable it to 
process any number of input values, computing and displaying a new value of DISTANCE for each set of 
input. An initial velocity value of zero will be used to terminate the processing. 

This ability to perform the computations repeatedly will be provided by setting up a 
cycle, called a loop, that automatically repeats itself as long as there are input values to 
process. A separate action, outside the loop, gets the loop started by bringing in the first 
set of values for INITIAL_ VEL, ACCEL, and TIME. The resulting program is shown in 
Figure 1.11. Note that there are two READ statements, each containing the same list of 
names. The first READ statement is the one that gets the process started by providing an 
initial set of input values. Subsequent values for INITIAL_ VEL, ACCEL, and TIME are 

PROGRAM 
REAL 

EX102 
INITIAL_VEL, TIME, ACCEL, DISTANCE 

PRINT *, ' SUBMIT FIRST VALUES FOR INITIAL_ VEL, ACCEL, AND TIME. ' 
READ*, INITIAL_ VEL, ACCEL, TIME 

DO WHILE (INITIAL_VEL. NE. 0) 
DISTANCE= INITIAL_ VEL *TIME+ 0. 5 *ACCEL *TIME *TIME 
PRINT* ' I INITIAL VELOCITY: I ' INITIAL_VEL 
PRINT* ' I ACCELERATION: I ' ACCEL 
PRINT * , 'TRAVEL TIME: ' , TIME 
PRINT*, 'RESULTING DISTANCE: ' , DISTANCE 
PRINT*, ' 
PRINT *, ' SUBMIT NEW VALUES FOR INITIAL_ VEL, ACCEL, AND TIME. ' 
READ*, INITIAL_, ACCEL, TIME 

END DO 

PRINT*, 'RUN COMPLETED. ' 
STOP 
END 

FIGURE 1.11 FORTRAN Statements for Example 1.2 
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SUBMIT FIRST VALUES FOR INITIAL_VEL, ACCEL, AND TIME. 
60 1. 5 75 [RETURN] 
INITIAL VELOCITY: 0. 6000000E 02 
ACCELERATION: 0.1500000E 01 
TRAVELTIME: 0. 7500000E 02 
RESULTINGDISTANCE: 0.8718750E 04 

SUBMITNEWVALUESFORINITIAL_VEL, ACCEL, ANDTIME. 
5. 8 2. 2 30 [RETURN] 
INITIALVELOCITY: 0.5800000E 01 
ACCELERATION: 0.2200000E 01 
TRAVEL TIME: 0. 3000000E 02 
RESULTINGVELOCITY: 0.1164000E 04 

SUBMIT NEW VALVES FOR INITIAL_ VEL, ACCEL, AND TIME. 
200 0. 72 41 [RETURN] 
INITIALVELOCITY: 0.2000000E 03 
ACCELERATION: 0.7200000E 00 
TRAVEL TIME: 0. 4100000E 02 
RESULTINGDISTANCE: 0.8805160E 04 

SUBMITNEWVALUESFORINITIAL_VEL, ACCEL, ANDTIME. 
0 0 0 [RETURN] 
RUN COMPLETED. 

FIGURE 1.12 Sample Run for Example 1.2 

read by the second READ statement that is executed over and over again as the loop goes 
through its repetitions. The DO WHILE and END DO statements mark the boundaries 
of the loop so that FORTRAN 77 "knows" how much of the program to repeat. Conttrol 
of the repetitions is built into the DO WHILE statement, and this mechanism operates as 
follows: When the loop is entered for the first time, the program goes to work on the initial 
set of values provided by the first READ statement. After computing and displaying 
DISTANCE, the program asks for (and, presumably, receives) the next set. Then, the 
END DO statement automatically sends the program back to the beginning of the loop 
(i.e., the DO WHILE statement) where INITIAL_ VEL is tested. As long as it is not zero 
(the. NE. means "is not equal to"), the program is allowed to go through the loop another 
time. At the end of that cycle, we have a new set of input values, and the test for a zero 
value of INITIAL_ VEL is performed again. As soon as the test finds a zero, the entire 
loop is bypassed automatically and the program continues at the statement immediately 
following the END DO. A sample run for this program is shown in Figure 1.12. 

Now that the statements themselves are defined, we can tum our attention to the 
surrounding environment with which the program must interact. Before the program can 
be used to produce computed results, it must be coverted to a functionally equivalent 
sequence of machine language instructions that the HP hardware is designed to execute. 
Consequently, it must be translated by the HP FORTRAN 77 compiler. Until that 
happens, its identity as a program is only in our minds. As far as the HP operating system 
is concerned, the statements are nothing more than a collection of text materials, i.e., a 
sequence of letters, numbers, other symbols, and blanks. Such a collection of data is 
called a file. 

A substantial resource within the HP operating system is designed to support the 
preparation, storage, retrieval, and maintenance of files. This includes a general text 
processing facility that is insensitive to the contents or "meaning" of the files on which it 
operates. Consequently, its details are not the subject of this book. (See the Text Editor 
Reference Manual supplied with your system.) We mention the file system to emphasize 
the fact that the FORTRAN 77 programmer's involvement with the operating system 
starts at the earliest stages of program preparation. 

11 
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While the program statements are being written with the use of a text editor, they are 
treated simply as strings of text being submitted to the system to form a file. A text editor 
is designed to support the programmer in this initial stage of program preparation. Under 
its jurisdiction, the programmer can build the file, make any desired editorial changes 
(e.g., repair typographical errors, insert additional text, delete unwanted text), give the 
file a name, and store it in the system's library for use later on. The text in the file consists 
of the FORTRAN statements and compiler directives. The latter provides directions that 
the compiler can follow when it processes that file. This source file can now be processed 
by the activation of the FORTRAN 77 compiler. 

1.3.2 Compiling and Running an HP FORTRAN 77 Program 

Once a FORTRAN 77 program has an identity as a file, we can make it available to other 
system resources (such as the editor or FORTRAN 77 compiler). We are interested 
specifically in compiling and running the program (and re-editing if necessary). The 
typical sequence of events is outlined below. Remember, we are starting with a program 

consisting of a sequence of FORTRAN statements (called a source program) already 
edited and stored as a file within the operating system: 

1. At the programmer's request, the operating system initiates a process whose first 
step is to bring in the HP FORTRAN 77 compiler. This program will analyze the 
programmer's FORTRAN statements and translate them into a functionally 
equivalent sequence of instructions in the computer's machine language. These 
instructions are said to be in object code. 

2. Organizationally, the object code is another file within the operating system. As a 
program, it still is incomplete because its instructions include requests for other 
programs or parts of programs. These must be copied from one or more libraries 
that exist within the operating system, and the copies must be combined with the 
object code. This process, called linking, is automatically performed by the 
loader. In fact, the programmer often is unaware that these additional com­
ponents have been requested. To perform this activity, the operating system 
dispenses with the FORTRAN compiler and places the object code at the disposal 
of the programs that will handle the linking operations. Once the linking is 
complete, the resulting program must be placed in main storage so that it can run. 
This process, called loading, is performed next. 

3. The only thing remaining to be done is to tum control of the machine over to the 
program. When that happens (also automatically), the program begins executing. 

Additional details regarding this process and the operating system facilities that support it 
are given in Chapter 7 of the "FORTRAN 77 Reference Manual" number 92836-90001. 

1.4 GLOSSARY address The permanent numerical desig­

nation associated with a particular location in 

main storage. 

sented by a single symbol (e.g., a single digit, 

letter, punctuation mark); the amount of in­

formation that can be stored in a byte of 
memory. 

byte The amount of storage necessary to 
accommodate a single character of informa­
tion. A byte consists of eight bits. 

CPU Central processing unit or processor: 
that part of a computing system containing 
the circuits that analyze instructions and per­

form the actual computations. 

character An item of information repre-

compiler A program that analyzes source 
programs consisting of high level language 
statements and produces an operationally 
equivalent object program in a machine 
language. 

file An arbitrary collection of text identified 
by a unique name that incorporates the text 
into an overall system library. 



FORTRAN 77 An acronym from 
FORmula TRANslation, reflecting the major 
intent of the high level language so named. 

hardware The physical components com­
prising a computer system. 

high level language A programming lan­
guage whose statements are too complex 
for a processor to execute directly. 
FORTRAN 77, COBOL, PL/I, BASIC, ALGOL, 
and PASCAL are names of some widely used 
high level languages. 

input Information submitted to a program 
for processing. For example, a FORTRAN 77 
source program represents input submitted 
to the FORTRAN 77 compiler for processing. 

instruction The unit of activity recog­
nized by a processor; a member of a proces­
sor's machine language. 

machine language The collection of in­
struction types comprising the range of ele­
mentary activities that a particular processor 
is designed to perform. 

main storage The memory component 
of a computer system used for storing in­
structions and data submitted to or produced 
by a program. 

object program A sequence of machine 
language instructions produced by a compiler 
as the result of processing a source program; 
output developed by a compiler. 

operating system An integrated collec­
tion of programs that supervise and monitor 
the ongoing activities in a computing system. 

1.2 PROGRAMS AND PROGRAMMING LANGUAGES 

Among its other duties, an operating system 
keeps track of the system's resources and 
fills users' requests for such resources. 

output Information transmitted from the 
processor to the outside world. 

program A sequence of statements or in­
structions describing a set of activities for a 
computer to perform. 

prompt A signal sent from a program to a 
user at a terminal indicating that the program 
requires information from the user before it 
can proceed. 

reading Transmission of input to a proc­
essor. 

source program A program written in a 
high level language and, as such, not directly 
executable by a computer; input to a com­
piler for ultimate translation to an object 
program. 

statement The unit of expression (i.e., a 
single conceptual activity) in a high level lan­
guage. 

word A unit of main storage usually con­
sisting of two or four bytes. 

word length The number of bytes con­
tained in a single word of main storage for a 
particular type of CPU; on many processors 
the word is the smallest addressable unit of 
main storage (i.e., each word has its own 
unique, permanently assigned address). 

writing Transmission of information from 
a processor to the outside world. 

1. To help get acquainted with some of the computer terminology, find out what you can about the computing PROBLEMS 
system on which you will be writing FORTRAN programs. For example, see if you can find out the 
following: 

(a) the model of the HP computer and the year in which it was introduced. 
(b) the size (capacity) of the system's main storage. 
( c) the number and type of each peripheral unit attached to the system. 
( d) some measure of the processor's speed. (For example, how many additions will it perform in one 

se.cond? 
( e) the cost of the system. 
(f) the number of different instructions there are in your processor's machine language. 

2. Become acquainted with the computer industry by obtaining information on any or all of the following: 
(a) the approximate number of professional programmers in the United States and/or in your city. 
(b) the names and headquarter locations of at least three professional organizations in computer-related 

fields. 
( c) the number of HP installations in your city. 

13 
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3. Find out the names of at least five high level languages besides FORTRAN that are in general use. 
Determine some fundamental facts about each language. For example: 
(a) what does the language's name stand for? 
(b) when was the language first introduced? 
(c) what is the major purpose of the language? How does that purpose differ from the one associated 

with FORTRAN? 

4. From Section 1.2.2, it is clear that a high level language compiler is itself a program. Try to find out how 
large your FORTRAN compiler is (i.e., the number of instructions contained in your compiler). 

5. Ifwe study the sample program given in Section 1.2.2, it will become apparent, even before we know the 
details of the language, that certain types of statements are designed to perform specialized operations. 
Based on your observations, identify: 

(a) the statement or statements that perform input operations. 
(b) the statement or statements that perform actual computation~. 
( c) the statement or statements that perform output operations. 

6. Using Example 1.1, follow the step-by-step operations presented in that program and show what the 
results would look like for each of the following sets of input data: 
(a) 100.0 20.0 100.0 
(b) 54.6 0.0 120.0 
(c) 0.0 30.0 60.0 
(d) 220.0 -2.5 20.0 

7. Assume that Example 1.1 were changed so that it appears as follows: 
PROGRAM EXlOlA 
REALINITIAL_VEL, TIME, ACCEL, DISTANCE 
PRINT * ' I SUBMIT TIME' INITIAL_ VEL, AND ACCEL. I 

READ * , TIME, INITIAL_ VEL, ACCEL 
DISTANCE= INITIAL_ VEL * TIME+ 0. 5 * ACCEL * TIME * TIME 
PRINT*, 'INITIAL VELOCITY IS: ' , INITIAL_VEL 
PRINT* , I ACCELERATION IS: I , ACCEL 
PRINT*, 'TIMEFORTRAVELIS: ',TIME 
PRINT* , I DISTANCE COVERED IS: I , DISTANCE 
PRINT*' 'NORMAL PROCESSING. RUN COMPLETED. I 

STOP 
END 

Show what the output would look like for each of the input sets given below: 
(a) 100.0 36.5 10.10 
(b) 120.0 0.0 15.6 
(c) 60.0 120.0 -5.0 



2 
The Structured 
Programming 
Process 

It would be irresponsible to claim that the preparation of computer programs is a science. 
However, it is just as misleading to insist that this activity is totally an art, with all of the 
intangibles that an art implies. An enormous amount of experience and study has made it 
possible to introduce considerable discipline into the programming process. As a result, 
there has been a rapidly growing acceptance of something called structured pro­
gramming. 

Before this groundswell toward structured programming conjures up any pictures of 
miraculous cures for all computer-related ailments, it will be helpful to say something 
about what structured programming is. In general, the term refers to a collection of 
concepts, techniques, attitudes, and rules of thumb which help to increase the likelihood 
of producing a computer program that is correct, clear, simple (for a given set of require­
ments), easy to analyze, and easy to use. 

These rules and guidelines are quite simple. Consequently, it will be unnecessary to 
build an elaborate drama around them. We shall introduce the basic ideas of structured 
programming in this chapter and apply them throughout the rest of the book. Since the 
approach makes so much sense, its use will develop naturally, without any need to force 
it. Accordingly, each program we study or write will serve two purposes: It will illustrate 
some programming technique and/or language feature that offers a convenient way to 
handle certain problems. At the same time, the overall program will provide yet another 
example of good structure. 

Although we shall be concentrating on the language features and their use in writing 
good programs, it is important to recognize that this activity is just one part of a more 
comprehensive process-the design and development of computer applications. Think of 
a computer application as a situation in which we arrange for a computing system to do a 
useful piece of work (e.g., keep track of books in a library, prepare a company payroll, or 
continuously check a patient's heartbeat for abnormal rhythmic patterns). From this 
point of view, the program is a product that enables the computer to do its work. Thus, 
when we write the program, we fabricate that product. Accordingly, a program is like any 
other manufactured article. We cannot produce it until we establish: 

1. What we need the computer to do. 
2. Exactly what kind of program it will take to make the computer do what we need. 
3. Exactly how we are going to produce that program. 

In the next few sections of this chapter we shall sketch the basic characteristics of the steps 
that precede the writing of a program. Then, with this as background, we can focus on 
structured programming itself, i.e., the identification and use of effective and reliable 
"program manufacturing" techniques. 15 
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2.1 SPECIFICA­
TION OF THE 

PROBLEM 

2.2 PROBLEM 
SOLUTION AND 

ALGORITHMS 

THE STRUCTURED PROGRAMMING PROCESS 

For many people, writing programs is fun. These otherwise reasonable folk find it 
enjoyable to compose instructions that a complex computing system eventually will obey 
to the letter. As a result, there often is an understandable temptation to begin writing a 
program as soon as we know that a program needs to be written. When this happens, the 
resulting program may be useless, even though it works. The reason is simple: The useless 
program solves the wrong problem. Eagerness to get the job done is a good thing, as long 
as there is a complete understanding of what the job is. 

We would not expect a manufacturer to begin production saying, "We don't know 
what we're making; let's see what it turns out to be when we get finished." Yet this 
happens surprisingly often with people who write programs. 

An even more common occurrence, perhaps not as extreme, is one in which program 
writing begins as soon as there is some idea of what is needed. The notion behind getting 
an early start is to complete the definition as the program is being developed. Since the 
person writing the program often is different from the one setting the requirements, this 
"headstart" appears to be more "efficient" because everybody is doing something. In 
such a case a manufacturer might say, "It hurts me when all these expensive machines are 
sitting idle. We'll start making something as soon as we think we know what it is, 
correcting it as we go. When we have finished, if luck is with us, the result will be what the 
customer needs." 

Not surprisingly, many projects have ended up costing many times more than they 
should because all or part of the programming has had to be redone several times to keep 
up with changing requirements. On top of that, computer applications ordinarily requir­
ing three or four months for completion often have been "streamlined" by this approach 
so that the development time was "reduced" to a year. Numerous companies in the 
programming business went broke because they agreed to provide a program for a certain 
price by a certain date before making sure that they and the customer agreed on exactly 
what problem the program would solve. An increasing number of organizations using 
computers are aware of this possibility. They have established formal procedures in which 
a problem definition must be read and signed by all concerned parties before any 
subsequent activity can begin. 

Once the nature of the problem is understood, we have taken a major step in reducing the 
chances of solving the wrong problem. To help devise an effective solution to the right 
problem, we must make a very important distinction: Finding a solution and writing the 
program for it are different activities. In general, it is most effective to begin the pro­
gramming process only when a solution has been worked out and people are convinced 
that it is a correct one. Another way of saying this is that a problem is solved by an 
algorithm, and a program is a way of expressing an algorithm so that a computer can be 
used to carry out its intent. 

2.2.1 What is an Algorithm? 

An algorithm is a set of rules for getting something done. Since algorithms exist or can be 
devised for an infinite variety of activities, there is no automatic connection between an 
algorithm and a computer. Paddling a canoe across a lake, making lasagne, using a 
computer to prepare a company payroll, and getting home from the ballgame all involve 
algorithms. 

We can think of any number of problems for which no practical algorithms exist (such 
as time travel), and problems with many alternative solution algorithms (such as storing 
books on a shelf). A frequent concern in any human activity is to select the best algorithm 
from a series of choices. The development of computer applications is no exception. 

Existence of a procedure does not necessarily guarantee that it is an algorithm. 
Booksellers' shelves are filled with procedures for losing weight, quitting smoking, win-
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ning in the stock market, and keeping people from taking advantage of you. Each of 
these, and countless other procedures, represents a set of steps which are to be followed in 
a certain sequence to achieve a desired result. Since the use of the algorithm may involve 
time and expense, it is necessary to make sure that the proposed solution actually will 
solve the problem it is supposed to solve. 

2.2.2 Properties of Algorithms 

As the previous sections illustrate, not every set of rules constitutes an effective 
algorithm. Consequently, as part of the process of deciding whether a particular pro­
cedure is suitable for computerization, we must convince ourselves that the procedure 
meets certain requirements associated with an algorithm. 

First, an algorithm is finite. That means that if we follow the rules specified by the 
algorithm, the procedure eventually will come to an end. Fulfillment of this requirement 
is sometimes less obvious than it appears. Consider the following example: 

Example2.1 

Problem: The Gaack Brewery needs to adjust its water supply so that it has the proper acidity for 
Gaack's unique flavor and aroma. As little as a gallon of acidifier per vat of liquid is enough to change the 
meter reading. 

Solution: Perform the following steps: 

1. Add a gallon of acidifier. 

2. Test the acidity. If it is right, stop; if not, go back to Step 1. 

This procedure seems simple enough. The cautious addition of one gallon at a time ought to keep us from 
overshooting. However, the unfortunate brewery is unprotected if they happen to start out with liquid that 
is already too acidic. If this procedure were to be followed mechanically under such circumstances, the 
addition of acidifier would go on indefinitely, since each test would produce an improper reading. These 
algorithmic difficulties are not far-fetched when it comes to programs, and such situations do turn up from 
time to time, even among experienced programmers. Once in a while we still read a gleeful report about 
some computing system producing 8179 paychecks, all made out to the same worker, before some alert 
operator shuts the thing down. 

Algorithms also must be unambiguous. Despite some films and stories to the con­
trary, computers are not even a little smart. Anything we want done has to be spelled out 
in exact and minute detail. There is no room for a computer's judgment because it has no 
ability to judge. For instance, Example 2.1 (besides being potentially non-terminating) 
does not define what the "right" acidity is. When we take this into account, our Gaack 
acidity procedure might look like this (assuming the right acidity to be 6.3 ± .02): 

1. Define a flag whose value maybe either "acidic," "alkaline," or "unused." Settheflagto "unused." 
2. Test the acidity level. If it is between 6.28 and 6.32, stop; if it is above 6.32, go to Step 4; if it is below 

6.28, go to Step 3. 

3. lftheflag is "alkaline," then stop; else add one gallon ofacidifier, set the flag to "acidic," and go b.ack 
to Step 2. 

4. If the flag is "acidic," then stop; else add one gallon of anti-acid solution, set the flag to "alkaline," 
and go back to Step 2. 

In this version the "right level" has been clearly defined. 
A third important algorithmic property is that of generality. It is rarely effective to 

have an algorithm for the solution to a specific instance of a particular problem. Instead, it 
is preferable to design algorithms so that they can be used without changes for a range of 
similar problems. Sometimes the generalization process is obvious; in other instances, 
considerable thought and insight may be required to see how a particular algorithm can 
be generalized to serve a wider range of purposes without impairing its convenience. 

17 
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Another look at the Gaack water correction procedure shows that we can use it as long as 
we are correcting to a level between 6.28 and 6.32. If this value were to change, a new 
procedure would be needed for each different level. This can be avoided by restating the 
solution as follows: 

1. Define a flag whose values may be either "acidic," "alkaline," or "unused." Set the flag to 

"unused." 

2. Find out what the desired acidity level is for this run. Call that level A. 

3. Find out what the allowable deviation is forth is run. Call that D. Thus, the acidity we are matching 

for this run will beA-D. 

4. Test the acidity. If it is between A+ D and A - D, stop; if it is above A+ D, go to Step 5; if it is 

below A - D, then go to Step 6. 

5. If the flag is "alkaline," then stop; else add one gallon of acidifier, set the flag to "acidic," and go 

back to Step 4. 

6. If the flag is "acidic," then stop; else add one gallon of anti-acid solution, set the flag to "alkaline," 

and go back to Step 4. 

Finally, an algorithm must be precise, so that its steps can be understood by its users. 
Telling an expert cook to "bake till done" may be clear enough for that expert. However, 
if the intended performer is a novice known to be devastating when left alone with an 
oven, a more detailed specification would be needed to define exactly how we recognize 
"done." When the algorithm is to be carried out by a computer, the need for detailed 
clarity becomes all the more crucial. The computer can recognize only certain types of 
instructions, and any algorithm, when implemented as a program, must be expressed in 
terms of these instructions. 

Example 2.2 

Problem: Now that the basic algorithmic properties have been described, we shall apply them to a type 

of problem whose solution is commonly implemented on a computer: The Three Musketeers Floor 

Company ("All Floor One, One Floor All") rents floor polishers and sells accessories at the following 

current rates: 

Floor machines-$3.00 per day. 

Cleaning disks-$2.00 each. 

Polishing pads-$4.50 each. 

Each customer has a five-digit identification number (like 31264 or 00071 ). Special customers are given 

i.d. numbers beginning with 9. All such customers receive a 10% discount on their bills. The Musketeers 

would like to produce a bill for each customer. 

The solution is straightforward enough: For each customer, we need the identi­
fication (i.e., the customer name and number), number of days the machine was rented, 
and the number of polishing pads and cleaning discs that were purchased. Once the total 
bill is computed from the rental and purchase charges, the account number will determine 
whether or not the discount will be applied. Assuming the required information is 
available, we can assign names to each data item and summarize the solution: 

Data Names 
CUST_NAME 
CUST_ID 
DAYS 
DISKS 
PADS 
RENT 
TTL_DISK_COST 
TTL_PAD_COST 
TOTAL_COST 
ADJ_COST 

-Customer Name 
-Customer Number 
-Number of Rental Days 
-Number of Disks Purchased 
-Number of Pads Purchased 
-Rental Fee 
-Cost of Disks 
-Cost of Pads 
-Total Bill 
-Adjusted Bill 
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Solution: For each customer, 

1. Read in CUST_NAME, CUST_ID, DAYS, DISKS, PADS. 
2. For record purposes, print the input just read. (This is called an echo.) 
3. ComputeRENT. (RENT=DAYSX3) 

4. Compute TTL_DISK_COST. (TTL_DISK_COST=DISKS x 2) 
5. Compute TTL_PAD_COST. (TTL_PAD_COST =PADS x 4. 5) 
6. Compute TOTAL_COST. (TOTAL_COST =RENT+ TTL_DISK_COST + TTL_PAD_COST) 
7. Check CUST _ID. If it is 90000 or higher, apply a 10% discount to TOTAL_ COST and assign the 

result to ADJ _COST; if not, leave TOTAL_COST unchanged and assign its value to ADJ _COST. 
8. Print the customer's bill. 

All of this is very well as long as the Musketeers' prices never change. (That is unrealistic, 
even in the best economic times.) Consequently, one step toward generalization that 
comes to mind immediately is to include the flexibility for varying prices. Instead of 
building these figures into the procedure as constant values, we can redefine them as 
variables to be read in with each run. When we do that, our revised algorithm, along with 
additional definitions, would appear as follows: 

Additional Data Names 
DAY_RATE -Machine rental rate, dollars per day. 
DSILCOST 
PAD_ COST 

-Price per disk. 
-Price per pad. 

Solution: 

1. Read DAY_RATE, DISK_COST and PAD_COST for this run. 
2. For each customer, 

a. Read CUST_NAME, CUST_ID, DAYS, DISKS, and PADS. 
b. Echo the input (same as Step 2 in the previous version). 
c. Compute RENT= DAYS x DAY_RATE. 
d. Compute TTL_DISK_COST=DISKS x DSK_COST. 
e. Compute TTL_PAD_COST =PADS x PAD_COST. 
f. Compute TOTAL_COST =RENT+ TTL_DISK_COST + TTL_PAD_COST. 
g. Apply the discount as appropriate (same as Step 7 in the previous version) and determine 

ADJ_COST. 

h. Print the customer's bill. 

Once a solution has been defined and we are convinced that it will work, we can begin the 
process of representing the algorithm as a program. The crucial objective in this step is to 
make sure that the program is a faithful expression of the algorithm. While it is completely 
unrealistic to suppose that this transformation is free of problems, we can take advantage 
of some design practices which help keep them to a minimum. 

2.3.1 The Structured Program 

Perhaps the most important single factor in producing an effective program is to make 
sure that the program is as simple and clear as possible. The design or selection of an algorithm for a particular task does not necessarily mean that only one type of program can be derived from it. Therefore, without some kind of disciplined, well organized approach to the programming process, the development of a program, as well as its 
reliability, can be rather haphazard. The computing literature is liberally sprinkled with 
accounts of programming disasters in which the need to introduce a relatively small change in a program caused large expensive programs to be scrapped and rewritten 
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because nobody (even the authors themselves) could analyze the program in sufficient 

detail to figure out how the change should be incorporated. 
In recent years, extensive studies of program construction and behavior have pro­

duced insights and methodologies which make such catastrophes unnecessary. The result 

is a set of guidelines and techniques for the systematic expression of algorithms as 

programs. These are referred to collectively as structured programming. 

The heart of the approach consists of a few simple organizational concepts which 

serve as the building blocks for all structured programs. An enormous amount of 

accumulated experience has made it clear that programs consisting of these elements are 

easier to analyze, test, and modify (when changes are required) than those constructed 

arbitrarily. Moreover, an important study has proved mathematically that these struc­

tured components are sufficient for writing any possible program. Accordingly, a major 

concern in structured programming is to make sure that a program, no matter how 

complicated, consists of nothing but these building blocks. 
An important aid in designing structured programs is a clear, written description of 

the program. This is nothing more than a precise document that provides a road map from 

which the actual program will be prepared. If it contains the proper information, i.e., the 

specific activities the program is to perform and the sequence in which they are to be 

performed, it will serve equally well regardless of the language in which the program 

eventually is written. 
Since the program is to be structured, its description, too, is structured. Each 

component is shown as a standard structured building block, and the connections among 

these components give an overall picture of the algorithm's organization. Thus, the 

program description can be used to check whether a procedure does the required job 

before that procedure is coded (i.e., expressed as an actual program). Any required 

adjustments to the procedure are made at this stage, so that we base the actual coding 

process on a program description known (or strongly believed) to be correct. 

Numerous ways have been devised for preparing program descriptions. We shall be 

using two methods, each of which is powerful, yet simple. One of these expresses a 

program description as a structured flowchart in which each building block is represented 

by a particular symbol. One type of structured flowchart is the N-S diagram, named for its 

originators Nassi and Schneiderman. A second method presents the program description 

in a more narrative form. The flow of events unfolds like a story, with each activity being 

expressed by an ordinary sentence. These activities are organized into standardized 

structural components by using specific vocabulary words to bracket the components. 

This type of representation is called pseudocode. The name is very descriptive because, in 

a sense, we are "writing" the program in story form. What we are not doing, though, is 

showing in exact detail how a given action is expressed in the particular programming 

language that will be used. 
There is no standard form for pseudocode. Different computer installations have 

developed or adopted various guidelines for their pseudocodes. Differences among these 

practices are small enough so that the pseudocode used in this book will serve as an 

effective basis for any other set with which you will be working in the future. 

2.3.1.1 The Operational Sequence The most basic type of occurrence in a program 

consists of a single sequence-a series of events that take place one after the other: The 

eight steps under Step 2 in the revised Example 2.1 (i.e., the individual customer 

processing), for instance, form such a sequence. They may be diagrammed as in Figure 

2.l(a) or expressed in pseudocode as shown in Figure 2.l(b). Note that the activities 

themselves are described in simple English-the simpler the better. The structural 

identity of these activities as a sequence is indicated by two pseudocode terms: 

1. seq-This indicates the beginning of the sequence. It implies that whenever the 

sequence is used, it starts from this point. 
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Read CUST, NUMC, DAYS, DISKS, PADS 

Echo the input 

Compute RENT = DAYS X DAYRT 

Compute CDISK = DISKS X DCOST 

Seq 
Compute CPAD = PADS X PCOST "Read customer i.d., customer no., no. of rental days, 

Compute TOTAL= RENT+ CDISK + CPAD 

STOP 

(a) 

Read and echo v 
v customer input ,____ 

Read and echo 
customer 
input 

----Compute rental and 

/ purchase costs ~ 
Compute 

unadjusted 

~ total cost Compute unadjusted 

total cost \ 

no. of disks used, no. of pads used." 
"Echo the input." 
"Compute the rental fee, disk costs, pad costs." 
"Compute the total rental and purchase amounts." 

Endseq 

(b) 

FIGURE 2. 1 (a) An N-S Representation of a Sequence. (b) Pseudo­
code Representation of a Sequence. 

Read CUST _NAME, CUST _ID 

Echo the input 

Compute RENT = DAYS X DAY _RA TE 

Compute TTL_DISK_COST =DISKS X DSK_COST 

Compute TTL_PAD_COST =PADS X PAD_COST 

Compute TOTAL_COST =RENT+ TTL_DISK_COST + TTL_PAD_COST 

FIGURE 2.2 A Progression of Increasingly Detailed Sequence Diagrams. 

2. endseq-This indicates the conclusion of the sequence. Regardless of what 
happens inside the sequence, it always ends at this point. 

If the sequence consists of a single activity, the seq and endseq may be omitted. More 
generally, if the sequential nature of the activity is obvious, then seq and endseq may be 
unnecessary in such cases as well. 

Regardless of whether we use pseudocode or N-S diagrams, note that the idea of a 
sequence has nothing to do with its length or complexity. Whenever a sequence is used, it 
is used in its entirety, beginning with its single starting point and concluding with its single 
end point. In a sense, then, every program is a sequence. 

The amount of detail shown in a sequence diagram depends on that diagram's 
purpose. Figure 2.1, for example, has so much detail that itis actually a paraphrase of the 
programming steps to be produced from it. Consequently, it can be viewed as the final 
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version of a progression of diagrams, each one depicting the same sequence in more and 

more detail. Figure 2.2 illustrates such a progression ending with the level of detail in 

Figure 2.1. This may be overdone for a sequence as simple as the one in this example, but 

it does illustrate the general approach. As you gain experience with increasingly compli­

cated problems, you will find it easy to judge the kind of progression needed for a given 

situation. 

2.3.1.2 Simple Selection (Alternation) While the operational sequence takes care of 

many situations, it does not offer the flexibility required by many others. We often are 

faced with two possible actions where we must select one over the other. Of course, such 

occasions come up in everything we do. When they occur in a computer-related pro­

cedure, the operational sequence simply cannot handle them. However, there is a very 

effective use of the computer's powerful facilities which allows the construction of a test 

that selects one activity over another. This process represents a single conceptual activity 

that forms another basic building block in structured programs. This is called an IF­

TH EN-ELSE construct. The construct consists of a test that produces one of two possible 

outcomes. Each outcome is associated with a particular action. Once the outcome has 

been determined, the corresponding action is performed and the alternative action is 

ignored. The N-S and pseudocode representations of this construct are shown, respec­

tively, in Figures 2.3(a) and 2.3(b). Here again, as in the sequence, we use special 

pseudocode terms to show the structural components: 

1. if-This shows the beginning of the construct. 

2. then-This signals the beginning of the activity to be performed when the test 

condition is true. 

3. else-This indicates the beginning of the activity to be performed when the test 

condition is found to be false. 

4. endif-This concludes the construct. 

The test may be as simple or as complicated as it needs to be, as long as it is designed 

with "true" or "false" (or "yes" or "no," if that is more convenient) as the only two 

possible results. Similarly, the action performed in response to each outcome can be 

anything it needs to be, regardless of the number of steps it takes to achieve that action. 

The only real limitation is that we must be able to think of it as a single conceptual activity. 

Is This 

Condition 
True? 

then If 
"test condition" 

Then 

Perform this Perform this 

"perform this action" 
Else 

action (B); action (A); 

ignore action A. ignore action B. 

(a) 

"perform this action" 
Endif 

(b) 

FIGURE 2.3 (a) The IF-THEN-ELSE Construct: N-S Rep­

resentation. (b) The IF-THEN-ELSE Construct: Pseudo­

code Representation. 



no 

adjusted cost 

Is this a discount 
customer? 

adjusted cost 

total cost 0.9 * total cost 

yes 
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If 
"this is a discount customer" 

Then 
"<led uct I 0% from TOT AL" 

Else 
"Total remains unchanged" 

Endif 

(b) 
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FIGURE 2.4 (a) Step (7) of Example 2.2 as an IF-THEN­
ELSE Construct:· N-S Representation. (b) Step (7) of Ex­
ample 2.2 as an IF-THEN-ELSE Construct: Pseudocode 

(a) Representation. 

Here are some examples: 

1. "Did the bonus money come?'' 
"If yes, make reservations at the Elegante Restaurant." 
"If not, unwrap the bologna." 

2. "Is the Gravity Indicator Reading above 3.86?" 
"If yes, compute critical thrust using Equation 15b with no correction." 
"If no, compute critical thrust using Equation 27c with Blum's orthogonal correction." 

Step 7 in the individual customer processing of revised Example 2.2 is another case in 
point: 

"Does this customer (the one currently being processed) get a discount?" 
"If yes, apply the discount to the total charges;" 
"If not, set the adjusted amount to the same value as TOTAL." 

The representations for this decision structure are seen in Figure 2.4. 

2.3.1.3 Repetitive Action A very powerful technique, fundamental to all program­
ming, is the construction and use of loops for implementing activities which are to be 
performed repeatedly. The basis of this technique is to make it possible for a given 
sequence of instructions to be used over and over, therefore avoiding the need for a 
separate physical copy for each repetition of the activity. A simple example will illustrate: 
Example 2.3 Suppose we wanted to read five values of x and compute their sum (which we shall call 
AMT). We can specify this process as follows: 

1. "Set AMT to an initial value of o." 
2. "Read the first value of x." 
3. "Add X to AMT." 

4. "Read the second value forx." 
5. "Add X to AMT." 

6. "Read the third value forx." 
7. "Add X to AMT." 

8. "Read the fourth value forx." 
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(a) 

Seq 
"Set AMT to zero." 

Do 5 times } 
Seq 

"Read the next X" 
''Add X to AMT'' 

End seq 

AMT..-O 

DO 5 Times 

Read the next X 

Add X to AMT 

Print AMT 

Step 3-4 
sequence 

Step 1 

! Step 3-4 Loop 
) ~quenCT 

Step 5 

Loop 

"Print AMT" 
Enddo 

(b) Endseq 
Figure 2.5 (a) Repetitive Loop for Example 2.3: N-S Representation. 

(b) Repetitive Loop for Example 2.3: Pseudocode Representation. 

9. "Add X to AMT." 

10. "Read the fifth value forx." 

11. "Add XtoAMT." 

12. "Print the value of AMT." 

13. "Stop." 

Obviously, this is a completely impractical way to do things. (Imagine having to do this for 200, 2000, or 

2,000,000 values of X.) A much more reasonable approach is to set up a loop in which the activities are 

controlled by a mechanism that makes sure the loop repeats exactly as many times as it is supposed to. With 

a loop we can restate the previous process as follows: 

1. "Set AMT to an initial value of zero." 

2. "Perform steps 3 and 4 as a pair exactly five times." 

3. "Read the next value of x." 

4. "AddXtoAMT." 

5. "Print the value for AMT." 

6. "Stop." 

The N-S diagram (Figure 2.5(a)) shows the loop and its controlling mechanism, preceded and followed by 



Read N 

AMT ,.__O 

Do N Times 

Read the next X 

Add X to AMT 

Print AMT 
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Loop 

Seq 
Seq 

"Read X" 
"Set AMT to zero" 

Endseq 

Do N Times 

Seq 

"Read the next X" 
"Add X to AMT" 

End seq 

Enddo 

"Print AMT" 

End seq 

(b) 
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Loop 

Figure 2.6 (a) A Loop Repeated N Times: 

(a) 

Structured N-S Representation. (b) A Loop 
Repeated N Times: Pseudocode Representa­
tion. 

simple activities (one-step "sequences," to be precise). Pseudocode representation of this construct (Figure 2.5(b)) uses the following special terms: 

1 . do-This shows the beginning of the loop. 
2. enddo-This shows the end of the loop. 

When necessary we shall add information to the pseudocode to describe the way in which the loop is controlled. In this type of loop, the control information simply defines the number of cycles. 
The loop does not become any more complicated regardless of the number of times it needs to be repeated. We can generalize the previous loop by reading in N, the number of times we want the loop to repeat, thereby allowing that number to change each time the process is used: 

1. "Read N, the number of x values available this run." 
2. "Set AMT to an initial value of zero." 
3. "Repeat Steps 4 and 5 exactly N times." 
4. "Read the next value of x." 
5. "Add X to AMT." 

6. "Print the value for AMT." 

7. "Stop." 

The revised N-S diagram and pseudocode are given in Figure 2.6. 

We may have different reasons for repeating a loop. We may want to run it until the result hits a given total. The decision to repeat the loop or not to repeat it is governed by some particular condition (other than the number of repetitions) which is tested every time the activity is performed. As long as that condition holds, the loop continues to cycle; as soon as that condition is violated, the loop is bypassed and the process continues just beyond it. We can see this by adjusting Example 2.3 again. This time, we do not know how many values of X there will be. However, we are told that X cannot be zero. Therefore, we can take advantage of that fact by submitting an input value of zero after the last X value and testing for it. Figure 2. 7 shows one way of representing this loop. Note that we show that we wish to repeat a certain process for every input value. There is not enough detail to indicate how we shall control the repetition; we merely imply that some kind of control will be needed. The forms shown in Figure 2.8 describe the same loop, but the additional detail reveals how the control will work: Specifically, we shall "prime" the 
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AMT+---0 

For every X 

I I 

Read X 

Add X to AMT 

Print AMT 

(a) 

Seq 
"Set AMT to O" "Set AMT to O" 
Do for every X 

8 
Do for every X 

Seq "Read X" 
"Read X" "Add X to AMT" 
"Add X to AMT" End do 

End seq "Print AMT' 
End do 
"Print AMT" 

End seq (b) 

FIGURE 2.7 (a) N-S Loop with an Unknown Number of Repetitions. (b) Pseudocode Representation of a Loop 

with an Unknown Number of Repetitions. 

AMT.-O 

Read the first X 

DO WHILE (X t= 0) 

Add X to AMT 

Read the next X 

Print AMT 

(a) 

loop 
"Set AMT to zero" 
"Read the first X" 
While X t= 0 

"Add X to AMT" 
"Read the next X" 

End while 
"Print AMT" 

(b) 

FIGURE 2.8 (a) N-S Diagram for WHILE 
Construct. (b) Pseudocode Representation 

for WHILE Construct. 
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Read DAY _RATE, DSK_COST1 PAD_COST 

Read the first values for CUST _NAME, 
CUST _ID, DAYS, DISKS, PADS 

DO WHILE CUST _ID f 0 
Read DAY _RATE, DSK_COST, PAD_COST 

For all customers 
Echo the input . 

RENT -DAYSXDAY_RATE 
Read and echo TTL_DISK_COST - DISKS X DSK_COST 

customer input ITL_PAD_COST - PADS X PAD_COST 
TOTAL_ COST - RENT+ TTL_DISK_COST Prepare 

Customers' 
Bills 

"Prepare 
Customers' 
Bills" 

Compute unadjusted 
bill 

Adjust for discount 
as appropriate 

Print bill 

"ReadDAY_RATE, DSK_COST, 
PAD_COST 

Do for all customers 
"Read and echo 

customer input" 
"Compute unadjusted bill" 
"Adjust for discount 

as appropriate" 
"Print bill" 

End do 

+ TTL_PAD_COST ,_ 
~·~ 

(a) 

I TTL_ADJ - TTL_ADJ -
TOTAL_ COST 0.9 x TOT AL_ COST 

. 

Display RENT, TTL_DISK_COST, 
TTL_PAD_COST,TOTAL_COST, 
TTL_ADJ 

Read next set of input for 
CUST _NAME, CUST _ID, DAYS, DISKS, PADS 

Stop 

"ReadDAY_RATE, DSK_COST, PAD_COST 
"Read the first CUST_NAME, CUST_JD, 

DAYS, DISKS, PADS" 
While CUST_ID =f. 0 

"Echo the input" 
"SetRENTtoDAYS x DAY_RATE" 
"Set CD I SK to DISKS x DSK_COST" 
"SetCPADtoPADS x PAD_COST" 
"Set TOTAL to RENT+ TTL_DISK_COST + TTL_PAD_COST 

If 
CUST_ID is equal to or greater than 90000" 
Then 

"set TTL_ADJ to 0. 9 x TTL_ COST" 
Else 

"set TTL_ADJ to TTL_CQST" 
Endif 
"PrintRENT,TTL_DISK_CQST,TTL_PAD_CQST, 

TOTAL_COST,TTL_ADJ" 
"Read next CUST_NAME, CUST_ID, DAYS, 

DISKS, PADS" 
Endwhile 
"Stop" 

(b) 
FIGURE 2.9 (a) Program Design for Example 2.4: N-S Representation. (b) Program Design for Example 2.4. 

the additional detail reveals how the control will work: Specifically, we shall "prime" the procedure by reading the first input value outside of the loop (i.e., as a separate action) 
and then go through a cycle in which testing, processing, and subsequent input are 
performed over and over. This type of component is called a WHILE construct. The 
pseudocode representation uses two special terms: 

1. while-This shows the beginning of the loop. 



28 THE STRUCTURED PROGRAMMING PROCESS 

2. endwhile-This shows the conclusion of the loop. 

Note that the test to determine whether to repeat the loop is placed at the beginning of the 

loop. This means that it is possible to fail the test even before the loop's activity is 

attempted for the first time. As a result, the construct is very general. In the situation of 

Figure 2. 7, for example, it takes care of a wide range of situations, including the one in 

which X's first value is zero and we never get to add anything to AMT. 

In general, as an algorithm is analyzed and transformed into a program, it is likely 

that the level of detail seen in Figure 2.8 would evolve from the more abstract picture 

given in Figure 2. 7. 

Example 2.4 Now we can return to our swashbuckling floor company (Example 2.1) and complete 

the design by showing the processing of each customer as one cycle in a loop that repeats as long as there 

are customers to process. To provide a detailed control mechanism, we shall assume that an account 

number of zero signals the fact that the last customer has been processed. A progression of N-S diagrams 

(Figure 2.9(a)) shows the procedure starting with a very general description and increasing in detail until 

there is a clear picture not only of what the program needs to do, but also of how it will be done. The same 

type of progression is developed in Figure 2.9(b) for the pseudocode representation. 

2.3.1.4 Another Complete FORTRAN 77 Program = Example 2.5 Figure 2.10 shows a 

FORTRAN program written from the description in Figure 2.9. Now that the funda­

mental principles of program construction have been introduced, we can look at a 

complete program in more detail than we did in the previous chapter and begin to build 

some more familiarity with the structure of the language. 
Lines beginning with a C are used to separate parts of the program or to provide 

comments. These are not part of the actual instructions to the computer. The first four 

statements (the lines beginning with PROGRAM, REAL INTEGER, and CHARACTER) 

name the program and define the variables used by it: A REAL number can have a 

fractional part, an INTEGER cannot. A variable described as CHARACTER may consist of 

letters, numbers, blanks, and other symbols (like parentheses, commas, asterisks, etc.). 

Such information is called a character string. Thus, CUST is defined as a variable whose 

value may consist of a string of any 20 letters, digits, or other symbols. Note that the 

customer number, CUST_ID, is declared separately with a statement that starts with 

INTEGER* 4 . The other integer variables are declared as INTEGER* 2. The 2 or the 4 

control the amount of storage used to accommodate the integer values. (A 4 doubles the 

amount of storage used.) When 2 is used, this saves storage, but it limits the capacity of 

the variable. (In this example, the largest acceptable customer number would be less than 

33000.) Since we are using a 9 in the first digit for testing purposes, this would exceed the 

capacity of an INTEGER*2 variable. Hence, the larger version is needed for CUST_ID. 

This program is designed to be executed interactively. This means that its operation 

will involve a "conversation" between the user and the program. To promote the idea of 

dialogue, an interactive program sends messages to the user and acts on his or her 

responses. In a sense, the user is being asked to do something. Such a request is called a 

prompt. The PRINT statement (i.e., the fifth statement in Figure 2.10) does that in this 

example. When the program is run, the character string enclosed in apostrophes will be 

displayed on the user's terminal. A string, when specified this way, is called a literal string. 

It is displayed as is (without the apostrophes), blanks and all. After displaying the 

message, the program waits for the user to supply the requested values through his or her 

terminal. Once this information is transmitted (this occurs when the user presses the 

RETURN or ENTER key after typing the values), the program continues. 

FIGURE 2.10 FORTRAN 77 Program for Example 2.4. • 
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c ********************************************************************** C PROGRAM FOR EXAMPLE 2. 4 * c * C DAY_RATE: RENTALRATE, DOLLARSPERDAY * C DSK_COST: DISKCOST, DOLLARSPERDISK * C PAD_COST: PADCOST, DOLLARSPERPAD * C CUST_NAME: CUSTOMER NAME, UP TO 20 LETTERS LONG * C CUST_ID: CUSTOMER I. D. NUMBER, 5 DIGITS LONG * 
C DAYS: NUMBER OF RENTAL DAYS * C DISKS: NUMBER OF DISKS PURCHASED * C PADS: NUMBER OF PADS PURCHASED * C RENT: RENTAL COST * C TTL_DISK_COST: COST OF DISKS PURCHASED * C TTL_PAD_COST: COST OF PADS PURCHASED * C TOTAL_COST: TOTAL COST TO THE CUSTOMER * 
C ADJ _COST: ADJUSTED COST TO THE CUSTOMER * c RECALL THAT THE I I IMPLICIT NONE I I DECLARATION CAUSES * 
C FORTRAN TO PRODUCE A WARNING MESSAGE WHENEVER IT * C FINDSAVARIABLEBEINGUSEDWITHOUTAPRIOREXPLICIT * C DECLARATION. ONEOTHERPOINT: NOTETHATTHE * C DECLARATION OF THE REAL VARIABLES IS TOO LONG TO FIT * C ON ONE LINE. CONSEQUENTLY, WE HAVE TO CONTINUE !TON * C THE NEXT LINE. THE DOLLAR SIGN IN COLUMN 6 OF THAT LINE * C TELLS FORTRAN THAT THE MATERIAL ON THAT LINE IS A * C CONTINUATION FROM THE PREVIOUS LINE. * c ********************************************************************** 

* 

PROGRAM 
IMPLICIT 
REAL 

INTEGER*4 
INTEGER*2 
CHARACTER*20 

EX204 
NONE 
DAY_RATE,DSK_COST,PAD_COST,RENT, 
TTL_DISK_COST,TTL_CPAD_COST,TOTAL_COST,ADJ_COST 
CUST_ID 
DAYS, DISKS, PADS 
CUST_NAME 

PRINT*, 'ENTERDAY__JlATE, DSK_COST, ANDPAD_COST' 
READ*, DAY_RATE,DSK_COST,PAD_COST 
PRINT*, 'ENTERCUST_NAME, CUST_ID, DAYS, DISKS, ANDPADS' 
READ*, CUST_NAME,CUST_ID,DAYS,DISKS,PADS 

c ********************************************************************** C HERE IS OUR DO-WHILE LOOP: * 
C ENTRY TO THE LOOP IS CONTROLLED BY A TEST (BUILT INTO HP * C FORTRAN 77 'S DO WHILE STATEMENT) ON THE CURRENT * C CUSTOMER NUMBER. AS LONG AS THAT NUMBER IS NOT EQUAL * C TO (.NE. ) ZERO, THE LOOP IS ENTERED AND ITS ACTIVITY IS * C REPEATED ONCE MORE. THE CONCLUSION OF THE LOOP IS * C MARKED BY THE STATEMENT END DO. AS SOON AS THE * C CUSTOMER NUMBER CUST _ID IS EQUAL TO ZERO, THE * C PROGRAM STOPS. * c ********************************************************************** DO WHILE (CUST_ID. NE. 0) 

PRINT*, CUST_NAME,CUST_ID,DAYS,DISKS,PADS 
RENT= DAYS*DAY _RA.TE 
TTL_DISK_COST = DISKS*DSK_COST 
TTL_PAD_COST=PADS*PAD_COST 
TOTAL_COST =RENT+ TTL_DISK_COST + TTL_PAD_COST 
IF (CUST_ID. GE. 90000) THEN 

ADJ _COST= 0. 9 *TOTAL_ COST 
ELSE 

ADJ _COST= TOTAL_COST 
END IF 
PRINT*, RENT,TTL_DISK_COST,TTL_PAD_COST,TOTAL_COST, 

1 ADJ_COST 
PRINT *, 'ENTER CUST _NAME, CUST _ID, DAYS, DISKS, AND PADS' 
READ*, CUST_NAME,CUST_ID,DAYS,DISKS,PADS 
END DO 

PRINT*· 'END OF RUN. I 

STOP 
END 

29 
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In the light of the foregoing discussion, the first two pair of PRINT and READ 

statements are self-explanatory. After a separating comment, the program specifies a 

loop beginning with the DO WHILE statement. As long as NUMC is not zero, the test 

passes and the specified activities are performed in sequence. Another test, part of the 

sequence, also is straightforward: If the account number is greater than or equal to (that is 

what the. GE. means in FORTRAN 77) 90000, this means (to us) that the customer is 

entitled to a discount. Accordingly, we compute ADJ, equal to 90% of the old ( unad­

justed) TOTAL. Then we go on to write (print) the results. On the other hand, if the test 

fails (i.e., the account number does not begin with a 9), the program skips the part 

following the word THEN and goes directly to the ELSE action. In either event, the PRINT 

statement is executed. The last statement in the loop sends the program right back to the 

first statement of the loop which checks the new set of input data for a customer number of 

zero. 

2.3.2 Additional Structured Elements 

Structured programs make use of other building blocks which we shall discuss later. These 

are secondary because they can be put together from combinations of the basic constructs 

already examined. In that sense, they are conveniences rather than essentials, and we 

shall defer their use till other, more fundamental concepts have been considered. 

2.4 SUMMARY Structured programming is an approach to the development of computer programs in 

which there is a systematic progression from a clear statement of the problem to the actual 

coding of the program. An essential factor in this approach is the explicit delay of coding 

until an algorithm (a sequence of steps for solving the problem) has been defined, 

charted, and checked for correctness. 
The result of this approach is a structured program built from a combination of basic 

constructs shown below. The ones on the left are expressed as N-S charts and the 

corresponding ones on the right are expressed as pseudocode, a paraphrase of pro­
gramming steps in narrative form. 

The Sequence: 

Alternative 
Selection 
(IF-THEN-ELSE): 

no 

do this, 

then this, 

and finally this. 

is this true? 

else then 

do this do this 

"Do this," 

"Then this," 

"And finally this." 

if 

"This is true" 

yes 

then 
"Do this." 

else 
"Do this." 

endif 



Repetitive 
Action 
(loop): for all 

do this 
for each 
one 

instances 

repeat 

do this 
over and 
over 

N times 

while true 

do this 
over and 
over 

PROBLEMS 

do for all instances 

"Do this for 
each one." 

enddo 

do N times 

"Do this 
each time." 

while this is true 

"Do this 
over and 
over." 

end while 

If a program is structured, it will consist only of these building blocks (or others built 
directly from these) and is likely to be easier to analyze, develop, and use. 

1. The world of computers is not the only place in which people spend a lot of time and money to solve the PROBLEMS wrong problems. There are many famous cases in just about every area of endeavor where exactly the 
same thing has happened. See if you can think of a few of these, or consult your library for information 

31 
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about some of the more spectacular fiascos. The following general areas might provide fertile ground for 

inquiry: 

(a) the automobile industry 
(b) the movie industry 
( c) the television industry 
( d) the home photography industry 

( e) the high fidelity industry 
(f) the beverage industry 
(g) the food processing industry 
(h) the men's clothing industry 

(i) the women's clothing industry 

(j) the computer industry 

2. Identify at least two different algorithms for solving each of the following problems: 

(a) getting home from school or work 

(b) preserving peaches 
( c) drawing a straight line through a series of points plotted on a graph 

( d) legally reducing the amount of income tax you pay 

( e) making somebody laugh 
(f) reducing the cost of transportation between where you live and where you work or go to school 

(g) finding a particular book in a library 

(h) finding a book on a particular subject in a library 

(i) stopping the hiccups 
(j) selecting a ripe cantaloupe 

3. Think about each of the following everyday activities. Is the underlying process algorithmic? If it is, list the 

steps (in proper sequence) that describe the algorithm. If the process is not algorithmic, indicate why it is 

not: 

(a) checking a book out of the library 

(b) buying an insurance policy 
(c) voting 
( d) treating a cold 
( e) mailing a letter 
(f) buying and replacing a headlight for your automobile 

(g) finding and eliminating the squeaky rattle in your automobile 

(h) locating an old high school friend for the Big Reunion 

The problems in the following group describe various processes or activities. For each one, identify an 

appropriate construct or constructs that can be used to represent the activity or process and express it either in 

N-S or pseudocode form: 

4. Read three integers INTl, INT2 and INT3 and print them in reverse order. 

5. Read three integers INTl, INT2 and INT3 and print them in the order they were read, followed by their 

sum. 

6. A rectangular lot has length LENGTH and width WIDTH, both dimensions expressed in feet to the 

nearest tenth of a foot. LENGTH and WIDTH are to be read in from a line and used to compute PERIM, 

the perimeter of the lot, and AREA, the area of the lot. Print the input values followed by the computed 

results. 

7. The rate at which a fluid travels through a pipe can be computed by the formula 

WT_FLOW=DENSITY*AREA*VELOCITY 

where 
WT _FLOW is the rate of flow in kilograms per second 

DENSITY is the fluid's density in kilograms per cubic meter 

AREA is the pipe's area in square meters 

VELOCITY is the fluid velocity in meters per second 

Recall that the asterisk(*) is used in FORTRAN to denote multiplication. We are to read DENSITY, 

AREA, and VELOCITY, each in its proper units. These are to be printed, after which we are to compute 

WT_FLOW and print that value. 
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8. We are still pushing fluid through a round pipe as in Problem 5. However, this time the area is not 
directly available. Instead, input consists of DENSITY (as before), DIAM (the pipe's diameter in 
meters), and VELOCITY (as before). We are to print the input, after which the area is to be computed 
and printed. Once that is done, WT _FLOW is computed and printed. 

9. Here we are again with the round pipe and the fluid. We still want to compute WT_FLOW, the rate of 
flow in kilograms per second. However, somebody new came along and was unaware of the ground 
rules. As a result, the value for the density is keypunched in pounds per cubic foot instead of kilograms 
per cubic meter, the pipe diameter is recorded in inches instead of meters, and the velocity is 
keypunched in miles per hour instead of meters per second. Oboy. Undaunted, we still want the same 
results (i.e., in the units specified in Problem 7). Accordingly, after reading the three values and 
printing them as received, we wish to convert and print the density in the desired units and the velocity, 
in its proper units. Then, we can go ahead and compute and print WT _FLOW as before. The following 
information will help in the conversions: 

There are 0.4536 kilograms in a pound 
There are 0.254 meters in an inch. 

10. Window glass at the Looky Here Glasse Shoppe costs $6.80 per square foot. (Believe me, this is very 
special window glass.) Moreover, it is sold only in rectangular shapes. The length (LENGTH) and width 
(WIDTH), each in inches to the nearest sixteenth of an inch, are to be read in and printed. Then, we are 
to compute and print the area (AREA) in square feet, the cost of the glass (COST), the tax (TAX), and the 
total price (TOTAL). Tax in Looky's state is four and one half percent of the cost. 

11. Read 36 values of X and print their sum (SUM) _x. (Remember (from Example 2.2) that the sum 
(SUM_X in this case) must be initialized to zero so that we have a known value to which we can begin 
adding when the first X is read.) 

r2. Compute and print the sum of the first 12 positive integers. 

13. Read a positive integer INTGR and, for each integer from 1 through INTGR, print the integer (call it 
NUM), its square (call it NUMSQR), its cube (call it NMCUBE), and its square root (call it ROOTNM). 

14. Read a positive integer INTGR and print it. Then, compute and print the sum (INTGR_SUM) of the first 
INTGR positive integers. 

15. Read two positive integers INTl and INT2 (INTl < INT2), print them, and then compute and print 
POSITIVE_SUM, the sum of the integers from INTl through INT2. 

16. Redesign the procedure for Problem 14 so that it will repeat its operations for a succession of INTGR 
values. Stop the run with a negative value of INTGR. 

17. Redesign the procedure for Problem 15 so that it will repeat for any number of sets of INTl and INT2. 
Stop the run with a negative value of INTl. 

18. Revise the procedure in Problem 6 so that it will read and process 18 sets of LENGTH and WIDTH values. 
19. Revise the procedure in Problem 6 so that it will read and process any number of sets of LENGTH and 

WIDTH values, stopping only when a LENGTH of zero is read. 

20. Revise the procedure in Problem 19 so that it uses a counter LOTS to keep track of how many lots it has 
processed in a given run, a variable named TOTAL_AREA for the total area of the lots, and a variable 
AVG_AREA for the average area. After the last lot has been processed (use the same signal as in 
Problem 19), print the final results (i.e., LOTS, TOTAL_AREA, and AVG_AREA). 

21. Read two integers INTl and INT2 and print the smaller one followed by the larger one. 
22. Read two integers INTl and INT2. This time, there is no guarantee that they will have different values. 

If they are different, print the smaller one followed by the larger one. If they have the same value, print 
the message "INTl AND INT2 HAVE THE SAME VALUE", followed by the value. 

23. Do Problem 15 with the following change: Instead of guaranteeing that INTl < INT2, we can only 
guarantee that INTl and INT2 will have different positive values. 

24. Repeat Problem 15 with the following change: This time we can only guarantee that INTl and INT2 
will be positive. 
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25. Revise Problem 7 to take the following into account: When pushing a fluid through a small pipe, certain 

factors act to reduce the amount of the pipe's area that actually is available for flow. The pipe is said to 

have an effective area that is some fraction COEF of the physical area. If EFFECTIVE_AREA is the 

effective area, its value, then, may be computed as 

EFFECTIVE__AR.EA = COEF*AREA 

Then, of course, it is the effective area that is used, along with density and velocity, to compute the flow. 

As a rough rule of thumb, pipes with diameters below 0.0175 meters need correction with a COEF value of 

0.794 while pipe diameters at or above that value need no correction. Print the area (AREA or EFFEC­

TIVE_AREA) used to compute the flow. 

26. Revise the procedure either in Problem 7, 8 or 25 so that it processes 20 sets of input values. 

27. Revise the procedure either in Problem 7, 8 or 25 so that the first input value read and printed is SETS, the 

number of input sets to be processed during that run. Then it goes ahead and processes that many input 

sets. 
28. Looky Glasse Shoppe has expanded its line so that it now offers frosted glass at $7.25 per square foot in 

addition to its regular (transparent) type at $6.80. (Prosperity has set in since Problem 10; at these prices, 

that is no surprise.) Accordingly. we need to modify the procedure in Problem 10 to accommodate the 

expansion. Input now consists of LENGTH and WIDTH as before, and an indicator named TYPE whose 

value is 1 for transparent glass and 2 for frosted. Output requirements still are the same as before. 

29. Modify Problem 28 so that the process will handle any number of pieces of glass consisting of any mixture 

of the two types. A LTH value of zero signals the end of the run. After the last set of input has been 

processed, the revised procedure is to print the number of transparent pieces (NUM_ TRANSPARENT), the 

total transparent square footage (TRANSPARENT_AREA), the total transparent revenue including 

tax (TRANSP _FRICE), the number of frosty pieces processed (FROST_NUM), their total area (FROSTY_ 

AREA), the frosty revenue (FROST_PRICE), the total number of pieces for the run (TOTAL_FIECES), 

total area (TOTAL_AREA), and total revenue (TOTAL_PRICE). 

30. In Problem 29 there is the implied assumption that all the input data are keypunched correctly. To induce 

you to think about the kind of algorithms that need to be designed when this assumption cannot be made, 

assume that LENGTH and WIDTH in Problem 29 always will be correct. Moreover, you can assume that 

when the type of glass is recorded as 1 or 2, it is the right type for that input set. However, there is no 

guarantee that the type always will appear as a 1 or 2. That is, this version of the process is to expect and 

handle cases where the type is specified in error. (For example, somebody might enter a 4 for the type, and 

there is no type 4.) 

31. Design a procedure to process a set of input values as follows: Each input value is an integer NTG. lfNTG is 

odd, add it to SUM_ODD; if it is even, add it to SUM_EVN. Keep reading values of NTG and adding them 

to the proper sum as long as NTG is positive. As soon as NTG is not positive, print SUM_ODD, 

SUM_EVN, and NUM_ODD and NUM_EVN, the number of odd and even values, respectively. 

32. Here is a FORTRAN 77 program: 

c ********************************************************************** 
C VARIABLE NAMES AND THEIR MEANINGS: * 

c 
c 
c 
c 

LENGTH: 
HT: 
TOP: 
VOL: 

LENGTH; 
HEIGHT; 
LENGTH*WIDTH; 
LENGTH*WDTH*HT; 

WIDTH: 
FRONT: 
SIDE: 

WIDTH; 
LENGTH*HEIGHT; 
HT*WIDTH; 

* 
* 
* 
* 

c ********************************************************************** 

PROGRAM 
IMPLICIT 
REAL 
INTEGER*2 

PROB32 
NONE 
LTH,WDTH,HT,FRONT,TOP,SIDE,VOL 
NUMPCS 

c ********************************************************************** 

c 
c 
c 
c 

THE I I IMPLICIT NONE I I DECLARATION IMMEDIATELY FOLLOWING THE 
PROGRAM STATEMENT SETS A SPECIAL FLAG IN THE FORTRAN COMPILER 
THAT CAUSES A WARNING TO BE PRODUCED WHENEVER A VARIABLE IS 
NOT EXPLICITLY DECLARED > THIS HELPS KEEP US ALERT. 

* 
* 
* 
* 

c ********************************************************************** 



NUMPCS = 0 

PRINT*, 'ENTERVALUESFORLTH, WDTH, HT' 
READ*, LTH, WDTH, HT 
DOWHILE (LTH.NE. 0.0) 

NUMPCS = NUMPCS + 1 
PRINT*, LTH, WDTH, HT 
FRONT= LTH*HT 
TOP= LTH*WDTH 
SIDE= WDTH*HT 
VOL= LTH*WDTH*HT 
PRINT*, FRONT, TOP, SIDE 
PRINT*, VOL 
PRINT*, 'ENTERVALUESFORLTH, WDTH, HT' 
READ*, LTH, WDTH, HT 

END DO 

PRINT *, 'NO. OF PIECES: ' , NUMPCS 
PRINT*, 'END OF RUN. ' 
STOP 
END 

(a) Describe, in three sentences or less, what this program does. 

PROBLEMS 

(b) Indicate the constructs used by this program and show where each one begins and ends. 
( c) What is NUMPCS? 
( d) Indicate which lines are comments and which lines are statements. 
( e) How many lines of printout does the program produce for each set of LENGTH, WIDTH and HT 

read in? 
(f) In Example 2.4, there are two separate statements that perform the same READ operation on the 

same type of data-one outside the loop (before the loop starts) and one inside the loop. The 
program in this problem has only a single READ statement for the data, and that one is inside the 
loop. Discuss the structural differences between these two types of organization. 
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3 
Getting Acquainted 
with FORTRAN 77 

The FORTRAN program shown in the previous chapter touches on a number of 

powerful features that enable the programmer systematically and conveniently to de­

scribe what he or she wants done. In this chapter we expand on those features to present a 

more comprehensive view of the language, along with an introduction to its major 

structural rules. 

Every FORTRAN program, regardless of its size or complexity, consists of a sequence of 

statements with each statement specifying a particular activity. The activity defined in a 

statement is not limited in any particular way by size restrictions on the statement. 

Basically, a statement can be up to 20 lines long. (Strictly speaking, a FORTRAN 

statement cannot exceed 1320 characters in total length; however, that is well beyond the 

requirements for most statements.) Accordingly, the programmer can concentrate on the 

problem to be solved rather than the peculiarities of the programming language. 

3.1.1 The Basic Fonn of a Program 

Figure 3.1 shows the general framework for a simple FORTRAN program. It starts with a 

PROGRAM statement and concludes with an END statement. Making such a program 

longer does not make it organizationally less simple; the basic framework is the same 

regardless of the length. 
More elaborate program organizations are built by putting together several of these 

building blocks. This is illustrated in Figure 3.2. The framework outlined in Figure 3.2 

consists of two procedural components. The first one, known as a main program, controls 

the use of the second one, known as a subprogram. Figure 3.3 shows this type of 

construction carried a bit further: This program consists of a main program followed by 

three subprograms. It is possible to build a large and intricate program by organizing it as a 

collection of subprograms which are controlled (directly or indirectly) by a single main 

program. Each subprogram can be designed to provide processing whose details are 

hidden from the main program. As far as the main program is concerned, the computa­

tions and other activities performed by a subprogram can be treated as a single step. Until 

more familiarity is developed with program construction, we shall concentrate on the 

basic type of organization shown in Figure 3.1, i.e., the single (main) program. However, 

if we know the direction in which program organization can expand, it will simplify the 

actual expansion when we get to it. 

3.1.2 Major Statement Types 

A statement in FORTRAN is similar to a sentence in a natural language: It is a unit of 

communication expressing something that we think of as a single activity or idea. This is 
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PROGRAM progname 
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END 
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main 
program 

subprogram 

FIGURE 3.1 General Structure of a Simple FORTRAN 
Program. 

FIGURE 3.2 A FORTRAN Program Consisting of a Main Pro­
gram and One Subprogram. 

true regardless of the number of separate things the computer has to do to fulfill the directives in a statement. Since it obviously is impossible to anticipate what the steps may be for a particular program, the language is designed to be extremely flexible. As a result, the things we want the computer to do can be expressed easily and conveniently with a surprisingly small number of statement types. This section will introduce each of these briefly and illustrate its use. 

3.1.2.1 PROGRAM and END Statements A FORTRAN main program begins with a statement that says 

PROGRAM progname 

where progname is the name by which that main program is to be identified. When a program is completed and the computer center wants to make it available for general use, that program will be installed in a library. Then, anyone wishing to make reference to that program would do so through its name. In this latter connection, HP FORTRAN 77 accepts a number of additional specifications as part of the PROGRAM statement. Every FORTRAN main program or subprogram concludes with a statement that says, simply, 

END 
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PROGRAM progname 

Main Program 

END 

Subprogram A 

END 

Subprogram B 

END 

Subprogram C 

FIGURE 3.3 A FORTRAN Program Consisting of a Main Program and END 

Three Subprograms. 

This tells the FORTRAN compiler (the program that translates FORTRAN statements 

to machine instructions) that it has reached the last physical statement in that program or 

subprogram. 

3.1.2.2 Declaration Statements If a computer is to process information the way our 

program tells it to, that information must be available in the machine's memory, and its 

type must be defined. Moreover, there must be a way for the computer to get at the right 

information when it is needed. This is done by defining a name and a data type for each 

item of information used by the program. The programmer provides the name and data 

type, and FORTRAN provides the (invisible) bookkeeping that automatically makes 

sure that the right name goes with the right location and data type. 
FORTRAN handles the definition of these names by means of declaration 

statements (also known as specification statements). A couple of examples will shed 

further light: The statement 

INTEGER NUMOBS 
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operates as if we were to give the following instruction: 
"Dear FORTRAN: Reserve a place in storage and attach the name NUMOBS to it. I am going to use this location to store a positive or negative whole number whose value may change from time to time throughout the program. Make sure that you 
have enough information so that every time I use the name NUMOBS you refer to that same location. Thank you." 

Another type of declaration looks like this: 
CHARACTER*8 NXTWRD 

This reserves enough space (and associates it with the name NXTWRD) to hold any eight characters. No particular set of characters is placed in NXTWRD as a result of this declaration, but the memory space now is available for such placement by other state­ments in the program. 
As we saw in the last chapter, a single declaration statement may be used to define more than one variable. It is a good programming practice to place all of the declarations at the beginning of the program. This provides a clear record of all the variables used in that program. Furthermore, all of the definitions are in one place where we can refer to them conveniently. The next chapter will examine these declarations more fully. 

3.1.2.3 Assignment Statements The most direct way of providing a value for a variable is by assignment, and the type of statement that performs this activity is the assignment statement. This statement looks like an equation in algebra but it really is not. To illustrate, let us look at a very simple but complete program: 
Example 3.1 

PROGRAM EX301 
IMPLICIT NONE 
INTEGER*2 WIDTH 
WIDTH=32 
END 

The first statement defines the integer variable WIDTH. The second statement assigns a value of 32 to this variable. Despite its appearance, this statement does not say "WIDTH is equal to32." Instead, it says: "Place a value of 32 in the location carrying the name WIDTH." This distinction is important, and we shall emphasize it by referring to the familiar symbol = as the assignment operator. 

The assignment statement can become much more complicated since it is the way to specify any computations that we might want done. To illustrate, we shall lengthen our program a bit: 

Example 3.2 

PROGRAM EX3 02 
IMPLICIT NONE 
INTEGER*2 LENGTH, WIDTH, PERIM 
LENGTH=247 
WIDTH=32 
PER IM= 2 * (LENGTH+ WIDTH) 
STOP 
END 

After defining the three variables, values of 24 7 and 32 are assigned, respectively, to LENGTH and WIDTH. The third assignment statement says, in effect: "Do the indicated arithmetic and assign the resulting value to PER IM." Accordingly, the value currently in LENGTH (24 7) is copied and added to a copy of WIDTH's current value (32). The sum thus obtained (279) is multiplied by 2 and the resulting product (558) is placed in (i.e., assigned to) PERIM. LENGTH and WIDTH still retain their previous values. 
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3. 1 .2.4 Input/Output Statements FORTRAN 77 handles all data transmission from 

the outside world by means of the READ statement. Similarly, delivery of information 

from the processor to the outside world is specified by means of the WRITE or PRINT 

statement. The statements used in Chapter 2 (Example 2.4) represent a basic form for 

specifying reading or writing called list-directed input/output. The name stems from the 

fact that the input or output appears as a list of values clearly separated from each other. 

In other types of input or output, the appearance of the data is more complicated so that 

the values must be supplemented by a description. We shall use list-directed input/output 

for a while. 

Example 3.3 As an example, consider the following program: 

PROGRAM EX03 

IMPLICIT NONE 

INTEGER•4 LENGTH,WIDTH,PERIM,AREA 

CHARACTER• 8 NAME 

PRINT *' I ENTER v ALUES FOR NAME' LENGTH' AND WIDTH I 

READ*• NAME, LENGTH, WIDTH 

AREA= LENGTH•WIDTH 

PER IM= 2 * (LENGTH+ WIDTH) 

PRINT•, NAME,LENGTH,WIDTH,PERIM,AREA 

PRINT*· 'END OF RUN. I 

END 

Note that the READ statement indicates how many data items are to be read and where the values are to 

be stored. Specifically, it is the same as saying: "Read the next three pieces of data and store them in the 

variables named NAME, LENGTH, and WIDTH." The statement tells us where the data came from. 

Specifically, the 1 inside the parentheses serves as a signal to the READ statement to use a standard 

source of input. That source is defined inside FORTRAN and set at each computer installation. The device 

selected for this purpose is the one most likely to be used for input at that installation. HP FORTRAN 77 

normally assumes your terminal to be the standard input device. 

The READ statement in Example 3.3 does not say anything about the appearance of 

the data. The programmer does not have to supply this information because the list­

directed READ statement expects the input data to be in a standard form: The values 

simply are entered on the terminal keyboard, separated from each other by one or more 

blanks. Commas also may be used to separate list-directed input values. Whichever form 

is used, it is up to the programmer to make sure that the order in which the variable names 

are listed in the READ statement matches that of the data values on the line. 
The list-directed PRINT statement operates in the same general way. Output is sent 

to a predefined device. This is usually a printer or terminal, and we shall assume the latter 

here. The output values themselves are printed (displayed) in a standard format defined 
within FORTRAN. ("Print" and "display" will be used interchangeably in discussions of 

output.) We can begin to see how this works by looking at Figure 3 .4, which shows a set of 

input data for the program in Example 3.3. The three values on the line correspond to the 

three names listed in the READ statement, so that after the statement is executed (that is, 

just before AREA is computed), the following will be true: 

1. NAME will contain the eight characters OAKHURST. The apostrophes are part of 
the standard format. They do not get stored. 

2. LENGTH now has a value of 424. 

3. WIDTII now has a value of 276. 

4. Values for AREA and PERIM still are undetermined, since the computations have 
not been done yet. 

'OAKHURST' 424 276 FIGURE 3.4 Sample Input for Example 3.3. 
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OAKHURST 424 

FIGURE 3.5 Sample Output for Example 3.3 (Produced from Figure 3.4's input). 

Exactly the same thing would happen if the input data were to look like this: 
'OAKHURST',424,276 

After the computations for AREA and PERIM are completed and the PRINT statement is 
executed, the resulting output will appear as shown in Figure 3.5. The order in which the 
five items are printed corresponds to that given in the PRINT statement and has nothing to 
do with anything else in the program. Thus, the programmer can specify any order that 
suits his or her purpose. The only note of caution is that there must be a value available for 
each variable name listed in the PRINT statement. Table 3.1 summarizes the values 
available in the program of Example 3.3 as each of its steps is completed. The program is 
shown in part (a) of the table, where we have attached a sequential number to each 
statement for convenience. We see (part (b)) that values for NAME, LENGTH and WIDTH 
are not known until they are actually read in by statement 5. Similarly, once the program 
has run, the memory used for the program and data is reassigned for some other purpose 
and the variables are no longer recognized. Of course, it no longer matters because we 
have what we want, having printed it in statement 7. 

Complete control over input/output processes is exercised through the formatted 
READ, WRITE and PRINT statements. These are described later on, in Chapter 15. 

Table 3.1 Execution of the Program in Example 3.1 

Statement No. Statement · 

EX03 1 
2 
3 
4 
5 
6 
7 
8 
9 

PROGRAM 
IMPLICIT 
INTEGER•2 
CHARACTER•8 

NONE 
LENGTH,WIDTH,PERIM,AREA 

NAME 
PRINT*, 'ENTERVALUESFORNAME, LENGTH, WIDTH' 
READ*, NAME, LENGTH, WIDTH 
AREA= LENGTH * WIDTH 
PERIM = 2 * (LENGTH+WIDTH) 

10 
PRINT•, NAME,LENGTH,WIDTH,PERIM,AREA 
END 

(a) 

Reference Point Name Length Width Pe rim 
Just prior to Statement 6 ? ? ? ? 
Just prior to Statement 7 OAKHURST 424 276 ? 
Just prior to Statement 8 OAKHURST 424 276 ? 
Just prior to Statement 9 OAKHURST 424 276 1400 
Just prior to Statement 10 OAKHURST 424 276 1400 
Just after Statement 10 ? ? ? ? 

(b) 

Area 

? 
? 

117024 
117024 
117024 

? 
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3.1.2.5 Control Statements When a program runs, we think of its action as a series of 

events occurring in a certain sequence, one after the other. In a sense, the program is 

traveling on a journey toward its conclusion. For a very simple program, like the one in 

Example 3.3, the journey follows a single pathway until the road ends. Every time such a 

program runs, it makes the same trip in the same way. When the problem being solved is 

more complicated, it may be necessary to design a program with numerous pathways 

having different lengths, leading in different directions, and ending in different places. 

Under these circumstances, an appropriate journey will be selected each time the 

program runs. Control statements provide the programmer with a way of defining the 

selection process and how it is to take place. 

In Chapter 2 we dealt with two basic ways to select the path taken through a program. 

One of these, the IF-THEN-ELSE construction, enables us to choose one of two 

available pathways depending on some condition that we can test. Once the path is 

chosen, the program moves forward. 
This construction is represented directly in FORTRAN 77 by the IF-block: 

IF test condition THEN 
actionl 

ELSE 
action2 

END IF 

The two alternative paths are described by actionl and action2, respectively. Only one is 

chosen, depending on the outcome of the test: actionl is taken when the outcome is 

"true" (i.e., the answer to the test question is "yes"), and action2 is followed instead when 

the outcome is "false." 

Example 3.3A We can see how this operates in a specific program by changing the processing in 

Example 3.3. This time, instead of printing the output values in one fixed sequence, we shall provide two 

choices: if the area is less than 5000, the program is to print the name, length, width, perimeter, and area, 

in that order. On the other hand, if the area is not less than 5000, the program is to print the name, length, 

width, area and perimeter, in that order. The pseudocode and N-S diagram for this revision are shown in 

Figure 3.6, and the program itself appears below. Note that the . LT. that appears in the IF statement is 

the way the "less than" comparison is expressed in FORTRAN. We shall deal more extensively with 

these types of tests as we go on. 

PROGRAM 
IMPLICIT 
INTEGER•4 
CHARACTER•8 

EX03A 
NONE 
LENGTH,WIDTH,PERIM,AREA 

NAME 

PRINT *' I ENTER v ALUES FOR NAME' LENGTH' AND WIDTH I 

READ•, NAME, LENGTH, WIDTH 

AREA= LENGTH•WIDTH 
PERIM = 2 * (LENGTH+ WIDTH) 
IF (AREA.LT. 5000) THEN 

PRINT•, NAME,LENGTH,WIDTH,PERIM,AREA 

ELSE 
PRINT•, NAME,LENGTH,WIDTH,AREA,PERIM 

END IF 
PRINT*· 'END OF RUN. I 

END 

The loop allows the programmer to set up a design in which the program can interrupt 

its "forward" progress through the statements to double back on itself and repeat part of 

the journey. Our brief experience with such loops (Examples 2.3 and 2.4) has already 

illustrated that we can control the action in various ways based on two fundamental 

techniques: 



Define 

Read 

NAME, LENGTH, WIDTH, 
PERIM, AREA 

NAME, LENGTH, WIDTH 

AREA.--LENGTH X WIDTH 

PE RIM+-----2 (LENG TH + WIDTH) 

AREA <5000? 

false 
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true 

Print NAME, LENGTH, 
WIDTH, PERIM, AREA 

Print NAME, LENGTH, 
WIDTH, AREA, PERIM 

STOP 

(a) 

"Define NAME, LENGTH, WIDTH, PERIM, AREA." 
"Read NAME, LENGTH, WIDTH." 
"Compute AREA = LENGTH x WIDTH." 
"Compute PERIM = 2 (LENGTH + WIDTH)" 
If "Area is less than Sf)</JQ" then 

"Print NAME, LENGTH, WIDTH, PERIM, and AREA." 
else 

"Print NAME, LENGTH, WIDTH, AREA, and PERIM." 
End if 

"Stop." (b) 

FIGURE 3.6 (a) N-S Representation of Example 3.3A. 
(b) Pseudocode Representation for Example 3.3A. 

1. We can set out to repeat a loop a certain number of times. When the specified 
number of repetitions has taken place, the program breaks out of that pattern and 
resumes its march toward journey's end. 

2. We can set up some kind of signal whose status ("on" or "off'') governs the 
program's conduct. While the signal is on, the program repeats the loop. It 
continues to do so as long as the signal stays on regardless of the number of 
repetitions. As soon as the signal goes off, the pattern is broken and the journey's 
basic direction resumes. It may be that, for a particular run, the signal never gets 
turned on to begin with, so that the loop is not followed even once. This type of 
control is exercised by the DO-WHILE construct. 

FORTRAN has a variety of features that can be used to construct and control loops. The 
most basic mechanism involves the DO WHILE loop introduced earlier (see Example 2.4). 
Another type of control statement enables us to specify loops in which the number of 
repetitions are counted automatically. (Recall that this mechanism was introduced in 
Figure 2.6.) When expresed in FORTRAN, these automated loops have general struc­
tures such as those shown in Figure 3.7. As the figure indicates, each loop begins with a 
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DO statement 
statement 

statement 

statement 
END DO statement 

(a) 

DO statement 
statement 

statement 

statement 
CONTINUE 

(b) 

FIGURE 3.7 Basic Construction of an Automated Loop (Also called a DO loop). 

DO statement that defines the way the loop is controlled. In one form (standard in all 
FORTRAN 77 dialects) the end of the loop is marked with a CONTINUE statement. The 
CONTINUE provides a convenient bookkeeping device which makes it easy to emphasize 
the loop as a single activity (Figure 3.7a). An alternative framework available in HP 
FORTRAN 77 uses the END DO statement as an explicit conclusion for a loop. This 
structure is shown in Figure 3.7b. 

Example 3.4 The previous example was set up to handle exactly one line of input and then stop. While 

this is very simple, it is not realistic. In practice, a well designed program is constructed to handle any 

number of cases in a given run. We shall expand the requirements in Example 3.3 as follows: Instead of 

processing just one set of NAME, LENGTH and WIDTH values, we would like to read, process and print 

results for each of several sets. The number of sets (which we shall call NSETS) is likely to be different 

each time the program is used. However, that number will be known ahead of time and we shall read it in 

ahead of everything else. Thus, the input for each run now will consist of a single value forNSETS followed 

by NSETS lines, each containing a value for each of the variables NAME, LENGTH, and WIDTH. Also, the 

program is to keep track of the total area by adding each newly computed area to a running sum. Afterthe 

results have been printed for the last set of input, the program is to print the number of input sets and the 

total area. 
To meet these expanded requirements, we shall define two additional variables: NSETS, into which 

we shall read the number of sets for a given run, and TLAREA, the variable where the total area will be 

accumulated. NAME, LENGTH, WIDTH, PERIM, and AREA will be used as before. 

The program design (Figures 3.B(a) and 3.B(b)) reflects these conditions. Afterdefining the necessary 

variables, we get the processing started by setting the stage for the controlled repetition within the loop. 

For this example, the preparation involves reading the value of NSETS so the program knows how many 

times it will read and process input sets. In addition, TLAREA has to be set to zero so that the program can 

add to it as it goes around the loop. This process of stage-setting is called initialization. It is an essential 

part of every program. The specific activities performed during initialization will depend, of course, on the 

requirements of the particular algorithm. 
Back to our program: Having completed the initialization, the program then will repeat the loop 

NSETS times. Each time through the loop it will: 

1 . Read a set of NAME, LENGTH and WIDTH values. 

2. Compute PERIM and AREA. 

3. Bring TLAREA up to date by adding the newly computed AREA to it. 

4. Print the results (NAME, WIDTH, LENGTH, AREA, and PERIM). 

AfterNSETS times through this loop, the program will break this pattern and perform its final activity, i.e., 

display the number of input sets (which simply is NSETS) and TLAREA. These events are represented by 

the pseudocode and N-S diagram in Figure 3.8 and the program itself is shown in Figure 3.9. We shall 

focus on the loop to see how it is controlled. 



Define NAME, LENGTH, WIDTH, AREA, 
PERIM, NSETS, TLAREA 

Read NSETS 
TLAREA•-O 

DO NSETS times 

Read NAME, LENGTH, WIDTH 
Compute PERIM and AREA 
Add AREA to TLAREA 
Print NAME, LENGTH, WIDTH, PERIM, 

AREA 

OVERALL ORGANIZATION OF A PROGRAM 

"Define NAME, LENGTH, WIDTH, AREA, PERIM, 
NSETS, TLAREA." 

"Read NSETS." 
"Initialize TLAREA to zero." 
Do NSETS times 

"Read NAME, LENGTH, WIDTH." 
"Compute PERIM and AREA." 
"Add AREA to TLAREA." 

45 

"Print NAME, LENGTH, WIDTH, PERIM, AREA.'' 

Print NSETS, TLAREA 

END 

(a) 

End do 
"Print NSETS, TLAREA." 
"Stop." 

(b) 

FIGURE 3.8 (a) Structured Diagram for Example 
3.4. (b) Pseudocode Representation for Example 3.4. 

The DO statement, with which the loop begins, sets up all the bookkeeping needed to manage the 
repetitions. Each component in the statement supplies a piece of information: 

1. The number afterthe word DO defines the extent of the loop. Note that this is the same one (12 in 
Figure 3.9) as the label attached to the CONTINUE statement at the other end of the loop, thereby telling 
FORTRAN what to include in each repetition. In effect, this particular example is saying, "Every time this 
loop is repeated, start right here (at the DO statement) and include everything up through statement 
number 12." 

2. There is a name afterthe statement number. (This example usesNTIMES.) This defines a variable 
called an index whose job it is to count the number of times the loop is processed. Note that it says 

NTIMES = 1, NSETS 

This tells FORTRAN to use a variable named NTIMES and start it off with an initial value of 1. Then, every 
time the loop is processed, NT IMES is increased automatically by 1. When NTIMES reaches NSETS, the 
program takes a final trip around the loop. A subsequent attempt to repeat the loop is stopped because 
another increase of NTIMES brings it beyond NSETS, the limiting value. 

3. Since the numerical label attached to the CONTINUE statement matches the one specified in the 
DO statement, the CONTINUE acts as a kind of boundary on the loop. Thus, after each repetition, the 
program automatically goes back to the beginning of the loop, where the control mechanism is handled. 
Here, the index (NT IMES in Figure 3.8) is increased by 1 and tested against the limiting value (NSETS in our 
case). If another repetition is required, the program does it. If not, the pattern is broken and the loop is 
bypassed, so that the program resumes its basic journey with the statement immediately after the 
CONTINUE. 

We need to look at one other thing in the loop. Each time we go through the loop for each input set, we 
execute the statement 

TLAREA = TLAREA +AREA 
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C************************************************************ 
c EXAMPLE 3.4 * 
C************************************************************ 
C THIS PROGRAM READS AND PROCESSES AN ARBITRARY NUMBER OF * 
C INPUT SETS IN WHICH EACH SET CONTAINS AN ESTATE NAME, * 
C LENGTH, AND WIDTH. FOR EACH SET READ, THE PROGRAM COM- * 
C PUTES THE PERIMETER AND AREA, AND IT PRINTS THE NAME, * 
C LENGTH, WIDTH, PERIMETER, AND AREA. THE FIRST INPUT SET * 
C IS PRECEDED BY A VALUE (NSETS) THAT INDICATES HOW MANY * 
C INPUT SETS THERE WILL BE FOR THAT RUN. AFTER THE FINAL * 
C INPUT SET IS PROCESSED, THE PROGRAM PRINTS NSETS, AS WELL* 
C AS THE TOTAL AREA (TLAREA). NTIMES KEEPS TRACK OF THE * 
C NUMBER OF CYCLES THROUGH THE LOOP. * 
C***************************«******************************** 
c 

c 

PROGRAM 
IMPLICIT 
INTEGER*2 
CHARACTER*8 

EX304 
NONE 
NSETS,LENGTH,WIDTH,PERIM,AREA,TLAREA,NTIMES 
NAME 

C************************************************************ 
c INITIALIZATION * 
C************************************************************ 

PRINT *, 'ENTER A VLUE FOR NSETS' 
READ *, NSETS 
TLAREA = 0 

c 
C************************************************************ 
C THIS IS THE PROCESSING LOOP: * 
C ALL THE ACTIVITIES BETWEEN THE "DO" STATEMENT AND THE * 
C "CONTINUE" STATEMENT WILL BE REPEATED A SPECIFIC NUMBER * 
C OF TIMES, THAT NUMBER BEING DETERMINED BY THE VALUE IN * 
C NSETS. NTIMES, THE INDEX, WILL KEEP TRACK OF THE CYCLES * 
C AUTOMATICALLY. * 
C************************************************************ 

DO 12 NTIMES = 1, NSETS 
PRINT *, 'ENTER VALUES FOR NAME, LENGTH, WIDTH' 
READ *, NAME, LENGTH, WIDTH 

!PROMPT 

c 

PERIM = 2 * (LENGTH+WIDTH) 
AREA = LENGTH * WIDTH 
TLAREA = TLAREA+AREA 
PRINT *, 

12 CONTINUE 
NAME,LENGTH,WIDTH,PERIM,AREA 

C************************************************************ 
C PRINT THE SUMMARY RESULTS * 
C************************************************************ 

c 

PRINT *, 
PRINT *, 

END 

'NO. OF SETS PROCESSED: ',NSETS 
'TOTAL AREA: ',TLAREA 

C *** ALTERNATIVE LOOP *** 
DO NTIMES = 1, NSETS 

PRINT *, 'ENTER VALUES FOR NAME, LENGTH, AND WIDTH' 
READ *, NAME, LENGTH, WIDTH 
PERIM = 2 * (LENGTH + WIDTH) 
AREA = LENGTH * WIDTH 
TLAREA = TLAREA + AREA 
PRINT *, NAME, LENGTH, WIDTH, PERIM, AREA 

END DO 
FIGURE 3.9 Program for Example 3.4. 
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'BONNMOOR' 315 212 

'BOGSWAMP' 340 281 

'HILLDALE' 280 280 

'RAVENTON' 167 226 

'COSTALOT' 303 189 

FIGURE 3.10 Sample Input for Example 3.4. 

BONNMOOR 315 212 1054 66780 

BOGSWAMP 340 281 1242 95540 

HILLDALE 280 280 1120 78400 

RAVENTON 167 220 774 36740 

COSTALOT 303 189 984 57267 

NO. OF SETS PROCESSED: 5 

TOTAL AREA: 334727 

FIGURE 3.11 Sample Output for Example 3.4. 

At first glance this appears to make no sense: How can TLAREA be equal to itself plus something else? 

Recall, however, that the= sign means something quite different here. It represents the assignment 

operation. So this statement says, "Take the value currently in TLAREA, add to it the value currently in 

AREA, and use the result as the new value inTLAREA, replacing what was just there." Once all the input has 

been processed, we stop going around the loop and print the final information. 

Now that we have analyzed the operation of the program, we can examine its behavior for a specific 

run. The input for such a run, shown in Figure 3.10, produces the results shown in Figure 3.11. 

Although we can construct a wide range of very powerful control mechanisms with 
the FORTRAN features discussed so far, it should be recognized that our expressive 
abilities will be increased by additional language facilities. We shall introduce these later, 
as skills build and expand. 

By now we have seen enough FORTRAN statements to develop an overall impression 
about their appearance. In this section we shall become more specific about these forms 
by describing the rules that govern their construction. 

3.2.1 Fonnat of a Statement 

FORTRAN statements are organized as lines of information. A line is an actual line 
entered through a terminal. Each line has 80 positions, so that it can hold as many as 80 
characters. 

A FORTRAN statement occupies at least one line, with certain parts of a statement 
being limited to particular areas on the line. To make the writing of these statements more 
convenient, many people use coding forms such as the one shown in Figure 3.12. Each 
line on the form corresponds to a line. Note that certain boundaries are marked with 
heavy lines. We shall discuss each of these, relating it to a particular part of a statement. 
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3.2.1.1 Statement Labels In Example 3.4 (Figure 3.9) we attached the number 12 to 

the CONTINUE statement as a statement label, thereby giving that statement a "name" by 

which other statements in the program can refer to it. Most types of statements can be 

labeled. (Exceptions will be pointed out as we get to them.) Only certain statements must 

be labeled. In general, we shall find that few statements in a program need labels. Note 

that if we were to rewrite the loop in Example 3.4 using HP FORTRAN 77's DO ... END 

DO form, there would be no need for the label. This is shown in Figure 3.13. 

When a label is used, it must appear somewhere in the first five positions. If the 

statement is unlabeled, those positions remain blank. No more than one label may be 

attached to a statement, and that label is an unsigned integer consisting of one to five 

digits. A particular label can be used as such only once in a program. Note that even 

though a label consists only of digits, FORTRAN does not do any arithmetic with it; it is 

merely a name. Consequently, a statement near the beginning of a program may have a 

label of, say, 125 and a statement further on may be labeled 16, or 290, or any other 

number from 1 through 99999, as long as the number is unique. 
When a label is less than five digits long, it may be positioned anywhere in positions 

1-5. (This is what was meant earlier by "somewhere in the first 5 positions." The unused 

positions must be blank and there should be no blanks in the middle of the label. 

(FORTRAN allows blanks in the middle of statement labels (e.g., 12 5 or 4 1 4 ), but 

this is poor practice which will not be followed here.) Thus, 125bb, bb125, and b125b 

all are treated by FORTRAN as the same label. The symbol b is used here (and 

throughout the text) to denote a single blank. Table 3.2 shows some examples of legally 

and illegally constructed statement labels. 

Table 3.2 Construction of Statement Labels in FORTRAN 

Label 

12021 
bbbb6 
b34bb 
bbbJ4 
32bb4 
b8888b 
7888889 
43/63 

Remarks 

OK 
OK 
OK 

Illegal; non-numeric character 

Illegal; contains embedded blanks 
OK 

Illegal; too long 
Illegal; non-numeric character 

3.2.1.2 Sequence Numbers Positions 73-80 cannot be used as part of a statement. 

FORTRAN ignores anything that may be entered there. Instead, these positions are 

available for sequence numbering. That is, the programmer can enter a number on each 

line without interfering with the program itself. 
The use of sequence numbers is illustrated on the coding form in Figure 3.12. Note 

that the numbers are 10 apart: Instead of numbering the lines 00000001, 00000002, etc., 

they are sequenced as 00000010, 00000020, etc. This is done so that if a program has to be 

changed by inserting new lines somewhere in the middle, the sequence can still be 

preserved. For instance, if we were to need a line between lines 00000070 and 00000080, 

we could number that line 00000075. 

3.2.1.3 The Body of a Statement Having tied up positions 1-5 and 73-80, we are left 

with positions 6-72. As will be seen in the next section, position 6 is reserved for another 

specific purpose, so that the actual statement itself (the body) is written in positions 7-72. 

Specifically, the body of a statement cannot begin before position 7. However, it may start 

anywhere after position 7 (up to position 72). This flexibility is useful because it allows us 

to emphasize the structure of a program by indenting certain portions of it relative to 

others. We shall make frequent use of indentation in examples throughout the book. 
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3.2.1.4 Continuation of Statements on Additional Lines Every FORTRAN state­ment must begin on a new line. However, it does not have to end on that same line. Longer statements may extend onto additional (continuation) lines. This is the reason position 6 is reserved: It is used to indicate whether that line starts a new statement or continues a previous one. If a line is the first (or only) one for a statement, position 6 is left blank. Programmers may use a zero in position 6 instead of the blank. FORTRAN recognizes a continuation line as such because it has something other than a blank or zero in position 6. A statement may have as many continuation lines as necessary. The formatting rules still apply: Only positions 7-72 may be used on each line for the body of the statement. Positions 1-5 on continuation lines are irrelevant, because a statement can have only one label. 
When long statements are used, some people like to number the continuation lines systematically. For instance, many programmers will place a 0 in position 6 of the first line (leaving it blank if it is the only line for that statement), 1 in position 6 of the first continuation line, and so on. Letters in alphabetical order can be used if the statement is so long that continuation lines are needed beyond 9. There will be few occasions where we shall need long statements here. Consequently, we shall adopt the practice of using 1, 2, etc. as continuation signals. 

3.2.1.5 Comments in Programs We have already used comments in prior examples, so that their use (and usefulness) has been established. Consequently, the structural rules will be given here so that the picture is complete. 
Any line starting with a C or * in position 1 is treated by FORTRAN as a comment. This means that it is not treated as a statement. When the original program is printed, the comment is included as part of the display, but that is as far as it goes. FORTRAN never actually analyzes it; once it sees the C in position l, it loses interest. A single line is either all statement or all comment, never both. There is no limit to the number of comment lines a program may contain, nor is there any restriction as to where in the program such comments may be placed. In addition HP FORTRAN 77 allows comments to appear on the same lines as program statements. Such comments start with an exclamation point ( ! ) and may appear anywhere after the statement as long as they appear prior to position 72. An example is seen in Figure 3.9. 

3.2. 1.6 A Brief Treatise on Blanks In writing programs thus far, we have not paid particular attention to the use of blanks. As it turns out, we do not have to. In most cases, FORTRAN obtains enough information from the symbols in a statement to be able to separate them from one another. Consequently, we generally use blanks to increase visual clarity. For example, the following two assignment statements 
Y=A*(B-C)-(D-E-F)*(3.8/E) 

and 
Y =A* (B-C) - (D-E-F) * (3.8/E) 

produce identical results. FORTRAN ignores all the blanks it does not need. Accord­ingly, it is possible to place any number of blanks between any symbols in a statement and we should do so wherever it makes things easier to read. We should not break up a symbol (like a variable name) by inserting blanks in the middle of it. (This is legal, but it is potentially confusing.) 

3.2.2 The FORTRAN Character Set 

HP FOR TRAN 77 recognizes a set of characters consisting of upper and lower case letters (A-Zand a-z), digits (0-9), and special characters. These are defined in Table 3.3. Note that the letters (alphabetic characters) together with the ten digits (numeric characters) form the group of alphanumeric or alphameric characters. 
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Some care needs to be exercised when writing FORTRAN programs on coding 

sheets (especially if a person other than the programmer will be keypunching from the 

handwritten code). It is relatively easy to confuse certain characters. To avoid this, we 

shall use the following conventions: The final letter in the alphabet, when handwritten, 

will appear as to distinguish it from a carelessly written 2. Similarly the letter 0 ("oh") will 

be distinct from zero (0) and the letter I will l~ok different from the number one (1). 

3.2.3 Directives to the Compiler 

When somebody writes a FORTRAN program, that person is not communicating 

directly with the computer. Rather, his or her dealings are with a program (the 

FORTRAN compiler). Consequently, the information submitted to the compiler need 

not be restricted to specifications describing the intended program's structure and proc­

essing characteristics. There is also an opportunity to guide the behavior of the compiler 

itself as it processes the FORTRAN statements. The HP FORTRAN 77 compiler is 

designed to take advantage of this opportunity by including facilities for accepting a 

number of directives that are not part of the programming language. This section 

introduces the general concept and describes several directives that are of general use. 

The material will serve as background for using the other, more specialized directives 

described in the FORTRAN 77 Reference Manual supplied with your system. 

3.2.3.1 Use of Directives A directive starts on a new line with a dollar sign ( $) in 

position 1. Directives may appear anywhere in a FORTRAN program where their 

inclusion makes sense. 

3.2.3.2 The $UST Directive One of the basic supporting services provided by any 

compiler is the production of a listing showing the program statements submitted by the 

programmer. Depending on the particular compiler, this may range from a literal.replica 

of the source program "as received" to an elaborate display reflecting a considerable 

amount of analysis, editing, and formatting. One of the features in the HP FORTRAN 77 

compiler makes it possible to suppress all or part of the listing altogether. This is done 

simply by including a line in the FORTRAN program as follows: 

$LIST OFF 

As a result, subsequent lines will be processed, but they will not appear on the listing. 

Suppression continues until the compiler encounters a directive that says. 

$LISTON 

The $LIST directive may appear in a program as many times as desired. 

3.2.3.3 The $PAGE Directive When the compiler prints a program listing, it uses an 

internal counter to control the number of lines on a page. There are numerous occasions 

wherein the legibility of the listing can be enhanced by starting certain sections on 

separate pages. The compiler will start a new page (regardless of the number of lines 

printed on the current page) in response to the directive 

$PAGE 

An arbitrary number of $PAGE directives may appear throughout the program. Of 

course, this directive will be ignored if it appears in a part of the program for which listing 

has been suppressed by the $LIST OFF directive. 

3.2.3.4 The $TITLE Directive As another aid to program legibility, the HP FORTRAN 

77 compiler enables the programmer to include a descriptive line and have it appear at the 



SUMMARY 

Table 3.3 Characters Available for Use in HP FORTRAN 77 

A a N n 0 1 blank 
B b 0 0 2 3 + 
c c p p 4 5 * I 
D d Q q 6 7 ) 
E e R r 8 9 
F f s s 
G g T t $ _(underscore) 
H h u u I I 

I i v v @ 
J j w w 
K k x x 
L 1 y y 
M m z z 

top of each listed page. This information, not part of the program, is specified by the 
directive 

$TITLE descriptive information 

The descriptive information may be up to 46 characters long, beginning with the first 
nonblank character after $TITLE. In a typical instance, the programmer places such 
information immediately prior to the PROGRAM statement. As a result, the information 
will appear at the top of each page of the listing until the compiler runs across another 
$TITLE directive, in which case a new page is started immediately with the new title at the 
top. When a new title appears while $LIST OFF is in effect, the title information is 
changed immediately, but (of course) it does not appear until the first page after 
$LIST ON is specified. 
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The basic unit of expression in a program is the statement which, like a sentence, has its 3.3 SUMMARY 
length determined by the activity being described. FORTRAN statements are conveni-
ently categorized as follows: 

1. Program Boundaries-The PROGRAM and END statements begin and end a 
FORTRAN PROGRAM. 

2. Specification-This type of statement defines variables and describes information 
to be used in a program. 

3. Assignment-These statements define actual computations: An expression value 
is produced by performing specified operations, and that value, (i.e., the result) is 
placed in (assigned to) a designated variable, replacing the previous contents. 

4. Input/Output-These statements (READ, WRITE, PRINT) move data between 
the central processor and the outside world. 

5. Control-These capabilities, represented so far by the IF, DO, DO WHILE, 
END DO, and CONTINUE statements, enable the programmer to set up alternative 
pathways and automatic loops in a program. 

Each FORTRAN statement corresponds to one or more lines. Positions 1-5 are 
reserved for a numeric label, which is optional for most statements. The body of the 
statement appears anywhere in positions 7-72. The remaining positions (73-80) are 
available for sequencing and are ignored by FORTRAN. Statements needing more than 
one line are continued in positions 7-72 of additional lines. Such continuation lines are 
marked in position 6 by any character (letter, digit, or special character) other than blank 
or zero. 
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PROBLEMS 1. Write the appropriate FORTRAN statement (or statements) for each of the following: 

(a) Start a program named DSCOMP 

(b) Start a program named FIX31 

( c) Declare an integer variable named BACKLG 

( d) Declare an integer variable named INSTS 

( e) Declare a character variable named ADVERB having a length of 10 

(f) Declare two integer variables named FORCE and MOVE42 

(g) Declare three integer variables named COUNTS, JMAX, and CLASSES 

(h) Declare three character variables named WORDS, SGNTS, and NOUNS, each with a length of 12 

(i) Declare three character variables named INSTR, OUTSTR, and BLDSTR having respective lengths 

of 4, 3, and 21 characters 

(j) Declare integer variables VALX and VALZ, and a character variable NUMVAL with length 4 

(k) Declare integer variables WDMEAS and PHRMIX, and character variables SNGS, DSCRS and OMNI S, 

with all of the character variables having a common length of 11 

(l) Declare character variables named INTPHR and PHH.INV with lengths 5 and 7, respectively, integer 

variables BRKPT, SCQUOT, BCRl l, and NXTDAY, and character variables INDEX and AL T09, both 

with length 17 

2. Write the appropriate FORTRAN statement (or statements) for each of the following: 

(a) Assign a value of 104 to variable VALX 

(b) Assign a value of-26 to RATE 

( c) Assign an integer value of zero to variables YCOUNT and ZCOUNT 

(d) Assign a value of 16 to variables ADJ, ADJX2Y, andADJX2Z 

( e) Increase the value in variable ONHAND by 247 

( f) Add 117 to AMT's current value and store the result back in AMT 

(g) Increase AMT's value by 117 

(h) Add 98 to SPEC's value and store the result in REGLR 

(i) Replace the value ofREGLR with the sum of98 and SPEC's current value 

(j) Increase REGLR's value by the su of SPEC and 98 

(k) Replace YVAL with double its current value 

(l) Assign twice YVAL's current value to DBLV 

(m) Double YVAL's current value and assign it to YVAL and NEWVAL 

( n) Replace each of the values in variables NEWVl and NEWV2 with twice the sum of its respective 

current value and 86 

3. Assume that the following statements 

INTEGER*2 
ADVAL=2 
COMPT=4 
PRTSEC=36 

ADVAL,COMPT,PRTSEC,RSLT 

precede the statement or sequence of statements in each of the following problems. For each set, then, 

specify the values in each of the four variables as a result of the indicated processing. (The processing in 

each problem is to be considered completely independent): 

(a) RSLT =ADV AL+ COMPT + PRTSEC 

(b) ADV AL= ADV AL+ COMPT + PRTSEC 

( c) COMPT = 2 * COMPT +ADV AL - PRTSEC 

(d) COMPT=2 * (COMPT+ADVAL-PRTSEC) 

(e) RSLT=PRTSEC * (ADVAL+COMPT) 

ADV AL+ ADV AL+ RSLT 

(f) RSLT =ADV AL * (COMPT - PRTSEC) 

ADVAL = ADVAL- RSLT 
RSLT = COMPT * ADV AL+ PRTSEC 

4. Write the appropriate FORTRAN statement (or statements) for each of the following: 

(a) Read the next value into variable CRDNO 

(b) Read the next three values into variables ORDNUM, AMT, and COST 

( c) Display the values from variables ORDNUM, AMT, and COST in that order 

( d) Display ORDNUM's value twice, followed by COST and AMT 

( e) Read values into PRINUM, BINLOC, and ONHAND and then display them in the same order in which 

they were read 
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(f) Display variables PRTNUM, BINLOC, and ONHAND, each on a separate line 
(g) Print variables PRTNUM and ONHAND on the same line, followed by BINLOC and ONHAND 

on the next line 
(h) Read values into TEMP, HUMDTY, VEL, and CURRNT and print them in reverse order on four 

separate lines 
(i) Read values into variables MASS and DIFFUS and display them on the same line. Then read 

values into variables TRANS, BLOCK, and WT and print them on three separate lines in the order 
in which they were read 

(j) Ask the user to submit input values for AMT and COST. 
(k) Ask the user to submit input values for ORDNUM, AMT, and COST, each on a separate line. 

5. Assume the following declarations 

INTEGER*2 MUMOBJ,MINFOR,STR,BKFRC,ELAST 

and the following input line: 

43267 -462 254 887 -3 

Indicate the values in the five variables declared above when each of the following READ statements is 
applied to this line: 

(a) READ*, STR, BKFRC, ELAST, NUMOBJ, MINFOR 
(b) READ *, STR, ELAST, BKFRC, NUMOBJ, MINFOR 
(c) READ*• ELAST, STR, BKFRC, MINFOR 
(d) READ*, ELAST, STR, STR, MINFOR, NUMOBJ 
( e) READ * , ELAST, BKFRC, ELAST, NUMOBJ 

6. Assuming the following declarations 

INTEGER*2 
CHARACTER*8 

MOLWT,MELTPT,DEN 
CHMNAM,TRDNAM 

and the following input line, 

'CARBAZID',153,202, 'MELOGOOP',88 

indicate the values in the five variables that result when each of the following READ statements is 
applied to the input line: 

(a) READ*, CHMNAM, MOLWT, MELTPT, TRDNAM, DEN 
(b) READ * , CHMNAM, MEL TPT, MOLWT, TRDNAM, DEN 
( c) READ *, TRDNAM, DEN, MEL TPT, CHMNAM, MOLWT 
( d) READ *, TRDNAM, MEL TPT, DEN, TRDNAM, DEN 

7. Show the output resulting from each of the following sequences of statements: 

(a) INTEGER*2 
NUMX=24 
NUMY= 17 

NUMX,NUMY,NUMZ 

NUMZ = NUMX+NUMY 
PRINT*, NUMX, NUMY, NUMZ 

(c) INTEGER*2 
SETl = 36 

SET1,SET2,SET3,SET4 

SET2 = 2*SET1+3 
SET3 = SET2-15 
SET4 = SET3-SET1 
PRINT *, SETl 
PRINT *, ' SET2: ' , SET2 
PRINT *, ' SET3 HAS AV ALUE OF ' , SET3 
PRINT *, ' SET4 = ' , SET4 

Use the following input line: 
18 12 5 

(b) INTEGER*2 
NUMX= 14 
NUMX=-6 

NUMX,NUMY,NUMZ 

NUMZ=3 * (NUMX+NUMY) 
PRINT*, NUMX, NUMY 
PRINT *, NUMZ 

{d) INTEGER*2 XVAL,YVAL,ZVAL,RSLT 
READ*• XVAL, YVAL, ZVAL 
RSLT =XV AL+YV AL-2 *ZV AL 
PRINT *, ' INPUT VALUES: ' 
PRINT*, 'XVAL: ',XVAL 
PRINT*, 'YVAL: ' , YVAL 
PRINT*' 'ZVAL: I' ZVAL 
PRINT*• 'FINAL RESULT: ' 
PRINT*' I RSLT: ' 'RSLT 
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( e) INTEGER* 2 
VOL=O 

LTH,WDTH,HT,VOL (f) INTEGER*2 

INGR1,INGR2,INGR3,EXPR 

READ* LTH, WDTH,HT 

VOL= LTH*WDTH, HT 

PRINT*· 'LTH= '' LTH, I 

1 WDTH= ', WDTH, 'HT=', HT 

PRINT *, 'VOLUME= ' , VOL 

Use the following input line: 

20 11 3 

8. Consider a program that begins as follows: 

C3P08 
NONE 

CHARACTER*7 

LABEL 
EXPR=O 

READ *, LABEL, INGR3, INGRl 

EXPR = EXPR+4 * ( INGRl + INGR3) 

PRINT *' I NAME= I ' LABEL 

PRINT*• 'EXPR IS: ', EXPR 

PRINT *, INGRl, INGR2, INGR3 

Use the following input line (be extra careful here): 

'BUILDER',32,14,6 

PROGRAM 
IMPLICIT 

INTEGER*2 
TTLPRT=O 

PRT1,PRT2,PRT3,TTLPRT 

PRT1=74 

PRT2=18 

PRT3 = 3 * (PRT1-2*PRT2) 

Assume that each of the sequences given below follows the last assignment shown above. For each 

one (taken independently) specify what the printout will show: 

(a) IF (PRTl. EQ. PRT2) TTLPRT=TTLPRT+PRTl 

PRINT *, PRTl, PRT2, PRT3, TTLPRT 

(b) IF (PRT2. LT. PRT3) TTLPRT=PRT1-PRT2 

PRINT *, PRTl, PRT2, PRT3, TTLPRT 

(NOTE: . LT. means "is less than") 

(c) IF (PRT1+PRT2. LT. PRT3) PRT3=PRT3+PRT1 

PRINT *, PRTl, PRT2, PRT3, TTLPRT 

9. Consider the following sequence of statements: 

INTEGER*2 ALL, TRIPS, PROD 

ALL=O 
PROD=l 
DOTRIPS=l, 6 

ALL=ALL+ 1 
PROD= PROD * ALL 

END DO 
PRINT*• ALL, PROD 

(a) How many times is the loop processed? 

(b) Show what is printed. 

10. Consider the following sequence of statements: 

(d) IF (PRT1+PRT2. LT. PRT3-PRT2) THEN 

PRT3 = PRT3 - PRTl 

ELSE 
PRT2 = PRT3 - PRT 

END IF 
PRINT*, PRT1,PRT2,PRT3,TTLPRT 

INTEGER*2 
BSUM=O 

BSUM,CYCLES,NBL,NDR,REPS 

NBL=4 
NDR=3*NBL 
CYCLES= NDR- (NBL+3) 

DO 8 REPS= 1, CYCLES 
BSUM = BSUM + 6 - NBL 
NDR=NDR-1 

8 CONTINUE 
CYCLES= CYCLES - 2 

PRINT*, CYCLES, NBL, , NDR, , BSUM 

(a) How many times will the loop process? 

(b) Show what is printed. 



11. In the following sequence of statements, 

INTEGER*2 
TSQ=4 
LIMIT=28 

TSQ,LIMIT,NVAL 

DO WHILE (TSQ . LE. LIMIT) 
TSQ=TSQ+2 
NVAL=NVAL+ 1 

END DO 
PRINT*, NVAL, TSQ, LIMIT 

(a) What does NVAL indicate? 

PROBLEMS 

( c) What does the printout show? 
(b) How many times does the loop process? (NOTE:. LE. means "is less than or equal to") 

12. In the following sequence of statements, 

INTEGER*2 
MVMT=24 
BASE=O 

MVMT,TRNS,BASE 

TRANS= MVMT * BASE 
PRINT*, MVMT, BASE, TRANS 
DO WHILE (TRANS . GE. MVMT) 

BASE= BASE+3 
TRANS= TRANS - (MVMT-BASE) 
MVMT = MVMT + 1 

END DO 
PRINT *, MVMT, BASE, TRANS 

(a) How many times is the loop processed? 
(b) Show what each of the PRINT statements produces. 
( c) Modify the program fragment shown above by introducing an integer variable NUMTR that is used to 

keep track of the number of times the loop is processed. The final value is to be printed, on a separate 
line, after the last PRINT statement given above. (NOTE: . GE. means "greater than or equal to") 

13. In the following sequence of statements, 

INTEGER*2 
LSUM=O 
RSUM=O 
PIVOT=3 
TOP= 14 + 3*PIVOT 
DO TRIPS= 1, TOP 

LSUM,RSUM,PIVOT,TRIPS,TOP 

IF (PIVOT.EQ. 3) THEN 
PIVOT= 1 

ELSE 
PIVOT=3 

END IF 
IF (PIVOT. EQ. 3) THEN 

LSUM = LSUM + 5 
ELSE 

RSUM = RSUM + 2 
END IF 

END DO 
PRINT *, LSUM, RSUM 

(a) How many times is the loop processed? 
(b) How many values were used to compute LSUM? 
( c) How many values were used to compute RSUM? 
( d) What is P IVOT's value just prior to the PRINT statement? 
( e) What does the display show? 
(f) (more challenging): Alternative actions specified in an IF-block (see Section 3.1.2.5) may be more 

than one statement long. Knowing that, rewrite the loop given above so that the same processing is 
achieved with only a single IF-THEN-ELSE construct. 
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14. Modify the program shown in Example 3.4 so that it will include the decision-making capability of 

Example 3.3A. 

Each problem in the next group presents a FORTRAN program in which one or more statements are absent. 

In their place there is a pseudocode or N-S representation of the intended processing. Prepare the appropriate 

FORTRAN 77 statements in each case. 

15. PROGRAM 
IMPLICIT 
INTEGER*2 
READ *. Kl, K2, K3, K4 

seq 

C3Pl5 
NONE 

Kl,K2,K3,K4,K5,K6 

"COMPUTE K5 = KlK2 - K3K4." 

"COMPUTE K6 = KlK3 - K2K4. " 

endseq 
PRINT *, Kl, K2, K3, K4 

PRINT *, 'K5 = ' , K5 
PRINT *, 'K6 = ' , K6 
STOP 
END 

16. PROGRAM 
IMPLICIT 
INTEGER*2 
do 5 times: 

C3Pl6 
NONE 
Kl,K2,K3,K4,K5,K6 

"Request values for Kl, K2, K3, and K4." 

READ *, Kl, K2, K3, K4 
K5 = (Kl+K3) * (K2+K4) 

K6 = (Kl +K4) * (K2+K3) 

PRINT*, Kl, K2, K3, K4 

PRINT*, 'K5 = ', K5 
PRINT*, 'K6= '. K6 

end do 

STOP 
END 

Declare any additional variables you might need. 

17. PROGRAM 
IMPLICIT 
INTEGER*2 
READ *, NT IMES 

DO ntimes times 

"Read Kl, K2, K3, 

C3Pl7 
NONE 
Kl,K2,K3,K4,K5,K6,NTIMES 

andK4." 

"Echo Kl, K2 , K3 , and K4 on one line." 

STOP 
END 

"Compute K5 = KlK2 - K3K4." 

"Compute K6 = KlK4 - K2K3." 

"Print K5 and K6 on separate lines, 
each with its name." 

enddo 

Make sure you declare any additional variables you may need. 



18. PROGRAM 
IMPLICIT 

C3Pl8 
NONE 

INTEGER*2 Kl,K2,K3,K4,KS,K6,BIGK,SMALLK 
"Request values for Kl, K2, K3, and K4." 
READ *, Kl, K2, K3, K4 

while Kl is not zero 
"Compute KS = KlK2 - K3K4." 
"Compute K6 = KlK4 - K2K3." 
"Print KS and K6 on separate 
lines, each with its name." 
IF 
"KS >K6." 
THEN 

"BIGK=KS andSMALLK=K6." 
ELSE 

"BIGK=K6 and SMALLK=KS." 
END IF 
"Print BIGK and SMALLK on one line, 
with their respective names." 
"Read the next set of input values." 

ENDWHILE 

STOP 
END 

19. PROGRAM 

IMPLICIT 

C3Pl9 

NONE 

Kl,K2,K3,K4,KS,K6,RSLT1,RSLT2 

Read the first input set (i.e., Kl, K2, K3, K4) 

WHILE Kl is not zero: 

STOP 
END 

Echo the input set, with names 
Compute KS = KI K3 - K2K4 
Compute K6 = KI K2 - K3K4 
Compute RSL TI = KS + K6 
Compute RSLT2 = KS - K6 
Print KS and K6, each with its name 

Print RSL Tl , 
then RSLTl, 
each with 
its name 

Read the next input set 

Print RSLT2, 
then RSLT2, 
each with 
its name 
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20. Using the following set of input lines: 

24 

3 7 5 

8 6 10 7 

0 3 18 22 

(a) Show the printout for the program in Problem 15. 

(b) Show the printout for the program in Problem 16. 

( c) Show the printout for the program in Problem 18. 

(d) Show the printout for the program in Problem 19. 

6 10 21 30 first line 

16 8 2 second line 

12 third line 

fourth line 

fifth line 

21. Prepare a complete FORTRAN program from the diagram or pseudocode prepared for Problem 4 in 

Chapter2. 

22. Prepare a complete FORTRAN program from the diagram or pseudocode prepared for Problem 5, 

Chapter 2. Define any additional variables you may need, and include appropriate comments as part of 

your program. 

23. Prepare a complete FORTRAN program from the diagram or pseudocode prepared for Problem 11, 

Chapter 2. Assume that all of the X's are integers. 

24. Prepare a complete FORTRAN program from the diagram or pseudocode prepared for Problem 12, 

Chapter 2. Define all the variables required to do this, and include appropriate comments in your 

program. 

25. Prepare a complete FORTRAN program from the diagram or pseudocode prepared for Problem 13, 

Chapter 2. Omit the computation and printout of the last variable given in that problem (i.e., ROOTNM). 

Define any additional variables you may need. 

26. Prepare a complete FORTRAN program from the diagram or pseudocode prepared for Problem 14, 

Chapter 2. Define any additional variables you may need. 

27. Prepare a complete FORTRAN program from the diagram or pseudocode prepared for Problem 15, 

Chapter2. 

28. Modify the program in Problem 27 so that it meets the specifications given in Problem 17, Chapter 2. Run 

the program using the following input data: 

6 8 first line 

22 30 second line 

36 37 third line 

-17 31 fourth line 

29. Prepare a complete FORTRAN program from the diagram or pseudocode prepared for Problem 21, 

Chapter2. 

30. Prepare a complete FORTRAN program from the diagram or pseudocode prepared for Problem 22, 

Chapter2. 

31. Prepare a complete FORTRAN program from the diagram or pseudocode prepared for Problem 24, 

Chapter2. 
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32. Here is a FORTRAN 77 program: 

C************************************************************ c PROGRAM C3P32 
* c************************************************************ C P3P COMPANY SELLS THREE PRODUCTS. CUSTOMERS SEND OR PHONE* C IN ORDERS AND THESE ARE RECORDED SO THAT EACH LINE CON- * C TAINS A CUSTOMER NUMBER CUST_NUM, THE NUMBER OF TYPE 1 * C PARTS ORDERED (NUM_PART1), THE NUMBER OF TYPE 2 PARTS * C ORDERED (NUM_PART2), AND THE NUMBER OF TYPE 3 PARTS OR- * C DERED (NUM_PART3). THE PRICE FOR EACH TYPE (PRICE1, * C PRICE2, AND PRICE3, RESPECTIVELY), ARE READ IN AHEAD OF * C THE FIRST DATA LINE. A CUSTOMER NUMBER OF ZERO STOPS THE * C RUN. FOR EACH CUSTOMER ORDER, THE PROGRAM COMPUTES A * TOTAL PRICE (BILL) AND DISPLAYS THIS AMOUNT, ALONG WITH * C THE CUSTOMER NUMBER AND THE INPUT VALUES. AT THE END OF * C THE RUN, THE PROGRAM DISPLAYS TTL_BILL, THE SUM OF ALL * C THE INDIVIDUAL BILL AMOUNTS. * 

C************************************************************ 

C3P32 
NONE 

61 

PROGRAM 
IMPLICIT 
INTEGER*2 NUM_PART1,NUM_PAR2T,NUM_PART3,PRICE1 ,PRICE2, 

PRICE3,BILL,TOTAL_BILL,CUST_NUM 

READ*, NC,PRT1,PRT2,PRT33 

C********************************************************** C HERE IS OUR DO-WHILE CONSTRUCT THAT WILL PROCESS EACH * C SET OF INPUT IN TURN, AS LONG AS THE CUSTOMER NUMBER * C IS NOT ZERO. * 
C********************************************************** 

c 

DO WHILE (CUST_NUM .NE. 0) 
BILL = NUM_PART1*PRICE1 + NUM_PART2PRICE2 + 
~UM_PART 3*PRICE3 
TOTAL_BILL = TOTAL_BILL + BILL 

PRINT*, CUST_NUM,NUM_PART1,NUM_PART2,NUM_PART3,BILL END DO 

C********************************************************** C THE END OF THE RUN HAS BEEN REACHED AND WE ARE READY TO* C PRINT OUR TOTAL FIGURE. * 
C********************************************************** PRINT*, 'TOTAL PRICE FOR ALL ORDERS THIS RUN: ',TOTAL 

STOP 
END 

This is not a perfect program; no indeed. Help us out and list the things that are wrong with it. 
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AND 
THEIR REPRE­

SENTATION 

4 
Data 

Every computer program, regardless of the application for which it is intended, operates 

on data in some way. Consequently, it is important to pay the same kind of serious 

attention to the definition and specification of data as is paid to the description of the 

operations themselves. This chapter discusses the facilities and aids that FORTRAN 

provides for defining data items and making them available for use throughout the 

program. 

In the examples examined so far, we have used numbers and strings of characters without 

paying too much attention to their exact form and organization. The fact that we have 

been able to ignore these details (up to now, at least) underscores the convenience of the 

FOR TRAN language with regard to our ability to specify data "naturally." However, we 

cannot take full advantage of this convenience in any but the simplest situations unless we 

become familiar with the full scope of these data features. The first step in this process is to 

learn about the types of data that FORTRAN recognizes and how they are specified in a 

program. 

4.1.1 Numerical Constants 

When we write a simple assignment statement such as 

B = 12.4 

the 12.4 is a numerical constant. As such, we can use it in arithmetic operations and 

compare it with other numbers. FORTRAN recognizes several forms for numerical 

constants, each with its own convenient advantages. 

4.1.1.1 Integer Constants FORTRAN accepts signed or unsigned whole numbers as 

legitimate integer constants. As is true in other contexts, an unsigned integer is treated as 

being positive. Thus, values of 314, 0, - 772, 30982, and+ 30982 are all acceptable integer 

constants, with the last two examples representing the same value. A decimal point 

cannot be part of an integer constant, so that - 208, for example is legal while - 208. 0 and 

- 208. are not. 

4.1.1.2 Octal Constants For many kinds of computer-related work, it is useful to be 

able to express integers in octal form (i.e., an integer to the base 8 using only the digits 0 

through 7). HP FORTRAN 77 provides two forms for this purpose. 

The B-form consists of an optional sign, the digits, and the letter B. Thus, 30B, 

-417B, and +675B are examples oflegal octal constants in B-form while +287B is not (8 

is not a legal octal digit). This form may be used like any ordinary integer constant. 

The 0-form does not allow a sign. It consists of the letter 0 followed by a string of 

octal digits enclosed in apostrophes. For instance, O' 30', O' 2767', and O' 1777' are 
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legitimate octal constants while O '-317' and o' 829' are not. (The first one has a sign, and the second includes digits other than those in the octal system.) The 0-form may appear only in a DATA statement (Section 4.3). 
Octal constants in the 0-form are included in the military extension (MIL-STD-1753) to the FORTRAN 77 standard, but neither form of octal constant is part of the regular language standard. 

4.1.1.3 Hexadecimal Constants Besides octal values, computer-related work often involves the use of values expressed in hexadecimal form. Accordingly the MIL-STD-1753 extension includes this form, and HP FORTRAN 77 supports this feature. A hexadecimal constant is specified by writing the letter Z followed by a string of hexadecimal digits (0 through 9 and A through F) enclosed in apostrophes. The digits must be unsigned. For example, z' OlB', z' 8F88', z 'C1C2', and z 'D3D5D8' all are acceptable hexadecimal constants. As is true with the 0-form of octal constants, hexa­decimal constants may appear only in DATA statements. 

4.1.1.4 Real Constants A real constant in FORTRAN is any number that has (or can have) a fractional portion. In general, real numbers are used for most computations, while the major role of integers is that of counting and keeping track of data and events in a program as it progresses through its run. These differences in usage make it convenient to enable the programmer to express real constants in various forms. 

4.1. 1.4. 1 The basic fonn for real constants. As we have seen earlier, a number with a fractional portion can be represented in conventional form (for example, 22.4, -178.39, 0.00613) without any problem. As is true with integer constants, an unsigned real constant is treated as a positive number. Since there is a difference between the way real numbers and integers are stored inside the processor's memory, we must make sure that a processor does not mistake a real constant for an integer. For this reason, a real constant must be shown with a decimal point, even if it does not happen to have a fractional part. The decimal point indicates that the constant can have a fractional portion. For instance, the integer 0 when stored in the machine appears quite differently from 0. or 0.0, both of which are real constants. Similarly, the values -2., -2.0, and -2.00 all are representations of the same real constant and will have identical appear­ances inside the machine. The value - 2, on the other hand, is an integer and it is stored quite differently. 

4.1. 1.4.2 Scientific fonns for real constants. It often happens that very large or very small numbers are required for a particular computational process. In such cases it may be inconvenient to express these numbers in the basic (conventional) form discussed in the previous section. For example, numbers like 624000000000 or 0.00000000917 are all too easily copied with too many zeros or not enough of them. To make it more convenient for such numbers to be specified, FORTRAN recognizes another form known as expo­nential or scientific notation. In this method of expression, the number is written in two parts: the digits themselves (usually as a fraction), and a power of 10. This power is selected such that when the first component is multiplied by it, the result is the number we wish to express. 
To illustrate, let us write the number 602400.0 in scientific notation. To do this, we must recognize the fact that the digits 6024 represent the significant digits in this value in that they describe the number. The two zeros to the right of the 4 merely indicate how big the number is. Consequently, expression in scientific notation, whatever the appearance of the final outcome may be, must preserve the significant digits. Thus, once the appear­ance of the first component is defined, the value of the second component would be set to make the entire constant come out correctly. Looking at our original value 602400.0, let us suppose that our first component in the scientific representation of 602400.0 is to be 
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0.6024. The second component, then, must provide the answer to the question: "What is 

the power of 10 which, when multiplied by 0.6024, will give a value of 602400.0?" Since 

the answer is 6 (that is, we need to multiply 0.6024 by 10 to the sixth power to set the 

proper magnitude), we can conclude that 602400.0 can be represented in scientific 

notation as 0.6024 x 10 to the sixth power. One way of writing this in FORTRAN is 

0. 6024 *10** 6 

Recall that the asterisk is used to denote multiplication. The double asterisk is used to 

indicate a number being raised to a power. Obviously, this is not the only way to represent 

this number in scientific notation. Had we chosen another way of writing the first 

component, the second component (the power of 10) would have to be adjusted to keep 

the overall value correct. For instance, the same value (602400.0) could be written with its 

significant digits as 6.024. Then, the second component would need to be 10 ** 5 to 

provide the correct multiplier. Thus, as far as FORTRAN is concerned, there is no one 

official way for us to express numbers in scientific notation. The forms shown below, i.e., 

0.06024*10**7 0.6024*10**6 6.024*10**5 

60. 24 * 10 ** 4 

60240. * 10 ** 1 

602.4*10**3 

602400. * 10 ** 0 

6024. * 10 ** 2 

6024000. * 10 ** -1 

all are acceptable scientific representations of the same value, i.e., 602400.0. To avoid 

confusion, it is a good idea to settle on one standard form for expressing the first 

component of a number in scientific notation. We shall use a zero in front of the decimal 

point so that our example (602400.0) usually will appear as 

0. 6024 * 10 ** 6 

Since it is always a power of ten that is being used to adjust the first component of a 

real constant in scientific notation, FORTRAN permits a more convenient way to write 

such constants: Using our previous example, the number 0. 6024 * 10 ** 6, can be 

expressed with perfect safety as 0.6024E+06, 0.6024E+6, or even .6024E6. In this form, 

the entire value is written without blanks. (The blanks are not illegal; we prefer not to use 

them.) Some additional examples are shown in Table 4.1. (Note that when we express a 

number with an explicit exponent, e.g., 0. 6024 * 10 ** 6, FORTRAN has to go 

through some time-consuming calculations to produce the desired value.) 

Table 4.1 Representation of Numbers in Scientific Notation 

Value Scientific Notation 

3 3.0*10**0 

-.0627 -6.27*10**-2 

3964.27 3.96427*10**3 

265000000000 2.65*10**11 

FORTRAN 

-3EO 
3.EO 
3E+O 
3E+OO 
3.0E+O 

+3.0E+OO 
3.00E+OO 

-6.27E-2 
-6.27E-02 
-6.270E-02 

3.96427E3 
+3.96427E+3 

3.96427E+03 
2. 65Ell 

+2.65F.+11 
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4. 1.1.4.3 Floating point numbers. The ability to express real numerical constants in two different forms (scientific notation as well as the basic form) is a convenience built into the FORTRAN language. As far as the machine itself is concerned, the representa­tion of a real number in storage follows a set of standards built into the circuit designs. Any differences between these standards and the forms available to the programmer have to be taken care of by FORTRAN . At this stage, it is not crucial to know exactly how real numbers are stored. However, it is helpful to be aware of the fact that the basic representation is conceptually similar to scientific notation. That is, each real constant is stored as two components which, when multiplied together, produce the proper magni­tude. When numbers are represented internally this way, we refer to them as single precision floating point numbers. These numbers, which occupy 32 bits of storage in HP computer systems, are declared as REAL* 4. A REAL* 8 declaration reserves 64 bits, and an addition declaration, REAL*6, available in HPlOOO FORTRAN 77, reserves 48 bits for a floating point number. 

4.1. 1.4.4 Double precision numerical constants. When a computation is done by hand, there is no serious concern about the number of digits involved in the calculation. For example, if somebody wants to add 0.617398422 and 0.210450386 together, it is just a matter of writing down the numbers and going through the operations. While this is a tedious process, with possibilities for errors, there is no question that it (eventually) could be done for values with any number of digits. 
This is not the case when it comes to computers. Each unit of a processor's main storage has a fixed size and, consequently, there is a definite limit on the numerical value that can be accommodated in each storage cell. For the HP processor, this limit is about seven digits. This means that a number like 6274943 (i.e., 0.6274943£+06) or 309.178 (i.e., 0.309278£+03) can be represented by a pair of 16-bit words in the HPlOOO or a single 32-bit word in the HP9000 processor. However, a number like 627497.84 (0.62749784£+06) or 0.000087463989 (0.87463989£-04) is beyond the capacity of these representations; there simply is no room for all of it. (Note that we had no difficulty expressing it by hand.) The magnitude of the number has nothing to do with it. A very "reasonable" value, say, 1.2749786, causes the same kind of difficulty. The rightmost digit falls beyond the fixed capacity and so it is lost. Since the capacity is fixed, the machines always use all of it. Thus, a real constant such as 23.61, which does not require the full capacity of the 32 bits, still uses it, so that in HP systems it would be represented as 2.361000£+01. 
While a representational capacity of seven digits might seem adequate, there are many applications for which this turns out to be a severe (and intolerable) limitation. This has turned out to be a common enough problem so that FORTRAN includes facilities for recognizing another form of real constant known as a double precision constant. Having discussed "ordinary" real numbers as single precision floating point constants, we see that the meaning of this new term is obvious: by showing a real constant as double precision, we can force HP FORTRAN 77 to provide 64 bits of storage (i.e., four words in the HPlOOO or two words in the HP9000) for that value. The extension thus obtained more than doubles the capacity, making it possible to accommodate about 16 digits of pre­cision. 
Double precision constants are written in scientific notation with a D replacing the E. Thus, a real constant expressed as 0.64728£+03 will be stored in single precision floating point form, while the same value, expressed as 0.64728D+03, will be stored in double precision floating point form. 
FORTRAN treats single precision as the "normal" way of representing real con­stants. Consequently, places intended to hold double precision values have to be declared as such. FORTRAN provides separate forms for single and double precision declara­tions, as we shall see in Section 4.2 
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4.1.1.5 Complex Numbers Many computational applications, primarily in mathe­

matics and engineering, involve the processing of complex numbers, i.e., numbers which 

include an imaginary component. Accordingly, FORTRAN has special facilities for 

expressing and processing such values. However, since these applications tend to be 

rather specialized, we shall defer the discussion of complex numbers to the latter part of 

the text. They are mentioned here only for completeness. 

4.1.2 Character Constants 

Previous use of character constants already has given us an informal idea of their 

appearance, so that it is necessary only to reinforce these concepts here: a character 

constant is enclosed in apostrophes, and everything within those apostrophes counts as 

part of the character constant, including blanks. Thus, for example, the constant 'LOOK 

HERE ' represents a string of nine characters. If the characters we want to represent 

include an apostrophe, the constant shows two apostrophes. Thus, the constant 

'CAN' 'T', for instance, represents the five characters CAN'T. Note that in the case 

where we want to represent an apostrophe, the extra one does not count as part of the 

character constant. This is the one type of exception with regard to the length. Quotation 

marks (' ')count as a single character. Additional examples are shown in Table 4.2. 

Table 4.2 Character Constants in FORTRAN 

Value 

BOOKKEEPING 
BIG JULIE 
BIG JULIE 
'TWAS O'ER THE HILLS 

HE SAID, ''l'M HERE!" 

4. 1.3 Hollerith Constants 

Representation as a 

FORTRAN Constant 

'BOOKKEEPING' 
'BIG JULIE' 
'BIG JULIE' 
I I 'TWASO' 'ERTHEHILLS' 

'HE SAID, "I I 'MHERE! II I 

Length 

11 
9 

10 
20 
20 

As an alternative to character constants, HP FORTRAN 77 also recognizes Hollerith 

constants. In this form, we specify the character string's length (including blanks) fol­

lowed by the letter H, followed by the string itself. (Surrounding apostrophes are not 

used.) An apostrophe in a Hollerith constant is treated as part of the string. Thus, 

3HFAR, 7H32BZ (),and 5H$32. Tare examples of acceptable Hollerith constants. 

Availability of the more convenient character constants makes the use of Hollerith 

constants obsolete. Accordingly, we mention them here and nowhere else. 

4.1.4 Logical Constants 

A wide variety of computer applications are constructed around (or are helped by) the use 

of conceptual switches that the program turns on or off to signal certain events or 

conditions that arise as the program works its way through its activities. FORTRAN 

makes it convenient to set up these switches, manipulate them, and test their status at any 

time. Each switch is treated as a logical quantity. When a switch is on, its logical status is 

said to be true; when it is off, its status is said to be false. Another way to say this is that 

FORTRAN has two logical constants: "true," represented in FORTRAN by. TRUE., 

and "false," represented in FORTRAN by . FALSE .. (The period must be present on 

both sides of the TRUE and FALSE.) Just how these logical switches and constants are 

used will be covered later. The intent here merely is to acquaint you with their existence. 
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4.1.5 Names for Constants= the PARAMETER Statement 

There are many times when it is useful to refer to a constant value by a familiar name. For 
example, the constant 3.14159 is used frequently in a wide variety of computations. 
However, in describing those computations, it is handy to refer to that constant as "pi" 
instead of having to write the number out each time we want to use it. Such named 
constants are called parameters in FORTRAN 77, which provides a convenient way to 
define them, i.e., by means of the PARAMETER statement. This statement is constructed 
as follows: 

PARAMETER (NAME= CONSTANT) 

where "name" is the symbolic name to be used; and "constant" is the value to be 
associated with the name. (Rules for constructing names appear in section 4.2.1.) For 
instance, the statements 

REAL*4 
PARAMETER 

PI 
(PI= 3. 14159) 

set up such an association between the name PI and the real constant 3.14159. Note that 
the name PI still must appear in a regular declaration. Then, throughout that program, 
any time the programmer uses that name, FORTRAN will "know" to use the value 
3.141599. Thus, assuming RADIUS and AREA are real variables and there is a value for 
RADIUS, the statement 

AREA=PI *RADIUS** 2 

will be accepted by FORTRAN, and the desired result will be produced. 
Several parameters may be defined in a single statement (after suitable declarations). 

For instance, the statements 

REAL*4 
INTEGER*2 
CHARACTER 
PARAMETER 

PI, GRAV 
NUM 
SIGNAL*4 
(PI=3. 14159, GRAV=32. 164, NUM=4, SIGNAL='FINI') 

sets up the real parameters PI and GRAV, the integer parameter NUM, and the character 
parameter 'FINI'. Thus, a PARAMETER statement placed at the beginning of a 
program provides a convenient record of such definitions, and it enables the programmer 
to express the various computations in a more meaningful way. It also is possible to assign 
a name to a constant expression. For instance, the sequence 

PARAMETER 
PARAMETER 

is perfectly valid. 

(PI=3.14159, REF_R.ADIUS=l. 017) 
(REF _AREA= PI * REF _R.ADIUS * * 2) 

When we wish to store data in a particular place and we want to refer to that place by 
giving it a name, we inform FORTRAN of our intent by setting up a declaration for a 
variable. As seen in previous examples, such declarations are placed at the beginning. of a 
program. In this section we shall add to the list of those already used while providing some 
more details. 

4.2. 1 Variable Name~ 

FORTRAN has simple rules that govern the construction of variable names: 
1. A variable name must begin with one of 26 upper or lower case letters. 
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Table 4.3 Variable Names in HP FORTRAN 77 

BIG3 
big3 
Big_3 
J73E 
net_ Value 
VELOC41 
3w 
net value 
$PAY 
NET-VALUE 

Value 

W34c10 
APPARENT_EXJT_VELOCITY 

OK 
OK 
OK 
OK 
OK 
OK 
illegal starting character 

Status 

name contains ineligible character (blank) 

illegal starting character 
name contains ineligible character (-) 

OK 
OK, but FORTRAN will use only APPARENT_EXJT_ VE 

2. The name may have up to 15 additional characters, and these may be either 

letters, numerical digits, or break characters (_) in any combination. (HP 

FORTRAN 77 will accept names of any length, but it will use only the first 16 

characters. Consequently, names like DEPARTMENTAL.AVG_GROSSPAY and 

DEPARTMENTAL.AVG__NETPAY are seen by the compiler as being identical. 

Standard FORTRAN 77 limits the length of variable names to six characters and 

does not accept the break character.) 

3. These rules also apply to named constants. 

Table 4.3 gives some examples of legal and illegal variable names. Regardless of the 

type of variable being defined, its name must follow these rules. In addition, the 

programmer must make sure that the names are unique. That is, when a particular 

variable name is defined, there must be only one variable in that program with that 

name. 
Since a name can be up to 16 characters long, the programmer has ample flexibility 

to use names that carry some meaning. For instance, if a program is going to compute a 

numerical value that represents a velocity, it is not particularly helpful to store it in a 

place called X. With no more effort, the programmer can use a name like VELOCITY. 

4.2.2 Declaration of Variables 

A fundamental aspect of good programming practice is to keep careful records of all the 

information used in a program and all the variables in which the information is kept. 

FORTRAN's declaration statements are clear and simple, making it particularly con­

venient to develop such records. When we declare a variable, we define two things 

about it: 

1. We give it a name. 

2. We describe the type of information to be stored in that variable. 

Since all of a program's declarations are placed at the beginning of that program, we 

know exactly where to look to answer any questions about the variables. 

4.2.2. 1 The INTEGER Declaration The statement 

INTEGER name 

reserves storage under the indicated name and makes note of the fact that an integer 

value will be stored there. It should be understood that the declaration, as shown, does 
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not cause any value to be stored. Thus, when we write 
INTEGER UNITNO 

we are directing FORTRAN to set up the bookkeeping that will enable us to place integer 
values, one at a time, in a variable named UNITNO. At this point, we do not know what 
there is in UNITNO. Whatever may be in there is meaningless because our program did not 
put it there. 

Several integer variables may be defined in a single declaration. For example, the 
statement 

INTEGER UNITNO, EMPLOYEE_NUM,NUM_OF_PARTS,H2PCS 
reserves storage for four integer variables. (We do not know what there is in any of them.) 

An integer variable in HP FORTRAN 77 normally occupies 16 bits of storage, 
thereby accommodating a value that may range from - 32768 to + 32767. This capacity 
may be specified explicitly by an alternative form for the INTEGER declaration: 

INTEGER*2 name 

An integer variable in HP9000 FORTRAN 77 normally occupies 32 bits of storage, 
thereby accommodating a value between -2147483648 to 2147483647. It is possible to 
decrease this range to match that of the normal HPlOOO FORTRAN 77 integer variable 
by using the INTEGER* 2 declaration. The variable thus declared for the HP9000 is called 
a short integer. Conversely, the range of an HPlOOO FORTRAN 77 integer variable can 
be increased to match that of the normal HP9000 integer variable by using the 
INTEGER*4 declaration. In response, the compiler will allocate 32 bits of storage. To 
avoid unnecessary concern about machine-dependent allocations, we shall use explicit 
length declarations throughout the text. 

4.2.2.2 The REAL Declaration Variables designed to hold single precision real values 
are declared with the statement 

REAL name or REAL*4 name 
A real variable in HP FORTRAN 77 is stored in 32 bits (i.e., two words in the HPlOOO and 
one word in the HP9000. We shall use the REAL* 4 form.) It can receive a positive value in the range 1.469368£-39 to l.70141E+38, a negative value in the range -l.70141E+38 
to -1.469368£-39, and zero. Except for the type of value that can be stored in a real 
variable, the REAL declaration operates exactly like the INTEGER declaration. 

4.2.2.3 The DOUBLE PRECISION Declaration Double precision real values are stored in 
variables declared with the statement 

DOUBLE PRECISION name or REAL*8 name 
This motivates the HP FORTRAN 77 compiler to allocate 64 bits of storage (i.e., four 
words in the HPlOOO and two words in the HP9000). This corresponds to a capacity (in the 
HPlOOO) of positive values ranging from 1.469367938527859380-39 to 
1. 701411834604692270 + 38, negative values ranging from -1. 701411834604692320 + 38 to -1.469367938527859460-39, and zero. The corresponding capacity in the HP9000 is about 2.2D-308 to 1.8D+308, - l.8D+308 to -2.2D-308, and zero, with about 16 
digits of precision. Here again, as is true for the INTEGER and REAL declarations, it is possible to declare several variables with one DOUBLE PRECISION statement. (We shall use the REAL*8 form to avoid machine-dependent complications.) 
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4.2.2.4 The CHARACTER Declaration Strings of characters are stored in variables 

declared as follows: 

CHARACTER* length name 

The *length part of the declaration tells FORTRAN how long a string (i.e., how many 

characters) the programmer expects to store in that variable, and FORTRAN reserves 
the appropriate amount of storage. For example, if we write 

CHARACTER*8 TITLE2,PARTNAME 

FORTRAN will reserve sufficient storage for two variables TITLE2 and PARTNAME, 

each with a capacity of eight characters. The amount of storage required to hold one 
character is called a byte, so another way of saying this is that FORTRAN reserves two 
eight-byte areas of storage in response to the declaration given above. Variables of 
unequal length can be declared in the same statement. For instance, the statement 

CHARACTER*8 TITLE2,PARTNAME, MODEL*6 

reserves storage for two eight-character variables (TITLE2 and PARTNAME) and a 
six-character variable named MODEL. A more complicated example, i.e., 

CHARACTER*7 
1 

SET_WORD,LAST_WORD,SHORT_WORD*6, 
LONG_WORD*lO, STANDARD_WORD 

reserves storage for five character strings: SET_WORD, LAST_WORD, and 
STANDARD_ WORD, each of which is seven characters long, SHORT_WORD with a length of 

six, and LONG_ WORD with a length of ten. As is true with any other declaration, no actual 
values are stored. 

4.2.2.5 The LOGICAL Declaration Logical variables are declared by the statements 

LOGICAL NAME 
LOGICAL*4 name 

or LOGICAL*2 name or 

LOGICAL*2 reserves 16 bits of storage, and LOGICAL*4 reserves 32 bits of storage. In 
either case, storage thus reserved will contain a variable whose value, when assigned, will 
be either . TRUE. or . FALSE .. (The LOGICAL declaration, without an explicit length 
indicator, reserves 16 bits in the HPlOOO or 32 bits in the HP9000. Hence, we shall use the 
explicit length indicator with our logical declarations.) The extended storage allocation 
for logical variables does not change their behavior. It is included as a convenience in 
setting up certain common storage organizations, to be discussed later. 

4.2.2.6 A Note for Old Times' Sake We started examining the declaration statements 
with the idea that a systematic record of all variables is a basic part of a well-written 
program. Even though this sounds like an obvious notion, its importance was not fully 
realized until well after the initial versions of FORTRAN were produced and well 
established. Consequently, there are features based on the idea that if we use a variable 
without explicitly defining it, FORTRAN can (and should) determine from the usage that 
this is a new variable which requires storage and appropriate bookkeeping support. These 
features make it possible to assign a value to an undeclared variable or to read a value into 
an undeclared variable. In either case, FORTRAN was designed to provide a declaration 
if the programmer did not do so. In order to make it possible for FORTRAN to produce 
such an "automatic declaration," certain assumptions had to be made about the type of 
variable to be declared. In earlier times, variables in FORTRAN were either INTEGER or 
REAL, so that the following rules were defined: 

1. Use of an undeclared variable whose name began with the letters I, J, K, L, M, 

or N would force FORTRAN to reserve storage under that name for an integer 
variable. 
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2. Use of an undeclared variable whose name began with any other letter (i.e., A 
through Hor 0 through z) would force FORTRAN to reserve storage under that 
name for a real variable. 

These naming rules, called defaults, could be overridden, of course, by an explicit 
declaration. Moreover, an additional feature (the IMPLICIT declaration) could be used 
to change the defaults so that an automatic real or integer declaration would apply to first 
letters other than the ones used by the built-in rules. 

These features, and the rules supporting them, still exist in FORTRAN 77 so that 
programs written under earlier versions of the language can be accepted by the new 
standard without change. In fact, they have been expanded so that the programmer can 
associate certain letters with double precision, character, or logical variables as well. In 
this book we shall avoid the use of undeclared variables. To help emphasize the need to 
declare all variables, we shall include the statement 

IMPLICIT NONE 

in our programs. As pointed out earlier, this forces FORTRAN to produce a warning 
message calling our attention to implicitly declared variables. (The tendency in newer 
programming languages is to design them so that undeclared variables are illegal.) The 
IMPLICIT feature is described in Appendix C for reference purposes, should you find it 
necessary to read an old FORTRAN program. 

4.2.3 Alternate Names for Variables -
The EQUIVALENCE Statement 

There are many situations where it is convenient to refer to a particular variable by more 
than one name. For example, the value stored in that variable might mean one thing 
during part of a program, and then it might take on a different meaning in another part of 
the program. FORTRAN makes it possible to provide variables with such aliases by use 
of the EQUIVALENCE statement. We shall introduce it here and explore its various uses 
later on, as opportunities arise to take advantage of it. 

Different names are associated with the same variable by using an EQUIVALENCE 
statement in conjunction with a normal declaration. For instance, suppose we define 
variables named NUMOBS and COUNTS with the ordinary statement 

INTEGER*2 NUMOBS,COUNTS 

Without any further specifications, FORTRAN will reserve a separate storage location 
for each variable. Now, if we follow the previous statement with 

EQUIVALENCE (NUMOBS,COUNTS) 

only one location will be reserved, and we shall be able to refer to it using either name. this 
capability is not limited to two names. For example, the statements 

REAL*4 SIZE,WEIGHT,BULK,MASS,LBS,KILOS 
EQUIVALENCE (SIZE, BULK, MASS) 

will produce reservations for four separate real variables: Three of these will hav~ single 
names (i.e., WEIGHT, LBS, and KILOS) while the fourth will be associated with any of 
three names (SIZE, BULK, and MASS). More than one such relationship can be set up in a 
single statement. Using the same declaration as above, we can write 

REAL*4 SIZE,WEIGHT,BULK,MASS,LBS,KILOS 
EQUIVALENCE (SIZE, BULK, MASS), (LBS, KILOS) 

in which case there will be three distinct variables: One will have the exclusive name 
WEIGHT, one will have three names (SIZE, BULK, MASS), any one of which can be used, 
and one will have the two names LBS and KILOS. 
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4.3 INmALIZA­
TION OF 

VARIABLES 

DATA 

It is possible to list variables of different types in the same EQUIVALENCE group. For 

instance, the sequence 

REAL*4 
INTEGER*2 
EQUIVALENCE 

RVAR 
WHOLENUM 
(RVAR, WHOLENUM) 

is legal, resulting in the use of the same storage for either variable. When the program 

refers to RV AR, the value in that location is treated as a real number; a reference to 

WHOLENUM compels the program to view the contents of that same location as an integer. 

This feature must be used carefully since variables of different types do not necessarily 

occupy the same amounts of storage. HP FORTRAN 77 uses the following rule for 

EQUIVALENCE lists: 

Each data item in an EQUIVALENCE list has the same first storage unit. 

In the example just given, the declaration for RV AR reserves 32 bits of storage while 

WHOLENUM, not being declared as a double integer, occupies only 16 bits. lfwe apply the 

rule stated above, the relationship will be as follows: 

RVAR 
WHOLENUM not used for WHOLENUM 

These considerations will become more essential when we set up aliases for arrays. 

When we discussed the declaration of variables, it was emphasized that we did not (and 

could not) know anything about the contents of a newly declared variable until we placed 

a value in it. Because of this fact, it is a good idea to place a known value in each variable 

before we actually put that variable to its intended use. By doing that, we make sure that 

we have complete control over the variable from the beginning. If the value changes, we 

know that it changed because we know what the original value was. For the same reason, 

we know when a value does not change. This process of explicitly providing a starting 

value is known as initialization. We saw an example of initialization in Example 3.3 of the 

previous chapter, where we set the total area TLAREA to zero before we began processing 

the first set of input data. This gave us a base value to which we could add the individual 

areas as they were computed. 
Of course, the specific reason for initializing a particular variable will depend on the 

type of variable and its usage. Similarly, there is no standard initial value that is assigned. 

Many numerical variables are initialized to zero, but that is not true for all numerical 

variables. Along the same lines, it often is appropriate to initialize a character variable so 

that it contains all blanks, but that need not always be the case. As our skill with 

FORTRAN develops, and we tackle more ambitious programming problems, initializa­

tion will play an increasing role. 
FORTRAN recognizes the importance of initialization, and it provides convenient 

methods for handling it. The most systematic way of defining initial values is by means of 

the DATA statement. This statement, placed at the beginning of the program along with 

the other declarations, has the form 

DATA name/value/ 

FORTRAN will produce the value (a constant) given between the slashes, and it will 

store that value in the variable indicated by the name. For example, the statements 

INTEGER*2 WIDTH 
DATA WIDTH/267/ 

will reserve storage for an integer variable named WIDTH, and an initial value of 267 will 

be placed in that variable. 
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Several variables may be initialized in a single DATA statement. To illustrate, let us 
consider the following sequence of statements: 

REAL*4 INCOME, ADJUST 
INTEGER*2 CASES, SWITCHSET 
INTEGER*4 MEMORY_IMAGE 
CHARACTER*6 WORD 
DATA INCOME/0./,ADJUST/0./,CASES/0/, 

1 SWITCHSET/0'177777'/,MEMORY_IMAGE/Z'OFOFFOFO'/,WORD/'ZZZZZZ'/ 
As a result of this sequence, INCOME, ADJUST, and CASES will each contain an initial 
value of zero, WORD will contain six Z's, SWITCHSET will contain an integer equivalent to 
the octal value O' 177777', and MEMORY_IMAGE will contain an integer equivalent to 
the hexadecimal value z' OFOFFOFO'. Note that INCOME and ADJUST, having been 
declared as real variables, were initialized with real constants (0. in this instance); 
CASES, being an integer, was initialized with an integer value. FORTRAN also permits 
the use of several DATA statements. Thus, the version 

DATA 
DATA 

INCOME/0./,ADJUST/0./,CASES/0/ 
SWITCHSET/0'177777'/,MEMORYIMAGE/Z'OFOFFOFO'/,WORD/'ZZZZZZ'/ 

may appear less cluttered than the previous version. 
Another way of writing the DATA statement enables the programmer to place all the 

names together, followed by their respective initial values. Using the same variables as 
above and assuming the same declarations, we can rewrite the DATA statement as follows: 

DATA INCOME, ADJUST, CASES, SWITCHSET, MEMORY_IMAGE, WORD 
1 /0. ,0. ,0,0'177777',Z'OFOFFOFO', 'ZZZZZZ'/ 

The result is exactly the same as before: INCOME and ADJUST are initialized to O, CASES 
is initialized to 0, and WORD is initialized to zzzzzz. 

If several variables are to be initialized to the same value, a more concise form of the 
DATA statement may be used. In the previous example, two variables (INCOME and 
ADJUST) were initialized to the same real value. We can specify this fact by writing 

DATA INCOME,ADJUST,CASES,SWITCHSET,MEMORY_IMAGE,WORD 
12*0. ,0,0'177777',Z'OFOFFOFO', 'ZZZZZZ'/ 

The 2 * in front of the zero is a repetition factor that indicates how many variables are to 
be initialized to that value. 

In order for the DATA statement to work properly, there must be a match between the 
number of items (variables) in the list and the number of initial values between the 
slashes. Since a DATA statement may be as long as any other FORTRAN statement, there 
is capacity for a long list. Sometimes it is easier for the programmer to keep track of this 
matching process by breaking the list into several smaller ones. This also can be done in 
the DATA statement. Using our previous example, we can rewrite the DATA statement as 
follows: 

DATA 
1 
2 

INCOME,ADJUST/2*0./, CASES/0/, 
SWITCHSET, MEMORY_IMAGE/0'177777',Z'OFOFFOFO'/, 
WORD/'ZZZZZZ'/ 

Additional features are available for more elaborate initialization processes. We shall 
examine these later, specifically when it comes to setting up entire tables of values. 
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The basic types of data used in HP FORTRAN 77 include: 4.4 SUMMARY 

1. Integers or double integers (positive or negative numbers without fractions) 
where 348, -90, O' 3751', -274B, and Z 'C60B' are examples of integer 
constants. 
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2. Real numbers (also called single precision floating point numbers) (positive or 

negative numbers with possible fractions) where -7 . 7, 3 4 8 . , 4. 7 9 6E-5, and 

0. 089 are examples of real constants. 

3. Double precision numbers (positive or negative numbers with extended capacity 

for fractions) where O. 87456D3, 627. 40572841, and 

-23. 358790083000D--4 are examples of double precision constants. 

4. Character strings (sequences of letters, numerical digits and special symbols in any 

combination) where 'X23J7', 'PARCELS7' and '-003 %J' are examples of 

character constants. 

5. Logical values (either. TRUE. or. FALSE.). 

FORTRAN variables are declared at the beginning of a program by specifying a 

variable name (selected by the programmer) and the type of data the variable will contain. 

Declarations for the type of data listed above take the following form: 

INTEGER name (equivalent to INTEGER*l for the HPlOOO and INTEGER*4 for 

theHP9000) 
REAL name (equivalent to REAL*4) 

REAL*6 name (for the HPlOOO) 
REAL* 8 name or DOUBLE PRECISION name 

CHARACTER*length name or CHARACTER name*length 

LOGICAL name (equivalent to LOGICAL*2 for the HPlOOO and LOGICAL*4 for 

the HP9000) 

Variables declared as indicated above may be given initial values by means of the 

DATA statement using one of several basic forms: 

DATA name/value/,name/value/, ....... ,name/value/ 

or 
DATA name, name, name, ... ,name/value, value, value.,,, .value/ 

or 
DATA name, name, ... ,name/value, value, ... ,value/,name/value/ 

PROBLEMS 1. Indicate which of the following is a legal FORTRAN integer constant. If it is not, give the reason: 

(a) 22 

(b) -761 

(c) 20. 
(d) -2, 46 

(e) +4142 

(f) 6 21 

(g) -7. 

(h) 0646 

(i) 3127B 

(j) 0' -21457' 

(k) 0' 394' 

(l) Z62AE 

2. Indicate whether each of the following is a legal FORTRAN real constant. If it is not, give the reason: 

(a) -23. 6 

(b) -23 

(c) 202 

(d) 3, 200, 000. 0 

(e) -0 

(f) 81. 61 
(g) -81. 

(h) 3. 27*10**4 

(i) -2. 0 * 10 ** 2 

(j) 4*10**3 

(k) 228. E2 

(1) -2.2E-Ol 

(m) 0. EO 

(n) 7.1E7. l 

(o) -2. OE-02 

(p) . 7*10* *2 

(q) +. 23E+02 

(r) +o. 2E+ 

(s) -0. lE-01 

(t) . OE+03 

(u) 212. 12E-12 

3. Convert each of the following numbers to scientific notation. Express your results in standard form (i.e., 

with zero to the left of the decimal point): 

(a) 44.2 
(b) -17 

(c) 2. 00084 

(d) 0. 0 

(e) -313. 313 

(f) 46, 324, 000 

(g) -1. 00092 

(h) -93200000000000 

(i) . 0000000786 

(j) 6756.44 

(k) 845904. 1 

(l) 0. 000000000000004174 



4. Convert each of the following numbers to conventional notation: 

(a) 6. 3*10**2 (e) -244. 65*10**-8 
(b) 2. 11E2 (f) -. 000786E+04 

(i) 0. OOOOOEO 
(j) 0. 868E-06 

PROBLEMS 

(c) 0. 868E6 (g) 211. OEO 
(d)-2.E8 (h) 61673.8E5 

(k) 89675. 4*10**4 
(1) 0. 00021100E+06 

5. Arrange each set of numerical constants so that they are in ascending order (i.e., smallest one first): 
(a) 22.7 -38.14 3.64*10**1 
(b) -14. 61 -0.2416E01 0.21621E-1 
(c) 3. E3 03.0E-1 2.17EO 
(d) 4. 87*10**2 . 6644E03 . 06628E04 
(e) -3. 71E-1 -37.28E-3 -.2898E-1 

6. Write each of the following in FORTRAN floating point notation using the standard form from Section 
4.1.1.2.2 with six decimal places: 

(a) 327. 16 (e) 887. 321*10**-8 
(b) -3 (f) 1000. O*l0**-3 
(c) 2. 2*10**6 (g) . 00007482 * 10 ** 2 
(d) . 000714 (h) -891674*10**4 

7. Express each of the following as a FORTRAN double precision floating point constant using 14 decimal 
places: 

(a) -862. 186 
(b) 8562478. 06 
(c) 26. OE-4 
(d) -. 00007241551515 
(e) 1. EO 

(f) 1421. 1421 
(g) 11. 7E8 
(h) -1. 28435947 
(i) 7. 9El 7 
(j) -38. 388E-12 

8. Express each of the following strings as a character constant and indicate its length. A blank is represented 
byb: 

(a) BELL (d) RIGHT-LEFT 
(b) AbCHICKEN (e) 'TWASN' TbTHERE 
(c) bbCENTERbbLEFTb (f) I I IbCAN'TbLOSE, I 'bSHEbSAID. 

9. Write PARAMETER statements for each of the following: 

Variable Type Value 

(a) V real 17.2 
(b) BASE integer 2 

MINVAL real -0.8 
(c) FILLER character bbbbbb 

WVAL real -8.84 
LNGVAL double precision 12.8486729 
YVAL real 360000000 
WDl character GG 1 6 1 ST 

(d) FACT logical true 
(e) BKGRD character $$$$$ 

ZERO integer 0 
NOTHING real 0.0 
INITL integer 1 
OHNO logical false 
HI TEST real 999.99 
BLANKS character bbb.bbb 

10. Write FORTRAN declarations for each of the following: 

(a) Real variablesXUP, XDOWN, XSIDE, and integer variable WIDTH. 
(b) Real variables YRT, YLFT, character variables WVERB (length 10), WNOUN (length 8) and 

WADVB (length 10). 
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( c) Double precision variables BI GM and BI GT, real variable WRL, and integers NUMX, NUMY, and NUMT. 

(d) Character variables STRP, STRN and STRY (all with length 7), integer variables TX and TY, double 

precision variable VLONG, logical variables SWl and SW2, and real variables FILLA and FILLB. 

( e) Logical variable FLIP, double logical variable FLIP _2, character variable WD (length 9), real 

variables XTHEOR and XACTL, integer variable COUNT, double integer variable BIGVAL, and 

character variables PRFX and SFX, each with length 4. 

11. For each of the following sequences of statements, specify how many different locations FORTRAN will 

reserve in the particular HP system with which you are working. Give the name or names associated with 

each location: 

(a) REAL 

(b) REAL 
EQUIVALENCE 

(c) INTEGER*2 

EQUIVALENCE 

(d) REAL 

INTEGER*2 

CHARACTER*8 

EQUIVALENCE 

(e) REAL*8 
REAL 

HT,WT,LGTH,ALT 

HT,WT,LGTH,ALT 

(HT,ALT) 

COUNT, AMT, TOTAL 

(COUNT, AMT, TOTAL) 

BEV,DRK,QUF,LIQ 

QTS,VOL,CAP 

DSCR,NAME,APPL 

(QTS,CAP), (DRK,BEV), (DSCR,APPL) 

LNGVAL,EXTNS,BILDUP 

XWAY,YWAY,ZWAY,HORIZ,VERT,FRBACK 

INTEGER TALLY,TOTAL,SUMALL,PRTSUM 

CHARACTER*? ENDNGS,PRFXES,SFIXES,WORDM 

LOGICAL TURN,PIVOT,HINGE,SWL,SW2 

EQUIVALENCE (TURN,HINGE), (SW1,SW2), (XWAY,HORIZ) 

EQUIVALENCE (LNGVAL, BILDUP), (XWAY, ZWAY) 

12. Write FORTRAN statements for each of the following: 

(a) Declare real variables AV AL, BV AL and CV AL with all three referring to the same location. 

(b) Declare real variables XVAL, HVAL, YVAL and WAL with XVAL and HVAL referring to the same 

location, and YV AL and WAL referring to another location. 

(c) Declare real variables TMIN, TMED and TMAX, integer variables CTMIN, CTMED and CTMAX, and 

character variables WDMIN, WMDED and WDMAX (all with length 7). TMED and TMAX refer to the same 

location, CTMED and CTMIN refer to the same location, and all three character variable names refer to 

the same location. 
(d) Reserve a location for a real variable whose name could be either BWAY, VWAY, XWAY or ZWAY; an 

integer variable named JMAX, another integer variable named either JM or OVRNUM, and a logical 

variable named SWl, HINGE, POINT, FLIP, or MAYBE. 

13. For each of the following sequences of statements, show what the resulting output would be. Assume that 

real values are printed in standard floating point form with six decimal places: 

(a) REAL*4 
V0=25. 0 

A= 10. 0 
T=2. 0 

S,A,VO,T 

S=VO*T+ 0. 5*A*T**2 

PRINT*, VO, A, T, S 

(b) REAL*4 S, A, VO, T 

VO=O. 5E2 

A= 1. 2El 
T= 2. E-01 

S=VO*T-0. 5*A*T*T 

PRINT*• VO, A, T, S 

(c) REAL*4 VO, T, S 

PARAMETER (ACCEL = 5. 0) 

DATA V0/10.0/ 

T=2. 0 
S = T * (VO+ 0. 5*ACCEL*T) 

PRINT*, VO, T, S 



(d) REAL*4 VO, T, S 
PARAMETER (GRAV=32. 164) 
DATA V0/0.0/,T/100.0/ 
S=T* (VO+O. 5*GRAV*T) 
PRINT*• VO, T, S 

(e) REAL*4 CIRCUM, AREA, VOL 
INTEGER*2 RADIUS, LOOPS 
PARAMETER (PI= 3. 14159) 
RADIUS= 1 
DO 14LOOPS=1, 4 

CIRCUM= 2 *PI* RADIUS 
AREA= PI * RADIUS * * 2 
VOLUME= 1. 333333 * PI * RADIUS * * 3 
PRINT*, RADIUS,CIRCUM,AREA,VOLUME 
RADIUS= 2 * RADIUS 

14CONTINUE 
(0 REAL*4 BIGX,BIGY,SMI...X,SMI..Y,XMAX,YMAX,XMIN,YMIN,Z 

INTEGER*2 POWER,EXPO,NUM,COUNT 
PARAMETER (BASIS=2, COEF=0.955, ADDER=6.6) 
EQUIVALENCE (BIGX, XMAX) , (SMI...X, XMIN) 

DATA BIGX,BIGY,SMI...X,SMI..Y/1000.0,2000.0,2*1.0/ 
YMAX = 5000. 0 
YMIN = 2 * XMIN 
PRINT*,BIGX,BIGY,XMAX,YMAX 
PRINT*,SMl...X,SMI..Y,XMIN,YMIN 
Z = 3 * (BIGX - SMI...X) + 2 * (XMAX - XMIN) 
PRINT*• Z 
Z = Z + COEFF* (SMI...X+SMI..Y) **BASIS+ ADDER 
PRINT*,BASIS,ADDER,Z 
BIGX= 0. 5*BIGX 
XMIN = XMIN+SMI...X 
PRINT*, XMAX, SMI...X 

PROBLEMS 

14. Write a FORTRAN program using the diagram or pseudocode developed for Problem 8 in Chapter 2. 
Run your program using the following set of input values: 

DEN = 11.50.0 ksm/cubic meter 
DIAM= 0.03175 meters 
VEL = 24.384 meters per second 

15. Write a FORTRAN program from the N-S diagram or pseudocode developed for Problem 9 in chapter 2. 
Run your program using the following input values: 

density = 44.95 lbs./cubic foot 
diameter= 0.875 inches 
velocity= 114.5 miles per hour 

16. Modify the program in Problem 15 so that it will process any number of input sets. Use a density value of 
zero to terminate the run. 

17. Write a FORTRAN program based on the diagram or pseudocode developed for Problem 10 in Chapter 
2. Run your program with the following input data: 

LENGTH = 12.375 
WIDTH = 8.4375 

18. Modify the program in Problem 17 so that it will process any number of input sets. Use a length (L TH) or 
zero to terminate the run. After the set of results has been printed, the program is to print summary 
information showing the number of input sets processed, the total area ordered, the total price (without 
tax), and the total price (with tax). 

19. Modify the program in Problem 18 so that the price per square foot may be changed for each run (where a 
run consists of any number of input sets). 
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20. Modify the program in Problem 18 so that the price per square foot may be changed any number of times 

within a single run. That is, set up your algorithm design so that the user can specify a certain price per 

square foot. Then, the program will use that price for every input order until a new price is specified. The 

design is to be completely flexible, so that a new price may appear after only one order at the previous 

price, or it may appear after several hundred orders at the previous price. (HINT: Design your data flow 

so that there is a special line (that your program can recognize and distinguish from an order) that gives a 

new price.) 

21. Write a FORTRAN program to implement the procedure designed for Problem 20 in Chapter 2. Run 

your program using the following input values: 

LENGTH 
400.0 
410.0 
414.5 
200.0 
100.5 

0.0 

WIDTH 
100.0 
122.0 
114.6 
414.8 
56.2 

0.0 

22. Write a FORTRAN program to implement the procedure designed for Problem 25 in Chapter 2. 

23. Write a FORTRAN program to implement the procedure designed for Problem 29 of Chapter 2. 

24. Write a FORTRAN program that implements the procedure designed for Problem 30 in Chapter 2. 

25. Design and write a FORTRAN program that computes the equivalent weight in kilograms for 1pound,2 

pounds, and so on, up to and including 25 pounds. The printout is to show a weight on each line, similar to 

the form illustrated below: 

WT. LBS 
1 
2 

* 

WT. GMS 
0.453600E+03 
0.907200E+03 

etc. 

WT. KGMS 
0.453600E+OO 
0.907200E+OO 



5 
Computations 

FORTRAN's greatest strength lies in the ease with which we can specify computations. 
The name of the language (recall that it is an abbreviation for FORmula TRANslation) 
emphasizes a major objective: To enable programmers to write down a formula (simple 
or complicated as it may be) and have the computer set up and do the necessary arithmetic 
(or algebra, or calculus, or whatever) automatically. In this chapter we shall examine 
FORTRAN's computational features and confirm our suspicions that they are really 
convenient and powerful. 

Just about everything we want to do in the way of computation is specified by means of the 
assignment statement. Since we have used these statements in earlier examples, we need 
only review the general form before examining the computational features in more detail: 

variable = expression 

By now we should be used to the fact that although an assignment statement looks like an 
equation, it really is not. It is a directive to do the following work: 

1. Perform the computations described by the expression to the right of the = sign. 
Successful performance will produce a single result, i.e., some numerical, char­
acter, or logical value. 

2. Place that value in (assign that value to) the variable named on the left of the = 
sign. This will replace whatever was in that memory location before. 

What is meant by successful performance? In order for the calculations to be done 
properly, they must be specified correctly and clearly. The first of these requirements 
makes it necessary for the programmer to write the expression using those ingredients 
that FORTRAN is designed to recognize. The second requirement is fulfilled by making 
sure that the expression says what the programmer wants to say. 

These requirements can be met by learning and following a few simple rules. In most 
cases the rules are "natural." They "force" us to do what we would have done anyway. 
However, we need to understand the rules so that we can make them work for us under all 
circumstances. 

5. 1. 1 Construction of an Expression 

An arithmetic expression in FORTRAN is not terribly different from an arithmetic 
expression written down for calculation by hand. There are certain ways in which we have 
to change the physical appearance to get around some of the computer's limitations, but 
these changes are minor, and we can get used to them quickly. Specifically, we must 
recognize that the computer can handle only one line at a time; it does not have our ability 
to look at something described in several lines and take it all in at once. For example, we 
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have no problem at all in reading and understanding something like 

Y=A+C 
B D 

To us, this is a simple formula; to a computer, it is hopeless. As a result, we must present 
the expression so that FORTRAN can "look" at it as a single line. For the little example 
given above, we would write 

Y=A/B+C/D 

A second type of change in the form of an expression is due to the fact that the computer 
does not know the rules of algebra. (As we pointed out in the first chapter, it does not 
"know" anything.) Consequently, it cannot recognize the shortcuts and conveniences 
that we have learned. For instance, if we decide to use variables named A, B, and C, we 
have no trouble understanding 

- AB y - ---c-
Obviously, this means, "Y is equal to A times B divided by C." Furthermore, knowing 

what we know about the assignment operation in FORTRAN, it ought to be possible 
(one might think) to rewrite the abovementioned formula as an assignment statement, 
namely, 

Y = AB/C 

which ought to mean, "Produce the value A times B divided by C, and assign that value to 
Y, replacing whatever was there before." However, it does not work out that way. 
FORTRAN operates under the assumption that we mean to divide some variable named 
AB by a variable C and store the result in Y. Consequently, we have to be explicit about 
everything we want to do. That is why every multiplication must be denoted by an asterisk 
(*).Table 5.1 shows these rules applied to some additional examples. 

5.1.1. 1 Operators and Operands Every arithmetic expression consists of some com­
bination of two types of terms: operators and operands. Operators specify what kind of 
computation is to be done, and operands indicate which information is to be used in doing 
the work. For instance, suppose we have declared the real variables VELOC, ACCEL, and 
TIME. Then, if we wrote the expression 

VELOC *TIME+ 0. 5 * ACCEL *TIME** 2 

that expression would consist of five operators (three multiplications, an addition, and an 
exponentiation, as the ** operator is called), and six operands: The four variables 

Table 5.1 Simple Arithmetic Expressions in FORTRAN 

Variables are A, B, C, D, E, F 

Conventional Form 

A+_!!_ 
c 

AB_ D2 E2 
C--F 

A2.5B + _f_ 
c2 D 

A39.1c2 
D.4 

E 

FORTRAN Form 

A + B/C 
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(VELOC, ACCEL, and TIME, the latter appearing twice), and the two constants 0.5 and 2. 
If we want to store the result of these computations in a real variable named DIST, for 
example, we would convert the expression into an assignment statement by including an 
assignment operator and a destination variable (i.e., a place to store the result): 

DIST=VELOC *TIME+ 0. 5 * ACCEL *TIME** 2 

5.1. 1.2 Types of Arithmetic Operators As indicated earlier, FORTRAN recognizes 
five arithmetic operators. Three of them are always binary operators. In order to use a 
binary operator correctly, it must appear between two operands. These three operators 
are multiplication (x), division(/), and exponentiation(**). If we use the names opndl 
and opnd2 to indicate two operands, then we can summarize these three basic activities as 
follows: 

opndl * opnd2: opndl is multiplied by opnd2 
opndl/opnd2: opndl is divided by opnd2. 
Ifwe wanted to divide opnd2 by opndl we would have to write opnd2/opndl. 
opndl ** opnd2: opndl is raised to the power indicated by opnd2. 

Each of the other two operators ( + and - ) may have one of two somewhat different 
meanings, depending on how it appears in an expression. When used as binary operators 
(i.e., between two operands), + and - mean what one would expect: 

opndl + opnd2: opndl is added to opnd2 
opndl - opnd2: opnd2 is subtracted from opndl. 

The + and - operators also may appear as unary operators. An activity performed by a 
unary operator uses only one operand, and the operator is placed in front of (to the left ot) 
that operand. 

When - is used as a unary operator the activity is called negation. It amounts to 
multiplication by -1: 

- opndl: negate opndl 

For instance, the assignment statement 

Y= -X 

contains a simple expression consisting of the single operand X and the unary negation 
operator - . It says, "Negate the value in X and store the result in Y." If X happens to 
contain 17.2, this statement produces a value of -17.2 in Y. 

When+ is used as a unary operator, it refers to an identity: 

+opndl: same as opndl 

For example, 

y = +4.27 

uses + as a unary operator which "acts on" the single operand 4.27. (Use of the unary + is 
rather limited, and we are unlikely to encounter it elsewhere in the book.) 

5. 1. 1.3 Simple and Complicated Arithmetic Operands In their final form (that is, when 
FORTRAN gets through with them), arithmetic operands are numbers. When, for 
instance, we write an expression like 

VELOC *TIME 

we are directing the computer (through FORTRAN) to multiply together two numbers to 
be found in the designated variables (i.e., in VELOC and TIME). In this case, the directive 
is simple: Each of the operands taking part in the multiplication comes directly from a 
variable. When we describe a more elaborate set of computations, the operands for a 
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particular operator may themselves be results of other computations described as part of 
the same expression. 

For example, let us go back to an earlier statement: 

Y = A/B +CJD 

and look at the+ operator. Here, it represents a binary operator (addition) since it clearly 
is placed between two operands. But what are these operands? Which two numbers will 
the computer be adding together? The answer is what we would expect: One of the two 
operands is the number produced by dividing A by B, and the other is the number 
produced when C is divided by D. Thus, there is no single form for an operand in a 
FORTRAN expression. It may be as simple as a constant or variable, or it may itself be an 
arithmetic expression. In our example, A/B and C/D both are arithmetic expressions 
whose results, when computed, will serve as operands for the addition. 

The basic point of this discussion is that we need to know exactly how FORTRAN 
does its computations so that when we write an expression in which computed results 
become operands for further computations, we can be sure we get what we want. In the 
next section we shall look at the use of parentheses as a way of providing such computa­
tional guarantees. Then, in a later section, we shall examine FORTRAN's internal rules 
for computations so we can see in detail exactly why FORTRAN computes the way it 
does. 

5. 1. 1.4 Parentheses in Arithmetic Expressions As seen in the previous section, we 
can write expressions consisting of smaller expressions. When this is done, the physical 
appearance does not always give a clear picture of what FORTRAN will do. We do not 
have to look for an exotic series of computations to see this: A relatively simple bit of 
arithmetic will make the point clear. 

Example 5.1 The president of Plotz Cookware, Ltd. ("A Plotz Pot Will Keep It Hot") has a strong­

minded wife who has a brother with a degree in employee testing. As a result Plotz is heavily dedicated to 

systematic testing of its workers. Each person to be tested is brought into a separate little room con­

taining five numbered chairs, and is given a written test. While he or she is taking the test, a Specially 

Trained Observer records the time required to complete the test (TSTIME) as well as a Fidgibility Index 

(FGNDEX) based on the amount the person moves around in the chair. Later on, the test score (TSCOR) is 

used together with TS TIME, FGNDEX, and the chair number (CHNUMB) in which the person sat to compute 

an overall Employee Adjustment Rating (EARTNG) using the formula 

EARTNG = CHNUMB + TSCOR 
TSTIME(FGNDEX) 

Now, with business expanding rapidly, a FORTRAN program is needed to automate the computations for 

the many people being tested. 
The flow of events is simple enough: Each set of test results will be read from a separate card which 

also will contain the person's name (EMPNAM) and the test number (TSTNUM). For this example, we shall 

assume that we do not know how many sets of test results will be submitted for any given run. 

Consequently, we shall use dummy input to stop the run. This dummy input consists of a set of data that 

we know beforehand to be '' i I legal'' because we define it that way. Then, by placing that set at the end of 

the regular data, we can test for it in our program. As long as we do not run into the dummy data, the 

program "knows" to continue processing. As soon as the dummy data have been read, the program is 

designed to stop. It does not matter what kind of value we use for this purpose, as long as we make sure 

that this value cannot possibly occur in the actual data. Forth is example, as was the case in several earlier 

ones, we shall say that no test ever will have a test number of zero, so that we can use that value in the 

dummy data. 
When it is convenient to use this technique, it is almost always possible to find an impossible value. 

For instance, if one of the variables in a particular program represents a weight, a negative value (say -1) 

would serve perfectly well to signal the end of the data. (Later on we shall learn other ways of providing 

such signals.) 
With this in mind, we can see that our program structure is nothing more than a loop that repeatedly 

keeps reading data and testing for the dummy value. And, as long as it is not found, the program computes 

EARTNG and prints the results. This is seen in the flow diagram and pseudocode in Figure 5.1. 
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Declare EMPNUM, TSTNUM, TSCOR, TSTIME, 
CHNUMB, FGNDEX, EARTNG 

Read first set of input 

''Define variables EMPNUM, TSTNUM, 
TSCOR, TSTIME, 
CHNUMB, FGNDEX, 
EARTNG." 

Do while TSTNUM F 0 

Echo the input 

Compute EARTNG = CHNUMB + TSCOR 
TSTIME FGNDEX 

Print EARTNG 

Read next set of input 

Stop 

(a) 

"Read first set of input." 
while TSTNUM is not equal to zero: 

"Echo the input." 
"compute EARTNG = 

TSCOR 
TSTIME*FGNDEX 

"Print EARTNG." 
"Read the next input set." 

endwhile 
"Stop." 

(b) 

Figure 5.1 (a) Structured Flowchart for Example 
5.1 . (b) Pseudocode for Example 5.1. 

The heart of the program is the assignment statement in which the required value is computed and 
stored in EARTNG. Referring back to our formula, a first glance might persuade us to write the statement 
as 

EARTNG = CHNUMB + TSCOR/TSTIME*FGNDEX 

This might appear to be reasonable, especially since it does not look terribly different from the formula. 
However, because of the order in which FORTRAN performs these calculations, the result will not be the 
one we want. With the expression written this way, FORTRAN will do the division (TSCOR/TSTIME) 
before it does the multiplication. Consequently, the operand that would be multiplied by FGNDEX will be 
the value TSCOR/TSTIME and not TSTIME by itself. In other words, the expression, as written, carries 
the intent of a different formula, namely, 

EARTNG = CHNUMB + TSCOR FNGDEX 
TS TIME 

We can force FORTRAN to do the computations properly (for us) by using parentheses in the same 
way we would in a conventional formula. By rewriting the statement so that it says 

EARTNG = CHNUMB + TSCOR/ (TSTIME*FGNDEX) 

we have "isolated" TSTIME*FGNDEX as a separate subexpression. In a sense, we are telling FORTRAN 
to do the computations inside the parentheses first, so that there is a single result there. That number can 
then be used as the operand by which TSCOR will be divided. Having made that simple adjustment, we 
can now write the entire program (Figure 5.2). 

There is only one rule regarding the use of parentheses in expressions: Parentheses 
come in pairs. We can use as many parentheses as we need to, as long as there is a right 
one to match every left one. When such a match is provided, the expression is said to 
contain balanced parentheses. Even when parentheses are not needed, their use will not 
upset anything, as long as they are balanced. For example, the expression 

A+B+C 
is perfectly fine without parentheses. There is no doubt as to what the computations will 
be, and parentheses obviously are not needed. However, we could put in unnecessary 
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****************************************************************** 
* EXAMPLE 5 .1 * 
****************************************************************** 
* THIS PROGRAM ILLUSTRATES THE USE OR PARENTHESES TO MAKE CLEAR * 
* THE EXACT SEQUENCE OF ARITHMETIC OPERATIONS NEEDED BY A GIVEN * 
* PROBLEM. AT THE SAME TIME, IT ILLUSTRATES THE USE OF AN ECHO * 
* TO PROVIDE AN IMMEDIATE RECORD OF THE INPUT IN EXACTLY THE * 
* FORM IN WHICH IT WAS RECEIVED. * 
****************************************************************** 

PROGRAM 
IMPLICIT 
REAL*4 
INTEGER*2 
CHARACTER*25 

EX501 
NONE 
TSCOR,TSTIME,FGNDEX,EARTNG 
TSTNUM,CHNUMB 
EMPNAM 

****************************************************************** 
* INITIALIZE BY READING THE FIRST INPUT SET. * 
****************************************************************** 

PRINT*, 'ENTER THE FIRST SET OF INPUT VALUES.' 
READ *, EMPNAM,TSTNUM,TSCOR,TSTIME,CHNUMB,FGNDEX 

****************************************************************** 
* HERE IS THE WHILE CONSTRUCTION: * 
* NOTE THE SPECIAL FORM OF THE READ STATEMENT INSIDE THE LOOP: * 
* THE 'END=99' SPECIFIES THAT IF THE PROGRAM RUNS OUT OF DATA * 
* WHILE TRYING TO PERFORM THIS INPUT OPERATION, IT IS TO PROCEED* 
* IMMEDIATELY TO THE STATEMENT WITH THE ATTACHED LABEL 99. * 
****************************************************************** 

DO WHILE (TSTNUM .NE.0) 
PRINT *, EMPNUM,TSTNUM,TSTIME,CHNUMB,FGNDEX 
EARTNG = CHNUMB + TSCOR/(TSTIME*FGNDEX) 
PRINT *, EARTNG 
PRINT*, 'ENTER THE NEXT SET OF INPUT VALUES.' 
READ (*,END=99) EMPNAM,TSTNUM,TSCOR,TSTIME,CHNUMB,FGNDEX 

END DO 

99 PRINT*, 'RUN COMPLETED.' 
STOP 
END 

FIGURE 5.2 Program for Example 5.1 . 

parentheses, so that the expression reads 

(A + B + C) 
or (A+ B) + C 
or A+ (B + C) 

or even ((A+ B) + (C)) 

without affecting the computations. Note, however, that -X**2 is quite different from 
(-X) **2. Table 5.2 shows some additional examples illustrating the use of parentheses. 

Whenever there is any question with regard to how FORTRAN will interpret a 
particular expression (or part of an expression), any doubts can be removed by using 
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Table 5.2 Use of Parentheses in FORTRAN Arithmetic Expression 
Variables are A, B, C, 0, E, F, G 

Traditional Form 

A+B 
c 

A+B 
C-0 

B 
A+C-0 

B 
A - (C - 0)2.s 

(A - B)2(C + 20) 

(A + B)(A - C)(O + E)o.s 
G-F 

B(A - c2 + OE)3 
(A+ BC)-2 

FORTRAN Form 

(A+B) IC 

(A+B) I (C-D) 

A+B/ (C-D) 

A-B/(C-D)**2.5 

(A-B)**2*(C+2*D) 

(A+B)*(A-C)*(D+E)**.8/(G-F) 

parentheses. Since there is no penalty in using parentheses that are not needed, it is a good 
practice to include them so that the expression can easily be read and interpreted by 
human. 

5.1.2 Representation of Computed Results 

Regardless of the length or complexity of an assignment statement, it directs FORTRAN 
to perform a sequence of two basic activities: 

1. Evaluation of the expression on the right of the = sign to produce a single result. 
2. Storage of that result in the destination specified by the variable on the left side of 

the= sign. 

5.1.2.1 Real Expressions Once the computed result is available, it would seem to be a 
simple matter to place that value wherever it is supposed to go. Under many conditions, 
this is as simple as it sounds. However, we must note the fact that the destination is a 
variable name. As such, it has been declared earlier in the program, so that the name is 
associated with a certain type of data. For instance, if we had part of a program that said 

REAL*4 COST, TAX 
INTEGER*2 PRICE 

* * * * * 
* * * * * 
TAX= 0. 045 *COST 

there would be no question as to what happens: 0.045, a real constant, is multiplied by 
another real value, i.e., the one stored in the variable COST. The result, which is also a 
real number, is stored in TAX, a place set up to hold a real value. 

Now, suppose we add another statement to this sequence: After the calculation of TAX, 
let us write 

PRICE= COST+ TAX 

Again, the computation is clear enough: TAX and COST, both of them real, are 
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added together to produce a sum that is real. Now, the computer is ready to place this 
result in PRICE. But PRICE, having been declared INTEGER, cannot accept a real 
value. Consequently, FORTRAN introduces another step that converts the sum of 
COST and TAX to an integer and stores the converted value in PRICE. Since an integer 
has no fractional part, the conversion process must deal with it somehow. What it does is 
simple: It just throws the fraction away. (This is called truncation.) For example, if COST 

is 150. 80 and TAX is 6. 90, the sum (157. 70) will be processed by ignoring the . 70 

and converting the whole number (157.) to integer form (157). Then, that value is 
stored in PRICE. (Sad rumor has it that somewhere not far from Carson City there is an 
enormous pile of discarded fractions drying and withering under the relentless Nevada 
sun. And this mountain is growing daily faster than ever.) 

We can generalize from this example to a rule that governs the behavior of the 
assignment process. 

After a number is computed by evaluating an arithmetic expression, FORTRAN will 
convert that value (if necessary) so that its type matches that declared for its 
destination. 

5. 1.2.2 Integer Expressions Let us apply this rule to another situation, the reverse of 
the previous one: We shall specify some computations involving integers, with the result 
to be stored in a real variable. 

REAL*4 
INTEGER*2 
SBTTL1=83 
SBTTL2=19 

TOTAL 
SBTTL1,SBTTL2 

TOTAL= SBTTLl + 3*SBTTL2 

Three times the value in SBTTL2 (57) is added to SBTTLl (83) producing an integer 
result of 140 which now needs to be stored in the real variable TOTAL. Consequently, 
FORTRAN will convert it to the real value 140., and that value will be assigned to 
TOTAL. Table 5.3 gives some additional examples in which this rule is applied. 

In looking at the illustrations in this table, note in particular the behavior of example 
( d): The expression calls for the division of two integer values, i.e., 23 divided by 8. The 
result, then, will be converted to real since its final destination is the real variable RATIO. 

Even though RATIO is perfectly capable of accommodating a number with a fraction, the 
value that ends up there (a 2.) has no fraction. Unfair, you say? But true nonetheless. 

Table 5.3 Conversion Rules in FORTRAN Expression 

A = 12, B = 6., C = 3., D = 4., E = 2., F = 0., RATIO 0. 

Il = 10, J = 2, K = 0 
Dl = 4.DO, 02 = 24.DO, 03 = 6.000, 04 = 0.000 

Assignment Statement 

(a) K = J*Il 
(b) K = D*EIB 

(c) K = Dl + 02 
(d) RATIO = 231 (11 - J) 

(e) F = CIA 

(f) F = Dl - 02 

(g) 04 = Dl - 02 

(h) 04 231 ( I1 J) 

(i) D4 = CID 

Result 

A value of 20 is stored in K. 

A value of 1 is stored ink. 
A value of 28 is stored in K. 

A value of 2, is stored in RATIO. 
A value of o. 25 is stored in F. 

A value of 20 is stored in F. 

A value of -2.0D + 1 is stored in D4. 

A value of 2. ODO is stored in 04. 

A value of 7. 50 - 1 is stored in 04. 
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Inside the computer, integers and real arithmetic are two separate and different proc­
esses, each involving its own electronic logic. Thus, when an arithmetic operation (like 
addition) is performed on two integers, the result automatically is an integer. Real 
operations produce real results. Accordingly, the type of arithmetic can have a consider­
able effect on the results when it comes to division. Since division of one integer by 
another can produce results with fractions, it is quite "normal" for such divisions to 
produce results that are incorrect. For example, division of 6 by 8 produces O while 
division of 6. by 8. produces the expected value of O. 750. 

Sometimes there are situations where this behavior is useful and programmers will 
specify integer division intentionally. However, this can be used to advantage only after 
the programmer is familiar enough with computer arithmetic to know exactly what is 
going on. In general, it is a good idea to do almost all computing with real values, 
restricting the use of integer arithmetic to simple counting and adding/subtracting. 

5.1.3 Rules for Conversion in Assignment Operations 

When FORTRAN performs conversions between a computed result and its representa­
tion in a specified destination, there is no guarantee that the correct result always will be 
produced. Consequently, the programmer needs to know how FORTRAN will behave in 
a particular set of circumstances so that he or she can know when intervention is 
necessary. A detailed summary of these rules for HP FOR TRAN 77 is given in Table 5 .4. 

Now that we are aware of this automatic conversion process and how it can affect the 
final result, we are ready to look a little more closely at the way FORTRAN handles the 
actual computations when it evaluates an expression. This is treated in the next section. 

Table 5.4 HP FORTRAN 77's Rules for Conversion in Assignment Operations 
Integer*2 = Integer for HP1000, Short Integer for HP9000; 

Integer*4 = Double Integer for HP1000, Integer for HP9000; 
Rea1*4 = Real; Rea1*8 =Double Precision 

Type of Destination 

Integer*2 
Integer* 

Integer*2 
Integer*2 
Integer*4 
Integer*4 
Integer*4 
Integer*4 
Real*4 
Real*4 
Real*4 

Real*4 
Real*8 
Real*8 
Real*8 
Real*8 

Type of Computed Value 

Integer*2 
Integer*4 

Real*4 
Real*8 
Integer*4 
Integer*2 
Real*4 
Real*8 
Real*4 
Integer*2 
Integer*4 

Real*8 
Real*8 
Integer*2 
Integer*4 
Real*4 

Conversion Rule 

No conversion 
Truncate to integer*2; assigned 

value probably is incorrect. 
Truncate to integer*2 
Truncate, convert to integer*2 
No conversion 
Expand to Integer*4 
Truncate and convert to integer*4 
Truncate and convert to integer*4 
No conversion 
Convert to real*4 
Convert to real*4; converted value 

probably is incorrect since the preci­
sion available in an integer*4 
value exceeds that available in a 
real*4 

Round to real*4 
No conversion 
Convert to Real*8 
Convert to Real* 8 
Expand to Real* 8 
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5.2 HOWCOM­
PUTATIONS 

ARE 
PERFORMED 

COMPUTATIONS 

Back in the first chapter it was pointed out that most computers are built to perform 
simple arithmetic operations, one at a time. Since we can write an arithmetic expression in 
FORTRAN that is just about as long and complicated as we care to make it, there must be 
some definite rules built into FORTRAN that regulate the way it handles such expres­
sions. The rules are never violated. If they were, it would be impossible to know what will 
happen from one time to the next. Consequently, by learning these rules, which are 
standardized for all FORTRAN 77 systems, we can control the computations and avoid 
surprises. 

5.2.1 Arithmetic Involving Different Types of Data 

The previous section brought to light the need for FORTRAN to do some automatic data 
conversion in order to send the right type of numerical value for its intended destination. 
As part of that discussion, we took note of the fact that, in a computer, integer and real 
arithmetic are two different processes. Each of these requires all of the data to be in the 
right form (all integers for integer arithmetic, all real values for real arithmetic). Conse­
quently, when we write a FORTRAN expression, for example, in which we specify a real 
value to be added to an integer, it is impossible for the computer to do this. Again, 
FORTRAN must step in and make everything nice. Making everything nice consists of 
converting one of the values so that its type matches that of the other. But which one? 
That is where the rules come in. 

5.2.1.1 Conversion Rules for+,-,*, I Table 5.5 shows the conversions that auto­
matically take place when +, - , *, or I is specified for two different types of operands. We 
can see how these rules work by applying them to a few simple situations. To set things up, 
we shall make the following declarations: 

REAL*4 Rl,R2 
INTEGER*2 Il,12 
INTEGER*4 Kl,K2 
REAL*8 D2 

Table 5.5 Conversion of Operands for +, - , *, I 
Integer*2 = Integer for HP1000, Short Integer for HP9000; 

Integer*4 = Double Integer for HP1000, Integer for HP9000; 
Rea1*4 = Real; Rea1*8 = Double Precision 

If the two operands are 

Rea1*4 and Rea1*4 (t) 
Integer*2 and Integer*2 
Integer*4andinteger*4 
Real* 8 and Real* 8 
Real *4 and Integer*2 

Real *4 and Integer*4 

Integer*2 and Real*8 

Integer*4 and Real*8 

FORTRAN will take the following action: 

None 
None 
None 
None 
The integer operand is converted to real before the arith­

metic is done. 
The integer*4 operand is converted to real*4 

before the arithmetic is done. 
The real *4 operand is converted to real* 8 

before the arithmetic is done. 
The integer operand is converted to real *8 prior to 

arithmetic. 
The integer*4 operand is converted to real*B prior to 

arithmetic. 

t Real and Real, for example, could mean Real +Real, Real -Real, ReahReal, or Real /Real. 
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Now, assuming that values are available for all the variables, we can examine some of 
these rules. 

1. Rl =K2+Il 
I l's value is converted to double integer, added to K2, and the result (converted 
to real) is stored in Rl. 

2. Rl =R2+Il 
I l's value is converted to real, added to R2, and the result (real) is stored in Rl. 

3. 12 =R2+Il 
I l's value is converted to real and added to R2; the result (real) is converted to 
integer (any fraction is lost) and the integer value is stored in I 2. 

4. Il =D2+Kl 
Kl 's value is converted to double precision and added to D2. The result (con­

verted to integer) is stored in I 1. LE; Rl = R2+D2 R2 's value is converted to 
double precision and added to D2. The double precision result is converted to 
single precision (real) and stored in Rl. 

5. Il =D2+I2 
I 2 is converted to double precision and added to D2. The double precision result 
is converted to integer and stored in I 1. 

5.2. 1.2 Conversion Rules for Exponentiation Exponentiation is a special operation 
because it is much more complicated than the other four binary arithmetic operations. In 
almost all computers, addition, subtraction, multiplication, and division are actual in­
structions built into the hardware. This is not the case with exponentiation. Even though 
we can specify it as a single activity, FORTRAN has to build quite a complicated 
sequence of operations to produce the desired result. In order to make sure that this 
process works properly every time, exponentiation has its own set of conversion rules. 

Table 5.6 Conversion of Operands for * * 

If the Expression is FORTRAN takes the following action: 

Integer*2**Integer*2 
Integer*4**Integer*4 
Integer*4**Integer*2 
Integer*2**Integer*4 

Real*4**Real*4 
Real*4**Integer*2 
Real*4**Integer*4 
Integer*2**Real*4 

Real*8**Real*8 
Real*8**Integer*2 
Real*8**Integer*4 
Real*8**Real*4 

Real*4**Real*8 

None 
None 
None 
The integer*2 is converted to integer*4 and then 

raised to the integer*4 power. 
None 
None 
None 
The integer*2 is converted to rea1*4 and then raised to 

the real power 
The integer*4 is converted to real *4 and then raised to 

the real*4 power 
None 
None 
None 
The real*4 value (the exponent) converted to rea1*8 and 

then the exponentiation is performed. 
The integer*2 is converted to rea1*8 and then raised to 

a real* 8 power. 
The integer*4 is converted to real*B and then raised to 

a real* 8 power. 
The real*4 operand is converted to real*B and then 

raised to a real*B power. 
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These are summarized in Table 5.6. To illustrate, 

1. 2 * * 4 requires no conversion 
2. 2 ** 3. 5 isperformedas2. ** 3. 5 
3. 2 . 6 * * 3 requires no conversion 

4. 3 ** 2. 6D-l is performed as 3. ODO** 2. 6D-l 

5.2.2 Priorities in Arithmetic Expressions Now we shall examine what happens 
when FORTRAN is faced with an expression containing several operations. Regardless 
of whether or not any conversion is needed before a particular operation is performed, 
there are carefully defined rules that govern FORTRAN's behavior. As is the case with 
conversions, there are separate rules for exponentiation. 

5.2.2.1 Priorities for +, -, •, I If an arithmetic expression contains no exponenti­
ation, FORTRAN performs the operations in the following order: 

1. Multiplication and Division 
2. Addition, Subtraction, Identity, Negation 

FORTRAN will go through the expression from left to right, doing any multiplications 
and divisions it finds. Then, it will go back and take care of the remaining operations. A 
few examples will illustrate exactly how this works. To avoid unnecessary complications, 
we shall assume that all the variables and constants are real. 

1. Y=A+BIC-D 

1. perform BI C (call the result Tl just to call it something) 

2. perform A+Tl (call the result T2) 

3. perform T2-D (call the result T3) 

4. store T3 in Y 

2. Y=A+BIC *DIE 

1. perform BIC (call the result Tl) 

2. perform Tl*D (call the result T2) 

3. perform T2 IE (call the result T3) 

4. perform A+T3 (call the result T4) 

5. store T4 in Y 

3. Y=-A+B*D*CIE*F-2. *G 

1. perform B*D (call the result Tl) 

2. perform Tl *C (call the result T2) 

3. perform T2 IE (call the result T3) 

4. perform T3*F (call the result T4) 

5. perform 2. *G (call the result T5) 

6. perform -A (call the result T6) 

7. perform T6+T4 (call the result T7) 

8. perform T7-T5 (call the result TS) 

9. store TS in Y 

5.2.2.2 Expressions with Exponentiation Exponentiation is done ahead of the other 
arithmetic operations. We shall illustrate: 

1. Y=A+B ** GIC*DIE **G 
1. raise B to the Gth power (call the result Tl) 
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2. raise E to the Gth power (call the result T2) 
3. perform Tl*D (call the result T3) 
4. perform T3*D (call the result T4) 
5. perform T4/T2 (call the result T5) 
6. perform A+T5 (call the result T6) 
7. store T6 in Y 

2. When there are two or more exponentiations in succession, FORTRAN handles 
them from right to left. Let us see what this means: 

Y=A**B**C 
1. raise B to the Cth power (call the result Tl) 
2. raise A to the Tl th power (call the result T2) 
3. store T2 in Y 

If in the above example A is 4. , B is 2. , and C is 3., then we can restate the sequence in 
terms of actual values: 

4. Tl = 2. * * 3 = 8. 
5. T2 = 4. **Tl= 4. ** 8. = 65536. O (Y will have 65536. O in it) 

Note that the result would be different if the rule went the other way: 

1. Tl= 4. ** 2. = 16. 
2. T2=16. ** 3. = 4096. (Ywould have 4096. O in it) 

Thus, because ofFORTRAN's right-to-left rule for exponentiations, the expression 

A**B**C 

gives the same result as the expression 

A** (B**C) 

As indicated in Section 5.1.1.4, the inclusion of parentheses is a good way to settle any 
doubts. 

5.2.2.3 Changing Priorities with Parentheses Now that we understand FOR­
TRAN's arithmetic priorities, we should take a second, brief look at parentheses in this 
new light: when we use parentheses in an expression, what we really are doing is forcing 
FORTRAN to upset its normal priority rules and handle the material inside the paren­
theses first, even though there may be other, higher priority operations that ought to 
come first. A simple illustration will demonstrate: Let us examine the assignment state­
ment 

Y=A * (B+c/E*F) I (D+E) 

and the same variables and operations without parentheses: 

Y=A * B+c/E*F/D+E 

Applying the rules to the second statement, we set the following sequence: 

1. perform A*B (call the result Tl) 
2. perform C/E (call the result T2) 
3. perform T2*F (call the result T3) 
4. perform T3/D (call the result T4) 
5. perform Tl +T4 (call the result T5) 
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6. perform T5+E (call the result T6) 

7. store T6 in Y 

Now, once we include the parentheses, things are different: 

1. perform C/E (call the result Sl) 

2. perform Sl*F (call the result S2) 

3. perform B+S2 (call the result S3 ; note that the regular priorities still hold inside 
each pair of parentheses) 

4. perform D+E (call the result S4) 

5. perform A*S3 (call the result S5) 

6. perform S5 I S4 (call the result S6) 

7. store S6 in Y 

By comparing the sequence that FORTRAN follows for each of these two statements, we 
can see that when we do not include parentheses, it would be the same as writing 

Y = (A*B) + (C/E) * (F /D) - E 

As was pointed out before, the use of parentheses is convenient enough so that there is 
every reason to put them in whenever there is the slightest doubt as to how FORTRAN 
will handle an expression. 

We shall look at several programs that illustrate the construction and use of assignment 
statements for handling computations. In the process of developing these programs, we 
shall introduce some simple programming techniques which help make it easier to set up 
more extensive calculations. It will be helpful for future work to take note of the fact that 
the actual computations often occupy a small part of the program's attention. In many 
instances we shall be more concerned with setting the stage for the computations and with 
convenient delivery of the results. 

Example 5.2 An equation that finds frequent use in scientific and engineering work is the polynomial, 
an example of which is shown below: 

Y = Co + c,x + C2X2 + C3X3 + c4X4 

This example shows a fourth degree polynomial, so called because the highest power to which Xis raised 
(in this particular case) is 4. In general, then, an nth degree polynomial is expressed as 

Y = Co+ C1X + C2X2 + C3X3 +···+ CnXn 

In many situations, the coefficients Co, Ci, C2, ... , Cn are available, and values of Y are required for 
corresponding values of X. The program in this example is designed to do just that for a fourth degree 
polynomial: After reading values for the coefficients Co, C1, C2, C 3, and C4, it reads a value of X and 
computes the corresponding Y. This process is repeated for each of a succession of X values. A value of 
zero is used to indicate the end of the data. 

Since there is no information about how big or how small the data values will be, we shall declare 
everything to be double precision. In this way, we make available the system's widest range of 
expression. The computation of Y is handled by a single assignment statement which, though long, is a 
direct carryover from the mathematical equation. Figure 5.3 gives a flowchart and pseudocode descrip­
tion for the program. The FORTRAN statements, along with a sample run, are shown in Figures 5.4 and 
5.5. Note that the coefficients, as well as the X values, are submitted in regular (i.e., traditional) form 
(Figure 5.5). Yet, when the program displays them, they appear as double precision numbers. This 
emphasizes the fact that values for numerical variables are stored the way they are declared. If they are 
not in the declared form when they are read in, FORTRAN will do the necessary conversion automatically. 

Example 5.3 We shall solve the same problem as in the previous example with a slightly different 
method of computation. Although Example 5.2's assignment statement is straightforward enough, it 



Reserve Storage for C0 , C 1 , C2 , C3 , C4 , X, Y 

Read and Print C0 , C1 , C2 , C3 , C4 

Read the first value for X "Define variables C0 , CI' C2 , C3 , C4 , X, and Y." 
"Read and print C

0 , CI' C
2, C

3 , and C
4
." 

Do while X f 0 

Y = C0 + C1 X + C2 X2 + C3 X3 + C4 X4 

Print X, Y 

Read the next value for X 

STOP 

(a) 

"Read the first value of X." 
while Xis not equal to zero: 

"Print X and Y." 
"Read the next value of X." 

endwhile 
"Stop." 

(b) 

FIGURE 5.3 (a) N-S Diagram for Example 5.2. 
(b) Pseudocode for Example 5.2. 

****************************************************************** 
* EXAMPLE 5.2 * 
****************************************************************** 
* CO, C1, C2, C3, AND C4 ARE THE POLYNOMIAL'S COEFFICIENTS; * 
* X IS THE VALUE FOR WHICH THE POLYNOMIAL IS TO BE EVALUATED; * 
* Y IS THE POLYNOMIAL'S VALUE FOR A GIVEN X; * 
* AN X OF ZERO ENDS THE RUN. * 
****************************************************************** 

PROGRAM 
IMPLICIT 
REAL*B 

EX502 
NONE 
CO,C1 ,C2,C3,C4,X,Y 

****************************************************************** 
* WE SHALL START THE PROCESS BY READING THE COFFICIENTS AND THE * 
* VALUE OF X. * 
****************************************************************** 

PRINT *, 
READ *, 
PRINT *, 
READ *, 

'ENTER THE COFFICIENT VALUES.' 
CO, C1, C2, C3, C4 
'NOW ENTER THE FIRST VALUE FOR X.' 
x 

DO WHILE (X .NE. O.ODO) 
Y = CO + C1*X + C2*X**2 + C3*X**3 + C4*X**4 
PRINT *, 'X = : ' , X, 'Y = : ' , Y 
PRINT*, 'ENTER THE NEXT VALUE FOR X.' 
READ (*,END=99) X 

END DO 

99 PRINT*, 'RUN COMPLETED.' 
STOP 
END 

FIGURE 5.4 FORTRAN Statements for Example 5.2. 93 
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0.10000000000000000 01 
0.10000000000000000 01 
0.10000000000000000 01 
0.40000000000000000 01 

0.20000000000000000 01 

0.90000000000000000 01 
0.44100000000000000 03 
0.49000000000000020 02 
0.49000000000000000 02 

0.30000000000000000 01 0.20000000000000000 

-0.30000000000000000 01 
0.20000000000000000 01 

FIGURE 5.5 Sample Run for Example 5.2. 

uses exponentiation. As pointed out earlier, this sets in motion a rather involved set of operations. In this 
instance we can avoid them because all of the powers of X are integers. If we wanted to raise X to a power 
with a fraction in it, like 3.72, we would have to use exponentiation; but since the polynomial makes no 
such demands, we can get the same result without forcing the system to do nearly as much computation. 
To see how this is done, we shall restate the original equation: 

Y =Co+ C1X + C2X2 + CaX3 + C4X4 

Note that the last four terms have X as a common factor. By taking that X out, we can rewrite the equation 

as 

****************************************************************** 

* EXAMPLE 5.3 * 
****************************************************************** 
* CO, C1, C2, C3, AND C4 ARE THE POLYNOMIAL'S COEFFICIENTS; * 
* X IS THE VALUE AT WHICH THE POLYNOMIAL IS TO BE EVALUATED; * 
* Y IS THE POLYNOMIAL'S VALUE AT A GIVEN X. HORNER'S METHOD IS * 
* USED FOR EVALUATION. AN X OF ZERO ENDS THE RUN. * 
****************************************************************** 

PROGRAM 
IMPLICIT 
REAL*8 

EX503 
NONE 
CO, C1, C2, C3, C4, X, Y 

****************************************************************** 
* WE SHALL START THE PROCESS BY READING THE COEFFICIENTS AND * 
* THE FIRST VALUE FOR X. * 
****************************************************************** 

PRINT *, 
READ *, 
PRINT *, 
READ *, 

'ENTER THE VALUES FOR THE COEFFICIENTS' 
CO, C1, C2, C3, C4 
'ENTER THE FIRST VALUE FOR X.' 
x 

DO WHILE (X .NE. O.ODO) 
Y =CO+ X*(C1 + X*(C2 + X*(C3 + X*(C4)))) 
PRINT *, X, Y 
PRINT *, 'ENTER THE NEXT VALUE FOR X' 
READ (*,END=99) X 

END DO 

99 PRINT*, 'RUN COMPLETED.' 
STOP 
END 

FIGURE 5.6 FORTRAN Statements for Example 5.3. 
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Now, the last three terms inside the parentheses have X as a common factor, and we can do the same 
thing to those three terms: 

Y = Co + X(C1 + X(C2 + CJX + C4X2)) 

Since we have something good going here, there is no reason to quit until we must. Clearly, we can take X 
out as a common factor one more time: 

Y = Co + X(C + X(C2 + X(CJ + CX))) 

This way of expressing a polynomial is called Homer's method, an approach especially well suited for 
automatic computation. Now, since there is no change in the overall structure of the program, Figure 5.3 
still describes its flow and Figure 5.6 shows the revised version, with the new assignment statement: 

Y=CO+X* (Cl+X* (C2+X* (C3+X*C4))) 

This is just one of an endless number of instances in which it pays to do some thinking about a 
computational method rather than following a "brute force" approach. Thus, Example 5.3 takes advan­
tage of the fact that the full strength (and complexity) of exponentiation is not needed to attend to the 
relatively simple requirements of the polynomial. 

Example 5.4 This time we shall look at a problem involving more complex computations. When 
engineers analyze the transfer of heat in various fluids, an important measure of such transfer is 
something called the convective heat transfer coefficient. This quantity, called H, depends on a variety of 
physical properties and operating conditions in the system being analyzed. For certain situations, H can be 
computed as follows: 

where the variables have the following meanings: 

H = the convective heat transfer coefficient 

D = the diameter of the pipe carrying the fluid 

V = the velocity of the fluid traveling through the pipe 

R =the density of the fluid traveling through the pipe 

U =the viscosity of the fluid traveling through the pipe 

C =the specific heat of the fluid 

K =the conductivity of the fluid 

The value 0.023 is sometimes known as the D-B constant. For many situations, the size of the pipe and 
type of fluid are selected so that the fluid's properties (R, U, C, and K) are defined. Thus, what is required 
is a set of H values at various velocities. 

Accordingly, we shall write a program whose input consists of two basic types of data: 

1. A description of the system (D, R, U, C, K) 

2. The velocities of interest, expressed as a minimum (Vl) and a maximum (V2). 

The two input velocities will be integer values, expressed as real numbers. The values of H will be 
computed over the indicated range at intervals of one velocity unit. That is, the first value of H will be 
computed for Vl, the next one for Vl +l. O, the next for Vl +2. o, and so on, all the way up to v2-2. o, 
V2-1. o, and finallyv2. 

The flow diagram and pseudocode, shown in Figure 5.7, are carried over directly in the FORTRAN 
statements of Figure 5.8. This is a clear demonstration of FORTRAN's computational powers, since the 
involved formula still can be represented by a single assignment statement, and the overall program 
remains quite simple. 

When a set of numerical computations becomes extensive, no good purpose is served 
by specifying all of the work in a single assignment statement. Even though it is possible to 
do so, it often is a better practice to break up the calculations into smaller pieces, each one 
of which is handled by a separate statement. The result of each partial group of computa-
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Reserve Storage for V, D, R, U, C, K, Vl, V2, H, DBCON 

Read D, R, U, C, K 
Read Vl, V2 
Print D, R, U, C, K, Vl, V2 

DO for velocity (V) from Vl to V2 

H = (~) (DV) .8 
(DBCON) R (ui) .4 

Print V, H 

STOP 

(a) 

"Define variables V, D, R, U, C, K, VI, V2, H, DBCON." 
"Read D,R,U,C.K." 
"Read Vl,V2." 
"Print D. R, U, C. K, VI, V2." 
do for all values of V from VI. VI + I, etc. to V2." 

( 
K) ( DUVR) o.s ( UKC) o.4." "Compute H = 0.023 0 

"Print V and H." 
enddo 
"Stop." 

(b) 

FIGURE 5. 7 (a) Structured Flowchart for Example 5.4. 
(b) Pseudocode for Example 5.4. 

****************************************************************** 

* EXAMPLE 5.4 * 
****************************************************************** 
* THIS EXAMPLE ILLUSTRATES THE USE OF A DO LOOP FOR THE SYSTEMA-* 
* TIC PRODUCTION OF A TABLE OF NUMERICAL VALUES. IN THIS CASE, * 
* WE SHALL DEVELOP A TABLE OF H VALUES FOR A GIVEN SET OF VALUES* 
* FOR DIAMETER (D), DENSITY (R), VISCOSITY (U), CONDUCTIVITY (K)* 
* AND SPECIFIC HEAT (C). THE VALUES WILL BE DEVELOPED FOR A * 
* RANGE OF VELOCITIES V1 TO V2 IN INCREMENTS OF 1 . * 
****************************************************************** 

PROGRAM 
IMPLICIT 
REAL*4 
PARAMETER 

PRINT *' 
READ *' 
PRINT *' 
READ *' 
PRINT *' 

EX504 
NONE 
V,D,R,U,C,K,V1,V2,H 
(DBCON = 0.023) 

'ENTER THE SET OF VALUES 
D, R, u, C, K 

FOR 

'NOW ENTER THE VALUES FOR V1 
V1 , V2 
D, R, u, C, K, V1 , V2 

D,R,U,C, AND K. , 

AND V2. 
, 

****************************************************************** 
* HERE IS OUR LOOP. THE 1 .0 IN THE DO STATEMENT INDICATES THAT * 
* V WILL BE INCREASED BY 1 .O BEFORE THE BEGINNING OF EACH CYCLE * 
****************************************************************** 

* 

DO V = V1, V2, 1.0 
H = DBCON * (KID) * (D*V*R/U)•*0.8 * (U*C/K)**0.4 
PRINT * , 'V = ' , V, 'H = ' , H 

END DO 

STOP 
END 

FIGURE 5.8 FORTRAN Statements for Example 5.4. 
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****************************************************************** 

* EXAMPLE 5.4 (REVISED) * 
****************************************************************** 
* THE ONLY DIFFERENCE BETWEEN THIS EXAMPLE AND THE PREVIOUS ONE * 
* IS THAT WE INTRODUCE TWO INTERMEDIATE VARIABLES (RE AND PR) * 
* FOR TEMPORARY STORAGE OF PARTIAL COMPUTATIONS. THIS CAN MAKE * 
* THE PRESENTATION OF THE COMPUTATIONS EASIER TO FOLLOW SINCE * 
* EACH ASSIGNMENT STATEMENT IS SIMPLER. * 
****************************************************************** 

PROGRAM 
IMPLICIT 
REAL*4 
PARAMETER 

EX504A 
NONE 
V,D,R,U,C,K,V1,V2,H,RE,PR 
(DBCON = 0.023) 

PRINT *, 'ENTER THE VALUES FOR D, R, U, C, K, VI, AND V2' 
READ *, D, R, U, C, K, Vl, V2 
PRINT *, D, R, U, C, K, Vl, V2 

DOV= Vl, V2, 1.0 
RE= (D*V*R/U)**0.8 
PR= (U*C/K***0.4 
H = DBCON *(K/D) *RE* PR 
PRINT *' 'V = I' v' 'H = I' H 

END DO 

STOP 
END 

FIGURE 5.9 FORTRAN Statements for Revised Example 5.4. 

tions is stored in a temporary variable declared for that purpose. Then, the final step uses 
these temporary variables in a simple statement that produces the desired result. This 
type of separation makes it much easier for someone reading the program to follow the 
exact sequence of the calculations so that they can be checked for correctness. Just when 
this needs to be ·done, and how the breakup should occur, are matters of judgment. 
However, there should be no hesitation in doing this: There is no particular penalty in 
terms of efficiency, and there is much to be gained in keeping the program as clear as 
possible. 

A second version of Example 5 .4 (Figure 5. 9) illustrates the idea. In this instance H is 
computed as a three-step process. First, temporary variables RE and PR are computed and 
stored, after which the final production of H involves simple multiplication. Of course, 
the advantages of doing this become more dramatic with more extensive computations. 

In order to guarantee consistency, FORTRAN performs its arithmetic in accordance with s.4 SUMMARY 

a set of rules: 

1. There are four basic types of arithmetic: integer arithmetic, which involves only 
integer values and produces integer results; double integer arithmetic, which produces 
double integer results using double integer components; real arithmetic, involving only 
real values and producing real results; and double precision arithmetic, dealing only with 
double precision numbers. When a FORTRAN expression calls for arithmetic involving 
mixed data types, FORTRAN will convert automatically so that the values are of the 
same numerical type. This makes it possible to perform the arithmetic. 
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2. After FORTRAN finishes doing the arithmetic specified in an expression, it will 

convert the result, if necessary, so that it matches the numerical data type declared for the 
variable in which that result is to be stored. 

3. When an expression specifies more than one arithmetic operation, FORTRAN 
repeatedly works through the expression from left to right. It does exponentiation first, 
then multiplications and divisions, and then additions and subtractions. 

4. If an expression contains more than one exponentiation in succession, FOR­
TRAN handles the exponentiation from right to left. 

5. Parentheses will force a change in arithmetic priorities. FORTRAN will do the 
arithmetic specified inside parentheses separately, treating the parenthesized contents as 
a separate expression. When a result for that expression has been produced, FORTRAN 
moves on to the rest of the larger expression. 

6. When FORTRAN divides an integer by another integer, the result is an integer 
value with any fractional part having been truncated. (For instance, 24/25 produces a 
result of zero.) The same holds true for double integer division. 

1. For each of the following assignment statements: 

1. Rewrite the statement as a conventional equation. 

2. Specify the number of operators and operands and list them. 

3. Indicate the value in real variable OUTCOME as a result of the specified computations. Assume the 

following values in each computation: 

XVAL=40.0 YVAL=4.0 ZVAL=6.0 WRT=2.5 

(a) OUTCOME=XVAL+YVAL+ZVAL 

(b) OUTCOME=XVAL*YVAL*ZVAL+WRT*YVAL 

( c) OUTCOME=XV AL/YV AL+YV AL/XV ALHWRT 

(d) OUTCOME=XVAL*YVAL/ZVAL+WRT*ZVAL/YVAL 

(e) OUTCOME=XVAL**2+YVAL**3-ZVAL/WRT 

(0 OUTCOME=XVAL**2*YVAL**ZVAL**2/WRT 

(g) OUTCOME=YVAL*ZVAL**2/XVAL-4*WRT 

(h) OUTCOME=XVAL/YVAL**2/ZVAL+WRT**4+YVAL**0.5 

2. Write FORTRAN assignment statements for each of the following computations: 

(a) Z = XY + TW 

X 3 T 
(c) z = Y2 - w 2 - 2.2w 

(b) Z = X2Y2 + .!_ w 

(0 z = -1;.:·8 

+ ~~ - 3.2X-7 

4 
(h) Z = - 7TR3 

3 

3. Write FORTRAN assignment statements for each of the following computations: 

(a) Z = X- y 
X+Y 

(c) Z =xv+ YW 
x+w2 

() z- X Y XY 
e -Y+6-X+6+XW-T 

y 
(g) Z = 3.88E3 - X+T 

(b) Z = X 2 + _Y_ 
T+W 

(d) Z = 4.42XY-2 + ~~ 

(O z = X + 2.7Y2-36W + 41.71'4 
Y-71.7X2 + W 

(h) z = x - 2.1 y 
w-_! x2 



( 1
.) z X2·2 + 2.2Y 

= W T 
Y + X+7 

(k) Z = X(2 + Y) 

(m)z = 2.sx - (~r 

(o) Z = X + (~)·
1 

+ 3.6(X + Y)i.2 

4-W 

(x + W2) 
(") z = y x 
J y.s X 

W+l + Y 

1 
(1) z = X(2 + Y) 

<n> z =(~rs (~r6 

yi.1 

-2 

( ) z = (X + Y)(Y - 2.6W) 
p (W+Y)2 

PROBLEMS 

1 ----
- ((X + 3Yf(W - l.lXY)T x ) 2w 

1 1 ax2 

() z = (X + 2.lY) i.
7 

(2X(3W - 7.4)) 
r W _ _I_ T + W - 2Y 

x2 
(

x)2w-1 
(q) z = y 

(s) z - (1 + Y2)(3W(X2 + 4T)) 

4. For each of the statements given below: 
1. Rewrite the statement as a conventional algebraic equation. 
2. Using the following values: 

X=2.0 Y=l.5 T=0.6 W=0.4 

show the value of Z resulting from each of the specified computations. Write z in floating point 
notation using six decimal places. 

(a) Z = X*Y /T*W 
(b) Z=X*Y/2*T-W 
(c) Z =-2*X**2 
(d) Z=X* (Y/W) 
(e) Z=X* (Y/W) 
(f) Z = (X+2. 8*Y) I (W-2. 8*X) 
(g) Z=X+Y* (W+T* (S6*X)) 
(h) Z = (Y* (X/W) ) ** (T+l) 
(i) Z= (6. 4+7. l*X-2. 2E4*X**2+0. 6E2*X**3) **2 
(j) Z = (2. 8+Y+X**2+2. 1* (Y-7. 7) **l. 1) **O. 8/ (X+O. 8*W) 

5. Using the approach illustrated in Figure 5. 9, rewrite each of the statements in the following problems as an 
equivalent sequence of several statements, each of which specifies part of the computations. As a rough 
guideline, assume that an expression should not include more than three operators. Use Tl, T2, T3, etc. 
as names for intermediate variables that you may need. A possible breakdown of the statement in 
Problem 4(f) is shown as an additional illustration: 

Tl=X+2. 8*Y 
T2=W-2. 8*X 

Z=Tl/T2 

(a) Problem 4(g) 
(b) Problem 4(h) 
( c) Problem 4(i) 
( d) Problem 4(j) 

6. Assuming that variables X, Y, Z, W, and Tall are declared as real variables and have values assigned to 
them, indicate which of the following statements are illegal. Describe what is wrong with the illegal ones: 

(a) Y=Y+X+W 
(c) Z=X+YW 
(e) Z=X+Y/(W+Z) 
(g) (Y) = (W+4) I (Y** (2-X)) 
(i) Y=X* (2+3. 8*W* (Z-7) **2 
(k) X= (3+X) * (8-Y**2) 

(b) 6.3=2.B*X-17.4 
(d) Z-4 = (X+Y) /3 
(f) X = X+Y (Z-2W) 
(h) T = (THX-Y) I (W+X) 
(j) W = 2 * X ** 2 + Y* *2 
(1) Z= ( (X+Y) * (Z-W)) /4. 4*T**2+X-) 

99 



100 COMPUTATIONS 

7. Suppose we have the following sequence of statements: 

REAL*8 DVAL1,DVAL2,DVAL3 

REAL*4 RVAL1,RVAL2,RVAL3 

INTEGER*2 IVAL1,IVAL2,IVAL3 

INTEGER*4 FVAL1,FVAL2,FVAL3 

PARAMETER (RPAR=6. 0, DPAR=2. 401, IPAR=-4) 

DATA DVAL1,DVAL2,DVAL3,RVAL1,IVAL1,IVAL2,FVAL1/2.0,3.0,1.0,4.0,l0,8,5/ 

RVAL2 =-1. 0 
IVAL3 =-2 

For each statement given below: 
1. Specify the data type for the computed result. 
2. Specify the data type for the stored result. 
3. Show what the computed value is, using six and fourteen decimal places, respectively, for real and 

double precision results. Treat each statement independently of the others: 

(a) RVAL3 = 2. O* (RVAL1-RVAL2) **2 
(b) RVAL2=RVAL2+( (RVALl-8. 8) I (RVALl+RPAR)) I (8. O*RPAR) 

(c) RVAL3 =!PAR* (IVAL1+3*FVAL1) **2 
(d) RVALl =!PAR/ (4+IPAR* (IVAL1-IVAL2)) 

(e) RVAL3 = DVALl* (CVAL2-3. OD-1*DPAR) 

(f) RVALl = (DVAL1+3. DO*DVAL2-DPAR) I (DVAL2/ (2. O+DPAR)) 

(g) RVAL1=2*RVAL1 + (IVAL1-RVAL2) *FVALl 

(h) RVAL2 =!PAR + (RVAL2+RVAL1) + 4. 4* (IVAL3/ (IVAL2+RPAR)) 

(i) RVALl =DVAL1*RVAL2-DVAL2*RVAL1 
(j) RVAL3 = (RPAR-RVAL2*3. 6) I (DPAR+l. 6) ** (RPAR/2. 0) 

(k) RVAL2 = IVAL3 * (DPAR-IVAL2) + (IVALl/DVALl) **2 

(1) RVAL3 =DPAR* (IVAL1+IVAL2) I (DVAL1*DVAL2-IPAR) 

(m) RVALl = IPAR*FVAL1* (DVAL1+4) * (RVAL2) /4. 0 

(n) RVALl = IPAR*RVALl+ (IVAL1-IVAL2) * (DVAL1+5. 4) I (DVAL1-RVAL2) 

8. Using the same statements as in the previous problem, apply the instructions given in that problem to each 
of the following statements: 

(a) IVAL3 = 2* (IVAL1+IVAL2)-IPAR 

(b) IVAL3 = IVAL3- (IVAL1+IVAL2) I (2*IPAR) **2 

(c) IVALl =RVAL1* (RPAR+RVAL2/RVAL2) 

(d) IVAL2 = ( (3. 6+RVAL1) * (RVAL2-5. 4)) ** (RPAR-4. O*RVALl) 

(e) IVALl =DPAR+FVALl-2. ODl*DVALl 
(f) IVAL3 = 2. 402 - (DVAL1+DVAL2) * (DPAR/5. OD-2) 

(g) FVAL2 = IVALl * (RPAR-1) * (IVAL2+RVAL2) 

(h) IVALl = (IVALl/ (IVALl-5)) * (RVAL2/IPAR) **-2-RPAR/ (2. O*RVALl) 

(i) IVAL3 = IVAL1+DPAR*IVAL2/ (DVALl+FVALl) 
(j) FVAL3 = (DVAL1+DVAL2+FVAL1) ** IVAL3 + (2. 0Dl+IVAL3) I (DVAL2-IPAR) 

(k) IV AL2=RV ALl + DPAR * (RV AL2-DV AL2) 

(1) IVAL2= (RPAR-RVAL2*3. 600) I (DPAR+l. 6) ** (3. O*RVALl) 

(m) IVAL3 =!PAR* (RVALl-DAPR) I IVALl 

(n) IVALl =RPAR * (IVAL1+IVAL2+DPAR) I (1. 2*IVAL2+IPAR/2) 

9. Apply the instructions given in Problem 7 to each of the following statements. Use the same values given 
in Problem 7: 

(a) DVAL3 =DPAR*DPAR* (DVALl-2. DO*DVAL2) 
(b) DVAL2 =DVAL2 + (DPAR/ (DVAL1+DVAL2/6. D-1)) 

(c) DVAL3 =RPAR* (RVAL1+2. 6*RVAL2) 
(d) DVAL3 = (RVAL1+RVAL2+RPAR) **l. 1/ (3. 6*RVAL1-RVAL2) 
(e) DVAL2 = (IVALl+FVALl) /IVAL2 + 3*IVAL2 

(f) DVAL3 = IPAR**2* (IVAL1/IVAL2+IVAL1/IPAR) /!PAR* (4*IVAL2/IVAL1)) 

(g) DVALl =DPAR+ (IPAR*DVALl) 
(h) DVAL3 = (DVAL1*IVAL1) ** (IVAL2/IPAR) I (DVAL2+IVAL1/IPAR) 

(i) DV ALl = DV ALl +RV ALl /DV ALl 



(j) DVAL2 =RVAL2* (DVALl+ (RVALl-3. ODO) **l. 2) 
(k) DVAL3 =RVAL1* (IPAR+2*RVAL2) /IVALl) 
(I) DVAL3 = (IVAL1/IVAL2) **RVALl + (RVAL2/RVAL1) **IPAR 
(m) DVAL2 = IVALl + 3* (RVALl+DPAR) 
(n) DVAL3 = (DVALl/ (. 25*IVAL1+RVAL1)) ** (RVAL2*IPAR-RVAL1) 

PROBLEMS 

10. Show the sequence of operations that FORTRAN will follow in producing a result for each of the 
following arithmetic assignment statements. Do not include data conversions. Use Tl, T2, T3, etc. as 
names for places where any intermediate results may be stored temporarily: 

(a) R=A+B/C-2 *D 
(b) T= (A+B) /C-2*D 
(c) R=A+2.2*B/C*D 
(d) S=A+3. 8*B/C*3*D 
(e) T=X-4*B/ (C+5) *D 
(f) V=W * (A-B) /C-3*0 
(g) Y= (A+W) * (B+c*D) I (B+W) * (A*C-D) 
(h) z = (A+W) * (B*C+D) I ( (B+W) * (A*C-D)) 
(i) R=X+ (Y*Z*W) * (2* (X-Z*W) +W* (X+2*Z)) I ( (X+Z) I (W+Y)) 
(j) S= (X-4*B) **2/ (C*5) *D**2 
(k) T= ( (X+Y**2) I (Z**3-3. 6*S)) **l. 8 
(I) Z= (A*B**C**X+3. l*B*X**D**Y) **O. 36 

11. Modify either Example 5.4 or 5.4A so that the output appears in printed form on the standard system 
output unit rather than on the user's terminal. NOTE: Direction of the output to this destination is 
handled by the statement 

PRINT * , list of output variables 

12. If a certain amount of money PRINCIPAL is invested at an annual interest rate of INVRATE, and the 
interest is reinvested along with the original amount, the resulting process is called compounding. That is, 
the interest earns interest and the money grows faster than it would without compounding. At the end of 
MUMOFYRS years, the total amount TOTAL.AMT can be computed by the formula 

TTLAMT = PRINC ( 1 + INTRST) NUMYRS 

For example, if we invest $1000.00 at an annual interest rate of 11.5% (i.e., 0.115), the thousand dollars 
will have grown in three years to 

1000(1 + 0.115)3 

or $1386.19. Using this formula, write a program that reads and processes any number of input sets, with 
each set consisting of values for PRINCIPAL, INVRATE, and NUMOFYRS (NUMOFYRS is an integer). For 
each set, the program is to display a line of output showing the input values and the computed value for 
TOTAL.AMT. The run is stopped by a PRINCIPAL value ofO.O. 

13. Using the formula given in Problem 12, write a program that reads PRINCIPAL, INVRATE, and 
NUMOFYRS as before. After printing an echo of the input, the program prints (displays) a little table in 
which it shows the value of TOTAL.AMT after one year, two years, three years, etc., up to and including 
NUMOFYRS. Each pair of output values (the number of years and the TOTAL.AMT value after that many 
years) is to appear on a separate line. Leave two blank lines between input sets and stop the run with a 
PRINCIPAL value of zero. 

14. AN AMERICANTRADmON: 
In many areas of our Great Land, it is now a misdemeanor to publish, sell, lease, or otherwise distribute a 
book, leaflet, videotape or other material dealing with or claiming to deal with programming if that 
material does not include the Indian Problem at least once. So here it is: 

Though most of us were not present at the sale, we have it on good authority that, in 1624, the Canarsie 
Indians struck a deal with a group of Dutch settlers. In exchange for $24.00 worth of trendy costume 
jewelry and pretty good theatrical accessories, the smiling Canarsies unloaded Manhattan Island, a 
trouble spot for as long as anyone could remember. Hours later, the merchandise had already been 
converted to cash, and the money was socked away in the Arrowroot Fund at an annual interest rate of 
6%. And there it has sat. Meanwhile, the Canarsies' descendants have been busy with other matters, so 
that each year the Council resolves to Get Around To It at their Next Meeting. 
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To strengthen their resolve, write a program that reads a single integer value NOW, representing the 
current year. Using that value and the year of the sale (1624, known to the Canarsies as 
MANNAHATCHIGPO, The Year We Got Rid of That Stinking Rock), and displays TOTALAMT, the current 
value of their investment. 

15. As a somewhat more challenging version of Problem 14, display the value of the Canarsies' investment as 
time went on, showing that value for 1634, 1644, and so on, with the last line showing the current value. 

16. Write a version of the program for Problem 15 in which the output is printed on the system output unit. 

17. Using the compound interest formula from Problem 12, write a program that reads sets of values for 
PRINCIPAL and INVRATE. For each set, the program displays the input, along with DOUBLE_ YRS, an 
integer indicating the minimum number of whole years required for the original amount to double. 

18. (Special Challenge): Write a program to meet the requirements described in Problem 17. However, 
instead of producing OOUBLE_ YRS to the nearest year, compute and display YRS2 and MONTHS2, the 
number of years and months to the nearest month required for the original investment to double. 

19. While it is nice to invest PRINCIPAL dollars at a compound interest rate of INVRATE, there also is 
inflation, reducing the actual value (purchasing power) of the investment. Assuming that there is a 
constant rate of inflation, write a program that shows this effect. Specifically, your program is to process 
any number of input sets where each set consists of PRINCIPAL (the amount originally invested), the 
interest rate (INVRATE), the inflation rate (call it INFLATION-a 7% inflation rate is represented in 
INFLATION as 0.07), the year the investment is made (STARTYR), and the year for which we want the 
result (CURRENTYR). The program is to display the input, followed by a second line showing TOTALAMT, 
the total number of dollars, and TOTALPCH, the value of the investment expressed in terms of what a 
dollar was worth in the year STARTYR. Leave a blank line between displays for different input sets, and 
stop the run with a PRINCIPAL value of zero. 

For example, suppose we invested $1000.00 in 1979at10% and the inflation rate was 6%. (Wouldn't 
that be nice?) After one year (i.e., CURRENTYR = 1980), TOTALAMT would be $1100.00. However, with 
inflation at 6%, the value of each 1980 dollar would be 0.94 (1.0 - 0.06) 1979 dollars, so that TOTALPCH 
would be 0. 94*1100 or $1034.00. After two years, TOTALAMT would be $1210.00, but that 6% is still 
there, wearing away at the money's value, so that a 1981 dollar at that rate, is worth 88.36 cents. 
Consequently, our 12101981 dollars have a TOTALPCH value of$1069.16 in terms of 1979 dollars. Oh my. 

20. As a more challenging version of Problem 19, write a program in which each input set consists of 
PRINCIPAL, INFLATION, and NUMOFYRS. PRINCIPAL and INFLATION have the same meanings as in 
Problem 17, and NUMOFYRS is an integer indicating the number of years for which the investment is to sit. 
For each set, the program is to display the input followed by BRJ{___EVEN, the rate at which the investment 
must earn interest in order to stay even with inflation. That is, the purchasing power of the total amount at 
the end of the investment period would be the same as that of the original investment at the beginning of 
the investment period. A PRINCIPAL value of zero stops the run. 

21. A straight line, when displayed on a set of rectangular coordinates, can be described by the equation 

Y =AO+ Al*X 

where Al is the slope of the line, a value indicating how rapidly Y's value changes as X changes; AO, the 
intercept, specifies what Y's value is when Xis zero. Since AO and Al are constant values for a given line, 
we can define the Y-value (say YI) of any point on that line in terms of its X-value (XI) and these 
constants, i.e., 

YI= AO+ Al*XI 

Thus, if we know the X-Y values for any two points on a line, we can develop a description for that line by 
using these values to solve for AO and Al. This is summarized in Figure 5.10. 

Using these relationships, write a program that reads and processes any number of input sets where each 
set consists of four real values Xl, Yl, X2, and Y2. For each set, the program is to produce three lines of 
output: The first line shows the character string XV ALUES: followed by Xl and X2; the second line shows 
the character string Y VALUES: followed by Yl and Y2. The third line shows the slope (Al) and intercept 
(AO), each preceded by an identifying character string. For instance, if we process an input set consisting 
of the four values shown below, 

1. 0 2.0 5.0 4.0 



x-

the output should look like this: 

XVALUES: 0.lOOOOOE 01 
YVALUES: 0. 200000E 01 
SLOPE: 0.500000E 00 

y = aO + alx 

al = y2 - yl 
x2 - xi 

0.500000E 01 
0.400000E 01 

PROBLEMS 

FIGURE 5.10 Calculation of the Slope of a 
Line. 

INTERCEPT: 0.150000E 01 

Output sets should be separated by a blank line. To stop the run, use an input set (that is not 
processed) in which Xl and X2 are the same. Here are some suggested input sets: 

Xl Yl X2 Y2 

0.0 0.0 6.0 6.0 
0.0 3.0 3.0 6.0 
1.0 1.0 2.0 -1.0 
5.4 8.6 12.6 10.0 

22. Using the relationships discussed in the previous problem, write a program that processes a succession of 
input sets. This time, each input set consists of six real values describing three points: Xl, Yl, X2, Y2, and 
X3, Y3. For each set, produce four lines of output: The first three lines are the same as for the previous 
problem, using {Xl, Yl) and {X2, Y2) to determine the slope and intercept. The fourth line is to show X3 
and Y3, followed by one of two messages (character strings): If {X3 , Y3) lies on the line formed by the first 
two points, the message says POINT 3 IS ON THE LINE. If not, the message says POINT 3 IS NOT ON THE 
LINE. Stop the run as in the previous problem. 

NOTE: In designing an algorithm to solve this problem, it is likely that, at some point, you will need 
to test whether two numerical values are the same. Because of the fact that each memory element can 
represent a value with a certain range, it is possible to compute numbers that are supposed to be exactly 
the same but are represented just slightly differently. We may choose to think of them as being close 
enough to each other so that they can be treated as being the same. However, the computer and 
FORTRAN (its agent) "sees" them as being different, and the . EQ. test will fail. To overcome this 
difficulty (it certainly is not the programmer's fault), such tests are set up to expect these small differences. 
Thus, instead of saying: 

IF (X. EQ. Y) 

we would construct the test to say, for instance, 

IF (X-Y) . LE. 0. 0001) 

Now, we are testing whetherX and Y are within 0. 0001 of each other. (This assumesX is greater than Y.) 
The value O. 0001 is used here for illustration. In each situation, of course, it is up to the programmer to 
determine how far apart the two numbers must get before he or she is not willing to treat them as being 
"equal." 
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23. There are many instances in experimental work where data are produced as a series of (X,Y) points. 
Because of a variety of circumstances, there often are inconsistencies in the X and Y values so that, even 
though it is clear that the relationship between the X and Y values can be described by a straight line, it is 
impossible to draw a single line that will pass through all of the experimental points. When this happens, 
we look for the line that provides the best description of the data. "Best" does not necessarily mean that it 
will be the line that goes through the most points. Instead, it will be the lin~ around which the points cluster 
most closely. Such a line, for a given set of X-Y data, is called the least squares line, and its slope (A1) and 
intercept (Ao) can be computed as follows: 

where 

N =no. of X-Y points 
xi = a single x value 
Yi = a single Y value 

Write a program that processes any number of X-Y points and produces the values of Ao and A 1 that 
describe the least squares line for those points. All X and Y values are real numbers, with each input line 
containing a point (the X value followed by the Y value). For purposes of this problem, no X value in the 
data will be below -10.0. The program is to compute and display NUMPTS, the number of X-Y points 
processed, A 1 (the slope), Ao (the intercept), x____AVG (the average value of X), and Y_A.VG (the 
average value of Y). NUMPTS appears on one line, Ao and A 1 on the second line, and x____AVG and 
Y_A.VG on the third line. 

24. As an additional challenge, expand the program in the previous problem so that it processes any number 
of sets of X-Y data, producing for each the three lines of output described above, separated by two blank 
lines. After the last set has been processed, the program is to leave three blank lines and show the 
following: 

1. NUMSETS (the number of sets processed); 
2. MAX_SLOPE (the value of the largest slope); 
3. MAX_SLP _NO (the number of the set whose slope is MAX_SLOPE. The first set is no. 1, etc.); 
4. MIN_SLOPE (the value of the smallest slope); 
5. MIN_SLP _NO (the number of the set whose slope is MIN_SLOPE); 
6. MAXPTS (the largest number of points in a set); 
7. MAXPTS_NO (the number of the set having the most points); 
8. MINPTS (the smallest number of points in a set); 
9. MINPTS_NO (the number of the set having the least points). 

You may assume that there will be only one maximum and minimum slope in a collection of input sets, and 
that single sets will have the maximum and minimum number of points. Moreover, you may assume that 
every set will have enough points (at least two) for the least squares algorithm to work properly. Finally, 
you may assume that each point is complete (i.e., both X and Y values are present.) 

25. Modify the program specified in Problem 24 so that it does not make the last two assumptions listed above. 
That is, a particular "set" of X-Y data might have only one point, or even no points. Moreover, there may 
be points with the X value or the Yvalue missing (never both). 



6 
Computations 
with 
Built-in Functions 

The arithmetic operations discussed in the previous chapter are only a small part of 
FORTRAN's computational services. The language also includes a wide range of other 
operations which, though generally more complex than the five "basic" ones, are equally 
convenient to use. 

These computational features are provided as a collection of built-in functions. Each 
of these functions actually is a prewritten program with its own name and place in a library 
that is part of the language. Accordingly, when one of these functions is needed, the 
program refers to it by name, and FORTRAN includes a copy of the appropriate 
instructions in that program. (The compiler keeps track of such references, called 
invocations, so that only a single copy is included no matter how many references are 
made.) To illustrate such an invocation, let us assume that A, B, and C all have been 
declared as real variables and that A and B each have values in them. Then, the assignment 
statement 

C =A+ SQRT(B) 

produces the following activities: 

1. FORTRAN, noting the reference to the built-in function named SQRT, uses 
SQRT to operate on B. Since the SQRT function is designed to produce the square 
root of the number given to it, the result will be that the square root of the value in 
Bis made available to the expression. 

2. This value and A's value are added together. 
3. The result of the addition is stored in C. 

The name SQRT is associated permanently with the particular program in the FORTRAN 
library that computes square roots. Similarly, each of the other built-in functions has its 
own name, selected to indicate the kinds of operations that the function performs. 

The assignment statement shown above is a typical example of how a built-in function 
is used. The quantity inside the parentheses (B in the example) is the argument on which 
the function is to operate. FORTRAN delivers a number to the function and the function, 
after completing its task, returns the result. This automatic two-way transmission process 
is activated when the function is invoked. It has nothing to do with the way in which the 
transmitted value was developed. Consequently, the argument can be anything that 
produces a number for the function to process. For instance, in the statement 

C =A+ SQRT(3.0) 

a value of 3 . 0 is delivered to the square root function. The same delivery mechanism 
applies to a more complicated invocation like the one in the statement 

C =A+ SQRT(3.0/(B*A)) 105 
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6.1 FUNCTIONS 
FOR DATA 

CONVERSION 

COMPUTATIONS WITH BUILT-IN FUNCTIONS 

In this statement the argument is an expression that FORTRAN must evaluate in order to 
produce the numerical result that will be delivered to SQRT. Accordingly, FORTRAN 

1. Multiplies B by A (call the result Tl). 

2. Divides the constant 3. Oby Tl (call the result T2). 

3. Delivers T2 to the square root function SQRT. 

4. Returns a value from SQRT representing the square root ofT2 (call that value T3 ). 

5. Adds T3 to A (call the result T4). 

6. Stores T4 in C. 

The automatic mechanism for delivering numbers to functions is used for a wide 
variety of functions including those requiring more than one argument. This chapter 
examines a number of these convenient processes and illustrates their use. 

In the previous chapter we saw that FORTRAN used some automatic mechanisms to 
convert numerical values from one type to another in order to meet the requirements 
imposed by its rules of arithmetic or by the programmer's declarations. These conversion 
processes also are available to the programmer as built-in functions so that he or she can 
specify such changes at any time. 

6. 1. 1 Conversion to Integer: The INT Function 

Values represented (stored) as single or double precision numbers can be converted to 
integer form by the built-in function INT. As an example, consider the following group of 
statements: 

REAL*8 Dl,D2 
REAL*4 Rl,R2 
INTEGER*2 Il,I2 

1 Rl x 36.9 
2 Dl 540.8 
3 Il INT (Rl) + INT (Dl) 
4 I2 = INT (Rl+Dl) 
5 R2 INT (Rl) + INT (Dl) 

We shall go through these events statement by statement, so that we develop a detailed 
idea of what happens. This will establish a general understanding of the type of process 
that occurs with the other conversion functions: 

Statement 1: A value of O. 3690000E+02 is stored in Rl. 

Statement 2: A value of O. 5408000000000000D+03 is stored in Dl. 

Statement 3: INT is invoked twice. The first time, it returns a value of 36. (Let us say 
the 3 6 is stored temporarily in Tl.) The second time, it returns a value of 5 4 O. (Let us say 
the 540 is stored temporarily in T2.) Tl and T2 are added to produce the integer 576, 
which then is stored in I 1. 

Statement 4: Rl is converted to REAL* 8 (in accordance with the automatic arith­
metic rules as discussed in Chapter 5) and the result (o. 3690000000000000D+02) is 
stored temporarily (let us say in T3). Then T3 is added to Dl, giving the REAL*8 result 
0. 5777000000000000D+03. This is stored (let us say in T4). After all that is done, INT 
is invoked to convert T4 to an integer (577), which is delivered to some temporary place 
(say TS) and stored from there in I2. Note·that Il and I2 have different results because 
in statement 4 the addition was done before the INT function was invoked, so that the 
fractional portions still were available to contribute to the sum. 
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Statement 5: Since the expression in this statement is identical to the one in statement 
3, exactly the same computations will take place, producing the same result. Thus, when 
FORTRAN is finished with the expression, it is ready to deliver a result of 576. Now, 
however, since the destination (R2) is a real variable, unlike Il in statement 3, 
FORTRAN will be forced to convert the 576 to real, and a value of 5. 760000E+02 will 
be stored in R2. 

6.1.2 Conversion to Real Numbers: The REAL Function 

An INTEGER*2, INTEGER*, orREAL*8 value can be converted to aREAL*4 number by 
invoking the REAL function. For example, ifRl is a real variable, Dl isREAL*8 and Il 
is an integer, the statement 

Rl = 2. 6 * (REAL (Il)-REAL (Dl)) 

causes the following actions: 

1. I 1 and D 1 each are converted (by a separate invocation) to REAL* 4. 
2. The converted Dl is subtracted from the converted Il. 
3. The result of the subtraction (a real number) is multiplied by the real value 2. 6. 
4. The product is stored in Rl. No further conversion is needed since Rl is a real 

variable. 

When a 32-bit integer is converted, FORTRAN will preserve as much of the precision as 
the real form can accommodate. 

6.1.3 Conversion to Double Precision: The DBLE Function 

A real or integer value can be converted to REAL*8 by invoking DBLE. For instance, if 
Rl, R2, and R3 are real variables, the statement 

Rl = DBLE (R2) * DBLE (R3) 

causes R2 and R3 each to be converted to REAL* 8. Then, the multiplication is performed 
and the result, a REAL*8 number, is converted to real for storage in Rl. Thus, FOR­
TRAN does the computation using double precision arithmetic even though the partici­
pating variables are single precision. 

6.1.4 Conversion of Complex Numbers 

Consistent with the ground rule established earlier, we shall deal with complex numbers 
in a separate section of the book (Appendix A). 

FORTRAN's library of bult-in functions includes a variety of services for manipulating 
numerical values. To make their examination convenient, we shall use the general name 
ar g to indicate the argument given to the function. When a particular function uses more 
than one argument, we shall use the names argl, arg2, and so on. 

6.2. 1 Operations with a Number's Sign 

There are two functions relating to the sign of a number: 

6.2.1.1 The ABS Function ABS ( arg) provides the absolute value of arg. There is no 
conversion in the process. 
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6.2.1.2 The SIGN Function The SIGN function makes it possible to transfer the sign 
from one numerical value to another. SIGN (argl, arg2) gives argl the same sign (not 
the same value) as arg2 and returns the new value of argl. For example, if AMTl has the 
value 23. 76 and AMT2 has the value-166. 889, the statement 

Y = SIGN (AMTl, AMT2) 

results in a value of-23. 76 in Y andAMTl, andAMT2 retains its original value (-166). If 
arg's value is 0, the function value is not known and cannot be used. 

6.2.2 Positive Differences (DIM) 

This function returns argl-arg2 if argl is greater than arg2. Otherwise, it returns a 
value of O. Suppose that Vl 's value is 2 6. 4 and V2 's value is 1 7. 2. The statement 

Y = DIM (Vl, V2) 

places a value of 9 . 2 in Y. If we had written 

Y = DIM (V2, Vl) 

instead, the resulting value in Y would be 0. 

6.2.3 Double Precision Multiplication-
The DPROD Function 

If we multiply 2. 2 * 2. 2, the result ( 4. 84) requires more decimal places than either of 
the two factors. In certain cases, this type of operation with real numbers can produce a 
fraction that will not fit a REAL*4 result. Consequently, FORTRAN provides a conveni­
ent way to specify REAL*8 multiplication. If argl and arg2 are real arguments, the 
expression 

DPROD (argl, arg2) 

will persuade FORTRAN to use 64-bit arithmetic when the indicated multiplication is 
performed. The result, then, will be a REAL* 8 number with none of the fractional portion 
lost. Of course, once that result is produced, it is up to the programmer to use it properly 
(e.g., place it in a REAL*8 variable, rather than one that is REAL*4 ). 

6.2.4 Obtaining a Remainder-
The MOD Function 

This function, one of the most convenient in the language, divides argl by arg2 and 
returns the remainder, i.e., the amount left over. The same rules of arithmetic are used 
here as everywhere else in FORTRAN, so that the type of remainder produced by the 
function depends on the type of division that we direct the function to perform. To make 
this clear, we shall illustrate the operation of the MOD function using constants for ar gl 
and ar g2. In the three cases shown below, the two arguments will have the same 
respective values, but the forms will change: 

1. MOD ( 3 0 , 13) : 
Since the two arguments already are integers, FORTRAN does integer division. 
The remainder ( 4 ), therefore, is an integer. 

2. MOD (30.0,13.0): 
Now, the division is done in real arithmetic, and the result is delivered as a real 
whole number ( 4. O ). 

3. MOD (30. ODO, 13. ODO): 
This time, the division is done in double precision arithmetic and the remainder 
has the value 4. ODO. 
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If the MOD function did not exist, we still could get hold of a remainder by using a little 
trickery. This is an example where we can take advantage of integer division. Let us 
assume that l 1 is an integer variable to which we want to assign the remainder of 3OI13. 
If we let FORTRAN divide 3 O by 13 (as integers), the result will be 2, with the fractional 
portion gone forever (actually, gone to Carson City, if you paid attention). In this case, 
that is exactly what we want, because if we take that result and multiply it back by the 
divisor (13), we shall get a number that is different from the original dividend by an 
amount equal to the remainder. Specifically (30/13) * 13 will give us 26, since 
FORTRAN will do the integer division, followed by the multiplication. Then, 3 0- ( 3 O I 
13) * 13 will produce 4, the same value as MOD ( 30, 13) . Thus, 

11 = 30-(30/13)*13 

and 

11 = MOD (30, 13) 

will produce identical results. 
Example 6.1 One of the most important skills that a programmer needs to develop is the ability to 
convert directions in natural language (e.g., English, Spanish, Japanese. etc.) to statements in FORTRAN 
that will get the same thing done. 

The requirement is to read a set of integer values (all of them greater than O) and print: 

the sum of all the odd values 
the number of odd values read 
the sum of all the even values 
the number of even values read 
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"Reserve storage for NUMODD, SUMODD, 
NUMEVN, SUMEVN, VALUE.'' 

Reserve storage for: NUMODD, NUMEVN, SUMO DD, 

SUMEVN, VALUE 

Initialize NUMODD, NUMEVN, SUMODD, SUMEVN to 0 
Read the first input value (VALUE) 

Do while VALUE I 0 

~UE~ Yes 

Add I to NUMEVN Add I to NUMODD 
Add VALUE to SUMEVN Add VALUE to SUMO DD 

Read the next VALUE 

Print NUMODD, SUMODD, NUMEVN, SUMEVN 

STOP 

(a) 

"Set NUMODD, NUMEVN, SUMODD, 
SUMEVN to zero." 
"Read the first input item (VALUE)." 
while value is not equal to zero: 

"Display VALUE." 
if 

"VALUE is even" 
then 

"Add 1 to NUMEVN." 
"Add VALUE to SUMEVN." 

else 
"Add 1 to NUMODD." 
"Add VALUE to SUMODD." 

endif 
"Read the next input item (VALUE)." 

endwhile 
"Print NUMODD, SUMO DD, NUMEVN, 
SUMEVN." 
"Stop." 

(b) 

FIGURE 6.1 (a) Structured Flowchart for 
Example 6.1 . (b) Pseudocode Representa­
tion for Example 6.1 . 
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************************************************************* 
* EXAMPLE 6.1 * 
************************************************************* 
* 
* 
* 
* 
* 

NUMODD: THE NUMBER OF ODD INTEGERS READ IN 
NUMEVN: THE NUMBER OF EVEN INTEGERS READ IN 
SUMODD: THE SUM OF THE ODD INTEGERS 
SUMEVN: THE SUM OF THE EVEN INTEGERS 
VALUE: AN INDIVIDUAL INPUT VALUE 

* 
* 
* 
* 
* 

************************************************************* 

PROGRAM 
IMPLICIT 
INTEGER*2 

NUMODD = 
NUMEVN = 
SUMODD = 
SUMEVN = 
PRINT *' 
READ *' 

0 
0 
0 
0 

EX601 
NONE 
NUMODD,NUMEVN,SUMODD,SUMEVN,VALUE 

'ENTER VALUE' 
VALUE 

************************************************************* 
* WE SHALL IDENTIFY EVEN NUMBERS AS BEING DIVISIBLE BY 2 * 
* WITH NO REMAINDER. ACCORDINGLY, WE TEST WITH MOD. * 
************************************************************* 

99 

DO WHILE (VALUE .NE. 0) 
PRINT*, 'VALUE= ',VALUE 
IF (MOD(VALUE,2) .EQ. 0) THEN 

NUMEVN = NUMEVN + 1 
SUMEVN = SUMEVN + VALUE 

ELSE 
NUMODD = NUMODD + 1 
SUMODD = SUMODD + VALUE 

ENDIF 
PRINT *, 'ENTER NEXT VALUE' 
READ (*,END=99) VALUE 

END DO 

PRINT *' 'NO. OF ODD VALUES = 
PRINT *' 'SUM OF ODD VALUES = 
PRINT *' 'NO. OF EVEN VALUES = 
PRINT *' 'SUM OF EVEN VALUES = 
STOP 

END 

, ,NUMODD , ,SUMODD , ,NUMEVN , .SUMEVN 

FIGURE 6.2 FORTRAN Statements for Example 6. 1 . 

Clearly, we need to set up two sums (we shall name them SUMODD and SUMEVN) and two counters 
(NUMODD and NUMEVN). The crucial issue will be how to look at a given input value (which we shall name 
v AL) and determine whether it is odd or even. The flowchart and pseudocode (Figure 6.1) tell us what we 
need to do and when we need to do it. How is another question. 
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VALUE = 121 
VALUE = 212 
VALUE = 333 
VALUE = 342 
VALUE = 556 
VALUE = 302 
VALUE = 654 
VALUE = 211 
VALUE = 455 
VALUE = 754 
VALUE = 655 
VALUE = 855 
VALUE = 320 
NO. OF ODD VALUES = 6 
SUM OF ODD VALUES = 2630 
NO. OF EVEN VALUES = 7 
SUM OF EVEN VALUES = 3140 FIGURE 6.3 Output for Example 6.1 . 

Since the MOD function enables us to use any divisor we wish, we can take advantage of the fact that 
all even numbers are divisible by 2, and odd numbers are not. Another way of saying that, somewhat 
closer to what we know we can do in FORTRAN, is that an even number, when divided by 2, leaves a 
remainder of o; an odd number does not. 

This gives us the algorithmic solution we need, and we can proceed with the program (Figure 6.2). A 
sample run is shown in Figure 6.3. 

6.2.5 Rounding and Truncation 

Since a declaration reserves a certain amount of storage for a particular type of data, any 
value placed in such a variable will fill the storage available for it. For instance, if a real 
number can be expressed to six decimal places, it will always be expressed that way. There 
are many occasions where we would like to control the form of numerical values. (For 
example, "compute the income to the nearest cent" implies that we are not interested in 
anything after the second decimal place.) Several built-in functions are available to help 
the programmer exercise this type of control. 

6.2.5.1 Truncation: The AINT Function AINT truncates a single or double precision 
value without converting it. (Recall that INT, described in Section 6.1.1, converts to 
integer.) Thus, for example, if real variable Rl has a value of 24 7. 8990, the expression 
AINT (Rl) produces a value (still real) of 24 7. 0000. (INT (Rl) would produce a value 
of 247.) 

6.2.5.2 The Nearest Integer: The NINT Function NINT uses a 32-bit or 64-bit value as 
follows: 

If the value is positive, it adds O. 5 to it and then truncates. If the value is negative, it 
subtracts 0. 5 from it and then truncates. In both cases, the result is converted to 
integer. 

For instance, if Rl is a real variable with a value of 335. 908 7, NINT (Rl) will produce a 
value of 335. 908 7+0. 5000000 or 336. , which then is converted to the integer 336. 
On the other hand, ifRl were to have a value of-335. 9087, the expressionNINT (Rl) 
would produce a value of -335. 9087-0. 5000000 or -336. 4087, which then is 
converted to the integer-336. 

111 
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6.2.5.3 The ANINT Function ANINT works exactly the same way NINT does, except 
that it does not perform the final conversion to integer. It adds or subtracts 0.5 and 
truncates the result, leaving the value unconverted. Using the previous value of 
-335. 9087 forRl, ANINT (Rl) produces a value of-336. 0000. 

6.2.5.4 Rounding Techniques The ANINT and NINT functions give us the basic tools 
for rounding numerical values to the number of places we want. The basic technique 
involves three simple steps: 

1. Multiplying the number to be rounded by an appropriate power of ten. 
2. Applying AN INT or NINT to the ad justed number. 
3. Dividing the result by the same power of ten used in step 1 to read just the value to 

its proper magnitude. 

What is meant by "an appropriate power of 10"? We need to ad just the value so that when 
the function adds or subtracts O. 5 to it, the O. 5 affects the proper decimal place. 

We shall see exactly how this works by using the real variable Rl with a value of 
335. 9087 and another real variable R2 in which we shall place a rounded value. 

(a) Rounding to the nearest integer: 335. 9087, when rounded to the nearest 
integer, produces a value of 3 3 6. Consequently, if we add O. 5 to the original value and 
then discard the fractional part, we shall get what we want (335. 9087+0. 5 = 
336. 408 7; discarding the . 408 7 leaves the desired value.) This means that use of either 
the ANINT or NINT function, as is, will do the rounding. The choice of the function will 
depend on the form in which we want the result. If we assume that the result is to be 
assigned to R2 (which is real), then we shall use ANINT, since no conversion is needed: 

R2 = ANINT (Rl) 

(b) Rounding to the nearest tenth: 335. 908 7, rounded to the nearest tenth (i.e., 
to one decimal place), gives a result of 335. 9. (Since the second decimal place is 0, it has 
no effect on the final value.) If we were to add O. 5 to the original value, the result 
obviously would be wrong. The adjustment we want to make in order to perform the 
operation correctly is to add O . O 5 (not O . 5) to 3 3 5 . 9 O 8 7, and then discard the part of 
the fraction we do not need. Since we are interested in the first decimal place, we would 
produce335. 9087+0. 05 or335. 9587 andkeepthe335. 9. TheANINTfunction, by 
definition, always uses O. 5, and we cannot adjust it. Instead, we can adjust the 
335. 9087 to get the same result. Ifwe multiplyRl by 10 and apply ANINT to that value, 
we can get the correct digits. Then, if we divide by 1 O, undoing what we did at first, we 
shall have the rounding we want. Specifically, 

335. 9087 * 10 = 3359. 087 
ANINT (3359. 087) = 3359. 087+0. 5 3359. 587 truncated to 

3359.000 
3359.000/10.0 = 335.9000 

Thus, to round to the nearest tenth, we multiplied by 10.0, applied the ANINT function, 
and then read justed by dividing by 1 O. O: 

R2 = AINT (10. O*Rl) I 10. 0 

R2 will have the value 335. 9000. 

( c) Rounding to the nearest hundredth: To establish the general technique, we shall 
round 335. 9087 to the second decimal place, i.e., to the nearest hundredth. (The 
desired value, obviously, is 335. 91.) As before, we must adjust the value so that ANINT, 
by adding O. 5, will produce the proper digits. Since we want two decimal places, the 0. 5 
must affect the third place (that is, one place to the right of the last one in which we are 
interested). Consequently, we shall multiply Rl by 100. O this time, producing a value 



BASIC NUMERICAL MANIPULATIONS 

( 3 3 5 9 O. 8 7) . The decimal point has been moved so that the digit previously in the third 
decimal place is now just to the right of the point. When we apply ANINT to this adjusted 
value, it will add 0. 5, producing 33591. 37. Then, it will truncate, leaving a result of 
33591. 00. We readjust this by taking out (dividing by) the 100. 0. The final value, 
then, is 335. 91 as required. Thus, our assignment says: 

R2 = ANINT(lOO*Rl)/100.0 

(d) Rounding to the nearest hundred: We should not go under the impression that 
rounding applies only to fractions. There are many occasions when a number needs to be 
rounded to the nearest ten, or hundred, or even to the nearest million. The same 
technique is applied as before, with the only difference being in the power of ten that is 
needed for adjustment. To round to the nearest 10, we would adjust by multiplying by 
0. 1 (10 ** (-1)), apply ANINT, and readjust. To illustrate, let us suppose that Rl, 
with a value of 68687. 73, represents a dollar amount submitted as a bid for constructing 
a free-form pigsty. The person looking at the bids is interested in numbers to the nearest 
hundred dollars in order to simplify the comparisons. If R2 is the variable to which the 
rounded result is to be assigned, we can compute R2 by writing 

R2 = ANINT (Rl/100.) * 100. 0 

As a result, FORTRAN computes Rl/100. O, giving a temporary result of 686. 8773. 
ANINT applied to this value produces 686. 8773+0. 5 or 687. 3773, truncated to 
687. 0000. Then, it multiplies the 687. 0000 by 100. 0, readjusting it to 68700. 00, 
the result our professional pigsty promoter wants. 

6.2.6 Functions for Extreme Values 

The largest and smallest values in a specified collection of numerical items can be found by 
using the MAX and MIN functions, respectively. 

6.2.6. 1 The MAX Function This function selects the largest value from a list of argu­
ments that can have any number of items. MAX gives a value, but there is no indication as 
to where it came from. For example, if we say 

BIG = MAX (X, 3. 0/Y, SUM, W+Z) 

the variable BIG will receive the largest of the values represented by the four arguments. 
However, unless our program includes statements to perform additional tests, we shall 
not know which one was the largest. (If we just want to know how much, and not which 
one, then MAX gives us exactly what we want.) 

6.2.6.2 The MIN Function MIN works exactly like MAX, producing the smallest value of 
a specified group. Again, there is no information regarding the exact source of that 
minimum. 

We shall examine an example program in which minimum and maximum values are 
emphasized. The requirements are set up so that it will not be enough just to know the 
values themselves. Additional information will be needed such that the solution cannot be 
handled only with MIN and MAX. This will give us an opportunity to explore some useful 
programming techniques in addition to illustrating the use or built-in functions. 

Example 6.2 Joe's Travel Service ("Those Who Know Go With Joe") has a large sales staff that sells 
trips and tours to exotic places. These people are rewarded with monthly prizes for highest sales (a week 
in Brazil, Indiana) and lowest sales (ten days in Brazil, Indiana). A program is needed to determine the 
prizewinners. Each month, a set of input is prepared for each salesperson showing the name, employee 
number and total sales. Employee number is an integer between 1 and 9900 (never zero) and the sales are 
reported to the nearest cent. Since this business is very hectic, it is likely that the number of salespeople 
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Reserve storage for SALES, MAXSLS, MINSLS, TTLSLS, 
SLSNUM, MAXNUM, MINNUM, 
SLSNAM, WINNER, LOSER 

Initialize WINNER, LOSER to blanks 
TTLSLS, MAXSLS, MAXNUM, MINNUM to zero 
MINSLS to 999999 

Read the first SLSNAM, SLSNUM, SALES 

Do while SLSNUM f- 0 

Print the input data 

Add SALES to TTLSLS 

e 

~~·ES new 
1mmum? 

yes 
Set SLSNUM as i.d. 
for max. sales 
set SLSNAM as name 
for max. sales 

Read the next set of input data 

Print WINNER, LOSER, MAXSLS, MINSLS 
Print TTLSLS 

STOP 

(a) 

FIGURE 6.4 (a) Structured Flowchart for Example 6.2. 

Set SLSNUM as 
i.d. for min. 
sales 
Set SLSNAM as 
name for min. sales 
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"Define SALES, MAXSLS, MINSLS, TTLSLS, SLSNUM, MAXNUM, MINNUM, SLSNAM, WINNER, LOSER." 
"Set WINNER and LOSER to blanks." 
"Set TTLSLS, MAXSLS, MAXNUM, MINNUM to zero." 
"Set MINSLS to 999999." 
"Read the first values for SLSNAM, SLSNUM, SALES." 
while SLSNUM is not equal to zero: 

"Print the input data." 
"Add SALES toTTLSLS." 
if 

"SALES is a new maximum value" 
then 

"Set SLSNUM as i.d. for new maximum." 
"Set SLSNAM as the new name for maximum." 

else 
if 

"SALES is a new minimum" 
then 

"Set SLSNUM as i.d. for mininum." 
"Set SLSNAM as name for minimum." 

else 
endif 

endif 
"Read the next set of input data." 

endwhile 
"Print WINNER, LOSER, MAXSLS, MINSLS." 
"Print TILSLS." 
"Stop." (b) 

FIGURE 6.4 (b) Pseudocode for Example 6.2. 

will change from one month to the next. To keep it simple, we shall say that there will be no two people 
with the same total sales in any given month. Furthermore, after printing the prizewinners' names, 
numbers and total sales, the program is to print the overall sales for the firm, rounded to the nearest dollar. 

One part of the required program is simple enough: We need to keep a running total of all sales 
figures so that the overall amount can be printed after all the data have been read and processed. Forth is 
purpose, a variable (TTLSLS) will be initialized to zero and each sales figure (SALES) will be added to 
TTLSLS. The other part, i.e., finding the maximum and minimum salespeople and amounts, will require 
somewhat more intricate processing. Our algorithm will keep checking each newly read sales figure so 
that, at any given time, the program has the largest and smallest sales figures found thus far, along with 
the corresponding names. If the sales figure just read exceeds the largest one found so far, the new value 
replaces the old maximum. (Alternatively, the same thing would happen with respect to the old minimum 
if the new value turned out to be less than the smallest one read so far.) Consequently, at the end of the 
run, we shall have the required results regardless of the number of input values. This is shown as a 
structured flowchart in Figure 6.4(a) and as pseudocode in figure 6.4(b). The FORTRAN program is given in 
Figure 6.5, and a sample run is seen in Figure 6.6. 

At the beginning of this chapter, we used the square root function {SQRT) as an example 
of how a built-in function works. This is one of a collection of functions designed to 
provide convenient a1ds for performing more extensive computations. Now that we are 
familiar with the general ideas underlying the use of this library, it will not be necessary 
to deal with each function in detail. Instead, we shall summarize the major groups of 
functions and their operation. 

6.3 COMPUTA­
TIONAL 
FUNCTIONS 



116 COMPUTATIONS WITH BUILT-IN FUNCTIONS 

************************************************************* 
EXAMPLE 6.2 

************************************************************* 
THIS PROGRAM READS AND PROCESSES AN ARTIBRARY NUMBER OF 
DATA LINES, EACH CONTAINING AN EMPLOYEE'S NAME, NUMBER, 
AND SALES FOR A GIVEN MONTH. THE PROGRAM ECHOES EACH 
LINE AND, AT THE END OF THE RUN, IT PRINTS THE NAMES, 
NUMBERS, AND SALES AMOUNTS FOR THE EMPLOYEES WITH THE 
MOST AND LEAST SALES FOR THAT MONTH. FINALLY, IT PRINTS 
THE TOTAL SALES FOR THE MONTH TO THE NEAREST DOLLAR. 
SLSNAM: EMPLOYEE'S NAME; SLSNUM: EMPLOYEE'S NUMBER 
WINNER: WINNER'S NAME; LOSER: LOSER'S NAME 
MAXNUM: WINNER'S NUMBER; MINNUM: LOSER'S NUMBER 
MAXSLS; WINNER'S SALES; MINSLS: LOSER'S SALES 
SALES: EMPLOYEE'S SALES; TTLSLS: FIRM'S TOTAL SALES 

PROGRAM 
IMPLICIT 
REAL•4 
INTEGER•2 
CHARACTER•25 

EX602 
NONE 
SALES,MAXSLS,MINSLS,TTLSLS 
SLSNUM,MAXNUM,MINNUM 
SLSNAM,WINNER,LOSER 

INITIALIZATION 

WINNING AND LOSING NAMES ARE SET TO BLANKS SO WE KNOW THE• 
VALUES AT THE START. TTLSLS IS SET TO ZERO SO WE CAN ADD * 
TO IT IN OUR LOOP. MAXSLS IS SET TO ZERO SO THE FIRST IN-• 
PUT VALUE AUTOMATICALLY WILL BE THE NEW MAXIMUM AGAINST 
WHICH SUBSEQUENT VALUES CAN BE COMPARED. THE SAME THING 
IS DONE WITH MINSLS BY INITIALIZING IT TO A VERY HIGH VA-• 
LUE. 

WINNER = ' 
LOSER = WINNER 
TTLSLS 0.0 
MAXSLS 0.0 
MINSLS 999999.0 
MAXNUM 0 
MINNUM 0 
PRINT *• 'ENTER SLSNAM, SLSNUM, SALES VALUES' 

READ *• SLSNAM,SLSNUM,SALES 

************************************************************* 
PROCESSING LOOP: 

************************************************************* 
MAX AND MIN FUNCTIONS ASSIGN NEW HIGH AND LOW SALES VA­
LUES. MAXSLS IS SET TO THE LARGER OF THE NEW INPUT VALUE * 
OR THE CURRENT MAXIMUM. THIS GIVES US THE VALUE, BUT WE 
DO NOT KNOW WHICH ONE IT WAS. ACCORDINGLY, THE TESTS ARE * 
INCLUDED TO FIND THAT OUT. 

************************************************************* 

DO WHILE ((SLSNUM .GE. 1) .AND. (SLSNUM .LE. 9900)) 
PRINT *• SLSNAM,SLSNUM,SALES 
TTLSLS TTLSLS + SALES 
MAXSLS = MAX (MAXSLS,SALES) 
MINSLS = MIN (MINSLS,SALES) 
IF (MAXSLS .EQ. SALES) THEN 

MAXNUM = SLSNUM 
WINNER = SLSNAM 

ELSE IF (MINSLS .EQ. SALES) THEN 
MINNUM = SLSNUM 
LOSER = SLSNAM 

ELSE 
END IF 
PRINT *• 'ENTER NEXT SET FOR SLSNAM, SLSNUM, SALES' 
READ (•,END=99) SLSNAM,SLSNUM,SALES 

END DO 

99 PRINT*• 'WINNER: ',WINNER,MAXNUM,MAXSLS 
PRINT*• 'LOSER: ',LOSER,MINNUM,MINSLS 
TTLSLS = ANINT (TTLSLS) 
PRINT*• 'TOTAL SALES THIS MONTH: ',TTLSLS 
STOP 

END 

FIGURE 6.5 FORTRAN Program for Example 6.2. 
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CAROLINE MENDELBLEB 
FARNSWORTH BIGGLE 
FILLMORE FREEDLE 
VARNA BAGLEY 
MARCIA PHNEPH 
SANFORD KIFINNE 
TOOTHA DENTIPOD 
MARSHALL MARCIALE 
RIKKE RIKKEBAAKKE 
HAROLD SMITH 
WINNER: MARSHALL MARCIALE 
LOSER: HAROLD SMITH 
TOTAL SALES THIS MONTH: 
FIGURE 6.6 Output for Example 6.2. 

6.3. 1 Algebraic Functions 

42212 
54111 

228 
7723 

44227 
532 

70077 
10127 
53340 
33020 

0.1075080E 

0.7540000E 04 
0.5435051E 04 
0.1225000E 05 
0.1233250E 05 
0.8755430E 04 
0.1877775E 05 
0.1277010E 05 
0.2002250E 05 
0.5404250E 04 
0.4220172E 04 
10127 0.2002250E 05 

33020 0.4220172E 04 
06 

There are four functions in this category, each requiring a single argument that may be 
either single or double precision. The result of the computation (i.e., the value returned 
by the function) will be the same type as the argument. As shown in Table 6.1, these 
functions include the square root, exponential (e to a power), and logarithms using two 
bases (10 and e). 

Table 6.1 Algebraic Built-in Functions 

Function Name 

SQRT 
LOG IO 
(common logarithm) 
LOG 
(natural logarithm) 
EXP 
(exponential) 

Remarks 

The argument must be zero or greater 
The argument must be zero or greater 

The argument must be greater than zero 

The return value is earg 

6.3.2 Trigonometric Functions 

There are twelve functions in this category (Table 6.2). As is true with the algebraic 
functions, the arguments to these functions may be real (single precision) or double 
precision, with the result being the same data type as the argument. The functions 
require a single argument, with one form of the arctangent function (ATAN2) accepting 
two arguments. When ATAN2 is used, both arguments must be of the same type. 

6.3.3 Random Number Generation 

A variety of computer applications require data whose values appear to be governed by 
the laws of chance. For instance, we might have a program whose operation simulates the 
behavior of the traffic at a particular point on a busy highway. Over the long run, a known 
mixture of automobiles, trucks and other vehicles of various kinds cross that point. 
However, we cannot predict exactly what kind of vehicle will be the next one to come 
along at any given moment. Thus, every time we would want to simulate the appearance 
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Table 6.2 Trigonometric Built-In Functions 

Function Name 

SIN 
cos 

TAN 

ASIN 

ACOS 

ATAN, ATAN2 

SINH 
COSH 
TANH 
AS I NH 
ACOSH 
ATANH 

Remarks 

The argument is assumed to be in radians. Returned value is sine(arg). 
The argument is assumed to be in radians. Returned value is 

cosine(arg1 ). 
The argument is assumed to be in radians. Returned value is 

tangent(arg). 
The argument must be in the range -1.0 to 1.0. Returned value (in 

radians) is arcsine(arg). 
The argument must be in the range -1.0 to 1.0. Returned value (in 

radians) is arccosine(arg). 
If one argument is given, ATAN returns arctan(arg). If two arguments 

are given, i.e., ATAN (argl, arg2), ATAN or ATAN2 returns 
arctan(arg1 /arg2). 

SINH returns the hyperbolic sine of arg. 
COSH returns the hyperbolic cosine of arg. 
TANH returns the hyperbolic tangent of arg. 
ASINH returns the hyperbolic arcsine of arg. 
ACOSH returns the hyperbolic arccosine of arg. 
ATANH returns the hyperbolic arctangent of arg. 

of a vehicle, the directions to the simulating program would say, in effect, "Select a vehicle 
at random from the repertoire of available vehicle types, and send it across the point of 
interest at a certain velocity." Each vehicle would be represented (in the program) by a 
particular numerical value so that, in response to the request, the program would produce 
a random number within the desired range. Actually, generation of truly random num­
bers on a computer requires equipment whose cost and complexity is not justifiable in 
most instances. Instead, special algorithms are used to compute pseudorandom numbers. 
Collections of these numbers behave like collections of random numbers, and sequences 
of individually computed values appear to follow a random pattern. However, since 
pseudorandom numbers are computed systematically in accordance with the steps de­
scribed by a particular algorithm, we can predict the value of each number in a sequence 
from that of its predecessor. For most purposes, this departure from true randomness is 
not a serious flaw. 

HP 1000 FORTRAN 77 has three built-in functions for computing pseudorandom 
numbers. The three functions differ with regard to the mixture of numbers they produce 
over the long run. However, each produces a value on demand, based on the previous 
value produced. Accordingly, the functions must be supplied with a starting value called a 
seed. This is done for all of the functions via a special subprogram named SSEED. The 
initialization is done with a statement that looks like this: 

CALL SSEED (seed value) 

The parenthesized seed value is an integer. A logical place for this statement is near the 
beginning of a program, together with the rest of the initializations. If the programmer 
does not provide a seed value, the compiler uses 12345. 

6.3.3.1 The URAN Function URAN produces a real number between 0.0 and 1.00. The 
underlying algorithm is set up so that a series of numbers generated by URAN will be 
uniformly distributed. For example, suppose we declared an integer variable RNUM and 
said 

RNUM =INT (100.0*URAN()) 
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(The empty set of parentheses tells the program that this is a call to a function without an 
accompanying list of arguments. If we were to use URAN in the above statement over and 
over say, 1000 times, we would get 1000 integers in the range 0-99 such that about 100 of 
them would be in the range 0-9, 100 of them would be in the range 10-19, and so on. In 
order for URAN to be used, it must be declared as a function in the program. 

6.3.3.2 The GRAN Function Many natural populations can be described as Gaussian 
(normal) distributions. For example, if we were to weigh each of a large number of 
randomly selected navel oranges to the nearest ounce and record the number of occur­
rences for each weight, we would get a bell-shaped curve with its shape defined by a 
certain mathematical relationship. GRAN produces pseudorandom numbers that follow 
this distribution. Specifically, each number is a real value between -5.0 and +5.0, and a 
collection of such numbers will have a mean of 0.0 and a standard deviation of 1.0. A 
single number is produced by the expression 

GRAN() 

The empty parentheses have the same meaning as with URAN. As with GRAN, URAN must 
be declared as a function in the program in which it is to be used. 

6.3.3.3 The IRANP Function Another distribution useful in many types of applications 
is the Poisson distribution. Values produced by HP 1000 FORTRAN 77's IRANP are 
integers that follow this distribution. Each value is obtained via the expression 

IRANP (arg) 

where arg is a positive real value (supplied by the programmer) less than 50.0. 
Similar pseudorandom number genf'.rators are available in HP9000 FORTRAN 77. 

Consult the "HP FORTRAN/9000 Reference Manual," no. 5955-8845 for details. 

6.3.4 Nested Invocation of Built-In Functions 

Earlier in the chapter, it was mentioned that each built-in function is basically an 
independent program designed to perform certain operations on whatever data value it is 
given. Once the result has been produced and made available to the expression in which 
the function was used, it is as if the function had never been invoked. This means that we 
can use any or all of the functions when and where it suits our purpose with each usage 
being a separate activity. (We have already seen an example of two invocations of a 
function in the same expression back in Section 6.1. l.) This can be carried further by 
having invocations inside each other. This construction is called nesting. IfVl, V2 and V3 
are real variables, and values are available for Vl and V2, an assignment statement such as 

V3 = LOG(SQRT(Vl)+2.87*LOG(V2)) 

is perfectly legal and easily analyzed, since its evaluation follows the same rules governing 
all parentheses: 

1. SQRT is invoked, returning the square root ofVl (call it Tl). 
2. LOG is invoked, returning the natural logarithm ofV2 (call it T2). 
3. T2 is multiplied by 2. 87 (call the result T3). 
4. Tl and T3 are added together (call the result T4). 
5. The LOG function is invoked again, producing the natural logarithm of T4 (call it 

T5). 
6. T5 is assigned to V3. 

119 



120 COMPUTATIONS WITH BUILT-IN FUNCTIONS 

6.3.5 Generic Functions and The Good Old Days 

In our examination of built-in functions, we have seen that each function has a perma­
nently assigned name that is used to invoke that function. This is known as a generic 
name, the term implying that FORTRAN will look at the type of argument (or arguments) 
supplied to the function and make whatever adjustments are needed to deal with that data 
type. In earlier versions of FORTRAN, there were no generic names. Instead, each name 
used by the programmer to invoke a particular function depended on the type of 
argument being supplied to that function. For instance, if somebody wanted the square 
root of a single precision variable (e.g., Rl), the expression would say SQRT (Rl). So far, 
so good. But, if the argument were a double precision variable (e.g., Dl) the invocation 
would have to be DSQRT (Dl); SQRT would not work. FORTRAN 77 is designed to 
recognize and accept these multiple names so that programs written in earlier days can be 
handled by the new language. For this reason we include Table 6.3, which lists the names 
and their usage. 

Table 6.3 Generic functions and Their Data-Dependent Names 

Generic Name Argument Type Specific Name(s) 

INT Real (Reah4) INT or IFIX 
Double Precision (Reah8) ID INT 

REAL Integer*2, Integer*4 FLOAT 
Real (Reah4) SINGL 

DBLE Integer*2, Integer*4 DFLOAT 
Real (Reah4) DBLE 

ABS Integer*2, Integer*4 IABS 
Real (Reah4) ABS 
Double Precision (Real*8) DABS 

SIGN Integer*2, Integer*4 I SIGN 
Real (Reah4) SIGN 
Double Precision (Real*8) DSIGN 

DIM Integer*2, Integer*4 IDIM 
Real (Reah4) DIM 
Double Precision (Real *8) DDIM 

MOD Integer*2, Integer*4 MOD 
Real (Real *4) AMOD 
Double Precision (Reah8) DMOD 

AINT Real (Reah4) NINT 
Double Precision (Reah8) IDNINT 

AN INT Real (Real *4) AN INT 
Double Precision (Rea1*8) DNINT 

MAX Integer*2, Integer*4 MAXO, AMAXO 
Real (Real *4) AMAX!, MAXl 
Double Precision (Real*B) DMAXl 

MIN Integer*2, Integer*4 MINO, AMINO 
Real (Real *4) AMIN!, MINl 
Double Precision (Rea1*8) DMINl 

SQRT Real (Real *4) SQRT 
Double Precision (Rea1*8) DSQRT 

LOGlO Real (Real *4) ALOGlO 
Double Precision (Rea1*8) DLOGlO 

LOG Real (Real *4) ALOG 
Double Precision (Rea1*8) DLOG 

(Continued) 
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Table 6.3 (Continued) 

Generic Name Argument Type Specific Name(s) 

EXP Real (Real *4) EXP 
Double Precision (Rea1*8) DEXP 

SIN Real (Real *4) SIN 
Double Precision (Rea1*8) DSIN 

cos Real (Rea1*4) cos 
Double Precision (Real* 8) DCOS 

TAN Real (Rea1*4) TAN 
Double Precision (Rea1*8) DTAN 

ASIN Real (Real *4) ASIN 
Double Precision (Rea1*8) DAS IN 

ACOS Real (Real *4) ACOS 
Double Precision (Rea1*8) DA COS 

ATAN, ATAN2 Real (Real *4) ATAN, ATAN2 
Double Precision (Rea1*8) DATAN, DATAN2 

SINH Real (Rea1*4) SINH 
Double Precision (Rea1*8) DSINH 

COSH Real (Rea1*4) COSH 
Double Precision (Real* 8) DCOSH 

TANH Real (Rea1*4) TANH 
Double Precision (Rea1*8) DTANH 

AS I NH Real (Real *4) ASINH 
Double Precision (Rea1*8) DASI NH 

A CO SH Real (Rea1*4) ACOSH 
Double Precision (Rea1*8) DACOSH 

AT ANH Real (Real *4) AT ANH 
Double Precision (Rea1*8) DA TANH 

NOT Integer*2, Integer*4 NOT 
IAND Integer*2, Integer*4 IAND 
IOR Integer*2, Integer*4 IOR 
IXOR, IEOR Integer*2, Integer*4 IEOR 
IBSET Integer*2, Integer*4 IBSET 
IBCLR Integer*2, Integer*4 IBCLR 
I BITS Integer*2, Integer*4 I BITS 
MVBITS Integer*2, Integer*4 MVBITS 
ISHFT Integer*2, Integer*4 ISHFT 
ISHFTC Integer*2, Integer*4 ISHFTC 
BTEST Integer*2, Integer*4 BTEST 

In addition to FORTRAN 77's standard arithmetic capabilities, HP FORTRAN 77 
provides a powerful facility for handling integer values as strings of individual bits. This 
is done by allowing FORTRAN's logical operators to be applied to integer values. 

6.4. 1 Internal Representation of Integer Values 
for the HP1000 

Unlike the case with standard arithmetic, exploitation of HP FORTRAN 77's versatile 
logical facility requires a detailed understanding of the way integer data are stored in 
HPlOOO systems. As stated earlier, an integer value occupies one word in storage. The 
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bits of that word are assigned as follows: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Ll I I I I I I I I I I I I I I I 
L_signbit 

Positive values have a sign bit of zero and the other fifteen bits give the absolute value. 
Thus, the integer value +41 looks like this: 

Negative values have a sign bit of 1, and the other fifteen bits give the 2 's complement of 
the absolute value. The 2 's complement of a binary number is obtained by changing every 
1 to a O and vice versa, and then adding 1. Thus, the integer value -41 looks like this: 

32-bit integer values, occupying two HPlOOO words or one HP9000 word, use the 32 bits as 
follows: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1615 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
L_signbit 

The value +41, stored as a 32-bit integer, has the following form: 

Similarly, the value-41, when stored as a 32-bit integer, looks like this: 

6.4.2 Logical Operations on Integer Values 

HP FORTRAN 77 supports five logical operations. When applied to integer values, they 
process each bit independently, producing a result of 1 or O for each operation. We shall 
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illustrate these for 16-bit integers (i.e., regular integers on the HPlOOO or short integers on 
the HP9000). However, the same rules apply for 32-bit integers as well. 

6.4.2.1 The .NOT. Operation The . NOT. operation (both periods are needed to specify 
the operator) works on a single integer value, changing each O to a 1 and each 1 to a O. For 
instance, suppose VCOUNT is declared as a 16-bit integer variable and it has a value of 41. 
(We saw what that looks like in the previous section.) If we were to write 

VCOUNT = .NOT.VCOUNT 

each ofVCOUNT's 16 bits would be changed (inverted) and the resulting value stored back 
into VCOUNT would be 

which corresponds to a value of-42. The same process applies to 32-bit integer values. 

6.4.2.2 The .AND. Operation The . AND. operation works on corresponding bits from 
two integer values to produce a 1 or O according to the following rules: 

1. 1 .AND. 1 ~ 1 
2. 1 .AND. 0 ~ 0 

3. 0 .AND. 1 ~ 0 

4. 0 .AND. 0 ~ 0 

Thus, if integer variable VCOUNT has a value of 41, and NEWV is another integer variable, 
the statement 

NEWV = VCOUNT.AND. 25 

will place a value of 9 in NEWV. Let us see how that happens: 

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 VCOUNT (41) 
.AND. 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 25 
yields 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 9 (NEWV) 

6.4.2.3 The .OR. Operation (inclusive or) The . OR. operation is the "mirror image" of 
the. AND. operation: 

1. 1 .OR. 1 ~ 1 
2. 1 .OR. 0 ~ 1 
3. 0 .OR. 1 ~ 1 
4. 0 .OR. 0 ~ 0 

If we use the same values as before, changing only the operation, i.e., 

NEWV = VCOUNT.OR. 25 

the value stored in NEWV will be 5 7: 

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 VCOUNT (41) 
.OR. 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 25 
yields 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 57 (NEWV) 
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6.4.2.4 The .EOV. Operation (equivalence) The . EQV. operation produces a 1 only 
when both operands are the same: 

1. 1 .EQV. 1 ~ 1 
2. 1 .EQV. 0 ~ 0 
3. 0 .EQV. 1 ~ 0 
4. 0 .EQV. 0 ~ 1 

Using the same values as before, the statement 

NEWV = VCOUNT.EQV. 25 

places a value of-49 in NEWV: 

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 
.AND. 
yields 

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 
1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 

6.4.2.5 The .NEOV. Operation (exclusive or) 

1. 1 .NEQV. 1 ~ 0 
2. 1 .NEQV. 0 ~ 1 
3. 0 .NEQV. 1 ~ 1 
4. 0 .NEQV. 0 ~ 0 

Referring to our example one more time, the statement 

NEWV = VCOUNT.NEQV. 25 

produces a value of 48, which then is stored in NEWV: 

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 
.NEQV. 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 
yields 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

6.4.3 Bit-Handling with Logical Operations 

VCOUNT (41) 
25 

-49 (NEWV) 

VCOUNT (41) 
25 
48 (NEWV) 

The application of logical operations to integer data makes it possible to manipulate 
individual bits conveniently. There is virtually no end to the techniques that can be built 
based on these opportunities. Consequently, we must limit ourselves to an examination of 
some fundamental approaches that can serve as guidelines for more ambitious extensions. 

6.4.3.1 Bit-Setting Operations If we think of an integer as a string of bits in which each 
bit represents an individual switch that may be on (1) or off (0), it would be useful to be 
able to manipulate these switches independently of each other. 

One such manipulation involves placing designated bits in an integer while leaving 
the others unaffected. (Placing a 1 in a certain position is called setting; placing a O there is 
called clearing.) To illustrate, suppose we wanted to set bits 3 and 4 of integer variable 
VCOUNT. (Recall that the leftmost bit is bit 15, the next one is bit 14, and so on.) A 
simple way to set a bit is to set up a mask-an integer in which all the bits are O except for 
those of interest (bits 3 and 4 in this case). this is easily done using HP FORTRAN 77's 
hexadecimal form for integer constants. If we write out the desired mask bit by bit, we get 

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 

Replacing each group of four bits with its hexadecimal equivalent gives us Z' 0018', so 
that the declaration of our mask would say 

INTEGER*2 MASK_34 
DATA MASK_34/Z'0018'/ 
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Then, if we wanted to set bits 3 and 4 of VCOUNT, the simple assignment 

VCOUNT = VCOUNT.OR. MASK_34 

would do it. 
Clearing particular bits follows a similar pattern. Suppose we wanted to clear bits 2 

and 11 of VCOUNT without affecting the others. This time, our mask would consist 
entirely of ls except for bits 2 and 11: 

1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 

Accordingly, our declaration would say 

INTEGER*2 MASK2_ll 
DATA MASK2_ll/Z'F7FB'/ 

and the clearing operation would be achieved by the assignment 

VCOUNT = VCOUNT.AND. MASK2_ll 

(Examination of the . AND. operation's properties makes it clear that when the mask bit is 
0, the result inevitably is 0; when the mask bit is 1, the result is unchanged from its 
original value.) 

6.4.3.2 Bit-Testing Operations A useful companion to bit-setting and bit-clearing is the 
ability to test individual bit values so that they can motivate subsequent decisions. One 
simple way to do this is to copy the value of interest into another location, clear all the bits 
except those to be tested, and then test against the mask that was used to clear the 
irrelevant bits. 

To illustrate, suppose we wanted to base a particular decision on the presence of ls in 
bit 7 and 13 of integer variable VCOUNT. We shall use TST _ VCOUNT as the variable on 
which the test is performed. (The original value still will be preserved in VCOUNT.) The 
appropriate mask, prepared in variable MASK7 _13, looks like this: 

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

This corresponds to a hexadecimal value of Z' 2080'. Consequently, our sequence will 
be as follows: 

INTEGER*2 
DATA 

VCOUNT,TST_VCOUNT,MASK7_13 
MASK7_13/Z'2080'/ 

TST_VCOUNT = VCOUNT.AND. MASK7_13 

IF (TST_VCOUNT.EQ. MASK7_13) THEN 
etc. 

As a result, bit positions 7 and 13 in TST _ VCOUNT will preserve the corresponding values 
from VCOUNT and all the other bit positions will be cleared. Then, since bits 7 and 13 of 
the mask were set by the declaration, an equal comparison with TST _ VCOUNT will mean 
that those bits are set in VCOUNT as well. 

In addition to the fundamental tools described in Section 6.4, HP FORTRAN 77 provides 
a set of built-in functions (and a subroutine) that offer an alternative way of handling 
individual bits in integer data. Many of these functions are included in the military 
extension to FORTRAN 77 (MIL-STD-1753). There is no clearcut set of criteria that 
identifies the use of these functions as being universally superior to the use of masking and 
other logical techniques outlined earlier. Consequently, it is helpful for the programmer 
to be aware of both sets of possibilities so the appropriate choice can be made for each 
situation. 
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There are eleven bit-related subprograms. These are categorized and described in the 
following sections. 

6.5. 1 Basic Logical Functions 

HP FORTRAN 77 includes functions for four logical operations: 

1. The NOT function is identical to the . NOT. operator: 

VCOUNT = NOT (VCOUNT) 

and 

VCOUNT = .NOT. VCOUNT 

produce the same result. 

2. The IAND function duplicates the . AND. operator: 

NEWV = IAND (VCOUNT, 25) 

and 

NEWV = VCOUNT.AND. 25 

produce the same result. 

3. The IOR function duplicates the. OR. operator: 

NEWV = IOR (VCOUNT, 25) 

and 

NEWV = VCOUNT.OR. 25 

produce the same result. 

4. The IXOR function (also named IEOR) is identical to the. NEQV. operator: 

NEWV = IXOR (VCOUNT, 25) 

and 

NEWV = VCOUNT. NEQV. 25 

produce the same result. 

There is no function for equivalence, but its effect is produced easily enough: 

NEWV = VCOUNT.EQV. 25 

can be duplicated by 

NEWV =NOT (IXOR(VCOUNT, 25)) 

or 

NEWV . NOT. ( IEOR (VCOUNT, 25) ) 

or even 

NEWV = . NOT. (VCOUNT . NEQV. 2 5) 

6.5.2 Bit-Setting Functions 

Two functions make it possible to set or clear a particular bit in an integer value: 

1. IBSET (str, p) sets the bit in position p of integer value str. The other positions are 
unaffected. If str is a 16-bit integer, p must be 0-15; if str is a 32-bit integer, p must 
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be 0-31. Otherwise, the function has no effect. Either or both arguments may be 
integer expressions. 

2. IBCLR (str,p) clear position p in integer str. The same stipulations described for 
IBSET are true here as well. 

Thus, assuming VCNTl, VCNT2 and NEWV are integer variables with values in them, the 
statement 

NEWV = IBSET (VCNTl,12) + IBCLR (VCNT2,5) 

sets bit 12 in a temporary copy of VCNTl, clears bit 5 in a temporary copy of VCNT2, adds 
these two values together, and stores the result in NEWV. Note that VCNTland VCNT2 
retain their original values. If we had wanted VCNTl and VCNT2 changed, we would have 
to say 

VCNTl = IBSET (VCNTl,12) 
VCNT2 = IBCLR (VCNT2,5) 
NEWV = VCNTl + VCNT2 

6.5.3 Bit-Manipulating Subprograms 

Four subprograms provide facilities for isolating bits and moving them around. 

6.5.3. 1 The IBITS Function This function makes it possible to isolate portions of an 
integer so that these portions can be treated as separate values. For instance, suppose we 
have the following declarations: 

INTEGER*2 OLDV, NEWV 
DATA OLDV/Z'F632'/ 

Then, the statement 

NEWV =!BITS (OLDV,4,5) 

produces the following activities: 

1. The five bits starting in position 4 of OLDV and going to the left are copied into the 
rightmost positions of a temporary location (let us call it Tl). In other words, bits 
4, 5, 6, 7, and 8 of OLDV are places in positions 0, 1, 2, 3, and 4, respectively, of 
Tl. 

2. The remaining positions of Tl are cleared. 
3. Tl is copied into NEWV. 

For the values in our example, this means that NEWV will end up with a value of Z' 0003 ' . 
Thus, the first argument specifies the value from which the bits are to be extracted, the 
second indicates the starting position (the rightmost position) of the portion to be 
extracted, and the third argument specifies the length of the desired extraction. The latter 
argument must be greater than zero, and it must be consistent with the second argument. 
For instance, we cannot get a 7-bit string starting in position 12ofa16-bit integer. Any or 
all of the arguments may be integer expressions. 

6.5.3.2 The MVBITS Subroutine This subprogram replaces part of one integer value 
with a string of bits extracted from another integer value. The general form for its usage 
consists of a complete statement appearing as follows: 

CALL MVBITS (strl, pl, size, str2, p2) 

The third argument (size) specifies the number of bits to be transferred. These come from 
integer strl starting in position pl and are copied into integer str2 starting in position 
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p2. To illustrate, the statement 

CALLMVBITS (OLDVl, 8, 5, OLDV2, 3) 

copies bits 8, 9, 10, 11, and 12 from integer OLDVl into respective positions 3, 4, 5, 6, 
and 7 of integer OLDV2. Any or all of the five arguments may be integer expressions. 

6.5.3.3 Bit-Shifting Functions I SHFT (logical shift) and I SHFTC (circular shift) enable 
the programmer to change an integer value by changing the positions of bits within the 
value. To illustrate, suppose we say 

INTEGER*2 OLDV, NEWV 
DATA OLDV/Z'F632'/ 

NEWV = ISHFT (OLDV, -3) 

As a result, the bits in OLDV will be shifted three positions to the right. The rightmost three 
bits fall off the end into a large plastic bit bucket which is emptied periodically by persons 
unknown. The newly vacated positions at the left are cleared. Therefore, the value set to 
NEWV will be z' 1EC6', i.e., 

1 1 1 1 0 1 1 0 0 0 1 1 0 0 1 0 

shifted 3 positions right yields 

0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 0 

Had we said 

NEWV = ISHFT (OLDV, 3) 

the shift would go in the other direction (to the left). Accordingly, the leftmost bits fall 
into the bit bucket and the rightmost ones are cleared. Using the same original value for 
OLDV, the value now stored in NEWV will be Z 'B190', i.e., 

1 1 1 1 0 1 1 0 0 0 1 1 0 0 1 0 

shifted 3 positions right yields 

0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 0 

Note that a right shift followed by a left shift of the same length will not necessarily bring 
back the original value. (Troublesome thing, that bit bucket.) 

The ISHFTC function performs a circular shift. That is, it treats the value as if it 
were a closed ring. Consequently, bits do not fall off, and the bit bucket is denied its 
booty. Instead, bits shifted out of one end are shifted into the other end. As a result, only 
the positions change. The general form is 

ISHFTC (str, npl, size) 

where size is the number of bits to be shifted and npl indicates the number of places over 
which the shift is to occur. ISHFTC always shifts the rightmost bits. As an example, let us 
use the declared value for OLDV with the statement 

NEWV = I SHFTC ( OLDV, -4) 

As a result, the rightmost four bits of OLDV become the leftmost four bits of NEWV and 
everything else is pushed along accordingly. Thus, NEWV will receive a value of z' 2F63 ' . 
Had we said 

NEWV = I SHFTC ( OLDV, 4) 

the rightmost four bits of OLDV would be shifted circularly to the left, so that the leftmost 
four bits of OLDV would become the rightmost four bits of NEWV. That is, NEWV's value 
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will be Z ' 632F' . The absolute value of npl must be no greater than size. Here again, any 
or all of the arguments may be integer expressions. 

6.5.4 Bit-Testing with the BTEST Function 

An individual bit in an integer value may be tested with the BTEST function whose 
general form is 

BTEST (str, p) 

If position p of integer str has a 1, the outcome is . TRUE. ; a p value greater than 15 (or 
greater than 31 if str is a double integer) automatically produces a . FALSE. outcome. 
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FORTRAN includes a library of independent programs designed to perform certain 6.6 SUMMARY 

computational tasks and make it appear as if these tasks were single operations. These 
programs, called built-in functions, are available to any and all FORTRAN programs. A 
built-in function is used by referring to its name and supplying it with data on which to 
operate. This referral is known as invocation and the data supplied to a function is called 
an argument. A function may require one or more arguments, depending on the type of 
operations it is designed to perform. When a function completes its task, it returns a single 
result which then is treated like any other value in an expression. 

1. Show the result of each of the following computations. Both the value and the data type are to be PROBLEMS 
considered: 

(a) INT (26. 97) 
(c) INT (3+2. 479) + 4*INT (0. 217D+03) 
(e) 3*REAL (41) 
(g) REAL(INT(4. 84/2. 2)) 
(i) DBLE (48/12+6. 3) 

(b) 32.16 + 2*INT(O. 4741) 
(d) INT(8. 3+INT(2. 89)) 
(f) REAL (4. 71+0. 538406275811D+Ol) 
(h) REAL(INT(REAL(22. 84. 28. 84))) 
(j) DBLE (REAL (INT (7. 2/3. 6))) 

2. Show the result of each of the following computations. Both the value and the data type are to be considered: 

(a) AINT(3. 62+8. 7) 
(c) REAL (5/2+AINT (11. 0/4. 0)) 
(e) AINT (REAL (17 /4) +AIN'T (40. O+INT (14. 4))) 
(g) ABS (-2*7. 2) 
(i) REAL (ABS (-3+INT (6. 6*2**3))) 

(b) AIN'T (8. 81+INT (4. 58)) 
(d) DBLE (17 /4 + AIN'T (0. 3486D+03)) 
(f) AIN'T (-7. 3) +AIN'T (-7. 7) 
(h) ABS (AIN'T (-8. 81)) 

3. Show the result of each of the following computations. Both the value and the data type are to be 
considered: 

(a) ANINT (3. 62+7. 45) 
(b) ANINT (0. 54600E2) 
(c) ANINT(REAL(8/5)+INT(3.6*1.l)+ANINT(3.88)) 
(d) NINT (3. 68) 
(e) NINT(3. 68+ANINT(3. 68)) 
(f) NINT(REAL(61/8)+ANINT(4.81)+AINT(5.58)) 
(g) SIGN(3.81,2.7) 
(h) SIGN (-7. 7, 6. 1) 
(i) SIGN (32. 8, AIN'T (-8. 1)) 
(j) DIM ( 14. 1, 7. 1) 
(k) DIM(81,104)*AINT(49.72/3.12) 
(I) NINT(MAX(21,18)/3*SIGN(DIM(l4.8,6.8) ,-4.4)+AINT(6.6)) 
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4. Write FORTRAN expressions for each of the following: 

(a) 2.7 + 3.Jx + Y (i) sin2 (e-cos2x) 

(b) Jx+Y 
.Jx - Y 

(j) ( X y ) [log ZJ 

.Jlog y - .J2 log X2 

(c) log 3X + Y (k) sin log xey 

( d) log (3X + Y)2 

( e) 2e-o.ix sin 0. 7X 

(f) x-logsin y 

(1) log Max (esln ~,l.J3Y- 4PI) 
sm-1 Z 

'1; Jx+Y 
(m) (X - e ) tan2 log z 

(g) xcos y - .JloglO Sin X2 

y-sin2x 

1 + log10JX 
37TZ 

(h)---
1 + log ( ~) 

5. Many mathematical functions can be computed as series in which the accuracy of the function value 
depends on the number of terms used in the computation. For example, we can get a value of e (the base of 
natural logarithms) from FORTRAN by using the EXP function with an argument of 1. 0. This value 
(which turns out to be 0. 2718281E+Ol) can be computed from the series 

1 1 1 1 
e=2+-+-+-···+-

2! 3! 4! n! 

We can examine the effect of each additional term by evaluating the series with 1 term, 2 terms, 3 
terms, etc., and comparing each of the results with the reference value. Thus, fore, this comparison would 
look like this: 

no. of terms series value ser val = ref val 

1 0. lOOOOOOEOl -0.1718281E+Ol 
2 0.2000000E01 -0.7182810E+OO 
3 0.2500000E01 -0.2182810E+OO 
4 0.2666667E01 -0.5161400E-01 
5 0.2708334E01 -0.9947400E-02 
6 0.2716667E01 -0.1613700E-02 
7 0.2718056E01 -0.2252000E-03 
8 0.2718230E01 -0.5140000E-04 

etc. 

We can see that by the eighth term, the computed value agrees with the reference value to four decimal 
places. 

Prepare such a table for each of the following functions. Stop at ten terms. Obtain the reference value 
by invoking the appropriate FORTRAN built-in function. Prepare a structured flowchart or pseudocode 
representation of your design. (NOTE: Errors in roundoff and truncation can be minimized in such 
computations by adding the terms together from smallest to largest): 

. X3 xs x1 X9 
(a) sm X = X - 3! + 5! - 7! + 9! - · · · (use X = 0.5) 

x2 X4 X6 xs 
(b) cos X = 1 + 2T +4! + 61 +8! + · · · (useX = 0.5) 

[ 
x - 1 1 ( x - 1 ) 3 1 ( x - ! )5 ] (c) log X = 2 X + 1 + 3 X + 1 + 5 X + 1 + · · · (use X = 2.0) 

1X3 1X5 1X7 

(d) tan-1 X = X - 3 + 5 - 7 + · · · (useX = 0.5) 

x2 X3 X4 
( e) ex = 1 + X + - + - + - + · · · (use X = 2 5) 2! 3! 4! . 
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6. Repeat any or all of the sections of Problem 5 so that the computations are halted when the difference 
between the series value and the reference value is less than o. 001. In any event, do not let the 
computations go beyond ten terms. 

7. Write FORTRAN expressions for each of the following computations: 

(a) Round the value 2. 7 to the nearest integer. 
(b) Round the value 81. 99 to the nearest tenth. 
(c) Round the value 786. 972 to the nearest thousand. 
(d) Round the value 786. 972 to three decimal places. 
( e) Round the real value in variable FMAX to the nearest hundredth. 
(f) Bring the real value in variable GMIN to the nearest whole number. 
(g) Round the largest of the three real variables X, Y and Z to four decimal places. 
(h) Round the sum of the largest and smallest of the values in real variables G 1, G2, G3, G4 and G5 to the 

nearest thousandth. 

8. Write a statement or sequence of statements to perform each of the following processing activities: 

(a) Set bit 7 of integer variable VMAX. 
(b) Set bits O and 15 of integer variable VMAX. 
(c) Clear bits 12-14 and set bits 21-25 of double integer variable SBIG. 
( d) Clear every fourth bit (starting with position 0) of integer FRO LL. 
( e) Duplicate the bit values in positions 5-11 of integer BSOURCE in the same respective positions of 

integer BDEST. 
(f) Duplicate the bit values in positions 11-14 of integerBFONT in positions 12-15 of integerBREC. 
(g) Duplicate the bit values in positions 8-10 of integerBVAL in positions 1-3 ofBVAL. 
(h) Copy the bit value in position 9 of double integer DBVAL into positions 22 through 27 ofDBVAL. 
(i) Exchange the upper and lower halves of integer FOLDEM. 
(j) Reverse the order of the bits in double integer MIRROR. 
(k) Clear integer MNSW except for bit positions 7, 10, and 13. 
(1) Set all the bits in integerPOTSW except for positions 8, 11, and 12. 
(m) If bit 10 of integerGSW is 1, setGSW's even-numbered bit positions; otherwise, clearbit 10 and set bit 

4. 
(n) If at least four bits in integer SWTST have 1 in them, clear integer STARTB, set all the bits in integer 

HOLDB, and store the sum of STARTB and HOLDB in NEWSUM; otherwise, set the lower half (position 
0-7) ofHOLDB, clear the upper half of STARTB, and store the sum ofHLDB and STARTB in NEWSUM. 

9. Write a program that reads a succession of three-digit positive integers, storing each one, in tum, in INTG. 
The program is to keep track of the number of values read in (NUMVAL) and the number of values 
(NUMSYM) in which the first and third digits are the same. Each time such a value is read, it is to be printed. 
At the end of the run (you must determine how that is recognized), the program prints NUMVAL and 
NUMSYM. Thus, a value of 484, or 101, or 777 fits the description, while a value of 228, 487, or 822 does 
not. 

10. Nowhere in the world is there a more spectacular St. Patrick's Day parade than in Brooklyn. Tens of 
thousands have thrilled to its fl.oats, bands, green goats and baton twirlers, but the main attraction (as long 
as anyone can remember) has been the thousands of marchers moving crisply in precise, equal rows. All 
nationalities, all ages, all colors, all sizes, and (on that day) all Irish. For 34 years this organizational marvel 
has been in the competent hands of Paddy Gogarty, and this year Paddy is about to make it all work again. 
But there is a sadness in his eyes: His good friend O'Casey has joined the Great Parade and forevermore 
will he be missing from his accustomed position at the end of the last row. 

Anyway, there is Gogarty watching the rows form on the vast Prospect Park Parade Grounds and 
trying to ignore his longtime aide Flynn: 

"O'Casey's ghost will march in this parade, sure as anything!" 
Everything was ready for the run-through and Gogarty watched as the rows of six marched by, signalling 
adjustments and corrections. When the last row arrived, Paddy's eyes widened: One marcher was missing 
from the end of the row. 

"O'Casey!" whispered Flynn. 
"Shaddup!!" shouted Gogarty. "March them in fives." 

The marchers regrouped and marched again. Gogarty looked, nodded, then blinked. There, in the last 
row, was an empty position. 

"Fours!" said Gogarty. Flynn said nothing. 
Back they came, four in a row. The last row had three. Gogarty ordered threes; the last row had two. 
O'Casey's face flashed in Paddy's head but he grimly asked for rows of two and said some other things. 
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(No need repeating them here; they have little to do with FORTRAN.) By now, he was not surprised to 
see a lone marcher in the last row. 

Almost at that instant, Paddy felt a tug at his sleeve, causing him to jump 2.816 feet straight up. But it 
was only little Kevin McFardle, bringing help. Help was in the form of a FORTRAN program that Kevin 
had written. Knowing how many marchers there were (MRCHRS), Kevin was able to devise an algorithm 
that would tell him what size row was needed to make all the rows equal. 

"Use sevens" said Kevin. 
A desperate Paddy tried it and, sure enough, as the last row came by, a beaming Gogarty counted seven 
marchers. Rest in peace, O'Casey. 

Knowing what happened with six, five, four, etc., knowing that seven works, and knowing that Paddy 
has at least 500 marchers in his ranks, write a program that computes and prints the first three values of 
MRCHRS for which this situation works. 

11. The distance between two points (Xl,Yl) and (X2,Y2), when plotted on rectangular coordinates, can be 
computed by the formula 

d12 = ~(X2 - Xl)2 + (Y2 - Yl)2 

Write a program that reads and processes sets of four points (Xl,Yl), (X2,Y2), (X3,Y3) and (X4,Y4). 
The program is to compute and print the distances between all pairs of points. Use an (Xl,Yl) of 
( -100, -100) to stop the run. Display each distance on a separate line and leave a blank line between sets. 

12. This program is to meet the same requirements described for the previous problem, with one difference: 
The distances are to be printed along with the names of the two pertinent points. 

13. Write a program that reads two pair of integer values for each input set: The time now in hours and 
minutes (HR.SNOW and MNSNOW) and the elapsed time (HRSLPS and MNSLPS). After printing each pair of 
values on a separate line, the program is to print the new time. HR.SNOW is in military hours (noon = 12, 
1 :00 PM = 13, etc., midnight = 0) and your answer should be in military time (on a third line, 
appropriately labeled). For example, if HR.SNOW and MNSNOW are 8 and 45, respectively (i.e., 8:45) and 
HRSLPS and MNSLPS are 5 and 37, respectively (i.e., a time lapse of 5 hours and 37 minutes), the new 
time will be2:22PM, or 14 (forhours)and22 (for minutes). Similarly, ifMRSNOWandMNSNOWare21 and 
14, respectively, a time lapse of7 hours and 49 minutes will give a new time of 5 :03 AM (i.e., an hour value 
of 5, minute value of 3). Use an HR.SNOW value of -1 to stop the run. 

14. When forces are exerted on an object in a geometric plane, it is helpful to examine these forces abstractly, 
in a diagram such as the one shown in Figure 6. 7. Here we see three forces Fl, F2 and F3 being exerted at 
three angles Al, A2, and A3. Each of the forces has a horizontal component equal to the force times the 

Fl 

F3 

VFl 

FIGURE 6. 7 Horizontal and Vertical Force Components Acting on an Object. 
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cosine of the angle it makes with the positive X-axis, and a vertical component equal to the force times the 

sine of the angle it makes with the positive X-axis. In terms of Figure 6. 7, Fl 's horizontal component, for 

example, is 

HFl = Fl cos Al 

If we add all the horizontal components together, we can determine the total (net) force exerted parallel 

to the X-axis. In the case of the three forces shown in Figure 6. 7, this total horizontal force would be 

HF = HFl + HF2 + HF3 = Fl cos Al + F2 cos A2 + F3 + cos A3 

The same type of value can be computed for the vertical components: 

VF= VFl + VF2 + VF3 =Fl sin Al+ F2 sin A2 + F3 sin A3 

The resultant force, then, is the total force exerted by the combination and it can be computed as 

R = -Jyp + HP 

The angle that this resultant force makes with the positive X-axis can be computed from its tangent: 

VF 
TanAR = -

HF 

Write a program in which each input set consists of six values: Fl, Al, F2, A2, F3, and A3. All values are 

real and the angles are given in degrees. (Remember that arguments to the trigonometric functions must 

be in radians. There are 3 .14159 radians in 180 degrees.) Output for each set is to consist of an echo of the 

input (each force and its angle on a separate line) followed by a fourth line showing the resultant force and 

its angle, in degrees. A blank line is to separate output for each set and an Fl value of 0.0 stops the run. 

Operate your program with the following input sets: 

Fl Al F2 A2 F3 A3 

100.0 30.0 100.0 45.0 100.0 60.0 

100.0 30.0 100.0 150.0 100.0 90.0 

10.0 45.0 250.0 90.0 400.0 180.0 

25.0 0.0 50.0 195.0 200.0 310.0 

AWNGL 

585 mph 
ARSPD 

45 mplr 

(WNDSPD) 

----... 
--------GRSP~---- 'DRFNGL 

FIGURE 6.8 Forces Acting on an Aircraft in Flight. 

15. When an airplane sets out to fly in a certain direction, that direction may be affected by a prevailing wind. 

For example, an airplane traveling due west at 585 miles per hour might encounter a wind blowing due 

south at 45 miles per hour (Figure 6.8). This means that after, say, an hour of flying at these conditions 

(without correcting for them) the plane would have traveled 585 miles west and 45 miles south. In order to 

correct for this effect, it is necessary to determine the ground speed of the aircraft (GRSPD) and the drift 

angle (DRFNGL). Thus, if ARSPD is the airspeed, WNDSPD is the windspeed and AWNGL is the angle 

between the aircraft heading and the wind direction (90 degrees in the example of Figure 6.8), we can use 

the law of cosines to solve for GRSPD: 

The Law of Cosines is cos A = b2 + Cl - az 
2bc 

and then the law of sines will help us solve for DRFNGL: 

a _ b _ c 
sin A - sin B - sin C 
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Write a program in which an input set consists of ARSPD, WNDSPD and AWNGL (the latter in degrees) and 
the output is to echo the input (one line for each value, with each one labeled) followed by GRSPD and 
DRFNGL (on one line). DRFNGL is to be printed in degrees and a blank line is to separate the input sets. Use 
an ARSPD of zero to stop the run and operate your program with the following values: 

ARSPD WNDSPD AWNGL 

325.0 0.0 0.0 
280.0 10.0 0.0 
300.0 20.0 180.0 
300.0 55.0 90.0 
400.0 50.0 120.0 

16. The tramp steamer was a pretty tacky vessel to begin with, so that even in calm seas it had its troubles. 
Thus, it was not surprising that it went under during the terrific storm of '93 (known for decades thereafter 
as The Terrific Storm of '93). When things settled down, what was left was a trio of survivors (two rogues 
and an assistant rogue) washed up on a small island. Hours later, they awoke and began to look around. 
All they could find was a grove of coconut trees. An afternoon's hard work produced a respectable pile of 
coconuts and a medium sized monkey who observed the proceedings. Exhausted by their labors, the 
group decided to go to sleep, planning to divide the coconuts when they awoke. Yes indeed. 

Survivor A awoke a little later, bothered by this sudden outbreak of honesty. Action quickly followed 
thought as she divided the pile into three equal groups. This left a single coconut which she gave to the 
monkey. Then, she buried one of three equal piles, made a single pile of the remaining nuts and went back 
to sleep. 

Survivor B awoke soon after that and did the same thing. After dividing the pile into three equal piles, 
there was one coconut left over, and that went to the ever watchful monkey. One of the piles was buried, 
the other two recombined, and back to sleep went B. Watch for it. 

Yup; here it comes: C gets up, looks at the pile, imagines it was bigger the last time he saw it, but is not 
sure. Anyway, the pile is split into three piles, the monkey gets the single coconut that is left over, one of 
the piles is buried, the other two recombined, and that is that. 

Comes the dawn and the group wakes up, ready to split the harvest. By now, you can imagine that the 
shrinkage is noticeable, but nobody says anything. They go to work and split the pile (mini-pile?) into 
three equal piles. This leaves one coconut, and the monkey gets that. What happens afterward is not of 
immediate interest here. What is of interest is the following: Write a program that computes and prints the 
minimum number of coconuts for which this story would be true. If you design and set up a reasonable 
algorithm, it will be easy to find other numbers for which this works once you find the minimum, so find 
the next three numbers and print those. 



7 
Arrays 

It is often convenient to be able to treat a number of similar data items as an organized 
collection. Such groupings, known in FORTRAN as arrays, make it possible to store 
collections of integers, real numbers, characters, or logical values under a common name. 
A wide variety of operations then can be applied either to the entire array or to any 
individual items in it. 

An array consists of a group of elements where each element is the same type as the others. 
The size of an array (i.e., the number of elements) is defined by the programmer with a 
declaration. For example, suppose that we are designing a program dealing with six 
different types of paintbrushes and we need to store the six prices so that any or all of them 
are available on demand. This is handled easily by treating the prices as an array. Using 
BRUSH_PRICE as the array's name, we can construct a mental picture of this collection 
(Figure 7 .1). Note that the name BRUSH_PRI CE refers to the entire collection. However, 
when we attach a number to the general name, that number (called a subscript), enables 
us to identify a single element (e.g., the second element, representing the price of the 
second paintbrush type) and process it separately. 

7 .1 ORGANIZA­
TION OF 
ARRAYS 

BRUSH_PRICE1 BRUSH_PRICE2 BRUSH_PRICE3 BR USH_PRI CE4 BRUSH_PRICE5 BRUSH-PRICE() 

FIGURE 7.1 Organization of BRSHPR as a One-Dimensional Array. 

Although the details of array declaration are discussed later in this chapter, it will be 
helpful to introduce the basic form at this point. For the array of brush prices just 
discussed, we can write 

REAL BRUSH_PRICE(6) 

and FORTRAN will reserve storage for six real values under the collective name 
BRUSH_PRICE. Each of the elements then can be identified separately by using a 
subscript along with the array name. By specifying BRUSH_PRI CE in the above declara­
tion, we are telling FORTRAN that the six elements are to be named BRUSH_pRICE ( 1) , 

BRUSH_PRICE (2), BRUSH_PRICE (3), BRUSH_PRICE (4), BRUSH_PRICE (5), 

andBRUSH_PRICE (6). 

7. 1. 1 Dimensionality of Arrays 

The array named BRUSH_PRICE is an example of a one-dimensional array. This means 
that there is just one factor (the brush type) that distinguishes each brush price from the 135 
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Row 1 

Row 2 

ARRAYS 

other five. We can find the price of, say, a type 4 brush by adding a single piece of 
information, i.e., the (4) to the collective name BRUSH_PRICE. In certain circumstances 
this type of classification is not complete enough. We may want to identify an element in 
an array by two separate categories. For instance, it may not be adequate to think of our 
six different paintbrushes as being simply six different types. Instead, suppose these are 
made in three different sizes, and each size comes in two different grades. Now, it takes 
two pieces of information, i.e., the size and grade, to pinpoint which of the six types of 
brushes we mean. If we want to store the six prices to reflect this organization of the data, 
we would set up a two-dimensional array. One way to declare it is as follows: 

REALBRUSH_PRICE (3, 2) 

This still tells FORTRAN to reserve room for six real numbers, but now we have 
added the requirement that these six elements be organized in three rows and two 
columns, as represented in Figure 7.2. Each row would be used to hold prices for the two 
brushes having the same size, and each column is designed to hold prices for the three 
brushes having the same grade. Consequently, we must specify a size (row) and grade 
(column) in order to get to an individual element. For example, the assignment statement 

BRUSH_PRICE (2, 1) =4. 15 

assigns the value 4. 15 to the element in row 2, column 1. In our array organization, this 
element represents a second size, first grade brush. 

Using exactly the same requirements (three sizes, two grades), we could represent 
the same data with a slightly different organization: The declaration 

REALBRUSH_PRICE (2, 3) 

reserves room for six elements as before, but this time they are organized as two rows and 
three columns (Figure 7 .3), with each row representing a size. Now, if we wanted to assign 

Column 1 

Row 1 BRUSH_PRICE (1,1) 

Row 2 BRUSH_PRICE (2,1) 

Row 3 BRUSH_PRICE 3,1) 

Column 1 Column 2 

BRUSH_PRICE (1,1) BRUSH_PRICE (1,2) 

BRUSH_PRICE (2,1) BRUSH_PRICE (2,2) 

Column 2 

BRUSH_PRICE (1,2) 

BRUSH_PRICE (2,2) 

BRUSH_PRICE (3,2) 

Column 3 

BRUSH_PRICE (1,3) 

BRUSH_PRICE (2,3) 

FIGURE 7 .2 Organization of BRSHPR as 
a Two-Dimensional Array (3 x 2). 

FIGURE 7 .3 Organization of BRSHPR as 
a Three-Dimensional Array (2 x 3). 
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Row 1 BRSHPR (1,1,1) BRSHPR (1,2,1) 

Row 2 BRSHPR (2,1,1) BRSHPR (2,2,1) 

Row 3 BRSHPR (3, 1, 1) BRSHPR (3,2,1) 

Column 1 Column 2 FIGURE 7 .4 Organization of BRSHPR as a Three­
Dimensional Array (3 x 2 x 2). 

a price of 4.15 to the size 2 grade 1 brush, we would say 

BRUSH_PRICE(l,2) =4.15 

The organization in Figure 7.3 is not "better" or "worse," "milder" or "harsher" than the 
one in Figure 7.2; it is only different. The choice depends on the programmer's view of 
what will make the program simpler and clearer. 

Thus, the dimensionality of an array indicates the number of pieces of information 
required to find one of its elements. The number of subscripts matches the dimen­
sionality. Note also that the declaration indicates how many elements there are in the 
array. For example, our declaration of BRUSH_pRJCE with 3 rows and 2 columns 
reserved room for (3 x 2) elements. An array X declared as 

INTEGERX (10, 15) 

would have 10 x 15 or 150 elements. 
More intricate situations may call for arrays with greater dimensionality. For in­

stance, suppose there is great pressure from the marketplace so that now there are twelve 
different paintbrushes: Three sizes, two grades, and (by popular demand) two bristle 
lengths. This could be represented by a three-dimensional array: 

REALBRUSH_PRICE (3, 2, 2) 

The organization of the array is shown in Figure 7.4. Note, as before, that the rows, 
columns, and blocks (as the third dimension is called) were selected as a matter of 
preference. 

HP FORTRAN enables the programmer to declare arrays having as many as 32768 
dimensions on the HPlOOO and (2**32)-1 on the HP9000. (After rows, columns, and 
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WT2 (1,1) 

WT2 (2,1) 

WT2 (3,4) 

WT2 (4,1) 

WT2 (5,1) 

WT2 (6,1) 

ARRAYS 

blocks, many people refer to the fourth dimension as slices; beyond that, it is up to your 
imagination.) 

7 .1.2 Representation of Arrays in Storage 

We have seen that we can find any array element by specifying the right subscript( s). The 
mechanism that does the searching and finding is automatic and, in many cases, we can let 
it operate without paying attention to it. However, there are certain situations where it is 
necessary to know the order in which the elements are stored. One type of instance stems 
from the fact that we can read in an entire array with a single statement. For example, if 
we write 

REAL*4 WT (24) 
READ*, WT 

FORTRAN will go and read 24 values (consistent with WT's declaration as a 24-element 
array). Since WT is one-dimensional, there is no problem in analyzing what happens. The 
first input value is placed in WT ( 1) , the second one in WT ( 2) , and so on, until 24 values 
have been read and stored. But now let us look at the following statements: 

REAL*4 WT2 (6, 4) 
READ*, WT2 

What happens here? We still have an array of 24 elements (6 rows x 4 columns) and the 
READ statement still drags in 24 values. But where are they stored? "Who cares?" is not 
the appropriate answer. The right input values will get to the right element only by the 
luckiest coincidence unless we know how FORTRAN handles this, and we arrange the 
input values using that knowledge. 

To find out, let us start with WT2, declared above as a 6 x 4 array. We can think of that 
array's organization as the one shown in Figure 7.5. The way FORTRAN stores these 
elements is shown in Figure 7.6. Note that the elements are stored in order by column. 

WT2 (1,2) 

WT2 (2,2) 

WT2(3,2) 

WT2 (4,2) 

WT2 (5,2) 

WT2 (6,2) 

WT2 (1,3) 

WT2 (2,3) 

WT2(3,3) 

WT2 (4,3) 

WT2(5,3) 

WT2 (6,3) 

WT2 (1,4) 

WT2 (2,4) 

WT2(3,4) 

WT2 (4,4) 

WT2(5,4) 

WT2 (6,4) 
FIGURE 7 .5 Representation of the 6 x 4 
ArrayWT2. 
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WT2 (1,1) WT2 (2,1) WT2 (3,1) WT2 (4,1) WT2 (5,1) WT2 (6,1) WT2 (1,2) ..... WT2 (5,4) WT2(6,4) 

FIGURE 7 .6 Sequence of Storage for the 6 x 4 Array WT2. 

1.1,1.2,1.3,1.4,1.s,1.6,2.1,2.2,2.3,2.4,2.s,2.6, 
~ n D ~ D n r ~ ~ " tt 

II 0 0 0 ; , 0 0 0 ~ 0 0 0 ~: 0 0 0 : : 0 0 0 ; ; 0 0 0 : : 0 0 0 ;~ 0 0 0 ~ 0 C ll ~ 0 0 0 ii 0 0 0 ~ 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 ii 0 0 0 0 DD 
•!J451•11~n~~"~~n~q~~n~~~nna~~~nn~n~n~~~~Qo~~"uuu~~~~~~~~~9~~~uMaA~anMnnnM~5n~n• 

I ~ 1 : . ~ 1 1 1 ~- 1 1 1 ~· 1 . , ~· 1 1 1 ~~ 1 1 1 1 ' - 1 -1· 1 .1 1 .~;#'. '-;....-. I I 1 1 1 . 11 1 1 1 1 I 1 1 1 .1 ' 1 1 1 1 1 1 1 1 1 I 1 1 1 1 I 1 1 

2-2 '~ 2 2 2 2 2 7 2 2 2 2 2 2? '. 2_ 2 rfof ~~ 7 2 2 2 2 2 2 2' H 2 2 2 2 2. "2 2 2 2 2 

• 3_ - . • ~· 3 = . 3 . (tt . ~ . 3 3 3' 33 31 1111 

. .. • • 't · / 

FIGURE 7.7 Twenty-four Data Values (see Figures 7.5, 7.6, and 7.8) as They are Punched into a Data Card. 

Col. 1 Col. 2 Col. 3 Col. 4 

Row 1 1.1 2.1 3.1 4.1 

Row 2 1.2 2.2 3.2 4.2 

Row 3 1.3 2.3 3.3 4.3 

Row 4 1.4 2.4 3.4 4.4 

Row 5 1.5 2.5 3.5 4.5 

Row 6 1.6 2.6 3.6 4.6 

FIGURE 7.8 Stored Values in WT2 after Reading Data of Figure 7.7. 
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Going back to the READ statement for WT2, the first input value is stored in WT2 ( 1, 1) as 
expected. The next one is stored in WT2 ( 2 , 1) , the third one in WT2 ( 3 , 1) , and so on. 
Nothing is placed in the second column until FORTRAN gets to the seventh input value 
because it took the first six to fill the elements in the first column. 

To make sure this is clear, we shall apply the previous READ statement to the 24 data 
values shown on the input lines in Figure 7. 7. When that statement is executed using these 
values, the result will be as pictured organizationally in Figure 7 .8. 

7 .1.3 A General Fonnula for Locating Array Elements 

The order in which FORTRAN assigns storage for array elements follows a rule that can 
be described as follows: 

Array elements are stored so that the leftmost subscript varies first. The next one 
does not change until the leftmost subscript has gone through its entire range. This 
sequence proceeds from left to right, with the rightmost subscript changing least 
frequently. 

We shall see how this works on a three-dimensional array declared as follows: 

INTEGER*2 N (4, 2, 3) 

The 24 elements ( 4 rows x 2 columns x 3 blocks) will be stored in the sequence 
N ( 1, 1, 1) ' N ( 2' 1, 1) ' N ( 3' 1, 1) ' N ( 4' 1, 1) ' N ( 1, 2' 1) ' N ( 2' 2' 1) ' etc. Note 
that the row subscript (the leftmost one) went through the complete range (from 1to4) 
before the next subscript moved from 1 to 2. Thus, the element N ( 1, 2 , 1) is the fifth 
element in the sequence. In other words, the fifth input value brought in by a READ 
statement would be stored in N ( 1, 2, 1) . If we look a little further in the sequence, 
....... N(2,2,1), N(3,2,1), N(4,2,1), N(l,1,2), N(2,l,2), 
N ( 3 , 1 , 2) , . . . . . . , we see that the column subscript (second from left) went through 
its range (1-2) before the block subscript (the rightmost one) changed. Thus, in a 
three-dimensional array, we can think of the subscripts as the hands of a clock, with the 
leftmost subscript acting like a second hand, the middle one like a minute hand, and the 
right one-like an hour hand. 

This rule can be restated as a formula for computing the position of an element in a 
FORTRAN array. For a two-dimensional array, let 

R = number of rows in the array, 
C = number of columns in the array, 
row = row number of the element whose position we want, 
col = column number of the element whose position we want, 
P(row,col) = position of an element with the subscript (row, col). 

Then, the position of an element is 

P(row,col) = row+ R * (col-1) 

Note that C, the number of columns in the array, does not enter into the calculations. For 
a three-dimensional array, we add a third dimension which we shall call B (the number of 
blocks), and a third subscript which we shall call blk. Thus, we are looking for 
P(row,col,blk), the position of the element with the subscript (row,col,blk): 

P(row,col,blk) = row + R * (col-1) + R * C * (blk-1) 

Note again that the rightmost dimension (B) is not used in the formula. 

Example 7 .1 (a) Find the position of element HT ( 7, 4) in an array declared with the statement 

REAL*4 HT (8, 6) 



Using our formula, 

P(7,4) = 7 + 8 * (4-1) 
= 31 

Thus, HT ( 7, 4) is the 31st element in the 8 x 6 array HT. 
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Example 7 .1 (b) Find the position of element PRS ( 3, 5, 4) in an array declared with the statement 

INTEGER*2 PRS(5,7,7) 

Using our formula, 

P(3,5,4) 3 + 5 * (5 - 1) + 5 * 7 * (4-1) 
3 + 20 + 105 

= 128 

We have already seen that the declaration of an array is very similar to that for a 
single-valued variable. In this section we shall look at some additional features for array 
declarations, learn some more about subscripts, and take another brief journey to the 
past. 

7 .2.1 Declaration of Array Bounds 

The statements we have been using for declaring arrays let FORTRAN make a standard 
assumption about how the element's subscripts will be specified. For example, 

REAL AMT (15) 

reserves room for a 15-element array of real values. Moreover, it implies that the first 
element's name is AMT ( 1) , the second is AMT ( 2) , and so on. There are occasions when it 
is more convenient to start with a subscript other than 1. FORTRAN 77 makes this 
possible by accepting a form of array declaration in which the programmer explicitly 
specifies the subscripts for the first and last elements in any or all of the array's dimensions. 
To illustrate, suppose we wanted to set up a one-dimensional real array TTL of 15 
elements such that the first element will be named TTL ( O) . Since TTL is to have 15 
elements, this means that the last (15th) element in the first (and only) dimension will 
have a subscript value of 14 (not 15, because we start from 0 rather than 1). The 
appropriate declaration would look like this: 

REAL*4 TTL (0: 14) 

As a result, FORTRAN will set up room for 15 elements (14-0+1) named TTL(O), 
TTL (1), TTL (2), .... , TTL (14). Accordingly, the statement 

READ*, TTL 

would read 15 input values, with the first one being stored in TTL ( O) , etc. Now that we 
are acquainted with this form, it should be clear that the earlier declaration of AMT (in 
which we let FORTRAN use its standard assumption) represents the same thing as 

REAL*4 ANT(1:15) 

There is no restriction on the numbers one may use in this type of declaration as long 
as the one to the right of the colon is larger than the one to the left. Table 7 .1 shows some 
examples. 

Declaration of each dimension does not affect any of the others. For instance, the 
statement 

INTEGER*2PBX(l0,5), SETN0(4,-1:10), CRN0(0:9,-2:2) 
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Table 7 .1 Array Declarations 

Declaration 

INTEGER Y (107) 
REAL X (0: 10) 

REAL WIDTH (-1: 4) 

CHARACTERLTRS *6 (3, 7) 

INTEGERN2 (15, 0: 3) 

REAL GR (-6: 6, 10) 

INTEGERHY (0: 12, -4: 0) 

INTEGER WLS ( 6, 4: 0) 

REAL PTR ( -5 : 5, 4, 0: 6) 

CHARACTER WR *5 ( 6, 4: ) 

REALT(O, 5, 4) 

REAL ST ( 0: 2 , -1: 1, 5) 

No. of Elements 

107 
11 
6 

21 

60 

130 

65 

308 

45 

Subscripts 

1 Through 107 
OThrough 10 

-1Through4 
Row: 1Through3 
Column: 1Through7 
Row: 1Through15 
Column: OThrough 3 
Row: -6 Through 6 
Column: 1Through10 
Row: OThrough 12 
Column: -4 Through 0 

Illegal-Improper column dimension 
Row: -5 Through 5 
Column: 1Through4 
Block: OThrough 6 

Illegal-Improper column dimension 
Illegal-Improper row dimension 

Row: OThrough 2 
Column: -1 Through1 
Block: 1Through5 

reserves room for three integer arrays with the following characteristics: 

1. A 10 x 5 array (PBX) in which the rows are numbered 1-10 and the columns are 
numbered 1-5. 

2. A 4 x 12 array (SETNO) in which the rows are numbered 1-4 and the twelve 
columns are numbered -1, 0, 1, 2, ... , 10. 

3. A 10 x 5 array (CRNO) in which the rows are numbered 0, 1, 2, ... , 9 and the 
columns are numbered - 2, -1, - , l, 2. 

7 .2.2 Initialization of Arrays 

The DATA statement, introduced in Chapter 4 as a convenient way to initialize single­
valued variables, serves equally well for arrays. As an example, the statements 

REAL*4 TABL (10) 
DATA TABL/0. ,1. ,2. ,3. ,4. ,5. ,6. ,7. ,8. ,9./ 

define an array and set its ten elements to values of 0.0 through 9.0. This is a concise way 
of building tables of constant values in a program where those values will be consulted 
again and again. 

The same process can be applied to the initialization of arrays having more than one 
dimension. Here again, (as is true with input/output) it is necessary to know FOR­
TRAN's sequence for storing array elements to make sure that the assignments are made 
as we want them. To review this sequence, let us assume the following declaration: 

REAL*4SPGRAV(3,2) 

Now, convince yourself that the statement 

DATASPGRAV/0.682,0.691,0.708,0.719,0.732,0.771/ 



produces the same results as the sequence 

SPGRAV (1, 1) 
SPGRAV (2, 1) 
SPGRAV (3, 1) 
SPGRAV(l,2) 
SPGRAV (2, 2) 
SPGRAV(3,2) 

0.682 
0.691 
0.708 
0.719 
0.732 
0.771 
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7 .2.2. 1 Using Repetition Factors to Initialize Arrays When the elements of an array are 
to be initialized to a common value, we can use the DATA statement's repetition factor as 
was done in Chapter 4. Thus, the statements 

REAL*4 SUMS(12) 
DATA SUMS/12*0.0/ 

reserve storage for a 12-element array and set its elements to initial values of 0.0. 
Multidimensional arrays can be initialized with the same technique. To illustrate, the 

statements 

REAL*8 RAD(0:8,-5:5) 
DATARAD/99*0. ODO/ 

initialize RAD's 99 elements. Note that the repetition factor (99 in this example) must 
agree with the array size (9 rows x 11 columns). 

7 .2.2.2 Initializing Parts of Arrays to Different Values Rather than setting all of an 
array's element to the same value, or setting each individual element to a different value, 
there are situations calling for initialization to be done in groups. This can be handled 
quite easily in FORTRAN by adding a form of DO loop to the DATA statement. Such a 
loop is called an implied DO loop, primarily because the form in which it is specified is 
somewhat less complete than that for a more generalized loop (as discussed in Chapter 3). 
The basic form for the implied loop can be defined conveniently by looking at an example: 

INTEGER*2 CT(20),I 
DATA (CT(I), I=l,8)/8*0/(CT(I), 1=9,20)/8*1/ 

we initialize the first eight elements to zero and the other twelve to 1. The variable I, called 
an implied-DO-variable, may be used more than once as shown. Its usage is basically the 
same as that of an index variable in a regular DO loop. Specifically, the assignments 
produced by the DATA statement are the same as those resulting from a sequence such as 

DO I = 1, 8 
CT (I) = 0 

END DO 
DO I = 9, 20 

CT(I) = 1 
END DO 

7 .2.3 Specification of Subscripts 

Much of the power in using arrays stems from the fact that we can work with any element 
by referring to its subscript. This power is made even more flexible by allowing such 
references to be made in two basic ways: Either we know what an element's subscript is, 
or we know how to compute that subscript. To support this flexibility, FORTRAN 
accepts a variety of subscript expressions. For example, let us analyze the following group 
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of statements: 

REAL*4 PRICE (20) 
INTEGER*2 I 
PRINT*' I ENTER A VALUE FOR PRICE I 

READ*, PRICE 

other statements 

PRICE (20) = 1. 08 *PRICE (20) 
DO I=l,9 

PRICE (I) = 1. 05 *PRICE (I) 
PRICE (I+lO) = 1. 06 *PRICE (I) 

END DO 

After declaring PRICE as a 20-element real array, we read 20 numbers and store them, 
respectively, in PRICE (1), PRICE (2), and so on. The single element PRICE (20) is 
adjusted by replacing its value with one that is 8% higher. Then, there is a loop that 
repeats exactly nine times. Note that each time through the loop, we affect the values of 
two elements: PRICE (I) is increased by 5 % , and PRICE (I+ 1 O) is increased by 6%. In 
one case, the index variable I is used to indicate which element to adjust; in the other, the 
variable I is part of a subscript expression whose resulting value specifies the appropriate 
element. For instance, when I is2 (thesecondtimethroughtheloop),PRICE (2) 'svalue 
will be increased by5%, and the value in PRICE (2+10) orPRICE (12) will be increased 
by 6%. Consequently, when the loop completes its nine cycles, PRICE (1) through 
PRICE (9) will have new values, and PRICE (11) through PRICE (19) will have new 
values. PRICE (20) will have been changed before entering the loop, and PRICE (10) 
will remain unchanged. 

In general, HP FORTRAN 77 allows any integer or real expression to be used for 
specifying a subscript. FORTRAN will evaluate the expression using its normal rules (as 
described in Section 5.2). If the expression produces a real value, HP FORTRAN 77 will 
truncate it. The resulting number will be used to help locate the desired element. For 
example, if PRICE is declared as shown before, and Kl and K2 are 8 and 3, the 
assignment statement 

PRICE (4 *Kl/K2-3) =17. 6 

places the value 1 7. 6 in PRICE ( 7) . 

7 .2.4 The DIMENSION Statement 

FORTRAN 77 accepts the DIMENSION statement as another way of declaring arrays. 
This is a holdover from earlier versions of the language that can be used as follows: 

DIMENSION name (specifications) 

The specifications give the extent of each dimension, as they do in a regular declaration. 
For instance, 

DIMENSION A2 (10), INK (5, 7) 

declares a one-dimensional real array A2 of 1 O elements and a two-dimensional integer 
array INK consisting of 5 rows and 7 columns. Note that the automatic naming conven­
tions (see 4.2.2.6) are in force here. {A2 is real and INK is integer because of their 
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respective first letters.) There is no opportunity to specify the data type, nor can we use 
the array bounds described in Section 7.2.1. Although the DIMENSION statement is an 
easy way to earmark array declarations, its limitations discourage its continued use. We 
mention it so that it will not appear strange when it is encountered. 

A major reason for organizing groups of data into arrays is that we expect to process those 
values systematically, performing the same kinds of operations on each one. FORTRAN 
makes it very easy to set up such computations. By combining the power of the DO loop 
with the capability to work with any element independent of the others in its array, we can 
deal with selected elements, parts of an array, or an entire array with equal convenience. 

7 .3. 1 Array Elements in Expressions 

The fact that we have used array elements in expressions and assignment statements 
without particular concern (as we did in the previous section) emphasizes the idea that 
when we refer to an array element, it is no different from an ordinary single-valued 
variable: It may be assigned a value, compared to some other value, read in, or printed. 
Moreover, an element may appear in an expression anywhere a constant or single-valued 
variable may appear. 

Example 7 .2 To illustrate the fundamental aspects of array processing we shall design and implement a 
program to perform various operations on a group of arrays. The requirements are specified in the program 
to exemplify the use of comments for descriptive information about the program. (Such information is called 
documentation.) This practice places the statements and documentation in one inseparable place, adding to 
the program's clarity and ease of use. A structured flowchart for this program is shown in Figure 7.9(a) and a 
pseudocode representation is given in Figure 7.9(b). The corresponding program is given in Figure 7.10. 
Figure 7.11 shows a sample run. 

In this version of the program, we have constructed a loop to handle each of the required computations. 
While this will get the job done, it does not take full advantage of the fact that once a loop is set up, the 
repeating mechanism can be used to control any number of activities which are to be done over and over. 

The looping mechanism is exploited more fully in a second version of the program, where all of the 
processing is consolidated within a single loop that cycles 20 times. Each activity is regulated inside the loop 
by means of its own test. For instance, an IF-THEN-ELSE construct is included to determine how each of 
D's elements is computed.E's elements still are calculated in a separate loop because, for any element in E, 
we need an element of c that has not yet been computed. Consequently, the program waits till all of e's 
elements are available, and then it produces E. (By being more clever, we can arrange to express E's 
subscripts so that these representations can indeed be included in the same general loop. However, it is 
usually better to stay with the direct, straightforward approach.) 

The structured flowchart and pseudocode for this second version are shown in Figure 7.12 and the 
body of the program is given in Figure 7 .13. Note that the output is not affected at all by the change in loop 
organization. 

7 .3.2 Input/Output of Arrays 

As the last example demonstrated, FORTRAN keeps enough information about de­
clared arrays so that we can read or print an entire array with a simple statement. These 
bookkeeping services also make it possible to perform input/output operations on parts of 
arrays with only a little more work. 

Suppose we have declared a one-dimensional integer array MRGN consisting of 12 
elements and we wanted to read MRGN ( 3) through MRGN ( 8) . One obvious way to 
handle this would be to list the elements: 

READ * , MRGN ( 3) , MRGN ( 4) , MRGN ( 5) , MRGN ( 6) , MRGN ( 7) , MRGN ( 8) 
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"Define SMDSQ, SUM I, SUM2." 
"Define 20-element arrays A, B, C, D, and E." 
"Set SMDSQ, SUM 1 and SUM2 to zero." 
"Read and echo arrays A and B." 
do for all I, I = 1 to 20: 

"Compute C(I) = 2 x A(I) + B(I)." 
enddo 
do for the first eight elements: 

"Compute D(I) = 

end do 
do for the last 12 elements: 

"Compute D(I) = 

enddo 
do for the first 5 elements: 

"Compute E(I) = A(l+5) + 8(1+7) + C(21+ l)." 
end do 
do for all 20 elements: 

"Add D(l)**2 to SMDSQ." 
end do 
do for the last JO elements: 

"Add A(l)*B(I) to SUMI." 
end do 
do for odd-numbered values of I from 1-20: 

"Add A(l)*B(I) to SUM2." 
end do 
"Print C,D,E,SMDSQ,SUM l,SUM2." 
"Stop." 

FIGURE 7.9 (b) Pseudocode for Example 7.2. 

FIGURE 7 .9 (a) Structured Flowchart for 

Example 7.2. 

Reserve storage for arrays A, B, C, D and E, 
single-valued variables SMDSQ, SUMI, SUM2 

Initialize SMDSQ, SUMI, SUM2 to zero 
Read and Print A,B 

DO for I= 1,2,3, ... ,20 

C(I) = 2A(I) + B(I) 

DO for I = 1,2,3, ... ,8 

D(I) = .J A(I) + B(I) I C(I) 

DO for I= 9,10, ... ,20 

D(I) = .J A(I) - B(I) I C(I) 

DO for I= 1,2, ... ,5 

E(I) = A(I + 5) + B(I + 7) + C(21 + 1) 

DO for I = 1,2, ... ,20 

SMDSQ = E D(l)2 

DO for I = 11,12, ... ,20 

SUM 1 = E (A(I)* B(I)) 

DO for all l(l ,2,3, ... ,20) where A(I) is odd 

SUM2 = E (A(l)*B(I)) 

Print C,D,E,SMDSQ,SUM2,SUM2 

STOP 
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************************************************************ 
* EXAMPLE 7.2 * 
************************************************************ 
* THIS PROGRAM PERFORMS A VARIETY OF MANIPULATIONS TO * 
* ILLUSTRATE ARRAY PROCESSING: * 
* A, B, C, AND D ARE 20-ELEMENT REAL ARRAYS; * 
* E IS A 5-ELEMENT REAL ARRAY; * 
* AFTER READING THE VALUES FOR A AND B, THE FOLLOWING COM- * 
* PUTATIONS ARE PERFORMED: * 
* (1) ARRAY C IS DEVELOPED SUCH THAT EACH ELEMENT OF C * 
* IS THE SUM OF THE CORRESPONDING ELEMENT IN B AND * 
* TWICE THE CORRESPONDING ELEMENT IN A. * 
* (2) ARRAY D IS DEVELOPED SO THAT EACH OF ITS FIRST * 
* EIGHT ELEMENTS REPRESENTS THE SQUARE ROOT OF THE * 
* SUM OF THE CORRESPONDING ELEMENTS IN A AND B, WITH* 
* THAT SUM DIVIDED BY THE CORRESPONDING ELEMENT IN * 

* c. SPECIFICALLY, * 
* 
* 
* 
* 
* 

FOR I <= 8: D(I)=SQRT(A(I)+B(I))/*(I) ** 

* 
* 
* 
* 
* 
* 
* 

( 3) 

(4) 

( 5) 

THEN, * 
FOR I > 8: D(I)=SQRT(A(I)-B(I))/C(I) * 

THE ELEMENTS OF ARRAY E ARE COMPUTED AS FOLLOWS: * 
E ( 1) A(6) + B(8) + C(3) * 
E(2) A(7) + B(9) + C(S) * 
E(3) A(8) + B(10)+ C(7) * 
E(4) A(9) + B ( 11) + C(9) * 
E(S) A( 10) + B ( 12) + c ( 11) * 

A VALUE SMDSQ IS COMPUTED CONSISTING OF THE SUM * 
OF THE SQUARED VALUES IN ARRAY D * 
A VALUE SUM1 IS COMPUTED CONSISTING OF THE SUM * 

* OF THE PRODUCTS OF THE LAST TEN PAIRS OF CORRES- * 
* PONDING A AND B ELEMENTS * 
* (6) A VALUE SUM2 IS COMPUTED CONSISTING OF THE SUM * 
* OF THE PRODUCTS OF ALL CORRESPONDING PAIRS OF * 
* A AND B ELEMENTS IN WHICH A'S VALUE IS ODD * 
* THE PROGRAM IS SET UP SO THAT MESSAGES ASKING FOR INPUT * 
* ARE DISPLAYED ON THE USER'S TERMINAL, BUT THE COMPUTED * 
* RESULTS ARE SENT TO THE STANDARD SYSTEM UNIT TO BE * 
* DISPLAYED THERE. THE PRINT STATEMENT IS USED FOR THAT * 
* PURPOSE. * 
************************************************************ 

PROGRAM EX702 
IMPLICIT NONE 
REAL*4 A(20),B(20),C(20),D(20),E(5),SMDSQ,SUM1,SUM2 
INTEGER*2 I 

SMDSQ = 0.0 
SUM1 = 0.0 
SUM2 = 0.0 
PRINT *, 'ENTER VALUES FOR ARRAY A, FOLLOWED BY ARRAY B' 
READ *, A,B 
PRINT*• 'ARRAY A:' 
PRINT *• A 
PRINT*, 'ARRAY B:' 
PRINT *• B 
PRINT *• 

************************************************************* 
* COMPUTE THE VALUES FOR ARRAY C * 
************************************************************* 

DO I=1 ,20 
C(I) = 2.0*A(I) + B(I) 

END DO 

*************************************************************** 
*COMPUTE D'S FIRST 8 ELEMENTS: D(I)=SQRT(A(I)+B(I))/C(I) * 
*THEN ANOTHER LOOP FOR THE LAST 12: D(I)=SQRT(A(I)-B(I))/C(I)* 
*************************************************************** 

FIGURE 7.10 FORTRAN Statements for Example 7.2. (continued) 
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DO I=1,8 
D(I) = SQRT(A(I)+B(I))/C(I) 

END DO 
DO I=9,20 

D(I) SQRT(A(I)-B(I)/C(I) 
END DO 

************************************************************* 
* FROM THE DESCRIPTION GIVEN AT THE BEGINNING OF THE PRO- * 
* GRAM, WE SEE THAT THE SUBSCRIPTS IN A, B, AND C ARE SYS- * 
* TEMATICALLY RELATED TO THOSE OF E: * 
* A'S SUBSCRIPT ALWAYS IS 5 GREATER THAN E'S SUBSCRIPT * 
* B'S SUBSCRIPT ALWAYS IS 7 GREATER THAN E'S SUBSCRIPT * 
* C'S SUBSCRIPT ALWAYS IS ONE MORE THAN TWICE E'S * 
* THUS, EACH TIME WE COMPUTE AN ELEMENT OF E, SAY, E(I), * 
* WE WOULD USE A(I+5). B(I+7) AND C(2*I+1) TO COMPUTE THAT* 
* ELEMENT. HAVING WORKED THIS OUT, WE CAN USE A LOOP THAT * 
* WILL GO THROUGH FIVE CYCLES, ONE FOR EACH OF E'S ELEMENTS* 
************************************************************* 

DO I=1,5 
E(I) = A(I+5) + B(I+7) + C(2*I+1) 

END DO 

************************************************************* 
* NOW, A LOOP TO PRODUCE SMDSQ. WE USE D(I)*D(I) INSTEAD OF* 
* D(I)**2 BECAUSE EXPONENTIATION IS UNNECESSARILY COMPLEX * 
* FOR SOMETHING AS SIMPLE AS SQUARING A VALUE * 
************************************************************* 

DO I=1,20 
SMDSQ = SMDSQ + D(I)*D(I) 

END DO 

************************************************************* 
* NOW A SIMPLE LOOP TO COMPUTE SUM1 * 
************************************************************* 

DO I=1 ,20 
SUM1 = SUM1 + A(I)*B(I) 

END DO 

************************************************************* 
* FINALLY, A LOOP FOR SUM2. HERE WE NEED A TEST FOR EACH * 
* ELEMENT OF A TO SEE WHETHER IT IS ODD. THE MOD FUNCTION * 
* WILL BE HELPFUL IN THIS TEST * 
************************************************************* 

* 

DO I=1,20 
IF (MOD(A(I),2.0) .NE. 0.0) SUM2=SUM2+A(I)*B(I) 

END DO 

************************************************************* 
* ALL COMPUTATIONS COMPLETE; READY TO PRINT THE RESULTS * 
************************************************************* 

PRINT *' 'ARRAY C:, 
PRINT *' c 
PRINT *' PRINT *' 'ARRAY D:, 
PRINT *' D 
PRINT *' PRINT *' 'ARRAY E:, 
PRINT *' E 
PRINT *' PRINT *' 'SMDSQ: ,SMDSQ 
PRINT *' 'SUM1: , ,SUM1 
PRINT *' 'SUM2: ,SUM2 

PRINT *' 'RUN COMPLETED. 
STOP 
END 

FIGURE 7.10 (continued) 
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Reserve storage for 20 -element arrays A, B, C, D; 

5-element array E; 

SMDSQ, SUMI, SUM2 

Initialize SMDSQ, SUM 1 SUM2 to Zero 

Read and print arrays A and B 

DO 20 times (I = 1 to 20) 

Ci = 2A i + Bi 

~<8~ - y~ 

Di = ~~ - Bi 
D- = ~A·+ B· 1 1 

Ci 
l 

Ci 

Add Di 2 to SMDSQ 

no 
I>!~ yes 

Add AiBi to SUMI 

~iO~ no yes 

Add Ai Bi to SUM2 

Do 5 times (I = I to 5) 

Ei = Ai+S + Bi+7 + C2i+l 

Print C, D, E, SMDSQ, SUMI, SUM2 

STOP 

150 FIGURE 7.12 (a) Revised Flowchart for Example 7.2. 



"Define 20-element arrays A, B, C, D, 
5-element array E, 
SMDSQ, SUMI, SUM2." 

"Initialize SMDSQ, SUM I, SUM2 to zero." 
"Read and echo A and B." 
do for all 20 elements (I = I through 20): 

"Compute C(I) = 2A(I) + B(I)." 
if 

I is less than or equal to 8 
then 

"Compute D(I) = sqrt(A(I) + B(l))/C(I)." 
else 

"Compute D(I) = sqrt(A(I) - B(I))/C(I)." 
endif 
"Add D(I)**2 to SMDSQ." 
if 

I is greater than I 0 
then 

"Add A(I)* B(I) to SUM I" 
else 
endif 
if 

A(I) is odd 
then 

"Add A(I)* B(I) to SUM2." 
else 
endif 

enddo 
do 5 times (I = I to 5): 

"Compute E(I) = A(I + 5) + B(I + 7) + C(21 + I)." 
enddo 

PROCESSING OF ARRAYS 151 

"Print C, D, E, SMDSQ, SUMI, SUMI." 
"Stop." FIGURE 7.12 (b) Pseudocode for Revised Example 7.2. 

The shortcomings of this approach make themselves painfully felt as soon as we want to 
read a longer list of elements. Another way might be to set up a DO loop: 

PRINT *, 'ENTER VALUES FOR MRGN ( 3) THROUGH MRGN ( 8) ' 

DO 1=3, 8 
READ*, MRGN (I) 

END DO 

This is straightforward enough: The loop will cycle six times, reading a single value each 
time. Unfortunately, it will not produce the same result as the previous READ statement in 
which the elements were listed explicitly. The reason is that the DO loop causes the READ 

statement to execute six times. Each time the statement executes, it reads a new line. 
Consequently, the results will be the same only if each of the input values happens to be 
on a separate line. However, we can handle this situation more concisely by using 
FORTRAN's feature for including groups of elements in a single statement. 

Part of an array can be read or written with a READ or PRINT statement having a DO 

loop built into it. We shall see how this is done by using a 12-element integer array named 
MRGN. If we wanted to read values into the first five elements, we would say 

READ * , (MRGN (I) , I =1 , 5) 
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C*******************************************************~**** 
c EXAMPLE 7.2 (REVISED) * 
C************************************************************ 

PROGRAM 
IMPLICIT 
REAL*4 
INTEGER*2 

SMDSQ = 0.0 
SUM1 = 0.0 
SUM2 = 0.0 

EX702R 
NONE 
A(20),B(20),C(20),D(20),E(5),SMDSQ,SUM1,SUM2 
I 

PRINT *, 'ENTER VALUES FOR ARRAY A, THEN FOR ARRAY B' 
READ *' A,B 
PRINT *' 'ARRAY A: 
PRINT *' A 
PRINT *' 'ARRAY B: 
PRINT *' B 
PRINT *, 

C************************************************************ 
C COMPUTE THE VALUES FOR C AND D, AS WELL AS THE SINGLE * 
C VALUES FOR SMDSQ, SUM1 AND SUM2. THE SINGLE LOOP CYCLES * 
C 20 TIMES AND TESTS ARE ATTACHED TO THE APPROPRIATE PRO- * 
C CESSES TO AVOID USING THOSE ARRAY ELEMENTS THAT DO NOT * 
C BELONG IN THOSE PROCESSES. * 
C************************************************************ 

DO I=1,20 
C(I) = 2.0*A(I)+B(I) 

IF (I .LE. 8) THEN 
D(I) = SQRT(A(I)+B(I))/C(I) 

ELSE 
D(I) = SQRT(A(I)-B(I))/C(I) 

END IF 

SMDSQ = SMDSQ+D(I) 

IF (I .GT. 10) SUM1=SUM1 + A(I)*B(I) 
IF (MOD (A(I),2.0) .NE. 0.0) SUM2=SUM2 + A(I)*B(I) 

END DO 

C************************************************************ 
C SINCE ARRAY C IS AVAILABLE, WE CAN SET UP ANOTHER LOOP * 
C NOW TO TAKE CARE OF COMPUTING THE ELEMENTS FOR ARRAY E. * 
C************************************************************ 

DO I=1,5 
E(I) = A(I+S) + B(I+7) + C(2*I+1) 

END DO 

FIGURE 7.13 Internal Processing for Revised Example 7.2. 
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The specification inside the parentheses is called an implied DO loop. Note that the index 
variable (I in this case) is no different in usage from the one in an ordinary DO loop. The 
concluding statement number is not specified in the implied loop because it is not needed 
since the loop can be only one statement long. 

Implied DO loops also can be used to read or write parts of multidimensional arrays. 
However, this usage requires nested loops (loops inside each other), and we shall defer 
their discussion till later. 

153 

An array is a collection of data values (elements) all of one type (e.g., integer) and all 7.4 SUMMARY 
related by some common aspect (e.g., populations of a group of cities, batting averages 
for a team's players, or aluminum concentrations in a group of deodorants). Each of the 
elements in an array is identified by the array's (collective) name and one or more 
subscripts denoting that element's relative position in the array. A subscript is needed for 
each dimension. 

Arrays are declared using the INTEGER, REAL, DOUBLE PRECISION, CHARACTER, 
or LOGICAL statements as for single-valued variables (Chapter 4). In addition to the 
name, the declaration includes a set of specifications showing the subscript range for each 
of the array's dimensions. Thus, 

REAL*4PLSRT(6, 5, 3) 

declares a three-dimensional array with 5 x 6 x 3 = 90 elements organized as 5 rows, 6 
columns and 3 blocks. FORTRAN stores array elements in column major order i.e., the 
leftmost (row) subscript varying the most frequently. 

An entire array can be read or written by specifying the collective name with no 
subscripts, e.g., 

READ * , PLSRT 

Parts of arrays can be processed by setting up loops in which each cycle works on an 
element, with the subscript being systematically changed as part of the loop's control 
mechanism. Thus, the sequence 

INTEGER*2 CRL(20) 
PRINT*, 'ENTER20VALUESFORCRL' 
READ*, CRL 
DOJ = 12, 20 

CRL (J) = 2*CRL (J) 
END DO 

reads all 20 elements of array CRL and doubles the values in the last nine elements. 

1. For each of the following array declarations, specify the number of dimensions, the number of elements in PROBLEMS 
each dimension, the lowest and highest subscript values for each dimension, and the total number of 
elements in the array: 

(a) REAL*4 ROSTER (12) 
(c) REAL*4 STRS (4, 5) 

( e) INTEGER* 2 EXTBL ( 2, 3, 2, 4, 3) 
(g) REAL*4 SMTVAL (6, 5: 10) 
(i) REAL*8 CFNTS (-5: 5, 8, 0: 10) 
(k) DIMENSIONXTRAS (5, 5, 2, 2) 
(m) INTEGER*4 BIGNUM (3: 8, 4) 

(b) INTEGER* 2 CNTRS ( 31) 
(d) REAL*8 LNGVAL (3, 2, 6) 
(t) REAL*4 PRVAL (5: 10) 
(h) INTEGER*2 NDXES (0: 19, 0: 10) 
(j) INTEGER*2 NVNS (-10: 0, -10: -5, 6: 7) 
(I) DIMENSION INTRAS (4, 6, 4) 
(n) REAL*8 XTEND (0: 2, 2: 4: 6) 

2. Write an appropriate FORTRAN statement for each of the following declarations: 

(a) A one-dimensional real array LIMITS having 18 elements with a lowest subscript of 1. 
(b) A one-dimensional integer array SUMS having 26 ~lements with a lowest subscript of zero. 
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( c) A one-dimensional real array ENTROP having 12 elements with highest subscript 12. 
( d) A one-dimensional integer array NUMS having 12 elements with highest subscript 10. 
( e) A two-dimensional real array TMPS having 12 rows and 6 columns with lowest subscripts being 1 for 

both dimensions. 
(f) A two-dimensional real array PRES having 4 rows and 7 columns with lowest row subscript 1 and 

lowest column subscript 7. 
(g) A two-dimensional double precision array PRECIS having 36 elements organized into an equal 

number of rows and columns with lowest subscript 0 for both dimensions. 
(h) A 3 x 8 x 5 real array named PRICES with highest subscripts 6, 8, and 0, respectively, for rows, 

columns and blocks. 
(i) Two real 12-element arrays named EAST and WEST, each having a highest subscript value of 11. 
(j) Three integer arrays: A 30-element one-dimensional array NMLST with highest subscript -10; a 

4 x 5 array WDTHS with minimum row subscript 1 and maximum column subscript - 5; a 27-
element three-dimensional array QBC having an equal number of rows, columns and blocks with 
maximum subscript values of -1 in each dimension. 

3. Shown below are the values assigned to an array declared as 

REAL*4 ELEM (10) 

Using this array, give the value for each of the following: 

3.0 -6.0 4.5 2.2 6.0 0.0 

(a) ELEM(7) 
(b) ELEM (4) *ELEM (9) 

(c) ELEM (2) * (3*ELEM (3) + 3) 
( d) The name of the smallest element 

5.2 4.0 

( e) The name of the element whose value is equal to ELEM ( 8) *ELEM ( 9) 

(f) The name of the second largest element 
(g) The sum of all the elements with odd-numbered subscripts 

1. 5 -3.0 

(h) Assume that we have declared a real variable named SMV AL and an integer variable named I. Show 
that value that is printed as a result of the following sequence of statements: 

SMVAL = 0.0 
DO I = 1, 10 

SMVAL = SMVAL + ELEM(!) - I 

END DO 

PRINT*, SMVAL 

(i) Using SMVAL and I as in part (h), show that value that is printed by the following sequence of 
statements: 

SMVAL = 0.0 
DO 22 I = 2, 10 

SMVAL = SMVAL + (I-1) *ELEM (I-1) 
22 CONTINUE 

PRINT *, SMV AL 

(j) Assume the following declarations: 

REAL*4 NEWARY (10), SMVAL 
INTEGER*2 I 

show the values that are printed as a result of the statements given below: 

SMVAL = 0.0 
DO I=l, 10 

NEWARY(I) = ELEM(I)+l 
IF (I. LT. 6) THEN 

SMVAL 
ELSE 

SMVAL 
END IF 

END DO 

SMV AL+ELEM (I) 

SMVAL-NEWARY(I) 
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PRINT *, NEWARY { 1) , NEWARY { 2) , NEWARY { 3) , NEWARY { 4) , NEWARY { 5) 
PRINT*, NEWARY{6),NEWARY{7),NEWARY(8) ,NEWARY(9),NEWARY(10) 
PRINT*• SMVAL 

4. Given below are the values assigned to an array declared as 

INTEGERLTS (3, 6) 

Answer the following questions involving this array: 

24 

6 

-16 

-4 

20 

1 

10 

2 

25 

0 

32 

54 

8 

4 

3 

(a) Give the sum of the elements in Column 3. 

-12 

5 

0 

(b) Write an expression for the product of the three largest elements. 
(c) Give the value ofLTS (1, 2) +LTS (2, 1)- (LTS (3, 4)-LTS (1, 6)). 
( d) Specify which elements contain the same value. 
( e) Give the sum of all the elements having the same row and column number. 
(f) Which element has the value MAX (LTS) ?, 0. 25*MIN (LTS)? 
(g) Specify the location of the largest element having an even row number and odd column number. 
(h) Evaluate the expression DIM (LTS ( 3, 1) , LTS ( 1, 6) ) . 
(i) Let us say that we wish to refer to a pair of values in this array as LTS (I 1, J 1) and LTS (I 2, J 2) . List 

the locations of all pairs of elements in this array such that LTS (I 2, J 2) = 2 * LTS (I 1, J 1) . 
(j) Suppose that variables VAL, Rand Care declared as integers. Show the value that is printed as a result 

of the following statements: 

VAL = 0 
R = 2 
DO 10 C=l, 6 

IF (C . EQ. R) THEN 
VAL VAL+ LTS(R,C-1) - C 

ELSE 
VAL 

END IF 
10 CONTINUE 

PRINT*• VAL 

VAL+ LTS(R,C) 

(k) UsingVAL,RandC as in part (j), show the value that is printedasaresultofthe following statements: 

VAL = 0 
DOC = 1, 6 

R = MOD(C-1,3) + 1 
VAL= VAL+ R*LTS(R,7-C) 

END DO 
PRINT*, VAL 

5. Assume the following declaration: 

REAL*4 BXT (24) 

write the appropriate FORTRAN statement (or statements) for each of the following: 

(a) Use a loop to initialize all ofBXT's elements to 1.0. 
(b) Perform the same initialization as in (a) using a DATA statement. 
(c) Use a loop to initialize all of BXT's odd-numbered elements to 0.0 and all of its even-numbered 

elements to 1.0. 
( d) Set up the same initialization as in ( c) using a DATA statement. 
(e) Use a loop to assign 0.0 to all but the last four elements of BXT. Assign 4.0 to each of those last four 

elements. 
(f) Duplicate the assignments in (e) using aDATA statement. 

155 
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(g) Use an appropriate method to assign -1.0 to BXT's first element, -2.0 to the second element, 
...... , -24.0 to BXT's last element. 

(h) Use an appropriate method to assign 1.0 to the first four elements, 2.0 to elements 5-8, 3.0 to 

elements 9-12, and so on, so that elements 21, 22, 23, and 24 each will have a value of 6.0. 
(i) Use an appropriate method to assign a value of 1.0 to BXT (1), BXT (5), BXT (9), BXT (13), 

BXT (17), and BXT (21); a value of 2.0 to BXT (2), BXT (6), BXT (10), ... , BXT (22); a value 
of 4.0 to BXT (3), BXT (7), ... , BXT (23), and a value of 8.0 to BXT (4), BXT (8), 

BXT(24). 
(j) Read BXT's values in from a line. 
(k) Initialize BXT's values to 0.0 and read BXT ( 5) and BXT ( 8) from a line. 
(1) Initialize BXT's values to 0.0 and read BXT ( 1 7) through BXT ( 22) from a line. 
(m) Initialize BXT's values to 0.0 and read the first 12 elements from a line. 

6. Using the following declaration, 

REAL*4 BXT(-5:18) 
INTEGER*2 J 

show the values in BXT as a result of each of the following activities. Treat each problem independently: 

(a) DOJ=l, 24 
BXT (J-6) = 3. 0+2. O*J 

END DO 

(c) BXT (-5) = 2. 0 
DOJ=-4, 18 

BXT (J) = 3. 0+2. O*J-BXT (J-1) 
END DO 

(e) DATABXT/6*0. 0, 12*1. 0, 6*2. 0/ 

(b) BXT (-5) = 1. 0 
D010J=2,24 

BXT (J-6) =J-BXT (J-7) 
10 CONTINUE 

(d) DATABXT/24*4. 0/ 

(f) DATA (BXT (J), J=-5, 0) /6*8. 0/ (BXT (J), J=l, 18) /18*7. 7 I 

(g) DATABXT/24*0. 0/ 
READ*• BXT (1), BXT (5) 

(use this line): 
12.0 -2.4 54.0 72.0 5.5 21.6 -3.3 

(h) DATABXT/24*0. 0/ (i) 
READ*• (BXT (J), J=-1, 3) 

(use the line in part (g)) 

7. Given the following declaration, 

INTEGER*2 BVAL(5,3) 

DATABXT/12*4.0,12*2.0/ 
READ*, BXT(-3), (BXT(J), J=16, 18) 

(use the line in part (g)) 

write the appropriate FORTRAN statement (or statements) to perform each of the following activities: 

(a) Use a data statement to initialize the entire array to zeros. 
(b) Use a DATA statement to set BVAL's first three rows to zeros and the last two rows to 7s. 
(c) Use a DATA statement to set all but the last column to 5s, with the last column being set to 6s. 

(d) Use aDATA statement, along with appropriate assignments, to set all but the eleventh element to 4, 

with the eleventh element being set to 8. 
( e) Use a DATA statement, along with other statements as appropriate to set the elements in the second 

column to 4, 5, and 6, and all the other elements to 3. 
(f) Use a DATA statement, along with other statements as appropriate to set the first column to 7, the 

second column to 8, and the third column, with the exception of element BV AL ( 2, 3) to -3. 
BV AL ( 2, 3) is to be given a value equal to the sum of the eighth and fourteenth elements. 

8. Using the following declaration, 

INTEGER*2 VAL2(4,3),R,C 

draw the two-dimensional representation of V AL2 and fill in the values resulting from each of the 

activities specified below. Treat each problem independently: 

(a) DATA VAL2/12*6/ 
(b) DATA V AL2 I 0, 1, 2 , 0, 1 , 2 , 0, 1, 2 , 3 * 4 I 
(c) DATA VAL2/5*-3, 4, 4, 8, 9, 3, 2*9/ 
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(e) READ*, VAL2 (d) DATA VAL2/12*4/ 
C=3 (use the line shown below); 
DOR=2, 4 4 0 9 8 4 7 2 12 74 5 -3 11 

VAL2 (R, C) = 2*VAL2 (R, C) 
END DO 

(f) READ*• VAL2 (1, 2), VAL2 (2, 3) 
(use the line in problem ( e)) 

(g) READ*, VAL2 (1, 3), VAL2 (1, 3) 
(use the line in problem (e)) 

9. Change the program in the revised Example 7 .2 so that it will process any number of arrays. Stop the run 
when A ( 1) and B ( 1) have the same value. 

10. The Worldwide Rainfall Survey gathers and publishes monthly rainfall data for a large number of cities. 
Data for each city are prepared on a line containing the name of the city (up to 15 letters) and blanks (e.g., 
Des Moines), and the twelve monthly figures, the latter given to the nearest centimeter. Write a program 
that processes any number of these rainfall input lines. For each one, the program is to print the name of 
the city on a separate line, followed by a line for each of the twelve months showing two values: The 
rainfall as reported, and the rainfall as a fraction (to the nearest thousandth) of the city's maximum value 
for the year. After that, the program is to print the average rainfall (to the nearest tenth of a centimeter) 
and the month number in which the maximum rainfall occurred. Leave a blank line between sets and stop 
the run with a city named$$$$$$$. The following input may be used: 

'ARID CITY' 3 2 12 14 18 16 14 13 11 9 6 4 
'DRYBURGH' 8 12 15 18 22 31 43 44 41 32 38 38 
'DAMPTOWN' 22 43 31 87 101 97 123 85 77 75 65 78 
'HUMID POINT' 76 82 101 118 144 187 167 171 87 84 43 56 
'WETVILLE' 89 87 74 129 156 202 256 313 329 280 211 198 

11. Expand the program in Problem 10 so that, in addition to the output described there, it prints the 
following: After the last city's data have been processed, the program prints the average rainfall (to the 
nearest tenth of a centimeter) over all the cities for each of the twelve months. 

12. Professor Zoozl's exam in Extraterrestrial Literature consists of fifteen questions worth 30 points apiece. 
Each student's scores are recorded on a separate line containing the student's name (up to 15 letters) and 
the points given for each of the questions. No fractional points are given. Write a program that processes a 
succession of such input lines and, for each one, prints the raw score (total number of points earned) and 
the score expressed as a percentage (to the nearest tenth of a percent) of the total possible score (e.g., a 
raw score of 315 is equivalent to 315/450 or 70.0% ). After the last student's data have been processed, 
leave a blank line and print three lines: The first one shows the number of students processed, the second 
one shows the minimum and maximum scores (expressed as raw scores and percents), and the last line 
shows the average score, expressed both ways. Express the average to the nearest tenth of a point and stop 
the run with a student named LASTFELLOW. 

13. Another grading problem: This time, it is the final exam in Professor Mandible's course in New Words 
from American Advertisers. The test consists of25 multiple choice questions, each answerable by 1, 2, 3, 
4, or 5. A student's answer contains his or her name (up to 12 letters) and the 25 answers. The correct 
answers, each worth one point, are entered on a separate line along with the "name" KEYCARD and that 
line is submitted ahead of the student data. The last student's input line is followed by a fake input line with 
student name NOMORE. Write a program that processes an arbitrary number of input lines. For each 
student line, the program prints a line with the student's name and the number of questions answered 
correctly. After the last student line, the program leaves a blank line and prints three summary lines 
showing the number of tests processed, the highest and lowest scores, and the average score to the nearest 
tenth of a point. The following data may be used: 

'KEYCARD' 
'W. JOOJIK' 
'0. GOODBOY' 
'L. ZUMZUM' 
'B. DIGRUT' 
'M. BACKWD' 
'NOMORE' 

l,1,2,3,5,4,3,2,4,3,2,l,2,2,3,2,l,4,3,2,3,4,5,3,4 
1,2,4,3,5,4,3,2,3,2,3,l,3,l,l,2,3,4,3,4,2,2,2,l,1 
l,l,2,3,5,4,3,2,4,3,2,l,2,2,2,2,1,4,3,2,3,4,5,3,4 
l,l,5,5,4,3,2,3,4,3,2,3,4,3,2,3,4,3,2,3,4,3,2,3,4 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 
1,l,3,2,4,5,3,2,l,2,3,4,3,3,2,3,l,4,3,2,3,4,5,3,4 
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 

14. Professor Yehyeh also uses a multiple choice exam for his class in Casual Living, except that he assigns 
different point amounts to each of his 25 questions. Accordingly, the KEYCARD data are followed by a 
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second line with the "name" WEIGHTS containing the point values for each of the questions. Output is 
to be the same as for the last problem with the added requirement that each student's score also be 
expressed as a percent (to the nearest tenth of a percent). Here are weighting data you can use: 

'WEIGHTS' l,l,l,2,4,3,1,6,3,3,2,2,7,l,l,l,5,8,2,l,l,3,3,2,l 

15. After some thought, Professor Yehyeh has decided that he is interested in the relative "difficulty" of 
each question, based on how many people answered correctly. Thus, you are asked to process the test 
data as in the previous problem and, in addition, print the number of correct answers for each of the 25 
questions. 

16. In Problem 21 of Chapter 5, formulas were given for computing the slope (Al) and intercept (AO) for a 
straight line that provides the best fit to a set of X-Y data. This was called the least squares line because 
of the measure that is used as an indicator of how good the fit is. This indicator, D, is computed as the 
sum of the squared differences between each observed Y value and the one computed from the straight 
line equation at the same X value where the experimental Y was measured. Mathematically, D can be 
expressed as follows: 

n 

D = L (Y; - AO -AIX;)2 
i=l 

Anyway, the least squares line is that line for which D is the smallest it can be. Write a program that 
reads a set of 12 X-Y data points (one point per line) and prints three lines of output: The slope, the 
intercept, and D. 

17. Expand the program in Problem 16 so that it processes any number of 12-point output sets, producing 
three lines of input for each set, separated by a blank. Stop the run with a data point of (-100. , 
-100). 

18. Al and A2 each are 8-element one-dimensional real arrays and EX is an 8-element one-dimensional 
integer array. Each input set consists of 8 lines with each line containing four values: Corresponding 
values for an element in each of the three arrays and an integer (from 1-8) indicating which three 
elements they are. For instance, a line that looks like this 

-22.7 303.9 3 4 

contains a value of-2 2. 7 for Al ( 4) , 3 03 . 9 for A2 ( 4) and 3 for EX ( 4) . The fourth value on the line 
(i.e., the 4) indicates that the first three values are intended for the fourth elements of their respective 
arrays. Write a program that reads and processes sets of these lines as follows: For each set, the program 
is to print the following: 

(a) Eight lines, each one showing corresponding elements of Al, A2 and EX. 
(b) Eight lines, each one showing corresponding elements of arrays B, C, D, and E where: 

EX, 

EX. (A I . A2 )EX, + I E = I I I 

; y Al/x, + A2; 

19. BINS TR is a 16-element integer array in which each value is either a 1 or a O. Write a program that reads 
in a succession of values for BINSTR and processes each set as follows: For each set, the program prints 
the length of the longest string of identical values in that set. If the longest string is a string of ones, the 
program prints the word ONES after the length; if the longest string is a string of zeros, the program 
prints the word ZEROS after the length. For example, if the input set looks like this, 

1 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 

the output would say 

LONGEST STRING: 6 ONES 

Assume that there will be no more than one longest string in a set. Stop the run with an input set whose 
first value is 2. 



PROBLEMS 

20. Write the same program as in the previous problem with one important difference: Instead of being an 
array, BINSTR is an ordinary single-valued integer variable. 

21. Using the same requirements given in the Problem 19, write a program in which you cannot make the 
assumption stated in that problem. If there is more than one longest string, base your message on the first 
one you find. For instance, if the input set looks like this, 

0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 

the output would say 

LONGEST STRING: 7 ZEROS 

22. Using the same requirements given in either Problem 19, 20, or 21, include in your output the starting 
position of the longest string. For the example input set in Problem 21, then, the output would say 

LONGESTSTRING: 7 ZEROS STARTSATPOSITION 6 

2 3 . A and B are 15-element one-dimensional integer arrays. Write a program that reads a set of values for A 
followed by a single integer SHIFT which may have a value from -1 O to+ 1 O (including zero). Using these 
data, develop values for array B such that its elements are the same as those in A, but their positions are 
shifted by an amount equal to SHIFT. For example, if SHIFT's value is +2, then B ( 3) has the same value 
as A ( 1) , B ( 4) has the same value as A ( 2) , B ( 5) has the same value as A ( 3) , and so on. In order to 
make the computations complete, the shifting process "wraps around" the arrays so that, in this example, 
B (1) would receive A (14) 's value and B (2) would receive A (15)'s value. A negative shift works the 
same way: If SHIFT were -4, for instance, A (1) 's value would be copied into B (12), A (2) 's into 
B (14), A (3) 's into B (15), and so on. For each set processed, the program is to print an output line 
showing SHIFT's value, followed by 15 lines with each line showing a corresponding pair of elements from 
A and B. A SHIFT of-100 stops the run. 
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8 
Character Data 

If we relied solely on the popular press for our technical information about computers, it 
would be easy to form the idea that computers deal only with numbers. However, we have 
already seen (Chapter 4) that FORTRAN takes a wider view of "computing" by recog­
nizing characters and logical signals as legitimate types of data. In this chapter we take a 
closer look at character data and their processing. 

The basic character string declarations are familiar by now, so that we need only review 
them briefly. Once that is done, we can consider some additional features. 

8. 1. 1 Declaration of Character Strings 

Recall that the length of a character variable must be declared along with its name and 
type. Thus, the statements 

CHARACTER*9Wl, W2, W4 
CHARACTER*l2 W3 

define four character variables: Three of them (Wl, W2 and W4) can accommodate nine 
characters each and the fourth (W3) can hold 12 characters. Note that the length given 
with the word CHARACTER( 9 in this example) serves as the default for the entire 
statement. 

Although it is an entire character string that generally means something to the 
programmer using it, there are times when it is also desirable to deal with part of a string. 
Features in FORTRAN 77 enable us to identify such parts, called substrings, and 
manipulate them without affecting the rest of the string from which they are isolated. 

8. 1.2 Defining Substrings 

To understand how a substring is identified, we need to know that the individual 
characters in a string have numbered positions in that string, with the numbering starting 
at 1 and going from left to right. For example, if we said 

CHARACTER*6 WRDl 
DATA WRDl/ I FOREST I I 

the six characters FOREST would occupy positions 1-6 of the string WRDl. (As a specific 
illustration, position 4 of WRDl would have the character E in it.) Now, with this rule 
defined, it becomes an easy matter to describe a substring: We simply specify the name of 
the string and the starting and ending positions of the part we want to use. With WRDl as 
declared and initialized before, the specification 

WRD1(1:3) 
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Table 8.1 Specification of Substrings 
c is declared as CHARACTERC*l2; M, N are declared as INTEGERM, N 

Value in C 

STRATOSPHERE 

ARRANGEbbbbb 

Substring 

C(1:4) 
C( : 4-

C(l0: 12) 
c (10: ) 

C(4:7) 
N=3; M=4 
C(N:M) 
C (7: M) 

C(3:5) 
c (3: 7) 
c (3: ) 
c (8: ) 

Specified Value 

STRA 
STRA 
ERE 
ERE 
ATOS 

RA 
Illegal; 7 M M 

RAN 
RANGE 
RANGEbbbbb 
bbbbb 

M=3; N=M+4 
C(2*M:N+3) GEbbb 

describes the substring consisting of the first three positions of WRDl (i.e., positions 1 
through 3 ). The value currently in that substring consists of the characters FOR. Similarly, 
if we say 

WRDl(l:l) 

we are referring to the substring consisting of WRDl 's first character, and 

WRDl (6: 6) 

isolates WRDl 's final (sixth) character. Of course, it is up to the programmer to make sure 
that the substring description makes sense. For instance, a specification of 

WRDl (5: 7) 

will be rejected by FORTRAN because WRDl was declared with a length of 6, and there is 
no seventh position. Similarly, something like 

WRDl (3: 1) 

would be unacceptable because it violates FORTRAN 77's left-to-right position 
numbering. Additional examples of substring identification are shown in Table 8.1. 

Once a substring is specified, we can think of it as having an existence of its own: We 
can read into it, print from it, compare it to other strings, and change its value by 
assignment without changing the rest of the string. The versatility of substrings is 
extended even further by the fact that the beginning and end of the substring, shown as 
constant values in the previous examples, also may be variables. We shall make use of this 
flexibility later on. 

8.1.3 EQUIVALENCE and Character Strings 

The naming capabilities provided by FORTRAN's EQUIVALENCE statement (Chapter 
4) are available for character strings as well as numerical data. At the simplest level, this 
means that we can assign several names to the same character string. For instance, the 
statements 

CHARACTER*7WRIT,SYN 
EQUIVALENCE (WRIT, SYN) 
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declares that the 7-character string WRIT also may be referred to as SYN. In other words, 
WRIT and SYN refer to the same storage locations. 

EQUIVALENCE also enables us to establish associations between parts of character 
strings. One convenient use for this is to define a separate name for a single character in a 
string. To illustrate, let us say that we intend to store somebody's last name in a 
15-character string called LNAME. At the same time, we would like to deal separately with 
the first letter ofLNAME. Of course, we have seen in the previous section that we can refer 
to that position by identifying the substring LNAME (1: 1). However, it may be more 
convenient to be able to use a distinct name for the first letter. If FLETR is the desired 
name for that position, we can set this up by writing 

CHARACTERLNAME*l5, FLETR*l 
EQUIVALENCE (LNAME, FLETR) 

This says that the first position of LNAME and the first (and only) position of FLETR refer 
to the same storage location. Since FLETR has no second position, the association goes no 
further. 

The same kind of association can be defined using any substring. Suppose it turned 
out to be useful to refer to the last three letters of LNAME with a separate name. The 
following statements 

CHARACTERLNAME*15, FLETR*l, LAST3*3 
EQUIVALENCE (LNAME, FLETR), (LNAME(13:15), LAST3) 

establish: 

1. The location of the first position of LNAME to be the same as the first (and only) 
position of FLETR; 

2. The location of the first position of the specified substring (i.e., the 13th position of 
LNAME} to be the same as the first position of LAST3. Since LAST3 is declared 
with a length of 3, the EQUIVALENCE also establishes the sequence of positions. 
Thus, once we see that the first position of LAST3 has the same location as the 13th 
position of LNAME, we know that LAST3's second position has the same location 
as LNAME's 14th, and LAST3 (3: 3) and LNAME (15: 15) are two names for the 
same location. 

This is shown in the diagram of Figure 8.1. 
This gives us a useful clue with regard to the way EQUIVALENCE works with 

character strings: 

Each pair of positions in a character string corresponds to one HPlOOO storage 
location. For HP 32-bit computer systems like the HP9000, a location has a capacity 
of four characters. When two character strings are EQUIV ALENCEd to each other, 
this specifies that the first positions of those strings refer to the same storage location. 
(Please pardon the atrocious English. EQUIVALENCEd is part of FORTRAN's 
jargon and the fight was lost years ago.) 

The statements above represent more than a description; they are rules that FOR­
TRAN obeys when it responds to an EQUIVALENCE statement. As a result, we can 
look at more complicated situations and work out what happens simply by following 
the same rule FORTRAN follows. We shall put these rules to work now. 

The EQUIVALENCE statement is a general resource. It may be used to define 
associations among any number of character strings having arbitrarily different lengths. 
To make sure this ability is clear, we shall look at several specifications and analyze their 
effects: 

1. The statements 

CHARACTER W*4, X*5, Y*3, Z*lO 
EQUIVALENCE (X, Z), (Y, W), (W, Z (4: 7)) 
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Position 1 of LN AME 

FLETR 

Position 1 of LAST3 RGURE 8.1 

x 

w 

y y 

FIGURE 8.2 FIGURE 8.3 

z 

y 

RGURE8.4 

produce a set of associations as shown in Figure 8.2. X and Z both start at the same 
location, as do Wand Y. W's first position is the same as Z's fourth position. Finally, since W 
and Y are associated with each other, that automatically associates Y with z, even though 
the EQUIVALENCE statement does not actually say so. 

2. The statements 

CHARACTERW*4, X*5, Y*3, Z*lO 
EQUIVALENCE (X, Z (5: 9)), (W, Z (6: 9)), (Y, Z (3: 5)) 

specify the same strings but with different associations. Now, (Figure 8.3) X, W and Y all 
are associated with Zand, therefore, with each other. 

3. Again, we shall use the same declaration and extend one of the associations 
beyond Z's boundaries (Figure 8.4): 

CHARACTERW*4, X*5, Y*3, Z*lO 
EQUIVALENCE (X, Z (5: 9)), (W, Z (6: 9)), (Y (2:), Z) 

The notation Y ( 2 : ) refers to the substring of Y beginning at position 2 and ending at the 
end of the string. 
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8.1.4 Characters Strings and Numerical Data 

HP FORTRAN 77 goes beyond the standard language by allowing character strings to be 
EQUIV ALENCEd with numerical data. Since a unit of HPlOOO storage generally is used to 
hold two characters, the declarations 

INTEGER*2 
CHARACTER*2 
EQUIVALENCE 

NUMC 
PVAL 
(NUMC, PV AL) 

in HPlOOO FORTRAN 77 produce a straightforward association between NUMC and 
PV AL. Similarly, the statements 

INTEGER*2 VCOMP 
CHARACTER*4 STWD 
EQUIVALENCE (VCOMP, STWD (3:)) 

indicate that the word in which an integer value for VCOMP is to be stored is the same word 
(i.e., has the same address) as that associated with the third and fourth characters of 
STWD. When applied to the HP9000, where each word has a capacity of 32 bits, the first 
sequence of declarations still has the same effect: Both NUMC and PV AL refer to the same 
word, but only half of it is used. The second sequence of declarations reserves one 32-bit 
word of HP9000 storage. The full capacity is used for STWD, but only half of it is 
considered when the name VCOMP is used as the reference. 

The programmer must use caution in defining these associations to make sure they 
line up. For instance, the statements 

CHARACTER*2 
INTEGER*2 
EQUIVALENCE 

PVALUE 
VCOMP 
(PVALUE(2:),VCOMP) 

is likely to cause the compiler to deliver an error message because it would appear that we 
were forcing HP FORTRAN 77 to start an integer variable in the middle of a word. The 
same type of error would result on the HP9000 with the sequence 

CHARACTER*4 
INTEGER*4 
EQUIVALENCE 

8.1.5 Character Arrays 

QVALUE 
WCOMP 
(QVALUE(3:) ,WCOMP 

Character arrays are declared like any other arrays. For instance, the statement 

CHARACTERVOCAB(18)*6, WLIST(4,6)*8, WORD*l2 

sets up an 18-element one-dimensional array of 6-characters, a 24-element ( 4 rows by 6 
columns) array of 8-character strings, and a 12-character string named WORD. 

Since array elements may be treated independently, we can expect to do anything 
with such an element that we can do with a separately declared string. For one thing, we 
can identify substrings of array elements. The form for doing this is necessarily a little 
long-winded, but it is simple enough: First we specify the subscript(s) to identify the 
element of interest, and then we describe the desired part of that element. For example, 
using VOCAB, WLIST and WORD as declared before, the specification 

VOCAB(4) (3:5) 

identifies a string consisting of the contents of positions 3, 4 and 5 of VOCAB's fourth 
element. Similarly, the specification 

WLIST (1, 5) (1: 4) 
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refers to the first four characters of the element in WLIST's first row, fifth column. Note 
that FORTRAN 77's substring notation allows us to say the same thing by specifying 

WLIST (1, 5) (: 4) 

That is, if the leftmost substring boundary is not given, FORTRAN assumes it to be 1. 

Although the types of processes normally associated with character strings do not involve 
the arithmetic operations performed on numerical data, the general events are basically 
the same: Manipulations are performed in response to the program's instructions. A 
result is produced, in the form of a new character string, and that string is placed in 
(assigned to) a specified destination. Accordingly, it is both logical and simple for 
FORTRAN 77 to handle character string processing by means of the regular assignment 
statement. The evaluation of a character string expression proceeds according to a set of 
rules that are as consistent for those operations as the arithmetic rules are for numerical 
computations. Consequently, we can become familiar with character manipulations 
easily by building on what we already know about assignments. 

8.2.1 Basic Character String Assignments 

Direct assignment works for character strings just as it does for numerical data. To get 
things started, consider the following declaration: 

CHARACTER*5R, S, T 

At this point, of course, the values in R, S, and Tare irrelevant because they have not been 
initialized. We shall change that by assigning a cosntant to R: 

R='ROUND' 

Now, we can write 

S=R 

and both variables (R and S) will have the value ROUND in them. (T's value still is 
undefined.) Now, we thicken the plot a little by assigning a value to T as follows: 

T='CUBE' 

The result is that T will have the value CUBEb stored in it. (Recall that the b denotes a 
blank.) Confusing? Not at all. T, after all, was declared with a length of 5 and the = 
operation specifies replacement. Thus, when a value is assigned with T as its destination, it 
must replace all of T. This is no different from numerical assignment. Since we have not 
given T enough characters to fill it (obviously, the constant CUBE is one character short), 
FORTRAN supplies the necessary character, for which purpose it uses a blank. This 
process is called padding (a reasonable enough name) and it occurs at the right. That is, 
FORTRAN will do the replacement going from left to right. If the destination is longer 
than the value assigned to it, the remainder (on the right) is padded with blanks. Later on 
in this section we shall learn how to avoid padding when we want to. 

8.2.1.1 Assignments with Different String Lengths FORTRAN 77 is designed to allow 
the processing of character string assignment statements with no particular length restric­
tions. We have already seen that a string assigned to a larger destination will be padded 
with blanks to fill it out. When the opposite is true, FORTRAN simply does the best it 
can: Starting at position 1, it fills the destination string until there is no more room. Then it 
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stops. for example, the statements 

CHARACTERW*5, X*6, Y*3 
W 'BAGEL' 
X=W 
y = w 

will place BAGEL in W, BAGELb in X, and BAG in Y. Note that if we were to follow these 
statements with 

W=Y 

W would lose its BAGEL. Since Y has only three characters {BAG), all of W is replaced by 
BAG, padded with two blanks. 

8.2.1.2 Assignments with Substrings Character assignments become much more 
powerful with the use of substrings. To illustrate, we shall use the variables from the 
previous section with slightly different assignments: 

CHARACTER W*5, Y*3 
W = 'BAGEL' 
Y = W(2:4) 

Y still has only three characters in it {after all, that is all that it can hold), but this time these 
characters are AGE because we copied them from positions 2-4 of W. 

A substring also can be used as a destination. This is the way to change part of a string 
without affecting the rest of it. To take a closer look, we shall use more variables: 

CHARACTERW*5, X*6, Y*3, Z*5 
1 W 'BAGEL' 
2 x w 
3 z w 
4 Y W(2:4) 
5 W(3:5) = Y 
6 X(6:) = Z(5:) 
7 next statement 

Statements 1, 2, and 3 are self-evident. In statement 4, the three positions in Y are filled 
with the three-character substring starting with position 2 of W. Consequently, Y will 
contain the value AGE. Now, those three characters will replace the three in W (statement 
5) starting with position 3. As a result, W, which had BAGEL in it just prior to statement 5, 

now will have the GEL replaced with AGE, thereby producing BAAGE (a famous Nor­
wegian luggage company). Statement 6 shows substrings being used on both sides of the 
replacement operator. Here the sixth (and final) position ofX (which has a blank in it from 
statement 2) is replaced with the L from Z's fifth (and final) position, producing BAGELL 

in X. These actions are summarized in tabular form below: 

just prior to w x y z 
statement 1 ? ? ? ? 

statement 2 BAGEL ? ? ? 

statement 3 BAGEL BAGELb ? ? 

statement4 BAGEL BAGELb ? BAGEL 
statement 5 BAGEL BAGELb AGE BAGEL 
statement 6 BAAGE BAGELb AGE BAGEL 
statement 7 BAAGE BAGELL AGE BAGEL 
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8.2.2 The Concatenation Operator 

So far, the expressions we have used in character assignments have been as basic as 
possible: simple character strings or substrings. In addition, we can build more involved 
expressions by combining strings using an operation designed for that purpose. That 
operation is concatenation. The symbol for concatenation is// and the action it represents 
can be illustrated by the statements 

CHARACTER* 7 VRB 
VRB = 'CATER' II 'ED' 

In the second statement the constant CATER is concatenated with the constant ED to form 
a new string CATERED which then is stored in VRB. Of course, concatenation may be used 
with any form of character string. For instance, in the following sequence 

CHARACTERUTL*8, WRD*5, P*2, VR*8, NM*7 
WRD = 'PLACE' 
P = 'AT' 
UTL = WRD// 'M' /IP 

FORTRAN77: 

1. Takes the five characters PLACE from WRD and attaches an M at the end to form 
PLACEM. This string is stored someplace (call it Tl). 

2. The two characters AT are copied from P and attached to Tl, producing 
PLACEMAT. This is stored someplace (call it T2). 

3. The eight characters from T2 are copied into (i.e., assigned to) UTL. 

As we can see, it is possible to build some long strings by concatenating on and on, into the 
sunset. 

Since a substring is a legitimate term in a character expression, it can be used as an 
ingredient to be concatenated. Using the declarations and assignments from the previous 
four statements, we shall add another statement and analyze what happens: 

VR = WRD(l:4) //P//WRD(5:5) // 'D' 

The process is orderly enough: 

1. WRD's first four characters (PLAC) are concatenated with AT (from the variable P) 
to form PLACAT. This intermediate value is stored someplace (Tl). 

2. The string grows as the E from WRD's fifth character is tacked onto it. PLACATE, 
the new string thus formed, is stored in another temporary place (T2). 

3. The final growth occurs by extending the string from T2 with a D, and the result 
(PLACATED) is held somewhere (T3). 

4. T3 is assigned to VR. 

One more example using WRD = ' PLACE ' will illustrate the use of the same string more 
than once in an expression: 

NM= WRD(2:3) //WRD 

This produces a value of LAPLACE in NM. The only restriction FORTRAN places on such 
usage is that overlapping substrings cannot appear on both sides of the same assignment 
statement. For example, suppose we have a 5-character string named WRD5 and we 
wanted to copy the characters from its third, fourth, and fifth positions into its second, 
third, and fourth positions. We cannot do it by saying 

WRD5(2:4) = WRD5(3:5) 
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Instead, we have to get at the same result indirectly. A simple technique is to reserve a 
separate variable (we shall call it CHR.3) of length 3 and use that for the transfer: 

CHR3 = WRD5(3:5) 
WRD5(2:4) = CHR3 

Concatenation is the only explicit character string operator in the language. How­
ever, we should recognize that when we identify a substring, we are implying another type 
of operation: Part of a designated character string is being extracted and isolated for 
further processing. Consequently, between these two activities, we have a surprisingly 
powerful set of tools for building character strings, taking them apart, and putting them 
back together in different ways. Once we examine the kinds of decisions we can make with 
character strings, as we shall do in the next section, we shall put these capabilities to work 
on some more interesting problems. 

The basic decision mechanism for character strings is the same as it is for numerical data: 
We perform a test and select a particular activity based on the outcome. Moreover, the 
test consists of a comparison between two expressions in which the type of comparison is 
described by a relational operator. 

Such tests, when applied to character strings, make perfect sense for certain compari-
sons. To illustrate, the following statements surely present no serious problem to us: 

CHARACTER TRDMK*6 
READ * , TRDMK 
PRINT * , TRDMK 
IF (TRDMK (1: 1) . EQ. Is I) THEN 

TRDMK ( 1 : 1) I I 

ELSE 
TRDMK ( 1 : 1) I $ I 

END IF 
PRINT * , TRDMK 

In this little sequence we read a 6-character input value into TRDMK and display it. Then 
we perform the following decision operation: If the first character of TRDMK is an S, we 
replace it with a blank; if not, we replace it with a dollar sign. After making the 
appropriate replacement, we display the new value in TRDMK. 

8.3.1. Comparisons Between Character Strings 

Comparing character strings seems like a perfectly reasonable thing to do and, expec­
tedly, it is. By the same token, it makes equally good sense to be able to compare two 
character strings to see if they are not the same. Thus, the . NE. relational operator also is 
useful for comparing two character strings. (We should point out, though it may seem 
obvious, that when we talk about comparing "character strings" we include anything that 
produces a character string, i.e., a character expression.) However, when it comes to 
FORTRAN's other relational operations (such as . LT. and . GE. ), things appear to 
make less sense. What does it mean to test whether the string GRAND is "less than" the 
string HUGE? And if we can figure out what it means, why would we want to know? Why 
indeed? It's funny you should ask. 

Use of relational operations for comparing character strings with each other is based 
on the fact that each type of character is represented in the processor by its own numerical 
code. The collection of such codes is called the collating sequence to indicate that the 
numerical values, built into the machine's circuitry, are assigned to the various characters 
in a systematic order. For many types of processors, the collating sequence is set up as 
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follows: 

1. The number representing the letter ' A ' is smaller than that representing ' B ' , 
whose numerical code is smaller than that for ' C ' , and so on. 

2. The number representing the blank character ' b ' is smaller than that for the 
letter 'A'. 

Thus, a comparison between two characters translates, in the machine's terms, to a 
comparison between the corresponding numerical codes. To us this means, for example, 
that when a character Cl is "less than" some other character C2, it is like saying that Cl is 
alphabetically before C2 (in the same sense that the letterM is before the letterR). 

Appendix B tabulates the collating sequence for HP systems. The exact same 
principle applies to strings of characters. When instructed to compare two strings, 
FORTRAN 77 works from left to right. For example, the test 

('CK' . LT. 'CR') 

would tum out to be . TRUE. because FORTRAN, after comparing ' C' against ' C ' and 
finding them to be equal, would go on and compare ' K ' against ' R' . Since K is "less 
than" R, that establishes the entire string ' CK' to be less than 'CR' and FORTRAN 
marks the result "true." Similarly, the test 

('DAX' . GT. 'CAP') 

produces a result of . TRUE. because FORTRAN, having found the ' D ' from ' DAX' to 
be greater than the ' C ' from ' CAP ' , needs to look no further. It is clear that ' DAX' is 
alphabetically "after" 'CAP'. Once the relationship between the initial characters is 
established, of course, it does not matter how the remaining characters compare with 
each other. 

Since the numerical code assigned to the blank places that character below the digits 
and letters in the collating sequence, this provides an easy way to take care of comparisons 
between character strings of unequal length. When directed to perform such a test, 
FORTRAN pads the shorter string with blanks (on the right) to produce a temporary 
string having the same length as the other one. For instance, the test 

('CAP' . GE. 'CAPTAIN') 

will tum out to be a test between the two 7-character strings 'CAPbbbb' and 
' CAPTAIN' . Since blanks are lower than letters in the collating sequence, 'CAPTAIN' is 
greater than (i.e., alphabetically after) 'CAP ' and, therefore, the outcome of the test will 
be false. Additional examples are shown in Table 8.2. 

Table 8.2 Decisions with Character Strings 
P = 'CARNIVALS';E='CARNIVORE' 

Outcome When Internal 
Test Condition Code is ASCII* 

(P. EQ. E) . FALSE. 
(P. LT. E) . TRUE. 
(P. LE. E) . TRUE. 
(P (1: 6) . EQ. E (1: 6)) . TRUE. 
( I 3 4 I • LT. I 3 5 I ) • TRUE. 
( 'E34 I . LT. 'E35 I) . TRUE. 
( 'WZ I . LT. 'W4 I) . FALSE. 
('AB' .GT. '28') .TRUE. 
(P ( 2 : 4) I I I 33 I • LE. E ( 2 : 4) I I I AA I ) . TRUE. 

*American Standard Code for Information Interchange; see Appendix B. 
**Extended Binary Coded Decimal Interchange Code; see Appendix B. 

Outcome When Internal 
Code is EBCDIC** 

. FALSE. 

.TRUE. 

.TRUE. 

.TRUE. 

.TRUE. 

.TRUE. 

.TRUE. 

. FALSE. 

. FALSE. 
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FORTRAN 77 also provides four separate built-in functions for performing such 
comparisons. In each case, the function compares two character strings (which may be 
constants, variables, or expressions) in accordance with the rule implied by the particular 
function. If CHR_STRl and CHR_STR2 are the two character strings being compared, we 
can characterize the functions' behavior as follows: 

1. The expression 

LLT (CHR_STRl, CHR_STR2) 

produces a value of . TRUE. if CHR_STRl precedes CHR_STR2 in the collating 
sequence. 

2. The expression 

LLE (CHR_STRl, CHR_STR2) 

produces a value of . TRUE. if CHR_STRl equals CHR_STR2 or if CHR_STRl 
precedes CHR_STR2 in the collating sequence. 

3. The expression 

LGT (CHR_STRl, CHR_STR2) 

produces a value of . TRUE. if CHR_STRl follows CHR_STR2 in the collating 
sequence. 

4. The expression 

LGE (CHR_STRl, CHR_STR2) 

produces a value of . TRUE. if CHR_STRl equals CHR_STR2 or if CHR_STRl 
follows CHR_STR2 in the collating sequence. 

Example 8.1 We shall apply our newly acquired character handling powers to an important piece of 
research in paleoanthropology-an exciting investigation to establish a link between people of today and 
the ancient Minoans. Recent evidence hints that the Minoans, an unusually tall people, favored the use of 
the letters 0-Z in their surnames. Newly unearthed trade and religious documents containing long lists of 
names and transactions show that a good Minoan surname contained at least four letters in the 'o' to 
'z' part of the alphabet. 

Scientists have long suspected that descendants of the Minoans, after working their way around the 
Fertile Crescent and across the forbidden Hills of Endless Sneezings, settled in parts of Idaho and built a 
life there. To find out more about this possibility, a crack team of researchers went into Idaho and gathered 
sample data, writing down names (up to 15 letters long) and heights (in centimeters, to the nearest tenth 
of a centimeter). Now what is needed is a FORTRAN 77 program that separates the data into two groups 
based on the names: Suspected Minoans (with at least four letters between 0 and Z), and suspected 
non-Minoans. The program is to report the number of people in each group, as well as the average 
heights. 

We can develop this program systematically by starting with a bare outline (Figure 8.5) that shows 
the basic components without giving any details about how they will be expressed: 

1. A set of declarations and initializations; 

2. A loop that reads and processes each line; 

3. An output component that reports the findings. 

(These components are shown in Figure 8.5.) 
Let us deal with component 1 first. The requirements of the problem give us a direct indication of the 

variables we shall need: 

1 . A 15-character string for the last name (LSTNAM); 

2. A real variable forthe height (HT); 

3. Counters (integer variables) for the number of suspected Minoans (NUMMIN) and the number of 
suspected non-Minoans (NUMOTH). These need to be initialized to zero; 



"Declare and initialize variables for 
names, heights, counters." 

while there are input data: 
"Process the current input card." 

endwhile 
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"Print the summary report." 
"Stop." FIGURE 8.5 (a) Basic Pseudocode Representation of the Program for Example 8.1. 

~t 

Declare and initialize variables for names, heights, counters I 
) Component I 
l 

_) 

While there are input data: I 
l Component 2 

Process the current input card ~ 

t 

Print the summary report ~ 
Component 3 

l 
Stop J 

FIGURE 8.5 (b) Basic Description of the Program for Example 8.1 : N-S Diagram. 

4. Real variables for each of the average heights (AVGHTM, AVGHTO); 

5. Since each average is computed as a sum divided by a count. we shall need a real variable in 
which to accumulate the sum of the heights for each group (SUMHTM, SUMIITO); 

6. Finally, since we shall have to count the number of letters between o and z in each name, a 
counter (NUMLET) will be needed for that purpose. As part of that process. we shall be looking at 
each of LSTNAM's letters. A DO-variable (I) will help keep track of that activity. 

This gives us a more precise picture of the program's first component, and we can represent it in more 
detail, as shown in Figure 8.6. 

Component 3 can be examined next. Since the required results include the average heights for the 
two groups, we know that this activity cannot begin until all the input has been read and processed. Once 
we are assured that this has happened, we can compute AVGHTM and AVGHTO from SUNHTM and 
NUMHTM, and from SUMIITO and NUMHTO, respectively. This is reflected in the more detailed pseudocode 
and diagram for component 3 (Figure 8.7). · 

This leaves us with the heart of the program to consider. Our original view of the program (Figure 8.5) 
represented component 2 as a DO-WHILE structure in which each cycle performed all the necessary 
processing for a single input line. Since this structure starts (by definition) with a test to determine 
whether the loop is to be entered, we need something on which to base this test. Consequently, just 
before the program enters this component, there must be a set of input data in storage, all ready to be 
examined. This tells us that component 1 needs to read the first set of input values as part of the 
initialization process. (Accordingly, this will be added to component 1.) 

Having provided a safe and secure entry to component 2, we can use the requirements to help 
describe the component's activities in more detail. The loop itself, then. includes: 

1. A test to determine whether there is more input to process. We shall use a height of o. o as an 
end-of-data signa I. This not only controls the use of the loop; it also makes sure that component 3 
is entered only at the proper time. i.e .. when all input has been processed; 
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"Declare real variables HT, SUMHTM, SUMHTO, A VGHTM, A VGHTO, 
integer variables NUMMIN, NUMOTH, NUMLET, I, 
15-character string LSTNAM." FIGURE 8.6 (a) Expansion of Compo­

nent 3 from Figure 8.5 (a). "Initialize NUMMIN, NUMOTH, SUMHTM, SUMHTO, to zero." 

Declare real variables HT, SUMHTM, SUMHTO, 
AVGHTM, AVGHTO, 

inter variables NUMMIN, NUMOTH, 
NUMLET, I, 

15-character string LSTNAM. 

Initialize NUMMIN, NUMOTH, SUMMTM, 
SUMHTO to zero. FIGURE 8.6 (b) Expansion of Compo­

nent from Figure 8.5 (b): N-S Diagram. 

"Compute A VGHTM (-- SUMHTM/NUMMIN." 
"Compute A VHGTO (-- SUMHTO/NUMOTH." 
"Print NUMMIN, NUMOTH, AVGHTM, AVGHTO." 
"Stop." FIGURE 8.7 (a) Expansion of Component 3 from Figure 8.5 (a). 

AVGHTM • SUMHTM AVGHTO.,___SUMHTO 
NUMMIN ' NUMOTH 

Print NUMMIN, NUMOTH, AVGHTM, AVGHTO 

Stop FIGURE 8.7 (b) Expansion 
of Component 3 from Figure 8.5 
(b): N-S Diagram. 

2. A letter-by-letter examination of LSTNAM to find out how many letters between o and z there are in 
that name; 

3. Addition of this input information to that being accumulated for suspected Minoans (or for sus­
pected non-Minoans), based on the results obtained in (2) above; 

4. Input of the next set of values in preparation for another (potential) cycle through the loop. 

As a result of this analysis, we can expand our description of component 2 so that it gives more detail (Figure 
8.8). 

Now we can work with the description in Figure 8.8, concentrating this time on how these activities will 
be specified: 

1. The first activity is straightforward enough and needs no further explanation; 
2. The letter-by-letter examination immediately suggests a DO-loop in which the location of a letter 

from othrough z is recorded by adding 1 toNUMLET. (To make sure this works properly, we remind 
ourselves to initialize NUMLET before the loop is started.) The loop uses the index (I) to step through 
LSTNAM's letters. For example, when I is 6 (the sixth time through the loop for that name), we are 
looking at LSTNAM ( 6: 6) , the sixth position in LSTNAM; 

3. NUMLET now can be used to identify the proper group for the set of data. If NUMLET is at least 4, then 
NUMMIN needs to be incremented, HT needs to be added to SUMHIM, and an appropriate message 
produced. If NUMLET is less than 4, corresponding activities are to be performed for NUMOTH and 
SUMHTO; 
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while HT is not equal to zero: 
"Determine how many letters between 0 and Z 

there are in LSTNAM." 
if 

LSTNAM indicates a suspected Minoan: 
then 

"Update NUMMIN and SUMHTM." 
"Print input with Minoan message." 

else 
"Update NUMOTH and SUMHTO." 
"Print input with non-Minoan message." 

endif 
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"Read the next input card." 
endwhile FIGURE 8.8 (a) Expansion of Component 3 from Figure 8.5 (a). 

While HT :/= 0: 

Determine how many letters between 0 and Z 
there are in LSTNAM 

Suspected Minoan? 
no 

Update NUMOTH, 
SUMHTO 

Print data with non-Minoan 
message 

yes 

Update NUMMIN, 
SUMHTM 

Print data with Minoan 
message 

Read the next input card 

4. The final activity is straightforward. 

FIGURE 8.8 (b) Expansion 
of Component 2 from Figure 
8.5 (b): N-S Diagram. 

This additional detail is shown in Figure 8.9, which also includes the revision for component 1 indicated 
earlier. 

At this point, it is clear that our understanding of the program's requirements (and how to meet 
them) is sufficiently well developed so that writing the actual statements becomes almost automatic. We 
can see that this is not exaggerated by examining the statements in Figure 8.10. This is one of the major 
ideas behind this kind of systematic development, and it works no matter how complicated the problem 
might be. 

Sample input for the program is given in Figure 8.11 and the results are seen in Figure 8.12. 

8.3.2 Searching for Character Strings-
The INDEX Function 

A process often used in work with character strings is one in which a string is searched to 
see if it contains some other one. The FORTRAN compiler is an immediate example of 
this: When it analyzes our programs, a considerable part of its time is spent in searching 
our statements, which it treats as character strings, to find certain words and other 
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"Declare real variables HT, SUMHTM, SUMHTO, A VGHTM, A VGHTO, 
integer variables NUMMIN, NUMOTH, NUMLET, I 

15-character string LSTNAM." 
"Initialize NUMMIN, NU MOTH, SUMHTM, SUMHTO to zero." 
"Read the first input card." 
while HT is not equal to zero: 

"set NUMLET to zero." 
do for I = 1 to 15: 

if 
the Ith letter in LSTNAM is between 0 and Z: 

then 
"Add 1 to NUMLET." 
else 
endif 

enddo 
if 

NUMLET is equal to or greater than 4: 
then 

else 

"Add I to NUMMIN and add HT to SUMHTM." 
"Print input with Minoan message." 

"Add I to NUMOTH and add HT to SUMHTO." 
"Print input with non-Minoan message." 

endif 
"Read the next input card." 

endwhile 
"Compute AVGHTM (-- SUMHTM/NUMMIN." 
"Compute AVGHTO (-- SUMHTO/NUMOTH." 
Print NUMMIN, NUMOTH, AVGHTM, AVGHTO." 
"Stop." 

RGURE 8.9 (a) Final Expansion of Program Description for 

Example 8. 1 . 

symbols that will help determine what it will do next. In a way, that is what we were 
doing in Example 8.1, where we examined one character at a time. FORTRAN 77's 
INDEX built-in function gives us a more general facility that allows convenient searches 
for strings of any length. This function has the form 

INDEX (argl, arg2) 

where argl is the string to be examined and arg2 is the string we are trying to match. 
For example, the expression 

INDEX ( I KANKAKEE I ' I AK I ) 

is set up to search the character constant KANKAKEE for an occurrence of the constant 
AK. INDEX returns an integer whose value describes the outcome of the search. If there 
is no match, the value is zero; on the other hand, if the search is successful, the integer 
shows at which position the match begins. We can see how this works by using the 
previous expression in an assignment statement: 

N = INDEX ('KANKAKEE I' I AK I) 

N will have a value of 5 in it because the string AK, in fact, is found in KANKAKEE, 
starting at position 5. 

INDEX finds only a single occurrence, regardless of how many times the smaller 
string may occur in the larger one. INDEX searches from left to right, stopping after it 
finds the first match. Consequently, it takes a little programming to arrange for a string 
to be searched for all matches with another string. 
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Declare real variables HT, SUMHTM, SUMHTO, A VGHTM, AVGHTO 
integer variables NUMMIN, NUMOTH, NUMLET, I 
15-character string LSTNAM. 

Initialize NUMMIN, NUMOTH, SUMHTM, SUMHTO to zero 

Read the first input card 

While HT t= 0 

Set NUMLET to zero 

~ DO for I = 1 to 15 

i~ 
and '/-.,? 

yes 

Add 1 to NUMLET 

~LET~ yes 

Add 1 to NUMOTH Add 1 to NUMMIN 

Add HT to SUMHTO Add HT to SUMHTM 

Print input with Print input with 
non-Minoan message Minoan message 

Read the next input card 

AVGHTM.--
SUMHTM 

' 
AVGHTO .-- SUMHTO 

NUMMIN NU MOTH 

Print NUMMIN, NUMOTH, AVGHTM, AVGHTO, 
with appropriate labeling. 

Stop 

FIGURE 8.9 (b) Final Expansion of Program Description for Example 8.1 : N-S Diagram. 

175 

' 
-1:: 
(!) 

~ § 

I) 

"' 

IJ 

" 

~ 

) 

s 
0 
u 

> 

(!) 

s:: 
0 
0. 
E 
8 

N 

1:: 
(!) 

s:: 
0 
0. s 
0 u 



176 

C************************************************************ 
c EXAMPLE 8.1 * 
C************************************************************ 

c 

c 

c 

PROGRAM 
REAL 
INTEGER 
CHARACTER 

SUMHTM = 
SUMTHO = 
NUMMIN = 
NUMOTH = 

0. 
0. 
0 
0 

EX801 
SUMHTM,SUMHTO,AVGHTM,AVGHTO,HT 
NUMMIN,NUMOTH,NUMLET,I 
LSTNAM*15 

PRINT *, 'ENTER VALUES FOR LSTNAM AND HT' 
READ *, LSTNAM,HT 

DO WHILE (HT .NE. 0) 

C************************************************************ 
c 
c 
c 
c 
c 
c 
c 

T.HIS LOOP EXAMINES EACH OF LSTNAM'S 15 POSITIONS TO SEE * 
WHETHER IT CONTAINS A LETTER FROM 0-Z. WE DO THIS BY DE- * 
TERMINING WHETHER THE LETTER IN THAT POSITION IS GREA- * 
TER THAN OR EQUAL TO 'O'. THE ASSUMPTION IS THAT THERE * 
ARE NO OTHER CHARACTERS IN LSTNAM EXCEPT LETTERS OR * 
BLANKS. IF WE DID NOT ASSUME THAT, WE ALSO WOULD TEST FOR* 
THE CHARACTER BEING LESS THAN OR EQUAL TO 'Z'. * 

C************************************************************ 
NUMLET = 0 

c 

c 

c 

c 

DO 20 I=1,15 
IF (LSTNAM(I:I) .GE. 'O') NUMLET=NUMLET+1 

20 CONTINUE 

IF (NUMLET .GE. 4) THEN 
NUMMIN = NUMMIN+1 
SUMHTM = SUMHTM+HT 
PRINT*, LSTNAM,HT,' POSSIBLE MINOAN' 

ELSE 
NUMOTH = NUMOTH+1 
SUMHTO = SUMHTO+HT 
PRINT *, LSTNAM,HT, 'POSSIBLE NON-MINOAN' 

END IF 

PRINT *, 'ENTER ANOTHER SET OF VALUES FOR LSTNAM AND HT' 
READ *, LSTNAM, HT 

END DO 

AVGHTM 
AVGHTO 
PRINT 
PRINT 
PRINT 
PRINT 
STOP 
END 

= 
= 

*, 
*' 
*' 
*' 

SUMHTM/NUMMIN 
SUMHTO/NUMOTH 
'NO. OF POSSIBLE MINOANS: ',NUMMIN 
'NO. OF POSSIBLE NON-MINOANS: ',NUMOTH 
'AVG. HT. OF POSSIBLE MINOANS: ',AVGHTM 
'AVG. HT. OF POSSIBLE NON-MINOANS: ',AVGHTO 

FIGURE 8.10 FORTRAN Statements for Example 8.1. 
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183.6 
1 51 . 3 
168.0 
168.2 
157.4 
154.6 
156.5 
179.9 
161 . 1 
177.7 

ROSOSTOMOS 
AKLAMANSA 
COLAMBOLANA 
KUSUTUVOS 
BIDIBIM 
DLAZOVA 
ABDABILAD 
VUTOVSYZY 
FI LAD KY 
KROTKO 
BLEEBIK 1 5 9 • 8 FIGURE 8.11 Input Data for Example 8.1. 

ROSOSTOMOS 183.6 POSSIBLE MINOAN 
AKLAMANSA 1 51 . 3 POSSIBLE NON-MINOAN 
COLAMBOLANA 168.0 POSSIBLE NON-MINOAN 
KUSUTUVOS 168.2 POSSIBLE MINOAN 
BIDIBIM 157.4 POSSIBLE NON-MINOAN 
DLAZOVA 154.6 POSSIBLE NON-MINOAN 
ABDABILAD 156.5 POSSIBLE NON-MINOAN 
VUTOVSYZY 179.9 POSSIBLE MINOAN 
FI LAD KY 161 . 1 POSSIBLE NON-MINOAN 
KROTKO 177.7 POSSIBLE MINOAN 
BLEEBIK 159.8 POSSIBLE NON-MINOAN 
NO. OF POSSIBLE MINOANS: 4 
NO. OF POSSIBLE NON-MINOANS: 7 
AVG. HT. OF POSSIBLE MINOANS: 0.1823500E 03 
AVG. HT. OF POSSIBLE NON-MINOANS: 0.1583857E 
FIGURE 8.12 Output for Example 8.1 . 

03 

Example 8.2 These are exciting times for believers in Eastern gurus and their spiritual prowess. 
Certain researchers, claiming to be on the verge of a breakthrough, feel that the concentration of power is 
linked, somehow, with a guru's name. There is great significance, they say, in the number of appearances 
of the letter-group ANA and in the placement of these appearances. A guru named DANAA, for instance, is 
no big deal in the magic department (brief local rainfalls, etc.). On the other hand, somebody like the 
Swami MENANANDAPRASHANANARANANA would be a major force to be reckoned with. 

Since the exact relationship still is not known, the researchers need a FORTRAN 77 program to 
develop crucial data for their continued work: For each guru's name submitted as input, the program is to 
produce a table showing the starting position of each occurrence of ANA. Each table is preceded by the 
name and the number of occurrences. 

As expected, the program is built around a search of each name, and the search is built around the 
INDEX function. However, we must get around the fact that INDEX will keep finding the first (leftmost) 
occurrence unless we avoid repeated examinations of the same part of the name. For example, in 
examining the nameBANDANANARANJANAN, INDEX will find an occurrence of ANA starting in position 5: 

BAND IANA INARANJANAN 

L_ Position 5 

In order to allow INDEX to find the next match (which happens to start in position 7), we want to search 
only that part (substring) of the name that has not been searched yet: 

BANDAN IANA IRANJANAN 

LPosition7 
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Accordingly, after finding a match at position 5, we want to look at the rest of the name, starting in position 
6. Now, the leftmost match for that string begins in the second position of the shortened string, which 
corresponds to position 7 of the entire name: 

BANDA I NANARANJ ANAN 

LPosition6 

Then, if we want to look further, we need to start at position 8: 

BANDANAINARANJANAN 

The next (and last) match occurs at position 7 from the beginning of the new substring, or position 14 from 
the beginning of the entire string: 

BAND ANA I NARANJ mAN 

Now, let us restate this in terms of FORTRAN statements: if GURU is the character variable containing the 
name, and POSN is the position of a match, then our first search would say 

POSN = INDEX (GURU' I ANA I ) 

As seen before, this would produce a value of 5 in POSN. Now, suppose we stored that away someplace, 
and we are ready to continue the search. Regardless of how we manage it, we want the next search to do 
the following: 

POSN = INDEX (GURU (6:)' I ANA I) 

In other words, "please search the characters in that part of GURU starting with position 6 and going out to 
the end of the string, if necessary, and report the result in POSN." For our medium-powered guru 
BANDANANARANJANAN, this would produce a value of 2 in POSN, since the match begins at the second 
position of GURU (6: ) . In order to report this as a position relative to the beginning of the entire string, we 
must adjust the value in POSN by adding 5, the starting position of the first match. Once this is done, the 
new value (7) shows the actual point at which the second match starts. 

Now, we can generalize this process by observing the following: 

1. Whenever we search a substring successfully (i.e., we find a match), the position at which that 
match begins (with the beginning of that substring being position 1) can be adjusted to the position from 
the beginning of the entire string by adding the location of the previous match. Thus, if POSN is the 
position of the match just found, and MARK shows the beginning of the previous match, the adjusted 
position is obtained with a statement like 

POSN = POSN+MARK 

2. After a successful search, the starting position of the next search can be set by adding 1 to the 
adjusted position of the successful search. For instance, if START is the starting position of the reduced 
substring about to be searched, and we have already adjusted POSN by adding MARK to it, then START is 
reset by the statement 

START = POSN+l 

Since the first search covers the entire string (i.e., from position 1 on), our "substring" is really GURU ( 1: ) . 

Consequently, that tells us that START needs to be initialized to 1. Moreover, since it is the first search, we 
cannot adjust for a previous one, so that MARK requires initialization to zero. 

That leaves us with the job of storing the search information someplace, as we generate it. The 
easiest thing to do is to set up an array of integers where each element specifies the beginning position of 
a match. Since we cannot know how many matches a particularnamewill produce, we shall allow enough 
room to handle even the most powerful guru. Our crack researchers are convinced that anything beyond 
ten matches is out of the question. Being a little on the conservative side, we shall allow for twelve, which 
is the largest possible number of matches in a 25-character name. (We shall leave it up to you to figure out 
what that highly powerful name must be in order to have twelve occurrences.) Initially, all twelve 
elements will be set to zero before we look at each name. Then, as the search progresses, the zeros will 
systematically be replaced with integers indicating the position of each match. An indicator, which we 
shall call LATEST, will keep track of the array element just filled, so that we avoid storing information in a 
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place already containing a search result. Here again, LATEST will be initialized to zero before we look at a 
new name, thereby indicating that the array (which we shall call PSNTBL) is empty. 

Now we have defined all the major ingredients and we can step through the processing described by 
the statements in Figure 8.13. We shall use our good friend Swami BANDANANARANJANAN (the first input 
name from Figure 8.14). 

C************************************************************ c EXAMPLE 8.2 * C************************************************************ c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

GURU IS A 25-CHARACTER STRING CONTAINING AN INPUT NAME; * 
PSNTBL IS AN ARRAY WHICH WILL BE FILLED WITH THE LOCA- * 
TIONS OF EACH MATCH FOUND IN A GIVEN NAME; * 
START IS AN INDICATOR THAT DEFINES THE STARTING POINT FOR* 
EACH SEARCH THROUGH AN INPUT NAME; * 
MARK INDICATES THE LOCATION OF THE MOST RECENTLY FOUND * 
MATCH AND IS USED TO ADJUST THE POSITION COMPUTED BY THE * 
INDEX FUNCTION; * 
POSN IS THE LOCATION OF THE MATCH FOUND BY THE INDEX * 
FUNCTION (OR 0 IF A MATCH IS NOT FOUND); * 
NUMLET COUNTS THE NUMBER OF MATCHES FOUND IN A NAME. * 

C************************************************************ 
PROGRAM 
IMPLICIT 
INTEGER*2 
CHARACTER*25 
CHARACTER*? 
PARAMETER 
DO I=1,15 

PSNTBL(I) 
END DO 

EX802 
NONE 
PSNTBL(15),START,MARK,POSN,NUMLET,I 
GURU 
BLANK 
(BLANK=' ') 

0 

PRINT *• 'ENTER THE FIRST VALUE FOR GURU' 
READ *• GURU 

DO WHILE (GURU .NE. BLANK) 
START = 1 
MARK = 0 
POSN = 0 
NUMLET 0 
POSN = INDEX(GURU(START:),'ANA') 
DO WHILE (POSN .NE. 0) 

NUMLET = NUMLET+1 
POSN = POSN+MARK 
PSNTBL(NUMLET) = POSN 
MARK = POSN 
START = START+1 
POSN = INDEX(GURU(START:),'ANA') 

END DO 

PRINT *• BLANK 
PRINT*• 'SWAMI ',GURU,' HAS ',NUMLET,' OCCURRENCES OF ANA' 
I = 1 

DO WHILE (PSNTBL(I) .NE. 0) 
PRINT*• 'MATCH ',I,' STARTS AT POSITION' ,PSNTBL(I) 
I = I+1 

END DO 

PRINT *• BLANK 
PRINT *• 'ENTER THE NEXT VALUE FOR GURU' 
READ (*,END=99) GURU 

END DO 

99 PRINT *• BLANK 
PRINT *• 'ENC OF RUN' 
STOP 
END 

FIGURE 8.13 FORTRAN Statements for Example 8.2. 
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'BANDANANARANJANAN' 
'JANHA' 
'RANHA' 
'RAMANANASHANANATANATANANA' 
'HARANA' 

FIGURE 8.14 Input for Example 8.2. 

SWAMI RANDANANARANJANAN HAS 3 OCCURRENCES OF ANA 
MATCH 1 STARTS AT POSITION 3 
MATCH 2 STARTS AT POSITION 7 
MATCH 3 STARTS AT POSITION 14 

SWAMI JANHA HAS 0 OCCURRENCES OF ANA 

SWAMI RAMANANASHANANATANATANANA HAS 7 OCCURRENCES OF ANA 
MATCH 1 STARTS AT POSITION 4 
MATCH 2 STARTS AT POSITION 6 
MATCH 3 STARTS AT POSITION 11 
MATCH 4 STARTS AT POSITION 13 
MATCH 5 STARTS AT POSITION 17 
MATCH 6 STARTS AT POSITION 21 
MATCH 7 STARTS AT POSITION 23 

SWAMI HARAN A HAS 1 OCCURRENCES OF ANA 
MATCH 1 STARTS AT POSITION 4 

END OF RUN 

FIGURE 8.15 Output for Example 8.2. 

1. The first time we execute statement 10, the variable START has a value of 1, so that the string 
being searched by INDEX is, in fact, the entire name. There is a match starting at position 5, so that POSN 
is set to 5, the IF test passes, and the associated action is performed. Accordingly, LATEST is increased 
from o (its initial value) to 1; since MARK is at zero, its addition to POSN does not affect POSN's value this 
time. PSNTBL ( 1) is given a value of 5 (indicating that the first match starts at position 5), MARK is given a 
new value (5, the position of the most recently found match), and START, the leftmost position of the 
substring to be searched next, is set to 6 (i.e., 5+ 1), and we are ready to look for a second possible match. 

2. The second use of statement 10 on this name limits the search to GURU ( 6: ) , i.e., the string 
NANARANJANAN. Another match is found, starting at the second position of this string. Thus, POSN will 
have a value of 2 as we leave statement 10. LATEST is increased from 1to2, and POSN is adjusted from 2 
to 7 (by addingMARK's current value of 5 to it) to indicate that the second match starts at position 7 when 
we measure from the beginning of the entire string. MARK is brought up to date (so that it now is 7) after 
PSNTBL ( 2) is assigned a value of 7. Finally, START is set to 8 (i.e., one position after the starting point of 
the match just found), and we are ready to try a third search. 

3. Statement 10 now searches GURU ( 8: ) , i.e., the string NARANJANAN. Once again the search 
succeeds and POSN receives a value of 7, indicating that the match begins in position 7 from the beginning 
of this substring. LATEST is increased from 2 to 3, showing that this is the third match. POSN is adjusted 
again by adding MARK's current value (7+7), so that the new value (14) gives the position of the third 
match from the very beginning of the original string. This value is stored in PSNTBL ( 3) , MARK is set to 14, 
START is set to 15, and we try again. 

4. The fourth attempt turns out to be the final one as far as this name is concerned. Statement 10 
searches GURU ( 15: ) , a greatly reduced string consisting of the three letters NAN. Since there is no 
match, the IF test fails and the action is bypassed. As a result, only the first three entries in PSNTBL are 
filled in (with the rest having the zeros we put there during initialization). Incidentally, since the rest of the 
activity was bypassed when the IF test failed, LATEST still has a 3 in it, which happens to be the number 
of successful matches. 

The results corresponding to Figure 8.14's input are shown in Figure 8.15. 
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8.3.3 Conversions Between Characters and Integer Values 

FORTRAN includes two functions based on the idea that each character, when stored 
internally, has a unique numerical representation (i.e., a place in the collating sequence): 
The I CHAR function examines a single character and produces the corresponding position 
of that character in the collating sequence. For example, 

I CHAR ( ' W ' ) and I CHAR ( 'w ' ) 

produce respective integer values of 8 7 and 119. (Check these values against the 
information in Appendix B to make sure the relationship is clear.) The CHAR function 
operates in the opposite direction by producing the character corresponding to the integer 
value given to it. For instance, the seq\1-ence 

CHARACTER*l NEWLTR 
NEWLTR = CHAR (80) 

will store the character 'P' in NEWLTR. (Again, check Appendix B.) 
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Since the design and implementation of character-handling algorithms is likely to be less 
familiar than the idea of "computing" with numbers, we shall look at another, more 
ambitious example. This time, instead of dealing with input consisting of individual words 
or names, each entire input line will contain several words, and all the words on a line will 
be read as a single character string. There is no reason to expect the number of words on a 
line, or the lengths of these words, to be uniform. Other information about the input can 
be summarized as follows: 

8.4 ANOTHER 
EXAMPLE 
PROGRAM 

1. A word always will end on the same line on which it starts. 
2. Words are separated by at least one blank. 
3. Every input line will have at least one word. 
4. Columns 79-80 will never be part of an input character string; those columns are 

to be reserved for a data line sequence number (in the same way that columns 
73-80 on FORTRAN statement lines are reserved). 

5. The longest word will be 12 letters. 
6. While there may be any number of blanks between words, there never is a blank 

before the first word on a line. 
7. The last word on a line always will be followed by at least one blank. 
8. There are no periods (. ) in the entire input. 

A typical input line is shown in Figure 8.16. 
The required program is to produce the following output: 

1. A count of the total number of words in the input. 

·~ITH THIS DRIEMTATIOH THE RESULTS ~ERE DECIDEDLY LESS SPECTACULAR IM FACT' ,01 
I 

I 

n o oo oo 000030 o onool 00000 u 1: 000000000000 oon o onn oo 0000000000 0001 1 o 
, ~ J 4 s & ., i 1 :o !1 .1 ;J !4 :s 1; ~1 ia 19 20 21 '.?::! :;3 ;:4 2s ~& 21~s19 30 JI J: JJ J4 JS ~s Ji=~ ~~P'1 c1 42 .;34u54s 41 ::..., 'iJ ~::> s1 ~2 ~3 ~~ !':5 ::s s1 ::i 59 !:O n1 s2 6; -:1 ~s ~s 67 £& 69 1!l n 1:: 7: 7.i ~s 73 n ;a 79 so 

illl' 1111111111-1111111111' 111.111~~!111]1 11111111 1·· 111111 1' 1111 

222 '2 22227 n22222 ·22 ~~ ~~\ 22 ·2 22227 ?222222 ·222 
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I 
J 1 3 3 3 3 3 I • ~ t'W ~)~I ~ 3 3 3 z 1 ' , 3 

. ~ ~ 

FIGURE 8.16 Input Card Containing Several Words. 
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2. Counts of the number of words for each word length (1to12). 

3. The average word length. 

The crucial processing component in solving this problem is to separate each individual 
word from the rest of its input line so that we can determine its length and use that 
information for the statistics that we are required to develop. Before we look at the 
detailed operations needed to do this, we shall note that the job of processing a word can 
be made simpler by dealing with a copy of the word, once it has been identified, instead of 
processing the word as it sits inside the larger input string. Consequently, we shall use a 
12-character string named WORD for this purpose. Originally, (i.e., before we start to look 
for a new word), WORD will be emptied (initialized to blanks), and an indicator named 
WRDPTR will be set to 1 to indicate that we are about to look for the first letter of 
a new word as we find it in the input string (called LINE) and rebuild it in WORD. 
Similarly, as we work our way through LINE, another indicator (called CRDPTR) will 
keep track of where we are on the line, so that we do not look at the same part more than 
once, and we do not miss anything either. 

Once everything has been declared, the program's major activities divide fairly 
naturally into four sections: 

1. An initialization section during which the array of counters (NWDS) is set to 
zeros, the first input line is read, and the indicators are set to begin building the 
first word. 

2. A simple loop that builds an individual word (in WORD) by copying successive 
characters from the input line until a blank is found. 

3. A process that handles the bookkeeping required to add information about 
another word to the statistics, and resets the program to get the next word which 
includes finding and bypassing blanks between words), bringing in another line as 
needed. 

4. A final, one-time activity that computes the average word length and displays the 
results. 

The first three activities are built within a DO-WHILE construct that allows the cycle to 
repeat as long as the concluding asterisk has not been reached. Figure 8.17 shows a flow 
diagram and pseudocode, and the program is given in Figure 8.18. Operation of the 
program is illustrated by the sample run in Figure 8.19. 

s.s SUMMARY A character string may consist of any combination of letters, numerical digits, and special 
characters, including blanks. Character string variables are named like any other vari­
ables and are declared with a statement having the form 

CHARACTER name*length, name*length, etc. 

where each length specifies the number of characters the particular string can store at one 
time. Arrays of character strings follow the same organizational rules that apply to other 
data types (as described in Chapter 7). 

Part of a string (i.e., a substring) can be described by specifying the starting and 
ending positions of the string in which it is contained. For example, 

SVAR(2:8) 

identifies that part of the string SV AR extending from positions 2 through 8. 
Assignment statements for character strings work the same way they do for numerical 

values: A character expression is evaluated and the result (a character string) is stored in 
(assigned to) a specified destination. Expressions may contain combinations of character 



Define CARD, WORD, CRONO, NWDS, WDLNTH, CRDPTR, WRDPTR, 
SUMWLT, AVGWLT, NUMWDS, I 

Read the first card 
Initialize the NWDS array 

Initialize for a new card 
Initialize for a new word 

Do while there is no asterisk in the input 

Copy the next word from CARD to WORD 

Update appropriate element in NWDS 
Update SUMWLT, NUMWDS 

Reinitialize for next word 

Bypass intervening blanks 

Do until the end of an input card is reached 

Reset for a new card 

Print NUMWDS, NWDS 
Compute A VGWLT 
Print AVGWLT 

STOP 

FIGURE 8.17 (a) Structured Flowchart for Example 8.3. 

"Define CARD, WORD, CRDNO, NWDS, WDLNTH, CRDPTR, 
WRDPTR, SUMWLT, AVGWLT, NUMWDS, I." 

Read the first card." 
Initialize the NWDS array, initialize for a new 

card, and initialize for a new word." 
while there is no asterisk in the input: 

do until the end of an input card is reached: 
"Copy the next word from CARD to WORD." 
"Update the appropriate element in NWDS." 
"Update SUMWLT, NUMWDS." 
"Reinitialize for the next word." 
"Bypass intervening blanks." 

enddo 
"Reset for a new card." 

endwhile 
"Print NUMWDS, NWDS." 
"Compute and print AVGWLT." 
"Stop." FIGURE 8.17 (b) Pseudocode for Example 8.3. 183 
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C************************************************************ 
c EXAMPLE 8.3 * 
C************************************************************ 
C LINE: 
C CDNO: 
C WORD: 

A 75-CHARACTER STRING FOR AN INPUT LINE 
THE LINE NO., FROM COLS. 79-80 OF A LINE 
A 12-CHARACTER STRING FOR AN INPUT WORD 

* 
* 
* 

C CRDPTR: 
c 

INDICATES THE CURRENT POSITION BEING EXAMINED* 
IN LINE * 

C WRDPTR: 
C NUMWDS: 
C NWDS: 
c 
C WDLNTH: 
C SUMWLT: 
C AVGWLT: 

INDICATES THE NEXT AVAILABLE POSITION IN WORD* 
THE NUMBER OF WORDS IN THE INPUT * 
A 12-ELEMENT ARRAY FOR OCCURRENCES OF EACH * 
WORD LENGTH * 
THE LENGTH OF THE INPUT WORD BEING EXAMINED * 
TOTAL NUMBER OF LETTERS IN THE INPUT WORDS * 
THE AVERAGE WORD LENGTH * 

C************************************************************ 

EX803 PROGRAM 
IMPLICIT 
INTEGER*2 
CHARACTER 
REAL*4 
PARAMETER 

NONE 
CDNO,CRDPTR,WRDPTR,NUMWDS,NWDS(12),WDLNTH,I 
LINE*75,WORD*12,BLANK*1,STAR*1 
SUMWLT,AVGWLT 
(BLANK=' ',STAR='*') 

DO 1 I=1,12 
NWDS(I) = 0 

1 CONTINUE 
NUMWDS=O 
SUMWLT=O 
PRINT *, 'ENTER VALUES FOR LINE and CDNO' 
READ *, LINE,CDNO 
CRDPTR=1 
WRDPTR=1 
WDLNTH=O 
WORD=BLANK 

DO WHILE (LINE(CRDPTR:CRDPTR) .NE. STAR) 
WORD(WRDPTR:WRDPTR) = LINE(CRDPTR:CRDPTR) 
DO WHILE (LINE(CRDPTR:CRDPTR) .NE. BLANK) 

WDLNTH = WDLNTH+1 
WRDPTR = WRDPTR+1 
CRDPTR = CRDPTR+1 
WORD(WRDPTR:WRDPTR) = LINE(CRDPTR:CRDPTR) 

END DO 

C-----------UPDATE THE VARIOUS COUNTERS----------

NUMWDS = NUMWDS+1 
NWDS(WDLNTH) = NWDS(WDLNTH)+1 
SUMWLT = SUMWLT+WDLNTH 
WDLNTH = 0 
WRDPTR = 1 
WORD = BLANK 

FIGURE 8.18 Statements for Example 8.3. (continued) 
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C----------BYPASS BLANKS AND CHECK FOR END OF LINE----------

DO WHILE (LINE(CRDPTR:CRDPTR) .NE. BLANK) 
IF (CRDPTR .EQ. 75) THEN 

PRINT *, 'ENTER ANOTHER INPUT LINE AND CDNO VALUE' 
READ *, LINE, CDNO 
CRDPTR = 1 

ELSE 
CRDPTR = CRDPTR + 1 

END IF 
END DO 

END DO 

C----------FINAL PROCESSING----------

PRINT*, 'NUMBER OF WORDS THIS RUN: ',NUMWDS 
BLANK PRINT *, 

PRINT *, 
DO I=1,12 

'WORD DISTRIBUTION:' 

PRINT *, 'THERE ARE ',NWDS(I),'WORDS WITH LENGTH ',I 
END DO 
PRINT *, BLANK 
AVGWLT = SUMWLT/NUMWDS 
PRINT*, 'AVG. WORD LENGTH: ',AVGWLT 

STOP 
END 

FIGURE 8.18 (Continued) 

'WITH THIS ORIENTATION THE RESULTS WERE DECIDEDLY LESS SPECTACULAR IN FACT' .01 
'THE BENEFITS OF THIS PRACTICE VARIED WIDELY AMONG COMPUTER' .02 

CENTERS THAT FOLLOWED IT SURVEYS OF SUCH USAGE REVEALED A '.03 
'SURPRISINGLY HIGH INCIDENCE OF CASES IN WHICH PROGRAM MODULES WERE CRAFTED '.04 
'AS POTENTIAL LIBRARY COMPONENTS ONLY TO END UP BEING USED IN SINGLE' .05 
'APPLICATIONS THE RESULTING LIBRARIES WERE FILLED WITH A GREAT NUMBER OF' .06 
'SUBPR.oGRAMS THAT COLLECTED DUST ~rn~rn '. 07 

FIGURE 8.19 (a) Output from Sample Run of Program to Determine Average Word Length in a Sample: Total 
Words. 

NUMBER OF WORDS THIS RUN: 68 

WORD DISTRIBUTION: 
THERE ARE 2 WORDS WITH LENGTH 1 
THERE ARE 11 WORDS WITH LENGTH 2 
THERE ARE 4 WORDS WITH LENGTH 3 
THERE ARE 16 WORDS WITH LENGTH 4 
THERE ARE 6 WORDS WITH LENGTH 5 
THERE ARE 5 WORDS WITH LENGTH 6 
THERE ARE 7 WORDS WITH LENGTH 7 
THERE ARE 5 WORDS WITH LENGTH 8 
THERE ARE 6 WORDS WITH LENGTH 9 
THERE ARE 1 WORDS WITH LENGTH 10 
THERE ARE 3 WORDS WITH LENGTH 11 
THERE ARE 2 WORDS WITH LENGTH 12 
AVG. WORD LENGTH: 0.5441176E 01 

FIG. 8.19 (b) Output from Computation of Program to Determine Average Word Length in a Sample. 
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string constants, variables, and substrings connected to each other in any desired order by 

means of the concatenation operator I I. Either a character string name or a substring 

may be specified as a destination. When the value of a character expression is assigned to a 

substring, only that part of the string is affected. The positions outside the specified 

boundaries of the substring retain their contents. 
Character strings may be compared with each other using the same relational 

operators available for numbers. The comparisons. EQ. and. NE. are self-evident with 

regard to character strings; use of the others is based on each character's relative position 

in the computer's collating sequence. For most machines the collating sequence corre­

sponds to alphabetical order, so that 'A' . LT. 'B', 'B' . LT. 'C', and so on. 
Strings may be searched for other strings with the INDEX function: 

INDEX (sl, s2) 

searches string sl for an occurrence of s2. If the search succeeds, the function returns the 

starting position of the first match; otherwise it returns a zero. 

PROBLEMS 1. Assume we have the following declarations: 

CHARACTER 

INTEGER*2 
DATA 
LOCI = 1 
LOC2 = 4 

DSC1*12, DSC2*7 

LOC1,LOC2 
DSC1,DSC2/'THOROUGHFARE', 'SUMMARY'/ 

Indicate the value for each of the following: 

(a) DSCl (1: 10) 

(b) The character in position 4 ofDSCl 

( c) The positions of the letters in DSC2 that also appear in DSC! 

(d) DSC2 (3: 4) 
(e) DSC! (6: 6) 

(f) DSC2 (4:) 

(g) DSC! (LOC2: LOC2) 

(h) DSC2 (:LOCI) 

(i) DSCl//'S' 

(j) 'CAR' //DSC! (9:) 

(k) 'C'//DSC2(5:6)//DSC1(2*LOC2+LOC1:3*LOC2) 

(1) DSC! ( 7: LOC2) (be careful) 

(m) DSC2 ( 4: 9) (again, be careful) 

(n) DSC! (1, 8) I' GOING' 

2. Assume the following declarations: 

CHARACTER*8 CH1,WD1*4,WD2*4,CH2,CH3,Kl*l,K2*1 

Specify the values for all of the variables as a result of each of the following sequences of statements: 

(a) DATACHl, CH3/ 'PLATFORM', 'BASEBALL' /WDl, Kl/ 'MOAT', '6' I 

EQUIVALENCE (CH2,CH1), (WD2,WD1), (K2,WD1) 

(b) DATA CHl, CH2, K2, WD2 I 'FOOTBALL' , 'KINGOOMS' , ' * ' , ' SEAT' 

EQUIVALENCE (Kl,CH1(4:4)), (WD1,CH2) 

CH3 = WD1//WD2 
(c) DATA CH3/ 'BESOTTED' /WDl/ 'NOTE' I 

EQUIVALENCE (WD2,CH3(2:)), (Kl,WD2), (K2,Kl) 

CHl = Kl//CH3 
CH2 = K2//Kl//WD2//WD1 

3. Assume the following declaration 

CHARACTER*8 PREP(4,3) 



and some type of processing that fills the array with the values shown below: 

AT 
WITH 
FROM 
BEYOND 

TO 
UNTIL 
WITHIN 
BELOW 

BY 
IN 
WITHOUT 
OVER 

Specify the value or write the FORTRAN description for each of the following: 

(a) The element containing the fewest blanks. 
(b) The value in PREP (3, 2). 
( c) The value in PREP ( 1, 2) ( : 2) . 
(d) The value in PREP (2, 2 (3:). 
( e) The value in PREP's ninth element. 
(f) The location of the element containing the most vowels. 
(g) The string WITH occurs in three different places; describe each one. 
(h) The value formed by the expression PREP ( 1, 1) I /PREP ( 1, 2) . 
(i) The value formed by the expression PREP ( 2, 3) (: 3) I /PREP ( 1, 3) ( 1: 2) . 

PROBLEMS 

(j) An expression that forms the string ROVER using only the characters in a single element of PREP. 
(k) An expression that forms the string FORMAT using only those elements in PREP's first column. 
(I) Declare a 4-character string named FIRST and write a sequence of statements that will fill FIRST 
with the string BIWO. 

4. We have the following declarations: 

CHARACTER 
INTEGER*2 
DATA 

WD1*4,CH*8,VOCAB*l0,PEARL*6,UTTER*l2,Ll*l 
POS 
WDl,CH,Ll,POS/'BEAM', 'CONDUCTS', 'R',4/ 

Show the outcome of each of the following assignments, treating each part independently. When the 
destination of a particular assignment statement is expressed as a substring, show the resulting value in 
that entire string: 

(a) VOCAB = WDl 
(b) VOCAB CH(: 7) //WDl (POS/2: 2) //Ll//WDl (8:) 
(c) PEARL = CH (3: ) 
( d) PEARL = WDl I /WDl 
(e) WDl (POS:) = Ll 
(f) UTTER = WDl (: 2) I /CHI /WDl 
(g) UTTER = CH (: 3) I /CH (2*POS:) I /CH (7: 7) I I I !TIO I I /CH (3: POS-1) 
(h) Show the value in UTTER after the following sequence: 

UTTER = 'EXASPERATION' 
UTTER(POS:5) = CH(6:7) 
UTTER (6: 6) = I I 

(i) Show the value in PEARL after the following sequence: 
UTTER= 'STRATOSPHERIC' 
DO 9 I=l, 6 

PEARL(!: I) = UTTER(2*I:2*I) 
9 CONTINUE 

(j) Show the value in PEARL after the following sequence: 
IF (CH (1:) . EQ. CH (6: 6) THEN 

PEARL 
ELSE 

PEARL 
END IF 

'SPHERE' 

'OVOID' 

(k) Show the value in PEARL after the following sequence 
IF (WDl. GE. Ll//WDl (2:)) THEN 

PEARL Rl 
ELSE 

PEARL 
END IF 

WDl (3:) 
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(1) Show the value in PEARL after the following sequence: 

PEARL = ' 
IF (WDl (2:) . LE. WDl (2: 3) //CH(7:) THEN 

PEARL (2: 4) = CH(6:) 
PEARL (5:) PEARL (2: 3) 

ELSE 
PEARL(3:) 
PEARL(: 2) 

END IF 

CH(4:7) 
PEARL(5:) 

5. Assume the following sequence of statements: 

CHARACTER*l5 DUM,DEE 
OUM = 'KOFEIUYT9Y6**$Q' 

Write a sequence of FORTRAN 77 statements that will result in DEE containing DUM's characters in 

reverse order. Make any additional declarations you may need. 

6. Using the same declarations as in the previous problem, write a sequence of statements that will produce a 

copy of OUM in DEE with all vowels replaced by dollar signs. 

7. Using the same declarations as in Problem 5, write a sequence of statements that will place all of DUM's 

vowels in DEE's leftmost positions (in the same order in which they appear in DUM) followed by enough 

blanks to fill the rest of the st1ing. Make any additional declarations you may need. 

8. Using the same declarations as in Problem 5, write a sequence of statements that will place all of DUM's 

vowels in the rightmost positions of DEE, padded to the left with the appropriate number of blanks. Make 

any additional declarations you may need. 

9. Assume the following sequence of statements: 

INTEGER*2 
CHARACTER 

Nl,N2,N3 
Wl*l,W4*4,W2*2,W10*10 

WlO = 'MONOTONOUS' 
Wl = 'N' 

solve each of the independent problems given below: 

(a) Indicate the value in Nl after the statement 
Nl = INDEX(WlO,Wl) 

(b) Indicate the value in Nl after the statement 
Nl = INDEX(W10(4: ),Wl) 

( c) Indicate the value in N2 after the following 
sequence: 
W2 = W10(2:3) 
Nl = INDEX(W(5:),W2) 
IF (Nl. GE. 5) THEN 

N2 7 
ELSE 

N2 8 
END IF 

( d) Indicate the value in W2 after the following 
sequence: 
Nl INDEX(WlO,Wl) 
N2 = Nl + INDEX(WlO, 'T') + 1 
W2 = W10(Nl:Nl)//W10(N2:N2) 

( e) Indicate the value in W4 after the following 
sequence: 
Nl 5 
N2 INDEX(WlO(Nl:), 'ON') 
N3 Nl/N2 
W4 Wl 
W4(3:) = W10(N3:N2)//W10(Nl:) 

10. The simplest type of cryptogram is one in which each type of character in the original text is replaced by 

another to form the coded message. For example, in a particular system, all B's might be replaced by W's, 

C's by Y's, blanks by T's, and so on. If we know what this relationship is for a particular cryptogram, we can 

convert that cryptogram easily to its original form. 
As it turns out, the Blazvoolean intelligence agency uses just such a system, and the key has fallen into 

our hands: Their system uses only 27 characters-the 26 letters and a blank. In terms of "alphabetical 

order," the blank is placed ahead of the A. With this as a basis, the scheme replaces each character with the 
one that is two positions further up in the "alphabet." Thus, when a message is converted to code form, C 

replaces A, D replaces B, X replaces V, Y replaces W, z replaces X. Since there is no more alphabet, the 
system "wraps around" at Z, so that Y is replaced by a blank, and z is replaced by A. 

Write and run a program that reads a message already presented in this code. The program is to 
display the message as submitted, followed by a blank line and a display of the same message, this time in 

decoded (human readable) form. Input is organized as described for Example 8.3. Run your program 
using the data shown in Figure 8.20. 
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1 YTKVGBCPFBTWPBCBRTQZTCOBVJCVBTGCFU~CBDGUCIGBCNTGCF BRTGUGPVGFBKPBVJKUEQFGBB',01 

.... 
I 02 
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FIGURE 8.20 Input Showing Blazvoolean Cryptogram. 

, 4 4 4 4 ; 

r. r. 
J J - 5 r 

11. Alert work and clever investigation has revealed that the Procrustean intelligence organization uses the 
same basic type of coding system as in Problem 10, but with some added flexibility: Instead of staying 
with one type of shift, they use a different shift with each message. Specifically, when a message is 
prepared, it is preceded by an integer value specifying how far up or down the alphabet each 
replacement character sits in relation to the character it is replacing. For instance, the replacement rule 
in the previous problem corresponds to a shift value of + 2. A shift of +4 would mean that D replaces a 
blank, E replaces A, F replaces B, and so on. Similarly, a shift of -3 would mean that X replaces blank, Y 
replaces A, Z replaces B, blank replaces c, and so on. 

Write a program that meets the same basic input/output requirements as described for the previous 
problem. The difference here is that the input character data are preceded by a single line that specifies 
the shift. Input for a suggested test run is given in Figure 8.21. 

14 4 4 u 

VWIZVMPIVWVKMJMWHVOCWDVM VZNVWVH NNWB VWGM WZTVKM N IO ZYDIYOCDNYJZ vv•,01 

ooooooooooooooooouooooooooooooooooooooouooooooooooooooooooooooooooo&oooooooooo'n 
I 2 J 4 5 6 1 8 9 10 11 12 '1 14 1; 16 1; 18 19 2~ li 22 2: 74 25 26 2' 18 29 :c JI P l3 l4 35 36 27 38 11 40 41 42'•44,1 4u 4. 48 4S 50 51 52 SJ i4 S5 Sb 57 53 5q 60 61 ~- 63 ;4 65 6ii 5; 68 69 10 71 71 7J 14 75 '5 17 18 79 611 

111 1 1111111111 1 11111111111~1111111~~111'1111111111'11111111111~1111111 

2 11111111 '1112111 12111 ,. ~~*·~~~ ?2222222 '2222222 ?2222J 

3 3 3 J • ~ 3 J 3 • J J ~ "EM _.\ J J J 3 ~ J J J • J 3 J ] 

··' 1 ' ; • I 

FIGURE 8.21 Input for a Test Run for Decoding the Procrustean Cipher. 

12. The J.P. Middleman Company is a wholesale distributor dealing in a wide variety of manufactured parts 
and components. For years they managed their business in a haphazard way, but now the competition is 
killing them with computers: Everything is systematized and Middleman must mend their ways. One of 
the areas that needs tightening stems from the fact that the various parts are identified using a scheme 
invented decades ago by the president's brother-in-law William E. Nilley, Jr. Some parts were identified 
by numbers, some by names containing only letters, others by combinations ofletters and numbers-all in 
all a mess. This is to be straightened out by a simple system that assigns an all-numerical identifier to each 
part: 

1. Identifiers containing only numbers are left alone. 

2. Identifiers containing only letters are converted with each letter being replaced by a number 
corresponding to that letter's position in the alphabet_ For instance, A is replaced by 1, E by 5, X by 
24, and so on. 
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3. Identifiers containing letters and numbers are handled by leaving the numbers alone and converting 

the letters as described for all-letter identifiers. In addition, a O (zero) is placed at the beginning of the 

converted identifier. (It was found that there are no part identifiers beginning with zero in the current 

system.) 

A few examples will clarify: A part identifier of 62 7 55 will remain 62 7 5 5; an identifier of FI ZZLR would 

be converted to 6926261218; an identifier of 21GJ7B would convert to 02171072. Careful examina­

tion of the inventory established the fact that this conversion would guarantee against producing the same 

identifier for more than one type of item. 
Write a program that reads a succession of old identifiers (one to a line) and displays that identifier, 

along with its new version. An old identifier is never more than six characters long, no matter what type it 

is. (Of course, some new ones will have to be longer.~ Stop the run with an identifier ofXXXXXX. Each line 

of output is to look like this: 

PART NAME FIZZLR CHANGED TO 6926261218 

After all the input has been processed, the program is to display four additional lines showing how many 

all-digit part identifiers were processed, how many all-letter identifiers were processed, how many mixed 

identifiers were processed, and the total number of identifiers processed (not counting the XXXXXX). One 

more thing: Old identifiers consist only of letters, numbers and blanks, and the blanks always are at the 

right. Here are some suggested input values: 

'FIZZLR' 
'320311' 
'BJ033' 
'2W' 
'ZX3XZ' 

13. Sir Melville Thrinckleton left a peculiar will: He was sure that the village ofThreckfordshirehamburghville 

was the cradle of his family, and that many of his distant relatives still lived there. They didn't know they 

were descended from the rich and powerful Duke of Thrinckleton, but Sir Melville had a theory. He 

believed that his relatives could be traced through their names. If the last name had a 1H in it, followed 

anywhere by a CK, that family (or so Sir Melville believed) was related. Accordingly, the will set up a fund 

that would pay for a crack team of genealogists to travel to Threckfordshirehamburghville and check the 

population. Every family with the appropriate type of last name would then receive a handsome simulated 

vinyl wall sculpture of the Thrinckleton coat of arms (at no charge) and a fine certificate attesting to the 

fact that the family had indeed received a handsome simulated vinyl wall sculpture, etc. The sleepy village 

of (no, we are not going to do that again) will never ever be the same after that. 

Luckily, the village is considerably more modernized than was first thought so that much of the civic 

data already existed in computer-compatible form. Thus, for each household, the genealogists were able 

to acquire an input line showing the last name (up to 25 letters) and a six-digit identification number. Now 

they need a program to process the lines and display the name and i.d. number for each household found 

to be eligible for a handsome, simulated, etc. End the run with a dummy last name of blanks. After the last 

line has been processed, the program is to display a line indicating the total number of eligible households. 

(Note that a name like THROCKLEY is eligible while a name like BRACKTHISTLE is not; reread the 

problem if you are not sure why this should be so.) Here are some suggested input values: 

'THROCKMORTON' 324655 

'SNAPTHICKET' 801742 

'BILGEWEATHER' 280997 

'THIMBLEORRICK' 324488 
I FRANCKMISTLE I 798632 
'WACKTlffi.ESHER' 099898 
'THWEBWYTHE' 792123 

14. Rewrite the program in Example 8.3 (Section 8.4) so that the input no longer is arranged with complete 

words on each line. Columns 79-80 still are used for sequence numbers but a word may start on one line, 

go up through column 76 (column 77 still contains an apostrophe to finish the character constant) and 

continue in column 2 of the next line. (Column 1 still contains an apostrophe to start the new character 

string.) In other words, if we refer to the description of the example in Section 8.4, the ground rules 

numbered 1and7 no longer are true for this problem; all the rest still hold. Some suggested input is given 

in Figure 8.22. 
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'ART (OR WHAT THE MOVERS AND SHAKERS DEFINE AS ART) HAS BEEN TAKEN AWAY FROM',01 
- -· - ... - -

' THE ARTISTS AND TURNED OVER TO THE DESIGNERS AND AD AGENCY HACKS WHO CAN M',02 
--~- - - --·-· -···------------------------
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FIGURE 8.22 Input for Problem 14, Chapter 8. 
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9.1 THE IF­
THEN-ELSE 

CONSTRUCT 

9 
Control Structures 
and 
Decision Making 

The power and convenience of FORTRAN 77 should be quite apparent by now: Without 
much fanfare, we have worked our way to some fairly intricate procedures using but a few 
simple features. Now we are ready to tackle an even wider spectrum of decision-making 
possibilities by learning and applying FORTRAN 77's full range of facilities for specifying 
tests and using their outcomes to dictate further action. These specifications, called 
control structures, will be examined systematically, within the effective, orderly frame­
work of structured programming. 

It will not hurt to restate the basic decision mechanism that forms one of the cornerstones 
of structured programming: 

test condition 

/~ 
false true 

action 1 action 2 

~/ 
action 3 

We can summarize the behavior of this construct as follows: 

A test is performed in accordance with the rules defined by the specified test 
condition. Regardless of how complicated that test may be, its construction is such 
that it will have one of only two possible outcomes: either . TRUE. or . FALSE .. If 
the outcome is . TRUE. , the program will carry out the processing indicated by 
"action l," ignoring "action 2." An outcome of . FALSE. will produce the opposite 
effect, i.e., performance of "action 2." In either case the program continues with 
"action 3." 

A lot can happen within this simple construct, and we shall explore the possibilities in 
two ways: First, we shall examine the kinds of test conditions that can be specified. Then, 
we shall look at ways of organizing and describing increasingly extensive actions to be 
triggered by these tests. 
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9. 1. 1 Specification of Test Conditions 

We have set up situations in which tests have been based on a wide variety of numerical 
and character expressions. Yet, despite their diversity, these conditions all have had one 
thing in common: In each test, a single requirement had to be met in order for the 
outcome to be . TRUE .. Of course, that requirement could be quite complicated. For 
example, the condition described by 

(X**l.8/(2.34*LOG(X+SQRT(3.0-.7*X))-Y) .LE. 3.38*(Z+SQRT(Y*Z))) 

is by no means simple; implied in it is a request for a fair amount of processing. Yet, it still 
describes a single "true or false" condition, one comparison whose outcome will deter­
mine whether the THEN action or ELSE action will be followed. 

This is not always adequate. There are many everyday situations where an outcome 
of . TRUE. is based on meeting several requirements at the same time, or meeting a 
choice of requirements. It is not necessary to reach far to find situations like this. For 
instance, it is perfectly reasonable for an accounting supervisor in a business to say, "Let 
me see the invoice summaries for all customers in Illinois who owe us at least one 
thousand dollars and have not made a payment in the last thirty days." Under these 
specifications, no less than three conditions have to be met in order for a customer record 
to reach the supervisor's eagle eye. Just being from Illinois is not enough (although that 
alone might be worthy of attention in some other situation); nor is a debt of at least a 
thousand dollars sufficient to have the record singled out. The same thing applies to the 
time elapsed since the last payment. A record with two out of three still does not qualify. 

It certainly is possible to represent such multiple conditions in FORTRAN by using 
an IF statement for each condition and letting the program work its way through such a 
combination. However, the resulting construction is awkward and generally disorderly. 
The next few sections will introduce additional features and develop simple but effective 
techniques for implementing these types of tests. 

9.1.1.1 Combinations of Comparisons: the AND Operation FORTRAN provides a 
natural way to express multiple comparisons: They are built simply by connecting 
individual comparisons with AND operators. The general form for this construction is as 
follows: 

IF (comparl. AND. compar2. AND. compar3 .... AND. compam)THEN 
action 1 

ELSE 
action2 

END IF 

In this general example, comparl, compar2, compar3, ... , compam represent an arbitrary 
collection of n comparisons linked together by the . AND. operations. (Note that the 
periods are required on either side of the AND, just as they are for . EQ. , . LT. , and the 
other relational operators.) Each comparison is of the type already familiar to us, 
producing an outcome that is either . TRUE. or . FALSE .. These individual outcomes are 
submerged within FORTRAN, so that the programmer views the multiple conditions as 
one grand and glorious comparison whose final, single outcome is . TRUE. only if all n 
comparisons tum out to be . TRUE .. 

Example 9. 1 People at the lpicoopchick County Health Authority are excited. After three frustrating 
weeks without a clue, there appears to be a positive break in their efforts to track down a sudden increase 
in the occurrence of fainting spells among the women. Examination of the hospital records has revealed 
that all of the victims were over 28, had brown eyes, and lived in dwellings built by Hovel Construction Co. 
While trying to determine exactly what is happening, the County now has an opportunity to warn other 
residents that they may be potential targets of this mysterious attack. In addition to newspaper ads and 
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television announcements, the authorities have decided to send individual letters. Accordingly, we would 

like to design a program that looks through the County data, identifies the appropriate residents, and 

prints their names and addresses. In addition, the program is to count the number of people to whom 

letters need to be sent, as well as the total number of residents. 

lpicoopchick County has computerized for its residents. Information for each resident consists of an 

input line containing a name (20 characters), street number (4 digits), street name (8 characters). township 

(8 characters). zipcode (5 characters), year of birth (4 digits), sex code (Mor F), eye color code (1 =blue, 

2=brown, 3=green, 4=gray, 5=hazel, 6=other), and first year in the County (4 digits). The state is not 

recorded since all of the data pertain to the same state (NY). 

It is obvious from the description of the recorded data that we can do nothing about determining the 

resident's type of dwelling; the information simply is not there. Consequently, this is not part of the 

computer's job and will be left, instead, to the letter that is sent. By the same token, each record contains 

information that is not needed, i.e., the resident's first year in the County. The unformatted READ 

statement forces us to read and store it anyway, since it appears as part of the data. Figure 9.1 shows the 

diagram and pseudocode for the program, and the statements themselves are in Figure 9.2. Note that 

parameters are put to good use to increase the program's clarity. Also note that the ELSE was omitted 

since there was no alternative action. This is a direct reflection of what is seen in Figure 9.1 

TTLRES, TTLVIC, STRNUM, 
BRTHYR, EYECLR, YRI, 
NAME, STREET, TWNSHP, 
ZIP, SEX 

TTLRES, TTLVIC = 0 

Read first set of input 

Do while ZIP F 0 

TTLRES .---TTLRES + 1 

~e~ =brown & 

~28 yes 

TTLVIC.-TTLVIC 
+1 

Print information 
for this person 

Read the next set of input values 

Print the totals 

STOP 

FIGURE 9.1 (a) Diagram for Example 9.1 

"Define TTLRES,TTLVIC,STRNUM,BRTHYR,EYECLR, 
YRl,NAME,STREET,TWNSHP,ZIP,SEX." 

"Initialize TTLRES and TTL VIC to zero." 
"Read the first set of input." while ZIP is not equal to zero: 

"Add I to TTLRES." 
if 

"SEX is female, eye color is brown and age at least 28" 
then 

"Add I to TTLVIC." 
"Print i.d. and address information for this resident." 

endif 
"Read the next resident's input data." 

endwhile 
"Print the totals." 
"Stop." 

FIGURE 9.1 (b) Pseudocode for Example 9.1 
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****************************************************************** 
* EXAMPLE 9.1 * ****************************************************************** 
* VARIABLE NAMES: 

* * NAME: RESIDENT'S NAME: * 
* STRNUM: STREET NUMBER * 
* STREET: STREET NAME * 
* TWNSHP: TOWNSHIP * 
* ZIP: ZIPCODE * 
* BRTHYR: YEAR OF BIRTH * 
* SEX: RESIDENT'S SEX * 
* EYECLR: EYECOLOR * 
* YR1: FIRST YEAR IN THE COUNTY * 
* TTLRES: TOTAL NUMBER OF RESIDENTS * 
* TTLVIC: TOTAL NUMBER OF POTENTIAL VICTIMS * 
*---NOTE THAT ZIPCODE WILL BE TREATED AS A 5-CHARACTER STRING * 
*---SINCE THAT IS WHAT IT REALLY IS. NO COMPUTING IS DONE ON * 
*---ZIPCODES. * 
*---THE SYMBOL $ IS USED HERE TO INDICATE A CONTINUED STATEMENT * 
*---(RECALL THAT FORTRAN REQUIRES A NON-BLANK IN COLUMN 6) * 
****************************************************************** 

1 

PROGRAM 
IMPLICIT 
INTEGER*2 
CHARACTER 

PARAMETER 
TTLRES = 0 
TTLVIC = 0 

EX901 
NONE 
TTLRES,TTLVIC,STRNUM,BRTHYR,EYECLR,YR1,BROWN 
NAME*20,STREET*8,TWNSHP*8,ZIP*5,SEX*1, 
STATE*2,FEMALE*1 
(STATE='NY',BROWN=2,FEMALE='F') 

PRINT *, 'ENTER THE DATA FOR THE FIRST INDIVIDUAL' 
RiAD *, NAME,STRNUM,STREET,TWNSHP,ZIP,BRTHYR,SEX,EYECLR,YR1 

*-------------A ZIPCODE OF ZERO WILL STOP THE RUN.---------------­
DO WHILE (ZIP .NE. '00000') 

TTLRES = TTLRES + 1 
IF (SEX .EQ. FEMALE .AND. 1979-BRTHYR .GE. 28 

1 .AND. EYECLR .EQ. BROWN) THEN 
TTLVIC=TTLVIC+1 
PRINT *, NAME,STRNUM,STREET,TWNSHP,STATE,ZIP 

END IF 
PRINT *, 'ENTER THE DATA FOR THE NEXT INDIVIDUAL' 
READ *, NAME,STRNUM,STREET,TWNSHP,ZIP,BRTHYR,SEX,EYECLR,YR1 

END DO 

*-------------NO MORE DATA; TIME TO SUM UP.-----------------------

PRINT *, 
PRINT*, 'TOTAL NO. OF RESIDENTS: ',TTLRES 
PRINT*, 'TOTAL NO. OF POTENTIAL VICTIMS: ',TTLVIC 
STOP 
END 

FIGURE 9.2 FORTRAN Statements for Example 9.1. 
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9.1.1.2 A Choice of Conditions: The OR Operation There are times when only one of 

several conditions needs to be true in order for a particular action to be taken. For 

instance, a sales manager might want a list of all people assigned to any of three 

geographic regions. This type of situation can be specified directly by connecting the 

choices with the OR operator. The general form for this construction is 

IF ( comparl . OR. compar2 . OR ........ comparn) THEN 
action 1 

ELSE 
action 2 

END IF 

Thus, if REGION is the variable denoting the geographic area, a statement selecting 

personnel from regions 2, 4, and 7 would read 

IF (REGION.EQ. 2.0R. REGION.EQ. 4.0R. REGION.EQ. 7) THEN 

action 1 
ELSE 

action 2 
END IF 

9.1.1.3 Combined Conditions By using the AND and OR operations in various com­

binations, it is possible to describe an endless variety of tests, thereby producing programs 

that are powerful decision-making mechanisms. In the next chapter we shall look at the 

rules that govern the construction of these combinations. Prior to that, however, it will be 

helpful to introduce these techniques informally so that their ease of use is established. 

The next example will serve that purpose. 

Example 9.2 The Pompeii Realty Company is preparing to computerize its operations. (Understand­

ably, there is great joy at Pompeii.) Their plans are to record information about each house on an input line. 

Included will be the listing number (HLIST), street number (STRNUM), street name (STREET), township 

(TWNSHP), number of bedrooms (NBDRMS), number of full baths (NFBTHS), number of half baths 

(NHBTHS), square feet of living area (AREA), lot size in square feet (LOTSZ), and price to the nearest cent 

(PRICE). With this information available, the program can read an input line containing the client's 

requirements. The program then would read a line for each house, comparing its characteristics with 

those specified by the buyer. For each match, the program would print the information about the house, 

including its identification. 

For purposes of illustration, we shall look at a simplified version of such a program, one with a 

restricted range of comparisons. Specifically, we shall allow a customer to specify a choice of two 

townships (TWNl and TWN2), a minimum numberof bedrooms (BDRMIN), and a price range (i.e., the house 

could cost at leastPRl dollars and cents but no more than PR2). The program will print all of the available 

information for each house meeting the buyer's requirements. Then, after all the houses have been 

processed, the program is to print the number of houses that matched the requirements and the number 

that did not. 
The crucial part of the program, of course, is the test that determines whether the house currently 

being "examined" is a match or not. We shall build this test systematically by recognizing that there are 

three major types of comparisons: First of all, there is price. For a buyer to be- selected, its cost must be 

equal to or greaterthan the buyer's bottom limit PRl and, at the same time, it must be equal to or less than 

PR2. So our price comparison, when written as part of a FORTRAN decision statement, would read 

(PRICE. GE. PRl. AND. PRICE. LE. PR2) 

Our second comparison is between the township in which the house is located (TWNSHP) and the two 

choices TWNl and TWN2. A match with either one would be acceptable. This is stated as 

(TWNSHP. EQ. TWNl. OR. TWNSHP. EQ. TWN2) 

The third comparison matches the number of bedrooms against the buyer's minimum: 

(NBDRMS. GE. BDRMIN) 
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Now, since all three ofthese comparisons must be true in order for the house to be selected as a possible 
candidate for sale, we can produce the complete matching test by combining the three components 
with AND operators and placing the result within the context of an IF statement: 

IF ( (NBDRMS . GE. BDRMIN) 
1 . AND. (PRICE. GE. PRl. AND. PRICE. LE. PR2) 
2 .AND. (TWNSHP.EQ. TWNl.OR. TWNSHP.EQ. TWN2)) THEN 

action 1 
ELSE 

action 2 
END IF 

Note that the additional parentheses are legal, as they are in arithmetic or character expressions, and they 
help clarify exactly what comparisons are taking place. 

Now, with the heart of the decision mechanism defined, we can turn our attention to the complete 
program. A flowchart and pseudocode are shown in Figure 9.3 and the statements are given in Figure 9.4. 

Define: AREA, LOSXZ, PRICE, PRI, PR2, HUST, 
STRNUM , NBDRMS, NFBTHS, NHBTHS, 
BDRMIN, NUMACC, NUMREJ, STREET, 
TWNSHP, TWNI, TWN2, BUYER 

NUMACC, NUMREJ = 0 

Read input data for buyer 

Print headings 

Read input data for the first house 

Do while listing no. f 0 

~,y hin range & 
township? 

yes 

NUMREJ 4-NUMREJ 
Print data about 
this house + I 

NUMACC.._NUMACC 
+ I 

Read next input set for a house 

Print summary information 
(NUMACC, NUMREJ) 

STOP 

FIGURE 9.3 (a) Diagram for Example 9.2. 

"Define AREA,LOTSZ,PRICE,PR l ,PR2,HLIST, 
STRNUM, NBDRMS,NFBTHS,NHBTHS, 
BDRM IN ,NUMACC,NUMREJ, 
STREET,TWNSHP,TWNI,TWN2,BUYER." 

"Set NUMACC and NUMREJ to zero." 
"Read the buyer's input data." 
"Print the output headings." 
"Read input data for the first house." 
while the listing no. is not equal to zero: 

if 
there is a sufficient no. of bedrooms 

and 
the price is in the buyer's range 

and 
the house is in the desired township 

then 
"Print the data about the house." 
"Add I to the number of acceptable houses." 

else 
"Add I to the number of rejected houses." 

endif 
"Read the input data for the next house." 

endwhile 
"Print the output summary." 
Stop." 

FIGURE 9.3 (b) Pseudocode for Example 9.2. 



******************************************************************** 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

HLIST,BUYER: 
STRNUM,STREET: 
TWNSHP: 
NBDRMS,BDRMIN: 
NFBTHS,NHBTHS: 
AREA,LOTSZ: 
PRICE: 
TWN1,TWN2: 
PR1,PR2: 
NUMACC: 
NUMREJ: 

EXAMPLE 9.2 
HOUSE I.D. NUMBER, BUYER'S NAME 
STREET NUMBER, NAME 
TOWNSHIP 

* 

* 
* 
* 

NO. OF BEDROOMS, MIN. REQ'D NO. OF BEDROOMS * 

NO. OF FULL BATHS, 'HALF BATHS * 

LIVING AREA, LOT SIZE, SQ. FT. * 

PRICE OF THE HOUSE ($XXXXXX.XX) * 

BUYER'S FIRST AND SECOND TOWNSHIP CHOICES * 

BUYER'S MINIMUM AND MAXIMUM ACCEPTABLE PRICES* 

NO. OF HOUSES MATCHING BUYER'S REQUIREMENTS * 

NO. OF HOUSES NOT MATCHING REQUIREMENTS * 
******************************************************************** 

PROGRAM 
IMPLICIT 
REAL*4 
INTEGER*2 

1 

EX902 
NONE 
AREA,LOTSZ,PRICE,PR1,PR2 
HLIST,STRNUM,NBDRMS,NFBTHS,NHBTHS,BDRMIN, 
NUMACC,NUMREJ 

CHARACTER STREET*10,TWNSHP*8,TWN1*8,TWN2*8,BUYER*20 

*-----INITIALIZE THE PROCESSING BY SETTING THE COUNTERS TO ZERO, 

*-----READING THE BUYER'S INPUT DATA, AND PRINTING IT, ALONG 

*-----WITH A GENERAL HEADING. THEN, READ THE FIRST HOUSE'S DATA. 

198 

1 

NUMACC=O 
NUMREJ=O 
PRINT *, 'ENTER THE DATA FOR THE BUYER' 
READ *, BUYER,TWN1 ,TWN2,BDRMIN,PR1 ,PR2 
PRINT*, 'POMPEII REALTY, INC.' 
PRINT*, 'SPECIAL ANALYSIS PREPARED FOR ',BUYER 

PRINT *, 
PRINT 
READ 

*, 'ENTER THE DATA FOR THE FIRST HOUSE' 
*, HLIST,STRNUM,STREET,TWNSHP,NBDRMS,NFBTHS,NHBTHS, 

AREA,LOTSIZ,PRICE 

DO WHILE (HLIST .NE. 0) 
IF ( (NBDRMS .GE. BDRMIN) 

1 .AND. (PRICE .GE. PR1 .AND. PRICE .LE. PR2) 

2 .AND. (TWNSHP .EQ. TWN1 .OR. TWNSHP .EQ. TWN2)) THEN 

PRINT *, HLIST,STRNUM,STREET,TWNSHP,NBDRMS,NFBTHS, 

1 NHBTHS,AREA,LOTSZ,PRICE 
NUMACC = NUMACC+1 

ELSE 
NUMREJ = NUMREJ+1 

END IF 
PRINT *, 'ENTER THE DATA FOR THE NEXT HOUSE' 
READ *, HLIST,STRNUM,STREET,TWNSHP,NBDRMS,NFBTHS,NHBTHS, 

1 AREA,LOTSZ,PRICE 
END DO 

PRINT *, 
PRINT*, 'NO. OF HOUSES SELECTED: ',NUMACC 
PRINT*, 'NO. OF HOUSES REJECTED: ',NUMREJ 
STOP 
END 

FIGURE 9.4 Statements for Example 9.2. 



* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 

1 

HLIST,STRNUM: 
STREET,TWNSHP: 
TWN1,TWN2: 
NBDRMS,BDRMIN: 
NFBTHS,NHBTHS: 
BFBMIN,BHBMIN: 
AREA,AREAMN: 
LOTSZ,LOTMIN: 
PRICE,PR1,PR2: 
NUMACC,NUMREJ: 
NMATCH: 

PROGRAM 
IMPLICIT 
REAL*4 
INTEGER*2 

CHARACTER 
NUMACC = 0 
NUMREJ = 0 

EXAMPLE 9.3 * HOUSE I.D. NUMBER, STREET NUMBER * 
STREET,TOWNSHIP * 
BUYER'S TOWNSHIP CHOICES * 
NO. OF BEDROOMS, MININUM NO. REQ'D * 
NO. OF FULL BATHS, HALF BATHS * 
MIN. REQ'S FULL BATHS, HALF BATHS * 
LIVING AREA, BUYER'S MIN. AREA * 
LOT SIZE, BUYER'S MIN. LOT SIZE * 
PRICE, BUYER'S MIN., MAX PRICES * 
NO. OF HOUSES SELECTED, NO. REJECTED * 
NO. OF MATCHES FOR A GIVEN HOUSE * 

EX903 
NONE 
AREA,AREAMN,LOTSZ,LOTMIN,PRICE,PR1,PR2 
HLIST,STRNUM,NBDRMS,BDRMIN,NFBTHS,NHBTHS, 
BFBMIN,BHBMIN,NUMACC,NUMREJ,NMATCH 
STREET*10,TWNSHP*8,TWN1*8,TWN2*8,BUYER*20 

PRINT *, 'ENTER THE BUYER'S DATA' 
READ*, BUYER,TWN1,TWN2,BDRMIN,BFBMIN,BHBMIN,AREAMN,LOTMIN, 

1 PR1,PR2 
PRINT*, 'POMPEII REALTY, INC.' 
PRINT*, 'SPECIAL ANALYSIS PREPARED FOR ',BUYER 
PRINT *, 
PRINT *, 'ENTER THE DATA FOR THE FIRST HOUSE' 
READ *, HLIST,STRNUM,STREET,TWNSHP,NBDRMS,NFBTHS,NHBTHS, 

1 AREA,LOTSZ,PRICE 

DO WHILE (HLIST .NE. 0) 
NMATCH = 0 
IF (TWNSHP .EQ. TWN1 .OR. 
IF (NBDRMS .GE. BRDMIN) 
IF (NFBTHS .GE. BFBTHS) 
IF (NHBTHS .GE. BHBTHS) 
IF (AREA .GE. AREAMN) 
IF (LOTSZ .GE. LOTMIN) 
IF (PRICE . GE. PR1 .AND . 
IF (NMATCH .GE. 4) THEN 

TWNSHP .EQ. TWN2) NMATCH=NMATCH+1 
NMATCH=NMATCH+1 
NMATCH=NMATCH+1 
NMATCH=NMATCH+1 
NMATCH=NMATCH+1 
NMATCH=NMATCH+1 

PRICE .LE. PR2) NMATCH=NMATCH+1 

PRINT *, HLIST, STRNUM, STREET, TWNSHP, NBDRMS, NFBTHS, 
1 NHBTHS, AREA, LOTSZ, PRICE, NMATCH 

NUMACC=NUMACC+1 
ELSE 

NUMREJ=NUMREJ+1 
END IF 
PRINT *, 'ENTER DATA FOR THE NEXT HOUSE' 
READ *, HLIST,STRNUM,STREET,TWNSHP,NBDRMS,NFBTHS,NHBTHS, 

1 AREA,LOTSZ,PRICE 
END DO 

PRINT *' 
PRINT *' 'NO. OF HOUSES 
PRINT *' 'NO. OF HOUSES 
STOP 
END 

SELECTED: 
REJECTED: 

', NUMACC 
', NUMREJ 

FIGURE 9.5 Statements for Example 9.3. 199 
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9.1.1.4 Tests with Arbitrary Combinations Another type of useful test is one in which 

there are several conditions, but it is not necessary to meet all of them in order for the 

outcome to be. TRUE .. However, unlike the situation in Section 9.1.1.2, where only one 

of the comparisons had to be . TRUE. , this type of test requires several {but not all) of the 

comparisons to be . TRUE .. Furthermore, any number of different combinations could 

satisfy the test's requirements. For instance, each real estate line in the previous example 

had seven pieces of descriptive information about a particular house (not counting the i.d. 

number and address). Now, suppose that a buyer could specify a requirement for each of 

those seven items, and a house would be selected for the printout if at least four of the 

items matched; any four. If we were to construct this as a combined test (as we did in 

Example 9.2), it would be necessary to list all the possible combinations of four items. For 

this situation, with seven items from which to choose, this turns out to be 35 combina­

tions. Speaking strictly in technical terms, that would be one whale of an IF statement. 

A more effective way to do it is to abandon the idea of trying to look at each possible 

combination. Instead, we examine each item separately and keep track of how many 

matches were found. Thus, for seven items, we need only seven comparisons (each in its 

own IF statement). Every time a match is found, we add one to the match counter, and 

examine it at the end of the test cycle. If it has at least a 4 in it, the house is selected. It is as 

simple as that. 

Example 9.3 We shall design a more general version of the previous example: This time, the 

processing will be made much more flexible, allowing the buyer to specify requirements for each of the 

seven descriptive items listed for each house: In addition to minimum number of bedrooms, two 

township choices, and a price range as permitted before, the buyer is able to define minimum values for 

full baths, half baths, living area, and lot size. Information about a house is to be printed if any four of these 

seven criteria are met. 
The program (Figure 9.5) is not much more complex than the previous version. In a way, it is 

somewhat simpler, because the long IF statement has been replaced with a series of simpler tests. Note 

that the THEN ... ELSE construction is not needed until the last test, the one where we actually decide 

what to print. 

9.1.2 Construction of Actions for THEN and ELSE 

Thus far we have used FORTRAN's decision facilities to implement actions whose 

construction is relatively simple: One such construction, the most basic type in the 

language, specifies an action limited to a single statement: 

IF (condition) statement 

This is called a logical IF statement. Note that the THEN is missing. In fact, it cannot be 

used there. Furthermore, we cannot specify an alternative action because ELSE cannot 

be used with this form either. The reason this statement appears at all is that it was 

FORTRAN's only standard logical decision mechanism until a more versatile form was 

added to FORTRAN 77. Accordingly, we note the existence of the logical IF statement 

but deemphasize its use. 
Specification of an IF-THEN-ELSE construct in FORTRAN 77 begins with block 

IF statement: 

IF (condition) THEN 

The word THEN is part of the block IF statement. Any action specified in con junction 

with this statement (including the ones we have used in previous examples) is described 

in the form of one or more IF-blocks and concluded with an END IF statement: 

IF (condition) THEN 
statement 

statement 
END IF 

action, expressed as an IF-block 



Sex = female, age> 28, 
eye color = 

if 

no 

sex is female 
and 

age is at least 28 
and 

eye color is brown 
then 

brown? 
yes 

TTLVIC .--­
TTLVIC+l 

Print person's 
data 

If 

THE IF-THEN-ELSE CONSTRUCT 

(SEX .EQ. FEMALE .AND. 
1979-BRTHYR .GE. 28 .AND. 
EYECLR. EQ. BROWN) 

Then 
TTL VIC=TTLVIC+ 1 
PRINT *, NAME, STRNUM, STREET, 

TWNSHP, ZIP, BRTHYR, 
SEX, EYECLR, YRl 

Endif 

FIGURE 9.6 (a) Description of Block-IF Construction. 

"Add 1 to number of victims." 
"Print the person's data." 

endif FIGURE 9.6 (b) Decision Statement with IF-Block. 

The action described by the IF-block may be as simple or complicated as it needs to be, 
and the programmer may use any number of statements to describe it. Regardless of the 
number of statements used, the form shown above remains a relatively simple type of IF 
block (from a structural point of view) since only one action is specified. 

The decision mechanism used in Example 9.1 has this type of structure. Our test 
condition (i.e., selection of a resident as a potential victim) leads to a single action (adding 
1 to the number of potential victims and displaying information about that person); the 
alternative is to perform no action at all. This is seen in Figure 9.6, where the statements 
are reproduced from the example program for convenience, along with the corresponding 
structure in diagrammatic and pseudocode form. 

A second IF-block can be added by introducing an ELSE statement. This produces a 
direct representation of the IF-THEN-ELSE construct. Thus, we can restate this impor­
tant building block in terms of FORTRAN's programming components: 

IF (condition) THEN 
statement 

statement 
ELSE 

statement 

statement 
END IF 

action 1, expressed as an IF-block 

action 2, expressed as an IF-block 

9.1.2.1 Empty IF-Blocks When the IF-THEN-ELSE construct was defined earlier as 
one of the fundamental components of a well-structured program, the discussion stressed 
the fact that either or both of the alternative actions could be as simple or as complicated 
as the programmer wished. This flexibility includes the extreme case in which one of the 
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alternatives is to do nothing at all. An instance of such a situation occurred in the decision 
structure of Example 9 .1 (This part of the program was extracted and shown in Figure 
9.6.) Note that the THEN appeared without an ELSE to go with it. Now that the block IF 
statement has been defined and we saw that the word THEN concludes this type of 
statement, it is clear that a single IF-block is being used to express the resulting action. 
Since the alternative is to do nothing at all, it does not appear. 

When this type of situation occurs, many people prefer to preserve the full IF­
THEN-ELSE structure by explicitly indicating an alternative, even if no action is specified. 
This is quite legal in FORTRAN 77, since the language allows the use of the ELSE 
statement without any accompanying action. Such usage often is called the empty ELSE. 
Thus, we could have written the decision rule from Example 9 .1 as shown below without 
affecting the results: 

IF (SEX. EQ. FEMALE. AND. 1979-BRTHYR. GE. 28 
1 . AND. EYECLR. EQ. BROWN) THEN 

TI'LVIC=TILVIC+l 
PRINT*, NAME,STRNUM,STREET,TWNSHP,STATE,ZIP 

ELSE 
ENDIF 

Structurally, this is the same as any other IF-THEN-ELSE construct: The block IF 
statement is followed by two IF-blocks, the second of which happens to contain nothing 
but the ELSE statement. As before, an END IF statement concludes the structure. 

We can do the same kind of thing with the first IF-block. That is, we can write a 

structure such as 

IF (condition) THEN 
ELSE 

statement 

statement 
ENDIF 

thereby indicating that the action resulting from a successful test (i.e., a value of . TRUE. ) 
is to do nothing. While this construction is possible, it should be pointed out that it is 
somewhat awkward in terms of overall program clarity. In most cases, it is a better idea to 
set up a decision structure so that some type of action is performed in response to a 
successful test result. 

9.1.2.2 Actions with Extended Decision Rules A particularly powerful way to use the 

block IF facility is to build decision networks in which the final outcome, and actions 
triggered by it, are determined after a series of tests, performed one at a time. This 
situation is quite different from the type discussed in the previous sections, where we built 
increasingly complicated tests, but still produced a single outcome. Now, we are inter­
ested in developing structures that enable us to set up actions which themselves involve 
further testing. This is handled conveniently within the regular IF-block mechanism. 

One way to look at a test performed by an IF statement is to note that it assigns the 
object of this test to one of two categories. For instance, suppose we are in the midst of a 
program that looks at a set of data items for various individuals. Right now, we are 
examining a particular person's gender (which we shall call GENDER) with the following 
programming: 



Is GENDER= FEMALE? 
no 

no yes no 
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yes 

gender is female 
then 

if 
height is at least 160 

then 
"Compute 

else 
"Compute 

endif 
i--------~-------f--------~--------t else 

VBODY•4-- VBODY-4-- VBODY.-

( 
HT ,.908 

1.196 WT 1.244 { :i) .89 (
HT) .86 

1.1 7 WT 

-.009AGE +.012AGE 

VBODY-4--

(
HT) .87 

1.2 WT 

if 
height is at least 166 

then 
"Compute 

else 
"Compute 

endif 
endif 

-----------------------------~ "Next activity." 
FIGURE 9.7 (a) Nested Decision Structure. 

next activity 

FIGURE 9.7 (b) Pseudo-

IF (GENDER · EQ. FEMALE) THEN code for a Nested Decision 

action 1 Structure. 

ELSE 
action 2 

ENDIF 

As a result of this test the person has been identified as being either female or male (i.e., 
not female). Now, we may want to make a further distinction, say, between taller and 
shorter females, and between taller and shorter males. Once that subdivision has been 
performed, we shall have four categories and we are interested in specifying a separate 
action for each one. This type of situation is shown in the diagram and pseudocode of 
Figure 9.7. For purposes of illustration we have defined some variable VBODY which is 
computed in four different ways depending on the outcome of the tests. Note from 
Figure 9.7 that there are three tests: the first one assigns an individual to the male or 
female category; then, each of the two categories has another test to assign the 
individual to one of four subcategories (taller males, shorter males, taller females, 
shorter females). 

This subdivision process is expressed very naturally in FORTRAN 77 as an exten­
sion of the block IF construction: 

IF (GENDER. EQ. IF I) THEN 
IF (HT. GE. 160. 0) THEN 

VBODY=l.2*(HT/WT)**0.87 
ELSE 

VBODY=l.17*(HT/WT)**0.86 
1 +0.012*AGE 

ENDIF 
ELSE 

IF (HT. GE. 166. 0) THEN 
VBODY=l.244*(HT/WT)**0.89 

ELSE 
VBODY=l.196*(HT/WT)**0.908 

1 -0.009*AGE 
END IF 

action for females 

action for males 
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false 

IF­
block 

f 

IF­
block 

Block IF statement 

t 

IF­
block 

IF­
block 

Next activity 

IF­
block 

FIGURE 9.8 (a) Basic Construction of Nested Decisions. 

if 
testl 

then 
if 

test 11 
then 

if 

else 

testl 11 
then 

"Action." 
else 

"Action." 
endif 

if 
test I 12 

then 
"Action." 

else 
"Action." 

endif 
endif 

else 
if 

test21 
then 

if 

else 

test211 

then 
"Action." 

else 
"Action." 

endif 

if 
test212 

then 
"Action." 

else 
"Action." 

endif 
endif 

endif 

f 

IF­
block 

IF­
block 

FIGURE 9.8 (b) Pseudocode for Deeply 
Nested Decisions. 

When we look at this construction in general tenns (Figure 9.8) we see it as a block IF 
statement in which each of the two alternative actions is itself a block IF statement with 
two associated actions. This technique of specifying decision structures inside other 
decision structures is called nesting. It can be carried to any level necessary. The amount 
of such nesting is not governed by any limitation within the language. Instead, it should 
be determined by the needs of the problem and the clarity of the resulting program. 
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9.1.2.3 Construction of Nested Decisions Use of nested IF-blocks to specify more 
extensive decision mechanisms is easily controlled when handled systematically. There 
are two factors that provide help in this regard. We have been taking advantage of one 
such aid without calling specific attention to it: Indentation has been used to emphasize a 
program's structural components. This is a matter of voluntary programming style rather 
than a rule imposed by the language. For the representation of these decisions, we have 
chosen to align the block IF and END IF statements. The two associated actions are 
aligned with each other. This makes it very easy to spot (and keep track of) which ELSE 
goes with which IF, and provides a direct connection between the structured 
diagram or pseudocode and its representation as a sequence of FORTRAN statements. 
THEN· belongs to the block IF statement. 

The second source of help is an organizational one, established by FORTRAN's 
rules and built into the compiler. When an IF-block is nested in another one, it must be 
completely contained within that block. This relationship is monitored by FORTRAN 
in terms of the level of nesting. 

To understand how this works, we shall imagine that the compiler, in going through 
a program, keeps count of the number of block IF statements and END IF statements 
found in that program. At the start of the program, both of these counters are set to 
zero. Then, whenever it finds a block IF statement, the compiler adds 1 to the block IF 
counter (let us call that counter NBL). Similarly, whenever it comes across an END IF, 
the compiler adds 1 to the END IF counter (let us call it NEI). The numbers in these 
counters are available to the compiler at any time, so that they can be checked 
constantly. Of course, all of this is automatic and is out of reach of the FORTRAN 
programmer. With this in mind, we can describe the rules governing nested decisions, 
and how these values reflect the rules: 

l. The level of any statement in a program is defined, simply, as NBL-NEI. The 
particular statement being examined does not count in obtaining the value of 
NBLorNEI. 

2. An IF-block cannot have a level below zero. If it does, that means that the block 
IF and END IF statements are not balanced. Specifically, it means that there are 
more END IF statements than necessary. Detection of this situation by the 
compiler will produce an error message. 

3. At the end of a program, the level should be exactly zero, indicating that the 
block IF and END IF statements have been balanced. If this is not the case, there 
will be an error message and the program will not run. 

Example 9.4 We shall set up a hypothetical procedure with some nested decision structures in it so 
that we can imitate the compiler's monitoring operations. The desired decision network is a rather 
intricate one, as indicated in the diagram and pseudocode in Figure 9.9. Instead of transforming this 
diagram or pseudocode into specific FORTRAN statements, we shall make it easier to concentrate on the 
structure of the example by not using specific computations or variables. Instead, we shall use the word 
compute to indicate some kind of statement. Each statement (Figure 9.1 O) is earmarked so that we can 
refer to it conveniently when we discuss the program. Since we are not doing anything specific, there will 
be no named variables. A statement saying "declarations"will indicate the fact that such definitions 
would be present in an actual program: 

We shall analyze the program's progress through these decision structures to see how the 
nesting level changes: 

l. Just before statement 3 (the first block IF) NBL and NEI are at their initial 
values, so that the nesting level is at zero. Therefore, compute] and compute2 
are performed at that level. 

2. Right after statement 3, NBL is increased to 1. Since NEI still is zero, the nesting 
level (NBL-NE I) now becomes 1, and all statements till the next END IF or 
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Declarations 

Compute 1; Compute 4 

Condition 1 

false 

Compute 19 

Condition 6 

false true 

Compute 22; 
Compute 23; 
Compute 24 

Compute 20; 
Compute 21 

RGURE 9.9 (a) Diagram for Example 9.4. 

"Declarations." 
"Compute l." 
"Compute2." 
if 

con di ti on 1 is true 

then 
"Compute3." 
"Compute4." 
if 

condition 2 is true 

then 

else 

"Compute5." 
"Compute6." 
if 

condtion 3 is true 
then 

else 

"Compute?." 
"Compute8." 

"Compute9." 
"Compute IO." 
"Compute I l." 

endif 

"Computel2." 
if 

condition 4 is true 

true 

Compute 3; Compute 4 

Condition 2 

Cl3; 
Cl4 c 9; 

c 10; 
c 11 

c 18 c 16; 
c 17 

else 

then 
"Compute13." 
"Computel4." 

else 
"Computel5." 
if 

con di ti on 5 is true 
then 

else 

"Computel6." 
"Compute 17." 

"Compute 18." 
endif 

"Computel9." 
if 

condition 6 is true 
then 

else 

"Compute20." 
"Compute21." 

"Compute22." 
"Compute23." 
"Compute24." 

endif 

c 7; 
c 8 

endif FIGURE 9.9 (b) Pseudocode for Example 

9.4. endif 



c 

c 

PROGRAM 
declarations 

compute I 
compute2 

EX904 

3 IF (condition I) THEN 
compute3 
compute4 
IF (condition 2) THEN 

computes 
compute6 

23 IF (condition 3) THEN 

24 

33 

compute7 
computes 

ELSE 
compute9 
compute to 
computell 

END IF 

ELSE 
compute12 

IF (condition 4) THEN 
compute13 
compute14 

THE IF-THEN-ELSE CONSTRUCT 

ELSE 
compute IS 

43 IF (condition 5) THEN 
compute16 
compute17 

ELSE 
compute18 

44 END IF 
34 END IF 
14 END IF 

ELSE 
compute19 
IF (condition 6) THEN 

compute20 
compute21 

ELSE 
compute22 
compute23 
compute24 

END IF 
4 END IF 

FIGURE 9.10 Structure of Example 9.4. 

block IF statement are at level 1. Thus, compute] and compute4 are at level 1. 
3. Statement 13 brings the level to 2 (NBL=2, NEI=O), and compute5 and 

compute6 are at that level. 
4. Statement 23 increases the level, so that compute 7 through computel 1 operate 

at level 3. 

5. The END IF at statement 24 reduces the level to 2 (NBL=3, NEI=l), thereby 
placing compute12 at level 2. 

6. Statement 33 brings NBL-NEI to 3 again, and that level applies to computel3 
through computel5. 

7. Statement 43 changes the level to 4 (NBL=5, NEI=l), thereby including 
compute] 6, compute] 7 and compute] 8. 

8. The END IF in statement 44 reduces the level to 3. 
9. The END IF in statement 34 reduces the level to 2. 

10. The END IF statement 14 reduces the level to 1, so that compute19 operates at 
that level. 

11. Statement 53 raises the level to 2 again, and compute20 through compute24 are 
at that level. 

12. Statement 54 brings the level back to 1. 
13. Statement 4 closes out the entire decision structure, with the final level properly 

at zero. 

Now that the levels have been defined, we can see what they mean in terms of how the 
actions relate to the various tests: 
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Table 9.1 IF-Levels for the Statements in Example 9.4 

Statement Level Statement Level 

3 0 43 3 

compute3 1 compute16 4 

compute4 1 compute17 4 

13 1 compute18 4 

compute5 2 44 4 

compute6 2 34 3 

23 2 14 2 

compute7 3 compute19 1 

computes 3 53 1 

compute9 3 compute20 2 

compute10 3 compute21 2 

compute11 3 compute22 2 

24 3 compute23 2 

compute12 2 compute24 2 

33 2 54 2 

compute13 3 4 1 

compute14 3 next statement 0 

compute15 3 

1. Since the introduction of test condition 1 places the decision structure at level 1, 

the associated action or actions take place at level 1 or above. Another way of 

saying this is that the action includes everything after the block IF statement up to 

the next ELSE or END IF statement that is at the same level as that block IF 

statement. Applying that guideline to our example, we see that there are two such 

alternative actions, expressed by two IF-blocks: 

1. The block starting with compute3 and ending just before statement 14; 

2. The block starting with compute19 and ending just before statement 54. 

2. The test for condition 2 occurs as part of the THEN action resulting from condition 

1. Its outcome triggers one or two alternative actions, each of which occurs at level 

2 or above: 
1. The block starting with compute5 and ending at the ELSE just ahead of 

computel2. 
2. The block starting with compute12 and ending just before statement 34. 

3. The test for condition 3 is performed as part of the action taken if condition 2 is 

. TRUE. , and the outcome of that test causes one of two actions to take place: 

1. The IF-block consisting of compute? and computeB, or 
2. The IF-block consisting of compute9 up to statement 24. 

4. Condition 4, tested as part of the ELSE activity stemming from condition 2, also 

has two alternative activities. Each of these is performed at level 3 and above: 

1. If condition 4 is . TRUE. , the resulting activity includes compute13 and 

compute14. 
2. Otherwise, the activity that is performed includes everything from compute15 

up to statement 34. 

5. Part of the action resulting from a . FALSE. outcome of condition 4 is to test 

condition 5. Two activities are possible as a result: 

1. A successful outcome causes compute16 and compute17 to be performed. 

2. An outcome of. FALSE. results in computelB being processed. 
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c 
3 

13 

23 

24 

PROGRAM 
declarations 

compute( 
compute2 

IF (condition 1) THEN 
compute3 
compute4 
IF (condition 2) THEN 
computes 
compute6 
IF (condition) 3) THEN 
compute7 
computes 
ELSE 
compute9 
compute IO 
computell 
ENDIF 
ELSE 

43 

44 
34 
14 

53 

compute13 
compute14 
ELSE 
compute IS 

THE CASE CONSTRUCTION 

IF (condition 5) THEN 
compute16 
compute17 
ELSE 
compute18 
ENDIF 
ENDIF 
ENDIF 
ELSE 
compute19 
IF (condition 6) THEN 
compute20 
compute21 
ELSE 
compute22 
compute23 
compute24 
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compute12 
33 IF (condition 4) THEN 

54 
4 

END IF 
ENDIF 

FIGURE 9.11 Structure of Example 9.4 
Shown Without Indentation. 

6. This leaves us with condition 6, a test that is performed as part of the ELSE action resulting from a . FALSE. outcome for condition 1. The two alternative actions are: 
1. Perform compute20 and compute21 if condition 6 is . TRUE .. 
2. Perform compute22 through compute24 if condition 6 is . FALSE .. 

The entire decision structure is summarized in Table 9 .1, where the level is shown for each statement. Thus, the levels give us a clear indication as to exactly which actions will be performed in response to which tests, and what the extent of each action will be. Now, the value of indenting the various levels of IF-blocks can be seen more dramatically by contrasting this form with exactly the same statements written in straight vertical order. This is shown in Figure 9 .11. 

By combining the facilities discussed in the previous sections, we can build enormously 9.2 THE CASE powerful structures for using tests to select directions for further processing. A basic type CONSTRUCTION of situation still to be considered is one in which a single test could have more than two outcomes. That is, instead of asking, "Is this condition true or false?" we may want to ask, "Which of these six conditions is true?" Once the appropriate one has been selected, the program is to follow an action (out of six available choices) appropriate for that condition. Strictly speaking, it is possible to construct this type of decision structure by going through a series of true-false tests using block IF statements. In fact, we shall be doing something like that. However, by treating this situation as a separate type instead of looking at it as an extension of the IF-THEN-ELSE construction, it will be easier to take advantage of some organizational conveniences provided by the language. Moreover, it will be possible to set up a simple structure that gets bigger with more choices, but does not get more complicated. 
A multiple-choice type of decision is called a CASE construction. It can be repre­sented as shown in Figure 9.12. Regardless of whether we use pseudocode or N-S 
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Which case? 

action 1 

action 2 

Next activity 

n 

action n 

FIGURE 9.12 (b) Pseudocode 

Representation of the CASE 

Construct. 

FIGURE 9.12 (a) The CASE Construct. 

diagrams, note that each action is shown clearly as a single unit. This possibility is 

emphasized by the fact that the choices are numbered; only one action is selected while 

the others are ignored. Once the selected action is completed, there is a recombination of 

pathways to a single sequence of events. FORTRAN's capabilities make it convenient to 

deal with such constructs, as we shall see in the rest of the chapter. 

9.2.1. The ELSE IF Statement 

FORTRAN 77 makes a specific point of introducing an ELSE IF statement (there is no 

separate THEN IF statement) as a handy way of specifying CASE constructs. This 

statement is used in conjunction with a block IF statement as follows: 

IF (condition) THEN 
statement 
statement 

statement 

IF-block 

ELSE IF (condition) THEN 

statement 

statement 
statement 

ELSE 

END IF 

IF-block 

This construction can continue to any level, with as many ELSE IF statements being 

added as necessary to take care of the entire range of choices. An example will demon­

strate that this is as simple as it sounds. 

Example 9.5 Windowledge and Co. is a brokerage house selling stocks and bonds to the investing 

public. The fee charged for each sale is based on the amount of the sale in accordance with the following 



schedule: 

Amount of Sale 

<$100.00 
$100.00-$499.99 
$500. 00-$999 .99 
$1000.00 and up 

Window/edge's Commission 
$15.00 
$20.00 
$20.00+3% of sale over $500 
$35.00+2.5% of sale over $1000 

THE CASE CONSTRUCTION 

Each sale is recorded on an input line that contains the customer number, customer name, number of 
shares, and price per share. We shall design a program that prints the customer name, along with the 

Define: PRICE, SALE, COMM, CUSNUM, NUMSHR, CUSNAM 

Print headings 

Read first transaction 

Do while customer no. f 0 

<Ioo-----__ 

/-I~ 
Sale? 

COMM= 
15.00 

5~ COMM= 
20.00 COMM= COMM= 

20.00 + 35.00 + 
.03 (SALE - 500) .D25 (SALE - I 000) 

Print CUSNAM, SALE, COMM 

Read next transaction 

Print termination message 

STOP 
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FIGURE 9.13 (a) Diagram for 
Example 9.5. 

"Define PRICE,SALES,COMM,CUNSUM,NUMSHR,CUSNAM." 
"Print the headings." 
"Read the first customer's transaction." 
while customer number is not equal to zero: 

case SALE of 
easel: 

"Commission = 15.00." 
case2: 

"Commission = 20.00." 
case3: 

"Commission = 20.00 + 3% of sales over 500.00." 
case4: 

"Commission = 35.00 + 2.5% of sales over 1000.00." 
endcase 
"Print CUSNAM, SALE, COMM." 
"Read the next customer's transaction." 

endwhile 
"Print termination message." 
"Stop." FIGURE 9.13 (b) Pseudocode for Example 9.5. 
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******************************************************* 

* 
EXAMPLE 9.5 * 

******************************************************* 
* THIS PROGRAM ILLUSTRATES THE USE OF ELSE IF TO * 

* BUILD A SIMPLE CASE CONSTRUCTION. ONE OF FOUR * 

* COMMISSION FORMULAS IS SELECTED BASED ON THE VALUE* 

* OF SALE (I.E., PRICE*NUMSHR). * 

* PRICE: PRICE PER SHARE * 

* SALE: AMOUNT OF SALE * 

* COMM: COST OF SALE (BROKER'S COMMISSION) * 

* CUSNUM: CUSTOMER'S I.D. NUMBER * 

* 
* 

NUMSHR: 
CUSNAM: 

NUMBER OF SHARES IN THIS SALE 
CUSTOMER'S NAME 

* 
* 

******************************************************* 
PROGRAM 
IMPLICIT 
REAL*4 
INTEGER*2 
CHARACTER 

EX905 
NONE 
PRICE,SALE,COMM 
CUSNUM,NUMSHR 
CUSNAM*25 

PRINT*, 'NAME','AMT OF SALE','COMMISSION' 

PRINT *, 
PRINT *, 'ENTER THE DATA FOR THE FIRST CUSTOMER' 

READ *, CUSNAM,CUSNUM,NUMSHR,PRICE 

DO WHILE (CUSNUM .NE. 0) 
SALE = PRICE * NUMSHR 

*-----HERE IS THE CASE CONSTRUCTION. WE ARE STARTING WITH COMM 

*-----INITIALIZED TO ZERO TO GUARANTEE THAT THERE IS A KNOWN 

*-----VALUE IN IT. 

COMM = 0.0 
IF (SALE .LT. 100.0) THEN 

COMM = 15.00 
ELSE IF (SALE .GE. 100.0 .AND. SALE .LT. 500.0) THEN 

COMM = 20.00 
ELSE IF (SALE .GE. 500.0 .AND. SALE .LT. 1000.0) THEN 

COMM = 20.00+0.03*(SALE-500.0) 
ELSE 

COMM = 35.00+0.025*(SALE-1000.0) 

END IF 

PRINT *, CUSNAM,SALE,COMM 
PRINT *, 'ENTER DATA FOR THE NEXT CUSTOMER' 

READ *, CUSNAM,CUSNUM,NUMSHR,PRICE 
END DO 

PRINT *, 
PRINT*, 'END OF RUN. NORMAL TERMINATION.' 
STOP 
END 

FIGURE 9.14 Statements for Example 9.5. 
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amount of the sale and the commission. A customer number of zero will stop the run. The diagram and 
pseudocode forthe program are shown in Figure 9.13 and the statements are in Figure 9.14. The heart of 
the program is the CASE construction that selects the proper commission formula for each set of input 
values. Note that each test is spelled out completely, even though the ELSE IF construction makes it 
unnecessary. For instance, a value of . TRUE. for the first test (i.e., a sale less than $100.00) sets the 
commission at $15.00 and immediately the program goes to statement 100, bypassing the other tests. 
(Incidentally, statement 100 is labeled only because of the reference to it in this discussion.) The ELSE IF 
statement guarantees that the only way the second test can be performed is for the first test to come out 
. FALSE .. so that the sale is already "known" to be $100.00 or more. The (unnecessary) test is included 
for clarity, to show exactly how the commission formula is selected. 

There is one important precaution to keep in mind when designing a CASE con­
struct for a particular situation: the choices specified in the construct must be complete. 
That is, the programmer must make sure that there can be no situation which does not 
match one of the choices. Often, this means that there needs to be a "catch-all" activity 
that the program will perform in the event that all of the other tests produce a . FALSE. 
outcome. In Example 9.5, such an escape hatch has been included for illustration, even 
though it was not needed, by setting COMM to zero before the CASE construct is entered 
for each input set. In this way, COMM is always assured of having a value. For more 
complex situations, it may be more appropriate to include an additional activity as the 
last part of the construct so that it says, in effect, "Here are n alternative activities. 
Choose one of them by going through these tests. If all of the tests fail, perform this 
activity instead." This process is illustrated below. The pseudocode representation also 
may show this type of construction, as illustrated in Figure 9.15. 

IF (condition 1) THEN 
action 1 

ELSE IF (condition 2) THEN 
action 2 n regular choices 

ELSE IF {condition 3) THEN 
action 3 

ELSE IF {condition n) THEN 
action n 

ELSE 
catch-all action 

END IF 
case description of selector of 
easel: 

"Action I." 
case2: 

"Action2." 
case3: 

"Action3." 
case4: 

"Action4." 

casen: 
"Actionn 

else 

escape hatch 

"Escape action." 
endcase FIGURE 9.15 Pseudocode for CASE Construction with an Escape Hatch. 
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9.2.2 More Extensive CASE Constructs 

The basic construction shown in the previous section serves equally well in situations 
requiring more extensive actions. 

Example 9.8 To demonstrate the idea that the CASE statement retains its simplicity when its 

processing expands, we shall take another look at Windowledge and Company. This time, the company 

wants to compute something it calls an "investment profile index" (IPX). As with commisssions, an IPX 

value is determined in one of four ways, depending on the amount of the sale: 

Sale 

<$100.00 
100. 00-499 .99 
500.00-999 .99 
1000.00 AND UP 

/PX 

(NUMSHR/PRICE)**.8+3.12•(PRICE-2•NUMSHR) 

((NUMSHR-1)/PRICE)**.67+4.14•(PRICE-l.8/NUMSHR) 

(PRICE••.214)•(NUMSHR-1) 
(NUMSHR/PRICE+2.l•LOG(SALE))**l.16 

Output for each sale is to report the IPX in addition to its previous contents. The revised program (Figure 

9.16) is unchanged in structure. 

9.2.3 Another Way to Implement the CASE Construct 

FORTRAN has an additional facility that offers another way to represent a CASE 
construct. It is not necessarily "better" or ''worse" than the use of IF-THEN-ELSE IF 
sequences. For some programmers, it represents a more awkward approach because it 
requires additional statements; others prefer it because, for them, it is a more direct 
reflection of the basic construct. 

The basis for this technique is FORTRAN's computed GO TO statement. It is called 
"computed" because, unlike the unconditional GO TO, its destination is not fixed. Rather, 
it is selected from a choice of predefined alternatives, and the choice can be computed by 
the program at any time before the GO TO is executed. The general form is 

GO TO (labell,label2,label3, ........ ,labeln),i 

label] is the label attached to the first statement of the first alternative activity, labe/2 

indicates where the activity for the second choice starts, and so on. The i after the comma 
outside the parentheses (the comma after the closing parenthesis is optional in FOR­
TRAN 77, required in earlier FORTRANs) is the name of an integer variable whose 
value at that instant indicates which of the destinations the program is to select. For 
example, the computed GO TO statement 

GO TO (32, 26, 41, 17, 19), SWVAR 

specifies five destinations from which to choose. The choice will depend on SWV AR (which 
we assume was defined earlier in the program by an INTEGER statement, and was given a 
value in some way). If SWVAR's value is 1, then the next statement executed by the 
program would be statement number 32; a value of 2 in SWV AR sends the program to 
statement 26, and so on. Thus, in this particular example, we would expect SWV AR to have 
a value of either 1, 2, 3, 4, or 5. A well-designed program, then, would include 
statements to test SWVAR before allowing the program to reach the computed GO TO. If 
the program happens to execute the computed GO TO with SWV AR's value being out of 
range (i.e., less than 1 or greater than 5 in this case), the program simply will execute the 
statement immediately following the GO TO, as if the GO TO were not there. 

There is no particular limit to the number of destinations that can be specified in a 
computed GO TO. Nor is it necessary to have a different destination for each alternative. 
For instance, the statement 

GOTO (16, 88, 88, 24, 35, 16), CHOICE 
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C******************************************************** c EXAMPLE 9.6 
* C******************************************************** C ALL THE DEFINITIONS ARE THE SAME AS IN EXAMPLE IX.5 * C EXCEPT FOR THE ADDITION OF IPX, THE INVESTOR PROFILE* C INDEX, COMPUTED ONE OF FOUR WAYS, DEPENDING ON THE * C SIZE OF THE SALE. * 

C******************************************************** PROGRAM 
IMPLICIT 
REAL*4 
INTEGER*2 
CHARACTER 

EX906 
NONE 
PRICE,SALE,COMM,IPX 
CUSNUM,NUMSHR 
CUSNAM*25 

PRINT*, 'NAME','AMT OF SALE','COMMISSION','INV PROF INDEX' PRINT *, 
PRINT *, 'ENTER DATA FOR THE FIRST CUSTOMER' 
READ *, CUSNAM,CUSNUM,NUMSHR,PRICE 

DO WHILE (CUSNUM .NE. 0) 
SALE = PRICE * NUMSHR 
COMM = 0.0 
IPX = 0.0 

IF (SALE .LT. 100.0) THEN 
COMM=15.0 
IPX=(NUMSHR/PRICE)**O. + 3.12*(PRICE-2*NUMSHR) 

ELSE IF (SALE .GE. 100.0 .AND. SALE .LT. 500.0) THEN 
COMM=20.00 
IPX=((NUMSHR-1}/PRICE)**0.67+4.14*(PRICE-1.8/NUMSHR) ELSE IF (SALE .GE. 500.0 .AND. SALE .LT. 1000.0) THEN 

END IF 

COMM=20.0+0.03*(SALE-500.0) 
IPX=(PRICE**0.214)*(NUMSHR-1) 

ELSE 
COMM=35.0+0.025*(SALE-1000.0) 
IPX=(NUMSHR/PRICE+2.1*LOG(SALE})**1 .16 

PRINT *, CUSNAM,SALE,COMM,IPX 
PRINT *, 'ENTER DATA FOR THE NEXT CUSTOMER' 
READ *, CUSNAM,CUSNUM,NUMSHR,PRICE 

END DO 

PRINT *, 
PRINT*, 'END OF RUN. NORMAL TERMINATION.' 
STOP 
END 

FIGURE 9.16 Statements for Example 9.6. 

is perfectly legitimate, as long as CHOICE is an integer variable and there are statements in the program with the labels 16, 88, 24, and 35. With this setup, the program will continue at statement 16 when CHOICE is either 1or6, statement 88 when CHOICE is 2 or 3, 24 when CHOICE is 4, and 35 when CHOICE is 5. 
The way the computed GO TO is used to develop a CASE construct is to provide a sequence of tests (simple IF statements) in which each of the alternative actions assigns a particular value to an integer variable. That variable then is used as the switching control in a single computed GO TO statement that directs the program to the proper action. Each action begins with a statement whose label matches one of the choices given in the GO TO, and each action concludes with an unconditional GO TO to a single CONTINUE statement at the end of all the actions. As we have seen earlier, the CONTINUE statement does not actually compute anything. Here, it serves as a definite punctuation symbol, indicating the conclusion of the CASE construct. 
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C****************************************************** 

C EXAMPLE 9.7 * 

C****************************************************** 

C THIS PROGRAM IMPLEMENTS THE SAME PROCEDURE AS IN * 

C EXAMPLE IX.6, WITH THE CASE CONSTRUCT BUILT AROUND* 

C THE COMPUTED GO TO STATEMENT. * 

C****************************************************** 

21 

PROGRAM 
IMPLICIT 
REAL*4 
INTEGER*2 
CHARACTER 

EX907 
NONE 
PRICE,SALE,COMM,IPX 
CUSNUM,NUMSHR,SWITCH 
CUSNAM*25 

PRINT *,'NAME','AMT OF SALE','COMMISSION','INV PROF INDEX' 

PRINT * , 
' PRINT *, 'ENTER INPUT DATA FOR THE FIRST CUSTOMER' 

READ *, CUSNUM,CUSNAM,PRICE,NUMSHR 

DO WHILE (CUSNUM .NE. 0) 
SALE = PRICE * NUMSHR 
SWITCH = 1 

IF (SALE .LT. 1 00. 0) 
IF (SALE .GE. 100.0 . AND. 
IF (SALE . GE. 500.0 .AND . 
IF (SALE .GE. 1000.0) 
GO TO (21,22,23,24),SWITCH 

COMM = 15.00 

SWITCH=1 
SALE .LT . 500.0) SWITCH=2 
SALE .LT. 1000.0) SWITCH=3 

SWITCH=4 

IPX = (NUMSHR/PRICE)**0.8 + 3.12*(PRICE-2*NUMSHR) 

GO TO 29 
22 COMM = 20.00 

IPX = ( (NUMSHR-1)/PRICE)**0.67 + 4.14*(PRICE-1.8/NUMSHR) 

GO TO 29 
23 COMM= 20.00 + 0.03*(SALE-500.00) 

IPX = (PRICE**0.214)*(NUMSHR-1) 
GO TO 29 

24 COMM = 35.00 + 0.025*(SALE-1000.00) 
IPX = (NUMSHR/PRICE + 2.1*LOG(SALE))**1.16 

29 CONTINUE 

PRINT *• CUSNAM,SALE,COMM,IPX 
PRINT *, 'ENTER INPUT DATA FOR THE NEXT CUSTOMER' 

READ *• CUSNUM,CUSNAM,PRICE,NUMSHR 
END DO 

PRINT *• 
PRINT*• 'END OF RUN. NORMAL TERMINATION.' 

STOP FIGURE 9.17 Statements for Example 9.7. 

END 

9.3 SUMMARY 

Example 9.7 We shall rewrite the program in Example 9.6, replacing the ELSE"IF sequences with an 

equivalent CASE construct based on a computed GO TO. Everything else remains the same, except for the 

definition of an additional integer variable (SWITCH) to control the GO TO. The revised version is shown in 

Figure 9.17. Neitherthe N-S diagram orpseudocode needs to be changed because the structure still is the 

same as it was for Example 9.6. Only the implementation of that structure changes. 

FORTRAN makes it possible to set up an endless variety of decision-making mecha­

nisms. These are based on the performance of a test designed to have an outcome of 

"true" (designated in FORTRAN as. TRUE.) or "false" (indicated as. FALSE.). Such 

tests are constructed and specified by means of the IF statement, which may be used in 



several forms: 

Basic Logical IF Statement: 
IF (condition) statement 1 
statement 2 

etc. 

SUMMARY 

operation: An outcome of . TRUE. causes statement 1 to be executed. This may or may not be followed 
by statement 2, depending on the type of statement 1. An outcome of . FALSE. causes statement 1 to be 
ignored, and statement 2 is executed. 

IF-THEN-ELSE Construction: 
IF (condition) THEN 

statements 

ELSE 

statements 

ENDIF 
next statement 

operation: An outcome of . TRUE. causes the group of statements between THEN and ELSE to be 
processed. The statements between ELSE and END IF are ignored and processing continues with "next 
statement." An outcome of . FALSE. causes the statements between ELSE and END IF to be processed 
(with those between THEN and ELSE being ignored), and processing continues with "next statement." 

An extension of these forms makes possible the convenient construction of decision 
networks in which there are more than two choices. This type of decision mechanism 
is called a CASE construct. Two implementation techniques are summarized below: 
CASE Constructions with ELSE IF Statements: 

IF (condition 1) THEN 
action 1 

ELSE IF (condition 2) THEN 

action 2 
ELSE IF (condition 3) THEN 

action 3 

ELSE 
ENDIF 

etc. 

next statement 

Another way to format this construction is: 

IF (condition 1) THEN 
action 1 

ELSE IF (condition 2) THEN 

action 2 
ELSE IF (condition 3) THEN 

action 3 

etc. 

ELSE 
ENDIF 

next statement 
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operation: Each of the tests is performed in tum, starting with condition 1. As long as the outcome of a 

particular test is . FALSE. , the program goes on to perform the next test. When the first . TRUE. 

outcome is achieved, the program performs the action associated with that condition and then executes 

"next statement." If all the tests fail, the program acts as if the entire CASE construction were not there. 

CASE Constructions with the Computed GO TO: 

IF (condition 1) M = 1 

IF (condition 2) M = 2 

IF (condition n) M = n 

GOTO (Ll, L2, ... , Ln) M 

Ll action 1 

GO TONN 

L2 action2 

GO TONN 

LN action n 

NNCONTINUE 

next statement 

operation: The series of tests selects the appropriate choice and signals that choice by setting variable M 

to 1, 2, 3, ... , n. Then, the computed GO TO statement acts as a multiple switch, sending the program to 

destination Ll (forM=l), L2 (forM=2), etc. Each action ends by directing the program to the conclusion 

of the construction, and processing continues with "next statement." 

Test conditions are specified as comparisons. For example, 

( (X+Y) **l. 8 . GE. Z-3. 8*Y) ) 

compares the two indicated expressions. If the first expression's value is greater than or 

equal to that of the second, a . TRUE. outcome results; otherwise, an outcome of 

. FALSE. results. Five other relational operators (. EQ. , . NE. , . LT. , . LE. , . GT. ) are 

available. More extensive tests, still with a final outcome of . TRUE. or . FALSE. , can be 

constructed by combining comparisons with logical operators. The test given below, 

( (X+Y) **l. 8 . GE. Z-3. 8*Y) . AND. (W. LT. 1. 7 /Y) ) 

will produce an outcome of . TRUE. only if both comparisons are true. The . OR. 

operator also is available for constructing such test combinations. 

1. Indicate the output value(s) printed by each of the independent sequences given below. Assume the 

following declarations and assignments: 

1 

REAL*4 

INTEGER*2 

CHARACTER*8 

PARAMETER 

DATA 

Rl,R2,R3,R4 

Nl,N2,N3 

Cl,C2,C3*4,C5*12,BLANK*l 

(BLANK= I I) 

Rl,R2,R3/18.0,6.0,2.0/N2,N3/2,3/ 

Cl, C2, C3/ 'FARMLAND', 'FARMHAND', 'HARM' I 

(a) R4 = 0. 0 

IF (Rl+R2+R3. LE. R3** (N2*N3)) R4=R4+R2**N2 

PRINT*• R4 



(b) IF (R2**N2. GT. Rl*R3) THEN 
R4 = R3*(Rl+R2) 

ELSE 
R4 = R3* (Rl-R2) 

END IF 
PRINT*• R4 

(c) IF (MAX (Rl, R2*R3, (Rl/R2) **N3) . LT. R3** (N2+N3)) THEN 
R4 = 27.9 

ELSE 
R4 = Rl/(R2+R3) 

END IF 
PRINT*• R4 

(d) IF (Cl(: 4) . EQ. C2 (1: 4)) THEN 
C5 = Cl(:3)//BLANK//Cl(S:) 

ELSE 
C5 = C2(:S)//'0USE' 

END IF 
PRINT*• CS 

(e) R4 = Rl*R2*R3 
C5 = BLANK 
IF (C3. EQ. Cl (2: 4) THEN 

R4 = R4/N3 
C5(5:8) = C3 

ELSE 
R4 = R4 I (N2+N3) 
C5(2:) = C3//'LESS' 

END IF 
PRINT *, CS, R4 

(f) R4 = Rl*R2*R3 
C5 = BLANK 
Nl = N2-N3 
IF (R4**Nl . LE. 1. 0/ (R1*R2* (R3-1))) THEN 

C5 (9:) = C3 
PRINT*, R4, C5 

ELSE 
C5(6:10) = C3 
R4 = 0.6*R4 
PRINT*, Nl, C5, R4 

END IF 

(g) R4 = 0. 0 
IF (Cl(: 4) //C2 (6:) . LT. C2 (1: 4) //Cl (6: 8)) THEN 

R4 = 2.0*R4 
DO 8 Nl = l, S 

R4 = R4 + Nl*(N2+N3) 
C5(2*Nl-1:2*Nl) = Cl(Nl:Nl) 

8 CONTINUE 
ELSE 

R4 = 2.0 + R4 
D09Nl = 1, S 

R4 = R4+Nl(N2-N3) 
CS(Nl:Nl) = C2(Nl:Nl) 
CS(Nl+S:Nl+S) = C2(Nl+l:Nl+l) 

9 CONTINUE 
END IF 
C5 (11:) = BLANK 
PRINT*• R4, CS 
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2. Write a sequence of FORTRAN statements to represent each of the specifications given below. Assume 

the following declarations: 

REAL*4 Rl,R2.R3.R4 

INTEGER*2 
CHARACTER 

Nl, N2, N3, 
C1*8, C2*8, C3*12 

(a) After reading in values for Rl and R2, set Nl to 3 if Rl is greater than R2; otherwise, set Nl to 4. 

(b) "Read a value for Cl." 
if 

Cl has any vowels in it 

then 
"Set Nl to the number of vowels in Cl." 

else 
"Set Nl to zero." 

endif 

( c) "Read values for Rl, R2, R3, and R4." 

if 
the sum of Rl and R2 is greater than the sum of R3 and R4 

then 
"Place in Nl the sum of Rl and R2, rounded to the nearest integer." 

"Place in N2 the sum of R3 and R4, rounded to the nearest integer." 

else 
"Place in Nl the sum of R3 and R4, rounded to the nearest integer." 

"Place in N2 the sum of Rl and R2, rounded to the nearest integer." 

endif 

(d) .-----------------. 

Read Rl, R2, R3 

RlR2<R2R3 

no yes 

Nl.__O 
N2+-RlR2 
(to nearest int.) 

Nl._l 
NU--R2R3 
(to nearest int.) 

N3+-NlN2 
R4.-N3 (Rl+R2-R3) 

( e) Read values for Rl, R2 and R3. Assign to R4 a value equal to the sum of the two largest input values. 

(f) Read values for Cl and C2. assign to Nl the number of letters in Cl and C2 that are in the second half 

of the alphabet. Assign to N2 the number of letters in Cl and C2 that are in the first half of the 

alphabet. 

(g) "Read Rl, R2, Nl and N2." 
"ReadR3." 
if 

Nl is odd 
then 

"Set R4 to R3+ (Rl +R2) * * (Nl +N2) . " 

else 
"Set R4 to R3+ (Rl +R2) * * (N2) . " 

endif 



Read Rl, R2, Cl, C2, Nl, N2 

R3+-Nl (Rl +R2) 
R4._N2 (Rl +R2) 
N3+-Nl-N2 

Double R4's value 

C3 's even-numbered 
characters are taken 
from Cl's first 6 
characters 

The rest of C3 's 
characters are blank 

Double R3's value 

C3 's even-numbered 
characters are taken 
from C2's last 6 
characters 

C3's odd-numbered 
characters are taken 
from Cl's first 6 
characters 

3. Assume the following declarations and assignments: 

REAL*4 Rl,R2,R3(6),R4 
INTEGER*2 Nl,N2,N3(6),N4 
CHARACTER C1*8,C2*8,C3(6)*4 
Rl 2.0 
R2 3.0 
Nl 1 
N2 4 
Cl 'MAKEWELL' 
C2 'BAKERIES' 

Indicate the values printed as a result of each of the following sequences: 

(a) DON4 = 1, 6 
IF (MOD (N4, 3) . EQ. 0) THEN 

R3(N4) = Rl + N4*R2**(Nl*N2) 
N3(N4) = N4*(Nl-N2) 

ELSE 
N3(N4) = (N4-l)*(N2-Nl) 
R3(N4) = R2 + N4*Rl**N3(N4) 

END IF 
END DO 
PRINT*• R3, N3 

(b) R4 = SQRT ( (Rl/R2) **NI) 
IF (R4. GT. Rl. AND. R4. LT. R2) THEN 

N4 R4*(Nl+2*N2) 
ELSE 

N4 R4*(2*Nl+N2) 
END IF 
PRINT*, R4, N4 
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(c) R4 = 0. 0 

DON4 = 1, 3 
N3(N4) = MOD(Rl+R2) ,N4) 
IF (M0D(N3(N4),2) .EQ. 0) THEN 

R3(N4) = (Rl+R2)**N3(N4) 
R3(7-N4) = (Rl-R2)**N3(N4) 

N3(7-N4) = MOD(N3(N4),N4)) 

ELSE 
R3(N4) = N3(N4)*(Rl+R2) 

R3(7-N4) 0.5*R3(N4) 

N3(7-N4) = 2*N3(N4) 
END IF 

R4 = R4 + 0.5*(R3(N4)+R3(7-N4)) 

END DO 
PRINT*· R4 

(d) DON4=1, 6 

N3(N4) = N4*(Nl+N2) 
IF (MOD (N4, 2) . NE. 0) THEN 

R4 (Rl+R2)**N3(N4) 
ELSE 

R4 (Rl-R2)**N3(N4) 
END IF 
IF (ABS (R4) . LT. R2) 

1 .OR. 
2 (Cl (N4: N4) . GE. C2 (N4: N4)) THEN 

R3(N4) = R4 
C3 (N4) = C2 (Nl:) 

ELSE 
R3(N4) = 2*R4 
C3 (N4) = Cl (Nl:) 

END IF 
END DO 
PRINT*• N3 
PRINT*• R3 

(e) IF (Cl (: 2) . LE. C2 (: 2) . AND. (Rl+R2) **2 . LE. 2*Rl*R2) THEN 

R4 = 0.0 

1 

DO 8 N4=1, 6 

N3(N4) = N4 
IF (N4. LE. 4) THEN 

R3(N4) = (Rl+R2)**N4 
C3(N4) = Cl(N4:N4)//C2(N4:N4) 

//Cl(N4+l:N4+1)//C2(N4+l:N4+1) 

ELSE 
R3(N4) = 2*(Rl+R2)**N4 

END IF 
R4 = R4+R3(N4) 

8 CONTINUE 
ELSE 

R4 = 1.0 
DO 12 N4=1, 6 

N3(N4) = N4/2 
IF (N4 . LE. 4) THEN 

R3(N4) = (Rl+R2)**N4 
C3(N4) Cl(N4:N4+1)//C2(N4:N4+1) 

ELSE 
R3 (N4) 3* (Rl+R2) **N4 

END IF 
R4 = R4*R3 (N4) 



12 CONTINUE 
END IF 
PRINT*, N3 
PRINT*, R3 
PRINT*, C3 
PRINT*, R4 

PROBLEMS 

4. Write FORTRAN statements for each of the specifications given below. Assume the following declarations: 

REAL*4 
INTEGER*2 
CHARACTER 

Rl,R2,R3(8) ,R4,R5(8) 
Nl, N2, N3 (8), N4) 
C1*8,C2*8,C3(8)*4 

(a) Read Rl, R2, Nl, and N2. If Nl and N2 are both odd numbers, compute R4 as Rl * * Nl * R2 * * N2; 
otherwise compute R4 as Rl * *N2 *R2 * *Nl. 

(b) Read Rl and R2. Store in Nl the number of odd digits ( 1 , 3 , 5 , 7 , 9) in the integer portions of Rl 
and R2. Store in N2 the number of even digits ( O , 2 , 4 , 6, 8) in the integer portions of Rl and R2. 
(High order zeros do not count. For example, the value 001070. 027 has two zeros in its integer 
portion.) If either Nl or N2 is greater than 3/4 of their sum, Rl is set to 1 O. 5; otherwise it is set to -10. 5. 

(c) "Read Rl, R2, R3, and R4." 
if 

Rl 's value is between R2 's and R4 's value 
then 

"Multiply by Rl all of R3 's elements whose values are larger than Rl 's." 
else 

"Multiply by (R2 /R4) all of R3's elements whose values are less than Rl 's." 
endif 

(d) "Read R3, Rl, and R2." 
do for all elements in R3: 

if 

(e) 

an element in R3 is less than or equal to Rl as well as R2 
then 

"Store in R5 's corresponding element the sum of the corresponding element from R3, Rl, 
and R2." 
else 

"Store in R5 's corresponding element the value of the corresponding element from R3 less 
half ofRl 's value." 
endif 

enddo 

Read N3, NI; Initialize N4, NL 

Do for all of N3's elements 

Is the element in N3 <NI 

no 

Add the element 
to N2 

no 

Is the element in N3 less 
than N3(1) and less 

than I N2-N4 I ? 

yes 

yes 

Double the value 
of the element 

Print N3, NI, N2, N4 
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(f) 
Read Cl, C2, N4 

N2 +-No. of vowels in Cl and C2 

Nl ~No. of consonants in Cl and C2 

(both Cl and C2 may have blanks) 

Rl +-:Ni /N2, rounded to 2 places 

(g) "ReadRl andR3." 
"Initialize Nl and N2." 
"Nl = the number of elements in R3 whose values are less than Rl." · 

"N2 = the number of elements in R3 whose values are greater than Rl." 

"R2 = Nl/N2, rounded to 2 places." 

if 
there are no elements in R3 equal to Rl 

then 
"Set N4 to zero." 

else 
"Set N4 to 1." 

endif 
if 

at least three of R3 's elements are greater than Rl 

then 
''R4 (N4+2) /R2. '' 

else 
''R4 (N4-2) /R2. '' 

endif 
"PrintNl, N2, N4, R2, R4, each variable or array on a separate line." 

5. Write a complete program to perform the following processing: Each input line contains a three-digit 

positive integer value (INTVAL). If the rightmost (third) digit is equal to the sum of the other two digits, 

that number is to be printed on a separate line along with the message THIS IS A SPECIAL NUMBER. If 

not, there is to be no output for that number. Thus, 246 and 729 are special numbers while 264 and 381 

are not. A run may consist of any number of input values. After the last value is processed, the program is 

to print the number of values that met the requirement described before (SPECLS) and the number of 

values (ORDNRS) that did not. Here are some suggested data values: 

303 
627 
718 
339 
336 
347 
112 
end-of-run signal (up to you) 

6. Here is a more challenging version of the previous problem: We are reading positive integer values as 

before (one at a time, using a variable named INPVAL). This time, however, the number of digits is not 

fixed. If a particular value reads the same way in either direction, the program is to print the value, along 

with the message THIS IS A SYMMETRICAL NUMBER. If not, there is to be no output for that input value. 

Thus, 6116, 747, 2002, 36463 and88 aresymmetricalnumberswhile4141, 30, 32732, and 9 are not. 

As in the previous problem, there may be any number of input values in a given run. After the last value 
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has been processed, the program is to print the number of symmetrical values (NUMSYM), their sum (SUMSYM), the total number of values (TTL VAL) and their sum (SUMTTL ). Finally, the program is to print the ratio of SUMSYM to SUMTTL, rounded to three decimal places. Here are some suggested input values: 
9009 
33 
9090 
30103 
26326 
442442 
424424 
6 
end-of-run signal (up to you) 

7. It had to happen: four hotshots have gotten together and formed Astute Dating, a nationally franchised (no less) computerized dating service. ("Let Astute compute your next cute beaut.") Now they need a program to produce dating matches. The program is to operate as follows: Each client's data are prepared on a line containing a 5-digit integer client number followed by yes-or-no answers to 20 Significant Questions. A "yes" is represented by the integer 1 and a "no" is represented by the integer 0. Thus, a typical set of client input data might say 

30244 1,1,1,o,1,o,o,1,o,1,1,1,o,o,1,o,o,o,1,o 

Now, suppose that one of Astute's female clients requests a report from the matching service in which potentially suitable males are identified and listed. To do this, the program would read and store the requestor's data. Then, those data would be compared, in tum, with each of the input sets from Astute's Male Collection. For each question answered "yes" by both parties, the program would add 1 to the CompuLove Score Index (CMPNDX). If such a comparison between two sets of data produces an Index of at least 15, the program prints the following output line: 

NUMBER nnnnn IN OUR COLLECTION MATCHES WITH nn 

nnnnn is the identifying number from the input and nn is the matching score. The output starts with a heading line that says 

COMPULOVE REPORT PREPARED ESPECIALLY FOR nnnnn 

After the last set in the collection has been processed, the program prints NUMYES, the number of matches found in the collection. You may assume that there is no client number 0. 

8. Here is a more challenging version of the previous problem, brought about by Astute's runaway success. The fabulous franchiser is looking to refine the matchmaking by introducing a slight complication in the way people's input data are compared: There still are 20 yes-or-no questions, but studies have shown that they are not all equally important. Consequently, it is necessary to assign a different weight to each question depending on its significance in the overall matching process. But wait. (Weight? No; wait): It is not as easy as that. Astute's researchers have worked out the following weighting schedule: 
(a) Questions 1, 2, 6, 11, 14, 16, and 19 have weights of 1 each. That is, an answerof"yes" for any of these adds 1 to the Score Index. 
(b) Questions 3, 12, and 18 have weights of 2 each. 
( c) Questions 5 and 15 have weights of 3 each. 
( d) Question 7 has a weight of 5. (This is some question.) 
( e) Questions 4 and 9 have weights of 3 each if the answer to question 5 is "yes"; otherwise their weights are2 each. 
(f) Questions 8, 10 and 17 have weights of 4 each if the answers to questions 2, 11, and 15 all are "yes." (g) Questions 13 and 20 have weights of 2 each if the answer is "yes" to either l, 16, or 18. 
A total score of 36 or above is considered a successful match, for which the program produces the same output as described in the previous problem. All the other requirements are the same as those given in that problem. 
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9. The Golden Glut is a limited-menu restaurant specializing in mediocre food, a fact hidden only with 

partial success by a bewildering collection of prefab cutesy decorations. One of the Glut's popular 

specialties is a prepackaged Dinner for Eight (reservations two days in advance, please) whose basic cost is 

$62.00. For that amount, each Glutperson (as the diners are affectionately known) gets a salad, an entree, 

a beverage, and a dessert. This sounds simple enough, but it gets a little involved because of the conditions 

under which the items are selected: 

(a) Everybody gets the same salad. 

(b) There are three kinds of entrees (types l, 2, and 3). The fixed price entitles the dining parties to eight 

entrees, sure enough, but at least three of them must be type l, at least 2 of them must be type 2, and 

at least 1 of them must be type 3. As long as these requirements are met, anything else is flexible. 

(c) Everybody gets any of the three beverages on the menu. (Well, limited is limited.) 

( d) There are two types of desserts (types 1 and 2). Four of the desserts must be from each type. 

Of course, the diners have the right to deviate from these rules, but it will cost them: 

( e) If less than three type 1 entrees are ordered, there is a $2.00 penalty for each one less. If less than two 

type 2 entrees are ordered, there is a $1.75 penalty for each one less. 

If there are no orders for type 3 entrees, there is a $1.50 penalty. 

(f) If more than eight beverages are ordered, there is an additional charge of $1.00 each for the first five 

and $0.85 for each one beyond that. 

(g) Type 1 desserts are $1.50 each and type 2 desserts are $1.25 each. If diners order less than four desserts 

of either type, there is no credit for the unordered dessert. For instance, if a party of eight decides on 6 

desserts of type 1 and only 2 desserts of type 2, they are charged $3.00 extra for the two extra type 1 

desserts. (If you are going to say that is how the cookie crumbles, don't say it.) 

The Glut would like a program that computes and prints a total amount to be billed for each party of eight. 

Input (for each party) consists of eight lines. Each line contains the name (up to 15 characters) under 

which the reservation was made (RESERV), the type of entree (ENTREE), recorded as 1, 2, or 3, the 

number of beverages (NUMBEV), and the type of dessert, indicated as 1or2. For each party, the program 

is to print five output lines: The name, total surcharge for entrees, total surcharge for beverages, total 

surcharge for desserts, and the total amount of the bill. Each run may contain any number of input sets 

(i.e., dinner parties). Leave a blank line between output sets and select your own method of signalling the 

end of the run. 

10. Write a program that computes and prints a date (month/day/year) given a starting date and an elapsed 

time period. That is, each input set consists of six integer values: Starting month (MSTART, starting day 

(DSTART), starting year (YSTART), number of elapsed months (MLAPSE), number of elapsed days 

(DLAPSE)and number of elapsed years (YLAPSE). These are used to compute a final month (FMONTH), 

final day (FDAY) and final year (FYEAR). Each input set produces five lines of output. For instance, 

starting values of 3, 17, and 1981 (month, day, and year) and elapsed values of 6, 10, and 4 (months, 

days and years) will give the following output: 

STARTING DA TE: 
ELAPSED TIME: 

FINAL DATE: 

6 
10 
4 

3/17/81 
MONTHS 
DAYS 
YEARS 

9/27/85 

Leave a blank line between output sets and end the run with a signal of your own choice. The following 

assumptions apply to this program: 

(a) All dates will be in the 20th century. 

(b) MLAPSE will never exceed 12, DLAPSE will never exceed 31, and YLAPSE always will be sized so as 

not to violate (a). 
(c) All starting dates will be legal (properly entered). 

( d) All time lapses will be forward. (Final date will be later than initial date.) 

11. This is a slightly more involved version of Problem 10. Specifically, we shall not make assumption (c). The 

only thing we can say about the six input values is that they always will be numbers. Since assumptions (a) 

and (b) are still being made, this program needs to check for errors in all six input values. That is, it should 

recognize and reject an illegal starting date. In addition, it should recognize and reject values ofMLAPSE, 
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DI.APSE or YI.APSE that violate assumption {b). In doing this, make sure that the program is able to recover from the error (after printing an appropriate error message) by going on to the next set of input values. 

12. This is a modified version of Problem 11 in which we complicate things a little more by removing assumption (b). Thus, an elapsed time period of 0 years, 14 months and 39 days, for example, now is acceptable. 

13. Here is one more modification, a little more involved than Problem 12. For this version, we remove assumption (a), leaving only assumption {d). (The more adventurous may remove assumption {d) as well.) 

14. Write a sequence of FORTRAN statements that specifies each of the CASE constructs described below. You may use either the ELSE IF or computed GO TO approaches: 
(a) "Define real variables X, Y, z and integer variable MV." 

{b) 

"Read X and Y." 
"Set MV in accordance with X and Y: 

X less than or equal to Y: MV = 1; 
X greater than Y but not greater than 2Y: MV = 2; 
X greater than 2Y but not greater than 3Y: MV = 3; 
X greater than 3Y: MV = 4." 

caseMV of 
easel: 

"SetZ 
case2: 

"Setz 
case3 

"Setz 
case4: 

"Set Z 
endcase 

= X." 

= x + SQRT(Y). " 

=X + Y." 

=X + 2Y. 

Read INC 

Setc:::VL based on INC: 

DIV= 3.5% DIV= 4% DIV= 5% 

( c) "Define real variables X, Y and Z and integer variable CHC." 
"Set CHC in accordance with X, Y, and z: 

Z less than X and: 
z less than Y: CHC = 1; 
Z not less than Y but less than 2Y: CHC = 2; 
Z not less than 2Y: CHC = 3; 

Z equal to or greater than X and: 
Z not greater than Y: CHC = 4; 
Z greater than Y but not greater than 3Y: CHC = 5; 
Z greater than 3Y but less than 4Y: CHC = 6; 
Z not less than 4Y: CHC = 7." 

DIV= 6.5% DIV= 8.5% 
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E=O 
F=O 

(d) 

caseCHC of 
easel: 

case2: 

case3: 

case4: 

case5: 

case6: 

case7: 

case8: 

"Double the value of Z." 

"Reduce X's value by 3.2." 

"Double the value of Z." 

"Reduce X's value by 2.8." 

"Reset Z to 1.8 times its current value." 

"Add 1.9 to X's value." 

"Reset Z to 1.5 times its current value." 
"Add 1.5 to X's value." 
"Reset Y to 0.8 times its current value." 

"Leave everything the way it is." 

"Reset Z to 0. 96 times its current value." 
"Add 2.2 to Y's current value." 

"Replace z with X+2Y." 
endcase 

Read A, B, C, D 

Set NC according to A, B, C and D: 

A+B ~~}Nc=l; A+B:g }Nc=2; A+B 

-c} A+B - NC=4· 
=D ' 

3 
A+B 

<C} :>D NC=3; 

;~} NC=S 

All else: N C=6 

E=O 
F = A+B 

E = A+B 
F = (A+B)2 

E = A+B 
F =~ C+D E = 3 (A+B) 

F = A+B 

C+D 

6 

E = 28.4 
F = A+ B2 

c2+ D 

( e) Indicate the nesting level for each of the IF blocks when the construct in Part ( d) is implemented using 

the ELSE IF form. 

15. The Vital Signs Casualty Company insures motorists according to a schedule of basic rates which then are 

modified by the type of car (1, 2, or 3), the customer's occupational category (A, B, C, D, or E), and the 

customer's Scientific Client Profile. The latter is based on a special screening process that assigns a value of 

10, 31, or 77. (I don't know what these numbers mean, but Vital does.) Basic rates are as 



follows: 

Liability: 
Comprehensive: 
Medical: 
Collision: 

$20 for each $10,000 of coverage 
$ 5 for each $1,000 of coverage 
$15 for each $10,000 of coverage 
$150 fl.at rate for $100.00 deductible coverage 

These rates are adjusted as follows: 
Car Type 2: 5% discount on liability 
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Client profile 10: 7% discount on liability 

CarType3: 
10% discount on comprehensive 
8% discount on liability 

4% discount on comprehensive 
10% discount on medical 

11 % discount on comprehensive 
5% discount on liability 

Client profile 77: 15% surcharge on liability Occupational category A: 

Occupational category B: 
Occupational category D: 

Occupational category E: 

2% discount on comprehensive 
6% discount on liability 
2% surcharge on liability 
2% surcharge on comprehensive 
4 % surcharge on liability 
3% discount on comprehensive 

20% surcharge on medical 

Each of the discounts or surcharges is applied independently. Thus, a client with a Profile of 10 and occupational category of A driving a type 3 car enjoys a 20% liability discount, 17% discount on comprehensive coverage, and a 10% medical discount as well. Oboy! 
Input for each client is a line containing the following items: Customer number (CNUM), a six digit integer; type of car (CARTYP), occupational category (OCCUP), profile (SCP), desired amount of liability coverage (LIABIL) in tens of thousands of dollars, desired medical coverage (MED) in tens of thousands of dollars, and the collison option (COLSN), recorded as 'YES' or 'NO' . For example, the following line 

103472 2 'B' 31 5 6 8 'YES' 

represents input for customer 103472 having a type 2 car, occupational category Band SCP of 31. This individual wants $50000 of liability coverage, $6000 of comprehensive coverage, $80000 of medical coverage, and collison insurance. 
Write a program that prints each input item on a separate line followed by a final output line showing the policy's total cost, rounded to the nearest dime. Separate each output set by a blank line and end the run with a customer number of zero. 

16. Write a program that reads sets of three real values A, B, and C. Each set is processed as follows: 
When A, B, and Care equal, D A (B+c) and E is zero; 
WhenAandBareequalandbotharelessthanC, D A•B••2 and E = C••2 
WhenAandCareequalandbotharegreaterthanC, D A••2•B••2 and E = B••2•C 
When A and Care equal and both differ from B, D B• •2 (A-C) and E = A/B 
When Band Care equal and both are less than A, D (A•C) I (A+B) and E = 1 
When B and C are equal and both are greater than A, D SQRT ( 2A) and E is 1 /D 
When A is less than B and B is less than C, D and E both are zero 
When A is less than Band Bis greater than C, D SQRT (A+B+c) and E = SQRT (D) 
WhenAislessthanCandCislessthanB, D = (A+B+2C) **l. 8 and E = LOG(D) 
When A is less than C and C is greater thanB, D = SQRT (A+B**2-C**2) and E = D/2 When anything else happens, D is 1 and E is 2. 

Print A, B, and Con one line, followed by D and Eon a second line. Leave a blank line between output sets and end the run with zero values for all three input variables. Here is some suggested input: 
A B c 
17.4 -2.2 4.1 

-6.8 0.0 28.7 
31.0 31.0 31.0 

449.5 -449.5 449.5 
217.8 46.4 -81.0 
67.8 386.9 67.8 
-7.1 -90.0 -108.4 

0.0 0.0 0.0 
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17. Here is a research question: Pick your favorite (or least favorite) airline and find out how many different 

ways there are to determine what it costs to fly between two particular cities. Then, having defined the 

information you need to make the computations, write a program that reads this information and 

computes (and prints) the appropriate cost. Some suggested journeys are listed below. A few are easier 

than others, but remember that all of them are subject to such considerations as class of flight, family 

plans, special excursions, children's rates, night flight or day flight, and so. Have a good trip: 

(a) Saint Louis to Kansas City 

(b) Philadelphia to Pittsburgh 

( c) New York to Chicago 

( d) New York to Miami 

( e) New York to Los Angeles 

(f) New York to London 

(g) Washington, D.C. to Chicago 

(1) Chicago to Honolulu 

(m) Chicago to London 
( n) Los Angeles to Acapulco 

(o) San Francisco to Las Vegas 

18. Here is another research question: Find out the rates charged by your telephone company. To keep it 

relatively simple, limit your scope to residential service. Then, define the necessary date items you will 

need as input. Based on those definitions, write a program that reads in a customer's identification, 

together with a list of desired options, and produces a rate for that customer. 



10 
Cyclic Operations 

The fundamental importance of the program loop is reflected in FORTRAN 77's exten­sive support of techniques and features that make it convenient to set up an endless variety of such loops. We shall explore these capabilities by reviewing the structured programming concepts within which such loops operate, after which we can extend our ability to build them through the use of additional language capabilities. 

Regardless of its length or complexity, a well-designed program loop in FORTRAN represents an implementation of one of two basic procedural components: the DO­
WHILE construction, or the DO-UNTIL construction. (The latter also is known as the 
REPEAT-UNTIL construction.) 

10.1.1 The DO-WHILE Construction 

This is the basic construction that we have been using all along to design sequences of operations that can repeat again and again under program control. The composition of the DO-WHILE construction (repeated for convenience in Figure 10.1) starts with a test to determine whether or not to perform the loop's operations. As long as the test's condi­tions are met, the program enters the loop and performs whatever processing is specified inside. Then, before that processing can be repeated, the condition is tested again to see if the outcome still is the same as it was for the previous test, thereby allowing the loop to be entered again. This continues until the condition changes, at which time the entire loop is bypassed and processing resumes with the statement just after the conclusion of the loop. Thus, it is quite possible for a program to reach a DO-WHILE construction, test the condition, find that it is not met, and not perform the loop even once. 

10.1.1.1 Direct Implementation of the Do-WHILE Component Perhaps the most puz­zling aspect of standard FORTRAN 77's scope is the absence of a direct representation for the DO-WHILE structure. The fundamental nature of the component and its impor­tance in the programming process makes it an obvious candidate for inclusion. Conse­quently, it is not surprising that HP FORTRAN 77 includes this important extension to the standard language. We have been using it all along, so it will not be necessary to carry our discussion here much beyond a concise restatement of the general form: 
DO WHILE (condition) 

statement 

statement 
END DO 

10.1 LOOPS AS 
STRUCTURAL 
COMPONENTS 
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previous activity 

DO WHILE condition 

cyclic activity 

next activity 

(b) 

"Previous activity." 

while this condition is true: 

'"Perform this activity." 

endwhile 
(a) 

FIGURE 19. 1 (a) Pseudocode Representation 

for the DO-WHILE Construct. (b) N-S diagram 

for the DO-WHILE Construct. 

The processing inside the loop is bracketed specifically by the DO WHILE and END DO 

statements. As long as the condition specified in the DO WHILE statement is met (that is, as 

long as its outcome is . TRUE. ), the activities inside the loop will be repeated. 

10.1.1.2 Implementation of DO-WHILE with the Logical IF Statement Since HP FOR­

TRAN 77 provides the DO WHILE. . . . END DO form as a direct implementation of the 

Do-WHILE structure, any alternative form is redundant (and likely to be more awkward 

as well). However, since standard FORTRAN 77 lacks a direct mode of expression for 

this fundamental component, we shall outline (briefly) two ways around this deficiency. 

This information will come in handy for those instances in which you may be obligated to 

prepare a FORTRAN program for use (i.e., for recompilation) on a standard FOR­

TRAN 77 system. 
The general approach here is to "duplicate" the test at the entrance to the loop by 

using a labeled logical IF statement. Because of the properties of this statement, it is 

necessary to set up the test so that an outcome of . TRUE. sends the program around the 

loop, and an outcome of . FALSE. allows entry. The activity inside the loop is described 

as before. Then, instead of relying on an automatic mechanism (arranged by the DO 

WHILE statement) to send the program back to the entry test, the return must be specified 

explicitly by means of a GO TO statement whose destination is the labeled IF statement 

just described: 

24 IF (condition) GO TO 99 
loop activity 

loop activity 
GOT024 

99 next activity 
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For instance, in many of our examples, we have been specifying the processing within a loop that goes around for each set of input. When some particular signal is detected, the loop is bypassed and we continue with the next part of the program. The following fragment 

DO WHILE ( CUSTNO . NE. 0) 
loop activity 

read data for the next customer 
END DO 

next activity 

The same type of process can be expressed as 
1 IF (CUSTNO. EQ. 0) GO TO 99 

loop activity 

read data for the next customer 
GOTOl 

9 9 next activity 

10.1.1.3 DO-WHILE Implementation with the Block IF Statement A more direct carry­over of the DO-WHILE's concept is possible with the block IF statement, since it allows us to specify any number of statements as a single conceptual activity. By using the IF ..... THEN form without an ELSE activity to go with it, i.e., 
n IF (condition) THEN 

action 1 

GOTOn 
ENDIF 
next statement 

we can build a DO-WlULE construct in which the loop is expressed as "action 1." Note that action 1 concludes with a GO TO statement that brings the program right back to the test. Thus, as long as the test's outcome is true, the action repeats. As soon as the outcome is false, the entire IF-block is bypassed, and the next thing the program does is whatever is specified in "next statement." The little example in the previous section, then, becomes 
1 IF (CUSTNO. NE. 0) THEN 

loop activity 

read data for the next customer 
GOTOl 
ENDIF 
next statement 

Some people follow a practice that calls for each DO-WHILE loop to start with a labeled CONTINUE statement and end with a GO TO to that statement. Since the CONTINUE statement "does" nothing (it merely indicates the forward progress of the program), its use standardizes the loop's boundaries and makes them more con-
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previous activity 

cyclic activity 

DO UNTIL condition 

'"Previous activity." 

do 

(b) 

'"Perform this activity over and over." 

until this condition is true. 
(a) 

FIGURE 10.2 (a) Pseudocode Represen­

tation of the REPEAT-UNTIL Construct. 

(b) N-S Diagram for the DO-UNTIL Construct. 

spicuous. As an example, we can use this convention to rewrite the previous fragment: 

1 CONTINUE 
IF (CUSTNO. NE. 0) THEN 

loop activity 

read the data for the next customer 
GOTOl 
END IF 
next statement 

10.1.2 The DO-UNTIL Construction 

This form specifies a loop in which we wish to guarantee that the processing inside that 

loop will be performed at least once. Accordingly, the controlling test is placed after the 

statements instead of in front of them, as it is in the DO-WHILE construct. Thus, each time 

the test's outcome is true, the program will go back and repeat the processing in the loop. 

This cycle continues until the outcome is false, at which time the program moves on. For 

this reason, some people refer to this structure as the REPEAT-UNTIL component. A 

diagram and pseudocode representing this structure are shown in Figure 10.2. 
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Various forms may be used to implement this construction in FORTRAN. The approach shown below illustrates one simple way to do it: 
previous statement 

MM first statement in the loop 
second statement 

statement 
statement 

final loop statement 
IF (condition) GO TOMM 

activity to be repeated 

controlling test 
next activity 

Example 10.1 Decibel and Associates, a public relations firm, is in the midst of a campaign to improve the image of Ratt and Sons Sewer Cleaning Company ("If your sludge won't budge, have a chat with 
Ratt. ")As part of the effort, a local sweepstake has been launched in which people are being urged to send in their name, address, and their favorite one-word name (8 letters or less) for sewage. On a certain date, Decibel will run a program that examines all the available data and selects the first fifty people whose last names have certain combinations of letters. (The actual combinations will not be made public until the day the program is run.) Each lucky winner will receive a handsome glossy photograph of B. W. Ratt 
(suitable for framing) and a certificate entitling the holder to free removal of the first fifty pounds of sludge when he or she arranges for such work with Ratt and Sons. 

Of course, the program to select the fifty fortunate folks must contain information that defines how the choices are to be made. The program will select anyone with a double letter in his or her last name (like Fetter, Frumpp, or Deedle). Data for each person entering the great drawing will be submitted to the program in no particular order and will consist of: 

1. Last name, first initial (up to 15 letters forthe last name, with the final letter followed bya comma, 
a blank, the first letter of the first name, and a period) 

2. Street number (up to 5 digits) 
3. Street name (up to 10 characters) 
4. Street type (e.g., ST, AVE, LN, RD) (up to 4 letters) 
5. City (up to 10 letters) 

6. State (two letters) 

7. Zipcode (5 numerical characters) 
8. Sludge word (up to eight letters) 

A typical input line is shown in Figure 10.3. For each winner, the program is to print the name and address, as well as the winner's number (for example, a number of 27 would indicate that the person is the 27th one selected.) 

'PIPPICK, M. ' '1 7 DEBRIS LN ANTIQUE IL 606060 'GRUNGE' 

FIGURE 10.3 Input Card Data for Ratt Image Campaign. 

Note from Figure 10.3 that the address is represented as a single character string that includes street number, street name, city, state, and zipcode. That is, the entire address is submitted inside a single set of apostrophes. Using the limits given in the previous list of the address components, and allowing for a blank between each part and the next one, we can determine that the address may be as long as 
5+1 +10+1+4+1+10+1+2+1+5 or41 characters. (Lengths for the name and sludge word already are defined.) • 

The basic component of the processing is a DO-UNTIL construction that examines each last name and continues to select and print winners until there are fifty. This is done as follows: starting at the 
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"Define NUMENT, NUMWIN, LTRIND, NAME, ADDRSS, WORD." 

"Initialize NUMENT, NUMWIN." 

"Print the headings." 
do 

"Read an entry." 
"Add 1 to NUMENT." 
"Initialize LTRIND." 
while there still are letters to examine in NAME and this entry has not been declared a winner: 

if 
a double letter has been found 

then 
"Add 1 to NUMWIN." 
"Print NUMWIN, data for the winner." 

else 
"Continue the search for a double letter." 

endif 
endwhile 

until there are 50 winners. 
"Stop." 

FIGURE 10.4 (a) Pseudocode Representation for Example 10.1. 

Define NUMENT, NUMWIN, LTRIND, 

NAME, ADDRSS, WORD 

Initialize NUMENT, NUMWIN 

Print Headings 

Read an entry 

Add 1 to NUMENT 

Initialize LTRIND 

DO WHILE there still are letters in NAME to examine 

~~ yes 

Add 1 to 
NUMWIN 

Look at 
next letter 

Print NUMWIN, 
data for winner 

DO UNTIL THERE ARE 50 WINNERS 

End FIGURE 10.4 (8) N-S Diagram for 

Example 10.1. 
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*********************************************************** * EXAMPLE 10.1 * *********************************************************** 
* 
* 
* 
* 
* 
* 

* 

NUMENT: 

NUMWIN: 

LTRIND: 

A COUNTER TO KEEP TRACK OF THE TOTAL NO. 
OF ENTRIES 
A COUNTER KEEPING TRACK OF THE NO. 
OF WINNERS 

* 
* 
* 
* COUNTER THAT KEEPS TRACK OF THE LETTER IN * 

IN THE LAST NAME THAT IS CURRENTLY BEING * 
COMPARED WITH ITS NEIGHBOR. * 

*********************************************************** PROGRAM 
IMPLICIT 
INTEGER*2 
CHARACTER 
PARAMETER 

NUMENT = 
NUMWIN = 
PRINT *' 
PRINT *' 
PRINT *' 
PRINT *' 
PRINT *' 

0 
0 

EX1001 
NONE 
NUMENT,NUMWIN,LTRIND 
NAME*19,ADDRSS*41,WORD*8,COMMA*1 
(COMMA=',') 

'RATT AND SONS SUPER SWEEPSTAKES' 

'WINNER NO.','NAME','ADDRESS' 

'ENTER THE DATA FOR THE FIRST INDIVIDUAL' 

DO WHILE (NUMWIN .LT. 50) 
PRINT *, 'SUBMIT INPUT DATA FOR AN ENTRANT' 
READ *, NAME, ADDRESS, WORD 
NUMENT = NUMENT + 1 
LTRIND = 1 
DO WHILE (NAME(LTRIND:LTRIND) .NE. COMMA) 
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IF (NAME(LTRIND:LTRIND) .EQ. NAME(LTRIND+1:LTRIND+1)) THEN NUMWIN ~ NUMWIN+1 
PRINT *, NUMWIN, NAME, ADDRESS 
NAME(LTRIND:LTRIND) = COMMA 

ELSE 
LTRIND = LTRIND+1 

END DO 
END DO 

PRINT *, 
PRINT*, 'END OF RUN. NORMAL TERMINATION.' 
STOP 
END 

FIGURE 10.5 FORTRAN Statements for Example 10.1. 

beginning of the name, each letter is compared with the one following it. As soon as a match is found, that person is identified and processed as a winner, and the program goes on to the next entry, or it finishes if it has found fifty. If no match is found, the program continues to move through the name until it reaches the comma afterthe last letter, at which point it starts over with the next person's data. For this version of the program, we shall assume that Decibel and Associates has done a good job, so that there are enough entries to guarantee that at least 50 winners will be found long before we run out of data. The flowchart and pseudocode for the program are given in Figure 10.4 and the program itself is in Figure 10.5. 
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10.2 AUTO­
MATIC 

PROGRAM 
LOOPS: 
THE DO 

STATEMENT 

CYCLIC OPERATIONS 

Many times the control of a loop needs to be based on a certain number of repetitions 

instead of some other type of event. This can be set up easily enough by initializing a 

counter and using it to control the cycles. For instance, the loop shown below, 

INTEGER*2 COUNT 

COUNT = 1 
1 O statement 

statement 
COUNT = COUNT+l 

action 1 

IF (COUNT. LE. 36) GO TO 10 

next activity 

is constructed so that "actionl" is processed 36 times. When "next activity" is reached, 

the control variable (COUNT) will have a value of 37. Note that this is basically a 

DO-UNTIL construct with a counter's value as the controlling event. 
HP FORTRAN 77 provides a convenient and versatile way to specify loops in which 

the cycles are controlled automatically. This mechanism is called a DO loop, and its 

general form can be illustrated by automating the little loop we set up earlier: 

INTEGER*2 

DOCOUNT=l, 36 
action 1 

END DO 
next activity 

COUNT 

DO loop ( actionl performed 36 times) 

The corresponding flow diagram and pseudocode are shown in Figure 10.6. 

As the example implies, control of the loop is concentrated in the DO statement with 

which the loop begins. Each part of the statement provides specific information that helps 

define exactly how such control is to be exercised. This is seen in the general statement 

given below: 

DO index = sv, iv, incr 

The statement's parts have the following meanings: 

1. index (COUNT in our example) is the variable used to keep track of the cycles 

through the loop. In addition, it is available for a variety of uses inside the loop, as long as 

such usage does not affect its value. The place where this value changes (and the only 

place we want it to change) is within the DO statement, as part of the cycle's control 

mechanism. This is called the index or DO-variable. 

2. sv is the starting value to which the index is set just before the loop is processed for 

the first time. Although sv is 1 in our example, it can be any value that suits the program's 

purpose. 

3. lv is the limiting value that determines when the repetitions should stop. If the 

index has not gotten to be larger than lv, then action 1 is performed. Otherwise, the loop is 

bypassed and processing continues with "next activity." In our example, iv is 36, so that 

the loop continues to cycle as long as the index (COUNT) is no greater than 3 6. 
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"Previous activity." 
do from starting value to limiting value by increment: 

"Perform this activity over and over." 
enddo FIGURE 10.6 A) Pseudocode Representation of a DO Loop. 

previous activity 

i~ DO index = sv to Iv by incr 

cyclic activity 

next activity 
FIGURE 10.6 (b) N-S Diagram for a 
DO Loop. 

4. incr specifies the amount that is added automatically to index after each cycle. Note that there is no incr specified in our example. When this information is absent, FORTRAN uses a default value of 1, so that the DO statement in our example behaves just as if we had written 

DO 10 COUNT=l, 36, 1 

incr is the only item that can be omitted from a DO statement. All the other specifications (label, index, sv, and Iv) always must be there. 
The extent of the loop (i.e., the number of statements that comprise the loop's activities) is set by the END DO statement. 

This form is not available in standard FORTRAN 77. Instead, a loop's initial DO statement includes an additional specifier: 
DO label index = sv, Iv, incr 

label refers to a label that must be attached to the loop's concluding statement. This is the way FORTRAN "knows" how far the loop extends, i.e., the range of the loop. 
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Thus, our structural example, rewritten in standard form, would look like this: 

INTEGER*2 

DO 10 COUNT=l, 36 
action 1 

COUNT 

10 Loop's concluding statement 
next statement 

Although FORTRAN allows the programmer to conclude this type of DO loop with 

various types of statements, good practitioners end all such loops in a consistent way, so 

that their structure is standardized and, therefore, easily seen. The most common 

convention in this regard is to conclude every DO loop with a CONTINUE statement. 

Accordingly, that statement will have the same label as specified in the label part of the DO 

statement with which the loop starts. 

Example 10.2 One of the most common uses for DO loops is the processing of arrays such that some 

activity is performed on each array element in turn. In this example we have a one-dimensional array ARl 

consisting of 30 integers, and we are required to compute and print a 30-element array AR2 in which each 

element is the sum of the corresponding element in ARl and the two elements following it. For instance, 

AR2 (1) 's value would be computed asARl (1) + ARl (2) + ARl (3); AR2 (7) 's value would be 

computed as ARl ( 7) + ARl ( 8) + ARl ( 9) , and so on. Elements at the end of the array would be 

computed by using ARl's elements in a "wraparound" manner. That is, AR2 (29) is computed as 

ARl (29) + ARl (30) + ARl (1) andAR2 (30) iscomputedasARl (30) + ARl (1) + ARl (2). 

Both ARl and AR2 are to be printed in order, five elements per line. ARl's 30 elements are available as 

input, in proper sequence. 
Processing for the program can be divided into four major parts: 

1 . A simple READ statement to bring in ARl; 

2. A DO loop to print it; 

3. A second DO loop to produce AR2; 

4. A final DO loop to print AR2, this being similar to the loop for printing ARl. 

We shall turn our initial attention to the second DO loop, noting that the loop's index offers us a convenient 

way to keep track of the element currently being processed. Thus, if some variable called INDX is 

designated for this purpose, we can use INDX as a subscript, thereby identifying AR2 ( INDX) as the 

particular element of interest during a given cycle through the loop. The corresponding element in ARl 

would be ARl ( INDX) , and the next two, then, would be ARl ( INDX+ 1) and ARl ( INDX+2) . As the value 

in INDX changes with each cycle, the reference to an array element automatically changes with it. We can 

see this clearly by setting up the loop for computing AR2: 

DO INDX=l, 30, 1 
AR2(INDX) = ARl(INDX) + ARl(INDX+l) + AR1(INDX+2) 

END DO 

As the DO statement indicates, INDXwill be started at a value of 1 so that, during the first cycle, AR2 ( 1) is 

computed as ARl ( 1) +ARl ( 2) +ARl ( 3) . Then, INDX is increased to 2 (since incr is 1) and the process 

is repeated, this time with AR2 ( 2) being computed as ARl ( 2) +ARl ( 3) + ARl ( 4) . The cycle continues 

this way, with INDX increasing by 1 each time. But wait: all is not well! When INDX is 28, the loop 

repeats, with AR2 (28) being computed as ARl (28) +ARl (29) +ARl (30). Fine. Now, INDX is in­

creased to 29, which still does not exceed 30, so another cycle begins. This time, the program attempts to 

use ARl (29), ARl (30), and ARl (31). This cannot happen, since there is noARl (31). Consequently, 

this loop, as written, will not work for all 30 sets of computations. 

One way to get around this difficulty is to use a DO loop for everything that works, and then take care 

of the looseendsseparately. lnthiscase, we could computeAR2's first 28elements, handlingAR2 (29) 

and AR2 (30) as individual cases: 
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DO INDX=l, 28, 1 
AR2(INDX) = ARI(INDX)+ARI(INDX+I)+ARI(INDX+2) 

END DO 
AR2(29) = AR1(29)+AR1(30)+ARI(I) 
AR2(30) = AR1(30)+ARI(I)+ARI(2) 

This will work, but it is a poor way to handle the situation, even one as simple as this. Once such processes 
start getting more complex, the loose ends multiply and become tangled in each other, and the simple 
program structure that we are working to preserve goes out the window. This approach was shown 
simply as a starting point, so that its awkwardness can be noted and its use discouraged. 

A somewhat less cumbersome approach is to include the computation of all 30 elements in a single 
loop. The two exceptions are singled out for special treatment, but they still are within that loop: 

DO INDX= I, 30, I 
IF (INDX. LT. 29) THEN 

AR2(INDX) = ARI(INDX)+ARI(INDX+I)+ARI(INDX+2) 
ELSE IF (INDX. EQ. 30) THEN AR2 (INDX) = ARI (30) +ARI (I) +ARl (2) 

ELSE 
AR2(INDX) = AR1(29)+ARI(30)+ARI(I) 

END IF 
END DO 

As indicated earlier, this construction is somewhat more preferable to the previous version. However, it is 
still better to find a way of handling all the elements consistently in a single loop, as long as the resulting 
program segment does not become so complicated that the clarity suffers. In this case, we can identify 
such an approach. By taking advantage of the MOD built-in function, it is possible to develop a fairly simple 
expression which will automatically adjust a number when that number goes over30. In other words, the 
expression must produce the following type of result: 

if number is 

1 
2 

29 
30 
31 
32 

expression produces 

1 
2 

29 
30 

1 
2 

The required expression can be constructed simply by applying the MOD function with a divisor of 30 (the 
size of the array) to 1 less than the number. Then, a final adjustment is provided by adding 1 to the returned 
value of the function. Thus, if k is the number needing adjustment, the mechanism that will perform that 
adjustment is MOD (k-1, 30) +l. For instance, ifk happens to be 26, MOD (26-I, 30) is 25, and the final 
addition of 1 brings it to 26. Similarly, if k is 3I, MOD (31-I, 30) is o, and the addition of I produces the 
desired result, l. 

Now, we can apply this mechanism directly to the problem at hand: if the number is INDX, the 
adjustment is MOD ( INDX-I, 30) + l. Since INDX never goes above 30, any adjustment to INDX pro­
duces the same value as INDX. (For instance, MOD (27-I, 30) +I is still 27.) Consequently, INDX needs 
no adjustment. However, when the number is INDX+I, the result can be as high as 31. Consequently, 
INDX+ 1 needs adjustment, and when we apply the expression to it, we get MOD (INDEX+ I -I, 30) +I, 
which simplifies to MOD (INDX, 30) +I. Similarly, whenweapplytheadjustmentto INDX+2, the result is 
MOD ( INDX+2-1, 30) + 1, which simplifies to MOD ( INDX+ I, 30) +I. Using these developments, we can 
rewrite the loop more concisely: 

DO INDX=I, 30, I 
AR2(INDX) = ARI(INDX) + ARI(MOD(INDX,30)+I) 

1 + ARI(MOD(INDX+I,30)+I) 
END DO 
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The loop that will be used to print ARl illustrates another aspect of the DO statement's versatility. Since 

each PRINT statement starts a new line of output, we shall build our loop around a statement that lists five 

elements, and the loop will repeat that statement six times. To make sure we get the right elements in 

proper sequence, they will be listed as ARl ( INDX) , ARl ( INDX+ 1) , ARl ( INDX+2) , ARl ( INDX+3) , and 

ARl ( INDX+4) . To keep the control mechanism consistent with the output, the increment in our loop will be 

5 rather than l. Thus, the first time through the loop, INDX will be 1 and the five elements to be printed will 

be ARl ( 1) through ARl ( 5) . Then, if we increase INDX by 5, its value will be 6 when the loop is processed 

for the second time. Accordingly, the PRINT statement will use ARl ( 6) , 

"Define AR1(30), AR2(30), and INDX." 
"Read ARI." 
"Print ARI." 
do for each element in array ARI: 

"Assign to AR2(i) the sum of the element in ARl(i) and the next two elements in sequence. ARI 

wraps around, so that ARI(l) follows AR1(30)." 
enddo 
"Print AR2." 
"Stop." 
"End." 

FIGURE 10.7 (a) Pseudocode Representation of Example 10.2. 

Define ARI (30), AR2 (30), INDX 

Read ARI 

Print ARI 

~ DO For each ARI element 

AR2 (i)..-ARI (i) +ARI (it I) +ARI ( i+2) 

(for i = 29, AR2 (i) 4----ARI (i) + ARI (i +I) + ARI (I); 

for i = 30, AR2 (i)+-ARI (i) +ARI (I)+ ARI (2) 

Print AR2 

End FIGURE 10.7 (b) N-S Diagram for 

Example 10.2. 
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ARl (6+1), etc. through ARl (6+4), or ARl (10): 

DO INDX=l, 30, 5 
PRINT *, ARl ( INDX) , ARl ( INDX+ 1) , ARl ( INDX+2) , 

1 AR1(INDX+3), AR1(INDX+4) 
END DO 

Note that when the loop is ready for a sixth cycle, INDX is at 26. Since this does not exceed the limiting 
value (30), the PRINT statement will be executed, producing the last five elements of ARl. Then, INDX 
will be increased by 5, making it31. Since this exceeds 30, the loop will be bypassed. Incidentally, it is all 
right to use the same variable as an index for more than one DO loop as long as the loops are not nested. 
(We shall be dealing with nested loops a little later in the chapter.) 

Now, having developed a little experience with the DO loop and its properties, we can put the pieces 
together to construct the entire program. Its diagram and pseudocode are given in Figure 10. 7 and the 
statements are listed in Figure 10.8. 

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *·* * * * c EXAMPLE 10.2 * C************************************************************ PROGRAM 
IMPLICIT 
REAL*4 
INTEGER*2 

EX1002 
NONE 
AR 1 ( 3 0) , AR2 ( 3 0) 
INDX 

PRINT*, 'ENTER A SET OF VALUES FOR ARRAY AR1' 
READ *, AR1 
PRINT*, 'INPUT ARRAY AR1:' 
DO INDX=1,30,5 

PRINT*, AR1 (INDX), AR1(INDX+1), AR1(INDX+2), 
1 AR1(INDX+3), AR1(INDX+4) 

END DO 
PRINT *, 

DO INDX=1,30 
AR2(INDX) = AR1(INDX) + AR1(MOD(INDX,30)+1) 

1 + AR1(MOD(INDX+1,30)+1) 
END DO 

DO INDX=1,30,5 
PRINT*, AR2(INDX), AR2(INDX+1), AR2(INDX+2), 

1 AR2(INDX+3), AR2(INDX+4) 
END DO 

PRINT*, 'END OF RUN. NORMAL TERMINATION.' 
STOP 
END 

FIGURE 10.8 FORTRAN Statements for Example 10.2. 

10.2. 1 Useful Techniques with DO Loops 

This section presents a number of constructions designed to illustrate the versatility of the 
DO loop. By exploring ways in which the control elements can be used to regulate a loop's 
cycles, we shall be able to design more and more intricate controls without complicating 
the programming. 
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10.2.1.1 Use of the Index in Loop Calculations Although the index variable may not be 
changed within the loop, its value certainly is available for use. An illustration of such 
usage is shown below. 

Example 10.3 One of the original factors that motivated the development of computers was the need 

for tables of values computed for certain mathematical functions. These were required for astronomy, 

navigation, commerce, and a variety of other uses. This type of data production still is requested 

frequently, and the DO loop is a convenient way to do such work. For this example, we shall generate a 

value Y using the formula 

y = 1 + K2 
4K 

A series of such values is to be computed for K = 1, 2, 3, ... , 50. The resulting output table is to contain 

50 lines, with each one showing a value of Kand the corresponding value of Y. 

This plan can be implemented easily by setting up a loop in which the index is used for the value of K. 

If we initialize Y to zero before entering the loop for the first time, and then add 1 +index**2 / 
( 4* index) to Y each time through the loop, the value of Y during any cycle will be the value we want in 

the table. Thus, with K (the index) and Y being directly available, it is a simple matter to include a PRINT 

statement inside the loop, so that each cycle will produce the required values, and it will print an output 

"Define Y,K." 
"Print the headings." 
"Initialize Y to zero." 
do for k = 1 to 50 by 1 : 

"Increase the current value in Y by 1 
"Print K,Y." 

enddo 
"Stop." 

+ K**2/(4*K)." 

FIGURE 10.9 (a) Pseudocode Representation for Example 
10.3. 

Define Y,K 

Print headings 

Y+----0 

!~ DOforK=ltoSOBYI 

Y+-- Y+ 1 +K2 

4K 

Print K,Y 

---

End FIGURE 10.9 (b) N-S Diagram for Ex­
ample 10.3. 
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C****************************************************** c EXAMPLE 10.3 * C****************************************************** 
C THIS PROGRAM GENERATES A TABLE OF VALUES FOR Y AS * c A FUNCTION OF K FOR K=1,2,3, ... so, WHERE y IS THE * 
C SUM, FOR I=1 THROUGH K, OF THE QUANTITY * 
C 1 + I**2/(4I) * 
C EACH LINE OF OUTPUT SHOWS K AND THE CORRESPONDING * 
C VALUE OF Y. * 
C****************************************************** 

PROGRAM 
IMPLICIT 
REAL*4 
INTEGER*2 

y = 0.0 
PRINT *, 

1 
PRINT *, 
PRINT *, 

EX1003 
NONE 
Y,REALK 
K 

'TABLE OF Y VALUES: Y=SUM OF I'S FROM ' 
'1 TOK OF (1+I**2/(4*I))' 

K y 

C******************************************************** 
C NOW THAT Y IS INITIALIZED AND THE TABLE HEADINGS ARE * 
C PRINTED, THE LOOP WILL BE USED TO PRODUCE THE ACTUAL * 
C TABLE. REALK IS A TEMPORARY VARIABLE USED TO EXPRESS * 
C K AS A REAL NUMBER. THIS IS A LITTLE MORE CONVENIENT * 
C THAN HAVING TO CONVERT K TO REAL AS PART OF THE WORK * 
C OF COMPUTING Y. * C******************************************************** 

DO K=1,50 
REALK = K 
Y=Y + (1.0+REALK*REALK/(4.0*REALK)) 
PRINT *, K,Y 

END DO 

PRINT *, 
PRINT*, 'END OF RUN. NORMAL TERMINATION.' 
STOP 
END 

FIGURE 10.10 FORTRAN Statements for Example 10.3. 

line as part of the same process A flow diagram and pseudocode for this design are shown in Figure 10.9 
and the program itself is seen in Figure 10.10. Figure 10.11 shows part of the resulting output, so that the 
action of the loop is clearly seen 

10.2.1.2 Use of Variables as Loop Controllers The number of times a loop is repeated in 
a given program need not be fixed as a permanent part of that program. Instead, sv, Iv, 
and/or incr may vary from one run to another. In fact, any or all of these may vary from 
one usage to another in the same run. This can be done either by reading the values as 
input or by computing them earlier in the program. Regardless of where the specifica-
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TABLE OF Y VALUES: Y = SUM OF I'S FROM 1 TOK OF (1 +I **2/(4* I)) 
K y 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

48 
49 
50 

END OF RUN. NORMAL TERMINATION. 

FIGURE 10.11 Portion of Output for Example 10.4. 

Define variables Y,K, SRTV AL, LIMVAL 

Print headings 

Read SRTV AL, LIMVAL 

-

0.1250000E 01 
0.2750000E 01 
0.4500000E 01 
0.6500000E 01 
0.8750000E 01 
O. l 125000E 02 
0.1400000E 02 
O. l 700000E 02 
0.2025000E 02 
0.2375000E 02 
0.2750000E 02 

0.3420000E 03 
0.3552500E 03 
0.3687500E 03 

no 
--------- ___ UMV AL>S~~---------;.-· --~ 

yes 

Y+-0 

~ DOK= SRTVAL to 
LIMVAL by 1 

Print error message K2 
y.-y+ l + 4K 

Print K,Y 

Print terminating message 

End 

(a) 

FIGURE 10.12 (a) N-S diagram for Example 10.4. 

"Define Y, K, SRTVAL, LIMVAL." 
"Print the headings." 
"Read SRTVAL, LIMVAL." 
if 

LIMVAL is greater than SRTV AL 
then 

"Initialize Y to zero." 
do from K = SRTVAL to LIMVAL by I: 

Y's current value by 1 + K••2/(4*K)." 

K,Y." 
enddo 
"Print terminating message." 

else 
"Print an error message." 

endif 
"Stop." 

(b) 

(b) Pseudocode Representation for Example 10.4. 
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tions come from or how they are acquired, their role as loop controllers is the same as that 

for constant values. Thus, it is perfectly legal to write a DO statement such as 

DO COUNT= SVAL, LIMIT, AMT 

as long as SV AL, LIMIT and AMT have been declared properly and contain appropriate 

values. 

Example 10.4 We shall generalize the previous example by redesigning it so that sv and Iv are 

variables submitted as input. As seen in Figures 10.12 and 10.13, the revision itself is simple. However, 

the use of variable controllers does introduce an additional concern. The fact that the starting value, 

limiting value and increment can be variables means that their values will not be "known" to the program 

until the instant they actually are used during the run. Consequently, we can no longer leave it to 

FORTRAN to check whether the control values make any sense. For instance, if we write a statement like 

DO INDX = 10, 5, 1 

the control values are rightthere and FORTRAN "sees" that the limiting value (5) is less than the starting 

value (10). (More about this in Section 10.2.1.6.) However, if the loop's controls are variables, FORTRAN 

has no choice but to assume that the programmer will make sure the values in those variables will be 

consistent when the program runs. 
This additional responsibility is reflected in this program (Figure 10.13) by the inclusion of compari­

sons among the control values. The test in this example is a simple one, its purpose being to emphasize 

the need for such checking. In other situations, it may be necessary to introduce more elaborate tests. Of 

course, the final decision as to what kind of testing is appropriate rests with the programmer. 

10.2.1.3 Mismatches Between the Limiting Value and Increment Because of the flexi­

bility provided by the controls in the DO statement, there is no reason to expect every 

situation to be one in which the index reaches an exact match with the limiting value. For 

instance, suppose we had an array of numerical values declared as 

REAL*4 XVAL (20) 

and we set up the following DO loop: 

DONXV = 1, 20, 3 
XVAL (NXV) = 3. 7 * XVAL (NXV) 

END DO 

there is no question that the loop will work; the question is, what will it do? This is no 

particular mystery as long as we retain the idea that the decision to repeat or bypass the 

loop is related to whether the index exceeds the limiting value. Applying that rule to this 

situation makes the loop's progress clear: starting with an NXV of 1, the loop calculates a 

new value for XV AL ( 1) . Then, NXV is increased by the specified increment (i.e., 3) 

resulting in a value of 4. Since the limiting value is not exceeded, the loop repeats, 

changing the value in XV AL ( 4) . NXV is increased to 7, and the loop repeats, as it 

continues to do with NXV at 1 O, 13, 16, and 19. After changing the value in XV AL ( 19) , 

NXV is increased (by 3) to 22. This time, the limiting value is exceeded and the loop is 

bypassed after having been processed seven times. Note thatXVAL (20) was not affected 

even though there is an XV AL ( 2 O) and even though the loop has a limiting value of 2 O. It 

just turned out that the combination of the starting value and increment made it impos­

sible for the program to produce an index value that was exactly equal to the limiting 

value. No crime in that. 
It is easy to predict exactly what will happen during such mismatches if we understand 

how FORTRAN handles a DO loop. This can be described in terms of a rule that governs 

FORTRAN's use of the loop's controls, namely, sv, Iv, and incr. When a program 
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C******************************************************** 
C EXAMPLE 10.4 * 
C******************************************************** 
C IN THIS REVISION OF EXAMLE X.3, THE LOOP'S STARTING * 
C VALUE (SRTVAL), LIMITING VALUE (LIMVAL) AND INCREMENT* 
C (INCR) ARE READ AS INPUT. * 
C******************************************************** 

1 

PROGRAM 
IMPLICIT 
REAL*4 
INTEGER*2 

PRINT *' 

PRINT *' 
PRINT *' 
PRINT *' 
PRINT *' 

, 
PRINT *' 

, 
PRINT *' 

EX1004 
NONE 
Y,REALK 
K,SRTVAL,LIMVAL 

'TABLE OF Y VALUES: Y=SUM OF I'S 
1 TO K OF (1+I**2/(4*I))' 

'STARTING VALUE FOR K:',SRTVAL 
'LIMITING VALUE FOR K:' ,LIMVAL 

K , , y 
' 

FROM 

'SUBMIT VALUES FOR SRTVAL AND LIMVAL' 
READ *' SRTVAL,LIMVAL 

C---BEFORE WE START ACTUAL PROCESSING, WE CHECK TO MAKE SURE 
C---THAT THE LOOP'S CONTROL VALUES ARE CONSISTENT. 

IF(LIMVAL .GT. SRTVAL) THEN 
y = 0.0 
DOK = SRTVAL,LIMVAL,1 

REALK = K 
Y = Y+(1 .O+REALK*REALK/(4.0*REALK)) 
PRINT *, K,Y 

END DO 
PRINT *, 
PRINT*, 'END OF RUN. NORMAL TERMINATION.' 

ELSE 
PRINT *, 'IMPROPER STARTING VALUE AND/OR INCREMENT' 

END IF 

STOP 
END 

FIGURE 10.13 FORTRAN Statements for Example 10.4. 

reaches a DO statement, FORTRAN computes a number that indicates (to it) how many 
times the loop will repeat. This number, called the iteration count, is determined by the 
following formula: 

iteration count = MAX (INT ((Iv - sv + incr)/incr) , 0) 

MAX and INT describe the actions performed by the built-in functions with these names 
(see Chapter 6). Thus, the DO statement in the previous illustration, i.e., 

DONXV = 1, 20, 3 



produces an iteration count of 

MAX(INT( (20-1+3) /3), 0) 
= MAX(INT(22/3),0) 

MAX(7,0) 
7 
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This count is set up and maintained outside of the programmer's direct control. Then, 
each time the loop is processed, the count is decreased by 1. The loop repeats until the 
count reaches zero, at which point the loop is bypassed. Some of the iteration limits can be 
summarized as follows: 

1. If the iteration count is zero to begin with, the loop is skipped. 

2. If the loop index is declared as INTEGER* 2, the maximum possible number of 
trips through the loop is 65536 (i.e., 216). For instance, if NTR is a loop index 
declared as a 16-bit integer, we could write 

DO 12 NTR = -32768, 32767 

3. If the loop index is declared as INTEGER*4, the maximum possible number of 
trips through the loop is 232 • To illustrate, suppose CYCLES is declared as 
INTEGER* 4. The following statement 

DO 14 CYCLES = -2**31, 2**31-1 

sets up a loop with that maximum number. 

10.2.1.4 Use of an Index Outside Its loop Once a program is outside of a DO loop, the 
index (i.e., the DO-variable) that was used by that particular loop retains the last value that 
it had. In the case of the previous example, that means that after the seventh time through 
the loop, when the index (NXV) was at 19, there was an attempt at another repetition, 
with NXV at 22. When that attempt failed and the loop was bypassed, NXV was left with a 
value of 22. 

The same thing is true when there is an exact match between the DO-variable and 
limiting value. For instance, suppose the following loop 

DO NTIMES = 1, 30 
action 

END DO 
PRINT * , NTIMES 

contained nothing inside it that would interrupt the 30 cycles. Consequently, the output 
statement would produce a value of 31 because after the 30th time through, there would 
be another (thwarted) attempt with NT IMES set at 31. The fact that FORTRAN turns the 
31st attempt aside is seen when we introduce a small addition to the sequence of 
statements: 

DO TIMES=l, 30 
MYVAL = NTIMES 
action 

END DO 
PRINT*, MYVAL, NTIMES 

The two values printed will be 3 o and 31. 
Of course, if something happens inside a loop that forces the program to break out of 

the loop before the predefined number of cycles has been completed, the DO-variable will 
show the value it had when entering the cycle that was interrupted. 
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Example 10.5 Suppose we read in a value Y, followed by a succession of values forx. Let us say that 
there is an endless supply of X's. We wish to add the x's together, as they come in, accumulating the sum 
in a variable named TOTALX. This will continue until TOTALX reaches a value that is at least as large as Y. 
When that happens (and we guarantee it to happen) the program is to print Y, TOTALX and NUMX, the 
number of values it took to achieve the result. 

We can set this up as a DO loop with a limiting value that we feel is so high that, for all practical 
purposes, we are saying, "keep on doing this, forever if necessary, until something happens in the loop to 
stop the repetitions." NUMX will be the index, so that we can take advantage of the DO loop's automatic 
counting mechanism. The program is shown in Figure 10.14. 

10.2.1.5 Negative Increments FORTRAN 77 accepts DO statements such as 

DONlJM = 20, 1, -1 

so that it is equally convenient to construct loops in which the index becomes smaller with 
each cycle. Here again, it is up to the programmer to make sure that the starting value is 
greater than the limiting value when the increment is negative. Note that the number of 
cycles formed by the program still is determined by the same rule described for a positive 

********************************************************* 
* EXAMPLE 10.5 * ********************************************************* 
* THIS PROGRAM READS A VALUE Y, FOLLOWED BY AN ENDLESS * 
* SUPPLY OF VALUES FOR X. A SUM (TOTALX) OF ALL THE * 
* X'S IS ACCUMULATED UNTIL THAT SUM REACHES OR EXCEEDS * 
* Y, AT WHICH POINT THE PROGRAM PRINTS Y, TOTALX, AND * 
* NUMX, THE NUMBER OF X'S REQUIRED TO DO THIS. * 
********************************************************* 

PROGRAM 
IMPLICIT 
REAL*4 
INTEGER*4 

TOTALX = 0.0 

EX1005 
NONE 
Y,X,TOTALX 
NUMX 

PRINT *, 'ENTER A VALUE FOR Y' 
READ *, Y 

DO NUMX = 1,100000 
PRINT *, 'ENTER A VALUE FOR X' 
READ *, X 
TOTALX = TOTALX + X 
IF (TOTALX .GE. Y) GO TO 99 

END DO 

99 PRINT*, 'Y = ',Y 
PRINT*, 'THE SUM OF THE X VALUES= ',TOTALX 
PRINT*, 'THE NO. OF X'S IN TOTALX = ',NUMX 
STOP 

END 
FIGURE 10.14 FORTRAN Statements for Example 10.5. 
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increment. For example, suppose we had the following loop: 

DOK = 20, 3, -6 
action 

END DO 

In this loop, sv is 20, Iv is 3, and incr is -6. Accordingly, the iteration count will be 

computed as 

MAX(INT( (3-20-6) /-6), 0) 

= MAX(INT(-23/-6),0) 
MAX(3,0) 

= 3 

If we follow the loop's progress, then it is clear that this iteration count is what we would 

expect it to be. The first time through the loop, K is 20. Adding the increment (-6) then 

reduces K to 14 and the iteration count drops from 3 to 2. After the second cycle, K 

becomes 8 (i.e., 14-6) and the iteration count is 1. Once the third cycle is completed, K is 

decreased to 2, and the iteration count is zero, so that further cycles are avoided. Thus, if 

we were to print K's value just beyond statement 12, it would appear as 2. 

Example 10.6 To illustrate the use of a negative increment, we shall design a program that reads 

character strings (words) and inserts them in their proper places in an alphabetized list (array) of words. For 

simplicity, we shall assume that there is an initial list available. That is, we shall bring in this list before the 

first "new word" is readand processed. Our input setup, then, will require two signals: one to indicate the 

end of the original list, and the other to indicate the end of the list of new words. The following additional 

assumptions will be made: 

1 . The longest word will contain ten letters. 

2. The original list may contain up to 50 words, and it is already in alphabetical order. The last word is 

followed by the four letters 'xxxx' . 

3. No more than 50 words will be added, but there will be at least one new word. The last word is 

followed by the four letters ' zzzz ' . 
4. There are no duplicate words either in the original list or the group of new words. 

The program will print the original list (and the number of words in it), followed by the newly enlarged list, 

along with its number. Figure 10.15 shows the flowchart and pseudocode, and Figure 10.16 shows the 

program's statements. 
This program also shows another example of the ability to break out of a DO loop before the 

prescribed number of cycles has been completed. Note that the loop which finds NEWWORD' s proper place 

in WDLIST has an unpredictable exit based on the outcome of a test inside the loop. This technique is 

useful in many different applications. 

10.2.1.6 Extreme Conditions in loop Controllers Since sv, 1 v, and incr may vary 

independently, it is altogether possible for conditions to develop in which the starting and 

limiting values come out to be identical. Consequently, it is useful to know what 

FORTRAN does when this happens. Here again, the matter is relatively straightforward 

if we compare the situation against FORTRAN 77's rule for computing the iteratfon 

count. To focus on the behavior of the loop, we shall look at an unrealistically simple 

example in which we assume that N and K have been declared earlier as integer variables: 

N = 1 
DOK=l,N 

action 
END DO 

(In an actual program, the limiting value (N in our example) is likely to be determined in a 
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to 

"Define NUMOLD,NUMNEW,NUMLST,INHERE,NMOV, 
WDLIST(IOO), and NEWWRD." 

"Initialize NUMOLD, NUMNEW and NUMLST to O." 
"Print the headings." 
"Initialize NUMOLD to l ." 
do 

"Read the next word into WDLIST(NUMOLD)." 
"Echo the word just read." 
"Add I to NUMOLD." 

until the word just read is 'XXXX'. 
"Decrease NUMOLD by I so as not to count the 'XXXX'." 
"Set NUMLST to NUMOLD." 
do 

"Read a new word into NEWWRD." 
"Add I to NUMNEW." 
"Initialize INHERE to I." 
do 

"Compare NEWWRD to WDLIST(INHERE)." 
"Add I to INHERE." 

until NEWWRD is alphabetically before WDLIST(INHERE) 
do for each WDLIST entry from the end of the list 

WDLIST(INHERE): 
"Shift an element in WDLIST one position further 

back in the WDLIST array." 
enddo 
"Place NEWWRD in the vacated element WDLIST(INHERE)." 

until the last new word has been processed ('ZZZZ')." 
"Print the final word list." FIGURE 10.15 (a) Pseudocode 
"Stop." for Example 10.6. 

more complicated way.) Our major concern, however, is with the result, namely, the fact 
that for this situation, the starting value and the limiting value are the same. Since incr is 1 
by default, the number of times that the loop will be performed is 

MAX (INT ( (1-1+1) /1), 0) 
= 1 

so that there will be one trip through the loop. The value ofK after statement 30 will be 2. 
Another, more extreme situation is shown below: 

N = 1 
DOL=5,N 

action 
END DO 
PRINT*, L 

Since sv is greater than Iv, the value of incr should be negative, and it is not. Following the 
same general rule that guided us earlier, we find that the resulting increment count is 

MAX (INT ( (1-5+1) /1), 0) 
MAX(-3,0) 
0 



FIGURE 10.15 (b) N-S Diagram Flowchart for 

Example 10.6. 
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Define NUMOLD, NUMNEW, NUMlST, INHERE, NMOV, WDLIST (1001), NEWWRD 

NUMOLD, NUMNEW, NUMLST .--- 0 

Print headings 

NUMOLD+--1 

Read the next word into WDLIST (NUMOLD) 

Echo the word just read 

NUMOLD +-- NUMOLD + I 

DO UNTIL WDLIST (NUMOLD) is 'XXXX' 

Decrease NUMOLD by I so as not to count 'XXXX' 

NUMLST +--NUMOLD 

Read a new word (NEWWRD) 

NUMNEW +--NUMNEW + I 

INHERE.--! 

COMPARE NEWWRD VS WDLIST (INHERE) 

INHERE +--INHERE + I 

DO UNTIL NEWWRD <WDLIST (INHERE) 

~Do for each WDLIST entry from end of list to WDLIST (INHERE) 

Shift WDLIST (i) to WDLIST (i+l) 

WDLIST (INHERE)4--- NEWWRD 

DO UNTIL NEWWRD = 'ZZZZ' 

Print final list 

End 

and this is exactly what FORTRAN 77 uses. In other words, it bypasses the loop 

completely, even before the first cycle. 

10.2.1. 7 Non-Integer Controller Values Now that we are acquainted with the general 

operation of a DO loop, we can turn our attention to the fact that there is even greater 

flexibility in the way we can specify the three control items. Besides being able to use 

constants or variables, any or all of the controls may be written as expressions. Further­

more, it is not necessary to restrict them to integers. Any legitimate integer, real or double 

precision expression (in accordance with the structural rules discussed in Chapters 5 and 

6) may be used. Similarly, the DO-variable may be integer, real, or double precision. 
The action of a loop under such controls is easily demonstrated by means of a little 

example. We return to the type of computations illustrated in Example 10.3. This time, 

however, the desired mathematical function involves fractional quantities, and the table 
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C******************************************************** c EXAMPLE 10.6 * C******************************************************** c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THIS PROGRAM READS A LIST OF NO MORE THAN 50 WORDS 
(WDLIST) IN ALPHABETICAL ORDER. THEN, IT READS A 
SUCCESSION OF NO MORE THAN 50 ADDITIONAL WORDS 
AND PLACES EACH OF THEM IN ITS PROPER ALPHABETICAL 
POSITION IN THE LIST. THE LAST WORD IN THE INITIAL 
LIST IS FOLLOWED BY 'XXXX' AND THE LAST WORD IN THE 
LIST OF NEW WORDS IS FOLLOWED BY 'ZZZZ'. 

WDLIST: THE ARRAY OF WORDS 
NEWWRD: A WORD TO BE INSERTED IN WDLIST 
NUMOLD: NO. OF WORDS IN ORIGINAL LIST 
NUMNEW: NO. OF NEWLY ADDED WORDS 
NUMLST: NO. OF WORDS IN THE ENLARGED LIST 
INHERE: POSITION IN WDLIST FOR A NEW WORD 
NMOV: A VARIABLE FOR USE AS AN INDEX 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* C******************************************************** 

PROGRAM 
IMPLICIT 
INTEGER*2 
CHARACTER 
PARAMETER 

NUMNEW = 0 
NUMLST = 0 

EX1006 
NONE 
NUMOLD,NUMNEW,NUMLST,INHERE,NMOV 
WDLIST(100)*10, NEWWRD*10, ENDOLD*4, ENDNEW*4 
(ENDOLD='XXXX',ENDNEW='ZZZZ') 

PRINT*, 'ORIGINAL LIST:' 
PRINT *, ' 

C--FIRST, WE BUILD THE INITIAL LIST. SINCE WE KNOW THAT IT WILL 
C--CONTAIN NO MORE THAN 50 WORDS, WE SHALL SET UP A LOOP WITH 60 
C--CYCLES AND BREAK OUT OF IT WHEN WE FIND ENDOLD. AT THAT POINT, 
C--THE INDEX (NUMOLD) WILL BE 1 GREATER THAN THE NUMBER OF WORDS 
C--BECAUSE ITS COUNT WILL INCLUDE THE 'XXXX' SIGNAL. 

PRINT *, 'ENTER THE ORIGINAL LIST' 
DO NUMOLD = 1,60,1 

READ *, WDLIST(NUMOLD) 
IF (WDLIST(NUMOLD) .EQ. ENDOLD) GO TO 11 
PRINT *, WDLIST(NUMOLD) 

END DO 

C--NOW, WE READ A NEW WORD, FIND OUT WHERE IT GOES, AND 
C--INSERT IT THERE BY MOVING ALL THE WORDS IN WDLIST BEYOND 
C--THAT POSITION, THEREBY OPENING A HOLE FOR THE NEWCOMER. 
C--EVERY TIME THIS HAPPENS, OF COURSE, THE SIZE OF THE LIST 
C--INCREASES BY 1. 

11 NUMOLD = NUMOLD-1 
NUMLST ·- NUMOLD 

FIGURE 10.16 FORTRAN Statements for Example 10.6. 
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PRINT *, 'TYPE IN A NEW WORD' 
READ *, NEWWRD 
DO WHILE (NEWWRD .NE. ENDNEW) 

NUMNEW = NUMNEW+1 
DO INHERE=1,NUMOLD 

IF (NEWWRD .LT. WDLIST(INHERE)) GO TO 21 
END DO 

C--THE ONLY WAY WE CAN REACH THIS POINT IN THE PROGRAM IS 

C--FOR NEWWORD TO BE ALPHABETICALLY 'LATER' THAN THE LAST 

C--WORD IN THE LIST SO FAR. 

INHERE = NUMLST+1 
GO TO 31 

C--MOVE THE REST OF THE ARRAY TO OPEN A SPOT 

21 DO NMOV = NUMLST,INHERE,-1 
WDLIST(NMOV+1) = WDLIST(NMOV) 

END DO 

31 WDLIST(INHERE) = NEWWRD 
NUMLST = NUMLST+1 
PRINT *, 'SUBMIT THE NEXT NEW WORD' 
READ *, NEWWRD 

END DO 

99 PRINT*, 'ENLARGED LIST:' 
PRINT *, ' 
DO NMOV = 1,NUMLST,1 

PRINT *, WDLIST(NMOV) 
END DO 
PRINT*, 'NO. OF WORDS IN ENLARGED LIST= ',NUMLST 
STOP 
END 

FIGURE 10.16 (continued) 

we wish to generate will have entries separated by fractional increments. The desired 

function is 

LOG (VP) = A + B/TEMP + C*TEMP**2 

where VP is a pressure, TEMP is a temperature, and A, B, and c are constant values. Input 

to this program consists of A, B, C, and two temperature values TEMPl and TEMP2. Using 

this information, the program is to produce a table of values for VP (not the logarithm of 

VP) for temperatures beginning with TEMPl and going up by 0.1 degrees through TEMP2. 

We shall dispense with the other parts of the program and concentrate on the loop 

itself; the declarations will be shown to provide context: 
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REAL*4 A,B,C,TEMP,TEMP1,TEMP2,VP,LOGVP 

DO TEMP TEMPl, TEMP2, 0. 1 
LOGVP = A + B/TEMP + C*TEMP*TEMP 
VP= 10.0**LOGVP 
PRINT * . TEMP, VP 

END DO 

END 

The number of cycles through this loop still is determined in the same way. Using values of 
275. 5 and 300. 5 for TEMPl and TEMP2 to illustrate, the program would be working 
with the iteration count formula as follows: 

iteration count = MAX (INT ( (300. 5-275. 5+. 1) I. 1), 0) 
MAX(INT(25.1/.1),0) 

= MAX (251, 0) 
= 251 

Accordingly, the loop will generate and print 251 sets of TEMP and VP values, and the final 
value of TEMP to be carried outside the loop will be (that's right) 300. 6. 

10.2.2 Nested DO Loops 

One simple rule governs the construction of a nested loop: it must be completely sur­
rounded by another loop. (A pictorial representation is seen in Figure 10.17.) Organiza­
tionally, this is the same type of structure that applies to nested IF-blocks (Section 
9.1.2.3). There is no particular limit as to how many loops may be nested within one 
another. As is true with many other features, the actual limit should be set by the 
programmer based on preserving a program's simplicity and clarity. If, for instance, a 
programmer finds it necessary to set up nineteen levels of nested loops, it is a good bet that 
the procedure is too complex and should be reexamined. 

We shall take the same kind of approach with nested DO loops as was done with single 
loops: while FORTRAN accepts several different structural forms within the basic 
nesting rule, it turns out that most of them create more confusion than convenience. 
Consequently, we shall follow two standard practices: 

1. Each loop will end with its own CONTINUE statement, whose placement is lined 
up with the corresponding DO statement. 

2. The nesting structure will be emphasized by identing a nested loop within the loop 
that surrounds it. These forms are shown in Figure 10.17. 

10.2.2.1 Processing of Nested Loops The execution of nested loops follows a pattern 
that is completely consistent with that established for a single loop. Since each loop has its 
own DO statement (and, therefore, its own controls), separate counters keep track of each 
set of cycles. Basically, an inner loop will go through a complete set of repetitions for each 
cycle of the surrounding loop, in much the same way that a minute hand on a clock (you 
remember clocks with hands on them?) will go through a complete set of movements (i.e., 
60) before the hour hand moves once. 

A look at a set of nested loops will demonstrate this nicely. Suppose we have the 
following situation: 
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( 
DO Ml NDXl = svl, lvl, incrl 

action 

DO M2 NDX2 = sv2, lv2, uncr2 

action 

DO M3 NDX3 = sv3, lv3, incr3 

action 3 

action 2 

CONTINUE 
M3 

action 

action 1 
I 

M2 CONTINUE 

M4 

M, 1 CONTINUE 

FIGURE 10.17 Structure of Nested DO Loops. 

DO OUTER = 1, 10, 1 
action 1 
DO INNER = 1, 5, 1 

action2 
END DO 
action 3 

END DO 
action4 

action 

DO M4 NDX4 = sv4, lv4, incr4 

action 4 

CONTINUE 

action 

Assuming there is nothing in action 1, action 2, or action 3 to cut short the specified 

number of cycles in either loop, execution will proceed as follows: 
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1. Processing of the first DO statement initializes OUTER to 1 (assuming OUTER was 
declared previously as INTEGER* 2) and establishes an iteration count of 1 O for 
the outer loop. 

2. The processing in action 1 is performed. 
3. The inner DO statement is executed, thereby initializing INNER to 1 and establish­

ing an iteration count of 5 for that loop. This means that the inner loop will cycle 
five times for each cycle of the outer loop. 

4. The processing in action 2 is performed. 
5. The conclusion of the inner loop is reached, thereby triggering an increase in the 

loop's DO-variable (INNER) and a decrease in the iteration counter. When the 
iteration counter reaches zero, processing continues at Step 6; until that happens, 
processing repeats from Step 4. 

6. This point is reached after each five cycles of the inner loop. Accordingly, action 3 
is performed. 

7. Since the next statement (statement 12) indicates the end of the outer loop, 
OUTER is increased by 1 and the loop's iteration counter is decreased by 1. If that 
counter has reached zero, the program avoids another cycle and moves on to Step 
8; otherwise, it repeats the processing, starting at Step 2. 

8. The processing of the nested loop structure is completed, and the program goes on 
to perform action 4. 

Thus, we see that the outer loop is processed ten times. Each of these cycles includes one 
performance of action l ,five performances of action 2, and one performance of action 3. 

10.2.2.2 Processing of Multidimensional Arrays Ifwe have the following declarations: 
REAL*4 XVAL (5, 4) 
INTEGER*2 ROW, COL 

and we specify the statement 

READ*, XVAL 

FORTRAN will read the next 20 input values and place them in XV AL in the following 
order: 

XVAL(l, 1), XVAL(2, 1), XVAL(3, 1), ... , XVAL(5, 1), XVAL(l, 2), 
XVAL(2,2),XVAL(3,2), ... , XVAL(3,4),XVAL(4,4), XVAL(5,4). 

This is in exact accordance with FORTRAN's rules for the organization of multidimen­
sional arrays (as defined in Chapter 8). Consequently, in order for this convenient 
statement to produce a desired result, it is necessary to arrange the input values so that 
their order matches that assumed by FORTRAN. When this is not the case, we cannot 
take advantage of the automatic input operation. Instead, we have to control the 
sequence ourselves, and an easy way to do this is with nested loops. For example, 
assuming the same declarations given above, if we were to write the following program 
segment: 

DOROW = 1, 5, 1 
DO COL = 1, 4, 1 

READ*, XVAL (ROW, COL) 
END DO 

END DO 
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we still would read 20 input values (because the inner loop cycles four times for each of the 
outer loop's five cycles). However, the locations in which these 20 values will be stored will 
follow a different sequence: 

XVAL(l,l), XVAL(l,2), XVAL(l,3), XVAL(l,4), XVAL(2,l), ... , 
XVAL(2,4),XVAL(3,1), ... ,XVAL(5,3), XVAL(5,4). 

The same type of flexibility can be used when doing internal computations. For 
example, suppose we had a 5 x 5 array X of real numbers and we wanted to produce 
another array Y, also 5 x 5, such that each row in Y is taken from the corresponding column 
in X. (In mathematical terminology, we would say that Y is the transpose of X.) The 
appropriate loops would be written as follows: 

REAL*4X(5, 5), Y(5, 5) 
INTEGER* 2 ROW, COL 

input activity for X 

DOROW = 1, 5, 1 
DO COL = 1, 5, 1 

Y(COL,ROW) X(ROW,COL) 
END DO 

END DO 

Another type of operation that often is used with two-dimensional arrays is one in which a 
particular row is selected as a divisor. Then, the elements in each of the rows are divided 
by the corresponding elements of the selected divisor row. As a result, the value in each 
element of the divisor row becomes 1.0 and the other rows' elements are changed 
accordingly. The following program segment shows this type of computation using a 5 x 6 
array T, with the second row selected as the divisor row: 

REAL*4 T (5, 6) 
INTEGER*2ROW,COL 

DOROW = 1, 5 
DO COL = 1, 6 

T(ROW,COL) 
END DO 

END DO 

T(ROW,COL)/T{2,COL) 

10.2.2.3 Sorting One of the most frequently used computing processes is sorting-the 
rearrangement of a collection of data according to a required sequence. There may be all 
kinds of different requirements involving the widest imaginable types of data values, but 
the objective remains the same: production of an organized collection in which the order 
of the individual items has been explicitly defined. The tremendous diversity of such 
sorted collections is emphasized by the few examples given below: 

1. A list of inventory items in a warehouse, sorted by increasing part number. 

2. A collection of words, sorted in alphabetical order. 
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3. a collection of words taken from a particular essay or story, sorted in order of decreasing use (i.e., the most frequently appearing word first, etc.). 
4. A series of temperature readings, sorted in chronological order (earliest reading first, etc.). 
5. A list of American cities, sorted by population in descending sequence (i.e., highest population first). 
6. A list of baseball players, sorted by batting average in descending sequence. 
7. A list of Mozart's works, sorted by the dates in which they were completed (earliest work first). 
8. A list of marchers in a parade, sorted by increasing height. 

We can see that the possibilities are endless. In fact, successful books have been written with nothing but sorted lists in them. 
When these sorted lists become long, or change often, it is particularly convenient to manipulate them on a computer. Accordingly, there are numerous algorithms for sorting such data; the selection of the most effective one for a particular situation is not always straightforward. For purposes of illustration, we shall use a rather simple procedure to sort a one-dimensional array of real numbers so that the resulting elements will be in descending order. 

Example 10.7 Nostril Surveys ("We Use Our Nose For News To Sniff Out The Truth") has just 
completed gathering data on the one hundred highest paid sword swallowers (for the Holy and Loyal 
Federation of Albanian Sword Swallowers) and wishes to publish the list arranged in descending order. Data for each swallower, consisting of the name (25 characters or less) and salary (in Bawoozniks, to the 
nearest hundredth of a Bawooznik), are recorded on a separate line. The cards are not in any particular order, so that the required program is to read them in, sort them, and print the sorted list. Figure 10.18 shows the overall outline of the program. 

Component 1 (Figure 10.18) is simple enough. We know we shall need arrays to hold the 100 names 
(NAME) and corresponding incomes (INCOME). A simple DO loop will read the data in preparation for the 
sorting operation. This activity, together with the display of a set of headings, completes the definition of 

Declare variables for names, incomes 

Read the names and incomes 

Print headings 

Sort the data in order by 
descending income 

Print the sorted list 

Stop 

(b) 

-
"Declare variables for names and incomes." component I 
"Read the I 00 sets of names and incomes." 

5 "Print the headings." component 2 i:: 
o "Sort the I 00 sets of incomes in descending 0.. 
E order (i.e., highest income first)." component 3 
8 "Print the sorted list of incomes and 

corresponding names." 
N "Stop." (a) 

c: 
Cl) 

i:: 
0 
0.. 
E 
0 u 

M 

c: 
Cl) 

i:: 
0 
0.. 
E 
0 
u 

FIGURE 10.18 (a) Overall Pseudocode Represen­
tation for Example 10.7. (b) Overall N-S diagram for 
Example 10.7. 
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"Declare 100-element arrays NAME and INCOME." 

"Print headings." 
do for each of the 100 swallowers: 

"Read and store the name and income." 

enddo 
"Sort the data in order by descending income." 

do for each of the 100 swallowers: 
"Print the next name, rank, and income." 

enddo 
"Stop." 

Declare 100-element arrays NAME, INCOME 

Print headings 

DO for each of the 100 swallowers 

Read the next name and income 

Sort the data in order by 
descending income 

~ DO for each of the 100 swallowers 

Print the rank, name, and income 

Print terminating message 

Stop 

(a) 

(b) 

component 1 

component 2 

component 3 

I 
Component 1 

l 

~ 

l Component 2 

~ 
Component 3 

~ 

FIGURE 10.19 (a) Partially Developed Pseudocode for Example 10. 7. (b) Partially Developed N-S Diagram for 

Example 10.7. 
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component 1 (at least for now), and a more detailed description can be given. (This is seen in Figure 
10.19.) 

Component 3 (Figure 10.18) is even more straightforward, so that its description can be developed 
merely by showing the display of the sorted list as anotheroo loop that repeats 100 times. This is shown in 
Figure 10.19, along with the undeveloped description for component 2. 

Now we can turn to component 2, the actual sorting operation. The procedure to be used will find the 
largest income value and move it, along with the corresponding name, to the first position in the list. Then, 
the largest of the remaining income values will be moved to the second position. This pattern will be 
repeated until there are only two entries left to be sorted. Once the larger of the two has been found and 
positioned, the process is complete. 

This can be implemented as follows: 

00 for every position i from 1 through 99 
00 for every position j from 100 through i+ 1 by -1 

IF income (j) > income (j-1) THEN 
exchange 

END IF 
ENDOO 

ENDOO 

Thus, the first position ends up with the largest entry. Once that has been established, there is no 
reason to pay any further attention to that position. In a sense, the first position is "closed off" and the 
procedure begins another round of comparisons. The object this time is to place the largest remaining 
value in element2. Thus, attheend of the second round, the two largest values will be in positions 1and2. 
Since we do not need to look further at these positioned values, each successive round of comparisons 
involves a smaller and smaller part of the array, until there is nothing left to compare. Figure 10.20 
illustrates this process, step-by-step, for an array of five numbers. 

START: 2 7 5 6 8 
AFTER COMPARISON 1: 2 7 5 8 6 
AFTER COMPARISON 2: 2 7 8 5 6 
AFTER COMPARISON 3: 2 8 7 5 6 
AFTER COMPARISON 4: 8 2 7 5 6 

SECOND ROUND 
AFTER COMPARISON 5: 8 2 7 6 5 
AFTER COMPARISON 6: 8 2 7 6 5 
AFTER COMP ARI SON 7: 8 7 2 6 5 

THIRD ROUND 
AFTER COMPARISON 8: 8 7 2 6 5 
AFTER COMPARISON 9: 8 7 6 2 5 

FOURTH ROUND 
AFTER COMPARISON 10: 8 7 6 5 2 FIGURE 10.20 Step-by-Step Illustration of 

FINISH a Bubble Sort. 

An additional feature of this "bubble-sort" algorithm is the flag NOSWAP. This logical 
variable is used to determine whether any exchange(s) took place during the previous 
sweep through the array. If there were no exchanges, it means that the values are already 
in proper order and no more cycles are needed. 

Since we are concerned with both a name and an income for each entry, it will be 
necessary to keep the name together with its matching income. An easy way to do this is to 
set up two arrays (100 elements each) so that corresponding elements will contain 
information for the same person. (We have already established this idea when we looked 
at component 1 of the program.) Thus, when we swap the contents of two positions, there 
will need to be two sets of exchanges: one for the name, and the other for the income. For 
instance, if NAME (J) and INCOME (J) are to be exchanged with NAME (J-1) and 
INCOME (J-1), it will take six statements to do so. Using TMPNAM and TMPINC for 
temporary storage, a swap could look as follows: 



TMPNAM = NAME(J) 
TMPINC = INCOME(J) 
NAME(J) = NAME(J-1) 
INCOME(J) = INCOME(J-1) 
NAME (J-1) = TMPNAM 
INCOME(J-1) = TMPINC 

AUTOMATIC PROGRAM LOOPS: THE DO STATEMENT 

The list of declarations in component 1, then, is enlarged accordingly. 
Remaining now are the details of implementation. The fact that there are two cycles 

suggests two nested loops: 

Define Variables 
NAME (100) INCOME (100), 
TMPNAM, TMPINC 

Print Headings 

~ DO for each of the 100 swallowers 

Read the next name and income 

~ DO for each position i from 1 to 99: 
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~DO for each position j from 100 to i + 1 by - 1' 

"Define NAME(IOO), INCOME(IOO), TMPNAM, TMPINC." 

"Print the headings." 

do for each of the I 00 swallowers: 

"Read and store the name and income." 

enddo 
do for every position i from I through 99: 

do for every position) from 100 through i + 1 by - 1: 

if 
income(i) is less than income(}) 

then 
"Exchange NAME(i) with NAME(j). 

INCOME(i) with INCOME(})." 

else 
endif 

enddo 
end do 
do for each of the I 00 swallowers: 

"Print the rank, name, and income." 

enddo 
"Print terminating message." 

"Stop." 
(a) 

FIGURE 10.21 (a) Pseudocode Representation for 

Example 10.7. (b) N-S Diagram for Example 10.7. 

~ 

~·~ me (j)? 
yes 

exchange 

name (j - 1) with 

name (j) and 

income (j - 1) with 

income (j) 

DO for each of the 100 swallowers: 

Print the rank, name, and income 

Print terminating message 

(b) 
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1. An inner loop that finds the largest available value (from all those not yet positioned) and puts it in a particular position in the array. 
2. An outer loop that activates the inner one 99 times-a round for each position but the last one. 

The flowchart and pseudocode are shown in Figure 10.21. Note that component 1 shows the additional declarations, and component 3 is just a copy of the version in Figure 10.19. The program itself is in Figure 10.22. 

10.3 SUMMARY Automatic control of cyclic processes can be set up by means of DO loops. The general structure of such a loop is as follows: 

DO index = sv, Iv, incr 
action 

END DO 

where index is the name of a DO-variable that automatically keeps track of the loop's progress, sv is the starting value to which index is set just before the first cycle, Iv is the limiting value that helps define the loop's final cycle, and incris the increment added to the DO-variable just before the next cycle is attempted. FORTRAN uses all of this control information to set up and monitor an iteration counter, computed as 
MAX ( INT ( (/v-sv+incr) liner) , 0) 

* EXAMPLE 10.7 * * THIS PROGRAM READS AND STORES 100 NAMES OF * * SWORD SWALLOWERS, ALONG WITH THEIR CORRESPONDING * * INCOMES. THE INCOMES ARE SORTED SO THAT THE FINAL * * OUTPUT CONSISTS OF THE LIST OF 100 NAMES, ALONG * * WITH THEIR RESPECTIVE INCOMES, SORTED IN DESCENDING * * ORDER BY INCOME. * 
* 
* 

* 
* 
* 
* 
* 

NAME: 
INCOME: 
TMPNAM: 
TMPINC: 

AN ARRAY FOR THE 100 NAMES * 
AN ARRAY FOR 100 (CORRESPONDING) INCOMES * 
CHARACTER STRING TO HOLD A NAME DURING SWAP* 
REAL VARIABLE TO HOLD AN INCOME DURING SWAP* INCNT: 

OUTCNT: 
INDX: 

DO-VARIABLE FOR AN INNER LOOP 
DO-VARIABLE FOR AN OUTER LOOP 
ANOTHER DO-VARIABLE 

PROGRAM 
IMPLICIT 
REAL*4 
INTEGER*2 
CHARACTER*25 
LOGICAL 

EX1007 
NONE 
INCOME(100),TMPINC 
INCNT,OUTCNT,INDX 
NAME(100),TMPNAM 
NO SWAP 

PRINT 
PRINT 

*, 'SWORD SWALLOWERS INCOME PROJECT' 
*, 'ANOTHER NOSTRIL SURVEY SERVICE' 

PRINT *, 
PRINT *, 'RANK NAME INCOME IN BAVVOOZNIKS' 
PRINT *, 

* 
* 
* 

FIGURE 10.22 FORTRAN Statements for Example 10. 7. 



DO INDX = 1,100 
READ*, NAME(INDX),INCOME(INDX) 

END DO 

DO OUTCNT = 1,99 
NOSWAP = .TRUE. 
DO INCNT = 100,0UTCOUNT+1,-1 

IF (INCOME(INCNT) .GT. INCOME(INCNT-1)) THEN 
TMPNAM = NAME(INCNT) !SWAP! 
TMPINC = INCOME(INCNT) 
NAME(INCNT) = NAME(INCNT-1) 
INCOME(INCNT) = INCOME(INCNT-1) 
NAME(INCNT-1) = TMPNAM 
INCOME(INCNT-1) = TMPINC 
NOSWAP = .FALSE. 

END IF 
END DO 
IF (NOSWAP) GO TO 199 

END DO 

199 DO INDX = 1,100 
PRINT*, INDX,NAME(INDX),INCOME(INDX) 

END DO 

PRINT *, 

PROBLEMS 

PRINT*, 'NORMAL TERMINATION. ANOTHER NOSTRIL SUCCESS.' 

STOP 
END 

FIGURE 10.22 (continued) 

This counter is decreased by one just after the completion of each repetition of the loop. 

As long as the counter is greater than zero, the next cycle is performed. Once it reaches 

zero, the loop is bypassed and the program continues beyond it. 
The DO-variable is available for use during a loop. However, that usage must not 

change its value. Once the program leaves the loop, the DO-variable, still set at the last 

value it, had, becomes like any other variable. 
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1. Write sequences of FORTRAN statements to handle each of the situations described below. Assume the PROBLEMS 

following declarations: 

REAL*4 X,Y,Z,R(lO),S(lO) 
INTEGER*2 I,N 

(a) "Read Y." 
"Initialize Z and N to zero." 
"Read the first value of X." 
while Z is not greater than Y: 

"AddXtoZ." 
"Add 1 to N." 
"Read the next X." 

endwhile 
"Print Y ,Z,N." 
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(b) "ReadX,Y." 

(c) 

(d) 

while X is not equal to Y: 
"Z = either X**Y or Y**X; the lower of the two values always is the exponent." 
"Print X, Y ,Z." 
"Read the next X, Y." 

endwhile 
"Print 'end of run' message." 

ReadZ 

Print Z 

Read X,Y 

Do while either X or Y is less than Z: 

W = (X log Y + Y log X) / (XY) 

Print X, Y, W 

Read X, Y 

Read N, R 

Do while 0<N<10 

N 
Y=~Ri 

i=l 

Print N, R, Y 

Read N, R 

(e) "ReadY." 
"Print Y." 
"Initialize I to 1." 
do 

"X = Y or R(I), whichever is larger." 
"Print R(I) ,X." 
"Add 1 to I." 

until I > 10 or R(I)= Y 

2. Assume the following declarations: 

REAL*4 
INTEGER*2 

S,X,A(8) 
I,L,M,N 



For each of the sequences of statements listed below, indicate 

(1) The iteration count for each loop (if more than one loop is specified; 

(2) The values printed by the output statement(s): 

(a) S = O. O 

x = 3.0 

DO I=l, 4 
S = S+I*X/ (1+8) 

END DO 

PRINT*, S 

(b) N = 0 

L = 2 
DO 10 I=3, 8 

IF (MOD (I, 2) . NE. 0) N=N+L* (2*I-1)-6/I 

10 CONTINUE 

PRINT*, N 

(c) s = 1. o 
x = 2.0 

DO I=l, 10, 4 

S = S*X**I 
END DO 

PRINT*, S 

(d) DO I=l, 8 
A (I) ( 1+4) I I 

END DO 
L 3 
N = 6 

s = 0.0 

DO I=L, N 

PROBLEMS 

IF (A (I) . GE. 1. 8) S=S+A (I) 

END DO 

PRINT*, A, S 
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(e) X = 4. O 

DO I=l, 4 

N = 9-I 

(f) NOTE: There is no assurance that this loop will be executed 

exactly 11 times; the effects of roundoff error make such assurance 

impossible. 

A (I) = X**I-2*I 

A(J) = 0.5*A(I) 

END DO 

s = 0.0 
DO I = -6, -2 

L = ABS(I)+l 

S = S+A(L-I) 

END DO 

PRINT*, A, S, L 

3. Assume the following declarations: 
REAL*4 X 

INTEGER*2 I,J,NUM(3,4),R,C 

CHARACTER CH*12,T1*7,T2*7 

x = 1000.0 

DOY=O. 0, l. 0, 0. 1 

IF (Y. LE. 5. 00) THEN 

X = X-1. O**Y 

ELSE 

X = X+lO. O**Y 

END IF 

END DO 

PRINT*, X 

DATA NUM,Tl,T2/3*4,2,0,4*3,l,6,0, 'AEIOUGH', '*****$$'/ 

Show the total number of cycles through each loop and the values printed by the output statements for 

each of the following sequences: 

(a) DO I=l, 3 
DOJ=l, 4 

NUM(I,J) 

END DO 

END DO 

PRINT*, NUM 

I+J+NUM(I,J) 

(b) DO 10 I=l, 4 

DO 8J=l, 3 
NUM(J, I) 

8 CONTINUE 

10 CONTINUE 

D06 I=l, 3 

NUM(J,I)/(I*J) 

PRINT *, NUM (I, 1) , NUM (I, 2) , 

NUM(I,3) ,NUM(I,4) 

6 CONTINUE 
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(c) 
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x 0.0 
R 3 

( d) CH = I THOROUGHFARE I 

DO I=l, 12 
c 3 DOJ=l, 7 
DO I=R, 1,-1 IF (CH (I: I). EQ. Tl (J: J)) 

END DO 
Tl(J:J)=T2(J:J) 

DO 12 J=C, 1, -2 
IF (NUM(I, J) . LT. 

X=X+NUM(I,J) 
ELSE 

X=X-NUM(I,J) 
END IF 

12 CONTINUE 
END DO 

PRINT*, X 

I+J) THEN END DO 
PRINT*, CH 

4. One of the most frequently used techniques in data analysis is called smoothing. It is applied often to time 
series, that is, a set of readings or measurements or tallies recorded over a period of time at equally spaced 
time intervals. For example, in medical data processing, these might be blood pressure readings taken 
every six hours; in chemical analysis these might be pH readings taken every five minutes; in stock market 
analysis these might be daily stock averages. The point is that these readings might follow a trend which is 
partially hidden by the little fluctuations from one reading to the next. In order to suppress the effects of 
these local fluctuations and bring out the larger, more interesting trends with greater clarity, each is 
smoothed by averaging it with the next few readings and reporting that average in place of the individual 
reading. The number of readings used in the averaging process varies with the particular situation. In this 
problem, each set of readings will consist of twenty real values, and the smoothing process will be 
performed on groups of three readings. Thus, the first reading will be replaced by the average of the first, 
second, and third readings; the second reading will be replaced by the average of the second, third, and 
fourth readings, and so on. Readings 19 and 20 will be reported as is, since the smoothing process cannot 
be applied to them. 

Write a program that applies this smoothing process to any number of input sets. For each set, the 
program prints a line for each reading that shows the original value and the smoothed value. Output sets 
are to be separated by a blank line and the last set is to be followed by a terminating message. 

5. Here is a more general version of the program described in the previous problem: Instead of expecting the 
same number of readings for each input set, the program is to accept and process input sets with any 
number of readings in each set. (It is up to you to determine how to separate the sets; however, the most 
obvious method cannot be used here: That is, you cannot include as part of each input set an explicit 
integer variable that specifies how many readings there are.) 

6. Another generalization that we can add to the program in Problem 5 is one in which the user may specify 
the number of readings to be used for the smoothing process. Write a program in accordance with the 
specifications given in Problem 5 with the additional feature that it reads (as part of the input for each set of 
data to be smoothed) a value NMSMTH specifying the number of readings to be used for each group to be 
averaged. Your program should be designed to handle the possibility that NMSMTH is too large for the 
number of readings available for that run. An obvious case, for example, would be one in which NMSMTH 
is specified as 18, and there are only 16 readings. However, we shall be rather strict about the relation 
between NMSMTH and the number of readings: the program will allow the smoothing process to proceed to 
its conclusion only if at least three readings can be replaced by smoothed values. For practical purposes, 
we shall impose the additional restriction that NMSMTH can never be larger than 20. 

7. Generalize the program in Problem 6 further by including a default value of 3 for NMSMTH. Then, if the 
user does not wish to specify his/her own value for NMSMTH, the program automatically will use 3. On the 
other hand, if the user wants a different value for NMSMTH, such a value may be specified and the program 
will use it. Now, that new value is to remain in force for one or more sets of readings as long as the user 
does not change it. When a change is wanted, the user should be able to specify either a new value for 
NMSMTH or a return to the program's default value. 

8. The Tramplevanian Knowledge Authority needs to know the distances between each pair of principal 
cities in that far-off land. There are ten such cities. As part of an earlier project, somebody had prepared a 
set of X-Y coordinates on which each of the cities is represented as a point whose X and Y distances from 
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the origin is as Kloompldorf, the capital city. The coordinates for the cities, then, are defined as follows: 

City x y 

KLOOMPLDORF 00.0 00.0 
MYUMBESBURG 12.7 -16.8 
GROSSENDORF -6.5 -22.8 

WEIS ENVILLE 28.9 8.4 
SCHWARZDORF -17.7 34.2 
MLEPPLSBURG 61.0 0.9 
SCHLEPP VILLE 81.3 -6.6 
PINKENPLATZ 2.3 89.4 
STROMENBACH 77.0 91.1 
HALBESSTADT -92.3 91.1 

Recalling that Problem 10 in Chapter 6 gave a formula for computing the distance between two points 

expressed in terms of their respective X-Y coordinates, write a program that provides the Knowledge 

Authority with the information it wants. The distance between two given cities should appear on a 

separate output line that gives the names of the two cities and the distance between them, rounded to the 

nearest 0.1 kilometer. 

9. This is a more convenient version of the program in Problem 8. (More convenient, that is, for the 

Knowledge Authority.) Using the same data and the same requirements, design and implement the 

program so that it prints the output arranged in ascending order by distance (i.e., the shortest distance 

first). If two distances should come out to be the same, it does not matter which is printed first, as long as 

their respective output lines are next to each other. 

10. Trouble in Tramplevania: The head of the Knowledge Authority, just back from the Official Three-Hour 

Intensive Computer Workshop for Executives And Their Guests, has announced that Everything is Easy 

with Computers. Accordingly, she wants the program in Problem 8 written so that the output appears as 

follows: The cities are to be arranged in alphabetical order. That is, the first nine lines will show the first 

city (GROSSENDORF), along with the distances between it and each of the other nine cities. The other 

city on the first line should be the one closest to GROSSENDORF, the other city on the second line 

should be the one next closest to GROSSENDORF, and so on. Then, the next city (HALBESSTADT) 

will require only eight lines. (Because of the peculiar terrain in Tramplevania, the distance between 

GROSSENDORF and HALBESSTADT is the same as the distance between HALBESSTADT and 

GROSSENDORF, and so it goes between any two cities there.) This pattern continues, of course, so that 

the third city (KLOOMPLDORF) will appear in the first column of the next seven output lines, and so on. 

11. Caleb Grutchkrinkler, working out of a small stone house in Perkins Warp, Vermont, has built quite a 

reputation as a master restorer of New England schmichiks. Almost any reasonable craftsman can restore 

a Mid-Atlantic, Southern, or Midwestern schmichik (these wonderful artifacts are unknown beyond 

Norton, Kansas), but it takes somebody special to do justice to the intricate New England schmichik, and 

Caleb G. is tops. Anyway, a New England schmichik consists of 15 parts. Thus, when Caleb G. gets hold 

of one, he inspects it immediately to establish its exact condition. If it is beyond repair and nothing can be 

salvaged, he just throws it away. However, that rarely happens. If anything at all can be saved, Caleb G. 

assigns a six-digit identification number (SCHMNO) and prepares a detailed description of it. His computing 

service records this information on a line that contains SCHMNO, along with SCHCST, the amount (to the 

nearest cent) that Caleb paid for the schmichik, and an integer value for each of the 15 parts. (Caleb never 

buys a schmichik for more than $100.00): 

0: The part is missing or no good; it must be replaced. 
1: The part can be rebuilt and is worth saving. 
2: The part is intact, needing only adjustment. 
3: The part is fine; no work required here. 

Up to now, Caleb G. has been content with a simple printout of these data. Up to now. But rapidly 

growing business has made this inadequate. Consequently, a program is needed that reads and processes 

any number of these lines as follows: For each line read, the program prints a line of output showing the 

schmichik identification and the number of parts in each of the four categories. The following form might 

be one way of showing this: 
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SCHMICHIK NO. 

000323 
006755 

COND. 0 COND. 1 

4 3 
0 8 

COND.2 

2 
3 

COND.3 

6 
4 

After all the data have read, the program is to leave a blank line and print the following summary 
information: 

(a) The number of schmichiks processed; 
(b) A line for each of the 15 parts (calling them PART 1, PART 2, etc.) showing how many of those parts 

are in condition 0, how many are in condition 1, and so on. 

12. The success of the program in Problem 11 has sparked Caleb G. 's interest, and he wants to make it more 
useful to him and his New England schmichiks. Specifically, he wants to include some systematic way of 
computing how much it will cost him to restore a particular schmichik. Since he already knows what he 
paid for the schmichik in the first place, he can put these two pieces of information together and use them 
as a basis for establishing a sale price. After examining his records, Caleb G. has come up with a set of 
guidelines based on the estimated hours required for restoration. For this purpose, an overall condition 
score ( OCS) is computed for each schmichik simply by adding together the conditions for the 15 individual 
parts. Thus, a schmichik in perfect shape would have an overall condition score of 45 (i.e., 15•3), and a 
top-to-bottom dead loss of a schmichik (something Caleb would not even take for free) would have an 
overall condition score of 0. This overall condition score is related to the number of hours required for 
restoration according to the schedule shown below. The restoration time is affected also by certain details 
about the schmichik's condition, and this information is shown ~well: 

(1) If a schmichik's OCS is less than 20, it is not worth restoring. The work involved in saving the usable 
parts and throwing away the rest amounts to 4.5 hours. 

(2) When the OCS is 20 or more, but less than 25, restoration time amounts to 11.5 hours. 
(3) Schmichiks with OCS values of25 through 31 have restoration times of9.0 hours. 
(4) When OCS is 32 through 38, restoration time drops to 4.5 hours. 
(5) When OCS is 39 through 42, restoration time is 3.25 hours. 
(6) If a schmichik is in good enough shape to earn an OCS above 42, there is little or no restoration 

(mostly cleanup). This time is 1.5 hours. 
(7) If a schmichik has at least four parts with condition 0 (regardless of OCS), add 0.75 hours to the 

restoration time. 
(8) If a schmichik has at least six parts with condition 1 (regardless of ocs), add 1.50 hours to the 

restoration time. 
(9) Regardless of anything else, if part number 6's condition is 0, add 0. 75 hour to the restoration time. 

(10) Regardless of anything else, if part number 6's condition is 1, add 0.25 hour to the restoration time. 
(11) Regardless of anything else, if part number 6's condition is 3, deduct 0.5 hour from the restoration 

time. 
Caleb believes these figures take into account the fact that some of his schmichiks (for which he has paid) 
are not sold as complete items but serve instead as sources of parts for restoring other schmichiks. 
Consequently, Caleb's total cost is computed just by multiplying the restoration hours by Caleb's hourly 
labor rate and adding that result to the original cost. Since the hourly rate changes with the cost of living, it 
is read in at the beginning of each run instead of being set up as a parameter in the program. 

Based on these considerations, write Caleb's program for him. As in the previous problem, the 
program is to process any number of lines. The contents of each line is the same as described in Problem 
11. A separate line, read prior to the first schmichik's line, defines the hourly rate of that run. Then, for 
each line processed, this program is to print a line showing the schmichik number, the original cost, the 
Overall Condition Score, and the total restoration time. If a particular schmichik is not worth restoring, an 
appropriate message is to appear on that schnmichik's line in place of the restoration time. After the last 
schmichik has been processed, the program is to leave a blank line and print each of the following 
summary results on a separate line: 
(a) The number of schmichiks processed 
(b) The number of schmichiks rejected for restoration 
( c) The total cost for all of Caleb's purchases 
( d) The total number of restoration hours 
( e) The total restoration cost 
(t) The total cost to Caleb, i.e., (c)+(e) 

13. Write and run a program that computes and prints the number of ways to produce change for a dollar 
using pennies, nickels, dimes, quarters, half-dollars, and the metallic (Anthony) dollar. The program does 
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not need to read any input. Each line of output is to show a legitimate combination using the following 

general layout: 

PENNIES 

100 
95 

NICKELS 

0 
1 

DIMES 

0 
0 

QUARTERS 

0 
0 

HALVES 

0 
0 etcetera 

Since there is only one legitimate combination involving the metallic dollar (all by itself, with no other 

coins), that possibility is printed as a separate line after the table illustrated above. Then, there is to be a 

final line of output showing NWAYS, the number of combinations. (NOTE: this is an instance in which 

brute force will not pay off. Chances are that if you try looking at all possible combinations, you will run 

out of computer time. Consequently, it is a good idea to spend a little time on the design of a method that 

will avoid (as much as possible) looking at combinations that the program "knows" will not work out.) 

14. The dollar is not the only currency for making change. In far-off Mammaligga, the unit of currency is the 

Riegloch. There are three Glepchiks to a Riegloch, seven Truppooks to the Glepchik, two Znehs to each 

Truppook, and three Pitinipehs to the Zneh. So. Not counting the Riegloch all by itself as one of the ways, 

repeat Problem 13, finding out how many ways there are to make change for a Riegloch. (In the 

Mammaliggan language, all units of currency are written and spoken with initial capital letters.) 

15. A crack team of archaeologists from seven countries has made an astonishing discovery: Digging near the 

ancient Roman city of Tutti Ruino del Volcanico, the group came upon a large, sealed leaden box in 

reasonably good shape. Imagine their surprise when, upon opening the box with great care, they found a 

large collection of crudely punched cards. Oh yes they did. After some calm was restored, the team made 

photographic copies and began a painstaking examination. Sir Smedley Guavahead, second in command, 

finally figured it out. The cards definitely contained numerical data, but they were punched as Roman 

numerals, don't you see. Once this great intellectual leap had been made, it became clear that each card 

contained four separate items. A typical card looked like this, except a lot fuzzier: 

'MCCCXXIII 'LXIV' 'DCCLXXIX' 'CCXCVIII' 

Thus, before the scientists could settle down to the enormous task of trying to determine what these 

numbers meant, they have to know what these numbers are. For this purpose, a program is needed to read 

a sequence of these data (carefully rerecorded from the photographs) and convert and print each of the 

values as an integer. Examination of the entire batch, and manual conversion of a few sample values, has 

established that the highest value in the collection comes out to be 3888. Each card's data is to produce two 

lines of output, separated by a blank line. The first output line is to be an echo of the input data for one 

line, and the second shows the converted values. For example: 

ROMAN: 

ARABIC: 
'MCCCXXIII' 
1328 

'LXIV' 'DCCLXXIX' 
64 779 

'CCXCVIII' 
298 

To help in this effort, Sir Smedley himself has prepared the following helpful table: 

ROMAN ARABIC ROMAN ARABIC 

I 1 II 2 

III 3 IV 4 

v 5 VI 6 

IX 9 x 10 

XI 11 XIV 14 

XIX 19 xx 20 

XL 40 XLV 45 

L 50 XC 90 

XCIX 99 c 100 

CD 400 D 500 

CM 900 M 1000 

Here are some sample cards: 

'MCCCXXIII' 'LXIV' 'DCCLXXIX' 'CCXCVIII' 

'XVIII' 'MDCCCXCIX' 'MCDXCII' 'XXXIII' 

'MMMDCCCLXXXVI' 'XXXVIII' 'V' 'LXXXVIII' 

16. Rewrite the program in Example 10.5 using the DO WHILE statement. The information produced is to be 

the same as in the example. 
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11 
Introduction to 
Subprograms 

Chapter 6 introduced the idea of a subprogram-an independent group of statements 
that can be incorporated into a larger program and used there again and again. The 
subprograms in FORTRAN's library enabled us to pretend that relatively complicated 
tasks such as the computation of a square root or a logarithm were single operations and 
could be treated as such. Now, these concepts will be developed further by looking at the 
construction and use of subprograms that we design ourselves. 

The name "subprogram" emphasizes the fact that a subprogram, though conceptually 
and procedurally independent, cannot run by itself. It is specifically intended for use by 
another program. That is, it operates at the request of another program; when it has 
concluded the operations it is designed to perform, the program that made the request 
picks up where it left off. The structural connections between the two programs are such 
that this process will occur each time such use is requested, regardless of the number of 
requests there are or the number of different places from which the requests are made. 

11.1.1 How Subprograms Work 

The major reason for writing and using subprograms stems from the fact that a subpro­
gram can be viewed as a prepackaged unit. It is a process with its own identity and its own 
existence. Its mechanics are such that it can be designed, developed, and perfected on its 
own, without our even needing to know which programs actually will be using it. Then, 
once a subprogram has been completed, it can be made available to any program that has 
a use for it. Thus, it is possible to produce large, complex programs by combining a 
selection of pretested building blocks (i.e., subprograms). This organizational concept 
has exerted the most profound influence on the way programs are designed and devel­
oped. Many large successful programs are produced by several people, each working on 
one or more subprograms. Accordingly, the next section will look more closely at the 
structural relations between subprograms and the programs that use them. 

11.1.1. 1 Subprograms and the Main Program Organizationally, every program consists 
of a main program which may or may not use subprograms. Thus, every program we have 
written thus far is a main program. There is no rule that requires the use of subprograms, 
and there is no limit to the number of subprograms that can be used by a main program. 

When a subprogram is going to be used (invoked) by a main program, a physical copy 
of the subprogram is included as part of the overall program. If the subprogram is one of 
those in FORTRAN's library (a list is given in Chapter6), the process of providing a copy 
is handled automatically as part of the system's duties. Otherwise, it is up to the 
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PROGRAM Pl 

MAIN PROGRAM 

END 

Pl l 

SUBPROGRAM 

END 

P12 

SUBPROGRAM 

END 

P13 

SUBPROGRAM 

END 
FIGURE 11.1 General Program Structure. 

programmer to include a physical copy as part of the sequence of statements submitted to 
the FORTRAN compiler. In either case, only a single copy of each subprogram is 
required for a given program regardless of the number of times the subprogram is used. 

11. 1. 1.2 Synthesis of Programs Figure 11.1 shows a structure consisting of a main 
program Pl and three subprograms Pll, P12, and P13. Note that the main program is 
physically the first program in the structure. (This is not compulsory in FORTRAN, but it 
is a practice we shall follow.) Regardless of the number of subprograms, each one follows 
the END statement of the previous one, and the first subprogram follows the END 

statement of the main program. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

IO 
11 

111 
112 

114 
115 

117 

21 

25 

28 

41 

55 

INTRODUCTION TO SUBPROGRAMS 

PROGRAM 

Pll 

P12 

P13 

Pl (MAIN PROGRAM) 

statement 
statement 
INVOKE Pl2 
statement 
INVOKE Pll 
INVOKE Pl2 
statement 
USENVOKE Pl 3 
statement 
INVOKE Pl l 
STOP 
END 

(SUBPROGRAM) 
statement 
statement 

INVOKE P13 
statement 

RETURN 
END 

(SUBPROGRAM) 

statement 

statement 

RETURN 
END 

(SUBPROGRAM) 

statement 

RETURN 
END 

FIGURE 11.2 Program Structure and Execu-
tion Sequence. 

11.1.1.3 Sequence of Execution The control exercised by a main program over a 
subprogram is seen by the fact that the point at which a subprogram runs has nothing to do 
with its physical placement. Regardless of where the subprogram actually appears, it will run only when the controlling program says it does, i.e., when the subprogram is invoked. 
Each request (invocation) is an explicit one. When such a request is made, the program 
goes directly to the subprogram's first statement and executes from that point. At the completion of the subprogram, execution automatically goes back to the invoking pro­
gram and continues from the point immediately after the request. 
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This concept is demonstrated by the program structure in Figure 11.2. To avoid 
unnecessary confusion, we shall make up a type ofstatement, i.e., 

INVOKE subprogram 

to indicate a general invocation. This will give us an opportunity to follow the sequence of 
events without having to deal with the details. Here is what happens in this program: 

1. The main program (Pl) starts; statement 1 is executed, followed by state­
ment 2. 

2. Statement 3 invokes subprogram Pl2, and all of its statements (21 through 28) 
execute. The flow of events then returns to the main program at statement 4. 
(The RETURN statement accomplishes this in FORTRAN.) 

3. Statement 4 is executed. 

4. Statement 5 invokes subprogram Pl 1, and it begins execution from statement 
111, continuing in sequence till statement 114. 

5. Statement 114 invokes subprogram P13, thereby transferring attention to the 
first statement in P13. 

6. The statements in P13 (i.e., 41 through 55) execute in sequence, and the 
program returns to the invoking program or subprogram, in this case Pl 1. 

7. Execution in Pll continues in sequence from statement 115 and proceeds 
through statement 117, at which point Pll returns to the program that invoked 
it, namely Pl. The return is to statement 6. 

8. Statement 6 (the next one to execute) invokes subprogram P12. (This is the 
second invocation of this subprogram; the first time, it was invoked by statement 
3.) Accordingly, statements 21through28 execute again, after which the pro­
gram returns to statement 7. 

9. Statement 7 is executed. 

10. Statement 8 invokes subprogram P13, so that statements 41 through 55 are 
executed next, in sequence. Processing then continues with statement 9 in the 
main program. 

11. Statement 9 executes. 

12. Statement 10 invokes subprogram Pll, thereby causing execution in that sub­
program starting with statement 111 and proceeding through statement 114. 

13. Statement 114 invokes subprogram P13, thereby causing statements 41 through 
55 to execute, after which subprogram Pl 1 resumes. This subprogram completes 
its work with statement 117 and returns to the main program at statement 11. 

14. Statement 11 executes, and the program ends. 

11. 1.2 Subprograms and Program Development 

Now that the basic flow sequences have been established, we can discuss the subprogram 
as a powerful aid in the program development process. Earlier, mention was made 
(Section 11.1.1) of the subprogram's usefulness as a building block that can be designed, 
developed, and tested separately, away from any programs in which it might be used. 
Then, when it is ready, it can be "plugged into" any program that needs it. Entire 
companies of professional program designers have built operations around this idea, 
selling a wide variety of useful subprograms to customers they will never meet. These 
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customers design their programs to "expect" the subprograms, so that their inclusion is 
simple and painless. This is not different from the builder who constructs a house with the 
expectation that a furnace will be installed in a certain place, in a certain way. The furnace 
may not be there yet, but the house is ready for it. Then, when the furnace shows up, it is a 
unit, preassembled and pretested. If the design was done properly, its installation is 
simple and painless. 

When applied to the program development process, this idea leads to two powerful 
techniques. The first of these, already mentioned, centers on the systematic, independent 
development of subprograms for eventual use as building blocks in other programs. A 
second technique relates to the systematic preparation of main programs that are ready to 
accept subprograms even though those subprograms may not be available yet. These 
techniques are introduced and outlined in the next two sections. 

11.1.2.1 Separate Development of Subprograms In the introduction to Section 11.1 it 
was established that a subprogram, by its nature, cannot operate alone. It is intended for 
use as a component in some larger program structure. Consequently, any process 
for the independent development of a subprogram must involve some kind of main 
program. 

One way to approach this development, then, is to tum the subprogram into a main 
program until we are convinced that it works. Once its proper operation is assured, we can 
reconvert it into its final form, i.e., a subprogram. This is undesirable for a variety of 
reasons, not the least of which is that we are not really developing the component we set 
out to develop; the processes involved in converting the working program into an 
"equivalent" subprogram introduce too many possible sources of errors. 

Consequently, a much better technique for independent subprogram development 
starts with the subprogram in its eventual form and equips it with a main program. This 
main program is not the same as the one with which the subprogram eventually will be 
used. (After all, we are not expected to know what that main program (or those main 
programs) will look like.) Instead, this special main program (called a driver) has three 
primary purposes: 

1. To provide a vehicle for running the subprogram. 
2. To invoke the subprogram in the same way it will be invoked in "actual" use. This 

provides a set of realistic conditions on which the subprogram can operate. 
3. To provide a place to which the subprogram can return. 

By doing this from the outset, we provide the subprogram with a realistic environment in 
which it can be developed. At the same time, we give ourselves the opportunity to 
examine the subprogram's behavior. 

It is important to understand that a driver need not be complicated. In fact, there is 
every reason to make the driver as small and simple as possible. Specifically, the driver 
should not do any more than the minimum it has to do to satisfy the three requirements 
defined above. When we do that, we can eliminate the possibility of introducing mistakes 
in the driver. (The whole idea is to be able to concentrate on the subprogram.) Further­
more, a simple driver is less painful to throw away when we are finished with it, and that is 
exactly what should be done with a driver that has fulfilled its purpose. Turning to the 
newly built house once more as an example, it is standard practice to help the develop­
ment process by erecting scaffolding or other supporting structures. Once they have 
served their purpose, they are taken away, with no tears shed. This situation, basically, is 
no different. 

11.1.2.2 Expectant Main Programs This second technique is based on the idea that, 
once a program's overall structure has been defined (i.e., we know what its major 
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components are and what each one does), we can duplicate that structure. This is true 

even though the subprograms may not be developed yet. Note that we are not duplicating 

the subprograms' details; we cannot. Instead, we are providing the same structure by 

including a representative for each subprogram that the program will use. That representa­

tive may be nothing more than a skeleton, just enough to provide a physical presence. 

This usually is known as a stub. In general, its single purpose is to be there, so that there is 

something to invoke in the same way that the final subprogram will be invoked. For many 

situations, this purpose is fulfilled quite adequately by a subprogram consisting of an 

initial statement, some declarations, a RETURN statement, and an END statement. The 

point is that a stub does not have to do anything. Its being there often is enough to 

establish the overall flow of the final program. Then, when the corresponding subprogram 

(developed independently) is ready, it can replace the stub without changing anything 

else. 
A little later in this chapter, after the details of subprogram construction have been 

introduced, we shall put these techniques to work. 

11.1.3 Types of FORTRAN Subprograms 

FORTRAN recognizes three types of subprograms: statement functions, functions, and 

subroutines. Each type has its specific uses and advantages. These will become clear once 

the basic techniques are defined for the construction and invocation of each type. 

11.1.3.1 The Function Subprogram A function is a subprogram that returns one value, 

i.e., it produces a single result each time it is invoked. It may be as long and complex as it 

needs to be. The number of data items that it can receive from the program that invokes it 

(i.e., the number of arguments) depends only on what the function is designed to do and 

not on any restrictions in the language. Moreover, it can include decision mechanisms that 

influence the way it prepares its result. However, when its processing is finished, the 

outcome still is a single value. 
Figure 11.3 shows the general framework for a function subprogram. Since the 

function is separate from (i.e., not contained in) the main program, it is considered to be 

an external subprogram. The subprogram itself begins with a FORTRAN statement that 

defines the name of the function. Attached to the function name is a parenthesized list of 

PROGRAM Pl 
statement 

variable = fname (argl,arg2, ... ,argn) 

statement 

END 

FUNCTION fname (dmargl,dmarg2, ... ,dmargn) 

statement 

statement 
f name = expression 
RETURN 
END 

FIGURE 11.3 Structural Relations Between a Main 

Program and a Function. 
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names called dummy arguments. This term emphasizes the fact that these names do not 
represent actual values on which the function is to operate. Instead, the function name 
and the list of dummy arguments provide a model of how the function is to be invoked. 

1. The function name (fname in Figure 11.3) gives the function an identity that 
distinguishes it from all other functions used by the program. It is this name that is 
specified when the function is invoked. This is seen in the example usage by the main 
program (Pl) of Figure 11.3. 

2. The list of dummy arguments indicates the number of actual arguments to be 
supplied when the program is invoked, as well as the type of each argument. In addition, 
the list guides FORTRAN in determining the sequence in which the actual arguments are 
to be used when applied to the operation within the function. 

3. The statements in the subprogram itself describe the processing that the function 
will perform when it is invoked. Remember that the activities described by the function do 
not take place until some other program requests them. 

4. When the final result is computed, it is assigned to a variable whose name is the 
function name. This variable (fname in Figure 11.3) is created automatically as part of 
FORTRAN's processing of the FUNCTION statement. 

As seen in Figure 11.3, a function subprogram is invoked by using its name, in an 
expression, along with a list of actual arguments. The value developed by the function is 
returned to the expression for further use. General rules for invocation are as follows: 

1. A function may be invoked by a main program or by an external subprogram. 
2. A function may not invoke the main program. 
3. A function may not invoke another subprogram which, in tum, invokes that 

function. 
4. The actual arguments supplied to a function should not be changed by the action 

of that function. They should be used to prepare the single result delivered in the 
variable carrying the function's name. 

Other features will become apparent when we look at functions in more detail. 

11.1.3.2 Statement Functions This type of subprogram is considered to be a function 
because it behaves like a function: it delivers a single result regardless of the number of 
arguments supplied to it, and it is invoked just like a function (as described in the previous 
section). However, tpree basic restrictions make this a special type of function: 

1. The description of the function is limited to a single statement. 
2. The statement describing the function must be embedded in a main program or 

subprogram, and only that program or subprogram is able to invoke that function 
directly. 

3. The description of the function must appear in the program before any of that 
program's executable statements and after its declarations. 

Because of the second restriction, the statement function is termed an internal subpro­
gram. Figure 11.4 shows a main program in which a statement function is defined and then 
invoked. 

11.1.3.3 The Subroutine Subprogram This is the most general type of subprogram, in 
that there are no particular restrictions with regard to the number of arguments it will 
accept or the number of results it can return. Like the function, it is an external 
subprogram whose length and/or complexity is limited only by the programmer's require­
ments. 
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PROGRAM 
statement 
statement 

MAIN PR 
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CALL subnam (argl,arg2,arg3, ...... ,argn) 

PROGRAM 
statement 

MAIN PG 

statement 
END 

SUBROUTINE 
subnam ( dmarg l ,dmarg2,dmarg3, ...... ,dmargn) 

stfunc (dmargl,dmarg2, ..... ,dmargn) 

statement 
statement 

variable = stfunc (argl,arg2, ..... ,argn) 
statement 

END 

statement 
statement 
statement 

dmarg2 = expression 
dmarg3 = expression 
RETURN 
END 

FIGURE 11.4 Structural Relation Between 
a Main Program and a Statement Function. 

FIGURE 11.5 Structural Relation Between a Main Program 

and a Subroutine. 

Figure 11.5 shows the basic structural relationships between a subroutine subpro­
gram (which we shall call a subroutine from now on) and the main program with which it is 
associated. Each subroutine begins with a SUBROUTINE statement that gives the name of 
the subroutine as well as a list of dummy arguments. This opening statement serves 
exactly the same purpose as the FUNCTION statement does for the function subprogram. 
However, one important difference is that the subroutine name is not used by FOR­
TRAN as a variable in which to store a result computed by the subprogram. To do such a 
thing would make no sense: a subroutine may produce any number of results, and there is 
no consistent reason to select any particular one. Accordingly, the results, when com­
puted, are stored in arguments provided for that purpose. This storage of computed 
results is illustrated, in general terms, in Figure 11.5, where the results of some computa­
tions are assigned to two of the arguments (arg2 and arg3). Then, when the subroutine 
concludes by returning to the point of invocation, the values in those arguments are 
available for further use. 

Unlike a function, a subroutine is invoked by a separate statement: 

CALL subnam (argument list) 

This statement transfers control to the subroutine whose name matches that specified 
after the word CALL. The return (after completion) is to the statement in the invoking 
program or subprogram immediately after the CALL. Limitations on who may invoke 
whom are similar to those listed for functions. Subroutines and functions both may be 
associated, in any mixture, with a given main program. Moreover, subroutines may 
invoke functions and vice versa. 

Using the general concepts discussed earlier, this section develops the detailed techniques 
for building subprograms. 

11.2 CONSTRUC­
TION OF 
SUBPROGRAMS 
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11.2. 1 Definition of Functions 

One of the basic concerns in designing a function is to specify the type of data handled by 
that function. This must be done so that the values (arguments) supplied during invoca­
tion can be checked for consistency against the types expected by the function. For 
example, it is helpful to be able to detect an attempt to use a character string as an 
argument in a function designed to compute its logarithm. Such definitions are estab­
lished by means of the function name and its list of dummy arguments. 

11.2. 1. 1 The Function Name The data type of the value returned by a function is 
determined by the function name. That name is formed according to the same rules 
(Section 4.2.1) that govern variable names. One of these rules (Section 4.2.2.6) allows an 
automatic mechanism (a default) to associate a name with the REAL or INTEGER data 
type depending on the name's first letter. Consequently, if we allow the default to 
operate, the functions whose names begin with the letters A through Hor O through Z (for 
example, PCOMP) return a REAL result, and those whose names begin with I through N 
(for example, NFLAG) will return an INTEGER result. However, we shall declare function 
names explicitly, as has been our practice with other names. Moreover, the IMPLICIT 
NONE declaration will provide an additional reminder to do so. 

For external functions, this definition is given by specifying the data type as part of the 
FUNCTION statement: 

data type FUNCTION name (dummy argument list) 
For instance, the statement 

INTEGER*2 FUNCTION SETFLG (dmargl,dmarg2, .... ,dmargn) 
announces the fact that the function named SETFLG will return a sixteen-bit integer 
value. Similarly, the statement 

CHARACTER*20 FUNCTION WORD_BUILD ( dmargl,dmarg2, .... ,dmargn) 
proclaims that WORD_BUILD returns a 20-character string as its result. 

Since a statement function looks like an assignment statement, there is no place to 
specify a data type for the returned value. Instead, the type is defined along with the other 
declarations in the program. For instance, the sequence 

REAL 
INTEGER*2 
CHARACTER 

CORRECT_WT,OLDVAL,NEWVAL 
BALANCE, SERIAL 
CODE_NAME*l5,PART_ID*8 

BALANCE (dmargl,dmarg2, ... ,dmargn) = expression 
CODE_NAME (dmargl,dmarg2, ... ,dmargn) =expression 

defines BALANCE as being a statement function that returns an integer value, and 
CODE_NAME as being a statement function that returns a 15-character string. The other 
declared variables (CORRECT_WT, OLDVAL, NEWVAL, SERIAL, and PART_ID) are 
included just to show that the statement function names are not declared any differently 
from any other names. 

11.2.1.2 The Dummy Argument Ust The data type for each of a function's arguments is 
defined by the data type of each corresponding item in the dummy argument list. Note 
that the data type of a function name (and, therefore the data type of the delivered result) 
has nothing to do with the data types of any of the arguments. All of those items are 
independent of each other, and they are individually defined. 
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An external function's argument types are described by declarations inside that 

function. For instance, the statements 

REAL FUNCTION AMTDUE (EXDAYS) 
INTEGER EXDAYS 

tell us (and FORTRAN) that the function AMTDUE expects one integer argument and 

returns a real value. 
When it comes to statement functions, the data types for the dummy argument names 

are specified along with the other declarations in the same way as we handle the function 

name. For example, the sequence 

REAL 
INTEGER 
PAYVAL 

XVAL,YVAL,PAYVAL 
NREG,NSPECL 

(:XVAL,NREG,NSPECL) = expression 

defines a statement function PAYVAL that expects three arguments. The first is real and 

the last two are integer values. The returned value is real. 

Example 11. 1 We shall design a function subprogram that computes the amount of money to be 

charged for an overdue rental item. The function, to be named AMTDUE, is given an integer indicating the 

number of overdue days and the computation is done according to the following schedule: 

1 .00 dollar per day for the first 10 overdue days 

1.50 dollars per day for the next 5 overdue days 

1. 75 dollars per day for the next 5 overdue days 

2.00 dollars per day for the remaining overdue days 

We shall specify this process using the name EXDAYS as the dummy argument. The first version will be a 

relatively simple-minded "brute force" implementation to illustrate the construction of a complete 

function involving several processing statements: 

REAL FUNCTION AMTDUE (EXDAYS) 

INTEGER EXDAYS 

IF (EXDAYS . LE. 10) THEN 

AMTDUE = 1.0*EXDAYS 

ELSE IF (EXDAYS. LE. 15) THEN 

AMTDUE = 10.0 + l.50*(EXDAYS-10) 

ELSE IF (EXDAYS. LE. 20) THEN 

AMTDUE 17.5 + l.75*(EXDAYS-15) 

ELSE 

AMTDUE 

END IF 

END IF 

END IF 

RETURN 

END 

26.25 + 2.0*(EXDAYS-20) 

Now that we have this sequence of statements, there is an excellent opportunity to design a driver 

that will provide a simple but realistic environment for this function. Recall (Section 11.1.2.1) that we want 

the simplest possible vehicle that will do the job. Consequently, we need something that will invoke 

AMTDUE with a single integer argument. We do not care where that argument comes from or how it is 

produced. The point is that AMTDUE needs an integer argument, and we shall supply one in the easiest 

way we can. One possibility is simple assignment; another is initialization. Accordingly, our driver can look 

something like the one shown below. (Recall that a function is invoked in the same way as one of 

FORTRAN's built-in functions, described in Chapter 6.) 
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PROGRAM 
REAL 

DRVAMT 
FINE 

INTEGER*2 DAYS 
DAYS = 12 
FINE = AMTDUE (DAYS) 
PRINT*' I DAYS = I' DAYS, I PENALTY =I 'FINE 
STOP 
END 

This is a simple driver, but it does not offer a particularly complete test of AMTDUE. The result will tell us 
how AMTDUE behaves with an argument of 12. A more revealing driver (forth is example) would include a 
test for each of the ranges specified in the function. We can do that without really complicating the driver 
by making DAYS a four-element array, with each value falling inside one of the prescribed ranges: 

PROGRAM 
REAL 
INTEGER*2 
DATA 
DO I=l, 4 

DRVAMT 
FINE 
DAYS(4) ,I 
DAYS/8,11,17,32/ 

FINE = AMTDUE (DAYS (I) ) 
PRINT*, 'DAYS = I' DAYS (I)' I PENALTY 

END DO 
STOP 
END 

I ,FINE 

With a little further thought, we can produce the same result without the complications of the ELSE 
IF statements. Instead of testing the argument to see in which range it falls, we can compute the amount 
another way, by recognizing the fact that there will be at least a 1.00 daily charge for all of the overdue 
days, an additional 0.50 daily charge for all days over 10, an additional 0.25 daily charge for all days over 15, 
and a final addition, i.e., 0.25, for all days beyond 20. Following this approach, our function, greatly 
simplified, looks like this: 

1 

REALFUNCTION AMTDUE (EXDAYS) 
INTEGER*2 EXDAYS 
AMTDUE l.O*MAX (EXDAYS,0) + 0.5*MAX (EXDAYS-10,0) 

RETURN 
END 

+ .25*MAX (EXDAYS-15,0) + 0.25*MAX (EXDAYS-20,0) 

This still is a function named AMTDUE that expects a single integer argument and returns a real value. Note 
also that its behavior can be observed using the same driver that we specified before, without any 
changes. 

Since the actual computation (in this revised version) requires only a single expression, we can 
recode it as a statement function. Of course, we must recognize that this would restrict its use to the 
program in which it is placed. However, our purpose here merely is to show the physical possibilities. 
Accordingly, the part of the program of interest to us would appear as follows: 

PROGRAM 
REAL 
INTEGER*2 

EXllOl 
AMTDUE 
EXDAYS 

AMTDUE (EXDAYS) = l.O*MAX (EXDAYS,0) + 0.5*MAX (EXDAYS-10,0) 
1 + .25*MAX (EXDAYS-15,0) + 0.25*MAX (EXDAYS-20,0) 



CONSTRUCTION OF SUBPROGRAMS 

11.2.2 Definition of Subroutines 

The SUBROUTINE statement that begins each subroutine conveys the same type of 
information that the FUNCTION statement does for function subprograms. The only 
difference is that there is no particular connection between the subroutine's name and the 
type of information that it delivers. Accordingly, the general form for the SUBROUTINE 

statement is as follows: 

SUBROUTINE name (dmargl,dmarg2, ... dmargn) 

As is true for a function, the list of dummy arguments indicates the number and types of 
actual arguments to be supplied when the subroutine is invoked. (That number may be 
zero, in which case no dummy list is included.) Since the subroutine's name is not 
associated with a location in which a data value is to be stored, it does not have a specific 
data type and the name is not declared except in the SUBROUTINE statement. 

Example 11.2 We shall rewrite the simple computation in Example 11. 1 just to show the basic 

differences when the process is implemented as a subroutine: 

SUBROUTINE AMTDUE(EXDAYS,OVRAMT) 
REAL OVRAMT 
INTEGER*2 EXDAYS 
OVRAMT = 1.0*MAX (EXDAYS,0) + 0.5*MAX (EXDAYS-10,0) 

1 + .25*MAX (EXDAYS-15,0) + 0.25*MAX (EXDAYS-20,0) 

RETURN 
END 

Note that the subroutine version shows two dummy arguments and, therefore, expects two actual 

arguments. The first one represents the number of overdue days (as it did in the function). Now, in 

addition, a second argument must be provided in which the subroutine will store the computed result. 

A driver for this implementation need not be any more complicated than the one we wrote for the 

function in Example 11.1 . The invocation changes, but that really is all. (A subroutine is invoked by means 

of a CALL statement, as mentioned earlier.) 

PROGRAM 
REAL 
INTEGER*2 
DATA 
DOI= 1,4 

DRVAMT 
FINE 
DAYS(4),I 
DAYS /8, 11, 17, 32/ 

CALLAMTDUE (DAYS (I), FINE) 
PRINT*· 'DAYS = I' DAYS (I)' I PENALTY = I' FINE 

END DO 
STOP 
END 

The use of subprograms must be part of any discussion of their structure and properties. 
Since there already has been an opportunity to become acquainted with the basic forms 
for invoking the various types of subprograms that FORTRAN recognizes, we shall now 
examine these capabilities for invocation more closely. 

When a subprogram is invoked, FORTRAN sets up an association between each 
item in the dummy argument list and the corresponding value in the actual argument list. 
Then, every time a particular dummy argument name appears in the body of the 
subprogram, the program uses the appropriate actual argument. 

We shall illustrate this general association by defining and then using a simple 
statement function. The program segment is shown below. As in other examples, we 
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assume that the variables have values assigned to them as a result of activities not shown 
here: 

PROGRAM VECTCP 
REAL VSUM1,DARG1,DARG2,HORIZ,VERT, 

1 FHZ,FVT,W,MAXV,FINALV 
VSUM1(DARG1,DARG2) = SQRT(DARG1**2 + 0.8*DARG2**2) 

MAXV = 3.6/W + VSUMl(HORIZ,VERT) 

FINALV = MAXV - 0.72*VSUM1(FHZ,FVT) 
For a statement function, the body of the subprogram consists merely of the expression on 
the right hand side of the assignment operator. In this example, the computations tell us 
that, when VSUMl is invoked, the function will: 

1. Square the value in the first argument. 
2. Square the value in the second argument. 
3. Multiply the squared second argument by 0.8. 
4. Add the squared value of the first argument to the product developed in 3. 
5. Invoke the SQRT built-in function to compute the square root of the result 

obtained in 4. 
6. Store the result from 5 in VSUMl, thereby making it available to the expression 

from which the function was invoked. 
In response to the first invocation, the program associates HORIZ with DARGl and VERT 
with DARG2. As a result, the program does the computations by using HORIZ where 
DARGl appears in the description and VERT where DARG2 appears. Thus, it is 

SQRT(HORIZ**2 + 0.8*VERT**2) 

that is added to 3.6/W to produce the value eventually assigned to MAXV. Similarly, when 
the function is invoked for the second time, the program associates FHZ with DARGl and 
FVT with DARG2, and the computations take place accordingly. That is, SQRT (FHZ * * 2 + FVT* * 2 + FVT* * 2) is multiplied by 0. 72 and the result subtracted from MAXV. 

With this understanding, we can look at the invocation for each type of subprogram. 

11.3.1 Invocation of Functions 

Previous illustrations already have given us a reasonable grasp of the basic mechanism 
involved in using a function. Consequently, this section will serve to reinforce these 
concepts by means of an example. 

Example 11.3 The flow of a fluid through a pipe of some kind can be computed by the formula 
wtflow = density x area x velocity 

where wtflow is the flow in mass per unit time (e.g., lbs/second or kgms/minute), density is the fluid 
density in mass per unit volume (e.g., lbs/cubic foot, gms/cubic centimeter, etc.), area is the effective 
flow area of the pipe, and velocity is the fluid velocity (e.g., feet/second, meters/second, etc.), all in 
consistent units. We shall write a program that computes such flows for a variety of conditions in which 
the flow area is in the shape of an annulus (Figure 11.6) having outer diameter 02 and inner diameter Dl. 
Each set of input consists of a density (DENSITY), velocity (VELOCITY), o2, and Dl, in that order. The 
program will use these values to compute and print a mass flow, WT_FLOW. The area of an annulus, of 



FIGURE 11.6 Subroutine Diagram of Annulus Area, the Dif­

ference Between the Areas of Two Concentric Circles. 

"Define WTFLOW, DNSTY, VELOC, D2, and Dl." 
"Read the first values for DNSTY, VELOC, D2. and Dl." 
whilethe density is not zero: 

"Echo the input values just read." 
"Compute WTFLOW = DNSTY * VELOC * area; obtain the area by using the function FLAREA 

on D2 and Dl." 
"Print the effective area (FLAREA) and WTFLOW." 
"Read the next set of values for DNSTY, VELOC, D2, and D l ." 

endwhile 
"Stop." (a) 

Define WTFLOW,DNSTY, VELOC,D2,Dl 

Read DNSTY, VELOC, D2,Dl 

DO WHILE DNSTY 'l=O: 

Print an echo of the input 

WTFLOW 4-- DNSTY * VELOC * 

I FLAREA (D2, Dl) I 
PrintFLAREA,WTFLOW 

Read next input set 

End 

(b) 

FIGURE 11. 7 (a) Pseudocode for Example 3' s Main Program. (b) N-S Description of the Main Program for 

Example 11 .3. 285 
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course, is the difference between the area of the circles formed by the outer and inner diameters: 

annulus area= o. 7854 * (D2**2 - D1**2) 

The effective area is that area actually available for flow. For our purposes, we shall assume that the 
effective area depends on the ratioDl/D2: ifDl/D2 is less than 0.7, the effective area is 96.5 percent of 
the physical area; otherwise it is the same as the physical area. 

We shall design our structure so that the main program handles the input, output, and computation 
of the flow. When it comes to computing the effective area, the job will be turned over to a function 
FLOW _AREA. This function, using the two diameters as arguments, will determine whether a correction is 
needed for effective area or not, and the resulting area will be returned in FLOW_AREA. A density of zero 
will end the run. 

Even though this is a rather straightforward program, it still serves as a useful illustration of the 
techniques described in Section 11.1.2. Accordingly, we shall treat the main program and the function 
FLOW_AREA as two distinct items, each of which can be developed separately. To begin with, the main 

********************************************************* 
* EXAMPLE 11.3 * ********************************************************* 
* WT_FLOW: MASS FLOW IN KGM/SECOND * 
* DENSITY: FLUID DENSITY IN KGM/CUBIC METER * 
* VELOC: FLUID VELOCITY IN METERS/SECOND * 
* D2 ,D1: OUTER AND INNER DIAMETER * 
* IN METERS * 
* FLOW_AREA: THE NAME OF THE FUNCTION THAT COMPUTES* 
* THE EFFECTIVE FLOW AREA * 
********************************************************* 

PROGRAM 
IMPLICIT 
REAL 

EX1103 
NONE 
WT_FLOW,DENSITY,VELOC,D2,D1 

WRITE (1,*) 'ENTER INITIAL VALUES FOR DENSITY,VELOC,D2,D1' 
READ (1,*) DENSITY,VELOC,D2,D1 

DO WHILE (DENSITY .NE. 0.0) 
PRINT *, 
PRINT*, 'DENSITY= ',DENSITYY,' KGM PER CUBIC METER' 
PRINT*, 'VELOCITY= ',VELOC,' METERS PER SECOND' 
PRINT*, 'OUTER DIAMETER= ',D2,' METERS' 
PRINT*, 'INNER DIAMETER= ',D1,' METERS' 
WT_FLOW =DENSITY* VELOC * FLOW_AREA (D2,D1) 
PRINT*, 'EFFECTIVE FLOW AREA= ',FLOW_AREA,' SQUARE METERS~ 
PRINT*, 'MASS FLOW= ',WT_FLOW,' KGMS PER SECOND' 
WRITE (1,*) 'ENTER NEXT SET OF INPUT VALUES' 
READ (1,*) DENSITY,VELOC,D2,D1 

END DO 

STOP 
END 

******************************************************* 
* THE STUB FOR FLOW_AREA MERELY ACCEPTS THE TWO * 
* ARGUMENTS AND ASSIGNS A VALUE OF 1 FOR THE AREA .. * 
******************************************************* 

REAL FUNCTION FLOW_AREA (OUTERD,INNERD) 
REAL OUTERD,INNERD 

FLOW AREA 
RETURN 
END 

1. 00 

FIGURE 11.8 Statements for Example 11.3 (Full Main Program and Stub for FLAREA). 
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program is simple enough so that its general description (Figure 11.7) already comes close to a detailed 

representation. Our attention, then, can focus on providing a complete program structure from the very 

outset by devising a stub forFLOW_AREA. Since the main program expects to receive a value forthe area, 

the temporary FLOW_AREA must deliver one. An easy way to do that is to assign a value (rather than 

compute it). We shall assign a value of 1.00 for convenience. Thus, our stub for FLOW_AREA is nothing 

more than this single assignment, supported by the basic declarations and return. The statements are 

shown in Figure 11.8, together with those for the main program. 

FLOW_AREA needs to check the ratio of the two diameters to determine the coefficient's value. 

Once that is done, the computation of the effective area is straightforward. Figure 11.9 shows a basic 

representation of FLOW AREA in pseudocode and N-S forms. FLOW_AREA requires some attention 

because of some special things that were done in it. Note that, although it is set up with two dummy 

arguments (OUTERD and INNERD), a third variable name (COEFF) appears in the function's REAL 

declarations. The fact that COEFF is not in the list of dummy arguments makes it different from OUTERD 

and INNERD; it is an actual variable that is created for use in and by the function. The information assigned 

to that variable is needed by the function in preparing its final result, but it is not delivered to the invoking 

program. In fact, COEFF is not available outside the function (the invoking program does not "know" it is 

there), and it does not even exist once FLOW_AREA completes its processing. Each time FLOW_AREA is 

invoked, storage for COEFF is allocated once again, to be used while FLOW_AREA executes, and to be 

wiped out once FLOW_AREA returns. (The same is true with the parameter PIOVR4.) Such variables 

(there may be as many as the subprogram needs, in any mixture of types) are called local variables. There 

are ways to prolong the existence of such variables, but they are used for special purposes, and we shall 

not discuss them until the next chapter. Figure 11.10 gives a more detailed version of FLOW_AREA that 

leads directly to the statements themselves. 

Independent development of FLOW_AREA requires a simple driver. In this case, it needs only to 

supply FLOW__AR.EA with two arguments (diameters) and receive an area value from the function. This 

driver is shown as part of Figure 11.11, along with the statements for FLOW_AREA. (A more elaborate 

driver might be designed to invoke FLOW_AREA several times with a succession of argument values.) 

Once we are convinced that the components work, the overall construction of the final program is 

completed by replacing the FLOW_AREA stub (from Figure 11.8) with the full version (from Figure 11.11) 

and throwing away the driver (from Figure 11.11 ). 

"Define (dummy) arguments." 

"Compute proper coefficient based on ratio of diameters." 

"Compute effective area = Pi/ 4 * coefficient * 

((outer diameter)**2-(inner diameter)**2)." 

"Return to invoking program." 

(a) 

Define (dummy) arguments for diameters 

Select coefficient based on diameter ratio 

TT 
(coefficient) (outerd 

2 
- innerd 

2
) Compute area = -

4 

Return 

(b) 

FIGURE 11.9 (a) General Description of FLAREA for Example 11 .3 (b) Basic N-S Representation of FLAREA. 
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"Define (dummy) arguments OUTERD and INNERD, local variable COEFF." 
if 

the ratio of inner to outer diameter is less than 0.7 
then 

"Set COEFF to 0.965." 
else 

"Set COEFF to 1.0." 
endif 
"Compute FLAREA = (3.14159/4)*COEFF*(OUTERD+INNERD)* 

"Return to invoking program." 
(a) 

FLAREA: 

Define dummy arguments OUTERD, INNERD 

local variable COEFF 

INNERD/OUTERD < 
no yes 

COEFF+-1 COEFF' 4- 0.965 

FLAREA-4-- 0.7854 (OUTERD2 - INNERD2) 

RETURN 

End 

(b) 

FIGURE 11.10 (a) Detailed Description of FLAREA for Example 11 .3. (b) Detailed N-S Representation of 
FLAREA. 

11.3.2 Invocation of Subroutines 

The basic use of the CALL statement already has been introduced, so that our first look at 
subroutine usage is almost complete. (We shall examine some further concepts relating to 
subprogram arguments in the next chapter.) Accordingly, we can summarize by con­
structing an example main program/subroutine structure. 

Example 11.4 We shall expand the procedure in Example 11 .3 by imposing a small additional 
complication with regard to the effective flow area (FLOW_AREA in the previous example). This time, 
instead of having a coefficient of either 1 or 0.965, the coefficient will depend on the ratio of inner 
diameter to outer diameter according to the formula 

COEFF = 1.0 - 0.0637*(INNERD/OUTERD) ** 1.87 

For each set of input, the program is to print the coefficient, as well as the other items printed in the 
previous example. 
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************************************************************* 

* DRIVER FOR FLOW_AREA * 
************************************************************* 

PROGRAM 
IMPLICIT 
REAL 

D2 = 4. o· 
D1 = 2.0 

FLAD RV 
NONE 
D2,D1 ,AREA 

AREA= FLOW_AREA (D2,D1) 
PRINT*, 'D2:',D2 
PRINT *, 'D1:' ,D1 
PRINT*, 'AREA FROM FLOW_AREA:',AREA 
STOP 
END 

************************************************************* 

* FLOW_AREA * 
************************************************************* 
* THE FUNCTION FLOW_AREA COMPUTES THE EFFECTIVE AREA OF AN* 
* ANNULUS HAVING OUTER DIAMETER OUTERD AND INNER DIAMETER * 
* INNERD. THE FORMULA IS * 
* FLOW_AREA = COEFF*.7854*(0UTERD**2-INNERD**2) * 
* .7854 IS EXPRESSED AS THE PARAMETER PIOVR4 AND THE * 
* DIFFERENCE OF THE SQUARED DIAMETERS IS REWRITTEN AS * 
* (OUTERD+INNERD)*(OUTERD-INNERD). * 
************************************************************* 

* 

REAL FUNCTION 
REAL 
PARAMETER 

FLOW_AREA (OUTERD,INNERD) 
OUTERD,INNERD,COEFF,PIOVR4 
(PIOVR4=3.14159/4.0) 

IF (INNERD/OUTERD .LT. 0.7) THEN 
COEFF = 0.965 

ELSE 
COEFF = 1.0 

END IF 
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FLOW_AREA = COEFF * PIOVR4 * (OUTERD+INNERD) * (OUTERD-INNERD) 
RETURN 
END 

FIGURE 11.11 Statements for FLAREA and Its Driver. 

In line with the new requirement, our subprogram now will be a subroutine that uses the two 
diameters to determine a coefficient and, in turn, an effective area. Accordingly, the subroutine, which we 
shall name ANNLAR, will require four arguments: the two diameters, a place to store the computed 
coefficient, and a place to store the computed effective area. The program is shown in Figure 11.12. (The 
flowchart and pseudocode change little; the same is true with the driver and stub.) 

11.3.3 Multiple Entries in a Subprogram 

When a multistatement function or subroutine is invoked, execution of the subprogram 
begins with the first executable statement following the FUNCTION or SUBROUTINE 
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******************************************************** 
* EXAMPLE 11 .4 * ******************************************************** 
* WT_FLOW: MASS FLOW IN KGM/SECOND * 
* DENSITY: FLUID DENSITY IN KGM/CUBIC METER * 
* VELOC: FLUID VELOCITY IN METERS/SECOND * 
* D2,D1 THE OUTER AND INNER DIAMETERS, * 
* RESPECTIVELY, IN METERS * 
* FLOW_AREA: THE EFFECTIVE FLOW AREA, IN SQ. METERS* 
* FLCORR: THE FLOW COEFFICIENT * 
* ANNLAR: A SUBROUTINE FOR COMPUTING FLOW AREA * 
******************************************************** 

PROGRAM 
IMPLICIT 

EX1104 
NONE 

REAL WT_FLOW,DENSITY,VELOC,D2,D1,FLOW_AREA,FLCORR 
CHARACTER*6 BLANKS 
PARAMETER (BLANKS=' ') 
WRITE (1 ,*) 'ENTER INITIAL VALUES FOR DENSITY,VELOC,D2,D1' 
READ (1,*) DENSITY,VELOC,D2,D1 

DO WHILE (DENSITY .NE. 0.0) 
PRINT *, BLANKS 
PRINT*, 'DENSITY= ',DENSITY,' KGM PER CUBIC METER' 
PRINT*, 'VELOCITY= ',VELOC,' METERS PER SECOND' 
PRINT*, 'OUTER DIAMETER= ',D2,' METERS' 
PRINT*, 'INNER DIAMETER= ',D1,' METERS' 
CALL ANNLAR (D2,D1,FLCORR,FLOW_AREA) 
WT_FLOW = DENSITY * VELOC * FLOW_AREA 
PRINT*, 'FLOW COEFFICIENT= ',FLCORR 
PRINT*, 'EFFECTIVE FLOW AREA= ',FLOW_AREA,' SQUARE METERS' 
PRINT*, 'MASS FLOW= ',WT_FLOW,' KGMS PER SECOND' 
WRITE (1,*) 'ENTER THE NEXT SET OF INPUT VALUES' 
READ (1,*) DENSITY,VELOC,D2,D1 

END DO 

STOP 
END 

*********************************************•******* * THE SUBROUTINE ANNLAR COMPUTES A FLOW COEFFICIENT* 
* AND AN EFFECTIVE FLOW AREA FOR AN ANNULUS WITH * 
* OUTER AND INNER DIAMETERS OUTERD AND INNERD, * 
* RESPECTIVELY. THE FLOW COEFFICIENT (COEFF) IS * 
* COMPUTED AS 1 .0-0.0637*(INNERD/OUTERD)**1.87 * 
***************************************************** SUBROUTINE ANNLAR (OUTERD,INNERD,COEFF,AREA) 

PARAMETER (PIOVR4=0.25*3.14159) 
REAL OUTERD,INNERD,COEFF,AREA,RATIO 
COEFF = 1.0 - 0.0637*(INNERD/OUTERD)**1.87 
AREA = COEFF * PIOVR4 * (OUTERD+INNERD) * (OUTERD-INNERD) 
RETURN 
END 

FIGURE 11.12 FORTRAN Statements for Example 11.4. 



*********************************************************** 

* THIS PROGRAM CONSISTS OF A MAIN PROGRAM (CMPADJ) * 

* THAT USES TWO SUBPROGRAMS: A FUNCTION NAMED COMPAT * 

* WITH SECONDARY ENTRY POINT COMPAT1, AND A SUBROUTINE * 

* NAMED EXPLR WITH SECONDARY ENTRY POINT EXPLR1. * 

* WHEN EXPLR IS INVOKED WITH ITS PRIMARY ENTRY POINT, * 

* IT REQUIRES THREE ARGUMENTS; A CALL TO EXPLR1 REQUIRES * 

* FOUR ARGUMENTS. SIMILARLY, AN INVOCATION OF THE * 

* FUNCTION COMPAT (THE PRIMARY ENTRY POINT) REQUIRES TWO * 

* ARGUMENTS WHILE AN INVOCATION WITH THE SECONDARY ENTRY * 

* POINT (COMPAT1) REQUIRES ONLY A SINGLE ARGUMENT. * 

*********************************************************** 

PROGRAM 
REAL 
INTEGER*2 

11 statement 

CMPADJ 
OLDVAL,NEWVAL,RES,FACTOR,INTVAL,FINAL 

TRYNUM,SEQNUM 

12 RES = FACTOR * COMPAT (OLDVAL,NEWVAL) 

13 statement 

20 statement 
21 CALL EXPLR (RES,INTVAL,TRYNUM) 

22 statement 

28 statement 
30 CALL EXPLR1 (RES,INTVAL,NEWVAL,TRYNUM) 

40 FINAL = RES * COMPAT1 (NEWVAL) 

STOP 
END 

REAL FUNCTION 
REAL 

101 statement 
102 statement 

ENTRY 
111 statement 

COMPAT (RVAL1,RVAL2) 
RVAL1,RVAL2,COMPAT1 

COMPAT1 (RVAL2) 

COMPAT = expression 
115 RETURN 

END 

SUBROUTINE 
REAL 
INTEGER*2 

201 statement 

ENTRY 
205 statement 

RETURN 
END 

EXPLR (RV1,IN1,IN2) 
RV1,RV2 
IN1,IN2 

EXPLR1 (RV1,IN1,RV2,IN2) 

FIGURE 11.13 Subprogram Structure with Multiple Entry Points. 291 
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statement and the declarations. Sometimes it is desirable to be able to begin a subpro­
gram's processing from more than one point in that subprogram. This is easily done in 
FORTRAN by providing a subprogram with as many different entry points as the 
situation requires. Each entry point has its own name and its own argument list, so that 
the invocation process is the same regardless of which entry point the invoking program 
specifies. 

Figure 11.13 shows exactly how this works. Note that the main program makes two 
CALLS, each with its list of arguments. The invocations look ordinary enough, and that is 
exactly what they are. In fact, there is nothing in the CALLS themselves to persuade us 
that they are not invoking two different subroutines; nothing, that is, until we look at the 
accompanying subroutine. We see that, in addition to the regular SUBROUTINE state­
ment that begins the subprogram, there is an ENTRY statement. This specifies its own 
entry name (which, of course, must be different from the name given in the SUBROUTINE 
statement) and its own list of dummy arguments. These may or may not be the same as 
those attached to the SUBROUTINE statement, depending on what the subprogram is 
designed to do. 

The same is true in Figure 11.13 wih regard to the function invocations. The name 
used in each invocation corresponds to a name associated with the subprogram by 
declaring it either in the FUNCTION statement that begins the subprogram or in an 
ENTRY statement somewhere inside it. 

Having established this framework, we can take a closer look at the processing in 
Figure 11.13: 

1. COMPAT is invoked as part of the computing in statement 12. Accordingly, 
processing in that function begins with statement 101 and proceeds until the 
RETURN is executed (statement 115). 

2. The main program continues in sequence, through statement 20. 
3. Statement 30 invokes the EXPLR subroutine at its primary entry point, so that this 

subprogram begins its work at statement 201. Control returns to statement 22 
when EXPLR concludes. 

4. The main program continues through statement 28. 
5. At statement 30 the main program invokes EXPLR a second time. In this case, 

however, the CALL specifies EXPLRl, a secondary entry point. In response, 
processing in EXPLR now starts at statement 205 and proceeds from there to the 
conclusion of the routine. Note that the argument list forEXPLRl differs from that 
for EXPLR. This is legal, as long as all the dummy arguments are declared and their 
use is defined in the routine. 

6. The main program continues to statement 40, at which point it invokes COMPAT a 
second time, using the secondary entry point COMPTl. Processing, then, proceeds 
from statement 111 through the remainder of the function, followed by a return to 
the main program. 

7. The main program concludes. 

Supporting this usage are the declarations in the subprograms themselves. Thus, COMPTl 
is defined with the ENTRY statement in the function COMPAT. Note that the name also 
appears as a REAL declaration to indicate that the function will return a REAL value when 
invoked as COMPTl. The programmer can design the function so that if it always 
computes a result of the same data type (regardless of the entry point), that result can be 
delivered either in the variable having the function name or the entry point name. Doing 
this is simply a matter of assigning the result to the appropriate variable prior to the 
RETURN. Of course, if the result's data type is different for each entry point (this is legal), 
the subprogram must be designed to place the result in the variable declared with the 
appropriate data type. 
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An alternate entry point may be placed almost anywhere in a subprogram. There are 
two basic restrictions: 

1. The ENTRY statement cannot be placed in the middle of a DO loop. 

2. It cannot be placed in the middle of an IF block. 

The point should be made here that, in general, the use of multiple entry points tends to 
make the use of a subprogram more complicated. That is, the invoking program has to 
"know" more about how the subprogram works and exactly under what conditions each 
entry is used. Consequently, an effort should be made to provide a subprogram with a 
single entry. It often is better to keep such decisions buried inside the subprogram as part 
of its processing details. What the outside world sees, then, is a simple structure with a 
single entry point. An example of this practice is seen in Chapter 6, where we discussed 
the unification of FORTRAN's built-in functions so that each could be invoked with a 
single entry point (function name) regardless of the arguments' data types. 

11.3.4 Multiple Returns from a Subprogram 

There are many occasions where it is convenient to conclude processing at several 
different places in a subprogram. A typical case is one in which the processing in the 
subprogram may or may not be performed depending on the outcome of some test. This is 
illustrated by the subprogram in Figure 11.14. 

The function EV AL takes three real arguments and produces a real number as its 
result. If either of the first two arguments is zero, or the product of the first two arguments 
is not less than the square root of the third, no further computations are to be performed. 
Instead, the program that invokes EVAL decides what to do next depending on the value 
EVAL delivered. The version shown in Figure ll.14(a) handles this by branching to the 
RETURN statement, thereby avoiding the computation of EV AL. An alternative (Figure 
11.1 (b)) replaces the GO TO statement with an immediate return. 

From a structural point of view, the version in Figure ll.14(a) is preferred since it 
provides the subroutine with a single point from which it returns. 

REAL FUNCTION 
REAL 
EVAL = 0.0 

EVAL (DARG1,DARG2,DARG3) 
DARG1,DARG2,DARG3 

IF (DARG1 .EQ. 0.0 .OR. DARG2 .EQ. 0.0 
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1 .OR. DARG1*DARG2 .GE. SQRT(DARG3) ) 
EVAL = (DARG1 ** 0.878 + LOG10(DARG2 ** 

100 RETURN 

GO TO 100 
2)}/(DARG1*DARG2+DARG3) 

END 

REAL FUNCTION 
REAL 
EVAL = 0.0 

(a) 

EVAL (DARG1,DARG2,DARG3) 
DARG1,DARG2,DARG3 

IF (DARG1 .EQ. 0.0 .OR. DARG2 .EQ. 0.0) 
1 .OR. DARG1*DARG2 .GE. SQRT(DARG3) ) RETURN 

EVAL = (DARG1 ** 0.878 + LOG10(DARG2 **2))/{DARG1*DARG2+DARG3) 
RETURN 
END (b) 

FIGURE 11.14 Use of Multiple Returns in a Subprogram. 



294 INTRODUCTION TO SUBPROGRAMS 

11.3.5 Multiple Destinations for Returns from a Subroutine 

In the previous section we saw that it is possible to return to an invoking program from 
several different points in a subprogram. Note that, for a given usage of a subprogram, all 
these points return control to a single place in the invoking program. 

FORTRAN has an additional feature that allows the construction of a subroutine 
(but not a function) in which each RETURN statement may specify a different destination 
in the program that called the subroutine. It is mentioned here to indicate its existence; 
however, its discussion is deferred to an appendix because it is not considered a particu­
larly helpful feature. In fact, its use encourages a tendency to complicate structures that 
ought to be kept simple. It is a much sounder practice to design subroutines that return to 
the place from which they are called, so that we preserve the idea of a subroutine 
presenting a package whose processing can be thought of as a single operation. Once the 
subroutine returns, the calling program then can take whatever action it needs to take 
depending on the outcome of the subroutine's processing. 

11.4 SUMMARY We can simplify program construction by treating certain tasks as individual conceptual 
operations. Once these have been identified, they can be isolated and designed as 
individual subprograms. Production of subprograms need not be tied to any specific 
program, so that once a subprogram is developed, it can be made available, as a unit, to 
any number of programs requiring its services. 

FORTRAN recognizes three types of subprograms: 
1. A statement function in which a single assignment statement describes the com­

putations. The statement is placed inside the program using (invoking) the function. A 
statement function may be designed to operate on any number of data items (arguments), 
but it produces a single value each time it is invoked. The general form is 

name (dummy argument, dummy argument, etc.) = expression 
2. A function consisting of any number of statements. Like a single statement 

function, this type of subprogram can operate on any number of arguments, producing a 
single result. Unlike the single statement function, this type of subprogram must appear 
outside other programs (see Figure 11.1). The general form is 

FUNCTION name (dummy argument, dummy argument, etc.) 

statements 

name = expression 

RETURN 

END 

3. A subroutine, the most general type of subprogram. This structure accepts any 
number of arguments and can be designed to return any number of results. Subroutines 
cannot appear inside any other programs and have the following general form: 

SUBROUTINE name (dummy arg, dummy arg, etc.) 

statements 

RETURN 

END 
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Subprograms may be invoked by a main program or by other subprograms. A statement 

function may be invoked only by the program in which it is placed. No subprogram may 

invoke itself. When a subprogram is invoked, the invoking program supplies a list of 

actual arguments. These are matched, item for item, against the list of dummy arguments 

given in the subprogram's definition. Thus, the first actual argument is used wherever 

there is a reference to the first dummy argument, and so on. 

A function (of either type) is invoked as part of all of an expression. For example, 

Y = 2. 42 * BVAC (Xl, X2, X3) 

invokes the functionBVAC. The result (stored in a variable nameBVAC) is delivered to the 

expression, where it is multiplied by 2.42 and the value thus produced is assigned to Y. 

A subroutine is invoked by a separate statement such as 

CALL subname (argument, argument, etc.) 

Transfer from a subprogram back to the point at which it was invoked is handled 

automatically within FORTRAN by means of the RETURN statement. 
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1. We have the following sequence of statements: 2. Consider the following sequence of 

statements: 

PROBLEMS 

REAL 01,02,03,RSLT 

READ (1, *) 01, 02, 03 

RSLT = SQRT (01*01 + 02*02 +03*03) 

PRINT*, 01, 02, 03 

Rewrite the statements so that the same process­

ing is done with the value stored in RSLT after 

being computed by a statement function named 

VECTR. (Include the statement function as well 

as its invocation.) 

CHARACTER 

READ (1, *) WDl 

WD2 = WDl//'EO' 

PRINT*, WDl, WD2 

WD1*4, WD2*6 

Rewrite the statements so that the same processing is 

done with the value being stored in WD2 after being 

developed in a statement function named PAST. (In­

clude the statement function as well as its invocation.) 

3. Here is a sequence of statements: (a) Rewrite the statements so that the same processing is 

REAL 

INTEGER*2N 

READ (1, *) A, B, C 

N = 2 

A,B,C,NETVAL 

IF (A/B. LT. 0. 41) N=3 

NETVAL = SQRT(A**N + B**N + C**N) 

PRINT*, A, B, C, N, NETVAL 

4. We have the following statements: 

done with the value being stored in NETV AL after it is 

developed in a function named V ADJ: ST. 

(b) Rewrite the statements so that the same processing is 

done with NETV AL being developed in a subroutine 

named VAJSUB. 

INTEGER*2 SUBJCT,AGEYRS,CATEG 

CHARACTER*7 CLASS 

READ ( 1, *) SUBJ CT, AGEYRS 

CATEG = 0 
IF (AGEYRS . LT. 7) THEN 

CATEG = 1 

CLASS = 'TOT' 

ELSE IF (AGEYRS.LT. 13) THEN 

CATEG = 2 

CLASS = 'SUBTEEN' 

ELSE IF (AGEYRS.LT. 20) THEN 

CATEG = 3 

CLASS = 'TEEN' 

ELSE 
CATEG = 4 
CLASS I ADULT I 

END IF 

END IF 
PRINT* SUBJCT, AGEYRS, CATEG, CLASS 
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(a) Rewrite the statements so that the same processing is done with the values in CATEG and CLASS being 
assigned in two functions named AGECAT and AGECLS, respectively. 

(b) Rewrite the statements so that the same processing is done with the values in AGECAT and CLASS 
having been computed in a subroutine named AGEGRP. 

5. For each of the following program outlines, list the sequences in which the statements are executed. (The 
statements are all labeled for convenient reference.) 

(a) PROGRAM Pl 
1 SFl(dummy arguments) = expression 
2 SF2( dummy arguments) = expression 
3 statement 
4 statement 
5 result = SFl (arguments 
6 statement 
7 result = SF2 (arguments) 
8 statement 
9 statement 

10 result = SF2 (arguments) + SFl (arguments) 
11 statement 

END (b) 

(c) PROGRAM Pl 
1 statement 
2 result = Fl (arguments) 
3 CALL Sl (arguments) 
4 result = Fl (arguments) 
5 CALL Sl (arguments) 
6 CALL Sl (arguments) 

END 
FUNCTION Fl (dummy arguments) 

11 SFl (dummy arguments) = expression 
12 statement 
13 statement 
14 result = SFl(arguments)+SFl(arguments) 
15 statement 
16 RETURN 

END 
SUBROUTINE Sl (dummy arguments) 

21 statement 
22 statement 
23 result = Fl (arguments) 
24 RETURN 

END 

PROGRAM 
1 statement 
2 statement 

Pl 

3 result = Fl (arguments) 
4 statement 
5 result = F2 (arguments) + Fl (arguments) 
6 statement 

END 

FUNCTION F2 (dummy arguments) 
11 statement 
12 statement 
13 statement 
14 result = Fl (arguments) 
15 RETURN 

END 

FUNCTION Fl (dummy arguments) 
21 statement 
22 statement 
23 RETURN 

END 



( d) PROGRAM Pl 
1 statement 
2 statement 
3 result = Fl (arguments) 
4 result = F2 (arguments) 
5 CALL Sl (arguments) 
6 statement 
7 CALL Sl (arguments) 

END 

SUBROUTINE Sl (dummy arguments) 

11 statement 
12 statement 
13 CALL S2 (arguments 
14 result = Fl (arguments) 
15 RETURN 

END 

FUNCTION Fl (dummy arguments) 
21 statements 
22 CALL S2 (arguments) 
23 result = F2 (arguments) 
24 RETURN 

END 

FUNCTION F2 (dummy arguments) 
31 statement 
32 statement 
33 statement 
34 RETURN 

END 

SUBROUTINE S2 (dummy arguments) 

41 statement 
42 statement 
43 statement 
44 RETURN 

END 

PROBLEMS 

6. Show the output produced by the PRINT statement(s) in each of the following sequences of statements: 

(a) REAL X, Y, Z, A, B, SQD 
SQD (A, B) = 0. 2 * (A+B) * (A-B) 
x = 27.0 
y = 18.0 
Z = SQD(Y,X) 
PRINT* X, Y, Z 

(b) REAL R, S, T, FWD, BKWD, A, B 
FWD(A,B) = 2.0*A + B*B 
BKWD(A,B) = 1.0/(B + A*A) 
R = 4.5 

s = 10.0 
T = FWD(R,S) + BKWD(S,R) 
PRINT* R, S, T 

(c) REAL X, Y, R 
INTEGER*2J 
x = 2.4 
y = 3.6 

J = 3 
R = 0.5*BELV(X,Y,J) - BELV(Y,X,J) 
PRINT * X, Y, J, R 

END 

REALFUNCTION BELV(Y,J,X) 
REAL Y, J 
INTEGER*2 X 
IF (Y. GT. J) THEN 

BELV = {2.0*Y-l.8*J)**X 
ELSE 

BELV = (2.2*J-1.8*Y)**X 
END IF 

RETURN 
END 
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(d) REAL A, B, X, G, H 
INTEGER*2 K 
A 3.1 
B 4.0 
x 5.0 
K 3 
PRINT* A, B, X, K 
CALLCHMPAX (A, B, X, K, G, H) 
PRINT* G,H 

END 

SUBROUTINE CHMPAX (Al, A2, A3, A4, A5, A6) 
REAL Al,A2,A3,A5,A6 
INTEGER*2 A4 
A5 = Al + A2*LOG(A3) 
IF (A5. LT. Al+A2) A4=A4-l 
A6 = A2*A5**A4 
RETURN 
END 

( e) INTEGER* 2 NV 
CHARACTER*lO Wl, W2 
Wl = 'PROVINCIAL' 
CALL CHMP (Wl, W2, NV) 
PRINT*, Wl, NV, W2 

END 

SUBROUTINE CHMP (Cl, C2, I) 
INTEGER*2 
CHARACTER 
I = 0 
CV= 'AEIOU' 
DO 12 J = 1, 10 

K = 11-J 

I,J,K,L 
Cl*l0,C2*10,CV*5 

C2(K:K) = Cl(J:J) 
DO 14 L = 1, 5 

IF (Cl (J: J) . EQ. CV (L: L)) I=I+l 
14 CONTINUE 
12 CONTINUE 

RETURN 
END 

7. Write a statement function named LOG9 that operates on a real argument to produce its logarithm to the base 9. Note that 

log,i of a number = (log10 of that number)/(log10 of 9) 

8. Write a statement function LOGB that operates on two arguments: the first, a positive integer, represents a base; the second is a positive real number. LOGB is to return the logarithm of the second argument using the first argument as the base. 

9. The specifications in Problem 8 imply that the arguments are guaranteed to make sense. (That is, the base will be a positive integer and so will the number whose logarithm is desired.) In this problem, we remove that guarantee. As a result, the subprogram must do its own testing to make sure that it is computationally possible to perform the requested operations using the arguments given to it. Obviously, then, there will be too much processing to construct this as a statement function. Instead, write a subroutine named 
ANYLOG that uses the same two arguments as LOGB in Problem 8, along with another two arguments for results: the first of these is a real variable into which ANYLOG will place the results of its computations, and the second is an integer variable to which ANYLOG will assign a value that indicates what happened. 
(1) If the first two arguments are positive, the third argument will contain the computed logarithm, and the fourth argument will contain the integer value O to indicate that the computation proceeded normally. 
(2) If the first argument (the integer defining which base to use) is positive and the second argument is not, the third argument is set to -1. OE-20 and the fourth argument's value will be -1. 
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(3) If the first argument is not positive and the second argument is, the third argument is set to-1. OE-2 O 

and the fourth argument's value will be -2. 

( 4) If both of the first two arguments are not positive, the third argument (as in the previous two cases) is 

to be -1. OE-2 O and the fourth argument's value will be -3. 

Test your subroutine with the following main program: 

c 

PROGRAM CH11P9 
IMPLICIT NONE 
REAL VALUE,LOGVAL 
INTEGER*2 BASE, STATUS 
READ (1, *)VALUE, BASE 
DO WHILE (VALUE. NE. 0. 0 . AND. BASE . NE. 0) 

CALLANYLOO (BASE, VALUE, LOGVAL, STATUS) 

PRINT*• BASE, VALUE, LOGVAL, STATUS 

READ (1, *)VALUE, BASE 

END DO 

PRINT*· 'END OF RUN. I 

STOP 
END 

Here are some suggested input values: 

2.0 
2.0 
4.0 

12.5 
-61.2 
-3.0 

0.0 

2 
4 

11 
0 

12 
-6 

0 

10. There are many situations in which data require extra protection. For example, a credit card system must 

make sure that transactions are accepted for valid account numbers and rejected for those that are not 

valid. One technique that is used for this purpose converts data values to self-checking numbers. A 

self-checking number is formed by using the original data value to compute an extra digit. This check digit 

is attached to the original value and the new, self-checking number now becomes the data value that is 

stored and used: 

• self-checking value 

check digit computation 

Then, when a self-checking number is submitted for validation, the program removes the check digit 

and uses the remaining value to recompute the check digit. If the newly computed check digit matches the 

one that was submitted as part of the data, the number is validated; otherwise, it is rejected. 

There are many ways to compute check digits. One that finds frequent use is the modulus 11 method. 

Each digit in the original value is given a weight, with the rightmost digit receiving a weight of 2, the next 

one receiving a weight of 3, and so on. The computation proceeds as follows: 

(1) Each digit is multiplied by its weight. 
(2) The results from step 1 are added together. (We shall call this sum SUMWTS for convenience.) 

(3) The value MOD ( SUMWTS, 11) is computed. (We shall call this value MODSUM for convenience.) 

( 4) The check digit is 11-MODSUM. If this result is greater than 9, the check digit for such cases is obtained 

by adding the two digits together. Thus, ifMODSUM comes out to be 0, 11-0=11, and the final check 

digit is l+l or 2. 
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To see how this works, suppose a credit company assigns a five-digit identification number to each of its 
cardholders. Let us pick one, say, 20781. Following the steps outlined before, 
SUMWI'S = 2*1 + 3*8 + 4*7 + 5*0 + 6*2 = 66 
MODSUM = MOD(66,11) = 0 
Check digit: 11-0 = 11; 1+ 1=2. 
Thus, the 2 is attached to the original value and the self-checking identification number becomes 207812. 
This is the number that the cardholder would receive and use. Then, when the cardholder charges 
something to that account, the program reads the 207812, removes the (rightmost) 2, and recomputes the 
check digit. Since result (2) agrees with the value computed originally, the number is validated. A 
counterfeiter trying to use a fake card with a number like 207813, for instance, would fail because the 
check digit would be wrong. 

Write a function named CHKDGT that performs the modul us-11 computation on a six-digit positive 
integer and returns a one-digit integer representing a check digit. To enable your function to execute, run 
it with the following main program. Note that this program asks for a check digit and uses it to build a 
seven-digit value: 
PROGRAM CllPlO 
IMPLICIT NONE 
INTEGER*2 OLDNUM,NEWNUM 
READ ( 1, *) OLDNUM 
DO WHILE (OLDNUM. NE. 0) 

NEWNUM= lO*OLDNUM + CHKDGT(OLDNUM) 
PRINT *, OLDNUM, NEWNUM 
READ (l,*), OLDNUM 

END DO 
PRINT*• 'END OF RUN. ' 
STOP 
END 

Here are some suggested input values: 
111111 
000369 
707070 
707072 
000000 

11. Using the technique described in the previous problem, write a function named CHKVAL that is designed 
to report on the validity of a seven-digit self-checking number. Each time it is invoked, CHKVAL returns a 
value of 1 if its seven-digit argument is valid and a O if it is not. For instance, CHKVAL (7070748) would 
return a value of 1, andCHKVAL (7070346) would return a value of 0. (NOTE: arathereffectivewayto 
construct CHKV AL is for CHKV AL to remove the rightmost digit from its argument and use the resulting 
six-digit value as an argument when it invokes CHKDGT, the function described in Problem 10.) Here is a 
main program that can be used for testing CHKV AL: 
PROGRAM CllPll 
IMPLICIT NONE 
INTEGER*2 NEWNUM, STATUS 
CHARACTER*? REPORT 
READ ( 1, *) NEWNUM 
DO WHILE (NEWNUM. NE. 0) 

STATUS = CHKVAL(NEWNUM) 
IF (STATUS. EQ. 1) THEN 

REPORT 'VALID' 
ELSE 

REPORT 
ENDIF 

'INVALID' 

PRINT *, NEWNUM, REPORT 
READ ( 1, *) NEWNUM 

END DO 

PRINT*• 'END OF RUN.' 
STOP 
END 



PROBLEMS 

12. Not all systems place the check digit at the end of a self-checking number. To help make things a little 

more complicated for the potential counterfeiter, rewrite the CHKDGTfunction (Problem 10) so that the 

computed check digit becomes the fourth digit in the new value. For instance, an argument of 207416 

would produce a check digit of 8, and the final (self-checking) value, then, would be 2078416. 

13. Write the function described in Problem 11 as a subroutine named VALID whose first argument is a 

seven-digit integer variable to be validated. The check digit is returned in the second argument and the 

status ( 1 for valid, O for invalid) is returned in the third argument. Change the main program given in 

Problem 11 so that this subroutine can be run under it. 

14. Generalize the function described in Problem 10 so that it will produce a self-checking number for an 

argument whose size (i.e., number of digits) is not known until the function actually is invoked. This more 

versatile function, named ANYCHK, will have two integer arguments: the first specifies the original data 

value and the second specifies the number of digits in the first argument. Change the main program so that 

it can be used to test ANYCHK. 

15. We can make the subprogram in Problem 14 even more general: Design a subroutine named GENCHK that 

returns a single check digit (as before) and the resulting self-checking number as well. GENCHK is to use the 

following five arguments: 

(1) The value to be processed. 
(2) The number of digits in the value. 

(3) The desired position of the check digit in the resulting self-checking value. 

(4) The variable in which the check digit is to be delivered. 

(5) The variable in which the resulting self-checking value is to be delivered. 

Thus, the statement 

CALL GENCHK ( IDNUM, NUMDIG, CHKPOS, DIGIT, NEWID) 

says that the value to be processed is in IDNUM and its length is in NUMDIG. If the value in CHKPOS 

happened to be 3, then GENCHK is to store the computed check digit in DIG IT and also as the third digit of 

NEWID. That is, the third digit of IDNUM becomes the fourth digit of NEWID, and so on. Note that GENCHK 

must make sure the value in CHKPOS makes sense when compared to NUMDIG. For instance, ifNUMDIG is 

7, the addition of a check digit will make NEW ID 8 digits long, so that a CHKPOS value of, say, 11 would 

not mean much. 

Write a simple (but suitable) main program for testing GENCHK. 

16. Remember the glory of ancient Rome? At least part of that glory was mentioned in Problem 10 of Chapter 

10. Using the information in that problem, design a function named ROMNUM that operates on a character 

string representing a Roman integer value and returns the equivalent value as an Arabic integer. 

17. Write a function ARBNUM that is the reverse of the one specified in Problem 16. That is, ARBNUM operates 

on an integer value and returns a character string representing a Roman number of the same value. 

18. Write a function named TRIM that operates on a 64-character string consisting of words separated by 

single blanks. The first word always starts in position 1 of the string and there always is exactly one blank 

between words. However, only part of the string may be occupied by the words. The unused portion of the 

string (the rightmost part of the string) is filled with blanks. Thus, in a fully occupied string, position 64 will 

have a letter in it. 
The function is to return an integer specifying the length of the occupied portion of the string, i.e., the 

number of characters up to and including the last letter of the last word in the string. This length includes 

the blanks between the words (but, obviously, does not include the blanks after the last word). Write a 

suitable main program to be used for testing TRIM. 

19. Write a subroutine named NXTWRD that finds the next word in a string of words. Imagine that the invoking 

program has a character string containing so many words, with a single blank separating each word from 

the next one. This program would CALL the subroutine, telling it the name of the character string to be 

examined and the position at which the examination should start. You should assume that the starting 

position given to NXTWRD may not be consistent. It could contain the first letter of the next word or it could 

be the position of the blank just ahead of the next word. Note that there also is the possibility that there is 

no next word, and the subroutine must handle this possibility. 
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When its processing is completed, NXTWRD returns the word itself, its length, and the position of the 
last letter of the word it just found. If there was no next word, NXTWRD is to return blanks in the character 
string that would have contained the word, a value of zero for the word length, and a value of zero for the 
position of the "last letter." Assume that the string to be searched never will be longer than 64 characters, 
and that the longest word in the string will be 15 characters. 

Write a simple main program to test NXTWRD. (NOTE: If you wish, this main program need not even 
perform any input. It may be sufficient to set up (via assignment, DATA, or PARAMETER statements) two 
or three character string constants and let NXTWRD search those. Then, the main program can print the 
values returned by NXTWRD, along with the original character strings.) 

20. The arithmetic mean of a collection of values is defined as 

MEAN = SUMV AL 
NUMVAL 

where SUMV AL is the sum of the individual values and NUMV AL is the number of values. Another statistical 
quantity, the variance, describes the dispersal of a collection aroun::t its arithmetic mean. This value can be 
computed as follows: 

VARNC = SMSQVL - SMVLSQ 
NUMVAL 

where SUMV AL and NUMV AL have their previous meanings, SMSQVL is the sum of the individual squared 
values, and SMVLSQ is the square of SUMV AL. A third useful statistic that describes a collection of values is 
the standard deviation, computed as the square root of the variance: 

SD= ../VARNC 

Write a subroutine named STATS that receives integer values for the sum of a collection of values, the 
sum of the squared values and the number of values. After its processing is completed, STATS returns the 
mean, variance, and standard deviation (all as real numbers). 

Test STATS by invoking it from a simple main program. For instance, the main program need not 
compute SUMVAL, SMSQVL or NUMVAL; these simply can be read as input values and used directly as 
arguments to STATS. 

21. In this problem we can use the subprograms developed for Problems 18 through 20 as building blocks to 
produce a grand construction that operates as follows: Input consists of any number of 64-character strings 
whose contents and organization are the same as described for Problem 18. The last input set is followed 
by a special set containing a character string whose first five positions are blank. This set signals the end of 
the run and is not to be processed as part of the data. For each set processed, the program is to print an 
echo of those data along with the number of words in that set. After all of the input has been processed, 
the program is to leave two blank lines and print the total number of sets processed, the total number of 
words found, the average word length, and the variance and standard deviation for the entire collection of 
input words. 

22. This is a slightly more extensive version of the program described in Problem 21: input is the same as 
before. This time, for each set processed, the program is to print an echo of those data, the number of 
words in that set, and the average word length for that set, rounded to the nearest tenth of a letter. The 
summary output is the same as before. 

23. Write a function named NDAYS that operates on two dates submitted to it as six integer arguments 
(month2, day2, year2, monthl, dayl, and yearl). After operating on these values, NDAYS returns an 
integer indicating the number of days between the two dates. For example, NDAYS (6, 18, 1980, 
6, 7, 1979) will return a value of 366 (remember that February of 1980 had a 29th day) plus 11or377. 
You may assume that both year2 and yearl will be in the twentieth century and that the date represented 
by the first three arguments always will be later in time than the date represented by the fourth, fifth and 
sixth arguments. Use an input date (month2,day2,year2) of zero to stop the run. 

Write a simple main program for use with NDAYS. Here are some suggested lists of arguments for 
testing purposes: 

10,10,1977,10,10,1974 
10,10,1977,10,10,1957 
3,16,1981,12,31,1972 

12,31,1980, 3, 1,1979 
0, 0, 0, 0, 0,0000 
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24. In this more extensive version of Problem 23, design NDAYS so that it can handle improper arguments: all 

the values given to it still will be positive integers, but they may not be legitimate dates. For instance, 

values of 41and38 formonth2 and day2, respectively, are positive integers but they do not make much 

sense. Also, NDAYS must recognize (and handle) a situation where the dates are reversed in time. (That is, 

the date that is supposed to be later in time is actually earlier.) 

25. When a borrower returns books to the East Flapville Public Library, the computer department finds the 

data that it prepared when the books were taken out and adds them to the day's batch. At the end of the 

day, this collection is processed by a program that reports on the day's returns. 

The library in the city of Cranky Harold wants to do the same thing, but East Flapville would not give, 

rent, or sell it the program. However, enough information has been gathered so that the program's 

requirements can be defined. We know that each line contains information about a book and its borrower: 

(1) The borrower's name (up to 20 characters) 

(2) The borrower's card number (7 digits). 
(3) The book's call number ( a number whose integer portion can be anything from 0-999 and whose 

fractional part may have no less than one and no more than six decimal places). 

( 4) The month in which the book is due. 
(5) The day of the month on which the book is due: 

(6) The year in which the book is due. 

A typical line looks like this: 

I SMEDLEY' HEDLEY K. I 026414 817.4167 6 30 1981 

Each day, the day's data are arranged so that all data from the same borrower are together. Then, a line is 

placed at the front with that day's date (month, day, year) and a special (fake) input line is placed at the 

back with a borrower's number of 0000000 on it. The program produces the following output: 

(1) The program separates the information for each borrower by leaving two blank lines between 

borrowers and starting the little section for each borrower by printing a line with the borrower's name 

and number. 
(2) For each line (i.e., each book returned by a particular borrower), the program prints a line showing 

the call number, the number of overdue days (if any), and the amount (if any) of overdue charges. 

(3) After all of a borrower's data have been processed, the program leaves a blank line and prints a 

summary line showing the number of books returned by that borrower and the total amount of 

overdue charges. Then it leaves the two blank lines mentioned before and goes on to the next 

borrower (if there is one). 
(4) After the last borrower's data have been processed, the program prints a summary showing (on 

separate lines) the number of borrowers, number of books returned, and the total amount of overdue 

charges collected that day. 

The city of Cranky Harold allows borrowers to take out as many books as they can carry, and overdue 

charges are determined as follows: 

(1) Five cents per day for the first nine days. 
(2) Seven cents per day for the next five days. 
(3) Ten cents per day for every overdue day beyond that. 

( 4) The Cranky Harold Library is open seven days a week. 

26. Write the program described in Problem 25 with the following additional wrinkle: The Cranky Harold 

Library has changed its policy somewhat in that it will be closed on July 4th, Christmas Day, New Years 

Day, and March 9th, the birthday of the city's founder, Harold C. Shinsplint. These are free days, not to 

count in the computation of the overdue charges. 

27. Looking to outdo East Flapville, Cranky Harold's Board of Alderpersons wants the library program 

expanded so that it produces a more elaborate summary. In addition to the information described in 

Problem 25, the expanded version is to print: 

(1) The average number of books returned by each borrower (rounded to the nearest tenth of a book). 

(2) The average overdue fine paid by a borrower (to the nearest cent). 

(3) The name of the borrower paying the largest overdue fine that day, and the amount of that fine. You 

are guaranteed that there never will be more than one such winner on any given day. 
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In looking at the mechanisms for defining and invoking subprograms, we used simple 
variables as arguments. This is just one of several forms such arguments may take. This 
chapter explores the other possibilities. 

To establish the mechanisms for defining and using subprograms, we illustrated the 
transfer of data to a subprogram by specifying actual arguments in the form of variables. 
Thus, when some function PCOMP is invoked as part of an assignment statement such as 

FINAL= START_VAL + 0.012*PCOMP(BASE,CHANGE,UPPER_LIMIT)**l.4 
PCOMP computes its result using the three individual data values taken from the places 
named BASE, CHANGE, and UPPER_LIMIT. Note that the function itself does not 
"know" how the values were obtained or from where they were taken. It is this frame­
work that enables us to expand the variety of ways in which argument values are 
produced. 

12.1.1 Constants as Arguments 

FORTRAN will accept a constant value as an argument. For example, suppose a 
subroutine named CHEMV AL is defined as follows: 

SUBROUTINE CHEMVAL(COEF,VISC,ACTIV,ADJ,MIX,FINAL) 
IMPLICIT NONE 
REAL COEF,VISC,ACTIV,ADJ,FINAL,REDUC 
INTEGER*2 MIX 
IF (VISC. LT. 0. 64/ACTIV) THEN 

REDUC = 0.0 
ELSE 

REDUC 0.0183 
END IF 
MIX= INT((ACTIV-ADJ)/(1.0-REDUC)) 
FINAL = COEF * VISC ** (ACTIV+ADJ) - REDUC 
RETURN 
END 

Now we shall set up an IF-THEN-ELSE construct that invokes this subroutine in one of 
two ways depending on the value of some real variable MW: 

IF (MW. LT. 250. 0) THEN 
CALLCHEMVAL(FACTOR,VISC,ENRG,REFIN,MIXVAL,OUTCOM) 

ELSE 
CALLCHEMVAL(l.O,VISC,ENRG,0.0,MIXVAL,OUTCOM) 

END IF 
GLBNUM = LOG (MW) * OUTCOM 
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Although the exact nature and meaning of these computations is not defined, we can 

make certain observations about them just by looking at the decision structure: 

1. When some variable MW is less than 250. 0, CHEMVAL depends on four variables 

and is subject to further adjustment by a local variable REDUC within the subroutine itself. 

The fifth and sixth arguments do not affect the results. Rather, they are variables to which 

the results are assigned. 

2. Once MW reaches 250. o, the equation settles down in that the first and fourth 

arguments no longer affect the computations. Thus, instead of assigning values of 1 . O 

and O . O to FACTOR and REF IN, respectively, and using the variable names as arguments, 

we show these arguments directly as constants, so that the program gives a clearer 

indication of what is going on. 

The result is that, in those cases where MW is not less than 2 5 O. O, invocation of CHEMV AL 

will cause the function to associate the constant 1 . O with the first dummy argument 

(COEF), and the constant o. O with the fourth dummy argument (ADJ). This is completely 

consistent with the framework mentioned earlier. Whenever a subprogram is invoked 

with single-valued arguments, FORTRAN sets up an association between each name in 

the dummy argument list and the value of the corresponding actual argument supplied to 

the subprogram. 
The example given above also emphasizes the fact that the names used in the dummy 

argument list do not interfere with the actual arguments given to a subprogram when it is 

invoked. There is no confusion, for instance, even though the second actual argument 

happens to have the same name (VI SC) as the second member of the dummy argument 

list. The dummy argument name VI SC is strictly local to the subroutine and has no 

existence outside the subroutine. When the actual argument VISC is specified in the 

invocation, the value currently stored in VISC is transmitted to the subroutine and used 

there. Consequently, the subroutine does not "know" that the value came from a variable 

named VISC. This separation makes it possible for somebody to develop a subprogram, 

using any dummy argument names he or she chooses, without having to worry about the 

actual argument names that will be specified for a given invocation. 
As a result of this flexibility, there is an entire industry (and not a little one, at that) 

built around the design, development, and sale of subprograms. This commerce goes on 

successfully, even though the seller has no idea when, where, and with what argument 

names the subprogram will be used. 
FORTRAN places no particular restrictions on where and when to use constants as 

actual arguments. Therefore, it is up to the programmer to make sure that their use makes 

sense. The guideline is a simple one. Since a constant is meant to be a value not subject to 

change, it should be used in those instances where the subprogram's computations do not 

alter it. Applying this guideline to the previous example, we see that it would not make 

sense to specify a constant value as either the fifth or sixth actual argument. Values 

produced by the subroutine are transmitted to these arguments rather than being taken 

from them. 

12. 1.2 Expressions as Arguments 

Chapter 5 discusses the idea that a constant and a single-valued variable are themselves 

simple forms of expressions. Therefore, FORTRAN's ability to accept expressions as 

actual arguments is just a continuation of the normal process for transferring information 

when a subprogram is invoked. Thus, when a subprogram specifies a dummy argument of 

a particular type, the actual argument can be any legitimate expression whose result is a 

value of the same type. 
For example, the subroutine CHEMV AL used in the previous section required six 

arguments, four of which were not changed as a result of the subroutine's activities. 
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Consequently, we can invoke CHEMV AL using an expression for any or all of those first 
four arguments. For instance, the following invocation 

CALLCHEMVAL(FACTOR-0.0082,VISC, 
1 SQRT(l.0-ENRG)/MW,REFIN,MIXVAL,FINVAL) 

is perfectly acceptable. When the invocation occurs, FORTRAN evaluates each expres­
sion and associates the result with the corresponding entry in the dummy argument list, as 
it does in any other invocation. In this case, the association is as 

dummy argument corresponding actual argument 
COEF result of (FACTOR-0. 0082) 
VISC VISC 
ACTIV result of (SQRT ( ( 1. 0-ENRG) /MW) ) 
ADJ REF IN 
MIX 
FINAL 

MIXVAL 
FINVAL 

There are two basic restrictions when it comes to using expressions as actual argu­
ments. Both have been mentioned in passing, but it will be helpful to reemphasize them: 

1. The expression, when evaluated, must produce a result having the same data type 
as the corresponding dummy argument. 

2. An expression other than a single-valued variable or array element by itself cannot 
be used for an argument whose value will be changed by the subprogram. 

The second restriction applied specifically to subroutines where the value (or values) 
produced by the subroutine are delivered in arguments designated for that purpose. 
Going back to the previous example, then, it would be inconsistent (and illegal) to use 
expressions for the fifth and sixth arguments of CHEMVAL. 

A special note should be made about character string arguments. Since it is legal to 
specify a character string expression as an actual argument (assuming, of course, that the 
corresponding dummy argument is declared as CHARACTER), evaluation of such an 
expression could produce a string having a length that is different from that given in the 
subprogram's declaration. FORTRAN will accept the string as long as it is not less than 
the length given for the dummy argument. (The same holds true for any single-valued 
character argument.) If the actual argument is longer than the dummy argument, tfie 
string still will be accepted; however, only part of it will be used. For instance, if a 
to-character string is given to a subprogram whose dummy argument specifies a length of 
7, only the 7 leftmost characters of the actual string value will be supplied. 

12.1.3 Array Elements as Arguments 

Since each element of an array can be isolated (by means of subscripts) and used just like a 
single-valued variable, its value can be made available as an argument to a subprogram 
just as conveniently as any other single value. Thus, assuming everything has been 
properly declared, we can invoke good old CHEMV AL with a statement such as 
CALLCHEMVAL(FACTOR-0.0082,VISC0(3),ENRG,0.0,MIXERS(4),0UTCOM) 

Note that two of the actual arguments are array elements. As a result of this particular 
CALL, CHEMV AL will use values obtained from the computation of FACTOR-0. 0082, the 
third element in the array VISCO, the single-valued variableENRG, the constant 0. 0 (and 
the local variable REDUC) to compute two results. One of these (the integer value 
represented by the dummy argument MIXV) will be delivered to the fourth element of 
array MIXERS, and the other to the single-valued variable OUTCOM. 
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12.1.4 Character Arguments with Adjustable Lengths 

Since each character in a string can be manipulated separately, there can be some 

additional flexibility with regard to actual character arguments. Specifically, it is not 

necessary for the string length in the actual argument to be the same as that in the dummy 

argument. Different lengths are handled by specifying an asterisk ( *) as the length of the 

dummy character argument. Then, when the subprogram is invoked, it uses the length 

declared for the actual character argument. This length does not itself have to be specified 

as an argument; it is determined from the declaration in the invoking program. 

For example, suppose subroutine HDG uses a character string as a label of some kind, 

and its statements include the following: 

SUBROUTINE HDG (HVAL, LVAL, NUMVAL, LABEL) 

REAL HVAL,LVAL 
INTEGER*2 NUMVAL 
CHARACTER LABEL* ( *) 

PRINT * , LABEL 

RETURN 
END 

Then, for instance, some variable HEAD declared in the invoking program as 

CHARACTER*20 HEAD 

can be used as an actual argument in a statement such as 

CALLHDG (VMAX, VMIN, NV, HEAD) 

and, for this invocation, HDG will print 20 characters. 
Sometimes the length needs to be specified as an argument, but not because FOR­

TRAN does not "know" what it is. Rather, there may be an occasion where it must be 

referred to explicitly. A case like this is seen in the next example. 

Example 12. 1 We shall design a function RVRS which takes a character string of any length and 

returns a string with the characters in reverse order. Since each character has to be moved separately, the 

loop that does this needs a limiting value, i.e., the string length. Consequently, the second argument will 

be the string length. The processing itself is quite simple, as Figure 12.1 shows. 

CHARACTER*(*) FUNCTION 
INTEGER*2 
CHARACTER 

DO I= 1,NCHRS,1 
J = NCHRS+1-I 
RVRS(J:J) = STRING(!:!) 

END DO 

RETURN 
END 

FIGURE 12.1 Character Reversal Function. 

RVRS (STRING,NCHRS) 
NCHRS,I,J 
STRING*(*) 
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An invoking program, then, could use RVRS as follows: 

CHARACTER HDLIN1*25, HDLIN2*30 

HDLINl = RVRS(HDLINl,LEN(HDLINl)) 

HDLIN2 = RVRS(HDLIN2,LEN(HDLIN2)) 

12.2 ARRAYS Functions and subroutines can be designed to process entire arrays. Association between 
AS ARGUMENTS an actual array argument and the corresponding entry in a dummy argument list follows 

the same pattern described for single-valued arguments. The array name given in a 
dummy argument list is defined as an array in a declaration statement within the subpro­
gram, and a similar declaration appears in the invoking program for the array name to be 
used as an actual argument. 

As is the case with single-valued arguments, it still is necessary to make sure that the 
declared array type is the same for both array names. For instance, if a main program has 
the following statements: 

INTEGER*2 POINTS (24) 

CALL STATS (POINTS) 

the subroutine itself must include a similar declaration: 

SUBROUTINE STATS (SCORES) 
INTEGER* 2 SCORES ( 2 4) 

RETURN 
END 

If the subroutine is designed to process an array of character strings, the declared lengths 
must match as well. 

Example 12.2 To illustrate the use of subprograms for array processing, we shall design a program in 
which each set of input data consists of a four-digit run number followed by a list of 40 words having 
various lengths, none of which is greater than ten letters. Each word is left justified, i.e., it starts in its 
leftmost position. A run number of zero ends the run. After printing an input array (four words per line), the 
program is to determine the number of one-letter words, two-letter words, and so on. These results are to 
be printed as a two-column frequency table in which the first column shows the word length and the 
second column shows the number of words having that length. Finally, the program is to print the list of 
words rearranged so that they are in order by increasing length (shortest length first). When there are 
several words with the same length (as there are bound to be), the order within that group does not 
matter. This final list is to be printed four words per line. 

Since the problem requires us to rearrange the words in order of increasing length, it will be 
necessary to store all of the words for a given input set in an array (which we shall call WORDS). Moreover, 
we shall need to build an additional array of 40 integers (WORD_SIZE) in which the lengths will be stored. 
When we perform the sorting operation, we shall be sorting WORD_SIZE rather than WORDS. After all, it is 
WORD_SIZE that will contain the information on which the rearrangement is to be based. Then, every 
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time we need to reposition an element in WORD_SIZE, we shall automatically reposition the correspond­

ing element from WORDS in the same way, thereby forcing the ordering of the words to imitate the 

ordering of their lengths. The need to declare character strings with fixed lengths leads to the use of the 

maximum possible length (10) for the elements in WORDS. Then, once the array has been read in, the 

program can look at each word and determine its length. This will be done by using the INDEX built-in 

(intrinsic) function to locate the position of the first blank in the word. The word length, then, will be one 

less than the position at which that blank was found. 

If the search for a blank was unsuccessful, we know that the length of that particular word is 1 o. (We 

could be cute and declare the length of the elements in WORDS as 11, thereby guaranteeing that every 

element will have at least one blank in it. However, cuteness is not the current subject.) The resulting 

length then is used to determine which of the counters to increase. These counters, eac~ of which keeps 

track of the number of words having a particular length, are stored in a ten-element integer array called 

FREQ. Printing of the output is straightforward enough, so that it need not be discussed. 

Now that the basic processing has been outlined, we can turn our attention to the major focus, which 

is the program's overall organization. It is importantto note thatthere is no one "correct" way to organize 

a processing task into a main program and supporting subprograms. Instead, we take advantage of the 

lessons learned from successful programming projects which, together with a helping of common sense, 

make it possible to identify some guidelines that can help determine how big a subprogram "ought" to be 

and how much processing "should" be included in it: 

1. A subprogram ought to perform one job. The nature of that job should be clearcut, so that there is 

no doubt about what it is. Some people insist that the job should be sufficiently small and elementary so 

that a person can describe it in a single, relatively simple sentence. This does not mean that the job cannot 

be complex; it does mean, however, that the processing clearly represents one step in a solution 

procedure. 

2. Regardless of its complexity, the job handled by a subprogram should be small enough to be 

understood completely by a person looking at the statements of that subprogram. For many practitioners 

this means that, in general, if a subprogram's length is such that a printout of its statements (i.e., a listing) 

requires more than a single page, the function or subroutine is too long. The designer, then, would be well 

advised to reexamine the subprogram and see whether its processing can be restated in terms of two (or 

more smaller processes, each of which then would become a separate subprogram. 

Applying these guidelines to our example, we identify the following subprograms as being appro­

priate in the light of the guidelines given before: 

1. A subprogram named WORD_LENGTH that examines a word and determines its length. Since only 

a single result is produced (the word being examined is not changed in any way), WORD_LENGTH will be 

constructed as a function. 

2. A subprogram named SORT_LIST that sorts the array WORD_SIZE by word length. As part of 

this process, it also will sort WORDS, thearrayweactuallywant rearranged. SORT_LIST, obviously, will be 

a subroutine since the values in any (or all) of the two arrays' elements may change because of the 

rearrangement. 

3. A subprogram named WRITE_ WORDS that prints the word list. This will be a subroutine, not 

because it operates on an entire array, but because it does not change any values at all, nor does it produce 

any new ones. Recall that a function subprogram, by definition, delivers exactly one result. WRITE_ 

WORDS will be invoked twice for each word list: once to print the list in its original order, and a second time 

to print the sorted list. Both times the name of the actual argument will be the same. 

4. A subprogram named WRITE_ TABLE to print the frequency table (FREQ). This will be a subrou­

tine for the same reason as described for WRITE_ WORDS. 

5. A subprogram named INIT that resets the system for a new list of words. Basically, this 

subroutine (the reason why it must be a subroutine is apparent by now) sets the ten counters in FREQ 

back to zero. 

The identification of these subprograms and their respective duties brings to light an important factor. 

Even though we have not yet defined the processing details, the fact that we know where one 

subprogram's job ends and another begins enables us to design the main program. In effect, we have 
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organized the program's structure so that the main program becomes an outline of the processing 
activities. As seen in the flowchart and pseudocode of Figure 12.2, it is little more than a loop that 
manages the flow of events and invokes the proper subprogram at the proper time. The only processing 
that the main program itself does (aside from handling the loop) is the data input, printing of headings, 
insertion of each new word length, and the addition to the frequency counter. These activities were 
considered to be too simple to warrant construction of separate subprograms. It may be argued that the 
same holds true for some of the others, but we must bear in mind that this process of subdividing an 
algorithm into unit processes is largely a matter of judgment which improves with experience. Also, 
remember that this is an example. 

The simplicity of the main program makes it possible for the statements themselves to be an 
immediate carryover from the flowchart or pseudocode. This is seen by examining the listing in Figure 
12.3. 

Because the labor has been divided as indicated above, each of the subprograms is simple. Note that 
wherever a subprogram needs an extra variable to play some part in its operations, that variable is 
declared locally, thereby keeping it within that subprogram. This relieves the main program of unneces­
sary clutter. For instance, in performing the sorting operation, SORT_LIST makes use of temporary 
storage places while it swaps pairs of elements. These are set up as local variables and are not part of the 
dummy argument list. The entire program is shown in Figure 12.4 and a sample run is seen in Figure 12.5. 

12.2.1 Size Differences Between Actual and Dummy Array Arguments 

It is not always necessary for the size of an actual array argument to match that declared 
for the corresponding dummy array. FORTRAN will accept an actual array argument at 
least as large as the corresponding dummy array. In the main program of Example 12.2, 
for instance, the array WORDS could have been declared with more elements, but it could 
not have been declared with fewer than ( 40) without changing the declarations in INIT, 
SORT _LI ST, and WRITE_ WORDS. (WORD_LENGTH, of course, would require no change 
since it deals only with a single element at a time.) 

12.2.2 Adjustable Array Sizes 

Another, more flexible way of using subprograms with actual array arguments of different 
sizes is to construct the subprogram with a dummy array argument having adjustable 
"Define FREQ(IO), WDSIZE(IO), WORDS(40), LNUM, RUNNUM." 
"Read the first run number." 
while RUNNUM is not equal to zero: 

"Initialize the counters." 
"Print the heading for this run." 
"Read a set of 40 input words." 
do for each of the 40 input words: 

"Determine the word length." 
"Increment the appropriate frequency counter." 
"Store the word length." 

enddo 
"Print the input list." 
"Sort the input list by increasing word size." 
"Print the frequency table." 
"Print the sorted word list." 
"Read the next run number." 

endwhile 
"Print a terminating message." 
"Stop." 
FIGURE 12.2 (a) Pseudocode for Example 12.2. 
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Declare FREQ(lO), WDSIZE(40), LNUM, WORDS(40), RUNNUM 

Read the first run number (RUNNO) 

Do while RUNNUM f 0 

I Initialize counters I 
Print heading for this run 

Read a set of input words 

~ Do for each of the 40 words 

I Determine the word length I 
Increment appropriate frequency counter 

Store the word length 

I Print the input list I 

I Sort the list by word size I 

I Print the frequency table I 

I Print the sorted word list l 
Read the next run number 

Print terminating message 

END 

FIGURE 12.2 (b) N-S Diagram for Example 12.2. 
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C******************************************************* C EXAMPLE 12.2 ** C THIS PROGRAM SORTS A LIST OF 40 WORDS IN ORDER BY ** C INCREASING WORD LENGTH AND COMPUTES THE NUMBER OF ** C OCCURRENCES OF EACH WORD LENGTH. MAXIMUM WORD ** C LENGTH IS TEN LETTERS. ** 
C******************************************************* c THE MAIN PROGRAM ** C******************************************************* C WORDS: 
C WDSIZE: 
C FREQ: 
C LNUM: 
C RUNNUM: 

A 40-ELEMENT ARRAY FOR THE WORD LIST 
A 40-ELEMENT ARRAY FOR THE WORD LENGTHS 
A 10-ELEMENT ARRAY FOR THE COUNTERS 
THE LENGTH OF A PARTICULAR WORD 
THE 4-DiGIT RUN NUMBER 

** 
** 
** 
** 
** C******************************************************* PROGRAM 

IMPLICIT 
INTEGER*2 
CHARACTER*10 
PARAMETER 

WRDCNT 
NONE 
FREQ (10), WDSIZE(40), LNUM, I, RUNNUM 
WORDS(40) ,BLANKS*? 
(BLANKS= ' ') 

WRITE (1,*) 'ENTER THE RUN NUMBER' 
READ (1,*) RUNNUM 

DO WHILE (RUNNUM .NE. 0) 
CALL INIT (FREQ) 
PRINT *, BLANKS 
PRINT*, 'RUN NUMBER ',RUNNUM 
WRITE (1,*) 'ENTER THE WORD LIST FOR THIS RUN' 
READ (1,*) WORDS 
DO I=1,40 

LNUM = WORD_LENGTH (WORDS(I)) 
WDSIZE(I) = LNUM 
FREQ(LNUM) = FREQ(LNUM) + 1 

END DO 
PRINT*, 'LIST OF WORDS AS RECEIVED:' 
PRINT *, BLANKS 
CALL WRITE_WORDS(WORDS) 
CALL SORT_LIST(WORDS,WORD_SIZE) 
PRINT *, BLANKS 
CALL WRITE_TABLE(FREQ) 
PRINT *, BLANKS 
PRINT*, 'LIST OF WORDS BY INCREASING LENGTH:' 
CALL WRITE_WORDS(WORDS) 
WRITE (1,*) 'ENTER THE NEXT RUN NUMBER' 
READ (1 ,*,END=199) RUNNUM 

END DO 

199 PRINT *, BLANKS 
PRINT*, 'END OF RUN. NORMAL TERMINATION.' 
STOP 
END 

FIGURE 12.3 FORTRAN Statements for Example 12.2's Main Program. 
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C******************************************************* 

C !NIT 

C THIS SIMPLE SUBROUTINE MERELY SETS THE TEN 

C COUNTERS IN THE ARRAY FREQ TO ZERO. 

** 
** 
** 

C******************************************************* 

SUBROUTINE !NIT (CTS) 
INTEGER*2 CTS(10), J 
DO J=1,10 

CTS(J) 0 
END DO 
RETURN 
END (a) 

C******************************************************** 

C WORD_LENGTH ** 

C THIS FUNCTION OPERATES ON A SINGLE CHARACTER STRING ** 

C OF LENGTH 10 CONTAINING A 1-10 LETTER WORD WITH THE ** 

C UNUSED POSITIONS (AT THE RIGHT) FILLED WITH BLANKS. ** 

C WORD_LENGTH RETURNS THE WORD'S LENGTH. ** 

C******************************************************** 

INTEGER*2 FUNCTION WORD_LENGTH (STRING) 

CHARACTER*10 STRING 
WORD_LENGTH = INDEX(STRING,' ') 

IF (WORD_LENGTH .EQ. 0) THEN 
WORD LENGTH 10 

ELSE 
WORD LENGTH 

END IF 
WORD LENGTH-1 

RETURN 
END 

(b) 

C******************************************************* 

c SORT_LIST ** 

C THIS SUBROUTINE SORTS A LIST OF WORDS IN ORDER OF ** 

C INCREASING WORD LENGTH. THERE IS NO ATTEMPT TO ** 

C SORT WITHIN A GROUP OF WORDS HAVING A GIVEN LENGTH.** 

C TO DO THIS, SORT_LIST ACTUALLY SORTS THE WORD ** 

C LENGTHS AND MOVES THE WORDS THEMSELVES ACCORDING TO** 

C THE WAY THE LENGTHS ARE REARRANGED. ** 

C******************************************************* 

SUBROUTINE 
INTEGER*2 
CHARACTER*10 
DO K1=100,2,-1 

DO K2=1,K1-1,1 

SORT_LIST (WDS,SIZES) 
SIZES(40),TMPSIZ,K1,K2 
WDS ( 40), TMPWRD 

IF (SIZES(K2) .GT. SIZES(K2+1)) THEN 

TMPSIZ = SIZES(K2+1) 
TMPWRD = WDS(K2+1) 
SIZES(K2+1) = SIZES(K2) 
WDS(K2+1) = WDS(K2) 
SIZES(K2) = TMPSIZ 
WDS(K2) TMPWRD 

ELSE 
END IF 

END DO 
END DO 
RETURN 
END (c) 

FIGURE12.4 (a) INIT Subprogram for Example 12.2. (b) WDLGTH Subprogram for Example 12.2. (c) SRTLST 

Subprogram for Example 12.2. 
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C******************************************************* C WRITE_WORDS 
C THIS SUBROUTINE PRINTS A 40-ELEMENT ARRAY OF 
C CHARACTER STRINGS FOUR TO A LINE. 

** 
** 
** 

C******************************************************* 
SUBROUTINE 
INTEGER*2 
CHARACTER*10 
DO J=1,40,4 

WRITE_WORDS (STR) 
J 
STR(40) 

PRINT*, STR(J), STR(J+1), STR(J+2), STR(J+3) 
END DO 
RETURN 
END (d) 

C******************************************************* 
C WRITE_TABLE 
C THIS SUBROUTINE PRINTS THE FREQUENCY TABLE 

** 
** 

C******************************************************* 
SUBROUTINE WRITE_TABLE (TAB) 
INTEGER*2 TAB (10), K 
PRINT*, 'WORD LENGTH','NO. OF OCCURRENCES' 
DO K= 1 , 10,1 

PRINT *, K,TAB(K) 
END DO 
RETURN 
END (e) 

FIGURE 12.4 (d) WRTWDS Subprogram for Example 12.2. (e) WRTTAB Subprogram for Example 12.2. 

dimensions. This is done by supplying the subprogram with an additional argument that 
specifies how large the actual array is for that particular invocation. Correspondingly, the 
subprogram includes an integer argument that appears in the dummy array declaration. 

Example 12.3 In order to look at a particular case, let us suppose that our computer installation 
requires a general purpose subroutine which takes a list of real numbers and computes their sum, average 
value, and range (the difference between the largestandsmallestvalues). This subroutine, namedMNVAL, 
eventually will be incorporated into a variety of other programs, each of which may specify an array of a 
different size. 

Accordingly, we shall design MNVAL to expect the following arguments: 

1. The real array itself (named ARRAY in the dummy list). 
2. The array size (an integer named NUMOBS in the dummy list). 
3. The real argument for the array sum (ARYSUM). 

4. The real argument in which the average is to be delivered (AVG). 

5. The argument in which the range value is to be placed (RANGE). 

The subroutine is shown in Figure 12.6. Note that the variables TMPMAX and TMPMIN, used in developing 
the range, are local to MNVAL since the specifications require only their difference, and not their values. 

FORTRAN's rules still require that the actual array argument be declared (in the invoking program) 
with a fixed set of dimensions. However, each program using MNV AL can specify the array size, whatever it 
may be, as the second actual argument. As far as the subroutine itself is concerned, that argument (NUMOBS 
in the dummy argument list) is a single-valued integer. This means it can be specified as a constant, variable, 
or any integer arithmetic expression. Thus, one way of calling MNVAL could be 



RUN NUMBER 27 
LIST OF WORDS AS RECEIVED 

cows BEARD BROODS 

ANY GRASSLAND BOWLS 

GROWTH TARTNESS BUILDUP 

CARDBOARD SUBROUTINE ENLARGE 

HISTORY WASHES OPAQUE 

GOATS COATS BOATS 

TWELVE SIXES DUCTILE 

EXIT BE ENTRANCE 

MAINSTREAM I BROKERAGE 

SHIELDS OVERTURE AVERAGE 

WORD LENGTH NO. OF OCCURRENCES 

1 1 

2 3 

3 2 
4 2 
5 7 
6 6 

7 7 
8 4 

9 6 

1 0 2 

LIST OF WORDS BY INCREASING LENGTH 

I AN TO 
WAY ANY EXIT 

MOATS BOATS BOWLS 

COATS BEARD GOATS 

OPAQUE BROODS WASHES 

GROWTH SCEPTER AVERAGE 

ENLARGE BUILDUP SHIELDS 

FARTHEST ENTRANCE OVERTURE 

MALLEABLE SENSITIVE ELEVATORS 

GRASSLAND CARDBOARD SUBROUTINE 

END OF RUN. NORMAL TERMINATION. 

FIGURE 12.5 Sample Run for Example 12.2. 

represented by the following sequence of statements: 

PROGRAM 
REAL 

CALLER 
RDNGS(120), TOTAL, AVGRDG, SPAN 

READ (1, *) RDNGS 

CALLMNVAL(RDNGS,100,TOTAL,AVGRDG,SPAN) 
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SCEPTER 
TO 
ELEVATORS 
AN 
FARTHEST 
MOATS 
MOBILE 
WAY 
SENSITIVE 
MALLEABLE 

BE 
cows 
SIXES 
MOBILE 
TWELVE 
DUCTILE 

HISTORY 
TARTNESS 
BROKERAGE 
MAINSTREAM 
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1 

SUBROUTINE 
INTEGER*2 
REAL 

MNVAL (ARRAY,NUMOBS,ARYSUM,AVG,RANGE) 
NUMOBS,I 
ARRAY(NUMOBS),ARYSUM,AVG,RANGE,TMPMAX, 
TMPMIN 

C******************************************************* c 
c 
c 

TMPMAX AND TMPMIN ARE INITIALIZED TO THE VALUE OF ** 
THE FIRST ARRAY ELEMENT SO THAT WE HAVE A REALISTIC** 
REFERENCE. NOTE THAT THE MAX AND MIN INTRINSIC ** 

C FUNCTIONS ARE USED WITH THE TEMPORARY MAXIMUM AND ** 
C MINIMUM VALUES, COMPARING THEM WITH EACH ARRAY ** 
C ELEMENT IN TURN. ** 
C******************************************************* 

ARYSUM = 0.0 
TMPMAX = ARRAY(1) 
TMPMIN = ARRAY(1) 

DO I=1,NUMOBS 
ARYSUM = ARYSUM+ARRAY(I) 
TMPMAX = MAX(TMPMAX,ARRAY(I)) 
TMPMIN = MIN(TMPMIN,ARRAY(I)) 

END DO 

AVG = ARYSUM/NUMOBS 
RANGE = TMPMAX-TMPMIN 
RETURN 
END 

FIGURE 12.6 FORTRAN Statements for Subroutine MNVAL. 

12.2.3 A Special Note About Character Arrays 

Elements in an actual character array argument may have a length different from that 
declared for the dummy array. The only restriction is that the total number of characters 
in the dummy array cannot exceed the total number of characters in the actual array 
argument. For example, in the subroutine SORT_LIST from Example 12.2, the dummy 
array WDS is declared as a 40-element array of to-character strings. This means that a 
CALL to SORT _LI ST may specify a collection of at least 400 characters, no matter how 
they are organized: for instance, 80 elements 5 characters long, 20 elements 20 characters 
long, 25 elements 12 characters long, and 5 elements 80 characters long all are eligible, as 
well as many other combinations. If there are more characters in the·actual array than the 
number specified for the dummy array, the subprogram will use as many of them (starting 
from the left) as the dummy array declaration allows. For example, if a calling program 
includes the following statements: 

INTEGER*2 
CHARACTER*l2 

LGTHS (40) 
VOCAB (40) 

CALL SORT_LIST(VOCAB,LGTHS) 

SORT_LIST would use VOCAB's first 400 characters: 12 each from the first 33 elements of 
VOCAB, and the leftmost four characters from VOCAB (34) . 



ARRA VS AS ARGUMENTS 

Alternatively, the use of asterisks for dummy character array specification is simple if 
the programmer merely wishes to set up associations between array elements, and not 
between individual characters. To provide SORT _LI ST with this capability, for example, 
we would add an integer argument for the array size (say NSZ) and use an asterisk for the 

string length: 

SUBROUTINE 
INTEGER*2 
CHARACTER* ( *) 

SORT_LIST(WDS,SIZES,NSZ) 
SIZES(NSZ),TMPSIZ,Kl,K2 
WDS(NSZ),TMPWRD 

12.2.4 Parts of Arrays as Arguments 

When a subprogram includes one or more arrays as dummy arguments, the correspond­
ing actual arguments need not be entire arrays. By using a simple technique based on 
FORTRAN's capability for handling adjustable dimensions, we can specify parts of 
arrays as actual arguments. 

The subprogram is constructed for an adjustable array, so that the dummy argument 
list includes an integer variable for each adjustable dimension. Then, the subprogram 
uses each of those integer variables in the array's declaration. When the subprogram is 
invoked, the subscript attached to the actual array argument specifies the first element in 
the part of the array to be processed by this invocation. The actual integer value 
corresponding to the dummy argument used to define the array's size in the subprogram 
tells how many elements to be processed. 

To take a first look at how the array argument specifications work, let us use the 
subprogram MNV AL designed in the previous section and shown in Figure 12.6. Recall that 
the second argument for that subprogram defines the array size. If we invoke MNV AL with 
the statement 

CALLMNVAL (WTS, 54, WTSUM, WTAVG, WTRNG) 

(assuming the appropriate prior declarations), MNV AL will process all 5 4 elements of the 
entire array WTS. Now, suppose array WTS still is declared (in the invoking program) with 
54 elements, but our invocation looks like this: 

CALLMNVAL (WTS (31), 20, WTSUM, WTAVG, WTRNG) 

This time there is a subscript (31) attached to the array argument. The 31 tells FOR­
TRAN that MNV AL is being instructed to process that part of WTS starting with element 
31. The 20 indicates that 20 elements are to be processed-specifically, the 20 consecu­
tive elements in WTS beginning with the 31st element. In response, the subprogram 
"pretends" that the dummy array (for this invocation) is declared with a size of 20 
elements. As a result, the association set up between the dummy and the actual array 
arguments is as shown in Display 12.1. 

Display 12.1 

ARRAY ARRAY(l) ARRAY(2) ARRAY(3) ... ARRAY (19) ARRAY (20) 

(DUMMY) 

WTS WTS (31) WTS (32) WTS(33) ... WTS(49) WTS (50) 

(ACTUAL) 

317 
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Similarly, the statement 

CALLMNVAL (WTS (26), 14, WTSUM, WTAVG, WTRNG) 

arranges for MNV AL to use a sequence of fourteen elements from WTS starting with 
element 2 6. One of the results, then, would be that WTSUM will contain the sum of 
WTS (26) through WTS (39). 

Care must be taken to use this feature consistently. For example, a CALL of MNV AL 
with the statement 

CALLMNVAL (WTS (40), 20, WTSUM, WTAVG, WTRNG) 

(still assumingWTS to be declared with 54 elements) will be rejected because we would be 
instructing MNV AL to associate a 20-element dummy array with the elements of WTS 
starting at WTS (40). Since the actual argument describes only 15 elements (WTS (40) 
through WTS (54) ), there is a mismatch. 

12.2.4.1 A General Rule for Parts of Arrays as Arguments When a subprogram is set up 
to use a dummy array having ds elements, and we invoke that subprogram with a subscript 
value of ad attached to the actual array name, the size of the entire actual array must be at 
least 

as+ds-1 

Thus, for the 54-element array WTS, the first call works because ds is 20 and as is 31, so 
that the requirement for actual size (31 +20-1 or 50) is met. The same holds true for the 
second invocation: ds is 14 and as is 26, giving us a size requirement of 26+14-1or39. 
However, with ads of 20 and an as value of 40, we need a minimum actual array size of 
20+40-1or59, a requirement that the 54-element WTS does not meet. 

12.2.4.2 Another Way to Use Parts of Arrays as Arguments We can achieve the same 
effect as that described in the previous section by defining the part of the array that we 
want in terms of another array. This is done in the invoking program by means of the 
EQUIVALENCE statement. Then, when the subprogram is invoked, the smaller array 
name is given as the argument. 

For example, suppose WTS is declared as a 54-element array (as before) and we want 
to process 14 successive elements starting with WTS (26), just as we did before. We can 
pretend that the 14 elements represent an entire array by including the following 
declarations in the invoking program: 

REAL WTS(54),EWTS(14) 
EQUIVALENCE (WTS(26),EWTS(l)) 

Then, when MNV AL is CALLed, the statement would say 

CALLMNVAL (EWTS, WTSUM, WTAVG, WTRNG) 

so that it appears as if we are using an entire array. Note that this technique is limited to 
those situations in which the part of the array being used does not change in size or 
position. 

12.2.4.3 Parts of Multidimensional Arrays as Arguments The same general rule can be 
applied to multidimensional arrays. Suppose, for example, that the subroutine MNVAL 
were set up to process two-dimensional arrays with adjustable dimensions. The first three 
statements, then, might look as follows: 

SUBROUTINE MNVAL (ARRAY,NROWS,NCOLS,ARYSUM,AVG,RANGE) 
INTEGER*2 NROWS,NCOLS 
REAL*4 ARRAY(NROWS,NCOLS),ARYSUM,AVG,RANGE 
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(We shall assume that the rest ofMNVAL is adjusted appropriately to take care of the fact 

that the array is two-dimensional.) Now, let us say that the invoking program defines the 

following variables as part of its declarations: 

REAL*4 REFRAC(5,6) ,RSUM,RAVG,RFRNG 
INTEGER*2 RDIM,CDIM 

Then, the following CALL to MNV AL 

CALLMNVAL (RFRAC, 5, 6, RSUM, RAVG, RFRNG) 

will cause MNV AL to use all 30 of RFRAC's elements in its computations. Changing the 

invocation to 

CALLMNVAL (RFRAC (1, 1), 3, 6, RSUM, RAVG, RFRNG) 

sets up a 3 by 6 dummy array whose first element (ARRAY ( 1, 1) ) is associated with 

RFRAC ( 1, 1) , the second with RFRAC ( 2, 1) , and so on, as shown in Display 12.2. 

Display 12.2 

RFRAC(l,1) RFRAC(l,2) RFRAC(l,3) RFRAC(l,4) RFRAC(l,5) RFRAC (1, 6) 

ARRAY (1, 1) ARRAY(3, 2) ARRAY(2,4) ARRAY (1, 6) 

RFRAC(2,1) RFRAC(2,2) RFRAC(2,3) RFRAC(2,4) RFRAC(2,5) RFRAC (2, 6) 

ARRAY (2, 1) ARRAY (1, 3) ARRAY(3, 4) ARRAY(2,6) 

RFRAC(3,1) RFRAC(3,2) RFRAC(3,3) RFRAC(3,4) RFRAC(3,5) RFRAC (3, 6) 

ARRAY (3, 1) ARRAY(2,3) ARRAY(l,5) ARRAY(3, 6) 

RFRAC (4, 1) RFRAC(4,2) RFRAC(4,3) RFRAC(4,4) RFRAC(4,5) RFRAC(4,6) 

ARRAY(l,2) ARRAY(3,3) ARRAY(2,5) 

RFRAC(5,1) RFRAC(5,2) RFRAC(5,3) RFRAC(5,4) RFRAC(5,5) RFRAC (5, 6) 

ARRAY(2,2) ARRAY(l, 4) ARRAY (3, 5) 

Consequently, this invocation will process the first three rows of RFRAC. Let us change 

the CALL again: 

CALLMNVAL (RFRAC (2, 1), 3, 6, RSUM, RAVG, RFRNG) 

As shown in Display 12.3, the first element of the dummy array is associated with 

RFRAC (2, 1): 

Display 12.3 

RFRAC (1, 1) RFRAC(l,2) RFRAC(l,3) RFRAC(l,4) RFRAC(l,5) RFRAC (1, 6) 

ARRAY(2,2) ARRAY (1, 4) ARRAY(3,5) 

RFRAC(2,1) RFRAC(2,2) RFRAC(2,3) RFRAC(2,4) RFRAC(2,5) RFRAC (2, 6) 

ARRAY (1, 1) ARRAY(3,2) ARRAY(2,4) ARRAY (1, 6) 

RFRAC (3, 1) RFRAC(3,2) RFRAC(3,3) RFRAC(3,4) RFRAC(3,5) RFRAC(3,6) 

ARRAY(2, 1) ARRAY(!, 3) ARRAY(3,4) ARRAY(2, 6) 

RFRAC (4, 1) RFRAC(4,2) RFRAC(4,3) RFRAC(4,4) RFRAC(4,5) RFRAC(4,6) 

ARRAY (3, 1) ARRAY(2, 3) ARRAY (1, 5) ARRAY(3, 6) 

RFRAC (5, 1) RFRAC (5, 2) RFRAC(5,3) RFRAC(5,4) RFRAC(5,5) RFRAC (5, 6) 

ARRAY(!, 2) ARRAY(3, 3) ARRAY(2,5) 
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As a result, MNVAL still processes three rows (18 elements) of RFRAC, but they are the 
three rows starting with row 2 (i.e., rows 2-4). 

To fasten this idea securely, we shall invoke MNV AL with the statement 

CALLMNVAL (RFRAC (4, 1), 3, 6, RSUM, RAVG, RFRNG) 

By now, we can see immediately that this will not work. Even though FRAC has 30 
elements, and we are asking MNVAL to process only 18 elements, the association implied 
by our CALL starts with element RFRAC ( 4, 1) , a point far enough along in the array so 
that fewer than 18 elements remain. (Specifically, only 12 elements remain.) 

It is possible to set up an invocation where the actual and dummy arrays are not 
aligned as they are in these examples. However, the programmer must be careful to make 
sure he or she knows exactly how the association will take place. In any situation, the 
underlying guide is FORTRAN's rule for the sequence of array elements (defined in 
Section 7 .1. 3). We shall not explore the details of such associations in this text; however, 
one example is presented to illustrate how the rule applies. The statement 

CALLMNVAL (RFRAC (3, 3), 3, 4, RSUM, RAVG, RFRNG) 

sets up a 3 by 4 dummy array whose first element (ARRAY ( 1, 1) ) is associated with 
element (3, 3) ofarrayRFRAC. ARRAY's 11 remaining elements are associated, in order, 
with the next 11 elements ofRFRAC. See Display 12.4. 

Display 12.4 

RFRAC(l,1) RFRAC(l,2) RFRAC (1, 3) RFRAC(l,4) RFRAC(l,5) RFRAC(l,6) 
ARRAY(l,2) ARRAY(3,3) 

RFRAC(2,1) RFRAC(2,2) RFRAC(2,3) RFRAC(2,4) RFRAC(2,5) RFRAC(2, 6) 
ARRAY(2,2) ARRAY(l,4) 

RFRAC(3,1) RFRAC(3,2) RFRAC(3,3) RFRAC(3,4) RFRAC(3,5) RFRAC(3,6) 
ARRAY (1, 1) ARRAY(3,2) ARRAY(2,4) 

RFRAC(4,l) RFRAC(4,2) RFRAC(4,3) RFRAC(4,4) RFRAC(4,5) RFRAC (4, 6) 
ARRAY(2,1) ARRAY(l,3) ARRAY(3,4) 

RFRAC(5,l) RFRAC(5,2) RFRAC(5,3) RFRAC(5,4) RFRAC(5,5) RFRAC (5, 6) 
ARRAY(3,1) ARRAY(2,3) 

The use of the EQUIVALENCE statement to represent part of an array as an entire array 
(Section 12.2.4.2) applies to multidimensional arrays as well as it does to those having a 
single dimension. 

12.2.5 Dimensional differences Between Anay Arguments 

It is possible to specify a multidimensional array as an actual argument to a subprogram in 
which the corresponding dummy argument is a one-dimensional array. The rules for 
association are the same as those discussed and illustrated previously. The only difference 
is that the programmer must be aware of the details, so that he or she can make sure that 
the processing resulting from a given invocation matches his or her requirements. 

To illustrate, we shall go back to the subroutine MNVAL as it was originally specified 
for Example 12.2. Recall that the one-dimensional dummy array ARRAY in that example 
is declared with the adjustable size (NUMOBS) supplied as an actual argument by each 
invocation. Using the 5 by 6 array FRAC and the other variables from the previous section, 
we can CALL MNV AL with the statement 

CALLMNVAL (RFRAC, 30, RSUM, RAVG, RFRNG) 
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in which case all of RFRAC's 30 elements will be processed. The resulting association 

between the 30-element dummy array ARRAY and the 5 by 6 actual array is shown in 

Display 12.5. 

Display 12.5 

RFRAC(l,l) RFRAC(l,2) RFRAC(l,3) RFRAC(l,4) RFRAC(l,5) RFRAC (1, 6) 

ARRAY (1) ARRAY(6) ARRAY(ll) ARRAY (16) ARRAY (21) ARRAY(26) 

RFRAC(2,l) RFRAC(2,2) RFRAC(2,3) RFRAC(2,4) RFRAC(2,5) RFRAC(2,6) 

ARRAY (2) ARRAY (7) ARRAY (12) ARRAY (17) ARRAY (22) ARRAY (27) 

RFRAC(3,l) RFRAC(3,2) RFRAC(3,3) RFRAC(3,4) RFRAC(3,5) RFRAC(3,6) 

ARRAY(3) ARRAY (8) ARRAY (13) ARRAY (18) ARRAY (23) ARRAY (28) 

RFRAC(4,l) RFRAC(4,2) RFRAC(4,3) RFRAC(4,4) RFRAC(4,5) RFRAC(4,6) 

ARRAY(4) ARRAY (9) ARRAY (14) ARRAY (19) ARRAY (24) ARRAY (29) 

RFRAC(5,l) RFRAC(5,2) RFRAC(5,3) RFRAC (5, 4) RFRAC(5,5) RFRAC (5, 6) 

ARRAY (5) ARRAY (10) ARRAY (15) ARRAY (20) ARRAY (25) ARRAY (30) 

This is straightforward enough: each of the 30 elements in the dummy array ARRAY 

represents the element in the corresponding sequential position of the actual array 

RFRAC. 
Now, using the same values, we can analyze the action of the statement 

CALL MNV AL (RFRAC ( 3, 2) , 9, RSUM, RA VG, RFRNG) 

In effect, the invocation requests MNV AL to process the nine consecutive elements in array 

RFRAC beginning with element RFRAC ( 3 , 2) . As a result, MNV AL associates ARRAY ( 1) 

withRFRAC (3, 2) ,ARRAY(2) withRFRAC (4, 2) ,andsoon,asshowninDisplayl2.6. 

Display 12.6 

RFRAC(l,l) RFRAC(l,2) RFRAC(l,3) RFRAC(l,4) RFRAC(l,5) RFRAC (1, 6) 

ARRAY (4) ARRAY (9) 

RFRAC(2,1) RFRAC(2,2) RFRAC(2,3) RFRAC(2,4) RFRAC(2,5) RFRAC (2, 6) 

ARRAY(5) 

RFRAC(3,1) RFRAC(3,2) RFRAC(3,3) RFRAC(3,4) RFRAC(3,5) RFRAC (3, 6) 

ARRAY(l) ARRAY(6) 

RFRAC(4,l) RFRAC(4,2) RFRAC(4,3) RFRAC(4,4) RFRAC(4,5) RFRAC (4, 6) 

ARRAY (2) ARRAY (7) 

RFRAC(5,l) RFRAC(5,2) RFRAC(5,3) RFRAC(5,4) RFRAC(5,5) RFRAC (5, 6) 

ARRAY(3) ARRAY(8) 

A third type of argument that can be specified for an external subprogram is the ilame of 

another subprogram. this makes it possible to set up a function or subroutine that uses 

another subprogram whose identity need not be established until there is an actual 

invocation. HP FORTRAN 77 includes statement functions as part of this capability. 
To provide this facility, a dummy procedure name is included in the list of dummy 

arguments. Then, when the subprogram is invoked, an actual procedure name is specified 

in the corresponding position of the actual argument list. Suppose we have the following 
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general subroutine: 

SUBROUTINE 
REAL 

subnam ( dargl, darg2, dsub, darg3) 
darg 1, darg2, darg3 

darg3 = darg 1 + dsub( darg 1 ,darg2) 

RETURN 
END 

The dummy argument dsub is not the name of a particular subprogram. Instead, it is a 
symbol (constructed like any other variable name) indicating that a specific subprogram 
name (a function in this particular example) will be supplied in the same position of the 
actual argument list when subnam is invoked. Accordingly, a CALL to subnam would 
take the form 

CALL subnam (argl, arg2, sub, arg3) 

where sub is an actual function name in the same way that argl, arg2 and arg3 are actual 
arguments. This may be any subprogram at all. Of course, it is up to the programmer to 
make sure that the actual subprogram's usage is consistent (i.e., number, type, and 
sequence of arguments) with that describe¢ for the dummy subprogram. 

Note that dsub, though included in the dummy argument list, is not declared in the 
subprogram. Its meaning is established through its usage. However, it is necessary to 
provide FORTRAN with a list of specific subprograms that could be used as actual 
arguments. This list must appear in the invoking program, and there are two types of 
statements {EXTERNAL and INTRINSIC) provided for that purpose. We shall discuss 
their use in the next two sections. 

12.3.1 The EXTERNAL Statement 

If a programmer-designed external subprogram is to be used as an actual argument, its 
name must appear in an EXTERNAL statement in the invoking program. The general form 
is 

EXTERNAL snamel, sname2, ...... . 

The names may appear in any order, with functions and subroutines intermixed. This tells 
FORTRAN that the program or subprogram intends to use the names snamel, sname2, 
etc. as actual arguments, and that these arguments are subprogram names. 

Example 12.4 We shall illustrate these connections by building a set of procedures for a type of 
computation used in certain aspects of engineering combustion: a known flow of air coming into a burner 
of some kind at temperature Tl is presented with a known flow of fuel, and the resulting mixture is 
burned to produce a temperatue rise to some level T2. The extent of this temperature increase depends 
on Tl and FA, the relative amount of fuel used (e.g., pounds of fuel per pound of air). Oecause of the 
complex chemical and physical processes involved, several different equations have to be used to 
express these relations, as summarized in Table 12.1.Weareto read sets of Tl and FA, producing a value 
of T2 for each set, along with R, the ratio of T2 /Tl. 

To illustrate the use of procedures as arguments, we shall construct a simple main program that 
invokes a subroutine named COMB to obtain the final temperature. COMB uses one of two functions, 
HTEMP or LTEMP, to perform the computations. The selection of HTEMP or LTEMP depends on Tl, and 
each function uses FA to determine how to do its computations. A Tl of zero concludes the run. 

The only noteworthy feature of the main program (Figure 12. 7) is the EXTERNAL statement in which 
the two functions HTEMP and LTEMP are listed. The subroutine COMB is not listed there because it is 
always invoked-it is not one of several choices. COMB uses FTEMP as a dummy procedure name. There 
is no subprogram named FTEMP. Instead, when COMB is called, the call will include eitherHTEMP orLTEMP 
as an actual argument. 
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Table 12.1 Equations for Example 12.4 

Tl = Initial Temperature, Degrees R 
FA = Lbs. of Fuel per Lb. of Air 
TR = Temperature Rise, Degrees R 

T1 

<560 
<560 
<560 

>=560 

>=560 

FA 

<0.022 
0.022-0.067 

>0.067 

<0.0212 

0.0212-0.067 

TR 

0.0892*Tl**0.719 + 0.2744*FA 

.1136*Tl**l.332+(1.16*1/(560-Tl))*FA**·9246 

.1136*Tl**l.332+(1.16*1/(560-Tl))*FA**·9246 
*(FA-0.067)**1.0881 

.0505*(Tl-560)+0.1092*Tl**·757+.2861*FA 
-.00310FA**l.75 

.1163*Tl**.404*(FA/(l-FA))**l.077 
-.00287*FA**l.554 

C******************************************************* 
c 
c 
c 
c 

EXAMPLE 12.4 * 

THIS PROGRAM COMPUTES AND PRINTS FINAL TEMPERATURES * 

FOR COMBUSTION PROCESSES OPERATING AT INITIAL TEM- * 

PERATURES T1 AND FUEL-TO-AIR RATIOS FA. FOR EACH T1 * 

C AND FA, THE PROGRAM ALSO PRODUCES R, THE RATIO OF * 

C FINAL TEMPERATURE (T2) TO INITIAL TEMPERATURE. * 

C THE TEMPERATURE RISE IS COMPUTED USING BLIVVOOLY'S * 

C EQUATIONS, THE PROPER ONE DEPENDING ON T1 AND FA. * 

C******************************************************* 

PROGRAM EX1204 
IMPLICIT NONE 
REAL T1,FA,T2,R,ZERO 
CHARACTER*? BLANKS 
EXTERNAL HTEMP,LTEMP 
PARAMETER (ZER0=0.0,BLANKS=' 

PRINT*, 'T1','FA','T2','R' 
WRITE (1,*) 'ENTER VALUES FOR T1 AND FA' 
READ (1,*) T1,FA 

DO WHILE (T1 .NE. ZERO) 
IF (T1 .LT. 560.0) THEN 

CALL COMB(T1,FA,LTEMP,T2,R) 
ELSE 

CALL COMB(T1,FA,HTEMP,T2,R) 
END IF 
PRINT*, T1,FA,T2,R 

, ) 

WRITE (1,*) 'READ THE NEXT SET OF VALUES FOR T1, FA' 

READ (1,*,END=199) T1,FA 
END DO 

199 PRINT *, BLANKS 
PRINT*, 'END OF RUN. NORMAL TERMINATION.' 
STOP 
END 

FIGURE 12.7 (a) FORTRAN Statements for Example 12.4's Main Program. 
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C******************************************************* c 
c 
c 
c 
c 
c 

COMB * THIS SUBROUTINE COMPUTES THE FINAL TEMPERATURE OF A * 
COMBUSTION PROCESS GIVEN THE INITIAL TEMPERATURE TA * 
AND THE FUEL/AIR RATIO F. IN DOING SO, IT INVOKES * 
ONE OF TWO FUNCTIONS, THE CHOICE BEING DETERMINED * 
BY THE PROGRAM CALLING COMB. * 

C******************************************************* 

SUBROUTINE 
REAL 

COMB(TA,F,FTEMP,TB,RATIO) 
TA,F,TB,RATIO 

TB = TA+FTEMP(TA,F) 
RATIO = TB/TA 
RETURN 
END (b) 

C******************************************************* c 
c 
c 
c 
c 

LTEMP * THIS FUNCTION COMPUTES THE FINAL TEMPERATURE FOR * 
COMBUSTION PROCESSING IN WHICH THE INITIAL TEMPERA- * 
TORE IS BELOW 560 DEGREES RANKINE. THE FAMOUS AND * 
INTERESTING BLIVVOOLY EQUATIONS ARE USED. * 

C******************************************************* 

REAL FUNCTION LTEMP(TIN,FL) 
REAL TIN,FL 
IF (FL .LT. 0.0022) THEN 

LTEMP=0.0892*T1**0.719+0.2744*FL 
ELSE IF (FL .LT. 0.067) THEN 

LTEMP=0.1136*T1**1.332+(1.16*T1/(560.0-T1))*FL**0.9246 
ELSE 

LTEMP=0.1136*T1**1.332+(1.16*T1/(560.0-T1))*FL**0.9246 
1 *(FL-0.067)**1.0881 

END IF 
END IF 
RETURN 
END (c) 

C******************************************************* c 
c 
c 
c 
c 
c 

HTEMP * THIS FUNCTION COMPUTES A FINAL COMBUSTION TEMPERA- * 
TORE GIVEN AN INITIAL TEMPERATURE AND FUEL/AIR RATIO* 
FOR PROCESSES IN WHICH THE INITIAL TEMPERATURE IS AT* 
LEAST 560 DEGREES RANKINE. THE ILLUSTRIOUS AND * 
IMPRESSIVE BLIVVOOLY EQUATIONS ARE USED. * C******************************************************* 

REAL FUNCTION 
REAL 

HTEMP(TSTR,FLR) 
TSTR,FLR 

IF (FLR .LT. 0.0212) THEN 
HTEMP=0.0505*(TSTR-560.0)+0.1092*T1**0.757+0.2861+FLR 

1 -0.00310*FLR**1.75 
ELSE IF (FLR .LT. 0.067) THEN 

HTEMP=0.1163*T1**0.404*(FLR/1.0-FLR))**1.164 
ELSE 

HTEMP=(1.1083*T1/(T1-560.0))**0.874 * 
1 (FLR/(1.0-FLR))**1.077-0.00287*FLR**1.554 

END IF 
END IF 
RETURN 
END (d) 

FIGURE 12.7 (b) COMB Subprogram for Example 12.4. (c) LTEMP Subprogram for Example 12.4 (d) HTEMP 
Subprogram for Example 12.4. 
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12.3.2 The INTRINSIC Statement 

When the subprogram to be used as an actual argument is one of FORTRAN's built-in 

functions (Chapter 6), its name must appear in an INTRINSIC statement in the invoking 

program or subprogram. For example, the statement 

INTRINSIC SQRT,SIN,COS 

announces that the program containing this statement intends to invoke one or more 

subprograms for which SQRT, SIN, and COS are to be actual arguments. The rules 

regarding the use of this statement are straightforward: 

1. Built-in (intrinsic) functions, when used as arguments, must appear in an 

INTRINSIC statement in the invoking program. Such a name can appear in an 

EXTERNAL statement instead, but when it does, it means that a programmer­

designed subprogram by that name will be used as an argument. As a result, the 

intrinsic function with that name is unavailable to that program or subprogram. 

2. The INTRINSIC statement is reserved strictly for built-in function names; a 

programmer-designed subprogram must not be listed there. 

3. The following intrinsic functions cannot be used as actual arguments and, there­
fore, may not appear in an INTRINSIC statement: INT, REAL, DBLE, CMPLX, 

CHAR, I CHAR, MAX, and MIN. 

Associations set up between dummy arguments and actual arguments can be used to 

transmit data values through several levels of invocation. A case of this transmission 

appears in Example 12.4. In that construction the main program invokes the subroutine 

COMB with Tl as one of the actual arguments. COMB, in tum, is set up to invoke some 

function (either LTEMP or HTEMP). In either event, one of the arguments specified by 

COMB is TA, a member of its dummy argument list. Since TA is associated with Tl when 

COMB is CALLed, the association extends to COMB's invocation so that, ultimately, Tl's 

value is associated with TIN (ifLTEMP is invoked) or TSTR (ifHTEMP,is invoked), and it is 

this value that is used in computing the final temperature. 
This ability to transmit dummy arguments can be used regardless of the number of 

levels of invocation involved. However it is used, the programmer must make sure that, in 

some way, a value has been assigned to that name by the time it is used in an invocation. 

There are three types of information that can be transmitted to an invoked subprogram: 

1. An individual data value of any type. This value may be specified as a constant, a 

single-valued variable, an array element, or a legitimate FORTRAN expression. When 

the invocation occurs, this value is associated with the name in the corresponding position 

of the invoked subprogram's dummy argument list. Then, that value is used in the 

subprogram whenever there is a reference to that dummy argument name. 

2. All or part of an array. When a subprogram is invoked with an array argument, the 

actual array's address is associated with the name of the corresponding dummy array so 

that, ultimately, FORTRAN develops an association between each element of the 

dummy array and a particular element of the actual array. The number of elements 

described by the dummy array cannot exceed the number specified by the actual array 

argument. 

3. An external function or subprogram name. When such a name is given as an actual 

argument, the invoked subprogram associates that name with a corresponding dummy 

procedure name. Then, when the subprogram executes, it, in tum, will use that associa­

tion to invoke another subprogram. Built-in functions to be used as arguments must be 

listed in an EXTERNAL statement in the invoking program. 
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PROBLEMS 

DATA FOR ARGUMENTS TO SUBPROGRAMS 

1. Here is a program consisting of a main program and a single subroutine: 

PROORAM 
IMPLICIT 
REAL 
INTEGER* 
CHARACTER 

Cl2Pl 
NONE 
X,Y,Z,Al,A2,A3,R(3),B(3,2),U,V,W 
N,Sl,S2,T 
Cl*l,C2*4,Rl*l 

DATA R,N,Sl,Cl,C2/l.5,2.2,2.5,2.l, '8', '1202'/ x = 2.0 
y = 4.5 
z = 3.0 

1 O statement 
20 statement 

END 

SUBROUTINE 
REAL 

INTEGER*2 

COMP3 (Al,A2,A3,A4,Rl,R2,R3) 
Al,A2,A3,A,B,C,Rl,R2,R3 
A4 

A= MIN(Al,A2,A3) 
C = MAX(Al,A2,A3) 
IF (A2.GE. A.AND. A2.LE. C) THEN 

B = A2 
ELSE IF (Al.GE. A.AND. Al.LE. C)THEN 

B = Al 
ELSE 

B = A3 
END IF 
Rl = A** (A4+1) 
R2 = B**A4 
R3 = C** (A4-l) 
RETURN 
END 

Note that the main program has two statements (labeled 10 and 20) whose descriptions are not given. A number of possible descriptions are shown below. Based only on the FORTRAN statements given above, determine which of the CALL statements have errors in them and what the errors are. For each of the statements that will work, show the output that would be produced by the PRINT statement that follows the CALL: 

(a) 10 CALLCOMP3 (X, Y, Z, N, U, V, W) 
20PRINT *• U, V, W. 

(b) 10 CALL COMP3 (X, Y, N, Z, U, V, W) 
20 PRINT*• U, V, W 

(c) 10 CALL COMP3 (X, Y, Z, U, V, W) 
20 PRINT*• U, V, W 

(d) 10 CALL COMP3 (Y, X, Z, Sl, V, U, W) 
20 PRINT*• U, V, W 

(e) 10 CALLCOMP3 (X, Y, Z, Sl, U, W, V) 
20 PRINT*• U, V, W 

(t) 10CALLCOMP3(R(l) ,R(2) ,R(3) ,N,V,W,U) 
20 PRINT*, U, V, W. 

(g) 10CALLCOMP3 (X,R(l), Y,N, V, W, U) 
20PRINT *• U, V, W 

(h) 10 CALLCOMP3 (R, Sl, U, V, W) 
20 PRINT *, U, V, W 

(i) 10 CALLCOMP3 (X, Z, R (1), N, Y, V, W) 
20PRINT *, V, W, Y 



(j) 10 CALL COMP3 (X, Z, R (1), N, U, B (1, 2), Wl) 

20 PRINT*, U, B (1, 2), W) 

(k) 10 CALL COMP3 (X, Y, Cl, Sl, U, Z, W) 

20 PRINT*, U, Z, W 
(1) 10 CALL COMP3 (X, Y, 4. 0, 0, R (1), R (2), R (3)) 

20PRINT *, R 
( m) 10 CALL COMP3 (X, Y, 4 , 0, B ( 1, 1) , B ( 2 , 1) , B ( 3 , 1) ) 

20 PRINT*, B (1, 1), B (2, 1), B (3, 1) 

(n) 10 CALL COMP3 (X, -1. 0, -2, 0, N, Y, Z, W) 

20PRINT *, Y, Z, W 
(o) 10 CALL COMP3 (X, Y, Z, N, U, 3. 0, V) 

20PRINT *• U, V 
(p) 10 CALL COMP3 (Y, Z, -1. 0, Sl, N, V, W) 

20 PRINT*, N, V, W 
(q) 10 CALLCOMP3 (X, Y, Z, -1, Cl, V, W) 

20 PRINT*, Cl, V, W 
(r) 10CALLCOMP3(R,N,B(l,1) ,B(2, 1) ,B(3, 1) 

20PRINT*, B(l, 1) ,B(2, 1) ,B(3, 1) 

(s) 10 CALL COMP3 (2. 0, 3. 0, 4. 0, 1, X, Y, Z) 

20 PRINT*, X, Y, Z 
( t) 10 CALL COMP3 (B ( 1 , 1) , B ( 2 , 1) , B ( 3, 1) , N, B ( 1, 2) , B ( 2, 2) , B ( 3 , 2) ) 

20 PRINT*, B (1, 2), B (2, 2), B (3, 2) 

(u) 10 CALLCOMP3 (2. o+x, 6. 0, 4. 0-Y, 1, U, V, W) 

20PRINT *, U, V, W 
(v) 10 CALLCOMP3 (3. 0-X, 2. 0, 4. 0-Y, N, U, V, X) 

20PRINT*, X,U,V 
(w) 10 CALL COMP3 (SQRT (8. O*X) '3, z+x, N/2, V, W, U) 

20 PRINT*, U, V, W 
(x) 10 CALL COMP3 (R (3), R (2), X, l, 3. O*U, V-1. 0, W) 

20PRINT *, U, V, W 

PROBLEMS 

2. Section 12.1.1 shows a subroutine named CHEMV Al and its invocation by a main program under different 

sets of circumstances. Using the same variables as in the example, set up a sequence of FORTRAN 

statements that will result in the following behavior for CHEMV AL: 

When MW is less than 200, OUTCOME = COEF*VISC** (ENRG+REFIN) -REDUC 

When MW is>= 200and < 400, OUTCOME = VISC** (ENRG+REFIN) -REDUC 

When MW is> 399 and< 600, OUTCOME = VISC**ENRG- REDUC 

When MW is>= 600, OUTCOME = VISC - REDUC 

The computation of MIXV AL is not affected by MW. In fact, the subroutine CHEMV AL is not to be changed 

at all. 

3. Write a subroutine named REMOVE that removes the vowels from the first argument and stores them in the 

second argument, starting in its leftmost position. Unused positions in the second argument are to be filled 

with blanks. Note that there is no guarantee that the invoking program always will supply a second 

argument that is long enough. Consequently, REMOVE must be prepared to recognize and deal with this 

possibility. One way to do this is to fill the second argument with a special character (e.g.,+) to indicate 

that the invocation was not successful. 

Write a simple main program to test REMOVE. Use a variety of arguments having different lengths, 

including some that will not work. 

4. Write a function named SUMVAL that returns the sum of all the elements in a24-element one-dimensional 

array of real numbers. 

5. Generalize the function in Problem 4 so that it will operate on a one-dimensional real array of any size. 

6. Write a subroutine named ARYPRC that processes a one-dimensional array of real numbers whose size is 

not defined until the subroutine is invoked. ARYPRC produces four results: 

( 1) The sum of all elements each of whose values is below a value specified by the invoking program; 
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(2) The number of elements used in preparing the sum in (1); 
(3) The sum of all elements not used in preparing the sum in (1); 
(4) The number of elements used in preparing the sum in (3). 

Test ARYPRC with a suitable main program. 

7. Design and implement ARYPRC so that it will operate on a two-dimensional array. 

8. Write a subroutine named LTRCNT that performs the following processing: when it is invoked, it is given 
the following arguments: 

(1) A one-dimensional character string array; 
(2) A character string of some length (let's call that length STRLTH) ; 
(3) A one-dimensional integer array where the number of elements is the same as STRLTH. 

L TRCNT is to examine the character array and count the number of occurrences of each character in the 
string mentioned in (2) above. These numbers are to be returned in the integer array. For instance, 
suppose the character string is 'BJ 8 7H ' . Thus, the integer array will have five elements. When the 
subroutine completes its processing, the first elements will indicate how many B's there are in the character 
array, the second will show how many J's were found, and so on. 

Set up LTRCNT so that it can handle a character array with as many as 50 elements with a maximum 
length of20: 

(a) If LTRCNT is invoked using a 25-element character array, how long can each element be? 
(b) If L TRCNT is invoked using 10-character array elements, how many elements can the character array 

have? 
( c) If L TRCNT is invoked using 12-character array elements, how many elements can the character array 

have? 
(d) IfLTRCNT is invoked using a30-element character array, how long can each element be? 
(e) What is the largest allowable value for STRLTH? 

Test L TRCNT with a suitable main program. 

9. Take a look at the following subroutine: 

SUBROUTINE 
IMPLICIT 
REAL 
INTEGER*2 
REF= A(l) 
DO I=2,N 

ADJ(A,N) 
NONE 
A(N) ,REF 
N, I 

IF (A (I) . GT. REF) THEN 
REF = A(I) 

ELSE 
END IF 

END DO 

REF = l. 0/REF 
DO I=l, N 

A(I) = REF*A(I) 
END DO 

RETURN 
END 

(a) Using no more than two sentences, describe what ADJ does. Now here is part of a main program: 

1 

PROGRAM 
REAL 

C12P9 
RDNGS(24) 

INTEGER*2 SOMANY,J 
DATA RDNGS/-3.4,8.0,-l.0,2.2,3*6.1,4*2.8,6.6, 

4*-2.7,8.1,7.4,5*5.5,-5.5/ 
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Given below are several sequences of statements, each of which includes a CALL to ADJ. Some of 

these will not work. Indicate the ones that will not work and explain what is wrong with them. For those 

that will work, show what the output will be. Assume that each of these sequences would be placed 

immediately after the DATA statement. Treat each of these sequences independently. 

(b) CALL ADJ (RDNGS, 24) 

DOJ=l, 24, 4 
PRINT*, RDNGS (J), RDNGS (J+l), RDNGS (J+2), RDNGS (J+3) 

END DO 

(c) CALL ADJ (RDNGS (6), 10) 

DOJ=l, 24, 4 
PRINT*, RDNGS (J) , RDNGS (J+l), RDNGS (J+2), RDNGS (J+3) 

END DO 

(d) SOMANY = 8 

CALL ADJ (RDNGS (18), SOMANY) 

DOJ=l, 24, 4 
PRINT*, RDNGS (J), RDNGS (J+l), RDNGS (J+2) , RDNGS (J+3) 

END DO 

(e) SOMANY = 8 

CALL ADJ (RDNGS (3), 3*SOMANY) 

DOJ=l, 24, 4 
PRINT*• RDNGS (J), RDNGS (J+l), RDNGS (J+2), RDNGS (J+3) 

END DO 

( f) SOMANY = 8 

CALL ADJ (RDNGS ( SOMANY) , SOMANY) 

DOJ=l, 24, 4 
PRINT*, RDNGS (J), RDNGS (J+l), RDNGS (J+2), RDNGS (J+3) 

END DO 

Now, here is part of a new main program: 

1 

PROGRAM 

REAL 

INTEGER*2 
DATA 

C12P9A 
BLD (-6: 7) 

QTY,J 
BLD/4.4,3.3,-5.5,2.2,l.l,8.8,-3.3,-7.7, 

0.0,-2.2,7.7,-8.8,-9.9,-10.8/ 

Each of the following sequences of statements is to be considered as part of this main program. As 

before, we shall invoke ADJ arid some of the sequences will not work. Explain the errors in those cases, 

and show the output resulting from the ones that will work: 

(g) CALL ADJ (BLD, 13) 

DOJ=l, 10, 4 

PRINT*, BLD (J) . BLD (J+l), BLD (J+2), BLD (J+3) 

END DO 

(h) QTY = 7 
CALL ADJ (BLD (-4), QTY) 

DOJ=-6, 11, 4 
PRINT*, BLD (J), BLD (J+l), BLD (J+2), BLD (J+3) 

END DO 

PRINT*, BLD (12), BLD (13) 

(i) QTY = -3 
CALL ADJ (BLD (0) , QTY+lO) 

DOJ=l, 12, 3 

PRINT*, BLD (J-7), BLD (J-6), BLD (J-5) 

END DO 
PRINT * , BLD ( 5) , BLD ( 6) , BLD ( 7) 

(j) QTY = 3 
CALL ADJ (BLD (0), QTY+lO) 

DOJ=l, 12, 3 

PRINT*, BLD(J-7) ,BLD(J-6) ,BLD(J-5) 

END DO 
PRINT*, BLD (5), BLD (6), BLD (7) 
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10. Here is another subroutine: 

SUBROUTINE 
INTEGER*2 
DO I=l, R 

QUANTM (MTRX,R,C,PEG) 
R,C,MTRX(R,C),PEG(4),I,J 

DOJ=l, C 
IF (MTRX(I,J) .LT. PEG(l)) THEN 

MTRX(I,J) = PEG(l) 
ELSE IF (MTRX (I, J) . LT. PEG (2) ) THEN 

MTRX(I,J) = PEG(2) 
ELSE IF (MTRX (I, J) . LT. PEG ( 3) ) THEN 

MTRX(I,J) = PEG(3) 
ELSE 

MTRX(I,J) = PEG(4) 
END IF 

END IF 
END DO 

END DO 
RETURN 
END 

The following is part of a main program that we shall use to invoke QUANTM: 

1 
2 

PROGRAM 
INTEGER*2 
DATA 

C12Pl0 
OBS(4,4) ,CRNR(4),ROWS,COLS,KR,KC 
CRNR/4,8,12,16/, 
OBS/5,-8,19,22,3,0,4,-4, 

-17,21,3,-6,31,ll,5,-21/ 

(a) What does QUANTM do? As was requested in Problem 9, give a brief explanation. Do not paraphrase 
the individual statements. 

Some of the following sequences have errors in them. Indicate which ones they are and why they are 
wrong. For those that are right, show what the printout will produce: 
(b) CALL QUANTM (OBS, 4, 4, CRNR) 

DOKR=l, 4 
PRINT*, OBS(KR,1),0BS(KR,2),0BS(KR,3) ,OBS(KR,4) 

END DO 

(c) CALLQUANTM(OBS, 4, 4, CRNR(l), CRNR(l), CRNR) 
DOKR=l, 4 

PRINT*, OBS(l,KR),OBS(2,KR),OBS(3,KR),0BS(4,KR) 
END DO 

(d) CALLQUANTM(OBS(l, 1) ,3,3,CRNR) 
DOKR=l, 4 

PRINT*, OBS(KR,1) ,OBS(KR,2) ,OBS(KR,3),0BS(KR,4) 
END DO 

( e) CALL QUANTM (OBS ( 1, 1) , 3, 4, CRNR) 
DOKR=l, 4 

PRINT*, OBS(KR,1),0BS(KR,2),0BS(KR,3),0BS(KR,4) 
END DO 

(f) CALL QUANTM (OBS ( l, 2) , 4, 4, CRNR) 
DOKR=l, 4 

PRINT*, OBS(KR,KR) 
END DO 

(g) CALLQUANTM(OBS(2,2) ,3,3,CRNR) 
DOKR=l, 4 

PRINT*, OBS(KR,1),0BS(KR,2),0BS(KR,3),0BS(KR,4) 
END DO 



(g) CALLQUANTM(OBS (2, 2), 3, 3, CRNR) 

DOKR=l, 4 
PRINT*, OBS(KR,l),OBS(KR.,2),0BS(KR,3),0BS(KR,4) 

END DO 
(h) ROWS = 2 

COLS = 3 
CALL QUANTM (OBS (ROWS, COLS) , ROWS, COLS, CRNR) 

DOKR=l, 4 
PRINT*, OBS(l,KR),OBS(2,KR),0BS(3,KR),0BS(4,KR) 

END DO 

PROBLEMS 

11. In an earlier chapter, we examined Homer's method as a relatively efficient way to compute the value of a 

polynomial expression. Recall that for a third order polynomial, the value of the polynomial at some 

particular X (which we shall call P3X) can be expressed as follows: 

P3X =CO+ X*(Cl + X*g)c2· + X*(C3))} 

Similarly, we can define the polynomial value P4X for a fourth order polynomial as 

P4X =CO+ X*(Cl + X*(C2 + X*(C3 + X*(C4)))) 

In general, then, for an nth order polynomial, 

PNX = CO + X* (Cl + X* (C2 + X* (C3 + · · + X* (CN)) ... )) 

With a slight amount of manipulation, this method lends itself nicely to implementation as a function 

involving a simple loop. The arguments to such a function consist of an array of coefficients (the C's in the 

formula used earlier), the degree (order) of the polynomial (we called itN before), and the point at which 

the polynomial is to be evaluated (X in the previous formula). Note that if N is the degree of the 

polynomial, then there are N+l coefficients. Write such a function (name it POLY) and test it with a 

suitable main program. Note that the processing inside the function is simplified to some extent if the array 

of coefficients starts with C ( O) rather than C ( 1) . This makes it easier to relate the first coefficient 

( C ( 0) ) to CO in the formula, and so on through C (N) , which corresponds to CN in the earlier 

formulation. The process is simplified even further if Homer's method is set up to proceed in the direction 

opposite to that shown in the formula. That is, if we start out by initializing our computed value to C (N) , 

we can multiply it by X and add C (N-1) ) . The resulting value, then, can be multiplied by X and C (N-2) 

added, and so on through the array of C's. Eventually, this brings us to a point where the only value 

needed to complete the computation is C ( O) , and that value simply is added in. 

12. Write a program that processes an Nth order polynomial to find a root close to zero. The root of a 

polynomial is a value of X such that 

PNX = 0 

Each input set to this program consists of a value forNfollowed byN+l coefficients (i.e., C), Cl, C2, ... , 

CN). The program is to process any number of input sets, using an N of zero to stop the run. A maximum N 

of 6 is to be allowed. For each set processed, the program is to print an echo of the input followed by the 

value of the root. 
The basic approach in designing an algorithm to perform the required processing is to try various 

values of X until the polynomial value comes out to be zero. Since it is impractical to compute a value of 

zero in a machine (we can set a value of zero but it is unlikely that we can arrive consistently at exactly 

zero), we shall have to define a range around zero that we agree will be "close enough." For this problem, 

we shall consider 1. OE-4 (i.e., 0.0004) to be acceptably close. Thus, instead of testing to see whether 

some value (say POLY (X)) is equal to zero, a more practical test would be one in which we .compare 

ABS (POLY (X) ) to some parameter (let us say its name is EPSLON) which we have set to l. OE-4 by 

means of a PARAMETER statement. 
Having identified the major test, we can look at the trial and error process. Starting with X=O. O, we 

can compute the polynomial value at that point so that we have a reference against which to compare later 

trials. (Of course, if PNX at X=O is acceptably close to zero (i.e., it is no larger than EPSLON, the process is 

complete.) If it is larger (as it is likely to be), we try at another value for X, say, o. 5 larger than the 

previous X. If the polynomial value at that point is smaller (i.e., closer to EPSLON) than the one computed 

for the previous trial value of X, we are encouraged to believe that we are on the right track, adn we make 

X larger again by the same amount we used before. This process repeats as long as POLY (X) keeps getting 

smaller and smaller. As soon as POLY (X) begins moving in the other direction (i.e., away from EPSLON), 
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we have gone too far. So no, we make X smaller, by an amount half as large as we used to make it bigger for 
earlier trials. This process continues as described: we change X in a certain direction as long as 
ABS (POLY (X) ) keeps getting closer and closer to EPSLON. As soon as we have to change direction, that 
change is a signal for us to halve the amount by which we have been changing X. If INCR is the amount of 
the change (and EPSLON and POLY have their previous meanings), we can summarize this activity in terms 
of the pseudocode given below: 

"Initialize INCR to o. 5, X to o. O." 
"Compute ABS (POLY (X) ) . " 
while ABS (POLY (X) ) > EPSLON: 

"Add INCR toX." 
"Compute ABS (POLY (X) ) . " 
if 

new ABS (POLY (X) ) > previous ABS (POLY (X) ) 
then 

''!NCR = -0. 5 * previous increment." 
else 
endif 

endwhile 
"Print successful output values." 

13. Write a subroutine named MXl that operates on an N x N array (N no greater than 5) to produce the sum 
of all the elements, the sums of the elements in each column, and the sum of the elements in each row. A 
second subroutine, MX2, is to compute the relative sums. That is, the sum of the elements, say, in a given 
column is to be expressed as the ratio of that sum to the overall sum. The main program in which these 
routines operate is to print the array "as received" followed by the overall sum, row sums, relative row 
sums, column sums, and relative column sums. Each matrix consists of real values and the main program is 
to process any number of such matrices. Since N (the number of rows/columns in a matrix) can vary, use an 
N of zero to terminate the run. 

14. Write a program that processes any number of N x N arrays of real numbers (with N not to exceed 5) so •. 
that, for each input array, the program produces the following output: 

(1) The original array "as received." 
(2) The array with its elements rearranged so that each column is sorted in ascending order. For example, 

if we are looking at column J in array SQRARY, then the smallest value in that column will be in 
SQRARY ( 1, J) , the next smallest in SQRARY ( 2 , J) , and so on. 

(3) The array with its elements rearranged so that each row is sorted in ascending order. NOTE: since this 
processing is to be independent of that producing the sorted columns, each one of these activities must 
start with the array's elements in their original positions. 

( 4) The array with all of its elements sorted in ascending order, row by row. That is, if we are talking about 
a 3 x 3 array named MTR3X3, then the smallest value will end up in MTR3X3 ( 1, 1) , the next smallest 
in MTR3X3 ( 1, 2) , the next in MTR3X3 ( 2 , 1) , and so on. 

15. Write a program that processes any number of N x N arrays of real numbers (with N not to exceed 5) to 
produce the following output: 

(1) The original array, one row per line. 
(2) The array (one row per line) with the values in each row divided by the element in that row that is in 

the array's major diagonal. (The major diagonal of a N x N array consists of those elements having 
the same row number and column number.) The element that serves as the divisor for a given row is 
not to be divided (if it were, it would be divided by itself); it is to be printed with its original value. 

16. Write a single program that produces all of the output specified for the previous three problems. 

17. An operation that is used frequently when information is being processed (whether a compute is involved 
or not) consists of searching a collection of items in order to find a particular piece of information or to 
certify that the information is not there. There are numerous ways to do this with a computer. The most 
straightforward method involves a linear search. We simply start at the beginning of a collection and look 
through the items until we find what we want (in which case we report its position in the collection) or until 
we have searched the entire collection without success (in which case we report a position of 0, or we use 
some other signal to indicate that the desired item is not in the collection). 



PROBLEMS 

We shall make use of this technique with the following problem: The Recall Automobile Company 

produces 14 models, each with its own distinctive name and price: 

MODEL PRICE MODEL PRICE 

ELF $4844.25 TROLL $ 4972.64 

CU TIE $5122.78 IMP $ 5454.54 

KOZYKAT $5663.38 IGUANA $ 5834.88 

OSCAR $6161.16 BETTA $ 6350.00 

LIONESS $6622.44 CALIGULA $ 7189.98 

HEROIC $7741.63 SHOWBOAT $ 8356.65 

CONSUMO $9774.21 BRONTOSAUR $11208.73 

Each time Recall sells an automobile, a set of input is prepared with the month, day, and year the sale was 

made, he salesman's number (a 5-digit integer), and the model name. Then, every week that week's data 

are collected and processed to produce a summary sales report. the program required in this problem 

develops hat report. After reading and storing the table of model names and prices, the program prints a 

line for each sale showing the date, salesman's number, the model of the car he or she sold, and its price. 

Then, after all the data have been processed, the program skips two lines and prints a summary consisting 

of a line for each model showing the model name, price, number of automobiles sold, and the total 

amount of revenue. A typical set of input appears as follows: 

0814 80 03244 'LIONESS' 

18. While a linear search is reasonable for small tables (say, 25 entries or less), it becomes inefficient rapidly as 

the table to be searched gets larger. An improvement over the linear search occurs when the entires in a 

table are arranged in some order and we apply a binary search. This is basically the same type of technique 

we use when we look for something in the telephone book or dictionary. In each case, the entries are 

arranged in alphabetical order. Instead of starting at the beginning and working our way through the 

entires (as we would in a linear search), we pick our starting point by guessing about where in the book the 

desired entry is most likely to be. Then, we narrow our search down until we have reduced the search area 

to a small part of the total collection, small enough for us to look through each of the entires until we find 

what we want or certify that it is not there. 
When this type of search is prepared as an algorithm for computer use, the machine cannot make a 

"reasonable guess" about where to start looking. As a result, we design the search procedure so that it 

always starts in the middle of the table (or as close to the middle as we can get). Then, since the table's 

entries are sorted (let us say, in ascending order, with the lowest value first), the program can compare the 

value at the middle of the table with the value used for the search. If the value being looked for is higher 

than the table's middle value, the program "knows" that there is no reason to look at the lower half of the 

table. Instead, it concentrates on the upper half by splitting it in half and repeating the operation. In this 

way, the part of the table that still is of interest keeps shrinking until the examination is down to one or two 

entries, and the search can be concluded. 
We shall illustrate the technique by applying it to a table of 11 entries: 

3 4 6 8 9 13 18 20 27 31 34 

For convenience, we shall refer to these entries as T ( 1) through T ( 11) and we shall say that the number 

we are seeking is V. For our first search, V will be 6: 

(1) The search will start at INT ( ( 1+11) / 2) or at T ( 6) . The value there is 13. Since this is greater than 

V, this rules out the upper part of the table (i.e., T ( 7) through T ( 11) ). 

(2) The second try, then, will be around the middle of the lower half of T. This point is computed as 

INT ( (1+6) /2) or 3. Thus, the value in T (3), i.e., 6, is compared with V. Since they match, the 

search is successful, and the program can return a value of 3, indicating that the value we want is in the 

table at T (3). 

Now, let us try a search for a V of 32: 

(1) Our starting point is the same as before: INT ( (1+11) /2) or 6. Since the value in T (6) (i.e., 13) is 

less than the 32 that we want, the lower half of the table is ruled out. 

(2) The new midpoint, then, is INT ( ( 6+ 11) I 2) or 8. The value in T ( 8) is 20. Since the value we want 

is larger, there is no reason to look anywhere in the table below T ( 8) . 
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(3) For our third try, then, the midpoint is INT ( (8+11) /2) or 9. T (9) is 27; still too low. 
( 4) Our fourth try puts the midpoint at INT ( ( 9+ 11) I 2) or 1 O. T ( 1 O) 's value of 31 still is too low. 
(5) When we compute a new midpoint, we do it the same way as we have been, so that it is 

INT ( ( 1O+11 ) I 2) . This value comes out to be 1 O, the same as it was before. This tells us that there 
is no reason to look further. The value we want is not in the table, and the procedure would return a position of zero, indicating failure. 

Rewrite the appropriate part(s) of the program in the previous problem so that Recall's model/price information is searched using the binary technique described here. 

19. Write a generalized subprogram that will conduct a binary search on a table of integer values where the size of the table is supplied as an argument. Test your subprogram with a suitable main program. 
20. Write a program that reads a list of 40 words in alphabetical order. The length of each word is ten letters or less. (These are to be stored in an array named DICTl). Then, the program is to read a sequence of lines 

where each line contains a single word. There may be any n~ber of lines and they may be in any order. For each of these lines, the program is to consultDICTl. If the word on the input line is found inDICTl, it is to be removed from there, and placed, in its proper alphabetical position, in a new arrayDICT2. Also, a 
line of output is to be printed showing the word and the message ' 'REMOVED FROM DICTl. ' ' If the input word is not present in DICTl, and never was there to begin with, the program is to print a line of 
output with the word and the message ' 'NO SUCH WORD IN DICTl. ' ' There is no guarantee that every input word will be different. The only guarantee is that each of the original 40 words will be unique. Consequently, if an input wor¢ already had been removed from DICTl earlier, the program is to print a 
line showing the word and the message ' 'REMOVED FROM DICTl EARLIER. ' ' At the end of the run (use 'XXXXX' as an end-of-data signal) leave two blank lines and print the following summary informa­tion: the number of input lines processed; the number of words removed from DI CTl; and the number of input words that never appeared in DICTl. 



13 
Introduction to 
Input/ Output 

The READ, WRITE, and PRINT statements we have been using thus far have served as 

simple means for getting information into and out of the processor. This convenience is 

not free. (If this were a different subject, the student might be asked at this point to list 

eight useful or desirable items that are truly free.) In exchange for this uncomplicated 

form, the programmer must give up much of the flexibility that otherwise could be applied 

to these processes. The programmer must rely instead on a relatively narrow set of 

controls imposed by the system. The next five chapters explore FORTRAN's wide range 

of input/output capabilities: what they are, how they work, and how to use them to our 

advantage. This first chapter sets the stage by defining the general framework within 

which these powerful features operate. 

In bringing input data into the processor or sending results to the outside, we have treated 

the data as individual items, related to one another only in terms of their meaning within 

the particular program. Even when a collection of items was organized as an array, that 

organization did not mean anything outside the context of the program. In fact, until the 

values were read in by a statement that treated them as array elements, they were just 

values. Since we have been using only a basic form of FORTRAN's extensive input/ 

output capabilities, we were able to ignore the fact that there is an organizational 

structure imposed on all information transmitted to or from the central processor. As we 

begin adding more and more powerful input/output features to our programs, an under­

standing of this structure will become increasingly useful. 
The basis for this input/output organization is the file. While the term certainly is 

familiar to everyone, it has a very special meaning here. It describes a collection of data to 

be transmitted by a program. When that transmission occurs from the outside world to the 

processor, the file is an input file and its data are being read. When the direction of 

transmission is from the processor to the outside world, the file is an output file and its 

data are being written or printed. (Printing is just a special case of writing. The only 

difference is that the particular type of output device is human compatible, that is, people 

can read what is written there.) Thus, regardless of what a program does, its operation 

usually involves the reading of data from one or more input files and the writing of data 

into one or more output files. In special cases, a particular program may be designed to 

process information that it generates internally (so that it does not use any input in the 

sense mentioned above), but it will produce output nonetheless, if it is to be of any use. 

13. 1. 1 Organization of Files 

Files have certain structural properties which go beyond the individual data values 

contained in them. FORTRAN is designed to recognize and use files so that versatile 

programs can be written to handle a wide range of data forms with a variety of physical 

13.1 DATA 
AND FILES 
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devices. In this section we shall determine what these properties are and how they relate 
to one another. 

13.1.1.1 Records A file consists of a collection of records and each record, in tum, 
consists of a collection of data items. There are no specific rules that define precisely what 
a record should look like, what it should contain, or how many there should be in a file. 
These aspects are up to the programmer, and they are determined by the application's 
particular requirements. For instance, in Example 12.2 of the previous chapter, there is 
an input file with two kinds of records: One type contains a single data item (e.g., a run 
number), and the other type, though also on a card, contains several items (e.g., part of a 
list of words). The file itself consists of a sequence of however many records there happen 
to be. In the sample run for this program (the one shown in Figure 12.5), the input file had 
twelve records: a run number (one record); a word list (ten records containing four words 
each); and a record with the terminating run number of zero. 

It is important to understand that a record is an organizational concept, not a physical 
one. Because of the basic nature of certain input/output devices, there may be a relation 
between a single record and, say, a punched card or a line of data on a terminal display, 
but that does not have to be the case. For instance, we can write a record on magnetic disk 
and specify any desired length. 

13.1.1.2 Relations Among Records in a File It was mentioned earlier that a file consists 
of a sequence of records. That term conveys the idea that the records are in some 
particular order. Regardless of the physical medium on which a file's data are recorded, 
each file has a first record and a last record. This is easy enough to see if the file happens to 
be on a deck of punched cards or its records happen to correspond to lines on a printed 
page. The same concept holds true even when the records are represented as impulses on 
a magnetic disk or drum. 

The physical order in which a file's records are stored may dictate the order in which 
such records are available to a program. When this is true, that file is known as a 
sequential file, and the process of obtaining that file's records is known as sequential 
access. A file stored on a reel of magnetic tape is an example. In order to get the 
information from a record somewhere in the middle of the file, we have no choice but to 
start with the first record and work our way to the one we want. If we just finished working 
with a record from somewhere in the middle of the file and we want to work next on a 
record from some place earlier in the file, we must inch our way back to that record, one 
record at a time. In other words, when we are at a particular position in a sequential file, 
we have immediate access only to the record at that position. 

With some files it is possible to make records available to a program in any order, 
regardless of their physical order. Such files are called direct files and the process of 
obtaining records in any order is called direct access. Of course, direct access is possible 
only if the file is represented physically on a device built to allow it. A magnetic disk is an 
example of such a direct access device. If you are not familiar with a disk, think of it as 
operating somewhat like a phonograph record. Regardless of where the playing arm is 
positioned, it can be moved to any other position on the record without playing the 
material in between or going back to the beginning. 

Now that the basic difference in accessibility has been established, we can deal with 
one more issue regarding the interrelation of records in a file: How do we know which 
record we want? In a sequential file there is not much of a choice: when we read from such 
a file, as we have been doing in every program so far, we read the next record, i.e., the one 
that the physical mechanism is positioned to read. In a direct file, where the "next" record 
can be any record in that file, we need to be able to describe the record we want so that the 
program can select it from all the others. This is done by assigning to each record a unique 
record number based on the record's physical position in the file. 
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13.1. 1.3 Data Representations on Records Regardless of its type or meaning, the data 

on a record can be represented in one of two ways: formatted or unformatted. In a 

formatted record the data are represented as characters. That is, each numerical digit, 

letter of the alphabet, period, comma, blank, dollar sign, or anything else is read or 
written as an individual character. The processor, by "looking" at a formatted record, 

cannot "know" anything about the values represented there. Information as to how to 

interpret those characters must come from a program. Since we have been using for­

matted records all along (we just have not found it necessary to apply that name to them), 

we can look at an example of such a record and see how this concept applies. 
Figure 13.1 shows a representation of a line containing some data, along with part of a 

program-enough to define some variables and read them in. We shall treat the line as 

input to the program. Using the terminology just introduced, we can say now that the line 

is a formatted record in a sequential input file. Note that we can say that, but the computer 

cannot without some instructions that tell it how to process the line. We are able to look at 

the data (even before we see the READ statement) and know that there are five data items 

there: three numerical values and two character strings. Without the program, of course, 

we do not know to which variables these values belong; but our knowledge of FOR­

TRAN's rules enables us to recognize the commas as separators (so we can tell how many 

items there are), and the apostrophes as string delimiters (so we can tell that the last two 

items are character strings). However, as far as the computer is concerned, none of this is 

apparent. What the computer "sees" is a string of 80 characters (i.e., one line's worth). 

All but 28 of them happen to be blanks, and the rest are just nonblank characters: 

numerical digits, letters, apostrophes, commas, and a period here and there. It is not until 

the computer "sees" the instructions generated by the READ *, statement that it "knows" 

which rules to use for proper interpretation of the input line (e.g., to look for commas and 

treat them as separators; to handle the 408 as a number; and to handle the '408' as a 

character string). This type of input is known as list-directed formatted input. There is 

another type of formatted input/output known as edit-directed formatted input/output in 

which FORTRAN's interpretive rules are more complex. Edit-directed input/output 

enables the programmer to control the data formats completely. As we shall see, there are 

other types of READ and WRITE statements that associate with these other rules for data 

236.4,-29.67,408, '408', '63J' 

(a) 

PROGRAM 
IMPLICIT 
REAL 
INTEGER*2 
CHARACTER*3 

FI MP EH 
NONE 
TOP, BOTTOM 
MAGNI 
IDN(2) 

READ *, TOP,BOTTOM,MAGNI,IDN 

PRINT *, IDN,TOP,BOTTOM,MAGNI 

END 
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(b) 
FIGURE 13.1 (a) List-Directed Input Data Record. (b) Program 

Fragment Illustrating Formatted Input/Output. 
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FORTRAN's rules for interpreting 
formatted list-directed input 

2 3 6. 4 -29.67 

FORTRAN's conversion procedures 

location of TOP 

internal representation 
of the real value 
0.2364E + 03 location of BOTTOM 

internal representation 
of the real value 
-0.2967E + 02 

408 408 

Directions from the 
READ*, statement 

6 3 1 

locations for IDN 

408 6 3 1 

location of MAGNI 

internal representation for 
integer value 408 

FIGURE 13.2 Diagram Representing How List-Directed formatted Data is Interpreted and Converted. 

location of BOTTOM 

internal representation of location of MAGNI the real value 
-0.2967E + 02 

internal representation for 
integer value 408 

location of TOP 

internal representation 

I~_ 
location for IDN 

of the real value -
0.2364E + 03 403 I 631 - ""II["" 

FORTRAN's conversion procedures f-+ 
Directions from the -

~ 

PRINT*, statement 

·~ 

408 6 3 1 2 3 6. 4 -29.67 408 

FORTRAN's rules for preparing 
i---. formatted list-directed output 
~ 

408 631 236.4 -29.67 408 OOf 

FIGURE 13.3 Diagram Representing How List-Directed Formatted Output is Produced. 
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interpretation. Once the proper rules have been identified, the required values can be 
picked out and, ultimately, converted to the final forms in which they will be stored and 
used. 

This general process of interpreting and converting list-directed formatted data is 
summarized diagrammatically in Figures 13.2 and 13.3. As Figure 13.3 shows, exactly the 
same series of events applies for output: the internal values, represented in a form that the 
processor is designed to "understand," are converted to strings of characters, and those 
characters are used to build the formatted output record. 

In an unformatted data record, the values are represented in a form that the 
computer's electronic circuits are designed to recognize directly. No physical separation, 
interpretation or conversion is necessary; all of those mechanisms are built into the 
machinery itself, so that the way the values are interpreted has nothing to do1with the type 
of program or even the language in which it is written. 

Of course, the meaning of the values still comes from the program (and from the 
programmer's head). There is no point in showing an example of an unformatted record. 
Its appearance will depend on the particular type of computing system for which it is 
prepared. In any case, its contents are unintelligible to anyone except those people 
familiar with the internal operation of that specific machine. We see, then, that unfor­
matted records are not intended for direct use by humans. Rather, they generally are 
produced as output by one program with the idea that they will serve as input to another 
one. Eventually, one or more programs in such a sequence will produce final results that 
are human-readable. 

For example, a program to collect and organize data generated by a day's stock 
market trades would be designed to produce such data as an unformatted file. That file, 
then, can be used as input to a variety of subsequent programs, some of which may 
produce final (i.e., human-readable) output while others may process the collected data 
to generate other unformatted files for use by still other programs. To carry the point 
further, let us list just a few examples of the ways in which such data might be processed 
further: 

1. One program (Pl) might sort the data alphabetically so that all transactions 
relating to a given stock are grouped together. The result could be an unformatted 
file. 

2. Another program (P2) might use the sorted file from Pl to produce a nicely laid 
out (and impressively long) printed report. 

3. A third program (P3) might use the same sorted file to produce an unformatted 
file in which each record represents a summary of the transactions performed for a 
given stock. 

4. A fourth program (P4) might process the file from P3 to produce a printed version 
of the summary. 

5. Yet another program (P5) might start with the original file and perform an 
hour-by-hour analysis of the day's progress, producing a printed report. 

This general process is summarized in Figure 13.4. It is clear that the list of possibilities is 
endless. The point is that there are many instances in which it is unnecessary for people to 
see a program's complete results (once they are sure, of course, that the program works 
properly). 

The reason for doing this is that unformatted records are considerably more compact, 
and they can be transmitted more quickly than formatted ones containing equivalent 
data. Moreover, if no data conversion is necessary, we can save additional time. Later we 
shall deal with the types of READ and WRITE statements that are designed for unfor­
matted records. 
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13.1.1.4 External and Internal Files In examining the concepts of files, records, and 

data items, we have not emphasized any definite connections with physical devices. The 

reason is fundamental: A file, like a record, is an organizational concept. If we think of a 

file as a collection of records, distinct from any physical medium on which those records 

may be represented, the various input/output concepts will fall neatly into place. 

One such concept is the difference between internal and external files. An external 

file, to FORTRAN, is a collection of records residing on a physical medium that is 

separate from the processor. For instance, the list of input words from Example 12.2, 

when keypunched onto cards, constitutes an external file. The same data, when displayed 

on the line printer, form another external file. 
An internal file, on the other hand, is a collection of records right in the main memory 

of the processor. Since a record consists, ultimately, of data items, it would appear that an 

internal record is the same as a group of ordinary variables. After all, a variable is a place 

reserved in main storage for a data item, and this sounds like the same thing. The 

important difference, however, is that the internal file carries with it all of the organiza­

tional bookkeeping that FORTRAN sets up for external files. This means that, even 

though the records are already in the processor, we are able to pretend that they are on 

some external device. Then, we can "read" from that (imaginary) "device" just as if it 

were a terminal keyboard, magnetic tape or disk, card reader, or any other input unit. 

The existence of an imaginary input device brings with it FORTRAN's powerful 

facilities for interpreting a record's contents and converting them in accordance with the 

directions provided by the program. This facility gives FORTRAN 77 an enormous 

flexibility which enables us to read in data as a string of characters without committing 

ourselves to a fixed, specific interpretation of those characters. In fact, we can look at 

those characters, once they are inside, and use their contents to determine how they will 

be interpreted and converted. We shall see this versaility in use later on. Right now it is 

important to establish the fact that FORTRAN 77 provides this opportunity. 

There is nothing in FORTRAN that restricts the use of internal files to input. We can 

use the same mechanism to gather some variables and employ FORTRAN's interpretive 

and reformatting capabilities to prepare a record for an internal file by "writing" the 

record onto an imaginary output device. 
It follows that internal files can be only formatted files. Two more restrictions are that 

internal files must consist only of character strings, and such files must be sequential. 

13. 1.2 Files and Units 

While the perception of files as disembodied sequences of data records is useful, we 

cannot ignore the fact that each file must reside on a physical medium if it is to be of any 

use. This means that, sooner or later, we are going to have to associate the file with a card 

reader, printer, terminal, magnetic tape, disk, or some other device to or from which the 

records are going to be transmitted. 
The transmission can be understood through the concept of a unit. A unit is a piece of 

bookkeeping. Specifically, it is a link between a file and a particular physical device. It 

works this way: Each computing system is equipped with some combination of physical 

input/output devices, and each of these devices is represented by an entry in a table 

maintained by the computer's software. Each physical device is identified as a unit with its 

own unique unit designation. When a computing center adds a device to its computer 

system, an additional designation will be created as part of the installation process. 

As far as a FORTRAN program is concerned, a file is inaccessible until it is connected 

to a unit. This connection, of course, is an organizational one, i.e., another bookkeeping 

item. FORTRAN makes the connection between a file and its unit in response to a 

program statement or as part of its automatic bookkeeping services. In either case, the 
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result is an entry that says, basically, 

"In this program, unit so-and-so is connected to file such-and-such. Consequently, an 
input/output statement involving this unit will transmit data to or from that file." 

Since all input/output activities involve a file, and since a file, though it may exist in 
concept, cannot actually be used until it is connected to a unit, all of FORTRAN's data 
transmission statements require a unit to be specified. When we request a READ opera­
tion, our instruction says, in essence, 

"I would like to bring data into the processor from the file connected to the unit I have 
specified in this statement. Go find out which file that is, and find out which physical 
device that is." 

Similarly, a WRITE or PRINT statement carries the basic message, 

"I want you to place data in the file connected to the unit specified in this statement. 
This program's bookkeeping will tell you which file that is, and the system's book­
keeping will tell you which physical device is involved." 

Here again, FORTRAN 's automatic mechanisms have been at work for us. We have 
been specifying a standard unit in every READ, WRITE, and PRINT statement. In a READ 
statement, we have specified the standard input unit by default. For most cases, the 
physical device associated with this unit is the user's terminal. Similarly, the default unit in 
a WRITE statement usually results in the assignment of the user's terminal also. The 
absence of an explicit unit number in the PRINT statement causes FORTRAN to assign 
the standard system output unit. This usually is a printer of some kind. The asterisk (as in 
READ *, or PRINT *,)tells FORTRAN that the data are to be read (or written) in 
list-directed form. Thus, it is possible to issue a statement such as 

READ (5, *) Vl, MAXHT, LGTH, DEN 

in which case FORTRAN is directed to read a list-directed record from the file connected 
to unit number 5. This statement is fine assuming: 

l. The physical device associated with unit 5 is capable of delivering input. (For 
example, this statement, though legal in FORTRAN, would be impossible to 
execute if unit 5 happened to be associated with a printer). 

2. There is a file connected to unit 5. 

We did not have any problems with file-unit connections in our earlier programs because 
the standard input and output units are connected automatically to files that are created as 
part of the system's support activities. Such units are called preconnected units and are 
made available to any program. Different HP computers have different preconnected 
units. For instance, the HP 1000 systems operating in the RTE environment use unit 1 
(the user's terminal) as the standard input device, and the standard output device is the 
line printer, designated as unit 6. For HP 9000 computers operating in the HP-UX 
environment, unit 5 is the preconnected unit to the user's terminal and is designated as the 
standard input device. The standard output device in that environment, designated as 
unit 6, also is preconnected to the user's terminal. Consequently, it is advisable to check 
the appropriate reference manual for the exact unit designations in force for that HP 
system. 

While the concept of a unit is relatively easy to understand, you might ask, "Why go 
through the involvement of specifying a unit and then finding out which file corresponds 
to that unit? Why not just specify a physical device directly?" 

The answer brings to light one of the powerful benefits of the file concept: A file may 
be associated (at different times) with each of several different physical representations 
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without changing its conceptual structure. In terms of the program, this means that it is 

possible, for instance, to write records for an output file stored, say, on a magnetic tape 

and then, on some other occasion, write records for the same file, this time on a magnetic 

disk. For both instances, the program is identical. Even the unit designation need not be 

changed. The only change that is required is in the association between units and physical 

devices, and HP systems are designed to handle such changes simply and conveniently. 

13. 1 .3 Operations with Files 

The programmer working in FORTRAN 77 makes use of several powerful file opera­

tions. Some of these relate directly to corresponding FORTRAN statements while others 

are less apparent in that they are submerged within larger activities. We shall discuss these 

operations briefly in the next few sections. 

13.1.3.1 Creating a File Since a file is an organizational idea, it has its own existence, 

separate from any program or unit. Because of this we can talk about a file that has no 

records in it, is not connected to any unit, is not known to our program, and yet still exists. 

The point is that the bookkeeping information which describes the file is enough to 

establish that file's existence. 
File creation is the process that produces such bookkeeping, thereby defining the 

existence of a file to the computing system. Some files are created by individual programs 

while others are created automatically as a standard system activity. The input and output 

files we have been using in all of our programs are examples of this automatic file creation. 

A file can be created by one program and used by another. The reason this can 

happen is that the information produced by the file creation process is "registered" with 

the system's file manager, which then can make it available to other programs. Such files 

can be identified by giving them explicit names (making them named files), or they can be 

created as unnamed files. Manipulation of the latter type is a little less flexible but still 

convenient for many applications. 
FORTRAN 77 has no explicit statement for creating a file. Instead, certain types of 

statements cause a file to be created as part of some other activity. Mechanisms for 

explicitly creating files outside of HP FORTRAN 77 are described for HP 1000 computers 

in the RTE-6/VM Reference Manual. Corresponding information for HP 9000 com­

puters is given in the HP-UX Reference Manual. 

13.1.3.2 Deleting a File As the name implies, this process dismantles the organizational 

information associated with a file. Consequently, since the deleted file no longer exists as 

far as the system is concerned, its records no longer exist either and, therefore, cannot be 

obtained. The fact that the file handling capability is a system-wide resource means that it 

is possible for a file to be created and deleted by two different programs. In actual 

practice, this often turns out to be the case. For many applications it is convenient to have 

a program whose specific purpose is to create the required files and to initialize them for 

subsequent use by other, related programs. Later in the processing cycle, when a 

particular file has served its purpose, its data have been put to their intended use, and 

there is no reason to retain the data, another program will delete them. This situation is 

seen typically in the case of temporary files designed to hold intermediate values whose 

usefulness vanishes once the final results are produced. 
As is the case with file creation, there is no specific FORTRAN statement for deleting 

a file. Instead, a file is deleted as part of the activities triggered by some of the other 

input/output statements. An explicit system command is available for file deletion. These 

system commands are described in the RTE-6/VM Terminal User's Reference Manual 

for the HP-1000 and the HP-UX Reference Manual for the HP-9000. 
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13.1.3.3 Opening a File In Section 13.1.2 we established the idea that a file (and its 
records) cannot be used unless that file is organizationally connected to some unit in the 
system. This connection is made by opening a file, an operation that makes a file available 
to a particular program. Since we know now that we have been using files, and we have 
not explicitly opened them, we can conclude that this also is part of FORTRAN's 
automatic file-handling mechanism. In addition, FORTRAN provides the OPEN state­
ment when the programmer wants to connect a file explicitly. It also turns out that the 
OPEN statement provides a way for a FORTRAN 77 program to create files. 

In this connection it is important to reemphasize the following point: The fact that a 
file exists (i.e., has been created) does not automatically make it available to every 
program in that system. Many (probably most) systems have special hardware and 
software facilities designed explicitly to limit the availability of certain files. For example, 
most students writing programs on a university computing system cannot open the 
university's administrative files (such as the grade file or tuition file), even though the files 
exist in the same system. 

13.1.3.4 Closing a File Closing a file has the opposite effect of the "open" operation: It 
makes a particular file unavailable to that program, thereby signalling the system that the 
program is through with it (at least for the time being), but the file is not to be destroyed. 
The same file may be reopened later in that program. Also, the unit form which that file 
had been disconnected becomes available to be reconnected by another OPEN statement. 
Although that file must be opened and closed in the same program, it does not have to be 
opened and closed within the same subprogram. 

Closing a file can be done explicitly by means of the CLOSE statement, in which case 
the programmer can reconnect that file later in the program, or it can be done auto­
matically as part of the bookkeeping that is triggered when a program finishes. By the 
same token, this process also disconnects the unit from its file. That means that if we close 
a file (with a CLOSE statement) before the end of the program, the unit can be associated 
with some other file (or even reassociated with the same file) later in the program. In any 
event, the programmer must make sure that, at any time, only one unit is assigned to a 
given file and vice versa. 

13.1.3.5 Reading and Writing File Records These operations perform the actual trans­
mission of data between the central processor and a peripheral (input or output) com­
ponent. Input is handled by FORTRAN's READ statement. In terms of our ideas about 
the underlying structure, we can say that this statement brings in a record from the file 
connected to a designated unit and stores that record's contents in specified locations. 

Output is handled by one of two statement types. The WRITE statement asks for a 
general output operation in which the data from specified storage locations are used to 
construct a record. That record is sent to the file connected to the unit designated in the 
statement. When the physical output device associated with a particular unit number is a 
printer of some kind, the output operation (as we know) can be specified by the PRINT 
statement. 

13.1.3.6 Writing an ENDFILE Record This operation creates a special kind of record 
(called an ENDFILE record) and writes that record as the next record on the file. The 
ENDFILE record contains no data. As the name implies, it is designed to serve as the file's 
last record. We shall see that when we read records from such a file, we can test for the 
ENDFILE record and make decisions based on its appearance. 

As we stated earlier, it is possible to have a file with no data in it. In effect, such a file 
has the framework without the substance. One example of this structure is a file with 
nothing in it but an ENDFILE record. 

An ENDFILE record is written by issuing an ENDFILE statement in which the 
programmer specifies the unit. As will be seen later, the programmer must make sure that 
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unit specification makes sense. For instance, it is impossible to write an ENDFILE record 

on the unit associated with a printer (even though it obviously is possible fo write other 

records). Similarly, it makes no sense to write an ENDFILE record (or anything else, for 

that matter) on a unit associated with a card reader. 

13.1.3. 7 Backspacing a File This operation positions a file to the previous record, 

thereby making it possible for a program to work its way through a sequential file's 

records in reverse order. The action is requested explicitly by means of a BACKSPACE 

statement. Here again, the specified unit must be consistent with the physical capabilities 

of the associated device. A favorite joke back there in the Old West of computing was for 

one of the Grizzled Old Hands to ask a Fuzzyfaced Kid to write a program that 

backspaced the card reader (heh heh). 

13.1.3.8 Rewinding a File The rewind operation positions a sequential file at its begin­

ning (i.e., its first record). The name implies that the sequential file resides on a reel of 

magnetic tape; in fact, its origin dates back to a time when tape was the only extended 

storage medium available. Now, with many sequential files stored on magnetic disks and 

drums, the name has a broader application. While actual rewinding does not occur with 

these devices, the result is still the same as if the tape had been rewound. 
FORTRAN's REWIND statement performs this operation on the file connected to the 

specified unit. The file must be sequential. 

13.1.3.9 File Inquiry This operation enables a program to check the status of a file and 

base subsequent action on the results of its findings. FORTRAN 77's INQUIRE statement 

is used for this purpose. 
As the previous sections indicate, many of the file operations can be triggered by 

statements designed specifically for that purpose, or they can be implied (and, therefore, 

carried out automatically) as part of the activities prompted by some other statements. 

We shall be able to continue taking advantage of this latter convenience, since much of 

our input/output will use standard files. However, we shall develop a firm grip on these 

file operations by using them in a variety of circumstances requiring files of our own 

design. 
The next section presents a brief outline of FORTRAN's input/output statements. 

Some initial details are provided for each type, so that we can relate them a little more 

closely to the operations discussed before. The complete story will appear in the next few 

chapters. 

All of FORTRAN's input/output facilities are expressed through nine types of state­

ments. These organize conveniently into three categories related to the kinds of opera­

tions being performed: 

1. Data transfer. 

2. File positioning. 

3. Auxiliary operations. 

We shall discuss each of these in tum, illustrating its basic form and usage. 

13.2.1 Data Transfer Statements 

This category consists of the READ, WRITE, and PRINT statements. Each of these takes 

on various forms depending on the type of file (external or internal), its access method 

(sequential or direct), and the structure of its records (formatted or unformatted). 
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13.2.1.1. The READ Statement To start, we shall build on the list-directed READ 
statement, since that form (in its basic version) already is familiar. One extension was 
introduced earlier in this chapter, when a unit number was specified as part of the 
statement: 

READ (5, *) Vl, MAXHT, LENGTH, DENSITY 

The unit specifier (5) and the format specifier(*) are but two of a number of items (as 
many as six) that may be specified within the parentheses. The other specifiers will be 
touched on briefly in preparation for a complete discussion later on: 

1. As we learned earlier, the END specification, used with a sequential input file, 
defines a statement to which the program will transfer when it encounters the file's 
ENDFILE record: 

READ (5, *, END=199) Vl, MAXHT, LENGTH, DENSITY 

says, "Read the next record from the file connected to unit 5 using list-directed format 
and store the data in Vl, MAXHT, LENGTH, and DENSITY. If you encounter the ENDFILE 
record during this attempt to read, go to statement 199." Thus, the use of the END 
specification eliminates the need for a special signal record after the last set of data, along 
with the explicit test for that signal. 

2. The ERR specification, used with any input file, defines a statement to which the 
program will transfer when an error is encountered during an attempt to read. For 
example, if our READ statement is set up to bring in numerical data, and one of the items 
on a record contains a letter, an error signal is produced and the program branches 
automatically to the indicated statement. An example of such usage is seen by expanding 
the previous input statement further: 

READ (5,*,END=199,ERR=177) Vl,MAXHT,LENGTH,DENSITY 

Now it says, "Read the next record from the file connected to unit 5 using list-directed 
format and store the data in Vl, MAXHT, LENGTH, and DENSITY. If an ENDFILE record 
is encountered during this attempt to read, go to statement 199 and continue from there. 
If, on the other hand, there is an error during this attempt to read, go to statement 177 
and continue from there." The END and ERR specifiers have nothing to do with the 
particular input unit. Thus, the same READ statement, when rewritten as follows, 

READ (*,*,ERR=177,END=199) Vl,MAXHT,LENGTH,DENSITY 

still does the same thing. The only difference is that the input unit now is the standard 
system input unit. Note that the unit specifier (when it is included) must be the first one in 
the list, and the format specifier must be next. As seen in the above examples, the order of 
the other specifiers does not matter because they are named explicitly. 

3. The REC specification, used with direct files (see 13.1.1.2), defines the particular 
record to be brought in by the READ statement. (With a sequential file, of course, this 
specification is irrelevant since the next record is determined automatically by the position 
of the file.) The form is 

REC = recordnumber 

where recordnumber is an integer indicating which record is to be read. Since direct access 
files cannot be list-directed (they may be formatted, but only with edit-directed for­
matting), it is illegal to include the REC = specification when the format is * or 
FMT = *· 

4. The IOSTAT specifier provides the programmer with an opportunity to receive 
and examine a signal that reports the result of the READ operation. (We shall see that the 
same type of specifier can be used to report the outcome of other input/out operations.) 
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Usage is as follows: 

IOSTAT = statusindicator 

where statusindicator is an integer variable in which the program will deliver a value 

depending on the result. That value is zero if the READ occurred without error, positive 

(the exact value depending on the particular implementation) if an error is encountered, 

and negative (the value, again, depending on the implementation) if anENDFILE record 

is encountered. 

It also is possible to use named specifiers for unit number and format. When this form 

is used, our example (for unit 5) might look like this: 

READ (UNIT= 5, FMT= *,END= 199, ERR= 177) Vl, MAXHT, LENGTH, DENSITY 

Note that there is a particular restriction on the combined use of UNIT =and FMT = 

specifiers: 

1. If the UNIT = form is used in a formatted READ statement, then the FMT = form 

also must be used. 

2. If the unit in a formatted READ statement is specified without the UNIT =form, it 

must appear first. When this happens, the format may be specified either way, but 

it must be second. 

3. If both UNIT =and FMT =are used, their order is unimportant. 

When every specifier includes its name, we can write them in any order. However, it is a 

good idea to select a particular order and use it consistently. The one shown above is easily 

remembered. Many programmers, however, prefer the form used earlier, in which 

neither UNIT =nor FMT =is used (there is no choice for the other specifiers), and since 

this, too, is easily remembered, we shall use that form, as in the example 

READ (5, *,END = 199, ERR = 177) Vl, MAXHT, LGTH, DEN 

for most purposes. 
When the file is formatted but not list-directed (i.e., it is edit-directed}, the format 

specifier no longer is an asterisk. Instead, it tells the program where to find the format 

description. This is done in one of several ways, the most common of which is by giving a 

statement number in which the programmer has recorded such a description. For in­

stance, the statement 

READ (5, 15, END = 199, ERR = 177) Vl, MAXHT, LENGTH, DENSITY 

says, "Read the next record from the file connected to unit 5 using edit-directed format 

and store the data in Vl, MAXHT, LENGTH, and DENSITY. A detailed format description 

is to be found in statement 15. If an ENDFILE record is encountered, go to statement 199 

and continue from there. If, on the other hand, this input attempt produces an error, go to 

statement 177 and continue from there." The rules for the various specifiers, given 

above, apply here as well. 
Additional types of specifiers, details on how to describe edit-directed formats, and 

other forms of READ statements, will be discussed in subsequent chapters. 

13.2.1.2 The WRITE Statement The WRITE statement is constructed like the READ 

statement discussed in the previous section. The unit number (with or without the UNIT= 

form), format description (with or without the FMT= form), and the ERR= specifier are 

used in accordance with the same rules discussed for the READ statement. However, the 

END= specifier makes no sense with a WRITE statement and its use in such a statement is 

illegal. The other specifiers described for the READ statement apply here as well, with the 

same rules governing their use. 
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We shall now show an example statement similar to the one used in the previous 
section. If we specify 

WRITE (6, 16, ERR = 277) Vl, VFINAL, MAXHT, LENGTH, DENSITY 

we are saying, "Use the data in Vl, VFINAL, MAXHT, LGTH and DEN to prepare an 
edit-directed formatted record and write it as the next record on the output file connected 
to unit 6. An exact format description will be found in statement 16. If an error is 
produced in the process of performing this output operation, go to statement 2 7 7 and 
continue from there." 

13.2.1.3 The PRINT Statement Since this output statement is intended for use with a 
particular type of device (i.e., a printer or another device "pretending" to be a printer), its 
form is necessarily restricted. Specifically, the statement contains only a format specifier 
and a list of items to be "printed." For instance, the statement 

PRINT26,VI,VFINAL,MAXHT,LENGTH,DENSITY 

says, "Prepare an edit-directed formatted record using Vl, FINAL, MAXHT, LENGTH, and 
DENSITY and write that as the next record on the file connected to the standard system 
output device. An exact description of the format will be found in statement number 2 6." 
There is no unit specifier because FORTRAN automatically assigns the unit number for 
the standard system output device. The parentheses are not used either since there is 
nothing else that can be specified. Note that this device, while usually a printer, need not 
actually be a printer. Instead, it can be some other device (like a magnetic tape or disk) 
from which we intend to print the records eventually. Similarly, there is nothing to 
prevent us from using a WRITE statement in which the unit number happens to be 
associated with a printer. 

Use of the PRINT statement for list-directed output is not shown here; we are quite 
familiar with that form already. 

Before we leave this second brief look at the PRINT statement, we shall use it to 
introduce one simple aspect of edit-directed output. This will give us an opportunity to 
become acquainted with the basic form, and it will provide us with a useful formatting 
feature. 

When a FORTRAN program specifies an output operation by means of a PRINT 
statement, the information in that statement must include a signal that helps guide the 
physical operation of the printing device. Specifically, the device must be instructed 
whether to start a new line of print, skip a line, begin a new page, or start printing at the 
beginning of the same line that was printed by the last PRINT statement. This type of 
instruction is known as carriage control. 

When the PRINT statement is used with list-directed output, as we have been doing 
all along, the FORTRAN compiler takes care of carriage control automatically by 
supplying a signal that moves the printer to the next line with each PRINT statement. If 
the programmer requires more complete control over the printer's operation, he or she 
needs to use edit-directed output. With this form, FORTRAN expects the first output 
character in each PRINT statement to be a carriage control signal, and not part of the 
data. We shall introduce three such signals at this point so that the general idea is 
established: 

1. A blank character signals the printer to start printing at the beginning of the next 
line. The blank itself is not printed and, therefore, does not count as one of the 
output characters. 

2. A character of ' O ' signals the printer to skip the next line and start printing at the 
beginning of the line after that. 
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3. A character of '1' signals the printer to start printing at the first line of the next 
page. The '1' itself is not printed and, therefore, does not count as one of the 
output characters. 

It is quite legal to issue an edit-directed PRINT statement without an output list. This is a 
convenient way to manipulate the printer, as the following pair of statements illustrate: 

PRINT 16 
16 FORMAT ( I 1 I ) 

The 16 in the PRINT statement indicates that the edit-directed format is described in 
statement number 16 and, sure enough, statement 16 is a FORMAT statement whose first 
and only specification is a literal ' 1 ' , a signal to start a new page. Since there is no output 
listed in the PRINT statement, all it will do is force the printer to the first line of the next 
page. 

13.2.2 File Positioning Statements 

FORTRAN provides three statements (BACKSPACE, REWIND, and ENDFILE) that do 
not actually cause the transmission of data. Instead, they are used to position a file for 
manipulation by other statements. 

13.2.2.1 The BACKSPACE Statement 

When a sequential file is opened, one part of the resulting activity is to position the file at 
its first record. Then, when that file is read, its first record is brought into the processor 
and the file is set at the second record, and so on. The BACKSPACE statement repositions 
the file by moving it back one record. Thus, if a file happens to be set to have its fourth 
record read, a BACKSPACE statement will set it so that the next READ statement will read 
the third record. Note that the BACKSPACE skips over the record without reading it. 

The form for this statement is 

BACKSPACE unitno 

where unitno is the number of the unit to which the file is connected. It also can be written 
as 

BACKSPACE (UNIT = unitno) 

When the second form is used, the ERR= and IOSTAT= specifiers may be included in the 
parentheses, along with one other specifier (IOSTAT) which will be discussed later. The 
unit number, of course, always must be specified regardless of which form is used. 

A few simple rules define the use of this statement: 

1. It can be used only with sequential files. 

2. If a file happens to be positioned at its first record when a BACKSPACE is 
requested, nothing happens. 

3. If a file happens to be positioned after its ENDFILE record when a BACKSPACE is 
requested, the file will be repositioned to a point just before the ENDFILE record. 

4. BACKSPACE cannot be used with a file whose records are list-directed. 

13.2.2.2 The ENDRLE Statement This statement writes an ENDFILE record at the 
point where a file is positioned. The writing of the ENDFILE record puts a boundary on 
that file in the sense that the data record immediately ahead of the ENDF ILE record now is 
recognized to be the last record in the file. Even though it might be physically possible to 
write additional data records after the ENDF ILE record, those records may just as well not 
be there, since it will be impossible to obtain them later on. 
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Once the ENDFILE is written, the file is positioned at a point just after the ENDFILE 
record. Consequently, the data records in that file cannot be reached until the file is 
repositioned either with a BACKSPACE or REWIND. 

The ENDFILE statement is written using one of the same two forms shown for the 
BACKSPACE, i.e., 

ENDFILE unitno 
or 

ENDFILE (UNIT = unitno) 

Here again, the ERR= and IOSTAT= specifiers may appear inside the parentheses when 
the second form is used. 

13.2.2.3 The REWIND Statement This statement repositions a file to a point just before 
its initial record. If the file already is there, nothing happens. The statement may be 
written using either of the two forms described before. When the second form is used, 
either or both of the ERR= and IOSTAT= specifiers may be included. Thus, the statement 

REWIND (UNIT = 2, ERR = 399) 

says, "rewind the file connected to unit 2. If something goes wrong and the rewind cannot 
be done, go to statement 399 and continue from there." As we saw with the READ/ 
WRITE statements, this also could be written as 

REWIND (2, ERR = 399) 

Alternatively, assuming STAT2 were declared as an integer variable, we could write 
REWIND (2,IOSTAT = STAT2) 

which says, "Rewind unit 2 and report the result of the operation in the variable named 
STAT2." 

13.2.3 Auxiliary Input/Output Statements 

Three additional statements (OPEN, CLOSE, and INQUIRE) provide important suppor­
tive services for file handling. 

13.2.3.1 The OPEN Statement As outlined earlier, this statement makes the connec­
tion between a unit and a file. If the file to be connected does not exist, the OPEN 
statement will trigger activities that will create it as well. The general form is 

OPEN (openlist) 

The information in parentheses (openlist) consists of a list of specifications that help 
define the organization of the file. As many as nine types of specifiers may be included in 
this list. 

1. The OPEN statement must include a unit specifier using either of the two forms 
described earlier (see, for example, 13.2.3.1). Thus, 

OPEN (3) 

and 
OPEN (UNIT = 3) 

produce the same result. Most of the remaining specifications are optional. Exceptions 
will be pointed out as the discussion proceeds. 
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2. We may include an error specifier (ERR = statementnumber) that will cause an 
automatic branch to the indicated statement number should FORTRAN find it impos­
sible to open the file. (For example, there is no such unit number as the one specified in 
the OPEN statement.) 

3. An access specifier (ACCESS = accessmethod) may be included to indicate how 
the records will be read or written. the two choices are ACCESS=' DIRECT' or 
ACCESS=' SEQUENTIAL ' . The latter is assumed if the ACCESS= specifier is omitted. 

4. The form of the records also can be specified by including FORM=' FORMATTED ' 
or FORM=' UNFORMATTED' . If the form is not specified, FORTRAN will assign a form 
automatically, depending on the access method. For DIRECT files the assumed form is 
UNFORMATTED; for SEQUENTIAL files the assumed form is FORMATTED. 

5. The IOSTAT specifier also is available for use with the OPEN statement. 

6. The RECL specifier indicates the record length for the file being opened. This must 
appear for a direct file and cannot appear for a sequential file. (All the records in a direct 
file must have the same length.) For example, the statement 

OPEN (3,IOSTAT=STAT3,ACCESS='DIRECT',FORM='FORMATTED',RECL=120) 

says, "Connect unit 3 to a direct, formatted file having a record length of 120 characters. 
Report the result of the operation in an integer variable named STAT3." 

7. An additional specifier (BLANK), intended for formatted input files, tells FOR­
TRAN how it should interpret blanks that it finds in formatted numerical input values. 
The two choices are BLANKS=' NULL' and BLANKS=' ZERO' . When the former is 
specified, FORTRAN will ignore all blanks except in the case where an entire numerical 
field is blank. Then, it will treat that field's value as zero. When BLANKS=' ZERO' is 
specified, blanks other than leading blanks will be treated as zeros. For example, using b 
to indicate a blank, a numerical formatted input field with the value bbb76bb will be 
treated as 7 6 when BLANKS= ' NULL ' is specified and as 7 600 when BLANKS= ' ZERO ' is 
specified. A field containing bbbb will be treated as a value of zero in either case. When 
the BLANKS specifier is not included, FORTRAN will assume 'NULL' . 

8. The FILE specifier is used to connect a unit with a named file. This may be a file 
created by another program and "known" to the system (but not to this program), or it 
may be a brand new file that now will be created and named. The form is 

FILE = filename 

where filename is a character string whose length and construction are determined by 
each system's rules for naming files. In many systems, the rules are the same as those for 
naming FORTRAN variables. 

9. The STATUS specifier tells FORTRAN how the file is to be handled. This has 
nothing to do with the IOSTAT specifier, which reports the outcome of the OPEN 
operation. There are four alternatives for this specifier: 

(1) STATUS= 'NEW' -This creates a new file. When this is specified, the FILE 
specifier must appear also, giving a name that is new to the system. 

(2) STATUS= 'OLD-Here again, FILE must appear when this status is specified, 
and the name must be recognized by the system. 

(3) STATUS = 'SCRATCH' -This indicates that the file is temporary. The FILE 
specification cannot appear when the STATUS is specified as SCRATCH. When 
this status is given, the file is created and made available for use until a CLOSE 
statement is issued for this unit. At that time, the unit is not only disconnected, 
but the file is deleted as well. 
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(4) STATUS= 'UNKNOWN': -This is the status assumed by FORTRAN when no 
status is specified by the programmer. The response depends on the particular 
FORTRAN implementation. In many cases, the system's action will be the same 
as for a status of ' OLD' if the file is named and the name is recognized; otherwise, 
it will react as if the status were ' NEW ' . 

13.2.3.2 The CLOSE Statement This statement's basic intent is opposite to that of the 
OPEN statement: That is, it breaks the connection between a unit and a file. The form is 

CLOSE ( closelist) 

Up to four types of specifiers may be included. Of these, the unit specifier (in either form) 
must appear, and the others are optional: 

1. The IOSTATspecifiermaybe used toreporttheoutcomeoftheCLOSE operation. 
2. As is true with other file processing statements, the ERR specification may be 

included to provide (and· branch to) a designated place in the program should 
something go wrong. 

3. The STATUS specifier is used to define the disposition of the file once it is 
disconnected. FORTRAN will retain the file if STATUS=' KEEP' , or it will delete 
the file if STATUS=' DELETE' . However, the programmer must make sure that 
his or her specifications are consistent. for example, FORTRAN will not accept 
STATUS = 'KEEP' in a CLOSE statement if that same file was connected earlier 
with an OPEN statement that said STATUS= ' SCRATCH' . 

If a CLOSE statement is issued in which the specified unit has no file connected to it or in 
which the unit does not exist altogether, FORTRAN will accept ·the statement but 
nothing will happen. 

Note that the STATUS=' KEEP' specification makes it possible to close a file and still 
have that file exist. Consequently, that file can be reconnected later with another OPEN 
statement. Of course, the same is true for a unit. 

13.2.3.3 The INQUIRE Statement All of the input/output statements examined thus far 
perform some type of operation on a file. In contrast, the INQUIRE statement provides a 
way of determining the properties of a file or unit without actually doing anything with it. 
Basically, INQUIRE asks FORTRAN to check on a particular file or unit. Since the 
purpose is to report the status of that file or unit, the statement must specify a variable in 
which each finding is to be reported. The general form is 

INQUIRE (inquirylist) 

When we wish to inquire about a particular file, the parenthesized inquirylistmust include 
a file name, designated by a FILE= specifier. Thus, for example, the statement 

INQUIRE (FILE='PYMSTR', otherspecs) 

says, "Please report on the properties of the file named PYMSTR. I am interested in those 
properties listed in otherspecs, and I am telling you in which variables to report these 
properties." 

Another way to use the INQUIRE statement is to ask about a certain unit. As you 
would expect, this form requires a unit specifier instead of a file specifier. For instance, the 
statement 

INQUIRE (3, otherspecs) 

says, "Please report on the properties of unit 3. I am interested in those properties listed 
in otherspecs." (The UNIT = form also may be used.) 
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In either case, otherspecs may consist of any combination of a wide variety of 
specifiers. Some of these were discussed with reference to other file-related statements, 
and they have the same meaning here. Accordingly, we shall just list them. Others are 
intended specifically for use with the INQUIRE statement, and these will be described 

briefly. 

1. The IOSTAT specifier may be used. A value of zero indicates that the designated 
file or unit has a consistent set of properties. 

2. The ERR specifier may be used as in other statements. 

3. A group of specifiers is available to check on some of the fundamental properties. 

( 1) The existence of the file or unit is checked by the EXIST specifier. This is done 
by specifying 

EXIST = exstat 

where exstat is the name of a variable declared with a LOGICAL statement 
(Chapter 4). FORTRAN assigns a value of. TRUE. if the specified file or unit 
exists, . FALSE. if it does not. 

(2) The OPENED specifier works basically the same way. When we say 

OPENED = opnstat 

FORTRAN assigns the value . TRUE. to the logical variable specified by 
opnstat if the designated file or unit is connected to something, and it assigns 
. FALSE. if there is no connection. 

(3) The NUMBER specification may be used when the INQUIRE statement refers 
to a file. By writing 

NUMBER = numvar 

we cause FORTRAN to report (in the INTEGER variable named numvar) the 
number of the unit connected to the file named in the FILE specification. If 
there is no unit connected to that file, then no one can tell what numvar's value 
will be. 

(4) The NAMED specifier indicates the name of a logical variable to which FOR­
TRAN assigns . TRUE. if the file specified in the INQUIRE statement has a 
name, and . FALSE. if it does not. 

(5) The NAME specification enables us to obtain the name of a file (if there is one) 
connected to a specified unit. Thus, when we say 

LOGICAL EXIST,OPTST,NMTST 
CHARACTER*lO FILNAM 

INQUIRE (UNIT=4,EXIST=EXTST,OPENED= 
1 OPTST,NAMED=NMTST,NAME=FILNAM) 

we are making the following request: "I would like to know some things about 
the status of unit number 4. Specifically, tell me (by reporting in the variable 
EXTST) whether this system has a unit number 4. Also, let me know (in the 
variable named OPTST) whether unit 4 has a file connected to it. If that is true, I 
want to look in variable NMTST to find out whether that file has a name. If it does, 
I want you to report that name in the character string FILNAM." Once the 
INQUIRE statement assigns the appropriate values to the specified variables, the 
program can go on to test for those values and take some action based on what it 
finds. 
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4. Another group of related specifiers enables the programmer to get information 
about the organization of a file. 

(1) The ACCESS specifier gives the name of a character variable where FORTRAN is 
to report the access method (DIRECT or SEQUENTIAL) for which the file or unit 
is connected. If the file or unit is not connected at the time the INQUIRE 
statement is executed, then no one can say what the value will be in that variable. 
As the next two specifiers indicate, it is possible to check on the access in more 
detail. 

(2) The form 

SEQUENTIAL = seqvar 

enables the programmer to determine whether the specified file or unit is avail­
able for sequential access. This is different from the ACCESS specifier because it 
indicates explicitly whether sequential access is allowed. This is reported by 
automatically assigning a value of YES to the character variable named by seq var. 
Note that a value of YES does not necessarily rule out the allowance of direct 
access for that file or unit. If sequential access is not allowed, FORTRAN places 
the character string NO in that variable. A third possible value, UNKNOWN, is 
assigned when FORTRAN cannot determine whether sequential access is 
allowed. 

(3) The DIRECT specifier provides the same service with regard to direct access. In 
response to the specification 

DIRECT = dirvar 

FORTRAN places a value of YES in the character variable named by dirvar if the 
designated file or unit allows direct access, NO if it does not, or UNKNOWN if it 
cannot find out. As is true with the SEQUENTIAL specification, a value of YES in 
dirvar does not automatically imply that the file or unit does not allow sequential 
access. 

5. Several additional specifiers enable us to produce information about the form of 
the records and about certain aspects of their contents. 

(1) The most general specifier in this category is the FORM specifier. Its meaning here 
is the same as was described for the OPEN statement. Thus, by specifying 
FORM = formvar 

FORTRAN will report in the character variable named in formvar the form 
(FORMATTED or UNFORMATTED) for the designated file or unit. If the file or unit 
is not connected, no one can determine the resulting value informvar (that is, the 
value is undefined). 

(2) More detailed information about the file's form can be obtained with the 
FORMATTED and UNFORMATTED specifiers. These are not to be confused with 
the values developed by FORTRAN in response to a FORM specifier. Each of 
these is a separate specifier with its own designated character variable. Fm: 
instance, the specification 

FORMATTED = fmtvar 

causes FORTRAN to deliver a value of YES in the variable named by fmtvar if 
the file or unit allows formatted records, NO if it does not, or UNKNOWN if 
FORTRAN cannot find out. Similarly, the specification 
UNFORMATTED = unfvar 
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causes FORTRAN to deliver a value of YES, NO, or UNKNOWN in the variable 

named by unfvar that describes the status of the unit or file with regard to 

allowing unformatted records. The fact that a file allows unformatted records 

does not necessarily mean that it automatically disallows formatted records. The 

same is true for a file or unit that allows formatted records. 

(3) Information about the record length is obtained by using the RECL specifier along 

with an integer variable in which FORTRAN will report the value. If the file's 

records are formatted, the record length will be in characters. For unformatted 

records, the way the value is expressed will depend on the particular type of 

computer being used. If the file or unit is not connected, or if it does not allow 

direct access, the value for the record length will be undefined. 

(4) The NEXTREC specifier enables the programmer to determine a file's position. 

By specifying 

NEXTREC = nxtvar 

we request FORTRAN to indicate in the integer variable named by nxtvar the 

position of the next record in the designated file (or in the unnamed file con­

nected to the designated unit). If the file is positioned at its beginning, FOR­

TRAN will report a value of 1. If the file is not connected for direct access (or not 

connected at all), the value reported in nxtvar is undefined. 

( 5) The BLANK specifier has the same basic use as in the OPEN statement. When we 

say 

BLANK = blnkvar 

FORTRAN will report (in the character variable named by blnkvar) the way 

blanks are used in the designated file or unit. The values delivered to the variable 

are NULL or ZERO, and these have the same meanings as described for the OPEN 

statement. If the file is not connected, or if it is not connected for formatted 

input/output, blnkvar's value will be undefined. 
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Having introduced FORTRAN's file handling capabilities, we shall put some of these 13.3 EXAMPLE 

ideas to use in two example programs. The first of these uses input data to build a file on PROGRAMS 

magnetic disk. The second program uses that file in con junction with new input data to 

produce an updated version of the file, i.e., a new version that incorporates the changes 

introduced by the input data. 

Example 13.1 In a burst of adventure and high confidence, three young hotshots have resigned their 

positions at the Windowledge Brokerage to form their own mutual fund company. Clients would be sought 

and asked to invest in the Canine Fund, a collection of carefully watched stocks with great promise. Because 

of their impressive performance at Windowledge, the three hotshots have been able to start their business 

with an established list of clients. 
As one of its services, the Fund will send to each of its clients a monthly statement showing how many 

shares that client owns. To get this process started, a program is needed to build a file of client data. 

Information for each subscriber is available initially in list-directed form on a punched card containing the 

following items: 

subscriber's name (25 characters or fewer) 

subscriber's account number (a 6-digit integer from 1-999000) 

dollar amount of initial investment (given to the nearest cent) 

Information from each of these records is to produce two types of output: 

1. A disk record in list-directed format consisting of the account number, name, the date (month/day/ 

year) the record was created, the type of transaction (a purchase in this case), and the numberof shares (to 

the nearest thousandth of a share) owned by that subscriber. 
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CANINE FUND - STATUS REPORT 

ACCT: 120454 NAME: MERVYN W. BUMBLE 

DATE TRANS AMT INV PRICE NO. SHARES 

11/12/80 PUR 4.E+03 10.237 390.739 
FIGURE 13.5 Sample Output for Example 13.1. 

2. A written report (on a separate page for each subscriber) containing the subscriber's name and 
account number, the date the record was created, the type of transaction (a purchase in this case), the 
dollar amount of the initial investment, the price per share at the time of investment, and the number of 
shares purchased by that initial amount. An example of such a page is shown in Figure 13.5. Note that the 
real values appear either in floating point form or conventional form. The HP FORTRAN 77 compiler 
determines the form for each particular real value based on its magnitude. A few experiments with 
different values will establish the exact rules for your implementation. (Be sure to include values with 
large negative exponents as well as those having large positive exponents.) 

To keep our attention focused on the file building process itself, we shall keep things simple by assuming 
that the cards are in order by ascending account number (lowest account number first, and so on), and 
thereare no errors in the data. We shall assume furtherthattheoutputfile is to be attached to unit 2. Units 
5 and 6 are assumed to be the system's input and output units, respectively. 

The implementation is quite simple. In addition to the actual file processing, the program will 
compute and print the number of subscribers (SUBSCRIBERS), the total dollar amount invested (TOTAL_ 
INVESTED), and the total number of shares purchased (TOTAL_SHARES). Accordingly, the following 
program structure suggests itself: 

1. The stage is set by a subroutine (INIT) that initializes SUBSCRIBERS and TOTAL_ INVESTED, 
opens the output file on unit 2, and reads a single line containing today's date (DATE) and price per share 
(PRICE). 

2. The major processing cycle consists of a DO-WHILE construct that prepares an output record for 
each subscriber's input card and uses a subroutine (PRTSUB) to produce the output page for each 
subscriber. (Note that the test that begins the DO-WHILE is included (as the END= specifier) in the READ 
statement.) 

3. After all the records have been read and written, a concluding part of the program (a subroutine 
named SUMUP) will close the output file and print the summary information. 

As part of the summary process, SUMUP will produce a dummy output record with an account number of 
999999. This record, placed between the last subscriber's record and the ENDFILE record, is a way of 
safeguarding a sequential file when it is used for subsequent processing. The technique of ending a file 
with a record having the largest possible sequence number is called bounding. By doing this, it becomes 
much easier to protect programs against input data that are improperly sequenced. Although we said that 
this is not a problem in this example, the technique is a useful one to know about. The program for this 
example is shown in Figure 13.6. 

Example 13.2 We shall expand the Canine Fund's services by enabling subscribers to increase or 
decrease their holdings by sending in money or requesting money. The basic process may be described 
as follows: Each day, subscribers' requests are prepared by recording one request per line arranged in 
order by account number. These data are preceded by a line containing that day's date and the day's 
average price for a share of the Canine Fund. That price is used to convert the dollar amount of each 
transaction to an equivalent number of shares. Thus, a purchase or withdrawal of so many dollars is 
expressed as some number of shares, and that number (rounded to the nearest thousandth of a share) is 
added to or subtracted from the subscriber's total. In either case, a new list-directed file record is 
produced showing the latest information: date of transaction; type of transaction (PUR for purchase, WTH 
for withdrawal); amount of the transaction; price per share at which the purchase or withdrawal was 
made; and the new total number of shares. (Of course, the name and account number are included in the 



EXAMPLE PROGRAMS 

C******************************************************* 
c EXAMPLE 1 3. 1 * 
C******************************************************* 
c TOTAL_INVESTED: TOTAL AMOUNT INVESTED * 
c TOTAL_SHARES: TOTAL SHARES PURCHASED * 
c PRICE: TODAY'S PRICE PER SHARE * 
c AMTINV: AMOUNT INVESTED BY A SUBSCRIBER * 
c SHARES: SHARES PURCHASED BY A SUBSCRIBER * 
c SUBSCRIBERS: NUMBER OF SUBSCRIBERS * 
c DATE: TODAY'S DATE (MM/DD/YY) * 
c NAME: SUBSCRIBER'S NAME * 
c ACCTNO: SUBSCRIBER'S ACCOUNT NUMBER * 

C******************************************************* 

1 

PROGRAM 
IMPLICIT 
REAL 

INTEGER*2 
CHARACTER 
LOGICAL 

EX1301 
NONE 
TOTAL_INVESTED, TOTAL_SHARES, 
PRICE, AMTINV, SHARES 
ACCTNO, NUMSHR 
NAME*25, DATE*S 
WE_HAVE_DATA 

CALL INIT (SUBSCRIBERS, TOTAL_INVSETED, TOTAL_SHARES, 

1 DATE, PRICE) 
DO WHILE (WE_HAVE_DATA) 

READ (5,FMT=*,END=99) ACCTNO, NAME, AMTINV 
SUBSCRIBERS = SUBSCRIBERS+1 
TOTAL_INVESTED = TOTAL_INVESTED + AMTINV 
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C NOW WE SHALL COMPUTE THE NO. OF SHARES, ROUNDED TO THE NEAREST 

C THOUSANDTH OF A SHARE. THE TECHNIQUE TO BE USED IS THE ONE 

C DESCRIBED SO BEAUTIFULLY IN SECTION 6.2.5.4. 

SHARES = AMTINV/PRICE 
SHARES = ANINT(1000.0*SHARES)/1000.0 
TOTAL_SHARES = TOTAL_SHARES + SHARES 
WRITE (2,FMT=*) ACCTNO, NAME, DATE, 'PUR', SHARES 

CALL PRTSUB (ACCTNO, NAME, DATE, AMTINV, PRICE, SHARES) 

END DO 

99 CALL SUMUP (DATE, SUBSCRIBERS, TOTAL_INVESTED, 
1 TOTAL_SHARES, ,NAME) 
PRINT*,' 
PRINT *,'END OF RUN.' 
STOP 

END 
FIGURE 13.6 (a) The Overall Program for Example 13.1. 

record as before.) A one-page statement (similar to the one in Figure 13.5) is printed for each subscriber 

involved in a transaction. The program also produces and prints an overall summary showing the total 

number of purchases and withdrawals, along with the dollar amounts and equivalent share amounts for 

each of the totals. 



C******************************************************* c INIT * C******************************************************* C THIS SUBROUTINE INITIALIZES THE TOTALS, COUNTER, * 
C OPENS THE OUTPUT FILE ON UNIT 2, AND READS THE * 
C DATE AND SHARE PRICE. * 
C******************************************************* c TOTAL_ INVESTED: TOTAL AMOUNT INVESTED * c TOTAL_SHARES: TOTAL NUMBER OF SHARES PURCHASED * c SUBSCRIBERS: NUMBER OF SUBSCRIBERS * c DATE: TODAY'S DATE, MM/DD/YY * c PRICE: TODAY'S PRICE $XX.XXX PER SHARE * 
C******************************************************* SUBROUTINE INIT (SUBSCRIBERS, TOTAL_INVESTED, 

1 TOTAL_SHARES, DATE, PRICE) 
IMPLICIT 
REAL 
INTEGER*2 
CHARACTER*8 

SUBSCRIBERS = 0 
TOTAL_INVESTED = 0.0 
TOTAL_SHARES = 0.0 

NONE 
TOTAL_INVESTED, TOTAL_SHARES, PRICE 
SUBSCRIBERS 
DATE 

OPEN (2,ACCESS='SEQUENTIAL',FORM='FORMATTED') 
READ *, DATE, PRICE 

RETURN 
END (b) 

C******************************************************* c PRTSUB * C******************************************************* SUBROUTINE PRTSUB (ACCTNO,NAME,DATE,AMTINV,PRICE,SHARES) 
IMPLICIT NONE 
REAL 
INTEGER*2 
CHARACTER 
PARAMETER 

AMTINV,PRICE,SHARES 
ACCTNO 
NAME*25,DATE*8,BLANKS*6 
(BLANKS=' ') 

C AN EDIT-DIRECTED WRITE STATEMENT WILL START A NEW PAGE. 
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WRITE (6,16) 
16 FORMAT ('1') 

PRINT *,BLANKS 
PRINT *,BLANKS 
PRINT *,BLANKS 
PRINT *,'CANINE FUND - STATUS REPORT' 
PRINT *,'ACCT: ',ACCTNO,'NAME: ',NAME 
PRINT *,BLANKS 
PRINT *,BLANKS 
PRINT *,BLANKS 
PRINT *,'DATE TRANS AMT INV PRICE 
PRINT *,BLANKS 
PRINT *,DATE,'PUR',AMTINV,PRICE,SHARES 
RETURN 

END 

# SHARES' 

FIGURE 13.6 (b) INIT Subroutine for Example 13.1. (c) PRTSUB Subroutine for Example 13.1. 



EXAMPLE PROGRAMS 

C******************************************************* 
C SUMUP * 

C******************************************************* 
SUBROUTINE 

1 
IMPLICIT 
REAL 
INTEGER*2 
INTEGER*4 
CHARACTER 
PARAMETER 

NAME = SPACES 

SUMUP (DATE,SUBSCRIBERS, TOTAL_INVESTED, 
TOTAL_SHARES, NAME) 

NONE 
TOTAL_INVESTED, TOTAL_SHARES, ZEROS 
SUBSCRIBERS, 
BOUND 
DATE*8, NAME*25, SPACES*S 
(SPACES=' ',BOUND=999999,ZEROS=O.O) 

WRITE (2,FMT=*) BOUND, NAME, DATE, ZEROS 
WRITE (6,26) 

26 FORMAT ('1') 
PRINT *,SPACES 
PRINT *,SPACES 
PRINT *,SPACES 
PRINT *,'CANINE FUND - SUMMARY REPORT' 
PRINT *,'DATE: ',DATE 
PRINT *,SPACES 
PRINT *,'NO. OF SUBSCRIBERS: , SUBSCRIBERS 
PRINT *,'NO. OF SHARES PURCHASED: ', TOTAL_SHARES 
PRINT *,'TOTAL AMOUNT INVESTED: , TOTAL_INVESTED 
ENDFILE (2) 
CLOSE (2) 
RETURN 

END 
FIGURE13.6 (d) SUMUP Subroutine for Example 13.1. 

To maintain our concentration on the file-related processes, we shall make some simplifying 

assumptions as we did in the previous example: 

1. The input data are guaranteed to be in proper sequence. 

2. All input transactions will be consistent and "legal." For example, there will be no attempt to 

withdraw more money than a subscriber has in his or her account, nor will there be an attempt to 

conduct a transaction on a nonexistent account number. 

Now that the requirements have been defined, we can turn our attention to converting these require­

ments into a well-organized program. Note that the file described above contains the same type of 

information developed by the file creating program in Example 13.1. As a result, we can meet these 

requirements by designing our program so that it uses that file as input to produce a brand new output file 

containing all the subscribers' records. Those for whom a purchase or withdrawal was made will have 

updated information; the other records merely will be copied exactly as they were on the input file. thus, a 

file produced as output from one run can serve as input for the next, and so on. This overall flow of events 

is show in Figure 13. 7. Though somewhat simplified, it exemplifies the type of updating process that finds 

frequent use in a wide variety of applications. Since each updating run produces a new copy of the data, 

the previous copy (i.e., the input for that run) provides a built-in safety feature. It still is available should 

something go wrong and the run has to be repeated. For this reason, many installations make ita standard 

practice to save such data for several runs back before they are considered old enough so that it is safe to 

put the reel or tape or the space on the disk to some other use. 

Based on these considerations, we see that the program requires two input files: the subscribers' 

records (which we shall connect to unit 4). and the records containing the day's transactions (which 

automatically will be preconnected to the system input unit). Since each of these files will be arranged in 
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Define TTLPUR, TTLWTH, TTLSHR, TSHRS, SHRPUR, SHRWTH, 
NEWSHR, PRICE, NUMSCR, NUMPUR, NUMWTH, CACCT, 
TACCT, TODAY, CDATE, TDATE, CNAME, TNAME, 
CTYPE,TTYPE 

Initialize the program; (SETUP) 
Read today's date, price 

Read the first card and tape records (RD NEXT) 

DO WHILE Tape Acct no. "f 999999 

Align tape file so that acct. no. of current tape 
(REC SET) record = acct. no. of current input transaction card 

Bring tape record up to date so it reflects the transaction (UPDATE) from the input card and write the revised tape record 

Print the subscriber's updated record (REPORT) 

Read the next card and tape records (RD NEXT) 

I Prepare and print today's summary 
I (WRAPUP) 

STOP 

360 FIGURE 13.7 (a) Information Flow for Example 13.2. 



"Define TOTAL_FURCHASED, TOTAL_WITHDRAWN, TOTAL_SHARES, 
SHARES_OWNED, SHARES_PURCHASED, SHARES_WITIIDRAWN, 

SHARES_PROCESSED, PRICE, SUBSCRIBERS, 
NUM_PURCHASES, NUM_WITHDRAWLS, INPUT_ACCT, 
FILE_ACCT, TODAY, INPUT_DATE, FILE_DATE, 
NAME_, NAME_ONFILE, INPUT_TRANS, FILE_TRANS. 

"Initialize the program." 
"Read today's date and price." 
"Read the first transaction and disk records." 
while disk account no. is not 999999: 

"Align disk and transaction records so account numbers match." 
"Update disk record to reflect the most recent transaction; 

write the revised disk record." 
"Print the updated subscriber's record." 
"Read the next transaction and disk records." 
endwhile 
"Prepare and print today's summary." 
"Stop." 

(b) 

Compute the no. of shares purchased or withdrawn 

by this transaction: 
NEWSHR ...._ __ CAMT/PRICE 

tr an 

purchase 

Decrease the subscriber's total shares Increase the subscriber's total shares 

Decrease the Fund's total shares Increase the Fund's total shares 

Increase the total amount of withdrawals Increase the total amount of purchases 

Increase the total no. of shares withdrawn Increase the total no. of shares purchased 

Increment the no. of withdrawals Increment the number of purchases 

Change the date, transaction amount, transaction type in the subscriber's record 

Write the updated record onto the output tape file 

RETURN 

(c) 

FIGURE 13.7 (b) Pseudocode for Example 13.2. (c) N-S Diagram for Example 13.2. 361 
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"Compute the no. of shares involved in this transaction: 
NEWSHR = CAMT /PRICE." 

if 
transaction is a purchase 

then 

else 

"Increase subscriber's total shares." 
"Increase the Fund's total shares issued." 
"Increase the total purchase amount." 
"Increase the total no. of shares purchased." 
"Increment the total number of purchases." 

"Decrease the subscriber's total shares." 
"Decrease the Fund's total shares." 
"Increase the total withdrawal amount." 
"Increase the total no. of shares withdrawn." 
"Increment the total number of withdrawals." 

endif 
"Change the date, transaction amount, transaction type in 

the subscriber's record." 
"Write the updated record onto the output file." 
"Return." 

FIGURE 13.7 (d) Pseudocode for UPDATE Subroutine for Example 13.2. 

the same order, we can anticipate the need for some processing that will make sure that the transaction 
for a given account is matched against the master record for the same account. Other organizational 
characteristics are not very different from those of the previous example, so we can summarize the 
program's construction as follows: 

1. A subroutine named SETUP will be used at the beginning of each run to initialize the variables 
where total values and counters will be accumulated. In addition, the routine will read the day's date and 
price, as well as the first subscriber's record from each input file. 

2. A separate subroutine named RECSET will handle the processing to make sure that the input 
records from the two units presented to the next part of the program each belong to the same account. To 
do this, it will read and copy as many subscribers' records as necessary, comparing each one with the 
current transaction record in turn, until the match is found. Since we assumed that the transactions are in 
proper order, this process is fairly simple. However, we can imagine that it could become quite intricate 
when we have to watch for and take care of records that are out of sequence, as well as other possible 
error conditions. (You will be challenged to do some of this in the problems at the end of the chapter.) 

3. Once a matching pair of input records has been provided, another subroutine (named UPDATE) 
will use the data from the transaction to prepare a modified version of the subscriber's record. 

4. Output of the updated record, as well as the preparation of the printed report for that subscriber, 
will be handled by a subroutine named REPORT. 

5. Finally, a simple routine (named RDNEXT) will read the next record from each of the input files, so 
that the program now will be ready for another cycle. Note that no checking of account numbers is done at 
this point, since the RECSET subroutine already is designed to do this. 

The overall program design is shown in Figure 13.7 and the program itself is given in Figure 13.8. It should 
be pointed out that in an actual situation, it is more likely that the subscribers' master records would be 
unformatted. However, this small departure from reality will not detract from the file processing itself. 

13.4 SUMMARY When FORTRAN transmits data to or from the central processor, the individual data 
values are grouped into records and the records are grouped further into files. These files 
may be organized in different ways, thereby determining how the values are represented, 
in what form the records are constructed, and in what order the records may be obtained 
by or sent from the processor. A summary of these organizational characteristics is given 
in Table 13.l. 



C************************************************************ 

c EXAMPLE 13.2 - THE MAIN PROGRAM * 
C************************************************************ 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THIS PROGRAM PROCESSES SUBSCRIBERS' TRANSACTIONS AGAINST * 

THEIR RECORDS IN THE CANINE FUND. EACH TRANSACTION * 

SPECIFIES THE AMOUNT OF MONEY TO BE ADDED TO ('PUR') OR * 

WITHDRAWN FROM ('WTH') A SUBSCRIBER'S HOLDINGS. THE PRO- * 

GRAM PRODUCES A NEW DISK RECORD FOR EACH SUBSCRIBER * 

WHICH IS A COPY OF THE PREVIOUS VERSION (IF THERE WAS NO * 

TRANSACTION) OR AN UPDATED VERSION SHOWING THE RESULTS OF* 

THE PURCHASE OR WITHDRAWAL. VARIABLE NAMES ARE: * 

SUBSCRIBERS: TOTAL NUMBER OF SUBSCRIBERS * 
NUM_PURCHASES, NUM_WITHDRAWLS: NO. MAKING * 

PURCHASES, WITHDRAWALS * 

TOTAL_PURCHASED, TOTAL_WITHDRWAN: TOTAL AMTS OF * 
PURCHASE, WITHDRAWAL * 

TOTAL_SHARES: TOTAL NO. OF SHARES IN CANINE * 

SHARES_PURCHASED, SHARES_WITHDRAWN: NO. OF SHARES * 

PURCHASED, WITHDRAWN * 

SHARES_PROCESSED: NO. OF SHARES IN A TRANSACTION * 

TODAY: TODAY'S DATE (MM/DD/YY) * 

INPUT_DATE, FILE_DATE: DATE ON AN INPUT LINE, * 
DISK RECORD * 

C INPUT_ACCT, FILE_ACCT: ACCOUNT NO. ON AN INPUT LINE, * 

C DISK RECORD * 

C NAME_IN, NAME_ONFILE: NAME ON AN INPUT LINE, * 

C DISK RECORD * 

c 
c 
c 
c 
c 
c 

INPUT_TRANS, FILE_TRANS: TRANSACTION TYPE * 
('PUR' OR 'WTH') ON A RECORD* 

INPUT_AMT: TRANACTION AMOUNT SPECIFIED ON A LINE * 

FILE_AMT: TRANSACTION AMOUNT SPECIFIED ON DISK * 
SHARES_OWNED NO. OF SHARES A SUBSCRIBER OWNS * 
PRICE: TODAY'S PRICE PER SHARE * 

C************************************************************ 

1 
2 
3 

1 
2 

$FILES (0,2) 
PROGRAM 
IMPLICIT 
REAL 

INTEGER*4 
INTEGER*2 
CHARACTER 

EX1302 
NONE 
TOTAL_PURCHASED, TOTAL_WITHDRAWN, TOTAL_SHARES, 

SHARES_PURCHASED, SHARES_WITHDRAWN, 
SHARES_PROCESSED, INPUT_AMT, FILE_AMT, 
SHARES_OWNED, PRICE 
INPUT_ACCT, FILE_ACCT 
SUBSCRIBERS, NUM_PURCHASES, NUM_WITHDRAWLS 
TODAY*8, INPUT_DATE*8, FILE_DATE*8, 
NAME_IN*25, NAME_ONFILE*25, 
INPUT_TRANS*3, FILE_TRANS*3 

CALL SETUP (TOTAL_PURCHASED, TOTALWITHDRAWN, TOTAL_SHARES, 

1 SHARES_PURCHASED, SHARES_WITHDRAWN, SUBSCRIBERS, 

2 NUM_PURCHASES, NUM_WITHDRAWLS, TODAY, PRICE) 

CALL RDNEXT (SHARES_OWNED, FILE_AMT, INPUT_AMT, 

1 FILE_ACCT, INPUT_ACCT, FILE_DATE, INPUT_DATE, 

2 NAME_ONFILE, NAME_IN, FILE_TRANS, INPUT_TRANS) 

DO WHILE (FILE_ACCT .NE. 999999) 
CALL RECSET (TOTAL_SHARES, SHARES_OWNED, FILE_AMT, 

1 SUBSCRIBERS, FILE_ACCT, INPUT_ACCT, 

2 FILE_DATE, NAME_ONFILE, FILE_TRANS) 
CALL UPDATE (TOTAL_PURCHASED, TOTAL_WITHDRAWN, TOTAL_SHARES, 

1 SHARES_PURCHASED, SHARES_WITHDRAWN, 

2 SHARES_PROCESSED, SHARES_OWNED, FILE_AMT, 

3 INPUT_AMT, PRICE, SUBSCRIBERS, NUM_PURCHASES, 

4 NUM_WITHDRAWLS, FILE_ACCT, TODAY, FILE_DATE, 

5 NAME_ONFILE, FILE_TRANS, INPUT_TRANS) 

CALL REPORT (SHARES_OWNED, SHARES_PROCESSED, FILE_AMT, PRICE, 
FILE_ACCT, NAME_ONFILE, FILE_DATE, FILE_TRANS) 

CALL RDNEXT (SHARES_OWNED, FILE_AMT, INPUT_AMT, 

1 FILE_ACCT, INPUT_ACCT, FILE_DATE, INPUT_DATE, 

2 NAME_ONFILE, NAME_IN, FILE_TRANS, INPUT_TRANS) 

END DO 

99 CALL WRAPUP (TOTAL_PURCHASED, TOTAL_WITHDRAWN, TOTAL_SHARES, 

1 SHARES_PURCHASED, SHARES_WITHDRAWN, PRICE, 

2 SUBSCRIBERS, NUM_PURCHASES, NUM_WITHDRAWLS, TODAY) 

STOP 
END 

FIGURE 13.8 (a) Main Program for Example 13.2. 363 
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C************************************************************ c SETUP * C************************************************************ C THIS SUBROUTINE INITIALIZES THE PROGRAM BY SETTING THE * 
C COUNTERS AND TOTALS TO ZERO AND OPENING THE TWO DISK FILES* 
C ON UNITS 4 AND 2. * 
C************************************************************ SUBROUTINE 

1 
SETUP (TOTAL_PURCHASED, TOTAL_WITHDRAWN, TOTAL_SHARES, 

SHARES_PURCHASED, SHARES_WITHDRAWN, 
SUBSCRIBERS, NUM_PURCHASES, NUM_WITHDRAWLS, 
TODAY, PRICE) 

2 
3 

IMPLICIT NONE 
REAL 

1 
TOTAL_PURCHASED, TOTAL_WITHDRAWN, TOTAL_SHARES, 
SHARES_PURCHASED, SHARES_WITHDRAWN, PRICE 

INTEGER*2 SUBSCRIBERS, NUM_PURCHASES, NUM_WITHDRAWLS 
CHARACTER TODAY*8 

TOTAL_PURCHASED = 0.0 
TOTAL_WITHDRAWN = 0.0 
TOTAL_SHARES = 0.0 
SHARES PURCHASED 0.0 
SHARES_WITHDRAWN = 0.0 
SUBSCRIBERS = 0 
NUM_PURCHASES = 0 
NUM_WITHDRAWLS = 0 
READ *, TODAY, PRICE 
OPEN (4,FMT='FORMATTED' ,ACCESS='SEQUENTIAL') 
OPEN (2,FMT='FORMATTED',ACCESS='SEQUENTIAL') 

RETURN 
END 

(b) 

C************************************************************ C RD NEXT * 
C************************************************************ C THIS SUBROUTINE MERELY READS THE NEXT LINE AND THE NEXT * 
C RECORD FROM THE INPUT FILE (UNIT 4). IF THERE ARE NO MORE* 
C TRANSACTIONS, INPUT_ACCT IS SET TO 999999 AND RETURNS. * 
C************************************************************ 

SUBROUTINE 
1 
2 
3 

IMPLICIT 
REAL 
INTEGER*4 
CHARACTER*8 
CHARACTER*? 
CHARACTER*? 

RDNEXT (SHARES_OWNED, FILE_AMT, INPUT_AMT, 
FILE_ACCT, INPUT_ACCT, FILE_DATE, 
INPUT_DATE, NAME_ONFILE, NAME_IN, 
FILE_TRANS, INPUT_TRANS) 

NONE 
SHARES_OWNED, FILE_AMT, INPUT_AMT 
FILE_ACCT, INPUT_ACCT 
(FILE_DATE, INPUT_DATE)*8, 
(NAME_ONFILE, NAME_IN)*25, 
(FILE_TRANS, INPUT_TRANS)*3 

READ (4,FMT=*) FILE_ACCT, NAME_ONFILE, FILE_DATE, 
1 FILE_TRANS,FILE_AMT, SHARES_OWNED 

READ (1,FMT=*,END=19) INPUT_ACCT, NAME_IN, INPUT_TRANS, 
1 INPUT_AMT 

RETURN 
19 INPUT ACCT 

RETURN 
END 

999999 

(c) 

FIGURE 13.8 (b) SETUP Subroutine for Example 13.2. (c) RDNEXT Subroutine for Example 13.2. 



SUMMARY 

C************************************************************ 
c RECS ET * 
C************************************************************ 
C THIS SUBROUTINE SYNCHRONIZES THE DISK AND LINE INPUT * 

C RECORDS SO THAT THE ONES CURRENTLY IN THE PROCESSOR * 

C BELONG TO THE SAME ACCOUNT. IT DOES THIS BY READING AND * 

C COPYING AS MANY DISK RECORDS AS NECESSARY (UPDATING THE * 

C OVERALL TOTALS AS IT GOES) UNTIL THE ACCOUNT NUMBERS * 

C MATCH. IF THERE ARE NO MORE INPUT LINES AGAINST WHICH TO * 

C COMPARE, RECSET WILL "KNOW" THIS BECAUSE THE RDNEXT SUB- * 

C ROUTINE WILL HAVE SET INPUT_ACCT TO 999999. AS LONG AS * 

C INPUT_ACCT IS NOT 999999, THE ACCOUNT NUMBERS EITHER WILL * 

C MATCH, OR RECSET WILL CONTINUE TO WRITE AND READ DISK * 

C RECORDS UNTIL SUCH A MATCH OCCURS. EVEN IF THE MATCH * 

C OCCURS AT ACCOUNT NO. 999999, IT IS JUST ANOTHER MATCH AS* 

C FAR AS RECSET IS CONCERNED; ITS SPECIAL NATURE IS NOTED * 

C AND HANDLED IN THE MAIN PROGRAM, NOT HERE. * 

C************************************************************ 
SUBROUTINE RECSET (TOTAL_SHARES, SHARES_OWNED, FILE_AMT, 
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1 SUBSCRIBERS, FILE_ACCT, INPUT_ACCT, FILE_DATE, 

2 NAME_ONFILE, FILE_TRANS) 
IMPLICIT 
REAL 
INTEGER*4 
INTEGER*2 
CHARACTER 

NONE 
TOTAL_SHARES, SHARES_OWNED, FILE AMT 
FILE_ACCT, INPUT_ACCT 

SUBSCRIBERS 
TDATE*S, NAME_ONFILE*25, FILE_TRANS*3 

DO WHILE (FILE_ACCT .NE. INPUT_ACCT) 
TOTAL_SHARES = TOTAL_SHARES + SHARES_OWNED 
WRITE (2,FMT=*) FILE_ACCT, NAME_ONFILE, FILE_DATE, 

1 FILE_TRANS, FILE_AMT, SHARES_OWNED 
READ (4,FMT=*) FILE_ACCT, NAME_ONFILE, FILE_DATE, 

1 FILE_TRANS, FILE_AMT, SHARES_OWNED 
END DO 

RETURN 
END 

FIGURE 13.8 (d) RECSET Subroutine for Example 13.2. 

A file is said to exist when its organizational properties (and its optional name) are 

made known to the system on which it will be used. The fact that a file exists does not 

necessarily mean that it is available to any program that wants it. This availability is 

established by connecting a file to a unit, thereby associating that file with a physical 

device from which the records are to be read or onto which the records are to be written. 

There are nine FORTRAN statements for dealing with files: 

1. READ :-transmission of records from a file to the processor. 

2. WRITE:-transmission of records from a processor to a file. 

3. PRINT:-a special case of WRITE in which the records are to be displayed on a 
printing device. 

4. BACKSPACE:-repositioning of a file to the previous record in its physical 

sequence. 

(Continued) 
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C************************************************************ c UPDATE * 
C************************************************************ 
C UPDATE USES THE DATA FROM THE CURRENT INPUT LINE TO PRO- * 
C DUCE NEW FIGURES FOR THAT ACCOUNT. THESE ARE WRITTEN ON * 
C THE OUTPUT DISK AND ADDED TO THE APPROPRIATE SUMMARY * 
C VALUES. * 
C************************************************************ 

SUBROUTINE UPDATE {TOTAL_PURCHASED, TOTAL_WITHDRAWN, 
1 TOTAL_SHARES, SHARES_PURCHASED, 
2 SHARES_WITHDRAWN, SHARES_PROCESSED, 
3 SHARES_OWNED, FILE_AMT, INPUT_AMT, PRICE, 
4 SUBSCRIBERS, NUM_PURCHASES, NUM_WITHDRAWLS, 
5 FILE_ACCT, TODAY, FILE_DATE, 
6 NAME_ONFILE, FILE_TRANS, INPUT_TRANS) 

1 
2 
3 

1 

IMPLICIT 
REAL 

INTEGER*4 
INTEGER*2 
CHARACTER 

NONE 
TOTAL_PURCHASED, TOTAL_WITHDRAWN, TOTAL_SHARES, 
SHARES_PURCHASED,SHARES_WITHDRAWN, 
SHARES_PROCESSED, SHARES_OWNED, 
FILE_AMT, INPUT_AMT, PRICE 
FILE_ACCT, INPUT_ACCT 
SUBSCRIBERS, NUM_PURCHASES, NUM_WITHDRAWLS 
{FILE_DATE,TODAY)*8,NAME_ONFILE*25, 
{FILE_TRANS, INPUT_TRANS)*3 

SHARES_PROCESSED = INPUT_AMT/PRICE 
SHARES_PROCESSED = ANINT{1000.0*SHARES_PROCESSED)/1000.0 
IF {INPUT_TRANS .EQ. 'PUR') THEN 

SHARES_OWNED = SHARES_OWNED + SHARES_PROCESSED 
TOTAL_SHARES = TOTAL_SHARES + SHARES_OWNED 
TOTAL_PURCHASED = TOTAL_PURCHASED + INPUT_AMT 
SHARES_PURCHASED = SHARES_PURCHASED + SHARES_PROCESSED 
NUM_PURCHASES = NUM_PURCHASES + 1 

ELSE 
SHARES_OWNED = SHARES_OWNED - SHARES_PROCESSED 
TOTAL_SHARES = TOTAL_SHARES + SHARES_OWNED 
TOTAL_WITHDRAWN = TOTAL_WITHDRAWN + SHARES_PROCESSED 
SHARES_WITHDRAWN = SHARES_WITHDRAWN + SHARES_PROCESSED 
NUM_WITHDRAWLS = NUM_WITHDRAWLS + 1 

END IF 
FILE_DATE = TODAY 
FILE_TRANS = INPUT_TRANS 
FILE_AMT = INPUT_AMT 
WRITE {2,FMT=*) FILE_ACCT, NAME_ONFILE, FILE_DATE, 

1 FILE_TRANS, FILE_AMT, SHARES_OWNED 
SUBSCRIBERS = SUBSCRIBERS + 1 

RETURN 
END 

FIGURE 13.8 (e) UPDATE Subroutine for Example 13.2. 
(Continued) 
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C************************************************************ 
c REPORT * 
C************************************************************ 
C THIS SUBROUTINE PRINTS THE REPORT FOR EACH SUBSCRIBER * 

C WHOSE ACCOUNT HAS BEEN AFFECTED BY A TRANSACTION. * 

C************************************************************ 
SUBROUTINE REPORT (SHARES_OWNED, SHARES_PROCESSED, FILE_AMT, 

1 PRICE, FILE_ACCT, NAME_ONFILE, 

2 FILE_DATE, FILE_TRANS) 
NONE IMPLICIT 

REAL 
INTEGER*4 
CHARACTER 
PARAMETER 

SHARES_OWNED, SHARES_PROCESSED, FILE_AMT, PRICE 
FILE_ACCT 
NAME_ONFILE*25, FILE_DATE*8, FILE_TRANS*3, BLANKS*S 

(BLANKS=' ' ) 

WRITE (6,26) 
26 FORMAT ('1') 

PRINT *, 'CANINE FUND - STATUS REPORT' 
PRINT *, BLANKS 
PRINT 

1 
PRINT 
PRINT 
PRINT 

*, 'ACCT NO.: ',FILE_ACCT,'NAME: ',NAME_ONFILE, 
'FILE_DATE: ',DATE 

*, BLANKS 
*, BLANKS 
*, BLANKS 

PRINT*, 'TRANS','AMOUNT','PRICE','NO. SHARES','TOTAL OWNED' 

PRINT *, BLANKS 
PRINT *, FILE_TRANS, FILE_AMT, PRICE, 

1 SHARES_PROCESSED, SHARES_OWNED 

RETURN 
END 

FIGURE 13.8 (f) REPORT Subroutine for Example 13.2. 

5. REWIND:-repositioning of a file to its first record. 

6. ENDFILE:-the writing of a special record that concludes a file. 

7. OPEN:-the process of connecting a file to a unit. 

8. CLOSE:-the process of disconnecting a file from a unit. 

9. INQUIRE:-activation of a series of tests that report the status of a file or unit. 

These statements may be used with a wide variety of specifiers that enhance their 

flexibility and the information to be obtained from them. A summary is given in Table 

13.2. 

(Continued) 
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C************************************************************ c WRAP UP * C************************************************************ C THIS SUBROUTINE PRINTS ALL THE SUMMARY FIGURES AND CLOSES* 
C THE FILES. NOTE THAT THE ASSIGNMENT OF 999999 TO THE AC- * 
C COUNT NO. IN THE LAST OUTPUT RECORD IS NOT NECESSARY; IT * 
C IS ALREADY SET TO THAT VALUE WHEN WRAPUP IS CALLED. * 
C************************************************************ SUBROUTINE WRAPUP 

1 
(TOTAL_PURCHASED, TOTAL_WITHDRAWN, TOTAL_SHARES, 
SHARES_PURCHASED, SHARES_WITHDRAWN, 

2 
3 

1 

IMPLICIT 
REAL 

INTEGER*2 
INTEGER*4 
CHARACTER 
PARAMETER 

PRICE, SUBSCRIBERS, NUM_PURCHASES, 
NUM_WITHDRAWLS, TODAY) 
NONE 
TOTAL_PURCHASED, TOTAL_WITHDRAWN, TOTAL_SHARES, 
SHARES_PURCHASED, SHARES_WITHDRAWN, PRICE, FILE AMT 
SUBSCRIBERS, NUM_PURCHASES, NUM_WITHDRAWLS 
FILE_ACCT 
TODAY*8, SPACES*6, FILE_DATE*8, FILE_NAME*6 
(SPACES = ' ') 

WRITE (6,36) 
36 FORMAT ('1') 

PRINT*, 'CANINE FUND - SUMMARY REPORT FOR ',TODAY 
PRINT *' 
PRINT *' 
PRINT *' 
PRINT *' 
PRINT *' 
PRINT *' 
PRINT *' 
PRINT *' 
PRINT *' 
PRINT * ' 
PRINT *' 
PRINT *' 
PRINT *' 
PRINT *' 
PRINT *' 

SPACES 
SPACES 
'TODAY''S PRICE: ',PRICE,' DOLLARS PER SHARE' 
SPACES 
'PURCHASES:' 
'NO. OF SUBSCRIBERS MAKING PURCHASES: ',NUM_PURCHASES 
'NO. OF SHARES PURCHASED: ',SHARES_PURCHASED 
'TOTAL AMOUNT OF PURCHASES: ',TOTAL_PURCHASED 
SPACES 
'WITHDRAWALS:' 
'NO. OF SUBSCRIBERS MAKING WITHDRAWALS: ',NUM_WITHDRAWLS 
'NO. OF SHARES WITHDRAWN: ',SHARES_WITHDRAWN 
'TOTAL AMOUNT WITHDRAWN: ',TOTAL_WITHDRAWN 
SPACES 
'NO. OF SUBSCRIBERS: ',SUBSCRIBERS 
'TOTAL NO. OF SHARES CURRENTLY OWNED:' ,TOTAL_SHARES 

FILE_DATE = TODAY 
PRINT * ' 

FILE_ACCT = 9999 
FILE_AMT = 0.0 
FILE_NAME = SPACES 
WRITE (2,FMT=*) FILE_ACCT, NAME_ONFILE, FILE_DATE, 

1 FILE_TRANS, FILE_AMT, SHARES_OWNED 
ENDFILE 2 
CLOSE (1) 
CLOSE (2) 

RETURN 
END 

FIGURE 13.8 (g) WRAPUP Subroutine for Example 13 .2. 



PROBLEMS 

Table 13.1 A Summary of FORTRAN 77 File Characteristics 

formatted 
unformatted 

list-directed 

sequential ,,,,, ,,,,, 

external 

direct ,,,,, ,,,, 

sequential x ,,,,, 

internal 

direct x x 

Table 13.2 Specifiers for Input/Output Operations 

INPUT/OUTPUT OPERATION 

Reported As 
Specifier (Specified As) READ WRITE PRINT 

ACCESS= character 
BLANK= character 
DIRECT= character 
END= integer ,,,. 
ERR= integer ,,,. 
EXIST= logical 
FILE= character 
FMT= integer or * 
FORM= character 
FORMATTED= character 
IOSTAT= integer 
NAME= character 
NAMED= logical 
NEXTREC= integer 
NUMBER= integer 
OPENED= logical 
REC= integer 
RECL= integer 
SEQUENTIAL= character 
STATUS= character 
UNFORMATTED= character 
UNIT= integer ,,,. ,,,. ,,,. 

(I) UNIT specifier cannot be wed when FILE= is used 
(2) FILE specifier cannot be used when UNIT= is used 

1. Write a brief definition for each of the following terms: 

(a) File 
( c) Input File 
( e) Sequential File 
(g) Unit 
(i) Unformatted Data 

(b) Record 
( d) Output File 
( f) Direct File 
(h) Formatted Data 
(j) List-Directed Data 

BACKSPACE REWIND END FILE OPEN 

,,,. 
,,,. 

,,,. 

,,,. 

,,,. 

,,,. 

,,,. 

,,,. 

,,,. 
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edit-directed 

,,,,, 

,,,,, 

,,,,, 

x 

CLOSE INQUIRE 

,,,. 
,,,. 
,,,. 

,,,. 
,,,. 
,,,.(1) 

,,,. 
,,,. 
,,,. 
,,,. 
,,,. 
,,,. 
,,,. 
,,,. 

,,,. 
,,,. 

,,,. 
,,,. 

,,,. ,,,.(2) 
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(k) Edit-Directed Data 
(m) System Output Unit 
( o) External File 
( q) Preconnected File 

(1) System Input Unit 
(n) ENDFILE 
(p) Internal File 
(r) Updating 

2. Given below is a list in which each file description consists of a combination of characteristics. Some are 
legal, others are not. Indicate which is which, and explain why the illegal ones are illegal: 
(a) Input, Sequential 
(b) Direct, Sequential 
( c) Output, Formatted 
(d) Output, Formatted, Sequential 
( e) Input, External 
(f) Input, External, direct 
(g) Input, Internal, direct 
(h) Output, Internal 
(i) Output, Internal, Unformatted 
(j) Input, Internal, Sequential 
(k) Input, Internal, Sequential, Formatted 

3. Consider the following program: 

PROGRAM 
IMPLICIT 
REAL 
INTEGER*2 
CHARACTER*lO 
TOTLV = 0.0 
ALLNUM = 0 
READ (1, *) NUM 

DO NDX=l, NUM 

C13P2 
NONE 
Vl,V2,TOTLV,PR 
NUM,ALLNUM,NDX,UNITS 
NAME 

6 READ (1, *)NAME, Vl, V2, UNITS 
PR= SQRT(Vl+V2) 
ALLNUM = ALLNUM+UNITS 
TOTLV = TOTLV+PR 
PRINT *, NAME, Vl, V2, UNITS, PR 

END DO 

PRINT*• ' 
PRINT*• NUM 
PRINT *, TOTLV, ALLNUM 
STOP 
END 

(a) How many files are involved in this program? 
(b) How many records does this program read? 
( c) How many records does this program print? 
(d) We would like this program to process the following input: 

NUM: 1 
Vl: -236.4 
V2: 108.86 

UNITS: 61 
NAME: FEFFEL 

These values were handed to the Chiefs brother-in-law after he took the Complete One-Day 
Computer Workshop, and he was asked to keypunch the values so that they could be processed by the 
two READ statements in the program. an hour later, he came back with the following two records: 

1 
61FEFFEL-236.4108.86 

Explain why this will not work. 
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(e) Using the values from part (d), prepare the input properly. 

( f) Modify Statement 6 so that the program will transfer to Statement 99 if it runs out of data before it is 

supposed to. 
(g) Modify the program so that it will transfer to Statement 88 if something should go wrong when it is 

trying to read a set of input values for NAME, Vl, V2, and UNITS. 

C2 

Pl P3 

FIGURE 13.9 Overall Information Flow in Eldorado Heartbeat Process. 

4. The El Dorado Medical Center uses a computer to analyze patients' heartbeats. Figure 13.9 shows the 

general process: a patient is hooked up to a device that records the heartbeats for a specific length of time. 

The record of those heartbeats (Tl) is processed by a program {Pl) that "cleans" the data. That is, it 

reduces or removes disturbances caused by electrical noise, and it ad justs the readings to take care of other 

known difficulties caused by the behavior of the equipment and/or patient. The result is another record 

{T2). This record is processed by another program {P2) that also reads a record ( C2) with the patient's i. d. 

and other information. Data for two consecutive heartbeats are extracted from T2, combined with the 

input record's information, and added to the Center's collection of heartbeat data. This is done by reading 

the current collection without the new patient {T3) and producing a new version {T4) to which the new 

patient has been added. At some particular time, all the patients on T4 are processed by another program 

{P3) that analyzes the heartbeats and produces a report {R3) containing the results for each patient and a 

summary for the entire collection. 

(a) How many files are involved in the overall process? 
{b) Indicate which files are input files and which files are output files. 

(c) For each file listed in (a), indicate which files are likely to be formatted and which ones are likely to be 

unformatted. Give the reasons for your choices. 
(d) El Dorado wants a little more information from this system. (Refer to Figure 13.9.) Specifically, Pl is 

to be expanded so it produces a written report (Rl) summarizing what it did. P2 is to be expanded in 

the same way, producing report R2 in addition to its other duties. Modify Figure 13.9 to show these 

additional features. 
( e) How many files are added to the system by the changes in ( d)? For each of these, indicate whether the 

file is likely to be formatted or unformatted and explain why. 

5. Universal Schmichik uses its computer to process orders for its products. Each mail, phone, or over-the­

counter order is prepared on a record. Once a day the accumulated records {for that day and designated 

Cl) are processed by a program {Pl). For each record, Pl finds that customer's account on the disk {Dl) 

containing the customer data, reads the information, adds the new order to it, and writes the new version 

of the account back on the disk, replacing the earlier version. As part of the processing, Pl also finds the 

inventory data (on the inventory disk D2) for each type of schmichik ordered by that customer. The 

inventory is reduced by the amount of the order, and the revised information is written onto the disk, 

replacing the earlier version. (For simplicity, we assume that Universal never runs out of any kind of 

schmichik.) When an order's processing is complete, Pl prints a copy of the order {Rl ). When all the 

orders have been processed, Pl prints a report {R2) summarizing the day's activity, and a report {R3) 

summarizing the status of the inventory. 

(a) Draw a diagram (such as the one in Figure 13.9) showing these events. 

{b) How many files are involved in the activities described above? 
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( c) For each file identified in (b ), indicate whether it is an input file, an output file, or both, whether it is 
likely to be sequential or direct, and whether it is likely to be formatted or unformatted. Give 
reasons for your choices. 

6. Describe briefly the difference between: 

(a) Creating a file and opening a file. 
(b) Closing a file and deleting a file. 
( c) Backspacing and rewinding a file. 
(d) File reading and file inquiry. 
( e) Writing and printing a file. 

7. Prepare a FORTRAN 77 statement for each of the following activities: 

(a) Read the four items R, W, K, and TR in that order, from the standard system input unit using list 
directed format. 

(b) Read the two items ST and BR (in that order) from unit 3 using list-directed format. If there is no 
input, transfer to statement 299. 

(c) Read the items,K, WL, andRT (in thatorder)from unit5 using list-directed format. lfthereisnoinput, 
transfer to statement 499. If there is something wrong with the input, transfer to statement 188. 

( d) Read the items Kl, NM4, BBL, and DRT (in that order) from unit 2 using edit-directed format. Information 
about the format is to be found in statement 21. If there is no input, transfer to statement 99. If 
there is something wrong with the input, transfer to statement 88. 

( e) Write BK, STR, and TRU (in that order) on the system output unit using edit-directed format, with the 
format described in statement 32. (Do not describe the actual format.) If something is wrong and 
the output cannot be produced, transfer to statement 77. 

(f) Write WRUP, SKPL, SURT, ALTN, and CRKS (in that order) on unit 7 as five separate records using 
list-directed format. If something is wrong and the production of output is impossible, transfer to 
Statement 177. 

8. Something is wrong with each of the following statements. Indicate what it is: 

(a) READ (1, *) END=l99, X, Y 
(b) READ (26, FMT, END=l99) Bl, S, TR 
(c) WRITE (UNIT=3, *) T, WR 
( d) PRINT (UNIT=5, FM'I'=*) Wl, W2 
(e) READ (UNIT=5,FMT=*,END=,ERR=17)Al,XT 
(f) WRITE (6, 12, FM'I'=*, ERR=27) YV, YW 
(g) WRITE ( (, 12, END=299, ERR=288) TTW, TH 
(h) PRINT 26, FM'I'=*, ERR=l8, GR, BG, EST 
(i) READ (END=99, ERR=188) AC, DE, AC 
(j) PRINT (UNIT=6, FMT=22, ERR=88) Fl, F3 
(k) READ (UNIT=!, FM'I'=*, END=399, ERR=388) 

9. Write a FORTRAN 77 statement to perform each of the following activities: 

(a) Open a file on unit 4. 
(b) Open a file named MSTR on unit 2. 
( c) Open a sequential formatted file on unit 1. 
( d) Open a direct formatted file with record length 100 on unit 8. 
( e) Create a sequential formatted file named TRANS on unit 3 so that the outcome of the process will be 

reported in a variable named OPNHOW. 
( f) Close the file connected to unit 2. 
(g) Close the file connected to unit 1 and get rid of it. 
(h) Close the file connected to unit 3 and keep it. 
(i) Close the file connected to unit 4, keep the file, and report the outcome of the closing process in a 

variable named CLSHOW. If something goes wrong, transfer to statement 399. 

10. Write the appropriate declarations to go along with each of the following statements: 

(a) INQUIRE (3, EXIST=IYAM) 
(b) INQUIRE (FILE=MYFILE,EXIST=IYAM,NUMBER=WHICH,ACCESS=HOW) 
(c) INQUIRE (4, NAME=CALLED, OPENED=OPNST, ACCESS=SEQDIR, FORM=FV) 



(d) INQUIRE (FILE=MF, EXIST=AM, NUMBER=UN, ACCESS=DS, RECL=NBYT) 

(e) INQUIRE(2,NAME=CL,ACCESS=SD,NEXTREC=FAR,BLANK=INVIS) 

PROBLEMS 

11. Modify the program in Example 13.1 so that it handles records out of sequence. The output file is 

unchanged in that its records must be in sequence by ascending (increasing) account number. Those 

input records found to be out of sequence must be prevented from being added to the output file. (Thus, 

unlike Example 13.1, this problem no longer guarantees that all the input will be in proper sequence.) 

The modified program, then, is to look for records out of sequence. When it finds such a record, it is to be 

written onto a separate output file, connected to unit number 3. {This may be a formatted, list-directed 

file.) 

After printing the summary information (as in the example program), the revised program is to 

print the number of records found to be out of sequence (i.e., the number of customer account records 

placed onto the file connected to unit 3). The last account on unit 3's file is to be followed by a dummy 

record with account number 999999. 

12. Assume that the new output file produced in Problem 11 (the one connected to unit 3) has been processed 

by a program that sorted its records and produced a new disk with the records in proper order. Write a 

program that treats this collection of records as an input file connected to unit 4 and uses the other file 

produced by Problem 11 {the disk produced by the original example program) as a second input source, 

connected to unit 2. The program is to merge the two files (i.e., prepare a single file) so that the new 

output file (connected to unit 3) contains all of the records from the two input files in proper sequence. A 

single dummy record with account number 999999 is to be placed after the last actual account record and 

before the ENDF ILE record on the new output file. In addition, the program is to print a summary showing 

the number of records that came from the newly sorted file, the number of records that came from the 

original file, and the total number of records in the merged file. {Of course, the dummy records do not 

count.) 
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14 
List-Directed 
Input/ Output 

Since we have been using list-directed input/output all along, there is no need to start from 
the beginning. Instead, this chapter will use what we know already to examine the full 
range of FORTRAN 77's list-directed features. 

Facilities for handling list-directed data give the programmer an opportunity to specify 
effective input/output operations without having to pay detailed attention to the exact 
format. Of course, this does not mean that the data are totally without form. As the 
previous chapter pointed out, we still are dealing with formatted data; however, the rules 
are quite relaxed, so that FORTRAN 77's interpretive mechanisms accept a certain 
amount of variation in the way the data appear. 

114. 1.1 Basic Requirements for Ust-Diractad Input 

To make the list-directed mechanism work, the input data values must follow four basic 
rules: 

1. The number of data items must be consistent with the number indicated by the 
input list. For example, if the READ statement says there should be six actual data values. 
We shall see shortly that items may be omitted from the data (even though their names 
appear in the list), but we have to show that they are absent. 

2. The type of each data value must be consistent with the type associated with the 
corresponding name in the input list. Real values must appear with a decimal point, either 
in conventional or floating-point form. Character values must appear with the apos­
trophes around them. Referring to the previous READ statement, if NAME were declared 
as CHARACTER, its value would have to be enclosed in apostrophes even if it contained 
nothing but numerical characters. 

3. The order in which the data values are listed must agree with that in which their 
names appear in the input list. Using our example again, if 18.27 is the value we intend to 
store in WDTH, then it must appear as the fourth value in the data list. 

4. List-direct input values must be physically separated from each other using one of 
two ways that FORTRAN 77 recognizes: 

(1) Data items may be separated by one or more blanks 
(2) Data items may be separated by commas. Thus, any of the input lists shown 

below 
30662 'TWOMBLEY, M. H. I 39.16 18.27 106.4 317.44 
30662, 'TWOMBLEY, M. H. ',39.16,18.27,106.4,317.44 
30662, 'TWOMBLEY, M. H. I' 39. 16, 18. 27 106. 4, 317. 44 
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will produce the same results. Note that the blanks appearing together with the 
commas have no effect. 

14.1.1 List-Directed Data and Records 

When preparing list-directed input, remember that we are dealing with records. Each 
READ statement brings in a new record, and when the input file is connected to a terminal, 
each record corresponds to a line. Consequently, the programmer must be careful about 
the relationship between the contents of a line and the length of the input list for a READ 

statement. We can summarize the various situations as follows: 

1. When the number of items in an input list matches the number of data values on 
the line, the READ statement brings in all the items, and the program is ready to read from 
the next line. This is illustrated in Figure 14.1. The six input values are read by a single 
statement and entered on a single line. 

2. When the input list asks for more values than there are on a record, the program 
will read the next record, etc., if it needs to, in order to try to meet the requirements of the 
input list. This is illustrated in Figure 14.2. In this situation the READ statement still 
requests six items, but the first record has only three values. Accordingly, that first record 
is read, taking care of the list's first three items. Then, the next record is read, providing 
values for the fourth and fifth items. Since there are no more values on that (second) 
record and the operation still has one more item to go, a third record is read and the first 
value on that record (in this case, the only one) is read and stored in the last variable, WT. 

3. When there are more values on a record than an input list requests, the program 
uses the appropriate number of values, starting with the first one. Note, however, that the 
remaining values are not "saved" for the next READ statement. Since each READ state­
ment starts with a new record, any values left over on the previous record are lost. This is 
seen in Figure 14.3. Since the first READ statement wants four items, it will bring in and use 
all of the first record and the 18 . 2 7 from the second record. The second READ statement 
starts with a new record (the third one), so that HT will receive the value 31 7. 44. Gone 
and lost (alas) is the 106. 4. 

30662 'TWOMBLEY, M. H.' 39.16 18.27 106.4 317.44 

READ*, IDNO, NAME, LTH, WDTH, HT, WT 

FIGURE 14.1 Matching READ Statement and List-directed Input Card. 

30662 'TWOMBLY, M. H. I 39. 16 

18. 27 106. 4 

317.44 

READ *, IDNO,NAME,LTH,WDTH,HT,WT 

FIGURE 14.2 READ Statement/Data Format Requiring Multiple Records. 

30662 'TWOMBLY, M. H. I 39. 16 

18.27 106.4 

317.44 

READ*, IDNO,NAME,LTH,WDTH 

READ * HT 

FIGURE 14.3 Mismatch Between READ Statement Lists and Input Data Format. 
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(a) 361, 'GROOBNIK, Y. A. ',39.16,18.27,3.04,118.50 
(b) 361, 'GROOBNIK, Y. A. I' 39. 16, 3. 04, 118. 50 
(c) READ (*, *) IDNO, NAME, LTH, WDTH, HT, WT 

FIGURE 14.4 Effects of Blanks in List-Directed Input Data. 

14.1.3 Treatment of Blanks 

When blanks appear in place of a data value, FORTRAN treats them as part of the 
separators between input values. For instance, consider the six values in Figure 14.4(a), 
along with the accompanying READ statement in Figure 14.4( c). 

Now, suppose we rewrote the line so that it appeared as in Figure l 4.4(b). The 18 . 2 7 
in the original line is omitted and there are blanks where it used to be. As a result, 
everything between the 3 9. 16 and the 3. 04 is treated as a separator. That means that 
IDNO, NAME, and LTH will receive the first three values, as they did before; WDTH will 
receive the next value, which now is 3 . 04; 118. 5 O is read in HT; and that finishes the 
record. Since there still is another value requested by the READ statement, the program 
will attempt to read another record and use its first value for WT. If it can, it will; if not, an 
error message will be issued. 

As indicated earlier, a blank in a character string is a blank, as long as it is inside a set 
of apostrophes. However, when FORTRAN expects a character string and it finds blanks 
there, without the enclosing apostrophes, it treats that as a separator and attempts to read 
the next available input value into the character variable. If this is a number, there is an 
error and the input is unsuccessful. For example, using the same READ statement as in 
Figure 14.4, the input line shown in Figure 14.S(a) is acceptable, while the one in Figure 
14.S(b) is not. 

14.1.4 Missing Data 

For list-directed data, a missing value can be expressed by placing two separators next to 
each other in the position where the value would have appeared. Thus, if we were to use 
the READ statement and data as shown in Figure 14.6, the value in the variable NAME 
would be unchanged from whatever it was before the READ statement. Compare this with 
the data in Figure 14.S(a). In that case, the value stored in NAME would be a string 
consisting entirely of blanks. 

14. 1.5 Additional Possibilities 

FORTRAN 77 provides two additional features that may be used for list-directed input 
data preparation. Since these features have rather special uses, they are not emphasized 
here; they are mentioned primarily for completeness. 

(a) 361, I I, 39. 16, 18. 27, 3. 04, 118. 50 
(b) 361, 39.16, '18. 27, 3. 04, 118. 50 

FIGURE 14.5 Effect of Blanks with List-Directed Character Input. 

361, ,39.16,18.27,3.04,118.50 

READ*, IDNO,NAME,LTH,WDTH,HT,WT 

FIGURE 14.6 Missing Data in List-Directed Input. 
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14.1.5.1 Repeated Input Values If the same input value is to be repeated several times, 
it can be represented in compressed form by showing it once, preceded by a repetition 
factor. The general form is 

rf*value 

where rf is an unsigned positive integer. Thus, for example, the sequence of list-directed 
input values shown below 

32.6,32.6,32.6,3,0,0,0,0,-12.2,0.0, 'HEH', 'HEH' 

also can be written as 

14.1.5.2 The Slash in List-Directed Input When a slash(/) appears in list-directed input, 
FORTRAN 77 interprets this as an end-of-input signal, even though it may not corre­
spond to the physical end of the record. For instance, if there are five input values on a 
line, and a READ statement designed to bring in the five values runs across a slash after the 
third value, it will use only the three values that it read so far. The remaining two values 
are treated as if they were missing. Thus, the fourth and fifth variables in the statement's 
input list will remain unchanged and the READ statement will be considered as being 
concluded. 

14.1.6 List-Directed Output Data 

The programmer has only limited control over the formatting of list-directed output. He 
or she can specify the order in which the individual values are placed in the output list. In 
addition, the programmer can force the beginning of a new line, because each 
PRINT * , statement automatically starts a new line. Beyond that, however, control rests 
with FORTRAN. The maximum number of items on a line, their physical appearance, 
and the type of separation between them are built into the system, and they may vary. 
Those listed below are typical of HP systems, but they are not necessarily universal. 

1. Integer values are printed with a preceding blank. High order zeros are sup­
pressed. If an integer value is negative, its sign appears just prior to the leftmost nonzero 
digit. INTEGER*4 values are followed by a T. Thus, value of -147 appears as 

b-147b 

and 4367 4 appears as 

b43674bTb 

2. A single precision value will appear either in conventional form or in ftoating­
point form, depending on the magnitude of the number. A value below 0.00001 (i.e., 
1 O * *-5) is considered too small to show in conventional form. Thus, a value of 
0.000008768 would be printed as 

b8.678E-06b 

while a value of -0.05437 would be printed as 

b-0.05437b 

Similarly, an absolute value above 100000 (i.e., 10*5) would be considered too large for 
conventional notation. Thus, a value of 6,243,520 would be printed as 

b6.24352E+06b 

while a value of 721.446 would appear as 
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3. Character strings are printed exactly as they are (no enclosing apostrophes or 
extra blanks). 

There is no fixed number of items per line. Instead, FORTRAN 77, using its predefined 
list-directed formatting rules, will keep printing until it runs out of room, at which point it 
will start a new line. Of course, if it turns out that a particular PRINT *, statement 
requires such a new line at an awkward point, the programmer can break the statement 
into several individual ones, each with a smaller output list. 

This section will discuss some additional capabilities for list-directed data transmission. 

14.2.1 The List-Directed READ Statement 

The list-directed READ statement is no stranger to us. Consequently, all that needs to be 
done here is to summarize the statement's construction and features. 

14.2.1.1 Basic Fonns The list-directed READ statement can be written as 

READ * , inputlist 
or READ (unitnumber, *) inputlist 
or READ ( unitnumber,FMT=*) inputlist 

When the input device is the system's input unit, the FORTRAN compiler accepts 
another list-directed statement form: 

READ ( * , *) inputlist 

The first asterisk indicates the system's input unit and the second asterisk (as always) 
indicates list-directed format. 

When one of the parenthesized forms is used, we can include any or all of the 
specifiers available for the READ statement (i.e., END, ERROR, and IOSTAT). Thus, we 
can test list-directed input for end-of-file, error, and so on. (Refer to Table 13.2.) 

14.2.1.2 Input with Implied Loops As part of the discussion about arrays (Section 
7.3.2.2) it was noted that the READ statement could be used to bring in a succession of 
array elements by specifying an implied loop. This is done by enclosing the loop in 
parentheses and including it as an "item" in the input list. Suppose, for example, that TBL 
is declared as a 15-element array, I and NUM are declared as single-valued integer 
variables, and A, LBL, and VST all are declared as single-valued variables of some type. 
Then, the statement 

READ*, A, (TBL (I), I=l, 5), LBL, VST 

will read the next eight values from the system's input unit. The first of these will be stored 
in A, the next five in elements TBL ( 1) through TBL ( 5) , the seventh value in LBL, and 
the eighth one in VST. The other ten elements of TBL will remain unchanged. If we were 
to change our statement so that it said 

READ*, A, (TBL (I), 1=5, 9), LBL, VST 

there would be no change in the length of the input list; the statement still would read the 
same number of values. However, this time the second, third, fourth, fifth and sixth 
values would go into elements TBL ( 5) through TBL ( 9) . As before, TBL's other ele­
ments would remain unchanged. 
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Even though the FORTRAN word DO does not appear in the READ statement, the 
action of the implied loop is exactly the same as it is in an ordinary DO loop. Accordingly, if we wrote 

READ*, A, (TBL (I), I=5, 13, 2), LBL, VST 

the next eight input values still would be read, but this time it is the elements TBL ( 5) , TBL ( 7) , TBL ( 9) , TBL911) , and TBL ( 13) that would receive new values. 
The flexibility of the implied loop is increased further by the fact that the number of 

array elements to be transmitted does not have to remain constant for every use of the 
statement. For example, we can specify something like the following: 

READ*, A, NUM, (TBL (I), I=7, NUM), LBL, VST 

As a result, the number of items transmitted by this statement will depend on the value 
read into NUM. For instance, if NUM is 7, only a single element will be read into TBL, 
specifically TBL ( 7) , and that will be the third of five items read by that statement. On the 
other hand, ifNUM is 15, the same statement then would read 13 items, with nine of them 
(i.e., the third through eleventh values) going into elements TBL ( 7) through TBL ( 15) . 
As is true with many other things in life, this flexibility has a price attached to it. In order 
to take advantage of it, the programmer must make sure that the variable limiting value 
"makes sense." For example, based on the way this READ statement is constructed, a NUM 
value below 7 means that there will be no cycles through the built-in DO loop. WhenNUM 
is below 7, the next input value after NUM will be placed in LBL. This is fine as long as the programmer knows it will happen and intends for it to happen that way. 

An implied loop can be set up to keep track of more than one sequence of array 
elements. For example, suppose we declared another array BRK, this one having 24 
elements. Now, if we write the statement 

READ*, NUM, (BRK (I) , TBL (I) , I=6, NUM) 

and NUM is read in as 11, the statement will read a total of 13 values: NUM itself, BRK ( 6) , TBL (6), BRK (7), TBL (7), and so on throughBRK (11), TBL (11). 
Implied loops may be nested basically in the same way as regular DO loops are. Thus, 

if we declared TWODEE as a 4 x 6 array, R and C as integer variables, and we specified the 
statement 

READ*, ( (TWODEE (R, C) , C=2, 4) , R=2, 3) 

the result will be that the next six input values will be read and stored, respectively, in TWODEE(2,2),TWODEE(2,3),TWODEE(2,4),TWODEE(3,2),TWODEE(3,3),and 
TWODEE ( 3, 4) . Had we reversed the indexes, so that the statement said 

READ*, ( (TWODEE (R, C) , R=2, 3) , C=2, 4) 

it still would read the same six values. However, their respective destinations now would beTWODEE(2,2),TWODEE(3,2),TWODEE(2,3),TWODEE(3,3),TWODEE(2,4), 
and TWODEE (3, 4). 

HP FORTRAN 77 allows an additional use of the implied DO loop as a convenient 
way for expressing repeated input or output. For example, the statement 

PRINT*, (BFAC, EST, TRAIL, I=l, 2) 

produces the values of the three variables shown twice: 

BFAC EST TRAIL BFAC EST TRAIL 
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14.2.2 The List-Directed WRITE Statement 

List-directed output is handled by the WRITE statement, whose similarity to the READ 

statement already is clear. In addition, FORTRAN provides the PRINT statement as a 

special case of WRITE. This section examines the range of available features for list­

directed use. 

14.2.2.1 Construction of the List-Directed WRITE Acceptable forms for the list­

directed WRITE statement can be summarized as follows: 

WRITE (unitnumber, *) outputlist 

or 
WRITE (unitnumber,FMT=*) outputlist 

Note that, unlike the list-directed READ statement, the WRITE statement must have 

parentheses, and it always must specify a unit. If the unit is the system's input unit, it can 

be indicated by an asterisk, as in the form 

WRITE ( *, *) outputlist 

The form without parentheses is reserved for a separate statement, PRINT. 

Output lists follow the same rules of construction that input lists do. In addition, there 

are extensions which would not make sense in an input list but provide powerful 

conveniences for preparing and displaying results of computations. 

14.2.2.2 Literals in an Output List A literal, i.e., a character string constant, can be 

specified as just another item in an output list. To review, suppose we have a real variable 

TENSTR whose current value is 12577. 83. Ifwe said 

WRITE (*' *) I TENSILE STRESS = I' TENSTR, I LBS/SQ. IN. I 

the program would print the literals exactly as they appear (without the apostrophes), and 

it would use its default formatting to show the numerical value. Typically, the resulting 

line would look like this: 

TENSILE STRESS = 0. 1257783E+05 LBS/SQ. IN. 

There is no particular limit on the length of a literal in list-directed output; FORTRAN 

simply will use as many output lines as it needs to fulfill the requirements of the entire 

output list, regardless of its composition. The form 

WRITE ( 1, *) literal 

or 
WRITE (6, *) literal 

(depending on the particular HP system) is particularly handy for displaying messages and 

prompts on the user's terminal. 

14.2.2.3 Expressions in Output Lists This powerful feature allows the output list to 

include a variety of forms that go well beyond the simple literal, single-valued variable, 

array element, or array name. The following also are acceptable: 

1. A substring of a character variable. 

2. Any valid arithmetic expression. All of FORTRAN's arithmetic facilities are 

available, including parentheses and function references. However, the functions 

thus invoked must not contain any READ or WRITE statements. 
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3. Any valid character string expression as long as the length of each participating 
character string is known. 

Assuming the appropriate context, this means that we could specify something like 

WRITE (*' *) IDNO, I SUBSTANCE I I /NAME/ I I I Is VALUE IS I' 
1 3.27*(VISC + SQRT(DENS/DIFFUS)) 

This feature will not receive further emphasis in this book. While it can be a great 
convenience, the occasions for its use must be considered carefully. This feature makes it 
tempting to squeeze down the size of a program by combining computations and output 
into a small number of statements, or even into a single statement. However, that is not 
nearly as important an objective as the production of reliable programs whose logic is easy 
to follow. 

14.2.3 The PRINT Statement 

The basic form for the list-directed PRINT statement is 

PRINT * , outputlist 

Structural possibilities for the output list are exactly the same as those available for the 
WRITE statement. 
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programmer supplies a minimum of information about the detailed appearance of the 
records or their individual data items. Instead, FORTRAN "looks for" blanks or commas 
between adjacent data values, using these as signals for determining when one value ends 
and the next one begins. Thus, the following string of characters 

435.6 'KINCAID, D.H. I 42 -6088.05 

is recognized as a sequence of four list-directed data values. 
On input, these values will be related to the items specified in an input list, and 

FOR TRAN will convert the individual character strings in accordance with the types of 
the corresponding variables. Using the example list given above, and assuming appro­
priate declarations, the first string of characters (the 435. 6) will be converted to a real 
number, the second string (already in the appropriate form) will be stored as is (without 
the apostrophes), the third value ( 42) will be converted to integer, and the fourth one to a 
real number. 

When list-directed output is called for, FORTRAN takes the values from storage in 
accordance with the specifications in the output list, converts them to character form, and 
inserts blank separators between the converted values. The number of blanks used for 
separation of output values depends on the individual compiler, but it is not controlled by 
the programmer. 

List-directed transmission is denoted by using an asterisk as a format specifier. This 
form is used most typically with the system's standard input and output units, in which 
case the basic statements are as follows: 

READ * , inputlist 
and 

PRINT * , outputlist 
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PROBLEMS 1. Consider the following sequence of statements: 

REAL B,A(3) 

INTEGER*2 
CHARACTER 

B = 17.4 
A(l) = -0.8 
A(2) = 0.0 
A(3) = 231.6 
COUNT = 1 
WD = I REIEVANT I 

COUNI' 
WD*8 

READ*• A, B, WD, COUNI' 

Given below are several sets of input data. Some consist of a single line while others have more than one 

line. Apply the READ statement given above to each set of input. (Treat each set independently.) In some 

cases, the input will be successful, while in others it will not work. Show the resulting values for B, A, 

COUNT, and WORD in each case. When the particular combination of data is illegal for the READ statement, 

indicate what the problem is: 

(a) 43. 4 -81. 26 313. 07 -5. 4 'BROADEST' 24 
(b}207.7 4.0 61.07 (firstline) 

87.6 'THUNDERS' 18 
(c) -60 -22.71 -808.7 14.4 '3247.068' -16 
(d) 19.1 207.08 -412.63 8.8 
(e) 227.83, ,17.4,,,474 
(t) 61. 72, 808. o, 146. 7, 'CHARACTERISTIC' , 26 (first line) 

63,-87, 'DEVELOPS',-8 
(g) 208. 26,, , , -3, -4, 87 I 
(h) 64. 2, , , I I , 4, 18 
(i) 17.2,4*-14.7, 'SA'.617 
(j) 50. 8, 2 *o. o / 'BALANCED' , -6 (first line) 

24,43/ 
(k) /3*26. 2, I I, 74/ 
(I) 17. 43, -81. 42, -7. 7, 28. 3 (first line) 

'ENGRAVINGS'/ 
24 

(m) 32. 75, , , , , ' TRUE ' , -8 

(n) 61.81,,,,,49,722 

2. Consider the following sequence of statements: 

REAL PR(6),MDL(3,2),A 
INTEGER*2 TTL(2,3),I,J 
A= 1. 0 
DO I=l, 6 

PR(I) = A+l 
DOJ=l, 3 

IF (I. LT. 4) THEN 
MDL(J,l) = PR(I)**J 
TTL(l,J) = MDL(J,l)**(J-1) 

ELSE 
MDL(J,2) + PR(I-l)**(J-1) 
TTL(2,J) = MDL(J,2) 

END IF 
END DO 

END DO 

The following data are submitted as input: 

4 . O, 2 . 7 , 7 * 3 . O, 2 * 5 . o, 2 * 2 . 2 , (first line) 
6,-l.0,2*5,8,71,-12, 

36,-57 
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Apply each of the following statements to these input lines and indicate the resulting values in the 
variables PR, MDL, A, and TTL. In those cases where a sequence of statements is given, assume that 
nothing happens between each READ statement and the next one in that sequence. In those cases where 
the input will not work, indicate the reason(s) for the problem. 

(a) READ*• PR, A, MDL, TTL 
(b) READ (*,*)PR, MDL, TTL 
(c) READ (*, *) PR (1), PR (2), A, MDL, PR, TTL 
(d) READ*• MDL, PR, A, TTL, TTL (1, 2) 
(e) READ (*, *) MDL, PR (6), A, (PR (I), I=l. 5), TTL 
(f) READ*, MDL,PR(l),A, (PR(J), J=2,6), (TTL(2,I), I=l,3) 
(g) READ*, A,PR(I), I=l,3,MDL,PR(J), J=4,6,TTL 
(h) READ(*,*) ( (MDL(I,J), I=l, 3), J=l, 1) ,A,PR 

READ(*,*) TTL 
(i) READ (*, *) (PR (I), I=4, 6), MDL, A, (PR (I), I=l, 3), TTL (1, 1) 

READ(*,*) (TTL(J, I), J=l,3), I=2,2) 
READ(*,*) TTL(2, 3) 

(j) READ ( * , FMT=*) A 

READ*• TTL 
READ*• TTL 

3. Here is part of a program: 

PROGRAM 
IMPLICIT 
REAL 
INTEGER*2 
CHARACTER 
PARAMETER 

DOSN=l. 6 
WR(N) = 6+I 

C14P3 
NONE 
A(4) ,B(2,4),VERT 
WR(6),N,R,C 
OBJ*4,STR*8 
(BLANKS=' ' ) 

IF (N. GT. 2) THEN 
A(N-2) = WR(N-2) + MOD(N,6) 
B(l,N-2) = A(N-2) + WR(N-2) 

ELSE 
B(2,N) = WR(N) *MOD(2*N,6) 
B(2,N+2) = 2*WR(N) - MOD(N,5) 

END IF 
8 CONTINUE 

VERT= MAX(A(l),A(4),B(l,4),B(2,4)) 
OBJ = 'BARK' 
STR = OBJ(1:3)//'E'//OBJ(1:2)//'C'//0BJ(4:) 

Assuming nothing else happens to any of the variables, show the output produced by each of the following 
statements or sequences of statements. Assume that unit 6 is the standard system output unit and that the 
system will print according to the rules given in Section 14.1.6. Note that some of these statements are 
illegal and will not produce output. Indicate which ones they are and why they will not work: 

(a) PRINT*, A 
(b) PRINT ( 6) VERT, OBJ 
(c) WRITE (6, *) WR 
( d) PRINT *, VERT 

PRINT *, BLANKS 
PRINT*• (B (1, C), C=l, 4), STR 
PRINT*• (B (2, C), C=l, 4), OBJ 

(e) WRITE (*, *) OBJ I I' 'I /STR 
PRINT*, BLANKS 
WRITE ( 6, FMT=*) VERT, (WR (N) , N=l, 2) 
PRINT *, (WR (N) , N=3, 6) 
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(f) PRINT*, (A (N), N=6, 2) 

PRINT *, VERT, OBJ, STR 
(g) PRINT*, (A (N), B ( (N-1) /4+1, N), N=l, 3, 2) 

PRINT*• (A (N), B ( (N-1) /4+1, N), N=2, 4, 2) 

(h) PRINT*, (A (N) , B ( (N-1) I 4+1, N) , N=l, 4) 

(i) WRITE(*, 8) 

8 FORMAT ( I 1 I ) 

WRITE (6*) OBJ,VERT,STR(4:7),VERT 

WRITE (6,*) 3*VERT,VERT-1 
WRITE (6, *) (WR (R), R=5, 2, -1) 

(j) WRITE (*, *) VERT//STR 
PRINT*• (A (R), C=l, 4) 

(k) PRINT *' I A = I ' A 
PRINT *, BLANKS 
PRINT *' I OBJ IS NOT I ' STR 
PRINT *, BLANKS 

PRINT *' I B = I ' B 

4. Redeye Airlines is among the country's smaller airlines. Perhaps you may not have heard of it, but it is 

there, offering needed service among only four cities: Aching Kidney, Bilgewater, Craggy Mound, and 

Double Scoop. (For convenience, we shall refer to them as A, B, C, and D, respectively.) While Redeye 

does not have as many airplanes as some of the other airlines, it tries to keep up by having as many fares as 

the Big Ones. Thus, the cost to fly between two given cities depends on the ticket class. There are four 

classes: 

(1) First Class (F): This really is super deluxe. A licensed government official certifies that the plastic 

drinking cups collected from Class F customers actually are thrown away after each flight. 

(2) Coach Class (Y): The service in this class is standard. On meal flights, the Head Attendant leads the Y 

class passengers in a lively game of Guess What That Is Under The Viscous Brown Goo. 
(3) Night Coach Class (N): This is the "no frills" plan, available after 10:00 P.M. under certain conditions. 

Those N class passengers taking their own water may drink it if they also bring their own cups. 

(4) Excursion Class (E): This is the rock bottom economy plan. Passengers traveling under this plan must 

buy their tickets at least eleven months before the flight and must pay in full at that time. Flights in this 

class may be cancelled by passengers up to five months before flight time. Flights in this class may be 
cancelled by Redeye up to eleven seconds before flight time. 

The following table summarizes the rate schedule. Note that the rates given here are for round 

trips. Redeye books only round trips. Moreover, Redeye books only two-flight round trips. For instance, 

A to C to A is a round trip; A to B to C back to A is a trip that Redeye will not book: too complicated. 

Also, the round trip must be in the same class both ways: 

BEIWEEN F y N E 

AandB $211 $194 $187 $169 
AandC $121 $111 $ 92 
AandD $248 $238 $216 
BandC $189 $180 $174 
BandD $ 89 
CandD $ 96 $ 91 $ 87 $ 77 

Wait. There is more: 

(1) Between A and B, Class N is not available on Tuesdays. 
(2) Between A and B, Class E carries a 5% discount if either leg of the flight (A to B or B to A) is taken on 

a Saturday. 
(3) Between A and C there is no class Non Wednesdays or Sundays. 
(4) Between Band C there is no class Non Saturdays or Sundays. 
(5) Between C and D there is class N only on Mondays. 
( 6) Between C and D there is no class E on Monday, Tuesday, Thursday, or Saturday. 

When a Redeye passenger wants to book a trip, he or she gives only the following information: name, 
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originating city, destination city, flight class, day of week that the passenger is leaving, and day of week 
that the passenger is returning. Redeye tells the passenger which flights and what time. (Some airline.) 

(a) Assuming that the input for each round trip is to be prepared on a single line, design a list-directed 
format that provides the information described above. The order of the data items is not crucial. 
However, it is up to you to determine what the data will look like. 

(b) Write a program that will read the input you designed for part (a). For each line that it reads, the 
program is to print a line of output that shows the passenger's name and flight class. That is followed 
by a second line showing the originating city and day of week. A third line shows the destination city 
and the day of week for the return flight. The fourth and final line of output shows the price for the 
round trip. If it turns out that the input violates one or more of the scheduling rules and the round trip 
cannot be booked, the fourth line is to show an appropriate message instead of the ticket price. Leave 
a blank line between output sets and use end of file to stop the run. 

5. Pressure from its many passengers has persuaded Redeye Airlines to be more flexible. Recall (from 
Problem 4) that up to now, when a passenger wanted to go, say, from Aching Kidney to Craggy Mound to 
Bilgewater and back to Aching Kidney, the passenger drove or went by bus. (Lurching Rutways serves all 
these cities.) But this is changing. Redeye is going to provide this service. To do so, the airline must adjust 
its rules for computing the rates. Here is what they decided: 

(1) Each trip will consist of a combination of legs and each leg will be considered a one-way trip. 
(2) The rate for a one-way trip will be half of the corresponding round trip rate. 
(3) The longest (most extensive) trip consists of no more than six legs and the destination of the last leg 

must be the same as the origin of the first leg. 
( 4) The rates to be charged for all the legs of a trip will be taken from the most economical plan used for a 

particular leg of that trip. For instance, if a passenger books from A to C in Class F, C to D in Class Y, 
and D to A in class N, he or she (under this new system) will be charged at the lowest rate (in this case, 
the N rate) for each of the four legs, even though only one leg originally was booked in class N, and 
even though one or more of the other legs originally may not have been available in that class. 
(Excursion class is not included in this revision; passengers book round trip excursions as before.) 
Isn't that nice? A Redeye passenger, with some planning, could work things out so that he or she flies, 
say, a four leg flight with three legs being flown in first class luxury while paying night coach rates for 
the whole thing. 

Revise (or rewrite) the program from the previous problem so that it reflects these changes. The input now 
consists of several lines for each passenger. The first line contains the passenger's name. This is followed 
by a line for each leg of the trip showing the origin and destination cities (for that leg), the flight class, and 
the day of the week for that leg. (For ease of processing, you may want to include a special line that 
separates different passengers' data.) Output for this version shows the passenger's name on a separate 
line, followed by a line for each leg of the trip showing the origin and destination cities, the class under 
which the passenger requested that leg, and the class under which he or she is being charged for that leg. A 
final output line gives the total ticket price. As before, leave a blank line between output sets and use end 
of file to stop the run. 

6. Happy Melvin's Auto Rental offers six kinds of automobiles for rent, each with its own rental plan: 

(1) A Phantasm rents for $25 per day plus 20 cents per mile, gas included. 
(2) A LeBonza rents for $22 per day plus 23 cents per mile, gas included. 
(3) An Albatross rents for $99 per week or any part thereof. There is no mileage charge and the customer 

pays for the gas. Milea~e is guaranteed to be no worse than 22 miles per gallon. (Happy Melvin 
refunds the difference if the mileage is worse than that.) 

(4) An Achilles rents for $26 per day. The first 75 miles are free. After that, it is 12 cents per mile. The 
customer pays for all the gas, and mileage is guaranteed not to be worse than 20 miles per gallon. 

(5) A Classique rents for $176 per week (112 week minimum, full week rate for anything over 1/2 week). 
There is no mileage charge and the customer pays for the gas. Mileage is guaranteed not to be worse 
than 17 miles per gallon. 

(6) A Flamboyo rents for $34 per day. The first 150 miles are free. After that, there is a charge of 17 cents 
per mile. The customer pays for all the gas and mileage is guaranteed to be no worse than 15 miles per 
gallon. (You ought to see this Flamboyo; quite a car.) 

Happy Melvin would like to offer an interesting supplementary service. He wants a program that will 
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accept input consisting of a customer's name, the number of miles he/she expects to drive, and the number 
of days the automobile will be rented. In response, the program is to produce two lines of output: the first 
is an echo of the input and the second shows the minimum amount that the customer can expect to pay for 
this usage, along with the type of auto the customer would be getting. Leave a blank line between output 
sets and use end of file to stop the run. For computational purposes, use a gasoline cost of $1.50 per gallon. 

7. Modify the program in Problem 6 so that the gasoline cost (in dollars per gallon) is an input item submitted 
for each run. 

8. Modify the program in Problem 6 or 7 so that the customer does not have to specify the number of days for 
his/her car rental. If the specification is given, it is used. However, if it is missing, the program is to use a 
default value of one day. 

9. Using the same rental schedule as in Problem 6, modify the program from Problem 6, 7, or 8 so that the 
output is expanded to show all of the rental possibilities instead of just the least expensive one. Each 
choice (the cost and the type of auto) is to appear on a separate line, with the least expensive one being 
printed first, followed by the next one, and so on, with the most expensive choice being printed last. 

10. Now, Happy Melvin wants to provide another service. This time, using the same rental schedule as in 
Problem 6, he wants the customer to be able to submit his/her name, expected number of miles, number 
of days (optional, as in Problem 8), and a dollar amount. This program is to print an echo of the input on a 
single line, followed by an additional line for each type of automobile whose rental rate makes it possible 
for the customer to use the car within the specified dollar amount. The choices are to be arranged so that 
they are printed in order by increasing cost (least expensive one first). If the dollar amount given in the 
input is too small to rent any of Happy Melvin's wondrous choices, the program is to print a message to 
that effect. As an added service, the program is to print a third line showing the least amount of money 
needed to meet the customer's mileage and time requirements. (Of course, this added service applies only 
to those cases in which the input dollar amount is not enough to rent anything.) You may use either a fixed 
gasoline cost (as in Problem 6) or design the program to expect a cost figure as an input value (as in 
Problem 7). 

11. Once Happy Melvin gets started, he is difficult to stop. (It is not difficult to see why he is called Happy.) 
Now he wants a program that accepts input consisting of a customer's name, number of days (with a 
default of 1 as in Problem 8), and a dollar amount. This time, the program prints an echo of the input, 
followed by a line of output showing the maximum number of miles that those dollars will provide, along 
with the type of auto in which they would be driven. If the dollar amount is too low to buy anything, the 
program is to print a message to that effect. As before, use $1.50 per gallon as the gasoline cost for the 
computations, or include a cost figure as an input item. 



15 
Edit-Directed 
Input/ Output 

This chapter discusses the extensive features that enable the FORTRAN programmer to 
control every detail of input and output data formats. We shall examine the basic 
structures around which these features are organized and acquaint ourselves with their 
use. Once the skills have been developed and we can design just about any format we 
want to design, the next chapter will discuss some advanced formatting features that make 
these designs even more versatile. 

When a programmer uses edit-directed data transmission, he or she becomes responsible 
for every character in each input or output record. FORTRAN underscores this respon­
sibility by requiring that every edit-directed READ, WRITE, or PRINT statement consist of 
two components: 

1. The input or output list. This may be accompanied by control specifiers such as 
END= or ERR=. 

2. A detailed description of the input or output format. This replaces the asterisk 
used in list-directed statements and guides the program in its interpretation of the 
input or in its construction of the output. 

The format description can be presented to the program in a variety of ways. Regardless 
of the mechanism used, the description itself is composed of a sequence of format 
specifications. Since each type of specification has its own precise meaning, it produces a 
specific result each time it is used. The collection of format specifications is like a little 
language, with its own vocabulary and rules of construction. These are quite simple, so 
that there will be no difficulty in learning and using them. 

15. 1. 1 Interpretation of Edit-Directed Input 

Since we are going to describe our input format in complete detail, it now becomes 
necessary to place the data values much more precisely than we did with list-directed 
format. FORTRAN does not "recognize" anything in edit-directed format. It treats each 
individual column as directed by the corresponding format specification. Thus, if a 
particular input column has a blank in it, it may or may not be part of a data value. 
Another way of saying this is that the individual data items are not separated physically, as 
they are in list-directed format. Instead, the end of one item and the beginning of another 
are defined by the format specifications. 

The same holds true for the data value itself. Numbers, letters, and other characters 
still appear, but it is the format specification, and not the data item, that tells the program 
how to read the data. For example, when we keypunch a real numerical value for 
list-directed input, we include a decimal point so that the program will "know" which part 

15.1 PROPER­
TIES OF 
EDIT-DIRECTED 
DATA 
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7604932185 

Statement 
READ (5, I (F3.0,F2.l,F5.3) ')PR,EEC,TMP 

(a) 
READ (5, I (F4. 1, F2. 2, F4. 3) I) PR, EEC, TMP 

(b) 
READ (5, I (F3. 1, F2. 0, F4. 2) I) PR, EEC, TMP 

(c) 

Resulting Values 
PR EEC TMP 

760. 4.9 32.185 

760.4 .93 2.185 

76.0 49.0 43.18 

Note that the READ statement (in (c), for instance), also could appear as 

READ (5, FMT=' (F3. 1, F2. 0, F4. 2) I) PR, EEC, TMP 

FIGURE 15.1 READ Statements with Built-In Format Specifications. 

of the value was an integer and which part was a fraction. The decimal point is unneces­
sary with edit-directed formatting, since the format specification contains this infor­
mation. 

We shall take a closer look at this concept by examining the input line represented in 
Figure 15.1. Only the first ten columns are shown: the rest of the line is of no interest here. 
To show the effect of the format specifications, we shall examine what happens when this 
line is processed by each of three separate READ statements. These are also shown in 
Figure 15.1. Note that the input list is the same for all three statements: Each one specifies 
the transmission of three data items (PR, EEC, and TMP ), each of which is assumed to have 
been declared as a real variable. The data themselves provide no clue as to how its string 
of numerical characters is to be interpreted. For all the program "knows," the entire 
string could be one long value. 

The result of a particular READ statement, when applied to those data, will depend on 
the format description. In these example statements, this description appears as a 
character string constant right after the unit number. This is just one of several ways to 
define an edit-directed format. We shall use it for now because it is a most direct form; the 
complete information is built into the statement itself. A little later, other forms will be 
introduced in which the READ or WRITE statement refers to a format description instead 
of giving the description itself. 

Let us look at the first case (Figure 15.l(a)). Note that the input list still determines 
how many items will be read (three in this case) and what type they are to be (real). 
Moreover, since each READ statement starts a new record, we are at column 1 of the line 
and the format specifications describe each column from that point. In this example there 
are three specifications. Each one begins with an F, the code that indicates a description of 
a real number in conventional form: 

1. The first specification (F3. O) says that the first three columns are to be treated as a 
three-digit real number (F3) having zero decimal places (. O ). That is, the . O tells 
the program that the assumed decimal point (note again that it is not punched) is to 
the right of the third digit. Thus, the program will pick off the first three columns, 
treat their contents as 760. , and store that value in PR. 

2. The second specification (F2. 1) describes the next two columns, i.e., columns 
4-5. The value found there is treated as a real number with one assumed decimal 
place. Accordingly, the contents of the two columns are treated as 4. 9 and stored 
in EEC. 

3. The final specification (F5. 3) describes the next five columns, i.e., 6-10, treating 
the rightmost three of those five columns as decimal places. Consequently, the 
value stored in TMP is 32. 185 (or more precisely, O. 32185E+02 ). 
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We shall apply the second READ example (Figure 15 .1 (b)) to the same data as if they 
had not been read before, so that we start at column 1. We are reading into the same three 
variables as before, but the interpretation has changed becuse of the format specifica­
tions: 

1. Columns 1-4 are taken as the first value and treated as 7 60. 4. 
2. The F2 in the second specification tells the program that the next value (the one to 

be stored in EEC) is a real number taken from the next two columns (in this case, 
columns 5-6). The . 2 says that both columns are decimal places. As a result, the 
93 found in these columns is treated as. 93. 

3. F4. 3, the final specification in the statement, describes the next four columns 
(7-10) and causes them to be interpreted as 2. 185 and stored as such in TMP. 

The third statement (Figure 15 .1 ( c)) causes yet another interpretation. Starting again 
with column 1, the same three variables are provided with values, but only the first nine 
columns are used. (We can see that easily enough by adding together the first parts of the 
three specifications, i.e., 3+2+4.) As a result of this statement, PR, EEC and TMP will 
contain 76. o, 49. , and 32. 18, respectively. 

By now it is apparent that the same physical input can be interpreted in many 
different ways, and we can control that process with appropriate format specifications. As 
the next section shows, exactly the same type of control is available for the arrangement of 
edit-directed output. 

15.1.2 Appearance of Edit-Directed Output 

When we discuss edit-directed output, we usually think of data prepared for examination 
by humans. This means that the data are arranged carefully so that the values are easy to 
read and understand. To see how these format specifications help prepare such output, 
we shall assume that the output unit is a printing device in which each line displays 132 
characters. Because of the way FORTRAN is constructed, the description of an output 
line must include an additional character (i.e., the first one) for carriage control. Recall 
(Chapter 14) that this additional character is used to instruct the printer to start a new line, 
start a new page, stay on the same line, and so on. We have seen already that when the 
carriage control character is a blank, the printer starts a new line. 

Readable, well-organized output is prepared using the same format specifications as 
those for edit-directed input. Many of these specifications operate in the same way for 
reading and writing, while others have somewhat different effects when applited to 
output. An example of this difference is seen in the F-specification. When applied to an 
output item, the F-specification produces a printed value that includes a visible decimal 
point. In addition, the value will show a sign if it is negative. Since the sign and the decimal 
point occupy spaces on the print line, those spaces have to be counted when the size of the 
value is specified. 

To take a first look at how this works, let us suppose that the variable PR currently has 
a value of-4 62 . 7. If we wanted that value to appear somewhere on a print line in exactly 
that form, -462. 7, we must provide room for each of the six characters in that value. 
Thus, the first part of our specification is F6. Then, recognizing that one of these six 
characters will be to the right of the decimal point, we shall complete the specification so 
that its final form (F6. 9) includes that fact. 

Just as an input format specification determines the number of columns read, it is 
possible to control the number of columns occupied in edit-directed output. For instance, 
if we specify F8. 1 for the value just used, we do not change the value itself. That value, 
already established in storage under its name (PR in this example) is whatever it is. 
However, we can change its appearance by changing the specification that edits it. Thus, if 
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we were to specify F8. 1 for that value, it would appear as 

bb-462.7 

Since the extra two columns are not needed to describe the value itself, FORTRAN 
automatically fills those (leftmost) columns with blanks. If we were to occupy the same 
number of columns (eight) but change the specification to F8. 2, the value now would 
appear as 

b-462.70 

The appearance of the output is helped greatly by the X-specification, a format code 
that skips input columns and fills output columns with blanks. We shall introduce it for 
output and use it more generally later on. Its use is simple. For instance, when we specify 
12X as an output format, FORTRAN fills the next twelve output columns with blanks. 
Thus, it is a convenient way to provide open spaces between values on a line. 

We shall combine the two types of specifications to prepare a line of print. Let us say 
that variables PR, TMP, and EEC contain values of-462. 70, 4. 937, and 2148. 033, 
respectively. We would like to print these values, in the order given, on a line having the 
following appearance: 

1. The first five columns of the line are left blank. 

2. PR occupies the next eight columns and is shown to two decimal places. 

3. The next ten columns are left blank. 
4. TMP's value is placed in the next six columns and is shown to three decimal places. 

5. The next ten columns are left blank. 
6. The value from EEC is shown to three decimal places in the next nine columns. 

7. The remainder of the line is left blank. 

We can develop the format specifications directly from these requirements: 

1. A specification of 5X takes care of the first five columns. 

2. F8. 2 describes the eight-column field for PR. 

3. A specification of lOx fills the next ten columns with blanks. 

4. TMP's appearance is described byF6. 3. 
5. Another specification fills the next ten columns with blanks. 

6. F9. 3 describes the appearance of the third value, i.e., EEC. Thus, when we 
combine these specifications, the result is 

5X,F8.2,10X,F6.3,10X,F9.3 

FORTRAN automatically fills the rest of the line with blanks so that we do not have to 
worry about an additional description for that. However, we still have to take care of 
carriage control. Since this output is supposed to start a new line, a blank character is 
needed to direct the printer. Thus, the complete specification says 

'b' ,r5X,F8. 2, 10X,F6. 3, 10X,F9. 3 

When we incorporate these specifications into a WRITE statement (assuming unit 6 to be 
the output unit), the result can be presented as follows: 

WRITE (6,41) PR,TMP,EEC 
41 FORMAT ('b',5X,F8.2,10X,F6.3,10X,F9.3) 

This example shows another way of specifying an edit-directed format. Recall (from the 
previous chapter) that, in this form, the format is described in a separate statement whose 
label (41 in this example) is given as the second specification in the WRITE statement's 
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parenthesized list. If we want to use the other form (the one shown in Figure 15 .1) for the 
input, we have to put double apostrophes around the blank carriage control specifier as 
follows: 

WRITE (6, I (I 'b I I' 5X, F8. 2, lOX, F6. 3, lOX, F9. 3) I) PR, TMP, EEC 

Using the same data values, Figure 15 .2 shows the effects of several different format 
specifications on the appearance of the resulting output line. 
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This section introduces additional format specifications and shows their use in conjunc- 1s.2coNsTRue-

tion with edit-directed READ statements. TION OF 
EDIT-DIRECTED 

15.2.1 The X-Specification and Input 

When the X-specification is used with input, the program skips a designated number of 
input columns. For instance, the statement 

READ (5, I (7X, F6. 2) I) COST 

says, in effect, "Read the next line from unit 5, skipping the first seven columns. Then 
take the next six columns (8-13) and treat their contents as a six-digit real number having 
two decimal places. Store that value in COST, forget about the rest of the line, and accept 
my official thanks." 

When the program responds to an X-specification for input, it ignores anything that 
might be recorded in the skipped columns. Consequently, those columns may or may not 
be blank; it makes no difference to FORTRAN. 

15.2.2 Numerical Specifications 

In addition to the F-specification, which we have used earlier, there are three codes that 
extend the versatility for reading numerical values. 

15.2.2.1 The I-Specification Input values to be interpreted as integers are read with the 
I-specification. The general form is I w, where W is the number of columns to be 
associated with that integer value. For instance, suppose NUM and COST are declared as an 
integer and real variable, respectively, and we write the statement 

READ (5, I (4X, I3, 2X, F6. 2) I) NUM, COST 

The results can be summarized as follows: 

1. Columns 1-4 of the input line are skipped. 
2. The contents of columns 5-7 are treated as a three-digit integer and stored in NUM. 

This assumes, of course, that those columns contain numerical characters. Any­
thing else (e.g., letters, commas, etc.) is treated as an error. Blank characters 
generally are ignored (as explained in Section 13.2.3.1). A sign (if used) occupies a 
column, of course, and must be included in the column count. 

3. Columns 8-9 are skipped. 
4. The contents of columns 10-15 are treated as a six-digit real value with two 

decimal places and stored in COST. 

5. The rest of the line is ignored. 

15.2.2.2 Integer Input In Octal Form HP FORTRAN 77 accepts input data in octal form 
and converts each value for subsequent storage in INTEGER variables. HP 16-bit com­
puter systems accept up to 6 octal digits while the 32-bit systems accommodate as many as 

INPUT FORMATS 
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Assumed values: PR = -462. 70 
TMP = 4.937 
EEC= 2148.033 

Output statement: WRITE (6, 26) PR, TMP, EEC 

If Statement 26 Says 

FORMAT ( 'b I' F8. 2, F6. 3, F9. 3) 
FORMAT( 'b' ,FlO. 2,F8. 3,Fll. 3) 
FORMAT( 'b' ,F10. l,F8. 2,Fll. 2) 
FORMAT ( I b I ' F7. 2' F5. 3' F8. 3) 
FORMAT ( I b I ' F8. 4' F6. 4' F9. 5) 

FIGURE 15.2 Effect of F-Specifications on Numerical Output. 

Then the Resulting Line is 

b-462.70b4.937b2148.033 
bbb-462.70bbb4.937bbb2148.033 
bbbb-462.7bbbb4.93bbbb2148.03 
-462.704.9372148.033 
462.70004.9370148.03300 

eleven octal digits. Since the maximum 16-bit value is 32767, the maximum acceptable 
octal input value is 177 7 7 7 (octal). The corresponding maximum for the 32-bit systems is 
1 7777777777. 

The format description is@w, Ow, or Kw, where w is the number of columns occupied 
by the octal value. w may exceed the maximum limit, but HP FORTRAN 77 will use only 
as many of the rightmost digits as the particular system's capacity will allow (i.e., 6or11 ). 
Thus, if we are using a 16-bit HP computer system and we describe the input value 

b-140773 

as 08, the eight columns will be picked up, but the value actually stored will be 140773 
(octal). 

15.2.2.3 Integer Input In Hexadecimal Form HP FORTRAN 77 also accepts integer 
input in hexadecimal form, converting each value to a 16-bit or 32-bit integer depending 
or the particular HP system being used. The format description is Zw where w is the 
number of columns occupied by the hexadecimal value. (The maximum expressible 
value, then, is FFFF for 16-bit systems and FFFFFFFF for 32-bit systems.) 

15.2.2.4 The E-Specification for Input Sometimes it is inconvenient to express a real 
number in conventional form. For example, a value like O. 0000000043 7 is handled 
more easily as O. 437E-8 or 437. OE-11 or simply 437E-11. Values expressed in this 
form are described conveniently by the form Ew. d where w specifies the number of 
columns being described and d indicates how many of those columns are decimal places. 
Thus, the above mentioned value, when expressed as 0. 437E-8, would be described as 
ES. 3. If we were to express it as 43 7. OE-11, the appropriate E-specification would be 
E9. 1. Removing the . O and recording the value simply as 43 7E-11 means that we have 
shortened its expression by two columns and eliminated the decimal place (in the 
appearance, not in the value). Accordingly, the description for that form is E 7. 0. 

15.2.2.5 The D-Specification Input values intended for storage in double precision 
(REAL* 8) variables can be expressed in conventional form. When this is inconvenient, 
scientific notation can be used here, too. For example, the value-23657984500000 can 
be expressed as -23657984505 or -236579845D+5 or -235479845D+05. The 
corresponding format descriptions are D12. O, D13. 0, and D14. 0. 

15.2.2.6 Decimal Points in Real Input Data As is abundantly clear by now, FORTRAN 
does not need a physical decimal point in edit-directed input. However, some people feel 
more comfortable when they see decimal points in their data. Consequently, FORTRAN 
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accepts such forms. The programmer must remember to count the decimal point as one of 
the input columns. If an input decimal point is present and its position differs from that 
described by the format specification, FORTRAN uses what it finds in the data. Thus, if a 
value is recorded (in its proper columns) as 342. 5 and its format description says F5. 2, 
the value is interpreted as 342. 5. 

15.2.2. 7 Versatility versus Confusion The numerical format specifications are much 
more flexible than has been described here. For instance, a real numerical value ex­
pressed in conventional, E- or D- form can be described by any of the three real 
specifications discussed before (i.e., F-, E-, or D- specifications). However, it is worth­
while resisting the temptation to overuse these powerful facilities. All too often, what 
seems at first to be a convenience turns out to create excessive complication and needless 
confusion. For this reason, the following practices are suggested for dealing with edit­
directed numerical input: 

1. Although this is self-evident, it is worth saying explicitly: When each of a series of 
data records is to contain similar items, use the same set of columns for a given item 
throughout the entire collection of records. For instance, if each record contains informa­
tion about a package to be shipped, and one of the items is its weight, then each package's 
weight should appear in the same columns of that package's record. 

2. In determining how many input columns to reserve for a numerical data item, give 
careful thought to the range of values this item might have: 

( 1) What is the largest value this item could have? 

(2) What is the largest number of decimal places this item could have? 

(3) Will this item ever have a negative value? 

Enough room must be provided for the worst possible case. Thus, if only one value in 
a thousand is likely to be negative, a separate column must be provided for a sign, despite 
the fact that the sign is not needed except for that one value. This is true even if the 
negative value will be small, so that it (presumably) would not need all the columns 
reserved to handle the largest values. 

3. When enough room is provided to handle the full range of an item's values, there 
will be cases where not all the columns are required. In such cases, make sure that the 
value is properly aligned in the columns reserved for it; otherwise, it could be misinter­
preted. For instance, assume columns 15-20 are reserved for a signed real value, and 
three of those columns are reserved for decimal places. A value of -15. 48 7 will be 
recorded as-1548 7 and read with a specification ofF6. 3. To be consistent, then, a value 
of -3. 2 should be recorded as -03200. Alternatively, it also can be expressed as 
-b3200 or even -b32bb. Note that the 32 appears in the same columns in all of these 
versions. This will assure its proper interpretation. 

15.2.3 Character Input: The A- and R-Specifications 

Edit-directed character input in HP FORTRAN 77 is handled with the A- and R-specifi­
cations. The general forms Aw and Rw indicate that the next w columns are to be treated 
as a character string. That is, they are to be taken exactly as they appear. When the 
A-specification is used, HP FORTRAN 77 treats the leftmost characters as being more 
significant; the R-specification makes the rightmost characters more important. As we 
shall see, this has an effect when w differs from the length of the variable into which the 
input characters are to be read. 
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15.2.3.1 Appearance of Edit-Directed Character Input Since the A- and R-specifica­
tions explicitly direct the program to read the designated columns as characters, there is 
no need to use apostrophes around the input string. In fact, an apostrophe simply is 
another character, as is a blank. For instance, consider the following program segment: 

REAL 
INTEGER*2 
CHARACTER 

UNITPR 
ONHAND 
IDENT*5,NAME*20 

READ (5,12) IDENT,NAME,ONHAND,UNITPR 
12 FORMAT {A5,5X,A20,I5,2X,F4.2) 

The description in statement 12 covers the first41 columns (i.e., 5+5+20+5+2+4) of the 
input record from unit 5: 

Columns 

1-5 
6-10 

11-30 
31-35 
36-37 
38-41 
42-80 

Interpretation 

a 5-character string, stored in !DENT 
skipped 
a 20-character string, stored in NAME 
a 5-digit integer, stored in ONHAND 
skipped 
a 4-digit real value with two decimal places, stored in UNITPR 
ignored 

Thus, when this READ /FORMAT statement combination is applied to the line shown 
below, 

r:::~bbbbL.~::sEMBLLY,bLGbbbt::~::b349L5 

Lcol. 5 Col. 20 Col. 40 
the character variable !DENT will have a value of 3276W, NAME will contain the twenty 
characters CAMbASSEMBLY, bLGbbbb, ONHAND will contain 922, and UNITPR's value 
will be 34. 95. 

Exactly the same results would have been obtained if we had used the R-specification 
instead of the A-specification. The reason is that, in this particular case, the values for win 
the specifications matched the respective lengths declared for the character variables 
(IDENT and NAME). 

15.2.3.2 Reading Parts of Character Strings If we are going to read input data into a 
character string variable, it is not necessary for the length of the input string to agree with 
the declared length of the variable: 

1. When the length given by the A-specification is greater than the declared length, 
the program uses as many of the leftmost characters as it can. That is, it fills the variable 
with input characters and throws away the rest. For instance, if variable WRD is declared as 
CHARACTER* 6 and we try to read eight columns of character data (by specifying AB in the 
format description), WRD will end up with the characters taken from the first through sixth 
columns of the input string. The last two columns will not be stored. These surplus 
characters fall into a polystyrene Standard Character Bucket (SCB) inside each com­
puter. Every nineteen days, the contents are gathered and sent to a huge Standard 
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Character Warehouse (SCW) somewhere in Idaho. There, they are cleaned, polished, 
sorted, and stored away for use later on. 

2. When the length given by the A-specification is less than the declared length, the 
entire string in the variable is replaced nonetheless. the program fills the string (starting at 
the left) until it runs out of data, and then it pads the rest of the string with blanks. Some 
blanks come from Idaho; others are manufactured on the spot. 

We can see the effect of the A- versus R-specification directly by setting up the 
following declarations: 

CHARACTER*6 WORDl 
CHARACTER*4 WORD2 

Now, let us assume an input line on unit 5 with the following data, starting with a D in 
Column 1: 

DECONSTITUTIONALIZATION 

and the statement 

READ (5, I (2X, A3, 5X, A7) I) WORDl, WORD2 

The first A-specification covers a shorter string than WORDl can hold, and the second one's 
length exceeds that declared for WORD2. As a result, the program picks up Columns 3, 4, 
and 5 (after skipping the first two) and stores them in the leftmost three positions of 
WORDl. The remaining three positions are filled with blanks. Then, after skipping the next 
five columns (the ones containing STITU), the next seven columns (TIONALI) are picked 
up, but only the leftmost four are used. (WORD2 cannot hold more than four characters.) 
Thus, we end up with CONbbb in WORDl and TION in WORD2. 

Now we shall use the same input another time, changing only the A-specifications to 
R-specifications: 

READ (5, I (2X, R3, 5X, R7) I) WORDl, WORD2 

The same three columns (CON) are picked up as before, but they are stored in the three 
rightmost positions ofWORDl. The leftmost three positions are padded with binary zeros, 
not blanks. The R7 gets the same seven characters as before (TIONALI), but the rightmost 

four are used to fill WORD2. Thus, the two variables end up with respective values of 
zzzCON and NALI. (zzz indicates binary zeros.) 

15.2.3.3 Substrings as Input Items FORTRAN also enables us to read in part of a 
string by accepting a substring as a member of an input list. For instance, suppose a 
variable named TEXT is declared as CHARACTER*25 and currently contains the string 

BRIGHTbSTARSbAREbSHININGb 

If we were to read the following line 

SILVERbMOONS 

with the statement 

READ (5, I (A12) I) TEXT (1: 12) 

the program would read the first twelve columns and store them in positions 1-12 of 
TEXT, replacing only those twelve characters. Accordingly, the new value in TEXT would 
be 

SILVERbMOONSbAREbSHININGb 

If we had read that same line with the same format description but without the substring 
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designation in the input list, i.e., 

READ (5, I (A12) ')TEXT 

the resulting value in TEXT would have been 

SILVERbMOONSbbbbbbbbbbbbb 

15.2.4 Multi-Record Input Fonnats: The /-Specification 

Since a statement's input list determines the number of items to be read by that statement, 
the program (guided by the format specifications) will continue to read until it completes 
the list's requirements. Accordingly, it will read as many lines as it needs. 

The programmer can exercise more direct control over such input by using the I 
specification. When used as part of an input format description, this serves as a signal to 
skip the rest of the line currently being read and start with column 1 of the next one. To see 
how this works, let us consider the following program segment: 

REAL 
INTEGER*2 
CHARACTER*6 

Vl,V2,STR,BLK 
CD1,CD2 
IDl, ID2 

READ (5,18) ID1,CD1,Vl,V2,ID2,CD2,STR,BLK 
18 FORMAT (A5,I2,20X,F7.2,10X,F7.2/A5,I2,l5X,F6.3,l5X,F6.3) 

The input statement reads exactly two lines with the information being taken from the 
following columns: 

Columns 

1-5 
6-7 
8-27 

28-34 
35-44 
45-51 
52-80 
1-5 

(second line) 
6-7 
8-22 

23-28 
29-43 
44-49 
50-80 

Interpretation 

Stored as a character string in IDl 
Stored as an integer in CDl 
Skipped 
Stored in Vl as a real number with two decimal places 
Skipped 
Stored in V2 as a real number with two decimal places 
Skipped (in response to the I) 
Stored as a character string in ID2 

Stored as an integer in CD2 
Skipped 
Stored in STR as a real number with three decimal places 
Skipped 
Stored in BLK as a real number with three decimal places 
Ignored 

Note that commas are not needed around the slash. We could have done the same thing 
with different forms. For instance, we could have written 

READ (5, 18) IDl, CDl, Vl, V2, ID2, CD2, STR, BLK 
18 FORMAT (A5,I2,20X,F7.2,10X,F7.2,29X,A5,I2,15X,F6.3,15X,F6.3) 

or even 
READ (5, 18) IDl, CDl, Vl, V2 

18 FORMAT (A5,I2,20X,F7.2,10X,F7.2) 
READ (5, 19) ID2, CD2, STR, BLK 

19 FORMAT (A5,I2,15X,F6.3,15X,F6.3) 
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Use of the / specification certainly is more convenient than either of the two other forms 
shown above. The two separate READ statements are particularly undesirable since they 
force the programmer to form two artificially separate input groups when, in fact, he or 
she may wish to treat the entire list as a single collection. 

The slash may be used as many times as desired in a format description. Each time it is 
used, the program merely skips to the beginning of the next record. Thus, if there are two 
slashes in succession (I I), the program will skip to the end of the current record, skip the 
entire next record, and be positioned at column 1 of the record after that. 

15.2.5 Disagreements Between Input Lists and 
Fonnat Descriptions 

In the interest of simplicity and clarity, it is best to make sure that the format specifications 
are consistent with the input list. For example, if an input list names five items, the 
corresponding format specifications should describe five items as well. (Of course, this has 
nothing to do with the number of X-specifications; these are used as needed to indicate 
which columns are to be skipped.) However, it will be helpful to understand how 
FORTRAN behaves when there is a mismatch between the length of the list and the 
number of specifications. Keep in mind that the program will try to read as many items as 
the input list specifies. 

1. When the input list contains fewer items than the format description, the program 
simply will use as many format specifications as it needs, ignoring the rest. For example, if 
Vl, V2, and V3 are real variables, the statements 

READ (5, 15) Vl, V2, V3 
15 FORMAT (3X,F5.l,5X,F4.2,7X,F6.3,6X,F5.2,4X,F4.0) 

will take the first value (the one to be stored in Vl) from columns 4-8, the second value 
from columns 14-17, and the third one from columns 25-30. The rest of the specifications 
in statement 15 will be ignored. It is the same as if they were not there. Thus, if the READ 
statement were in a loop, then the next time it is used, it simply will start with a new line, 
using the same columns as before. 

2. When the reverse is true, i.e., the input list is longer than the number of format 
specifications describing it, the program still will try to read the number of items indicated 
in the list. To do this, it will use each specification in tum. When the specifications run out, 
the program goes back and starts at the beginning of the list, continuing this way until the 
input list has been satisfied. For instance, suppose Vl, V2 and V3 are real variables as in 
the previous example. This time, we attempt to read values for them with the following 
statements: 

READ (5, 25) Vl, V2, V3) 
25 FORMAT (10X,F5.l,4X,F4.2) 

Note that the input list shows three items but the FORMAT statement describes only two. 
Hmmm. What happens is the following: The program will skip the first ten columns and 
read columns 11-15 into Vl. Then, as expected, it will skip the next four columns (16-19) 
and read columns 20-23 into V2. So far so good. Then, having run out of descriptions, the 
program goes back to the beginning of the FORMAT statement, starts a new line, skips the 
first ten columns of that second line, and stores columns 11-15 in V3 using the F5. 1 

specification given in statement 25 for those columns. The remaining format descriptions 
are ignored because the program does not need them. The input list has been satisfied and 
FORTRAN is lying there, digesting quietly. Of course, when the program goes to use this 
READ statement again, it will start a new line, skipping the first ten columns of that line, 
and so on. 
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FORTRAN provides a wide range of format specifications for arranging output records. 
This section explains their operation and examines a variety of techniques for their use. 

15.3.1 Blank Output Columns: The X-Specification 

Since we have seen and used the X-specification in a variety of examples, a detailed 
discussion of its properties is no longer necessary. Accordingly, we just shall note that the 
specification 

wX 

fills the next w columns of the output line with blanks. 

15.3.2 Carriage Control 

We are already well aware of the fact that the format description of a print record must 
begin with a character that the program uses for carriage control. The various codes for 
such control are given and illustrated here. 

15.3.2.1 Starting a New Line As we know, a blank carriage control character causes the 
program to start a new line. We have been including this blank by specifying the blank as a 
literal character, i.e., 'b' at the beginning of an output format description. Another way 
of doing this is to use the X-specification. Since the program uses this code as a signal to 
insert blanks in the print line, it can serve equally well to indicate the start of a new line. 
For instance, the statements 

WRITE (6, 12) XVAL 
12 FORMAT (1X,F8.2) 

will print the value from XV AL as a real number with two decimal places in columns 1-8 of 
a new line. Similarly, the statements 

WRITE (6, 14) XVAL 
14 FORMAT (1X,9X,F8.2) 

will print XVAL's value in columns 10-18 of a new line. Note that the lX is not a skipped 
column; it positions the printer at column 1 of a new line, so that the 9X specification 
applies to the first nine columns of that line. Hence, the program is ready to use the next 
eight columns (i.e., 10-17) for XV AL. Incidentally, the same thing would happen with the 
statement 

PRINT 14, XVAL 
14 FORMAT (1X,9X,F8.2) 

When we want to skip the first few columns before printing an output value, it might seem 
reasonable to combine the two X-specifications, so that the previous FORMAT statement 
could be rewritten as 

14 FORMAT (10X,F8.2) 

This certainly is legal, but not particularly clear. Even old, grizzled FORTRAN veterans, 
their leathery faces weatherbeaten from past storms, occasionally forget that the first 
blank is for carriage control. As a result, they miss on the column count. Of course, this is 
no great tragedy, but it is just as easy to be clear. Consequently, we shall show the carriage 
control character as a separate specification. 

15.3.2.2 Other Carriage Control Symbols There are three other carriage control sym­
bols in common use: 

1. The numeric character zero ( ' O ' ) skips the next line and starts the print process at 
column 1 of the line after that. 
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2. The numeric character ' 1 ' starts the print process at the top of a new page. 

3. The character ' + ' forces the print process back to the beginning of the same line 
that was printed by the previous output statement. It is then ready to print again 
on the same line. 

15.3.2.3 Overprinting The ability to prevent the printer from moving to the next line 
enables the programmer to specify overprinting, a technique for displaying several 
characters in the same space on a line. One obvious use for overprinting is to print the 
same value (or name, or whatever) over and over in the same spot, thereby making it 
come out much darker, for emphasis. For instance, suppose we wanted to print three 
values WST, BLR, and TRK on the same line, with the middle value (BLR) appearing much 
darker. Let us say that some experiments have shown that we can get the emphasis we 
want with four overprints after the initial printout. Here is one way to set this up: 

PRINT 71, WST, BLR, TRK 
71 FORMAT ('b',12X,F9.3,8X,F9.3,8X,F9.3) 

DONUMOVR = 1, 4 
PRINT 81, BLR 

81 FORMAT ( '+', 29X, F9. 3) 
END DO 

The first PRINT statement displays the original line, with all three values appearing in the 
positions determined by the format specifications. That statement is executed once. 
Then, a second PRINT statement is used to display BLR by itself. Its FORMAT statement 
(no. 81) uses the carriage control character that forces the process back to column 1 of that 
same line. By skipping the first 29 columns, we line up with the position where BLR was 
printed by the previous output statement. More precisely, we are overprinting the entire 
line, filling all of it with blanks except for columns 30-38, where BLR appears. Finally, by 
putting that PRINT statement in a DO loop, we execute it four times. 

Assuming values of-36. 414, 3275. 01, and 5987. 088 forWST, BLR, and TRK, 
respectively, the resulting output can be represented as follows: 

i----column 1 

bbbbbbbbbbbbbb-36.414bbbbbbbbb3275.010bbbbbbbbb5987.088 

Another common use for overprinting is to underline selected items in a line of print. For 
instance, if we wanted to underline WST in addition to printing BLR with great emphasis, 
we could do the following: 

PRINT 71, WST, BLR, TRK 
71 FORMAT ('b',12X,F9.3,8X,F9.3,8X,F9.3) 

PRINT 91 
91 FORMAT ('+',12X, '----') 

DONUMOVR = 1, 4 
PRINT 81, BLR 

81 FORMAT ( '+', 29X, F9. 3) 
END DO 
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Note that the second PRINT statement has no output list. This is quite legal, its meaning 
being that we do not wish to display any values of variables from storage. Instead, 
everything that we are going to print is contained right in the FORMAT statement. In this 
particular example, it is the literal value shown in the apostrophes. As a result, the 
program will go back to the beginning of the line it just printed (because of the '+' ), put 
blanks in the first twelve columns, and then print the nine underline characters in the next 
nine columns. Those also happen to be the same columns in which we printed WST with 
the previous output statement. Thus, when the DO loop finishes its four cycles, the final 
result will be 

+....----column 1 

bbbbbbbbbbbbbb-36.414bbbbbbbbb3275.010bbbbbbbbb5987.088 

15.3.2.4 The /-Specification for Carriage Control The I specification, when used in an 
output format description, has the same basic effect as it does for input: It causes the 
program to go immediately to the end of the current record. For printed output, this 
means that the printer gets itself to the end of the current line. This does not imply that it 
starts the next line. The action taken after the I specification still must be specified by a 
carriage control character following the slash. 

To illustrate, let us assume that Nl, N2, N3 and N4 are integer variables containing 
values of 123, 345, 567, and 789, respectively. If we print these values with the 
statements 

WRITE (6, 16) Nl, N2, N3, N4 
16 FORMAT (1X,5X,I3,6X,I3/5X,I3,6X,I3) 

the resulting output will look like this: 

r-column1 

bbbbb123bbbbbb345 
bbbb567bbbbbb789 

Note that the second line of print starts one column earlier than the first line. The reason is 
that FORTRAN uses the first of the five blanks (from the 5X specification immediately 
following the slash) as a carriage control character. That gets the printer to the next line. 
Thus, only four blanks are inserted in the print record, and the first value on that line starts 
in column 5 instead of column 6. Once this is understood, the remedy is obvious: We can 
rewrite the FORMAT statement as 

16 FORMAT (1X,5X,I3,6X,I3/1X,5X,I3,6X,I3) 

and the two output lines will be lined up with each other. The same thing applies when the 
slash is placed at the beginning of a format description. Thus, suppose we specify the 
following output: 

WRITE (6, 26) Nl, N2, N3, N4 
26 FORMAT(/ 'b', 5X, I3, 6X, I3/ 'b', 5X, I3, 6X, I3) 

In this case, the program will move the printer to the end of the current line (the one it was 
ready to use before the slash was encountered), and then start a new line in response to 
the blank carriage control character. The first two values (Nl and N2) are printed on that 
line. The second slash moved the printer to the end of that line and the blank carriage 
control character starts the line after that. Thus, statement 26 produces three lines of 
output: a blank line followed by two lines of print, each containing three integer values. 
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This is shown below: 

i column1 

- - - - - - - - - - - -blank line- - - - - - - - - - - -
bbbbb123bbbbbb345 
bbbbb567bbbbbb789 

15.3.3 Fonnatting of Numerical Output 

The I, F, E and D specifications are used for preparing output in the same basic way as 
they are for interpreting input. There are some slight differences, however, and these will 
be discussed here. 

5.3.3.1 Integer Values An integer output value is described by the specification 

Iw 

where w indicates the width of the value (that is, the number of columns that the value will 
occupy on the print line). FORTRAN will use as many of the rightmost columns as it 
needs, filling the rest with blanks. For instance, if integer variable NUMBLK contains a 
value of-7 41 and we write the statements 

PRINT 1 7, NUMBLK 
17 FORMAT ( 'b I' 5X, 17) 

the following will be printed on a new line: 

.r-column1 

bbbbb 1 bbb-741 

The first five blanks will be inserted because of the 5X specification; the other three ahead 
of the -7 41 are there because the I 7 specification called for seven columns to be filled. 
(The rest of the line, of course, is blank as well, but is not shown here.) 

Notice that FORTRAN filled the unused columns in the integer field with blanks. If 
the value in an integer variable happens to be zero and we ask for it to be printed with an 
I w specification, it would seem that we would get an invisible display of w blanks. 
However, FORTRAN has a special (automatic) test for such a situation. When it occurs, 
FORTRAN will show one zero to indicate that the value has, indeed, been printed. Thus, 
if we use the abovementioned statements and NUMBLK happens to have a value of zero, 
the resulting line will look like this: 

t.----- column 1 

bbbbb lbbbbbbO 

The programmer can control FORTRAN's use of blanks to pad an integer .output 
field by using the specification 

Iw. v 

where w has the same meaning as before and v indicates how many of w's columns are to 
be visible. When this type of I-specification is given for an output value, FORTRAN still 
uses a field of w columns. However, once it places the value itself in the rightmost part of 
the field, it inserts additional zeros until a total of v columns are filled. Then, if it still has 
not filled all w columns, it completes the rest of the field with blanks. We can see how this 
works by using the previous value as an example. Keeping the same PRINT statement and 
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changing the FORMAT statement as follows, 

PRINT 1 7, NUMBLK 
17 FORMAT (I b I' 5X, I7. 6) 

our line of print will say 

......----- column 1 

ibbbb/b-00741 

The five blanks at the beginning of the line still are there because of the 5X, and NUMBLK 
still occupies seven columns because of the I 7. However, since our new specification 
indicates that six of the seven columns are to be visible, FORTRAN replaces two of the 
blanks with zeros and moves the minus sign so that it is positioned to the left of the 
leftmost visible digit. The seventh (leftmost) position still remains blank. If the specifica­
tion had said I 7 . 7 (with the rest of the format remaining the same), the line would show 

column 1 

tbbblb-000741 

A specification like I 7 . 8 would be illegal since we would be asking for a number of visible 
digits greater than the length of the field itself. 

The 0-, K- and @-specifications can be used to show values from INTEGER*2 
variables as octal numbers. If w is greater than 6, the rightmost six columns of the field will 
be used to display the octal digits, and the preceding ones will be padded with blanks. If w 
is not long enough, thew positions will be filled with the rightmost octal digits. (NOTE: 
There is no explicit indicator given with the output to identify the digits as octal digits. 
Any visible identification must come from the programmer.) 

15.3.3.2 Real Output in Conventional Fonn As we have seen already, the F-specifica­
tion, when used for output, includes a decimal point (and a minus sign for negative 
values). Consequently, the programmer must make sure that the specification provides 
enough room to include these symbols. For instance, if TRANS is a real variable whose 
value (-42. 6 7 4) we want printed as a five-digit number with three decimal places, the 
specification will be no smaller than F7. 3. If w (the field width) is any larger, 
FORTRAN will add blanks. A specification of F9. 3, for instance, will produce 
bb-42. 674. If the value happens to be positive, FORTRAN will place a blank in the 
column where the minus would have gone. Thus, an F9. 3 specification applied to a value 
of 42.674 will print bbb42. 67 4. 

15.3.3.3 Real Output in Single Precision Fonn Real numbers can be printed in single­
precision notation with the specification 

Ew.d 

where d, as before, indicates the number of decimal places. The field width, w, must be 
large enough to include columns for various symbols that are part of the notation, as well 
as for the decimal places. For instance, let us use the same value (-42. 674) as we did in 
the previous section. If we wanted to print that value in single precision form showing all 
of its digits, we would have to provide enough space for FORTRAN to display it as 

-0.42674E+02 

Thus, in addition to the columns for the five actual digits in the fraction, we need to specify 
at least seven more to take care of the minus sign, the zero in front of the fraction, the 
decimal point, the "E," the exponent sign, and the two-digit exponent value. That means 
that the value shown above would be produced by a format specification of E12. 5. A 
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field width of anything less than 12 (for this example) would produce an improper value. 
If we were to specify more than 12, the additional spaces would be filled with blanks. For 
instance, a format specification of El4. 5 for the same value will print it as 
bb-0. 42674E+02 and a specification of El4. 6 will produce b-0. 426740E+02. On 
the other hand, if the specified field width were large enough to display the entire value, 
but the number of decimal places was insufficient, FORTRAN would not make any 
adjustments; it follows the format specification exactly. Thus, if we want to display a value 
of -42. 674 in single precision form and we describe its format with a specification of 
El4. 4, theprintoutwillshowbbb-0. 4267E+02. 

When used for output, the E-specification can be extended to define a different 
number of digits for the exponent. (When we use the basic form Ew. d, FORTRAN 
automatically provides a two-digit exponent.) If we want to change that for a particular 
output item, we can describe that by specifying 

Ew. dEe 

In this form, the second E is followed by an integer indicating the number of digits to be 
used for the exponent. For instance, if we were to print the value -42. 67 4 with the 
specification El 4. 5E3, the result would be b-0. 42 6 7 4E+002. 

15.3.3.4 Real Output in Double Precision Fonn Representation of output values in 
double precision form is handled by the D-specification 

Dw.d 

where w and d have the same meanings as in the F and F specifications. This output has 
the same basic appearance as E-formatted output. The only difference is that the E in 
front of the signed exponent value is replaced by a D. Thus, if we printed the value 
-42. 674 with the specification Dl6. 8, the resulting output would appear as 
b-0.42674000D+02. 

15.3.4 Fonnatting of Character String Output 

FORTRAN enables the programmer to specify the exact placement of output character 
variables. In addition, there are two methods for including literal character strings in 
format specifications. 

15.3.4. 1 The A- and R-Specifications for Output The operation of these format descrip­
tions is basically the same as for input (15.2.3). When we specify Aw, the next w output 
columns are filled with the character string named in the corresponding item of the output 
list. For instance, suppose WORD has been declared as CHARACTER* 7, it has a value in it, 
and we prepare to print it with the statements 

PRINT 14, WORD 
14 FORMAT ( 'b', 10X,A7) 

the result will be a new line of print with the first ten columns left blank and columns 11-17 
filled with the seven characters from the variable WORD. 

If w specifies a length greater than that of the character string named in the output list, 
FORTRAN prints the string starting at the left and pads the unused positions with blanks. 
Thus, if WORD contains the string BRIMFUL and we say 

PRINT 14, WORD 
14 FORMAT (I b I' lOX, All) 
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FORTRAN will produce the following line: 

rcolumn1 
bbbbbbbbbbBRIMFULbbbb 

The R-specification, when used under the same conditions, displays the string in the 
rightmost positions of the field and fills the remaining ones with blanks. So, Rl l instead of 
All produces 

rcolumn1 

bbbbbbbbbbbbbbBRIMFUL 

Aw that is smaller than the string's length will force FORTRAN to print thew leftmost 
characters, with the rest simply not being displayed. Using the same value for WORD, the 
statements 

PRINT 14, WORD 
14 FORMAT (I b I' lOX, AS) 

will produce 

rcolumn1 

bbbbbbbbbbBRIMF 

Changing the AS to RS produces 

rcolumn1 

bbbbbbbbbbIMFUL 

It also is possible to leave the character counting to FORTRAN. Since FORTRAN 
has to keep track of string lengths anyway, the programmer can take advantage of that 
capability by omitting the win the A-specification. Using WORD again, if we were to say 

PRINT 14, WORD 
14 FORMAT ( 'b I' lOX, A) 

FORTRAN, not finding a length attached to the A- or R-specification, would use the 
declared length of WORD, so that the resulting printout would be 

rcolumn1 

bbbbbbbbbbBRIMFUL 

This is a convenient feature if the programmer knows exactly what is going on, or if he/she 
is not too concerned with the exact position of the output items. In general, it is a good 
idea to go through the extra work (it is not that much} and include thew as part of the 
specification. That way, whenever anyone looks at the FORTRAN statements, there is a 
clear, precise, and complete story as to what is going on. (We mention this option so that 
the student knows it is available; however, we shall not encourage its use. For the sake of 
completeness, we mention also that the same capability is available for input. That is, if w 
is not included as part of a character specification for an input format, HP FORTRAN 77 
will use a number of input columns equal to the declared length of the character variable 
in which the data are to be stored. Again, this is shaky practice and it is discouraged here.) 

15.3.4.2 Writing Parts of Character Strings As we have seen repeatedly, once we have 
identified a portion of a character string (i.e., a substring}, it can be treated as a separate 



PREPARATION OF LIST-DIRECTED DATA 

string. Accordingly, it is quite consistent to be able to write a substring as an output item. 
For instance, if we use WORD (and its value) from the previous section, we can say 
something like 

PRINT 14, WORD (5: 7) 
14 FORMAT ( 'b I' lOX, A3) 

in which case only the last three characters in WORD (i.e., positions 5 through 7) will be 
shown: 

rcolumn1 

bbbbbbbbbbFUL 

Even if we specify more room in the format description, it is the item in the output list (as 
always) that determines what is printed. Thus, if we said 

PRINT 14, WORD (5: 7) 
14 FORMAT (I b I' lOX, A9) 

the resulting printout will be longer, but the same amount of WORD will be shown. Of 
course, it will not look different because FORTRAN pads with blanks anyway. However, 
we can show what actually happens by making the blanks "visible": 

rcolumn1 

bbbbbbbbbbFULbbbbbb 

15.3.4.3 Literal Output Strings Since we have been specifying literal output in list­
directed format almost from the beginning, there is nothing new in applying the idea to 
edit-directed output. Thus, the two statements 

WRITE (6, 16) 'FINAL RESULTS: I 

16 FORMAT (1X,10X,A15) 

produces the output 

ccolumn1 

bbbbbbbbbbFINALRESULTS: bbbbbbbbbb 

starting in column 11 of a new line. The 15-character literal is treated just like any other 
character string, its placement and appearance being governed by the same formatting 
rules described before. (HP FORTRAN 77 also accepts ' ' as a delimiter for literal 
output.) 

Another possibility, left over from earlier FORTRAN versions, is to place the literal 
string in the format specification rather than in the output list. (We have used this form 
earlier, but its specific purpose was carriage control.) The result shown above also can be 
obtained with the statements 

WRITE (6, 16) 
16 FORMAT (lX, lOX, 'FINAL RESULTS: I) 

This avoids the need to specify the length of the literal string. FORTRAN will do the 
counting automatically. As was pointed out earlier (Section 15. 3.4.1) with regard to using 
the A-specification without the w, this may or may not be a convenience, and the 
programmer must judge whether or not this feature can be used to advantage in a given 
situation. 

There is another form for specifying literal character strings. At one time, it was the 
only available way, but the newer alternatives just described make it the least convenient. 
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Here it is, for old times' sake: Output literals may be described with the Hollerith 
specification. This consists of the length of the string, followed by the letter H, followed by 
the literal string, without the apostrophes. Thus, the example used earlier can be 
rewritten as 

WRITE (6, 16) 
16 FORMAT (lX, lOX, 15HFINALRESULTS:) 

Note that the first character in the literal string follows the H immediately. 

At the beginning of this chapter, we referred to FORTRAN's format specifications as a 
little language. Now that we have seen how several of its important components operate, 
we shall increase our vocabulary by introducing some additional features for building 
more extensive sets of specifications. 

15.4. 1 Repeated Specifications 

Although each format specification follows a simple structure, combinations of such 
structures build up quickly. As a result, it is quite possible to develop an input or output 
process requiring a format description containing several dozen specifications. When this 
happens, there are features that may help simplify the way in which such formats are 
represented. 

One such feature is the repetition factor. When several identical format specifications 
appear together, they can be replaced by a single specification and a multiplier (the 
repetition factor) that indicates the number of uses. For instance, the format statement 

12 FORMAT (5X,I3,I3,I3,I3) 

can be rewritten as 

12 FORMAT (5X,4I3) 

The repetition factor in this case is 4. As another example, suppose that the real variables 
Vl, SPEC, and WRTH are recorded on an input line in columns 7-10, 11-14, and 15-18, 
respectively. Each value is recorded as four digits and, in each case, two of the four digits 
are to be treated as decimal places. (The decimal point is not included.) In other words, 
each variable is described by the specification F4. 2. The following statements 

READ (5, 15) Vl, SPEC, WRTH 
15 FORMAT(6X,3F4.2) 

will read and store the three values as required. This produces the same result as if 
statement 15 were written like this: 

15 FORMAT(6X,F4.2,F4.2,F4.2) 

Repetition factors are used in exactly the same way for output, including literal strings. 
For example, HP FORTRAN 77 accepts statements such as 

WRITE (6, 16) 
16 FORMAT (lX, 3 I NEXT I) 

in which case the specified string is written three times. 

15.4.2 Repeated Combinations of Fonnat Descriptions 

Repetition factors are not limited to single format specifications. When a string of several 
specifications repeats itself for a given input or output file, that entire string can be 
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isolated as a pattern, described once, and equipped with a repetition factor. The pattern is 
identified as such by putting it inside a set of parentheses. 

For example, suppose that we have an array VOLS consisting of 25 real values and we 
want to print VOLS ( 5) through VOLS ( 9) on a single line. Each value is to appear in the 
form vvv. vvvv with an additional position reserved at the left of each value in case a 
given value turns out to be negative. Accordingly, the format of each value can be 
described as F9. 4 (i.e., four decimal places, plus one position for the decimal point, plus 
three positions for the integer portion, plus one more position for the sign (blank for a 
positive value, - for a negative value). Also, the values are to be separated by eight 
blanks, and the first value is to be printed starting in column 6. When we put all of that 
together, we end up with the following statements: 

PRINT 18, (VOLS (NUM), NUM=5, 9) 
18 FORMAT(lX,5X,F9.4,8X,F9.4,8X,F9.4,8X,F9.48X,F9.4) 

Note that the combination F9. 4, 8X forms a repeating pattern. Thus, we can simplify the 
FORMAT statement without hiding its meaning: 

18 FORMAT (1X,5X,4(F9.4,8X),F9.4) 

FORTRAN will interpret this description by starting a new line in response to the blank 
carriage control character (as it always does), placing blanks in columns 1-5, and then 
placing VOLS (5) in columns 6-14, blanks in 15-22, VOLS (6) in columns 23-31, blanks 
in32-39, VOLS (7) incolumns40-48, blanksin49-56, VOLS (8) incolumns57-65, and 
blanks in 66-73. That takes care of the pattern in parentheses, repeated four times. The 
remaining specification takes care of VOLS ( 9) , which is placed in columns 74-82 of the 
print line, thereby completing the output. 

15.4.2.1 Fonnation of Repeated Patterns Since an X-specification at the end of an 
output format has no actual effect, many programmers will add an X-specification in 
those cases where it will complete a pattern. For our example, we can do this to produce a 
more concise statement that does the same thing as the previous versions: 

18 FORMAT ( lX, 5X, 5 (F9. 4, 8X) ) 

15.4.2.2 Mismatches with Repeated Patterns Earlier, it was established that the input 
or output list, and not the format description, determines the number of data items to be 
read or written by a particular statement. Consequently, if there are more data items than 
format specifiers, FORTRAN will use them over (as long as the type of specifier describes 
the data properly) until the data list is satisfied. In the case of a simple format list, 
FORTRAN goes back to the beginning of the list. When the list contains a repeated 
pattern in parentheses, FORTRAN uses that pattern, rather than the beginning of the 
format list, as a new starting point. 

We can use the format list from the previous section to show how this works. Recall 
that it said 

18 FORMAT(1X,5X,5(F9.4,8X)) 

Now, just to illustrate, suppose we try to write seven items using this statement: 

WRITE (6, 18) (VOLS (I), I=3, 9) 

As a result, FORTRAN will print the first five items (VOLS ( 3) through VOLS ( 7) ) in the 
columns described in the previous section, leaving eight blanks between the nine-column 
fields. Then, since there are two items still to be printed (i.e., VOLS (8) and VOLS (9) ), 
FORTRAN ignores the lX, 5X part of the format description, ends the output record, and 
starts to use the 5 (F9. 4, 8X) pattern again. Since the output record is ended (just as if 
there had been a slash in the format specifications), the first thing FORTRAN looks for is 
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a carriage control character. More precisely, FORTRAN tries to use the first data 
character it finds for carriage control. In this case, it will be the first digit of VOLS ( 8) . If 
that digit happens to be a 1, FORTRAN will start a new page (because 1, as we know, is 
the carriage control character for a new page). If it is a O, FORTRAN will skip a line and 
start at the beginning of the next line. If it is anything else, FORTRAN just will start a new 
line. In any case, that first data character is not printed. For instance, if VOLS ( 8) happens 
to be-326. 0974, the first character(-) will be lost: FORTRAN simply will single space 
to the next line and print 326. 0974. Then, it leaves eight blanks and prints VOLS (9). 
All of VOLS (9) will appear because FORTRAN still is working on the same specifica­
tion (the 5 (F9. 4, 8X) ). If it were necessary, FORTRAN would use all five repetitions. 
Then, if the output list still were not completed, FORTRAN would end the record ahd 
start the pattern over, using the first character of the next data item as the carriage control 
character. 

The message is quite clear: Whenever possible, make sure that there is a close match 
between the items in the data list and the specifiers in the format description. Specifically, 
it is not a good idea to allow the program to run out of specifiers so that it is forced to 
double back on the ones that are there. Under certain carefully controlled conditions, this 
can be done without difficulty, as Section 15.4.4 will show. However, it should not be 
done indiscriminately. 

15.4.3 Nested Format Patterns 

Occasionally, formats come up in which a repeating pattern is built from other, smaller 
repeating patterns. Such constructions also can be expressed more concisely by nesting 
parenthesized patterns inside each other. For example consider the following format 
description: 

(10X,F3.1,3X,F3.1,3X,I2,I2,I2,F3.l,3X,F3.l,3X,I2,I2,I2,2X,A4) 

We see that F3. 1, 3X and l 2 are descriptions that are repeated. Accordingly, we can 
replace them with shorthand versions so that our format would look like this: 

(10X,2(F3.l,3X) ,3l2,2(F3.l,3X) ,3l2,2X,A4) 

Now, weseethatthepattern2 (F3. 1, 3X), 312 appears twice in succession. Therefore, 
it can be shortened even further by applying a repetition factor to that entire pattern: 

(10X,2(2(F3.1,3X) ,312) ,2X,A4) 

Another aspect of this capability is illustrated by the following format: 

(10X,l2,3X,l2,3X,A3,F3.2,4X,l2,3X,l2,3X,A3,F3.2,8X,A6) 

An initial use of the shorthand form reduces the format to 

(10X,2(l2,3X),A3,F3.2,4X,2(l2,3X),A3,F3.2,8X,A6) 

Now, we see that we could form a repeating pattern out of the 2 ( 12, 3X) , A3, F3. 2 
combination, except that the 4X gets in the way. In many instances, it is possible to 
overcome this difficulty by playing around with the format specifications so that we say the 
same thing in a different way. In this example, we have managed to be fortunate: The SX 
happens to be in the right place, and we can rewrite it as two consecutive 4X specifica­
tions. This still provides eight blank spaces, but look what it does to the format descrip­
tion: 

(10X,2(l2,3X),A3,F3.2,4X,2(l2,3X),A3,F3.2,4X,4X,A6) 

Now, our pattern is complete, and we can rewrite the format as 

(10X,2(2(I2,3X),A3,F3.2,4X),4X,A6) 
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Note that we could have done the same kind of thing by breaking the 1 OX at the front of 
the format into two pieces: 

(6X,2(4X,2(I2,3X) ,A3,F3.2),8X,A6) 

This type of game-playing may or may not be desirable. Making a format description 
shorter does not necessarily make it simpler. The main purpose, as it always has been, is to 
increase simplicity and clarity. If repetition factors, nested factors, and patterns (with or 
without dazzling footwork) do not help make a program easier to follow and understand, 
then it is better not to use them. Under those conditions, they are cures looking for a 
disease. 

As is true with simpler format patterns, FORTRAN will use a pattern over and over 
when the format description covers fewer items than are present in the input or output 
list. When several repeated patterns are present in a single FORMAT statement, FOR­
TRAN goes back to the rightmost pattern and uses that one repeatedly, ending a record 
each time the complete pattern is used. 

15.4.4 Automatically Repeating Fonnat Descriptions 

FORTRAN attaches special meaning to a parenthesized list of format specifications 
without a repetition factor. Basically, this form says, "repeat as necessary." For instance, 
suppose we declared a 100-element one-dimensional real array named TRX. Each set of 
input data includes a collection of elements which may or may not fill the entire array. To 
support this flexibility, these input elements are preceded by a line containing three 
integer values: 

1. NUM, the number of elements in that input set. 

2. LOWER, the position in which the first input element is to be stored. 

3. UPPER, the position in which the last input element is to be stored. 

(We assume that the input elements are to be stored in consecutive positions.) These are 
recorded, respectively, in columns 1-3, 6-8, and 11-13. The elements themselves are 
recorded four to a line, in columns 3-6, 9-12, 15-18, and 21-24. Each element is to be 
read with an F4. 1 format. Thus, we have a situation where each input set consists of a 
single line that helps describe the elements, followed by however many lines containing 
the elements themselves. Since the program cannot anticipate the number of input 
elements in any given set, we need a convenient way to specify the general input process 
so that it will work for the entire range of possibilities. 

These requirements can be met with the statements 

READ (5, 15) NUM, LOWER, UPPER, (TRX (I), !=LOWER, UPPER) 
15 FORMAT (3(I2,2X)/4(2X,F4.1)) 

The READ statement is clear enough; it is the FORMAT statement that needs an explana­
tion. The 3 (I 2 , 2X) takes care of the three integer values in the first input line, and the 
slash forces FORTRAN to start a new record. The 4 (2X, F4. 1) corresponds, then, to 
the first four input elements. Now, if the program has to read more elements,. the 
parentheses around the (2X, F4. 1) will force FORTRAN to start a new record and 
repeat that pattern, taking up to four more elements from the new line. This process will 
continue until the input list is satisfied. 

The same technique can be used for output as long as the programmer remembers to 
take care of the carriage control requirements. To illustrate, suppose we wanted to print 
some of TRX's elements from TRX (LOWER) through TRX (UPPER). This can be done 
with the statements 

PRINT 28, LOWER, UPPER, (TRX (I) , !=LOWER, UPPER) 
28 FORMAT (1X,10X,2(I3,4X)/(1X,6X,4(F4.l,2X)) 
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"Define variables." 
"Print headings for the first page." 
do for X = 1 to 4.99 by O.oI : 

if 
page is full 

then 
"Print headings for next page." 

else 
endif 
"Compute data for the next line." 
"Print the next line." 

~ 

Define Variables 

Print headings for the first page 

for X = 1 to 4.99 by 0.01 

~age~ yes 

Print headings for 
the next page 

Compute data for the next line 

Print the next line 

end do 
"Stop." Stop 
FIGURE 15.3 (a) Overall Representation of 
Example 15.1 . 

Define X, SQRTX, XSQ, XCUBE, X2AND3, LINES 

Print headings for first page 

I NEWPG I (initialize LINES) 

~ for X = 1.00 to 4.99 by 0.01: 

~ES=~ yes 

Print headings 
I NEWPG I for next page; 

reset LINES 

I TABCPT I Compute results for the next line 

I TABPRT I Print the next line; LINES+- LINES+ 1 

Stop 

FIGURE 15.3 (b) Example 15.1 Representation Showing Breakup into Subprograms. 



"Define X,SQR TX,XSQ,XCUBE,X2AND3,LINES." 
"Use NEWPG to print headings for the first page." 
do for X= 1to4.99 by 0.01: 

if 

then 
LINES= 50 

"Use NEWPG to print headings for the 
next line." 

else 
endif 
"Use TABCPT to compute results for the next line." 
"Use TABPRT to print the next line of output and 

enddo 
"Stop." 

increment LINES." 

EXAMPLES 

RGURE 15.3 (b) (Continued) 

The following will happen: The two values LOWER and UPPER will be printed on a single 
line starting in column 11. LOWER will appear in columns 11-13 and UPPER in columns 
18-20. Then, FORTRAN will end that record (because of the slash). The new record will 
start on the next line (because of the lX), and four elements of TRX will be printed on that 
new line, starting in column 7. If there are more elements to be printed, FORTRAN will 
end the record and repeat the pattern. As a result, it will produce however many lines, 
each containing four elements from TRX starting in column 7. If the output list is 
completed before the full line of four elements is completed, the program simply prints 
what it is supposed to print. If that means that the last line has only three elements, fine. 
Note that if the parentheses were not included around the specifiers after the slash, we 
would run into the same difficulty described in Section 15.4.2. After printing the first four 
elements, FORTRAN will use the first character of the next element for carriage control. 
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Now we are ready to apply these formatting features to some more realistic situations. We 15.5 EXAMPLES 

shall do so by constructing two complete programs in which edit-directed formatting play 
an important part. This will provide an opportunity to see how we can make these 
capabilities work for us to produce well-organized input and output data. 

Example 15. 1 The production of reliable mathematical tables is a key factor that motivated the 
development of computers. We shall design a program to prepare such a table as a means of illustrating 
how proper formatting can be used to great advantage. In this particular case, there is no input 
requirement. Instead, the program is to generate all of its results based on internal information: All 
required computations are built around a variable named x. For x of 1. oo, 1. 01, 1. 02, and so on, up to 
and including 1. 49, the program is to print a table in which each line contains x, x squared, the square root 
of X, X cubed, and the sum of x squared and x cubed. Thus, the actual computing requirements are not 
terribly severe. Much of our attention will be devoted to the following additional requirements: 

1 . Except for the x-values themselves, all of the other values are to be computed and displayed 
rounded to the fifth decimal place. 

2. Each page of output is to contain exactly fifty lines of the table. 

3. The columns of the table are to be nicely spaced so that they are easily read. Column spacing is to 
be set up with the assumption that each line has 80 columns available for printout. (Even though 
the page may be 132 columns wide, we can pretend that the rightmost 52 columns will not be 
there.) 

4. Each column is to be topped by a suitable column heading, and these headings are to appear on 
every page. 
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5. The following two labels are to appear at the top of each page: 

( 1) USEFUL NUMBERS: -TABLE 808 
(2) XVS. SQRT(X), X**2, X**3, ANDX**2+X**3 
Each of these labels is to be centered on an 80-column line. 

We shall prepare this program by going through a systematic process in which the necessary programs 
are identified, developed, and put together to produce the final result. 

To begin with, it is not difficult to recognize that the overall process can be treated as a big loop in 
which each cycle produces a page of output. Each page, in turn, consists of two distinct parts: the 
headings (the two labels and the column headings), which appear once and then are not needed till the 
next page, and the computed lines of output. Now each individual line in the table can be considered as a 
cycle in the loop. Consequently, without having defined any of the details, we already have an overall 
picture of the program's structure. As indicated by the pseudocode and flow diagram in Figure 15.3(a), the 
process starts with an initialization activity to set up the system. In this case, initialization consists simply 
of printing the headlines and labels on the first page, so that everything is ready for the actual computa­
tions. The cyclic process, then, is a loop in which each cycle takes care of a line. Inside that loop is an 
IF-THEN-ELSE component that checks during each cycle to determine whether enough cycles have 
been performed to fill a page of output. 

Now, based on this general organization, we can look at each component in a little more detail. We 
mentioned initialization before, and we saw that there was nothing mysterious there. However, since we 
need to prepare a new page (the first one) there and we need to do the same thing forthe other pages as 
part of the cyclic activity, it is clear that we can help keep things simple by constructing the preparation of 
each new page as a subprogram, so that the main program can treat it as a single "operation." (This 
subprogram will be named NEWPG.) 

Once a page has its labels and column headings, it must receive 50 lines of computed output. 
Accordingly, we can regulate this counting process simply by counting the lines as they are produced. A 
line counter (an integer variable named LINES) will be declared and used for this purpose. When a new 
page is prepared, LINES will be initialized to zero as part of that process. Then, every time a table entry is 
prepared and printed, LINES will be increased by 1 as part of that process. 

The activities relating to the production of each entry in the table do not require much discussion. For 
the sake of illustration, we shall set up a separate subprogram (TBLCPT) to compute the results and 
another one (TBLPRT) to print them. Since each computed result has to be rounded to five decimal places, 
we shall use a separate subprogram (ROUND) that can be invoked for each value to be rounded. Now, we 
have enough additional detail to define the program a little more specifically. This is shown in the diagram 
and pseudocode of Figure 15.3(b). Note (by comparison with Figure 15.3(a)) that the overall structure is 
unchanged; the only difference is that there are more details. 

Having attended to the organizational matters, we can turn our attention to the appearance of the 
table itself. First, we shall look at the numerical values themselves. 

1. Sincex is required to range from 1. oo to4. 99, we know that it will always be positive, and it will 
not require more than four columns for display. (The specification, in fact, can be defined as F4. 2.) 

2. The largest values in the table will be those in the last column (i.e., X**2+X**3). ForX=5, this 
value comes to 150, thereby telling us that we need three integer digits. The requirements call for five 
decimal places, and the values always will be positive. Consequently, we need 5+3+1 or nine positions 
(including space for the decimal point) to display these values, the format specification being F9. 5. To 
keep things consistent, we shall use the same format for the other three computed values (SQRT (X) , 
X* *2 and X* *3) even though there will be surplus columns. Of course, this will not affect the results, 
since FORTRAN will justify to the right and fill in the unused high order positions with blanks. Thus, each 
type of numerical result is defined and formatted. 

3. Now, adding all of this together, we see that the numerical values by themselves account for 
4+9+9+9+9 or 40 positions on each output line. We can display these nicely across an 80-column width 
by leaving 10 positions at the left and leaving 6 positions between each numerical value. That accounts for 
1 o + 4 * 6 or 34 more spaces. Thus, we have used 34 + 40 or 7 4 spaces, leaving another 6 spaces on the 
right. Of course, this is not the only possible "nice" format, nor is it necessarily the "nicest" (whatever 
that is). However, it is reasonable and it illustrates the process of preparing such a format. 
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By combining all of this formatting information that we have developed, we can write the format 
statement describing a line of the table. (We shall not forget the blank for carriage control): 

FORMAT (1X,10X,F4.2,6X,F9.5,6X,F9.5,6X,F9.5,6X,F9.5) 

which shortens to 

FORMAT (1X,10X,F4.2,4(6X,F9.5)) 

Each column needs a column heading above it, and we can define such headings now that we have the 
columns designed and positioned on the page. Since the typical printing device cannot display super­
scripts, we shall do the next best thing and use FORTRAN-like notation for the headings: 

x SQRT (X) 

It is a rather simple job to position these over their respective columns since we know exactly where the 
columns go. The format description works out to be the following: 

$ 
FORMAT (lX, 12X, 'X', BX, 'SQRT (X) ', 9X, 'X**2', llX, 

'X**3', 9X, 'X**2+X**3') 

That leaves the two labels at the top of the page. The first one (USEFUL NUMBERS: -TABLE 808) is 26 
characters long. If we enter that on an 80-position line, we have 80 - 26 or 54 spaces left over, half of 

which is 27. Thus, our format description for this label is 

FORMAT (lX, 27X, 'USEFUL NUMBERS: -TABLE 808') 

The second label (XVS. SQRT (X), X**2, X**3, andX**2+X**3) occupies41 positions. The left 
margin, then, is (80 - 41 )/2 or 21 (more or less) so that the format description is 

FORMAT (1X,21X, 'XVS. SQRT{X), X**2, X**3, X**2+X**3') 

Now, if we prefer, we can combine all of the labeling into a single glorious format description, skipping a 
line between the labels and two lines between the labels and column headings. We shall attach a 
statement number of 38 to it just to give it a number: 

38 FORMAT (lX, 27X, 'USEFUL NUMBERS: -TABLE 808' //lX, 
1 
2 
3 

41X, 'X VS. SQRT (X) , X**2, X**3, X**2+X**3' I I I 
lX, 12X, 'X', SX, 'SQRT (X) ', 9X, 'X**2', llX, 'X**3', 
9X, 'X**2+X**3') 

Since all the labels and headings are defined as part of the FORMAT statement, the associated output 
statement is simple: 

PRINT 38 

In one sense, this combined format statement is convenient because it places all of the labeling in one 
concentrated dose. However, if the programmer finds it easier to deal with separate print statements and 
format statements for each line of output, then that is the preferred approach. 

Having completed the formatting details, it is not terribly far-fetched to say that the rest of the 
program almost writes itself. As we gain more and more experience, you will continue to find that the time 

spent in looking at the problem, breaking it into manageable components, and preparing the way by 
means of informative pseudocode or flow diagrams is time well spent. The actual writing of the 
FORTRAN statements generally will turn out to be the least worrisome part of the entire process. (Don't 
shake your head; it really will turn out that way.) 

The main program, along with the supporting subprograms, is shown in Figure 15.4, and a fragment 
of the output is shown in Figure 15.5. 

Example 15.2 When somebody buys a house, the usual arrangement is for the purchaser to borrow 
most of the money. The loan is repaid over an agreed period of time during which the interest is a fixed 
percent of the amount that is still owed. Thus, when a borrower agrees, say, to a ten percent loan, and a 
payment is to be made every month, twelve months a year, then the interest charged during a given 
month is 10%/12 or 0.833 percent of the amount owed at that time. 
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C************************************************************ 
c EXAMPLE 15.1 - THE MAIN PROGRAM * 
C************************************************************ 
C THIS PROGRAM COMPUTES SQRT(X), X**2, X**3 AND X**2+X**3 * 
C FOR VALUES OF X RANGING FROM 1.00 TO 4.99 IN INCREMENTS * 
C OF 0.01. THE RESULTS ARE ROUNDED AND DISPLAYED TO FIVE * 
C DECIMAL PLACES (I.E., TO THE NEAREST 1.0E-5). * 
C THE FOLLOWING SUBROUTINES ARE USED: * 
C NEWPG:--PRINTS PAGE AND COLUMN HEADINGS ON A NEW PG * 
C TABCPT:--COMPUTES THE TABLE VALUES FOR A GIVEN X * 
C TABPRT:--FORMATS AND PRINTS A LINE OF THE TABLE * 
C ROUND:--A GENERAL PROCEDURE THAT ROUNDS A GIVEN * 
C VALUE TO A SPECIFIED NUMBER OF PLACES * 
C************************************************************ 
C LINES IS A VARIABLE USED TO COUNT THE LINES OF COMPUTED * 
C VALUES ON A GIVEN PAGE. THIS REGULATES USE OF NEWPG * 
C THE NAMES X, SQRTX, XSQ, XCUBE, X2AND3 (IT IS HOPED) ARE * 
C SELF-EXPLANATORY * 
C************************************************************ 

PROGRAM 
IMPLICIT 
REAL 
INTEGER*2 

EX1501 
NONE 
X,SQRTX,XSQ,XCUBE,X2AND3 
LINES 

CALL NEWPG(LINES) 

DO X=1.00,4.99,0.01 
IF (LINES .EQ. 50) CALL NEWPG (LINES) 
CALL TABCPT (X,SQRTX,XSQ,XCUBE,X2AND3) 
CALL TABPRT (X,SQRTX,XSQ,XCUBE,X2AND3,LINES) 

END DO 

STOP 
END (a) 

C************************************************************ 
c NEWPG * 
C************************************************************ 
C THIS SUBROUTINE STARTS A NEW PAGE OF THE TABLE AND PRINTS* 
C TWO LABELS AND A SET OF COLUMN HEADINGS ON THAT PAGE. IT * 
C ALSO INITIALIZES THE TABLE PRODUCTION PROCESS FOR THAT * 
C PAGE BY SETTING (RESETTING) THE LINE COUNTER (LINES) TO * 
C ZERO. * 
C************************************************************ 

SUBROUTINE 
IMPLICIT 

NEWPG (LINCNT) 
NONE 

INTEGER*2 LINCNT 
LINCNT = 0 
PRINT 18 

18 FORMAT ('1') 
PRINT 38 

38 FORMAT (1X,27X,'USEFUL NUMBERS:--TABLE 808'// 
1 1X,21X,'X VS. SQRT(X), X**2, X**3, X**2+X**3' 
2 ///1X,12X,'X',8X,'SQRT(X)',9X,'X**2',11X,'X**3', 
3 9X,'X**2+X**3'/) 

RETURN 
END (b) 



C******************************************************* 
c TABCPT * 
C******************************************************* 
C THIS SUBROUTINE PREPARES THE COMPUTED VALUES FOR A * 
C LINE OF PRINTOUT USING X AS A SINGLE INPUT VALUE * 
C AFTER COMPUTING EACH VALUE, TABCPT INVOKES ROUND, * 
C ANOTHER SUBPROGRAM THAT ROUNDS THAT VALUE * 
C******************************************************* 

SUBROUTINE TABCPT (V,SQRTV,VSQ,VCUBE,V2AND3) 
IMPLICIT NONE 
REAL V,SQRTV,VSQ,VCUBE,V2AND3 
SQRTV = ROUND(SQRT(V),5) 
VSQ = V*V 
VCUBE = V*VSQ 
V2AND3 = ROUND(VSQ+VCUBE,5) 
VSQ = ROUND(VSQ,5) 
VCUBE = ROUND(VCUBE,5) 

RETURN 
END (c) 

C************************************************************ 
c ROUND * 
C************************************************************ 
C THIS FUNCTION REQUIRES TWO ARGUMENTS: THE NUMBER TO BE * 
C ROUNDED, AND THE NUMBER OF PLACES TO WHICH IT IS TO BE * 
C ROUNDED. (EVEN THOUGH IT ALWAYS IS USED HERE WITH THE * 
C VALUE FOR THE SECOND ARGUMENT, IT WAS JUST AS EASY TO * 
C DESIGN IT FOR GENERAL USE, AND THAT USUALLY IS GOOD. * 
C************************************************************ 

FUNCTION ROUND (ARG,NPLACES) 
IMPLICIT NONE 
REAL ARG,TEMP 
INTEGER NPLCES 
TEMP = 10.0**NPLCES 
ROUND = NINT(TEMP*ARG)/TEMP 
RETURN 
END 

(d) 

C************************************************************ 
c TABPRT * 
C************************************************************ 
c 
c 

THIS SUBROUTINE PRINTS A LINE OF TABULAR OUTPUT PRODUCED * 
BY TABCPT. * 

C************************************************************ 
SUBROUTINE TABPRT (Y,SQRTY,YSQ,YCUBE,Y2AND3,LIN) 
IMPLICIT NONE 
REAL Y,SQRTY,YSQ,YCUBE,Y2AND3 
INTEGER*2 LIN 
PRINT (6,31) Y,SQRTY,YSQ,YCUBE,Y2AND3 

31 FORMAT {1X,10X,F4.2,4(6X,F9.5)) 
LIN = LIN+1 
RETURN 
END (e) 

RGURE 15.4 (a) Main Program for Example 15.1. (b) NEWPG Subroutine for Example 15.1 . (c) 
TABCPT Subroutine for Example 15.1. (d) ROUND Function for Example 15.1. (e) TABPRT Subroutine 
for Example 15.1. 415 



416 LIST-DIRECTED INPUT/OUTPUT 

~~~~~~~~~USEFUL NUMBERS:--TAB~L~E_8~0~8=--~~~~~~~~~­

~---~--~~X~VS. SQRT(X), X**2, X**3, X**2+X**3 
----~-------------------

x SQRTfX) X**2 X**3 X**2•X**3 

------------

FIGURE 15.5 A Table of Useful Numbers Produced by a Computer. 

to arrange for such payments is to agree that the borrower will pay back a certain fixed amount of the loan 
each month.To that amount will be added the interest due atthat point, and the payment for that month will 
be the sum of those two items. Suppose, for example, that somebody borrows $12000 to be repaid in 24 
monthly installments at 12% interest. The agreement is that each month the borrower will pay back $500 of 
what he owes, i.e., $500 of the principal. Since it is a 12% loan, the interest due in any month is 12%/12 or 
1 percent of the unpaid balance. Thus, at the time of the first payment, the interest is 1 % of $12000, or $120. 
That makes the first payment $500 + $120 or $620. The next month, the unpaid balance is $11500 



EXAMPLES 

($12000 - the $500 repaid during the first month), so that the interest is 1 % of $11500 or $115. Thus, the 

second payment is $500 + $115, or $615. The rest of the payments are computed in the same way, so 

that when the 24th and final payment is due, it will be the last $500 plus the interest due on that $500 (i.e., 

$5), or $505. 
For various reasons, most people (lenders as well as borrowers) do not like this type of repayment 

plan. One obvious reason is that each payment is different, making it easier for everyone to become 

confused. Thus, instead of setting the principal payment to be a fixed amount each month, the standard 

practice is to set the total payment at a fixed amount each month. Then, both the principal and interest 

amounts change with each payment, but the two figures always add up to the same total. 
What usually happens is that we know the size of the loan (LOAN), the interest rate in terms of 

percent per year (RATE), and the number of monthly payments (NUMPAY). From RATE we can determine 

the monthly interest rate as a fraction (MTHINT): 

MTHINT = O.OlRATE 
12 

Then, the size of each (equal) monthly payment (PAY) can be computed as follows: 

PAY = MTHINT (LOAN) [ (l +MTHINT)NUMPAY ] 
( 1 + MTHINT)NUMPAY - 1 

As described before, each payment breaks up into two pieces: an amount (PR INC) that goes to repay part 

of the actual loan, and an amount (INTRST) that covers the interest due. At any given time, the borrower 

still owes BALANC, so that the interest due on that balance is 

INTRST = MTHINT * BALANC 

Having taken care of the interest, we calculate whatever is left of the monthly payment and use it toward 

repaying he principal: 

PRINC = PAY - INTRST 

As a result of this payment, the balance is reduced by PR INC, and the interest for the next payment can be 

based on that new balance. The entire process starts, of course, with the fact that at the time of the first 

payment 

BALANC = LOAN 

Having said all of that, we can turn our attention to the problem itself. The Cinderblock Building and 

Loan Company wants to give each of its borrowers a printout showing the payment schedule. (Some of 

Cinderblock's competitors sell such schedules to their clients.) For each payment, the printout is to give 

the payment number; the balance still owed (not counting that payment); the amount of the payment 

credited toward that balance; the amount of the payment going for interest; and the new balance 

resulting from that payment. As a matter of convenience, the printout is to show two payments on each 

line and 96 payments on each page (unless there are fewer than 96 to be shown). Each page is to include 

headlines and column labels in keeping with Cinderblock's tradition of dignity and service. The printout is 

to be based on a page that is 120 columns wide. 
Crandall F. (Chip) Block (whose grandfather, Selwyn F. Block, started the company with B. Harlan 

Cinder) wanted to take a personal hand in designing the printout, and he came up with the layout shown in 

Figure 15.6. Of course, he left the details to the technical expert (you), but he did supply the following 

guidelines: 

1 . Cinderblock will never agree to a loan with more than 500 payments. 

2. The size of a loan will not exceed $999999.00, and it always will be in whole dollars. 

3. Any loan accepted by Cinderblock must work out to a monthly payment no greater than 
$9999.99. (Don't ask me why; ask Crandall F. Block.) 

Additional information is available with regard to input. Data for each loan is prepared on a single line with 
the following format: 

column(s) 

1-6 
11-30 

description 

Loan number (LOANID), a six-digit integer 
Borrower's last name (LASTNM), left justified 

417 
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31-40 
41-50 
55-60 
61-64 

68-70 

EXAMPLES 

Borrower's first name (FNAMEl), left justified 
Borrower's spouse's/partner's/cohort's/first name (FNAME2), left justified 
Amount of the loan (LOAN) in dollars 
Duration of the loan in years (61-62) and months (63-64) (YRS, MOS). Thus, a 16Yi 

year loan would be recorded as 1606 in columns 61-64. 
Interest rate (RATE), to the nearest tenth of a percent. Thus, a 12% loan would be 

recorded as 12 o and a 6Yi % loan (dreaming, just dreaming) would be recorded as 

065. 

Now we can begin to design the program. Using the same general approach we did in Example 15.1, we 

see that the overall sequence of events can be described as a simple loop, in which each cycle produces a 

payment schedule for a new borrower. That schedule, in turn, consists of one or more pages. As in the 

previous example, each page consists of a set of fixed headings followed by a set of computed values. 

However, the format is more involved, and the last page of a given payment schedule is not necessarily 

complete. (It may have fewer than 96 entries.) The overall organization is shown in Figure 15.7(a). 

Using this organization as a basis, we can begin to divide the program into separate components and 

describe what each one is to do. 

1. It is clear that the printing of page and column headings can be a separate activity. Accordingly, a 

subprogram (NEWPG) will attend to that. 

2. Whenever the program begins processing for a new client, it must initialize (or reinitialize) the 

system. Without knowing the details, we can see that this involves reading the client's input, setting the 

names properly in the page headings (so that NEWPG can print them), computing the monthly payment 

(which needs to be done only once), and initializing the balance due. While such combinations may or may 

not require several subprograms in different situations, it still is helpful to think of the entire initialization 

process as a single "operation." This will involve a CALL to a subroutine named READER to bring in the 

first line, after which the rest of the initialization will be provided by a subprogram named INIT. Just how 

simple or complicated !NIT needs to be will be hidden from the main program. As far as the main 
program is concerned, it invokes INIT, and when INIT returns, the initialization is done. The input (via the 

subroutine READER) is kept separate (i.e., it is not included in INIT so that the ENDFILE processing can 

be handled clearly and directly by the main program. For purposes of illustration, INIT will attend to its 

work by invoking two other subprograms: 

(1) NEWPG will print the headings for the first page. 

(2) ROUND, set up as a function, will round the various figures to the nearest cent. 

3. The program must divide each payment into a part that goes for interest and the remainder, which 

helps pay off the principal. The new balance also must be prepared as part of that process. Accordingly, 

another subprogram (UPDATE) will perform those duties. Since each printed line shows two payments, 

UPDATE will be designed to prepare results for two payments. 

4. Finally, as expected, a separate subprogram (PAYPRT) will be used to print a line in the payment 

schedule. 

Now we can see that the information that we developed when we followed this line of thought leads us to 

recognize some additional features that the program can include: 

1. As was true in the previous example, we can use a line counter to keep track of the printout as it 

works its way down the page. 

2. As we already have determined, UPDATE will prepare results for two payments. That means that 

we shall find it necessary to keep the data for both payments until the entire line is printed. We can handle 

this conveniently by making each of the variables INTRST, PR INC and BALANC a two-element array. 

3. Since the output format is "doubled up," the set of column headings appears twice. For 
illustration, then we shall define and store one set of column headings by means of the PARAMETER 

declaration and merely print the set twice. 

Now, there are enough details to develop the pseudocode or N-S diagram further, as shown in Figure 
15.7(b). We can see that the diagram (or pseudocode) is not that far removed from the actual program 

statements that finally must be produced. This relationship is not fictional; it reemphasizes the fact that, 
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420 LIST-DIRECTED INPUT /OUTPUT 

Define variables 

Read the first client's input card 

While there are clients to process: 

"Define variables." 
Reset for a new client "Read the first client's input card." 

while 

~ There still are clients to process: Do for every payment: 
"Reset the program for a new client." 
do for every payment: 

~ge~ if 
the current page is full 

then 
"Start a new page." 

else 
endif 
"Prepare a line of output." 
"Print the next output line." 

yes 

I Start new page 

Prepare next output line 

Print next output line 

end do 
"Read the next client's data." 

endwhile 
"Stop." Read the next client's data 
FIGURE 15. 7 (a) Overall Representation of 
Example 15.2. 

Stop 

by following this systematic approach to program design, we can work our way to a clear, reliable program 
in such a manner that the actual writing of the statements is the least troublesome part of the job. 

We shall turn our attention to PAYPRT, where much of the format design needs to take place. Using 
Crandall's information, we can see that the output for each set of payment data requires the following 
space: 

payment number: 
amount still due: 
principal amount: 
interest amount: 
new balance: 

3 columns 
9 columns (decimal pt. included) 
7 columns 
7 columns 
9columns 

Thus, we have a total of 35 columns, or 70 columns of actual printout for the two sets. Since we are 
working with a 120-column width, that leaves us with 50 columns to distribute in a nice way. We need 
four separations between the five columns of data in each payment set, or eight separations for the two 
sets. If we make each separation four positions wide, that requires 8*4 or 32 columns. A larger separation 
between the two sets on a line will make the display easier to read, so we shall use eight blank positions 
for that purpose. This leaves us with ten unused columns, giving us a margin of five positions on either 
side of the page. 

When all of that is put together, the format description takes shape: 

FORMAT (1X,5X,I3,4X,F9.2,4X,F7.2,4X,F7.2,4X,F9.2,8X, 
1 I3,4X,F9.2,4X,F7.2,4X,F7.2,4X,F9.2) 

There is little that can be done to simplify the description: 

FORMAT (1X,5X,I3,4X,F9.2,2(4X,F7.2) ,4X,F9.2,8X, 
1 I3,4X,F9.2,2(4X,F7.2),4X,F9.2) 

We can play some games with the description, and we shall do so for illustrative purposes. Rewriting the 



"Define LOANID, LOAN, RATE, MTHINT, INTRST, BALANC, NEWBAL, 
NUMPAY, YR, MO, LASTNM, FNAMI, FNAM2, LINE, SIGNL." 

"Initialize SIGNL." 
"Use READER to bring in the first client's data." 
while 

SIGNL is not zero: 
"Use INIT to reset the program for the new client." 
do for every payment: 

if 
LINE is 48 

then 
"Use NEWPG to start a new page of output." 

else 
endif 
if 

the current payment number is even 
then 

"Use UPDATE to prepare output for a pair of payments." 
"Use PAYPRT to print an output line for two payments." 

else 
if 

this is the final payment 
then 

"Use UPDATE to prepare the final payment's output." 
"Use PA YPRT to print the final line (one payment)." 

else 
endif 

endif 
enddo 
"Use READER to bring in the next client's data." 

endwhile 
"Print terminating message." 
"Stop." 

FIGURE 15. 7 (b) Representation of Example 15.2 Showing Breakup into Subprograms. 

EXAMPLES 

5X as lX, 4X, rewriting the sx as 4X, 4X, and adding another 4X at the end, we convert the description to 

SP 1 
FORMAT (1X,1X,4X,I3,F9.2,2(4X,F7.2),4X,F9.2,4X, 

1 4X,I3,F9.2,2(4X,F7.2),4X,F9.2,4X) 

Now, this version can be rewritten as 

FORMAT (1X,1X,2(4X,I3,F9.2,2(4X,F7.2),4X,F9.2,4X)) 

It is up to you to decide whether this really is a simplification or just a more concise description. 

Once the values themselves have been positioned, we can place the column headings over them 

with little difficulty, thereby giving us a starting point for the layouts needed in NEWPG. To help make this 

placement easier (and there never is anything wrong in doing that), we shall summarize the data format 

just developed by showing how the positions of the output line are used: 

position(s) 

1-5 
6-8 

13-21 

description 

left margin 
payment number 
unpaid balance 
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Define LOANID, LOAN, RA TE, MTHINT, INTRST, BALANC, NEWBAL, 
NUMPAY, YR, MO, LASTNM, FNAMJ, FNAM2, LINE, SIGNL 

Initialize SIGNL 

I READER I Read the first client's data 

While SIG NL "f 0: 

I INIT I Reset program for a new client 

~ Do for each of NUMPA Y payments: 

~NE~ yes 

I NEWPG I Start a 
new page 

~pay~ yes 

~/<. I UPDATE I Prepare output 
yes 

for current and 

I UPDATE I 
next payments 

Prepare output 
for final I PAYPRT I Print output 

payment line for current 
and next 

payments 

I PAYPRT I 
Print output 
for final 
payment 

I READER I Read data for the next client 

Print terminating message 

Stop 

422 FIGURE 15.7 (b) (Continued) 



26-32 
37-43 
48-56 
65-67 
72-80 
85-91 
96-102 

107-115 
116-120 

payment amount credited to principal 
payment amount credited to interest 
new balance 
payment number 
unpaid balance 
payment amount credited to principal 
payment amount credited to interest 
new balance 
right margin 

EXAMPLES 

Since we know what the column headings are to look like (Crandall told us), we can determine exactly 

where these headings should be positioned from the table just shown. See Display 15.1. 

Display 15. 1 

first line of headings: 

columns heading columns heading 

5-8 PYMT 64-67 PYMT 
16-18 BAL 75-77 BAL 

27-31 PR INC 86-90 PR INC 
37-42 INTRST 96-101 INTRST 
51-53 NEW 110-112 NEW 

second line of headings: 

columns heading columns heading 

6-8 NO. 65-67 NO. 
16-18 DUE 75-77 DUE 

28-30 AMT 87-89 AMT 
39-41 AMT 98-100 AMT 
51-53 BAL 110-112 BAL 

From this point, it is just a matter of careful counting to make sure the format descriptions match the 

requirements. Since we decided to store the column headings as character constants (with the 

PARAMETER declaration), there will be no literal specifications, and our FORMAT statements (one for each 

line of headings) will look like those shown in Display 15.2. 

Display 15.2 

FORMAT (1X,4X,A4,7X,A3,8X,A5,5X,A6,9X,A3,l0X, 
1 A4,7X,A3,8X,A5,5X,A6,9X,A3) 

FORMAT (1X,5X,A3,7X,A3,9X,A3,8X,A3,9X,A3,11X, 
1 A3,7X,A3,9X,A3,8X,A3,9X,A3) 

Note that indentation can be used to make it easier to check the formats. 

first 
line 

second 
line 

The other headings to be placed at the top of each page do not involve anything particularly new, if 

you followed the previous example carefully. Each heading has to be centered (this time using 120 

positions), and that process was described earlier. One thing that might be pointed out concerns the 

heading containing the people's names. Since we know (from the input format) that the last name has 20 

characters and each of the two first names has 10 characters, we can add those lengths into the overall 
length of that heading (remembering to include a blank position on each side of each name). Once that is 

done, the entire heading can be centered as before. 
The rest of the computations are straightforward, so we can proceed with the preparation of the 

actual statements. In doing so, we become aware of the fact that there may be a situation in which some 

loan is to be repaid with an odd number of installments. There are many ways to handle this. (Rejection of 
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C************************************************************ 
c EXAMPLE 15.2 - THE MAIN PROGRAM * 
C************************************************************ 
C THIS PROGRAM COMPUTES AND PRINTS LOAN PAYMENT SCHEDULES * 
C FOR MORTGAGES TO BE REPAID ON A FIXED SIZE PAYMENT BASIS * 
C WITH THE INTEREST BEING A FIXED PERCENTAGE OF THE UNPAID * 
C BALANCE. * 
C************************************************************ 
C LOANID: 
C LOAN: 
C RATE: 
C MTHINT: 
C PAY: 
C PRINC: 
c 
C INTRST: 
c 
C BALANC: 
c 
C NEWBAL: 
C NUMPAY: 
C YR,MO: 
c 
C LASTNM: 
C FNAM1,2: 
C LINE: 
C SIGNL: 

THE SIX-DIGIT LOAN IDENTIFICATION NUMBER * 
THE AMOUNT OF THE LOAN * 
THE INTEREST RATE, ANNUAL PERCENT * 
THE INTEREST RATE, MONTHLY FRACTION * 
THE AMOUNT OF A MONTHLY PAYMENT * 
(1) AND (2); EACH IS AN AMOUNT OF A GIVEN * 
PAYMENT CREDITED TOWARD REPAYMENT OF THE LOAN * 
(1) AND (2); EACHIS AN AMOUNT OF A GIVEN * 
PAYMENT COVERING THE INTEREST DUE THEN * 
(1) AND (2); EACH IS THE AMOUNT OF PRINCIPAL * 
STILL TO BE REPAID AT THAT POINT * 
SAME USAGE AS BALANC * 
THE NUMBER OF LOAN PAYMENTS (INSTALLMENTS) * 
THE NUMBER OF YEARS AND MONTHS OVER WHICH * 
A PARTICULAR LOAN IS TO BE REPAID * 
BORROWER'S LAST NAME * 
FIRST NAMES * 
A LINE COUNTER THAT REGULATES NEW PAGES * 
A SIGNAL FOR END-OF-FILE PROCESSING * 

C************************************************************ 

1 

PROGRAM 
IMPLICIT 
REAL 

INTEGER*4 
INTEGER*2 
CHARACTER 

SIGNL = 1 

EX1502 
NONE 
LOAN,RATE,MTHINT,PAY,PRINC(2),INTRST(2), 
BALANC(2),NEWBAL 
LOAN ID 
YR,MO,NUMPAY,PAYNUM,LINE,SIGNL 
LASTNM*20,FNAM1*10,FNAM2*10 

CALL READER (LOANID,LASTNM,FNAM1,FNAM2,LOAN,YR,MO,RATE,SIGNL) 

DO WHILE (SIGNL .EQ. 0) 
CALL INIT (LASTNM,FNAM1 ,FNAM2,LOANID,LOAN,YR,MO,RATE,MTHINT, 

NUMPAY,PAY,NEWBAL,LINE) 
DO PAYNUM = 1, NUMPAY 

IF (LINE .EQ. 48) CALL NEWPG (LASTNM,FNAM1,FNAM2,LOANID, 
LOAN,RATE,NUMPAY,PAY,LINE) 

c ********************************************************** 
C * HERE WE SPECIFY TWO DIFFERENT COMPUTATION AND PRINTING* 
C * OPERATIONS DEPENDING ON WHETHER NUMPAY IS ODD OR EVEN * 
C * SINCE UPDATE AND PAYPRT BOTH ARE SET UP TO WORK ON TWO* 
c 
c 
c 
c 

* PAYMENTS, THEY NEED TO BE INVOKED ONLY WHEN PAYNUM, 
* THE LOOP INDEX, IS AN EVEN NUMBER. IF IT IS AN ODD 
* NUMBER AND IT HAPPENS TO BE THE LAST CYCLE, THEN WE 
* KNOW THAT THE LAST OUTPUT LINE WILL HAVE ONLY ONE 

* 
* 
* 
* C * PAYMENT ON IT. ACCORDINGLY, THE FIRST ARGUMENTS TO * 

C * UPDATE AND PAYPRT ARE USED TO CONTROL THEIR RESPECTIVE* 
c * OPERATIONS. * c ********************************************************** 

IF (MOD(PAYNUM,2) .EQ. 0) THEN 
CALL UPDATE (0,PAY,MTHINT,NEWBAL,PRINC,INTRST,BALANC) 
CALL PAYPRT (0,PAYNUK,NEWBAL,PRINC,INTRST,BALANC,LINE) 

ELSE IF (PAYNUM .EQ. NUMPAY) THEN 
CALL UPDATE (1,PAY,MTHINT,NEWBAL,PRINC,INTRST,BALANC) 
CALL PAYPRT (1,PAYNUM,NEWBAL,PRINC,INTRST,BALANC,LINE) 

ELSE 
END IF 

END DO 
CALL READER (LOANID,LASTNM,FNAM1,FNAM2,LOAN,YR,MO,RATE,SIGNL) 

END DO 

99 WRITE (6,66) 
66 FORMAT ('1'///1X,10X,'NORMAL TERMINATION. END OF RUN') 

STOP 
END 

FIGURE 15.8 (a) Main Program for Example 15.2. 



C************************************************************ 
c READER * 
C************************************************************ 
c THIS SUBROUTINE READS AN INPUT LINE FOR A LOAN USING THE * 
c FOLLOWING FORMAT: * 
c COLS 1-6: LOAN I.D. COLS 55-60: LOAN AMOUNT * 
c COLS 11-30: LAST NAME COLS 61-62: YEARS TO PAY * 
c COLS 31-40: FIRST NAME(1) COLS 63-64: MNTHS TO PAY * 
c COLS 41-50: FIRST NAME(2) COLS 68-70: INTEREST RATE * 
C************************************************************ 

SUBROUTINE 
IMPLICIT 
REAL 
INTEGER*4 
INTEGER*2 
CHARACTER 

READER (ID,LAST,F1,F2,AMT,Y,M,RT,SGN) 
NONE 
AMT,RT 
ID 
Y,M,SGN 
LAST*20,F1*10,F2*10 

SGN = 1 
READ (5,15,END=26) ID,LAST,F1 ,F2,AMT,Y,M,RT 

15 FORMAT (I6,4X,A20,2A10,4X,F6.0,2I2,3X,F3.1) 
GO TO 77 

26 SGN = 0 
77 RETURN 

END (b) 

C************************************************************ 
c !NIT * 
C************************************************************ 
C THIS SUBROUTINE SETS (RESETS) THE PROCESS FOR A NEW LOAN.* 
C SPECIFICALLY, IT COMPUTES THE NUMBER OF MONTHLY PAYMENTS,• 
C DETERMINES THE PAYMENT SIZE, INITIALIZES THE AMOUNT OWED,* 
C AND PRINTS THE FIRST SET OF PAGE AND COLUMN HEADINGS. * 
C************************************************************ 

SUBROUTINE !NIT (L,F1,F2,ID,AMT,Y,M,INR,MTHRT, 

c 

1 NP,P,OWED,LNS) 
IMPLICIT NONE 
REAL 
INTEGER*4 
INTEGER*2 
CHARACTER 

NP = 12*Y + M 

AMT,INR,MTHRT,P,OWED,TX 
ID 
Y,M,NP,LNS 
L*20,F1*10,F2*10 

----------NUMBER OF PAYMENTS----------

C ----------MONTHLY INTEREST----------
MTHRT = 0.833333E-3*INR 

C ----------PAYMENT AMOUNT----------
TX = (1 .O+MTHRT)**NP 
P MTHRT *AMT* (TX/(TX-1)) 
P = ROUND (P,2) 

C ----------AMOUNT OWED----------

c 
OWED = AMT 

----------START PAGE---------­
CALL NEWPG (L,F1 ,F2,ID,AMT,INR,NP,P,LNS) 
RETURN 
END (c) 

C************************************************************ 
c ROUND * 
C************************************************************ 
C THIS IS THE SAME FUNCTION USED IN THE PREVIOUS EXAMPLE. * 
C************************************************************ 

FUNCTION ROUND (ARG,NPL) 
IMPLICIT NONE 
REAL ARG,T 
INTEGER*2 NPL 
T = 10.0**NPL 
ROUND = NINT(T*ARG)/T 
RETURN 
END (d) 

FIGURE 15.8 (b) READER Subroutine for Example 15.2. (c) !NIT Subroutine for Example 

15.2. (d) ROUND Function for Example 15.2. 

(Continued) 
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C************************************************************ 
c NEWPG * 
C************************************************************ 
C THIS SUBROUTINE PRINTS PAGE AND COLUMN HEADINGS. EACH * 
C TIME A NEW PAGE IS NEEDED, NEWPG WILL RESET THE LINE * 
C COUNTER AS PART OF THE PROCESSING. * 
C************************************************************ 

1 
2 

SUBROUTINE NEWPG (L,F1,F2,ID,AMT,INTR,NUM,PAYAMT) 
IMPLICIT NONE 
REAL 
INTEGER*4 
INTEGER*2 
CHARACTER 

AMT,INTR,PAYAMT 
ID 
NUM 
L*20,F1*10,F2•10, 
CHD11*4,CHD12*3,CHD13*5,CHD14*6,CHD15•3, 
CHD21•3,CHD22•3,CHD23*3,CHD24*3,CHD25*3 

PARAMETER 
1 

(CHD11='PYMT',CHD12='AMT',CHD13='PRINC', 
CHD14='INTRST',CHD15='NEW',CHD21='NO.', 
CHD22='DUE' ,CHD23='AMT' ,CHD24='AMT' ,CHD25='BAL') 2 

WRITE (6,11) F1,F2,L 
11 FORMAT ('1'//1X,43X,'CINDERBLOCK BUILDING AND LOAN CO.'/ 

1 1X,43X,'PERSONALIZED MORTGAGE PAYMENT SCHEDULE'/ 
2 1X,48X ,_'PREPARED ESPECIALLY FOR' I I 
3 1X,37X,A10,' AND ',A10,1X,A20) 

WRITE (6,21) ID,AMT,INTR,NUM,PAYAMT 
21 FORMAT (1X,5X,'LOAN NO. ',I6,5X,'AMOUNT OF LOAN: ',FB.2, 

1 SX,'RATE: ',F5.2,5X,'NO. OF PAYMENTS: ',I3,5X, 
2 'PAYMENT: ',F7.2) 

WRITE (6,31) CHD11,CHD12,CHD13,CHD14,CHD15,CHD11,CHD12,CHD13, 
1 CHD14,CHD15 

31 FORMAT (//1X,4X,A4,7X,A3,8X,A5,5X,A6,9X,A3,10X, 
1 A4,7X,A3,8X,A5,5X,A6,9X,A3) 

WRITE (6,41) CHD21,CHD22,CHD23,CHD24,CHD25,CHD21,CHD22,CHD23, 
1 CHD24,CHD25 

41 FORMAT (1X,5X,A3,7X,A3,9X,A3,8X,A3,10X,A3,11X, 
1 A3,7X,A3,9X,A3,8X,A3,10X,A3) 

RETURN 
END (e) 

C************************************************************ 
c UPDATE * 
C************************************************************ 
C THIS SUBROUTINE PREPARES A SET OF ENTRIES FOR A PRINT * 
C LINE. IN MOST CASES, THAT LINE WILL SHOW DATA FOR TWO * 
C PAYMENTS. HOWEVER, IF THE TOTAL NO. OF PAYMENTS IS ODD, * 
C THE LAST LINE WILL HAVE DATA FOR ONLY ONE PAYMENT. THIS * 
C IS MONITORED BY THE INVOKING PROGRAM, AND UPDATE CHECKS * 
C THE MODE OF OPERATION BY LOOKING AT THE FIRST ARGUMENT. * 
C************************************************************ 

SUBROUTINE UPDATE (SW,P,MNTH,NEWAMT,PR,INT,BAL) 
IMPLICIT NONE 
REAL P,MNTH,NEWAMT,PR(2),INT(2),BAL(2) 
INTEGER•2 SW 

BAL(1) = NEWAMT 
INT(1) : ROUND (MNTH*BAL(1),2) 
PR ( 1 ) = P - INT ( 1 ) 
BAL(2) = BAL(1) - PR(1) 

C ----------HALF LINE TEST----------
IF (SW .EQ. 1) GO TO 77 

INT(2) =ROUND (MNTH•BAL(2),2) 
PR(2) = P - INT(2) 
NEWAMT = BAL(2) - PR(2) 

77 RETURN 
END (f) 

FIGURE 15.8 (e) NEWPG Subroutine for Example 15.2. (f) UPDATE Subroutine for Example 15.2. 



C************************************************************ 
c PAYPRT * 
c************************************************************ 
C THIS SUBROUTINE PRINTS A LINE IN THE PAYMENT TABLE. EACH * 
C LINE SHOWS DATA FOR TWO PAYMENTS UNLESS THE TOTAL NO. OF * 
C PAYMENTS IS AN ODD NUMBER, IN WHICH CASE THE LAST LINE * 
C (AND ONLY THAT LINE) WILL HAVE DATA FOR ONE PAYMENT. * 
C PAYPRT DETERMINES WHICH OF THESE TWO OPERATING MODES IT * 
C WILL FOLLOW BY LOOKING AT ITS FIRST ARGUMENT. * 
c************************************************************ 

SUBROUTINE PAYPRT (FLIP,NUM,NEW,PR,IN,BALN,LN) 
IMPLICIT NONE 
REAL NEW,PR(2),IN(2),BALN(2) 
INTEGER*2 FLIP,NUM,LN 

IF (FLIP .EQ. 0) THEN 
WRITE (6,48) NUM-1,BALN(1),PR(1),IN(1),BALN(2), 

NUM,BALN(2),PR(2),IN(2),NEW 
LN = LN + 1 

ELSE 
WRITE (6,58) NUM,BALN(1),PR(1),IN(1),BALµ(2) 

END IF 

48 FORMAT (1X,5X,I3,F11.2,2(4X,F7.2),4X,F9.2,11X, 
1 I3,F11.2,2(4X,F7.2) ,4X,F9.2) 

58 FORMAT (1X,5X,I3,4X,F9.2,2(4X,F7.2),4X,F9.2) 

RETURN 
END 

FIGURE 15.8 (g) PAYPRT Subroutine for Exarr,iple 15.2. 

SUMMARY 

the input is not one of the acceptable ways.) The method selected for this example is relatively 

simple-minded, but it is clear and effective. The subprograms UPDATE and PAYPRT each can operate in 

one of two ways. Most of the time, UPDATE will prepare two sets of payment data and PA YPRT will print a 

line with two sets of payment data. However, if the situation requires it, UPDATE will prepare only one set 

(and, of course, it will be the final set), andPAYPRTwill print a lineshowingonlythatsingleset. (Of course, 

it will be the last line for that loan schedule.) 
The statements, supported by comments, are shown in Figure 15.8. 
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Use of edit-directed input or output gives the programmer complete control over the 1s.& SUMMARY 

appearance and interpretation of the data brought into the processor or sent from it. To 
exercise this control, the programmer must describe in exact detail the treatment of each 
character in the input record (e.g., each column of an input line) or output record (e.g., 
each space on a line of printout). 

These descriptions take the form of format specifications constructed by the pro­
grammer and used by FORTRAN in conjunction with edit-directed READ or WRITE 

statements. A typical way of setting up edit-directed input/output is as follows: 

READ/WRITE (unit,fsnum) data list 

where unit is the number of the unit to or from which the data are being transmitted and 
fsnum is the label attached to another statement in that program or subprogram. That 
other statement contains the format description, and it has the following form: 

fsnum FORMAT (format specification list) 

The format specification list consists of a series of individual descriptions, each one of 
which instructs FORTRAN how to treat a particular data item or what to do at a 
particular position in a record. When the input or output actually occurs, FORTRAN 
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matches the format specifications against the items in data list, so that each item is 
processed in accordance with the information found in the corresponding format de­
scription. 

For instance, assuming the appropriate declarations, the statements given below 

READ (5,17) REALV,INTGR,REALV2,LETRS,INTGR2 
17 FORMAT (3X,F6.2,I4,4X,F6.4,2X,Al0,5X,I2) 

instruct FORTRAN to read (from unit 5) a data list consisting of five items. The way the 
input is to be interpreted is to be found in statement 17. Statement 17 contains the format 
description, which consists of nine format specifications. Five of these specifications are' 
concerned with the five data items, and the other four guide FORTRAN to the proper 
positions in the record in order for the input process to be consistent with the way the data 
happen to be prepared. Specifically, this format will produce the following results: 

1. The 3X causes the first three positions in the input record (i.e., the first three 
columns in the record or terminal input line) to be ignored. Thus, FORTRAN is 
ready to read starting from the fourth column. 

2. The F6. 2 tells FORTRAN to treat the next six columns (they happen to be 
columns 4-9) as a real number with two decimal places. That places FORTRAN 
at column 10. 

3. The 14 causes the next four columns (10-13) to be read as a four-digit integer. 
Thus, the next input position is column 14. 

4. The 4X repositions FORTRAN four columns further in the record. In other 
words, columns 14-17 are ignored, and FORTRAN is ready to read starting in 
column 18. 

5. TheF6. 4 brings in columns 18-23 (i.e., the next six columns) and their contents 
are treated as a real number with four decimal places. 

6. The 2X instructs FORTRAN to ignore the next two columns, so that it is ready to 
read the next item at column 26. 

7. The Al O causes the next ten columns to be read as a 10-character string. 
8. The 5X tells FORTRAN to skip over the next five columns, so that the next 

column of interest is column 41. 
9. Finally, the 12, which is matched against the fifth (and last) data item (INTGR2) 

brings in the next two columns (41-42) as a two-digit integer. 
10. The rest of the line is ignored because the data list has been satisfied. 

FORTRAN provides a variety of format specifications, so that a wide range of data 
organizations can be described precisely and completely. In addition to the specifications 
themselves, there are various shorthand forms so that, in many cases, it is possible to 
express lengthy descriptions concisely. 

1. A program contains the following declarations: 

REAL Vl,SAV,TAY,BRKT 

If we prepared a data line that looked like this: 

647230014787656432100421102324547874523100042328E7898965654895210320323002344'50 

show what the values in the variables will be as a result of each pair of independent statements given 
below. (Note that some of the statements may be illegal): 

(a) READ (5, 8) Vl, SAV (b) READ (5, 9) SAV, Vl 
8 FORMAT (F2.0,F3.0) 9 FORMAT (F2.0,F3.0) 



(c) READ (5, 10) Vl, TAY, BKRT 
10 FORMAT (F3.l,3X,F4.1,F3.2) 

(e) READ (UNIT=5, FMT=81) Vl, SAV, BKRT, TAY 
81 FORMAT (4X,3F6.2,4X,F8.3) 

(g) READ ( 5, 51) Vl , BKRT 
31 FORMAT (2(2X,F5.l,5X,F2.1)) 

(i) READ (5, 71) BKRT, TAY, Vl 
71 FORMAT (3X,I3,2(2X,F4.l)) 

2. A program contains the following declarations: 

REAL 
INTEGER 

Gl, Y 
ALT,NUM,HI,LOW 

Suppose we had a set of data that looked like this: 

(d) 

(f) 
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READ 11,Vl,SAV,BKRT,TAY 
11 FORMAT (5X,F8.4,3X,F5.l,4X,F5.4) 

READ (5,31) Vl,BKRT,TAY,SAV 
FORMAT (2(2X,F5.l,5X,F2.1)) 31 

(h) READ (5,61) TAY,SAV,BKRT 
61 FORMAT (3X,F7.3) 

429 

10365.420144517698.00267543298.85327572310022459865320#1427584302013654175468331 

0098134670.587731021004632632632545578114022257.68577540021354167500899001175310 

43758691200477530621422300856343115.20704065331303887336023398.20448731415963027 

Show the values that will be stored in each variable as a result of the following independent statements 
or sequences of statements. (Note: some of these may not work.) Indicate which ones will not work and 
show why: 

(a) READ (5, 15) ALT,NUM,HI,Gl 
15 FORMAT (I3,2X,2(I3,2X),Fl.1) 

(c) READ (5,16) NUM,ALT,HI,LOW,Y,Gl 
16 FORMAT (5X, 2 (3X, I2, 2X, I3) /3X, F8. 3) 

(e) READ (5,20) ALT,HI,NUM,LOW,Y,Gl 
20 FORMAT (2X,2(I3,2X,I2,3X)/2(3X,F5.2)) 

(g) READ (5, 23) ALT, HI, LOW, ALT, Y 
23 FORMAT (3X,5X/2X,2(2X,3X)) 

3. A program contains the following declarations: 

REAL 
INTEGER 
CHARACTER 

BTS(8) ,SK(4,3) ,FAL,T3 
AR,CS(5) 
WRD*4,CRE*2,ALT*6 

These lines are about to be read: 

(b) 

(d) 

(f) 

15 

17 

READ (5,15) NUM,Gl,Y,HI,LOW 
FORMAT (2(X2,I3,X3,F3.l),I4) 
READ (5,17) NUM,Y,ALT,HI,Gl,LOW 
FORMAT (3X,2(I2,3X,F4.l,3X,I2,2X)) 
READ (5,21) ALT,Gl 
READ (5,22) NUM,HI 
READ (5, 21) LOW, Y 

21 FORMAT (3X,I4,F5.3) 
22 FORMAT (7X,I4,8X,I3) 

JK832014220788654443012010125789898564Gl02577J9895433010478787532343325310235469 

45424100123437787875641132656464987532012323456745658D578653231G'564565656326566 
6546546546546543ElOE020201257788654986543213202023565763430234657324324624646(79 

Show the values that will be stored in each variable as a result of each of the following independent 
statements or groups of statements. (Note that some of the statements may not work. Indicate the illegal 
ones and show why they will not work): 

(a) 

(c) 

READ (5, 8) BTS, SK, AR, ALT (b) 
8 FORMAT (6F2.0,14(2X,F3.1) ,I2,A6) 

READ (5, 8) (BTS (AR), CS (AR), AR=2, 5), SK (d) 
READ (5, 9) WRD, ALT 

8 FORMAT (2(3X,2(4X,F3.l,1X,I2),2X)/2X, 
1 3(1X,2(F2.l,1X,F3.l,1X))) 
9 FORMAT (2 (4X, A)) 

READ (5,9) BTS,WRD,AR,CS 
9 FORMAT (8(3X,F2.l)/A,I3,5I2) 

READ (5,8) WRD(1:3), (SK(AR,AR),AR=l,3) 
8 FORMAT (3X,A3/(4X,F4.2)) 
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(a) 

(c) 

(d) 

4. The following variables have been declared and given values as shown below: 

Name Data Type Value(s) 

POWER REAL -14.2 

TOTAL REAL 546317.0 

AVGS (4) REAL 8.8,-2.18,613.44,0.8 

AMTS (5) INTEGER 1,3,70,-22,407 

NUM INTEGER 4 

SPC INTEGER -30 

NAME CHARACTER*lO TWINKLETOE 

LABELS (6) CHARACTER*4 MEAD, MEAT, MOAT, MOOT 

Show the printed page layout resulting from each of the following statements or groups of statements. 

Use a 'b' to indicate a blank. (Note that some of the statements may not work. Indicate which ones these 

are (if there are any, and show why they will not work): 

WRITE (6, 14) POWER (b) 

14 FORMAT (F5.1) 

WRITE (6,12) (AVGS(NUM) ,AMTS(NUM) ,NUM=l,4) 

12 FORMAT (1X,8(5X,F6.2,5X,I4)) 

WRITE (6, 11) LABELS (e) 

WRITE (6,12) AVGS 

WRITE (6, 13) AMTS 

13 FORMAT (/5X, 5 (I6, 3X)) 

11 FORMAT ( ' 1' , lX, lOX, 6 (A4, llX) ) 

12 FORMAT ('0',1X,10X,4(Fl2.3,3X)/) 

PRINT 10,TOTAL,AVGS 

10 FORMAT (10X,F8.l,5X,4(F8.2,3X)) 

WRITE (6,14) 

WRITE (6, 15) POWER, TOTAL 

WRITE (6, 16) AMTS 

14 FORMAT ( '1', lOX, 14lll..ATESTRESULTS) 

15 FORMAT (lX, 12X, 'NAME=' ,A9, 3X, 'POWER=', 

1 F7.2,3X, 'TOTAL=',F13.3) 

16 FORMAT (//5(5X,I5)) 

(f) WRITE (6, 18) (AMTS (I), AVGS (I), I=l, 4) 

18 FORMAT (//3X,4(3X,I4/5X,F8.4)) 

5. Simplify each of the following FORMAT statements: 

(a) FORMAT (lX, I2, 2X, I2, 5X, F3. 1, 3X, F3. 1, AB) 

(b) FORMAT (lX, 3X, A6, 2X, F4. 1, 4X, I2, 5X, A6, 2X, F4. 1, 4X, I2, 

1 5X,A6,2X,F4.l,4X,I2,5X,A6) 

(c) FORMAT (1X,4X,F6.l,F6.l,2X,A5,3X,F6.1,F6.l,F6.l,2X, 

1 A5,7X,A2,2X,I2,1X,A2,2X,I2) 

(d) FORMAT (lX, 5X, I2, F4. 0, I3, 2X, I3, 2X, 5X, I2, F4. 0, I3, 2X, 

1 I3,2X,5X,I2,F4.0) 

6. Expand each of the following format specifications: 

(a) FORMAT (2X, 2I2, 2F3. 0) 

(b) FORMAT (2X, 2 (I2, 2F3. 0)) 

(c) FORMAT (3X, 3 (lX, 2 (I2, 3X, 2F3. 1, 11))) 

(d) FORMAT (5X, 2 (13, 2 (I2, 2X, I3)), 2A6, 2 (2X, A6)) 

(e) FORMAT (3X, A20, 2I4, 5 (3I2, 2F3. 2/3 (11, 3X)), 4X, A4) 

7. Many of the ordinary items that form part of our lives involve data that can be organized easily as 

edit-directed records. A number of such items are listed below. For each of these, identify the individual 

pieces of data that go to make up the item and pretend that the data are to be recorded as an edit-directed 

record. If this record is to be one of many similarly organized records, each data value must be in its 

assigned set of columns. Accordingly, design an input layout for the data in each item. Write appropriate 

FORTRAN declaration statements, READ statements, and FORMAT statements consistent with your input 

designs: 

(a) A Social Security Card 
(b) A Driver's License (use your driver's license and assume that all records in this collection will be from 

the same state as yours) 
(c) A Student l.D. card (use your card as a model and assume that all records in this collection will be 

from your school) 
( d) A savings or checking account 



( e) A medical services card (e.g., Blue Cross or Blue Shield) 
( f) An oil company credit card 
(g) A department store credit card 
(h) The information on the spine of a nonfiction library book 
(i) The information in a television listing (like TV Guide) for an individual program 
(j) The information describing a particular brand of multiple vitamin pill 

DATA AND FILES 

8. Write a subroutine named CENTER that places a given character string in the center of another string, as if 
that second string represented a line to be printed. The length of either string is not established until the 
subroutine is actually used. The characters on either side of the centered string must be blanks, but they 
may not be when the subroutine is invoked. 

(a) List each argument required by your subroutine and indicate why each one is needed. 
(b) Indicate what could happen to cause your subroutine to go wrong and show how you would handle 

each type of situation. 

9. Modify the subroutine in Problem 8 so that the string to be centered, when placed in the second string, 
leaves the characters on either side of it unchanged. 

10. The Hi-Tech Restaurant, in keeping with its neo-industrial decor, thought it would be a good idea to print 
its daily menus on a computer. (Save your comments.) Accordingly, each line on the menu will be 
recorded on a separate line, starting in column 1. The printed lines, of course, will be of different lengths, 
but no line will require more than one input record. (Note that Hi-Tech is a exclusive kind of place, so 
that, on any given day, there are no choices and one price.) 

Since Hi-Tech plans in advance, it would like a program that will process any number of sets of input 
data (i.e., it should be able to produce several different menus). Each menu is to be printed on a separate 
page, with each line centered using a width of 100 columns. There is to be a blank line between each line of 
print. The first input line for each menu gives the day of the week in columns 1-3 (using SUN, MON, TUE, 
WED, THU, FRI and SAT) and the date (mm/dd/yy) in columns 11-18. However, Hi-Tech wants the first 
line to show the day of the week written out in full, along with the month. For example, if an initial input 
line says 

THUbbbbbbb08/14/80 

the corresponding output line (centered, of course) should say 

HI-TECH MENU FOR THURSDAY, AUGUST 14, 1980 

The second line always contains a price in columns 1-5, recorded as xxx. xx, and it is to appear on the 
second printout line following the word PRICE. Write the program assuming that no menu will require 
more than one page. However, th& number of lines on a.menu may vary from day to day. 

11. Modify the subroutine NEWPG in Example 15 .1 so that it numbers the output pages. Use one of the 
following three choices: 

(a) Starting with PAGE 1, print the page number in the top right hand comer of each page 
(b) Print the page number in the center of the page's first line, putting a dash on either side of the number. 

Thus, the first page would be numbered-1-, etc. 
( c) Give the user the option of specifying either type of numbering. 

12. Prepare a table of natural logarithms for integers O through 99. Each entry is to show X and its natural 
logarithm (LN (X)) and two such entries are to be printed per line. (Of course, there will be no value 
shown for the natural log of zero, but there will be a space for it so that the table comes out even.) Round 
the logarithms to 5 places. 

13. Prepare the same table as specified in Problem 12 except that each line of print is to show four consecutive 
values. 

14. Generalize the program in Problem 12 or 13 so that the user can specify two integers XMIN and XMAX for 
which he or she wishes such a table to be prepared. (Note that your program must safeguard against 
unreasonable input specifications, and you must determine what that means.) 

15. Generalize the program in Problem 14 (even further) by designing it so that the user can specify the 
number of entries that should appear on each line. Note that it is not necessary for the table to come out 
exactly even. It is perfectly all right for the last line to have fewer entries than the others. Design your 
program so that it will accept a maximum value of six for the number of entries on each line. You may 
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handle this in one of the following ways: 

(a) The user must specify the number of entries per line 

(b) The user has the option of specifying the number of entries per line; if he or she does not, the program 

uses a default value of 2. 

16. Prepare and print a table of values for the sine, cosine, tangent, cotangent, secant, and cosecant for values 

of X in degrees from 0 through 45 degrees in increments of 10 minutes. Number the output pages using one 

of the two ways described in Problem 11. (It is up to you to determine how many entries will be printed on 

each page.) 

17. For values of X from 1 through 1 O in increments of O. 1, prepare and print a table in which each entry 

shows X, e* *X, and e* *-X. Print two entries on each line, and round the values to 5 decimal places. 

18. Modify Example 15.1 so that the program prints two sets of entries on each line. 

19. Nariz Chemical Company keeps basic information about its compounds on records formatted as follows: 

columns item format 

1-6 stock no. 6-digit integer 

11-40 empirical formula characters 

41-44 melting point, deg. C XXX(. )X 

51-54 boiling point, deg. C XXX(. )X 

61-66 price, dollars/gram XXX(. )XX 

The empirical formula is a character string consisting of a series of abbreviated element names, each 

followed by an integer value indicating the number of atoms of that element in the compound. For 

instance, the string 

C6H1206 

is an empirical formula for a compound containing 6 atoms of carbon (C), 12 atoms of hydrogen (H), 

and 6 atoms of oxygen (0). When only one atom of a particular element appears in a compound, there is 

no number after the abbreviated name; the 1 is implied. Thus, the compounds 

C2NH8 and C3H80 

really stand for 

and 

N ariz would like to have a program that prints a line for each compound read in showing the stock 

number, formula, molecular weight, and price. (Molecular weight simply is the sum of the atomic weights 

of the elements in the compound, each atomic weight multiplied by the number of atoms of that element.) 

Provide suitable column headings and page numbers, printing 40 lines per page. The elements used in 

Nariz's compounds, along with their atomic weights, are given below: 

element name abbreviation atomic weight 

carbon c 12.011 

hydrogen H 1.008 

nitrogen N 14.007 

oxygen 0 15.999 

phosphorus p 30.974 

sulfur s 32.064 

20. Expand the program in Problem 19 so that it handles the following elements in addition to the ones 

already listed: 

element name abbreviation atomic weight 

bromine BR 79.909 

chlorine CL 35.453 

iodine I 126.900 

magnesium MG 24.312 

21. Write a program that reads character strings consisting only of letters, numbers, and blanks. Two or more 

blanks will never appear in succession in the middle of a string, so that two blanks in a row signals the end 



PROBLEMS 

of a string. No string will require more than one line. For each string read in, the program reproduces the 
string using large block characters. Each block character is constructed as a pattern made up of many 
copies of that same character. For instance, the string ABC might be reproduced as 

AAAA BBBBB cc cc 
AA AA BBBBBB CCC CCC 
AA AA BB BB cc cc 
AAAAAA BBBBB cc 
AA AA BBBBB cc 
AA AA BB BB cc cc 
AA AA BBBBBB CCC CCC 
AA AA BBBBB cc cc 

You may design your block characters in any way that suits you. The same holds true for the spacing 
between characters. Thus, depending on your group of block characters, you will be able to determine the 
longest character string that you can print on one "line." Other design decisions you will have to consider 
include the following: 

(a) The number of blank lines between printout "lines." 
(b) The number of printed strings per page. 
(c) Placement of output strings: 

(i) Always start at the left end of the "line." 
(ii) Center the string on the "line." 

( d) How to handle input strings that are too long: 
(i) Reject and go on to the next one. 

(ii) Truncate (on the right) to the maximum length. 
(iii) Use as many "lines" as necessary, printing the maximum number of characters on each "line." 
(iv) Same as (iii) except that, instead of breaking the "line" at its maximum length, break each "line" 

at a blank. Thus, every "line" is as long as it can be without breaking in the middle of a word. 

22. Text is recorded on 80-character records in columns 1-72. Columns 73-80 are used for numbering the 
records in sequence. The input material is recorded continuously. That is, no attention is paid to the fact 
that the text ends at column 72. If we have reached column 72 and we are in the middle of a word, the next 
letter of that word simply is recorded in column 1 of the next record. There may be one or more blanks 
between words and there may be one or more blanks between sentences. Punctuation marks (such as 
period, comma, question mark, exclamation point, quotation marks, etc.) appear immediately after the 
final letter of a word. A text is as long as it is. 

Write a program that reads such a text and prints it in such a way that each line of print is the same 
width and each line stops at the end of a word. If that word happens to be followed by one or more 
punctuation marks, those marks also must be included on that line. 

The way to do this, of course, is to determine how much of the remaining text can go on the next line 
without breaking a word, and then filling the extra positions with blanks. However, two things must be 
kept in mind: First, whatever else is done, the last letter of the last word must appear in the last position of 
the line so that the uniform line width is maintained. Second, the blanks used for padding must be 
distributed throughout the line so that the printout does not give the appearance of having a bunch of 
blanks plunked in one place. Use a line width of 72 positions. The number of lines per page is up to you. 

23. Expand the program in Problem 22 so that the user can specify a line width that the program is to use in 
preparing the text printout. (Design your program so that it defines a reasonable minimum width and 
guards against a specified width that exceeds the physical capabilities of the printing device.) 

24. Expand the program in Problem 22 or 23 even further by designing it so that the user can specify the 
number of lines per page. 

25. Expand the program in Problems 22, 23, or 24 even further by designing it so that it can process any 
number of input texts, where each text (still) may be of any length. If you are expanding the version 
described in Problem 23 or 24, make it possible for the user to change specifications for each input text. 
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16 
Additional 
Formatting 
Features 

This chapter takes a look at some further capabilities that HP FORTRAN 77 provides for 
describing edit-directed data items and positioning them in records. These features are 
not necessarily more complicated or "advanced" than the ones discussed in the previous 
chapter. They were separated because their use tends to be for more specialized situations 
that occur less frequently. 

The features discussed here provide more flexibility with regard to the interpretation and 
appearance of numerical data items. As is true with the other numerical format specifica­
tions, the value of the number itself is not changed by these descriptions. That value is 
determined by the processes that are used to produce it. 

16.1. 1 The G-Specification 

In the previous chapter, we worked with two types of specifications (F- and E-) for 
describing single-precision numerical values. FORTRAN also includes a third specifica­
tion intended to combine the desirable properties of the other two for output. (In fact, 
while it can be used as an input specifier, it does not serve any particular purpose that way; 
FORTRAN treats it as if it were an F-specification. Accordingly, our discussion of this 
feature will focus strictly on its use with output.) The general form is 

Gw.d 

where w represents the total number of positions occupied by the value in the output 
record, and d indicates the number of decimal places. 

Table 16.1 Behavior of the a-Specification (Gw. d) 

Assume w = d + 7 

numerical value, n 
n < 0.1 

0.1<n<1.0 
1.0 < n < 10.0 

10.0 < n < 100.0 
100.0 < n < 1000.0 

10**(d-1) < n < 10**d 

appearance 
O.dd ... dE ee 
O.dd ... dbbbb 
i.dd ... dbbbb 
ii.dd ... dbbb 

iii.dd ... dbbbb 

ii. .. i.dbbbb 
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In response to this specification, FORTRAN will produce an output value whose 
format resembles either the E-format or F-format, depending on the numerical value to 
which the description applies. The rules that underlie this action are shown in Table 16. l. 
They can be summarized as follows: 

1. When the value being described is less than 0. 1 or greater than lO**d (where d 
has its previous meaning), the result of a G-specification looks like that of an E-specifica­
tion. For example, suppose Z 1 is declared as a real variable, and it contains a result ready 
to be printed. Let us say, then, that we print it with the following statements: 

WRITE (6, 16) Zl 
16 FORMAT (1X,5X,G14.6) 

Now, let us say that Zl currently has a value of O. 07328. The resulting output, then, 
would look like this: 

r- column1 

bbbbbbb0.732800E-01 

Since d for this specification happens to be 6, the same type of editing will be performed if 
the absolute value in Z 1 is larger than 10 * * 6. Thus, if this same statement (in con junction 
with the same format description) were to be executed while Zl's value is -36257900, 
the result will look like this: 

column 1 

tbbbbb-0.362579E+08 

2. If the value being described by a G-specification is not in the ranges specified 
above, FORTRAN edits the value in an attempt to display it in "natural" form. Spe­
cifically, it seeks to use a format similar to the F-specification, with the integer portion to 
the left of the printed decimal point. The assumption FORTRAN makes here is that the 
programmer's specification of w (in Gw. d) allows enough positions for the value to 
appear with the E and a signed exponent. Consequently, FORTRAN acts as if there are 
four extra positions that will not be needed to express the value in F-like format. Thus, 
instead of using w positions for the value, it uses w-4 positions. The four unused positions 
are placed at the right and filled with blanks. The way FORTRAN handles d, the number 
of decimal places, then, depends further on the absolute value. To see how this works, we 
shall use the same two statements as before with various values assumed in z 1: 

(1) With Zl's value being-32. 74058, (i.e., between 1and10), the number of 
decimal places is reduced automatically by 1 (so that FORTRAN uses 6---:-1or5, 
even though d was 6 in the FORMAT statement). Thus, the 14 original positions 
would contain the formatted value in the first ten ( w-4) and blanks in the other 
four: 

bb-3.74058bbbb 

Now, if we follow the rest of the specifications in statement 16, the entire output 
line will be 

rcolumn1 

bbbbbbb-3.74058bbbb 

(2) With Zl's value being 28. 3976 (i.e., between 10 and 100), the number of 
decimal places will be reduced automatically by two (to make up for the fact that 
the display will show two digits to the left of the decimal point). Thus, FOR­
TRAN will use 6 - 2 or four decimal places, and the 14 positions set aside for the 

435 



436 ADDITIONAL FORMATTING FEATURES 

value will look like this: 

bbb28.3976bbbb 

The entire output line, then, (still using statement 16 for the format description) 
will appear as follows: 

ccolumn1 

bbbbbbbb28.3976bbbb 

(3) This rule is applied systematically, so that FORTRAN automatically adjusts the 
number of decimal places (and, therefore, the number of integer positions) in 
accordance with the value's order of magnitude. Thus, using the same output 
statements as before, a Zl of 85 7 463. O will produce the output line 

r-column1 

bbbbbbbb857463.bbbb 

16.1.2 Fonnat Descriptions for Sign Control 

In all of our dealings with numerical output values, we have not worried about the sign. 
Instead, we have depended (and shall continue to depend) on FORTRAN's default 
mechanism to show a negative sign when needed. (Of course, with edit-directed output, it 
is up to us to make sure that a position is available for that sign to be displayed.) 

There are special situations, however, in which the programmer may wish to specify 
some other way of handling signs. The S-, SP-, and SS- format specifications are available 
for this purpose. 

16.1.2.1 Producing Visible + Signs: The SP-Specification Normally, FORTRAN will 
place a visible sign in front of a numerical output value only when.that value is negative 
(i.e., the positive signs are suppressed). It is possible to force the appearance of positive 
signs as well by using the SP-specification to change FORTRAN's behavior. This feature 
works as follows: When FORTRAN runs across an SP-specification in an output format 
description, all numerical descriptions in that statement following the SP (i.e., I-, E-, D-, 
F-, and G-specifications) will produce values with visible + signs. In effect, then, this 
specification acts like a switch that turns the visible + sign mechanism on for a particular 
statement or part of a statement. 

Using the output statements in the previous section as an example, suppose we 
rewrite statement 16 so that it reads as shown below. (The associated output statement is 
included for convenience:) 

WRITE (6, 16) Zl 
16 FORMAT (1X,5X,SP,G14.6) 

Suppose that at this instant Zl 's value is 28. 3976. This time, the resulting output line 
will look like this: 

...... --column 1 

bbbbbbb+28.3976bbbb 

(Compare this output with the line in the previous section for the same Z 1.) 

16. 1.2.2 Restoring the Sign Default: The S-Specification If the SP-specification is used 
in a particular format statement, the use of visible + signs will remain in effect for that 
statement, with the system reverting to its normal practice once that statement is com-
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pleted. (Of course, if the statement happens to be in a loop, the + signs will appear each 
time that statement is used.) 

The S-specification can be used to turn off this mechanism at any desired point. To 
illustrate, suppose Hl, H2, and H3 all are declared as real variables, and their current 
values are 65. 34, 8. 96, and 71. 05, respectively. If we were to print these variables 
with the statements 

WRITE (6,26) Hl,H2,H3 
26 FORMAT (1X,3(5X,F6.2)) 

the resulting output line would be as follows: 

r--- column 1 

bbbbb b65.34 bbbbb bb8.96 bbbbb b71.05 

Changing the format description to 

26 FORMAT (1X,SP,3(5X,F6.2)) 

changes the output line so that the+ signs are visible: 

column1 

ibbbb +65.34 bbbbb +b8.96 bbbbb +71.05 

If statement 26 were to be written as follows: 

26 FORMAT (1X,SP,5X,F6.2,S,2(5X,F6.2)) 

the resulting output line would be produced with the visible + sign mechanism activated 
only for the first output value: 

tcolumn1 

bbbbb +65.34 bbbbb bb8.96 bbbbb b71.05. 

Finally, to show the mechanism activated, turned off, and then reactivated, we can 
rewrite statement 26 as follows: 

26 FORMAT (1X,SP,5X,F6.2,S,5X,F6.2,5X,SP,F6.2) 

and the resulting output will be 

.--- column 1 

bbbbb +65.34 bbbbb bb8.96 bbbbb +71.05 

16.1.2.3 Suppression of Visible + Signs: The SS-Specification Although suppression 
of visible + signs in numerical output values is the default used by many FORTRAN 
systems, it is not necessarily used by all systems. That is, it is legal to have a FORTRAN 
system in which the default is to show all + signs. For this type of situation, the 
SS-specification provides a way to turn this mechanism off, so that visible + signs are 
suppressed. In a sense, then, this is the "opposite" of the SP-specification discussed 
earlier. (Use of the SP-specification would not make sense for this type of system since the 
+ sign is shown all the time anyway.) 

The S-specification works in conjunction with the SS-specification in the same way as 
it does with SP. That is, after the SS-specification has been used in a particular statement 
to suppress the appearance of visible + signs, the S-specification can tum that mechanism 
on again. For HP FORTRAN 77, the SS-specification has the same effect as the 
S-specification. 
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16. 1.3 Scaling of Edit-Directed Values 

In certain types of work, the numerical values that are commonly used are inconvenient to 
handle because they tend to be very large or very small. For various reasons, workers in 
these fields have not adopted scientific notation as a way around this problem. Instead, 
the numbers are scaled. That is, they are multiplied by some power of ten (a scale factor) 
to bring their magnitude to a more manageable level for input and output. (Of course, the, 
scale factor is taken into account during computational processes so that the results are 
produced properly.) The scale factor usually is set by agreement to a particular fixed 
value, so that everyone dealing with those numbers knows how to interpret them. 

For instance, many corporations are used to reporting financial data in terms of 
thousands of dollars. Thus, a figure of $376,123,000 is often reported as $376,123. The 
reader of such a report is reminded that the figure represents thousands of dollars rather 
than dollars, and the actual magnitude would be used in performing all of the related 
computations. Thus, before the value is to be printed, it has to be scaled. In this example, 
scaling involves division by a thousand or, more precisely, multiplication by 0.001 or 
10**-3. The scale factor, then, is -3. The scale factor is the power of ten by which the 
actual number has to be multiplied in order to produce the desired scaled number. 

Another relatively common example is seen in air pollution work where the concen­
tration of a particular substance in the air, while medically significant, is quite low on an 
absolute basis. For instance, a concentration of O.CXXJ0026 parts of substance per part of 
air is not an unusual order of magnitude. Although these numbers must be used for 
computations, they often are reported in terms of parts per million. Thus, the value just 
shown would be reported as 2.6 parts per million. Using the definition given in the 
previous paragraph, the scale factor in this case is +6. 

FORTRAN's editing facilities can be instructed to apply a designated scale factor to 
real input or output values under certain conditions. This is done by means of a format 
specification whose general form is 

kP 

where P indicates that scaling is to take place, and k is an integer constant. (The + sign 
may be omitted when k is positive, but it is a good idea to show it for all cases.) 

For example, if PROFIT is a real variable with a value of 42763. 68 (representing 
dollars), and we wish to display it in thousands of dollars with the cents truncated, we can 
say 

WRITE (6, 28) PROFIT 
28 FORMAT (1X,5X,-3PF7.3) 

or 
28 FORMAT (1X,5X,-3P,F7.3) 

The resulting output line will show 

+----- column 1 

bbbbbb42.673 

Similarly, if a variable named N02 is recorded in columns 6-7 of an input record as 83, 
and we want it to be interpreted as 0.83 parts per million (i.e., 0.00000083 parts per part of 
air), we can read it as follows: 

READ (5, 25) N02 
25 FORMAT (5X,6PF2.2) 

or 
25 FORMAT (5X,6P,F2.2) 
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When FORTRAN begins processing an edit-directed input or output statement, the 
assumed scale factor is O (i.e., no scaling is done at all). If it finds a P-specification in the 
associated format description, it scales accordingly until another P-specification changes 
the scaling or eliminates it. Then, when the next edit-directed input or output statement is 
processed, the scale factor is reset to O. Note that the P-specification is not attached to any 
one data item. Rather, like the slash, SP-, and S-specifications, it provides FORTRAN 
with information on how to perform subsequent editing. 

Although scaling is a useful technique in certain circumstances, it is specialized. Its 
use, therefore, is discouraged unless the programmer is convinced that the application of 
scaling in a particular situation will simplify things for himself or for the program's users. 
Accordingly, we shall not study it in any more detail. Instead, the specific rules for input 
and output scaling will be summarized. 

16.1.3.1 Scaling of Input Data We have seen the effect of scaling when an input value is 
read with an F-specification. A scale factor also can be applied when E-, D-, or G­
specifications are used. However, regardless of which of these is used, the scale factor will 
be ignored if the numerical value being described by that specification is recorded in 
scientific notation, i.e., if it has an exponent. 

16. 1.3.2 Scaling of Output Value The treatment of scaled variables with F-specified 
output has been introduced and is straightforward enough. Although scaling makes less 
sense with a D- or E-specified output, FORTRAN does accept such editing. When a 
scaling factor k is applied to such an output item, FORTRAN multiplies the fractional 
portion by lO**k. In addition, it compensates by decreasing the exponent value by k. 
Thus, with E- and D- edited output items, the scaling does not change the value; rather, it 
changes the way the value looks. The exact appearance is governed by the value of k as 
follows: 

1. If k is negative, the fractional portion of the output value is displayed with -k­
zeros immediately to the right of the decimal point. Since the specified length of the 
fraction (d) is retained, this means that the rightmost -k- digits are truncated. For 
example, suppose a variable z has a value of -324. 7 and we print it with a format 
specification ofE14. 5. As expected, the result will look like this: 

bb-0.32470E+03 

If we apply a scale factor of - 2 (so that the new specification is -2P, E 14. 5), the result 
will appear as follows: 

bb-0.0032E+05 

2. When k is greater than zero, k-1 additional digits are placed in front of the 
decimal point. To keep the total number of digits the same as in the specification, these 
positions are taken from the ones to the right of the decimal point. For example, if we 
were to take the same value as above and print it with a scale factor of + 2 (so that the new 
specification would say +2P, E14. 5), the result would be 

bb-32.4700E+02 

16.1.3.3 Scaling and the G-Specification Scaling also is legal for numerical output 
values edited by a G-specification. (It is ignored for G-edited input data.) However, its use 
by FORTRAN is restricted as follows: Even when a scale factor is specified, it is not 
applied when the numerical value is within the range (see Table 16.1) where the F-like 
output form can be used. Outside of that range, scaling affects G-edited output in the same 
way it affects E-edited output. 
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16.1.4 Treatment of Input Blanks 

Chapter 13 indicated that it is possible (by means of the BLANKS= specifier) to indicate 
how blanks are to be interpreted when embedded in numerical input on a given unit. Two 
additional format specifications make it possible for the programmer to control the 
handling of blanks for individual input variables. The major reason for including these 
features is to enable FORTRAN to read and interpret numerical values that are recorded 
anywhere in the columns reserved for them. In earlier days, some people were rather 
casual about the way they recorded their input data, so that this feature can be of help in 
reading such old numbers. However, it goes against the more desirable practice ( empha­
sized in the previous chapter) of making sure that all values for a given variable are 
entered consistently. Consequently, this feature will be mentioned here only to make 
programmers aware of its existence. 

16.1.4.1 The BN-Specification When FORTRAN starts executing an edit-directed 
READ statement, it treats embedded blanks in numerical values either as zeros or null 
characters, depending on the definition set up for the unit. Usually, such embedded 
blanks are treated as null characters. In effect, FORTRAN moves the digits to the right, 
"squeezing out" all the blanks and placing them at the left. For example, suppose an input 
variable recorded in four columns is supposed to be interpreted as F4. 1. (That is, the 
rightmost digit is to be treated as a single decimal place.) If those columns contained 
3 2 7 4, the value eventually stored is 3 2 7. 4. So far, so good. If the four columns were to 
contain b327 instead, the same F4. 1 specification would produce a stored value of 
32. 7. Fine. Now, suppose these four columns contained 327b. (Old, messy data.) The 
rightmost blank would be "squeezed out" and the result would be interpreted as 32. 7 
again. 

This treatment of blanks remains in effect until it is changed (see next section) by the 
BZ-specification. The BN-specification reverses it. 

16.1.4.2 Blanks as Zeros-The BZ-Specification The specification 

BZ 

instructs FORTRAN to interpret embedded blanks as zeros. Thus, if four columns 
contained 327b and their treatment were to be directed by a format specification of BZ, 
F4. 1, the stored value would be 327. 0. Similarly, 3b27 would be stored as 302. 7. 

The BZ-specification remains in effect until it is changed by the BN-specification or 
until FORTRAN reaches the end of the statement in which it is used. 

The X-specification has been introduced and used extensively as a way of skipping 
positions in an input record or filling output positions with blanks. Often, the programmer 
may find it more convenient to think in terms of the next position of interest rather than 
the number of positions that need to be skipped to get there. That is, rather than saying, 
"Skip the next nine positions; that will get me to the next position at which I want to read 
or write," the programmer might prefer to say, "Move to position 27, skipping however 
many positions that need to be skipped to get there." 

FORTRAN provides three format specifications that may be used to produce this 
type of effect. They all begin with the letter T to indicate their basic similarity to the 
tabulator key on a typewriter. 

16.2. 1 The T-Specification 

This specification, whose general form is 

Tn 
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causes FORTRAN to move to position n of the current record, where n is an unsigned 
nonzero integer constant. As is true with the X-specification, the T-specification does no 
editing. It merely sets the position in the record at which the next editing activity is to take 
place. 

As an example, we shall set up an output format and specify it in two ways: once with 
X-specifications and again with T-specifications. Here is what we want to print: 

columns variable name typical value 

6-10 Bl -23.6 
14-20 CARRY 338.47 
31-50 NAME characters 
58-60 NUM 328 

Our output statement, then, says 

WRITE (6,17) Bl,CARRY,NAME,NUM 

Using X-specifications, statement 17 says 

17 FORMAT (1X,5X,F5.1,3X,F7.2,10X,A20,7X,I3) 

We can obtain exactly the same result with the following: 

17 FORMAT (1X,T6,F5.1,T14,F7.2,T31,A20,T58,I3) 

Note that the lX (or ' ')still is needed for carriage control. It also should be pointed out 
that the T-specification, like the X-specification, does not actually insert blanks in an 
output record by itself. The blanks are placed in the skipped positions as part of the 
process that edits and produces the next output item in the list. Thus, in the second 
version of statement 17, the T6 specification informs FORTRAN that the next item (Bl in 
this case) is to be printed starting in column 6. However, it is the F 5. 1 specification that 
actually fills in the skipped columns (i.e., columns 1-5) with blanks. 

16.2.2 The TR-Specification 

This is similar to the X-specification in that it describes a skip to the right. Thus 

TR8 and 8X 

will produce the same effect. 

16.2.3 The TL-Specification 

To keep things symmetrical, FORTRAN also enables the programmer to establish a new 
position to the left of the previous one. Thus, if we write 

TL9 

it would be the same as saying 

-9X 

Of course, the -9X is illegal, but the TL9 is perfectly fine. FORTRAN automatically 
establishes a position at the beginning of the record if there is an attempt to move the 
position too far to the left. For instance, if the specification TL9 appears in a FORMAT 
statement at a point where the current position is, say, 7, the move of 9 positions to the 
left, if carried out, would go past the· beginning· of the record. Obviously, this is an 
impossible request, in which case FORTRAN automatically resets at position 1. 

The ability to move back and forth in a record may not seem particularly useful right 
now. That is quite understandable, since one would think that once we have dealt with a 
particular position in a record, we would be through with it. However, the power of the 
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TL-specification lies in the flexibility that it can provide for certain input situations: When 
we use the specification to direct FORTRAN back to a position from which we already 
have read, we can reread the same data in a different way. 

We shall illustrate with a simple example: Suppose we have declared variables WR and 
TTLX as real and integer, respectively. We are ready to read a line that contains bb34892 
in the first seven columns. The statements 

READ (*, 19) WR, TTLX 
19 FORMAT (2X,F5.3,TL7,3X,I4) 

cause the following to happen: 

1. The first two columns are skipped. 
2. The F 5 . 3 format specification is applied to columns 3-7. Since this is associated 

with variable WR in the input list, a value of 34. 892 is stored in WR. 

3. The TL7 sends FORTRAN back to position 1 of the record. 
4. The 3X causes the next three columns to be skipped, but because of the TL 7 

specification, those three columns are columns 1-3. 
5. The final specification, associated with variable TTLX, is applied to columns 4-7, 

with the result that a value of 4892 is stored in TTLX. 

This capability provides advantages in special situations beyond the scope of this text. 
Consequently, having described what it does and how it works, we shall leave it at that. 

The editing features that we have examined and used, extensive as they may be, still 
impose one restriction that may make things difficult for us in certain situations. Regard­
less of which editing features we use, how we combine them, or where we place them (in a 
separate FORMAT statement or as part of a READ or WRITE statement), we have been 
required to describe the format completely and exactly. Thus, for input, we know how 
many variables there will be, in which columns they will appear, and what they will look 
like. The same is true for output. This has not caused us any particular hardship in that we 
have been able to describe any format we want to describe. The only problem arises 
because we had to describe the format in advance. 

There are situations in which we would like to say, "I am going to do some reading or 
writing at this point in the program. However, I will not know what the input or output is 
going to look like until this program actually runs. Furthermore, the format may change 
from run to run." Although it is a good practice to try to avoid such situations if we 
possibly can, there may be occasions where such flexibility must be provided. In general, 
what is required is the ability to delay a format description until the program actually runs. 
Appropriately enough, such a specification is called a run-time format. (The completely 
defined specifications that we have been using all along, then, are called compile-time 
formats, since they are specified as part of the input to the FORTRAN compiler.) 

We shall discuss a technique for developing and using run-time formats. The basis for 
this method lies in a FORTRAN feature that enables the programmer to specify a format 
as part of the input instead of building it into the program. Specifically, it is possible to 
read a set of specifications (parentheses and all) as a character string and store the 
information in a character string variable, declared just like any other character variable. 
Then, the programmer can refer to that character string by naming it in an input or output 
statement, in which case FORTRAN will use the formatting information in that string. 
For example, suppose we have the following declarations: 

REAL 
INTEGER*2 
CHARACTER*80 

Al,B,STM 
CRTS 
FRMT 

(FRMT is an 80-character string into which we shall read a format description.) The format 
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description is read like any other character string: 

READ (5, 15) FRMT 
15 FORMAT (ABO) 

Such a line might look like this: 

(3X, 16, 2X, 3F5. 2) 

Note that the word FORMAT does not appear here, nor does the format description start in 
column 7. This is not a format statement. It is only a format description. Now we can read 
data using the formatting information just received: 

READ (5,FRMT) CRTS,Al,B,STM 

FORTRAN will use this formatting information just as if it were in a regular program 
statement. Then, at some later point (either in the same run or, more likely, in another 
run) a new set of specifications can be read in and used on a different data collection. 
Note, however, that in this example the statement that reads the data is fixed. Regardless 
of the actual format, this statement expects each data record to contain CRTS, A, Bl, and 
STM in that order. Note also that it does not expect these items all to be on a single line. (A 
little later, we shall look at the technique for handling variations in the input or output list 
as well as the format.) 

Example 16. 1 To illustrate the use of run-time formatting in a practical context, we shall design a 

general purpose program for accumulating and printing frequency distributions. Basically, this type of 

program processes integer variables where each variable will have a value selected from a limited number 

of choices. The program simply counts and prints the number of occurrences of each value for each 

variable. A typical use for such a program might be to prepare the results of a survey in which people are 

asked to answer a series of multiple choice questions. 
Each record consists of a single line, but there may be any number of records in an input file. Each 

variable is a one-column integer so that the program may be called upon to process up to 80 variables in 

any run. (Actually, an 80-variable line is unlikely; for example, in the type of survey mentioned above, 

several of the columns normally would be reserved for some identifying data such as a questionnaire 

number.) There are no specific columns in which the variables need be recorded. (Of course, the format, 

whatever it is, must be consistent for all the records in the file.) The values for a variable may be o, 1, 2, 

..... , 9. There are no blank data. For each variable processed, the program prints a line showing the 

number of Os, ls, 2s, etc. (A possible format is shown in Figure 16.1.) 
Since all the variables are integers, the task of reading and storing them becomes simple. We shall 

set up an 80-element integer array (VARS) and use as many of them for a particular run as we need. The 

number of variables (NUMV) will be specified as part of the input, and so will the format. Input for each run, 

then, will consist of: 

VAR. 

2 
3 
4-
5 
6 
7 
8 

1. A line with # in column 1 and the number of variables in columns 2-3. 

2. A line with the parenthesized format description starting in column 1. We shall store this 
information in an 80-character string named DESCR. The assumption here is that 80 characters 
will be sufficient. Since a character string (and a format description) can be much longer than that, 

NO. 0 2 4- 6 7 

0 1 1 2 5 2 
2 1 1 0 3 2 2 1 
2 1 0 2 3 0 3 2 
2 1 2 1 2 3 1 0 
3 1 2 0 3 1 1 1 
0 1 4- 4- 1 4- 0 0 
4- 0 3 2 1 1 1 

1 2 2 2 1 2 

NUMBER OF OBSERVATIONS: 11+ 

FIGURE 16.1 Format for Output Showing Frequency Distribution. 
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0 2 
0 1 
1 1 
2 0 
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"Define VARS(80), TTLS(80,10), NUMV, DESCR." 
"Set TTLS to zero." "Read the format description (DESCR)." 
"Read the number of variables (NUMV)." 
"Read the first set of observations." 
while there are more input data: 

"Look at the values in each of the 
NUMV variables and add 1 to the 
appropriate counters in TTLS." 
"Read the next set of observations." 

endwhile 
"Print the frequency table." 
"Stop." 

(a) 

Define VARS (80), TTLS (80, 10), NUMV, DESCR 

Set TTLS to zero 

Read the format description (DESCR) 

Read the number of variables (NUMV) 

Read the first set of input (VARS) 

While there are more input cards 

Update the appropriate counter in TTLS 
for each of the NUMV variable values 
in VARS 

Read the next set of input (VARS) 

Print the table of frequencies 

Stop 

(b) 

INIT 

TLBUPD 

RDOBS 

TBLPRT 

-

I INIT t--I 

-

I TBLUPD I 

I RDOBS I 
I TBLPRT I 

FIGURE 16.2 (a) Pseudocode for Example 16.1 's Main Program. (b) N-S Diagram for Example 16.1 . 

there is nothing to stop the programmer from designing for a longer format description if the 
situation calls for it. 

3. Data records (any number) whose organization is consistent with the format described in (2). 

A data item may have one of ten possible values, so we need ten counters in which to accumulate the 
frequencies for each of 80 variables. A straightforward approach is to provide a two-dimensional (80 x 10) 
array of integers (TTLS) and use the first NUMV rows for a given run. 



RUN-TIME FORMAT DESCRIPTIONS 

C*************************************************************** 
c EXAMPLE 16.1 - THE MAIN PROGRAM * 
C*************************************************************** 
C NUMV: 
C VARS: 
C DESCR: 
c 
C TTLS: 
c 

THE NUMBER OF VARIABLES TO BE PROCESSED IN A RUN * 
AN ARRAY CONTAINING THE DATA FROM A SINGLE LINE * 
A VARIABLE CONTAINING THE FORMAT DESCRIPTION FOR * 
THE CURRENT RUN * 
A SET OF COUNTERS IN WHICH THE FREQUENCIES WILL BE* 
ACCUMULATED * 

C*************************************************************** 
C OVERALL PROCESSING STARTS WITH TWO INPUT LINES THAT ARE NOT * 
C PART OF THE DATA TO BE COUNTED. WE SHALL REFER TO THESE AS * 
C CONTROL LINES. THE FIRST CONTAINS NUMV AND THE SECOND GIVES * 
C THE FORMAT INFORMATION TO BE STORED IN DESCR. THEN, THAT * 
C INFORMATION WILL BE USED TO INTERPRET THE DATA SO THAT * 
C THE FREQUENCY ANALYSIS CAN BE DONE PROPERLY FOR THAT FILE. * 
C A SEPARATE SUBPROGRAM (INIT) INITIALIZES THE COUNTERS AND * 
C PREPARES THE PROGRAM FOR THIS PARTICULAR RUN. * 
C*************************************************************** 

PROGRAM 
IMPLICIT 
INTEGER*2 
CHARACTER*80 
LOGICAL 

EX1601 
NONE 
VARS(80),NUMV,TTLS(80,10) 
DES CR 
EOF 

CALL INIT (NUMV,DESCR,VARS,TTLS,EOF) 
DO WHILE (.NOT. EOF) 

CALL TBLUPD (NUMV,VARS,TTLS) 
CALL RDOBS (NUMV,DESCR,VARS,EOF) 

END DO 

CALL TBLPRT (NUMV,TTLS) 
STOP 
END (a) 

C*************************************************************** 
c INIT * 
C*************************************************************** 
C THIS SUBROUTINE SETS THE COUNTERS (TTLS) TO ZERO, READS THE * 
C CONTROL INFORMATION, AND PRIMES THE PROGRAM BY READING THE * 
C FIRST DATA LINE. NOTE THAT THE LOGICAL VARIABLE EOF, USED AS* 
C AND END-OF-FILE INDICATOR, IS PART OF THE INPUT SUBROUTINE * 
C (RDOBS) SO THAT THE PROGRAM IS DESIGNED TO DETECT A SITUA- * 
C TION IN WHICH THERE ARE CONTROL LINES BUT NO DATA LINES. * 
C*************************************************************** 

SUBROUTINE 
IMPLICIT 
INTEGER*2 
CHARACTER*80 
LOGICAL 

SW = .FALSE. 
DOR= 1,80 

DOC= 1,10 
CT (R,C) 0 

END DO 
END DO 

FRMT = ' 
READ (*,15) N 

15 FORMAT (1X,I2) 
READ (*,25) FRMT 

25 FORMAT (A80) 

!NIT (N,FRMT,OBS,CT,SW) 
NONE 
N,OBS(80) ,CT(S0,10) ,R,C 
FRMT 
SW 

CALL RDOBS (N,FRMT,OBS,SW) 
RETURN 
END (b) 

FIGURE 16.3 (a) Main Program for Example 16.1. (b) INIT Subroutine for Example 16.1. 
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C**************************************************************** 
c RDOBS * 
C**************************************************************** 
C THIS SUBROUTINE USES THE CONTROL INFORMATION (NUMV AND DESCR)* 
C TO READ AND INTERPRET A DATA LINE. IF THE END OF FILE HAS * 
C BEEN REACHED, RDOBS SETS THE LOGICAL VARIABLE EOF TO .TRUE. * 
C (NOTE THAT EOF IS INITIALIZED TO .FALSE. BY !NIT) * 
C I IS AN INTEGER VARIABLE THAT IS USED TO STORE THE SUB- * 
C SCRIPT DENOTING THE COLUMN OF THE COUNTER ARRAY THAT WILL BE * 
C INCREMENTED FOR A PARTICULAR VARIABLE. SINCE THE VALUE IN A * 
C VARIABLE MAY BE ANYTHING FROM 0-9 AND THE COLUMNS OF THE * 
C ARRAY OF COUNTERS ARE NUMBERED (I.E., HAVE SUBSCRIPTS OF) * 
C 1-10, THE PROPER SUBSCRIPT, I, IS DETERMINED BY ADDING 1 TO * 
C THE VALUE FOUND IN THE VARIABLE THE LOOP IS PROCESSING, * 
C I . E . , OBS ( R ) . * 
C**************************************************************** 

SUBROUTINE RDOBS (N,FRMT,OBS,SW) 
IMPLICIT NONE 
INTEGER*2 M,N,OBS(80) 
CHARACTER*80 FRMT 
LOGICAL SW 

READ (*,FRMT,END=199) (OBS(M),M=1,N) 
GO TO 77 

199 SW = .TRUE. 
77 RETURN 

END 
(c) 

C*************************************************************** 
c TBLUPD * 
C*************************************************************** 
C THIS SUBROUTINE UPDATES THE COUNTERS TO REFLECT THE EFFECT * 
C OF THE VALUES IN THE CURRENT DATA RECORD * 
C*************************************************************** 

SUBROUTINE 
IMPLICIT 
INTEGER*2 

DOR= 1,N 

TBLUPD (N,OBS,CT) 
NONE 
I,R,N,OBS(80),CT(80,10) 

I = OBS (R) + 1 
CT(R,I) = CT(R,I) + 1 

END DO 
RETURN 
END (d) 

FIGURE 16.3 (c) Data Input Subroutine for Example 16.1. (d) Table Updating Routine for Example 16.1. 

Now we can look at the program organization. In a general sense, the processing characteristics of 
this program are not terribly different from other report preparation programs considered earlier. No 
matter how complicated the report itself may get, the same simple structure continues to be efffective in 
the case of this example, we identify the following processing components: 



C*************************************************************** 
c TBLPRT * 

C*************************************************************** 
c 
c 
c 
c 
c 
c 
c 

THIS ROUTINE PRINTS THE RESULTS AFTER CALLING LBLPRT TO * 
PRINT THE HEADINGS. IT ALSO COMPUTES AND PRINTS A GRAND * 
TOTAL. SINCE THE SPECIFICATIONS SAY THAT THERE ARE NO DATA * 
MISSING, THE GRAND TOTAL (GRDTTL) CAN BE OBTAINED BY ADDING * 
THE TEN VALUES IN ANY ROW OF COUNTERS. THE EASIEST THING TO * 
DO, AND THE CLEAREST TO UNDERSTAND, IS SIMPLY·TO USE THE * 
FIRST COLUMN FOR THIS PURPOSE. * 

C*************************************************************** 
SUBROUTINE 
IMPLICIT 
INTEGER*2 

LINE = 0 
GRDTTL = 0 

DOV= 1,10 

TBLPRT (N,CT) 
NONE 
N,CT(80,10),GRDTTL,LINE,V,FR 

GRDTTL = GRDTTL + CT(1,V) 
END DO 

DOV= 1,N 
IF (MOD(LINE,40) .EQ. 0) THEN 

CALL LBLPRT 
LINE = 0 

ELSE 
END IF 
WRITE (*,27) V,(CT(V,FR),FR=1,10) 

27 FORMAT (1X,8X,I2,9X,10(I6,4X)) 
LINE = LINE+1 

END DO 

WRITE (*,28) GRDTTL 
28 FORMAT (//10X,'NUMBER OF OBSERVATIONS: ',I6) 

RETURN 
END 

(e) 

C*************************************************************** 
c LBLPRT * 
C*************************************************************** 
C THIS ROUTINE PRINTS THE COLUMN HEADINGS AT THE TOP OF EACH * 
C PAGE OF OUTPUT. IT IS TRIGGERED BY A LINE COUNTER IN TBLPRT.* 
C SINCE LBLPRT DEALS WITH NO VARIABLES, THERE IS NO ARGUMENT * 
C LIST. * 

C*************************************************************** 
SUBROUTINE LBLPRT 
WRITE (*,7) 

7 FORMAT ('1') 
WRITE (*,17) 

17 FORMAT (1X,5X, 'VAR. NO .. ' ,T23, '0' .9X, '1 ',9X, '2' .9X, '3' ,9X, 
1 '4' , 9X, ' 5' , 9X, '6' , 9X, '7' , 9X, '8' , 9X, '9' I I I) 

RETURN 
END (f) 

FIGURE 16.3 (e) Output Routine for Example 16.1 . (f) Label Printing Routine for Example 16.1 . 447 
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FILES AND 
VARIABLE 

FORMATTING 

ADDITIONAL FORMATTING FEATURES 

.A processing sequence to get the run started. When this sequence concludes, the program 
should be "primed" with the format information and the first data record, so that it is ready to 
begin the actual preparation of the frequency tables. 

2. A processing loop (in the form of a DO-WHILE construct) that processes the data to prepare the 
frequency count and reads the next set of values. This continues as long as there are input values 
available. 

3. A final processing sequence to print the report. 

We can translate this structure directly into a main program before defining the actual details. Pseudo­
code and N-S representation are seen in Figure 16.2, and the FORTRAN statements are in Figure 16.3(a). 
Looking at the processing a little more closely, we identify the following activities: 

1 . Consistent with the duties mentioned, before, a subroutine named INIT must set the counters 
to zero, read the control information (NUMV and DESCR), and read the first data record. 

2. The processing loop calls a routine named TBLUPD to update the counters with the data from the 
current record, and it calls RDOBS to read the next record and test for end of file. The same routine 
also is used by INIT to read the first data record. 

3. The final component (TBLPRT) prints the results. A separate module (LBLPRT) takes care of 
column headings. 

The statements forthe subprograms are given in Figure 16.3(b) through 16.3(f). The output sample shown 
in Figure 16.1 is produced from the input sample given in Figure 16.4. (Obviously, it is unnecessary to 
show all of the data. However, pay particular attention to the format description and compare it with some 
of the data that follow it.) 

Since a run-time format specification is read in and stored as an ordinary character variable, there is 
nothing in the language to stop the programmer from reading and storing several such format descrip­
tions in a character array. For instance, if we had the following declaration: 

CHARACTER*SO FMTS(8) 

and we read and stored eight format descriptions, then one of these eight elements could be the format 
reference for a subsequent input or output statement. For example: 

WRITE (6, FMTS (3)) output list 

Another way of making edit-directed input/output operations more flexible is to pro­
vide the program with a choice of several format descriptions, any of which may be used 
with a particular READ or WRITE statement. However, the selection is not made until 
the program actually runs. We can do this by using an extension of the technique 
described in the previous section: Instead of reading a format description into a 

+column l 

#08 

46464 10 2 
99988 33 _ _.,.s __ ~ 

-~1 OTOHr-2~ 

7q797 56 2 
--~~~~~o--T--~ 

456323104520 2 543-Z-07"3""2_4 __ _ 
2 54020 57886 

--31J7i5"8 5 3 -~---
11745632012~03~4~5,___~-

45645 45 4 
77002 53 3 
21656 34 7 

FIGURE 16.4 Portion of Input Used to Generate Figure 16.1 . 
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character string variable (as Example 16.1 illustrates), we can define the group of format 
descriptions by assigning them to character string variables. (Alternatively, we can assign 
them to elements of a character array, or we can even make them substrings of a single 
character variable, if that is more convenient for our particular requirements.) Then (as 
the last part of Section 16.3 shows), we can read in (or compute) some indicator that 
guides the selection of the format appropriate for that situation. 

16.4. 1 Internal Files 

Although this does provide some flexibility, we can accomplish much the same thing with 
an ordinary IF-THEN-ELSE or CASE construction in which an input or output operation 
is associated with different formats: 

IF (condition]) THEN 
READ ( * , 14) inputlist 

ELSE IF (condition2) THEN 
READ ( *, 15) inputlist 

ELSE IF ( condition3) THEN 
READ ( * , 16) inputlist 

ELSE 
CALLRDERR 

END IF 

In fact, this construction can be as flexible as we need to make it since the input/output 
statements, as well as the formats, may be different here. 

In many situations, this flexibility still is inadequate: There are occasions where 
several formats need to be used in the same run at the same point in the program. A typical 
setup is one in which a file may contain a mixture of records, all of which are to be read and 
processed as part of a general cyclic operation. We may know what each type of record 
looks like (and, therefore, how it is to be interpreted and processed), but we do not know 
how many there are of each type, nor do we know the order in which they will be 
presented to the program. 

A simple way to prepare data for this kind of setup is to include a variable in the same 
position of each record that indicates what kind of record that is. Then, the program can 
be designed to use that information in determining how the rest of the record is to be 
handled. Thus, in a sense, each record defines itself, so that it does not matter how the 
records are intermixed. Users of programs like that very much. However, it means that in 
order to make use of such a design, we have to be able to read a record, look at part of it, 
make a decision based on what we find, and then read it again. 

At first glance, it might seem that the TL-specification (described in Section 16.2.3) is 
just the ticket. However, a little thought quickly establishes that it will not do what we 
want here: Since it is part of a regular format description, we cannot stop in the middle, do 
some decision making, and then go back to the same record. All the TL-specification lets 
us do is move backward in a record; but we still are in the midst of an input or output 
statement and, once we leave that statement, we are through with that record. 

FORTRAN 77 provides help with such problems by means of the internal file. Recall 
(from Chapter 13) that we can read an edit-directed input record into a character string 
and then pretend that this is itself a file, ready to be read again. Thus, we can read the 
record from its external file (the first time) using a format description that provides the 
program with the information it needs to determine how to treat the rest of the record. 
Then, having stored the record in a character string, we treat that string as an internal file 
by specifying another READ statement, associated with another format description. This 
time, we do not specify the external unit from which the record came originally. (Such a 
specification, of course, would bring in the next record.) Instead, we specify the name of 
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specify the name of the character string (i.e., the internal file) in place of the unit number. 
As a result, FORTRAN will process the statement like any other edit-directed READ 
statement, filling the requirements of the input list as guided by the format specifications. 

16.4.2 Data Transmission with Internal Files 

We shall look at this technique in a little more detail by setting up a general illustration of 
the basic mechanism: Suppose our input records follow one of four possible formats. 
Each of the formats is known and, therefore, can be defined in the program. The format 
for a particular record is indicated by an integer ( 1, 2, 3, or 4) in column 1 of that record. 
The remaining columns contain information consistent with the designated format. 

A straightforward way to handle this is to declare an integer variable (we shall call it 
FTYPE) in which to store the format indicator, and a character variable (which we shall 
call INF ILE) in which to store the other 79 columns from the input record. INF ILE then 
will be our internal file when we reread its contents (Figure 16.5). 

INTEGER*2 
CHARACTER*79 

FTYPE 
INFILE 

C ---------------READTHERECORDFROM ITS EXTERNAL UNIT ---------------­
READ (*, 12) FTYPE, INFILE 

12 FORMAT (Il,A79) 
C - - - - - - - - - - - - -NOW WE CAN DETERMINE WHICH FORMAT TO FOLLOW - - - - - - - - - - - - - -

IF (FTYPE. EQ. 1) THEN 
READ (INFILE, 21) inputlistl 

21 FORMAT (formatspecl) 

ELSE IF (FTYPE. EQ. 2) THEN 
READ (INFILE, 22) inputlist2 

22 FORMAT (formatspec2) 

ELSE IF (FTYPE. EQ. 3) THEN 
READ ( INF ILE, 2 3) inputlist3 

23 FORMAT (formatspec3) 

ELSE IF (FTYPE. EQ. 4) THEN 
READ (INFILE, 24) inputlist4 

24 FORMAT (formatspec4) 

END IF 

Figure 16.5 

ELSE 
CALLFMTERR 

Remember that the record in the internal file (in this example) is 79 characters long (not 
80), because the first position of the original record was not read into the same character · 
string as the other 79. Consequently, the first position of the internal record is what used 
to be position 2, and the format description must be constructed with that in mind. 
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Example 16.2 The Baling Wire and Prayer Company sells a variety of building materials to the 
construction trades. Each type of material is priced differently because of the way it is sold. For example, 

some materials are manufactured as standard sheets and, therefore, are sold by the sheet. Others, while 

still produced in sheets, are cut up and sold by the square meter. Still others, also in sheets, come in 

various thicknesses which affect the price in such a way that the company finds it appropriate to sell these 

by the cubic meter. Some liquids are sold by the liter while others are sold only by the barrel. 

The company wants its daily sales reports to show this diversity, so that the amount of each 

purchase is to be displayed with its proper units. Consequently, the first digit of each six-digit product 

number indicates the general product category. 

1. Products identified by i.d. numbers 100000-199999 are sold by the linear meter (like lumber or 

pipe) and priced to the nearest meter. 

2. Products with i.d. numbers 200000-299999 are sold by the rectangular piece, and priced to the 

nearest hundredth of a square meter. The size of a piece is reported (in the input) by recording its 

length and width, each to the nearest tenth of a meter. For any given purchase of such material, all 

the rectangular pieces are the same size. 

3. Products with i.d. numbers 300000-399999 are sold by the sheet, with the price per sheet 

specified to the nearest cent. 

4. Products with i.d. numbers 400000-499999 are priced per cubic meter but sold in equal sized 

rectangular pieces. Accordingly, data for such a purchase shows the length and width, each to the 

nearest tenth of a meter, and the thickness in millimeters to the nearest tenth of a millimeter. 

5. Products with i.d. numbers 500000-599999 are sold in bulk by the cubic meter (like sand or 

gravel), with the amount of purchase recorded to the nearest tenth of a cubic meter. 

6. Products identified with numbers in the range 600000-699999 are sold by the liter (to the nearest 

tenth of a liter). 

7. Products with i.d. numbers of 700000-799999 are sold by the barrel. 

8. Products with i.d. numbers of 800000-899999 are sold by the kilogram, with amounts reported 

to the nearest tenth of a kilogram. 

Each purchase is reported on a separate record. The contents and format depend on the product type. 

However all records, regardless of product type, show the product i.d. in columns 1-6, the 6-digit 

customer i.d. number in columns 7-12, the date of the order (mmddyy) in columns 13-18, and the 

salesperson's identification (three letters) in columns 68-70. No decimal points are shown; all are 

implied. These various formats are shown in Table 16.2.The required program is to compute a total price 

for each purchase and, where it is not given directly as part of the input, it is to compute the total amount of 

material purchased. For each purchase, the program is to print a line of output echoing the input (except 

for the date, which need appear only once at the top of each 40-line page). In addition, each line of output 

is to show the units in which the purchase is reported (SHEETS, or BBL, or LITERS, or cu. MTRS, etc.) and 

the total amount charged. After all the data have been processed, the program is to print the number of 

purchases in the run, the dollar amount of the total sales, and the average dollar amount per purchase. 

By setting up an appropriate structure, we can make the overall program quite simple. One way to do 

this is to use the product type as a guide in determining how the input is to be (re)read, what kinds of 

calculations are required, and how the corresponding output line should look. If we do that, the main 

program becomes little more than a loop which "sees to it" that each record is read and processed 

properly (based on its type), and that the appropriate output is printed. The details for each product type 

are hidden in the processing routines REREAD (which analyzes the input), SLSCMP (which prepares the 

output), and SLSPRT (which prints the appropriately formatted output line). 
If we look more closely at the type descriptions in Table 16.2, we see that, regardless of product 

type, we must end up with a quantity of goods purchased which, when multiplied by a unit price; will tell 

us the dollar amount of that purchase. This quantity is a real number for types 4, 5, 6, and 8, and an integer 

for the others. Consequently, we can simplify the data handling by declaring a general variable RLAMT for 

the real usage and an integer IGRAMT to handle those cases where an integer value is required. 

Since the first digit of the product type determines the kind of processing to be done with that set of 

input data, the main program will perform the simple task of extracting that digit (and storing it in a variable 

named CATEG) as part of its overall loop. Then, CATEG can serve as the "switch" that regulates the CASE 

structures for selecting the rereading format, preparation of the results, and delivery of the output line. 

With this in mind, we can construct the main program as shown in Figure 16.5(a). Note that, because it 
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Table 16.2 Input Format Descriptions for Example 16.2. 

columns item format 

type 1: 
21-24 length, meters integers 
27-30 price per meter XX(.)XX 

type2: 
21-23 length, m XX(. )X 

24-26 width, m XX(.)X 

28-30 no. of pieces integers 
36-40 price per sq. m. XXX(. )XX 

type3: 
21-23 no. of sheets integers 
26-30 price per sheet XXX(. )XX 

type4: 
21-23 length, m XX(.)X 

24-26 width, m XX(. )X 

27-29 thickness, mm XX(. )X 

31-33 no. of pieces integers 
36-40 price per cu. m. XXX(. )XX 

typf! 5: 
21-24 cubic meters XXX(. )X 

26-30 price per cu. m. XXX(. )XX 

type 6: 
21-25 no. of liters XXXX(. )X 

27-30 price per liter XX(. )XX 

type 7: 
21-24 no. of barrels integers 
26-30 price per barrel XXX(.)XX 

type 8:, 
21-25 no. of kgms XXXX(. )X 

36-40 price per kgm XXX(. )XX 

involves only a single statement, we have chosen to perform the initial input (i.e., from the external unit) as 
part of the main program rather than constructing it as a separate subprogram. The other major 
processing duties are assigned to several subprograms as follows: 

1. INIT-This subroutine" primes" the program by initializing the counters for the total number of 
purchases (NUMPCH) and the total purchase amount (GRAND). In addition, it invokes the subrou­
tine NEWPG which initializes the line counter (LINES) and prints the column headings. 

2. REREAD-This subroutine, using CATEG as an indicator, reads the appropriate variables from the 
internal file NEWIN. 

3. SLSCMP-This subroutine, also motivated by CATEG, computes the purchase amount (TTLPUR) 
for the current set of input data. 

4. SLSPRT-This subroutine prints the output line for the current set of input data. As is true for 
REREAD and SLSCMP, the contents and format of the line are dictated by the value in CATEG, i.e., 
by the product type. 

The individual routines are shown in Figures 16.6(b) through 16.6(f). Note that the actual statements for 
NEWPG and SLSPRT are not given. You will be asked to supply them as part of the problems at the end of 
the chapter. A possible output format is shown in Figure 16.6(g). 

16.4.3 Another Technique for Using Variable Fonnats HP FORTRAN 77 provides 
another approach for choosing among a set of predefined format specifications: It is 



C*************************************************************** 
C EXAMPLE 16.2 - THE MAIN PROGRAM * 

C*************************************************************** 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THIS PROGRAM PROCESSES PURCHASE DATA. THE INPUT DATA FORMAT * 
FOR AN INDIVIDUAL PURCHASE DEPNDS ON WHICH ONE OF 8 POSSIBLE* 
PRODUCT TYPES IS BEING PURCHASED. THE VARIABLES ARE: * 

LENGTH, WIDTH, THK: - THESE ARE LENGTH, WIDTH, THICKNESS * 
DIMENSIONS REPORTED FOR SOME PRODUCT TYPES. * 

RLAMT: - THIS REPRESENTS THE QUANTITY BEING PURCHASED WHEN* 
THAT QUANTITY IS A REAL NUMBER (LENGTH, SQUARE * 
METERS, CUBIC METERS, LITERS, OR KILGRAMS). * 

IGRAMT: - THE QUANTITY BEING PURCHASED WHEN THE QTY IS AN * 
INTEGER (NO. OF SHEETS, NO. OF PCS, NO. OF BARRELS). * 

UNITPR: - THE UNIT PRICE FOR A PARTICULAR PURCHASE. * 
TTLPUR: - THE UNIT PRICE TIMES THE PURCHASE AMOUNT. * 

C GRAND: - THE SUM OF ALL THE TTLPUR VALUES IN THE RUN. * 
C NUMPUR: - THE NUMBER OF PURCHASES FOR THE RUN. * 
C AVGPUR: - THE AVERAGE PURCHASE AMOUNT (GRAND/NUMPUR). * 
C TYPE, CATEG: - THE PRODUCT TYPE, AND ITS LEFTMOST DIGIT. * 
C CUSTID: - THE CUSTOMER'S IDENTIFICATION NUMBER. * 
C MO, DAY, YR: - THE PURCHASE DATE. * 
C LINES: - THE LINE COUNTER (40 LINES OF OUTPUT PER PAGE). * 
C SLSPRS: - A 3-CHARACTER SALESPERSON'S IDENTIFIER. * 
C NEWIN: - THE INTERNAL FILE CONTAINING COLUMNS 19-67 OF THE* 
C MOST RECENTLY READ INPUT LINE. * 

C*************************************************************** 
PROGRAM 
IMPLICIT 

EX1602 
NONE 

REAL LENGTH,WIDTH,THK,UNITPR,TTLPR,GRAND,AVGPUR,RLAMT 
INTEGER*2 TYPE,CATEG,CUSTID,MO,DAY,YR,LINES,NUMPUR,IGRAMT 
CHARACTER SLSPRS*3,NEWIN*49 
CALL INIT (LINES,NUMPUR,GRAND) 
READ (*,'2I6,3I2,A49,A3',END=99) TYPE,CUSTID,MO,DAY,YR, 

1 NEWIN,SLSPRS 

1 

1 

1 

1 

DO WHILE (.TRUE.) !AN INFINITE LOOP BROKEN BY END-OF-FILE! 
IF (LINES .EQ. 40) CALL NEWPG (LINES) 
CATEG = TYPE/100000 
CALL 

CALL 

CALL 

READ 

END DO 

REREAD (CATEG,NEWIN,LENGTH,WIDTH,THK,RLAMT, 
IGRAMT,UNITPR) 

SLSCMP (CATEG,LENGTH,WIDTH,THK,RLAMT,IGRAMT,UNITPR, 
TTLPUR,GRAND,NUMPUR) 

SLSPRT (CATEG,TYPE,CUSTID,MO,DAY,YR,LENGTH,WIDTH,THK, 
RLAMT,IGRAMT,UNITPR,TTLPUR,SLSPRS,LINES) 

(*,'2I6,3I2,A49,A3',END=99) TYPE,CUSTID,MO,DAY,YR, 
NEWIN,SLSPRS 

AVGPUR = GRAND/NUMPUR 
WRITE (*,199) NUMPUR,GRAND,AVGPUR 

199 FORMAT (///1X,10X,'NUMBER OF PURCHASES: ',I4/1X,10X, 
1 'TOTAL SALES AMOUNT: ',F9.2/1X,10X, 
2 'AVERAGE AMOUNT PER PURCHASE: ',FS.2) 

STOP 
END 

FIGURE 16.6 (a) Main Program for Example 16.2. 

(Continued) 
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c*************************************************************** c !NIT * C*************************************************************** 
C THIS LITTLE SUBROUTINE STARTS THE RUN BY INITIALIZING NUMPUR* 
C AND GRAND, THE TWO CUMULATIVE TOTALS. INDIRECLY, IT ALSO * 
C INITIALIZES LINES, THE LINE COUNTER, BY CALLING NEWPG. * 
C*************************************************************** 

SUBROUTINE 
IMPLICIT 
REAL 
INTEGER*2 

NUMPUR = 0 
GR = 0.0 
CALL NEWPG (LNS) 
RETURN 
END 

!NIT (LNS,NUM,GR) 
NONE 
GR 
LNS,NUM 

(b) 

C*************************************************************** 
c REREAD * 
C*************************************************************** 
C AFTER THE MAIN PROGRAM HAS READ A LINE FROM THE EXTERNAL * 
C UNIT AND EXTRACTED THE PART CATEGORY (CATEG), REREAD USES * 
C CATEG'S VALUE TO SELECT THE PROPER INPUT FORMAT AND READS * 
C THE APPROPRIATE SET OF VARIABLES FROM THE INTERNAL FILE * 
C (NEWIN) INTO WHICH THE ENTIRE SEQUENCE OF CHARACTERS WERE * 
C STORED. THE ROUTINE IS BASED ON THE ASSUMPTION THAT CATEG * 
C HAS A VALUE OF 1, 2, 3, 4, 5, 6, 7, OR 8. * 
C REMEMBER THAT THE FIRST POSITION (CHARACTER) IN NEWIN * 
C CORRESPONDS TO POSITION 19 IN THE ORIGINAL RECORD. * 
C*************************************************************** 

SUBROUTINE 
IMPLICIT 
REAL 
INTEGER*2 
CHARACTER*49 

REREAD (CAT,CHR,L,W,T,RL,IL,U) 
NONE 
L,W,T,RL,U 
CAT, IL 
CHR 

GO TO (21,22,23,24,25,26,27,28),CAT 
21 READ (CHR,31) IL,U 
31 FORMAT (2X,I4,2X,F4.2) 

GO TO 88 
22 READ (CHR,32) L,W,IL,U 
32 FORMAT (2X,2F3.1 ,1X,I3,5X,F5.2) 

GO TO 88 
23 READ (CHR,33) IL,U 
33 FORMAT (2X,I2,2X,F5.2) 

GO TO 88 
24 READ (CHR,34) L,W,T,IL,U 
34 FORMAT (2X,3F3.1,1X,I3,2X,F5.2) 

GO TO 88 
25 READ (CHR,35) RL,U 
35 FORMAT (2X,F4.1 ,1X,F5.2) 

GO TO 88 
26 READ (CHR,36) RL,U 
36 FORMAT (2X,F5.1,1X,F4.2) 

GO TO 88 
27 READ (CHR,37) IL,U 
37 FORMAT (2X,I4,1X,F5.2) 

GO TO 88 
28 READ (CHR,38) RL,U 
38 FORMAT (2X,F5.1,F5.2) 
88 CONTINUE 

RETURN 
END (c) 

FIGURE 16.6 (b) !NIT Subroutine for Example 16.2. (c) REREAD Subroutine for Example 16.2. 



C**************************************************************** 
c SLSCMP * 
C**************************************************************** 
C THIS SUBROUTINE USES CATEG TO SELECT THE WAY IN WHICH IT * 
C OBTAINS TTLPUR, THE DOLLAR AMOUNT FOR THE CURRENT PURCHASE. * 
C IN SOME CASES, THE PURCHASE QUANTITY IS AVAILABLE DIRECTLY AS* 
C AN INPUT VALUE; IN OTHERS, IT HAS TO BE COMPUTED. SINCE THE * 
C ACTIONS ARE IDENTICAL FOR MORE THAN ONE PRODUCT TYPE, THE * 
C PROCESSING TAKES ADVANTAGE OF THIS AND THE CASE STRUCTURE * 
C SENDS THE ROUTINE TO THE SAME DESTINATION FOR MORE THAN ONE * 
C PRODUCT TYPE. * 

C**************************************************************** 

41 

42 

44 

45 
188 

SUBROUTINE SLSCMP (CAT,L,W,T,RL,IL,U,TTL,GR,N) 
IMPLICIT NONE 
REAL 
INTEGER*2 

N = N + 1 

L,W,T,RL,U,TTL,GR 
CAT,IL,N 

GO TO (41,42,41,44,45,45,41,45) ,CAT 
TTL = IL * u 
GO TO 188 
TTL = IL * u * 
GO TO 188 
TTL = IL * u 
GO TO 188 
TTL = RL * u 
CONTINUE 

GR = GR + TTL 
RETURN 
END 

* 

L * w 

L * w * 0.001*T 

(d) 

C*************************************************************** 
c NEWPG * 
C*************************************************************** 
C THIS SUBROUTINE STARTS A NEW OUTPUT PAGE BY INITIALIZING OR * 
C RESETTING THE LINE COUNTER TO ZERO AND BY PRINTING A SET OF * 
C COLUMN HEADINGS. * 

C*************************************************************** 
(e) 

C*************************************************************** 
c SLSPRT * 
C*************************************************************** 
C THIS SUBROUTINE PRINTS A LINE OF OUTPUT USING THE INPUT AND * 
C THE RESULTS DEVELOPED BY SLSCMP. IN ADDITION, IT SUPPLIES A * 
C CHARACTER STRING FOR THE ENTRY IN THE COLUMN HEADED "UNITS".* 
C THIS VALUE (EXPRESSED.EITHER AS METERS, SQ MTRS, CU MTRS, * 
C LITERS, BARRELS, OR KGMS) IS BASED ON THE PRODUCT TYPE. FOR * 
C SOME PRODUCT TYPES, IT IS AVAILABLE DIRECTLY AS PART OF THE * 
C INPUT DATA. FOR OTHERS, IT MUST BE COMPUTED (E.G., NUMBER OF* 
C PIECES X THE AREA OF A PIECE). * 

C*************************************************************** 
(f) 

FIGURE 16.6 d) SLSCMP Subroutine for Example 16.2. (e) Description of NEWPG Subroutine for Example 

16.2. (f) Description of SLSPRT Subroutine for Example 16.2. 455 
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possible to associate a name with a statement label and then refer to that name (instead of 
the statement number) in a READ and WRITE statement. The association is established by 
an ASSIGN statement. Suppose FMT_LABEL is declared as in INTEGER*2 variable. 
Then, the statement 

ASSIGN 16 TOFMT_LABEL 

associates the value 16 with the variable FMT_LABEL. HP FORTRAN 77expects16 to 
be a statement label somewhere in the program. If we arrange for it to be the label of a 
FORMAT statement, we can say 

READ ( * , FMT _LABEL) inputlist 

and the program will read the input list as directed by the format specifications in 
statement 16. If we wanted to choose among three different input formats described, 
respectively, in statements 16, 26, and 36, we could do that as follows: 

IF condition] THEN 
ASSIGN 16 TOFMT_LABEL 

ELSE IF condition2 THEN 
ASSIGN 26 TOFMT_LABEL 

ELSE 
ASSIGN 36 TOFMT_LABEL 

END IF 
READ (*, FMT_LABEL) inputlist 

16 FORMAT 
26 FORMAT 
36 FORMAT 

(description]) 
( description2) 
( description3) 

1&.s SUMMARY FORTRAN provides a variety of additional format control mechanisms that make it 
possible to set up and use more complex and versatile systems for edit-directed data. 

1. The G-specification ( Gw. d) enables the programmer to describe real numerical 
values whose appearance will depend on their magnitude. When FORTRAN is given a 
a-specification, it tries to edit the value so that it looks like an F-specified value. If this 
cannot be done (because the value is too large or too small for the w or d that was specified 
for it), FOR TRAN automatically produces the value in E-format. 

2. The T-, TL-, and TR-specifications make it possible to treat the edit-directed input 
or output record as if it were a line on a typewriter, with the specifications acting like 
versatile tabulator keys. 

(1) The plain T-specification causes FORTRAN to move to a specified position in 
the record. 

(2) The TL-specification causes FORTRAN to move to the left (i.e., backward) in 
the record. 

(3) The TR-specification causes FORTRAN to move to the right (i.e., forward) in 
the record. 

3. The P-specification allows numerical values to be scaled (i.e., multiplied by a 
power of ten) so that their apparent value can be different from the actual value (i.e., the 
value stored internally). If k (a signed integer constant) is the scale factor, then 

apparent (scaled) value= internal value* 10 ** k 
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4. Additional features and techniques allow the FORTRAN programmer to delay 
the precise specification of a data format until the information actually is used by the 
program as it runs: 

(1) A run-time format can be supplied as an ordinary input character string. Then, 
when the input data are to be read (or the output data are to be written), the 
name of that character string is used in the READ or WRITE statement instead of a 
FORMAT statement number. Consequently, FORTRAN is instructed to look at a 
variable (which, of course, may change) instead of a program statement (which 
may not, once the program is compiled). 

(2) Input data can be read into an internal file. The programmer then can pretend 
that the resulting record is in another "input device" and "reread" it, using a 
different format description, and even a different READ statement with a different 
input list. 

(3) One of several predefined format descriptions can be selected at run time by 
specifying a variable statement label in the READ or WRITE statement and using 
the ASSIGN statement to associate the appropriate FORMAT statement number 
with the integer label variable. 
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1. Assume that each number given below is the value of a variable about to be printed. Show what it will look PROBLEMS 

like when edited according to the format specification that appears with it: 

numerical value format specification numerical value 

(a) 23. O F14.6 (b) 23. 0 
(c) o. 09724 G14.6 (d) 0. 09724 

(e) 0. 09724 G14.4 (f) -3. 00728 

(g) -3. 00728 G14.7 (h) 7863. 414 

(i) 7863.4148 G14.3 (j) -0. 0000919 

(k) 0. 32655E+OO Gll. 4 (1) 554227.0 
(m)-0. 11748E-04 2PE12.5 (n) -0. ll 748E-04 

(o) -0. ll 748E-04 3PF12.5 (p) 425678000000.0 

(q) -887565000. 0 -3PF7.1 

2. The following variables are in storage: 

PRTS has a value of O. 0934 
CONC has a value of O. 00000008 7 lbs ofB per lb of mixture 
VOL has a value of 32 7 4 84 cubic meters 
REVN has a value of 289764000 dollars 

We would like to print these values on a single output line as follows: 

format specification 

G14.6 
G14.5 
E14.7 
G14.7 
Gl0.3 
Gll. 4 
-2PE12.5 
-6PF13.6 

PRTS in Cols. 11-15, expressed as a percent, to the nearest hundredth of a percent 

VOL in Cols. 21-28, expressed as thousands of cubic meters, with all six significant figures included 

CONC in Cols. 31-35, expressed in parts per million (lbs of B per million lbs of mixture), with all 

significant figures included 
REVN in Cols. 51-60, expressed as hundreds of thousands of dollars, with all significant figures included 

Write a FORMAT statement that will meet these requirements. 

3. Rewrite the FORMAT statements in each of the following problems from Chapter 15 so that they produce 

exactly the same results with T-specifications used instead of the X-specifications. (Note that you are not 

to use TR- or TL- specifications; use just the ordinary T-specification: 

(a) Problem l(a) 
(e) Problem l(i) 
(i) Problem 3(a) 
(m) Problem5(b) 

(b) Problem l(c) 
(f) Problem2(b) 
(j) Problem 3( d) 
(n) Problem 5(d) 

(c) Problem l(d) 
(g) Problem 2( d) 
(k) Problem 4(c) 
(o) Problem 6(c) 

(d) Problem l(f) 
(h) Problem 2(e) 
(1) Problem 4(f) 
(p) Problem 6( e) 
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4. Repeat Problem 3 using the TR-specification in place of each X-specification for the indicated FORMAT 
statements. 

5. Rewrite the NEWPG subroutine for Example 15.1 using G-specifications for the numerical output and T- or 
TR-specifications for positioning. 

6. Rewrite the TABPRT subroutine for Example 15. l using G-specific'!tions for the numerical output and T­
or TR-specifications for positioning. 

7. Rewrite the READER subroutine for Example 15.2 using G-specifications for the numerical output and T­
or TR-specifications for positioning. 

8. Rewrite the NEWPG subroutine for Example 15.2 using G-specifications for the numerical output and T- or 
TR-specifications for positioning. (Note that the G-specification may not be applicable for all the numerical 
output.) 

9. Rewrite the PAYPRT subroutine for Example 15.2 making the substitutions described in the previous 
problem. 

10. Using the information given in the example, write the NEWPG and SLSPRT subroutines for Example 16.2. 

11. Claws and Talons, Ltd. is a conglomerate that has acquired a large number of companies, each of which is 
engaged in selling a certain line of products. Each of these companies reports its individual sales by 
recording the following information on one line for each sale: 

product code: 
date of sale: 
no. of items: 
unit price: 
type of payment: 
method of shipment: 

three letters followed by three digits 
mm/ dd/yy for some companies; mmddyy for others 
a five-digit integer for some companies; four digits for others 
a real number (in the form xxxxx. )xx; the decimal point is not recorded 
a single digit ( 1 =cash; 2 =on account 
a single digit (l=taken by customer; 2=truck; 3=rail; 4=air; 5=boat or 
barge; 6=oxcart; 7=dogsled; 8=other) 

Since each company was independent of all the others before Claws and Talons swallowed it, it had its own 
way of recording this information. Thus, no two companies' input formats are alike. In fact, the order in 
which the information is recorded varies from company to company. However, in order to make it 
possible to handle all the data together without forcing each company to change its format, C and T took 
advantage of the fact that no company used columns 78-80 for anything. How nice. Consequently, what 
they did was to assign a 3-digit company code to each organization and required the companies to record 
their respective codes in those columns of each sales record. Thus, wherever else the other input values 
may be, one could always look in columns 78-80 and find the proper company code there. 

The parent company would like to produce a weekly report in which each line of output shows the 
data for an individual sale: Company code, an echo of the input values (with English names for type of 
payment and method of shipment instead of numerical codes), and the total amount of the sale. On a 
separate page, the program is to report the total number of sales, the total amount of the sales, the total 
amount of cash sales, and the total amount of credit (on account) sales. 

Based on the (incomplete) information given above, design an appropriate program and prepare a 
detailed pseudocode or N-S representation. 

12. Claws and Talons (from Problem 11) currently owns six companies. The company codes and input 
formats are shown below: 

Company Code Columns Format 
Product Code 072 1-6 See Problem 11 

041 3-8 See Problem 11 
741 11-16 See Problem 11 
760 4-9 See Problem 11 
108 41-46 See Problem 11 
359 17-22 See Problem 11 

Date of Sale 072 11-18 mm/dd/yy 
041 9-14 mmddyy 
741 1-6 mmddyy 
760 11-18 mm/dd/yy 
108 1-8 mm/dd/yy 
359 5-10 mmddyy 
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No. of Items 072 21-25 Integers 
041 21-24 Integers 
741 18-21 Integers 
760 31-35 Integers 
108 11-14 Integers 
359 1-4 Integers 

Unit Price 072 31-37 See Problem 11 
041 26-32 See Problem 11 
741 24-30 See Problem 11 
760 21-27 See Problem 11 
108 20--26 See Problem 11 
359 34-40 See Problem 11 

Type of Payment 072 30 See Problem 11 
041 1 See Problem 11 
741 51 See Problem 11 
760 56 See Problem 11 
108 9 See Problem 11 
359 71 See Problem 11 

Method of Shipment 072 31 See Problem 11 
041 2 See Problem 11 
741 52 See Problem 11 
760 57 See Problem 11 
108 10 See Problem 11 
359 72 See Problem 11 

Using this information, together with the design prepared for Problem 11, write a complete program that 
meets the processing requirements given in Problem 11. Note that even though the input formats are 
different for each company, their echo must follow a consistent format; otherwise, it would be impossibly 
difficult to read the printout properly. 

13. Modify the program for Example 16.1 so that it will produce any number of frequency distribution tables 
for different input data collections with different formats. 

14. Modify the program for Problem 13 so that it skips an entire set of input data if there is something wrong 
with the control information, or if the information is missing. 

15. Modify the program for Example 16.1 (or for Problem 13or14) so that it will recognize blanks and treat 
them as missing data. This means that the total number of observations for a given variable may be 
different from that of any other variable. Consequently, the "grand total" (see Figure 16.3(e)) no longer 
makes any sense. Instead, modify the output format by adding two more columns to it: One of these is to 
show the number of missing values, and the other is to show the total number of observations for that 
variable. Then, after the table has been printed, the revised program is to print the total number of input 
records, and the total number of missing values (for all the variables). 

16. Modify the program in Problem 15 so that, in addition to recognizing and dealing with missing data, it also 
handles errors in the data. (An error is a value other than 0 through 9 or blank.) Add another column to 
the output showing the number of erroneous (i.e., mistyped) values for each variable. Then, print the 
total number of errors along with the total number of input records and the total number of missing values. 

17. Modify the program in Example 16.2 so that the appropriate format is selected by means of the ASSIGN 

statement technique described in Section 16.4.3. 
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17 
Additional 
Input/ Output 
Techniques 

In this chapter we shall examine some additional input/output processes that provide 
greater flexibility for certain types of applications. Once the characteristics of these 
processes have been established, we shall discuss appropriate FORTRAN features that 
support them. 

The discussions in the previous two chapters make it clear that HP FORTRAN 77 
provides the programmer with an elaborate collection of capabilities for interpreting and 
formatting edit-directed data. By now, we can write a set of format specifications that will 
describe just about anything we want to describe. However, there are many occasions 
when all of these convenient and powerful capabilities are wasted. The reason lies in the 
simple fact that not all data are produced for humans to examine. (There are related 
problems in that much of the information that is intended for human inspection does not 
get looked at, but that is another matter.) 

In Section 1.1.3 of Chapter 13 we discussed a type of situation in which a process 
consists of several programs such that the output produced by one program may serve as 
input to one or more others. Often, it is only the information at the beginning and end of 
this overall process that is of interest to humans. The initial input usually is prepared by 
typing it into a terminal of some kind. Consequently, it needs to be in human compatible 
form so that it can be read and checked for proper entry. Similarly, the usefulness of final 
output often depends on how easily the human user can read and understand it. Thus, it is 
worthwhile for the programmer to put in the work and care required for the preparation 
of convenient format designs. The same holds true for the extra computer time that might 
be involved in interpreting the format specifications and performing the appropriate 
editing processes. 

When a human observer is not involved, FORTRAN makes it possible to avoid this 
additional overhead by enabling the programmer to set up and use unformatted files. 
Recall (from Chapter 13) that the data stored in unformatted file records are an exact 
physical copy of what was in the processor's main memory. Since the machine is designed 
specifically to handle data in that form, there is no need for FORTRAN to step in and 
provide translating services. 

17. 1.1 Preparation of Unfonnattad Files 

The typical process for preparing unformatted files starts with human-compatible input. 
(This is not always the case. There are situations where initial input to a computing 
process consists of electrical signals produced by something connected directly to the 
processor. Such signals may come from a variety of sources ranging from a temperature 
probe on a spacecraft to a set of electrodes picking up a human heartbeat. However, we 
shall not be considering such systems here.) The input, usually edit-directed, is read and 
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processed to produce an (unformatted) output file. As part of this process, of course, it 
may be perfectly reasonable to produce human-readable output (e.g., a printed report) as 
well, but our focus here is on the machine-compatible file that will be submitted for 
further processing. (A glance at Figure 13.4 will provide a helpful reminder of this overall 
process.) 

Since the standard systems input and output units usually are associated with for­
matted data, it is necessary to create an unformatted file by explicit program specifications 
in which the file is described and associated with a particular unit. A convenient way to do 
this is by means of the OPEN statement (Section 13.2.3.1). This establishes the file's 
existence (even before any records are produced for it), connects the file to a specified 
unit, and establishes the necessary bookkeeping to make the file available for use. 

As an example, suppose we wanted to create a file named CKSUBS and connect it to 
unit 2. The appropriate OPEN statement would look like this: 

OPEN (UNIT=2' FILE= I CKSUBS I 'FORM= I UNFORMATTED I ' 

1 ACCESS= I SEQUENTIAL I ' STATUS= I NEW I ) 

In this particular instance, FORTRAN would have opened the file for sequential access 
anyway (by default). Similarly, another default mechanism would have assigned a status 
of 'NEW' if the STATUS= specification had not appeared. However, the practice of 
specifying everything is as desirable here as it is in other types of declarations. Inclusion of 
the file name ( CKSUBS in this example) activates a mechanism that incorporates the name 
as part of the physical data recorded in the file. Then, when those data are to be read later 
on (either in the same program or in an entirely different one), the file can be identified by 
name and the system will be able to match that name with information in the file. 

All of this happens automatically as part of the services provided by the HP operating 
system in which FORTRAN programs operate. Consequently, the programmer is pro­
vided with an additional safety measure: If a program uses a named file, and that file's data 
are recorded on tape or magnetic disk, the program will not run unless the disk or tape 
used with that program includes the same file name as part of its recorded information. 
Thus, in our example, suppose that unit 2 is associated with a magnetic tape device and we 
write a series of records onto a reel of tape installed on that device. Information about the 
file name will be included automatically as part of that recorded output. Then, suppose we 
put the tape away and use it as input for another program three days later. If that program 
is designed to read from a file named CKSUBS, that program will not be able to run unless 
it "assures" itself that the reel of tape submitted as input contains a file named CKSUBS. 

17 .1.2 Transmission of Unfonnatted Data Records 

Since an unformatted record (by its nature) requires no editing or interpretation, its 
transmission requires nothing more than a specification of the unit number and an input 
or output list. For example, the statement 

READ (2) A,XFR,STAT,BIGW 

reads the next record from unit 2 and stores the four items in that record in variables A, 

XFR, STAT, and BIGW, respectively. The operation will not work if there are inconsis­
tencies between the informatfon in the statement and the characteristics of the file 
associated with the unit specified in that statement. Specifically, the programmer must 
make sure that: 

1. The file connected to the specified unit (2 in this case) is an unformatted file. 

2. There are at least as many items in the unformatted record as there are in the input 
list. Since each input or output operation transmits exactly one record, additional 
items in the record (over and above those specified in the input or output list) are 
ignored. 
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3. The type of each data item in the record must match that declared for the item in 
the corresponding position in the input list. For example, if STAT is declared as a 
REAL variable, then the third item in the record must be a real number. Similarly, if 
BIGW were declared as CHARACTER*l 7, the fourth item in the record must be a 
17-character string. 

The programmer can take appropriate precautions when the program is designed by 
making sure that the organization of the file to be used is completely understood so that it 
is reflected accurately in the program's statements. Further checking can be done just 
before the program is run to make sure that the proper file is used. While these measures 
are important, it may be necessary to provide additional insurance by building it into the 
program itself. 

To begin with, we are already familiar with the END= and ERR= specifiers, either or 
both of which work here exactly as they do with formatted input or output statements. 
Thus, 

READ (2,END=99,ERR=88) A,XFR,STAT,BIGW 

sends the program to statement 99 if the endfile record is encountered or to statement 88 if 
something goes wrong during the input operation. 

Another way to provide the same type of service is by means of the IOSTAT= 
specifier (Section 13.2.1.1 ). For instance, we could say 

READ (2,IOSTAT=HOW) A,XFR,STAT,BIGW 

where HOW is the name of a variable declared as INTEGER* 2. Then, instead of trans­
ferring to other statements as the result of an error or endfile condition, a statement can be 
placed immediately after the READ statement to test the variable HOW to determine the 
outcome of the input attempt. Since a normal transmission (no error or endfile condition) 
produces a zero in the IOSTAT variable, we shall be optimists and use that as the default in 
a CASE construction as follows: 

REAL 
INTEGER*2 
CHARACTER*l7 

A, STAT 
XFR,HOW 
BIGW 

READ (2,IOSTAT=HOW) A,XFR,STAT,BIGW 
IF (HOW. GT. 0) THEN 

CALL ERRCMP (arguments) 
ELSE IF (HOW . LT. 0) THEN 

CALL EOFCMP (arguments) 
ELSE 

END IF 
normal processing 

Facilities for further investigation can be built into the program by means of the 
INQUIRE statement outlined in Section 13.2.3.3. For example, the statements in Figure 
17 .1. open a file connected to unit 2, check to determine whether the file just opened is an 
unformatted file named CKSUBS, read a record from that file, and check to determine 
whether the input operation pro~eded normally. In this type of construction, ERRCMP is 
a general error-handling subroutine that checks all of IOERR's elements to see which 
kinds of errors were encountered. This enables it to respond to each type of error with an 
appropriate action. (The IF statement that determines whether or not ERRCMP should be 
called uses the sum of IOERR's elements to establish whether they all have values of zero; 
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C************************************************************ 
C IOERR IS AN ARRAY OF INTEGERS, EACH OF WHICH SIGNALS THE * 
C OCCURRENCE (1) OR NON-OCCURRENCE (0) OF A PARTICULAR TYPE* 
c OF ERROR: * 
c IOERR(1) REPORTS FILE EXISTENCE * 
c IOERR(2) REPORTS PROPER FILE NAME * 
c IOERR(3) REPORTS WHETHER FILE IS UNFORMATTED * 
c IOERR(4) REPORTS TYPE OF FILE ACCESS * 
c IOERR(S) REPORTS AN ERROR DURING INPUT * 
c IOERR IS INITIALIZED TO ZERO, AND THEN THE ELEMENTS ARE * 
c CHANGED OR NOT, DEPENDING ON THE OUTCOME OF THE INQUIRE * 
c OPERATION. * 
C************************************************************ 

REAL 
INTEGER*2 
CHARACTER 
LOGICAL 

DO I=1,S 
IOERR(I) = 0 

END DO 

A,STAT 
XFR,HOW,I,IOERR(S) 
BIGW*17,FILNAM*6,FRMTST*11,ACCTST*10 
EXTEST 

OPEN (2,FILE='CKSUBS',FORM='UNFORMATTED') 

INQUIRE (UNIT=2,NAME=FILNAM,FORM=FRMTST,ACCESS=ACCTST, 
1 EXIST=EXTEST) 

IF (EXTEST .EQ .. FALSE.) IOERR(1) = 1 
IF (FILNAM .NE. 'CKSUBS') IOERR(2) = 1 
IF (FRMTST .NE. 'UNFORMATTED') IOERR(3) = 1 
IF (ACCTST .NE. 'SEQUENTIAL' ) IOERR(4) = 1 

READ (2,IOSTAT=HOW) 
IF (HOW .GT. 0) IOERR(S) = 1 
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IF (IOERR(1) + IOERR(2) + IOERR(3) + IOERR(4) + IOERR(S) 
1 . GT . 0 ) THEN 

CALL ERRCMP (IOERR) 
ELSE IF (HOW .LT. 0) THEN 

CALL EOFCMP (arguments) 
ELSE 

END IF 
normal processing 

FIGURE 17 .1 File Checking with the INQUIRE Statement. 

If I OERR had many more elements, this type of technique would be impractical and 
another approach would have to be devised.) 

Example 17 .1 Heavy Facts, Inc. supplies its customers with tables of scientific data on request. 

Lately, they have been noticing an active demand for information about a certain group of chemicals. As a 

result, they have decided to make this part of the operation more efficient by building a computerized file 
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for these data, together with a set of supporting programs that will search the file and produce reports to 
fulfill customers' requirements. 

Table 17.1 

Columns 

1-6 
7-12 

13-16 
17-36 
37-61 
62-64 
65-69 
70-75 
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Item 

chemical's i.d. 
molecular wt. 
year first produced 
trade name 
empirical formula 
state at room temp. 
melting pt., deg. C. 
boiling pt., deg. C. 
bitterness index 

Format 

integers 
XXXX(. )XX 

integers 
characters 
characters 
SLD,LIQ,orGAS 
sign, followed by xxx ( . ) x 
sign, followed by xxxx ( . ) x 
1,2,3,or4 

Data for each chemical are recorded on a separate line as shown in Table 17.1. lnthis example we shall 
develop the first support program, i.e., one that uses these lines as input (in order by chemical i.d. number) 
to produce an unformatted output file (named CHDATA) on unit 3. The program will print a line for each 
chemical record added to CHDATA. An addition test to make sure that the input records are in proper 
sequence. Specifically, the i.d. (columns 1-6) on each input record will be checked against that of the 
previous one. If the new i.d. number is not larger, the program will add that (new) record's information to 
another unformatted file named CHMERR, this one connected to unit 2. After all the data have been 
processed, a summary will be printed showing the total number of records read, the number accepted, (i.e., 
the number of chemical records in CHDATA), and the number of records out of order (i.e., the number of 
chemical records in CHMERR). Then, CHMERR will be repositioned to its first record and used as input for a 
printed error report showing the rejected data. 

Pseudocode and N-S representations are shown in Figure 17 .2 and the program itself is shown in 
Figure 17.3. 

"Define THISID, PREVID, MWT, YR, TRADE, EMPRCL, ST ATE, 
MPT. BPT, BITTER, TTLNUM, NUMACC, NUMREJ." 

"Initialize the program: 
Set TTLNUM, NUMACC, NUMREJ, PREVID to zero; 

Open CHDATA on unit 3 and CHMERR on unit 2; } 
Read the first input card; 
Write the column headings for the output report." 

while there are more input data to process: 
if 

the current input card is out of order 
then 

else 

''write the data on CHMERR; 
increment NUMREJ.'' 

"write the data on CHDA TA; 
increment NUMACC; 
print an output line." 

endif 
"Read the next input card." 

end while 
"Print the summary information." 
"Print the error report." 
"Stop." 

) 

) 

FIGURE 17 .2 (a) Pseudocode Representation for Example 17 .1 . 

OPENER 

ERRPRC 

ADD REC 

RDCARD 

SUMPRT 
ERRPRT 
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Define THISID, PREVID, MWT, YR, TRADE, EMPRCL, STATE MPT, BPT, 
BITTER, TTLNUM, NUMACC, NUMREJ 

Set TTLNUM, NUMACC, NUMREJ, 
PREVID to ZERO 

Open CHDATA on unit 3 I OPENER I 
CHMERR on unit 2 

Read the first input card 

Write column headings 

While there are input values to process: 

~pr~ yes 

Write the record 

I ERRPRC I 
Write the record on CHDATA 

IADDRECI on CHMERR 

Print an output 
line 

Increment NUMREJ 
Increment NUMACC 

Read the next input card I RDCARD I 

Print the summary report I SUMPRT I 

Print the error report I ERRPRT I 

Stop 

RGURE 17 .2 (b) N-S Representation for Example 17. 1 . 

Once the file is built, we can process it in a variety of ways to extract information requested by Heavy 

Facts' customers. Just to illustrate the point, let us suppose that a customer wants to obtain a list of all 

compounds having a boiling point of at least so many degrees. For each compound that meets this 

requirement, the customer would like to see a line of print showing the compound's identification number, 

trade name, empirical formula, and (of course) the boiling point. 
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C*************************************************************** 
c EXAMPLE 17.1 - THE MAIN PROGRAM * 
C*************************************************************** 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THIS PROGRAM BUILDS AN UNFORMATTED FILE NAMED CHDATA BY PRO-* 
CESSING A COLLECTION OF INPUT RECORDS, EACH CONTAINING DATA * 
FOR A CHEMICAL COMPOUND. THE RECORDS ARE SUPPOSED TO BE IN * 
SEQUENTIAL ORDER BY INSCREASING I.D. NUMBER (COLUMNS 1-6). * 
WHEN THIS IS THE CASE, THE DATA ARE ADDED TO CHDATA ON UNIT * 
3. LINES OUT OF ORDER ARE ADDED TO AN UNFORMATTED ERROR FILE* 
(NAMED CHMERR) ON UNIT 2. EACH NEW CHDATA RECORD IS PRINTED * 
ON A SEPARATE OUTPUT LINE, 40 LINES PER PAGE. SUMMARY DATA * 
ARE PRINTED AFTER ALL INPUT HAS BEEN PROCESSED, AND AN ERROR* 
REPORT IS PRINTED AFTER THE SUMMARY. HERE ARE THE VARIABLES:* 

THISID: CURRENT I.D. NUMBER * PREVID: I.D. NUMBER OF PREVIOUS RECORD (INITIALIZED TO 0) * 
MWT: 
YR: 
TRADE: 

MOLECULAR WEIGHT 
YEAR DISCOVERED OR INVENTED 
TRADE NAME 

* 
* 
* EMPRCL: EMPIRICAL FORMULA (E.G., C17H3202S) * 

STATE: PHYSICAL STATE AT ROOM TEMPERATURE (E.G., LIQ) * 
MPT: MELTING POINT; BPT: BOILING POINT * 
BITTER: BITTERNESS INDEX (1, 2, 3, OR 4) * 
NUMACC, NUMREJ, TTLNUM: COUNTERS FOR NUMBER ACCEPTED, ETC. * 
LINES: A LINE COUNTER FOR PRINTED OUTPUT * 
EOF: END-OF-FILE SIGNAL * 

C*************************************************************** 
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PROGRAM 
IMPLICIT 
REAL 
INTEGER*4 
INTEGER*2 
CHARACTER 
LOGICAL 

EX1701 
NONE 
MWT,MPT,BPT 
THISID,PREVID,TTLNUM,NUMACC,NUMREJ 
YR,BITTER,LINES 
TRADE*20,EMPRCL*25,STATE*3 
EOF 

CALL OPENER (TTLNUM,NUMACC,NUMREJ,PREVID,THISID,MWT,YR,TRADE, 
1 EMPRCL,STATE,MPT,BPT,BITTER,LINES,EOF) 

DO WHILE (.NOT. EOF) 
IF (THISID .LE. PREVID) THEN 

CALL ERRPRC (THISID,MWT,YR,TRADE,EMPRCL,STATE,MPT,BPT,BITTER) 
NUMREJ = NUMREJ + 1 

ELSE 
IF (LINES .EQ. 40) CALL NEWPG (LINES) 
CALL ADDREC (THISID,MWT,YR,TRADE,EMPRCL,STATE,MPT,BPT, 

1 BITTER,LINES) 
NUMACC = NUMACC + 1 

END IF 
CALL RDCARD (PREVID,THISID,MWT,YR,TRADE,EMPRCL,STATE,MPT,BPT, 

1 BITTER,EOF,TTLNUM) 
END DO 

CALL SUMPRT (NUMACC,NUMREJ,TTLNUM) 
CALL ERRPRT (THISID,MWT,YR,TRADE,EMPRCL,STATE,MPT,BPT,BITTER) 
STOP 
END 

FIGURE 17 .3 (a) Main Program for Example 17 .1. 
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C*************************************************************** 
C OPENER * 

C*************************************************************** 
C THIS ROUTINE OPENS TWO UNFORMATTED FILES: CHDATA ON UNIT 2, * 
C AND CHMERR ON UNIT 3. IN ADDITION, OPENER INITIALIZES THE * 
C COUNTERS TO ZERO, PRINTS A SET OF COLUMN HEADINGS (BY A CALL* 
C TO NEWPG), AND READS THE FIRST INPUT LINE BY CALLING RDCARD * 

C*************************************************************** 
SUBROUTINE OPENER (T,A,R,PR,TH,MW,Y,TR,EMP,ST,M,B, 

1 BTR,L,EOF) 
IMPLICIT 
REAL 
INTEGER*4 
INTEGER*2 
CHARACTER 
LOGICAL 

NONE 
MW,M,B 
T,A,R,PR,TH 
Y,BTR,L 
TR*20,EMP*25,ST*3 
EOF 

OPEN (3,FILE='CHDATA',FORM='UNFORMATTED',ACCESS='SEQUENTIAL') 
OPEN (2,FILE='CHMERR',FORM='UNFORMATTED',ACCESS='SEQUENTIAL') 
T 0 
A = 0 
R = 0 
TH = 0 
CALL NEWPG (L) 
CALL RDCARD (PR,TH,MW,Y,TR,EMP,ST,M,B,BTR,EOF,T) 
RETURN 
END (b) 

C*************************************************************** 
c NEWPG * 
C*************************************************************** 
C THIS ROUTINE STARTS A NEW PAGE OF OUTPUT BY WRITING A SET OF* 
C COLUMN HEADINGS AND (RE)INITIALIZING THE LINE COUNTER. * 

C*************************************************************** 
(c) 

C**************************************************************** 
c RDCARD * 
C**************************************************************** 
C THIS ROUTINE READS AN INPUT RECORD AND INCREMENTS A COUNTER * 
C FOR EACH RECORD. IF THERE IS NO MORE INPUT, AN END-OF-FILE * 
C INDICATOR IS SET TO .TRUE.. * 

C**************************************************************** 
SUBROUTINE 
IMPLICIT 
REAL 
INTEGER*4 
INTEGER*2 
CHARACTER 
LOGICAL 

RDCARD (PR,TH,MW,Y,TR,EMP,ST,M,B,BTR,EOF,T) 
NONE 
MW,M,B 
PR,TH,T 
Y,BTR 
TR*20,EMP*25,ST*3 
EOF 

C---JUST PRIOR TO THE ACTUAL INPUT OPERATION, THE CURRENT CHEMICAL 
C---IDENTIFIER (TH) IS COPIED INTO THE VARIABLE FOR THE PREVIOUS 
C---IDENTIFIER (PR) SO THAT THE RECORDS CAN BE COMPARED FOR PROPER 
C---SEQUENCING. 

PR = TH 
EOF = .FALSE. 
READ (*,15,END=99) TH,MW,Y,TR,EMP,ST,M,B,BTR 

15 FORMAT (I6,F6.2,I4,A20,A25,A3,FS.1,F6.1,I1) 
T = T+1 
GO TO 77 

99 EOF = .TRUE. 
77 RETURN 

END 
(d) 

FIGURE 17 .3 (b) Initialization Routine for Example 17 .1. (c) NEWPG Routine for Example 17 .1. (d) RDCARD 

Routine for Example 17 .1 . 
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(Continued) 



468 ADDmONAL INPUT /OUTPUT TECHNIQUES 

C**************************************************************** 
c ADD REC * 
C**************************************************************** 
C THIS ROUTINE WRITES THE NEXT CHEMICAL RECORD ONTO THE FILE * 
C CHDATA AND PRINTS THE INFORMATION AS WELL, INCREMENTING THE * 
C LINE COUNTER AS PART OF THE PROCESS. * 
C**************************************************************** 

SUBROUTINE ADDREC (TH,MW,Y,TR,EMP,ST,M,B,BTR,L} 
IMPLICIT 
REAL 
INTEGER*4 
INTEGER*2 
CHARACTER 

NONE 
MW,M,B 
TH 
Y,BTR,L 
TR*20,EMP*25,ST*3 

WRITE (2) TH,MW,Y,TR,EMP,ST,M,B,BTR 
CALL PRTREC (TH,MW,Y,TR,EMP,ST,M,B,BTR,L} 
RETURN 
END 

(e) 

C*************************************************************** 
c PRTREC * 
C*************************************************************** 
C THIS ROUTINE PRINTS A CHEMICAL RECORD ON A SINGLE OUTPUT * 
C LINE AND INCREMENTS THE LINE COUNTER. THE ORDER IN WHICH THE* 
C INDIVIDUAL DATA ITEMS ARE PRINTED IS CONSISTENT WITH THAT OF* 
C THE COLUMN HEADINGS PRODUCED BY THE ROUTINE NEWPG. * 
C*************************************************************** 

(f) 

C*************************************************************** 
c SUMP RT * 
C*************************************************************** 
c 
c 
c 

THIS ROUTINE PRINTS THE SUMMARY INFORMATION AFTER THE OUTPUT* 
FILE HAS BEEN PREPARED AND ITS RECORDS PRINTED. * 
SUMPRT ALSO WRITES ENDFILE RECORDS ON THE TWO OUTPT FILES. * 

C*************************************************************** 
SUBROUTINE SUMPRT (A,R,T} 
IMPLICIT NONE 
INTEGER*4 A,R,T 

WRITE (*,16) 
16 FORMAT ('1'//1X,33X,'SUMMARY REPORT:'//} 

WRITE (*,17) T,A,R 
17 FORMAT (1X,10X,'TOTAL NUMBER OF CHEMICALS READ: ',I6/ 

1 1X,10X,'TOTAL NUMBER OF RECORDS ACCEPTED: ',I6/ 
2 1X,10X,'TOTAL NUMBER OF RECORDS REJECTED:',I6} 

ENDFILE 2 
ENDFILE 3 
RETURN 
END 

(g) 

FIGURE 17 .3 (e) ADDREC Routine for Example 17 .1. (f) PRTREC Routine for Example 17 .1 . (g) SUMPRT Routine 
for Example 17 .1 . 
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C*************************************************************** 
C ERRPRC * 

C*************************************************************** 
C THIS ROUTINE ADDS THE CURRENT CHEMICAL RECORD TO THE ERROR * 
C FILE CHMERR. WHEN ALL THE INPUT RECORDS HAVE BEEN PROCESSED,* 
C ANOTHER ROUTINE (ERRPRT) WILL PRINT THE RECORDS FROM THIS * 
C FILE. * 

C*************************************************************** 
SUBROUTINE ERRPRC (TH,MW,Y,TR,EMP,ST,M,B,BTR) 
IMPLICIT 
REAL 
INTEGER*4 
INTEGER*2 
CHARACTER 

NONE 
MW,M,B 
TH 
Y,BTR 
TR*20,EMP*25,ST*3 

WRITE (3) TH,MW,Y,TR,EMP,ST,M,B,BTR 
RETURN 
END 

(h) 

C*************************************************************** 
c ERRPRT * 
C*************************************************************** 
c 
c 
c 
c 
c 
c 

THIS ROUTINE IS CALLED BY THE MAIN PROGRAM AFTER ALL THE * 
INPUT HAS BEEN READ AND PROCESSED AND THE SUMMARY REPORT HAS* 
BEEN PRINTED. ERRPRT REWINDS UNIT 3 (I.E., REPOSITIONS THE * 
FILE TO ITS FIRST RECORD) AND THEN GOES THROUGH A CYCLIC * 
PROCESS (AFTER PRINTING A SET OF HEADINGS) IN WHICH EACH OF * 
OF CHMERR'S RECORDS IS READ AND PRINTED. * 

C*************************************************************** 
(i) 

FIGURE 17 .3 (h) ERRPRC Routine for Example 17 .1. (i) ERRPRT Routine for Example 17 .1. 

The required program, then, can be simple: After opening the file CHDATA (remember that the file 

already exists; this program needs only to connect it to a unit), the program reads an input record 

containing the customer's identification and the minimum required boiling point. Then, it reads and 

examines each of CHDATA's records, selecting and printing the information from those showing boiling 

points in the required range. Since the details of printing and formatting are of secondary interest here, 

Figure 17.4 shows only the main program. 
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All of the file processing we have done so far has been with sequential files. As a result, 17.2 DIRECT 

each input or output operation has been limited to the particular record at which the file FILES 

happened to be positioned. The kinds of processes in which we have used these files have 
not suffered seriously from this restriction. 

However, there are numerous situations in which this limitation can make computer 
usage impractical. The process in the previous example (17.1) is a case in point. Having 
built the file CHDATA (as Figure 17.3 indicates), let us suppose now that we are interested 
in extracting certain information on demand. For instance let us assume that each 
compound's identification number (THISID) is nothing more than a sequence number, 
and that the file CHDATA was built with the records in order by increasing value of 
THIS ID with no records missing or out of sequence. In other words, the first input 
record's THISID value was 000001, the second one had a THISID value of 000002, 

and so on. Correspondingly, then, the records in the resulting output file also would be in 
consecutive order. 
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C*************************************************************** c BPFIND - THE MAIN PROGRAM * 
C*************************************************************** 
C THIS PROGRAM SEARCHES THE UNFORMATTED FILE CHDATA (BUILT BY * 
C EXAMPLE 17.1) IN RESPONSE TO A CUSTOMER'S REQUEST TO FIND * 
C AND PRINT THE COMPOUND IDENTIFICATION NUMBERS, TRADE NAMES, * 
C EMPIRICAL FORMULAS, AND BOILING POINTS FOR ALL COMPOUNDS * 
C WHOSE BOILING TEMPERATURES ARE EQUAL TO OR GREATER THAN A * 
C VALUE SPECIFIED BY THE INPUT. * 
C*************************************************************** 
C THISID: A COMPOUND'S IDENTIFICATION NUMBER * 
C MWT: MOLECULAR WEIGHT * 
C YR: YEAR FIRST DISCOVERED OR PRODUCED * 
C TRADE: A COMPOUND'S TRADE NAME * 
C EMPRCL: EMPIRICAL FORMULA * 
C STATE: 
C MP,BP: 
C BITTER: 
C CUSTID: 
C BOIL: 
C LINE: 
C NEWPG: 
C EXPRNT: 

PHYSICAL STATE AT ROOM TEMPERATURE 
MELTING PT., BOILING PT., BOTH IN DEGREES C. 
BITTERNESS INDEX 
CUSTOMER'S IDENTIFICATION (CHARACTERS) COLS 1-6 
REQUIRED MINIMUM BOILING POINT (COLS 11-16) 
A LINE COUNTER 
A ROUTINE (NOT SHOWN) FOR PRINTING PAGE HEADINGS 
A ROUTINE (NOT SHOWN) TO PRINT AN OUTPUT LINE 

* 

* 
* 
* 
* 
* 
* 
* 

C*************************************************************** PROGRAM BP FIND 
IMPLICIT 
REAL 
INTEGER*4 
INTEGER*2 
CHARACTER 

NONE 
MWT,MP,BP,BOIL 
THIS ID 
YR,BITTER,LINE 
CUSTID*6,TRADE*20,EMPRCL*25,STATE*3 

OPEN (4,FILE='CHDATA',STATUS='OLD',FORM='UNFORMATTED') 
READ (*,15) CUSTID,BOIL 

15 FORMAT (A6,4X,F6.1) 
CALL NEWPG (LINES) 

DO WHILE (.TRUE.) 
READ (4,END=99) THISID,MWT,YR,TRADE,EMPRCL,STATE,MP,BP,BITTER) 
IF (BP .GE. BOIL) THEN 

IF (LINE .EQ. 40) CALL NEWPG (LINE) 
CALL EXPRNT (THISID,TRADE,EMPRCL,BP) 
LINE = LINE+1 

ELSE 
END IF 

END DO 

99 REWIND 4 
WRITE (*,16) 

16 FORMAT (//1X,15X,'END OF RUN. NORMAL TERMINATION.') 
STOP 
END 

FIGURE 17 .4 Search Program using the Unformatted File Built in Example 17 .1. 
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Instead of looking for records whose contents meet certain conditions, the situation 
often is reversed. The user knows which record he or she wants. In response, the 
procedure must find the record and display its contents. (For example, such a file might 
contain records of all patients who visited a particular medical center during 1977, and a 
physician might ask to see the information relating to patient 000168.) Similarly, someone 
interested in Heavy Facts' chemical data (from Example 17.1) might request to see the 
data for the compound having i.d. 003287. With CIIDATA organized as a sequential file, 
the program would have to search the file, record by record, until the right one is found. 
Then, when another request came in, the search for that record would be done the same 
way, starting again from the first record in the file. One way to avoid this search is to 
process several requests during the same run. For this to work with a sequential file, we 
would have to arrange the requests in the same order as the records appear in the file (i.e., 
by increasing i.d. number.) Then, a program can be designed to process several requests 
while performing only a single record-by-record search of the file. As is true in Example 
17. l's program, such a procedure would have to include a mechanism to find and reject all 
input requests that are out of sequence. If there is a request for a particular record whose 
position is prior to the file's current position, it could not be filled unless the file were 
rewound to its first record and the search started over. Alternatively, if the equipment 
were designed for it, the program could laboriously backspace through the file until it 
reached the desired record. These strategies generally are unacceptable in practice, so 
that most processes requiring searches of sequential files are designed to reject improperly 
sequenced input data. 

Even though the processing of multiple requests with a single sequential search 
increases the efficiency of such procedures, there still are times when this entire approach 
is unacceptable. For instance, there may be only one request ready to be processed and 
the user cannot wait until enough additional requests arrive to start another run. This type 
of situation is becoming more and more common with the growing use of programs 
designed to support ongoing conversations between user and machine. 

A powerful solution for such circumstances is the direct file. In this type of organiza­
tion (introduced in Section 13.1.1.2), every record in the file is accessible immediately, 
regardless of which record had been processed previously. We shall examine these files in 
more detail and see how their characteristics can be used to advantage. 

17 .2. 1 Construction of Direct Files 

When reading or writing a sequential file's record, there is no choice as to which record we 
are talking about. It is the record whose physical position is next in line. However, since a 
direct file allows access to any record at any time, there must be a way to identify each 
record, so that the programmer is assured of working with the record that he or she 
expects. FORTRAN's way of providing this assurance is to require that each record in a 
direct file have a record number. This simply is an integer value that indicates the record's 
sequential position in the file. (For instance, the first record in a direct file will have a 
record number of 1, the next one will have a record number of 2, and so on.) 

Because of the importance of the position of a record in a direct file, it is not possible 
to build such a file in exactly the same record-by-record manner as is used for a sequential 
file. Instead, it is necessary to create an empty file with room enough for each record. This 
provides an organizational skeleton into which records can be placed in their proper 
positions, no matter in which order they are written. In other words, when a record is 
written into a particular position in a direct file, it fills a spot already reserved for it. The 
actual process of describing and reserving this file storage occurs outside the FORTRAN 
program. Accordingly, we shall assume that such a process has been made available and 
concentrate on the connection and use of direct files. 
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In addition to the requirement that each record in a direct file must have a record 
number, it is necessary for FORTRAN to impose the following restrictions on the 
organization and construction: 

1. All records in a direct file must have the same length. 
2. Records in a direct file all must be formatted or unformatted; they cannot be 

mixed. If they are formatted, they must be edit-directed. 
3. A direct file cannot have an endfile record. (Since room on a disk or other direct 

access device is reserved for the entire file ahead of time, the system "knows" the 
size of the file, and the endfile is irrelevant.) There are special cases (which we shall 
not consider here) in which a file, originally constructed for sequential access, can 
be made available for direct access. When this happens, the endfile record (which 
is required in a sequential file) is ignored by FORTRAN and not considered part 
of the direct file. 

4. Since the extent of an entire direct file is defined even before any actual data 
records are placed in that file, that size remains fixed as long as that file exists. 
Consequently, the programmer cannot remove a record from a direct file. Even if 
that record no longer is of any interest, it still occupies physical space in the file, 
and "uses up" a record number. For instance, we would not "remove" record 137 
from a direct file and then have record 138 become the new 137, and so on. 
Everything remains the way it was when the file was created, and record 137 
becomes a ghost town. 

17 .2.2 Opening a Direct File 

A direct file is connected to a unit in the same way described earlier for sequential files, 
i.e., by means of the OPEN statement. Certain specific requirements should be noted: 

1. The ACCESS=' DIRECT' specifier must be present. (FORTRAN assumes se­
quential access if the ACCESS= specifier is left out of the OPEN statement.) 

2. The RECL= specifier must be included. If the file is formatted, the record length is 
the number of characters. For unformatted direct files, the record length, for a 
given number of data items having a particular combination of types, depends on 
how those data are represented in the specific type of computer being used. 

Thus, the statement 

OPEN (11,FILE=GROUPl,ACCESS='DIRECT',FORM='UNFORMATTED', 
1 RECL=120) 

connects a direct, unformatted file with record length 12 o to unit 11. (We shall use 
two-digit unit numbers for direct files to help emphasize the contrast with sequential 
units.) Similarly, the statement 

OPEN (UNIT=14' ACCESS= I DIRECT I 'FORM= I UNFORMATTED I ' 

1 RECL=180,IOSTAT=FILE14) 

connects an unnamed, formatted direct file with record length 180 to unit 14. The 
variable named FILE14 will contain information relating to the outcome of the OPEN 
operation. 

17 .2.3 Direct Input/Output 

Transmission to and from direct files is specified with the same READ and WRITE 
statements used for all other such operations. The following specific points are important: 
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1. The END= specifier cannot appear. As pointed out earlier, the endfile record is 
irrelevant in direct files. 

2. The REC= specifier must appear. This is the only mechanism that FORTRAN has 
for identifying (and finding) records in a direct file. Consequently, even if the 
desired record happened to be the next in line after the record just used, FOR­
TRAN cannot "know" that. 

3. Records may be read or written in any order. For example, record 7 may be 
written before record 4 is written. Similarly, record 81 may be read before record 
46 is read. 

4. Although space is provided for each record in a newly constructed direct file, the 
storage is marked with special symbols that make it impossible for a program to 
read from a particular record unless that record had been written previously. The 
output operation does not have to take place in the same program that is doing the 
reading, but it does have to take place in order to wipe out the "vacant" marker in 
that record. 

5. Once a record is written in a particular position, it can be rewritten. That is, new 
information can be written into that same position, replacing what was there 
before. 

For example we can define a direct file named DIRCHM, with each record to contain the 
same information as described for CIIDATA in the abovementioned example. For 16-bit 
computers like the HP 1000, for example, the information in such a record (molecular 
weight, year introduced, etc.) would require something like 66 characters (as unfor­
matted data), so we shall specify as a record length: 

OPEN (UNIT=12,FILE=DIRCHM,ACCESS='DIRECT', 
1 FORM='UNFORMATTED',RECL=66) 

Now, let us assume that we have read an input record and we wanted to write that 
information as a record in D IRCHM with the record number being taken from the 
compound's identifier (THISID). A statement like 

WRITE (12,REC=THISID,IOSTAT=HOW12) MWT,YR,TRADE,EMPRCL, 
1 STATE,MPT,BPT,BITTER) 

is all that is required. Note that the value given for the REC= specifier is 
a variable. This, of course, is perfectly legal, as long as the result is a positive integer. 
Now, having written that record (let us suppose that THISID's value was 7163), we can 
read it from the file simply by saying 

READ (12,REC=7163) MWT,YEAR,TRADE,EMPRCL,STATE, 
1 MPT,BPT,BITTER 

Example 17.2 In this example we shall rewrite the program in Example 17.1 so that the file it 

produces (named DIRCHM) is a direct unformatted file with the record numbers taken from the chemicals' 

i .d. numbers (columns 1-6 of the input records). Since the records can be written in any order, it will not be 

necessary to test for ''proper sequence'' or to produce the error report required in the previous example. 

Figure 17 .5 shows the revised program. (The names of the variables and subprograms have the same 

meanings as before, so they will be omitted to keep things brief. Similarly, Figure 17 .5 includes only those 

subprograms requiring significant changes. 

Example 17 .3 Now we shall write a program that retrieves records from the direct file developed in 

Example 17 .2. Each request, submitted on a separate line, specifies the desired compound identification. 

Since this value also serves as the record number, the process of finding and printing the required record 

is straightforward. The main program is shown in Figure 17 .6. 
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C**************************************************************** c EXAMPLE 17.2 - THE MAIN PROGRAM * C**************************************************************** 
C THIS PROGRAM BUILDS A DIRECT FILE NAMED DIRCHM USING THE SAME* 
C INPUT INFORMATION DESCRIBED IN EXAMPLE 17.1. THE COMPOUND'S * 
C IDENTIFIER, FOUND IN COLS. 1-6 OF EACH INPUT LINE, IS USED AS* 
C THE RECORD NUMBER. WE ASSUME HERE THAT THE APPROPRIATE AMOUNT* 
C OF DIRECT ACCESS STORAGE FOR DIRCHM HAS BEEN RESERVED BY A * 
C MECHANISM EXTERNAL TO THIS PROGRAM. * C**************************************************************** 
$FILES 0,1 

PROGRAM 
IMPLICIT 
REAL 
INTEGER*4 
INTEGER*2 
CHARACTER 
LOGICAL 

EX1702 
NONE 
MWT,MPT,BPT 
THISID,TTLNUM 
YR,BITTER,LINES 
TRADE*20,EMPRCL*25,STATE*3 
EOF 

CALL OPENER (TTLNUM,THISID,MWT,YR,TRADE,EMPRCL,STATE,MPT,BPT, 
1 BITTER,LINES,EOF) 

DO WHILE (.NOT. EOF) 
IF (LINES .EQ. 40) CALL NEWPG (LINES) 
CALL ADDREC (THISID,MWT,YR,TRADE,EMPRCL,STATE,MPT,BPT, 

1 BITTER,LINES) 
CALL RDCARD (THISID,MWT,YR,TRADE,EMPRCL,STATE,MPT,BPT,BITTER, 

1 EOF,TTLNUM) 
END DO 

99 WRITE (*,16) TTLNUM 
16 FORMAT ('1',1X,10X,'TOTAL NUMBER OF RECORDS: ',I6) 

STOP 
END (a) 

C**************************************************************** c OPENER * C**************************************************************** 
C THIS ROUTINE OPENS THE DIRECT FILE DIRCHM. THE SPECIFIED * 
C RECORD LENGTH OF 66 IS BASED ON INTERNAL STORAGE REQUIREMENTS* 
C FOR STORING THE ITEMS USED IN THE EXAMPLE. * C**************************************************************** 
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SUBROUTINE OPENER (T,TH,MW,Y,TR,EMP,ST,M,B,BTR,L,EOF) 
IMPLICIT 
REAL 
INTEGER*4 
INTEGER*2 
CHARACTER 
LOGICAL 

T = 0 
CALL NEWPG (L) 

NONE 
MW,M,B 
T,TH 
Y,BTR,L 
TR*20,EMP*25,ST*3 
EOF 

OPEN (12,FILE='DIRCHM',FORM='UNFORMATTED', 
1 ACCESS='DIRECT',RECL=66) 

CALL RDCARD (TH,MW,Y,TR,EMP,ST,M,B,BTR,EOF,T) 
RETURN 
END (b) 

FIGURE 17.5 (a) Main Program for Example 17.2. (b) Initialization Routine for Example 17.2. 



C**************************************************************** 
c ADD REC * 
C**************************************************************** 
C THIS ROUTINE WRITES A NEW RECORD INTO THE FILE DIRCHM USING * 
C THE INFORMATION FROM THE CURRENT INPUT RECORD AND THE * 
C COMPOUND IDENTIFIER AS A RECORD NUMBER. AS IS TRUE IN THE * 
C VERSION FOR THE PREVIOUS EXAMPLE, IT CALLS PRTREC TO PRINT * 
C THE INFORMATION JUST WRITTEN INTO DIRCHM. * 
C**************************************************************** 

SUBROUTINE ADDREC (TH,MW,Y,TR,EMP,ST,M,B,BTR,L) 
IMPLICIT 
REAL 
INTEGER*4 
INTEGER*2 
CHARACTER 

NONE 
MW,M,B 
TH 
Y,BTR,L 
TR*20,EMP*25,ST*3 

WRITE (12,REC=TH) MW,Y,TR,EMP,ST,M,B,BTR) 
CALL PRTREC (TH,MW,Y,TR,EMP,ST,M,B,BTR,L) 
RETURN 
END 

(c) 
FIGURE 17 .5 (c) Output routine for Example 17 .2. 

C***************************************************************** 
C EXAMPLE 17.3 - THE MAIN PROGRAM * 
C***************************************************************** 
C THIS PROGRAM PROCESSES REQUESTS TO RETRIEVE AND PRINT DATA * 
C OBTAINED FROM SPECIFIED RECORDS OF THE DIRECT FILE DIRCHM * 
C PRODUCED BY THE PROGRAM IN EXAMPLE 17.2. EACH REQUEST IS * 
C SUBMITTED AS A COMPOUND I.D. NUMBER IN COLUMNS 31-36 OF A * 
C TYPED LINE THAT ALSO CONTAINS THE REQUESTOR'S IDENTIFICATION * 
C AS A CHARACTER STRING IN COLUMNS 1-25. * 
C PRTREQ IS A ROUTINE (NOT SHOWN) THAT PRINTS A LINE SHOWING * 
C THE REQUESTOR'S IDENTIFICATION AND THE RECORD'S CONTENTS. * 
C***************************************************************** 

PROGRAM 
IMPLICIT 
REAL 
INTEGER*4 
INTEGER*2 
CHARACTER 

EX1703 
NONE 
MWT,MPT,BPT 
THIS ID 
YR,BITTER 
USERID*25,TRADE*20,EMPRCL*25,STATE*3 

OPEN (12,FILE="DIRCHM',FORM='UNFORMATTED',ACCESS='DIRECT', 
1 RECL=66,STATUS='OLD') 

CALL NEWPG 

DO WHILE (.TRUE.) 
READ (*,15,END=99) USERID,THISID 
READ (12,REC=THISID) MWT,YR,TRADE,EMPRCL,STATE,MPT,BPT,BITTER} 
CALL PRTREQ (USERID,THISID,MWT,YR,TRADE,EMPRCL,STATE, 

1 MPT,BPT,BITTER} 
END DO 

99 WRITE (*,17} 
17 FORMAT (//1X,10X,'END OF RUN. NORMAL TERMINATION.'} 

STOP 
END 

FIGURE 17 .6 Main Program for Example 17 .3. 475 
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17.3 SUMMARY An unformatted file is one in which the data are recorded as an exact copy of their internal 
representation in the processor's storage. Consequently, there is no need for FORTRAN 
to interpret (i.e., edit) the data in order for the processor to be able to work with the 
values. This reduces the time it takes to transmit the data to or from the processor and 
make it ready for use. At the same time, it also means that the information is not in 
human-readable form. Thus, unformatted files are used to store data that are to be 
transferred from one program to another, rather than between a program and a human. 
Unformatted files may be sequential or direct, and they usually are stored on magnetic 
media (such as magnetic tape or disk). 

A direct file is one in which the records can be read or written in any desired 
sequence. This is made possible by assigning a unique record number to each record. This 
identifies the record's physical position in the file and also serves as a "handle" so that the 
record can be found at any time. Direct files may be formatted or unformatted, but they 
must be stored on a direct access device (such as a magnetic disk). 

PROBLEMS 1. Write FORTRAN statements for each of the following activities: 

(a) Create an unformatted sequential file named MASTER and connect it to unit 8, 

(b) Create an unformatted unnamed sequential file and connect it to unit 3. 

( c) Create a formatted sequential file named NEWMTS and connect it to unit 4. 

( d) Connect an unformatted unnamed sequential file to unit 1. 

(e) Connect a formatted direct file named RNDREC with record length 120 to unit 14. 

(f) Connect an unformatted unnamed direct file with record length 80 to unit 12, storing the outcome 

of the operation in a variable named HOW012. 

2. Through a combination of circumstances beyond your control, the President of your company has put his 

favorite nephew Farnsworth (affectionately known as Dumb Farnsworth) in charge of the computer 

tapes. Oh my. Somehow, the talented nephew has managed (he will not say how) to create a situation in 

which the adhesive labels on the tape reels have fallen off. Yes, you say this is highly unlikely, but that is 

because you do not know Farnsworth. 

Anyway, there you are, with all these tapes. It is necessary to find out which tape has what. The 

situation is not hopeless because all of the files are sequential, and all of them are named. (There is only 

one file on any reel of tape.) Accordingly, you have been asked to write a program that will examine a 

reel and find out the following things about it: 

(1) The name of the file. 
(2) Whether the file is formatted or unformatted; 

(3) The number of records in the file. 

NOTE: The unit number to which you connect the file will depend on the unit numbers available in your 

particular system. 

(a) Write a brief narrative description of how you are going to handle this situation. 

(b) Prepare a pseudocode or N-S representation of your design. 

(c) Write the program. 

3. More mischief from Dumb Farnsworth: There are two reels of tape, each containing an unnamed, 

unformatted, sequential file. It is suspected that the two tapes contain copies of the same file, but it is not 

known whether the copies are of the same version of that file. Each record contains the following data 

items: 

Item No. Name Data Type 

1 CRT ID integers 

2 CRTNAM 20 characters 
3 BRTAMT real 
4 TIME (1) thru TIME (8) integer values 

5 TEMP (1) thru TEMP ( 8) real values 

6 RATING a one-digit integer 



PROBLEMS 

It is known that each file has the same number of records, and that corresponding records have matching 
values for CRT ID and matching values for CRTNAM. The order of the data items in the table given above is 
the same as that in which they appear in the record. Write a program designed to determine whether the 
files are identical. That is, the values in each record must match those in the corresponding record of the 
other file. The program is to print: 

(1) The number of records in each file. 
(2) The record numbers (the first record is record 1, etc.) for those records in which the contents on one 

file differ from those on the other. 
(3) The CRTID values for those records having mismatched values. 

4. Modify the program in Problem 3 so that it provides the following additional details: When the contents of 
a record on one file differ from those on the corresponding record of the other file, the program is to print 
the record number and CRTID as in the previous problem. In addition, it is to print the name of the item 
and the two (differing) values for each item in which the values are different. For example, 

RECORD NO. 127 
CRT ID 3564 

TIME(5) 27 
31 

TEMP(3) 0.348567E+03 
0.365897E+03 

(This is just a suggested format; heading information at the top of the page could inform the user as to 
which of the two output lines goes with which unit number.) 

5. Write the NEWPG subroutine for Example 17.1 (see Figure 17.3(c)). 

6. Write thePRTREC subroutine for Example 17.l (see Figure 17.3(f)). 

7. Write the ERRPRT subroutine for Example 17.1 (see Figure 17.3(i)). 

8. Write the NEWPG and EXPRNT subroutines for the main program shown in Figure 17.4. 

9. Modify the program in Figure 17.4 so that it processes several search requests in a single run. (This idea is 
discussed briefly just before the beginning of Section 17 .2.1, but in a slightly different context.) That is, 
Heavy Facts would like to be able to submit a collection of customer requests, each asking for information 
on compounds having a specified minimum boiling point. Note that the minimum boiling point specified 
in a particular request may be equal to or different from that indicated in other requests. Thus, a particular 
compound may fulfill the requirements of several requests. Note also that Heavy Facts recognizes that 
such a program will print the output for all the various requests mixed together. This will be satisfactory, 
even though it will mean that Heavy Facts will have to go through the output and prepare separate reports 
for each request. To help unscramble the output, figure out a way of identifying each request. Then, after 
the entire file has been inspected and all the appropriate records have been printed, print a summary (on a 
new page) indicating the number of records (i.e., the number of compounds) that meet the requirements 
for each of the requests processed. Note that there may be one or more requests for which the file contains 
no appropriate compounds. Make sure that your program is designed to recognize this, and that it lets the 
user know. Limit your program to ten requests for each run and include appropriate protection so that 
attempts to submit more than ten requests are detected and handled in a reasonable way. 

10. Modify the program in Problem 9 so that it can handle any number of collections of requests, with up to 
ten requests in each collection. (It is up to you to decide how you will separate the batches of requests.) 

11. Heavy Facts knows that there is more to this business than minimum boiling points. Accordingly, they 
would like you to expand the capabilities of the program in Problem 9 or Problem 10 so that it recognizes 
and handles any mixture of requests that may include the following types: 

(1) Print information for all compounds having a boiling point equal to or greater than the specified 
input value. 

(2) Print information for all compounds having a boiling point equal to or less than the specified input 
value. 

(3) Print information for all compounds having a melting point equal to or greater than the specified 
input value. 

( 4) Print information for all compounds having a melting point equal to or less than the specified input 
value. 

(5) Print information for all compounds having a bitterness index equal to or greater than the specified 
input value. 
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(5) Print information for all compounds having a bitterness index equal to or greater than the specified 

input value. 
( 6) Print information for all compounds having a bitterness index equal to or less than the specified input 

value. 
(7) Print information for all compounds having a molecular weight equal to or greater than the specified 

input value. 
(8) Print information for all compounds having a molecular weight equal to or less than the specified 

input value. 
(9) Print information for all compounds whose year of introduction is equal to or greater than the 

specified input value. 
(10) Print information for all compounds whose year of introduction is equal to or less than the specified 

input value. 

Note that only one of these search specifications can be given in a single request, but a single run may 

contain up to ten requests consisting of any mixture of these items. Make sure that your program includes 

detailed comments describing how these requests are specified and recognized. 

12. Add the following list to the types of search requests accepted by the program in Problem 11: 

(1) Print information for all compounds whose molecular weights lie within a specified range of 

temperatures. 
(2) Print information for all compounds whose melting points lie within a specified range of tem­

peratures. 
(3) Print information for all compounds whose boiling points lie within a specified range of tem­

peratures. 
( 4) Print information for all compounds whose bitterness indexes lie within a specified range of values. 

(5) Print information for all compounds whose respective years of introduction lie within a given range. 

13. One of the data items present in each record of the CIIDATA file is a three-character string indicating the 

state of the compound at room temperature {SOL, LIQ, or GAS). Using a room temperature value of 20 

degrees Centigrade, write a program that checks each record of CIIDATA to make sure that the recorded 

state at room temperature is consistent with the melting point and boiling point recorded in that record. 

Assume that the melting and boiling points are correct. For example, if a compound melts at 31 degrees 

Centigrade and boils at 112.5 degrees Centigrade, it would be inconsistent to report its state as LIQ. (It 
should be SOL.) List the i.d. number, trade name, molecular weight, melting point, boiling point, and 

reported state at room temperature for all records in which such mismatches have been found. After all 

the selected records have been printed, the program is to print the number of records found to be 

inconsistent. 
14. Expand the program in Problem 13 by producing a new file named NEWCHM on unit 8. In addition to 

performing all the processing described in Problem 13, this program is to copy all of CIIDATA's records into 

NEWCHM in the same order, changing the inconsistent values in accordance with its findings. 

15. A number of Heavy Facts' customers have expressed an interest in being able to request information on 

compounds in the CIIDATA file based on more than one criterion. For example, a customer may want to 

see information on all compounds having a molecular weight of at least, say, 350. 0 and a boiling point less 

than, say 135 degrees Centigrade. To do that with the program described in Problems 9 through 14, it 

would be necessary for the customer to submit two requests: One for molecular weight and one for boiling 

point. Then, the customer would have to inspect the two output lists thus produced and find those 

compounds that appeared on both lists. Unhappy customers. To convert them to happy customers, 

modify one of the versions of this program so that it will accept and process a request consisting of a 

combination of any two of the criteria listed in Problem 11. 

16. Expand the capabilities of the program in Problem 15 so that it will accept requests consisting of a 

combination of any two of the criteria listed in Problem 12 as well as in Problem 11. 

17. Write a general version of the program specified in Problem 15 or 16 so that each request may be a 

combination of as many criteria as the user wishes to specify, consistent with the list( s) given in Problem 11 

(and 12). For example this program should be able to accept a request to print the information about all 

compounds whose molecular weights, melting points, boiling points, bitterness indexes, and years of 

introduction are within specified ranges. As in previous problems, there is no guarantee that a given 

request will produce information about any compounds at all. Consequently, the program must be 

prepared to inform the user when this happens. 



PROBLEMS 

18. Reorganize any of the programs specified in Problems 9 through 17 so that it is no longer necessary to mix 
together the output for all of the requests. Specifically, the following approach is suggested: Assume units 
21-30 are available for connection to output files that will contain records responding, respectively, to 
each of the ten possible requests. Then, as each of CIIDATA's records is examined to see which (if any) of 
the requests it fulfills, it can be written on (one or more of) the appropriate output files. When all of 
CHDATA's records have been processed, the program can produce a separate report for each request. 
Now, everyone will be happy. 

19. All compounds in the CIIDATA file contain at least five atoms of carbon. Expand any of the CIIDATA 
programs discussed in Problems 10 through 18 so that the user also can request information on compounds 
containing at least a specified number of carbon atoms. 

20. Design a version of the program in Problem 19 so that the user can request information on all compounds 
containing a number of carbon atoms within a specified range. 

21. One of the most frequently used file processes is called file updating. In general, this involves making 
changes in a file to reflect newly available data. There are three basic types of operations: 

(1) Addition: Enlarging the file by incorporating new records. 
(2) Deletion: Removing records from a file. 
(3) Modification: Changing the values of various data items in selected records of a file. This latter 

operation usually is performed by replacing (i.e., deleting and then adding) each affected record. 

When a sequential file is updated, especially one that happens to be stored on magnetic tape, the most 
common practice is to use two input files: One of these is the tape containing the file to be updated (with 
the records in a particular sequence). The second (usually entered from a terminal) contains the 
information required for the updating run. Each record of this second input file usually contains 
information relating to the addition, deletion, or modification of a single record: 

(1) An input record describing an addition contains sufficient information so that the program can build 
the new record and define its position in the updated file. 

(2) An input record describing a deletion often need contain little more than the position of the record to 
be deleted, and some kind of signal to indicate that deletion of that record is desired. 

(3) An input record describing modification defines the position of the record to be modified, along with 
the particular items in that record whose values are to be changed. 

The records in this second input file (i.e., the updating information) are arranged so that their sequencing 
is the same as that used for the other input file. For example, in the CIIDATA file constructed in Example 
17 .1, the records are sequenced by increasing compound i. d. number. Accordingly, each updating record 
to be processed against CIIDATA must contain a compound i.d. number, and the records must be arranged 
so that the first one has the lowest i.d., number, and so on. 

Once these arrangements have been made, the updating program is designed to go through a cycle in 
which, at any given time, there is a current record from the old file and a current record from the updating 
file. The program compares these records and systematically uses the information to build a new version of 
the file on a separate unit. The old file is retained for safekeeping in case something goes wrong, so that the 
difficulty can be repaired and the process repeated. Assuming the records in both input files are in proper 
sequence, the updating cycle considers the following three basic possibilities: 

(1) If the sequence numbers in the two current records match (i.e., the data in the current updating record 
refer to the current record from the old file), the program performs the activity indicated by the 
updating record. If a deletion is called for, the program deletes the current record, i.e., it neglects to 
write the record onto the new file and simply reads the next record from the old file (as well as the next 
updating record). If the instruction is to modify the current record, the program introduces the 
indicated changes and then writes the new version into the output file. If the instruction is to add the 
record, something is wrong, since the record already is there. 

(2) If the sequence number of the old record refers to a position earlier in the file than the one on the 
updating record, it means that there is no updating on that record. Accordingly, it can be copied into 
the output file without change, after which the next record can be read from the old file. 

(3) If the sequence number of the old record refers to a position later in the file than the one on the 
updating record, it means that a new record is to be built and placed in the output file ahead of the 
current record from the old file. Once this is done, the next updating record can be read and its 
sequence number compared with the (still untouched) current record from the old file. If the 
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sequence numbers compare as stated above and the instructions with the current updating record do 

not call for the record to be added, something is wrong: It makes no sense to delete or change a record 

that is not there. 

This is just a bare outline of the basic updating process, but it is enough to give you a good idea of what 

must go. Write a program that updates the CHDATA file built in Example 17.l by producing an unnamed 

output file on unit 8. Whenever an old record is copied into the new file without change, the program is to 

print nothing. Whenever a record is added, deleted, or changed, the program should produce a line of 

print showing what happened. (It is up to you to determine what to print in each case.) After the updating 

process is complete, the program is to print (starting on a new page) a summary indicating the number of 

records originally on the file, the number of records added, the number deleted, the number changed, and 

the number of records in the new (updated) file. 

22. Write the same program described in Problem 21, but design it so that the file being updated is the direct 

file DIRCHM built in Example 17.2. Thus, instead of producing a new version of the file as a separate copy 

connected to a separate unit, this program rewrites the updated records back into their respective 

positions in DIRCHM. Note that an "addition" in this situation does not make the file any larger. You are to 

assume that positions already exist for all the records, and an addition simply fills an "empty" record. 

Similarly, a "deletion" does not make the file any smaller. Output requirements still are the same as in the 

previous problem. 

23. Expand the program in Problem 22 so that it provides some insurance in the following way: While it 

updates the direct file DIRCHM, it also produces on unit 3 a sequential file named OLDCHM that represents 

the data prior to the updating process. 



18 
Shared Data 
Among Program 
Components 

The method that we have used for transferring information between subprograms or 
between a main program and a subprogram is one of two basic techniques for providing a 
program component with external information on which to operate. In this chapter we 
shall examine another approach: Instead of invoking a subprogram with an accompany­
ing list of explicit arguments, it is possible to organize a program so that one or more areas 
of storage are reserved and set aside for data to be shared among a main program and its 
associated subprograms. Such areas are called common areas or common blocks, and 
their use can make it unnecessary to supply subprograms with arguments. Correspond­
ingly, they can make it possible to design subprograms without dummy argument lists, 
even though they process information supplied from outside the subprogram. 

The use of common storage seems attractive at first glance, but there are serious 
drawbacks to it. In fact, some of the structural disadvantages lie behind our delay in 
introducing this feature till now. This chapter is intended to point out these strengths and 
weaknesses, and it will provide some useful guidelines to help determine those situations 
in which there is a clear preference for one approach over the other. 

When we specify an argument for a subprogram, we are telling the subprogram where to 
find the value that it is to use this time. That value may be located anywhere in the 
processor's storage. With common storage, on the other hand, FORTRAN sets aside a 
special area in which all shared values are stored together. Each program component that 
needs it is given access to this area by including the area's description in the form of a 
special declaration. In this way, the program component always "knows" what the 
common area looks like and it can find any variable in that area without further help. We 
can take advantage of this organizational feature by designing programs so that they use 
shared data, thereby eliminating (or drastically reducing) the need for argument lists. 

The basic concept of shared· storage is illustrated in Figure 18.1. Pictured there is a 
program consisting of a main program Mand two subroutines Sl and S2. Available to all 
three program components (or program units), and described in each one, is a common 
area containing (among other items) variables Vl, V2, V3, and v 4 and these are used all 
over the program in various ways. Their values may or may not change, depending on 
how they are used. Note that the calls to Sl and S2 do not have arguments. Correspond­
ingly, Sl and S2 's SUBROUTINE statements do not have dummy argument lists. All 
communication having to do with which data to use is handled through the shared area. 

It should be pointed out that the use of common storage does not rule out the use of 
arguments. Often, the most convenient arrangement is one in which a subprogram's data 
are supplied by a combination of a small argument list and a common storage area. 

18.1 CHARACTER­
ISTICS OF 
COMMON 
STORAGE 
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PROGRAMM 

description of common area 

use Vl 
use V2 

CALL Sl 

CALLS2 
use V3 

CALL Sl 

END 

SUBROUTINE Sl 

description of common area 

use Vl 
use V4 
CALL S2 

use V2 

RETURN 
END 

SUBROUTINE S2 

description of common area 

use V3 
use Vl 

use V4 

RETURN 
END 

FIGURE 18. 1 Use of a Common Area by Several Program Components. 

Common Area 



CHARACTERISTICS OF COMMON STORAGE 

18.1.1 Unnamed Common Storage 

The most basic form of common storage is called blank common storage or just blank 
common. This simply is an area whose size is determined by the programmer's declara­
tions. These are specified by means of a COMMON statement: 

COMMON name, name, name, etc. 

The list of names tells HP FORTRAN 77 which variables to include in the special area, 
i.e., the common block. There can be only one blank common area in a'n entire program, 
regardless of the number of subprograms associated with that program. Each variable's 
data type can be defined by means of an ordinary declaration, just as we have been doing 
all along. To illustrate, let us take a look at the following statements: 

REAL 
REAL 
INTEGER*2 
CHARACTER*4 
COMMON 

A,SLT,BKWTH 
STRN,CRTV 
TTLS,SBTL,RJTL 
WORD, ACRONYM 
A,SLT,BKWTH,TTLS,RJTL,WORD,ACRONYM 

In this instance, we have set up a blank common area containing real variables A, SLT, 
BKWTH, and integer variables TTLS and RJTL, and character variables WORD and 
ACRONYM. Note that these variables are not really declared twice. The REAL, INTEGER, 
and CHARACTER statements describe the variables and request storage for them; the 
COMMON statement tells FORTRAN that the storage reserved for the variables in its list 
should be part of the common area. 

The real variables have been declared in two separate statements (while the integers 
and characters have not) just to show that either form is acceptable. In general, the use of 
separate statements makes it easier to keep track of which variables are in the common 
block and which are not. 

18.1.1.1 Arrangement of Space in Common Storage The blank common area is made 
available to any subprogram simply by including a copy of the appropriate declarations 
and the COMMON statement. (This is another reason for separating the shared variables' 
declarations from the others.) 

Variables in a common area are stored in the order in which they are listed in the 
COMMON statement. Thus, in the example just listed, the common block would look like 
this: 

A SLT BKWTH TTLS RJTL WORD ACRONYM 

1-2 3-4 5-6 7 8 9-10 11-12 

Sequential Word Numbers (for 1 ~it computers) 

The order can be important because it is possible for each of several subprograms to refer 
to the same shared variable by a different name. When this is done, it is necessary to know 
exactly how the common block is organized. This is discussed in Section 18.1.1.4. 

18. 1. 1.2 Arrays in Blank Common Storage 

Arrays may be included in a common block along with single-valued variables. There are 
no restrictions on the array's position in the common area. Along with everything else, its 
placement will depend on its appearance in the COMMON statement. For instance, the 
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declarations 

REAL 
INTEGER*2 
CHARACTER*2 
COMMON 

PR,TMP,VEL(4),ABS 
MTN, REL 
WD 
PR,TEMP,VEL,ABS,MTN,REL,WD 

will produce a common block that looks like this: 

PR TMP VEL(l) VEL(2) VEL(3) VEL(4) 485 MTN 

If we rewrite the COMMON statement so that it says 

COMMON VEL,PR,TMP,ABS,MTN,REL 

the organization of the resulting common block will be 

VEL(l) VEL(2) VEL(3) VEL(4) PR WD TMP ABS 

1-2 3-4 5-6 7-8 9-10 11 12-13 14-15 

MTN REL 

16 17 

FORTRAN also allows the array description to be given in the COMMON statement, 
with the other declarations just providing the data type descriptions. Thus, the statements 

REAL 
INTEGER*2 
CHARACTER*2 
COMMON 

PR,TMP,VEL,ABS 
MTN, REL 
WD 
VEL(4),PR,TMP,ABS,MTN,REL 

will produce the same common region as the one given above. 
Multidimensional arrays are handled the same way. FORTRAN "knows" how large 

the array is (from its declared dimensions), and so the appropriate amount of storage is 
made available in the common block. To illustrate, the statements 

REAL 
INTEGER*2 
COMMON 

BT(2),RS 
C(2,3) 
BT,RS,C 

produce a common block that is organized as follows: 

BT (1) BT (2) RS C(l,l) C(2,l) C(l,2) C(2,2) C(l,3) C(2,3) 

1-2 3-4 5-6 7 8 9 10 11 12 

Example 18.1 We shall illustrate the simple use of blank common by rewriting Example 17 .1 so that 
the dummy argument lists (and corresponding argument lists) are replaced by a blank common block 
containing the variables we shall use. The main program, for instance, (Figure 18.2(a)) performs all of its 
invocations to the subroutines without using any arguments (See Figure 17 .3(a) for comparison.) 

Two of Example 18.1 's subroutines also are shown (Figures 18.2(b) and 18.2(c)) to illustrate the 
corresponding declaration of the common block. Compare this version of OPENER with the previous one 
in Figure 17 .3(b). You will note that the variable names have been changed so that they are the same as 
the ones declared for the common block. The same is true for the processing in the revised version of 
RDCARD, which can be compared with its predecessor in Figure 17 .3(d). The construction of the other 
subroutines follows the same approach: Each contains a copy of the declarations, thereby making the 
shared variables accessible to them as well. 
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C**************************************************************** 
c EXAMPLE 18.1 - THE MAIN PROGRAM * 
C**************************************************************** 
C THIS PROGRAM PERFORMS THE SAME PROCESSING AS THE ONE IN * 
C EXAMPLE 17.1. THE ONLY DIFFERENCE IS THAT THE ARGUMENTS * 
C (AND, THEREFORE, THE CORRESPONDING DUMMY ARGUMENTS) * 
C HAVE BEEN TAKEN OUT AND RECONSTRUCTED AS A BLANK COMMON * 
C BLOCK. THE VARIABLE NAMES HAVE THE SAME MEANINGS AS BEFORE. * 
C**************************************************************** 

1 

PROGRAM 
IMPLICIT 
REAL 
INTEGER*4 
INTEGER*2 
CHARACTER 
LOGICAL 
COMMON 

EX1801 
NONE 
MWT,MPT,BPT 
THISID,PREVID,TTLNUM,NUMACC,NUMREJ 
YR,BITTER,LINES 
TRADE*20,EMPRCL*25,STATE*3 
EOF 
MWT,MPT,BPT,THISID,PREVID,TTLNUM,NUMACC,NUMREJ, 
YR,BITTER,LINES,EMPRCL,TRADE,STATE,EOF 

CALL OPENER 

DO WHILE (.NOT. EOF) 
IF (THISID .LE. PREVID) THEN 

CALL ERRPRC 
NUMREJ = NUMREJ+1 

ELSE 
IF (LINES .EQ. 40) CALL NEWPG 
CALL ADDREC 
NUMACC = NUMACC+1 

END IF 
CALL RDCARD 

END DO 

CALL SUMPRT 
CALL ERRPRT 
STOP 
END 
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(Continued) 
FIGURE18.2 (a) Main Program for Example 18.1. 

18.1.1.3 Variable Names in a Common Block The reason Example 18.1 will operate 
properly is that the common block is described in exactly the same way in each program 
component in which its variables are used. We did this simply by copying the COMMON 
statement from the main program into each subroutine that uses the shared variables. 
This is an easy way to make sure that the descriptions match, and it is a good practice to 
follow whenever possible. 

However, there are occasions where it may be impractical to set up such exact copies. 
For instance, an organization may obtain a subroutine from somewhere for use in its 
programs, and that subroutine may be set up to use variables from a common block. As a 
result, there will be no list of dummy arguments, and the subroutine will use names that 
probably are different from those used in other program components. FORTRAN makes 
it unnecessary to change the various names so that they match. A common block may be 
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C************************************************************** 
c OPENER * 
C************************************************************** 
C THIS ROUTINE PERFORMS EXACTLY THE SAME FILE OPENING OPERA- * 
C TIONS AS THE CORRESPONDING ROUTINE IN EXAMPLE 17.1 * 
C (FIGURE 1 7. 3 ( B) ) . * 

C************************************************************** 
SUBROUTINE 
IMPLICIT 
REAL 
INTEGER*4 
INTEGER*2 
CHARACTER 
LOGICAL 
COMMON 
1 

OPENER 
NONE 
MWT,MPT,BPT 
THISID,PREVID,TTLNUM,NUMACC,NUMREJ 
YR,BITTER,LINES 
TR*20,EMP*25,ST*3 
EOF 
MWT,MPT,BPT,THISID,PREVID,TTLNUM,NUMACC,NUMREJ, 
YR,BITTER,LINES,EMPRCL,TRADE,STATE,EOF 

OPEN (3,FILE='CHDATA',FORM='UNFORMATTED',ACCESS='SEQUENTIAL') 
OPEN (2,FILE='CHMERR',FORM='UNFORMATTED',ACCESS='SEQUENTIAL') 

TTLNUM=O 
NUMACC=O 
NUMREJ=O 
THISID=O 
CALL NEWPG 
CALL RDCARD 
RETURN 
END 

(b) 

c*************************************************************** 
c RD CARD * 
C*************************************************************** 

SUBROUTINE 
IMPLICIT 
REAL 
INTEGER*4 
INTEGER*2 
CHARACTER 
LOGICAL 
COMMON 
1 

RD CARD 
NONE 
MWT,MPT,BPT 
THISID,PREVID,TTLNUM,NUMACC,NUMREJ 
YR,BITTER,LINES 
TR*20,EMP*25,ST*3 
EOF 
MWT,MPT,BPT,THISID,PREVID,TTLNUM,NUMACC,NUMREJ 
YR,BITTER,LINES,EMPRCL,TRADE,STATE,EOF 

PREVID = THISID 
EOF = .FALSE. 
READ (*,15,END=99) THISID,MWT,YR,TR,EMP,ST,MPT,BPT,BITTER 

15 FORMAT (I6,F6.2,I4,A20,A25,A3,F5.1,F6.1,I1) 
TTLNUM = TTLNUM+1 
GO TO 77 

99 EOF = .TRUE. 
77 RETURN 

END (c) 

FIGURE 18.2 (b) Initialization Routine for Example 18.1. (c) RDCARD Routine for Example 18.1. 
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described with different names in different subprograms sharing its use as long as the 
specifications describe the exact same organization. 

We shall set up a simple case to see how the principle works: Suppose we have a main 
program in which the following declarations define a common block: 

REAL PV,R1(4),CS 
INTEGER*2 T(5),NUM 
COMMON PV,T,Rl,CS,NUM 

The resulting block consists of storage for a real number, five integers, five real numbers 
(the four from array RUNl followed by CS, and an integer. A subprogram sharing this 
common area can do so quite legally regardless of the names it uses, as long as it describes 
the same block with the same number of items having the same data types in the same 
order. For instance, the declarations 

REAL V1(4) ,TR,BL 
INTEGER*2 CT,S(5) 
COMMON BL,S,Vl,TR,CT 

describe an identical organization, so that FORTRAN can make the following matchup: 

PV T(l) T(2) T(3) T(4) T(5) Rl(l) R1(2) R1(3) R1(4) CS NUM 
BL S(l) S(2) S(3) S(4) S(5) Vl(l) V1(2) V1(3) V1(4) TR CT 

Another subprogram designed to use the same common block can describe it with still a 
third set of names, and FORTRAN will be able to work it out as long as the organization 
thus described is the same as that described by the other specifications. If the situation 
becomes confusing, it is not FORTRAN that will be confused; it is the programmer. 
Consequently, although these elaborate bookkeeping facilities are available, every effort 
should be made to avoid having to use them. 

18.1. 1.4 Different Declarations for a Common Block The ability to describe a common 
block in different ways enables the programmer to go beyond the use of different names 
for a particular variable or array. It is possible, for instance, to specify an array in one 
description and to treat that same storage area as a list of single-valued variables in a 
description installed in another subprogram. The only restriction is that the data types 
must match. (Even that restriction can be overcome as well, but the reasons for doing so 
are special enough to rule out further discussion in this text.) To illustrate the use of 
different descriptions for blank common, we shall write a third description for the 
common block constructed in the previous section: 

REAL K(2), R2(3), X 
INTEGER*2 Y(4),CN,ND 
COMMON X,CN,Y,K,R2,ND 

If we look at the COMMON statement carefully, we see that the organization described 
there still follows the same pattern as the one in the other two COMMON statements: We 
still have a real number (X), five integers (CN and the four elements of array Y), five real 
numbers (K's two elements followed by R2's three elements) and, finally an integer (ND). 
The correspondence is shown below: 
PV T(l) T(2) T(3) T(4) T(5) Rl(l) R1(2) R1(3) R1(4) CS NUM 
BL S(l) S(2) S(3) S(4) S(5) Vl(l) V1(2) V1(3) V1(4) TR CT 

X CN Y(l) Y(2) Y(3) Y(4) K(l) K(2) R2(1) R2(2) R2(3) ND 

This feature allows great flexibility in defining common areas, but there is no point in 
using it unless it makes things simpler and clearer. In many situations, it has the opposite 
effect. Consequently, now that the basic capability has been described, it will not be 
pursued beyond this point. 
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18.1.2 Named Common Blocks 

There are times when it is convenient to work with several common blocks in the same 
program. This is done by declaring such areas as named common blocks: 

COMMON I blockname/name ,name ,name, etc. 

The name used for blockname is constructed like any other variable name, and the 
associated list of variable names defines the size and organization of that common block in 
the same way as we discussed for blank common. This is a flexible mechanism because we 
can declare any number of named common blocks. (Of course, each block must have a 
unique name, and a variable cannot appear in more than one block.) By dividing the 
shared variables among several common blocks, we can regulate the construction of our 
programs so that program units needing to share only certain items will be able to deal 
with common areas whose contents are restricted just to those items. 

C•**************************************************************** 
c EXAMPLE 18.2 - THE MAIN PROGRAM * 
C•**************************************************************** 
C THE PROCESSING IN THIS PROGRAM IS EXACTLY THE SAME AS THAT IN * 
C THE PREVIOUS EXAMPLE. HOWEVER, THE SHARED AREAS ARE REARRANGED* 
C INTO SEVERAL DISTINCT NAMED COMMON BLOCKS. THE FOLLOWING * 
C SPECIFIC ADJUSTMENTS SHOULD BE NOTED: * 
C THE THREE CHARACTER VARIABLES TRADE, EMPRCL AND STATE ARE * 
C SET UP AS A SEPARATE NAMED COMMON AREA (CHARS); * 
C THE LINE COUNTER (LINES) IS NOT INCLUDED IN ANY OF THE * 
C COMMON BLOCKS. BECAUSE OF THE WAY IT IS USED, IT WAS DECIDED* 
C TO TRANSMIT IT AS AN ARGUMENT. SAME WITH EOF. * 
C***************************************************************** 

PROGRAM EX1802 
IMPLICIT NONE 
REAL MWT,MPT,BPT 
INTEGER•4 THISID,PREVID 
INTEGER•2 YR,BITTER 
INTEGER•4 TTLNUM,NUMACC,NUMREJ 
INTEGER*2 LINES 
CHARACTER 
LOGICAL 
COMMON 
COMMON 
COMMON 

TRADE*20.EMPRCL*25,STATE*3 
EOF 
/REC/THISID,MWT,YR,MPT,BPT,BITTER,PREVID 
/CHARS/TRADE,EMPRCL,STATE 
/TTLS/TTLNUM,NUMACC,NUMREJ 

CALL OPENER (LINES,EOF) 

DO WHILE (.NOT. EOF) 
TTLNUM = TTLNUM + 1 
IF (EOF .EQ .. TRUE.) GO TO 199 
IF (THISID .LE PREVID) THEN 

C,ALL ERRPRC 
NUMREJ = NUMREJ+1 

ELSE 
IF (LINES .EQ. 40) CALL NEWPG (LINES) 
CALL ADDREC 
LINES = LINES + 
NUMACC = NUMACC + 

END IF 
CALL RDCARD (EOF) 

END DO 

CALL SUMPRT 
CALL ERRPRT 
STOP 
END 

FIGURE 18.3 (a) Main Program for Example 18.2. 
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C****************************************************************** 
c OPENER * 
C****************************************************************** 
C OPENER USES TWO OF THE THREE NAMED COMMON AREAS SINCE IT SETS * 
C THE COUNTERS TO THEIR INITIAL VALUES AND IT INITIALIZES THISID * 
C AS WELL. FOR THE LATTER, IT NEEDS THE ENTIRE COMMON AREA REC * 
C (SINCE IT IS IMPOSSIBLE TO SHARE PART OF A COMMON AREA). IN * 
C ADDITION, IT USES THE LINE COUNTER AND ENDFILE INDICATOR, WHICH* 
C IT TRANSMITS AS ARGUMENTS TO NEWPG AND RDCARD, RESPECTIVELY. * 
C****************************************************************** 

SUBROUTINE 
IMPLICIT 
REAL 
INTEGER*4 
INTEGER*2 
INTEGER*4 
INTEGER*2 
LOGICAL 
COMMON 
COMMON 

OPENER (LN,FL) 
NONE 
MWT,MPR,BPT 
THISID,PREVID 
YR,BITTER 
TTLNUM,NUMACC,NUMREJ 
LN 
FL 
/REC/THISID,MWT,YR,MPT,BPT,BITTER,PREVID 
/TTLS/TTLNUM,NUMACC,NUMREJ 

OPEN (3,FILE='CHDATA',FORM='UNFORMATTED',ACCESS='SEQUENTIAL') 
OPEN (2,FILE='CHMERR',FORM='UNFORMATTED',ACCESS='SEQUENTIAL') 
TTLNUM 0 
NUMA CC 0 
NUMREJ 0 
THIS ID 0 
CALL NEWPG (LN) 
CALL RDCARD (FL) 
RETURN 
END (b) 

C***************************************************************** 
c RD CARD * 
****************************************************************** 
C THIS ROUTINE STILL READS AN INPUT RECORD, AS IT DID BEFORE. * 
C HOWEVER, IT NO LONGER INCREMENTS TTLNUM, THE NUMBER OF RECORDS* 
C READ. THAT IS LEFT TO THE MAIN PROGRAM. AS A RESULT, RDCARD * 
C DOES NOT NEED (AND, THEREFORE, IS NOT GIVEN ACCESS TO) THE * 
C COMMON AREA TTLS CONTATINING THE THREE TOTALS. * 
C***************************************************************** 

SUBROUTINE 
IMPLICIT 
REAL 
INTEGER*4 
INTEGER*2 
CHARACTER 
LOGICAL 
COMMON 
COMMON 

RDCARD (FL) 
NONE 
MWT,MPT,BPT 
THISID,PREVID 
YR,BITTER 
TRADE*20,EMPRCL*25,STATE*3 
FL 
/REC/THISID,MWT,MPT,BPT,BITTER,PREVID 
/CHARS/TRADE,EMPRCL,STATE 

PREVID THIS ID 
FL = .FALSE. 
READ (*,15,END=99) THISID,MWT,YR,TR,EMP,ST,MPT,BPT,BITTER 

15 FORMAT (IS,F6.2,I4,A20,A25,A3,F5.1,F6.1,I1) 
RETURN 

99 FL = .TRUE. 
RETURN 
END (c) 

FIGURE 18.3 (b) Initialization Routine for Example 18.2. (c) RDCARD Subroutine for Example 18.2. 

Example 18.2 Note that it was necessary in Example 18.1 to declare the entire common block in 
every subroutine regardless of how many or how few of the variables a particular subroutine actually 
used. We shall reorganize the variables to illustrate how several common blocks might be used to reduce 
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18.2 INITIALIZA­
TION OF VALUES 

IN COMMON 
BLOCKS 

SHARED DATA AMONG PROGRAM COMPONENTS 

this necessity. It should be pointed out that this is not necessarily the "best" or the "official" way to 
provide various program units with the data they need. The main purpose is to illustrate the organization 
and use of several common blocks. Concerns regarding the usefulness of shared variables in general are 
discussed in Section 18.3. The revised main program is shown in Figure 18.3, along with modifications of 
the subroutines shown for the previous example. Note that the names of the shared common blocks 
must match exactly in each program component. 

If one or more named common blocks are used in a given program, that does not necessarily mean 
that a blank common area cannot be used. In any case, of course, the programmer must make sure that 
there is no more than one blank common area and that no variable is listed in more than one common area, 
named or blank. 

FORTRAN accepts COMMON statements in which the lists of variables in a given block are separated 
by lists of variables in other blocks. This is a sloppy practice and should be avoided. However, since it is 
encountered from time to time in programs that you may be obligated to examine and change, this 
"capability" is mentioned so that you are aware of it. To illustrate, let us take the three named common 
areas declared in Figure 18.3(a): 

COMMON 
COMMON 
COMMON 

/REC/THISID,MWT,YR,MPT,BPT,BITTER,PREVID 
/CHARS/TRADE,EMPRCL,STATE 
/TTLS/TTLNUM,NUMACC,NUMREJ 

Exactly the same results are obtained when the lists are combined like this: 

COMMON /REC/THISID,MWT,YR,MPT,BPT,BITTER,PREVID, 
1 /CHARS/TRADE,EMPRCL,STATE, 
2 /TTLS/TTLNUM,NUMACC,NUMREJ 

or like this: 

1 
2 

COMMON /REC/THISID,MWT,YR,/CHARS/TRADE,/REC/MPT,BPT, 
/TTLS/TTLNUM,NUMACC,/CHARS/EMPRCL,STATE, 
/REC/BITTER,PREVID,/TTLS/NUMREJ 

Note that FORTRAN just picks up where it left off in a given list. One instqnce in which this feature might 
be useful is a situation where the programmer is defining a named common area and has forgotten an 
item. Even there, it is clearer and easier to follow if the additional item is listed on a separate line. 
Moreover, once everything has been defined to the programmer's satisfaction, there is no good reason to 
leave a mess like the one above. It certainly is worth the small amount of extra effort it takes to rewrite the 
declarations so that they are clear and orderly. 

There are many applications in which a program unit needs to obtain values from a table 
as part of its processing. We saw earlier (Section 7.2.2) that the construction of such a 
table is handled quite conveniently by means of the DATA statement. When this usage is 
extended to procedures in which several program units need to consult a table at various 
times, then the DATA statement, combined with common storage, offers a particularly 
handy resource. The idea is straightforward: By setting up a table as a common block (or 
part of a common block), we can make that table available to any number of program 
units without the need for argument lists. 

This can be done easily in FORTRAN, and it provides one of the most useful 
applications of common blocks and the COMMON statement. However, there are specific 
rules that must be followed in order to do this: 

1. The DATA statement may not be used to assign values to variables listed in blank 
common. 

2. When the DATA statement is used for variables in a named common block, the 
DATA statement must appear only in a special kind of subprogram called a block 
data subprogram. 

This second rule needs some discussion: In order to make it possible to share a data table 
among several program units, FORTRAN provides a special type of subprogram whose 
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general form looks like this: 

BLOCK DATA 

declarations for data type (REAL, INTEGER, etc.) 

COMMON statements 

DATA statement(s) 

END 

The block data subprogram is special in several ways: It begins with the word BLOCK 

DATA and ends with an ordinary END statement. However, there are no actual processing 
statements in it; it consists entirely of declarations. Consequently, since it does no actual 
computations, it has no dummy argument list and no RETURN statement. In fact, a block 
data subprogram cannot contain anything but the following statements: Data type 
declarations, COMMON, DATA, DIMENSION, END, EQUIVALENCE, IMPLCIT, PARAM­

ETER, SAVE, and, of course, a BLOCK DATA statement. It is not invoked by any other 
program unit in the program. Instead, it just sits there, providing FORTRAN with 
bookkeeping information. (As is true with other subprograms, its relative position in the 
sequence of program units is unimportant.) 

A block data subprogram may or may not be named (unlike any other types of 
subprograms, which must be named). When a name is used, it appears in the first 
statement, as illustrated below: 

BLOCKDATA TABLES 

Several block data subprograms may appear as part of the same program. However, no 
more than one of them can be unnamed. 

Example 18.3 To illustrate the use of the block data subprogram, we shall set up the following 

program outline: Input consists of a series of records, each containing a customer identification (columns 

1-6), an order number (columns 11-16). a model number (column 17), and the number of units purchased 

(columns 21-24). For each input record, the program is required to compute a price, taxes, and shipping 

costs. These computations are based on information stored for each of the five models: 

1. The price is computed from the base price, the model's length, width and height, and the number 

of units purchased. 

2. The taxes are computed based on the price. 

3. The shipping cost is based on the number of units and the model's length, width, height, and 

weight. 

We can organize the product data as a collection of five-element arrays: Model number (MDLNUM), length 

(LGTH), width (WDTH). height (HT), weight (WT), and base price (BASEPR). In this way the subscript for a 

given model number also will be the subscript for that model's length, width, etc. When a group of arrays 

is set up this way, they are said to be coupled arrays. 
The main program (Figure 18.4(a)) uses a subroutine (PRICER) to determine the total price for the 

goods and the tax, a second subroutine (SHIPPR) to determine the shipping costs, and a third subroutine 

(RDLOOK) to read an input record and look up the model number in the tables to find its subscript. Two 

other subprograms (OUTPRT and EOFPRC) print output and handle endfile processing, respectively. 

Values for the tables are defined in a block data subprogram shown in Figure 18.4(b). and the RDLOOK 

subroutine is shown in Figure 18.4(c). It is worth pointing out again that the named COMMON statements 

appear in each of the program units, but the DATA statement initializing the table values appears only in 

the block data subprogram. (The details of the other subroutines are unimportant, and so the statements 

are not shown.) 
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C***************************************************************** 
c EXAMPLE 18.3 - THE MAIN PROGRAM * 
C***************************************************************** 
C THIS PROGRAM PROCESSES A SERIES OF INPUT LINES, WITH EACH LINE* 
C REPRESENTING AN ORDER FOR A SPECIFIED NUMBER OF UNITS OF A * 
C PARTICULAR PRODUCT, IDENTIFIED BY ITS MODEL NUMBER. PRODUCT * 
C PRICES, TAXES, AND SHIPPING COSTS ARE COMPUTED USING DATA * 
C STORED FOR EACH MODEL IN A TABLE WHOSE VALUES ARE DEFINED BY A* 
C DATA STATEMENT IN A BLOCK DATA SUBPROGRAM. THE VARIABLE NAMES * 
C ARE SELF-EXPLANATORY. * 
C***************************************************************** 

PROGRAM 
IMPLICIT 
REAL 
REAL 
INTEGER*2 
INTEGER*2 
INTEGER*4 
LOGICAL 

COMMON 
COMMON 
COMMON 

CALL RDLOOK 

EX1803 
NONE 
WT ( 1 0 ) , LGTH ( 1 0 ) , WDTH ( 1 0) , HT ( 1 0 ) , BASEPR ( 1 0) 
PRICE,TAX,SHPCST 
MDLNUM(10) 
MODEL, UNITS, INDEX 
CUSTID,ORDRNO 
EOF 

/MDLTBL/MDLNUM,WT,LGTH,WDTH,HT,BASEPR 
/IN/CUSTID,ORDRNO,MODEL,UNITS,EOF,INDEX 
/OUT/PRICE,TAX,SHPCST 

DO WHILE (.NOT. EOF) 
CALL PRICER 
CALL SHIPPR 
CALL OUTPRT 

END DO 

CALL EOFPRC 
STOP 
END 

FIGURE 18.4 (a) Main Program for Example 18.3. 

1a.3 THE SAVE FORTRAN 77 extends our ability to share data among subprograms by enabling us to 
STATEMENT retain local values that normally are unavailable once a subprogram's processing has been 

completed. This is done by means of the SA VE statement whose general form is 

SA VE list of names or simply 
SAVE 

When this statement appears in a subprogram, the values associated with the names in the 
list are retained after control is returned to the invoking program or subprogram. (A 
SA VE statement in a main program will not be rejected, but it is meaningless.) If a SA VE 
statement appears without a list, FORTRAN 77 takes this as a request to save all of the 
subprogram's local values. If we need to set up a subprogram in which locally developed 
values are to be retained for use in a subsequent invocation, the SA VE statement is a 
convenient way to do this. 

A SA VE statement's list may include names of single-valued variables, arrays, and 
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C***************************************************************** 
c BLOCK DATA SUBPROGRAM * 
C***************************************************************** 

BLOCK DATA 
IMPLICIT 
REAL 
REAL 
INTEGER*2 
INTEGER*2 
INTEGER*4 
LOGICAL 

COMMON 
COMMON 
COMMON 

DATA 
1 
2 
3 
4 
5 

END 

NONE 
WT(10),LGTH(10),WDTH(10),HT(10),BASEPR(10) 
PRICE,TAX,SHPCST 
MDLNUM(10) 
MODEL,UNITS,INDEX 

CUSTID,ORDRNO 
EOF 

/MDLTBL/MDLNUM,WT,LGTH,WDTH,HT,BASEPR 
/IN/CUSTID,ORDRNO,MODEL,UNITS,EOF,INDEX 
/OUT/PRICE,TAX,SHPCST 

MDLNUM/1,3,4,6,8/, 
WT/81.6,85.8,90.0,92.7,101.5/, 
LGTH/17.4,19.0,22.0,23.4,25.5/, 
WDTH/10.0,12.0,14.0,16.0,18.5/, 
HT/2.0,2.0,3.4,5.1,5.5/, 
BASEPR/17.50,18.25,19.50,21.75,23.90/ 

FIGURE 18.4 (b) Block Data Subprogram for Example 18.3. 

common blocks. A common block name must appear with a slash on either side. For 
example, the following fragment 

SUBROUTINE ZCOMP 
IMPLICIT NONE 
REAL B_VAC, M_FAC(24), F_SOT, X_PUNT 

COMMON 
SAVE 

RETURN 
END 

/ALL_FAC/S_BET, P_GRID, T_RUF 
M_FAC, F_SOT, /ALL_FAC/ 

arranges for the values in F _SOT, the entire array M_FAC, and all of the values in the 
common block named ALL_F AC to be retained after ZCOMP completes its processing. If 
the common block ALL_FAC also is declared in the main program (recall that it is legal to 
declare a common block in several subprograms without a corresponding declaration in 
the main program), the values in the block's variables are saved anyway, so the SAVE is 
redundant in that situation. However, inclusion of the block name in the SA VE list 
provides useful documentation, thereby improving the program's readability. 

The following restrictions apply to the use of SA VE statements and SA VE lists: 

1. A SA VE list may not include the name of a subprogram, a formal argument, or the 
name of a variable in a common block. When a block's name appears in a SA VE 
statement's list, the values in all of that block's variables will be saved. 

2. If a common block is listed in a subprogram's SAVE statement, that block's name 
must appear in a SA VE statement in each subprogram that uses that block. 

(Continued) 
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C***************************************************************** 
C RD LOOK * 
C***************************************************************** 
C RDLOOK READS AN INPUT LINE AND USES THE MODEL NUMBER GIVEN ON * 
C THAT LINE (MODEL) TO FINp THE LOCATION (INDEX) IN THE VARIOUS * 
C ARRAYS (WT,LGTH,WDTH,HT,BASEPR) CORRESPONDING TO THAT MODEL. * 
C THE ASSUMPTION IN THIS CONSTRUCTION IS THAT THE MODEL NUMBER * 
C ALWAYS WILL BE ONE OF THE FIVE (LEGAL) MODEL NUMBERS LISTED IN* 
C THE ARRAY MDLNUM. * 
C***************************************************************** 

SUBROUTINE 
IMPLICIT 
REAL 
INTEGER*2 
INTEGER*2 
INTEGER*4 
INTEGER*2 
LOGICAL 

RD LOOK 
NONE 
WT(10),LGTH(10),WDTH(10),HT(10),BASEPR(10) 
MDLNUM(10) 
MODEL,UNITS,INDEX 
CUSTID,ORDRNO 
I 
EOF 

COMMON 
COMMON 

/MDLTBL/MDLNUM,WT,LGTH,WDTH,HT,BASEPR 
/IN/CUSTID,ORDRNO,MODEL,UNITS,EOF,INDEX 

EOF = .FALSE. 
READ (*,15,END=299) CUSTID,ORDRNO,MODEL,UNITS 

15 FORMAT (I6,4X,I6,I1,3X,I4) 
DO I=1,5 

IF (MDLNUM(I) .EQ. MODEL) THEN 
INDEX = I 
GO TO 77 

ELSE 
END IF 

END DO 

299 EOF = .TRUE. 
77 RETURN 

END 

18.4 USEAND 
MISUSE OF 

COMMON 
STORAGE 

FIGURE 18.4 (c) RDLOOK Subroutine for Example 18.3. 

At the beginning of the chapter, the point was made that shared storage may not always 
be as convenient as it looks. Certainly, the idea of eliminating long argument lists is an 
appealing one. However, there are some important factors in program construction that 
make it less tempting. 

One of the greatest advantages of breaking a computational process into subpro­
grams is that each subprogram can be treated as a separate unit. Not only is it possible to 
develop and perfect that unit by itself; this approach also offers the opportunity to use 
such a unit in many different programs simply by "plugging" it into any program that 
needs the kind of processing it is designed to perform. (This was discussed at some 
length in Chapter 11.) The ease with which a particular subprogram can be installed in 
various programs depends on how independent that subprogram is. If a subprogram has 
to be changed and reshaped for each program in which it is to be incorporated, its 
usefulness as a building block may decrease to a point where the benefits of the 
approach are wiped out. 



SUMMARY 

The same holds true when we look at this issue the other way around. If we have a 
subprogram that is known to work properly, there is every reason to resist the idea of 
changing anything in it in order to make it fit properly into another program. Conse­
quently, if we have to make a choice in such a situation, we might prefer to change the 
program (which is still developing) so that it will accept the (already developed) subpro­
gram. If we do not have to change anything, then the subprogram is truly an independent 
building block that does not "know" anything (or have to "know" anything) about the 
program with which it will be used. This type of independence is called functional isolation 
(very fancy), and it is a good thing to aim for when designing program units. 

In general, the use of shared storage works against this independence because it ties a 
subprogram to the organization and contents of a particular program's common areas. 
This makes it more difficult to apply that subprogram to other uses. There also is another 
problem: If a program still is under development and the common areas are subject to 
change and refinement, then every time there is a change in the structure or contents of a 
common block, that change has to be carried into every program unit sharing that block. 
Even with the greatest care, it is easy to overlook something, thereby throwing the 
program out of balance. As pointed out in Chapters 11and12, when a subprogram is 
designed to expect an argument list, that unit is not at all "concerned" with the way those 
arguments are produced or where they come from. The organizational simplicity that this 
independence encourages often is worth the bother of having to supply an argument list 
every time a subprogram is invoked. 

With these considerations in mind, we can indicate some general guidelines as to 
when shared storage can be used to advantage. Bear in mind that these cannot be hard 
and fast rules. In every circumstance, they must be considered together with your 
judgment in determining what it is that will result in the simplest, clearest, and most useful 
computational process: 

1. As illustrated in Example 18.3, common storage is an effective and convenient 
way of making a table of values available to several program units that need to 
refer to it. 

2. When a subprogram is invoked from several different places in a program, and 
each invocation is made with the same list of arguments, it is reasonable to replace 
the argument list (and the corresponding dummy argument list) with one or more 
common areas. 

3. The type of situation just described often means that the particular program may 
be so specialized that there is little chance for its units to be of general use 
elsewhere. If the programmer is strongly convinced that this is the case, then the 
use of shared data (instead of argument lists may be warranted.) 

495 

Data may be shared among a program's units by setting up common blocks, i.e., 1s.5 SUMMARY 

organized groupings of storage that are made accessible to more than one program unit. 
Common blocks may be named or unnamed. Either type is declared by means of a 
COMMON statement: 

COMMON name,name,etc. 

for unnamed (blank) common, and 

COMMON /blockname/name,name,etc. 

for named (labeled) common. The variables listed in a COMMON statement are defined by 
ordinary type declarations, with the COMMON statement indicating the order in which they 
are to be stored in the common block. These variables are made available to the program 
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units (i.e., a main program and its associated subprograms) needing them by including a 
copy of the appropriate type declarations and COMMON statements in each program unit. 
This replaces the argument list that otherwise would serve as the conduit for the data. In 
general terms, then, use of shared storage trades the flexibility of an argument list for the 
convenience of not having to use one. 

The following general rules govern the use of common storage: 

1. No more than one area of blank common may be defined for any program. 
2. Any number of named common areas may be defined for a program, but the 

names must be unique. 
3. Both single-valued variables and arrays may be included in a common block, but a 

particular variable may be listed only in one common block. 
4. A variety of data types may be included in any order in a given common block. 
5. Descriptions of the same common block (placed in different program units) need 

not use the same names for the variables in given positions. However, their data 
types should match. 

6. Initial values may be assigned to shared variables by using the DATA statement, 
but this must be done within the following restrictions: 
(1) The DATA statement cannot be used with variables in blank common. 
(2) When a DATA statement is used with variables in named common areas, the 

declarations may appear only in a block data subprogram. This special subpro­
gram has the general form 

BLOCK DATA [name] 

declarations 

END 

(The designation [name] indicates that a block data subprogram may be 
named or unnamed. No more than one unnamed block data subprogram may 
appear as part of any program. This type of subprogram contains nothing but 
declaration statements. 

PROBLEMS 1. Show the organization of the common region as a result of each of the following sequences. (Some may 
be illegal; indicate the ones that are and give the reasons): 

(a) REAL 
INTEGER•2 
COMMON 

(b) REAL 
INTEGER•2 
CHARACTER•4 
COMMON 

(c)REAL 
INTEGER•4 
CHARACTER•2 
COMMON 

(d) REAL 
INTEGER•2 
COMMON 

(e) INTEGER•2 
REAL 
CHARACTER•lO 
COMMON 

VTS,RN,CHK,ISP 
CR4,NTS 
VTS,CR4,RN,CHK,NTS,ISP 
AMP,PRT,JTH 
ARTH,BRS 
INVK 
ARTH,INVK,AMP,JTH,PRT,ARTH,BRS 
CRK(4),BL,SETS(4) 
MPT,DL(3),R 
MEND 
CRK,DL,SETS,MPT,BL,MEND,R 
SLD(2,3),R2(3),NQ 
APS(3,2),KTS 
SLD,APS,R2,KTS,NQ 
ROAR*2,4,3) 
FSD 
NM 
NM,ROAR,FSD 



(f) 

(g) 

REAL 
INTEGER*4 
COMMON 
REAL*8 
REAL 
INTEGER*2 
INTEGER*4 
LOGICAL 
COMMON 

GDR(3,2,3) ,KH,TRS 
Kl,LTL,AHS 
TRS,KH(7),Kl,GDR,AHS(3,2),LTL 
BIGY(2,4),RES 
A8,B9 
OBS(2,4),Pl 
BIGW 

(h) REAL 
INTEGER*2 
COMMON 

SW1,SW2 
RES,A8,A9,BIGY,OBS,SW1,BIGW 
GRPH,TM(0:6),FD 
HT(-3:3,2),TI'L 
TM,FD,HT,TI'L,GRPH 

2. Write the appropriate declarations to set up each of the following common blocks: 

(a) An unnamed block containing three real single-valued variables DMAX, DMIN, and DMID. 

(b) An unnamed block containing 
a real single-valued variable VCRF 

a 24-element one-dimensional integer array named NGR 

four real single-valued variables DW, F3, YTU, and IJ 8 
(c) An unnamed block containing 

a 3 x 2 array of integers named UPR 

two 14-element one-dimensional real arrays Cl and C2 
two real single-valued variables named FS and Q5 

a 12-element real array named DWN with -3 as the first subscript 
( d) An unnamed block containing 

a 32-character string named HOG 
a 2 x 4 array of 7-character strings named VERF 

four 11-character strings named COM, VRV, G5 and DFR 
( e) Three blocks named CMl, CM2, and CM3, respectively, each containing 

a real variable named Rl, R2, or R3, respectively 
a 4 x 3 integer array named I 1, I 2 or I 3, respectively 
a 3 x 4 double precision array named Dl, D2 or 03, respectively 

( f) A block named CAV containing 
six 12-element real arrays named Al through A6 

A block named TRE containing 
12 6-element integer arrays named Jl through Jl2 

(g) A block named BRG containing 
four real variables named D, G, HT and UR 
a 2 x 5 real array named SIDES with the 

row subscripts beginning at O and the 
column subscripts beginning at -3 

An unnamed block containing 
a 4-element array of 5-character strings named QER 

three 17-character strings named Wl, W2 and W3 

PROBLEMS 

3. Based on the description given in the text for Example 18.3,. write the declarations (including the 

appropriate COMMON statements) for the subroutines PRICER and SHIPPR. 

4. Take a look at Problem 27 in Chapter 11. Based on your analysis of that problem and its requirements: 

(a) Are there advantages to using shared storage for that problem? If there are, indicate which variables 

you would make common, and give reasons for your choices. 
(b) If you decided that shared variables would improve the program, rewrite it in accordance with your 

answer in (a). 

5. Rewrite Example 12.2 so that it takes advantage of the convenience of shared storage. If you choose 

to keep certain variables out of common blocks (i.e., you continue to supply them as arguments), give 

your reasons for doing this. 

497 
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6. Rewrite Problem 12 in Chapter 12 so that there are no argument lists. 

(a) How does this affect the function specified in Problem 11 of Chapter 12? 
(b) Do you consider the revised version of this program to be an improvement over the original? Why or 

why not? 

7. Revise Problem 15 or 16 in Chapter 12 so that it takes advantage of common storage. 

8. Revise Problem 18 in Chapter 12 so that it takes advantage of common storage. Describe why the situation 
with this type of table search is similar to or different from that described in Example 18.3. 

9. Revise the program in Problem 20 of Chapter 12 so that it uses shared storage wherever you think it 
improves the program. Compare the table usage in this program with that in Problem 8 and Example 18.3. 

10. Modify the program in Example 18.3 so that it no longer needs to be guaranteed that the model number 
specified on a particular input record is a legal (recognizable) model number. It is up to you how your 
program responds to illegal model numbers. 

11: Refer to Example 18.3 again. Everything is fine until, one Thursday morning, here comes the manufac­
turer of these items (whatever they are) and decides to add two more model numbers, along with their 
weights, lengths, etc. Oboy. 

(a) Describe what has to be done to each of the program units in the program EX1803 in order to 
accommodate this change. 

(b) Would the job have been any easier if we had not used shared storage? Give the reasons for your 
answer. 



19 
Logical Variables 

Our previous use of logical variables makes it unnecessary to introduce them anew. 
Consequently, this chapter concentrates on logical expressions and input/output opera­
tions with logical data. 

To review, recall that logical variables are named like other FORTRAN variables 
and are declared with the LOGICAL statement. A logical v·ariable in HP FORTRAN 77, 
when declared without an explicit length designator, occupies one word of storage (16 bits 
on HP's 16-bit computer, or 32 bits on HP's 32-bit computer). The compilers for either 
type of HP computer can be forced to allocate a specified length by using the LOGICAL*2 

declaration (16 bits) or LOGICAL*4 declaration (32 bits). This has no effect on logical 
operations. Such explicit declarations are useful in aligning COMMON areas and setting up 
equivalences among variables. Since logical data are organized and treated just like 
integer data, character data, or any other type, we can set up logical arrays, initial values, 
and parameters using standard techniques. For example, the statements 

LOGICAL*2 SETSW(2,3) 
DATA SETSW I. FALSE.,. TRUE.,. FALSE., 3*. TRUE. I 

reserve storage for a six-element array named _SETSW in which SETSW ( 1, 1) and 
SETSW ( 1 , 2) are initialized to . FALSE. , and the other four elements are initialized to 
.TRUE .. 

As it is true with other types of information, the manipulation of logical data is organized 
around the logical expression. This section examines the ways in which these expressions 
can be built and the rules by which they are processed. 

19. 1. 1 Basic Logical Operations 

The simplest logical expression consists of a single logical constant or variable. For 
example, the second statement in the following sequence 

LOGICAL*2 WHICH, HOW 
WHICH= .TRUE. 
HOW = WHICH 

sets logical variable WHICH to the constant . TRUE. , and the third statement assigns the 
value in WHICH to the logical variable HOW. 

Logical constants or variables also can serve as building blocks in the construction of 
more extensive logical expressions. The way these expressions are formed is by connect­
ing constants and variables with combinations of FORTRAN 77's five logical operators 
(OR, AND, NOT, EQV and NEQV). This enables the programmer to produce an endless 
range of expressions, each of which will result in a final value of . TRUE. or . FALSE .. 

19.1 LOGICAL 
OPERATIONS 
AND 
EXPRESSIONS 
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19.1.1.1 The OR Operation The OR operation (written in FORTRAN as . OR. ) com­
bines two logical values to produce a result of . TRUE. or . FALSE. according to the 
following rule: 

If both values are . FALSE. , the resulting value is . FALSE. ; all other combina­
tions produce a result of . TRUE .. 

An effective way to summarize the action of the OR operation (and other logical opera­
tions) is by means of a simple display called a truth table. This is nothing more than an 
organized list showing the outcomes of the OR operation (or whatever activity is being 
examined) applied to all possible combinations of logical values. This is easy because each 
logical variable can have only one of two possible values. Thus, assuming variables SWl, 
SW2 and OUT have been declared as logical variables, and that SWl and SW2 have values in 
them, the statement 

OUT= SWl.OR. SW2 

has only four possibilities: 

1. SWl and SW2 both may be . TRUE. ; 

2. SWl may be . TRUE. and SW2 may be . FALSE. ; 

3. SWl may be. FALSE. and SW2 may be. TRUE. ; 

4. SWl and SW2 may both be . FALSE .. 

When we apply the rule stated above for the OR operation to these four possibilities, we 
see that three of the four outcomes will be . TRUE. ; only when SWl and SW2 are both 
. FALSE. will a value of . FALSE. be stored in variable OUT. The truth table for this 
expression, then, would look like this: 

A B A.OR. B 

.TRUE. .TRUE. .TRUE . 

. TRUE. . FALSE. .TRUE . 

. FALSE. .TRUE. .TRUE . 

. FALSE. .FALSE. .FALSE. 

Since the final result is stored directly in OUT (i.e., without further processing), the same 
table describes the properties of the entire statement: 

A B OUT =A. OR. B 

. TRUE. .TRUE . .TRUE . 

. TRUE. . FALSE . .TRUE . 

. FALSE. .TRUE. .TRUE . 

. FALSE. . FALSE. .FALSE . 

As soon as the expression becomes a little longer, the number of possible combina­
tions goes up, and the truth table grows accordingly. However, the idea still is simple. For 
instance, suppose we use a third logical variable SW3 (assuming again that it has a value in 
it) and we write the statement 

OUT= SWl.OR. SW2 .OR. SW3 

Since our expression now involves three variables, each of which can have one of two 
values, there are 2 * * 3 or 8 different possibilities. As a result, our truth table will be twice 
as long as it was before (Table 19.1). For this table, we have evaluated the first part of the 
expression (A. OR. B) and applied the OR operation to that outcome and the variable C. 
As a result, the overall expression can have a value of . FALSE. only when all three 
variables are . FALSE .. 
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Table 19.1 

A B A.OR. B c OUT=A . OR. B . OR. C 

. TRUE. .TRUE. .TRUE. . TRUE . .TRUE . 

. TRUE. .TRUE. .TRUE. . FALSE . .TRUE . 

. TRUE. . FALSE. .TRUE. .TRUE . .TRUE . 

. TRUE. . FALSE . .TRUE. . FALSE . .TRUE . 

. FALSE. .TRUE. . TRUE. .TRUE . .TRUE . 

. FALSE. . TRUE. .TRUE . . FALSE . .TRUE . 

. FALSE. . FALSE. . FALSE . .TRUE. .TRUE . 

. FALSE. . FALSE. . FALSE . . FALSE . .FALSE . 

19.1.1.2 The AND Operation The AND operation (written in FORTRAN as . AND.) 

operates on two logical values in accordance with the following rule: 

If both logical values are . TRUE. , the AND operation produces a result of 
. TRUE. ; otherwise the resulting value is . FALSE .. 

Thus, three of the four possible combinations result in a value of . FALSE .. This is seen in 
the following truth table. (As before, we assume that SWl, SW2 and OUT are logical 
variables, with values having been assigned previously to SWl and SW2:) 

SWl SW2 OUT = SWl. AND. SW2 

.TRUE. .TRUE. .TRUE . 

. TRUE. .FALSE. .FALSE . 

. FALSE. .TRUE. .FALSE . 

. FALSE. .FALSE. .FALSE. 

19.1.1.3 TheNOTOperation TheNOToperation(writteninFORTRANas. NOT. )is a 
unary operator that simply produces the reverse of the single value on which it operates. 
For example, the truth table for the statement 

OUT = . NOT. SWl 

produces the following truth table: 

SWl OUT = . NOT. SWl 

.TRUE. .FALSE . 

. FALSE. . TRUE. 

19. 1. 1.4 The EOV Operation The logical equivalence operation (written in FORTRAN 
as . EQV. ) operates on two logical values to produce a result in accordance with the 
following rule: 

If both logical values are the same (regardless of what they are), logical equivalence 
produces a value of . TRUE. ; otherwise a value of . FALSE. results. 

Using SWl, SW2 and OUT as we did before, here is what the truth table looks like: 

SWl SW2 OUT= SWl.EQV. SW2 

. TRUE. . TRUE. . TRUE . 

. TRUE. . FALSE. . FALSE . 

. FALSE. . TRUE. . FALSE . 

. FALSE. . FALSE. . TRUE. 

501 



502 LOGICAL VARIABLES 

19. 1. 1.5 The NEQV Operation The logical nonequivalence operation (written in FOR­
TRAN as . NEQV. ) operates on two logical variables to produce a result that is directly 
opposite to that associated with the EQV operation: 

If both logical variables are the same (regardless of what they are), logical 
nonequivalence produces a value of . FALSE. ; otherwise a value of . TRUE. 
results. 

Using variables SWl, SW2 and OUT as we have been doing all along, the truth table looks 
like this: 

SWl SW2 OUT = SWl . EQV. SW2 

. TRUE. .TRUE . .FALSE . 

. TRUE. . FALSE . .TRUE . 

. FALSE. .TRUE. .TRUE . 

. FALSE. .FALSE. . FALSE. 

HP FORTRAN 77 accepts EOR and XOR as synonyms for NEQV. 

19. 1.2 Priorities in Logical Expressions 

As is the case with arithmetic expressions, FORTRAN makes sure that it handles logical 
expressions consistently by following a carefully defined set of rules. These set the 
priorities for logical operations just as the rules for arithmetic priorities (Section 5.2.2) 
regulate the processing of numerical expressions: 

1. Logical expressions are processed from left to right. FORTRAN works its way 
through an expression as many times as necessary, performing selected activities based on 
predefined priorities assigned to each type of operator; 

2. Priorities of logical operations are set at four levels: 
(1) NOT operations (highest); 
(2) AND operations; 
(3) OR operations; 
(4) EQV and NEQV operations (lowest). 

3. Priorities in logical expressions can be regulated by the use of parentheses in 
exactly the same way as is true for arithmetic expressions (Section 5 .1.1. 4). 

Thus, in the statement 

OUT= SWl.OR. SW2.AND. SW3 

the AND operation will be performed first (on SW2 and SW3). Consequently, the OR 
operation will be applied to SWl and the result of SW2 . AND. SW3. We see, then, that 
FORTRAN's priority rules make it behave as if we had written 

OUT = SWl. OR. (SW2. AND. SW3) 

the corresponding truth table is shown below: 

SW2 SW3 SW2 . AND. SW3 

.TRUE. . TRUE. . TRUE . 

. TRUE. . FALSE. . FALSE . 

. FALSE. . TRUE . . FALSE . 

. FALSE. . FALSE. . FALSE . 

. TRUE. . TRUE. . TRUE . 

. TRUE. . FALSE. . FALSE . 

. FALSE. . TRUE. . FALSE . 

. FALSE. . FALSE. . FALSE. 

SWl OUT=SW1.0R.SW2.AND.SW3 

.TRUE . .TRUE . 

.TRUE . .TRUE . 

. TRUE . .TRUE . 

.TRUE . .TRUE . 

.FALSE . .TRUE . 

. FALSE . . FALSE . 

. FALSE . . FALSE . 

. FALSE . . FALSE . 
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We shall complicate things a little further by changing the statement so that it reads as 
follows: 

OUT = SWl. OR .. NOT. SW2. AND. SW3 

Applying the priority rules again, we see that the NOT operation will be performed first, 
followed by AND, with the OR operation bringing up the rear. Thus, FORTRAN behaves 
as if we had written the statement as 

OUT = SWl. OR. ( (.NOT. SW2) . AND. SW3) 

Now the truth table looks like Table 19.2. The (1) beneath the subexpression 
(. NOT. SW2. AND. SW3) is just a shorthand way of referring to that group of terms; we use 
it for convenience in the last column heading. 

As a final complication, we shall add one more logical variable (SW4) and one more 
operation (EQV): 

OUT = SWl. OR .. NOT. SW2. EQV. SW4. AND. SW3 

The evaluation proceeds as follows: 

1. The NOT operation is performed on SW2. (For purposes of illustration, let us say 
that the result is stored temporarily in Tl; 

2. The AND operation is performed on SW4 and SW3. (The result is stored tem­
porarily in T2); 

3. The OR operation is performed on SWl and Tl. (The result is stored temporarily in 
T3); 

4. The EQV operation is performed on T3 and T2. Since the result of this operation is 
the desired value, it is stored in the final destination, OUT. 

Thus, the result is computed as if the statement had been written as 

OUT = (SWl. OR. (.NOT. SW2)) . EQV. (SW4. AND. SW3) 

To make sure this is clear, we shall repeat the process, this time with specific values for the 
variables. Let us say that SWl and SW3 have values of . TRUE. , and SW2 and SW4 have 
values of . FALSE .. Now we shall follow it through again: 

1. A value of. TRUE. (i.e., . NOT. SW2) is stored in Tl; 

2. A value of. FALSE. (SW4. AND. SW3) is stored in T2; 

3. T3 receives a value of. TRUE. (i.e., SWl . OR. Tl); 

4. Finally, the EQV operation on T3 (. TRUE. ) and T2 (. FALSE. ) produces a value 
of . FALSE. , and that value is stored in OUT. 

Table 19.2 

SW2 . NOT. SW2 SW3 .NOT.SW2.AND.SW3 SWl OUT=SWl. OR. (1) 

(1) 

.TRUE. . FALSE. . TRUE. . FALSE . . TRUE . .TRUE . 

. TRUE. . FALSE. . FALSE. . FALSE. . TRUE . .TRUE . 

. FALSE. .TRUE. .TRUE. . TRUE. .TRUE . .TRUE . 

. FALSE. . TRUE. . FALSE . . FALSE. . TRUE . .TRUE . 

. TRUE. . FALSE. .TRUE. . FALSE. .FALSE . . FALSE . 

. TRUE. . FALSE. . FALSE . . FALSE . . FALSE . .FALSE . 

. FALSE. .TRUE. .TRUE. . TRUE . . FALSE . .TRUE . 

. FALSE. .TRUE. .FALSE . FALSE. . FALSE. . FALSE . 
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(Remember: We are processing the unparenthesized expression; if the parentheses 
physically were there, the processing sequence would be somewhat different, but the 
result would be the same.) The statement made in Chapter V applies just as well here: If 
there is any doubt about what FORTRAN will do when processing a particular logical 
expression, it always is a good idea to remove that doubt by using parentheses. 

19. 1.3 Relational Operators and Logical Expressions 

We have been using another form of logical expression as the basis for decision-making in 
the IF statement. For instance, if X and Y are numerical variables, we are well aware that 
we can construct a decision mechanism as follows: 

IF (X**2 . LE. 3. O*Y+l 7. 8) THEN 

actionl 

ELSE 

action2 

END IF 

Recall that . LE. is one of FORTRAN's six relational operators, and that the choice of 
actionl or action2 is based on whether the outcome of the comparison is . TRUE. or 
. FALSE .. Consequently, the IF statement's operation is based on the evaluation of a 
logical expression. In fact, if we go back to one of the earlier program examples (say, 
Example 17.1), we see that we could write the comparison 

IF (EOF . EQ. TRUE) etc. 

simply as 

IF (EOF) etc. 

since EOF is a logical variable and, therefore, forms a logical expression when used by 
itself. (This form is used later on, in Example 18.1.) 

Thus, a comparison forms a logical expression and, as such, it can act as a component 
of a more extensive logical expression. For example, we have used such combinations to 
build multiple comparisons such as those developed in Chapter 9. For instance, the 
comparison 

IF (SEX. EQ. FEMALE. AND. 1979-BRTHYR. GE. 28) etc. 

developed there is seen to be nothing more than two logical expressions connected by a 
logical operator (. AND. ) to form a single, more extensive logical expression. 

It is fairly easy to see the priorities that are at work here: Since the overall expression 
must produce a final value of . TRUE. or . FALSE. , its ingredients must be expressed as 
logical values that can be used to develop the final result. Consequently, each of the 
relational expressions will be evaluated first, thereby producing the logical values. Then 
those values can be processed by the logical operator for the final result. In general, then, 
arithmetic operations will be performed (in a given expression) before relational opera­
tions, and relational operations will be performed before logical operations. For example if 
X and Y are numerical variables, the expression associated with the following IF state­
ment 

IF (X**2. GE. 2. 8* (Y+24. 0) . AND. SWl. OR. SW2) etc. 
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will be evaluated as follows: 

1. A numerical value is developed for X * * 2 and stored temporarily. (We shall call 
the temporary storage place Vl.) 

2. A numerical value is developed for 2. 8* (Y+24. 0) and stored in V2. 

3. Vl and V2 are compared (using the . GE. operation) and the outcome (. TRUE. 

or . FALSE. ) is stored in Tl. 

4. The AND operation is performed on Tl and SWl, with the result stored in T2. 

5. The OR operation is performed on T2 and SW2, with the result stored in T3. It is 
T3 's value, then, that determines how the IF statement will go. 

Example 19. 1 To illustrate the use of simple logical expressions. we shall write a subroutine named 

SWITCH that operates as follows: SWITCH provides a general logical switch that compares two logical 

variables (the first two arguments) and sets the value of a third logical variable (the third argument) based 

on this comparison. The rules for the comparison are specified by the fourth argument, so that they can 

change (if desired) with each invocation. 
When we compare two logical variables, there are only four possible combinations that can occur: 

Both values are. TRUE .• both are. FALSE .• the first is. TRUE. and the second is. FALSE. and vice 

versa. Consequently, the rules for such a two-way comparison can be expressed in terms of four logical 

values. These are conveniently organized as a four-element logical array, and that is exactly what the 

fourth argument is. Each of its elements specifies the value to be assigned to the third argument for a 

particular combination of values in the first two arguments. To illustrate, suppose the fourth argument is 

named RULE and there are values of. TRUE. in RULE (1) and RULE (2) •. FALSE. in RULE (3). and 

. TRUE. in RULE (4). 

1 . RULE ( 1) defines the result (. TRUE. ) to be assigned to the third argument if the first two 

arguments are . TRUE. ; 

2. RULE ( 2) says to assign . TRUE. to the third argument if the first argument is . TRUE. and the 

second is . FALSE. ; 

3. RULE ( 3) says to assign a value of . FALSE. to the third argument if the first argument is 

. FALSE. and the second is . TRUE. ; 

4. RULE ( 4) says to assign a value of . TRUE. to the third argument if both the first and second 

arguments are. FALSE .. 

Thus, if we specified values of . TRUE .•. TRUE .•. TRUE .• and . FALSE. for RULE ( 1) through 

RULE ( 4) • respectively, we would be duplicating the action of the OR operation. 

The heart of the subroutine is a set of nested IF-THEN-ELSE constructions that determine the 

particular combination of values found in the first two arguments. This is seen in the statements given in 

Figure 19.1. An invocation of SWITCH could look like this: 

LOGICAL SWl, SW2, SW3, TEST (4) 

TEST (1) 

TEST (2) 

TEST (3) 
TEST (4) 

.TRUE. 

.TRUE. 

.FALSE. 

. FALSE. 

SWl, SW2 receive values (by computation or input/output) 
CALL SWITCH (SWl, SW2, SW3, TEST) 

19.1.4 Logical Operations on Numerical Variables 

When a logical variable is declared in HP FORTRAN 77, one or two words of storage are 
reserved, but only a single bit is used to represent the value (l=. TRUE., O=. FALSE.). 

The settings of the other bits are immaterial and are beyond the programmer's direct 
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C***************************************************************** 
c SWITCH * 
C***************************************************************** 
C THIS SUBROUTINE PROVIDES THE FRAMEWORK FOR A GENERAL LOGICAL * 
C SWITCH BY WHICH THE PROGRAMMER CAN IMPLEMENT ANY ONE OF 16 * 
C SETS OF RULES GOVERNING THE OUTCOME OF A LOGICAL COMPARISON * 
C BETWEEN TWO (LOGICAL) VALUES. THERE ARE FOUR ARGUMENTS: * 
C ARG1 __ ARG2: THE LOGICAL VALUES TO BE COMPARED; * 
C ARG3: THE LOGICAL VARIABLE RECEIVING THE RESULT; * 
C ARG4: A 4-ELEMENT LOGICAL ARRAY DEFINING THE SET OF RULES TO * 
C BE USED FOR THIS INVOCATION: * 
C ARG4(1): THE VALUE TO BE ASSIGNED TO ARG3 IF ARG1 AND ARG2 * 
C BOTH ARE .TRUE.; * 
C ARG4(2): THE VALUE TO BE ASSIGNED TO ARG3 IF ARG1 IS .TRUE.* 
C AND ARG2 IS .FALSE.; * 
C ARG4(3): THE VALUE TO BE ASSIGNED TO ARG3 IF ARG2 IS .TRUE.* 
C AND ARG1 IS .FALSE.; * 
C ARG4(4): THE VALUE TO BE ASSIGNED TO ARG3 IS ARG1 AND ARG2 * 
C BOTH ARE .FALSE.. * 
C***************************************************************** 

SUBROUTINE 
IMPLICIT 
INTEGER*2 
LOGICAL*2 

SWITCH (ARG1,ARG2,ARG3,ARG4) 
NONE 
I 
ARG1,ARG2,ARG3,ARG4(4) 

IF (ARG1 .AND. ARG2) THEN 
I = 1 

ELSE IF (ARG1 .AND. (.NOT. ARG2)) THEN 
I = 2 

ELSE IF (ARG2 .AND. (.NOT. ARG1)) THEN 
I = 3 

ELSE 
I = 4 

END IF 

ARG3 = ARG4(I) 
RETURN 
END 

FIGURE 19. 1 Statements for the Subroutine of Example 19.1. 

control. Consequently, the use of logical variables for bit manipulation receives few 
awards for efficiency. 

To overcome this difficulty, HP FORTRAN 77 allows the use of logical operations on 
integer variables. In this context the variables, though declared as INTEGER* 2 or 
INTEGER*4, can be treated as strings of individual bits and subjected independently to 
the action of the logical operators. This facility is strengthened by several built-in 
functions that enable the HP FORTRAN 77 programmer to manipulate one or more 
individual bits in an integer variable without affecting the others. Details were examined 
in Chapter 5. The feature is mentioned here to complete the discussion of logical 
operations. 
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Logical values may be read and written just like any other FORTRAN data type. Both 
list-directed and edit-directed forms are acceptable, and logical values may be included in 
unformatted records by means of the regular techniques for preparing and processing 
such records (Chapter 17). 

19.2. 1 Logical Data Input 

FORTRAN recognizes two basic forms for logical input values: We can use either the full 
symbols (. TRUE. or . FALSE. ) or the more concise T or F. 

19.2. 1.1 Ust-Diractad Logical Input Either of the forms given above can be used in 
list-directed input. For instance, if TEST is a four-element logical array, the statement 

READ (1, *) TEST 

will work with an input line such as 

T,F,F,T 

or 

.TRUE., F, .FALSE., T 

or any other such combination. Note that blanks have no effect. 

19.2. 1.2 Edit-Diractad Logical Input The same forms can be used for edit-directed 
input. Regardless of the form used, the data are described by the L-format: 

Lw 

where w is an integer indicating the number of input columns. The simplest way to 
represent edit-directed logical input is to use T orF, in which case the format description is 
Ll. Other forms also are legal, but they are clumsier, and efforts should be made to avoid 
them. They are shown here for the record, but their use is discouraged: 

1. The T or F may be preceded by one or more blanks. Of course, when this is done, 
the value of w in the format description must match the length of the field. 
(FORTRAN will look through the field from left to right until it finds the T orF.) 

2. The T or F may be preceded by a decimal point, and the decimal point, in tum, 
may be preceded by one or more blanks. 

3. The constants . TRUE. and . FALSE. may appear as legal logical values, preceded 

by any number of blanks. Of course, if this form is used, a value of . TRUE. will 
have to be preceded by one blank so that it occupies the same number of columns 
as the. FALSE. value. 

4. Other characters may appear as part of the field counted in thew. These can be 
any characters at all, since they will be ignored. However, in order for this to work, 
such extraneous characters must appear after the actual logical value. (This is a 
particularly awkward option, leading to all sorts of confusion; accordingly, there 
has to be a compelling reason for using it.) 

These alternatives are illustrated in Table 19.3. 

19.2.2 Output of Logical Data 

FORTRAN offers less of a choice for the display of logical values than it does for their 
presentation as input. However, the available features are convenient, clear, and easy to 
use. 
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Table 19.3 Edit-Directed Forms for Logical Input Values. 

Input Value Format Specification Result 

T Ll OK 
Tbb L3 OK 
bbF L3 OK 
b.F L3 OK 
.bT L3 illegal; if there is a decimal, it 

must be just before the value. 
. FALSE. L7 OK 
b.TRUE L7 OK 
bbb.FALSE. LlO OK 
T9J L3 OK 
9JT L3 illegal; blanks or a decimal are 

the only preceding characters 
allowed. 

bbb.FALSE.SbHT L14 OK 

19.2.2. 1 List-Directed Output of logical Values Logical values specified for output in 
list-directed ormat will appear as Tor F, preceded by a specific number of blanks. As is 
true with numberic or character data, the number of blanks will be set inside the particular 
FORTRAN system and, therefore, beyond the programmer's direct control. 

19.2.2.2 Edit-Directed Output of logical Values The L-specification is used for output 
in much the same as was described for edit-directed logical input (Section 19.2.1.2). The 
basic difference is that FORTRAN uses only T or F for output. Thus, if logical variable 
SWl has a value of . TRUE. the statements 

WRITE (*, 16) SWl 
16 FORMAT (1X,5X,Ll) 

produce a line of print that says c column1 

bbbbbT 

If the value of win the format specification is greater than 1, FORTRAN will pad to the 
left with w-1 blanks. For instance, if we change statement 16 above so that it says 

16 FORMAT (1X,5X,L4) 

there will be three additional blanks before the Tis printed: 

r-column1 

bbbbbbbbT 

19.3 SUMMARY Logical variables {whose only possible values are. TRUE. or. FALSE.) may be named, 
declared, and initialized using the same rules that apply to other FORTRAN variables. 
Values are assigned to logical variables using the regular assignment statement. The 
logical expression to the right of the assignment operator (=)may consist of the following: 

1. A logical constant or variable; 



SUMMARY 

2. Logical constants or variables combined by the logical operators . AND., . OR., 
. EQV.,. NEQV., and. NOT.; 

3. Pairs of arithmetic or character expressions combined by one of FORTRAN's 
relational operators. EQ.,. NE.,. LT.,. LE.,. GE., or. GT.; 

4. Any grouping of logical expressions described above, connected by a logical 
operator. 

5. Integer constants and/or variables connected by logical operators. 

Any legitimate logical expression may be used as the test for an IF statement. 
Logical data may be read or written either in list-directed or edit-directed format. The 

L-specification (Lw) is used to edit logical data. Input values may appear either as 
. TRUE. , . FALSE. , T, or F. Output values (in either format) always will appear as Tor F, 
preceded by zero or more blanks. 
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1. Declare a 6 x 8 logical array named SETS and initialize the odd-numbered rows to . TRUE. and the PROBLEMS 

even-numbered rows to . FALSE .. 

2. Write a truth table for each of the following expressions or statements. Assume that all of the variables 

have been declared as LOGICAL, but do not assume that all of the expressions or statements are written 

correctly: 
(a) Ll. OR .. TRUE. 

(b) L2. OR .. TRUE .. AND. L2 

(c) L3 = Ll. OR .. NOT. L2 

(d) L3 = Ll. AND. (.NOT. L2. AND .. NOT. L3) 

(e) Ll. EQV. (L2. AND. L3) 

(f) L4 = L4. NEQV. Ll 

(g) L3 = . NOT. Ll. AND .. EVQ. L2 

(h) L4 = Ll. AND. L2. EQV .. NOT. (L3. AND. Ll) 

3. Indicate what the final value will be for each of the following independent statements. Assume that all 

variables are declared as LOGICAL, and that they have the following values just before the statement is 

executed: 

Ll, L3, and L5 are . TRUE. ; the rest are . FALSE .. 

(a) L3 = L3. AND .. TRUE. 

(b) L5 = Ll. AND. L2. AND. L3. AND. L4 

(c) L4 = L4. EQV. Ll. NEQV. L2. OR. L3. AND .. NOT. L5 

(d) L5 = (Ll. NEQV. L2) . OR .. NOT. (L2. EQV. L3) . EQV. (L3. AND. L4) 

4. Indicate what the final value will be for each of the following independent statements. Assume that all 

variables whose names begin with Lare declared as LOGICAL, and all the others are numerical. The 

variables have the following values just before each statement is executed: 

Ll, L3, and L5 are . FALSE. ; the other logical variables are . TRUE. 

X = -70. 5 Y = 11. 2 S = 8. 0 T = 6. 5 

(a) L5 = L5 . AND. X . GE. Y 

(b) L5 = . TRUE .. AND .. NOT. (Y. LT. 17. 1) 

(c) L3 = L2. AND. X+Y 

(d) L4 = L2 . EQV. X+Y. LE. S**2 

(e) L3 = Ll. AND. L2. NEQV. S+T. GE. ABS (X) /Y 

(f) L2 = L2. OR .. NOT. (X*S. EQ. X**2/T. AND. L12 

5. Rewrite the subroutine in Example 19.1 as a function. 

6. Rewrite either the subroutine in Example 19.1 or the function specified in Problem 5 so that it processes a 

one-dimensional logical array. 

7. Write a main program for the subprogram in Problem 6 so that the result is a program that reads and 

compares a collection of pairs of logical arrays. Values for each input pair of 30-element arrays are 
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recorded on a single line, with the first array's values in columns 1-30 and the second array's values in 
columns 41-70. The first pair of logical arrays is preceded by a special line that contains the four rules 
for the subprogram in columns 1-4. 

8. Modify the program in Problem 7 so that the rules can be changed whenever desired. That is, a set of 
rules submitted for a particular pair of arrays will apply to all subsequent arrays until a new set is 
submitted. 

9. Write a function named ANY whose single argument is a logical array. If any of the values in the 
argument is . TRUE. , the function returns a value of . TRUE. ; otherwise, it returns a value of 
. FALSE .. 

10. Rewrite the subprogram in Problem 9 as a subroutine. 

11. Write a function named ALL whose single argument is a logical array. If all of the values in the argument 
are. TRUE., the function returns a value of. TRUE. ; otherwise, it returns a value of. FALSE .. 

12. Rewrite the subprogram in Problem 11 as a subroutine. 

13. Write a function named SOME that is invoked as follows: 

SOME (argl ,arg2) 

where argl is a logical array and arg2 is an integer value. This function includes the operations of the 
functions ANY and ALL in Problems 9 and 11. Specifically, SOME uses the value in arg2 to determine the 
conditions under which it will return a value of . TRUE. : If there are at least arg2 values of . TRUE. 
among argl's elements, SOME will return a value of . TRUE. ; otherwise, it will return . FALSE .. 

14. Write the subprogram in Problem 13 as a subroutine. 

15. The Department of Phrygian Studies at the University of East Clavicle would like to have a program 
that grades the final examination in its advanced course. This examination consists of fifty true-false 
questions. Each student's answers are recorded on a line containing the student's name in columns 
1-20, student i.d. number in columns 25-30, and the fifty answers (Tor F) in columns 31-80. The first 
student's data are preceded by a line in which the correct answers are given in columns 21-70. Each 
correct answer counts for two points. Your program should print a line for each student showing his or 
her i.d. number, name, answers, and total score. After all the data have been processed, the program is 
to print (on a separate page) the highest score, the number of students achieving that score, the lowest 
score, the number of students achieving that score, the average score, and the total number of students 
taking the test. Assume that every student answers every question. 

16. Now, East Clavicle's Department of Ionian Studies wants a test scorer too. However, their system is a 
little different: They also give an examination of fifty true-false questions. However, instead of just 
crediting each correct answer with two points, they also want to deduct one point for every question not 
answered. This means that it is possible for some knucklehead to achieve (if that is the word) a negative 
score. Correct answers still are worth two points apiece, and missing answers are blank. This program is 
to produce exactly the same output specified for Problem 15. 

17. Extend the processing in Problem 16 so that each line shows everything it did before, along with the 
number of questions missed, and the number of questions omitted. 

18. Extend the processing in Problem 17 so that the summary shows everything it did before. In addition, it 
is to include a table containing one line of print for each question showing the question number, the 
number of students answering that question correctly, the number answering it incorrectly, and the 
number leaving it out. 



Appendix A 
Complex Data 

FORTRAN provides a complete set of facilities for recognizing and processing complex 
numbers (i.e., numbers with real and imaginary components). 

A complex constant consists of two numerical values: A real component and an imaginary 
component. These are expressed by enclosing them in parentheses and separating them 
by a comma. The real component always is first. Several examples follow: 

FORTRAN Complex Constant 

(3.0, 4.5) 
(-6.7, 2.0) 

(8, -8) 
(22.1, 0.0) 
(0.0, -7.8) 

Value Represented 

3.0 + 4.5i 
-6.7 + 2.0i 

8 - 8i 
22.1 + Oi 
0.0 - 7.8i 

Complex variables are named like any other FORTRAN variables and are declard with 
the ~OMPLEX*8 orCOMPLEX*l6 data type. for example: 

COMPLEX*8 X,NCL(8) 
COMPLEX*l6 GHOST(2,4) 

COMPLEX*8 reserves eight bytes (four words on HP's 16-bit computer or two words on 
HP's 32-bit computer). COMPLEX*l6 reserves 16 bytes. For either declaration, the 
allocated storage is divided equally between the real and imaginary components. 

Complex variables may be initialized with the DATA statement. Using the declara­
tions given above, we can write something like 

DATA 
1 

X,NCL,GHOST/(1.l,1.0),8*(2.5,0.0), 
4*(1.0,-1.0),4*(-l.0,l.0)/ 

Complex arithmetic in FORTRAN is conducted according to the following rules. (CVl 
and CV2 are complex values consisting, respectively, of RLl + ILl i and RL2+ IL2 i): 

Operation 

CVl + CV2 
CVl - CV2 
CVl * CV2 
CVl I CV2 

Result Produced by FORTRAN 

(RLl+RL2,ILl+IL2) 
(RL1-RL2,IL1-IL2) 
(RLl*RL2-ILl*IL2,RLl*IL2+ILl*RL2) 
((RLl*RL2+ILl*IL2)/(RL2**2+IL2**2), 

(RL2*IL1-IL2*RL1)/(RL2**2+IL2**2)) 

A.1 
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A real value (say, RV AL) multiplied by a complex value (say, (RLl, ILl) ) produces the 
complex value (RV AL* RLl, RV AL* ILl) . 

Complex values may appear in arithmetic expressions either with other complex 
values and/or with combinations of other numeric values. Since complex numbers are 
special, their appearance in an arithmetic expression will compel FORTRAN to convert 
everything in that expression to complex. for example, if CVl is declared as COMPLEX, the 
assignment 

CVl = (2.0,3.0) + 4 + 6.5 

will be processed by converting the real and integer values so that final evaluation will be 
performed as if the values were 

(2.0,3.0) + (4.0,0.0) + (6.5,0.0) 

and the result stored in CVl will be ( 12. 5, 3. O) , the equivalent of 12. 5+3. O i. The 
only restriction is that complex values.cannot appear in any expression in which a double 
precision value appears. 

A.3 A specific group of FORTRAN's built-in functions can be applied to complex arguments. 
BUILT-IN In addition, the CMPLEX function can be used to convert a single numerical argument 

FUNCTIONS (integer, real, or double precision) to a complex value in which the real portion will be AND COMPLEX 
DATA taken from the argument's (converted) value and the imaginary portion will be O. 0. 

Alternatively, COMPLX can be used to process two numerical arguments, in which case 
they must both be of the same type. When this form is used, a complex number is formed 
with the real value taken from the first argument and the imaginary value taken from the 
second argument. For instance, 

CMPLX (1, -2) 

produces a complex value equivalent to 1. 0-2 . O i. 
Two other functions are designed specifically for use with a single complex argument: 

1. The AIMAG function delivers the imaginary part of a complex value, expressed as a 
real value. For instance, AIMAG ( 3. O, -4. O) delivers the real value -4. 0. 

2. The CONJG function delivers the conjugate of a complex value. Thus, 
CONJG (-7. 0, 8. 0) is (-7. 0, -8. 0). 

Table A.1 Use of Built-in Functions with Complex Arguments 
(Assume CV is a complex variable with value A + Bi) 

Function 

ABS(CV) 

SQRT(CV) 

COS(CV) 

EXP(CV) 

LOG( CV) 

SIN(CV) 

Value delivered by the Function 

JA2 + B2 

JA +Bi 

cos(A cosh B) - .! sin(A sinh B) 

A e (cos B + .! sin B) 

~log(A2 + B2) + ! tan-l(B/A) 

sin(A cosh B) + .! cos(A sinh B) 
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Table A.1 summarizes the characteristics of the other built-in functions applicable to 
complex values. 

Complex data can be read either in list-directed or edit-directed form. A list-directed 
complex value must appear as (real,imaginary). Both the parentheses and the separating 
comma must be present. Edit-directed complex values may appear as two consecutive 
numeric values of any type, described by two consecutive format specifications which may 
differ from each other. FORTRAN treats the first value as the real part and the second 
value as the imaginary part. For instance, suppose CVl is declared as COMPLEX and we 
use the statement 

READ(*, I (3X, F3. 1, F2. 0) I) CVl 

to read the following line: 

bbb34587223BJ 

FORTRAN will read and store a value of (34. 5, 87. 0) in CVl. The F, E, D, or G 

specifiers can be used for edit-directed complex data. 
Output facilities are consistent with those described for input. 
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AppendixB 
Representation 
of Characters 
in HP Systems 

HP systems are designed to recognize the ASCII code (American Standard Code for 
Information Interchange) for character data. In the ASCII coding system, a combination 
of seven ls and Os is used to represent each character. (Each ASCII character is stored in 
an eight-bit byte, but the eighth bit is handled automatically and does not affect consistent 
interpretation of the information.) 

Under certain conditions, it is possible for a computer to "look" at a character in 
storage as a string of ls and Os rather than as a letter, or punctuation mark, or some other 
character. When this happens, each string can be treated (by the computer) as a number. 
In other words, each type of character has its own internal numerical representation. The 
order of these internal numerical values (for a given coding system) is called the collating 
sequence. 

Since ASCII uses a string of seven ls and Os to represent each character, there are 128 
possible types. Any of the combinations are "characters" in the sense that the computer 
uses them, and can tell them apart from the others. However, they are invisible. (When 
printed, they appear as blanks, but they really are not.) Computers use them for various 
internal control purposes. Table B.l shows the visible ASCII characters along with one 
invisible character, i.e., the one and only genuine blank. 

Table B .2 shows the ASCII representations for those characters that can be used in 
writing an HP FORTRAN 77 program. This does not mean that the other characters 
(i.e., the ones shown in Table B.l) are unavailable. Any character that can be represented 
can be used as data in a FORTRAN program. However, only the members of the 
FORTRAN character set can be used for the program statements themselves. 

FOR TRAN 77 provides four functions that compare two character strings with regard to 
their relative positions in the ASCII collating sequence. Each of these functions requires 
two arguments (both character strings) and returns a value of . TRUE. if the outcome of 
the comparison is true, and . FALSE. if the outcome is false. These are summarized 
below using CHl and CH2 to represent two character strings. 

Function 

LLT (CH1,CH2) 

LLE (CHl, CH2) 

LGE (CHl, CH2) 

LGT (CHl, CH2) 

Outcome 

LLT returns . TRUE. if CHl is lexically less than CH2 in the 
ASCII collating sequence. 
LLE returns . TRUE. if CHl is lexically less than or equal to 
CH2 in ASCII. 
LGE returns . TRUE. if CHl is lexically greater than or equal 
to CH2 in ASCII. 
LGT returns . TRUE. if CHl is lexically greater than CH2 in 
ASCII. 
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Examples: 

1. LLT ('AB', 'AW') returns a value of. TRUE .. 

2. LLT ('AB', 'A2') returns a value of. FALSE .. 

3. LLE ( 'AB' , 'AB' ) returns a value of . TRUE .. 

4. LLE ('AB', 'A2') returns a value of. FALSE .. 

5. LGE ('AB', 'A2') returns a value of. TRUE .. 

6. LGE ('AB', 'AC') returns a value of. FALSE .. 

7. LGT ('AB', 'A2') returns a value of. TRUE .. 

8. LGT ('AB', 'AE') returns a value of. FALSE .. 

Table B.1 Visible ASCII Characters 

Character Code Character Code Character Code 

blank 0100000 @ 1000000 .... 1100000 

I 0100001 A 1000001 a 1100001 

" 0100010 B 1000010 b 1100010 

I 0100011 c 1000011 c 1100011 

$ 0100100 D 1000100 d 1100100 

% 0100101 E 1000101 e 1100101 

& 0100110 F 1000110 f 1100110 

0100111 G 1000111 g 1100111 

( 0101000 H 1001000 h 1101000 

) 0101001 I 1001001 i 1101001 

* 1010101 J 1001010 j 1101010 

+ 0101011 K 1001011 k 1101011 

, 0101100 L 1001100 1 1101100 

0101101 M 1001101 m 1101101 

. 0101110 N 1001110 n 1101110 

I 0101111 0 1001111 0 1101111 

0 0110000 p 1010000 p 1110000 

l 0110001 Q 1010001 q 1110001 

2 0110010 R 1010010 r 1110010 

3 0110011 s 1010011 s 1110011 

4 0110100 T 1010100 t 1110100 

5 0110101 u 1010101 u 1110101 

6 0110110 v 1010110 v 1110110 

7 0110111 w 1010111 w 1110111 

8 0111000 x 1011000 x 1111000 

9 0111001 y 1011001 y 1111001 
. 0111010 z 1011010 z 1111010 . . 0111011 [ 1011011 { 1111011 
' < 0111100 ' 1011100 1111100 

- 0111101 ] 1011101 } 1111101 

> 0111110 " 1011110 "' 1111110 

? 0111111 1011111 
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Table B.2 FORTRAN 77 Character Set 

EBCDIC ASCII EBCDIC ASCII Character Code Code Character Code Code 
blank 01000000 0100000 0 11110000 0110000 

A 11000001 1000001 1 11110001 0110001 
B 11000010 1000010 2 11110010 0110010 c 11000011 1000011 3 11110011 0110011 
D 11000100 1000100 4 11110100 0110100 
E 11000101 1000101 5 11110101 0110101 
F 11000110 1000110 6 11110110 0110110 
G 11000111 1000111 7 11110111 0110111 
H 11001000 1001000 8 11111000 0111000 
I 11001001 1001001 9 11111001 0111001 
J 11010001 1001010 + 01001110 0101011 
K 11010010 1001011 01100000 0101101 
L 11010011 1001100 * 01011100 0101010 
M 11010100 1001101 I 01100001 0101111 
N 11010101 1001110 == 01101110 0111101 
0 11010110 1001111 ( 01001101 0101000 
p 11010111 1010000 ) 01011101 0101001 
Q 11011000 1010001 , 01101011 0101100 
R 11011001 1010010 01001011 0101110 
s 11100010 1010011 $ 01011011 0100100 
T 11100011 1010100 ' 01111101 0100111 
u 11100100 1010101 01111010 0110101 
v 11100101 1010110 
w 11100110 1010111 
x 11100111 1011000 
y 111010QO 1011001 
z 11101001 1011010 



AppendixC 
Additional 
FORTRAN 
Features 

Among its other aspects, the FORTRAN 77 standard language is required to recognize 

and accept existing features from all earlier versions. This makes it possible for successful 

programs written in these versions to be submitted to (and processed by) a standard 

FORTRAN 77 compiler without change. Consequently, these features are of historic 

interest and are outlined here. In addition, this appendix presents other FORTRAN 77 

features whose use is sufficiently specialized to warrant their exclusion from the body of 

the text. 

FORTRAN's defaults can be changed temporarily (for a program) unit so that variables c.1 

(or function names) beginning with specified letters automatically will be assigned a DECLARATIONS: 

specified data type. The general form is THE IMPLICIT 
STATEMENT 

IMPLICIT datatype (letter, letter, etc.) 

The datatype specification may be either DOUBLE PRECISION, COMPLEX, REAL, 

INTEGER, LOGICAL, or CHARACTER*length. If length is omitted, FORTRAN uses 

The following additional rules: 

(1) The IMPLICIT statement, if used, must appear before other declarations. 

(2) Multiple sets of specifications may appear in a single IMPLICIT statement. 

(3) The same letter may not appear in more than one specification. 

( 4) A range of letters may be specified using the form 

startingletter - endingletter 

The two limits thus specified must be in alphabetical order. Thus, the declara­

tion 
IMPLICIT CHARACTER*8 (C, D, E, F, G, H), LOGICAL (M, N, 0) 

is equivalent to the declaration 

IMPLICIT CHARACTER*8 (C - H),LOGICAL (M - 0) 

Either version specifies that all names (in that program unit) beginning with 

the letters C through H automatically are associated with eight-character 

strings, and all names beginning with M through O are associated with logical 

variables. 

We have followed the practice throughout the text of using the IMPLICIT NONE 

declaration to make sure that no defaults are in force. 

C.2.1 The Assigned GO TO Statement c.2 
CONTROL 

In addition to the unconditional and computed GO TO statements, FORTRAN recognizes STATEMENTS 

the assigned GO TO statement. This is another way of specifying a choice of destinations 517 
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based on some prior definitions. There are two forms: 

GO TO destination 
or 

GO TO destination, (label, label, etc.) 

In both forms, destination is the name of an integer variable. Though it looks like an 
integer variable and is declared like an integer variable, destination is special: 

1. The only value that such a variable may have is that of a statement number used 
somewhere in the same program unit. 

2. The only way such a variable may receive its value is by means of the ASSIGN 
statement: 
ASSIGN label TO destination 

3. Aside from a declaration statement, this variable can appear only in an ASSIGN 
statement or in an assigned GO TO statement. 

In the second form, the parenthesized list consists of statement numbers used somewhere 
in the same program unit. There is no limit to the number of labels included in that list; it is 
not even necessary for all the labels to be different. However, if such a list is used, the 
value of label ASSIGNed to destination must be one of the values given in the list. 

C.2.2 The Arithmetic IF Statement 

This is the original form of FORTRAN's IF statement: 

IF (arithmetic expression) labell, labe/2, labe/3 

FORTRAN evaluates the arithmetic expression inside the parentheses. If the value is less 
than zero, the next statement executed is the one with label labell. If the value is zero, the 
next statement executed is the one with label label2. If the value is greater than zero, the 
next statement executed is the one with label labe/3. The three alternative destinations do 
not all have to be different. Thus, 

IF (X - Y) 12, 12, 14 

proyides a comparison ofX against Y: IfX is less than or equal to Y, the program will go to 
statement 12; otherwise, it will go to statement 14. 

C.2.3 The PAUSE Statement 

The PAUSE statement has the form 

PAUSE message 

where message is either an unsigned integer constant up to five digits long, or a character 
string constant. For example, 

PAUSE 12345 

or 
PAUSE 'THE LOOP IS COMPLETE' 

These statements are intended to help in testing programs. As such, they may be placed 
anywhere in a program. (Each PAUSE statement should have a unique message.) When 
the executing program comes to a particular PAUSE statement, it displays the associated 
message on the standard output unit. 



ALTERNATE RETURN ADDRESSES FOR A SUBROUTINE 

Use of this feature should be avoided. However, it is there and it will be described. 

The ordinary RETURN statement, i.e., 

RETURN 

causes execution to shift from a subprogram to the invoking program unit just after the 

point of invocation. It is possible to set up a subroutine (not a function) so that there are 

several specified return points. When this feature is used, the RETURN statement looks 

like this: 

RETURN integer expression 

The value of integer expression indicates which of the choices is to be used for that 

particular return. For instance, if there are four choices from which to select, integer 

expression must have a value of 1, 2, 3, or 4. The choices themselves are defined as 

statement labels included in the argument list when the subroutine is called. Each 

statement label thus specified, of course, must correspond to a label attached to an 

executable statement somewhere in the invoking program unit. Such arguments are 

specified by giving the statement number, preceded by an asterisk. For instance, the 

statement 

CALLSUBR (*12, *14, *8, XSQR, SUMY, NUMZ) 

invokes a subroutine named SUBR with six arguments: The first three indicate that the 

subroutine will be able to return to statement 12, statement 14, or statement 8. (The other 

three arguments are whatever they are.) Correspondingly, if a RETURN statement inside 

SUBRsays 

RETURN2 

it means that, for this invocation, the program will return to statement 14 of the invoking 

program unit. Note that it is the choice, and not the statement number, that is specified in 

the RETURN statement. For this particular subroutine, the integer (or integer expression) 

given with the RETURN statement must have a value of 1, 2, or 3. 

In order for this to work, the subroutine must include information in its dummy 

argument list to show that the choices are available. This is done by showing an asterisk 

for each choice. In this example, since the subroutine is designed to offer three choices, 

the initial statement would say 

SUBROUTINESUBR (*, *, *, DVAL, EVAL, NUMBER) 

The first three items in the dummy list, then, correspond to the three statement labels 

given as the first three arguments in the CALL statement. 
Subroutines equipped with capabilities for alternate return addresses still may in­

clude ordinary RETURN statements. 
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ALTERNATE 
RETURN 
ADDRESSES 
FORA 
SUBROUTINE 





ABS Built-in Function, 107, 120 
ACOS Built-in Function, 118, 121 
ACOSH Built-in Function, 118, 121 
AIMAG Built-in Function, 512 
AINT Built-in Function, 111, 120 
Algorithms 

definition of, 16 
description of 21-23 
properties of, 17-19 

An American Tradition, 101 
ANINT Built-in Function, 112, 120 
Arguments for Subprograms, 310-

321, 412-414 
Arithmetic Expressions 

built-in functions in, 105 
construction of, 79 
operations in, 80 
parenthesesin,82 
priority of operations in, 90 

Arrays 
as arguments for subprograms, 

308,310,317-321 
bounds of, 141 
declaration of, 137, 141 
dimensionality of, 135 
elements of, as arguments for 

subprograms, 306 
identification of elements in, 140, 

143 
in common storage, 483 
initialization of, 142-143 
input/output of, 138, 145, 151 
loops for processing, 258-259 
of character data, 164, 316 
one-dimensional, 135 
organization of, 135, 140 
size limits of, 137 
sorting of values in, 259-263 
storage of, 138, 140 
two-dimensional, 136, 258-259 

ASCII Character Set, 515 
ASIN Built-in Function, 118, 121 

Index 

ASINH Built-in Function, 118, 121 
Assigned GO TO Statement, 517 
Assignment Statement, 39, 47, 165 
ATAN Built-in Function, 118, 121 
ATANH Built-in Function, 118, 121 
ATAN2 Built-in Function, 118, 121 

BACKSPACE Statement, 349 
Bit-handling Operations, 124-129 
Blank Common Storage, 483 
Blanks 

in FORTRAN statements, 51 
in input data, 376,440 
in output displays, 398 

BLOCK DATA Subprogram, 491 
BTEST Built-in Function, 129 
Built-in Functions 

ABS, 107, 120 
ACOS, 118, 121 
ACOSH, 118, 121 
AIMAG,512 
AINT, 111, 120 
as arguments for subprograms, 325 
ASIN, 118, 121 
ASINH, 118, 121 
ATAN, 118, 121 
AT ANH, 118, 121 
ATAN2, 118, 121 
BTEST, 129 
CHAR, 181 
CMPLX,512 
CONJG,512 
cos, 118, 121 
COSH, 118, 121 
DBLE, 107, 120 
DIM, 108, 120 
DPROD, 108, 120 EXP, 117, 121 
IBCLR, 127 
IBSET, 126 
ICHAR, 181 
INDEX, 173 

INT, 107, 120 
ISHFT, 128 
ISHFTC, 128 
LGE, 170, 514 
LGT, 170, 514 
LLE, 170, 514 
LLT, 170, 514 
LOG, 117, 120 
LOG10, 117, 120 
MAX, 113, 120 
MIN, 113, 120 
MOD, 108, 120 
NINT, 111, 120 
REAL, 107, 120 
SIGN, 107, 120 
SIN, 118, 121 
SIGN, 118, 121 
SQRT, 117, 120 
TAN, 118, 121 
TANH, 118, 121 

CALL Statement, 279, 322 
Canine Fund, 355 
Carriage Control, Mechanisms for, 

398 
CASE Construction, 209-216 
Central Processor, Operation of, 1 
CHAR Built-in Function, 181 
Character Data 

arrays of, 164 
as arguments for subprograms, 307 
assignment of values to, 165 
concatenation of, 167 
constant values for, 66 
conversion of, 181 
declaration of variables for, 160-

164 
format description of, 393-396, 

403-405 
searching of, 174 
substrings of, 160, 394-395, 404 

CHARACTER Declaration, 39, 70 

521 
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Character Set for HP FORTRAN 77 
Prograllls,51,53,515 

Clearing Individual Bit Values, 127 
CLOSE Statelllent, 352 
CMPLX Built-in Function, 512 
Coconuts, 134 
Collating Sequence, 168, 515 
Collllllents in FORTRAN Prograllls, 

51 
COMMON Declaration, 483-490 
CollllllOn Storage 

blank, 483 
declaration of, 483-490 
initialization of values in, 490-492 
lllisuse of, 494-495 
nallled, 488-490 
organization of, 485-488 

Colllpilers, Characteristics of 
characteristics of, 8-9 
directives to, 52 

Colllputed GO TO Statelllent, 214 
Colllputers 

input/output colllponents of, 4-5 
lllain storage in, 3-4 
lllajor colllponents of, 1 
secondary storage for, 6 

Concatenation of Character Strings, 
167 

CONJG Built-in Function, 512 
Constants 

as argulllents for subprograllls, 304 
as output values, 380, 405 
character, 66 
colllplex, 511 
decimal, 62 
double precision, 65 
floating point, 65 
hexadecimal, 63 
Hollerith, 66 
logical, 66 
nallles for, 67 
nulllerical, 62-66 
octal, 62 

Conversion 
of character data, 181 
of Nulllerical Data, 87-90, 106 

COS Built-in Function, 118, 121 
COSH Built-in Function, 118, 121 
Cyclic Operations. See Loops 

DATA Declaration, 72-73, 142-143, 
490-491, 511 

DBLE Built-in Function, 107, 120 
Decisions 

based on character string values, 168 
based on individual bit values, 125, 

129,504--505 

based on multiple tests, 193-200 
HP FORTRAN 77 statements for, 

42, 62-74 
in structured programs, 22 
N-S description of, 23 
nesting of, 204--209 
pseudocode description of, 23 
with complex actions, 201 
with multiple choices, 209-216 

DIM Built-in Function, 108, 120 
DIMENSION Declaration, 144 
Direct Files, 469-476 
DO Statement, 43-44, 48-49, 151, 

238-243,256-259 
DO-UNTIL Construction, 234 
DO-WHILE Construction, 231-

234 
DO WHILE Statement, 231 
DOUBLE PRECISION Declaration, 

69 
Double Precision Numbers, 65, 69, 

392 
DPROD Built-in Function, 108, 120 
Drivers for Subprogram 

Development, 276, 287 
Dummy Arguments for Subprograms, 

280,310,317,321 
Dutch Settlers, Real Estate 

Transactions With, 101 

Edit-Directed Data 
format descriptions for, 388, 394, 

401-427,434-439,507-508,513 
interpretation of, 337, 387, 389-

393 
runtime descriptions for, 446-448 
techniques for formatting, 406-411, 

434-439 
variable format descriptions for, 

448-456 
ELSE IF Statement, 210 
END Declaration, 37 
ENDFILE Statement, 349 
EQUIVALENCE Declaration, 71-72 
EXP Built-in Function, 107, 121 
Expressions 

as arguments for subprograms, 
305 

construction of, 79, 167, 502, 
505 

operations in, 80, 167 
parenthesesin,82,91, 167,502 
priorities of arithllletic operations 

in, 90, 502 
with array elements, 145 

External Files, 341 
EXTERNAL Statement, 322 

Files 
and records, 336 
and units, 341 
backspacing, 345 
closing, 344 
creation of, 343 
deletion of, 343 
direct, 469-476 
examination of, 352-355 
external and internal, 341, 448-456 
opening of, 344, 461, 476 
rewinding of, 345 
unformatted, 460--469 

Floating Point Numbers, Storage of, 
65 

See Also Real Numbers 
Format Descriptions 

atruntime,442-448 
for character data, 393-396, 403-

405 
for integer data, 391, 401-402 
for numbers, 391-393, 401-405, 

424-437 
forrealdata,388-392,401-403 
techniques for, 406-411, 438-439 
variable, 448-456 

Formatted Data, 335 
Functions 

built-in, 105 
definitions for, 280 
dummy arguments for, 280 
generic, 120 
invocation of, 119, 284 
names for, 281 
structure of, 277 

GRAN Built-in Function, 119 
Generic Functions, 120 
Ghosts, 131 
GO TO Statement, 232-233, 517 
Gurus, 117 

Hexadecimal Numbers, 63, 392 
High Level Languages 

characteristics of, 6-10 
compilers for, 8-9 

Hollerith Constants, 66 
HP Processors 

characterization of, 3-4 
internal representation of data in, 

65,121 

IBCLR Built-in Function, 127 
IBSET Built-in Function, 126 
I CHAR Built-in Function, 181 



IFBlock,42,201,233 
IF Statement 

basic forms for, 42, 517 

use of, for loop construction, 

233 
use of, with character data, 168 

use of, with individual bit values, 

125,504-505 
IF-THEN-ELSE Construction, 22 

Imaginary Numbers. See Complex 

Numbers 
IMPLICIT Declaration, 71-516 

INDEX Built-in Function, 173 

Indians, Real Estate Transactions 

With, 101 
Initialization of Variables, 72-73, 

142-143 
Input 

devices for submitting, 4-6 

edit-directed, 337, 387, 394 

from direct files, 472 
from internal files, 450-456 

list-directed, 337, 374-377 

mechanisms for reading, 40 

of complex data, 513 
of logical data, 507-508 

of unformatted data, 461-469 

Input/Output Devices, 4-6 

INQUIRE Statement, 352 

INT Built-in Function, 106, 120 

INTEGER Declaration, 37, 68-

69 
Integers 

conversion to, 106 
declaration of, 37, 68-69 

expressions with, 86 
format descriptions of, 391, 401-

402 
forms for, 62 
internal representation of, 121 

logical operations on, 122-129 

Interactive Programs, Examples of, 

8, 10 
Internal Files, 341, 448-456 

INTRINSIC Declaration, 325 

Invocation 
nested, 325 
of fu:pctions, 119, 284 
ofsubroutines,278,288,305 

IRANP Built-in Function, 119 

ISHFf Built-in Function, 128 

ISHFfC Built-in Function, 128 

Labels for FORTRAN Statements, 

50 
LGE Built-in Function, 170, 514 

LGT Built-in Function, 170, 514 

List-Directed Data 
formsfor,374,377,507 

interpretation of, 339, 375 

Literal Output, 380, 405 

LLE Built-in Function, 170, 514 

LLT Built-in Function, 170, 504 

LOG Built-in Function, 117, 120 

LOG10, Built-in Function, 117, 120 

Logical Constants, 66, 499 

LOGICAL Declaration, 70, 499 

Logical Operations 
on integer values, 122-129, 505-

507 
for manipulating individual bits, 

124-126 
properties of, 499-503 

Loops 
as structural components in 

programs, 23 
automatic counters in, 238-244 

control mechanisms for, 43, 231-

234, 244-245, 251-255 

DO-UNTIL constructions for, 234 

DO-WHILE constructions for, 43, 

231-232 
for counting events, 238-243 

for input/output of arrays, 151, 

378 
indexes for, 238 
N-S description of, 23-27 

nested, 256-259 
programming techniques with 243-

244 
pseudocode description of, 23 

structure of 42-47, 231-234, 243, 

249 
with the block IF statement, 233 

Machine Language, 3, 7 

Main Storage, Organization of, 3 

Masking, Techniques for, 124-129 

MAX Built-in Function, 113, 120 

Memory. See Main Storage 

MIN Built-in Function, 113, 120 

MOD Built-in Function, 108, 120 

MVBITS Subroutine, 127 

N-S Diagrams for Describing 

Algorithms, 21-23, 30 

Named Common Storage, 488-490 

Names 
for FORTRAN programs, 37 

for variables, 67-68, 71 

NINT Built-in Function, 111, 120 

Numbers 
complex,511-513 

INDEX 523 

conversion among different types 

of,87-90, 106-107 

conversion to characters, 181 

decimal, 62 
double precision, 69 
expressions involving, 79 

floating point, 65 
format description of, 388-394, 

401-403,434-437 
forms for 62-65 
hexadecimal,63,392 
in logical expressions, 505-507 

octal, 62, 391 
operations on, 80 
precision of, 65 
rounding of, 111-112 
scaling of, 438-439 
scientific notation for, 63 

O'Casey's Ghost, 131 

Object Programs 
characteristics of, 9 
from source programs, 12 

Octal Numbers, 62, 391 

OPEN Statement, 350, 461, 473 

Operating Systems as Program 

Environments, 10-12 

Operations in Arithmetic 
Expressions, 80-91 

Output 
devices for producing, 4-6 

edit-directed, 389-393, 401-

403 
list-directed, 377-378 
mechanisms for writing, 40 

of complex data, 513 
of logical data, 507-508 

of unformatted data, 461-469 

to direct files, 473 
to internal files, 450-452 

Overprinting, 399 

PARAMETER Declaration, 67 

Parameters. See Dummy Arguments 

Parentheses, Uses of, 82, 91 

PAUSE Statement, 517 

Precision of Real Numbers, 65 

PRINT Statement, 40, 341, 344, 348, 

381 
PROGRAM Declaration, 37 

Programming Languages 
and operating systems, 10-12 

characteristics of, 6-10 

compilers for 8-9 
Programs 

components in, 51 
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Programs (Continued) 
operation of, 40 
organization of, 36, 272 
systematic preparation of, 15-16, 

275 
Pseudocode for Describing 

Algorithms, 21-23, 30 

Random Files. See Direct Files 
Random Numbers, Generation of, 

117-119 
READ Statement, 40, 151, 342, 344, 

346,378-379,461,473 
REAL Built-in Function, 107, 

120 
REAL Declaration, 69 
Real Numbers 

conversion to, 107 
expressions with, 85 
format descriptions for, 388-392, 

402-403,434-439 
forms for, 63 
precision of, 65 
rounding of, 111 
truncation of, 111 

Records 
and files, 336 
ENDFILE for, 344 
for direct files, 471 
formatted, 337 
input/output of, 344, 396 
list-directed data in, 375 
unformatted, 337, 460-469 

Redeye Airlines, 384 
REWIND Statement, 350 
Rounding of Numerical Values, 111-

112 
Runtime Format Descriptions, 442-

448 

SA VE Statement, 492-493 

Scaling of Numerical Values, 438-
439 

Scientific Notation, 63-64 
Searching Techniques with Character 

Data, 174 
Secondary Storage Devices, 6 
Sequence Numbers for FORTRAN 

Statements, 50 
Setting Individual Bit Values, 124, 

126 
Shifting Operations in HP 

FORTRAN77, 128 
SIGN Built-in Function, 108, 120 
SIN Built-in Function, 118, 121 
SINH Built-in Function, 118, 121 
Sorting Techniques, 259 
Source Programs 

characterization of, 7 
object programs from, 12 

SQRT Built-in Function, 117, 120 
SSEED Subroutine, 118 
Standard Character Warehouse, 395 
Statement Functions, 278 
Statements 

as high-level language 
components, 7 

blanks in, 51 
format for, 47, 50-52 
labels for, 50 
sequence numbers for, 50 

Structured Programming 
as part of a larger process, 15-16 
characteristics of, 19-20, 30 

Structured Programs 
basic components of, 20-28 
representation of, 21-28 

Subprograms 
as arguments, 321 
common storage for, 481-490 
definitions for, 280-284 
drivers for developing, 276, 287 
for setting up common storage, 

490-491 

invocation of, 283-289 
operating principles of' 272-275' 

291-294 
saving data from, 492-493 
types of, 277 

Subroutines 
alternate returns from, 518 
definitions for, 283 
invocation of, 278, 288 
structure of, 278 

Substrings, 160, 164, 166, 174, 394-
395, 404 

TAN Built-in Function, 118, 
121 

TANH Built-in Function, 118, 121 
Testing Individual Bit Values, 125, 

129 
Tradition, American, 101 
Tramp Steamers, 134 
Truncation of Real Values, 111 

Unformatted Files, 460-469 
Units and Files, 341, 347 
URAN Built-in Function, 118 

Variable Format Descriptions, 448-
456 

Variables 
in common storage, 485-490 
initialization of, 72-73, 485 
local, 492 
namesfor,67-68, 71-72 

WHILE-DO Construction 
N-S representation of, 26 
pseudocode representation of, 27 

WRITE Statement, 342, 344, 347, 
380-381,468,473 



Professor Pollack emphasizes the important interrelation between FORTRAN n and structured 
programming. The features of the FORTRAN n language are carefully illustrated through the use 
of numerous well-structured examples. In this way the characteristics of the language and 
principles and techniques of structured programming reinforce one another. The author's top­
down approach provides the student a proven methodology for effective design and 
implementation of programs. 

The HP Fortran 77 compiler fully implements the American National Standards Institute X3.9-1978 
standard (ANSI 77) for FORTRAN. It has many extensions to provide a more structured approach 
to program development and more flexibility in computing for scientific applications. As part of its 
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