
r M rr.'^v if «
■L '//if rrit(fmm'Arn'' * »: «

i

00*0*^ ' 4.vH ^

A t

lud®® j
d

ves^ sup®V

inc

\jG^

^^i

Stan a''''

EGA/VGA
A Programmer's
Reference Guide

Bradley Dyck Kliewer

Intertext Publications

McGraw-Hill Publishing Company

New York St. Louis Son Fronoisoo Aucklond Bogota
Hamburg London Madrid Mexico Miion Montreai

New Delhi Panama Paris Sao Pooio

Singapore Sydney Tokyo Toronto

Library of Congress Catalog Card Number 90-83679

Copyright © 1990 by Bradley Dyck Kliewer. All rights reserved. Printed in
the United States of America. Except as permitted under the United States
Copyright Act of 1976, no part of this book may be reproduced or distributed
in any form or by any means, or stored in a database or retrieval system with
out the prior written permission of the publisher.

10 9 8 7 6 5 4

ISBN 0-07-035099-X

Intertext Publications/Multiscience Press, Inc.

One Lincoln Plaza

New York, NY 10023

McGraw-Hill Book Company
1221 Avenue of America

New York, NY 10020

Everex is a trademark of Everex Systems, Inc.
Hercules Graphics is a trademark of Hercules Computer Technology, Inc.
Headland Technology, FastWrite VGA, V7 VGA, and VRAM VGA are trade
marks of Headland Technology, Inc.
IBM PC/AT, Micro Channel, OS/2, PCjr, PS/2, Personal System/2, VGA, and
8514/A are trademarks of Intemational Business Machines Corporation. IBM is
a registered trademark of Intemational Business Machines Corporation.
MS-DOS is a trademark of Microsoft Corporation. Microsoft is a registered
trademark of Microsoft Corporation.
Multisync and NEC are trademarks of Nippon Electric Company.
Paradise and Western Digital are trademarks of the Westem Digital Corpora
tion.

To my wife. Sue,
and our parents

Henry and Rosella Kliewer
and

C.J. and Wilma Dyck
YouVe been a soiarce of inspiration and support

Contents

Preface xi

Notes on Conventions Used xiv

Chapter 1 The Question of Compatibility 1
Downward Compatibility 2
Flexibility (Pages of Memory, Alternate Character Sets,
Monitors) 3

Chapter 2 Introduction to BIOS 7
BIOS Calls 8

Text and Graphics Modes 9

Chapter 3 BIOS Screen I/O 27

Chapter 4 BIOS EGA/VGA Extensions 45

Chapter 5 The VESA BIOS Extension 81

Chapter 6 Physical Construction 113
BIOS Calls vs. Direct Register and Memory Access 113
Direct Memory Manipulation 113
Methods for Storing and Manipulating Images 124
Data Compression 127
Pages 128
Overview of EGA/VGA Construction 128

VESA Extensions 130

Chapter 7 Introduction to Register Programming 135
The External Registers 137

Chapter 8 The Sequencer Registers 145

Chapter 9 The CRTC Registers 153

viii EGA/VGA: A Programmer's Reference Guide

Chapter 10 The Graphics Controller Registers 181

Chapter 11 The Attribute Controller Registers 199

Chapter 12 The Digital to Analog Converter Registers
(VGA only) 211

Chapter 13 The BIOS Save Area 215

The Secondary Save Table (VGA Only) 216

The Parameter Table 217

The Alpha Mode Auxiliary Table 230

The Graphics Mode Auxiliary Table 235

DCC Table 235

User Palette Profile Table 235

Additional BIOS RAM Areas 236

Checking Display Type (BIOS Save Area)
for All Adapters 237

EGA Compatibles 237

Chapter 14 Displays 239

Chapter 15 Programming Tricks and Traps 247

Those Nasty Write-only EGA Registers 247

Monochrome VGA's 247

Modifying the EGA BIOS Interrupt 247

Using Write Modes 0 and 2 248

Debuggers 248
Store and Restore Modified States 249

Restoring Modes — Make Sure to Clear the High Bit 249
Presence Test 250

Problems With Using Alternate Font Tables 254
Vertical Interrupts 254
Smooth Scrolling 258

Chapter 16 Algorithms
Graphics Routines
The Line Algorithm
The Ellipse Algorithm

Notes About the Ellipse Program Listing

Appendix
FPLOT.ASM

SMOOTH.ASM

261

261

262

266

271

273

273

276

Contents ix

LINE.ASM 289

ELLIPSE.ASM 300

VERTIRQ2.ASM 315
VERTRET.ASM 325

STORE.ASM 328

RESTORE.ASM 338

WHEEL.ASM 347

Index 367

Preface

When the first edition was published, the Enhanced Graphics Adapter (EGA)
had become the graphics standard in the IBM Personal Computer world and its
cousin, the Video Graphics Array (VGA), was beginning to take its place. Very
few EGA's are still on the market, but they are still around on many old sys
tems and a few of the newer portable computers. Because the VGA is the most
popular video option for the millions of PC's, XT's, AT's, and PS/2 clones in
use, it is clear that anyone interested in programming or taking full advantage
of graphics for these machines had better know all of the ins and outs of these
graphics standards.
However, getting beneath the surface of these two boards is not so easy.

Documentation for the EGA and VGA is scattered among separate manuals,
densely written and difficult to understand, and often sketchy. Moreover, the
manuals give very few examples of code, and many of those given are only
fragments which must be combined with your own routines to create a working
example.

So, in addition to the challenge of programming these sophisticated boards, it
has been the programmer's burden to have to piece together the available in
formation to gain a working understanding of the graphics adapters. The addi
tion of higher-resolution boards, which go beyond the standards, has made the
task even more difficult.

The goal of EGA/VGA: A Programmer's Reference Guide is to ease this
difficult situation by collecting in one volume much of the scattered informa
tion about the EGA/VGA, as well as presenting a broad range of working pro
gramming examples and offering practical guidelines for effective and sophisti
cated EGA/VGA programming techniques. EGA/VGA A Programmer's Refer
ence Guide is primarily a reference work with extended descriptions which add
to the understanding of display programming, increase productivity, and en
hance the craft and professionalism of the reader's programs.
We will cover the VESA standard, which helps simplify programs that work

beyond the resolutions of the standard VGA modes. As of this writing, most
adapters had implemented the VESA 800 X 600, 16-color mode. And, RAM-
based drivers, which added support for additional modes and query informa
tion, were just beginning to appear.

xii EGA/VGA: A Programmer's Reference Guide

As I cover the material and explain the various functions, I will keep the
following goals in mind:

First, while several factors create an effective display, including speed,
smoothness (freedom from flicker and other annoying effects), and layout, our
focus will be on speed and smoothness: they are, after all, the easiest to quan
tify and the most technically difficult to achieve.
You have probably seen (or written) many games which flicker as the shapes

are drawn, or seen entiy areas on forms which flicker as the computer waits for
user input. Flicker such as this is a common problem when programming with
high-level languages. But if you look at commercial software, whether games
or applications, the display remains rock steady. Professional programmers
know how to coordinate video output with the adapter and display's internal
timings. Usually, such programming is done with assembly language because it
provides greater control over the hardware: determining the current status, and
making direct changes. This book will teach you these assembly language tech
niques, so that you may apply them to your programs.

While we will concentrate on assembly language programming, the methods
presented may be adapted to other languages if you know how to directly ac
cess memory, the I/O registers, and software interrupt routines. Although hard
ware control features are not typically a standard part of the language, many
PC-based products add them (for example, BASIC'S PEEK, POKE, IN, and
OUT, or Turbo Pascal's INTR, absolute memory functions, and ability to use
inline code). We will begin with an introduction to BIOS programming — the
simplest way to start programming. If you are an experienced assembly lan
guage programmer, you are probably familiar with BIOS programming and
may want to skip ahead, using the BIOS call descriptions as reference material.
For those of you fairly new to assembly language programming, you will
quickly find that BIOS display writing routines are very slow and simply not
adequate for most finished products. So, after finishing the BIOS routines, we
will quickly move into register programming and much more sophisticated con
cepts.

You will find several small programs, which may seem rather dull compared
with demonstration programs you may have seen. The aim is not to give daz
zling demonstrations of the EGA/VGA's capabilities (you are probably already
aware of such functions and want to create them for yourself), but rather to
give simple, self-contained examples of the adapters' capabilities. Short pro
grams are easier to enter without critical and frustrating mistakes. We want to
encourage you to try the demonstrations, make your own modifications, and
use them as a framework for your creative work. If you want to avoid entering
the code, a source code diskette is available for an additional cost (see the order
form at the back of the book).

If you are fairly new to assembly language programming, keep your eyes
open! There are many useful tricks among the programming examples that go
beyond graphics programming practices. For example, the ellipse program uses

Preface xiii

32-bit and 48-bit integer arithmetic. It is really fairly simple and straightfor
ward, yet it is a topic which is not often discussed (and the limits of 16-bit
integers are often too constraining for many applications). You will also find
practical uses for most of the 8088 assembly language instructions.
The example code may not always use the fastest or most elegant methods; I

have tried to balance easy readability with considerations of speed and tech
nique. I have also varied some methods from program to program as subtle
examples of the many possible methods for achieving any particular function.

Several of the BIOS programming examples will interact with each other.
For example, the demonstration program for setting the mode places the
adapter in 640 X 350 graphics mode, and does not switch back to the original
mode at termination. You can then see the effect of several of the other BIOS
routines while in graphics mode (typing MODE CO80 will retum the display to
text mode). Several of the interactions are noted, and you can try these (and
others) to better understand how BIOS functions.

Challenge yourself to improve the code. Where can you make it faster or
more flexible? Does it need more range checking (or maybe less)? Watch for
some of the tricks thrown into the code. Some standard methods for improving
efficiency are using SUB or XOR to 0 a register (in place of MOV), or using
shifts for division or multiplication by powers of two. But how about other
constants? The MUL instruction is very slow; sometimes a sequence of ADD's
and SHL's can be much faster (at the loss of flexibility since you cannot multi
ply by a variable).

If you do not have a list of instruction timings, you should get one. The
Microsoft Macro Assembler comes with timing information, but there are other
sources. Several books on assembly language programming, or the Intel
Programmer's Pocket Reference Guide would be excellent supplemental mate
rial. If you really want to make your code efficient, you must consider several
methods and decide which is the quickest. You can always use trial and error
by timing each method, but frequently a quick glance at timings will immedi
ately eliminate some methods. However, do not put too much faith in the tim
ings; there will always be some variation due to the state of the prefetch cue,
the actual processor used, and wait states on memory or port accesses (espe
cially when dealing with display memory).

If efficiency is important, you should time any routines which use roughly
the same number of clock cycles. Try the code on different processors if possi
ble, and loop through the code enough times to get several seconds of delay.
Experimenting with different methods will make your code efficient and greatly
improve your knowledge of the system. If you don't think efficiency is impor
tant, consider the amount of memory addressed by the EGA: 256K versus I6K
on a color CGA screen. You won't usually update all of the memory, but sim
ple images use more memory as the resolution and number of colors increase.

In addition to trying various instruction sequences, look for entirely different
programming methods. The EGA and VGA provide many varied functions

xiv EGA/VGA: A Programmer's Reference Guide

which can create similar effects. You will find four different ways to write to
memory (along with many ways to modify the data as it is written). Study the
registers (especially the Graphic Controller registers), and leam what they do.
You may find functions you did not consider. Even if you do not have an
application for a register, ask "What could this do for me?" A thorough under
standing of the adapter's functions will improve your progranuning techniques,
and the end result will be a better program.

Notes on Conventions Used

Hexadecimal numbers will be followed by a lowercase h; thus, 16 would be
written as lOh in hexadecimal. Likewise, binary numbers will be followed by a
lowercase b. Register names will be uppercase.

Medium-resolution graphics will refer to 320 X 200 pixels; high-resolution,
640 X 200; and enhanced 640 X 350. The VGA's new 640 X 480 mode will
simply be called 640 X 480.

Adapters will be called the MDA (the original Monochrome Display
Adapter), CGA (the original Color Graphics Adapter), EGA (Enhanced Graph
ics Adapter), and VGA (Video Graphics Array).

All references to DOS will assume version 2.0 or later, unless otherwise
noted. All assembly language programs were assembled with Microsoft Macro
Assembler version 4.0.

Compatibility modes will refer exclusively to graphics modes, since all text
modes are compatible between adapters.
The EGA and VGA have several methods of mapping memory into the PC's

address space. The appearance of memory in this address space will be noted as
the "CPU" or "processor" address; that is, where the 8088 or 8086 processor
reads and writes the display.

Chapter

1
The Question of CompatibHlty

The limitations of IBM's original Color Graphics Adapter (CGA) became ap
parent as graphics became increasingly important to business in the PC envi
ronment. The CGA was designed for compatibility with television sets and
composite monitors, which were both cheap and prevalent. This limited the
vertical resolution to 200 distinguishable lines. Horizontal resolution was de
signed for 320 rows, although 640 rows were possible on RGB and composite
monitors.

Memory was expensive, and the creation of a reasonably priced color adapter
required a limitation on available memory. The CGA was given enough mem
ory (16K) for four colors with 320 X 200 resolution (the resolution that worked
best on TV sets). Unfortunately, 16K is not enough memory for more than two
colors in the 640 X 200 resolution mode, and one color has to be black. Even
the four-color mode limits the user to only two sets of four colors, although the
background can be changed in either set.
When the price of memory chips and other computer components began to

fall and microcomputers started to replace larger systems, users complained
about the poor selection of colors that could be used with the CGA. Viewing
the 320 X 200 resolution for long periods of time was hard on eyes, and many
graphics systems had to have a second monochrome monitor (with 720 X 350
non-graphics resolution) for working with text. In response, several companies
developed boards for higher-resolution graphics; many could use 16 or more
colors. Hercules Computer Technologies produced the Hercules Card, which
uses the higher-resolution monochrome monitor for monochrome graphics.

2 EGA/VGA: A Programmer's Reference Guide

Downward Compatibility

The greatest problem among the early high-resolution graphics cards was a
lack of standards or support of the CGA modes. Additionally, the programming
methods used for many of these cards are inconsistent with the methods used
by the CGA. The EGA addresses these issues by remaining very compatible
with the CGA, extending available memory, and adding BIOS support for
higher resolution. But the EGA standard is not without problems of its own.
The large number of registers and operational modes make programming diffi
cult unless you rely entirely on the slow BIOS routines. Most of the registers
are write only; determining the current state of the adapter is almost impossible.
This hinders the development of multitasking systems and memory resident
programs, which need to save the video state before switching tasks. Like the
Hercules card, an EGA with a monochrome display does not support CGA-
compatible graphics.

In April 1987, IBM announced the PS/2 line of microcomputers. These com
puters included the new graphics device called the VGA (for Video Graphics
Array, which refers to the single chip used by the system). The VGA is very
similar to the EGA. It extends a few EGA functions and adds some higher-res
olution modes and a 256-color low resolution mode. Perhaps the most signifi
cant change for programmers, however, is the use of read/write registers. The
VGA also uses analog displays rather than the digital type used by the EGA.
As with the EGA, the VGA continues to support the original monochrome and
CGA modes. Furthermore, all modes are supported by both the color and
monochrome monitors.

The extent of EGA/CGA compatibility can be seen in the EGA's handling of
the video BIOS routines located at INT lOh. The original BIOS routines are
relocated to INT 42h and the EGA places its own BIOS code at INT lOh. The
EGA BIOS calls the old routines for some functions, so the EGA is truly a
BIOS extension rather than a replacement of the original BIOS functions. TTie
original BIOS calls are fully supported, and the operation of the new calls re
mains consistent with the old.

Although BIOS calls remain compatible among the various IBM (and com
patible) adapters, there are a few differences among the common hardware in
terface ports. The monochrome/CGA and EG A/VGA architectures are quite
different. The original adapters are based on the Motorola 6485 graphics con
troller, while the EGA and VGA use proprietary IBM chips (of course, a num
ber of manufacturers have developed chip sets which are nearly identical). Sev
eral of the EGA and VGA registers mimic the behavior of the 6485; those that
are different are noted in the chapters on register programming.

Despite some of the differences among the various adapters (which deal pri
marily with the type of display used), IBM includes a great deal of support for
CGA and MDA emulation which is buried amongst the many features and
functions. For example, the EGA monochrome alphanumeric mode modifies

The Question of Compatibility 3

the character set very slightly to exactly match the MDA. And, while the VGA
usually double scans CGA graphics modes (to generate 400 lines, addressable
as 200 lines), it is possible to switch to a true 200-line display.

Flexibility (Pages of Memory, Alternate Character Sets, Monitors)

The EGA works with the original color and monochrome displays. It also
provides support for the ECD (Enhanced Color Display), which has nearly the
same resolution as the monochrome monitor (640 X 350 for the ECD versus

720 X 350 for the monochrome adapter), and 16 colors out of a possible 64.
The adapter can change any one of the 16 colors to any of the other 63. The
VGA does not support any of the original displays (although some multisynch
displays can be adapted). Instead, the VGA requires an analog display. The
VGA's highest resolution mode is 640 X 480 and may use 16 colors (or shades
of gray) out of a possible 262,144 (64 shades of gray). As with the EGA, the
VGA colors are fully selectable.
IBM also provides for memory expansion on the EGA so that two separate

pages of high-resolution color graphics are possible. EGA compatibles come
with a full complement of memory, as does the VGA. With lower-resolution
(or monochrome graphics), up to eight pages of text or graphics can be stored
on the adapter. It is possible to display one page while another is being modi
fied and alternately display several pages. The extra memory can also be used
for storing font tables (although this is not possible in graphics mode), and have
up to 1024 different characters (2048 on the VGA), 512 of which can be dis
played at any one time.
The ability to modify fonts, work with additional characters, and select col

ors individually only hints at the power and flexibility provided on the EGA
and VGA. Almost any display attribute can be modified. Characters can be
made larger or smaller than the standard sizes, and the number of lines dis
played on the screen can be changed. Changes may be made on a temporary
basis (only within a particular application) or on a more permanent basis (af
fecting all programs until the system is rebooted or reprogrammed). Program
ming advanced graphics applications in this type of environment requires a
much more relativistic approach than the CGA.

Perhaps the most noticeable architectural change is the organization of
EGA/VGA memory. The CGA uses sequential data bits to describe each color
pixel. While this method is fairly easy to program, it wastes processor address
space (doubling the number of colors doubles the size of the memory map) and
significantly slows graphics applications that use many colors (doubling the
number of colors tends to double the time it takes to write memory). The EGA
and VGA use a bit plane technique, which "stacks" the color bits at the same
address. Bit planes allow more color combinations to be. added without increas
ing processor address space. In some cases, bit plane architecture can speed

4 EGA/VGA: A Programmer's Reference Guide

writing memory, since one write can modify eight bits in each plane. The de
tails of these various modes are discussed in the following chapters.
At the hardware level, the VGA standard allows for natural extensions in

both resolution and available colors. The highest resolution VGA mode uses
only about 38K of address space. Because the 8088 family of processors use
64K segments, there is room for additional resolution. Several manufacturers
added 800 X 600 modes — this keeps the pixels square (the same ratio as 640 X
480) while using nearly 60K. And the bit-plane architecture lends itself to sim
ple extensions from 4 bits (16 colors) to a more natural 8-bit (256 colors).
However, at the software level, the details of programming these new modes

varied from manufacturer to manufacturer. For example, the mode numbers
were not consistent. And, even at the hardware level, there were differences in

some parameters such as timing. VESA (Video Electronics Standards Associa
tion) was formed to set standards extended VGA. The first standard (April
1989) defined the BIOS call and data areas for the 800 X 600 16-color mode. A

later standard (October 1989) added several new 16 and 256-color modes up to
resolutions of 1280 X 1024. It also allows for vendor-specific extensions and
methods to query the adapter for the details of those extensions.
So, we have traced the development of graphics adapter standards and hinted

at the new features and flexibility available, but what does the future hold? The
VGA is beginning to push the current processors to their limits. The maximum
memory segment size of 64K is nearly filled by the 256-color mode, and han
dling the high-resolution modes slows even the fastest processors. The next step
will be to more sophisticated graphics coprocessors which allow simultaneous
access, and built-in graphics primitives such as line and circle drawing.
One of the more promising coprocessor standards is the IBM 8514/A. The

8514/A increases resolution to 1024 X 768 and 256 colors. IBM does not pub
lish the hardware specifications for the 8514/A, asking that programmers use
the software hooks called the AI (Application Interface). VESA has set stan
dards for 8514/A hardware compatibility and extensions. Programming the
8514/A is beyond the scope of this book, but if you are interested, you should
get a copy of Graphics Programming for the 8514/A (M&T Books, 1990) by
Jake Richter and Bud Smith.

Texas Instruments is also a contender in the graphics coprocessor market
with its 34010 and 34020 chip sets and a software interface called TIGA.
Most of these coprocessors do not emulate the VGA, although many allow

VGA pass-through. Thus, for a computer which has a VGA installed, VGA
images can be passed on to the display without intervention by the coprocessor.
When you run a program written for the coprocessor, it takes control of the
display. For systems with two monitors, this allows a computer to use both
VGA and the coprocessor simultaneously — a very useful tool for debugging
or keeping menus off the main display.

It is difficult to predict whether these new adapters will become as popular
as VGA. The coprocessor-based adapters, which were once quite expensive, are

The Question of Compatibility 5

approaching the price of the VGA when it became so popular. The biggest
expense remains with the display — video display technology is more mature
than computer electronics. While mass production will bring display prices
down, there is not as much room for dramatic price reductions. And, for most
people, the VGA is sufficient for most any application. However, as graphical
interfaces such as Windows and Presentation Manager become more popular,
the additional speed of a coprocessor will become more attractive.
Games are very impressive on the VGA with its enhanced resolution and 16

colors. Even the low-resolution 256-color mode can create wonderful visual

effects (increasing the number of colors improves the apparent resolution). Just
as the simple 8086/8088 has dominated the home market for years, you can
expect the same for the VGA. Business graphics and presentations look brilliant
and sharp in ir colors at enhanced resolutions. By convention, standard busi
ness graphs have no more than four colors (plus black and white) and the
EGA's selection of 64 is adequate. The business market, which is the driving
force behind IBM's marketing, does not need significant improvements in
graphics technology.
No matter what turn the market takes, whether toward new hardware or soft

ware standards which make VGA obsolete or direct hardware access impossi
ble, you can help ease the adaptation of your code by using modular program
ming techniques.

Chapter

2
Introduction to BIOS

When writing complicated applications, you should consider future upgrades to
your program, including new features and support for new hardware or operat
ing systems. IBM has often suggested programming with BIOS routines as the
easiest way to provide for such modifications, although this is becoming less
useful with each new generation of hardware and software.
For example, BIOS calls written for the CGA will work on the EGA and

VGA, but not all register functions will. Similarly, plotting a pixel through
BIOS uses the same method no matter which adapter/resolution combination is
being used, but writing memory varies drastically among the CGA, EGA, and
VGA. But, BIOS programming relies on variables passed through registers and
most programming languages pass parameters on the stack — an important
consideration as programming evolves to mixed language and operating system
environments.

BIOS programming also gives greater compatibility between machines and
adapters of various manufacturers. Some EGA and VGA registers should be
modified only during specific time intervals or must allow recovery time be
tween writes, and BIOS will always take care of these tasks. However, even
BIOS programming does not guarantee total compatibility between machines or
even easy modification of code for other operating systems.
OS/2 does not use software interrupts (outside the compatibility window) for

controlling hardware, and severely restricts direct control of the hardware (un
less you want to get into the complex world of writing device drivers). Rather,
OS/2 relies on calls to the operating system, which resemble calls to external
routines in DOS programs: parameters are PUSH'ed onto the stack and then the
appropriate routine is CALL'ed. Note that Microsoft Windows also uses this

8 EGA/VGA: A Programmer's Reference Guide

technique. If you are writing a program for DOS and are considering adapting
it to OS/2, you may want to write procedures for each of the operations.

Thus, you could write a procedure to set the color and a procedure to set a
pixel. In early development stages, the procedure could call the BIOS interrupt
(the set color procedure might only put the color number in a variable, and the
BIOS routine would do everything else). The next stage might support direct
register and memory manipulation, using the color routine to set the appropriate
adapter registers, and the plot routine would set registers and write memory.
Finally, the OS/2 version might change the parameter order. The line and el
lipse programs in the algorithms chapter use procedures in this manner.

Note, however, that true OS/2 programs follow a very different philosophy.
Multiple threads and event scheduling are difficult to emulate in a DOS-based
system. If you keep your procedures separated by task (calculations, output,
input, etc.) you will find the transition easier.
You should also consider macros for some tasks. Unlike procedures which

are areas of shared code, macros are short program segments which are copied
to multiple locations at your direction.
By using macros, you avoid searching through the code for each occurrence

of a register or memory access, or INT call. And, in graphics programming you
will often use the same instruction sequence several times throughout a pro
gram. For example, some operations must take place during a vertical retrace
and you must write a small polling loop which waits for the retrace to begin.
Instead of typing the sequence each time, you call might call it WAIT_R and
simply type WAIT_R when it's needed.

These methods work quite well if you are using a fairly simple, standard set
of functions. You can design the macros and procedures to work together effi
ciently and even develop a library of efficient routines for use in other pro
grams. However, if you are pushing the hardware to its limits, the routines may
become awkward and slow performance. At this point, you will need to decide
whether your application should be adaptable. After all, if you are relying on
very specific hardware features, such as vertical retrace detection, it may not be
supported on other hardware or operating systems.

BIOS Calls

The EGA BIOS provides 20 basic routines for working with the display.
These functions are numbered 0-13h. The VGA adds three more interrupts,
numbered lah-lch, and the VESA BIOS extension (for Super VGA adapters
which extend the IBM VGA definition) is numbered 4fh. To access a function,

the function number is placed in register AH, and then INT lOh is issued. Most
routines require additional values in registers AL, BX, CX, and/or DX. Chap
ters 2, 3, and 4 give detailed descriptions of each function. You will find notes
about each function's operation, along with a table of register contents and

Introduction to BIOS 9

programming examples in assembly language. Differences between the old
(CGA) and new calls are noted. As mentioned earlier, implementing BIOS calls
in procedures and macros may help with the transition to register programming
or other operating systems.
Each assembly language program is executable so that you will not need to

convert the EXE file to a COM file. Note the simplicity of using BIOS calls —
the appropriate values are placed in each of the required registers, and an INT
lOh is issued. Remember to load each register listed in the description with a
value; if you have written CGA programs using the BIOS, it is sometimes easy
to miss a register, especially the page number on graphics modes since the
CGA did not support graphics pages.

Text and Graphics Modes

Modes are usually changed through BIOS calls, since it is not usually a time-
critical operation and is very difficult to program. Two types of modes are
available on the IBM graphics cards. The first is an alphanumeric mode (often
called "alpha" or "text" mode), which can display only 256 different characters
(the EGA and VGA can actually display 512 characters with some special pro
gramming). The second is graphics mode, which can individually address any
picture element ("pel" or "pixel") on the screen, as well as producing 256 pre
defined characters. Graphics mode is sometimes referred to as APA graphics
for "All Points Addressable," because all points (pixels) can be individually
addressed (controlled).
The EGA has five text modes and seven graphics modes. The text modes are

numbered 0-3, and 7. Modes 0-3 are identical to modes 0-3 on the CGA, and
mode 7 is nearly identical to mode 7 on the monochrome adapter. Likewise,
graphics modes 4-6 are identical on the EGA and CGA. The new graphics
modes (which provide higher resolution and/or more colors) are numtered
Odh-lOh. Once a mode has been selected, information can be written to (or
read from) the display through BIOS function calls or direct memory access.

Mode

0 text CGA compatible
1 text CGA compatible
2 text CGA compatible
3 text CGA compatible
4 graphics CGA compatible
5 graphics CGA compatible
6 graphics CGA compatible
7 graphics monochrome adapter compatible
Odh graphics new mode

10 EGA/VGA: A Programmer's Reference Guide

Oeh graphics new mode
Ofh graphics new mode
lOh graphics new mode

The VGA adds three additional modes — higher resolution monochrome and
color graphics modes, as well as a low-resolution, 256-color mode. Even
though the 256-color mode is low-resolution, some pictures will seem more
realistic because of the subtle shading that is possible; effective use of shading
can increase the apparent resolution of a picture.
IBM will maintain compatibility between BIOS calls and memory addresses

for like numbered modes, and you should use these methods whenever practi
cal. By using modes 0-7, and using only the parameters given in the tables
throughout this book, your programs will be compatible with existing adapters
and should remain compatible with future products.

This chapter covers function calls 0-7, which set the screen environment
(mode, cursor location, etc.). These functions are common to all the IBM video

adapters, although the VGA and EGA add a few extensions, such as additional
display pages.

Function Call 0: Set Mode

Remarks: This function is used to select the operating mode of the card.
The basic formats are alphanumeric (no graphics), 320 X 200
graphics, 640 X 200 graphics, and 640 X 350 graphics. The VGA
adds 640 X 480 graphics. Characters can be written with func
tions 9, Oah, Oeh, and 13h. Points are plotted with function Och.

A mode reset programs the registers according to values in the
Parameter Table (see Chapter 13, The BIOS Save Area). This
function also clears video memory unless the high bit of the
mode number is set.

Input: Registers (set before function call):

AH: set to 0

AL: set to the mode number

0 and 1 — 40-column alphanumeric
(CGA compatible)

2 and 3 — 80-column alphanumeric
(CGA compatible)

4 and 5 — 320 X 200 4-color graphics
limited to 2 palettes
(CGA compatible)

Introduction to BIOS 11

6 — 640 X 200 2-color graphics:
one must be black

(CGA compatible)
7 — monochrome alphanumeric

(monochrome adapter
compatible)

8-Och — reserved

Odh — 320 X 200 16-color

Oeh — 640 X 200 16-color

Ofh — 640 X 350 monochrome graphics
lOh — 640 X 350 color graphics,

4 colors for

EGA's with 64K graphics
memory, 16 colors if more
than 64K is installed.

1 Ih — 640 X 480 monochrome graphics
(VGA only)

12h — 640 X 480 16-color (VGA only)
13h — 320 X 200 256-color (VGA only)

VESA Mode (also see Chapter 5)
6ah — 800 X 600 16-color

Note that only modes 7 and Ofh may be used on an
EGA/monochrome monitor combination (and may
not be used on an EGA/color monitor combination).

You may set the high bit of AL to 1 if you want to
preserve the screen memory (display) while resetting
the mode. This is done by adding 80h to the mode
number.

The following routines set the mode to 640 X 350 color graphics and draw a
line of alternating colors from left to right across row 10 of the screen (using
BIOS function call ch). The display will remain in mode lOh when the pro
grams finish. You may return to text mode by using MODE CO80.

Assembly Language Example:

data segment public

clr db 16 /color initially set to 16

data ends

12 EGA/VGA: A Programmer's Reference Guide

code segment public

main

start:

Ip:

skip:

ret

main

code

end

assume CS:code

proc far

push DS

sub AX,AX

push AX

mov AX,data

mov DS,AX

assume DS:data

mov AH,0 ;select fimction 0 — set mode

mov AL,10h /select mode lOh

int lOh /BIOS video call

mov CX,639 /this will be the column

mov AH,Och /function call ch — write dot

mov AL,clr /set color

dec AX /subtract one from the color

mov clr,AL /store the new color

jnz skip /if the color is not 0

/ then continue to skip
mov clr,16 /set the color back to 16

mov BH,0 /select page 0

mov DX,10 /set the row to 10

int lOh /BIOS video call

loop IP /decrement CX (next column)

endp

ends

start

Function Call 1: Set Cursor Type

Remarks: This function sets the size of the cursor. You may specify a
starting line and an ending line, which fills a rectangular area of
the character box (note that the cursor need not start at the top or
end at bottom — it is possible for the cursor to be in the middle
of the box). Note that there is no cursor in graphics modes.

Introduction to BIOS 13

The starting and ending lines require only the low four bits. Bits
5 and 6 should always be set to 0. Line 0 is the top line of the
box. The cursor can be turned off by setting both the beginning
and ending lines below the character box. On the EGA, setting
the starting line to a higher value than the ending line will cause
the cursor to wrap from the bottom of the box to the top, giving
a double line (you could also think of it as a reverse video cursor
with the black starting at the ending line and ending at the start
ing line). The VGA does not support a double cursor; it will
disappear if the starting line is larger than the ending line.

The cursor may exhibit unusual behavior on high-resolution dis
plays. Because compatibility with the old color text modes re
quires an eight-line cursor, only eight lines are available for set
ting. On the ECD and VGA monitors, text modes use a 14-line
character box — lines 0-4 reference the top five lines and lines
5-7 reference the bottom three lines. Any range which contains
both lines 4 and 5 will also fill the six lines between them (try
setting the cursor to lines 4 and 5, and observe the large cursor
block this creates).

Input: Registers (set before function call):

AH

CH

CL

set to 1

starting line number
ending line number

The following routines create a cursor consisting of the top two lines of the
character box:

Assembly Language Example:

code segment public

assiune CS:code

main proc far

start: push DS

sub AX/AX

push AX

mov AH,1 ; function 1 — set cursor mode

mov CX,1 /start line 0, stop line 1 (CL'=1)
int lOh /BIOS video call

ret

14 EGA/VGA: A Programmer's Reference Guide

main endp

code ends

end start

Function Call 2:

Remarks: Set th

Set Cursor Position

Input:

e coordinates for the cursor's position on the screen. Row
0 is the top of the screen, and colunm 0 is the left side of the
screen.

Registers (set before function call):

AH

DH

DL

BH

set to 2

row number

column number

page number (see function 5 for a description of
pages)

The following routines set the cursor to row 5, column 10 of page 0:

Assembly Language Example:

code segment public

assume OS:code

main proc far

start: push DS

sub AX,AX

push AX

mov AH,2 /function 2

mov DH,05 /row 5

mov DL,Oah /column 10

mov BH,0 /page 0

int lOh /BIOS video

ret

main endp

code ends

end start

Introduction to BIOS 15

Function Call 3: Read Cursor Position

Remarks: This function reports the current location of the cursor on the
screen. It also reports the current cursor type (see function 1
above).

Input: Registers (set before function call):

Output:

AH: set to 3

BH: page number (see function 5 for a description of
pages)

Registers (read after function call):

DH

DL

CH

CL

Current row

Current column

Starting line
Ending line

The following routines set the cursor to row 5, column 10, get the cursor
location on page 0, and then print a message (giving the new coordinates) at
the current position:

data segment public

msg db

db

'The cursor is at row

' and column '

data ends

code segment public

assume CS:code

main

start:

proc

push

sub

push

far

DS

AX,AX

AX

mov AX,data

mov DS, AX

as sume DS:data

mov AH,2 /function 2 — set cursor

mov DH,05 /row 5

mov DL,Oah /column 10

16 EGA/VGA: A Programmer's Reference Guide

mov BH,0 ;page 0

int lOh ;BIOS video call

mov AH,3 /function 3 - read cursor

position

mov BH,0 /page 0

int lOh /BIOS video call

/DH now contains the row

/DL now contains the coliimn

mov

mov

call

mov

sub

call

mov

mov

assume

mov

mov

mov

mov

mov

mov

int

ret

AL,DL /mov column to AL

BX,offset msg[35] /offset of ASCII #

bin2asc /conv bin to ASCII

AL,DH /move row into AL

BX,14 /offset of ASCII #

bin2asc /convert again

AX,data /get data seg location

ES,AX

ES:data

AH,13h

AL,0

BH,0

BL,Ofh

BP,offset msg

CX,37

lOh

/set ES for next call

/func 13h—write string
/cursor does not move

/string of characters

/only attribute in BL

/page 0

/high intensity white

/ES:BP points to string
/length of string

/BIOS video call

main endp

bin2asc proc near

COMMENT* This binary to ASCII conversion routine is

written for this program and is limited to
numbers less than 100.

AL: 8 bit value to convert

BX: offset in DS which receives a 2 byte ASCII

value

mov AH, 0

mov DL,10

div DL /convert to decimal digits

add AX,3030h /add 30h to get

/ASCII codes

mov [BX] ,AL /write 10's place

mov

ret

bin2asc endp

code ends

end start

[BX+1],AH

Introduction to BIOS 17

;write I's place

Function Call 4: Read Light Pen Position

Remarks:

Note:

Input:

Output:

This function reports whether the light pen has been triggered
(the pen's switch has been pushed) and the row and column
where the triggering occurred. Note that in the registers, CH is
used for reporting the row of the compatibility modes (4-6) and
CX is used for the new modes.

The VGA does not support a light pen.

Registers (set before function call):

AH: set to 4

Registers (read after function call):

AH:

DH

DL

CH

CX

BX

0 means the light pen has not been triggered (invalid
values in registers), and 1 means the pen has been
triggered (the following registers contain valid data).
character row

character column

pixel row (compatibility modes)
pixel row (new graphics modes)
pixel column

Function Call 5: Select Active Display Page

Remarks: The adapter may have several pages (or screens) of information
in memory. Only one page is visible at any one time — this is
called the active display. Most of the functions which allow you
to modify the screen (write characters, plot points, move the cur
sor, etc.) also let you choose which page to modify and thus an
invisible screen may be changed. Through this feature, you may
display one page while another is being created, and then imme-

18 EGA/VGA: A Programmer's Reference Guide

diately switch to the new screen (a technique useful for anima
tion or ''slide shows"). This function lets you choose which
screen is displayed. Usually, screen 0 is the only screen dis
played and modified.

The CGA is limited to four pages in modes 2 and 3, and the
monochrome adapter supports only one page.

Note that in the table below, the range of page numbers which
can be used in AL is shown. A "0" means one page (number 0)
is available.

Input: Registers (set before function call):

AH: set to 5

AL: page number to display

modes page numbers available

64K 128K 256K

0-1 0-7 0-7 0-7

2-3 0-3 0-7 0-7

4-6 0 0 0

7 0-3 0-7 0-7

Odh 0-1 0-3 0-7

Geh 0 0-1 0-3

Ofh 0 0-1 0-1

lOh 0 0 0-1

llh - - 0

12h - - 0

13h - - 0

(VGA only)
(VGA only)
(VGA only)

Assembly Language Example:

This program flips through four video pages, pausing on each page. The
pause becomes shorter with each successive loop. One word appears on each
page, forming the message "This shows four pages."

data segment public

msgl

msg2

msg3

msg4

pse

db

db

db

db

dw

' This'

' shows'

' four '

'pages.'

OFOOOh /length of display pause

Introduction to BIOS 19

data ends

code segment public

assume CSicode

main proc far

start: push DS

sub AX,AX

push AX

mov AX, data ;get data seg location

mov ES,AX ;set ES for next fimction call

assume ES:data

mov AX,data

mov DS, AX

assume DS:data

mov AX, 3 /mode 3 (alphanumeric)

int lOh

mov DH,08 /row 8

mov DL,Oah /column 10

mov BH,3 /page 3

mov BP,offset msgl /ESrBP points to string
mov BL,Ofh /high intensity white

mov CX,6 /length of string

/load the four pages with the message

loop: mov AL,1 /cursor moves

/string of characters only
/attribute in BL

mov AH,13h /function 13h — write string
int lOh /BIOS video call

add BP, 6 /point to next message
add DL,6 /move the cursor for next page
dec BH /point to the next page
cmp BP,offset msg4

jbe loop

/display the four pages

dsp: mov CX,4

lp2: mov AL,CL

dec AX

mov AH, 5

20 EGA/VGA: A Programmer's Reference Guide

Int lOh

push CX

mov CX,2 ;pause multiplier

; (for longer time)

psl: push CX

mov CX,pse ;pause length

ps2: loop ps2 /empty loop for pause

pop CX

loop psl /loop through the multiplier

pop CX

loop lp2

mov AX,pse

sub AX,1000h

mov pse,AX

cmp AX,0

ja dsp

;reset to page 0 before returning to DOS

mov AL,0

mov AH,5

int lOh

ret

main endp

code ends

end start

Function Call 6: Scroll Active Page Up

Remarks: This function scrolls the text on the screen - lines move from

the bottom of the screen toward the top, and blank lines are in
serted at the bottom. Note that comers of a window can be spec
ified, so that only a portion of the screen scrolls. Register AL is
set to the number of lines to scroll; using 0 will clear the entire
window.

Input: Registers (set before function call):

AH

AL

BH

set to 6

number of lines to scroll (0 clears the window)
character attribute for new lines (see function 8 below)

Introduction to BIOS 21

CH: top row of the window
CL: left column of the window

DH: bottom row of the window

DL: right colunm of the window

Assembly Language Example:

This program prints the message "This line will scroll (except for this part)"
and scrolls the first part up one line. A second line is printed which does not
scroll, and you can see the effect of a scroll window.

data segment public

data

msgl

msg2

ends

db

db

db

'This line will scroll (except'
' for this part)'
'This line will not scroll'

code segment public

assume CS:code

main proc

start: push

sub

push

mov

mov

assume ES:data

far

DS

AX,AX

AX

AX, data ;get data seg location
ES,AX ;set ES for next fimction call

mov AX,data

mov DS, AX

assume DS:data

mov

int

AX, 3

lOh

;mode 3 (alphanumeric)

mov

mov

mov

mov

mov

mov

mov

;row 12

/column 10

DH,12

DL,10

BH,0

BP,offset msgl

BL,Ofh

/page 0

/ES:BP points to string
/high intensity white

CX,44 /length of string
AL,1 /cursor moves

/string of characters only
/attribute in BL

22 EGA/VGA: A Programmer's Reference Guide

psl:

ps2:

mov

int

mov

mov

mov

mov

mov

mov

mov

AH,13h ;f\mction 13h - write string

lOh ;BIOS video call

DH,13

DL,10

BH,0

BP,offset msg2

BL,Ofh

CX,25

AL,1

;row 1

AH,13h

3

;col\imn 10

/page 0

;ES:BP points to string
/high intensity white

/length of string

/cursor moves

/string of characters only

/attribute in BL

/function 13h - write string

int lOh /BIOS video call

mov CX,2 /pause multiplier

/ (for longer time)

push ex

mov CX,Offffh /pause length

loop ps2 /empty loop for pause

pop CX

loop psl /loop through the multiplier

mov CX,0 /upper left corner at 0,0

mov DH,12 /right corner at row 12

mov DL,31 /column 31

mov AL,1 /move 1 line

mov BH,Ofh /attribute for new line

mov AH,6 /scroll up

int lOh

main

code

end

ret

endp

ends

start

Function Call 7:

Remarks: This f

Scroll Active Page Down

unction scrolls the text on the screen — lines move from

the top of the screen toward the bottom, and blank lines are in
serted at the top. It works in the same manner as function 6.

Introduction to BIOS 23

Input: Registers (set before function call):

AH

AL

BH

CH:

CL:

DH:

DL:

set to 7

number of lines to scroll (0 clears the window)
character attribute for new lines (see function 8
below)
top row of the window
left colunm of the window

bottom row of the window

right column of the window

Assembly Language Example:

This program prints the message "This line will scroll (except for this part)"
and scrolls the first part down one line. A second line is printed which does not
scroll, and you can see the effect of a scroll window.

data segment public

msgl db 'This line will not scroll '

msg2 db

db

'This line will scroll (except'
' for this part)'

data ends

code segment

assume

public

OS:code

main proc far

start: push

sub

push

DS

AX,AX

AX

mov

mov

assume

AX,data

ES,AX

ES:data

;get data seg location

;set ES for next call

mov

mov

assume

AX,data

DS,AX

DS:data

mov

int

AX, 3

lOh

;mode 3 (alphanumeric)

mov

mov

DH,12

DL,10

;row 12

;coliunn 10

psl:

ps2:

GA: A Programmer's Reference Guide

mov BH,0 /page 0

mov BP,offset msgl ;ES:BP points to string

mov BL,Ofh /high intensity white

mov CX,25 /length of string

mov AL,1 /cursor moves

/string of characters only
/attribute in BL

mov AH,13h /function 13h — write string

int lOh /BIOS video call

mov DH,13 /row 13

mov

o
H

Q

/column 10

mov BH,0 /page 0

mov BP,offset msg2 ;ES:BP points to string

mov BL,Ofh /high intensity white

mov CX,44 /length of string

mov AL,1 /cursor moves

/string of characters only

/attribute in BL

mov AH,13h /function 13h — write string

int lOh /BIOS video call

mov CX,2 /pause multiplier

/ (for longer time)

push CX

mov CX,Offffh /pause length

loop ps2 /empty loop for pause

pop CX

loop psl /loop through the multiplier

mov CH,13 /upper left corner row 13

mov CL,0 /column 0

mov DH,24 /lower right corner at row 24

mov DL,31 /column 31

mov AL,1 /move 1 line

mov BH,Ofh /attribute for new line

mov AH,7 /scroll down

int lOh

;move cursor so DOS doesn't overwrite last line

mov AH,2 /fxmction 2 — set cursor

mov DH,15 /row 15

mov DL,1 /column 1

mov BH,0 /page 0

int lOh /BIOS video call

Introduction to BIOS 25

ret

main endp

code ends

end start

Of the display management functions (0-7), the most important is the Set
Mode function. Programs usually do not require a particularly fast reset, and
using the BIOS call guarantees the mode will be properly set on all adapters
that support the requested mode. Functions 1-7 are more useful in prototyping
— if you write programs that directly manipulate display memory, they are of
little use.

Chapter

3
BIOS Screen I/O

The next set of BIOS function calls (numbers 8-fh) works directly with the
display image, either by writing or reading screen contents or color scheme.
The exception is function call fh, which returns the current video mode. As
with function calls 0-7, the video I/O functions are supported by all of the IBM
adapters. The video I/O routines are notoriously slow, and most programmers
bypass these routines once the general prototyping is finished. However, some
of the routines can be very useful even in finished applications.

For example, the character writing routines work in all modes. This can be
especially helpful if you need to display text in graphics modes, and you do not
require a great deal of sophistication (such as different sizes or pixel align
ment). Graphics mode character I/O routines are not easy to write, and may not
be worth the effort required.
Some Super VGA adapters (which provide higher resolution modes than the

standard VGA) do not support BIOS I/O in the non-standard modes. If the
Super VGA supports the VESA BIOS extensions described in Chapter 6, you
can use the VESA calls to check for BIOS I/O support. Otherwise, you must
check with the manufacturer of each adapter you intend to support.

Function Call 8: Read Attribute/Character at Current
Cursor Position

Remarks: You can use this function to read a character on any of the
pages. The information returned applies to the character at the

28 EGA/VGA: A Programmer's Reference Guide

cursor position of the page selected (see function 2 for setting
the cursor position).

The attribute is a one-byte value which describes the character
and background according to the following diagram:

blink
background

color
intense

foreground
color

7 6 5 4 3 2 1 0

For color monitors, the three color bits for background and fore
ground give eight colors. For monochrome monitors, the three
background bits should be either all 0 (black) or all 1 (colored),
and the three foreground bits should be either 000 for black fore
ground, 001 for underline, or 111 for a normal (colored) fore
ground. The attribute byte is meaningful only in text modes. See
function calls lOh and llh for additional notes about attributes

and character codes.

Input: Registers (set before function call):

Output:

AH: set to 8

BH: page number (see function 5 for a description of
pages)

Registers (read after function call):

AL: ASCII code of the character

AH: In text mode, this will contain the attribute of the

character.

Assembly Language Example:

This program reports the ASCII character and attribute byte value at Row 5
and Column 15. You might want to try this program after running one of the
following two examples (function call 9 or Oah). If you try both examples

BIOS Screen I/O 29

(functions 9 and Oah) use this order: functions Oah, 8, 9, and 8. This will dem
onstrate the changing attribute byte.

data segment public

msg db 'Row 5, Column 15 contains ASCII '

db 'character '

char db 3 dup (?)

db ' / and attribute value '

attr db 3 dup (?)

data

code

assume CS:code

main proc

start: push

sub

push

segme

m_len equ
$-msg /creates a constant from

/here to message start

/(message length)

ends

nt public

far

DS

AX,AX

AX

mov AX,data

mov DS, AX

assume DS:data

mov AX,data

mov ES,AX

assume ES:data

mov BH,0 /page 0

mov DH,5 /row 5

mov DL,15 /column 15

mov AH,2 /set cursor position
int lOh /BIOS video call

mov BH,0 /page 0

mov AH, 8 /fvuiction call 8 — read
/character and attribute

int lOh /BIOS video call

mov BL,AH /save attr in BL, temporarily

mov DI,offset char

call bin2asc

30 EGA/VGA: A Programmer's Reference Guide

xnov AL,BL

mov DI^offset attr

call bin2asc

;get attribute

mov

mov

mov

mov

mov

mov

mov

mov

int

DH,20

DL,0

BH,0

BP,offset msg

BL,Ofh

CX,m_len
AL,1

AH,13h

lOh

;row 20

;col\imn 0

;page 0

;ES:BP points to string
;high intensity white

/length of string

/cursor moves

/string of characters

/only attribute in BL

/func 13h-write string
/BIOS video call

ret

main endp

bin2asc proc near

COMMENT* This binary to ASCII conversion routine is

written for this program and is limited to
numbers less than 256.

AL: 8-bit value to convert

DI: offset in DS which receives a 2-byte
ASCII value

xor AH,AH /O in AH

mov DL,100

div DL /convert to lOO's

add AL,30h /convert 100's place

/to ASCII

mov [DI],AL /write 100's place
mov AL,AH

xor AH,AH /O in AH

mov DL,10

div DL /convert to decimal

/digits
add AX,3030h /add 3Oh to get ASCII

/codes

mov [DI+1],AL /write 10's place
mov [DI+2],AH /write I's place
ret

mov DH,21 /row 21

mov DL,0 /column 0

mov

int

bin2asc endp

code ends

end start

AH,2

lOh

BIOS Screen I/O 31

;f\inction call 2 - set cursor

/BIOS video call

Function Call 9: Write Attribute/Character at Current
Cursor Position

Remarks: You can use this function to write a character (or several copies
of a character) to any of the pages. The character(s) will appear
at the current cursor position, which can be set through function
call 2.

The attribute is a one-byte value which describes the character
and background according to the following diagram for the text
modes:

blink
background

color
intense

foreground
color

7 6 5 4 3 2 1 0

For color monitors, the three color bits for background and fore
ground give eight colors. For monochrome monitors, the three
background bits should be either all 0 (black) or all 1 (colored),
and the three foreground bits should be either 000 for black fore
ground, 001 for underline, or 111 for a normal (colored) fore
ground.

In graphics modes, the attribute byte is used to set the color of
the character. Setting bit 7 of the attribute byte will cause an
exclusive or at the cursor location, thus preventing lines within

32 EGA/VGA: A Programmer's Reference Guide

the character box from being erased. See function calls lOh and
11 h for additional notes about attributes and character codes.

In text modes, writing more copies of a character than will fit on
the current line will cause a wraparound to the next line. In
graphics modes, all of the copies must fit on the current line.

Notes: The cursor position remains unchanged after the call is com
pleted (even when multiple copies of a character are made).
Character positioning must be done by the program.

Control codes are printed as display characters, so backspaces,
carriage returns, linefeeds, etc., must be done through cursor po
sitioning.

Input: Registers (set before function call):

AH

AL

BH

set to 9

ASCII code of the character

page number (see function 5 for a description of pages).
Mode 13h uses BH for the background color.

BL: attribute of character

CX: number of characters to write

Assembly Language Example:

This program prints a message, character by character, changing the attribute
(color) on each character. Note the effect of the control codes 7, 10, and 13.
Compare the results to functions ah, eh, and 13h.

data segment public

msg db 'This line demonstrates printing '
db 'ASCII 7 {',7,'), 10 (',10,'), '
db 'and 13 (',13,').'

equ $-msg /creates a constant from

/here to message start
/(message length)

data ends

code segment pviblic
assume CS:code

main proc far

start: push DS

sub AX,AX

push AX

mov AX,data

mov DS,AX

assume DS:data

BIOS Screen I/O 33

mov DH,05

mov DL,0

mov CX, m__len
mov BP,offset msg

mov BL,1

;row 5 (for call 2)

/column 0 (for call 2)

/number of iterations

/pointer to message
/initialize BL to 1

/ start with color 1

Ipl;

skp:

inc DX /next colximn

mov AH, 2 /fxinction 2 - set cursor
int lOh /BIOS video call

push CX /save iteration count
mov CX,1 /write one character

mov BH,0 /page 0

mov AL,msg[BPl /get ASCII code
mov AH,9 /function call 9
int lOh /BIOS video call

inc BP /point to next character
inc BX /next color (add 1 to #)

cmp BL,15 /if <= 15
jbe skp / skip next section
mov BL,1 /if > 15, color set to 1

pop CX /restore iteration count
loop Ipl

mov DH,21 /row 21

mov DL,0 /coliimn 0

mov AH,2 /function call 2 - set cursor

int lOh /BIOS video call

main

code

end

ret

endp

ends

start

34 EGA/VGA: A Programmer's Reference Guide

Function Call ah: Write Character Only at Current
Cursor Position

Remarks: This function call is identical to function call 9 above, except
that the attribute cannot be set (existing attributes remain un
changed).

Input: Registers (set before function call):

AH: set to ah

AL: ASCn code of the character

BH: page number (see function 5 for a description of
pages)

CX: number of characters to write

Assembly Language Example:

Note: This program is the same as the one for function call 9, except that
the function call number has changed. The output picks up the attributes cur
rently in effect. Thus, if you do a CLS command before using this program, the
output will be in the normal white color. If you run the program from the
previous example first, the display will remain unchanged, since the new char
acters will pick up the old (multicolored) attributes.

data segment public

msg db

db

db

m_len equ

data ends

code segment public
assume CS:code

'This line demonstrates printing'
' ASCII 7 10 (',10,'),'
' and 13 (',13,')

$-msg /creates a constant from

/here to message start
/(message length)

main

start:

proc

push

sub

push

far

DS

AX,AX

AX

mov AX,data

mov DS, AX

assiune DS;data

BIOS Screen I/O 35

mov DH,05

mov DL,0

mov CX,m_len
mov BP,offset msg

mov BL,1

;row 5 (for call 2)

;col\imn 0 (for call 2)

;niimber of iterations

/pointer to message
/initialize BL to 1

/ start with color 1

Ipl: inc DX /next coltimn
mov AH,2 /function 2 — set cursor

int lOh /BIOS video call

skp:

push

mov

mov

mov

mov

int

inc

inc

cmp

jbe

mov

pop

loop

cx

CX,1

BH,0

AL,msg

AH,Oah

lOh

BP

BX

BL,15

skp

BL,1

CX

Ipl

/save iteration count

/write one character

/page 0

[BP] /get ASCII code

/function call Oah

/note that the attribute

/byte (BL) has no effect

/BIOS video call

/point to next character
/next color (add 1 to #)

/if <= 15

/ skip next section

/if > 15, color set to 1

/restore iteration count

mov DH,21 /row 21

mov DL,0 /column 0

mov AH,2 /function call 2 — set cursor

int lOh /BIOS video call

ret

main

code

end

endp

ends

start

36 EGA/VGA: A Programmer's Reference Guide

Function Call bh: Set Color Palette

Remarks: This function call applies only to CGA compatibility modes; see
function call lOh to set the palette for the EGA- and VGA-spe
cific modes.

Input:

Register BH is set to access either the background color (0) or
the set of colors to be used for 320 X 200 graphics (1). Any
value from 0 to 127 is legal, although 0 and 1 are sufficient
(even numbers work as 0 and odd numbers work as 1).

Registers (set before function call):

AH: set to bh

BH: palette color ID
BL: for BH = 0, the background color (0-15) in graphics

mode, or the border color (0-31) in text mode. Note
that background color is a character attribute in text
modes (see function call 8).

for BH = 1, 0 selects green, red, and brown; and 1
selects cyan, magenta, and white. These colors are
numbers 1, 2, and 3, respectively — color 0 is the
background color.

Assembly Language Example:

This program prints a line of colored dots across the screen in CGA emula
tion mode, and then changes the palette from the default (cyan, magenta, white)
to green, red, and brown.

data segment public

clr db 3

data ends

/color initially 3

code segment public

assume CS:code

main

start:

proc

push

sub

push

far

DS

AX,AX

AX

BIOS Screen I/O 37

mov AX,data

mov DS,AX

assume DStdata

mov AH,0 /select function 0 — set mode

mov AL,5 /select mode 5

int lOh /BIOS video call

mov BH,1 /select graphics color palette

mov BL,1 /select cyan, magenta, blue

mov AH,Obh /set palette

int lOh /BIOS video call

mov BH,0 /select background color

mov BL,0 /black

mov AH,Obh /set palette

int lOh /BIOS video call

Ip:

mov

mov

mov

dec

mov

jnz

mov

CX,319 /this will be the column

AH,Och /function call ch — write dot

AL,clr /set color

AX /siibtract one from the color

clr,AL /store the new color

skip /if the color is not 0
/ then continue to skip

clr,3 /set the color back to 3

skip: mov BH,0 /select page 0

mov DX,10 /set the row to 10

int lOh /BIOS video call

loop Ip /decrement CX (next column)

mov CX,4 /pause multiplier
/ (for longer time)

psl:

ps2:

push

mov

CX

CX,Offffh /pause length

loop ps2 /empty loop for pause

pop CX

loop psl /loop through the multiplier

mov BH,1 /select^ graphics color palette
mov BL,0 /select green, red, and brown

mov AH,Obh /set palette

int lOh /BIOS video call

38 EGA/VGA: A Programmer's Reference Guide

mov DH,10 ;row 10

mov DL,0 /column 0

mov BH,0 /page 0

mov AH,2 /function call 2

int lOh /BIOS video call

ret

main endp

code ends

end start

set cursor

Function Call eh: Write Dot

Remarks: This function call is used to plot a point to any page in graphics
modes. Column 0 is the left side of the screen and row 0 is the

top of the screen (note that this differs from most coordinate
systems, which use row 0 as the bottom).

Setting bit 7 of the color number (register AL) will cause the dot
to be exclusive OR'ed with the current value.

Note: Register BH (page number) is not supported on the CGA, since
it does not have graphics pages. However, it must be set on the
EGA and VGA.

Input: Registers (set before function call):

AH:

AL:

set to ch

color number

BH: page number (see function 5 for a description of
pages)

CX: pixel column number (0-319 or 0-639)
DX: pixel row number (0-199, 0-349, or 0-479)

The Assembly Language Example for function call 0 (set mode), uses the
write dot call. The Appendix contains a similar program which writes the pixels
directly to memory. The example for function call dh (read dot), also uses the
write dot call. However, you will be executing the read dot program, so you
should first run the set mode program.

BIOS Screen I/O 39

Function Call dh: Read Dot

Remarks: This function call is used to get the color of a point of any page
in graphics modes. Column 0 is the left side of the screen and
row 0 is the top of the screen (note that this differs from most
coordinate systems, which use row 0 as the bottom).

Note: Register BH (page number) is not supported on the CGA, since
it does not have graphics pages. However, it must be set on the
EGA and VGA.

Input: Registers (set before function call):

AH: set to dh

BH: page number (see function 5 for a description of
pages)

CX: pixel column number (0-319 or 0-639)
DX: pixel row number (0-199, 0-349, or 0-479)

Output: Registers (read after function call):

AL: color value of the dot

Assembly Language Example:

This program copies row 10 to row 20. The display must be in high-resolu
tion graphics mode; it is intended for use after running the set mode (function
0) example.

data segment public

clr db 16 /color initially 16

msg db 'The mode must be set to high '
db 'resolution.'

m__end label byte

data ends

code segment public
assume CS:code

main proc far

40 EGA/VGA: A Programmer's Reference Guide

start: push

sub

push

DS

AX,AX

AX

mov AX,data

mov DS,AX

assume DSidata

mov AH,Ofh /function Ofh current mode

int lOh /BIOS video call

cmp AL,Oeh /is the mode less than Geh?

j 1 bad_mode
cmp AL,13h /is the mode low res, 256 color?

j e bad_mode

mov CX,639 /this will be the column

Ip: mov AH,Odh /function call dh read dot

mov BH,0 /select page 0

mov DX,10 /set the row to 10

int lOh /BIOS video call

/color now in AL

mov AH,Och /function call ch — write dot

mov DX,20 /set the row to 20

int lOh /BIOS video call

loop Ip /decrement CX (next column)

ret

bad mode:

mov AX,data

mov ES, AX

assume ES:data

mov AH,3

mov BH,0

int lOh

mov DL,0

mov AX,1300h

mov BH,0

mov BL,3

mov BP,offset msg

mov CX,offset m_end-msg

int lOh

/function 02h — read cursor pos.
/page 0

/BIOS video call

/DX contains cursor position

/set to column 0

/write string (all
/char, data)

/page 0

/color 3

/ES:BP points to

/ text

/length of text

/DX already set

/BIOS video call

ret

BIOS Screen I/O 41

main endp

code ends

end start

Function Call eh: Write Teletype to Active Page

Remarks: This function is used as a Teletype emulation: A character is
written and the cursor is moved to the next position. Unlike the
other write character functions, this function interprets the bell,
carriage return, and linefeed characters as commands rather than
characters from the IBM set.

Note:

Input:

This function will write only to the active display page.

Registers (set before function call):

AH

AL

BL

set to eh

ASCII code of the character

foreground color (works in graphics mode only)

Assembly Language Example:

This program prints a full string (message) at once. Note the effect of the
control codes 7, 10, and 13. Compare the results to functions 9, ah, and 13h.

data segment public

msg db

db

db

'This line demonstrates printing'
' ASCII 7 10 (',10,'),'

' and 13 (',13,').'

data

code

main

start:

m_len equ $-msg

ends

segment pviblic

assume OS:code

/creates a constant

/from to message start

/start (message length)

proc

push

sub

far

DS

AX, AX

42 EGA/VGA: A Programmer's Reference Guide

push AX

mov

mov

assume

AX,data

DS,AX

DS:data

Ipl:

mov

mov

mov

mov

mov

inc

mov

int

DH,05

DL,0

CX,m__leii
BP,offset msg

;row 5 (for call 2)

/column 0 (for call 2)

/number of iterations

/pointer to message

BL,1 /initialize BL to 1

/ start with color 1

DX /next column

AH, 2 /fiinction 2 set cursor

lOh /BIOS video call

/NOTE the cursor is set outside the

/ loop -- compare this to the write

/ character/attribute function 9) program.

mov BH,0 /page 0

mov AL,msg[BP] /get ASCII code
mov AH,Oeh /function call Oeh

int lOh /BIOS video call

inc BP /point to next character

inc BX /next color (add 1 to #)

cmp BL,15 /if 15

jbe skp / skip next section

mov BL,1 /if 15, color set to 1

skp:

main

code

/NOTE the color does not work in text modes.

/ Try it, then use the set mode (function 0)

/ program to set graphics mode and you will
/ see the colors appear.

loop Ipl

mov DH,21 /row 21

mov DL,0 /column 0

mov AH,2 /fiinction call 2

int lOh /BIOS video call

ret

endp

ends

BIOS Screen I/O 43

end start

Punction Call fh: Current Video State

Remarks: This function returns information about the current mode setting.
Note that the mode number will include the clear memory bit
(bit 7), if this was set for function call 0. To get the mode num
ber, use AND AL,7fh.

Input: Registers (set before function call):

AH: set to fh

Output: Registers (read after function call):

AL: current mode number (see function call 0 for a de
scription of modes)

AH: number of character columns displayed
BH: number of the active page (see function call 5 for a

description of pages).

The Assembly Language Example for function call dh (read dot) uses the
current video state function call.

This completes the base set of BIOS function calls. The differences between
the EGA/VGA and monochrome/CGA calls have been minimal, limited to ex
tended ranges, either in the number of pages or pixels available. All of the
remaining functions are unique to the newer adapters (the PC Jr. and Model 30
also support some of the new calls, but we will not be discussing these mod
els).

Chapter

4
BIOS EGA/VGA Extensions

We have now arrived at the new functions supported by the EGA and VGA.
These calls support a very diverse group of operations, from palette and charac
ter modification to returning adapter configuration data. You will probably use
the status routines most frequently — especially if your application will auto
matically configure its display environment.

Additionally, you may make frequent use of the Set Palette function. Chang
ing the palette is not usually a time-sensitive operation, and when execution
time is not critical, it is best to let BIOS perform the task to enhance compati
bility and reduce development time.

Function Call lOh: Set Palette Registers

Remarks: This function call is used to change any one (or all) of the colors
to a different color and to set the border color.

Notes: In 16-color modes, the palette register number is the same as the
color number. In compatibility modes, registers 1-3 form the
colors of palette 1, and colors 4-6 form the colors of palette 0. If
the ECD is used in graphics mode lOh with 64K on the EGA,
the following scheme is used:

Palette register
0

Color numbers:

0,2,8,10

46 EGA/VGA: A Programmer's Reference Guide

1 1,3,9,11
4 4,6,12,14

7 5,7,13,15

The palette registers will return to the default values whenever
the mode is reset. When using this function to change the pal
ette, it should be used after every reset. Alternately, you may
change the defaults by making a new parameter table and chang
ing the BIOS SAVE_PTR table (a detailed explanation of this
method appears in Chapter 12). The VGA can disable the default
palettes through Alternate Select (function call 12h, BL=31h)

The Dynamic Save Area, which keeps a copy of the current pal
ette register settings in RAM, will only be updated if the palette
registers are set through this function call (see Chapter 12).

In addition to the standard palette registers, the VGA has a Digi
tal to Analog Converter which also controls the displayed color.
The DAC uses six bits for the intensity of each color (red, green,
and blue), resulting in an 18-bit color vialue (262,144 colors).
The DAC has 256 registers, and each register may hold a differ
ent color value. Thus mode 13h may use 256 colors out of a
possible 262,144.

In 16-color VGA modes, the Palette register selects 16 registers
of a 64-register DAC subset (and the ability to switch between
four subsets). Alternately, the palette register may select 16 reg
isters from a 16-register subset (with 16 subsets available). The
default after a mode set (except for mode 13h) is 16/64/4; only
subset 0 is initialized and used.

Input: Registers (set before function call):

AH: set to lOh

Function 0

Set individual

palette
register: Registers (set before function call):

Note: Although this function is primarily intended for changing
the palette registers, it can be used to change any of the attribute
registers (see Chapter 4 for a description of each attribute regis
ter).

BIOS EGA/VGA Extensions 47

AH: set to lOh

AL: set to 0

BL: register to set (color number)
BH: value of register (color — see table below)

Function 1

Set overscan

register: Registers (set before function call):

Note: This function sets the border color. It works properly only
when the EGA is in 200-line mode because the scan rate in 350-

line mode is not high enough to cover the entire face of the
screen.

AH: set to lOh

AL: set to 1

BH: value of register (color)

Function 2

Set all

palette
registers: Registers (set before function call):

Note: This function requires you to place a 17-byte table in
memory. The first 16 bytes contain the values for palette regis
ters 0-15, and the 17th byte contains the value for the overscan
register.

AH: set to lOh

AL: set to 2

ES: segment containing table
DX: offset of first byte in table

Function 3

Toggle
intensify/

blink: Registers (set before function call):

AH: set to lOh

AL: set to 3

BH: 0-enable intensify (disable blinking)
1-enable blinking (disable intensify)

48 EGA/VGA: A Programmer's Reference Guide

Register settings for the EGA and CGA

Color Display colors

7 6 5 4 3 2 1 0

X X X I X R G B

ECD Colors

7 6 5 4 3 2 1 0

X X R' G' B' R G B

Default settings

Color ECD Color Displ
Bit 543210 543210

Black 000000 000000

Blue 000001 000001

Green 000010 000010

Cyan 000011 000011

Red 000100 000100

Magenta 000101 000101

Brown 010100 000110

White 000111 000111

Dk. Gray 111000 010000

L. Blue 111001 010001

L. Green 111010 010010

L. Cyan 111011 010011

L.Red 111100 010100

L. Magenta 111101 010101

Yellow 111110 010110

I. White 111111 010111

The following functions are available on the VGA only:

BIOS EGA/VGA Extensions 49

Function 7

(VGA only)
Read Individual

Palette

Register: Registers (set before function call):

AH

AL

BL

set to lOh

set to 7

register to read (color number)

Registers (read after function call):

BH: register setting

Function 8

(VGA only)
Read

Overscan

Register: Registers (set before function call):

AH:

AL:

set to lOh

set to 8

Registers (read after function call):

BH: overscan setting

Function 9

(VGA only)
Read all

palette
registers: Registers (set before function call):

Note: This function requires you to reserve a 17-byte area in
memory. After the call, the first 16 bytes contain the values for
palette registers 0-15 and the 17th byte contains the value for the
overscan register.

AH: set to lOh

AL: set to 9

ES: segment containing table
DX: offset of first byte in table

50 EGA/VGA: A Programmer's Reference Guide

Function lOh

(VGA only)
Set Individual

DAC

Register; Registers (set before function call):

This function sets the 18-bit color value in the designated DAC
register. Each color should be a 6-bit value.

AH

AL

BX

CH

CL

DH

set to lOh

set to lOh

DAC register to set (0-255)
Green Intensity
Blue Intensity
Red Intensity

Function 121i

(VGA only)
Set Block

of DAC

Registers: Registers (set before function call):

This function sets the 18-bit color value for multiple DAC regis
ters. The program must place the settings in a table. The table
contains sequential byte values for the red, green, and blue regis
ters, respectively (3 bytes for each register programmed).

AH

AL

BX

CX

ES:

DX:

set to lOh

set to 12h

starting DAC register (0-255, typically 0)
number of registers to program (1-256, typically 64 or
256).

Segment of table
Offset of table

Function 13h

(VGA only)
Select Color

Subset: Registers (set before function call):

This function consists of two subfunctions. One (BL=0) sets the
number of DAC subsets available for 16 color modes (4 subsets

BIOS EGA/VGA Extensions 51

of 16 colors, or 16 subsets of 16 colors). The other (BL=1) se
lects the active subset.

AH:

AL:

BL:

BH:

BL:

BH:

set to lOh

set to 13h

0 Select Paging Mode
0 4 sets of 64 DAC registers
1 16 sets of 16 DAC registers

1 Select Page
Active DAC subset (0-3 or 0-15).

Function 15h

(VGA only)
Read Individual

DAC

Register: Registers (set before function call):

AH: set to lOh

AL: set to 15h

BX: DAC register to read

Registers (read after function call):

CH: Current Green Intensity
CL: Current Blue Intensity
DH: Current Red Intensity

Function 17h

(VGA only)
Read Block

of DAC

Registers: Registers (set before function call):

This function reads the 18-bit color value for multiple DAC reg
isters. The program must reserve 3 bytes of memory for each
register read. After calling this function, the table will contain
sequential byte values for the red, green, and blue registers, re
spectively.

AH:

AL:

set to lOh

set to 17h

52 EGA/VGA: A Programmer's Reference Guide

BX: starting DAC register (0-255, typically 0)
CX: Number of registers to read (1-256, typically 64 or

256)

ES: Offset of table location

DX; Segment of table location

Function lah

(VGA only)
Read Color

Page State: Registers (set before function call):

This function returns the number of the active DAC register sub
set, and the number of subsets available.

AH:

AL:

set to lOh

set to lah

Registers (read after function call):

BH: Active subset number

BL: 0 4 sets available

1 16 sets available

Function Ibh

(VGA only)
Sum DAC

Registers
to Gray
Shades: Registers (set before function call):

This function converts the designated block of DAC registers to
the equivalent shades of gray. Red becomes 30% of its current
value; green, 59%; and blue, 11%.

AH

AL

BX

CX

set to lOh

set to Ibh

starting DAC register (0-255)
number of registers to change (1-256).

Assembly Language Example:

This program prints a line of numbers across the screen (one for each palette
register). The numbers represent the current palette setting for each location.

BIOS EGA/VGA Extensions 53

Starting on the right, the numbers are cycled, changing the previous value when
one completes a cycle (like an odometer).

cry__f

data

clrs

equ 1 ;carry flag emulation

segment public

db 16,15,14,13,12,11,10,9,8

db 7,6,5,4,2,63,1,0

data

overscan

flags db

ends

db

0

code segment public

assume CS:code

mam

start:

d__lp:

proc

push

sub

push

mov

mov

assume

mov

assume

mov

mov

mov

mov

int

mov

mov

dec

mov

call

loop

mov

far

DS

AX,AX

AX

AX,data

DS,AX

DS:data

ES,AX

ES:data

AH,2

DH,05

DL,Oah

BH,0

lOh

CX,16

BX,CX

BX

AL,clrs [BX]

show_new
d_lp

CX,1000h

/function 2 set cursor

/row 5

/column 10

/page 0

/BIOS video call

/display each palette
/register

/palette reg. number

/set the color

/display current value

/number of color comb,

/to show

If you set the initial colors all to 0, and used

enough nested loops, this program would produce all
possible palette combinations. Of course, it would

take billions of millions of millennia to run. So,

54 EGA/VGA: A Programmer's Reference Guide

; you might want to limit yourself to interesting

; initial values a few thousand iterations.

lp2: push CX

mov CX,16 /check each palette reg

or f lags,cry_f /set carry to add 1

Ipl: mov BX,CX /put count in BX

dec BX /pal. reg. number

mov AL,clrs[BX] /get the color

test f lags,cry_f /was carry set

jz no_c / no, do next pal. reg.

inc AX /faster than INC AL

and flags,not cry__f /change flag back to 0
cmp AL,64 /is it maximum?

jb no__cry / no, don't carry

sub AL,AL /set color back to 0

or f lags,cry_f /set carry flag

no_cry! call show__new /update the display

mov clrs [BX],AL /store the new color

no__c: loop Ipl /check next palette reg.

pop CX /restore count

loop lp2 /do next set

ret

main endp

show__new proc near

push AX ;save current color

push BX ;save current palette register

push CX ;save current count

;DX is1 destroyed

;Set the palette using option 0 (set one palette

;register) NOTE: you can also use option 2 by

;removing the ;' is from the "mov AL,2" and

;"mov DX,., . ." lines

mov BH,AL /BH=color, BL=palette

/register

mov AH,10h /f\inction call lOh — set

/palette

mov AL,0 /set one palette register

/ mov AL,2 /set all palette regs.

/ mov DX,offset CLRS ;point to color table

BIOS EGA/VGA Extensions 55

int lOh ;BIOS video call

push BX ;save color/pal reg

mov

mov

sub

mov

shl

shl

int

AH,2

BH,0

DH,DH

DL,BL

DX,1

DX,1

lOh

;set cursor position

;page 0

;DH=0 (row number)

;put pal. reg. # in DL

;col. number = 4*pal. reg. #

;BIOS video call

pop BX /restore color/pal reg

mov AL,BH /put color back in AL

call bin2asc /convert AL to ASCII in AX

push AX /save AX

xchg AH,AL /put high digit in AL

mov AH, 9 /write attribute/character

mov BH,BL /put color number in BL

mov BH,0 /page 0

push BX /save this for next digit
mov CX,1 /write one character

int lOh /BIOS video call

mov AH,2 /set cursor position

mov BH,0 /page 0

inc DX /next column

int lOh /BIOS video call

pop BX /restore attribute and page
pop AX /restore color ASCII code

mov AH, 9 /write attribute/character

int lOh /BIOS video call

pop

pop

pop

CX

BX

AX

/restore current register

/restore color

ret

show_new endp

bin2asc proc near

COMMENT* NOTE: unlike prior occurrences of this

routine the equivalent AAM is used instead

56 EGA/VGA: A Programmer's Reference Guide

of DIV 10 AL; 8 bit value to convert

aam

add AX,3030h

;AH=AL/10, AL=remainder

;add 3Oh to get

;ASCII codes

ret

bin2asc endp

code ends

end start

Function Call 11 h: Character Generator Functions

Remarks: This function manipulates and alters the character sets. Text
modes allow up to four complete character sets (called blocks —
there is one block for every 64K of memory installed on the
EGA), although only two may be used at any one time, for a
total of 512 usable characters. Graphics modes allow only one
character set of 256 characters.

This function also controls the number of displayable rows on
the screen.

Graphics character sets reside in the main system memory (ei
ther RAM or ROM). The text mode character sets reside in bit
plane 2 of the EGA memory. However, the text mode sets must
be loaded into the EGA from system RAM or ROM each time
the mode is reset.

Each row of each character consists of eight dots and uses one
byte of memory (one bit per dot). The characters are arranged
sequentially in memory starting with the top row of ASCII 0 and
ending with the bottom row of ASCII 255 (see the table below).
The text mode sets may consist of any contiguous segment; e.g.,
codes 25-32, but the graphics set must contain the entire set of
256 characters.

Note: The characters will return to the default set whenever the mode

is reset. When using this function to change the character set, it
should be used after every reset. Alternately, you may change
the default set by modifying the BIOS SAVE_PTR table (a de
tailed description of this method appears in Chapter 13).

BIOS EGA/VGA Extensions 57

The 512-character set also reverts to a 256-character set when

the mode is reset. In addition to modifying the BIOS
SAVE_PTR, a new parameter table also needs to be built.

This function is usually the least compatible between manufac
turers of various EGA's.

Input: Registers (set before function call):

AH: set to 1 Ih

The following four functions will cause a mode reset. Display
memory will not be affected, so the screen will look the same
(with the exception of any characters which have been al
tered).

Function 0

User alpha
load: Registers (set before function call):

This function replaces the default set (or a portion of the set)
with user-defined characters.

AH

AL

BL

BH

CX

DX

ES

BP

set to llh

set to 0

block to load (character set 0-3 [0-7 VGA])
bytes per character (usually 8, 14, or 16)
number of characters in table

offset (ASCII code) of first character
segment containing user character table
offset of user character table

Function 1

ROM Mono

chrome set: Registers (set before function call):

This function loads the ROM 14-row character set into one of

the blocks.

AH:

AL:

set to llh

set to 1

58 EGA/VGA: A Programmer's Reference Guide

BL: block number (character set 0-3 [0-7 VGA])

Function 2

ROM double

dot set: Registers (set before function call):

This function loads the ROM 8-row character set into one of the

blocks.

AH

AL

BL

set to 1 Ih

set to 2

block number (character set 0-3 [0-7 VGA])

Function 3

Set block

specifier: Registers (set before function call):

This function creates a set of 512 characters in text mode (for
systems with more than 64K EGA memory). It disables the in
tensity function of attribute bit 3 and replaces it with the alter
nate character set.

Since the character sets reside in bit plane 3, it is advisable to
mask off bit plane 3 with attribute register 12h (the color plane
enable register — see Chapter 11 for a description). This can be
done through function call lOh (set AX to lOOOh, BX to 0712h,
and call INT lOh).

AH

AL

BL

set to 1 Ih

set to 3

bits 0-1, 4 block number for use when

attribute bit 3 = 0

bits 2-3, 5 block number for use when

attribute bit 3 = 1

Note: Bits 4 and 5 are used on the VGA only. The following
four functions should be used only after a mode reset. Page 0
must be active when these calls are initiated. Calling these func
tions causes a recalculation of the number of points (bytes per
character), the number of character rows on the screen, and the
length of the display buffer size in bytes. The following CRTC
registers are also recalculated (see Chapters 7-12 for a descrip
tion of the registers):

BIOS EGA/VGA Extensions 59

Register Formula

9h* points - 1
ah** points - 2
bh 0

12h (rows+l)*points - 1
2*(rows+l)*points - 1
[200 line VGA only]

14h*** points

* This register is calculated only for mode 7.
** When the ECD is used with 14-row characters in text modes,
this setting causes the cursor to disappear. This happens because
the text modes always assume an eight-row character box for
compatibility reasons (see function call 1).
*** This is a bug in the EGA ROM — the value should be
points -1. This setting prevents the underline from appearing
when the underline attribute is used.

Function 4

ROM 16

row set: Registers (set before function call):

This function loads the ROM 16 row character set into one of

the blocks (VGA only).

AH

AL

BL

set to 1Ih

set to 4

block number (character set 0-7)

Function lOh

User alpha
load: Registers (set before function call):

This function replaces the default set (or a portion of the set)
with user-defined characters.

AH

AL

BL

BH

CX

set to 1Ih

set to lOh

block to load (character set 0-3 [0-7 VGA])
bytes per character (usually 8, 14, or 16)
number of characters in table

60 EGA/VGA: A Programmer's Reference Guide

DX: offset (ASCII code) of first character
ES: segment containing user character table
BP: offset of user character table

Function llh

ROM Monochrome

set: Registers (set before function call):

This function loads the ROM 14-row character set into one of

the blocks.

AH

AL

BL

set to 1 Ih

set to 1 Ih

block number (character set 0-3 [0-7 VGA])

Function 12h

ROM double

dot set: Registers (set before function call):

This function loads the ROM eight-row character set into one of
the blocks.

AH

AL

BL

set to 1 Ih

set to 12h

block number (character set 0-3 [0-7 VGA])

Function 14h

ROM 16

row set: Registers (set before function call):

This function loads the ROM 16-row character set into one of

the blocks (VGA only).

AH

AL

BL

set to 1Ih

set to 14h

block number (character set 0-7)

The following functions should be used only immediately after a mode

reset. These functions are designed for use in graphics modes (the previous
functions work only in text modes).

BIOS EGA/VGA Extensions 61

Function 20h

User graphics
characters

(8 X 8): Registers (set before function call):

This function sets INT Ifh to point to a table of 8 X 8 characters
for ASCn codes 128-255. Its primary purpose is for use in com
patibility modes.

AH

AL

ES

BP

set to llh

set to 20h

segment containing user character table
offset of user character table

Function 21h

User graphics
characters: Registers (set before function call):

This function sets INT 43h to point to a table of characters.

AH

AL

BL

CX:

ES:

BP:

set to llh

set to 21h

row specifier (character rows per screen)
0-user defined (put number of rows in DL)
1-14 rows

2-25 rows

3-43 rows

points (bytes per character)
segment containing user character table
offset of user character table

Function 22h

ROM 8 X 14

set: Registers (set before function call):

This function sets INT 43h to point the ROM table of 8 X 14
characters.

AH

AL

BL

set to llh

set to 22h

row specifier (character rows per screen)
0-user defined (put number of rows in DL)

62 EGA/VGA: A Programmer's Reference Guide

1-14 rows

2-25 rows

3-43 rows

Function 23h

ROM 8x8

set: Registers (set before function call):

This function sets INT 43h to point the ROM table of 8 X 8
characters.

AH

AL

BL

set to llh

set to 23h

row specifier (character rows per screen)
0-user defined (put number of rows in DL)
1-14 rows

2-25 rows

3-43 rows

Function 24h

ROM 8 X 16

set: Registers (set before function call):

This function sets INT 43h to point the ROM table of 8 X 16
characters.

AH

AL

BL

set to 1 Ih

set to 24h

row specifier (character rows per screen)
0-user defined (put number of rows in DL)
1-14 rows

2-25 rows

3-43 rows

The following function returns information about the character
sets.

Function 30h

Information: Registers (set before function call):

AH:

AL:

set to llh

set to 30h

BIOS EGA/VGA Extensions 63

Registers (read after function call):

BH: 0 — return current INT Ifh setting
1 — return current INT 43h setting
2 — return ROM 8 X 14 character set location

3 — return ROM 8x8 character set location

4 — return upper half (starting at ASCII 128)
ROM 8x8 character set location

5 — return ROM 9 X 14 alternate set location*

6 — return ROM 8 X 16 character set location

7 — return ROM 9 X 16 alternate set location*

CX

DL

ES

BP

points (bytes per character)
rows

segment of returned location
offset of returned location

* The monochrome adapter uses some characters which are
shaped slightly differently than the ECD equivalents (such as the
"M" and "$"). This table consists of the substitute characters for
text mode 7. The 9 X 14 characters are defined as 8 X 8 charac

ters. If the character is a block graphics code, the ninth column
is the same as the eighth; otherwise, the ninth column is left
blank.

Character Table Format:

ASCII 1

Oh

Oh

-xxxxxx- 7eh

X X 81h

X - X - - X - X aSh

X X 81h

X X 81h

x-xxxx-x bdh

X--XX--X 99h

X X 81h

-xxxxxx- 7eh

Oh

Oh

Oh

64 EGA/VGA: A Programmer's Reference Guide

db 14 dup (0) /ASCII 0

db 0,0,7eh^81h^a5h,81h,81h /ASCII 1

db bdh,99h,81h,7eh,0h,0h^0h /ASCII 1

/ASCII 2 goes here

/ASCII 3 goes here

/etc.

Assembly Language Example:

The message "The quick brown fox jumps over the lazy dog" is printed, and
the style of the letter "e" is changed to a small capital.

pause macro

local no__adj, done

/this creates a processor independent approx.

/10-second pause

mov AH,2ch /DOS get time call

int 21h /DOS interrupt

mov BH,DH /put seconds in BH

add BH,10 /add 10 seconds

cmp BH,60 /if greater than 59/ SUB 60

jb no__adj
sub BH,60

int 21h /DOS interrupt
cmp BH.DH

je done

jmp no_adj

no_adj

done:

endm

data segment public

msg db 'The quick brown fox jumps
db 'over the lazy dog.$'

new_e db 00000000b
db 00000000b

db 00000000b

db 00000000b

db 00000000b

db 00000000b

db 11111110b

db 10000000b

db 11111110b

db 10000000b

db 11111110b

BIOS EGA/VGA Extensions 65

data

code

main

start:

db

db

db

ends

segment public
assume CS:code

00000000b

00000000b

00000000b

proc

push

sub

push

mov

mov

assume

mov

mov

int

pause

mov

mov

mov

mov

push

pop

mov

int

far

DS

AX,AX

AX

AX,data

DS,AX

DS:data

DX,offset msg

AH, 9

21h

AX,1100h

BL,0

BH,14

CX,1

DX,65h

DS

ES

BP,offset new_

lOh

;get message address

;DOS print string call
;DOS call

;User alpha load

; (& reset mode)

/character set 0

;14 bytes per character

;1 character

/change lowercase "e"

/character in data seg.

/get offset of "e"

/BIOS video call

pause

/set mode again to wipe out character set changes

mov AH,0 /select function 0 set mode

mov AL,3 /select mode 3

int lOh /BIOS video call

ret

main endp

code ends

end start

66 EGA/VGA: A Programmer's Reference Guide

Function

Call 12h: Alternate Select

Remarks: This function returns information about the adapter's current set
ting and provides an alternative print screen routine.

The alternate print screen routine will print the entire screen
when there are 43 rows (the standard print screen routine will
print only 25 rows). It will not print graphics screens.

Input: Registers (set before function call):

AH: set to 12h

Function lOh

Return

information: Registers (set before function call):

AH: set to 12h

BL: set to lOh

Registers (read after function call):

BH: 0 means a color mode is in effect (adapter registers
are at port 3d?h) 1 means a monochrome mode is in
effect (adapter registers are at port 3b?h)

BL: Amount of memory installed on the adapter
0 = 64K

1 = 128K

2 = 192K

3 = 256K

CH: Feature bit settings (see the description of the Feature
Control register).

CL: Switch settings (switches on the EGA card) Bits 0-3
are switches 1-4 respectively. 1 = switch Off, 0 =
switch On. Thus 1000b means switches 1-3 are On

and switch 4 is Off.

The value in CL corresponds to the following Table.
These reflect the default mode settings:

Setting Primary Secondary
0000b MDA EGA CGD 40 Col

BIOS EGA/VGA Extensions 67

0001b

0010b

0011b

0100b

0101b

0110b

0111b

1000b

1001b

1010b

1011b

llOOb-llllb

MDA

MDA

MDA

CGA

CGA

EGA CGD 40 Col

EGA CGD 80 Col

EGA ECD 200

EGA ECD 350

EGA Mono

EGA Mono

Invalid

EGA CGD 80 Col

EGA ECD 200

EGA ECD 350

EGA Mono

EGA Mono

MDA

MDA

MDA

MDA

CGA 40 Col

CGA 80 Col

The Secondary Display may not be attached
CGD is Color Graphics Display (200 line)
ECD 200 is Enhanced Color Display (350 line)
forced into 200 line CGD compatibility mode
ECD 350 is the Enhanced Color Display in full 350-
line mode

Function 20h

Select alternate

print screen
routine: Registers (set before function call):

Calling this routine places the alternate print screen routine in
effect.

AH:

BL:

set to 12h

set to 20h

The VGA adds the following functions (AL will be set to 12h after comple
tion if the function is supported):

68 EGA/VGA: A Programmer's Reference Guide

Function 30h

(VGA only)
Select scan

lines for

text mode: Registers (set before function call):

Calling this routine changes the number of scan lines used the
next time an alphanumeric mode is selected. This allows com
plete compatibility with MDA, CGA, and EGA display appear-
ance.

AH: set to 12h

BL: set to 30h

AL: 0 use 200 scan lines (CGA)
1 use 350 scan lines (MDA and EGA)
2 use 400 scan lines (VGA)

Output: Registers (read after function call):

AL: 12h

Function 31h

(VGA only)
Select Default

Palette

Loading: Registers (set before function call):

This function enables and disables the default palette during a
mode reset. On the EGA, the default palette always overrides the
current palette during a mode reset, but the VGA allows the cur
rent palette to remain.

Output:

AH: set to 12h

BL: set to 3 Ih

AL: 0 Enable the default palette
1 Disable the default palette
2 use 400 scan lines (VGA)

Registers (read after function call):

AL: 12h

BIOS EGA/VGA Extensions 69

Function 32h

Video: Registers (set before function call):

This function enables and disables the adapter. When the adapter
is disabled, the display will remain intact, but further reading
and writing will have no effect until it is enabled.

AH: set to 12h

BL: set to 32h

AL: 0 Enable the display
1 Disable the display

Output: Registers (read after function call):

AL: 12h

Function 33h

Summing
to Gray
Shades: Registers (set before function call):

This function enables and disables color to grayscale conversion.
When summing is enabled, the gray intensity is the sum of 30%
red intensity, 59% green intensity, and 11% blue intensity after
the next mode reset or when the palette registers are changed.

Output:

AH:

BL:

AL:

set to 12h

set to 33h

0 Enable gray shade summing
1 Disable gray shade summing

Registers (read after function call):

AL: 12h

Function 34h

Cursor

Emulation: Registers (set before function call):

This function enables and disables emulation of the CGA cursor

in alphanumeric modes; i.e., the cursor is set as if the character
were only 8 pixels high (see the description of function call 1,

70 EGA/VGA: A Programmer's Reference Guide

Set Cursor Type). When emulation is disabled, the cursor setting
references actual line numbers.

AH: set to 12h

BL: set to 34h

AL: 0 Enable CGA cursor emulation

1 Disable CGA cursor emulation

Output: Registers (read after function call):

AL: 12h

Function 35h

Display
Switch: Registers (set before function call):

This function toggles between the motherboard adapter (VGA)
and an external adapter if port and/or memory addresses conflict.
If an external adapter is present, it will be the default adapter.

The first time displays are switched, the initiate functions (AL=0
and AL=1) must be used. Thereafter, all switching is accom
plished through a double call: disable the current active adapter
(AL=2), then enable the current inactive adapter (AL=3). The
program must provide a 128-byte buffer for storing current state
information for each adapter.

AH: set to 12h

BL: set to 35h

AL: 0 Initial external adapter off
1 Initial VGA on

2 Active Adapter Off
3 Inactive Adapter On

ES: Segment of Switch State Area
DX: Offset of Switch State Area

Output: Registers (read after function call):

AL: 12h

BIOS EGA/VGA Extensions 71

Function 36h

Screen Of^On: Registers (set before function call):

This function turns the display on and off; e.g., screen blanking.

AH: set to 12h

BL: set to 36h

AL: 0 Screen on (normal display)
1 Screen off (blanked)

Output: Registers (read after function call):

AL: 12h

The presence test program in Chapter 14 uses alternate select.

Function

Call 13h:

Remarks:

Input:

Write String

This function writes a string of characters and attributes from
memory to the screen. Two formats are available: the memory
block can contain a sequential list of ASCII codes or an alternat
ing list of character codes and attribute bytes. You may also
choose whether or not the cursor moves to the end of the string

or stays in the same location.

Note: The operation of this function call is similar to that of the
Teletype routine (eh). The bell, carriage return, and linefeed are
treated as commands.

Registers (set before function call):

AH: set to 13h

AL: bit 0 = 0: cursor not moved

bit 0 = 1: cursor moved

bit 1=0: string of characters only
bit 1 =1: string of character, attribute, character, attri
bute, ...

BL: attribute (when AL bit 1=0)
BH: page number (see function call 5 for a description of

pages)

CX: number of characters (do not include attribute bytes in
this count).

72 EGA/VGA: A Programmer's Reference Guide

DX: cursor location (DH = row, DL = column)
ES: segment containing string to be written
BP: offset of the first character in the string

Assembly Language Example:

This program prints a full string (message) at once. Note the effect of the
control codes 7, 10, and 13. Compare the results to functions 9, ah, and eh.

data segment public

msg db

m len

'This line demonstrates printing'•
db ' ASCII 7 10 (',10,'),'
db ' and 13 (',13,').'

equ $-msg /creates a constant from

/here to message start
/(message length)

data ends

code segment public

assume OS:code

main

start:

proc

push

sub

push

mov

mov

assume

far

DS

AX,AX

AX

AX,data

DS,AX

DS:data

mov

mov

mov

mov

mov

mov

mov

mov

push

pop

int

AH,13h /fxinction 13h - write string
AL,01b /character only, move cursor

BH,0

BL,15

CX,m_len
DH,05

DL,0

BP,offset msg

DS

ES

lOh

/page 0

/attribute 15

/number of characters

/row 5

/column 0

/pointer to message

/message is in data segment
/BIOS video call

main

ret

endp

BIOS EGA/VGA Extensions 73

code

end

ends

start

Function Call lah: ReacVWrite Display Combination Code
(VGA only)

Remarks: This function writes and returns codes designating the primary
and secondary adapters. This is very useful for determining the
display configuration, and will be supported on future products
which can be used as primary displays. A result code is returned
in register AL to confirm the operation of this function. If the
result code is invalid, you can use altemate methods to deter
mine the configuration (see the presence test program in Chapter
14 for an example program).

Note: The 8514/A graphics coprocessor cannot be used as a primary
display adapter and does not have a return code for this function
call.

Input: Registers (set before function call):

AH: set to lah

Function 0

Read DOC: Registers (set before function call):

AH: set to lah

AL: set to 0

Output: Registers (read after function call):

AL: lah

BH: Secondary Display
BL: Active Display

Function 1

Write DOC: Registers (set before function call):

AH

AL

BH

BL

set to lah

set to 1

Secondary Display
Active Display

74 EGA/VGA: A Programmer's Reference Guide

Output: Registers (read after function call):

AL: lah

DCC Code

(BH/BL) Meaning
0

1

2

4

5

6

7

8

bh

ch

ffh

No Display
MDA

CGA

EGA with standard color display
EGA with monochrome display
PGA (Professional Graphics Adapter)
VGA with analog monochrome display
VGA with analog color display
MCGA with analog monochrome display
MCGA with analog color display
Unknown

Function

Call Ibh:

Remarks:

Input:

Output:

Return Functionality/State
Information (VGA only)

This function returns information about the adapter/display envi
ronment. The same information may be found scattered through
out the BIOS Save Area and ROM data areas (see Chapter 12).
However, the data is much easier to access through this function
call. The program must allocate a 40h byte area for storing the
returned information.

Registers (set before function call):

AH:

BX:

ES:

DI:

set to Ibh

Implementation Type (set to 0)
Segment of the reserved storage area
Offset of the reserved storage area

Registers (read after function call):

AL: Ibh

The table now located in ES:DI has the following structure:

Offset Size Description

BIOS EGA/VGA Extensions 75

0 1 word Offset of Static Functionality
Table

2 1 word Segment of Static Functionality
Table

4 1 byte Current Video Mode

5 1 word Number of Displayable
Character Colunms

7 1 word Size of Video Data Area in

Bytes

9 1 word Starting Address in Video
Data Area

bh 1 word Page 0 Cursor Location

dh 1 word Page 1 Cursor Location

fh 1 word Page 2 Cursor Location
llh 1 word Page 3 Cursor Location

13h 1 word Page 4 Cursor Location

15h 1 word Page 5 Cursor Location

17h 1 word Page 6 Cursor Location

19h 1 word Page 7 Cursor Location

Ibh 1 byte Cursor Starting Line
Ich 1 byte Cursor Ending Line

Idh 1 byte Current Display Page

leh 1 word CRTC Port Address

22h 1 byte Number of Displayable
Character Rows

23h 1 word Character Pixel Height
25h 1 byte Primary DCC (adapter)

26h 1 byte Secondary DCC (adapter)
27h 1 word Number of Colors Available

29h 1 byte Number of Display Pages
Available

2ah 1 byte Number of Scan Lines:

0-200 lines

1-350 lines

2-400 lines

3-480 lines

2bh 1 byte Primary Font Block Number
(0-7)

2ch 1 byte Secondary Font Block Number
(0-7)

2dh 1 byte Miscellaneous (stored in bits):

Bit Description
rwhp.n set tn 1

76 EGA/VGA: A Programmer's Reference Guide

0 All Modes Available

1 Colors Summed

to Gray

Equivalents
2 Monochrome

Display Attached
3 Default Palettes

Not Loaded

4 Convert Cursor

to CGA Equivalent
5 Blinking

(0=Background
Intensity)

31h 1 byte Video Memory (in 64K blocks, 0 = 64K)
32h 1 byte Save Pointer Status

(stored in bits):

Bit Description
(when set to 1)

0 512 Character

Set in Use

1 Palette Save

Area in Use

2 User Alpha
Character Set

in Use

3 User Graphics
Character Set

in Use

4 User Palette

Set in Use

5 DCC Extension

in Use

The Static Functionality Table (pointed to by the first four bytes)
is 16 bytes long and has the following structure:

Offset Size Description

0 3 bytes Video Modes Supported
(1 bit per mode):
0,1,2,3,4,5,6,7,8,9,ah,bh,ch,

dh,eh,fh

10h,l lh,12h,13h,N/A,N/A,

N/A,N/A

BIOS EGA/VGA Extensions 77

7 1 byte Scan Lines Available in
Text Mode:

Bit Description (when set to 1)
0 200

1 350

2 400

8 1 byte Number of Text Mode
Font Blocks

9 1 byte Number of Simultaneous
Text Mode Font Blocks

ah 1 byte Miscellaneous Functions
Available:

Bit Description (when set to 1)
0 All Modes Usable

1 Gray Shade Equivalents
2 User-Defined Font Tables

3 User-Defined Palette Tables

4 CGA Cursor Emulation

5 EGA-Type Palette Registers
6 DAC-Type Palette Registers
7 Multiple DAC Color Tables

bh 1 byte Miscellaneous Functions
Available:

Bit Description (when set to 1)
0 Light Pen Interface
1 Save/Restore Video States

2 Background Intensity/Blinking
3 DCC Table

eh 1 byte Save Pointer Functions
Available:

Bit Description (when set to 1):
0 512 Character Set

1 Palette Save Area

2 User Alpha Character Set
3 User Graphics Character Set
4 User Palette Set

5 DCC Extension

78 EGA/VGA: A Programmer's Reference Guide

Function

Call Ich: Save/Restore Video State

Remarks: This function returns, saves, and restores selected video environ

ment parameters (BIOS, palette, and register settings). This
saves a substantial amount of program overhead when the video
mode must be changed, but current screen contents saved; e.g.,
memory resident software.

Note: The program must reserve a data area to save the settings. The
size of the area varies according to the parameters selected;
function 0 returns the required size.

CX is defined by set bits, not values. Thus, you may save or
restore the entire state by setting all the bits (a value of 7).

Input: Registers (set before function call):

AH: set to Ich

CX: Selected States

Bit Description
0 Video Hardware (registers)
1 BIOS RAM Data Area

2 DAG Registers

Function 0

Get Buffer

Size: Registers (set before function call):

AH:

AL:

set to Ich

set to 0

Output: Registers (read after function call):

AL: Ich

BX: Buffer Size Required (in 64-byte blocks)

Function 1

Save: Registers (set before function call):

AH

AL

ES

set to Ich

set to 1

Segment of Save Area

BIOS EGA/VGA Extensions 79

BX: Offset of Save Area

Output: Registers (read after function call):

AL: Ich

Function 2

Restore: Registers (set before function call):

AH: set to Ich

AL: set to 2

ES: Segment of Restore Area
BX: Offset of Restore Area

Output: Registers (read after function call):

AL: Ich

Now that you have had a chance to study the adapters and write some rou
tines on your own, we will move on to new methods (and new functions not
supported by BIOS). If you have written some BIOS-based plotting routines,
you are probably very disappointed with their performance. Here is your
chance to change that! If youVe kept your code fairly clean with subroutines or
macros for primitive operations, such as plotting, the conversion may go fairly
smoothly. However, as you may be aware, the EGA and VGA are not particu
larly easy to program directly, so your first few tries may take quite some time.
If you study the example programs carefully, you may greatly reduce your time
and frustration. But before jumping right into the programs, you should under
stand how the EGA and VGA work.

Chapter

5
The VESA BIOS Extension

The following Super VGA extension (called the VESA BIOS Extension) is
defined by the October 1989 and May 1990 VESA proposals, Versions 1.0 and
1.1. Version 1.0 defines six calls at INT lOh function 4Fh and Version 1.1

defines two additional calls. At the time of this writing, only a few Everex
VGA's were available with these extensions in ROM. Several manufacturers

were shipping device drivers which placed the Super VGA BIOS extensions in
RAM.

If you wish to use VESA VGA modes in your programs, you should first test
for the VESA BIOS Extension. Because all VESA BIOS Extension calls are

defined at the same location, you simply use call 0 to query the adapter for
Super VGA Information.

mov AX,InfoSeg

mov ES, AX

mov AX,4f00h

mov DI,InfoOff

int lOh

Every VESA call returns a status in the AX register. Following the example
of the VGA Read/Write Display Combination Code (BIOS function lah), the
function call number is returned in AL for confirmation of the call's legitimacy.
If the adapter supports the VESA BIOS Extension, AL will be set to 4fh. Addi
tionally, a fail/success code is returned in AH. AH=0 if the call was successful,
and an error code if it failed (at the time of this writing, 1 was the only defined
error code). All VESA calls follow this convention: after any call if AX=004fh,
the VESA function worked.

82 EGA/VGA: A Programmer's Reference Guide

The Super VGA Information function returns a data block to ES:DI, but we
will leave the details to the function call description.

Since each call is defined by both AH and AL, I will use a full word value in
naming the functions.

Several of the VESA function parameters are defined as pointers. If you are
not careful, you may end up reading an address (and other nonsensical data
beyond it) as data. And don't forget to set pointers to buffers, or you may be
surprised when random data or code gets overwritten during a function call.
The earliest VESA standard did not define BIOS routines. Rather, it defined

a standard mode, 6ah. Mode 6ah can be set through the standard VGA set
mode call, that is:

mov AX,006ah

int lOh

It is defined as an 800 X 600, 16-color mode (although a few vendors will
support 256 colors if enough memory is installed). Note that there is no way to
detect whether the mode set was successful, or determine whether a particular
adapter supports this standard.

Function Call

4f00h: Return Super VGA Information

Remarks: This function confirms a VESA compatible adapter is installed
and returns vendor-specific information about the hardware. De
tailed information about particular graphics modes is returned by
call 4f01h.

Note: You must reserve a 256-byte buffer to hold the return informa
tion.

Input: Registers (set before function call):

AX: Set to 4f00h

ES: Segment of the 256 byte buffer
DI: Offset of the 256 byte buffer

Output: Registers (read after function call):

AX: 004fh (if successful)

The table now located in ES:DI has the following structure:

The VESA BIOS Extension 83

Offset Size Description

0 4 bytes signature bytes ('VESA')
4 2 bytes VESA version number

6 4 bytes address of the vendor defined data

10 4 bytes Capabilities (currently undefined)
14 4 bytes address of the mode table

18 2 bytes 64K memory blocks installed (ver 1.1)

The signature bytes will always be set to VESA. So, if you want
to be really sure a VESA adapter is installed, you can read these
bytes for confirmation.

The most significant byte of the version number is the major
revision and the least significant is the minor revision. This book
covers Versions 1.0 and 1.1 (OlOOh and OlOlh). All future revi
sions will be backward compatible to version 1.0.

The vendor-defined data is a free format string of data termi
nated by a null (OOh). There are no standards as to what you will
find here, but you will probably find the manufacturer's name
and adapter type along with miscellaneous information such as
configuration data.

The Capabilities field is currently reserved. In a future version
of the standard, it may specify general features of the adapter.

The mode table is simply a list of the supported mode numbers,
terminated by Offffh. As of this writing, VESA has defined thir
teen standard Super VGA modes (see function 4f02h, Set Super
VGA Video Mode). However, each manufacturer may define ad
ditional modes. Standard VESA modes are 16 bits beginning
with lOOh. Proprietary vendor modes cover the range 14h-7fh
(with the exception of 6ah which is the original VESA mode).

Versions 1.1 and later return the installed video memory size in
64K blocks. For example, an adapter with 512K would return 8.

Function Call

4f01h: Return Super VGA Mode Information

Remarks: You may use this function to get information about a particular
video mode. The mode's available numbers may be obtained

84 EGA/VGA: A Programmer's Reference Guide

through the mode table of function 4f00h, Return Super VGA
Information. You must reserve a 256-byte buffer to hold the re
turn information.

When working with VESA or vendor-specific modes, you
should be aware that some BIOS functions may not work on all
adapters (operations such as set pixel, or write string). The pres
ence or absence of such support can be determined through this
function call.

The function also returns window information for modes which

exceed the 64K addressable range of a typical segment. Such
modes may be available on adapters which support 1024 X 768
16-color mode (98K address space and 392K memory) or two
separate 800 X 600 16-color windows (each with a 60K address
space and a total of 480K memory). If such a mode uses two
64K segment addresses (AOOOh and BOOOh), you simply change
the segment selector (ES or DS) to reach the desired area. How
ever, some Super VGA's support windows which map only a
portion of the total video memory into a single segment (e.g.,
AOOOh).

If the Super VGA has one 64K window that has both read and
write access, it is called a Single Window System, Another
method places two windows in the same address; for example,
both would be at AOOOh. One window is read only and the other
is write only. These are called Overlapping Windows. Overlap
ping Windows are useful for rapid data transfer between win
dows using the VGA's latch registers (Write Mode 1, see port
3cfh, Index 5). Finally, there are Non-overlapping Windows
which work something like multiple display pages in standard
VGA — both windows share the same segment but start at dif
ferent offsets. See the description of VESA Window Memory
usage at the end of Chapter 6 for more information.

Note: Under Version 1.0, the unused bytes may not be set to 0 each
time the function is called (Versions 1.1 and later require initial
ization to 0 as the default).

Important: If you are using a higher resolution than 800 X 600 or multiple
display pages, you must determine the current windowing
method and adapt your algorithms accordingly. Do not assume
that the method which works on one VESA adapter will work on
others.

The VESA BIOS Extension 85

Input: Registers (set before function call):

AX: Set to 4f01h

CX: Super VGA mode number
ES: Segment of the 256-byte buffer
DI: Offset of the 256-byte buffer

Output: Registers (read after function call):

AX: 004fh (if successful)

The table now located in ES:DI has the following structure:

Offset Size Description

0 2 Mode attributes

2 1 Window A attributes

3 1 Window B attributes

4 2 Window granularity
6 2 Window size

8 2 Segment address of Window AO
10 2 Segment address of Window B
12 4 Address of the Window Function Call

16 2 Bytes per scan line

The following information may be included in the block at the
manufacturer's discretion. It is intended primarily for modes not
covered by the VESA standard. If this information is available,
bit 1 of Mode attributes will be set.

Offset Size Description

18 2 Horizontal resolution

20 2 Vertical resolution

22 1 Character cell width

23 1 Character cell height
24 1 Number of bit planes
25 1 Total number of bits per pixel
26 1 Number of memory banks

(not bit planes)
27 1 Memory model type
28 1 Size of memory bank in kb
29 1 Number of display pages available

86 EGA/VGA: A Programmer's Reference Guide

(version 1.1)

30 1 Reserved (version 1.1)

Mode attributes (defined by bits)

Bit Description

0 Set to 1 if the current hardware configuration supports
this mode.

1 Set to 1 if the optional mode information is available
in this table

2 Set to 1 if the standard BIOS functions support this
video mode.

3 Set to 1 if this mode is color (specifies register and
memory configuration not the monitor type)

4 Set to one if this is a graphics mode
5-15 Reserved

You may determine the mode's windowing method by reading
the status bits of the Window Attribute bytes (one byte for each
window, A and B).

Bit Description

0 Set to 1 if this window exists

1 Set to 1 if the window is readable

2 Set to 1 if the Window is writeable

3-7 Reserved

Thus, values of 7 and 0 would indicate a Single Window, 7 and
7 would indicate Non-overlapping Windows and 3 and 5 would
indicate Overlapping Windows (note that either Window A or B
could be the read- or write-only window). If both values are 0,
the mode does not use Windows.

The Window Granularity is the smallest address change allowed
for a Window's starting offset (in kb). Thus, with a granularity
of 4 the window could start at any video memory offset evenly
divisible by 4K: 0, 4K, 8K, etc. Note that this is an offset within
Video memory, not the CPU offset (which always starts at 0
within the current segment).

The Window Size is the largest offset the CPU may address
within the Window (typically 64K or 32K).

The VESA BIOS Extension 87

The Segment Address is simply the CPU segment address for
the window. These might typically be AOOOh (Single Window),
AOOOh and AOOOh (Overlapping Windows), or AOOOh and
ASOOh (Non-overlapping Windows).

The Window Function Call is the address of the routine called

by BIOS call 4F05h. This routine changes the starting offset of a
Window (i.e., it performs a bank switch). A far call to this ad
dress is faster than using the BIOS interrupt. Unlike the BIOS
call, the AX and DX registers are not preserved by the direct
call, and AX will not contain any return information.

The optional horizontal and vertical resolution information will
be in either character cell units (for text modes) or pixel units
(for graphics modes).

The character cell sizes are in pixel units.

The total number of bits per pixel determines the number of col
ors available (i.e., 4 for 64 colors and 8 for 256 colors). You can
find the number of linear (CPU address space) bits per pixel by
dividing bits per pixel by the number of bit planes. For example,
CGA 4-color mode would be 2 bits per pixel and 1 plane.

The number of banks is for unusual modes that group alternate
scan lines in separate memory areas. For example, CGA modes
which place odd scan lines in one bank and even scan lines in
another would have two banks. The related bank size value gives
the size of the bank in kb (0 for the usual, non-banked modes).

The Memory Model is defined as follows:

Value Description

0 Text Mode

1 CGA Graphics (2 memory banks)
2 Hercules Graphics (4 memory banks)
3 4-plane planar
4 Packed pixel (1 linear bit per pixel)
5 Non-chain 4, 256-color

6-Ofh Reserved by VESA
lOh-Offh Vendor defined

Version 1.1 adds two new fields:

88 EGA/VGA: A Programmer's Reference Guide

The number of display pages returns the maximum number of
screen buffers available for page switching (like the standard
BIOS display pages).

The reserved field will always be set to I in version I.l (not the
standard default of 0).

Function Call

4f02h: Set Super VGA Mode

Remarks: When setting a Super VGA mode, this call should be used in
stead of function call 0 (standard video BIOS Set Mode). Note

that bit 15 works like bit 7 of the standard VGA Set Mode.

If the call fails, the mode will not change and the old environ
ment will remain intact.

Note: Not all VESA adapters will support every mode. You should use
functions 4f00h and 4f01h to determine which modes are avail

able, and their operational details.

Vendor specific modes may also be set through this function
call.

Input: Registers (set before function call):

AX: set to 4f02h

BX: Super VGA mode number

lOOh 640 X 400, 256 color

lOlh 640 X 480, 256 color

102h 800 X 600, 16 color

103h 800 X 600, 256 color

104h 1024 X 768, 16 color

105h 1024 X 768, 256 color

106h 1280 X 1024, 16 color

107h 1280 X 1024, 256 color

108h 80 X 60, text mode (Version 1.1 only)
109h 132 X 25, text mode (Version 1.1 only)
lOah 132 X 43, text mode (Version 1.1 only)
lObh 132 X 50, text mode (Version 1.1 only)
lOch 132 X 60, text mode (Version 1.1 only)

The VESA BIOS Extension 89

Output:

10dh-7fffh Reserved by VESA

14h-69h Vendor Defined

6ah VESA 800 X 600, 16 color
6bh-7fh Vendor defined

You may set the high bit of BX to 1 if you want to
preserve the screen memory (display) while resetting
the mode. This is done by adding 8000h to the mode
number.

Registers (read after function call):

AX: 004fh (if successful)

Function Call

4f03h: Return Super VGA Mode

Remarks: When using a VESA compliant adapter, this call should be used
instead of function call Of (standard video BIOS Current Video
State). Unlike Current Video State, bit 15 will never be set. If

necessary, the memory clear bit can be checked by reading bit 7
of the old Current Video State function call (bit 7 will be correct
even though the mode may not).

All modes — standard VGA, VESA, and vendor specific —
may be determined through this call.

Input: Registers (set before function call):

AX: set to 4f03h

Output: Registers (read after function call):

AX: 004fh (if successful)
BX: Mode Number

90 EGA/VGA: A Programmer's Reference Guide

Function Call

4f04h;

Remarks:

Note:

Input:

Save/Restore Super VGA Video State

This function consists of three subfunctions (selected via register
DL) which save and restore Super VGA state information and
report buffer requirements. It is the functional equivalent of the
standard BIOS function ICh (Save/Restore Video State). Unlike
the standard function, the Super VGA Video State memory
blocks are a unique format which contains the additional Super
VGA information.

The program must reserve a data area to save the settings. The
size of the area varies according to the parameters selected;
function 0 returns the required size.

The Super VGA state adds a new bit to CX. To save or restore
the entire state you must use a value of Ofh.

Registers (set before function call):

AX:

CX:

set to 4f04h

Selected States

Bit Description

0 Video Hardware (registers)
1 BIOS RAM Data Area

2 DAG Registers

3 Super VGA State

Function 0

Get Buffer

Size: Registers (set before function call)

DL: 0

Output: Registers (read after function call):

AX: 004fh (if successful)

BX: Buffer Size Required (in 64 byte blocks)

The VESA BIOS Extension 91

Function 1

Save: Registers (set before function call)

DL: 1

Output: Registers (read after function call):

AX: 004fh (if successful)

Function 2

Restore: Registers (set before function call)

DL: 2

Output: Registers (read after function call):

AX: 004fh (if successful)

Function Call 4f05h: CPU Video Memory Window Control

Remarks:

Input:

This function consists of two subfunctions which set or report

the memory offsets within VESA Windows. VESA Windows
operate as a bank switching scheme: only a portion of the total
video memory map appears within the window. This function
lets you select which portion of video memory appears in the
window by specifying the offset within video memory.

Note: The offset is specified in Window Granularity Units (see
function 4f01h). These units may vary from adapter to adapter
and will often be several kb. For example, the Video Seven Fast-
Write VGA uses a 64K bank in 1024 X 768 modes. An offset of

0 Window Granularity Units covers the range 0-64K and an off
set of 1 Window Granularity Units covers the range 64K-128K.

You may make a direct far call to this function to improve per
formance. See the description of the Window Function Call Ad
dress under Function Call 4f01h (Return Super VGA Mode In
formation). Function Call 4f01h also returns other Window-criti
cal information which you need to use windows properly.

Registers (set before function call):

92 EGA/VGA: A Programmer's Reference Guide

AX: set to 4f05h

Function 0

Set Window

Position: Registers (set before function call)

BH: 0

BL: Window Number (0=Window A, l=Window B)
DX: Offset in video memory (in granularity units)

Output: Registers (read after function call):

AX: 004fh (if successful)

Function 1

Get Window

Position: Registers (set before function call)

BH: 1

BL: Window Number (0=Window A, 1= Window B)

Output: Registers (read after function call):

AX: 004fh (if successful)
DX: Offset in video memory (in granularity units)

Function Call Get/Set Logical Scan Line Length
4f06h: Version 1.1 and later

Remarks: This function consists of two subfunctions which set or report
the memory used by a single scan line. This allows a display
with a larger virtual display size than physical display size (i.e.,
the CRT will show only a portion of the full display). This may
be useful for special applications such as smooth horizontal
scrolling (see function 4f07h). Additionally, it may be used to
pad scan line lengths to prevent single scan lines from splitting
across 64K segments.

Note: The width is requested in pixel units, rather than bytes. If you
specify an illegal value (such as 641 pixels in an 8-pixel-per-
byte mode), the request will always be rounded up to the next
highest value allowed (648 in this example).

The VESA BIOS Extension 93

Input: Registers (set before function call):

AX: set to 4f06h

Function 0

Set Length: Registers (set before function call)

BL:

CX:

0

New scan line length in pixels

Output: Registers (read after function call):

AX:

BX:

CX:

DX:

004fh (if successful)
Number of bytes in one scan line
Number of pixels in one scan line
Maximum number of scan lines (virtual vertical reso
lution)

Function 1

Get Length: Registers (set before function call)

BL:

CX:

1

New scan line length in pixels

Output: Registers (read after function call):

AX:

BX:

CX:

DX:

004fh (if successful)
Number of bytes in one scan line
Number of pixels in one scan line
Maximum number of scan lines

(virtual vertical resolution)

Function Call

4f07h:

Ge^Set Start of Display
Version 1.1 and later

Remarks: This function consists of two subfunctions which set or report
the starting address of the physical display (CRT image). This
allows scrolling a smaller physical display within a larger virtual
display (see function 4f06h), or switching the display to another
display page when multiple pages are supported.

94 EGA/VGA; A Programmer's Reference Guide

Note: The offset are specified in horizontal and vertical pixel units,
rather than bytes and lines.

Input: Registers (set before function call):

AX: set to 4f07h

Function 0

Set

Position: Registers (set before function call)

BL

BH

CX

DX

0 (function select)
0 (Reserved, must be 0)
Horizontal Pixel Offset

Vertical Pixel Offset

Output: Registers (read after function call):

AX: 004fh (if successful)

Function 1

Get

Position: Registers (set before function call)

BL:

Output: Registers (read after function call):

AX

BH

CX

DX

004fh (if successful)
0 (Reserved, always 0)
Horizontal Pixel Offset

Vertical Pixel Offset

Assembly Language Programming Example

The following program demonstrates the use of VESA functions. It checks
for the presence of a VESA BIOS compatible adapter and reports the results. If
a VESA adapter is detected, the version number and vendor information is
printed. The program then sets mode 104h, if it's available. If mode 104h is not
available, the program searches for a windowed graphics mode. If no window
mode is found, the program sets mode 102h as the default mode common to all

The VESA BIOS Extension 95

VESA adapters. After setting the mode, a vertical line is plotted from the bot
tom to the top of the screen. This will require a bank switch on a windowed
mode with sufficient resolution (some adapters use windows in lower resolution
modes for additional display pages).
Note that the program uses most of the VESA calls. It saves and restores the

video mode (procedures SaveVMd and RestVMd on page 108), returns ex
tended mode information (the RdVMode procedure on page 103), and uses the
window switching calls as a direct call (procedure VPlot on page 106). The
plotting routine is very generalized, and hence not extremely efficient. But, it
should work on almost any VESA adapter.

CR equ 13

LF egu 10

BELL equ 7

;records for MODE AMD WINDOW ATTRIBUTES

MA RECORD Rsv!ll,gr:l,clr;l,Bcall:l,0ptl:l,Supp:1
WA RECORD Rd:l,Wr!l,Exist!l

Info stzuc

Vsig db 4 dup (7)
Ver db 2 dup (?)

pVdata dd ?
VCap db 4 dup (?)
pModeTbl dd ?
MemBlks dw ? ;Ver 1.1 only

Info ends

Cfg struc

ModeA dw ? ;MA

WinAA db ? ;WA

WinBA db ? ;WA

WGran dw ?

WSize dw ?

SegWA dw ?
SegWB dw 7
WCall dd 7

LSlze dw 7

/OPTIONAL DATA (check ModeA MASK OptI)
HRes dw 7

VRes dw 7

CellW db 7

CellH db 7

96 EGA/VGA: A Programmer's Reference Guide

Cfg

BIOS

BIOS

vdata

vdata

data

Bplanes db

BPerPel db

NBanks

MMod

BkSize

AvPages db

Vl_lRsv db

ends

?

?

db

db

db

?

?

;=Ver 1.1 Only

;=Ver 1.1 Only

segment at 4Oh

org 6ch

lowtime dw ?

hitime dw

ends

segment word

VI label

VESAInfo db

/timer low word

/timer high word

public

Info

256 dup (0)

'DATA'

/Initializing
/to 0 guarantees

/Qssdefault even

/for VESA 1.0

VC label Cfg
VESACfg db 256 dup (0)

iBpPel db

PpByte db

even

CurWin dw

/linear bits per pixel
/pixels per linear byte

/Current Window Number

ends

segment word public 'DATA'

VFmsg db 'A VESA adapter is not '
db 'installed^ or the VESA '

db 'adapter returned an error'

db CR,LP,BELL,0

VerMsg db 'VESA Version '

MajVer db '00.'

MinVer db 'OO'^CR^LF^O

CRLP db CR,LP,0

The VESA BIOS Extension 97

data

_TEXT

main

OlMode dw ?

ends

segment word public 'CODE'
as Slime OS: TEXT

proc

push

sub

push

mov

mov

far

DS

AX,AX

AX

AX,data

DS,AX

assume DS:data

call

jc

CheckVESA

®F ;skip next section if
;no VESA BIOS

;VESA ADAPTER DETECTED

call

call

mov

call

call

call

mov

call

call

ShowVESA

SaveVMd

AX,5

delay

SetVMode

Vline

AX,5

delay

RestVMd

;5 second delay

;Set a Window Mode or 102h

;Draw a vertical line

;5 second delay

assume DS:nothing

ret

main endp

CheckVESA proc

push

push

mov

mov

near

DS

ES

AX,data

DS,AX

98 EGA/VGA: A Programmer's Reference Guide

mov AX^vdata

mov ES^AX

assume DS;data,ES:vdata

mov

mov

int

cmp

je

call

stc

jmp

DI,offset VESAInfo ;set EScDI

;to buffer

AX,4f00h /VESA Get Info Call

lOh /make VESA call

/AX=004fh if call worked

AX,4fh

®F

VESAfail

short CVdone

/Is it a VESA adapter
/ yeS/ skip next section

/ no, VESA not supported

/ or error

/set carry flag (error

/return)

®@! /VESA Adapter detected
clc

CVdone: pop ES

pop DS

assume DS:nothing,ES:nothing

ret

CheckVESA endp

ShowVESA proc near

push

push

DS

ES

push

push

push

AX

DI

SI

mov AX,data

mov DS,AX

assiime DS:data

mov AX,vdata

mov ES,AX

assume ES:vdata

mov DI,offset MinVer /DS;DI = string

/location

The VESA BIOS Extension 99

mov

call

mov

mov

call

call

push

Ids

assume

call

pop

assume

call

pop

pop

pop

pop

pop

assume

ret

AL,ES;VI.Ver

bin2asc

DI,offset MajVer

AL,ES;VI.Ver+l

bin2asc

SI,offset VerMsg

print

DS

SI,ES:VI.pVdata

DS:nothing

print

DS

DS:data

SI,offset CRLF

print

SI

DI

AX

ES

DS

DS;nothing,ES:nothing

;A

;

;

;

/m

L = # to convert

DS:DI = string

;location

;AL = # to convert

DS:SI = string to

/print

DS;SI = vendor

/string

ake sure a CR/LF

/prints

ShowVESA endp

SetVMode proc near

push

push

push

push

push

push

push

AX

CX

DX

DI

SI

DS

ES

eld /move forward in strings

100 EGA/VGA: A Programmer's Reference Guide

mov AX,vdata

mov DS,AX

assume DS:vdata

;This procedure will attempt to set a windowed
/mode. If none is available it will default to

;102h (800 X 600)

les

mov

mov

mov

repne

dec

dec

mov

sub

shr

push

mov

mov

repne

pop

je

jmp

DI,VI.pModeTbl

SI,DI

AX.Offffh

CX,256

scasw

DI

DI

CX,DI

CX,SI

CX,1

CX

DI,SI

AX,104h

scasw

CX

nWS

short WS

;ES:DI points to
/extended Mode Table

/put copy in DI

/Offffh marks end

/find end

/point to end

/put offset of end in CX
/CX = mode count in bytes

/CX = mode count in words

/restore mode table pointer

/look for VESA 104h

/don't search for window

/mode

nWS:

mov CX,104h

call RdVMode

test VC.ModeA,MASK Supp

jz WS

test VC.ModeA^MASK OptI

jnz

/Mode 104h

/get mode info

/Is it supported?

/no, search for another

/Is optional data

/available?

/ yes, skip next

/OPTIONAL DATA NOT AVAILABLE, FILL-IN THE DATA

/OUR PLOT ROUTINE WILL NEED

mov VC.HRes,1024

mov VC.VRes,768

mov VC.BP.3rPel,4

/horizontal res.

/vertical res.

/4 bits per pixel

The VESA BIOS Extension 101

mov

mov

int

; (16 colors)

VC.Bplanes,4 ;4 bit planes

BX,104h

AX,4£02h

lOh

;put mode in BX

;Set Super VGA Mode

jmp SVMdone

WS: ;VESA 1024 X 768 NOT FOUND^ LOOK FOR ANOTHER

/WINDOWED MODE

mov DI,SI /restore mode table pointer

nMode: push

mov

add

call

pop

CX

CX,ES;[DI]

DI^2

RdVMode

CX

/put mode number in CX

test

jz

test

jz

test

jz

test

jz

mov

mul

cmp

je

VC.ModeA^MASK Supp

skSet

VC. Mode A ̂ MASK gr

skSet

VC.WinAA,MASK Exist

skSet

VC.ModeA.MASK OptI

skSet

/Supported?

/ No^ try again

/Graphics?

/ No, try again

/Windows?

/ No, try again

/Optional info

/supported?

/no, try again

AX,VC.LSize /get the line size (bytes)
VC.VRes /times # of lines

DX,0 /I screen <64K

/(no high byte)?
skSet / yes, try another mode

/WE NOW HAVE A GRAPHICS WINDOWING MODE

/64K SUPPORTED BY THE CURRENT HARDWARE

/CONFIGURATION, SO SET PERFORM A MODE SET

mov BX,ES: [DI-2] /put mode in BX

mov AX,4f02h /Set Super VGA Mode

int lOh

sub

add

AX,AX

AX,1

/AX=0

/Clear zero flag

/(to exit loop)

102 EGA/VGA: A Programmer's Reference Guide

skSet: loopz nMode

jnz SVMdone

;N0 WINDOW GRAPHICS MODE FOUND, SET DEFAULT

;102h

mov BX,102h ;Mode 102h

mov AX,4£02h ;Set Super VGA Mode

Int lOh

mov

call

CX,102h

RdVMode

;Mode 102h

;get mode info

test VC.ModeA,MASK OptI

jnz @F

;Is optional data
/available?

; yes, skip next

/OPTIONAL DATA NOT AVAILABLE, FILL-IN THE DATA

/OUR PLOT ROUTINE WILL NEED

SVMdone:

mov VC.HRes,800 /horizontal res.

mov VC.VRes,600 /vertical res.

mov VC.BPerPel,4 /4 bits per pixel
/ (16 colors)

mov VC.Bplanes,4 /4 bit planes

cmp VC.Bplanes,1 /use Mode 2 i£

ja @F / 1 bit plane

cmp VC.BPerPel,8

jb ®F / or if bits

jmp skWM2 /skip Write Mode 2

OC

WRITE MODE 2 AS THE DEFAULT

mov DX,3ceh /Graphics Controller

mov AL,5 /Mode Reg Index

out DX,AL

inc DX /Mode Register

in AL,DX /Read Current value

and AL,not 3 /Clear Write Mode

or AL,2 /Write Mode 1

out DX,AL /Set Write Mode

/CALCULATE COMMONLY USED FACTORS

skWM2: sub AH,AH /AH=0

mov AL,VC.BPerPel /Get bits per pixel
/(colors, not linear)

The VESA BIOS Extension 103

div

cmp

jne

mov

VC.Bplanes

AL,0

@F

AX,1

;Divide by # planes
;to get bits per pel

;some adapters incorrectly

;set # of planes to exceed

;bits per pixel/set back to 1

mov lBpPel,AL

sub AL,9 /get inverse: 8=-l,

/7=-2, etc

neg AL /change to positive

mov PpByte,AL /store as pels/byte

mov CurWin,0 /set Window to 0

pop ES

pop DS

pop SI

pop DI

pop DX

pop CX

pop AX

assume

ret

DS:nothing,ES:nothing

SetVMode endp

RdVMode proc near

/Returns information about extended VESA modes

;Entry

; CX » mode number

/Returns

/ vdata:VESAcfg (information table)

push

push

push

push

DS

ES

AX

DI

mov AX,vdata

mov DS,AX

mov ES,AX

assume DS:vdata,ES:vdata

cmp word ptr VI.Ver,0101h

j ae @F
/=Ver 1.1?

/ yes, skip
/ initialization

104 EGA/VGA: A Programmer's Reference Guide

;VESA VERSION

/BUFFER

push ex

INITIALIZE CONFIGURATION

mov

sub

mov

rep

pop

mov

mov

Int

DI,offset VESAcfg

AL,AL

CX,256

stosb

CX

DI,offset VESAcfg

AX,4f01h

lOh

;to config buffer

/Initialize with 0

/Max length of table

/ES:DI points to VESA

/configuration buffer

/get extended mode info

pop

pop

DI

AX

pop

pop

RdVMode endp

ES

DS

assume ES:nothing,DS:nothing

ret

VPlot proc near

Enter with:

AL=color

CX=x

DX=y

NO REGISTERS PRESERVED (TO IMPROVE

PERFORMANCE, THIS IS LEFT TO THE

/CALLING ROUTINE

push AX

mov AX,vdata

mov DS,AX

assume DS:vdata

mov

mul

AX,DX

VC.LSize

BX,AX

/put y in AX

/find byte offset

/ Y * Line Size

/ DX:AX = offset

/ DX:BX = offset

push

push

DX

BX

/save DX

/save BX

The VESA BIOS Extension 105

sub

sub

mov

mov

div

mov

DX,DX

AX,CX

BL/PpByte

BX

CX,DX

;BH=0

;DX=0

;put X in AX

;£ind byte offset =

; X / pels per byte

; remainder (DX) is

; pixel offset within
; the byte

;save pixel offset

pop

pop

BX

DX

/restore BX

/restore DX

add

jnc
inc

AX,BX

®F

DX

/add X and Y offsets

/if it overflows

/ add 1 to high byte

/DX:AX = byte offset CX=pixel offset

mov

mov

mov

dec

sar

inc

cmp

je
shr

dec

jmp

BX,CX

CH,80h

CL,lBpPel

CL

CH,CL

CL

BX,0

@F

CH,CL

BX

@B

/pixel offset in BX
/basic bit mask in CH

/get bits per pixel
/adjust for 1st bit

/in CH

/mask # bits per pel

/adjust back to full

/count

/is there a

/pixel offset?

/no, skip adj ustment

/adjust over one pos
/reduce offset count

/DX:AX is byte offset, CH is pixel mask

test VC.WinAA,MASK Exist

j z nWin /Not a window mode

/don't select one

/WINDOW SELECTION ROUTINE

mov BX,VC.WGran

cmp BX,64

je @F

/Granularity in BX

/Is it 64K?

/ yes, no DIV needed

push

mov

CX

CL,10 /Multiply by 1024

106 EGA/VGA: A Programmer's Reference Guide

shl

pop

div

xchg

BX,CL

CX

BX

AX,DX

;to convert to Kb

/Offset / Granularity

/Granule # in AX

/Granule Offset in DX

/DX = #, AX = Offset

/SET BOTH WINDOWS TO THE SAME GRANULE

/(SAME WINDOW ADDRESS)

cmp

je
mov

DX^ CurWin

skpWC

CurWin,DX

push AX

push DX

sub BX,BX

call VC.WCall

pop DX

mov BX,1

call VC.WCall

/in Current Window?

/ yes, skip Win Call
/Update CurWin

/AX and DX destroyed by

/Window Call

/Set Window A

/BH=0 (set),

/BL=0 (Window A)

/(Granule in DX)

/or INT lOh

/with AX=4f05h

/restore granule

/Set Window B

/BH=0 (set),

/BL=1 (Window B)

/(Granule in DX)

/or INT lOh

/with AX=4f05h

pop AX

/SET READ WINDOW TO ES AND WRITE WINDOW TO DS

skpWC! test VC.WinAA,MASK Rd /Is A readable?
jz @F /no, set ES=B@F

mov BX,VC.SegWA

mov ES,BX

assume ES:nothing

jmp SetDS

mov BX,VC.SegWA

mov ES,BX

assume ES:nothing

/yes, put Window
/A Segment in ES

/yes, put Window

/B Segment in ES

SetDS:

nWin:

Win:

test VC.WinAA,MASK Wr

jz @F

The VESA BIOS Extension 107

;Is A writeable?

; no, set DS=B

mov

xnov

assume

jmp

assume

mov

mov

assume

mov

mov

mov

assume

mov

mov

mov

mov

out

pop

mov

mov

BX,VC.SegWA

DS,BX

DS:nothing
Win

DS:vdata

BX,VC.SegWA

DS,BX

DS:nothing

BX,OaOOOh

ES,BX

DS,BX

DS:nothing, ES:nothing

;yes, put Window

;A Segment in DS

;yes, put Window
;B Segment in DS

;Set read and

/write Segs to

/aOOOh

BX,AX

DX,3ceh

AH,CH

AL,8

DX,AX

AX

AH,[BX]

ES:[BX],AL

/put address in BX

/Graphics Controller

/Bit Mask

/Bit Mask Index

/restore color (AL)

/load latch registers
/write color

assume DS:nothing

ret

VPlot

Vline

endp

proc

push

push

mov

mov

assume

mov

dec

mov

mov

near

DS

ES

AX,vdata

DS,AX

DS:vdata

DX,VC.VRes

DX

ex,300

AL,3

/Get Vertical Res.

/ (1 past last line)
/go up one line

/Plot at X=300

/Color 3

108 EGA/VGA: A Programmer's Reference Guide

push DX

call VPlot

assume DS:nothing

pop DX

cmp

jne

DX,0

;Call VESA plot

/Past last row?

pop ES

pop DS

assume DS:nothing,ES:nothing
ret

Vline endp

SaveVMd proc

push

push

push

mov

mov

DS

AX

BX

AX,data

DS,AX

assume DS:data

mov

int

mov

pop

pop

pop

AX,4f03h

lOh

OlMode,BX

BX

AX

DS

assume DS;nothing

ret

SaveVMd endp

RestVMd proc

push

push

push

mov

mov

DS

AX

BX

AX,data

DS,AX

/Return Super VGA Mode

/Save the mode for restore

assume DS:data

The VESA BIOS Extension 109

mov

mov

int

BX,OlMode

AX,4f02h

lOh

;6et old mode number

;Set Super VGA Mode

pop

pop

pop

assume

ret

BX

AX

DS

DS:nothing

RestVMd endp

VESAfail proc near

push

push

mov

mov

assume

mov

call

pop

pop

assume

ret

SI

DS

AX,data

DS,AX

DS:data

SI,offset VFmsg

print

SI

DS

DS:nothing

;DS:SI points to msg

/print message

VESAfail endp

delay proc

;on entry:

; AX = number of seconds to delay

push

push

push

push

cmp

je

mov

mov

assume

mov

mul

DS

AX

BX

DX

AX,0

ddn

BX,BIOS

DS,BX

DS:BIOS

BX,18

BX

/leave if no delay

/get BIOS data segment

/approx 18 tics per sec
/DX:AX is now approx sees

110 EGA/VGA: A Programmer's Reference Guide

nowrap:

ddn:

add

adc

AX,lowtime

DX,hitime

;add to time

;carry to high word

;DX:AX is now the expiration time

jnc nowrap ;skip next if no overflow

;THE EXPIRATION TIME WRAPPED PAST 0, SO

;WAIT FOR 0 BEFORE PROCEEDING (HIGH BYTE

;=0 IS SUFFICIENT)

cmp

jne
hitime,0

;loop until DX=0

;first, compare HIGH BYTES

cmp DX,hitime ;is expiration smaller?
jb @F ; yes, time has expired
ja @B ; no, loop until equal

;THE HIGH BYTE'S THE SAME, CHECK LOW

cmp AX,lowtime ;is expiration larger?
ja @B ; yes, check again

;no, fall through and finish

pop

pop

pop

pop

DX

BX

AX

DS

assume DS:nothing
ret

delay endp

bin2asc proc near

COMMENT*

This binary to ASCII conversion routine is

limited to numbers less than 100.

AL: 8 bit value to convert

DI: offset in DS which receives a 2 byte ASCII
value

push

push

sub

mov

div

AX

DX

AH,AH

DL,10

DL /convert to decimal digits

The VESA BIOS Extension 111

add AX,3030h ;add 30h to get ASCII codes

mov [DI],AL /write lO's place
mov [DI+1],AH /write I's place

pop

pop

asstime

ret

DX

AX

DS:nothing

bin2asc endp

print proc near
/Enter with DS:SI pointing to a Null (0)
/terminated string. For example,

/Str db 'This is null terminated',0

push

push

push

push

mov

mov

cmp

je
mov

int

inc

jmp

AX

BX

BP

SI

BL,7

AL,[SI]

AL,0

@F

AH,Oeh

lOh

SI

short ®B

/(in case we're in graphics
/mode)

/get the character

/is this the end of

/the string?

/ yes, leave

/ no, get ready to write TTY

/get the next character

pop

pop

pop

pop

SI

BP

BX

AX

ret

print

_TEXT

end

endp

ends

main

Chapter

6
Physical Construction

BIOS Calls vs. Direct Register and Memory Access

Using BIOS calls is certainly easy, but many of the routines are painfully slow.
Most programs write registers and memory directly in order to improve perfor
mance. Even with this direct interface to the hardware, many of the functions
remain compatible between the CGA/monochrome and EGA/VGA systems.
The primary exceptions are programs which aggressively program the
CGA/monochrome 6845 registers (these correspond to the EGA/VGA CRTC
registers). A few of the adapter's registers are significantly different from each
other. Effective use of register programming and memory access requires a
good understanding of the adapter's memory organization.

Direct Memory Manipulation

In text mode, memory locations are used to store the ASCII code of the
character being displayed, as well as its attributes (color, intensity, and/or blink
ing). The first two bytes of memory on the adapter, as seen by the CPU, corre
spond to the character in the upper left comer of the screen, and the succeeding
words (two bytes) correspond to the positions from left to right, going down the
screen. The first byte of each word is the ASCII code of the character. The
second byte, called the attribute byte, is divided into groups of one and three

114 EGA/VGA: A Programmer's Reference Guide

bits, as shown in the following diagram.

blink
background

color
intense

foreground
color

7 6 5 4 3 2 1 0

For color monitors, the three-color bits for backgroimd and foreground give
eight colors. For monochrome monitors, the three background bits should be
either all 0 (black) or all 1 (colored), and the three foreground bits should be
set to one of the three values given in the table below (using other combina
tions may not give th^ same results on both the EGA and monochrome
adapter). Memory locations begin at address bSOOOh for graphics monitors and
bOOOOh for monochrome (non-graphics) monitors.

Bit Pattern
Default

Colors
Monochrome

000 black black

001 blue underline

010 green

Oil cyan

100 red

101 magenta

110 brown

111 white colored

The memory organization for 80-column text modes is shown in Figure 6-1.
Only the offsets change for 40-column modes, since each new line will begin at
a multiple of 80 bytes rather than 160. Super VGA text modes which support
132 columns have lines at multiples of 264 bytes.
For color modes, the display memory begins at address b8000h (or

b800:0000 in segment:offset notation). For monochrome modes, the display
memory begins at bOOOrOOOO. Note that the address depends on the mode and
not the type of monitor. Thus, a monochrome VGA using mode 3 would use a
starting address of b800:0000. Of the standard EGA and VGA modes, only
mode 7 uses the b000:0000 starting address. Several Super VGA's use
b000:0000 as the starting address for 132-column text modes.

In graphics mode, memory is used to store the colors for each pixel. The
mapping of memory locations to pixel locations varies with the particular

Physical Construction 115

Line

0

1

0 : character 1 : attribute

160 : character 161 : attribute

Figure 6-1 80-coiumn text mode. Offset from segment bOOOh (mono) or

bSOOh (coior).

graphics mode in use and the amount of memory installed on the EGA (the
VGA mappings are the same as the EGA with 256K installed memory). In all
modes, the pixels are ananged left to right and top to bottom on the screen as
the memory address increases (see Figure 6-2).

INCREASING COLUMN NUMBER

INCREASING ADDRESS (SMALLEST STEPS)

UPPER LEFT
CORNER

(OFFSET 0)

INCREASING

ROW NUMBERS

INCREASING

ADDRESS

0

m

m-1

n + m-l

Figure 6-2 General memory/display correlation.

116 EGA/VGA: A Programmer's Reference Guide

EVEN

SCAN

LINES

4 PIXELS

PER BYTE

0 beoooh bsooih • • •

2

4

8

•

•

•

ODD

SCAN

LINES

boOOOh baOOlh

Figure 6-3 CGA compatible two-color graphics.

In compatibility modes, which work in the same manner as corresponding
modes on the CGA, the display memory is interleaved. This means that there
are two areas of memory for storing pixels — one area for the even-numbered
rows and one area for the odd-numbered rows. Each byte contains information
about several pixels, so it is more useful to refer to bits (hence the term "bit
mapped graphics"). In medium resolution, two bits refer to one pixel (giving
four possible states and thus four colors), and in high resolution each bit is a
single pixel (it can be on or off, thus giving two colors). The even-numbered
rows begin at memory location bSOOOh, and the odd rows begin at baOOOh (see
Figure 6-3).
The VGA adds a 320 X 200 mode, which resembles the organization of the

CGA modes. This new mode uses one byte per pixel (the eight bits give 256
accessible colors) and a starting address of aOOOOh. The map is not split be
tween even and odd scan lines; all pixels are stored consecutively as they ap
pear on the screen. The one byte per pixel organization and continuous memory

Physical Construction 117

ALL I
SCAN

LINES o

I PIXEL

PER BYTE

aOOOOh aOOOIh

Figure 6-4 VGA 256-color mode.

map makes calculating the memory address of each pixel very easy (see Figure
6-4).

The other new modes available on the EGA and VGA also use a much sim

pler map than the CGA, but writing different colors becomes more compli
cated. The starting address is aOOOOh for all of the new graphics modes. Each
bit refers to one pixel, and thus each byte describes exactly eight pixels. You
may wonder how up to 16 colors can be described with one bit, and the answer
reveals an interesting feature of the EGA/VGA.
The memory is arranged in bit planes. Several planes can occupy the same

address — for four-color modes there are two planes, and for 16-color modes
there are four planes. It is helpful to picture each plane as a bank of memory
stacked upon another. At any single memory address, there are up to four bits
— one from each plane (see Figure 6-5). Each possible combination of planes
may designate a unique color (selected from 64 possibilities), and any combina
tion of planes may be modified simultaneously.
A bit plane organization is convenient for three reasons. First, the location of

a pixel on the screen corresponds exactly to its location in memory. And in the
simplest case, each bit plane corresponds to a primary color and an intensity
control (strictly speaking, this is not the case on the EGA and VGA, although it
is true for the default color scheme). Second, the number of available colors
can be doubled by simply adding another bit plane. Programs which write di
rectly to memory would not need to recalculate addresses for new, compatible
adapters if additional colors would be added through new planes. Third, the
memory can be modified as quickly in two-color mode as 256-color mode (for
Super VGA adapters which support such a mode), since all planes can be modi
fied with one memory access.

However, there is some additional processing required to handle bit planes.
The additional planes would not be of much use if they all were written at

118 EGA/VGA: A Programmer's Reference Guide

8 PIXELS PER BYTE

a OOOOh

aOOOOh

aOOOOh

aOOOOh

ALL SCAN ^
LINES

Figure 6-5 Bit plane organization.

once, since you would still have only two colors. The adapter provides two
methods for setting colored pixels from the CPU (a third method is available
for moving data from one adapter memory location to another with all color
data intact). The first method, called Write Mode 0 (not to be confused with the
BIOS video modes), uses the Map Mask Register to specify which bit planes
should be set to 1. Each time you change the color, you must write the new
value to the Map Mask Register — much like selecting a new colored pen or
crayon.

Note that the Map Mask Register specifies which planes will change, not
which planes will be set to 1. To write pure colors, you should first write O's to
all planes (to clear the unmodified planes before writing). Alternatively, you
could use the Set/Reset and Enable Set/Reset registers to clear the unmodified
planes. To use the Set/Rest method, you would first write 0 to the Set/Reset
Register. This tells the adapter to write 0 to the enabled planes when Set/Reset
mode is activated. Then use the logical negation of the Map Mask for the En
able Set/Reset Register; i.e., if the Map Mask is 0101b, the Enable/Set Reset
should be 1010b. Using the Set/Reset method may be preferable for writing
characters, since all eight bits are always affected (thus clearing the back
ground); writing 0*s to all planes is preferable for plotting (or writing characters
with the background unaffected), since the unaffected pixel positions may be
masked.

Physical Construction 119

Because the CPU writes a full byte, each access will normally change eight
pixels, turning on pixels in the designated planes where the bits are one, and off
where zero. This can be handy for writing character data in graphics modes
(where each character is an eight-bits-wide pattern), but does not allow the
plotting of individual pixels. The Bit Mask Register may be used to select indi
vidual pixels within the byte. Each bit set to one in the Bit Mask allows the
corresponding bit in each byte to change — thus, a single pixel can be modi
fied by setting only one bit in the mask. Note that the pixel may either be
tumed on or off by making the corresponding CPU bit position either 1 or 0,
respectively (i.e., the Bit Mask does not force the pixel to 1).
On the surface, plotting may seem fairly easy to manage: (1) select the ad

dress and bit, (2) set the Map Mask Register to Of and write 0 to the address
(imless using write mode 2), (3) set the color through the Map Mask register
(imless using write mode 2), and (4) write the pixel. While this is essentially
the correct outline, there are complications related to the hardware design
which make the task more difficult. For example, the CPU does not have direct
access to the adapter memory. In order to preserve unmodified bits, the current
adapter memory contents must be loaded into a set of latch registers (there are
four 8-bit latch registers, one for each plane).
The latch registers are loaded by moving data from the adapter memory to

the CPU; e.g., MOV AL,ES:[BX] where ES:[BX] points to the desired memory
location (the value which appears in AL is usually ignored — it is affected by
the read mode and is discussed later). When data is written from the CPU to
memory, the CPU data is combined with the latch register data in the ALU's,
and then stored in the adapter's memory. For the most part, this operation is
transparent to the user, but several of the registers give you control over the
process.

Figure 6-6 shows a simplified view of the process (the registers have been
set and we are simply moving data). Note that the Map Mask affects both the
registers and the CPU data. However, the Bit Mask affects only the CPU data.
That, in a picture, is how the latch registers preserve the unchanged bits (the 12
lightly shaded boxes) while the CPU changes the selected bits (the 4 darkly
shaded boxes). Of course, the data in bit planes 2 and 3 have not changed at all,
so the colors written are not "pure."
To write a specific color, we unmask all four bit planes, and write O's to the

selected pixels to clear the bits (using the same Map Mask we will plot with).
Then we mask the appropriate planes for the desired pixel color and write I's
from the CPU. Thus, writing a color using this method requires at least one
read and two writes. Note that the latch registers are not updated by the CPU
write. Because the Map Mask blocks the latch registers and CPU data takes
precedence over latch data, we do not need to update the latch registers be
tween writes.

However, other register settings may affect the latch register/CPU interaction
and require additional CPU reads. Of these, the Data Rotate Register is used

120 EGA/VGA: A Programmer's Reference Guide

Latch Registers

1 1 1 1 13 1 1 1 ^ 3 1 1 1 1 1 1 1 1

0
—J

0 0 0 0 0 0 0
0
0 0 0 0 0 0 0 0

CPU AL
1 0 1 0 1 0 1 0 (Read Map Register = 2)

mov AL, BX

Latch Registers Map Mask

i

^ &
Map Mask hj

11

m

11

1

M

CPU AL

/0 011 0 0 0

//
1 1 1 1 1 1 1 1

Bit Mask

mov AL, Offh
mov [BX], AL

Figure 6-6 Simplified pixel setting diagram.

most frequently. The Data Rotate Register sets the ALUs (Arithmetic Logic
Units, internal devices which combine latch and CPU data for each plane) to
perform logical functions between the CPU and adapter data. Figure 6-7 shows
how the ALU's affect the simplified write diagram shown in Figure 6-6.

Physical Construction 121

ALUs

Latch Registers (AND, OR, Rotate, etc.)

1 1 tf i l I I
I I I yi I I I

I I l *TI I I

CPU Register

Adapter Memory

Map Mask

Figure 6-7 The Arithmetic Logic Units.

Thus, if you want to write text without affecting the background, you can
AND an inverse image of the character with all bit planes and bits unmasked
(to clear the pixels which form the character) and then OR the character pixels
in the desired color (if it is something other than color 0). This technique is
very useful for animation, too. The WHEEL.ASM program in the Appendix
uses an AND/OR driver to preserve the background while a wheel rolls across
the bottom of the screen. Alternately, you could use the character pattern to set
the Bit Mask and use Write Mode 2 to set the desired color directly from the
processor.

Write Mode 0, using the Map Mask and Bit Mask registers to set colors, is
the BIOS default technique. Since most BIOS functions work with character
data, which come in 8-bit sets, it makes sense that BIOS would use such a
technique. However, the EGA provides another method for writing video mem
ory, which usually works better for plotting individual pixels. This method is
called Write Mode 2 and may be set through the Graphics Controller Mode
Register, Write Mode 2 does not require the use of the Map Mask Register; the
color number is placed in a CPU register and then written to the adapter's
memory. This offers a significant advantage over Write Mode 0; with Write
Mode 2, all four planes are set according to the selected color, saving one write
(black before the color) or use of the Set/Reset registers. As with Write Mode
0, the pixels are selected with the Bit Mask Register (Write Mode 2 is affected
by the Map Mask Register, which should normally be set to Of to enable all
planes).

Additional hardware complications arise from the limited port address space
of the PC family. For example, the Map Mask, Set/Reset, Enable Set/Reset, and
Bit Mask registers are selected indirectly via address registers. The Map Mask
Register is accessed through the Sequencer Address Register, The Sequencer

122 EGA/VGA: A Programmer's Reference Guide

Address Register is written with the index of the Map Mask Register, and then
the Map Mask is written with the bit planes to modify. In this way, other
registers can appear at the same port address as the Map Mask Register to
conserve address space. As with the bit planes which create "layers" of mem
ory, you can think of this as layers of registers (although only one indexed
register may be modified at any one time). The Bit Mask, Set Reset, and En
able Set/Reset registers are accessed in the same manner via the Graphics 1
and 2 Address Register,
The EGA and VGA commonly use indirect reference for addressing registers

(and memory, too), and it can become very confusing. In some cases, the refer
ences are three levels deep: an address points to a second address which points
to a table of values. The following diagram may be helpful for picturing the
register uses (the boldface register names are those mentioned above).
EGA registers used for accessing display memory and features are:

Sequencer Address Reset
Clocking Mode
Map Mask

Character Map Select
Memory Mode Select

Graphics 1 and 2 Address Set/Reset
Enable Set/Reset
Color Compare
Data Rotate

Read Map Select
Mode

Miscellaneous

Color Don't Care

Bit Mask

Let's go through a description of the plotting process to get a better under
standing of its operation. We will assume the write mode is already set to 0,
since this is the BIOS default. First, select the Bit Mask Register through the
Graphics 1 and 2 Address Register. You will need to calculate the memory
location of the pixel to change. Let's say you want to plot column 23 in row
183. With 640 pixels per row, this means you want to change bit
183 X 640 + 23 = 117,143. Now divide by 8 to get byte number 14,642 with a
remainder of 7. At this point, the program could read the byte to load the latch
register (we will assume DS points to the adapter segment).

mov BX, 14642 ; point to the byte

xnov AL, [BX] ; load the latch registers

Physical Construction 123

The remainder of 7 indicates bit 0 needs to be set, since starting from bit 7
on the left and going right seven positions gets you to bit 0 (all orientation on
the display is left to right). To modify bit 0 without affecting the other pixels in
the byte, we need to set the Bit Mask Register. To do this, select the Bit Mask
by writing 8 to port 3ceh (the Graphics 1 and 2 Address Register) and then
writing 1, for bit 0, to port 3cfh (the Bit Mask Register).

mov DX,3ceh /select the Address Register
mov AL,8 /index of the Bit Mask Register
out DX,AL

mov DX,3cfh /select the Bit Mask Register
mov AL,1 /set the low bit of the Bit Mask

out DX,AL

Next, select the Map Mask Register through the Sequencer Register. This is
done by writing the value 2 to port 3c4h. Clear the current color by setting the
mask to Ofh and writing 0. Then, the color value (which is simply a number
representing the bit planes to be modified) is written to port 3c5h. Finally, the
pixel can be set:

mov DX,3c4h /point to the Sequencer Address register
mov AL,2 /index of the Map Mask register

out DX,AL

mov DX,3c5h /point to the Map Mask register

mov AL^Ofh /all bit planes (1111b)

out DX,AL

mov [BX] , 0 /write 0 to clear the planes

/note, the Map Mask is still in effect

mov AL,Oah /color 10 — bit planes 4 and 2 (1010b)

out DX,AL /set the Map Mask

mov [BX]^Offh /write the color

This is a lot of code to do a simple operation like plotting a point (and the
address calculations were not even included!). Of course, these fragments are
not the most efficient — there are ways to reduce code size and increase the
speed. A program that uses Write Mode 0 (as outlined in the fragments above)
to plot a multicolored line across the top of the screen can be found in the
Appendix. The equivalent program using BIOS calls is listed under function
call 0 in Chapter 2. The Line and Ellipse programs described in Chapter 16
demonstrate the use of Write Mode 2, which is much more appropriate for
pixel plotting.

124 EGA/VGA: A Programmer's Reference Guide

Methods for Storing and Manipulating Images

Reading and storing graphics images from the adapter is similar to writing.
Again, either direct memory access or BIOS calls can be used. The large
amount of memory required for a high-resolution graphics page presents quite a
storage problem. Each enhanced graphics image with 16 colors requires llOK
bytes of memory for storage (154K for the VGA's highest resolution mode).
Five screens would almost fill the free work space on a 640K PC. Also, the
llOK of storage is larger than the 64K segment size on the 8086 family of
processors. You should also be aware that the adapters can use a logical screen
of up to 256K (64K in each of four bit planes), although only a portion will
appear on the display. Two basic methods for reducing the required memory
are data compression and vector representation. Before examining data com
pression methods, we will describe the various methods of reading data from
the adapter.

Using BIOS calls for reading the display is much simpler than reading mem
ory if speed is not critical. Interrupt lOh, function call 8 can be used to read
characters in any mode and their associated attributes in text mode. Function
call ch can be used to read the color of an individual pixel in graphics modes.
Both of these function calls are described in the previous chapters.

Directly reading memory in the CGA compatibility modes is a simple task.
In text modes, the odd addresses contain the character's ASCII code, and the
following even address contains the attribute. In graphics modes, each bit repre
sents a pixel being on or off in high resolution, or each group of two bits
represents the color of a pixel in medium resolution. Remember that the display
is interlaced — even and odd lines appear in different blocks of memory. Thus,
reading compatibility modes is very similar to writing.
The bit plane arrangement of the new graphics modes makes reading the

display memory more complicated. As was the case when writing to memory,
the registers can be used to access the various bit planes. There are two meth
ods for reading memory in the new modes. Read Mode 0 uses the Read Map
Select Register to check a single bit plane (see Figure 6-6); Read Mode 1 com
pares each address with a specific color in the Color Compare Register,
Read Mode 0 is the BIOS default method for reading memory. This is a

three-fold process. First, the Read Map Select Register is designated with the
Graphics 1 and 2 Address Register^ this is done by writing its index, 4, to port
3ceh. Next, the number of the bit plane (0, I, 2, or 3) that you want to read is
written to the Read Map Select Register at port 3cfh. Finally, you may read the
VGA memory. Remember that you are examining only a single bit plane —
you must repeat this process for each bit plane and combine the results to get
the color number. This method is most effective when you only need the con
tents of any or all bit planes or when you want to reproduce the bit planes in
the CPU's memory.

Physical Construction 125

The following code tests a Bit Mask (in BL) against video data moved into
BH. The color for the single, masked pixel is accumulated in AH. Note that the
pixel masking is at the CPU level — it is not masking video memory. The
fragment assumes that SI has been set with the address to be read.

mov

out

sub

mov

test

jz
inc

AX,0004h

DX,AX

AX,AX

BH,[SI]

BH,BL

@F

AH

/select plane 0

;AH=0 & AL=0

/get the video data
/was the masked bit set?

/ no, don't add to color

/ yes, add 1 to color

/ (color 1+?)

push

mov

mov

out

pop

mov

test

jz
add

AX

DX,3ceh

AX,0104h

DX,AX

AX

BH,[SI]

BH,BL

@F

AH,2

/Graphics Controller

/select plane 1

/get the video data
/was the masked bit set?

/ no, don't add to color

/ yes, add 2 to color

/ (color 2+?)

push

mov

mov

out

pop

mov

test

jz
add

AX

DX,3ceh

AX,0204h

DX,AX

AX

BH,[SI]

BH,BL

@F

AH,4

/Graphics Controller
/select plane 2

/get the video data

/was the masked bit set?

/ no, don't add to color

/ yes, add 4 to color

/ (color 4+?)

push

mov

mov

out

pop

mov

test

jz
add

AX

DX,3ceh

AX,0304h

DX,AX

AX

BH,[SI]

BH,BL

@F

AH,8

/Graphics Controller

/select plane 3

/get the video data
/was the masked bit set?

/ no, don't add to color

/ yes, add 8 to color

/ (color 8+?)

You should note that the Read Map Select Register is set to the bit plane
number — this is quite different from the Map Mask Register which uses the

126 EGA/VGA: A Programmer's Reference Guide

corresponding bit field. Hence, to read bit plane 3 the Read Map Select Regis
ter is set to three. But, to write plane 3, the Map Mask Register is set to 4 (or
0100b). This may be confusing at first: just remember that you can write to
multiple bit planes (which requires bit fields), but you may read only one plane
at a time. By designating the plane number, this automatically prevents the
illegal selection of several planes.
To use Read Mode 1, you must first select it (a two-step process). To do this,

set the Graphics I and 2 Address Register to point to the Mode Register by
writing 5 to port 3ceh. Then set Read Mode 1 by setting bit 4 of the Mode
Register. Usually the other bits of the Mode Register are set to 0 (although you
should determine the current setting before changing it), and you would write
lOh to port 3cfh (see the Mode Register entry for a description of the settings).
When in Read Mode 1, you can test the color of a pixel against a single

color of your choice by placing it in the Color Compare Register. The Color
Compare Register is selected by writing 2 to port 3ceh (the Graphics 1 and 2
Register). Next you write the color value to the Color Compare Register at port
3ceh. Finally you read the adapter's memory. You will see a set bit in every
location where the display color matches the value in the Color Compare Reg
ister. This method is very useful for scanning for a particular color or extracting
only one color from the display. If you want to check for special blocks of
colors, the Color Don't Care Register can be set to ignore any or all of the bit
planes (see Chapter 10).
The following code assumes the color number is in AH. It switches the Read

Mode to 1 — a task which would be a bit more difficult on an EGA (see
Chapter 13) — and reads the video data into BH. At its completion, BH will
have one bit set in each position which matches the selected color.

push AX

mov AL,5 /Mode Register
out DX,AL

inc DX

in AL,DX /get current Mode (VGA only)

or AL,1000b /Read Mode 1 (color compare)
out DX^AL /set Read Mode

dec DX

mov AL,2 /Color compare (AH already color)

out DX,AX

pop AX

mov BH,[SI] /get video data using
/color compare

Read Mode 1 is not very useful for getting the color of every pixel, because
it requires 16 iterations (one for each color) as opposed to four iterations (one

Physical Construction 127

for each bit plane) for Read Mode 0. However, it provides a convenient way to
compress a graphics image into less memory.

Data Compression

Most graphics images can be compressed into a considerably smaller space
than the bit maps use. It is not unusual for large stretches of sequential bits to
be set to the same color. You can take advantage of this fact by storing a string
of color values followed by a pixel count for that color. The following steps
would work quite nicely:

1. Set the CPU's data address to the first display address.

2. Set the Color Compare register to an initial value (e.g. 0 or 15).

3. Read the first display address into a CPU register and check the high bit
of the CPU register. If the bit is 0, select the next color and repeat this
step.

4. Count the number of bits set to 1. All of the remaining bits are set to 1.

Read the next byte. Continue counting bits until you find a 0, reach the

maximum count (a 1-byte integer, 256, is probably best for most applica

tions), or reach the end of the display.

5. Save the color and count, and return to step 2.

Be sure you don't overrun the allocated data area while using this algorithm.
The STORE.ASM program in the Appendix uses a variation of this method

to save video memory. In fact, it combines both read modes to determine the
initial color rapidly, and then works on the color compare. Note that this com
pression method can actually make the file larger than the total video memory
if the colors change frequently. Except for a screen full of alternating patterns,
however, this is an unlikely possibility.
A file compressed with alternating colors and counts has a second advantage

— it can be restored very quickly. The STORE.ASM program in the Appendix
uses Write Mode 2 to restore up to 8 pixels per write.

If most of your images consist of recurring shapes, such as circles, lines,
squares, and just a few points, you may want to store your image in tokenized
form. Each basic shape is given an identification code followed by the relevant
data (center and radius for a circle, endpoints for a line or square, coordinates
for a point, etc.). Such images are easy to scale and do not use much memory.
It is also much easier to design a picture larger than the current display size.
However, recreating the screen requires many calculations. Most CAD pack
ages use this approach to store images.

128 EGA/VGA: A Programmer's Reference Guide

Pages

For temporary storage, you may be able to use another page of memory. This
works for all of the EGA modes (which support at least two pages), but all of
the new VGA modes require too much memory to support a second page. A
second page is ideal storage for complex backgrounds in animation packages.
Rather than move an area which is about to be overwritten to a temporary
storage area, you store its coordinates (address). When the background needs to
be restored, you simply copy the affected area from the second page to the first.
The EGA and VGA even provide a method (Write Mode 1, see the Graphics
Controller Mode Register in Chapter 10) for copying one byte of all four bit
planes in one move.

Although the highest resolution modes do not have a second page available,
there is usually a significant portion of memory which remains unused. For
example, in 640 x 480 mode the display memory uses only 38K of the avail
able 64K. The remainder of the 64K can be used to store selected portions of
the background or templates for frequently drawn objects. For an example of
this technique, see the WHEEL.ASM program in the Appendix.

Overview of EGA/VGA Construction

Normally, understanding the adapter's memory organization as seen by the
CPU is sufficient for most programming applications. But if you will be chang
ing to different video modes while preserving memory contents or making very
heavy use of advanced register functions (especially those related to smooth
scrolling), you should have a basic understanding of the adapter's techniques
for reorganizing memory. In some cases, the adapter's view of memory is radi
cally different from that of the CPU. The adapter uses several different map
ping schemes, depending on the mode selected and the amount of memory
installed.

In order to provide compatibility with the CGA modes, the adapter uses a
method called odd/even address mode. In odd/even mode, odd memory ad
dresses are written to odd bit planes and even addresses to even bit planes.
Thus, b000:0000 is written to planes 0 and 2 and b000:0001 to planes 1 and 3.
In text mode, this is used to send the ASCII code to plane 0 and the attribute
code to plane 1. Figure 6-8 shows how this appears (the "c" represents a char
acter, "a" attribute for text mode). This wastes memory, since the ASCII codes
are stored only at the even CPU addresses and the attributes only at odd ad
dresses. So, the adapter provides a second function, chaining odd maps to even
maps. This function subtracts 1 from the odd CPU addresses (so that character
and attribute data appear at the same adapter address on different planes) and
doubles the address space by chaining the unused odd adapter addresses to the
end of the even addresses.

Physical Construction 129

PLANE

3
ig iSi 3g 5g ...

PLANE

I

PLANE OgH 2g 4g ...
c. , /-
Oo laB20 •• •

Oc Ic 2c • •
PLANE

ACTUAL MEMORY LOCATIONS

PLANE

0

PLANE

1
Og Ig 2g 3g 4g 5g • • • 1

o

O

o

O

Ic la 2c 2a • • •

•

•

•

CHAINED PORTION
OF BIT PLANE 0 I6K

CPU ADDRESSES

Figure 6-8 Memory chaining.

130 EGA/VGA: A Programmer's Reference Guide

Note that in Figure 6-8, the letter/number scheme for "g", "r", and "s" is
different than for "c" and "a". The "c" and "a" help you follow the character/at
tribute assignments. But, the "g", "r", and "s" (which, by the way, are entirely
arbitrary letter assignments) better reflect the odd/even address mode: note how
the odd-numbered letters are assigned to odd planes and even letters to even
planes.
While chaining is not terribly important for text mode, which uses very little

memory, chaining can increase the number of available pixels in graphics mode
(although it reduces the number of colors, since it effectively creates two-bit
planes instead of four). This is why the original EGA is limited to four colors
in 640 X 350 graphics when only 64K is installed.
The CGA graphics emulation essentially follows the same procedure as the

text modes. However, instead of character/attribute data, the two planes hold
sequential data bytes. To display the data, the adapter grabs two bytes of mem
ory (one from each plane) for every eight-pixel section displayed. The Graphics
Controller converts each pair of sequential bits (which form the CGA color) to
parallel bits on planes 0 and 1 as they are sent to the Attribute Controller for
display. The byte from plane 0 is converted first, and then the byte from
plane 1.

VESA Extensions

In the discussion of memory and register usage, perhaps you noticed some of
the wasted resources. For example, at a resolution of 640 X 480 (the highest
standard VGA resolution), the adapter uses a footprint of about 38K and only
150K total memory. Yet, the VGA has a full segment (64K) footprint and
256K total. And, look at the register definitions. The VGA uses 4-bit planes,
but the registers are 8 bits. Half the capacity is not used. Of course, there's not
enough memory to handle 8-bit color at the highest resolutions, but it would
seem simple enough to add memory and extend the definition.

Indeed, several manufacturers have extended their VGA's to improve the
resolution. Most support the simplest extension: an 800 X 600 mode which uses
a footprint of nearly 60K, and 235K of the 256K available. Why not go a bit
higher and fill out the memory? 800 X 600 is a nice, round number which
maintains the same square pixel ratio as 640 X 480 mode. The maximum,
836 X 627, would not be very convenient and would not look much better.
VESA has defined a standard mode number, 6ah, for 800 X 600 and 16

colors. This VESA mode works like the standard VGA modes, so writing pro
grams for mode 6ah is not very difficult — simply increase the number of
bytes per row and the highest allowable address. Of course, you must have a
monitor which can handle the higher resolution (usually a multifrequency mon
itor such as a NEC Multisync).

Physical Construction 131

Adding colors is not very difficult either. If the adapter has 512K, all that is
usually required is addressing the appropriate registers (such as the bit mask)
with 8 bits rather than 4. This gives a total of 256 colors in resolutions up to
800 X 600. Several adapters provide a 640 X 480, 256 color mode for systems
which do not have multifrequency monitors.
Many Super VGA's go beyond the 64K segment restrictions to support

1024 X 768 modes. IBM reserved segment addresses aOOOh-bfffh for video, so
there is 128K available. And, with a little creative programming, it's even pos
sible to place the standard VGA in a 128K address mode. But, this creates a
problem for systems which use two adapters. The standard addressing schemes
allow one color and one monochrome-based adapter to exist simultaneously
without address conflicts. But, as soon as one adapter tries to claim the entire
area reserved for video it will conflict with other adapters.
Some 1024 X 768 modes simply preclude the use of other adapters. But,

through the use of bank switching techniques, it is possible to limit some Super
VGA's to a 64K (or smaller) address space, thus allowing dual monitor systems
which support very high resolutions. In fact, the VESA standards specify reso
lutions up to 1280 X 1024. Note that a VESA compliant adapter need not sup
port all of the defined modes. In fact, it may not support any of the VESA
standard modes, since VESA provides methods for defining vendor-specific
modes.

Bank switching was popularized in the IBM compatible world by the Lx)tus-
Intel-Microsoft Expanded Memory Specification (or LIM EMS). Bank switch
ing reserves a frame within the CPU address space. Portions of the target mem
ory area (banks) are swapped in and out of the frame. The VESA specifications
call the banks "windows" (not to be confused with multiple display areas on the
screen). There are three window configurations: Single Window, Overlapping
Windows, and Non-overlapping Windows. The Single Window allows both
read and write access to the entire 64K video area. It is generally the simplest
method to use, but prevents latch register transfers (Write Mode 1) between the
lower 64K and upper 64K.
The Dual Window systems differ in their approach to read and write access

of display memory. With Overlapping Windows, the reads and writes by the
CPU may access different banks of display memory, and each bank is typically
64K. Non-overlapping Windows use two separate banks of 32K, and both
banks may be read or written. See Figure 6-9 for examples of windows using
1024 X 768 mode. Note that the displayable range of the video memory is 0 to
17ffh (as seen by the adapter itself). With any of the three Window systems,
the program may select the bank through VESA function calls (see Chapter 6,
Function Call 4f05h, CPU Video Memory Window Control).
You cannot switch the bank to any arbitrary byte offset within video memory

— you are limited by the granularity of the adapter. For example. Headland
Technology adapters based on the V7 VGA chip (such as the FastWrite VGA

132 EGA/VGA: A Programmer's Reference Guide

CPU Video

AOOOh 0

Single Window

Read/Vrlte

Change Window "to Offset lOOOh

ACCOh lOOCh

A800h ISOOh

CPU Video

AOOOh 0

7FFh

AOOOh lOOQh

Non-overlapping Windows

Read/Write

Change Window A to Offset 800h
Do Not Change Window B

AOOOh OOOh

Overlapping Windows

CPU Video

AOOOh 0

CPU Video

AOOOh icnoh

AOOOh IBOOh

Change Window A to Offset lOOOh

CPU Video

AOOOh ICCOh

AOOOh lOOOh

CPU Video

Change Window B to Offset 0

Read

■B.

1024x768 Mode as inplenented in various VESA Windows
(shaded areas are the displayed portions of memory)

Figure 6-9 A comparison of VESA 1024 x 768 Windows
(shaded areas are the displayed portions of memory).

Physical Construction 133

and VRAM VGA) use a Single Window with a granularity of 64K. The starting
address must be either 0 or lOOOh.

When working with Overlapping Windows, do not assume Window A will
always be a write window or Window B a read window — this is defined by
the manufacturer and you should use the VESA information functions (see
Chapter 5) to determine which windows allow what operations. In fact, you
should not assume any details about window operation, including the CPU seg
ment address, size, or granularity.
For most applications, such as pixel plotting, you should emulate a single

window system. In an Overlapping Window system, both windows would be
set to the same starting address. And, in a Non-overlapping Window system,
the windows would be set to consecutive starting addresses (e.g., 0 and 8000h).
This simplifies address calculations and memory access by allowing a single
segment and offset register combination to read and write display memory.

Super VGA's have several registers in addition to the standard VGA. The
new registers typically modify the behavior of the adapter: for example, block
ing access to the additional bit planes in standard VGA modes. You should not
need to access the extended registers directly, because the BIOS Set Mode call
will set the critical registers. However, some adapters may offer special capa
bilities. For example, the FastWrite VGA and VRAM VGA from Headland
Technologies allow direct access to the latch registers. Some manufacturers
publish their extended register specifications, and others do not. If you are in
terested, you should write the manufacturer to find out.

Chapter

7
Introduction to Register

Programming

The EGA and VGA have several registers which organize the adapters' house
keeping functions; we have already seen how some of the registers work. The
adapter registers fall into five major groups: the Extemal registers, the Se
quencer registers, the CRTC (Cathode Ray Tube Controller) registers, the
Graphics Controller registers, and Attribute registers. Each group contains sev
eral closely related registers, although there are a few exceptions. The Se
quencer controls memory access, timing, and data flow among the other regis
ters, the CRTC controls timing related to the display, the Graphics Controllers
primarily manage graphics mode functions, the Attribute Controller handles the
color palette selections, and the Extemal registers provide a few miscellaneous
functions. The VGA adds a sixth set, called the DAC (Digital to Analog Con
verter), which converts color numbers into voltages for the analog monitor.
As mentioned earlier, most of the registers are accessed indirectly. Each

group (except for the Extemal registers) has an address register. The Address
Register is used to select the register to be modified. All of the non-address
registers (except the Extemal and Graphics Position registers) have an index.
This index is written to the Address Register, and then the desired register is
accessed. For example, to write the value 3 to the Map Mask Register (index 2
of the Sequencer):

mov DX/3c4h ;Port number of the Sequencer Address
/Register

mov AL,2 /Index number of the Map Mask Register
out DX/AL

inc DX /Port number of the Map Mask (3c5h)

136 EGA/VGA: A Programmer's Reference Guide

mov AL,3 /Value to write to the Map Mask
out DX^AL

The EGA and VGA also have four latch registers, which are used during
processor memory accesses. Each latch register (and a corresponding ALU) is
associated with one of the bit planes. The latch registers are used to preserve
some memory contents during a CPU write and report the memory contents
during a CPU read, and the ALU's combine the CPU and latched data. For the
most part, the latch registers and ALU's are transparent to the user and the
CPU, but a few Graphics Controller registers deal directly with the latch con
tents and control the ALU's operations. The most basic thing to remember is
that the latch registers should be updated before every memory write. This is
done simply by reading the contents of memory before writing a new value
Oust as in the CGA, where the old value is read into the CPU register, modi
fied, and written back to memory). It is not necessary to use the value returned
from the read; it simply is the technique whereby the latches are updated.

Whereas the latch registers and ALU's provide the interface between mem
ory and the CPU, a set of four shift registers (or serializers) form the interface
between the adapter and display. In normal graphics operation, each of the shift
registers fetches a byte from display memoiy and then sends it one bit at a time
to the Attribute Controller. The Attribute Controller uses the four bits (one
from each serializer) to select a color, form the palette, and, on the EGA, write
the pixel to the display. On the VGA, the Attribute Controller passes an eight-
bit value to the DAC (Digital to Analog Converter), which looks up the associ
ated analog output voltage for the display.
Most of the EGA registers are write only (they cannot be read by the CPU).

Any of the registers that are not write only are noted in the following sections.
The VGA registers are read/write, except for the attribute address register, input
status registers, and latch registers. A few of the VGA registers must be read
and written at different port addresses: These are noted in the register descrip
tions.

All bits marked as "Not used" should be set to 0. If the adapter is a VGA,
IBM recommends that the port be read, only the desired bits modified, and then
write the result back to the port. This guarantees compatibility with future ex
tensions to the EGA/VGA features.
The VGA's readable registers are a significant advantage over the EGA be

cause you must preserve partial bit settings of several registers (see the Mode
Register, Port 3cfh Index 5 for a typical example). Although you cannot read
the EGA registers, you can determine the default settings through the Parameter
Table (see Chapter 13 — The BIOS Save Area). Although this does not show
the current setting, the default value is often sufficient.
Up to this point, all register programming examples have used the byte form

of the OUT instruction (OUT DX,AL). Most configurations will allow the word
form; i.e., OUT DX,AX where AL contains the index and AH is the value. A
word OUT executes faster than two byte OUT's, but will not work on a few

Introduction to Register Programming 137

hardware configurations. If you use word OUT's, you should be prepared to
offer a modified version with byte OUT's — macros work very well for this
(the SMOOTH.ASM program uses macros for this purpose). If your hardware
does not support word OUT's, you may have to modify some of the remaining
program examples.
You should also note that the Address Register's index setting will remain in

effect until changed (except for the Attribute registers). If you will be changing
the same register repeatedly, you may be able to set the index outside the loop.
Be aware that BIOS or hardware interrupt routines may change the index (you
may want to temporarily disable interrupts while using this technique).

Throughout the register descriptions, you will find the EGA BIOS default
settings. You should use these as a guide to understanding the functions as well
as a reference to the EGA defaults. The VGA values may be read directly from
the adapter.

The External Registers

The External registers provide miscellaneous functions on the EGA and
VGA. On the IBM EGA, these registers are not located on the VLSI chips
(Attribute Controller, CRTC, Sequencer, and Graphics Controllers). These reg
isters are called the General registers on the VGA, which contains all registers
on a single chip. The External registers are directly written and read at their
respective port locations. This differs from most of the VLSI registers, which
are indirectly addressed through an indexing mechanism.

Port 3c2h: Miscellaneous Output Register (write-only)

Description: This register provides several miscellaneous functions.

Notes: A hardware reset forces all bits to 0.

This register is write-only on both the EGA and VGA, although
the VGA can read the setting from port 3cch.

Bits 2 and 3 (Clock Select) may be used to select an external
oscillator for the EGA's timing functions. By attaching a faster
clock to the feature connector, selecting it as a source, and ad
justing the CRTC settings, you can create higher resolution
modes. However, your adapter may not be able to tolerate the
higher rate (it could damage some chips), so such experimenta
tion should be done with extreme care. IBM specifies a maxi
mum range of 14.3 to 28.4 MHz for the VGA.

138 EGA/VGA: A Programmer's Reference Guide

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

23 23 23 23 23 23 23 a6 23 23 a2 a?

Values for the Enhanced Color Display:

Mode 0 1 2 3

a7 a7 a7 a7

Bits: 3b/3d CRTC I/O Address

This bit selects the port location of the CRTC and
Input Status 1 registers in order to maintain compati
bility with both the monochrome and color display
adapters. Setting this bit to 0 selects 3b? (mono
chrome). A setting of 1 selects 3d? (color).

2-3

Enable RAM

Setting this bit to 0 disables the EGA RAM from ac
cess by the CPU. A setting of 1 (the normal setting)
allows the CPU to access EGA memory.

Clock Select

The Sequencer Reset Register should be used to force
a Synchronous Reset before changing this register.
These bits set the clock rate according to the follow-
ing table:

00b 14 MHz (from the bus)
25 MHz (VGA)

01b 16 MHz (from the EGA board)
28 MHz (VGA)

10b Extemal source (from the feature
connector)

lib Not Used

Disable Internal Video Drivers

(EGA Only)
This bit selects the signal source for the monitor. Nor
mally, this bit is set to 0 and the EGA drives the mon
itor. When set to 1, the monitor is driven by the signal
output pins of the feature connector. Since the feature
connector also provides signal input pins, a device
could be built which combines video information from

Introduction to Register Programming 139

the EGA and another source and then directly drives
the EGA monitor. This bit is not used on the VGA.

Page Bit for Odd/Even
This bit selects between the two 64K pages of mem
ory (of a 128K plane) when the EGA is in Odd/Even
mode. A setting of 0 designates the low page, and 1
designates the high page.

Horizontal Retrace Polarity
The horizontal retrace signal is positive when this bit
is 0 and negative when 1. The monochrome, color,
and enhanced color displays use a positive signal. The
analog monitors use this bit (and bit 7) to determine
the scan rate.

Vertical Retrace Polarity
The vertical retrace signal is positive when this bit is 0
and negative when 1. The monochrome monitor re
quires a negative signal, the standard color monitor re
quires a positive signal, and the ECD and analog mon
itors use this bit (and bit 6) to determine the scan rate.

Bits 6

and 7 EGA VGA

00b 200 lines Not used

01b 350 lines 350 lines

10b Not used 400 lines

lib Not used 480 lines

Port 3?ah: Feature Control Register (write-only)

Description: On the EGA, these bits send signals to the feature connector
(lines FCO and FCl). Thus, a device attached to the feature con
nector may be placed under program control — the function
would be defined by the attached device.

The port address is either 3bah (monochrome) or 3dah (color).

Notes: The VGA reserves the use of all 7 bits, and bit 3 must be set to
0.

140 EGA/VGA: A Programmer's Reference Guide

This is a write-only register on both the EGA and VGA, al
though the value may be read from port 3cah of the VGA.

Bits: EGA only:

0 Feature Control Bit 0 (FCO)

This bit is output from the CPU to pin 21 of the fea
ture connector.

1 Feature Control Bit I (FCl)
This bit is output from the CPU to pin 20 of the fea
ture connector.

2-3 Reserved

6-7 Not used

VGA only:

0-7 Reserved (bit 3 must be set to 0).

Port 3c2h: Input Status Register Zero (read-only)

Description: This register allows the CPU to read various information from
the EGA.

Notes: This register is read-only on both the EGA and VGA.

On the EGA, bits 5 and 6 receive signals from the feature con
nector (lines FEAT 0 and FEAT 1). Thus, a device attached to

the feature connector may send information to the controlling
program — the meaning would be defined by the attached de
vice.

Bits 5 and 6 are reserved on the VGA.

Some early-model EGA compatibles have bit 7 backwards (0
indicates a vertical interrupt). Programs which rely on a vertical
interrupt handler should determine which setting is used by dis
abling the vertical retrace interrupt, clearing the status bit (see
bit 4 of the CRTC Vertical Retrace End Register, port 3?5h
index llh), reading bit 7 to get the value for no retrace, and

Introduction to Register Programming 141

re-enabling interrupts. This method should be used only on the
EGA.

Only the Micro Channel version of the IBM VGA supports the
CRT Interrupt. Among VGA compatibles for the ISA bus some
support interrupts, some do not, and others are switch selectable
(interrupt support may be either enabled or disabled).

Because of the inconsistent support and operation of the vertical
interrupt, you should consider polling the retrace status through
the Vertical Retrace status bit of Input Status Register One (port
3?ah).

Bits: 0-3 Unused

Switch Sense

This bit returns the setting of one of the four switches
on the EGA. If it is set to 1, the switch is open, 0 is
closed. The switch to read is selected by writing the
switch number minus one to bits 2 and 3 of the Mis

cellaneous Output Register (also port 3c2h). For ex
ample, sending 9 (1001b) to the Miscellaneous Output
Register would return the setting of switch 3 to this
bit. BIOS uses this bit to determine the EGA settings,
which are then recorded at memory address 40:88h.
Your code should not need to access the switches

through this register.

Feature Code Bit 0 (FEAT 0 — EGA only)
This bit is input from pin 19 of the feature connector
to the CPU.

Feature Code Bit 1 (FEAT 1 — EGA only)
This bit is input from pin 17 of the feature connector
to the CPU.

CRT Interrupt
This bit is set to 1 when a vertical interrupt (IRQ2)
has occurred because of the vertical retrace. It will re

main set to 1 until cleared, and thus it is important
that the interrupt handler clear and then re-enable the
interrupt via the CRTC's Vertical Retrace End Regis
ter. It is used to confirm that the interrupt was enabled
by the EGA or VGA, since several devices may share

142 EGA/VGA: A Programmer's Reference Guide

the IRQ2 line. This bit should be cleared to 0 by the
interrupt handler (see bit 4 of the CRTC Vertical Re
trace End Register, port 3?5h index llh).

Port 3?ah: Input Status Register One (read-only)

Description: This register allows the CPU to read various information from
the adapter.

The port address is either 3bah (monochrome) or 3dah (color).

Notes: This register is read-only on both the EGA and VGA.

Bits 1 and 2 are reserved on the VGA.

Bits: 0 Display Enable
This bit is set to 1 during the active display interval
(memory is being read by the EGA). It is set to 0
during the vertical and horizontal retrace. Some graph
ics adapters (such as the CGA) may produce snow if
the CPU writes to adapter memory during the display
interval due to conflicts between CPU and adapter
memory access. However, EGA memory may be writ
ten by the CPU at any time (see bit one of the Se
quencer Clocking Mode Register, port 3c5h index 1).

1 Light Pen Strobe (EGA only)
This bit is set to 1 when the light pen trigger has been
set (it is 0 when the light pen trigger has not been set).

2 Light Pen Switch (EGA only)
This bit is set to 1 when the light pen switch is open
(it is 0 when the light pen switch is closed).

3 Vertical Retrace

This bit is set to 1 during the vertical retrace interval
(it is set to 0 when the interval ends and until it begins
again). This bit can be used to enable the IRQ2 inter
rupt (see the CRTC Vertical Retrace End Register,
port 3?5h index llh; and bit 7 of the Input Status
Register Zero, port 3c2h). Note that this bit will also
be set to 1 if the EGA IRQ2 is enabled and another
device issues an IRQ2 — it should not be used to de-

Introduction to Register Programming 143

termine the status of the vertical retrace in interrupt
routines (see bit 7 of Input Status Register Zero).

4-5 Diagnostic Usage
These bits return the settings of two of the Attribute
Register output bits. The two which appear are se
lected via bits 4 and 5 of the Attribute Color Plane

Enable Register (see port 3cfh index 12h of the Attri
bute registers).

6-7 Not used.

Port 3c3h: Video Subsystem Enable Register (VGA only)

Description: This register controls the activity of the VGA. The VGA mem
ory and ports may be disabled via the VGA sleep bit (bit 1 of
port 102h). When the VGA is disabled, it may continue to gen
erate an image on the attached monitor if bit 0 of this register is
set to 1.

Notes: This register may still be accessed when the VGA is in sleep
mode, and thus the display image may be turned on or off at any
time via program control.

Bits: Setting this bit to 1 enables the VGA display (a set
ting of 0 disables the display).

1-7 Reserved

Chapter

8
The Sequencer Registers

The Sequencer's primary task is to control the data flow from memory or the
Graphics Controller to the Attribute Controller. On every dot clock during the
display interval, the Attribute Controller must have four bits to convert into a
colored pixel. In graphics mode, a byte of data is fetched from each bit plane
on every character clock. In the simplest case, it is then converted to individual
bits in four streams (one from each plane) for use by the Attribute Controller.
In text mode, the ASCII character code must be converted into the correspond
ing bit streams for the current scan line, while the attribute byte modifies the
four bit streams to give the appropriate foreground and background color. On
the EGA, the Attribute Controller output directly controls the display. The
VGA uses the output of the Attribute Controller to look up colors in the DAC,
which then outputs an analog signal to the monitor.
The Sequencer controls the dot clock, flow of the bit streams, and location of

the text mode character generator. It also arbitrates memory access between the
CPU and adapter and controls which bit planes may be modified by the CPU.
The Map Mask Register and Character Map Select Register (along with the
Sequencer Address Register) are probably the only registers from this group
that you will ever use (unless you design your own video modes).

Port 3c4h: Sequencer Address Register

Description: The Sequencer Address Register selects which register will ap
pear at port 3c5h. The index number of the desired register is
written to port 3c5h.

146 EGA/VGA: A Programmer's Reference Guide

Index Register

0 Reset

1 Clocking Mode
2 Map Mask
3 Character Map Select
4 Memory Mode

Port 3c5h: Reset Register (Index 0)

Description: This register is used to reset the sequencer (necessary for pre
serving the contents of video memory when the Clocking Mode
Register is changed).

Notes: Both bits 0 and 1 must be set to 1 for the Sequencer to run.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

03 03 03 03 03 03 03 03 03 03 03 03

Bits

2-7

Asynchronous Clear
A value of 0 causes an asynchronous clear and halt of
the Sequencer Register and places all outputs in a
high-impedance state. This may also result in data
loss.

Synchronous Clear
A value of 0 causes a synchronous clear and halt of
the Sequencer Register. This is the bit that should be
used to reset the Sequencer prior to changing the
Clocking Mode Register (see index 1) or the clock se
lect function of the Miscellaneous Output Register
(see port 3c2h of the External registers).

Not used

Port 3c5h: Clocking Mode Register (Index 1)

Description: The Clocking Mode register controls some of the timing func
tions of the video adapter. To prevent changing the adapter's

The Sequencer Registers 147

memory, you should use the Reset Register to force a synchro
nous reset of the Sequencer before changing the clocking mode.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

Ob Ob 01 01 Ob Ob 01 00 Ob 01 05 05

More than 64K EGA memory:

Mode f 10

01 01

Bits 8/9 Dot Clocks

Setting this bit to 1 generates a standard, 8-bit-wide
character box (i.e., 8 dot clocks per character clock). 0
generates a 9-bit-wide character box for mode 7 MDA
compatibility and VGA text modes (all other modes
must use an 8-bit-wide character box). Note that the
VGA may also emulate EGA or CGA text modes, in
which case it uses an 8-bit-wide character

Bandwidth (EGA only)
This bit controls memory access time for the CRT. A
setting of 1 gives the CRT 2 of every 5 memory ac
cess cycles. A setting of 0 gives the CRT 4 of every 5
cycles. Because higher resolution modes require more
data during a horizontal scan, all modes except 0, 1,4,
5, and Odh require 4 out of 5 cycles for the CRT re
fresh. This directly affects the wait states generated by
the adapter. The CRT continues to use cycles even
during the retrace periods (the VGA gives the CPU
full access during the retrace).

Shift Load

The shift registers serialize data from the bit planes
for use by the Attribute Controller. Normally, 8 bits
from each plane are converted into a serial bit stream.
Setting shift load to 1 combines the data from two
planes as a 16-bit serial stream, but now instead of
four streams there are only two, halving the number of
available colors and doubling the linear address space.
Since two bytes are fetched at once, this mode only
accesses adapter memory every other character clock.

148 EGA/VGA: A Programmer's Reference Guide

Also see the Graphics Mode Register (index 5 of the
Graphics Controller).

Dot Clock

Setting this bit to 1 divides the dot clock by 2 (half as
many dots per line). This doubles those time intervals
based on the dot clock to support 320 X 200 pixel and
40-column character modes. A setting of 0 does not
alter the dot clock.

Shift 4 (VGA only)
This is similar to bit 2 of this register, except that a
setting of 1 selects a four-word address and loads the
serializers every fourth character clock (32 bits are
chained and the linear address space is quadrupled).
None of the VGA's internal modes use this setting,
since there is plenty of memory for all programmed
modes.

6-7

Screen Off

Setting this bit to 1 disables the display while the in
ternal adapter functions continue to operate. This may
be used to temporarily assign all memory access time
to the CPU in order to rapidly fill or read the adapter
memory (it would also be useful for a VGA screen
blanking program)

Not used

Port 3c5h: Map Mask Register (Index 2)

Description: The Map Mask Register enables or disables the specified bit
planes during a memory write. Each bit set will allow that bit
plane to be modified; e.g., setting bits 1 and 3 allows the CPU to
write data to bit planes 1 and 3.

Notes: When using odd/even modes, bits 0 and 1, and 2 and 3 should
have the same value. See the Graphics Controller Mode Register
(port 3cfh, index 5), and the Sequencer Memory Mode Register
(index 4). When using Chain 4 mode, all four maps should be
set the same.

The Sequencer Registers 149

This register affects all write modes; i.e., all data written to
adapter memory.

The value is different than the Read Map Select Register which
is set with the actual number of bit plane.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

03 03 03 03 03 03 01 03 Of Of Of Of

Bits: 0 Bit plane 0

1 Bit plane 1

2 Bit plane 2

3 Bit plane 3

4-7 Not used

Port 3c5h: Character Map Select Register (Index 3)

Description: This register selects which section of bit plane 2 contains the
character generator(s) in text modes. Bit plane 2 is divided into
1-4 8K sections (depending on the amount of memory installed
on the EGA). On the EGA, each of these sections may contain
one character generator for a total of four. The VGA allows each
section to hold two character maps. Two of these four (or eight)
may be selected as the primary and secondary character sets for
a total of 512 displayable characters (chosen from a possible
1024 or 2048). The EGA supports 256 character definitions for
every 64K installed.

Notes: Usually, character maps A and B have the same value and only
256 characters are available. However, when maps A and B are
programmed with different values, attribute bit 3 (intensity) is
used as the character set selector (and what appears as high in
tensity in most programs will appear as the additional 256 char
acters).

The EGA must have more than 64K installed to enable this
function.

150 EGA/VGA: A Programmer's Reference Guide

The Character Map Select Register should be set only after the
sequencer is reset (an asynchronous reset clears this register to
0).

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

00 00 00 00 00 00 00 00 00 00 00 00

Bits 0-1 Character Map Select A
This binary value selects the 8K section used for the
primary character set (attribute bit 3 = 0). A value of
0-3 selects banks 0-3, respectively.

2-3 Character Map Select B
This binary value selects the 8K section used for the
secondary character set (attribute bit 3 = 1). A value
of 0-3 selects banks 0-3 respectively.

4 Character Map Select High Bit B
(VGA Only)
This adds an extra bit to the secondary character set
number, for a total of eight possible locations.

5 Character Map Select High Bit A
(VGA Only)
This adds an extra bit to the primary character set
number, for a total of eight possible locations.

6-7 Not used

Port 3c5h: Memory Mode Register (Index 4)

Description: This register controls the sequencer mode settings. See the
Graphics Controller Mode and Miscellaneous registers for the
Graphics Controller mode settings, and the CRTC Mode Control
Register for the CRTC mode settings.

BIOS Default Settings (all values are Hexadecimal):

The Sequencer Registers 151

Mode 0 1 2 3 4 5 6 7 d e f 10

03 03 03 03 02 02 06 03 06 06 00 00

More than 64K EGA memory:

Mode f 10

06 06

Bits: Alpha (EGA only)
This bit is set to 1 for text modes and 0 for graphics
modes. Text mode enables bit plane 2 as the character
generator.

Extended Memory
This bit is set to 1 to enable address bit 14 and 15

when more than 64K of memory is installed on the
adapter. A setting of 0 should be used for high-resolu
tion modes on the EGA when no memory expansion
card is installed.

Odd/Even Mode

When this bit is set to 0, CPU data at odd addresses is

mapped to the odd bit planes (and even addresses to
even bit planes). This only affects the Sequencer. Typ
ically, the Graphics Controller is set to use the same
scheme through bit 4 of the Graphics Controller Mode
Register (see port 3cfh, index 5). This is useful for
text modes (attribute data in one plane, character data
in the other), emulating CGA graphics modes, or ad
dressing two bit planes as one when less than 64K is
available.

Chain 4 (VGA only)
This is similar to odd/even modes, except that it forms
a cycle of four rather than two. Mod 0 CPU addresses
map to plane 0, mod 1 to plane 1, mod 2 to plane 2,
and mod 3 to plane 3. A setting of 1 selects Chain 4
(used for 256-color mode). Each bit plane holds every
fourth byte although the CPU sees them as a single
plane of contiguous memory.

4-7 Not used

Chapter

9
The CRTC Registers

The CRTC (Cathode Ray Tube Controller) registers form the largest register
group on the EGA and VGA. As their names imply, these registers control the
monitor (CRT) timing and synchronization functions. The CRTC registers are
unique in that they may appear at either one of two port addresses: 3b4h/3b5h
(for monochrome displays) or 3d4h/3d5h (for color displays). The dual ad
dresses maintain compatibility with the CGA and Monochrome Display
adapter. Indeed, most of these registers replicate the functions of the 6845 con
troller found on the MDA and CGA, although there are a few minor differ
ences. When the EGA was introduced, several CGA programs would not run in
emulation mode on the EGA because of the differences.

Most incompatibilities result from programs which support composite moni
tors. On composite monitors, images could be centered via the Horizontal Sync
Position Register (port 3d5h index 2). However, the EGA does not support
composite monitors, and index 2 is used as the Start Horizontal Blanking Reg
ister. The following table summarizes the differences:

Port 3d4h

Index
cga/mda EGA/VGA

2 Horizontal Sync Position Start Horizontal Blanking

3 Horizontal Sync Width End Horizontal Blanking

4 Vertical Total Start Horizontal Retrace

5 Vertical Total Adjust End Horizontal Retrace

6 Vertical Displayed Vertical Total

7 Vertical Sync Position Overflow

8 Interlace Mode Preset Row Scan

154 EGA/VGA: A Programmer's Reference Guide

Also, ports 3d8h (Mode Select Register) and 3d9h (Color Select Register)
are not used by the EGA or VGA. Some CGA programs use 3d8h to disable
blinking and 3d9h to change the foreground color for 640 X 200 graphics.
The VGA can disable access to the first seven registers through the Vertical

Retrace End Register (see bit 7 of Port 3?5h, Index 1 Ih). Writes to these regis
ters are disabled by default. This has two beneficial side effects. First, it dis
ables the incompatible ports used for screen centering on the CGA and thus
enhances CGA compatibility. And second, it prevents rogue programs from
inadvertently changing some of the more critical timing parameters.

Several CRTC registers control smooth scrolling functions. See the
SMOOTH.ASM program in the appendix for a CRTC intensive programming
example.

Port 3?4h: CRTC Address Register

Description: The CRTC Address Register selects which register will appear at
port 3b5h (for monochrome displays) or port 3d5h (for color dis
plays). The index number of the desired register is written to
port 3b5h or 3d5h.

Note: A monochrome VGA may be operating in a color mode (and
thus use address 3d4h). Likewise, the color VGA may be in a
monochrome mode and use address 3b4h. On the VGA, you
may want to read the Miscellaneous Output Register to deter
mine the current address (see bit 0 of Port 3c2h, but note that it

must be read from Port 3cch).

Index Register

0 Horizontal Total

1 Horizontal Display End
2 Start Horizontal Blanking
3 End Horizontal Blanking
4 Start Horizontal Retrace

5 End Horizontal Retrace

6 Vertical Total

7 Overflow

8 Preset Row Scan

9 Max Scan Line

ah Cursor Start

bh Cursor End

ch Start Address High

The CRTC Registers 155

dh Start Address Low

eh Cursor Location High
fh Cursor Location Low

lOh Vertical Retrace Start (write [EGA],
read/write [VGA])

lOh Light Pen High (read, EGA only)
lib Vertical Retrace End (write [EGA],

read/write [VGA])

lib Light Pen Low (read, EGA only)
12b Vertical Display End
13b Offset

14b Underline Location

15b Start Vertical Blanking

16b End Vertical Blanking
17b Mode Control

18b Line Compare

Note: Bit 5 is used for chip testing on the VGA — it should always be
set to 0.

Port 3?5h: Horizontal Total Register (Index 0)

Description: This register is programmed with the number of character widths
in the horizontal scan, plus the period of the horizontal retrace
(this may be either the end of the horizontal blanking for com
patibility modes or the end of the horizontal retrace for the EGA
modes).

An internal counter resets after reaching the value programmed
into the Horizontal Total Register. The internal counter is the
basis for all CRT timings. The new interval begins one count
after the end of the prior interval.

Notes: The value used by the Horizontal Total Register is actually two
less than the total number of character widths on the EGA, and

five less on the VGA.

The adapter always counts the first displayable position as the
first scan count. The next intervals include the right overscan,
horizontal blanking, and finally the left overscan. Timing con
straints require that the adapter end the retrace count before end
ing the horizontal blanking. Thus, the retrace ends before the

156 EGA/VGA: A Programmer's Reference Guide

blanking and causes border colors to appear on the left edge of
the displayable area if the border color is not black.

This register also controls the horizontal pixel size. The full
count must occur within the total horizontal scan and retrace,
and thus a higher value produces a smaller horizontal pixel size.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

37 37 70 70 37 37 70 60 37 70 60 5b

More than 64K EGA memory:

Mode f 10

60 5b

Values for the Enhanced Color Display:

Mode 0 1 2 3

2d 2d 5b 5b

Bits: 0—7 Character count (minus two for the EGA/minus five
for the VGA) of the full horizontal cycle time.

Port 3?5h: Horizontal Display Enable End Register
(Index 1)

Description: This register is programmed with the number of character widths
in the displayable area. After the internal counter reaches the
Horizontal Display Enable End value, the overscan begins.

Notes: The value used by the Horizontal Display Enable End Register is
actually 1 less than the total number of character widths (so that
a value of zero designates one character).

The adapter always counts the first displayable position as the
first scan count. The next intervals include the right overscan,
horizontal blanking and retrace, and finally the left overscan.

BIOS Default Settings (all values are Hexadecimal):

The CRTC Registers 157

Mode 0 1 2 3 4 5 6 7 d e f 10

27 27 4f 4f 27 27 4f 4f 27 4f 4f 4f

Bits: 0-7 Character count (minus one) of the displayable screen
width — usually 39 or 79.

Port 3?5h: Start Horizontal Blanking Register (Index 2)

Description: This register is programmed with the count value at which hori
zontal blanking signal becomes active (this is based on the inter
nal counter which starts with 0 and ends with the value in the

Horizontal Total Register). The right overscan ends after the in
ternal counter reaches the Start Horizontal Blanking value.

Notes: The adapter always counts the first displayable position as the
first scan count. The next intervals include the right overscan,
horizontal blanking and retrace, and finally the left overscan.

During the horizontal blanking interval, the address for the next
scan line and underline position appear on the memory address
and cursor outputs, and remain until one count after the end of
the interval.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

2d 2d 5c 5c 2d 2d 59 56 2d 59 56 53

Values for the Enhanced Color Display:

Mode 0 1 2 3

2b 2b 53 53

Bits: 0-7 Character count at which the Horizontal Blanking in
terval begins.

Port 3?5h: End Horizontal Blanking Register (Index 3)

Description: This register is programmed with the five least significant bits of
the count value at which horizontal blanking signal becomes in
active (this is based on the internal counter which starts with 0

158 EGA/VGA: A Programmer's Reference Guide

and ends with the value in the Horizontal Total Register). The
right overscan ends after the internal counter reaches the Start
Horizontal Blanking value.

This register also provides a skew control which delays the start
of the displayable area after the Horizontal Total has been
reached. This allows the CRTC to access the character and attri

bute data, the character generator (bit plane 2), and Horizontal
Pel Panning Register (see the Attribute Controller registers) in
order to convert ASCII data into bit stream data.

The skew control synchronizes the beginning of the displayable
area with the start of the internal count. If the skew is set too

low, the leftmost character will appear more than once; if too
high, one or more characters may disappear.

Notes: The most significant bits of the End Horizontal Blanking count
are always assumed identical to the most significant bits of the
Start Horizontal Blanking Register.

The adapter always counts the first displayable position as the
first scan count. The next intervals include the right overscan,
horizontal blanking and retrace, and finally the left overscan.

During the horizontal blanking interval, the address for the next
scan line and underline position appear on the memory address
and cursor outputs, and remain until one count after the end of
the interval.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

37 37 2f 2f 37 37 2d 3a 37 2d la 17

More than 64K EGA memory:

Mode f 10

3a 37

Values for the Enhanced Color Display:

The CRTC Registers 159

Mode 0 1 2 3

2d 2d 37 37

Bits: 0-4 The count at which the Horizontal Blanking interval
ends. The VGA uses a sixth bit which is located in the
End Horizontal Retrace Register (index 5).

5-6 00b — No delay
01b — Delay of 1 character
10b — Delay of 2 characters
lib — Delay of 3 characters

7 Unused on the EGA.
Used for chip testing on the VGA, and should always
be set to 1.

Port 3?5h: Start Horizontal Retrace Pulse Register
(Index 4)

Description: This register is programmed with the count value at which hori
zontal retrace pulse becomes active (this is based on the internal
counter which starts with 0 and ends with the value in the Hori
zontal Total register). This initiates the beam's move to the left
of the screen. The timing of the horizontal retrace is responsible
for screen centering.

Notes: The adapter always counts the first displayable position as the
first scan count. The next intervals include the right overscan,
horizontal blanking and retrace, and finally the left overscan.

The horizontal retrace may be delayed through the End Horizon
tal Retrace Register (Index 5).

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

31 31 5f 5f 30 30 5e 51 30 5e 50 50

More than 64K EGA memory:

160 EGA/VGA: A Programmer's Reference Guide

Mode f 10 ||
50 52 1

Values for the Enhanced Color Display:

Mode 0 1 2 3 1
28 28 51 5lJ

0-7 Character count at which the Horizontal Retrace be
gins.

Port 3?5h: End Horizontal Retrace Register (Index 5)

Description: The End Horizontal Retrace Register is programmed with the
five least significant bits of the count value at which horizontal
retrace signal becomes inactive (based on the internal counter,
which starts with 0 and ends with the value in the Horizontal
Total Register).

This register provides a retrace delay, which may be used to
synchronize the retrace and blanking, and other timings based on
the end of the horizontal retrace.

Notes: The three most significant digits of the End Horizontal Retrace
count are always assumed identical to the three most significant
digits of the Start Horizontal Retrace Pulse Register.

The adapter always counts the first displayable position as the
first scan count. The next intervals include the right overscan,
horizontal blanking and retrace, and finally the left overscan.

This register also contains the VGA End Horizontal Blanking
overflow bit.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

15 15 07 07 14 14 06 60 14 06 eO ba

More than 64K EGA memory:

The CRTC Registers 161

Mode f 10

60 00

Values for the Enhanced Color Display:

Mode 0 1 2 3

6d 6d 5b 5b

Bits: 0-4 The five least significant bits of the character count
at which the Horizontal Retrace ends.

5-6 00b — No delay
01b — Delay of 1 character
10b — Delay of 2 characters
lib — Delay of 3 characters

7 Start Odd/Even Memory Address
(EGA only)
This bit is normally 0. It provides an extra bit for hori
zontal smooth scrolling on EGA's with less than 64K
memory. The standard sequence (scrolling the display
right) is to start this bit set to 0, scroll eight pixels, set
this bit to 1, and scroll eight pixels. Then the Start
Address is incremented and the scrolling sequence
starts again. The equivalent VGA function is per
formed through the Preset Row Scan Register (index
8). NOTE: When less than 64K is installed, this bit is
initially 1 (middle of the sequence).

7 End Horizontal Blanking bit 5
(VGA only)
The sixth bit of the VGA's End Horizontal Blanking

Register (see index 3).

Port 3?5h: Vertical Total Register (Index 6)

Description: This register is programmed with the eight least significant bits
of the vertical scan line count, plus the period of the vertical
retrace. The ninth (high order) bit of the vertical total is pro
grammed in the CRTC Overflow Register (see index 7). The
VGA also uses a tenth bit which appears in the Overflow Regis
ter.

162 EGA/VGA: A Programmer's Reference Guide

An internal counter resets after reaching the value programmed
into the Vertical Total register. The intemal counter is the basis
for vertical CRT timings.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

04 04 04 04 04 04 04 70 04 04 70 6c

Values for the Enhanced Color Display:

Mode 0 1 2 3

6c 6c 6c 6c

Bits: 0-7 The eight least significant bits of the full vertical cycle
time (programmed as a line count).

Port 3?5h: CRTC Overflow Register (Index 7)

Description: This register is programmed with the most significant (ninth and
tenth) bits of the vertical scan registers.

See the individual registers referenced below for descriptions.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

11 11 11 11 11 11 11 If 11 11 If If

Values for the Enhanced Color Display:

Mode 0 1 2 3

If If If If

Bits: 0 Vertical Total.

The ninth bit of the Vertical Total Register (see index
6).

1 Vertical Display Enable End.
The ninth bit of the Vertical Display Enable End Reg
ister (see index 12h).

The CRTC Registers 163

Vertical Retrace Start.

The ninth bit of the Vertical Retrace Start Register
(see index lOh).

Start Vertical Blank.

The ninth bit of the Start Vertical Blank Register (see
index 15h). The VGA's tenth bit is located in the

Maximum Scan Line Register (see index 9).

Line Compare.
The ninth bit of the Line Compare Register (see index
18h). The VGA's tenth bit is located in the Maximum

Scan Line Register(see index 9).

Vertical Total

(VGA only)
The tenth bit of the Vertical Total Register (see index
6).

Vertical Display Enable End
(VGA only)
The tenth bit of the Vertical Display Enable Register
(see index 12h).

Vertical Retrace Start

(VGA only)
The tenth bit of the Vertical Retrace Start Register
(see index lOh).

Port 3?5h: Preset Row Scan Register (Index 8)

Description: The first displayable scan line is determined by the Start Address
Register (see indexes ch and dh) plus an offset determined by
this register's setting. This register is programmed with the start
ing row number (normally 0).

Notes: This register is used to implement smooth scrolling in text
modes (it should always be set to 0 for graphics modes). The
Start Address Register should point to the first character position
of the display. In graphics modes, the Start Address alone con
trols vertical smooth scrolling.

164 EGA/VGA: A Programmer's Reference Guide

The value of this register should not exceed the current character
height. Upon reaching the character height (or zero, depending
on the scroll direction), the display should be scrolled one line
and the Preset Row Scan Register set to zero (or the character
height).

When the Preset Row Scan Register is changed, it takes effect at
the beginning of the following display interval. If it is changed
at any time during the first row's display interval, the new set
ting will activate immediately. For this reason, the Preset Row
Scan Register should be set either after the first horizontal re
trace or during the vertical retrace.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

00 00 00 00 00 00 00 00 00 00 00 00

Bits: 0-4 Preset Row Scan (Pel Scrolling)
Value of the starting pixel row number after comple
tion of the vertical retrace (usually 0).

5-6 Byte Panning Control
(VGA only)
This provides an extra two bits of Horizontal Pel Pan
ning when two or four-bit planes are chained together
as a single-bit plane. None of the VGA's BIOS modes
chain planes. Modes Ofh and lOh on EGA's with less
than 64K are the only programmed modes which
would require an extra bit, but the equivalent function
is located in the EGA's End Horizontal Retrace Regis
ter (see index 5).

7 Unused

Port 3?5h: Maximum Scan Line Register (Index 9)

Description: The Maximum Scan Line Register is programmed with a value
of one less than the current character height (in pixels).

Notes: This register sets the character height for text modes only.

BIOS Default Settings (all values are Hexadecimal):

The CRTC Registers 165

Mode 0 1 2 3 4 5 6 7 d e f 10

07 07 07 07 01 01 01 Od 00 00 00 00

Values for the Enhanced Color Display:

Mode 0 1 2 3

Od Od Od Od

Bits: 0-4 Maximum Scan Line

Value of the alphanumeric character height minus one.

5 Start Vertical Blank

(VGA only)
This is the tenth bit of the Start Vertical Blank Regis
ter (see index 15h). The ninth bit is located in the

Overflow Register (see index 7).

6 Line Compare Register
(VGA only)
This is the tenth bit of the Line Compare Register (see
index 18h). The ninth bit is located in the Overflow

Register (see index 7).

7 200 to 400-Line Conversion

(VGA only)
When this bit is set to 1, each scan line in 200-line
modes is displayed twice, giving an effective resolu
tion of 400 lines (this is the normal setting). When set
to 0, scan doubling is disabled.

Port 3?5h: Cursor Start Register (Index ah)

Description: The Cursor Start Register specifies the first row number of the
cursor within the character box. The last row is set by the Cursor
End Register (Index bh).

Notes: This register is valid for text modes only.

Row numbers start with 0. The value used should be one less

than the starting row number (2 less than the row). On the EGA,
setting the Cursor Start Register to a higher value than the Cur
sor End Register will cause the cursor to wrap from the bottom

166 EGA/VGA: A Programmer's Reference Guide

of the box to the top, giving a double line (this is not supported
on the VGA and will cause the cursor to disappear).

The BIOS default settings reflect the values of the Parameter
Table. The Parameter Table values for the Cursor Start Register
and Cursor End Register are converted by BIOS to the actual
value written OUT to the registers. For example, the actual Cur
sor Start value for mode 0 is 5 for the Color Display and bh for
the ECD.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

06 06 06 06 00 00 00 Ob 00 00 00 00

Bits: 0-4 Cursor Start

Value of the first cursor row position minus one.

5 Cursor Off

(VGA only)
When set to 1, the VGA cursor is turned off.

6-7 Unused

Port 3?5h: Cursor End Register (Index bh)

Description: The Cursor End register specifies the last row number of the
cursor within the character box. The first row is set by the Cur
sor Start Register (Index ah).

The Cursor End register also provides a skew control to delay
the cursor control signal by 0-3 character clocks.

Notes: This register is valid for text modes only.

Row numbers start with 0. The value used should be the starting
row number (1 less than the row). On the EGA, setting the Cur
sor Start Register to a higher value than the Cursor End Register
will cause the cursor to wrap from the bottom of the box to the
top, giving a double line (this is not supported by the VGA, and
will cause the cursor to disappear).

The CRTC Registers 167

The BIOS default settings reflect the values of the Parameter
Table. The Parameter Table values for the Cursor Start Register
and Cursor End Register are converted by BIOS to the actual
value written OUT to the registers. For example, the actual cur
sor end value for mode 0 is 7 for the Color Display and dh for
the BCD.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

07 07 07 07 00 00 00 Oc 00 00 00 00

Bits: 0-4 Cursor End

Value of the last cursor row position.

5-6 Cursor Skew

00b — No delay
01b — Delay of 1 character
10b — Delay of 2 characters
lib — Delay of 3 characters

Unused

Port 3?5h: Start Address High Register (Index eh)

Description: The Start Address High Register is programmed with the eight
most significant bits of the memory address (as seen by the
CRTC) of the first displayable character (text mode) or pixel
(graphics mode). The eight least significant bits are in the Start
Address Low Register (index dh).

Notes: This is a read/write register.

The Start Address registers are useful for implementing smooth
scrolling. Also see the Offset Register, index 13h; the Attribute
Controller's Horizontal Pel Pan Register, port 3cOh, index 13h;
and the Preset Row Scan Register, index 8.

When the Start Address is changed, it takes effect at the begin
ning of the following vertical rptrace and should therefore be
programmed during the active display interval.

168 EGA/VGA: A Programmer's Reference Guide

When four maps are chained as two, the Start Address Register
always points to a word boundary. Likewise, if four planes were
chained as one (possible on the VGA, although not imple
mented), the Start Address would always point to a double word
address. The EGA provides a method for selecting the proper
byte through the End Horizontal Retrace Register (index 5). The
VGA selects the byte through the Preset Row Scan Register
(index 8).

Bits: 0-7 Start Address High
The most significant eight bits (of a 16-bit value) of
the first display address.

Port 3?5h: Start Address Low Register (Index dh)

Description: The Start Address Low Register contains the eight least signifi
cant bits of the memory address (as seen by the CRTC) of the
first displayable character (text mode) or pixel (graphics mode).
The eight most significant bits are in the Start Address High
Register (index ch).

Notes: This is a read/write register.

The Start Address registers are useful for implementing smooth
scrolling. See the notes for the Start Address High Register
(index ch).

Bits: 0-7 Start Address Low

The least significant eight bits (of a 16-bit value) of
the first display address.

Port 3?5h: Cursor Location High Register (Index eh)

Description: The Cursor Location High Register contains the eight most sig
nificant bits of the memory address (as seen by the CRTC) of
the cursor location. The eight least significant bits are in the
Cursor Location Low Register (index fh).

Notes: This is a read/write register.

The CRTC Registers 169

Bits: 0-7 Cursor Location High
The most significant eight bits (of a 16-bit value) of
the cursor location.

Port 3?5h: Cursor Location Low Register (Index fh)

Description:

Notes:

Bits:

The Cursor Location Low Register contains the eight least sig
nificant bits of the memory address (as seen by the CRTC) of
the cursor location. The eight most significant bits are in the
Cursor Location High Register (index eh).

This is a read/write register.

0-7 Cursor Location Low

The least significant eight bits (of a 16-bit value) of
the cursor location.

Port 3?5h: Vertical Retrace Start Register
(Index lOh [write])

Description: This register is programmed with the eight least significant bits
of the count value at which vertical retrace pulse becomes ac
tive. The count is based on the row scan counter, which starts

with 0 and ends with the value in the Vertical Total Register.
The Vertical Retrace Start initializes the beam's move to the top
of the screen.

Notes: The adapter always counts the first displayable scan line as the
first scan count. The next intervals include the bottom overscan,

vertical blanking and retrace, and finally the top overscan.

The counting unit is vertical scan lines.

The ninth (most significant) bit of the Vertical Retrace Start is
programmed in the CRTC Overflow Register (see index 7). The
VGA's tenth bit is also located in the Overflow Register.

The Vertical Retrace Start Register is set by writing index lOh;
on the EGA, reading index lOh returns the Light Pen High Reg
ister. This register is readable on the VGA (the VGA does not
support a light pen).

170 EGA/VGA: A Programmer's Reference Guide

BIOS Default Settings (all values are Hexadecimal):

Mode 0 I 2 3 4 5 6 7 d e f 10

el el el el el el eO 5e el eO 5e 5e

Values for the Enhanced Color Display:

Mode 0 1 2 3

5e 5e 5e 5e

Bits: 0-7 The eight least significant bits of the Vertical Retrace
Start count.

Port 3?5h: Light Pen High Register
(Index lOh [read], EGA only)

Description: When the light pen is triggered, the Light Pen High Register
returns the eight most significant bits of the light pen position
(as a display address).

Notes: The Light Pen High Address is obtained by reading index lOh;
writing index lOh sets the Vertical Retrace Start register.

The VGA does not support a light pen.

Bits: 0-7 The eight most significant bits of the memory address
where the light pen was last triggered.

Port 3?5h: Vertical Retrace End Register
(Index llh [write])

Description: This register is programmed with the four least significant bits of
the count value at which vertical retrace pulse becomes inactive.
The count is based on the row scan counter, which starts with 0

and ends with the value in the Vertical Total Register (see index
6). The Vertical Retrace Start initiates the beam's move to the

top of the screen.

The Vertical Retrace End Register also provides for clearing or
enabling the vertical interrupt (IRQ2). See bit 7 of Input Status
Register Zero (port 3c2h).

The CRTC Registers 171

Notes: The counting unit is vertical scan lines.

The adapter always counts the first displayable scan line as the
first scan count. The next intervals include the bottom overscan,

vertical blanking and retrace, and finally the top overscan.

The most significant digits of the Vertical Retrace End count are
always assumed identical to the most significant digits of the
Vertical Retrace Start Register.

The Vertical Retrace End Register is set by writing index llh;
on the EGA, reading index llh returns the Light Pen Low Reg
ister. This register is readable on the VGA (the VGA does not
support a light pen).

When using the vertical interrupt, the interrupt handler must
clear the interrupt (bit 4) and re-enable it (bit 5). Note that clear
ing the interrupt also disables further interrupts until bit 4 is set
back to 1 (although a few compatibles require this bit to remain
0 — this is not related to the reversed status bit). Most EGA's

will work without re-enabling interrupts; however, it is required
on the PS/2 (because the PS/2 uses level-triggered interrupts
rather than edge-triggering).

A vertical interrupt may be forced by setting bit 5 low (enabling
the interrupt) and then high (disabling it) on edge-triggered sys
tems — this can be used to determine the polarity of the Verti
cal Retrace Status bit, which is reversed on some early EGA
compatibles (see Input Status Register Zero).

Programs which use IRQ2 should provide a way to handle the
final interrupt generated when the interrupt is disabled.

Other hardware may also generate an IRQ2. Input Status Regis
ter Zero should be read to determine whether the interrupt was
issued by the graphics adapter.

Make sure other bits are left unchanged when modifying the ver
tical interrupt bits.

BIOS Default Settings (all values are Hexadecimal):

172 EGA/VGA: A Programmer's Reference Guide

Mode 0 1 2 3 4 5 6 7 d e f 10

24 24 24 24 24 24 23 2e 24 23 2e 2b

Values for the Enhanced Color Display:

Mode 0 1 2 3

2b 2b 2b 2b

Bits: 0-3 The four least significant bits of the Vertical Retrace
End count.

Clear Vertical Interrupt
Writing 0 to this bit will clear the most recent vertical
interrupt (IRQ2). It will also inactivate the interrupt on
the PS/2.

Enable Vertical Interrupt
Writing 0 to this bit will enable the vertical interrupt
(IRQ2) at the start of each vertical retrace.

Select 5 Refresh Cycles
(VGA only)
This bit sets the number of RAM refreshes per hori
zontal scan. It is normally set to 0 for three refreshes
per scan. A setting of 1 supports 15.75 kHz monitors
which require five refreshes per scan.

Protect RO-7

(VGA only)
CRTC register 0-7 may be write protected by setting
this bit to 1. Because these registers control timing
functions and changing them could cause problems,
this bit usually should be set.

Port 3?5h: Light Pen Low Register
(Index llh [read], EGA only)

Description: When the light pen is triggered, the Light Pen Low Register re
turns the eight least significant bits of the light pen position (as a
display address).

Notes: The Light Pen Low Address is obtained by reading index llh;
writing index 1 Ih sets the Vertical Retrace End Register.

The CRTC Registers 173

Bits:

The VGA does not support a light pen.

0-7 The eight least significant bits of the memory address
where the light pen was last triggered.

Port 3?5h: Vertical Display Enable End Register (Index 12h)

Description: This register is programmed with the eight least significant bits
of the displayable area's vertical scan line count. The ninth (high
order) bit of the Vertical Display Enable End is programmed in
the CRTC Overflow register (see index 7). The VGA has a tenth
bit which is also located in the Overflow Register.

Note: The value used by the Vertical Display Enable End register is
actually one less than the total number of scan lines (so that a
value of zero designates one line).

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

c7 c7 c7 c7 c7 c7 c7 5d c7 c7 5d 5d

Bits: 0-7 The eight least significant bits of the vertical display
area (minus one)

Port 3?5h: Offset Register (Index 13h)

Description: The Offset Register allocates the amount of display memory per
row. Memory may be allocated in either words or double words
(see bit 2 of the Clocking Mode Register, port 3c5h, index 1).
The VGA may also use four words (bit 4 of the Clocking Mode
Register).

Notes: This is not the displayable screen width; the Offset Register
deals only with memory allocation. This is especially useful for
applications which use smooth horizontal scrolling. The line
width may be set larger than the display width, so that only a
portion of the logical screen is displayed. The Start Address may
be used to select the first displayable character position (see in
dexes ch and dh). Also see the Preset Row Scan Register (index
8) and the Attribute Controller's Horizontal Pel Pan Register
(port 3cOh, index 13h).

174 EGA/VGA: A Programmer's Reference Guide

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

14 14 28 28 14 14 28 28 14 28 14 14

More than 64K EGA memory:

Mode f 10

28 28

Bits: 0-7 Offset.

Lx)gical screen width (divided by 2, 4, or 8).

Port 3?5h: Underline Location Register (Index 14h)

Description: The Underline Location Register sets the position of the under
line within the character box.

Notes: Positions are numbered beginning with 0 — to set the underline
to the bottom of a 14-pixel-high character cell, the position
should be set to 13.

Underlining is disabled by setting the position below the current
cell height (this is done in color modes to preserve compatibility
with the CGA). Underlining can be enabled on color monitors.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

08 08 08 08 00 00 00 Od 00 00 Od Of

Values for the Enhanced Color Display:

Mode 0 1 2 3

Of Of Of Of

Bits: 0-4 Underline Location

Position of the underline within the character cell.

5 Count by 4
(VGA only)
Setting this bit to 1 divides the character clock (which

The CRTC Registers 175

updates the memory address counter) by 4; i.e., the
memory address is changed once every four clocks.

Double Word Mode

(VGA only)
Setting this bit to 1 selects double word memory ad
dressing. Bit 6 of the Mode Control Register (index
17h) must be set to 0 for this bit to have effect.

Unused

Port 3?5h: Start Vertical Blanking Register (Index 15h)

Description: This register is programmed with the eight least significant bits
of the count value at which vertical blanking begins. The count
is based on the row scan counter, which starts with 0 and ends
with the value in the Vertical Total register (see index 6). The
Vertical Blanking prevents the beam from writing over the dis
play area during the retrace.

Notes: The adapter always counts the first displayable scan line as the
first scan count. The next intervals include the bottom overscan,

vertical blanking and retrace, and finally the top overscan.

The counting unit is vertical scan lines.

The ninth (most significant) bit of the Start Vertical Blanking
register is programmed in the CRTC Overflow Register (see
index 7).

The VGA has a tenth bit which is located in the Maximum Scan

Line Register (see index 9).

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

eO eO eO eO eO eO df 5e eO df 5e 5f

Values for the Enhanced Color Display:

176 EGA/VGA: A Programmer's Reference Guide

Mode 0 1 2 3

5e 5e 5e 5e

Bits: 0-7 The eight least significant bits of the Start Vertical
Blanking count.

Port 3?5h: End Vertical Blanking (Index 16h)

Description: This register is programmed with the five least significant bits of
the count value at which the vertical blanking interval ends. The
count is based on the row scan counter, which starts with 0 and
ends with the value in the Vertical Total register (see index 6).
The Vertical Retrace Start initializes the beam's move to the top
of the screen.

Notes: The counting unit is vertical scan lines.

The EGA always counts the first displayable scan line as the
first scan count. The next intervals include the bottom overscan,
vertical blanking and retrace, and finally the top overscan.

For the EGA, the four most significant digits of the Vertical Re
trace End count are always assumed identical to the four most
significant digits of the Vertical Retrace Start Register. The
VGA assumes only the two most significant bits are identical —
all seven bits of this register are used.

The EGA parameter table shows some cases where bits 5-7 are
set. The End Vertical Blanking Register ignores these bits. For
example, the setting of fOh for mode 0 is the same as lOh.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

fO fO fO fO fO fO ef 6e fO ef 6e Da

Values for the Enhanced Color Display:

The CRTC Registers 177

Mode 0 1 2 3

Oa Oa Oa Oa

Bits: 0-4 EGA only.
The five least significant bits of the End Vertical
Blanking count.

0-7 VGA only.
The eight least significant bits of the End Vertical
Blanking count.

Port 3?5h: Mode Control Register (Index 17h)

Description: This register provides functions for mapping adapter memory to
pixel and attribute data. It is similar in function to the Sequencer
Memory Mode Register and the Graphics Controller Mode and
Miscellaneous registers.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

a3 a3 a3 a3 a2 a2 c2 a3 e3 e3 8b Sb

More than 64K EGA memory:

Mode f 10

e3 e3

Bits: Compatibility Mode Support
Setting this bit to 0 creates two display memory areas,
one for the even scan lines and one for the odd scan

lines. The start of each area is offset by 8K. This is
accomplished by replacing bit 13 of the memory ad
dress with the least significant bit (bit 0) of the row
counter (which designates even or odd scan lines).
This function implements CGA graphics mode address
compatibility.

Select Row Scan Counter

Setting this bit to 0 replaces bit 14 of the address reg
ister with bit 1 of the row counter. This is similar in

function to bit 0.

178 EGA/VGA: A Programmer's Reference Guide

Horizontal Retrace Select

When this bit is set to 0, the vertical line counter is

incremented during each horizontal retrace (this is the
standard usage). When set to 1, the counter is incre
mented every other horizontal retrace; i.e., the hori
zontal retrace is divided by two. Using divide by two
doubles the maximum vertical resolution to 1024 lines

on the EGA (2048 lines on the VGA) by giving two
vertical lines for each vertical line count.

Count by Two
Setting this bit to 0 increments the memory address on
every character clock, selecting a byte refresh address.
A setting of 1 increments the address every other
character clock (the character clock is divided by
two), selecting a word refresh address.

Output Control (EGA only)
During normal operation, this bit is always set to 0.
Setting this bit to 1 places all outputs in a high imped
ance state.

Address Wrap
This bit may be used in conjunction with the word or
byte mode (see bit 6 of this register). In byte mode,
this bit has no effect. When in word mode, setting this
bit to 1 places memory address bit 15 on address bit 0,
and a setting of 0 places memory address bit 13 on
address bit 0. Bit 13 is used to support bit plane chain
ing in high-resolution graphics modes when less than
64K is installed on the EGA.

Word Mode or Byte Mode
Byte mode is selected by setting this bit to 1, and
word mode by setting it to 0. Word mode supports
alternation of data between two bit planes; e.g., char
acter and attribute data or for chaining bit planes (see
bit 5 of this register). Word mode rotates the address
bits, moving each bit to a higher position and bringing
either bit 13 or 15 into bit 0. The VGA also supports a
double word mode (see the Underline Location Regis
ter, index 14, bit 6) in which case the address bits are

rotated two positions. In double word mode, bits 0 and
1 are replaced by bits 12 and 13, respectively.

The CRTC Registers 179

Hardware Reset

Setting this bit to 1 enables the vertical and horizontal
retraces (normal operation). A setting of 0 clears the
retraces.

Port 3?5h: Line Compare Register (Index 18h)

Description: This register is programmed with the eight least significant bits
of the count value at which the line counter is cleared. The count

is based on the row scan counter, which starts with 0 and ends

with the value in the Vertical Total Register (see index 6). The
Line Compare prevents a portion of the screen from scrolling,
and can be used to implement a second window.

The Start Address registers specify the memory displayed for the
first portion of the screen. Upon reaching the line count, the dis
play switches to memory address 0. The second window always
begins at address 0.

Notes: The adapter always counts the first displayable scan line as the
first scan count. The next intervals include the bottom overscan,
vertical blanking and retrace, and finally the top overscan.

The counting unit is vertical scan lines.

The ninth (most significant) bit of the Line Compare Register is
programmed in the CRTC Overflow Register (see index 7). The
VGA has a tenth bit located in the Maximum Scan Line Register
(see index 9).

An even line compare value should be used for 200-line modes.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

ff ff ff ff ff ff ff ff ff ff ff ff

Bits: 0-7 The eight least significant bits of the Line Compare
value.

Chapter

10
The Graphics Controller

Registers

The Graphics Controller registers manipulate data as it is moved between the
CPU and EGA memory. They also pass data from the bit plane memory to the
Attribute Controller as serial bit streams when graphics mode is enabled. Sev
eral of the Graphics Controller registers control the CGA emulation modes. A
better understanding of the adapter's internal operations may help clarify the
functions of these registers.

Each bit plane of memory has one eight-bit latch register. In graphics mode,
data is not written to (or read from) memory; rather, an onboard ALU (Arith
metic Logic Unit) combines data from the CPU with the latch registers. There
are four of these latch registers (one from each plane) which hold the contents
of the most recently read adapter memory address (see Figures 6-6 and 6-7).
Combined data is then written to memory. Since the latch registers hold a full
byte of data (and frequently only a single bit is modified), it is important that
they contain the current data to prevent changing unmodified data. The latch
registers should be loaded with the current memory contents before they are
modified by MOV'ing data from graphics memory to a CPU register; e.g.,
MOV AL,ES:[BX] where ES:[BX] points to EGA memory. Usually, the actual
value read by the CPU is ignored, although the meaning of this data may be
controlled through the read mode.
The Graphics Control registers control the technique by which the CPU and

latch register data is combined. For example, CPU and latch data can be com
bined with a logical AND, OR, or XOR; bit planes can be "permanently"
turned off or on; and bit positions can be masked as unaffected. Note that one

182 EGA/VGA: A Programmer's Reference Guide

function you might expect to appear here, the Map Mask, is a function of the
Sequencer Segister.

Port 3cah: Graphics 2 Position Register (EGA only)

Description: The EGA contains two Graphics Controller chips, each of which
controls two planes (for a total of four bit planes). These two
chips are referred to as Graphics 1 and Graphics 2. The Graphics
2 Position Register selects which two bits of the CPU data bus
affect the Graphics 2 chip; i.e., which color planes are controlled
by Graphics 1 (note that there is an extra bit allotted for this
function — only one bit is necessary for four bit planes).

Notes: This chip should always be programmed for position 1.

This is the read address for the VGA Feature Control Register
(see port 3?ah of the External registers).

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

01 01 01 01 01 01 01 01 01 01 01 01

Bits: 0-1 Position number

2-7 Unused

Port 3cch: Graphics 1 Position Register (EGA only)

Description: The EGA contains two Graphics Controller chips, each of which
controls two planes (for a total of four bit planes). These two
chips are referred to as Graphics 1 and Graphics 2. The Graphics
1 Position Register selects which two bits of the CPU data bus
affect the Graphics 1 chip; i.e., which color planes are controlled
by Graphics 1 (note that there is an extra bit allotted for this
function — only one bit is necessary for four bit planes).

Notes: This chip should always be programmed for position 0.

This is the read address for the VGA Miscellaneous Output Reg
ister (see port 3c2h of the External registers).

The Graphics Controller Registers 183

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

00 00 00 00 00 00 00 00 00 00 00 00

Bits: 0-1 Position number

2-7 Unused

Port 3ceh: Graphics 1 and 2 Address Register

Description: The Graphics 1 and 2 Address Register selects which register
will appear at port 3cfh. The index number of the desired regis
ter is written OUT to port 3ceh.

Index Register

0 Set/Reset

1 Enable Set/Reset

2 Color Compare
3 Data Rotate

4 Read Map Select
5 Mode Register
6 Miscellaneous

7 Color Don't Care

8 Bit Mask

Port 3cfh: SeV'Reset Register (Index 0)

Description: The Set/Reset Register may be used to select bit planes as "per
manently" set or cleared. Placing a bit plane in set mode will
always write 1 to the masked bit(s) during a memory write. Plac
ing a bit plane in reset mode will always write 0 to the masked
bits.

This register can be used to write an absolute color to memory
(unaffected by logical functions), limit the number of colors
available by always keeping a particular bit plane (or planes)
turned on or off, or clear planes disabled by the Bit Mask Regis
ter (index 8).

184 EGA/VGA: A Programmer's Reference Guide

Notes: This register affects only Write Mode 0 (see the description of
the Mode Register, index 5).

You must also enable the Set/Reset through the Enable Set/Reset
Register (index 1). Otherwise, all bit planes would always be set
or reset during a write in mode 0. The VGA provides Write
Mode 3, which uses the Set/Reset register directly (it is not nec
essary to use the Enable Set/Reset Register with Write Mode 3,
see the Mode Register).

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

00 00 00 00 00 00 00 00 00 00 00 00

Bits: 0 Set/Reset bit plane 0

1 Set/Reset bit plane 1

2 Set/Reset bit plane 2

3 Set/Reset bit plane 3

Port 3cfh: Enable Se^Tleset Register (Index 1)

Description: The Set/Reset Register may be used to "permanently" enable or
disable a memory plane selected via the Set/Reset Register.

Notes: This register affects only Write Mode 0 (see the description of
the Mode Register, index 5).

You must specify the set or reset function through the Set/Reset
Register before enabling it with this register.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

00 00 00 00 00 00 00 00 00 00 00 00

Bit: 0 Enable Set/Reset for bit plane 0

1 Enable Set/Reset for bit plane 1

The Graphics Controller Registers 185

2 Enable Set/Reset for bit plane 2

3 Enable Set/Reset for bit plane 3

Programming Example:

These two short programs were written to work with DOS (BASICA) 3.2.
Assemble the assembly program (name it SET_RST) and then run the BASIC
program.

The SET_RST program sets the registers to always write 0 to bit plane 0.
This is quite noticeable in the printed numerals — there are only eight colors.
However, the bars appear in 16 colors, and the circle is white despite the lack
of white amongst the numerals. So what is happening here?
As noted above, the Set/Reset registers only affect Write Mode 0. The char

acter printing routines are using this mode, and are thus limited to eight colors.
However, the line and circle routines must be using Write Mode 2 and thus
remain unaffected. Write Mode 0 usually works best for writing eight-bit pat
terns (such as a character mask), while Write Mode 2 usually works best for
plotting routines — this is reflected in BASIC'S internal use of these modes.

10 CLS: KEY OFF

20 SCREEN 9

30 SHELL ''set_rst"

40 FOR I%= 0 TO 15

50 PGR J%=0 TO 20

60 LINE (0-H%*20+J%,40) - (40

70 NEXT J%

80 NEXT 1%

90 CIRCLE (320,170),150

100 LOCATE 20,1

110 FOR

01
H

O

H
11

H

120 COLOR 1%: PRINT 1%;

130 NEXT 1%

cseg segment 'public'

assume CSrcseg

main proc far

start:

push DS

sub AX,AX

push AX

mov DX,3ceh /Graphics

;2 address

186 EGA/VGA: A Programmer's Reference Guide

mov AL,0 ;Set/Reset reg index

out DX,AL

inc DX ;Set/Reset register address

mov AL,0 /Choose Reset for all planes

out DX,AL

dec DX /Graphics 1 and 2 address

mov AL,1 /Enable Set/Reset reg index

out DX,AL

inc DX /Enable Set/Reset reg address

mov AL,1 /Only enable plane 0 the

/reset will only affect plane 1

out DX,AL

ret

main endp

cseg ends

end start

Port 3cfh: Color Compare Register (Index 2)

Description: The Color Compare Register, as its name suggests, compares the
register color with the contents of the adapter's memory. The
color value is first written to the Color Compare Register, and
then memory is read. The bits read will be 1 where the color is
the same as the Color Compare Register, and 0 where they differ
(thus eight pixels can be compared per CPU read). This register
works only in Read Mode 1 (see the Mode register, index 5).
The actual value of any bit plane may be ignored (assumed
matching) by using the Color Don't Care Register (see index 7).

The STORE.ASM program in the Appendix uses the Color
Compare Register to assist in compressing and storing the dis
play image.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f IG

GO GO GG GG GG GG GG GG GG GG GG GG

Bits: 0-3 Color number to be compared

The Graphics Controller Registers 187

4-8 Not used

Port 3cfh: Data Rotate Register (Index 3)

Description: The Data Rotate Register performs two functions. As implied by
the name, the data written by the CPU can be set to rotate right
n places (this is usually set to 0).

Additionally, this register provides a logical function which
specifies how the data is combined with the current contents of
the latch registers. Data can be overwritten, AND'ed, OR'ed, or
XOR'ed.

Notes: When both a rotate and logical function are applied, the rotate
will occur first.

This register will not affect Write Mode I. It affects only data
written from the CPU to the adapter.

The rotate count affects only Write Mode 0.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

00 00 00 00 00 00 00 00 00 00 00 00

Bits: 0-2 Rotate count. Rotate data n positions to the right
where 0 < = n < = 7.

3-4 Function select

00b — Write data without modification

01b — AND data with latch contents

10b — OR data with latch contents

lib — XOR data with latch contents

5-7 Not used

Assembly Language Example:

This program writes italic characters to the screen (the program is halted by
typing Ctrl-Z). Note that italics are emulated very well by rotating the top five

188 EGA/VGA: A Programmer's Reference Guide

pixels one position to the right, leaving the middle three pixels in their original
positions, and rotating the bottom six pixels seven to the right (which has the
same effect as one to the left). The far right pixel has been masked as unwrite-
able to prevent dots from rotating off the left side onto the right (the default
character always keeps the right pixel blank, so the left side does not need
masking).

Since several lines of data are rotated the same amount when writing italics,
using the adapter hardware may be more efficient than having the CPU shift
the data, since the count does not need to be reset for each new line, and the
full shift count occurs in one cycle. In fact, the EGA and VGA seem to be
designed for efficient character writing — eight bits can be written to the dis
play and each character is eight bits wide, and the default Write Mode handles
eight pixel writes much better than single pixel plotting. The rotate and mask
register could be used for proportional spacing to gain an even greater increase
in efficiency. The rotate and mask would allow each row of a character to align
on any pixel position, and the mask could be used to split the character be
tween two character cells when necessary. Note that the current contents of any
addressed cells should be preserved to prevent overwriting another character
sharing the same cell(s).

data

data

code

main

start:

segment 'public'

ega_seg dw OaOOOh

row dw 10

col dw 5

cols dw 80

v_dots db 14

ital db 'Italics'

ends

segment 'publicr

assume CS:code

proc far

push DS

sub AX,AX

push AX

mov AX,data

mov DS,AX

assume DS:data

The Graphics Controller Registers 189

agn:

mov AX,10h /mode lOh

int lOh

mov AX,1130h /put character

/set location in ES:BP

mov BH,1 /get the current

/character set

int lOh

assume ES:nothing

mov AH, 6 /DOS direct console I/O

mov DL,Offh

int 21h /DOS function call

jz agn /if no character, try again

mov AH,0

cmp AL,26 /was it Ctrl-Z ?

je done /yes. leave the routine

mul v_dots /multiply by vertical dots per
/character

add AX,BP /AX = offset of character

/definition

call it_out
add col, 1

cmp col,80

jb same_row
mov col,0

add row, 1

same_row:

jmp

done: ret

main endp

it__out proc

mov

mov

mov

agn

near

CX,0 /clear the CX register
SI,AX /source is offset

/of character

DI,cols /store number of

/columns in

/DI for later use

mov AX,row /get the cursor row

mul v__dots /multiply by dots/pixel to get
/pixel row

190 EGA/VGA: A Programmer's Reference Guide

mul D1 /multiply by columns

add AX,col /and finally add the column to

/get the offset

mov BX,AX /mov offset to BX

push

mov

mov

assume

DS

AX,OaOOOh

DS,AX

DS:nothing

/segment containing
/mode 10 memory

mov

out

inc

mov

out

DX,3ceh /Graphics 1 and 2

/Address

AL,8 /Index of Bit Mask

DX,AL

DX /Bit Mask register
AL,11111110b /Don't allow writes

/to far right bit

DX,AL

dec

mov

out

inc

mov

out

DX /Graphics 1 and 2 Address

AL,3 /Index of Data Rotate reg

DX,AL

DX

AL,10001b

DX,AL

/Data Rotate reg

/Rotate 1 position

/and OR with

/current contents

top:

mov

mov

mov

mov

add

inc

loop

/five repetitionsCL,5

AL,[BX]

/latch the data

AL,ES:[SI] /get the character

/ data

[BX],AL /write data screen

BX,DI

SI

top

mid:

mov

out

mov

mov

mov

AL,10000b

DX,AL

CL,3

/No rotate and OR with

/current contents

/three repetitions

AL,[BX] /latch the data

AL,ES:[SI]

/get the character

The Graphics Controller Registers 191

/data

mov [BX],AL

/write data screen

add BX,DI

Inc SI

loop mid

mov AL,10111b /rotate 7 positions
/and OR with current

/contents

out DX^AL

mov CL,6 ;six repetitions

hot: mov AL,[BX]

/latch the data

mov AL,ES:[SI] /get the character data

mov [BX],AL /write data screen

add BX,DI

Inc SI

loop bot

pop DS

ret

it_out endp

code ends

end start

Port 3cfh: Read Map Select Register (Index 4)

Description: A byte of any single bit plane may be read from display memory
by the CPU by writing the desired plane's number (0, 1, 2, or 3)
to the Read Map Select Register.

Notes: This register only functions in read mode 0 (see bit 4 of the next
entry — the mode register). Read Mode 0 is the BIOS default,
so setting the read mode usually is not necessary.

The value is different than the Map Mask Register which uses
each bit to select the corresponding plane.

BIOS Default Settings (all values are Hexadecimal):

192 EGA/VGA: A Programmer's Reference Guide

Mode 0 1 2 3 4 5 6 7 d e f 10

00 00 00 00 00 00 00 00 00 00 00 00

Bits: 0-1 Number of bit plane to be read

2-7 Not used

Port 3cfh: Mode Register (Index 5)

Description: This register must first be selected by writing the value 4 to the
Graphics 1 and 2 Address Register (port 3ceh).

The adapter provides three methods for writing data and two
methods for reading data. By switching to a mode that best re
flects your procedure's requirements, the speed of setting or
reading pixels can be significantly improved.

The Mode Register (in conjunction with the Miscellaneous Reg
ister, index 6) provides CPU addressing functions. Similar func
tions are available through the Sequencer Memory Mode Regis
ter and the CRTC Mode Control Register.

Notes: BIOS uses Write Mode 0 and Read Mode 0 as the defaults.

When writing data directly to adapter memory, it is important to
first load the latch registers with the current memory contents.
This is done by MOV'ing data from adapter memory to the CPU
(e.g. mov AL,ES:[BX]).

When changing the Read and/or Write Mode, you must preserve
bits 4-5 on the EGA and bits 4-6 on the VGA. This is a simple
task on the VGA — read the register and modify the appropriate
bit(s). But, on the EGA, you must determine the current mode
and memory configuration and read the default setting from the
Parameter Table (see Chapter 12). Bit 2 should always be 0.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

10 10 10 10 30 30 00 10 00 00 10 10

More than 64K EGA memory:

The Graphics Controller Registers 193

Mode f 10

00 00

Bits: 0-1 Write Mode

0 — The Map Mask Register is used to enable or dis
able bit planes for writing, and the Bit Mask Register
is used to enable or disable pixels within the byte.
Data moved into adapter memory is written to each
enabled plane (except those enabled for Set/Reset —
see the Set/Reset Register, index 0) and pixel. Thus,
mov ES:[BX],9 would write the pattern 10000001b to
the enabled bit planes (turning on the first and eighth
pixel and turning off the second through seventh
pixels).

1 — The contents of the latch registers are written to
memory. Each bit plane has an eight-bit latch register,
which is loaded when the CPU reads adapter memory.
Normally, the data is combined from the CPU and
latch registers and then written to adapter memory, but
this mode writes from the latch registers only. This is
useful for loading the latches from one memory loca
tion and writing them to another; e.g., commonly used
images may be stored in an unused portion of mem
ory, and transferred by simple MOV's without setting
registers to change colors (although nothing in the
overwritten areas will be preserved).

2 — The Bit Mask Register (index 8) is used to en
able or disable the specific pixels within the one-byte
address written by the CPU. The CPU data specifies
which color is written. Thus, mov ES:[BX],4 would

write color 4 to the enabled pixels. This is also the
Write Mode used by IBM BASICA 3.2 (see the pro
gramming example for the Enable Set/Reset Register,
index 1).

3 __ VGA only.

The ALU performs a logical AND between the
Set/Reset value and the Bit Mask Register (see index
8), and writes the result to the designated adapter ad
dress. The Enable Set/Reset Register need not be set
for this Write Mode.

194 EGA/VGA: A Programmer's Reference Guide

Test Condition

(EGA only)
Setting this bit to 1 places the controller outputs in
high-impedance state. Unless you are doing diagnos
tics, this bit should always be set to 0.

Read Mode

0 — Each bit set when the CPU reads memory desig
nates a bit set in the bit plane chosen by the Read
Map Select Register (see index 4).

1 — Each bit set when the CPU reads memory desig
nates bits which are the same color as the color in the

Color Compare Register (see index 2). The result of
the read is also affected by the Color Don't Care Reg
ister (see index 7).

Odd/Even

When this bit is set to 1, CPU data at odd addresses
are mapped to the odd bit planes (and even addresses
to even bit planes). This only affects the Graphics
Controllers. Typically, the Sequencer is set to use the
same scheme through bit 2 of the Memory Mode Reg
ister (see the Sequencer registers). This is useful for
text modes (attribute data in one plane, character data
in the other), emulation of CGA graphics modes, or
addressing two bit planes as one when less than 64K
is available.

Shift Register
When this bit is set, even-numbered bits are written
from graphics memory to the even bit planes of the
Attribute Controller. Likewise, odd-numbered bits are
written to the odd planes. Thus, two sequential mem
ory bits, forming one color, are placed in two separate
serial bit streams by the serializer. This allows emula
tion of CGA four-color graphics (two sequential bits
form one color by mapping to two separate bit
planes).

256-Color Mode

(VGA only)
This is similar to the Shift Register (bit 5). As data is
serialized, each byte is converted to a 2 X 4 bit array

The Graphics Controller Registers 195

for the Attribute Controller. Since each pixel is repre
sented by two sequential bits of four parallel streams
(instead of one sequential bit with four in parallel),
several of the Attribute Controller functions do not

work in 256-color mode.

Not used

Port 3cfh: Miscellaneous Register (Index 6)

Description: This register (in conjunction with the Mode Register, index 5)
modifies several addressing functions of the Graphics Controller.
Similar functions are provided by the Sequencer Memory Mode
Register and the CRTC Mode Control Register.

Bits: 0 Graphics Mode
This bit is set to 1 for graphics modes and 0 for text
modes. Graphics mode disables the bit plane character
generator and enables pixel addressing.

1 Chain Odd Maps to Even Maps
This is typically used with bit 4 of the Mode Register
(see index 5). Odd CPU addresses are written to odd
bit planes, and even addresses to even planes. How
ever, the CPU address is first modified by replacing
the least significant address bit with bit 13 or 15 (de
pending on the amount of memory installed on the
adapter). The effect is to place low addresses in planes
0 and 2 (which altemate based on the actual CPU's
least significant bit if Odd/Even mode is in effect) and
high addresses in planes 1 and 3. Thus, the odd bit
planes follow the even planes in the CPU's address
space, doubling the effective address space on adapt
ers with less than 64K memory.

2-3 Memory Map
These bits set the location and size of the memory
map (for direct memory access by the CPU). No other
display adapter may be installed when the value is 00b
since the memory addresses of the two adapters would
conflict.

00b AOOOh I 128K

196 EGA/VGA: A Programmer's Reference Guide

01b A000h/64K

10b B000h/32K

lib B800h/32K

4—7 Not used

Port 3cfh: Color Don't Care Register (Index 7)

Description:

Bits:

This register allows the CPU to ignore the specified bit plane(s)
when reading EGA memory via the Color Compare Register and
Read Mode 1 (see the Color Compare Register, index 2, and the
Mode Register, index 5).

This register should be set to fh to match only the color in the
Color Compare Register (a setting of 0 will match any color).

0 When set to 0, the contents of bit plane 0 are assumed
to match the Color Compare setting for bit plane 0.

1 When set to 0, the contents of bit plane 1 are assumed
to match the Color Compare setting for bit plane 1.

2 Then set to 0, the contents of bit plane 2 are assumed
to match the Color Compare setting for bit plane 2.

3 When set to 0, the contents of bit plane 3 are assumed
to match the Color Compare setting for bit plane 3.

4-7 Not used

Port 3cfh: Bit Mask Register (Index 8)

Description: The Bit Mask Register enables or disables modification of any
or all bits within the one-byte address written by the CPU. For
single pixel plotting, only a single bit should be enabled. En
abling multiple bits is useful for writing characters (in graphics
mode) and horizontal lines.

Notes: The current data must be latched in order to be preserved. This
is done by performing a CPU read before every write.

The Graphics Controller Registers 197

This register does not affect Write Mode 1; i.e. unlike the Map
Mask Register (Port 3c5h, Index 2), the Bit Mask Register does
not mask data from the latch registers.

Bits: 0-7 Each bit set to 1 allows that bit to be changed by the
CPU. Each bit set to 0 prevents that bit from chang
ing. For example, 0 prevents any memory bits from
changing, and ffh allows all eight bits to change.

Chapter

11
The Attribute Controller

Registers

The Attribute Controller registers control the color assignments for the color
numbers, overscan, and background. Although undocumented, the registers will
respond at port 3c Ih. This feature allows a single out instruction to select and
program the register, just as with the other output registers. In graphics modes,
memory data is usually passed to the Attribute Controller in the form of four
serial bit streams (one stream from each bit plane). On every dot clock, the
video serializers pass a bit from each serial stream. The Attribute Controller
uses the four-bit value to look up the color to be displayed (or, in the case of
the VGA, four additional static bits are added, and the resulting eight-bit value
is passed to the DAC). The Sequencer loads the serializer every character clock
(eight or nine bits), unless bit planes are being chained. Figure 11-1 illustrates
this sequence.
The Attribute registers operate through a flip/flop which toggles between the

Address Register and Index Registers after every write. The Attribute Register
may have been in Index mode by another routine or interrupt, so you should
always reset it to address mode by reading from Port 3?ah (Input Status Regis
ter One). Additionally, the attribute registers should only be changed during a
vertical retrace. Because the retrace status is available through Input Status
Register One, reading the register serves the dual purpose of resetting the
flip/flop and establishing the retrace status.

200 EGA/VGA: A Programmer's Reference Guide

COLOR

VALUE

SERIAL

BIT
STREAM

■{h
SERIALIZER

SERIALIZER

—PTTTm

■{>
SERIALIZER

—RTTTTl

SERIALIZER

flW]

-PnTTTI

TT

BIT PLANE 3

BIT PLANE 2

BIT PLANE I

run

BIT PLANE 0

J_l
R' G'b'R 6 B

DIGITAL SIGNAL
DRIVES DISPLAY

EGA

VGA

^ QiTrrm
PALETTE
REG ISTERS COLOR SELECT

REGISTER

ANALOG
SIGNAL

' DRIVES
• DISPLAY

DAG REGISTERS

Figure 11-1 Data fiow from memory to the CRT.

The Attribute Controller Registers 201

Port 3c0h: Attribute Address Register

Description: The Attribute Address Register selects which register will appear
at port 3cOh. The index number of the desired register is written
to port 3cOh. Because port 3cOh is shared by both the Address
and indexed registers, the Address Register should always be ini
tialized. Performing an IN from Input Status Register One at
port 3bah (monochrome) or 3dah (color) will always set the reg
ister to the Address function.

Index Register

0-fh Palette registers
10 Mode Control

11 Overscan Color

12 Color Plane Enable

13 Horizontal Pel Panning

14 Color Select (VGA only)

Notes: The Attribute registers should only be set during a vertical re
trace.

Bits:

Bit 5 must be set to 0 (disabling EGA access) before the palette
registers are modified, and reset to 1 after the settings are com
pleted.

On the VGA, the attribute registers may be read from 3clh.

0-4 Attribute Address

This is the index number of the register to be ad
dressed.

Palette Address

Setting this bit to 1 enables the EGA's internal regis
ters to access the palette data; 0 disables access.

6-7 Not used

Port 3c0h: Palette Registers (Index 0-fh)

Description: On the EGA, these 16 registers control the actual color displayed
by each of the color numbers (bit plane combinations). Indices
0-15 control colors 0-15, respectively. The default color scheme

202 EGA/VGA: A Programmer's Reference Guide

is organized so that adding two color numbers gives the color
formed by that mix; e.g., color 1 (blue) + color 2 (green) gives
color 3 (cyan = the combination of blue and green). The primary
colors blue, green, and red appear in the normalized binary se
quence 1, 2, 4. Colors 8-15 are the intensified versions of colors
0-7. The default colors for the ECD are:

Color R' G' B' R G B

Bit 5 4 3 2 1 0 Value

Black 0 0 0 0 0 0 0

Blue 0 0 0 0 0 1 1

Green 0 0 0 0 1 0 2

Cyan 0 0 0 0 1 1 3

Red 0 0 0 1 0 0 4

Magenta 0 0 0 1 0 1 5

Brown 0 1 0 1 0 0 14h

White 0 0 0 1 1 1 7

Dark Gray 1 1 1 0 0 0 38h

Light Blue 1 1 1 0 0 1 39h

Light Green 1 1 1 0 1 0 3ah

Light Cyan 1 1 1 0 1 1 3bh

Light Red 1 1 1 1 0 0 3ch

Light Magenta 1 1 1 1 0 1 3dh

Yellow 1 1 1 1 1 0 3eh

Intense White 1 1 1 1 1 1 3fh

Notes: See the note on the Attribute Address Register about enabling
Palette Register access.

The primary (RGB) and secondary (R'G'B') refer only to digi
tal-type monitors. The VGA's analog monitors use a digital to
analog converter (DAG) to convert the palette settings to the ap
propriate color. In fact, the DAG acts as the palette from which
the actual colors are selected — these palette registers act only
as an index for the DAG's internal color table (an offset may be
specified through the Color Select register, index 14h).

The Dynamic Save Area will not be updated with the new pal
ette settings unless the registers are set through BIOS Function
Gall lOh (see Chapters 4 and 13).

The Attribute Controller Registers 203

These registers do not affect VGA mode 13h. The eight-bit color
values of this mode are sent directly to the DAC.

The palette registers should only be read or written during a ver
tical retrace.

On the VGA, the attribute registers may be read from 3c Ih.

BIOS Default Settings (all values are Hexadecimal):

64K mem >64K Mem ECD

Mode

Index

0-3 4-5 6 7 d-e f 10 f 10 0-3

0 GO 00 00 00 00 00 00 00 00 00

1 01 13 17 08 01 08 01 08 01 01

2 02 15 17 08 02 00 00 00 02 02

3 03 17 17 08 03 00 00 00 03 03

4 04 02 17 08 04 18 04 18 04 04

5 05 04 17 08 05 18 07 18 05 05

6 06 06 17 08 06 00 00 00 14 14

7 07 07 17 08 07 00 00 00 07 07

8 10 10 17 10 10 00 00 00 38 38

9 11 11 17 18 11 08 01 08 39 39

a 12 12 17 18 12 00 00 00 3a 3a

b 13 13 17 18 13 00 00 00 3b 3b

c 14 14 17 18 14 00 04 00 3c 3c

d 15 15 17 18 15 18 07 18 3d 3d

e 16 16 17 18 16 00 00 00 3e 3e

f 17 17 17 18 17 00 00 00 3f 3f

Bits: EGA:

0

1

2

3

4

Primary Blue (Color Display/ECD)

Primary Green (Color Display/ECD)

Primary Red (Color Display/ECD)

Secondary Blue (ECD) or Primary Video (Mono)

Secondary Green (ECD) or Intensity (Color Displays
which support intensity)

204 EGA/VGA: A Programmer's Reference Guide

5 Secondary Red (ECD)

6-7 Not used

VGA: 0-5 Palette

Selects a color from one of the DAC registers (the
DAC uses 256 18-bit color registers to provide a se
lection from 262,144 colors). The value may be modi
fied by the Mode Control Register (index lOh) and
Color Select Register (index 14h)

6-7 Not used

Port 3c0h: Mode Control Register (Index lOh)

Description: This register selects mode characteristics for the Attribute Con
troller.

Notes: Bit 3 can be used to enable blinking on color graphics systems
in graphics modes. The blink produced is an alternation between
two palette colors rather than an on/off blink. For example, color
15 alternates between colors 15 and 8.

On the VGA, the attribute registers may be read from 3clh.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

08 08 08 08 01 01 01 Oe 01 01 Ob 01

Bits: Graphics/Alphanumeric Mode
Setting this bit to 1 designates graphics mode (0 is
text mode)

Monochrome Display/Color Display
Setting this bit to 1 designates monochrome display
attributes. 0 designates color display attributes.

Enable Line Graphics Character Codes
This bit is used with mode 7 to support 9-bit-wide line
graphics characters on the monochrome display. When
set to 1, the ninth dot of characters cOh-dfh will be the

same as the eighth dot, and thus line graphics charac-

The Attribute Controller Registers 205

ters will form unbroken horizontal lines. If set to 0,

the ninth dot will always be the same color as the
background.

Enable Blink/Set Background Intensity
This bit toggles between high-intensity background or
blinking characters based on bit 7 of the attribute byte
in text modes (this supports the CGA function of se
lecting either 16 background colors, or eight back
ground colors with and without blinking). Setting this
bit to 1 selects attribute bit 7 as a blink bit (it also
allows blinking in graphics modes). Setting this bit to
0 selects attribute bit 7 as a high intensity background
bit (and prevents blinking in graphics modes).

Not used

PEL Panning Compatibility (VGA Only)
Setting this bit to 1 sets the PEL Panning Register (see
index 13h) to 0 after the line compare and until the
vertical retrace (upon reaching the vertical retrace, the
PEL Pan register is reloaded with the programmed
value). This allows panning only the upper window
when split screen mode is enabled. Setting this bit to 0
causes the PEL Paiming Register to ignore the line
compare.

PEL Width (VGA Only)

A setting of 1 makes each pixel eight bits wide (used
for mode 13h) for a total of 256 colors. All other
modes should set this bit to 0.

P5, P4 Select (VGA Only)
This bit controls bits 4 and 5 of the palette registers
when used to select color values from the DAG Table.

When set to 1, bits 4 and 5 of the Palette registers
(indices 0-fh) are replaced by bits 0 and 1 of the Color
Select register (index 14h). When set to 0, the values
sent from the Palette registers to the DAC remain un
modified.

206 EGA/VGA: A Programmer's Reference Guide

Port 3c0h: Overscan Color Register (Index 11 h)

Description: This register selects the intensity of each electron gun between
the retrace and blanking intervals, resulting in a colored border.

Notes: The BIOS default is 0 (black) for all modes.

The high-resolution modes of the EGA do not work properly
with colors other than black. The timing constraints of the
EGA/ECD combination require the overscan to begin before the
electron beam has finished moving to the left side of the screen.
Additionally, the borders produced in the highest resolution
modes do not extend much past the active display area. Like
wise, the use of borders on the VGA is limited.

On the VGA, the attribute registers may be read from 3c Ih.

Bits: 0 Primary Blue (Color Display/ECD)

1 Primary Green (Color Display/ECD)

2 Primary Red (Color Display/ECD)

3 Secondary Blue (ECD) or Primary Video (Mono)

4 Secondary Green (ECD) or Intensity (Color Displays
which support intensity)

5 Secondary Red (ECD)

6-7 Not used

VGA: 0-7 Palette

Selects a color from one of the DAC registers (the
DAC uses 256 18-bit color registers to provide a se
lection from 262,144 colors).

Port 3c0h: Color Plane Enable Register (Index 12h)

Description: This register selects the bit planes used. It may be used to limit
bit plane access for compatibility modes and EGA's with less
than 64K installed memory.

The Attribute Controller Registers 207

Notes: On the VGA, the attribute registers may be read from 3clh.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

Of Of Of Of 03 03 01 Of Of Of 05 05

More than 64K EGA memory:

Mode f 10

05 Of

Bits: 0

1

2

3

4-5

When set to 1, bit plane 0 is enabled.

When set to 1, bit plane 1 is enabled.

When set to 1, bit plane 2 is enabled.

When set to 1, bit plane 3 is enabled.

Video Status MUX

These bits are used for diagnostics. Two attribute bits
(selected via these two bits) appear on bits 4 and 5 of
Input Status Register One (see the External registers
port 3?ah) according to the following table:

6-7

Value EGA VGA

00b Red/Blue Bit 2/Bit 0

01b BIue'/Green Bit 5/Bit 4

10b Red'/Green' Bit 3/Bit 1

lib N/A Bit 7/Bit 6

Not used

Port 3cOh: Horizontal PEL Panning Register (Index I3h)

Description: The Horizontal PEL Panning Register shifts the image left by
the designated number of pixels. This function is available in
either text or graphics modes.

Notes: This register should be set only during a vertical retrace.

208 EGA/VGA: A Programmer's Reference Guide

The Offset Register (see the CRTC registers, port 3?5h, index
13h) can be used to select a logical screen width larger than the
physical display width. The Start Address Register (see port
3?5h, indexes ch and dh) may be used to shift the image right or
left one character. This, in conjunction with bit shifts to the left,
may be used to implement a PEL Pan to the right or left. When
bit planes are chained, the shift registers load 16 or 32 pixels
instead of the usual eight, and the Start Address can only point
to every second or fourth character. In these cases, the End Hori
zontal Register (see port 3?5h, index 5) assists the EGA, and the
Preset Row Scan Register (see port 3?5h, index 8) assists the
VGA.

Graphics and color modes are limited to a maximum shift of
eight pixels. The monochrome text mode (7) may be shifted a
maximum of nine pixels.

On the VGA, the Attribute registers may be read from 3clh.

Note that mode 7 and VGA modes 0-3 must start with a value

of 8 (100b) rather than 0.

BIOS Default Settings (all values are Hexadecimal):

Mode 0 1 2 3 4 5 6 7 d e f 10

00 00 00 00 00 00 00 08 00 00 00 00

Bits: 0-3 Horizontal PEL Panning
This value represents the number of bits to shift left
(moving the display to the right) according to the fol
lowing table:

Modes

Value 7, 0-3 VGA 13h VGA All Others

000b 1 0 0

001b 2 N/A 1

010b 3 1 2

011b 4 N/A 3

100b 5 2 4

101b 6 N/A 5

110b 7 3 6

111b 8 N/A 7

100b 0 N/A N/A

The Attribute Controller Registers 209

Port 3c0h: VGA Only. Color Select Register (Index 14h)

Description: This register adds additional flexibility in selecting VGA colors.
It adds two bits to the palette registers to provide a full eight-bit
palette selection (256 colors). The two most significant bits of
the palette register (4 and 5) may also be replaced by Color Se
lect bits 0 and 1.

The palette may be changed very rapidly through use of this
register. See the WHEEL.ASM program in the Appendix for an
example.

Notes: The Color Select Register affects all of the palette registers. It
works similarly to the segment/offset scheme of the CPU. You
may select from four sets of 64 colors (Mode Control, index
lOh, bit 7 set to 0), or 16 sets of 16 colors (Mode Control bit 7
set to 1).

This register does not affect mode 13h.

This register may be read from 3c Ih.

BIOS Default Settings (all values are Hexadecimal):

Bits: 0-1 S_color4-5

These bits replace bits 4 and 5 of the palette registers
when the Attribute Mode Control Register's bit 7 is
set to 1 (see index lOh).

2-3 S_Color 6-7

These bits are used as the two most significant bits of
the palette registers.

Chapter

12
The Digital to Analog Converter

Registers (VGA oniy)

The Digital to Analog Converter (DAG) registers convert binary color informa
tion from the VGA into analog signals for the monitor. Functionally, the DAG
is very similar to the palette registers. The DAG contains 256 PEL data regis
ters, each of which defines one color (this limits the VGA to a maximum of

256 accessible colors). Each PEL data register is 18 bits wide, using six bits for
each primary color •— red, green, and blue. Thus, the total number of definable
colors is 262,144.

All mode 13h colors must be defined via the DAG PEL Data registers. BIOS
sets the first 16 mode 13h colors to match the other 16 color modes. The next

16 colors provide evenly varying shades of gray. The remaining 224 colors
offer a wide variety of colors which should satisfy most user's needs. Because
of the broad range of colors (and limited resolution) you probably will not
redefine the DAG for mode 13h colors.

However, the remaining modes may use all 256 colors through the use of the
Golor Select Register, index 14h of the Attribute Register. Although a maxi
mum of 16 may be displayed at one time, creative programming can make the
DAG a powerful tool. For example, you could program the first 16 registers
with shades of gray, and with each successive set of 16 colors, add color and
gradually increase the intensity. You could then program a scene to change
from a dark or cloudy setting into a brilliantly lit environment of vibrant colors,
simply by incrementing the value of the Golor Select Register. Similarly,
changing only two or three colors in each set could be used to produce simple
animation effects such as snow, rain, or flashing lights. The WHEEL.ASM pro
gram in the Appendix uses this technique to animate a rolling wheel.

212 EGA/VGA: A Programmer's Reference Guide

Port 3c7h: DAC State Register (VGA only)

Description: This register may be read to determine whether the DAC is in
read or write mode. The DAC Data Register should be read by
the CPU only while it is in read mode, and written only while in
write mode.

Notes: This register is read-only.

Bits: 0-1 A value of 00b indicates the DAC is in write mode,
and a value of lib indicates read mode.

2-7 Reserved

Port 3c7h: PEL Address Read Mode (VGA only)

Description:

Notes:

This register selects a PEL Data Register for reading (to write
the PEL Data Register, use the PEL Address Write Mode at port
3c8h). After selecting the PEL Data Register, three six-bit values
should be read from port 3c9h (the PEL Data Register). The first
read returns the red intensity; the second, green; and the third,
blue.

This register is write-only. You may read the current setting
from Port 3c8h.

After reading the three color values, the PEL Address Register
will automatically increment to the next PEL Data Register.

If the read cycle is interrupted by another read or write request
(rewriting either PEL Address Register), the current cycle will
be abandoned and will not affect the DAC color table.

The read cycle should not be interrupted by writing the PEL
Data Register (the color table may be affected). However, the
PEL Address Register may be written at any time.

The DAC State Register may be used to determine the current
mode of the DAC (read or write).

Interrupts should be disabled during the read cycle.

The Digital to Analog Converter Registers (VGA oniy) 213

Reading or writing of successive PEL Data registers must be
separated by at least 240 nanoseconds.

Bits: 0-7 The PEL Data Register (number 0-255) to be read.

Port 3c8h: PEL Address Write Mode (VGA only)

Description: This register selects a PEL Data Register for writing (to read the
PEL Data Register, use the PEL Address Read Mode at port
3c7h). After selecting the PEL Data Register, three six-bit values
should be written to port 3c9h (the PEL Data Register). The first
value determines the red intensity; the second, green; and the
third, blue.

Notes: After writing the three color values, the PEL Address Register
will automatically increment to the next PEL Data Register.

If the write cycle is interrupted by another read or write request
(rewriting eitiier PEL Address Register), the current cycle will
be abandoned and will not affect the DAC color table.

The write cycle should not be interrupted by reading the PEL
Data Register (the color table may be affected). However, the
PEL Address Register may be read at any time.

The DAC State Register may be used to determine the current
mode of the DAC (read or write).

Interrupts should be disabled during the write cycle.

Reading or writing of successive PEL Data registers must be
separated by at least 240 nanoseconds.

Bits: 0-7 The PEL Data register (number 0-255) to be written.

Port 3c9h: PEL Data Register (VGA only)

Description: This register reads or writes the current DAC color table values.
Each cycle requires three sequential reads or writes at this ad
dress, consisting of three six-bit color values — red, green, and
blue, respectively.

214 EGA/VGA: A Programmer's Reference Guide

Notes: If the read or write cycle is interrupted by another read or write
request (rewriting either PEL Address Register), the current
cycle will be abandoned and will not affect the DAC color table.

You should not intermix read and write instructions. PEL Data

Register reads should be done in read mode only, and writes in
write mode only.

The DAC State Register may be used to determine the current
mode of the DAC (read or write).

Interrupts should be disabled during the read or write cycle.

After reading or writing three values (RGB), the address register
will increment to the next PEL Data Register.

Reading or writing of successive PEL Data registers must be
separated by at least 240 nanoseconds.

The PEL Data registers should not be read or written during the
active display interval. The display should be blanked (see bit 5
of the Sequencer Clocking Mode Register, port 3c5h index 1) or
in the vertical retrace interval.

Bits: 0-5 The color value to be written or read.

6-7 Reserved

Port 3c6h: PEL Mask (VGA only)

Description: This register performs a logical AND between its contents and
the 8-bit color data coming into the DAC. This register is initial
ized to ffh by BIOS whenever the video mode is changed. In
effect, this register restricts access to the DAC, thereby limiting
the range of colors available.

Bits: 0-7 Mask Value

Chapter

13
The BIOS Save Area

Every time BIOS performs a mode reset, the registers are programmed to their
default values for the selected mode and the default character set is reselected.

Determining the default values is difficult since most of the EGA registers can
not be read. This can be very frustrating if your programs require mode
switches or must run on a wide variety of configurations. Fortunately, the EGA
BIOS sets up several areas in RAM to help circumvent problems associated
with the EGA's mode switching behavior.
Memory address 0040:00a8h contains a pointer, called the Save Table

Pointer, which points to a table (the Save Table) of eight double word pointers.
When first initialized, the Save Table is located in the EGA BIOS, and its only
entry points to the Parameter Table (unused pointers are set to 0000:0000). If
you need to modify the save table, it should be copied from ROM to RAM.
Then change the Save Pointer to address the new location. The contents of the
save table are:

• Double word 1 offset 0, the Parameter Table Pointer, This is the
table which contains all of the default register settings. It includes
some modes used internally by the adapter (modes 8-ch). The Pa
rameter Table will be described in detail later. This table is the

only Save Table entry required for the EGA's operation. The VGA
requires an entry here and in the Secondary Save Pointer (double
word 5).

• Double word 2 offset 4, the Dynamic Save Area Pointer, This entry
can be set by the user to point to a 256-byte area in RAM called
the Palette Save Area. When the mode is reset, the designated
RAM area will be written with the palette register and overscan

216 EGA/VGA: A Programmer's Reference Guide

register settings (16 bytes, palette registers 0-15 followed by the
overscan). Then, each time a palette register is changed through
BIOS Function Call lOh (see Chapter 4), the data area will be up
dated. Note that changing the palette registers directly through
the yO ports will not update the Palette Save Area. Consider this
an incentive for using BIOS calls to set the palette.

• Double word 3 offset 8, the Alpha Mode Auxiliary Pointer. This
entry points to a table containing descriptors for an text mode
character set. During a mode reset, the ROM-based character gen
erator is loaded into bit plane 2 of the EGA, and then the user-de-
fined set is loaded if this entry is not set to 0000:0000. If the user-
defined set is not defined as font table 0 (i.e., either font table 1-3),
two font tables will exist after every text mode set.

• Double word 4 offset lOh, the Graphics Mode Auxiliary Pointer.
This entry points to a table containing descriptors for a graphics
mode character set (it is similar to the Alpha Mode Auxiliary
Pointer). If this entry is set to 0000:0000, the ROM character gen
erator is used, otherwise the user defined set is used. Unlike the
Alphanumeric Mode Auxiliary Pointer, only one font table may be
defined.

• Double word 5 offset 14h (VGA Only), the Secondary Save Pointer.
The Secondary Save Pointer extends the address table for the
VGA. Its structure and functions are similar to the Save Pointer.

• Double words 5-7 are not used on the EGA, and 6-7 are not used
on the VGA.

The Secondary Save Table (VGA Only)

The VGA's Secondary Save Pointer adds a few new data areas.

• Word 1 offset 0, the table size. The table size does not include the
initial single word. The Secondary Save Table could possibly be
expanded in the future by increasing the value at this offset. If
your program will copy this pointer into a data area, you should
check the size against the space you have reserved.

Double word 1 offset 2, the DCC Table Pointer. This address points
to a list of legal adapter combinations. It will typically exist in
ROM for equipment checks when the system is started. This table
is required for all systems which use the Secondary Save Pointer.

The BIOS Save Area 217

• Double word 2 offset 6, the Second Alpha Mode Auxiliary Pointer,
This entry points to a table containing descriptors for a secondary
text mode character set (extending the set to 512 characters). Dur
ing a mode reset, this character set will be loaded into bit plane 2
along with the set selected via the Alpha Mode Auxiliary Pointer.
Thus, systems using the secondary pointer may have 512 default
user-defined characters (versus 256 user-defined plus 256 ROM
characters on the EGA). When set to 0000:0000, this entry will be
ignored.

• Double word 3 offset Oah, the User Palette Profile Table Pointer,
This points to a table of palette-setting options. Normally, the at
tribute registers are set according to the Parameter Table, and the
DAC registers are set according to internal ROM based values.
You may override both (for selected modes) through the Palette
Profile Table. When set to 0000:0000, this entry will be ignored.

The Parameter Table

The Parameter Table contains the settings for each video mode variation.
Thus, mode 0 on a 200-line display has a separate entry from mode 0 on a
350-line display. Each mode entry is 64 bytes long and is organized as follows:

Offset Size Description

0 1 byte Number of displayable columns
1 1 byte Number of displayable rows
2 1 byte Pixel height of the character cell
3 1 word Memory per video pages (in bytes)

Sequencer Register Settings

5 1 byte Clock Mode
6 1 byte Map Mask
7 1 byte Character Generator Select
8 1 byte Memory Mode

Miscellaneous Register Settings

9 1 byte Miscellaneous Register

CRTC Register Settings

ah 1 byte Horizontal Total

218 EGA/VGA: A Programmer's Reference Guide

bh 1 byte Horizontal Display End
ch 1 byte Start Horizontal Blanking
dh 1 byte End Horizontal Blanking
eh 1 byte Start Horizontal Retrace

fh 1 byte End Horizontal Retrace

lOh 1 byte Vertical Total

llh 1 byte Overflow

12h 1 byte Preset Row Scan

13h 1 byte Maximum Scan Line

14h 1 byte Cursor Start

15h 1 byte Cursor End

16h 1 byte Unused

17h 1 byte Unused

18h 1 byte Unused

19h 1 byte Unused

lah 1 byte Vertical Retrace Start

Ibh 1 byte Vertical Retrace End

Ich 1 byte Vertical Display End
Idh 1 byte Offset

leh 1 byte Underline Location

Ifh 1 byte Start Vertical Blanking
20h 1 byte End Vertical Blanking
21h 1 byte Mode Control

22h 1 byte Line Compare

Attribute Register Settings:

23h 1 byte Palette Register 0
24h 1 byte Palette Register 1
25h 1 byte Palette Register 2
26h 1 byte Palette Register 3
27h 1 byte Palette Register 4
28h 1 byte Palette Register 5
29h 1 byte Palette Register 6
2ah 1 byte Palette Register 7
2bh 1 byte Palette Register 8
2ch 1 byte Palette Register 9
2dh 1 byte Palette Register ah
2eh 1 byte Palette Register bh
2fh 1 byte Palette Register ch
30h 1 byte Palette Register dh
31h 1 byte Palette Register eh
32h 1 byte Palette Register fh

The BIOS Save Area 219

33h 1 byte Mode Control
34h 1 byte Overscan Color
35h 1 byte Color Plane Enable
36h 1 byte Horizontal Panning

Graphics Controller Registers:

37h 1 byte Set/Reset

38h 1 byte Enable Set/Reset

39h 1 byte Color Compare
3ah 1 byte Data Rotate

3bh 1 byte Read Map Select
3ch 1 byte Mode Register
3dh 1 byte Miscellaneous

3eh 1 byte Color Don't Care

3fh 1 byte Bit Mask

The Parameter Table settings of the cursor start and end registers in the high-
resolution text modes use the compatibility setting — BIOS converts the eight-
line setting to the equivalent 14- or 16-line register value.
The EGA Parameter Table has entries for 23 modes in the following order:

0-3 for CGA (200-line) modes, 4-eh, fh-lOh when less than 64K is installed,
fh-lOh when more than 64K is installed, and 0-3 for ECD (350-line) modes.
Note that modes 8-ch are included in the table even though they are not avail
able (BIOS uses them internally). The VGA includes six additional entries for
modes 0 and 1 (as one entry for VGA 40-colunm, 400-line text modes), 2 and 3
(as one entry for VGA 80-column, 400-line text modes), 7 (400-line mono
chrome text mode), and llh-13h.

The following program uses the Parameter Table to read the default Graphics
Mode Register settings for the EGA (see port 3cfh, Index 5). Of all the write-
only registers on the EGA, the Mode Register is the most inconvenient because
it mixes data you may need to reset (write and read modes) with data you must
not alter (memory mapping information). See the EGA Write Mode and Read
Mode routines for table access (EWrMode on page 222 and ERdMode on page
223). Also, note the parameter table offset calculation on page 227.

COMMENT ®

On EGA's, this program uses the Parsuneter Table to
read the default settings of the Graphics Mode
Register and adjust only the required bits. If a VGA
is detected, the program simply reads the current
value from the register.

The routines use the Microsoft Pascal Calling
Convention.

220 EGA/VGA: A Programmer's Reference Guide

Note that the program will preserve the Read or Write

Mode (when the other is set) if all Mode Changes are
done through the routines.

public ChkMode r SetMode^ Vidinit, pSRdMd^ pSWrMd

Unknown EQU 0

EGA EQU 1

VGA EQU 2

L200 EQU 0

L350 EQU 1

GMODEREG EQU 3ch /Offset of Graphics Mode Reg
;in Farm Table

buffer segment word 'BUFFER'

vid__data db 010Oh dup (0)

buffer ends

BIOS segment at 4 Oh

org Cash

SaveTblPtr dd ?

BIOS ends

COMMENT @

The following segment includes the common routine
pointers which must be available to any program
calling the Set Mode routines (hence the generic
name^ "data"). They can be called by another source

code module by including:

extrn Vidinit:far, ChkMode:far, SetMode:far

data segment word public 'DATA'

extrn pSRdMd:dword, pSWrMd:dword

data ends

data segment word public 'DATA'

The BIOS Save Area 221

data

status

status

_TEXT

main

pSRdMd dd 0

pSWrMd dd 0

ends

segment word public

/pointer to the Set
/Read Mode Routine

/pointer to the Set

/Write Mode Routine

'DATA'

/This data area is shared by the utility
/routines. It need not be accessible by the

/main program.

/POINTERS

pParmTbl dd 0 /Parm Table Base

pPTCur dd 0 /Current Parm Table

/STATUS DATA

VidSeg dw ?

Mode dw ?

DispType db 0 /Display Type

AType db 0 /Adapter Type Code

AMem db 0 /Adapter Memory

CurRdMd db 0 /Read Mode Setting

CurWrMd db 0 /Current Write Mode

ends

segment word public 'CODE'
assume CS: TEXT

proc

push

sub

push

mov

mov

far

DS

AX,AX

AX

AX,data

DS,AX

main

assume DS:data

call far ptr Demo

ret

assume DS:nothing,ES:nothing

endp

222 EGA/VGA: A Programmer's Reference Guide

Demo proc £ar

;must be entered with DS set to the data area

Demo

TEXT

assTime DS:data

call far ptr Vidlnit /Initialize parameters

mov AX,10h /Set Mode lOh

push AX /Put Mode Number on Stack

call far ptr SetMode

jc ®F /error, leave procedure

;THIS IS HOW THE ROUTINES ARE CALLED

mov AX,2 /Write Mode 2

push AX /push parameter onto stack
call [pSWrMd]

mov AX,1 /Read Mode 1

push AX

call [pSRdMd]

sub AX,AX /Write Mode 0

push AX

call [pSWrMd]

sub AX,AX /Read Mode 0

push AX

call [pSRdMd]

assume DS:nothing
ret

endp

ends

segment word public 'CODE'

assume CSiStatTEXT

proc far

push BP /BP must be preserved

mov BP,SP /BP used for variable address

push DS

push ES

push AX

push BX

push DX

The BIOS Save Area 223

mov AX,status

mov DS,AX

assume DS:status

les BX,pPTCur

mov AL,byte ptr [BP+6]

and AL,llb

mov CurWrMd,AL

mov AH,ES:[BX+GMODEREG]

and AH,11110100b

or AH,AL

or AH,CurRdMd

mov DX,3ceh

mov AL,5

out DX,AX

;Set DS to status sag

;put Parm Table Entry

;ln ES:BX

;get low byte of New

/Mode from parameter

; stack

/Mask Write Mode to

/2 bits

/Save new Write Mode

/Get Default Gr

/Mode Reg

/Mask out Read/Write

/Modes

/Set New Write Mode

/Set Last Read Mode

/Graphics Controller

/Mode Register

pop DX

pop BX

pop AX

pop ES

pop DS

assume DS:nothing,ES:nothing

pop

ret

BP

2 /return and pop parm

EWrMode endp

ERdMode proc far

push

mov

push

push

push

push

push

mov

mov

BP

BP,SP

DS

ES

AX

BX

DX

AX,status

DS,AX

/BP must be preserved

/BP used for variable address

/Set DS to status segment

assume DS:status

224 EGA/VGA: A Programmer's Reference Guide

les

and

shl

shl

shl

mov

mov

and

or

or

BX^pPTCur

AL^byte ptr [BP+6]

AL^lb

AL,1

AL,1

AL,1

CurRdMd^AL

AH,ES: [BX-i-GMODEREG]

AH,11110100b

AH,AL

AH,CurWrMd

;put Parm Table Entry

;ln ES:BX

;get low byte of New

;Mode from parameter

/stack

/Mask Read Mode to 1 bit

/Shift it into position

/Save new Read Mode

/Get Default Gr

/Mode Reg

/Mask out Read/Write

/ Modes

/Set New Write Mode

/Set Last Write Mode

mov

mov

out

DX,3ceh

AL,5

DX,AX

/Graphics Controller
/Mode Register

pop DX

pop BX

pop AX

pop ES

pop DS

assume DS:nothing,ES:nothing

pop BP

assume DS:nothing
ret 2

ERdMode endp

VWrMode proc

push

mov

push

push

mov

mov

out

inc

in

and

far

BP

BP,SP

AX

DX

DX,3ceh

AL,5

DX,AL

DX

AL,DX

AL,11111100b /Mask Off Write Mode

/BP must be preserve

/Graphics Controller

/Mode Register

/Point to indexed re

d

/BP used for variable address

gister
/Get current Setting

The BIOS Save Area 225

mov AH,byte ptr [BP+6] ;get low byte of New
;Mode from parameter

/stack

and AH, lib /Mask Write Mode to 2 bits
or AL,AH /combine new mode w/ old data
out DX,AL /write out new setting

pop

pop

DX

AX

pop BP

assume DS:nothing

ret 2

VWrMode endp

VRdMode proc

push

mov

far

BP

BP,SP

/BP must be preserved

/BP used for variable address

push

push

mov

mov

out

inc

in

and

mov

and

shl

shl

shl

or

out

AX

DX

/Graphics Controller

/Mode Register
DX,3ceh

AL,5

DX,AL

DX /Point to indexed register
AL,DX /Get current Setting
AL,11110111b /Mask Off Read Mode

AH,byte ptr [BP+6] /get low byte of New
/Mode from parameter

/stack

AH, lb

AH,1

AH,1

AH,1

AL,AH

DX,AL

/Mask Read Mode to 1 bit

/Shift it into position

/combine new mode w/ old data

/write out new setting

pop

pop

DX

AX

pop BP

assume DS:nothing

ret 2

226 EGA/VGA: A Programmer's Reference Guide

VRdMode endp

Vidlnit proc far

push

push

push

push

DS

ES

AX

BX

mov

mov

assume

AX,status

DS,AX

DS:status

mov AType, Unknown ; def aul t type

mov

int

cmp

jne

AX,laOOh

lOh

AL,lah

not_yga

/•return display code
;AL will be lah

;if supported

cmp

jb

BL,7

not_vga
/•mono VGA=7

cmp

ja

BL/8

not_vga
/•color VGA=8

mov AType/VGA

mov

mov

assume

AX/data

ES/AX

ES:data

mov word ptr ESipSRdMd, offset VRdMode

mov word ptr ESipSRdMd[2],StatTEXT

mov word ptr ES :pSWrMd/Offset VWrMode

mov word ptr ES ipSWrMd [2]/StatTEXT

jmp GTdone

not_vga: mov

mov

int

AH/12h

BL/lOh

lOh

/•Get EGA Information

cmp

je

BL/lOh

not_ega
;EGA will change BL

The BIOS Save Area 227

mov AType,EGA

mov AMem,BL

mov DispType,L350

cmp CL,0011b

je @F

cmp CL,0100b

je @F

cmp CL,0101b

je @F

cmp CL,1001b

je @F

cmp CL,1010b

je @F

cmp CL,1011b

je @F

;ls it a 350 line display?

mov DispType,L200

;GET THE ADDRESS OF THE PARAMETER TABLE

mov AX,40h ;BIOS Save Area

mov ES,AX

assume ESiBIOS

les BX,SaveTblPtr ;put address of Save

;Table in ES:BX

assume ES:nothing

les BX,ES:[BX] ;put address of Parameter

/Table in ES:BX

/SAVE THE ADDRESS OF THE PARAMETER TABLE

mov word ptr pParmTbl,BX

mov word ptr pParmTbl[2]/ES

mov AX,data

mov ES, AX

assume ES:data

mov word ptr ES:pSRdMd,offset ERdMode

mov word ptr ES:pSRdMd[2],StatTEXT

mov word ptr ES:pSWrMd,offset EWrMode

mov word ptr ES;pSWrMd[2],StatTEXT

jmp GTdone

not__ega:

GTdone: pop BX

pop AX

pop ES

pop DS

228 EGA/VGA: A Programmer's Reference Guide

assume DS:nothing,ES:nothing

ret

Vidlnit endp

ChkMode proc far

push

push

push

push

mov

mov

AX

BX

DS

ES

AX,status

DS,AX

assume DS:status

mov AH,Ofh ;Read Mode

int lOh

and AX,007fh /clear AH and the

/screen save bit

mov Mode, AX

/MODE # IN AL

/USE MODE # TO DETERMINE FARM TABLE ENTRY

cmp AType, EGA

jne CMdone

cmp AL,Ofh /Is it a hi-res graphics mode?

jb ®F /No, skip next section
cmp AMem,0 /Is More than 64K installed?

je @F /No, skip next section

/ADJUST MODE POINTER FOR 64K

add AL,2

cmp AL,3 /Is it a color text mode?

ja @F / No, skip this section
cmp DispType,L350 / Is display 350 lines?

jne @F /No, skip this

/ADJUST MODE POINTER FOR 350 LINE DISPLAY

add AL,13h

mov BL,40h /size of Farm Table Entry

mul BL /offset in Farm Table

add AX,word ptr pParmTbl

mov BX,AX /put current offset in BX

mov word ptr pPTCur,AX /save it

The BIOS Save Area 229

CMdone:

mov

mov

assume

mov

mov

mov

and

and

mov

mov

pop

pop

assume

pop

pop

ret

ChkMode endp

SetMode proc

push

mov

push

mov

sub

Int

AX^word ptr pParmTbl[2]
ES,AX

ES:nothing

word ptr pPTCur[2],AX

;get segment

AL,ES: [BX-i-GMODEREG] ;get default

AH,AL

AL,llb

AH,100b

CurWrMd,AL

CurRdMd, AH

ES

DS

/Mode Reg

/Mask off Write Mode

/Mask off Read Mode

/set Write Mode to default

/set Read Mode to default

DS:nothing,ES:nothing

EX

AX

call

pop

pop

ret

SetMode endp

StatTEXT ends

stack segment

db

stack ends

far

BP

BP,SP

AX

AX,[BP+6]

AH,AH

lOh

ChkMode

AX

BP

2

/Save BP

/Set BP for Parameter Address

/Get Mode from parm stack

/Function Call 0 (Set Mode)

/Set mode specific parameters

stack 'STACK'

64 dup ('stack***')

230 EGA/VGA: A Programmer's Reference Guide

end main

The Alpha Mode Auxiliary Table

The Alphanumeric Auxiliary Table (addressed through the BIOS Save Area)
defines defaults for a user-defined, memory-resident alphanumeric character
set. These values (and the corresponding character set) are automatically loaded
immediately following every mode set.

Offset Size Description

0 1 byte Character size (scan lines) in font table

1 1 byte Font table (0-3 EGA, 0-7 VGA)

2 1 word Number of characters in the font table

4 1 word First ASCn code defined by the font table
6 1 double

word Font table address (in first 640K RAM)
10 1 byte • Number of text lines on the display.

If set to ffh, BIOS will use as many lines as
possible to fill the display

11-? 1 byte A list of all modes this character table

supports. The last entry should be ffh to
designate the end of the list.

The CHFONT.ASM program below illustrates the use of the Graphics Mode
Auxiliary Table. It is similar to the example for BIOS Function Call llh in
Chapter 4. However, the CHFONT program survives mode changes. After run
ning the program, type a few e's at the DOS prompt to see the change. Note
that CHFONT affects modes 0, 1, and 2 (the program switches to mode 2
before terminating). If you type MODE CO80 (or MODE MONO) at the
prompt, "e" will return to normal. And, MODE CO40 will change the "e" to
the new definition. If you have a monochrome monitor on an EGA, you should
add "1" to the mode list (but you will have to reboot to return the "e" to nor
mal).

.ALPHA

;Use alphabetic assignment so we can easily control

/•segment load order with names (AA_/ AB__/ ZA_/
;ZB_/ etc).

BIOS segment at 4Oh

org Cash

The BIOS Save Area 231

BIOS

SaveTblPtr dd

ends

/THIS IS THE START OF THE RESIDENT SECTION (DATA ONLY)

Res group

AA res data

AA_res_data
segment word public 'RES_pATA'

SaveTbl dd 7 dup (0)

STend label byte

SaveTbl2

ST2end

dw

dd

label

/Size

7 dup (0)

byte

AlphaAux db 14 /Scan Lines in 1 char

db 0 font table 0

dw 1 1 char in table

dw 65h start with character "e"

dd ch_tble

db Offh /use max display lines
/= 25 on EGA

/= 28 on VGA

db 0,l,2,0£fh /modes 0, 1, and 2

db 15 dup (?) /reserve extra space

db 00000000b

db 00000000b

db 00000000b

db 00000000b

db 00000000b

db 00000000b

db 11111110b

db 10000000b

db 11111110b

db 10000000b

db 11111110b

db 00000000b

db 00000000b

db 00000000b

AA_res_data ends

/THIS IS THE START OF THE NON-RESIDENT SECTION

Non_Res Group ZA__l_data,ZB_load_code,ZC_stack
ZA_l_data segment para public 'DATA'

232 EGA/VGA: A Programmer's Reference Guide

;NOTE THE PARAGRAPH ALIGNMENT PREVENTS

/OVERLAP OF RES AND NON_RES

PSP dw ?

ZA_l__data ends

ZB_load_code segment byte public 'CODE'
assxime CS: ZB_load_code, DS: nothing, ES: nothing

main proc far

push DS

sub AX,AX

push AX

mov AX, ZA_l__da t a
mov ES,AX

assume ES:ZA_l_data

mov ES:PSP,DS/save PSP for TSR

mov AX,BIOS

mov DS,AX

assume DS:BIOS

Ids SI,SaveTblPtr/put Save Table

/pointer in DS:SI
assume DS:nothing

mov AX,AA__res_data
mov ES,AX

assume ES;AA_res_data

mov DI,offset SaveTbl /ES:DI points to

/the new Save Table

mov CX,STend-SaveTbl /Table size in bytes

rep movsb /copy the table

sub SI,Och /move pointer to Secondary Ptr
Ids SI, [SI] /DS:SI points to Secondary Ptr
assume DS:nothing

mov AX,DS

cmp AX,0 /if the pointer is not 0
jne @F / copy Secondary Table
cmp SI,0

jne @F

jmp skp_cpy / otherwise, skip copy

The BIOS Save Area 233

; i.e. EGA

mov

add

cmp

ja

mov

rep

CX,[SI] ;get size of table
SI,2

CX,ST2end-SaveTbl2 ;is our area

skp_cpy

DI,offset SaveTbl2

movsb

;big enough?
; no, skip
; secondary copy

;ES:DI points to

;the new Secondary

;Save Table

skp__cpy; ;PUT THE NEW CHARACTER ADDRESS IN THE SAVE TABLE
; ALPHA MODE AUXILIARY POINTER (DOUBLE WORD 3,

/OFFSET 4)

mov word ptr ES:SaveTbl[8],offset AlphaAux
mov word ptr ES;SaveTbl[10],ES

;NOW THAT THE TABLES ARE SET, WE MUST CHANGE THE

/SAVE TABLE POINTER

mov AX,BIOS

mov DS,AX

assume DS:BIOS

mov SI,offset SaveTblPtr

mov

sti

mov

mov

cli

DI,offset SaveTbl

/DS:SI old Save

/Table Pointer

/ES:DI new Save

/Table Pointer

/don't allow interrupts

[SI],DI /change old pointer to new
[SI+2] ,ES /pointer

/allow interrupts

mov

int

AX,2

lOh

/Mode 2

/use new character set

mov AX,ZA_l_data
mov DS, AX

assxime DS:ZA 1 data

/Free the environment segment

mov BX,PSP

mov ES,BX

assume ES:nothing

mov ES,ES:[2ch]

assume ES:nothing

/get PSP segment

/get Env seg

234 EGA/VGA: A Programmer's Reference Guide

mov

Int

AH,49h

21h

;£ree memory block (ES)

;Make the data area resident

ResEx:

NoResEx:

mov

mov

sxib

mov

int

ret

ret

BX,PSP

DX,Non_Res

DX,BX

AX,3100h

21h

;put seg of PSP in BX

;find the size in

/paragraphs

assiime DS: nothing, ES: nothing

main endp

ZB_load__code ends

ZC_stack segment stack 'STACK'

db 15 dup ('ResStack')

stckend dw 0

ZC_stack ends

end main

The Secondary Alpha Mode Auxiliary Table has a slightly different organi
zation than the Alpha Mode Auxiliary Table. Note that the secondary table
must contain definitions for all 256 characters.

Offset Size Description

0 1 byte Character size (scan lines) in font table
1 1 byte Font Table (0-3 EGA, 0-7 VGA)
2 1 byte Not Used

3 1 double

word Font table address (in first 640K RAM)
4-? 1 byte A list of all modes this character table

supports. The last entry should be ffh to
designate the end of the list.

The BIOS Save Area 235

The Graphics Mode Auxiliary Table

The Graphics Mode Auxiliary Table (addressed through the BIOS Save
Area) defines defaults for a user defined, memory-resident graphics mode char
acter set. These values (and the corresponding character set) are automatically
loaded immediately following every mode set. Unlike the Alpha Mode Auxil
iary Table, the Graphics Mode Auxiliary Table must have data for all 256 char
acters.

Offset Size Description

0 1 byte Character rows displayed on screen
1 1 word Character size (scan lines) in font table

3 1 double

word Font table address

7-? 1 byte A list of all modes this character table

supports. The last entry should be ffh to
designate the end of the list.

DCC Table

The DCC (Display Combination Code) Table lists the legal adapter pair
combinations. Each adapter/display combination has a numeric code (its DCC):
0 = no display, 1 = MDA, 2 = CGA, 4 = Color EGA, 5 = Monochrome EGA,
6 = PGC (Professional Graphics Controller), 7 = Monochrome VGA, 8 = Color
VGA. Each legal pair forms one entry (two bytes long). Thus an entry of 4,1
tells us that a Color EGA and MDA may co-exist without address conflicts.

Offset Size Description

0 1 byte Number of Entries (Size = 2 * Entries + 4)

1 1 byte Table Version Number

2 1 byte Maximum Legal DCC

3 1 byte Not Used

4-? 2 bytes Entry 1 through Entry ?

User Palette Profile Table

The User Palette Profile Table allows you to customize both the Attribute
Controller palette and DAC palette every time the mode is reset. Its operation is
similar to that of the Auxiliary Tables, which modify the character sets. The
Attribute register table is simply a list of byte values for each attribute register

236 EGA/VGA: A Programmer's Reference Guide

programmed. The DAC table uses three bytes per DAC register (one each for
red, green, and blue).

Offset Size Description

0 1 byte Underlining flag (1 = always use underline,
0 = use the standard default, Offh = Never

use underlining)
1 1 byte Not Used

2 1 word Not Used

4 1 word Number of Attribute registers to set
6 1 word First Attribute register to modify
8 1 double

word Address of Attribute register table
ch 1 word Number of DAC registers to set
eh 1 word First DAC register to modify
lOh 1 double

word Address of DAC register table
14-? 1 byte A list of all modes these palette tables

support. The last entry should be ffh to
designate the end of the list.

Additional BIOS RAM Areas

In addition to the tables and pointers, BIOS also stores two information bytes
in segment 40h. The first byte (INFO) is located at offset 87h, and the second
(INF0_3) at 88h. INFO has the following structure (from LSB to MSB):

Bit Description

0 1 means that CGA cursor emulation is disabled (all
references to cursor lines are taken literally)

1 1 means the EGA is using monochrome monitor
2 1 makes BIOS wait for a vertical retrace before performing

certain functions (BIOS clears this bit to 0 after each usage)
3 1 means the EGA is not the active display
4 Not used

5-6 Installed memory 0=64k, 1=128K, 2=192K, and 3=256K
7 1 means the high bit was set on the last mode reset

INFO_3 has the following structure:

The BIOS Save Area 237

Bit Description

0-3 Reflects the switch settings on the adapter card
(primary and secondary displays)

4-7 Setting of the feature control bits (see the description
of the Feature Control register)

Checking Display Type (BIOS Save Area) for Ail Adapters

There are several steps required to detect the type of display connected to the
EGA. After the presence of the EGA has been established, you should find
which display is active, since there may be more than one display adapter in
the computer. This can be done by checking the equipment flag located at
0040:0010h. If bits 4 and 5 (30h) are set, a monochrome display is active. You
should then determine whether the EGA is connected to a color or mono

chrome display. Subfunction lOh of Function Call 12h is one way of returning
this information (a value of 1 in BH denotes a monochrome monitor, 0 means a
color monitor).

In many cases, simply knowing whether a monochrome or color monitor is
attached is sufficient. However, if a color monitor is attached, you may want to
determine whether it is an ECD. The display type should be read off the EGA's
switches (this is the method used by the EGA BIOS). Again, subfunction call
lOh of Function Call 12h is useful for this purpose — the switch settings are
returned in CL (note that CH contains the feature bit settings). If the switch
settings are 3 or 9, an ECD is attached and operating in 350-line mode. A
complete listing of switch settings can be found in the Function Call 12h de
scription (Chapter 4).

EGA Compatibles

The large numbers of EGA and VGA compatibles create several complica
tions for programmers. Among the issues to be considered are whether to sup
port extended modes, how compatible the various adapters are to the IBM im
plementation, and which adapter to use for application development.
Many manufacturers of EGA compatibles have extended the features of the

EGA by emulating other adapters (such as the Hercules card), adding full CGA
compatibility, and implementing autoswitch technology (to automatically select
the proper adapter emulation). Several of the earlier cards expanded the defini
tion of the EGA into higher resolution modes. Unfortunately, various expansion
methods have been used over the past few years. Some expanded EGA's in
cluded drivers (or BIOS replacements) which emulate the VGA, and most pro
gramming concerns become a simple matter of addressing more memory. Note

238 EGA/VGA: A Programmer's Reference Guide

that a large number of the early VGA compatibles are really VGA BIOS com
patibles (not register compatibles), hence the registers are not readable as in a
true VGA compatible.

Sometimes, subtle timing differences between cards can make applications
crash for no apparent reason — this is especially apparent during mode changes
or programming several registers. Often, a simple delay will solve the problem.
IBM recommends that successive accesses to the same I/O port be separated by
a IMP SHORT $+2 instruction to allow the port time to recover on systems
with fast processors. It is likely you will never need to resort to this method
unless you use extensive register programming, but it is certainly something to
bear in mind as a possible trouble spot (in many cases, timing problems can be
alleviated by changing the order when a sequence of ports is used).
Most of the newer VGA compatibles are extremely compatible. The incom

patibilities that do exist usually show up in unusual circumstances or registers
which are not typically accessed. For most programming work, just about any
VGA currently on the market would be acceptable. If you want to work with
Super VGA, you should look for an adapter which follows with the VESA
BIOS standards, but be aware that there are differences in VESA memory ac
cess when the resolution exceeds 800 X 600.

If you are pushing the VGA to its limits, I would recommend working with
several different adapters. An IBM, Headland Technology (Video Seven), and
Western Digital (Paradise) adapter, along with one of the other major vendors,
would cover a broad spectrum of different hardware architectures: especially
VESA Window modes. The Headland Technology adapters use a Single Win
dow, Western Digital will use Non-overlapping Windows (not yet available),
and most of the other vendors use Overlapping Windows.
You should also consider the availability of technical information. For exam

ple, the Technical Documentation for the Headland Technology VGA's is $25,
and there are several unique features that could boost the performance of your
applications. But, you will need to write routines which detect a Headland
Technology adapter and enable the features. A few other vendors have techni
cal documentation available, but several consider it proprietary information.
The primary advantage of the IBM adapter is as a benchmark control. If you

have both a compatible and IBM VGA for testing purposes, you are much more
likely to catch some of the subtle incompatibilities in the development stage
(especially if you work with the built-in VGA on Micro Channel machines).
However, this should be a consideration only if you are using some of the more
unusual features (such as custom modes). The availability of ROM listings for
$9.95 (part number 6280131 in the IBM Technical Directory, which can be
ordered from IBM at 800-426-7282) made the IBM EGA an attractive option.
On a very few occasions, I was able to find bugs in my programs by tracing
through the interrupts while going through the ROM listings — something that
is not possible with non-IBM adapters. But, this is no longer an advantage with
the VGA, since IBM does not publish ROM listings for its PS/2 products.

Chapter

14
Displays

Several types of displays are available for all of the various graphics systems
on the market. You may want to consider issues beyond simple VGA compati
bility when selecting a monitor. A better understanding of display hardware can
help you make a good choice and can also improve your understanding of the
adapter. Several factors influence the quality of a display, including the inter
face type (composite, digital, or analog), the scanning speed, and the dot pitch;
some of these factors are interrelated. We will begin with a discussion of the
interface and then trace through the beam's path, introducing factors as they
become relevant.

The CGA supports either a composite or RGB monitor. The composite moni
tor receives an analog signal like that used for televisions. Composite signals
are formed by combining the red, green, and blue signals (along with synchro
nization information) at the adapter and then separating the signals at the moni
tor. The advantage of a single signal is that it can be transmitted over a single
cable. While this may work well for broadcasting purposes, the problems of
accurately separating the color information limits the resolution. Composite
monitors are not directly supported by the EGA.
RGB monitors receive the signals for red, green, and blue on different lines.

The Color Display and BCD are digital RGB monitors, which simply means
that each pin on the connector is either on or off. The original IBM Color
Display used three pins for the colors, and a fourth pin to select intensity. The
Enhanced Color Displays use six pins (two for each color). One pin for each
color signals a low-intensity beam, and the other signals a medium-intensity
beam. Both can be combined to form a high-intensity beam, giving four intensi
ties (including off) for each color. With three colors in four intensities, a total
of 64 colors (4 X 4 X 4) is possible. Note that the IBM monochrome monitor

240 EGA/VGA: A Programmer's Reference Guide

uses the same technique as an RGB, but it has only one pin for single color,
and one pin for intensity. With digital monitors, increasing the number of avail
able colors requires increasing the number of pins.

In addition to the color signals, there are pins for a ground, and horizontal
and vertical retrace signals (more on this later). The monochrome, CGA, and
ECD displays all use a nine-pin connector. Unfortunately, other adapters may
use the same type of connector (Token Ring cards, for example), so it is diffi
cult to distinguish one adapter from another by simply looking at the back of a
computer.

The Standard Color Graphics Monitor Pin Assignments:

1 Ground

2 Ground

3 Red

4 Green

5 Blue

6 Intensity
8 Horizontal Retrace

9 Vertical Retrace

The Enhanced Color Display Pin Assignments:

1 Ground

2 Red' (low)

3 Red (medium)
4 Green (medium)

5 Blue (medium)

6 Green' (low)

7 Blue' (low)

8 Horizontal Retrace

9 Vertical Retrace

The Monochrome Display Pin Assignments:

1 Ground

2 Ground

6 Intensity
7 Normal Video

8 Horizontal Retrace

9 Vertical Retrace

All digital monitors use a signal level of 0-5 volts. This is often called TTL
(Transistor to Transistor Logic). Thus, you may hear people refer to either Dig-

Displays 241

ital or TTL Monitors. With the introduction of the Personal Systeni/2 series of
computers, IBM announced analog RGB monitors. Like digital RGB monitors,
the red, green, and blue signals are transmitted on separate lines. However, the
intensity of each signal is controlled by the voltage on each line, and thus only
three lines are necessary (although each color has its own ground line, raising
the number of pins to two per color).
When large numbers of colors are required, the connector for an analog RGB

monitor is much simpler than for a digital monitor. Note, however, that the
VGA uses a 15-pin connector (thus clearly designating the video output at a
quick glance). The number of displayable colors on an analog monitor is essen
tially infinite — limited by the adapter's ability to generate different voltages,
and your eyes' ability to distinguish different intensities. In addition to the
color and color ground pins, the VGA connector has two additional grounds,
two monitor-type pins (one color and one monochrome), and horizontal and
vertical retrace pins. On the female connector, the hole for pin 9 is blocked to
prevent other 15-pin cables from fitting. Note that although the VGA has a
separate ground for each color, many monitors use a common ground for all
signals (for example, a monitor may have a nine-pin connector and a nine- to
fifteen-pin converter at the VGA end of the cable).

The Analog Monitor Pin Assignments:

1 Red (none on Monochrome)

2 Green (Monochrome Signal)
3 Blue (none on Monochrome)

5 Ground

6 Red Ground

7 Green Ground (Monochrome Ground)

8 Blue Ground

9 Blocked (Key for monitor)
10 Ground

11 Color Detect (Grounded on Color Monitor)
12 Monochrome Detect (Grounded on Monochrome Monitor)

13 Horizontal Retrace

14 Vertical Retrace

Composite and RGB define only the interface between the adapter and the
display. Beyond the interface, there are several methods for creating displayed
image. All standard PC monitors use a raster-scan display to create the image.
In a raster-scan display, the position of three electron beams (one for mono
chrome displays) is continually sweeping across the surface of the tube. The
tube's surface is coated with phosphors that glow when struck by electrons (and
for a short time thereafter), and, of course, each beam may be tumed on in
order to light a phosphor or off to leave it black.

242 EGA/VGA: A Programmer's Reference Guide

ELECTRON
GUNS

B G R

ELECTRON
GUNS

HOLE

PHOSPHORS
RGB

PHOSPHORS

Figure 14-1 Electron gun arrangements.

A color monitor's phosphors may be arranged in one of two ways — in-line
or triad (See Figure 14-1). A triad consists of red, green, and blue phosphor
dots (and three electron guns) arranged as a triangle. An in-line system uses
red, green, and blue phosphor vertical lines (and the three electron guns) ar
ranged horizontally. The triad is the most common arrangement. A mask be
tween the phosphors and the electron guns allows each gun to illuminate only
one color of phosphor when the guns are properly aligned.
The electron beam scans the phosphor-coated screen from left to right and

top to bottom. The period during which the beams return to the left is known as
the horizontal retrace. During most of the retrace, the guns must be turned off
to prevent writing in the active display area (the area which contains the actual
character and/or graphics data); this is known as horizontal blanking. The area
immediately surrounding the display area, in which the beam may be turned on
during the retrace interval, is called the overscan (or border). The active display
area is the portion of the screen that contains characters and/or graphics. These
components of the scan are shown in simplified form in Figure 14-2.

During the horizontal display interval, the frequency with which the beam
can be tumed on and off (the dot clock frequency) determines the horizontal
resolution of the adapter. It is fairly easy to increase the horizontal resolution
simply by increasing the dot clock rate, and several of the VGA-compatible
cards implement 132-column modes through this method. Of course, the dis
play must have a small enough phosphor dot so that the different pixels can be
distinguished. The size of the triad; i.e., the size of the hole in the mask, is
known as the dot pitch. Generally, the smaller the dot pitch, the better the

Displays 243

m%% •

— —-*^jt~'" "
• ••• ^

— — — — —- — — — — ^+>• ••• *-p ••••
— •"

^ ̂ • •

ACTIVE DISPLAY AREA

• • • • OVER SCAN

HORIZONTAL RETRACE (BLANKING)

XXXXX VERTICAL RETRACE (BLANKING)

Figure 14-2 Simplified scan diagram.

quality of the display. Note that the actual phosphor size is not directly related
to the pixel size. A pixel could consist of several phosphor triads or vice versa.
Often, the area around a white character or pixel may appear reddish, bluish, or
greenish, because only a fraction of a triad is illuminated.

After a horizontal scan has been completed, the beam is moved to the next
line during the horizontal retrace (this applies to non-interlaced monitors; tele
visions and some monitors are interlaced so that every other line is displayed,
and two vertical passes are required to complete one full image). This sequence
continues until the last line, at which point the vertical retrace begins. The
vertical retrace is similar to the horizontal retrace; the electron guns may be
enabled through a small overscan area and then turned off (vertical blanking) as
the beam returns to the top left comer of the screen.
The vertical resolution depends on two rates — the horizontal frequency and

the vertical frequency. Higher horizontal sweep frequencies allow more lines to
be displayed during each vertical cycle. Likewise, a longer vertical interval
(lower vertical frequency) allows more horizontal lines to be displayed. How
ever, if the vertical frequency becomes too low, the display will flicker. Most

244 EGA/VGA: A Programmer's Reference Guide

people can detect flicker when the rate drops below 60 Hz, and thus most
displays use vertical frequencies of about 60 Hz (the monochrome display is 50
Hz, the ECD is 60 Hz, and the PS/2 displays use 70 Hz for all but the 480-line
modes, which use 60 Hz).

Most monitors can tolerate some variation in horizontal and vertical frequen
cies. Several manufacturers sell displays that will automatically adjust to wide
variations in frequencies. These multisynchronous displays help ensure that fu
ture adapters with higher frequencies will work with the monitors. Of course,
there are no guarantees; a monitor designed for a digital interface does not
adapt well to analog usage, since it is not capable of generating all of the
possible colors (without modifying the interface). It is fairly simple to convert a
digital signal to an analog equivalent, so a multisynchronous analog display is
the most flexible option at this time.
The entire display must be scanned rapidly enough that the image does not

flicker. As the scan rate increases, more pixels may be displayed during a given
time interval, thereby increasing the resolution. ECD's support two scan rates:
15.75 kHz (the same as the standard color display) and 21.8 kHz. Several
multiscan monitors are available that match their scan rate to that of the display
adapter. Many of these displays have a maximum scan rate in the 35 kHz
range, supporting resolutions up to about 800 X 600. In some cases, a slower
scan rate is used with long-persistence phosphors. Long-persistence phosphors
glow for a longer time after being struck by the electrons and thus do not
flicker with lower scan rates, but they tend to make the screen hard to read
during scrolling. The monochrome display is a good example of a monitor that
uses a long-persistence phosphor, although some companies use long-persis
tence phosphors in color displays.
To support all of the different combinations of monitors and resolutions, the

adapter sets registers in the CRTC which control the horizontal and vertical
scans. Let's look at an example for EGA mode lOh on a 256K adapter (EGA is
simpler than VGA, which has additional bits scattered throughout the CRTC
registers). You can reference the registers (and values for other EGA modes) in
Chapter 9.

First, the register settings:

Horizontal

Total (Index 0) 5bh
Display Enable (Index 1) 4fh
Start Blanking (Index 2) 53h
End Blanking (Index 3) 37h (17h count, 1 delay)
Start Retrace Pulse (Index 4) 52h

End Retrace (Index 5) 00 (0 count, 0 delay)

Displays 245

Vertical

Total (Index 6) 6ch

Overflow (Index 7) Ifh (1 overflow for Total, Display Enable
End, Retrace Start, Start Blanking)

Retrace Start (Index lOh) 5eh

Retrace End (Index llh) 2bh (11 retrace end)

Display Enable (Index 12h) 5dh
Start Blanking (Index 15h) 5fh
End Blanking (Index 16h) Oah

The horizontal values are all in character (byte) counts. So, the counting
starts at 0 and ends with the total plus one, 92 (5bh+l), for a total of 93 charac
ter clocks. Note that the VGA uses the total plus four. The display is enabled
from 0 to 79 for a total of 80 characters (and 8 bits per character for 640
pixels). Next, we start the retrace at 82, 3 characters after the display area. The
blanking (the end the overscan) begins one character later at 83. The end of the
retrace and blanking use only the low bits of the character count. When the low
5 bits match 17h at count 87 (57h) the blanking ends and the left overscan
begins. When the low 5 bits are next 0 at 96 (60h) the horizontal retrace ends.
But, the count never reaches 96 — the total is 92 and then rolls over to 0,

matching the Retrace End. Thus, the retrace ends when the next interval begins.
But, this isn't enough time for the EGA to get ready for the next scan, so it sets
a one count delay through the End Horizontal Blanking Register.
We can check these values against the monitor timing. The high resolution

ECD horizontal scan rate is 21.85 KHz. This means one scan takes 45.8 ps.
This is divided into 93 character clocks of .49 ps. The retrace interval is 10
clocks or 4.9 ps, which matches the specifications (imagine that!). Note that the
blanking interval is only 4 clocks or 2.0 ps which occur during the retrace
interval.

The vertical retrace works similarly. However, the counting unit is lines
rather than characters. The overflow register contains high bits for the other
registers since 8 bits has an upper limit of 256, and we need 350 lines. So, I
will simply add the overflow onto each example. The counting starts with 0 and
ends with 364 (16ch) for a total 365 lines. The display enable runs from 0 to
349 for a total of 350 lines. The retrace begins on the next count (350), and is
immediately followed by the blanking interval (351). When the low bits match
Oah at 362 (16ah) the blanking interval ends, and the top overscan begins.
When the low 4 bits of the retrace match 11 at 363 (16bh) the retrace ends.
Finally, after reaching 364, the cycle begins again.
The vertical scan rate for the ECD is 60 Hz. Each scan thus takes 16.7 ms.

For 365 lines, this is .0458 ms per line. The retrace interval lasts 13 lines for a
total of .595 ms. The blanking interval, which includes the retrace, lasts 11
lines for a total of .504 ms. Programmers usually refer to the entire non-display

246 EGA/VGA: A Programmer's Reference Guide

interval (including the overscan, blanking, and retrace) as the vertical retrace: in
this case, 14 lines or .641 ms.
The CPU is usually given access to the display memory during the retrace

and blanking periods, and the CRT is given access during the actual scan. If the
CPU writes memory while the CRT is reading, snow will appear on the screen.
The EGA's Sequencer registers control CRT and CPU memory access to pre
vent such conflicts from occurring. In fact, the Sequencer will even allow the
CPU to write during the scan when the CRT is not accessing memory. During a
scan in the high-resolution modes, the CRT has access to memory for four of
every five cycles, and the CPU has access during the remaining cycle. This
scheme prevents the CPU from writing at its fastest speed, but it is faster and
more efficient than waiting for the retrace.
When selecting a color monitor, you should first decide whether you need an

analog or digital. Then you should select between a multisynchronous or fixed
scan rate monitor. If you have an IBM VGA, a fixed rate will be cheaper. But,
if you want to use Super VGA modes, you should look at a multisynchronous
model. You will find variations between multisynchronous scan rates, too.
Namely, the maximum scan rate (and hence maximum resolution). You should
also look at the screen size and make sure it is not too small for your needs.
Usually, size increases with the scan rate.
At the highest resolutions, 1024 X 768 and above, you must decide whether

an interlaced display is acceptable. Interlaced displays are cheaper, but the
flicker can be very annoying to some people. Note that interlaced displays re
quire matching adapters, since not all adapters support interlaced operations.

After selecting the type of monitor, it is important to examine the quality —
especially if you will be using the monitor for extended periods. How clearly
are the characters formed at your typical viewing distance (and are they large
enough for you)? Do room and window lights glare off the screen (many
screens have an etched surface to prevent glare)? Are the colors true? Colors
are perhaps the trickiest aspect, since individual tastes vary widely. Try experi
menting with different settings. You should also use your software to examine
the colors in both text and graphics modes, since they are sometimes different
(especially if some of your programs change the palette).

Chapter

15
Programming Tricks and Traps

Those Nasty Write-only EGA Registers

Remember that most EGA Registers are write-only. The most common ques
tion I get asked is, "Why isn't this program returning the right value when I
read the register?" If the program is running on an EGA (or an early extended
EGA emulating a VGA), most of the registers return garbage. The best you can
do is track the current values in your program, or read the defaults from the
parameter table (see Chapter 13). If you use BIOS calls to set the palette, you
can use the Palette Save Area to store the current settings (also in Chapter 13).

Monochrome VGA's

Monochrome VGA's also cause some confusion — especially to program
mers familiar with the MDA, CGA, and EGA. Unlike the earlier adapters,
monochrome VGA's can use color modes (and color VGA's can use mono

chrome modes). Hardware, such as the display memory and I/O addresses, fol
low the mode number rather than the display type. Thus, a monochrome VGA
in mode 3 will use 3d? port addresses and the display memory address starting
at bSOOh.

Modifying the EGA BIOS Interrupt

Portions of the EGA BIOS make use of recursive calls — some of these recur

sions only occur in rare circumstances. One example of this is the alternate

248 EGA/VGA: A Programmer's Reference Guide

font-loading routine. When an alternate font is loaded, a mode reset is per
formed via a function call to INT lOh. When writing programs that add func
tions to such routines, it may be important to trace these iterations (especially if
your routines must run after the original call; e.g., to fix bugs in the ROM).
One method for doing this follows: create a memory variable with an initial
value of 0, increment the variable before calling the original ROM routines,
and decrement the variable each time the routine is exited. Call your routine
only if the variable is 0 (unless it is important to make your call every time, in
which case you should build an internal stack).

add recur,1

pushf

call old_intlO
sub recur,1

cmp recur,0

jne skip__new
call new_routine

iret

skip_new!

Using Write Modes 0 and 2

When programming graphics for direct memory access, it is often more effi
cient to use Write Mode 2, which is not supported by BIOS (see the description
of the Mode register for more information). However, it is important to switch
back to Write Mode 0 after the plotting routines have finished, because BIOS
will not write to the screen correctly while in mode one or two. It is also
important to restore any other adapter registers that may have been modified
(such as the Bit Mask Register).

Debugging mode one or two graphics routines can be very difficult on a
single monitor system. Therefore, it is often convenient to develop your rou
tines using Write Mode 0 and modify the routines to use Write Mode 2 after
the major portions of the routines have been debugged. Because of this, it is
useful to place the plotting and mode setting routines in macros or subroutines
for easy and complete modification of all affected code.

Debuggers

Several of the newer debuggers allow debugging from an external terminal.
The terminal is attached through the RS-232 interface, and the debugging infor
mation is displayed on the terminal display. This leaves the graphics display
unmodified. If you are writing many graphics programs, a second terminal (or
computer) is well worth the extra investment.

Programming Tricks and Traps 249

You should also consider a hardware debugger. I've been using a board from
Periscope. Atron is another major producer of hardware debuggers. Hardware
debuggers are available in several models. The cheapest simply have an exter
nal break switch which stops the program and returns you to the debugging
screen. This can be a great help when it's needed as long as the program hasn't
gone off into the wild blue yonder. It works best for breaking into loops which
don't make DOS or BIOS calls.

The next level up includes protected RAM. The debugging program is
loaded above the 640K DOS area (the RAM is included on the adapter) and the
memory is protected from overwrites. This allows the program to run in a full
640K as if the debugger weren't present. If the computer crashes, the debugger
can still run, and you might be able to discover the cause of the crash. These
debuggers are priced in the $500 to $800 range, and are probably the best value
for most programmers.
The best of the hardware debuggers, which cost several thousand dollars,

place themselves between the CPU and the machine. The debugger can keep an
execution history, and can trace code in real-time without disturbing critical
timing loops. You can also set real-time hardware breakpoints on memory, in
struction, or port accesses. Many software debuggers allow such breakpoints,
but slow the code to step through the program, although 80386 systems have
some limited hardware breakpoints available.

Store and Restore Modified States

Your programs should always set the cursor and underline locations in order
to deal with some peculiarities on the EGA (see the discussion of alternate font
tables below). It's a good practice to store the original settings at the beginning
of your program and then restore the settings at the end (this is especially im
portant for programs which may be run from within another application, such
as a word processor or database). This should be done with all programs (not
just EGA applications), since it affects software written for the CGA or mono
chrome adapter which is running on the EGA.

Restoring Modes — Make Sure to Clear the High Bit

In addition to saving and restoring the cursor and underline locations, you
should also save and restore the display mode. This is especially important if
you will be setting the mode during your program (this is also a good practice,
as I have seen several programs that assume that the display is in text mode
when they are started, and write garbage to the screen if another application has
switched the display to graphics mode). The main thing to watch is the high bit
of the mode number.

250 EGA/VGA: A Programmer's Reference Guide

When setting the mode on the VGA, some programs set bit 7 in order to
leave the display memory undisturbed (for example, a memory resident pro
gram can leave the graphics memory intact while switching to text mode, or
change the character set without redrawing the screen). If your program stores
the original mode and the original mode had the high bit set, strange things
may happen when you restore the mode (sometimes the display will completely
blank out or garbage characters will appear). Because of this, you should clear
the high bit before restoring the original mode (AND mode,7fh will do this).

Saving the state of the EGA when switching modes can be complicated by
two factors. First, each time the mode is switched to text mode, the font tables
are loaded into bit plane 3. When switching back to graphics mode, bit plane 3
may be filled with seemingly random dots (which usually appear as red against
a black background). This could be avoided by using an unused display page or
by saving the contents of bit plane 3 (which would be slow and wasteful of
memory). Second, the contents of the latch registers will be lost. This is of
special importance when one program may interrupt another. The latch registers
should be saved to an unused area just beyond the last displayable address (this
can be done using Write Mode 1; see the description of the Graphics Controller
Mode Register).

Presence Test

There are several ways to detect the presence of an EGA. Perhaps the easiest
test is to check the ROM latch at COOOiOOOOh (the location of the EGA ROM).
The BIOS searches for extensions to the existing ROM by checking for the
value aa55h in the sections of memory reserved for ROM, and your programs
can do the same thing. However, the PS/2 BIOS does not use C000:0000h, and
this method should be avoided.

A much better method requests BIOS functions which are unique to VGA or
EGA configurations. First, set BX to 0, and use BIOS call lah to return the
active (and installed but inactive) adapter type. If BL is 7, a monochrome VGA
is active, and if BL is 8, a color VGA is active (other values may be returned;
see the description of function call lah). If BIOS call lah is not supported by
the system, BX will remain set to 0.

If function lah is not supported, move down to a BIOS call supported by the
EGA. Since function call 12h is unique to the EGA (at this stage), and it re
turns information about the EGA that may be useful to your program, it is
usually the ideal choice. BL must be set to lOh to return the EGA information
— it will return a code for installed memory if the EGA is installed. Therefore,
if BL remains set to lOh, an EGA is not installed (if installed, the value will be
between 0 and 3).
The BIOS may report the wrong monitor type for the VGA. The monitor is

checked during the POST (Power On Self Test). If the display is tumed off or

Programming Tricks and Traps 251

disconnected, it will be reported as monochrome. For example, an 8514/A with
a color display (and no monitor attached to the VGA) will report a primary
VGA with a monochrome monitor, even though the display data is passed
through to the 8514's color display. And the 8514/A does not get reported at all
because it does not use the BIOS, and cannot be used as a primary display. So,
when your programs use automatic equipment detection, you should always
provide a manual override through an initialization file or command line
switch.

The following program demonstrates the basic approach for a presence test
(the program will print the active EGA or VGA configuration). Note that if a
VGA were installed as a secondary adapter, it would not be reported — this
could be checked through register BH after function call lah.

cr equ 13

If equ 10

B_RAM

org

segment

87h

info

at 4 Oh

db ?

B_RAM ends

data segment public
no_support db

db

clr__ega db

db

clr_vga db

db

mono_ega db
db

mono_vga db
db

'The required EGA or VGA'

' is not active',or,If

'You have an active '

'color EGA',cr,lf

'You have an active '

'color VGA',cr,lf

'You have an active '

'monochrome EGA'^ cr,1f

'You have an active '

'monochrome VGA',cr,If

data ends

code segment public

assume CS:code

main

start:

proc far

push DS

sub AX,AX

push AX

AX,data

252 EGA/VGA: A Programmer's Reference Guide

no dc:

invalid;

mov DS,AX

assume DS:data

mov AX,laOOh /function la return

/display code
int lOh /AL will return as 1

/if supported

cmp AL,lah

jne no_dc

cmp BL,7 /is it a monochrome '

je mono_v

cmp BL,8 /is it a color VGA?

je color_v

mov BL,4 /is it a color EGA?

je color_e

mov BL,5 /is it a monochrome ;

je mono_e

mov AH,12h /Get information

mov BL,10h /about the EGA

int lOh

cmp BL.lOh /did it come back as

/lOh (no EGA)?

je invalid /yes, skip next test

push DS

mov AX,B_RAM

/BIOS RAM area

mov DS,AX

assume DS:B_RAM
mov BL,info /get information byt<

pop DS

assume DS:DATA

test BL,8 /is the EGA active

jz valid /bit 3-0 means EGA

mov BX,offset no_support

jmp finish

Programming Tricks and Traps 253

valid:

cmp

je
jmp

BH,1

mono_e

color e

;is monitor type
/monochrome?

mono v:

color v:

color e:

mov

jmp

mov

jmp

mov

jmp

BX, offset mono_yga

finish

BX, offset clr_jvga

finish

BX,offset clr_ega
finish

mono e:

mov

jmp

finish:

call

ret

main endp

pr int__msg pr oc

next_char:
mov

mov

int

inc

cmp

jne

ret

pr int_msg endp

code ends

end start

BX,offset mono_ega

finish

print_msg

near

dl, [bx]

ah, 2

21h

;put it in dl
/write to screen

/DOS call

bx

dl,10 /line feed?

next_char /no, get next character

254 EGA/VGA: A Programmer's Reference Guide

Problems With Using Alternate Font Tables

Using alternate loadable font tables disables the underline attribute in mode
7, and makes the cursor disappear on the ECD in modes 0-3. Unfortunately,
this causes problems for word processors that work with alternate characters
and show underlining on the monochrome monitor. These complications trace
back to the EGA BIOS.

When alternate fonts are used in monochrome mode, the BIOS tries to set
the underline to the bottom line of the character box. However, it uses the
length of the box (1) as the location, rather than the 1-1 (keep in mind that line
numbers begin with 0). Thus, a character 14 dots high gets an underline on line
14, when it should really be on line 13. The problem can be solved by setting
the underline location register to the correct value after every mode reset. Note
that this is not a problem with the parameter table — the Alphanumeric Auxil
iary Mode Pointer overrides the Parameter Table setting.
The disappearance of the cursor on the ECD is also a result of the BIOS

programming. In order to maintain compatibility with the CGA, BIOS opera
tions in modes 0-3 always behave as if the character box is eight lines long
(even though it is 14 lines on the ECD). As in the monochrome alternate char
acter routines, the location of the cursor line is based on the length of the
character box (but correctly accounts for the 1-1 numbering system). However,
during a mode reset this routine does not account for the apparent "shortening"
of the character box, and sets the cursor location to lines 12-13, rather than
lines 7-8. Note that the set cursor BIOS call (function call 1) still accounts for
the shortened box — it is only the internal routine during the mode reset that
does not.

To deal with these problems, you should always set the cursor and underline
locations in your programs (including programs not specifically designed for
the EGA). And it would also be advisable to store the original values at the
beginning of your programs, so that you can restore them at the end.

Vertical Interrupts

Most standard EGA operations may take place at any time, unlike some
adapters, which require all I/O be done during retrace intervals. However, there
are some operations, such as those which deal with attributes, which should be
done only during a vertical retrace. Also, some screen writing functions will
look much better if called during the vertical retrace. For example, the screen
may flicker during animation if objects are erased and rewritten while the elec
tron beam is scanning the object. Writing the object to memory during the
retrace ensures that the CRT will not be accessing the same memory locations.
Note that this flickering effect is not the same as "snow" produced on some
adapter cards when the CRT and CPU access the same data area. A final

Programming Tricks and Traps 255

advantage of using the vertical interrupt deals with display timing. Since the
CRT's timing is roughly the same for all PC's (50-70 Hz), the vertical retrace
provides a built-in "clock" for screen updates. You can make the screen scroll
or move objects at a fairly fixed rate from one type of machine to another.

There are two methods for determining the vertical retrace status: Use IRQ2
to inform the program of the vertical interrupt, or use a loop to check the status.
The AT and PS/2's hardware actually uses IRQ9 (rather than IRQ2), but it is
redirected to IRQ2 for software compatibility. The primary advantages of using
IRQ2 are that it provides a routine that is independent of the main program (the
program does not need to stop and wait for the vertical retrace), and execution
always begins at the start of the vertical retrace (assuming the EGA routine is
the first in the chain). However, using IRQ2 is very awkward and you may find
it is not worth the extra trouble. Also, a few EGA compatibles do not imple
ment IRQ2 correctly, and the IBM VGA adapter for PC's and AT's does not
support hardware interrupts (some VGA compatibles do support IRQ2, some do
not, and others are switch selectable). Writing a program that waits for the
vertical retrace is much easier, but the retrace status indicates only that the
vertical retrace is in progress; it may be almost finished when you first check.
You can get around this by first waiting for a display interval and then waiting
for the vertical retrace.

What makes using an interrupt routine so awkward? You must provide the
interrupt routine with status information; e.g., whether to scroll the display one
pixel. And, you must make sure the IRQ2 was generated by the graphics
adapter, since other adapters may also use IRQ2. The Vertical Retrace End
Register, which enables IRQ2 checking, also controls the timing of the end of
the vertical retrace. Since the Vertical Retrace End Register is a write-only
register on the EGA (fortunately, the VGA can read its contents), the program
must retrieve the correct value from the Parameter Table, unless you can guar
antee the mode will not change. The interrupt being processed must be cleared
and re-enabled through the Vertical Retrace End Register, and the interrupt
controller must be told to allow further interrupts when the routine is fmished
(this is called the EOT, End of Interrupt, and is sent by writing the value 20h to
port 20h — it is not required on the PS/2 family). Finally, the routine usually
needs to complete its operation(s) before the end of the vertical retrace. You
might also want to disable interrupts while the vertical retrace routine is in
effect. Otherwise, another interrupt request might delay the processing of the
current interrupt.
As I mentioned, a few of the EGA compatibles have problems with their

IRQ2 implementation. These adapters have the status bit reversed (see bit 7 of
Input Status Register Zero). Other cards do not correctly implement the Clear
Vertical Interrupt (bit 4 of the Vertical Retrace End Register). Normally, the
current interrupt is cleared by writing 0, and then re-enabled by writing 1 (this
is not really necessary for edge-triggered interrupts used by the PC and AT, but
is required for the level sensing interrupts used by the Micro Channel).

256 EGA/VGA: A Programmer's Reference Guide

The example program, VERTIRQ2.ASM, demonstrates the use of IRQ2 for
detecting the vertical interrupt. The program alternately places a line of spaces
and then a line of V's on the upper two lines of the screen. The first line is
printed only during the vertical retrace; the second line is printed as fast as the
computer can loop through the routine. If you run this program, notice how the
first line appears as a steady image, while the second flickers.

This program is quite simple, and it demonstrates several notable points.
First, if you are not familiar with hardware interrupt handlers, the IRQ2 routine
occupies INT Oah of the interrupt vector table (IRQ0-IRQ7 use INT 8-INT Ofh,
respectively). Second, this program will not work reliably without its own
stack. VERTIRQ2 chains to the DOS-based EOI routine, which sets a stack
segment if the application does not provide one, and the stack DOS creates may
conflict with the application's code and data segments (the DOS EOI routine is
not the same as the BIOS routine listed in the Technical Reference, since DOS
must provide a latch at each interrupt for device drivers). Third, when the pro
gram finishes, the final clearing of the interrupt (via the BIOS mode set) causes
an interrupt. You should make sure the program can handle this last request.

Fourth, note the overhead required to process the hardware interrupt. Of
course, some overhead could be reduced by requiring the program to run only
in certain modes, branching out of the routine if the mode number was not
legal or omitting the mode check under the assumption that the mode will not
change. Overhead could be further reduced by ignoring other IRQ2 routines
(not a very good practice, since some hardware may be disabled — especially
on the AT, which chains eight additional interrupts, including the hard disk,
onto IRQ2). If you choose to ignore other IRQ2 routines, be sure to restore INT
Oah to its original value when the program ends. Fourth, the program enables
IRQ2 at the programmable interrupt controller (port 21h) and saves the previ
ous setting for restoration at the end.

Despite the complications of using IRQ2, you can implement functions that
would be extremely difficult to emulate without true hardware interrupts. This
is especially true of TSR applications — for example, IRQ2 would be handy
for creating a flashing, graphics mode cursor. Or you could also write a real
time clock to update the time in the comer of the screen on every vertical
retrace. TSR applications may interfere with programs which check the status
of the vertical retrace via Status Register One, since the status bit indicates
every IRQ2, even those from other devices, when the EGA IRQ2 is enable (see
the description of Input Status Register One, bit 3).

Standard applications may also benefit from the use of Interrupt routines. An
IRQ2 animation routine could share a data area with the main program, updat
ing the screen during every vertical retrace. This would free the application to
handle calculations and keyboard input without having to wait for the vertical
retrace during every loop (potentially improving the routine's performance if
the screen is constantly changing). If you are really ambitious, you could also
write a keyboard interrupt handler (IRQl/INT 9). Or a flashing graphics cursor

Programming Tricks and Traps 257

or real-time clock could be programmed for your application only (eliminating
the problem of interference with other standard applications).
The period from the end of the vertical display to the end of the vertical total

for the highest resolution modes is very short (.64 milliseconds) compared to
the 200-line modes (3.9 ms) and does not allow enough time to perform much
graphics manipulation on 4.77-MHz PC's. However, it is possible to work
around some problems. For example, the vertical retrace routine could be fur
ther divided into multiple routines, which would run every nth vertical inter
rupt. Or draw images that always appear near the bottom screen last. This gives
a little extra time after the end of the vertical interrupt and before the electron
beam reaches the bottom of the display area (make sure operations that must be
done during the retrace interval, such as changing the palette, are done at the
beginning of the routine).
As you can see, writing an interrupt routine can be very complicated, and

debugging interrupt routines can be extremely difficult. The routines are nearly
impossible to trace because they may be invoked at any time. It is extremely
important that all registers that are modified by the interrupt handler are re
turned to their initial values at the end of the routine. If you are doing much
interrupt programming, you should consider purchasing a good hardware-as
sisted debugger.

If possible, you should first write and debug the routine outside the interrupt
handler, and then place the finished routine within the interrupt handler. You
could also write the routine as a soft interrupt routine at a different interrupt
vector (INT 60h — INT 67h are reserved for user applications such as this) and
later change the vector to ah and implement the hardware interrupt features.
Remember that some VGA's do not support interrupt routines. By beginning
the development without interrupts, you will have a version for problem adapt
ers.

A typical development cycle may look like this:

Write the program as a continuous loop, including a call to the screen han
dler. The screen handling subroutine should wait for the vertical retrace, check
ing first for the display interval and then the retrace so as to get the beginning
of the interval (see the VERTRET.ASM program). The subroutine should re
store all registers to their original contents. Although this is not strictly neces
sary, it will help with the conversion later. Finally, limit the subroutine to func
tions necessary for the display. Unrelated functions (such as calculating an
object's position, keyboard input, etc.) should be left in the main program. You
may discover that your program works without the IRQ2 routine. If so, you
certainly save a lot of work and frustration.
When the screen handling routine is working properly, set it up as a software

interrupt at 60h. Now you can confirm that the interrupt call and return has
been implemented properly. You might want to write a second INT 60h rou-

258 EGA/VGA: A Programmer's Reference Guide

tine, which would be installed first to test chaining from your routine to the
"original" routine. You can also make sure the "original" routine is restored
properly. At this stage, you will still be able to trace through the interrupt with
a software debugger.

Finally, change the interrupt to Oah — remember to program the interrupt
controller to respond to IRQ2 (and restore it to its original state at the end of
the program). Everything should work now, and you will probably not discover
any further bugs — at least nothing difficult to trace.

There are a few things worth noting in the VERTRET program. VERTRET
has many fewer program loops than VERTIRQ2 (the outer loop has been en
tirely eliminated). VERTRET will run the same speed on all computers, be
cause it is limited to one loop per vertical retrace. On my AT, both VERTRET
and VERTIRQ2 end after about 16 seconds. However, VERTIRQ2 will take
much longer on a standard PC and will finish earlier on a faster machine, since
the looping routine is not limited by the vertical retrace. Also, note that only
the very end of the second line of V's flashes in VERTRET (on a fast enough
computer); the retrace routine does not use the entire vertical retrace interval,
so most of the second line, which prints almost immediately after the first, is
also written during the vertical interrupt.
A program's performance for either vertical retrace method can be greatly

increased by limiting updates to areas which have changed. If an area of the
display has not changed, there is no point in rewriting it. You could also de
velop an algorithm that updates as many changed areas as possible in one re
trace, and finishes the remaining areas during later retraces, but the overhead
and difficulty of programming such a routine would probably make it impracti
cal for most situations.

Smooth Scrolling

Vertical retrace detection is also useful for smooth scrolling applications. In
addition to Input Status Register One, the EGA provides several registers to
support smooth scrolling. However, the application program must assume a
great deal of the overhead associated with smooth scrolling, and the method
varies slightly between graphics and text applications. The following registers
are all useful for implementing pixel scrolling, and you may want to refer back
to their descriptions:

CRTC registers
Start Address registers
Preset Row Scan register
Offset register
End Horizontal Retrace register (EGA only)

Programming Tricks and Traps 259

Graphics Controller
Mode Register

Attribute Register
Horizontal PEL PanRregister

The program SMOOTH.ASM is an example of smooth scrolling in text
mode (graphics mode scrolling is slightly easier). Note that some VGA compat
ibles do not use the scrolling registers correctly, causing the image to "jump"
on the ninth pixel. To effectively implement smooth scrolling, the adapter must
create a logical display page which is larger than the actual display. This is
easily accomplished by setting the Offset Register, which directly controls the
virtual width. The Start Address Register is then set to the first displayable
character, usually below and to the right of the first character on the virtual
page. The bottom of the virtual page is at the end of the adapter's addressable
memory, unless you will be using multiple pages, in which case it would be the
row before the start of the next page.

Scrolling left and right works the same in both text and graphics modes. To
scroll the display right, the Horizontal Pel Pan Register starts at 0 (except for 9-
dot text modes, which start at 8 and goes to 0 on the next scroll), and incre
ments by one on each vertical retrace. To scroll faster, you could scroll more
than one pixel per retrace; to go slower, wait for multiple retraces before scroll
ing. Upon reaching 7 (3 for 256-color mode), the Start Address Register is
incremented by one, and the Pel Pan Register is set back to 0 (or 8 for 9-dot
modes). The procedure is reversed to scroll left: first the Start Address is
decremented, and the Pel Pan Register is set to 7 (or 3). The Pel Pan Register is
then decremented until the full character width has been finished.

The procedure must be modified slightly if the memory is chained. The only
chained BIOS video modes 7 and lOh on EGA's with less than 64K, but you
could create your own chained modes on either the EGA or VGA (in fact, the
VGA can chain up to four planes to act as one). Since the shift registers load
16 pixels (or possibly 32 on the VGA) instead of 8, all 16 bits must be shifted
before changing the Start Address. The Pel Pan Register does not support such
operation, so the EGA provides an extra bit in the End Horizontal Retrace
Register, and the VGA provides two extra bits in the Preset Row Scan Register.
The Pel Pan Register continues an eight-pixel cycle, but instead of increment
ing the Start Address after the first cycle, the End Horizontal Retrace Register
is changed.

Vertical scrolling is almost identical to horizontal scrolling. In text modes,
the Preset Row Scan Register is incremented (or decremented) in place of the
Horizontal PEL Pan Register. The Start Address changes are made at the limits
of the Preset Row Scan Register (usually 0 and 7, 13, or 15). Also, the Start
Address is changed by twice the value of the Offset Register setting (to get to
the next line, rather than the next character). Graphics modes can skip setting
the Preset Row Scan Register, since each "line" of memory is only one pixel

260 EGA/VGA: A Programmer's Reference Guide

high. You simply add (or subtract) twice the value of the Offset Register to
scroll to the next row of pixels.

While the scrolling sequence is fairly simple, proper timing is essential, and
can be a bit tricky. Using the Horizontal Pel Pan Register is fairly easy; you
need only wait for the vertical retrace, and then change the setting. However,
the Start Address Register should be changed only during the display interval
(it will not take effect until the start of the following vertical retrace interval).
When the Pel Pan Register's limit is reached, the Start Address should be
changed first (during the display interval), and then the Horizontal Pel Panning
Register (during the vertical retrace).
The Preset Row Scan Register can be set during the retrace. However, the

Technical Reference recommends that the Preset Row Scan be changed during
the display interval. Essentially, it may be programmed at any time since it
takes effect only at the beginning of the display interval. However, a new Pre
set Row Scan value may take effect any time during the display of the first
scan line, and the display will jump one line if it is changed during this time. If
you choose to program the Preset Row Scan Register during the display inter
val, wait for a horizontal retrace (see bit 0 of Input Status Register One, port
3?ah).

Chapter

16
Algorithms

Graphics Routines

Graphics applications usually irequire four fundamental operations — writing
characters to the screen, plotting individual points, drawing lines, and drawing
ellipses. Writing characters and plotting points are trivial, and drawing lines is
not too difficult because the equations are linear (many people use the well-
known Bresenham's algorithm for drawing lines). Drawing circles or ellipses
requires more computation because of the squared terms, hence the equations
are more difficult to implement and take longer to solve than those for lines. At
first glance, it would seem real number operations are required for evaluating
square roots. However, an integer technique similar to Bresenham's line algo
rithm can be used.

Bresenham's algorithm exploits the grid arrangement of pixels, which are
always represented as integer coordinates. By avoiding floating point computa
tions, the microprocessor's integer routines can be used to create a high-speed
plotting routine. Given a line (or curve) lying on a grid, the algorithm chooses
which point lies closest to the line. First, you choose a starting point and a
direction of movement (up, down, left, or right). Each time the cursor moves
one unit in the chosen direction, the algorithm determines whether to adjust the
position one unit in the perpendicular direction. Note that this method can
move a maximum of one step in the perpendicular direction for each step in the
selected direction — the slope is limited to 45 degrees. Let's see how this
works for Bresenham's line algorithm.

262 EGA/VGA: A Programmer's Reference Guide

The Line Algorithm

Start with the equation for a line, y = mx + b. Note that the slope, w, is sim
ply the change in the y direction divided by the change in the x direction,

_ Ay
m -

Ax

Both Ay and Ajc are easily obtained from the endpoints of the line, (Xa,ya) and

(Xb9yb)\ Ay = y^ - y^ and Ax = For this derivation, we will assume the
slope lies between 0 and 1 in the first quadrant. We will start with an arbitrary
point on the line, (x„,y;,), and move to the right one pixel at a time until we
reach the last point, (x^,ym). The pixel resolution of the display forces us to
integer values for x„, but the actual y„ value usually is not an integer. We will
choose y„ so that the value is either exact, or the closest integer less than the
exact value. Since we are moving up the y axis, we know that y„ will either be
the same as the value we selected (y„ = y„) or one larger (y„ = y„ + 1). By
selecting consecutive, relative pixel locations, the line will be made as smooth
as possible, and the final algorithm will be independent of the display resolu
tion. The y coordinate may not be the exact position of the "true" line, since we
are limited to the pixel resolution of the physical display, so we will call the
actual value y and express the difference between the "true" and two trial loca
tions as:

di=yn- y, and

= y - CVn + 1).

The difference (di or d'^ will be smallest for the point (y„+l or y^ which lies
closest to the actual point, y. We will use the difference of the differences as a
test parameter; i.e., t = d^- dj- The sign of the test parameter is used to select
the appropriate case. Note that there are four possibilities (shown graphically in
Figure 16-1):

case di d2 t choose

1) yn^y and yn + 1 > y +s -g + yn

2) yn<y and yn + 1 > y -s -g + yn

3) yn<y and yn + 1 > y -g - s - yn +1
4) yn<y and yn + 1 ̂ y -g + s - yn+ 1
g = greater absolute value, s = smaller absolute value.

When the sign of the test parameter is positive we choose y„, and when
negative, y„+l.

Now, express the test equation in terms of y

Algorithms 263

Xn

CASE 3

Xn

CASE 4

• yn +1 • y n +

■

1 •X
1

yn

y

mm^

mmmM

•

y

yn

Xn

CASE 1

Xn

CASE 2

•
yn*H

y

X •
\

y
yn+ 1

m yn • yn

iiiiiSII

Figure 16-1 Four closest fit possibilities for a line.

tn-

di ~ 0^2 ~

y™ - y -[y - CVn +1)] =

yn-y-y + yi. + i =
2y„ - 2y + 1 =

and substitute the line equation t®st equation. Note that x„

is always known.

tn = 2y„ - 2x„^ -26 + 1.

This gives t for any point, and we will apply it to the starting point to get
i.e.,

r, = 2y, - -26+1,
Ax

where

264 EGA/VGA; A Programmer's Reference Guide

u

This obviously reduces to = 1. It is a positive value, so we place it at (A:i,yi),
which makes sense. However, the equation is not too useful, since it gives us
the location of a point we have already placed. What we really need is t for the
next point,

n+lk.

Syn.i - - 2b + 1 =

2y„.i - 2^x„ + 1) - 2b + 1

Rather than computing the next test value in terms of x and y, which makes
the equations more complex and no more useful than the original, we will ex
press the new test value in terms of the previous test value. So, subtracting the
previous result, t„ from we get:

^n+l ~ ~

2y„.i - 2^x„ + 1) -2b +1 - [2y„ - 2^x„ - 2b + 1] =

2yn.i - 2y„ - 2f^xn + 1) + 2^Xn - 2b + 2b + 1 - 1 =
Ax Ax

^yn*i - 2yn + - 1 + aCn) =

We now have a factor which can be added to the current test value to get the
next test value, i.e., - Q = The term may take one of two
values, either y„ (for > 0) or y„+l (for < 0).

Fory„,, =y„ :

^n+l ~ (n "■

-2
Âx

thus

r = r - 2^

Algorithms 265

For %.,=)'„+1 :

^ii+l ~

2y„ + 2-2y„-2^ =
2-2^
^ ̂Ax
thus

One final simplification may be made to remove the division operation
(eliminating the fractional part and leaving the equation as pure integer math).
Multiply through by Ar to get Arr„+i = Axr„ - 2Ay for y„^i = y„, and

= Axt„ + 2Ax - 2Ay for y„+i - y„^i. If you always compute Axt„ and Axr„+i,
the next value is always found from the current value by either subtracting 2Ay
(for positive or zero values), or adding 2Ac - 2Ay (for negative values). Don't
forget that the initial t value, = 1, must also be multiplied by Ax: Axfi = Ax.
Also note that we already know the location of the first point and that Ax is
positive, so we can find Axt2 = Ax - 2Ay.
We now have a complete algorithm for finding a line which starts from the

left and goes right with a slope less than 1 (up on Cartesian coordinates, and
down the display):

Start with the two endpoints of a line, (x«,yj and Select the leftmost
point (smallest x coordinate) as the starting point; we will assume (Xa,yJ is the
leftmost point.

Find Ax = Xfc - Xfl and Ay = - y^. Use them to calculate the test value for the
second point: Ax - 2Ay. Also calculate the two possible adjustments to the test
value, p = 2Ay and n = 2Ax - 2Ay.

Plot the first point, and repeat the next three steps until the last point has
been plotted.

1. If the test value is zero or positive, subtract p and do not change the y

coordinate. If it is negative, add n and increment the y coordinate by 1.

2. Increment the x coordinate by 1.

3. Plot the new (x,y).

Note that when working with actual endpoints, all initial values are integers.
And since only addition and subtraction are involved, all results are integers
also.

Now, we just need a method for the remaining three cases (up and down will
refer to up and down the face of the display): starting from the left, moving
mostly right and up; starting from the top moving mostly down and right; and
starting from the top, moving mostly down and left.

266 EGA/VGA: A Programmer's Reference Guide

While still moving mostly right, the constants based on the y axis will switch
sign, and the y coordinate will be decremented rather than incremented. Thus
p = -2Ay and n = 2Ax + 2Ay
To move mostly down and right, the x and y terms should be swapped (in the

original derivation). Thus, y would always be incremented, the x coordinate
incremented when the test value is negative, p = 2Ajc and n = 2Ay - 2Ax. To
move mostly down and to the left, the sign of the x coordinate constants will
change, giving p = -2Ax: and n = 2Ay+2Ax, and, of course, the x coordinate
would be decremented for a positive test value.

The Ellipse Algorithm

The derivation for the elliptical algorithm is similar to that of the line algo
rithm. We can arbitrarily start with any point on the circumference of the el
lipse, move one pixel in the x (or y) direction, and then decide whether to also
move one pixel in the y (or x) direction. As with Bresenham's line algorithm,
we can choose either the same y value or change the value by one, based on a
comparison to the "true" value. Thus, the algorithm is based on a series of
additions and subtractions rather than evaluating square roots.

Start with the equation for an ellipse centered at 0,0:

Then let e = —:
rx

- eV Eq. 1

Imagine starting near the top right center of the ellipse, moving to the right
one pixel (to x„), and choosing the next y (y„). Note that is known, and y„
will be close to a value which we will call y„ or y„ - I since is probably not
an integer. Note that we use y„ - I instead of y„ + 1 because we are moving
down. Since each location must be represented by an integer, the new position
may not be the true y value. We can express this as a difference (one for each
of our test cases y„ and y„ - 1):

d2 = y^-(yn- 1)^

Algorithms 267

We want to choose the value or - 1) which is closer to the correct y\
in other words the y associated with the smaller of the two J's. We can devise a
test parameter, r, which chooses between the two on the basis of the sign (posi
tive or negative). To do this:

tn - di" d2

= + Eq.2

which gives four possibilities (shown graphically in Figure 16-2):

case di dz tn choose

1) yn> y and yra - 1 > y +g -s + - 1
2) yn > y and yn - 1 < y +g +s + yn - 1
3) yn > y and yn - 1 < y +s +g - yn
4) yn ̂ y and yn - 1 < y -s +g - yn
g = greater absolute value, s = smaller absolute value.

Note that it would be impossible for y„< y while y„ - 1 > 1 since y„>y„- 1,
so this case was not included in the possibilities.

Now substitute Eq. 1 into Eq. 2:

tn'

- 2(7| - + (y„ - 1)^ =
- 2r| + + y^ - 2y„ + 1 =

2y^ - 2r| + - 2y„ + 1 Eq. 3

and find the next test point by substituting y„+i and x„+ I into Eq. 3:

tn*i = 2y21 - 2/| + 2e\x, + l)^ - 2y„.i + 1
= 2y?.i - 2rf + 2e^(a^ + 2x„ + 1) - 2y„.i + 1
= 2y^.i - 2t| + 2g^a:^ + 4e^x„ + 2e^ - 2y„.i + 1 Eq. 4

expressed in terms of t„ (by adding t„ to Eq. 3 and subtracting Eq. 4):

+ 2y^,i - 2y? + 4e\ + 2e^ + 2y„ - 2y„.i
= + 2y^.i - 2y^ + 2y„ - 2y„.i + 4e^*„ + 2e^

Now, the equation for can take either of two forms, depending on the
value of y„^i:

268 EGA/VGA: A Programmer's Reference Guide

• yn •
yn

• yn-1

y

•

y
yn-

y

CASE 1 CASE 2

Xn Xn

^ •
yn WIM y

yn

y

•
yn- 1

•
yn-

CASE 3 CASE 4

Figure 16-2 Four closest fit possibilities for an ellipse.

for = y„:

the and terms cancel each other, leaving

= + 2e^

for y„,i = - 1

= tn + 2[Cy„ - 1)^ - yn] + 2[y„ - Cy„ - 1)] + 4:e\ + 2e^
tn*i = t„ + 2[y^ - 2y„ + 1 - + 2 + 4e\ + 2e^
tnH = - 4y„ + 2 + 2 + 4e\ + 2e^
tn 4yn + 4 + 4e^ac„ + 2e^

The two forms of t„ given above are used to determine whether y remains the
same or is decremented by one. Also, it is used to find the next t„. The algo
rithm starts at coordinates to (0,r2), increments x, calculates each successive t„

from the two equations above, and decides whether or not to decrement y.
Set jc = 0 and y = r2 and find the initial value of t By substituting 0 and r2

for X and y in Eq. 3, this can be simplified to = -2r2 + 1. Because we want to

Algorithms 269

avoid division (remember that e = —), all of the equations should be multiplied

by r?. Since is relative (it depends on previous values), we will continue to
use tn even though it is really tj\. This gives t„ = -2r2r? + r?. The t„^i equations
become + 2rl, and t„ - 4r^y„ + 4r? + 4rlx„ + Note that there are
two recurring parameters: 4r2X;, + 2r2 (initially 2/f, and increased by 4r2 with
each iteration), and 4r? - 4r?y„ (initially 4r? - 4r?y;„ and increased by 4r? each
time y is decremented). Also note that these values apply to t„, which describes

the first point (which we already know). We must adjust to before plotting
the point.

So, we start with t„ = -2r2r? + r?. We could also call this t„ = -2y/r? + r? ,
where y, is the radius along the y axis (the initial y value).

Now use the following procedure to plot the curve:

1. Plot (x,y).

2. If > 0 add 4r? - 4r?y„ to t„ and decrement y. Add 4r? to 4r? - 4r^y„ for
the next usage.

3. Add 4r2X„ + 2r2 to t„ and increment x. Add 4r2 to 4r2JC„ + Ir^for the next
iteration.

Note that by definition, these equations assume that the slope is no more than
45 degrees, since an increment of 1 in the x direction can be countered by
nothing greater than a change of 1 in the y direction. Thus, the algorithm pre
sented can only be used until the slope reaches 45 degrees. If you are familiar
with calculus, you know that the equation for the slope of a curve can be found
by taking the derivative of the curve's equation. Going back to our first equa
tion, the derivative is calculated as follows:

2 2
r2XA = ̂2 _da:l^ ^ J

^ -2?^x dx
r? dx

dy
Setting the slope, to -1, we get:

2yi^ = 2i^x

270 EGA/VGA: A Programmer's Reference Guide

4yr^ = 4rlx

In the last step, I have multiplied through by two. Notice that the terms on
each side of the slope equation are similar to the terms we calculate during the

algorithm. We can get the above terms by subtracting 2r2 from the x-based

parameter and adding 4r? to the y-based parameter. Now, in our algorithm, the
y-based parameter is negative. We can simply add the modified y-based param
eter to the x-based parameter — when the result is 0, we are at the terminating
point:

0 = Ai^x - 2/^ - (-4yt^ + 4r?)
0 = 4i^x-2i^ + - 4r?

However, we may not reach 0 exactly. But, we know that the magnitude x-
based parameter (positive) starts small (jc=0) and is constantly increasing. The
magnitude of the y-based parameter (negative) starts large and is decreasing.
Therefore, the test value starts at a negative value. When it becomes 0 or
positive, the algorithm should switch octants.
The octant switch can be handled in several ways. We could swap Tj and r2

and adjust the parameters accordingly. But, we can simplify the algorithm by
setting y=0 and plotting back toward the transition point where it left off. The
process remains similar: the Ti and ri values are swapped, and the (x,y) is plot
ted as (y^). When I began the derivations, I noted that y would use a negative
step. When we start at y=0 in the same quadrant, x will decrease. The x/y swap
works without requiring a sign change in the step.
We have calculated only one quadrant of the ellipse (the lower right section

if we use screen coordinates). Fortunately, we can rely on the symmetry of the
ellipse to plot the other points. Given an ellipse centered at (ij), the four points
would be:

(/+x,j+y)

(i-x,j-y)
(i+x,j-y)

The algorithm will not work for very narrow ellipses. If y nears 0 while
moving predominantly in the x direction, the test parameter reaches its limit
and the algorithm stops. Therefore, very fiat ellipses may not plot all the way to
the end. If the routine reaches y=l and terminates, you could add a routine to
extend the ellipse to (ri-1,1).

Algorithms 271

Notes About the Ellipse Program Listing

I have written the program as outlined above with octants started separately
at x=0 and y=0. Some applications work better by plotting sequentially around
the entire circumference. For example, the 8514/A adapter cannot draw ellipses
and can fill an area only if it is defined as a single, continuous polygon. The
terms often exceed 16-bit limits, so the routine must use at least 32-bit arithme
tic. You could also use the larger integers provided on the 8087 or the 80386,
to increase the execution speed. If you write a version for the 8087, be sure to
use the stack for the iterative portions of the code.

I have made extensive use of register storage to improve speed. However,
such heavy reliance on registers makes changes more difficult. When I revised
the routines for the second edition, I wrote a parallel program in BASIC. This
allowed me to make changes without accidentally trashing registers and crash
ing the system. For example, I could name a variable AxDx and later use some
thing like BxDx. Where the assembler might choke on the redefined Dx,
BASIC sees two distinct variables. Thus, I confirmed that my logistic changes
would work before I spent time reworking the assembler code and thereby cut
several hours off the revision process. I also stored intermediate results in ar
rays for recall after the routine had finished (or crashed).

If you want to modify the code, I would strongly recommend writing a pro
totype in a higher level language such as BASIC, Pascal, or C. This is also one
of the very few instances where I would discourage the use of structured code.
GOTO statements will make the high level code resemble the resulting assem
bler code much more closely.

Pixel plotting, ellipses, and lines form a solid foundation for most graphics
applications. Of course, many other issues may be relevant to your applications,
such as filling, three-dimensional drawing, rotation, spline curves, and scaling.
With a solid understanding of hardware considerations, you should be able to
write efficient routines for these functions. Many books are available which
cover these topics in general terms, usually giving high-level language algo
rithms. An excellent book full of such algorithms is Computer Graphics^ by
Donald Ream and M. Pauline Baker.

Bresenham's derivation may be applied to equations other than linear and
elliptical equations. M.L.V. Pitteway gives a rigorous derivation for a general
ized conic section (including rotations) in an article titled "Algorithm for Draw
ing Ellipses or Hyperbolae with a Digital Plotter", Computer Journal, Volume
10, Issue 3, pages 282-289. You may also find that you are regularly plotting
another equation which would benefit from these techniques.
The Appendix contains programs (including the ellipse and line algorithms)

which have been optimized for particular functions. In some cases, such as the
stand-alone plotting algorithm, the optimization assumes certain screen dimen
sions. You may find that mixing methods from various programs will increase
the efficiency; if you will be plotting circles only in 640 X 350 mode, you may

272 EGA/VGA: A Programmer's Reference Guide

want to try using the stand-alone plot routine in the ellipse program. You
should also look for additional ways to optimize the programs.

Appendix

FPLOT.ASM draws a line of colored dots across row 10 of the display. The
resulting screen is identical to the program under BIOS function 0 in Chapter 2.
However, FPLOT skips the BIOS plot routine and writes directly to the adapter
hardware. Note that the plot routine is hard coded for an 80-column screen —
the sequence of shifts and adds to multiply by 80 is fast, but not very flexible.
Furthermore, the shift and add sequence is slightly more effiecient than a regis
ter MUL on an 8088, but on any other processor (including the 80286, 80386,
and NEC V20), the MUL instruction is faster by about the same factor. The
difference either way is almost insignificant, but it shows how a different ap
proach may make a difference, and that the results may be hardware dependent.

ega segment at OaOOOh

ega ends

data segment public

clr db 16

data ends

code segment public

assume CS:code

main proc far

start: push DS

sub AX,AX

push AX

mov AX,data

mov DS,AX

assiime DS:data

/color initially set to 16

274 EGA/VGA: A Programmer's Reference Guide

Ip:

skip:

main

plot

mov AX,ega

mov ES,AX

assiime ESrega

mov AH,0 /select function 0 -- set mode

mov AL^lOh /select mode lOh

int lOh /BIOS video call

mov CX,639 /this will be the column

mov AL,clr /set color

dec AX /subtract one from the color

mov clr,AL /store the new color

jnz skip /if the color is not 0

/ then continue to skip
mov clr,16 /set the color back to 16

mov DX,10 /set the row to 10

push AX /preserve last color

push CX /preserve last column

call plot /plot the point

pop CX /restore last column

pop AX /restore last color

loop Ip /decrement CX (next column)

mov AX,0ff08h /bit mask register.
/enable all bits

mov DX,3ceh /graphics 1 and 2 address
/register

out DX,AX /write to both graphics &
/bit mask

mov AX,0f02h /map mask register, enable

/all maps

mov DX,3c4h /sequencer address register
out DX,AX /write to both the add. &

/mask regs

ret

endp

proc near

push AX ;save the color for later

;the following section multiplies row # by 80 640 / 8)

;640 bits/row / 8 bits/byte = 80 bytes/row
;the shift and add sequence is faster than a MUL

mov BX,DX

push CX

;put the row in BX

/save col (restore in BX)

Appendix

and CX,1 ;get bit offset

;(remainder of /8)

mov AH,80h

shr AH,CL ;make bit mask

mov AL,8 /index for bit mask

/register

mov DX,3ceh /graphics 1 and 2 address

/register

out DX,AX /write to graphics & bit mask
mov AX,BX /row ...

Shi AX,1 ; * 2

shl AX,1 ; * 4

add AX,BX / * 5

shl AX,1 / * 10

shl AX,1 / * 20

shl AX,1 / * 40

shl AX,1 / * 80

dd the col # / 8

pop BX /column # (pushed as CX)
shr BX,1

shr BX,1

shr BX,1

add BX,AX

mov AL,ES:[BX] ;load the latch registers

mov DX,3c4h /Sequencer address

/register

mov AX,0f02h /all planes, index 2 (Map

/Mask reg.)

out DX,AX /write to both the Add.

/Mask regs

mov byte ptr ES:[BX],0 /clear any current

/colors

pop AX /restore the color

inc DX /point to just the Map Mask

out DX,AL /set the color

mov byte ptr ES:[BX],Offh /plot the point

ret

plot endp

code ends

end start

276 EGA/VGA: A Programmer's Reference Guide

SMOOTH.ASM creates a virtual screen 104 characters wide and 73 lines

long. The screen is filled with the letters of the alphabet with varying attributes.
It then smoothly scrolls down and right from the upper left comer in a stair
step manner. Upon reaching the right edge, the right scroll switches to a left
scroll. The scrolling is done in alphanumeric mode; graphics mode scrolling is
very similar (and a bit simpler). The process is described in Chapter 15.

clr_f Ig
ecd_fIg
g64_flg
vga_flg
c__wide

lines

ATC_add

Ic a

equ

equ

equ

equ

equ

equ

equ

equ

1

2

4

8

104

(c_wide-80)*2+25
3c0h

;width of the

/virtual screen

/Attribute Controller

/address

word out macro

/most adapter/computer combinations accept a word OUT
/instruction/ however, a few combinations balk at

/this. A good way to handle this is with a macro
/for all OUT instructions. If someone has a problem

/with your program, you can recompile it with byte
/out routines simply by changing the macro to the
/commented section.

out

out

xchg

inc

out

xchg

dec

endm

DX,AX

DX,AL

AL,AH

DX

DX,AL

AL,AH

DX

byte_out macro

out

xchg

out

xchg

DX,AL

AL,AH

DX,AL

AL,AH

endm

Appendix 277

disp macro

local rt

This macro drops through only during a display interval
DX must be already set to 3c0h (used in DISPLAY and

WAIT D macros)

rt: in

test

jnz

AL,DX

AL,1000b

rt

;test vertical retrace

/status bit

;is it in a vertical retrace?

; yes, keep looking for non-
; retrace (display) interval

endm

display macro

mov

disp
DX, st_add ;/Input Status Register One

endm

retr macro

local n_rt
//macro which drops through only during a vertical
//retrace

//DX must be already set to 3c0h (used in RETRACE and

//WAIT R macros)

i t

n rt: in AL,DX //check for the beginning
//of the vertical retrace,

test AL,1000b //Is it in a vertical retrace?

jz n_rt // no, try again.

endm

retrace macro

mov DX,st__add //Input Status Register One
retr

endm

wait r macro

This macro will drop through only at the beginning
of a vertical retrace -- it first waits for a

display interval, and only then looks for a retrace

278 EGA/VGA: A Programmer's Reference Guide

display

retr

/1

endm

waited macro

} s

retrace

disp

/ i

endm

fill_alpha macro
local keep/lp

This macro fills the data area with the letters of

the alphabet and a cycle attribute bytes

Ip: mov [BX],AX

add AX,101h //next letter

add BX,2 //next memory address

cmp AH, 14 //is the attribute now

jne keep // no, keep it

mov AH, 18 //skip cyan on cyan

keep: loop IP

/ /

endm

data segment public

Itrs db c__wide*2+25*2 dup (?)

/letters A...Z...

/and attributes

The area above will be filled by the program to save

typing and will look like:

Itrs db

db

db

db

'a.b.c.d.e.f.g.h.i.j.k.l.m.n.o.
'p.q.r.s.t.u.v.w.x.y.z.'

'a.b.c.d.e.f.g.h.i.j.k.l.m.n.o.

'p.q.r.s.t.u.v.w.x.y.z.'

etc.

where ". represents an attribute byte. It is long
enough to fill a full 104 char line starting with
any letter of the alphabet (offset 0-25).

Appendix 279

even

data

code

main

start:

hdwre db ?

strt_add
strt__addw

CRT__add dw
st add dw

label byte

dw 2 dup

al_seg
ch_hi
ch wi

dw

dw

dw

3b4h

?

ObOOOh

13

8

al_mode db 7

ends

segment piiblic

assume CS:code

proc

push

sub

push

far

DS

AX,AX

AX

mov AX,data

mov DS,AX

assume DS:data

(0) /adapter (internal)

/memory address

/CRTC port

/input status register
/one address

/alpha mode segment

/character height minus 1
/character width minus 1

/alpha mode

mov BX,offset Itrs /address of letters

/ fill the character/attribute data area

mov CX,c_wide/2 6
Ip: push CX

mov CX,26

mov AL,lc__a
mov AH,1

/all

fill_alpha
pop CX

loop Ip

mov AL,lc_a
mov AH,1

mov CX,25

fill_alpha

 26 letters of the alphabet
/start with a lowercase 'a'

/start with attribute 1

/(don't use black on black)

/start with 'a' again
/add attribute 1

/but only go to 'y'

280 EGA/VGA: A Programmer's Reference Guide

yes_vga: or

mov AX,laOOh /read display combination
int lOh /BIOS video call

cmp AL,lah /the VGA (or Model 30) will

/return lah

jne not_vga

cmp BL,7 /is it a monochrome VGA?

je yes__vga

cmp BL,8 /is it a color VGA?

je yes__vga

jmp not__vga /could check for EGA for

/completeness

or hdwre,vga-fig

mov BL,10h /get EGA information

mov AH,12h /alternate fiinctions

int lOh /BIOS call

cmp BH,1 /Is it a monochrome

je mono /yes, defaults already set

/monochrome, skip setup

cmp CL,1001b /Check switch settings.

/Is it an enhanced display?

je ecd

ecd:

cmp

je

mov

jmp

or

;the following

/color and ECD

CL,0011b ; in hi-res alpha mode

ecd

/must be a normal color display

/(or ECD in emulation mode)

ch_hi,7
cd

hdwre^ecd^flg/set the ECD flag

section is common between standard

cd: or

mov

mov

hdwre,clr_fIg
ch wi,7

al__seg, ObSOOh

al mode, 3

/set the color flag

/character width is 8

/for non-VGA, or VGA in

/8 dot mode

/alpha mode address

/for all color modes

/mode 3 for alpha mode

only__8:

mono:

test

jz

mov

mov

out

inc

in

test

jnz

mov

test

jz

mov

def_Jii: mov
add

CRT_add,3d4h

hdwre,vga_fIg

only 8

Appendix 281

;CRT address is 3d4h

;for all color modes

;VGA may be in 9

;dot mode

; if not VGA,

; don't check

DX,3c4h /sequencer address register
AL,1 /clocking mode index

DX,AL

DX /point to clocking mode reg
AL,DX /if bit 1=1, dot clock is 8

AL,1

only_8
ch_wi,8 /character width is 9 for VGA

/in 9 dot mode

hdwre,vga_flg/VGA may be 16 lines high
def_hi / if not VGA, use default

/ height

ch hi,15

AX,CRT_add

AX, 6

/store height-1
/(16 pixels on VGA)

/Status Address Register
/One is CRTC+6

mov st__add,AX

/START ALPHA MODE SCROLLING DEMONSTRATION

xor AH,AH /function call 0 -- set mode

mov AL,al_mode /make sure alpha mode is set
int lOh /BIOS video call

mov

mov

cli

AX, al__seg

mov ES,AX

assume ES:nothing

DI,0

/set ES:DI to the beginning
/of alpha memory

/disable interrupts

282 EGA/VGA: A Programmer's Reference Guide

wait__r
mov DX,CRT__add
mov AL,13h

mov AH,c wide/2

word out

;wait for the vertical retrace

/offset register index

;use the same virtual width

;for all alpha modes

;we will leave the start address at 0 (upper, left
/corner) although you may want to use a different
/initial start address in your applications

/WRITE THE TEXT TO THE SCREEN THROUGH THE MOVE STRING

/INSTRUCTION

n line:

n Itr:

mov

xchg

xor

shl

mov

push

mov

mov

rep

add

cmp

jne

sub

pop

loop

sti

BX,offset Itrs /get the starting
/letter's address

AH,AL /put word width in AL
AH,AH /O out AH

AX,1 /multiply by two to
/include attribute

/bytes

CX,lines

CX /save outer loop value

SI,BX /put starting letter in SI
CX,AX /count for entire line width
movsw /move a full virtual display

/line into display mem

BX,2 /start with the next letter

/of the alphabet

BX,offset ltrs+26*2

/is it past z7

n_ltr / no, start next line with next
/ letter

BX,52 / yes, start with 'a' again
CX /restore outer loop value

n_line /do next line

/re-enable interrupts

/START SMOOTH SCROLLING THROUGH THE DISPLAY (DOWN ONE

/CHAR AND RIGHT ONE CHAR)

Appendix 283

mov

0
00

1

><
U

/CX contains width of screen

/as a negative number

add CX,c_wide /add virtual screen width

/to get number of characters
/between the right edge of
/actual and virtual screen

push ex /save this value for use in
/second section

again: call down__c

call right_c
loop again

/START MOVING DOWN ONE CHAR AND LEFT ONE CHAR

pop CX

again2: call down_c

call lef t_c

loop again2

xor AH,AH /function call 0 -- set mode

mov AL,al mode /end program with
/alpha mode reset

int lOh /BIOS video call

ret

main endp

right_c proc near

/Move the display area one character to the right in

/text mode

push AX

push BX

push CX

push DX

mov CX,ch_wi
mov BX,0033h /index of horizontal pel panning

/(start at 0 for 9 bit)
/bit 5 is set (palette

/register remain unmodified)

cmp ch_wi,8 /was it a 9 bit character width
;(ch_wi = width - 1)?

284 EGA/VGA: A Programmer's Reference Guide

is 9:

je
inc

cli

wait r

mov

out

is 9 2:

mov

byte

inc

loop

cmp

je
mov

display

is_9 ; yes, skip next step
BH ; no, start at 1 for 8 bit

;do not allow interrupts (to
;prevent register changes)
;wait for vertical retrace

;(modifies AX/DX)

;also provides required
/resetting of 3c0h

DX,ATC_add

/attribute register
AX,BX

BH

is 9

ch_wi,8

is__9_
BH,0

/most cards will accept
/OUT DX,AX to 3c0h,

/although undocumented

/next step of horizontal scroll

/loop for one full character

/width

/was it a 9 bit character width

/ (ch__wi = width - 1)
/yes, skip next step
/ no, start at 0 for 8 bit

/Start address must be set during
/display interval to take effect
/at the beginning next vertical
/retrace

inc

mov

mov

strt addw

DX,CRT_add
AL,Och

mov AH,strt_add[l]

word__out
inc AX

mov AH, s t r t__add

word out

/point to the next

/character for display
/start address

/index of start

/address high
/get the MSB

/index of start

/address low

/get the LSB

retrace /the above code is during the
/display interval no need to check
/again with the WAIT_R macro

mov DX,ATC_add
mov AX,BX

byte_out

Appendix 285

right_c

left c

stl

pop

pop

pop

pop

ret

endp

proc

DX

CX

BX

AX

near

; Move the display area one character to the right in
;text mode

push AX

push BX

push CX

push DX

cli

display

;do not allow interrupts (to

/prevent register changes)
/Start address must be set during
/display interval to take effect
/at the beginning next vertical
/retrace

dec strt addw

mov DX,CRT_add
mov AL,Och

mov AH, strt__add [1]
word_out

inc AX

mov AH, s t r t__add
word out

/point to the next

/character for display

/start address

/index of start

/address high
/get the MSB

/index of start

/address low

/get the LSB

mov

inc

mov

CX,ch_wi
CX

BX,0733h /index of horizontal pel panning
/(start at 7th pixel)

/bit 5 is set (palette registers
/remain unmodified)

286 EGA/VGA: A Programmer's Reference Guide

lp_lft: wait__r ;wait for vertical retrace

;(modifies AX/DX) also provides
/■required resetting of 3c0h

mov DX,ATC add
;attribute register

mov AX,BX
byte_out /■most cards will accept

/■OUT DX/AX to 3c0h/
/■although undocumented

dec BH /■next step of horizontal scroll
loop lp_lft /■loop for the remaining bits

;(unless 9 bit width)

cmp ch_wi,8 /■was it a 9 bit character width
; (ch__wi = width - 1)

jne not__9 ;yes/ skip next step
mov BH,0 ; no/ start at 0 for 8 bit
wait__r
mov DX,ATC_add
mov AX,0833h /■set the Pel Pan register to

;8 for 9 bit width
byte__out

not_9! sti

pop DX

pop cx

pop BX

pop AX

ret

left_c endp

down_c proc near

; Move the display area one character to the right in text
; mode

push AX

push BX

push CX

push DX

mov CX,
mov BX,

; (start at 1)

Appendix 287

lp_d:

cll

wait r

;do not allow interrupts (to
/prevent register changes)
/wait for retrace interval
/(modifies AX/DX)

mov DX/CRT_add

mov AX,BX

word out

inc

loop

mov

add

mov

wait d

BH

lp_d

/CRTC register address

/next step of vertical scroll
/loop for one full character
/height

BX,c_wide /width of virtual screen
BX,strt_addw /BX points to the next line
strt_addw,BX /save the new start address

/wait for display interval to
/change start address

mov

mov

mov

word_out
dec AX

mov AH,BH

word out

DX,CRT_add
AL,Odh /index of start address high
AH,BL /get the least significant byte

/index of start address low

/get the most significant byte

retrace

mov

mov

word_out

wait d

/wait until retrace to modify
/preset row scan

DX,CRT__add
AX,8 /set preset row scan to 0

/prevents next call from
/occurring in the same interval

sti

pop

pop

pop

pop

DX

CX

BX

AX

ret

.down_c endp

288 EGA/VGA: A Programmer's Reference Guide

down p proc near

Move the display area one character to the right in
text mode

push

push

push

push

AX

BX

CX

DX

cli

mov BX,c_jwide ;width of virtual screen
add BX,strt_addw ;BX points to the next line
mov strt_addw^BX ;save the new start address

;wait for display interval to
/change start address

DX,CRT add

AL,Odh

AH,BL

mov

mov

mov

word__out
dec AX

mov AH,BH

word out

/index of start address high
/get the least significant byte

/index of start address low
/get the most significant byte

sti

pop DX

pop CX

pop BX

pop AX

ret

down_p endp

code ends

end start

Appendix 289

LINE.ASM uses integer techniques to plot a line. Note the use of the
Microsoft Calling Convention. The algorithm is derived in Chapter 16.

PAGE ,132

COMMENT *

This program does not check the range. A range
checking procedure within the plotting routine is
generally a good idea unless the program itself
limits the size and placement of the lines.

The plot routine will work only on color EGA's with
more than 64K or on any VGA.
*

ln_type='mv' ;Line parameters in memory
; variables.

; Use 'rg' for parameters in
; registers

swap equ 1 ;flag to swap x and y coordinates

neg_dx equ 2 ;sign flag for delta x

neg_dy equ 4 ;sign flag for delta y

word_out macro

out DX,AX

endm

THE FOLLOWING MACROS ARE FOR THE LINE PROCEDURES

the line macro simplifies parameter passing in the
code i.e. you don't need to push all the variables,
but you can manually push and then call _line
directly (see the _SetClr routine -- it doesn't use
a macro since it's only one PUSH)

line macro xl,yl,xn,yn

mov AX,xl

push AX

mov AX,yl

push AX

mov AX,xn

push AX

mov AX,yn

290 EGA/VGA: A Programmer's Reference Guide

push

call

endm

AX

far ptr _line

rstjnode macro

;;This macro restores the EGA write mode to the

;/default (0)

mov DX/3ceh /Address of the Graphics 1 and 2 regis
mov AL,8 /Index 8 (Bit map mask)
mov AH,Offh /restore bit mask to enable all

/ pixels in byte
word out

mov

mov AL/5

mov AH,0

word_out

endm

DX,3ceh /graphics 1 and 2 address register
/set write mode

/mode 0 (BIOS default)

set_mode macro

//This macro define defines the EGA write mode, sets
//the memory address, and other overhead needed only
//once per call for non-BIOS operation

mov DX,3ceh

mov AL,5

mov AH,2

word_out

endm

/graphics 1 and 2 address register
/set write mode

/mode 2 (color n to masked bits)

/ END OP MACROS -- THE FOLLOWING CODE DEMONSTRATES

/ THE USE OF THE LINE ROUTINES

gl_data segment public

even /align on even address

vid mem dw OaOOOh

Appendix 291

;bytes/row (640 bits / 8)

111b

/pixels per byte (in shifts)
; 2''3 = a pixels

b_mask: db 10000000b ;bit mask (will be
/rotated)

bprow dw 80

modjmask dw
pixpb db 3

clr

gl_data ends

dgroup group

db ?

data

data

segment public

data

code

main

start:

X_1 dw 150

dw 175

x_n dw 320

y_n dw 5

ojmode db ?

o curs dw ?

ends

segment

assume

proc

push

sub

push

mov

mov

assume

mov

int

mov

mov

int

mov

mov

int

public

cs:code

far

DS

AX,AX

AX

AX,dgroup

DS,AX

DS!dgroup

AH,Ofh

lOh

o_mode, AL

AH,3

lOh

o_curs,CX

AX,10h

lOh

/get current mode info

/save the current mode

/get the cursor attributes

/save the cursor type

/set mode hi-res graphics

292 EGA/VGA: A Programmer's Reference Guide

mov AX,5

push AX

call far ptr _SetClr

line x_l,y_l,x_n,y_n

mov AX,2

push AX

call far ptr _SetClr

mov y__n, 345

line x_l, y__l, x__n, y_n

mov x__l,320

mov x__n,490

mov y_n,175

mov AX,1000

bmrk:

;this loop can be used for benchmarking variations in
;the code. It also gives a good demonstration of the

/drawing speed by cycling through the colors

push AX

/use AX to make the color number

and AX,1111b

push AX

call far ptr _SetClr

moV y_l, 5

1 ine x_l, y_l, x_n, y_n

mov y_l,345

1 ine x_l, y_l, x_n, y__n

go_on:

pop AX

dec AX

j z go_on
jmp bmrk

mov AH,0 /return mode to original value
mov AL,o_mode
int lOh

mov AH,1 /set cursor type

mov CX,o__curs/restore the cursor type

int lOh

ret

Appendix 293

main endp

;THE LINE DRAWING ROUTINES BEGIN HERE

;The following structure definitions simplify stack
/addressing for calling the ellipse routines from
/other languages

LIN stk struc

LIN__bp dw ? /BP

LIN_ra dd ? /return

LIN_jyr2 dw ?

LIN_x2 dw ?

LIN^yl dw 7

LIN xl dw ?

LIN sb dw ? /dummy entry to calculate

/stack size

LIN stk ends

/calculate value to pop with RET n at end of proc
/(length of parameters)

popval = LIN_sb - (LIN_ra + size LIN_ra)

COMMENT @

_line (xl,yl,x2,y2)

calling program passes:
xl The X coordinate of line endpoint 1
yl The y coordinate of line endpoint 1
x2 The X coordinate of line endpoint 2
y2 The y coordinate of line endpoint 2

MASM __line routine returns:
nothing

_line proc far
public _line

push

mov

BP

BP,SP

/public for link to other

/modules

BP must be preserved

(standard entry practice)
this will remain constant

for calculating

294 EGA/VGA: A Programmer's Reference Guide

; addresses of variables

push SI ;SI must be preserved

push DS /preserve DS

mov AX,gl_data /graphics library
/data segment

mov DS, AX

ass\ime DS: gl_data

set_jaode

GET PARAMETERS

AX will contain x_n
BX will contain y_n
CX will contain x_0
DX will contain y__0

mov CX,LIN_xl[BP]
mov DX,LIN_jyl[BP]
mov AX,LIN_x2[BP]
mov BX,LIN__y2 [BP]

/COMPUTE INITIAL VALUES

/ BP used for subroutine flags

sub BP,BP /clear all "flags"

mov DI,AX /put last x in DI

sub DI,CX /DI = delta x

/SUB flags B CMP flags

jae P_dx /DI=CX, delta x is positive

neg DI /we need a positive value

or BP,neg_dx/ but we need the sign later

p_dx: mov SI,BX /put last y in DI
sub SI,DX /DX = delta y

jae P_dy /SI=DX, delta x is positive

neg SI /we need a positive value

or BP,neg_dy/ but we need the sign later

p__dy: cmp DI,SI /which is larger, dx or dy?
jae g_cix / delta x is larger (or equal)

/delta y is larger, so we must swap x and y values

/for the algorithm (and swap again when plotted).

Appendix 295

xchg AX,BX ;swap the x and y values

xchg CX,DX

xchg DI,SI

/swap the "flags"

test BP,neg__dx

jz no_dx
or BP,swap /use swap flag as temp

no_dx: and BP,not neg_dx /clear neg_dx
test BP,neg_dy /was neg_dy set?

jz no_dy / no, skip next step

or BP,neg_dx / yes, set neg_dx
no__dy: and BP,not neg_dy /clear neg_dy

test BP, swap /was neg_dx set?

jz no_tmp / no, skip next step
or BP,neg_dy / yes, set neg_dy

no_tmp:

or BP, swap /make sure swap is set

g_dx! test BP, neg__dx /check primary direction

jz r2l / (must be right to left)

; It's right to left ...

xchg AX,CX ; switch first and last x's
xchg BX,DX ; switch first and last y's
xor BP,neg_dy ; change the sign of delta y

; algorithm assumes delta xO.

r21: mov BX,AX ;put the last (max.) x in BX

/Calculate the initial test value

;(AX = delta x - 2 * delta y)

mov AX,DI /put delta x in AX

shl SI,1 /SI = 2 * delta y

sub AX, SI /AX = delta x - 2 * delta y

/Calculate the recurring parameters 2 * dy (already
/done) and 2 * dx

shl DI,1 /DI = 2 * delta x

/AX = test value

/BX = maximum x coordinate

/CX = current x coordinate

/DX = current y coordinate

/SI = 2 * delta y

296 EGA/VGA: A Programmer's Reference Guide

;DI = 2 * delta x

;BP = swap and direction flags

;at this point, the four separate cases will be
/determined and run as different routine. These can

/easily be combined into a single routine, although

/performance will suffer slightly

test BP, swap /X and y swapped? (in CX and DX)

jz no_swp / no, use standard procedure

jmp swap_p / yes, use x-DX and y=CX

no_swp; test BP,neg_dy/are we going "backwards"?
jnz retest2 / yes, use the dec DX (y) routine

retest: call plot
cmp CX,BX /have we plotted last y?

jne ®F /no, continue

jmp l_done /yes, finish the procedure

cmp AX,0 /is test (AX) 0?

jg @F / yes, skip next section

add AX,DI / no, test = test + 2*dx

inc DX /y = y + 1

sub AX,SI /test = test - 2*dy [+ 2*dx]

inc CX /X = X + 1

jmp retest

retest2: call plot
cmp CX,BX /have we plotted last y?

jne @F /no, continue

jmp l_done /yes, finish the procedure

cmp AX,0 /is test (AX) 0?

jg @F / yes, skip next section

add AX,DI / no, test = test + 2*dx

dec DX ;y = y - 1

siib AX,SI /test = test - 2*dy [+ 2*dx]

inc CX /X = X + 1

jmp retest2

/the following two cases assume x and y are swapped

/(i.e. X is in DX and y is in CX -- the plot routine
/expects X in CX and y in DX

swap_p; test

jnz

BP, neg_dy / are wergoing "backwards " ?
retest4 /yes, use dec DX (x)

retesta:

Appendix 297

xchg CX,DX ;swap x and y for plot
call plot
xchg CX,DX /restore x and y

cmp CX,BX /have we plotted last x?

jne ®F /no, continue

jmp l_done /yes, finish the procedure
cmp AX,0 /is test (AX) 0?

jg @F / yes, skip next section

retest4:

add AX,DI / no, test = test + 2*dy

inc DX /X = X + 1

sub AX, SI /test = test - 2*dx [+ 2*d]

inc CX /y = y + 1

jmp retesta

xchg CX,DX /swap X and y for plot
call plot
xchg CX,DX /restore x and y

cmp CX,BX /have we plotted last x?

jne @F /no, continue

jmp l_done /yes, finish the procedure
cmp AX,0 /is test (AX) 0?

jg @F / yes, skip next section

add AX,DI / no, test = test + 2*dy

dec DX /X = X - 1

sub

inc

jmp

AX, SI

CX

retest4

/test = test

/y = y + 1

2*dx [+ 2*dy]

1 done:

rst mode

pop DS /restore DS

assume DS:nothing

pop

pop

ret

SI

BP

popval

/restore SI

/restore BP

line endp

COMMENT @

298 EGA/VGA: A Programmer's Reference Guide

KASM _SetClr routine returns:
nothing

_SetClr proc
public

push

mov

far

_SetClr /public for link to other
/modules

BP /BP must be preserved
/ (standard entry practice)

BP,SP /this will remain constant
/ for calculating
/ addresses of variables

push

mov

DS /preserve DS

AX,gl_data /gr

mov DS,AX

assume DS:gl_data

mov

mov

AX,[BP+6]

clr,AL

aphics library
/data segment

pop DS

assiime DS: nothing

pop BP

ret 2

_SetClr endp

plot proc near
assume DS:gl__data

/Assumes page is 0, but similar to INT 10 in other
/respects:

/AL = color

/CX = column

/DX = row

/DS = gl_data segment

push

push

push

push

push

ES

AX

BX

CX

DX

Appendix 299

push DX

mov AX,CX ;put the column number in AX
mov BX, CX ;save the column number

and AX,mod mask ;find AX mod pixels per
; byte

mov CL,AL

mov AL,b_mask ;get the bit mask template

shr AL,CL /rotate the bit mask into place

mov CX,BX /restore CX

mov AH,AL /put the bit mask in AH

mov AL,8 /bit mask register index

mov DX,3ceh /bit mask register

word out

pop DX

mov AX,DX /put the row in AX

mov BX,bprow /get bytes per row

mul BX /multiply by bytes/row

mov BX,CX /put column number in BX

mov CL,pixpb

shr BX,CL /divide by pixels / byte

add BX,AX /byte offset in memory

mov AX,vid_jnem
mov ES,AX

mov AL,ES:[BX] /load the latch registers

mov AL,clr

mov ES:[BX],AL /write color to memory

pop DX

pop CX

pop BX

pop AX

pop ES

ret

plot endp

code ends

end start

300 EGA/VGA: A Programmer's Reference Guide

ELLIPSE.ASM uses integer techniques to plot an ellipse. Note the use of
the Microsoft Calling Convention. The algorithm is derived in Chapter 16.

PAGE ,132

COMMENT *

This program does not check the range. A range
checking procedure within the plotting routine is
generally a good idea unless the program itself
limits the size and placement of the ellipses. You
might also want to make modifications to draw arcs
(perhaps by modifying placing variable limits on the
X and y coordinates of the plot routine).

Also note that the algorithm will fail if the
dependant variable (y) becomes zero. If your
application will not constrain the radii, the program
should be modified to stop adjusting y if it becomes
0.

I assximed neither radius would exceed 640 pixels --
this should be large enough for most standard
applications.

The plot routine will work only on color EGA's with
more than 64K or on any VGA.
*

equ 00000001b /mask which designates the

; right and left end arcs are
; being plotted (stored in
; "portion")

t_b equ 11111110b /mask which designates the
/top and bottom arcs are being
/ plotted (stored in "portion").

word_out macro

out DX,AX

endm

rstjmode macro

//This macro restores the EGA write mode to the

//default (0)

Appendix 301

mov

mov

mov

DX,3ceh

AL,8

AH,Offh

word out

mov DX,3ceh

mov AL,5

mov AH,0

word out

/Address of the Graphics 1
;£uid 2 register

;Indek 8 (Bit map mask)
;resto^ bit mask to enable all
; pixels^ in byte

/graphics 1 and 2
/address register
/set write mode

/mode 0 (BIOS default)

endm
/

1

set_mode macro

//This macro define defines the EGA write mode, sets
//the memory address, and other overhead needed only
//once per call for non-BIOS operations

mov DX,3ceh

mov AL,5

mov AH,2

word_out

endm

/graphics 1 and 2
/address register
/set write mode

/mode 2 (color n to masked bits)

/ END OF MACROS -- THE FOLLOWING CODE DEMONSTRATES

/ THE USE OF THE ELLIPSE ROUTINES

Stack segment stack

db 32 dup ('01234567')

stack ends

gl_data segment public

even /align on even address

vid mem dw GaOOOh

bprow dw 80
mod_mask dw
pixpb db 3

111b

/bytes/row (640 bits / 8)

>

/pixels per byte (in shifts)
/ 2''3 = 8 pixels

302 EGA/VGA: A Programmer's Reference Guide

b_mask db 10000000b ;bit mask (will be
/rotated)

clr db

; The doiible word labels are not used within the

; program. However, they are very useful during

; symbolic debugging

even

t_e_d label
t__e_lo dw ?
t e hi dw ?

dword

rl_d
rl_lo
rl hi

label

dw ?

dw ?

dword

r2_d
r2_lo
r2 hi

label

dw ?

dw ?

dword

y_j)_d IcdDel
y_j>__lo dw ?
y_jp_hi dw ?

dword

c_x

c_y

X

y

dw

dw

dw

dw

gl_data

dgroup

data

portion db ?

ends

group data

segment public

rl dw 100

r2 dw 150

cntr_x dw 320

cntr^jy dw 170

color db 5

Appendix 303

data

code

main

start:

o_mode db ?
occurs dw ?

ends

segment piiblic
assume cs:code

proc

push

sub

push

mov

mov

far

DS

AX, AX

AX

AX,dgroup

DS,AX

assume DS:dgroup

mov

int

mov

mov

int

mov

mov

int

AH,Ofh

lOh

o_mode,AL

AH,3

lOh

occurs,CX

AX,10h

lOh

;get current mode info

;save the current mode

;get the cursor attributes

;save the cursor type

;set mode hi-res graphics

;Push the color data onto the stack

mov AL,color ;AH=0 already

push AX ;color only uses 1 byte
call far ptr _SetClr

mov AX,cntr_x

push AX

mov AX,cntrjy

push AX

mov AX,rl

push AX

mov AX,r2

push AX

call far ptr ̂ ellipse

mov r1,100

mov r2,100

304 EGA/VGA: A Programmer's Reference Guide

mov AX,cntr_x

push AX

mov AX,cntr_y

push AX

mov AX,rl

push AX

mov AX,r2

push AX

call far ptr _ellipse

bmrk:

go_on:

AX,1000

mov color,AL

and color,1111b

push AX

mov AL,color

push AX

call far ptr _SetClr

mov rl,50

mov r2,50

mov AX,cntr_x

push AX

mov AX,cntr_y

push AX

mov AX,rl

push AX

mov AX,r2

push AX

call far ptr ̂ ellipse

pop AX

dec AX

j z go_on
jmp bmrk

mov AH,0 /return mode to original value

mov AL, o_mode
int lOh

mov AH,1 /set cursor type

mov

int lOh

CX,occurs /restore the cursor type

sub AX,AX /return code 0

ret

Appendix 305

main endp

;THE ELLIPSE DRAWING ROUTINES BEGIN HERE

;The following structure definitions simplify stack /ad
dressing for calling the ellipse routines from
/other languages

ELL stk struc

ELL__bp dw ? /BP

ELL^r a dd ? /return address

ELL_r2 dw ?

ELL_rl dw ?

ELL_y dw ?

ELL_X dw ?

ELL_sb dw ? /dummy entry to

/stack size

ends

/calculate value to pop with RET n at end of proc
/(length of parameters)

popval = ELL_sb - (ELL_ra + size ELL__ra)

COMMENT @

__ellipse (x^y^rl^r2)

calling program passes:

X The X coordinate of the center

y The y coordinate of the center

rl x-axis radius

r2 y-axis radius

MASM _ellipse routine returns:
nothing

^ellipse proc far
public ^ellipse /public for link to other

/modules

push BP

mov BP,SP

BP must be preserved

(standard entry practice)
this will remain constant

for calculating

306 EGA/VGA: A Programmer's Reference Guide

; addresses of variables

push SI ;SI must be preserved

push DS /preserve DS

mov AX,gl__data /graphics library
/data segment

mov DS,AX

assume DS: gl_data

set mode

and portion,t_b
mov AX,ELL_x[BP]
mov c_x,AX

mov AX,ELL_jy[BP]
mov c_y,AX

sub AX,AX /X starts at 0

mov x,AX /store X

mov BX,ELL_r2[BP]
mov y.BX ;y will start at

mov CX,ELL_rl[BP]
push BP

call ellip
pop BP

(0,r2)

/for the right/left calculations we swap r2
/and rl x and y are swapped just before

/plotting so the definitions are reversed
/here.

or

mov

mov

mov

mov

sub

mov

mov

mov

mov

call

rst mode

portion, r_l
AX,ELL__x[BP]
c__x,AX

AX,ELL_y[BP]
c_jy,AX

AX, AX

X,AX

BX,ELL_rl[BP]
y.BX

CX,ELL_r2[BP]
ellip

;y starts at 0

/store y

/X will start at rl (rl,0)

pop DS /restore DS

as sume DS:nothing

pop SI /restore SI

Appendix 307

pop BP /restore BP
ret popval /clean off the parameters

^ellipse endp

ellip proc near

COMPUTE INITIAL VALUES

These values are calculated only twice per ellipse
to avoid repeating time intensive calculations.
Optimization of these routines is not nearly as
important as those within the plotting loop.

c_x is the center along the x-axis
c_y is the center along the y-axis
AX contains current x

X also contains current x

BX contains r2

CX contains rl

DS must be pointing to gl_data (graphics
library data)

assume DS;gl_data

mov SI,AX /save X in SI

mov AX,BX

mul BX /DX+AX = r2*2

mov BP,DX

mov BX,AX /BP+BX = r2^2

mov r2__lo,AX

mov r2_hi,DX /also store in

mov AX,CX

mul CX /DX+AX = rl*2

mov DI,DX

mov CX,AX /DI+CX = rl*2

mov rl_lo,AX

mov rl__hi,DX /also store in

LSW of

H

>

to

/DI = MSW of rl^2

/BX = LSW of r2^2

/BP = MSW of r2'^2

/SI = X

/Calculate the initial test value

/ (t_e = -2*rl''2*y+rl''2)

308 EGA/VGA: A Programmer's Reference Guide

push

push

BX

BP

;save r2''2

mov

mul

mov

mov

mov

mul

add

AX,CX

y

BX,AX

BP,DX

AX,DI

y

BP,AX

;LSW of rl^2

;y*ri^2 low word (two word

;result)

;store in BX

;store temp in BP
;MSW of rl''2

;y*rl*2 high word (DX will be

;0 since 640""3 is a practical
/limit)

/add to overflow from previous
/MUL [using the distributive

/property

/y*(a+b) = y*a + y*b]

/BP+BX contains y*rl*2

neg

not

shl

rcl

add

adc

BX

BP

BX,1

BP,1

CX,BX

DI,BP

/-y*rl*2 (make 2's comp low

/word)

/-y*rl*2 (make 2's comp high
/word)

/BX = 2*BX (low word)

/BP = 2*BP (high word

/ plus high bit of low word)

/BX+BP now contains -2*y*rl*2)

/DI+CX = -2*y*rl^2 + rl'^2

mov t__e_lo,CX/store the LSW of t_e
mov t_e_hi,DI/store MSW of t_e

/calculate recurring parameters 4*rl''2* (-y+1), and
/ 4*r2''2*x+2*r2''2

/ requiring 4*rl''2, 4*r2''2, and the initial values
/ 4*rl^2*(-y_i+l)=-4*rl'^2*(y_i-l) and 2*r2^2

shl rl_lo, 1
rcl rl_hi, 1
shl rl_lo, 1
rcl rl_hi, 1 /rl_lo=4*rl^2
mov BX,y /put y_i in BX
dec BX /y_i-l
mov AX,rl_lo
mul BX /low word of 4*rl''2* (y_i-l)
mov BP,DX /temp, store the overflow

/in BP

Appendix 309

neg

mov

mov

mul

add

not

mov

pop

pop

shl

rcl

push

push

mov

mov

shl

rcl

mov

pop

pop

mov

mov

AX

y_j)_lo,AX
AX,rl_hi
BX

AX,BP

AX

y__p_hi,AX

BP

BX

BX,1

BP,1

BX

BP

r2_lo,BX
r2_hi,BP

BX,1

BP,1

CX,BX

DI,BP

;make 2's complement of low byte

; i.e. AX=-4*rl'^2*(y_i-l)

;store the low word

;high word of 2*rl''2* (2*y_i-l)
;add in the overflow

;make 2's complement of

;high byte
/save it for later use

/restore r2''2

/2*r2'^2

/save temporarily

/save temporarily
/save 2*r2''2

/4*r2'^2

BP

BX

/change in x based term

/stored in

/DI+CX=4*r2''2 (used each

/iteration)

/restore 2*r2''2 (initial x term)

/BP+BX=2*r2''2 (used each iteration)

DX, t__e_hi/put the test value in DX+AX
AX,t e lo

/initial x still in SI

retest:

/ Plot the points

push

push

push

push

CX

DX

DI

SI

mov DI,y

310 EGA/VGA: A Programmer's Reference Guide

test portion,r_1

jz no_xchg

xchg SI,DI

mov CX,c_x

add CX,SI /column c_x+x
mov DX,c_y

add DX,DI /row c_y+y

call plot

sub CX,SI

sub CX,SI /column c_x-x (row c_y+y)
call plot

sub DX,DI

sub DX,DI /row c_y-y (column c__x-x)
call plot

add CX,SI

add CX,SI /column c_jc+x (row c__y-y)
call plot

pop SI

pop DX

pop DX

pop CX

est value

cmp DX,0 /if the test value = 0,

/ add the y based term to the test

/ value, then reduce y and change
/ the y based term.

/ Note that only high byte
/ determines sign

jl lessl /the value was 0 so skip this

y based term, 4*(rl''2 - y*rl''2)

push BX /save the x based term

push BP

mov BX,y_p_lo /put the y term in BP+BX

mov BP,yjp_hi
add AX,BX /add the y term

adc DX,BP /to the test value

dec y ;y=y-:1

Appendix 311

add BX,rl_lo /adjust the y based term
adc BP,rl_hi ; to new 4*(rl*2 - rl'^2*y)

; by adding 4*rl''2

;(y decreased 1)

lessl:

mov

mov

pop

pop

add

adc

y_j>_lo^BX
y_p__hi ̂ BP

BP

BX

AX,BX

DX,BP

/

/save the new value

/restore x based term

calculate the new test value

/t_e = t_e + 4*x*r2''2 + 2*r2*2
/(and maybe + 4*(rl^2 - y*rl*2))

inc SI /increment x

add BX,CX /adjust the x based term
adc BP,DI / by adding 4*r2*2

/(x increased 1)

/Check whether we've gone beyond the limits

push

push

add

adc

sub

sbb

sub

sbb

pop

pop

jz

jns

BX

BP

BX,y_p_lo
BP/y_p_hi
BX,rl_lo
BP,rl_hi
BX,r2__lo
BP,r2 hi

BP

BX

e cont

e done

/save the x-based term

/add y-based term to

/ x-based term

/subtract 4*rl''2

/subtract 2*r2*2

/if the result is 0

/we are done

/restore x-based terms

/ (will not affect flags)

/if result » 0: plot one

/more point
/if result 0: we're done

e cont:

e done:

jmp retest

ret

ellip endp

312 EGA/VGA: A Programmer's Reference Guide

COMMENT ®

_SetClr (color)

calling program passes:
color new color to use with drawing commands

MASM _SetClr routine returns:
nothing

_SetClr proc far

public _SetClr /piiblic for link to other
/modules

push BP ;BP must be preserved

; (standard entry practice)

mov BP,SP /this will remain constant

/ for calculating

/ addresses of variables

push DS /preserve DS

mov AX,gl_data /graphics library
/data segment

mov DS,AX

assume DS:gl_data

mov AX,[BP+6]

mov clr,AL

pop DS

assume DS:nothing

pop BP

ret 2

__SetClr endp

plot proc near
assume DS:gl_data

/Assumes page is 0, but similar to INT 10 in other

/respects:

/AL = color

/CX = column

/DX = row

/DS = gl^data segment

Appendix 313

push

push

push

push

push

push

mov

mov

and

mov

mov

shr

mov

mov

mov

mov

word out

ES

AX

BX

CX

DX

DX

AX,CX

BX,CX

AX,mod_jnask
CL,AL

AL,b_mask

AL,CL

CX,BX

AH,AL

AL,8

DX,Sceh

;put the column number in AX
;save the column number

;£ind AX mod pixels per byte

;get the bit mask template
/rotate the bit mask into place

/restore CX

/put the bit mask in AH
/bit mask register index
/bit mask register

pop DX

mov AX,DX /put the row in AX

mov BX,bprow /get bytes per row

mul BX /multiply by bytes/row

mov BX,CX /put coliimn number in BX

mov CL,pixpb

shr BX,CL /divide by pixels / byte

add BX,AX /byte offset in memory

mov AX,vid_mem
mov ES,AX

mov AL,ES:[BX] /load the latch registers

mov AL,clr

mov ES:[BX],AL /write color to memory

pop DX

pop CX

pop BX

pop AX

pop ES

ret

plot endp

314 EGA/VGA: A Programmer's Reference Guide

plot2 proc near

assume DS:gl_data

; Change this to PLOT (and PLOT to PL0T2) to see
; how much BIOS calls slow this program.

push AX

push BX

mov AL,clr

mov AH,Och

mov BH,0

int lOh

pop BX

pop AX

ret

plot2 endp

code ends

end start

Appendix 315

VERTIRQ2.ASM uses the hardware interrupt to write a line of V's across
the top of the screen. A second line of V's is continuously written. The first
line remains steady, while the second flickers rapidly (the second line being
drawn almost as fast as the computer will allow). Contrast this to VERTRET,
which is similar, but can only write the second line after writing the first —
thus slowing the execution of the main routine. A complete description of this
process is given in Chapter 15.

clr_f Ig equ 1

ecd_flg equ 2

vga_flg equ 4

vr_bit equ 8

g64_flg equ 16

cols equ 50h

set_irq2 macro

Local chk_disp, chk^mem^ chk_done, nojvga^ vga
skip_j)rm

;DS must be set to DATA when this macro is used

push DS

mov AX,BIOS

mov DS,AX ;set the data segment to
; the BIOS save area

assume DS:BIOS

xor AH,AH

mov AL,mode ;get the current video mode

pop DS

assume DS:DATA

test hdwre,vga_fIg

jz no_vga

jmp vga

no_vga; cmp AL,3

jbe chk_disp
cmp AL,Ofh

jae chk_mem

jmp chk_done

chk__disp.

test hdwre,ecd__fIg ;is the color alpha
; mode set to 350 lines?

jz chk_done ; no, use the standard
; parameter table entry

add AX,19 ;350 line alpha requires

316 EGA/VGA: A Programmer's Reference Guide

chk mem:

vga:

jmp

test

jz

add

jmp

mov

mov

out

inc

in

mov

jmp

chk done:

skip_j)rm: and

mov

mov

out

inc

chk done

the mode-i-19 entry in

the parameter table

hdwre,g64_flg ;is more than 64K mem
/installed on the EGA?

chk__done ; no, use the standard

; parameter table entry
AX,2 ;64K, 350 line graphics

; requires the mode-i-2

; entry in the

; parameter table

chk done

DX,CRT add

AL,llh

DX,AL

DX

AL,DX

AH,AL

/the VGA can read the

/ current V. Ret. End

/index of Vertical Retrace End

/get the current value

/put the current setting in AH
/ for later use

skip_prm

push

Ids

assume

mov

shl

add

add

mov

pop

assume

DS

BX,prm_tbl
DS:nothing

CL,6

AX,CL

AX,27

/

BX,AX

multiply AX by bytes per mode
/add offset of

/ Vertical Retrace End entry
/BX is now memory offset of
/ desired entry

AH,[BX]

DS

DS:data

AH,11001111b

DX, CRT__add

AL,llh

DX,AL

DX

/enable and clear IRQ2

/ (other bits

/ unchanged)

Appendix 317

BIOS

BIOS

Stack

stack

data

even

data

code

mov AL,AH

out DX,AL

or AL,10000b

out DX,AL

endm

segment at 4 Oh

;put the IRQ2 settings in AL

;finish enabling IRQ2

org

mode

49h

db ?

org OaSh
save_wptr label word
save_ptr dd 7

ends

segment stack

db 100 dup ('stack ')

ends

segment public

wrd__iOa label
old__iOa dd ?
prm_wtbl
prm_tbl dd ?

word

label word

CRT_add dw 3b4h /default CRT address
; register (monochrome)

hdwre db 0

int__st db ?

ends

segment public
assume CS:code

/hardware flags (color

/ monitor, ecd, etc)

/programmable interrupt
/ controller mask

main proc far

318 EGA/VGA: A Programmer's Reference Guide

start:

push DS

sub AX,AX

push AX

mov AX,data

mov DS,AX

assume DSrdata

mov AX,BIOS

mov ES,AX

assume ESiBIOS

les BX,ES:save_ptr

assume ES:nothing
les BX,ES:[bx]

mov prm__wtbl, BX
mov prm^wtbl[2],ES

;load ESrBX with the

/address of the SAVE_PTR

/load ES:BX with the

/address of the parameter
/table (first entry in
/the SAVE_PTR table)

lt64k:

ecd:

cd:

mov

mov

int

cmp

jz
or

cmp

je

cmp

je
cmp

je
jmp

or

or

mov

BL,10h /get EGA information
AH,12h /alternate functions

lOh /BIOS call

BL,0 /Is more than 64K installed

lt64k / no, do not set g64__flg
hdwre,g64_flg

BH,1 /Is it a monochrome

mono / yes, defaults already set for

/monochrome, skip setup

CL,1001b /Check switch settings.
/Is it an enhanced display?

ecd

CL,0011b / in hi-res alpha mode
ecd

cd /no, it is a normal color display
/(or ECD in emulation mode)

hdwre,ecd__flg

hdwre,clr_flg
CRT_add,3d4h

Appendix 319

mono:

mov

Int

cmp

jne

cmp

je
cmp

je
jmp

yes__vga: or

not__yga! mov

int

mov

mov

test

jz
jmp

AXflaOOh ;read display combination

do test:

push

mov

mov

mov

;BIOS video call

;the VGA (or 30) will
/return lah

;is it a monochrome VGA?

;is it a color VGA?

lOh

AL,lah

not_yga

BL,7

yes_vga

BL,8

yes_yga

not_vga

hdwre^vga_flg

AX,350ah ;put the current INT Oah
/address in ES:BX

21h /DOS function call

wrd_iOa,bx
wrd__iOa [2] ̂es

hdwre,vga_flg
do_test
skip_test/no need to test retrace

/ polarity on VGA

DS

AX,CS

DS,AX /set DS Scune as CS in order
/to set the interrupt vector

DX, offset fake__iOa
/this is the retrace

/bit polarity test

mov

int

pop DS

set_irq2

push AX

AX,250ah /change int Oah to address
/in DS:DX

21h /DOS fvinction call

/save interrupt value

320 EGA/VGA: A Programmer's Reference Guide

In

mov

and

out

mov

mov

out

pop

or

Inc

out

skip_test;
push

mov

mov

Int

AL,21h

int st,AL

;get the interrupt
/'controller status

;save the interrupt
/controller status

AL,11111011b /make sure IRQ2 is

/enabled (set to 0)
21h,AL

DX/CRT__add
AL,llh

DX,AL

AX

AL,100000b

/restore interrupt value
/disable IRQ2
/ (force interrupt)

DX

DX,AL

DS

AX/CS

DS/AX /set DS same as CS in order

/to set the interrupt vector
DX,offset new iOa

AX,250ah

21h

/change int Oah to address

/in DS:DX

/DOS function call

pop DS

set__irq2

hold2:

seg_ok:

hold:

mov CX,3

push CX

mov CX,2000h

mov AX,0b800h

test hdwre,clr_flg
jnz seg_ok
sub AX,800h

mov ES,AX

push CX

mov CX,Cols

mov DI,OaOh

mov AX,0720h

rep stosw

mov CX,Cols

/number of columns to write

/starting at byte OaOh
/write blanks, attribute 7

Appendix 321

mov DI,OaOh

mov AX,0756h ;write the letter "V", attribute 7

rep

pop

loop

pop

loop

mov

out

mov

int

and

int

Ids

assume

mov

int

mov

int

and

int

stosw

CX

hold

CX

hold2

AL,int__st/restore the interrupt
/controller status

21h,AL

AH,Ofh

lOh

/get current video mode

AX,007fh /clear high bit of AL and
/set AH to 0

lOh /set mode (this will
/clear the IRQ2)

DX,old_iOa
DS:nothing
AX,250ah /restore int Oah to its original

/address (in DS:DX)

21h /DOS function call

AH.Ofh

lOh

/get current video mode

AX,007fh /clear high bit of AL and
/set AH to 0

lOh /set mode (this will
/clear the IRQ2)

ret

new_iOa proc far

cli

push

push

push

push

push

AX

DX

DI

DS

ES

/disable interrupts

322 EGA/VGA: A Programmer's Reference Guide

mov AX,data

mov DS,AX

assume DS:data

mov

in

test

jnz

jmp

mov

test

jnz

siib

seg__ok21 mov

cnt vr:

DX,3c2h

AL,DX

AL,80h

cnt_vr

skp__vr

AX,0b800h

;was IRQ2 from the EGA?

;(Input Status Register Zero)

/mask off the vertical

/interrupt bit

hdwre,clr_flg
seg_ok2
AX,800h

ES,AX

/starting address for
/color alpha display

/starting address for
/mono alpha display

skp__vr;

push

mov

mov

mov

rep

mov

mov

mov

rep

push

cx

CX,Cols

DI,0

AX,0720h

stosw

CX,Cols

DI,0

AX,0756h

stosw

BX

set__irq2
pop BX

pop

pushf

call

CX

[old ioa]

/number columns to fill

/starting at byte OaOh
/write blanks, attribute 7

/write the letter "V",
/attribute 7

/clear current IRQ2

/required to simulate INT

pop

pop

pop

pop

pop

ES

DS

DI

DX

AX

iret

/this routine assumes the old INT Oah routine send an
/End of Interrupt (EOI)

Appendix 323

;BIOS originally points to an EOI routine, and all
;other interrupt handlers should either use the BIOS
/■routine or one of their own
;It also assumes the routine contains the required
;IRET instruction

new_iOa endp

fake__iOa proc far

cli
push
push
push
push
push

AX

DX

DI

DS

ES

;disable interrupts

mov AX,data
mov DS,AX
assume DS:data

mov

in
test

jnz

DX,3c2h

AL,DX
AL,80h

nrm vr

;get IRQ2 status
;(Input Status Register Zero)

;mask off the vertical
/■interrupt bit
/■the bit is set
;(standard EGA method)

or hdwre/Vr_bit ;the vertical retrace
/■bit is reversed

nrm vr;

set_irq2

pushf
call [old iOa]

/clear current IRQ2

/■required to simulate INT

pop

pop

pop

pop

pop

ES

DS

DI

DX

AX

iret

/■This routine assumes the old INT Oah routine send an
/■End of Interrupt (EOI)

324 EGA/VGA: A Programmer's Reference Guide

;BIOS originally points to an EOI routine, and all
/other interrupt handlers should either use the BIOS
/routine or one of their own

/It also assumes the routine contains the required
/IRET instruction

fake__iOa endp

main endp

code ends

end start

Appendix 325

VERTRET.ASM polls the vertical retrace status bit, and writes a line of V's
across the top of the screen when the retrace is detected. A second line of V's
is written in the main body of the program. While the main body does not
check for a vertical retrace, it may only proceed after the subroutine which
writes the first line. Thus, the second line will also print during the retrace.
Contrast this to VERTIRQ2.ASM, which is similar, but can write the second
line as fast as the CPU will allow. VERTIRQ2's two writing routines are essen

tially independent, and the second line flickers. A complete description of this
process is given in Chapter 15.

clr_flg equ 1

stack segment stack

db 100 dup ('stack ')

stack ends

data segment public

even

start:

ST__add dw 3bah /default Status Register 1
; address (monochrome)

hdwre db 0 /hardware flags

/ (color monitor, ecd)

data ends

code segment piiblic
as Slime CSrcode

main proc far

push DS

sub AX,AX

push AX

mov AX,data

mov DS,AX

assume DS:data

mov BL,10h

mov AH,12h

int lOh

/get EGA information
/alternate functions

/BIOS call

326 EGA/VGA: A Programmer's Reference Guide

lt64k:

cxnp BH,1 ; Is it a monochrome

je mono ;yes, defaults already set
; for monochrome, skip setup

or hdwre,clr_flg
mov ST add,3dah

mono:

mov CX,400h

mov AX,0b800h

test hdwre,clr_fIg
jnz seg_ok
s\ib AX,800h

seg__ok: mov ES,AX

hold: push CX

mov CX,50h

mov DI,OaOh

mov AX,0720h

rep stosw

mov CX,50h

mov DI,OaOh

mov AX,0756h

rep stosw

pop CX

call int V

loop hold

ret

int V proc near

push

push

push

push

push

push

push

AX

BX

CX

DX

DI

DS

ES

mov AX,data

mov DS,AX

assume DS:data

Appendix 327

no rt:

n rt:

mov

in

test

jnz

in

test

jz

DX,ST_add
AL,DX

AL,1000b

no rt

AL,DX

AL,1000b

n__rt

AX,0b800h

Status Register One
test the vertical retrace

status bit

is it in a vertical retrace?

yes, keep looking for
non-retrace (display) interval

now, it is displaying so we
can check for the beginning
of the vertical retrace. Is it

in a vertical retrace?

no, try again.

starting address for

color alpha display

test

jnz

sub

seg_ok2; mov
mov

mov

mov

rep

mov

mov

mov

rep

hdwre,clr_flg
seg_ok2
AX,800h /starting address for

; mono alpha display

ES,AX

DI,0

CX,50h

AX,0720h

stosw

CX,50h

DI,0

AX,0756h

stosw

pop

pop

pop

pop

pop

pop

pop

ES

DS

DI

DX

CX

BX

AX

ret

int V endp

main

code

end

endp

ends

start

328 EGA/VGA: A Programmer's Reference Guide

STORE.ASM alternates between Read Modes 0 and 1 to copy screen mem
ory to disk. The save file uses a fixed name of SCREEN.DMP. Initially,
STORE determines the current color through Read Mode 0. It then counts suc
cessive matching colors using Read Mode 1. By storing both a color and count,
STORE acts as a simple data compression program. The screen may be re
stored with RESTORE.ASM.

COMMENT ®

This program reads register values.
VGA adapter to run correctly.

It requires a

buffer

buffer

data

data

_TEXT

main

segment word 'BUFFER'

vid_data db 010Oh dup (0)

ends

segment word public 'DATA'

VidSeg dw ?
Mode dw 7

ScrSize dw ?

handle dw ?

ptrRead dw ?

filename

ends

db

/pointer to the read routine

'SCREEN.DMP'^0

segment word public 'CODE'

assume CS: TEXT

proc

push

sub

push

mov

mov

far

DS

AX,AX

AX

AX,data

DS,AX

main

assume DS:data

call far ptr SaveScreen

ret

assume DS:nothing,ES:nothing

endp

Appendix 329

SaveScreen proc far

;must be entered with DS set to the data area
assmne DS:data

call

jc

GetMode

@F /error, leave procedure

call

jc

FileCreate

/error, leave procedure

call [ptrRead]

assume DS:nothing

ret

SaveScreen endp

Header proc near

assume DS:data

assume ES:buffer

Creates a File Header with Video Mode and

Scree Size (in bytes)

Return:

DS global data area

ES = file buffer

DI s current location of buffer pointer

CX s number of bytes in display area

mov

mov

assume

AX,buffer

ES,AX

ES;buffer

mov CX,ScrSize

mov DI,offset vid_data
mov AX,Mode

mov ES:[DI],AX

add DI,2

mov ES:[DI],CX

add DI,2

Header

ret

endp

RdPlanes proc near

/reads data from bit plane modes

push

push

DS

ES

330 EGA/VGA: A Programmer's Reference Guide

new clr:

call Header

assume DS:data

assume ES:buffer

mov BL,80h ;Bit mask (start at left)

mov AX,VidSeg
mov DS,AX ;Put Video Segment in DS
assume DS:nothing
sub SI,SI ;Start at video offset 0

mov DX,3ceh ;Graphics Controller

mov AX,0f07h ;Color Don't Care = Of

out DX,AX ;(all planes used in compare]

;READ THE COLOR BY COMBINING BITS

mov AL,5 ;Mode Register
out DX,AL

inc DX

In AL,DX ;get current Mode

and AL,11110111b ;Read Mode 0

out DX,AL ;set Read Mode

dec DX

mov AX,0004h /select plane 0
out DX,AX

sub AX,AX ;AH=0 & AL=0

mov BH,[SI] /get the video data

test BH,BL /was the masked bit set?

jz @F / no, don't add to color

inc AH / yes, add 1 to color

/ (color 1+?)

push AX

mov DX,3ceh /Graphics Controller
mov AX,0104h /select plane 1
out DX,AX

pop AX

mov BH,[SI] /get the video data

test BH,BL /was the masked bit set?

jz @F / no, don't add to color

add AH,2 / yes, add 2 to color

/ (color 2+?)

push AX

mov DX,3ceh /Graphics Controller
mov AX,0204h /select plane 2

out DX,AX

pop AX

Appendix 331

xnov BH, [SI] /get the video data
test BH,BL /was the masked bit set?

jz ®F / no, don't add to color

add AH,4 / yes, add 4 to color

/ (color 4+?)

push AX

mov DX,3ceh /Graphics Controller

mov AX,0304h /select plane 3

out DX,AX

pop AX

mov BH,[SI] /get the video data

test BH,BL /was the masked bit set?

jz ®F / no, don't add to color

add AH,8 / yes, add 8 to color

/ (color 8+?)

/NOW DATA FROM ALL 4 BIT PLANES HAS BEE

/COMBINED TO FORM A SINGLE COLOR NUMBER.

/WE'LL USE A SIMPLE DATA COMPRESSION METHOD

/A COLOR NUMBER AND THE NUMBER OF SEQUENTIAL

/MATCHING PIXELS.

inc AL /one pixel of this color
/AH=color, AL=# of pixels

/SWITCH TO COLOR COMPARE FOR READING PIXEL COLOR

/SINCE WE WANT TO KNOW THE NUMBER OF MATCHING

/PIXELS. I.E. KEEP COUNTING MATCHES UNTIL THE

/COLOR CHANGES (THEN GO BACK AND READ THE FOUR

/BIT PLANES AGAIN

push

mov

out

inc

in

or

out

dec

mov

out

pop

AX

AL,5

DX,AL

DX

AL,DX

AL,00001000b

DX,AL

DX

AL,2

DX,AX

AX

/Mode Register

/get current Mode

/Read Mode 1 (color compare)

/set Read Mode

/Color compare (AH already color)

mov BH, [SI] /get video data using
/color compare

332 EGA/VGA: A Programmer's Reference Guide

;THE NEXT LINE IS THE START OF THE MATCHING

;BIT LOOP

nxt_bit: shr BL,1 ;Mask the next bit
jnz same_byte ;Skip next if still in byte

/VIDEO SOURCE BYTE CHANGE

inc SI /select next byte

dec CX /decrement byte count

cmp CX,-1 /last byte?

jne @F / no, continue
jmp rdp_done

®®i mov BL,80h /reset Mask to high bit
mov BH, [SI] /get the new data byte

same__byte:

test BH,BL /Does the color match?

jz next__clr / no, get ready for next color
inc AL / yes, add 1 pixel to count
jnz @F /continue if no overflow

/OVERFLOW -- SAVE 255 AND SET BACK TO 1

dec AL /set back to 255

call SaveClrCnt

mov AL,1 /set to 1 (the overflow pixel)

jmp nxt_bit /Check next bit for a match

next__clr: /no match

call SaveClrCnt /add color/coimt to buffer

jmp new_clr /get new color number

rdp__done:
call SaveClrCnt

cmp DI,offset vid_data /Is there data
/in the buffer

je ®F /no, skip save
call FlushBuf

®@: call FileClose

pop ES

pop DS

assume DS:nothing

assume ES:nothing
ret

RdPlanes endp

Appendix 333

RdSeq proc near

;reads data from sequential (linear)

;data modes

push

push

DS

ES

call Header

assume DS:data

assume ES:buffer

mov AX,VidSeg

mov DS, AX

assume DS:nothing

sub SI,SI

;Put Video Segment in DS

/Start at video offset 0

/INITIALIZE AH (color, char, or attr)

/AND AL (count)

new attr:

mov

mov

inc

dec

jz

AH,[SI]

AL,1

SI

CX

lin done

/get the color

/one pixel

next byte:

cmp

je

call

jmp

inc

jnz

AH,[SI]

@F

SaveLin

new_attr

AL

/is it the same color?

/ yes, continue counting

/ no, save it and

/ get next color

/increase the count

dec

call

mov

inc

dec

jz
jmp

AL

SaveLin

AL,1

SI

CX

lin_done
short next byte

/next video byte

lin done:

call

cmp

SaveLin

DI,offset vid_data /Is there data in
/the buffer

334 EGA/VGA: A Programmer's Reference Guide

je
call FlushBuf

no, skip buffer flush

call FileClose

pop ES

pop DS

assume DS:nothing,ES:nothing

ret

RdSeq endp

SaveClrCnt

mov

add

cmp

jb

call

proc near

word ptr ES:[DI],AX ;save the

;color/count

DI,2

DI,size vid__data+offset vid__data
®F /continue if no buffer overflow

FlushBuf

ret

SaveClrCnt endp

FlushBuf proc near

/writes buffer to file

Entry

ES =: buffer segment address

assume ES:buffer

push

push

push

push

push

mov

mov

assume DS:data

DS

AX

BX

CX

DX

AX,data

DS,AX

mov AH,4Oh

mov BX,handle

mov CX,DI

sub CX,offset vid_data
push ES

/write buffer to file

Appendix 335

pop DS

assume DS:buffer

mov DX,offset vid_data
Int 21h ;DOS call

;NOTE: NO ERROR CHECKING DONE HERE

mov DI,offset vld^data ;set Buffer ptr
;to 0

pop

pop

pop

pop

DX

CX

BX

AX

pop DS

assume DS:nothing
ret

FlushBuf endp

SaveLin proc

mov

add

cmp

jb

near

word ptr ES:[DI],AX /save the

/color/count

DI,2

Dl^size vid_data+offset vid_data
®F /continue if no buffer overflow

call

@®: ret

SaveLin endp

FlushBuf

GetMode proc

/Entry

/ DS = data area

assume DS:data

mov AH,Ofh

int lOh

and AX,007fh /clear AH and the

/screen save bit

mov Mode, AX

cmp AX,Och /check for xmsupported modes

jbe ill_md

336 EGA/VGA: A Programmer's Reference Guide

;Set for VGA bit plane modes

mov ptrRead,offset RdPlanes

mov VidSeg,OaOOOh

mov ScrSize,8000

cmp AX,Odh

j e gm__done

mov ScrSize,16000

cmp AX,Oeh

j ® gm_done

mov ScrSize,28000

cmp AX,10h

jbe gm_done

mov ScrSize,38400

cmp AX,12h

jbe gm_done

;Set for 256 color VGA

mov ptrRead,offset RdSeq

mov ScrSize,64000

cmp AX,13h

j ® gm_done

ill_md: stc
jmp

gm__done; clc

short @F

/illegal mode/set carry

/clear carry flag

assume DS:nothing

®@: ret

GetMode endp

FileCreate proc near
/must be entered with DS set to the data area

assiime DS: data

mov

mov

sub

int

mov

ret

FileCreate

AH,3ch /Create File

DX,offset filename

CX,CX /no attributes

21h

handle,AX

endp

Appendix 337

FileClose proc

push DS

mov AX,data

mov DS,AX

assume DS:data

mov BX,handle

mov AH,3eh

int 21h

pop DS

assume DS:nothing
ret

FileClose endp

_TEXT ends

stack segment stack 'STACK'

db 64 dup ('stack***')

stack ends

end main

338 EGA/VGA: A Programmer's Reference Guide

RESTORE.ASM restores files saved with STORE.ASM to the display.
STORE records the mode number so that RESTORE may restore the proper
mode as well as the data. RESTORE reads a file named SCREEN.DMP.

COMMENT @

This program reads register values. It requires a
VGA adapter to run correctly.

buffer

buffer

data

data

_TEXT

main

segment word 'BUFFER'

vid__data db 010Oh dup (0)

ends

segment word public 'DATA'

VidSeg dw ?

Mode dw ?

ScrSize dw ?

handle dw ?

ptrRest dw ?

filename db

/pointer to the restore routine

'SCREEN.DMP',0

ends

segment word p\iblic 'CODE'

assume CS: TEXT

proc

push

sub

push

mov

mov

far

DS

AX,AX

AX

AX,data

DS,AX

main

assume DS:data

call far ptr DrawScreen

ret

assume DS:nothing,ES:nothing

endp

Appendix 339

DrawScreen proc far

/must be entered with DS set to the data area

assume DS:data

push BP ;BP will be used
/unconventionally, so

/save it

call FileOpen
jc @F /error, leave procedure

call SetMode

jc @F /error, leave procedure

call

pop

[ptrRest]

BP

assume DS:nothing

ret

DrawScreen endp

Header proc near

Reads a File Header (Video Mode and Screen

Size [in bytes])

Exit:

ES = global data area

DS = buffer

mov AX,data

mov ES,AX

assume ES:data

mov AX,buffer

mov DS,AX

assume DS:buffer

mov SI,offset vid__data
mov AX,[SI] /get mode

add SI,2

mov ES:Mode,AX

mov AX,[SI]

add SI,2

mov ES:ScrSize,AX

/get screen size

Header

ret

endp

340 EGA/VGA: A Programmer's Reference Guide

RsPlanes proc near

/Restores data to bit plane modes

push

push

DS

ES

call Header

assume ES:data

assume DS:buffer

mov BL,80h /bit mask

sub BH,BH /current bit position (0)

mov AX,ES:VidSeg

mov ES,AX /Put Video Segment in ES

assume ES:nothing

sub DI,DI /Start at video offset 0

mov DX,3ceh /Graphics Controller

mov AL,5 /Mode Register

out DX,AL

inc DX

in AL,DX /get current Mode

or AL,10b /Write Mode 2

and AL,11111110b /(write color)

out DX,AL /set Write Mode

dec DX

/the next line is a bit obscure, but it will

/jump to the next line (new_blk) when
/finished. Why not a subroutine? To simplify

/error handling when the file has been
/completely read,

jmp get__dta

/WRITE THE COLOR

/We're going to pull a few tricks here, so
/watch closely! Since we know there may be

/several sequential colors, we can build a
/bit mask several bits long. Up to 8 pixels
/may be written at once, so we can save time

/writing to video memory.

new__blk: dec

mov

and

mov

sar

DL /we will plot at least one
/bit so reduce count by 1.

CL,DL /get count

CL,lllb /mask all but 7 of additional

/count

BL,80h /use at least 1 bit in mask

BL,CL /fill up to 7 more bits

Appendix 341

nOV:

/in mask

xchg BH,CL /get position (save count)

shr BL,CL /shift mask into place

xchg BH,CL /restore position and coxint

xchg AH,BL /put mask in AH

mov AL,8 /map mask register

push DX

mov DX,3ceh

out DX,AX /write map mask

pop DX

xchg AH,BL /restore BL

mov AL,ES:[DI] /latch data

mov ES:[DI],DH /write pixel(s), color DH

/ADJUST BIT POSITION AND REMAINING COUNT

add BH,CL /add the number of bits-1 to

/the current position (BH is
/now new position)

cmp BH,7 /was there an overflow?

jb nOV / no overflow

/bits completely fill remaining positions

;in byte

sub BH,CL /restore the position

neg BH /make it negative

add BH,7 /and add max additional bits

/BH is now # of bits used

sub DL,BH /subtract extra bits from count

sub BH^BH /back to bit position 0

inc DI /and move to next video byte

cmp DL,0

je get_dta /if no data left, get more

jmp new_blk /write next block of pixels

/more room for bits than bits used

inc BH /compensate for CL=bits-l

/by shifting position up one

sub DL,CL /subtract extra bits from DL

jz get_dta /if no data left, get more

jmp new__blk

/no bits left in DL, get new data from buffer

mov DX,[SI]

add SI,2

cmp SI, BP /Have we overrun the buffer?

jb @F / no, skip next

342 EGA/VGA: A Programmer's Reference Guide

call

jc

jmp

LoadBuf

FC

new blk

;CF - file done, leave

FC; call FileClose

mov DX,3ceh

mov AX,0ff08h

out DX,AX

mov AL,5

out DX,AL

inc DX

in AL,DX

and AL,11111100b

out DX,AL

/Graphics Controller

/bit mask

/Mode Register

/get current Mode

/Write Mode 0

/set Write Mode

pop

pop

ES

DS

assume DS:nothing

assume ES:nothing
ret

RsPlanes endp

RsSeq proc near

/restores data to sequential (linear) video

/memory

push

push

DS

ES

call Header

assume ES:data

assume DS:buffer

/INITIALIZE

eld

mov AX,ES:VidSeg

mov ES,AX

assume ES:nothing
sub DI,DI

sub CX,CX

/Put Video Segment in ES

/set video offset to 0

/CX = 0

next_byte:
CL,[SI]

Appendix 343

FCl:

Inc

mov

Inc

rep

cmp

jb

call

jc

jmp

Call

SI

AL,[SI]

SI

stosb

SI, BP

@F

LoadBuf

FCl

next_byte

FileClose

;mov CX bytes of Color AH

;to video buffer (ES:DI)

;Have we overrun the buffer?

; no, skip next

pop

pop

ES

DS

assume DS:nothing,ES:nothing

ret

RsSeq endp

LoadBuf proc near

;read file into buffer

push

push

push

push

push

mov

mov

DS

AX

BX

CX

DX

AX,data

DS,AX

assume DS:data

mov BX,handle

mov AX,buffer

mov DS,AX

assume DS:buffer

mov AH,3fh

mov CX,length vid_data
mov DX, offset vid__data
sub CX,DX

int 21h

;read file to buffer

;DOS call

;NOTE: NO ERROR CHECKING DONE HERE

344 EGA/VGA: A Programmer's Reference Guide

mov BP,AX ;use BP as Buffer Size limit

mov SI,offset vid_data
;set Buffer ptr to 0

jc
cmp

jne
stc

@F

AX,0

@F

;if CF set (error), leave

;if no data left, set CF

pop

pop

pop

pop

DX

OX

BX

AX

pop DS

assume DS:nothing

ret

LoadBuf endp

SetMode proc near

push DS

mov AX,data

mov DS,AX

assume DS:data

push

mov

mov

ES

AX,buffer

ES,AX

assume ES:buffer

call

jnc

jmp

LoadBuf

SMout

;if no error, continue

; error, get outta here

call Header

assume ES:data

assume DS:buffer

mov

cmp

jbe

sub

int

AX,ES:Mode

AX,Och

ill_md
AH,AH

lOh

/Insert check for VESA here

/check for unsupported modes

/clear AH (BIOS Set Mode)

/video call

AX,ES:Mode /restore full mode number

Appendix 345

;Set for VGA bit plane modes
mov ptrRest,offset RsPlanes

mov ES:VldSeg,OaOOOh

cmp AX,Odh

j ® gm_done

cmp

je

cmp

jbe

cmp

jbe

AX,Oeh

gm_done

AX,10h

gm_done

AX,12h

gm__done

;Set for 256 color VGA

mov ptrRest,offset RsSeq

cmp AX,13h

j ® gm__done

ill md: stc

jmp short

gm_done: clc

SMout;

/illegal mode/set carry

/clear carry flag

®® I pop ES

assume ES:nothing

pop DS

assume DS:nothing

ret

SetMode endp

FileOpen proc near

/must be entered with DS set to the data area

assume DS:data

mov AX,3d00h /Open for read

mov DX,offset filename

int 21h

mov

ret

FileOpen endp

FileClose proc

handle,AX

346 EGA/VGA: A Programmer's Reference Guide

push DS

mov AX,data

mov DS,AX

assume DS:data

mov BX,handle

mov AH,3eh

Int 21h

pop DS

as sume DS:nothing
ret

FileClose endp

_TEXT ends

stack segment stack 'STACK'

db 64 dup ('stack***')

stack ends

end main

Appendix 347

WHEEL.ASM uses an AND/OR driver for an animation sequence. An ani
mated wheel rolls across the letters of the alphabet, which are printed along the
bottom of the screen. WHEEL demonstrates several interesting features of the
VGA (it will not run on an EGA). Among them is the use of palette cycling in
a Marquee light effect to make the wheel appear as if it is rolling.

reg_base egu 3d0h

waiter macro

local rt, nL_rt

/ #

mov DX,reg_base
add DX,Cah ;;Input Status 1

rt! in AL,DX

test AL,1000b ;;Are we in a retrace?

jnz rt ;;If so, look for non-retrace

n_rt: in AL,DX ;; no, now look for next

;; retrace

test AL,1000b

jz n_rt

/ /

endm

movsbDec macro

movsb

dec SI

dec DI

endm

Wheel Struc

rO db 11111000b,00011111b

rl db 11100000b,00000111b

r2 db 11000000b,00000011b

r3 db 10000000b,00000001b

r4 db 10000011b,11000001b

r5 db 00000111b,11100000b

r6 db 00001111b,11110000b

r7 db 00001111b,11110000b

r8 db 00001111b,11110000b

r9 db 00001111b,11110000b

no db 00000111b,11100000b

rll db 10000011b,11000001b

rl2 db 10000000b,00000001b

rl3 db 11000000b,00000011b

rl4 db 11100000b,00000111b

rl5 db 11111000b,00011111b

348 EGA/VGA: A Programmer's Reference Guide

Wheel ends

obj_data segment word public 'DATA'

WheelHask

WheelMO db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

Wheel

00000001b,

00000111b,

00111111b,

00111111b,

00111100b,

11111000b,

01110000b,

01110000b,

11110000b,

01110000b,

01111000b,

01111100b,

00111111b,

00011111b,

00010111b,

00000010b,

00100000b

11100000b

11111100b

11111100b

00111100b

00011111b

00001110b

00001110b

00001111b

00001110b

00011110b

00111110b

11111100b

11111000b

11101000b

01000000b

WheelMl db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

00000000b,

00000111b,

00011111b,

00111111b,

00111100b,

01111000b,

01110000b,

01110000b,

01110000b,

01110000b,

01111000b,

00111100b,

00111111b,

00011111b,

00000111b,

00000000b,

00000000b

11100000b

11111000b

11111100b

00111100b

00011110b

00001110b

00001110b

00001110b

00001110b

00011110b

00111100b

11111100b

11111000b

11100000b

00000000b

WheelM2 db

db

db

db

db

db

db

db

db

db

00000011b,

00001111b,

00111111b,

01111111b,

00111100b,

11111000b,

11110000b,

01110000b,

11110000b,

11110000b,

01100000b

11101000b

11111100b

11111100b

00111110b

00011111b

00001110b

00001111b

00001111b

00001110b

Appendix 349

db

db

db

db

db

db

01111000b,

01111100b,

01111111b,

00011111b,

00011111b,

00000011b,

00011111b

00111110b

11111100b

11111100b

11101000b

01100000b

WheelMB db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

db

00000111b,

00010000b,

00100000b,

01000000b,

01000000b,

10000000b,

10000000b,

10000000b,

10000000b,

10000000b,

10000000b,

01000000b,

01000000b,

00100000b,

00010000b,

00000111b,

11100000b

00001000b

00000100b

00000010b

00000010b

00000001b

00000001b

00000001b

00000001b

00000001b

00000001b

00000010b

00000010b

00000100b

00001000b

11100000b

even

VidSeg dw

ScrapSeg

Lastoff dw

?

dw

?

obj_data ends

_TEXT segment word public 'CODE'
assume CS: TEXT

main proc far

push

sub

push

mov

mov

call

call

call

call

call

DS

AX,AX

AX

AX,obj_data
DS,AX

assume DS:obj^data

SetMode

SetDAC

SetBack

Wheelies

RestMode

350 EGA/VGA: A Programmer's Reference Guide

ret

assume DS:nothing,ES:nothing

main endp

SetMode proc near

;DS must be set to obj__data upon entry
assume DS:obj_data

mov AX,12h ;640x480 color

int lOh

mov VidSeg,OaOOOh
mov ScrapSeg,0aea6h

ret

assume DS:nothing

SetMode endp

RestMode proc near

mov AX, 3 /return to alpha mode

int lOh

ret

RestMode endp

SetBack proc near

;Set the background (letters across bottom)

sub BH,BH /page 0

mov DX,ld00h /Row 29, column 0

mov BL,1

mov AL,'a'

SBll: push AX

push BX

mov AH,2 /set cursor position
int lOh

pop BX

pop AX

push AX

mov AH,9 /Write character

mov CX,1 /one character

int lOh

pop AX

Appendix 351

Inc

cmp

jbe

mov

inc

cmp

jne
inc

cmp

jne

add

cmp

jbe
mov

inc

cmp

ja
jmp

mov

sub

sub

int

ret

AL

AL,'Z'

®F

AL,'a'

BL

BL,8

®F

BL

BL,12

®F

BL,2

BL,15

@F

BL,1

Dii

DL,79

@F

SBll

AH,2

BH,BH

DX,DX

lOh

;are we past 'z' ?

; no, continue

; yes, set to 'a'

;next color

;skip color 8

;skip colors 12 & 13

;is color past Max?

; no, continue

; yes, set color to 1

;are we past last col?

; yes, finish up

; no, write new char

;set cursor position

;page 0

;0,0

SetBack endp

Wheelies proc

push

push

mov

mov

mov

mov

Bub

DS

ES

AX,obj_data
DS,AX

assume DS:obj_data

DI,900eh

LastOff,DI

BX,BX

moveW:

mov CX,640-8*(WheelMask.rl - WheelMask.rO)

mov DX,-1

push CX

push DI

352 EGA/VGA: A Programmer's Reference Guide

;Push Parameters and Draw the Wheel

mov AX^VidSeg

push AX

push DI

mov AX,LastO££

push AX

mov AX,obj_data
push AX

mov AX,o££set WheelMask

push AX

mov AX,ScrapSeg

push AX

sub AX,AX ;o££set in Scrap
push AX

push BX

mov AX,WheelMask.rl - WheelMask.rO

push AX

mov AX,(size WheelMask/(WheelMask.rl-

WheelMask.rO))

push AX

push DX

call £ar ptr DrawObj

pop DI

mov LastO££,DI

call RotPal

;Move the wheel le£t one pixel

cmp

jne

mov

dec

dec

BL,0

@F

BL,8

DI

BL

;do we need to

; shi£t the byte?

;yes, move

; one byte le£t

;one bit le£t

sub

pop

loop

DX,DX

CX

moveW

;not £irst iteration

pop ES

pop DS

assume DS:nothing,ES:nothing

ret

Wheelies endp

DOstk struc

rbp

ra

dw

dd

;BP

/return address

Appendix 353

Setup dw ?

Height dw ?

Wide dw ?

PelOff dw ?

BackBuf dd ?

Obj dd ?

RestOff dw ?

Vid dd ?

DOstk ends

/calculate value to pop with RET n at end of

;proc (length of parameters)

popval = size DOstk - (Setup)

COMMENT @

DrawObj (Vid,RestOff,Obj,PelOff,Wide,Height,Setup)

calling program passes:

Vid Address of the upper left display buffer
RestOff Offset to which to restore background

Obj Address of the upper left object area
BackBuf Background buffer area for object
PelOff Pixel offset in the display buffer
Wide object width in bytes
Height object height in pixels
Setup -1 for the first iteration of an object

DrawOb j

NoRest:

proc far

push BP /save BP

mov BP,SP /for addressing

sub SP,2 /reserve local \

push DI

push SI

push DS

cmp Setup[BP]/-I

je NoRest

call RestBack

call SaveBack

;ES:DI -- Destination (upper, left)

les DI,Vid[BP]

;DS:SI -- Mask Source (upper, left)

Ids SI,Obj[BP]

354 EGA/VGA: A Programmer's Reference Guide

mov AX,Height[BP]
mul Wide[BP]

mov [BP-2],AX

;find bytes in object
; height * width

;put size in BP*2

;make the mask for first byte

mov AH,-1

mov BX,PelOff[BP]

mov CX,BX

shr AH,CL

mov AL,8

push AX

mov DX,3ceh

out DX,AX

;all bits set

;set the shift

/shift the mask

/bit mask index

/save the bit mask

/graphics controller

push

push

SI

DI

mov

call

add

add

loop

CX,Height[BP]

d_end
SI,Wide[BP]

DI,80

/draw the left end

/next object row

/next screen row

/repeat for each row

pop

pop

DI

SI

/make the mask for last byte

pop

not

AX

AX

/restore first byte mask

/invert the mask

push

push

SI

DI

/save offset of

/first bytes

cmp

je
mov

mov

out

mov

add

dec

add

BL,0

skp_end
AL,8

DX,3ceh

DX,AX

DX,Wide[BP]

SI,DX

SI

DI,DX

/bit mask index

/graphics controller

/point to last byte

/ in the row

/point to last

/ display col

mov CX,Height[BP]

call d_end /draw the right end
add SI,Wide[BP] /next object row

Appendix 355

add

loop

skp_end: mov
mov

out

DI,80

@B

AX,0ff08h

DX,3ceh

DX,AX

;next screen row

/repeat for each row

/bit mask (unmask all)

/graphics controller

pop

pop

mov

dec

jz

NewCol: inc

DI

SI

CX,Wide[BP]

CX

d__done

DI

/restore offsets

/of first bytes

/repeat for each col

/except first

/point to next dest

push SI

push CX

mov CX,Height[BP]

call

add

add

loop

d_mid
SI,Wide[BP]

DI,80

@B

/next object row
/next screen row

pop

pop

inc

loop

CX

SI

SI

NewCol

/point to next source

d done:

pop

pop

pop

add

pop

ret

DS

assume DS:nothing
SI

DI

SP,2

BP

popval

DrawObj endp

d_mid proc near
/DS should already be set to obj_data
assiime DS: ob j_data

push

push

CX

SI

356 EGA/VGA: A Programmer's Reference Guide

;set Ain? mode for mask (no rotation)

mov AX,0803h /data rotate index

mov DX,3ceh /graphics controller
out DX,AX

/write all planes with mask
mov AX,0f02h /Map mask (write all planes)
mov DX,3c4h /sequencer

out DX,AX

mov AL,ES:[DI] /latch the data

sub AL,AL /clear AL

mov AH,[SI] /get object
mov CL,BL /shift remaining pixels
shr AX,CL / from 1st byte into AL

mov AH, [SI+1] /get next byte

mov CL,BL

shr AH,CL /shift it into position
or AL,AH /combine the partials
mov ES:[DI],AL /write mask

/change to OR mode

mov AX,1003h /data rotate index

mov DX,3ceh /graphics controller
out DX,AX

/WRITE PLANE 0

add SI, [BP-2] /bit plane 0 data source
mov AX,0102h /Map mask (write plane 0)
mov DX,3c4h /sequencer

out DX,AX

mov AL,ES:[DI] /latch the data

sub AL,AL /clear AL

mov AH,[SI] /get object
mov CL,BL /shift remaining pixels
shr AX,CL / from 1st byte into AL

mov AH, [SI + 1] /get next byte

mov CL,BL

shr AH,CL /shift it into position
or AL,AH /combine the partials
mov ES:[DI],AL /write plane 0

/WRITE PLANE 1

add SI, [BP-2] /bit plane 1 data source

Appendix 357

mov AX,0202h /Map mask (write plane 1)

mov DX,3c4h /sequencer

out DX,AX

sub AL,AL /clear AL

mov AH,[SI] /get object

mov CL,BL /shift remaining pixels

shr AX,CL / from 1st byte into AL

mov AH,[SI+l] /get next byte

mov CL,BL

shr AH,CL /shift it into position

or AL,AH /combine the partials

mov ES: [DI],AL /write plane 1

/WRITE PLANE 2

add SI,[BP-2] /bit plane 1 data source

mov AX,0402h /Map mask (write plane 2)

mov DX,3c4h /sequencer

out DX,AX

sub AL,AL /clear AL

mov AH,[SI] /get object

mov CL,BL /shift remaining pixels

shr AX,CL / from 1st byte into AL

mov AH, [SI+1] /get next byte

mov CL,BL

shr AH,CL /shift it into position

or AL,AH /combine the partials

mov ES:[DI],AL /write plane 2

/WRITE PLANE 3

add SI, [BP-2] /bit plane 1 data source

mov AX,0802h /Map mask (write plane 3)

mov DX,3c4h /sequencer

out DX,AX

sub AL,AL /clear AL

mov AH, [SI] /get object

mov CL,BL /shift remaining pixels

shr AX,CL / from 1st byte into AL

mov AH, [SI + 1] /get next byte

mov CL,BL

shr AH,CL /shift it into position

or AL,AH /combine the partials

mov ES:[DI],AL /write plane 3

358 EGA/VGA: A Programmer's Reference Guide

d_mid

d end

pop

pop

ret

endp

proc

push

push

mov

SI

CX

near

CX

SI

CX,[BP-2] /object bit map size

/set the data rotate

/this will save time by having the hardware
/rotate each bit plane of both objects --
/AND mask and OR data (save 8 shifts)

mov

or

mov

mov

out

mov

mov

mov

out

AH,BL

AH,1000b

AL,3

DX,3ceh

DX,AX

AL,ES:[DI]

AX,0f02h

DX,3c4h

DX,AX

/data AND latch

/data rotate index

/graphics controller

/latch the data

/ [SI] set to mask source

/Map mask (write all planes)
/sequencer

movsbDec

mov AL,ES:[DI] /latch the data

/set rotate again, change to OR
mov

or

mov

mov

out

add

mov

mov

out

movsbDec

AH,BL

AH,10000b

AL,3

DX,3ceh

DX,AX

SI,CX

AX,0102h

DX,3c4h

DX,AX

add

mov

SI,CX

AX,0202h

/data OR latch

/data rotate index

/graphics controller

/bit plane 0 data source
/Map mask (write plane 0)

/sequencer

/bit plane 1 source
/Map mask (write plane 1)

Appendix 359

mov DX,3c4h

out DX,AX

movsbDec

;sequencer

add

mov

mov

out

movsbDec

SI,CX

AX,0402h

DX,3c4h

DX,AX

;blt plane 2 source

;Map mask (write plane 2)
;sequencer

add

mov

mov

out

movsbDec

SI,CX

AX,0802h

DX,3c4h

DX,AX

;bit plane 3 source

;Map mask (write plane 3)
;sequencer

pop

pop

SI

CX

ret

d end endp

SetDAC proc

;Copy the first 64 DAC settings into the next
;two sets of 64. Then, swap the three colors

;used for cycling (7, 3bh, and 3fh)

mov CX,64

mov AL,CL

dec AL /Select the index number

mov DX,3c7h ;DAC Pel Address Read Mode

out DX,AL /Select the color

inc DX

inc DX /PEL data register

in AL,DX /read Red

mov AH,AL / in AH

in AL,DX /read Green

mov BL,AL / in BL

in AL,DX /read Blue

mov BH,AL / in BH

push AX /save Red

dec DX /point to Write Mode

mov AL,CL /Index number (red in AH)

add AL,63 / next set of 64

360 EGA/VGA: A Programmer's Reference Guide

out

Inc

mov

out

mov

out

DX,AX

DX

AL,BL

DX,AL

AL,BH

DX,AL

;COPY SET 2

pop AX

dec

mov

add

out

inc

mov

out

mov

out

loop

DX

AL,CL

AL,127

DX,AX

DX

AL,BL

DX,AL

AL,BH

DX,AL

®B

/select color and write Red

/PEL data register

/write Green

/write Blue

/restore Red

/Index number (red in AH)

/ next set of 64

/select color and write Red

/PEL data register

/write Green

/write Blue

/Move 3ch of 1st into 38h of 2nd and 3dh

/of 3rd

mov

mov

out

inc

inc

in

mov

in

mov

in

mov

push

dec

mov

out

inc

DX,3c7h

AL,3ch

DX,AL

DX

DX

AL,DX

AH,AL

AL,DX

BL,AL

AL,DX

BH,AL

AX

DX

AL,64-i-38h

DX,AX

DX

/read Red

/read Green

/read Blue

/save Red

/write Red

mov

out

AL,BL

DX,AL /write Green

Appendix 361

mov

out

pop

dec

mov

out

Inc

mov

out

mov

out

AL,BH

DX,AL

AX

DX

AL,128-*-3dh

DX,AX

DX

AL,BL

DX,AL

AL,BH

DX,AL

;write Blue

/restore Red

/write Red

/write Green

/write Blue

/Move 3dh of 1st into 3ch of 2nd and
/38h of 3rd

mov

mov

out

inc

inc

in

mov

in

mov

in

mov

push

dec

mov

out

inc

mov

out

mov

out

pop

dec

mov

out

inc

DX,3c7h

AL,3dh

DX,AL

DX

DX

AL,DX

AH,AL

AL,DX

BL,AL

AL,DX

BH,AL

AX

DX

AL,64+3ch

DX,AX

DX

AL,BL

DX,AL

AL,BH

DX,AL

AX

DX

AL,128-i-38h

DX,AX

DX

/read Red

/read Green

/read Blue

/save Red

/write Red

/write Green

/write Blue

/restore Red

/write Red

362 EGA/VGA: A Programmer's Reference Guide

mov

out

mov

out

AL,BL

DX,AL

AL,BH

DX,AL

/write Green

/write Blue

/Move 38h of 1st into 3dh of 2nd and

/3ch of 3rd

mov

mov

out

inc

inc

in

mov

in

mov

in

mov

push

dec

mov

out

inc

mov

out

mov

out

pop

dec

mov

out

inc

mov

out

mov

out

ret

DX^ 3c7h

AL,38h

DX.AIi

DX

DX

AL,DX

AH,AL

AL.DX

BL,AL

AL,DX

BH,AL

AX

DX

AL,64+3dh

DX,AX

DX

AL.BL

DX,AL

AL,BH

DX,AL

AX

DX

AIi,128+3ch

DX,AX

DX

DX,AL

AL,BH

DX,AIi

/read Red

/read Green

/read Blue

/save Red

/write Red

/write Green

/write Blue

/restore Red

/write Red

/write Green

/write Blue

SetDAC endp

Appendix 363

RotPal proc near

;change the palette to give the illusion of
/motion (similar to the effect of marquee

/lights)

push

push

AX

DX

push

wait_r
waiter
pop

AX

AX

rpal: mov

mov

out

inc

in

AL,34h

DX,3c0h

DX,AL

DX

AL,DX

/Color Select

/get current setting

/Add 1 to color select 6-7 (bits 2-3)

/We want three states: 00b, 01b, and 10b

/so, add 1 and if it makes lib, set them

/back to 00

add

cmp

ji
and

AL,100b

AL,1100b

®F

AL,0011b

mov

out

DX,3c0h

DX,AL

pop

pop

DX

AX

ret

RotPal endp

SaveBack proc near

Ids SI,Vid[BP]

assume DS:nothing

les DX,BackBuf[BP]

assume ES:nothing

mov

inc

BX,Wide[BP]

BX

/save width in BX

/and add a byte

364 EGA/VGA: A Programmer's Reference Guide

;get the current mode

mov

mov

out

Inc

in

DX,3ceh

AL,5

DX,AL

DX

AL,DX

push AX ;save mode

/change write mode to 2 (only latch data)

and AL,11111100b

or AL,lb

out DX,AL

/enable all bit planes
mov AX,0£02h

mov DX/3c4h

out DX/AX

mov CX/Height[BP]

push CX

mov

rep

add

sub

CX/BX

movsb

SI,80

SI/BX

/save n columns

/next row

/first column

pop

loop

CX

@B

/set mode

pop

mov

mov

mov

out

AX

AH,AL

AL/5

DX,3ceh

DX/AX

/restore mode

ret

SaveBack endp

RestBack proc near

mov AX/word ptr Vid[BP+2]
mov ES/AX

assume ES:nothing

mbv DI/Restoff[BP]

Appendix 365

Ids SI,BackBuf[BP]

assume DS:nothing

mov BX,Wide[BP]

inc BX

;save width in BX

;and add a byte

;get the current mode
mov

mov

out

inc

in

push

DX,3ceh

AL,5

DX,AL

DX

AL^DX

AX ;save mode

/change write mode to 2 (only latch data)
and AL,11111100b

or AL,1

out DX,AL

/enable all bit planes

mov AX,0£02h

mov DX,3c4h

out DX,AX

mov CX,Height[BP]

push CX

mov CX,BX

rep movsb

add DI,80

sub DI,BX

/save n columns

/next row

/first column

pop

loop

CX

®B

/set mode

pop

mov

mov

mov

out

AX

AH,AL

AL,5

DX,3ceh

DX,AX

/restore mode

ret

RestBack endp

TEXT ends

366 EGA/VGA: A Programmer's Reference Guide

stack segment stack 'STACK'

db 64 dup ('stack***')

stack ends

end main

Index

8514/A, 4,73,251 See Overscan Color Register
Bresenliam's algorithm, 261

adapter, checking type
See presence test

Alpha Mode Auxiliary Pointer, 216, 254
Alpha Mode Auxiliary Table, 230
alphanumeric mode

See text mode

alternate font tables

See character generation
Alternate Select, 66

ALU, 120, 136, 181

analog monitors, 241
APA graphics, 9
Arithmetic Logic Unit

See ALU

attribute

read, 27

write, 31

Attribute Address Register, 201
Attribute Controller Register, 135-137

B

bank switching
See VESA Windows

BIOS, 2, 238, 247, 251

BIOS calls, 7 - 10, 113, 123

BIOS RAM Areas, 236

Bit Mask Register, 119, 196
bit planes, 117
bit-masked graphics, 116

blink toggle, 47, 205
border

Cathode Ray Tube Controller
See CRTC

CGA, 1, 7, 36, 87, 153 - 154, 239, 249

character

read, 27

write, 31, 34

character generation, 149, 164, 216 -
217, 230, 234 - 235, 248, 250, 254

Character Generator Functions, 56

Information Return, 62
ROM 16 row set, 59 - 60

ROM 8 X 14 set, 61

ROM 8 X 16 set, 62

ROM 8x8 set, 62

ROM double dot set, 5§, 60

ROM Monochrome set, 57, 60

Set Block Specifier, 58
User Alpha Load, 57, 59
User Graphics Characters, 61
User Graphics Characters (8 x 8), 61

Character Map Select Register, 149 -
150

Clear Vertical Interrupt, 255
Clocking Mode Register, 146
Color Compare Register, 124, 186
Color Don't Care Register, 196
Color Graphics Adapter

See CGA

Color Plane Enable Register, 206
Color Select Register, 209, 211
Color, select subset, 50

368 EGA/VGA: A Programmer's Reference Guide

Color, summing to gray shades, 69
compatibility modes, 116,124
composite monitors, 239

compression
See data compression

CPU Video Memory Window Control,
91

CRTC Address Register, 154
CRTC Overflow Register, 162
CRTC Registers, 135, 153
Current Video State, 43

cursor

disable, 166

disappearance of, 254
position, 168 - 169
read position, 15
read psotion, 249
restoring, 249
set position, 14, 168 - 169, 249
set type, 12, 165 - 166
type, 165 - 166

cursor emulation, 69, 236, 254
Cursor End Register, 166
Cursor Location High Register, 168
Cursor Location Low Register, 169
Cursor Start Register, 165

D

DAC, 135

DAC Registers, 211
Read Block, 51

Re^td Lidividual, 51
Set Block, 50

Set Individual, 50

Sum to Gray Shades, 52
DAC State Register, 212
data compression, 124, 127
Data Rotate Register, 120, 187
DCC Registers

Read, 73

Write, 73

DCC Table, 235

DCC Table Pointer, 216

debugging, 248-249,257,271
digital monitors, 239
Digital to Analog Converter

See DAC

disable display, 69

display quality, 239
Display Switch, 70
display, checking type

See presence test
dot pitch, 242
downward compatibility, 2
Dynamic Save Area Pointer, 215

E

EGA BIOS Interrupt, 247
EGA compatibles, 237
EGA construction overview, 128

ellipse alogrithm, 266
enable display, 69
Enable Set/Reset Register, 184
End Horizontal Blanking Register, 157
End Horizontal Retrace Register, 159 -
160

End Vertical Blanking Register, 176
Enhanced Color Display (ECD), 3, 239
-240

External Registers, 135

Feature Control Register, 139
flicker, 254

fonts

See character generation

General Register, 137
Get/Set Logical Scan Line Length, 92
Get/Set Start of Display, 93

Get Position, 94

Set Position, 94

Graphics 1 and 2 Address Register,
122, 183

Graphics 1 Position Register, 182
Graphics 2 Position Register, 182
Graphics Controller Mode Register, 121
Graphics Controller Register, 135, 145
Graphics Mode Auxiliary Pointer, 216
Graphics Mode Auxiliary Table, 235
graphics routines, 261

Index 369

H

hardware debuggers, 249
Hercules Card, 1, 237

horizontal blanking, 157, 242, 245
Horizontal Display Enable End Regis
ter, 156

Horizontal PEL Panning Register, 207
horizontal retrace, 159, 242

horizontal scan, 243

Horizontal Total Register, 155

I

images, storing and manipulating, 124
Input Status Register One, 142
Input Status Register Zero, 140
intensity toggle, 47, 205
IRQ2, 170, 172, 255

italics, 187

K

keyboard interrupt handler, 256

Miscellaneous Register, 195
Mode

read, 43, 249

read (VESA), 89
restoring, 249
set, 10, 249

set (VESA), 88

Mode Control Register, 177, 204
Mode Register, 192, 219
modified states, 249

monitor

in-line phosphors, 242
triad phosphors, 242

monochrome VGA, 247, 251

o

Offset Register, 173
OS/2, 7

overflow

See CRTC Overflow Register
overscan, 242

Overscan Color Register, 206
Overscan Register, 206

read, 49

set individual, 47

latch registers, 119, 136, 181
Light Pen

read position, 17
Light Pen High Register, 170
Light Pen Low Register, 172
line algorithm, 261 - 262
Line Compare Register, 163, 165, 179
Logical Scan Line Length

Get Length, 93
Set Length, 93

long-persistent phosphors, 241

M

macros, 8

Map Mask Register, 118,145,148
Maximum Scan Line Register, 164
Memory Mode Register, 150
memory, direct access, 113
Miscellaneous Output Register, 137

Page State
read color, 52

pages, 128, 167 - 168
select (VESA), 93

Select Active Display, 17
Palette Registers, 201

Read All, 49

Read Individual, 49

reading, 216
Select Default, 68, 205, 209, 217

Set All, 47
Set Individual, 46, 201

Palette Save Area, 215

Parameter Table, 215

Parameter Table Pointer, 215

PEL Address Read Mode, 212

PEL Address Write Mode, 213

PEL Data Register, 211, 213
PEL Mask, 214

PEL Pan Register, 259

370 EGA/VGA: A Programmer's Reference Guide

phosphors, 241 - 242
pixel, 7
plot, 38, 118 - 119, 121 - 123, 196
presence test, 66, 237, 250

Preset Row Scan Register, 163
Print screen

select alternate routine, 67
PS/2, 2,244,250

R

RAM Data Areas, 236

raster-scan display, 241
Read Attribute/Character, 27
read dot, 38 - 39

Read Map Select Register, 124, 191
read modes, 124, 126 - 127, 192, 194
read/write display combination code, 73
red dots, 250

registers

reading, 136, 219, 247
Reset Register, 146
return functionality/state information, 74
Return information, 66
RGB monitors, 239

ROM

See BIOS

rotate, 187

Save Table Pointer, 233

save/restore video state, 77

save/restore video state (VESA), 90
Scan lines, set number, 68
screen blank, 148

screen blanking, 71, 148
Screen On/Off, 71
scroll, 179

Active Page Down, 22
Active Page Up, 20
smooth, 163, 167 - 168, 173, 205, 258

Second Alpha Mode Auxiliary Pointer,
217

Sequencer Address Register, 145
serializer, 136
Set Color Palette, 36

See also Palette Registers
Set Palette Registers, 45

See also Palette Registers
Set/Reset Register, 183
shift registers, 136
smooth scrolling, 163, 167 - 168, 173,
205, 258

snow, 142,246,254

Start Address High Register, 167
Start Address Lx)w Register, 168
Start Horizontal Blanldng Register, 157
Start Horizontal Retrace Pulse Register,
159

Start Vertical Blanking Register, 175

text mode, 9, 113 - 114

u

Underline Location Register, 174
underlining, 249, 254
User Palette Profile Table, 235
User Palette Profile Table Pointer, 217

vertical blanking, 175
Vertical Display Enable End Register,
162, 173

vertical interrupt, 141, 170 - 172, 254
vertical interrupts, 254
vertical retrace, 142, 169, 240, 243, 254
Vertical Retrace End Register, 170, 255
Vertical Retrace Start Register, 163, 169
vertical scrolling, 259
Vertical Total Register, 161
VESA, 4, 81, 130

Return Information, 82

Return Mode, 89

Return Mode Information, 83

Save/Restore Video State, 90

Set Mode, 88

VESA Windows, 91, 131

Get Window Position, 92

Set Window Position, 92
Video State

Get Buffer Size, 78

Get Buffer Size (VESA), 90

Index 371

Restore, 78-79

Restore (VESA), 91

Save, 78

Save (VESA), 91

Video Subsystem Enable Register, 143

w

windows, 179

See also VESA Windows

Write Attribute/Character, 31

Write Character Only, 34
Write Dot, 38

See also plot
write modes, 118, 121, 123, 128, 192 -

193, 248

Write String, 71
Write Teletype, 41

Save time by ordering a source code diskette

All of the source code from EGA/VGA: A Programmer's Reference Guide is
available on 5-1/4 and 3-1/2 inch diskettes. Please specify which size you want.
Each assembly language program has been assembled to an .EXE file, so a
macro assembler is not required.

To order, send $21.00 plus $4.00 shipping and handling (overseas orders re
quire $6.00 shipping and handling). Minnesota residents add 6% sales tax
(6-1/2% in Minneapolis). Illinois, Indiana, Michigan, Ohio, and Wisconsin resi
dents should also add applicable state and local sales tax. Please do not send
cash. Check, Money Order, VISA, and MasterCard accepted.
Send to:

DK Micro

5328 Chicago Ave S
Minneapolis, MN 55417

or call (612) 823-7648

If ordering by credit card, please provide:

Name (as on card):
Address:

Daytime phone:
MasterCard (16 digits):

or VISA (13 or 16 digits):
Expiration Date:

Cardholder's signature:

Any corrections or suggestions for future editions of EGA/VGA: A
Programmer's Reference Guide may be sent to the author, Bradley Dyck
Kliewer, at the above address. If you have an account on BIX, you may also
send electronic mail to bkliewer.

I M M M I 1 I M

Revised and Expanded—with scores of new VGA programs and now
Including the VESA Super VGA Standard Version 1.1

Put yourself on the cutting edge of microcomputer graphics design and
appiications with this state-of-the-art technical guide to the IBM® Enhanced

Graphics and Virtual Graphics Array

Cf^A /UP A A PROGRAMMER'S
CUH/ V UH REFERENCE GUIDE, 2nd Edition
Written for software developers, engineers, and technicians involved in microcomputer
graphics design and appiications, this practical guide is the first and now the most
comprehensive to detail the technical aspects of the IBIVI® Enhanced Graphics Adapter
and Virtual Graphics Array — the business and professional microcomputer graphics
standards.

Concentrating on advanced assembly language programming for the EGA and VGA, the
Programmer's Reference Guide gives you tips for working around bugs in the EGA and
VGA BIOS ... a complete description of EGA and VGA BIOS calls not avaiiabie else
where ... many innovative programming tricks and techniques... and the possible
pitfalls. It presents routines for appiications such as word processing, graphics pro
grams, animation, and computer-aided design.

Special features of the book are its sample algorithms for specific graphics appiications
and its many practical programming examples to give you "hands-on" experience.
EGA/VGA is a definitive working tool that appeals to a wide range of PC-DOS and IVIS-
DOS programmers and everyone else interested in designing and implementing pro
grams for the IBM Enhanced Graphics Adapter and Virtual Graphics Array.

About the Author

Bradley Dyck Kiiewer's writings iniude several BYTE magazine articles dealing with
graphics display technology. Besides the best-seiiing EGA/VGA is bis Guide to
Paradox 386, also published by McGraw-Hill. He is President of the Minneapolis-
based DK Microconsuitants.

Series Design: P.L.K. Graphics, Inc.

For more Information about other McGraw-Hill materials,
call 1-800-2-MCGRAW in the United States.

In other countries, call your nearest McGraw-Hill office.

' llvf'T'p'D I Intertext Publications
One Lincoln Plaza
New York, NY 10023

McGraw-Hill Publishing Company
Serving the Need for Knowledge
1221 Avenue of the Americas

New York, NY 10020

