
Mi

COMPUTER GRAPHICS

for the IBM

Persono! Computer

COMPUTER GRAPHICS
for the IBM

Personal Computer

Donald Hearn

M. Pauline Baker

Computer Science Department
Western Illinois University

Prentice-Hall, Inc.

Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Heara, Donald.
Computer graphics for the IBM Personal Computer.

1. Computer graphics. 2. IBM Personal Computer—
Programming. 3. Basic (Computer program language)
I. Baker, M. Pauline. II. Title. III. Title: Computer
graphics for the I.B.M. personal computer.
T385.H39 1983 001.64'43 83-4463
ISBN 0-13-164335-5

ISBN 0-13-164327-4 (pbk.)

Editorial/production supervision
and interior design by Kathryn Gollin Marshak

Cover design by Jeannette Jacobs
Manufacturing buyer: Gordon Osboume

© 1983 by Donald Hearn and M. Pauline Baker

IBM is a registered trademark of IBM Corporation.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN □-13-lb^33S-S
ISBN D-lB-imBET-M -CPBKI

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

Contents

List of Programming Examples xi

List of Color Photographs xv

Preface xvii

PART i THE IBM PC 1

Chapter 1 System Overview 3

1-1 System Unit 3
System Board, 3
Option Boards, 4
Main Memory, 6

1-2 Keyboard 7

1-3 Video Monitors 7

Basic CRT Operation, 7
IBM Monochrome Display, 9
Color Monitors, 9

Television Sets, 10

Composite Monitors, II
RGB Monitors, II

1-4 Input/Output Options 11

1-5 Graphics Programming 12

vi Contents

PART II BASIC GRAPHICS 15

Chapter 2 Making Pictures: Character Style 17

2-1 Character Graphics Concepts 17

2-2 Constructing Character Pictures 19

2-3 Graphics Characters 20

2-4 Special Effects and Color 24

2-5 Printing and Saving Character Pictures 27

Programming Projects 30

Chapter 3 Making Pixel Pictures

3-1 Pixel Graphics Concepts 31

3-2 Plotting Points 33

3-3 Drawing Lines 36
LINE Statement, 36

Pixel Methods, 37

3-4 Pixel Color 40

3-5 Pixel Pictures 42

Shading Patterns, 43
Resolution Ratios, 45

DRAW Statement, 48

3-6 Printing and Saving Pixel Pictures

Programming Projects 52

52

31

Chapter 4 Plotting Graphs

4-1 Fundamentals: Data Trend Graphs
Character Graphics Method, 54
Pixel Graphics Method, 58

54

54

Contents vii

4-2 Labeled Graphs 60

4-3 Bar Graphs: Color and Shading 63

Programming Projects 68

Chapter 5 Drawing Curves

5-1 Circles 71

CIRCLE Statement, 71

Roint-Plotting Methods, 74

5-2 Other Curves 80

Elliptical Curves, 80
Sine Curves, 81

Polynomial Curves, 83
Normal Curves, 85

5-3 Pictures With Curves 88

5-4 Graphs and Pie Charts 92
Graphs, 93
Pie Charts, 93

Programming Projects 97

70

Chapter 6 Interactive Techniques

6-1 Menus 99

6-2 Keyboard Methods 100

6-3 Light Pens 103

6-4 Joysticks and Paddles 113

6-5 Graphics Tablets 118

Programming Projects 119

99

vlli Contents

PART III DISPLAY MANIPULATIONS 121

Chapter 7 Transformations 123

7-1 Changing Positions (Translation) 123
Translating Pictures, 124
Translating Graphs, 125
Interactive Translations, 130

DRAW Statement Translations, 131

7-2 Changing Sizes (Scaling) 132
Scaling Lines, 132
Scaling Displays, 134
Interactive Scaling, 136
DRAW Statement Scaling, 141

7-3 Changing Orientations (Rotation) 141
Rotating a Point, 142
Rotating Displays, 143
Interactive Rotations, 145

DRAW Statement Rotations, 147

7-4 Combined Transformations and Picture

Construction 148

Programming Projects 153

Chapter 8 Animation 155

8-1 Character Animation 155

The SCREEN Function, 156

Text Pages with the SCREEN Statement, 159

8-2 Pixel Animation Concepts 161
Straight-Line Motion, 161
The POINT Function, 168

Motion Along Curved Paths, 169

8-3 GET and PUT Graphics Statements

8-4 Compound Motion 185

8-5 Background Motion 190

Programming Projects 195

178

Contents

Chapter 9 Windows and Spotlights

9-1 Spotlighting 197

9-2 Erasing and Clipping 201
Erasing, 201
Clipping, 203

9-3 Viewports 213

Programming Projects 216

ix

197

PART IV

Chapter 10

Chapter 11

THREE DIMENSIONS

Displaying Solid Objects

10-1 Graph Paper Layouts 221

10-2 Three-Dimensional Coordinates 222

10-3 Erasing Hidden Lines and Surfaces 224
Hidden Surfaces, 224
Hidden Lines, 230

10-4 Perspective Views 237

10-5 Shading and Highlighting 243

10-6 Graphs 244

Programming Projects 250

Three-Dimensional Transformations

11-1 Translation 252

11-2 Scaling 255

11-3 Rotation 260

11-4 Combined Transformations 265

Programming Projects 266

219

221

252

Contents

PART V APPLICATIONS

Chapter 12 Business Graphics

12-1 General Techniques 271

12-2 Comparative Graphs 278

12-3 Multiple Formats 286

12-4 Project Management Graphs 290

Chapter 13 Educational Graphics

13-1 Drill and Practice Programs 293

13-2 Tutorial and Inquiry Programs 298

13-3 Simulation Programs 299

13-4 Computer-Managed Instruction 300

Chapter 14 Personal Graphics

14-1 Household Graphics 301

14-2 Game Playing 303

Appendix A PC Graph Paper

Appendix 8 PC Character Set and ASCII Codes

index

269

271

293

301

316

321

325

List of Programming
Examples

Program 2-1

Program 2-2

Program 2-3

Program 2-4

Program 2-5

Program 2-6

Program 2-7

Program 2-8

Program 3-1

Program 3-2

Program 3-3

Program 3-4

Program 3-5

Program 3-6

Program 3-7

Program 3-8

Program 3-9

Program 3-10

Program 3-11

Snowilake pattern using keyboard characters
Figure silhouette (chess piece) using character graphics
Symmetrical pattern (pyramid) using character graphics and pro-
greun loops
Chess piece silhouette using character graphics and encoded
data

Box pattern using ASCII character codes in PRINT statements
Box pattern using the ALT key and the numeric keypad to print
special characters
Random color pattern using characters
Color shading patterns using characters
Plotting a point
Point plotting and off-screen tests
Point plotting and erasing
Plotting a pattern of random points
Plotting points using relative coordinates
Line drawing using the LINE command with both absolute and
relative coordinate specification
Star pattern produced by specifying line endpoints relative to the
last reference point
Drawing a vertical line by plotting points, specified as absolute
coordinates

Drawing a horizontal line by plotting points, specified as relative
coordinates

General line drawing using the line equation and point plotting
General polygon drawing and color

xl

xli List of Programming Exampies

Program 3-12 Painting solid-color rectangles
Program 3-13 Star pattern drawn with resolution correction
Program 3-14 Sailboat constructed with the DRAW statement
Program 3-15 Picture construction (castle) and scaling, using the DRAW state

ment

Program 4-1 Horizontal data trend graph using character graphics
Program 4-2 Vertical data trend graph using character graphics
Program 4-3 Vertical data trend graph using point plotting
Program 4-4 Vertical data trend graph using line drawing
Program 4-5 Labeled data graph using character graphics
Program 4-6 Labeled graph using line drawing
Program 4-7 Labeled bar graph using character graphics
Program 4-8 Labeled bar graph using line drawing
Program 4-9 Shaded bar graph using pixel graphics
Program 5-1 Picture (man in the moon) constructed with circular arcs, using

the CIRCLE command

Program 5-2 Circle generator using line drawing and angular increments
Program 5-3 Circle generator using point plotting and angular increments
Program 5-4 Plotting a sine curve
Program 5-5 Plotting a parabola
Program 5-6 Plotting the normal curve
Program 5-7 Dinosaur drawn with curves approximated by short line seg

ments

Program 5-8 Fire truck drawn with curve equations
Program 5-9 Art patterns with curves
Program 5-10 General graph plotting using any input equation
Program 5-11 Pie chart constructed with the CIRCLE command
Program 6-1 Interactive sketching
Program 6-2 Interactive picture design using lines
Program 6-3 Menu selection using a light pen
Program 6-4 Picture coloring using a painting menu and a light pen
Program 6-5 Interactive picture construction using a light pen
Program 6-6 Interactive sketching with a light pen
Program 6-7 Interactive sketching with a joystick
Program 6-8 Interactive line drawing using a joystick
Program 6-9 Menu selection with a joystick
Program 7-1 Translating pictures (boy, dog, and hydrant)
Program 7-2 Translating a graph
Program 7-3 Interactive object translation using a light pen
Program 7-4 Translation using the DRAW statement
Program 7-5 Scaling picture parts (car)
Program 7-6 Interactive scaling with a light pen
Program 7-7 Rotation of a picture (clown)

List of Programming Examples xiii

Program 7-8 Interactive picture construction using a shape menu and key
board input

Program 8-1 Bouncing a character horizontally
Program 8-2 Bouncing a character block vertically, using a SCREEN function

character code test

Program 8-3 Multiple object (airplane and block) animation, using a SCREEN
function color code test

Program 8-4 Animation of an object (worm) using text pages
Program 8-5 Bouncing a pixel between vertical boundaries
Program 8-6 Bouncing a point inside a box using unit increments
Program 8-7 Bouncing a ball inside a box
Program 8-8 Bouncing a line vertically
Program 8-9 Animation by scaling (box)
Program 8-10 Animating a ball through a maze, using the POINT function to

test for wall collisions

Program 8-11 Moving a line in a circle
Program 8-12 Bouncing motion of a dropped ball
Program 8-13 Animating a ball along a parabolic path
Program 8-14 Motion of an arrow along a parabolic path
Program 8-15 Spinning a line
Program 8-16 Moving a truck along a straight-line path, using PUT with the

XOR operator
Program 8-17 Motion of an airplane along a straight-line path, using PUT with

the PSET operation
Program 8-18 Animation by scaling, using frames and the GET and PUT com

mands (sailboat)
Program 8-19 Compound motion: running stick figure formed with frames
Program 8-20 Compound motion: moving wagon with turning wheels
Program 8-21 Compound motion: multiple objects (airplanes) moved along

random horizontal and vertical paths with PUT statements
Program 8-22 Background motion: moving centerlines on a road
Program 8-23 Background motion: moving telephone poles past an object on a

road

Program 8-24 Simulating movement with background motion: train with mov
ing rod and moving tracks

Program 9-1 Spotlighting with circles
Program 9-2 Spotlighting with rectangles
Program 9-3 Clipping with GET and PUT statements
Program 9-4 Point and line clipping (airplane)
Program 9-5 Point, line, and text clipping (airplane)
Program 9-6 Displaying viewports (airplane)
Program 10-1 Erasing hidden lines by painting surfaces on the screen from

back to front

xiv List of Programming Exampies

Program 10-2 Eliminating hidden lines by displaying only the one visible
surface from each pair of symmetrical faces of an object (box)

Program 10-3 Erasing hidden surfaces by locating hidden vertices
Program 10-4 Erasing hidden line segments for partially visible lines and

surfaces

Program 10-5 Drawing a three-dimensional scene with repeated perspective
views of an object (road lined with telephone poles)

Program 10-6 Three-dimensional perspective views of a single object (box)
Program 10-7 Three-dimensional bar graph
Program 10-8 Three-dimensional curve plotting
Program 10-9 Three-dimensional curve plotting—displaying only visible line

segments to give a surface appearance
Program 11-1 Three-dimensional translation and perspective views (box)
Program 11-2 Three-dimensional scaling and perspective views (robot)
Program 11-3 Three-dimensional rotations (die)
Program 12-1 Exploded pie cheut
Program 12-2 Combination graphs: bar chart and line graph
Program 12-3 General graphing program—allowing graph type to be chosen
Program 12-4 Comparative graph: overlaid bar charts
Program 12-5 Comparative graph of two bar charts: one up, one down
Program 12-6 Cumulative surface chart, plotting two data sets
Program 12-7 Band chart, shading the area between two curves
Program 12-8 Multiple formats: overlapping bar charts, cumulative line graphs,

and pie chart
Program 12-9 Time chart for scheduling tasks
Program 13-1 Arithmetic practice, presenting addition problems with prompts

and pictures
Program 13-2 Simulation: modeling the solar system with rotating moon and

earth

Program 14-1 Household budget bar chart
Program 14-2 Nutrition graph, plotting calories and nutrients in two bar charts

and a pie chart
Prognun 14-3 Biorhythm graph
Program 14-4 Bouncing ball-and-paddle game
Program 14-5 Arrow and target game

Lisf of Color Photographs

Figure A Pictures can be created using the PC character set and the COLOR
command.

Figure B Color spectrum displayed by Program 2-8, using character patterns.

Figure C A variety of color shades can be displayed by alternating the color of
points plotted in adjacent positions.

Figure D Color pictures can be painted on the screen using the special graphics
commands available on the PC.

Figure E Color bar graph produced with the PC character set.

F^re F Color bar graph produced with PC graphics commands.

Figure G A color menu can be used with a light pen to select colors and areas of
a picture to be painted.

Figure H Three-dimensional scenes can be created by painting color areas onto
the screen. Color areas farther away are painted first, with nearer areas painted
over them.

Figure I Color pattern formed with a series of rotated hexagons. Each subse
quent hexagon is formed by moving all the vertices of the previously drawn
hexagon a small distance along the lines joining the vertices. The hexagon sides
are alternately colored cyan and magenta.

XV

**' List of Color Photographs

Figure J A color surface pattern formed with curved lines using three-dimen
sional plotting techniques. The lines shown are generated from the equation
Y=A*ABS(SIN(B*Z))*EXP(-K*X)*SIN(X). The constants A, B, K and the
range of values for X and Z are chosen so as to position the curves on the screen,
as discussed in Section 10-6. Variations in color are obtained by plotting different
colors in different Y regions.

Figure K Color pattern created with a series of triangles. The design is started
with four triangles, positioned to form a rectangular boundary with the magenta
side of each triangle. The other two sides of each triangle (cyan) lie along the
diagonals of the rectangle. A succession of triangles is then drawn inside each of
the original four triangles, with each subsequent triangle rotated slightly and
diminished in size.

Figure L A color pattern formed with rotated rectangles. A series of rectangles
are drawn inside each of the four adjoining rectangular areas. Each subsequent
rectangle is drawn so that its vertices are moved a small distance along the sides of
the previous rectangle.

Figure M Three-dimensional bar graph displayed by painting color areas on the
screen from the "back" of the graph to the "front".

Figure N Exploded pie chart, produced by the methods discussed in Section
12-1.

Figure O Band chart, using colors to emphasize the areas between data curves.

Figure P Biorhythm graph, plotting the theoretical highs and lows for physical,
emotional, and intellectual energy levels.

Preface

In this book we discuss the basic concepts and techniques of computer
graphics, and we explore the capabilities of the IBM Personal Computer (PC) for
graphics applications. Methods for creating two- and three-dimensional pictures
and graphs are considered, together with ways to manipulate and animate our
displays. We look into the makeup of the PC, and we examine the graphics
features of the PC's BASIC in detail.

Our discussion is arranged in five parts. Part I is about the IBM Personal
Computer. We see what makes the system tick, how the different hardware
components function, and what options are available for expansion boards, video
monitors, and other input/output devices. We also take an introductory look at the
software capabilities of the PC in this first part.

In Part II, we introduce fundamental methods for constructing pictures and
graphs in two dimensions. We see how to create displays using the alphabet and
special graphics characters or using graphics commands and pixels. Color,
shading, and the use of light pens, joysticks, and tablets in graphics programs are
investigated.

Techniques for manipulating displays are taken up in Part III. We present
procedures for translating, scaling, and rotating displays, and then use these ideas
as the basis for a detailed development of animation. We also consider how
spotlighting and clipping of pictures and graphs can be incorporated into our
graphics programs. Applications are discussed for both character and pixel
displays.

Three-dimensional graphics is introduced in Part IV. Here we look at
methods for erasing hidden lines, for developing perspective views of objects, and
for performing three-dimensional transformations on both pictures and graphs.

Applications of computer graphics in business, education, and the home are

xvii

xviii Preface

surveyed in Part V. Topics discussed in this final part include additional graph-
drawing techniques, simulations, computer-assisted instruction, household bud
get charts, nutrition charts, and game playing.

The graphics methods and applications discussed in this book are illustrated
with programs written in BASIC. We developed and tested all programs on an
IBM Personal Computer running under DOS 1.1. Suggestions for extensions and
revisions to the programming examples are given in the main discussion and in the
list of programming projects at the end of the chapters.

Donald Hearn

M. Pauline Baker

COMPUTER GRAPHICS

for the IBM

Personal Computer

Port I

THE IBM PC

To create pictures and graphs with our Personal Computer, we need to understand
the operational features of the system. So we begin with a survey of hardware and
software components and how our graphics creations are to be input, processed,
and displayed.

Chapter 1

System Overview

IBM's Personal Computer, the "PC," provides us with a variety of graphics
capabilities. Pictures, graphs, charts, and animation are all possible in both text
and pixel graphics modes. But before we get into a discussion of these graphics
capabilities, we should take a tour of the PC system and get acquainted.

The basic hardware components of the PC are the system unit, keyboard,
and a video display monitor. To this beginning setup, we can add a number of
input/output (I/O) devices, several different types of monitors, and numerous
software options. Figure 1-1 shows one possible system configuration.

1-1 SYSTEM UNIT

Here we have the activity center for all of the PC's operations. This cabinet
contains the system board (with memory, central processor, and expansion slots),
the power supply, and a speaker. As options, we can add one or two floppy disk
(diskette) drives or hard disk drives. The system unit layout is diagrammed in Fig.
1-2.

SYSTEM BOARD

An Intel 8088 is the central processing unit (CPU) for the PC. This microprocessor
chip sits on the system board, processing our instructions and serving as the main
control for all system operations. The 8088 is a 16-bit CPU chip that gives us fast
processing speed and the ability to address over 1 million bytes of main memory
locations.

Main memory, also called internal memory, comes in two denominations;
random-access memory (RAM) and read-only memory (ROM). RAM is the kind

THE IBM PC PART I

Figure 1-1 The IBM Personal Computer in a system configuration composed of the monochrome
display, keyboard, 80-character matrix printer, and system unit, with two diskette drives installed.

used to temporarily store a program or a data file, while we are working with it.
Sometimes RAM is called read/write (R/W) storage because the system can both
read from and write into this type of memory. For the PC, we can add RAM chips
to the system board in units of 64K (65,536 bytes on each chip). There is room for
four such chips, so that the "smallest" PC system would have 64K of RAM and
three empty spots. Filling in these three spots gives us a total of 256K of memory
on the system board. (We can add more RAM by putting memory chips on the
option boards that plug into the expansion slots.) ROM is the type of memory used
for permanent storage of the system programs and data. The system board holds
several ROM chips that are used to store the cassette operating system, BASIC
interpreter, I/O drivers, disk loader, and patterns for the graphics characters.

On the system board we also find a number of switches. These are called
dual in-line package (DIP) switches. We use them to tell the PC about our system
configuration. DIP switch settings indicate the amount of RAM memory we have
installed, the type of monitor we have, the number of disk drives attached, and the
type of display adapter board we are using.

OPTION BOARDS

The back end of the system board contains five expansion slots, numbered 1
through 5 from left to right (Fig. 1-2). By inserting option boards into these slots.

Chapter 1 System Overview

Cassette

I/O

Expansion —
slots

(1 through 5)

ROM-

chips

RAM

chips

Speaker

Keyboard
I/O

Intel

8088

CPU

Power supply

Dip switches

n

DDDDDDr--^—ir

Disk drive A

area

Disk drive 8

area

I , I I

System board

Figure 1-2 System unit layout, showing locations of the system board, power supply, disk drives,
and I/O connections.

we can increase the RAM available or we can select one or more of the system
options. At least one slot must be used for the board that, among other things,
contains the system option to run the display monitor.

Two primary video display option boards are available. They are the
Monochrome Display and Printer Adapter board and the Color/Graphics Monitor
Adapter board. Both use a Motorola 6845 chip to control operation of the video
monitor. With the Monochrome board we can attach the IBM monochrome
monitor, giving us characters of exceptionally high quality on a green phosphor
screen. We can make pictures and graphs with the Monochrome board from the
symbols provided in the ROM character set. This board also includes a connector
for the IBM printer. Alternatively, we can use the Color/Graphics board and
connect a color monitor or TV. This board lets us make use of special graphics
commands and up to 16 colors. There is no connector for a printer on the Color/
Graphics board, so we need to use a second expansion slot for the Parallel Printer
Adapter board. We could use both the Monochrome and Color/Graphics boards if
we wanted to support both the IBM monochrome display and a color monitor.
Additional boards are available that allow graphics commands to be used with the
monochrome monitor, but color, of course, would still not be possible.

6 THE IBM PC PART I

Several other options are available to us by using additional boards in the
expansion slots. The Diskette Drive Adapter board is needed if we want to attach
disk drives to our PC. The Asynchronous Communications Adapter board
provides an RS-232 port for attaching serial devices, such as modems, graphics
tablets, and some printers. The Game Control Adapter board allows us to use
joysticks or game paddles. We can also use expansion slots to increase the RAM
available. An add-on memory board usually starts with 64K and is expandable up
to (and in some cases beyond) 256K, in increments of 64K.

With all the options that we might want to add to our PC, it is easy to quickly
use up the five expansion slots. Fortunately, various options can be put together
on a single board. Combination boards are available with almost any selection of
options. Typically, such boards have memory chips, one or two RS-232 inter
faces, and a parallel printer port. Some combination boards might also include a
clock/calendar, which automatically sets the date and time on system startup, and
a game adapter for joystick or paddle attachment.

MAIN MEMORY

We have noted that our PC has the capability to access over 1 megabyte of
internal storage. Some of the address areas in this memory space are available to
us as RAM for temporarily storing our programs and data files. The other areas
are reserved for system use, either as system RAM or system ROM. Figure 1-3
shows the way that storage addresses are partitioned for the various uses.
Memory locations eu-e given in hexadecimal.

All RAM addresses are assigned to the first 768K. The ROM areas are
addressed as the last 256K of the memory space. Within the RAM addresses, the
user space (our available area for temporarily storing programs and data) is

Figure 1-3 Table of internal storage partitions, stating the beginning and ending byte address for
each area of main memory and the purpose of each area.

Start End

address address Memory area description

00000 3FFFF From 64 to 256K RAM on the system board.
40000 9FFFF Up to 384K RAM on option expansion boards.
AOOOO A3FFF Reserved 16K RAM area for system use.
A4000 AFFFF Reserved 48K RAM area for use by the system in set

ting up video displays.
BOOOO BOFFF Reserved 4K RAM display buffer area on the Mono

chrome Display and Printer Adapter board.
BIOOO B7FFF Reserved 28K RAM area for video use by the system.
B8000 BBFFF Reserved 16K RAM display buffer on the Color/Graph

ics Monitor Adapter board.
BCOOO BFFFF Reserved 16K RAM area for color graphics.
COOOO EFFFF Reserved 192K ROM expansion area.
FOOOO F3FFF Reserved 16K ROM area.

F4000 FFFFF Reserved 48K ROM area on the system board.

Chapter 1 System Overview 7

designated as locations 0 through 9FFFF (640K). Beyond this area, the system
makes use of RAM addresses for several purposes. A 4K display buflfer, starting
at location BOOOO, is set up for use with the IBM monochrome display. The 4K
memory chip on the Monochrome board is accessed with these addresses. A 16K
display buflfer, starting at location B8000, is used with graphics monitors. The
memory chip for this buflfer area is on the Color/Graphics board.

1-2 KEYBOARD

Attached to the system unit through 6 feet of coiled cable is the keyboard, which is
our main input device to the PC. Eighty-three keys are positioned on the keyboard
to give us a standard typewriter layout, a 10-key numeric keypad, and 10 function
keys. We can use the numeric keypad portion of the keyboard for fast data entry,
as we would with an adding machine, or we can use these keys for cursor control.
We change from one mode to the other (cursor control or numeric data entry) by
pressing the NUM LOCK key. This key works like a toggle switch, changing from
one mode to the other each time we press it. The 10 function keys, on the left of
the keyboard, are set for commonly used commands, such as LIST or RUN.
Hitting the appropriate function key is equivalent to typing that command. We can
change these function keys to whatever commands we want.

We also get a touch of luxury with our keyboard. The keyboard slant can be
set with a tilt adjustment to either a 5-degree or a 15-degree angle. With the coiled
cable, we can drag the keyboard around to suit our working environment.

The internal workings of the keyboard are under the control of an Intel 8048
microprocessor chip. This chip is inside the keyboard and continually scans the
keys to determine when one has been pressed. It also does a self-test on the
keyboard during system startup, performs key-debounce checks, and handles the
buflfering of up to 20 keys. Buffering allows us to type in a command even while
the CPU might still be busy executing our previous command. The second
command is then stored in the keyboard's buffer until the CPU is ready for it.

1-3 VIDEO MONITORS

A wide choice of display units can be used with the IBM PC. These video displays
attach to connectors on the back of the system unit and include the IBM
monochrome display, other types of monochrome or color monitors, and televi
sion sets. The operation of a video monitor is based on the standard cathode-ray
tube (CRT) design.

BASIC CRT OPERATION

Figure 1-4 illustrates the basic operation of a CRT. A beam of electrons (cathode
rays), emitted from an electron gun, passes through a focusing and deflection

THE IBM PC PART I

Electron

gun

Focusing and
deflecting
system

Electron

beam

Phosphor-coated
screen

Figure 1-4 Basic operation of a CRT.

system and strikes a phosphor-coated screen. Voltages applied to the electron gun
determine the number of electrons emitted. The focusing and deflection system,
also controlled by voltages, produces electric and magnetic fields to focus the
beam onto a particular spot on the screen. When the electron beam strikes the
phosphor coating, the screen lights up at that spot. The intensity of a light spot
depends on the number of electrons in the beam. By directing the beam to various
points on the screen, we are able to display text or a graphics pattern.

The light emitted by the phosphor coating on a display screen lasts only a
small fraction of a second. Therefore, we need some method for maintaining the
screen picture so that we can see it. One way to keep the phosphor glowing is to
repeatedly pass the electron beam over the same screen points. This type of
display is called a refresh CRT. It turns out that we need to refresh a screen
picture at least 25 to 30 times each second; otherwise, it flickers.

Refresh CRTs used with the PC operate as raster-scan displays. These
monitors pass the electron beam over all parts of the screen, turning the beam
intensity on and off to coincide with the information to be displayed. The electron
beam is made to sweep across horizontal lines of the picture tube from top to
bottom. This refresh cycle is set up so as to sweep the beam across every other
horizontal line on one pass, then return to the top of the screen to sweep across
the remaining lines on the next pass. Interlacing of the scan lines in this way helps
to reduce flicker, since we essentially see the entire screen display in one-half the
time it would have taken to sweep across all the lines from top to bottom in one
pass.

How does the CRT know when to turn the beam on and off? This is governed

Chapter 1 System Overview 9

by reading the pattern of bits stored in the display buffers. Both the Monochrome
board and the Color/Graphics board contain memory chips, called display buffers,
that are used to store the definition for the screen display. A 4K buffer is on the
Monochrome board and a 16K buffer is on the Color/Graphics board. The address
areas for these buffers are given in Fig. 1-3.

IBM MONOCHROME DISPLAY

A green phosphor screen is used on the IBM monochrome display. This monitor is
driven by a Motorola 6845 chip as a raster-scan CRT with a refresh rate of 50 times
a second. Each screen frame is presented in 350 horizontal lines (from top to
bottom) with 720 individual dots across each line. Characters displayed on this
screen are formed with rectangular dot patterns that are 9 dots across and 14 dots
high. This gives us a screen area that contains 25 print lines with 80 character
positions in each line.

Two cables connect from the monitor to the system unit. One cable provides
the drive interface to the 6845 chip on the Monochrome board through a nine-pin
connector. The other cable attaches to the AC power ON/OFF switch on the back
of the system unit. In this way, the monochrome monitor is automatically
switched on and off with the system unit.

The monochrome monitor weighs about 17 pounds. We can safely place it
atop the cabinet of the system unit—a convenient location. If we use a different
monitor with our PC, we may not want to do this. A heavy video display could
press down and bend the option boards in the expansion slots.

COLOR MONITORS

Using color on a monitor requires some changes to the basic CRT operation.
Color is produced by using more than one type of phosphor coating on the screen.
Different phosphors emit different-colored light, and combinations of light from
two or more phosphors can produce a range of colors.

Displays typically use a shadow-mask CRT to produce color. This is the type
of CRT used in color TV sets. A shadow-mask CRT has the screen coated with

tiny triangular patterns, each containing three different closely spaced phosphor
dots. One phosphor dot of the triangle emits a red light, another emits a green
light, and the third emits a blue light. This CRT has three electron guns, one for
each color, and a shadow-mask grid just behind the phosphor-coated screen (Fig.
1-5). The purpose of the shadow mask is to focus the electrons from each gun so
as to strike only the correct color dot in any triangle. Setting intensity levels for
the three electron guns sets the color combination for each triangle of phosphor
dots so that the triangle appears as one small color point on the screen. Thus, a
blue spot on the screen would result from activating only the blue phosphor dot. A
white (or gray) area is the result of activating all three dots with equal intensity.
Yellow is produced with the green and red dots; magenta is produced with the

10 THE IBM PC PART I

Electron guns

Focusing and
deflection system

An RGB triangle of
color phosphor dots
on the screen

/
Shadow

mask

Phosphor coating

Figure 1-5 Shadow-mask CRT. Three electron guns, arranged in a pattern to coincide with the
arrangement of each triangle of color dots on the screen, are directed onto the dot triangles by a
shadow mask. The mask allows only the electrons from the B gun to strike the B dot, the R gun to
strike the R dot, and the G gun to strike the G dot.

blue and red dots; and cyan shows up when blue and green are activated equally.
When no dots are activated, we have a black spot. Eight additional colors (for a
total of 16) on the PC are obtained by changing the intensity levels of one or more
of the three electron beams.

The raster-scan circuitry on the Color/Graphics board generates 200 hori
zontal screen lines with either 320 or 640 dots across each line. Three types of
color monitors can be attached to the Color/Graphics board: a television set with
an RF modulator, a composite monitor, and an RGB (red-green-blue) monitor.
These monitors differ in the way the signal is transmitted from the system, and
they produce images of varying quality. We can also connect a black-and-white
monitor to the Color/Graphics board and do graphics without color.

TELEVISION SETS

To use a color (or black-and-white) TV as a video monitor with the PC, an RF
modulator must be hooked up between the TV and the four-pin connector on the
Color/Graphics board. The purpose of the RF modulator is to simulate the signal
from a broadcast TV station. This means that the color and intensity information
of the picture must be combined and superimposed on the broadcast-frequency
carrier signal that the TV needs to have as input. Then the circuitry in the TV
takes this signal from the RF modulator, extracts the picture information, and

Chapter 1 System Overview 11

paints it on the screen. We can expect this additional handling of the picture
information by the RF modulator and TV circuitry to result in lower-quality
images.

COMPOSITE MONITORS

We can get higher-quality pictures by using monitors that eliminate the need for
the TV broadcast frequency input. Monitors that are adaptions of TV sets,
allowing bypass of the broadcast circuitry, are called composite monitors. These
display devices still require that the picture information be combined, but no
carrier signal is needed. Connection to a composite monitor is made from the
"composite signal phono jack" at the rear of the system unit. Since picture
information is combined into a composite output and then separated by the
monitor, the resulting picture quality is still not the best attainable.

RGB MONITORS

The third type of color monitor, the RGB monitor, produces the highest-quality
picture image. This monitor takes the intensity levels for each electron gun (red,
green, and blue) directly from the system without any intermediate processing. In
this way, fewer signal distortions are generated. A nine-pin connector on the rear
panel of the system unit outputs color signals directly to the RGB monitor.

1-4 INPUT/OUTPUT OPTIONS

A number of I/O devices can be connected to our PC. Tape cassette players,
floppy disk drives, and hard disk drives provide external (or auxiliary) storage.
These are the devices that we use to store our programs and data permanently. A
five-pin connector at the rear of the system unit is used for the tape cassette, while
disk drives are connected to the Diskette Drive Adapter board. Up to four floppy
disk drives (either single-sided, double-sided, or a combination) can be attached.
Two of these drives can be installed inside the system unit, and two more can be
attached through a connector on the rear panel of the system unit.

Several interactive graphics I/O devices are also available for use with the
PC. One or two joysticks or up to four game paddles can be operated from the
Game board. A light pen, attached to a six-pin connector on the Color/Graphics
board, and a graphics tablet, attached to an RS-232 port, provide other forms of
interactive input. These devices can be used in graphics programs to construct
pictures, to select program options, or to create animated displays.

Both serial and parallel printers can be operated from the system unit. Serial
printers are attached through an RS-232 port. Parallel printers are attached
through a parallel port, such as the 25-pin connector on the Printer board or on the
Monochrome board.

12 THE IBM PC PART I

1-5 GRAPHICS PROGRAMMING

The patterns we see on our screen are determined by the contents of the system
display buflfers. We set the contents of the display buffers with graphics programs
written in BASIC, assembly language, or using the UCSD p-System.

Four versions of BASIC are available from IBM. We can write graphics
programs using a BASIC interpreter, which comes in three versions, or with the
BASIC compiler. The three interpreter versions are called cassette, disk, and
advanced BASIC. Varying levels of graphics commands are available on the PC
for these versions of the interpreter. Figure 1-6 lists BASIC graphics commands
and their availability in the three versions of the interpreter. The BASIC compiler
operates under DOS and includes the same commands as the advanced interpreter.

Cassette BASIC is permanently stored in ROM and is available with all
system configurations. Disk and advanced BASIC are optional. They come with
DOS and provide for operations with the disk drives. Certain enhanced graphics
techniques, such as the CIRCLE command, are available only in advanced
BASIC. The BASIC compiler is also an optional package. It supplies the
capability for increased speed, which is an important consideration in some
graphics applications.

Assembly language graphics routines can be written by setting the graphics
buffer locations (Fig. 1-3) to the values that produce the desired screen picture. In
this case, the "graphics commands" are instructions to store certain numeric

Figure 1-6 List of PC graphics commands and their availability in each of the BASIC language
interpreters (cassette, disk, advanced).

Graphics
command Purpose Cassette Disk Advanced

CIRCLE Draw arcs, circles, ellipses. no no yes

COLOR Set screen pixel or character colors. yes yes yes

DRAW Draw outline of specified objects. no no yes

GET, PUT Animation and clipping. no no yes

LINE Draw lines or rectangles. yes yes yes

ON PEN Branching command used with the light pen. no no yes

ON STRIG Branching command used with joysticks or no no yes

paddles.
PAINT Paint colors into specified screen areas. no no yes

PEN Provide coordinate and status input from the yes yes yes

light pen.
POINT Check the color of a specified screen point. yes yes yes

PSET, PRESET Plot or erase specified points. yes yes yes

SCREEN Set resolution mode, turn color on/off, and set yes yes yes

command pages for display.
SCREEN Check ASCII code or color attributes of a yes yes yes
function specified character position.
STICK Provide coordinate input from joysticks or yes yes yes

paddles.
STRIG Provide button input from joysticks or pad yes yes yes

dles.

Chapter 1 System Overview 13

values into certain buflfer locations and to display the buffer contents. We could
also do this with the BASIC language PEEK and POKE statements. The UCSD
p-System, which supports both the FORTRAN-77 and Pascal languages, features
"turtlegraphics" methods.

Port II

BASIC
GRAPHICS

Now let us see how to create graphics displays with BASIC on our PC. We start
with simple picture-drawing concepts, then consider techniques for generating
graphs, curved lines, and interactive displays.

15

Chapter 2

Making Pictures:
Character Style

The PRINT statement and the PC character set give us a simple and often
eflfective means for doing graphics. Character graphics is a technique that is
available whether we have the Monochrome or the Color/Graphics option. So, to
get started, we first see what we can do using this method.

2-1 CHARACTER GRAPHICS CONCEPTS

We can use any character on the keyboard (letters, digits, or other symbols) in
PRINT statements to construct graphics patterns. A box outline is displayed with
the statements

10 PRINT

20 PRINT "* *"

30 PRINT"* *"

40 PRINT "*************************"

We make oversize letters with a program segment such as

BBBBBBBBBB MMMMMM MMMMMM"

BBBBBBBBBBB MMMMMMM MMMMMMM"

BBB BBB MMMMMM MMMMMM"

BBBBBBBBB MMMMMMM MMMMMMM"

BBBBBBBBB MMMM MMMMM MMMM"

BBB BBB MMMM MMM MMMM"

BBBBBBBBBBB MMMMMM M MMMMMM"

BBBBBBBBBB MMMMMM MMMMMM"

10 PRINT '

20 PRINT '

30 PRINT '

40 PRINT '

50 PRINT '

60 PRINT'

70 PRINT '

80 PRINT '

17

18 BASIC GRAPHICS PART II

Program 2-1 Snowflake pattern using keyboard characters.

10 'PROGRAM 2-1. SNOWFLAKE USING CHARACTERS Sc PRINT STATEMENT

20 CLS

30 PRINT " *»

40 PRINT " **

50 PRINT " tt tt

60 PRINT " ## ** ##

70 PRINT " ** ##«**»## ** "

80 PRINT " *7.7,**** *C<<oo>>]* ****7-7.* "

90 PRINT " ♦**## o <<oooo>> o ##**«
100 PRINT " * 8t8£<<mm <<oo>> mm>>&Sc * "
110 PRINT " oo«>> oo «»oo
120 PRINT " *pp & ** 8c qq*
130 PRINT " pp >>8c ****** 8c<< qq
140 PRINT " ** **
150 PRINT " bb >>8c ****** 8c« dd
160 PRINT " *bb 8c ** 8c dd*
170 PRINT " oo«>> vv oo vv «>>oo
180 PRINT " * 8c8c«ww <<oo» ww>>8c8c * "
190 PRINT " ♦**## o <<oooo» o ##**♦
200 PRINT " *7.7.**** *C<<oo>>3* ****%%* "
210 PRINT " ** ##«**»## ** "
220 PRINT " ## ** ##
230 PRINT " ** **
240 PRINT " **
250 PRINT " **
260 END

In Prog. 2-1 we produce a pattern using several keyboard characters. The CLS
statement on line 20 of this program clears the screen and places the cursor in the
upper left corner (the "home" position). Our figure outline is then displayed from
this starting position.

We can put graphics patterns anywhere along the available print lines of the
screen. The IBM PC provides 25 horizontal print lines with either 40 or 80
characters per line. Lines are numbered from 1 at the top of the screen to 25 at the
bottom of the screen. Character positions along each print line are numbered from
1 to 40 or 1 to 80, left to right. We choose which width we want for the print lines
using the WIDTH statement. WIDTH 80 gives us the maximum number of
characters across a line, and WIDTH 40 provides half as many "double-wide"
characters. If we wanted to center the word GRAPHICS using the 40-character
width, we would position the word to start at location 17 on line 12. We can do this
with the LOCATE statement, which selects line and character starting positions
for the next PRINT statement:

10 WIDTH 40
20 LOCATE 12, 17
30 PRINT "GRAPHICS"

The LOCATE statement sets up the screen position for only one PRINT
statement. After executing line 30, the screen cursor will be positioned at the
beginning of the next print line: column 1 of row 18. Another PRINT statement,
following line 30, would then print in this position. If a character string is too long

Chapter 2 Making Pictures: Character Style 19

to fit along one row, it is either continued on the next row or entirely moved down
to start on the next row. A character string will be started at the beginning of the
next row whenever we specify it to start after column 1 and it will not fit in the
remaining positions of the row that we specified. Row and column positions in a
LOCATE statement that are outside the screen limits cause an error message to
be displayed.

There are several options with the LOCATE statement that can turn the
screen cursor on and off and set the cursor size. For many of our graphics
applications, we will only need to use LOCATE to set the line number (row) and
character position (column). We should note that the WIDTH statement clears the
screen if we are changing screen modes from 80 characters to 40 characters per
line. When we are already in the 40-character mode, a CLS statement is needed to
clear the screen.

2-2 CONSTRUCTING CHARACTER PICTURES

Pictures can be set up for display by first sketching the picture outline on graph
paper. We then determine the character print position for the picture outline or
silhouette from the sketch. Each horizontal line of characters on the graph paper
becomes one print line. We have one slight problem with this method. Graph
paper is usually divided into squares, but the area occupied by a character on the
screen is not square. Although character area in WIDTH 40 is almost square, a
character displayed in WIDTH 80 is quite a bit taller than it is wide. If we use
square graph paper to determine print positions, the displayed picture will be
distorted. Graph paper that more closely matches the dimensions of our charac
ters is provided in Appendix A for both WIDTH 40 and WIDTH 80. Although this
graph paper will not duplicate exactly the dimensions found on all monitors, it will
give better results than square graph paper. We can also make customized graph
paper by printing a page filled with plus signs (-t-), as shown in Fig. 2-1. Program
2-2 outputs a silhouette of the figure outlined in this picture.

Lines 380 through 430 in Prog. 2-2 are identical. We could reduce these six
lines to a single PRINT statement inside a FOR-NEXT loop. Any picture
containing repeated or symmetric patterns can be set up with loops to construct
the patterns. The pyramid of Fig. 2-2, for example, can be displayed with Prog. 2-
3. By not including the variable name STARS in statement 80 and the name
COUNT in statement 110 (an option available to us on the PC), we speed up the
loop processing. Execution speed of our programs is an important consideration
when we are producing complex pictures or when we are animating scenes.

We can also cut down on the number of PRINTs we have to type if we
encode the character print positions in DATA statements. This encoded data can
then be read from the DATA statements, decoded, and printed. There are a
number of ways we can encode the print lines. One possibility is to specify each
print line of a picture as a pair of numbers. The first number gives the starting print

H ..j. .1.. .) .4.. I H 4. ..1.. .) . 1. ̂ . ..i_ ..| .1 1- -i- 1 -i

1 4. i- |. |. 1. .1.. .1 4 I .1.. I 4.. 4.. 4. 4- 4.. 4.. 4,. 4.4. ̂ 4.. 1- 1 |. 4.. 4.. |.. 4 1 i- 4 1 1- i 1- 1 I- I 1 1 1 1 1 1 I 1 I I • -I 1 I 1 I

4.4. .4 1.4 1 4.4- 4.4.4. 4.. 4.4.4.4. 4. .4 4. 4. 4 . 4.4. 4 4. 4 4. 4 Y H I 1 -I 1 •> i I I I I • I 1 1 I I I I I I I I I- I- 1 I I • 'I I- I i I I
4. 4 4 I 4 4 4. .4.4.4, 4.4.. .4 4. |.. .4 4 4.. .4 .4 4.. 4. 4 .4 4.. 4 .4,4 4. , \^.4.4.4 4.. 4.. 4 .4 4 4 ., 4. .4 4 4 .4 4 I 4 .4 4. 4,4 4 4 4 4 1 .4 I
4.. 4 ..4 .4 .4 4. . 4 4.4.. 4 .4 4.. 4. 4.4.4.. 4.. 4. . 4 4.. .4 .4. .4 .4. .4.4_ 4.. .4. 4.. . 4. .4 .4 4. .4 ..4!%^4 .4. .4. .4 1 4. ,4. . 4 4 4. 4. 4 4 4 4.. 4.. 4 4 . 4 4 4. 4
4. 4.4. 44. 44, 4. 4.4.4. 4 4.4.. 4 4.4 4. .4^ 4 4 44..4.. 44.. 4 4 44 4.4 4 44, 4. 4 .4. 4 4. 4.4 4 4 4 4 4 4. 4 4. 4 I .4 4 4 4.4.

4.. 4 4. 4. 4 4. .4.4. 4. , 4 1 4.. .4 4. 4, 4.. 4. ,4. . 4.4.. 4.. .4^. 4.. 4.4. 4. .4.4., 4. 4. .1 .4 4 . 4. .4 .4 4„ 4 4\^ 4. .4. .4. 4. I 4 4. .4. I I 4 I 4. I 4 4 .4 .4 .4 4. 4 4 4.. 4 4.
4. 4 4.. 4.4.. 4. 4. .4. . 4 4. 4 4. .4.4 4 . .4 4.. 4.. 4. 4., . 4 ..| 4.^4. .4 4.. 4. 4.. .4 4. 4.4.. .4. 4. 4. 4. 4. 4.. 4. .4. 4. 4. 4 ̂ \4.. 4.. 4 1 4 4. .4. 4 4. 4 4. I 1 4. I. .4. 4 .4 . 4. .4. 1. . 4 1 I

4.. -4. 4. . 4. ..j 4,. 4.4.. 4.. .4 .4. .4. 4. 4.4,. 4.4.4.4. 4. .4y.4. 4.. .4.4. 4 .|. .4.4.. 4. 4. .4. 4 4.. .4. 4.4.. 4.. 4. 4.4.. .4 4.. . 4S^4.. |.. 4.. 4.. 4... I 4.4.. .4. 4 -I- 4. |.. . 4.. .4. .4. .4. |. .4. .4. i-
.4. .4.4.. .4.4.. 4.. .4, .4.4.. 4. ..j. 4.. 4- 4.. 4. .4.4.. .4.4.4.. .4. y.4 4.. 4. .4. .4. 4. 4. 4. 4.4.. .4. .4. .4.4.. 1 .4 |. 4. .4. 4. .|. 4.4.. 4. .4 4S^^ 4.. .4.4.. 4.. 4.. 4. .4. 1 4.. 4. 4. .4. |. 4.. 4.4.. I. I I.
4. 4.. 4. .4, .4. 4 ..| 4.. 4.. 4.. |.. 4. .4 .4. .| 4.4.. 4.. .4. .4. ..y. 4, .4 4.4.. 4.. 4.. .4. .4. .4. .4.4, 4.. 4. .4.4. 4.. 4, 4.4.. ..4. .,| .4. 4. .4.4.. 4. .4. ..|^4 I- I I' I- I I I 1 I ■ I- I I- i- ■ I • 1 -I I
.4.4.. 4. 4.. 4. 4., 4.. 4.. .4.4.. .|. .4.4.4. 4.. 4.. 4.. 4.4.. 4./. 4.4.. .4.4.. 4.. 4.. 4_ 4.. 4,. 4., 4.. .4.. 4 4.4., 4.4.. .4. .4.4.4., 4.. .4.4.. 4.. .4. .4. 4. .4.4 4^^ 4.4.. 4. 4 4.. 4.. |.. 4.. 4 4, 4.. .4. 4 4 I
4. 4 .4. 4.. 4.4. 4. 4. 4. .4. .1.4.. 4.. 4.4 ..| .4. .4. -4. .i.4. .4.4. .4. 4 4.. .4.4.4. .4.4. 4.. 4.. 4.. 4.4. 4. 4., 4. 4.. 4.. 4.. ,4.4. .4. .4. 4.. .4 4.. 4.. 4.4. 4 .X .4, |. 4.. 4.. 4.. 4. 4.. |. 4. 4.4.. .4. 4..
.4, 4.4.. I- 4... 4 4.4.. .4.4,. 4.4. 4_ 4. .4.4.. .4. .4.4.. 1. . 4.4.4. 4.4. .4. .4.4.. .4.4.. 4.. .4. .4.4. 4 4 4. .4. , 4. . 4.. 4.. 4 - 4- 4 ■4- 4- 4.. 4 j- .| ■ •! l- \ J [■ |.. | •] • 4 J- ■ l- 4 \ | 4 .| • i- | •
4..4.. .4 4.4.. 4.4.4..4.. 4 .4...4..4, 4.4..4..4...4.4..^..4.. ,4.4...4 4.. 4.. 4..4.4. .4..4. .4. .4.4..4. ,4 yi «■! |i i | i'^ 4. .4.4..4T%^4 .4 ..y .4. 1 4.4. .4. I-.4.4. .4 .4.-4 I .4. 4 4
4.4 ,4. .4.. 4.4.. 4.. 4.. 4. 4. .4.4.. .4.4.4.. 4,. 4.. .4.4.1.4. .4. . 4. ..4 .4. . 4. ..4, .4. .4.. .4. . 4. .4 .4. . 4. .4.4.. . 4.'Vi. !• -l - 1 I -1 I i- 1 • i • I" l" 1 1 1 • I - I • 1- ! ■ I- I 1 1- I 1 i- I- -I I

. 4. .4. . 4. .4. .4. . 4. .4.4. .4. . 4. .4. . 4. 4. 4. .4. .4. -4 4. 4. .4. .4. .4 ..|. .|. . 4. .4. 4. .4. .4. .4 . 4. ..4, .4. .|. .4.. . 4. .4. .Vi i I l- i i !• 1 I" -I- 1- • 1 • I I- -1 • i -1 i i i -I i- i I- i - I- i- i i

.4. . 4. . 4. . 4. .4. . 4. ..4. .4 .4. .4. ..4. ..4 . . 4. . 4, 4. ..|. ^ 4. .4. . 4. ,4. .4. .4. ..|. . 4. ..4. ,.4. .4. .4. . 4. . 4. . 4. ..|. . 4. .4 .4. . 4. 4^.. . 4, .4. .4. . 4. . .4. . 4. .4. .4. , 4. .4. . 4. ,4. . 4. 4. .4. .4. .4. .4. . 4. ., .4
4 ^ . .4. .4. ^.. 4, .4. -I- .4. . 4. 4-. .4.. .4. .4. .4. .4 ..4. ^ .4.. .4. .4. .4. .4. .4. -1- .4. .4. .4. .4.. .4. .4. .4. ..4. .4. ..4. ,4 .4. ..4. ..|. .4. 4. .4. .4. . 4. .4. .4. .4 4 . 4 . 4. .4. . 4 . 4. ..4. .4. .4 .4. .4. .4. .4. .4. .4. .4. . 4.

4. 4 4. .4 .4. 4. .4. .4. .4. .4. .4 .4..4..4.. .4. .4. .4. ^...4. .] .4. .4. .4. ..|. .4. 4. 4...4 ,.. 4 .4. .4. ..4. .4. 4.. .4 .4. 4
;.4 .4 1, 4. . 4. . 4. .4. .4. .4. .4.. ..4. .4. .4 .4. .4.. .4. ,4., .4. .4. . 4.., 4. .4 .4. .4.. . 4. . 4. .4. .4. . 4. . 4. . 4. .4. . 4. .4 ..4 .4 .4, .4 .4. .4. . 4. . 4,

4. . 4 4 .4 .4. .4. . 4. .4. .4 . . 4. 4. .4. . 4. . 4. ..4 .4. .4. ..4. .4. .4. .. 4. .4. ..4. ..4. ..j. .4. ,4., .4. .4.. . 4. .4 4. 4. ..4. .|. .4 . 4 .4, .4.4. . 4 .4

.4 .4 4. . 4. 4 .4 .4 .4. .4 .4. ..4. .4.4,. .4 .4. .4. .|. .4. .4. . 4. . .4.. .4.. 4. . 4. .4 . 4. . 4 .4. .4., 4. .4. .4. .4.. .4.. .4. .4. 4 . 4.4 .4.^.4. . 4. .4 .4.4 4. . 4 .4. .4.. .4. . 4. ,4. j .4. .4 4. ..4. 4.4.4 4. .4 .4.4.

.4.. ..j. ..|. .4. ..4. .4. .4 ^.. 4.. .4. ^.. .4. .4. ..4. .4. ..4. ..|„ .4. .4. ..4. .4. ..4.:^^!. .|. ..4. ..4. .4. . 4. .4. .4. ..4. .4. . 4. .4.. ..4, . 4 . 4. ,4.. .4.. ^.. .4.. .4. .4 .4. .4.

.4. .4 4 4. . 1. 4 4 4 .4. .4. .|. .1. .4. .4.. .4 .4. .4.. ..4. ..|- ..4. .4. . 4. .4.. 4 .4. 4.. ..| ..4y 4 .4. .4 . ..4. ..4. .4, .4. .4. .4. . 4. .4. .4 .4 .4. 4 . 4. 4. 4 . 4. ..4. .|. .4. .4. ..4. .4. . 4 .4

.4. ..j .4. .4. .4 ..4. .4. .4. .4. .4. 4. .4. .4. .4. .4.. .4. .4.4. .4. .4. .4. .4. ..4. .4.. ..4. 1.. j. 4.4. ..|. ..4. .4. ..4. . 4. ..|.. 4. . 4. ..4. .4. ..4. . 4 .4. ..|. .4. .4. . 4. . 4. .4 .4. ..4. .4.. . 4. .|
4. .4. . 4. .4.. . 4. .4. .4.. .4. .4. .4. .4. 4. 4. ..4. .4. .4. .4.. .4. .4. ..4. . 4..+. .4.. .4.4,. .4. ..4.1. .4.. .4.. ..4.4.. .4. :4.. .4. ..4. ..4. .4.4. .4. .4.. ..4 . .4. . 4 .4. .4.. . 4. ..| ..4. .4. .4.. .4. ..4. .4.
.4.. 1 . 4 .4. ..4 .4 . .4. 4. .4,. .4. .4.4. ..4. .4. . 4. ..4. ..4. ..4. .4.. .4.. ..4. ..4. .4. .4.. ..4. ..4 ..4> .4. .4 .4. ..4. .4.. .4.. . 4. .4.4. 4 ..4. .4.. ..4, .4. . 4.4, .4. . 4. ..4. . 4 .4. . 4. .4. .4. ..4 .4.
.4. .4.4. .4. .4 .4 .4. 4. .4 4. .4 4 4 .4 .4. .4- . 4.4. 4. .4.. .4.. . 4. .4. .4.. 4. -4. .4. . 4.1 . 4. .4.4. . 4. ..4. ..4.4. ..4. .4 .4. ..4 ..4.4.. ..4. 4 .4 .4 ..4. . 4.4,. .4.4. ..4. ..4. 4 ..4. . 4.

.4. . 4. .4.

|.. .4. ..4. .4. ..4. .4.4. .4. ..4. 4 . 4. ..|.. .4.4.. ..4. ..4

^ -1- I 1- M ^ I- 1- I- -I M I 1 I !

I I I I- I -I -I -< -t 1^ I- I- M -I I I I

1 -I I- I M I I 1 -I -I- 1 I I 4 i I

-I I M I I I I I I 1 I I I- I I- I

I I I- I I I I I I- I- I I I I I i I

4. 4 .4 . 4. 4 .4.4 ..4.,4..4..4. ..4. ..4. ..4..|.. ..j

..4.4. ..4.4.4. -l. .4..4.4. .4 .4 .4 ..4.4 4 .4.4.

4.4 .4 .4. . 4. . 4 .4 . 4 4 ,4. 4 .4. .4. .4 4. .4.. 4. .4 .4. 4 ..4. . 4. ..4. .4 .4 H .4. .4

4. 4. 1 .4. .4. . 4. .4 . 4. .4. .4. .4. ..4. .4 .4. ..4 ..4. 4. ..4. ..4. ..4. .4 ..4 .4.. .4. .4.. .4 .4. . 4. .4. .4..

. 4.4.4. .4.. .4. .4 .4 . 4.4. 4.. .4. . 4. ..4. .4 .4.. . 4 ..4 .4. 4 ..4. .4. 4.. 4. .4. .4. 4.4. .4..^

.4. . 4 4 .4 4 . 4. 4. . 4. . 4. . 4. 4 4. .4. . 4.4. . 4 . 4. ..4. .4. . 4.4 .4

.4 -4 . 4 4.. .4. ..4 .4.. .4. .4. 4 .4. . 4. .4 .4. ., . 4 .4.4 . 4. . 4 4 .4. .4 .4 .4.. ..4 4.

4., 4 .4.4 .4. 4 .4. ..4 .4 4. ,4 . 4 . 4.4. . 4. .4 ..4. 4. .4.. -4. . 4. .4 .4. .4. ..4. .4. .4

.4. . 4. . 4. ..4. . 4. ..4. .4. 4. .4 .4 ..4. .4. 4. 4 .4. .4 ..4 .4. .4 .4 .4.. 4 .4. .4. . 4

-4 . 4.^.. ..4. . 4. 4.4. ..4. .4. .4.4.4. .4. . 4. .4..

.4 ..4 . 4 .4. .4. ..4. .4, .,4 ^.. .4. ..4. .4. .4.. .4.. . 4. 4.. . 4. . 4. ..4. ..4. .4.. .4.. .4^

.4.. . 4. .4. .4. .4 .4 4. 4. .4. ..4. . 4.4. ,4.. . 4. .4 .4. ..4. ..4. .4.. .4.4..

..4. .4. ..4 ..4. ..4. . 4 .4.. .4.. .4.. ..4. .4 ..4 ..4. .4.. 4.. ..4. .4. .4. ..4 ..4.

.4. ..| . + . 4..+. .4. .4. .4....4.4 .4...4.^.. ..4..^

.4. .4.4.4, ..4.4 .4. .4. .4.4..4 .4. .4.4...

+ .4. .4. .4. .4.. .4 4. . 4. 4.4. ..4. .., .4. . 4 . 4 . 4. L I I < ■4. I -| . l -l..
4 I 1.. ..4 .4 ..| .4. .4..4. ..4, ..4.4. ..4. ..4 .4.4.,

.4. ..4. .4. . 4. .4 ^.. . 4. .4.. .4.. ..4.

.4. ..4. .4. . 4. .4. .4. .4 ..4. .4 4

I I I I I" I H 1- I

< ̂ h I I -M ^ t 1

I- I I M I •(I I I

^ I M I -H- I t- I

I I I t I I I ! I I

•f i l l 4 ! • i- l ■i i

Figure 2-1 A figure outlined on customized graph paper (formed by printing a page of plus signs) is
used to determine the character print positions for Prog. 2-2.

position and the second number states how many characters are to be printed on
that line. This scheme is used in Prog. 2-4 to produce the chess piece.

2-3 GRAPHICS CHARACTERS

In addition to the characters that appear on the keyboard (letters, numbers,
punctuation marks, and other symbols), the PC provides a variety of special

Program 2-2 Figure silhouette (chess piece) using character graphics.

10 'PROGRAM 2-2.

20CLS: WIDTH 80

30PRINTTAB(10);
40PRINTTAB(10);
50PRINTTAB(10);
60PRINTTAB(10);
70PRINTTAB(10);
80PRINTTAB(10)

90PRINTTAB(10)

100PRINTTAB(10)

110PRINTTAB(10)

120PRINTTAB(10)

130PRINTTAB(10)

140PRINTTAB(10)

150PRINTTAB(10)

160PRINTTAB(10)

170PRINTTAB(10)

180PRINTTAB(10)

190PRINTTAB(10)

200PRINTTAB(10)

210PRINTTAB(10);
220PRINTTAB(10)

230PRINTTAB(10)

240PRINTTAB(10)

250PRINTTAB(10)

260PRINTTAB(10)

270PRINTTAB(10)

280PRINTTAB(10)

290PRINTTAB(10);
300PRINTTAB(10);
310PRINTTAB(10)

320PRINTTAB(10)

330PRINTTAB(10)

340PRINTTAB(10)

350PRINTTAB(10)

360PRINTTAB(10)

370PRINTTAB (10)

380PRINTTAB(10)

390PRINTTAB(10);
400PRINTTAB(10)

410PRINTTAB(10)

420PRINTTAB(10)

430PRINTTAB(10)

440PRINTTAB(10)

450PRINTTAB(10)

460PRINTTAB(10)

470PRINTTAB(10)

480PRINTTAB(10)

490PRINTTAB(10)

500PRINTTAB(10)

510PRINTTAB(10)

520PRINTTAB(10)

530PRINTTAB(10)

540END

CHESSPIECE SILHOUETTE USING CHARACTERS

«c"

&&&&&*■
ScScScSeScScSeScSe"

&&&SeSc«e&&&&&&&8eScSe"
&&&&&&&&&&&&&&&&&&&&"

&8eSc&&S(&&Se«c&SeSc&&Sc&&&Se&ScSc"
8c&&8cScScSc&S(&8c&Sc«c&ScSc&&&8cSc&&&& "

Sc&&&&&SeS(&8eSeSe&Se8eSe&&&8eSe&8c&&Sc&&Se"
&8(&8c&Sc&&&&&&ScSc&&&Se&S(&S(Se«c&Se&Sc&Se8e& "

Se&Sc&&Se&&&Sc&SeSe&SeSe&&&Sc&8e&ScSeSeSeSrS(&ScSe&Se8e"
&&&ScSc8c&8c&Sc&8t&Sc8eSc&&&&&&&8eSe8c«c&8c&8c&S(Sc&& "

" 2e8c&&8eSeSeSc&&ScSc8c&8c&&Sc&&&&ScSc8eSeSc&SeSe&Se&&Se8cSc"
" 8c&&S(Sc8c«c&&&S(&&SeSeSeSeS(&Se&8c8e&&SeSc8(Sc&SeSc&&&8c"
" &&&&&SeScSe&«c&&«(&Sc8e&&Sc &&Sc"
" 8e&Sc&&&8cSe&&&&&&«e8eSc&S(&"
" &&&8e8e&S(Se&Se&&&&&&8cSc8e&& '*
" &&Sc&ScS(8eScScS(&ScSe&Sc&8c&&Se&Sc"
" SeSeSe&&&Se&&&&Se«c«eSe&SeScSeSe&Se&"
" Sc&&Sc&&Se8eS(&S(S(Se«(«c&&8cS(8c&&S(8e"
" &&&Se&8eSc&«e&Se&Se8eSeSc&&«e&&&&ScSe"

&&&&ScS(SeSe8cSc8(S(&SeS(SeSc&Se&&8eSe&& "
&Se&SeSeSeSe&Sc&Se&SeSe&SeSc&Se8e8(&&&& "
&&SeSc&S(Sc&Sc&&S(&Sc8cSe&8t&&Sc&8c8(&& "
Se8eSe&Se&Sc&&&&SeSe&Se&Sc&Se&&&SeSc&&Se"

&ScS(&«c«cScS(&&&8c&&Se&&&Sc&Se8e8cScS(&& "
&Sc&Se&&Sc&SeSeSc&Se8e&SeSeSeSe&&SeSeScS(& "

&&&&&&&&&&&&&&&&&&&&&&&&"
SeS(Se8e&&«c&&SeSc&Se8eScSe8e&&&&&Sc"

&&&&&&&&&&&&&«(&&&&& '■
Sc8eSeSc8c&8e&&&&8e&"

&&&&&&&&&&«£&&&&&«€ "
Se&&S(Se&Sc&&&8c&&&Se&Sc"

&&Se&SeSc&S(&8(S(Se«cSc& "
&&Sc&&&&«eSeSe&Se&"

&&&&&&&&&&&"
&Se&«c&&&Sc8c&Se"
ScScScSc&Se&ScSe&Sc'*
SeSe&Se&«eScSc&&8e"
8e&&&&&&StScSc«c"
&Sc&Se&S(&Sc&&Se"

&&&&&&&&&&&&&&&"
S(&&&&SeS(Sc&Se&&&Se& "
&Sc&«c&Sc«e&&ScS(&&&Sc"
S(Se&Sc&&8cSeScScSe&&Se& "

&&&&&&&&&&&&&&&&&«(&&&&& "
«e&Sc&Se&SeSc&&Se8e&Sc&Se&Se8e&«eSc&Se8eSe«c&&ScSe"
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&"
&ScSeSeSe&8e8eS(ScScSe&&ScSc&ScSe&ScSe&Sc&Se&&&&& "

" &&8eSe&SeS(&&Sc&&Sc&8e&&&&S(&SeSe&8eSc&SeSc&&&Se&&&& "

characters. We can get these symbols using the CHR$(AC) function, where AC is
the ASCII code of the character. ASCII codes have values from 0 through 255
(Appendix B). Some of the values are used as control codes and do not produce a
character. The statement PRINT CHR$(7), for instance, beeps the speaker, and
PRINT CHR$(12) clears the screen. The other ASCII values are codes for
characters that we can display on the screen. They include the characters that are
on the keyboard, foreign language characters, special business and mathematical

22 BASIC GRAPHICS PART II

A

AAA

AAAAA

"""""""" Figure 2-2 Symmetrical patterns, such

AAAA AAA AA AAAAAAj*iA as this pyramid output of Prog. 2-3, can
AAAAAAAAAAAAAAAAAAA be produced with loops that minimize
A the number of PRINT statements.

symbols, and characters designed expressly for producing pictures, graphs, and
charts.

We can use any of the special character codes to create screen patterns with
the Monochrome option or when in the text mode with the Color/Graphics option.
The box outline that we previously made with asterisks can be formed with
continuous lines using some of the PC's special characters. Program 2-5 shows
how we can use the ASCII character codes in PRINT statements to produce the
box of Fig. 2-3. We could also make a single-line box by using codes 179,191,192,
196,217, and 218. Characters formed with combinations of single and double lines
are also available.

Although we do not have keys for the special symbols, there is a way to
access them from the keyboard. While holding down the ALT key, we type the
ASCII code of the desired character on the numeric keypad. This character then
appears on the screen. In this way, we can repeatedly type in codes and put
together a string of symbols to form a picture. Tjius the box pattern of Fig. 2-3 is
also produced by Prog. 2-6, using this method.

Pictures displayed at positions specified by input, as in Prog. 2-5 or Prog. 2-
6, could run oflF the screen or scroll down. To prevent such possibilities, we can
include checks of the input positions. If a specified position is so close to a screen
edge that the picture would go off screen, we can reject that input and ask for
another.

Program 2-3 Symmetrical pattern (pyramid) using character graphics and program loops.

10 'PROGRAM 2-3. DRAW PYRAMID

20 CLS: WIDTH 40

30 COLUMN = 20

40 FOR COUNT = 1 TO 21 STEP 2

50 PRINT TAB(COLUMN);
60 FOR STARS = 1 TO COUNT

70 PRINT

80 NEXT

90 PRINT

100 COLUMN = COLUMN - 1

110 NEXT

120 END

'GO TO NEXT PRINT LINE

Chapter 2 Making Pictures: Character Style 23

Program 2-4 Chess piece silhouette using character graphics and encoded data.

10 'PROGRAM 2-4. CHESSPIECE SILHOUETTE WITH ENCODED DATA

20 'EACH PRINT LINE IS STORED AS A PAIR OF NUMBERS.

30 'FIRST NUMBER IS POSITION TO START PRINTING,
40 'SECOND NUMBER IS HOW MANY CHARACTERS TO PRINT.

50 'INPUT IS TERMINATED BY READING 0,0.
60 'CHARACTER TO PRINT CAN BE CHANGED IN LINE 110.

70 CLS: WIDTH 80

80 READ POSITION, NUMBER
90 WHILE POSITION <> O AND NUMBER <> O

100 PRINT TAB(POSITION);
110 FOR COUNT = 1 TO NUMBER

120 PRINT

130 NEXT

140 READ POSITION, NUMBER
150 WEND

160 DATA 28,1,25,5,22,9,20,13,19,16,17,20,16,23,15,26,14,29,14
170 DATA 32,13,35,13,36,12,37,12,36,12,19,44,3,12,20,12,21,12,22
180 DATA 12,23,12,24,12,25,13,25,13,26,13,27,14,27,14,26,15,24,15
190 DATA 23,17,19,22,13,20,17,20,17,21,15,22,13,23,11,23,11,23,11
200 DATA 23,11,23,11,23,11,21,15,21,15,21,15,21,15,17,23,13,31,13
210 DATA 31,13,31,10,37,10,37,10,37,0,0
220 END

The many different characters available on the PC give us a wide range of
picture possibilities. Figure 2-4 illustrates some shapes that we can form with
characters. We can even introduce shading into our pictures by a careful choice of
the characters we use. We can go from solid areas (code 219) to lightly shaded
areas (codes 249 and 250). Codes 219 through 223, as well as the regular keyboard
characters, give us lots of in-between textures. Three of the special character
codes (176, 177, and 178) are designed specifically for shading. A few examples of
character shading and texture patterns are found in the scene of Fig. 2-5.

Program 2-5 Box pattern using ASCII character codes in PRINT statements.

10 'PROGRAM 2-5. BOX MADE FROM SPECIAL SYMBOLS

20 CLS: WIDTH 80

30 INPUT "ROW AND COLUMN PLACEMENT FOR UPPER LEFT CORNER"; ROW, COLUMN
40 INPUT "HOW LONG AND HOW TALL TO MAKE BOX"; HOWLONG, HOWTALL
50 CLS: WIDTH 40

60 LOCATE ROW,COLUMN
70 PRINT CHR«(201); 'UPPER LEFT CORNER
80 FOR COUNT = 1 TO HOWLONG - 2

90 PRINT CHR«(205);
100 NEXT

110 PRINT CHR*(187> 'UPPER RIGHT CORNER

120 FOR COUNT = 1 TO HOWTALL

130 PRINT TAB(COLUMN);CHR«(186);TAB(COLUMN + HOWLONG - 1);CHR«(186)
140 NEXT

150 PRINT TAB(COLUMN);CHR«(200); 'LOWER LEFT CORNER
160 FOR COUNT = 1 TO HOWLONG - 2

170 PRINT CHR*(205);
180 NEXT

190 PRINT CHR«(188) 'LOWER RIGHT CORNER

200 END

BASIC GRAPHICS PART

Figure 2-3 Box pattern formed with

characters by Prog. 2-5.

Program 2-6 Box pattern using the ALT key and the numeric keypad to print special characters.

10 'PROGRAM 2-6. BOX MADE FROM SPECIAL SYMBOLS

20 CLS-. WIDTH 80

30 INPUT "ROW AND COLUMN PLACEMENT FOR UPPER LEFT CORNER"; ROW, COLUMN
40 INPUT "HOW LONG AND HOW TALL TO MAKE BOX"; HOWLONG, HOWTALL
50 CLS: WIDTH 40

60 LOCATE ROW,COLUMN
70 PRINT "if"; 'UPPER LEFT CORNER
80 FOR COUNT = 1 TO HOWLONG - 2

90 PRINT "=•;
100 NEXT

110 PRINT ":f| " 'UPPER RIGHT CORNER
120 FOR COUNT = 1 TO HOWTALL

130 PRINT TAB (COLUMN) ; "11 "; TAB (COLUMN + HOWLONG - 1) ; " 11 "
140 NEXT

150 PRINT TAB (COLUMN) 'LOWER LEFT CORNER

160 FOR COUNT = 1 TO HOWLONG - 2

170 PRINT

ISO NEXT

190 PRINT ■ 'LOWER RIGHT CORNER

200 END

ii
Figure 2-4 Shapes formed with
character patterns.

2-4 SPECIAL EFFECTS AND COLOR

There are several options available to us for producing special effects with
displayed characters. These options include blinking, highlighting, and underlin-

Chapter 2 Making Pictures: Character Styie

Figure 2-5 A picture formed with characters.

ae THERE^'S ND PLACE LIKE HOME! «

tk It Ik Ik It It It It It It It It t It It It It It If It itfl If It it Ik
It It

It It It It It It It it It

It It

It It

0 0
00000000000000000jZi000iZl000000

ing. If we have the Color/Graphics board, characters can also be displayed in
color. We choose all of these different options by setting parameter values in the
COLOR statement. With the Monochrome board or in the character (text) mode
with the Color/Graphics board, the COLOR statement is used in the form

COLOR F,B,BR — Sets the speciai effect or coior of characters
dispiayed with subsequent commands to F (foreground) with a
background B and a screen border BR.

Values for parameters F and B in the COLOR statement are set according to
the special effect or color we want to select and according to whether we have the
Monochrome or Color/Graphics option. In the Monochrome option, we have the
following choices for the foreground parameter F:

0 Biack

1 White character with an underline

7 White

15 High-intensity white

Adding 16 to any of these values makes the character blink. So if we set F to the
value 17, we get a blinking, underlined, white character. Two values are used for
the background parameter B and border parameter BR:

0 Black

7 White

Several COLOR statements may be used in a single program. Each time we
use a COLOR statement, the next characters output on the screen are displayed in

26 BASIC GRAPHICS PART II

the specified foreground color F with the rectangular background area of the
character displayed in color B. We get a solid color block if F and B are set to the
same value. If we include a CLS statement after a COLOR command, the entire
screen takes on the new background color.

With the Color/Graphics board, we use the COLOR statement in text mode
to set the color of characters and to produce some special effects. We can set
foreground F to any integer value from 0 to 31. Background B can be assigned
integer values from 0 to 7, and the border BR can be any integer value from 0 to
15. Color code choices for each of these parameters are

0 black 8 gray
1 blue 9 light blue
2 green 10 light green
3 cyan 11 light cyan
4 red 12 light red
5 magenta 13 light magenta
6 brown 14 yellow
7 white 15 high-Intensity white

As with the Monochrome board, adding 16 to the value chosen for F makes
characters blink in that color. We can display different-colored characters with
multiple COLOR statements, and we erase characters using the same techniques
discussed for the Monochrome option. Some monitors may not be able to produce
all 16 colors.

Program 2-7 illustrates use of the COLOR command in text mode with the
Color/Graphics option by displaying randomly selected colors and characters on
the top 23 lines within a blue border. A typical screen pattern output from this
program is shown in Fig. 2-6. To enter the character mode, we use SCREEN 0 in
line 20 of Prog. 2-7. We will take a closer look at the SCREEN command in
Chapter 3. Character codes that are used for line feeds, cursor control, and other
operations that produce blank spaces were omitted by the test in lines 40 and 50.

Color shadings can be produced using different characters with different

Program 2-7 Random color pattern using characters.

10 'PROGRAM 2-7. RANDOM CHARACTERS RANDOMLY PLACED IN RANDOM COLORS
20 SCREEN 0: COLOR WIDTH 40: CLS

30 AC = INT(254 * RND) + 1 'GET AN ASCII CODE
40 IF AC > 7 AND AC < 14 THEN 30 'DON'T PRINT SOME CONTROL CODES
50 IF AC > 27 AND AC < 33 THEN 30

60 ROW = INT(23 « RND) + 1

70 COLUMN = INT(40 t RND) + 1

80 FOREGROUND » INT(32 t RND)

90 BACKGROUND = INT(8 « RND)

100 COLOR FOREGROUND, BACKGROUND
110 LOCATE ROW,COLUMN
120 PRINT CHR«(AC)i
130 GOTO 30

140 END

Chapter 2 Making Pictures: Character Style 27

' G.UI rug - < m M@nA ||S||l
1= ^ 'giutyt IS a Un: Q f/.wJItt pfiiffow $4 ♦-!<: ^hN NVIL *-if ♦ f 0

-«1 L- ||fed e '^7.+ IL 5-. X gt L - # SS
tfJIL bL 0 tHJi-i t5! M Sir
aM!a@ A Tni O ILEc-ir^. # JL t J
<r* B g£ |(iN|t)6 c!!deag.BpL M
ftx T ^i|I^TH<ir a ! Er'»lTr^riBP'^% ^ ̂ -
k p 4Mtg^- 9^ BBG6P D? Aig + dt.."
t get ^9kji(a irff«9p^Mir=j iUja"
/♦rTJj. ,5L|Jj| £±J}n^:c\ FRp ^0 pH

m k r^MS •'•• c: U
—^Cilt"l||i X @8. 8<CJ| Jir/.vpofelsolLc r ^

SgvN9 C i = z i o s 3
ea 6"r*Jr-,i N ¥ CFjpJI jb

■C CaVhh2B|uOfraci?Rl nlBOa ZH TbT. od |»x
-JCU (AV trSjlpi-. g+^4L< "jU C gT^ Figure 2-6 Random pattern formed
+ gil+pll- qi j^Rpy+ILBo) ! zgkAXt 9»" 2^ with characters by Prog. 2-7.

foreground and background combinations. An example is the rainbow pattern
shown in Fig. B of the color insert. The graduated shading patterns shown in this
figure were displayed by Prog. 2-8.

The color options available to us can help our displays in a number of ways.
We can use color to make a display easier to understand. Complex displays can
sometimes be clarified by using colors to distinguish different objects or areas.
Color can be used to accent or highlight important parts of a display, to add
realism to a scene, or to aid design applications. We can also use color for fun, to
produce a more interesting or attractive display.

Choice of color combinations for a particular display, whether in character
or graphics mode, should be carefully considered. A random selection can
produce a glaring, unpleasant effect. Using fewer colors in a display is usually
best. A background chosen as the "complement" of one of the foreground colors
can be attractive. Complement color combinations include red and blue-green,
blue and orange, yellow and purple-blue, and green and magenta. A light
background (say, cyan) can be used to good effect with darker colors. If several
colors are to be used in a display, a gray background is best. Dark borders around
the different color areas can help to reduce clashes when many colors are used.

2-5 PRINTING AND SAVING CHARACTER PICTURES

Screen patterns can be printed on paper by using the LPRINT statement in our
graphics programs or with the PrtSc (Print Screen) key on the keyboard. When we
press PrtSc and the shift keys together, we get a "hardcopy" of our character
picture on the printer.

28 BASIC GRAPHICS PART II

Program 2-8 Color shading patterns using characters.

10 'PROGRAM 2-8. RAINBOW USING PRINT AND COLOR STATEMENTS

20 SCREEN O: COLOR 0,0,0: WIDTH 80: CLS
30 FOR COLUMN = 1 TO 80

40 READ FORE,BACK,CODE
50 COLOR FORE,BACK
60 FOR ROW = 2 TO 23

70 LOCATE ROW,COLUMN
80 PRINT CHR*(CODE);
90 NEXT ROW

100 NEXT COLUMN

110 COLOR 7,0,0
120 DATA 4,4,219,4,4,219,4,4,219,4,4,219,4,4,219
130 DATA 4,6,178,6,4,176,4,6,178,6,4,176,6,4,176,4,6,177
140 DATA 6,4,177,4,6,177,6,4,177,4,6,177,6,4,177,6,4,178
150 DATA 4,6,176,6,4,178,4,6,176,6,4,178
160 DATA 6,6,219,6,6,219,6,6,219,6,6,219,6,6,219
170 DATA 6,2,178,2,6,176,6,2,178,2,6,176,6,2,178,2,6,176
180 DATA 6,2,177,2,6,177,6,2,177,2,6,177,6,2,177,2,6,178
190 DATA 6,2,176,2,6,178,6,2,176,2,6,178
200 DATA 2,2,219,2,2,219,2,2,219,2,2,219,2,2,219
210 DATA 3,2,176
220 DATA 2,1,178,1,2,176,2,1,178,1,2,176,2,1,178,2,1,177
230 DATA 1,2,177,2,1,177,1,2,177,2,1,177
240 DATA 1,3,178,1,3,178,1,3,178,1,3,178,1,3,178
250 DATA 1,5,178,5,1,176,1,5,178,5,1,176,1,5,178,1,5,177
260 DATA 5,1,177,1,5,177,5,1,177,1,5,177,5,1,178,1,5,176
270 DATA 5,1,178,1,5,176,5,1,178
280 DATA 5,5,219,5,5,219,5,5,219,5,5,219,5,5,219,5,4,176
290 DATA 0,7,219
300 IF INKEY* = "" THEN 300

310 END

The hardcopy output produced by PrtSc prints characters in the "normal"
print style (which is the way characters look on the screen in WIDTH 80). This is
the case whether we have displayed our pictures in WIDTH 80 or in WIDTH 40. If
we want to get characters printed as we see them in WIDTH 40 on the screen, we
must use LPRINT and instruct the printer to go into the double-wide mode. In this
way we create our picture directly on the printer, rather than on the screen. We
get double-wide character printing by including the function CHR$(14) at the
beginning of each LPRINT statement. This tells the printer to print that line with
double-wide characters. Since the double-wide mode is automatically turned oflf at
the end of each print line, we have to include CHR$(14) in each LPRINT, as in

510 LPRINT CHR$(14); "THIS LINE PRINTS DOUBLE WIDE"
520 LPRINT CHR$(14): "THIS ONE DOES TOO"

Whether we use PrtSc or LPRINT, some of the characters that we want in
our picture may not get printed. This occurs because ASCII codes for all the
different characters are sent from the system unit to the printer, and these two
pieces of equipment may not agree on the meaning of these codes. Not all ASCII
codes are standardized. Different manufacturers assign different meanings to
some of the codes, so a particular printer may print blank spaces or characters

Chapter 2 Making Pictures: Character Style 29

different from those we see in the screen picture. We can correct this situation
with "screen-dump" programs. These programs use the information stored in the
display screen buffer to activate the printer so as to produce the dot patterns for
the PC characters we specified.

We can save pictures on disk or tape using the BSAVE command. They can
then be displayed at any later time by loading them into the screen buffer with
BLOAD. To use these commands, we need to state the address of the screen
buffer area (for either the Color/Graphics or Monochrome option) in the DEF
SEG command.

In disk or advanced BASIC we can reference our pictures with any
descriptive file name. In cassette BASIC, we must use the file name CASl. The
following illustrates the use of BSAVE and DEF SEG with the Color/Graphics
option.

1000 DEF SEG = &HB800

1010 BSAVE "RAINBOW'^O^&HIOOO

Statement 1000 specifies which area in memory we want to save. Since we want to
save a displayed picture, we state the "segment number" of the memory area that
is used as the screen buffer. This number has one less zero than the starting
address (B8000) of the display buffer (see the memory map table in Fig. 1-3).
Thus, we use the segment number &HB800 (hexadecimal) in line 1000. We would
change this to &HBOOO for the Monochrome option. Any subsequent BSAVEing
or BLOADing we do in our programs will use this memory area. Statement 1010
specifies the picture name as RAINBOW, an offset of 0, and a length of 4K (1000
in hexadecimal). This tells the system that we want to save the first 4K bytes of
this screen buffer, which has a total size of 16K. Four thousand is the maximum
number of bytes that we need to store a character picture (in WIDTH 80). We
need 2000 bytes (25 lines times 80 characters per line) for character codes and 2000
more bytes for color information (one byte per character), for a total of 4000
bytes. In WIDTH 40, our total picture size would be 2K. The additional space in
this buffer is needed when we use pixel graphics. On the Monochrome board, the
total screen buffer size is 4K, since it is set up for character graphics only.

To load this saved display back into the screen buffer for viewing, we can
use the program segment

2000 DEF SEG = &HB800

2010 BLOAD "RAINBOW", 0

Line 2000 again specifies the memory area as the screen buffer on the Color/
Graphics board. This address would be changed to &HBOOO for the Monochrome
option. In line 2010, we state the file name as "RAINBOW" and the offset as 0, so
that we load the picture information into the beginning of the screen buffer. No
length specification is used with BLOAD.

30 BASIC GRAPHICS PART II

PROGRAMMING PROJECTS

2-1. Display a star pattern using a number of different characters to produce texture, as in
Prog. 2-1.

2-2. Using the LOCATE statement, write a program that will clear the screen and display
the word "HELLO" in large letters (each formed with several characters) at the
center of the screen.

2-3. Display the following patterns, using loops as in Prog. 2-3.

******* (b) (a)

***** @@@

*** @@@@@

* @@@@@@@
*** @@@@@
***** @@@
******* ^

2-4. Sketch the outline of some figure or scene on graph paper. Fill in the outline with
some character and display the silhouette on the screen, as in Prog. 2-2.

2-5. Produce the silhouette for Project 2-4 by encoding the data, as in Prog. 2-4.
2-6. Using the method of Prog. 2-5 or Prog. 2-6, display a word in large letters at the

center of the screen that has a box border. Set up the program so that several
diflferent box borders (single line, double line, or block) can be selected with input
statements.

2-7. Write a program segment that can be used with Prog. 2-5 or Prog. 2-6 to check the
input data to be sure that the box pattern will fit on the screen.

2-8. Write a program to produce each of the shapes in Fig. 2-4. Include a LOCATE
statement that will position the shape at any screen location specified by input. As an
option, allow the color of each shape to be determined by input.

2-9. Write a program to produce the scene in Fig. 2-5.

2-10. Modify the program of Project 2-9 to color each part of the scene.
2-11. Display any picture, using encoded data in a DATA statement that will allow several

different characters on each line (as in Fig. 2-5). Data for each print line is to include
the following information; (1) the ASCII code for each character on the line, (2) the
starting position of the character on each print line, (3) the number of consecutive
positions occupied by each character, and (4) the color of each character. The ASCII
code will be used in the CHR$ function to print out that character.

Chapter 3

Making
Pixel Pictures

Special graphics commands, available to us on the PC with the Color/Graphics
option, provide another means for making pictures. Instead of building up
displays with characters, these commands enable us to "draw" pictures on the
screen using points and lines.

3-1 PIXEL GRAPHICS CONCEPTS

Each character that we display on a video screen occupies a small rectangle. This
area is subdivided into a grid of even smaller rectangles that we can use with
graphics commands. These smaller rectangles are called picture elements or pixels,
or simply points. The number of pixels contained in a single character generated
by the Color/Graphics board is 8 points vertically and 8 points horizontally. Figure
3-1 illustrates this 8 by 8 pixel grid corresponding to the area occupied by a
character. A video screen will then contain eight times as many points as
characters across the screen and eight times as many points vertically. Since the
PC can display a maximum of 80 characters across 25 print lines, we can plot a
point in any one of 640 positions horizontally across the screen and in any one of
200 vertical positions. With the 40-character width, we get double-wide characters
and double-wide points, so that 320 horizontal positions are available for plotting
pixels.

Plotting a point on a video screen means that we instruct the computer to
"turn on" the small rectangle of light at the specified pixel position. Individual
pixel positions are referenced by coordinates. That is, we must specify the location
of a pixel as a pair of integers (X,Y). The first integer, X, gives the horizontal
distance across the screen, and the second integer, Y, gives the vertical distance.

31

BASIC GRAPHICS PART II

Character area Corresponding pixel grid

Figure 3-1 The area occupied by a character is divided into an 8 by 8 grid of smaller rectangular
pixels.

Our IBM PC requires that these distances be measured from left to right and top to
bottom. This means that the screen is referenced with the origin of the coordinate
system at the upper left corner, as shown in Fig. 3-2. The X, or horizontal
coordinate, can range from left to right through integer values 0, 1,2, ..., up to

Figure 3-2 The coordinate system used by the PC places the origin at the upper left corner of the

X-coordinate

Pixel

location (X, Y)

Y-coordlnate

Chapter 3 Making Pixel Pictures 33

either 319 or 639. The Y, or vertical coordinate, can range from top to bottom
through the integer values 0, 1, 2, 199. For this coordinate reference, the
position of the pixel at the upper left comer of the screen is (0,0). Pixel
coordinates for the point at the lower right corner are specified as (XM,YM),
where XM is either 319 or 639 and YM is 199.

The number of pixels that we can plot along a line is referred to as the
resolution of the system. More precisely, resolution is the number of pixels that
we can plot per centimeter (cm), in either direction. A larger screen plotting the
same number of pixels across its width as a smaller screen will have lower
resolution (fewer points per centimeter) in that direction. We can use monitors
with different physical dimensions, but changing the screen size does not change
the number of pixels we can plot. This number is fixed by the resolution mode we
choose. The PC provides two resolution modes: medium resolution (with a pixel
screen size of 32Q by 200 for a total of 64,000 points), and high resolution (with a
pixel screen size of 640 by 200, for a total of 128,000 points).

Resolution modes are selected with the SCREEN statement. This command
is used to get us into one of the graphics modes and has the form

SCREEN M, BST, AP, VP — Selects a graphics mode or a text mode.

Parameters M, BST, AP, and VP take numeric values, and not all the parameters
need to be specified each time we use this statement. We choose a mode by setting
M to a value of 0 (for character, or text, mode), 1 (for medium- resolution graphics
mode), or 2 (for high-resolution graphics mode). With BST (the "burst" parame
ter), we can block color off the screen, allowing black and white only. A value of 0
for BST turns color off in text mode, and a nonzero value turns color off in
medium resolution. Reversing these values turns color on. No color is available in
high resolution. In text mode, AP and VP are used to select a "page" of text to be
written to (AP, the active page) or to be viewed on the screen (VP, the visual
page). We can set up eight pages of text (numbered 0 through 7) with WIDTH 40,
or we can set up four pages of text (numbered 0 through 3) with WIDTH 80. In
Chapter 8, we will explore graphics uses of text pages.

3-2 PLOTTING POINTS

Pixels are directly accessible when we are in one of the graphics modes (SCREEN
1 or SCREEN 2). Once we get into a graphics mode, we can plot a point by stating
the command

PSET (X,Y), — Places a pixel on the screen at coordinates (X,Y) with
color 0. Parameters X, Y, and 0 may be numeric constants or
expressions. If nonlnteger, they will be rounded.

34 basic graphics PART II

10 'PROGRAM 3-1. PLOTS A SINGLE PIXEL
20 SCREEN Is CLS

30 INPUT "ENTER X AND Y COORDINATES"; X, Y
40 CLS

50 PSET (X,Y)
END Program 3-1 Plotting a point.

Color parameter C should be kept in the range 0 to 3. A value of zero is the same
as background color. Three color options are set with the values 1 through 3. We
will take up color in graphics mode a bit later and, for now, just omit this
parameter. An example of the use of PSET is given in Prog. 3-1. This program
plots a point at a location specified in the input statement after clearing the screen
with the CLS statement.

We should not try to plot a point beyond the screen limits. This could
produce an error in program execution, an invisible point, or a distortion in the
point position due to wraparound effects. Wraparound occurs when a point,
plotted beyond the limits on one side of the screen, "wraps around" and appears
on the other side of the screen. To avoid these problems, neither the horizontal
nor the vertical coordinate should ever become negative or exceed the maximum
screen locations. We can ensure that we do not attempt plotting beyond the screen
boundaries by including the tests of (3-1) in our programs.

0<=X< = XM

0 < = Y < = 199

In these tests, XM is the maximum horizontal pixel location allowed (either 319 or
639), and 199 is the maximum vertical pixel location. Program 3-2 illustrates the
use of these tests.

For many applications it is convenient to be able to "erase" a point that we
previously plotted. We have the following command to accomplish this:

PRESET (X,Y),C — Plots a pixel at position (X,Y) in color C. Parame
ters X, Y, and C may be numeric expressions or constants, if
noninteger, they will be rounded.

Omitting the parameter C in the PRESET statement erases a point previously
plotted by replotting that point in the background color. Otherwise, PRESET is

Program 3-2 Point plotting and oflf-screen tests.

10 'PROGRAM 3-2. CHECK FOR OFF-SCREEN

20 SCREEN 1: CLS

30 INPUT "ENTER X AND Y COORDINATES"; X, Y
40 IF X < O OR X > 319 OR Y < O OR Y > 199 THEN 80
50 CLS

60 PSET (X,Y)
70 GOTO 100

80 PRINT "COORDINATES OFF-SCREEN. TRY AGAIN.
90 GOTO 30

lOO END

Chapter 3 Making Pixel Pictures 35

10 'PROGRAM 3-3. TURN A PIXEL ON AND OFF

20 SCREEN 1: CLS

30 PSET (160,100)
40 FOR DELAY = 1 TO 1000: NEXT

50 PRESET (160,100)
60 END Program 3-3 Point plotting and erasing.

the same as PSET. We cari also erase points with the statement PSET (X,Y),0. If
the pixel at location X,Y is not turned on, PRESET (X,Y) will have no visible
effect. Program 3-3 shows how this command can be used to turn off a pixel after
a delay time of about 2 seconds.

Delay loops, as in statement 40 of Prog. 3-3, can be inserted into graphics
programs to make points blink. They can also be used to hold a picture for viewing
before the next picture is created. These loops give us a delay time of about 1
second for every 500 iterations of the loop.

A random pattern of points that blink on and off is produced by Prog. 3-4.
The RND function used in this program will repeat the same pixel pattern each
time we run the program. We can get different patterns each time by including the
RANDOMIZE statement, but then we will have to respond to RANDOMIZE's
request for a "seed" value. Alternatively, we could include a statement using
RND(X) before the loop, where X is a negative number. We will need to use a
different value for X each time the program is run if we want to generate new
patterns. This number can be derived from the TIMES variable, eliminating the
need for any input. TIMES returns an eight-character string indicating the current
time. By taking the two rightmost characters from this string and converting them
to a negative number, we get random values for X. The statements

25 SEED = VAL(RIGHT$(TIME$,2))
26 STARTRND = RND(-SEED)

could be included in Prog. 3-4 to generate a new pattern of random numbers on
each run.

Coordinate values in the special graphics commands can be stated as
absolute coordinates or as relative coordinates. We have been using the absolute
form, which states coordinates directly in screen coordinates. Relative form
specifies the coordinates as displacements, or offsets, from the last point
referenced in the program. To indicate relative coordinates, we replace (X,Y) by
STEP (DX,DY), where DX and DY give the X and Y displacements. Program 3-5
illustrates the use of relative coordinates by plotting a series of 31 points

lO 'PR06RAM 3-4. BLINKIN6 PIXELS
20 SCREEN 1: CLS

30 X - INT<320 « RND)

40 Y = INT(199 « RND)

SO PSET (X,y)
60 FOR DELAY = 1 TO 500: NEXT

70 PRESET (X,Y) ^ ™ „■ r
80 GOTO 30 Program 3-4 Plotting a pattern of
90 END random points.

36 BASIC GRAPHICS PART II

10 'PRQ6RAM 3-S. RELATIVE COORDINATES IN PSET
20 SCREEN 2: CLS
30 PSET <0,199)
40 FOR COUNT = 1 TO 30

50 PSET STEP (20,-5)
60 NEXT COUNT Program 3-5 Plotting points using
70 END relative coordinates.

diagonally up the screen from the lower left corner. Each successive point is
plotted 20 units farther to the right and 5 units up the screen from the previous
point plotted.

3-3 DRAWING LINES

We have two basic methods for drawing lines. We can plot individual pixel
positions along the line using PSET, or we can use the LINE statement.

LINE STATEMENT

A line-drawing graphics command is available to us in the form

LINE (X1,Y1)—(X2,Y2),C,BX — Draws a straight line or box from
position (X1,Y1) to position (X2,Y2) with color C. Parameters X1,
Y1, X2, Y2, and C may be numeric constants or expressions, if
noninteger, they will be rounded. BX can take either of the
following character values: B or BF.

Coordinates for the line endpoints, (XI,Yl) and (X2,Y2), may be specified in
absolute or relative form. If parameter BX is omitted, this command draws a
straight line between these endpoints. With BX set to the value B, we get a box
with (XI,Yl) and (X2,Y2) as coordinates of any diagonally opposite corners.
Setting BX to the value BF fills the interior of the box with color C. Parameter C
should be set to values that stay within the interval 0 to 3. Zero gives the
background color, and for other values we have a choice of three colors. Again,
we will omit the color parameter for now.

In Prog. 3-6, we demonstrate use of the LINE command to draw a line using
both absolute and relative coordinate specifications. The starting coordinates for

Program 3-6 Line drawing using the LINE command with both absolute and relative coordinate
specification.

10 'PROGRAM 3-6. DRAWS HORIZONTAL LINE
20 SCREEN 1: CLS

30 INPUT "ENTER STARTING POSITION FOR LINE"; X, Y
40 INPUT "ENTER LENGTH OF LINE"; L
50 CLS

60 LINE (X,y) - STEP (L,0)
70 END

Chapter 3 Making Pixel Pictures 37

Program 3-7 Star pattern produced by specifying line endpoints relative to the last referenced point.

10 'PROGRAM 3-7. CONNECTING RELATIVE STAR POINTS

20 SCREEN 2: CLS

30 READ X,Y
40 PSET (X,Y)
50 FOR P = 1 TO 5

60 READ X,Y
70 LINE - <X,Y)
80 NEXT

90 DATA 274,84, 90, 141, 159,50,231,141,46,84,274,84
100 END

the line are given in absolute form and the ending coordinates are in relative form.
This example lets us draw horizontal lines of length L from any input starting
position.

At times, we may want to draw a line from the last point referenced in a
program to another specified point. We can do this by leaving out the first
coordinate pair. Program 3-7 gives an example of this method of line drawing to
produce the star pattern shown in Fig. 3-3.

Figure 3-3 Pattern formed with
straight lines, using the LINE statement,
as output by Prog. 3-7.

PIXEL METHODS

We can also use PSET (or PRESET) to draw lines. Line-drawing methods using
PSET will be useful to us later when we consider animation. To create a straight
line in this way, we need to specify the position of each point along the line. Since
pixels are 1 unit apart, PSET will draw a vertical line, for example, when the Y
coordinate is repeatedly increased by 1 and the X coordinate is held constant.
Programs 3-8 and 3-9 provide examples of drawing vertical and horizontal lines in
this way. The lines drawn by these programs are identical to what we would get
using the LINE command, since each pixel plotted is a small rectangle adjoined to
the previously plotted pixel. In Prog. 3—8 we have used an absolute coordinate
specification to draw the line, and in Prog. 3-9 we have used relative coordinates.

Drawing diagonal lines with PSET is less straightforward. To draw a
diagonal line using this command, we must calculate coordinate values along the

38 BASIC GRAPHICS PART II

Program 3-8 Drawing a vertical line by plotting points, specified as absolute coordinates.

10 'PROGRAM 3-8. PLOTTING VERTICAL LINES USING PSET

20 SCREEN 1: CLS

30 INPUT "STARTING COORDINATES FOR LINE"; X, Y
40 INPUT "LENGTH OF LINE"; LENGTH
50 CLS

60 IF y + LENGTH > 199 THEN LENGTH = 199 - Y 'SET LENGTH BACK TO MAXIMUM

70 FOR EACHPOINT = Y TO Y + LENGTH 'THAT WILL FIT ON SCREEN

80 PSET (X,EACHPOINT)
90 NEXT

100 END

path of the line. To do this we use equation (3-2), which relates X and Y values for
a straight line.

Y = M * X + B (3-2)

In this equation, M is the slope of the line, which may be positive, negative, or
zero. When M is zero, we have a horizontal line. For very large magnitudes of M,
we have nearly vertical lines. The Y-intercept, B, is the value that Y has at the left
edge of the screen where X is zero (the Y axis).

We can program a general line-drawing algorithm based upon equation (3-2)
and the PSET command. Program 3-10 illustrates this method, with values for M
and B entered as input. This program first determines whether the specified line
can be drawn on the screen. If no part of the line can be plotted within the
coordinate boundaries of the screen, the program simply prints that message. If
some part of the line can be drawn. Prog. 3-10 plots the visible part of the line
from one screen boundary to another. Figure 3-4 shows the output of Prog. 3-10
for the case M = 1. The line shown appears opposite from what we would expect
when graphed in a conventional coordinate system, where a line with positive
slope slants up from left to right. This happens because our point (0,0) is at the
upper left corner of the screen. We can change the program to produce
conventionally oriented lines by multiplying each input value of the slope by -1
and by changing each input B value to 199 - B.

Program 3-10 will not produce continuous lines when the magnitude of the
slope is greater than 1. We will have gaps between the plotted pixels. This can be
corrected by incrementing the Y coordinate by 1 unit instead of the X coordinate

Program 3-9 Drawing a horizontal line by plotting points, specified as relative coordinates.

10 'PROGRAM 3-9. PLOTTING HORIZONTAL LINES WITH PSET AND STEP

20 SCREEN 1: CLS

30 INPUT "STARTING COORDINATES FOR LINE"; X, Y
40 INPUT "LENGTH OF LINE"; LENGTH
50 CLS

60 PSET (X,Y)
70 IF Y + LENGTH > 319 THEN LENGTH = 319 - Y 'SET LENGTH BACK TO MAXIMUM
80 FOR EACHPOINT = 1 TO LENGTH 'THAT WILL FIT ON SCREEN

90 PSET STEP (IpO)
100 NEXT

110 END

Chapter 3 Making Pixel Pictures 39

Program 3-10 General line drawing using the line equation and point plotting.

10 'PROGRAM 3-10. GENERAL LINE DRAWING USING PSET

20 SCREEN 1: CLS

30 INPUT "SLOPE"; M
40 INPUT "Y-INTERCEPT"; B
50 'IF SLOPE IS NEGATIVE AND LINE INTERCEPTS Y AT A

60 'VALUE LESS THAN O, LINE IS BEYOND SCREEN COORDINATES.
70 IF M < O AND B < O THEN PRINT "LINE OFF SCREEN": GOTO 390

80 'IF SLOPE IS POSITIVE BUT LINE INTERCEPTS Y AT A VALUE

90 'GREATER THAN 199, LINE IS BEYOND SCREEN COORDINATES.
100 IF M > O AND B > 199 THEN PRINT "LINE OFF SCREEN": GOTO 390

110 'OTHERWISE, FIND LEFTMOST POINT OF LINE.
120 'IF Y-INTERCEPT IS BETWEEN O AND 199 THEN LEFTMOST

130 'POINT IS AT LEFT EDGE OF SCREEN.

140 XI = O

150 'IF SLOPE IS NEGATIVE AND LINE INTERCEPTS Y AT A VALUE

160 'GREATER THAN 199, LEFTMOST POINT IS ALONG BOTTOM EDGE OF
170 'SCREEN (WHERE Y = 199) SO XI = (199 - B) / M.

180 IF M < O AND B > 199 THEN XI = (199 - B) / M

190 'IF THIS LEFTMOST POINT IS BEYOND 319, LINE IS OFF SCREEN.
200 IF XI > 319 THEN PRINT "LINE OFF SCREEN": GOTO 390

210 'IF SLOPE IS POSITIVE AND LINE INTERCEPTS Y AT A POINT LESS

220 'THAN O, LEFTMOST POINT IS ALONG TOP EDGE OF SCREEN
230 ' (WHERE Y = O) SO XI = (O - B) / M OR XI = -B / M.

240 IF M > O AND B < O THEN XI = -B / M

250 'IF THIS POINT IS BEYOND 319, LINE IS OFF SCREEN.
260 IF XI > 319 THEN PRINT "LINE OFF SCREEN": GOTO 390

270 'OTHERWISE, LINE IS AT LEAST PARTIALLY ON SCREEN. START AT
280 'LEFTMOST POINT OF LINE (XI). USING INCREASING VALUES OF

290 'X, CALCULATE NEW Y VALUES AND PLOT X,Y. CONTINUE UNTIL
300 '1. X > 319 (LINE GOES TO RIGHT EDGE OF SCREEN)

310 '2. Y < O (LINE GOES OFF TOP EDGE OF SCREEN) OR

320 '3. Y > 199 (LINE GOES OFF BOTTOM EDGE OF SCREEN)

330 CLS

340 FOR X = XI TO 319

350 Y = M * X + B

360 IF Y < O OR Y > 199 THEN 390

370 PSET (X,Y)
380 NEXT

390 END

when ABS(M) > 1. We could also modify the program to position the line so that
it is drawn in the center of the screen. Methods for positioning lines on the screen
are discussed in Chapter 4.

In certain graphics applications, we need to know the slope and Y-intercept
of lines plotted between given endpoints. Specifying the line endpoints as (X1,Y1)
and (X2,Y2), we can calculate M and B from the relations

M = (Y2-Y1)/(X2-X1)

B = Y1 - M * X1

We will use the LINE command whenever we want to draw a line between

specified endpoints. If we want to draw a line with a certain slope M, we can
either use PSET or figure out where the endpoints are and use the LINE
statement. The PSET method is also useful for animating objects along straight-
line paths.

40 BASIC GRAPHICS PART II

Figure 3-4 Straight line with a slope
of 1 and Y-intercept of 0, drawn by

\ Prog. 3-10.

3-4 PIXEL COLOR

The general considerations regarding the use of color that we discussed in Section
2-4 apply to pixel graphics as well. We have the same reasons for using color
whether we are creating pictures with characters or pixels, and we need to
observe the same considerations in our choice of color combinations.

In medium-resolution graphics mode we have the following color statement
available in our set of graphics commands:

COLOR B,P — Sets the screen to color B (the background) and
selects one of two possible sets of colors, or "palettes," P that Is to
be used with subsequent graphics commands. Parameters B and
P may be numeric constants or expressions. If noninteger, they
will be rounded.

Either parameter (B or P) may be omitted. Background B selects colors in the
range 0 to 15, as listed with the character color statement in Section 2-4. If B is
omitted, we default to a background value 0 (black). The palette P selects one of
two color combination options. Any even integer for P is interpreted as a zero
value and selects palette 0; any odd integer is taken to be the value 1, which
selects palette 1. If we omit P, we automatically get palette 1. Once we have
selected a palette, the colors in that palette are available for use in commands such

Chapter 3 Making Pixel Pictures 41

as LINE and PSET. We then choose the color we want for an individual line or

pixel by setting parameter C in these commands to the number code of the desired
color. Omitting parameter C gives us color code 3 (the default color). The color
codes and their corresponding colors for each palette are:

Corresponding Corresponding
Color Code C Palette 0 Color Palette 1 Color

0 background color B background color B
1 green cyan

2 red magenta
3 brown white

As an example of the use of the COLOR command, the following program
segment plots a red pixel and a green line on a blue background:

250 COLOR 1,0
260 PSET (10,10),2
270 LINE (20,20)-(40,40),1

The COLOR B,P command can be used only with medium resolution (SCREEN
1). Any text or characters we put on the screen when in this mode will be in color
code 3.

We can use the COLOR statement as many times as we wish within a
program to set or change either the background color, the palette, or both. When
we execute a COLOR statement with a new background color, the background of
the entire screen is set immediately to the color specified. Whenever we change
palettes, we change the colors of all previously plotted pixels.

The COLOR command cannot be used in high resolution (SCREEN 2). Only
black and white are available, and we specify which we want by setting the value
for parameter C in the graphics commands. Allowable values for C are 0 (black)
and 1 (white). When we omit C, we get white.

Another color statement that is available (in advanced BASIC only) is the
PAINT command. This statement allows us to fill in color areas defined by any
boundary.

PAINT (X,Y),CP,CB — Fills in a screen area in color CP up to a
boundary color OB, with (X,Y) as any point within the boundary.
Parameters X, Y, CP, and CB may be numeric constants or
expressions. If noninteger, they will be rounded.

Coordinates X and Y can be stated in absolute or relative form (using STEP). In
medium resolution, the paint color CP and the boundary color CB should be
within the range 0 to 3, corresponding to the colors available in palette 0 or 1. The
allowable values for CP and CB in SCREEN 2 are 0 and 1. Either color parameter
can be omitted. If CP is omitted, color code 3 in the chosen palette is used for the

42 BASIC GRAPHICS PART II

paint color when in SCREEN 1 and color code 1 (white) is used in SCREEN 2. If
CB is omitted or is not the color of any boundary, the entire screen is filled with
the paint color CP. Also, if the boundary contains any holes, the filler color will
leak out and around the boundary. We can use the PAINT command to fill the
interiors of figures, the screen area outside of a figure, or the screen area between
figures.

3-5 PIXEL PICTURES

Point-plotting and line-drawing commands give us the basic tools for creating
graphics displays. With PSET, LINE, COLOR, and PAINT, we can construct
figure outlines, silhouettes, three-dimensional shapes, and complex scenes.

A triangle, rectangle, or general polygon of any number of sides is drawn by
Prog. 3-11 in various color combinations. Coordinates for the vertices of the
figure are input in the order in which they are to be connected and stored in arrays
X and Y. The polygon is then displayed by drawing a line from point (X(l), Y(l))
to point (X(2),Y(2)), then to point (X(3),Y(3)), and so on. As the last step, the
figure is painted in different colors, starting from a specified interior point.

Program 3-11 illustrates another form of time delay. In this case, execution
stops indefinitely at line 240. The program will resume interaction with us when

Program 3-11 General polygon drawing and color.

10 'PROGRAM 3-11. DRAWS POLYGONS IN VARIOUS COLOR COMBINATIONS
20 DIM X(IO), VdO)
30 SCREEN 1: CLS

40 INPUT "NUMBER OF POINTS IN POLYGON"; N
50 FOR EACHPOINT = 1 TO N

60 PRINT "COORDINATES FOR POINT"; EACHPOINT;
70 INPUT X(EACHPOINT), Y(EACHPOINT)
80 IF X(EACHPOINT) < O OR X(EACHPOINT) > 319 THEN

PRINT "OFF SCREEN. TRY AGAIN": GOTO 60
90 IF Y(EACHPOINT) < O OR Y(EACHPOINT) > 199 THEN

PRINT "OFF SCREEN. TRY AGAIN": GOTO 60

100 NEXT

110 INPUT "COORDINATES OF AN INTERIOR POINT"; XINTERIOR, YINTERIOR
120 CLS

130 PRINT "HIT ANY KEY FOR NEXT COLOR COMBINATION"
140 FOR BACKGROUND = 1 TO 15

150 FOR PALETTE = O TO 1

160 COLOR BACKGROUND,PALETTE
170 FOR COLORCODE = 1 TO 3

180 PSET (X(l),Y(l)),COLORCODE
190 FOR EACHPOINT = 2 TO N

200 LINE - (X(EACHPOINT),Y(EACHPOINT)),COLORCODE
210 NEXT

220 LINE - (X(l),Yd)),COLORCODE
230 PAINT (XINTERIOR,YINTERIOR),COLORCODE,COLORCODE
240 IF INKEY$ = "" THEN 240

250 NEXT COLORCODE

260 NEXT PALETTE

270 NEXT BACKGROUND

280 END

Chapter 3 Making Pixel Pictures 43

we hit any key on the keyboard. The INKEY$ operation is initialized by the
system to the null string. When executed, it assumes the value of the key currently
being pressed on the keyboard, if any. This type of time delay is particularly
useful if the program is producing a series of displays that are being used in
conjunction with a report or presentation. It is often helpful to include a "prompt"
with the time delay, particularly if we are writing a program to be used by other
people. We included the message HIT ANY KEY FOR NEXT COLOR COMBI
NATION at line 130 in Prog. 3-11 to indicate that the program is in a time delay.
INKEY$ is also useful at the end of a program, since it delays the appearance of
BASIC'S "OK" until a key is pressed. This gives us time to print out or
photograph our display.

Another technique for producing solid color areas is illustrated with Prog. 3-
12. This gives us a means for filling in areas if we do not have the PAINT
command. In this program, any rectangular area on the screen is chosen by
specifying opposite corners of the rectangle. Then the interior of the rectangle is
painted with a selected color.

Solid-color areas can be produced by drawing horizontal, vertical, or
diagonal lines. We can vary the order of drawing lines and choice of color to
produce special eflfects. For example, we could fill in a rectangular area with
randomly colored horizontal lines, drawn alternately from the top and bottom and
meeting in the middle.

Program 3-12 Painting solid color rectangles.

10 'PROGRAM 3-12. PAINTING IN BOXES

20 SCREEN 1z CLS

30 INPUT "TOP LEFT CORNER OF BOX"; XI, Y1
40 INPUT "BOTTOM RIGHT CORNER OF BOX"; X2, Y2
50 INPUT "CODE FOR BACKGROUND COLOR (O - 15)"; BACKGROUND
60 INPUT "CODE FOR PALETTE (O OR D"; PALETTE
70 INPUT "CODE FOR BOX COLOR (1 - 3)"; BOXCOLOR
80 CLS

90 COLOR BACKGROUND,PALETTE
100 FOR X = XI TO X2

no LINE <X,Y1) - <X,Y2),BOXCOLOR
120 NEXT

130 IF INKEY^ = "" THEN 130

140 END

SHADING PATTERNS

We can produce shading in our pictures using patterns formed with characters or
pixels. The characters that we get in graphics mode, however, are not always the
same as the characters available in text mode (SCREEN 0). In SCREEN 1 or
SCREEN 2, ASCII codes 128 through 194 give us blanks and the codes from 195
to 255 make patterns different from the text characters for these codes. Figure 3-5
lists character patterns we can access in graphics mode. These patterns could be
used to create a variety of shading and textures in our pictures.

With pixels, we can create additional shading and texture patterns. We could

44 BASIC GRAPHICS PART II

10 20 3 f 44 54 64 8D

14/) 15 16 ► 17 i 18 t 19 !! 20 91

21 $ 22 . 23 i 24 t 25 1 26 -> 27 t

33 ! 34 » 35 0 36 $ 37 'A 38 4 39'

40 (41) 42 43 + 44 , 45 - 46 .

47 / 58 ; 59 ; 60 < 61 : 62 > 63 ?

64 0 91 [92 N 93] 94 A 95 _ 96 '

123 { 124 i 125 } 126 " 127 6 128 y 129 ^

130 1 132 % 134^' 135 136 r 1371 138 i

139 £ 140 n 141 ^ 142 i* 143 ■ 144 145 :1

146 y 147 : j 152 - 160 195 196 197 :3l

198 :::/ 199 "I 200 201 \t 202 ^ 203 :•/ 204

205 206 :::/ 207 ;•/ 208 :) 209 210 211

212 213 214:/ 215 216 217 :5 218

219 :j 220 221 222 n 223 224 225

226 ^ 227 228 229 :::| 230 231 232

233 234 235 :::) 236 : j 237 238 :•) 239

240 ^) 241 '4 242 243 244 ?$ 245 246

247 S 248 ^ 249 1 250 K 251;: 252 .■ 253 rr

254 .
Figure 3-5 Character patterns and their ASCII codes available in graphics mode.

use lines to partially fill in areas, such as with every other line or every third line.
We could also draw lines in both directions, spaced to obtain a crosshatched
shading. Another possibility is to vary the spacing between the shading lines to
produce a gradual dark to light (or light to dark) shading. The spacing between
lines could be increased slowly by 1 or 2 units, or we could increase spacing more

Chapter 3 Making Pixel Pictures 45

rapidly by doubling the previous spacing to get the next spacing length. Areas
could also be filled with dots, either symmetrically or randomly spaced. Figure 3-
6 shows some shading patterns possible with points and lines.

Color shadings can be developed by combining pixels of different colors. For
example, plotting alternating red and brown pixels produces an orange-colored
area. Some of the shades possible with palette 0 and a blue background are shown
in Figure C of the color insert.

Figure 3-6 Shading patterns possible with pixel graphics.

aTWi't

mm
SsslllS

RESOLUTION RATIOS

Whenever we draw a rectangle with an equal number of pixels in the horizontal
and vertical directions, we might expect a square to be displayed. This will not be
the case for screens on which the resolution in the X direction is significantly
different from that in the Y direction. For example, we might have a monitor on
which a 100-pixel horizontal line in SCREEN 1 measures 6 cm long, but a 100-
pixel vertical line measures 8 cm. The X resolution is then 100/6, while the Y
resolution is 100/8. A 100 by 100 pixel box drawn on the screen will appear as a
rectangle, somewhat taller than it is wide. To make the box into a square, we
could either plot more points in the X direction or fewer points in the Y direction.

46 BASIC GRAPHICS PART II

Suppose that we want to change the number of pixels in the Y direction. We can
determine the number of pixels needed in the Y direction to make a square by
multiplying the original vertical length (100) by the ratio of Y resolution to X
resolution (100/8 divided by 100/6, or 3/4). The result is 75, so we need to plot 75
points in the Y direction to make a square. In SCREEN 2, our 100-pixel horizontal
line on the same monitor would measure only one-half of its length in SCREEN 1
(3 cm). For this resolution mode, the ratio of Y resolution to X resolution would
be one-half the SCREEN 1 value, or 37.5.

To determine resolution ratios for any monitor, we can draw a 100-pixel line
on the screen in each direction and measure line lengths. The ratio of the X length
to the Y length would be used to adjust the number of pixels in the Y directions.
The ratio of Y length to X length would be used to adjust the number of pixels in
the X direction. Adjusting one of these directions for all points of a display lets us
draw figures in proper proportions.

Video monitor resolutions are usually specified in terms of their aspect ratio.
This number gives the ratio of vertical pixels to horizontal pixels necessary to
produce equal lengths in both directions. (Sometimes aspect ratio is stated in
terms of horizontal pixels to vertical pixels.) An aspect ratio of 3/4 means that
three pixels plotted in the Y direction have the same length in centimeters as four
pixels plotted in the X direction. The aspect ratio, stated in this way, corresponds
to the ratio of Y resolution to X resolution.

In Prog. 3-13 we demonstrate the use of resolution correction for a monitor
with an aspect ratio of 0.46 in SCREEN 2 (23 vertical pixels have the same length
as 50 horizontal pixels). If we plot the points indicated by the drawing in Fig. 3-
7(a) without any correction for resolution differences, the distorted version shown
in Fig. 3-7(b) results. An output that matches the original pattern proportions is
produced when we adjust all Y coordinates, as in Prog. 3-13.

Correction for resolution differences can be made by sketching objects on
customized graph paper before plotting them on the screen. We make customized

Program 3-13 Star pattern drawn with resolution correction.

10 'PROGRAM 3-13. RESOLUTION CORRECTION

20 DIM X(12), Y(12)
30 SCREEN 2: CLS

40 YADJUST = .46 'ADJUST FOR X-Y RESOLUTION DIFFERENCE

50 FOR POINTER = O TO 11

60 READ XINPUT,YINPUT
70 X(POINTER) = XINPUT

80 Y(POINTER) = YINPUT * YADJUST

90 NEXT

100 FOR POINTER = O TO 11

no OTHEREND = (POINTER+4) MOD 12 'CONNECT TO POINT 4 POINTS AWAY

120 LINE (X(POINTER),Y(POINTER)) - (X(OTHEREND),Y(OTHEREND))
130 NEXT

140 DATA 160,0,210,10,250,50,260,100
150 DATA 250,150,210,190,160,200,110,190
160 DATA 70,150,60,100,70,50,110,10
170 IF INKEY* = "" THEN 170

180 END

Chapter 3 Making Pixel Pictures 47

0 a.0 HO M BO tot lU Ift 190 2lt XU> Zff 260 29t seo 320 310

Figure 3-7 A pattern drawn on square graph paper (a) will be distorted (b) if the points plotted are
not corrected for resolution differences.

48 BASIC GRAPHICS PART II

graph paper by printing out a grid drawn on the screen. Appendix A contains
customized paper for both SCREEN 1 and SCREEN 2, with the grid lines drawn
every five pixels apart.

DRAW STATEMENT

If we have the advanced BASIC interpreter, we can create pictures using the
DRAW statement. With this command, it is possible to specify all the parts of a
picture in one statement.

DRAW string — Constructs a picture on the screen according to the
commands iisted in string.

The special commands that we can use in string allow us to draw a series of lines,
plot individual points, set colors, and perform some special operations, such as
changing sizes or rotating picture parts.

We can draw horizontal and vertical lines by stating the direction and length
of the line in string. For example,

DRAW "R100"

produces a line of length 100, drawn to the right (R). This line will be drawn from
the last pixel position used in a program. If no point has yet been used, the initial
reference position is taken as the screen center: (160,100) in medium resolution or
(320,100) in high resolution. For high resolution, the string "RlOO" then creates a
line from (320,100) to (420,100), if no point has yet been referenced. To get lines
drawn in the other directions, we use the DRAW commands L (for left), U (for
up), and D (for down). The statement

DRAW "R100:U100:L100;D100"

gives us a box with 100 pixels on all sides. Semicolons separating the four
commands are used for clarity, but they can be omitted.

Variable names can be used to specify the line lengths, as

DRAW "R=L1; U=L2; L=L3; D=L4"

If each of the variable names LI, L2, L3, and L4 have been assigned the value
100, we get the same box as before. We must use semicolons following any
variable names.

Diagonal lines are drawn with the commands E (up and right), F (down and
right), G (down and left), and H (up and left). Using these commands, we get a
triangle with the following program sequence.

10 CLS: SCREEN 1

20 LI = 100: L2 = 50

30 DRAW "R=L1; H=L2: G=L2:"

Chapter 3 Making Pixel Pictures 49

We can draw lines in any direction with the command M X,Y, which plots
points from the last position referenced to position (X,Y). For example, line 30 in
the program sequence above could be replaced by

30 DRAW "M260,100: M210,50: M160,1 GO"

assuming that we are starting from the center of the screen. We cannot use
variable names with the M command. A plus sign (+) or minus sign (-) with the X
coordinate indicates relative coordinates. With relative coordinate specification,
line 30 would be written as

30 DRAW "M+100,0; M-50, -50; M - 50, 50"

Sometimes we might like to skip over to a new screen position before
drawing any further lines in a picture. We can do this by placing B in front of any
of the plotting commands. This means move without plotting to the position
indicated. The statement

DRAW "R25; BRIO; R25; BRIO; R25"

gives us a series of three horizontal lines with 10 units between each line. Our
triangle can be drawn from the point (110,125) with

30 DRAW "BM110,125; R=L1; H=L2; G=L2;"

Here, the BM command sets the reference point to (110,125).
Another available prefix for the plotting commands is N. This prefix has the

effect of returning the reference point to the original position. Thus

DRAW "NE100; F100"

plots two diagonal lines from the same point.
Color is set with the C command. We can specify the color code, following

C, as a constant or as a variable. We once more plot the triangle, this time as a
solid red figure on a blue background:

10 OLS: SCREEN 1

20 COLOR 1,0
30 RED = 2: LI = 100; L2 = 50

40 DRAW "BM110,125;C=RED;R=L1 ;H=L2;G=L2;"
50 PAINT (160,100),RED,RED

Command C sets the color for all subsequent commands, including additional
DRAW statements, until a new color is set. Color values are 0, 1,2, and 3 in
SCREEN 1 (corresponding to palette choices), and 0 and 1 in SCREEN 2.

Program 3-14 gives an example of picture construction using the DRAW
statement. The sailboat in Fig. 3-8 is the output.

Picture parts can be made larger or smaller with the S (scale) command. All
following commands will then be scaled by the amount specified after S until
another scale command is given. The number following S must be an integer in the

50 BASIC GRAPHICS PART II

Program 3-14 Sailboat constructed with the DRAW statement.

10 'PRtX3RAM 3-14. SAILBOAT USING DRAM STATEMENT

20 SCREEN 1: COLOR 0,0i CLS
30 DRAW "BM60,140R200e30L140H30'' 'MAKE BOAT BOTTOM
40 DRAW ■■BM1S0,130R110H110D120" 'MAKE LARBE SAIL
50 DRAW "BMISO,130L80E80" 'MAKE SMAtO. SAIL
60 IF INKEY* » "" THEN 60
70 END

range 1 to 255. This number is divided by 4 to produce a scaling factor for the
subsequent plotting commands. The statements

160 S$ = "BM125,125:S2:L100"
170 DRAWS$

will draw a horizontal line of length 50 from position (125,125) to the left. The
scaling factor for this case is 1/2 (2 divided by 4), so that the specified length of 100
is reduced to 50. Scaling factors can be chosen to have values from 1/4 to nearly 64
(as long as we do not enlarge objects beyond the screen size) in steps of 1/4. We
will discuss scaling in more detail in Chapter 7. Program 3-15 gives an example of
the use of scaling with the DRAW statement. The output is shown in Fig. 3-9.

We have also used the X, or substring command, in Prog. 3-15. This lets us
define a particular picture part as a separate string and include it in one or more
places within a DRAW statement. In this way, we can set up picture subparts and
display the subparts in different places with different scalings. The turrets of the
castle of Fig. 3-9 were created in this way.

Figure 3-8 Sailboat displayed by Prog. 3-14, using DRAW statements.

Chapter 3 Making Pixel Pictures 51

Program 3-15 Picture construction (castle) and scaling, using the DRAW statement.

10 'PROGRAM 3-15. DRAW STATEMENTS USED TO DRAW CASTLE

20 SCREEN 1; COLOR 0,0: CLS
30 TURRET* = "UIO RIO DIO RIO"

40 TURRET* = TURRET* + TURRET* + "UIO RIO DIO"

50 MAINTURRET* = TURRET* + "RIO" + TURRET* + "RIO" + TURRET*

60 LEFTSMALLTURRET* = "S2" + TURRET* + "S4 R5"

70 RIGHTSMALLTURRET* = "R5 S2" + TURRET* + "S4"

80 FLAG* = "U15; M 180,12; M 160,15"
90 DRAW "BM75,190 L50 U90; X TURRET*; D15 R20 U30; X LEFTSMALLTURRET*;'
100 DRAW "U30 Ml60,20; X FLAG*; D5 Ml95,55 D30; X RIGHTSMALLTURRET*;"
110 DRAW "D30 R20 U15 X TURRET*; D90 L220 U55; X MAINTURRET*; D55"
120 DRAW "BM140,190; U20; M150,162; M160,160; M170,162; M180,170; D20"
130 WINDOW* = "R5 DIO L5 UIO"

140 DRAW "BM100,90; X WINDOW*;"
150 DRAW "BM110,90; X WINDOW*;"
160 DRAW "BM205,90; X WINDOW*;"
170 DRAW "BM256,105; S5; X WINDOW*;"
180 DRAW "BM276,105; X WINDOW*;"
190 DRAW "BM130,170; S3; X WINDOW*;"
200 DRAW "BM120,170; X WINDOW*;"
210 PAINT (160,140),3,3
220 PAINT {160,1001,2,3
230 IF INKEY* = "" THEN 230

240 END

Figure 3-9 A picture constructed with DRAW statements and the scaling command by Prog. 3-15.

I I

52 BASIC GRAPHICS PART II

Draw command Purpose

R Plot points to the right.
L Plot points to the left.
U Plot points up.
D Plot points down.
E Plot points diagonally to the right and up.
F Plot points diagonally to the right and down.
G Plot points diagonally to the left and down.
H Plot points diagonally to the left and up.

MX,Y Plot points to coordinate position (X,Y).
B Move without plotting (prefix to other commands).
N Plot, then return to original position (prefix to other commands).
C Set color.

s Set scale factor parameter.
A Set rotation angle.

X string Specify a substring.

Figure 3-10 Table of commands that can be used with the DRAW statement.

Picture parts can be rotated with a rotation command, A. For now, we will
simply note that we can specify rotation angles in steps of 90, 180, or 270 degrees
with the numbers 1, 2, or 3 following A. In Chapter 7 we will spend more time
discussing rotations and other transformations of pictures.

Figure 3-10 provides a listing of the DRAW commands and prefixes, stating
the function of each.

3-6 PRINTING AND SAVING PIXEL PICTURES

To reproduce our screen displays on paper, we need a printer with graphics
capability. Additionally, we need a program to convert and transfer the informa
tion stored in our screen buffer to the printer. Several versions of such graphics
"screen-dump" programs are available for the PC.

The BSAVE and BLOAD commands can be used to save pictures on tape or
disk and to load them back into the screen buffer. Their operation with pixel
graphics is the same as that discussed in Section 2-5 for character graphics.

PROGRAMMING PROJECTS

3-1. Write a program that clears the screen and draws the word "HELLO" (or any other
word) in the center of the screen, using the LINE command. Include a box border
around the word.

3-2. Modify Prog. 3-10 so that a solid line is drawn for all values of the slope of the line.

3-3. Modify Prog. 3-10 to draw a line with given slope and Y-intercept from any specified
point on the screen to the edge of the screen.

Chapter 3 Making Pixel Pictures 53

3-4. Using the LINE statement, write a program that inputs any slope, Y-intercept, line
length, and starting position and then draws the required line. Provide checks in the
program to avoid drawing beyond the screen limits.

3-5. Write a program to produce a screen pattern formed with overlapping, randomly
placed rectangles of various sizes. Use the random number generator commands to
select the position for one comer of each rectangle and its width and height.

3-6. Modify Project 3-5 to color the interior of each rectangle randomly. The center of
each randomly chosen rectangle can be used as the interior point for the PAINT
command: (Xl+W/2,Yl+H/2), where (XI,Yl) is the location of the upper left
comer of the rectangle with width W and height H. Alternatively, we could use the
method of Prog. 3-12 to color the interiors.

3-7. Modify Prog. 3-11 so that the program automatically finds an interior point of any
given polygon for the PAINT statement. An interior point can be found in several
ways. One way is to check each X position along a horizontal screen line with the
POINT function to determine when we are inside the polygon boundaries. We can
do this by scanning along the next line down from the topmost vertex. That is, if the
topmost vertex has a Y value of 10, we check each X position along the horizontal
line with Y = 11.

3-8. Modify Prog. 3-12 to fill in the rectangle with dots, where the spacing between dots
is specified by input. A random spacing of dots and a random pattem of overlapping
rectangles could also be displayed.

3-9. Write a program to produce the shading patterns shown in Fig. 3-6.

3-10. Lay out a figure or scene on graph paper and write a program to display the layout,
using the LINE, PSET, and COLOR commands. Provide various shading and color
pattems in the figure, and correct for any resolution differences.

3-11. Write a program to produce the layout described in Project 3-10, using the DRAW
and PAINT commands.

Chapter 4

Plotting Graphs

Data listed in tables are usually harder to interpret than when presented in graph
form. Graphs allow us to grasp the information content of a set of numbers more
quickly. They can clearly show various data relationships that are often difficult to
pick out in a simple listing of the numbers. We can construct graphs using either
the PRINT statement or the special graphics commands introduced in Chapter 2.

4-1 FUNDAMENTALS: DATA TREND GRAPHS

An elementary type of graph is one that shows the general trend or "shape" of the
data, with little or no explicit labeling. A trend graph for the data listed in Fig. 4-1
would provide an overall picture of sales fluctuations during the year. We could
orient this graph so that sales magnitudes are represented either horizontally or
vertically. Figure 4-2 shows these two graph orientations. In Fig. 4-2(a), months
would be counted down from the top of the screen, and sales magnitudes would be
scaled to fit across the screen, from left to right. Figure 4-2(b) illustrates the case
in which months would be counted across from the left of the screen and

magnitude scaled vertically.

CHARACTER GRAPHICS METHOD

We can construct a trend graph for the data in Fig. 4-1 by printing characters in
screen positions that correspond to relative sales magnitudes. Suppose that we
want the data magnitudes represented horizontally on an 80-character screen. We
will represent months along every other print line from the top of the screen and
use the character positions 25 through 75 along each print line to represent sales

54

Chapter 4 Plotting Graphs 55

Month

Jan

Feb

Mar

Apr
May
Jun

Number of

items sold

210

150

99

250

183

352

Month

Jul

Aug
Sep
Oct

Nov

Dec

Number of

items sold

410

390

300

651

724

516

Figure 4-1 Sample sales data table.

magnitudes. The maximum sales data value will then correspond to position 75 on
the twenty-first line from the top of the screen (for November), and the minimum
sales data value will correspond to position 25 on line 5 (for March).

Scaling each of the data values to be in the interval 25 to 75, is accomplished
with the following calculation:

Print position = (data value - minimum data value)
along a line

print position range
(4-1)

data range

-I- minimum print position

For our sample data, the data range is 724 minus 99, or 625. The print position
range is 75 minus 25, or 50, and we have chosen 25 as our minimum print position.
Horizontal print position for each of the data values is then found as

50
Print position = (data value - 99) * + 25

625

or

P = (data - 99) * 0.08 + 25

Program 4-1 uses this equation to produce the data trend graph of Fig. 4-3. Each

Figure 4-2 The sample sales data magnitudes of Fig. 4-1 can be graphed (a) horizontally or (b)
vertically.

Magnitude

Magnitude

Month

(a) (b)

56 BASIC GRAPHICS PART II

Program 4-1 Horizontal data trend graph using character graphics.

10 'PROGRAM 4-1. HORIZONTAL DATA TREND USING CHARACTER GRAPHICS
20 'SALES VALUES ARE SCALED TO LIE BETWEEN COLUMNS 25 - 75.
30 'MONTHS ARE COUNTED DOWN FROM THE TOP, USING EVERY OTHER LINE.
40 SCREEN O: WIDTH GO: LOCATE ,,0: CLS:
50 RANGERATIO = (75 - 25) / <724 - 99)

60 FOR MONTH = 1 TO 12

70 READ SALES

80 POSITION = INT((SALES - 99) « RANGERATIO + 25 + .5)
90 PRINT TAB(POSITION);
100 IF MONTH <>12 THEN PRINT: PRINT 'DON'T SCROLL AFTER DECEMBER
110 NEXT MONTH

120 DATA 210,150,99,250,183,352,410,390,300,651,724,516
130 IF INKEY« = THEN 130

140 END

print position is calculated and rounded to the nearest whole number using the
INT function. The program can be generalized for any set of data and display size
by using calculation (4-1) with the maximum and minimum data values and print
positions as input.

We have used the command LOCATE ,,0 in statement 40 of Prog. 4-1. This
turns the cursor off so that it is invisible. Otherwise, we would see the blinking
cursor during the creation of our graph and while we were in the hold loop of line

Figure 4-3 Data trend graph produced by Prog. 4-1, with the sales magnitudes of Fig. 4-1
represented horizontally.

Chapter 4 Plotting Graphs 57

130. The cursor is automatically turned back on when execution of the program is
finished.

To produce graphs that have magnitudes represented vertically (Fig. 4-2(b)),
we make two changes to Prog. 4—1. First, for each data item, we need to
determine the proper print line that will correspond to the magnitude of the data
value. Second, we select a position along this line based on which month
corresponds to the data item. Each data value is represented by printing a
character at this row and column position.

For the data of Fig. 4-1 and using WIDTH 40, we now choose months to be
in every third column starting at 3 and continuing through 36. Sales magnitudes
are plotted using lines 1 through 20. Then the largest magnitude (724) is plotted at
location 33 (for November) on the print line at the top of the screen (print line 1).
Position along each print line is determined by 3 * M, where M is the number of
the month (January = 1, February = 2, and so on). To scale the sales magnitudes
onto the 20 print lines, we use the general rule:

Print

line = (maximum data value - data value)
number /4_2\

print line range
He

data range

+ minimum print line number

Figure 4-4 Data trend graph produced by Prog. 4-2, with the sales magnitudes of Fig. 4-1
represented vertically.

58 BASIC GRAPHICS PART II

Program 4-2 Vertical data trend graph using character graphics.

10 'PRCH3RAM 4-2. VERTICAL DATA TREND USINB CHARACTER GRAPHICS
20 'SALES VALES ARE SCALED TO PRINT BETWEEN LINES 1 - 20.
30 'MONTHS USE EVERY 3RD COLUMN STARTING AT 3 AND

40 'CONTINUING ACROSS TO 36.

SO SCREEN O: WIDTH 40: LOCATE ,,0: CLS
60 RANGERATIO = (20-1) / (724 - 99)

70 FOR MONTH = 1 TO 12

80 READ SALES

90 ROW = INT((724 - SALES) * RANGERATIO + 1 + .5)

lOO COLUMN = MONTH * 3

110 LOCATE ROW,COLUra4
120 PRINT

130 NEXT MONTH

140 DATA 210,150,99,230,183,352,410,390,300,651,724,516
150 IF INKEY« = "" THEN 150

160 END

In this example, we have chosen a print line range of 19 (or 20 — 1), and a
minimum print line number of 1. Figure 4-4 shows the vertical graph produced by
Program 4-2. The LOCATE statement is used in this program to position each
character on the graph.

Program 4-2 could be generalized to allow a variable graph position. The
desired number of lines and column positions along each line would then be
entered as input. Data range and the maximum data value would be determined by
the program as the data are entered.

PIXEL GRAPHICS METHOD

Using the graphics commands to form data graphs means that we now think of the
screen in terms of coordinates instead of print lines and character positions. We
can replot the graph produced by Prog. 4-2 using the PSET command to plot
pixels instead of characters. With a resolution of 320 by 200, we can position the
graph so that we use the pixel rows from 0 to 160 and the pixel columns from 20 to
240. Months will be plotted across the screen at every twentieth pixel, starting
with location 20. Data magnitudes will be scaled between the vertical pixels 0 and
160, using the following calculation:

Y coordinate = (maximum data value - data value)

vertical pixel range

data range

+ minimum Y coordinate

Program 4-3 produces the resulting vertical data trend graph using pixels. Plotting
the data so that magnitudes are represented horizontally is a matter of interchang
ing the role of the X and Y coordinates, taking screen dimensions into account.

Line segments connecting the data points can be included easily when we
plot graphs with pixels. Program 4-4 procluces the line graph shown in Fig. 4-5.

Program 4-3 Vertical data trend graph using point plotting.

lO 'PROGRAM 4-3. VERTICAL DATA TREND USING PIXELS
20 'SALES VALUES ARE SCALED TO PIXELS O - 160-
30 'MONTHS USE EVERY 20TH PIXEL STARtiNG AT 20
40 'AND CONTINUING ACROSS TO 240-

50 SCREEN 1: CLS

60 RANGERATIO = (160 - O) / (724 - 99)
70 X = 20

80 FOR MONTH = 1 TO 12

90 READ SALES

100 Y = INT((724 - SALES) * RANGERATIO + -5)
110 PSET (X,Y)
120 X = X + 20

130 NEXT MONTH

140 DATA 210,150,99,250,183,352,410,390,300,651,724,516
150 IF INKEY* = "" THEN 150
160 END

Program 4-4 Vertical data trend graph using line drawing.

10 'PROGRAM 4-4- DATA CHART WITH CONNECTED LINES
20 'SALES VALUES ARE SCALED TO PIXELS O - 160-
30 'MONTHS USE EVERY 20TH PIXEL STARTING AT 20
40 'AND CONTINUING ACROSS TO 240- SALES

50 'VALUES OF CONSECUTIVE MONTHS ARE CONNECTED.
60 SCREEN Is CLS

70 RANGERATIO = (160 - O) / (724 - 99)

80 X = 20

90 READ SALES

lOO Y - INT((724 - SALES) * RANGERATIO + -5)

110 PSET (X,Y)
120 FOR MONTH = 2 TO 12

130 X = X + 20

140 READ SALES

150 Y = INT((724 - SALES) * RANGERATIO + -5)
160 LINE - (X,Y)
170 NEXT MONTH

ISO DATA 210,150,99,250,183,352,410,390,300,651,724,516
190 IF INKEY* = THEN 190
200 END

Figure 4-5 Data trend graph produced by Prog. 4-4, with the sales magnitudes of Fig. 4-1 plotted
vertically and joined with straight lines.

A
/

V-

/\ /
/ \/

/

59

60 basic graphics part II

4-2 LABELED GRAPHS

The fundamental techniques of the preceding section are useful for quickly
plotting simple graphs and displaying data trends. But data trend graphs convey
very little quantitative information. Usually, we are interested in determining
more precise information from graphs. Labeling of the data point coordinates
along the coordinate axes allows us to determine more exact relationships and to
interpolate between the data points.

Labeled graphs require some modification to the data scaling equations of
(4-1), (4-2), and (4-3). The data range in these equations now corresponds to the
labeled graph range. If we plot a data set with a range from -96 to 89 in a graph la
beled from —100 to 100, the data range to be used is 200 (the range of the graph).
Similarly, the minimum data value would be -100, and the maximum data value
would be 100.

Coordinate axes for the X and Y directions can be generated with the ASCII
character codes 179, 196, and 197, using the PRINT statement. We have many
other character choices, including double lines (code 186) and thicker lines (codes
220 through 223). A labeled graph using single lines is constructed by Prog . 4-5
and displayed in Fig. 4-6.

Program 4-5 Labeled data graph using character graphics.

10 'PROGRAM 4-5. LABELED DATA CHART USING CHARACTER GRAPHICS
20 'SALES VALUES ARE SCALED TO COLUMNS 12 - 76- MONTHS USE
30 'EVERY PRINT LINE, STARTING FROM THE TOP OF THE CHART.
40 'ASCII CHARACTER CODES 179, 196, AND 197 ARE USED TO MAKE
50 'LINES AND ASCII CODE 219 TO MAKE BARS.
60 SCREEN 0: WIDTH 80: LOCATE ,,0: CLS
70 PRINT TAB(23)5 "ANNUAL SALES TREND (thousands)"
80 PRINT: PRINT

90 PRINT TAB(12);
100 FOR REPEAT = 1 TO 8

110 PRINT CHR*(197); STRING*(7,196);
120 NEXT

130 PRINT CHR*(197)

140 PRINT TAB(12); CHR*(179); TAB(76); CHR*(179)
150 RANGERATIO = (76 - 12) / (800 - O)
160 FOR MONTH = 1 TO 12

170 READ MONTHNAME*, SALES
180 POSITION = INT((SALES - O) * RANGERATIO + 12 +.5)
190 PRINT MONTHNAME*; TAB(12); CHR*(179); TAB(POSITION); CHR*(2);

TAB(76); CHR*(179)
200 NEXT

210 PRINT TAB(12); CHR*(179); TAB(76); CHR*(179)
220 PRINT TAB(12);
230 FOR REPEAT 1 TO 8

240 PRINT CHR*(197); STRING*(7,196);
250 NEXT

260 PRINT CHR*(197)

270 PRINT

280 PRINT TAB(ll); O;: FOR REPEAT = 1 TO 8: PRINT STRING*(5," "); REPEAT;: NEXT
290 PRINT TAB(14);: FOR REPEAT = 1 TO 8: PRINT STRING*(5," "); 0;: NEXT
300 PRINT TAB(14);: FOR REPEAT = 1 TO 8: PRINT STRING*(5," "); O;: NEXT

Chapter 4 Plotting Graphs 61

Program 4-5 (cont.)

310 DATA "JANUARY",210,"FEBRUARY",150,"MARCH",99
320 DATA "APRIL",250,"MAY",183,"JUNE",352
330 DATA "JULY",410,"AUGUST",390,"SEPTEMBER",300
340 DATA "OCTOBER",651,"NOVEMBER",724,"DECEMBER",516
350 IF INKEY* = "" THEN 350

Pixel graphics oflFers a more flexible method for constructing coordinate axes
by drawing lines. A labeled graph is produced with this method by Prog. 4-6. The
resulting output is shown in Fig. 4-7.

In constructing labeled graphs, we should observe the following guidelines.
Labeling should be simple and to the point. Too much labeling can clutter the
graph and detract from its effectiveness to convey information. For clear labeling,
larger letters and numbers are more effective than small print. If possible,
identifying labels should be placed on the lines or in the areas they are meant to
identify instead of placing them in separate tables or legends. Divisions for the
coordinate axis referencing magnitudes should be chosen in easily comprehended
steps, such as multiples of 10 rather than multiples of 8. Including a zero point aids
in interpretation. The divisions should be spaced and labeled with tic marks to
make interpolation between data points easy. We should also construct data lines
to be thicker or more intense than the coordinate axes and grid lines. These ideas
were taken into consideration in the construction of the graph in Fig. 4-7.

Figure 4-6 Labeled graph with coordinate axes. Output by Prog. 4-5, using character graphics.

ANNUAL SALES TREND (thousands)

JANUARY

FEBRUARY

MARCH

APRIL

MAY

JUNE

JULY

AUGUST

SEPTEMBER

OCTOBER

NOVEMBER

DECEMBER

62 BASIC GRAPHICS PART I

Program 4-6 Labeled graph using line drawing.

10 'PROGRAM 4-6. LABELED DATA CHART WITH CONNECTING LINES
20 'SALES VALUES (in the range of O - 800) ARE SCALED TO PIXELS
30 '27 - 155. MONTHS USE EVERY 40 PIXELS, STARTING AT 148.
40 DIM X(12), y(12)
50 SCREEN 2s CLS

60 PRINT TAB(31); "ANNUAL SALES FIGURES"
70 LINE (128,27) - (128,155)
80 LINE (608,27) - (608,155)
90 'MAKE NOTCHES FOR SALES MAGNITUDES Sc CHART LINES

100 FOR Y = 27 TO 155 STEP 16

110 LINE (128,Y) - (608,Y)
120 NEXT

130 'LABEL THE NOTCHES

140 LOCATE 3,12s PRINT "Thousands"
150 ROW = 20

160 FOR SALESAMOUNT = 0 TO 800 STEP 100

170 LOCATE ROW,13s PRINT USING "#««"; SALESAMOUNT
ISO ROW = ROW - 2

190 NEXT

200 'MAKE NOTCHES FOR MONTHS

210 FOR COLUMN = 19 TO 74 STEP 5

220 LOCATE 20,COLUMNS PRINT "+";
230 NEXT

240 PRINT TAB(19);"J F M A M J J A S 0 N D"

250 PRINT TAB(19);"A E A P A U U U E c 0 E"

260 PRINT TAB(19);"N B R R Y N L G P T V C";
270 LOCATE 11,3s PRINT "MONTHLY"
280 LOCATE 13,3s PRINT " SALES"
290 'SCALE SALES VALUES

300 RANGERATIO = (156 - 28) / (800 - O)

310 XPOSITION = 148

320 FOR MONTH = 1 TO 12

330 X(MONTH) = XPOSITION

340 XPOSITION = XPOSITION + 40

350 READ SALES

360 Y(MONTH) = INT((800 - SALES) * RANGERATIO + 28 + .5)

370 NEXT

380 'DRAW SALES LINES

390 PSET (X(1),Y(1))
400 FOR MONTH = 2 TO 12

410 LINE - (X(MONTH),Y(MONTH))
420 NEXT

430 'MAKE LINE DOUBLE THICKNESS

440 PSET (X(1),Y(1) - 1)
450 FOR MONTH = 1 TO 12

460 LINE - (X (MONTH), Y (MONTH) - 1)
470 NEXT

480 DATA 210,150,99,250,183,352,410,390,300,651,724,516
490 IF INKEY« = "" THEN 490

500 END

Chapter 4 Plotting Graphs 63

ANNUAL SALES FIGURES

Thousantls

HONTHLY

SALES

Figure 4-7 Labeled graph with coordinate axes. Output by Prog. 4-6, using pixel graphics methods.

4-^ BAR GRAPHS: COLOR AND SHADING

A useful technique for making data graphs more easily interpreted is the plotting
of data magnitudes as "bars" instead of points. This technique is illustrated in
Prog. 4-7, using PRINT statement methods. Figure 4-8 shows the resulting bar
graph. We used character codes 177 and 219 to get bars with alternate shadings.
This helps to distinguish the different bars. We could use other character codes,

Program 4-7 Labeled bar graph using character graphics.

10 'PROGRAM 4-7. LABELED BAR GRAPH USING CHARACTER GRAPHICS

20 'SALES VALUES ARE SCALED TO COLUMNS 12-76. MONTHS USE

30 'EVERY PRINT LINE, STARTING FROM THE TOP OF THE CHART.
40 'ASCII CHARACTER CODES 179, 196, AND 197 ARE USED TO MAKE
50 'LINES AND ASCII CODE 219 TO MAKE BARS.

60 SCREEN O: WIDTH 80s LOCATE ,,0: CLS
70 PRINT TAB(28); "ANNUAL SALES TREND"
80 LOCATE 4,12
90 FOR REPEAT = 1 TO S

100 PRINT CHR*(197); STRING*(7,196);
110 NEXT

120 PRINT CHR*(197)

130 PRINT TAB(12); CHR*(179); TAB<76); CHR*(179)
140 RANGERATIO = (76 - 12) / (800 - O)

BASIC GRAPHICS PART II

Program 4-7 (cont.)

CODE =177

FOR MONTH = 1 TO 12

READ MONTHNAME*, SALES
POSITION = INT((SALES - 0) » RANGERATIO + 12 +.5)
PR I NT MONTHNAME« ; TAB (12); CHR«(17<?);
IF CODE =177 THEN CODE =219: GOTO 220 'USE ALTERNATE
IF CODE = 219 THEN CODE =177 'SHADING PATTERNS
FOR COLUMN = 13 TO POSITION

PRINT CHR»(CODE);
NEXT

PRINT TAB(7&); CHR*(179)
NEXT

PRINT TAB(12); CHR«(179); TAB(76); CHR«(179)
PRINT TAB(12);
FOR REPEAT = 1 TO 8

PRINT CHR«(197); STRING*(7,196);
NEXT

PRINT CHR*(197)

PRINT

PRINT TAB(ll); O;: FOR REPEAT = 1 TO 8; PRINT STRING*(5," "); REPEAT;; NEXT
PRINT TAB(14);: FOR REPEAT = 1 TO 8: PRINT STRING»(5," "); O;; NEXT
PRINT TAB(14);: FOR REPEAT = 1 TO 8: PRINT STRING*(5," "); O;: NEXT
DATA "JANUARY",210,"FEBRUARY",150,"MARCH",99
DATA "APRIL",250,"MAY",183,"JUNE",352
DATA "JULY",410,"AUGUST",390,"SEPTEMBER",300
DATA "OCTOBER",651,"NOVEMBER",724,"DECEMBER",516
IF INKEY* = "" THEN 410

END

such as 176 and 178, for shading, or we could plot solid bars in white and high-
intensity white. With the Color/Graphics board, we could produce bars of
alternate colors (see Fig. E of the insert). If there is enough room on the graph, we
can leave some space between the bars to help distinguish them.

Figure 4-8 Labeled bar graph produced by Prog. 4-7, using character graphics.

ANNUAL SALES TREND

Chapter 4 Plotting Graphs 65

Program 4-8 Labeled bar graph using line drawing.

10 'PROGRAM 4-8. LABELED VERTICAL BAR CHART USING PIXEL GRAPHICS

20 'SALES VALUES (in the range of O - 800) ARE SCALED TO
30 'PIXELS 28 - 156. MONTHS USE EVERY 40 PIXELS, STARTING
40 'AT 136.

50 DIM X(12), Y(12)
60 SCREEN 2: CLS

70 PRINT TAB(31); "ANNUAL SALES FIGURES"
80 'MAKE NOTCHES FOR SALES MAGNITUDES

90 FOR Y = 28 TO 156 STEP 8

100 LINE (125,Y) - (131,Y)
110 NEXT

120 'LABEL THE NOTCHES

130 LOCATE 3,12: PRINT "Thousands"
140 ROW = 20

150 FOR SALESAMOUNT = 0 TO 800 STEP 100

160 LOCATE ROW,13: PRINT USING SALESAMOUNT
170 ROW = ROW - 2

180 NEXT

190 'MAKE NOTCHES FOR MONTHS

200 FOR COLUMN = 19 TO 74 STEP 5

210 LOCATE 21,COLUMN: PRINT "+";
220 NEXT

230 LINE (128,24) - (608,163),,B
240 PRINT TAB(19);"J F M A M J J A S O N D"
250 PRINT TAB(19);"A E A P A U U U E C O E"
260 PRINT TAB(19);"N B R R Y N L G P T V C";
270 LOCATE 11,3: PRINT "MONTHLY"
280 LOCATE 13,3: PRINT " SALES"
290 'DRAW CHART BARS

300 RANGERATIO = (156 - 28) / (800 - O)

310 BEGINBAR = 136

320 FOR MONTH = 1 TO 12

330 READ SALES

340 Y = INT((800 - SALES) « RANGERATIO + 28 + .5)

350 LINE (BEGINBAR, Y) - (BEGINBAR-i'24, 156) , , BF
360 BEGINBAR = BEGINBAR -i- 40 'NEXT BAR IS 40 PIXELS OVER

370 NEXT

380 DATA 210,150,99,250,183,352,410,390,300,651,724,516
390 IF INKEY« = "" THEN 390

400 END

An example of the use of pixel graphics in the construction of bar graphs is
given in Prog. 4.8. This pixel bar graph is plotted in Fig. 4-9. We have made the
width of the bars in this graph greater than the spacing between the bars. This is a
good practice, as narrower bars are usually less effective.

Color in bar graphs can be used to provide greater clarity or to improve the
appearance of the graph. The choice of color combinations should be carefully
considered, as discussed in Section 2-4. Inclusion of too many colors or clashing
colors can actually decrease the effectiveness of the graph. Using colors in pixel
graphs means that we must create the graph in medium resolution, which gives us
double-wide characters. Since the labeling will now be bigger, we will have to
allow more of our screen space for the character strings when we use color, and
the area available for plotting a data set will be reduced. A color version of Fig. 4-
9 is shown as Fig. F of the color insert.

Various shading patterns can be used with color or black-and-white graphs.
As with colors, we should select shading patterns that do not detract from the

BASIC GRAPHICS

ANNUAL SALES FIGURES

Thousands

706

600

500

400

300

200

100

J F N A H J J A S 0 N D
A E A F A U U U E C O E
N B R R y N L G P T V C

Figure 4-9 Labeled bar graph produced by Prog. 4-8, using pixel graphics.

graph's effectiveness. Bizarre or clashing patterns should be avoided. If adjacent
areas are to be shaded, graduating the shading used from darkest to lightest is
most effective. Program 4-9 produces a graph shaded according to this scheme, as
shown in Fig. 4-10.

Bar charts can be constructed using a combination of pixel and character
methods. We draw the graph outline using the LINE (or DRAW) statement and

Program 4-9 Shaded bar graph using pixel graphics.

10 'PROGRAM 4-9. SHADED COLUMN CHART USING PIXEL GRAPHICS

20 'SALES VALUES (in the range o-f O - 800) ARE SCALED TO
30 'PIXELS 28 - 156. EACH QUARTER USES 64 PIXELS ACROSS,
40 'STARTING AT 160.

50 SCREEN 2: CLS

60 PRINT TAB(28); "QUARTERLY SALES BY REGION"
70 LINE (128,24) - (608,162),,B 'MAKE BOX FOR CHART
80 FOR Y = 36 TO 156 STEP 8 'MAKE NOTCHES FOR LABELING

90 LINE (125,Y) - (131,Y)
100 NEXT

110 ROW = 20

120 FOR SALESAMOUNT = O TO 30 STEP 10 'LABEL THE NOTCHES

130 LOCATE ROW,13: PRINT USING "##"5 SALESAMOUNT
140 ROW = ROW - 5

'MAKE BOX FOR CHART

'MAKE NOTCHES FOR LABELING

'LABEL THE NOTCHES

SALESAMOUNT

.iilillIII

Chapter 4 Plotting Graphs 67

Program 4-9 (cont.)

150 NEXT

160 'LABEL QUARTERS

170 LOCATE 23,22: PRINT " FIRST SECOND THIRD FOURTH"
180 PRINT TAB<22); "QUARTER QUARTER QUARTER QUARTER";
190 LOCATE 12,3: PRINT "SALES"
200 LOCATE 13,1: PRINT "(millions)"
210 LOCATE 8,67: PRINT "WEST" 'LABEL REGIONS
220 LOCATE 13,67: PRINT "SOUTH"
230 LOCATE 18,67: PRINT "MIDWEST"
240 'CONSTRUCT BARS, ONE FOR EACH QUARTER
250 RANGERATIO = (156 - 36) / (30 - O)

260 XLEFT = 160

270 XRIGHT = XLEFT + 64

280 FOR QUARTER = 1 TO 4

290 YBOTTOM =156

300 'ADJUSTMENT IS TO FIX VALUE YTOP (THE SCALED SALES MAGNITUDE)

310 'FOR EACH REGION. ADJUSTMENT IS NECESSARY SINCE THE SHADED

320 'AREAS REPRESENTING QUARTERLY SALES FOR EACH REGION ARE STACKED

330 'ON TOP OF EACH OTHER.

340 ADJUSTMENT = O

350 FOR DISTRICT = 1 TO 3

360 READ SALES

370 'CONVERT TO MILLIONS

380 SALES = SALES / 1000000!

390 VTOP = INT((30 - SALES) t RANGERATIO + 36 + .5)
400 'ADJUST YTOP BY ADJUSTMENT - THE AREA THAT HAS ALREADY

410 'BEEN TAKEN UP BY PREVIOUS REGIONS SALES MAGNITUDES.

420 YTOP = YTOP - ADJUSTMENT

430 LINE (XLEFT,YTOP) - (XRIGHT,YBOTTOM),,B
440 'FILL IN UPPER RIGHT TRIANGLE

450 FOR XI = XRIGHT TO XLEFT STEP -DISTRICT * 3

460 X = XI

470 Y = YTOP

480 PSET (X,Y)
490 Y = Y + 1

500 X = X - 1

510 IF Y <= YBOTTOM AND X > XLEFT THEN 480

520 NEXT

530 'FILL IN LOWER LEFT TRIANGLE

540 FOR Y1 = YTOP TO YBOTTOM STEP DISTRICT * 3

550 Y = Y1

560 X = XRIGHT

570 PSET (X,Y)
580 Y = Y + 1

590 X = X - 1

600 IF Y < = YBOTTOM AND X > XLEFT THEN 570

610 NEXT

620 'FIND ADJUSTMENT THAT WILL BE NEEDED FOR NEXT YTOP
630 ADJUSTMENT = 156 - YTOP

640 YBOTTOM = YTOP

650 NEXT

660 'ADVANCE ACROSS TO NEXT QUARTER'S COLUMN

670 XLEFT = XLEFT + 96

680 XRIGHT = XLEFT + 64

690 NEXT

700 DATA 7000000,11000000,4000000
710 DATA 8800000,10500000,7000000
720 DATA 4000000,12000000,8500000
730 DATA 7000000,11333000,10500000
740 IF INKEY* = "" THEN 740

750 END

68 BASIC GRAPHICS PART II

QUABTmy SALES BV BEGION

SALES
(Millions)

30 ■■

20 -

10 -

77777

i

NEST

SOUTH

NIBNEST

FIBST
QUABTEB

SECOND
QUABTEB

THIBD
QUABTEB

FOUBTH
QUABTEB

Figure 4-10 Bar graph with shading, output by Prog. 4-9.

shade the bar interiors using ASCII codes. Since each character is composed of
either an 8 by 8 pixel grid (Color/Graphics) or a 9 by 14 grid (Monochrome), we
would need to have our pixel lines set up along the character grid boundaries.
Otherwise, the characters will overlap the lines. With the Color/Graphics option,
we must draw our lines at pixel coordinates that are multiples of 8 units apart.
These coordinate positions are at the values 0, 8, 16, 32, and so on, in both the X
and Y directions.

PROGRAMMING PROJECTS

4-1. Write a program to display a trend graph with data magnitudes plotted horizontally.
Use the PRINT statement and the relationship in (4—1) to position the graph on the
screen. Input to the program will include the minimum and maximum print positions
and the minimum and maximum data values. Data range, print position range, and
print position for each data point will then be calculated. Allow for any number of
data points.

Chapter 4 Plotting Graphs 69

4-2. Write a program to display a trend graph with data magnitudes plotted vertically,
using the PRINT statement. Include a routine to determine the minimum and
maximum data values from the input data set, containing an arbitrary number of data
points. Input the minimum and maximum print line numbers and calculate print line
range and data range. Position each data point according to the relationship (4-2).

4-3. Modify Prog. 4-7 to produce a vertical bar chart with the PRINT statement methods.
Separate the bars and use a single character for a shading pattern. The ASCII code
for the shading character is to be set by input.

4-4. Write a program to plot a pixel data trend graph horizontally, with small, colored
rectangles placed at each data position. Input will include minimum and maximum
pixel positions. The minimum and maximum data values will be determined from the
input data set. Calculations will include the data range, horizontal pixel range, and X
coordinate for each data value.

4-5. Modify the program of Project 4-4 to join the plotted data values (rectangles) with
straight lines to produce a "curve" plot. Also draw coordinate axes with labeling.

4-6. Modify Prog. 4-9 to produce a horizontal bar graph. Allow colors and shading
patterns to be selected as input.

4-7. Set up a program to output a labeled, vertical bar chart. Use character codes to
shade the bar interiors. Calculated bar boundaries should be rounded to the nearest

character boundary to avoid overlapping characters with the bar outlines.

4-8. Write a program to interactively create a graph as the data are input. That is, the
points or bars will be displayed as each data point is entered. Minimum and
maximum data values can be entered first, together with the pixel range desired.

Chapter 5

Drawing Curves

Curved lines can be incorporated into our pictures and graphs using basic methods
introduced in the preceding chapters. A PRINT statement approximation of the
shape of a curved line is shown in Fig. 5-1. We determine character print
positions along the curve path from the equation for the curve or from a plot of the

Figure 5-1 Printed characters can be used to approximate the general shape of a curve.

fl fl

fl fl J1

70

Chapter 5 Drawing Curves 71

curve on graph paper. Since the PRINT statement method has limited effective
ness for displaying curves, our discussion will concentrate on pixel graphics
methods.

Pixel graphics provides a means for more accurate representation of curves.
We can approximate a curve shape with straight line segments or closely spaced
points. Figure 5-2 shows the effect of varying the line segment length on the
appearance of a curve. As the number of line segments included between the arc
endpoints is increased, the curve appears smoother. However, the more line
segments we use, the more time the system will take to create the display. In some
applications, such as animation, we want the display to be produced rapidly. So
we might accept fewer points and line segments in the approximation of a curve in
order to attain greater speed in the execution of the program.

5-1 CIRCLES

The most frequently encountered curve is the circle. This curve is useful as a
fundamental component in building pictures and in displaying pie charts (Section
5-4).

To plot a circle on a video screen, we need to specify its position and size
(Fig. 5-3). Position is specified as the coordinates (XC,Y(r) of the center of the
circle. Size is given by the radius R. We produce a circle by specifying these
parameters in the CIRCLE statement or in circle equations.

CIRCLE STATEMENT

A circle-drawing command is available to us in advanced BASIC. In its simplest
form, we can plot a circle on the screen with the statement

CIRCLE (XC,YC),R

Figure 5-2 Approximating a curve: (a) with 4 straight line segments and (b) with 8 straight line
segments.

./
/ /
.r

y

\ (a) \ (b)

72 BASIC GRAPHICS PART II

xc X

X axis

YC

Y axis

Figure 5-3 Circle with radius R and center coordinates (XC,YC).

Coordinates for the circle center (XC,YC) can be given in absolute or relative
form, and the radius must be a positive number. The following program segment
will produce a line of 13 circles diagonally down the screen, from left to right:

10 OLS: SCREEN 1

20 CIRCLE (30,10),10
30 FOR K = 1 TO 12

40 CIRCLE STEP (20,15),10
50 NEXTK

The last screen point referenced with the CIRCLE command is the circle center.
This is the point referenced by subsequent DRAW statements or statements
involving relative coordinates.

Additional parameters can be included in the CIRCLE command. We draw
circles in a palette color by adding the color code after the radius. The statement

CIRCLE (100,100),50,1

will draw a circle with center at (100,100), radius 50, and color code 1 (green in
palette 0, cyan in palette 1). If C is omitted, the circle will be drawn in color code 3
when in medium resolution.

We can also draw a circular arc with the CIRCLE command. This is

accomplished by giving the values for the beginning and ending angles of the arc
right after the color code specification. These angle values must be expressed in
radians, and they are measured counterclockwise from a horizontal line through
the circle center, as shown in Fig. 5-4. Radian angles vary from a value of 0 at the
horizontal to 6.283185 (2 * PI) after one complete revolution back to the
horizontal. For example,

CIRCLE (160,100),75„ 1.57080,4.71239

Chapter 5 Drawing Curves 73

X axis

Figure 5-4 A circular arc drawn with
the CIRCLE statement from a starting
angle AS to an ending angle AE. Angles
are measured in a counterclockwise

Y axis direction from the horizontal.

draws the left half of a circle with a radius of 75 in the center of the screen. The ra

dian values from 0 to 2 * PI correspond to the degree range 0 to 360. Thus the
circle segment above starts at 90 degrees and ends at 270 degrees. If either the
start or stop angle is omitted, a zero value is assumed for the parameter omitted.

On some monitors, a circle drawn with the CIRCLE command will appear
flattened in either the horizontal or vertical direction. In this case, we have an
ellipse instead of a circle. This is due to resolution differences in the X and Y
directions. A final parameter may be included to adjust for resolution differences
between monitors (or to produce ellipses). If we omit this parameter, a value of 5/6
is assumed in medium resolution and a value of 5/12 is assumed in high resolution.
This results in a "circle" plotted with a radius R in the X direction and a radius of
R * 5/6 (or R ♦ 5/12) in the Y direction. To adjust for resolution differences on any
monitor, we set this parameter to the aspect ratio for that monitor. For instance,
the statement

CIRCLE (160,100),75„„1

will produce a circle on monitors for which the X resolution is equal to the Y
resolution.

We can summarize the parameter options available with the CIRCLE
command as

CIRCLE (XC,YC),R,C,AS,AE,ASP — Plots a circular (or elliptical) arc
with center position (XC.YC), radius R, color C, beginning angle
AS, ending angle AE, and aspect ratio ASP. Each parameter may
be a numeric constant or expression, if noninteger, parameters
are rounded.

Parameters AS and AE specify starting and ending angles for circular arcs. These
angles may be specified in the range —2 * PI to 2 * PL Negative angles produce
circular arcs with the arc endpoints connected to the circle center. The parameter

BASIC GRAPHICS PART II

Program 5-1 Picture (man in the moon) constructed with circular arcs, using the CIRCLE
command.

'PROGRAH 5-1. MAN IN THE MOON FROM DIFFERENT-

SCREEN 2: CLS

CIRCLE (250,lOO),200,,4.9,1.4,.37
CIRCLE (250,100),90,,5.1,5.73,.8499999
CIRCLE (250,100),90,,.2,1.2,.8499999
CIRCLE (330,110),16,,2.2,5.2,.4
CIRCLE (320,90),20,,4.8,.5,.7
CIRCLE (250,100),90,,5.85,6.05,.8499999
CIRCLE (400,110),35,,1.9,4.7,.4
CIRCLE (345,115),45,,4.4,5.4,.35
CIRCLE (335,126),35,,4.5,6.05,.35
CIRCLE (360,90),9
PAINT (355,110),1,1
CIRCLE (400,110),35,0,1.9,4.7,.4
CIRCLE (360,90),18,0,.3,2.5,.9
IF INKEYS = ■■■■ THEN 160

END

SHAPED ARCS

'OUTER CURVE

'CHIN

'FOREHEAD

'NOSE

'BRIDGENOSE

'MOUTH-TO-NOSE

'CHEEK

'MOUTH TOP

'MOUTH BOTTOM

'EYE

'FILL IN INTERIOR

'CHEEK

'EYEBROW

ASP allows US to specify an aspect ratio to correct for resolution differences or to
produce elliptical arcs.

An example of the use of the CIRCLE command is given in Prog. 5-1 for a
monitor with an aspect ratio of 0.92 in medium resolution (0.46 in high resolution).
We construct the picture shown in Fig. 5-5 with circular arcs. The PAINT
command is used to fill the figure interior.

POINT-PLOTTING METHODS

For applications involving the movement of objects along circular paths, we will
need to know how to plot points along such paths. Also, these methods allow us to
produce circles if we do not have advanced BASIC.

Figure 5-5 A picture drawn with
circular arcs by Prog. 5-1, using the
CIRCLE command.

\

Chapter 5 Drawing Curves 75

X axis

Y axis

Figure 5-6 Coordinate positions (X,Y)
along a circular path are determined
from the radius R and values of the angle
A, measured clockwise from the

horizontal.

Circle equations can be stated in several forms. A convenient form is to
determine successive coordinate positions (X,Y) along the circle boundary from
the value of the angle measured clockwise from a horizontal line (Fig. 5-6). Using
this angle, we can calculate X and Y values from XC, YC, R, and A as

X = XC + R * COS(A)

Y = YC + R * SIN(A)

(5-1)

As with the CIRCLE command, angles must be specified in radians.
We can set up a circle-generating program, using the calculations in (5-1),

to display a circle approximated with either straight line segments or closely
spaced pixels. Program 5-2 accepts the parameters XC, YC,R,and the number of
points to be plotted as input and produces a "circle" formed with straight line
segments. The output is shown in Fig. 5-7 for two input sets.

Including fewer line segments along the boundary will speed up the drawing
of circles, but the individual lines may become more noticeable. Then we have a
polygon appearance instead of a circle (Fig. 5-7(a)). To modify our circle program
for resolution diflferences, we multiply the term R * SIN(A) by the ratio of Y
resolution to X resolution.

Plotting pixels along the circumference and omitting the connecting line
segments will also speed up circle drawing. This saves the time of drawing the line
segments, and the eye tends to fill in the curved path between pixels (Fig. 5-8) if
the pixels are not plotted too far apart. The more pixels we include, the better the
approximation. We obtain the best possible approximation to a circle when the
pixels are as close as we can plot them. In this case the pixels are plotted at the
adjacent grid points closest to the desired circular path. The distance between
adjacent grid points is 1 unit in the horizontal and vertical directions. Therefore,
the angular separation (in radians) of two grid points on a circle can be

76 BASIC GRAPHICS PART II

Program 5-2 Circle generator using line drawing and angular increments.

10 'PROGRAM 5-2. CIRCLE GENERATOR.

20 SCREEN O: WIDTH GO: CLS

30 INPUT "ENTER COORDINATES FOR CENTER OF CIRCLE"? XCENTER,YCENTER
40 IF XCENTER < O OR XCENTER > 319 OR YCENTER < O OR YCENTER > 199 THEN 200
50 INPUT "ENTER RADIUS OF CIRCLE"; RADIUS
60 IF RADIUS < 0 THEN 200

70 IF XCENTER + RADIUS > 319 OR XCENTER - RADIUS < O OR YCENTER + RADIUS > 199
OR YCENTER - RADIUS < O THEN 200

GO INPUT "ENTER NUMBER OF POINTS TO BE PLOTTED"; TOTALPOINTS
90 DA = 6.28318 / TOTALPOINTS '6.28318 IS RADIAN EQUIVALENT
100 SCREEN 1: CLS 'FOR 360 DEGREES
110 XFIRST = XCENTER + RADIUS: YFIRST = YCENTER

120 FOR ANGLE = DA TO 6.28318 STEP DA

130 XSECOND = XCENTER -i- RADIUS « COS (ANGLE)

140 YSECOND = YCENTER + RADIUS t SIN(ANGLE) * .9199999 '.92 IS RESOLUTION
150 LINE (XFIRST,YFIRST) - (XSECOND,YSECOND) 'CORRECTION
160 XFIRST = XSECOND: YFIRST = YSECOND 'SAVE NEW ENDPOINT
170 NEXT

180 LINE (XFIRST,YFIRST) - (XCENTER+RADIUS,YCENTER)
190 GOTO 240

200 PRINT "COORDINATE OUT OF RANGE. ENTER X TO EXIT OR R TO REPEAT."
210 INPUT C*

220 IF C* = "X" THEN 240

230 IF C* = "R" THEN 30

240 IF INKEY» = "" THEN 240

250 END

approximated as the inverse of the radius of the circle, as shown in Fig. 5-9. This
approximation works well for most cases. A smaller angular step size will ensure
that the circle contains no gaps, but then we duplicate the calculation and plotting
of some of the points.

Another time-saver we can employ is to take the symmetry of the circle into
account. We do not have to calculate every point on the curve individually. The
top half has the same shape as the bottom half; the left half has the same shape as
the right. This means that each X value on the circle corresponds to two Y values,
and each Y value corresponds to two X values, as illustrated in Fig. 5-10. Taking
this idea a step further, we can get four more points on the circle by interchanging

Figure 5-7 Circle approximated with (a) 8 straight line segments and (b) 16 line segments, by Prog.
5-2.

/ \ / \
I \/ \

() \ /
\ / \

s /
"v. J \ J

(a) (b)

Chapter 5 Drawing Curves 77

Figure 5-8 Circle plotted with pixels.

all the X and Y coordinates. That is, if (X,Y) is a point on the circle, then (Y,X) is
also on the circle. This means that we only have to calculate the points along one-
eighth of the circular path (a 45-degree segment). All of the remaining points on
the full circle can be obtained from these points. Figure 5-11 shows the eight
points that can be plotted on a circle by calculating only the position of the one
point at coordinates (9,2). The circle in this figure is centered at the origin of a
coordinate system. For a circle centered at position (XC,YC), we add XC to all X-
coordinate values and we add YC to all Y-coordinate values. This moves the

circle from the origin to the desired position. In Chapter 7 we discuss the
movement of displayed objects from one location to another in greater detail.

Program 5-3 illustrates the plotting method for circle generation that
calculates only the points in the interval from 0 to 45 degrees. The remaining
points are obtained by symmetry. We could eliminate the four point-plotting
statements at the beginning of Prog. 5-3 by starting the loop with the value A = 0.
This would result in fewer program statements, but each of the four initial points
would then be plotted twice. Some other points may be plotted twice in any case.
This occurs for larger values of R and is the result of the rounding process in the
PSET command. Also, this program will leave some small gaps in those circles
with small values of R. This is again due to the rounding of the coordinate values
to be plotted.

There are additional improvements we can make in the speed of circle-
drawing programs, but the methods we have discussed will be satisfactory for
most applications. We will look at some additional techniques when we consider
rotations in Chapter 7 and animation in Chapter 8.

Figure 5-9 Relation between angular
separation A (in radians) of two points

A « 1/R I plotted one unit apart and the radius R of
a circle passing through the two points.

78 BASIC GRAPHICS PART II

XI XC X2

Y1

YC

Y2

-I hI

- X axis

Y axis

Figure 5-10 Symmetry of a circle. Points 1 and 2 have the same X value; points 1 and 4 have the
same Y value.

We can fill the interiors of circles with colors or shading patterns by drawing
lines between the boundary points. For solid colors, we can use the PAINT
command available in advanced BASIC. If we draw the individual lines ourselves,
we can plot them vertically, horizontally, or diagonally. They can be closely
spaced for a solid color or spread out to make different shading patterns. We can
even draw the lines in random order and in various colors to provide special
effects.

Figure 5-11 If the pixel at location (9,2) is calculated to be on a circle, then all eight points shown can
be plotted.

(-2, 9) (2, 9)

Calculated

point

\ j
(-9, 2)1 \ ̂\(9, 2)

(-9, -2)\ y (9, -2)

i-2, -9) (2, -9)

Chapter 5 Drawing Curves 79

Program 5-3 Circle generator using point plotting and angular increments.

10 'PROGRAM 5-3. CIRCLE GENERATOR.

20 'CALCULATES POINTS ON THE CIRCLE FROM O TO 45

30 'DEGREES AND PLOTS ALL SYMMETRIC POINTS.

40 SCREEN Os WIDTH SO: CLS

50 INPUT "ENTER COORDINATES FOR CENTER OF CIRCLE"; XCENTER^VCENTER
60 IF XCENTER < O OR XCENTER > 319 OR YCENTER < O OR YCENTER > 199 THEN 330

70 INPUT "ENTER RADIUS OF CIRCLE"; RADIUS
80 IF RADIUS < O THEN 330

90 IF XCENTER + RADIUS > 319 OR XCENTER - RADIUS < O OR YCENTER + RADIUS > 199

OR YCENTER - RADIUS < O THEN 330

100 SCREEN 1: CLS

110 PSET (XCENTER-i-RADIUS, YCENTER)
120 PSET (XCENTER-RADIUS,YCENTER)
130 PSET (XCENTER, YCENTER-i-RADIUS t .9199999)
140 PSET (XCENTER,YCENTER-RADIUS * .9199999)
150 DA = 1 / RADIUS

160 RADIAN45 » 45 « 3.141593 / ISO 'FIND RADIAN EQUIVALENT FOR 45 DEGREES

170 FOR ANGLE » DA TO RADIAN45 STEP DA

180 DX » RADIUS t COS(ANGLE)

190 DY RADIUS t SIN (ANGLE)

200 GOSUB 230

210 NEXT

220 GOTO 360

230 'PLOT ALL SYMMETRIC POINTS

240 PSET (XCENTER-i-DX,YCENTER-i-DY t .9199999)
250 PSET (XCENTER-DX,YCENTER-i-DY t .9199999)
260 PSET (XCENTER-i-DX,YCENTER~DY t .9199999)
270 PSET (XCENTER-DX,YCENTER-DY t .9199999)
280 PSET (XC::ENTER-i-DY,YCENTER-i-DX « .9199999)
290 PSET (XCENTER-DY,YCENTER4-DX t .9199999)
300 PSET (XCENTER+DY,YCENTER-DX t .9199999)
310 PSET (XCENTER-DY,YCENTER-DX * .9199999)
320 RETURN

330 INPUT "COORDINATE OUT OF RANGE. ENTER X TO STOP OR R TO REPEAT."; C4
340 IF C4 = "X" THEN 370

350 IF C4 = "R" THEN 50

360 IF INKEY4 = "" THEN 360

370 END

To create shading patterns, we draw interior lines with endpoints on the
circle boundary. We can calculate these coordinate endpoints with equations (5-
1) or with the following equation, which eliminates the need for an angle
specification:

(X -XC) ̂ 2 + (Y -YC) ̂ 2 = R ̂ 2 (5-2)

For any X value chosen between XC - R and XC + R, we would calculate the Y
endpoints as Y1 = YC - SQR(R ̂ 2 ~ (X - XC) ̂ 2) and Y2 = YC + SQR(R ̂
2 - (X - XC) ̂ 2). A vertical line can then be drawn from (X,Y1) to (X,Y2).
Horizontal lines are obtained by choosing Y values between YC - R and YC + R
and then calculating the X endpoints for each Y value from (5-2) as XI = XC -
SQR(R ̂ 2 - (Y - YC) ̂ 2) and X2 = XC + SQR(R ̂ 2 - (Y - YC) ̂ 2). This
method can be useful for shading circles, but it is not a good way to draw the circle
boundary. It leaves gaps unless we join the pixels with line segments or use an X
(or Y) increment less than 1. But eliminating the gaps by taking small coordinate

80 BASIC GRAPHICS PART II

steps results in plotting many of the pixels more than once. To compensate for
resolution differences, we either adjust Y1 and Y2 by multiplying the SQR term in
the calculations by the aspect ratio, or we adjust XI and X2 by multiplying this
term by the inverse of the aspect ratio.

5-2 OTHER CURVES

Although the circle is the curve we will use most often, various other curves have
frequent applications in graphics. We can display these other curves with methods
similar to those employed for circles. Pixels on the curve (or the character print
positions) can be calculated from the equations for the curve and adjusted for the
resolution difference, if necessary. We can then plot the pixels at convenient
locations on the screen and join these pixels with line segments. For some curves,
we may be able to take symmetry or other considerations into account to reduce
computation.

The curves discussed in this section can be used to graphically model the
applications areas cited or, in some cases, to provide a curve fit to data tables.
Curve-fitting methods (such as the least-squares method) allow a smooth curve
representation to be plotted for a set of tabular data points.

ELLIPTICAL CURVES

An elliptical curve may be thought of as a variation of the circle, although in the
strict sense the circle is a special case of an ellipse. If we stretch a circle in one
direction (say, the X direction), we have an ellipse. Equations for the ellipse can
be written in the form

X = XC + RX * COS(A)
(D-d)

Y = YC -I- RY * SIN(A)

In these equations, A is the angle measured in radians from the horizontal in a
clockwise direction (Fig. 5-12). If RX > RY, the ellipse is longer in the X
direction. If RY > RX, the ellipse is longer in the Y direction. We have a circle for
the case RX = RY.

Elliptical curves are useful in many areas of graphics modeling. The orbits of
satellites are elliptical. Some machine and equipment parts have elliptical shapes.
A three-dimensional view of a cylinder will show the ends of the cylinder as
ellipses when viewed at an angle. Having the capability to readily display ellipses
increases our flexibility to produce a broad range of graphics applications
displays.

The programs to generate circles in Section 5-1 can be modified to produce
either circles or ellipses. We can accomplish this by replacing the equations in (5-
1) with the more general equations in (5-3). In advanced BASIC, we can use the

Chapter 5 Drawing Curves 81

xc

YC

X axis

Y axis

Figure 5-12 An ellipse plotted from equations (5-3) with RX > RY and center at coordinates
(XC.YC).

CIRCLE command to get an ellipse by altering the value of the parameter ASP.
To get an ellipse with radius RX in the X direction and radius RY in the Y
direction, we multiply ASP by the ratio RY/RX and set R either to RX or to RY
depending on whether this product is less than 1 or greater than 1. Thus if RY is
twice the size of RX, we multiply ASP by 2. Then, if 2 * ASP is greater than 1, we
set R to RY. Otherwise, we set R to the value of RX.

SINE CURVES

We can write the general equation for a sine curve as

Y = H * SIN(W * X + D) (5-4)

Figure 5-13 shows a plot of the sine curve drawn on a conventional coordinate
reference system. The frequency W specifies the number of oscillations (or
cycles) of the curve for a given range of X. The parameter D specifies the
displacement (shift) of the curve to the right or left. When D is set to a value of
zero, we have the standard sine curve, and D = PI/2 produces the standard cosine
curve. Figure 5-14 plots three cycles of the sine curve for parameter values H =
50, W = 2 * PI/50, D = 0 over the range X = 0 to X = 150. This curve is produced
by Prog. 5-4.

Output from Prog. 5-4 is obtained by taking unit steps in the X direction,
calculating the Y values, and joining the resulting points with line segments. This
program does not consider the symmetry of the function. However, every one-
quarter cycle of a sine curve can be repeated from the points between X = -D/W
and X = (PI/2 - D)/W: the "first quadrant." That is, if we know that (X,Y) is a
point on the sine curve in the first quEidrant, then the following points are also on

82 BASIC GRAPHICS PART II

Y axis

y = H

\ / \
\ / \

X = -D/W / \ / ^
\
\
\

\ /x = (2.PI-D)/W

I
I

II

>-

X axis

Figure 5-13 Standard sine curve of equation (5-4). One cycle of the curve is plotted between X
values of —D/W and (2*PI-D)/W, while the Y coordinate oscillates between a maximum value of H and
a minimum value of -H.

the curve for the first complete cycle: (PI - X,Y), (3 * PI/2 - X,-Y), (2 * PI - X,
-Y). These symmetry points can be plotted repeatedly through as many cycles as
we wish to display without having to recompute values from equation (5-4).

Sine curves are useful in graphics applications involving repeated motion.
These applications include simulating voice patterns, music, the vibrations of a
spring, the bouncing of a ball, or the swing of a pendulum. In the case of a spring
or ball we also have to account for friction. The amplitude of the motion decreases
with each cycle. We can model this decrease in amplitude by multiplying the sine
function in (5-4) by the exponential function EXP(-K * X). The constant K
determines the rate at which the amplitude decreases. A value of 0.1 for K will
decrease the amplitude by a factor of approximately 1/2 after one cycle.

A

\
I I .1 1,

A A

l \ \

' ̂ \ I \ I
I I M
i. ./ i. ./

1 /
i /
\ I
u

Figure 5-14 Three cycles of a sine

curve plotted by Prog. 5-4.

Chapter 5 Drawing Curves 83

Program 5-4 Plotting a sine curve.

10 'PROGRAM 5-4. SINE CURVES.

20 'GENERATES SINE CURVES CENTERING THE CURVE VERTICALLY

30 'ON THE SCREEN. SINCE V VALUES OF THE SINE CURVE ARE

40 'BOTH POSITIVE AND NEGATIVE, CALCULATED Y VALUES MUST
50 'BE ADJUSTED TO EXTEND UP OR DOWN FROM THE VERTICAL

60 'CENTER LINE OF THE SCREEN <Y=100), AS IN LINES 260-270.
70 SCREEN O : WIDTH 80: CLS

80 PRINT "PROGRAM GENERATES SINE CURVES USING"

90 PRINT

100 PRINT " Y = H * SIN (W * X + D)

110 PRINT

120 PRINT "ENTER HEIGHT OF THE CURVE <H), FREQUENCY <W),"
130 PRINT "DISPLACEMENT <D)- H CAN BE NO GREATER THAN ONE-HALF"
140 PRINT "THE HEIGHT OF THE SCREEN (99)"

150 INPUT H, W, D
160 IF H > 199 / 2 THEN 120 'H CAN BE NO MORE THAN 1/2 THE SCREEN HEIGHT
170 INPUT "ENTER MINIMUM AND MAXIMUM VALUES OF X"; XLEFT,XRIGHT
180 SCREEN 1: CLS

190 FOR X = XLEFT TO XRIGHT

200 Y = H t SINCW * X + D)

210 IF Y >= O THEN Y = 100 - Y
220 IF Y < O THEN Y = 100 + ABS<Y)

230 IF X > XLEFT THEN LINE - (X,Y) ELSE PSET (X,Y)
240 NEXT

250 IF INKEY* = "" THEN 250

260 END

POLYNOMIAL CURVES

This class of curves contains an essentially endless list of equations. These
equations all have the same basic structure and include the straight line and
parabola. The straight line equation can be written as

Y = C1 * X + C2 (5-5)

where the constants C1 and C2 are fixed numbers that specify the slope and Y-
intercept of the line. These numbers are called the coefficients of the equation.
The straight line is classified as a polynomial of degree 1. Adding terms to this
equation that contain higher integer powers of X produces polynomials of higher
degree. A polynomial of degree 2 (a parabola) is written as

Y = C1 * X ̂ 2 + C2 * X + C3 (5-6)

Parabolas may be used to approximate the shape of data tables (for data
trends or interpolative information) or to model the motions of objects. The path
(trajectory) of a ball thrown across some distance describes a parabola. The ball
rises to some maximum height, then drops back to the ground. Height is measured
by the Y coordinate; horizontal distance is measured by the X coordinate.
Maximum height for the ball will occur when the X coordinate has the value

X = -C2/(2 * C1) (5-7)

Figure 5-15 plots the parabolic trajectory for a set of coefficients input to Prog. 5-

84 BASIC GRAPHICS PART

X

/ \
/ \

Figure 5-15 Parabolic curve plotted by Prog. 5-5.

5. This curve is symmetric about the X value given in equation (5-7), so that Prog.
5-5 calculates points for only one-half the X range.

Program 5-5 outputs any given parabola, specified by coeflflcients Cl, C2,
and C3. Depending on the value of the coefficient Cl, a parabola will either
increase to a maximum Y value or decrease to a minimum Y value at the midpoint
X value (5-7). The Y value at the midpoint will be a maximum if Cl < 0, or a
minimum if Cl >0. This program plots the parabola so that the midpoint of the
curve is plotted at the middle of the top of the screen (for Cl < 0), or at the middle
of the bottom of the screen (for Cl >0).

Higher-order polynomial curves can be plotted by expanding Prog. 5-5 to
accept the degree and coefficients required for these equations:

Y = 0(1) * X N 0(2) * X (N - 1) + • • • -h 0(N - 1) * X 4- 0(N) (5-8)

Polynomial equations of various degree N can be useful for data fitting. For a table
of data points, we may be able to draw a smooth curve through the data with, say,
a third- or fourth-degree polynomial. Plotting a polynomial may require some
experimenting with the data range. We might first list the points on the curve for
the X range of interest, then determine an appropriate scaling to produce the
curve in a certain area of the screen.

Chapter 5 Drawing Curves 85

Program 5-5 Plotting a parabola.

10 'PROGRAM 5-5- PARABOLIC CURVES FROM POLYNOMIAL EQUATIONS-
20 'PLOTS THE CENTER SECTION OF A PARABOLA (i.e., where the
30 'curve turns around). THE VERTEX IS CALCULATED, ADJUSTED
40 'TO LIE AT A Y VALUE OF O OR AT 199 (DEPENDING ON THE

50 'PARTICULAR CURVE), AND PLOTTED MIDWAY ALONG THE X AXIS.
60 'Y VALUES ALONG THE LEFT HALF OF THE CURVE ARE CALCULATED (USING
70 'DECREASING VALUES OF X) AND PLOTTED, ALONG WITH THE SYMMETRIC
80 'POINT ON THE RIGHT HALF OF THE CURVE. LINES ARE DRAWN BETWEEN

90 'ADJACENT POINTS TO GIVE A CONTINUOUS CURVE.

100 SCREEN O: WIDTH 80: CLS

110 PRINT "THIS PROGRAM PLOTS A PARABOLIC CURVE FROM THE EQUATION"

120 PRINT: PRINT " Y = C1 * X *» 2 + C2 * X + C3": PRINT
130 PRINT "IF C1 IS LESS THAN O, JHE CURVE WILL GO UP TO SOME MAXIMUM"
140 PRINT "POINT AND THEN COME DOWN. IF C IS GREATER THAN O, THE CURVE"
150 PRINT "WILL GO DOWN TO SOhfE MINIMUM POINT AND THEN COME BACK UP."
160 PRINT: PRINT "ENTER VALUES FOR Cl, C2, C3. (C1 may not be zero)"
170 INPUT C(l), C(2), C(3)
180 IF C(l) =0 THEN PRINT "0 entered Tor Cl": GOTO 160

190 'FIND X VALUE OF VERTEX

200 X = -C(2) / (2 * C(l))

210 'FIND Y VALUE OF VERTEX

220 YVERTEX = C(1) *X '^2 + C(2) *X+C(3)

230 'IS VERTEX THE MINIMUM OR MAXIMUM VALUE FOR THIS CURVE?
240 'IF MINIMUM, Y1 = 199. IF MAXIMUM, Y1 = 0.
250 IF C(l) <0 THEN Y1 = O

260 IF C(l) >0 THEN Y1 = 199

270 XCENTER = 160 'XCENTER IS MIDWAY ACROSS SCREEN
280 XLEFTl = XCENTER: XRIGHTl = XCENTER

290 XLEFT2 = XCENTER: XRIGHT2 = XCENTER
300 SCREEN 1: CLS

310 'CALCULATE POINTS TO THE LEFT OF THE VERTEX
320 X = X - 1

330 'WITH THIS NEW X VALUE, SOLVE THE POLYNOMIAL EQUATION FOR Y.
340 'EVALUATE THE POLYNOMIAL USING THE FOLLOWING LOOP. CAN BE USED
350 'TO SOLVE POLYNOMIALS OF ANY DEGREE.
360 DEGREE = 3

370 Y = C(l)

380 FOR K = 2 TO DEGREE

390 Y = Y * X + C(K)

400 NEXT

410 'ADJUST THE VALUE OF Y BEFORE PLOTTING ON SCREEN
420 IF C(l) <0 THEN Y2 = YVERTEX - Y
430 IF C(l) > O THEN Y2 = 199 - (Y - YVERTEX)
440 XLEFT2 = XLEFT2 - 1

450 XRIGHT2 = XRIGHT2 + 1

460 'ARE ALL POINTS STILL ON THE SCREEN?

470 IF Y2 < O OR Y2 > 199 OR XLEFT2 < O OR XLEFT2 > 319 OR XRIGHT2 < O OR
XRIGHT2 > 319 THEN 530

480 LINE (XLEFTl,YD - (XLEFT2,Y2)
490 LINE (XRIGHTl,YD - (XRIGHT2,Y2)
500 Y1 = Y2

510 XLEFTl = XLEFT2: XRIGHTl = XRIGHT2
520 GOTO 320

530 IF INKEY* = "" THEN 530

540 END

NORMAL CURVES

The normal, or Gaussian, curve (sometimes called the bell curve) has the equation

Y = EXP(-0.5 * (X - M) ̂ 2/S ^ 2)/(S * SQR(2 * PI)) (5-9)

86 BASIC GRAPHICS PART II

where Y is the probability of having a particular X value in a data set. M is the
average (or mean) for ail the X values, and S is the standard deviation.

Equation (5-9) is an example of a probability distribution. There are many
other probability distribution curves, but the normal curve is of primary impor
tance because many commonly occurring phenomena approximately follow this
probability distribution. The probability that an employee in a large organization
will have a specified salary X can be estimated as Y in this equation. The value
X = M is the mean salary of all the employees, and the value of S provides a
measure of the spread of salaries above and below this mean. Approximately 68
percent of the employees will have salaries within 1 standard deviation of the
mean (M - S to M + S), and about 99 percent will have salaries within the range
of 3 standard deviations of the mean (M - 3 * S to M + 3 * S). Other applications
of the normal curve include displaying the probability distribution of the lifetimes
of electrical or mechanical parts, variations in sizes of manufactured items, height
of U.S. women in a given age range, rate of return on stocks, or daily temperature
variations in some city.

Figure 5-16 illustrates the shape of the normal probability curve. This figure
was obtained from Prog. 5-6, which accepts a data set as input, calculates M and
S, and plots the normal curve. Values for M and S are calculated by standard
equations. Normal curves are symmetrical about the mean (X = M), so that Prog.
5-6 need only compute points over one-half of the curve. The curve is centered on
the screen with Y values scaled between 50 and 150 over 4 standard deviations.

We have surveyed, in this section, the curves most widely used. There are
many other curves that can be useful in a particular graphics application. Bezier
and B-spline curves are useful in displaying three-dimensional surfaces, as for
automobile and aircraft body design. Legendre and Bessel functions can be used
in modeling physical systems, such as atomic and molecular structure, tempera
ture distributions, or gravitational fields. The Poisson and hypergeometric proba-

Figure 5-16 Normal probability curve plotted with M = 51.8 and S = 29.2 by Prog. 5-6.

/\

Chapter 5 Drawing Curves 87

Program 5-6 Plotting a normal curve.

10 'PROBRAM 5-6. PLOTS NORMAL CURVE DERIVED FROM SAMPLE DATA (UP TO
20 '500 VALUES). CURVE IS CENTERED ACROSS X AXIS, AND SCALED TO
30 'LIE BETWEEN Y VALUES OF 50 AND 150. POINTS ALONG LEFT SIDE
40 'OF CURVE ARE CALCULATED AND PLOTTED. SYMMETRIC POINTS ARE
50 'PLOTTED ON RIGHT SIDE OF CURVE.
60 'tt
70 DIM D(500)

80 SCREEN O: WIDTH 80: CLS

90 PI = 3.14159

100 XCENTER = 160 'XCENTER IS HALFWAY ACROSS SCREEN
110 INPUT "ENTER THE NUMBER OF SAMPLE VALUES"; VALUESCOUNT
120 'FIND THE AVERAGE

130 PRINT "ENTER THE VALUES ONE AT A TIME"
140 TOTAL = O

150 FOR K = 1 TO VALUESCOUNT
160 INPUT D<K)

170 TOTAL = TOTAL + D<K)

180 NEXT

190 MEAN = TOTAL / VALUESCOUNT

200 'CALCULATE THE STANDARD DEVIATION
210 TOTALDIFF = O

220 FOR K = 1 TO VALUESCOUNT

230 TOTALDIFF = TOTALDIFF + (D<K) - MEAN) 2
240 NEXT

250 VARIANCE = TOTALDIFF / VALUESCOUNT
260 STANDEV - VARIANCE .5

270 'FIND CENTER POINT (MAXIMUM) OF CURVE
280 'Y IS AT ITS MAXIMUM WHEN X = M
290 X = MEAN

300 YVERTEX = EXP(-.5 « (X - MEAN) ̂ 2 / VARIANCE) / (STANDEV * SQR(2 t PI))
310 'THE RANGE OF CURVE POINTS (O - YVERTEX) IS SCALED TO
320 '50 - 150 ALONG THE Y AXIS
330 YSCALING = (150 - 50) / (YVERTEX - O)
340 'AND SCALED TO O - 319 ALONG THE X AXIS
350 XSCALING = (319 - O) / (8 * STANDEV)
360 XLEFTl = XCENTER: XRIGHTl = XCENTER
370 Y1 = 50

380 CONSTANT = STANDEV « SQR(2 t PI) 'FIND CONSTANT PART OF EQUATION
390 'CALCULATE POINTS ALONG LEFT SIDE OF CURVE. PLOT BOTH SIDES.
400 SCREEN 1: CLS

410 FOR X = MEAN-1 TO MEAN-4*STANDEV STEP -1
420 Y = EXP(-.5 * (X - MEAN) 2 / VARIANCE) / CONSTANT
430 'ADJUST Y TO LIE BETWEEN 50 - 150
440 Y2 = (YVERTEX - Y) * YSCALING + 50
450 'ADJUST X TO LIE BETWEEN O - 319
460 XLEFT2 = XCENTER - ((MEAN - X) * XSCALING)
470 XRIGHT2 = XCENTER + ((MEAN - X) * XSCALING)
480 LINE (XLEFTl,YD - (XLEFT2,Y2)
490 LINE (XRIGHTl,YD - (XRIGHT2,Y2)
500 XLEFTl = XLEFT2: XRIGHTl « XRIGHT2 'SAVE THESE POINTS
510 Y1 = Y2

520 NEXT

530 IF INKEY« = "" THEN 530
540 END

bility distributions are useful for modeling statistical applications. These models
include the simulation of customer lines with different numbers of tellers at a
bank, or graphing various alternative selections of project teams from a group of
employees.

BASIC GRAPHICS PART II

5-3 PICTURES WITH CURVES

Programs in this section provide picture-drawing examples using curves. With
Prog. 5-7, we produce the picture of Fig. 5-17, drawn with short straight line
segments from a graph paper layout. Figure 5-18 shows a fire truck containing
circles, a spiral, and a normal curve, drawn by Prog. 5-8. Program 5-9 outputs
graphics "art" using curves. This program demonstrates some of the many
possibilities using trigonometric functions. The resulting patterns are shown in
Fig. 5-19.

Figure 5-17 Picture drawn from a
graph paper layout by Prog. 5-7, using
straight line segments to approximate
curves.

Program 5-7 Dinosaur drawn with curves approximated by short line segments.

10 'PROGRAM 5-7. DINOSAUR USING SHORT LINE SEGMENTS TO GIVE CURVES.
20

30

40

50

60

70

80

90

100

'POINTS WERE DERIVED FROM GRAPH PAPER DRAWING.
SCREEN 2: CLS

'DRAW ONE PART OF THE PICTURE AT A TIME

'READ HOW MANY POINTS IN THIS PICTURE PART
VADJUST = .9199999

READ POINTCOUNT

THEN 400IF POINTCOUNT =

'CORRECT FOR RESOLUTION DIFFERENCE

2 TO POINTCOUNT

READ X,Y
Y = Y * YADJUST

110 PSET (X,Y)
120 FOR EACHPOINT

130 READ X,Y
140 Y = Y * YADJUST

150 LINE - (X,Y)
160 NEXT

170 GOTO 70

180 'data -for main part o-f body
190 DATA 38,223,60,180,71, 173, 65, 174,63, 179,64, 180,62, 185,62, 187,60
200 DATA 192,60,194,57,200,57,202,55,183,55,182,59,172,58
210 DATA 171,62,165,57,170,50,220,31,233,31,245,40,260,60,290,67,315,72
220 DATA 345,80,360,87,380,105,400,127,425,145,452,155,502,164,450,164
230 DATA 434,162,415,158,395,153,362,138,323,132,283,125
240 'data for large leg
250 DATA 16,289,92,250,120,250,135,260,157,233,163,247,163,240,165

Chapter 5 Drawing Curves 89

Program 5-7 (cont.)

260 DATA 257,164,256,166,272,159,270,153,278,140,280,120,285,120
270 DATA 310,120,330,112
280 'data for small leg
290 DATA 11,295,127,303,158,278,162,288,162,282,163
300 DATA 291,164,283,165,315,162,315,157,325,137,323,132
310 'data -for arm

320 DATA 11,238,77,220,87,192,99,192,102,195,100
330 DATA 198,102, 200,100, 203,102, 205,98, 218,96,255, 83
340 'data to -fill in body
350 DATA 3,258,114,245,105,228,93
360 DATA 3,222,86,215,77,210,65
370 'data -for eye
380 DATA 4,220,42,210,45,215,40,220,42
390 DATA O

400 IF INKEY^="" THEN 400

410 END

NO.

BMFD

Figure 5-18 Picture drawn by Prog. 5-8, using curve equations.

Program 5-8 Fire truck drawn with curve equations.

10 'PROQRAH 5-8. FIRETRUCK WITH STRAIGHT LINES, CIRCLES, ARCS, BELL CURVE
20 'AND SPIRAL.

30 SCREEN 1: CLS

40 READ X, Ys PSET <X,Y)
50 FOR EACHPOINT = 1 TO 8
60 READ X,Vl LINE - <X,Y)
70 NEXT

80 FOR EACHPART = 1 TO 2

90 READ POINTCOUNT
lOO READ X, Y: PSET (X,Y)
110 FOR EACHPOINT = 1 TO POINTCOUNT
120 READ X, Ys LIME - (X,Y)
130 NEXT

140 NEXT

150 'FINISH BODY, LADDER, BELL STAND

OUTLINE

DOOR AND WINDOW

90 BASIC GRAPHICS PART II

Program 5-8 (cont.)

160 FOR EACHLtNE « 1 TO 13

170 'READ COORDINATES, THICKNESS, DIRECTION OF THICKNESS
180 READ XI, Yl, X2, Y2, THICKNESS, DIRECTION*
190 IF DIRECTION* •» "X" THEN 240

200 FOR K = 0 TO THICKNESS - 1 'THICK IN Y DIRECTION

210 LINE <X1,Y1-H<) - (X2,Y2+K)
220 rcxT

230 GOTO 270

240 FOR K = O TO THICKNESS - 1 'THICK IN X DIRECTION
2S0 LINE (X1+K,Y1> - (X2+K,Y2)
260 NEXT

270 NEXT

280 YADJUST = .9199999 'HAKE WHEELMELLS

290 FOR EACHMHEEL = 1 TO 2

300 READ XCENTER, YCENTER, RADIUS
310 CIRCLE (XCENTER,YCENTER),RADIUS,,0,3.14159,YADJUST
320 LINE (XCENTER-RADIUS+1,YCENTER) - (XCENTER+RADIUS-1,YCENTER),0
330 NEXT

340 FOR EAOCIRCLE = 1 TO 4 'HAKE TIRES AND HUBCAPS
350 READ XCENTER,YCENTER,RADIUS
360 CIRCLE <XCENTER,YCENTER),RADIUS,,,,YADJUST
370 NEXT

380 RADIUS 1.3 'MAKE HOSE
390 ANGLE • .01 'ANGLE TO USE IN MAKING SPIRAL
400 READ XCENTER, YCENTER
410 X - XCENTER RADIUS » COS (-ANGLE) * 1.4
420 Y = YCENTER * RADIUS » SIN(-ANGLE)

430 PSET (X,Y)
440 ANGLE ANGLE + .1

450 RADIUS ' RADIUS + .13

460 X = XCENTER + RADIUS * COS(-ANGLE) « 1.4
470 Y = YCENTER RADIUS « SIN (-ANGLE)

480 LINE - (X,Y)
490 IF RADIUS < 22 THEN 440

500 LOCATE 15,33i PRINT "NO. 9" 'LABELS
510 LOCATE 19,27i PRINT "BMFD"
520 READ MEAN, SDEV 'MAKE BW I
530 YVERTEX = .398942 / SDEV

540 YSCALING = (90-60) / YVERTEX

550 XSCALING « (186-159) / (3.4«SDEV)
S60 XLEFTl > 1661 XRIGHTl - 166
570 Yl = 60

580 FOR X « MEAN-1 TO MEAN-1.7«SDEV STEP -1
590 Y - (.398942 / SDEV) « EXP(-.5 * (X - MEAN) 2 / (SDEV * SDEV))
600 Y2 = (YVERTEX - Y) » YSCALING + 60
610 XLEFT2 = 166 - (MEAN - X) « XSCALING
620 XRIGHT2 - 166 + (MEAN - X) « XS(MLING
630 LINE (XLEFTl,Yl) - (XLEFT2,Y2)
640 LINE (XRIGHTl,Yl) - (XRIGHT2,Y2)
650 XLEFTl = XLEFT2i XRIGHTl = XRIGHT2
660 Yl ■ Y2
670 NEXT

680 LINE (XLEFTl,Yl) - (XRIGHTl,Yl)
690 CIRCLE (166,Yl-l-2),3
700 DATA 12,164,313,164,295,100,251,100,237,60,194,60,194,92,27,92,27,164
710 DATA 5,201,68,201,156,245,156,245,100,233,68,201,68
720 DATA 4,205,73,205, 100,240, 1(X>, 230,73, 205, 73
730 DATA 194,60,194,164,1,X,34,97,187,97,3,Y,34,120,187,120,3,Y
740 DATA 55,97,55,120,3,X,76,97,76,120,3,X,98,97,98,120,3,X
750 DATA 120,97,120,1^,3,X,142,97,142,120,3,X,163,97,163,120,3,X
760 DATA 187,92,187,68,2,X,187,68,165,52,2,Y,165,52,165,60,2,X

Chapter 5 Drawing Curves S"!

Program 5-8 (cont.)

770 DATA 117,150,118,159,3,X „
780 DATA 66,164,29,276,164,29,66,164,24,276,164,24,66,164,8,276,164,8
790 DATA 147,146
800 DATA 1,7
810 IF INKEY4 = "" TI«N 810
820 END

Program 5-9 Art patterns with curves.

10 'PROSRAM 5-9. CURVE PATTERNS
20 SCREEN 1: COLOR 0,0: CLS
30 '***»««***«**»*««**«««* CLOVER
40 COLCODE =2

50 XCENTER « 160: YCENTER = lOO
60 FOR RADIUS = 20 TO 50 STEP 15
70 PSET (XCENTER,YCENTER),COLCODE
80 FOR ANSLE = O TO 6.28318 STEP 1/RADIUS
90 R1 = RADIUS * SIN(2 < ANSLE)
100 X = XCENTER + R1 * COS(ANSLE)
no Y = YCENTER + R1 « SIN (ANSLE)
120 LINE - (X,Y),COLCODE
130 NEXT

150 SIDE FISURES (CARDIOIDS)
160 COLCODE = 1

170 XLEFT = 60 'CENTER POINT OF LEFT FI6URE IS XLEFT,YCENTER

190 XRISHT = 260 'CENTER POINT OF RISHT FI6URE IS XRI6HT,YCENTER
200 FOR RADIUS = 15 TO 25 STEP 10
210 XL£FT1 = XLEFT
220 XRI6HT1 = XRISHT
230 YLEFTl = YCENTER
240 YLEFT3 = YCENTER
250 YRISHTl = YCENTER
260 YRisHT3 = YCENTER
270 FOR ANSLE « O TO 3.14159 STEP 1/RADIUS
280 R1 = RADIUS « SIN(ANSLE / 2)
290 DX == R1 « COS (ANSLE)
300 DY = R1 « SIN(ANSL£)
310 XLEFT2 = XLEFT + DX
320 YLEFT2 = YCENTER + DY
330 YLEFT4 = YCENTER - DY
340 LII9E (XLEFTl,YLEFTl) - (XLEFT2,YLEFT2) ,COLCODE
350 LINE (XLEFTl,YLEFT3) - (XLEFT2,YLEFT4),COLCODE
360 XRISHT2 - XRISHT - DX
370 YRISHT2 = YCENTER + DY
380 YRISHT4 = YCENTER - DY
390 LINE (XRISHTl,YRISHTl) - (XRISHT2,YRISHT2),COLCODE
400 LINE (XRISHTl,YRISHT3) - (XRISHT2,YRI6HT4),COLCODE
410 XLEFTl = XL£FT2
420 YLEFTl = YL.EFT2
430 YLEFT3 = YLEFT4
440 XRISHTl - XRISHT2
450 YRISHTl = YRISHT2
460 YRISHT3 = YRISHT4
470 NEXT

480 FLOWER PATTERNS ««*««**«***»«**»***««

500 READ XCENTER,YCENTER,RADIUS,PETALS,COLCODE
510 IF XCENTER = O TV«N 720
520 SOSUB 550

92 BASIC GRAPHICS PART II

Program 5-9 (cont.)

530 GOTO 500

540 GOTO 720

S50 '###•####«################ MAKE FLOWER PATTERNS
560 PSET (XCENTER + RADIUS,YCENTER).COLCODE
570 FOR ANGLE » O TO 6.2G31S STEP 1/RADIUS
5S0 R1 = RADIUS « COS(PETALS « ANGLE)
590 X = XCENTER + R1 « COS(ANGLE)
600 Y = YCENTER + R1 « SIN(ANGLE)
610 LINE - (X,Y),COLCODE
620 NEXT

630 RETURN

650 DATA 200,30,15,7,1
660 DATA 100,170,15,6,3
670 DAT<» 60,25,15,6,2
680 DATA 40,150,14,5,2
690 DATA 230,169,20,8,3
700 DATA 230,169,30,4,2
710 DATA 0,0,0,0,0,0,0,0
720 IF INKEY* « THEN 720
730 END

vy A -rH Y\

Figure 5-19 Graphics art patterns produced by Prog. 5-9.

5-4 GRAPHS AND PIE CHARTS

Curves are useful for many types of graphs and charts. The programs in this
section illustrate graphing techniques using curves.

Chapter 5 Drawing Curves 93

GRAPHS

We can display graphs using the points given in data tables or using points
calculated from equations. To graph a table of data values, we could plot the
points and connect them with straight line segments. We could also use a curve-
fitting method to approximate the shape of the data. Curves can be drawn to fit a
data set with an analytic technique (such as the least-squares method), or we
could use an interactive method that sketches a curve from keyboard instructions
or light-pen input. To graph an equation, we calculate coordinates from the
equation and either plot closely spaced points or straight line segments connecting
the points.

An example of plotting any specified curve equation is given by Prog. 5-10.
Graph dimensions for the selected curve are input to the program. Figure 5-20
plots the output of Prog. 5-10 for a third-degree polynomial.

PIE CHARTS

A circle-drawing algorithm is the main ingredient in a program to make pie charts.
Program 5-11 illustrates this application. Input to the program includes the name
and relative size (data value) for each division of the chart. Positioning of a

Figure 5-20 Graph of the function X ̂ 3 - 27 * X, output by Prog. 5-10.

160.08

96.00

32.00

-32.00

-96.00

-160.00

i'

f

1

i

f

f
i
/

/

/
/

/ \ /
/

/
/
/
f
f

/
.•

;

-7.1 -4.20 -1.^ 1.' 4.20 7.1

^ BASIC GRAPHICS PART II

Program 5-10 General graph plotting using any input equation.

10 ^PROGRAM 5-10. PLOTS ANY EQUATION.
"O 'ALLOWS USER TO TYCE IN EQUATION AT LINE 360 AND TO ENTER
- ' MINIMUM AND MAXIMUM X AND Y VALUES FOR WHICH THE EQUATION
4m 'IS TO BE PLOTTED. PROGRAM DRAWS A GRID USING PIXELS 74-574
50 'ON THE X AXIS AND 12-188 ON THE Y AXIS.
60 SCREEN 0: WIDTH 80: CLS
/O INPUT "DO YOU WANT INSTRUCTIONS? (TYPE Y OR N)"; I*
80 IF 1$ = "n" OR I* = "N" THEN 170
90 PRINT "THIS PROGRAM DISPLAYS THE GRAPH OF ANY EQUATION DRAWN ON A"
100 PRINT "GRID ON THE SCREEN. THE EQUATION MUST BE ENTERED AT LINE 360."
110 PRINT "YOUR EQUATION MUST USE VARIABLE Y AS THE DEPENDENT VARIABLE"
120 PRINT "AND X AS THE INDEPENDENT VARIABLE (E.G., Y = 6 * X +20)."
130 PRINT "ONCE YOUR EQUATION HAS BEEN ENTERED AND YOU TYPE RUN, YOU"
140 PRINT "WILL BE ASKED TO SPECIFY THE MINIMUM AND MAXIMUM X COORDINATES"

150 PRINT "FOR WHICH YOU WANT THE EQUATION PLOTTED, AS WELL AS THE MINIMUM"
160 PRINT "AND MAXIMUM Y VALUES THAT SHOULD APPEAR ON THE GRID."

170 INPUT "DOES LINE 360 CONTAIN YOUR EQUATION? (TYPE Y OR N)"; E*
180 IF E^ = "Y" OR E« = "y" THEN 230
190 IF I^ = "N" OR I^ = "n" THEN 680 'DON'T PRINT ANY INSTRUCTIONS

200 PRINT "TYPE LINE NUMBER 360 FOLLOWED BY YOUR EQUATION."

210 PRINT "HIT RETURN AND TYPE RUN."

220 GOTO 680

230 'GRAPHS EQUATION ON A GRID

240 PRINT "ENTER MINIMUM AND MAXIMUM X VALUES FOR WHICH"

250 PRINT "THE EQUATION SHOULD BE PLOTTED."

260 INPUT XLEFT, XRIGHT
270 XDIFF = XRIGHT - XLEFT

280 PRINT "ENTER THE MINIMUM AND MAXIMUM Y VALUES THAT SHOULD BE ON THE GRID"

290 INPUT YBOTTOM, YTOP
300 YDIFF = YTOP - YBOTTOM

310 GOSUB 420 'DRAW GRID

320 'DRAW EQUATION

330 YA = (180 - 20) / YDIFF 'YA SCALES CALCULATED Y TO GRID POSITION

340 FOR XGRID = 84 TO 564

350 X = XLEFT + (XGRID - 84) / 484 * XDIFF

360 Y=X^3-27*X

370 YGRID = 180 - (Y - YBOTTOM) * YA
380 IF XGRID < 84 OR XGRID > 564 OR YGRID < 20 OR YGRID > 180 THEN 670
390 PSET (XGRID,YGRID)
400 NEXT

410 GOTO 670

4i20 'DRAWS GRID WITH LABELS
430 SCREEN 2: CLS

440 FOR Y = 20 TO 180 STEP 32
450 LINE (74,Y) - (574,Y)
460 NEXT

470 FOR X = 84 TO 564 STEP 96
480 LINE (X,12) - (X,188)
490 NEXT

500 'FROM BOTTOM OF SCREEN TO TOP, LABEL THE GRID WITH
510 'SUCCESSIVE FIFTHS OF THE VERTICAL RANGE OF THE GRID
520 ROW = 23

530 FOR K = O TO 5
540 LOCATE ROW,1: LABEL = YBOTTOM + YDIFF * K / 5
550 PRINT USING "####.##";LABEL
560 ROW = ROW - 4
570 NEXT

580 'FROM LEFT TO RIGHT, LABEL THE GRID WITH SUCCESSIVE
590 'FIFTHS OF THE HORIZONTAL RANGE OF THE GRID
600 COLUMN =7

Chapter 5 Drawing Curves 95

Program 5-10 (cont.)

610 FOR K = 0 TO 5

620 LOCATE 25,COLUMN: LABEL = XLEFT + XDIFF * K / 5
630 PRINT USING *'##«#.##««"; LABEL;
640 COLUMN = COLUMN +12

650 NEXT

660 RETURN

670 IF INKEY« = "" THEN 670

680 END

division name on the chart is accomplished by locating the angle corresponding to
the centerline for the appropriate sector. If the sector is on the right side of the pie
chart, the name starts on this bisecting line 4 units beyond the circumference. If
the sector is on the left, the name ends on the bisecting line. We locate label
starting positions by converting pixel coordinates to character print positions.
This is done by dividing the X coordinate by the number of horizontal pixels in a
character and by dividing the Y coordinate by the number of vertical pixels in a
character. Figure 5-21 shows a pie chart produced by Prog. 5-11. If we have
cassette BASIC, we can substitute one of the algorithms from Section 5-1 for the
CIRCLE statements in this program.

We could revise Prog. 5-11 to automatically draw the pie sections by using
negative angles in the CIRCLE statement. This would eliminate the extra LINE
statements that draw the lines from the circle center to the circumference. For

example, lines 190, 260, 270, and 280 can be replaced by

260 CIRCLE (XC,YC),R„-BEFORE,-ANGLE,0.92

This would take care of completely drawing the pie slice, but we still need to find a
point near each slice to use in positioning labels. Since statements 330 and 340 are
based on angles measured clockwise from the horizontal, while the CIRCLE
command uses counterclockwise angles, we need to change statement 320 to

320 BISECT = 6.28318 - (BEFORE + ANGLE)/2

This identifies the correct bisect angle and completes the alterations necessary to
construct the pie chart with labels, using only the CIRCLE command.

To be effective, pie charts should be drawn with no more than five or six
slices. Shading and color selections for pie charts are simUar to those for bar
graphs. Shading patterns should be simple and graduated from dark to light
around the chart. Labels should be on or close to the areas they are meant to
identify.

The kind of graph or chart we choose for displaying data information can
have a great influence on the effectiveness of the presentation. Pie charts are best
used to convey information about percentages. We could also use a bar chart for
percentages, with each bar divided into percentage sections. Line graphs and bar
charts are good choices for conveying information about data quantities, such as
sales amounts. We can graph sales amounts over time or relative to some other

96 BASIC GRAPHICS PART II

Program 5-11 Pie chart constructed with the CIRCLE command.

10 'PROGRAM 5-11. PIECHART.

20 DIM SECTION*(8), VALUE(8)
30 SCREEN O: WIDTH 80: CLS

40 INPUT "CENTER COORDINATES FOR PIECHART"; XCENTER,YCENTER
50 INPUT "RADIUS"; RADIUS
60 IF XCENTER+RADIUS > 319 OR XCENTER-RADIUS < O OR YCENTER+RADIUS > 199

OR YCENTER-RADIUS < O THEN 580

70 INPUT "TITLE OF CHART"; TITLE*
80 INPUT "NUMBER OF DIVISIONS (UP TO 8)"; N
90 PRINT "ENTER NAME AND VALUE FOR EACH DIVISION"

100 TOTAL = O

110 'INPUT DATA. FIND TOTAL OF ALL VALUES

120 FOR K = 1 TO N

130 INPUT SECTION*(K), VALUE<K)
140 TOTAL = TOTAL + VALUE<K)

150 NEXT

160 SCREEN 1: CLS

170 COLUMN = 20 - INT(LEN(TITLE*) / 2 + -5) 'CENTER TITLE
180 LOCATE 1,COLUMN: PRINT TITLE*
190 CIRCLE (XCENTER,YCENTER),RADIUS,,,,-9199999
200 BEFORE = O 'BEFORE IS ANGLE THAT DETERMINED PRECEDING LINE
210 FOR K = 1 TO N

220 'LINE TO PLOT IS BASED ON THE PERCENTAGE OF THE

230 'CIRCLE EQUAL TO VALUE<K) / TOTAL PLUS THE
240 'PRECEDING DIVISIONS

250 ANGLE = BEFORE + 6.28318 * VALUE(K) / TOTAL

260 XP = XCENTER + RADIUS * COS(ANGLE)

270 YP = YCENTER + RADIUS * SIN(ANGLE) * .9199999

280 LINE (XCENTER,YCENTER) - (XP,YP)
290 'PUT LABEL ON DIVISION

300 'FIND A POINT 4 UNITS OUTWARD FROM THE CENTER

310 'POINT OF THIS DIVISION'S ARC

320 BISECT = BEFORE + (ANGLE - BEFORE) / 2 'BISECT IS THE ANGLE
330 XLABEL = XCENTER + (RADIUS + 4) * COS(BISECT) 'WHOSE LINE WOULD
340 YLABEL = YCENTER + (RADIUS + 4) * SIN(BISECT) 'HALVE THIS DIVISION
350 '(XLABEL,YLABEL) IS THE POINT USED TO ANCHOR LABEL
360 'USE THE POINT AS START OF LABEL IF IT'S ON RIGHT

370 'SIDE OF CIRCLE, AS END OF LABEL IF IT'S ON LEFT,
380 'AS MIDPOINT IF IT'S ON TOP OR BOTTOM OF CIRCLE

390 'POINT IS START OF LABEL

400 IF XLABEL > XCENTER + 10 THEN 500

410 'POINT IS END OF LABEL

420 IF XLABEL < XCENTER - 10 THEN 470

430 'OTHERWISE POINT IS MIDPOINT OF LABEL. ADJUST XLABEL BY
440 'ONE-HALF THE NUMBER OF PIXELS NEEDED FOR LABEL

450 XLABEL = XLABEL - LEN(SECTION*(K)) / 16

460 GOTO 500

470 'POINT IS END OF LABEL. MOVE BACK BY THE NUMBER

480 'OF PIXELS REQUIRED FOR LABEL

490 XLABEL = XLABEL - LEN(SECTION*(K)) « 8

500 'CONVERT THE PIXEL LOCATION (XLABEL,YLABEL) TO THE CLOSEST
510 'CORRESPONDING PRINT POSITION

520 ROW = INT(YLABEL / 8) + 1

530 COLUMN = INT(XLABEL / 8) + 1

540 LOCATE ROW,COLUMN: PRINT SECTION*(K);
550 BEFORE = ANGLE 'UPDATE BEFORE TO REFLECT DOING THIS DIVISION
560 NEXT

570 GOTO 590

580 PRINT "COORDINATE OUT OF RANGE"

590 IF INKEY*="" THEN 590

600 END

Chapter 5 Drawing Curves 97

LEADING CORN PRODUCING STATES

111inois

Minnesota

Nebraska

/ \
^Indiana

Towa

Figure 5-21 Pie chart output of Prog. 5-11.

parameter, such as sales region. In general, either the horizontal or vertical axis
could be chosen for sales regions, but time is usually best represented on the
horizontal axis. More complex data relationships may be graphed by including
more than one curve in a graph, overlapping the bars of a bar graph, or using a
three-dimensional graph.

PROGRAMMING PROJECTS

5-1. Modify Prog. 5-2 to input the angular step size for plotting a circle, instead of the
number of points. This will produce regular polygons for larger angular step sizes,
and we begin to approximate circles as the angle chosen decreases. We get a triangle
for an input angular step size of 120 degrees and a square for an input of 90 degrees.

5-2. Using equations (5-1), write a program to display a circular arc. Input will be the
radius, center coordinates, and either the arc coordinate endpoints or the beginning
and ending angles for the arc. This program can then be used to produce crescent (or
moon) shapes, as in Prog. 5-1, without using the CIRCLE command.

5-3. Write a program to produce a solid color circle without the PAINT statement. Paint
the interior with any chosen color by drawing diameter lines across the circle in that
color. Using equations (5-1), the endpoints of any diameter line are 180 degrees
apart. Special effects can be obtained by varying the color as each diameter is drawn.

5-4. The interior of a circle can be filled with dots of variable spacing by plotting points

98 BASIC GRAPHICS PART II

from the center out to the circumference. Write a program to paint a circle in this
way using equations in (5-1) and varying the radius from zero to R, with a step size
set by input.

5-5. Write a program to shade the interior of a circle using spaced horizontal lines.
Endpoint X values for the lines are to be calculated from equation (5-2), with the Y
values varying from YC-RtoYC + R. Step size for Y values is to be set by input.
(By interchanging the role of X and Y, we could shade with vertical lines or combine
the two lines to provide a crosshatched shading.)

5-6. Write a program to display any specified ellipse. Input will be XC, YC, RX, RY, and
the aspect ratio.

5-7. Write a program to display an ellipse with interior shading, using any of the methods
in Projects 5-3, 5-4, and 5-5.

5-8. Sketch a figure involving circular arcs on graph paper, then write a program to
display this figure.

5-9. Modify Prog. 5-4 to produce a sine-curve graph with labeled axes. Reduce the
amount of computation by taking advantage of the symmetry of the sine function.
The program should use equation (5-4), with any values for H, W, and D as input.
Scale and plot three cycles of the curve from X = -DAV to X = (6 * PI - D)/W.

5-10. The program outlined in Project 5-9 can be modified to display a damped sine
function by multiplying the sine function by EXP(-K * X) for each value of X. Plot
the resulting curve for X = 0 to X = (10 * PI - D)/W for any positive input value of
K.

5-11. Write a program to display a set of data points as small colored circles, with each
circle centered on the coordinates of a data point. Include labeled coordinate axes in
the display, and connect the circles with straight lines.

5-12. Write a program to interactively draw a curve to fit a set of plotted data points. The
program should allow the curve to be sketched around the data points through
keyboard input, or with other interactive devices.

5-13. Write a program to display a set of data points and the parabolic curve that most
closely fits the data set. For a set of N input data points, (X(l), Y(l)), (X(2),
Y(2)),. . . , (X(N),Y(N)), the coefficients of the parabola [Cl, C2, C3 in equation (5-
6)] can be determined using the least-squares method. The following set of equations
is to be solved simultaneously for Cl, C2, and C3:

2Y(I) = C1 * 2X(I) ̂ 2 + C2 *i;X(l) + C3 * N
2X(I) * Y(|) = C1 * 2:X(I) ^ 3 + C2 * 2X(I) ̂ 2 + C3 2X(I)

2(X(I) ̂ 2) * Y(l) = C1 * 2X(I) ̂ 4 + C2 * 2X(I) ̂ 3 + C3 * 2X(I) ̂ 2

where the symbol 2 (sigma) means sum over all values of I from 1 to N.

5-14. Lay out a figure or scene on graph paper and write a program to display the layout,
using various curve functions to approximate the outline. Fill in the display with
color or shading patterns.

Chapter 6

Interactive

Techniques

Our programs for constructing pictures and graphs have been set up to produce
predefined displays, with the character and pixel positions specified in DATA
statements or equations. We can also produce pictures and graphs interactively.
With interactive methods, we can exercise some spontaneity by "sketching"
patterns on the screen or selecting program options from menus. The interactive
devices we can use include the keyboard, light pens, paddles or joysticks, and
graphics tablets.

6-1 MENUS

An eflfective way of providing input to many graphics programs is through an
interactive dialogue. Using this technique, the program can carry on a limited
conversation with us at certain stages of the processing by asking what we would
like to do next. A list of processing options presented by a program is referred to
as a menu. Any time we set up a generalized graphics program that allows several
processing options, we can use a menu to select the options. The form of the menu
will depend on the type of interactive input device to be used.

A menu can fill the screen, or a menu can be placed to one side, the top, or
the bottom. If we fill the screen with the menu, we need to erase it after the
selection is made. Placing the menu in a smaller part of the screen allows us to
include the picture together with the menu, as illustrated in Fig. 6-1. In this case,
we can leave the menu on the screen after the selection has been made. This is

helpful if the options are to be repeatedly oflFered for selection, since the display
does not have to be redrawn after each menu selection. After all selections have

been made, the menu can be erased. Presenting the menu and display together is

99

100 BASIC GRAPHICS PART II

/

^ H
J A

DO YOU WANT TO: <1) EXPLORE PLANET,
<2> BOARD SPACESHIP, (3> BLAST OFF^

Figure 6-1 Menu and picture displayed together.

also useful when we want to list multiple menus. A drawback to displaying menus
and a picture or graph together is that our effective screen size is reduced by the
amount of area the menus occupy.

6-2 KEYBOARD METHODS

For keyboard input, a numerical or alphabetical listing of options, as in Fig. 6-2 or
Fig. 6-3, is simple and effective. Typing the number or letter of an option causes
the program to branch to the appropriate module that will accomplish that option
(such as performing the goodness of fit test when we type in the letter G). Any
character string or key on the keyboard could be used to make a menu selection,
but numbering or lettering the items is a good choice for most applications.

Screen positions for the location of characters or pixels can also be selected
interactively from the keybomd. We can choose character types, character or
pixel colors, line lengths, or any other parameters during program execution. A
means for accomplishing this type of interaction is with the INKEY$ operation.
This variable name stores a character selected from the keyboard. To provide
interactive input to a program during various stages of execution, we can set up
statements that test INKEY$ to see what key we have pressed at each stage.
Depending on the key chosen, we can carry out one type of operation or another.

Simple sketching is illustrated with Prog. 6-1. We first input the coordinates
for the starting screen position and the colors to be used. Then a line of pixels is
plotted in a direction specified by the four arrows on the numeric keypad portion
of the keyboard. These keys return a two-character string, and we must check the
rightmost character in the string to determine which arrow key was pressed. Keys
B and D are used to indicate whether we want to move over to a new screen

position or continue to draw lines. When we hit B, this means that we want to
move without drawing. Pixels are then plotted and erased as we move, so that our
present position is always indicated. Pressing D puts us in the draw routine. This
program can be used to sketch pictures, graphs, and charts, or to sketch a curve to

Chapter 6 Interactive Techniques 101

SELECT A PATTERN

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

::::::::::::::::::::::::::::
::::::::::::::::::::::::::::

:::::
::::::::::::::::::::::::::::

Figure 6-2 A menu to select shading patterns by typing in a number.

fit a set of data values. Any line can be erased by tracing over the line after
pressing B. We could also include draw options that allow us to sketch diagonal
lines, in addition to horizontal and vertical lines.

Another type of interactive drawing procedure is given in Prog. 6-2. Here
we construct pictures or graphs by selecting straight line segments. Each specified

Figure 6-3 A menu of processing options chosen by selecting a letter.

NHICH CALCULATION NE>:T?

m:

L:

Q:

c:

c:

MEAN AND UARIANCE CALCULATION

LEAST SQUARES LINEAR CURUE FIT

QUADRATIC CURUE FIT

CUBIC CURUE FIT

GOODNESS OF FIT TEST

102 BASIC GRAPHICS PART II

Program 6-1 Interactive sketching.

10 'PROGRAM 6-1. INTERACTIVELY SKETCHES PICTURES.

20 'USES INKEV* TO MONITOR THE KEYBOARD AND RECEIVE INSTRUCTIONS.

30 'USER CAN DRAW (USING CURSOR CONTROL KEYS) OR JUST MOVE "PEN"

40 'TO NEW PART OF THE SCREEN. WHEN MOVING TO NEW PART OF THE SCREEN

50 '(WITHOUT DRAWING), DRAWINGS IS SET TO "N", AND POINTS INDICATED
60 'BY THE CURSOR CONTROL KEYS ARE SET AND THEN IMMEDIATELY ERASED.

70 SCREEN O: WIDTH SO: CLS

SO PRINT "THIS PROGRAM LETS YOU SKETCH PICTURES INTERACTIVELY, USING"
90 PRINT "THE KEYBOARD TO CONSTRUCT YOUR DISPLAY. THE PROGRAM"

lOO PRINT "ASKS YOU TO CHOOSE A BACKGROUND COLOR AND A DRAWING COLOR FOR"

110 PRINT "YOUR PICTURE, AND A PAIR OF COORDINATES AT WHICH TO START"
120 PRINT "DRAWING. USE THE CURSOR CONTROL KEYS TO DRAW UP, DOWN, LEFT,"
130 PRINT "OR RIGHT. TO PICK UP YOUR PEN AND MOVE IT TO SOME OTHER PART"

140 PRINT "OF THE SCREEN, PRESS "B" AND THEN THE CURSOR CONTROL KEYS. TO"
"RESUME DRAWING, PRESS "D" AND CONTINUE WITH THE CURSOR CONTROL KEYS"
"PRESS "S" WHEN YOU ARE FINISHED SKETCHING."

150 PRINT

160 PRINT

170 PRINT

180 PRINT

190 PRINT

200 PRINT

210 PRINT

220 PRINT

230 INPUT

240

250 PRINT

260 PRINT

270 PRINT

280 PRINT

290 PRINT

300 PRINT

INPUT

IF BAC

310

4 - RED

5 - MAGENTA

6 - BROWN

7 - WHITE

8

9

10

11

- GRAY

- LIGHT BLUE

- LIGHT GREEN

- LIGHT CYAN

BACKGROUND

15 THEN 260

"INVALID COLOR CHOICE. TRY AGAIN": GOTO 230

"O - BLACK

"1 - BLUE

"2 - GREEN

"3 - CYAN

"COLOR CHOICE FOR BACKGROUND";
KGROUND >= 0 AND BACKGROUND <=

12 - LIGHT RED

13 - LIGHT MAGENTA

14 - YELLOW

15 - INTENSE WHITE

1 -

2 -

3 -

GREEN

RED

BROWN

4 - CYAN

5 - MAGENTA

6 - WHITE

320

"COLOR CODE FOR FOREGROUND"; FORE
IF FORE >= 1 AND FORE <= 6 THEN 340

330 PRINT "INVALID COLOR CHOICE. TRY AGAIN": GOTO 310

2 OR FORE = 3 THEN PALETTE =

4 THEN DRAWCOLOR = 1

5 THEN DRAWCOLOR = 2

6 THEN DRAWCOLOR = 3

340 IF FORE = 1 OR FORE =

350 IF FORE = 1 OR FORE =

360 IF FORE = 2 OR FORE =

370 IF FORE = 3 OR FORE =

380 PRINT

390 PRINT "HIT THE DOWN ARROW TO EXTEND YOUR LINE DOWNWARD"

"HIT THE UP ARROW TO EXTEND YOUR LINE UPWARD"

"HIT THE RIGHT ARROW TO EXTEND YOUR LINE TO THE RIGHT"

"HIT THE LEFT ARROW TO EXTEND YOUR LINE TO THE LEFT"

O ELSE PA

400 PRINT

410 PRINT

420 PRINT

LETTE = 1

430 PRINT

440 INPUT "INPUT STARTING COORDINATES"; X,Y
450 SCREEN 1: COLOR BACKGROUND, PALETTE: CLS
460 LINE (0,0) - (319,199),DRAWCOLOR,B 'DRAW BOX AROUND SCREEN EDGES
470 IF X < O OR X > 319 OR Y < 0 OR Y > 199 THEN 580

480 PSET (X,Y),DRAWCOLOR
IF DRAWING* = "N" THEN FOR J=1490 TO 50: NEXT: PRESET (X,Y) 'MOVING TO

500 A* INKEY*: IF A* = THEN 500

510

520

530

540

550

560

IF RIGHT*(A*,1)
IF RIGHT*(A*,1)
IF RIGHT* (A*, 1)
IF RIGHT*(A*,1)

CHR*(80)

CHR*(72)

CHR*(77)

CHR*(75)

THEN Y

THEN Y

THEN X

THEN X

= Y

= Y

= X

= X

IF A* = "D" OR A* = "d" THEN DRAWING*

IF A* = CHR*(83) THEN 580

570 GOTO 470

580 IF INKEY* = "" THEN 580

590 END

1:

1:

1:

1:

"Y

GOTO 480

GOTO 480

GOTO 480

GOTO 480

•: GOTO 300

'NEW POSITION

'DOWN

'UP

'RIGHT

'LEFT

Chapter 6 Interactive Techniques 103

Program 6-2 Interactive picture design using lines.

10 'PROGRAM 6-2. INTERACTIVE PICTURE CONSTRUCTION NITH LINES
20 'INTERACTIVELY DRAWS LINES. ALLOWS USER TO IWUT
30 'STARTING AND ENDING COORDINATES OP EACH LINE AS
40 'WELL AS DESIRED COLCm FOR THE LINE. DRAWS PICTURE
SO 'AND THEN ALLOWS USER TO KEEP OR ERASE EACH LINE.

70 DIM XI(20), Yl<20), X2(20), Y2(20), LINEC0L0R(20>
80 SCREEN 1: CLS

90 COUNT = 1 'COUNT IS NUMBER OF LINES

100 'INPUT COORDINATES OF EACH LINE
110 PRINT "ENTER -1,-1 TO QUIT"
120 INPUT "FIRST POINT OF LINE"| X, Y
130 IF X = -1 AND Y = -1 THEN 420

140 IF X >= O AND X <= 319 AND Y >"» 0 AND Y <= 199 THEN 160
150 PRINT "FIRST POINT OUT OF RANGE. TRY AGAIN": GOTO 120
160 XI(COUNT) = Xl Y1(COUNT) = Y

170 INPUT "SECOND POINT OF LI»E"; X, Y
180 IF X « -1 AND Y = -1 THEN 420

190 IF X >= O AND X <= 319 AND Y >= O AND Y <= 199 THEN 210
200 PRINT "SECOND POINT OUT OF RANGE. TRY AGAIN": GOTO 170
210 X2(COUNT) = X: Y2((XIUNT) = Y

220 'CHOOSE COLOR OF LINE

230 INPUT "COLOR CODE FOR LINE (1, 2, OR 3)"; COLCODE
240 IF COLCODE » 1 OR COLCODE » 2 OR COL(X)DE = 3 THEN 260
250 PRINT "COLOR CHOICE INVALID. TRY AGAIN": GOTO 230
260 LINECOLOR(COUNT) » COLCODE

270 GOSUB 360 'DRAW PICTURE

280 'SHOULD LINE BE KEPT OF DISCARDED?
290 INPUT "TYPE K OR E - KEEP OR ERASE LAST LINE"; A*
300 IF A* = "K" OR A« = "k" C») A« "E" OR A« "e" THEN 320
310 PRINT "ENTER K OR E ONLY. TRY AGAIN": GOTO 290
320 IF A* = "E" OR A* = "e" THEN COUNT = COUNT - 1 'DISCARD LI6E
330 GOSUB 360

340 COUNT = COUNT + 1 'SET READY FOR NEXT LINE
3S0 GOTO 100

360 'DRAWS PICTURE

370 CLS

380 FOR EA(>I = 1 TO COUNT

390 LINE (XI(EACH),Y1(EACH)) - (X2(EACH),Y2(EACH)),LINECOLOR(EACH)
400 NEXT

410 RETURN

420 GOSUB 360

430 IF INKEY* = "" THEN 430

440 END

line is displayed for our approval. Menu options allow us to erase the line if we are
not satisfied with its position, to select the next line of the display, or to end.

6-3 LIGHT PENS

Figure 6-4 shows a light pen selecting menu options. A light pen is a pencil-
shaped device that attaches to the six-pin connector on the Color/Graphics board
and is used to detect light emitted from points on the screen. Emitted light comes
from the glow of the phosphor coating on the screen as the electron beam sweeps

Figure 6-4 Light pen being used to make a menu selection.

across it. If an activated light pen is pointed toward a spot on the screen as the
electron beam lights up that spot, the coordinates of the point are stored in
memory. Since the electron beam sweeps across each point on the screen about 30
times every second, the detection of a lighted spot by the light pen is essentially
instantaneous.

Activating a light pen is accomplished in different ways. Some pens have a
push-tip that is activated by pressing the tip against the screen. Others have a
button on the side of the pen that must be pressed to activate. A third type is
activated by touching a metal band near the tip. Pen commands are incorporated
into BASIC programs to test for an activated light pen. When a light pen is
determined to be "on" by the program, the current screen coordinates of the pen
can be used for menu selection, for plotting a point or character, for drawing a
line, or for positioning displayed objects.

Menu selection using a light pen is accomplished in a program by testing the
coordinates returned by the pen to determine which item is being selected. The
item selected is the one that contains the pen coordinates within its defined
boundary. In Fig. 6-5, suppose that the coordinates recorded by the pen are close
to the words ADD SET OF TEST SCORES. By testing the Y value of these
coordinates, we can determine that the middle activity has been selected. Items
listed in a menu, such as in Fig. 6-5, should be widely separated so that coordinate
positions can be clearly determined to be in only one area. Menu items can be

Chapter 6 Interactive Techniques

SELECT AN ACTIUITV —

105

ssrissssssssssis

iiiiiiiiiiliiilL

isssssssssssssss

iiggiiiiiiiiii
iiiiiiiliiiiiiii

:ssssssssssrsssssss
*~:s:=rssssrsssssss

ssrsssssssssssss

sssssss ==

ssszsz. zz. ADD STUDENT NAMES
TO GRADE FILE

liiiiiiii
liiiiiiii

iziiliiiiiiiilzzz
lllfllfffilllifB
iziiiiiiiiiiiiizi'
zzizzzzzzzzzzzzzz:

:zs iunmnuumk

zzzzzzzzz:|Szzizzzzzizzzzzz
igiiliiii zzzzzzzSz

iiiiiiiiiiiiiiiii
""""""zzzzzzrzzSz

liiiiiiiiIiiiiiiiiiiiiiiii

zzzzzzzzz

iiiiiiiliiiiiiii

iiiiiiiiiiiiiili liiiiis U

iiiiiiiliiiiiiii
iiiiii
zzzzzz

ADD SET OF
TEST SCORES

zzzzzJiiiiiiiiiii I
zizzzizzzzzzzzzzzz:
S==S=SZ=ZSSSSSS=SS!

zzzzzzzzzzzzzzzzz*:
zzzzzzzzzzzzzzzzz Zzzzzzzzz:

zzzzzzzzz

iiiiiiiiiiiiiili
zzzziizzzzzzzzzz

iiiii|ii|iiiiiii
*zzzzzzzzzzzzzzz

JillBnifflBB
zzzzzzzzzzzzzzzz
rzzzzzzzzzzzzzzz
iZZZZZZZZZZZZZZZ
IZZZZZZZZZZZZZZZ
izzzzzzzr

iiiiii
liiiiii
IIIIII
Iiiiii

iiiiiiiiiiiiiiiii

iiiiiiiiiiiiiii

iiiiiilii

sssssssss:

zssssssss:

^iiiiii ii

CALCULATE FINAL
COURSE GRADES

isssssssss:

:s8ssssss

liiiiiiii

IIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIIII
8SSSSSSSSSSSSSSSS

*:sisss*ssssssSi:sssz:ssssr

||lll|fflf|l||||L"""""
sssssssrsis|3ssss|:
zzzzzzzzzzzzzzzzzl;

zzzzzSzizzzzzzzzz":

Figure 6-5 By examining the screen coordinates recorded by an activated light pen, the program
determines which activity was selected.

listed as words, as color rectangles for color selection, or as shapes for object
selection.

We can use a light pen in ways other than as a menu selection device.
Programs can be set up to plot a continuous stream of coordinates or a series of
straight lines as an activated light pen is moved around the screen. This allows us
to sketch pictures and graphs on the screen, although a steady hand is needed to
display objects accurately. We can use this same program to display a picture
traced onto the screen with a light pen from a layout on transparent paper. The
program could then store coordinates for this picture in a display file, using
BSAVE. This saved display can then be viewed at a later time or it could be
modified in some way. We could also use a light pen to plot a specified figure
(rectangle, polygon, circle) at any selected screen position.

To record screen coordinates with a light pen, we first tell the system that we
will be using a pen. This is done with the statement

PEN ON — Informs the system that a light pen is to be used, and
allows later pen commands to be executed.

We must state the PEN ON command before we can use any other pen

106 BASIC GRAPHICS PART II

statements. Since this command causes some extra bookkeeping by the system
(storing screen coordinates and checking the pen status), we should put it into our
programs at a point just before the other pen commands are to be used. This will
improve program execution speed. Also, when we no longer need pen input in a
program, we can stop the system from periodically checking (polling) the pen
status with:

PEN OFF — Informs the system that the light pen will no longer be
used.

Once we have turned the pen operations on (with PEN ON), we can make
use of the activated pen coordinates with the function

PEN(N) — Returns the pen status and screen coordinates. Parameter
N may be a numeric expression or constant in the range 0 to 9. if
noninteger, N will be rounded.

PEN(l) returns the X coordinate and PEN(2) returns the Y coordinate of the
position where the pen was last activated. We can get the pen position (X and Y)
as it is continuously activated and moved around with PEN(4) and PEN(5). In a
similar way, we get character row and column positions with values of N in the
range 6 through 9. Values 6 and 7 for N give us the row and column numbers,
respectively, where the pen was last activated. Values 8 and 9 for N return
continuous row and column positions as an activated pen is moved across the
screen. PEN(O) returns a value of -1 at the instant we activate the pen and a value
of 0 at all other times. PEN(3) will give a value of -1 as long as we continue to
activate the pen; otherwise, it is 0. Thus, to select screen positions, we would use
the values 1 and 2 or 6 and 7 for N. To sketch or paint on the screen, we use the
values 4 and 5 or 8 and 9 for N. The values 0 and 3 provide a means for testing pen
status.

Program 6-3 is an example of menu selection using a light pen. This program

Program 6-3 Menu selection using a light pen.

lO 'PR06RAI1 6-3. LI6HT PEN SELECTION FROM A MENU

20 'DISPLAYS MENU OF PROCESSING ACTIVITIES AVAILABLE

30 'IN THE PROGRAM. AU.OWS SELECTION OF AN ACTIVITY

40 'THROUGH THE USE OF THE LIGHT PEN

SO SCREEN 1: COLOR 1,1c CLS
60 'DISPLAY MENU

70 LOCATE 1,1I PRINT "SELECT AN ACTIVITY —"
80 LINE (GO,32) - <232,64),2,B
90 LINE (GO,88) - (232,120),2,B
100 LINE (GO,144) - (232,174),2,B
110 LINE (10,24) - (309,183),2,B
120 PAINT (20,40),1,2 'PAINT AROUND THE MENU BOXES IN CYAN
130 L0(»1TE 6,12i PRINT "ADD STUDENT NAMES"
140 LOCATE 7,14i PRINT "TO GRADE FILE"

Chapter 6 Interactive Techniques 107

Program 6-3 (cont.)

150 LOCATE 13,15s PRINT "ADD SET OF"
160 LOCATE 14,15: PRINT "TEST SCORES"
170 LOCATE 20,13s PRINT "CALCULATE FINAL"
180 LOCATE 21,14: PRINT "COURSE GRADES"
190 'READ PEN CHOICE

200 PEN ON

210 IF PEN(O) <> -1 THEN 210 'CHECK TO SEE IF PEN IS ACTIVATED

220 X = PENd): Y = PEN (2) 'WHEN IT IS, SAVE COORDINATES
230 'WAS PEN IN CORRECT AREA OF SCREEN?

240 IF X < 80 OR X > 232 OR Y < 32 OR V > 174 THEN 220

250 PEN OFF

260 IF Y > 32 AND Y < 64 THEN GOSUB 320: GOTO 380

270 IF Y > 88 AND Y < 120 THEN GOSUB 340: GOTO 380
280 IF Y > 144 AND Y < 174 THEN GOSUB 360: GOTO 380

290 'CHOICE WAS IN-BETWEEN BOXES. ASK FOR RE-ENTRY

300 LOCATE 1,1: PRINT "TRY AGAIN. POINT PEN INSIDE A BOX"
310 GOTO 200

320 'CODE TO ADD STUDENT NAMES TO GRADE FILE

330 RETURN

340 'CODE TO ADD A SET OF TEST SCORES

350 RETURN

360 'CODE TO CALCULATE FINAL COURSE GRADES

370 RETURN

380 END

displays the menu of Fig. 6-5 and selects the next display routine according to the
pen coordinates. The program loops over the pen input statements until a valid set
of coordinates are obtained. Since the light pen needs to detect light from the
screen in order to record coordinates, we have used a background color other than
black. This lets the pen record any screen positions within the box outlines. As an
alternative, we could set up a black background and use PEN(7) (or PEN(l) or
PEN(4)) to check for the character or pixel row selection. The white characters or
pixels then provide the light needed by the pen.

Program 6-4 presents a painting menu. A picture outline is drawn on the

Program 6-4 Picture coloring using a painting menu and a light pen.

10 'PROGRAM 6-4. CHOOSING COLORS WITH LIGHT PEN

20 'DRAWS TRAIN OUTLINE. ALLOWS USER TO CHOOSE COLORS

30 'FROM A MENU AND FILLS IN SELECTED AREAS WITH THE

40 'COLOR

50 SCREEN O: COLOR 7,1,1: WIDTH 40: LOCATE ,,0: CLS
60 LOCATE 3

70 PRINT "POINT PEN AT THE COMBINATION OF COLORS"

80 PRINT " YOU WOULD LIKE TO USE FOR COLORING -"

90 FOR ROW = 7 TO 12 'MAKE MENU FOR COLOR CHOICE

lOO LOCATE ROW,11
110 COLOR 3

120 PRINT CHR* (219) -t-CHM (219) +CHR* (219) +CHR« (219) +CHR* (219) -i-CHR« (219) ;
130 COLOR 5

140 PRINT CHR«(219)-K:HR$(219)-i-CHR«(219)+CHR«(219)-i-CHR«(219)-i-CHR«(219) ;
150 COLOR 7

160 PRINT CHR^ (219) -i-CHR^ (219) +CHR* (219) +CHR« (219) +CHR« (219) +CHM (219) ;
170 NEXT

ISO FOR ROW = 17 TO 22

108 BASIC GRAPHICS PART II

Program 6-4 (cont.)

190 LOCATE ROW,11
200 COLOR 2

210 PRINT CHR*(219)+CHR*(219)+CHR*(219)+CHR*(219)+CHR*(219)+CHR*(219);
220 COLOR 6

230 PRINT CHR*(219)+CHR*(219)+CHR*(219)+CHR*(219)+CHR*(219)+CHR*(219);
240 COLOR 4

250 PRINT CHR*(219)+CHR*(219)+CHR*(219)+CHR*(219)+CHR*(219)+CHR*(219);

260 NEXT

270 'CHOOSE PALETTE

280 PEN ON

290 IF PEN(O) <> -1 THEN 290 'HAS PEN BEEN ACTIVATED?

300 X = PEN(l): Y = PEN(2)

310 IF X < 80 OR X > 224 OR V < 48 OR Y > 176 THEN 300

320 PEN OFF

330 'WHICH PALETTE WAS SELECTED?

340 IF Y >48 AND Y < 96 THEN PALETTE = 1: SOUND 500,10: GOTO 390
350 IF Y > 128 AND Y < 176 THEN PALETTE = O: SOUND 500,10: GOTO 390
360 'OTHERWISE CHOICE WAS IN-BETWEEN BOXES. ASK FOR RE-ENTRY

370 LOCATE 3: PRINT "TRY AGAIN - POINT PEN CAREFULLY"

380 GOTO 280

390 COLOR 0,7,7: CLS
400 LOCATE 1,1: PRINT "NOW POINT PEN AT ONE MORE COLOR -"
410 IF PALETTE = 0 THEN PRINT "(DON'T CHOOSE GREEN, RED, OR BROWN)"

ELSE PRINT "(DON'T CHOOSE CYAN, MAGENTA, OR WHITE)"
BOXCOLOR = O

FOR EACHROW = O TO

PRINT: PRINT

FOR BOXHEIGHT =

PRINT " ";
FOR BLOCK = O TO 4

BOXCOLOR = EACHROW

COLOR BOXCOLOR

PRINT CHR*(219)+CHR*(219)+CHR*(219)+CHR*(219)+CHM(219);

1 TO 5

420

430

440

450

460

470

480

490

500

'MAKE MENU FOR COLOR CHOICE

* 5 + BLOCK

510 PRINT " ";

520 NEXT

530 PRINT

540 NEXT

550 NEXT

560 'READ CHOICE FROM PEN

570 PEN ON

580 IF PEN(O) <> -1 THEN 580

590 ROW = PEN(6): COL = PEN(7)

600 PEN OFF

'SKIP OVER TWO SPACES

610 IF ROW > 4 AND ROW < 10 THEN ROW = 1: GOTO 640

620 IF ROW > 11 AND ROW < 17 THEN ROW 2: GOTO 640

630 IF ROW > 18 AND ROW < 24 THEN ROW = 3

640 IF COL > 3 AND COL < 9 THEN COL = 1: GOTO 710

650 IF COL > lO AND COL < 16 THEN COL = 2: GOTO 710

660 IF COL > 17 AND COL < 23 THEN COL = 3: GOTO 710

670 IF COL > 24 AND COL < 30 THEN COL = 4: GOTO 710

680 IF COL > 31 AND COL < 37 THEN COL = 5

690 LOCATE 1,1: PRINT "TRY AGAIN - POINT PEN CAREFULLY"
700 GOTO 570

710 SOUND 400,10: BACKGROUND = (ROW - 1) * 5 + COL - 1
720 'DRAW TRAIN

730 SCREEN 1: COLOR BACKGROUND,PALETTE 'GO TO CHOSEN COLORS
740 ENGINE* = "BM315,135;D40L7;BL26;L335BL26;L7U65R45D25R55"
750 BOXCAR* = "BM200,140;D35L7;BL26;L19;BL26;L7U35R85"
760 CABOOSE* = "BMIOO,125;D5R5D5L5D40L7;BL26;L19;BL26;L7U40L5U5R5U5R85"
770 TRAIN* = ENGINE* + BOXCAR* + CABOOSE*

780 DRAW TRAIN*

Chapters Interactive Techniques

Program 6-4 (cont.)

790 CIRCLE (35,175),13: CIRCLE (80,175),13
800 CIRCLE (135,175),13: CIRCLE (ISO,175),13
810 CIRCLE (236,175),13: CIRCLE (295,175),13
820 LINE (221,115) - (255,140),,B
830 LINE (25,130) - (88,150),,B
840 LINE (100,170) - (114,170)
850 LINE (200,170) - (215,170)
860 'DRAW COLOR CHOICES

870 LINE (15,20) - (65,50),,B
880 FOR EACHCOLOR = 1 TO 3

890 LINE (15+EACHC0L0R*80,20) - (15+EACHC0L0R480+50,50),EACHCOLOR,BF
900 NEXT

910 'COLOR TRAIN

920 PEN ON

930 IF PEN(O) <> -1 THEN 930

940 X = PEN(l): V = PEN(2)

950 IF X < 15 OR X > 305 OR Y < 20 OR Y > 50 THEN 930
960 IF X > 15 AND X < 65 THEN DRAWCOLOR = 0: GOTO 1020
970 IF X >95 AND X < 145 THEN DRAWCOLOR = 1: GOTO 1O20
980 IF X > 175 AND X < 225 THEN DRAWCOLOR = 2: GOTO 1020
990 IF X > 255 AND X < 305 THEN DRAWCOLOR = 3: GOTO 1020
1000 LOCATE 1,1: PRINT "TRY AGAIN": FOR K=1 TO 30: NEXT
lOlO LOCATE 1,1: PRINT " ": GOTO 920
1020 SOUND 600,10
1030 PEN ON

1040 IF PEN(O) <> -1 THEN 1040

1050 X = PEN(l): Y = PEN(2)

1060 SOUND 800,10
1070 PAINT (X,Y),DRAWCOLOR,3
1080 GOTO 910

1090 END

screen with a chosen backgroun(a and palette. We paint areas of the picture by
first pointing the pen at a color box and then pointing the pen at a position within
an area to be painted. The picture outline an(l paint menu are shown in Fig. 6-6.

CKj
Figure 6-6 Painting menu an(J picture output by Prog. 6-4.

Program 6-5 Interactive picture construction using a light pen.

10 'PROGRAM 6-5. INTERACTIVE PICTURE CONSTRUCTION WITH LIGHT PEN

2b 'DRAWS A MENU OF SHAPES DOWN THE LEFT SIDE OF THE SCREEN.
30 'ACCEPTS INPUT FROM THE LIGHT PEN TO CHOOSE A SHAPE AND

40 'FOR PLACEMENT OF THE SHAPE.

50 SCREEN 2: CLS

60 LINE (0,0) - (639,199),1,BF
70 LINE (80,0) - (80,199),O
80 LINE (0,50) - (80,50),0
90 LINE (0,100) - (80,100),O
100 LINE (0,150) - (80,150),O
110 BOX* = "R50D25L50U25"

120 TRIANGLE* = "R50H25G25"

130 DRAW "COBM15,10;XBOX*;BM15,140;XTRIANGLE*;"
140 CIRCLE (40,75),25,0
150 LINE (16,168) - (64,190),O,BF
160 LOCATE 23,4: PRINT "STOP";
170 LINE (400,189) - (639,199),0,BF
180 LOCATE 25,53
190 PRINT "USE PEN TO CHOOSE A SHAPE ";
200 PEN ON

210 IF PEN(O) <> -1 THEN 210

220 X = PEN(l): Y = PEN(2)

230 IF X > 80 THEN 210

240 PEN OFF

250 IF y < 50 THEN SHAPE = 1: SOUND 400,10: GOTO 290
260 IF Y > 50 AND Y < 100 THEN SHAPE = 2: SOUND 500,10: GOTO 290
270 IF Y > 100 AND Y <150 THEN SHAPE » 3: SOUND 600,10: GOTO 290
280 IF Y > 150 THEN SOUND 300,10: GOTO 540
290 'FIND WHERE TO PLACE THE SHAPE

300 LOCATE 25,53
310 PRINT "USE PEN TO PLACE THE SHAPE";
320 PEN ON

330 IF PEN(O) <> -1 THEN 330

340 X = PEN(l): Y = PEN(2)

350 IF X < 80 THEN 330

360 PEN OFF

370 ON SHAPE GOSUB 390,450,480
380 GOTO 180

390 'DRAW BOX

400 XSTART = X - 25 'LET PEN COORDINATES BE CENTER OF SHAPE

410 YSTART = Y - 13

420 PSET (XSTART,YSTART)
430 DRAW "CO;XBOX*;"
440 RETURN

450 'DRAW CIRCLE

460 CIRCLE (X,Y),25,0
470 RETURN

480 'DRAW TRIANGLE

490 XSTART = X - 25

500 YSTART = Y + 13

510 PSET (XSTART,YSTART)
520 DRAW "CO;XTRIANGLE*;
530 RETURN

540 LINE (400,189) - (639,199),1,BF
550 IF INKEY* = "" THEN 550
S60 END

We can use menus to construct pictures by interactively selecting and
positioning objects in the picture. The procedure is similar to the painting process
of Prog. 6-4. We display the menu of shapes, instead of colors, and we select
shapes and positions with pen input. This menu is shown in Fig. 6-7, as output by
Prog. 6-5. Since the program is written in SCREEN 2 and the pen needs light to

110

Chapter 6 Interactive Techniques

A
\ fx-:

USE FEN TO CHOOSE A SHAPE

Figure 6-7 Menu to be used for picture construction with a light pen (Prog. 6-5).

record positions, we have painted the screen in white and drawn our menu shapes
in black.

So far we have used menus to make selections from a list of items. Another

type of menu is one that allows us to select any number within a larger interval,
say 0 to 100. This type of menu can be displayed as a line (either horizontal or
vertical). We make selections within the desired interval by pointing a light pen at
positions along the line. Coordinate line positions selected are then converted to
numbers within the interval. For example, by pointing a pen at the left end of a
horizontal line, we could get the value 0. Similarly, we could get the value 100 by
pointing the pen at the right end of the line. The middle of the line would then
represent 50, and so on for the other points on the line.

A light pen can be used to do interactive sketching, as in Prog. 6-6. By
continuously activating the pen, we sketch a figure outline as we move the pen
around the screen. Sketching programs can be devised to draw with different
width lines, to erase unwanted lines, and to move the pen without drawing a line.
We could also change PEN(4) and PEN(5) to PEN(6) and PEN(7) and change the
line-drawing statement to PRINT CHR$(AC). Then we would have a program that
sketched using the character whose ASCII code is AC.

Statement 90 in Prog. 6-6 clears the storage areas for the pen coordinates.
Without this statement, the last pen coordinates from the previous run of the

112 BASIC GRAPHICS PART II

Program 6-6 Interactive sketching with a light pen.

10 'PROGRAM 6-6. INTERACTIVE SKETCHING WITH THE LIGHT PEN

20 SCREEN 1: COLOR 1,1: CLS
30 'MAKE STOP BOX

40 LINE (0,176) - <48,199),1,BF 'MAKE BLUE BOX
50 LINE (4,180) - (44,195),0,BF 'MAKE BLACK BOX INSIDE BLUE
60 LOCATE 24,2: PRINT "STOP"?
70 'READ FIRST POINT FROM PEN

80 PEN ON

90 CLEER = PEN(O) 'CLEAR OUT PRIOR PEN ACTIVITY

100 IF PEN(O) <> -1 THEN 100 'HAS PEN BEEN ACTIVATED?

110 X = PEN(l): Y = PEN(2)

120 PSET (X,Y),2 'SET THE FIRST POINT
130 'READ ADDITIONAL POINTS

140 IF PEN(3) <> -1 THEN 140

150 IF PEN(4) < 48 AND PEN(5) > 176 THEN 190 'WE'RE IN THE STOP BOX

160 X = PEN(4): Y = PEN(5)

170 LINE - (X,Y),2
180 GOTO 140

190 LINE (0,176) - (48,199),O,BF 'COLOR IN STOP BOX WITH BLUE
200 PEN OFF

210 IF INKEY$ = "" THEN 190

220 END

program may be carried over to the present run. Interactive sketching with a light
pen requires a steady hand. Since the pen must be individually activated for each
coordinate point when we use parameters 1 and 2 in the PEN function, these
parameters can produce somewhat better results than parameters 4 and 5 when
sketching curves. In addition, the resolution of a pen may be such that only every
eighth horizontal point can be recorded, so that line sketching may be a better
choice than pixel plotting.

Two more pen statements are available in advanced BASIC. We use the
following statement as a means for subroutine branching whenever we activate a
light pen.

ON PEN GOSUB LN — Performs a GOSUB branch to line number LN

when a light pen is activated.

After an ON PEN statement is encountered, the pen status will be checked
continually as long as the program is executing. Whenever the pen is activated,
there will be an immediate GOSUB branch to the line number (LN) specified in
the ON PEN statement. Return from the subroutine is to the next statement that

the program was about to execute when the pen was activated—unless we use a
RETURN N statement at the end of the subroutine. We could set up a similar
branching procedure using PEN(O) or PEN(3), but it would be a more complicated
process to program. After every program statement, we would have to check the
pen status with the PEN function. The ON PEN statement is useful for
applications where we want to interrupt the normal program processing for a
timely execution of a special routine. In a game-playing program, ON PEN could

Chapters Interactive Techniques 113

be used to make the light pen into a switch to control the movement of some
displayed object at any time during the program execution.

We suspend pen activity (if we have advanced BASIC) with

PEN STOP — Informs the system that light pen operations are to be
suspended.

No further light pen operations can be performed after PEN STOP, but the system
will continue to monitor the pen status. If the light pen has been activated after
PEN STOP and a subsequent PEN ON is encountered, the system immediately
executes any ON PEN statement we may have in the program.

6-4 JOYSTICKS AND PADDLES

These input devices connect to the Game Control Adapter board and may be used
in either text or graphics mode. We can attach one or two joysticks or up to four
paddles to the PC. Multiple joysticks or paddles are connected at the 15-pin
connector of the Game board through an intermediate adapter plug. Paddles
provide a one-dimensional input (back and forth or up and down) with a rotating
knob. Joysticks give a two-dimensional input equivalent to two paddles by moving
a little control stick around. One type of joystick is shown in Fig. 6-8.

Joystick or paddle input is entered into our programs with the STICK
function:

STICK(N) — Returns the screen coordinates corresponding to joy
stick or paddle position. Parameter N may be a numeric expres
sion or constant in the range 0 to 3. If noninteger, N will be
rounded.

With paddles, each of the four values of N (0, 1, 2, and 3) causes STICK to return
the knob setting on paddle A, B, C, or D, respectively. With joysticks, STICK(O)
and STICK(l) return the X and Y screen position of joystick A. The other two
options (N = 2 and N = 3) with the STICK function yield X and Y coordinates for
joystick B. We use STICK in much the same way as the PEN function.

The range of values for X and Y that are returned by STICK depend on the
particular joystick or paddle we are using. We can adapt these ranges to any
screen intervals with methods similar to those we used in Chapter 4 for graphing
data ranges. We first test a joystick to determine the minimum and maximum
screen X values it can produce. Designating these values as XJMIN and XJMAX,
we map the joystick range into any other screen range from, say, XMIN to XMAX
with

X = XMIN + (XJ - XJMIN) * (XMAX - XMIN)/(XJMAX - XJMIN) (6-1)

BASIC GRAPHICS PART II

Figure 6-8 A joystick, showing the control stick and buttons.

In this calculation, X is the scaled screen position for a particular value of XJ
returned by the joystick through the STICK function. For example, if the X range
of joystick A is 3 to 160 and we map this across the screen width (0 to 319), then a
value of ICQ for XJ = STICK(O) will give us an X screen position of 197. Similarly,
we get screen Y positions from a joystick value of YJ with the calculation

Y = YMIN + (YJ - YJMIN) * (YMAX - YMIN)/(YJMAX - YJMIN) (6-2)

The screen range from YMIN to YMAX corresponds to a joystick range from
YJMIN to YJMAX.

Equations (6-1) and (6-2) are used in Prog. 6-7 to produce a sketching
routine using a joystick. Starting position is the center of the screen, which
corresponds to the joystick center position. Joystick range and desired screen
range are input. Program 6-7 then draws lines across the screen as the joystick is
moved from one position to another. In a game application, we could use the
joysticks in this way to move an object around the screen. We will discuss object
translation and animation in detail in Chapters 7 and 8. Another way to draw lines
with a joystick is to use the buttons as a means for signaling the program when to
record a joystick position as the next line endpoint. Although the joystick can be

Chapters Interactive Techniques 115

used for interactive sketching, as demonstrated in Prog. 6-7, it is not as good as
the other interactive devices for this purpose. It is more eflfective in menu
selection and for animating objects.

Buttons on joysticks or paddles are monitored through the following
commands.

STRIGON — Informs the system that joystick button&are to be used.

STRIG OFF — Informs the system that joystick buttons will no longer
be used.

STRIG(N) — Returns the button status of the joysticks. Parameter N
may be a numeric expression or constant in the range 0 to 3. If
noninteger, N will be rounded.

The STRIG function records button status on joystick A when N is set to either 0
or 1, and button status on joystick B is recorded when N is either 2 or 3. We use a
value of 0 for N when we want to keep track of button activation any time during
program execution. A value of 1 is used for N when we want to know whether a
button is being pressed right at that instant. We will get a value of -1 from
STRIG(0) if we have pushed the button on joystick A at any time since the last
occurrence of STRIG(O); otherwise, we get a zero value. STRIG(l) returns a value
of -1 if we are currently pressing button A and returns a value of 0 if we are not
pressing it right then. The functions STRIG(2) and STRIG(3) correspond to
STRIG(0) and STRIG(l) operations, respectively, for joystick B.

An example of the use of joystick buttons is given in Prog. 6-8. Here we
draw lines by positioning the joystick and then pressing the button when we want
the joystick position recorded. A line is then drawn from the last referenced
position to the new recorded joystick position. As in programs with a light pen.

Program 6-7 Interactive sketching with a joystick.

10 'PROGRAM 6-7. INTERACTIVE SKETCHING WITH JOYSTICKS

20 'SKETCHES FROM CENTER JOYSTICK POSITION TO OTHER POINTS.

30 'SKETCHING IS TERMINATED BY HITTING ANY KEY ON THE KEYBOARD.

40 SCREEN 1: COLOR 1,0: CLS
50 FIRSTPOINT = 1 'FLAG TO INDICATE FIRST POINT

60 READ XMIN, XMAX, YMIN, YMAX 'SET SCREEN AREA IN WHICH TO DRAW
70 READ XJMIN, XJMAX, YJMIN, YJMAX 'READ MIN AND MAX FOR THIS JOYSTICK
80 XCONSTl = (XMAX - XMIN) / (XJMAX - XJMIN)

90 XCONST2 = XMIN - (XJMIN « XCONSTl)

lOO YCONSTl = (YMAX - YMIN) / (YJMAX - YJMIN)

no YC0NST2 = YMIN - (YJMIN * YCONSTl)

120 'READ POINTS OF JOYSTICK

130 XJ = STICK(O): YJ = STICK(l)

140 X = XC0NST2 + (XJ « XCONSTl)

ISO Y = YC0NST2 + (YJ « YCONSTl)

160 IF FIRSTPOINT = O THEN LINE - (X,Y) ELSE PSET (X,Y): FIRSTPOINT = O
170 IF INKEY« = THEN 130 'IF NO KEY PRESSED, CONTINUE
ISO IF INKEY« = "" THEN 180 'HOLD PICTURE WITHOUT "OK"

190 DATA 0,319,0,199
200 DATA 3,166,3,174: 'JOYSTICK RANGE
210 END

116 BASIC GRAPHICS PART II

joystick coordinates from the previous run of a program may be saved in
STRIG(O), so we clear this area at the start of Prog. 6-8.

Menu selection using joysticks can be carried out with the methods of Prog.
6-8. A pixel object, or a character, could be displayed on the screen and
positioned with a joystick at the menu item to be selected. We then signal our
selection by pressing the button. Program 6-9 illustrates a joystick method of
menu selection. This program uses the "happy face" character (ASCII code 1) in
text mode for visually locating screen coordinates, as seen in Fig. 6-9. When we
have the character positioned at the correct line, we press the button to make our
selection. In graphics mode, we could display and move a small circle, an arrow,
or any other object among the menu items.

Additional button commands are available in advanced BASIC. These

commands allow us to independently turn on and off each of the two joysticks and
to branch to subroutines.

STRIG(N) ON — Informs the system that buttons on joystick N are to
be used.

STRIG(N) OFF — Informs the system that buttons on joystick N are
no longer to be used.

A value of zero for N corresponds to joystick A, and the value N = 2 corresponds
to joystick B. We can cause a subroutine branch any time a button is pressed with

ON STRIG(N) GOSUB LN — Performs a GOSUB branch to line
number LN when the button on joystick A (N = 0) or joystick B
(N = 2) is pressed.

Program 6-8 Interactive line drawing using a joystick.

10 'PROGRAM 6-8. INTERACTIVE SKETCHING USING JOYSTICKS AND BUTTONS
20 SCREEN 2: CLS

30 READ XMIN, XMAX, YMIN, YMAX 'SET AREA OF SCREEN IN WHICH TO DRAW
40 READ XJMIN, XJMAX, YJMIN, YJMAX
50 XCONSTl = (XMAX - XMIN) / (XJMAX - XJMIN)
60 YCONSTl = (YMAX - YMIN) / (YJMAX - YJMIN)
70 XC0NST2 = XMIN - (XJMIN * XCONSTl)

80 YC0NST2 = YMIN - (YJMIN « YCONSTl)
90 STRIG ON

100 IF STRIG(O) <> -1 THEN lOO 'WAIT FOR BUTTON
110 GOSUB 150 'CONVERT TO SCREEN POINTS
120 IF FIRSTPOINT » O THEN LINE - (X,Y) ELSE PSET (X,Y)s FIRSTPOINT = O
130 IF INKEY* = THEN 100 ELSE 210 'HITTING KEYBOARD KEY ENDS PROGRAM
140 'CONVERT JOYSTICK COOORDINATES TO SCREEN COORDINATES
150 XJ = STICK(O): YJ = STICK(1)
160 X = XC0NST2 + (XJ * XCONSTl)

170 Y = YC0NST2 + (YJ » YCONSTl)

180 RETURN

190 DATA 0,639,0,199
200 DATA 3,166,3,175
210 END

Chapters Interactive Techniques 117

Program 6-9 Menu selection with a joystick.

10 'PROGRAM 6-9. INTERACTIVE MENU SELECTION USING JOYSTICKS «t BUTTONS

20 SCREEN O: COLOR 2,1,4: WIDTH 40: LOCATE ,,0: CLS
30 ROW = 5

40 FOR CHOICE = 1 TO 5 'MAKE MENU

50 LOCATE ROW,12
60 PRINT STR*(CHOICE); Menu item CHR*(64+CHOICE);
70 ROW = ROW + 4

80 NEXT

90 READ YMIN, YMAX 'SET RANGE OF VALUES TO CHOOSE AMONG
100 READ YJMIN, YJMAX 'READ RANGE OF THIS JOYSTICK
110 STRIG ON

120 CLEER = STRIG(O) 'CLEAR OUT ANY BUTTON READINGS

130 WHILE STRIG(O) <> -1: GOSUB 160: WEND

140 GOTO 260

150 'DRAW IN NEW POSITION

160 HOLD = STICK(0) 'USE STICK(O) TO SAMPLE JOYSTICK

170 YJ = STICK(1)

180 CHOICE = YMIN + (<YJ - YJMIN) * (YMAX - YMIN)) / (YJMAX - YJMIN)

190 CHOICE = INT(CHOICE + .5)

200 LOCATE ROW,10: COLOR 1,1: PRINT CHR«(2);: COLOR 2,1 'ERASE OLD
210 ROW = (CHOICE - 1) *4+5 'CONVERT CHOICE TO ROW ON SCREEN

220 LOCATE ROW,10: PRINT CHR«(2); 'PRINT FACE IN NEW POSITION
230 RETURN

240 DATA 1,5
250 DATA 3,175
260 'CONTINUATION OF PROGRAM

270 ON CHOICE GOTO 500, 1000, 1500, 2000, 2500

This command is similar to the ON PEN command. It causes the button status to

be checked before each subsequent program statement is executed. When the
button is pressed, the subroutine is immediately executed. Return from the
subroutine is to the statement that the program was about to execute before we
directed it to another part of the program by pushing a button. If we want to return

1. Menu item A

2. Menu i ten B

O 3. Menu i ten C

4. Menu iten D

Figure 6-9 Menu for joystick

5. Menu iten E selection, as produced by Prog. 6-9.

118 BASIC GRAPHICS PART II

to some other part of the program, we use a RETURN LN statement. Subroutine
branches can be suspended with

STRIG(N) STOP — Informs the system that button operation Is sus
pended for joystick A (N = 0) or joystick B (N = 2).

Button activity will continue to be monitored after a STRIG(N) STOP statement,
but no action will be taken. A subsequent STRIG(N) ON statement, however, will
cause an immediate response if we had pressed the button at any time (provided
that we have an ON STRIG command in the program).

6-n5 GRAPHICS TABLETS

Like light pens or joysticks, graphics tablets are devices for selecting coordinate
positions on the video screen. But now we locate screen positions from the tablet
surface. The coordinate origin of a tablet is usually set to the lower left comer, but
can be relocated to any other tablet position. A coordinate location will be stored
in memory by the tablet whenever an activated hand cursor or stylus is placed at
that coordinate position on the tablet. We activate a hand cursor or a stylus by
pressing a button. Several buttons are often available to provide options, such as
returning a single point or a continuous stream of points as we move around the
tablet surface. Figure 6-10 shows an example of a hand cursor tablet. Graphics
tablets attach to an RS-232 port and require connection to a power supply.

Selecting positions on a tablet is accomplished by lining up cross hairs on the
hand cursor over a point on the tablet. Many tablets measure coordinates using
voltage differences on a grid of wires in the tablet surface. Each wire has a slightly
different voltage, so that we have voltage differences in each direction across the
tablet, corresponding to coordinate differences. By activating the stylus or hand
cursor, we cause the voltages at that position to be recorded. These voltages are
converted to (X,Y) screen coordinates and stored in memory through tablet
conversion programs. We can develop our own programs to accomplish this, or
we can purchase programs that will load coordinate data from the tablet into
memory. Some programs are available to plot automatically the loaded data and
perform menu selection.

Interactive graphics uses of the tablet are similar to those of the light pen.
The tablet can record coordinate positions much more accurately than the light
pen, so that it is a good device for tracing ("digitizing") graphs, charts, or pictures
onto the screen. The coordinate positions of the display can then be stored for use
later. We can use the tablet to position objects on the screen or to create figures by
drawing lines. We can also use the tablet for menu selection with a transparent
overlay. The shapes of menu items to be offered for selection are drawn on the
overlay, and the overlay is placed on the tablet surface. Then, selecting a
coordinate position within the area of the tablet occupied by a particular shape
selects that shape. We can similarly design overlays to go with programs that
select colors or processing options.

Chapter 6 Interactive Techniques

111
i

Figure 6-10 Graphics tablet with hand cursor.

PROGRAMMING PROJECTS

6-1. Modify Prog. 6-1 to draw diagonal lines. This can be accomplished by using four
additional keys on the keyboard to specify the four directions: up and right, down
and right, down and left, and up and left. The same keys that we use with the DRAW
statement for these directions (E, F, G, H) could be used for this interactive

sketching program, or we can use the cursor control keys.

6-2. Modify Project 6-1 to interactively draw lines with a specified length.

6-3. Write a menu selection program that makes character selections in high resolution
(SCREEN 2) using PEN(7). Use a black background with white letters.

6-4. Expand Prog. 6-5 to select the size of the objects as well as their shapes. We can do
this by pointing to the new coordinate positions for the three corners of the triangle,
the two opposite corners for the box, or the two endpoints for any circle radius.

6-5. Modify the program in Project 6-4 to include straight line segments as a menu
option.

6-6. Expand Project 6-4 or 6-5 to erase any selected shape if it is not positioned
correctly. One way this can be accomplished is to save the locations and colors of all

objects previously drawn. When the last object is to be erased, we clear the screen

and redraw the picture without that shape. If the object is to be saved, we add the

120 BASIC GRAPHICS PART II

location and color information to the arrays that are used to store the picture
definition.

6-7. Write a program to '*drag" an object around the screen as the position of a light pen
is moved. Each time the pen position is changed, the program is to erase the
displayed object and redraw it at the new position. This technique can be used with
Prog. 6-5 to drag objects into position. Dragging stops when we point the pen at the
''SELECT A NEW OBJECT" or "TERMINATE" options within the menu. The
final position of an object can then be added to an array that stores picture
information. Since the dragging process may erase part of the previously created
picture, the program could erase the screen and redraw all objects according to the
picture array information after each object is positioned.

6-8. Write a routine to select any number within a specified interval, using a light pen.
The starting and ending values for the interval are to be input to the program. A
horizontal line, 500 pixels long, is then to be drawn at the top of the screen with the
endpoints labeled according to the interval values entered. By pointing the pen at
any line position, a value within the interval (corresponding to a number between the
two entered values) is selected, and the program prints out this value. The method
for determining the values selected is the same as that for scaling a data set to a
screen coordinate interval, as discussed in Chapter 4.

6-9. Write a tic-tac-toe game, using the light pen to select positions. The program is to
first draw the empty "board." Two players then alternate pointing the pen at an
empty square within the board. The program draws an X for the first player and an O
for the second until either one player wins or all squares are filled. Use the ON PEN
command in the program to select the routines to draw the X and O patterns.

6-10. Modify Prog. 6-7 to drag an object around the screen instead of plotting pixels. As
the joystick position is changed, the displayed object is to be erased and redrawn at
the new position. Movement of the object can be terminated when a joystick button
is pressed.

6-11. Revise Project 6-8 to select numbers using a joystick. Selection is to be made by
pointing a small arrow at the desired line position. The arrow can be made to slide
back and forth below the line as the joystick is moved back and forth. Position is
recorded when the joystick button is pressed.

6-12. Set up a program to interactively construct pictures with joystick input. Use the
methods outlined in Project 6-6 (or 6-7). For menu selection, the joystick position
can be monitored by causing a character (say, a number) to blink when the joystick
position corresponds to that menu item. Pressing the button then makes that menu
selection. Once an object is selected, it is positioned with the joystick and drawn
when the button is pressed.

6-13. Revise Prog. 6-6 for tablet input.

6-14. Write a program to drag an object around the screen using input from a graphics
tablet.

6-15. Revise Prog. 6-5 to construct pictures with a graphics tablet instead of a light pen.
6-16. Revise Project 6-6 so as to accept tablet input instead of using a light pen.

Part III

DISPLAY
A(\ANIPULATIONS

We can make our pictures move, we can change their size, or we can selectively
erase any part of them. In the following three chapters we will explore basic
transformation methods, animation techniques, and clipping procedures.

Chapter 7

Transformations

The transformation methods discussed in this chapter provide basic tools for
manipulating displays. With these transformation methods we can move pictures
and graphs from one screen location and orientation to another. We can create
inserts for a developed display. We can enlarge the size of a picture or graph for
clarity or insertion of more detail. We can reduce the size of a display in order to
be able to add explanatory information, such as notes or another picture.
Transformation methods also provide the basis for animating displays.

These manipulations of our pictures and graphs are brought about through
the application of the three fundamental transformations: (1) movement of a
displayed object from one screen location to another (translation), (2) enlargement
or reduction in the size of a displayed picture or graph (scaling), and (3) changes in
the direction of orientation of a graphics representation (rotation).

7-1 CHANGING POSITIONS (TRANSLATION)

Techniques for changing screen position allow us to construct a picture or graph in
any part of the screen and then move it to any other screen location. We may want
only to rearrange the display or we may want to build up a display a piece at a time
from a set of component parts.

Relocating displays from one screen position to another merely requires that
we change the screen coordinates of plotted points to correspond to the new
screen position. We do this by specifying a displacement, or offset, from the old
position to the new position. The transformation calculation necessary for moving
a point about the screen from location (X,Y) to a new location (XT,YT) can be

123

124 DISPLAY MANIPULATIONS PART III

Stated in terms of translation distances H and V:

+ " (7-,)
VT = Y + V

A positive value for H indicates displacement of the point horizontally to the
right, while a positive value for V indicates displacement vertically toward the
bottom of the screen. Negative values for H or V will translate the point to the left
or up, respectively.

In translating points, we should use values for H and V that keep the points
within the screen boundary. Very small values for H and V should also be
avoided. If values for H and V are both less than 0.5, the original points will
simply be replotted, which could amount to a significant slowing down of a
program.

TRANSLATING PICTURES

Displacing a picture from one screen location to another means that we translate
all points of the picture and then redraw all the lines connecting the translated
points. To avoid changing the shape of an object, we must displace all points by
the same distance. That is, calculations (7-1) are applied with the same H value
for all horizontal coordinates and the same V value for all vertical coordinates of
the picture. Using a different H or a different V for different points in the picture
will distort the original display. We usually want to translate objects without
distortion, but deliberate distortions can be the basis for experimenting with
design shapes or for game playing.

Coordinate endpoints for each line in a picture can be conveniently stored in
an array. For a simple picture, we can store the points in a one-dimensional array
in the order that we want them connected. But if we have a more complicated
figure, a point may connect to several lines or we may have parts in the picture
that are not connected by lines to other parts, as in Fig. 7-1. We could then store
coordinate values in two-dimensional arrays. One subscript of the array identifies
the picture part, the other subscript tells us which point of that part. Thus,
(X(2,1),Y(2,1)) could be used to store the coordinates for the first point of part 2 of
the picture (such as the boy in Fig. 7-1). Two-dimensional arrays are used in Prog.
7—1 to store coordiilates defining the details of Fig. 7—1. This program lets us
translate the picture components to any screen position, as many times as we
wish.

Program 7-1 stores the translated coordinates in the original arrays X and Y.
If we wanted to save the original position, we could store translated coordinates in
different arrays, such as XT and YT. Saving the original position is desirable if we
just want to test hew positions for visual effect or if we want to display the object
in both positions. If there is no reason to keep the original position of a picture, we
save storage space by recalculating coordinates in the original arrays X and Y.

Chapter 7 Transformations 125

For objects with symmetry or with boundaries calculated from equations,
we do not have to add translation distances to each point of the object to relocate
it. To move a circle or ellipse, for instance, we only need to translate the figure
center and redraw the curve. To relocate a rectangle, we could translate one
comer and redraw the rectangle using values for the width and height.

TRANSLATING GRAPHS

The methods and considerations discussed for translating pictures also apply to
graphs—all points of a graph are reassigned new values (within the screen limits)
and all lines are redrawn at the new location. Labeling could then be added at
appropriate places within the new graph, or we could translate the label positions
together with the other pixel coordinates of the display.

To translate character labels, we need to express translation distances H and
V in terms of character position changes. We get the horizontal shift of a label by
dividing H by the number of horizontal points in the character pixel grid. We get
the vertical shift by dividing V by the number of vertical points in the character

Figure 7-1 Translation of a picture component from the original position (a) to position (b) then to
position (c) by Prog. 6-1.

\ \ v'" / \

1-BOV 2-DOG 3-HyDRANT
PICTURE PART TO MOUE (0 TO END>?

(a)

126 DISPLAY MANIPULATIONS PART III

n

.//

[<::>
./ /. r

\ A

Figure 7-1 (cont.)

2-DOG 3-HVDRANT
PICTURE PART TO MOUE <0 TO END)?

(b)

V

(c)

Chapter 7 Transformations 127

Program 7-1 Translating pictures (boy, dog, and hydrant).

10 'PROGRAM 7-1. TRANSLATION OF PICTURE PARTS.

20 'DRAWS PICTURE AND ALLOWS USER TO TRANSLATE PARTS OF

30 'THE DISPLAY TO OTHER LOCATIONS. PICTURE PARTS ARE

40 'STORED IN ARRAYS X AND Y. TRANSLATED POINTS REPLACE

50 'THE ORIGINAL POINTS IN X AND Y.

60 DIM X(5,50), Y(5,50), POINTCOUNT(5)
70 SCREEN 1: COLOR 4,0: CLS
80 'ttttttttttttt READ PICTURE PARTS AND DRAW tttttttttttttt

90 PICTUREPART = O 'PICTUREPART IS PART NUMBER

lOO READ XD, YD
110 WHILE XD <> -lOO '~100 IS END OF DATA SIGNAL

120 PICTUREPART = PICTUREPART + 1

130 EACHPOINT = O

140 WHILE XD =>0 '-1 IS END OF PICTURE PART SIGNAL

150 EACHPOINT = EACHPOINT + 1

160 X(PICTUREPART,EACHPOINT) = XD
170 Y(PICTUREPART,EACHPOINT) = YD
180 READ XD,YD
190 WEND

200 'STORE # OF ELEMENTS IN PICTUREPART IN POINTCOUNT(PICTUREPART)

210 POINTCOUNT(PICTUREPART) = EACHPOINT

220 READ XD,YD
230 WEND

240 'DRAW PICTURE

250 DRAWCOLOR » 3

260 FOR K = 1 TO PICTUREPART

270 GOSUB 570 'DRAW EACH PART

280 NEXT

290 'tttttttttttttttt CONTROL PROGRAM FLOW tttttttttttttttttt

300 GOSUB 430 'GET CHOICE OF WHICH PART TO MOVE

310 WHILE CHOICE <> O 'USER ENTERS O TO END PROGRAM

320 GOSUB 480 'HOW MUCH TO MOVE?

330 K s CHOICE

340 DRAWCOLOR = O 'ERASE CURRENT DISPLAY OF CHOSEN PART

350 GOSUB 570

360 GOSUB 510 'RECALCULATE POINTS

370 DRAWCOLOR = 3

380 GOSUB 570 'DISPLAY IN NEW POSITION

390 GOSUB 430 'GET CHOICE OF PART TO MOVE OR QUIT

400 WEND

410 GOTO 760

420 'ttttttttt* PRINT INSTRUCTIONS FOR TRANSLATING tttttttttt

430 LOCATE 22,1: PRINT "1-BOY 2-DOG 3-HYDRANT"
440 INPUT "PICTURE PART TO MOVE (O TO END)"; CHOICE
450 LOCATE 22,1: PRINT STRINGS(78," ");
460 RETURN

470 'tttttttttttttttt* HOW MUCH TO MOVE? tttttttttttttttttttt

480 LOCATE 23,1: INPUT "H AND V AMOUNT TO MOVE"; H, V
490 RETURN

500 'tttttttttttttttttt RECALCULATE POINTS tttttttttttttttttt

510 FOR J = 1 TO POINTCOUNT(CHOICE)

520 X(CHOICE,J) = X(CHOICE,J) + H
530 Y(CHOICE,J) = Y(CHOICE,J) + V
540 NEXT

550 RETURN

560 'tttttttttttttttttt* DRAW ROUTINE ***********************

570 FOR J = 1 TO POINTCOUNT(K)-l

580 LINE (X(K,J), Y(K,J)) - (X(K,J+1), Y(K,J+1)).DRAWCOLOR
590 NEXT

600 RETURN

128 DISPLAY MANIPULATIONS PART III

Program 7-1 (cont.)

620 DATA 85,70,90,75,105,60,105,80,85,110,95,110,110,85
630 DATA 125,110,135,110,115,80,115,60,130,75,135,70,115,45
640 DATA 115,40,125,30,125,15,110,lO,95,15,95,30,105,40,105,45,85,70
650 DATA -1,-1
660 DATA 50,90,62,110,58,110,50,90,42,110,38,110,50,90
670 DATA 45,100,20,100,10,90,22,110,18,110,10,90,3,110
680 DATA O,110,10,90,O,80,10,90,50,90,40,80,50,70,55,75,60,78,60,82,50,90
690 DATA -1,-1
700 DATA 290, 110,290, 98,288,98,288,92,286,92,286,88
710 DATA 286,88,288,88,288,82,290,82,290,73,287,73,287,70,290,70,290,65
720 DATA 295,60,305,60,310,65,310,70,313,70,313,73,310,73,310, 110,290,110
730 DATA -1,-1
740 DATA -100,-100
750 '###«###############*#########################»##########»#######«#####

760 IF INKEY* = "" THEN 760

770 END

pixel grid. Assuming that we have the Color/Graphics option with an 8 by 8 pixel
grid, the line number of a label would be displaced by a distance of V/8 and the
horizontal position of a label would be shifted by a distance of H/8. If labels are to
be translated, we should choose H and V to be multiples of the character grid
dimensions. This will keep the labels in the same relative graph positions adter
translation.

A method for moving a labeled bar graph is given in Prog. 7-2. The LEN
function is used to get the length of each string label in checking for possible
translation oflF screen.

Program 7-2 Translating a graph.

lO 'PROGRAM 7-2. TRANSLATING A LABELED HORIZONTAL BAR GRAPH.
20 'LABELS ARE STORED IN THE ARRAY LABEL*. PRINT POSITION
30 'OF EACH LABEL IS STORED IN ARRAYS ROW AND COLUMN. LABELS
40 'MAY BE UP TO S CHARACTERS IN LENGTH AND OCCUPY THE FIRST S
50 'COLUMNS OF A PRINT LINE. MAGNITUDES ARE SCALED TO USE PIXELS
60 '64 - 160. ENDPOINTS OF THE BAR FOR EACH GRAPH DIVISION ARE
70 'STORED IN ARRAYS X AND Y. ONCE THE GRAPH IS CREATED, IT MAY
80 'BE TRANSLATED TO SOME OTHER LOCATION ON THE SCREEN.

lOO DIM X(8,2>, Y<8,2), LABEL*(9>, ROW(9), COLUMN(9)
no SCREEN 1: COLOR 4,1: CLS
120 '««**»««««*»»«« read DATA FOR GRAPH AND DRAW
130 READ MIN, MAX 'READ MINIMUM, MAXIMUM VALUES TO USE FOR DATA RANGE
140 RANGERATIO = <160 - 64) / (MAX - MIN)
150 'READ DATA FOR GRAPH

160 READ NUMBER 'READ NUMBER OF DIVISIONS
170 FOR K = 1 TO NUMBER

180 READ LABEL*<K), MAGNITUDE
190 ROW(K) = K + 2 'SAVE FIRST 2 ROWS FOR TITLE AND SPACE
200 COLUMN(K) = 1

210 X(K,1) = 6A
220 X(K,2) = INT((MAGNITUDE - MIN) S RANGERATIO + 64.5)
230 Y(K,1) = (K + 1) *8+1 'TOP OF BAR
240 Y(K,2) = Y(K,1) + 4 'BOTTOM OF BAR

Chapter 7 Transformations 129

Program 7-2 (cont.)

250 NEXT

260 READ LABELS (NUMBER 1) 'READ TITLE

270 ROW (NUMBER -i- 1) » 1

280 COLUMN(NUMBER-i-1) = 10 - LEN(LABELS(NUMBER-i-1)) / 2 'CENTER ON 10

290 'COPY ORIGINAL VALUES TO ARRAYS USED TO HOLD TRANSLATED

300 'POINTS SINCE THESE ARE USED TO DRAW GRAPH
Tin RHQiiR 'nRAU rraph

320 *tttttttttttt PRINT INSTRUCTIONS FOR TRANSLATING ttttttttttt

330 LOCATE 20,1: PRINT "ENTER -999,-999 TO END"
340 INPUT "H AND V AMOUNTS TO MOVE"; H,V
350 'ERASE INSTRUCTIONS

360 LOCATE 20,1: PRINT STRINGS(80," "); 'ERASE 2 LINES
370 IF H = -999 THEN 800

380 IF H/8 = INT(H/8) AND V/8 = INT(V/8) THEN 410 'MULTIPLE OF 8?
390 LOCATE 20,1: PRINT "USE MULTIPLES OF 8";
400 FOR DELAY = 1 TO 500: NEXT: GOTO 330

410 'ttttttttttttttttt RECALCULATE POINTS tttttttttttttttttttttt
420 FOR K = 1 TO NUMBER

430 ROW(K) = ROW(K) + INT(V / 8)

440 IF ROW(K) ̂ 1 OR ROW(K) > 25 THEN 700
450 COLUMN(K) = COLUMN(K) + INT(H / 8)

460 IF COLUMN(K) < 1 OR COLUMN(K) + LEN(LABELS(K)) > 40 tHEN 700
470 FOR J = 1 TO 2

480 X(K,J) = X(K,J) + H
490 IF X(K,J) < O OR X(K,J) > 319 THEN 720
500 Y(K,J) = Y(K,J) + V
510 IF Y(K,J) < O OR Y(K,J) > 199 THEN 720
520 NEXT J

530 NEXT

540 ROW(NUMBER + 1) = ROW(K) + INT(V / 8)

550 COLUMN (NUMBER -i- 1) - COLUMN (K) -i- INT(H / 8)

560 GOSUB S80

570 GOTO 330

580 '##«########««###*»####«## DRAW ROUTINE ####«####*##*#####################

590 CLS

600 LOCATE ROW (NUMBER -i- 1), COLUMN (NUMBER + 1)
610 PRINT LABELS (NUMBER -i- 1)

620 PRINT

630 FOR K = 1 TO NUMBER

640 LOCATE ROW(K),COLUMN(K): PRINT LABELS(K);
650 'DRAW BAR FOR THIS DIVISION

660 LINE (X(K,1),Y(K,1)) - (X(K,2),Y(K,2)),,BF
670 NEXT

680 RETURN

700 PRINT "LABEL OFF SCREEN"

710 GOTO 810

720 PRINT "GRAPH POINT OFF SCREEN"

730 GOTO 810

750 DATA 0,800
760 DATA 6

770 DATA NORTH,500,CENTRAL,700,MIDWEST,300,SOUTH,800,FARWEST,400,OVERSEA,750
780 DATA "REGIONAL SALES"

800 IF INKEY« = "" THEN 800

810 END

130 DISPLAY MANIPULATIONS PART III

INTERACTIVE TRANSLATIONS

Any of the interactive methods discussed in Chapter 6 can be used to perform
translations. We can set up menus that allow us to select all or part of the picture
to be translated and the coordinates of the new position. A general translation
program could then clear the screen and move the object to the new position by
calculating displacements.

With a light pen, we can touch the screen at two positions to accomplish
translation. One position is a point on the object and the other position is where
we want to move it. This is demonstrated in Prog. 7-3. The displacements H and

Program 7-3 Interactive object translation using a light pen.

10 'PROGRAM 7-3. TRANSLATION WITH THE LIGHT PEN
20 'PRESENTS SERIES OF SHAPES. SHAPE IS SELECTED BY LIGHT
30 'PEN AND ERASED. SHAPE IS REDRAWN IN NEW POSITION
40 'INDICATED BY LIGHT PEN. SHAPE MAY BE MOVED ANY
50 'NUMBER OF TIMES.

60 SCREEN 2: CLS

70 LINE (0,0) - <639,199),1,BF 'FILL IN SCREEN WITH WHITE
80 LINE (8,160) - (66,190),0,B 'MAKE STOP BOX
90 LINE (16,174) - (60,184),0,BF
100 LOCATE 23,4: PRINT "STOP";
110 'READ PICTURE PARTS
120 READ SHAPECOUNT

130 FOR EACHSHAPE = 1 TO SHAPECOUNT

140 READ POINTCOUNT(EACHSHAPE)

150 FOR EACHPOINT = 1 TO POINTCOUNT(EACHSHAPE)
160 READ X(EACHSHAPE,EACHPOINT), Y(EACHSHAPE,EACHPOINT)
170 NEXT

180 READ TOPLEFTX(EACHSHAPE), TOPLEFTY(EACHSHAPE)
190 READ BOTTOMRIGHTX(EACHSHAPE), BOTTOMRIGHTY(EACHSHAPE)
200 NEXT

210 STOPBOX = SHAPECOUNT + 1

220 TOPLEFTX(STOPBOX) = 8: TOPLEFTY(STOPBOX) = 168 'SAVE STOP BOX INFO
230 BOTTOMRIGHTX(STOPBOX) = 64: BOTTOMRIGHTY(STOPBOX) = 199
240 ' DRAW

250 DRAWCOLOR = O

260 FOR EACHSHAPE = 1 TO SHAPECOUNT

270 GOSUB 770

280 NEXT

290 'MOVE SHAPES

300 PEN ON

310 IF PEN(O) <> -1 THEN 310

320 X = PEN(l): Y = PEN(2)

330 PEN OFF

340 'WHICH SHAPE ARE WE POINTING AT?

350 EACHSHAPE = 1

360 IF X >= TOPLEFTX(EACHSHAPE) AND X <» BOTTOMRIGHTX(EACHSHAPE) THEN 400
370 EACHSHAPE = EACHSHAPE + 1

380 IF EACHSHAPE <= SHAPECOUNT + 1 THEN 360

390 GOTO 300 'NOT POINTED AT SHAPE — READ PEN AGAIN
400 IF Y >= TOPLEFTY(EACHSHAPE) AND Y <= BOTTOMRIGHTY(EACHSHAPE)' THEN 420
410 GOTO 300 'NOT POINTED AT SHAPE — READ PEN AGAIN
420 'EACHSHAPE IS NUMBER OF CHOSEN SHAPE

430 'IS IT THE STOP BOX?

440 IF EACHSHAPE = SHAPECOUNT + 1 THEN LINE(8,168) - (64,199),1,BF: GOTO 890
450 'IF NOT, ERASE CURRENT DISPLAY OF SHAPE
460 DRAWCOLOR = 1

470 GOSUB 770 'DRAW SHAPE IN BACKGROUND TO ERASE

Chapter 7 Transformations 131

Program 7-3 (cont.)

480 'WHERE TO MOVE SHAPE?

490 PEN ON

500 IF PEN(O) <> -1 THEN 500 'HAS PEN BEEN ACTIVATED?
510 X = PEN(l): Y = PEN(2)

520 PEN OFF

530 'RECALCULATE POINTS

540 H = X - X(EACHSHAPE,1) 'USE FIRST POINT OF SHAPE AS CURRENT POSITION
550 V = Y - Y(EACHSHAPE,1)
560 EACHPOINT = 1

570 X(EACHSHAPE,EACHPOINT) = X(EACHSHAPE,EACHPOINT) + H
580 Y(EACHSHAPE,EACHPOINT) = Y(EACHSHAPE,EACHPOINT) + V
590 'IS ANY PART OF SHAPE OFF SCREEN?

600 IF X(EACHSHAPE,EACHPOINT) < O OR X(EACHSHAPE,EACHPOINT) > 639 OR
Y(EACHSHAPE,EACHPOINT) < O OR Y(EACHSHAPE,EACHPOINT) > 199 THEN 720

610 EACHPOINT = EACHPOINT + 1

620 IF EACHPOINT <= POINTCOUNT(EACHSHAPE) THEN 570

630 'RECALCULATE TOPLEFT AND BOTTOMRIBHT COORDINATES

640 TOPLEFTX(EACHSHAPE) = TOPLEFTX(EACHSHAPE) + H

650 TOPLEFTY(EACHSHAPE) = TOPLEFTY(EACHSHAPE) + V

660 BOTTOMRIGHTX(EACHSHAPE) = BOTTOMRIGHTX(EACHSHAPE) + H

670 BOTTOMRIGHTY(EACHSHAPE) = BOTTOMRIGHTY(EACHSHAPE) + V

680 DRAWCOLOR = O

690 GOSUB 770 'DRAW SHAPE IN NEW POSITION

700 GOTO 300

710 'SHAPE IS OFF SCREEN. RESTORE THOSE POINTS THAT WERE CHANGED

720 FOR K = EACHPOINT TO 1 STEP -1

730 X(EACHSHAPE,K) = X(EACHSHAPE,K) - H
740 Y(EACHSHAPE,K) = Y(EACHSHAPE,K) - V
750 NEXT

760 GOTO 300

770 'ttttttttttttt* DRAWS SHAPE

780 FOR K = 1 TO POINTCOUNT(EACHSHAPE) - 1

790 LINE (X(EACHSHAPE,K),Y(EACHSHAPE,K)) - (X(EACHSHAPE,K + 1),
Y (EACHSHAPE, K -i- 1)), DRAWCOLOR

800 NEXT

810 LINE (X(EACHSHAPE,POINTCOUNT(EACHSHAPE)),Y(EACHSHAPE,POINTCOUNT(EACHSHAPE)))
- (X(EACHSHAPE,1),Y(EACHSHAPE,1)),DRAWCOLOR

820 RETURN

830 DATA 5

840 DATA 3,125, 175, lOO, 195,150,195, lOO, 175, 150, 195
850 DATA 4,260,175,210,175,210,195,260,195,210,175,260,195
860 DATA 6,363,175,337,175,325,187,337,195,363, 195,375,187,325,175,375,195
870 DATA 4,435,175,435,195,495,195,495,175,435,175,495,195
880 DATA 3,550,160,580,195,610,160,550,160,610,195
890 IF INKEY* = THEN 890

900 END

V are calculated from the values for the two points selected. This program allows
us to continually drag an object around the screen until we select QUIT. Similar
methods can be set up for keyboard, graphics tablet, or joystick input.

DRAW STATEMENT TRANSLATIONS

We can translate an object in a very simple way if we have constructed it with
DRAW statements. Since the object is drawn from the last point referenced, we
just change the reference point and redraw it. For example, changing the

132 DISPLAY MANIPULATIONS PART III

coordinates of the PSET statement in Prog. 7-4 displaces the object when we
redraw it.

Program 7-4 Translation using the DRAW statement.

10 'PROGRAM 7-4. TRANSLATICWJ WITH THE DRAW STATEMENT

20 SCREEN 1; COLOR 1,0: CLS
30 SHAPE* = "R50D25L50U25"

40 DRAW "BM90,10;XSHAPE«;"
50 LOCATE 1,1: INPUT "WHERE TO PUT SHAPE (-1,-1 TO END)"; X,Y
60 LOCATE 1,1: PRINT "
70 IF X = -1 THEN 110

80 PSET (X,Y)
90 DRAW SHAPE*

100 GOTO 50

110 END

7-2 CHANGING SIZES (SCALING)

Having created a display, we may decide to enlarge it in order to clarify the
information presented or to reduce it to fit into a larger graphics picture. The size
of a picture or graph is changed by multiplying all distances between points by the
amount that we wish to enlarge or reduce the display. If we want to double the
size of a rectangle, all line lengths are multiplied by 2; if the size is to be cut in half,
all lengths are multiplied by 1/2.

SCALING LINES

A horizontal line with left X coordinate XI and right X coordinate X2 has length

LH = X2 - XI (7-2)

Changing the length of the line means that we multiply LH by a horizontal scaling
factor, say HS, to produce the new length:

LHS = LH ♦ HS
= X2 * HS - XI * HS (7-3)
= XS2 - XS1

where XSl and XS2 are the new X coordinates of the scaled line and HS must be a

positive number (HS > 0). The scaling factor HS will produce a longer line if HS
> 1. A shorter line will result if HS < 1. If HS = 1, there is no change in the length
of the line.

Similarly, a vertical line with length

LV = Y2 - Y1 (7-4)

can be scaled with a vertical scaling factor VS to produce a line of scaled length:

LVS = LV * VS

= Y2 * VS - Y1 * VS (7-5)
= YS2 - YS1

Chapter? Transformations 133

The new Y coordinates of the line endpoints after scaling are called YSl and YS2.
We get a shorter line when VS is between 0 and 1, and we produce a longer line
when VS is greater than 1.

Diagonal lines (Fig. 7-2) can be considered in terms of their horizontal and
vertical components. We enlarge or reduce them by scaling both the horizontal
length component and the vertical length component, using calculations (7-3) and
(7-5).

Since scaling a line affects the values of the coordinate endpoints, we usually
want to specify where the scaled line is to be redrawn. We could translate the line
so that one end is where we want it after scaling and then scale the length with that
end hxed. A general approach is to first pick out a reference point that we
consider fixed, such as (XF,YF) in Fig. 7-2. This point is called the fixed
coordinate position. It can be any point on or off the screen. We then get the new
endpoints of the line by scaling distances between each original endpoint and the
fixed point (XF,YF). Thus the scaled position of point 1 in Fig. 7-2 will become

XS1 = XF + (XI - XF) * HS
YSl = YF + (Y1 - YF) * VS (7-6)

We can rewrite these ceilculations, and those for point 2, in the form

XS1 = XI * HS + XF * (1 - HS)
YSl = Y1 ♦ VS + YF * (1 - VS)

XS2 = X2 » HS + XF * (1 - HS)
YS2 = Y2 * VS + YF * (1 - VS)

The expressions XF * (1 - HS) and YF ♦ (1 - VS) are each constant, so we only

(7-7)

Figure 7-2 A straight line, with horizontal length component X2 - XI and vertical length
component Y2 - Yl, can be scaled relative to any fixed point (XF,YF).

X1 X2 XF

Yl

YF

Y2

X axis

Y axis

134 DISPLAY MANIPULATIONS PART III

have to evaluate them once for all coordinates. To enlarge or reduce a diagonal
line without changing the slope, we must set HS = VS.

SCALING DISPLAYS

Scaled pictures and graphs are uniformly enlarged or reduced by setting HS and
VS to the same value. Relations (7-7) can then be used to calculate new
coordinates for all the points of the scaled display. The enlarged or reduced
picture is displayed by drawing the connecting lines for these new points. For
figures with curved lines it may not be necessary to apply (7-7) to every point of
the picture. To scale a circle with radius R, we only need to compute the new
coordinates for the center of the circle, using (7-7), and calculate the new radius
as R » S. The CIRCLE command or the routines of Section 5-1 can then be used
to display the sc£ded circle.

In some cases we may want to stretch a display in one direction (say, the
vertical direction) and maintain the original size in the other direction (horizontal).
To turn a square into a rectangle, we could double the height only. This is
accomplished by setting the vertical scaling factor VS to 2 for the calculations
involving vertical coordinates and by setting the horizontal scaling factor HS to 1
for the calculations involving the horizontal coordinates. This technique can be
useful in experimenting with or adjusting the proportions of picture components.
We can also use nonuniform scaling to build composite pictures from a set of
standard shapes, such as a square which we can scale to a rectangle of any size.

Program 7-5 gives an example of picture scaling. We input the picture

Program 7-5 Scaling picture parts (car).

10 'PROGRAM 7-5. SCALING A PICTURE WITH THE LIGHT PEN

20 'DRAWS CAR AND ALLOWS SCALING OF ALL OR PART OF CAR

30 DIM X(5,100), Y(5,100), POINTCOUNT<5)
40 SCREEN 1: COLOR 3,0: CLS
50 ^ttttttttttttt CONTROL PROGRAM FLOW ttttttttttttttttttttt
60 GOSUB 180

70 GOSUB 410 'GET CHOICE OF WHICH PART TO SCALE

80 WHILE CHOICE <> O

90 GOSUB 460 'HOW MUCH TO SCALE?

100 DRAWCOLOR = O

110 IF CHOICE <> 3 THEN K = CHOICE: GOSUB 600

ELSE FOR K = 1 TO PICTUREPART: GOSUB 600: NEXT

120 GOSUB 490 'RECALCULATE SCALED POINTS

130 DRAWCOLOR = 2

140 IF CHOICE <> 3 THEN K = CHOICE: GOSUB 600

ELSE FOR K = 1 TO PICTUREPART: GOSUB 600: NEXT

150 GOSUB 410 'GET CHOICE OF PART TO SCALE <0R QUIT)

160 WEND

170 GOTO 860

180 ' tttttttttttttt READ PICTURE PARTS AND DRAW ttttttttttttttt

190 PICTUREPART = O

200 READ XD,YD
210 WHILE XD <> -100

220 PICTUREPART = PICTUREPART + 1

230 EACHPOINT = O

Chapter 7 Transformations 135

Program 7-5 (cont.)

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

WHILE XD =>0 '-1 IS END OF POINTS FOR THIS PART

EACHPOINT = EACHPOINT + 1

X<PICTUREPART,EACHPOINT) = XD
Y<PICTUREPART,EACHPOINT) = YD
READ XD,YD

WEND

'STORE # OF POINTS IS PICTUREPART IN POINTCOUNT(PICTUREPART)

POINTCOUNT(PICTUREPART) = EACHPOINT

READ XD,YD
WEND

'DRAW PICTURE

DRAWCOLOR = 2

FOR K = 1 TO PICTUREPART

GOSUB 600

NEXT

RETURN

'ttttttttttttttttt* PRINT INSTRUCTIONS tttttttttttttttttttt

LOCATE 21,1: PRINT "1-FRONT 2-REAR 3-ALL O-STOP";
LOCATE 22,1: INPUT "PICTURE PART TO SCALE"; CHOICE
LOCATE 21,1: PRINT STRING«<80," "); 'ERASE 2 LINES
RETURN

'ttttttttttttttttt HOW MUCH TO SCALE? ttttttttttttttttttttttttttt

LOCATE 21,1: INPUT "H AND V AMOUNTS TO SCALE"; HS,VS
LOCATE 21,1: PRINT STRINGS(40," ");
RETURN

'ttttttt* RECALCULATE POINTS FOR APPROPRIATE PICTURE PART tttttttt

ON CHOICE GOTO 510, 520, 530
GOTO 540

GOTO 540

GOTO 560

'DO SCALING

XFIXED = X<1,2): YFIXED = Y<1,2):
XFIXED = X<2,2): YFIXED = Y(2,2):

XFIXED = X<1,7): YFIXED = Y<1,7):
SCALEPART = CHOICE: GOSUB 660

'SCALE EACH PART

GOTO 590

FOR SCALEPART = 1 TO PICTUREPART

GOSUB 660

NEXT

RETURN

'####«#«##############«##### DRAW ROUTINE «#*#######«###*###««########«

FOR J = 1 TO POINTCOUNT(K) - 1

IF X(K,J> < O OR X(K,J) > 319 OR Y(K,J> < O OR Y<K,J) > 199
THEN 880

LINE <X(K,J),Y<K,J)) - (X<K,J+1),Y(K,J+1)),DRAWCOLOR
NEXT

RETURN

'#«*##««################«## SCALING ROUTINE #######*#**#######«#«#«####

FOR J = 1 TO POINTCOUNT(SCALEPART)

X<SCALEPART,J) = X(SCALEPART,J) « HS + XFIXED * (1 - HS)
Y(SCALEPART,J) = Y(SCALEPART,J) « VS + YFIXED * (1 - VS)

NEXT

RETURN

'FRONT OF CAR

DATA 220,90,160,90,160,60,205,60,187,35,160,35
DATA 160,30,190,30,210,60,250,65,260,90,250,90
DATA 250,100,240,110,230,110,220,100,220,90
DATA 230,80,240,80,250,90
DATA -1,-1

'BACK OF CAR

DATA 120,90,160,90,160,60,120,60,135,35,160,35
DATA 160,30,130,30,115,60,80,60,75,90,90,90
DATA 90,lOO,lOO,110,110,110,120,100,120,90,110,80,lOO,80,90,90,90,lOO

136 DISPLAY MANIPULATIONS PART III

Program 7-5 (cont.)

830 DATA -1,-1
840 DATA -100,-100
850 '########«####«#«####*#####«######«#«####«##*#»##########»#«###*«######

860 IF INKEY« = THEN 860

870 GOTO 890

880 PRINT "COORDINATE OUT OF RANGE"

890 END

definition and scaling factors, HS and VS. The program then scales the total
picture or any selected component of the picture. A sample output is shown in
Fig. 7-3.

Graphs are scaled using the same methods as those illustrated in Prog. 7-5.
Since labeling cannot be scaled (the size of a character is fixed), we need to
consider the placement of labels after scaling the pixel lengths. We can do this
manually by examining the graph after scaling, or we can calculate new starting
positions for the strings relative to some point on the graph. As an alternative, we
could create labels with pixels. Then the labels could be scaled together with all
other parts of the graph.

Figure 7-3 Scaling picture components from the original (a), with a reduction of the rear section (b)
and an overall reduction (c), by Prog. 7-5.

1-FRONT 2-REAR 3-ALL S-STOP
PICTURE PART TO SCALE? ■

INTERACTIVE SCALING

Repeated scaling of a picture is accomplished by Prog. 7-5 with input from the
keyboard. Menus could be devised for this program that would let us choose
scaling factors with a light pen. We could do this with a menu that lists numbers,
but this would then restrict scaling factors to only those numbers in the list.
Another type of menu we could use for this purpose is a straight line that
represents the numerical values from 0 to 20, say. In our program, we would then

Chapter 7 Transformations 137

1-FRONT 2-REAR 3-ALL 0-STOP
PICTURE PART TO SCALE? ■

1-FRONT 2-REAR 3-ALL 0-STOP
PICTURE PART TO SCALE? ■

Figure 7-3 (cont.)

write a routine to convert coordinate values selected along this line to numbers
between 0 and 20. Touching the pen to a position near the left end of the line
means that we want the scaling factor to be less than 1 (a reduction in size).
Touching the pen to the other end sets the scaling factor to 20. For other positions
we get intermediate values. Halfway along the line selects the number 10, one-

138 DISPLAY MANIPULATIONS PART III

fourth of the distance from the low end selects 5, and one-third of the distance
from the low end selects a scaling factor of 6.67. We could also set up two lines:
one for enlargements and the other for reductions.

An interactive scaling method is demonstrated in Prog. 7-6, which is a

Program 7-6 Interactive scaling with a light pen.

10 'PROGRAM 7-6. SCALING A PICTURE WITH THE LIGHT PEN

20 'DRAWS CAR AND ALLOWS USER TO SCALE PART OF ALL OF

30 'CAR. SCALED POINTS REPLACE ORIGINAL VALUES IN X AND Y

40 'X AND v.

50 DIM X(5,100), Y<5,100), POINTCOUNT(5)
60 SCREEN 1: COLOR 1,0: CLS
70 'ttttttttttttt CONTROL PROGRAM FLOW ttttttttttttttttttttt

80 GOSUB 210 'READ PICTURE PARTS

90 GOSUB 440 'MAKE MENUS

100 GOSUB 560 'GET CHOICE OF WHICH PART TO SCALE

110 WHILE CHOICE <> O

120 GOSUB 700 'HOW MUCH TO SCALE?

130 DRAWCOLOR = O

140 IF CHOICE <> 3 THEN K = CHOICE: GOSUB 1020

ELSE FOR K = 1 TO PICTUREPART: GOSUB 1020: NEXT

150 GOSUB 910 'RECALCULATE SCALED POINTS

160 DRAWCOLOR = 2

170 IF CHOICE <> 3 THEN K = CHOICE: GOSUB 1020

ELSE FOR K = 1 TO PICTUREPART: GOSUB 1020: NEXT

180 GOSUB 560 'GET CHOICE OF PART TO SCALE (OR QUIT)

190 WEND

200 GOTO 1280

210 'tttttttttttttt READ PICTURE PARTS AND DRAW ttttttttttttttt

220 PICTUREPART = 0

230 READ XD,YD
240 WHILE XD <> -100

250 PICTUREPART = PICTUREPART + 1

260 EACHPOINT = O

270 WHILE XD =>0 '-1 IS END OF POINTS FOR THIS PART

280 EACHPOINT = EACHPOINT + 1

290 X(PICTUREPART,EACHPOINT) = XD
300 Y(PICTUREPART,EACHPOINT) = YD
310 READ XD,YD
320 WEND

330 'STORE # OF POINTS IS PICTUREPART IN POINTCOUNT(PICTUREPART)

340 POINTCOUNT(PICTUREPART) = EACHPOINT

350 READ XD,YD
360 WEND

370 'DRAW PICTURE

380 DRAWCOLOR = 2

390 FOR K = 1 TO PICTUREPART

400 GOSUB 1020

410 NEXT

420 RETURN

430 'ttttttttttttttt MAKE MENUS FOR LIGHT PEN SELECTION tttttttttt

440 LOCATE 18,1: PRINT "PART
450 LINE (3,149) - (53,161),1,B: LOCATE 20,2: PRINT "FRONT";
460 LINE (3,165) - (53,177),1,B: LOCATE 22,2: PRINT "REAR";
470 LINE (3,181) - (53,193),1,B: LOCATE 24,3: PRINT "ALL";
480 LOCATE 18,10: PRINT "SCALING FACTOR - "
490 LINE (75,193) - (315,199),1,BF
500 LOCATE 20,10: PRINT ".1 .5 .9";
510 LINE (75,161) - (315,167),1,BF

Chapter 7 Transformations 139

Program 7-6 (cont.)
520 LOCATE 24,11: PRINT "1 2 3";
530 LINE (272,2) - (319,20),1,BP
540 LINE (278,6) - (313,16),O,BF: LOCATE 2,36: PRINT "STOP";
550 RETURN

560 'ttttttttttttttt READ PART TO SCALE FROM PEN ttttttttttttttttttt
570 PEN ON

580 WHILE PEN(O) <> ~1 'WAIT FOR PEN TO BE ACTIVATED
590 LOCATE 18,1: PRINT " ";: FOR DELAY = 1 TO 80: NEXT
600 LOCATE 18,1: PRINT "PART FOR DELAY = 1 TO 80s NEXT
610 WEND

620 X = PEN(l): Y = PEN(2)

630 PEN OFF

640 'HAVE WE HIT THE STOP BOX; OR, IS THE PEN READING INVALID?
650 IF X > 270 AND Y < 25 THEN CHOICE = 0

ELSE IF X > 53 OR Y < 149 THEN 570

660 IF Y > 179 THEN CHOICE = 3: GOTO 690

670 IF Y > 163 THEN CHOICE = 2s GOTO 690

680 IF Y > 149 THEN CHOICE = 1

690 RETURN

700 'tttttttttttttttttt* HOW MUCH TO SCALE? tttttttttttttttttttttttt
710 PEN ON

720 WHILE PEN(O) <> -1 'WAIT UNTIL PEN IS ACTIVATED
730 LOCATE 18,10:PRINT " ";:FOR D=1 TO lOOsNEXT
740 LOCATE 18,10:PRINT "SCALING - HORIZONTAL";:FOR D=1 TO 100:NEXT
750 WEND

760 X = PEN(l): Y = PEN(2)

770 PEN OFF

780 IF X < 75 OR Y < 160 THEN 710 'INVALID READ - TRY AGAIN

790 IF Y < 188 THEN HS = (X ~ 75) * (.8 / 240) + .1

ELSE HS = (X - 75) * (2 / 240) + 1

800 'READ VERTICAL SCALING FACTOR

810 PEN ON

820 WHILE PEN(O) <> -1 'WAIT UNTIL PEN IS ACTIVATED
830 LOCATE 18,10:PRINT " ";:FOR D=1 TO 100:NEXT
840 LOCATE 18,10:PRINT "SCALING - VERTICAL ";sFOR D=1 TO lOOsNEXT
850 WEND

860 X = PEN(l): Y = PEN(2)

870 PEN OFF

880 IF X < 75 OR Y < 160 THEN 810 'INVALID READ - TRY AGAIN

890 IF Y < 188 THEN VS = (X - 75) * (.8 / 240) + .1

ELSE VS = (X - 75) * (2 / 240) + 1

900 RETURN

910 'tttttttt RECALCULATE POINTS FOR APPROPRIATE PICTURE PART tttttttt
920 ON CHOICE GOTO 930, 940, 950
930 XFIXED = X(l,2): YFIXED = Yd,2): GOTO 960
940 XFIXED = X(2,2): YFIXED = Y(2,2): GOTO 960
950 XFIXED = X(l,7): YFIXED = Yd,7): GOTO 980
960 SCALEPART = CHOICE: GOSUB 1080 'DO SCALING

970 GOTO 1010

980 FOR SCALEPART = 1 TO PICTUREPART 'SCALE EACH PART

990 GOSUB 1080

lOOO NEXT

1010 RETURN

1030 FOR J = 1 TO POINTCOUNT(K) - 1

1040 IF X(K,J) < O OR X(K,J) > 319 OR Y(K,J) < O OR Y(K,J) > 199
THEN 1300

1050 LINE (X(K,J),Y(K,J)) - (X (K, J-i-1) , Y(K, J+1)) ,DRAWCOLOR
1060 NEXT

1070 RETURN

140 DISPLAY MANIPULATIONS PART I

Program 7-6 (cont.)

1090 FOR J = 1 TO PGINTCGUNT(SCALEPART)

llOO X(SCALEPART,J) = X(SCALEPART,J) * HS + XFIXED * (1 - HS)
1110 Y(SCALEPART,J) = V(SCALEPART,J) * VS + VFIXED * (1 - VS)
1120 NEXT

1130 RETURN

1140 '#«##«*####*«##«###«###*####*»#######*######«###*##«####«#####**«#»####

1150 'FRONT OF CAR

1160 DATA 220,90,160,90,160,60,205,60,187,35,160,35
1170 DATA 160,30,190,30,210,60,250,65,260,90,250,90
1180 DATA 250,100,240,110,230,110,220,100,220,90
1190 DATA 230,80,240,80,250,90
1200 DATA -1,-1
1210 'BACK GF CAR

1220 DATA 120,90,160,90,160,60,120,60,135,35,160,35
1230 DATA 160,30,130,30,115,60,80,60,75,90,90,90
1240 DATA 90,100,100,110,110,110,120,100,120,90,110,80,100,80,90,90,90,100
1250 DATA -1,-1
1260 DATA -100,-lOO
1270

1280 IF INKEY* = "" THEN 1280

1290 GGTG 1310

1300 PRINT "CGGRDINATE GUT GF RANGE"

1310 END

liliiiiiiiiliiiiliiiiliil

ISTOPl
iiiiiiiiiiiiiiiiiiiiiiiii

PART - SCALING FACTOR -

FRONT

REAR

ALL

.1 .5 .9

Figure 7-4 Scaling menu used by Prog. 7-6 for light pen input.

Figure A

Figure B

Figure C

Figure D

Figure E

Figure F

ONNUni. SAI^ FK^KES

TJiousands
saef^

Figure G

JFHAHJJASON0
AEAPAUUUECOE
NBRRyNLGPTVC

Figure H

Figure J

t igure

Figure K

1

■

Figure L

Figure M

Figure N

Figure O

Sales

Costs

ee

40

80

REG I ON A <S in thousandls >

Fel>

PROFIT

June

Figure P

Chapter 7 Transformations 141

modification of Prog. 7-5. The picture component to be scaled and the scaling
factor are selected with a light pen. Figure 7-4 shows the screen presentation of
the menus. A tablet or joystick could be used in a similar way to select screen
positions.

DRAW STATEMENT SCALING

The S command used with the DRAW statement is another means for scaling
picture parts. With this command, we can scale objects using scaling factors that
are multiples of 1/4 up to a maximum of 63 (0.25,0.5,0.75,1,1.25, and so on). The
scaling factor selected in this range is then multiplied by 4 and inserted with the S
command into the picture string definition just before the commands that draw the
object we want to scale. If we want to triple the size of an object, we put the
command S12 into the DRAW statement just before the commands to actually
draw that object.

Any S command inserted into a DRAW statement will scale all the picture
parts following S. If we only want to change the size of one object, we put the
command S4 immediately after the commands to draw that object. This will scale
all the remaining objects in the picture by a factor of 1. The following DRAW
statement scales one object within a display in this way:

DRAW "BM10,150:S12:R40;H20;G20;BM50,150:S4;R40:H20;G20"

Scaling command S12 enlarges the first triangle by a factor of 3, and command 84
sets the second triangle to normal size. These scaling commands scale each line
drawn with respect to the last point referenced. For the command 812, the fixed
point of the first line drawn is (10,150). The end of this horizontal line is the next
fixed point (for the command H20). Similarly, position (50,150) is the first fixed
point for the command 84.

Scaling with the DRAW statement is somewhat less flexible than using the
scaling equations. We are restricted to scaling factors that are multiples of 1/4,
starting with the value 1/4. Also, we have to remember to "undo" our scaling if
subsequent objects are not to be scaled. To scale diflferent parts of a single object
differently takes some juggling. If we want different horizontal and vertical scaling
factors, we either need to include multiple 8 commands for the object or we need
to rearrange the drawing sequence. In either case, this can get messy. 8o we are
better off drawing and scaling objects using other methods when we want different
scale factors for different parts of individual objects.

7-3 CHANGING ORIENTATIONS (ROTATION)

In many applications, we would like to be able to change the orientation of a
display. We may decide to change a bar graph so that the bars are drawn
horizontally instead of vertically. Rotating the display by 90 degrees can be a

142 DISPLAY MANIPULATIONS PART I

convenient technique for accomplishing this without having to reconstruct the
graph. In simulation and game playing applications we often want to display
rotating objects.

ROTATING A POINT

Figure 7-5 illustrates rotation of a point. The rotation path is along a circular arc
from position (X,Y) to position (XR,YR) about a pivot point (XO,YO). Angle A in
this figure specifies the amount of rotation from (X,Y) to (XR,YR). The rotated
coordinates (XR,YR) are calculated from the values of A, (XO,YO), and (X,Y) as

XR = XO + ((X - XO) * COS(A)) + ((V - YO) * SIN(A))

YR = YO + ((Y - YO) * COS(A)) - ((X - XO) ♦ SIN(A))
(7-8)

Coordinate values for the pivot point (XO,YO) can be chosen to be at any
convenient location—either on the screen or beyond the screen boundaries in any
direction. This point is not plotted and is only chosen as a reference to determine
the circular path of rotation, as shown in Fig. 7-6.

Rotation angle A is measured in a counterclockwise direction from the
starting position (X,Y) of the point. This angle usually will be given a value
between zero radians and 2 * PI (6.283185) radians. Other angles may be specified,
but they simply repeat the rotations in this range.

The distance that the point moves along the circle path for a specified angle
A depends on the distance of (X,Y) from the pivot point (XO,YO). The farther
(XO,YO) is from (X,Y), the greater the distance traveled from (X,Y) to (XR,YR).
Figure 7-7 shows the relationship between the pivot distance R, the angle A, and
the displacement D from (X,Y) to (XR,YR). For small rotation angles, D is
approximately equal to the product R * A. If R is 50, then a point could be rotated
a distance of about 1 unit (to a neighboring pixel location) with an angle A of 0.02
radian.

• X axis

(XO, YO)

(XR,yR)

(X, Y),

Y axis

Figure 7-5 Rotating a point at position
(X,Y) to position (XR,YR) about the
point (XO,YO). The point rotates
through an angle A along a circular
path.

Chapter 7 Transformations 143

(XO, YO)

(XR, YR)

X axis

Y axis

Figure 7-6 Values for the coordinates of the pivot point (XO,YO) can be chosen to be off screen, as
well as within the screen coordinate boundaries.

(XR, YR)

(XO, YO) (X, Y)

Figure 7-7 For small values of the rotation angle A, the distance D, from (X,Y) to (XR,YR), is
approximately equal to the pivot distance R times rotation angle A. As R gets larger, D gets larger, for
the same rotation angle A.

ROTATING DISPLAYS

To change the orientation of a displayed object, we first select the pivot point.
Then the rotated coordinate positions of all points in the object are calculated with
relations (7-8). Finally, the screen is cleared and the object lines are redrawn
using the rotated coordinates.

Program 7-7 rotates a picture about any selected pivot point (XO,YO)
through any specified rotation angle A, provided that the rotated position is on the

144 DISPLAY MANIPULATIONS PART III

screen. Output of the program for rotation angles of 90 degrees and 180 degrees
are shown in Fig. 7-8. The pivot point for rotation in this example was chosen at
the center of the figure.

Rotating a display can cause the picture or graph to be distorted if the X
resolution of the system is different from the Y resolution. We adjust for

Program 7-7 Rotation of a picture (clown).

10 'PROGRAM 7-7. ROTATING A PICTURE.

20 'DRAWS PICTURE AND ALLOWS USER TO INPUT THE ANGLE OF

30 'DESIRED ROTATION. ROTATED POINTS ARE STORED IN XR AND YR.

40 DIM X(7,100), V(7,100), POINTCOUNT(7)
50 DIM XR(7,100), yR(7,100), P0INTC0UNTR(7,100)
60 SCREEN 1: COLOR 1,0: CLS
70 'ttttttttttttttt CONTROL PROGRAM FLOW tttttttttttttttttttttt
80 GOSUB 180 'READ PICTURE PARTS

90 GOSUB 580 'DRAW

100 GOSUB 430 'GET ANGLE TO ROTATE

110 WHILE ANGLE <> -1 'ENTER -1 TO QUIT
120 GOSUB 490 'GET POINT ABOUT WHICH TO ROTATE

130 GOSUB 520 'RECALCULATE POINTS

140 GOSUB 580 'ERASE AND DRAW IN NEW ORIENTATION

150 GOSUB 430

160 WEND

170 GOTO 910

180 'tttttttttttttttt READ PICTURE PARTS tttttttttttttttttttt
190 PICTUREPART = O

200 READ XD,yD
210 WHILE XD <> -100

220 PICTUREPART = PICTUREPART + 1

230 EACHPOINT = 0

240 WHILE XD =>0 '-1 IS END OF POINTS FOR PART
250 EACHPOINT « EACHPOINT + 1

260 X(PICTUREPART,EACHPOINT) = XD
270 y(PICTUREPART,EACHPOINT) = YD « 5/6 'RESOLUTION CORRECTION
280 READ XD,yD
290 WEND

300 'STORE * OF POINTS IN PICTUREPART IN POINTCOUNT(PICTUREPART)
310 POINTCOUNT(PICTUREPART) = EACHPOINT

320 READ XD,yD
330 WEND

340 'COPY ORIGINAL VALUES TO ARRAYS USED TO HOLD ROTATED
350 'POINTS, SINCE DRAW ROUTINE USES THESE ARRAYS
360 FOR EACHPART = 1 TO PICTUREPART

370 FOR EACHPOINT = 1 TO POINTCOUNT(EACHPART)

380 XR(EACHPART,EACHPOINT) = X(EACHPART,EACHPOINT)
390 YR(EACHPART,EACHPOINT) = Y(EACHPART,EACHPOINT)
400 NEXT

410 NEXT

420 RETURN

430 'tttttttttttttttttt* PRINT INSTRUCTIONS ttttttttttttttttttttt
440 LOCATE 22,1: PRINT " ANGLE TO ROTATE FROM ORIGINAL POSITION";
450 LOCATE 23,1: INPUT " (0-360, OR -1 TO END)"; ANGLE
460 LOCATE 22,1: PRINT STRING*(80," ");
470 RETURN

480 'tttttttttttt GET POINT ABOUT WHICH TO ROTATE
490 LOCATE 21,1
500 INPUT " ABOUT WHAT POINT"; XO,YO
510 RETURN

520 'ttttttttttttttttt RECALCULATE POINTS ttttttttttttttttttttttttttt

Chapter 7 Transformations 145

Program 7-7 (cont.)

530 ANGLE = ANGLE * 3.14159 / IQO 'CHANGE DEGREES TO RADIANS
540 FOR P = 1 TO PICTUREPART 'ROTATE EACH PART

550 GOSUB 670

560 NEXT

570 RETURN

580 *tttttttttttttttttttttttttt DRAW ROUTINE ttttttttttttttttttttttttttttttt

590 CLS

600 FOR P = 1 TO PICTUREPART

610 FOR E = 1 TO POINTCOUNT(P) - 1

620 IF XR(P,E) < O OR XR<P,E) > 319 OR YR(P,E) < O OR YR<P,E) > 199
THEN 890

630 LINE (XR(P,E),YR<P,E)) - (XR(P,E+1),YR(P,E+1))
640 NEXT

650 NEXT

660 RETURN

670 '»«««««««««»««««»«««»«««««« ROTATE ROUTINE ttttttttttttttttttttttttttttt

680 FOR E = 1 TO POINTCOUNT(P)

690 XR(P,E) = XO + <X(P,E)-XO)tCOS(ANGLE) + (Y(P,E)-YO)«SIN(ANGLE)*6/5
700 YR(P,E) = YO + (Y(P,E)-YO)*COS(ANGLE) - (X(P,E)-XO)*SIN(ANGLE)*5/6
710 NEXT

720 RETURN

730 't**

740 DATA 160,60,170,50,170,40,160,30,150,30,140,40,140,50
750 DATA 150,60,178,60,165,63,173,70,160,67,155,78,150,67
760 DATA 140,72,145,65,130,65,150,60,100,70,90,70,90,80,100
770 DATA 80,110,90,130,80,120,140,120,150,130,160,120,170,125
780 DATA 175, 140,170,140,160, 150,150, 155, 110, 170, 150,180, 160,180
790 DATA 170,200,170,200,165,190,160,195,150,195,140,175,80,200
800 DATA 30,190,20,190,10,180,10,180,20,170,60
810 DATA -1,-1
820 DATA 147,42,153,42,-1,-1
830 DATA 150,38,150,45,-1,-1
840 DATA 157,42,163,42,-1,-1
850 DATA 160,38,160,45
860 DATA -1,-1
870 DATA -100,-100
880 't**

890 PRINT "CGGRDINATE GUT GF RANGE";
900 GGTG 920

910 IF INKEY4 = "" THEN 910

920 END

resolution diflPerences in Prog. 7-7 by multiplying the term (Y - YO) ♦ SIN(A) on
line 690 by the ratio of X resolution to Y resolution and multiplying the term (X -
XO) * SIN(A) on line 700 by the ratio of Y resolution to X resolution. This is
equivalent to rotating the display along an elliptical path, which looks circular on
the screen.

INTERACTIVE ROTATIONS

We can organize programs to select rotation transformation parameters with a
light pen, tablet, or joystick in much the same way that we did with scaling. A
menu consisting of a straight line can be used to represent angles from 0 to 2 * PI
radians. Coordinate values selected along the line by a light pen, say, are then

146 DISPLAY MANIPULATIONS PART I

(+^J/ /
V m' .1

^ i' ■ Jf ** /

^ \
K ̂

/

ANGLE TO ROTATE FROM ORIGINAL POSITION
(0-360, OR -1 TO END)? ■

(a)

c:

i''+ ̂
1/

1/

ANGLE TO ROTATE FROM ORIGINAL POSITION
<0-360, OR -1 TO END)? ■

(b)

Figure 7-8 Rotating a picture from the original position (a) through 90 degrees (b) and through 180
degrees (c) by Prog. 7-7.

Chapter? Transformations 147

Figure 7-8 (cont.)

ANGLE TO ROTATE FROM ORIGINAL POSITION
Ce-36e, OR -1 TO END)? ■

(C)

interpreted as angles within this range. We can select the objects to be rotated and
the pivot points by pointing the pen to positions on the screen. In Section 7-4 we
will consider how we might incorporate interactive methods for rotation into our
programs.

DRAW STATEMENT ROTATIONS

Objects produced by a DRAW statement can be rotated with the A command. We
have three rotation angle options. The command A1 gives us a rotation angle of 90
degrees (PI/2 radians), A2 provides an angle of 180 degrees (PI radians), and A3
selects 270 degrees (3 * PI/2 radians). We also have the command AO, which sets
the rotation angle at 0 degrees. This allows us to rotate only selected parts of a
picture, by canceling previous rotation specifications. To rotate only one object in
a picture, we specify the appropriate rotation command before we draw that
object, then specify the command AO for the rest of the objects in the picture.
Pivot points for rotation are taken as the last points referenced before a line is

148 DISPLAY MANIPULATIONS PART III

drawn. For example,

DRAW "BM100,100;A2;R50:H25:G25"

rotates the triangle through 180 degrees about the point (100,100).
A rotation command affects all subsequent DRAW commands up to the next

rotation command. Each of the rotation commands takes the last point referenced
as the pivot point for that rotation. In addition, rotation angles of 90 degrees and
270 degrees are automatically adjusted for resolution differences, assuming an
aspect ratio of 3/4. If we want other aspect ratios or rotation angles different from
90, 180, or 270 degrees, we use the rotation equations (7-8).

7-4 COMBINED TRANSFORMATIONS AND PICTURE

CONSTRUCTION

A general interactive transformation program that combines translation, scaling,
and rotation is given in Prog. 7-8. The program illustrates a method for setting up
interactive menus for the three transformations. It also shows how we can use

Program 7-8 Interactive picture construction using a shape menu and keyboard input.

10 'PROGRAM 7-8. BUILDING PICTURES FROM COMPONENT PARTS.
20 'DISPLAYS MENUS ON SCREEN LISTING CHOICES FOR
30 'SHAPES AND TRANSFORMATIONS. EACH TIME A
40 'SHAPE IS SELECTED, ANY NUMBER AND COMBINATION
50 'OF TRANSFORMATIONS CAN BE APPLIED.

70 SCREEN 2: CLS

80 YA = 5/12 'YA AND XA ARE RESOLUTION ADJUSTMENTS
90 XA = 12/5

100 GOSUB 460 'MAKE MENUS

110 AA = O 'AA IS ACCUMULATED ANGLE THAT A CIRCLE HAS BEEN ROTATED
120 'tttttttttttttttttttttttt INPUT CHOICES ttttttttttttttttttttt
130 LOCATE 1,1: PRINT " FOR DELAY=1 TO 300: NEXT
140 LOCATE 1,1: PRINT "SELECT:";: FOR DELAY=1 TO 300: NEXT
150 A« = INKEY* 'A* IS CHOICE OF SHAPE

160 IF A^ = "" OR A^ < "1" OR A^ > "4" THEN 130 'INVALID CHOICE
170 RO = VALtA*) * 4

ISO N = O 'N INDICATES WHETHER CURRENT DISPLAY OF SHAPE
190 LOCATE 23,1: PRINT "SELECT:"; 'SHOULD BE ERASED OR NOT
200 LOCATE RO,1: PRINT " ";: FOR DELAY=1 TO 300: NEXT
210 LOCATE 23,1: PRINT " ";
220 LOCATE RO,1: PRINT Ms FOR DELAY=1 TO 300: NEXT
230 B% = INKEY* 'B« IS CHOICE OF TRANSFORMATION
240 IF B« = "" OR B*<>"T" AND B«<>"S" AND B*<>"R" AND B*<>"E" AND

B*<>"N" AND B*<>"Q" THEN 190

250 IF B* = "Q" THEN 2310

260 IF B* <> "N" THEN 310

270 RESTORE 'GO BACK TO BEGINNING OF DATA
280 GOSUB 600 'READ DATA POINTS

290 GOTO 110

300 'tttttttt ERASING? »««««»«»

310 IF B« = "E" THEN C = O: ON VAL(A*) GOSUB 680, 710, 770, 990: RESTORE:
GOSUB 600 : GOTO 110

320 'tttttttttttttttttttttttti*
330 LOCATE 23,1: PRINT " "; 'ERASE MENU TO MAKE ROOM FOR OTHER

Chapter 7 Transformations 149

Program 7-8 (cont.)

340 LOCATE 24,1: PRINT STRING*(79,"
350 TRANSLATING? tttttt

•); 'TRANSFGRMATIDNS INSTRUCTIONS

360 IF B* = "T" THEN GOSUB 1310: C = 0: ON VAL(A*) GOSUB 1050, 1110, 1190, 1240

370 '««««««»« SCALING? »»««««««

380 IF B* = "S" THEN GOSUB 1670: C = 0: ON VAL(A*) GOSUB 1350, 1420, 1520, 1580

390 '««««««« ROTATING?

400 IF B* = "R" THEN GOSUB 2220: C = 0: ON VAL(A*) GOSUB 1720, 1840, 2020, 2080

410

420 N = 1 'FROM NOW ON, ERASE OLD PICTURE OF SHAPE
430 GOSUB 560 'REDISPLAY TRANSFORMATION MENU

440 GOTO 190

450 '

460 '####*##############*## DISPLAY MENUS ##»*##»##«######*###«»#

470 LOCATE 1,1: PRINT "SELECT:";
480 FOR K=1 TO 4:L0CATE K*4,1:PRINT RIGHT*(STR*(K),1 NEXT
490 C = 3

500 GOSUB 600

510 GOSUB 690

520 GOSUB 720

530 AA = O

540 GOSUB 780

550 GOSUB 1000

560 LOCATE 23,1: PRINT
570 LOCATE 24,1: PRINT
580 LOCATE 24,39: PRINT
590 RETURN

600 ' READ DATA POINTS

610 READ XP,YP,XQ,YQ
620 READ XU,YU,XV,YV,XW,YW,XX,YX
630 READ XC,YC,RX,RY
640 READ XR,YR,XS,YS,XT,YT
650 RETURN

660 '

670

680

'READ DATA POINTS

'DRAW LINE

'DRAW BOX

'DRAW CIRCLE

'DRAW TRIANGLE

"SELECT;"; STRING*(50, '
"T -TRANSLATE S -SCALE R

"E -ERASE N -NEXT OBJECT

•);
-ROTATE";
Q -QUIT";

###################### draw ROUTINES #«##*#########«###«###*###

' DRAW LINE

690 LINE (XP,YP) - (XQ,YQ),C
700 RETURN

DRAW BOX ttttMtttttt710

720 LINE (XU,YU) - (XV,YV),C
730 LINE (XV,YV) - (XW,YW),C
740 LINE (XW,YW) - (XX,YX),C
750 LINE (XX,YX) - (XU,YU),C
760 RETURN

' DRAW CIRCLE tttttttttt

IF RX = RY THEN CIRCLE (XC,YC),RX,C: GOTO 980
770

780

790

800

IF RX < RY THEN R = RX ELSE

IF AA <> O THEN 890

810 FOR A = O TO 1-5708 STEP 1/R

820

830

840

850

860

920

930

940

RX * COS(A): DY = RY

(XC+DX,YC+DY*YA),C
(XC+DX,YC-DY*YA),C
(XC-DX,YC+DY*YA),C
(XC-DX,YC-DY*YA),C

RY

t SIN(A)DX =

PSET

PSET

PSET

PSET

870 NEXT

880 GOTO 980

890 CX = SIN(AA) * XA

900 CY = SIN(AA) * YA

910 FOR A = O TO 3.14159 STEP 1/R

X = RX * COS(A): Y = RY * SIN(A)

XH = X

X = X * COS(AA) + Y * CX: Y = Y * COS(AA)

'CALCULATE CONSTA

* YA

NT PART OF EQUATION

XH * CY

150 DISPLAY MANIPULATIONS PART III

Program 7-8 (cont.)

950 PSET (XC+X,YC+Y),C
960 PSET (XC~X,YC-Y),C
970 NEXT A

980 RETURN

990 'tttttttttt* DRAW TRIANGLE tttttttttt
1000 LINE (XR,YR) - (XS,YS),C: LINE - (XT,YT),C: LINE - (XR,YR),C
lOlO RETURN

1020 '

1030 '##########«######«##*####### TRANSLATE ##«#####«##########*#«####«######
1040 'tttttttttt TRANSLATE LINE **********
1050 IF N <> O THEN 60SUB 680 'IF N IS O SHAPE IS STILL IN MENU-DON'T ERASE
1060 XP = XP + HTs YP = YP + VT
1070 XQ = XQ -I- HT: YQ = YQ + VT
1080 C = 3: GGSUB 680 'DRAW
1090 RETURN

1100 '********** TRANSLATE BOX ***********
1110 IF N <> O THEN GOSUB 710
1120 XU = XU + HT: YU = YU + VT
1130 XV = XV + HT: YV = YV + VT
1140 XW = XW -I- HT: YW = YW + VT
1150 XX = XX + HT: YX = YX + VT
1160 C = 3: GOSUB 710 'DRAW
1170 RETURN

1180 '********* TRANSLATE CIRCLE *********
1190 IF N <> O THEN GOSUB 770
1200 XC = XC + HT: YC = YC + VT
1210 C = 3: GOSUB 770 'DRAW
1220 RETURN

1230 '********* TRANSLATE TRIANGLE *******
1240 IF N <> O THEN GOSUB 990
1250 XR = XR + HT: YR = YR + VT
1260 XS = XS + HT: YS = YS + VT
1270 XT = XT + HT: YT = YT + VT
1280 C = 3: GOSUB 990 'DRAW
1290 RETURN

1300 '*********** INSTRUCTIONS ***********
1310 LOCATE 23,1: INPUT "HORIZONTAL AND VERTICAL DISTANCE TO TRANSLATE": HT-VT
1320 RETURN

1330 '

1340 '«#############«############# SCALING
1350 '***********» SCALE LINE ************
1360 IF N <> O THEN GOSUB 680
1370 XF = (XP + XQ) / 2: YF = (YP + YQ) / 2
1380 XP = XP * HS + XF * (1 - HS): YP = YP * VS + YF * (1 - VS)
1390 XQ = XQ * HS + XF * (1 - HS): YQ = YQ * VS + YF * (1 - VS)
1400 C = 3: GOSUB 680 'DRAW
1410 RETURN

1420 '************** SCALE BOX ***********
1430 IF N <> O THEN GOSUB 710
1440 XF = (XU + XV -I- XW + XX) / 4
1450 YF = (YU + YV + YW + YX) / 4
1460 XU = XU * HS + XF * (1 - HS): YU = YU * VS
1470 XV = XV * HS + XF * (1 - HS): YV = YV * VS
1480 XW = XW * HS -I- XF * (1 - HS): YW - YW * VS
1490 XX = XX * HS + XF * (1 - HS): YX = YX * VS
1500 C = 3: GOSUB 710 'DRAW
1510 RETURN

1520 '************ SCALE CIRCLE **********
1530 IF N <> O THEN GOSUB 770
1540 RX = RX * HS

+ YF * (1 - VS)
+ YF * (1 - VS)
+ YF * (1 - VS)
+ YF * (1 - VS)

Chapter 7 Transformations 151

Program 7-8 (cont.)

'DRAW

IF

XR

XS

XT

1580

1590

1600 XF

1610 YF

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780 VP

1790 XH

1800

1810

1820

1830

1840

1850

1860

1870

1880

#«

XQ

IF

XO

YO

XH

1550 RY = RY * VS

1560 C ̂ Zs GOSUB 770

1570 RETURN

'ttttttttttt SCALE TRIANGLE

N <> O THEN GOSUB 990

<XR + XS + XT) / 3

(YR + YS + YT)

XR * HS + XF 8

= XS * HS + XF *

= XT 8 HS + XF *

C = 3: GOSUB 990

RETURN

'88888888888 INSTRUCTIONS 88888888888

LOCATE 23,1: INPUT "ENTER X AND Y SCALING FACTORS"; HS,VS
RETURN

/ 3

(1 - MS): YR = YR

(1 - MS): YS = YS

(1 - HS): YT = YT

'DRAW

VS

VS

VS

YF

YF

YF

<1 - VS)

(1 ~ VS)

<1 - VS)

#########*#«####«#*#»#*##### ROTATION
'8888888888888 ROTATE LINE 888888888888

N <> O THEN GOSUB 680

= <XP + XQ) / 2

= (YP + YQ) / 2

XP

XO

YO

XQ

XO

YO

'HOLD VALUE OF

(XP - XO) 8 COS(AR) + (YP - YO)
(YP - YO) 8 COS(AR) - (XH - XO)

XP FOR USE IN Y CALCULATION

 = XO + (XQ - XO) 8 COS(AR) + (YQ - YO)
YQ = YO + (YQ - YO) 8 COS(AR) - (XH - XO)
C = 3: GOSUB 680 'DRAW
RETURN

'8888888888 ROTATE BOX 88888888888888

N <> O THEN GOSUB 710

= (XU + XV + XW + XX) / 4

= (YU + YV + YW + YX) / 4

= XU HOLD CURRENT V

SIN(AR)

SIN(AR)

SIN(AR)

SIN(AR)

XA

YA

XA

YA

ALUE OF XU

1890 XU 3 XO + (XU - XO) 8 COS(AR) + (YU - YO) 8 SIN(AR) 8 XA

1900 YU = YO + (YU - YO) 8 COS(AR) - (XH - XO) 8 SIN(AR) 8 YA

1910 XH = XV

1920 XV S XO + (XV - XO) 8 COS(AR) + (YV - YO) 8 SIN(AR) 8 XA

1930 YV = YO + (YV - YO) 8 COS(AR) - (XH - XO) 8 SIN(AR) 8 YA

1940 XH s XW

1950 XW = XO + (XW - XO) 8 COS(AR) + (YW - YO) 8 SIN(AR) 8 XA

1960 YW = YO + (YW - YO) 8 COS(AR) - (XH - XO) 8 SIN(AR) 8 YA

1970 XH s XX

1980 XX s XO + (XX - XO) 8 COS(AR) + (YX - YO) 8 SIN(AR) 8 XA

1990 YX s YO (YX - YO) 8 COS(AR) - (XH - XO) 8 SIN(AR) 8 YA

2000 C = 3: GOSUB 710 'DRAW

2010 RETURN

2020 '88888888888888

2030 IF N <> O THEN AA =

2040 AA AR -I- AS

2050 C = 3: GOSUB 770

2060 AS » AA

2070 RETURN

ROTATE CIRCLE I

= AS: GOSUB 770

'DRAW

2080

2090

2100

2110

2120

2130

2140

'8888888888 ROTATE TRIANGLE 8888888888

IF

XO

XH

XR

YR

XH

<> O THEN

(XR + XS

XR

XO + (XR - XO)

YO + (YR - YO)

XS .

GOSUB 990

XT) / 3: YO (YR + YS + YT) / 3

COS(AR)

COS(AR) -

(YR

(XH

- YO)

- XO)

SIN(AR)

SIN(AR)

XA

YA

152 DISPLAY MANIPULATIONS PART

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

Program 7-8 (cont.)

XS = XO + (XS - XO) t COS(AR) + (YS - VO) « SIN(AR) «

YS = YO + (YS - YO) « COS(AR) - (XH - XO) * SIN(AR) *
XH = XT

XT = XO + (XT - XO) « COS(AR) + (YT - YO) « SIN(AR) «

YT = YO + (YT - YO) * COS(AR) - (XH - XO) t SIN(AR) *
C = 3: GOSUB 990

RETURN

INSTRUCTIONS tttttttttttttttt
LOCATE 23,1: INPUT "NUMBER OF DEGREES TO ROTATE"; AR
AR = AR « 3.14159 /ISO 'CONVERT AR TO RADIANS
RETURN

DATA 30,27,80,27
DATA 80,45,80,70,30,70,30,45
DATA 55,90,22,22
DATA 30,130,80,130,55,110
END

XA

YA

XA

YA

these methods for constructing a display a piece at a time from a set of standard
shapes. Using keyboard input, we select a line, triangle, box, or circle and
position it on the screen with a specified orientation and size. An example of the
screen display that we can make is shown in Fig. 7-9. The menu of shapes is at the

Figure 7-9 Sample output from Prog. 7-8, using a combination of transformations on selected shapes
for interactive picture construction.

SELECT;

1.

SELECT;
T -TRANSLATE S -SCALE R -ROTATE E -ERASE N -NEXT OBJECT Q -QUIT

Chapter 7 Transformations 153

left of the screen, and the menu for transformations is at the bottom of the screen.
Once the picture is constructed, we could scale it to the full screen size and save it
on disk or tape. We can use similar methods for constructing and positioning
graphs and charts.

The order in which we perform translation and rotation can affect the final
displayed position of an object. As shown in Fig. 7-10, when we rotate an object
about a point external to the object, the final transformed position will depend on
whether we translate before or after we rotate.

position

position

(a) Translation & rotation (b) Rotation & translation

Figure 7-10 Final position of an object after translation and rotation (about a point external to the
object) depends on the order of these transformations. In (a), translation is performed first; in (b),
translation is performed last.

PROGRAMMING PROJECTS

7-1. Write a program to translate a circle to any input screen location by translating the
circle center and redrawing the circle at the new position.

7-2, Modify the program of Project 7-1 to scale the circle (relative to its center) and paint
the interior after it is translated. Parameters for translating, scaling, and coloring the
circle are to be set by input.

7-3. Revise Prog. 7-3 to translate any character string from one screen location to
another. No part of the character string should be translated off screen. The program
could either reject off-screen translation or split the string in some way to fit on the
screen.

7-4. Modify Prog. 7-3 to accept coordinate inputs from a joystick (or tablet), instead of
from a light pen.

7-5. Write a program that will scale and display any input polygon, taking the polygon
center (the centroid) as a fixed point. The centroid X coordinate is calculated as the
average value of the X coordinates of the vertices (that is, we add all the X
coordinates and divide by the total number of vertices). The centroid Y coordinate is
calculated as the average value of the Y coordinates of the vertices.

7-6. Modify Prog. 7-6 for joystick (or tablet) input.

7-7. Write a program to scale an input figure with respect to any specified direction. The
direction is to be specified by an angle A, measured from the horizontal, as shown in

154 DISPLAY MANIPULATIONS PART III

Fig. 7-11. This scaling can be accomplished by rotating the object counterclockwise
through the angle A, applying the scaling transformations with HS = SI and VS =
S2, then rotating the object back (through a rotation angle of -A) to its original
position. The parameters A, SI, and S2 are to be determined as input.

^si

Figure 7-11 Scaling directions specified by an angle A for scaling factors SI and S2.

7-8. Write a scaling program for bar graphs that will automatically reposition string labels
after scaling. Determine the new starting position of a label by scaling the distance
from the fixed point to the original starting position.

7-9. Expand Project 7-8 to perform any combination of translation, scaling, and rotation
on an input bar graph or line graph.

7-10. Revise Prog. 7-8 to save the positions and orientations of all objects in the
constructed picture so that the picture can be redrawn if an object is erased. Also
allow each object to be painted in a chosen color.

7-11. Modify Project 7-10 for light pen, joystick, or tablet input.

7-12. Write a program that will perform any combination of transformations (translation,
scaling, rotation) on a word drawn with pixels in large letters. Stretching the letters
along a diagonal (as outlined in Project 7-7) slants the letters.

Chapter 8

Animation

Animated displays are the result of repeated transformations. The technique used
here is to display an object, apply transformations, erase the original, and display
the transformed object. When this procedure is repeated several times, we have
motion. This is the way animated cartoons and movies are produced. The artist
draws each filmstrip frame with slight changes in positions and sizes of objects.
Viewing the frames rapidly, one after the other, produces movement. We use this
same method to animate both character pictures and pixel pictures.

8-1 CHARACTER ANIMATION

To move a character around the screen, we adapt the transformation methods
discussed in Chapter 7 to row and column changes. A character is moved
horizontally across the screen by keeping the row number fixed and incrementing
the column number. At each step we erase the previously displayed character and
put it back on the screen in the translated position. Program 8-1 gives an example
of this motion. We start a "happy face" character (ASCII code 2) moving to the
right, one column at a time, from the left edge of the screen. When the character
reaches the right side of the screen, we reverse its motion. The program
repeatedly bounces the character back and forth across the screen.

Statement 50 in Prog. 8-1 displays the character in red on a blue back
ground. Statement 70 erases the character by displaying it in the background color
(blue) at the same location. Then the column number is changed to the next
position and the process repeated. We can reduce the flicker in animation by
erasing an object just before we display it in the next position. This keeps the
object on the screen for the maximum time, while we compute coordinates for the
next position. A time-delay statement, as included in Prog. 8-1, also helps to

155

■•56 DISPLAY MANIPULATIONS PART III

Program 8-1 Bouncing a character horizontally.

10 'PROGRAM 8-1. BOUNCING HAPPY FACE BACK & FORTH ACROSS SCREEN
20 SCREEN 0: COLOR 4,1,7: MIDTH 80: LOCATE ,,0: CLS
30 BOUNDARYl = 1: BOUNDARYl - 80: CHANGE = 1
40 FOR COLUMN = BOUNDARYl TO BOUNDARY2 STEP CHANGE
50 LOCATE 10,COLUMN: COLOR 4,1: PRINT CHR«(2>;
60 FOR DELAY = 1 TO 10:NEXT
70 LOCATE 10,COLUMN: COLOR 1,1: PRINT 1:HR«(2);
80 FOR DELAY = 1 TO 10:NEXT
90 NEXT
100 IF BOUNDARY2 = 80 THEN BOUNDARYl = 79: B0UNDARY2 » 1 : CHANGE = -1

ELSE BOUNDARYl - 2 : B0UNDARY2 SO: CHANGE = 1
110 GOTO 40
120 END

reduce flicker by leaving the character on the screen for a longer time before
erasing it. We get the best animation effect when the object is left on the screen for
a short while, then erased and immediately redrawn. The movement of the
character can be speeded up by reducing the delay time or by increasing the
translation increment. Changes in column number could be made in steps of 2 or
steps of 5, rather than steps of 1.

We can vary the path of motion in many ways. Instead of bouncing the
character of Prog. 8-1 back and forth, we could just always move it to the right. It
would then seem to move off the screen on the right, circling back to appear again
on the left. In a game application, we could randomly choose a new row number
each time it starts back across the screen. As another variation on this motion,
boundaries could be set up at different screen positions, and we could bounce the
object off these boundaries. We could also move objects along vertical, diagonal,
or curved paths. The row and column numbers for each successive position would
be determined from the path equation. We will consider these various types of
motion in more detail with pixel objects.

THE SCREEN FUNCTION

If we wanted to bounce the character of Prog. 8-1 off a wall, we could continually
test the character position and turn it around when it gets to the wall. Instead of a
wall, other objects could be in the path of our moving character. We can
determine when we have a potential collision with any object in two ways. One
way is to check positions to determine when we reach the row and column
location of another object. This is a straightforward coordinate test for stationary
objects, like walls, but when we have several moving objects it is difficult to keep
track of all the coordinate positions. With our PC, we can simply ask the system,
through the SCREEN function, to identify either the type or color attributes of
any characters in our path.

The SCREEN function can be used with three parameters;

SCREEN (R,C,CA) — Gives the ASCII code or the color attributes of
the character at row R and coiumn C, depending on the value of
the color attribute parameter CA.

Chapter 8 Animation "IS?

Color attribute, CA, is optional. If we omit OA, the SCREEN function will give us
the ASCII code value of the character at position R,C. We could then determine
whether we were about to have any clashes with other objects by looking at values
of the SCREEN function at each row and column position before we moved our
object to that location. As long as SCREEN has the value 32 (blank), there is
nothing in the way. Including parameter CA allows us to test for color attributes
instead of character types.

When CA is assigned any nonzero value, the SCREEN function gives us an
integer in the range 0 to 255. If SCREEN is bigger than 127, the character at
location R,C is blinking. The value of the remainder after dividing SCREEN by 16
is the foreground color set for that location. We get the background color of the
location by dividing SCREEN by 128 and subtracting the foreground color from
the remainder. That is, we calculate foreground and background colors as

FORECOLOR = SCREEN (R,C,CA) MOD 16
BACKCOLOR = SCREEN (R,C,CA) MOD 128 - FORECOLOR

In these calculations, CA must be nonzero and the MOD operator performs
modulo arithmetic: returning the remainder after division by 16 or 128. With the
Monochrome option, foreground colors in the range 8 through 15 indicate high
intensity values for the color codes 0 through 7.

Foreground and background color attributes for each screen character
location are stored in an "attribute byte" for that location. When we state a
COLOR command and then clear the screen, we set the specified color codes into
the attribute bytes for all screen locations. These are the color attributes returned
by the SCREEN function for any position, whether or not we have actually placed
a character in that position. If we do not set the color attributes in this way, they
are set by the system to the default values: white on black. Color attributes for
individueil locations can be changed by specifying the desired colors in a COLOR
statement and then placing characters in those locations.

We make use of the SCREEN function in Prog. 8-2 to bounce a block
(ASCII code 219) vertically between two boundaries. Character code 205 is used
to form the boundaries. When the block reaches one of the bounding walls, we

Program 8-2 Bouncing a character block vertically, using a SCREEN function character code test.

lO 'PROGRAM 8-2. B0UNCIN6 CHARACTER UP AND DOWN
20 'SCREEN FUNCTION IS USED TO DO BOUNDARY TEST
30 SCREEN O: COLOR 3,4,3: WIDTH 40: LOCATE ,,0: CLS
40 LOCATE 5,1: PRINT STRING*t40,205);
50 LOCATE 20,1: PRINT STRING*(40,205)j
60 CHANGE - 1

70 ROW = 6

GO IF SCREEN(ROW + C»(ANGE,20> = 205 THEN CHANGE = -CHANGE
90 COLOR 4,4: LOCATE ROW,20: PRINT CHR*(219);
lOO ROW - ROW + CHANGE

110 COLOR 1,4: LOCATE R0W,20: PRINT CHR*(219);
120 GOTO GO

130 END

■•58 DISPLAY MANIPULATIONS PART III

Program 8-3 Multiple object (airplane and block) animation, using a SCREEN function color code
test.

10 'PROGRAM 8-3. SHOOT THE AIRPLANE!
20 'SPACE BAR IS USED TO SHOOT A MISSILE AT THE AIRPLANE AS
30 'IT MOVES ACROSS THE SKY. SCREEN FUNCTION IS USED TO
40 'DETERMINE IF THE MISSILE IS ABOUT TO COLLIDE WITH THE
50 'PLANE.
60 SCREEN O: COLOR 7,0,0: WIDTH 80: LOCATE ,,0: CLS
70 PLANEROW = 2: PLANECOLUMN = 1'STARTING POSITIONS
80 MISSILEROW = 21: MISSILECOLUMN = 39
90 WHILE MO "Q" AND A* <> "q"
100 COLOR O: CLS 'SET ATTRIBUTE OF UNUSED SCREEN AREAS TO O
110 COLOR 7: GOSUB 260 'DRAW PLANE
120 IF PLANECOLUMN < 70 THEN PLANECOLUMN = PLANECOLUMN + 2

ELSE PLANECOLUMN = 1
130 M = INKEY«
140 IF A* = " " THEN FIRE* = "YES"
150 IF FIRE* <> "YES" THEN 240
160 MISSILEROW = MISSILEROW - 2: MISSILECOLUMN = MISSILECOLUMN + 2
170 IF MISSILEROW < 1 OR MISSILECOLUMN > 80 THEN FIRE* = "NO":

MISSILEROW = 21: MISSILECOLUMN = 39: GOTO 240
180 'IF THE FOREGROUND OF THE MISSILE'S NEXT POSITION
190 'IS 7 (WHITE) WE MUST BE AT THE PLANE! I
200 'FOREGROUND OF NON-PLANE AREAS WOULD BE O (BLACK)
210 'SINCE IN LINE 60 WE SET FOREGROUND TO BLACK AND THEN
220 'CLEARED THE SCREEN
230 IF SCREEN(MISSILEROW,MISSILECOLUMN,1) MOD 16 = 7 THEN GOSUB 310

ELSE LOCATE MISSILEROW,MISSILECOLUMN: PRINT CHR*(254):
240 WEND
250 GOTO 340
260 'MAKE AIRPLANE
270 LOCATE PLANEROW ,PLANECOLUMN: PRINT " " + CHR*(220) + " " + CHR*(219);
280 LOCATE PLANEROW+1,PLANECOLUMN: PRINT " " + STRING*(6,219) + CHR*(254);
290 LOCATE PLANEROW+2,PLANECOLUMN: PRINT " " + CHR*<223) + " " + CHR*(219):
300 RETURN
310 COLOR 23: PRINT "BULLSEYE! ! !";: FOR HOLD = 1 TO 3000: NEXT
320 PLANECOLUMN = 1: FIRE* = "NO": MISSILEROW = 21: MISSILECOLUMN = 39
330 RETURN
340 END

reverse its motion by setting DR = -DR. The row increment DR is initially set to
1, but we could speed up the motion with a larger value. We test the SCREEN
function for ASCII code 205 to determine when we are about to hit a wall.

Objects formed with several characters are animated with methods similar to
those used with single characters. We just have a bit more bookkeeping. In Prog.
8-3, an airplane starts at the left and flies across the screen. When it reaches the
right side of the screen, we start it over again at the left. Figure 8-1 shows two
positions along the flight path. As an added feature, we shoot a block diagonally
up the screen from left to right by pressing the space bar. If the block and airplane
collide, they blink and the word BULLSEYE is printed. We test for a collision
using the SCREEN function, which tells us the foreground color of the next
position along the block's path. Statement 60 sets the stored foreground color of
all screen positions to black, and statement 70 specifies that the displayed airplane
positions (drawn by statements 170 through 200) will be white. This allows us to
identify the airplane position (white foreground) from the remainder of the screen

Chapter 8 Animation 159

i-k

Figure 8-1 A target airplane animated
by Prog. 8-3, as a block is fired at it.

(black foreground). We then have a collision when the SCREEN function returns
a foreground value of 7.

Moving compound objects around is a slower process since we have more
characters to erase and display at each step. Faster animation is possible using the
text pages that we have available on our PC.

TEXT PAGES WITH THE SCREEN STATEMENT

In text mode, we can use the SCREEN statement to set up and display multiple
screen storage areas. These storage areas are referred to as pages. We can create a
character display on one page while another page is being shown on the screen.
Then we can put the page we have just created on the screen. This page switching
gives us a faster way to animate objects. Pages are set up and displayed with the
command

SCREEN „AP,VP

where AP designates the page number we want to construct (the "active" page)
and VP designates the page number to be shown on the screen (the "visual"
page). In WIDTH 40, we can work with eight pages, numbered 0 through 7. Using
WIDTH 80, we have four pages, numbered 0 through 3. The statement SCREEN
,,1,0 would display page number 0 while allowing us to construct a scene on page
1.

Pages are stored in the screen buffer area of the Color/Graphics board. This
buffer contains 16K bytes of memory. Since we have 1000 character screen
positions in WIDTH 40, we need 1000 bytes to store ASCII codes for a full screen.
We also need one byte for the color attributes of each character position. Thus,

160 DISPLAY MANIPULATIONS PART III

2000 bytes are needed for each screen page, allowing us a total of eight pages in
the screen buflfer. For WIDTH 80, we have twice as many screen positions, so the
16K screen buffer can hold only half as many pages.

Use of text pages in animating an object formed with characters is
demonstrated with Prog. 8-4. By drawing the object in successively displaced
column positions, we make it move across the screen. We also draw it with
different body postures from one page to the next, so that we have a creeping
inchworm (Fig. 8-2).

Program 8-4 Animation of an object (worm) using text pages.

10 'PROGRAM 8-4. CREEPING WORM ON MULTIPLE SCREENS
20 SCREEN O: COLOR 2,0,0: WIDTH 80: LOCATE ,,0: CLS
30 ROW = 20: COLUMN = 1
40 A* = INKEY*

50 SCREEN ,,1,0: CLS
60 WHILE A« =

70 GOSUB 280 'DRAW POSITION 1
80 SCREEN ,,2,1: CLS
90 FOR DELAY = 1 TO 400: NEXT
100 IF COLUMN < 65 THEN COLUMN = COLUMN + 8 ELSE COLUMN = 1
110 GOSUB 310 'DRAW POSITION 2
120 SCREEN ,,3,2: CLS
130 FOR DELAY = 1 TO 300: NEXT
140 IF COLUMN < 68 THEN COLUMN = COLUMN + 7 ELSE COLUMN = 1
150 GOSUB 380 'DRAW POSITION 3
160 SCREEN ,,0,3: CLS
170 FOR DELAY = 1 TO 300: NEXT
180 IF COLUMN < 68 THEN COLUMN = COLUMN + 5 ELSE COLUMN = 1
190 GOSUB 310 'DRAW POSITION 2
200 SCREEN ,,1,0: CLS
210 FOR DELAY = 1 TO 300: NEXT
220 IF COLUMN < 65 THEN COLUMN = COLUMN + 7 ELSE COLUMN = 1
230 A^ = INKEY»

240 WEND

250 SCREEN ,,0,0 'GO BACK TO FIRST SCREEN
260 GOTO 460

270 'DRAWS POSITION #1
280 LOCATE ROW,COLUMN: PRINT STRING*<8,219);: COLOR 14,0: PRINT CHR*<223):
290 LOCATE ROW-1,COLUMN:PRINT STRING*(8,32)+CHR*(220)::COLOR 2,0
300 RETURN

305 'DRAWS POSITION #2
310 LOCATE ROW,COLUMN
320 PRINT STRING*(2,CHR*(219)) + " " + STRING*(2,CHR*(219));
330 COLOR 14,0: PRINT CHR*(223);: COLOR 2,0
340 LOCATE ROW-1,COLUMN: PRINT " " + CHR*(219) + " " + CHR*(219) + "
350 COLOR 14,0: PRINT CHR*(220);:COLOR 2,0
360 LOCATE ROW-2,COLUMN: PRINT " " + STRING*(3,CHR*(219)) + " "s
370 RETURN

375 'DRAWS POSITION #3
380 LOCATE ROW,COLUMN: PRINT CHR*(219) + " " + CHR*(219);
390 COLOR 14,0: PRINT CHR*(223);: COLOR 2,0
400 LOCATE ROW-1,COLUMN: PRINT " " + CHR*(219) + " " + CHR*(219) + "
410 COLOR 14,0: PRINT CHR*(220);: COLOR 2,0
420 LOCATE ROW-2,COLUMN: PRINT " " + CHR*(219) + " " + CHR*(219);
430 LOCATE ROW-3,COLUMN: PRINT " " + CHR*(219) + " " + CHR*(219);
440 LOCATE ROW-4,COLUMN: PRINT " " + CHR*(219);
450 RETURN

460 END

Chapter 8 Animation 161

Figure 8-2 Inchworm creeping across the screen, as animated by Prog. 8-4 using text pages.

8-2 PIXEL ANIMATION CONCEPTS

Animating objects that are drawn with pixels is a process similar to character
animation. But now we work with pixel coordinates instead of row and column
numbers and with graphics commands instead of PRINT and LOCATE state
ments. We plot the object at a given coordinate position, determine the next
position from the transformation equations, erase the pixel object, and replot it in
the new coordinate position.

STRAIGHT-LINE MOTION

As a simple example of animation along a straight line, let us consider moving a
single pixel horizontally across the screen. If we want to move the pixel from left
to right, we can start it at some location, say (XI,Y), and stop it at some position
(X2,Y), where X2 > XI. The animation process then consists of a series of
translations from XI to X2, one unit at a time. At each step, we erase the
previously plotted point (X,Y) and plot the next point (X + 1, Y). Motion to the
left is accomplished by decreasing the X coordinate by one unit at each step.
Combining these two motions, we can bounce the point back and forth between
XI and X2. In Prog. 8-5 we illustrate this motion between vertical boundaries
drawn at positions XLEFT and XRIGHT, which are specified as input. The pixel
initially moves to the right with a positive unit increment (DX = 1). When it
reaches the point (XRIGHT -1, Y), we reverse the increment (DX = -DX) to

Program 8-5 Bouncing a pixel between vertical boundaries.

10 'PROGRAM 8-5. BOUNCING A POINT BETWEEN VERTICAL BOUNDARIES.
20 SCREEN O: COLOR 0,7,7: WIDTH 80: CLS
30 INPUT "ENTER X VALUES FOR LEFT WALL AND RIGHT WALL"; XLEFT,XRIGHT
40 IF XLEFT >= XRIGHT OR XLEFT < O OR XRIGHT > 319 THEN 160
50 DX = 1

60 X = XLEFT + INT((XRIGHT - XLEFT) / 2) 'START POINT MIDWAY BETWEEN WALLS
70 Y = 100

80 SCREEN 1: COLOR 0,1: CLS
90 LINE (XLEFT,50) - (XLEFT,150): LINE (XRIGHT,50) - (XRIGHT,150)
100 *ttttttttttttttttttttttttttttt
110 PSET (X,y)
120 IF X + DX = XLEFT OR X + DX = XRIGHT THEN DX = -DX
130 PRESET (X,Y)
140 X = X + DX 'MOVE POINT
150 GOTO 110

160 END

162 DISPLAY MANIPULATIONS PART III

Program 8-6 Bouncing a point inside a box using unit increments.

10 'PROGRAM 8-6. BOUNCING A POINT WITHIN A BOX.
20 'DX - DY = 1.

30 SCREEN li COLOR 3,0: CLS
40 INPUT "ENTER X VALUES FOR LEFT AND RIGHT WALL"j XLEFT,XRIGHT
SO IF XLEFT >= XRIGHT OR XLEFT < O OR XRIGHT > 319 THEN 220
60 INPUT "ENTER Y VALUES FOR TOP AND BOTTOM OF BOX"; YTOP.YBOTTOM
70 IF YTOP >= YBOTTOM OR YTOP < 0 OR YBOTTOM > 199 THEN 220
80 DX = 1: DY 1

90 X = XLEFT + INT<(XRIGHT - XLEFT) / 2)
100 Y = YTOP + INT((YBOTTOM - YTOP) / 2) 'START T)« POINT IN MIDDLE OF BOX
110 CLS

120 '*«»««»««**»*««**«»«««< DRAW BOX «*«*«*«*«»«****«»«««««««»««
130 LINE (XLEFT,YTOP) - (XRIGHT,YBOTTOM),2,B
140 BOUNCE POINT
150 PSET (X,Y),2
160 IF X-1=XLEFT OR X+1=XRIGHT THEN DX = -DX 'IF WE'RE ONE UNIT AWAY FROM
170 IF Y-l=YTOP OR Y+1=YB0TT0M THEN DY = -DY 'BOX SIDE, REVERSE DIRECTION
ISO PRESET (X,Y) 'ERASE CURRENT POINT
190 X = X4.DX: Y = Y + DY 'CALCULATE NEW POINT
200 GOTO 150

220 PRINT "ERROR IN CHOICE OF BOX WALLS"

230 END

make it negative and to move the pixel to the left. At (XLEFT + 1, Y), we reverse
the increment again. The program repeats this motion indefinitely and appears to
bounce the pixel off the boundary walls, since we reverse the motion 1 unit before
it gets to either wall. If we allowed the pixel to reach the wall position at either
XLEFT or XRIGHT, we would erase part of the wall when we reversed the
motion.

This same motion can be accomplished in a vertical direction, using
horizontal boundaries and an increment DY in the Y direction. To get motion in
any other direction, we increment both the X and Y coordinates. This process is
similar to drawing a straight line, except that we now erase each plotted point
before we plot the next one. We can specify the path of motion in various ways.
We could choose endpoints for the path, we could use the equation for the line
(slope and Y-intercept), or we could select any X and Y increments (DX and DY).
In the first two cases, we need to set values for DX and DY so that the ratio
DY/DX is equal to the slope of the line.

An example of diagonal straight-line motion is given in Prog. 8-6. Here we
bounce a point around inside a box. We select a box size and begin by moving the
point diagonally down the screen to the right, with increments of 1 unit for both
coordinates. When the point encounters a side of the box it changes direction, as
shown in Fig. 8-3. If the point bounces off a vertical side, the X increment
changes sign (DX = —DX). If the point bounces off a horizontal side, the Y
increment changes sign (DY = -DY). Both increments change sign at a comer.

We can speed up the bouncing pixel in Prog. 8-6 by selecting larger values
for DX and DY. Choosing these increments equal to 5 moves the pixel around five
times faster. Choosing one increment larger than the other (such as DX > DY)

Chapter 8 Animation 163

X axis

Y axis

Figure 8-3 Path of a bouncing pixel
inside a box. Starting from coordinates
(X,Y) at position 1, the pixel will have
coordinates (X+DX,Y+DY) at position
2. At position 3, the direction of travel
changes by setting DY = -DY. The di
rection of motion is changed again at
position 4 with DX = -DX, and at po
sition 5 with DY = -DY.

moves the pixel faster in the direction with the larger increment. We can, as an
alternative, slow the pixel motion in one direction by giving the increment for that
direction a value less than one (say, 0.5). Changing the magnitude of the
increments during program execution can speed up and slow down the motion as
the pixel bounces around. If only one increment magnitude is changed as the pixel
rebounds from a wall, we get a skidding or "spin" effect.

Program 8-6 can be modified to work with any values for either increment,
DX or DY, by changing the rebound test. The direction of motion of the pixel
must be reversed whenever either the X coordinate or Y coordinate would be
incremented through a wall of the box. We can make this change in Prog. 8-6 by
replacing lines 160 and 170 with the following:

160 IF DX > 0 AND X + DX >= XRIGHT THEN DX = -DX
ELSE IF DX < 0 AND X + DX <= XLEFT THEN DX = -DX

170 IF DY > 0 AND Y + DY >= YBOTTOM THEN DY = -DY
ELSE IF DY < 0 AND Y + DY <= YTOP THEN DY = -DY

The preceding program segment has the effect of rebounding the pixel before
it gets to the walls of the box when either DX or DY is greater than 1. To get a
more realistic bounce, we can plot the pixel near the wall before reversing its
direction of motion. We could do this by always choosing the increments and box
size so that the distance across the box in either direction is an integral multiple of
the increment for that direction. This is probably a little too restrictive for many
applications. A more general solution to this problem is to project the path of the
pixel to the wall and determine the intersection point. Then we can produce a
display that rebounds the pixel at the walls for any increment chosen.

Figure 8-4 depicts the path of pixel motion toward a vertical boundary of a
box. Starting from position (X,Y), the intersection point (XI,YI) on this boundary
is determined from the equation for the straight line path:

YI = M ♦ XI + (Y - M * X) (8-1)

164

XL

DISPLAY MANIPULATIONS PART III

XR

YT

(XI, YD

X axis

YB

Y axis

Figure 8-4 A pixel at position (X,Y), traveling along the diagonal path indicated inside a box, will
intersect the right boundary at position (XI,YI).

with XI = XR at the right boundary and XI = XL at the left boundary. The slope,
M, of the line is calculated from the coordinate increments as

M = DY/DX (8-2)

10 '

20

30

40

50

60

70

80

90

100

no

120

130

Equations (8-1) and (8-2) can be used to determine intersection positions for
any boundary and any of the possible directions of travel. For intersection with
the top or bottom of the box, XI is calculated from (8-1) as XI = X + (YI - Y)/M,
where either YI = YT or YI = YB (Fig. 8-4). At each of these rebound positions,
we plot the pixel 1 unit inside the boundary and reverse the direction of motion.
An application of this method for a bouncing ball is given in Prog. 8-7.

A moving circle provides the basis for many animation applications involv
ing a bouncing ball. The methods discussed for points can be used to bounce a
circle around as if it were a big point. We move the circle center and test for
intersection of the circle boundary with the turnaround positions. A bouncing ball
inside a box is displayed by Prog. 8-7 using the techniques discussed for

Program 8-7 Bouncing a ball inside a box.

PROGRAM 8-7. BOUNCING BALL WITHIN A BOX-

'DX = DY = 5. IF BALL IS GOING TO GO BEYOND A BOUNDARY,
'FIND INTERSECTION OF BALL & BOUNDARY THEN DRAW BALL.

'REVERSE BALL'S DIRECTION, AND CONTINUE.

SCREEN 0: COLOR 4,7,7: CLS
INPUT "ENTER X VALUES FOR LEFT AND RIGHT WALL"; XLEFT,XRIGHT
IF XLEFT >= XRIGHT OR XLEFT < O OR XRIGHT > 319 THEN 600
INPUT "ENTER Y VALUES FOR TOP AND BOTTOM OF BOX"; YTOP,YBOTTOM
IF YTOP >= YBOTTOM OR YTOP < O OR YBOTTOM > 199 THEN 600

DX = 5: DY = 5 'BALL TRAVELS 5 UNITS IN EACH STEP
R = 3 'R IS RADIUS OF BALL

XNEW = XLEFT + INT((XRIGHT - XLEFT) / 2) 'START BALL IN MIDDLE OF BOX

Chapters Animation 165

Program 8-7 (cont.)

140 YNEW = YTOP + INT((YBOTTOM - YTOP) / 2)

150 SCREEN 1: COLOR 1,0: CLS
160 'DRAW BOX

170 LINE (XLEFT,YTOP) - (XRIGHT,YBOTTOM),2,B
180 ' BOUNCE BALL

190 PAINT (X,Y),0,1 'ERASE CURRENT BALL POSITION
200 CIRCLE (X,Y),R,0
210 CIRCLE (XNEW,YNEW),R,1 'DRAW NEW POSITION
220 PAINT (XNEW,YNEW),3,1 'FILL IN BALL AREA
230 X = XNEW: Y = YNEW 'SAVE CURRENT POSITION IN X AND Y

240 BX = O 'BX AND BY ARE SWITCHES TO INDICATE

250 BY = O 'WHICH WALL WE'RE GOING TO HIT

260 SLOPE = DY / DX 'SLOPE IS SLOPE OF BALL'S PATH

280 'WILL WE HIT A VERTICAL WALL?

290 IF DX > O AND X + DX + R >= XRIGHT THEN BX = 1: XNEW = XRIGHT - R - 1

ELSE IF DX < 0 AND X + DX - R <= XLEFT THEN BX = 1: XNEW = XLEFT + R + 1

300 'WILL WE HIT A HORIZONTAL WALL?

310 IF DY > 0 AND Y + DY + R >= YBOTTOM THEN BY = 1: YNEW = YBOTTOM - R - 1

ELSE IF DY < O AND Y + DY - R <= YTOP THEN BY = 1: YNEW = YTOP + R + 1

330 'ARE WE BOUNCING OFF NO WALLS, AN X WALL, A Y WALL, OR BOTH WALLS?
340 IF BX = 0 AND BY = O THEN 390 'NOT BOUNCING

350 IF BX = O AND BY = 1 THEN 430 'BOUNCING OFF Y

360 IF BX = 1 AND BY = O THEN 470 'BOUNCING OFF X

370 IF BX = 1 AND BY = 1 THEN 510 'BOUNCING OFF BOTH (IN A CORNER)

380 '

390 '#############««####«####« NOT BOUNCING ##*############*###«###«##

400 XNEW = X + DX

410 YNEW = Y + DY

420 GOTO 190

430 '###«#«####«############# BOUNCE OFF Y WALL «#####»«*########«###

440 XNEW = (YNEW - Y) / SLOPE + X

450 DY = - DY

460 GOTO 190

470 '###«#######«####*##«#### BOUNCE OFF X WALL ««########«#####*####

480 YNEW = (XNEW - X) * SLOPE + Y

490 DX = -DX

500 GOTO 190

510 '###«*#«#########«#**##« GOING INTO A CORNER *«######*#*«##*#*«###

520 'WHICH WALL WOULD IT HIT FIRST?

530 IF ABS(XNEW - X) < ABS(YNEW - Y) THEN 470 'BOUNCE OFF X

540 IF ABS(YNEW - Y) < ABS(XNEW - X) THEN 430 'BOUNCE OFF Y

550 'BALL IS EQUAL DISTANCE FROM X AND Y WALLS ON EACH SIDE OF CORNER

560 DX = -DX

570 DY = -DY

580 GOTO 190

590 '«###*#######«##########*############«########################*###

600 PRINT "ERROR IN CHOICE OF BOX WALLS"

610 END

rebounding points. The ball is rebounded from a wall by finding the intersection of
the ball's path with the wall and turning the ball around at a point 1 unit inside the
wall. A yellow ball is displayed at each position using the PAINT command.

Motion of an arbitrarily shaped object is accomplished with the same basic
techniques that we have used to move a point or circle. We display all the parts of
the object, erase the object, and redraw all the parts in a new position. Repeating

166 DISPLAY MANIPULATIONS PART III

Program 8-8 Bouncing a line vertically.

10 'PROGRAM 8-8. FOGG STICK

20 SCREEN O: COLOR 1,7,7: CLS
30 INPUT "Y VALUES FOR TOP AND BOTTOM BOUNDARIES OF BOUNCE"; YTOP,yBOTTOM
40 IF YTOP < YBOTTOM AND YTOP >= O AND YBOTTOM <= 199 THEN 70

50 PRINT "BAD BOUNDARIES. CHOOSE YT < YB AND BOTH BETWEEN O AND 199";
60 GOTO 30

70 INPUT "AMOUNT FOR CHANGING Y VALUES OF LINE"; DY
80 X = 160 'CENTER LINE ACROSS SCREEN

90 Y1 = YTOP + INT((YBOTTOM - YTOP) / 2) - 20 'ENDPOINTS ARE 20 UNITS UP AND

100 Y2 = YTOP + INT((YBOTTOM - YTOP) / 2) + 20 'DOWN FROM CENTER OF BOUNDARIES

110 SCREEN 1: COLOR 5,1: CLS

130 LINE (X,Y1) - (X,Y2)
140 IF DY > O THEN 180 'LINE IS GOING DOWN

150 'OTHERWISE LINE IS GOING UP (DY IS NEGATIVE)

160 IF Y1 + DY <= YTOP THEN DY = -DY 'REVERSE DIRECTION

170 GOTO 210

180 'LINE IS GOING DOWN

190 IF Y2 + DY >= YBOTTOM THEN DY = -DY 'REVERSE DIRECTION

200 'ERASE CURRENT LINE, CALCULATE NEW POSITION, GOTO DRAW
210 LINE (X,Y1) - (X,Y2),0
220 Y1 = Y1 + DY

230 Y2 = Y2 + DY

240 GOTO 130

250 END

this sequence over and over again produces object motion. Animating an object
involves some additional considerations when we want to rotate or scale the

object or when we want to move different parts of the object differently.
A line drawn between points (X,Y1) and (X,Y2) is bounced up and down

between two fixed boundaries by Prog. 8-8. The motion of this pogo stick is

Program 8-9 Animation by scaling (box).

10 'PROGRAM 8-9. MOVING TOWARD US THROUGH SCALING

20 SCREEN 2: CLS

30 'READ DATA POINTS OF OBJECT

40 READ POINTCOUNT

50 FOR EACHPOINT = 1 TO POINTCOUNT

60 READ X(EACHPOINT), Y(EACHPOINT)
70 NEXT

80 READ XSCALING,YSCALING,XFIXED,YFIXED
90 ONSCREEN = 1

100 WHILE ONSCREEN

110 DRAWCOLOR 1

120 GOSUB 180 'DRAW SHAPE

130 DRAWCOLOR = O

140 GOSUB 180 'ERASE SHAPE

150 GOSUB 240 'RECALCULATE POINTS

160 WEND

170 GOTO 370

180 'DRAWS SHAPE

190 FOR EACH = 1 TO POINTCOUNT - 1

200 LINE (X (EACH) ,Y(EACH)) - (X (EACH-i-1) ,Y(EACH'i-l)),DRAWCOLOR

Chapter 8 Animation 167

Program 8-9 (cont.)

210 NEXT

220 LINE <X(POINTCOUNT>,Y(POINTCaUNT)> - (X(1>,Y<1)).DRAWCOLOR
230 RETURN

240 'RECALCULATE POINTS

250 XCONSTANT » XFIXED « (1 - XSCALIN6)

260 YCONSTANT = YPIXED « (1 - YSCALIN6)

270 FOR EACHPOINT = 1 TO POINTCOUNT

280 X(EACHPOINT) » X(EACHPOINT) « XSCALIN6 + XCONSTANT

290 IF X(EACHPOINT) < O OR X(EACHPOINT) > 639 THEN 370

300 Y(EACHPOINT) » Y(EACHPOINT) » YSCALING + YCONSTANT

310 IF Y(EACHPOINT) < 0 OR Y(EACHPOINT) > 199 TI«N 370

320 NEXT

330 RETURN

340 DATA 4

350 DATA 630,0,638,0,638,3,630,3
360 DATA 1.2,1.2,639,0
370 END

speeded up or slowed down with choices for DY in the range 1 to 20. This program
never lets the line reach or overshoot the boundaries set at the top (YT) and at the
bottom (YB).

We can animate the vertical line horizontally by incrementing the X
coordinate instead of the Y coordinate. In this case, we might bounce it off
vertical walls positioned at XL and XR. Incrementing both coordinates moves the
line diagonally. We could then bounce the line around on straight paths much as
we did with a single pixel. Horizontal lines, or lines drawn at any angle, are moved
about with similar methods. We move both endpoints of the line with the same
increments, DX and DY. The line moves faster for larger increment values and
changes direction whenever we change the sign of one or both increments.

For an object formed with multiple lines, we can store all the vertex
coordinates in an array. Moving this polygon around then means moving all the
vertex points and redrawing the polygon at each position along the path of motion.
We could also define the object with DRAW statements and animate it repeatedly
by changing the reference point for these statements. The more lines in the object,
the more time it takes to erase and redraw the object at each step. With advanced
BASIC we can use the PUT statement, examined in Section 8-3, to speed up
animation. Without this statement, we must erase and redraw each individual line
in an object using the methods previously discussed.

Scaling an object provides a means for simulating motion toward or away
from us. A box is made to move toward us with Prog. 8-9, as shown in Fig. 8-5.
The box is repeatedly scaled relative to a point near the upper right comer of the
screen, causing it to move to the left as it enlarges. Again, the more lines in the
object, the slower the animation process. Faster methods for animating objects
into the distance or toward us are discussed in Section 8-3.

168 DISPLAY MANIPULATIONS PART

Figure 8-5 Positions of a box as it moves toward us, as scaled and animated by Prog. 8-9.

THE POINT FUNCTION

In applications where we have potential collisions between moving objects, we
can use the POINT function to determine when two objects bump into each other.
This gives us an easier way to handle collisions when we have multiple objects on
the screen, particularly if several of them are moving. Otherwise we have to keep
track of all object positions.

POINT (X,Y) — Gives the color code of the pixel at coordinates (X,Y).

Values of the POINT function will be - I, 0, 1, 2, or 3 in medium resolution and
-1, 0, or 1 in high resolution. A value of -1 indicates that coordinate position
(X,Y) is not within the screen limits.

The POINT function is used in Prog. 8-10 to test for impact between a ball
and the walls of a maze (Fig. 8-6). Motion of the ball is directed by use of the
cursor control keys on the numeric keypad, in unit steps to the right, left, up, or
down. If collision with a wall is detected (P0INT=2), the PC's speaker beeps.

Chapters Animation 169

Program 8-10 Animating a ball through a maze, using the POINT function to test for wall collisions.

10 'PROGRAM 8-10. GETTING THROUGH MAZE WITH THE SCREEN FUNCTION

20 SCREEN 1: COLOR 1,1: CLS
30 'MAKE MAZE

40 LINE (150,95) - <200,100),1,BP 'MAKE INTERIOR BOX
50 R = 1

60 UA = 5 'UA,RA,LA,DA ARE AMOUNTS TO DRAW UP,RIGHT,DOWN,LEFT
70 PSET(150,100) 'START BY THE CENTER
80 DRAW "C2"

90 FOR TIME = 1 TO 8

lOO RA = UA + 45: DA = UA + 10: LA = UA + 55

110 DRAW "U=UA; R=RA; D=DA; L=LA5"
120 UA = UA + 20

130 NEXT

140 'DRAW BALL

150 X = 70: Y = 175

160 CIRCLE (70,175),R,1
170 A« = INKEY*: IF A« = THEN 170

180 B« = A«

190 WHILE A* <> "Q" AND A* <> "q" AND ITHACA = O 'QUIT OR INTERIOR?
200 CIRCLE (X,Y),R,0 'ERASE CURRENT BALL
210 'IF THE COLOR OF THE NEXT POINT IS BACKGROUND OR MAZE INTERIOR BOX

THEN ADVANCE TO POINT AND DRAW CIRCLE. OTHERWISE WE'RE ON WALL

220 IF RIGHT«(B*,1) = CHR«(80) THEN IF POINT(X,Y+l+R) < 2 THEN
Y=Y+1:G0T0 260 ELSE BEEP:GOTO 270

230 IF RIGHT*(B*,1) = CHR*(72) THEN IF POINT(X,Y-1-R) < 2 THEN
Y=Y-1:G0T0 260 ELSE BEEP:GOTO 270

240 IF RIGHT»(B«,1) = CHR*<77) THEN IF POINT(X+l+R,Y) < 2 THEN
X=X+1:G0T0 260 ELSE BEEP:GOTO 270

250 IF RIGHT«(B«,1) = CHR*(75) THEN IF POINT(X-l-R,Y) < 2 THEN
X=X-1:G0T0 260 ELSE BEEP:GOTO 270

260 IF POINT(X+R,Y) = 1 THEN ITHACA = 1
270 CIRCLE (X,Y),R,1 'DRAW NEW BALL
280 IF POINT(X,Y) = 1 THEN ITHACA = 1
290 M = INKEY*

300 IF A* <> "" THEN H = ASC(RIGHTS(A»,1)) 'NEW, VALID KEY?
310 IF H = 80 OR H = 72 OR H = 77 OR H = 75 THEN B* = A«:H = O

320 WEND

330 IF ITHACA THEN PRINT "HOORAY!!"

340 END

When color code 1 is detected, the ball has reached the maze center. The program
then prints HOORAY and ends.

MOTION ALONG CURVED PATHS

Animating an object along a specified curved path is accomplished by determining
positions from the path equation. The motion is begun at a specified starting
position and terminated at a specified stopping point. We can move objects along
circular or elliptical paths with the circle-drawing techniques discussed in Section
5-1, or with the rotation methods of Section 7-3. To get smooth motion around a
circle, we want the pixel positions spaced evenly along the path. This means that
we would use trigonometric equations for calculating coordinate positions, with
an equal angular distance between positions. Large angular increments between
points (say, 30 degrees) are used to produce faster motion. Varying the radius of a

170 DISPLAY MANIPULATIONS PART I

Figure 8-6 Maze pattern produced by Prog. 8-10 as a ball is moved toward the center.

circle results in a spiraling motion. Rotations along circular paths provide a basis
for modeling satellite orbits, the solar system, or machine parts. Program 8-11
moves one end of a horizontal line in a circle. The line moves back and forth and

up and down, as shown in Fig. 8-7, simulating motion of a horizontal bar attached
to a rotor.

Simulation of a bouncing ball is displayed by Prog. 8-12. This program
approximates the motion of a ball that is dropped from some height H and then
bounces across the screen. Each bounce is decreased a little in height as the ball
travels across the screen (Fig. 8-8). A SIN function is used to obtain the up-and-
down motion, and the EXP function is used to decrease the amplitude. Since we

Program 8-11 Moving a line in a circle.

10 'PROGRAM 8-11. CIRCULAR MOVEMENT OF A HORIZONTAL LINE-

20 SCREEN 1: CLS

30 XC = 160: YC = 100

40 R = 50 'R IS RADIUS
50 'CALCULATE XI POINTS AT EVERY IS DEGREES ALONG THE CIRCLE
60 DA = 15 * 3.14159 / 180 'CONVERT 15 TO RADIANS
70 'tt
80 FOR ANGLE = DA TO 6.28318 STEP DA

90 LINE <X,Y) - <X + 80,Y),0 'ERASE CURRENT LINE
100 X ^ XC + R t SIN(ANGLE): Y » YC + R « COS(ANGLE)
110 LINE (X,Y) - (X + 80,Y)
120 NEXT

130 GOTO 80

140 END

'LINE IS 80 UNITS LONG

Chapter 8 Animation 171

Figure 8-7 Positions of a line with left endpoint moving in a circle, as output by Frog. 8-11. The
horizontal line starts at the right, moves down and to the left, and moves around the circular path back
to the starting position.

want the motion to begin at coordinates (0,H), we set D = PI/2 in the SIN
function. Next we choose a distance of 40 between bounces, so that several
bounces can be displayed across the screen. We do this by setting W = PI/40.
Finally, we want to display the ball exactly when it hits the ground at each
bounce. This means that the increment for X must be chosen so that it divides

evenly into 40. For this example, the X increment is set to 4, and the ball is

Program 8-12 Bouncing motion of a dropped ball.

10 'PROGRAM 8-12. BOUNCING BALL DROPPED FROM SOME HEIGHT.

20 'PROGRAM SIMULATES MOVEMENT OF A BALL DROPPED FROM

30 'SOME HEIGHT.

40 SCREEN 1: CLS

50 INPUT "BALL IS DROPPED FROM WHAT HEIGHT"; HEIGHT
60 W = 3.14159 / 40 'DISTANCE FROM BOUNCE TO BOUNCE IS 40

70 D = 90 « 3.14159 / ISO 'DISPLACE BY 90 DEGREES (EXPRESSED AS RADIANS)

80 K = .01 'K IS DAMPING FACTOR

90 CLS

100 LINE (0,199) - (319,199) 'DRAW GROUND
110 'ttttttttttttttt DROP BALL AND BOUNCE tttttttttttttttt

120 FOR XNEW = O TO 319-10 STEP 4 '4 EVENLY DIVIDES INTO 40

130 YNEW = HEIGHT « SIN(W « XNEW -i- D) « EXP(-K « XNEW)

140 YNEW = 199 - ABS(YNEW) - 3

150 CIRCLE (X,Y),2,0 'ERASE CURRENT POSITION
160 CIRCLE (XNEW + 10,YNEW),2 'DRAW NEW POSITION
170 X = XNEW + 10 'STORE CURRENT POSITION IN X AND Y

ISO Y = YNEW

190 NEXT

200 END

172 DISPLAY MANIPULATIONS PART I

133

0

SL

0 '3
0

Ji

0 0

-ja_

■' 0'
0 0
o

0
0 o

Figure 8-8 The motion of a ball bouncing from left to right, displayed by Prog. 8-12.

displayed each time it bounces at X = 20, 60, 100, and so on. The final display is
oflFset 10 pixels to the right so that motion does not begin at the edge of the screen.

A circle moving along a parabola provides a more accurate simulation of the
path of motion of a ball tossed into the air. The distance that the ball travels is
determined by how fast it is initially thrown into the air and the angle of this
projection, measured from the horizontal, as shown in Fig. 8-9. From the values
of the projection speed S and projection angle A, we can calculate the range R and
maximum height HT as

R = S * S * SIN(2 * A)/G

HT = ((S * SIN(A)) 2)/(2 » Q)
(8-3)

Figure 8-9 An object tossed into the
air with initial speed S at an angle A will
rise to height HT and land a distance R
away from the starting point. Both the
range R and height HT are calculated
from values for the projection speed S
and projection angle A.

Chapter 8 Animation 173

where G is the acceleration due to gravity (980 cm/(sec * sec)). For a fixed value of
S, we get maximum range at an angle of 45 degrees. Height, HT, is largest when
we throw the ball straight up (A = 90 degrees). Positions along this curve are
obtained by varying X from 0 to R and calculating the corresponding Y values
from the equation

Y = C1 * X ̂ 2 + C2 * X + YO (8-4)

where YO is any starting value we choose on the screen, and the constants C1 and
C2 are determined as

C1 = G/(2 * (S COS(A)) ̂ 2)

C2=-TAN(A) ' '
Program 8-13 animates a circle along a parabolic path. Coordinates for the

starting position (XO,YO) are specified as input. The projection angle A and initial
speed S are also determined as input. Angle A is limited to values between 0 and
90 degrees, so that the motion is to the right (Fig. 8-9). Values for S in the range
200 to 600 produce curves within the screen limits for SCREEN 1. Other ranges
for S can be set up by changing the value of G. We can vary the initial and final po
sitions of the circle in this program to simulate other similar types of motion.

Program 8-13 Animating a bail along a parabolic path.

10 'PROGRAM 8-13. MOVING ALONG A PARABOLIC CURVE

20 SCREEN O: WIDTH 80: CLS

30 INPUT "ENTER COORDINATES OF START POSITION"; XSTART,YSTART
40 IF XSTART >= O AND XSTART <= 319 AND YSTART >= 0 AND YSTART <= 199 THEN 60
50 PRINT "RE-ENTER START POSITION": GOTO 30
60 INPUT "ENTER ANGLE <0 - 90)"; ANGLE
70 ANGLE = ANGLE * 3.14159 / 180 'CONVERT A TO RADIANS

80 INPUT "ENTER SPEED (100 - 600)"; SPEED
90 GRAVITY = 980

100 RANGE = SPEED « SPEED t SIN(2 « ANGLE) / GRAVITY

110 'WILL WHOLE CURVE FIT ON SCREEN?

120 IF XSTART + RANGE <= 319 THEN 160

130 'IF NOT, ENTER NEW VALUES
140 PRINT "RE-ENTER ANGLE AND SPEED":GOTO 60

150 'HEIGHT IS HEIGHT OF CURVE

160 HEIGHT = ((SPEED * SIN(ANGLE)) 2) / (2 * GRAVITY)

170 'WILL WHOLE CURVE FIT ON SCREEN?

180 IF HEIGHT > O AND HEIGHT <= 199 THEN 220

190 'IF NOT, ENTER NEW VALUES
200 PRINT "RE-ENtER ANGLE AND SPEED": GOTO 60
210 'CALCULATE COEFFICIENTS OF EQUATION

220 C1 = GRAVITY / (2 * (SPEED * COS(ANGLE)) 2)

230 C2 = - TAN(ANGLE)
240 SCREEN 1: CLS

250 'ttttttttttttttttttt MOVE BALL ALONG CURVE ttttttttttttttttttttttt
260 FOR X = O TO RANGE STEP 2

270 Y = Cl*X -^2 + C2*X + YSTART

280 CIRCLE (X + XSTART,Y),3,3,,,.9199999
290 CIRCLE (X + XSTART,Y),3,O,,,.9199999
300 NEXT

310 END

174 DISPLAY MANIPULATIONS PART III

Tossing an object from the top of a building or hill means that we start and stop the
motion at different Y values. To simulate the path of an object dropped from a
moving airplane, the object begins at maximum height, HT, and falls to the
ground.

In some cases we would like to have an object turn as it moves along a
curved path. Figure 8-10 shows positions and orientations of a line (with an arrow
tip) whose left endpoint traverses a parabolic path as the line turns to stay tangent
to the curve at each step. This motion could simulate the appearance of an arrow
shot into the air. To get this motion, we need to change the slope of the line as it
moves. For the parabola equation (8-4), the slope of a line tangent to the curve is
calculated from the value of the X position:

M = 2*C1 *X + C2 (8-6)

The coordinates (X1,Y1) of the other end of the line can be determined from this
slope and the line length L, as indicated in Fig. 8-11. From this diagram we obtain
the relationships for the sides of the triangle with hypotenuse L as

XI - X = L * COS(AS)

Y1 - Y = L » SIN(AS)

These relationships allow us to compute the position (XI,Yl) from values for X,
Y, and AS. Angle AS is the angle that the line makes with the horizontal, and it is
calculated from the slope M:

AS = ATN(M) (8-8)

The motion of the arrow in Fig. 8-10 along a parabola is produced by Prog.
8-14, using equations (8-7) and (8-8). We draw in the tip of the arrow at each
position with short lines attached to the point (XI,Yl). These short lines have

Figure 8-10 Appearance of a line whose left endpoint moves along a parabola, with the line
remaining tangent to the path as it travels left to right, as displayed by Prog. 8-14.

2.

/

\

Chapter 8 Animation 175

XI

Y1

Y axis

X axis

Figure 8-11 Coordinate values (XI ,Y1) for one end of a line can be calculated from the values for the
line length L, the slope angle AS, and the coordinate values (X,Y) of the other end of the line. The
slope angle AS is determined from the value for the slope M as AS = ATN(M).

Program 8-14 Motion of an arrow along a parabolic path.

10 'PROGRAM 8-14. ARROW SHOT ALONG A PARABOLIC PATH.

20 'REPEATEDLY DRAWS AND ERASES AN ARROW WHOSE TAIL

30 'IS A POINT ON A PARABOLA. REMAINDER OF THE ARROW
40 'IS FOUND USING THIS TAIL POINT, THE SLOPE OF THE
50 'LINE TANGENT TO THE CURVE AT THIS POINT, AND THE
60 'LENGTH OF THE ARROW

70 'ttt
80 SCREEN 0: WIDTH 80: CLS

90 INPUT "ENTER COORDINATES OF START POSITION"; XSTART,YSTART
100 IF XSTART>=0 AND XSTART<=319 AND VSTART>=0 AND ySTARTM<=199 THEN 120
110 PRINT "START POSITION OFF SCREEN": GOTO 90
120 INPUT "ENTER ANGLE <0 - 90)"; ANGLE
130 ANGLE = ANGLE * 3.14159 / 180 'EXPRESS A AS RADIANS
140 INPUT "ENTER SPEED (100 - 600)"; SPEED
150 GRAVITY = 980 'G IS FORCE OF GRAVITY

160 ARROWLENGTH = 40

170 TIPLENGTH = 8

180 'FIND RANGE AND HEIGHT OF ARROW'S FLIGHT
190 RANGE = SPEED * SPEED * SIN<2 t ANGLE) / GRAVITY

200 IF XSTART + RANGE <= 319 THEN 220

210 PRINT "RE-ENTER ANGLE AND SPEED": GOTO 120
220 HEIGHT = ((SPEED * SIN(ANGLE)) 2) / (2 * GRAVITY)
230 IF HEIGHT > O AND HEIGHT <= 199 THEN 250

240 PRINT "RE-ENTER ANGLE AND SPEED": GOTO 120

250 'DETERMINE COEFFICIENTS FOR PARABOLA'S EQUATION

260 C1 = GRAVITY / (2 * (SPEED * COS(ANGLE)) 2)
270 C2 = - TAN(ANGLE)

280 SCREEN 1: CLS

290 'tttttttttttttttttttt MOVE ARROW tttttttttttttttttttttttt
300 'FIND ARROW TAIL POINTS ALONG THE PARABOLA AND DRAW ARROW
310 FOR X = O TO RANGE STEP RANGE/lO 'PLACE ARROW AT SUCCESSIVE TENTHS
320 Y=C1*X*X+C2*X+ YSTART
330 'X AND Y ARE THE TAILPOINTS ON THE PARABOLA
340 'FIND OTHER ENDPOINT OF ARROW

176 DISPLAY MANIPULATIONS PART III

Program 8-14 (cont.)

350 SLOPE - C1 « X « 2 + C2
3&0 AN6LE1 = ATN(SLOPE) 'INVERSE TANGENT OF SLOPE IS ANGLEl
370 Y1 = Y + ARROMLENGTH * SIN(ANGLED
3SO XI - X + ARROWLENGTH » (XIS(ANGLED
390 IF XI > 319 OR Y1 > 199 THEN 670 'IS OTHER ENDPOINT ON SCREEN?
400 GOSUB 620 'ERASE ARROW
410 'CALCULATE ARROW TIP
420 SL0PE2 = SLOPE + .75 'SLOPE OF ONE TIP
430 ANGLE2 = ATN(SL0PE2)
440 X2 = XI - TIPLENGTH * COS(ANGLE2>
450 Y2 = Y1 - TIPLENGTH « SIN(ANGLE2>
460 ^0PE3 = SLOPE - .75 'SLOPE OF SECOND TIP
470 ANGLE3 = ATN(SL0PE3)
480 X3 = XI - TIPLENGTH * C0S(ANGLE3>
490 Y3 = Y1 - TIPLENGTH * SIN(ANGLE3>
500 GOSUB 570 'DRAW ARROW
510 XS = X 'SAVE CURRENT POSITION IN
520 YS = Y 'XS,YS,X1S,Y1S
530 XIS = XI

540 YIS = Y1

550 NEXT X

560 GOTO 670

570 ' DRAW ARROW
580 LINE (X,Y) - (XI,YD
590 LINE (XI,YD - (X2,Y2)
600 LINE (XI,YD - (X3,Y3>
610 RETURN

620 '##«*****##«***«##»###«#«* ERASE ARROW
630 LINE (XS,YS) - (XIS,YIS),0
640 LINE (XIS,YIS) - (X2,Y2),0
650 LINE (XIS,YIS) - (X3,Y3),0
660 RETURN

670 END

slopes that are only slightly diflferent from the slope M for the arrow shaft. In this
program, we choose one of these slopes to be 0.75 greater than M and the other to
be 0.75 less than M. The length of each short line is chosen to be 8 and the arrow
sh£ift length is set to 40.

Motion of a line tangent to any curve can be produced by the methods of
Prog. 8-14. We move one end of the line along the curve, compute the slope at
each position, determine the slope angle, and calculate the coordinates for the
other end of the line using equations (8-7). The slope of a line tangent to a curve at
any point is determined from the equation for that curve. As an example, a third
degree polynomial equation written as

Y = C1 *X^3 + C2*X^2 + C3*X + C4 (8-9)

has a slope at position X of

M = 3*C1 *X'^2 + 2*C2*X + C3 (8-10)

The general sine curve

Y = H * SIN(W * X + D) (8-11)

Chapter 8 Animation 177

Program 8-15 Spinning a line.

10 'PROGRAM 8-15. ROTATING LINE AROUND ITS MIDPOINT.

20 SCREEN 1: CLS

30 XC = 160: YC = 100 'CENTER AND ROTATE LINE ABOUT SCREEN MIDPOINT

40 XI = 150: X2 = 170 'LINE IS 20 UNITS LONG, CENTERED ON MIDPOINT
50 Yl = YC: Y2 = YC

60 YADJUST = 5/6: XADJUST = 6/5 'YA & XA ARE RESOLUTION ADJUSTMENTS

70 ANGLE » 15 « 3.14159 / 180 'EXPRESS 15 DEGREES AS RADIANS

80 'CALCULATE CONSTANT PARTS OF ROTATION EQUATIONS

90 COSANGLE = COS(ANGLE)

100 SINX = SIN(ANGLE) t XADJUST

110 SINY = SIN(ANGLE) « YADJUST

120 XE = XC - XC * COSANGLE - YC * SINX
130 YE = YC - YC * COSANGLE + XC * SINY

140 'tttttttttttttttt ROTATE ENDPOINTS & DRAW tttttttttttttttt

150 XIROTATED = XE + XI * COSANGLE + Yl * SINX

160 YIROTATED = YE + Yl « COSANGLE - XI * SINY

170 X2R0TATED = XE + X2 * COSANGLE + Y2 t SINX

180 Y2R0TATED = YE + Y2 « COSANGLE - X2 * SINY

190 'ERASE OLD LINE

200 DRAWCOLOR = O

210 LINE (XI,Yl) - (X2,Y2),DRAWCOLOR
220 'DRAW NEW LINE

230 DRAWCOLOR = 3

240 LINE (XIROTATED,YIROTATED) - (X2R0TATED,Y2R0TATED),DRAWCOLOR
250 'SAVE CURRENT POINTS FOR LATER ERASING

260 XI = XIROTATED

270 Yl = YIROTATED

280 X2 = X2R0TATED

290 Y2 = Y2R0TATED

300 GOTO 140

310 END

has a slope at position X calculated from the COS function:

M = H * W * COS(W * X + D) (8-12)

Moving a line tangent to a circle or an ellipse can be accomplished with the
rotation transformations.

We can spin a line about any fixed point by performing repeated rotations.
Program 8-15 outputs a line rotating about its midpoint. This type of motion could
be used to represent the spokes of a rotating wheel. The rotation equations used in
this program have been factored and rewritten in a form that reduces computation
time.

Moving lines are useful for animating displays in several ways. We can use a
moving line in a game application to represent a paddle or racquet and hit
bouncing balls. We can also move the component lines of a picture in different
ways to represent more complex motion, as in the simulation of a walking figure.

Interactive input can be used to produce object motion along any arbitrary
path. Using the keyboard, paddles, or light pen, we could move objects in any
direction with any specified speed. In this way, we could set up interactive
simulations or games.

178 DISPLAY MANIPULATIONS PART III

8-3 GET AND PUT GRAPHICS STATEMENTS

If we have advanced BASIC, we can do animation with the GET and PUT
graphics statements. These statements give us a means for moving objects around
without the need to erase and replot individual lines. The idea behind these two
statements is that we can define a shape with GET and then move it from one
location to another with a PUT statement. We set up animation programs with the
following sequence: (1) draw the object on the screen; (2) using GET, store the
color values for all points of the object in an array; and (3) PUT the object defined
in this array at various screen positions to produce animation.

Objects drawn on the screen can be stored for later animation with the
statement

GET(X1,Y1)-(X2,Y2),ARR — Stores the color values of all points
within a rectangular screen area into array ARR. The rectangular
area is defined by coordinates (X1,Y1) and (X2,Y2), specifying
opposite corners.

Array ARR must be numeric and must be specified large enough to hold the color
values for all points within the rectangular area. This minimum size, in bytes, is
calculated as

MINSIZE = 4 + H * |NT((W * BITS + 7)/8)

Here, H and W denote height and width of the rectangle in pixels: H = Y2 + 1 -
Y1 and W = X2 + 1 — XI. BITS is the number of bits needed to specify the color
of each pixel, which is 2 in medium resolution and 1 in high resolution. Four bytes
are used in ARR to store the values of W and H. We can use an integer array
specification for ARR, which gives us 2 bytes per array element, and we can set
the array size to the minimum to conserve storage space. For the statement
GET(50,50) - (69,79), OBJECT%, we have a 20 by 30 rectangular area (W = 20
and H = 30). In SCREEN 1, BITS = 2, so that MINSIZE is 154 bytes. Since
OBJECT% is an integer array with 2 bytes per element, we need to have at least
77 elements in OBJECT% to store the 20 by 30 screen area. The value for W *
BITS is stored in OBJECT%(0), and the value for H is stored in OBJECT%(l).
The remaining 75 elements store the picture information.

Once we have stored a shape, we can move it around with

PUT(X,Y),ARR,HOW — Displays the pixel pattern stored in array
ARR in a rectangular screen area with (X,Y) as the upper left
corner. Parameter HOW specifies the manner in which the pattern
is displayed on an existing screen background.

There are several options for the parameter HOW that specify different ways for
the pixel pattern in ARR to be superimposed onto the screen. We can choose a

Chapter 8 Animation 179

logical operator (XOR, OR, or AND) for HOW, or we can use the commands
PSET or PRESET. The PSET or PRESET commands cause PUT to erase any

patterns already on the screen in the selected area and directly display either the
pattern in ARR or its inverse. The logical operators use Boolean operations to
combine the color codes of the points in the array to be PUT onto the screen with
the color codes of the points already on the screen within the area specified by
(X,Y).

Operation XOR (Exclusive Or) has the effect of "inverting" color codes so
that two successive PUT statements first place an object on the screen and then
erase it without changing the background scene. Program 8-16 demonstrates
animation using GET and PUT with the XOR operation by driving a truck along a
road lined with telephone poles, as shown in Fig. 8-12. Line 20 in this program
provides 47 array elements, which is the minimum size needed for the rectangular
area of the truck.

The truck displayed by Prog. 8-16 appears to be traveling "behind" the
poles. This occurs because the XOR operator in the PUT statement produces a
black pole when the white truck is superimposed on a white pole. In high
resolution, color codes for screen points can only be either 0 (for black) or 1 (for
white). When we use XOR in SCREEN 2, two codes combine to produce a white
screen pixel (code 1) only when one of the codes is 0 and the other is 1. Otherwise,
we get a black screen pixel (code 0). Thus, white on white gives black and white
on black (or black on white) gives white. Repeating the PUT operation with XOR
then restores the screen pattern to its original colors.

We can produce different animation effects by using the other options for
HOW. The OR operator combines color codes in SCREEN 2 to produce white
when either or both codes are 1 (white). We get black only when both codes are 0
(black). Using AND in SCREEN 2 would give us white only when both codes are

Program 8-16 Moving a truck along a straight-line path, using PUT with the XOR operator.

10 'PROGRAM 8-16. MOVING TRUCK (in back oT poles) WITH GET AND PUT STATEMENTS
20 DIM TRUCK5C(47)

30 SCREEN 2: CLS

40 LINE (96,100) ~ (126,110),,BF 'DRAW TRUCK BODY
50 LINE (126,105) - (136,110),,BF
60 CIRCLE (101,110),4 'DRAW WHEELS
70 CIRCLE (131,110),4
80 GET (96,100) - (136, 114),TRUCK7- 'STORE OBJECT SHAPE
90 CLS

100 LINE (0,65) - (639,65) 'DRAW ROAD LINED WITH POLES
110 FOR X = 70 TO 580 STEP 80

120 LINE (X,45) - (X,65)
130 NEXT

140 FOR X = O TO 576 STEP 48 'ANIMATE TRUCK
150 PUT (X,50),TRUCK%,)(0R 'XOR TRUCK IMAGE ONTO SCREEN
160 FOR DELAY = 1 TO lOO: NEXT

170 PUT (X,50),TRUCK*,XOR 'XOR TRUCK IMAGE ONTO SCREEN
180 NEXT

190 GOTO 140

200 END

180 DISPLAY MANIPULATIONS PART

A
Figure 8-12 Driving a truck across the screen from left to right, as animated by Prog. 8-16.

1 (white), and in any other case we get black. The PSET operation simply
transfers color codes stored in ARR to the specified screen area, replacing all
existing colors. We get a similar effect with PRESET, except color codes are
inverted: white is displayed as black, and black is displayed as white. Program 8-
16 can be modified so that the truck appears to move in "front" of the poles by
using the OR operator in the PUT statement, instead of using XOR. We achieve
this effect by replacing lines 150 through 170 in Prog. 8-16 with the statements

150 GET (X,50)-(X+40,64),SAVEBACK% 'SAVE COPY OF BACKGROUND
160 PUT (X,50),TRUCK%,OR 'PUT TRUCK IMAGE ONTO SCREEN
170 FOR DELAY = 1 TO 80: NEXT

175 PUT (X,50),SAVEBACK%,PSET 'COPY BACKGROUND TO SCREEN

Now we get a white pattern whenever the white truck is superimposed onto a
white pole. But OR does not restore the background as XOR does, so we need to
PUT the scenery back into place when the truck moves on (line 175). This also
means that we must dimension a second array as SAVEBACK%(47) in line 20.

If parameter HOW is omitted in the PUT statement, the display operation
defaults to XOR. This default method restores the original screen colors after two
PUTs of a defined pattern to the same rectangular screen area, which is usually
what we want in an animation method. However, when one object is superim
posed with XOR over another object that is not painted in the background color,
both objects change color. A red object overlapped with another red object
changes to the background color in the overlap area. A green object that is PUT
onto a red object turns brown. The results of the various palette color combina
tions with XOR are listed in Fig. 8—13. Animated objects retain their colors against
the background color (code 0), but change color when passing over other objects.
Figure 8-13 also shows the color effects produced by the other two logical
operators, OR and AND. A variety of color patterns can be created by animating
objects against a multicolored background with OR and AND, but the background
will not be restored after two repeated operations as it is with XOR.

We can do animation with only the PSET option of PUT, if we do not have a
background to worry about. With this method, color codes of ARR are directly
transferred to the screen area. All background objects within the rectangular
screen area affected by the PUT statement are simply covered over with the
colors defined from the GET operation. One PUT statement can be used to move
an object and to erase the object from its last position at the same time. We do this
by making the array ARR large enough to fit over both positions, as in Prog. 8-17.
Here, the left half of the array PLANE% is filled with the background color, while
the object is stored in the right half. In this example, we fly an airplane across the

Chapter 8 Animation 181

Array
Original screen color

color
0 1 2 3

0 0 1 2 3

XOR 1 1 0 3 2

operator 2 2 3 0 1

3 3 2 1 0

0 0 1 2 3

OR 1 1 1 3 3

operator 2 2 3 2 3

3 3 3 3 3

0 0 0 0 0

AND 1 0 1 0 1

operator 2 0 0 2 2

3 0 1 2 3

Figure 8-13 Table of color codes produced by PUT operations. The resulting color code at a screen
position affected by a PUT statement is a Boolean combination of the original color code at that screen
position and the color code of the corresponding point in the array specified in the PUT statement.
Boolean operators are XOR, OR, and AND.

screen, erasing it from the previous position as we display it in the next position.
The array BLANK% is filled with the background color only, and it is used to
erase the last display before we start the motion over again from the left. Figure 8-
14 illustrates the structure of the array (PLANE%) used to animate the object.

Program 8-17 Motion of an airplane along a straight path, using PUT with the PSET operation.

10 'PROGRAM 8-17. AIRPLANE GET AND PUT WITH PSET
20 DIM PLANE7.(98) ,BLANK'>C<50)
30 SCREEN 1: COLOR 1,0: CLS
40 'DRAW AIRPLANE

50 LINE (16,100) - <31,103),2,BP
60 LINE (26,90) - (29,113),2,BP
70 LINE (18,96) - (20,107),2,BP
80 'IN PLANE7., SAVE PLANE-SIZED BLANK BLOCK ALONG WITH PLANE IMAGE
90 'ALSO SAVE JUST PLANE-SIZED BLANK BLOCK IN BLANK7.

100 GET (0,90) - (31,113),PLANE7-
110 GET (0,90) - (15,113),BLANKX
120 'PRESS ANY KEY TO STOP PROGRAM

130 STOPSIGN* = INKEY*

140 WHILE STOPSIGN* =

150 PGR X = O TO 288 STEP 16

160 PUT (X, 90), PLANE7., PSET
170 POR DELAY = 1 TO 100: NEXT

180 NEXT

190 PUT (304,90),BLANKX,PSET
200 STOPS IGN* INKEYS

210 WEND

220 END

'PUT ERASES OLD PLANE Se MAKES NEW PLANE

'ERASE RIGHTMOST DISPLAY OP PLANE

182 DISPLAY MANIPULATIONS PART III

Figure 8-14 Screen display of the
area used by array PLANE% in Prog.
8-17 to animate an airplane using the
PSET operation in the PUT statement.
The left half of the area stored in

PLANE% is set to the background col
or and is used to erase the airplane at
the same time that the new position is
displayed.

This method of animation can be faster, since we only have one PUT statement at
each step. PRESET produces similar results to PSET in the PUT statement,
except that color codes 0 to 3 are reversed and displayed as 3 to 0. That is, code 0
will be displayed as code 3, code 1 as code 2, code 2 as code 1, and code 3 as code
0.

Before we can actually begin an animation, we must store the object
definitions in arrays. But drawing them on the screen and then storing them with
GET produces image flashes at the start of our programs. We can avoid this by
assigning the array elements for ARR without displaying the objects first. One
way to determine the correct array elements is to run a preliminary program that
draws objects, stores them using GET, and then prints out the values of the object
arrays. These arrays can then be accessed directly in an animation program that
uses only PUT statements. For example, we could replace lines 40 through 110 in
Prog. 8-17 with the statements

40 FOR K = 0 TO 98

45 READ PLANE%(K)
50 NEXTK

55 DATA 62,24,0,0,0,-32726,0,0,0
60 DATA -32726,0,0,0,-32726,0,0,0,-32726
65 DATA 0,0,0,-32726,0,0,0,-32726,0
70 DATA 0,42,-32726,0,0,42,-32726,0,0
75 DATA 42,-32726,0,0,42,-32726,0,512,-21846
80 DATA -22358,0,512,-21846,-22358,0,512,-21846,-22358
85 DATA 0,512,-21846,-22358,0,0,42,-32726,0,
90 DATA 0,42,-32726,0,0,42,-32726,0,0
95 DATA 42,-32726,0,0,0,-32726,0,0,0
100 DATA -32726,0,0,0,-32726,0,0,0,-32726
105 DATA 0,0,0,-32726,0,0,0,-32726,0

The values in these DATA statements correspond to the definition of our red
airplane on a blue background inside a 32 by 24 pixel area on the screen. Values
for PLANE%(0) and PLANE%(1) are 64 (width multiplied by BITS) and 24
(height). The actual picture specification begins in PLANE%(2), with each array

Chapter 8 Animation 183

element corresponding to eight pixel positions across a row. Each new row begins
on a byte boundary. In our example, four array elements (or eight bytes) are used
for each row. Elements 3,4,5, and 6 store colors for the top row; elements 7,8,9,
and 10 store the second row from the top; and so on.

Since the color information for each row of pixels in our object rectangle is
stored starting on a byte boundary, we improve the speed of animations by
displaying objects so that screen positions correspond to byte boundaries. We do
this by choosing XI (the coordinate for the top left corner of the rectangular
screen area) to be either a multiple of 4, in medium resolution, or a multiple of 8, in
high resolution. Then the step size for animating an object with PUT is set to
either a multiple of 4 or a multiple of 8.

Another way to use GET and PUT commands in animation is to set up
different views, or "frames," of an object with multiple GET statements and then
successively PUT the different frames onto the screen to represent the type of
motion we want to simulate. For example, motion toward or away from us can be
simulated by creating several frames that store different sizes of the object. Each
stored frame is scaled from the original object size by a different amount. Objects
moving toward us are then displayed so that they get larger. Objects receding into
the background will get progressively smaller. We demonstrate this animation
technique with Prog. 8-18, using the PUT statement and 12 scaled frames. As
shown in Fig. 8-15, the boat sails off into the sunset from a point at the lower right
of our screen.

Program 8-18 Animation by scaling, using frames and the GET and PUT commands (sailboat).

10 'PROGRAM 8-18. SAILING INTO THE SUNSET.

20 'SCALES SIALBOAT IN RELATION TO A FIXED POINT (-30,70).
30 'REPEATED SCALING MOVES THE BOAT FROM RIGHT TO LEFT AND

40 'SHRINKS IT AS IT RECEDES INTO THE DISTANCE.

50 DIM X(10), Y(10)
60 DIM B0AT17.<886), B0AT27. (716) , B0AT37. (572), B0AT47. (485) , B0AT57. (405),

B0AT67.(310), B0AT7X(257), B0AT87(209), B0AT97. (191) , B0AT107 (154) ,
BOATl 17. (121) , B0AT127.(95), BLANK7. (886)

70 SCREEN 1: COLOR 1,1: CLS
80 FOR K = 1 TO 9: READ X(K),Y(K): NEXT 'READ DATA POINTS
90 GOSUB 410

100 CLS

110 LINE (0,0) - (319,199),1,B 'DRAW BORDER
120 LINE (0,60) - (319,60),1 'DRAW HORIZON
130 PAINT (160,10),1,1 'PAINT IN SKY
140 CIRCLE (40,60),25,0,0,3.14159 'DRAW SUN OUTLINE
150 PAINT (40,50),2,0 'PAINT IN SUN
160 CIRCLE (40,60),25,3,0,3.14159 'DRAW SUN OUTLINE IN WHITE
170 TIMER = 75

180 'SAIL BOAT INTO SUNSET

190 X = 247

200 GOSUB 350: PUT (X, Y),B0AT17.: GOSUB 370
210 GOSUB 350: PUT (X, Y) ,B0AT27.: GOSUB 370
220 GOSUB 350: PUT (X, Y) ,BOAT37.: GOSUB 370

184 DISPLAY MANIPULATIONS PART

Program 8-18 (cont.)

230 GOSUB 350: PUT (X,Y),B0AT4%: GOSUB 370

240 GOSUB 350: PUT (X,Y),B0AT57.: GOSUB 370
250 GOSUB 350: PUT (X,Y) ,B0AT67.: GOSUB 370

260 GOSUB 350: PUT (X,Y),B0AT77.: GOSUB 370
270 GOSUB 350: PUT (X,Y),B0AT87.: GOSUB 370

280 GOSUB 350: PUT (X,Y) ,B0AT97-: GOSUB 370
290 GOSUB 350: PUT (X,Y),B0AT10X: GOSUB 370
300 GOSUB 350: PUT (X,Y) ,B0AT117.: GOSUB 370
310 GOSUB 350: PUT (X,Y),B0AT127
320 GOTO 820

340 'CALCULATE EACH X AND Y DISPLAY POSITION
350 X = X - 20: Y = .1 * X + 60: RETURN
360 'SLOW BOAT DOWN WITH TIMER AND DELAY, THEN ERASE
370 TIMER = TIMER + 50: FOR DELAY = 1 TO TIMER: NEXT
380 PUT (X,Y) ,BLANK:C,PSET: RETURN
390 RETURN

400 'tttttttttmttttttttt SAIL INTO SUNSET ttttttttttttttttttt
410 GET (210,97) - (282,189),BLANK% 'GET AREA TO USE FOR ERASING
420 XFIXED = 210: YFIXED = 97
430 HSCALING = .9: VSCALING = .9

440 'CALCULATE CONSTANT PARTS OF SCALING EQUATIONS
450 XCONST = XFIXED * (1 - HSCALING): YCONST = YFIXED * (1 - VSCALING)
460 FOR TIME = 1 TO 12
470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

'SCALE EACH OF 9 POINTS

HSCALING + XCONST + .5)
VSCALING + YCONST + .5)

FOR K = 1 TO 9

X(K) = INT(X(K) t

Y(K) = INT(Y(K) «

NEXT

CLS: GOSUB 680 'DRAW NEW POSITION
'GET INTO APPROPRIATE ARRAY

ON TIME GOTO 540,550,560,570,580,590,600,610,620,630,640,650
GET (210,97) - (282, 189) ,B0AT17.: GOTO 660
GET (210,97) - (275,180),BOAT27.: GOTO 660
GET (210,97) - (269,172),B0AT37.: GOTO 660
GET (210,97) - (263,165) ,B0AT4y.: GOTO 660
GET (210,97) - (258,158),B0AT57.: GOTO 660
GET (210,97) - (253,152),B0AT67.: GOTO 660
GET (210,97) - (249,147),B0AT77.: GOTO 660
GET (210,97) - (245,142) ,B0AT87.: GOTO 660
GET (210,97) - (242, 138) ,B0AT97.: GOTO 660
GET (210,97) - (239,134) ,B0AT107.: GOTO 660
GET (210,97) - (236,130),B0AT11%: GOTO 660
GET (210,97) - (233,127),B0AT127.: GOTO 660

NEXT

RETURN

'########«###«#######*### DRAW SAILBOAT «##*##########«############
FOR K = 1 TO 8

LINE (X(K),Y(K)) - (X(K+1),Y(K+1)),3
NEXT

XINSAIL = (X(l) + X(2) + X(3)) / 3
YINSAIL = (Yd) + Y(2) + Y(3)) / 3
PAINT (XINSAIL,YINSAIL),3,3

+ X(7) + X(8) + X(9)) / 6
+ Y(7) + Y(8) + Y(9)) / 6

XINBOAT = (X(4) + X(5) + X(6)

YINBOAT = (Y(4) + Y(5) + Y(6)

PAINT (XINBOAT,YINBOAT),1,3
RETURN

DATA 250,165,290,165,250,97,250,173,270,183
DATA 258,199,215,179,210,157,250,174
IF INKEY« = "" THEN 820

END

Chapter 8 Animation

t!-.
m

1

Figure 8-15 Sailing a boat into the sunset. Animation produced by Prog. 8-18 with scaling
transformations used to set up the different frames for the motion.

8-4 COMPOUND MOTION

Pictures, for many applications, are animated by moving diflferent parts of the
picture at the "same" time. We could have vehicles traveling in different
directions, creatures with arms and legs moving, electrical or other networks with
"flow" along several paths at once, or complex equipment with multiple moving
parts. These motions can be accomplished with coordinated PUT statements,
using arrays defining the various shapes, or with the drawing and erasing methods
discussed earlier (if we do not have advanced BASIC).

Straightforward drawing and erasing methods, without GET and PUT,
produce satisfactory animation for uncomplicated shapes with simple transforma
tion calculations. Translating a small block, for example, by alternating the
drawing and erasing commands is about as effective as using the PUT statement.
For compound motion, we can set up frames that define different objects or
different orientations of a single object and move the frames around. Arrays,
storing coordinate endpoints of lines, can be used for the various frames. In Prog.
8-19, we display a running stick figure. Each frame of the motion was plotted on

186 DISPLAY MANIPULATIONS PART III

Program 8-19 Compound motion; running stick figure formed with frames.

10 'PROGRAM 8-19. RUNNER

20 'DISPLAYS A RUNNER ALTERNATING BETWEEN 2 POSITIONS (OR
30 'FRAMES) AT LOCATIONS ACROSS THE SCREEN. ARRAYS XI AND
40 'Y1 HOLD ALL DATA POINTS FOR POSITION #1; X2 AND Y2
50 'HOLD POSITION #2.

70 DIM XI(15), Yl(15), X2(15), Y2(15)
SO SCREEN 1: CLS

90 FOR K = 1 TO 13 'READ POSITION #1
lOO READ X1(K),Y1(K)
110 NEXT

120 FOR K = 1 TO 12 'READ POSITION #2
130 READ X2(K),Y2(K)
140 NEXT

150 XDISP = O 'XDISP IS DISPLACEMENT ACROSS SCREEN
160 IF XDISP+X1(12) > 319 THEN 520 'WOULD POSITION #1 STILL BE ON SCREEN?
170 DRAWCOLOR = Is (30SUB 250 'DRAW POSITION #1
180 DRAWCOLOR = 0: GOSUB 250 'ERASE POSITION #1
190 XDISP = XDISP + 15 'MOVE OVER 15 UNITS
200 IF XDISP+X2(11) > 319 THEN 520 'WOULD POSITION #2 STILL BE ON SCREEN"^
210 DRAWCOLOR = 1: GOSUB 360 'DRAW POSITION #2
220 DRAWCOLOR = O: GOSUB 360 'ERASE POSITION #2
230 XDISP = XDISP + 20 'MOVE OVER 20 UNITS
240 GOTO 170

250 'tt#####**###***########### POSITION #1 tt*tt##tttt«tt#*««#**##««tt*###
260 FOR K = 1 TO 3

270 LINE (XDISP+X1(K),Y1(K)) - (XDISP+Xl(K+1),Y1(K+1)),DRAWCOLOR
280 NEXT

290 LINE (XDISP+X1(5),Y1(5)) - (XDISP+Xl(6),Y1(6)),DRAWCOLOR
300 LINE (XDISP+Xl(6),Y1(6)) - (XDISP+Xl(7),Y1(7)),DRAWCOLOR
310 FOR K = 8 TO 11

320 LINE (XDISP+Xl(K),Y1(K)) - (XDISP+Xl(K+1),Y1(K+1)),DRAWCOLOR
330 NEXT

340 CIRCLE (XDISP+Xl(13),Y1(13)),10,DRAWCOLOR
350 RETURN

360 '•*#•****•«•«*•«««•*««##«« POSITION #2 tttttttttt#**#*####**##*###**#
370 FOR K = 1 TO 2

380 LINE (XDISP+X2(K),Y2(K)) - (XDISP+X2(K+1),Y2(K+1)),DRAWCOLOR
390 NEXT

400 LINE (XDISP+X2(4),Y2(4)) - (XDISP+X2(5),Y2(5)),DRAWCOLOR
410 LINE (XDISP+X2(5),Y2(5)) - (XDISP+X2(6),V2(6)),DRAWCOLOR
420 FOR K = 7 TO 10

430 LINE (XDISP+X2(K),Y2(K)) - (XDISP+X2(K+1),Y2(K+1)),DRAWCOLOR
440 NEXT

450 CIRCLE (XDISP+X2(12),Y2(12)),10,DRAWCOLOR
460 RETURN

480 DATA 14,150,20,133,15,120,20,93,5,145,25,133,15,120
490 DATA 20,115,10,110,19,92,20,108,30,113,20,83
500 DATA 2,132,25,136,40,93,43,150,50,130,30,120
510 DATA 30,111,22,103,38,95,43,110,58,104,40,83
520 END

graph paper, then converted into screen coordinates to represent the running
motion for the arms and legs. The two frames for each position of the runner are
separately stored in arrays. This allows us to simply translate each frame,
alternately, across the screen without recomputing relative positions of the
individual figure parts. Figure 8-16 illustrates the resulting motion.

Chapters Animation 187

Q C' C' O Q
/f.. i it..
> —/ 7 —J ■/ p-

^7 / -1' /

V-... y -c-

Figure 8-16 Compound motion, showing two frames used to display a running stick figure in Prog.
8-19.

Frames that represent diflferent object orientations can be defined similarly
for PUT methods. Suppose that we want to roll a wagon across the screen. With
GET, we can set up several arrays, showing the wagon wheels in different rotated
positions. Program 8-20 outputs a moving wagon (Fig. 8-17), animated with three
frames. The wheels of the wagon rotate as the wagon is translated to the left.

Program 8-20 Compound motion: moving wagon with turning wheels.

10 'PROGRAM 8-20. MOVING WAGON AND WHEELS WITH GET AND PUT
20 'DRAWS WAGON AND THEN MOVES IT FROM RIGHT TO LEFT.
30 DIM X(20) , Y(20), P0SITI0N17. (434), P0SITI0N27. (434) , P0SITI0N37.(434)
40 SCREEN 1: COLOR 1,1: CLS
50 YADJUST = 5/6: XADJUST = 6/5
60 FOR K = 1 TO 18
70 READ X(K), Y(K)
80 NEXT
90 ANGLE = 25 * 3.14159 / 180 'EXPRESS 25 IN RADIANS
100 'CALCULATE CONSTANT PARTS OF ROTATION EQUATIONS
110 COSA = COS(ANGLE)
120 SINX = SIN(ANGLE) « XADJUST: SINY = SIN(ANGLE) * YADJUST
130 'DRAW VARIOUS POSITIONS OF WAGON AND GET
140 GOSUB 310 'DRAW WAGON
150 GET (202,95) - (308,126),P0SITI0N17
160 CLS: GOSUB 420: GOSUB 310
170 GET (202,95) - (308,126),P0SITI0N27
180 CLS: GOSUB 420: GOSUB 310
190 GET (202,95) - (308,126),POSITION37
200 'MOVE WAGON ACROSS SCREEN
210 CLS
220 FOR X = 212 TO 32 STEP -48
230 PUT (X,95),P0SITI0N17.,PSET
240 FOR DELAY = 1 TO 100: NEXT
250 PUT (X - 16,95),P0SITiqN2%,PSET
260 FOR DELAY = 1 TO lOO: NEXT
270 PUT (X - 32,95),P0SITI0N3%,PSET
280 FOR DELAY = 1 TO 100: NEXT

188 DISPLAY MANIPULATIONS PART III

Program 8-20 (cont.)

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

NEXT

GOTO 620

'##########«#«############## DRAW ROUTINE #«######«##»###############
FOR K = 1 TO 5

LINE (X(K),Y(K)) - <X<K+1),Y(K+1))
NEXT

LINE (X<7),Y(7)) - (X(8),Y(8))
CIRCLE (X(9),Y(9)),11 'WHEEL CENTERS ARE ARRAY ELEMENTS 9 AND 10
CIRCLE (X(10),Y(10)),11
FOR K =: 11 TO 17 STEP 2 'DRAW SPOKES

LINE (X<K),Y<K)) - (X(K+1),Y(K+1))
NEXT

RETURN

#####«###############«## ROTATE SPOKES ROUTINE #«###«###############
YO = Y(9)

XO = X(9)

FOR K = 11 TO 14

XSAVE = X(K)

X(K) = XO + (X(K)

Y(K) = YO + (Y<K)

next
XO = X(10)

FOR K = 15 TO 18

XSAVE = X(K)

X(K) = XO + (X<K)

Y(K) = YO + (Y(K)

NEXT

'Y VALUE OF CENTER GF BOTH WHEELS
'X VALUE OF CENTER PF FIRST WHEEL

'SAVE X(K) FOR USE IN Y(K) CALCULATIONS
- XO) * CGSA + (Y<K) - YO) * SINX
- YO) * C03A - (XSAVE - XO) * SINY

'X VALUE OF CENTER OF SECOND WHEEL

'SAVE X<K) FOR USE IN Y(K) CALCULATIONS
- XO) * COSA + (Y(K) - YO) « SINX
- YO) * COSA - (XSAVE - XO) « SINY

560 RETURN

570

580

590 DATA 222, 117', 272^ 117'
600 DATA 232,117,212,117,222,108,222,125
610 DATA 282,117,262,117,272,108,272,125
620 END

RETURN

W-,' ^ 260.117,234,117

Several moving objects in one display are handled by drawing all the objects
at once, computing all transformed positions, and then erasing each object and
displaying it in the new position. Each object is defined in a separate array, as
demonstrated in Prog. 8-21. This program flies the three airplanes shown in Fig.
8-18 across the screen along randomly selected lines.

Figure 8-17 Compound motion. Animating a wagon with translation and rotating wheels (Prog 8-
20).

Chapters Animation 18i

Program 8-21 Compound motion: multiple objects (airplanes) moved along random horizontal and
vertical paths with PUT statements.

10 'PROGRAM 8-21. FLYING THREE AIRPLANES WITH GET AND PUT
20 SCREEN 1: COLOR 1,0: CLS
30 DIM PLANE17.(98), PLANE27-(98), PLANE37. (98) , HBLANK7.< 150) , VBLANK7-(150)
40 GOSUB 220 'GET PLANE SHAPES
50 Y1 = 90: Y2 = 90: XI = 90 'INITIAL POSITIONS OF PLANES
60 WHILE INKEY* = ""

70 Y = O

80 FOR X = O TO 285 STEP 15
90 PUT (X, YD, PLANEIX, PSET
100 PUT (285 - X, Y2), PLANE27, PSET
110 PUT (XI, Y), PLANE37., PSET
120 FOR DELAY = 1 TO 50: NEXT
130 Y = Y + 8

140 NEXT

150 PUT (300,Y1),HBLANK7.,PSET 'CLEAR PLANES AT EDGE OF SCREEN
160 PUT (0,Y2),HBLANK%,PSET
170 PUT (X1,167),VBLANK7.,PSET
180 Y1 = INT(RND*173)+1: Y2 != INT(RND*173)+1: XI = INT(RND*280)+1
190 WEND

200 GOTO 410

210 'ttttttttttt GETS PLANES FROM SCREEN DRAWINGS tttttttt
220 LINE (15,100)-(30,103),2,BF
230 LINE (25, 90) - (28, 113),2, BF
240 LINE (17, 96)-(19,107),2,BF
250 'GET PALNE 1

260 GET (0,90)-(30,113),PLANE1X
270 LINE (285,100)-(300,103),3,BF
280 LINE (287, 90) - (290, 113) , 3, BF
290 LINE (296, 96) -(298, 107),3, BF
300 'GET PLANE 2

310 GET (285,90)-(315,113),PLANE27.
320 LINE (100,15)-(103,30),1,BF
330 LINE (90,25)-(113,28),1,BF
340 LINE (96,17)-(107,19),1,BF
350 'GET PLANE 3
360 GET (90,0)-(113,30),PLANE3%
370 'GET BLANK SPACES TO ERASE AT EDGE OF SCREEN
380 GET (0,0)-(23,15),VBLANK7
390 GET (0,0)-(15,23),HBLANK7.
400 RETURN

410 END

is|§rs
ii

iiiiifliiiil

Figure 8-18 Three airplanes animated
by Prog. 8-21.

190 DISPLAY MANIPULATIONS PART I

8S BACKGROUND MOTION

As the number of computations and lines to be drawn increases, the time required
to animate a scene can increase significantly. For complex objects and complicat
ed motions, the animation time can become so long that we lose the sense of
motion we were trying to create on the screen. We can speed up the motion by
animating only simple shapes that have fewer lines to be drawn, and we can limit
the animation to simple types of motion. Another method, which is appropriate
for some applications, is to move the background in a scene to give the
appearance of motion.

Figure 8-19 illustrates a simple form of background motion. We move the
centerline of the road down the screen, so that the car appears to move up. The
PUT statement with PSET is used in Prog. 8-22 to produce the two alternating
positions of the centerline. Pressing keys on the numeric keypad during program
execution speeds up and slows down the motion by changing the value of the time-
delay factor TIMER.

Moving the telephone poles in Fig. 8-20 to the right causes the truck to

Figure 8-19 Simulation of the car movement up the screen is produced by moving the center lines of
the road down (Prog. 8-22).

rn

\ I

Chapter 8 Animation 191

Program 8-22 Background motion: moving centerlines on a road.

10 'PROGRAM 8-22. MOVING ROAD BACKGROUND WITH GET AND PUT
20 SCREEN 1: CLS

30 DIM R17.<190), R2%(190)
40 GOSUB 180 'DRAW CAR

50 GOSUB 310 'DRAW CENTERLINES AND GET BOTH
60 'MOVE CENTERLI^4E

70 TIMER = 100

80 WHILE A« <> "Q" AND A* <> "q"
90 PUT (200,5),R2%,PSET
100 FOR DELAY = 1 TO TIMER: NEXT
110 PUT <200,5),R17.,PSET
120 FOR DELAY = 1 TO TIMER: NEXT

130 A* = INKEY«: IF A^ <> "" THEN A » VAL(A«)
140 'SPEED IS CHANGED BY PRESSING KEYS 1 - 9 ON KEYBOARD
150 IF A >= O AND A < 10 THEN TIMER = 300 - A * 30 'SET SPEED
160 WEND

170 GOTO 440

180 'DRAWS CAR

190 LINE (100,5) - (100,195) 'DRAW ROAD EDGES
200 LINE (300,5) - (300,195)
210 LINE (230,110)-(270,180),,B
220 LINE (230,130)-(270,130)
230 LINE (250,112)-(250,114) 'HOOD ORNAMENT
240 LINE (228,115)-(229,125),,BF 'WHEELS
250 LINE (228,165)-(229,175),,BF
260 LINE (271,165)-(272,175),,BF
270 LINE (271,115)-(272,125),,BF
280 LINE (235,109)-(240,109) 'HEADLIGHTS
290 LINE (260,109)-(264,109)
300 RETURN

310 'DRAWS CENTERLINES AND LOADS INTO ARRAYS
320 FOR K = 5 TO 155 STEP 30

330 LINE (200,K) - (200,K+20)
340 NEXT

350 LINE (200,185) - (200,195)
360 GET(200,5) - (200,195),RIX 'GET ROAD POSITION #1
370 PUT (200,5),R17.
380 LINE (200,5) - (200,15)
390 FOR K = 25 TO 145 STEP 30

400 LINE (200,K) - (200,K+20)
410 NEXT K

420 GET (200,5) - (200,195),R2% 'GET ROAD POSITION #2
430 RETURN

440 END

appear to travel to the left. If the poles are meant to be on the far side of the road,
they could be spaced and positioned so that they are never drawn on top of the
truck. Otherwise, they will appear in the foreground. As an alternative method,
we can draw only part of the background at the points where the truck and poles
overlap in the animation. Program 8-23 sets up four views of the telephone poles.
Three arrays are used to store the pole as it would be seen in various positions in
back of the truck. The other array stores the pole full size. The poles are moved
across the screen so as to maintain a constant spacing between them. A time-delay
factor TIMER is again used to adjust the speed of the motion.

Many types of background motion are possible. Program 8-24 combines a

192 DISPLAY MANIPUUTIONS PART I

p' p' p-'

J''

□

(a)

□

(b)
Figure 8-20 (a) Four views of the telephone poles used in Prog. 8-23 to produce background motion,
(b) Simulation of a truck traveling to the left is accomplished by moving the telephone poles to the
right.

Program 8-23 Background motion: moving telephone poles past an object on a road.

'PROGRAM 8-23. GET & PUT BACKGROUND MOVEMENT OF TELEPHONE POLES
DIM P0LE17- (374), P0LE2% (374) ,P0LE3% (374),P0LE47(374)
CLS:SCREEN 2
GOSUB 280 'DRAW SCENE
TIMER = lOO

ID
20
30
40
50
60
70
80
90
lOO PUT
120 PUT
110 PUT
120 PUT
130 PUT
140 XI = 50: X2
150 A* =
160 WHILE A* <>
170 X = XI:

GET (55,65)-(85, 150) ,POLE17.
GET (95,65)-(125,150),P0LE2X
GET (135,65)-(165,150),P0LE3%
GET (175, 65) - (205,150), P0LE47.

(55,65),P0LE17.
(95,65),P0LE2%
(95,65), P0LE27-
(135,65),P0LE37.
(175,65) ,P0LE47.

'GET FOUR DIFFERENT POLES

'ERASE THE POLES THAT ARE ON THE SCREEN

436

"Q" AND A«
GOSUB 460

'SET INITIAL PUT POSITIONS

<> "q"

Chapter 8 Animation 193

Program 8-23 (cont.)

180 X = X2: GOSUB 460

190 FOR DELAY = 1 TO TIMER: NEXT

200 X = XI: GOSUB 460 'PUT AGAIN TO ERASE POLES

210 X = X2: GOSUB 460

220 XI = (XI + 80) MOD 805

230 X2 = (X2 + 80) MOD 805

240 A* = INKEY*

250 IF M = " " THEN TIMER = TIMER - 25 'PRESS SPACE

260 WEND

270 GOTO 620

280 'DRAWS SCENE

290 LINE (5,151>-<635,151)
300 CIRCLE (300,145),10 'DRAW WHEELS
310 CIRCLE (340,145),10
320 CIRCLE (400,145),10
330 CIRCLE (500,145),10
340 FOR TIME = 1 TO 20

350 READ X1,Y1,X2,Y2: LINE (XI,YD - (X2,Y2)
360 NEXT

370 FOR TIME = 1 TO 4

380 READ X2,Y2: LINE - (X2,Y2)
390 NEXT

400 READ X1,Y1,X2,Y2: LINE (XI,YD - (X2,Y2)
410 READ X2,Y2: LINE - (X2,Y2)
420 READ X2,Y2: LINE - (X2,Y2)
430 LINE (323,109)-(352,122),,B
440 CIRCLE (280,123),2
450 RETURN

460 ^ttttttttttttt* PUTS A POLE tttttttttttttttttt
470 XC = X + 15

480 IF XC > 609 THEN 530

490 IF XC < 280 OR XC > 520 THEN PUT (X,65) ,POLEiy-: GOTO 530
500 IF (XO330 AND XC<350) OR (XO390 AND XC<410) OR (XO490 AND XC<510) THEN

PUT (X,65),P0LE47.: GOTO 530
510 IF XC >= 315 AND XC < 520 THEN PUT (X,65) ,P0LE37.: GOTO 530
520 IF XC >= 280 AND XC < 315 THEN PUT (X,65) ,P0LE27.
530 RETURN

540 DATA 280,144,290,144,310,144,330,144,350,144,360,144,362,144,390,144
550 DATA 410,144,490,144,510,144,520,144
560 DATA 70,65,70,150,55,75,85,65,55,80,85,70
570 DATA 110,65,110,123,95,75,125,65,95,80,125,70
580 DATA 150,65,150,103,150,145,150,150,135,75,165,65,135,80,165,70
590 DATA 190,65,190,103,175,75,205,65,175,80,205, 70
600 DATA 280,144,280,124,315,124,315,104,360,104,360,144
610 DATA 362,144,362,104,520,104,520,144
620 END

Program 8-24 Simulating movement with background motion: train with moving rod and moving
tracks.

10 'PROGRAM 8-24. TRAIN WITH MOVING WHEEL BAR AND TRACKS.
20 'DRAWS A TRAIN AND ROTATES THE HORIZONTAL BAR CONNECTING
30 'THE TWO REAR WHEELS. ALSO MOVES POINTS ACROSS THE BOTTOM
40 'OF THE TRAIN, TO SIMULATE TRAIN TRACKS.

60 SCREEN 1: COLOR 1,1: CLS
70 YADJUST = 5/6 'YA IS RESOLUTION ADJUSTMENT
80 'DRAW TRAIN

194 DISPLAY MANIPULATIONS PART I

90 READ Xl,Yl2 PSET <X1,Y1)
100 FOR K = 1 TO 25

110 READ X2,Y2: LINE - (X2,Y2)
120 NEXT

130 READ XL, XR, YT, YBz LINE (XL,YT) - (XR,YB),,BF 'WINDOW
140 FOR K = 1 TO 6 'ADD DETAIL LINES

150 READ XI, Yl, X2, Y2: LINE <X1,Y1) - <X2,Y2)
160 NEXT

170 FOR K = 1 TO 4 'ADD WHEELS

180 READ XC, YC, R
190 CIRCLE <XC,YC),R 'FINAL XC AND YC VALUES ARE FOR REAR WHEEL
200 NEXT

210 'tttttttttttttttt* ROTATE WHEEL BAR, MOVE TRACKS ttttttttttttttttt
220 RADIUS = 15 'RADIUS OF WHEEL BAR'S ROTATION

230 DA = 50 * 3.14159 / ISO

240 A* = ""

250 WHILE A* = ""

260 FOR ANGLE = DA TO 6.28318 STEP DA

270 XBAR = XC + RADIUS « SIN(ANGLE)

280 YBAR = YC + RADIUS « COS(ANGLE) t YADJUST

290 LINE (XBAR,YBAR) - (XBAR-90,YBAR) 'DRAW NEW BAR POSITION
300 FOR X = XSTART TO 319 STEP 35 'PLOT TRACKS 35 UNITS APART

310 PSET (X,152)
320 NEXT

330 FOR X = XSTART TO 319 STEP 35 'ERASE TRACKS

340 PRESET (X,152)
350 NEXT

360 XSTART = XSTART + 7 'NEXT POINT SET WILL BE 7 PIXELS OVER

370 IF XSTART >= 30 THEN XSTART = O 'POINTS KEEP COMING FROM LEFT
380 LINE (XBAR,YBAR) - (XBAR-90,YBAR),O 'ERASE CURRENT POSITION
390 NEXT

400 A« = INKEY^

410 WEND

430 'OUTLINE

440 DATA 270,130,290,130,290,50,300,50,300,30,220,30,220,70,200,70
450 DATA 200,50,170,50,170,70,90,70,90,50,100,40,60,40,70,50,70,70
460 DATA 60,70,50,80,50,110,60,120,40,120,20,150,50,150,50,130,90,130
470 'WINDOW

480 DATA 230,280,40,70
490 'DETAIL LINES

500 DATA 220,70,220,100,220,100,65,100
510 DATA 65,100,45,125,130,130,140,130
520 DATA 0,154,319,154,180,130,230,130
530 'WHEELS

540 DATA 65,140,10,110,130,20,160,130,20,250,130,20
550 END

background motion with simple object motion to simulate animation of a more
complex object. The output is given in Fig. 8-21. A rotating bar connecting the
wheels of a train and a series of constantly moving railroad tracks, made up of
single pixels, are used to simulate the motion of a train. We can produce slower or
faster motion of the background by taking smaller or larger displacements in the
position of background objects. We can also slow the motion as much as we want
with time delays between frames.

Figure 8-21 Simulation of a train chugging to the left is produced by Prog. 8-24 with a moving
wheel rod and moving tracks.

PROGRAMMING PROJECTS

8-1. Animate a character by bouncing it off several randomly placed horizontal and
vertical boundaries. Start the character moving along a diagonal line, with both R

and C incremented by I unit at each step. When the character encounters a vertical
wall (or the top or bottom of the screen), reverse the row increment. When the
character encounters a horizontal wall (or a side of the screen), reverse the column

increment. Use the SCREEN function to test for wall collisions.

8-2. Modify the program in Project 8-1 to display the character in various colors as it
bounces around the screen. Other possible modifications include changing colors
only when it rebounds, not erasing the character (so that a pattern of colors is
displayed), or producing a sound whenever the character rebounds from a boundary.

8-3. Modify the program in Project 8-1 to move the character faster by setting the row
and column increments to some value greater than 1 (keeping both increments the
same). Each character position along the path, from the current position to the
possible final position, must now be tested to determine whether there is a wall along
the line of motion.

8-4. Revise Prog. 8-3 to display the airplane as it flies across the screen, using the
SCREEN statement and the pages available in WIDTH 40. When the space bar is
pressed, the block must be added to each page before the page is displayed and a test
must be made for a collision between the block and the plane.

8-5. Write the program of Project 8-1 for pixel motion (a point or circle). Use the POINT
function to test for wall collisions.

8-6. Write the program for Project 8-5 with one or more of the following options:

(a) Display the point (or circle) in random colors and do not erase it as it moves
so that color patterns are produced.

(b) Change colors or make a sound when the point rebounds.

196 DISPLAY MANIPULATIONS PART III

8-7. Write the program for Project 8-5 so that the point (or circle) moves faster by setting
the horizontal and vertical increments to values greater than 1. Each pixel position
along the path of motion must now be tested to be sure the point does not move
through a wall.

8-8. Write a program to bounce a pixel (or circle) back and forth between any two
specified points, (XI,Yl) and (X2,Y2). Increments for the motion (DX and DY) are
chosen so that the ratio DY/DX is equal to the slope of the path. This is done by
dividing the intervals X2 - XI and Y2 - Yl by 10, or some other convenient factor.

8-9. Modify Prog. 8-6 so that increments DX and DY may be assigned any initial values
(DX <> DY). Also, accelerate the motion by increasing the increments by 5 after
every third rebound from the left wall. The motion can be stopped when one
increment exceeds 40.

8-10. Write a program to display a ball (or other object) that moves across the screen
following the path of any specified curve. The curve could be a SIN function, fourth-
degree polynomial, or any other equation that could simulate up-and-down motion.

8-11. Write a program to display a point (or ball) that moves along a spiral path starting
from the center of the screen. By alternating the color and not erasing the point, the
screen can be filled with a color spiral. By reversing the motion when the point
reaches the edge of the screen, the point can be made to spiral in and out repeatedly.

8-12. Write a program to animate a spaceship using only the PUT statement. The array for
the PUT command is to be defined in DATA statements, as discussed with Prog. 8-
17, and the picture definition and display positions are to be set on byte boundaries.
Move the spaceship along a straight-line path.

8-13. Set up the program for Project 8-12 so that the path of motion is controlled by a
joystick.

8-14. Modify Prog. 8-19 so that the runner recedes into the distance while moving across
the screen. This can be done by successively scaling each frame of the motion.

8-15. Write a program to animate an object along the path of a sine curve or a third-degree
polynomial by keeping a line in the object tangent to the curve as it moves.

8-16. Write a program that will display an airplane or spacecraft flying loops around a
circle.

8-17. Revise Prog. 8-21 so that the three airplanes start across the screen at different,
randomly chosen times.

8-18. Modify Project 8-17 so that the airplanes disintegrate if they collide. This can be
accomplished by replacing each colliding airplane with a random dot pattern that
spreads out from the center of each plane, with the number of dots decreasing
rapidly as the pattern expands. If any of this debris hits the third plane, it also
disintegrates and the program ends.

8-19. Write a program to display a clock face in the center of the screen. Draw the hands
as arrows (for hours and minutes) and rotate the hands so that the smaller hand

moves through 30 degrees each time the larger hand makes one complete revolution
(360 degrees). A second hand can be added that sweeps through 360 degrees for each
6 degrees of rotation of the minute hand.

Chapter 9

Windows

and Spotlights

Graphics displays can be manipulated in many ways. We have explored methods
for changing display size and for moving the figures from one screen location or
orientation to another. These transformations can be applied to a total display or
to designated areas within a display. We can also select areas of a display for other
types of modification. The areas could be "spotlighted" for special emphasis,
they could be deleted from the display, or they could be retained and transformed
while the rest of the display is deleted.

9-1 SPOTLIGHTING

We would often like to add special emphasis to some area of a display in order to
focus attention there. The area to be spotlighted could be redrawn in a bright color
or highlighted with added intensity. With the PC, a high-intensity white option is
available that has the effect of making displayed text brighter than other parts of
the screen. A similar effect can be produced in graphics mode by drawing lines in
the spotlight area with double thickness: drawing two lines 1 unit apart instead of a
single line. Blinking a section of a display (in text mode) is another technique we
can use to emphasize a screen area. We can also draw attention to a selected area
by putting a circle or box around it, as shown in Fig. 9-1.

To superimpose a circle onto a display, we simply choose the center
coordinates (XC,YC) and radius R for the circle. A circle-drawing routine or the
CIRCLE command is then added to our program and referenced each time we
wish to spotlight an area. We can write programs that allow us to experiment with
different circle locations and sizes to achieve the exact spotlight effect desired, as
in Prog. 9-1.

197

198 DISPLAY MANIPULATIONS PART I

1. FRAME

2. SEAT

3. UHEELS

BRAKES

5. STEM

6. FORK

7. HANDLEBARS

(a)

V
(b)

Figure 9-1 Spotlighting displays with (a) a circle and (b) a box.

Chapter 9 Windows and Spotlights 199

Program 9-1 Spotlighting with circles.

'PROGRAM 9-1. CIRCLE SPOTLIGHTS.

SCREEN 1: CLS

'ttttttttttttttt READ DATA POINTS FOR DISPLAY ttttttttt

'DRAW DISPLAY

'CREATE CIRCLE SPOTLIGHT

10

20

30

40

50

60

70 GOSUB 100

80 GOSUB 150

90 GOTO 340

100 'tttttttttttttttttttt DRAW ROUTINE ««|[«««««»«»«»««»»»«»

110

120

130

140 RETURN

ISO 'tttttttttttttttt ADD CIRCLE SPOTLIGHT «««»««»»»««»««««

160 LOCATE 2,1: INPUT "CIRCLE CENTER AND RADIUS"; XCENTER,YCENTER,RADIUS
170 IF XCENTER-i-RADIUS <= 319 AND XCENTER-RADIUS >= O AND YCENTER+RADIUS <= 199

AND YCENTER-RADIUS >= O THEN 210

180 LOCATE 1,1: PRINT "CIRCLE OFF SCREEN"
190 PRINT STRING»(80," "); 'ERASE INSTRUCTION AND PREVIOUS INPUT
200 GOTO 160

210 CIRCLE (XCENTER,YCENTER),RADIUS
220 LOCATE 1,1: PRINT STRING*(160," "); 'ERASE ANY INSTRUCTIONS
230 LOCATE 2,1: INPUT "TYPE E TO END, C TO CHANGE CIRCLE"; M*
240 LOCATE 2,1: PRINT STRING*(80," "); 'ERASE INSTRUCTIONS
250 IF M* = "E" THEN 330

260 CIRCLE (XCENTER,YCENTER),RADIUS,O 'ERASE CURRENT POSITION
270 'DID ERASING DESTROY DISPLAY?

280 LOCATE 2,1: INPUT "DO YOU WANT TO RE-DRAW DISPLAY (Y/N)"; D*
290 LOCATE 2,1: PRINT STRING*(80," ");
300 IF D* = "N" THEN 150

310 GOSUB 100 'REDRAW DISPLAY

320 GOTO 150

330 RETURN

340 END

Figure 9-2 Coordinates for the comers of a rectangle can be determined from values for the width
W, height H, and center position (XB,YB).

XB-W/2 XB + W/2

YB - H/2

YB + H/2

(XB, YB)

X axis

Y axis

200 DISPLAY MANIPULATIONS PART III

For a box spotlight, we could use the LINE command and input two
opposite box corners. We could also devise a routine that simply asks us where to
put the center of the rectangle and how big it is to be (Fig. 9-2). This type of
routine is illustrated in Prog. 9-2, which draws a box centered at coordinates
(XB,YB) with a width W and a height H.

Spotlights with circles or boxes are useful for emphasizing parts of displays
that accompany reports or presentations. A screen display with the spotlight in
different locations can be output to a printer each time the spotlight location is
changed. The printed displays can then be included in a report. We can make a
moving spotlight to accompany a presentation, as well. The spotlight would
change locations to coincide with the display area under discussion in the

Program 9-2 Spotlighting with rectangles.

10 'PROGRAM 9-2. BOX SPOTLIGHTS.

20 SCREEN 1: CLS

30 'ttttttttttttttt READ DATA POINTS FOR DISPLAY ttttttttt

40

50

60

70 GOSUB 100 'DRAW DISPLAY

80 GOSUB 150 'CREATE CIRCLE SPOTLIGHT

90 GOTO 420

100 'ttttttttttttttttt DRAW ROUTINE ttttttttttttttttttttt

110

120

130

140 RETURN

150 *ttttttttttttt* ADD BOX SPOTLIGHT ttttttttttttttttttt

160 LOCATE 2,1: INPUT "BOX CENTER (X AND Y)"; XBOX,YBOX
170 LOCATE 2,1: PRINT STRING*(80," "); 'ERASE INSTRUCTION
180 LOCATE 2,1: INPUT "BOX WIDTH AND HEIGHT"; BWIDTH, BHEIGHT
190 'DETERMINE BOX SIDES (LEFT, RIGHT, TOP AND BOTTOM)
200 LEFT = XBOX - BWIDTH / 2

210 RIGHT = XBOX + BWIDTH / 2

220 TOP = YBOX - BHEIGHT / 2

230 BOTTOM = YBOX + BHEIGHT / 2

240 IF LEFT < RIGHT AND LEFT >= O AND RIGHT <= 319 AND TOP < BOTTOM AND

TOP >= O AND BOTTOM <= 199 THEN 280

250 LOCATE 1,1: PRINT "BOX OFF SCREEN"
260 PRINT STRING*(80," "); 'ERASE INSTRUCTION AND PREVIOUS INPUT
270 GOTO 150

280 LINE (LEFT,TOP) - (RIGHT,BOTTOM),,B 'DRAW BOX
290 LOCATE 1,1: PRINT STRING*(160," ");
300 LOCATE 2,1: INPUT "TYPE E TO END, C TO CHANGE BOX"; M*
310 LOCATE 2,1: PRINT STRING*(80," ");
320 IF M* = "E" THEN 400

330 LINE (LEFT,TOP) - (RIGHT,BOTTOM) 'ERASE CURRENT POSITION
340 'DID ERASING DESTROY DISPLAY?

350 LOCATE 2,1: INPUT "DO YOU WANT TO RE-DRAW DISPLAY (Y/N)"; D*
360 LOCATE 2,1: PRINT STRING*(80," ");
370 IF D* = "N" THEN 150

380 GOSUB 100 'REDRAW DISPLAY

390 GOTO 150

400 RETURN

410

420 END

Chapter 9 Windows and Spotlights 201

presentation. We could use some type of time delay to hold the spotlight in one
position until we were ready to discuss the next area. The areas spotlighted in this
way might be some type of list, parts of a graph, or the components of a diagram.

9-2 ERASING AND CUPPING

Instead of emphasizing areas, we might want to eliminate parts of a developed
display. We can use spotlight methods to identify areas for erasing or clipping. In
the first case we delete the selected area; in the second, we keep the area and
delete the rest of the display.

ERASING

The box or circle method for spotlighting can be used to select areas for erasure.
There are many reasons why we might decide to take out certain parts of a
developed display. We may need to simplify a complicated display or to make
room for additions to the display. We might be trying out various design layouts or
experimenting with visual effects. Or we may need to provide space for enlarging
or some other display manipulations.

Parts of a display to be eliminated could, of course, be taken out by changing
the program to redraw the display without these parts. This might mean
significantly altering the graphics display program. If we later wanted the parts
back in, we would have to change the program again. If frequent display deletions
are necessary, as in a design application, a general erasing program can be set up
to erase everything within a designated area.

Identifying the area of a display to be deleted with a box provides a simple
method for erasing characters, pixels, and line sections within the box. We just
state the command LINE(X1,Y1)—(X2,Y2),0,BF and the specified area is filled
with the background color. The program to accomplish this would need to have as
input the size and location of the box, as in Prog. 9-2.

Erasing can also be done within a circular boundary. With advanced BASIC,
we can use the CIRCLE and PAINT commands to erase within a designated
circular area by filling in with the background color. If the designated circular area
overlaps with the background, we must be careful to choose a point for PAINT
that is on the object to be erased and not on the background. Otherwise, the
command PAINT(X,Y),0,0 will have no effect. Without the PAINT command,
erasing inside a circular boundary is a slower process than using a box since the
program would have to calculate endpoints for each paint line within the circle
boundary.

CLIPPING

In some situations we would like to save an area in a display and erase everything
else. This would be the case if we wanted to expand some small area in a picture
or graph to the size of the screen, or if we wanted to have figures showing the

202 DISPLAY MANIPULATIONS PART

parts of a display separately for a report or presentation. For this purpose, we can
select the region to be saved within a rectangular area, or window. Erasing all
parts of a display outside of this window is called clipping.

A program to perform general clipping must identify and save all text,
unconnected pixels, and line sections of figures within the window area. Figure 9-
3 illustrates a framed area or window selected on a diagram. Everything inside the
window is to be saved; everything outside is to be clipped. The clipping program
would check coordinate endpoints of the lines and text to determine what to save.

We have a simple method for clipping with the GET and PUT statements.
The rectangular area to be saved is first stored in an array with GET. Then the
screen is cleared and the saved area is PUT back on the screen. This is

demonstrated with Prog. 9-3. Figure 9-4 shows the screen before and after
clipping with a selected window.

Although the GET and PUT method of clipping is effective for both pixels
and characters, it is a difiicult method to use when we want to scale or rotate the
saved window area. We need coordinate information to perform these transforma
tions, and this information is not readily available from the pixel color information
stored by GET. However, we can perform clipping without using GET and PUT
so that coordinate information from the window is saved for later use.

We first consider the design of a clipping program for points and lines only.
Our program will input the coordinates for the top left corner of the window as
(XW,YW). The width and height of the window will be input as WW and WH. We
will store display coordinates in arrays X and Y. Any coordinate information
saved by the clipping program will be stored in new arrays.

An isolated point (one not part of a line) will be saved by the clipping
program if it is inside the window. That is, its X-coordinate value is between XW
and XW -I- WW and its Y-coordinate value is between YW and YW -I- WH. A line

will be saved by our clipping program if both its endpoints are within the window

Figure 9-3 A window drawn around a section of a display identifies the text and figure parts to be
saved by the clipping program.

m

/' aLENS

IMAGE

Chapter 9 Windows and Spotlights 203

Program 9-3 Clipping with GET and PUT statements.

10 'PROGRAM 9-3- CLIPPING WITH GET AND PUT

20 DIM X(8,20),Y(8,20),LABEL«(5),RGW(5),C0LUMN(5),WINDOWS(8002)
30 SCREEN 1: COLOR 1,1: CLS
40 GOSUB 110 'READ PICTURE POINTS

50 GOSUB 250 'DRAW PICTURE

60 GOSUB 370 'ESTABLISH WINDOW

70 GET (LEFT, TOP) - (RIGHT, BOTTOM) , WINDOWS!
80 CLS

90 PUT (LEFT, TOP) , WIND0W7., PSET
100 GOTO 780

110 'tttttttttttttt READ PICTURE PARTS tttttttttttttttttt

120 READ TOTAL 'TOTAL IS NUMBER OF PICTURE PARTS

130 FOR PART = 1 TO TOTAL

140 READ POINTCOUNT(PART) 'NUMBER OF ELEMENTS IN PART P

150 FOR VERTEX = 1 TO POINTCOUNT(PART)

160 READ X(PART,VERTEX), Y(PART,VERTEX)
170 NEXT

180 NEXT

190 'READ IN TEXT ITEMS, ROW, AND COLUMN PLACEMENT
200 READ LABELTOTAL

210 FOR K = 1 TO LABELTOTAL

220 READ LABEL*(K),ROW(K),COLUMN(K)
230 NEXT

240 RETURN

250 'ttttttttttttttttt DRAW ROUTINE tttttttttttttttttttt*

260 FOR PART = 1 TO TOTAL

270 IF POINTCOUNT(PART) = 1 THEN PSET (X(PART,1),Y(PART,1)): GOTO 320
280 PSET (X(PART,1),Y(PART,1))
290 FOR VERTEX = 2 TO POINTCOUNT(PART)

300 LINE - (X(PART,VERTEX),Y(PART,VERTEX))
310 NEXT

320 NEXT

330 FOR K = 1 TO LABELTOTAL 'PLACE TEXT ITEMS

340 LOCATE ROW(K), COLUMN(K): PRINT LABEL*(K);
350 NEXT

360 RETURN

370 'ttttttttttttttt ESTABLISH WINDOW ttttttttttttttttttt

380 LOCATE 1,1: INPUT "TOP LEFT CORNER OF WINDOW"; XWINDOW,YWINDOW
390 LOCATE 1,1: PRINT STRING*(80," ");
400 LOCATE 1,1: INPUT "WIDTH AND HEIGHT OF WINDOW";WINDOWWIDTH,WINDOWHEIGHT
410 LOCATE 1,1: PRINT STRING*(80,32);
420 LEFT = XWINDOW

430 RIGHT == XWINDOW + WINDOWWIDTH

440 TOP = YWINDOW

450 BOTTOM = YWINDOW + WINDOWHEIGHT

460 IF LEFT < RIGHT AND LEFT >= O AND RIGHT <= 319 AND TOP < BOTTOM AND

TOP >= O AND BOTTOM <= 199 THEN 500

470 LOCATE 1,1: PRINT "WINDOW OFF SCREEN. TRY AGAIN"
480 LOCATE 1,1: PRINT STRING*(80,32);
490 GOTO 380

500 LINE (LEFT,TOP) - (RIGHT,BOTTOM),,B
510 LOCATE 1,1: INPUT "TYPE G TO GO ON, C TO CHANGE WINDOW"; M*
520 IF M* = "G" THEN 570

530 'ERASE CURRENT POSITION

540 LOCATE 1,1: PRINT STRING*(80,32);
550 LINE (LEFT,TOP) - (RIGHT,BOTTOM),O,B
560 GOTO 370

570 RETURN

590 DATA 7

600 'OUTLINE

610 DATA 12,195,127,210,130,232,105,232,100,213,90,200,75,165,77

204 DISPLAY MANIPULATIONS PART III

Program 9-3 (cont.)

620 DATA 145,90,85,95,70,70,60,70,60,97
630 DATA 3,69,106,85,120,152,125
640 'WINGS

650 DATA 6,160,110,138,168,145,175,170,175,178,168,200,115
660 DATA 6,203,80,198,45,195,40,170,40,165,45,167,76
670 'TAIL

680 DATA 3,73,75,78,75,80,85
690 DATA 4,65,90,53,110,65,110,75,100
700 'PRGPELLOR

710 DATA 7,230,103,235,103,230,65,240,65,230,140,240,140,235,103
720 'TEXT ITEMS

730 DATA 4

740 DATA FUSELAGE,14,12
750 DATA EMPENNAGE,8,2
760 DATA WING,20,20
770 DATA PR0PELLGR,7,28
780 END

TVPE G TO GO ON, C TO CHANGE WINDOW?

PROPELLOR
EMPENNAGE

/ WING''
/

EMPENNAGE

FUS

(a)

(b)

Figure 9-4 Picture displayed (a) before and (b) after clipping by Prog. 9-3, using GET and PUT
statements.

Chapter 9 Windows and Spotlights 205

Window

Figure 9-5 A line with endpoint
positions PI and P2, both outside a
window, will be erased by the clipping
program. A line with endpoints at P3
and P4, both inside the window, will be

saved. The clipping routine will also
save line segments from P7 to P6 and
from PIO to Pll.

area. It will be completely erased if all of the line lies outside the window. If parts
of the line are outside the window, we will clip off the parts outside and save the
segment that falls inside the window. Figure 9-5 illustrates the possible relation
ships between a line and a window. Intersection points with the vertical and
horizontal boundaries of the window are calculated from the window coordinates

and line equations (slope M and Y-intercept B), as shown in Fig. 9-6.
In Prog. 9-4, we begin by testing coordinates against the left edge of the

window. Points with an X coordinate greater than XW (the left side of the
window) are stored in arrays XI and Yl. Intersection points for the lines that
cross the left window boundary are also stored in XI and Yl. Next, the points
stored in XI and Yl are clipped against the top edge of the window. All
intersection points and any points with Y coordinate greater than this boundary
(YW) are stored in arrays X2 and Y2. These remaining points are then clipped
against the right edge. Arrays XI and Yl are reused to store intersections and
points whose X coordinate is less than XW + WW (the right edge). Finally, we

Figure 9-6 Line with slope M and Y-intercept B crossing vertical and horizontal boundaries: (a)
intersection with the vertical boundary is at coordinates (X,M * X + B); (b) intersection with the
horizontal boundary is at coordinates ((Y-B)/M,Y).

(XI, YD

(X, M * X + B)

(X2, Y2)

(XI, YD

B)/M, Y)

(X2, Y2)

(b)

206 DISPLAY MANIPULATIONS PART III

Program 9-4 Point and line clipping (airplane).

10 'PROGRAM 9-4. CLIPPING GUTISDE A WINDOW.

20 'DRAWS A FIGURE FROM DATA POINTS STORED IN ARRAYS X AND Y.

30 'A WINDOW AREA IS SELECTED^ AND THEN ALL LINES OUTSIDE OF
40 'THE WINDOW AREA ARE CLIPPED. CLIPPING OCCURS AGAINST EACH
50 'BOUNDARY IN THE ORDER LEFT, TOP, RIGHT, BOTTOM. DURING
60 'CLIPPING, POINTS STORED IN X AND Y ARE CLIPPED AGAINST THE
70 'LEFT EDGE; POINTS WITHIN THE WINDOW ARE STORED IN XI, Yl.
80 'THESE POINTS ARE THEN CLIPPED AGAINST THE TOP EDGE, WITH
90 'INCLUDED POINTS SAVED IN X2,Y2. POINTS IN X2,Y2 ARE THEN
100 'CLIPPED AGAINST THE RIGHT EDGE, AND XI,Yl ARE RE-USED TO
110 'STORE POINTS STILL WITHIN THE WINDOW. THESE POINTS ARE

120 'FINALLY CLIPPED AGAINST THE BOTTOM EDGE, WITH INSIDE
130 'POINTS STORED IN X2,Y2. THE SCREEN IS CLEARED AND THE
140 'WINDOW AND THE PICTURE PART WITHIN THE WINDOW ARE DRAWN.

160 DIM X(8,20),Y(8,20),X1(8,20),Y1(8,20),X2(8,20),Y2<8,20)
170 SCREEN 1: COLOR 1,1: CLS
180 GOSUB 240 'READ PICTURE POINTS

190 GOSUB 330 'DRAW PICTURE

200 GOSUB 420 'ESTABLISH WINDOW

210 GOSUB 630 'CLIP

220 GOSUB 2010 'DRAW CLIPPED POINTS

230 GOTO 2240

240 'tttttttttttttt READ PICTURE PARTS tttttttttttttttttt

250 READ TOTAL 'TOTAL IS NUMBER OF PICTURE PARTS

260 FOR PART = 1 TO TOTAL

270 READ POINTCOUNTtPART) 'NUMBER OF ELEMENTS IN PART P
280 FOR VERTEX = 1 TO POINTCOUNT(PART)

290 READ X(PART,VERTEX), Y(PART,VERTEX)
300 NEXT

310 NEXT

320 RETURN

330 'ttttttttttttttttt DRAW ROUTINE tttttttttttttttttttt*

340 FOR PART = 1 TO TOTAL

350 IF POINTCOUNT(PART) = 1 THEN PSET (X(PART,1),Y(PART,1)): GOTO 400
360 PSET (X (PART, 1),Y (PART, D)
370 FOR VERTEX = 2 TO POINTCOUNT(PART)

380 LINE - (X(PART,VERTEX),Y(PART,VERTEX))
390 NEXT

400 NEXT

410 RETURN

420 'ttttttttttttttt ESTABLISH WINDOW ttttttttttttttttttt

430 LOCATE 1,1: INPUT "TOP LEFT CORNER OF WINDOW"; XWINDOW,YWINDOW
440 LOCATE 1,1: PRINT STRINGS(80," ");
450 LOCATE 1,1: INPUT "WIDTH AND HEIGHT OF WINDOW";WINDOWWIDTH,WINDOWHEI6HT
460 LOCATE 1,1: PRINT STRINGS(80,32);
470 LEFT = XWINDOW

480 RIGHT = XWINDOW + WINDOWWIDTH

490 TOP = YWINDOW

500 BOTTOM = YWINDOW + WINDOWHEIGHT

510 IF LEFT < RIGHT AND LEFT >= O AND RIGHT <= 319 AND TOP < BOTTOM AND
TOP >= O AND BOTTOM <= 199 THEN 550

520 LOCATE 1,1: PRINT "WINDOW OFF SCREEN. TRY AGAIN"
530 LOCATE 1,1: PRINT STRINGS(80,32);
540 GOTO 430

550 LINE (LEFT,TOP) - (RIGHT,BOTTOM),,B
560 LOCATE 1,1: INPUT "TYPE G TO GO ON, C TO CHANGE WINDOW"; M*
570 IF m = "G" THEN 620

580 'ERASE CURRENT POSITION

590 LOCATE 1,1: PRINT STRINGS(SO,32);
600 LINE (LEFT,TOP) - (RIGHT,BOTTOM),O,B

Chapter 9 Windows and Spotlights 207

Program 9-4 (cont.)

610 GOTO 420

620 RETURN

630 '########################### CLIPPING ROUTINE ############################
640 'CLIP POINTS IN X AND Y AGAINST LEFT EDGE. STORE IN XI AND Yl.
650 PARTSIN = 1

660 FOR PART = 1 TO TOTAL

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

860

870 NEXT

880 TOTALIN

890 GOTO 970

900

910 VERTIN

VERTI

'FIRST PART OF LINE IS IN

N = O

FOR VERT = 1 TO POINTCOUNT(PART) - 1
IF X(PART,VERT) < LEFT THEN 770
VERTIN = VERTIN + 1
XI(PARTSIN,VERTIN) = X(PART,VERT)
Yl(PARTSIN,VERTIN) = Y(PART,VERT)

'WHAT ABOUT SECOND POINT?

IF X(PART,VERT+1) < LEFT THEN GOSUB 900 'FIND INTERSECTION
GOTO 790 'ELSE IT'S IN, SO JUST CONTINUE

< LEFT THEN 840

INTERSECTION

'DO FINAL POINT

'FIRST POINT IS OUT. WHAT ABOUT SECOND POINT?
IF X(PART,VERT+1) >= LEFT THEN GOSUB 900 'FIND

NEXT

IF X(PART,POINTCOUNT(PART))
VERTIN = VERTIN + 1
XI(PARTSIN,VERTIN) = X(PART,POINTCOUNT(PART))
Yl(PARTSIN,VERTIN) = Y(PART,POINTCOUNT(PART))
IF VERTIN = O THEN 870 'NO ELEMENTS IN WINDOW
POINTCOUNTIN(PARTSIN) = VERTIN 'ELSE, SAVE COUNT OF IN POINTS
PARTSIN = PARTSIN +1 'GO ON TO NEXT PART

PARTSIN 'TOTALIN IS NUMBER OF PARTS WITH POINTS INSIDE
'GO ON TO NEXT EDGE
INTERSECTION ROUTINEFIND

_ _ VERTIN +1

920 SLOPE = (Y(PART,VERT+1) - Y(PART,VERT)) / (X(PART,VERT+1) - X(PART,VERT))
930 Yl(PARTSIN,VERTIN) = SLOPE * (LEFT - X(PART,VERT)) + Y(PART,VERT)
940 XI(PARTSIN,VERTIN) = LEFT
950 RETURN

'CLIP POINTS IN XI, Yl AGAINST TOP. STORE INSIDE POINTS IN X2, Y2
960

970

980 PARTSIN = 1

990 FOR PART = 1 TO TOTALIN
VERTIN = O

FOR VERT

GOTO 1120

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200 NEXT

1210 TOTALIN = PARTSIN

1 T

'FIRST

O POINTCOUNTIN(PART) - 1

IF Yl(PART,VERT) < TOP THEN 1100
VERTIN = VERTIN + 1
Y2(PARTSIN,VERTIN) = Yl(PART,VERT)
X2(PARTSIN,VERTIN) = XI(PART,VERT)

'WHAT ABOUT SECOND POINT?
IF Yl(PART,VERT+1) < TOP THEN GOSUB

FIRST PART OF LINE IS IN

1230 'FIND INTERSECTION

ELSE IT'S IN SO JUST CONTINUE

POINT IS OUT. WHAT ABOUT SECOND POINT?
IF Yl(PART,VERT+1) >= TOP THEN GOSUB 1230 'FIND INTERSECTION

IF Yl (PART, POINTCOUNT IN (PART)) < TOP THEN 1170 'DO FINAL POIIM
VERTIN = VERTIN + 1

Y2(PARTSIN,VERTIN) = Yl(PART,POINTCOUNTIN(PART))
X2(PARTSIN,VERTIN) = XI(PART,POINTCOUNTIN(PART))
IF VERTIN = O THEN 1200 'NO ELEMENTS IN WINDOW
POINTCOUNTIN(PARTSIN) = VERTIN 'ELSE SAVE COUNT OF IN POINTS
PARTSIN = PARTSIN +1 'GO ON TO THE NEXT PART

'TOTALIN IS « OF PARTS WITH POINTS INSIDE

208 DISPLAY MANIPULATIONS PART III

Program 9-4 (cont.)

1220 GOTO 1330 'GO ON TO NEXT EDGE

1230 ' , pii^D intersection ROUTINE

1240 VERTIN = VERTIN + 1

1250 IF XI(PART,VERT+1) <> XI(PART,VERT) THEN 1280
1260 X2<PARTSIN,VERTIN) = XI(PART,VERT) 'VERTICAL LINE
1270 GOTO 1300

1280 SLOPE = (Y1(PART,VERT+1)-Y1(PART,VERT)) / (XI(PART,VERT+1)-XI(PART,VERT))
1290 X2(PARTSIN,VERTIN) = (TOP - Y1(PART,VERT)) / SLOPE + XI(PART,VERT)
1300 Y2(PARTSIN,VERTIN) = TOP
1310 RETURN

1320 '

1330 'CLIP POINTS IN X2, Y2 AGAINST RIGHT. STORE INSIDE POINTS IN XI, Yl.
1340 PARTSIN = 1

1350 FOR PART = 1 TO TOTALIN

1360 VERTIN = O

1370 FOR VERT = 1 TO POINTCOUNTIN(PART) - 1

1380 IF X2(PART,VERT) > RIGHT THEN 1460
1390 VERTIN = VERTIN + 1 'FIRST POINT IS IN
1400 XI(PARTSIN,VERTIN) = X2(PART,VERT)
1410 Yl(PARTSIN,VERTIN) = Y2(PART,VERT)
1420 'WHAT ABOUT SECOND POINT

1430 IF X2(PART,VERT+1) > RIGHT THEN GOSUB 1590 'FIND INTERSECTION
1440 GOTO 1480 'ELSE IT'S IN SO JUST CONTINUE
1450

1460 'FIRST POINT IS OUT. WHAT ABOUT SECOND POINT?
1470 IF X2(PART,VERT+1)< RIGHT THEN GOSUB 1590 'FIND INTERSECTION
1480 NEXT

1490 IF X2(PART,POINTCOUNTIN(PART)) > RIGHT THEN 1530 'DO FINAL POINT
1500 VERTIN = VERTIN + 1

1510 XI(PARTSIN,VERTIN) = X2(PART,POINTCOUNTIN(PART))
1520 Yl(PARTSIN,VERTIN) = Y2(PART,POINTCOUNTIN(PART))
1530 IF VERTIN = 0 THEN 1560 'NO ELEMENTS IN WINDOW
1540 POINTCOUNTIN(PARTSIN) = VERTIN 'ELSE SAVE COUNT OF IN POINTS
1550 PARTSIN = PARTSIN +1 'GO ON TO NEXT PART
1560 NEXT

1570 TOTALIN = PARTSIN - 1 'TOTALIN IS NUMBER OF PARTS WITH POINTS INSIDE
1580 GOTO 1660 'GO ON TO NEXT EDGE
1590 ^ FIND INTERSECTION ROUTINE
1600 VERTIN = VERTIN + 1

1610 SLOPE = (Y2(PART,VERT+1)-Y2(PART,VERT)) / (X2(PART,VERT+1)-X2(PART,VERT))
1620 Yl(PARTSIN,VERTIN) = SLOPE * (RIGHT - X2(PART,VERT)) + Y2(PART,VERT)
1630 XI(PARTSIN,VERTIN) = RIGHT
1640 RETURN

1650 '

1660 'CLIP POINTS IN XI, Yl AGAINST BOTTOM. STORE INSIDE POINTS IN X2, Y2
1670 PARTSIN = 1

1680 FOR PART = 1 TO TOTALIN
1690 VERTIN = O

1700 FOR VERT = 1 TO POINTCOUNTIN(PART) - 1
1710 IF Yl(PART,VERT) > BOTTOM THEN 1790
1720 VERTIN = VERTIN + 1 'FIRST POINT IS IN
1730 Y2(PARTSIN,VERTIN) = Yl(PART,VERT)
1740 X2(PARTSIN,VERTIN) = XI(PART,VERT)
1750 'WHAT ABOUT SECOND POINT?

1760 IF Yl(PART,VERT+1)>BOTTOM THEN GOSUB 1920 'FIND INTERSECTION
1770 GOTO 1810 'ELSE IT'S IN SO JUST CONTINUE
1780

1790 'FIRST POINT IS OUT. WHAT ABOUT SECOND POINT?
1800 IF Yl(PART,VERT+1)<=BOTTOM THEN GOSUB 1920 'FIND INTERSECTION
1810 NEXT

1820 IF Yl(PART,POINTCOUNTIN(PART)) > BOTTOM THEN 1860 'DO FINAL POINT

Chapter 9 Windows and Spotlights 209

Program 9-4 (cont.)

1830 VERTIN = VERTIN + 1

1840 Y2(PARTSIN,VERTIN) = Y1(PART,POINTCOUNTIN(PART))
1850 X2(PARTSIN,VERTIN) = XI(PART,POINTCOUNTIN(PART))
I860 IF VERTIN = O THEN 1890 'NO ELEMENTS IN WINDOW

1870 POINTCOUNTIN(PARTSIN) = VERTIN 'ELSE SAVE COUNT OF IN POINTS

1880 PARTSIN = PARTSIN +1 'GO ON TO NEXT PART

1890 NEXT

1900 TOTALIN = PARTSIN - 1 'TOTALIN IS # OF PARTS STILL INSIDE

1910 RETURN 'END OF CLIPPING ROUTINE

1920 , FIND INTERSECTION ROUTINE

1930 VERTIN = VERTIN + 1

1940 IF XI(PART,VERT+1) <> XI(PART,VERT) THEN 1970
1950 X2(PARTSIN,VERTIN) = XI(PART,VERT) 'VERTICAL LINE
1960 GOTO 1990

1970 SLOPE = (Y1(PART,VERT+1)-Y1(PART,VERT)) / (XI(PART,VERT+1)~X1(PART,VERT))
1980 X2(PARTSIN,VERTIN) = (BOTTOM - Y1(PART,VERT)) / SLOPE + XI(PART,VERT)
1990 Y2(PARTSIN,VERTIN) = BOTTOM
2000 RETURN

2010 '#################### DRAW CLIPPED POINTS ###«##########«####

2020 CLS

2030 LINE (LEFT,TOP) - (RIGHT,BOTTOM),,B
2040 FOR PART = 1 TO TOTALIN

2050 FOR VERT = 1 TO POINTCOUNTIN(PART) - 1

2060 LINE (X2(PART,VERT),Y2(PART,VERT)) -
(X2(PART,VERT+1),Y2(PART,VERT+1))

2070 NEXT

2080 NEXT

2090 RETURN

2100 '###«######«########*######«###*################«##########»####
2110 DATA 7

2120 'OUTLINE

2130 DATA 12,195,127,210,130,232,105,232,100,213,90,200,75,165,77
2140 DATA 145,90,85,95,70,70,60,70,60,97
2150 DATA 3,69,106,85,120,152,125
2160 'WINGS

2170 DATA 6,160,110,138,168,145,175,170,175,178,168,200,115
2180 DATA 6,203,80,198,45,195,40,170,40,165,45,167,76
2190 'TAIL

2200 DATA 3,73,75,78,75,80,85
2210 DATA 4,65,90,53,110,65,110,75,100
2220 'PROPELLOR

2230 DATA 7,230,103,235,103,230,65,240,65,230,140,240,140,235,103
2240 IF INKEY* = THEN 2240

2250 END

clip the points now held in arrays XI and Y1 against the bottom border of the
window (YW + WH). Arrays X2 and Y2 are used to store the final coordinates for
all points and lines to be redrawn inside the window. Figure 9-7 shows a picture
before and after clipping by Prog. 9-4.

Now let us expand Prog. 9-4 to clip any labels that might be in the display.
We could treat labels like lines and save any part inside the window, but we would
need to treat the labels in terms of individual characters or even individual pixels.
To simplify our program we will save a character string label only if it is entirely
within the window boundaries. In Fig. 9-8, the string "LABEL 3" is the only text
information we would save for the window indicated. Our test for saving a string

210 DISPLAY MANIPULATIONS PART I

TVFE G TO GO ON, C TO CHANGE NINDOU? ■

(a)

(b)

Figure 9-7 Picture displayed (a) before and (b) after clipping by Prog. 9-4.

will be to determine whether the string starts after the left window boundary and
ends before the right window boundary. Also, the string must be on a print line
that lies within the top and bottom window limits.

Our program will use the array TEXTS to store the text character strings.

Figure 9-8 Clipping any text strings not completely inside the window will erase the strings
"LABEL 1", "LABEL 2", and "LABEL 4".

LABEL 1

LABEL 2

LABEL 3

-LABEL 4-

Chapter 9 Windows and Spotlights 211

Arrays XLEFT and XRIGHT will be used to store the X locations for the
beginning and ending positions of each string. Arrays YTOP and YBOTTOM will
be used to store Y coordinates for the top and bottom of the strings. Values for
these coordinate arrays are obtained from the dimensions of the character pixel
grid.

With the Color/Graphics option, our PC uses an 8 by 8 pixel area to display
characters. Each character is actually drawn on the screen with a 6 by 7 pixel grid
within this area. That leaves a two-pixel horizontal separation between characters
and a one-pixel separation between the print lines (Fig. 9-9). Characters printed
across a line begin at pixel locations 0, 8, 16, 24, ... and end at pixel locations 5,
13, 21, and so forth. The tops of characters printed down the screen are at pixel
locations 0, 8, 16, and so forth. To determine the beginning X coordinate for a
character, we subtract 1 from the character print position and multiply by 8. To
get the ending position, we add 5 to the beginning position. For a character printed
at a position specified by LOCATE 6,21, the beginning X coordinate is 160 and the
ending X coordinate is 165. To determine the Y coordinate for the top of any
character, we subtract 1 from the print line and multiply by 8. Adding 6 to the top
value gives the Y coordinate for the bottom of the character. For the character
position specified as LOCATE 6,21, the Y coordinate of the top is 40 and the Y
coordinate of the bottom is 46. These text clipping modifications to Prog. 9-4 are
included in Prog. 9-5. Output of this program is given in Fig. 9-10.

Improvements could be made in the line-clipping routines to speed up the
calculations, especially if very many lines are to be clipped. For instance, we
could process each point in the picture once, instead of line by line. A code could
be set up for each point, which tells us the position of the point relative to the

Figure 9-9 Coordinate positions for characters with an 8 by 8 pixel grid. Horizontally, characters
start at pixel locations 0, 8, 16, . . . and end at pixel locations 5, 13, 21, and so on across the screen.
Tops of the print lines are at pixel positions 0,8,16,... , and bottoms of the print lines are at pixel po
sitions 6, 14, 22, and so on down the screen.

^ 1316 21

14

16

22
BBB

X axis

Y axis

212 DISPLAY MANIPULATIONS PART III

Program 9-5 Point, line, and text clipping (airplane).

10 'PROGRAM 9-5. CLIPPING GUTISDE A WINDOW WITH TEXT. (ADD TO PROG. 9-4)

165 DIM TEXT4i(10), TLEFT(IO), TRIGHT(IO), TTOP(IO), TBOTTOPOM<10), ROW(10),
COLUMN(10)

215 GOSUB 2001 'CLIP TEXT

311 'READ IN TEXT ITEMS, ROW, AND COLUMN PLACEMENT
312 READ TEXTOTAL

313 FOR K = 1 TO TEXTOTAL

314 READ TEXT«(K),ROW(K),COLUMN(K)
315 TLEFT(K) = (COLUMN(K) - 1) * 8 'CONVERT TO PIXEL POSITIONS
316 TRIGHT(K) = TLEFT(K) - 1 + LEN(TEXT*(K)) * 8
317 TTOP(K) = (ROW(K) - 1) * 8
318 TBOTTOPOM(K) = TTOP(K) + 7
319 NEXT

401 'PLACE TEXT ITEMS

402 FOR K = 1 TO TEXTOTAL

403 LOCATE ROW(K), COLUMN(K): PRINT TEXT*(K);
404 NEXT

2001 COUNTIN = O 'COUNT IS TEXT ITEMS THAT ARE IN WINDOW
2002 FOR K = 1 TO TEXTOTAL

2003 IF TLEFT(K) < LEFT OR TRIGHT(K) > RIGHT OR TTOP(K) < TOP OR
TBOTTOPOM(K) > BOTTOM THEN 2008

2004 COUNTIN = COUNTIN + 1

2005 TEXT*(COUNTIN) = TEXT*(K)

2006 ROW(COUNTIN) = ROW(K)
2007 COLUMN(COUNTIN) = COLUMN(K)

2008 NEXT

2009 RETURN

2231 'TEXT ITEMS

2232 DATA 4

2233 DATA FUSELAGE,14,12
2234 DATA EMPENNAGE,8,2
2235 DATA WING,20,20
2236 DATA PROPELLOR,6,28

EMPENNAGE

A
Figure 9-10 Picture with text
displayed after clipping by Prog 9-5.

Chapter 9 Windows and Spotlights 213

window boundary. That is, the code could tell us whether a point is above, below,
left, right, or inside the window. This code can then be used to test the location of
lines relative to the window. A line with both endpoints to the left of a window, for
example, is completely outside the window.

After a picture is clipped, we could transform the window area in some way.
We might display the window in another location, or we might scale or rotate the
windowed part of the picture. We could also keep the original display and
superimpose the window—perhaps enlarged—in one corner of the screen. The
next section considers a method for transforming windows.

9-3 VIEWPORTS

Having established a window in a display, we can translate and scale the window
to any size by moving it to a specified rectangular area on the screen. This area is
called the viewing area, or viewport. We can establish both a window and a
viewport on the screen by giving the coordinates for the top left corners and the
size of each rectangular area, as shown in Fig. 9-11.

The window defines "what" we want to see in the display; the viewport
establishes "where" we would like to see it on the screen. We can make the

viewport larger or smaller than the window, or we can make it the same size. The
viewport can be made to fill the screen or it can be set as a small insert in the
display. We can make the window and viewport in separate screen areas, or we
could make them overlap. If a viewport is used to enlarge an area of a picture, this
enlargement can magnify details that are too small to be visible in the original
display.

A program to transform a window area to a viewport area must transform
the coordinates of each point in the window, such as (X,Y) in Fig. 9-11, to the

X axis

• (XN, YN)

•(X, Y)

(XW, YW)

WH

WW

(XV, YV)

VH

VW

Y axis

Figure 9-11 Window and viewport
specifications. Upper left comer
of the window is at position (XW,
YW); upper left comer of the viewport
is at position (XV,YV). Size of each
area is specified by width and height
(WW, WH and VW, VH). A point with
coordinates (X,Y) in the window will be

transformed to a new position (XN,YN)
in the viewport.

214 DISPLAY MANIPULATIONS PART III

corresponding new point (XN,YN) in the viewport. This transformation is
accomplished in much the same way that we set up graphs on the screen within
specified areas in Chapter 4. New coordinates in the viewport are related to the
original coordinates of the point in the window by the relations

XN = (X - XW) Hc (VW/WW) + XV
YN = (Y - YW) * (VH/WH) + YV

The factors (VWAVW) and (VH/WH) in the equations of (9-1) represent the
scaling transformation. We have a diflferent size for the area in the viewport if
these factors are not equal to 1. A value greater than 1 enlarges the window; a
value smaller than 1 reduces the size. If the ratio VW/VH is not equal to the ratio
WW/WH, we will distort the window area. This is equivalent to a diflferent scaling
for the X and Y directions, as discussed in Chapter 7. Terms XV and YV
represent the translation. If these coordinates are different from XW and YW, the
area has been moved.

A mapping from a window area to a specified viewport is accomplished by
Prog. 9-6, an extension of Prog. 9-4. Figure 9-12 illustrates the output from this

Program 9-6 Displaying viewports (airplane).

2240 '##### PROGRAM 9-6. DISPLAY WINDOW AREA IN VIEWPCMT (add to Prog, 9-4)
2250 'ESTABLISHES A VIEWPORT ON THE SCREEN. TAKES Tt« PICTURE
2260 'PARTS FCHJND TO BE INSIDE THE WINDOW AND MOVES THEM TO
2270 'THE CHOSEN VIEWPORT.
2280 '

2290 60SUB 2330 'ESTABLISH VIEWPORT
2300 60SUB 2460 'CONVERT WINDOW AREA TO VIEWPORT AREA
2310 60SUB 2010 'DRAW
2320 GOTO 2540

2330 '################### ESTABLISH VIEWPORT
2340 LOCATE 1,1: IHaPUT "TOP LEFT CORNER OF VIEWPORT"; XVIEW.YVIEW
2350 LOCATE 1,1: PRINT STRING*(80,32);
2360 LOCATE 1,1: INPUT "WIDTH AND HEIGHT OF VIEWPORT"; VIEWWIDTH,VIEWHEIGHT
2370 LOCATE 1,1: PRINT STRING*(SO,32);
2380 LEFT = XVIEW
2390 RIGHT = XVIEW + VIEIiWIDTH
2400 TOP = YVIEW

2410 BOTTOM = YVIEW + VIEWHEIGHT
2420 IF LEFT < RIGHT AND LEFT >= O AND RIGHT <= 319 AND TOP < BOTTOM AND

TCM» >= O AND BOTTOM <= 199 THEN 2450
2430 LOCATE 1,1: PRINT "VIEWPORT OFF SCREEN. TRY AGAIN"
2440 LOCATE 1,1: PRINT STRING*(SO,32);: GOTO 2340
2450 RETURN

2460 'tt##*****#*** CONVERT WINDOW AREA TO VIEWPORT AREA «(HHHH»«tttttt««*
2470 FOR PART = 1 TO TOTALIN

2480 FOR VERT = 1 TO POINTCOUNTIN(PART)
2490 X2(PART,VERT) = (X2(PART,VERT) - XWINDOW) «

(VIEWWIDTH / WINDOWWIDTH) + XVIEW
2500 Y2(PART,VERT) = (Y2(PART,VERT) - YWINDOW) «

(VIEWHEIGHT / WINDOWHEIGHT) + YVIEW
2510 NEXT

2520 NEXT

2530 RETURN

2540 END

TYPE Q TO GO ON, C TO CHANGE NINDOH?

(b)

Figure 9-12 A window area of a picture (a) is magnified into a viewport area (b) by Prog. 9-6.

215

216 DISPLAY MANIPULATIONS PART III

program. In this example, we demonstrate how viewports can be used to magnify
details of a picture. The star on the airplane fuselage, seen as a cluster of points
when displayed in relative scale, is clearly identified in the viewport display. Such
viewport magnifications can be useful with maps or complex diagrams to show
levels of detail.

For some applications, we might want to display both the original scene and
the viewport together on the screen. We could also window more than one area,
producing more than one viewport. As a final transformation on a window, a
viewport could be rotated to present the area in a different orientation.

PROGRAMMING PROJECTS

9-1. Revise Prog. 9-1 (or 9-2) to create spotlights with either light pen or joystick input.
9-2. Write a spotlight program that will accent lines within the spotlight by drawing them

in a brighter (or different) color, using either a rectangular or circular spotlight. As an
additional feature, change the background color of the display area within the
spotlight.

9-3. Revise Prog. 9-1 to spotlight areas of a display using an ellipse of any specified
dimensions.

9-4. Modify Project 9-3 to erase the elliptical spotlight area instead of spotlighting.
9-5. Write a general erasing program that will erase character strings, straight lines,

rectangles, or circles. The type of area to be erased will be specified by input along
with the area or line location and dimensions.

9-6. Modify Prog. 9-4 so that each point of a picture is compared to the window
boundary only once. The position of each point relative to the window can be
specified in an array that states whether the point is "IN" or "OUT," "ABOVE" or
"BELOW," and "LEFT" or "RIGHT." This information could be coded in a
character string of length 3 (for example, "OBR" would state that a point is outside,
below and to the right). After processing all points to set the position string for each
pointv the lines in the picture can be clipped by examining the corresponding position
string for the endpoints. A line is saved if both points are "IN." It is eliminated if
both points are "LEFT" or both points are "ABOVE," and so forth. Intersection
points are then found for the overlapping lines. The position string can be reduced to
two characters by setting the first character in the string to be "X" (inside), "A"
(above), or "B" (below), and by setting the second character to "L" (left) or "R"
(right).

9-7. Modify Prog. 9-5 to clip character strings against a rectangular boundary by erasing
only that part of the string within the window.

9-8. Write a clipping program that will erase all parts of a display outside of a specified
circular area.

9-9. Write a clipping program that uses a viewport to enlarge some area of a picture, then

Chapter 9 Windows and Spotlights 217

superimposes the enlarged portion onto the original picture in one corner of the
screen. Instead of erasing the entire screen, erase only the area that is to contain the
viewport.

9-10. Write a program that will display any number of viewports of picture areas on the
screen.

9-11. Write a program that will rotate a viewport to any specified orientation.

Port IV

THREE
DIMENSIONS

To display solid objects, we need to use a third dimension. We now consider
techniques for displaying and manipulating three-dimensional objects.

219

Chapter 10

Displaying
Solid Objects

Real objects are perceived in three dimensions. They have depth as well as
breadth and height. When we represent objects on a flat (two-dimensional) screen,
we can either ignore the depth or project the objects onto the screen in such a way
that depth is represented. By including depth, we can add greatly to the realism of
a picture or to the information content of a graph. We now consider some of the
ways to include this third dimension in our displays.

10-1 GRAPH PAPER LAYOUTS

A three-dimensional object can be projected onto a screen by first producing a
graph paper layout, as in Fig. 10-1. We then determine X and Y coordinates for
line endpoints from the layout. Usually, we want to plot only the visible lines. As
drawn in Fig. 10-1, it is not clear which three sides are presented to us. We could
be viewing the box from above and to the right or from below and to the left. But
we can identify the hidden lines in the layout for the view we want to see and only
display the lines that should be visible. If we decide to view the box from above,
we draw it without the lines connecting points 3 and 7, points 6 and 7, and points 7
and 8. This manual method can be used to display three-dimensional scenes: we
draw all sides of an object or group of objects on graph paper, erase lines that are
hidden for the view we want to display, and plot the remaining lines on the screen.

For some situations we would like to use a more general method for
obtaining a three-dimensional view that would let the graphics display program
distinguish the "front" and "back" of objects. A rotating figure that continuously
brings diflFerent sides into view is constantly changing front faces into back faces.
Various techniques can be used in display programs to distinguish the front from

221

222 THREE DIMENSIONS PART IV

8 5

V

7 6

4
>

1

/
r

r

3 2

Figure 10-1 Graph paper layout for a three-dimensional box.

the back of three-dimensional objects, in order to give us depth information. One
method is to erase all hidden parts of objects, as we did in the graph paper layouts.
We can also project objects on the screen so that a perspective view provides
depth information. A perspective view makes closer parts larger than the objects
and surfaces farther away from us. Another technique is to highlight nearer lines,
so that front parts of objects are brighter than the back lines. More elaborate
shading schemes can be used that produce gradual light to dark patterns across
surfaces. Each of these methods requires that the depth of points in the picture be
specified in the display program.

10-2 THREE-DIMENSIONAL COORDINATES

Figure 10-2 illustrates a coordinate representation for specifying the depth, or Z
coordinate, in addition to specifying the X and Y coordinates. The upper left
corner of the screen is chosen to be the coordinate origin for the three axes. As
before, positive X values are measured from left to right across the screen, and
positive Y values are measured from top to bottom. Coordinate Z values are
measured from zero at the screen face, with positive values in back of the screen
and negative values in front of the screen. Each point of a picture is then assigned
three coordinate values, (X,Y,Z). Position on the screen is determined by the X
and Y values, and Z denotes the depth of the point relative to the display screen.
Points farther away have larger Z values; nearer points have smaller Z values. We
use the Z coordinates to obtain different views of objects, to identify hidden lines
or surfaces of objects, and to obtain perspective views.

Chapter 10 Displaying Soiid Objects 223

Z axis

(X, Y, Z)

X axis

Y axis

Figure 10-2 Three-dimensional

coordinate system for representing
positions in terms of the three

values (X,Y,Z). Positive Z values indicate
distances in back of the display screen.

Diflferent views of objects can be displayed by substituting the Z coordinate
of each point for either the X or Y values when we plot screen positions. Thus,
plotting (X,Z) for all points gives a top or bottom view and plotting (Z,Y) gives
side views, as shown in Fig. 10-3. In the first case, we assume that Y values are
positive in back of the screen. Otherwise, we have a bottom view. In the second

Figure 10-3 Orthographic projections. A three-dimensional object (a) can be viewed from the top or
bottom by plotting (X,Z) values on the screen (b). Side views (c) are obtained by plotting (Z,Y) values.

224 THREE DIMENSIONS PART IV

case, we obtain a left-side view if X is assumed positive in back of the screen, and
we obtain a right-side view if X is assumed positive in front of the screen. Such
views are called orthographic projections. To obtain these top, bottom, or side
views of an object, we input the (X,Y,Z) coordinates for each vertex and plot the
appropriate coordinate pair, eliminating the "back" faces.

10-^ ERASING HIDDEN LINES AND SURFACES

There are two general approaches to erasing hidden parts of objects. One
approach is to think of an object in terms of its various surfaces. We can then
identify and eliminate those surfaces that are in back of, or hidden by, other
surfaces. The second method treats objects in terms of component lines,
identifying and erasing individual hidden lines instead of surfaces.

HIDDEN SURFACES

A technique for eliminating hidden surfaces in a display is to paint each surface
onto the screen from back to front. Surfaces with larger Z values are painted first,
so that closer surfaces obscure back surfaces if they overlap. Each surface can be
painted in a different color, or they can all be painted with the background color.

Program 10-1 illustrates this method of erasing hidden lines. A maximum of
20 polygon faces may be input, together with a color code from 0 to 3 and an
interior point. Each plane face is assumed to be parallel to the display screen, so
that only one Z value is specified for each plane. We draw each polygon outline
first in color 3. Then the polygon interior is filled with the specified color up to the
boundary color 3. Finally, the figure outline is redrawn in the interior color.
Overlapping planes will then color over the faces farther away (Fig. 10-4). Color 3
can be used as the filler color in this program only for those shapes that will be
entirely visible; that is, no other shape is to be placed over this one. If we were to
try to place a figure in front of one filled with color 3, the PAINT command could
not distinguish between the interior of the filled-in shape and the boundary of the
new shape to be displayed.

Without advanced BASIC, we could fill the interiors of the polygons with
individual horizontal lines. The endpoints of each of these interior "erase" lines
would be determined from the line equations that specify the boundary of each
surface. We could also specify the Z coordinate for each vertex point of a surface,
rather than for the entire surface. This allows a plane to be tilted, with parts of the
plane farther from us than other parts, as are the sides of solid objects. Sorting of
the surfaces would then be accomplished according to the smallest Z value for
each surface. For an arbitrary pattern of tilted surfaces, we might want to set up
the planes so that they do not run into each other if their range of Z values overlap.
Otherwise two surfaces could alternately obscure one another, as shown in Fig.
10-5. We could allow for this possibility by finding the intersection line and
dividing one or both planes into two parts, or we could use other geometric

Chapter 10 Displaying Soiid Objects 225

Program 10-1 Erasing hidden lines by painting surfaces on the screen from back to front.

10 'PROGRAM 10-1. ELIMINATING HIDDEN PARTS OF A 3-DIMENSIONAL SCENE
20 'PROGRAM READS SERIES OF DRAW STRINGS FROM DATA STATEMENTS, ALONG
30 'WITH Z VALUES AND COLOR CODES FOR EACH STRING. SHAPES ARE STORED
40 'ON THE BASIS OF THEIR Z VALUES, AND THEN DRAWN IN ORDER FROM
50 'THE BACK OF THE SCENE (BIGGER Z VALUES) TO THE FRONT. DRAWING
60 'OF EACH SHAPE ON TOP OF "BEHIND" SHAPES ERASES THE HIDDEN PARTS.

70 DIM DRAWSTRING*(20), XDRAW(20), YDRAW(20), ZDRAW(20), XINT(20),
YINT(20), DRAWCOLOR(20)

80 SCREEN 1: COLOR 1,0: CLS
90 READ TOTAL 'READ DRAWSTRINGS

100 FOR EACH = 1 TO TOTAL

110 READ DRAWSTRING*(EACH), XDRAW(EACH), YDRAW(EACH), ZDRAW(EACH),
XINT(EACH), YINT(EACH), DRAWCOLOR(EACH)

120 NEXT

130 'SORT THE SHAPES ON Z VALUES

140 FOR PLACE = 1 TO TOTAL - 1

150 BIGGEST = PLACE

160 FOR REST = PLACE + 1 TO TOTAL 'LOOK THROUGH REST OF Z VALUES

170 IF ZDRAW(BIGGEST) < ZDRAW(REST) THEN BIGGEST = REST

180 NEXT

190 SWAP XDRAW(PLACE),XDRAW(BIGGEST) 'PUT VALUES FOR ENTRY WITH
200 SWAP YDRAW(PLACE),YDRAW(BIGGEST) 'BIGGEST Z VALUE IN THIS
210 SWAP ZDRAW(PLACE),ZDRAW(BIGGEST) 'PLACE. PUT VALUES FOR ENTRY
220 SWAP XINT(PLACE),XINT(BIGGEST) 'CURRENTLY IN PLACE IN THE
230 SWAP YINT(PLACE),YINT(BIGGEST) 'ENTRY VACATED BY BIGGEST
240 SWAP DRAWSTRING*(PLACE),DRAWSTRING*(BIGGEST)
250 SWAP DRAWCOLOR(PLACE),DRAWCOLOR(BIGGEST)
260 NEXT

270 FOR EACH = 1 TO TOTAL

280 PSET (XDRAW(EACH),YDRAW(EACH)),3 'GO TO PLACE TO DRAW
290 DRAW "C3;XDRAWSTRING*(EACH);" 'DRAW SHAPE IN BACKGROUND
300 PAINT (XINT(EACH),YINT(EACH)),DRAWCOLOR(EACH),3 'PAINT
310 PSET (XDRAW(EACH),YDRAW(EACH)),DRAWCOLOR(EACH)
320 DRAW "C=DRAWCOLOR(EACH);XDRAWSTRING*(EACH);" 'REDRAW IN RIGHT COLOR
330 NEXT

340 DATA 16

350 DATA "S4L80E25L20E25L15E20L10E15F15L10F20L15F25L20F25",
315,135,50,295,125,1

360 DATA "S3L160;E50;F50;L50;U50;R60;F50",300,145,40,280, 144,2
370 DATA "S3;L46U46F46",252,144,39,220,140,3
380 DATA "S3;L46E46D46",216,144,38,210,135,3
390 DATA "S3L80E25L20E25L15E20L10E15F15L10F20L15F25L20F25",

115,165,30,95,153,1
400 DATA "S1L80E25L20E25L15E20L10E15F15H0F20L15F25L20F25",

40,50,100,30,45,1
410 DATA "S1L80E25L20E25L15E20L10E15F15L10F20L15F25L20F25",

55,50,95,45,45,1
420 DATA "S2L80E25L20E25L15E20L10E15F15L10F20L15F25L20F25",

85,65,80,75,60,1
430 DATA "S3F3G4H3D10F20G3H20G20H3E20L42F20G3H20D20L3U35L5D1L5D1L5D1L5

U5E15R5F15R37F3",65,160,25,55,160,3
440 DATA "S4USH5F5U7D7E5G5",25,144,24,25,142,3
450 DATA "S3H10G5E5H5F5U5D5",25,144,23,25,144,3
460 DATA "S3E10U5D5E5G5R5",25,146,23,25,146,3
470 DATA "S4L5H5U5R2U2R1U2R2U2R1U2R2U2D2R1D2R2D2R2D2R2D2R1D5G5",

160, 188,21, 160, 183, 2
480 DATA "S3L5H5U5R2U2R1U2R2U2R1U2R2U2D2R1D2R2D2R2D2R2D2R1D5G5",

171.182.20.168.180.2
490 DATA "S3L5H5U5R2U2R1U2R2U2R1U2R2U2D2R1D2R2D2R2D2R2D2R1D5G5",

167.187.19.165.185.3
500 DATA "S3G13F3E13D15R5U15F13E3H13L15",158,185,22,158,187,1
510 IF INKEY* = "" THEN 510

520 END

THREE DIMENSIONS PART IV

Figure 10-4 Overlapping polygon planes displayed by Prog. 10-1.

methods to determine which part of each surface was visible. Various curved
surfaces, rather than planes, could be overlapped if we treated the curved surfaces
as plane surfaces. We could blank out the interiors of the curved surfaces, then
draw lines to indicate the curvature (Fig. 10-6).

As an alternative to erasing the entire interior of all surfaces in a picture, we
can employ methods to identify and eliminate only the surfaces that are actually
hidden. For objects with symmetry, we can usually set up methods that decide
visibility between two opposite faces. The box of Fig. 10-1 has three pairs of
opposite faces. We can see only one face from each of these pairs at any one time.
If we see the face with vertices 1, 2, 3, and 4, then we cannot see face 5, 6, 7, 8. A
program to eliminate hidden lines for this box need only display the side from each
pair with the smaller Z value. This is accomplished with Prog. 10-2, which inputs
three-dimensional coordinates for each vertex of a box. All lines for the box are

displayed, then the screen is cleared and the visible sides only are redrawn. If the
box were rotating. Prog. 10-2 would recalculate the visible faces from the new Z
values after each rotation. Similar methods can be used for other symmetrical
objects.

A method for eliminating hidden surfaces that does not depend on object
symmetry is given in Prog. 10-3. A rectangular bounding area is established for
each face of the input object. Each vertex point of each face is tested against all

Chapter 10 Displaying Solid Objects 227

Intersection

line

Figure 10-5 Planes with variable depth may overlap and intersect so that part of each plane is
obscured by the other.

other faces to determine whether that point is within the rectangular boundary of
the face. If the point is within the boundary and has greater depth, the visibility
flag for the face containing that point is set to "OFF." After all faces have been
tested, the object is redrawn with visible faces only. Figure 10-7 shows the two
views of an object output by this program.

Objects with complex geometric shapes may be inaccurately drawn with the
techniques used in Prog. 10-3, since the visibility test is highly simplifled. Each
face of the object is determined to be either completely visible or completely

Figure 10-6 Representation of three-dimensional curved surfaces with lines drawn to indicate
curvature.

228 THREE DIMENSIONS PART IV

Program 10-2 Eliminating hidden lines by displaying only the one visible surface from each pair of
symmetrical faces of an object (box).

10 'PROGRAM 10-2. ERASING HIDDEN LINES BY SYMMETRY.

20 'READS AND STORES THE POINTS OF A 3-DIMENSIONAL BOX.

30 'COMPARES THE Z VALUES FOR EACH PAIR OF SYMMETRIC

40 'SURFACES AND DRAWS ONLY THE NEARER SURFACE.

50 DIM X<8), Y<8), Z(8)
60 SCREEN 1: CLS

70 'tttttttttttttttt READ VERTICES FOR CUBE ttttttttttttttttt*

80 FOR K = 1 TO 8

90 READ X(K), Y(K), Z<K)
100 IF X(K)<0 OR X(K)>319 OR Y(K)<0 OR Y<K)>199 THEN 590

110 NEXT

120 'tttttttttttttttttttt* DRAW ALL FACES ttttttttttttttttttttt

130 FOR K = 1 TO 3

140 LINE (X(K),Y(K)) - <X<K+1),Y(K+1))
150 LINE (X(K),Y(K)) - (X(K+4),Y(K+4))
160 NEXT

170 LINE (X(4),Y<4)) - (X(1),Y(1))
180 LINE (X(4),Y(4)) - (X(8),Y(8))
190 FOR K = 5 TO 7

200 LINE (X(K),Y(K)) - <X(K+1),Y(K+1))
210 NEXT

220 LINE (X(8),Y(8)) - (X(5),Y(5))
230 FOR DELAY = 1 TO 1000: NEXT

240 'tttttttttttttttt DRAW ONLY VISIBLE FACES ttttttttttttttttt

250 CLS

260 IF Z(l) > Z(5) THEN 320

270 FOR K = 1 TO 3 'DRAW FACE CONTAINING POINT 1

280 LINE (X(K),Y(K)) - (X(K+1),Y(K+1))
290 NEXT

300 LINE (X(4),Y(4)) - (X(1),Y(1))
310 GOTO 360

320 FOR K = 5 TO 7 'DRAW FACE CONTAINING POINT 5

330 LINE (X(K),Y(K)) - (X(K+1),Y(K+1))
340 NEXT

350 LINE (X(8),Y(8)) - (X(5),Y(5))
360 IF Z(l) > Z(4) THEN 420

370 LINE (X(1),Y(1)) - (X(2),Y(2)) 'DRAW FACE CONTAINING POINT 1
380 LINE (X(2),Y(2)) - (X(6),Y(6))
390 LINE (X(6),Y(6)) - (X(5),Y(5))
400 LINE (X(5),Y(5)) - (X(1),Y(1))
410 GOTO 460

420 LINE (X(4),Y(4)) - (X(3),Y(3)) 'DRAW FACE CONTAINING POINT 4
430 LINE (X(3),Y(3)) - (X(7),Y(7))
440 LINE (X(7),Y(7)) - (X(8),Y(8))
450 LINE (X(8),Y(8)) - (X(4),Y(4))
460 IF Z(l) > Z(2) THEN 520

470 LINE (X(1),Y(1)) - (X(4),Y(4)) 'DRAW FACE CONTAINING POINT 1
480 LINE (X(4),Y(4)) - (X(8),Y(8))
490 LINE (X(8),Y(8)) - (X(5),Y(5))
500 LINE (X(5),Y(5)) - (X(1),Y(1))
510 GOTO 590

520 LINE (X(2),Y(2)) - (X(3),Y(3)) 'DRAW FACE CONTAINING POINT 2
530 LINE (X(3),Y(3)) - (X(7),Y(7))
540 LINE (X(7),Y(7)) - (X(6),Y(6))
550 LINE (X(6),Y(6)). - (X(2),Y(2))

570 DATA 150,110,160,150,140,110,90,140,100,90,110,150
580 DATA 230,50,60,230,80,10,170,80,0,170,50,50
590 END

Chapter 10 Displaying Solid Objects 229

hidden, so that partially hidden areas cannot be displayed. Also, the bounding
face area used to test for hidden points will become more inaccurate as the face
area differs from a rectangle. A long, thin, diagonal surface will have a large
rectangular boundary which could lead to an erroneous determination of visibility.

Program 10-3 Erasing hidden surfaces by locating hidden vertices.

10 'PROGRAM 10-3. ERASING HIDDEN LINES BY RECTANGULAR BOUNDARIES.
20 'ALL FACES ARE INITIALLY SET TO "ON" AND ARE DRAWN.
30 'SMALLEST Se LARGEST X AND Y AND Z VALUES ARE FOUND
40 'FOR EACH FACE AND STORED. THESE X AND Y VALUES ARE
50 'CONSIDERED TO THE "BOUNDING RECTANGLE" OF THE FACE.
60 'TAKING EACH FACE, ALL OTHER FACES ARE TESTED AGAINST
70 'IT. IF ANY VERTEX OF THE TEST FACE FALLS WITHIN THE
80 'BOUNDING RECTANGLE, Z VALUES ARE COMPARED. IF THE
90 'Z VALUE OF THE TEST FACE VERTEX IS GREATER THAN THE
100 'LARGEST Z VALUE FOR THE FACE, THEN THE TEST FACE IS
110 'TURNED OFF. WHEN ALL FACES HAVE BEEN TESTED AGAINST
120 'ALL OTHER FACES, WE RE-DRAW THE FIGURE, USING ONLY
130 'THOSE FACES THAT ARE STILL "ON".

150 DIM X(9,6), Y(9,6), Z(9,6), C*(9)
160 DIM XS(9), YS(9), ZS(9), XL(9), YL<9), ZL(9)
170 SCREEN 1: CLS

180 'tttttttttttttttttttttttttt READ POINTS tttttttttttttttttttttttttt
190 READ N 'N IS HOW MANY SURFACES

200 FOR S = 1 TO N

210 C*(S) = "ON"

220 READ NV(S) 'NV IS # OF VERTICES IN SURFACE
230 FOR V = 1 TO NV<S)

240 READ X(S,V), Y(S,V), Z(S,V)
250 IF X(S,V)<0 OR X(S,V)>319 OR Y(S,V)<0 OR Y(S,V)>199 THEN 820
260 NEXT

270 X<S,NV<S)+1) = X(S,1)
280 Y(S,NV<S)+1) = Y<S,1)
290 NEXT

300 GOSUB 620 'DRAW FACES THAT ARE ON
310 '***********< FIND OUTER BOUNDARIES FOR EACH FACE tttttttttttttttt
320 FOR S = 1 TO N

330 XS(S) = X(S,1) 'XS Se XL ARE SMALLEST & LARGEST X VALUES
340 YS(S) = Y(S,1)
350 ZS(S) = Z(S,1)
360 FOR V = 2 TO NV<S)

370 IF X(S,V) < XS(S) THEN XS(S) s X(S,V)
380 IF Y(S,V) < YS(S) THEN YS(S) = Y<S,V)
390 IF Z(S,V) < ZS(S) THEN ZS(S> = Z(S,V)
400 IF X(S,V) > XL(S) THEN XL(S) = X(S,V)
410 IF Y(S,V) > YL(S) THEN YL<S) s Y(S,V)
420 IF Z<S,V) > ZL(S) THEN ZL(S) = Z<S,V)
430 NEXT

440 NEXT

450 'tttttttttttttttttt TURN OFF HIDDEN FACES tttttttttttttttttttttttt
460 FOR S = 1 TO N

470 IF C*(S) = "OFF" THEN 590 'FACE IS ALREADY OFF
480 FOR R = 1 TO N

490 IF C*(R) = "OFF" OR R = S THEN 580 'NO NEED TO COMPARE
500 FOR V = 1 TO NV(R)

510 IF X<R,V) <= XS(S) OR X<R,V) >= XL(S) OR
Y(R,V) <= YS<S) OR Y(R,V) >= YL<S) THEN 570

520 'OTHERWISE POINT (R,V) IS WITHIN THE BOUNDING RECTANGLE

230 THREE DIMENSIONS PART IV

Program 10-3 (cont.)

530 'IS IT IN FRONT OR IN BACK?

540 IF Z(R,V> <= ZL<S) THEN 580 'FACE R IS NOT IN BACK OF S
550 C*<R) = "OFF" 'FACE R IS IN BACK OF FACE S

560 GOTO 580 'GO ON TO TEST THE NEXT FACE

570 NEXT V

580 NEXT R

590 NEXT S

600 GOSUB 620 'DRAW FACES THAT ARE "ON"

610 GOTO 820

630 CLS

640 FOR S = 1 TO N

650 IF C*<S) = "OFF" THEN 700 'SKIP THIS ONE - DON'T DRAW

660 PSET(X <S,1),Y(S,1))
670 FOR V = 2 TO NV(S) + 1

680 LINE - (X<S,V),y<S,V))
690 NEXT

700 NEXT

710 RETURN

730 DATA 7

740 DATA 5,90,140,60,150,140,10,150,110,0,120,70,20,90,110,50
750 DATA 4,150,110,10,150,140,10,230,80,110,230,50,100
760 DATA 5,230,50,100,230,80,110,170,80,160,170,50,150,200,10,120
770 DATA 4,170,50,150,170,80,160,90,140,60,90,110,50
780 DATA 4,90,140,50,150,140,10,230,80,110,170,80,160
790 DATA 4,150,110,0,230,50,100,200,10,120,120,70,20
800 DATA 4,90,110,50,120,70,20,200,10,120,170,50,150
810 '###«»*#«»#«#########«*««##########««#######»###«««###»##«»#«###«

820 IF INKEY* = "" THEN 820

830 END

HIDDEN LINES

The preceding two programs tested object surfaces to determine visibility. Each
surface tested was deemed either entirely visible or entirely invisible. We now
consider a method for determining partial visibility by testing the visibility of
individual lines instead of complete surfaces. Our program will test a line to
determine if any part of the line is hidden by a surface.

A line and a surface can be related in several ways. In Fig. 10-8, the various
relationships between a displayed line and a surface are illustrated. For this
example, we assume that the surface is nearer to us than any of the lines. Then
lines B and E are completely visible, line D is completely hidden, the top
overlapping segment of line C is also hidden, and the middle overlapping section
of line A is invisible. To simplify our hidden line programs, we will assume that
these are the only possible relationships. That is, a line can intersect a surface at
no more than two points. This restricts surface shapes to be either circles,
ellipses, or convex polygons (Fig. 10-9(a)), and eliminates from consideration all
concave polygons (Fig. l()-9(b)) which could have more than two intersection
points. We can treat objects with concave surfaces by redefining surface

Chapter 10 Displaying Solid Objects 231

..y\
//

/ Vy .-A

/'• aV-

(a)

A

(b)

Figure 10-7 Three-dimensional object displayed (a) before and (b) after erasing hidden surfaces by
Prog. 10-3.

boundaries. Any concave surface can be reorganized into two or more convex
polygons. But this technique will add additional lines to objects, which may be
undesirable.

Program 10-4 demonstrates a method for detecting and erasing hidden
segments of lines. Any number of surfaces may be input by specifying the
coordinates for all vertices in each surface. For the demonstration example, we

Z axis

X axis

Y axis

Figure 10-8 Possible line and surface
relationships. Line A intersects the
face boundary at two points; lines B
and C intersect at one point; line D is
completely hidden; and line E is

completely visible. (All lines are assumed
to have greater Z coordinates than the

surface.)

232 THREE DIMENSIONS PART IV

(a) (b)

Figure 10-9 (a) Circles, ellipses, and convex polygons (interior angles less than 180 degrees) have no
more than two intersection points with a straight line, (b) Concave polygons (interior angles greater
than 180 degrees) can have more than two intersection points with a straight line.

have 14 surfaces with four vertices each. The surfaces could all be part of one
object, as in the example, or represent several different objects. Isolated straight
lines can be input as surfaces with two vertices. After all surfaces have been
defined, the program draws the input lines (Fig. lO-lO(a)) then finds and erases

Program 10-4 Erasing hidden line segments for partially visible lines and surfaces.

iO 'PRQGRm iO-4. ERASING LINES ON PARTIALLY VISIBLE SURFACES.

20 'ENDPOINTS OF LINES FOR EACH SURFACE (S) ARE STORED IN ARRAYS

30 'X1,Y1,Z1 AND X2,Y2,Z2- PROGRAM DRAWS FIGURE AND THEN BEGINS
40 'TO ERASE HIDDEN LINES. EACH FACE IS TAKEN ONE AT A TIME. THE

50 'MINIMUM AND MAXIMUM X AND Y VALUES AND THE MINIMUM Z ARE FOUND

60 'TO ESTABLISH BOUNDARIES FOR THIS SURFACE- THE SLOPES AND Y

70 'INTERCEPTS OF EACH LINE OF THIS SURFACE ARE FOUND. THE PROGRAM

80 'THEN TAKES EVERY OTHER LINE OF EVERY OTHER FACE TO USE AS A

90 'TEST LINE AND TESTS IT AGAINST THE SURFACE <S). IF THE TEST LINE

100 'IS OUTSIDE THE BOUNDARIES OF THE SURFACE, THE LINE IS VISIBLE SO
no 'WE GO ON TO A NEW TEST LINE. OTHERWISE WE ATTEMPT TO FIND

120 'INTERSECTION POINTS OF THE TEST LINE AND THE VARIOUS LINES OF

130 'THE SURFACE (S). CHECKS MUST BE MADE TO DETERMINE IF THE

140 'CALCULATED INTERSECTION POINT IS ACTUALLY PART OF THE TWO LINES

150 '(PERHAPS THE TEST LINE AND/OR LINE OF THE SURFACE END BEFORE

160 'ACTUALLY INTERSECTING). Z VALUES ARE COMPUTED AND USED TO DETERMINE

170 'IF THE TEST LINE IS IN FRONT OR IN BACK OF THE SURFACE AT THE

180 'CALCULATED INTERSECTION POINT. IF WE FIND TWO INTERSECTION POINTS

190 'TO USE AS ENDPOINTS FOR A HIDDEN SEGMENT, WE ERASE THE SEGMENT.
200 'ONCE WE HAVE TESTED EVERY OTHER LINE OF THE FIGURE AGAINST

210 'THIS SURFACE AND ERASED HIDDEN SEGMENTS, WE GO ON TO THE
220 'NEXT SURFACE.

230 DIM Xl(14,4), X2(14,4), Yl(14,4), Y2(14,4), Zl(14,4), Z2(14,4)
240 DIM NV(14), M(4), B(4)
250 SCREEN 1: CLS

260 ' READ DATA POINTS ttttttttttttttttt

270 READ NS 'NS IS NUMBER OF SURFACES

280 FOR S = 1 TO NS

290 READ NV(S) 'NV(S) IS NUMBER OF VERTICES FOR THIS SURFACE

300 READ XKS, 1), YKS, 1) , ZKS, 1)
310 FOR V == 2 TO NV(S)

Chapter 10 Displaying Solld Objects 233

Program 10-4 (cont.)

320 READ X1(S,V), Y1(S,V), Z1<S,V)
330 IF X1(S,V)<0 OR X1(S,V)>319 THEN 2150 'OFF SCREEN?
340 IF Y1(S,V)<0 OR Y1(S,V)>199 THEN 2150
350 X2<S,V-1) = X1(S,V)
360 Y2<S,V-1) = Y1(S,V)
370 Z2<S,V-1) = Z1(S,V)
380 NEXT

390 X2(S,NV(S)) = X1(S,1)
400 Y2(S,NV(S)) = Y1<S,1)
410 Z2(S,NV(S)) = ZKS, 1)
420 NEXT S

430 'DRAW POLYGON SURFACE

440 FOR S = 1 TO NS

450 FOR V = 1 TO NV(S)

460 LINE (XI(S,V),Y1(S,V)) - (X2(S,V),Y2(S,V))
470 NEXT V

480 NEXT S

490 FOR S = 1 TO NS

500 GOSUB 600 'FIND BOUNDARIES & EQUATIONS FOR THIS SURFACE

510 FOR SR = 1 TO NS

520 IF S = SR THEN 560

530 FOR L = 1 TO NV<SR)

540 GOSUB 900 'TEST FOR VISIBILITY. ERASE ANY HIDDEN PARTS
550 NEXT L

560 NEXT SR

570 NEXT S

580 GOTO 2150

590

600 '###«#### FIND BOUNDARY FOR SURFACE & EQUATIONS OF EACH LINE ###«#«###«

610 'FIND X, Y, AND Z BOUNDARIES FOR SURFACE
620 XL = X1(S,1) 'XL IS LOWEST X VALUE. WANT GREATEST X VALUE IN
630 XR = X1(S,1) 'XR, LOWEST Z VALUE IN ZF, LOWEST Y VALUE IN
640 YT = Y1(S,1) 'YT, AND GREATEST Y VALUE IN YB
650 YB = Y1(S,1)
660 ZF = Z1(S,1)
670 FOR K = 1 TO NV(S)

680 IF Z1(S,K)
690 IF Z2(S,K)
700 IF Y1<S,K)
710 IF Y2(S,K)
720 IF Y1(S,K)
730 IF Y2(S,K)
740 IF X1(S,K)
750 IF X2(S,K)
760 IF X1<S,K)
770 IF X2(S,K)
780 NEXT K

790 'tttttttttttttt* DETERMINE LINE EQUATIONS ttttttttttttttttt*

800 'FOR EACH LINE OF THE SURFACE, THE SLOPE AND Y INTERCEPT ARE
810 'FOUND AND STORED IN M AND B

820 FOR P = 1 TO NV(S)

830 IF YKSjP) = Y2(S,P) THEN M<P)=Os B<P)=Yl(S,P)s GOTO 870 'HORIZONTAL
840 IF X1(S,P) = X2(S,P) THEN M(P) = 99995 GOTO 870 'VERTICAL LINE
850 M(P) = (Y2(S,P) - Y1<S,P)) / <X2(S,P) - X1(S,P))
860 B(P) = Y1(S,P) - M(P) « X1(S,P)
870 NEXT P

880 RETURN

890

900 '####«################ TEST LINE FOR VISIBILITY ###»##»#####«#»######

910 'IF THE POINTS OF THE TEST LINE (SR,L) ARE OUTSIDE THE BOUNDARIES
920 'OF THE SURFACE <S), THEN THE LINE IS VISIBLE IN RELATION TO THIS
930 'SURFACE

< ZF THEN ZF = Z1(S,K)
< ZF THEN ZF = Z2(S,K)
< YT THEN YT = Y1(S,K)
< YT THEN YT = Y2<S,K)
> YB THEN YB.= Y1(S,K)
> YB THEN YB = Y2(S,K)
> XR THEN XR = XI<S,K)
> XR THEN XR = X2(S,K)
< XL THEN XL = XI(S,K)
< XL THEN XL = X1<S,K)

234 THREE DIMENSIONS PART IV

Program 10-4 (cont.)

'LINE IS VISIBLE

'LINE IS VISIBLE

'LINE IS VISIBLE

'LINE IS VISIBLE

'LINE IS VlSIi "

940 IF Z1(SR,L) <= ZF AND Z2(SRyL> <= ZF THEN 1980
950 IF Y1(SR,L) <= YT AND Y2<SR,L) <= YT THEN 1980
960 IF Y1(SR,L) >= YB AND Y2<SR,L) >= YB THEN 1980
970 IF X1(SR,L) <= XL AND X2(SR,L) <= XL THEN 1980
980 IF XKSRyL) >= XR AND X2(SR,L) >= XR THEN 1980
990 'OTHERWISE AT LEAST ONE POINT IS WITHIN THE RECTANGLE THAT
1000 'BOUNDS THIS SURFACE

1010 'FIND SLOPE AND INTERCEPT OF TEST LINE. SAVE IN MT AND BT

1020 IF X1(SR,L) = X2<SR,L) THEN MT=9999: GOTO 1060 'VERTICAL LINE
1030 IF Y1(SR,L) = Y2(SR,L) THEN MT=0: BT=Y1(SR,L): GOTO 1060 'HORIZONTAL
1040 MT = <Y1<SR,L) - Y2(SR,L)) / (XKSR^L) - X2(SR,L))
1050 BT = Y1(SR,L) - MT * X1(SR,L)
1060 C

1070

O 'C IS COUNT OF ENDPOINTS OF HIDDEN SEGMENT
'TEST AGAINST ALL LINES OF THE SURFACE

1080 FOR K = 1 TO NV(S)

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

'IF THIS IS A SHARED EDGE GO ON TO NEXT LINE OF SR

IF X1(S,K)=X1(SR,L) AND Y1(S,K)=Y1(SR,L) AND X2(S,K)=X2(SR,L)
AND Y2<S,K)=Y2(SR,L) THEN 1980

IF XI(S,K)=X2(SR,L) AND Y1(S,K)=Y2(SR,L) AND X2(S,K)^Xl(SR,L)
AND Y2(S,K)=Y1(SR,L) THEN 1980

IF M(K)=MT THEN 1940 'LINES ARE PARALLEL

'OTHERWISE FIND INTERSECTION POINT XP,YP OF TEST LINE
'(L OF SR) AND SURFACE LINE (K OF S)

IF X1(S,K) <> X2(S,K) THEN 1190
XP = X1(S,K)

BT

'FACE LINE IS VERTICAL

XP +YP = MT *

'TEST LINE IS VERTICAL

'FACE LINE IS HORIZONTAL

'TEST LINE IS HORIZONTAL

GOTO 1340

IF X1(SR,L) <> X2(SR,L) THEN 1230
XP = X1(SR,L)
YP = M(K) * XP + B(K)

GOTO 1340

IF Y1(S,K) <> Y2(S,K) THEN 1270
YP = Y1(S,K)
XP = (YP - BT) / MT

GOTO 1340

IF Y1(SR,L) <> Y2(SR,L) THEN 1310
YP = Y1(SR,L)
XP = (YP - B(K)) / M(K)

GOTO 1340

XP = (BT - B(K)) / (M(K) - MT)

YP = (MT * XP + BT)

'LINES INTERSECT AT XP,YP. IF XP.YP IS NOT BETWEEN THE ENDPOINTS
'OF LINE K OR S, 60 ON TO NEXT LINE (L OF SR)
IF XP<X1<S,K> AND XP<X2(S,K> THEN 1940
IF XP>X1<S,K) AND XP>X2<S,K) THEN 1940
IF YP<Y1<S,K) AND YP<Y2(S,K> THEN 1940
IF YP>Y1(S,K) AND YP>Y2<S,K) THEN 1940

y

'OTHERWISE FIND Z VALUE FOR XP,YP ON TEST LINE AND ON
'SURFACE. IF Z VALUE FOR XP,YP ON TEST LINE (ZD IS
'LESS THEN Z VALUE FOR XP,YP ON SURFACE LINE (ZS) THEN
'THE TEST LINE IS IN FRONT OF SURFACE, AND SO IS VISIBLE
IF X1(SR,L) = X2(SR,L) THEN 1480
ZL = (XP-Xl(SR,L))/(X2(SR,L)-X1(SR,L))«(Z2(SR,L)-Z1(SR,L))+Zl(SR,L)
GOTO 1490

ZL = (YP-Y1(SR,L))/(Y2(SR,L)-Y1(SR,L))*(Z2(SR,L)-Z1(SR,L))+Z1(SR,L)
'FIND Z VALUE OF INTERSECTION ON SURFACE LINE

IF X1(S,K) = X2(S,K) THEN 1530
ZS = (XP-X1(S,K))/(X2(S,K)-X1(S,K))*(Z2(S,K)-Z1(S,K))+Z1(S,K)
GOTO 1540

ZS = (YP-Y1(S,K))/(Y2(S,K)-Y1(S,K))»(Z2(S,K)-Z1(S,K))+Z1(S,K)

Chapter 10 Displaying Solid Objects 235

Program 10-4 (cont.)

1540 IF ZL < ZS THEN 1940

1550

1560 'IF THE POINT XP,YP IS NOT BETWEEN THE ENDPOINTS OF LINE L OF
1570 'SR, THEN XP OR YP NEEDS TO BE ADJUSTED BY BEING SET EQUAL
1580 'TO THE APPROPRIATE ENDPOINT OF L OF SR
1590 IF XP < X1(SR,L) AND XP < X2(SR,L) THEN 1620
1600 IF XP > X1(SR,L) AND XP > X2(SR,L) THEN 1620

1610 GOTO 1690

1620 IF ABS(XP - X1(SR,L)) < ABS(XP - X2<SR,L)) THEN 1660
1630 XP = X2(SR,L)
1640 YP = Y2(SR,L)
1650 GOTO 1820

1660 XP = X1(SR,L)
1670 YP = Y1(SR,L)
1680 GOTO 1820

1690 IF YP < Y1(SR,L) AND YP < Y2<SR,L) THEN 1720
1700 IF YP > Y1(SR,L) AND YP > Y2(SR,L) THEN 1720
1710 GOTO 1820

1720 IF ABS(YP - Y1(SR,L)) < ABS(YP - Y2(SR,L)) THEN 1760
1730 YP = Y2<SR,L)
1740 XP = X2(SR,L)
1750 GOTO 1820

1760 YP = Y1(SR,L)
1770 XP = X1(SR,L)
1780

1790 'HAVE WE INADVERTENTLY GENERATED AN EDGE LINE? IF THE TEST
1800 'LINE HAS AN EQUAL SLOPE AND SHARES A POINT WITH ANY LINE
1810 'OF THIS SURFACE, THEN DON'T ERASE
1820 FOR J= 1 TO NV(S)

1830 IF MT = M(J) AND YP = M(J) * XP + B(J) THEN 1980
1840 NEXT J

1850 IF C <> O THEN 1900

1860 XA = XP 'THIS IS THE FIRST POINT OF THE HIDDEN SEGMENT
1870 YA = YP 'STORE IN XA, YA
1880 C = C + 1

1890 GOTO 1940

1900 IF XP = XA AND YP = YA THEN 1940 'SAME POINT (VERTEX)
1910 XD = XP 'STORE SECOND POINT IN XD, YD
1920 YD = YP

1930 C = C + 1

1940 NEXT K

1950

1960 IF C < 2 THEN 1980

1970 LINE (XA,YA) - (XD,YD),0 'ERASE HIDDEN LINE SEGMENT
1980 RETURN

1990 '##*########*######*########*#«###########«##################«###########
2000 DATA 14

2010 DATA 4,30,130,67,30,170,71,236,170,21,230,130,17
2020 DATA 4,230,60,10,230,170,21,270,170,11,276,60,0
2030 DATA 4,270,60,0,270,170,11,300,140,61,300,30,50
2040 DATA 4,260,30,60,260,140,71,300,140,61,306,30,50
2050 DATA 4,130,100,99.5,130,140,103.5,260,146,71,260,100,67
2060 DATA 4,130,100,99.5,130,140,103.5,180,90,186.8,180,50,182.8
2070 DATA 4,110,50,200.3,110,90,204.3,180,90,186.8,180,50,182.8
2080 DATA 4,30,130,67,30,170,71,110^90,204.3,110,50,200.3
2090 DATA 4,230,60,10,230,136,17,260,100,67,260,30,60
2100 DATA 4,260,30,60,230,60,10,270,60,0,300,30,50
2110 DATA 4,110,50,200.3,60,100,117,130,100,99.5,180,50,182.8
2120 DATA 4,60,100,117,30,130,67,230,130,17,260,100,67
2130 DATA 4,110,90,204.3,60,140,121,130,140,103.5,180,90,186.8
2140 DATA 4,60,140,121,30,170,71,270,170,11,300,140,61
2150 END

236 THREE DIMENSIONS PART IV

/ /

/ / /

/
/

// /

/ /

/ /
/

/' /' /

''

/'
/' /
/

'' f*

(a)

/ /
/
/ /
/
/
/
/
/
/
/ /
/

v''

(b)

Figure 10-10 A three-dimensional object (a) input to Prog. 10-4 is displayed (b) with hidden lines
erased.

Chapter 10 Displaying Solid Objects 237

each line segment hidden by a surface (Fig. lO-lO(b)). In order to avoid concave
polygons, some surfaces of the object were reorganized to form two convex
polygons.

Each face input to Prog. 10-4 is selected in turn and all remaining lines in the
display are tested for visibility with respect to the selected surface. If a line is
outside the rectangular bounding area of the surface, it is visible. Otherwise, we
have to test it against the actual polygon boundaries. This is done by calculating
an intersection point for each boundary line of the surface. The test line and the
boundary line intersect if this intersection point is between the endpoints of both
lines. In this case, we check to determine whether the Z value of the test line is
greater than the Z value of the boundary line at that point. If so, the point is stored
as one end of the hidden line segment. If the point is between the endpoints of the
surface line and not between the endpoints of the test line, we store the nearest
test line endpoint as one end of the hidden line segment. For all other cases, no
point is stored. When two separate points on the test line have been found in this
way, we erase the line segment between the two points. If two points cannot be
found, the line is completely visible with respect to this surface.

This program could be expanded to allow concave surfaces and more
complex intersection possibilities. A line intersecting a concave surface can have
more than two intersection points. We could treat this situation by determining
whether each line endpoint was inside or outside the polygon boundary and
identifying the hidden segments from one end of the line. If one endpoint is inside,
we erase the line segment from this endpoint to the first intersection point with the
boundary along the line from that end. We also erase the segment from the second
intersection point to the third, and so on. If an endpoint is outside, erasing is done
between the first and second intersection points, between the third and fourth
points, and so on. It is also possible for a line to be partially visible if it intersects a
surface at an interior point. This can occur if either the line or the surface have
varying values for Z coordinates, and one end of the line is in front of the plane
and the other end behind the plane. We could locate the intersection point in this
case by using the defining equations for three-dimensional lines and planes, but
then more computation is required in the program.

We have discussed a few of the many possible methods for erasing hidden
lines and surfaces. Some methods work only for restricted shapes. Some methods
require more memory or more computation time than others. As we allow more
complicated shapes in our displays, we can expect the erasing techniques to
become more complicated. Usually, we want to select a method that will erase
hidden sections in the shortest time. This is especially important for applications
involving animated displays.

10-4 PERSPECTIVE VIEWS

Erasing hidden lines in a three-dimensional scene provides depth information and
adds realism to our flat representation. An additional means for achieving realism

238 THREE DIMENSIONS PART IV

Vanishing
point

Figure 10-11 In a perspective view, parallel lines are redrawn to converge to a vanishing point so
that distant objects are displayed smaller than nearer objects.

and depth in our displays is to project objects onto the screen in perspective. When
we view natural objects, they appear smaller when they are farther away from us.
A row of buildings, as in Fig. 10-11, appears as though the closer buildings are
larger than the more distant buildings. In this perspective view, parallel lines
appear nearer to each other in the distance than they do when closer.

To get a perspective view, we can lay out on graph paper a scene such as
that shown in Fig. 10-11 and project all parallel lines so that they meet at a distant
point, called the vanishing point. The X and Y coordinates for the objects are then
determined and plotted. In this way, we can display a perspective view of any
scene drawn on graph paper. But each change in the scene and each diflferent
scene requires that we repeat the entire process from the graph paper layout.

Another way to achieve perspective is to use transformation equations for
perspective in the display program. This provides us with greater flexibility.
Animated scenes can then be projected in perspective, and we can put repeated
patterns in perspective without having to manually determine the view for each
occurrence of the pattern. The coordinates of the general house design in Fig. 10-
11 can be defined once, then repeatedly plotted in relative size according to the
depth position.

For any coordinate point (X,Y,Z) of a three-dimensional scene, the trans
formed position (XP, YP) on the screen to provide a perspective view is calculated
as

XP = XV -H (XV - X) * ZV/(Z - ZV)

VP = YV + (YV - Y) * ZV/(Z - ZV)
(10-1)

Chapter 10 Displaying Solid Objects 239

Projection
point on
the screen

(XP, YP)

Our

viewing
position

(XV, VV, ZV)

Z axis

► (X, Y, Z)

The
' vanishing
point

Screen

Figure 10-12 A point with coordinates (X,Y,Z) is projected onto the screen at position (XP,YP) by a
perspective transformation when our viewing position is at (XV,YV,ZV).

where the point (XV,YV,ZV) is our viewing position in front of the screen. The
point (XV,YV) on the screen is the vanishing point for the perspective view.
Figure 10-12 illustrates the relationship between these various coordinate values
with a side view of the video screen. For points with Z = 0 there is no change in
coordinates: (XP,YP) = (X,Y). For points in back of the screen (Z > 0), the
projection onto the screen gets closer to the vanishing point as Z increases. The
coordinate ZV must always be a negative number, since we are viewing from in
front of the screen. Larger magnitudes of ZV will produce less perspective (less
converging of parallel lines). As we move the viewing point closer to the screen,
we increase the perspective view of the objects by displaying greater convergence
of parallel lines.

In Prog. 10-5, we calculate and display a perspective view of a road lined
with telephone poles. The resulting output is shown in Fig. 10-13. This program
illustrates the technique of repeatedly plotting a defined object (in this case, a
telephone pole) by varying its depth and calculating the transformed positions
from the perspective equations (10-1). We can vary the position of the vanishing
point and the value of ZV, as long as objects are not projected off the screen.

A perspective view of a single object is displayed by Prog. 10-6. The figure
is defined as an orthographic projection in the center of the screen. By selecting
various viewing positions, we can display different perspective views of the object
(Fig. 10-14). This program illustrates a general method for defining a three-
dimensional object in the screen coordinate system and projecting a particular
view using the perspective transformation equations.

Hidden surfaces are identified in Prog. 10-6 by calculating distances from
the viewing position. Since the box used for this example is symmetrical, we
check the distances of symmetrically opposite faces. The face from each pair that

240 THREE DIMENSIONS PART IV

Program 10-5 Drawing a three-dimensional scene with repeated perspective views of an object (road
lined with telephone poles).

10 'PROGRAM 10-5. DRAWING TELEPHONE POLES IN PERSPECTIVE.

20 'TELEPHONE POLES ARE DEFINED ONCE IN DATA STATEMENTS.
30 'A VIEWING POINT <XV,YV,ZV) IS ESTABLISHED THROUGH INPUT.
40 'PERSPECTIVE EQUATIONS ARE USED TO CALCULATE NEW X AND Y
50 'COORDINATES FOR VARYING VALUES OF Z.

60 DIM XI(8), Yl<8), X2(8), Y2(8)
70 SCREEN O: WIDTH 80: CLS

80 'ESTABLISH VIEWING POINT

90 PRINT "X AND Y MUST BE ON SCREEN, Z MUST BE NEGATIVE"
100 INPUT "X,Y,Z OF VIEWING POINT"; XV,YV,ZV
110 IF XV<0 OR XV>319 OR YV<0 OR YV>199 OR ZV>=0 THEN 190
120 SCREEN 1; CLS

130 FOR K = 1 TO 6

140 READ XI, Yl, X2, Y2
150 FOR Z = O TO 5000 STEP 500

160 'CALCULATE CONSTANT PART OF EQUATION
170 P = -ZV / (Z - ZV)

180 'CALCULATE POINTS FOR LINE AT THIS Z VALUE
190 XA = XV + (XI - XV) * P

200 yA = YV + (Yl - YV) « P

210 XB = XV + (X2 - XV) * P

220 YB = YV + (Y2 - YV) « P

230 LINE (XA,YA) - (XB,YB)
240 NEXT

250 NEXT

260 'DRAW IN ROAD EDGES AND CENTER
270 FOR K = 1 TO 3

280 READ XA,YA
290 XB = XV + (XA - XV) * P

300 YB = YV + (YA - YV) * P

310 LINE (XA,YA) - (XB,YB)
320 NEXT

330 'ttttttttttttttttttttttttttttttttttt
340 DATA 50,45,50,155
350 DATA 40,60,60,60
360 DATA 40,50,60,50
370 DATA 260,45,260,155
380 DATA 250,60,270,60
390 DATA 250,50,270,50
400 DATA 70,155,160,155,240,155
410 IF INKEY* = "" THEN 410

420 END

is farther from the viewing position is not visible. Distance of a point (X,Y,Z) from
(XV,YV,ZV) is computed as

D = SQR((X - XV) 2 + (Y - YV) 2 + (Z - ZV) ̂ 2) (10-2)

We next need to check the other face for visibility. It is possible that neither
side is visible. For example, viewing the cube from directly in front hides all other
sides. The sides, top, or bottom will be visible only if the viewing position is
displaced from a direct front view. For nonsymmetrical objects, we can use the
method of Prog. 10-4 and the distance D, calculated from (10-2), for depth
checks.

Chapter 10 Displaying Solid Objects 241

m If

Figure 10-13 Output of Prog. 10-5, showing a perspective view of a road lined with telephone poles.

Program 10-6 Three-dimensional perspective views of a single object (box).

10 'PROGRAM 10-6. DEFINING AN OBJECT IN 3 DIMENSIONS USING PERSPECTIVE.

20 'DEFINES AN OBJECT IN 3 DIMENSIONS, ESTABLISHES A
30 'POINT FROM WHICH TO VIEW OBJECT, APPLIES PERSPECTIVE
40 'TO OBJECT'S POINTS AND DRAWS VISIBLE PORTIONS OF

50 'OBJECT- SYMMETRY OF OBJECT IS USED TO DETERMINE

60 'WHICH SIDES ARE VISIBLE.

70 DIM X(8), Y<8), Z(8), XP(8), YP(8), D(8)
80 SCREEN 1: CLS

90 'ttttttttttttttttttttt READ DATA POINTS ttttttttttttttttttttt

100 READ N

110 FOR K = 1 TO N

READ X<K), Y(K), Z(K)
IF XCKXO OR X(K)>319 OR Y(K)<0 OR Y(K)>199 THEN 760

140 NEXT

150 FOR K = 1 TO N/2 - 1

160 LINE (X(K),Y(K)) - (X(K+1),Y<K+1))
170 NEXT

180 LINE (X(N/2),Y(N/2))

120

130

(X(l),Y(1))
190 ttttttttttttttttt ESTABLISH VIEWPOINT & DRAW

200 LOCATE 1,1: PRINT "ENTER 0,0,O TO QUIT"
210 PRINT "Z COORDINATE MUST BE NEGATIVE"

220 INPUT "COORDINATES OF VIEW POSITION"; XV,YV,ZV
230 IF XV = O AND YV = O AND ZV = O THEN 760

240 IF ZV >= O THEN 200

250 'PUT POINTS IN PERSPECTIVE

260 FOR K = 1

270

280

290 NEXT

XP(K)

YP(K)

TO N

= XV

= YV

<X<K) - XV)

(Y<K) - YV)

* -ZV

« -ZV

(Z(K) - ZV)

(Z(K) - ZV)

300 'FIND DISTANCES OF POINTS FROM VIEWPOINT

310 FOR K = 1 TO N

320 D(K) = SQR(<X(K)-XV)-'

330 NEXT

340 GOSUB 360 'DRAW

350 GOTO 190

360

2 + (Y(K)-YV)^2 + (Z(K)-ZV)'^2)

DRAW ROUTINE ####«######«###«###*#########

242 THREE DIMENSIONS PART IV

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

Program 10-6 (cont.)

CLS

IF D(l) = D(5) THEN 490

IF D(l) > D<5) THEN 450

FOR K = 1 TO 3

LINE (XP(K),YP(K)) - (XP(K+1),YP(K+1))
NEXT

LINE (XP<4),YP(4)) - (XP(1),YP(1))
GOTO 490

FOR K = 5 TO 7

LINE (XP(K),YP(K)) - (XP(K+1),YP(K+1))
NEXT

LINE (XP(8),YP(8)) - (XP<5),YP(5))
IF D(l) = D(4) THEN 600

IF D(l) > D(4) THEN 560

'D

'D

RAW FACE CONTAINING POINT 1

RAW FACE CONTAINING POINT 5

LINE (XP<1),YP<1))
LINE (XP(2),YP<2))
LINE (XP(6),YP(6))
LINE (XP(5),YP(5))
GOTO 600

LINE (XP<4),YP(4))
LINE (XP(3),YP(3))
LINE (XP(7),YP<7))
LINE (XP(8),YP(8))

<XP(2),YP(2))
(XP(6),YP(6))
(XP<5),YP<5))
(XP(1),YP(1))

'DRAW FACE CONTAINING POINT 1

'DRAW FACE CONTAINING POINT 4<XP(3),YP<3))
(XP(7),YP(7))
(XP(8),YP<8)>
(XP(4),YP(4))

IF D(l) = D(2) THEN 710

IF D(l) > D(2) THEN 670

LINE (XP<1),YP(1)) - (XP(4),YP<4))
LINE (XP(4),YP(4)) - (XP<8),YP(8))
LINE (XP(8),YP(8)) - (XP<5),YP(5))
LINE (XP(5),YP(5)) - (XP(1),YP(1))
GOTO 710

LINE <XP<2),YP(2)) - (XP(3),YP<3))
LINE (XP(3),YP(3)) - (XP<7),YP(7))
LINE (XP(7),YP(7)) - (XP<6),YP<6))
LINE (XP(6),YP(6)) - (XP(2),YP(2))
RETURN

DATA 8

DATA 150,80,0,150,120,0,100,120,0,100,80,0
DATA 150,80,30,150,120,30,100,120,30,lOO,80,30
END

'D

'D

RAW FACE CONTAINING POINT 1

RAW FACE CONTAINING POINT 2

Figure 10-14 Perspective view of a three-dimensional object, displayed by Prog. 10-6 for a viewing
position below and to the left of the object.

ENTER COORDINATES OF UIEWINC POSITION
Z COORDINATE MUST BE NECATIUE
ENTER 0,e,0 TO QUIT

Chapter 10 Displaying Solid Objects 243

10-5 SHADING AND HIGHLIGHTING

Depth information and realism can be enhanced in our three-dimensional scenes
through the use of shading. Figure 10-15 illustrates a possible shading pattern for
curved surfaces. Shading patterns can help to establish the contour or curvature
of surfaces. Darker areas and shadows also help to identify the back parts of
objects. To add shadows, we choose some position for the light source, such as to
the left and in front of the screen, and apply the shading and shadows on the sides
opposite from the light source. In general, subtle shading patterns and shadows
are difficult to achieve, but simple shading of the sides opposite a selected light
source position can be effective.

Some of the shading patterns discussed in Chapter 3 could be defined as
routines to be applied to the interior areas of objects. The boundary of an area to
be shaded could be specified and the shading pattern applied to that area. Such
routines are called shading masks and can be set up to shade various polygon,
circular, or elliptic areas.

Highlighting can be used as an alternative to erasing hidden lines in a three-
dimensional display. With this technique, we add depth information by simply
identifying the front lines of objects. This can be accomplished by sorting the lines
according to depth, and emphasizing closer lines with bright colors or with
double-wide lines. Figure 10-16 shows an example of highlighting the front lines
by making them bigger than the back, or hidden, lines. For objects drawn in
outline form, highlighting can provide a quick method for identifying the front
from the back of objects.

Figure 10-15 Shading patterns and shadows can help to add realism to three-dimensional scenes.

244 THREE DIMENSIONS PART IV

Figure 10-16 Highlighted lines of a
three-dimensional object can be used to
identify nearer sides.

10-6 GRAPHS

Three-dimensional charts and graphs can be eflfective methods for presenting
multiple relationships. The three-dimensional bar chart produced by Prog. 10-7
plots relationships between three variables: population figures for two cities over
three decades. Figure 10-17 shows the output for the data chosen. This program
uses the techniques discussed with Prog. 10-1. More distant surfaces are drawn
first, so that the nearer surfaces overlap and erase the back surfaces. The height of
the bars is scaled and plotted on the screen by the same methods discussed in
Chapter 4. Spacing between bars is increased to display more clearly the height
and position of all bars. Program 10-7 can be expanded to include additional
variables. For example, we could plot each bar as total population, then subdivide

Program 10-7 Three-dimensional bar graph.

10 'PROGRAM 10-7. THREE DIMENSIONAL BAR GRAPH
20 SCREEN 1: COLOR 0,0: CLS
30 'ttttttttttttttttt MAKE BACKGROUND ttttttttttttttttttttt
40 X = 230: XLEFT = 20: XRIGHT = 319
50 LINE (X,0) - (X,120),l
60 LINE (XLEFT,30) - (XLEFT,150),1
70 LINE (XRIGHT,30) - (XRIGHT,150),1
80 A = 600 'A IS AMOUNT TO USE FOR LABEL
90 ROW = 4

100 C* = "E" 'C* IS INDICATOR OF EVEN OR ODD NUMBERED ROW
110 FOR Y = O TO 120 STEP 120/6

120 LINE (X,y) - (XLEFT,y+30),1
130 'ONLY PRINT LABEL AMOUNT ON EVEN NUMBERED ROWS
140 IF C* = "E" THEN LOCATE ROW,1: PRINT A: C* = "O": A = A - 200:

ROW = ROW + 5 ELSE C* = "E"

150 LINE (X,y) - (XRIGHT,y+30),1
160 NEXT

170 'MAKE BASE

Chapter 10 Displaying Solid Objects 245

Program 10-7 (cont.)

180 LINE (20,150) - (109,180): LINE - (319,150),1
190 LOCATE 1,1: PRINT "Population in";
200 LOCATE 2,1: PRINT " thousands";
210 LOCATE 23,17:PRINT "1950";
220 LOCATE 22,26:PRINT "1960";
230 LOCATE 21,35:PRINT "1970";
240 LOCATE 25,1
250 PRINT " Buffalo Atlanta";
260 SLOPELEFT = -30/210 'SLOPE OF LEFT GRID MARKINGS

270 SLOPERIGHT = 30/89 'SLOPE OF RIGHT GRID MARKINGS

280 H = 40 'H IS HORIZONTAL MEASUREMENT OF EACH BA

290 C = O 'C IS COUNT OF HOW MANY CITIES HAVE BEEN GRAPHED

300 XLEFT = 40 'LOWER LEFT POINT OF A BAR IS XL,YL
310 YLEFT = 150

320 FILL =2 'F IS COLOR TO USE FOR FILLED IN AREA OF BAR

330 OUTLINE = 1

340 XSTART = 78

350 'MAKE CITY-COLOR CODE BLOCK

360 LINE (XSTART,191) - (XSTART+20,199),FILL,BF
370 'ttttttttttttttt MAKE BARS FOR CITIES tttttttttttttttttt

380 FOR K = 1 TO 3

390 READ V

400 'SCALE POPULATION VALUE TO PIXEL RANGE

410 HT = (120 * V) / 600

420 GOSUB 570 'FILL IN BOX AREA

430 GOSUB 700 'MAKE BOX OUTLINE

440 GOSUB 760

450 XLEFT = XLEFT + 73 'MOVE OVER AND UP FOR NEXT BAR
460 YLEFT = YLEFT - 10

470 NEXT

480 COUNT = COUNT + 1

490 IF COUNT = 2 THEN 870 'ARE WE DONE YET?

500 'RESET VARIABLES FOR NEXT CITY'S VALUES

510 XLEFT = 91

520 YLEFT = 165

530 FILL = 3

540 OUTLINE = 1

550 XSTART = 272

560 GOTO 350

570 '#«##############*# FILL IN BOX AREA ###########*##««*######

580 BLEFT = (YLEFT-HT) - SLOPELEFT * XLEFT 'Y INTERCEPT-UPPER LEFT EDGE OF BAR

590 BRIGHT=(YLEFT)-SLOPERIGHT*XLEFT 'Y INTERCEPT - LOWER LEFT EDGE OF BAR

600 YUL = SLOPELEFT * XLEFT + BLEFT 'Y OF UPPER LEFT OF BAR

610 YLL = SLOPERIGHT * XLEFT + BRIGHT 'Y OF LOWER LEFT OF BAR

620 YUM = SLOPELEFT * (XLEFT+H/2) + BLEFT 'Y OF UPPER MIDDLE OF BAR

630 YLM = SLOPERIGHT * (XLEFT+H/2) + BRIGHT 'Y OF LOWER MIDDLE OF BAR

640 BLEFT = YLM - SLOPELEFT * (XLEFT + H/2)

650 BRIGHT = YUM - SLOPERIGHT * (XLEFT + H/2)

660 YUR = SLOPERIGHT * (XLEFT+H) + BRIGHT 'Y OF LOWER RIGHT OF BAR
670 YLR = SLOPELEFT * (XLEFT+H) + BLEFT 'Y OF UPPER RIGHT OF BAR
680 YRIGHT = YLR

690 RETURN

700 '#######«##########«#### MAKE BOX OUTLINE ##*#######««*####«####

710 LINE (XLEFT,YUL) - (XLEFT+H/2,YUM),FILL
720 LINE - (XLEFT+H,YUR),FILL: LINE - (XLEFT+H,YLR),FILL
730 LINE - (XLEFT+H/2,YLM),FILL: LINE - (XLEFT,YLL),FILL
740 LINE - (XLEFT,YUL),FILL
750 PAINT (XLEFT+H/2,YUM+10),FILL,FILL
760 '##«##*####»##########*# MAKE BOX OUTLINE #««##############«#«##

770 LINE (XLEFT,YUL) - (XLEFT+H/2,YUM),OUTLINE
780 LINE - (XLEFT+H,YUR),OUTLINE: LINE - (XLEFT+H,YLR),OUTLINE

THREE DIMENSIONS PART IV

Program 10-7 (cont.)

790 LINE - (XLEFT+H/2,YLM).OUTLINE: LINE - (XLEFT,YLL),OUTLINE
800 LINE - (XLEFT.YUL).OUTLINE: LINE - (XLEFT+H/2,YLM-HT).OUTLINE
810 LINE - (XLEFT+H.YUR).OUTLINE
820 LINE (XLEFT+H/2,YLM) - (XLEFT+H/2.YLM-HT).OUTLINE
830 RETURN

840 '###*##«############«#####»#**######«»#»»###««««####«######

850 DATA 580,532,462
860 DATA 331,487,498
870 IF INKEY* = "" THEN 870

each bar according to the percent of the population in various age ranges. The bar
sections could then be color coded to indicate age range. There are many
possibilities for the labeling. We could devise identifying labels that are slanted to
align with the directions of the bars, or we could simply code the bars with various
colors or shading and use a key, as in Fig. 10-17.

We can also plot curves in three dimensions to show relationships among
several variables. As an illustration. Prog. 10-8 outputs a plot of the function
HEIGHT * SIN(FREQUENCY * SQR(X * X + Z * Z)) for a chosen range of X

Figure 10-17 Three-dimensional bar chart showing population figures (in thousands) for two cities in
the years 1950, 1960, 1970, produced by Prog. 10-7.

tousands

1950
I960

1970

BuffalD Atlanta

Chapter 10 Displaying Solid Objects 247

Program 10-8 Three-dimensional curve plotting.

10 'PROGRAM 10-8. THREE-DIMENSIONAL PLOT-

20 'PLOTS A SIN FUNCTION IN 3 DIMENSIONS- Z IS VARIED

30 'FROM -100 TO 130. FOR EACH VALUE OF Z AND THE X VALUES

40 '-135 TO 325, A Y VALUE IS CALCULATED USING A MODIFIED
50 'SIN EQUATION. X AND Y ARE ADJUSTED AND THEN PLOTTED.

70 SCREEN 2: CLS

80 XCENTER =214: YCENTER =100

90 HEIGHT = 20

100 FREQUENCY = .05

110 FIRSTX = -135

120 FOR Z = -100 TO 130 STEP 5

130

140

150

160

170

180

190

200

210

ZSQUARED = Z t Z

XSCREENADJUST = XCENTER + .75 * Z

YSCREENADJUST = 199 - <YCENTER + .5 * Z)

FOR X = FIRSTX TO 325

Y = INTtHEIGHT * SIN(FREQUENCY * SQR<X * X + ZSQUARED)) + .5)

XSCREEN = XSCREENADJUST + X

YSCREEN = YSCREENADJUST - Y

IF X > FIRSTX THEN LINE - (XSCREEN,YSCREEN) ELSE
PSET (XSCREEN,YSCREEN)

NEXT

220 NEXT

230 END

and Z coordinates and for selected constant values HEIGHT and FREQUENCY.
We have chosen the range of X values to be between -135 and 325, which selects
the section of the surface to be displayed across the screen. The resulting surface
appearance is shown in Fig. 10-18. Other ranges for X produce different sections

Figure 10-18 Three-dimensional curves plotted by Prog. 10-8.

*

248 THREE DIMENSIONS PART IV

of the surface, and we could adjust the edges of the surface by calculating the X
range as a function of Z (such as a linear or elliptical function). The Z range and
constants XCENTER, YCENTER, HEIGHT, and FREQUENCY are chosen to
fit the curve onto the screen. We have selected high resolution in Prog. 10-8 to get

Program 10-9 Three-dimensional curve plotting—displaying only visible line segments to give a
surface appearance.

lO 'PROSRAH 10-9. VISIBLE LINE PLOT OF A THREE-DIMENSIONAL GRAPH.
20 'PLOTS A SIN FlflMCTION IN 3 DIMENSIONS. Z IS VARIED
30 'FROM -lOO TO 130. FWl EACH VALUE OF Z AND THE X VALUES
40 '-135 TO 325, A V VALUE IS CALCULATED USING A MODIFIED
50 'SIN FUNCTION. X AND V ARE ADJUSTED AND PLOTTED. FOR
60 'EVERY X VALUE ON THE SCREEN (O - 639) A BIGGEST Y VALUE MtD
70 'A SMALLEST Y VALUE IS IMINTAINED, REFLECTING THE RANGE OF Y
80 'VALUES THAT HAVE ALREADY BEEN PLOTTED ON THE SCREEN AT
90 'THIS X. EACH Y (AFTER ADJUSTMENT TO FIT ON SCREEN) IS
100 'CHECKED AGAINST THIS RANGE — IF IT IS INSIDE THE RANGE
110 'NO LINE IS DRAWN. IF OUTSIDE THE RANGE WE DRAW THE LINE
120 'AND UPDATE THE SMALLEST Y OR BIGGEST Y VALUE. THE FLAGS
130 'LASTPOINT AND CHANGE ARE USED TO INDICATE WIETHER WE
140 'SHOULD JUST PLOT THE POINT INDICATED BY X AND Y (AT THE
150 'VERY START OF A VISIBLE PORTION OF THE CURVE) OR DRAW
160 'A LINE FROM THE LAST POINT TO THIS POINT (WHEN WE'RE
170 'AUREADY IN A VISION PORTION OF THE CURVE).
ISO

190 SCREEN 2: CLS
200 DIM SMALLEST(639), BIGGEST(639)
210 XCENTER = 214: YCENTER = 100
220 HEIGHT = 20
230 FREQUENCY = .05
240 FIRSTX = -135
250 LASTPOINT = 1

260 'INITIALIZE ARRAYS
270 FOR ELEMENT = 1 TO 639
2G0 BIGGEST(ELEMENT) = O: SMALLEST(ELEMENT) = lOOO
290 NEXT

300 FOR Z = -lOO TO 130 STEP 5
310 ZSQUARED = Z t Z
320 XSCREENADJUST = XCENTER + .75 * Z
330 YSCREENADJUST » 199 - (YCENTER + .5 * Z)
340 FOR X = FIRSTX TO 325 STEP 1

350 Y = INT(HEIGHT * SIN(FREQUENCY » SQR(X * X + ZSQUARED)) + .5)
360 XSCREEN = XSCREENADJUST + X
370 YSCREEN = YSCREENADJUST - Y
380 'IS THIS POINT WITHIN Tl« BOUNDS (DF WHAT'S ALREADY DRAWN?
390 IF YSCREEN >= SMALLEST(XSCREEN) AND YSCREEN <= BIGKST(XSCREEN)

THEN LASTPOINT " O: GOTO 450
400 IF LASTPOINT = O THEN CHANGE = 1
410 LASTPOINT = 1
*20 IF YSCREEN < SMALLEST(XSCREEN) THEN SMALLEST(XSCREEN) = YSCREEN:

IF BIGGEST(XSCREEN)=0 THEN BIGGEST(XSCREEN) = YSCREEN: GOTO 440
*30 IF YSCREEN > BIGGEST(XSCREEN) THEN BIGGEST(XSCREEN) = YSCREEN
**0 IF X = FIRSTX OR CHANGE = 1 THEN PSET(XSCREEN,YSCREEN): CHANGE = O

EL^ LINE - (XSCREEN,YSC»EEN)
450 NEXT

460 NEXT

470 END

Chapter 10 Displaying Solid Objects 249

smoother curves. The plotted coordinate points (XSCREEN,YSCREEN) are
calculated as offsets from XCENTER and YCENTER by the functional values X
+ 0.75 * Z and Y + Z/2. We do this in order to shift each curve a little to the right
and up the screen. This spreads the curves out and gives a three-dimensional
surface appearance.

Program 10-9 is a modification of Prog. 10-8 that eliminates overlapping
lines, as shown in Fig. 10-19. This is accomplished by drawing the curves from
"front" to "back" and by not drawing the hidden segments; that is, the curve
segments that would overlap with previously drawn lines. For each value of X, an
upper screen bound and lower screen bound of Y values is stored in arrays
SMALLEST and BIGGEST for the curves drawn previously. Any curve sections
calculated subsequently that would fall within these bounds are not drawn.
Subsequent curve sections that are outside the bounds are drawn and also cause
the bounds to be reset.

Three-dimensional curves can be plotted for any functional relationship
involving the X, Y, and Z coordinates using techniques similar to those of Prog.
10-9. Coordinate points can be calculated from equations or supplied as data
tables, such as topographic data on elevations or population density. Axes and
labeling for the three coordinate directions can be added, as in the graph of Fig.
10-17.

Figure 10-19 Three-dimensional "surface" formed from the curves in Fig. 10-18 with hidden lines
removed (Prog. 10-9).

250 THREE DIMENSIONS PART IV

PROGRAMMING PROJECTS

10-1. Lay out any three-dimensional object on graph paper, specifying (X,Y,Z) for each
point in the object. Write a program to display any selected orthographic projection
for this object.

10-2. Modify Prog. 10-1 to display three-dimensional objects with polygon faces. Input
to the program will include the X, Y, and Z coordinates for each vertex of a face.
The interior of each face may be filled using the PAINT command or using a series
of horizontal lines. The boundary of each face is formed from straight line
segments. The slope and Y-intercept of each line segment are determined from the
coordinates of the pair of vertex endpoints for that line segment. These line
equations can be used to determine coordinates for the ends of the horizontal erase
lines.

10-3. Using the method of Prog. 10-1, display a series of overlapping spheres (or other
curved surfaces), as shown in Fig. 10-6.

10-4. Use the method of Prog. 10-2 to erase the hidden lines in any display of a solid bar
whose ends are six-sided polygons (Fig. 10-20). Display all lines in the object, then
determine which face from each of the four pairs of opposite faces is invisible and
erase the hidden faces.

Figure 10-20 Hexagonal solid.

10-5. Using the method of Prog. 10-4, erase hidden lines behind circles. The program is
to display any circle, then display a specified line and erase any part of the line
hidden by the circle.

10-6. Lay out any three-dimensional object whose surfaces are convex polygons on
graph paper. Write a program to display the object and use the method of Prog. 10-
4 to erase any hidden lines. Finally, apply perspective equations (10-1) from any
specified viewing position (XV,YV,ZV).

10-7. Revise Prog. 10-6 to display visible surfaces of a three-dimensional object using the
method of Prog. 10-4 and equation (10-2).

10-8. Modify Prog. 10-4 to input concave polygon surfaces and straight lines. Find all
intersection points (there may be more than two) of a line with a surface and erase
the hidden segments.

Chapter 10 Displaying Solid Objects 251

10-9. Define a shading pattern to be used in a program displaying three-dimensional
objects. For any displayed object, shade the faces opposite from a specified light
source position.

10-10. Expand Prog. 10-7 to produce a three-dimensional bar chart with more than one
section to each bar. Draw the different sections of each bar in a different color.

10-11. Revise Prog. 10-8 to plot the three-dimensional surface with an X range that is
calculated as a linear function of Z: A * Z + B, with constants A and B chosen to

fit the surface onto the screen.

10-12. Revise Prog. 10-8 to plot the three-dimensional surface with an X range that is
calculated as the elliptical function XR = 175 * SQR(1 - Z * Z/(120 * 120)). This
function is to be used to calculate the upper and lower bounds (-XR to +XR) of the
X range for each value of Z. Values of Z will range from -120 to 4-120. Other
constants will give different sections of the surface.

10-13. Using the technique of Prog. 10-9, plot a three-dimensional surface formed from
the function

Y = A * SIN(X) + B * SIN(3 * X)

Parameters A and B are chosen so that the surface fits on the screen for the range of

X and Z plotted. Plot the surface with different determinations for the X range (as in
Projects 10-11 and 10-12).

Chapter 11

Three-Dimensional

Transformations

We now extend two-dimensional transformation methods (translation, scaling,
rotation) to include depth. These added transformation techniques will give us
considerable flexibility in manipulating both three-dimensional and two-dimen
sional displays.

11-1 TRANSLATION

Equations for two-dimensional translation are extended to three dimensions by
allowing for changes in Z coordinates. If we let H represent the amount of
horizontal displacement of a point, V the amount of vertical displacement, and D
the amount of depth displacement, then the translated position (XT,YT,ZT) of a
point originally at position (X,Y,Z) is calculated as

XT = X + H

YT = Y + V (11-1)
ZT = Z + D

Positive values for H move a point to the right on the screen. Positive values for V
move a point down the screen. Positive values for D move a point away from us,
and negative values for D move a point closer to us. Values for the translation
distances, H, V, and D, should not be chosen so large that we move points oflFthe
screen or so small that we simply replot the same points.

Pictures and graphs can be translated or animated in space by applying the
same values for the translation distances, H, V, D, to all points in the display. We
can use different values of H, V, or D for different points in the display, but then
we distort the original shapes of the display.

252

Chapter 11 Three-Dimensional Transformations 253

An example of three-dimensional translation is given in Prog. 11-1. A block
is translated and projected onto the screen. This program inputs the translation
distances, calculates the new position, and applies the perspective equations
discussed in Chapter 10 to display the translated object. For larger values of D,
the size of the block is diminished and it moves closer to the vanishing point.
Figure 11-1 shows the original and translated positions for the values H = 60, V =
60, and D = 20.

Program 11-1 Three-dimensional translation and perspective views (box).

lO 'PROORAM 11-1. TRANSLATION IN 3 DIMENSIONS.
20 'DEFINES AN OBJECT IN THREE DIMENSIONS AND TRANSLATES
30 'IT TO VARIOUS LOCATIONS. OBJECT IS DISPLAYED IN
40 'RELATION TO A VIEWING POINT IN FRONT OF THE CENTER
50 'POINT OF THE SCREEN. SYMMETRY OF OBJECT IS USED
60 'TO DETERMINE WHICH SIDES ARE VISIBLE.
70 SCREEN 1: CLS

80 DIM X<S), Y(8), Z(8), XP<8), YP(8), DISTANCEtS)
90 '«***»«***«*«*»**«»**» READ DATA POINTS ***«*«*»******«*»««**
lOO READ N

110 FOR K = 1 TO N

120 READ X(K), Y<K), Z(K)
130 IF XtKXO OR X(K)>319 OR YtKXO tW Y(K)>199 THEN 840
140 NEXT

150 FOR K = 1 TO N/2 - 1
160 LINE (X(K),Y(K)) - (X(K+1),Y(K+1))
170 NEXT

180 LINE <X<N/2), Y(N/2>) - (X<1),Y(1))
190 XV = 160 'FIX VIEWING POINT AT SCREEN CENTER
200 YV = 100

210 ZV = -100

220 '*************»******** TRANSLATE OBJECT ttttttttttttttttttttttttttt*
230 PRINT "ENTER 1000,1000,1000 TO END"
240 INPUT "H, V, & D TRANSLATION AMOUNT"; HORIZONTAL,VERTICAL,DEPTH
250 IF HORIZONTAL = 1000 AND VERTICAL = 1000 AND DEPTH = 1000 THEN 840
260 'CALCULATE NEW POINTS
270 FOR K = 1 TO N

280 XT(K) = X(K) + HORIZONTAL
290 YT(K) = Y(K) + VERTICAL
300 ZT(K) = Z(K) + DEPTH
310 NEXT

320 'FIND DISTANCES AND PUT POINTS IN PERSPECTIVE
330 FOR K = 1 TO N
340 DISTANCE(K) = SQR((XT(K)-XV)-2 + (YT<K)-YV)-2 + (ZT<K)-ZV)-2)
350 XP(K) = XV + <XT<K) - XV) * -ZV / <ZT(K) - ZV)
360 YP(K) = YV + (YT(K) - YV) * -ZV / <ZT(K) - ZV)
370 IF XP<K)>=0 AND XP(K)<=319 AND YP(K)>=0 AND YP(K)<=199 THEN 400
380 PRINT "COORDINATE OFF SCREEN. TRY AGAIN"
390 GOTO 230

400 NEXT

410 GOSUB 430 'DRAW

430 ̂ ########################*##*#* draw routine ###########################*#
440 CLS

450 '********* FRONT AND BACK FACES tttttttttttt
460 IF DISTANCEd) = DISTANCE(5) THEN 600 'NEITHER SIDE IS VISIBLE
470 IF DISTANCEd) > DISTANCE<5) THEN 540
480 IF ZT(l) <= ZV THEN 600 'IS FACE SEEN FROM THIS VIEWING POINT?
490 FOT K = 1 TO 3 'DRAW FACE CONTAINING POINT 1

254 THREE DIMENSIONS PART IV

Program 11-1 (cont.)

500 LINE (XP(K),YP(K)) - (XP(K+1),YP(K+1))
510 NEXT

520 LINE (XP<4),YP<4)) - (XP<1),YP(1))
530 GOTO 600

540 IF ZT(5) >= ZV THEN 600 'IS FACE SEEN FROM THIS VIEWING POINT?
550 FOR K = 5 TO 7 'DRAW FACE CONTAINING POINT 5
560 LINE (XP<K),YP(K)) - <XP(K+1),YP(K+1))
570 NEXT

580 LINE (XP<8),YP<8)> - (XP<5),YP(5))
590 ' SIDE FACES «*«*«««**»*»««*»»»
600 IF DISTANCEd) = DISTANCE(4) THEN 700 'NEITHER SIDE IS VISIBLE
610 IF DISTANCEd) > DISTANCE(4) THEN 660

620 IF XTd) >= XV THEN 700 'IS FACE SEEN FROM THIS VIEWING POINT?
630 LINE (XPd),YPd)) - (XP(2), YP(2)) 'DRAW FACE CONTAINING POINT 1
640 LINE - <XP(6),YP(6)>: LINE - (XP<5>, YP(5) > s LINE - (XPd>,YPd))
650 GOTO 700
660 IF XTd) <= XV THEN 700 'IS FACE SEEN FROM THIS VIEWING POINT?
670 LINE (XP(4),YP(4)) - (XP(3),YP(3)) 'DRAW FACE CONTAINING POINT 4
680 LINE - <XP(7),YP(7))! LINE - (XP<8),YP(8))s LINE - (XP(4),YP(4))
690 '«*«»*»*»*«« TOP AND BOTTOM FACES
700 IF DISTANCEd) = DISTANCE(2) TICN 790 'NEITHER SIDE IS VISIBLE
710 IF DISTANCEd) > DISTANCE(2) THEN 760
720 IF YTd) <= YV THEN 790 'IS FACE SEEN FROM THIS VIEWIM3 POINT?
730 LINE (XP(1),YP(1)) - (XP(4),YP(4)) 'DRAW FACE CONTAINING POINT 1
740 LINE - (XP(8),YP(8)): LINE - (XP(5),YP(5)): LINE - (XP(1),YP(1))
750 GOTO 790

760 IF YT(2) >= YV THEN 790

770 LINE (XP(2),YP(2)) - (XP(3),YP(3))
780 LINE - (XP(7),YP(7))r LINE - (XP(6),YP(6)):
790 RETURN

810 DATA 8

820 DATA 138,56,0,138,136,0,118,136,0,118,56,0
830 DATA 138,56,40,138,136,40,118,136,40,118,56,40
840 END

'DRAW FACE CONTAINING POINT 2

LINE- (XP(2),YP(2))

Figure 11-1 Output of Frog. 11-1, showing (a) the original and (b) translated perspective views of an
object from a viewing position of (160,100,-100).

ENTER H, U, g D TRANSLATION AMOUNT
ENTER ieee,ieee,ieee to end
oi ■

(a)

Chapter 11 Three-Dimensional Transformations 255

ENTER H. V, a D TRANSLATION AMOUNT
ENTER i6ee!ieee,ieee to ens
'> ■

(b)

Figure 11-1 (cont.)

11-2SCAUNG

Generalizing the two-dimensional scaling equations to three dimensions is accom
plished by allowing for a reduction or enlargement in the Z direction, as well as the
X and Y directions. As with two-dimensional scaling, we choose a fixed position
and calculate the new coordinate positions of each point of a display relative to
this fixed position using specified scaling factors. Taking the fixed position at
coordinates (XF,YF,ZF), we can calculate scaled coordinates (XS,YS,ZS) of a
display point from the original coordinates (X,Y,Z) as

XS = X * HS + XF * (1 - HS)
YS = Y * VS + YF * (1 - VS)
ZS = Z * DS + ZF * (1 - DS)

(11-2)

where the scaling factors for each coordinate direction are denoted as HS, VS,
and DS. Each of these scaling factors may be assigned any value greater than
zero. Values greater than 1 produce an enlargement, while values smaller than 1
reduce the size of objects.

The scaling factors HS, VS, and DS are usually all assigned the same value.
This uniformly enlarges or reduces the object by the same amount in all
directions. If we want to stretch or shrink the object by different amounts in
different directions, we could assign different values to the different coordinate
scaling factors. Large values for the scaling factors can scale objects out of range
of the screen size. Small values for the scaling factors can reduce objects to single
points.

Scaling a picture using the calculations in (11-2) is illustrated by Prog. 11-2.

0£8 ansos s£ = anoioo sozoi ansoa st+s = aawj
soEB ansos st = unonoo nshx ax < (fr's)sx qnw (i's)a > (fr's)a ji ofrs

osx, ansos 'z = anoioo soxoi ansos :s = aoyd
osx ansos 'z = anoioo soxot ansos 's = soyj

50SZ ansos si = anoioo nshx ax > (i's)sx qnw (fr's)a > (i's)a di o£s
oiz ansos nshi az > (t't+s)sz any (i's)a > (T'T+s)a ji ozs
009 ansos nshj. az < (i's>sz aNy (t'i+s)a > (I'sia di oie

ssoydans oiaxsMUAs do aiya Hoya ly >jooi< z aais s ox i = s aod oos
S~13 Oi^l7

BNixnoa Myaa osfr
OSZ OXOS OZfr

3dn9Id MVdQc OSfr sns09 09fr

1X3N OSfr

1X3N OPP
0P£ 0±09 s..Niy0V Adl ■N33d3S 330.. INIdd

N3H1 66T<(d'S)dA QNV 0>(d*S)dA dO 6T£<(d'S)dX dO 0>(d'S)dX 31 0£i7
(AZ - (d'S)SZ) / AZ- * (AA - (d'S)SA) + AA = (d'S)dA OZP
(AZ - (d*S)SZ) / AZ- * (AX - (d'S)SX) + AX = (d''S)dX OTtr

(Sv.(AZ-(d S)SZ) + 3v(AA-(d''S)SA) + (AX-(d*S)SX))dOS = (d'S)a OOfr
1SNG9Z + Sa * (d'S)Z = (d'S)SZ 06£
1SNG9A + SA * (d'S)A = (d''S)SA 082
ISNGGX + SH * (d'S)X = (d'S)SX 0Z2

(S)AN G1 T = d dG3 09£
SN G1 T = S dG3 0S£

(Sa - T) * 3Z = ISNGGZ 01r£
(SA - T) * 3A = ISNGGA 0££
(SH - T) * 3X = ISNGGX 03£

$*$$**$$$$$*$$$$ SlNIGd M3N 3iy-in3-|y3 0T£
0£3T N3H1 O = sa QNy O = SA aNV O = SH 31 00£

sa'SA'sH s..sdGi3y3 sNnras a qnu 'a 'h.. indNi 06z
nQNB G1 O'O'O d31N3.. INIdd sj'T 31V001 OBZ

AVldSIG IVIIJNI dG3 T 30 S3n"IVA 9NnTOS 3Sn^ T= SQ ST = SA^ST =^SH 093
1X3N OSS

0£3T N3H1 66T<(d'S)A dO 0>(d'S)A dO 6T£<(d'S)X dO 0>(d'S)X 31^^^"^ 0£3
(d'S)Z *(d*S)A '(d'S)X aV3d 033

(S)AN 01 T = d d03 0T3
33W3dnS SIHl d03 S33Ild3A 30 dSaWON SI AN- (S)AN ay3d 003

SN 01 T = S d03 06T
S33t>3dnS 30 dSaWON SI SN- SN aW3d 08T

SlNIOd yiWQ aV3d . OLl
OOT- = AZ 091

OT = AA OST
INIOd 9NIM3IA SI AZ'AA'AX- 09T = AX OPl

Z = 3Z 0£I
, , OTT = 3A 031

3Z 3A'3X 01 N0IlW13d NI 033^30 SI 380913- 08 = 3X OTT
(fr*OT)a '(fr'OT)dA '(fr'OT)dX WIG OOT

iP OT)SZ (fr'OT)SA '(fr'OT)SX ''(fr'OT)Z '(fr'OT)A '(fr'OT)X WIG 06
S13 SO'T d0303 :T N33d3S 08

"S3Nn N3GGIH ANW 9NISyd3 'lOO G3>INW3a- OZ
SI 3GIS 33aiSIA H3y3 30 dOId31NI 3H1 "SnaiSIA- 09

3dy S3GIS H3IHM 3NIWd313G 01 G3Sn SI lOaOd- OS
3H1 30 Adl3WWAS IWIld^d "AZ'AA'AX IV GSHISiaVlSS- OP

SI INIOd 9NIM3IA V "3Z'3A'3X 01 N0IlV33d NI II- 0£
S33V3S GNV SN0ISN3WIG 33dHl NI lOaOd V S3NI33G- 03

'SN0ISN3WIG £ NI SNIIVOS "3-1T WVdSOdd- OT

(Toqcj) SM3IA 9AiT09dsjdd puB 8UIIB3S iBuoisu9Uiip-39jqx z-ll uibjSojj

Al IdVd SN0ISN3IAIia 33aHl 992

Chapter 11 Three-Dlmensional Transformations 257

Program 11-2 (cont.)

550 IF D(S,1) < D<S,2) AND YS(S,1) > YV THEN COLOUR = 1: GOSUB 910:
FACE = S: GOSUB 1070: COLOUR = 3: GOSUB 910

560 IF D(S,2) < D<S,1) AND YS<S,2) < YV THEN COLOUR = 1: GOSUB 990:
FACE = S+l: GOSUB 1070: COLOUR = 3: GOSUB 990

570 NEXT

580 RETURN

S90 'ttttttt*********** FRONT AND BACK FACES *****

600 'DRAM FRONT FACE OUTLINE (FACE WITH POINT (S,1))
610 LINE <XP<S,1),YP<S,1)) - (XP(S,3),YP(S,3)),0,BF
620 LINE (XP(S,1),YP<S,1)) - (XP(S,3),YP(S,3)),3,B
630 IF S <> 7 THEN 700 'EL^ DRAW IN EYES
640 FOR K = 1 TO 3

650 LINE <XP<9,K),YP(9,K)) - (XP<9,K+1),YP(9,K+1))
660 LINE (XP(10,K),YP(10,K)) - (XP(10,K+1),YP(10,K+1))
670 NEXT

680 LINE (XP(9,4),YP(9,4>) - (XP(9,1>,YP(9,1))
690 LINE (XP(10,4) ,YP(10,4)) - (XPdO, 1), YPdO, 1))
700 RETURN

710 'DRAW BACK FACE (FACE WITH POINT (S-i-l,l>)
720 LINE (XP(S+1,1)YP(S+1,1) - (XP(S+1,3,YP(S+1,3)),0,BF
730 LINE (XP(S+1,1)YP(S+1,1) - (XP(S+1,3,YP(S+1,3)),3,BF
740 RETURN

750 'DRAW RIGHT FACE OUTLINE (FACE WITH POINT (S,1))
760 LINE (XP(S,1),YP(S,1)) - (XP(S,2),YP(S,2)),COLOUR
770 LINE - (XP(S+1,2),YP(S+1,2)),C0L0UR
780 LINE - (XP(S+1,1),YP(S+1,1)),COLOUR
790 LINE - (XP(S,1),YP(S,1)),COLOUR
800 XINNER = (XP(S,1) + XP(S,2) + XP(S+1,2) + XP(S+1,1)) / 4
810 YINNER = (YP(S,1) + YP(S,2) + YP(S+1,2) + YP(S+1,1)) / 4
820 RETURN

830 'DRAW LEFT FACE OUTLINE (FACE WITH POINT (S,4))
840 LIh£ (XP(S,4),YP(S,4)) - (XP(S,3),YP(S,3)),COLOUR
850 LINE - (XP(S+1,3),YP(S+1,3)),C0L0UR
860 LINE - (XP(S+1,4),YP(S+1,4)),COLOUR
870 LINE - (XP(S,4),YP(S,4)),COLOUR
880 XINNER = (XP(S,4) + XP(S,3) + XP(S+1,3) + XP(S+1,4)) / 4
890 YINhER = (YP(S,4) + YP(S,3) + YP(S+1,3) + YP(S+1,4)) / 4
900 RETURN

910 'DRAW TOP FACE OUTLINE (FACE WITH POINT (S,1))
920 LINE (XP(S,1),YP(S,1)) - (XP(S,4),YP(S,4)),COLOUR
930 LINE - (XP(S+1,4),YP(S+1,4)>,C0L0UR
940 LINE - (XP(S+1,1),YP(S+1,1)),COLOUR
950 LINE - (XP(S,1),YP(S,1)),COLOUR
960 XINNER = (XP(S,1) + XP(S,4) + XP(S+1,1) + XP(S+1,4)) / 4
970 YINNER = (YP(S,1) + YP(S,4) + YP(S+1,1) + YP(S+1,4)) / 4
980 RETURN

990 'DRAW BOTTOM FACE OUTLINE (FACE WITH POINT (8,2))
lOOO LINE (XP(S,2),YP(S,2)) - (XP(S,3),YP(S,3)),COLOUR
lOlO LINE - (XP(S+1,3),YP(S+1,3))COLOUR
1020 LINE - (XP(S+1,2),YP(S+1,2)),COLOUR
1030 LINE - (XP(S,2),YP(S,2)),COLOUR

1040 XINNER = (XP(S,2) + XP(S,3) + XP(S+1,2) + XP(S+1,3)) / 4
1050 YINNER = (YP(S,2) + YP(S,3) + YP(S+1,2) + YP(S+1,3)) / 4
1060 RETURN

1070 'FIND INTERIOR POINT
lOBO PAINT (XINNER,YINNER),2,1
1090 PAINT (XINNER,YINNER),0,1
1100 RETURN

1110 ■*******************************»*««»*«»*«t«**«**«t************

258 THREE DIMENSIONS PART IV

Program 11-2 (cont.)

1120 DATA 10

1130 DATA 4,60,140,0,60,150,0,55,150,0,55,140,0
1140 DATA 4,60,140,15,60,150,15,55,150,15,55,140,15
1150 DATA 4,75,140,0,75,150,0,70,150,0,70,140,0
1160 DATA 4,75,140,15,75,150,15,70,150,15,70,140,15
1170 DATA 4,80,90,0,80,140,0,50,140,0,50,90,0
1180 DATA 4,80,90,15,80,140,15,50,140,15,50,90,15
1190 DATA 4,75,70,0,75,90,0,55,90,0,55,70,0
1200 DATA 4,75,70,15,75,90,15,55,90,15,55,70,15
1210 DATA 4,70,75,0,72,77,0,70,80,0,68,77,0
1220 DATA 4,60,75,0,62,77,0,60,80,0,58,77,0
1230 END

This program scales a robot figure to any specified size relative to a fixed point on
the robot. The robot is originally placed in the lower left comer of the screen,
facing toward us. A viewing position, for perspective, is chosen to the right and
above the robot. Visibility of the robot surfaces is determined relative to this
point, and the scaled robot is drawn from the feet up, left to right. Figure 11-2
shows the output for both a size increase and decrease. Input to the program can
be set up to allow alternate picture definitions, variations of the fixed point and
viewing point, and various scaling factors, HS, VS, and DS.

We can apply these same scaling techniques to graphs in three dimensions.

ENTER 0.0,0 TO END
H, U, AND D SCALING FACTORS?

(a)

Figure 11-2 Scaling a figure in three-dimensions. This output of Prog. 11-2 shows (a) the original,
(b) an enlarged perspective view, and (c) a reduced perspective view. The viewing position is at
coordinates (160,10,-100).

Chapter 11 Three-Dimensional Transformations 259

ENTER e.e,e to end
H, U, AftD D SCALING FACTORS?

Tvrr (b)

ENTER e.e,e to end
H, U, AfiD D SCALING FACTORS?

TPTjj' (c)

Figure 11-2 (cont.)

But in many cases we can set up a graph showing three or more variable
relationships with all screen coordinate positions specified in just two dimensions.
For these situations, two-dimensional scaling methods are sufficient to handle
reduction or enlargement requirements, as discussed in Chapter 7.

260 THREE DIMENSIONS PART IV

11-3 ROTATION

We have seen that an object can be rotated through an angle A about a specified
point (XO,YO) in the X,Y plane by transforming ail X and Y coordinates to
rotated values (XR,YR) through the calculations

XR = XO + (X - XO) * COS(A) + (Y - YO) * SIN(A)

YR = YO + (Y - YO) * COS(A) - (X - XO) * SIN(A)
(11-3)

The angle A in these calculations must be specified in radians and is measured in a
counterclockwise direction from position (X,Y) to position (XR,YR). Considering
a three-dimensional object, such as the box in Fig. 11-3, we can visualize this
rotation as occurring about a line through the point (XO,YO) that is parallel to the
Z axis. All points of the object would be rotated about this line. This rotation
would leave all Z coordinates unchanged.

In a similar way we can consider rotating three-dimensional objects about
axes in other directions. Figure 11-4 shows a rotation axis that is parallel to the Y
axis and through a point (XO,ZO). Rotation about this line would change each of
the X and Z coordinates of the box to rotated values XR and ZR. We calculate XR

and ZR from the equations

XR = XO + (X - XO) * COS(A) - (Z - ZO) * SIN(A)

ZR = ZO -I- (Z - ZO) * COS(A) -I- (X - XO) * SIN(A)
(11-4)

This rotation leaves Y values unchanged. Angle A in these calculations is
measured in a counterclockwise direction as we look down on the "top" of the

Z axis

(XO, YO)

Rotation axis

X axis

Y axis

Figure 11-3 Rotating an object about
an axis in the Z direction changes X and
Y coordinates, but leaves Z coordinates

unchanged.

Chapter 11 Three-Dimensional Transformations 261

Z axis

• X axis

(XO, ZO)

Rotation axis-

Y axis

Figure 11-4 Rotating an object about
an axis in the Y direction changes X and
Z coordinates, but leaves Y coordinates

unchanged.

box. Another way to describe this direction of rotation is to imagine that we are
standing at the origin of the coordinate system and looking along the positive Y
axis. An object rotates counterclockwise for this viewing direction. If we want
objects to rotate the other way, we use negative radian values for the angle A in
calculations (11-4).

In Fig. 11-5, we take the rotation axis to be parallel to the X axis. If we
rotate the box about this axis, each of the Y and Z coordinates of the box would be

Z axis

X axis

Rotation

'(VO, ZO)

Y axis

Figure 11-5 Rotating an object about
an axis in the X direction changes Y and
Z coordinates, while leaving X values
unchanged.

262 THREE DIMENSIONS PART IV

rotated to coordinates YR and ZR. These new coordinates are calculated from the

relations

YR = YO + (Y - YO) * COS(A) + (Z - ZO) * SIN(A)
(11-5)

ZR = ZO + (Z - ZO) * COS(A) - (Y - YO) * SIN(A)

The X values for this rotation are unchanged. Viewing the box on its "left" side
(or standing at the origin and looking along the positive X axis), we have a
counterclockwise direction of rotation for the angle A.

Many other rotation axes could be selected, but we can accomplish any
other type of rotation with a combination of the three we have discussed. Rotating
an object about an axis parallel to the Z axis (Fig. 11-3) simply "spins" the object,
always presenting the same side to our view. Rotating an object about an axis
parallel to the Y axis (Fig. 11-4) gives us side views of the object. Rotating about
an axis parallel to the X axis (Fig. 11-5) gives us top and bottom views. To
produce any combination of views, such as top and left side, we can transform an
object through two or more rotations. The order in which rotations are applied is
important, since we may get a different view by reversing the order of any two
rotations.

Program 11-3 rotates a die in any combination of the three rotational

Program 11-3 Three-dimensional rotations (die).

10 'PROGRAM 11-3. ROTATION IN 3 DIMENSIONS

20 'DEFINES A SINGLE DIE IN THR^E DIMENSIONS. POINTS FOR
30 'THE SIX FACES AND ALL SPOTS ARE STORED IN XR,YR,ZR.
40 'DIE CAN BE ROTATED ANY NUMBER OF DEGREES AROUND ANY

50 'AXIS. SYMMETRY OF THE SHAPE IS USED TO DETERMINE

60 'WHICH SIDES ARE VISIBLE.

80 SCREEN 1: CLS

90 DIM XR(29), YR(29), ZR(29)
100 READ XO, YO, ZO
110 FOR K = 1 TO 29

120 READ XR<K), YR<K), ZR(K)
130 IF XR(K)<0 OR XR(K)>319 OR YR(K)<0 OR YR<K)>199 THEN 1020

140 NEXT

150 GOSUB 460

160 LOCATE 1,1: PRINT "ENTER Q TO QUIT"
170 INPUT "ROTATE AROUND WHAT AXIS"; R«
180 IF M = "Q" THEN 1020

190 INPUT "HOW MANY DEGREES"; A
200 A = A * 3.14159 / 180 'CONVERT A TO RADIANS

210 COSA = COS(A): SINA = SIN(A)

220 'tttttttttttttttt CALCULATE NEW POINTS tttttttttttttttttttt

230 IF R* = "X" THEN 260

240 IF R* = "Y" THEN 320

250 IF R« = "Z" THEN 380

260 FOR K = 1 TO 29 'AROUND X AXIS

270 YS = YR(K)

280 YR<K) = INT(YO + (YR(K) - YO) « COSA + (ZR<K) - ZO) « SINA + -5)

290 ZR(K) = INT(ZO + (ZR(K) - ZO) * COSA - (YS - YO) « SINA + .5)

Chapter 11 Three-Dimensional Transformations 263

Program 11-3 (cont.)

300 NEXT

310 GOTO 430

320 FOR K = 1 TO 29 'AROUND Y AXIS

330 XS = XR<K) 'SAVE XR(K) FOR USE IN ZR CALCULATION

340 XR(K) = INT<XO + (XR<K) - XO) * COSA - (ZR(K) - ZO) * SINA + -5)

350 ZR(K) = INT(ZO + (ZR(K) - ZO) « COSA + (XS - XO) * SINA + .5)

360 NEXT

370 GOTO 430

380 FOR K = 1 TO 29 'AROUND Z AXIS

390 XS = XR(K) 'SAVE XR<K) FOR USE IN VR CALCULATION

400 XR(K) = INT<XO + (XR<K) - XO) t COSA + <YR(K) - YO) * SINA + .5)

410 YR(K) = INT<YO + (YR(K) - YO) * COSA - (XS - XO) * SINA + -5)

420 NEXT

430 GOSUB 450

440 GOTO 160

450 'tttttttttttttttt DRAW ONLY VISIBLE FACES ttttttttttttttttt

460 CLS

470 IF ZR(1) = ZR(5) THEN 630 'NEITHER SIDE IS VISIBLE

480 IF ZR(1) > ZR(5) THEN 560

490 FOR K = 1 TO 3 'DRAW FACE CONTAINING 1 SPOT

500 LINE (XR(K),YR(K)) - (XR(K+1),YR(K+1))
510 NEXT

520 LINE (XR(4),YR(4)) - (XR(1),YR(1))
530 CIRCLE (XR(9),YR(9)),1
540 GOTO 630

550

560 FOR K = 5 TO 7 'DRAW FACE CONTAINING 6 SPOTS
570 LINE (XR(K),YR(K)) - (XR(K+1),YR(K+1))
580 NEXT

590 LINE (XR(8),YR(8)) - (XR(5),YR(5))
600 FOR K = 24 TO 29

610 CIRCLE (XR(K),YR(K)),1
620 NEXT

630 IF ZR(1) = ZR(4) THEN 770 'NEITHER SIDE IS VISIBLE
640 IF ZR(1) > ZR(4) THEN 720

650 LINE (XR(1),YR(1)) - (XR(2),YR(2)) 'DRAW FACE CONTAINING 4 SPOTS
660 LINE - (XR(6),YR(6)): LINE - (XR(5),YR(5)): LINE (XR(1),YR(1)
670 FOR K = 15 TO 18

680 CIRCLE (XR(K), YR(K)),1
690 NEXT

700 GOTO 770

710

720 LINE (XR(4),YR(4)) - (XR(3),YR(3)) 'DRAW FACE CONTAINING 3 SPOTS
730 LINE - (XR(7),YR(7)): LINE - (XR(8),YR(8)): LINE - (XR(4),YR(4))
740 FOR K = 12 TO 14

750 CIRCLE (XR(K),YR(K)),1
760 NEXT

770 IF ZR(1) = ZR(2) THEN 910 'NEITHER SIDE IS VISIBLE
780 IF ZR(1) > ZR(2) THEN 860

790 LINE (XR(1),YR(1)) - (XR(4),YR(4)) 'DRAW FACE CONTAINING 2 SPOTS
800 LINE - (XR(8),YR(8)): LINE - (XR(5),YR(5)): LINE - (XR(1),YR(1))
810 FOR K = 10 TO 11

820 CIRCLE (XR(K),YR(K)),1
830 NEXT

840 GOTO 910

850

860 LINE (XR(2),YR(2)) - (XR(3),YR(3)) 'DRAW FACE CONTAINING 5 SPOTS
870 LINE - (XR(7),YR(7)): LINE - (XR(6),YR(6)): LINE - (XR(2),YR(2))
880 FOR K = 19 TO 23

890 CIRCLE (XR(K),YR(K)),1

264 THREE DIMENSIONS PART IV

Program 11-3 (cont.)

900 NEXT

910 RETURN

920 'tt

930 DATA 140,80,124
940 DATA 164,56,100,164,104,100,116,104,100,116,56,100
950 DATA 164,56,148,164,104,148,116,104,148,116,56,148
960 DATA 140,80,100
970 DATA 128,56,136,152,56,112
980 DATA 116,68,136,116,80,124,116,92,112
990 DATA 164,68,112,164,68,136,164,92,112,164,92,136
1000 DATA 128,104, 112,128,104, 136, 140, 104, 124,152,104,112, 152,104,136
1010 DATA 128,68,148,140,68,148,152,68,148,128,92,148,140,92,148,152,92,148
1020 END

transformations. Figure 11-6 shows the output of this program for rotation angles
about each of the three axes we have discussed. In each case, an axis was chosen
that passed through the center of the die. No perspective transformation was
applied to the displayed view.

Figure 11-6 Rotated views of a three-dimensional object (Prog. 11-3): (a) original view, (b) rotated
155 degrees about an X axis, (c) rotated 28 degrees about a Z axis, then (d) rotated 45 degrees about a Y
axis.

ENTER Q TO QUIT
ROTATE AROUND NHAT AXIS? ■

(a)

ENTER Q TO QUIT
ROTATE AROUND UHAT AXIS?

(b)

Chapter 11 Three-Dimensional Transformations 265

ENTER Q TO QUIT
ROTATE AROUND MHAT AKIS?

\S " i

(0 \/"

ENTER Q TO QUIT
ROTATE AROUND MHAT AyIS?

.x' <•

fC'* ■'
•> /<•

(d)

<•

■>

Figure 11-6 (cont.)

n-4 COMBINED TRANSFORMATIONS

We can collect the programs for the various transformations into one set of
general routines. This general program could be organized so that an input figure
is displayed and transformed through any combination of translation, scaling,
rotation, and perspective views. We can use an interactive selection procedure for
the transformations to be applied, with a termination signal to end the program. A
hidden line (or surface) routine can be used to display only the visible sides of the
object after a rotation or perspective transformation.

266 THREE DIMENSIONS PART IV

PROGRAMMING PROJECTS

11-1. Animate an object in three dimensions. The object is to be translated back and forth
across the screen with alternating positive and negative increments for the X and Z
directions. Initially move the object from left to right and increase the Z coordinate.
When the object reaches the right side of the screen, reverse the X motion, leaving
Y and Z coordinates constant. When the object returns to the left side of the screen,

reverse the X direction and begin incrementing the Z coordinate in a negative
direction. Repeating this motion, in perspective, moves the object along a figure 8
pattern in the X,Z plane.

11-2. Revise the program in Project 11-1 to animate an object along any three-
dimensional curve.

11-3. Animate an object along a straight-line path in three dimensions that passes
''behind" a rectangular wall drawn on the screen. Do not display parts of the object
that are hidden by the wall. The program can be generalized to include several
"wall" areas of various shapes.

11-4. Write a program to scale any two-dimensional or three-dimensional object by
increasing its Z-coordinate position and applying the perspective equations.

11-5. Write an interactive animation program that moves an airplane (or other object)
around in the Z direction as it flies back and forth across the screen in the X

direction. Use either joystick or keyboard input to control the Z motion. For
joystick input, the Y coordinate input can be converted to Z coordinates. For
keyboard input, the up and down arrows on the numeric keypad can be used. Either
scale the airplane or apply perspective transformations to change its size to
correspond to the Z movement. To make this into a game, the Z movement can be
used to dodge objects that get into the airplane's path. The Z coordinates for both
the airplane and the other objects can be printed on the screen as a means for deter
mining the relative depth of objects. The airplane can then be made to fly in front or
in back of the other object. Erase the airplane when it flies in back of an object;
erase an object when the airplane flies in front of it.

11-6. Set up a program to scale a three-dimensional object in an arbitrary direction. This
is done by rotating the object to any specified position, then scaling in the X, Y, and
Z directions.

11-7. Write a program that displays words written in large letters that decrease in size
into the distance. This can be accomplished by rotating the word about a vertical
line (parallel to the Y axis) through the left side of the word and applying the
perspective equations. The word can then be translated (and scaled) to any screen
position.

11-8. Write a program to display a globe formed with a rotated circle. Rotating a circle in
three 30-degree steps about a diameter parallel to the Y axis produces a sphere
shape with meridian lines. Taking smaller angular rotation steps, from the original
position to 90 degrees, creates more meridian lines. The lines of latitude are drawn
horizontally between the boundaries of the original circle position.

11-9. Repeat the method of Project 11-8 to form a cylinder by rotating a rectangle about a
vertical axis, then about a horizontal axis to show the top or bottom. Erase hidden
lines.

Chapter 11 Three-Dimensional Transformations 267

11-10. Write a program to display a ''solid of revolution" formed from a straight line.
Draw a diagonal line with different Z values for each endpoint. Then rotate the line
about a vertical axis (parallel to the Y axis) through its midpoint. Rotating about a
horizontal axis through the line midpoint then displays the ends of the hourglass
figure. A hidden-line method can be applied to produce a realistic solid figure.

11-11. Set up a program to display a "solid of revolution" formed from a parabola. A
displayed parabola can first be rotated about a vertical line (parallel to the Y axis)
through its center in small angular steps from its original position to 180 degrees.
Then, rotating it about a horizontal line (parallel to the X axis) that passes through
the parabola will display the concave interior. Lines can be drawn joining the
endpoints of the rotated parabola to give the figure a cup appearance.

11-12. Set up a three-dimensional bar chart at the screen center and apply rotations,
translation, and perspective to position it at any other screen location and
orientation.

11-13. Devise a general three-dimensional transformation program that combines the
various transformations, the perspective equations, and a hidden line (or surface)
method, each written as a separate subroutine. For any object input to the program,
a particular transformation is to be selected from a displayed menu and the object is
then transformed and drawn in perspective with hidden lines removed. Transforma
tions are to be repeatedly selected until a termination input (such as typing STOP) is
given. Menu options may be chosen from the keyboard or with a light pen or
joystick. Similarly, the input object may be specified in data statements or
constructed interactively.

Pott V

APPLICATIONS

The methods for creating and manipulating pictures and graphs that we have
explored in the preceding chapters have a wide range of applications. We will look
at some of the ways we can use graphics in business, in the classroom, and at
home.

269

Chapter 12

Business Graphics

Business use of computer graphics represents one of the largest and most
diversified applications areas. Computer-generated graphs, charts, and pictures
are commonly used as aids to financial analysis, marketing studies, planning, and
decision making. These are typical functions in many different kinds of organiza
tions. We can create graphs and charts to provide information on budgets,
inventories, cash flow, net income, interest rates, return on investments, or
portfolio analysis. We can plot graphs to show comparisons in pricing or product
characteristics between competitors, to show regional buying habits, or to show
sales trends plotted by region, salesperson, or year. Graphs of demographic data
can be useful for locating potential customers or adjusting sales territories.
Network graphs and time charts provide aids for project management. Pictorial
layouts can help in planning for facility and equipment placement.

We can set up business graphs and charts so as to present data by geographic
area or by division within an organization. We can also graphically correlate new
data with old in order to provide quick comparison or for indicating future trends.
Such graphs are used in internal reports, status reports to customers, or
presentations. In this chapter, we discuss some of the methods for producing
various types of business graphs and charts.

12-1 GENERAL TECHNIQUES

Graph-plotting methods were introduced in Chapters 4 and 5. We now consider
some extensions to these basic methods that are commonly used in business
graphics.

A common technique used with pie charts is to emphasize one or more

271

272 APPLICATIONS PART V

PERSONNEL DIUISION EXPENSES

.SALARIES

RECRUITMENT i

A.. \

TRAVELS

.TRAINING

Figure 12-1 Exploded pie chart displayed by Prog. 12-1.

sections by displacing the sections radially out from the center. An example of
such an exploded pie chart is shown in Fig. 12-1. The technique used in Prog. 12-1
to produce this chart is based on the method we discussed in Section 5-4 for
positioning labels on pie charts. We first determine the angular bounds of the
section to be exploded. Then we calculate the angle of the radius line for the
middle of this section. Finally, we locate a center point for the exploded section
out from the chart center along this radius and draw the section from that point.

Program 12-1 Exploded pie chart.

10 'PROGRAM 12-1. EXPLODED PIE CHART.

20 'MAKES LABELED PIE CHART WITH ANY SINGLE SECTION EXPLODED-
30 DIM LABELS(S), VALUE(8)
40 SCREEN O: WIDTH 80: CLS

50 PIXELSPERCOLUMN = 8: PIXELSPERROW = 8
60 INPUT "CENTER COORDINATES FOR PIECHART"5 XNORMAL,YNORMAL
70 INPUT "RADIUS"; RADIUS
80 IF XNORMAL+RADIUS > 319 OR XNORMAL-RADIUS < O OR YNORMAL+RADIUS > 199 OR

YNORMAL-RADIUS < O THEN 570
90 'ttttttttttttttttttttttt* INPUT DATA tttttttttttttttttttt*
100 INPUT "TITLE"; TITLE*
110 INPUT "NUMBER OF DIVISIONS (UP TO 8)"; DIVISIONS
120 PRINT "ENTER NAME AND VALUE FOR EACH DIVISION"
130 TOTAL = O

140 'INPUT DATA. FIND TOTAL OF ALL VALUES.
150 FOR K = 1 TO DIVISIONS

160 INPUT LABEL*(K), VALUE(K)
170 TOTAL = TOTAL + VALUE(K)

180 NEXT

Chapter 12 Business Graphics 273

Program 12-1 (cont.)

190 PRINT "EXPLODE WHICH DIVISION (i STR^(DIVISIONS);
200 INPUT EXPLODER

210 IF EXPLODER < 1 OR EXPLODER > DIVISIONS THEN 190

220 ' MAKE PIE CHART ttttttttttttttttt

230 SCREEN 1: CLS

240 LOCATE 1,20-LEN(TITLE*)/2: PRINT TITLE*
250 BEFORE = 0

260 FOR K = 1 TO DIVISIONS

270 XCENTER = XNORMAL

280 YCENTER = YNORMAL

290 'LINE TO PLOT IS BASED ON THE VALUE OF THIS

300 'DIVISION PLUS PRECEDING DIVISIONS

310 ANGLE = BEFORE -i- 6.28318 t VALUE (K) / TOTAL

320 BISECTANGLE = 6.28318 - ((ANGLE + BEFORE) / 2)

330 IF K <> EXPLODER THEN 370 'IS THIS SECTION TO EXPLODE?

340 XEXPLODE = XCENTER + INT(RADIUS / 5 * COS(BISECTANGLE) + .5)

350 YEXPLODE = YCENTER + INT(RADIUS / 5 * SIN(BISECTANGLE) * .9199999 + .5)

360 XCENTER = XEXPLODE: YCENTER = YEXPLODE

370 CIRCLE (XCENTER,YCENTER),RADIUS,,-BEFORE,-ANGLE,.9199999
380 'PUT LABEL ON DIVISION

390 'FIND A POINT 4 UNITS OUTWARD FROM THE CENTER

400 'POINT OF THE ARC BELONGING TO THE DIVISION

410 XLABEL = XCENTER + (RADIUS + 4) * COS(BISECTANGLE)

420 YLABEL = YCENTER + (RADIUS + 4) * SIN(BISECTANGLE) * -9199999

430 '(XLABEL,YLABEL) IS THE POINT USED TO ANCHOR LABEL
440 'USE THE POINT AS START OF LABEL IF IT'S ON RIGHT

450 'SIDE OF CIRCLE, AS END OF LABEL IF IT'S ON LEFT,
460 'AS MIDPOINT IF IT'S ON TOP OR BOTTOM OF CIRCLE

470 IF XLABEL > XCENTER - 10 AND XLABEL < XCENTER + 10 THEN

XLABEL = XLABEL - LEN(LABEL*(K)) / 2 « PIXELSPERCOLUMN: GOTO 490

480 IF XLABEL < XCENTER - lO THEN

XLABEL = XLABEL - LEN(LABEL*(K)) * PIXELSPERCOLUMN

490 'CONVERT THE PIXEL LOCATION (XLABEL,YLABEL) TO THE CLOSEST
500 'CORRESPONDING PRINT POSITION

510 ROW = INT(YLABEL / PIXELSPERROW) + 1

520 COLUMN = INT(XLABEL / PIXELSPERCOLUMN) + 1

530 LOCATE ROW,COLUMN: PRINT LABEL*(K);
540 BEFORE = ANGLE

550 NEXT

560 GOTO 580

570 PRINT "COORDINATE OUT OF RANGE"

580 IF INKEY* = "" THEN 580

590 END

Program 12-1 exploded sections by taking the displacement distance out from the
center to be one-fifth of the radius of the chart. Color and shading patterns can be
added, as illustrated in Fig. N of the color insert, to aid in separating and
identifying the pie sections.

There are times when we would like to produce graphs showing negative
quantities, such as financial losses. We can do this by plotting negative values
below a horizontal axis, as shown in Fig. 12-2. These graphs are produced by
simply extending the vertical axis below the horizontal axis and labeling both
positive and negative values.

Plotting two types of graphs on the same axis is an effective means for
condensing charts or comparing data. Program 12-2 gives an example of plotting a
bar chart on one part of the horizontal axis and a curve on another part. Different
scaling is used for each part of the horizontal axis, while one vertical axis serves

APPLICATIONS PART V

FINANCIAL SyMMARV

THOUSANDS

J F M A H
A E A F A
N B R H V

J A S O N

G P T
C 0

Figure 12-2 Graph scaled to show both positive and negative quantities.

Program 12-2 Combination graphs: bar chart and line graph.

'PROGRAM 12-2. COMBINED BAR AND CURVE CHART ON X AXIS,
'WITH SAME SCALING ON Y AXIS.

'SALES VALUES (in the range of O - 800) ARE SCALED TO PIXELS
'28 - 156. MONTHS USE EVERY 40 PIXELS, STARTING AT 148.

DIM X(12), Y(12)
SCREEN 2: CLS

LOCATE 1,34: PRINT "SALES FIGURES"
LOCATE 3,10: PRINT "THOUSANDS";
LINE (128,24) - (608,163),,B

'MAKE NOTCHES FOR SALES MAGNITUDES

FOR Y = 28 TO 156 STEP 8

LINE (125,Y) - (131,Y)
NEXT

'LABEL THE NOTCHES

ROW = 20

FOR S = O TO 800 STEP 100

LOCATE ROW,13: PRINT USING "###"; S
ROW = ROW - 2

NEXT

'MAKE NOTCHES FOR QUARTERS AND WEEKS

FOR COLUMN = 24 TO 40 STEP 8

LOCATE 21,COLUMN: PRINT "+";
NEXT

FOR COLUMN = 48 TO 73 STEP 5

LOCATE 21,COLUMN: PRINT "+";

Chapter 12 Business Graphics 275

Program 12-2 (cont.)

270 NEXT

280 PRINT TAB(22);"FIRST SECOND THIRD 40 42 44 46 48 50"
290 PRINT TAB(22);" QUARTERS WEEKS"
300 LOCATE 13,3: PRINT " SALES"
310 'DRAW CHART BARS

320 RANGERATIO = (156 - 28) / (800 - O)

330 X = 163

340 FOR K = 1 TO 3

350 READ SALES

360 Y = INT ((800 - SALES) * RANGERATIO + 28-5)

370 LINE (X,Y) - (X+40,156),,BF
380 X = X + 64

390 NEXT

400 'DRAW WEEKLY CURVE

410 X = 384

420 FOR K = 1 TO 6

430 READ SALES

440 Y(K) = INT((800-SALES) * RANGERATIO + 28.5)

450 NEXT

460 FOR K = 1 TO 5

470 LINE (X,Y(K)) - (X+40,Y(K+1))
480 X = X + 40

490 NEXT

500 DATA 310,420,599,598,623,592,670,740,695
510 IF INKEY* = "" THEN 510

520 END

both graphs. This allows us to plot portions of a data set, for example, in two
different forms. Figure 12-3 shows the resulting output.

Presenting data in different graphical forms can aid in interpreting the data.
Program 12-3 outlines a modular design that allows us to choose the graph or

Program 12-3 General graphing program—allowing graph type to be chosen.

10 'PROGRAM 12-3. GENERALIZED GRAPHING PROGRAM.

20 'ALLOWS INTERACTIVE INPUT OF DATA AND CHOICE OF
30 'CHART FORMAT (LINE, BAR, OR PIE CHARTS).
40 DIM LABEL^dO), VALUE(IO)
50 SCREEN 2: CLS

60 PC = 8 'PC IS HORIZONTAL PIXELS PER CHARACTER
70 PR = 8 'PR IS VERTICAL PIXELS PER CHARACTER

80 YADJUST = .46 'YADJUST IS RESOLUTION ADJUSTMENT
90 PRINT "1 - LINE 2 - BAR 3 - PIE"
lOO INPUT "WHAT KIND OF CHART"; CHART*
110 INPUT "TITLE OF CHART";TITLE*
120 IF CHART* = "1" OR CHART* = "2" THEN GOSUB 170
130 IF CHART* = "1" THEN GOSUB 510

140 IF CHART* = "2" THEN GOSUB 610

150 IF CHART* = "3" THEN GOSUB 700

160 GOTO 1130

170 '####################«##### LINE OR BAR CHART ############################
180 INPUT "ENTER NUMBER OF DIVISIONS";N
190 D = INT(568 / N)

200 PRINT "ENTER NAME AND VALUE OF EACH DIVISION"
210 FOR K = 1 TO N

220 INPUT LABEL*(K),VALUE(K)
230 IF LEN(LABEL*(K)) < D/8 THEN 260 'WILL THE LABEL FIT?
240 PRINT "LABEL TOO LONG. MAXIMUM LENGTH IS";D/8
250 INPUT "NEW LABEL"; LABEL*(K)
260 NEXT

276 APPLICATIONS PART V

Program 12-3 (cont.)

270 INPUT "MINIMUM AND MAXIMUM VALUES FOR VERTICAL AXIS"; LG,HI
280 RANGE = HI - LG 'R IS RANGE GF VALUES

290 RS = <180 - 20) / RANGE 'RS IS RATIO TO USE IN SCALING

300 CLS

310 LINE (71,20) - (639,180),,B
320 P = 40 - LEN(TITLE*) / 2 'CENTER THE TITLE

330 LOCATE 1,P: PRINT TITLE*
340 ROW = 23

350 Y = 180

360 FOR K = O TO 5 'LABEL VERTICAL AXIS WITH SUCCESSIVE FIFTHS

370 LOCATE ROW,1 'OF THE SCALING RANGE
380 L = LO + RANGE * K / 5

390 PRINT USING ;L
400 LINE (70,Y) - (639,Y)
410 ROW = ROW - 4

420 Y = Y - 32

430 NEXT

440 'LABEL THE DIVISIONS

450 LOCATE 25,1
460 FOR K = 1 TO N

470 P = INT((72 + (K-1) * D + D/2) /PC - LEN(LABEL*(K))/2 + .5) + 1
480 PRINT TAB(P);LABEL*(K);
490 NEXT

500 RETURN

520 FOR K = 1 TO N

530 Y(K) = INT((HI - VALUE(K)) * RS + 20.5)

540 NEXT

550 X = 71 + D/2

560 FOR K = 1 TO N-1

570 LINE (X,Y(K)) - (X+D,Y(K+1))
580 X = X + D

590 NEXT

600 RETURN

610 '***#«###*###«###«##*#####*######## BAR CHART *##**#«#«###«##########*
620 YO = INT(HI * RS + 20.5) 'FIND WHERE O IS
630 X = 71 + D/6

640 FOR K = 1 TO N

650 Y = INT((HI - VALUE(K)) * RS + 20.5)
660 LINE (X,Y) - (X+D*2/3,YO),,BF
670 X = X + D

680 NEXT

690 RETURN

700 '########################*######«#### PIE CHART ###««########«#»######
710 XCENTER = 320

720 YCENTER =110

730 RADIUS = 160

740 INPUT "NUMBER OF DIVISIONS (UP TO 6)"; N
750 PRINT "ENTER NAME AND VALUE FOR EACH DIVISION"
760 TOTAL = O

770 'INPUT DATA. FIND TOTAL (T) OF ALL VALUES.
780 FOR K = 1 TO N

790 INPUT LABEL*(K), VALUE(K)
800 IF VALUE(K) > O THEN 820

810 IF VALUE(KXO THEN PRINT "MUST BE POSITIVE. DO OVER":

INPUT VALUE(K): GOTO 810

820 TOTAL = TOTAL + VALUE(K)

830 NEXT

840 CLS

850 P = 40 - LEN(TITLE*) / 2 'CENTER THE TITLE
860 LOCATE 1,P: PRINT TITLE*
870 BEFORE =0 'B IS ANGLE THAT DETERMINED PRECEDING LINE
880 FOR K = 1 TO N

Chapter 12 Business Graphics

Program 12-3 (cont.)

890 'LINE TO PLOT IS BASED ON THE VALUE OF THIS

900 'DIVISION PLUS PRECEDING DIVISIONS

910 ANGLE = BEFORE + <>.28318 * VALUE (K> / TOTAL

920 CIRCLE (XCENTER.YCENTER).RADIUS,,-BEFORE,-ANGLE,YADJUST
930 'PUT LABEL ON DIVISION

940 'FIND A POINT 4 UNITS OUTWARD FROM THE CENTER

950 'POINT OF THE ARC BELONGING TO THE DIVISION

960 BISECTANGLE = 6.28318 - ((BEFORE + ANGLE) / 2)

970 XLABEL = XCENTER + (RADIUS + 4) » COS(BISECTANGLE)

980 YLABEL = YCENTER + (RADIUS + 4) » SIN(BISECTANGLE) * YADJUST

990 '(XLABEL,YLABEL) IS THE POINT USED TO ANCHOR LABEL
1000 'USE THE POINT AS START OF LABEL IF IT'S ON RIGHT

1010 'SIDE OF CIRCLE, AS END OF LABEL IF IT'S ON LEFT,
1020 'AS MIDPOINT IF IT'S ON TOP OR BOTTOM OF CIRCLE

1030 IF XLABEL > XCENTER - 10 AND XLABEL < XCENTER + 10 THEN
XLABEL = XLABEL - LEN(LABELS(K)) / 2 * PCs GOTO 1050

1040 IF XLABEL < XCENTER - lO THEN

XLABEL = XLABEL - LEN(LABELS(K)) « PC

1050 'CONVERT THE PIXEL LOCATION (XLABEL,YLABEL) TO THE CLOSEST
1060 'CORRESPONDING PRINT POSITION

1070 ROW = INT(YLABEL / PR)+1

1080 COLUMN = INT(XLABEL / PC)+1

1090 LOCATE ROW,COLUMN: PRINT LABELS(K);
llOO BEFORE = ANGLE

1110 NEXT

1120 RETURN

1130 IF INKEYS = "" THEN 1130

1140 END

Figure 12-3 A combination bar chart and line graph produced by Prog. 12-2, showing one vertical
scale and two different horizontal scales.

SALES FIGURES

THOUSANDS

III
FIRST SECOND THIRD

QUARTERS
40 42 44 4S 48 50

NEERS

278 APPLICATIONS PART V

chart type, as well as the data to be plotted. This general design can be useful for
producing diflferent graph forms with the same data and to experiment with
various parameter changes.

12-2 COMPARATIVE GRAPHS

We can plot two or more sets of data within one graph in order to compare
relationships between variables, such as sales of products in relation to district or
in relation to salesperson. There are several ways we can set up such comparative
graphs.

In a bar graph, we can compare two sets of data by overlapping the bars
(Fig. 12-4). Programs to produce this type of comparative graph can plot each
data set in a diflferent shading as in Prog. 12-4. The bars for one data set are shifted
slightly and drawn over the bars of the other set. We could also construct such
graphs in SCREEN 1, and plot the bars as diflferent-colored, filled-in boxes.

Another type of comparative bar chart is shown in Fig. 12-5. This graph was

100.0

Figure 12-4 Comparative bar graph from Prog. 12-4, showing overlapping bars from two data sets
plotted on the same axes.

SALES (in humipeds of itons)

Chapter 12 Business Graphics 279

produced by Prog. 12-5. In this example, the two data sets share the same X axis,
but have different Y axes. This arrangement allows us to use a different vertical
scaling for each data set.

Curves can be compared by simply plotting multiple sets of data points on

Program 12-4 Comparative graph: overlaid bar charts.

10 'PROGRAM 12-4. TWO SETS OF DATA WITH OVERLAPPING BARS-

20 'PLOTS BARS FOR TWO SETS OF DATA SHARING THE SAME X AND Y AXIS.

30 DIM LABEL*(12), VALUE1(12), VALUE2(12)
40 SCREEN 2: CLS

50 PC = 8 'PC IS HORIZONTAL PIXELS PER CHARACTER

60 '«««»«««»«««»««»««»««« INPUT CHART LABELS AND DATA

70 INPUT "TITLE OF CHART";TITLE*
80 INPUT "NAME OF FIRST SET OF DATA"; TITLEl*
90 INPUT "NAME OF SECOND SET OF DATA"; TITLE2*
100 INPUT "NUMBER OF DIVISIONS"; N
110 D = INT(568 / N) 'D IS AREA FOR EACH DIVISION

120 PRINT "ENTER LABEL AND TWO VALUES FOR EACH DIVISION"

130 FOR K = 1 TO N

140 INPUT LABEL*<K),VALUEl(K),VALUE2(K)
150 IF LEN(LABEL*<K)) > D/PC THEN PRINT "TOO LONG. MAXIMUM LENGTH IS"; D/PCs

INPUT "NEW LABEL"; LABEL*(K): GOTO 150
160 NEXT

170 PRINT "ENTER MINIMUM AND MAXIMUM VALUES FOR VERTICAL AXIS"

180 INPUT LO, HI
190 RANGE = HI - LO

200 RS = (172 - 12) / RANGE 'RS IS RATIO TO USE IN SCALING

210 ' DRAW GRID AND LABELS ttttttttttttttttttt

220 CLS

230 LINE (71,12) - (639,172),,B
240 P = 40 - LEN(TITLE*) / 2 'CENTER THE TITLE

250 LOCATE l,Ps PRINT TITLE*
260 ROW = 22

270 Y = 172

280 FOR K = O TO 5 'LABEL VERTICAL AXIS WITH SUCCESSIVE FIFTHS
290 L = LO + RANGE * K / 5

300 LOCATE ROW,3: PRINT USING "####-#";L
310 LINE (70, Y) - (639, Y)
320 ROW = ROW - 4

330 Y = Y - 32

340 NEXT

350 'LABEL THE DIVISIONS

360 FOR K = 1 TO N

370 P = INT((71+(K-l)*D+D/2)/PC - LEN(LABEL*(K))/2 + .5) + 1
380 LOCATE 23,P: PRINT LABEL*(K);
390 NEXT

400 'MAKE CODE AREAS

410 LOCATE 25,28-LEN(TITLEl*): PRINT TITLEl*;
420 LINE (228,190) - (268,199),,BF
430 LOCATE 25,56-LEN(TITLE2*): PRINT TITLE2*;
440 FOR X = 452 TO 492 STEP 2

450 LINE (X,190) - (X,199)
460 NEXT

470 'tttttttttttttttttttttttttttt MAKE BARS tttttttttttttttttttttttttt
480 YZERO = INT(HI * RS + 12.5) 'FIND WHERE O IS

490 XI = 71 + D/6

500 FOR K = 1 TO N

510 Y = INT((HI - VALUEl(K)) * RS + 12.5)

APPLICATIONS PART V

Program 12-4 (cont.)

LINE (XI,Y) - (Xl+D*5/12,YZERO),,BF
X2 = INT(X1 + D * 3/12 + .5)

520 LINE (XI,Y) - (Xl+D)
530 X2 = INT(XI + D * 3,

540 Y = INT((HI - VALUE2(K)) » RS + 12.5)

550 FOR X = X2 TO X2 + D » 5/12 STEP 2

560 LINE (X,Y) - (X,YZERO)
570 LINE (X+1,Y) - (X+1,YZERO),O
580 NEXT

590 XI = XI + D

600 NEXT

610 IF INKEY« = THEN 610

620 END

'MOVE OVER FOR SECOND BAR

the same graph. We can also construct a cumulative surface chart with methods
demonstrated in Prog. 12-6. The resulting graph, shown in Fig. 12-6, plots the
upper curve as the sum of the two data sets and uses shading to distinguish the
areas. This type of graph can often lead to misinterpretations, since the upper line
shows the sum of the two data sets and not actual data values.

Shading patterns or color can be used to emphasize areas between curves, as

Figure 12-5 A comparative graph displayed by Frog. 12-5, with bars drawn up for one data set and
down for the other.

SALES m EHFLOVEE (THOUSANDS)
lee.e ,

AREA 1 AREA 2 AREA 3 AREA 4 AREA 5 AREA 6 AREA 7 AREA 8

iee.0

zm.%

3ee.e

566,0]
NILES DRIVEN PER ENFLOVEE

Chapter 12 Business Graphics 281

Program 12-5 Comparative graph of two bar charts: one up, one down.

10 'PROGRAM 12-5. COMPARATIVE BAR GRAPH WITH TWO Y SCALES.

20 'INPUTS TITLES AND TWO SETS OF DATA FOR ANY NUMBER
30 'OF DIVISIONS. DRAWS BARS FOR ONE SET OF DATA ON
40 'A VERTICAL AXIS IN THE TOP HALF OF THE SCREEN AND
50 'BARS FOR THE OTHER SET OF DATA ON A VERTICAL AXIS
60 'IN THE BOTTOM HALF OF THE SCREEN.

80 DIML*(15), T(15), B(15)
*?0 SCREEN 2: CLS

100 PC = 8 'PC IS HORIZONTAL PIXELS PER CHARACTER
110 ' INPUT DATA tttttttttttttttttttttt
120 INPUT "NUMBER OF DIVISIONS"; N
130 D = INT<568 / N) 'D IS NUMBER OF PIXELS ALLOWED PER DIVISION
140 PRINT "ENTER NAME AND VALUES OF EACH DIVISION"
150 FOR K = 1 TO N

160 INPUT LABEL*(K),TOP<K), BOTTOM(K)
170 IF LEN(LABEL*(K)) < D/PC THEN 200 'WILL THE LABEL FIT?
180 PRINT "LABEL TOO LONG. MAXIMUM LENGTH IS";D/PC
190 INPUT "NEW LABEL"; LABEL*(K): GOTO 170
200 NEXT

210 INPUT "LABEL FOR TOP VERTICAL AXIS"; TOPTITLE*
220 INPUT "MINIMUM AND MAXIMUM VALUES FOR TOP VERTICAL AXIS"; LOTOP, HITOP
230 RANGEl = HITOP - LOTOP

240 RSTOP = (92 - 12) / RANGEl 'RATIO TO USE IN SCALING TOP
250 INPUT "LABEL FOR BOTTOM VERTICAL AXIS"; BOTTOMTITLE*
260 INPUT "MINIMUM AND MAXIMUM VALUES FOR BOTTOM VERTICAL AXIS"; LOBOT,HIBOT
270 RANGE2 = HIBOT - LOBOT

280 RSBOTTOM = (188 - 108) / RANGE2 'RATIO TO USE IN SCALING BOTTOM
290 'ttttttttttttttttttttttttt DRAW BACKGROUND tttttttttttttttttttttt
300 CLS

310 LINE (71,12) - (639,92),,B
320 LINE (71,108) - (639,188),,B
330 LOCATE 1,4: PRINT TOPTITLE*
340 ROW = 12

350 Y = 92

360 FOR K = O TO 5 'LABEL VERTICAL AXIS WITH SUCCESSIVE FIFTHS
370 L = LOTOP + RANGEl * K / 5
380 LOCATE ROW,3: PRINT USING "####.#";L;
390 LINE (70,Y) ~ (639,Y)
400 ROW = ROW - 2

410 Y = Y - 16

420 NEXT

430 LOCATE 25,4: PRINT BOTTOMTITLE*;
440 ROW = 14

450 Y = 108

460 FOR K = O TO 5

470 L = LOBOT + RANGE2 * K / 5

480 LOCATE ROW,3: PRINT USING "####.#";L;
490 LINE (70,Y) - (639,Y)
500 ROW = ROW + 2

510 Y = Y + 16

520 NEXT

530 'LABEL THE DIVISIONS

540 LOCATE 13,1
550 FOR K = 1 TO N

560 P = INT((72 + (K-1) * D+ D/2) /PC - LEN(LABEL*(K))/2 + .5) + 1
570 PRINT TAB(P);LABEL*(K);
580 NEXT

590 'tttttttttttttttttttttttt MAKE BARS tttttttttttttttttttt
600 X = 71 + D/6

282 APPLICATIONS PART V

Program 12-5 (cont.)

610 FOR K - 1 TO N

620 YTOP = INT((Hirer - TOP(K)) * RSTCT + 12.5)
630 YBOT = INT(BOTTOM(K) « RSBOTTOM + 108.5)
640 LINE (X,YTOP) - (X+D«2/3,92),,BF
650 LINE (X,YBOT) - (X-^D*2/3, 108) , , BF
660 X = X + D

670 NEXT

680 IF INKEY* = THEN 680

690 END

Program 12-6 Cumulative surface chart, plotting two data sets.

10 'PR06RAM 12-6. SURFACE CHART WITH TWO SETS OF CUMULATIVE DATA.
20 'PLOTS LOWER CURVE FOR ONE SET OF DATA. PLOTS UPPER CURVE
30 'AS THE SUM OF FIRST AND SECOND SETS OF DATA.
40 DIM LABEL*(20), VALUE1(20), VALUE2(20)
SO SCREEN 2: CLS

60 PC - 8 'PC IS HORIZONTAL PIXELS PER CHARACTER
70 ' INPUT CH(WtT LABELS AND DATA »*««*««**«»«««*
80 INPUT "TITLE OF CHART"; TITLE*
90 INPUT "NAME OF FIRST SET OF DATA"; TITLEl*
lOO INPUT "NAME OF SECCMD SET OF DATA"; TITLE2*
110 INPUT "ENTER NUMBER OF HORIZONTAL DIVISIONS"; N
120 D = INT(568 / N)
130 IF D/6 <> INT(D/6) THEN D " INT(D/6+.5)»6
140 PRINT "ENTER LABEL AND TWO VALUES FOR EACH DIVISION"
ISO MAX2 = O 'MAX2 IS THE MAXIMUM VALUE IN ARRAY S2
160 FOR K = 1 TO N

170 INPUT LAreL*(K),VALUE1(K),VALl«2(K)
ISO VALUE2(K) = VALUEl(K) + VALUE2(K)
190 IF VALUE2(K) > rWX2 THEN MAX2 = VALUE2(K)
200 IF LEN(LABEL*(K)) < D/PC THEN 230 'WILL THE LABEL FIT?
210 PRINT "LABEL TOO L0N6. MAXIMUM LEN6TH IS";D/PC
220 INPUT "NEW LABEL"; LABEL*(K): GOTO 200
230 NEXT

240 INPUT "ENTER MINIMUM AND MAXIMUM VALUES FOR VERTICAL AXIS"; LO, HI
250 IF HI >= MAX2 THEN 260 ELSE

INPUT "MAXIMUM VALUE NOT ENOUGH. ENTER MAXirflJM AGAIN"; HI: GOTO 250
260 RANGE - HI - LO
270 RS = (172 - 12) / RAhtBE 'RS IS RATIO TO USE IN SCALING
280 '**««««*»«««<«»**«»«»»«»« draw grid AND LABELS
290 CLS

300 LINE (71,12) - (639,172),,B
310 P = 40 - LEN(TITLE*) / 2 'CENTER THE TITLE
320 LOCATE 1,P: PRINT TITLE*;
330 ROW = 22

340 Y = 172

350 FOR K = O TO 5 'LABEL VERTICAL AXIS WITH SUCCESSIVE FIFTHS
360 L = LO + RANGE » K / 5
370 LOCATE ROW,3: PRINT USING "«««#.«"; L;
380 LINE (70,Y) - (639,Y)
390 ROW = ROW - 4
400 Y " Y - 32
410 NEXT

420 'LABEL THE DIVISIONS
430 LOCATE 23,1
440 FOR K = 1 TO N

450 P = INT((71+(K-l)*D+D/2)/PC - LEN(LABEL*(K))/2 + .5) + 1
460 PRINT TAB(P); LABEL*(K);

Chapter 12 Business Graphics 283

Program 12-6 (cont.)

470 NEXT

480 'MAKE CODE AREAS

490 LOCATE 25,28-LEN(TITLEl*): PRINT TITLEl*;
500 FOR X = 228 TO 288 STEP 2

510 LINE (X,190) - <X,199)
520 NEXT

530 LINE (228,190) - <288,190)'OUTLINE CODE BAR
540 LINE (228,199) - (288,199)
550 LOCATE 25,56-LEN<TITLE2*): PRINT TITLE2*;
560 FOR X = 452 TO 512 STEP 3

570 LINE (X,190) - <X,199)
580 NEXT

590 LINE (452,190) - (512,190)'OUTLINE CODE BAR
600 LINE (452,199) ~ (512,199)
610 'ttttttttttttttttttttttttttt* MAKE BARS tttttttttttttttttttttttttt
620 YO = 171

630 XI = 71 + D/2 'PUT FIRST POINT HALFWAY ACROSS THE FIRST DIVISION
640 Y1 = INT((HI - VALUE2(1)) * RS + 12.5)
650 LINE (XI,YD - (XI,YO)
660 LINE (X1+1,Y1) - (X1+1,Y0),0
670 LINE (X1+2,Y1) - (X1+2,Y0),0
680 FOR K = 2 TO N

690 X2 = XI + D

700 Y2 = INT((HI - VALUE2(K)) * RS + 12-5)
710 SLOPE = (Y2-Y1) / (X2-X1)
720 INTERCEPT = Y1 + 1 - SLOPE * XI
730 FOR X = Xl+3 TO X2 STEP 3
740 Y = SLOPE * X + INTERCEPT
750 LINE (X,Y) - (X,YO)
760 Y = SLOPE * (X+1) + INTERCEPT
770 LINE (X+1,Y) - (X+1,Y0),0
780 Y = SLOPE * (X+2) + INTERCEPT
790 LINE (X+2,Y) - (X+2,Y0),0
800 NEXT

810 LINE (XI,YD - (X2,Y2)
820 XI = X2

830 Y1 = Y2

840 NEXT

850 XI = 71 + D/2

860 Y1 = INT((HI - VALUEKD) * RS + 12.5)
870 LINE (XI,YD - (XI,YO)
880 LINE (X1+1,YD - (X1+1,Y0),0
890 FOR K = 2 TO N

900 X2 = XI + D

910 Y2 = INT((HI - VALUEKK)) * RS + 12.5)
920 SLOPE = (Y2 - YD / (X2 - XI)
930 INTERCEPT = Y1 + 1 - SLOPE * XI
940 FOR X = XI TO X2
950 Y = SLOPE * X + INTERCEPT
960 LINE (X+1,Y) - (X+1,Y0),0
970 NEXT

980 FOR X = Xl+2 TO X2 STEP 2
990 Y = SLOPE * X + INTERCEPT
1000 LINE (X,Y) - (X,YO)
lOlO NEXT

1020 LINE (XI,YD - (X2,Y2)
1030 XI = X2

1040 Y1 = Y2

1050 NEXT

1060 IF INKEY* = "" THEN 1060
1070 END

APPLICATIONS PART V

SALES (THOUSANDS)

JAN FEE HAH APR NAV JUNE JULV AUG SEPT OCT NOU DEC

PRODUCT 1 PRODUCT 2

Figure 12-6 Cumulative surface chart produced by Prog. 12-6, with one data set plotted as the lower
line and the other data set added to the first to obtain the upper line.

shown in Fig. 12-7. This band chart was produced by Prog. 12-7. A color band
chart is shown in Fig. O of the color insert. We can use this technique to help in
estimating magnitude differences. Two different shading patterns are used in this
example to identify profits from losses (that is, when one curve falls below the
other).

Program 12-7 Band chart, shading the area between two curves.

10 'PROGRAM 12-7. BAND CHART WITH TWO SETS OF DATA.
20 'PLOTS CURVES FOR TWO SETS OF DATA. SHADES IN AREAS WHERE CURVES
30 'CROSS. DESIGNED FOR SCREEN SIZE OF Z>40 X 200 PIXELS.
40 DIML»(20), Sl(20), S2(20)
50 SCREEN 2: CLS

60 PC = 8 'PC IS HORIZONTAL PIXELS PER CHARACTER
70 ' INPUT CHART LABELS AND DATA
80 INPUT "TITLE OF CHART"; T*
90 INPUT "NAME OF FIRST SET OF DATA"; Tit
lOO INPUT "NAME OF SECOND SET OF DATA"; T2t

Chapter 12 Business Graphics 285

Program 12-7 (cont.)

110 INPUT "NAME OF AREA WHEN FIRST DATA IS BREATER THAN SECOND"; T3*
120 INPUT "NAME OF AREA WICN SECCMMD DATA IS BREATER THAN FIRST"; T4*
130 INPUT "NUMBER OF HORIZONTAL DIVISIONS"; N
140 D = INT<568 / N) 'D IS MJMBER OF PIXELS PER DIVISION
150 IF D/2 <> INT(D/2) THEN D = INT<D/2+.5)*2 'MAKE D AN EVEN NUMBER
160 PRINT "ENTER LABEL AND TWO VALUES FOR EACH DIVISION"
170 FOR K « 1 TO N

180 INPUT L«(K),S1<K>,S2(K>
190 IF LEN(L«(K)) < D/PC THEN 220 'WILL THE LABEL FIT?
200 PRINT "LABEL TOO LONB. MAXIMUM LENBTH IS"; D/PC
210 INPUT "l«W LABEL"; L»(K)s BOTO 190
220 NEXT

230 PRINT "ENTER MINIMUM AND MAXIMUM VALUES FOR VERTICAL AXIS"
240 INPUT LO, HI
250 R - HI - LO 'R IS RANBE OF VALUES
260 RS = (172 - 12) / R 'RS IS RATIO TO USE IN SCALINB
270 ' DRAW 6RID AND LABELS
2Q0 CLS

290 LINE (71,12) - (639,172),,B
300 P = 40 - LEN(T^) / 2 'CENTER THE TITLE
310 LOCATE 1,P: PRINT T*
320 ROW = 22

330 Y = 172

340 FOR K = O TO 5 'LABEL VERTICAL AXIS WITH SUCCESSIVE FIFTHS
350 L=L0+R*K/5

360 LOCATE ROW,3: PRINT USING "####.#";L
370 LINE (70,Y) - (639,Y)
380 ROW = ROW - 4

390 Y = Y - 32

400 NEXT

410 'LABEL THE DIVISIONS
420 LOCATE 23,1
430 FOR K = 1 TO N

440 P = INT(<71 + (K-1) * D + D/2) /PC - LEN(L#(K))/2 + .5) + 1
450 PRINT TAB(P);L*(K);
460 NEXT

470 'MAKE CODE AREAS -

480 LOCATE 25,28-LEN(T3«): PRINT T3*;
490 FOR X = 228 TO 288 STEP 3
500 LINE (X,190) - (X,199)
510 NEXT

520 LOCATE 25,56-LEN(T4*)z PRINT T4*5
530 FOR X = 452 TO 512 STEP 2
540 LINE (X,190) - (X,199)
550 NEXT

560 -tttttttttttttttttttttttttttt MAKE BARS tttttttttttttttttttttttttt
570 YO = 171

580 XI =71 + D/2 'PUT FIRST POINT HALFWAY ACROSS THE FIRST DIVISION
590 Y1 = INT ((HI - SKI)) * RS + 12.5)
600 R1 = INT(Y1/PC + -5)

610 C1 = INT<X1/PC + .5) 'X1,Y1 AND X2,Y2 ARE FIRST CURVE
620 X3 = XI 'X3,Y3 AND X4,Y4 ARE OTHER CURVE
630 Y3 = INT((HI - S2(l)) * RS + 12-5)
640 R3 = INT(Y3/PC + .5)

650 C3 = INT(X3/PC + .5)

660 FOR K = 2 TO N

670 X2 = XI + D

680 Y2 = INT((HI - SI(K)) * RS + 12-5)
690 Ml = (Y2-Y1) / (X2-X1) 'FIND SLOPE Se INTERCEPT OF FIRST CURVE

286 APPLICATIONS PART V

Program 12-7 (cont.)

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

900

910

920

930

940

950

960

970

B1 = Y1 - Ml * XI

X4 = X2

Y4 = INT((HI - S2(K)) * RS + 12.5)

M3 = (Y4-Y3) / (X4-X3) 'FIND SLOPE & INTERCEPT OF OTHER CURVE

B3 = Y3 - M3 * X3

'SHADING PATTERN (EVERY OTHER LINE OR EVERY THIRD LINE) IS

'DETERMINED BY WHICH CURVE IS ON TOP. DRAW EVERY SECOND LINE

'WHEN 3-4 CURVE IS ON TOP, EVERY THIRD LINE WHEN 1-2 IS TOP.
IF Y3 <= Y1 AND Y4 <= Y2 THEN 890

IF Y3 > Y1 AND Y4 > Y2 THEN 910

'OTHERWISE THE TWO CURVES CROSS

XP = INT((B1-B3) / <M3-M1) + .5)

IF Y3 > Y1 THEN 860

B = X3: E = XP: I = 2: GOSUB 1040

1=3: GOSUB 1040X4:B = XP: E

'3-4 CURVE IS HIGHER THAN 1-2

'1-2 CURVE IS HIGHER THAN 3-4

'FIND X INTERSECTION OF CURVES

'3-4 CURVE IS ON TOP 'TIL XP

'FROM XP ON, 1-2 CURVE IS TOP

X4:

= 3: GOSUB 1040

= 2: GOSUB 1040

X4: I = 2: GOSUB 1040

1=3: GOSUB 1040

(X2,Y2)
(X4,Y4)

GOTO 920

B = X3: E = XP:

B = XP: E

GOTO 920

B = X3: E

GOTO 920

B = X3: E = X4:

LINE (XI,YD
LINE (X3,Y3)
XI = X2

Y1 = Y2

X3 = X4

Y3 = Y4

980 NEXT K

990 LOCATE R1,C1: PRINT Tl«;
1000 LOCATE R3,C3: PRINT T2*;
1010 GOTO 1130

1020 '

1030 '##*#«####«######## SHADE IN AREA ###*#«####«######«###«##«#
1040 FOR X = B TO E

1050 YF = Ml * X + B1

1060 YS = M3 * X + B3

1070 LINE (X,YF) - (X,YS),0
1080 IF X/I <> INT(X/I) THEN 1100

1090 LINE (X,YF) - (X,YS)
1100 NEXT

lllO RETURN

1120 '##########«###«###########«*#############«##########«#«####.
1130 IF INKEY* = "" THEN 1130

1140 END

'LABEL THE START OF THE CURVES

12-3 MULTIPLE FORMATS

A useful technique for comparing two sets of data is to plot the data in several
formats within the same graph. This allows us to display various types of
relationships between data sets. The combination bar chart, line graph, and pie
chart shown in Fig. 12-8 was output by Prog. 12-8. Relative magnitude between
the two data sets is displayed with the bar chart. Cumulative totals are shown with
the line graph. The pie chart shows total percentage for each data set. Color
coding is used to identify the two sets of data.

Chapter 12 Business Graphics

FMIT m LOSS SUNNARY

JAN FEB HAB AFB MA^ JUNE JULY AUC SEFT OCT NOV DEC

FROFIT llilliiliii LOSS liiilil
Figure 12-7 Band chart plotted by Prog. 12-7, illustrating the use of shading between data curves.

Program 12-8 Multiple formats: overlapping bar charts, cumulative line graphs, and pie chart.

10 'PROGRAM 12-8. TWO SETS OF DATA IN MULTIPLE FORMATS.
20 'INPUTS TWO SETS OF DATA. PLOTS DATA IN BAR GRAPH FORM, IN
30 'PIE CHART FORM TO SHOW PERCENTAGES OF TOTAL, AND IN CURVE
40 'FORM TO SHOW CUMULATIVE VALUES OVER TIME.

60 DIM LABEL«(5), VALUEl(5), VALUE2(5), CUMl(5), CUM2(5)
70 SCREEN O: WIDTH 80: CLS

80 PC = 8 'PC IS HORIZONTAL PIXELS PER CHARACTER

90 XC = 73 'XC,YC IS CENTER OF PIE CHART
100 YC = 40

110 RADIUS = 30

120 YADJUST = .9199999

130 'ttttttttttttttttttttt INPUT CHART LABELS AND DATA t**************
140 INPUT "TITLE OF CHART"; TITLE*
150 INPUT "NAME OF FIRST SET OF DATA"; TITLEl*
160 INPUT "NAME OF SECOND SET OF DATA"; TITLE2*
170 INPUT "NUMBER OF DIVISIONS"; N
180 D = INT(290 / N) 'D IS NUMBER OF PIXELS PER DIVISION
190 TOTAL1 = 0 'TOTAL1 AND T0TAL2 ARE USED TO TOTAL DATA VALUES
200 T0TAL2 = O

210 PRINT "ENTER LABEL AND TWO VALUES FOR EACH BAR"

220 FOR K = 1 TO N

288 APPLICATIONS PART V

Program 12-8 (cont.)

230 INPUT LABELS <K),VALUEl(K>,VALUE2(K)
240 TOTALl = TOTALl + VALUEl<K)

250 CUMl(K) = TOTALl

260 T0TAL2 = TGTAL2 + VALUE2(K)

270 CUM2(K) = T0tAL2
280 IF LEN(LABELS(K)) > D/PC THEN PRINT "TOG LONG. MAXIMUM IS"; D/PC:

INPUT "NEW LABEL"; LABELS(K): GOTO 280
290 NEXT K

300 INPUT "ENTER MINIMUM AND MAXIMUM VALUES PGR VERTICAL AXIS"; LG, HI
310 IF HI < TGTALl GR HI < TGTAL2 THEN

INPUT "MAXIMUM NOT LARGE ENOUGH. RE-ENTER MAXIMUM"; His GOTO 310
320 RANGE = HI - LG

330 RS = (172 - 12) / RANGE 'RATIO TO USE IN SCALING
340 'tttttttttttttttttttttttt DRAW GRID AND LABELS ttttttttttttttttttt
350 SCREEN 1: COLOR 0,0s CLS
360 LINE (30,12) - (30,172)
370 LINE (30,172) - (319,172)
380 P = 20 - LEN(TITLE*) / 2 'CENTER THE TITLE
390 LOCATE 1,P5 PRINT TITLE*
400 ROW = 22

410 Y = 172

420 FOR K = O TO 5 'LABEL VERTICAL AXIS WITH SUCCESSIVE FIFTHS
430 L = LG + RANGE * K / 5

440 LOCATE ROW,Is PRINT USING "###";L
450 ROW = ROW - 4

460 Y = V - 32

470 NEXT

480 'LABEL THE DIVISIONS

490 LOCATE 23,1
500 FOR K = 1 TO N

510 P = INT((30+(K-l)*D+D/2)/PC - LEN(LABEL*(K))/2 + .5) + 1
520 PRINT TAB(P); LABEL*(K);
530 NEXT

540 'MAKE CODE AREAS

550 LOCATE 25,14-LEN(TITLEl*)s PRINT TITLEl*;
560 LINE (114,190) - (134,199),3,BF
570 LOCATE 25,28-LEN(TITLE2*)s PRINT TITLE2*;
580 LINE (226,190) - (246,199),2,BF
590

600 'tttttttttttttttttttttttttttt MAKE BARS tttttttttttttttttttttttttt
610 YO = 171

620 X = 30 + D/6

630 FOR K = 1 TO N

640 Y = INT((HI - VALUEl(K)) » RS + 12.5)

650 LINE (X,Y) - (X+D85/12,YO),3,BF
660 XI = X -I- D « 3/12 'START SECOND BAR 3/12 OVER FROM FIRST
670 Y = INT((HI - VALUE2(K)) * RS + 12.5)

680 LINE (XI,Y) - (Xl+D*5/12,YO),2,BF
690 X = X + D

700 NEXT K

710

720 'tttttttttttttttttttttttttttt MAKE LINES ttttttttttttttttttttttttt
730 X=30+D*5/12

740 Y1 = INT ((HI - CUMKD) * RS + 12.5)

750 Y2 = INT((HI - CUM2(1)) * RS + 12-5)

760 FOR K = 2 TO N

770 Y3 = INT((HI - CUMl(K)) * RS + 12.5)

780 Y4 = INT((HI - CUM2(K)) * RS + 12-5)

790 LINE (X,Y1) - (X+D,Y3),3
800 LINE (X,Y2) - (X+D,Y4),2
810 X = X + D

Chapter 12 Business Graphics

Program 12-8 (cont.)

820 Y1 = Y3

830 Y2 = Y4

840 NEXT K

850

860 MAKE PIE CHART

870 ALTOGETHER = TOTAL1 + T0TAL2 'TOTAL OF BOTH DATA SETS

880 'ANGLE IS PERCENTAGE OF CIRCLE (IN RADIANS) CORRESPONDING TO TOTAL1

890 BEFORE = O

900 ANGLE = 6.28318 * TOTAL1 / ALTOGETHER

910 CIRCLE (XC.YC).RADIUS,3,-BEFORE,-ANGLE,YADJUST
920 INTANGLE = -ANGLE/2

930 XINTERIOR = XC + RADIUS/2 « COS(INTANGLE)

940 YINTERIOR = YC + RADIUS/2 * SIN(INTANGLE) t YADJUST
950 PAINT (XINTERIOR,YINTERIOR),3,3
960 CIRCLE <XC,YC).RADIUS,2,-ANGLE,-6.28318,YADJUST
970 INTANGLE = (6.28318 - ANGLE) / 2

980 XINTERIOR = XC + RADIUS/2 * COS(INTANGLE)

990 YINTERIOR = YC + RADIUS/2 * SIN (I NT At-JGLE) * YADJUST
1000 PAINT (XINTERIOR,YINTERIOR),2,2
1010 IF INKEYt = "" THEN 1010

1020 END

Figure 12-8 A multiple format graph produced by Prog. 12-8, providing several types of compara
tive information.

SALES SUMMAEV

JAN FEE MAPt APE MAV

AREA 1 AEEA 2

12-4 PROJECT MANAGEMENT GRAPHS

Graphs displaying a network of project tasks, as in Fig. 12-9, can be used as an aid
in scheduling and monitoring the tasks. This type of graph is particularly useful
with PERT-CPM project scheduling techniques. Tasks are represented in the
network graph by lines and ordered from left to right, according to when they can
be started. Circles are used to indicate the beginning and ending of tasks. The
leftmost circle shows the start of the project, where tasks A, B, and C can be
initiated simultaneously. Task D cannot be started until task A is completed, and
task E must wait for tasks A, B, and D.

Project tasks can also be listed on a time chart to show actual starting and
ending dates. The project time chart shown in Fig. 12-10 was produced by Prog.
12-9. This chart shows relative starting and ending weeks for each task in the
project. Tasks are represented as horizontal bars, with the length of each bar
proportional to the scheduled task time. Both network and time charts are useful
for planning and managing projects.

Figure 12-9 Network graph showing the sequencing of various tasks in a project.

CODE UEEES TASK
A 2 OKDER EQUIPHENT
B 16 RENOUATE BUILDING
C 8 HIRE MANAGEMENT
D 8 INSTALL EQUIPMENT
E 3 LOCAL INSPECTIONS
F 4 HIRE STAFF
G 3 ADVERTISE OPENING

290

Chapter 12 Business Graphics

mm

A. ORDER EQUIPHENT

B. RENOVATE BUILDINC

C. HIRE NANAGENENT

D. INSTALL EQUIPHENT

E. LOCAL INSPECTIONS

F. HIRE STAFF

G. ADVERTISE OPENING

Figure 12-10 Time chart, produced by Prog. 12-9, displaying the starting and ending dates for
scheduled project tasks.

Program 12-9 Time chart for scheduling tasks.

'PRDGRAM 12-9. TIME DIAGRAM

'TIME BARS ARE SCALED TO PIXELS 236 - 636

SCREEN 2: CLS

PC = 8 'PC IS NUMBER OF HORIZONTAL PIXELS PER CHARACTER

PR = 8 'PR IS NUMBER OF VERTICAL PIXELS PER CHARACTER

READ TIMEDIVISIONt

READ PIRSTTIME,LASTTIME
RANGETIME = LASTTIME - FIRSTTIME

RS = (636 - 236) / RANGETIME

LOCATE 2,50: PRINT TIMEDIVISIONS;
LOCATE 4,12: PRINT "TASK";
COLUMN = 28

FOR K = O TO 5 'LABEL COLUMNS IN SUCCESSIVE FIFTHS OF TIME RANGE

T = FIRSTTIME + RANGETIME * K/5

LOCATE 4,COLUMN: PRINT USING "###";T;
COLUMN = COLUMN + lO

NEXT

INCREMENT = 400/25

X = 236

FOR L = 1 TO 26 '26 LINES IN ALL

LINE (X,32) - (X,148)
X = X + INCREMENT

NEXT

RON = 6

FOR K = 1 TO 7

READ CODES, TASKS, START, DURATION
LOCATE ROW,4

PRINT CODES; ". "; TASKS
START * RS + 236 'FIND START POSITION OF BAR

292 APPLICATIONS PART V

Program 12-9 (cont.)

300 X2 = (START + DURATION) * RS + 236 'FIND FINISH POSITION
310 Y = (ROW - 1) * PR - 1 'Y VALUES COME FROM ROW OF TASKNAME
320 LINE (XI,Y) - (X2,Y+9),,BF
340 ROW s ROW + 2

350 NEXT

360 'tt

370 DATA WEEKS,0,25
380 DATA A,ORDER EQUIPMENT,0,2
390 DATA B,RENOVATE BUILDING,O,16
400 DATA C,HIRE MANAGEMENT,O,8
410 DATA D,INSTALL EQUIPMENT,2,8
420 DATA E,LOCAL INSPECTIONS,16,3
430 DATA F,HIRE STAFF,8,4
440 DATA G,ADVERTISE OPENING,19,3
450 IF INKEY* = "" THEN 450

460 END

Chapter 13

Educational Graphics

The availability of low-cost microcomputer graphics systems provides a powerful
educational resource at all levels, from grade schools to graduate schools. We can
develop graphics programs for classroom demonstrations or for self-study pro
jects in a lab. Such computer-assisted instruction (CAI) programs can be broadly
classified as either drill and practice programs, tutorial and inquiry programs, or
as simulations.

13-1 DRILL AND PRACTICE PROGRAMS

With drill and practice programs, we can repeatedly present practice problems on
a video screen and ask for the answers. The problems could be questions about
sentence structure, foreign languages, historical personalities, art forms, or
geological eras. Answers could be chosen from a menu or typed in. We can design
a drill and practice program to respond to an answer by displaying a simple
message, such as "THAT'S RIGHT" or "THAT'S WRONG. TRY AGAIN."
Usually, it is better to have the program be a bit more helpful by furnishing
additional information when a wrong answer is given. A chemistry drill on the
periodic table might ask for the atomic number of a randomly selected element
and respond to a wrong answer by citing which element, if any, has the stated
atomic number. More elaborate programs could respond to a wrong answer with a
series of "leading" questions or by displaying pictures and text to help in getting a
right answer.

Graphics displays can aid in the statement of many drill and practice
problems. A spelling drill could draw a picture of the object to be spelled (car,
boat, tree, house), and questions for an economics class could use graphs and

293

294 APPLICATIONS PART V

charts. Simply to make a more entertaining display, we can add pictures to
accompany the statement of a problem or as part of the response to an answer.
Program 13-1, an addition drill, uses pictures both for entertainment and as visual
aids in the statement of the problem presented. Figure 13-1 shows the possible

Program 15-1 Arithmetic practice, presenting additional problems with prompts and pictures.

10 'PROGRAM 13-1- ARITHMETIC PRACTICE-

20 'USING RANDOM NUMBER FUNCTION, GENERATES ADDITION
30 'PROBLEMS AND PRESENTS THEM IN TEXT FORM (3 + 4 = ?).

40 'PRESENTS THE PROBLEM AS CIRCLES TO COUNT IF TWO

50 'INCORRECT RESPONSES ARE GIVEN. IF AN INCORRECT

60 'RESPONSE IS STILL GIVEN (TWICE MORE), WE GO ON TO
70 'ANOTHER PROBLEM. A COUNT (R) IS KEPT OF THE NUMBER OF

80 'PROBLEMS ANSWERED CORRECTLY ON THE FIRST TRY (WHEN

90 'C = 1). AFTER 5 PROBLEMS, A SMILEY FACE AND MESSAGE ARE
100 'DISPLAYED IF R IS GREATER THAN 3 (4 OR 5 RIGHT OUT OF 5).

110 'AFTER TEN PROBLEMS, A SECOND DISPLAY AND MESSAGE OCCURS
120 'IF R IS GREATER THAN 8.

140 SCREEN 1: COLOR 0,0: CLS
150 INPUT "HI! WHAT'S YOUR NAME"; m
160 PRINT "OKAY, "; N*; ", HERE WE GO!"
170 PRINT "SEE HOW MANY PROBLEMS YOU CAN GET RIGHT!"

180 FOR DELAY = 1 TO 2000: NEXT

190 ' GENERATE 10 PROBLEMS tttttttttttttttttt*

200 SEED = VAL(RIGHTS(TIME*,2))
210 FIRSTRAND = RND(-SEED)

220 FOR P = 1 TO 10

230 C = O 'C IS COUNT OF HOW MANY ANSWERS GIVEN TO THIS PROBLEM

240 J = INT(RND * 9 + .5)

250 K = INT(RND * 9 + .5)

260 CLS

270 LOCATE 16,8: PRINT J;"+";K;"= ";
280 INPUT A

290 C = C + 1

300 IF A = J + K THEN 450 'RIGHT?

310 IF C <> 1 THEN 360

320 LOCATE 18,5: PRINT "THAT'S NOT RIGHT, ";N* 'ANSWERED ONCE, DO OVER
330 PRINT " TRY AGAIN "

340 FOR DELAY = 1 TO 2000: NEXT

350 GOTO 260

360 IF C <> 2 THEN 390

370 GOSUB 530 'HAS ANSWERED TWICE- GO TO DRAWING CIRCLES

380 GOTO 270

390 IF C <> 3 THEN 430 'HAS ANSWERED THREE TIMES. ONE MORE TRY

400 GOSUB 530

410 LOCATE 4,1: PRINT "TRY ONE MORE TIME";
420 GOTO 270

430 LOCATE 20,1: PRINT "LET'S TRY ANOTHER";
440 FOR DELAY = 1 TO 2000: NEXT

450 IF C = 1 THEN RIGHT = RIGHT + 1 'RIGHT ON FIRST TRY

460 IF P = 5 AND RIGHT > 3 THEN GOSUB 680 'DRAW SMILEY FACE

470 IF P = 10 AND RIGHT > 8 THEN GOSUB 780 'DRAW BALLOONS

480 NEXT

490 CLS

500 LOCATE 10,19: PRINT "BYE,"
510 LOCATE p^,20 - LEN(N*) / 2: PRINT N*
520 GOTO 1050

Chapter 13 Educational Graphics 295

Program 13-1 (cont.)

530 '################### DRAW CIRCLES TO HELP GET ANSWER ##################
540 CLS

550 Y = 76: X = 8

560 FDR W = 1 TO J

570 CIRCLE (X,y),5,2
580 X X + 16

590 NEXT

600 LOCATE 10,X/8+l: PRINT
610 X = X + 20

620 FOR W = 1 TO K

630 CIRCLE (X,y),5,2
640 X = X + 16

650 NEXT

660 RETURN

670 '#########«#################### SMILEY FACE #######«##################«
680 COLOR 0,0: CLS
690 LOCATE 25,4: PRINT "SO FAR, SO GOOD, N«
700 CIRCLE (160,100),80,2,,,.9199999
710 CIRCLE (130,80),5,2,,,.9199999
720 CIRCLE (190,80),5,2,,,.9199999
730 CIRCLE (160,100),3,2,,,.9199999
740 CIRCLE (160,80),60,2,3.92,5.55,.9899999
750 FOR DELAY = 1 TO 2000: NEXT

760 RETURN

770 '############################«## BALLOONS ##########*###*####«#########
780 CLS

790 LOCATE 4,17: PRINT N*
800 LOCATE 6,18: PRINT "THE"
810 LOCATE 8,17: PRINT "GREAT!";
820 CIRCLE (60,50),40,1
830 CIRCLE (60,88),5,1
840 LINE (60,91) - (60,170),3 'PUT STRING ON BALLOON
850 CIRCLE (280,50),30,1
860 CIRCLE (280,78),3,1
870 LINE (280,79) - (280,180),3
880 CIRCLE (140,130),35,2
890 CIRCLE (140,163),3,2
900 LINE (140,164)-(140,199),3
910 FOR Y = 2 TO 199 STEP 5 'MAKE CONFETTI
920 X = RND(l) « 319

930 CIRCLE (X,Y),1,1
940 FOR DELAY = 1 TO 50: NEXT

950 NEXT

960 X = 240: Y = 20: A = O: R = 20: DA = 1/R/.5
970 FOR Y = 20 TO 199 'MAKE SPIRAL
980 XP = X + R * COS(A)

990 YP = Y + R * SIN(A)

lOOO PSET (XP,YP),2
1010 A = A -I- DA

1020 NEXT Y

1030 RETURN

1040 '#########«#*################################«##########«#############
1050 END

program outputs for the question 4 + 5 = ?. To provide some variety in the
program responses, we could randomly choose different face designs and text
phrases (GOOD, SWELL, NO, TOO BAD). We could also select a different-
shaped object for the problem statement each time.

296 APPLICATIONS PART V

C) O C) O + O O O O O

4 + 5 = ?

(a)

/ o o

so FAR, SO GOOD, PEGGY

(b)

Figure 13-1 An arithmetic drill output from Prog. 13-1, displaying (a) prompts when a wrong answer
is given, (b) a happy face for a series of right answers, and (c) balloons and streamers for a good final
score.

Chapter 13 Educational Graphics 297

>-

IJ

PEGGV

THE

GREAT!

V

(C)

(■:/
r VJv

S...

Figure 13-1 (cont.)

298 APPLICATIONS PART V

13-2 TUTORIAL AND INQUIRY PROGRAMS

In tutorial and inquiry programs, we employ more extensive conversational
methods. Tutorials can provide instructions to read and study certain materials
(books, articles, films) for a self-paced course, then give a test over that material.
Inquiry programs can carry on a conversation by both answering and asking
questions. For example, an inquiry program can help train medical interns by
responding to questions as if the program were a patient. The program's answers
could then be used to make a medical diagnosis. Exams and questions provided by
inquiry and tutorial programs can use graphics in much the same way as drill and
practice programs.

For a self-study type of program we might produce a diagram of plant parts
and a menu of terms, as in Fig. 13-2. The program could produce several such
displays, evaluate the responses, and output a grade for the total performance. We
can use this type of display as part of an examination program or for review and
study in a tutorial or inquiry program.

Figure 13-2 Picture displayed as part of a self-study program.

/ (1) ANTHER

(2) OUULE

(3) PHAL

(4) PISTIL

(5) SEPAL

(6) STANEN

TTPE THE NUHBER OF PART B FROH THE LIST AT RIOHT:

Chapter 13 Educational Graphics 299

13-^ SIMULATION PROGRAMS

We use simulation programs to demonstrate the behavior of various types of
systems. An actual physical or biological model (or a hypothetical system) can be
displayed in a lecture demonstration or as part of an individual study program.
Simulation programs are particularly effective for studying systems with many
parameters or systems that we cannot actually observe. Models of geopolitical
systems, atomic and molecular structures, or relativistic motion of objects are
examples of such systems. We can vary the parameters involved in these systems
and watch the changes occur on the screen.

In many graphics simulations, we want to demonstrate complex motions, as
in Prog. 13-2. Here, we produce an animated model of the solar system. Figure
13-3 shows several positions along the paths of motion of the moon and earth as
they rotate about the sun. The actual output of Prog. 13-2 presents only one

Program 13-2 Simulation: modeling the solar system with rotating moon and earth.

10 'PROGRAM 13-2. SOLAR SYSTEM.

20 'ILLUSTRATES MOTION OF SOLAR SYSTEM. MOON REVOLVES AROUND

30 'EARTH 12 TIMES FOR EVERY ONE REVOLUTION OF THE EARTH

40 'AROUND THE SUN. THE MOON'S ORBIT IS CHOSEN TO BE ONLY

50 'ONE-SIXTH AS LARGE AS THE EARTH'S — SO THE MOON'S

60 'ANGULAR INCREMENT (1 / RADIUS) IS 6 TIMES AS LARGE.

70 'USING STEP 1/EARTHORBIT AND 1/MOONORBIT, THE MOON WOULD TRAVEL
80 'THROUGH ITS ORBIT SIX TIMES AS FAST AS THE EARTH. WE PLOT

90 'A NEW POSITION FOR THE MOON TWICE FOR EVERY POSITION OF THE

100 'EARTH, SO THE MOON TRAVELS 12 TIMES AS FAST.
110 'ttt

120 SCREEN 1: COLOR 0,0: CLS
130 XSUN = 160

140 YSUN = 100

150 EARTHORBIT = 84 'EARTHORBIT IS RADIUS OF EARTH'S ORBIT

160 MOONORBIT = 14 'MOONORBIT IS RADIUS OF MOON'S ORBIT

170 SUN = 20

180 EARTH = 7

190 MOON = 4

200 CIRCLE (XSUN,YSUN),SUN,3 'DRAW SUN
210 PAINT (XSUN,YSUN),SUN,3
220 MOONPOSITION = 1/MOONORBIT 'ANGULAR INCREMENT FOR MOON

230 FOR EARTHPOSITION = 1/EARTHORBIT TO 6.28318 STEP 1/EARTHORBIT

240 PAINT (XEARTH,YEARTH),0,0 'ERASE EARTH
250 XEARTH = XSUN + EARTHORBIT * COS(EARTHPOSITION)

260 YEARTH = YSUN + EARTHORBIT « SIN(EARTHPOSITION)

270 CIRCLE (XEARTH,YEARTH),EARTH,1 'DRAW EARTH
280 PAINT (XEARTH,YEARTH),1,1
290 PAINT (XM00N,YM00N),0,0 'ERASE MOON
300 XMOON = XEARTH + MOONORBIT « COS(MOONPOSITION)

310 YMOON = YEARTH + MOONORBIT * SIN(MOONPOSITION)

320 CIRCLE (XMOON,YMOON),MOON,2 'DRAW MOON
330 PAINT (XMOON,YMOON),2,2
340 MOONPOSITION = MOONPOSITION + 1/MOONORBIT

350 PAINT (XMOON,YMOON),0,0 'ERASE MOON
360 XMOON = XEARTH -i- MOONORBIT t COS (MOONPOSITION)

300 APPLICATIONS PART V

Program 13-2 (cont.)

370 YMOON = YEARTH + MOONORBIT « SIN(MOONPOSITION)

380 CIRCLE (XMOON,YMOON),MOON,2
390 PAINT (XMOON,YMOON),2,2
400 MOONPOSITION - MOONPOSITION + 1/MOONORBIT

410 NEXT

420 GOTO 220

430 END

'DRAW MOON

position at a time, erasing previous positions. Circular paths are used, and the
objects are not drawn to scale.

Simulation programs can be designed as educational games. A gunnery game
that plots the trajectory to a target, based on choices for projection angle, can be
an eflfective learning program. This program can help in grasping the geometrical
meaning of angular values, as well as demonstrating the relation between
trajectory and angle of projection.

.silliL
Ississs:
•rsssssr

■SSSS7

Figure 13-3 Simulation of tHe motion
of the earth and moon about the sun,
showing several positions from the
output of Prog. 13-2.

13-4 COMPUTER-MANAGED INSTRUCTION

Graphics programs can be used as aids in record keeping and grading. Computer-
managed instruction (CMI) programs can be designed to maintain records of
grades, calculate grades, and provide statistics. We can use CMI programs to
output graphs of grading distributions for a single exam, for a single course, for a
particular course over several years, or for all courses taught during any time
interval.

Chapter 14

Personal Graphics

For our final look at applications, we will discuss a few ways that we can put
graphics to work for us personally. We can create personal graphics programs for
recreation, education, or profit.

14-1 HOUSEHOLD GRAPHICS

There are many kinds of financial applications of graphics that can be useful for
our home use. We can plot our various expenses or interest payments, analyze
returns on investments, or graph potential savings due to energy conservation
improvements to the home. Program 14-1 is an example of a monthly budget

Program 14-1 Household budget bar chart.

10 'PROI^WUI 14-1. HOUSEHOLD BUDGET SUMHARY

20 'PLOTS A BAR »1APH OF MONTHLY HOUSEHOLD EXPENSES.
30 'BARS PLOTTED ARE THE PERCENTAGE OF THE TOTAL

40 'EXPENSES FOR THE MONTH. ALSO PRINTS THE ACTUAL

50 'EXPENSES IN EACH CATEGORY — FOOD, CLOTHING,
60 'HOUSING, AND RECREATION.
70 SCREEN O: WIDTH SO: COLOR 7,0,0: CLS
80 ' INPUT DATA

90 D » INT(290 / 4) 'FOUR CATEGORIES OF EXPENSES

100 RS = (172 - 12) 'RS IS RATIO TO USE IN SCALING

110 TOTAL « O 'T IS TOTAL OF ALL EXPENSES
120 II«>UT "ENTER MONTH NAME"; MONTH*
130 PRINT

140 PRINT "F -FOOD H -HOUSING tc UTILITIES C -CLOTHING R -RECREATION"
ISO PRINT: PRINT "ENTER 0,0 TO QUIT"
160 INPUT "EXPENSE AND CATEGORY CODE"; EXPENSE, CODE*
170 IF EXPENSE « O AND CODE* = "Q" THEN 270

301

302 APPLICATIONS PART V

Program 14-1 (cont.)

180 IF UODE$ = "F' OR CGDE« = "H" OR CODE« = "C" OR CODE« = "R" THEN 200

190 PRINT "INCORRECT EXPENSE CODE": GOTO 160

200 TOTAL = TOTAL + EXPENSE

210 'ADD UP EXPENSES FOR EACH CATEGORY

220 IF CODE« = "F" THEN FOODTOTAL = FOODTOTAL + EXPENSE

230 IF CODE* = "H" THEN HOUSETOTAL = HOUSETOTAL + EXPENSE

240 IF CODE* = "C" THEN CLOTHINGTOTAL = CLOTHINGTOTAL + EXPENSE
250 IF CODE* = "R" THEN RECTOTAL = RECTOTAL + EXPENSE

260 GOTO 160

270 'tttttttttttttttttttttttt DRAW GRID AND LABELS

280 SCREEN 1: COLOR 0,0: CLS
290 LINE (25,12) - (25,172)
300 LINE (25,172) - (315,172)
310 P = 20 - LEN(MONTH*) / 2 'CENTER THE MONTH

320 LOCATE 1,P: PRINT MONTH*
330 ROW = 22

340 y = 172

350 FOR K = 0 TO 4 'LABEL VERTICAL AXIS WITH SUCCESSIVE FIFTHS

360 L = LO + 100 * K / 5

370 LOCATE ROW,1: PRINT USING "###";L
380 ROW = ROW - 4

390 Y = V - 32

400 NEXT

410 LOCATE 2,1: PRINT "PERCENT";
420 'LABEL THE DIVISIONS

430 LOCATE 23,1: PRINT " FOOD HOUSE CLOTHES LEISURE";
440 'tttttttttttttttttttttttttttt MAKE BARS

450 YO = 171

460 X = 25 + D/4 'START FIRST BAR 1/4 OVER IN FIRST DIVISION

470 Y = INT((1 - FOODTOTAL/TOTAL) * RS + 12.5) 'EACH EXPENSE CATEGORY IS

480 GOSUB 600 'WHAT 7. OF TOTAL? SUBTRACT

490 Y = INT((1 - HOUSETOTAL/TOTAL) » RS + 12.5) 'FROM 1 (SO BARS WILL GO UP

500 GOSUB 600 'AND MULTIPLY BY RANGE OF

510 Y = INT((1 - CLOTHINGTOTAL/TOTAL) * RS + 12.5) 'PIXELS USED FOR BARS

520 GOSUB 600

530 Y = INT((1 - RECTOTAL/TOTAL) * RS + 12.5)

540 GOSUB 600

550 LOCATE 24,1
560 PRINT USING " *»###.## #*##.## ####.## ####.##"; FOODTOTAL;

HOUSETOTAL; CLOTHINGTOTAL; RECTOTAL;
570 LOCATE 3,24: PRINT "TOTAL EXPENSES";
580 LOCATE 4,30: PRINT USING "*«###.«*"; TOTAL
590 GOTO 640

600 'MAKE BAR

610 LINE (X,Y) - (X+D/2,Y0),3,BF
620 X = X + D

630 RETURN

640 IF INKEY* = "" THEN 640

650 END

program to compare expenses. We have included only four categories of expenses
in this example (Fig. 14-1). The bars are drawn for this graph to show percentage
of expenditures in each category for one month. Many other types of expense
graphs could be plotted. We could also accumulate weekly and monthly expenses
in a data file. Then a budget program could be used to compare expenses over
several months or years.

Chapter 14 Personal Graphics

JANUARV
PERCENT

TOTAL EXPENSES
S1365.62

FOOD
S 425.92

HOUSE CLOTHES LEISURE
665.40 87.76 186.54

Figure 14-1 A display of household expenses by Prog. 14-1.

Program 14-2 Nutrition graph, plotting calories and nutrients in two bar charts and a pie chart.

'PROGRAM 14-2. NUTRITION ANALYSIS.

'READS FOOD NAMES & RELATED QUANTITIES FROM DATA STATEMENTS

'INTO ARRAYS. READS THE NUMBER OF GRAMS OF FAT,
'CARBOHYDRATES, PROTEIN, POTASSIUM, AND SODIUM FOR
'AN AVERAGE SIZE SERVING. WE ENTER THE FOOD NAMES WE'VE

'EATEN FOR THE DAY. GRAMS OF FAT, PROTEIN, ETC. ARE ADDED
'FOR ALL THE DIFFERENT FOODS. GRAMS OF PROTEIN, FAT, AND
'CARBOHYDRATE ARE CONVERTED TO TOTAL NUMBER OF CALORIES

'CONSUMED. A PIE CHART SHOWING PERCENT OF TOTAL CALORIES

'FROM CARBOHYDRATE, FAT, AND PROTEIN SOURCES IS DISPLAYED
'ALSO DRAWS TWO BAR CHARTS — ONE SHOWING NUMBER GRAMS OF

'FAT, CARBOHYDRATE, AND PROTElNj SECOND SHOWS NUMBER OF
'GRAMS OF POTASSIUM AND SODIUM CONSUMED.

SCREEN 1: COLOR 0,0: CLS
DIM FOODS(10),FATCONTENT(10),CARBOCONTENT(10),PROTEINCONTENT(1O),

POTASCONTENT(10),SODIUMCONTENT(10)
YADJUST = .9199999

FOR K = 1 TO 10

READ FOODS(K),FATCONTENT(K),CARBOCONTENT(K),PROTEINCONTENT<K),
POTASCONTENT(K),SODIUMCONTENT(K)

NEXT

' INPUT CHART LABELS AND DATA

PRINT "ENTER DONE TO QUIT"

304 APPLICATIONS PART V

Program 14-2 (cont.)

230 INPUT "FOOD ITEM"; INPUTFOOD^
240 IF INPUTFOOD* = "DONE" THEN 360

250 FOR K = 1 TO 10 'FIND FOOD NAME IN ARRAY

260 IF INPUTFOOD^ = FOOD*<K) THEN 300

270 NEXT

280 PRINT "NOT FOUND. RE-ENTER OR ENTER NEXT FOOD NAME"

290 GOTO 230

300 FAT = FAT + FATCONTENT(K) 'SUM UP FOOD COMPONENTS

310 CARBO = CARBO + CARBOCONTENT(K)

320 PROTEIN = PROTEIN + PROTEINCONTENT(K)

330 POTASSIUM = POTASSIUM + POTASCONTENT(K)

340 SODIUM = SODIUM + SODIUMCONTENT(K)

350 GOTO 2:p
360 DRAW GRID AND LABELS

370 CLS

380 HIGHl = PROTEIN 'FIND HIGHEST VALUE FOR FIRST BAR CHART

390 IF FAT > HIGHl THEN HIGHl = FAT

400 IF CARBO > HIGHl THEN HIGHl = CARBO

410 R1 = (172 - 12) / HIGHl 'R1 IS SCALING RATIO TO USE FOR FIRST CHART

420 HIGH2 = POTASSIUM 'FIND HIGHEST VALUE FOR SECOND BAR CHART

430 IF SODIUM > HIGH2 THEN HIGH2 = SODIUM

440 R2 = (172 - 12) / HIGH2 'R2 IS SCALING RATIO TO USE FOR SECOND CHART

450 LINE (256,12) - (256,172)
460 LINE - (319,172)
470 LINE (144,12) - (144,172)
480 LINE - (214,172)
490 ROW = 22

500 y = 172

510 FOR K = O TO 5 'LABEL VERTICAL AXIS WITH SUCCESSIVE FIFTHS

520 L = HIGHl * K / 5

530 LOCATE ROW,17: PRINT USING "##«";L;
540 L = HIGH2 * K / 5

550 LOCATE ROW,31: PRINT USING "#.##";L;
560 ROW = ROW - 4

570 Y = Y - 32

580 NEXT

590 LOCATE 1,18: PRINT "GRAMS GRAMS";
600 'LABEL THE DIVISIONS

610 LOCATE 23,21: PRINT "F C P P S";
620 LOCATE 24,21: PRINT "A A R 0 O";
630 LOCATE 25,21: PRINT "T R O T D";
640 '

650 MAKE BARS

660 YO = 171

670 X = 160

680 Y = INT((HIGHl - FAT) * R1 + 12.5)

690 C = 3: GOSUB 800 'GO MAKE BAR

700 Y = INT((HIGHl - CARBO) * R1 + 12.5)

710 C = 1: GOSUB 800 'GO MAKE BAR

720 Y = INT((HIGHl - PROTEIN) * R1 + 12.5)

730 C = 2: GOSUB 800 'GO MAKE BAR

740 X = 280 'MOVE OVER FOR SECOND BAR CHART

750 Y = INT((HIGH2 - SODIUM) » R2 + 12.5)

760 C = 2: GOSUB 800 'GO MAKE BAR

770 Y = INT((HIGH2 - POTASSIUM) * R2 + 12.5)

780 GOSUB 800 'GO MAKE BAR

790 GOTO 850

800 'MAKE BAR

810 LINE (X,Y) - (X+8,Y0),C,BF
820 X = X + 16 'MOVE OVER FOR NEXT BAR

Chapter 14 Personal Graphics 305

Program 14-2 (cont.)

830 RETURN

840 '

860 XC = 45: YC = 78: R = 40

870 FATCALRES = FAT « 9 'CONVERT GRAMS TO CALORIES
880 CARBOCALRES CARBO « 4

890 PROCALRES » PROTEIN t 4

900 CALORIES = FATCALRES -i- CARBOCALRES + PROCALRES

910 LOCATE 3,1: PRINT "CALORIES -
920 LOCATE 4,3: PRINT USING "«#»«";CALORIES;
930 LOCATE 17,1: PRINT "7. OF TOTAL";
940 LOCATE 18,1: PRINT " FROM
950 S = O: B = O

960 S = FATCALRES: C = 3: GOSUB 1030 'SECTION FOR FAT CALORIES

970 S = CARBOCALRES: C = 1: GOSUB 1030 'SECTION FOR CARBOHYDRATE

980 S = PROCALRES: C = 2: GOSUB 1030 'SECTION FOR PROTEIN CALORIES

990 LOCATE 20,1: PRINT "FAT";TAB(10);USING"«tt";FATCALRES/CAL0RIES«100;
1000 LOCATE 21,1: PRINT "CARBO";TAB(10);USING "#*";CARBOCALRES/CALORIES*100;
1010 LOCATE 22,1: PRINT "PROTEIN";TAB(10);USING PROCALRES/CALORIES*100;
1020 GOTO 1240

1030 '###############*# DRAW AND FILL IN PIECHART AREA »######«##*##»##

1040 ANGLE = BEFORE + 6.28318 * S / CALORIES

1050 CIRCLE (XC,YC),R,C,-BEFORE,-ANGLE,YADJUST
1060 INTERIGRANGLE = 6.28318 - (ANGLE •«- BEFORE) / 2

1070 XINTERIOR = XC + R/2. * COS(INTERI0RAN6LE)

1080 YINTERIOR = YC + R/2 * SIN(INTERIORANGLE) * YADJUST

1090 PAINT (XINTERIOR,YINTERIOR),C,C
1100 BEFORE = ANGLE

mo RETURN

1120

1130 DATA MILK,12,9,9,.122,.351
1140 DATA BACON,1,8,5,.163,.038
1150 DATA HADDOCK,5,6,20,.177,.348
1160 DATA TUNA,0,18,21,.688,.259
1170 DATA EGG,0,6,7,.066,.070
1180 DATA SPINACH,3,0,2,.040,.259
1190 DATA CORN,1.4,26.32,4.48,0,.231
1200 DATA DATES,.89,129,3.9,.002,1.15
1210 DATA LIVER,.6,.3,1.5,.022,3.04
1220 DATA CHILI,5.2,10.4,6.4,.001,.45
1230

1240 IF INKEYe = "" THEN 1240

1250 END

We can use graphs and charts for various nonfinancial home uses. A daily
nutrition chart is shown in Fig. 14-2. This chart is the output of Prog. 14-2, which
calculates the daily caloric intake and plots the percentages of calories from
protein, carbohydrate, and fat sources in our diet. We could store this daily
information in a data file and modify Prog. 14-2 to plot long-term comparisons. A
more complete file of food types and food components could also be set up for
such a program.

Program 14-3 produces a biorhythm graph, as shown in Fig. 14-3. This
graph plots the theoretical ups and downs of our physical, emotional, and
intellectual energy levels. The algorithm used for this graph assumes a 23-day
cycle for the physical curve, a 28-day cycle for the emotional curve, and a 33-day

APPLICATIONS PART V

CALORIES
1476

GRAMS
182

146

109

OF TOTAL
FROM -

FAT 30
CARBO 49
PROTEIN 20

GRAMS
6.29

5.03

3.77

1.26

F C P
A A P
T R O

Figure 14-2 Nutrition chart produced by Prog. 14-2.

0.00
P s
O 0
T D

Program 14-3 Biorhythm graph.

'PROGRAM 14-3. BIORHYTHM

'GIVEN AN INDIVIDUAL'S BIRTHDATE AND A STARTING DATE,
'CONSTRUCTS BIORHYTHM CHART (WITH CURVES FOR EMOTIONAL

'PHYSICAL, AND INTELLECTUAL CYCLES) FOR THE NEXT 30 DAYS.
'CURVES ARE DRAWN IN DIFFERENT COLORS WITH LABELS PLACED
'NEAR THE CURVES. LABELS ARE PLACED ON THE LEFT SIDE UNLESS
'ANY TWO CURVES START TOO CLOSE TOGETHER — THEN ONE OF

'THE LABELS IS MOVED TO THE RIGHT SIDE OF CHART.

SCREEN Os WIDTH 80: COLOR 7,0: CLS
DIM MONTH*(12), DAYSINMONTH(12), ACCUMDAYS(13)
FOR K = 1 TO 12 'READ MONTH NAME, « OF DAYS IN MONTH, AND

READ MONTH*(K), DAYSINMONTH(K), ACCUMDAYS(K) 'ACCUMULATED DAYS
NEXT

PR = 8 'PR IS NUMBER OF VERTICAL PIXELS PER CHARACTER

PI = 3.14159

H = 50 'H IS HEIGHT OF THE CURVES

RR = 240/30 'RR IS SCALING RATIO - 30 X VALUES OVER 240 PIXELS

INPUT DATE DATA tttttttttttttttttttt*

INPUT "BIRTHDATE (MONTH,DAY,YEAR)"; BIRTHMONTH,BIRTHDAY,BIRTHYEAR
INPUT "START DATE FOR CHART (MO,DA,YR)"; CHARTMONTH,CHARTDAY,CHARTYEAR

Chapter 14 Personal Graphics 307

Program 14-3 (cont.)

230 'FIND TIME BETWEEN CHART DATE AND BIRTH DATE

240 TIME = (CHARTYEAR-BIRTHYEAR) * 365.25 + (ACCUMDAYS(CHARTMONTH) -

ACCUMDAYS(BIRTHMONTH)) + (CHARTDAY - BIRTHDAY)

250 'FIND DISPLACEMENT FOR EACH CURVE

260 PHYDISP = 2 * PI * (TIME / 23 - INT(TIME / 23))

270 EMODISP = 2 * PI * (TIME / 28 - INT(TIME / 28))

280 INTDISP = 2 * PI * (TIME / 33 - INT(TIME / 33))

290 'FIND FREQUENCY FOR EACH CURVE

300 PHYFRE = 2 * PI / 23

310 EMOFRE = 2 * PI / 28

320 INTFRE = 2 * PI / 33

330 'ttttttttttttttttttttttttt DRAW GRID tttttttttttttttttttt*
340 SCREEN 1: COLOR 8,0: CLS
350 LOCATE 1,15: PRINT "BIORHYTHM"
360 LOCATE 3,20-(13+LEN(MONTHS(CHARTMONTH)))/2
370 PRINT "STARTING MONTHS(CHARTMONTH); CHARTYEAR;
380 DAY = CHARTDAY

390 X = 44

400 FOR COLUMN = 5 TO 35 STEP 3

410 LOCATE 22, COLUMN: PRINT USING "ll#";DAY;
420 DAY = DAY + 3

430 IF DAY <= DAYSINMONTH(CHARTMONTH) THEN 450 'STILL THE SAME MONTH?
440 DAY = DAY - DAYSINMONTH(CHARTMONTH) 'SET DAY TO START OF NEXT MONTH
450 LINE (X,40) - (X,160),l
460 X = X + 24

470 NEXT

480 LINE (44,100) - (284,100),1 'MAKE LINE AT GRAPH O
490 LOCATE 24,8: PRINT "BIRTHDATE: BIRTHDAY;MONTH*(BIRTHMONTH);BIRTHYEAR;
500 ' DRAW CURVES tttttttttttttttttttttttttt
510 FOR X = O TO 30 STEP .1

520 PHYSY = INT(H * SIN(PHYFRE * X + PHYDISP) + -5)
530 XG = X * RR + 44 'SCALE THIS X TO AN X FOR THE GRAPH
540 PSET (XG,PHYSY+100),1
550 EMOY = INT(H * SIN(EMOFRE * X + EMODISP) + .5)
560 PSET (XG,EMOY+100),2
570 INTY = INT(H « SIN(INTFRE t X + INTDISP) + -5)
580 PSET (XG,INTY+100),3
590 IF X = O THEN GOSUB 640 'GO DO LABELING
600 NEXT

610 IF PUTEMORIGHT* = "YES" THEN EMOPLACE = INT((EMOY + 100) / PR + -5):
LOCATE EMOPLACE,38: PRINT "EMO";

620 IF PUTINTRIGHT* = "YES" THEN INTPLACE = INT((INTY + 100) / PR + .5):
LOCATE INTPLACE,38: PRINT "INT";

630 GOTO 790

640 '########*##««### LABELING ON LEFT ########««##»*####«#####
650 PHYSPLACE = INT((PHYSV + 100) / PR + -5) 'PRINT POSITION FOR PHYSICAL
660 LOCATE PHYSPLACE,2: PRINT "PHY";
670 EMOPLACE = INT((EMOY + lOO) / PR + -5) 'PRINT POSITION FOR EMOTIONAL
680 'WILL LABELING FIT HERE OR SHOULD WE PUT IT ON THE RIGHT*
690 IF EMOPLACE = PHYSPLACE THEN PUTEMORIGHT* = "YES"
700 IF PUTEMORIGHT* <> "YES" THEN LOCATE EMOPLACE,2: PRINT "EMO";
710 INTPLACE = INT((INTY + lOO) /PR + .5)
720 IF INTPLACE = PHYSPLACE OR INTPLACE = EMOPLACE THEN PUTINTRIGHT* = "YES"
730 IF PUTINTRIGHT* <> "YES" THEN LOCATE INTPLACE,2: PRINT "INT";
740 RETURN

750 'tt*
760 DATA JANUARY,31,0,FEBRUARY,28,31,MARCH,31,59,APRIL,30,90
770 DATA MAY,31,120,JUNE,30,151,JULY,31,181,AUGUST,31,212
780 DATA SEPTEMBER,30,243,OCTOBER,31,273,NOVEMBER,30,304,DECEMBER,31,334
790 IF INKEY* = "" THEN 790

800 END

308 APPLICATIONS PART V

BIORHVTHM

STARTING AUGUST 1999

PHV

EMO

INT

X V.

V
.A

v

4 7 16 13 16 19 22 25 28 31

BIRTHDATE: 4 august 1963

Figure 14-3 Biorhythm graph displayed by Prog. 14-3 for a birth date of August 4, 1963.

cycle for the intellectual curve. Drawing the lines in different colors, as in Fig. P of
the color insert, can help to identify the different curves.

Computer-generated pictures can be devised for many types of home use.
We can create pictures for inclusion in graphs, in educational programs, as parts
of games, or for decoration. A printed picture can be used as a wall decoration or
on personally designed greeting cards. We could also create small pictures or
designs for personalized stationery.

14-2 GAME PLAYING

Games can be both fun and educational. We can devise games that teach about
numbers, arithmetic, letters, words, or spelling. Some games can help develop
coordination.

With Prog. 14-4, we produce a ball and paddle game that requires some
coordination to keep the ball in play. This program takes the box and bouncing
ball of Chapter 8 and adds a paddle in place of the left wall. The ball starts at a

Chapter 14 Personal Graphics 309

Program 14-4 Bouncing ball and paddle game.

10 'PROGRAM 14-4. BOUNCING BALL GAIC.

20 'DRAWS THREE-SIDED BOX AND A PADDLE ON THE LEFT SIDE.
30 'BALL BOUNCES IN BOX <DX = DY = 5 AT GAME START) AND
40 'AGAINST PADDLE. PADDLE MUST BE POSITIONED, THROUGH
50 'KEYBOARD INPUT (HITTING THE CURSOR KEYS FOR UP & DOWN).
60 'SPEED OF BALL INCREASES (BY INCREASING DX AND DY) WHEN-
70 'EVER BALL IS HIT BY PADDLE 5 TIMES AT THE SAME SPEED.
80 'SCORE IS UPDATED BY 1 FOR EVERY SUCCESSFUL BOUNCE OFF
90 'THE PADDLE. GAME CONTINUES UNTIL BALL IS MISSED BY PADDLE.

110 SCREEN 1

120 STARTER = RND(-VAL(RIGHT*(TIME*,2))) 'RANDOMIZE RND FUNCTION
130 XL = 50: XR = 300: YT = 20: YB = 160 'BOUNDARIES OF BOX
140 YP = 100 'VP IS TOP POINT OF PADDLE
150 R = 3 'R IS RADIUS OF BALL
160 DX = 5: DY = 5 'BALL INITIALLY TRAVELS 5 UNITS IN EACH STEP
170 ' DRAW BOX
180 CLS

190 LINE (XLjYT) - (XR,YT): LINE - (XR,YB)s LINE - <XL,YB)
200 LINE (XL,YP) - (XL,YP+40) 'DRAW PADDLE
210 '****»***«***************** BOUNCE BALL
220 XNEW = XL + INT((XR-XL-6) * RND + .5)
230 YNEW = YT + INT(<YB-YT-6) * RND + .5)
240 SCORE = O

250 LOCATE 1,36: PRINT USING SCORE
260 CIRCLE (X,Y),R,0 'ERASE CURRENT BALL POSITION
270 CIRCLE <XNEW,YNEW),R 'DRAW NEW POSITION
280 'MOVE PADDLE

290 A* = INKEY*

300 IF A* = "" THEN 350
310 LINE (XL,YP) - (XL,YP+40),0 'ERASE CURRENT PADDLE POSITION
320 IF RIGHT*(A*,1) = CHR*(80) THEN YP = YP + 15
330 IF RIGHT*(A*,1) = CHR*(72> THEN YP = YP - 15
340 LINE (XL,YP) - (XL,YP+40) 'DRAW NEW PADDLE
350 X = XNEW 'SAVE CURRENT POSITION IN X AND Y
360 Y = YNEW

370 BX = O 'BX AND BY ARE SWITCHES TO INDICATE
380 BY = 0 'WHICH WALL WE'RE GOING TO HIT
390 SLOPE = DY / DX

410 'WILL WE HIT A VERTICAL WALL?
420 IF DX > O AND X + DX + R >= XR THEN BX = 1: XNEW = XR - R - 1

ELSE IF DX < O AND X + DX - R <= XL THEN BX = 1: XNEW = XL + R + 1
430 'WILL WE HIT A HORIZONTAL WALL?
440 IF DY > O AND Y + DY + R >= YB THEN BY = 1: YNEW = YB - R -1

ELSE IF DY < O AND Y + DY - R <= YT THEN BY = 1: YNEW = YT + R + 1

460 'ARE WE BOUNCING OFF NO WALLS, AN X WALL, A Y WALL, OR BOTH WALLS?
470 IF BX = O AND BY = 0 THEN 510 'NOT BOUNCING
480 IF BX = 0 AND BY = 1 THEN 540 'BOUNCING OFF Y
490 IF BX = 1 AND BY = 0 THEN 590 'BOUNCING OFF X
500 IF BX = 1 AND BY = 1 THEN 720 'BOUNCING OFF BOTH (IN A CORNER)
510 '######################### NOT BOUNCING ##########################
520 XNEW = X + DX: YNEW = Y + DY

530 GOTO 260

540 '######################## BOUNCE OFF Y WALL #####################
550 XNEW = (YNEW - Y) / SLOPE + X

560 DY = -DY

570 BEEP

580 GOTO 260

590 '######################## BOUNCE OFF X WALL #####################

310 APPLICATIONS PART V

Program 14-4 (cont.)

600 YNEW = (XNEW - X) * SLOPE + Y

610 IF DX > O THEN 690 'WE'RE GOING TO THE RIGHT

620 'GOING TOWARDS PADDLE- IS PADDLE IN GOOD POSITION?

630 IF YNEW < YP OR YNEW > YP+40 THEN GOO 'BALL IS MISSED BY PADDLE

640 SCORE = SCORE + 1 'INCREASE SCORE

650 LOCATE 1,36: PRINT USING SCORE;
660 IF SCORE/5 <> INT(SCORE/5) THEN 690 'IF EQUAL, TIME TO SPEED UP BAL
670 IF DX < O THEN DX = DX - 5

680 IF DX > O THEN DX = DX + 5

690 DX = -DX

700 BEEP

710 GOTO 260

720 '##############«####«### GOING INTO A CORNER ###########«##*######

730 'WHICH WALL WOULD IT HIT FIRST?

740 IF ABS(XNEW - X) < ABSCYNEW - Y) THEN 590 'BOUNCE OFF X

750 IF ABS(YNEW - Y) < ABS(XNEW - X) THEN 540 'BOUNCE OFF Y

760 'BALL IS EQUAL DISTANCE FROM X AND Y WALLS ON EACH SIDE OF CORNER

770 DX = -DX

780 DY = -DY

790 GOTO 260

800 '#################«#« MISSED THE BALL #########»*####«###«#####«##

810 XNEW = XL - R - 8 'DROP THE BALL DOWN TO THE GROUND ALONG

820 YNEW = (XNEW - X) * SLOPE + Y 'LEFT SIDE OF BOX

830 CIRCLE (X,Y),R,0
840 FOR YNEW = YNEW TO 190 STEP 5

850 CIRCLE (X,Y),R,0
860 CIRCLE (XNEW,YNEW),R
870 FOR DELAY = 1 TO 100: NEXT

880 Y = YNEW: X = XNEW

890 NEXT

900 '####«#####«########## PRINT THE SCORE ####«######################

910 LOCATE 10,10: PRINT "YOUR SCORE IS
920 IF SCORE >= 24 THEN PRINT "INCREDIBLE!": GOTO 980

930 IF SCORE >= 19 THEN PRINT "OUTSTANDING!": GOTO 980

940 IF SCORE >= 14 THEN PRINT "PRETTY GOOD": GOTO 980

950 IF SCORE >= 9 THEN PRINT "FAIR": GOTO 980

960 IF SCORE >= 4 THEN PRINT "IMPROVING";: GOTO 980
970 IF SCORE < 4 THEN PRINT "AWFUL!"

980 'mttttttttttttttttttt* PLAY AGAIN OR END? ttttttttttttttttt*

990 LOCATE 13,10: INPUT "LIKE TO PLAY AGAIN"; C*
1000 IF C* = "Y" THEN 160

1010 END

random position within the box. Whenever the ball gets to the left side, we must
bounce it back into the box. If we miss, the ball goes outside the box and stops.
The number of consecutive times that we are able to bounce the ball oflF the paddle
is our score. After every five paddle bounces, the ball speeds up a little. Figure
14-4 shows the display at the end of the game for one possible score. We could
play this game alone and see how high we can score in a single game, or we could
play in teams, adding the scores each time until one team reaches 100.

An archery game is given in Prog. 14-5. A box is placed at a random position
on the right half of the screen, and we try to hit it with an arrow shot from the
lower left comer. We choose an angle and an initial speed, and the arrow travels
along a parabolic path, as discussed in Chapter 8. We have three shots from a
quiver of arrows (Fig. 14-5) for each box. The program generates five boxes for

Chapter 14 Personal Graphics 311

17

(a)

21

VOUR SCORE IS OUTSTANDING?

LIKE TO PLAV AGAIN? ■

O (b)

Figure 14-4 Two displays from the ball and paddle game of Prog. 14-4.

312 APPLICATIONS PART V

each game, and displays the current box number and accumulated score. We
count a hit on the first shot as 10 points, a hit on the second shot as 5 points, and a
hit on the third shot as 2 points.

We can include sound using the SOUND and PLAY commands with our
game programs. Sounds could be used to coincide with the bounce of a ball or the
landing of an arrow. We could even play a tune at key points in a game, such as
when we score or at the end.

PFogram 14-5 Arrow and target game.

10 'PROGRAM 14-5. ARROM AND TARGET GAME.

20 'REPEATEDLY DRAWS AND ERASES AN ARROW WHOSE TAIL
30 'IS A POINT ON A PMtABOLA. REMAINDER OF THE ARROW
40 'IS FOUND USING THIS TAIL POINT, THE SLOPE OF THE
50 'LINE TANGENT TO THE CURVE AT THIS POINT, AND THE
60 'LENGTH OF THE ARROW

80 SCREEN 1; COLOR 1,1
90 XO = 15 'XO,yO IS STARTING POSITION OF ARROW
100 YO = 180

110 G = 980 'G IS FORCE OF GRAVITY
120 ARROWLENGTH = 30

130 TIPLENGTH = 6

140 STARTRND = RND<-VAL(RIGHT«(TIME«,1))> 'START RND FUNCTION
150 TARGET = 1

160 SCORE = O '
170 DRAW BOX TARGET AND PLAY ««»»»««<«««*»*»«««
180 CLS

190 GOSUB 880 'DRAW QUIVER
200 SHOT = 1 'NUMBER OF ATTEMPTS AT THIS TARGET
210 LOCATE 25,30: PRINT "SCORE";
220 LOCATE 25,35: PRINT SCORE;
230 XL = lOO + RND * 180 'RANDOMLY PLACE LEFT EDGE OF BOX
240 XR = XL + 35

250 YT = RND « 165 'RANDOMLY PLACE TOP EDGE OF BOX
260 YB = YT + 35

270 LINE <XL,YT> - (XR,YB),1,BF 'DRAW TARGET
280 'tatta******** CHOOSE ARROW ANGLE, SPEED aaaaaaaaaaaaaaaaaaa
290 LOCATE 1,1: PRINT STRING*<40," ");
300 LOCATE 1,1: INPUT "ANGLE <0-90)"; ANGLE
310 IF ANGLE < O OR ANGLE > 90 THEN PRINT "RE-ENTER ANGLE": GOTO 290
320 ANGLE = ANGLE » 3.14159 / ISO

330 LOCATE 1,19: INPUT "SPEED"; SPEED
340 RANGE = SPEED t SPEED * SIN<2 * ANGLE) / G
350 'DETERMINE COEFFICIENTS FOR PARABOLA'S EQUATION
360 C1 = G / <2 a <SPEED * C0S<AN6LE)) 2)
370 TWOCl = 2 a C1

380 C2 = - TAN<ANGLE)

390 GOSUB 1040 'REMOVE ARROW FROM QUIVER
400 'aaaaaaaaaaaaaaaaaaaa move arrow aaaaaaaaaaaaaaaaaaaaaaaa
410 'FIND ARROW TAIL POINTS ALONG THE PARABOLA AND DRAW ARROW
420 FOR X = 30 TO RANGE STEP 5
430 Y = ciaxax + C2ax + Y0

440 'X AND Y ARE THE TAILPOINTS ON THE PARABOLA
450 'FIND OTHER ENDPOINT OF ARROW

460 M = TWOCl t X + C2 'M IS SLOPE OF THE ARROW
470 A1 = ATN<M) 'INVERSE TANGENT OF M GIVES ANGLE A1
480 Y1 - Y -I- ARROWLENGTH a SIN<A1)

Chapter 14 Personal Graphics 313

Program 14-5 (cont.)

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

A2

X2

Y2

M3

A3

X3

Y3

C0S(A2)

SIN(A2)

COS(A3)

SIN(A3)

'IS OTHER ENDPOINT ON SCREEN?

'DON'T DRAW THIS ARROW

'ELSE ERASE ARROW & DRAW

'SLOPE OF ONE TIP

'SLOPE OF SECOND TIP

'DRAW ARROW

'SAVE CURRENT POSITION

'GO ON TO NEW TARGET

'GAME OVER

'ELSE, GO ON TO NEXT TARGET

XI = X + ARROWLENGTH » COS(Al)

IF XI > 319 OR Y1 > 199 THEN 670
IF P0INT<X1,Y1) = 1 THEN HIT = 1
IF INT(X/15) <> X/15 THEN 660

IF X > 25 THEN GOSUB 1250

'CALCULATE ARROW TIP

M2 = M + .75

ATN(M2)

XI - TIPLENGTH *

Y1 - TIPLENGTH *

M - .75

ATN(M3)

XI - TIPLENGTH *

Y1 - TIPLENGTH *

GOSUB 1190

IF HIT THEN 740

XS = X: YS = Y: XIS = XI: YIS = Y1

660 NEXT

670 SHOT = SHOT + 1

680 IF SHOT <= 3 THEN GOSUB 1250: GOTO 280
690 IF TARGET = 5 THEN 1310

700 TARGET = TARGET + 1

710 LOCATE 25,1: PRINT "TOO BAD- TRY ANOTHER";
720 FOR DELAY = 1 TO 600: NEXT

730 GOTO 180

740 ' ARROW HAS HIT BOX tttttttttttttttttttttttt
750 'INCREASE SCORE

760 IF SHOT = 1 THEN SCORE = SCORE + 10

770 IF SHOT = 2 THEN SCORE = SCORE + 5

780 IF SHOT = 3 THEN SCORE = SCORE + 2
790 LOCATE 25,35: PRINT SCORE;
800 FOR TB = 1 TO 2 'BLINK "BULLSEYE"
810 LOCATE 25,1: PRINT "BULLSEYE!";
820 FOR DELAY = 1 TO 300: NEXT

830 LOCATE 25,1: PRINT " ";
840 FOR DELAY = 1 TO 300: NEXT

850 NEXT

860 HIT = O

870 IF TARGET = 5 THEN 1310 ELSE TARGET = TARGET + 1: GOTO 180
880 '###«#«#*#####«###«##* DRAW QUIVER ««#«######«*#««##«######««#«#»
890 LOCATE 22,1: PRINT TARGET;
900 CIRCLE (10,150),10,,,,.3
910 CIRCLE (10,185),10,,,,.3
920 LINE (O,150) - (O,185)
930 LINE (20,150) - (20,185)
940 LINE (5,130) - (5,152)
950 LINE (5,130) - (2,133)
960 LINE (5,130) - (8,133)
970 LINE (10,125) - (12,153)
980 LINE (10,125) - (7,128)
990 LINE (10,125) - (13,128)
lOOO LINE (18,128) - (15,152)
1010 LINE (18,128) - (15,131)
1020 LINE (18,128) - (21,131)
1030 RETURN

104O. '################## REMOVE ARROW FROM QUIVER ###################
1050 C = 1

1060 IF SHOT <> 1 THEN 1100

1070 LINE (10,125) - (12,153),O 'REMOVE FIRST ARROW
1080 LINE (10,125) - (7,128),0

314 APPLICATIONS PART V

Program 14-5 (cont.)

'REMOVE SECOND ARROW

'REMOVE THIRD ARROW

1090 LINE (10,125) - (13,128),O
1100 IF SHOT <> 2 THEN 1140

1110 LINE (5,130) - (5,152),0
1120 LINE (5,130) - (2,133),0
1130 LINE (5,130) - (8,133),0
1140 IF SHOT <> 3 THEN 1180

1150 LINE (18,128) - (15,152),0
1160 LINE (18,128) - (15,131),0
1170 LINE (18,128) - (21,131),O
1180 RETURN

1190 '####««###«#«########*#«#« DRAW ARROW #«#»*#«##»###########«####
1200 C = 3

1210 LINE (X,Y) - (X1,Y1),C
1220 LINE (XI, YD - (X2,Y2),C
1230 LINE (XI,YD - (X3,Y3),C
1240 RETURN

1250 '#«#*####«#####«###«##«### ERASE ARROW ############«####«#######
1260 C = 0

1270 LINE (XS,YS) - (X1S,Y1S),C
1280 LINE (X1S,Y1S) - (X2,Y2),C
1290 LINE (X1S,Y1S) - (X3,Y3),C
1300 RETURN

1310 'ttttttttttttttttt* PLAY AGAIN OR STOP
1320 CLS

1330 LOCATE 12,30: PRINT "FINAL SCORE — SCORE
1340 PRINT

1350 PRINT TAB(10);"WANT TO PLAY AGAIN";
1360 INPUT C%

1370 IF C* = "N" THEN 1390

1380 GOTO 150

1390 END

Figure 14-5 Initial and buliseye positions of the arrow for the archery game (Prog. 14-5).

ANGLE (0-98)? ■

1

issssisssSssssssss

(a) SCORE 0

Chapter 14 Personal Graphics 315

Figure 14-5 (cont.)

ANGLE <0-90)? 45 SPEED? 600

^81

BULLSEVE! SCORE 10
(b)

Appendix A

PC Graph Paper

Customized graph paper for the PC can be constructed by printing out a grid of
horizontal and vertical lines for each mode of operation. Figures A-1 and A-2
provide examples of such graph paper that can be used for laying out pictures for
each of the two text modes, WIDTH 40 and WIDTH 80. Figures A-3 and A-4
show examples of graph paper that can be used for picture layouts with SCREEN
1 and SCREEN 2.

310

± o
1

3
O

O

±
 O

±
 2

±
 ̂

±
 ̂

±
 S

2
0

2
4

C
O

>
1

Fi
gu

re
 A
-1

A
 cu

st
om
iz
ed
 g
ra
ph
 p
ap

er
 gr

id
 th

at
 ca

n
be

 u
se
d f

or
 la

yo
ut
s o

f c
ha

ra
ct

er
 pi

ct
ur

es
 in

 W
I
D
T
H
 40

. H
or
iz
on
ta
l a

nd
 ve

rt
ic

al
 li

ne
s a

re
 d
ra

wn
on
 c
ha
ra
ct
er
 b
ou

nd
ar

ie
s,

 a
nd

 e
ve

ry
 s
ec
on
d
r
o
w
 a
nd

 c
ol
um
n

po
si

ti
on

 i
s
la
be
le
d.

2
 4
 6
 8

1
 1

2

4

2
 2
 2
2
2
3
3
3
3
3
4
4
4
4
4
5
5
5
5
5
6

0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0

C
J

0
0

6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

6
 6
 6
 6

2
 4
 6
 8
7

7

7
 7

7

0

2
 4
 6

8

1

Fi
gu

re
 A
-2

A
 c
us
to
mi
ze
d
gr
ap
h
pa
pe
r
gr
id
 t
ha
t
ca

n
be
 u
se
d
fo

r
la

yo
ut

s
of
 ch

ar
ac

te
r
pi
ct
ur
es
 i
n
W
I
D
T
H
 8
0.

 H
or
iz
on
ta
l
an

d
ve
rt
ic
al
 li

ne
s
ar

e
dr

aw
n
on

 c
ha

ra
ct

er
 b
ou
nd
ar
ie
s,
 a
nd

 e
ve

ry
 s
ec

on
d
ro

w
an

d
co
lu
mn
 p
os
it
io
n
is

 l
ab
el
ed
.

1
1

1

1

1

1

1

1

1
1
2
2
2
2
2
2
2
2
2
2
3
3
3

1
2
3
4
5
6
7
8
9
0

1

2
3
4
5
6
7
8
9
0

1
2
3
4
5
6
7
8
9
0

1

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9

C
O

(
D

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

1
9
9

Fi
gu

re
 A
-
3

A
 c
us
to
mi
ze
d
gr

ap
h
pa
pe
r
gr
id
 t
ha

t
ca

n
be

ve
rt
ic
al
 l
in
es
 a
re
 s
pa
ce
d

fi
ve
 p
ix
el
s
ap
ar
t,
 s
ta
rt
in
g
fr
om

us
ed
 f
or

 l
ay

ou
ts

 o
f
pi
xe
l
pi

ct
ur

es
 i
n
me
di
um
 r
es
ol
ut
io
n (
S
C
R
E
E
N
 1

).
 H
or
iz
on
ta
l
an
d

po
si

ti
on

 (
0,

0)
.

1
1

1

1

1
2
2
2
2
2
3
3
3
3
3
4
4
4
4
4

2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8
0
2
4
6
8

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

5
5
5
5
5
6
6
6

0
2
4
6
8
0
2
3

0
0
0
0
0
0
0
9

C
J

t
o
o

1
0

2
0

3
0

4
0

5
0

6
0 70
 I

8
0

9
0
 i

1
0
0

11
0 j

12
0

I
1
3
0

1
4
0

1
5
0

1
6
0
 1

17
0 I

1
8
0

1
9
0

1
9
9
'

i
n

Fi
gu
re
 A
-4

A
 c
us

to
mi

ze
d
gr

ap
h
pa
pe
r g

ri
d
th

at
 c
an

 b
e
us

ed
 fo

r l
ay
ou
ts
 o
f p

ix
el

 pi
ct
ur
es
 in

 h
ig

h
re

so
lu

ti
on

 (
S
C
R
E
E
N
 2)

. H
or
iz
on
ta
l a

nd
 v
er
ti
ca
l

li
ne
s
ar
e
sp
ac
ed
 f

iv
e
pi

xe
ls

 a
pa

rt
,
st

ar
ti

ng
 f
ro

m
po
si
ti
on
 (
0,
0)
.

Appendix B

PC Character Set

and ASCII Cades

Figure B-1 Table of ASCII codes and the corresponding characters displayed by these codes. ASCII
code 32 produces a space, and the control codes listed in Fig. B-2 do not produce visible characters.

0 1 @ 8 3 4 4 4

5 4 6 4 7 8 D 9

10 11 12 13 14

15 16 ► 17 4 18 t 19 11

20 21 §
.--k

-
2 i 24 t

2 b A 26 -♦
0"7 ♦- 28 29

30 s!:* 1 33 1 34 "

35 # 36 $ 37 7. 38 39

40 (41) 42 * 43 + 44

45 -- 46 -
47 / 48 0 49 1

50 51 3 cro 4 53 5 54 6

crcr
w w 7 56 B 57 9 58 ; 59 3

60 61 ss: 62 63 64

321

322 Appendix B PC Character Set and ASCII Codes

Figure B-1 (cont.)

65 A 66 B 67 C 68 D 69 E

70 F 71 G 72 H 73 I 74 J

75 K 76 L 77 M 78 N 79 0

80 P 81 Q 82 R 83 S 84 T

05 U 86 V 87 W 88 X 89 Y

90 Z 91 r: 92 \ 93 1 94

95 96 97 a 9E) b 99 c

100 d 101 e 102 -f 103 g 104 h

105 i 106 j 107 k 108 1 109 m

110 n 111 o 112 p 113 q 114 r*

115 s 116 t 117 u 118 V 119 w

120 X 121 y 122 2 123 -C 124 I

125 y 126 ~ 127 6 128 i": 129 Q

130 ̂ 131 t 132 a 133 ̂ 134 1

135 5 136 i 137 e 138 ̂ 139 i

140 t 141 i 142 A 143 A 144 i

145 a 146 flE 147 8 148 6 149 d

150 0 151 152 y 153 b 154 u

155 (t 156 £ 157 ¥ 158 R 159 J

160 ̂ 161 i 162 6 163 d 164 ff

165 « 166 a 167 S 168 6 169 r

170 n 171 172 U 173 j 174

Appendix B PC Character Set and ASCII Codes 323

Figure B-1 (cont.)

175 ;» 176 I 177 H 178 || 179 |

180 ̂ 181 =1 182 ̂ 1 183 ̂ 184 =,

185 ={| 186 11 187 :j, 188 =0 189 J!

190 =1 191 ^ 192 L 193 ± 194 ̂

195 j. 196 _ 197 ̂ 198 ^ 199 ||.

200 It 201 [j= 202 =!k 203 2.04 jj:

205 = 206 JL 207 ̂ 208 JL 209 =j=

210 ̂ 211 IL 212 k 213 p 214 ^

215 ̂ 216 217 J 218 ^ 219 |

20 ̂ 221 I 222 I 223 ■ 22.4 a

p 226 r 227 tr 22.8 S 229 cr

30 F 231 f 232 I 233 6 234 a

235 J 236 OD 237 0 238 € 239 H

240 = 241 ± 242 ̂ 243 244 ^

245 .J 246 -r 247 % 248 o 249 •

250 • 251 J" 252 " 253 2 254 ■

0*7

324 Appendix B PC Character Set and ASCII Codes

ASCII

value Action

0 null

7 beep
8 backspace
9 tab

10 line feed

11 home

12 form feed

13 carriage return
28 move cursor right
29 move cursor left

30 move cursor up

31 move cursor down

255 blank

Figure B-2 Table of ASCII control codes and their purpose. These codes do not produce visible
characters.

Index

ALT key, 22
Animation, 155-96

arrow, 174-76, 310-15

background motion, 190-95
bouncing ball, 164-65, 170-74
character methods, 155-60

compound motion, 185-89
curved paths, 169-77
frames, 183-88

with GET and PUT statements, 178-84,

187-93

lines, 166-67, 174-77

pixel methods, 161-95
rebound tests, 155, 161-64
running figure, 185-87
by scaling, 168, 183-85
text pages, 33, 159-60

ASCII codes, 20-23, 26, 28, 43-44, 60,
63-64, 68, 111, 116, 156-58, 159,
321-24

Aspect parameter {see CIRCLE state
ment)

Aspect ratio, 46, 73, 74, 80, 148 {see also
Resolution, ratios)

Assembly language, 12-13
Asynchronous communications adapter

board, 6, 11

Background motion {see Animation)
Band chart, 284-87

Bar chart {see Graphs)
BASIC language:
advanced, 12, 29, 41, 48, 71, 74, 112,

116, 167, 178

cassette, 12, 29

compiler, 12
disk, 12, 29

graphics commands, 12 {see also specif
ic commands)

interpreter, 4, 12
Biorhythm graph, 305-8
BLOAD command, 29

BSAVE command, 29, 105

Budget chart, 301-3

CAI {see Computer-aided instruction)
Cathode-ray tube: {see also Video moni

tors)

basic operation, 7-9
phosphor coating, 8, 9, 10
raster scan, 8

refresh, 8
shadow-mask, 9-10

Central processing unit, 3 {see also Micro
processor control chips)

Character code {see ASCII codes)

Character graphics, 17-30, 54-58, 60-61,
63-64 {see also Animation, character
methods)

Character grid {see Pixel grid)
Character mode, 18, 28, 33
Character patterns {see Shading)
Character set, 17, 20, 43-44, 321-24 {see

also Graphics characters)

325

326 Index

CHR$ function, 20, 28, 111
Circle, 71-80

arcs {see CIRCLE statement)

command {see CIRCLE statement)

equations, 75, 79
painting, 74, 78
point-plotting algorithms, 74-80

CIRCLE statement, 12, 71-74, 80-81

arc angles, 72, 73, 74
aspect parameter, 73, 74, 81
color parameter, 72, 73

Clipping, 201-13
with GET and PUT statements, 202-4

lines, 202, 205-9

points, 202
text strings, 209-12

CLS statement, 18, 19
Color:

commands {see COLOR statement;
PAINT statement)

complement, 27
in graphs, 64-65, 95, 273, 280, 284, 286,
308

monitors {see Video monitors)
in picture drawing, 24-27, 33,40-45,49,
51, 78, 100

selection considerations, 27, 64-65

shading, 26-27, 45
special effects, 25, 26, 27, 43, 78, 180

Color/graphics monitor adapter board, 5,
7,9,10,11,22,25,26,29,68,103,159

COLOR statement, 12, 25-27, 40-45
character mode, 25-27

graphics mode, 40-45
Composite monitors {see Video monitors)
Compound motion {see Animation)
Computer-aided instruction, 293-300

drill and practice programs, 293-97
simulation programs, 299-300
tutorial and inquiry programs, 298

Computer-managed instruction, 300
Coordinates:

absolute, 35

definition, 31

horizontal, 31, 32
relative, 35

vertical, 31, 33
Coordinate system:

origin, 32, 222

plotting {see Graphs, labeling)
three-dimensional, 222-23

CPU {see Central processing unit)
CRT {see Cathode-ray tube)
Cumulative surface chart, 280, 282-84
Curves, 70-97

equations of, 75, 79, 80, 81, 83, 84, 85
tangent lines to, 172-^75

DEF SEG statement, 29

Delay loop {see Time delay)
Depth {see Coordinate system, three-di

mensional)

Digitizing board {see Graphics tablet)
DIP switches {see Dual in-line package

switches)
Diskette drive adapter board, 6, 11
Display buffer, 7, 9, 12, 13, 29, 159-60
Double-wide characters, 18, 31 {see also

WIDTH statement)
DRAW statement, 12, 48-52, 131-32, 141,

147-48, 167

in animation, 167

with color, 49, 52

line commands, 48-49, 52
move command, 49, 52

reference point, 48, 49, 131, 141
relative coordinates, 49

rotation command, 52, 147-48

scale command, 49-50, 52, 141
substring command, 50, 52

Dual in-line package switches, 4

Ellipse, 73, 80-81 {see also CIRCLE
statement)

Encoded data, 19-20

Erasing methods, 34-35, 201, 224-37
circular areas, 201
lines {see Hidden line elimination)

points, 34-35
rectangular areas, 201
surfaces {see Hidden surface elimina

tion)
Expansion slots, 3, 4

Fixed point {see Scaling)

Index 327

Game control adapter board, 6, 113
Game playing, 308-15

archery, 310-15
ball and paddle, 308-10

GET statement, 12, 178, 202-4

Graphics characters, 20-25
Graphics commands (see specific com

mands)

Graphics initialization (see Graphics
mode)

Graphics mode, 33
Graphics programming, 12-13
Graphics tablet, 6, 118-19, 131, 141, 147
Graphics terminal (see Video monitors)
Graph-paper layout:
customized, 19-20, 316-20

three-dimensional object, 221-22, 238
two-dimensional object, 19, 185-86

Graphs, 54-69, 92-97, 244-49, 271-92,
301-8

band chart, 284-87

bar, 63-68, 244-46, 273-80, 286-89,

301-6

biorhythm, 305-8
budget, 301-3
character, 54-58, 60-61, 63-64

color (see Color)

comparative, 278-86
cumulative surface, 280, 282-84

with curves, 92-97, 246-49, 279-80,

305-8

data trend, 54-59

design considerations, 61, 64-66, 95
horizontal, 54-56

interactive construction, 100-101, 105,
118

labeling, 60-68
multiple format, 286-89
network, 290

nutrition, 303-5

pie (see Pie chart)
pixel, 58-59, 61-63, 92-97, 244-49,
271-92, 301-8

project management, 290-92
rotation of, 144

scaling of, 134, 258-59
selection considerations, 95, 97
shading (see Shading)
surface, 249

three-dimensional bar chart, 244-46
time chart, 290-92

translation of, 125, 128-29, 252

two-dimensional, 54-68,92-97, 271-92,
301-8

vertical, 57-60

Hidden line elimination, 230-37
Hidden surface elimination, 224-30,

239-40

hidden vertex method, 226-27
painting method, 224
symmetry method, 226

Highlighting, 243
Household graphics, 301-15

INKEY$ variable, 43, 100
Input/output devices, 11, 100-119
Interactive graphics, 99-120, 130-31,

136-41, 147, 148-53, 177

Joysticks, 6,11,113-18,131,141,147,177
buttons, 115-18

interactive sketching, 113-16, 177
menu selection methods, 116-18

Keyboard, 4, 7, 17, 22, 100-103, 131, 136,
148-53, 177

interactive sketching, 100-103, 148-53,
177

menu selection methods, 100, 136,

148-53

Label clipping (see Clipping, text strings)
Light pen, 103-13, 130-31, 136-41, 147,

177

interactive sketching, 105-6, 111-12,
177

menu selection methods, 104-5, 106-11

operating characteristics, 103-4, 105-6,
112-13

Line:

clipping (see Clipping)
commands (see LINE statement;
DRAW statement)

328 Index

Line: (cont,)
drawing, 36-40
equation, 38, 39
erasing (see Erasing methods; Clipping;
Hidden line elimination)

slope, 38, 39
Y-intercept, 38

LINE statement, 12, 36

LOCATE statement, 18, 19, 56
LPRINT statement, 27-28

Memory: {see also Display buflfer)
main, 3-4, 6-7

random-access, 3, 4, 5, 6, 7
read-only, 3, 4, 6
storages addresses, 6

Menu techniques, 99-105,106-11,116-17,
118, 136-41, 147, 148-53

Microprocessor control chips, 3, 5, 7
Modeling {see Simulation)
Modems, 6
Monitor {see Video monitors)
Monochrome display and printer adapter

board, 5, 7, 9, 11, 22, 25, 29, 68

Monochrome monitor {see Video moni
tors)

Motion {see Animation)
Multiple format graphs, 286-89

Network chart, 290

Normal curve, 85-87

Nutrition chart, 303-5

Off-screen tests, 22, 34
ON PEN statement, 12, 112-13
ON STRIG statement, 12, 116-18
Option boards, 4-6 {see also specific

boards)
Orthographic projections, 224

Paddles {see Joysticks)
Pages {see Animation, text pages)
PAINT statement, 12, 41-42
Palette, 40 {see also COLOR statement,

graphics mode)

Parabola, 83-85, 172-76
equation, 83, 173
tnyectory simulation, 172-76, 310-15

Parallel printer adapter board, 5
PEN function, 12, 106-12

PEN OFF statement, 106

PEN ON statement, 105-6
PEN STOP statement, 113
Perspective projection, 237-42, 253,

255-58

Picture-drawing methods, 42-52, 88-92,
124 {see also Pictures, interactive
construction)

Picture element {see Pixel)
Pictures, 17-30, 31-53, 88-92, 100-103,

105-6, 111-12, 113-16, 118

with characters {see Character graphics)
with color {see Color)
with curves, 88-92

interactive construction, 100-103,
105-6, 111-12, 113-16, 118

manipulations of {see Transformations)
with shading {see Shading)
with symmetry {see Symmetry consid

erations)
Pie chart, 93, 95-97, 271-73

design considerations, 95
exploded, 271-73

Pivot point {see Rotation)
Pixel(s):

in curve plotting, 74-88
definition, 31

erasing methods, 34-35
line drawing with, 37-40 {see also Line)

Pixel concepts, 31-33
Pixel grid, 31, 32, 68, 128, 211
Pixel plotting, 33-36
Point {see Pixel)
POINT function, 12, 168-69
Polygon, 42, 43, 224, 230-37
concave, 230

convex, 230

drawing, 42
painting, 42, 43

Polynomial curves, 83-85, 176 {see also
Parabola)

degree, 83
general equation, 84

PRESET statement, 12, 34, 37, 179, 180

Index 329

Print lines, 9, 18, 19
Printers, 5, 6, 11, 52

parallel, 5, 11
serial, 6, 11

Printing screen displays:
character pictures, 27-29
double-wide mode, 28

pixel pictures, 52
Project management graph, 290-92
Projectile motion, 172-76, 310-15 (see

also Animation)

PrtSc key, 27-28
PSET statement, 12, 33, 37, 179, 180

PUT statement, 12, 178, 202-4

Radian angles, 72-73

RAM (see Memory, random-access)

Random scan (see Cathode-ray tube)
RANDOMIZE statement, 35

Raster scan (see Cathode-ray tube)

Refresh rate (see Cathode-ray tube)
Resolution:

corrections, 46-48, 73, 75, 80, 144, 147
definition, 33

differences, 45, 46

modes, 33

ratios, 46-47

RF modulator (see Video monitors, televi
sion)

RGB monitors (see Video monitors)

RND function, 35

ROM (see Memory, read-only)
Rotation, 141-53, 260-65

in animation, 170, 177, 187

distortions due to, 144, 147

DRAW statement methods, 147-48

equations, 142, 260-62
interactive methods, 147

pivot point, 142, 260, 261
three-dimensional, 260-65

two-dimensional, 141-53

Rotation angle, 142, 260, 262
Rotation displacement, 142
Rotation path, 142

RS-232 port (see Asynchronous communi
cations adapter board)

Saving screen displays:
character pictures, 27-29

pixel pictures, 52
Scaling, 132-41, 148-53, 255-59

in animation, 166

DRAW statement methods, 141

equations, 132-33, 255

fixed point coordinates, 133, 255
interactive methods, 136-41, 148-53

nonuniform, 134-36, 255

programming considerations, 134, 136,

255

three-dimensional, 255-59

two-dimensional, 132-41, 148-53

Scaling factors, 132-33, 255
Screen buffer (see Display buffer)
SCREEN function, 12, 156-59

SCREEN statement, 12, 26, 33, 159-60

Shading:
in graphs, 63-64, 65-68, 95, 273, 278,
280, 284

patterns, 26-27, 43-45

in picture drawing, 23,43-45,78,79-80,
243

three-dimensional, 243

Simulation, 158-59, 160, 167-94, 299-300

Sine curve, 81-83, 170-72

bouncing ball simulation, 170-72

general equation, 81

Slope (see Curves; Line)
Special graphics characters (see Graphics

characters)

Spotlight:
box, 197, 200

circle, 197, 199, 200

STEP option (see Coordinates, relative)
STICK function, 12, 113

STRIG function, 12, 115, 116

STRIG OFF statements, 115, 116

STRIG ON statements, 115, 116

STRIG STOP statement, 118

Surface graph, 249
Symmetry considerations:

character pictures, 19
curve plotting, 76-77, 81-82, 84, 86
three-dimensional, 226

transformations, 125, 134

System board, 3-4
System unit, 3-7, 11

Tablet (see Graphics tablet)

330 Index

Television {see Video monitors)

Text mode {see Character mode)
Text pages {see Animation)
Time chart, 290-92

Time delay, 35, 42-43, 155, 190, 191 {see
also INKEYS variable)

TIMES variable, 35
T ransformations:

combined, 148-53, 265
perspective, 237-42, 253, 255-58
repeated {see Animation)
sequence effect, 153
three-dimensional, 252-67
two-dimensional, 123-54

Translation, 123-32, 148-53, 252-55 {see

also Animation)
character labels, 125, 128-29

DRAW statement methods, 131-32

equations, 124, 252
interactive methods, 130-31

programming considerations, 124
symmetric objects, 125
three-dimensional, 252-55
two-dimensional, 123-32, 148-53

Translation distances, 124, 252

UCSD p-system, 12, 13

Vanishing point, 238
Video monitors, 3, 4, 5, 7-11 {see also

Cathode-ray tube)
color, 5, 9-10, 11

composite, 10
IBM monochrome display, 5, 9
RGB, 10
television, 5, 10-11

Viewing position, 239
Viewport, 213

WIDTH statement, 18, 19, 28
Window, 202 {see also Clipping)
Window to viewport transformation,

213-16

Wraparound, 34

Y-intefcept {see Line)

w

s^.

DONALD HEARN AND M. PAULINE BAKER
In this new book, the authors discuss the basic concepts and techniques of
computer graphics and explore the capabilities of the IBM Personal Computer
for graphics applications. They examine methods for creating two- and three-
dimensional pictures and graphs and show how to manipulate and animate
displays. They also analyze the make-up of the PC and the graphics features of
the PC's BASIC in detail.

The book Is presented in five parts:

PART I is about the iBM Personai Computer—what makes the system tick,
how the different hardware components function, and what options are
available for expansion boards, video monitors, and other input/output
devices.

PART II introduces fundamentai methods for constructing pictures and graphs
in two dimensions.

PART III presents techniques for manipulating dispiays.

PART IV covers three-dimensional graphics.

PART V surveys applications of computer graphics in business, education,
and the home. Topics inciude additional graph-drawing techniques, simuia-
tions, computer-assisted instruction, household budget charts, nutrition charts,
and game playing.

Also available...

MICROCOMPUTER GRAPHICS: Techniques and Applications by Donaid Hearn
and M. Pauline Baker

Published 1983

PRENTICE-HALL, INC.

Englewood Cliffs, N.J. 07632

320 pages

