

COMPUTER GRAPHICS
for the IBM
Personal Computer

COMPUTER GRAPHICS
for the IBM
Personal Computer

Donald Hearn

M. Pauline Baker

CoL‘n/Juter Science Department
estern lllinois University

Prentice-Hall, Inc.
Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Hearn, Donald.
Computer graphics for the IBM Personal Computer.

1. Computer graphics. 2. IBM Personal Computer—
Programming. 3. Basic (Computer program language)
I. Baker, M. Pauline. II. Title. III. Title: Computer
graphics for the I.B.M. personal computer.

T385.H39 1983 001.64'43 83-4463
ISBN 0-13-164335-5
ISBN 0-13-164327-4 (pbk.)

Editorial/production supervision

and interior design by Kathryn Gollin Marshak
Cover design by Jeannette Jacobs
Manufacturing buyer: Gordon Osbourne

© 1983 by Donald Hearn and M. Pauline Baker
IBM is a registered trademark of IBM Corporation.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10987 65 43 21

ISBN 0-13-1k4335-5
ISBN 0-13-1k4327-4 {PBK}

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto

Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

PART

Chapter

1

Contents

List of Programming Examples
List of Color Photographs

Preface

THE IBM PC
System Overview

1-1 System Unit 3
System Board, 3
Option Boards, 4
Main Memory, 6

1-2 Keyboard 7

1-3 Video Monitors 7
Basic CRT Operation, 7
IBM Monochrome Display, 9
Color Monitors, 9
Television Sets, 10
Composite Monitors, 11
RGB Monitors, 11

1-4 Input/Output Options 11

1-5 Graphics Programming 12

xi

XV

xvii

vi

PART

Chapter

Chapter

Chapter

4

BASIC GRAPHICS

Making Pictures: Character Style

2-1

2-2

Character Graphics Concepts 17
Constructing Character Pictures 19
Graphics Characters 20

Special Effects and Color 24
Printing and Saving Character Pictures

Programming Projects 30

Making Pixel Pictures

3-1
3-2

33

3-5

3-6

Pixel Graphics Concepts 31
Plotting Points 33

Drawing Lines 36
LINE Statement, 36
Pixel Methods, 37

Pixel Color 40

Pixel Pictures 42

Shading Patterns, 43
Resolution Ratios, 45
DRAW Statement, 48

Printing and Saving Pixel Pictures 52

Programming Projects 52

Plotting Graphs

4-1

Fundamentals: Data Trend Graphs
Character Graphics Method, 54
Pixel Graphics Method, 58

27

Contents

15

17

31

54

Contents

Chapter

Chapter

5

4-2 Labeled Graphs 60
4-3 Bar Graphs: Color and Shading

Programming Projects 68

Drawing Curves
5-1 Circles 71
CIRCLE Statement, 71
Point-Plotting Methods, 74
5-2 Other Curves 80
Elliptical Curves, 80
Sine Curves, 81
Polynomial Curves, 83
Normal Curves, 85
5-3 Pictures With Curves 88
5-4 Graphs and Pie Charts 92
Graphs, 93
Pie Charts, 93

Programming Projects 97

Interactive Techniques

6-1 Menus 99

6-2 Keyboard Methods 100
6-3 Light Pens 103

6-4 Joysticks and Paddles 113
6-5 Graphics Tablets 118

Programming Projects 119

63

vii

70

99

viii

PART

Chapter

Chapter

7

Contents

DISPLAY MANIPULATIONS 121
Transformations 123
7-1 Changing Positions (Translation) 123

7-2

7-3

Translating Pictures, 124
Translating Graphs, 125
Interactive Translations, 130
DRAW Statement Translations, 131

Changing Sizes (Scaling) 132
Scaling Lines, 132

Scaling Displays, 134
Interactive Scaling, 136

DRAW Statement Scaling, 141

Changing Orientations (Rotation) 141
Rotating a Point, 142

Rotating Displays, 143

Interactive Rotations, 145

DRAW Statement Rotations, 147

Combined Transformations and Picture
Construction 148

Programming Projects 153

Animation 155

8-1

8-2

83

8-5

Character Animation 155

The SCREEN Function, 156

Text Pages with the SCREEN Statement, 159
Pixel Animation Concepts 161
Straight-Line Motion, 161

The POINT Function, 168

Motion Along Curved Paths, 169

GET and PUT Graphics Statements 178
Compound Motion 185

Background Motion 190

Programming Projects 195

Contents ix

Chapter 9 Windows and Spotlights 197
9-1 Spotlighting 197
9-2 Erasing and Clipping 201
Erasing, 201
Clipping, 203
9-3 Viewports 213

Programming Projects 216

PART IV THREE DIMENSIONS 219
Chapter 10 Displaying Solid Objects 221
10-1 Graph Paper Layouts 221
10-2 Three-Dimensional Coordinates 222
10-3 Erasing Hidden Lines and Surfaces 224
Hidden Surfaces, 224
Hidden Lines, 230
10-4 Perspective Views 237
10-5 Shading and Highlighting 243
10-6 Graphs 244

Programming Projects 250

Chapter 11 Three-Dimensional Transformations 252
11-1 Translation 252
11-2 Scaling 255
11-3 Rotation 260
11-4 Combined Transformations 265

Programming Projects 266

PART v

Chapter 12

Chapter 13

Chapter 14

Appendix A

Appendix B

APPLICATIONS

Business Graphics

12-1 General Techniques 271
12-2 Comparative Graphs 278
12-3 Multiple Formats 286

12-4 Project Management Graphs
Educational Graphics

13-1 Dirill and Practice Programs
13-2 Tutorial and Inquiry Programs
13-3 Simulation Programs 299
13-4 Computer-Managed Instruction
Personal Graphics

14-1 Household Graphics 301
14-2 Game Playing 303

PC Graph Paper

PC Character Set and ASCIl Codes

Index

290

293

298

300

Contents

269

27

293

301

316

321

325

List of Programming

Program 2-1
Program 2-2
Program 2-3

Program 2-4

Program 2-5
Program 2-6

Program 2-7
Program 2-8
Program 3-1
Program 3-2
Program 3-3
Program 3-4
Program 3-5
Program 3-6

Program 3-7
Program 3-8
Program 3-9

Program 3-10
Program 3-11

Examples

Snowflake pattern using keyboard characters

Figure silhouette (chess piece) using character graphics
Symmetrical pattern (pyramid) using character graphics and pro-
gram loops

Chess piece silhouette using character graphics and encoded
data

Box pattern using ASCII character codes in PRINT statements
Box pattern using the ALT key and the numeric keypad to print
special characters

Random color pattern using characters

Color shading patterns using characters

Plotting a point

Point plotting and off-screen tests

Point plotting and erasing

Plotting a pattern of random points

Plotting points using relative coordinates

Line drawing using the LINE command with both absolute and
relative coordinate specification

Star pattern produced by specifying line endpoints relative to the
last reference point

Drawing a vertical line by plotting points, specified as absolute
coordinates

Drawing a horizontal line by plotting points, specified as relative
coordinates

General line drawing using the line equation and point plotting
General polygon drawing and color

xi

xii

Program 3-12
Program 3-13
Program 3-14
Program 3-15

Program 4-1
Program 4-2
Program 4-3
Program 4-4
Program 4-5
Program 4-6
Program 4-7
Program 4-8
Program 4-9
Program 5-1

Program 5-2
Program 5-3
Program 5-4
Program §-5
Program 5-6
Program 5-7

Program 5-8
Program 5-9
Program 5-10
Program 5-11
Program 6-1
Program 6-2
Program 6-3
Program 6-4
Program 6-5
Program 6-6
Program 6-7
Program 6-8
Program 6-9
Program 7-1
Program 7-2
Program 7-3
Program 7-4
Program 7-5
Program 7-6
Program 7-7

List of Programming Examples

Painting solid-color rectangles

Star pattern drawn with resolution correction

Sailboat constructed with the DRAW statement

Picture construction (castle) and scaling, using the DRAW state-
ment

Horizontal data trend graph using character graphics
Vertical data trend graph using character graphics

Vertical data trend graph using point plotting

Vertical data trend graph using line drawing

Labeled data graph using character graphics

Labeled graph using line drawing

Labeled bar graph using character graphics

Labeled bar graph using line drawing

Shaded bar graph using pixel graphics

Picture (man in the moon) constructed with circular arcs, using
the CIRCLE command

Circle generator using line drawing and angular increments
Circle generator using point plotting and angular increments
Plotting a sine curve

Plotting a parabola

Plotting the normal curve

Dinosaur drawn with curves approximated by short line seg-
ments

Fire truck drawn with curve equations

Art patterns with curves _

General graph plotting using any input equation

Pie chart constructed with the CIRCLE command
Interactive sketching

Interactive picture design using lines

Menu selection using a light pen

Picture coloring using a painting menu and a light pen
Interactive picture construction using a light pen
Interactive sketching with a light pen

Interactive sketching with a joystick

Interactive line drawing using a joystick

Menu selection with a joystick

Translating pictures (boy, dog, and hydrant)

Translating a graph

Interactive object translation using a light pen

Translation using the DRAW statement

Scaling picture parts (car)

Interactive scaling with a light pen

Rotation of a picture (clown)

List of Programming Examples xiii

Program 7-8

Program 8-1
Program §8-2

Program 8-3

Program 8-4
Program 8-5
Program 8-6
Program 8-7
Program 8-8
Program 8-9
Program 8-10

Program 8-11
Program 8-12
Program 8-13
Program 8-14
Program 8-15
Program 8-16

Program 8-17
Program 8-18

Program 8-19
Program 8-20
Program 8-21

Program 8-22
Program 8-23

Program 8-24

Program 9-1
Program 9-2
Program 9-3
Program 9-4
Program 9-5
Program 9-6
Program 10-1

Interactive picture construction using a shape menu and key-
board input

Bouncing a character horizontally

Bouncing a character block vertically, using a SCREEN function
character code test

Multiple object (airplane and block) animation, using a SCREEN
function color code test

Animation of an object (worm) using text pages

Bouncing a pixel between vertical boundaries

Bouncing a point inside a box using unit increments

Bouncing a ball inside a box

Bouncing a line vertically

Animation by scaling (box)

Animating a ball through a maze, using the POINT function to
test for wall collisions

Moving a line in a circle

Bouncing motion of a dropped ball

Animating a ball along a parabolic path

Motion of an arrow along a parabolic path

Spinning a line

Moving a truck along a straight-line path, using PUT with the
XOR operator

Motion of an airplane along a straight-line path, using PUT with
the PSET operation

Animation by scaling, using frames and the GET and PUT com-
mands (sailboat)

Compound motion: running stick figure formed with frames
Compound motion: moving wagon with turning wheels
Compound motion: multiple objects (airplanes) moved along
random horizontal and vertical paths with PUT statements
Background motion: moving centerlines on a road

Background motion: moving telephone poles past an object on a
road

Simulating movement with background motion: train with mov-
ing rod and moving tracks

Spotlighting with circles

Spotlighting with rectangles

Clipping with GET and PUT statements

Point and line clipping (airplane)

Point, line, and text clipping (airplane)

Displaying viewports (airplane)

Erasing hidden lines by painting surfaces on the screen from
back to front

xiv

Program 10-2

Program 10-3
Program 10-4

Program 10-5

Program 10-6
Program 10-7
Program 10-8
Program 10-9

Program 11-1
Program 11-2
Program 11-3
Program 12-1
Program 12-2
Program 12-3
Program 12-4
Program 12-5
Program 12-6
Program 12-7
Program 12-8

Program 12-9
Program 13-1

Program 13-2

Program 14-1
Program 14-2

Program 14-3
Program 14-4
Program 14-5

List of Programming Examples

Eliminating hidden lines by displaying only the one visible
surface from each pair of symmetrical faces of an object (box)
Erasing hidden surfaces by locating hidden vertices

Erasing hidden line segments for partially visible lines and
surfaces

Drawing a three-dimensional scene with repeated perspective
views of an object (road lined with telephone poles)
Three-dimensional perspective views of a single object (box)
Three-dimensional bar graph

Three-dimensional curve plotting

Three-dimensional curve plotting—displaying only visible line
segments to give a surface appearance

Three-dimensional translation and perspective views (box)
Three-dimensional scaling and perspective views (robot)
Three-dimensional rotations (die)

Exploded pie chart

Combination graphs: bar chart and line graph

General graphing program—allowing graph type to be chosen
Comparative graph: overlaid bar charts

Comparative graph of two bar charts: one up, one down
Cumulative surface chart, plotting two data sets

Band chart, shading the area between two curves

Multiple formats: overlapping bar charts, cumulative line graphs,
and pie chart

Time chart for scheduling tasks

Arithmetic practice, presenting addition problems with prompts
and pictures

Simulation: modeling the solar system with rotating moon and
earth

Household budget bar chart

Nutrition graph, plotting calories and nutrients in two bar charts
and a pie chart

Biorhythm graph

Bouncing ball-and-paddle game

Arrow and target game

List of Color Photographs

Figure A Pictures can be created using the PC character set and the COLOR
command.

Figure B Color spectrum displayed by Program 2-8, using character patterns.

Figure C A variety of color shades can be displayed by alternating the color of
points plotted in adjacent positions.

Figure D Color pictures can be painted on the screen using the special graphics
commands available on the PC.

Figure E Color bar graph produced with the PC character set.
Figure F Color bar graph produced with PC graphics commands.

Figure G A color menu can be used with a light pen to select colors and areas of
a picture to be painted.

Figure H Three-dimensional scenes can be created by painting color areas onto
the screen. Color areas farther away are painted first, with nearer areas painted
over them.

Figure I Color pattern formed with a series of rotated hexagons. Each subse-
quent hexagon is formed by moving all the vertices of the previously drawn
hexagon a small distance along the lines joining the vertices. The hexagon sides
are alternately colored cyan and magenta.

XV

xvi List of Color Photographs

Figure J A color surface pattern formed with curved lines using three-dimen-
sional plotting techniques. The lines shown are generated from the equation
Y=A*ABS(SIN(B*Z))*EXP(—K*X)*SIN(X). The constants A, B, K and the
range of values for X and Z are chosen so as to position the curves on the screen,
as discussed in Section 10-6. Variations in color are obtained by plotting different
colors in different Y regions. .

Figure K Color pattern created with a series of triangles. The design is started
with four triangles, positioned to form a rectangular boundary with the magenta
side of each triangle. The other two sides of each triangle (cyan) lie along the
diagonals of the rectangle. A succession of triangles is then drawn inside each of
the original four triangles, with each subsequent triangle rotated slightly and
diminished in size.

Figure L A color pattern formed with rotated rectangles. A series of rectangles
are drawn inside each of the four adjoining rectangular areas. Each subsequent
rectangle is drawn so that its vertices are moved a small distance along the sides of
the previous rectangle.

Figure M Three-dimensional bar graph displayed by painting color areas on the
screen from the ‘‘back’’ of the graph to the “‘front’’.

Figure N Exploded pie chart, produced by the methods discussed in Section
12-1.

Figure O Band chart, using colors to emphasize the areas between data curves.

Figure P Biorhythm graph, plotting the theoretical highs and lows for physical,
emotional, and intellectual energy levels.

Preface

In this book we discuss the basic concepts and techniques of computer
graphics, and we explore the capabilities of the IBM Personal Computer (PC) for
graphics applications. Methods for creating two- and three-dimensional pictures
and graphs are considered, together with ways to manipulate and animate our
displays. We look into the makeup of the PC, and we examine the graphics
features of the PC’s BASIC in detail.

Our discussion is arranged in five parts. Part I is about the IBM Personal
Computer. We see what makes the system tick, how the different hardware
components function, and what options are available for expansion boards, video
monitors, and other input/output devices. We also take an introductory look at the
software capabilities of the PC in this first part.

In Part II, we introduce fundamental methods for constructing pictures and
graphs in two dimensions. We see how to create displays using the alphabet and
special graphics characters or using graphics commands and pixels. Color,
shading, and the use of light pens, joysticks, and tablets in graphics programs are
investigated.

Techniques for manipulating displays are taken up in Part III. We present
procedures for translating, scaling, and rotating displays, and then use these ideas
as the basis for a detailed development of animation. We also consider how
spotlighting and clipping of pictures and graphs can be incorporated into our
graphics programs. Applications are discussed for both character and pixel
displays.

Three-dimensional graphics is introduced in Part IV. Here we look at
methods for erasing hidden lines, for developing perspective views of objects, and
for performing three-dimensional transformations on both pictures and graphs.

Applications of computer graphics in business, education, and the home are

xvii

xviii Preface

surveyed in Part V. Topics discussed in this final part include additional graph-
drawing techniques, simulations, computer-assisted instruction, household bud-
get charts, nutrition charts, and game playing.

The graphics methods and applications discussed in this book are illustrated
with programs written in BASIC. We developed and tested all programs on an
IBM Personal Computer running under DOS 1.1. Suggestions for extensions and
revisions to the programming examples are given in the main discussion and in the
list of programming projects at the end of the chapters.

Donald Hearn
M. Pauline Baker

COMPUTER GRAPHICS
for the IBM
Personal Computer

Part |
THE IBM PC

To create pictures and graphs with our Personal Computer, we need to understand
the operational features of the system. So we begin with a survey of hardware and
software components and how our graphics creations are to be input, processed,
and displayed.

Chapter 1

System Overview

IBM’s Personal Computer, the ‘“‘PC,’’ provides us with a variety of graphics
capabilities. Pictures, graphs, charts, and animation are all possible in both text
and pixel graphics modes. But before we get into a discussion of these graphics
capabilities, we should take a tour of the PC system and get acquainted.

The basic hardware components of the PC are the system unit, keyboard,
and a video display monitor. To this beginning setup, we can add a number of
input/output (I/O) devices, several different types of monitors, and numerous
software options. Figure 1-1 shows one possible system configuration.

1-1 SYSTEM UNIT

Here we have the activity center for all of the PC’s operations. This cabinet
contains the system board (with memory, central processor, and expansion slots),
the power supply, and a speaker. As options, we can add one or two floppy disk
(diskette) drives or hard disk drives. The system unit layout is diagrammed in Fig.
1-2.

SYSTEM BOARD

An Intel 8088 is the central processing unit (CPU) for the PC. This microprocessor
chip sits on the system board, processing our instructions and serving as the main
control for all system operations. The 8088 is a 16-bit CPU chip that gives us fast
processing speed and the ability to address over 1 million bytes of main memory
locations.

Main memory, also called internal memory, comes in two denominations:
random-access memory (RAM) and read-only memory (ROM). RAM is the kind

4 THE IBM PC PART |

Figure 1-1 The IBM Personal Computer in a system configuration composed of the monochrome
display, keyboard, 80-character matrix printer, and system unit, with two diskette drives installed.

used to temporarily store a program or a data file, while we are working with it.
Sometimes RAM is called read/write (R/W) storage because the system can both
read from and write into this type of memory. For the PC, we can add RAM chips
to the system board in units of 64K (65,536 bytes on each chip). There is room for
four such chips, so that the ‘‘smallest’” PC system would have 64K of RAM and
three empty spots. Filling in these three spots gives us a total of 256K of memory
on the system board. (We can add more RAM by putting memory chips on the
option boards that plug into the expansion slots.) ROM is the type of memory used
for permanent storage of the system programs and data. The system board holds
several ROM chips that are used to store the cassette operating system, BASIC
interpreter, I/O drivers, disk loader, and patterns for the graphics characters.

On the system board we also find a number of switches. These are called
dual in-line package (DIP) switches. We use them to tell the PC about our system
configuration. DIP switch settings indicate the amount of RAM memory we have
installed, the type of monitor we have, the number of disk drives attached, and the
type of display adapter board we are using.

OPTION BOARDS

The back end of the system board contains five expansion slots, numbered 1
through 5 from left to right (Fig. 1-2). By inserting option boards into these slots,

Chapter 1 System Overview 5

Cassette Keyboard
1/0 \ / I/0
T 2 3 4 5 — L]
el es B
Intel
Expansion Br(;BeB Power supply
slots CPU
(1 through 5)
Dgswitches
chips L] | I : |
N | i
Il |
RAM D Disk drive A | I Disk drive B
chips area I area
I
i
Il
________ il
Speakerlﬂ \ T
]

System board

Figure 1-2 System unit layout, showing locations of the system board, power supply, disk drives,
and I/O connections.

we can increase the RAM available or we can select one or more of the system
options. At least one slot must be used for the board that, among other things,
contains the system option to run the display monitor.

Two primary video display option boards are available. They are the
Monochrome Display and Printer Adapter board and the Color/Graphics Monitor
Adapter board. Both use a Motorola 6845 chip to control operation of the video
monitor. With the Monochrome board we can attach the IBM monochrome
monitor, giving us characters of exceptionally high quality on a green phosphor
screen. We can make pictures and graphs with the Monochrome board from the
symbols provided in the ROM character set. This board also includes a connector
for the IBM printer. Alternatively, we can use the Color/Graphics board and
connect a color monitor or TV. This board lets us make use of special graphics
commands and up to 16 colors. There is no connector for a printer on the Color/
Graphics board, so we need to use a second expansion slot for the Parallel Printer
Adapter board. We could use both the Monochrome and Color/Graphics boards if
we wanted to support both the IBM monochrome display and a color monitor.
Additional boards are available that allow graphics commands to be used with the
monochrome monitor, but color, of course, would still not be possible.

6 THEIBMPC PART I

Several other options are available to us by using additional boards in the
expansion slots. The Diskette Drive Adapter board is needed if we want to attach
disk drives to our PC. The Asynchronous Communications Adapter board
provides an RS-232 port for attaching serial devices, such as modems, graphics
tablets, and some printers. The Game Control Adapter board allows us to use
joysticks or game paddles. We can also use expansion slots to increase the RAM
available. An add-on memory board usually starts with 64K and is expandable up
to (and in some cases beyond) 256K, in increments of 64K.

With all the options that we might want to add to our PC, it is easy to quickly
use up the five expansion slots. Fortunately, various options can be put together
on a single board. Combination boards are available with almost any selection of
options. Typically, such boards have memory chips, one or two RS-232 inter-
faces, and a parallel printer port. Some combination boards might also include a
clock/calendar, which automatically sets the date and time on system startup, and
a game adapter for joystick or paddle attachment.

MAIN MEMORY

We have noted that our PC has the capability to access over 1 megabyte of
internal storage. Some of the address areas in this memory space are available to
us as RAM for temporarily storing our programs and data files. The other areas
are reserved for system use, either as system RAM or system ROM. Figure 1-3
shows the way that storage addresses are partitioned for the various uses.
Memory locations are given in hexadecimal. .

All RAM addresses are assigned to the first 768K. The ROM areas are
addressed as the last 256K of the memory space. Within the RAM addresses, the
user space (our available area for temporarily storing programs and data) is

Figure 1-3 Table of internal storage partitions, stating the beginning and ending byte address for
each area of main memory and the purpose of each area.

Start End

address address Memory area description

00000 3FFFF From 64 to 256K RAM on the system board.

40000 9FFFF Up to 384K RAM on option expansion boards.

A0000 A3FFF Reserved 16K RAM area for system use.

A4000 AFFFF Reserved 48K RAM area for use by the system in set-
ting up video displays.

B0000 BOFFF Reserved 4K RAM display buffer area on the Mono-
chrome Display and Printer Adapter board.

B1000 B7FFF Reserved 28K RAM area for video use by the system.

B8000 BBFFF Reserved 16K RAM display buffer on the Color/Graph-
ics Monitor Adapter board.

BC000 BFFFF Reserved 16K RAM area for color graphics.

C0000 EFFFF Reserved 192K ROM expansion area.

F0000 F3FFF Reserved 16K ROM area.

F4000 FFFFF Reserved 48K ROM area on the system board.

Chapter 1 System Overview 7

designated as locations 0 through 9FFFF (640K). Beyond this area, the system
makes use of RAM addresses for several purposes. A 4K display buffer, starting
at location B0000, is set up for use with the IBM monochrome display. The 4K
memory chip on the Monochrome board is accessed with these addresses. A 16K
display buffer, starting at location B8000, is used with graphics monitors. The
memory chip for this buffer area is on the Color/Graphics board.

1-2 KEYBOARD

Attached to the system unit through 6 feet of coiled cable is the keyboard, which is
our main input device to the PC. Eighty-three keys are positioned on the keyboard
to give us a standard typewriter layout, a 10-key numeric keypad, and 10 function
keys. We can use the numeric keypad portion of the keyboard for fast data entry,
as we would with an adding machine, or we can use these keys for cursor control.
We change from one mode to the other (cursor control or numeric data entry) by
pressing the NUM LOCK key. This key works like a toggle switch, changing from
one mode to the other each time we press it. The 10 function keys, on the left of
the keyboard, are set for commonly used commands, such as LIST or RUN.
Hitting the appropriate function key is equivalent to typing that command. We can
change these function keys to whatever commands we want.

We also get a touch of luxury with our keyboard. The keyboard slant can be
set with a tilt adjustment to either a 5-degree or a 15-degree angle. With the coiled
cable, we can drag the keyboard around to suit our working environment.

The internal workings of the keyboard are under the control of an Intel 8048
microprocessor chip. This chip is inside the keyboard and continually scans the
keys to determine when one has been pressed. It also does a self-test on the
keyboard during system startup, performs key-debounce checks, and handles the
buffering of up to 20 keys. Buffering allows us to type in a command even while
the CPU might still be busy executing our previous command. The second
command is then stored in the keyboard’s buffer until the CPU is ready for it.

1-3 VIDEO MONITORS

A wide choice of display units can be used with the IBM PC. These video displays
attach to connectors on the back of the system unit and include the IBM
monochrome display, other types of monochrome or color monitors, and televi-
sion sets. The operation of a video monitor is based on the standard cathode-ray
tube (CRT) design.

BASIC CRT OPERATION

Figure 1-4 illustrates the basic operation of a CRT. A beam of electrons (cathode
rays), emitted from an electron gun, passes through a focusing and deflection

8 THEIBMPC PARTI

Electron
gun

Focusing and

deflecting
system

l ~
N

Electron
beam

Phosphor-coated
screen

Figure 1-4 Basic operation of a CRT.

system and strikes a phosphor-coated screen. Voltages applied to the electron gun
determine the number of electrons emitted. The focusing and deflection system,
also controlled by voltages, produces electric and magnetic fields to focus the
beam onto a particular spot on the screen. When the electron beam strikes the
phosphor coating, the screen lights up at that spot. The intensity of a light spot
depends on the number of electrons in the beam. By directing the beam to various
points on the screen, we are able to display text or a graphics pattern.

The light emitted by the phosphor coating on a display screen lasts only a
small fraction of a second. Therefore, we need some method for maintaining the
screen picture so that we can see it. One way to keep the phosphor glowing is to
repeatedly pass the electron beam over the same screen points. This type of
display is called a refresh CRT. It turns out that we need to refresh a screen
picture at least 25 to 30 times each second; otherwise, it flickers.

Refresh CRTs used with the PC operate as raster-scan displays. These
monitors pass the electron beam over all parts of the screen, turning the beam
intensity on and off to coincide with the information to be displayed. The electron
beam is made to sweep across horizontal lines of the picture tube from top to
bottom. This refresh cycle is set up so as to sweep the beam across every other
horizontal line on one pass, then return to the top of the screen to sweep across
the remaining lines on the next pass. Interlacing of the scan lines in this way helps
to reduce flicker, since we essentially see the entire screen display in one-half the
time it would have taken to sweep across all the lines from top to bottom in one
pass.

How does the CRT know when to turn the beam on and off? This is governed

Chapter 1 System Overview 9

by reading the pattern of bits stored in the display buffers. Both the Monochrome
board and the Color/Graphics board contain memory chips, called display buffers,
that are used to store the definition for the screen display. A 4K buffer is on the
Monochrome board and a 16K buffer is on the Color/Graphics board. The address
areas for these buffers are given in Fig. 1-3.

IBM MONOCHROME DISPLAY

A green phosphor screen is used on the IBM monochrome display. This monitor is
driven by a Motorola 6845 chip as a raster-scan CRT with a refresh rate of 50 times
a second. Each screen frame is presented in 350 horizontal lines (from top to
bottom) with 720 individual dots across each line. Characters displayed on this
screen are formed with rectangular dot patterns that are 9 dots across and 14 dots
high. This gives us a screen area that contains 25 print lines with 80 character
positions in each line.

Two cables connect from the monitor to the system unit. One cable provides
the drive interface to the 6845 chip on the Monochrome board through a nine-pin
connector. The other cable attaches to the AC power ON/OFF switch on the back
of the system unit. In this way, the monochrome monitor is automatically
switched on and off with the system unit.

The monochrome monitor weighs about 17 pounds. We can safely place it
atop the cabinet of the system unit—a convenient location. If we use a different
monitor with our PC, we may not want to do this. A heavy video display could
press down and bend the option boards in the expansion slots.

COLOR MONITORS

Using color on a monitor requires some changes to the basic CRT operation.
Color is produced by using more than one type of phosphor coating on the screen.
Different phosphors emit different-colored light, and combinations of light from
two or more phosphors can produce a range of colors.

Displays typically use a shadow-mask CRT to produce color. This is the type
of CRT used in color TV sets. A shadow-mask CRT has the screen coated with
tiny triangular patterns, each containing three different closely spaced phosphor
dots. One phosphor dot of the triangle emits a red light, another emits a green
light, and the third emits a blue light. This CRT has three electron guns, one for
each color, and a shadow-mask grid just behind the phosphor-coated screen (Fig.
1-5). The purpose of the shadow mask is to focus the electrons from each gun so
as to strike only the correct color dot in any triangle. Setting intensity levels for
the three electron guns sets the color combination for each triangle of phosphor
dots so that the triangle appears as one small color point on the screen. Thus, a
blue spot on the screen would result from activating only the blue phosphor dot. A
white (or gray) area is the result of activating all three dots with equal intensity.
Yellow is produced with the green and red dots; magenta is produced with the

10 THEIBMPC PARTI

An RGB triangle of
color phosphor dots
on the screen

Electron guns

Focusing and
deflection system

Figure 1-5 Shadow-mask CRT. Three electron guns, arranged in a pattern to coincide with the
arrangement of each triangle of color dots on the screen, are directed onto the dot triangles by a
shadow mask. The mask allows only the electrons from the B gun to strike the B dot, the R gun to
strike the R dot, and the G gun to strike the G dot.

blue and red dots; and cyan shows up when blue and green are activated equally.
When no dots are activated, we have a black spot. Eight additional colors (for a
total of 16) on the PC are obtained by changing the intensity levels of one or more
of the three electron beams.

The raster-scan circuitry on the Color/Graphics board generates 200 hori-
zontal screen lines with either 320 or 640 dots across each line. Three types of
color monitors can be attached to the Color/Graphics board: a television set with
an RF modulator, a composite monitor, and an RGB (red-green-blue) monitor.
These monitors differ in the way the signal is transmitted from the system, and
they produce images of varying quality. We can also connect a black-and-white
monitor to the Color/Graphics board and do graphics without color.

TELEVISION SETS

To use a color (or black-and-white) TV as a video monitor with the PC, an RF
modulator must be hooked up between the TV and the four-pin connector on the
Color/Graphics board. The purpose of the RF modulator is to simulate the signal
from a broadcast TV station. This means that the color and intensity information
of the picture must be combined and superimposed on the broadcast-frequency
carrier signal that the TV needs to have as input. Then the circuitry in the TV
takes this signal from the RF modulator, extracts the picture information, and

Chapter 1 System Overview 1

paints it on the screen. We can expect this additional handling of the picture
information by the RF modulator and TV circuitry to result in lower-quality
images.

COMPOSITE MONITORS

We can get higher-quality pictures by using monitors that eliminate the need for
the TV broadcast frequency input. Monitors that are adaptions of TV sets,
allowing bypass of the broadcast circuitry, are called composite monitors. These
display devices still require that the picture information be combined, but no
carrier signal is needed. Connection to a composite monitor is made from the
“‘composite signal phono jack™ at the rear of the system unit. Since picture
information is combined into a composite output and then separated by the
monitor, the resulting picture quality is still not the best attainable.

RGB MONITORS

The third type of color monitor, the RGB monitor, produces the highest-quality
picture image. This monitor takes the intensity levels for each electron gun (red,
green, and blue) directly from the system without any intermediate processing. In
this way, fewer signal distortions are generated. A nine-pin connector on the rear
panel of the system unit outputs color signals directly to the RGB monitor.

1-4 INPUT/OUTPUT OPTIONS

A number of I/O devices can be connected to our PC. Tape cassette players,
floppy disk drives, and hard disk drives provide external (or auxiliary) storage.
These are the devices that we use to store our programs and data permanently. A
five-pin connector at the rear of the system unit is used for the tape cassette, while
disk drives are connected to the Diskette Drive Adapter board. Up to four floppy
disk drives (either single-sided, double-sided, or a combination) can be attached.
Two of these drives can be installed inside the system unit, and two more can be
attached through a connector on the rear panel of the system unit.

Several interactive graphics I/O devices are also available for use with the
PC. One or two joysticks or up to four game paddles can be operated from the
Game board. A light pen, attached to a six-pin connector on the Color/Graphics
board, and a graphics tablet, attached to an RS-232 port, provide other forms of
interactive input. These devices can be used in graphics programs to construct
pictures, to select program options, or to create animated displays.

Both serial and parallel printers can be operated from the system unit. Serial
printers are attached through an RS-232 port. Parallel printers are attached
through a parallel port, such as the 25-pin connector on the Printer board or on the
Monochrome board.

12 THE IBM PC PART |

1-5 GRAPHICS PROGRAMMING

The patterns we see on our screen are determined by the contents of the system
display buffers. We set the contents of the display buffers with graphics programs
written in BASIC, assembly language, or using the UCSD p-System.

Four versions of BASIC are available from IBM. We can write graphics
programs using a BASIC interpreter, which comes in three versions, or with the
BASIC compiler. The three interpreter versions are called cassette, disk, and
advanced BASIC. Varying levels of graphics commands are available on the PC
for these versions of the interpreter. Figure 1-6 lists BASIC graphics commands
and their availability in the three versions of the interpreter. The BASIC compiler
operates under DOS and includes the same commands as the advanced interpreter.

Cassette BASIC is permanently stored in ROM and is available with all
system configurations. Disk and advanced BASIC are optional. They come with
DOS and provide for operations with the disk drives. Certain enhanced graphics
techniques, such as the CIRCLE command, are available only in advanced
BASIC. The BASIC compiler is also an optional package. It supplies the
capability for increased speed, which is an important consideration in some
graphics applications.

Assembly language graphics routines can be written by setting the graphics
buffer locations (Fig. 1-3) to the values that produce the desired screen picture. In
this case, the ‘‘graphics commands’’ are instructions to store certain numeric

Figure 1-6 List of PC graphics commands and their availability in each of the BASIC language
interpreters (cassette, disk, advanced).

Graphics
command Purpose Cassette Disk Advanced
CIRCLE Draw arcs, circles, ellipses. no no yes
COLOR Set screen pixel or character colors. yes yes yes
DRAW Draw outline of specified objects. no no yes
GET, PUT Animation and clipping. no no yes
LINE Draw lines or rectangles. yes yes yes
ON PEN Branching command used with the light pen. no no yes
ON STRIG Branching command used with joysticks or no no yes
paddles.
PAINT Paint colors into specified screen areas. no no yes
PEN Provide coordinate and status input from the yes yes yes
light pen.
POINT Check the color of a specified screen point. yes yes yes
PSET, PRESET Plot or erase specified points. yes yes yes
SCREEN Set resolution mode, turn color on/off, and set yes yes yes
command pages for display.
SCREEN Check ASCII code or color attributes of a yes yes yes
function specified character position.
STICK Provide coordinate input from joysticks or yes yes yes
paddles.
STRIG Provide button input from joysticks or pad- yes yes yes

dles.

Chapter 1 System Overview 13

values into certain buffer locations and to display the buffer contents. We could
also do this with the BASIC language PEEK and POKE statements. The UCSD
p-System, which supports both the FORTRAN-77 and Pascal languages, features

“‘turtlegraphics’’ methods.

Part Il

BASIC
GRAPHICS

Now let us see how to create graphics displays with BASIC on our PC. We start
with simple picture-drawing concepts, then consider techniques for generating
graphs, curved lines, and interactive displays.

15

Chapter 2

Making Pictures:
Character Style

The PRINT statement and the PC character set give us a simple and often
effective means for doing graphics. Character graphics is a technique that is
available whether we have the Monochrome or the Color/Graphics option. So, to
get started, we first see what we can do using this method.

2-1 CHARACTER GRAPHICS CONCEPTS

We can use any character on the keyboard (letters, digits, or other symbols) in
PRINT statements to construct graphics patterns. A box outline is displayed with
the statements

10 PRINT “sootsersesrotosostorssorsksrxskkxokkoks’
20 PRINT “* *"
30 PRINT “x *”

40 PRINT “eseoreskorsk sk sk ok ok ok ok dok k.

We make oversize letters with a program segment such as

10 PRINT “lllNll BBBBBBBBBB MMMMMM MMMMMM”
20 PRINT “Hiiii BBBBBBBBBBB ~ MMMMMMM MMMMMMM”
30 PRINT “ 1 BBB BBB MMMMMM MMMMMM”
40 PRINT “ 1l BBBBBBBBB MMMMMMM MMMMMMM”
50 PRINT “ 1l BBBBBBBBB MMMM MMMMM MMMM”
60 PRINT “ 1l BBB BBB MMMM MMM MMMM”
70 PRINT “lili BBBBBBBBBBB ~MMMMMM M MMMMMM”
80 PRINT “lilill BBBBBBBBBB MMMMMM MMMMMM”

17

18 BASIC GRAPHICS PART Il

Program 2-1 Snowflake pattern using keyboard characters.

10 *PROGRAM 2-1. SNOWFLAKE USING CHARACTERS & PRINT STATEMENT

20 CLS

30 PRINT kX "
40 PRINT * XX "
S50 PRINT L 3 SN $ "
60 PRINT " ## $ 4 ## "
70 PRINT " X% HHCCKE O HE b & S
80 PRINT " XZ7ZX%xX X[<<o0>>1x 12323 ¥4 B
90 PRINT " $Xx## o <<ooo00>> o ##xx$ "
100 PRINT " X &&<<mm <<oo>> mm> >&8 x "
110 PRINT 00<{<{>> ~~ oo ™~ <<>>o0 "
120 PRINT * xpp & XX & qq% "
130 PRINT pPp >>& X5xxXxX &< qq "
140 PRINT " L3 S $ "
150 PRINT " bb >>&% XX¥XxXx &<{< dd "
160 PRINT " Xbb & xx & ddx "
170 PRINT oo<l<{>> vV 00 VvV <<>>o00 "
180 PRINT " &% &< < <<oo>> ww> >&& x "
190 PRINT * $Xx## o <<ooo00>> o ##xxs "
200 PRINT " SX77XXXX ¥[<<oo>>1x XXXKLLX "
210 PRINT " XX L2248 § DL 2 2 | & S
220 PRINT * #4# $ 4 ## "
230 PRINT " b 3 S 4 "
240 PRINT * b $4 "
250 PRINT 3 4 "
260 END

In Prog. 2-1 we produce a pattern using several keyboard characters. The CLS
statement on line 20 of this program clears the screen and places the cursor in the
upper left corner (the ‘‘home’”’ position). Our figure outline is then displayed from
this starting position.

We can put graphics patterns anywhere along the available print lines of the
screen. The IBM PC provides 25 horizontal print lines with either 40 or 80
characters per line. Lines are numbered from 1 at the top of the screen to 25 at the
bottom of the screen. Character positions along each print line are numbered from
1to 40 or 1 to 80, left to right. We choose which width we want for the print lines
using the WIDTH statement. WIDTH 80 gives us the maximum number of
characters across a line, and WIDTH 40 provides half as many ‘‘double-wide’’
characters. If we wanted to center the word GRAPHICS using the 40-character
width, we would position the word to start at location 17 on line 12. We can do this
with the LOCATE statement, which selects line and character starting positions
for the next PRINT statement:

10 WIDTH 40
20 LOCATE 12, 17
30 PRINT “GRAPHICS”

The LOCATE statement sets up the screen position for only one PRINT
statement. After executing line 30, the screen cursor will be positioned at the
beginning of the next print line: column 1 of row 18. Another PRINT statement,
following line 30, would then print in this position. If a character string is too long

Chapter 2 Making Pictures: Character Style 19

to fit along one row, it is either continued on the next row or entirely moved down
to start on the next row. A character string will be started at the beginning of the
next row whenever we specify it to start after column 1 and it will not fit in the
remaining positions of the row that we specified. Row and column positions in a
LOCATE statement that are outside the screen limits cause an error message to
be displayed.

There are several options with the LOCATE statement that can turn the
screen cursor on and off and set the cursor size. For many of our graphics
applications, we will only need to use LOCATE to set the line number (row) and
character position (column). We should note that the WIDTH statement clears the
screen if we are changing screen modes from 80 characters to 40 characters per
line. When we are already in the 40-character mode, a CLS statement is needed to
clear the screen.

2-2 CONSTRUCTING CHARACTER PICTURES

Pictures can be set up for display by first sketching the picture outline on graph
paper. We then determine the character print position for the picture outline or
silhouette from the sketch. Each horizontal line of characters on the graph paper
becomes one print line. We have one slight problem with this method. Graph
paper is usually divided into squares, but the area occupied by a character on the
screen is not square. Although character area in WIDTH 40 is almost square, a
character displayed in WIDTH 80 is quite a bit taller than it is wide. If we use
square graph paper to determine print positions, the displayed picture will be
distorted. Graph paper that more closely matches the dimensions of our charac-
ters is provided in Appendix A for both WIDTH 40 and WIDTH 80. Although this
graph paper will not duplicate exactly the dimensions found on all monitors, it will
give better results than square graph paper. We can also make customized graph
paper by printing a page filled with plus signs (+), as shown in Fig. 2-1. Program
2-2 outputs a silhouette of the figure outlined in this picture.

Lines 380 through 430 in Prog. 2-2 are identical. We could reduce these six
lines to a single PRINT statement inside a FOR-NEXT loop. Any picture
containing repeated or symmetric patterns can be set up with loops to construct
the patterns. The pyramid of Fig. 2-2, for example, can be displayed with Prog. 2—
3. By not including the variable name STARS in statement 80 and the name
COUNT in statement 110 (an option available to us on the PC), we speed up the
loop processing. Execution speed of our programs is an important consideration
when we are producing complex pictures or when we are animating scenes.

We can also cut down on the number of PRINTs we have to type if we
encode the character print positions in DATA statements. This encoded data can
then be read from the DATA statements, decoded, and printed. There are a
number of ways we can encode the print lines. One possibility is to specify each
print line of a picture as a pair of numbers. The first number gives the starting print

b b e Ao oo b b e b oo A o e b e oo b o oo bbb oo ob et o b bbb e
A e bbbk bbb e o b e oo e - Bk A b b e e b e b et A bbb ool
T T I I I TR L (T N R O T R S T O T IR I S T A
bbb b e oo e bbb el e 4 ek b 4 b b b bbb bbb A] 4
Aok bbb A bbb e A b e e bbb b Ao bbb bbb bbb
b b bbb e b bbb b Tl el 1

B S I IR T A S R U S R R O B R S R R R R A S A
Pt Ao bbb e b o ool bbb A] A bl

kol bbb bbb e b bl e Ao b A bbb ot b
e ek e b b e bk Bk e e Ao DN b et e 4 e
PRE bt Ao e

+

T R

oAb ol bl e o e b e e b bbb el b

b e oo e . N e e oo b ettt
1

b

S Y Y Y Y S S M S Y Y M S M A
Gk oo e b e bbb e b b b

Db bbb b bbb b A o A e N
R L O N S I Y 0 Y M R Y S M o
Aol bbb A ob b b b e b e bbb b by
b bbb bbb b b b b b bbb bbb b e b e

et bbb e bbb bl
Bk bbbt o bbb b
ook oo bbb ol Bkl bbb 4
bbb oo

RS
bbb b ool ek b e ool e e e
Dot b bbbl b b A b bbb oo oo oo oAb e
Bl bbb ool b ot bbb b oo b b e oo e b
e b e b b b b o A b b b e 4o b b e
b ek

4
e o e e e o e e A e e e e e e e e oo = e e o e e e -
el e bbb e e bbb b e e e oo b b b o b oo |
e e e e e e g A e e e o) Ao Ao e e
e e oo b e e e A Fe bbb oo e b e o e e e e e o b e e e e

g A e e e

e el e obeob e e b o Ao
et b e o o A bbb e bbb bbb e b
bbb b
B o e e
e b b e b
e
PR
ool Ao el e e e A oo oo o o e et e e X e Ao e e A A

b A bbb b bk o o oo oL oo oo et ok ook oo a4
1 bbbt et oo o oo Ao obe b e oo e b oo oo bbb o b e Ao oo e e el oo oAb e e oA b

oot b b bbb el bbb bbb
A A
et ol e o b b
N

-4
N

Figure 2-1 A figure outlined on customized graph paper (formed by printing a page of plus signs) is
used to determine the character print positions for Prog. 2-2.

position and the second number states how many characters are to be printed on
that line. This scheme is used in Prog. 2—-4 to produce the chess piece.

2-3 GRAPHICS CHARACTERS

In addition to the characters that appear on the keyboard (letters, numbers,
punctuation marks, and other symbols), the PC provides a variety of special

[ednjewayjewW pue ssauisng [e1ads ‘siajorreyd sfensue| uSia10J ‘preoqhay ay) uo
dIe Jey) sI9)oRIRyd 3Y) pnjoul A3y], ‘UdaIds 9y} Uo Ar[dSIp ued IMm JBY] SId9)oRIRyD
J0J S9pod are sanfea [[DSV JI9Yl0 Y], "udaIds Yl sIedp (ZD$YHD INIAd
pue ‘19jeads ay) sdoaq ‘aourjsul 10§ ‘(L)$AHD LNTAd uswalels ayJ, 'Is}oeIeyd
© 9onpoad Jou Op pue SIPOI [OIUOD SB PAsn Ik san[ea 3y} Jo awog ‘(g xipuaddy)
$ST Y8nouay) () wolj sanfeA dAeY SIpod [[DSV "1210eIRYD 3Y) JO Ip0d [[DSV A4}
SI DV 219ym ‘uonouny (QV)$YHD Y} Suisn sjoquiks 9s3y] 195 ued oA\ "SId9)oeIRyd

aN3 ovS
WBRRRRENRR BB R B RRRR R T D RRRR D DRRR 2R TR (OT)HYL ININd O£S
W BBEERR B AR RR R RN RRBRRDR BB B ERBR R, £ (OT)AYL ININD 0ZS

« 333332 RTRITRTRRTRIRRIRD2R33RIRR « £¢(0T)EYL ININd OIS
«3RRBRIRRRBRIBRRTTR BRI RTTERRIR « £(0T)EYL ININd 00S
BRI RRIRTIRRTIRRRTT 3R IRIIRR « £(0T)EYL INIMd 06t
»B33RRB BT RT3333878373337337%8 «£(0T)EYL ININd 08Y
»333733383333333% w$(0T)EYL ININd OL¥
»B3R3RIRRBRRRRTRR «5(0T)EYL ININd 09¢
«33TRITIBRITTIRT «$(0T)EYL ININd OSY
»BRIRIRRIRRIBIR? « $£(0T)EYL ININd OtV
nBRRBIRRIRIR «£(0T)8YL ININd OSt
«3RBRIRRTRER «£(0T)EYL ININMd OZ¥
»BRBRIRRIRRT w$(0T)EYL ININd OT¥
w3RBBIRRBRRT «£(0T)8YL ININd 00V
wBR3TIRRIIRR « £(0T)EYL ININd 06S
w3RRRRRRRRDD «£(0T)EUL ININd 08S

« 3333333333333 «(0T)EYL ININdD 0LS
»383333333373833"3 «£(0T)EYUL ININd 09%
«BITRIRITRIBR IR «£(0T)EYUL ININd 0SS
wBBRRRRB BB BRI «£(0T)EVUL ININd OtS
«33RRTIRRRI BB « £(OT)EYL ININd 0SS

B3R IRRTRBIRIRIRRR « £(0T)EYL ININd 0ZS
3373737338733 3373333338333 % «£(0T)EYUL ININd OIS
«BRRBRRRBRRRE BB BT BR IR B « £0(0T)EYL ININd 00S
«333%73737333°33°3373823333333333% «£(0T)8YUL ININd 06Z

« 333337338 8873388°388373 333338388 «£(0T)EYL ININd 08Z
»B3BRTRRR 3338338833333 2R338 «$(OTYEYL ININD 0LZ
»333RRIRIR R RIR RT3 RB3BEBRT « £(0T)EYL ININd 092
w333RBRERRTR3388333333333% «(0T)EYL ININdD 0SZ

» 3383333333382 %88833833333% w$(0T)EYL ININd OVZ
«BRTIBRRTTIBRRRRRBRETTIRE « S (OT)HYL ININA OSZ
WBRIBRTRBRRRRRRDRBBERBER .« £(OT)EYL ININL OZZ
WPTIPTRRRTRRTRRTRBERBERR « £(OT)EVL ININML O1Z
«BIBRIRBRTBRRBRTRBERBET o« L (OT)EAVL INIMd 00Z

w37828883BRBBBBRBBBRIBE L (O1)GYL INIMd 06T
WBTTRBBRERBBBRDRBBBE 4 £(OT)EVL ININD 081

w333 BRRPTIRRREIRRBBETRR « S (OT)HAYL INIMD OLT
WBRRRRRRETRDBR BB DRBB BT TIRRRTIBBBBETIE « L (OT)EYL ININD OFT
#3%37%73%%%3%83888888 88892 ERTTTTTIRTIET S (O1)EaVL ININd OST
#88BBBBBBBBBBBBBBEEREERRETIIITNIEE « L(OT)AVL LINIMd OFT
WBTTPTRRTTTIRBR IR RRBTINBRTNNRBNBRT « £(OT)AYL ININC OFT
L L L L L e L L L R ST T LT T «5(0T)EYL INIMd OZT
#37378%8%38%8%833383 38388883 TTTITER W $(0T)EYL ININd OTT
#B8%89%73873%8%7338 8881233887833 «£(0T)EYL INI¥d 00T

W BRER 8RB E3338393388%% W« $(0T)EYL LNINd 06

W BRRERR BB TI2BBRIIRNR «£(0T)EYL ININd 08
#3%8%7333883393383% «$(0TYEYL ININd OL

W BBR3388%813738 «5(0T)EYL ININ¥d 09

WBBBTIIR%R # $(OT)EYL ININA O0S

33388 W« $(0T)EYL ININd OF

] W $(0T)EYL ININd Of

08 HLdIM S0 oZ
SYILIVHVHI ONISN 3LL3INOHIIS 3IIILSSIHI °“Z2-Z WYN90Md. OTF

‘sorydeid 1syoereys Suisn (9991d ssayd) apjanoyjrs aIndly 7—g weadoig

22 BASIC GRAPHICS PART II

F
FoW N
FAAMAN
A AN
AAAMAMAAMAAN
AAAMAAAMAAAA
AAAAAAMAAAMAAAMAAMN
AAAAAMAAAMMAMAMAAAAA Figure 2-2 Symmetrical patterns, such
AAMAAMAAAAAMAMAAAAAAAMAAN as this pyramid output of Prog. 2-3, can
AAAAAAAMAAANMMAAAANAMN be produced with loops that minimize
AAMAAAMAAAMAMAAAAAAMAAAMAAAAAAA the number of PRINT statements.

symbols, and characters designed expressly for producing pictures, graphs, and
charts.

We can use any of the special character codes to create screen patterns with
the Monochrome option or when in the text mode with the Color/Graphics option.
The box outline that we previously made with asterisks can be formed with
continuous lines using some of the PC’s special characters. Program 2-5 shows
how we can use the ASCII character codes in PRINT statements to produce the
box of Fig. 2-3. We could also make a single-line box by using codes 179, 191, 192,
196, 217, and 218. Characters formed with combinations of single and double lines
are also available.

Although we do not have keys for the special symbols, there is a way to
access them from the keyboard. While holding down the ALT key, we type the
ASCII code of the desired character on the numeric keypad. This character then
appears on the screen. In this way, we can repeatedly type in codes and put
together a string of symbols to form a picture. Thus the box pattern of Fig. 2-3 is
also produced by Prog. 2-6, using this method.

Pictures displayed at positions specified by input, as in Prog. 2-5 or Prog. 2-
6, could run off the screen or scroll down. To prevent such possibilities, we can
include checks of the input positions. If a specified position is so close to a screen
edge that the picture would go off screen, we can reject that input and ask for
another.

Program 2-3 Symmetrical pattern (pyramid) using character graphics and program loops.

10 *PROGRAM 2-3. DRAW PYRAMID
20 CLS: WIDTH 40

30 COLUMN = 20

40 FOR COUNT =1 TO 21 STEP 2

S0 PRINT TAB(COLUMN) ;

&0 FOR STARS = 1 TO COUNT

70 PRINT "~";

80 NEXT

90 PRINT 60 TO NEXT PRINT LINE
100 COLUMN = COLUMN - 1

110 NEXT

120 END

Chapter 2 Making Pictures: Character Style 23

Program 2-4 Chess piece silhouette using character graphics and encoded data.

10 *PROGRAM 2-4. CHESSPIECE SILHOUETTE WITH ENCODED DATA

20 EACH PRINT LINE IS STORED AS A PAIR OF NUMBERS.
30 *FIRST NUMBER IS POSITION TO START PRINTING,

40 *SECOND NUMBER IS HOW MANY CHARACTERS TO PRINT.
S0 *INPUT IS TERMINATED BY READING 0,0.

&0 ’CHARACTER TO PRINT CAN BE CHANGED IN LINE 110.

70 CLS: WIDTH 80
80 READ POSITION, NUMBER
90 WHILE POSITION <> O AND NUMBER <> O

100 PRINT TAB(POSITION);
110 FOR COUNT = 1 TO NUMBER
120 PRINT "#";

130 NEXT

140 READ POSITION, NUMBER
150 WEND

160 DATA 28,1,25,5,22,9,20,13,19,16,17,20, 16,23, 15,26,14,29, 14
170 DATA 32,13,35,13,36,12,37,12,36,12,19,44,3,12,20,12,21,12,22
180 DATA 12,23,12,24,12,25,13,25,13,26,13,27, 14,27, 14,26,15,24,15
190 DATA 23,17,19,22,13,20,17,20,17,21,15,22,13,23,11,23,11,23,11
200 DATA 23,11,23,11,23,11,21,15,21,15,21,15,21,15,17,23,13,31,13
210 DATA 31,13,31,10,37,10,37,10,37,0,0

220 END

The many different characters available on the PC give us a wide range of
picture possibilities. Figure 2-4 illustrates some shapes that we can form with
characters. We can even introduce shading into our pictures by a careful choice of
the characters we use. We can go from solid areas (code 219) to lightly shaded
areas (codes 249 and 250). Codes 219 through 223, as well as the regular keyboard
characters, give us lots of in-between textures. Three of the special character
codes (176, 177, and 178) are designed specifically for shading. A few examples of
character shading and texture patterns are found in the scene of Fig. 2-5.

Program 2-5 Box pattern using ASCII character codes in PRINT statements.

10 *PROGRAM 2-5. BOX MADE FROM SPECIAL SYMBOLS

20 CLS: WIDTH 80

30 INPUT "ROW AND COLUMN PLACEMENT FOR UPPER LEFT CORNER"j; ROW, COLUMN
40 INPUT "HOW LONG AND HOW TALL TO MAKE BOX"; HOWLONG, HOWTALL

S0 CLS: WIDTH 40

60 LOCATE ROW, COLUMN

70 PRINT CHR$(201); TUPPER LEFT CORNER

80 FOR COUNT = 1 TO HOWLONG - 2

90 PRINT CHR$(205);

100 NEXT

110 PRINT CHR$(187) ’UPPER RIGHT CORNER

120 FOR COUNT = 1 TO HOWTALL

130 PRINT TAB(COLUMN) ;CHR$ (186) ; TAB(COLUMN + HOWLONG — 1) ;CHR$ (186)
140 NEXT

150 PRINT TAB(COLUMN) ; CHR$ (200) ; ’LOWER LEFT CORNER

160 FOR COUNT = 1 TO HOWLONG - 2

170 PRINT CHR$(205);

180 NEXT

190 PRINT CHR$(188) ’LOWER RIGHT CORNER

200 END

24 BASIC GRAPHICS PART Il

Figure 2-3 Box pattern formed with
characters by Prog. 2-5.

Program 2-6 Box pattern using the ALT key and the numeric keypad to print special characters.

10 ’PROGRAM 2-6. BOX MADE FROM SPECIAL SYMBOLS

20 CLS: WIDTH 80

30 INPUT "ROW AND COLUMN PLACEMENT FOR UPPER LEFT CORNER"; ROW, COLUMN
40 INPUT "HOW LONG AND HOW TALL TO MAKE BOX"; HOWLONG, HOWTALL
50 CLS: WIDTH 40

60 LOCATE ROW,COLUMN

70 PRINT "g"; UPPER LEFT CORNER

80 FOR COUNT = 1 TO HOWLONG - 2

20 PRINT "="3;

100 NEXT

110 PRINT "“g* *UPPER RIGHT CORNER

120 FOR COUNT = 1 TO HOWTALL

130 PRINT TAB(COLUMN);"|"; TAB(COLUMN + HOWLONG - "

140 NEXT

150 PRINT TAB(COLUMN);"L"; LOWER LEFT CORNER

160 FOR COUNT = 1 TO HOWLONG - 2

170 PRINT “="j;

180 NEXT

190 PRINT "d*" "LOWER RIGHT CORNER

200 END

Figure 2-4 Shapes formed with
character patterns.

JEICAC 0
i am |

2-4 SPECIAL EFFECTS AND COLOR

There are several options available to us for producing special effects with
displayed characters. These options include blinking, highlighting, and underlin-

Chapter 2 Making Pictures: Character Style 25

Figure 2-5 A picture formed with characters.

Prd il il e s il e el el e e el e)

BEEEEEEEEEe 8886088686

P VA AN R e e 1 s R T A

@

ERERRRRBRTRRRRRRITTRRRRT IR RIS

2 THERE®S NO FLACE LIKE HOME! =

EEFELEFFEELEEEET L L E L L L EEEEEE L

#
171 FRRAA &&EEE&EE&&E&&&&EE&E&QEE&&&&

4 M H LgrreprrrreprretrrrrtLirL
B 4 [ST Y YO TR Y Y TR T Y TR TR T T Y Y (T T (Y Y 8
q U Ly (Y YN T Y TR T T YR T TR T (BT TR TR T Y Y T T (YT R
q U [O T T I T T T T T T T TR TR TN
WLLF L'l
WLLI' Ll

P A A A A A e A A A A A A A A

LSRR U = SR SR SRR SR SRR SR SRR SHR SRR SRR ST SR S U SR S)

2
2
2
¢
¢
2
¢
L=

2

bbb 3 e i el dedeies pies il el i e e i el e el i e e

ing. If we have the Color/Graphics board, characters can also be displayed in
color. We choose all of these different options by setting parameter values in the
COLOR statement. With the Monochrome board or in the character (text) mode
with the Color/Graphics board, the COLOR statement is used in the form

COLOR F,B,BR — Sets the special effect or color of characters
displayed with subsequent commands to F (foreground) with a
background B and a screen border BR.

Values for parameters F and B in the COLOR statement are set according to
the special effect or color we want to select and according to whether we have the
Monochrome or Color/Graphics option. In the Monochrome option, we have the
following choices for the foreground parameter F:

0 Black
1 White character with an underline
v White

15 High-intensity white

Adding 16 to any of these values makes the character blink. So if we set F to the
value 17, we get a blinking, underlined, white character. Two values are used for
the background parameter B and border parameter BR:

0 Black
7 White

Several COLOR statements may be used in a single program. Each time we
use a COLOR statement, the next characters output on the screen are displayed in

26 BASIC GRAPHICS PART Il

the specified foreground color F with the rectangular background area of the
character displayed in color B. We get a solid color block if F and B are set to the
same value. If we include a CLS statement after a COLOR command, the entire
screen takes on the new background color.

With the Color/Graphics board, we use the COLOR statement in text mode
to set the color of characters and to produce some special effects. We can set
foreground F to any integer value from 0 to 31. Background B can be assigned
integer values from 0 to 7, and the border BR can be any integer value from 0 to
15. Color code choices for each of these parameters are

0 black 8 gray

1 blue 9 light blue

2 green 10 light green

3 cyan 11 light cyan

4 red 12 light red

5 magenta 13 light magenta

6 brown 14 yellow

7 white 15 high-intensity white

As with the Monochrome board, adding 16 to the value chosen for F makes
characters blink in that color. We can display different-colored characters with
multiple COLOR statements, and we erase characters using the same techniques
discussed for the Monochrome option. Some monitors may not be able to produce
all 16 colors.

Program 2-7 illustrates use of the COLOR command in text mode with the
Color/Graphics option by displaying randomly selected colors and characters on
the top 23 lines within a blue border. A typical screen pattern output from this
program is shown in Fig. 2-6. To enter the character mode, we use SCREEN 0 in
line 20 of Prog. 2-7. We will take a closer look at the SCREEN command in
Chapter 3. Character codes that are used for line feeds, cursor control, and other
operations that produce blank spaces were omitted by the test in lines 40 and 50.

Color shadings can be produced using different characters with different

Program 2-7 Random color pattern using characters.

10 *PROGRAM 2-7. RANDOM CHARACTERS RANDOMLY PLACED IN RANDOM COLORS
20 SCREEN O: COLOR ,,1: WIDTH 40: CLS

30 AC = INT(254 % RND) + 1 "6ET AN ASCII CODE

40 IF AC > 7 AND AC < 14 THEN 30 "DON’T PRINT SOME CONTROL CODES
S0 IF AC > 27 AND AC < 33 THEN 30

60 ROW = INT(23 ¥ RND) + 1

70 COLUMN = INT(40 % RND) + 1

80 FOREGROUND = INT(32 % RND)

90 BACKGROUND = INT(8 % RND)

100 COLOR FOREGROUND, BACKGROUND

110 LOCATE ROW,COLUMN

120 PRINT CHR$(AC);

130 GOTO 30

140 END

Chapter 2 Making Pictures: Character Style 27

sid 0 II% 3L =+ e ¢ % J‘-oﬁ]:lt
"-l| o a §1§¢,p = f24¥“‘|$ 1“ .“. #+ Ry d

.|J' =d urgkddg y # J
lzis/ G.W W& ru - ~=i }lsp - w

Jt’olﬂ + TRiutyt pa Up O t/w.llt? F‘r

ow %35 Q_, h &el\EVIL *é

-|1 I‘Fﬁ e /+ &_
dJu, ;E e ~| || xmg o

(xulmd L kdgs o UEcr+ # ".t J
g “ubo clldeE; H7L QT “ M
Hq’ a - N Em
g B AM FeFLSﬁ §E+ T
t gt & l EufEeiny 14~ BV {2
/0"1J'- .n,L|.||| £+l=m€ G FRg &0 e i}
% c e e s t%; n
et VR oyl gt
J) I % 'o ﬁM,m—y":ﬁ —JlJLré
P8 - !/ =2z 1 2 s
i $+df \ 0a eer TIN¥ e
{{eVhh 2E$u0W niBDﬂ ZI . .
SJap Héq (AV o o A At - Figure 2-6 Random pattern formed
+ W+Fl|' qdt |=Rgy+Lso 'ZHH&X}: 9 = with characters by Prog. 2-7.

1s

foreground and background combinations. An example is the rainbow pattern
shown in Fig. B of the color insert. The graduated shading patterns shown in this
figure were displayed by Prog. 2-8.

The color options available to us can help our displays in a number of ways.
We can use color to make a display easier to understand. Complex displays can
sometimes be clarified by using colors to distinguish different objects or areas.
Color can be used to accent or highlight important parts of a display, to add
realism to a scene, or to aid design applications. We can also use color for fun, to
produce a more interesting or attractive display.

Choice of color combinations for a particular display, whether in character
or graphics mode, should be carefully considered. A random selection can
produce a glaring, unpleasant effect. Using fewer colors in a display is usually
best. A background chosen as the ‘‘complement’’ of one of the foreground colors
can be attractive. Complement color combinations include red and blue-green,
blue and orange, yellow and purple-blue, and green and magenta. A light
background (say, cyan) can be used to good effect with darker colors. If several
colors are to be used in a display, a gray background is best. Dark borders around
the different color areas can help to reduce clashes when many colors are used.

2-5 PRINTING AND SAVING CHARACTER PICTURES

Screen patterns can be printed on paper by using the LPRINT statement in our
graphics programs or with the PrtSc (Print Screen) key on the keyboard. When we
press PrtSc and the shift keys together, we get a ‘*hardcopy’’ of our character
picture on the printer.

28 BASIC GRAPHICS PART Il

Program 2-8 Color shading patterns using characters.

10 "PROGRAM 2-8. RAINBOW USING PRINT AND COLOR STATEMENTS
20 SCREEN O: COLOR 0,0,0: WIDTH 80: CLS
30 FOR COLUMN = 1 TO 80

40 READ FORE, BACK, CODE
S0 COLOR FORE, BACK

&0 FOR ROW = 2 TO 23

70 LOCATE ROW, COLUMN
80 PRINT CHR$ (CODE) ;
90 NEXT ROW

100 NEXT COLUMN

110 COLOR 7,0,0

120 DATA 4,4,219,4,4,219,4,4,219,4,4,219,4,4,219

130 DATA 4,6,178,6,8,176,4,6,178,6,4,176,6,4,176,4,6,177
140 DATA 6,4,177,4,6,177,6,4,177,8,6,177,6,4,177,6,4,178
150 DATA 4,6,176,6,4,178,4,6,176,6,4,178

160 DATA 6,6,219,6,6,219,6,6,219,6,6,219,6,6,219

170 DATA 6,2,178,2,6,176,6,2,178,2,6,176,6,2,178,2,6,176
180 DATA 6,2,177,2,6,177,6,2,177,2,6,177,6,2,177,2,6,178
190 DATA 6,2,176,2,6,178,6,2,176,2,6,178

200 DATA 2,2,219,2,2,219,2,2,219,2,2,219,2,2,219

210 DATA 3,2,176

220 DATA 2,1,178,1,2,176,2,1,178,1,2,176,2,1,178,2,1,177
230 DATA 1,2,177,2,1,177,1,2,177,2,1,177

240 DATA 1,3,178,1,3,178,1,3,178,1,3,178,1,3,178

250 DATA 1,5,178,5,1,176,1,5,178,5,1,176,1,5,178,1,5,177
260 DATA 5,1,177,1,5,177,5,1,177,1,5,177,5,1,178,1,5,176
270 DATA S,1,178,1,5,176,5,1,178

280 DATA S,5,219,5,5,219,5,5,219,5,5,219,5,5,219,5,4, 176
290 DATA 0,7,219

300 IF INKEY$ = "" THEN 300

310 END

The hardcopy output produced by PrtSc prints characters in the ‘‘normal”’
print style (which is the way characters look on the screen in WIDTH 80). This is
the case whether we have displayed our pictures in WIDTH 80 or in WIDTH 40. If
we want to get characters printed as we see them in WIDTH 40 on the screen, we
must use LPRINT and instruct the printer to go into the double-wide mode. In this
way we create our picture directly on the printer, rather than on the screen. We
get double-wide character printing by including the function CHR$(14) at the
beginning of each LPRINT statement. This tells the printer to print that line with
double-wide characters. Since the double-wide mode is automatically turned off at
the end of each print line, we have to include CHR$(14) in each LPRINT, as in

510 LPRINT CHR$(14); “THIS LINE PRINTS DOUBLE WIDE"
520 LPRINT CHR$(14); “THIS ONE DOES TOO”

Whether we use PrtSc or LPRINT, some of the characters that we want in
our picture may not get printed. This occurs because ASCII codes for all the
different characters are sent from the system unit to the printer, and these two
pieces of equipment may not agree on the meaning of these codes. Not all ASCII
codes are standardized. Different manufacturers assign different meanings to
some of the codes, so a particular printer may print blank spaces or characters

Chapter 2 Making Pictures: Character Style 29

different from those we see in the screen picture. We can correct this situation
with ‘‘screen-dump’’ programs. These programs use the information stored in the
display screen buffer to activate the printer so as to produce the dot patterns for
the PC characters we specified.

We can save pictures on disk or tape using the BSAVE command. They can
then be displayed at any later time by loading them into the screen buffer with
BLOAD. To use these commands, we need to state the address of the screen
buffer area (for either the Color/Graphics or Monochrome option) in the DEF
SEG command.

In disk or advanced BASIC we can reference our pictures with any
descriptive file name. In cassette BASIC, we must use the file name CASI1. The
following illustrates the use of BSAVE and DEF SEG with the Color/Graphics
option.

1000 DEF SEG = &HB800
1010 BSAVE “RAINBOW’, 0,&H1000

Statement 1000 specifies which area in memory we want to save. Since we want to
save a displayed picture, we state the ‘‘segment number’’ of the memory area that
is used as the screen buffer. This number has one less zero than the starting
address (B8000) of the display buffer (see the memory map table in Fig. 1-3).
Thus, we use the segment number &HB800 (hexadecimal) in line 1000. We would
change this to &HB000 for the Monochrome option. Any subsequent BSAVEing
or BLOADing we do in our programs will use this memory area. Statement 1010
specifies the picture name as RAINBOW, an offset of 0, and a length of 4K (1000
in hexadecimal). This tells the system that we want to save the first 4K bytes of
this screen buffer, which has a total size of 16K. Four thousand is the maximum
number of bytes that we need to store a character picture (in WIDTH 80). We
need 2000 bytes (25 lines times 80 characters per line) for character codes and 2000
more bytes for color information (one byte per character), for a total of 4000
bytes. In WIDTH 40, our total picture size would be 2K. The additional space in
this buffer is needed when we use pixel graphics. On the Monochrome board, the
total screen buffer size is 4K, since it is set up for character graphics only.

To load this saved display back into the screen buffer for viewing, we can
use the program segment

2000 DEF SEG = &HB800
2010 BLOAD “RAINBOW”, 0

Line 2000 again specifies the memory area as the screen buffer on the Color/
Graphics board. This address would be changed to &HB000 for the Monochrome
option. In line 2010, we state the file name as ““‘RAINBOW’’ and the offset as 0, so
that we load the picture information into the beginning of the screen buffer. No
length specification is used with BLOAD.

30

BASIC GRAPHICS PART Il

PROGRAMMING PROJECTS

2-1.

2-2.

2-3.

2-4.

25
2-6.

2-17.
2-8.
2-9.

2-10.
2-11.

Display a star pattern using a number of different characters to produce texture, as in
Prog. 2-1.

Using the LOCATE statement, write a program that will clear the screen and display
the word “HELLO”’ in large letters (each formed with several characters) at the
center of the screen.

Display the following patterns, using loops as in Prog. 2-3.
(a) ok ok ok ok ok ok (b) @
skokskokk @@@
ook @eeE@@
* @RE@@@@
Hokok @Q@R@@@
ok ok ok @@@
sk ok sk Kok ok @

Sketch the outline of some figure or scene on graph paper. Fill in the outline with
some character and display the silhouette on the screen, as in Prog. 2-2.

Produce the silhouette for Project 2-4 by encoding the data, as in Prog. 2-4.

Using the method of Prog. 2-5 or Prog. 2-6, display a word in large letters at the
center of the screen that has a box border. Set up the program so that several
different box borders (single line, double line, or block) can be selected with input
statements.

Write a program segment that can be used with Prog. 2-5 or Prog. 2-6 to check the
input data to be sure that the box pattern will fit on the screen.

Write a program to produce each of the shapes in Fig. 2-4. Include a LOCATE
statement that will position the shape at any screen location specified by input. As an
option, allow the color of each shape to be determined by input.

Write a program to produce the scene in Fig. 2-5.
Modify the program of Project 2-9 to color each part of the scene.

Display any picture, using encoded data in a DATA statement that will allow several
different characters on each line (as in Fig. 2-5). Data for each print line is to include
the following information: (1) the ASCII code for each character on the line, (2) the
starting position of the character on each print line, (3) the number of consecutive
positions occupied by each character, and (4) the color of each character. The ASCII
code will be used in the CHRS function to print out that character.

Chapter 3

Making
Pixel Pictures

Special graphics commands, available to us on the PC with the Color/Graphics
option, provide another means for making pictures. Instead of building up
displays with characters, these commands enable us to ‘‘draw’’ pictures on the
screen using points and lines.

3-1 PIXEL GRAPHICS CONCEPTS

Each character that we display on a video screen occupies a small rectangle. This
area is subdivided into a grid of even smaller rectangles that we can use with
graphics commands. These smaller rectangles are called picture elements or pixels,
or simply points. The number of pixels contained in a single character generated
by the Color/Graphics board is 8 points vertically and 8 points horizontally. Figure -
3-1 illustrates this 8 by 8 pixel grid corresponding to the area occupied by a
character. A video screen will then contain eight times as many points as
characters across the screen and eight times as many points vertically. Since the
PC can display a maximum of 80 characters across 25 print lines, we can plot a
point in any one of 640 positions horizontally across the screen and in any one of
200 vertical positions. With the 40-character width, we get double-wide characters
and double-wide points, so that 320 horizontal positions are available for plotting
pixels.

Plotting a point on a video screen means that we instruct the computer to
“turn on’’ the small rectangle of light at the specified pixel position. Individual
pixel positions are referenced by coordinates. That is, we must specify the location
of a pixel as a pair of integers (X,Y). The first integer, X, gives the horizontal
distance across the screen, and the second integer, Y, gives the vertical distance.

31

32 BASIC GRAPHICS PART Il

Character area Corresponding pixel grid

Figure 3-1 The area occupied by a character is divided into an 8 by 8 grid of smaller rectangular
pixels.

Our IBM PC requires that these distances be measured from left to right and top to
bottom. This means that the screen is referenced with the origin of the coordinate
system at the upper left corner, as shown in Fig. 3-2. The X, or horizontal
coordinate, can range from left to right through integer values 0, 1, 2, ..., up to

Figure 3-2 The coordinate system used by the PC places the origin at the upper left corner of the
screen.

0 XM
0 f » X-coordinate
| axis
| Pixel
location (X, Y)
™ B Screen J

Y

Y-coordinate
axis

Chapter 3 Making Pixel Pictures 33

either 319 or 639. The Y, or vertical coordinate, can range from top to bottom
through the integer values 0, 1, 2, ..., 199. For this coordinate reference, the
position of the pixel at the upper left corner of the screen is (0,0). Pixel
coordinates for the point at the lower right corner are specified as (XM,YM),
where XM is either 319 or 639 and YM is 199.

The number of pixels that we can plot along a line is referred to as the
resolution of the system. More precisely, resolution is the number of pixels that
we can plot per centimeter (cm), in either direction. A larger screen plotting the
same number of pixels across its width as a smaller screen will have lower
resolution (fewer points per centimeter) in that direction. We can use monitors
with different physical dimensions, but changing the screen size does not change
the number of pixels we can plot. This number is fixed by the resolution mode we
choose. The PC provides two resolution modes: medium resolution (with a pixel
screen size of 320 by 200 for a total of 64,000 points), and high resolution (with a
pixel screen size of 640 by 200, for a total of 128,000 points).

Resolution modes are selected with the SCREEN statement. This command
is used to get us into one of the graphics modes and has the form

SCREEN M, BST, AP, VP — Selects a graphics mode or a text mode.

Parameters M, BST, AP, and VP take numeric values, and not all the parameters
need to be specified each time we use this statement. We choose a mode by setting
M to a value of 0 (for character, or text, mode), 1 (for medium- resolution graphics
mode), or 2 (for high-resolution graphics mode). With BST (the ‘‘burst’’ parame-
ter), we can block color off the screen, allowing black and white only. A value of 0
for BST turns color off in text mode, and a nonzero value turns color off in
medium resolution. Reversing these values turns color on. No color is available in
high resolution. In text mode, AP and VP are used to select a *‘page’’ of text to be
written to (AP, the active page) or to be viewed on the screen (VP, the visual
page). We can set up eight pages of text (numbered 0 through 7) with WIDTH 40,
or we can set up four pages of text (numbered 0 through 3) with WIDTH 80. In
Chapter 8, we will explore graphics uses of text pages.

3-2 PLOTTING POINTS

Pixels are directly accessible when we are in one of the graphics modes (SCREEN
1 or SCREEN 2). Once we get into a graphics mode, we can plot a point by stating
the command

PSET (X,Y), — Places a pixel on the screen at coordinates (X,Y) with
color C. Parameters X, Y, and C may be numeric constants or
expressions. If noninteger, they will be rounded.

34 BASIC GRAPHICS PART I

’PROGRAM 3-1. PLOTS A SINGLE PIXEL
SCREEN 1: CLS

INPUT "ENTER X AND Y COORDINATES"; X, Y

CLS

PSET (X,Y)

END Program 3-1 Plotting a point.

Color parameter C should be kept in the range 0 to 3. A value of zero is the same
as background color. Three color options are set with the values 1 through 3. We
will take up color in graphics mode a bit later and, for now, just omit this
parameter. An example of the use of PSET is given in Prog. 3—-1. This program
plots a point at a location specified in the input statement after clearing the screen
with the CLS statement. :

We should not try to plot a point beyond the screen limits. This could
produce an error in program execution, an invisible point, or a distortion in the
point position due to wraparound effects. Wraparound occurs when a point,
plotted beyond the limits on one side of the screen, ‘‘wraps around’’ and appears
on the other side of the screen. To avoid these problems, neither the horizontal
nor the vertical coordinate should ever become negative or exceed the maximum
screen locations. We can ensure that we do not attempt plotting beyond the screen
boundaries by including the tests of (3-1) in our programs.

0<=X<=XM
0<=Y<=199

(3-1)

In these tests, XM is the maximum horizontal pixel location allowed (either 319 or
639), and 199 is the maximum vertical pixel location. Program 3-2 illustrates the
use of these tests.

For many applications it is convenient to be able to ‘‘erase’’ a point that we
previously plotted. We have the following command to accomplish this:

PRESET (X,Y),C — Plots a pixel at position (X,Y) in color C. Parame-
ters X, Y, and C may be numeric expressions or constants. If
noninteger, they will be rounded.

Omitting the parameter C in the PRESET statement erases a point previously
plotted by replotting that point in the background color. Otherwise, PRESET is

Program 3-2 Point plotting and off-screen tests.

10 *PROGRAM 3-2. CHECK FOR OFF-SCREEN

20 SCREEN 1: CLS

30 INPUT "ENTER X AND Y COORDINATES"; X, Y

40 IF X<OORX >3190R Y < OORY > 199 THEN 80
S0 CLS

60 PSET (X,Y)

70 GOTO 100

80 PRINT "COORDINATES OFF-SCREEN. TRY AGAIN.

90 GOTO 30

100 END

Chapter 3 Making Pixel Pictures 35

10 PROGRAM 3-3. TURN A PIXEL ON AND OFF

20 SCREEN 1: CLS

30 PSET (160,100)

40 FOR DELAY = 1 TO 1000: NEXT

S0 PRESET (160,100)

&0 END Program 3-3 Point plotting and erasing.

the same as PSET. We can also erase points with the statement PSET (X,Y),0. If
the pixel at location X,Y is not turned on, PRESET (X,Y) will have no visible
effect. Program 3-3 shows how this command can be used to turn off a pixel after
a delay time of about 2 seconds.

Delay loops, as in statement 40 of Prog. 3-3, can be inserted into graphics
programs to make points blink. They can also be used to hold a picture for viewing
before the next picture is created. These loops give us a delay time of about 1
second for every 500 iterations of the loop.

A random pattern of points that blink on and off is produced by Prog. 3-4.
The RND function used in this program will repeat the same pixel pattern each
time we run the program. We can get different patterns each time by including the
RANDOMIZE statement, but then we will have to respond to RANDOMIZE'’s
request for a ‘‘seed’”’ value. Alternatively, we could include a statement using
RND(X) before the loop, where X is a negative number. We will need to use a
different value for X each time the program is run if we want to generate new
patterns. This number can be derived from the TIMES variable, eliminating the
need for any input. TIMES returns an eight-character string indicating the current
time. By taking the two rightmost characters from this string and converting them
to a negative number, we get random values for X. The statements

25 SEED = VAL(RIGHT$(TIMES,2))
26 STARTRND = RND(—SEED)

could be included in Prog. 3—4 to generate a new pattern of random numbers on
each run.

Coordinate values in the special graphics commands can be stated as
absolute coordinates or as relative coordinates. We have been using the absolute
form, which states coordinates directly in screen coordinates. Relative form
specifies the coordinates as displacements, or offsets, from the last point
referenced in the program. To indicate relative coordinates, we replace (X,Y) by
STEP (DX,DY), where DX and DY give the X and Y displacements. Program 3-5
illustrates the use of relative coordinates by plotting a series of 31 points

10 PROGRAM 3-4. BLINKING PIXELS

20 SCREEN 1: CLS

30 X = INT(320 % RND)

40 Y = INT(199 X RND)

S0 PSET (X,Y)

60 FOR DELAY = 1 TO S00: NEXT

70 PRESET (X,Y)

80 GOTO 30 Program 3-4 Plotting a pattern of

90 END random points.

36 BASIC GRAPHICS PART Il

10 *PROGRAM 3-5. RELATIVE COORDINATES IN PSET
20 SCREEN 2: CLS

30 PSET (0,199)

40 FOR COUNT = 1 TO 30

50 PSET STEP (20,-5) .))
60 NEXT COUNT Program 3-5 Plotting points using
70 END relative coordinates.

diagonally up the screen from the lower left corner. Each successive point is
plotted 20 units farther to the right and 5 units up the screen from the previous
point plotted.

3-3 DRAWING LINES

We have two basic methods for drawing lines. We can plot individual pixel
positions along the line using PSET, or we can use the LINE statement.

LINE STATEMENT
A line-drawing graphics command is available to us in the form

LINE (X1,Y1)—(X2,Y2),C,BX — Draws a straight line or box from
position (X1,Y1) to position (X2,Y2) with color C. Parameters X1,
Y1, X2, Y2, and C may be numeric constants or expressions. If
noninteger, they will be rounded. BX can take either of the
following character values: B or BF.

Coordinates for the line endpoints, (X1,Y1) and (X2,Y2), may be specified in
absolute or relative form. If parameter BX is omitted, this command draws a
straight line between these endpoints. With BX set to the value B, we get a box
with (X1,Y1) and (X2,Y2) as coordinates of any diagonally opposite corners.
Setting BX to the value BF fills the interior of the box with color C. Parameter C
should be set to values that stay within the interval 0 to 3. Zero gives the
background color, and for other values we have a choice of three colors. Again,
we will omit the color parameter for now.

In Prog. 3—-6, we demonstrate use of the LINE command to draw a line using
both absolute and relative coordinate specifications. The starting coordinates for

Program 3-6 Line drawing using the LINE command with both absolute and relative coordinate
specification.

10 "PROGRAM 3-6. DRAWS HORIZONTAL LINE

20 SCREEN 1: CLS

30 INPUT "ENTER STARTING POSITION FOR LINE"; X, Y
40 INPUT "ENTER LENGTH OF LINE"; L

S50 CLS

60 LINE (X,Y) — STEP (L,0)

70 END

Chapter 3 Making Pixel Pictures 37

Program 3-7 Star pattern produced by specifying line endpoints relative to the last referenced point.

10 "PROGRAM 3-7. CONNECTING RELATIVE STAR POINTS
20 SCREEN 2: CLS

30 READ X,Y

40 PSET (X,Y)

S0 FORP =1TO S

&0 READ X,Y

70 LINE - (X,Y)

80 NEXT

90 DATA 274,84,90,141,159,50,231,141,46,84,274,84
100 END

the line are given in absolute form and the ending coordinates are in relative form.
This example lets us draw horizontal lines of length L from any input starting
position.

At times, we may want to draw a line from the last point referenced in a
program to another specified point. We can do this by leaving out the first
coordinate pair. Program 3-7 gives an example of this method of line drawing to
produce the star pattern shown in Fig. 3-3.

/

j/

. / \ -~
P
I‘, \\<’
/ -
f -~ -\“'\-\ Figure 3-3 Pattern formed with

o~
!J,-"' straight lines, using the LINE statement,

as output by Prog. 3-7.
PIXEL METHODS

We can also use PSET (or PRESET) to draw lines. Line-drawing methods using
PSET will be useful to us later when we consider animation. To create a straight
line in this way, we need to specify the position of each point along the line. Since
pixels are 1 unit apart, PSET will draw a vertical line, for example, when the Y
coordinate is repeatedly increased by 1 and the X coordinate is held constant.
Programs 3-8 and 3-9 provide examples of drawing vertical and horizontal lines in
this way. The lines drawn by these programs are identical to what we would get
using the LINE command, since each pixel plotted is a small rectangle adjoined to
the previously plotted pixel. In Prog. 3-8 we have used an absolute coordinate
specification to draw the line, and in Prog. 3-9 we have used relative coordinates.

Drawing diagonal lines with PSET is less straightforward. To draw a
diagonal line using this command, we must calculate coordinate values along the

38 BASIC GRAPHICS PART Il

Program 3-8 Drawing a vertical line by plotting points, specified as absolute coordinates.

10 "PROGRAM 3-8. PLOTTING VERTICAL LINES USING PSET
20 SCREEN 1: CLS

30 INPUT "STARTING COORDINATES FOR LINE"; X, Y

40 INPUT "LENGTH OF LINE"3; LENGTH

S0 CLS

60 IF Y + LENGTH > 199 THEN LENGTH = 199 - Y ’SET LENGTH BACK TO MAXIMUM
70 FOR EACHPOINT = Y TO Y + LENGTH *THAT WILL FIT ON SCREEN

80 PSET (X,EACHPOINT)

90 NEXT

100 END

path of the line. To do this we use equation (3-2), which relates X and Y values for
a straight line.

Y=M=xX+B (3-2)

In this equation, M is the slope of the line, which may be positive, negative, or
zero. When M is zero, we have a horizontal line. For very large magnitudes of M,
we have nearly vertical lines. The Y-intercept, B, is the value that Y has at the left
edge of the screen where X is zero (the Y axis).

We can program a general line-drawing algorithm based upon equation (3-2)
and the PSET command. Program 3-10 illustrates this method, with values for M
and B entered as input. This program first determines whether the specified line
can be drawn on the screen. If no part of the line can be plotted within the
coordinate boundaries of the screen, the program simply prints that message. If
some part of the line can be drawn, Prog. 3-10 plots the visible part of the line
from one screen boundary to another. Figure 3—4 shows the output of Prog. 3-10
for the case M = 1. The line shown appears opposite from what we would expect
when graphed in a conventional coordinate system, where a line with positive
slope slants up from left to right. This happens because our point (0,0) is at the
upper left corner of the screen. We can change the program to produce
conventionally oriented lines by multiplying each input value of the slope by -1
and by changing each input B value to 199 — B.

Program 3-10 will not produce continuous lines when the magnitude of the
slope is greater than 1. We will have gaps between the plotted pixels. This can be
corrected by incrementing the Y coordinate by 1 unit instead of the X coordinate

Program 3-9 Drawing a horizontal line by plotting points, specified as relative coordinates.

10 *PROGRAM 3—9. PLOTTING HORIZONTAL LINES WITH PSET AND STEP

20 SCREEN 1: CLS

30 INPUT "STARTING COORDINATES FOR LINE"; X, Y

40 INPUT "LENGTH OF LINE"; LENGTH

50 CLS

60 PSET (X,Y)

70 IF Y + LENGTH > 319 THEN LENGTH = 319 — Y *SET LENGTH BACK TO MAXIMUM

80 FOR EACHPOINT = 1 TO LENGTH *THAT WILL FIT ON SCREEN
90 PSET STEP (1,0)
100 NEXT

110 END

Chapter 3 Making Pixel Pictures 39

390

w
it

Program 3-10 General line drawing using the line equation and point plotting.

’PROGRAM 3—-10. GENERAL LINE DRAWING USING PSET
SCREEN 1: CLS
INPUT "SLOPE"; M
INPUT "Y-INTERCEPT"; B
*IF SLOPE IS NEGATIVE AND LINE INTERCEPTS Y AT A
’VALUE LESS THAN O, LINE IS BEYOND SCREEN COORDINATES.
IF M < O AND B < O THEN PRINT "LINE OFF SCREEN": GOTO 390
*IF SLOPE IS POSITIVE BUT LINE INTERCEPTS Y AT A VALUE
’GREATER THAN 199, LINE IS BEYOND SCREEN COORDINATES.
IF M >0AND B > 199 THEN PRINT "LINE OFF SCREEN": GOTO 390
’OTHERWISE, FIND LEFTMOST POINT OF LINE.
*IF Y-INTERCEPT IS BETWEEN O AND 199 THEN LEFTMOST
’POINT IS AT LEFT EDGE OF SCREEN.
X1 =0
*IF SLOPE IS NEGATIVE AND LINE INTERCEPTS Y AT A VALUE
’GREATER THAN 199, LEFTMOST POINT IS ALONG BOTTOM EDGE OF
’SCREEN (WHERE Y = 199) SO X1 = (199 - B) / M.
IFM< OAND B > 199 THEN X1 = (199 - B) / M
*IF THIS LEFTMOST POINT IS BEYOND 319, LINE IS OFF SCREEN.
IF X1 > 319 THEN PRINT “"LINE OFF SCREEN": GOTO 390

*IF SLOPE IS POSITIVE AND LINE INTERCEPTS Y AT A POINT LESS

THAN O, LEFTMOST POINT IS ALONG TOP EDGE OF SCREEN

(WHERE Y = 0) S0 X1 = (0 - B) /7 MOR X1 = -B /7 M.
IFM>O0OAND B< O THEN X1 = -B/ M

*IF THIS POINT IS BEYOND 319, LINE IS OFF SCREEN.

IF X1 > 319 THEN PRINT "LINE OFF SCREEN": GOTO 390
’OTHERWISE, LINE IS AT LEAST PARTIALLY ON SCREEN. START AT
*LEFTMOST POINT OF LINE (X1). USING INCREASING VALUES OF
*X, CALCULATE NEW Y VALUES AND PLOT X,Y. CONTINUE UNTIL
1. X > 319 (LINE GOES TO RIGHT EDGE OF SCREEN)

2. Y < 0 (LINE GOES OFF TOP EDGE OF SCREEN) OR
*3. Y > 199 (LINE GOES OFF BOTTOM EDGE OF SCREEN)
CLS
FOR X = X1 TO 319
Y=MxX+B
IFY<OORY > 199 THEN 390
PSET (X,Y)
NEXT
END

hen ABS(M) > 1. We could also modify the program to position the line so that
is drawn in the center of the screen. Methods for positioning lines on the screen

are discussed in Chapter 4.

In certain graphics applications, we need to know the slope and Y-intercept

of lines plotted between given endpoints. Specifying the line endpoints as (X1,Y1)
and (X2,Y2), we can calculate M and B from the relations

M = (Y2 — Y1)/(X2 — X1)
B=Y1-M=*Xi

We will use the LINE command whenever we want to draw a line between

(3-3)

specified endpoints. If we want to draw a line with a certain slope M, we can
either use PSET or figure out where the endpoints are and use the LINE
statement. The PSET method is also useful for animating objects along straight-
line paths.

40 BASIC GRAPHICS PART Il

\ Figure 3-4 Straight line with a slope
S, of 1 and Y-intercept of 0, drawn by
“ Prog. 3-10.

3-4 PIXEL COLOR

The general considerations regarding the use of color that we discussed in Section
2-4 apply to pixel graphics as well. We have the same reasons for using color
whether we are creating pictures with characters or pixels, and we need to
observe the same considerations in our choice of color combinations.

In medium-resolution graphics mode we have the following color statement
available in our set of graphics commands:

COLOR B,P — Sets the screen to color B (the background) and
selects one of two possible sets of colors, or “palettes,” P that is to
be used with subsequent graphics commands. Parameters B and
P may be numeric constants or expressions. If noninteger, they
will be rounded.

Either parameter (B or P) may be omitted. Background B selects colors in the
range 0 to 15, as listed with the character color statement in Section 2-4. If B is
omitted, we default to a background value 0 (black). The palette P selects one of
two color combination options. Any even integer for P is interpreted as a zero
value and selects palette 0; any odd integer is taken to be the value 1, which
selects palette 1. If we omit P, we automatically get palette 1. Once we have
selected a palette, the colors in that palette are available for use in commands such

Chapter 3 Making Pixel Pictures 41

as LINE and PSET. We then choose the color we want for an individual line or
pixel by setting parameter C in these commands to the number code of the desired
color. Omitting parameter C gives us color code 3 (the default color). The color
codes and their corresponding colors for each palette are:

Corresponding Corresponding
Color Code C Palette 0 Color Palette 1 Color
0 background color B background color B
1 green cyan
2 red magenta
3 brown white

As an example of the use of the COLOR command, the following program
segment plots a red pixel and a green line on a blue background:

250 COLOR 1,0
260 PSET (10,10),2
270 LINE (20,20) — (40,40),1

The COLOR B,P command can be used only with medium resolution (SCREEN
1). Any text or characters we put on the screen when in this mode will be in color
code 3.

We can use the COLOR statement as many times as we wish within a
program to set or change either the background color, the palette, or both. When
we execute a COLOR statement with a new background color, the background of
the entire screen is set immediately to the color specified. Whenever we change
palettes, we change the colors of all previously plotted pixels.

The COLOR command cannot be used in high resolution (SCREEN 2). Only
black and white are available, and we specify which we want by setting the value
for parameter C in the graphics commands. Allowable values for C are 0 (black)
and 1 (white). When we omit C, we get white.

Another color statement that is available (in advanced BASIC only) is the
PAINT command. This statement allows us to fill in color areas defined by any
boundary.

PAINT (X,Y),CP,CB — Fills in a screen area in color CP up to a
boundary color CB, with (X,Y) as any point within the boundary.
Parameters X, Y, CP, and CB may be numeric constants or
expressions. If noninteger, they will be rounded.

Coordinates X and Y can be stated in absolute or relative form (using STEP). In
medium resolution, the paint color CP and the boundary color CB should be
within the range 0 to 3, corresponding to the colors available in palette 0 or 1. The
allowable values for CP and CB in SCREEN 2 are 0 and 1. Either color parameter
can be omitted. If CP is omitted, color code 3 in the chosen palette is used for the

42 BASIC GRAPHICS PART Il

paint color when in SCREEN 1 and color code 1 (white) is used in SCREEN 2. If
CB is omitted or is not the color of any boundary, the entire screen is filled with
the paint color CP. Also, if the boundary contains any holes, the filler color will
leak out and around the boundary. We can use the PAINT command to fill the
interiors of figures, the screen area outside of a figure, or the screen area between
figures.

3-5 PIXEL PICTURES

Point-plotting and line-drawing commands give us the basic tools for creating
graphics displays. With PSET, LINE, COLOR, and PAINT, we can construct
figure outlines, silhouettes, three-dimensional shapes, and complex scenes.

A triangle, rectangle, or general polygon of any number of sides is drawn by
Prog. 3-11 in various color combinations. Coordinates for the vertices of the
figure are input in the order in which they are to be connected and stored in arrays
X and Y. The polygon is then displayed by drawing a line from point (X(1), Y(1))
to point (X(2),Y(2)), then to point (X(3),Y(3)), and so on. As the last step, the
figure is painted in different colors, starting from a specified interior point.

Program 3-11 illustrates another form of time delay. In this case, execution
stops indefinitely at line 240. The program will resume interaction with us when

Program 3-11 General polygon drawing and color.

10 *PROGRAM 3-11. DRAWS POLYGONS IN VARIOUS COLOR COMBINATIONS
20 DIM X(10), Y(10)

30 SCREEN 1: CLS

40 INPUT "NUMBER OF POINTS IN POLYGON"; N

S0 FOR EACHPOINT = 1 TO N

&0 PRINT "COORDINATES FOR POINT"; EACHPOINT;
70 INPUT X (EACHPOINT), Y(EACHPOINT)
80 IF X(EACHPOINT) < O OR X(EACHPOINT) > 319 THEN
PRINT "OFF SCREEN. TRY AGAIN": GOTO &0
90 IF Y(EACHPOINT) < O OR Y(EACHPOINT) > 199 THEN
PRINT "OFF SCREEN. TRY AGAIN": GOTO &0
100 NEXT
110 INPUT "COORDINATES OF AN INTERIOR POINT"; XINTERIOR, YINTERIOR
120\ CLS

130 PRINT "HIT ANY KEY FOR NEXT COLOR COMBINATION"
140 FOR BACKGROUND = 1 TO 15

150 FOR PALETTE = 0 TO 1

160 COLOR BACKGROUND, PALETTE

170 FOR COLORCODE =1 7O 3

180 PSET (X(1),Y(1)),COLORCODE

190 FOR EACHPOINT = 2 TO N

200 LINE - (X(EACHPOINT),Y(EACHPOINT)),COLORCODE
210 NEXT

220 LINE - (X(1),Y(1)),COLORCODE

230 PAINT (XINTERIOR, YINTERIOR) , COLORCODE, COLORCODE
240 IF INKEY$ = "" THEN 240

250 NEXT COLORCODE

260 NEXT PALETTE

270 NEXT BACKGROUND
280 END

Chapter 3 Making Pixel Pictures 43

we hit any key on the keyboard. The INKEY$ operation is initialized by the
system to the null string. When executed, it assumes the value of the key currently
being pressed on the keyboard, if any. This type of time delay is particularly
useful if the program is producing a series of displays that are being used in
conjunction with a report or presentation. It is often helpful to include a ‘‘prompt’’
with the time delay, particularly if we are writing a program to be used by other
people. We included the message HIT ANY KEY FOR NEXT COLOR COMBI-
NATION at line 130 in Prog. 3—11 to indicate that the program is in a time delay.
INKEY$ is also useful at the end of a program, since it delays the appearance of
BASIC’s ““OK”’ until a key is pressed. This gives us time to print out or
photograph our display.

‘Another technique for producing solid color areas is illustrated with Prog. 3—
12. This gives us a means for filling in areas if we do not have the PAINT
command. In this program, any rectangular area on the screen is chosen by
specifying opposite corners of the rectangle. Then the interior of the rectangle is
painted with a selected color.

Solid-color areas can be produced by drawing horizontal, vertical, or
diagonal lines. We can vary the order of drawing lines and choice of color to
produce special effects. For example, we could fill in a rectangular area with
randomly colored horizontal lines, drawn alternately from the top and bottom and
meeting in the middle.

Program 3-12 Painting solid color rectangles.

10 *PROGRAM 3-12. PAINTING IN BOXES

20 SCREEN 1: CLS

30 INPUT "TOP LEFT CORNER OF BOX"; X1, Y1

40 INPUT "BOTTOM RIGHT CORNER OF BOX"; X2, Y2

S0 INPUT "CODE FOR BACKGROUND COLOR (0 - 15)"; BACKGROUND
60 INPUT "CODE FOR PALETTE (O OR 1)"; PALETTE

70 INPUT "CODE FOR BOX COLOR (1 - 3)"; BOXCOLOR

80 CLS

90 COLOR BACKGROUND,PALETTE

100 FOR X = X1 TO X2

110 LINE (X,Y1) — (X,Y2),BOXCOLOR
120 NEXT
130 IF INKEY$ = "" THEN 130
140 END
SHADING PATTERNS

We can produce shading in our pictures using patterns formed with characters or
pixels. The characters that we get in graphics mode, however, are not always the
same as the characters available in text mode (SCREEN 0). In SCREEN 1 or
SCREEN 2, ASCII codes 128 through 194 give us blanks and the codes from 195
to 255 make patterns different from the text characters for these codes. Figure 3-5
lists character patterns we can access in graphics mode. These patterns could be
used to create a variety of shading and textures in our pictures.

With pixels, we can create additional shading and texture patterns. We could

44

LA
147
21 §
3
48 (
4 /
64 @

123 {
136 %
139 &
146 ¥
198 3
285 3
212 3
219 i
226 3
233 3
246 3
247 3
2

28
15 %
22 »
4"
4)
38
U Il
124 |
132 %
148 »
147
199 3
286 3
213 3
228 3
227 3
234 3
241
248 ¢

3
16 »
23 §
n 4
42 *
M
92\
125 }

1M

141 %
152 =
200 3
267 i
214
221 3
228 3
233 3
242 3
249 ¢

44
17 4
24 ¢
3 %
4 +
68 <
931
126 *

133 ¢
142 §
168 &
28l 3
208
215 4
222 3
229 3
236 4
243 ¥
250 ¥

BASIC GRAPHICS

3§
18 ¢
23 4
3
44 ,
bl =
94 A

127 o
136 &
143 ~
195 3
282 3
209 3
ale 3
223 3
230 3
231 §
244 %
23 =

b ¢
191
26 4
84
4 -
62 }
% _
128 ¥
137 &
144 =
196 3
263 4
218 3
a1t 3
224 3
a3l 3
238 3
243 i
232 .

Figure 3-5 Character patterns and their ASCII codes available in graphics mode.

PART I

80
28 1
21 ¢
39
4 .
63 ?
%
129 *
138 &

145 3
197 %
2084 3
211 3
218 3
223 3
232 3
239 3
246
233

use lines to partially fill in areas, such as with every other line or every third line.
We could also draw lines in both directions, spaced to obtain a crosshatched
shading. Another possibility is to vary the spacing between the shading lines to
produce a gradual dark to light (or light to dark) shading. The spacing between
lines could be increased slowly by 1 or 2 units, or we could increase spacing more

Chapter 3 Making Pixel Pictures 45

rapidly by doubling the previous spacing to get the next spacing length. Areas
could also be filled with dots, either symmetrically or randomly spaced. Figure 3—
6 shows some shading patterns possible with points and lines.

Color shadings can be developed by combining pixels of different colors. For
example, plotting alternating red and brown pixels produces an orange-colored
area. Some of the shades possible with palette 0 and a blue background are shown
in Figure C of the color insert.

Figure 3-6 Shading patterns possible with pixel graphics.

RESOLUTION RATIOS

Whenever we draw a rectangle with an equal number of pixels in the horizontal
and vertical directions, we might expect a square to be displayed. This will not be
the case for screens on which the resolution in the X direction is significantly
different from that in the Y direction. For example, we might have a monitor on
which a 100-pixel horizontal line in SCREEN 1 measures 6 cm long, but a 100-
pixel vertical line measures 8 cm. The X resolution is then 100/6, while the Y
resolution is 100/8. A 100 by 100 pixel box drawn on the screen will appear as a
rectangle, somewhat taller than it is wide. To make the box into a square, we
could either plot more points in the X direction or fewer points in the Y direction.

46 BASIC GRAPHICS PART Il

Suppose that we want to change the number of pixels in the Y direction. We can
determine the number of pixels needed in the Y direction to make a square by
multiplying the original vertical length (100) by the ratio of Y resolution to X
resolution (100/8 divided by 100/6, or 3/4). The result is 75, so we need to plot 75
points in the Y direction to make a square. In SCREEN 2, our 100-pixel horizontal
line on the same monitor would measure only one-half of its length in SCREEN 1
(3 cm). For this resolution mode, the ratio of Y resolution to X resolution would
be one-half the SCREEN 1 value, or 37.5.

To determine resolution ratios for any monitor, we can draw a 100-pixel line
on the screen in each direction and measure line lengths. The ratio of the X length
to the Y length would be used to adjust the number of pixels in the Y directions.
The ratio of Y length to X length would be used to adjust the number of pixels in
the X direction. Adjusting one of these directions for all points of a display lets us
draw figures in proper proportions.

Video monitor resolutions are usually specified in terms of their aspect ratio.
This number gives the ratio of vertical pixels to horizontal pixels necessary to
produce equal lengths in both directions. (Sometimes aspect ratio is stated in
terms of horizontal pixels to vertical pixels.) An aspect ratio of 3/4 means that
three pixels plotted in the Y direction have the same length in centimeters as four
pixels plotted in the X direction. The aspect ratio, stated in this way, corresponds
to the ratio of Y resolution to X resolution.

In Prog. 3—-13 we demonstrate the use of resolution correction for a monitor
with an aspect ratio of 0.46 in SCREEN 2 (23 vertical pixels have the same length
as 50 horizontal pixels). If we plot the points indicated by the drawing in Fig. 3-
7(a) without any correction for resolution differences, the distorted version shown
in Fig. 3-7(b) results. An output that matches the original pattern proportions is
produced when we adjust all Y coordinates, as in Prog. 3-13.

Correction for resolution differences can be made by sketching objects on
customized graph paper before plotting them on the screen. We make customized

Program 3-13 Star pattern drawn with resolution correction.
10 PROGRAM 3—-13. RESOLUTION CORRECTION

20 DIM X(12), Y(12)
30 SCREEN 2: CLS

40 YADJUST = .46 ?ADJUST FOR X-Y RESOLUTION DIFFERENCE

S50 FOR POINTER = 0 TO 11

&0 READ XINPUT, YINPUT

70 X(POINTER) = XINPUT

80 Y(POINTER) = YINPUT % YADJUST

90 NEXT

100 FOR POINTER = 0 TO 11

110 OTHEREND = (POINTER+4) MOD 12 ’CONNECT TO POINT 4 POINTS AWAY
120 LINE (X(POINTER),Y(POINTER)) - (X(OTHEREND),Y (OTHEREND))

130 NEXT

140 DATA 160,0,210,10,250,50,260, 100

150 DATA 250, 150,210,190, 160, 200,110, 190
160 DATA 70,150,60,100,70,50,110,10

170 IF INKEY$ = “"" THEN 170

180 END

Chapter 3

Making Pixel Pictures

47

0 20 40 60 80 /00 (20 [40 [60 JBD 200 220 240 26D 280 300 320 340

0
20 N A' \ 7
4o / \
o N 4 N\ /
80 \7<
- N
w K >
|20 NN 7
140 / N W, \
160 N
200 Y
f' (a)
n.\ { ‘_,i
\ ,/ e
A K
/ /><; ‘.‘ .
VoL N
v o
y! VI, /
1
'\
/‘f \b(‘ t“'.l'f R
{\‘- ;['\\ ">
/ v
\ { A
! f‘ AN
A A ‘\
:/ \\‘:"‘\ 4 \

(b)

Figure 3-7 A pattern drawn on square graph paper (a) will be distorted (b) if the points plotted are

not corrected for resolution differences.

48 BASIC GRAPHICS PART |l

graph paper by printing out a grid drawn on the screen. Appendix A contains
customized paper for both SCREEN 1 and SCREEN 2, with the grid lines drawn
every five pixels apart.

DRAW STATEMENT

If we have the advanced BASIC interpreter, we can create pictures using the
DRAW statement. With this command, it is possible to specify all the parts of a
picture in one statement.

DRAW string — Constructs a picture on the screen according to the
commands listed in string.

The special commands that we can use in string allow us to draw a series of lines,
plot individual points, set colors, and perform some special operations, such as
changing sizes or rotating picture parts.

We can draw horizontal and vertical lines by stating the direction and length
of the line in string. For example,

DRAW “R100”

produces a line of length 100, drawn to the right (R). This line will be drawn from

the last pixel position used in a program. If no point has yet been used, the initial

reference position is taken as the screen center: (160,100) in medium resolution or

(320,100) in high resolution. For high resolution, the string ‘‘R100’’ then creates a

line from (320,100) to (420,100), if no point has yet been referenced. To get lines
drawn in the other directions, we use the DRAW commands L (for left), U (for

up), and D (for down). The statement

DRAW “R100;U100;L100;D100”

gives us a box with 100 pixels on all sides. Semicolons separating the four
commands are used for clarity, but they can be omitted.
Variable names can be used to specify the line lengths, as

DRAW “R=L1; U=L2; L=L3; D=L4"

If each of the variable names L1, L2, L3, and L4 have been assigned the value
100, we get the same box as before. We must use semicolons following any
variable names.

Diagonal lines are drawn with the commands E (up and right), F (down and
right), G (down and left), and H (up and left). Using these commands, we get a
triangle with the following program sequence.

10 CLS: SCREEN 1
20 L1 =100:L2 = 50
30 DRAW “R=L1; H=L2; G=L2;"

Chapter 3 Making Pixel Pictures 49

We can draw lines in any direction with the command M X,Y, which plots
points from the last position referenced to position (X,Y). For example, line 30 in
the program sequence above could be replaced by

30 DRAW “M260,100; M210,50; M160,100”

assuming that we are starting from the center of the screen. We cannot use
variable names with the M command. A plus sign (+) or minus sign (—) with the X
coordinate indicates relative coordinates. With relative coordinate specification,
line 30 would be written as

30 DRAW “M+100,0; M—50, —50; M — 50, 50"

Sometimes we might like to skip over to a new screen position before
drawing any further lines in a picture. We can do this by placing B in front of any
of the plotting commands. This means move without plotting to the position
indicated. The statement

DRAW “R25; BR10; R25; BR10; R25”

gives us a series of three horizontal lines with 10 units between each line. Our
triangle can be drawn from the point (110,125) with

30 DRAW “BM110,125; R=L1; H=L2; G=L2;"

Here, the BM command sets the reference point to (110,125).
Another available prefix for the plotting commands is N. This prefix has the
effect of returning the reference point to the original position. Thus

DRAW “NE100; F100”

plots two diagonal lines from the same point.

Color is set with the C command. We can specify the color code, following
C, as a constant or as a variable. We once more plot the triangle, this time as a
solid red figure on a blue background:

10 CLS: SCREEN 1

20 COLOR 1,0

30 RED =2:L1=100:L2 = 50

40 DRAW “BM110,125;C=RED;R=L1;H=L2;G=L2;"
50 PAINT (160,100),RED,RED

Command C sets the color for all subsequent commands, including additional
DRAW statements, until a new color is set. Color values are 0, 1, 2, and 3 in
SCREEN 1 (corresponding to palette choices), and 0 and 1 in SCREEN 2.

Program 3-14 gives an example of picture construction using the DRAW
statement. The sailboat in Fig. 3-8 is the output.

Picture parts can be made larger or smaller with the S (scale) command. All
following commands will then be scaled by the amount specified after S until
another scale command is given. The number following S must be an integer in the

50 BASIC GRAPHICS PART Il
Program 3-14 Sailboat constructed with the DRAW statement.
10 "PROGRAM 3-14. SAILBOAT USING DRAW STATEMENT
20 SCREEN 1: COLOR 0,0: CLS
30 DRAW "BM&0, 140R200630L140H30" *MAKE BOAT BOTTOM
40 DRAW "BM150, 130R110H110D120" *MAKE LARGE SAIL
50 DRAW "BM150, 130LBOES0" *MAKE SMALL SAIL
60 IF INKEY$ = "" THEN &0
70 END
range 1 to 255. This number is divided by 4 to produce a scaling factor for the

subsequent plotting commands. The statements

160 S$ = “BM125,125;S2;L100”
170 DRAW S$

will draw a horizontal line of length 50 from position (125,125) to the left. The
scaling factor for this case is 1/2 (2 divided by 4), so that the specified length of 100
is reduced to 50. Scaling factors can be chosen to have values from 1/4 to nearly 64
(as long as we do not enlarge objects beyond the screen size) in steps of 1/4. We
will discuss scaling in more detail in Chapter 7. Program 3-15 gives an example of
the use of scaling with the DRAW statement. The output is shown in Fig. 3-9.

We have also used the X, or substring command, in Prog. 3-15. This lets us
define a particular picture part as a separate string and include it in one or more
places within a DRAW statement. In this way, we can set up picture subparts and
display the subparts in different places with different scalings. The turrets of the
castle of Fig. 3-9 were created in this way.

Figure 3-8 Sailboat displayed by Prog. 3—14, using DRAW statements.

"S1—¢ 301q AQ puewwod FUI[ROS Y] pUB SJUIWIRIS MV I YIM PAJonnsuod anid y - ¢-¢ aansig

an3

0£Z N3HL wu = $ATINI I

£°Z°(00T “091) INIYd

£fe(OrT “091) LINIUd

w SSMOANIM X 04T °0ZTWE. MUNA

w SSMOAONIM X £S5 f0LT°OSTWE. MYNa

w SSMOANIM X £SOT “9LZWd. MUNA

« SSMOONIM X G5 50T °9CzZWd. MYNA

w SSMDANIM X £06°SOZWE. MPHa

w SSMOANIM X £06°0TIWE. MYNA

« S$MDANIM X f06°00TWd. MYNA

«wOIN S 01d SH. = $MOANIM

wOZA f0LT°0BIW fZPT°OLIW f09T°09TW fZFT°OSTW f0ZN f06T°ObTWd. MUNA
«SG0 f$IIHVUNINIVW X £GCN 0ZZ71 060 f$13¥HNL X STIN 0ZH OSd. MYNA

w $$1FUUNLTIVWSLHIIN X f0£d SC°SHTW S $9YT1d X f0Z°09TW OSMN. MYNd
« SS1THUNLTIVWSLATT X £0£N 0ZH STA f$13MUNL X f06N 0S71 06T ‘S/ZWd. MYNad
wSTC09T W fZT°0BT W fSIN. = $9v74d

wPSu 4+ $LIHUNL + 4ZS SH. = $LIVUNLTIWHSLIHOIY

wGH ¥Su + $LIVUNL + 4ZS. = $LIVUNLTIYWS LI

$1IYHUNL + OTH. + $LIHYNL + ,OTH. + $LIVUNL = $LIUUNINIYKW

wOTd OTH OTN. + $LIMYUNL + $LIYYNL = $13HUNL

«wOTH OTd OTYH OTN. = $13HANL

S0 :0°0 ¥DI0D 1 N3IINIS

J1SYI MYHA 0L d3SN SINIWILYLIS MYNA “ST-£ WYHO0Ud .

JUdWRIBIS MY 2Y) Suisn ‘Surfess pue (9[ISBI) UONONNSUOD NI S[-¢ weadoad

IS seinjold [exid Buniey € Jeideyn

52 BASIC GRAPHICS PART Il

Draw command Purpose

R Plot points to the right.
L Plot points to the left.
8] Plot points up.
D Plot points down.
E Plot points diagonally to the right and up.
F Plot points diagonally to the right and down.
G Plot points diagonally to the left and down.
H Plot points diagonally to the left and up.

MX)Y Plot points to coordinate position (X,Y).
B Move without plotting (prefix to other commands).
N Plot, then return to original position (prefix to other commands).
C Set color.
S Set scale factor parameter.
A Set rotation angle.

X string Specify a substring.

Figure 3-10 Table of commands that can be used with the DRAW statement.

Picture parts can be rotated with a rotation command, A. For now, we will
simply note that we can specify rotation angles in steps of 90, 180, or 270 degrees
with the numbers 1, 2, or 3 following A. In Chapter 7 we will spend more time
discussing rotations and other transformations of pictures.

Figure 3-10 provides a listing of the DRAW commands and prefixes, stating
the function of each.

3-6 PRINTING AND SAVING PIXEL PICTURES

To reproduce our screen displays on paper, we need a printer with graphics
capability. Additionally, we need a program to convert and transfer the informa-
tion stored in our screen buffer to the printer. Several versions of such graphics
‘“‘screen-dump’’ programs are available for the PC.

The BSAVE and BLOAD commands can be used to save pictures on tape or
disk and to load them back into the screen buffer. Their operation with pixel
graphics is the same as that discussed in Section 2-5 for character graphics.

PROGRAMMING PROJECTS

3-1. Write a program that clears the screen and draws the word ““‘HELLO’’ (or any other
word) in the center of the screen, using the LINE command. Include a box border
around the word.

3-2. Modify Prog. 3~10 so that a solid line is drawn for all values of the slope of the line.

3-3. Modify Prog. 3-10 to draw a line with given slope and Y-intercept from any specified
point on the screen to the edge of the screen.

Chapter 3 Making Pixel Pictures 53

3-4.

3-5.

3-6.

3-7.

3-8.

3-9.
3-10.

3-11.

Using the LINE statement, write a program that inputs any slope, Y-intercept, line
length, and starting position and then draws the required line. Provide checks in the
program to avoid drawing beyond the screen limits.

Write a program to produce a screen pattern formed with overlapping, randomly
placed rectangles of various sizes. Use the random number generator commands to
select the position for one corner of each rectangle and its width and height.

Modify Project 3-S5 to color the interior of each rectangle randomly. The center of
each randomly chosen rectangle can be used as the interior point for the PAINT
command: (X1+W/2,Y1+H/2), where (X1,Y1) is the location of the upper left
corner of the rectangle with width W and height H. Alternatively, we could use the
method of Prog. 3-12 to color the interiors.

Modify Prog. 3-11 so that the program automatically finds an interior point of any
given polygon for the PAINT statement. An interior point can be found in several
ways. One way is to check each X position along a horizontal screen line with the
POINT function to determine when we are inside the polygon boundaries. We can
do this by scanning along the next line down from the topmost vertex. That is, if the
topmost vertex has a Y value of 10, we check each X position along the horizontal
line with Y = 11.

Modify Prog. 3-12 to fill in the rectangle with dots, where the spacing between dots
is specified by input. A random spacing of dots and a random pattern of overlapping
rectangles could also be displayed.

Write a program to produce the shading patterns shown in Fig. 3-6.

Lay out a figure or scene on graph paper and write a program to display the layout,
using the LINE, PSET, and COLOR commands. Provide various shading and color
patterns in the figure, and correct for any resolution differences.

Write a program to produce the layout described in Project 3-10, using the DRAW
and PAINT commands.

Chapter 4

Plotting Graphs

Data listed in tables are usually harder to interpret than when presented in graph
form. Graphs allow us to grasp the information content of a set of numbers more
quickly. They can clearly show various data relationships that are often difficult to
pick out in a simple listing of the numbers. We can construct graphs using either
the PRINT statement or the special graphics commands introduced in Chapter 2.

4-1 FUNDAMENTALS: DATA TREND GRAPHS

An elementary type of graph is one that shows the general trend or *‘shape’’ of the
data, with little or no explicit labeling. A trend graph for the data listed in Fig. 4-1
would provide an overall picture of sales fluctuations during the year. We could
orient this graph so that sales magnitudes are represented either horizontally or
vertically. Figure 4-2 shows these two graph orientations. In Fig. 4-2(a), months
would be counted down from the top of the screen, and sales magnitudes would be
scaled to fit across the screen, from left to right. Figure 4-2(b) illustrates the case
in which months would be counted across from the left of the screen and
magnitude scaled vertically.

CHARACTER GRAPHICS METHOD

We can construct a trend graph for the data in Fig. 4-1 by printing characters in
screen positions that correspond to relative sales magnitudes. Suppose that we
want the data magnitudes represented horizontally on an 80-character screen. We
will represent months along every other print line from the top of the screen and
use the character positions 25 through 75 along each print line to represent sales

54

Chapter 4 Plotting Graphs 55

Number of Number of

Month - items sold Month items sold
Jan 210 Jul 410
Feb 150 Aug 390
Mar 99 Sep 300
Apr 250 Oct 651
May 183 Nov 724
Jun 352 Dec 516

Figure 4-1 Sample sales data table.

magnitudes. The maximum sales data value will then correspond to position 75 on
the twenty-first line from the top of the screen (for November), and the minimum
sales data value will correspond to position 25 on line 5 (for March).

Scaling each of the data values to be in the interval 25 to 75, is accomplished
with the following calculation:

Print position = (data value — minimum data value)
along a line

. print position range
data range
+ minimum print position

(4-1)

For our sample data, the data range is 724 minus 99, or 625. The print position
range is 75 minus 25, or 50, and we have chosen 25 as our minimum print position.
Horizontal print position for each of the data values is then found as

50
Print position = (data value — 99) * + 25
625
or
P = (data — 99) * 0.08 + 25
Program 4-1 uses this equation to produce the data trend graph of Fig. 4-3. Each

Figure 42 The sample sales data magnitudes of Fig. 4-1 can be graphed (a) horizontally or (b)
vertically.

(Magnitude \ (\
Magnitude
Month l
k J \ Month J

(a) (b)

56 BASIC GRAPHICS PARTII

Program 4-1 Horizontal data trend graph using character graphics.

PROGRAM 4-1. HORIZONTAL DATA TREND USING CHARACTER GRAPHICS
*SALES VALUES ARE SCALED TO LIE BETWEEN COLUMNS 25 - 75.
MONTHS ARE COUNTED DOWN FROM THE TOP, USING EVERY OTHER LINE.

SCREEN O: WIDTH 80: LOCATE ,,0: CLS:
RANGERATIO = (75 - 25) /7 (724 - 99)

FOR MONTH = 1 TO 12
READ SALES
POSITION = INT((SALES — 99) % RANGERATIO + 25 + .5)

PRINT TAB(POSITION); "s“;

IF MONTH <> 12 THEN PRINT: PRINT ’DON’T SCROLL AFTER DECEMBER
NEXT MONTH
DATA 210, 150,99,250, 183, 352,410, 390,300, 651,724,516
IF INKEY$ = “" THEN 130

END

print position is calculated and rounded to the nearest whole number using the
INT function. The program can be generalized for any set of data and display size
by using calculation (4-1) with the maximum and minimum data values and print
positions as input.

We have used the command LOCATE ,,0 in statement 40 of Prog. 4-1. This
turns the cursor off so that it is invisible. Otherwise, we would see the blinking
cursor during the creation of our graph and while we were in the hold loop of line

*

Figure 4-3 Data trend graph produced by Prog. 4-1, with the sales magnitudes of Fig. 4-1
represented horizontally.

Chapter 4 Plotting Graphs 57

130. The cursor is automatically turned back on when execution of the program is
finished.

To produce graphs that have magnitudes represented vertically (Fig. 4-2(b)),
we make two changes to Prog. 4-1. First, for each data item, we need to
determine the proper print line that will correspond to the magnitude of the data
value. Second, we select a position along this line based on which month
corresponds to the data item. Each data value is represented by printing a
character at this row and column position.

For the data of Fig. 4-1 and using WIDTH 40, we now choose months to be
in every third column starting at 3 and continuing through 36. Sales magnitudes
are plotted using lines 1 through 20. Then the largest magnitude (724) is plotted at
location 33 (for November) on the print line at the top of the screen (print line 1).
Position along each print line is determined by 3 * M, where M is the number of
the month (January = 1, February = 2, and so on). To scale the sales magnitudes
onto the 20 print lines, we use the general rule:

Print
line = (maximum data value — data value)
number (4-2)
print line range
o - T
data range
+ minimum print line number
»*
*
»*
*
*
*
»*
» »*
»*
»*

Figure 4-4 Data trend graph produced by Prog. 4-2, with the sales magnitudes of Fig. 4-1
represented vertically.

58 BASIC GRAPHICS PART Il

Program 4-2 Vertical data trend graph using character graphics.
10 PROGRAM 4-2. VERTICAL DATA TREND USING CHARACTER GRAPHICS

20 *SALES VALES ARE SCALED TO PRINT BETWEEN LINES 1 - 20.
30 *MONTHS USE EVERY 3RD COLUMN STARTING AT 3 AND
40 *CONTINUING ACROSS TO 36.

S50 SCREEN O: WIDTH 40: LOCATE ,,0: CLS
60 RANGERATIO = (20 - 1) / (724 - 99)
70 FOR MONTH = 1 TO 12

80 READ SALES

90 ROW = INT((724 - SALES) ¥ RANGERATIO + 1 + .95)
100 COLUMN = MONTH % 3

110 LOCATE ROW, COLUMN

120 PRINT "x"

130 NEXT MONTH

140 DATA 210, 150,99,250, 183, 352,410,390,300,651,724,516
150 IF INKEY$ = "" THEN 150

160 END

In this example, we have chosen a print line range of 19 (or 20 — 1), and a
minimum print line number of 1. Figure 4-4 shows the vertical graph produced by
Program 4-2. The LOCATE statement is used in this program to position each
character on the graph.

Program 4-2 could be generalized to allow a variable graph position. The
desired number of lines and column positions along each line would then be
entered as input. Data range and the maximum data value would be determined by
the program as the data are entered.

PIXEL GRAPHICS METHOD

Using the graphics commands to form data graphs means that we now think of the
screen in terms of coordinates instead of print lines and character positions. We
can replot the graph produced by Prog. 4-2 using the PSET command to plot
pixels instead of characters. With a resolution of 320 by 200, we can position the
graph so that we use the pixel rows from 0 to 160 and the pixel columns from 20 to
240. Months will be plotted across the screen at every twentieth pixel, starting
with location 20. Data magnitudes will be scaled between the vertical pixels 0 and
160, using the following calculation:

Y coordinate = (maximum data value — data value)
. vertical pixel range
data range

(4-3)

+ minimum Y coordinate

Program 4-3 produces the resulting vertical data trend graph using pixels. Plotting
the data so that magnitudes are represented horizontally is a matter of interchang-
ing the role of the X and Y coordinates, taking screen dimensions into account.

Line segments connecting the data points can be included easily when we
plot graphs with pixels. Program 4-4 produces the line graph shown in Fig. 4-5.

200

Program 4-3 Vertical data trend graph using point plotting.

’PROGRAM 4-3. VERTICAL DATA TREND USING PIXELS
*SALES VALUES ARE SCALED TO PIXELS O - 160.
*MONTHS USE EVERY 20TH PIXEL STARTING AT 20
*AND CONTINUING ACROSS TO 240.

SCREEN 1: CLS

RANGERATIO = (160 — 0) / (724 — 99)
X = 20
FOR MONTH = 1 TO 12
READ SALES
Y = INT((724 — SALES) % RANGERATIO + .5)
PSET (X,Y)
X = X + 20
NEXT MONTH

DATA 210,150,99, 250, 183, 352,410, 390,300, 651,724,516
IF INKEY$ = "*" THEN 1350
END

Program 4-4 Vertical data trend graph using line drawing.

*PROGRAM 4-4. DATA CHART WITH CONNECTED LINES
*SALES VALUES ARE SCALED TO PIXELS O - 160.
*MONTHS USE EVERY 20TH PIXEL STARTING AT 20
*AND CONTINUING ACROSS TO 240. SALES
*VALUES OF CONSECUTIVE MONTHS ARE CONNECTED.

SCREEN 1: CLS

RANGERATIO = (160 — 0) / (724 — 99)

X =20

READ SALES

Y = INT((724 — SALES) % RANGERATIO + .5)

PSET (X,Y)

FOR MONTH = 2 TO 12
X=X+ 20
READ SALES
Y = INT((724 — SALES) % RANGERATIO + .5)
LINE - (X,Y)

NEXT MONTH

DATA 210, 150,99,250, 183,352, 410, 390, 300, 651,724,516

IF INKEY$ = "* THEN 190

END

Figure 4-5 Data trend graph produced by Prog. 4-4, with the sales magnitudes of Fig. 4-1 plotted

vertically and joi

ned with straight lines.

59

60 BASIC GRAPHICS PART Il

4-2 LABELED GRAPHS

10

200

300

The fundamental techniques of the preceding section are useful for quickly
plotting simple graphs and displaying data trends. But data trend graphs convey
very little quantitative information. Usually, we are interested in determining
more precise information from graphs. Labeling of the data point coordinates
along the coordinate axes allows us to determine more exact relationships and to
interpolate between the data points.

Labeled graphs require some modification to the data scaling equations of
(4-1), (4-2), and (4-3). The data range in these equations now corresponds to the
labeled graph range. If we plot a data set with a range from —96 to 89 in a graph la-
beled from —100 to 100, the data range to be used is 200 (the range of the graph).
Similarly, the minimum data value would be —100, and the maximum data value
would be 100.

Coordinate axes for the X and Y directions can be generated with the ASCII
character codes 179, 196, and 197, using the PRINT statement. We have many
other character choices, including double lines (code 186) and thicker lines (codes
220 through 223). A labeled graph using single lines is constructed by Prog . 4-5
and displayed in Fig. 4-6.

Program 4-5 Labeled data graph using character graphics.

"PROGRAM 4-5. LABELED DATA CHART USING CHARACTER GRAPHICS

SCRE|

?SALES VALUES ARE SCALED TO COLUMNS 12 — 76. MONTHS USE
’EVERY PRINT LINE, STARTING FROM THE TOP OF THE CHART.
*ASCII CHARACTER CODES 179, 196, AND 197 ARE USED TO MAKE
"LINES AND ASCII CODE 219 TO MAKE BARS.

EN O: WIDTH 80: LOCATE ,,0: CLS

PRINT TAB(23); "ANNUAL SALES TREND (thousands)"

PRIN

T: PRINT

PRINT TAB(12);

FOR

NEXT
PRIN
PRIN

REPEAT = 1 TO 8
PRINT CHR$(197); STRING$(7,196);

T CHR$(197)
T TAB(12); CHR$(179); TAB(76); CHR$(179)

RANGERATIO = (76 — 12) / (800 - 0)

FOR

NEXT

MONTH = 1 TO 12

READ MONTHNAME$, SALES

POSITION = INT((SALES — 0) % RANGERATIO + 12 +.5)

PRINT MONTHNAME$; TAB(12); CHR$(179); TAB(POSITION); CHR$(2);
TAB(76); CHR$(179)

PRINT TAB(12); CHR$(179); TAB(76); CHR$(179)

PRIN
FOR

NEXT
PRIN
PRIN
PRIN
PRIN

T TAB(12);
REPEAT = 1 TO 8
PRINT CHR$(197); STRING$(7,196);

T CHR$(197)

T

T TAB(11); O3: FOR REPEAT = 1 TO 8: PRINT STRING$(S," "); REPEAT3;: NEXT
T TAB(14)3: FOR REPEAT = 1 TO 8: PRINT STRING$(5," "); 0O3: NEXT

PRINT TAB(14);: FOR REPEAT = 1 TO 8: PRINT STRING$(S," "); O;: NEXT

Chapter 4 Plotting Graphs 61

Program 4-5 (cont.)

310 DATA "JANUARY", 210, "FEBRUARY", 150, "MARCH", 99

320 DATA "APRIL",250, "MAY", 183, "JUNE",352

330 DATA "JuLY", 410, "AUGUST", 390, "SEPTEMBER", 300

340 DATA "OCTOBER", 651, "NOVEMBER", 724, "DECEMBER",S516
350 IF INKEY$ = "" THEN 350

360 END

Pixel graphics offers a more flexible method for constructing coordinate axes
by drawing lines. A labeled graph is produced with this method by Prog. 4-6. The
resulting output is shown in Fig. 4-7.

In constructing labeled graphs, we should observe the following guidelines.
Labeling should be simple and to the point. Too much labeling can clutter the
graph and detract from its effectiveness to convey information. For clear labeling,
larger letters and numbers are more effective than small print. If possible,
identifying labels should be placed on the lines or in the areas they are meant to
identify instead of placing them in separate tables or legends. Divisions for the
coordinate axis referencing magnitudes should be chosen in easily comprehended
steps, such as multiples of 10 rather than multiples of 8. Including a zero point aids
in interpretation. The divisions should be spaced and labeled with tic marks to
make interpolation between data points easy. We should also construct data lines
to be thicker or more intense than the coordinate axes and grid lines. These ideas
were taken into consideration in the construction of the graph in Fig. 4-7.

Figure 4-6 Labeled graph with coordinate axes. Output by Prog. 4-5, using character graphics.

ANNUAL. SALES TREND (thousands)

JANUARY -]

FERRUARY a

MARCH -]

AFRIL 8

MAY -]

JUNE -]

JULY a

AUGUST a

SEFTEMEER a

OCTOBER -]
NOVEMEER -]
DECEMEER (-]

2
Q O
(o] (o]

0 (8] (8]
0 0 (o}

oo W 4
<
oo

62 BASIC GRAPHICS

Program 4-6 Labeled graph using line drawing.

’PROGRAM 4-6. LABELED DATA CHART WITH CONNECTING LINES
*SALES VALUES (in the range of O - 800) ARE SCALED TO PIXELS
*27 - 155. MONTHS<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>