
IBM PC and PC/r^

David D. Busch
- ■<

IBM PC AND PCjr
SUBROUTINE
COOKBOOK

David D.Busch

BRADY COMMUNICATIONS COMPANY, INC.
BOWIE, MARYLAND 20715

A Prentice-Hall PMishing Company

Publishing Director: David Culverwell
Acquisinons Editor: Gisele M. Asher
Production Editor/Text Designer: Janis K. Oppelt
Art Director/ : Don Sellers
Assistant Art Director: Bernard Vervin

Cover Photograph: George D. Dodson
Manufacturing Director: John A. Komsa

Typesetter: Emerald Graphic Systems, Syracuse, NY
Printer: R. R. Donnelley & Sons Co., Harrisonburg, Virginia
Typefaces: Garamond

Acknowledgments to Dave Kisser's rabbit. Fluffy, for appearing on the front cover.

Copyright © 1985 by Brady Communications Company, Inc.
All rights reserved. No part of this publication may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying and recording, or by any information
storage and retrieval system, without permission in writing from the publisher. For information,
address Brady Communications Company, Inc., Bowie, Maryland 20715.

Library of Congress Cataloging in Publication Data

Busch, David D.
IBM PC and PCjr subroutine cookbook.

Includes index.
1. IBM Personal Computer—Programming. 2. IBM PCjr

(Computer)—Programming. 3. BASIC (Computer program
language) 4. Subroutines (Computer programs) I. Title,
n. Title: I.B.M. PC. and PC. jr subroutine cookbook.
QA76.8.I2594B87 1985 001.64ffl2 84-11079

ISBN

Prentice-Hall International, Inc., London
Prentice-Hall Canada, Inc., Scarborough, Ontario
Prentice-Hall of Australia, Pty, Ltd., Sydney
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books, Limited, Petone, New Zealand
Editora Prentice-Hall Do Brasil LTD A., Rio de Janeiro

Printed in the United States of America

85 86 87 88 89 90 91 92 93 94 95 1 2 3 4 5 6 7 8 9 10

Note to Authors

Do you have a manuscript or a software program related to personal computers.^ Do you
have an idea for developing such a project? If so, we would like to hear from you. The Brady
Co. jproduces a complete range of books and applications software for the personal computer
market. We invite you to write to David Culverwell, Publishing Director, Brady Communi
cations Company, Inc., Bowie, Maryland 20715.

CONTENTS

PREFACE vii

INTRODUCTION ix

1 SUBROUTINE MAGIC 1

Sample Merging Run 5

2 BASIC TRICKS 9
Function Keys 10
Check Screen 13

Switch Displays 16
Test Adapter 18
Clear Keyboard Buffer 19
Center Screen 21

File Transfer 23

3 DATA INPUT, EDITING, AND OUTPUT 29
Number Input 30
Letter Input 33
Case Converter 35

String Sort 37
Number Sort 39

Array Loader 42
Insert String 45
CHR$ Value 47
Sequential File—Write to Disk 50
Sequential File—Read from Disk 54

4 USING THE CLOCK AND INTERRUPTS 59
Elapsed Time 61
Timer 63

Second Timer 66

TIMES Interrupt 68
ON COM(n) Interrupt 71
Funrtion Key Interrupt 73

5 BUSINESS AND FINANCIAL SUBROUTINES 77
Loan Amount 78
Payment Amount 81
Number of Payments 83
Years to Reach Desired Value 86
Compound Interest 88
Rate of Return 91
Temperature 93
Date Formatter 95
Number of Days 98
Day Converter 101
Menu 103
Time Adder 106
MPG 108

6 BITS AND BYTES 113
Peek Bit 115
BitDisplayer 117
Bit to One 119
Bit to Zero 121
Reverse Bit 123
Binary to Decimal 125
Rounder 127

7 JOYSTICKS AND PADDLES 131
Horizontal Paddle Simtilation 133
Vertical Paddle Simulation 136
Cursor Pad Joystick—N, S, E, W 139
Cursor Pad Joystick—All Directions 142
Drawing Subroutine 147
Read Joysticks 150
Joystick Button Interrupt 154

8 USING SOUND 157
Music 159
IBM Organ 162
Siren 165
Bomb 167
Alarm 169
Klaxon 171
UFO 173
Computer 175
Laser 176
Roulette Wheel 178

iv

Heartbeat 180

Clock 182

Noise 184

9 GAME ROUTINES 187
Deal Cards 188

Random Range 192
Coin Flip 194
Dice 196

Delay Loop 198

GLOSSARY 201

INDEX 205

PREFACE

How many times have you looked over a program listing in a magazine, and
thought, "Gee, I could have saved a lot of time if I'd used this joystick subroutine in
my own game program!"
Did you read an explanation of how to use your IBM Personal Computer's

PLAY statement, only to wonder, "Well, I think I understand how it works—but
how do I actually do it?"
Worse, do you find that examples are too complex to understand, or that tightly

packed programs that you try to dissect are so interwoven and poorly commented
that it's impossible to extract the purpose of each statement? Have you been reading
a lot of useful tips and programming tricks, but lost track of them because they
were scattered among a few dozen books and ms^azines?
This book may be the reference you need and may serve as your shortcut to

programming proficiency. Herein are a variety of programming "recipes" in the
form of BASIC subroutines that, for the most part, perform only a single task.
Useful functions are laid out in subroutines that you can transplant directly to your
own programs.

In most cases, the routines are presented in simply constructed lines with only
one or two statements per line, and no extraneous material. That makes it easy for
you to look at the routines, and discover on your own the function of each state
ment. But, to make sure that you grasp each concept, there is a line-by-line descrip
tion and an explanation of the important variables used in each subroutine.
Some of the information in this book is available elsewhere, but you'd have to

compile a huge stack of material to collect all of it in one place. Instead of searching
through back issues of magazines, the reader can thumb through the Contents or
Index, and find out how to simulate joysticks or paddles, generate specific sound
effects, or perform various types of sorts.
Most subroutine books concentrate on "general" business or personal routines.

Those are included here, too, but we've also emphasized IBM-specific tips aimed at
your special needs. New capabilities have been added to IBM BASIC. Special fea
tures such as key trapping, use of asyncronous communications, generating sounds,
programming the special function keys, and using the built in real-time clock are
covered.

Whether you're already expert in BASIC programming, and looking for a handy
reference guide, or a new user seeking access to sophisticated subroutine tricks, this
book should satisfy your hunger.

vii

INTRODUCTION

Be forewarned. This book is unlike any other coUertion of subroutines that you
might have seen before. Herein are nearly six dozen useful, ready-to-transplant sub
routines and programming tips that you can use to make your own programs simu
late joystick action or resound with music. These are IBM PC and PCjr-specific
routines that take the mystery out of using function keys, the built-in clock, inter
rupt routines, and other special IBM PC and PCjr features.
Most "subroutine" books are top-heavy with exotic math functions and rarely

used statistical programs. If you've ever picked up one of those volumes, you were
probably dismayed to find that most of the subroutines were not very useful. Most
of us don't really use higher mathematics in our everyday work. That type of sub
routine was fine back in the days when microcomputers were used primarily by
scientists, computer nuts, and other high-tech types who doted on newer and better
ways of doing things like Fast Fourier transforms.
However, the IBM PC and PCjr, while they are powerful, capable microcomput

ers, are being sold to a broad range of users. Some buy PCs or XTs, and only want
to use their computers for business. Other users of both the PC and PCjr are more
interested in learning programming and may have a limited technical background.
Then, there are those of you who really do vmderstand computers but would like to
avoid reinventing the wheel.
The IBM PC and PCjr Subroutine Cookbook is meant for all of you. There are some

useful, general routines included here. This book also bristles with modules de
signed specifically to perform some sorely needed task for the IBM PC and PCjr
alone.

Interested in using the cursor pad keys as pseudo-joysticks to manipulate objects
on the screen? Just transplant one of the joystick routines included in this book. We
even show you how to move your missiles and enemy aliens around on the screen.
Using the IBM PC and PCjr's real-time clock to measure elapsed time or to con

trol outside events is also provided for. Generate musical notes within your own
programs—or add sound effects. Ready-made subroutines are provided for your use.
Games players on both the PC or PCjr will find tips on routines that spice up

their own arcade-quality games, while those interested in programming for business
will revel in the user-friendly input routines, menus, and sort routines.
More advanced programmers can use several routines as utilities to make their

work easier, while doing sophisticated "soft" POKing of individual bits within a
multipurpose IBM PC and PCjr register.

IX

We've gone light on the simpler subroutines, although plenty of the more impor
tant conversion and financial routines are provided. The emphasis here is on mod
ules you can't find anywhere else but which will help you improve your program
ming immediately.
Sorting is another task that is typically very slow in BASIC. However, because of

the great demand for this routine, two sorts are included here. For limited-size lists,
one of them should be entirely acceptable.

HOW TO USE THIS BOOK

This is not a first programming book. There are dozens of books that can teach you
BASIC. However, there are fewer volumes like this one that can help you go the
next step—beyond basic BASIC to true proficiency. If you already know what a
FOR-NEXT loop is and what happens when your PC encounters GOTO, you are
ready for the lessons contained here. Ideally, you should have written several pro
grams on your own, and be ready to tackle some more sophisticated programming.
Those who need this book most will know who they are. You're the programmers
who need some gentle guidance, a few inside tips, and the luxury of not having to
reinvent the wheel.

While many of the subroutines in this book are ready-to-run programs in their
own right, they will be most useful to you when you transplant them into your
own programs. In doing so, it may be convenient to relocate them. Because they
begin their search for a line number at the beginning of a program, all IBM PCs
work fastest when accessing subroutines located there. So, you will probably want
to deposit yours there. Using the BASIC RENUM facility will make this task easy.
To make things simpler, the routines are divided into sections. The basic routine

itself is clearly labelled. This portion may be renumbered and placed wherever con
venient. If renumbering manually, make sure the GOTO's and GOSUB's in the
new modules are correct. You don't want a line that reads: "1000 A$=INKEY$:IF
A$="" GOTO 160".

Another section of each subroutine will usually be labelled "Initialization." These
lines will contain values that must be set once during a program, before the routine
is run, or the variables will be those that must be defined by your program before
calling the subroutine. Frequently, these lines can be deleted or an equivalent line
placed within your own program. The explanation with each subroutine tells the
purpose of the important variables.
The purpose of all the variables that you need to define, as well as the variable

returned by the subroutine for your program's use, is explained as well. Because
many of the subroutines are rather complex, some of the variables used only in
ternally, as well as various operations, may not be explained. This should be rare, as
the line-by-line descriptions cover nearly all the functions of every program. How
ever, if this book does not tell you what a variable does, it is information you do not
need to know in order to use the subroutine.

In some cases there are several related routines. For example, there are several
joystick routines. Some of the concepts are explained only once. You will be
directed to look at previous subroutines for longer explanations at times. This al
lows you to access the routines in any order, without reading the entire book.
In most cases, the subroutines will work equally well in machines equipped with

either a color/graphics adapter or the IBM monochrome adapter. Therefore, in
most, but not of the subroutines, appropriate SCREEN statements have been
left out. If you have both types of monitor adapters (like the author) you will need
to set the MODE yourself. To make these subroutines easily adaptable for both 80-
column and 40-column screen widths, they have been written somewhat geneti
cally. You can add screen formatting touches, including more refined LOCATE
statements, to suit your particular configuration. This is a subroutine cookbook;
the finishing touches of the meal are up to you.

Variable names have been chosen, when possible, to reflert their functions in the
subroutines. In most cases, the variable names from one subroutine do not conflict
with those of another. However, when writing a complex program using several of
these modules, you should check to see that the same variable is not used twice for
different purposes. Keep in mind that, unlike many other BASICs, up to 40 charac
ters are significant for variable names in IBM PC and PCjr BASIC. So, PAYMENT,
used in one subroutine, is actually a different variable name than PAID, which
might be used in a second. But, if yom subroutine and program both make indepen
dent use of the variable lAID, conflicts resulting in incorrect answers could result.
You should take this precaution with any program you write, whether "foreign"
subroutines are being transplanted or not. Variable names may contain reserved
words but may not consjst of reserved words alone. Therefore, "TOTAL" is fine as
a variable, but "TO" is not.
Although most of the subroutines will operate properly with any of the available

IBM BASICs, they were written specifically for Advanced Basic. Those that re
quire special features of BASIC 2.0 are noted.
If you are eager to get started, and have some experience in programming, you

might want to skip ahead to any subroutine that looks tempting.
Each subroutine explanation includes a list of three sample applications for the

subroutine to get you started. The descriptions usually include other hints on where
you can use them in your programs. But, ideas should not be in short supply.
You should find this book a shortcut to programming proficiency. To paraphrase

a common saying, if you use a subroutine correctly three times, it will be a perma
nent part of your vocabulary. Given a bit of prartice, you can soon have all your
friends drooling over your programs and asking you for yoiu: favorite subroutine
recipes. Good luck.

XI

LIMITS OF LIABILITY AND
DISCLAIMER OF WARRANTY

The author and publisher of this book have used their best efforts in preparing this
book and the programs contained in it. These efforts include the development, re
search, and testing of the programs to determine their effectiveness. The author and
the publisher make no warranty of any kind, expressed or imphed, with regard to
these programs, the text, or the documentation contained in this book. The author
and the publisher shall not be liable in any event for claims of incidental or conse
quential dam^es in connection with, or arising out of, the furnishing, performance,
or use of the text or the programs. The programs contained in this book and on any
diskettes are intended for use of the original purchaser-user for backup purposes
without requiring express written permission of the copyright holder.

TRADEMARKS OF MATERIAL
MENTIONED IN THIS TEXT

• IBM MACHINES—International Business Machines Corporation
• APPLE MACHINES—Apple Computer, Inc.
• COMMODORE MACHINES—Commodore Business Machines, Inc.
• RADIO SHACK MACHINES—Tandy Corporation
• MASTERMIND—Invicta

• MICROSOFT—Microsoft Corporation
• BREAKOUT—Atari, Inc.
• PONG—Atari, Inc.
• PACMAN—Midway Mfg. Co., A Bally Company
• HOMEWORD—Sierra On-Line, Inc.
• ATARI MACHINES-Atari, Inc.
• TEXAS INSTRUMENTS—Texas Instruments, Inc.
• DUNGEONS & DRAGONS-TRS Hobbies, Inc.

Xlll

^3NIJ.nOii^Dg
aSn 01/VinH

WnN3^

1
Subroutine Magic

2 IBM PC AND PCjr SUBROUTINE COOKBOOK

One of the best things about subroutines is that they can be reused many times
within an existing program and put to work in many Afferent pieces of software as
well. Once you have typed in, say, a joystick routine from this book, you will not
need to retype it every time you write a new program requiring joystick hanrlling
Because the subroutines in this book have been designed as stand-alone modules,
with both the input and output clearly defined, they can be recycled quite easily.
You will want to store yoiu* subroutine "library" on disk and call it into your pro
grams as needed.

Incorporating existing code into a program is called "merging" and can be accom
plished in many different ways. The very simplest can be used if only one stock
subroutine will be used in your new program. In such cases, just load the subroutine
you want into memory, and write all the other program lines around it.

But, what if you want to incorporate several subroutines into a program, or add
them to one which has already been written? Doesn't loading a new subroutine or
program destroy anything that is in memory? Not necessarily. The PC and PCjr
have a powerful, simple, MERGE command that allows merging program lines and
subroutines.

First, let's look at the two kinds of merging. In one case, your existing program
and the subroutines to be merged have line numbers that do not conflict. Perhaps
one or the other has low line numbers, while the code to be merged has high line
numbers. That is, your program is numbered from 100 to 1000, while the subrou-
tine(s) to be added all have line numbers higher than 1000. Computerists have a
special name for this kind of merge: "appending." One program or module is added
to, or appended to, the end of the other. This method is easiest to use, from the
standpoint that there is no danger that wanted program lines will be written over
with those of the merged program.

However, in the case of true merges your target program may have program lines
that are inclusive of those in the subroutine to be merged. Your program numbered
from 100 to 1000 can be merged with a subroutine that is numbered from 500 to
600. If any duplicate lines exist, those of the original program will be replaced by
those of the merged program. With some planning, such a merging scheme can also
be successful. Yau would need to make sure that there are no program line numbers
in common by, say, purposely leaving a gap between lines 500 to 600 in your origi
nal program. Or, perhaps, those lines are occupied by a subroutine that you no
longer want. When using this type of merge, be certain that there are no "leftover"
lines from the original subroutine or program overlapping with those of your sub
routine. For most, the append type of merge is the safest and easiest to implement.

To MERGE with the PC, go to BASIC and load the module that you wish to add
to memory. The subroutine or program that you wish to MERGE must be stored
in ASCn form, which is accomplished by appending ",A" to the filename when
storing, e.g., SAVE"A:filename.BAS",A

SUBROUTINE MAGIC 3

To MERGE just type:

MERGE " filename. BAS "

That's all there is to it. The PC does the work for you.
Another BASIC command that will be useful to you in using this book is RE-

NUM. This command will renumber your program lines so that a subroutine can
be fitted into an existing program easily. The syntax for RENUM is as follows:

RENUM [new beginning line number] [,old line number]^ [,
increment]

That is, you can specify the first line number to be used in the new renumbering
sequence, the line in the current program where renumbering will start, and the
increment used for each new line number. For example:

RENUM 100,30,5

In this case, the newly numbered program will have its first new line number
begin with 100. The renumbering will commence at line 30 (so any lines prior to 30
will remain untouched). The new line numbers will be created with an increment
of 5, that is, 100,105,110,115, etc.
Any of these values can be left out, and the PC will use the default values. For

new line number, the default is 10. So:

RENUM ,30,5

will perform as described above, only the new lines will start at 10 instead of 100. If
no starting line number in the current program is specified, the default is the first
line in the program. Thus:

RENUM 100,,5

will start with the first line, not line 30, as in the original example. Finally, a default
increment of 10 is used. Therefore:

RENUM 100,30

will renumber from line 30, starting with a new line number of 100, and with incre
ments of 10. If we want, we can leave all of the arguments off:

RENUM

4 ffiM PC AND PCjr SUBROUTINE COOKBOOK

This command will renumber from start to end, with increments of 10, begin
ning with a new line number of 10.
Of course, RENUM also will change all the line number references, so your GO-

TO's and GOSUB's will still be correct, as long as the line number specified exists.
While RENUM is helpful in making additional space in your programs, it can also
make inserting subroutines easier.
Simply RENUM yoiu* program to leave a blank where you want the subroutine

to go after the merge. Say you want the subroutine to go after the current line 130 in
your program. The subroutine is 50 lines long (to use an extreme case). First enter a
new line:

135 REMARK

Then renumber the program in increments of 100:

RENUM 10121,1,11210

Your program will now have spaces of 100 between lines. Most likely line 130 will
now be 1300, and line 135 will now be line 1400. You can delete the REMARK at
line 1400. That will leave a gap from 1301 to 1499, which will hold the longest
subroutine im^inable. SAVE your main program (in ASCII form, losing the ",A"
option). Now, load the subroutine, and renumber it so that the first hne number
will be between 1301 and 1499, leaving enough space for the entire routine. An
increment of 1 will usually do this:

RENUM 1301,1,1

Then type MERGE"program.BAS"
Presto! Your original program, with lines up to 1300, and from 1500 and beyond,

is now merged with the subroutine in the proper location. Renumber one more
time:

RENUM

Now your program, with the included subroutine, will be numbered from 10 on
in increments of 10.

RENUM can also be used to move a subroutine that is already in a program, but
which you would like to relocate. Do as previously described to make a "hole" in
your program. Then LIST the lines containing the subroutine. Using the cursor
keys, move up to the lines you want to move, and type over the existing line num
bers with the new line numbers. A copy of the lines will appear in the new location.
Delete the subroutine in the old location. You must then make sure that GOTO
and GOSUB references to the subroutine are changed in your program before re-

SUBROUTINE MAGIC 5

numbering £^ain. One fast way to do this is to save the program, then RENUM,
noting the "Undefined line number" errors. Then, reload and make the correc
tions.

SAMPLE MERGING RUN

Subroutine (lines 10-250)

10
20

30
40

50

60

70

80

90

* *

* COMPOUND INTEREST *

* *

+ + VARIABLES + +

RATE: INTEREST RATE

YEARS: YEARS COMPOUNDED

100 • FUTURE: FUTURE VALUE

110 ' AMOUNT: AMOUNT TO BE COMPOUNDED

120 •
130 .

U0 • *** INITIALIZE ***

150 RATE=10

160 AMOUNT=1000

170 PERIOD=365
180 YEARS = 10

190 GOTO 260
V

200 • *** SUBROUTINE ***

210 RATE=RATE/100

220 FUTURE=AMOUNT* (1 -I- RATE/PERIODS) A (PERIODS
* YEARS): LOAN=PAYMENT* (1- (1+RATE) A -NUMBER) /RATE

230 FUTURE=INT(FUTURE* 100 +.5)/100
240 RETURN

250 ' *** YOUR PROGRAM STARTS HERE ***

6 ffiM PC AND PCjr SUBROUTINE COOKBOOK

Program merged with subroutine:

260 CLS:

270 PRINT "COMPOUND INTEREST"

280 PRINT

290 INPUT "INTEREST RATE";RATE

300 INPUT "YEARS TO BE COMPOUNDED";YEARS
310 INPUT "AMOUNT TO BE COMPOUNDED";AMOUNT
320 INPUT "COMPOUNDING PERIODS/YR";PERIODS

330 GOSUB 210
340 PRINT "FUTURE VALUE FUTURE
350 PRINT "DO IT AGAIN?"

360 PRINT TAB(4)"Y/N?"
370 A$ = INKEY$:IF A$= " " GOTO 370
380 IF A$="Y" OR A$="y" THEN GOTO 260
390 IF A$="N" OR A$="n" THEN END
400 GOTO 370

3'SVP

#

i) d

2
Basic Tricks

10 BM PC AND PCjr SUBROUTINE COOKBOOK

Here are some BASIC routines that will make your programming a bit easier.
These are general subroutines that can be applied to many different programs. One
lets you check the IBM PC and PCjr's equivalent of screen memory to see what
characters are displayed there. While redefining the IBM PC and PCjr's function
keys can be accomplished from Basic just by typing "KEY (number),(string)," there
are times when you might want to accomplish this under program control. A sub
routine lets you do the redefinition from within a program.
Many first-time users of computers fear that they will somehow "hurt" their ma

chines by typing some incorrect command at the keyboard. This is, of course, gen
erally impossible, although there was at least one instance of a fabled POKE that
would destroy the video board of a non-IBM computer. We don't personally know
of anyone who was brave enough to try it and so must say that any computer is
generally safe from mischief at the hands of those who only sit and type.
However, there are a number of things you CAN do with hardware from your

keyboard. For those with both the monochrome and color/graphics adapter boards
in their IBM PC's, it is possible to change from one to the other from DOS by using
the MODE command. However, there may be times when you will want to do the
same thing from BASIC under program control. The Switch Displays subroutine
checks to see which of your two boards is activated and toggles to the other one.
There is no need to tell the subroutine which board you want to use.
The Test Adapter subroutine will only check which adapter board is in use, for

use when you are writing a program that funrtions differently with the two types of
video displays, and you want to check on which is being used.
With color graphics and some types of video displays, the screen may not be

properly centered. If your video monitor does not have a horizontal adjustment, a
subroutine is included in this chapter to allow you to move the display and thereby
center your screen.

One popular piece of hardware installed in a large majority of IBM computers is
the Asynchronous Adapter, which permits communications through a modem or
hardwiring. A good basic terminal package is included with DOS, but it has no
provision for uploading or downloading files. A subroutine in this chapter will al
low plain vanilla program or data transfer between two computers, one of which
should be yoiw IBM PC. The routine will also serve as your introduction to pro
gramming the computer's RS232 port.

FUNCTION KEYS

WHAT IT DOES...

Redefines function keys, or restores them to normal, under program
control.

BASIC TRICKS 11

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• K: Key to reprogram
• S$: New definition of that key.

How to Use Subroutine

The commands entered by the IBM PC and PCjr function keys, which can be up
to 15 characters long, are stored in RAM. Normally, the ten keys are assigned func
tions like "List", "Load", "Save", "Run" or "Key." You may change any of these to
definitions more tiseful to you. Common funaions might include "?FRE(0)" and
"?TIME$", which report on the amount of free memory and the current clock
setting, respeaively.
Of course, you can quite easily redefine the function keys from the BASIC com

mand mode by typing "KEY (key number to redefine),(new definition)". This
string will be invoked by the IBM PC and PCjr from that point on, even if you exit
BASIC, turn off the computer, and come back at some later time.
You may have a program that needs to use special function definitions only for

that program run, and you wish to return the IBM PC and PCjr to normal function
after. One way to accomplish this would be to use the ON KEY interrupt,
described in Chapter 4. However, you may also wish just to have the funrtion key
deliver a string.
This subroutine will do that for you. One module allows redefining any of the

ten keys. This can be accomplished through user input, as shown, or by dpfining the
variable within the program itself.

Line-by-Line Description

Line 140: Enter key to be reprogrammed.

Line 150: Check to make sure key is in range 1-10.

Line 160: Enter new definition.

Lines 170 to 190: See if it should be ended with carriage return.

Line 200; See if definition is too long.

Line 210: Redefine key.

You Supply
Definitions for function keys.

12 IBM PC AND PCjr SUBROUTINE COOKBOOK

Sample Applications
• Programming shortcut for writing keywords
• Logons when used with BASIC communications program
• Short programs and subroutines stored in key.

Pressing function key summons desired string, up to 15 characters

10 ' *****************

20 • * *

30 ' * FUNCTION KEYS *
40 • * *
50 ' *****************

60 GOTO 140
70 t

80 ' ++ VARIABLES + +

90 • K: KEY TO PROGRAM
100 ' S$: STRING DEFINED

110 '
120 '

130 ' *** PROGRAM KEYS ***

140 INPUT "PROGRAM WHICH KEY (1-10) ;K
150 IF K<1 OR K>10 GOTO l40
160 LINEINPUT "WHAT STRING? (HIT <ENTER> ONLY TO

NULL)";S$
170 PRINT "END WITH CARRIAGE RETURN (Y/N) "
180 A$ = INKEY$:IF A$= " " GOTO 180

190 IF A$="Y" OR A$="y" THEN S$ = S$ + CHR$(13)
200 IF LEN(S$)>15 THEN PRINT "TOO LONG. 15 CHARACTERS

ONLY.": GOTO 110

210 KEY K,S$

220 RETURN

230 ' *** YOUR PROGRAM STARTS HERE ***

240 GOSUB 140

BASIC TRICKS 13

CHECK SCI^EN

WHATrrDOES...

Tells what character is printed on a certain screen location.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• ROW: Position to check

• COL: Column to check

• CHAR$: Character found
• FG: Foreground color
• BG: Background color
• BLINKS: Blinking state.

How to Use Subroutine

The IBM PC and PCjr, unlike some other computers, do not have screen mem
ory that is easily accessible by the novice. The older PC has its screen memory
tucked away in a special location. Consecutive locations store the charaaer being
displayed, attributes, and so forth. The PCjr takes up some of user RAM for its
screen memory but tells the operating system exactly where the information is
stored so that DOS can "look" just as if the PCjr were a PC and be automatically
directed to the proper location even though the two computers use different ad
dresses.

Fortunately, the BASIC programmer does not have to bother with this shifting
screen memory. BASIC has a very nice SCREEN funrtion that will return the char
aaer currently printed at any ROW or COLUMN, or the foregrovmd and back
ground color there, and whether or not the charaaer is blinking.
This capabiUty is especially useful for games in which we want to see what lies

ahead of our moving ship or missile. Graphics can be placed on screen using LO
CATE, which is, fortunately, very fast. We can LOCATE the cursor at any row or
column on the screen. If the PRINT statement is followed by a semicolon (except
for the last screen position), the screen will not SCROLL. Thus, LOCATE w^
funaion nearly the same as POKEing to video memory on other computers.
The following subroutine handles the chore for you automatically. While it asks

you which address to check, yoiu actual program will probably define ROW and
COL depending on the movement of a screen objea or some other parameter. For
tips on moving screen objeas, read Chapter 7.

14 IBM PC AND PCjr SUBROUTINE COOKBOOK

Line-by-Line Description

Lines 170 to 180: Enter row and column to check.

Line 190: Ask if character or color should be returned.

Line 200: If invalid choice, go back and ask again.

Line 210: If choice was 1, make equal to 0 so that character, not color, will be
returned by SCREEN function.

Line 220: Find out character or color.

Line 230: Determine blinking attribute.

Line 250: Calculate foreground color.

Line 260: Calculate background color.

Lines 300 to 310: Print results.

You Supply
ROW and COL to check.

Sample Applications
• Game program to detect collision
• Apphcations generator to see what has been typed on screen
• User input routine allowing mviltiline inputs and editing.

RESULT...

CHARS will equal character printed on screen.
FG and BG will equal foreground and background color numbers,
and blinking state will be revealed.

BASIC TRICKS 15

10 I ******************

20 • * *

30 ' * CHECK SCREEN *

40 ' * *
50 ' ******************

60 GOTO 290
70 t

80 ' ++ VARIABLES + +

90 ' ROW: POSITION TO CHECK

100 • COL: COLUMN TO CHECK

110 • CHAR$: CHARACTER FOUND

120 • FG: FOREGROUND COLOR

130 ' BG: BACKGROUND COLOR
140 • BLINK$: BLINKING STATE
150 <

160 • *** SUBROUTINE ***

170 INPUT "WHICH ROW :";ROW
180 INPUT"WHICH COLUMN :";COL

190 INPUT "1. CHARACTER OR 2. COLOR :"jC
200 IF C<1 OR C>2 GOTO 190

210 IF 0 = 1 THEN C = 0

220 CHAR=SCREEN(ROW,COL,C):IF C = 0 THEN
CHAR$ = CHR$ (CHAR): RETURN

230 IF CHAR>127 THEN BLINK$= "BLINKING" ELSE

BLINK$="NOT BLINKING"

250 FG=CHAR MOD 16
260 BG=(((CHAR-FG)/16)M0D 128)
270 RETURN

280 • *** YOUR PROGRAM STARTS HERE ***

290 GOSUB 170

300 PRINT ''FOUND : ";CHAR$;" ";BLINK$

310 IF 0=2 THEN PRINT "FOREGROUND COLOR :";FG
: PRINT " BACKGROUND : " ; BG

16 IBM PC AND PCjr SUBROUTINE COOKBOOK

SWITCH DISPLAYS

WHATrrDOES...

For computers with BOTH color/graphics adapter and mono
chrome adapter, changes from one to the other.

Versions: IBM PC, Advanced BASIC, both types of video adapters

Variables

None.

How to Use Subroutine

If you have a program which you would like to alternate between one display and
the other, you can use this subroutine to make the switch automatically. As noted in
the IBM BASIC manual, the screen you switch TO will be cleared, and you will
have to keep track of cursor position.

Line-by-Line Description

Line 140: Define PEEK and POKE offset.

Line 150: Check to see which adapter is currently being used.

Lines 170 to 200: Change to monochrome adapter and adjust screen.

Lines 220 to 250: Change to color/graphics adapter and adjust screen.

You Supply
Access to routine as needed.

Sample Applications
• Programs using more than one display board
• Programs designed to run on one board only
• Rapid switching of MODE without going to DOS.

RESULT...

Display will be switched to the other adapter board.

BASIC TRICKS 17

10

20

30
40

50

60

70
80

90
100

110

* *

* SWITCH DISPLAYS * '

* *

+ + VARIABLES + +

NONE

120 GOTO 280

130 ' *** SUBROUTINE ***

140 DEE SEG=0
150 IF (PEEK(1040) AND 48) =48 THEN ADAPTER=1 ELSE

ADAPTER=0

160 IF ADAPTER=1 THEN GOTO 220
170 POKE 1040,(PEEK(1040) OR 48)
180 SCREEN 0

190 WIDTH 80
200 LOCATE ,,1,12,13

210 RETURN

220 POKE 1040(PEEK(1040) AND 207) OR 16
230 SCREEN 1,0,0,0
240 SCREEN 0

250 LOCATE ,,1,6,7
260 RETURN

270 ' *** YOUR PROGRAM STARTS HERE ***

280 GOSUB 140

18 IBM PC AND PCjr SUBROUTINE COOKBOOK

TEST ADAPTER

WHATrrDOES...

For programs that may run on computers with either color/graphics
adapter or monochrome adapter, finds out which is activated.

Versions: IBM PC, Advanced BASIC

Variables

None.

How to Use Subroutine

If your program takes different action depending on adapter type, use this subrou
tine to determine which is in use.

Line-by-Line Description

Line 140: Set PEEK offset.

Line 150: Check to see which adapter is used.

Line 180: Access subroutine.

Lines 190 to 200: Display results.

You Supply
Access to subroutine as needed.

Sample Applications
• Programs that have different actions for different adapters.

RESULT...

Type of adapter in use will be returned.

BASIC TRICKS 19

* *

* TEST ADAPTER *

* *

+ + VARIABLES + +

NONE

10

20

30
40
50

60

70

80

90

100 •
110 t

120 GOTO 180

130 • *** SUBROUTINE ***

140 DEF SEG=0
150 IF (PEEK(1040) AND 48) =48 THEN ADAPTER=1 ELSE

ADAPTER=0

160 RETURN

170 ' *** YOUR PROGRAM STARTS HERE ***

180 GOSUB 140
190 PRINT "CURRENTLY ACTIVATED ADAPTER IS "j
200 IF ADAPTER=1 THEN PRINT"MONOCHROME" ELSE PRINT "COLOR"

CLEAR KEYBOARD BUFFER

WHATrrDOES...

clears remaining characters in keyboard buffer.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

None.

20 IBM PC AND PCjr SUBROUTINE COOKBOOK

How to Use Subroutine

Use after INKEY$ routines to clear keyboard buffer, which will hold only 15
characters.

Line-by-Line Description

Line 140: Define POKE offset.

Line 150: Clear buffer.

You Supply
Access to subroutine as required.

Sample Applications
• Keeping wrong key input from getting into INKEY$ loops
• Games that use key presses to move objeas, etc.
• Insuring that computer only receives latest input.

RESULT...

Keyboard buffer cleared.

10
20

30
40
50

60

70
80

90
100 •

110 •

* *

* CLEAR BUFFER *

* *

+ + VARIABLES + +

NONE

120 GOTO 180

130 ' *** SUBROUTINE ***

140 DEE SEG=0
150 POKE 1050,PEEK(1052)
160 RETURN

BASIC TRICKS 21

170 • *** YOUR PROGRAM STARTS HERE ***

180 GOSUB 140

CENTER SCREEN

WHATrrDOES...

Centers monitor display.

Versions: IBM PC, Advanced BASIC

Variables

None.

How to Use Subroutine

Access this subroutine to center your monitor display. Press SIACE to move to
right, ENTER when finished.

Line-by-Line Description

Lines 140 to 160: Display line of asterisks.

Lines 170 to 200: Instruaions.

Lines 210 to 240: If SIACE pressed, adjust screen.

You Supply
Center the screen.

Sample Applications
• Adjust screen for proper viewing
• Align text
• Make all lines visible.

22 IBM PC AND PCjr SUBROUTINE COOKBOOK

RESULT...

Screen is centered for 40 column display.

* *

* CENTER SCREEN *

* *

+ + VARIABLES + +

NONE

10

20

30
40
50

60

70

80

90

100
110

120 WIDTH 40:GOTO 270

130 ' *** SUBROUTINE ***

140 FOR N=1 TO 80

150 PRINT"*";

160 NEXT N

170 PRINT

180 PRINT "PRESS SPACE TO MOVE SCREEN"

190 PRINT "TWO CHARACTERS TO THE RIGHT."

200 PRINT "PRESS < ENTER > TO QUIT."

210 A$ = INKEY$:IF A$= " " GOTO 210

220 IF A$ = CHR$(13)THEN RETURN
230 IF A$<>CHR$(32) GOTO 210
240 OUT 980,2:OUT 981,43
250 RETURN

260 ' *** YOUR PROGRAM STARTS HERE ***

270 GOSUB 140

BASIC TRICKS 23

FILE TRANSFER

WHAT IT DOES...

Allows sending program listing or data file out Asynchronous
Adapter port.

Versions: IBM PC and PCjr with Asynchronous Adapter, Advanced
BASIC

Variables

• F$: Name of file

• INFO$: Data received
• BYTES; Number bytes sent.

How to Use Subroutine

Communications is rapidly becoming one of the most popular applications for
computers like the IBM PC and PCjr. The machine needs only to be coupled with a
low-cost device called a modem. A modem converts the computer's signals into
sounds that can be transmitted over the telephone wires. In addition, some sort of
communications software needs to be written to allow the IBM to talk to the other

computers. A fine BASIC program, COMM.BAS, is included with DOS. How
ever, this does not have the capability of up or downloading files — that is, sending
something stored on your disk drive to another computer, or storing on disk a file
sent to you.

This subroutine is a quick way of sending files or programs from your computer
to another in the same room. You can hard-wire the two together through a null
modem adapter (cost: about $30) and the proper cables. The other computer also
needs to be equipped with an RS232 serial port of its own and software that will
allow it to upload and download. If that computer is also an IBM, this routine will
work fine.

The routine does not allow other forms of "talking" back and forth between two
computers (COMM.BAS is fine for that) but can otherwise be used over phone
lines. Note that the communications protocols have been defined as 300 baud, seven
bit word, even parity. You can change to some other Asynchronous Adapter setting
simply by putting the desired combination in the appropriate OPEN program
lines.

This routine will allow sharing your BASIC programs with users of other com
puter systems, particularly those with similar BASICs. The Apple, Commodore,

24 BM PC AND PCjr SUBROUTINE COOKBOOK

and Radio Shack line all have many similarities with IBM BASIC 2.0, and the au
thor has successfully transferred many programs to them. Some modifications have
to be made to make the programs compatible, but, editing out special graphics char
acters, screen formatting characters, etc., before the program transfer will help a
great deal.
NOTE: You will have to SAVE programs in ASCII form (using the ",A" option)

in order to transmit them successfully. For example:

SAVE "filename.bas", A

Received program files will load just fine, as the BASIC interpreter can handle
programs in either ASCII or the normal "compressed" format.
This subroutine will receive and save a file of any length. Some programs for

other computers use a buffer that has a limited size. BYTES keep track of how
many bytes have been transmitted. You may specify an upper limit for this, at
which point the computer will BEEP and stop, allowing you to dump what you
have sent to the buffer of the other machine, and reopen the buffer to accept addi
tional data from the IBM computer.

Line-by-Line Description

Line 170: Position cursor.

Lines 180 to 260: Determine mode.

Line 270: User enters file to upload.

Line 280: That file opened to be loaded into the PC.

Line 290: Communications line number one opened. User may change this line
to specify COM2 instead, and any baud, parity, or word size desired.

Line 300: One line loaded from the file.

Line 310: Total bytes loaded so far increased.

Line 320: If more than 20000 bytes sent, paixse. User may change 20000 if receiv
ing computer has larger or smaller buffer.

Line 330: Send the line out the port.

Line 340: If that is all of the file, close and return to menu.

Line 350: Go back and load another line.

Line 360: Enter name of file to be stored on the disk.

Line 370: OPEN COM line #1.

Line 380: OPEN file for output as data is received.

BASIC TRICKS 25

Lines 390 to 400: Activate COM line trapping.

Line 410: Send program back to wait for data to arrive over comm line.

Line 420: Load data from buffer into INFOS.

Line 430: Print the data to the screen.

Line 440: Print it to the disk file.

You Supply
Program or file to upload.

Sample Applications
• Send program to another computer
• Share data files

• Use electronic mail.

RESULT...

File is received or transmitted out Asynchronous Adapter port.

10 ' *****************

20 ' * *

30 ' * FILE TRANSFER *
40 ' * *
50 ' *****************

60 •
70 I

80 • ++ VARIABLES + +

90 '
100 • F$: NAME OF FILE

110 • INFO$: DATA RECEIVED

120 • BYTES: NUMBER BYTES SENT
130 .

140 ON KEY(10) GOSUB 460:KEY(10)ON

150 GOTO 480

26 IBM PC AND PCjr SUBROUTINE COOKBOOK

160 • *** SUBROUTINE ***

170 LOCATE 15,1

180 PRINT "Do you want to:
190 PRINT"1.) Send a file."
200 PRINT"2.) Receive a file."
210 PRINT
220 PRINT TAB(6)"Enter choice:"
230 A$=INKEY$:IF A$= " " GOTO 230
240 A=VAL(A$)
250 IF A<1 OR A>2 GOTO 230
260 ON A GOTO 270,360
270 INPUT "Enter filename to transmit -";F$

280 OPEN F$ FOR INPUT AS 1

290 OPEN "COM1:300,E,7" AS #3

300 LINE INPUT #1,A$

310 BYTES=BYTES+LEN(A$)
320 IF BYTES>20000 THEN BEEP:IF INKEY$= " "GOTO 320

ELSE BYTES = 0

330 PRINT #3,A$
340 IF EOF(l) THEN CLOSE:GOTO 170
350 GOTO 300

360 INPUT "Enter filename to store on disk -";F$
370 OPEN "COM1:300,E,7" AS #3

380 OPEN F$ FOR OUTPUT AS #1

390 ON COM(l) GOSUB 420
400 COM(l) ON
410 GOTO 390
420 INFO$=INPUT$(LOC(3),#3)
430 PRINT INFO$;
440 PRINT #1,INF0$;
450 RETURN
460 CLOSE:END

470 • *** YOUR PROGRAM STARTS HERE ***

480 GOSUB 170

■ ' V I;: ..t%- -tvi-:.';;. •,,
-v

3
Data Input, Editing,

laOiand Output

30 IBM PC AND PCjr SUBROUTINE COOKBOOK

These subroutines will allow you to have a greater amount of control over the data
that is entered by users into your programs.
Three of the modules are "user interface" routines that, trap errors by permitting

the operator to enter ONLY the type of input that is required by the program. One
accepts numbers only, another accepts alpha characters only. The third accepts ei
ther lowercase or uppercase entries and converts the lowercase characters to upper.
By using these routines, you can explore the concept of error traps and see how

avoiding improper entries can reduce the frustration for first-time users of your
programs.

Once data has been entered, it frequently must be sorted into some semblance of
order. Of course, you can use DOS to sort for you, but it is sometimes useful to be
able to sort from BASIC. Two sort routines are included for those who need to
rearrange lists of numbers or strings. Bubble sorts are used, as these are the easiest to
understand and to modify.
Loading arrays with data is one of the most frequent requirements for any BASIC

program. Beginners are often confused by arrays. Yet, this is one of the most impor
tant concepts after FOR-NEXT loops and program branching (GOTO, GOSUB).
The array-loading subroutine is included here primarily for educational value. If
you don't understand how to fill an array, you probably couldn't use it properly.
The example presented is a fully working program that the user can RUN and
experiment with until arrays are more fully understood.
The array routine can be transplanted to other programs, however, and interfaced

with file read/write routines provided later in this book to build a complete data
base program with permanent files.
Finally, we show you how to load data to an array from disk and how to write

from an array to disk as an introduction to BASIC data files.

NUMBER INPUT

WHATrrDOES...

Allows user to input only numbers.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• I; Number entered

• 1$: String entered.

DATA INPUT, EDITING, AND OUTPUT 31

How to Use Subroutine

Well-written programs include features that trap possible errors by the user—or
avoid them entirely. When numbers are expected for ESfPUT, an elegantly con
structed program will accept only numeric entries and reject everything else.
The most common procedures all have drawbacks. A line like "10 INPUT A"

will indeed accept only numbers. However, if a user happens to enter a string in
stead, only a cryptic "RE-DO FROM START" message will be displayed. That's
not much help for a naive operator.

Another less-than-perfect solution is to use a line like "10 INPUT A$:A=VAL
(A$):IF A< 1 GO TO 10". If the user enters alpha characters, the program loops
back and the input must be repeated.

This subroutine takes a different approach. It totally ignores non-numbers; if the
operator presses an illegal key, it isn't even echoed to the screen. The keyboard
responds only when numeric keys are pressed.

The secret is a A$=INKEY$ loop. If the user presses a number key, that letter is
added to 1$. When A$ equals CHR$(13), a carriage return, then input is over. Oth
erwise, the loop repeats allowing additional numeric entries.

When the subroutine ends, variable I will have the value of the user's entry.

Line-by-Line Description

Line 140: Wait for user entry.

Line 150: If key pressed was RETURN, then input is finished.

Line 160: If key was less than 0 or greater than 9, go back and wait for another
entry.

Line 170: Print acceptable key pressed to screen.

Line 180: Add key to previous entries.

Line 190: Go back for more entries.

Line 200: Variable I equals value of entries.

Line 230: Access the subroutine.

You Supply

User may change the upper and lower limits in line 160 to restrict the range of
numbers to be entered. This might be useful when getting input for, say, a menu
with only five choices. All numbers over five and all alpha characters would be
ignored.

32 IBM PC AND PCjr SUBROUTINE COOKBOOK

Sample Applications
• Programs where only numbered menu choices allowed
• Insure user enters only numbers to variables
• Filter out accidental key depressions.

Only user numeric input, in the form of positive numbers, is al
lowed.

10 ' ****************

20 • * *

30 ' * NUMBER INPUT *
40 ' * *
50 • ****************

60 '

70 ' ++ VARIABLES + +

80 • I: NUMBER ENTERED

90 ' 1$: STRING ENTERED

100 •
110 t

120 GOTO 230

130 • *** SUBROUTINE ***

140 A$=INKEY$:IF A$= " " GOTO 140
150 IF A$ = CHR$(13) GOTO 200
160 IF A$< "0" OR A$> "9" GOTO l40
170 PRINT A$j
180 I$ = I$+A$ = IF VAL(I$)>1.7E+36 THEN PRINT "NUMBER TOO

LARGE FOR SINGLE PRECISION VARIABLE" : GOTO l40

190 GOTO 140
200 I=VAL(I$):PRINT
210 RETURN

220 ' *** YOUR PROGRAM STARTS HERE ***

230 I$="":GOSUB 140

DATA INPUT, EDITING, AND OUTPUT 33

LETTER INPUT

WHAT IT DOES...

Allows user to input only alpha characters.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• 1$: String entered.

How to Use Subroutine

At times you will want only alpha characters to be input in a program with all
other entries, such as numbers or graphics characters, to be ignored. For example,
word games might allow only the 26 letters A-Z, while rejecting other keys entirely.
This subroutine does exactly that. The user may enter any alpha character. Oth

ers are ignored. If the operator presses an illegal key, it isn't even echoed to the
screen. The keyboard responds only when alpha keys are pressed.
The secret is A$=INKEY$ loop. If the user presses a letter key, that letter is added

to 1$. A$ equals CHR$(13), a carriage return, then input is over. Otherwise, the
loop repeats, allowing additional alphabetic entries.
When the subroutine ends, variable 1$ will have the value of the user's entry.

Line-by-Line Description

Line 130: Wait for user entry.

T .infi 140: If key pressed was RETURN, then input is finished.

Line 150: If key was less than A or greater than Z, go back and wait for another
entry.

Line 160: Print acceptable key pressed to screen.

Line 170: Add key to previous entries.

Line 180: Go back for more entries.

Line 210: Access the subroutine.

You Supply
User may change the upper and lower limits in line 150 to restrict the range of

34 ffiM PC AND PCjr SUBROUTINE COOKBOOK

alpha characters that can be entered. This might be useful when getting input for,
say, a game like Mastermind where only the letters A-E are wanted. All numbers,
graphics, and alpha characters larger than E can be ignored.

Sample Applications
• Menus with alpha character choices
• Keep numbers out of user-entered filenames, etc.
• Insure user enters only alpha characters to string variables.

Only user alpha input is allowed

10 • ****************

20 • * *

30 • * LETTER INPUT *
40 • * *
50 • ****************

60 •

70 • -f-I- VARIABLES

80 • 1$: STRING ENTERED

90 •
100 t

110 GOTO 210

120 • *** SUBROUTINE ***

130 A$ = INKEY$:IF A$= " " GOTO 130
140 IF A$ = CHR$(13) GOTO 190
150 IF A$< "A" OR A$> "Z" GOTO 130 ELSE IF A>96 AND

A <123 GOTO 160 ELSE GOTO 130
160 PRINT A$j

170 I$ = I$-I-A$:IF LEN(I$)=255 THEN PRINTrPRINT "MAXIMUM
STRING LENGTH REACHED! RETURN

180 GOTO 130

190 RETURN

200 • *** YOUR PROGRAM STARTS HERE ***

210 I$="":GOSUB 130

DATA INPUT, EDITING, AND OUTPUT 35

CASE CONVERTER

WHAT IT DOES...

Changes lowercase input to uppercase.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• 1$: String entered.

How to Use Subroutine

Many times our error traps in programs check to see if an acceptable key has been
pressed. We may want the user to enter "Y" or "N" answers only. Or our program
will check a name or other entry against a list. However, the IBM PC and PCjr can
produce uppercase and lowercase. "Y" does not equal "y" "JONES" is comple
tely different from "Jones" to the IBM PC and PCjr.
This subroutine will check each character entered and, if it is lowercase, convert it

to uppercase. Only letters in the range "a" to "z" are affected. All other input is
passed through unchanged.

Line-by-Line Description

Line 130: Wait for user entry.

Line 140: If key pressed was RETURN, then input is finished.

Line 150: If key was lowercase a through z, change to uppercase.

Line 160: Print acceptable key pressed to screen.

Line 170: Add key to previous entries.

Line 180: Go back for more entries.

Line 210: Access the subroutine.

You Supply
Only user input needed.

36 ffiM PC AND PCjr SUBROUTINE COOKBOOK

Sample Applications

• Error trap in programs where answers will be compared with a correct answer
• Change aU lowercase words to uppercase
• Can adapt to change to all lowercase, too.

RESULT...

User alpha input is all uppercase.

10 • ****************

20 • * *

30 ' * CASE CONVERT *
40 ' * *
50 • ****************

60 •

70 • ++ VARIABLES + +

80 • 1$: STRING ENTERED

90 •
100 •

110 GOTO 210

120 ' *** SUBROUTINE ***

130 A$ = INKEY$:IF A$= " " GOTO 130
140 IF A$ = CHR$(13) GOTO 190
150 A=ASC(A$):IF A>96 AND A<123 THEN A$ = CHR$(A-32)
160 PRINT A$;
170 I$ = I$+A$

180 GOTO 130

190 RETURN

200 • *** YOUR PROGRAM STARTS HERE ***

210 I$="":GOSUB 130

DATA INPUT, EDITING, AND OUTPUT 37

*

STRING SORT

WHAT rr DOES.

Alphabetizes a list.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• NU; Number of items to be sorted

• US$(n); Array storing list to be sorted.

How to Use Subroutine

Sorting a list is a common need for many programs. Data files, mailing lists, and
other groups may be more easily handled when sorted. This routine is a simple
bubble sort which will alphabetize any list that has been loaded into an array,
US$(n).
Although as written the subroutine asks the user to enter the list from the key

board, any means can be used to load the array. The file may also be read from disk
or tape, for example, using one of the routines presented later in this book.
The bubble sort is so called because each entry in the array is examined and then

allowed to rise up past "larger ones" until it encounters a "smaller" item. When
comparing strings, smaller is defined as an entry that, when alphabetized, comes
before the larger entry. That is, "computerization" is smaller than "contain" even
though it has more letters, because it would be placed on an alphabetized list first. In
computer terminology, we would say that "computerization" < "contain" is a true
statement. In making the comparision between strings, the IBM PC and PCjr will
look at as many characters in the string as necessary to differentiate. For example,
"contain" < "contains".

In the bubble sort, each element of the array will gradually rise until it encounters
a smaller item. Gradually, each member of the list "floats" up to its proper place in
the array.
While such sorts are not very fast for small lists, say, 30 or 40 items, the speed is

satisfactory.

Line-by-Line Description

Line 130: Define NU, the number of units in the array to be sorted.

Line 140: DIMension the array to proper size.

Lines 170 to 200: User enters each array item in random order. A disk or tape file
read routine could be substituted for these lines to sort an existing string file.

38 IBM PC AND PCjr SUBROUTINE COOKBOOK

Line 210: Start loop from 1 to the number of items to be sorted.

Line 220: Start a nested loop from 1 to 1 less than the number of items to be
sorted.

Line 230: Make A$ equal to the Nlth item of the array.

Line 240: Make B$ equal to the item following A$ in the array.

Line 250: If the "higher" element, A$, is already smaller than B$, then B$ remains
where it is, and the inner loop steps off the next value of Nl.

Lines 260 to 270: If B$ is smaller than A$, then the two strings are swapped, with
B$ moving ahead one element, and A$ being pushed down one.

Lines 280 to 290: The inner and outer loops are incremented.

Lines 300 to 320: The sorted list is printed to the screen.

You Supply
You should define NU, the number of items to be sorted, as well as supply the

data for the array, US$(n).

Sample Applications
• Sort a data file for database management program
• Sort words for index or dictionary
• Sort names for greeting card list.

RESULT...

List is sorted alphabetically.

10

20

30
40

50

60

70
80

90
100

110

* *

* STRING SORT *

* *

+ + VARIABLES + +

NU: NUMBER OF ITEMS SORTED

US$(N): ARRAY WITH ITEMS

DATA INPUT, EDITING, AND OUTPUT 39

120 ' *** INITIALIZE ***

130 NU=10

140 DIM US$(NU)

150 GOTO 350

160 ' *** SUBROUTINE ***

170 FOR ITEM=1 TO NU

180 PRINT " ENTER # " ; ITEM

190 INPUT US$(ITEM)
200 NEXT ITEM

210 FOR N=1 TO NU

220 FOR Nl=l TO NU-N

230 A$=US$(N1)
240 B$=US$(N1+1)
250 IF A$<B$ THEN GOTO 280
260 US$(N1)=B$
270 US$(N1+1)=A$
280 NEXT N1

290 NEXT N

300 FOR N=1 TO NU

310 PRINT US$(N)
320 NEXT N

330 RETURN

340 • *** YOUR PROGRAM STARTS HERE ***

350 GOSUB 170

NUMBER SORT

WHATrrDOES...

Sorts group of numbers by size.

Versions: IBM PC and PCjr, Advanced BASIC

40 IBM PC AND PCjr SUBROUTINE COOKBOOK

Variables

• NU: Number of items to be sorted

• US(n): Array storing list to be sorted.

How to Use Subroutine

Sorting a list of numbers is a common need for many programs. Checking ac
count files and other groups of numbers often have to be sorted to be most useful.
This routine is a simple bubble sort that wiU sort any group of numbers that have
been loaded into an array, US(n).
Although as written the subroutine asks the user to enter the number list from

the keyboard, any means can be used to load the array. The file may also be read
from disk or tape, for example, using one of the routines presented later in this
book.

With the bubble sort, each entry in the array is examined, and then allowed to
rise up past the one below until it encounters a "smaller" item. Numeric sorts are
easier to understand than string sorts, because simple number comparisons are used.
That is, 1237 is always larger than 32.6, and smaller than 7844. Gradually, each
member of the list "floats" up to its proper place in the array.
While such sorts are not very fast, with small lists of, say, 30 or 40 items, the speed

is satisfactory.

Line-by-Line Description

Line 130: Define NU, the number of units in the array to be sorted.

Line 140: DIMension the array to proper size.

Lines 170 to 200: User enters each array item in random order. A disk or tape file
read routine could be substituted for these lines to sort an existing string file.

Line 210: Start loop from 1 to the number of items to be sorted.

Line 220: Start a nested loop from 1 to 1 less than the number of items to be
sorted.

Line 230: Make A equal to the Nlth item of the array.

Line 240: Make B equal to the item following A in the array.

Line 250: If the "higher" element. A, is already smaller than B, then B remains
where it is, and the inner loop steps off the next vdue of Nl.

Lines 260 to 270: If B is smaller than A, then the two numbers are swapped, with
B moving ahead one element, and A$ being pushed down one.

Lines 280 to 290: The inner and outer loops are incremented.

Lines 200 to 320: The sorted list is printed to the screen.

DATA INPUT, EDITING, AND OUTPUT 41

You Supply

You should define NU, the number of items to be sorted, as well as supply the
data for the array, US(n).

Sample Applications

' Sort list by zip code
' Sort check list by check number
' Sort p^e numbers in index.

RESULT...

List of numbers is sorted by size.

10 ' ***************

20 • * *

30 • * NUMBER SORT *
40 ' * *
50 > ***************

60 •

70 ' ++ VARIABLES + +

80 ' NU: NUMBER OF ITEMS SORTED

90 ' US(N): ARRAY WITH ITEMS
100 '
110 t

120 • *** INITIALIZE ***

130 NU=10

140 DIM US(NU)

150 GOTO 350

42 ffiM PC AND PCjr SUBROUTINE COOKBOOK

160 ' *** SUBROUTINE ***

170 FOR ITEM=1 TO NU

180 PRINT"ENTER #";ITEM

190 INPUT US(ITEM)
200 NEXT ITEM

210 FOR N=1 TO NU

220 FOR Nl=l TO NU-N

230 A=US(N1)
240 B=US(N1+1)

250 IF A<B THEN GOTO 280
260 US(N1)=B
270 US(N1+1)=A
280 NEXT N1

290 NEXT N

300 FOR N=1 TO NU

310 PRINT US(N)
320 NEXT N

330 RETURN

340 • *** YOUR PROGRAM STARTS HERE ***

350 GOSUB 170

ARRAYLOADER

WHATrrDOES...

Loads array with data.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• NROWS: Number of rows in array
• NCOLUMNS: Number of columns in array.

DATA INPUT, EDITING, AND OUTPUT 43

How to Use Subroutine

An array is a table with xows and columns storing lists of data. In a checkbook
register, each row might contain information about a single check/deposit transac
tion. Each column would contain a specific type of entry, such as check number,
payee, date, and amoimt.
Once a data file has been assembled with such information, a routine is needed to

load it into an array where it can be manipulated, sorted, added to, or entries dele
ted. This subroutine does exactly that. Although written for a string array, it can be
converted to a numeric array simply by deleting the variable type specifier, "$."
That is, DTA$(row,column) should become DTA(row,column) should become
DTA(row,column), and A$ should be changed to A..
Study this example to learn more of how arrays work, as they are one of the most

important concepts in BASIC programming.

Line-by-Line Description

Lines 140 to 150: Define number of rows and columns in the data file. User
should change these numbers to reflect their own data.

Line 160: Dummy data, in this example a name, address, and phone number.

Line 170: DIMension array to size specified by values of NR and NC.

Lines 200 to 210: Begin nested loops which repeat for the number of rows and
the number of columns.

Line 220: READ item of DATA.

Line 230: Place data in current array element, defined by ROW and COLUMN
in FOR-NEXT loop. Each time through the inner loop, column will be incre
mented by one, while ROW remains the same. When finished, ROW is incre
mented by one, and the inner loop repeats. As a result, DTA$(1,1) is loaded first,
followed by DTA$(1,2) and DTA$(1,3). Then, DATA$(2,1), and so forth, are fiUed
from the DATA.

Lines 240 to 250: Increment the FOR-NEXT loops.

Line 290: Access the subroutine.

lines 300 to 350: Print out the data loaded into the array.

You Supply

The number of rows, NROWS, and number of columns, NCOLUMNS should
be specified. Data can be supplied fi-om DATA lines or, better, read in from disk or
tape.

44 IBM PC AND PCjr SUBROUTINE COOKBOOK

Sample Applications
• Load array for database program
• Load an array from DATA lines for quiz, question and answer program
• Load array with variables to be tised in program.

RESULT...

Data list is loaded into array.

1(3 • ****************

20 ' * *

30 • * ARRAY LOADER *
40 ' * *
50 ' ****************

60 GOTO 280
70 •

80 • ++ VARIABLES + +

90 • NROWS: NUMBER OF ROWS
100 • NCOLUMNS: NUMBER OF COLUMNS

110 '
120 ' —

130 ' *** INITIALIZE ***

140 NROWS=2
150 NCOLUMNS=3

160 DATA JOE,2 PINE,232-4531rSAM,l ROE,445-3622

170 DIM DTA$(NROWS,NCOLUMNS)
180 GOTO 280

190 • *** SUBROUTINE ***

200 FOR R0W=1 TO NROWS

210 FOR COLUMN=1 TO NCOLUMNS

220 READ A$

230 DTA$(ROW,COLUMN) =A$
240 NEXT COLUMN

250 NEXT ROW
260 RETURN

DATA INPUT, EDITING, AND OUTPUT 45

270 • *** YOUR PROGRAM STARTS HERE ***

280 PRINT

290 GOSUB 200

300 PRINT "NAME ADDRESS PHONE"

310 PRINT

320 FOR R0W=1 TO NROWS

330 FOR G0L=1 TO NGOLUMNS
3-40 PRINT DTA$(ROW, GOL); " ";
350 NEXT GOL

360 PRINT
370 NEXT ROW

INSERT STRING

WHATTTDOES...

Inserts string into another.

Versions: IBM PC and PCjr, Advanced BASIC.

Variables

• TARGT$: Main string
• SUB$: String to be inserted into main string
• PLACE: Position to put SUB$.

How to Use Subroutine

Sometimes a string to be inserted may need to be longer or shorter than the string
replaced. This subroutine takes care of that with a few limitations.

Like all IBM PC and PCjr strings, neither TARGT$ nor SUB$ can be longer than
255 characters. The resulting string with SUB$ inserted must be shorter than 255
characters as well.

In the subroutine as written, the target string is "THIS IS THE MAIN STRING
OF CKLARACTERS", while the SUB$ is defined as "TEST". Since the PLACE
where we want to insert it is position 7, the new string will read: "THIS IS THE
TEST MAIN STRING OF CHARACTERS".

46 ffiM PC AND PCjr SUBROUTINE COOKBOOK

Line-by-Line Description

Lines 140 to 160: Define the SUB$, the TARGT$, and PLACE where the SUB$
will be inserted.

Line 200: Take the leftmost charaaers in the target string up to, and including
position PLACE.

Line 210: Take the rightmost characters in the target string, starting with one
after position PLACE.

Line 220: Construct new target string from L$, SUB$, and R$.

Line 240: Access the subroutine.

Line 250: Print result.

You Supply
Values for the main string, TARCT$, the string to be inserted, SUB$, and the

position where it will be put, PLACE.

Sample Applications
• Word processing or text editing program
• Special text formatting program to do ̂obal searches and replaces
• Insertion of a larger string that has more characters than the letters replaced.

RESULT...

TARCT$ will have SUBS inserted in it, at position PLACE.

10

20

30
40

50

60

70

80

90

* *

* INSERT STRINGS *
* *

+ + VARIABLES + +

TARGT$: MAIN STRING

SUB$: STRING TO BE INSERTED

100 ' PLACE: POSITION TO PUT SUB$

110

120

t

r

DATA INPUT, EDITING, AND OUTPUT 47

130 ' *** INITIALIZE ***

140 SUB$="TEST "

150 TARGT$="TARGET STRING LETTERS"

160 PLACE = 14
170 GOTO 240

180 ' *** SUBROUTINE ***

190 IF LEN(TARGT$)+LEN(SUB$) >255 THEN PRINT "CANNOT
INSERT " ;SUB$j " INFO " ;TARGT$; " . " :PRINT "RESULTING

STRING WOULD BE MORE THAN 255 CHARACTERS! " :RETURN

200 L$=LEFT$(TARGT$,PLACE)
210 R$=MID$(TARGT$,PLACE+1)
220 TARGT$ = L$+SUB$+R$: RETURN

220 RETURN

230 • *** YOUR PROGRAM STARTS HERE ***

240 GOSUB 190

250 PRINT TARGTI

CHR$ VALUE

WHATrrDOES...

Returns CHR$ code for any key.

Versions: IBM PC and PCjr, Advanced BASIC.

Variables

• A: CHR$ value of last key pressed.

How to Use Subroutine

When printing graphics or alphanumerics via PRINT CHR$(n), it is necessary to
know the CHR$ code for a given key. If many keys are used, looking them all up on

48 IBM PC AND PCjr SUBROUTINE COOKBOOK

a table in a reference book can be time consuming. Instead, add this subroutine to
the end of your program and call it as needed.

Just why would you want this capabihty? The answer lies in the differences in the
ways computers and human beings like to process information. People are comfort
able handling mixtures of alpha and numeric characters; computers recognize just
binary numbers—ones and zeros. When string data is fed to an IBM PC or PCjr, it
must be converted to a series of these binary numbers that the processor can handle.
ASCn, or American Standard Code for Information Interchange, is one standard

of communication that has been j^eed upon so that computers can exchange al
phanumeric information in a form that is common to processors with differing
operating systems and languages. IBM departs somewhat from this code for the
IBM PC and PCjr, especi^y when using the graphics characters. However, the
standard alphanumeric symbols are accurately portrayed with the CHR$(n) state
ment. That is, PRINT CHR$(65) will produce an uppercase "A" in IBM BASIC,
just like in other BASICs.

Even if you don't have a modem and aren't communicating with other com
puters, there are many times when it is necessary to translate a string into the corre
sponding ASCn code or vice versa. In some cases, only a few characters need to be
converted, so a table of codes and their string values will do the job. At other times,
longer messs^es must be deciphered.
One good application for ASCII characters in programs is in game-writing.

Writers of BASIC adventure-style programs may wish to "hide" mess^es from
those casually listing the program. The CHR$(n) function can be used to assign the
desired string values to string variables that are called at appropriate points in the
program. CHR$(n) returns a one-character string that corresponds to the ASCII
code of n. For example, PRINT CHR$(65) will produce an uppercase "A" on the
screen.

A BASIC adventure might have use for a message such as:

"LOOK IN THE HOLLOW STUMP."

This hint could be labeled Hl$ and concatenated using CHR$(n) and the ASCII
codes:

100 DATA 76,111,111,107,32,105,110,32,116,10^
,101,32,104,111,108,108,111,119,32,
115,116,117,109,112,32

110 FOR N=1 to 25: READ A

120 H1$=H1$-I-GHR$(A)

130 NEXT A

DATA INPUT, EDITING, AND OUTPUT 49

Additional DATA lines and FOR-NEXT loops could be used to put any number
of messj^es into string variables which are difficult to read accidentally. Of course,
any knowledgable programmer covdd pick the BASIC game apart or enter PRINT
Hl$ from command mode once the program has been run past the initiahzation
point. But this technique assumes that the object is to protect the game player who
innocently LISTS the program and doesn't want to spoil the fun. The same method
can be used to "hide" program credits within BASIC code.

Sometimes a key pressed will be outside the range 0-255, as when ALT plus some
other key or a key like HOME, Cursor Up, Pg Up, etc., is pressed. In this case,
INKEY$ will return a two-charaaer string with the first character being null The
second character tells which of the extended codes has been produced. This subrou
tine will allow you to determine these as well.

Line-by-Line Description

Line 130: Wait for a key to be pressed.

Line 140: Determine ASC value of that key.

Line 150: If null returned, access extended code module.

Lines 160 to 170: Otherwise print ASC code.

Line 190: Determine extended code.

Line 200: Print result.

You Supply

Just press the key that you want to check.

Sample Applications

• Check large number of ASCII codes without table
• Hide messages in games programs
• Hide program credits for security reasons.

RESULT...

Variable A will equal CHR$ value or extended code of that key.

50 IBM PC AND PCjr SUBROUTINE COOKBOOK

10 • **************

20 • * *

3(3 • * CHR$ VALUE *

4(3 ' * *
50 ' **************

6(3 GOTO 23(3
70 «

8(3 • ++ VARIABLES + +

9(3 ' A: CHR$ VALUE OF KEY

1(3(3 '
110 I

12(3 ' *** SUBROUTINE ***

13(3 A$ = INKEY$:IF A$="" GOTO 13(3

14(3 A=ASC(A$)
15(3 IF A=(3 GOTO 19(3

16(3 PRINT "GHR$ VALUE OF KEY ";A$
17(3 PRINT" IS : ";A

18(3 RETURN

19(3 A=ASC(RIGHT$(A$,1))
2(3(3 PRINT "EXTENDED CODE IS (3(3(3 +";A

21(3 RETURN

22(3 ' *** YOUR PROGRAM STARTS HERE ***

23(3 GOSUB 13(3
24(3 GOTO 23(3

SEQUENTIAL FILE-WRITE TO DISK

WHATrrDOES...

Writes a sequential data file to disk.

Versions; IBM PC and PCjr, Advanced BASIC

DATA INPUT, EDITING, AND OUTPUT 51

Variables

• NI: Number of items in file

• DTA$(n): Array storing data file.

How to Use Subroutine

A "file" is any collection of information that is stored on disk or tape. Computer
software is a type of file called a program file. These .BAS files can be loaded by the
IBM PC and PCjr and can provide the BASIC interpreter with instructions that can
be used to perform a task. Raw information can also be stored as a file, even though
the computer cannot load it and act on it direaly. These "data files" must usually be
loaded into memory through another program or subroutine that contains the ac
tual instructions for accessing the information.

Data files are one of the basic tools of business and personal programming, as they
let you keep permanent records that can be accessed, printed out, manipulated, and
otherwise used in a practical manner. Data files are akin to programs in that, lacking
some mass storage for the data (or program), we would have to type the informa
tion in every time we turned on the computer. In many ways, however, a computer
program is a more complicated file. Programs have line numbers and links that tell
the computer where the next line number is. Data files consist of just an ASCII
representation of the information as it was written to the disk or tape; they are
words, numbers, and punctuation and almost nothing more.

The most commonly used file is the sequential file. Because this type is easiest to
understand and use, sequential file systems are emphasized in this book.

The IBM PC and PCjr cassette recorder is a good analog to sequential files, i.e.,
serial files. A program is a sequential file stored one byte at a time on your program
tape or disk in the same order in which it is LISTed. In the case of cassette tapes, the
program is continuous on one long piece of tape. Programs are stored sequentially
in RAM.

Sequential data files also operate this way. If your program needs some informa
tion from the middle of a data file, it must read in the entire file, make any changes
it wants, and then write the entire file back to the tape or disk.

To read a given data file, we first OPEN a channel for that information to be sent.
Then, we INPUT# (with the # being followed by the number we have assigned to
the input channel, e.g., INPUT#!) data to a variable of our choice. Writing to a disk
or tape file is done by OPENing a channel for output and using the PRINT# state
ment to print information from a variable to the file.

OPEN just prepares the data channel for us, however. To actually read or write
data, we must use PRINT#, WRITE#, LINE INPUT#, or INPUT#, with each
followed by the logical file number we are using.

52 IBM PC AND PCjr SUBROUTINE COOKBOOK

So, we might have the following collection of lines:

10 OPEN "FILEl" FOR INPUT AS 1 ' Source file.

20 OPEN "FILE2" FOR OUTPUT AS 2 • New data file

30 LINE INPUT#1, A$ • Load a line from source file
40 PRINT#2,A$ • Print it to data file.

50 CLOSE • Close the files.

This would be a simple data file routine. The subroutines that follow show you
how to write files to disk £uid read files firom disk. Examine them carefully tmtil you
know how data files operate.
WRITE# is essentially the same as PRINT#, except that the former inserts com

mas between items as they are written and puts strings inside quotation marks.
WRITE# also does not put a leading blank ahead of a positive number. With
PRINT# you must explicitly separate items and strip off the blank if it is not de
sired.

This first subroutine provides a sample sequential file writing routine that will
take data that has been loaded into a aring array, DTA$(n), and write it to disk. The
same routine can be used with numeric arrays, simply by removing the variable
type specifier, "$", from DTA$(n).
Your program should also update NI each time more items are added to the array.

Line-by-Line Description

Line 150; DIMension DTA$ to NI elements.

Line 170: OPEN the data file given the filename in quotes. You can substitute
your own filename, or a variable, like F$, and then define F$ through user INPUT.

Line 180: Print, as the first item in the data file, the number of items in the file,
NI.

Lines 190 to 210: WRITE each of the items in the array to the data file.

Line 220: CLOSE the file.

You Supply
Your program must furnish data for DTA$(n), either fi-om keyboard entry or

loaded from some disk file. The counter NI should be redefined to reflect the num
ber of items in the file each time an update is made. You should substitute your
filename for "filename" in line 170.

Sample Applications
• Data files of all types
• Keeping track of appointments
• Personal or business data files.

DATA INPUT, EDITING, AND OUTPUT 53

RESULT...

Data file written to disk.

10

20

30
40
50

60

70
80

90

* *

* SEQUENTIAL FILE *

* WRITE TO DISK *

* *

+ + VARIABLES + +

NI: NUMBER OF ITEMS IN FILE

100 ' DTA$(N): ARRAY STORING FILE
110 '

120 •
13P .

140 • *** INITIALIZE ***

150 DIM DTA$(NI)
160 GOTO 250

170 ' *** SUBROUTINE ***

180 OPEN "FILENAME" FOR OUTPUT AS 1

190 WRITE#1,NI
200 FOR N=1 TO NI

210 WRITE#1,DTA$(N)
220 NEXT N

230 CLOSE 1:RETURN

240 ' *** YOUR PROGRAM STARTS HERE ***

250 GOSUB 180

54 IBM PC AND PCjr SUBROUTINE COOKBOOK

SEQUENTIAL FILE-READ FROM DISK

WHAT IT DOES...

Reads a sequential data file from disk.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• NI: Number of items in file

• DTA$(n): Array storing data file
• AD: Amount of room beyond number of items in file to allow for expansion.

How to Use Subroutine

This subroutine provides a sample file reading routine that will take data that has
been written to disk and load it into a string array, DTA$(n). The same routine can
be used with numeric arrays by removing the variable type specifier, "$", from
DTA$(n).
The routine will first read NI, the number of items in the file, from the disk.

Then, the array is DIMensioned to NI+AD. This will allow AD more elements in
the array for expansion during the session.
NOTE: You cannot reDIMension the array without generating an error. AD

should be defined large enough to allow plenty of space for additions during any
one session. Your program should also update NI to equal NU-AD before writing
back to disk if you use the Write Routine supplied with this book.

Line-by-Line Description

Line 150: Set number of items that can be added to the file in one session to 10.

Line 170: OPEN the data file given the filename in quotes. You can substitute
your own filename or a variable like F$, and then define F$ through user INPUT.

Line 180: INPUT the number of items currently in the file.

Line 190: DIMension the array to NI plus AD, allowing room for additional
items.

Lines 200 to 220: INPUT each of the items in the array to the data file.

Line 230: CLOSE the file.

Lines 260 to 280: Print data file to screen.

DATA INPUT, EDITING, AND OUTPUT 55

You Supply

Your program should change the counter NI, which should be redefined to reflect
the number of items in the file each time an update is made. You should substitute
your file name for "filename" in line 160.

Sample Applications

• Loading a data file from disk
• Checkbook data file

• Inventory.

RESULT...

Data file read from disk.

10

20

30
40

50

60

70

80

90
100

110

120

130
140

* *

* SEQUENTIAL FILE *

* READ FROM DISK *

* *

+ + VARIABLES + +

NI: NUMBER OF ITEMS IN FILE

DTA$(N): ARRAY STORING FILE
AD: NUMBER OF EMPTY SPACES AT

END OF FILE

150 • *** INITIALIZE ***

160 GOTO 250

56 IBM PC AND PCjr SUBROUTINE COOKBOOK

170 • *** SUBROUTINE ***

180 OPEN "FILENAME" FOR INPUT AS 2

190 INPUT#2,NI
200 DIM DTA$(NI+AD)
210 FOR N=1 TO NI

220 INPUT#2,DTA$(N)
230 NEXT N
240 CLOSE 2:RETURN

245 ' *** YOUR PROGRAM STARTS HERE ***

250 GOSUB 180
260 FOR N=1 TO NI

270 PRINT DTA$(N)
280 NEXT N

4
Using the Clock
andhiterrupts

60 ffiM PC AND PCjr SUBROUTINE COOKBOOK

Many times, software can give computers features that the hardware manufacturer
never thought possible. Other times, capabilities are entirely hardware dependent; if
your computer is not capable of a given task, there is no way even the most inge
nious software designer can get around that.
The IBM PC and PCjr's built-in clock and interrupt features are bonuses pro

vided by the hardware, including the Intel 8088 CPU chip. This powerful 16-bit
microprocessor has a number of capabilities that have been translated into features
at the most basic level, i.e., incorporated into the BASIC language itself. A built-in
real-time clock keeps track of the time elapsed since powerup or reset, while other
"interrupts" check to see if a variety of events have taken place in between execu
tion of other instructions.

This means that the computer does not have to follow the logic of a BASIC pro
gram exactly as written without variation. Instead, we can tell it to watch for certain
events, and, if they occur, go do something else instead. The "key trapping" rou
tines used in the first chapter were of this kind. Our program went about its busi
ness until one of the activated keys were pressed. Then we changed the value of the
ROW and COLUMN used in LOCATE statements that printed our cursor charac
ter to the screen.

Prior to the latest generation of microprocessors, the most commonly used inter
rupt routine from BASIC was ON ERROR GOTO— This interrupt is widely
used in many different Microsoft-compatible versions of BASIC, extending back to
the 8-bit computers of the dark ages of microcomputing (last year).
Unlike other commands, we do not have to enter an event-trapping command at

the time we want it to be carried out. Instead, we place ON ERROR at the begin
ning of a program. The computer remembers that we have turned this feature on,
and when an error is encountered, it will send program control where we choose
rather than invoking the normal error routine.
The IBM PC and PCjr have a variety of ON.. .GOSUB routines available. We

have already used ON KEY(n) and ON STIG(n). Others include ON PEN, which
sends control to a specified subroutine whenever a light pen is activated. ON
PLAY(n), available from BASIC 2.0 only, allows continuous background music to
be played during program execution. An especially useful statement is ON TIMER,
which will send the computer to the desired location when a desired amount of
time has elapsed. ON COM will interrupt your program whenever a character is
received over the asynchronous communications line. In this way, your computer
can carry out one task but still not miss data coming in from another computer
through the modem or serial port.
In all cases, your program merely starts the routine at the beginning and then goes

on to do other tasks as you wish. For example, ON KEY(n) GOSUB will interrupt
whatever you are doing whenever one of the defined function keys (or other keys)
is pressed. You can define one or all ten function keys for this routine. Plus, you
may add the cursor pad keys and, under BASIC 2.0, six other keys as well. Only
those aaivated are trapped. The others are ignored.

USING THE CLOCK AND INTERRUPTS 61

Several of these event-trapping routines are addressed in this chapter. Timing is
one of the most interesting interfaces your IBM PC and PCjr have with the real
world. The computer has a built-in mechanism that allows it to measure seconds,
minutes, and hours. This feature is known as the real-time clock, and it can be used
by the programmer to keep track of events, such as the length of time needed to
complete games. Some of the subroutines in this book are your key to using real
time clock of your computer.
Because the IBM PC and PCjr real-time clock is accurate under most circum

stances, it can be used to time events fairly precisely. This might be useful in com
petitive games, typing tutors, and other programs that measure elapsed time accu
rately. Your programs can access the variable TIMER, which is a number ranging
from 1 to 86,400, or the number of seconds in 24 hours. If the real-time clock has
been set accurately, variable TIMER will reflect the number of seconds that have
elapsed since midnight, or since the last system reset. Note that this feature is availa
ble only in BASIC Versions 2.0 and beyond.
You can also use the ON TIMER(n) interrupt, which will send control to a de

sired subroutine after a specified, n, number of seconds have elapsed. The number n
can range from 1 to 86,400. Thus, the computer timer can be set from one second to
24 hours.

ELAPSED TIME

WHATrrDOES...

Tells how many hours, minutes, and seconds have elapsed.

Versions: IBM PC and PCjr, Advanced BASIC 2.0.

Variables

• HOUR: Elapsed hours
• MIN: Elapsed minutes
• SEC: Elapsed seconds.

How to Use Subroutine

Your program should set variable S to equal TIMER at the beginning of the tim
ing cycle that will be measured. Then access the subroutine at the end of the inter
val. A new value for TIMER will be stored in variable F and compared with S to
determine how many hours, minutes, and seconds have elapsed in the interim.

62 IBM PC AND PCjr SUBROUTINE COOKBOOK

Line-by-Line Description

Line 160: Take current reading of TIMER.

Line 170: Calculate difference between F and S.

Line 180: Figure number of elapsed hours.

Line 190: Figure elapsed minutes.

Line 200: Figure elapsed seconds.

Lines 210 to 220: Print results.

Line 250: Take initial time reading.

Line 260: Wait awhile, until key pressed. Your program goes here.

You Supply
Your program should set S to equal TIMER when you wish to start timing and

then call the subroutine when the end of the timing cycle is over.

Sample Applications
• Determine elapsed time for reading or writing a file
• Measure elapsed time for a sort
• Time a game or program to compare performance.

RESULT...

Elapsed time is measured.

10 ' ****************

20 • * *

30 ' * ELAPSED TIME *
40 ' * *
50 ' ****************

60 •
70 t

80 ' ++ VARIABLES + +

90 ' HOUR: ELAPSED HOURS

100 • MIN: ELAPSED MINUTES

110 ' SEC: ELAPSED SECONDS

120 •
130 .

140 GOTO 250

USING THE CLOCK AND INTERRUPTS 63

150 ' *** SUBROUTINE ***

160 F=TIMER

170 DF=F-S

180 HOURS=INT(DF/3600)
190 MIN=INT((DF-(HOURS*3600))/60)
200 MN«VAL(MN$*60)
210 PRINT "IT TOOK YOU HOURS;. "HOURS"

220 PRINT MIN;"MIN. AND ";SEC; "SEC."

230 RETURN

240 • *** YOUR PROGRAM STARTS HERE ***

250 S=TIMER
260 A$ = INKEY$:IF A$= " " GOTO 260

270 GOSUB 160
280 GOTO 250

TIMER

WHAT IT DOES...

Sets computer as a timer.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• HR$: Finish hour
• MN$: Finish minutes

• SEC$: Finish time

64 IBM PC AND PCjr SUBROUTINE COOKBOOK

How to Use Subroutine

This subroutine asks the user how much elapsed time should be allowed to pass
before the ON TIMER(n) interrupt breaks into the program with the "time is up"
notification. This will let you know when a given number of hours, minutes, or
seconds have passed (somewhat like timing a roast in the oven). The real-time clock
does not have to be set to the current time for this subroutine to perform correctly.
Nor does your program have to have anything to do with timing anything. You
could include this routine in a business program to let you know when a given
period of time had passed. However, it could also be used in a game program to
limit play to a certain number of minutes or seconds. If you need to be alerted at a
particular time, use the TIMER INTERRUPT routine later in this chapter.

Line-by-Line Description

Lines 150 to 180: Ask user for total hours, minutes, and seconds to be counted.

Lines 190 to 220: Calculate total number of seconds to be counted off.

Line 230: Tmn on timer.

Line 240: Set routine for time to be counted.

Line 270: Notify that time is up.

"Ybu Supply

Your program that operates while timing takes place.

Sample Applications

• Remind user of appointment
• Set time Hmit on game or program
• Send program to another routine at given time limit.

RESULT...

IBM PC and PCjr signals with a beep at end of requested time inter
val.

USING THE CLOCK AND INTERRUPTS 65

IP ' *********

20 • * *

30 ' * TIMER *
4p ' * *
50 • *********

60 • —-

70 • ++ VARIABLES + +
80 •

90 • HR$: FINISH HOUR
100 • MN$: FINISH MINUTES

110 ' SEC$: FINISH TIME

120

130

U0 • *** TIME TO BE MEASURED ***

150 PRINT" TOTAL TIME TO BE COUNTED:"

160 INPUT" ENTER HOURS:";HR$

170 INPUT" ENTER MINUTES:";MN$
180 INPUT "ENTER SECONDS:";SEC$

190 HR=VAL(HR$)*3600
200 MN=VAL(MN$*60)
210 SEC=VAL(SEC$)
220 TOTAL=HR+MN+SEC

230 TIMER ON
240 ON TIMER(TOTAL) GOSUB 270
250 GOTO 290

260 ' *** TIME UP ***

270 PRINT "TIME IS UP.":BEEP:RETURN

280 • *** YOUR PROGRAM STARTS HERE ***

290 PRINT

66 IBM PC AND PCjr SUBROUTINE COOKBOOK

SECOND TIMER

WHAT IT DOES...

Counts off seconds.

Versions: IBM PC and PCjr, Disk or Advanced BASIC

Variables

• SEC: Number of seconds to count off.

How to Use Subroutine

This subroutine shows yet a third way of using the computer as a timer. With this
method, a WHILE-WEND loop repeats once for each second until the required
interval has elapsed. How do we make sure that each iteration of the loop takes
exaaly one second? At the start of the loop, the current value of TIMES is taken.
Then, the program pauses and compares the new time with the past value of
TIMES. If they are identical (meaning less than one second has elapsed), the subrou
tine continues to wait. Only when an additional second has ticked off will the next
trip through the loop take place.
When a certain number of seconds should be counted off, this method is no faster

than using the IBM PC and PCjr's interrupt feature. However, it is presented for
those programmers who want an alternate method available under earlier versions
of BASIC. This is a very simple method for figuring intervals that are measured in
whole seconds. To count off 122 seconds, merely enter that amount when
prompted. There is no need to convert to minutes or hours.
Like all noninterrupt-driven routines, this one prevents your program from tack

ling other chores during the timing inteval.

Line-by-Line Description

Line 140: Start subroutine WHILE SEC> 0.

Line 150: Take current time.

Line 160: Compare current time to see if one second has elapsed. Loop if not.

Line 170: Print current time to screen.

Line 180: Count off next second.

USING THE CLOCK AND INTERRUPTS 67

Lines 190 to 200: Notify that time is up.

Line 240: Ask user for number of seconds to count.

You Supply
Value for SEC, either through user input or by defining this variable.

Sample Applications
• Time number of seconds for a game
• Delay a program a fixed amount of time
• Use computer as a clock.

IBM PC and PCjr signals at end of requested number of seconds.

10 ' ***********

20 ' * *

30 • * SECOND *

40 ' * COUNTER *
50 • * *

60 ' ***********

70 GOTO 220
80 '

90 ' ++ VARIABLES + +
100 • SEC: NUMBER OF SECONDS
110 ' TO BE COUNTED

120 '

130 ' *** time to be measured ***

140 WHILE SEC
150 T$ = TIMES
160 IF T$=TIMES GOTO 160
170 LOCATE 15,10:PRINT TIMES
180 SEC=SEC-1

190 WEND

200 CLS:PRINT "TIME IS UP."
210 RETURN

68 IBM PC AND PCjr SUBROUTINE COOKBOOK

220 ' *** YOUR PROGRAM STARTS HERE ***

230 CIS:PRINT

2-40 INPUT "HOW MANY SECONDS TO COUNT"; SEC
250 GOSUB 1-40

TIMES INTEIIRUPT

WHAT IT DOES...

Allows computer to interrupt task at requested time.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

None.

How to Use Subroutine

This subroutine uses the ON TIMER interrupt routine to notify you when the
desired time interval has elapsed. The module asks for the time when the "alarm" is
desired and sets the interrupt routine to tri^er the notification subroutine when
that time rolls around. Your program can go on and do other things in the mean
time.

Line-by-Line Description

Lines 170 to 190: User enters time to be alerted.

Lines 200 to 220: Hours, minutes, seconds parsed out.

Lines 230 to 240; Format checked.

Lines 250 to 270: Hours, minutes, and seconds of finish time calculated.

Line 280: Current time taken.

Lines 290 to 310: Current hours, minutes, seconds parsed out.

Lines 320 to 340: Figure total seconds elapsed.

Line 350: Calculate total seconds to time.

Line 360: Turn timer ON.

Line 370: Set timer for required number of seconds.

USING THE CLOCK AND INTERRUPTS 69

Lines 400 to 420: Notify time is up.

Line 460: Print current time to screen.

You Supply
Time when alarm should be triggered.

Sample Applications
• Use as alarm clock

• End program by certain time
• Remind user of appointment.

RESULT...

Your program is interrupted when desired time is reached.

10 • *************

20 ' * *

30 ' * TIMER *

40 ' * INTERRUPT *
50 ' * *

60 ' *************
70 I

80 • ++ VARIABLES + +

90 '
100 • NONE

110 •

120 •
130 .

140 GOTO 440

70 ffiM PC AND PCjr SUBROUTINE COOKBOOK

150 ' *** SUBROUTINE ***

160 CLS

170 PRINT"What time would you like to be alerted:?"

180 PRINT "Use HH:MM:SS format"

190 INPUT FT$

200 A$=LEFT$(FT$,2)
210 B$=MID$(FT$,4,2)
220 C$=RIGHT$(FT$,2)
230 IF VAL(A$)>23 OR VAL(B$)>59 OR VAL(C$)>59 THEN PRINT

"WRONG FORMAT! " :GOTO 180

240 IF MID$(FT$,3,1)<> ":" AND MID$(FT$,6,l) " THEN
PRINT "WRONG FORMAT!" :GOTO 180

250 FH=VAL(A$)*3600
260 FM=VAL(B$)*60
270 FS=VAL(C$)
280 GT$ = TIME$

290 A$ = LEFT$(GT$,2)
300 B$=MID$(GT$,4,2)
310 G$=RIGHT$(GT$,2)
320 GH=VAL(A$)*3600

330 GM=VAL(B$)*60
340 GS=VAL(G$)
350 SEGONDS=(FH+FM+FS)-(GH+GM+GS) :IF SEG0NDS<1 THEN

PRINT " TIME IS ALREADY PAST! " :GOTO 180

360 TIMER ON
370 ON TIMER(SEGONDS) GOSUB 400
380 RETURN

390 ' *** time IS UP ***

400 GLS
410 PRINT "TIME IS UP!":BEEP
420 STOP

430 • *** YOUR PROGRAM STARTS HERE ***

440 PRINT
450 GOSUB 160
460 LOGATE 10,15:PRINT TIME$;
470 GOTO 460

USING THE CLOCK AND INTERRUPTS 71

ON COM(n) INTERRUPT

WHATrrDOES...

Interrupts program when signal received over asynchronous port.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• B$: Character received.

a

How to Use Subroutine

This subroutine demonstrates the ON COM(n) interrupt routines. As with ON
ERROR and ON TIMER, your program can be going about its business while the
IBM PC or PCjr constantly checks the COM port for input. When a character is
received, the program can immediately branch to the designated subroutine.

You might want to use this feature while your IBM PC and PCjr is connected to
another computer. You may run your BASIC program and be signalled by the
other computer when necessary.

Line-by-Line Description

Lines 130 to 150: User enters which COM line to open.

Line 160: Specified COM hne interrupt activated.

Line 170: Trapping turned on.

Line 190: One character retrieved from input buffer

Line 200: That character printed to screen.

Line 230: Your program starts here

"Vibu Supply

Program.

72 IBM PC AND PCjr SUBROUTINE COOKBOOK

Sample Applications

• BASIC communications program with other functions
• Running other apphcation, but alerting the user when communications are re

ceived

• Program transfer between computers.

RESULT...

Your program is interrupted when signal received over the COM
line specified.

10

20

30
40

50

60

70

80

90
100 •

110 •

* *

* COM INTERRUPT *

* *

+ + + VARIABLES + + +

B$: CHARACTER

RECEIVED

120 • *** INITIALIZE ***

130 INPUT "ENTER COM LINE TO OPEN : "
140 A$ = INKEY$:IF A$="" GOTO 140
150 A=VAL(A$):IF A<1 OR A>2 GOTO 140
160 ON COM(A) GOSUB 190
170 COM(A) ON:GOTO 230

180 • *** SUBROUTINE ***

190 B$ = INPUTS (1,#A)
200 PRINT B$;

210 RETURN

USING THE CLOCK AND INTERRUPTS 73

220 • *** YOUR PROGRAM STARTS HERE ***

230 A$ = INKEY$:IF A$= " " GOTO 230
240 PRINT A$;

250 GOTO 230

FUNCTION KEY INTERRUPT

WHAT IT DOES...

Sends control to desired subroutine when a function key is pressed.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

None.

How to Use Subroutine

With ON TIMER or ON COM, we had the option of sending control to only
one subroutine when the interrupt was triggered. With ON KEY and BASICs be
fore BASIC 2.0, as many as ten subroutines, one for each of the IBM PC and PCjr's
special function keys, can be designated. Of'course, the arrow keys can also be
trapped as well as six other keys (under BASIC 2.0), but these are not often used to
access subroutines by the majority of programmers.

The command allows monitoring as many of the function keys as we wish by
including an ON KEY(n) statement for each, where n is the function key to be
trapped:

10 ON KEY(l) GOSUB 1000
20 ON KEY(3) GOSUB 2000

30 ON KEY(6) GOSUB 3000
40 KEY(l) ON
50 KEY(3) ON
60 KEY(6) ON

74 IBM PC AND PCjr SUBROUTINE COOKBOOK

This would activate Fl, sending control to line 1000, F3 (line 2000), and F6 (line
3000). Since none of the other keys are defined, the IBM PC or PCjr will ignore
them.

As with all the interrupt routines (except ON ERROR), ON KEY must be ac
tivated, in this case with the KEY(n) ON command.

Line-by-Line Description

Lines 110 to 130: Turn on desired function keys.

Lines 140 to 160: Tell BASIC where to branch.

Lines 190 to 240: Dummy subroutines carrying out functions.

Lines 260 to 280: Dummy program.

You Supply
Subroutines to carry out desired actions.

Sample Applications
• Allow user to escape from unwanted menu
• Present a Help screen at any time
• Go to another subroutine, such as siren or communications, at any time.

RESULT...

Program interrupted when de&ied function key pressed.

Ij2l • ***************************

20 • * *

30 ' * FUNCTION KEY INTERRUPT *
40 ' * *
50 ' ***************************

60 •

70 ' -I--I--I- VARIABLES + + +

80 ' NONE

90 •
100 •

110 KEY(l) ON
120 KEY(2) ON
130 KEY(4) ON

USING THE CLOCK AND INTERRUPTS 75

140 ON KEY(l) GOSUB 190
150 ON KEY(2) GOSUB 210
160 ON KEY(4) GOSUB 230
170 GOTO 260

180 • *** SUBROUTINES ***

190 PRINT "KEY 1 PRESSED. "
200 RETURN

210 PRINT "KEY 2 PRESSED."

220 RETURN

230 PRINT "KEY 4 PRESSED."
240 RETURN

250 ' *** YOUR PROGRAM STARTS HERE ***

260 A$ = INKEY$:IF A$= " " GOTO 260
270 PRINT A$;"KEY PRESSED."

280 GOTO 260

5
Business and Financial

Subroutines

78 IBM PC AND PCjr SUBROUTINE COOKBOOK

The IBM PC is most popular among businesspeople. The PCjr, while aimed at
the home market, is also tised as a second computer by business folks. Much of the
early software for both of these computers was aimed at the businessperson. Al
though business programs have much in common with games and utilities in BA
SIC, they also have their own special requirements. A business application will
rarely deal with RND but will often have to handle dollars-and-cents. Money
matters—figuring loan amounts, monthly payments, interest—and formatting of
the output are aJl important considerations. Business applications also involve re
cording the date or time when a transaction took place.
The subroutines in this chapter all handle some aspea of business. The first three

calculate loan amounts, number of payments, and monthly payment. The number
of years reqiured to reach a given savings goal is handled by another subroutine,
while compound interest is calcvdated by an additional module. Correct formatting
of dollars-and<ents and dates are treated by another pair. Temperature conversion
and figuring miles per gallon (MPG) are also included as examples of the types of
algorithms that might be useful in a typical business program.
Making your program easier to use through a clever menu is also explained. You

may substitute the tasks of your choice and then write the appropriate branches.

LOAN AMOUNT

WHAT IT DOES...

Calculates size of loan given monthly payment, interest rate, and
length of loan.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• RATE: Interest rate

• LOAN: Amount of loan

• NUMBER: Months of loan

• PAYMENT: Monthly payment.

How to Use Subroutine

This routine will calculate the maximum amount of money that can be borrowed
given a fixed interest rate, the desired monthly payment, and the months the loan
will run.

BUSINESS AND FINANCIAL SUBROUTINES 79

You might use this subroutine to calculate how expensive an automobile you can
buy given, say, a 36-month repayment period, a 15 percent interest rate, and the top
monthly payment you can afford, say, $200. In this case, the subroutine would de
liver the answer: $5769. Since very few cars can be purchased for that little, you
might want to play with the figures a bit. What if a 48-month loan is taken out
instead? In that case, a more reasonable $7186 can be borrowed.

Having these figures available allows the purchaser to make some intelligent deci
sions. For example, extending the loan by 12 months provides $1417 more principal
to borrow, but at the cost of $2400 in additional payments ($200 x 12). Is the pur
chase worth an additional $1000 in interest? Or can the auto be financed by finding
the extra $1400 from some other source, such as trading in a third car that the
owner had planned on keeping an extra year? Or, should you shop a bit more
extensively for a better interest rate? If your credit union offers a bargain-basement
12 percent interest rate, you can borrow $7594 at the same interest rate—more than
$400—more without increasing the monthly payment.
Or, if you already have the car picked out, this routine will tell you how much

down payment you will have to come up with to make up the difference between
the loan amount and the price of the car.

Line-by-Line Description

Lines 150 to 170: Define the interest RATE, monthly PAYMENT you can af
ford, and the NUMBER of payments to be made. Your program can substitute
INPUT lines to receive these figures from the user.

Line 200: Change yearly interest rate in whole percent to decimal figure per
month, e.g, 12 percent equals 12/1200 or .01 per month.

Line 210: Calculate loan amount.

Line 220: Round off to two decimal places.

Line 230: Return to main program.

Line 240: Access the subroutine.

You Supply

You must define these variables:

• PAYMENT (the monthly payment desired)
• RATE (interest rate in percent, i.e., 10.5 equals 10.5 percent)
• NUMBER (number of months loan will run).
The subroutine will return LOAN, or the maximum loan amount given those

parameters.

80 IBM PC AND PCjr SUBROUTINE COOKBOOK

Sample Applications
• Figure maximum loan given fixed payments
• Calculate how much down payment needed to reach desired loan given fixed

payment amount.

Loan amount calculated

10 • ***************

20 ' * *

30 • * LOAN AMOUNT *

40 ' * *
50 ' ***************

60 • ;

70 ' ++ VARIABLES + +

80 ' RATE: INTEREST RATE

90 • LOAN: AMOUNT OF LOAN
100 • NUMBER: MONTHS OF LOAN

110 • PAYMENT: MONTHLY PAYMENT

120 •
130 .

140 ' *** INITIALIZE ***

150 RATE=10

160 PAYMENT = 10

170 NUMBER=36
180 GOTO 250

190 ' *** SUBROUTINE ***

200 RATE=RATE/1200

210 LOAN=PAYMENT* (1- (1+RATE) A-NUMBER) /RATE
220 LOAN=INT(LOAN*100+.5)/100
230 RETURN

240 • *** YOUR PROGRAM STARTS HERE ***

250 GOSUB 200

BUSINESS AND FINANCIAL SUBROUTINES 81

PAYMENT AMOUNT

WHATrrDOES...

Calculates monthly payment given interest rate, number of pay
ments, and loan amount.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• RATE: Interest rate

• LOAN: Amount of loan

• NUMBER: Months of loan

• PAYMENT: Monthly payment.

How to Use Subroutine

This routine will calculate the monthly payment given a fixed interest rate, the
loan amount, and the months the loan will run.

You might use this subroutine to calculate your monthly auto payment given, say,
a 36-month repayment period, a 15 percent interest rate, and an amount to be fi
nanced of, say $8000. It will produce the answer, $277. By shopping around for
different interest rates, or varying the number of payments, you can calculate the
effect on your monthly payment until a satisfactory amount has been worked out.
The subroutine would also be valuable for those considering consohdating a num

ber of debts. Add up the ctorrent pay-offs of the loans you wish to combine and then
use this subroutine to calculate how much your new monthly payment will be.

Line-by-Line Description

Lines 150 to 170: Define the amount of the LOAN, the interest RATE in whole
percent per year, and the NUMBER of monthly payments. Your program can sub
stitute INPUT lines to have this information entered by the user.

Line 200: Change RATE to percentage.

Line 210: Calculate PAYMENT.

Line 220: Round off PAYMENT to two decimal places.

Line 270: Print result.

82 IBM PC AND PCjr SUBROUTINE COOKBOOK

You Supply

You must define these variables:

• LOAN (the original amount to be financed)
• RATE (interest rate in percent, i.e., 10.5 equals 10.5 percent)
• NUMBER (number of months loan will run).
The subroutine will return PAYMENT, which is the monthly payment, against

principal and interest.

Sample Applications

• Find out how much your loan payment will be
• Find out how much you will save in monthly payments if you consolidate debts.

RESULT...

Loan payment calculated.

10

20

30
40

50

60

70

80

90

* *

* PAYMENT AMOUNT *

* *

+ + VARIABLES + +

RATE: INTEREST RATE

LOAN: AMOUNT OF LOAN

100 ' NUMBER: MONTHS OF LOAN

110 ' PAYMENT: MONTHLY PAYMENT

120 •
130 .

140 « *** initialize ***

150 LOAN=100

160 RATE = 10

170 NUMBER=36
180 GOTO 260

BUSINESS AND FINANCIAL SUBROUTINES 83

190 ' *** SUBROUTINE ***

200 RATE=RATE/100

210 PAYMENT = L0AN*(RATE/12)/(1-(1+ (RATE/12))A-NUMBER)
220 PAYMENT = INT(PAYMENT*100 +.5)/100
230 RETURN

250 • *** YOUR PROGRAM STARTS HERE ***

260 GOSUB 200

270 PRINT PAYMENT

NUMBER OF PAYMENTS

WHAT IT DOES...

Calculates number of payments given interest rate, monthly pay
ment, and loan amount.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• RATE: Interest rate

• LOAN: Amount of loan

• NUMBER: Months of loan

• PAYMENT: Monthly payment
• WP: Number of whole payments
• FP: Amount of final payment.

How to Use Subroutine

This routine will calculate the number of payments given a fixed interest rate, the
loan amoimt, and the monthly payment required.
You might use this subroutine to calculate how long your auto loan will run,

given an interest rate of, say, 15 percent, a loan amount of $8000, and a monthly
payment of $250. Since most automobile loans are for fixed periods of 18,24,36, or
48 months, the figures will be approximate. That is, an answer of 41 months will be
produced using the 15 percent/$250/$8000 example. So, you will know that you
can borrow somewhat more than $8000 for 48 months, or somewhat less for 36
months.

84 IBM PC AND PCjr SUBROUTINE COOKBOOK

More commonly, you will use this subroutine to figure out how long it will take
to pay off a debt, such as a credit card account, with an open-ended number of
payments. If your charge card balance is $3000 and you plan on making $150
monthly payments until it is paid off, given an 18 percent monthly interest rate, the
program will inform you that it will take 24 months to dispose of the balance.

Line-by-Line Description

Lines 170 to 190; Define the amount of LOAN, the interest RATE in whole
percent, and the monthly EAYMENT desired. Your subroutine can substitute IN
PUT statements to have this information supplied by the user.

Line 220: Change RATE to monthly decimal value, that is, 12 percent per year
equals 12/1200 or .01 per month.

Line 230: Calculate number of payments.

Line 240: Calculate number of whole payments.

Line 250: Figure amount of final, partial payment.

Line 280: Access the subroutine.

Lines 290 to 310: Print results.

You Supply

You must define these variables:

• LOAN (the original amount to be financed)
• RATE (interest rate in percent, i.e., 10.5 equals 10.5 percent)
• PAYMENT (the amount of the monthly payment).
The subroutine will return NUMBER, which is the number of monthly pay

ments that will be required.

Sample Applications

• Find out how long it will take to pay off a loan
• Compare loan lengths at different interest rates
• See how long it will take to pay off a given loan given different payment amounts.

BUSINESS AND FINANCIAL SUBROUTINES 85

10 *******************

20 * *

30 * NUMBER PAYMENTS *

40 * *

50 *******************

60

70 + + VARIABLES + +

80 RATE: INTEREST RATE

90 LOAN: AMOUNT OF LOAN

100
1 NUMBER: MONTHS OF LOAN

110 1 PAYMENT: MONTHLY PAYMENT

120 1 WP: NUMBER OF WHOLE PAYMENTS

130 t FP: AMOUNT OF FINAL PAYMENT

140 f

150 1

160 ' *** INITIALIZE ***

170 LOAN=1500

180 RATE=12

190 PAYMENT=100
200 GOTO 280

210 ' *** SUBROUTINE ***

220 RATE=RATE/1200

230 NUMBER=LOG(PAYMENT/(PAYMENT-LOAN*RATE))/LOG(l+RATE)
240 WP=INT(NUMBER)
250 FP = PAYMENT* (NUMBER-WP)
260 RETURN

270 • *** YOUR PROGRAM STARTS HERE ***

280 GOSUB 220

290 PRINT WP; "PAYMENTS OF $ PAYMENT

300 PRINT "PLUS FINAL PAYMENT OF"

310 PRINT "$";FP

86 ffiM PC AND PCjr SUBROUTINE COOKBOOK

YEARS TO REACH DESIRED VALUE

WHAT IT DOES...

Calculates number of years required to reach desired amount, given
interest rate and original amount.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• RATE: Interest rate

• YEARS: Years compounded
• FUTURE: Future value desired

• AMOUNT: Amount to be compounded.

How to Use Subroutine

This routine will calculate the number of years required to reach a desired money
value, given a fixed interest rate and the original investment value. The routine
assumes that no additional amounts are added to the principal. That is, an original
amount is deposited in a bank and left there to accumulate for a number of years.
An inheritance might be placed in the bank and allowed to build until retirement,
college, or some other need for the money arises.

Line-by-Line Description

Lines 160 to 190: Define FUTURE, desired future value, the interest RATE in
whole percent per year, and the PERIODS, the number of compounding periods
per year. Your subroutine can substitute INPUT statements to allow the user to
enter these figures.

Line 220: Change RATE to decimal figure.

Line 230: Calculate number of years needed to produce the goal value.

Lines 240 to 260; Figure number of whole months and years.

Line 290: Access the subroutine.

Lines 300 to 370: Print results.

BUSINESS AND FINANCIAL SUBROUTINES 87

You Supply
You must define these variables:

• FUTURE (desired future value)
• RATE (interest rate in percent, i.e., 10.5 equals 10.5 percent)
• PERIODS (number of compounding periods per year).
The subroutine will return YEARS, or the number of years, that will be required

to reach the desired value.

Sample Applications
• See bow long it will take to save a certain amount
• Compare to see bow long it will take to get a certain amount at different interest

rates.

RESULT...

Years calculated.

10

20

30
40

50

60

70
80

90

100
110

120

130
140

* *

* YEARS TO REACH *

* DESIRED VALUE *

* *

+ + VARIABLES + +

RATE: INTEREST RATE

YEARS: YEARS COMPOUNDED

FUTURE: FUTURE VALUE DESIRED

AMOUNT: AMOUNT TO BE COMPOUNDED

150 ' *** INITIALIZE ***

160 RATE = 10
170 AMOUNT=1000

180 PERIODS=365

190 FUTURE=2000
200 GOTO 290

88 IBM PC AND PCjr SUBROUTINE COOKBOOK

210 ' *** SUBROUTINE ***

220 RATE = RATE/100

230 YEARS=LOG (FUTURE/AMOUNT) / ((LOG (1+RATE
/PERIODS))*PERIODS)

240 MTH=YEARS-INT (YEARS)
250 MTH=INT(MTH*12)
260 YEARS = INT(YEARS)
270 RETURN

280 • *** YOUR PROGRAM STARTS HERE ***

290 GOSUB 220

300 OLS

310 PRINT "$";AMOUNT;" WILL"
320 PRINT "COMPOUND TO $";FUTURE

330 PRINT "IN ";YEARS;" YEARS
340 PRINT MTHS;" MONTHS"

350 PRINT "AT ";RATE*100;" PERCENT"
360 PRINT "COMPOUNDED ";PERIODS

370 PRINT "TIMES A YEAR."

COMPOUND INTEREST

WHATrrDOES...

Calculates compounded amount of investment given original value,
interest rate, and time period.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• RATE: Interest rate

• YEARS: Years compounded
• FUTURE: Future value

• AMOUNT: Amount to be compounded.

BUSINESS AND FINANCIAL SUBROUTINES 89

How to Use Subroutine

This routine will calculate the compounded future value of an investment given
the interest rate, present value, and original amount.

You might use this subroutine to calculate how much your savings account will
be worth if allowed to compound for a given period of time.

Line-by-Line Description

Lines 150 to 180: Define original principal AMOUNT, the interest RATE in
whole percent, and the number of YEARS to be compounded.

Line 210: Change RATE to decimal value.

Line 220: Calculate FUTURE value.

Line 230: Round off value to two decimal places.

Line 260: Access the subroutine.

Lines 270 to 300: Print results.

You Supply

You must define these variables:

• AMOUNT (the original amount)
• RATE (interest rate in percent, i.e., 10.5 equals 10.5 percent)
• YEARS (number of years to be compounded).
The subroutine will return FUTURE, or value of the compounded investment.

Sample Applications

• Figure future value of savings account
• Calculate future values at compared interest rates.

90 IBM PC AND PCjr SUBROUTINE COOKBOOK

10 ' *********************

20 • * *

30 ' * COMPOUND INTEREST *

40 ' * *
50 • *********************

60 ' —

70 • ++ VARIABLES + +

80 ' RATE: INTEREST RATE

90 • YEARS: YEARS COMPOUNDED
100 ' FUTURE: FUTURE VALUE

110 • AMOUNT: AMOUNT TO BE COMPOUNDED

120 •
130 .

140 ' *** INITIALIZE ***

150 RATE=10

160 AMOUNT=1000

170 PERIODS=365

180 YEARS=10

190 GOTO 260

200 • *** SUBROUTINE ***

210 RATE=RATE/100

220 FUTURE=AMOUNT* (1+RATE/PERIODS) A (PERIODS*YEARS)
230 FUTURE=INT(FUTURE*100 +.5)/100
240 RETURN

250 ' *** YOUR PROGRAM STARTS HERE ***

260 GOSUB 210

270 CLS:

280 PRINT AMOUNT;" LEFT"

290 PRINT YEARS;" YEARS WILL"

300 PRINT " GROW TO $";FUTURE

BUSINESS AND FINANCIAL SUBROUTINES 91

RATE OF RETURN

WHATrrDOES...

Calculates interest rate given present and future value and number
of compounding periods.

Versions; IBM PC and PCjr, Advanced BASIC

Variables
• RATE: Interest rate

• YEARS: Years compounded
• FUTURE: Future value

• AMOUNT: Amount to be compounded.

How to Use Subroutine
This routine will calculate the interest rate on an investment given the present

value, future value, years compounded, and number of compovmding periods. You
could use this to figure what sort of a return your investments are providing you, as
a means of deciding whether to continue or look for new investments.

Line-by-Line Description

Lines 150 to 180: Define the present (or original) value of the investment, the
number of YEARS it has or will be compounded, and the FUTURE (or current if
the investment is an old one) value. Your subroutine can substitute INPUT lines to
have user enter these values.

Line 210: Figure interest RATE.

Line 220: Change RATE to whole percent.

Line 250; Access the subroutine.

Lines 260 to 310: Print restilts.

You Supply
You must define these variables:

• AMOUNT (present value)
• FUTURE (future value)
• YEARS (number of years to be compounded)
• PERIODS (number of compounding periods.
The subroutine will return RATE, the interest rate.

92 IBM PC AND PCjr SUBROUTINE COOKBOOK

Sample Applications

• Find out the interest rate

• Find the rate of return of an investment.

RESULT...

Interest rate calculated.

10

20

30
40

50

60

70
80

90

* *

* RATE OF RETURN *

* *

+ + VARIABLES + +

RATE: INTEREST RATE

YEARS: YEARS COMPOUNDED

100 ' FUTURE: FUTURE VALUE

110 • AMOUNT: AMOUNT TO BE COMPOUNDED

120 •
130 .

140 • *** INITIALIZE ***

150 YEARS = 10
160 AMOUNT = 1000

170 PERIODS=365
180 FUTURE=2000

190 GOTO 250

200 • *** SUBROUTINE ***

210 RATE= ((FUTURE/AMOUNT)A(1/(PERI0DS*YEARS))-l)*PERIODS
220 RATE=RATE* 100

230 RETURN

BUSINESS AND FINANCIAL SUBROUTINES 93

240 ' *** YOUR PROGRAM STARTS HERE ***

250 GOSUB 210
260 CLS

270 PRINT "$";AMOUNT

280 PRINT "TO PRODUCE $";FUTURE

290 PRINT "IN ";YEARS; "YEARS"

300 PRINT "REQUIRES AN INTEREST"

310 PRINT "RATE OF ";RATE

TEMPERATURE

WHAT IT DOES...

Calculates Celsius and Fahrenheit.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• F: Fahrenheit temperature
• C: Celsius temperature.

How to Use Subroutine

This subroutine will convert Celsius temperatures to Fahrenheit and vice versa.
The sample routine has a short INPUT section that asks for the temperatures to be
entered from the keyboard;

Line-by-Line Description

Lines 150 to 160: Figure Fahrenheit temperature.

Lines 170 to 180: Figure Celsius temperature.

Lines 210 to 250: User enters temperature to convert.

Lines 260 to 270: Check to see if Fahrenheit or Celsius.

Lines 280 to 290: If wrong, make user reenter.

Lines 300 to 310: Access proper subroutine.

Line 320: Print results of conversion.

94 IBM PC AND PCjr SUBROUTINE COOKBOOk

You Supply

You should define a value for either F or C, depending on which way the conver
sion will go. This will usually be input from the keyboard. The alpha character
ending the input, either "F" or "C", should be supplied to determine which type of
conversion will be activated.

Sample Applications

• Programs which compare temperatures
• Conversion routines.

Temperature converted to alternate value

10

20

30
40

50

* *

* TEMPERATURE *

* *

60 ' *** INITIALIZE ***

70 GOTO 200
80 '

90 •
100 •

110 •

120 •

130 '

-I--I- VARIABLES + +

F: FAHRENHEIT

0: CELSIUS

BUSINESS AND FINANCIAL SUBROUTINES 95

U0 ' *** SUBROUTINE ***

150 C=VAL(AN$)
160 F=INT((9/5)*C+32) :RETURN
170 F=VAL(AN$)
180 C = INT((F-32)*(5/9)) .-RETURN

190 ' *** your program starts here ***

200 PRINT

210 PRINT "ENTER TEMPERATURE"

220 PRINT "IN THIS FORM:"

230 PRINT GHR$(34);"52G";GHR$(34);" OR "
240 PRINT CHR$(34) ; "98F" ;CHR$(34); " . "

250 INPUT AN$
260 A$=RIGHT$(AN$,1):A=AS(A$):IF A<96 AND A>123 THEN

A$=CHR$(A-32)
270 IF A$="F" OR A$="C" THEN GOTO 300

280 PRINT "WRONG FORMAT."

290 GOTO 220

300 IF A$="F" THEN GOSUB 170

310 IF A$="G" THEN GOSUB 150

320 PRINT F; "F. = ";G; "G." '

DATE FORMATTER

WHAT IT DOES...

Formats dates to MM/DD/YY style.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• DTE$: Date

• MNTH$: Months

•DAY$:Day
• YEARS: Year.

96 ffiM PC AND PCjr SUBROUTINE COOKBOOK

How to Use Subroutine

This subroutine will accept input of month, day, and year and format it into
MM/DD/YY style. That is, December 3,1947, will be displayed as 03/12/47 or 03/
12/1947. As written, the module prompts the operator to enter the values. It disal
lows illegal months (smaller than one or larger than 12.) Other checks are made to
make sure the day of the month is acceptable. For example, June 31 and February
30 are not allowed. February 29 is permitted only during leap years.

Where needed, a leading zero is added, along with backslashes to produce the
desired format. This subroutine can be used in any business program where the
operator is asked the date, and it is important to have a uniform format.

Line-by-Line Description

Line 160: Enter month to be formatted.

Lines 170 to 180: Check to see that MNTH is at least 1 but no more than 12.

Line 190: If MNTH is less than 10 then MNTH$="0" plus the string representa
tion of MNTH. That is, "9" becomes "09."

Lines 200 to 220: Enter day of month, which must be at least 1 and less than 31.

Line 230 to 250: Check to see if month should have only 30 days and force user
to reenter if an illegal date has been entered.

Line 260: Enter year.

Lines 270 to 310: If leap year, then February may have 29 days, otherwise only 28
allowed.

Line 320: If DAY is less than 10, then add leading "0."

Line 330: Construct MM/DD/YY string.

Line 370: Access the subroutine.

Line 380: Print result.

You Supply

The date to be formatted must be supplied from the keyboard.

Sample Applications

• Business program in which txser may enter wrongly formatted date
• Programs in which consistent input is crucial.

BUSINESS AND FINANCIAL SUBROUTINES 97

RESULT...

Properly formatted date.

10 < ******************

20 ' * *

30 • * DATE FORMATTER *

40 ' * *
50 ' ******************

60 GOTO 360
70 •

80 • ++ VARIABLES + +

90 ' DTE$: DATE
100 ' MNTH$: MONTHS

110 • DAY$: DAY

120 ' YEAR$: YEAR

130 •
140 t

150 ' *** SUBROUTINE ***

160 INPUT " ENTER MONTH: "; MNTH$
170 MNTH=VAL(MNTH$)
180 IF MNTH<1 OR MNTH>12 GOTO 160
190 IF MNTH<10 THEN MNTH$= "0"+RIGHT$(MNTH$,l)
200 INPUT "ENTER DAY : ";DAY$
210 DAY=VAL(DAY$)
220 IF DAY<1 OR DAY >31 GOTO 200
230 IF MNTH=4 OR MNTH=6 OR MNTH=9 OR MNTH=11 GOTO 250
240 GOTO 260

250 IF DAY >30 goto 200
260 INPUT "ENTER YEAR : ";YEAR$

270 YEAR=VAL(YEAR$)
280 IF YEAR/4 <> INT (YEAR/4) GOTO 310
290 IF MNTH=2 AND DAY>29 GOTO 200

300 GOTO 320

310 IF MNTH=2 AND DAY>28 GOTO 200

320 IF DAY<10 THEN DAY$= "0"+RIGHT$(DAY$,l)
330 DTE$=MNTH$ + " / " + DAY$ + " / " + YEAR$

340 RETURN

98 IBM PC AND PCjr SUBROUTINE COOKBOOK

350 ' *** your program STARTS HERE ***

360 GLS:

370 GOSUB 160

380 PRINT DTE$

NUMBER OF DAYS

WHATrrDOES...

Figures difference between days.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• M(n): Days more than 28 in each month
• DA: Day number
• DF: Difference

How to Use Subroutine

Business programs frequently have to calculate the difference between two dates,
for example, to figure interest due on an account. This subroutine will figure the
number of days between two days you enter in MM/DD format.

An array keeps track of the number of days more than 28 each month has if not a
leap year. So, to figure the day of the year for March 3, we multiply 2 X 28, and then
add in M(l), 3, and M(2), 0, plus 3 for the three days elapsed in March, to come up
with Day 62. The same thing is done for the second date, and the difference be
tween the two figures is the difference in days.

To keep things simple, this subroutine calculates differences in days within the
same year only. To span a year or more, find the day number for the first date,
subtract that from 365 (if a not a leap year) to determine the days elapsed in the
beginning year. Then, add that figure to the day number of the ending date. If the
interval spans more than two years, add 365 or 366 for each additional year.

BUSINESS AND FINANCIAL SUBROUTINES 99

Line-by-Line Description

Line 130: Dimension array.

Lines 140 to 160: Read day data to array.

Line 190: Set DA difference to 0.

Line 200: Access day calculating module.

Line 210: Set start day, Dl, to that day number, DA.

Line 220: Access day calculating module again.

Line 230: Figure difference.

Line 240: Display results.

Line 260: User enters date.

Lines 270 to 300: Extract day and month.

Lines 340 to 370: Add up day number.

You Supply
• Dates to calculate.

Sample Applications
• Programs which are asked to find data entered between two dates
• Figuring interest or service charges.

RESULT...

Difference between two dates figured.

10

20

30
40

50

60

70
80

90

* *

* NUMBER OF DAYS *

* *

+ + VARIABLES + +

M(n): DAYS MORE THAN 28 IN EACH MONTH
DA: DAY NUMBER

100 ' DF: DIFFERENCE
110 '

100 IBM PC AND PCjr SUBROUTINE COOKBOOK

120 DATA 3, 0, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3
130 DIM M(12)
140 FOR N=1 TO 12

150 READ M(N)
160 NEXT N

170 GOTO 400

180 ' *** SUBROUTINE ***

190 DA=0
200 GOSUB 260

210 D1=DA

220 GOSUB 260

230 DF=DA-D1

240 PRINT "Days difference: ";DF
250 RETURN

260 INPUT"ENTER DATE (MM/DD) " ;DA$:IF MID$(DA$,3,l) <> "/"
THEN PRINT "USE MM/DD FORMAT!":GOTO 260

270 M=(VAL(LEFT$(DA$, 2)) :D=VAL(RIGHT$(DA$, 2))
280 IF M=4 OR M=6 OR M=9 OR M=ll AND D>30 THEN GOTO 300
290 IF D>31 THEN GOTO 300 ELSE IF MO2 OR M<29 THEN GOTO

310

300 PRINT"Improper date!":GOTO 260
310 GOSUB 330
320 RETURN

330 FA=0:IF M=1 GOTO 370
340 FOR N=1 TO M-1

350 FA=FA+M(N)
360 NEXT N

370 DA=28*(M-1)+FA+D
380 RETURN

390 ' *** your program starts here ***

400 GOSUB 190

BUSINESS AND FINANCIAL SUBROUTINES 101

DAY CONVERTER

WHAT IT DOES...

Translates day number to date.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• M$(N): Name of the months
• DA: Day number.

How to Use Subroutine

Use to convert day number back into calendar date. As written, routine produces
full month name and day.

Line-by-Line Description

Line 120: Dimension array to store month names.

Lines 130 to 150: Read month names into array.

Line 210: User enters day number.

Line 220: Access date calculator routine.

Line 230: Subtraa number of days to that month from total day number to
produce day of the month.

Line 240: Print results.

Lines 250 to 390: Figure month from days elapsed.

You Supply

Day numbers to convert.

Sample Applications

• Programs which access data in day number form, but user desires to see conven
tional date.

102 IBM PC AND PCjr SUBROUTINE COOKBOOK

RESULT...

Day number converted to date.

10 • *******************

20 • * *

30 • * DAY CONVERTER *
40 • * *
50 ' *******************

60 •

70 ' ++ VARIABLES + +

80 ' M$(N): NAME OF THE MONTHS

90 ' DA: DAY NUMBER
100 •
110 t

120 DIM M$(12)
130 FOR N=1 TO 12

140 READ M$(N)

150 NEXT N
160 DATA January, February, March, April, May
170 DATA June, July, August, September

180 DATA October, November, December

190 GOTO 410

200 • *** SUBROUTINE ***

210 INPUT " Enter day number : "; DA

220 GOSUB 260

230 D=DA-F1
240 PRINT "Date is ";,M$(M);" "jD
250 RETURN

260 IF DA>33'4 then M=12: F1=334: RETURN
270 IF DA>30-4 THEN M=ll: Fl=304: RETURN
280 IF DA>273 THEN M=10: Fl=273: RETURN

290 IF DA>243 THEN M=9: Fl=243: RETURN
300 IF DA >212 THEN M=8: Fl=212: RETURN

310 IF DA >181 THEN M=7: Fl=181: RETURN

320 IF DA >151 THEN M=6: Fl=151: RETURN

330 IF DA >120 THEN M=5: Fl=120: RETURN

BUSINESS AND FINANCIAL SUBROUTINES 103

IF DA>90 THEN M=4: Fl=90: RETURN
350 IF DA>59 THEN M=3: Fl=59: RETURN

360 IF DA>31 THEN M=2: Fl=31: RETURN

370 M=1

380 F1=0

390 RETURN

400 • *** YOUR PROGRAM STARTS HERE ***

410 GOSUB 210

MENU

WHAT IT DOES...

Menu template for user programs.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• NC$: Number of choices on menu.

How to Use Subroutine

Most programs with, more than one function feature a menu of choices for the
user to select from. This subroutine is a menu "template" that can be fleshed out
with choices of your own seleaion and routines that fulfill each menu item.

If you define the number of selections on the menu at the beginning of your
program, the menu will automatically reject illegal choices, i.e., those that are out of
the allowed range. User input for up to nine selertions is by pressing a single key.
Once the operator has selerted a menu item, the routine branches to modules

written by the user to carry out the menu functions. To expand the number of
menu items, redefine NC. If more than nine choices are listed, you will have to
sacrifice single key entry. Replace line 240 with INPUT A$. Then any number can
be entered.

Note that no menu functions are provided at lines 1000, 2000, 3000, and 4000;
you must write those routines yotu-self.

104 IBM PC AND PCjr SUBROUTINE COOKBOOK

Line-by-Line Description

Line 70: Define number of menu choices available.

Lines 150 to 160: Clear screen, and present menu title. Line 160 may be changed
by user to label specific menu.

Lines 160 to 200: Labels for the menu choices.

Line 210: Prompt user choice.

Line 220: Wait for user input.

Lines 230 to 240: If entry is less than 1 or larger than the number of choices
available, go back and continue waiting.

Line 250: Access subroutine specified by user at Lines 1000,2000,3000 or 4000.

You Supply
You should define NC to equal the number of menu choices. You will need to

write subroutines to accompHsh your various tasks, using line 250 as a model to
direct control.

Sample Applications
• Any program which uses menus instead of commands
• Program where you wish to limit choice of actions
• Simple programs that are friendly to new users.

RESULT...

Operator can select from list of menu choices.

10 ' ********

20 • * *

30 • * MENU *
-40 ' * *
50 • ********

60 • *** INITIALIZE ***

70 NG=4
80 GOTO 280

BUSINESS AND FINANCIAL SUBROUTINES 105

90 t

100 • ++ VARIABLES + +

110 ' NC: NUMBER OF MENU CHOICES

120 •
130 .

140 • *** SUBROUTINE ***

150 CLS

160 PRINT TAB(6)"** MENU **"
170 PRINT TAB(3)"1. FIRST CHOICE"
180 PRINT TAB(3)"2. SECOND CHOICE"

190 PRINT TAB(3)"3. third CHOICE"
200 PRINT TAB(3)"'^. FOURTH CHOICE"
210 PRINT TAB(6) "ENTER CHOICE"
220 A$ = INKEY$:IF A$= " " GOTO 220

230 A=VAL(A$)
240 IF A<1 OR A>NC GOTO 210
250 ON A GOSUB 1000,2000,3000,4000
260 RETURN

270 ' *** YOUR PROGRAM STARTS HERE ***

280 PRINT

290 GOSUB 150

300 END

990 • *** first subroutine ***

1000 RETURN

1990 ' *** SECOND SUBROUTINE ***

2000 RETURN

2990 ' *** THIRD SUBROUTINE ***

3000 RETURN

3990 ' *** FOURTH SUBROUTINE ***

4000 RETURN

106 IBM PC AND PCjr SUBROUTINE COOKBOOK

TIME ADDER

WHATrrDOES...

Totals seconds, minutes, and hours.

Versions; IBM PC and PCjr, Advanced BASIC

Variables

• TM: Total minutes

• TS: Total seconds

• TH: Total hours

• jMDDN: Minutes to be added in

• HOUR: Hours to be added in

• SECS: Seconds to be added in.

How to Use Subroutine

Various programs, such as timers, must add minutes and seconds and hours and
come up with a total despite the clumsy base-60/base-24 numbering system com
bination.

This subroutine takes the total seconds, minutes, and hours at any time and adds
user-supplied figures, producing a new set of totals.

Line-by-Line Description

Lines 160 to 180: Define the current total minutes, hours, and seconds.

Lines 190 to 210: Define the number of hours, minutes, and seconds to be added
to the above variables.

Lines 240 to 300: Add current total to additional minutes, seconds, and hours, in
form of total number of seconds.

Lines 280 to 290: Figure whole hours, and subtract that number of seconds
(hours X 3600) from the total number of seconds.

Line 300 to 310: Figure whole minutes, and subtract that number of seconds
(minutes X 60) from total seconds.

Line 340: Access the subroutine.

Lines 350 to 380: Print the results.

BUSINESS AND FINANCIAL SUBROUTINES 107

You Supply
You must supply startup values for TS, TM, and TH or else they will default to

those shown in lines 160 to 180. You may change these defaults to zero if you wish.
Your program should furnish MIN, HOUR, and SECS values.

Sample Applications
• Programs where two times are supplied and the total of the two are desired
• Finding out the total elapsed time from several timings
• Timing record album selections to see how long of a tape to use to record them.

RESULT...

New total time calculated.

10 • **************

20 '* *

30 • * TIME ADDER *

40 • * *

50 ' **************

60 '

70 ' + + VARIABLES + +

80 • TM: TOTAL MINUTES

90 ' TS: TOTAL SECONDS

100 • TH: TOTAL HOURS

110 • MIN: MINUTES TO BE ADDED

120 • HOUR: HOURS TO BE ADDED

130 • SECS: SECONDS TO BE ADDED

140

150

155 ' *** INITIALIZE ***

160 TM=54

170 TH=40
180 TS=30

190 MIN=30
200 H0UR=2

210 SECS=30

220 GOTO 340

108 IBM PC AND PCjr SUBROUTINE COOKBOOK

230 • *** SUBROUTINE ***

240 TM=(TM+MIN)*60
250 TS = TS+SECS

260 TH=(TH+HOUR)*3600
270 TS=TM+TS+TH

280 TH=INT(TS/3600)
290 TS=TS-TH*3600
300 TM=INT(TS/60)
310 TS = TS-TM*60
320 RETURN

330 • *** your program starts here ***

340 GOSUB 240
350 CLS

360 PRINT "SECONDS: ";TS

370 PRINT "MINUTES: ";TM

380 PRINT "HOURS: ";TH

MPG

WHAT IT DOES...

Calculates auto miles per gallon.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• BEGN: Starting odometer reading
• ODOM: Ctirrent odometer reading
• GALLNS: Gallons of gas consumed between readings.

How to Use Subroutine

This routine will figure your gas consumption given the starting and ending
odometer readings and number of gallons of gas consumed. To be accurate, you
should top off your gas tank before writing down BEGN value and top it off again

BUSINESS AND FINANCIAL SUBROUTINES 109

when recording ODOM. Any gas put in between those two should be added to the
final fill-up. In other words, the hffG can be figured for the aggregate of a number
of tanksful of gas.

Line-by-Line Description

lines 140 to 160: Define current ODOMeter reading, the BEGN or initial
odometer reading, and the number of gallons, GALLNS, of gas used. Your subrou
tine can use INPUT statements to allow the user to enter these values. Galmlatp
MPG.

Line 200: Round off MPG.

line 230: Access the subroutine.

Lines 240 to 250: Print results.

You Supply
You need to enter values for BEGN, ODOM, and GALLNS, as outlined above.

Variable MPG will store final miles per gallon figure.

Sample Applications
• Figuring out how economical a car is
• Comparing economy of two or more cars.

RESULT...

MPG calculated.

10

20

30
40

50

60

70
80

90

* *

* MPG *

* *

+ + VARIABLES + +

BEGN: STARTING ODOMETER

ODOM: CURRENT ODOMETER

100 ' GALLNS: GALLONS GAS USED

110 •
120 '

110 IBM PC AND PCjr SUBROUTINE COOKBOOK

130 • *** INITIALIZE ***

140 ODOM=36420
150 BEGN=36001
160 GALLNS = 13.8

170 GOTO 230

180 • *** SUBROUTINE ***

190 MPG=(ODOM-BEGN)/GALLNS
200 MPG=INT(MPG*10+.5)/10
210 RETURN

220 • *** YOUR PROGRAM STARTS HERE ***

230 GOSUB 190
240 CIS

250 PRINT "MPG=";MPG

l
o
o
i
i
i
o
o
u
i
-
o
o
o
m
i
i
o
o
o
o
i

k
D
I
U
a
D
D

1
1
1
0
0
0
0
0

O
O
O
O
W
l
O
O

1
0
0
1
1
0
0
1
i
i
T
O
O
o
n

OO
Ol

tl
-l

-O

p
 p

- ̂
 W
 w
 w
 P
 ̂

1
1
1
1
0
0
1
1

O
O
O
O
O
I
T
T

6
Bits and Bytes

114 IBM PC AND PCjr SUBROUTINE COOKBOOK

This section is for those at the threshold of advanced programming. All but one of
the routines in this part of the book deals with viewing and manipulating the indi
vidual bits within single bytes in your computer's memory.
This book doesn't purport to explain assembly or machine language. However,

these routines will be helpful for those who are just beginning to explore this area,
as well as those who want to do some sophisticated, memory-efficient BASIC pro
gramming that uses various "spare" memory locations to store information (be
yond the reach of the casual intruder). Therefore, there won't be a lengthy discus
sion of how to use these subroutines. If you don't know how already, they probably
wouldn't be of much use to you.
As you know, each memory location stores a single, 8-bit byte. The binary num

bers look something like this:

10110111

In many cases, the value of this whole byte is of use to us. Using a fuU byte allows
us to have a total of 256 different "states" in that location and, therefore, 256 differ
ent characters or conditions.

However, some functions do not have that many possibilities; A feature may be
on or off, for example. We could store a "1" in that location (00000001 in binary) if
the feature is on, and a "0" (00000000 in binary) if it is off. You can see, though, that
the other seven bits wUl never be used.

Boolean math is a way of performing certain bit-level operations. For example,
when two bytes are compared using the OR operator, the result will be a 1 when
ever that bit in either byte is a 1.
For example:

Original byte: 10110110 OR
Comparison byte: 01100011

Result: 11110111

AND will produce a 1 when both are 1, as in the example that foUows:

Original byte: 10110110 AND

Comparison byte: 01100011

Result: 00100010

IF NOT A = 1 will produce a zero (false) value if A does equal 1. There are a
number of other Boolean operators, including exclusive OR (XOR), but none of
these are used in this book. What these subroutines let you do is manipulate individ
ual bits, in order to set certain registers which may not require an entire byte.

BITS AND BYTES 115

Rather than POKEing a number into a memory location and changing the contents
of bits that do not concern you, use the "soft" POKEing routines presented here to
alter only the desired bit.

One of the subroutines in this section will allow PEEKing at any given bit within
a byte. Another will set any chosen bit to one, turning a feature "on." A third will
set any bit to zero, turning that feature "off." What if you don't care whether the
bit is on or off, but would like to set it to the other condition? In computer pro
gramming, this is known as a "to^le." Hitting the switch one time turns the fea
ture on or off, depending on its previous condition. Hitting it ̂ ain does the re
verse. The "reverse bit" subroutine will to^le any bit you choose. Another
routine, "Bit Displayer", prints the eight bits of a byte. In effect, it translates the
byte into binary.

The final subroutine rounds off numbers, to any specified degree of precision.
While not dealing with bits, it is included in this sertion as a genersd number crunch
ing utility.

This chapter is the only one in the book that does not include separate SAMPLE
APPLICATIONS. For the most part, the routines in this suggestion all perform a
bit manipulation of some type. When you need one, you'll ̂ ow what for. These
applications can include performing bit-level operations on various PC and PCjr
registers. For example, the tone generators of the PCjr use the status of individual
bits to control pitch and volume of each voice. While you can control these with
BASIC statements, more advanced programmers not interested in doing a program
100 percent in machine languj^e might want to do some playing with these bits
from a BASIC program for various special effects.

PEEK BIT

WHATrrDOES...

Looks at status, 0 or 1, of any selected bit in a given byte.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• ADDRESS: Location to PEEK

• BIT: Bit to examine

• V: Value of that bit, either 0 or 1.

116 ffiM PC AND PCjr SUBROUTINE COOKBOOK

How to Use Subroutine

You can get maximum mileage from your IBM PC and PCjr's RAM locations by
using many for multiple purposes. A given location has eight bits making up its
byte. The status of one bit might be used to indicate whether a certain feature is on
or off. Another bit in the same byte might be used to to^e some entirely different
function.

Accordingly, it is useful to look at just one bit in a byte to see its status. Your
program may take some action based on what is found, i.e., "IF V=0 THEN
PRINT"THE FEATURE IS OFF."

NOTE: The caret symbol (A) indicates the SHIFT 6 key.

Line-by-Line Description

Line 70: Define ADDRESS to PEEK.

Line 80: Define BIT to look at.

Line 180: Determine number to AND with byte.

Line 190: AND byte with P to determine status of the bit.

Line 220: Access subroutine.

Lines 230 to Line 240: Print results.

You Supply

Define BET as the bit 1-8 that you want to examine and ADDRESS as the mem
ory location to be PEEKed. V will indicate whether the bit is on or off by equaling
either 1 or 0.

RESULT...

Status of bit displayed.

10 ' ************

20 • * *

30 • * PEEK BIT *
40 ' * *
50 » ************

BITS AND BYTES 117

60 ' *** INITIALIZE ***

70 ADDRESS=36879

80 BIT=3

90 GOTO 220
100 I

110 • ++ VARIABLES + +

120 • ADDRESS: LOCATION TO PEEK

130 ' BIT: BIT TO EXAMINE

140 ' V: VALUE OF BIT

150 '
160 •

170 ' *** SUBROUTINE ***

180 P=BIT-1

190 V= (PEEK(ADDRESS)AND(2AP))/(2AP)
200 RETURN

210 • *** YOUR PROGRAM STARTS HERE ***

220 GOSUB 180

230 OLS:

240 PRINT V

BITDISPLAYER

WHATrrDOES...

Shows pattern of all eight bits within a byte. Converts the decimal
value to binary.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• ADDRESS: Location to POKE

• BITS: Bit pattern.

118 IBM PC AND PCjr SUBROUTINE COOKBOOK

How to Use Subroutine

This subroutine will display all of the bits within a byte. Each position will be
indicated by a one or a zero.
NOTE: The caret symbol (a) indicates the SHIFT 6 key. You could also use this

subroutine to provide a quick way of converting a number from decimal (in the
range 0 to 255 only) to binary. Simply POKE the number to an unused memory
location, and then immediately call this subroutine to PEEK that address. Quite a
roundabout way of performing the task but useful if you are writing software that
you deliberately want to be difficult to change, e.g., protection pmposes.
This subroutine will also serve as a means of converting positive integers smaller

than 256 to binary. Simply substitute your variable for PEEK(ADDRESS) and de
fine the variable as the decimal number you want to convert.

Line-by-Line Description

Line 70: Define address to be PEEKed.

Line 170: Null any previous value of BYTES.

Line 180: Provide TAB to print result.

lines 190 to 230: Repeat through each bit of byte, AND each bit with the next
highest power of two, and store the result in G$, which will store the on/off status
of each bit. Then, add G$ to BYTES.

Line 270: Access subroutine.

Line 280: Print result.

You Supply
You must define ADDRESS as the memory location, in decimal, that you want

to PEEK. The subroutine returns BITS, which is a representation of all the bits
within that byte.

AJl bits within a byte are displayed

10

20

30
40
50

* *

* BIT DISPLAYER *

* *

BITS AND BYTES 119

60 ' *** INITIALIZE ***

70 ADDRESS=36879

80 GOTO 260
90 t

100 ' ++ VARIABLES + +

110 ' ADDRESS: iyiEMORY BYTE

120 • TO DISPLAY

130 ' BIT$: BIT PATTERN

140 •
150 -

160 • *** SUBROUTINE ***

170 BIT$= " "

180 PRINTTAB(4)" " ;
190 FOR N=7 TO 0 STEP-1
200 V=(PEEK(ADDRESS)AND(2AN))/(2AN)
210 G$=MID$(STR$(V),2)
220 BIT$=BIT$ + G$

230 NEXT N
240 RETURN

250 • *** YOUR PROGRAM STARTS HERE ***

260 PRINT

270 GOSUB 170

280 PRINT "ADDRESS: ADDRESS

290 PRINT PEEK(ADDRESS)j " = "
300 PRINT TAB(4)BIT$

BIT TO ONE

WHATrrDOES...

Soft POKEs any desired bit within a byte so that it now has the value
of one, without changing any other bits.

120 IBM PC AND PCjr SUBROUTINE COOKBOOK

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• ADDRESS: Location to POKE

• BIT$: Bit to change to one.

How to Use Subroutine

This subroutine will take any bit within a byte, and change that value to one,
regardless of what it was before. None of the other bits within the byte will be
altered. This ability is useful for toeing certain features within a multipurpose
byte that may also be used to control other parameters of the IBM PC and PCjr.

NOTE: The caret symbol (a) indicates the SHIFT 6 key.

Line-by-Line Description

Line 70: Define ADDRESS to PEEK and POKE.

Line 80: Define BIT to change to a value of 1.

Line 170: POKE BIT to one.

You Supply

You must define ADDRESS as the memory location, in decimal, that you want
to POKE. BIT should be given the value of the bit, 1-8, that you want changed to a
value of one.

Bit within a byte is changed to one

10

20

30
40

50

* *

* BIT TO ONE *

* *

BITS AND BYTES 121

60 • *** INITIALIZE ***

70 ADDRESS=36878

80 BIT=3

90 GOTO 200
100 t

110 ' ++ VARIABLES + +

120 • ADDRESS: LOCATION TO POKE

130 ' BIT: BIT TO CHANGE TO ONE

140 •
150 t

160 • *** SUBROUTINE ***

170 POKE ADDRESS,PEEK(ADDRESS)0R(2ABIT)
180 RETURN

190 ' *** your program starts here ***

200 PRINT

210 GOSUB 170

BIT TO ZERO

WHAT IT DOES...

Soft POKEs any desired bit within a byte so that it now has the value
of zero without changing any other hits.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• ADDRESS: Location to POKE

• BIT$: Bit to change to zero.

122 IBM PC AND PCjr SUBROUTINE COOKBOOK

How to Use Subroutine

This subroutine will take any bit within a byte and change that value to zero
regardless of what it was before. None of the other bits within the byte will be
altered. This ability is useful for tolling certain features within a multipurpose
byte that may also be used to control other parameters of the IBM PC and PCjr.
NOTE: The caret symbol (a) indicates the SHIFT 6 key.

Line-by-Line Description

Line 70: Define ADDRESS to PEEK and POKE.

Line 80: Define BIT to change to a value of 0.

Line 170: POKE BIT to one.

You Supply
Tbu must define ADDRESS as the memory location, in decimal, that you want

to POKE. BIT should be given the value of the bit, 1-8, that you want changed to a
value of zero.

RESULT...

Bit within a byte is changed to zero.

10

20

30
40
50

* *

* BIT TO ZERO *

* *

60 ' *** INITIALIZE ***

70 ADDRESS=36879

80 BIT=3

90 GOTO 200
100 > !
110 • VARIABLES -h-l-

120 • ADDRESS: LOCATION TO POKE

130 ' BIT: BIT TO CHANGE TO ZERO
140 '
150 I

BITS AND BYTES 123

160 ' *** SUBROUTINE ***

170 POKE ADDRESS,PEEK(ADDRESS)AND(255-(2ABIT))
180 RETURN

190 ' *** your program starts here ***

200 PRINT

210 GOSUB 170

REVERSE BIT

WHATrrDOES...

Soft POKEs any desired bit within a byte so that it now has the op
posite value without changing any other bits.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• ADDRESS: Location to POKE

• BIT: Bit to reverse.

How to Use Subroutine

This subroutine will take any bit within a byte and change that value to the oppo
site of what it was before. If the bit was one, it will be changed to zero. A zero bit
will be given a value of one. None of the other bits within the byte will be altered.
This ability is useful for toeing certain features within a multipurpose byte that
may also be used to control other parameters of the IBM PC and PCjr. Using this
subroutine, it is not necessary to know whether the feature is on or off. "Reverse
Bit" will change it to the other status automatically.

NOTE: The caret symbol (a) indicates the SHIFT 6 key.

124 ffiM PC AND PCjr SUBROUTINE COOKBOOK

Line-by-Line Description

Line 70: Define ADDRESS to PEEK and POKE.

Line 80: Define BIT to reverse.

Lines 170 to 180: Find out value of the bit, then reverse that, using OR.

You Supply
You must define ADDRESS as the memory location, in decimal, that you want

to POKE. BIT should be given the value of the bit, 1-8, that you want changed to
reverse in value.

RESULT...

Bit within a byte is reversed.

10 • ***************

20 ' * *

30 ' * REVERSE BIT *
40 ' * *
50 ' ***************

60 • *** INITIALIZE ***

70 ADDRESS=36878
80 BIT=3

90 GOTO 210
100

VARIABLES

ADDRESS: LOCATION TO POKE

BIT: BIT TO REVERSE

110

120

130
140

150

160 • *** SUBROUTINE ***

170 M=1-(PEEK(ADDRESS)AND(2ABIT))/(2ABIT)
180 POKE ADDRESS,PEEK(ADDRESS)AND(255-(2ABIT))0R(M*(2ABIT))
190 RETURN

BITS AND BYTES 125

200 ' *** YOUR PROGRAM STARTS HERE ***

210 PRINT

220 GOSUB 170

BINARY TO DECIMAL

WHATITDOES...

Changes binary number to decimal equivalent.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• A$: Binary number in string form
• A: Decimal equivalent.

How to Use Subroutine

Several of the subroutines in this book—and many more that you will prepare—
will require supplying decimal equivalents of binary numbers. Once the binary
number has been "designed," the user needs the decimal equivalent for the appro
priate POKE statement.

This routine will calculate the decimal numbers for you. Just enter the binary
number when asked. The routine will check to see that Ol^Y Ts and O's have
been entered, then figure the result.

NOTE: The caret symbol (a) indicates the SHIFT 6 key.

Line-by-Line Description

Lines 150 to 160: Look at each binary character, and raise any I's to the power of
two indicated by the I's position within the byte.

Lines 200-210: Ask user for binary number to convert.

Lines 220 to 270: Check for presence of illegal characters.

Line 290: Print result.

126 IBM PC AND PCjr SUBROUTINE COOKBOOK

You Supply
You must enter the binary number to be converted.

RESULT...

Binary number converted to decimal.

10 ' ******************

20 ' * *

30 • * BINARY/DECIMAL *
40 ' * *
50 ' ******************

60 • *** INITIALIZE ***

70 ' GOTO 200
80 •

90 ' ++ VARIABLES + +
100 • A$: BINARY NUMBER IN STRING FORM

110 • A: DECIMAL EQUIVALENT

120 •
130 -

140 ' *** SUBROUTINE ***

150 A=0
160 FOR N=1 TO LEN(A$) :P=LEN(A$)-N:A=A+2AP*

VAL(MID$(A$,N,1))
170 NEXT N

180 RETURN

BITS AND BYTES 127

190 ' *** your program starts here ***

200 CIS

210 INPUT "ENTER NUMBER TO CONVERT: ";A$

220 FOR N=1 TO LEN(A$)

230 T$=MID$(A$,N,1)
240 IF T$="0" OR T$="l" GOTO 270

250 PRINT "NOT BINARY NUMBER"
260 GOTO 210

270 NEXT N

280 A=0:GOSUB 150

290 PRINT A$" = ";A

ROUNDER

WHATrrDOES...

Rounds positive number, and cuts off after desired number of deci
mal places.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• A: Number to be rounded

• P: Digits desired to right of decimal point
• B: Rounded value.

How to Use Subroutine

The IBM PC and PCjr sometimes provide a great deal more precision in calcula
tions than we need. For example, our car may get 24.3459121 miles per gallon, but
we would be happy to know that it is close to 24.3. This subroutine can be used to
produce the desired degree of precision, while still rounding the numbers so that the
figure is as accurate as the significant digits reflect.
NOTE: The caret symbol (a) in the program listing stands for SHIFT 6 key.

Line-by-Line Description

Line 150: Define number to be rounded.

Line 160: Define number of digits to right of decimal desired.

128 IBM PC AND PCjr SUBROUTINE COOKBOOK

Line 190: Add rounding factor.

Line 200: Take integer portion of number multiplied by 10 raised to P power, and
divide that by 10 raised to P power.

Line 230: Access subroutine.

Line 240: Print result.

You Supply

You should define A to be the number to be rounded. P will equal the number of
digits to the right of the decimal point that you want. The subroutine will return B,
the rounded value. If B has a fractional decimal part that ends in zero, the zero will
not be printed, even though that many decimal places have been requested. For
example, if two decimal places are desired, 55.344 and 55.399 will be returned as
55.34 and 55.4 respectively.

RESULT...

Number rounded as specified.

10

20

30
40

50

60

70

80

90

* *

* ROUNDER *

* *

+ + VARIABLES + +

A: NUMBER TO BE ROUNDED

P: DIGITS DESIRED TO

100 ' RIGHT OF DECIMAL POINT

110 ' B: ROUNDED VALUE

120 '
130 t

140 ' *** INITIALIZE ***

150 A=55.534
160 P=2

170 GOTO 230

BITS AND BYTES 129

180 ' *** SUBROUTINE ***

190 C=A+5.5*10A-(P+1)
200 B = INT(C*10AP)/10AP
210 RETURN

220 • *** YOUR PROGRAM STARTS HERE ***

230 GOSUB 190
240 PRINT B

i,

7
Joysticks and Paddles

132 BM PC AND PCjr SUBROUTINE COOKBOOK

No, joysticks are not just for games. Though these devices are now most frequently
seen in arcade-style shoot-em-ups, they have many applications in business, engi
neering, and science. A joystick is an excellent input device for positioning the cur
sor on the screen with some accuracy.

Joysticks have important potential uses in many business and other programs.
Like mice and digital pads, a joystick is just another useful input device for your
IBM computer. The PCjr, of course, has a joystick port built in. This feature can be
added to the PC or XT by plugging in a so-called "games" adapter.

This chapter covers the basics of using joysticks and joystick-like input to control
objeas on the screen of your computer. Six subroutines are provided. Four are
aimed at you PC and XT users who have no need or desire to use true joysticks but
would still like to simulate their action. These subroutines use the numeric/cursor
pad to allow direaional input. This chapter contains four subroutines that allow
you to use the arrow keys to simulate a joystick's directional functions. Your pro
gram can also use any key of your choice (such as the SIACE bar) to simulate the
FIRE button of joysticks and paddles.

From a programmer's standpoint, the use of the ersatz joystick breaks down into
several neat modules. We need to know where on the IBM PC and PCjr's screen the
object to be moved is. We also must check, as often as possible, the status of the
player's joystick to see if it is pressed in any direction, or if the FIRE button has
been depressed. If so, the programmer must update the location of the object on the
screen. This is usually done by changing the viue of the LOCATE statement where
the object is printed by adding or subtracting from the rows and columns. We need
to put the object in the new position and, if we do not want to leave a "trail" behind
the object, erase its image from the old location.

The different routines have been included in this section to allow several different
types of object movement in your programs. The first joystick subroutine in this
chapter allows moving an object only from side to side to simulate a horizontal
paddle (like Breakout-type games). Another mimics the original PONG game, with
its vertical paddles. A third subroutine allows moving an object in the four primary
direaions of a compass—north, south, east, and west. This would be helpful for
maze-type games of the PacMan ilk. Those of you with BASIC 2.0 can also gain
northeast, southeast, northwest, and southwest input through a special keytrapping
subroutine.

Bringing all these functions together is a drawing subroutine—usable on mono
chrome monitors—^that allows drawing on the screen with any alphanumeric or
other IBM character.

Finally, a true joystick reading routine is presented that returns the value of the
IBM joysticks as well as the FIRE buttons. Another routine is included that allows
interrupting a program and branching to a subroutine of your choice whenever any
of the four FIRE buttons are pressed.

JOYSTICKS AND PADDLES 133

HORIZONTAL PADDLE SIMULATION

WHAT IT DOES...

Moves object side to side only.

Versions: IBM PC, Advanced BASIC

Variables

• ROW: Row of cursor

• COL: Column of cursor

• CURSR: Cursor character

• W: Width of screen.

How to Use Subroutine

Currently, few paddles are marketed for the IBM PC and PCjr. However, the PC
has a cursor pad that can be used to simulate side-to-side movement as used in
Breakout-type games. The PCjr has no numeric pad although some programs, such
as Homeword, use the Pg Up, Pg Dwn, Home, and End keys to simulate direc
tional arrows.

Although true paddles use a potentiometer to constantly tell the computer the
proper position of the cursor, some games and applications work better when only
the direction of movement, not actual position, is indicated, using the arrow keys.
This approach makes games programming simpler. Move an object one character to
the right when the right arrow is pressed and one character to the left when the left
arrow is pressed.
This subroutine will tell you whether or not either case has occurred. Your pro

gram should repeatedly check to see if the value of COL has changed and take
action accordingly. Your object might be located in one position, defined as ROW
and COL. The appropriate variable, in this case COL, can be updated each time a
right or left arrow key is depressed. Make sure that COL never exceeds the end of
the screen when PRD^ing objects to the screen.

Line-by-Line Description

Lines 160 to 180: Clear screen, define width of screen.

Line 190: Turn off 25th line display.

Line 200: Define cursor as CHR$(220) in the IBM character set.

134 IBM PC AND PCjr SUBROUTINE COOKBOOK

Lines 210 to 220: Define initial column as 1 and row for movement as 10.

Line 230: Activate trapping for left and right arrow key, (KEY(12) and KEY(13)).

Lines 240 to 250: Tell program where to go when those keys are pressed.

Lines 280 to 290: Check to see that the current cursor column is not more than

or less than 1, and fix if it is.

Line 310: LOCATE cursor at RO^)C^COL, and print a space to erase old character
at that position.

Line 320: Reduce COL by 1, moving object to left.

Line 340: LOCATE cursor at RO^Sd^COL, and print a space to erase old character
at that position.

Line 350: Increase COL by 1, moving object right.

Line 380: Locate cursor at new value of RO^COL, and print cursor character,
CHR$(CURSR), there.

You Supply

Just press arrow keys. ROW can be defined as the screen column on which the
object moves. CURSR can be defined as any character you wish.

Sample Applications

• Breakout-type games
• Moving cursor for horizontal menus
• Editing functions within applications program.

Object will move on screen under cursor pad control from side to
side only.

10

20

30
40

50

60

* *

* MOVE OBJECTS *

* SIDE TO SIDE *

* *

JOYSTICKS AND PADDLES 135

70 •

80 • ++ VARIABLES + +

90 •

100 • ROW: ROW OF CURSOR

110 ' COL: COLUMN OF CURSOR

120 • CURSR: CURSOR CHARACTER

130 •
U0 I

150 ' *** INITIALIZE ***

160 CLS

170 W=79

180 SCREEN 0,0,0

190 KEY OFF

200 CURSR=220

210 C0L=1

220 ROW=10

230 KEY(12) 0N:KEY(13) ON
240 ON KEY(12) GOSUB 310
250 ON KEY(13) GOSUB 340
260 GOTO 380

270 • *** SUBROUTINE ***

280 IF COL>W THEN COL=W

290 IF C0L<1 THEN C0L=1

300 GOTO 380

310 LOCATE ROW,COL:PRINT CHR$(32);
320 C0L=C0L-1

330 RETURN 280
340 LOCATE ROW,COL:PRINT CHR$(32);
350 C0L=C0L+1

360 RETURN 280

370 ' *** YOUR PROGRAM STARTS HERE ***

380 LOCATE ROW,COL:PRINT CHR$(CURSR)
390 GOTO 380

136 BM PC AND PCjr SUBROUTINE COOKBOOK

VERTICAL PADDLE SIMULATION

WHATrrDOES...

Moves object up and down only.

Version: IBM PC, Advanced BASIC

Variables

• ROW: Row object moves in
• COL: Column to move object in
• CURSR: Cursor character.

How to Use Subroutine

There are currently few paddles marketed for the IBM PC and PCjr. However,
the PC has a cursor pad that can be used to simulate up and down movement, as
used in PONG-type games. The PCjr has no numeric pad, although some pro
grams, such as Homeword, use the Pg Up, Pg Dwn, Home, and End keys to simu
late dirertional arrows.

Although true paddles use a rheostat to constantly tell the computer the proper
position of the cursor, some games and applications work better when only the
direction of movement, not actual position, is indicated using the arrow keys. This
approach makes games programming simpler. Move an object up one row when
the up arrow is pressed and down one row when the down arrow is pressed.
This subroutine will tell you whether or not either case has occurred. Your pro

gram should repeatedly check to see if ROW has changed and take action accord
ingly. Your object might be located along one side of the screen, in a position defined
by the variables ROW and COL. ROW can be changed each time an up or down
arrow key is pressed. Make sure that ROW is never less than 1 or larger than the
bottom row of the screen (usually 24 or 25).

Line-by-Line Description j

Lines 160 to 180: Clear screen, define width of screen.

Line 190: Turn off 25th line display.

Line 200: Define cursor as CHR$(220) in the IBM character set.

Lines 210 to 220: Define initial row as 1, and column for movement as 10.

JOYSTICKS AND PADDLES 137

Line 230: Activate trapping for up and down arrow key, (KEY(11) and KEY(14)).

Lines 240 to 250: Tell program where to go when those keys are pressed.

Lines 280 to 290: Check to see that the current cursor row is not more than 24,
or less than 1, and fix if it is.

Line 310: LOCATE cursor at RG^K^COL, and print a space to erase old character
at that position.

Line 320: Reduce ROW by 1, moving object up.

Line 340: LOCATE cursor at ROWCOL, and print a space to erase old character
at that position.

Line 350: Increase ROW by 1, moving object down.

Line 380: Locate cursor at new value of ROWCOL, and print cursor chararter,
CHR$(CURSR) there.

You Supply

Just press arrow keys. COL can be defined as the screen column on which the
object moves. CURSR can be defined as any character you wish.

Sample Applications

• Pong-type games
• Moving cursor through vertical menus

Editing functions within applications program.

RESULT...

Object will move on screen under joystick control, up and down
only.

10

20

30
40
50

60

* *

* MOVE OBJECTS *

* UP AND DOWN *

* *

138 IBM PC AND PCjr SUBROUTINE COOKBOOK

70 t

80 ' ++ VARIABLES + +

90 '

100' ROW: ROW OF CURSOR

110 • COL: COLUMN OF CURSOR

120 • CURSR: CURSOR CHARACTER

130 '
140 t —

150 ' *** INITIALIZE ***

160 CLS

170 W=79

180 SCREEN 0,0,0

190 KEY OFF

200 CURSR=220

210 COL=10

220 R0W=1

230 KEY(ll) 0N:KEY(l4) ON
240 ON KEY(ll) GOSUB 310

250 ON KEY(l4) GOSUB 340
260 GOTO 380

270 ' *** SUBROUTINE ***

280 IF R0W>24 THEN R0W=24

290 IF R0W<1 THEN R0W=1

300 GOTO 380

310 LOCATE ROW,COL:PRINT CHR$(32);
320 ROW=ROW-1

330 GOTO 380
340 LOCATE ROW,COL:PRINT CHR$(32);
350 R0W=R0W+1

360 RETURN 280

370 ' *** YOUR PROGRAM STARTS HERE ***

380 LOCATE ROW,COL:PRINT CHR$(CURSR);
390 GOTO 380

JOYSTICKS AND PADDLES 139

CURSOR PAD JOYSTICK-N,S,E,W

WHAT IT DOES...

Moves object north,south,east and west, using arrow keys as joy
stick.

Versions: IBM PC, Advanced BASIC

Variables

• ROW: Current cursor row

• COL: Current ou-sor column

• W: Width of screen.

How to Use Subroutine

The cursor pad arrow keys can be used to simulate the north, south, east, and
west movements of a joystick. Your games and applications can use the status of this
joystick-type input to control the aaions of your programs. Usually, the input from
the cursor pad keys directs the movement of an object on the screen. That is, when
the "joystick" is pressed left, the object moves left. Motion to the right, up, and
down can also be accomphshed.
There is no reason why a joystick could not be applied to other program tasks,

however. Such input might be appropriate for a very young user who does not
know how to type on the keyboard. Moving the joystick to the left might triggpr
one pictorial "menu" choice; to the right, another. Pressing the FIRE button could
advance the program to the next screen, and so forth.
This subroutine, while written with objea movement in mind, can easily be

adapted to that type of apphcation. The basic routine will, if called repeatedly, moni
tor the status of the arrow keys joystick and provide a value that indicates which
way the cursor should move. Only north, south, east, or west movement is allowed
with this routine, which is best suited for many "maze" and similar games.
The subroutine uses Advanced BASICs "key trapping" capabilities. The Intel

8088 microprocessor used in the IBM PC and PCjr computers can detect certain
events, and interrupt a program if directed to. (Interrupts are discussed more thor
oughly in Chapter 2.) This feature is artivated by including a KEY(n) ON statement
where n equals the number assigned to that key. Keys 1-10 are the funaion keys,
while keys 11-14 are the cursor pad arrow keys. By specifying the proper KEY(n)
ON statements and then supplying an appropriate ON KEY(n) GOSUB... state
ment, we can tell the program where to go whenever that key is pressed. Then, no

140 ffiM PC AND PCjr SUBROUTINE COOKBOOK

matter what the program is doing at that point, it will be interrupted and control
will pass to the designated subroutine. Since we usually have no way of knowing
where the program was at the time, it is desirable to send the program back to a
specific place, using "RETURN linenumber" when finished with the interrupt rou
tine.

Call the subroutine whenever you wish to check on the status of the joysticks.
This subroutine prints an asterisk character on the screen. You may change the
character by substituting some other character for the asterisk.
The routine leaves a "trail" of the character behind it.

Line-by-Line Description

Lines 150 to 170: Clear screen, define width of screen.

Line 180: Turn off 25th line display.

Line 190: Define initial row and column as 1 (upper left hand corner of screen.)

Line 200: Activate trapping for up, right, left, and down arrow keys, (KEY(11),
KEY(12), KEY(13) and KEY(14)).

Lines 210 to 240: Tell program where to go when those keys are pressed.

Lines 270 to 300: Check to see that the current cursor row is not more than 24,
or less than 1, nor that the current column is less than 1 or greater than the width of
the screen, and fix if it is.

Line 320: Reduce ROW by 1, moving object up.

Line 340: Reduce COL by 1, moving object left.

Line 360: Increase ROW by 1, moving objea down.

Line 380: Increase COL by 1, moving object right.

Line 410: Locate cursor at new value of ROWCOL, and print cursor character
there.

You Supply

Just press arrow keys to move object.

Sample Applications

• Maze games with four directional movement
• Drawing of right angles on screen
• Line-oriented cursor movement.

JOYSTICKS AND PADDLES 141

RESULT...

Object will move on screen under cursor pad control in north,
south, east, or west directions.

* *

* MOVE OBJECTS *

* N,S,E, and W *
* *

+ + VARIABLES + +

10
20

30
40

50
60

70

80

90

100 ' ROW: ROW OF CURSOR

110 • COL: COLUMN OF CURSOR

120 '
130 .

140 • *** INITIALIZE ***

150 CLS
160 W=79

170 SCREEN 0,0,0

180 KEY OFF

190 R0W=1:C0L=1

200 KEY(ll) 0N:KEY(12) 0N:KEY(13) 0N:KEY(l4) ON
210 ON KEY(ll) GOSUB 320
220 ON KEY(12) GOSUB 340

230 ON KEY(13) GOSUB 360
240 ON KEY(14) GOSUB 380
250 GOTO 410

142 ffiM PC AND PCjr SUBROUTINE COOKBOOK

260 • *** SUBROUTINE ***

270 IF R0W>24 THEN R0W=24
280 IF R0W<1 THEN R0W=1

290 IF COL>W THEN COL=W

300 IF C0L<1 THEN C0L=1

310 GOTO 410
320 R0W=R0W-1

330 RETURN 270
340 G0L=G0L-1

350 RETURN 270
360 G0L=G0L+1

370 RETURN 270

380 R0W=R0W+1

390 RETURN 270

400 • *** YOUR PROGRAM STARTS HERE ***

410 LOGATE ROW,GOL:PRINT"*";
420 GOTO 410

CURSOR PAD JOYSTICK-ALL DIRECTIONS

WHATrrDOES...

Moves object in eight compass points.

Versions: IBM PC, Advanced BASIC 2.0

Variables

• ROW: Current cursor row

• COL: Current cursor column.

JOYSTICKS AND PADDLES 143

How to Use Subroutine

In the previous subroutine, Advanced BASIC's key trapping routine was used to
send control to various direction-governing modtdes depending on which of the
four arrow keys were pressed. This subroutine allows movement in eight compass
directions.

The arrow keys can be used to simulate the north, south, east, and west move
ments of a joystick. Your games and applications can use the status of this joystick to
control the actions of yom programs. Usually, the movement of the joystick direas
the movement of an object on the screen. That is, when the joystick is pressed left,
the object moves left. Motion to the right, up, and down can also be accomplished.
There is no reason why a joystick could not be applied to other program tasks

however. Such input might be appropriate for a very young user who does not
know how to type on the keyboard. Moving the joystick to the left might trigger
one pictorial "menu" choice; to the right, another.
This subroutine, while written with object movement in mind, can easily be

adapted to that type of application. The basic routine will, if called repeatedly, moni
tor the status of the arrow key joystick and provide a value that indicates which
way the cursor should move. All eight compass directions are permitted with this
routine.

The subroutine uses Advanced BASIC'S "key trapping" capabihties. The Intel
8088 used in the IBM computers has the abUity to look for certain events, and
interrupt a program if direrted to. (Interrupts are discussed more thoroughly in
Chapter 2.) The feature is activated by including a KEY(n) ON statement where n
equals the number assigned to that key. Keys 1-10 are the fonaion keys, while keys
11-14 are the cursor pad arrow keys. By specifying the proper KEY(n) ON state
ments, and then supplying an appropriate ON KEY(n) GOSUB... statement, we
can tell the program where to go whenever that key is pressed. Then, no matter
what the program is doing at that point, it will be interrupted and control will pass
to the designated subroutine. Since we usually have no way of knowing where the
program was at the time, it is desirable to send the program back to a specific place,
using "RETURN linenumber" when finished with the interrupt routine.
BASIC 2.0 also has the capability of trapping six other keys, KEY(15-20), but

with the added feature of allowing the user to decide which keys will be trapped. In
other words, we may define Key 15 as any key or key combination on the key
board, including shift, control, alternate, or a combination of these. Each of the so-
called "shift" type keys has a code, and the normal keys have "scan codes" of their
own, which can be found in Appendix K of the BASIC manual.
We redefine KEY(15-20) by assigning two strings to it, the first being the "shift"

state, and the second being the scan code of the key itself. Here is an example:

KEY (15), CHR$ (8eH04) + CHR$ (30)

144 IBM PC AND PCjr SUBROUTINE COOKBOOK

The code for the control key is &H04, and 30 is the scan code (different from
ASCn code) for the "A" key. So, we can trap CTRL-A using KEY(15) ON and ON
KEY(15)GOSUB...
Other shift-type keys have codes of their own, with CAPS LOCK being &H40;
NUM LOCK, &H20; Alt, &H08; and SMFT either &H01, &H02, or &H03.
Scan codes are included for all the keys on the keyboard, including Pg Up, etc.
(which roughly correspond to northeast, and so forth, on the cursor pad). So we can
trap for these as well. No "shift" is desired, so CHR$(0) is used in place of one of the
other shift-type codes.
Once we have set up the interrupt routines for the four "corner keys" on the

cursor pad, the routine proceeds exactly like the previous one, except that diagonal
movement produces a change in both ROW and COL to account for movement to,
say, both the right and up when the Pg Up key is pressed. Call the subroutine
whenever you wish to check on the status of the joysticks. This subroutine prints
an asterisk character on the screen. You may change the character by substituting
some other character for the asterisk.

Line-by-Line Description

Lines 150 to 170: Clear screen, set width.

Line 180: Turn off 25th line display.

Line 190: Set initial row and column to 1.

Lines 200 to 210: Turn on KEY(11-18).

Lines 220 to 250: Redefine KEY(15-18) as cursor corner keys.

Lines 270 to 330: Tell program which subroutines to use when keys are trapped.

Lines 360 to 390: If ROW or COL are outside screen boundaries, fix it.

Line 410: Decrease ROW by one, moving objea up.

Line 430: Decrease COL by one, moving object left.

Line 450: Increase COL by one, moving object right.

Line 480: Increase ROW by one, moving object down.

Line 490: Decrease ROW by one, increase COL by one, moving object north
east.

Line 510: Decrease both ROW and COL by one, moving object northwest.

Line 530: Increase ROW by one, decrease COL by one, moving object south
west.

JOYSTICKS AND PADDLES 145

Line 550: Increase both ROW and COL by one, moving objea southeast.

Line 580: Locate cursor at updated position of RO\C^ COL, and print asterisk
there.

You Supply
Just use cursor pad keys to move objea.

Sample Applications
• Games requiring full screen movement
• Drawing programs, computer design
• Fast positioning of cursor.

RESULT...

Objea will move on screen under cursor pad control in all eight
compass directions.

* *

* MOVE OBJECTS *

* ALL DIRECTIONS *

* *

+ + VARIABLES + +

10

20

30
40
50

60

70

80

90

100 ' ROW: ROW OF CURSOR

110 • COL: COLUMN OF CURSOR

120 '
130 i

140 • *** INITIALIZE ***

150 CLS
160 W=79

170 SCREEN 0,0,0
180 KEY OFF

190 R0W=1:C0L=1

146 ffiM PC AND PCjr SUBROUTINE COOKBOOK

200 KEY(ll) 0N:KEY(12) 0N:KEY(13) 0N:KEY(14) ON
210 KEY(15) 0N:KEY(16) 0N:KEY(17) 0N:KEY(18) ON
220 KEY 15,CHR$(0)+GHR$(&H49)
230 KEY 16,CHR$(0)+CHR$(&H47)
240 KEY 17,GHR$(0)+GHR$(&H4F)
250 KEY 18,GHR$(0)+GHR$(&H51)
260 ON KEY(ll) GOSUB 4l0
270 ON KEY(12) GOSUB 430
280 ON KEY(13) GOSUB 450
290 ON KEY(14) GOSUB 470
300 ON KEY(15) GOSUB 490
310 ON KEY(16) GOSUB 510
320 ON KEY(17) GOSUB 530

330 ON KEY(18) GOSUB 550
340 GOTO 580

350 ' *** SUBROUTINE ***

360 IF R0W>24 THEN R0W=24
370 IF R0W<1 THEN R0W=1

380 IF GOL>W THEN GOL=W

390 IF G0L<1 THEN G0L=1

400 GOTO 580
410 R0W=R0W-1
420 RETURN 360

430 G0L=G0L-1
440 RETURN 360
450 G0L=G0L+1
460 RETURN 360
470 ROW=ROW+1
480 RETURN 360

490 R0W=R0W-1:G0L=G0L+1
500 RETURN 360
510 R0W=R0W-1:G0L=G0L-1

520 RETURN 360

530 R0W=R0W+1:G0L=G0L-1
540 RETURN 360

550 R0W=R0W+1:G0L=G0L+1

560 RETURN 360

JOYSTICKS AND PADDLES 147

570 ' *** YOUR PROGRAM STARTS HERE ***

580 LOCATE ROW,COL:PRINT"*";

590 GOTO 580

DRAWING SUBROUTINE

WHATrrDOES...

Draws on screen, changing cursor character as desired.

Versions: IBM PC, Advanced BASIC or BASIC 2.0

Variables

• ROW: Current cursor row

• COL: Current cursor column

• CURSR: Current cursor character.

How to Use Subroutine

This subroutine, similar to the last, has the added feature of automatically chang
ing the cursor character, under direction of the operator.
You can adapt this subroutine to many different types of programs, such as draw

ing floor plans, and other design projects.
Pressing any alpha key will cause the cursor to change to that letter or, with the

shift or control key, other characters of the IBM set can be used.

Line-by-Line Description

Lines 150 to 180: Initialize cursor character, screen width, and clear screen.

Line 190: Turn off 25th line display.

Line 200: Set initial row and column to 1.

Line 210: Turn on Keys 11-14 (arrow keys).

Lines 220 to 250: See if BASIC 2.0 is running.

Line 260; If so, tiurn on Keys 15-18.

148 IBM PC AND PCjr SUBROUTINE COOKBOOK

Lines 270 to 300: Redefine Keys 15-18 as cursor pad corner keys.

Lines 310 to 380: Tell program which subroutines to access if keys are pressed.

Lines 410 to 440: If cursor would go beyond screen limits, fix.

Line 460: Decrease ROW by one, moving object up.

Line 480: Decrease COL by one, moving object left.

Line 500: Increase COL by one, moving object right.

Line 520: Increase ROW by one, moving object down.

Line 540: Decrease ROW by one, increase COL by one, moving objert north
east.

Line 560: Decrease both ROW and COL by one, moving object northwest.

Line 580: Increase ROW by one, decrease COL by one, moving object south
west.

Line 600: Increase both ROW and COL by one, moving object southeast.

Line 630: Locate cursor at updated position of RO^ COL, and print CHR-
$(CURSR) there.

Line 640: Wait for other key to be pressed.

Line 650: Change cursor to key pressed.

Line 660: If non-character key pressed, restore cursor to original value.

You Supply

Move cursor with cursor controls, change it by pressing other keys.

Sample Applications

• Computer-assisted drafting
• Children's educational programs
• Laying out rough screens and menus.

+ + VARIABLES + +

JOYSTICKS AND PADDLES 149

10 < **********

20 ' * *

30 ' * DRAW *

40 ' * *
50 • **********

60

70
80

90 • ROW: ROW OF CURSOR

100 • COL: COLUMN OF CURSOR

110 • CURSR: CURSOR CHARACTER

120 •
130 .

140 ' *** INITIALIZE ***

150 CLS
160 CURSR=8

170 W=79

180 SCREEN 0,0,0

190 KEY OFF

200 R0W=1:C0L=1

210 KEY(ll) 0N:KEY(12) 0N:KEY(13) 0N:KEY(l4) ON
220 PRINT "Are you running BASIC 2.0?",

230 A$=INKEY$:IF A$="" GOTO 230
240 CLS

250 IF A$="Y" OR A$="y" THEN GOTO 260 ELSE GOTO 350
260 KEY(15) 0N:KEY(16) 0N:KEY(17) 0N:KEY(18) ON
270 KEY 15,CHR$(0)+CHR$(&H49)
280 KEY 16,CHR$(0)+CHR$(&H47)

290 KEY 17,CHR$(0)+CHR$(&H4F)
300 KEY 18,CHR$(0)+CHR$(&H51)
310 ON KEY(15) GOSUB 540
320 ON KEY(16) GOSUB 560

330 ON KEY(17) GOSUB 580
340 ON KEY(18) GOSUB 600
350 ON KEY(ll) GOSUB 460
360 ON KEY(12) GOSUB 480
370 ON KEY(13) GOSUB 500
380 ON KEY(l4) GOSUB 520

390 GOTO 630

150 ffiM PC AND PCjr SUBROUTINE COOKBOOK

400 • *** SUBROUTINE ***

410 IF R0W>24 THEN R0W=24
420 IF R0W<1 THEN R0W=1

430 IF COL>W THEN COL=W
440 IF C0L<1 THEN C0L=1

450 GOTO 630
460 R0W=R0W-1
470 RETURN 410
480 C0L=G0L-1

490 RETURN 410
500 C0L=C0L+1

510 RETURN 410
520 R0W=R0W+1

530 RETURN 410
540 R0W=R0W-1:G0L=C0L+1

550 RETURN 410
560 R0W=R0W-1:G0L=G0L-1

570 RETURN 4l0
580 R0W=R0W+1:G0L=G0L-1

590 RETURN 410
600 R0W=R0W+1:G0L=G0L+1

610 RETURN 410

620 • *** YOUR PROGRAM STARTS HERE ***

630 LOGATE ROW,GOL:PRINT GHR$(GURSR);
640 A$ = INKEY$:IF A$= " " GOTO 630

650 GURSR=ASG(A$)
660 IF GURSR=0 THEN GURSR=8
670 GOTO 630

READ JOYSTICKS

WHATrrDOES...

Returns value of IBM joysticks.

JOYSTICKS AND PADDLES 151

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• AX: X coordinate Joystick A
• AY: Y coordinate Joystick A
• BY: Y coordinate Joystick B
• BX: X coordinate Joystick B
• Fl: Status Fire Button A

• F2: Status Fire Button B.

How to Use Subroutine

The true joysticks are somewhat trickier to use with the IBM PC and PCjr, be
cause, unlike the methods presented so far, the joysticks return an actual screen
coordinate position rather than simply the desired direction of movement. The er
satz joystick routines provided so far have simulated Atari-type joysticks, which
consist of four switches that indicate in which dirertion the joystick is pressed. IBM
joysticks, on the other hand, use a pair of rheostats which, depending on the resis
tance of each, can show the exact orientation, from center, of the sticks. Once pro
perly calibrated (that is, the "center" position of the joystick is the "center" resis
tance value), these analog type joysticks can indicate movement more rapidly and
precisely than the Atari type.
Assigning a value to a variable using the STICK(0) function causes the IBM com

puter to read the present x and y coordinates of the two joysticks. The value of the x
coordinate for joystick A will be assigned to n. To assign the values of the joystick A
y coordinate and both x and y of joystick B, it is necessary to carry out
v=STICK(l), v=STICK(2), and v=STICK(3) statements.
Note that only the v=STICK(0) statement will cause the sticks to actually be

read, even though v will contain just one value. In other words, STICK(0) retrieves
all four values so that S'nCK(l)... etc. can be used. Each time you want a new value
of any of the coordinates, it is necessary to use STICK(0).
STRIG is a slightly different statement and function. Unlike STICK, STRIG

must be turned ON at the time it will be used with the STRIG ON statement. The
function v=STRIG(n) can return several different values. If n=0, then v will equal
— 1 if joystick button A was pressed since the last time STRIG(0) was called. If n = 1
then V will equal — 1 only if the button is currently being pressed down.
The function n=2 is similar to N=0, but for joystick button B, whUe n=3 is

equivalent to n = 1 for the second joystick.
You may use this routine to position an object on the screen, depending on the

coordinates of x and y, using the LOCATE statement. You'll have to convert the
resistance values (usually from 0 to 255) to some number proportionate to the
screen.

152 ffiM PC AND PCjr SUBROUTINE COOKBOOK

Line-by-Line Description

Line 180: Clear screen.

Line 200: Turn off 25th line display.

Line 210: Turn ON STRIG feature.

Line 240: Retrieve all four joystick values and store value of joystick A's x coordi
nate in variable AX.

Lines 250 to 270: Assign remaining x and y coordinates to variables.

Line 280: If fire button A has been pressed, assign F1 with value of 1.

Line 290: If fire button B has been pressed, assign F1 with value of 1.

Line 330: Print value labels.

Line 340: Print values of joysticks and fire buttons.

You Supply

Modules to provide screen movement.

Sample Applications

• Simple BASIC games using true joysticks
• Menu selection for very young or for non-typists
• Computer design.

RESULT...

Values of true joysticks returned.

10

20

30
40

50

* *

* READ JOYSTICKS *

* *

JOYSTICKS AND PADDLES 153

60 '

70 ' ++ VARIABLES + +

80 •

90 ' AX: X COORDINATE JOYSTICK A
100 • AY: Y COORDINATE JOYSTICK A

110 • BY: Y COORDINATE JOYSTICK B

120 ' BX: X COORDINATE JOYSTICK B

130 ' Fl: STATUS FIRE BUTTON A
140 • F2: STATUS FIRE BUTTON B

150 '
160 '

170 ' *** INITIALIZE ***

180 CLS

190 SCREEN 0,0,0

200 KEY OFF

210 STRIG ON

220 GOTO 320

230 ' *** SUBROUTINE ***

240 AX=STICK(0)
250 AY=STICK(1)
260 BX=STICK(2)
270 BY=STICK(3)
280 IF STRIG(0)=-1 OR STRIG(l)=-l THEN Fl=l ELSE F1=0
290 IF STRIG(2)=-1 OR STRIG(3)=-1 THEN F2 = l ELSE F2 = 0
300 RETURN

310 • *** your program starts here ***

320 GOSUB 240

330 PRINT "A-X", "A-Y", "B-X", "B-Y", "Fire A ";"Fire B"
340 PRINT AX,AY,BX,BY,F1;" ";F2

350 GOTO 320

154 BM PC AND PCjr SUBROUTINE COOKBOOK

JOYSTICK BUTTON INTERRUPT

WHATrrDOES...

Interrupts program when joystick buttons are pressed.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

None.

How to Use Subroutine

Write your own subroutines to perform the desired artion whenever any of the
four joystick buttons are pressed. You may temporarily disable the STRIG(n) func
tion with STRIG(n) STOP However, the computer remembers when the desig
nated button is pressed in the interim and will activate the interrupt routine when
STRIG(n) ON is next used during that program run.

Line-by-Line Description

Lines 140 to 170: Tell program where to branch for each joystick button.

Lines 180 to 190: Activate trapping for all four buttons.

Lines 220 to 290: Subroutines activated by joystick buttons. User substitutes de
sired action here.

You Supply
Desired program actions when button pressed.

Sample Applications
• Break out of program
• Clear screen in games
• Fire missile in games.

JOYSTICKS AND PADDLES 155

* *

* JOYSTICK BUTTON *

* INTERRUPT *

* *

10
20

30
40

50

60

70
80

90

100 • NONE

110 •

120 •

+ + VARIABLES + +

130 ' *** INITIALIZE ***

140 ON STRIG(0) GOSUB 220
150 ON STRIG(2) GOSUB 240
160 ON STRIG(4) GOSUB 260
170 ON STRIG(6) GOSUB 280
180 STRIG(0) 0N:STRIG(2) ON
190 STRIG(4) 0N:STRIG(6) ON
200 GOTO 310

210 • *** YOUR SUBROUTINES GO HERE ***

220 PRINT "BUTTON A1 PRESSED. "

230 RETURN

240 PRINT "BUTTON B1 PRESSED."

250 RETURN
260 PRINT "BUTTON A2 PRESSED."

270 RETURN

280 PRINT "BUTTON B2 PRESSED."

290 RETURN

300 • *** YOUR PROGRAM STARTS HERE ***

310 GOTO 310

%"t30
€>

8
Usii^ Sound

158 IBM PC AND PCjr SUBROUTINE COOKBOOK

The sound capabilities of the IBM PC and PCjr are much better than some home
computers (because specific note frequencies can be generated precisely), but not so
sophisticated as others. The three primary sound commands are BEEP, SOUND,
and PLAY^ which deliver notes from the built-in speaker. BEEP allows no argu
ments and produces nothing more than a simple tone. It is not used much in this
book and not addressed in this chapter because of this limitation. With SOUND,
you can specify both a note and duration:

SOUND 1000, 10

The first figure is the number of cycles per second of the note, with the pitch
increasing as the number grows larger. The second number is the length of time the
note will be played, with 18 the approximate equivalent of one second.
The PCjr has three voices and allows two additional parameters for the SOUND

command:

SOUND 1000,10,1,1

The third number specifies the voice to be used, while fourth determines the
volume of that voice. Both the PC and PCjr are very flexible in allowing any musi
cal note that the built-in speaker can, or cannot, reproduce.
The note can range over seven octaves... and the time interval from a fraction of

a second to several seconds. Each number in the duration argument represents
about 1/ 18th second. The lowest possible note available with the SOUND function
is 38 cycles per second. The IBM will generate notes as high as 32767 cps. This is far
beyond the range of human hearing and certainly beyond the capabilities of the tiny
speaker built into the computer. Any notes much above 10000 will generally be
inaudible.

The third sound command is PLAY This allows us to write musical routines

using the names of the notes. Instead of having to know the frequency of middle C,
we can play it by telling the IBM to PLAY "C." A C# is generated with the string
"C#" and so on. Octave may be specified as well, along with the length of the note
and other parameters.
Those with BASIC 2.0 can access the ON PLAY interrupt routine. That is, the

IBM PC or PCjr can be running a program while playing music in the background.
It will interrupt processing to fetch notes from the pool you supply as they are used
up. This will take place so fast that, for most purposes, the music is continuous.
This chapter includes two routines that will turn your IBM PC or PCjr keyboard

into a piano or organ to allow you to play notes by pressing appropriate keys. One
demonstrates the use of SOUND to produce musical notes, while the second illus
trates the PLAY statement. Ten more subroutines produce different sound effects,
which you can drop into your game, personal, or business programs as appropriate.
At the end of the chapter is a PCjr subroutine for producing white noise with the
special NOISE function.

USING SOUND 159

MUSIC

WHAT IT DOES...

Uses keyboard to generate various musical notes.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• P(n): Note value
• NME$(n): Name of note
• NT$(14): Key corresponding to note
• LTH: Length of note.

How to Use Subroutine

Use where you want to have the IBM PC or PCjr keyboard simulate a piano.
Pressing appropriate keys on the home row produces a note from the IBM PC or
PCjr speaker. In addition, the name of the note (and a sharp symbol if the note is
sharp) is printed to the screen. Some of the keys are deactivated because, as music
students will know, there is only a half-step between some notes on the scale. There
fore, there is no sharped (or flatted) note between them. Music students will also
recognize that flats are simply another way of writing a sharp note, e.g., B-flat is the
same as A#.

The user can "learn" the IBM PC or PCjr keyboard and begin to play songs using
their sovmd capabilities.
In this subroutine, the SOUND commarid is used to play notes, with values pro

vided in the BASIC reference manual used to determine the frequencies to be
played. This particular method is a bit more flexible than the one that follows,
because you are not limited to absolute note values such as A or A#. If you wish,
you may change the numbers in the data statements to produce notes that are a
microtone higher or lower than absolute notes. Thus, you can "tune" your IBM
instrument in experimental ways.

Line-by-Line Description

Line 160: Define length of note as 1/ 18th second. User may change this value as
desired.

Line 170: Clear screen.

160 IBM PC AND PCjr SUBROUTINE COOKBOOK

Line 180: Define arrays to store names of notes, the equivalent keys, and the
SOUND values needed to reproduce those notes.

Lines 190 to 210: Read note names into array.

lines 220 to 240: Read valid key names into array.

Lines 250 to 270: Read SOUND values into array.

Line 340: Wait for a key to be pressed.

Line 350: If key pressed was ENTER, then return.

Lines 360 to 380: Check to see if valid key was pressed.

Line 400: If so, then produce that note.

Lines 410 to 420: Erase old note name, print new on screen.

You Supply
No user input required other than to play keyboard.

Sample Applications
• Learning music
• Diversion in games
• Playing songs in games.

RESULT...

Music played from IBM PC and PCjr speaker.

10

20

30
40

50
60

70
80

90
100

110

120

130
140

* *

* MUSICAL NOTES *

* *

+ + VARIABLES + +

P(n) NOTE VALUE
NME$(n) NAME OF NOTE
NT$(n) KEY CORRESPONDING

TO NOTE

LTH: LENGTH OF NOTE

USING SOUND 161

150 ' *** INITIALIZE ***

160 LTH=1

170 CLS

180 DIM NME$(20),NT$(20),P(20)
190 FOR N=1 TO 20

200 READ NME$(N)
210 NEXT N

220 FOR N=1 TO 20

230 READ NT$(N)
240 NEXT N

250 FOR N=1 TO 20

260 READ P(N)
270 NEXT N

280 DATA G,C#,D,D#,E,F,G,G#,A,A#,B,C,C#,D,D#,E,F,F#,G

290 DATA A,W,S,E,D,F,T,G,Y,H,U,J,IK,0,L,P,;,',[/
300 DATA 262,278,294,312,330,349,370,392,416,440,467,494,

523,555,587,623,6659,698,74l,784
320 GOTO 450
330 • *** SUBROUTINE ***

340 A$=INKEY$:IF A$="" GOTO 340
345 IF ASG(A$)>96 and ASG(A$)<121 THEN

A$ = GHR$(ASG(A$)-32)

350 IF A$ = GHR$(13) THEN RETURN
360 FOR N=1 TO 16

370 IF A$=NT$(N) GOTO 400
380 NEXT N

390 GOTO 340
400 SOUND P(N),LTH
410 LOGATE 12,25:PRINT"
420 LOGATE 12,25:PRINT NME$(N);
430 GOTO 340
440 ' *** YOUR PROGRAM STARTS HERE ***
450 GOSUB 340

162 IBM PC AND PCjr SUBROUTINE COOKBOOK

IBM ORGAN

WHAT rr DOES...

Uses keyboard to generate various musical notes.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• P(n): Note value
NME$(n): Name of note

• NT$(14): Key corresponding to note
• LTH: Length of note
• P$: The note to play
• OC: Current octave.

How to Use Subroutine

This is a second method for producing music, demonstrating the PLAY com
mand. With PLA^ notes may be specified using their names, such as A or A#.
PLAY will generate concatenated strings of notes, which can also include symbols
that change the octave, length of note, or whether it is played staccato or legato.
These more complex capabilities are beyond the scope of this book. You may also
want to investigate the capability of ON PLAY..., which enables you to have
music in the background while your IBM computer goes on with other tacks,
This particular subroutine simply plays notes as you type them on the keyboard

and serves as an introduction to the PLAY command. You can raise and lower the
oaave in which the IBM Organ is playing by pressing the F1 and F2 funrtion keys.
Use where you want to have the IBM PC and PCjr keyboard simulate a piano.

Pressing appropriate keys on the home row produces a note from the IBM PC and
PCjr speaker. In addition, the name of the note (and a sharp symbol if the note is
sharp) is printed to the screen.
The user can "learn" the IBM PC and PCjr keyboard and begin to play songs

using their sound capabihties.

Line-by-Line Description

Line 160: Set length of note to 1/ 18th second.

Line 170: Turn off 25th line display.

USING SOUND 163

Lines 180 to 190: Turn on trapping for F1 and F2.

Lines 200 to 210: Tell BASIC where to branch on F1 and F2.

Line 220: Clear screen.

Line 230: Dimension array to store names of notes and corresponding keys.

Lines 240 to 260: Read note names into array.

Lines 270 to 290: Read keys into array.

Line 340: Wait for key to be pressed.

Line 350: If key was ENTER then RETURN.

Lines 360 to 380: Check to see if valid key was pressed.

Line 400: Produce P$, which corresponds to "O" (for octave, OC, which is the
current octave), and]SIME$(N), which is the note to be played.

Line 410: Play the note.

lines 420 to 430: Erase old note name and print new one to screen.

Lines 450 to 460: If F1 pressed, raise octave by one, up to a limit of six.

Lines 470 to 480: If F2 pressed, then reduce octave by one until 0 is reached.

You Supply
No user input required, other than to play keyboard.

Sample Applications
• Background music in games
• Music signal as to program status
• Learning musical scale.

Music played from IBM PC and PCjr speaker.

10 « *****************

20 ' * *

30 ' * IBM ORGAN *
40 ' * *
50 ' *****************

164 ffiM PC AND PCjr SUBROUTINE COOKBOOK

60 '

70 ' ++ VARIABLES + +

80 • P$: STRING TO PLAY

90 ' NME$(n); NAME OF NOTE

100
110

120

130
140

NT$(n): KEY CORRESPONDING TO NOTE
00: CURRENT OCTAVE

LTH: LENGTH OF NOTE

150 ' *** INITIALIZE ***

160 LTH=1
170 KEY OFF

180 KEY(l) ON
190 KEY(2) ON
200 ON KEY(l) GOSUB 450
210 ON KEY(2) GOSUB 470
220 CLS

230 DIM NME$(20),NT$(20),.P(20)
240 FOR N=1 TO 20
250 READ NME$(N)
260 NEXT N

270 FOR N=1 TO 20

280 READ NT$(N)
290 NEXT N

300 DATA C,C#,D,D#,E,F,F#,G,G#,A,A#,B,C,C#,D,D#,E,F,F#,G
310 DATA A,W,S,E,D,F,T,G,Y,H,U,J,K,0,L,P,
320 GOTO 500

USING SOUND 165

330 ' *** SUBROUTINE ***

340 A$ = INKEY$:IF A$= " " GOTO 340
350 IF A$ = CHR$(13) THEN RETURN
355 IF ASG(A$)>96 AND ASC(A$)<121 THEN

A$ = CHR$(ASC(A$-32))
360 FOR N=1 TO 20

370 IF A$=NT$(N) GOTO 400
380 NEXT N

390 GOTO 340
400 IF LAST <13 AND N>12 THEN 00 = 00 + 1 ELSE IF LAST >12

AND N<13 THEN 00=00-1

405 IF 00>6 THEN 00=6 ELSE IF OO<0 THEN 00=0
410 LAST=N:P$="0"+STR$(00)+NME$(N):FLAY P$
420 LOOATE 12,25:PRINT"
430 LOOATE 12,25:PRINT NME$(N);
440 GOTO 340

450 00=00 + 1
460 RETURN 340
480 RETURN 340

490 • *** YOUR PROGRAM STARTS HERE ***

500 GOSUB 340

SIREN

WHATrrDOES...

Siren sound routine to produce sounds for games, other applica
tions.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

' N: Number of repeats of sound effect.

166 IBM PC AND PCjr SUBROUTINE COOKBOOK

How to Use Subroutine

Call the subroutine when a siren sound is desired. You may experiment with
loops and actual numbers used to produce a different sound effect. Try varying the
values used with the SOUND statement. The first value controls the note pro
duced, while the second adjusts the length of time the note is played. Seven octaves
are encompassed between the high and low ends, although the IBM computer will
produce notes far beyond the audible hearing range.

Line-by-Line Description

Line 160: Begin loop of 100 repetitions.

Lines 170 to 190: Loop through notes from 100 to 200, in increments of 50.
Produces rising pitch.

Lines 200 to 230: Falling pitch.

Line 250: Access the subroutine.

You Supply
No user changes required.

Sample Applications
• Simulate police car in game
• Alert user of problem
• General game sound effects.

RESULT...

Siren sound emitted for game play or other applications.

10 ' *********

20 ' * *

30 ' * SIREN *
40 • * *
50 ' *********

60 •
70 •

80 • ++ VARIABLES

90 '
100 • N: NUMBER OF REPEATS

110 •

120 •
130 .

140 GOTO 270

USING SOUND 167

150 ' *** SUBROUTINE ***

160 FOR N=1 TO 100
170 FOR Nl=100 TO 200 STEP 50

180 SOUND Nl,l

190 NEXT N1
200 FOR N2 = l TO 20: NEXT N2

210 FOR Nl=1000 TO 900 STEP -50

220 SOUND Nl,l

230 NEXT N1

240 NEXT N

250 RETURN

260 • *** YOUR PROGRAM STARTS HERE ***

270 GOSUB 160

BOMB

WHATrrDOES...

Bomb sound routine to produce sounds for games, other applica
tions.

Versions: IBM PC and PCjr

Variables

None.

How to Use Subroutine

Call subroutine when bomb sound is desired.

Line-by-Line Description

lines 160 to 180: Produce falling sound.

Lines 190 to 270: Explosion,

line 300: Access the subroutine.

168 ffiM PC AND PCjr SUBROUTINE COOKBOOK

You Supply
No user changes required.

Sample Applications
• Signal when program bombs
• Produce explosion in game programs
• Signal wrong answer in application.

RESULT...

Bomb sound emitted for game play or other applications.

10 ' *********

20 ' * *

30 ' * BOMB *
40 • * *
50 ' *********

60 •
70 t

80 • ++ VARIABLES + +

90 '
100 • NONE

110 •

120 '
130 .

140 GOTO 300

150 ' *** SUBROUTINE ***

160 FOR N=300 TO 10 STEP -3
170 SOUND N*10,N/100

180 NEXT N

190 FOR N=100 TO 38 STEP -10
200 CU=38

210 SOUND N,1

220 SOUND CU,1

230 GU=CU+5

240 NEXT N

250 FOR N=38 to 4000 STEP 500

USING SOUND 169

260 SOUND N,.5

270 NEXT

290 ' *** YOUR PROGRAM STARTS HERE ***

300 GOSUB 160

ALARM

WHATrrDOES...

Alarm sound routine to produce sounds for games, other applica
tions.

Versions: IBM PC and PCjrj, Advanced BASIC

Variables

• Nl: Number of repeats.

How to Use Subroutine

Call subroutine when alarm sound is desired. You may experiment with loops
and aaual numbersused to produce a different sound effect. Try varying the values
used with the SOUND statement. The first value controls the note produced, while
the second adjusts the length of time the note is played.

Line-by-Line Description

Line 160: Repeat sound Nl (10) times.

Lines 170 to 230: Produce rising sound.

Line 260: Access the subroutine.

You Supply
No user changes required.

Sample Applications
• Inform operator of time up
• Signal wrong response in game program
• Indicate problem with program in ON ERROR routine.

170 BM PC AND PCjr SUBROUTINE COOKBOOK

RESULT...

Alarm sound emitted for game play or other applications.

10 ' *********

20 • * *

30 • * ALARM *

40 ' * *
50 ' *********

60 '
70 t

80 • ++ VARIABLES + +

90 •

100 • Nl: NUMBER OF REPEATS
110 •

120 •
130 .

140 GOTO 260

150 • *** SUBROUTINE ***

160 FOR Nl=l TO 10 .

170 FOR N=600 TO 900 STEP 20
180 SOUND N,1

190 NEXT N

200 FOR N=900 TO 600 STEP -20

210 SOUND N,1

220 NEXT N

230 NEXT Nl

240 RETURN

250 •*** YOUR PROGRAM STARTS HERE ***

260 GOSUB 160

USING SOUND 171

KLAXON

WHATrrDOES...

Klaxon sound routine to produce sounds for games, other applica
tions.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

N1: Number of repeats

How to Use Subroutine

Call subroutine when klaxon sound is desired.

Line-by-Line Description

Line 160: Repeat sound N1 (10) times.

Lines 170 to 220: Produce rising sound.

Line 260: Access the subroutine.

You Supply
No user changes required.

Sample Applications
' Bridge of ship in game program
' Signal of different problem with program than ALARM
' Attention-getting device in displays, timer programs.

RESULT...

Klaxon sound emitted for game play or other applications.

172 IBM PC AND PCjr SUBROUTINE COOKBOOK

1(3 ' **********

20 ' * *

30 • * KLAXON *
40 ' * *
50 ' **********

60 •
70 •

80 • ++ VARIABLES + +

90 •
100 ' Nl: NUMBER OF REPEATS

110 '
120 •
130 .

140 GOTO 260

150 • *** SUBROUTINE ***

160 FOR Nl=l TO 10

170 FOR N=1000 TO 5000 STEP 1000

180 SOUND N,1

190 next N
200 FOR N=5000 TO 1000 STEP -1000

210 SOUND N,1

220 NEXT N

230 NEXT Nl

240 RETURN

250 ' *** YOUR PROGRAM STARTS HERE ***

260 GOSUB 160

USING SOUND 173

UFO

WHATrrDOES...

UFO sound routine to produce sounds for games, other applica
tions.

Versions; IBM PC and PCjr, Advanced BASIC

Variables

None.

How to Use Subroutine

Call subroutine when UFO sound is desired. You may experiment with loops
and actual numbers used to produce a different sound effea. Try varying the values
used with the SOUND statement. The first value controls the note produced, while
the second adjusts the length of time the note is played.

Line-by-Line Description

Line 160: Define first note, CU, as 1000.

Line 170: Loop between 100 and 1000.

Line 180; Play note equal to N.

Line 190: Play note equal to CU.

Line 200: Make S the difference between CU and N.

Line 210: Make sure S is never less than 38.

Line 220: Play note equal to S.

Line 230: Reduce CU by one.

Line 270: Access the subroutine.

You Supply
No user changes required.

Sample Applications
• Flying saucer or alien sound in game

174 IBM PC AND PCjr SUBROUTINE COOKBOOK

• Signal "weird" response in application program
• Alert operator of impending disaster.

RESULT...

UFO sound emitted for game play or other applications.

10 ' *********

20 • * *

30 ' * UFO *
40 ' * *
50 ' *********

60 •
70 t

80 • ++ VARIABLES + +

90 '
100 ' NONE

110 •

120 •
130 .

140 GOTO 270

150 • *** SUBROUTINE ***

160 CU=1000
170 FOR N=100 TO 1000

180 SOUND N,.05

190 SOUND CU,.05
200 S=N-CU:IF S<38 THEN S=CU-N

210 IF S<38 THEN S=38

220 SOUND S,.05

230 CU=CU-1

240 NEXT N

250 RETURN

260 • *** YOUR PROGRAM STARTS HERE ***

270 GOSUB 160

USING SOUND 175

COMPUTER

WHAT IT DOES...

Random, computer-like sound routine to produce sounds for gamfs,
other applications.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

None.

How to Use Subroutine

Call the subroutine when a computer-like sound is desired.

Line-by-Line Description

Line 150: Repeat 100 times.

Line 160: Select random note.

Line 170: Select random length.

Line 180: Play note.

Line 220: Access subroutine.

You Supply
No user changes required.

Sample Applications
' Signal of computer "thinking" during number crunching
Computer sound for games
Attention-getting device to impress friends.

176 IBM PC AND PCjr SUBROUTINE COOKBOOK

10 • ************

20 • * *

30 • * COMPUTER *
40 • * *
5j2l ' ************

60 •
70 !

80 • ++ VARIABLES + +

90 •
100 • NONE

110 •
120 •

130 GOTO 220

140 < *** SUBROUTINE ***

150 FOR N=1 TO 100

160 R=RND(1)*3000+38
170 L=RND(1)*5
180 SOUND R,L

190 NEXT N

200 RETURN

210 ' *** YOUR PROGRAM STARTS HERE ***

220 GOSUB 150

LASER

WHATrrDOES...

Laser sound routine to produce sounds for games, other applica
tions.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

' Nl: Number of repeats.

IBM PC AND PCjr SUBROUTINE COOKBOOK 177

How to Use Subroutine

Call the subroutine when the laser sound is desired. You may experiment with
loops and actual numbers used to produce a different sound effect. Try varying the
values used with the SOUND statement. The first value controls the note pro
duced, while the second adjusts the length of time the note is played.

Line-by-Line Description

Lines 160 to 170: Initial laser sound.

Lines 180 to 210: End laser sound.

Line 240: Access subroutine.

You Supply
No user changes required.

Sample Applications
• Laser gun sound for games
• Sound effect in appHcations program when deleting or removing something
• Different alert sound for operator.

RESULT...

Laser sound emitted for game play or other applications.

10 ' *********

20 • * *

30 ' * LASER *
40 ' * *
50 ' *********

60 •
70 <

80 ' ++ VARIABLES + +

90 •

100 ' NONE

110 •

120 '
130 .

140 GOTO 240

178 BM PC AND PCjr SUBROUTINE COOKBOOK

150 ' *** SUBROUTINE ***

160 SOUND 1000,.01

170 SOUND 40,.01
180 FOR N=6000 TO 1000 STEP -100
190 SOUND N,.l

200 NEXT N

210 SOUND 1000,.05

220 RETURN

230 ' *** YOUR PROGRAM STARTS HERE ***

240 GOSUB 160

ROULETTE WHEEL

WHAT IT DOES...

Roulette wheel sound, which slows down gradually, for games, other
applications.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

None.

How to Use Subroutine

Call the subroutine when the wheel sound is desired. You may experiment with
loops and actual numbers used to produce a different sound effect. Try varying the
values used with the SOUND statement. The first value controls the note pro
duced, while the second adjusts the length of time the note is played. Five octaves
are encompassed between the numbers 12538 (at the low end) and 415 (at the high
end).

Line-by-Line Description

Line 160: Set initial delay to 20.

Line 170: Set initial multiplier to 1.001

Line 180: Set faaor to increase multiplier to .0005

Line 190: Start 120 repetitions.

USING SOUND 179

Line 200: Increase delay by multiplying times F.

Line 210: Count off the delay.

Line 220: Make click sound.

Line 230: Enlarge multiplier.

Line 250: Play final click.

You Supply
No user changes required.

Sample Applications
• Game sound for wheel of fortune

• Slowing car engine
• Signal impending end of an operation.

RESULT...

Roulette wheel-type sound emitted for game play or other applica
tions.

Ij2l I ******************

20 • * *

30 • * ROULETTE WHEEL *
<40 • * *
50 • ******************

60 •
70 r

80 ' ++ VARIABLES + +

90 •
100 ' NONE

110 '

120 '
130 .

140 GOTO 280

150 • *** SUBROUTINE ***

160 DELAY=20

170 F=1.001

180 IBM PC AND PCjr SUBROUTINE COOKBOOK

180 Fl=.0005

190 FOR N=1 TO 120
200 DELAY=DELAY*F

210 FOR D=1 TO DELAY:NEXT D

220 SOUND 300r.05

230 F=F+F1
240 NEXT N

250 SOUND 300,1
260 RETURN

270 ' *** YOUR PROGRAM STARTS HERE ***

280 GOSUB 160

HEARTBEAT

WHATrrDOES...

Heartbeat sound routine to produce sounds for games, other appli
cations.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

None.

How to Use Subroutine

Call the subroutine when the heartbeat sound is desired. Ybu may experiment
with loops and actual numbers used to produce a different sound effect. Try varying
the values used with the SOUND statement. The first value controls the note pro
duced, while the second adjusts the length of time the note is played.

Line-by-Line Description

Line 160: Repeat 20 times.

Line 170: Produce first thump.

Line 180: Wait.

Line 190: Produce second thump.

USING SOUND 181

Line 200; Wait slightly longer.

Line 210: Repeat.

Line 240: Access subroutine.

You Supply
No user changes required.

Sample Applications
' Scary heartbeat sound for games
' Evidence that computer is "thinking"
' Background noise.

RESULT...

Heartbeat sound emitted for game play or other applications.

10 • *********

20 • * *

30 ' * HEART *
40 ' * *
50 ' *********

60 '
70 t

80 • ++ VARIABLES + +

90 '
100 • NONE

110 '

120 •
130 .

140 GOTO 240

150 ' *** SUBROUTINE ***

160 FOR Nl=l TO 20
170 SOUND 40,.5
180 FOR N=1 TO 200: NEXT N

190 SOUND 40,3
200 FOR N=1 TO 600: NEXT N

182 IBM PC AND PCjr SUBROUTINE COOKBOOK

210 NEXT N1

220 RETURN

230 • *** YOUR PROGRAM STARTS HERE ***

240 GOSUB 160

CLOCK

WHAT IT DOES...

Clock ticking sound routine to produce sounds for games, other ap
plications.

Versions: IBM PC and PCjr, Advanced BASIC

Variables

• N2: Number of ticks.

How to Use Subroutine

Call the subroutine when the sound of a ticking clock is desired. You may experi
ment with loops and actual numbers used to produce a different sound effect. Try
varying the values used with the SOUND statement. The first value controls the
note produced, while the second adjusts the length of time the note is played.

Line-by-Line Description

Line 160: Repeat ten times.

Line 170: Tick.

Line 180: Wait.

Line 190: Tock.

Line 200: Wait ̂ain.

Line 210: Repeat.

Line 240: Access subroutine.

You Supply
No user changes required.

USING SOUND 183

Sample Applications
' Count off "waiting" time in game while player thinks
' Produce background noise during timer subroutine
Use to show that program is awaiting input.

RESULT...

Clock sound emitted for game play or other applications.

10
20

30
40

50

60

70
80

90
100

110

120

130
140

* *

* tick *

* *

+ + VARIABLES + +

N2: NUMBER OF TICKS

N2 = 10:GOTO 240

150 ' *** SUBROUTINE ***

160 FOR Nl=l TO N2

170 SOUND 4000,.05
180 FOR N=1 TO 300: NEXT N

190 SOUND 6000,.05
200 FOR N=1 TO 300: NEXT N

210 NEXT N1

220 RETURN

230 ' *** YOUR PROGRAM STARTS HERE ***

240 GOSUB 160

184 IBM PC AND PCjr SUBROUTINE COOKBOOK

NOISE

WHATrrDOES...

Generates white noise for use in games, other applications.

Versions: IBM PCjr, Advanced BASIC

Variables

• N2: Number of repetitions
• T3: Voice number 3

• V3: Volume of voice 3

• SOUND3: Sound register
• LGTH: Length of sound.

How to Use Subroutine

So called nonmusical "white noise" is useful in game programs for explosions,
gunshots, and other nonspecific sounds. The PCjr's BASIC has a NOISE command
that can create these sounds.

You can vary the pitch, length, frequency and volume of the noise, by varying the
values for SOUND, LGTH, T3, and V3, respectively.

Line-by-Line Description

Lines 140 to 180: Define variables for noise.

Line 210: Start loop from 1 to N2.

Line 220: Make noise.

Line 230: Change sound of noise.

Line 240: Repeat.

You Supply
No user changes required.

Sample Applications
• Gunfire

• Space ship engine
• Storm, other noise.

USING SOUND 185

RESULT...

Noise sound emitted for game play or other applications.

10 • *********

20 • * *

30 ' * NOISE *

-40 ' * *
50 • *********

60 '

70 ' ++ VARIABLES + +

80 • N2: REPETITIONS

90 ' T3: VOICE 3

100 • V3: VOLUME OF VOICE 3

110 • S0UND3: NOISE NOTE

120 • LOTH; LENGTH OF NOISE
130 .

140 N2 = 10

150 SOUND3=440
160 LGTH=18

170 T3=3

180 V3=3

190 GOTO 270

200 • *** SUBROUTINE ***

210 FOR Nl=l TO N2

220 NOISE 1

230 SOUND SOUND3,LGTH,T3,V3

240 NEXT N1
250 RETURN

260 • *** YOUR PROGRAM STARTS HERE ***

270 GOSUB 210

I)

9
Game Routines

188 IBM PC AND PCjr SUBROUTINE COOKBOOK

Games are probably one of the most popular programming exercises for beginners
and advanced users alike. On your first day with a computer you can easily learn to
write a "Craps"-playing program. Those IBM PC users who are not all business and
many of the owners of the PCjr will probably someday investigate writing an
arcade-quality, joystick-artivated shoot-em-up.
In either case, you can use the routines in this book to avoid reinventing the

wheel. Actually, the subroutines useful for games programming are not confined to
this section. Many of the modules presented so far can be transplanted to games
programs. These include all of the routines in Chapters 1,2, and 3.
Here are five more subroutines that are particularly applicable to games. Three

deal with universal "tools" of games — shuffling and dealing decks of cards, rolling
pairs of dice, or flipping coins. The dice module is especially flexible, as it allows
you to define how many sides each die will have. Dungeons and Dragons players
take note!

Randomness is an essential factor in many types of games, and one subroutine in
this seaion allows you to specify the drawing of random numbers in any range you
choose. If your game happens to need random numbers larger than 100 and smaller
than 999, the routine can handle that nicely. Note that the IBM PC and PCjr do not
return true random numbers, but rather a "pseudorandom" series. To keep a game
from using the same "random" numbers each time, you need to reseed the number
generator; that is, tell it to start at a new point in its list of pseudorandom numbers.
This is most easily done with the IBM computers by the RANDOMIZE TIMER
function, which uses the current value of TIMER as the seed.

Arcade-style programs frequently need a slowdown feature. Delay loops that
change in length, getting faster or slower, are a neat way to accomplish this. A
subroutine is provided that does all the work for you.

DEAL CARDS

WHATrrDOES...

Shuffles and deals deck of cards.

Versions: IBM PC AND PCjr,Advanced BASIC

Variables

• DECK$(n): Deck of cards
• CARDS: Card drawn from deck

• DRAW: Random number.

GAME ROUTINES 189

How to Use Subroutine

Many game programs require dealing a deck of cards. Your own programs may
simulate drawing from a randomly shuffled deck simply by calling the subroutine
beginning at line 370. The deck has already been assembled (lines 210-360) using the
IBM PC and PCjr graphics characters for suits and the numbers or words for the
value of the cards.

If you need to determine the rank of the card for your program, all cards through
the 10 may be ascertained by a line such as: "V="VM.(CARD$)".
IF V=0 then four more lines are needed, such as, "IF LEFT$(CARD$,1)="J"

THEN V= 11" or "IF LEFT$(CARD$)="Q" THEN V= 12."
This is a very fast shuffling routine, which requires only 52 tries to deal 52 cards.

Some slower algorithms (a formula for performing a task, or computing a result)
may repeatedly access "empty" deck positions when looking for the remaining
cards.

The routine starts off by setting NC (number of cards) to 52. In line 410, the
computer seleas a number between 1 and NC (52 this time), and that element of
DECK$(n) becomes the card drawn. This leaves a "hole" in the deck at position
DRAW We fill it up by taking the last card in the deck, which is DECK$(NC), and
place it in DECK$(DRAW). This leaves the "hole" at the end, but we then change
NC to equal NC-1 so the computer will only draw from the elements 1 through 51
on the next time through. Third time, it will choose 1 through 50, and so forth. It
does not matter that we have mixed up the order of the deck, as we want the cards
shuffled in the first place.
Each element of DECK$(n) consists of a number, or face card name, plus the IBM

PC and PCjr CHR$ value for the suit (either 3,4,5 or 6). This produces a full deck of
52 cards.

Line-by-Line Description

Line 130: DIMension an array to represent the deck of cards.

Line 210: Begin FOR-NEXT loop from 1 to 4, one trip through for each individ
ual suit.

Line 220: Increment CU, which keeps track of which element of DECK$(n) is
being created. CU will range in value from 1 to 52.

Lines 230 to 290: Create the face cards for each suit.

Lines 300 to 330: Create numbered cards for each suit, through a FOR-NEXT
loop from 2 to 10 (deuce to ten). A string representation of each number is added to
" OF " and the suit symbol, SUrr$(SUIT)

Line 340: Repeat loop.

Line 350: Define number of cards, NC, as initially equalling 52.

190 IBM PC AND PCjr SUBROUTINE COOKBOOK

Line 360: GOTO main program.

Line 370: If any cards are remaining, access the "draw" routine.

Lines 380 to 390: If none remaining, tell player that the deck has been dealt.

Line 410: Draw a random card number smaller than NC, the number of cards
remaining.

Line 420: Make card drawn, CARDS, equal the DRAW element of the array
DECK$(n).

Line 430: Place the last card in the array in the hole left behind by the drawn card.

Line 440: Reduce the size of the deck by one card.

Line 480: Access the subroutine.

You Supply
No user input needed.

Sample Applications
• Card games
• Any game in which sets must be "shuffled," such as cryptograms. Use 26 "cards,"

the alphabet, instead of a deck of cards
• Producing any random number or string from a fixed set of choices.

RESULT...

Deck of 52 cards may be dealt out as needed.

10 • **************

20 • * *

30 ' * DEAL CARDS *
40 • * *
50 ' **************

60 •

70 • ++ VARIABLES + +

80 ' DEGK$(N): DECK

90 ' CARD$: CARD DRAWN
100 • DRAW: RANDOM CARD

110 •

120 •

130 DIM DECK$(52):RANDOMIZE TIMER

GAME ROUTINES 191

150 ' *** READ SUITS ***

160 FOR N=3 TO 6

180 SUIT$(N)=GHR$(N)
190 NEXT N

200 ' *** ASSEMBLE DECK ***

210 FOR SUIT=1 TO 4
220 GU=CU+1

230 DEGK$(GU) = "AGE OF "+SUIT$(SUIT)
240 GU=GU+1

250 DEGK$(GU) = "KING OF "+SUIT$(SUIT)
260 GU=GU+1

270 DEGK$(GU) = "QUEEN OF "+SUIT$(SUIT)
280 GU=GU+1

290 DEGK$(GU) = "JAGK OF "+SUIT$(SUIT)
300 FOR N=2 TO 10

310 GU=GU+1

320 DEGK$(GU)=STR$(N) + " OF "+SUIT$(SUIT)

330 NEXT N
340 NEXT SUIT

350 NG=52

360 GOTO 470
370 IF NGO0 GOTO 4l0
380 GARD$= " "

390 PRINT"DEGK GONE!!"
400 RETURN
410 DRAW=INT(RND(1)*NG)+1
420 GARD$=DEGK$(DRAW)

430 DEGK$(DRAW)=DEGK$(NG)
440 NG=NG-1

450 RETURN

460 ' *** YOUR PROGRAM STARTS HERE ***

470 PRINT
480 GOSUB 370

490 PRINT GARD$

192 ffiM PC AND PCjr SUBROUTINE COOKBOOK

RANDOM RANGE

WHAT IT DOES...

Allows choosing random numbers in any range.

Versions: IBM PC AND PCjr, Advanced BASIC

Variables

• HIGH: Top of range
• MINIMUM: Bottom of range
• DF: Difference

• NU: The number chosen.

How to Use Subroutine

.What makes a game a game and not a test? Randomness is one element foimd in
many, but not all, games. Random numbers selected by the computer determine the
changes in some games that the player must contend with. Lacking randomness, a
game is either a test of memory or a contest of strategy. A little of all three elements
makes for a good game, and this subroutine lets you get greater control over ran
domness than unadorned IBM PC and PCjr BASIC.
The IBM PC and PCjr can choose pseudorandom numbers. That is, although

they appear to be random, the numbers actually are drawn from a long list. Even
though the sequence is the same each time, the list of numbers is very long, and the
starting position is usually different, so the numbers appear to be random to the
player.
Some BASICs allow choosing a random number larger than one but smaller than

another integer with the simple command RND(N), where N is the upper limit.
RND(7) woiJd produce integers from one to seven, for example. The IBM PC and
PCjr will generate random numbers larger than zero and smaller than one. So, we
might get .74329 or .15832 or some other value. To get numbers in a given range 1
to N, we must multiply the random number by N and add one. That is, IN-
T(RND(1)*7)+1 will produce numbers in the range one to seven.
But what if some other range is desired—such as numbers between 43 and 198?

This subroutine will pluck them out of randomland for you. From user-supplied
minimum and maximum numbers, it will select random integers only in the desired
range.

GAME ROUTINES 193

Line-by-Line Description

Lines 150 to 170: Define the highest random number desired and the lowest, and
find the difference between them.

Line 200: Choose a random number in the range 1 to DF, the difference, then add
the minimum number to that to produce a number in the desired range.

Line 230: Print the result.

Line 240: Access the subroutine.

You Supply
Define HIGH and MINIMUM to set the lirnits for the random range you want.

Sample Applications
• Games in which numbers must be in a certain range—like "prices" between $10

and $100

• Other random results in games.

RESULT...

Only random numbers in the specified range will be produced.

10 • ****************

20 ' * *

30 • * RANDOM RANGE *
40 ' * *
50 ' ****************

60 '

70 • ++ VARIABLES + +

80 ' HIGH: TOP OF RANGE

90 • MINIMUM: BOTTOM OF RANGE
100 • DF: DIFFERENCE

110 • NU: NUMBER CHOSEN

120 '
130 .

140 < *** INITIALIZE ***

194 ffiM PC AND PCjr SUBROUTINE COOKBOOK

150 HIGH=100
160 MINIMUM=15

170 DF=HIGH-MINIMUM+1

180 RANDOMIZE TIMER:GOTO 230

19j2l ' *** SUBROUTINE ***

200 NU=INT(RND(1)*DF)+MINIMUM
210 RETURN

220 ' *** YOUR PROGRAM BEGINS HERE ***

230 GOSUB 190
240 PRINT NU;

COIN FLIP

WHAT rr DOES...

Flips coin, producing heads or tails.

Versions: IBM PC AND PCjr, Advanced BASIC

Variables

• FLIP: Random value, either one or two
• FLIPS: Name of side chosen

• COIN$(n): Coin array.

How to Use Subroutine

Some beginner level statistical experiments and a few games need to simulate coin
flips. For example, you may want to construct a loop that flips a coin 1000 times
and adds up the number of heads and tails to check the randomness of your com
puter.

This subroutine will flip the coin for you, producing the name of the side—either
"HEADS" or "TAILS"—after each flip. The module can be adapted to larger ranges
of choice, with more than two names to be applied. For example, the array names
might be NORTH, SOUTH, EAST and WEST and the 2 in line 180 changed to a
4. Then, random directions will be chosen.

GAME ROUTINES 195

Line-by-Line Description

Lines 140 to 150: Define array as "HEADS" and "TAILS."

Line 180: Produce value for variable FLIP of either 1 or 2.

Line 190: Assign "HEADS" or "TAILS" to FLIPS, depending on which random
number was chosen.

Line 220: Access the subroutine.

Line 230: Print result.

You Supply
No user input needed.

Sample Applications
• Games in which two choices are involved

• Programs where two variations on a single result are wanted, as for ON A..GO-
SUB... with A chosen by coin flip.

RESULT...

Coin flipping simulated.

10
20

30
40

50

60

70

80

90

* *

* COIN FLIP *

* *

+ + VARIABLES + +

COIN$(N): COIN ARRAY
FLIP: RANDOM VALUE 1-2

100 • FLIP$: SIDE FLIPPED

110 •

120 '

130 • *** INITIALIZE ***

196 IBM PC AND PCjr SUBROUTINE COOKBOOK

140 C0IN$(1) = "HEADS"

150 C0IN$(2) = "TAILS"
160 RANDOMIZE TIMER:GOTO 220

170 ' *** SUBROUTINE ***

180 FLIP = INT(RND(1)*2)+1
190 FLIP$ = GOIN$(FLIP)
200 RETURN

210 ' *** YOUR PROGRAM STARTS HERE ***

220 GOSUB 180

230 PRINT FLIP$

240 GOTO 220

DICE

WHATrrDOES...

Simulates roll of dice.

Versions: IBM PC AND PCjr, Advanced BASIC

Variables

• Dl: Value of Die #1

• D2: Value of Die #2

• ROLL: Total of roll.

How to Use Subroutine

This dice-rolling subroutine includes a short sound module to provide an addi
tional bit of realism. It will roll two dice, each producing a number between one
and six. The value of each die, as well as the total roll, is figured.
Dungeons and Dragons players can specify how many sides each die in the pair

will have. In adapting this subroutine for that feature, you might want to add a line
like INPUT"ENTER NUMBER OF SIDES";SIDE before each roll. If only one
die is needed, both will be rolled anyway. Just choose which one will "count" ahead
of time, either Dl or D2. Variable ROLL will store the total count.

GAME ROUTINES 197

Line-by-Line Description

Lines 150 to 160: Roll two dice, each producing numbers in the range 1 to
SIDES, with SIDES defined as the number of sides you wish on the dice.

Line 170: Make ROLL the total of the two dice.

Line 180: Return to main program.

Line 210: Define number of sides on dice.

Line 220: Access the subroutine.

Lines 230 to 260: Print results of roll.

You Supply
Number of sides of die.

Sample Applications
• Dungeons and Dragons games
• Any games using dice
• Programs where dice odds are wanted in selection of choices at random.

RESULT...

N-sided dice are rolled and the value of each plus total roll reported.

10 ' ********

20 • * *

30 • * DICE *
40 ' * *
50 ' ********

60 RANDOMIZE TIMER:GOTO 200
70 I

80 ' ++ VARIABLES + +

90 ' Dl: DIE TOTAL
100 ' D2: DIE #2 TOTAL

110 ' ROLL: TOTAL OF ROLL

120 '
130 .

140 ' *** SUBROUTINE ***

198 IBM PC AND PCjr SUBROUTINE COOKBOOK

150 D1=INT(RND(1)*SIDES)+1
160 D2 = INT(RND(1)*SIDES)+1
170 R0LL=D1+D2

180 RETURN

190 ' *** your program starts here ***

200 PRINT

210 SIDES=6

220 GOSUB 150

230 PRINT" DIE #1:";D1
240 PRINT" DIE #2:";D2
250 PRINT "TOTAL
260 PRINT ROLL

DELAY LOOP

WHAT IT DOES...

Delays loop changes in length.

Versions: IBM PC AND PCjr, Advanced BASIC

Variables

• DELAY: Initial delay
• CHANGE: Amount of change.

How to Use Subroutine

In games, delay loops are frequently used to display messages on the screen for a
given length of time. Another important use is to control the speed of movement or
some other play action. By having a FOR-NEXT loop coimt off between each
move, a short delay can be built in. A loop from 1 to 100 might slow things down
appreciably, while setting the upper limit to 10 would produce only a neghgible
impact.
This subroutine allows the user to vary the length of the delay loop so that action

will get faster and faster—until the FOR-NEXT loop is performed only once each
time and therefore has almost no effect on the program.

GAME ROUTINES 199

Alternatively, the loop can get longer and longer, so the program will slow down.
You might want to set some upper limit, so that the aaion doesn't appear to stop
completely after a few minutes.

Line-by-Line Description

Line 140: Set initial delay to 1000.

Line 150: Set change factor to .9.

Line 180: Count off the delay.

Line 190: Change value of delay.

Line 230: Access the subroutine.

Line 240: Inform player that delay is finished.

Line 250: Repeat, with shortened delay.

You Supply
An initial value is needed for DELAY A high number will start the program off

very slowly. A lower number will produce a more moderate beginning speed. You
also must define the amount of CHANGE. Fractional numbers will cause DELAY
to get smaller each time. That is, if DELAY is 1000 at first, and CHANGE is .90,
then DELAY will be set to 900 on the second time through the loop, 810 the third
time, and 729 the fourth time.
As decimal fractions approach 1.0, the amount of speedup each time will be

smaller, producing a slower acceleration. Smaller fractions, such as .75 or even .50
will rev up the speed quite quickly.
CHANGE can also be defined as a number larger than one. Setting it to 1.1 will

slowly increase the delay each time. Any number larger than 1.5 (such as two or
three) will probably slow down the program much more than you desire.

Sample Applications
• Speed up—or slow down—screen movement of an object
• Change speed of a sound
• Make game harder as player continues.

200 IBM PC AND PCjr SUBROUTINE COOKBOOK

10 • *********

20 • * *

30 ' * DELAY *
40 • * *
50 ' *********

60 '

70 • ++ VARIABLES + +

80 • DELAY: INITIAL DELAY

90 ' CHANGE: AMOUNT OF CHANGE

100 • PLUS OR MINUS

110 •

120 '

130 < *** INITIALIZE ***

140 DELAY=1000
150 CHANGE =.90
160 GOTO 230

170 • *** SUBROUTINE ***

180 FOR N=1 TO DELAY

190 NEXT N

200 DELAY=DELAY*CHANGE

210 RETURN

220 • *** YOUR PROGRAM STARTS HERE ***

230 GOSUB 180
240 PRINT"FINISHED"

250 GOTO 230

GLOSSARY

202 IBM PC AND PCjr SUBROUTINE COOKBOOK

Algorithm: A formula or method for performing a given task, such as
MPG=MILES/GALLNS.

Alphanumeric: A character that is a letter or number, as opposed to a graphics or
control character. Alphanumerics include the upper and lowercase alphabet, as well
as the digits 0 to 9.
AND: Boolean operator that compares each bit of a byte with the corresponding

bit in another byte and produces a 1 only if both are equal to 1.
Append: To add to the end of, to append one file onto another.
Array: A method of storing information in the computer's memory. An array

can have one dimension, as A$(n), with each element (or "compartment") in the
array storing one piece of information. Arrays may also have more than one dimen
sion, e.g., A$(row,col), and store rows and columns of information. Multidimen
sional arrays are like tables with horizontal and vertical slots.
Arrays may also be either of the numeric or string type. With a numeric array,

each element c^ store one number; a string array can accommodate a single string
per compartment but that string can be up to 255 bytes long and therefore contain
more than one character.

ASCII: American Standard Code for the Interchange of Information. A common
code used by most computer systems for storage of information, especially text files.
It provides a basis for sharing files between unlike computers.
Baud: A measurement of serial communications speed. Baud roughly equals bits

per second, up to about 1200 baud.
Binary: The base-two number system used by computers, which consists of I's

and O's only.
Bit: The smallest unit of information that can be processed by the IBM PC and

PCjr; short for binary digit. A bit represents either 1 or 0, with eight bits making up
a single byte.
Boolean math: A type of algebra, named for George Boole, that uses two-valued

variables (on/off,true/false) suitable for use by binary computers like the IBM PC
and PCjr. Certain Boolean operators, such as AND and OR, are used with many
subroutines to examine memory registers on the bit level.
Cursor: The block character, or any other character, used to mark the current

printing position on the screen.
Decimal: Base-10 numbers; the commonly used number system. The IBM PC

and PCjr ask for decimal numbers and return decimal numbers for PEEK and
POKE operations, even though it processes them in binary form internally. They
will, of course, also PEEK and POKE with other number bases, such as hexadeci
mal (base-16).
Decrement: To decrease a variable by one. However, the word is also commonly

used as a verb when the number is being decreased by some larger amount, as to
"decrement by two."
Default: Any value used automatically if no other value is supplied by the pro

gram or user.

GLOSSARY 203

Download: To capture a file through telecommunications into the IBM PC and
PCjr's memory bufer, and then write it to tape or disk for permanent storage.
Programs or text files can be transmitted to your computer through a modem and
then downloaded.

File: Any collection of information on disk or tape. BASIC and machine-
language programs, as well as text material, are all files.
Function key: One of the 10 keys at the side of the IBM PC and at the top of the

PCjr keyboard, which can be used as to direct control to subroutines or functions
of the programmer's choice.
Increment: To increase the value of a variable by one. This is also commonly

used as a verb to denote increasing a variable by any amount, such as "to increment
by four."

Initialize: To set variables to a desired beginning value at the start of a program or
at the beginning of a subroutine. For example:

10 B=0

20 INPUT A

30 B=B-I-A

40 PRINT B

50 GOTO 20

You would want to initialize B, as in line 10, each time the subtotal should be
eliminated and the addition started from zero again.
Garbage: Random information with no meaning. Every memory location con

tains something. If it is not meaningful information placed there by the computer
or user, it is termed garbage.
Merge: To combine two programs in such a way that their line numbers become

mixed. While MERGING may produce interleaved programs, if there are duplicate
line numbers, the program added will write over the same lines in the original pro
gram.

Modem: Modulator-demodulator. A device that converts the IBM PC and PCjr's
signals to sounds that can be transmitted over telephone lines. The modem also
receives sounds and converts them back for the IBM PC and PCjr to use.
Null modem: An adapter plug or cable that reverses the SEND and RECEIVE

lines of two RS-232 serial interface devices. It enables two computers to be wired
directly together to communicate without one computer's SEND signals being sent
to the SEND lines of the other and RECEIVE trying to RECEIVE from the other.
Offset: A way of addressing memory through the use of a relative address rather

than an absolute address. We use DEF SEG to tell the IBM PC and PCjr which
memory block we want to address during PEEKs and POKEs.
OR: A Boolean operator that is used to compare one byte with another on a bit

for bit level. If a bit and the corresponding bit in the other byte are either 1, OR will
produce a 1 as the result.

204 ffiM PC AND PCjr SUBROUTINE COOKBOOK

Parallel: A method of transferring data an entire byte at a time by sending each of
the eight bits along a separate parallel address line simultaneously. Serial transfer, on
the other band, transmits each byte one bit at a time.
Port: One of the "windows" used by the IBM PC and PCjr to talk to the outside

world. The RS232 interface is a type of port.
Prompt: A message to the computer user asking for information. The following

INPUT statement includes a prompt.

10 INPUT "ENTER YOUR NAME";A$

Pseudorandom: Numbers which appear to be random but which are actually
takeb from a very long list of numbers. The list is so long that it takes a great deal of
time before it repeats, and, since the computer can be made to start at a different
position in the list each time, the series appears random.
Random access: A method of getting data, either from memory or from some

mass storage device, which allows going directly to the information required and
using it, without accessing any of the other information in the file or memory.
Real-time clock: The built-in clock in the IBM PC and PCjr that keeps track of

elapsed time since the clock was last reset by the user.
Register: A location storing a status of some type. Some types of registers are

located in the IBM PC and PCjr's microprocessor and can be accessed only through
machine language. Some memory locations in the IBM PC and PCjr perform a
register-like function. The status of these registers tells the computer whether a cer
tain featvure is ON or OFF, or the volume of a sound oscillator, or some other status.
Rheostat: A variable resistor, like those used in paddles, which lets more electric

ity flow when turned one way and less when turned the other.
RS-232: The asynchronous adapter port, a serial interface device that allows the

IBM PC and PCjr to communicate with devices like printers or modems one bit at
a time.

Sequential: A serial file access method in which each piece of information is
stored after another and must be written or accessed in that fashion.

Serial: Sequential data storage or transfer.
String delimiter: A character that the computer recognizes as the "end" of a

given string input. The most common are commas and quotation marks.
String variable: A variable that can store alpha information only. Strings can

include numbers, punctuation marks, and graphics, but the computer recognizes
them only as characters, not as values.
Subroutine: A program module that performs a specific task, called through the

GOSUB statement and ending with RETURN, which directs program control
back to the instruction following the GOSUB.
Toggle: A feature that can be either ON or OFF is sometimes "to^ed" between

the two, like a lightswitch.
Upload: To store a file from disk or tape in the IBM PC and PCjr's memory

buffer and then send it through telecommunications to another computer, which
can then write it to tape or disk for permanent storage (downloading.)

INDEX

206 IBM PC AND PCjr SUBROUTINE COOKBOOK

A
algorithm, 189
AND, 114
append, 2
array, 30,37,41,42,43,44,52,54,194
ASCn,2,4,24,48-49,51
asynchronous adapter, 10,23

B

function key, 10,12,60,73,74,162

G
game, 13,158-160
Game Routines, 187
graphics, 10,24,33,48,189

I
Basic Tricks, 10
baud, 23
binary, 117,125
bit, 114-124
Bits and Bytes, 114
Boolean, 114
buffer, 20,24,25
Business and Financial Subroutines, 78 joystick, 2,132-135,188
byte, 114-124

integer, 192
interpreter, 51
interrupt, 60,64,66,68,

J

Joysticks and Paddles, 1

71,72-74,154
iteration, 66

calendar, 101
cards, 188
case, 35
channel, 51
clock, 60-61,66,182-183
color/graphics adapter, 10,14,18
communications, 12,23,60,72,74
compound, 88,89,91
concatenate, 48
cursor, 16,60,137,139,141,143,145,
146,148

Data Input, EtWng, and Output, 29 MERGE, 2-4
decimal. 86,87,125,128 ^ „
J r 1 o microtone, 159
derault, 3 i

delay, 198
disk, 23-25,30,37,43,51-52,54-55
DOS, 10,13,23,30
download, 10
duration, 158

laser, 176,177
library, 2
logical, 51
lowercase, 30,3

moden, 10,23,

32

K
KE^ 10,11
keyboard, 19,20,93-94,159-160

5,36

M
memory, 2,10,13,51,114,118,122
menu, 78,103-104,139,143

60
monitor, 21
monochrome, 18,132
music, 158

N

extended code, 49
NOISE, 184
NOT, 114
numeric, 31,32,40,43,48,52

INDEX 207

o
octave, 158-166
ONKE^ll
OR, 114,124

paddle, 132-133,136-137
parameter, 120,122
PEEK, 16,18,115-127
POKE, 10,13,16,20,115-125,127

R
RAM, 13
random, 188,190,192,193,196
real-time, clock, 60,61
RENUM, 3-5
rheostat, 136,151

terminal, 10
toggle, 10,115,120,123

u
upload, 10
uppercase, 30,35,36,48
Using the Clock and Interrupts, 60
Using Sound, 158

V
voice, 158
word processing, 46

XOR, 114
X

screen, 10,13-14,21,38,54,60,66,69,
71,140,144-145,159

sequential, 50-51
sort, 37-41
speaker, 158,160

The Brady IBM PC Library
Inside the IBM PC: Access to Advanced Features
and Programming

Peter Norton

The most widely read author on the IBM PC explains the workings of the computer.
1983/320 pp/ISBN 0-89303-556-4
Book/diskette package ISBN 0-89303-561-0

IBM PC: An introduction to the Operating System, BASIC
Programming and Applications—Revised and Enlarged

Larry Joel Goldstein and Martin Goldstein
An updated and expanded version of what has become the classic self-study book for
the IBM PC.

1983/392 pp/ISBN 0-89303-530-0
Book/diskette package ISBN 0-89303-527-0

IBM PC & XT Assembly Language: A Guide for Programmers
Leo J. Scanlon

An introduction to the principles of microprocessors (specifically the 8088), numbering
systems, and assemblers.
1983/320 pp/ISBN 0-89303-241-7
Book/diskette package ISBN 0-89303-535-1

MS-DOS and PC-DOS: User's Guide
Peter Norton

The authority, Peter Norton, gives an introduction and explanation of the Microsoft
Disk Operating System. Explains DOS 1.0 and 2.0 versions.
1984/266 pp/ISBN 0-89303-645-5

8087 Applications and Programming for the IBM PC
and Other PCs

Richard Startz

Starts with a non-technical introduction and turns into a very detailed description of the
myriad applications for the 8087 microprocessor.
1983/276 pp/ISBN 0-89303-420-7
Diskette only ISBN 0-89303-421-5
Book/diskette package ISBN 0-89303-425-8

Communications and Networking for the IBM PC
Larry E. Jordan and Bruce W. Churchiii
Brings together data communications applications and the IBM PC. Includes asyn
chronous and synchronous communications and a complete study of local area net
working.
1983/237 pp/ISBN 0-89303-385-5

Handbook of BASIC for the IBM PC
David 1. Schneider

Clearly translates the BASIC reference manual supplied with the IBM PC into
understandable terms. Organized by BASIC programming statements.
1983/498 pp/ISBN 0-89303-506-8
Book/diskette package ISBN 0-89303-508-4

IBM PC and XT Owner's Manual: A Practical Guide to Operations
Barbara Lee Chertok, Dov Rosenfeld, and James H. Stone
Provides easy instructions on the operation of the IBM PC. Helps to unravel the jargon
found in the supplied manual to allow for easy access to operation.
1984/200 pp/ISBN 0-89303-531-9

Advanced BASIC and Beyond for the IBM PC
Larry Joel Goldstein
A complete guide to the advanced skills of BASIC programming, files, graphics, event-
trapping, machine language, and subroutines. A must for the IBM PC programmer.
1984/360 pp/ISBN 0-89303-324-3
Book/diskette package ISBN 0-89303-325-1

Business Problem Solving with the IBM PC & XT
Leon A. Wortman

Business professionals will use the dozens of programs specifically designed for decision-
making and problem-solving. Source codes are included in BASIC and many are in
Pascal.

1983/324 pp/ISBN 0-89303-282-1
Book/diskette package ISBN 0-89303-342-1

Business Applications for the IBM Personal Computer
Steven Zimmerman and Leo Conrad

Offers step-by-step intructions on the use and customization of existing business soft-
ware programs.

1983/300 pp/ISBN 0-89303-243-3
Book/diskette package ISBN 0-89303-351-0

Games, Graphics, and Sound for the IBM PC
Dorothy Strickland, Dennis Rockwell, and Kevin Bowyer
Teaches how to proram in BASIC, Pascal, and FORTRAN to create graphics and sotmd
for the IBM PC. Illustrates how to integrate sound and graphics into animation.
1983/256 pp/ISBN 0-89303-469-3
Book/diskette package ISBN 0-89303-470-3

BASIC Engineering and Scientific Programs for the IBM PC
Philip M. Wolfe and 0. Patrick Koelling
A source of BASIC programs for on-the-job use by engineers and scientists to provide
important computer techniques for problem-solving and data manipulation.
1983/358 pp/ISBN 0-89303-330-8
Book/diskette package ISBN 0-89303-331-6

Pascal for the IBM PC: IBM DOS Pascal and UCSD p-System
Pascal

Kevin W. Bowyer and Sherryl J. Tomboullan
The first word written on combining the IBM PC with Pascal programming. An em
phasis on sound and graphics applications is provided.
1983/416 pp/ISBN 0-89303-280-8
Book/diskette package ISBN 0-89303-761-3

WordStar for the IBM PC: A Self-Guided Tutorial
Micro Workshop of Cambridge
Now WordStar can be mastered with this step-by-step journey into it's many features.
1984/280 pp/ISBN 0-89303-956-X

The C Programmer's Handbook
Thom Hogan
The ultimate encyclopedia of information necessary to use C. Choose other books to
leam C, choose this book to USE C.
1984/288pp/ISBN 0-89303-365-0

The 0 Programming Tutor
Leon A. Wortman and Thomas 0. Sidebottom
Here is a tutorial that goes beyond the standard guides to C language. Contains a varie
ty of C programming examples in a self-study format.
1984/274pp/ISBN 0-89303-364-2

Programming the IBM PC & XT: A Guide to Languages
Ciarence B. Germain

A gold mine of information on programming the PC. An in-depth reference guide for
programmers seeking skills necessary to operate and run programs on the IBM PC.
Covers PC-DOS 1.1 through 2.0.
1984/338 pp/ISBN 0-89303-783-4

Available at your local bookstore or computer retailer. Or write to Brady Com
munications Company, Inc., Bowie, MD 20715. Phone (301) 262-6300.

Whet Your Programming Appetite with a "Cookbook" Approach .
Writing Quality Programs on the IBM PC and PCjr!

f . .the lightly written text and the line-by-line description coupled with the
subroutines themselves will definitely be well received by novices everywhere!"

"This book fills a very definite need in the PC and PCjr book marketplace!"

IBM PG AND PCjr SUBROUTINE COOKBOOK
David D. Busch

Here's a programming "cookbook" that offers a potpourri of machine-specific
subroutines designed to help improve your programming expertise on the IBM PC
and PCjr! This unique programming guide includes 70 ready-to-merge subroutines
plus programming tips to make your own programs sizzle! These easy-to-follow
subroutines are ingredients to "recipes" for your programming proficiency, designed
to take the mystery out of using function keys, joysticks, sound, and other special
features of the IBM PC and PCjr (what's more, the book specifies which subroutines
apply to which machine). No more "stewing" over exotic, top-heavy math functions
and statistics! Complete with line-by-line descriptions of each subroutine presented,
this book also includes: ,
• Subroutines for generating musical notes or adding sound effects within your

own programming I
• Subroutines for business/financial users and advanced programmers as well
• Tips on routines to make your games of arcade quality
• Plus—a comprehensive glossary and index!

CONTENTS

Subroutine Magic/BASIC Tricks/Data Input, Editing, and Output/Using the Clock and
Interrupts/Business and Financial/Bits and, Bytes/Joysticks and Paddles/Using Sound
/Game Routines

	2020_07_30_20_00_43
	2020_07_30_20_05_14
	2020_07_30_20_05_33

