
· Revised

Edward H. Carlson
Illustrated by Paul D. Trap

An entertaining, easy-to-use guide to learning
BASIC on the IBM PC or PCjr. For kids, both

young and old.

A COMPUTEI Books Publication $12.95

' '

COMPUTE!'s

Kids and the IBM

Edward H. Carlson, Ph.D.
Illustrated by Paul D. Trap

221Yc'~M!~[E.ublications,lnc.9
Greensboro, North Carolina

Copyright 1985, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the
United States Copyright Act without the permission of the copyright owner is unlawful.

Printed in the United States of America

10987654321

ISBN 0-942386-93-0

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) 275-9809, is one of the ABC
Publishing Companies and is not associated with any manufacturer of personal computers. PC and PCjr are
trademarks of International Business Machines, Inc.

Contents
Before We Begin
Acknowledgments ... v
To the Kids . vii
To the Parents . viii
To the Teacher . ix
About Programming . x
About the Book . xi

Introduction
1. NEW, PRINT, REM, and RUN 1
2. Beeps and Strings .. 9
3. LIST and REM ... 14
4. The Keyboard and Editing .. 22
5. The INPUT Statement ... 29
6. Tricks with PRINT .. 35
7. The LET Statement .. 41
8. GOTO and the Break Key ... 46
9. The IF Statement .. 52

10. Introducing Numbers .. 58
11. TAB and Delay Loops . 65
12. The IF Statement with Numbers 71
13. Random Numbers and the INT Function 78
14. Saving to Disk .. 86

Graphics, Games, and All That
15. Some Shortcuts ... 93
16. Moving Graphics and LOCATE 101
17. FOR-NEXT Loops .. 107
18. DATA, READ, and RESTORE 114
19. SOUND .. 121
20. COLOR .. 125
21. Drawing Pictures ... 131
22. Color Graphics .. 137
23. Music .. 143
24. Pretty Programs, GOSUB, and RETURN 149

Advanced Programming
25. ASCII Code and ON-GOTO 156
26. Snipping Strings: LEFT$, MID$, RIGHT$, and LEN 162

27. Switching Numbers with Strings 168
28. Logic: AND, OR, and NOT 174
29. Secret Writing and INKEY$ 182
30. Long Programs .. 188
31. Arrays and the DIM Statement . 192
32. User-Friendly Programs ... 200
33. Debugging: STOP and CONT 208

Append tees
A. Disk Use ... 215
B. IBM BASIC Reserved Words 219
C. Answers to Selected Assignments 221
D. Glossary .. 241

Topical Index . 253
Command and Function Index . 255

l'!!!!!l Acknowledgments

My sincere thanks go to Paul Sheldon Foote for suggesting I write a book on
teaching BASIC to children.

This book is seventh in a series that started with Kids and the Apple. Each book
was written to fit the strengths of the computer in question and was modified in
response to what I have learned about teaching children.

I am deeply grateful to my fellow staff members at Michigan State University's
"The Computer Camp": Mark Lardie, Mary Winter, John Forsyth, and Marc Van
Wormer, each of whom shared their experiences with me and helped provide in­
sight into the minds of the children.

I thank Kevin Forsyth for helping in the preliminary work on this book, for point­
ing out features unique to the IBM, and for rewriting many of the solutions to
assignments to run on this machine.

Several families have used the Apple version of this book in their homes and
offered suggestions for improvement. I especially wish to thank George Campbell
and his youngsters, Andrew and Sarah; Beth O'Malia and Scott, John, and Matt;
Chris Clark and Chris Jr., Tryn, Daniel, and Vicky; as well as Paul Foote and
David.

COMPUTE! Publications started publishing COMPUTE! magazine at about the
same time that I started writing articles on home computing. I am grateful that
COMPUTE! encouraged my writing career by accepting some of my early articles.
This encouragement continues with the publishing of the books from the Kids
and ... series. I greatly appreciate the skill and energy of the COMPUTE! staff in
editing and assembling this revision.

Paul Trap shares the title page honors with me. His drawings are an essential part
of the book's teaching method. I am grateful to Paul for his lively ideas, cheerful
competence, and quick work which make him an ideal workmate.

V

My children have worked on this book in many ways, from typing and testing
programs to proofreading and indexing. In addition, they attemped to help the
"bald-headed one" properly express juvenile taste. I thank Karen, Brian, and
Minda for their essential help.

My final and heartfelt thanks go to my wife, Louise. As absorbed in professional
duties as I, she nevertheless took on an increased share of family duties as the
book demanded my free time. Without her support I could not have finished the
work.

vi

To the Kids

This book teaches you how to write programs for the IBM computer. It's for you.

You will learn how to make your own action games, board games, and word
games. You may entertain your friends with challenging games and provide some
silly moments at your parties with the short games you invent.

Perhaps your record collection or paper route needs the organization your special
programs can provide. If you are working on the school yearbook, a program to
handle the finances or records might be useful.

You may help your younger sisters and brothers by writing drill programs for
arithmetic or spelling. Even your own schoolwork in history or a foreign language
may be made easier by programs you write.

How to use this book. Do all the examples. Try all the assignments. If you get
stuck, first go back and reread the lesson carefully from the top. You may have
overlooked some detail. After trying hard to get unstuck by yourself, you may go
ask for help.

There are review questions for each
lesson. Be sure you can answer
them before announcing that you
have finished the lesson!

vii

To the Parents

This book is designed to teach BASIC on the IBM to youngsters from 10 to 14
years old. It gives guidance, explanations, exercises, reviews, and quizzes. Some
exercises have room for the student to write in answers that you can check later.
Answers for program assignments are given in the back of the book.

Your child will probably need some help in getting started and a great deal of en­
couragement at the sticky places. For further guidance, you may wish to read my
article in Creative Computing, April 1983, p. 168.

Learning to program is not easy because it requires handling some sophisticated
concepts. It also requires accuracy and attention to detail, which are not typical
childhood traits. For these very reasons it is a valuable experience for children.
They will be well rewarded if they can stick with the book long enough to reach
the fun projects that are possible once a repertoire of commands is built up.

How to use the book. This book is divided into 33 lessons for the kids to do.
Each lesson is preceded by an "Instructor Notes" section which you should read.
It outlines the topics to be studied, gives some helpful hints,
and provides questions which you can use verbally
(usually at the computer) to see if the skills and
concepts have been mastered.

These notes are intended for the parents,
but older students may also profit by
reading them. Younger students will
probably not read them and can get all
the material they need from the lessons
themselves. For the youngest children, it
may be advisable to read each lesson
aloud with them and discuss it before
they start work.

viii

To the Teacher

This book is designed for students in about the fifth grade through the ninth
grade. It teaches BASIC and the features of the IBM computer.

The lessons contain explanations (including cartoons), examples, exercises, and re­
view questions. Notes for the instructor which accompany each lesson summarize
the material, provide helpful hints, and give good review questions.

The book is intended for independent study, but it may also be used in a class­
room setting.

I view this book as teaching programming in the broadest sense, using the BASIC
language rather than teaching BASIC. Seymour Papert has pointed out in
Mindstorms (Basic Books, 1980) that programming can teach powerful ideas.
Among these is the idea that procedures are entities in themselves. They can be
named, broken down into elementary parts, and debugged. Some other concepts
are chunking ideas into mind-sized bites, organizing such modules into a hierar­
chical system, looping to repeat modules, and conditional testing (the IF-THEN
statement).

Each concept is tied to the student's
everyday experiences-through the language
and examples used to express the idea and
through the cartoons. Thus, metaphor makes
the new material familiar to the student.

ix

About Programming

There is a common misconception about programming a computer. Many people
think that ability in mathematics is required. Not so. The childhood activities that
computing most resembles may be playing with building blocks and writing an
English composition.

Like a block set that has many copies of a few types of blocks, BASIC uses a rel­
atively small number of standard commands. Yet the blocks can be formed into
unique and imaginative castles, and BASIC can be used to write an almost limit­
less variety of programs.

Like an essay on the theme "How I Spent My Summer," writing a program in­
volves skill and planning on all scales. To write a theme, the child organizes
thoughts on several scales, from the overall topic to lead and summary para­
graphs and sentences, on down to grammar and punctuation in sentences and
spelling of individual words.

Creativity in each of these activities-blocks, writing, and BASIC-has little scope
at the lowest level of individual blocks, words, or commands. At best, it is pos­
sible to develop a small bag of tricks. For example, the child may discover that
the triangular block, first used to make roofs, makes splendid fir trees. What is
needed at the smaller scale is accuracy in syntax. Here, computing is an excellent
self-paced learning situation, because syntax errors are largely discovered and
pointed out by the BASIC interpreter as the child builds and tests programs.

On a larger scale, creativity comes into full scope and many other latent abilities
of the child are developed. School skills such as arithmetic and language arts are
utilized as needed, and thus are strengthened. But the strongest features of
programming are balanced between analysis (why doesn't it work as I want) and
synthesis (planning on several size scales, from the program as a whole down
through loops and subroutines to individual commands).

The analytic and synthetic skills learned in programming can be transferred to
more general situations and can help a child develop a more mature style of
thinking and working.

X

About the Book

This book is written for the IBM PC and PCjr computers. Most of the book de­
scribes features present in Cassette BASIC, which is functionally equivalent in the
two machines. Some commands, such as those for music and graphics, belong to
the Advanced BASIC of the PC and the Cartridge BASIC of the PCjr.

For instructors who are beginners themselves or who feel weak in BASIC, the stu­
dent's lessons form a good introduction to BASIC. The lessons and notes differ in
style. The lessons are pragmatic and holistic; the notes and glossary are detailed
and explanatory.

The book starts with a bare-bones introduction to programming, leading quickly
to the point where interesting programs can be written. See the notes for lesson 5,
"The INPUT Statement," for an explanation. The central part of the book
emphasizes more advanced and powerful commands. The final part of the book
builds on this foundation, but also deals with such broader aspects of the art of
programming as editing, debugging, and user-friendly programming.

The assignments involve writing programs-usually short ones. Of course, many
different programs are satisfactory solutions to these assignments. In the back of
the book, I have included suggested solutions for some of the assigned programs,
some of them written by children who have used the book.

Lessons 14, "Saving to Disk," can be
studied any time after the first lesson.

xi

Instructor Notes 1. NEW, PRINT, REM, and RUN

This lesson is an introduction to the computer. Pull up a chair and help your stu­
dent get started. Help the student understand that you cannot damage the com­
puter by what you type in. If something goef wrong and all else fails, turn the
computer off, then turn it on and start over again.

If your screen is hard to read (with a TV or some monitors in 80-column mode),
enter

mode 40 to the A> prompt, or
screen 0,1 if you are in BASIC

Prepare a disk for the student's exclusive use (see Appendix A "Disk Use"). Les­
son 1 gives start-up instructions for Advanced BASIC (Cartridge BASIC on the
PCjr). If you want different start-up instructions, provide them for the student.

Help your student find the Ctrl, Enter, Home, Shift, and quotes keys. (The PCjr
keyboard is color coded. If you need to use any function that is printed in green,
first press the Fn key.)

Here are the contents of the first lesson:

1. Turning on the computer.
2. Typing versus entering commands or lines; the Enter key.
3. NEW, REM, PRINT, and RUN.
4. What is a program? Numbered lines.
5. The cursor is sent home with the Home key.
6. The screen can be cleared using Ctrl-Home.
7. Memory can be cleared with NEW.
8. What is on the screen and what is in memory are different. This may be a

hard concept for the student to understand at first.
9. RUN makes the computer go to memory, look at the commands and state­

ments in the program, and execute them.
10. You can skip numbers in choosing line numbers, and why you may want to.

1

Questions
1. Write a program that will print your name.

2. Make the program disappear from the TV screen but stay in memory.

3. Run the program.

4. Erase the program from memory.

5. Write a program that will print hello.

6. Make it run.

7. Erase it from memory but leave it on the screen.

2

Lesson 1. NEW, PRINT, REM, and RUN

How to Get Started
Open the disk drive(s) and take out any disks, put them in their envelopes, and
put them safely away. If you have a PCjr, make sure Cartridge BASIC is in place
and turn the computer on. For either computer, put your student disk in the disk
drive (drive A if you have two drives). Find the switch on the computer and turn
it on. You will see a small flashing light on the screen. You will hear the disk
drive start up and then stop. You will see a message. The last part is Ok. Below
the message is a flashing line. This line is called the cursor. When you see it flash­
ing, it means the computer is waiting for you to type something in.

Cursor means "runner." The little line runs along the screen showing where the
next letter you type will appear.

Typing
Type some things. What you type shows on the TV screen. Press the Home key.
(On the PCjr, press the Fn key and then press the key which has Home printed
on it in green.) The cursor jumps to its home in the top corner of the screen.

Erasing the Screen
Type some more. It covers what you typed before. The screen is a mess. Let's
erase it. Two keys used together erase the screen.

3

Find the Ctrl key. It is beside the A key on the left side of the keyboard. Hold
down the Ctrl key and press the Home key. (PCjr: Don't forget to first press the
Fn key.) That's how easy it is to erase the screen.

Command the Computer
Try entering this.

Type: give me candy

and press the Enter key. The Enter key is on the right side of the keyboard. It has
a bent arrow on it like this:

PCjr Enter PC Enter

If you make a mistake, clear the screen as described above and start over.

The computer will print

Syntax error
Ok

When the computer prints Syntax error, it means the computer did not under­
stand you.

Surprisingly, the computer understands only about 178 words in BASIC. You need
to learn which words the computer understands.

Here are the first four words to learn:

NEW, PRINT, REM, and RUN

4

The NEW Command
Type: new

and press the Enter key. NEW empties the computer's memory so that you can
put your program there.

How to Enter a Line
When this book tells you to enter something, it means to do these two things:

1. Type a line.
2. Then press the Enter key.

Clear the screen and enter this line: UJ PRINT "hi"

The " marks are quotation marks. To make quotation marks, find one of the two
Shift keys. Each has a fat open arrow pointing upward on it. Hold down a Shift
key and press the key that has the " on it. It's two keys to the right of the L key.

Don't forget to press the Enter key at the end of the line.

Now line 10 is in the computer's memory. It will stay in memory until you enter
the NEW command or until you turn off the computer. Line 10 is a very short
program.

5

What Is a Program?
A program is a list of instructions for the computer to do. The instructions are
written in lines. Each line starts with a number. The program you entered above
has only one line.

How to Run a Program
A moment ago you put this program in memory:

10 PRINT "hi"

Enter: run

(Did you remember to press the Enter key?)

Make sure you do not confuse the number 0 with the letter 0. Most computers dis­
play zero with a line drawn through it and the letter without the line.

The RUN command tells the computer to look in its memory for a program and
obey the instructions it reads in the lines.

6

Did the computer obey the PRINT statement? The PRINT statement tells the com­
puter to print whatever is between the quotation marks. The computer prints:

hi
Ok

How to Number the Lines In a Program
Clear the screen. Use NEW to empty memory. Enter this program:

1 REM hello
2 PRINT "hi"
3 PRINT "friend"

This program has three lines. Each line starts with an instruction. You have al­
ready learned the PRINT statement. You will learn about the REM statement
later.

Usually, you will skip numbers when writing the program, like this:

10 REM hello
15 PRINT "hi"
20 PRINT "friend"

It is the same program but has different numbers. The numbers are in order, but
some numbers are skipped. You skip numbers so that you can put new lines in
between the old lines later if the program needs fixing.

Run the program you have entered. The computer does the statements in the
lines. It starts with the lowest line number and goes down the list in order.

7

The REM Statement
The REM statement is for writing little notes to yourself. The computer ignores
the notes. Use REM for putting the name of your program in the top line of the
program. See lesson 3 for more details.

Assignment 1
1. Use two keys to erase the screen.

2. Use the NEW command. Explain what it does.

3. Write a program that uses REM once and PRINT twice. Then use the command
RUN to make the program obey the commands.

8

,,.

Instructor Notes 2. Beeps and Strings

The BEEP statement makes the computer beep. We want to make plenty of bells
and whistles available to the student to increase program richness.

The CLS statement used in a program clears the screen and homes the cursor, just
as the Ctrl-Home keys do from the keyboard (Ctrl-Fn-Home on the PCjr).

The COLOR statement changes both foreground and background colors of the
characters printed on the screen. The third number in the COLOR statement
changes the border color in the screen O mode.

If you are using a TV or certain monitors, you should enter

screen 0,1

before using COLOR. You can do this from the keyboard or you can put it in a
line in your programs.

The idea of a string constant is explained. The numbers appearing in a string, for
example, the "19", cannot be used directly in arithmetic.

Questions
1. How do you do each of these things:

make the computer beep
erase the screen
empty the memory
print your name

2. What is a string?

3. What special k..c:y do you press to enter a line?

't. What does the computer mean when it prints Syntax error?

5. Write a program to print FIRE on a red background and make the computer
beep.

9

Lesson 2. Beeps and Strings

Enter: new (Did you press the Enter key?)

Press Ctrl-Home (hold down Ctrl and press the Home key). On the PCjr, hold
down Ctrl, press Fn, and then press the Home key.

NEW empties the memory, and the Ctrl-Home keys erase the screen. You are
now ready to start this lesson.

The Computer Beeps Like a Bird
Enter this program:

10 REM bird
20 CLS
25 PRINT "----0----"
30 BEEP

Enter: run

Line 30 makes the computer beep.

Clearing the Screen In a Program
The CLS statement clears the screen.

Run this:

10 REM wipe that saile off
20 PRINT "S.ile"
30 BEEP
40 CLS
50 PRINT "That is better"

The above program prints Smile, then clears the screen quickly.

Printing an Empty Line
Run this:

10 REM skipping
15 CLS
20 PRINT "here is the first line"
30 PRINT
40 PRINT "one line was skipped"

Line 30 just prints a blank line.

Color the Screen Red
Run this:

10 REM red color screen
20 COLOR 0,4:CLS

11

If your colors are smeared, try adding this line:

15 SCREEN 0,1

To get other colors, try other numbers from 1 to 7 in place of 4 and O in the
COLOR statement.

Put a Frame Around the Screen
Enter line 20 again to look like this:

11' REN border
2e COLOR e,4,3:CLS

Try other numbers from O to 7 in place of the 3.

Back to Black and White
Enter: color 7 ,0

els

(PCjr: Enter: screen 0)

String Constants
Look at these PRINT statements:

print "Joe"
print "#s47%*$"
print "19"
print "3.14159265"
print "I'm 14"
print " "

Letters, numbers, and punctuation marks are called characters.

Even a blank space is a character. Look at this:

10 PRINT " "

12

Characters in a row make a string.

The letters are stretched out like beads on a string.

"

A string between quotation marks is called a string constant.

It is a string because it is made of letters, numbers, and punctuation marks in a
row. It is a constant because it stays the same. It doesn't change as the program
runs.

Assignment 2
1. Write a program that prints your first, middle, and last names with black letters

printed on blue squares.

2. Now add a beep before it prints each name.

3. Now make the screen border change color before it prints each name.

13

Instructor Notes 3. LIST and REM

In this lesson we will cover:

1. LIST, LIST 30.
2. Memory boxes holding lines.
3. Erasing one line from memory.
4. Adding a line between old lines.
5. Replacing a line.
6. REM for titles, remarks.
7. Drawings using PRINT statements.

Your student needs to understand that the program is stored in memory even
when it is not visible on the screen, and that LIST just prints the program to the
screen. The special uses like LIST 100-300 and LIST -300 will be taken up later.

Memory as a shelf of boxes is a key model of the computer that we will develop
in this book. It is an important tool in helping the student understand variables
and the detailed workings of complicated expressions in a statement.

REM as a remark statement can be a little confusing to new students. It needs to
be distinguished both from PRINT and from just typing to the screen. The use of
PRINT to draw pictures is demonstrated. It will be better for the student to draw
some at the end of each lesson than to do a lot now. After lesson 4, drawing
helps develop line-editing skills.

Questions
1. How do you erase a line you no longer want?

2. Clear the screen. Now how do you show all of the program in memory on the
screen?

3. How can you replace a wrong line with a corrected one?

4. Suppose you want to put a line in between two lines you already have in mem­
ory. How do you do this?

14

5. Explain how the computer puts program lines in "boxes" in memory. What
does it write on the front of the box?

15

Lesson 3. LIST and REM

Start each lesson with NEW to erase the memory, and press the Ctrl-Home keys
or enter els to erase the screen.

Now enter these lines:

18 REN house
28 PRINT "listen"
38 BEEP
48 PRINT "Did you hear the dooL""bell ?"

Run this four-line program. Then press Ctrl-Home to erase the screen. The pro­
gram is no longer visible on the screen.

But the program is not lost. The computer has stored the program in its memory.
We can ask the computer to show us the program again.

Listing the Program
To show the whole stored program, enter

list

To show line 30 of the program, enter

list 30

16

-

-

Capital Letters
The computer lists commands and statements in capital letters, even when you
type in lowercase letters. In this book, we will often use capital letters for com­
mands and statements (like LIST, PRINT, REM, RUN, and NEW), but you can
type in lowercase letters if you want.

Memory
The computer's memory is like a shelf of boxes. On the front of each box is its
name. At the beginning, all the imaginary boxes are empty and no box has a
name.

When you entered

10 REM house

the computer took the first empty box and wrote the name Line 10 on the label.
Then it put the statement REM house in the box and put the box back on the
shelf.

When you entered

20 PRINT "listen"

the computer took the second box and wrote Line 20 on its label. Then it put the
statement PRINT "listen" in the box and put that box in its place on the imagi­
nary shelf.

17

Erasing a Line from Memory
To erase one line of the program, enter the line number with nothing after it. For
example, to erase line 20, enter

20

You still see the line on the screen, but if you do a LIST, you'll see that line 20 is
gone from memory.

When you enter just a line number with nothing after it, the computer finds the
box with that line number on the front. It empties the box and erases the line
number off the front of the box.

How do you erase the whole program? (Look at the beginning of this lesson to
see the answer.)

What does the computer do to the boxes when you give it the command NEW?

18

Adding a Line
You can add a new line anywhere in the program, even between two old lines.
Just pick a line number between the numbers of the old lines and type your line
in. The computer puts it in the correct place.

Enter NEW and this:

Uil REN mor-e
28 PRINT "mor-e lines wanted"
48 PRINT "her-e they ar-e"

LIST it and run it. Now add this line:

15 PRINT "sti 11"

LIST and run it again.

Fixing a Line
If a line is wrong, just type it over again. For example, in the above program, you
can change line 40 by entering:

4'11 PRINT "needs fixing"

19

What did the computer do to the box named Line 40 when you entered the line?

The REM Statement
Use a REM statement to put a title on your program.

Enter NEW and this:

19 REM lazy
29 CLS
39 PRINT "line 1'1J does nothing"
35 REM this line does nothing

Run it.

What does line 30 do?

What does line 35 do?

REM means "remark." Use REM to write any little note in the program that can
help you or anyone else understand the program.

20

Picture Drawing
You can use the PRINT statement to draw pictures. Here is a picture of a car. En­
ter NEW before drawing the car.

19 CLS
29 PRINT
39 PRINT
40 PRINT
59 PRINT

II):)(X)():)(lf

"xxxxxxxxxxxx"
u O 0 11

Don't forget to put the spaces in the PRINT lines! They are part of the drawing.

Assignment 3
1. What command will list line 10 of the program?

2. How do you tell the computer to list the whole program on the screen?

3. What does the computer do (if anything) when it sees the REM statement?
What is the REM statement used for?

4. Add a COLOR statement to the car picture program so that a blue car is drawn
on a red background.

5. Use CLS, BEEP, REM, and PRINT to draw three flying birds on the screen.
Make each bird peep after it is drawn.

21

Instructor Noles 4. The Keyboard and Editing

This lesson concerns the arrow keys, the Backspace key, and the Delete key.

Kie BacksQM..f PC Backsp__a_c_e

The arrow keys are used to move the cursor to any spot on the screen. Characters
on the screen are not affected by the cursor moving over them. Wherever the
cursor stops, you can type in new characters. For now, characters cannot be in­
serted, only replaced by other characters or deleted.

There are two deletion modes: Backspace and Delete. The difference is explained
in the text.

A repaired program line, when all is satisfactory, can be entered into the com­
puter by pressing Enter, as usual.

You can even change the line number, and then you'll have two identical lines
with different numbers. Sometimes you need several similar lines. It is much eas­
ier to create them by modifying a single line, using the cursor keys, than to type
each from scratch.

The arrow keys can be used to fix any line that you see on the screen. If the line
you want to fix is not on the screen, put it there with LIST.

Holding down any key for a short time starts the auto-repeat feature of the key­
board. This is useful for making repeated characters, such as a line of characters
or spaces in a line, or for moving the cursor fast with the arrow keys.

Questions
1. What is a cursor? What is it good for?

22

""""'
'"""

,..,...

2. Have your student demonstrate the following techniques:

Editing a line. This includes using the arrow keys to move the cursor to the in­
terior of the line, modifying characters there, and pressing Enter.

Using the Backspace key.

Using the Delete key. Explain how the Backspace key and the Delete key differ.

Using the repeat feature of the keyboard.

23

Lesson 4. The Keyboard and Editing

The Cursor Is a Flashing Line
As you remember, the little flashing line is called the input cursor. It shows you
where the next letter you type will appear on the screen.

The Arrow Keys Move the Cursor
Find the four arrow keys on the right side of the computer.

These keys move the cursor. Press one of the arrows. Hold it down. Use the ar­
row keys to move the cursor all over the screen.

(If the cursor doesn't move, but numbers are printed, then fix it by pressing the
Num Lock key just once.)

Now do this: Use the cursor arrow keys to move the cursor to the middle of the
screen and then type your name there.

Repeating Keys
Hold down a cursor arrow key. The cursor goes whizzing along!

This works for most keys on the keyboard. Try holding down the H key. You'll
see

hhhhhhhhhhhhhhhhhhhhhhhhh

24

Now try this:

Clear the screen.

Move the cursor to the middle of the screen.

Type your name there.

Put a box of "stars" around your name.

Fixing Messed-Up Lines
The cursor arrow keys help you fix errors in your typing.

Enter:

10 REM zr-agon

Oops! We want dragon.

Use the arrow keys to move the cursor onto the z.

Type a d instead.

Now the line is correct:

1'11 REM dragon

Press Enter to store the correct line in the memory.

25

Erasing Letters
There are two erase keys. One at the top right of the keyboard has an arrow on it
which points to the left.

We call it the Backspace key. It erases a mistake by causing the cursor to go to the
left (backward) on the screen and erase whatever was there before.

The other is the Del key. Del stands for delete, which means "take away."
Enter:

10 REM aaaaaaaaaaaaaEiiiiiiiiiiiii

Move the cursor over the E. Press the Del key. It erases the letter E that the cursor
was on.

Now hold the Del key down. The cursor sits there eating up all the i letters!

Enter:

10 REM aaaaaaaaaaaaaWiiiiiiiiiiiii

26

~ Move the cursor over the W. Press the Backspace key. It erases the a next to it!

Now hold the Backspace key down. The cursor goes whizzing off to the left,
erasing all the a letters and dragging the rest of the line with it.

Note: The Backspace key does not erase the W. It always erases the letters to its
left.

y

What Is the Difference?
Del erases what is under it and then eats up letters from the right.

Backspace erases what is next to it on the left and then goes whizzing along to
the left, erasing as it goes.

The CLS Statement ln a Program Llne
Run:

10 REM vanishing junk
12 CLS
20 PRINT
22 PRINT "Nice clean screen!"

27

The CLS statement clears the screen and puts the cursor in the home spot on the
screen.

Assignment 4
1. Type a line and use the arrow keys to move around in the line. Change letters

in the line. When you are done, press the Enter key to enter the line into
memory.

2. Fix 10 REM caaat to read 10 REM cat.

First, fix it by using the Del key. Then write it again and fix it using the Back­
space key.

3. Draw a large smiley face.

4. Write a program that makes a valentine. Use COLOR 4,7 to make red letters on
a white background.

28

Instructor Notes 5. The INPUT Statement

This lesson is about the INPUT statement and string variables.

We introduce the input statement in its simplest form without a message in
quotes in front of the string identifier:

INPUT A$

This allows the student to concentrate on the central feature of INPUT.

Similarly, we will give only the essential feature of each statement throughout the
introduction to the book (through lesson 14). We want the student to see the
forest before worrying about the trees. These are the statements and functions re­
quired for interesting programs:

PRINT
INPUT
GOTO
IF
RND

allows output
input
infinite looping
branching and decisions
random numbers for games

String variables are introduced by using the box concept again. For the time
being, variable names are restricted to one letter. This allows faster typing and
puts off discussion of the complicated naming rules until after we discuss the
RND function.

The two hats of the student, those of computer programmer and computer user,
cause much confusion as the student works the assignments. PRINT is the pro­
grammer speaking, while the user can speak only when invited by an INPUT
statement put there by the programmer.

Questions
1. What two different things does the computer put in boxes (one at programming

time and one from an INPUT)?

2. How does the program ask the user to type in something?

29

3. How do you know the computer is waiting for an answer?

4. What is a letter with a dollar sign after it called?

5. Write a short program that uses CLS, PRINT, and INPUT.

6. Are you in trouble if the computer answers with Redo from start after an
INPUT? What made it do that? What do you do next?

30

!""!l

Lesson 5. The INPUT Statement

Use INPUT to make the computer ask for something.

Enter:

1~ REM Talky-Talk
15 CLS 2" PRINT "say something"
25 INPUT A$
30 PRINT
35 PRINT "did you say"
40 PRINT A$;
50 PRINT"?"

Run it. When you see a message followed by a question mark, type hi and press
the Enter key.

The question mark was written by INPUT in line 25 . The flashing cursor means
the computer expects you to type something in.

When you type hi, the computer stores this word in a box named A$.

Later, in line 40, the program asks the computer to
print whatever is in the box named A$.

Run the program again and this time
say something funny.

31

String Variables
A$ is the name of a string variable. The computer stores string variables in mem­
ory boxes just like the boxes it puts program lines in. The name is written on the
front of the box and the string is put inside the box.

Rule: A string variable name ends in a dollar sign ($). You can use any letter you
like for the name and then put a dollar sign after it.

A$ is called a variable because you can put different strings in the box at different
times in the program.

The box can hold only one string at a time.

Putting a new string in a box automatically erases the old string that was in the box.

Error Messages from INPUT
Run this two times:

UJ INPUT A$
2'11 PRINT" ";A$

32

Try these answers:

hi
hi, there

Rule: Do not put any commas in the string you type in answer to the computer.

If you accidentally do put a comma in, the computer will give this answer and
then will wait:

?Redo from start

This means that the computer wants you to try again, but don't put any commas
in the answer you type.

You Wear Two Hats-User and Programmer
You are a programmer when you write a program. The person who runs the pro­
gram is a user.

Of course, if you run your own program, then you are both programmer and user.

33

When the programmer writes a PRINT statement, the programmer is speaking to
the user by writing on the screen.

When the programmer writes an INPUT statement, the programmer is asking the
user to say something to the computer.

It is like a game of May I. The only time the user gets to say something is when
the programmer allows it by writing an INPUT statement in the program.

Assignment 5
1. Write a program that asks for the user's name and then says something silly to

the user by name.

2. Write a program that asks you to INPUT your favorite color and put it in a box
(a string) called C$. Next, have the program ask your favorite animal and put
this in box C$, too. Have the program print C$. What will be printed? Run the
program and see if you are right.

34

Instructor Notes 6. Tricks with PRINT

In this lesson we will look at:

1. PRINT with a semicolon at the end.
2. PRINT with semicolons between items.
3. The invisible print cursor.

We won't discuss the use of commas in a PRINT statement.

The lesson introduces the output cursor which is invisible on the screen. It marks
the place where the next character will be placed on the screen by a PRINT state­
ment. (The input cursor is the flashing line. It is familiar from the edit mode and
the INPUT statement.)

When a PRINT statement ends with a semicolon, the output cursor remains in
place, and the next PRINT will put its first character exactly in the spot following
the last character printed by the current PRINT statement.

Without a semicolon at the end, the PRINT statement will advance the output
cursor to the beginning of the next line as its last official act.

A PRINT statement can print several items: a mixture of string and numerical
constants, variables, and expressions. Numerical constants and variables have not
yet been introduced. The items should be separated by semicolons.

The series of printed items will have their characters in contact. If spaces are de­
sired, as in the "toast and jam" example, the spaces have to be put in the strings
explicitly.

Questions
1. Which cursor is a little flashing line? What instruction puts it on the screen?

2. Which cursor is invisible? What instruction uses it?

3. How do you make two PRINT statements print on the same line?

35

4. Will these two words have a space between them when run?

10 PRINT "hi";"there!"

If not, how do you put a space between them?

5. Show how to use the Ins key to put the o in dg to make dog.

36

Lesson 6. Tricks with PRINT

One Line or Many?
Enter this program and run it:

UJ REM food
2'1J PRINT
3'1J PRINT 11 toast 11

4'1J PRINT 11 and 11

5'1J PRINT 11 jam"

Each PRINT statement prints a separate line.

Now enter:

3'1J PRINT II toast "J
4'1J PRINT II and 11 ;

(Don't change or erase the other lines.) Be careful to put the space at the end of
"toast " and at the end of "and " and the semicolon at the end of each line.

Run it.

What was different from the first time?

The Hidden Cursor
Remember the flashing line? It is the input
cursor and shows where the next letter
will appear on the screen when you type.

The PRINT statement also has a cursor,
but it is invisible. It marks where the next
letter will appear when the computer is
printing.

37

Rule: The semicolon makes the invisible print cursor wait in place on the screen.
The next PRINT statement adds on to what has already been written on the same
line.

Famous Pairs
Enter:

\

UJ REN famous
2fi' PRINT"enter a name"
3fi' INPUT AS
35 CLS
4fiJ PRINT "enter another"
se INPUT BS
bfiJ CLS
7fi' PRINT"Presenting that fa111ous twosome"
75 PRINT
SQJ PRINT AS;" and ";BS

Be sure to put a space before and after the " and " in line 80.

Squashed Together or Spread Out?
Enter NEW and then try this:

10 PRINT "rock";"and";"roll"

After you have run it, try this also:

38

10 PRINT "rock ";"and ";"roll"

Don't forget the spaces after "rock" and "and".

The Insert Key

In the last lesson you learned how to erase letters. There were two ways to erase:
using the Backspace key and the Del (Delete) key.

The opposite of erase is insert. Insert means to "stick in another letter."

Try this: 10 REM draon

We left the g out of dragon.

To fix it, put the cursor over the o. Press the Ins key. Then press the G key. Now
the line is fixed to read:

10 REM dragon

Rule: Put the cursor on the letter to the right of the spot you want the inserted
letter to go.

Insert a Lot!
Try fixing 10 REM dn to be 10 REM dragon.

Rule: You have to press Ins only once. Then you can type as many letters as you
want.

To stop the Ins thing, just move the cursor with any of the arrow keys. Try fixing
10 REM dn to be 10 REM dragon smoke.

How? First, put the cursor on the n, press Ins, and add raga. Then use the right
arrow key to move the cursor to the space after dragon and type smoke (with a
space before the s).

39

Assignment 6
1. Write a program that asks for the name of a musical group and one of their

tunes. Then using just one PRINT statement, print the group name and the
tune name with the word plays in between.

2. Do the same, but use three PRINT statements that will print it all on one line.

3. Type these lines and then fix them by using the Ins key.

10 REM wizrd (make it wizard)

10 REM cmptr (make it computer)

10 REM kybd (make it keyboard)

40

Instructor Notes 7. The LET Statement

The LET statement is introduced, again using the concept of memory boxes.
Concatenation using the plus sign (+) is called "gluing the strings."

The box model is used to emphasize that LET is a replacement statement, not an
equal relationship in the sense used in arithmetic.

The box idea nicely separates the concepts name of the variable and value of the
variable. The name is on the label of the box, while the value is inside. The contents
of the box may be removed for use, and new contents may be inserted.

More exactly, a copy of the contents is made and used when a variable is used.
The original contents remain intact. This point is explained.

So far we have used:

NEW, PRINT, REM, RUN, BEEP, CLS, COLOR, LIST, INPUT, LET

These are the special keys discussed so far:

Enter, Shift, Ctrl, Backspace, Del, Ins, Num Lock, and the four cursor keys.

Questions
1. LET puts things in boxes. So does INPUT. How are they different?

2. In this program, what is "Mom" called?

10 Q$ = "Mom"

What is the name of the string variable? What is the value of the string variable
after the program runs?

3. If you run this little program, what is in each box after the program runs?

UII LET HS="fat"
2CII LET KS="sausage"
3fi!I LET PS=AS+KS

41

Lesson 7. The LET Statement

The LET statement puts things in boxes. Enter and run:

10 CLS
28 LET Q$="tr-uck"
40 PRINT Q$

Here is what the computer does:

Line 10: The computer clears the screen.

Line 20: It sees that a box named Q$ is needed. It looks in its memory for it. It
doesn't find one because Q$ has not been used in this program before. So it takes
an empty box and writes Q$ on the front and then puts the string "truck" in it.

Line 40: The computer sees that it must print whatever is in box Q$. It goes to
the box and makes a copy of the string ("truck") that it finds there. It puts the
copy on the monitor screen. The string "truck" is still in box Q$.

/11 /£~~~· ~~
~~~;pd$ 

C\ p 

"' 
Names and Values 
This line makes a string variable: 

30 LET W$ = "Mopsey" 

42 



!'!"ft 

The name of the variable is W$. 

The value of the variable is put in the box. 

In this line, the value of W$ is "Mopsey". 

11Y NN1E IS W$ 
11Y v:4LUE /5 1?1CP'5Et" 

Another Example 
Enter and run: 

10 LET D$="pickles" 
2'8 LET A$=" and" 
3(a PRINT "what goes with pickles?" 
35 INPUT Z$ 
40 CLS 
se PRINT D$;A$;Z$ 

Explain what the computer does in each line. 

10 ____________________________ _ 

43 



20_ 

30 

35 --

40 

50 --

44 



Gluing the Strings 
Here is how to stick two strings together to make a longer string. 

Enter: 

10 CLS 
20 LET WS="har de" 
25 LET X$="har" 
30 LET L$=W$ + X$ 
4e PRINT L$ 
se PRINT 
oe LET L$=L$ + X$ 
70 PRINT L$ 

Before you run this program, try to guess what will be printed at line 40 and at 
line 70: 

40 _____________________________ _ 

70 ____________________________ _ 

Now run the program to see if you were right. 

Rule: The plus sign ( +) sticks two strings together like glue. 

Assignment 7 
1. Write your own program that uses the LET statement and explain how it stores 

things in boxes. 

2. Write a program that inputs two strings, glues them together, and then prints 
them. 

45 



Instructor Notes 8. GOTO and the Break Key 

The GOTO statement allows a dumb loop that goes on forever. It also helps con­
trol the flow of command in later programs, after IF is introduced. It provides a 
slow and easy entrance for the student into the idea that the flow of command 
need not just go down the list of numbered lines. 

For now its main use is to let programs run for a reasonable length of time. In 
each loop through, something can be modified. 

The problem is how to stop it. The Ctrl-Break (PC) or Fn-Break (PCjr) keys do 
this nicely. 

GOTO is tolerant of spaghetti programming. Examples of spaghetti are shown to 
the students and although they will have some fun with them, the idea is to 
make students aware of the mess that undisciplined use of GOTO can make. 

We now have three of the four major elements that lead to real programming. 
They are PRINT, INPUT, and GOTO. Still lacking is IF, which will change the 
computer from a mere record player into a machine that can evaluate situations 
and make decisions accordingly. 

Questions 
1. What will appear on the screen when this little program is run? 

UJ PRINT "hi" 
2(1 GOTO 4(1 
3QI PRINT "big" 
4QI PRINT "daddy" 

2. What about this one: 

1QI PRINT "Incredible"; 
2QI PRINT "Blue Machine" 
3QI GOTO 2QI 

46 

.. 



"""' 3. How do you stop the program in question 2? 

4. Write a short program that beeps, asks your favorite movie star's name, and 
then does it over and over again. 

47 



Lesson 8. GOTO and the Break Key 

Jumping Around ln Your Program 
Try this program: 

UJ CLS 
20 PRINT"your name?" 
25 INPUT N• 
30 PRINT N• 
35 PRINT 
40 GOTO 30 

Run the program. It never stops by itself! To stop your name from whizzing past 
your eyes, try this: 

On the PC, hold down the Ctrl key and press the Break key. 

On the PCjr, press the Fn key, then the Break key. 

From now on, we will just say press the Break key when we mean to press the two 
keys. 

Line 40 uses the GOTO statement. It is like "Go to Jail" in the game Monopoly. 
Every time the computer reaches line 40, it has to go back to line 30 and print 
your name again. 

We will use GOTO in many programs. 

48 



---

-
,..,, 

-

More Jumping 
Enter: 

Ulf REM qui et 
2flf PRINT "say something" 

[ 

3flf INPUT S$ 
35 PRINT 
4flf PRINT"did you say '";S$;'"?" 
45 PRINT 
Sflf GOTO 3flf 

Run the program. Type an answer every time you see the question mark (?) and 
the flashing cursor. Press the Break key to end the program. 

Notice the arrow from line 50 to line 30. It shows what the GOTO does. You may 
want to draw arrows like this in your program listings. 

Kinds of Jumps 
There are only two ways to jump: ahead or back. 

Jumping back gives a loop. 

lflf PRINT "Hi" 
2flf SOTO 1 flf 

49 



The path through the program is like this: 

(~"Hi":> ~-
The computer goes around and around in this loop. Press the Break key to stop. 

Jumping ahead lets you skip part of the program. It is not useful yet, but we will 
use it later in the IF statement. 

The Break Key 
The Break key is a lifesaver. When you are in trouble, press the Break key and the 
computer will stop running the program and wait for your next command. Your 
program is still safe in memory. 

A Can of Spaghetti 

Look at this: 

1e REM --- Spaghetti 
15 CLS 
16 PRINT 
2e GOTO 7e 
25 PRINT"a" 
26 GOTO 5e 
3e PRINT"s" 
31 GOTO 25 
4e PRINT"c" 
41 GOTO 9e 
5e PRINT"u" 
51 GOTO 4e 
7e PRINT"Spaghetti" 
71 GOTO 3e 
9e PRINT"e" 
95 PRINT 
99 REM --- end 

This is not a good, clear program! 

It is a spaghetti program. 

50 

---



Don't write spaghetti programs! Don't jump around too much in your programs. 

~ Assignment 8 
1. Just for practice in understanding the GOTO statement, draw the road map for 

this spaghetti program: 

u, REM>>> Forked Tongue »> 
20 GOTO 40 
30 PRINT"n" 
31 GOTO 60 
40 PRINT"s" 
41 GOTO 30 
50 PRINT"e" 
51 GOTO 99 
60 PRINT"a" 
61 GOTO 90 
90 PRINT"k" 
91 GOTO 50 
99 PRINT"Bite" 

2. Rewrite the "Snake" program above, leaving out the GOTOs and so making 
the program "clean and lean." 

3. Write a program that prints Teen Power over and over. 

4. How do you stop your program? 

5. Write another program that prints your name on one line, then a friend's on 
the next, over and over. Sound a beep as each name is printed. Stop the pro­
gram with the Break key. 

6. Write a program that uses each of these statements: 

CLS, BEEP, PRINT, INPUT, LET, GOTO 

It also should glue two strings together. 

51 



Instructor Notes 9. The IF Statement 

IF is a powerful but intricate statement that is at the very heart of the computer as 
a logic machine. 

The GOTO statement has already introduced the idea that the flow of control 
down the program list may be altered. To that idea is now added the conditional 
test: If an assertion is true, one thing happens; if it is false, another. 

Phrase A is the assertion being tested for truth. Statement C is the statement to be 
performed if the assertion is true. 

Two levels of abstraction occur in the assertions. One level is the comparison of 
two values to determine if they are equal. The other level is the judgment of 
whether an assertion is true or false . 

Some care is needed to separate and clarify these notions. 

When you see A = B, it may not be true that A equals B, because the assertion 
may be false. 

The larger set of relations 

< > <> 

will be treated in later lessons. 

Questions 
1. How do you make this program print that's fine? 

15 PRINT "does your toe hurt?" 
17 INPUT TS 
29 IF TS="nah" THEN PRINT "that's fine" 
49 IF TS="some" THEN GOTO 15 

52 



...... 

--

-

-
...... 

2. Write a short program which asks if you like chocolate or vanilla ice cream. 
Answers should be C or V. For the C answer, print Yummy! For the V answer, 
print Mmmmmm! 

3. What is meant by phrase A. By statement C? Where is the "fork in the road" in 
an IF statement? 

53 



Lesson 9. The IF Statement 

Clear the memory and enter: 

19 CLS 
29 PRINT"Are you happy? [yes OR nol" 
39 INPUT A$ 
49 IF AS="yes" THEN PRINT "I"111 glad" 
59 IF AS="no" THEN PRINT "Too bad" 

Run the program several times. Try answering yes, no, or maybe. What happens? 

Yes ______________________________ _ 

No ______________________________ _ 

Maybe ____________________________ _ 

The IF Statement 
The IF statement has two parts: 

10 IF phrase A THEN do statement C 

The computer looks at phrase A. 

If it is true, the computer does statement C. 

If phrase A is not true, then the computer goes on to the next line without doing 
statement C: 

10 IF phrase A is false THEN skip statement C and go on to the 
next line. 

54 



The IF ln English and BASIC 
In English: 

If your home work is done, then you may have some cake. 

In BASIC: 

40 IF A$= "done" THEN PRINT "eat cake" 

Assignment 9A 
Clear memory and write a program that asks if you like football or baseball bet­
ter. If the answer is baseball, the program should print Play Ball! If the answer is 
football, the computer should beep and print Kickoff! 

A Fork ln the Road 

YOJR HOMEl,.JORK 
IS fXJN~ 

1H£H YOU !1M HAVi 
SOME CAf<.f.l 

When the computer sees IF, it must choose which road to take. 

If phrase A is true, it must go past the THEN and obey the statement it finds 
there. Then it goes down to the next line. 

If phrase A is false, it goes down to the next line right away. 

55 



Here is the road map with the fork in the road marked: 

3e ~[-<co111111and> 
rk in the road 

4e IF A$= HUNG~THEN PRINT 11 EAT"7 

5e l.<com111and) 

u 
AT 

-~,\' · v-1.z : 1/,,. I/ /. 

-:,,,;~~ .... ~'~ ~j''',' '1 1 

.... 
~//1-----,,f--',. --,1,/~1 -, 

It ' - ., 

The Not Equal Sign 
Notice these two signs: 

= means equal 

<> means not equal 

;j, , 

To make the <> sign, hold down the Shift key and press the < key, then the > 
key. 

56 



-----

---
,....,, 

-

Put it in an IF statement: 

40 IF B$<>"fire" THEN PRINT "no smoke" 

If the B$ box contains anything but fire, then B$ is not equal to fire, so the ex­
pression B$<>"fire" is true. The computer prints no smoke. 

But if the B$ box contains fire, then the phrase B$<>"fire" is false, so the com­
puter will not print anything. Here is how it looks in a program: 

d 

19 PRINT "fire or ice?" 
29 PRINT "enter 'fire• or 'ice'" 
3" INPUT BS 
49 IF BS<>"fire" THEN PRINT "no smoke" 
59 IF BS="fire" THEN PRINT "hot" 

Assignment 9B 
1. Write a "Pizza" program. Ask what topping is wanted. Make the computer an­

swer something silly for each different choice. You can choose mushrooms, 
pepperoni, anchovies, green peppers, or anything you like. You can also ask 
what size. 

2. Write a color guessing game. One player INPUTs a color in string C$ and the 
other keeps INPUTing guesses in string G$. Use two IF lines, one with a 
phrase A like this: 

G$<>C$ 

for when the guess is wrong, and the other with an equal sign ( =) for when 
the guess is right. The statement C prints wrong or right. 

57 



Instructor Notes 10. Introducing Numbers 

This lesson introduces numeric variables and operations and revisits LET, INPUT, 
and PRINT statements. 

The idea of memory as a shelf of boxes is extended to numbers. Again, for the 
time being, variable names are limited to one letter. 

The arithmetic operations are illustrated. The * symbol for multiplication will 
probably be unfamiliar to the student. Division will give decimal numbers, so it is 
nice if your student is familiar with decimals. But since most arithmetic will be 
addition and subtraction, and a little multiplication, a student unfamiliar with 
decimal numbers will not experience any major disadvantage. 

It may seem strange to the student that the numbers in string constants cannot be 
used directly in arithmetic. The VAL and SIR$ functions introduced later in the 
book will allow conversion of numbers and strings. 

A mixture of string and numeric values can be printed with PRINT. 

The nonstandard use of = in BASIC-that it means replace and not equal-shows 
up clearly in this statement: 

10 LET N = N + 1 

Questions 
1. What are the three kinds of "boxes" in memory (that is, named by the kinds of 

things stored in the boxes)? 

2. Explain why N=N+l for a computer is not like 7=7+1 in arithmetic. 

3. Give another example of bad arithmetic in a LET statement. Use the * or / 
symbol. 

58 



4. Give an example of a program line that would have a Type mismatch error 
due to mixing a string variable with a numeric variable. 

5. Explain what is meant by the name of a variable and the value of a variable for 
numeric variables. Do the same for string variables. 

59 



Lesson 10. Introducing Numbers 

INPUT, LET, and PRINT 
So far we have used only strings. Numbers can be used, too. Enter and run this 
program: 

1e REM bigger-
15 CLS 
2e PRINT"Give me a number-." 
3" INPUT N 
4e LET A=N+1 
45 PRINT 
se PRINT"Her-e is a bigger- one." 
6" PRINT A 

Arithmetic 
The plus sign ( +) indicates addition. Hold down the Shift key and press the = 
key to get +. 

The minus sign (-) is for subtraction. 

The / sign means division. 

The * sign is for multiplication. Press 
Shift and the 8 key together to get *. 

Computers use * instead of X for a 
multiplication sign. Try this: Change 
line 40 above so that N is multiplied 
by 5. 

Computers use / for a division sign. 
Answers are printed with decimals. 
Try this: Change line 40 so that N 
is divided by 5. What do you say 
in line 50? 

60 



Variables 
The name of a box that contains a string must end with a dollar sign. Examples: 
N$, A$, Z$. 

The name of a box that contains a number doesn't have a dollar sign. Examples: 
N,A,Z. 

The thing that is put in the box is called the value of the variable. 

Arithmetic in the LET Statement 
Enter this: 

19 LET A=20'1J1 
29 LET B=1985 
3" LET C=A-B 
4e PRINT"How much longer, Hal?" 
5" PRINT C;"year-s." 

Careful! 

Numbers and strings are different. For example, the string "1985" is not a num­
ber. It is a string constant because it is in quotes. 

61 



Rule: Even if a string is made up of number characters, it is still not a number. 

Some numeric constants are 5, 22, 3.14, -50. 

Some string constants are "hi", " 7", "two", "3.14". 

Rule: You cannot do arithmetic with the numbers in strings. 

Correct: 10 LET A = 3 + 7 

Wrong: 10 LET A$ = 3 + 7 

Wrong: 10 LET A = "3" + "7" 

If you try to enter any of these wrong lines, the computer will print 

Type mismatch error in 10 

There are two types of variables: string and numeric. 
You cannot put a string in a number box or a number in a string box. 

Enter: 

UJ LET A=5 
29 LET B$=" UJ'' 
3" LET C=A+B$ 

Lines 10 and 20 are okay, but line 30 is wrong. What will the computer do when 
you run line 30? Try it. 

Try to guess what each of these statements will print, then enter the line to see 
what happens: 

print 5 -----------------------------

print "5" ----------------------------

62 



print "5 + 3" -------------------------

print "5" + "3" 

print 5 + 3 

Mixtures in PRINT 
You can print numbers and strings in the same PRINT statement. (Just remember 
that you cannot do arithmetic with the mixture.) 

Correct: print a;"seven";"7" 

print a;b$ 

Run this: 10 PRINT 5/2;"is equal to 5/2" 

A Funny Thing About the Equal Sign 
The = sign in computing does not mean equals exactly. Look at this program: 

10 LET N=N+l 

This does not make sense in arithmetic. Suppose N is 7. This would say that 

7=7+1 

which is not correct. 

But in computing it is correct to say N = N + 1 because the = sign really means 
replace. Here is what happens: 

The computer goes to the box with N written on the front. It takes the number 7 
from the box. It adds 1 to the 7 to get 8. Then it puts the 8 in the box. 

63 



Here is another way to say the same thing: 

Let the new N equal the old N plus one. 

Don't Be Backward! 
In arithmetic, you can put the two numbers on whichever side of the equal sign 
you want. But with LET, you cannot. 

In arithmetic, N = 3 is the same as 3 = N. 

In BASIC, LET N = 3 is correct, while LET 3 = N is wrong. 

In BASIC, LET N = B is not the same as LET B = N. Why not? What is in each 
box? 

LET N = B means ________________________ _ 

LET B = N means-------------------------

Assignment l 0 
1. Write a program that asks for the user's age and the current year. Then it sub­

tracts and prints out the user's year of birth. Be sure to use PRINT statements 
to tell what is wanted and what the final number means. 

2. Write a program that asks for two numbers and then prints out their product 
(multiplies them). Be sure to use lots of PRINTs to tell the user what is 
happening. 

64 



Instructor Notes 11. TAB and Delay loops 

TAB mimics the familiar tab function of a typewriter. This lesson discusses delay 
loops, which are useful in themselves, and are really just empty FOR-NEXT loops. 

TAB must be used in a PRINT statement. Several TABs can be used in one 
PRINT statement, but the arguments in the parentheses must increase each time. 
That is, TAB cannot be used to move the cursor back to the left. Later, we discuss 
LOCATE which allows placement of the cursor anywhere on the screen. 

Use of a semicolon between TAB and the thing to be printed is not always nec­
essary, but it is recommended. 

This lesson introduces the use of delay loops to slow a program down so that its 
operation can be more easily observed. They are also called timing loops. The 
loops are given as a unit, without explanation of how they work. 

The delay loop is all on one line, with a colon to separate the NEXT statement. 
The amount of delay is determined by the size of the loop variable. A value of 
1000 gives a delay of about one second. 

When the student understands that the primary effect of the loop is simply to 
count until a particular value is reached before going on to the next instruction, it 
will be easier to handle loops in which things are going on inside. 

Questions 
1. Show how to write a delay loop that lasts about two seconds. 

2. Will this work for a delay loop? 

120 FOR Q= 1000 TO 5000 
122 NEXT Q 

65 



3. Tell what the computer will do in each case: 

10 PRINT "Hi";TAB(l0);"good looking!" 
10 TAB(5);PRINT "OH-OH!" 
10 PRINT TAB(l5);"Nope";TAB(l);"not here" 

4. What is the argument in this statement? 

20 PRINT TAB(5);"E.T. phone home" 

66 



Lesson 11. TAB and Delay loops 

The TAB Function 
TAB in a PRINT statement is like the TAB key on a typewriter. It moves the print 
cursor a number of spaces to the right. 

(Remember, the print c~rsor is invisible.) 

The next thing to be printed goes where the cursor is. 

Try this: 

UI PRINT "123456789abcdef" 
2" PRINT TAB(3);"y";TAB(7>;"z" 

Rule: After TAB(N), the next character will be printed in the column N. 

Careful! Try this: 10 TAB(5) 

You see Syntax error in 10. You have to use TAB in a PRINT statement. You 
cannot use TAB by itself. 

You Cannot TAB Backward 
Try this: 

1" PRINT "123456789ABCDEF" 
2" PRINT "a";TAB(9);"b";TAB(3>;"c" 

TAB can move the printing to the right only. You cannot move back to the left. If 
you try to go back, the computer prints on the next line instead. 

Your Name Is Falling! 

1" CLS 
15 LET N=1 
2" PRINT "Your first name." 
3" INPUT WS 4" PRINT TAB<N>;WS 
5" LET N=N+1 
6" GOTO 4" 

67 



Press the Break key to stop the program. 

This program prints your name in a diagonal down the screen, top left to bottom 
right. Try other values of N. Try changing lines: 

15 LET N=3fi 
5" LET N=N-1 

Fat Numbers 
Numbers have a space glued on each side before they are printed on the screen. 

Try this : 

lfi PRINT "123456789" 
2fi PRINT 1;2,3;-1;-2;-3 

(If the number is negative, a minus sign instead of a space is put on the left.) 

Functions Don't Fight But They Have Arguments 
TAB is a function . We will study other functions like RND, INT, and LEFT$. The 
number that is inside the ( ) after the function is called the argument of the func­
tion. TAB says move the cursor over, and the argument tells where to move it. 

68 



Assignment I IA 
1. Write a program that asks for last names and nicknames. Then it prints the last 

name starting at column 5 and the nickname at column 15. Use a GOTO so the 
program will be ready for another name/age pair. 

2. Write a greeting program. It asks your name. Then it beeps and writes your 
name. Then it TABs over in the line and prints a greeting. 

Delay Loops 
Here is a way to slow down parts of a program. It is called a delay loop. 

Run this program: 

18 REM Game 
28 CLS 
3" PRINT"hide" 
48 FOR 1=1 TO 2He:NEXT I 
58 PRINT "catting ready or not" 

69 



Line 40 is the delay loop. The computer counts from 1 to 2000 before going on to 
the next line. It is like counting when you are "it" in a game of hide and seek. 

Try changing the number 2000 in line 40 to some other number. 

Each 1000 in the delay loop is worth about one second of time. Try this: 

19 REN---- tick tock----
29 CLS 
31/J PRINT "wait how long" 
34 INPUTS 
36 T=-5*659 
49 FOR 1=1 TO T:NEXT I 
45 PRINT 
46 BEEP 
se PRINT S;"seconds are up" 

Assignment 11 B 
Write a slowpoke program that prints out a three-word message with several sec­
onds between each word. Have the computer beep before each word. 

70 



Instructor Notes 12. The IF Statement with Numbers 

The IF statement is extended to numeric expressions. The logical relations used in 
this lesson are 

> < <> 

It is a good idea to get the student to pronounce these expressions out loud. A < 
B makes a lot more sense when pronounced A is less than B than when it's just 
allowed to flow over the eyeballs. Of course, the point (the little end) of the < or 
> symbol is at the side of the smallest of the two numbers. 

The use of nested IFs is demonstrated. This is a very powerful construction, but it 
may be confusing. It is worthwhile to go through the example with your student 
to make sure that the construction is understood. 

A loop is demonstrated in the "Guessing Game" program, but it is not discussed. 
The loop starts in line 50 and goes to 80. The exit test is made in line 70. The 
logic of this loop is that of a DO UNTIL. 

Questions 
1. What part of the IF statement can be true or false? 

2. What follows the THEN in an IF statement? 

3. After this little program runs, what will be in box D? 

UJ LET D=4 
15 IF 3(7 THEN LET D=9 

4. Same question, but for 3 > 7. 

71 



Lesson 12. The IF Statement with Numbers 

Try this: 

18 REM*** Teenager*** 
15 CLS 
28 PRINT"Your age?" 
38 INPUT A 
48 IF A<13 THEN PRINT"Not yet a teenager!" 
58 IF A>19 THEN PRINT"Grown up already!" 

This IF statement is like the one that you used before with strings. Again we have 

10 IF phrase A is true THEN do statement C 

Phrase A can have these arithmetic symbols: 

Equal to 

> Greater than 

< Less than 

<> Not equal to 

Each phrase A is written in math language, but you should say it out loud in 
English. For example, 

A <> B is pronounced A is not equal to B. 

5 < 7 is pronounced five is less than seven. 

Practice 
For the following examples, LET A= 7 and LET B = 5 and LET C = 5. 

Say each phrase A aloud and tell if it is true or false: 

72 



A=B TF 
B=C TF 
A>B TF 
B<C TF 
A<B TF 
B<>C TF 
A=C TF 
A<>B TF 

An IF Inside an IF 
The "Teenager" program above is missing something. Add 

60 IF A>l2 THEN IF A<20 THEN PRINT "Teenager!" 

To understand this line, break it into two parts: 

60 IF A>l2 THEN statement C 
where statement C is 
IF A<20 THEN PRINT "Teenager!" 

This line first asks, "Is the age greater than 12?" 

73 



If the answer is yes, the line gets to ask the second question, "Is the age less than 
20?" 

If the answer is again yes, the line prints Teenager! 

If the answer to either question is no, the PRINT statement is not reached, so 
nothing is printed. 

Assignment 12A 
Draw the fork in the road diagram for line 60 above. There will be two forks on 
the diagram. (See lesson 9.) 

Guessing Game 

1'11 REM ----GUESSING GAME----
15 CLS 
2'11 PRINT "Two player gam~" 
25 PRINT 
3'11 PRINT "First player enter a number from 1 t 

o 1QIQI" 
35 PRINT "while second player isn"t looking." 
37 PRINT 
4'11 INPUT N 
45 CLS 
5'11 PRINT TAB< 12); "Make a guess"; 
55 INPUT G 
6'11 IF G<N THEN PRINT "Too s111all" 
65 IF G>N THEN PRINT "Too 
7'11 IF G=N THEN GOTO 9QJ 
8'11 GOTO 5'11 
9'11 REM The game is over 
92 PRINT 
95 PRINT "That's it!" 

big" 

If you want to save this program on a disk, read lesson 14 to learn how. 

Line 80 usually sends you to line 50 so you can make more guesses. But if G = N 
in line 70, then you skip to line 90 and print That's it! 

74 



Assignment 12B 
1. Tell what happens in lines 50 through 80. 

If G is 31 and N is 88: 

50 

55 

60 

65 

70 

80 

75 



If G is 88 and N is 88: 

50 

55 

60 

65 

70 

80 

2. Here is another program. What will it print and how many times? 

UJ LET N=1 
2QJ IF N=13 THEN PRINT "unlucky!" 
3QJ LET N=N+2 
4QJ IF N>3"' THEN GOTO 99 
SQJ GOTO 2QJ 
99 PRINT "done" 

What will it print if line 10 is changed to 

10 LET N=2 

3. Write a program that says something about each number from one to ten. The 
player enters a number and the computer prints something about each number: 
three strikes, you're out or seven is lucky, and so on. 

4. Add to the "Guessing Game" program so that it prints You're Hot! whenever 
the guesser is close to the right number. 

76 



5. Write a game for guessing a card that someone has entered. You must enter the 
suit (club, diamond, heart, or spade) and the value (1 through 13). First, the 
player guesses the suit, then the program asks the value. Keep score. 

4 
~+r......-...:::,,.~ 

~~ 

77 



Instructor Notes 13. Random Numbers and the 
INT Function 

This lesson introduces two functions: RND and INT. These are very important in 
games and are also handy in making interesting displays like kaleidoscopes. 

The RND function produces pseudorandom decimal numbers larger than 0 and 
smaller than 1.0. Such numbers are directly usable as probabilities, but integers 
over some range, such as 1 to 6 for a die or 1 to 13 for the face value of cards, are 
often more directly usable. 

Your student may be shaky in decimal arithmetic, but all that's needed here is 
multiplication of the random number by an integer and perhaps addition to an 
integer. The computer does the multiplication, of course, so only a rough idea of 
the desired result is necessary. 

After extending the random number to a larger range than 0 to 1, conversion to 
an integer is desired. The INT function does this by simply truncating the number, 
throwing away the decimal part. (For negative numbers, the situation is a little 
more complicated and that case is not treated here.) 

The concept of rounding off may be familiar to your student. INT will round off a 
number if you first add 0.5 to the number. 

The concept of functions is again used in this lesson and is further clarified. 

The nesting of one function in the parentheses of another is illustrated by using 
RND in the argument of an INT function. 

Questions 
1. Tell what the computer will print as output for this line: 

10 PRINT INT(G) 

when the box G contains 2, 2.1, 2.95, 3.001, 67, 0, or 0.2. 

78 

-



2. Tell how the INT function is different from rounding off numbers. Which is 
easier for you to do? 

3. Tell how to change a number so that the INT function will round it off. 

4. What does the RND(9) function do? 

5. How can you get random integers (whole numbers) from O through 10? (Hint: 
INT(RND(9)*10) is not quite right.) 

79 



Lesson 13. Random Numbers and the INT Function 

The RND Function 
When you throw dice, you can't predict what numbers will come up. 

When dealing cards, you can't predict what cards each person will get. 

The computer needs some way to let you roll dice and deal cards and do many 
other unpredictable things. 

Use the RND function to do them. RND stands for random. 

Run this program: 

18 REM rand0111 numbers 
28 CLS 
25 LET N•RND(9) 
38 PRINT N 
48 IF N<.95 THEN GOTO 25 

You see a lot of decimal numbers on the screen. The RND function in line 25 
made them. 

It doesn't matter what number you put in the parentheses as long as it is bigger 
than 0. I chose 9 because it is near the parentheses on the keyboard which makes 
it easy to type (9). 

RND gives numbers that are decimals larger than O but smaller than 1. To make 
numbers larger than 1, you just multiply. 

Change the program above to 

25 LET N=RND(9)t52 
38 PRINT N 
48 IF N<46 THEN GOTO 25 

and run it again. 

80 



Now the numbers are between 0 and 52 
in size. They could be used for 
choosing the 5 2 cards in a deck. 

But we may want whole numbers 
like 7 and 23 rather than 
decimal numbers like 
7.03 and 23.62. So we 
use the INT function. 

The INT Function 
The INT function takes the number in 
its parentheses and throws away the deci­
mal part, leaving an integer (a whole number). 
Add this line to the program above and run it again: 

29 N=INT(N) 

How It Works 
Use this one-line program to check how INT works: 

10 PRINT INT(2.5) 

Run it many times and try these 
numbers in the parentheses: 0.3, 0.5, 
0.9, 1.0, 1.1, 1.49, 1.51, 1.999. In each 
case, see that INT just throws away 
the decimal part of the number. 

. ',Iii · • . ~ 
~ 

• 
0,, . 

I} "' o • I . 

- .1, 1;, 1J/. r~ · '. • . , 

81 



Rounding Off Numbers 

Perhaps you know about rounding off numbers. If the decimal part starts with 0.5 
or more, you round up. If it is below 0.5, you round down. 

17.02 round down 17 
3.1 down 3 

103.43 down 103 
4.5 up 5 

82.917 up 83 

You round off numbers with the INT function by first adding 0.5 to the number. 

Run: 

18 REM••• rounding off••• 
2" CLS 
22 PRINT "Give me a deci111al number" 
25 INPUT N 
3" PRINT"rounded to the nearest integer" 
48 PRINT INT<N+.5> 
45 FOR Tal TO 2888:NEXT T 
58 GOTO 28 

Press the Break key to stop the program. 

Try the program with numbers like 3.4999 and 3.5 and and other numbers you 
choose. 

Rolling the Bones 

Ordinarily, dice games use two dice. One of them is called a die. Here is a pro­
gram that acts like rolling a single die: 

18 REM////// one die/////// 
28 CLS 
39 LET R=RND(9) 
49 PRINT"Random number";TAB<1S>;R 
58 LET S=Rlb 
55 PRINT "Times b"; TAB<1S) ;S 
68 LET I=INT<S> 

82 



65 Pf<INT "Integer part";TAB(15>;I 
7f§ LET D=I+1 
75 PRINT "Die shows"; 
77 PRINT 

TAB<15> ;D 

Be PRINT"another? <yin>" 
82 INPUT Y$ 
85 IF Y$="y" THEN GOTO 2111 

What Goes Inside the ( )? 
Numbers: 10 LET X=INT(34.7) 

Variables: 10 LET X=INT(J) 

Expressions: 10 LET X=INT(3*Y+2) 

Functions: 10 LET X=INT(RND(8)) 

Here is how to save a lot of room. 

Instead of 

Use just 

30 LET R = RND(8) 
50 LET S=R*6 
60 LET I= INT(S) 
70 LET D=l+I 

70 LET D = 1 + INT(RND(8)*6) 

Random Numbers In the Middle 
Suppose your game has a funny die that shows only 6, 7, or 8 when you roll it. 

Run this: 10 LET D=INT(RND(9)*3)+6 : PRINT D 

Here's how it works: 

83 



Expression Makes numbers from 

RND(9) 
RND(9)*3 
INT(RND(9)*3) 
INT(RND(9)*3) + 6 

small large 
0.01 0.99 
0.03 2.97 
0 2 
6 8 

Every Program Run Is Different 
Each time you start running a program, you want different cards or dice to show. 

But you will always get the same number unless you do something about it! Use 
the RANDOMIZE statement early in the program to make the computer choose 
different random numbers from those on the last run. 

Here's an example: 

19 REN mixed up 
29 RANDOMIZE 
3e PRINT INT<RND(8)l100) 

84 



Run the program several times without line 20, then several times with line 20. 

RANDOMIZE asks you to input a number for a seed. 

Assignment 13 
1. Write a program that rolls two dice, called D1 and D2. Show the number on 

D1 and on D2 and the sum of the dice. You do not need the variables R, S, and 
I in the program above. They were used to show how the final answer was 
found. 

2. Write a paper, scissors, and rock game, with you playing against the computer. 
(Paper wraps rock, rock breaks scissors, scissors cut paper.) The computer 
chooses a number 1, 2, or 3 using the RND function: 1 is paper, 2 is rock, 3 is 
scissors. You INPUT your choice as P, R, or S, and the computer figures out 
who won and keeps score. 

85 



Instructor Notes 14. Saving to Disk 

This lesson shows how to save programs to the disk and how to load them again. 
It can be used anytime after lesson 3. 

It introduces the commands SAVE, LOAD, FILES, and KILL. 

Other commands and statements used in this chapter are NEW, REM, LIST, 
PRINT, and CLS. 

We delayed this subject until now because most programs so far were relatively 
short and uninteresting-not worth saving. The process of programming was 
being emphasized, not the end result of useful programs. 

However, your own judgment should prevail, and you can insert this lesson at an 
earlier point if your student wants to save some programs. 

Questions 
1. What is a file? 

2. How long can a filename be? 

3. Can punctuation marks be in a filename? Can the filename have spaces in it? 

4. How can you check to be sure the program got on the disk without problems? 

5. What happens to the program already in memory if you load another program? 

6. Does the filename have to be the same as the program name? 

7. If a program is put into a file, is it still in memory? 

86 



Lesson 14. Saving to Disk 

Entering a Program 
If you already have a program in the computer, skip to "Saving a Program" below. 

If not, enter new, followed by pressing the Enter key. Then enter these lines: 

u, REM : : : hi 
2" CLS 
3'8 PRINT "hi" 

Saving a Program 
Do you still have your disk in the disk drive? If not, put it in now. Be sure to close 
the door. 

Enter: save "hi" 

You will hear a whirring sound and see the red light on disk drive A. When the 
red light goes off and the whirring stops, your program is stored on the disk. 

The filename of your program is HI. The disk is like a file cabinet. In it is a file 
folder with the name HI written on it. In the file folder is your program. 

87 



We used the name HI because it is easier to remember if the file has the same 
name as the program. 

If your program has a different name, save it again under the correct name. 

If you mess things up, press the Break key to get back to normal. 

I ,.-------. 

The FILES Command 
Let's see if the program is really stored on the disk. 

Enter: files 

After a whirring and the red light, if you are in 80-column display mode, you will 
see a list in three columns of all the files on the disk. Your file is probably the last 
one in the list. It will say 

HI .BAS 

88 



Filenames 
Each file has a name that is from one to eight characters long. The filename can 
be followed by an extension. The extension starts with a period (.) and has one, 
two, or three characters in it. If you have not given your filename an extension, 
and the file is a BASIC program, the computer automatically gives it the .BAS 
extension. 

Try using this extension. 

Enter: save "hi.xyz" 

Then enter: files 

You will see the name 
HI .XYZ in the list of files. 

Loading the Program 
Now that we are sure the program is on the disk, it is safe to erase it from memory. 

Enter new and press Ctrl-Home (Ctrl-Fn-Home on the PCjr). Enter list. 

The LIST shows nothing because NEW erased the program from the computer's 
memory. Let's get the program back. 

Enter: load "hi" 

We hear the whirring and see the red light, but is our program now in memory? 

89 



Enter list to find out. 

Erasing a File 
So far, so good. But what if we change our minds and want to throw a file away? 

Use: kill "hi.bas" 
then files 

to see if it is really gone from the disk. 

Careful! You must put the period and three-letter extension on the name or KILL 
will give you an error message: 

File not found 

Legal Filenames 
A filename can have 

FILE I•~ 

up to eight characters plus an extension. 
numbers in it. 
only one period in it (the start of the extension). 
spaces in it. 
punctuation in it, but 
it cannot have a comma in it. 

90 



An extension 

starts with a period. 
has one, two, or three characters in it. 

Try saving the short program using these names, then do a FILES to see what 
names were used. 

abcdef ghijklm 
a .bbbc 
a!"#$%&'O*= 
al23456789 
asdf 

This name will give a Bad file number error message: 

a.s.d.f.g 

And this one a Too many files error message: 

cat,dog 

Good Filenames 

A short filename is best because there is less to type. Ordinarily, it is best to use 
the same name that is in the REM in the first line of the program. 

Commands 
These four commands are used with files: 

save "filename" 
load "filename" 
files 

or save "filename.ext" 
or load "filename.ext" 

kill "filename.ext" 

Remember, filename is the name of a file, and ext is the extension. 

91 



Assignment 14 
1. Write a short program (four lines) and save it on the disk. 

2. Do NEW and write another short program. Save it, too. 

3. Do NEW and then do FILES to see if the programs were saved. Then load each 
program and run it. 

4. Try out the KILL command on one of the programs. 

5. Repeat the practice with the SAVE, LOAD, FILES, and KILL commands until 
you are sure that you understand them. 

92 



Instructor Notes 15. Some Shortcuts 

These shortcuts are discussed: 

? 
LET 

INPUT 
INPUT 
LIST X-Y 
THEN 33 

Used for PRINT 
Omission 
Used between statements on a line 
Used with a message 
Error message 

Instead of THEN GOTO 33 

Now that the student knows how to use RND and can save programs on disk, all 
the elements are in place for writing substantial programs. 

The colon is used to shorten and clarify programs by putting several statements 
on one line. A line should contain statements that have something in common. 

The colon allows you to put a little subroutine consisting of several statements 
after an IF. This makes using a GOTO unnecessary for reaching the extended 
segment of the program. A shorter and less cluttered program results. The colon 
thus becomes a powerful and nontrivial means of improving the clarity of the 
program. 

The colon can, however, cause problems in a program. Be careful about adding 
other statements onto a GOTO, a REM, or an IF line. 

Since a question mark (?) is always printed on the screen by INPUT, an INPUT 
message should not end with a question mark. 

Questions 
1. What shortcut does the question mark (?) give? 

2. How can you tell that the word LET is missing from a LET statement? 

3. An INPUT statement has a message in quotation marks. What punctuation 
mark must follow the message quotes? 

93 



4. Why is it sometimes good to put two statements on the same line, separated by 
a colon? 

5. What is wrong with each of these lines? 

10 REM Beginning:GOTO 1000 
10 GOTO 50:8$ = "Fast" 

6. If the computer prints ?Redo from start after the user answers an input, what 
three things could be wrong? 

94 



Lesson 15. Some Shortcuts 

A PRINT Shortcut 
Instead of typing PRINT, just type a question mark. 

Enter: 10 ? "hi" 
list 

The computer substitutes the word PRINT for the question mark. 

A LET Shortcut 

These two lines do the same thing: 10 LET A=41 and 10 A=41 

These two are the same as well: 20 LET B$="hi" and 20 B$="hi" 

You can leave out the word LET from 
the LET statement! The computer 
knows that you mean LET 
whenever the line starts with c:,, 

a variable name followed by 
an = sign. 

'•J ") <- )), 
~ o O " · 0 • 

An INPUT Shortcut 
Instead of 

10 PRINT "Enter your name" 
20 INPUT N$ 

you can do this: 

10 INPUT "Enter your name"; N$ 

·, : .~ 

Put a semicolon between the message Enter your name and the variable. 

95 



Another INPUT Shortcut 
You can INPUT several things in one statement. Put commas between the 
variables. 

Run: 

20 INPUT "Location"; X,Y 

You see Location? on the screen. Enter two numbers with a comma between 
them. 

Location? 5,6 

Another example: 

30 INPUT "Month, Day, Year";M$,D,Y 

After the question mark, type: April,29,1985 

Error Message In INPUT 
If you do not enter enough answers or if you enter too many, the computer says 

?Redo from start 
? 

This also shows the flashing cursor. You must enter all the things asked for, with 
commas between them. 

Example: 30 INPUT "Month, Day, Year";M$,D,Y 
RUN 
?May,l 
?Redo from start 
?May,1,1985 

Another Way to Get an Error Message 
Run 10 INPUT N, A$ and try these pairs of answers: 

96 



1, b 
b, 1 
1, 1 
b, b 

The error message ?Redo from start is put on the screen whenever the user an­
swers with a string for a number. 

(It is okay to answer a "number" for a string, because the computer says, "Okay, 
1985 is a string," even if you meant it to be a number.) 

A LIST Shortcut 
There are five ways to use the LIST command: 

list 
list 48 
list 50-75 
list -27 
list 90-

A THEN Shortcut 

Lists the whole program 
Lists line 48 
Lists all lines from 50 to 75 
Lists all lines from the beginning to 2 7 
Lists all lines from 90 to the end 

Instead of 10 IF A=B THEN GOTO 33, use 10 IF A=B THEN 33. 

A Colon Shortcut 
Put several statements on a line with a colon between them. This saves space. 

Instead of 

10Q=l7*3 
20 R=Q+2 
30 PRINT R 

use: 10 Q= l 7*3:R=Q+2:? R 

When you LIST the line, you will see 

10 Q=l7*3:R=Q+2:PRINT R 

97 



When to Use the Colon Shortcut 
Use the shortcut: 

1. To make the program clearer. Put similar statements on the same line. 

Instead of 

10 X=0 
12 Y=0 
14 Z=0 

write: 10 X=0:Y=0:Z=0 

2. To make the program shorter. 

3. To put a REM on the end of the line: 

40 H=X+Y/66: REM His the height 

The Colon After an IF Statement 
You can make neater IF statements by using colons. 

Without colons: 

50 IF A= 0 THEN GOTO 80 
60 B=Q 
62 C=B*D 
66 PRINT "Wrong" 
80 FOR ... 

With colons: 

50 IF A<>0 THEN B=Q:C=B*D:PRINT "Wrong" 
80 FOR ... 

All the statements in the path where A<>O is true are on the line after THEN. 

Careful! 

98 



Do not put something on the end of an IF line that doesn't belong there. 

35 IF A=B THEN PRINT "Alike" 
40Q=R 

This is not the same as 

37 IF A=B THEN PRINT "Alike":Q=R 

This is because Q = R in line 40 is always done, no matter if A= B is true or not. 
But Q=R in line 37 is done only if A=B is true. 

Some More Mistakes with Colons 
The REM and GOTO statements must be last on a line. Anything following them 
is ignored. 

Correct: 35 P=3:REM Pis the price 

Wrong: 35 REM Pis the price:P=3 

Because the computer ignores everything else on a line after reading REM. 

Correct: 40 R = P + 1 :GOTO 88 
42 8=3 

Wrong: 40 R=P+l:GOTO 88:8=3 

The computer goes to line 88 and can never come back to do the S = 3 statement. 

A REM Shortcut 
Instead of typing REM, you can just type a single quote ('). 

This: 10 INPUT N$ 'The name of the user 
is like this: 10 INPUT N$:REM The name of the user 

You don't need to put a colon before the single quote. 

99 



Assignment 15 
1. Write a program that uses each of the shortcuts at least once. 

2. Write a vacation program. It asks how much you want to spend. Then it tells 
where you should go or what you should do. 

3. Write a crazy program that asks your name. The program has three funny ways 
of saying you are crazy. The program randomly chooses one of these and prints 
it after your name. 

100 



Instructor Notes 16. Moving Graphics and LOCATE 

The LOCATE statement is used to move the output cursor to any point on the 
screen. 

LOCATE allows flexible manipulation of text on the screen and also allows a 
form of graphics. 

To use LOCATE effectively, you need to think of the screen as an array, with 40 
(or 80) characters across and 24 lines down. Remember the phrase row, column to 
get the order of arguments in the LOCATE R,C statement. (We will find that the 
order is reversed when we get to graphics. There we will need the phrase X, Y 
with X across and Y down.) 

Later, there will be two lessons on the graphics statements, but here we show 
graphics to accustom the student to several ideas. One is the use of down-across 
graph paper and another is making moving pictures. 

Moving objects can be displayed and moved by using LOCATE in a loop. It is 
necessary to erase the old object with a space character of the background color 
before the new object is drawn. 

It is best to delay erasing until just before the new object is drawn. This reduces 
flicker in the picture. 

The "Sketcher" program brings all this together in an interesting way. However, 
it uses two ideas from later lessons-ASCII numbers and the INKEY$ variable. 

Questions 
1. If you want to print the next word at the left of line 12 on the screen, what 

statement do you use? 

2. If you want to print the next character on line 6 of the screen, indented by 20 
spaces, what statement do you use? 

101 



3. How can you print never again, wait a second, then erase just the word 
again? 

4. Show how to print the word CAT starting at column 25, and then after a delay, 
print FAT starting at column 5 of the same line. 

102 



-
Lesson 16. Moving Graphics and LOCATE 

There is room for 24 lines of typing on the screen. The lines are numbered from 
1 at the top to 24 at the bottom. 

Each line can hold 40 or 80 characters (depending on your setup). They are num­
bered from 1 on the left to 40 (or 80) on the right. 

Run this: 

1e REM locate demo 
15 CLS 
2e LOCATE UJ, 1:PRINT "line 1111 first" 
25 FOR T=1 TO 9e0:NEXT T 
3" LOCATE 1,1:PRINT"line 1 next" 
35 FOR T=1 TO 900:NEXT T 
40 LOCATE 17,1:PRINT"line 17 last" 

The first number in a LOCATE statement tells which row the print cursor will go 
to. 

103 



Jumping Anywhere on the Screen 
Run: 

10 REM column and row 
15 CLS 
20 INPUT "which row <1-25>";R 
25 IF R<l OR R>25 THEN 15 
3'IJ INPUT "which column <1-40>";C 
35 IF C<l OR C)40 THEN 15 
40 LOCATE R,C:PRINT "*"; 
50 FOR T=l TO 1000:NEXT T 
60 GOTO 15 

Press the Break key to stop the program. 

The second number tells which column the print cursor will go to. 

Erasing What You Write 

10 REM jumping here 
15 CLS 
20 CsINT<RND<9>*35>+1 
25 R=INT<RND<9>*23>+1 
3'IJ LOCATE R,C1PRINT"here" 
59 FOR T=l TO 400:NEXT T 
60 LOCATE R,C:PRINT" 
80 GOTO 20 

How do you make the program stop? 

Color Sketcher Program 
This program lets you draw pictures in color. 

Run: 

10 • Color Sketcher 
11 SCREEN 0,1:CLS:KEV OFF:WIDTH 40 
15 GOTO 100 • initialize 
20 X=20:V=12 • center of screen 
22 F=1:P=0:S=0 
24 CLS 
25 C1i="d" 
30 C$=INKEV$: • get a keystroke 

104 



-
35 IF C$= 11 11 

42 IF C1i= 11 d 11 

43 IF C1i= 11 e 11 

44 IF C1i< 11 11 

45 C=ASC(C$) 

THEN 
THEN 
THEN 
THEN 

2il 
F=1 
F=il 
3il 

erase 
• draw 
• not draw 

46 IF C>47 AND C<5b THEN P=C-48:COLOR P,0 
48 IF F=il THEN LOCATE Y,X:PRINT" "; 
Sil IF C1i= 11 i" THEN Y=Y-1 • move dot up 
51 IF C1i="m" THEN Y=Y+1 • move dot down 
52 IF C1i="j" THEN X=X-1 • move dot left 
53 IF C$= 11 k" THEN X=X+1 • move dot right 
bi! IF X<1 THEN X=1 
61 IF Y<1 THEN Y=1 
62 IF X>4il THEN X=4il 
63 IF Y>23 THEN Y=23 
75 LOCATE Y,X:PRINT CHR1i(219); 
99 GOTO 3il 
1 iii! • 
1i11 • instructions 
1i12 • 
U!l3 COLOR 7, ii 
U!l5 CLS 

• white letters 

109 PRINT :PRINT :PRINT 
11il PRINT" i,j,k,m keys 111ove the dot 11 :PRINT 
120 PRINT II space bar erases the picture11 :PRIN 

T 
130 PRINT II press •d• to draw lines":PRINT 
140 PRINT II press •e• for no lines 11 :PRINT 
150 PRINT II keys 0 to 7 for colors 11 :PRINT 
180 FOR T=1 TO 9H0:NEXT T 
199 GOTO 2il 

When you enter this program, you can omit most of the REMs. Before you run 
the program, save it to disk. Add your own REM statements using the information 
below. 

In line 30 the INKEY$ variable gets a keystroke from the keyboard. (INKEY$ is 
explained in lesson 29.) 

Line 35 erases the screen when the space bar is pressed. 

Lines 42 and 43 set the variable F used in line 48. When F= 1 the dot will leave a 
line behind it as it moves. When F=O the dot flashes but does not leave a line 
behind. 

105 



Line 45 changes C$ to an ASCII number. (ASCII is explained in lesson 25.) 

Line 46 picks a color number and calls it P. The ASCII number for O is 48, for 1 is 
49, and so forth. Subtracting 48 from C gives a number from O to 7 to use as a 
color. 

Line 48 uses F to see if the dot just put on the screen needs to be erased before 
another dot is put down. If so, a space is printed. 

Lines 50 to 53 tell whether to move the dot up, down, right, or left. 

Lines 60 to 63 make sure the dot doesn't move off the screen. 

Line 75 puts the dot on the screen. 

Assignment 16 
1. Use the RND function to write your name at random places on the screen. 

Make it write your name many times all over the screen. 

2. Use LOCATE to write your name in a large X shape on the screen. 

106 



!"""!II 

Instructor Notes I 7. FOR-NEXT Loops 

A loop is made of a FOR statement (which may contain a STEP) and a NEXT 
statement. These statements may be separated by several lines and yet they are 
strongly interdependent. The student builds on the notion of a delay loop and 
learns the utility of repeating a set of instructions in the middle of a loop. 

Nested loops are introduced by using an example where the inside loop is a delay 
loop. 

IBM BASIC, unlike some other versions, detects whether the exit condition of a 
FOR-NEXT loop is satisfied before the loop is run even once. This makes for 
cleaner logic in programs, but it may cause an unexpected bug if you copy certain 
non-IBM programs into IBM BASIC. 

The FOR statement is evaluated just once when the loop is entered. It puts the 
starting value of the loop variable into variable storage where it is treated just as 
any other numeric variable. The STEP value, the ending value, and the address of 
the first statement after the FOR are put on a stack. 

From then on, all the looping action takes place at the NEXT statement. Upon 
reaching NEXT, the loop variable is incremented by the value of the STEP and 
compared with the end value. If the loop variable is larger than the end value (or 
smaller in the case of negative STEPs), NEXT passes control to the statement after 
itself. Otherwise, it sends control to the statement after the FOR statement. 

Because the loop variable is treated just like any other variable by BASIC, it can 
be used or changed in the body of the loop. Jumping into the middle of a loop is 
usually a disaster. Jumping out of a loop before reaching NEXT is commonly 
done, but in some cases (especially where subroutines are involved) this may 
cause bugs that will be hard to find. 

Questions 
1. What is the loop variable in this line? 

10 FOR Q=l TO 10:PRINT T$:NEXT Q 

107 



2. Write a loop that prints the numbers from O to 20 by twos. 

3. Write a "Ten Little Indians" program loop that prints from ten down to zero 
Indians. 

108 



Lesson 17. FOR-NEXT Loops 

Remember the delay loop? The computer counted from 1 to 2000 and then went 
on: 

30 FOR T= 1 TO 2000:NEXT T 

The computer is smarter than that. It can do other things while it is counting. 

Run this: 

u, REM counting 
211 CLS 
311 FOR I=S TO 211 
411 PRINT I 
se NEXT I 

The loop can start on any number and end on any higher number. 

Try changing line 30 in these ways: 

30 FOR I= 100 TO 101 
30 FOR I=-7 TO 13 
30 FOR I=l.3 TO 5.7 

Mark Up Your Listings 
Show where the loops are 
by drawing arrows: 

10 REM on paper ., 
20 CLS 

1 30 FOR I=0 TO 7 
I 40 PRINT I 

50 NEXT I 

109 

,I 



STEP 
The computer was counting by ones in the above programs. To make it count by 
twos, change line 30 to this: 

30 FOR I= 10 TO 30 STEP 2 

Assignment 17 A 
Have the computer count by fives from 0 to 100. 

Countdown Loops 
You can make the computer count down by using a negative STEP. 

Try this: 

10 REH ttt APOLLO 11 ttt 
20 CLS 
30 PRINT" T minus 12 seconds and counting" 
40 FOR 1=11 TO 1 STEP -1 
50 PRINT I:BEEP 
60 FOR J=l TO 740:NEXT J • timing loop 
70 NEXT I 
80 PRINT" All engines running. Lift off." 
81 FOR J=l TO 800:NEXT J:PRINT 
82 PRINT" We have a lift off." 
83 FOR J=l TO BH:NEXT J:PRINT 
84 PRINT" 32 minutes past the hour." 
85 FOR J=l TO 800:NEXT J:PRINT 
86 PRINT " Li ft off on Apollo 11. ": PRINT 

Nested Loops 
In the "Apollo 11" program, we have one loop inside another. 

The outside loop starts in line 40 and ends in line 70. 

The inside loop is in line 60. 

These are nested loops. They are like a child's set of toy boxes which fit inside 
each other. 

110 



Loop Variables 
To make sure that each FOR knows which NEXT belongs to it, the NEXT state­
ment ends in the loop variable name. Look at line 60: 

60 FOR J= 1 TO 740:NEXT J 

J is the loop variable. And for the loop starting in line 40, I is the loop variable: 

40 FOR I=l2 TOO STEP -1 
. . . inside the loop . . . 
70 NEXT I 

Badly Nested Loops 
The inside loop must be all the way inside: 

Right: 

[ 

25 FOR X=3 TO 7 
39 FOR Y=3 TO 7 
40 PRINT UY 
50 NEXT V 
60 NEXT X 

Wrong: 

[ 

25 FOR X=3 TO 7 
30 FOR Y=3 TO 7 
40 PRINT UV 
59 NEXT X 
60 NEXT V 

\ 

111 



Nonsense Loops 
IBM BASIC skips loops that are not supposed to run. 

Run: 

10 REM nonsense 
15 PRINT I 
20 FOR I=5 TO 3 
25 PRINT I 
39 NEXT I 
40 PRINT I 

This is a nonsense loop. Line 20 
says the counter, I, should start 
at 5 and get bigger, until it is larger 
than 3. But it is bigger than 3 to start with. 

So you would like the computer to skip the whole loop, jumping from line 20 to 
line 40-it does. 

In line 15, it prints 0. This is because the variable I has not been defined yet. 
When a variable is used that hasn't been defined, it is given the value 0. 

Line 20 sets I to 5, then notices that the loop should not run. So it skips down to 
the line after the NEXT, which is line 40. 

Line 40 prints the value of I, which is 5. 

Assignment 17B 
1. Write a program that prints your name 15 times. 

2. Now make it indent each time by two more spaces. It will go diagonally down 
the screen. Use TAB in a loop. 

3. Make it write your name 23 times, starting at the bottom of the screen and 
· going up. Use LOCATE in a loop. 

112 

-
..... 

--

-
--
--



4. Now make it write your name on one line, your friend's name on the next line, 
and keep switching until each name is written five times . 

113 



Instructor Notes 18. DATA, READ, and RESTORE 

You put data in the DATA statements at the time you write the program. READ 
gets data from the DATA statements, and RESTORE puts the pointer back to the 
beginning of the DATA statements. 

You can never change any of the data in the statements unless you rewrite the 
program lines. Of course, you can READ the data into a variable box, then change 
what is in the box. 

You must READ the data to be able to use it. And it must be read in order. If you 
want to skip some data that is in a given DATA statement, you have to read and 
throw away the stuff before it. (This procedure is not discussed here and may be 
mentioned to the student when other ideas about DATA are well-entrenched.) 

In the IBM PC and PCjr, you can skip data by arranging it in different DATA 
statements and point to the one you want with a RESTORE NNN statement, 
where NNN is the line number of the DATA statement. 

The idea of a pointer is used in this lesson. A pencil in the instructor's hand, 
pointing to items in a DATA statement, helps clarify this concept. 

Using DATA saves some typing errors if you have a lot of data. Moreover, it is 
useful in cases where there is not much data, because it clearly separates the ac­
tual data from the processing of the data. This helps when debugging programs. 
One of the most common uses of DATA is to fill arrays with initial values. 

Questions 
1. What happens if you try to READ more data items than are in the DATA 

statements? 

2. What rule tells you where to put the DATA statements in the program? Where 
to put the READ statements? 

3. Can you put numeric data and string data in the same DATA statement? 

114 



4. Can you change the items in a DATA statement while the program runs? 

5. The idea of a pointer helps in thinking about DATA statements. Explain how. 

115 



Lesson 18. DATA, READ, and RESTORE 

Two Kinds of Data 
There are two kinds of data in your programs: 

1. The data you INPUT through the keyboard. 

10 REM First kind of data 
20 CLS 
30 PRINT "Your pet peeve" 
35 INPUT PS 
37 CLS 
40 PRINT"Really!" 
SQ! PRINT"You don't like ";P$;"?" 

In this program, P$ is data entered by the user as the program runs. 

2. The data that is stored in the program at the time it is written. 

10 REM The second kind of data 
20 CLS 
30 X=57 
40 YS="flavors" 
SQ! PRINT X;YS 

In this example, X and Y$ are data stored in the program by the programmer 
when the program is written. 

Storing Lots of Data 
It is all right to store small amounts of data in LET statements. But it is awkward 
to store large amounts of data that way. 

Use the DATA statement to store large amounts of data. 

Use the READ statement to get the data from the DATA statement. 

10 REM Lots of data 
2QI CLS 
30 DATA Sunday,Monday,Tuesday,Wednesday,Thursd 

ay,Friday,Saturday 
40 READ D1S,D2S,D3S,D4$ 
60 PRINT D1S,D2S,D3S,D4$ 

116 



After the program runs, box DI$ holds the first item in the DATA list (Sunday), 
box D2$ holds the second item (Monday), and so on. 

Strange Rules 
1. It doesn't matter where the DATA statement is in the program. 

Change line 30 in the above program to line 90. (Remember to erase line 30.) 
Run the program. It works just the same. 

2. It doesn't matter how many DATA statements there are. 

Break the DATA statement into two: 

90 DATA Sunday,Monday,Tuesday 
91 DATA Wednesday,Thursday,Friday,Saturday 

Run the program. It works just the same as before. 

117 



It Is Polite to Point at Data 
READ uses a pointer. It always points to (indicates) the next item to be read. 

You can't see the pointer. Just imagine it is there. 

When the program starts, the READ pointer points to the first item in the first 
DATA statement in the program (that is, the DATA statement with the lowest line 
number of all DATA statements in the program). 

Each time the program executes a READ statement, the pointer moves to the next 
item in the DATA list. 

If the pointer gets to the end of one DATA statement, it automatically goes to the 
next DATA statement (that is, to the DATA statement with the next higher line 
number). 

It doesn't matter if there are a lot of lines in between. 

Do this. Change line 90 back to line 30. (Erase line 90 and leave line 91 alone.) 

30 DATA Sunday, Monday, Tuesday 
Other program lines could go here. 
91 DATA Wednesday,Thursday,Friday,Saturday 

Run the program. It works just the same. 

Falling Off the End of the DATA Planks 
When the pointer reaches the last 
item in the last DATA statement ~ r-::.~.- -.-.r-
in the program, there are no ~ -=--
more items left to read. If you 
try to READ again, you will see 
an error message: 

Out of DATA in (line number) 

118 

~ 



Back to Square One 
At any point in the program, you have only three choices for the READ pointer. 

1. You can do another READ: The READ pointer moves ahead one item. 

2. You can RESTORE the pointer to the start of the DATA: The READ pointer is 
put back to the beginning of the first DATA statement in the program. 

3. You can RESTORE the pointer to the start of any line: For instance, if you use 
RESTORE 30, the READ pointer is put on the first item in the DATA statement 
at line 30 in your program. 

Mixtures of Data 
The DATA statement can hold strings or numbers in any order. 

But you must be careful in your READ statement to have the correct kind of vari­
able to match the kind of data. 

Correct: 

Wrong: 

70 DATA 77,fuzz 
75 READ N 
80 READ B$ 

70 DATA 77,fuzz 
75 READ B$ 
80 READ N 

Okay, B$ box holds 77 
Syntax error in 70 

The error is because you can't READ a string (fuzz) into a number box. Change 
READ N to READ N$. 

119 



Assignment 18 
1. Write a program naming your relatives. When you ask the computer Uncle, it 

gives the names of all your uncles. DATA statements will have pairs of items. 
The first item is a relation like father or cousin. The second item is a person's 
name. Of course, you may have several brothers or sisters, for example, each 
with a DATA statement. 

2. Use DATA and READ statements to write an invisible message program. READ 
the messages from DATA statements and use PRINT to display them. Write 
messages in two different colors, say, red and white. When the screen is red, 
the white message is visible, but the red one is not. A new message becomes 
visible when the screen changes to white. 

120 

-



Instructor Notes 19: SOUND 

The SOUND statement makes a tone of specified pitch and duration. 

Remember that the BEEP statement just makes a short attention-getting sound 
whose pitch and length are not under programmer control. 

The IBM PC and PCjr computers do not have full sound-effect capability, mainly 
because they lack a white noise generator. They also lack an envelope generator to 
control the attack and decay of notes. They can, however, make musical tones 
that are accurate in pitch, because pitch can be specified to five digits of precision. 

Two arguments are needed in the SOUND statement. The first is the pitch in cy­
cles per second, or hertz (Hz). This variable takes values from 37 to 32767. Of 
course, human perception is in the range of 20 to 20,000 hertz, or less in older 
people. 

The second argument is a length number from O to 65536. The number is the 
duration of the sound in terms of a clock that counts 18.2 times a second. 

Music is most easily made if you use the PLAY statement described in lesson 23. 

When using sound in graphics situations, you get the most elaborate effects if you 
interleave the sound commands with the graphics movement commands. 

The DATA statement is useful for storing the notes in music. 

Questions 
1. What does the statement SOUND 500,30 do? 

2. Which pitch numbers give deep sounds? Which give high notes? 

3. What is the largest number that you can use for making a long note? 

121 



Lesson 19. SOUND 

IBM BASIC has three sound statements: BEEP, SOUND, and PLAY. 

BEEP plays one note, always the same note for the same length of time. Use it to 
get the user's attention. 

SOUND plays a single note. You can choose both the pitch (from very low to 
very high) and the length of the note. 

You'll learn about PLAY in lesson 23. 

All the sounds are played through the speaker in the computer. 

Playing One Note 
Run: 

10 REH sound 
15 FOR 1=37 TO 100 STEP 10 
20 SOUND I , 20 
25 NEXT I 
30 FOR !=100 TO 1000 STEP 100 
35 SOUND I,20 
40 NEXT I 
50 FOR !=1000 TO 5000 STEP 1000 
55 SOUND I,20 
60 NEXT I 

The first number after SOUND is the pitch. Any number from 37 to 32767 can be 
used. Larger numbers give higher notes. In fact, the number gives the pitch in 
hertz, which means cycles per second. 

You can play simple musical tunes using SOUND statements. 

Notes of Different Length 
The second number in the SOUND statement gives the length of the note. Any 
number from O to 65535 can be used. 

A length of 20 is about one second, 40 is two seconds, and so on. 

122 



Making Music 
Here is a tempered scale of musical notes: 

Note Number 
C (below middle C) 130.810 
C# 138.592 
D 146.833 
D# 155.564 
E 164.814 
F 174.614 
F# 184.997 
G 195.998 
G# 207.653 
A 220.000 
A# 233.082 
B 246.942 
C (middle C) 261.626 
C# 277.183 
D 293.665 
D# 311.127 
E 329.628 
F 349.228 
F# 369.995 
G 391.996 
G# 415 .305 
A 440.000 
A# 466.164 
B 493.883 
C (above middle C) 523.251 

Try this: 10 SOUND 440,100 

It plays A above middle C for about five seconds. 

You may not be able to hear anything for pitch numbers much above 10,000. 

123 



Musical Rests 
To make a rest in your music, use 

SOUND 30000,L 

where L is a number to tell how long the rest is. 

UI REM one voice 
2e PRINT" one voice" 
22 INPUT" how long <1 to 200>";0 
25 INPUT" what pitch <37 to 10000>";P 
40 SOUND P,D 
se GOTO 20 

Sound Effects 
Run: 

10 REM sound effect 
20 PRINT"what does this sound like?" 
30 FOR 1=2000 TO 500 STEP-30 
40 SOUND I,1 
50 NEXT I 

Assignment 19 
1. Make the sound of 

a truck horn 
a laser gun 

2. Write a program to play a short tune. Use DATA 
statements to store the pitch numbers. 

124 

------

)/ 



Instructor Notes 20. COLOR 

If your screen looks smeary or washed out when you use color graphics, try 
putting a line with 

screen 0,1 

in the early part of your programs. 

A different style of drawing is used in color from that used in black and white. 
Color drawings look best when large areas are painted in one color. When using 
individual characters, letters, or graphics, some color combinations do not give 
very crisp results. You should experiment to find suitable combinations. 

If you have a color monitor, the student should set up its controls for pleasing 
color by following the instructions in this lesson. Some monitors do not allow all 
the colors produced by the computer to show. The 16 tints (including black and 
white) allow very colorful effects to be produced. 

Drawing pictures character by character is quite tedious. It's often helpful to use 
graph paper to draw out the picture first. We recommend using a variable to des­
ignate a corner (or the center) of the drawing, with offsets from the corner for the 
other points and lines in the drawing. Then it's easy to move the whole figure if 
necessary for animation or just for correction of the composition. See the "Jump­
ing J" program in lesson 24. 

Questions 
1. What does the statement COLOR 0,7 do? 

2. How do you put red letters on a black background? 

3. If you drew a blue ball on a white background, how would you erase the ball? 

4. How many colors are there to choose from? 

5. What range of numbers are allowed for X and Yin the statement LOCATE X,Y? 

125 



Lesson 20. COLOR 

Adjusting the Monitor for Color 
If your monitor is black and white, skip to "Rainbow Ball" below. 

If you have a PC, load the "Colorbar" program from your student disk and run it. 

load''colorbar.bas'' 
run 

If you have a PCjr, use the Colorbar display when you first turn on your com­
puter to adjust the color settings on the monitor or TV. 

These are the colors: 

0 Black 
1 Blue 
2 Green 
3 Cyan (blue-green) 
4 Red 
5 Magenta (reddish purple) 
6 Brown 
7 White 

8 Gray 
9 Light blue 

10 Light green 
11 Light cyan 
12 Light red 
13 Light magenta 
14 Yellow 
15 Intense white 

Adjust the tint control on your color monitor so that each colored bar is the cor­
rect color. Try to get the correct shade for the yellow, cyan, and magenta bars. 
Some monitors will not allow all colors to be correct at the same time. 

The COLOR Statement 
In Chapter 2 you learned how to use the COLOR statement to make a colored 
background (with black writing on it). 

Like this: 

10 REM colored backgrounds 
15 CLS 
20 COLOR 0,4 
30 PRINT "black letters on red" 

126 



The second number after the statement COLOR is the color of the background. 

I 

Colored Letters on a Colored Background 
The COLOR statement has three numbers: 

Character color 0-31 
Background color 0-7 
Border color 0-15 

Example: COLOR 4,2 means 
red (=4) letters on a green (=2) background. 

Run: 

10 REM colored letters on red 
11 CLS 
12 CLS 
15 FOR I=0 TO 15 
20 COLOR I,4:REM "4" is "red" 
30 PRINT"colored letters" 
40 NEXT I 

<:> 

Notice that some colors do not look good on a red background. 

Now try all colors of letters on all colors of background. Add to the above program: 

Add: 

12 FOR J=0 TO 15 
20 COLOR I,J 
45 FOR T=1 TO 2He:NEXT T 
50 NEXT J 

127 



Flashing Words 
The first number in the COLOR statement gives different colored letters when 
numbers O through 15 are used. If numbers 16 through 31 are used, the letters 
flash on and off! 

Change: 15 FOR I= 16 TO 31 and run again. 

Assignment 20A 
1. Add a loop to the above program so that the border color changes. You need a 

COLOR statement with three variables in it, like this: 

COLOR I,J,K 

2. Make K change in a loop, changing the border color. 

lf/l'lff11•Wn/1,,111/1rIt111111/1,,~11, 1111\\~/N\111• · 
r, I' i '· 

1/t' 

\l/((t I", If/(; 

V/1, 

128 



Jumping Rainbow Sentence 
Run: 

10 REM jumping rainbow sentence 
15 COLOR 7,0:CLS:SCREEN 0,1 
20 FOR I=l TO 9 
30 READ W$ 
40 X=INT(RND<9>*23)+1 
41 Y=INT(RND(9)*39)+1 
50 C=INT<RND(9)*6>+1 
54 COLOR C,0 
55 LOCATE X,V 
60 PRINT W$ 
65 FOR T=l TO 1000:NEXT T 
70 NEXT I 
80 COLOR 7,0 
99 DATA watch,out,your,pop,is,spilling,on,your 

,keyboard 

Rainbow Ball 

10 REM rainbow ball 
15 CLS:SCREEN 0,1 
16 CLS 
20 FOR I=l TO 39 
30 LOCATE 12,I 
31 PRINT"O"; •print ball 
40 FOR T=l TO 50:NEXT T 
41 LOCATE 12,I:PRINT" "; 'erase ball 
50 C=C+l:IF C>15 THEN C=l 'change color 
51 COLOR C,0 
60 NEXT I 

The loop from 20 to 60 moves a ball across the screen, changing its color as it 
goes. 

Lines 30 and 31 put the ball on the screen in a new spot. 

Then line 40 waits for a moment. 

Line 41 erases the ball that was just printed. 

Line 50 increases the color number (first set in line 16) by one each time the ball 
is moved. When the color reaches intense white, number 15, it is changed back to 
the first color, blue. 

129 



Assignment 20B 
1. Change the rainbow ball so that it falls instead of moving across the screen. 

2. Add to the number guessing game in lesson 12 so that a large colored star 
shows when the correct answer is guessed. Use a timing loop so that the star 
shows for a few seconds before the game starts again. 

3. Write a program to draw Sinbad's Magic Carpet. Let the user choose the num­
ber of colors in the rug and what colors are used . Then draw a pattern on the 
screen. 

4. Make a program to write your name in a big X on the screen. Make the X cover 
a red heart, and then make both move flashing across the screen. 

130 

I' ,, 

I 



Instructor Notes 21. Drawing Pictures 

This lesson illustrates SCREEN, LINE, CIRCLE, and PSET for making line 
drawings. 

The IBM PC can make medium-resolution graphics (320 X 200 dots on the 
screen) in four colors. 

First, you have to warn the computer that graphics commands will be used by 
saying SCREEN 1. SCREEN 0 tells the computer to go back to text-only display. 
You can still PRINT and use LOCATE in graphics 1 mode, which is a real 
convenience. 

If you have a green screen monitor, SCREEN 2 gives higher resolution (a 640 X 
200 screen), and the restriction to use of only two colors doesn't hurt. We will not 
specifically describe graphics 2 mode here; it is similar to graphics 1 mode. Con­
sult the IBM BASIC manual. 

Think of the screen as a graph with the axes crossing at the "home" position (up­
per left). The X axis runs horizontally with X values from Oto 319. Y is vertical 
with values from 0 to 200. The statements PSET, LINE, and CIRCLE all use the 
notation (X, Y) for points needed in the statement. 

Give the center point and the radius for CIRCLE. In the next lesson, a color is 
added. Read the IBM BASIC manual to see how to make pie charts with sectors 
of a circle. 

LINE needs two points, the start and the end. The next lesson tells how to pick a 
color for the .line and how to use LINE to make rectangles. 

PSET plots a single point. 

BASIC does not object if part of the picture you specify is off the screen. For ex­
ample, you can say CIRCLE (-20,-30),120 and put part of a circle on the 
screen. (Even the center is off the screen!) 

131 



A handful of powerful graphics statements will not be discussed in this book. 
They are DRAW, and PUT and GET, which allow animated graphics. 

Questions 
1. Where on the screen will PSET (160,100) put a dot? 

2. How do you draw a circle centered on the screen? 

3. How many dots can you fit across the screen? 

4. How many dots can you fit down the screen? 

5. How do you draw a large X on the screen? 

132 



Lesson 21. Drawing Pictures 

The SCREEN statement fixes the screen so that you can use the PSET, LINE, and 
CIRCLE statements to draw pictures. It needs IBM Advanced BASIC and the 
Color/Graphics Monitor Adapter. 

The CIRCLE statement lets you draw a circle on the screen. 

The LINE statement lets you draw a line on the screen. 

The PSET statement lets you put dots on the screen. 

Run: 

18 REM circle,line and dots 
12 SCREEN 1:CLS 
28 CIRCLE(168,1H>,98 
38 LINE (8,8)-(329,299) 
49 FOR 1=58 TO 159 STEP 18 
58 PSET <I,159-I) 
68 NEXT I 

The SCREEN Statement 
SCREEN 1 makes the screen ready for medium-resolution graphics, 320 points 
across X 200 points down. 

SCREEN O changes the screen back 
to text only, 40 letters across X 25 lines down. 

133 



The PSET Statement 
The screen is like a sheet of graph paper with 320 squares across and 200 squares 
down. 

PSET (X,Y) puts a dot on the screen. X tells how far from the left. Y tells how far 
down. 

PSET (160,100) puts a dot in the center of the screen. Try it. 

PSET (319,199) puts a dot in the lower-right corner of the screen. Try it. If you 
can't see the dot, maybe it is off the edge of your screen. Try PSET (310,190) in­
stead. Or have your set adjusted properly. 

How do you tell the computer to put a dot in the other three corners of the 
screen? 

Upper left _________________________ _ 

Upper right __________________________ _ 

Lower left __________________________ _ 

Try them and see if they work. 

Run: 

10 REN stars 
12 SCREEN 1:CLS 
20 FOR 1=1 TO 100 
30 X=INT(RND(9>*320) 
31 Y=INT(RND(9>*2H> 
33 PSET<X,Y> 
35 FOR T=1 TO 50:NEXT T 
40 NEXT I 
50 SCREEN 0 

Add a REM to line 31. 

134 



The LINE Statement 
The LINE statement draws a line between two points on the screen. 

Run: 

Run: 

12 SCREEN 1:CLS 
20 LINE (20,150)-(310,10> 

10 REN Splat 
12 SCREEN 1:CLS 
15 FOR I=l TO 25 
17 X=INT<RND<9)t300>+10 
18 Y=INT(RND(9)t180)+10 
20 LINE (160,100>-<X,Y> 
30 NEXT I 

~ 
1,:~ 

l,.. ; 

135 



The CIRCLE Statement 
The CIRCLE statement draws a circle with a center point given by (X,Y) and a ra­
dius R. 

Uf REM circles 
12 SCREEN 1:CLS:PRINT:PRINT:PRINT 
20 INPUT" center at x= <0 to 320> ";X 
22 INPUT" center at y= <0 to 200> ";Y 
24 INPUT" radius r= <0 to 320> ";R 
30 CLS:CIRCLE(X,Y>,R 
35 LOCATE 12,1:PRINT "radius";R 
40 FOR T=1 TO 2000:NEXT T 
99 GOTO 10 

Try these values for X, Y, and R: 

X 
160 

0 
160 

-20 

y 
100 

0 
0 

-20 

R 
95 

150 
120 

70 

Try other values that you choose. 

Mixtures of Letters and Graphics 
You can mix letters and graphics on the screen, using PRINT, PSET, LINE, and 
CIRCLE in the same program. You can use LOCATE to place the printing where 
you want it on the screen. 

Assignment 21 
1. Use CIRCLE to draw a snowperson, LINE for the arms, and PSET for eyes, 

nose, mouth, and buttons. 

2. Use LINE to draw your school's initials. Save to disk. 

136 



Instructor Notes 22. Color Graphics 

This lesson tells how to paint in four colors (medium-resolution graphics) and 
how to use the LINE statement to make rectangles. 

You cannot just pick four colors by the numbers introduced in previous lessons. 
The IBM PC uses the idea of a palette, to which we add the idea of a brush. 

There are only two palettes allowed, each with three fixed colors, numbered 1, 2, 
and 3. Palette 0 has green, red, and brown. Palette 1 has cyan, magenta, and 
white. Palette 1 colors are obtained by adding blue to palette 0 colors. This may 
seem strange as you remember your watercoloring days in kindergarten. When 
adding colored lights instead of pigments, yellow (which is made of red and 
green) plus blue does give white. 

To the three fixed colors on a palette, the user specifies the background color, 
0-15, as before. Brushes: Brush 0 dips into the background color. Brushes 1, 2, 
and 3 dip into the colors 1, 2, and 3 on the palette. 

Colors can be used for outline and for solid colors. The outline color is placed as 
a brush number in the PSET, CIRCLE, or LINE statements. The solid color is 
made by the PAINT statement which has a point (X,Y), a brush number for the 
solid color, and finally, a brush number for the border to be filled. The border 
number is important in the PAINT statement because it specifies at which color 
(brush number) the filling in of color will stop. 

The LINE statement also allows you to draw rectangular boxes. Just add the letter 
B on the end of the command. Adding the letter F (fill) makes the box a solid 
color. 

Questions 
1. How do you make a rectangle with upper-left corner at (30,10) and lower-right 

corner at (60,110)? 

2. How many palettes can you choose from? What colors are on each one? 

137 



3. What does (30,40) mean in the statement 

PAINT (30,40),3,1 

What does the 3 mean? 
What does the 1 mean? 

4. What does the 2 mean in 

CIRCLE (90, 112),55,2 

5. How would you paint the above circle a solid white? (Your answer should say 
something about palettes, something about borders, and something about 
PAINT.) 

138 



Lesson 22. Color Graphics 

Pick Your Palette 
Run: 

le REH dueling artists 
12 CLS:SCREEN 1 
2e FOR B=0 TO 15 
22 FOR P=e TO 1 
25 COLOR B,P 
26 LOCATE 7,2e:PRINT"palette ";P 
27 LOCATE 5,2e:PRINT"background color";B 
3e CIRCLE (50,50),7e,3 
31 PAINT (50,50),1,3 
32 CIRCLE (Be,99),80,1 
33 PAINT (91,12e>,2,1 
34 LINE (90,7e)-(2Be,150),3,BF 
4e LOCATE 3,5:PRINT"color 1" 
41 LOCATE 17,4:PRINT"color 2" 
43 LOCATE 10,25:PRINT"color 3" 
49 FOR T=l TO se0:NEXT T 
6e NEXT P,B 
98 SCREEN e,1 

After you give the SCREEN 1 statement to use graphics, you pick a palette of 
colors with the COLOR statement. 

Example: 15 SCREEN !:COLOR 13,1 gives background color 13, palette 1. 

There are two palettes. Each palette has only 
four colors-the background color you choose 
and three more that come with the palette. 

Brush Palette 0 Palette 1 
0 Background Background 
1 Green Cyan (blue-green) 
2 Red Magenta (purple) 
3 Brown White 

139 



Dip Your Numbered Brush and Paint an Outline 
After you choose which background color and which palette you want, you can 
paint a colored line, circle, or dot. 

Example: 

29 SCREEN 1:COLOR 15,0 
3e LINE (20,29>-<100,100>,2 
49 CIRCLE<160,100>,50,1 
59 PSET (160,109),3 

The brush number is the last number in the LINE or PSET statement and tells 
what color on the palette you will paint with. The brush number follows the ra­
dius in the CIRCLE statement. 

Colored Box in Outline 
The LINE statement can also draw a rectangle. Just add the letter B after the 
brush number. 

Run: 

29 SCREEN 1:COLOR 15,1 'palette 1 on whi 
te 

39 LINE(60,80)-(120,160),1 •cyan line 
49 LINE(50,70)-(130,170>,2,B •magenta box 

140 



Enter SCREEN 0,1 to get back to text mode 

Solid Color for the Box 
Change line 40 above to paint inside the box. 

Change: 40 LINE (50, 70)-(130, 1 70),2,BF 

The letter F stands for fill. It means you fill in the box outline with color. 

Solid Colors for Your Drawings 
The PAINT statement fills in any shape outline with color. Make the outline by 
drawing lines with LINE or circles with CIRCLE. 

Run: 

10 
12 
19 
2e 
22 
24 
3(1 
40 
5e 

60 
70 

71 
80 
81 

10 
12 
14 
20 
22 
30 
40 
5e 
52 
54 
56 
58 
60 

REN paintbox 
KEY OFF:SCREEN 1:COLOR 7,0 
REN a triangle outline in green 
LINE<50,50)-(100,0),1 
LINE(50,50)-(100,100),1 
LINE(100,0)-(100,100),1 
LOCATE 12,20:PRINT"green outline" 
FOR T=1 TO 1000:NEXT T 
LOCATE 14,20:PRINT"use brush 2 to fill with 

red" 
FOR T=1 TO 1000:NEXT T 
REN brush 2 (red).fill to green (1) boundar 
y 
PAINT (60,50),2,1 
FOR T=1 TO 1000:NEXT T 
SCREEN 0 

REN vanishing dots 
SCREEN 1:KEY OFF:COLOR 15,0 
RANDONIZE:CLS 
FOR X= 30 TO 320 STEP 50 
FOR Y= 30 TO 200 STEP 40 
CIRCLE(X,Y),19,1 
NEXT Y,X 
FOR I=1 TO 1000 
X=INT<RND(9>*320) 
Y=INT<RND(9)*200> 
C=INT<RND<9>*4> 
PAINT(X,Y>,C,1 
NEXT I 

141 



UI REN circles 
12 RANDOMIZE 
15 SCREEN 1 
16 COLOR 15,1 
18 R=INT<RND<9>*88)+5 
28 X=INT<RND<9>*288)+58 
22 Y=INT<RND(9)*188)+58 
24 C=INT(RND<9>*4> 
26 B=INT<RND<9>*4> 
3" CIRCLE<X,Y>,R,B 
48 PAINT<X,Y>,C,B 
58 IF RND(9)).97 THEN S=S+l 
51 IF S>l THEN 5=8 
SB IF RND<9>>.82 THEN 78 
68 BB=INT(RND<9>*16) 
78 COLOR BB,S 
99 GOTO 18 

Assignment 22 
1. Draw your school's initials and make them flash on and off with your school's 

colors. 

2. Draw the flag of your country and color it correctly. 

142 

-
"""" 
""""" 

-

-
-
,.... 

,.... 



Instructor Notes 23. Music 

The PLAY statement reads notes and other instructions from a character string 
and plays music over the computer's speaker. PLAY requires Advanced BASIC. 

PLAY has two modes: MF (foreground mode), in which the execution of the pro­
gram pauses while the music plays, and MB (background mode), in which the 
computer goes on executing BASIC statements. In background mode, it takes a 
few seconds before the computer stores all the music information and starts on 
the next program steps. 

Only the notes that are white and black keys on a piano are accepted by the 
PLAY statement. For example, B- is okay (for B-flat), but B# is not (it is the 
same as C). The octave symbol sets the octave (0 to 6) that the notes are chosen 
from. Middle C is the lowest note in octave 3. 

The lengths of the notes are set by the symbol Ln in the string, where n is an 
integer. A table of values of n compared with traditional note names, such as 
quarter note, is given. This method also allows for triplets, where three notes are 
played in the same time as two are ordinarily. 

The dotted notes in musical notation are also denoted here by a dot placed after 
the note's name. 

Rests are signified by Pn, in exactly the same style as Ln. 

The overall tempo is set (or changed) by TEMPO symbols in the string. 

The music sounds a little mechanical, but it can be improved by using staccato 
~ and legato. Staccato sounds as expected, but legato really comes out as a tie. That 

is, two legato C quarter notes played together will actually sound like a half note. 

After you have mastered music making as described in this lesson, read the infor­
mation about PLAY in the BASIC manual. There are a few more minor tricks that 
you may find useful. 

143 



Questions 
1. Where does the PLAY statement get the notes it plays? 

2. What does a dot after a note mean? 

3. What does b# mean in a PLAY string? 

4. What does ML mean in a PLAY string? 

5. What is a triplet of quarter notes? How do you tell the computer to play them? 

6. What is the difference between background and foreground for the PLAY 
statement? 

144 



Lesson 23. Music 

Row, Row, Row Your Boat 
Enter: 

1'1J REM row your boat 
2'1J M'$="MN T1'1J'1J 03 L4 C C LbC L1oD L4E LoE L1oD 

LoE L1oF L2G 04 L12CCC 03GGG EEE CCC LoG 1 
1oF loe 110D L2C" 

30 PLAY M'$ 

Run it and save to disk. 

The computer can play a whole tune with just one statement, PLAY. 

But first you have to put all the notes of the tune in a string where the PLAY 
statement can find them. 

The computer can play the tune while it is doing something else, like moving 
graphics in a game. 

What Goes in the PLAY String 
You have to put a symbol in for each note and rest. 

Notes: A B C D E F G (natural notes) 
A# C# D# F# G# (sharp notes) 
A-B- D-E- G- (flat notes) 

Rests: Full note rest Pl (pause) 
Half note rest P2 
Triplet half rest P3 
Quarter note rest P4 
Triplet quarter rest P6 
Eighth note rest PB 
Triplet eighth rest P12 
Sixteenth note rest P16 
Triplet sixteenth P24 

Dots: If a musical note is dotted (followed by a period), it means you should play 

145 



the note one and a half times its normal length. For example, a dotted half note 
should be played like a half note and a quarter note added together. 

Example: m$ ="odeplo#d#f.pl." 
means m$ ="ode pl o# d# f. pl." 

(It is easier to read if the symbols are spread out with spaces. You may omit the 
spaces in the program.) 

The following symbols are put in just one time. They will be in effect from then 
on or until you make a change by putting in a new symbol. 

Octave: 00 01 02 03 04 05 06 07 
Octave O is the lowest. 
Octave 3 starts with the note middle C. 
Octave 7 is the highest. 

Length: Full note Ll 
Half note L2 
Triplet half L3 
Quarter L4 
Triplet quarter L6 
Eighth LB 
Triplet eighth L12 
Sixteenth L16 
Triplet sixteenth L24 

Tempo: Larghissimo very slow T 32 to T 39 
Largo T 40 to T 59 
Larghetto T60toT65 
Grave 
Lento 
Adagio T 66 to T 75 
Adagietto 
Andante slow T 76 to T107 
Andantino 
Moderato medium Tl08 to T119 

146 

,.. 

-

-
,.. 

i---

iai-, 

,..., 
,-



Allegretto 
Allegro 
Vivace 
Veloce 
Presto 
Prestissimo 

fast T120 to T167 

T168 to T208 
T209 to T255 

Style: MF (Foreground): The program stops while the music plays. 
MB (Background): The program continues to run while the music 

plays. (Not more than 32 notes and rests.) 
MN (Normal): Not legato or staccato. 
ML (Legato): Ties each note to the next. 
MS (Staccato): Notes clipped off. 

Examples: m$ = "mf ms tlOO 18 o4 c d e f g a " 
m$ = "mf ml tl50 18 o3 c d e f g a " 

External: Xvar, where var is a string variable name. 

Example: 

le MS=" Cd e def II 

2QJ PLAY 11 111s xmS; ml xmS; t22QJ xMS; " 

147 



Assignment 23 
1. Change the string in the "Row, Row, Row Your Boat" program so that it plays 

very fast, very slow, an octave higher, an octave lower, staccato, legato. 

2. Change the first program in this lesson so that it plays another tune. 

3. Crossing friends: While music plays, make your name move down the screen 
while a friend's name moves across the screen. Use the MB symbol in the 
string. Make the names cross in the middle. 

148 



Instructor Notes 24. Pretty Programs, GOSUB, and 
RETURN 

This lesson covers subroutines. 

Like GOTO, GOSUB causes a jump to another line number. The only difference 
is that in GOSUB, control returns to the statement following the GOSUB after the 
subroutine is finished executing. This is accomplished by storing the statement 
address following the GOSUB statement on a stack. When the computer en­
counters a RETURN statement, it pulls the address off the stack and returns con­
trol to that statement. 

Subroutine calls can be nested at least 30 deep. 

The END statement can be put anywhere in the program and you can use as 
many END statements as you wish. All that END does is to stop the program and 
return control to the edit mode. 

Subroutines are useful not only in long programs but in short ones where 
chunking the task into sections leads to clarity. 

GOSUB was put in BASIC for making modules. This lesson shows modular 
construction in a graphics program. The same subroutine that writes the letter J 
also erases it. 

The "Jumping J" exercise allows the student to try many different effects in the 
moving graphics display. 

Questions 
1. What happens when the statement END is executed? 

2. How is GOSUB different from GOTO? 

3. What happens when RETURN is executed? 

4. If RETURN is executed before GOSUB, what happens? 

149 



5. What does call the subroutine mean? 

6. How many END statements are you allowed to put in one program? 

7. Why do you want to have subroutines in your programs? 

150 



-
Lesson 24. Pretty Programs, GOSUB, and RETURN 

Run this program and then save it to disk: 

100 REM take a trip 
UJ1 REM 
110 PRINT"Hop to the subroutine" 
120 GOSUB 200 
130 PRINT"Back from the subroutine" 
133 FOR T=1 TO 1000:NEXT T 
134 PRINT 
135 PRINT"Hop again" 
140 GOSUB 2H 
150 PRINT"Home for good" 
190 END 
199 REM 
200 REM subroutine 
2tl1 REM 
2UI PRINT"Got here ok." 
215 FOR T=1 TO 1000:NEXT T 
217 BEEP:PRINT"Pack your bags, back we go." 
23, FOR T=1 TO 1000:NEXT T 
290 RETURN 

Remember to save it to disk. 

This is the skeleton of a long program. The main program starts at line 100 and 
ends at line 190. 

Where there are PRINT statements, you can put many more program lines. 

The END statement in line 190 tells the computer that the program is over. The 
computer goes back to the edit mode. 

Lines 120 and 140 call the subroutine. This means the computer goes and per­
forms the commands in the subroutine, then comes back. 

The GOSUB 200 statement is like a GOTO 200 statement except that the com­
puter remembers where it came from so that it can go back there again. 

The RETURN statement tells the computer to go back to the statement after the 
GOSUB. 

151 



)l 

Assignment 24A 
The delay loop is used three times in the above program. Add another subroutine 
with a delay loop in it, and GOSUB every time you need a delay. 

What Good Is a Subroutine? 
In a short program, it's not much good. 

In a long program, it does two things: 

1. It saves you work and saves space in memory. You do not have to repeat the 
same program lines in different parts of the program. 

2. It makes the program easier to understand and faster to write and debug. 

J.lT fRJNT 
. GOJUBl/clJ RlTVRN 

152 



The END Statement 
The program may have zero, one, or many END statements. 

Rule: The END statement tells the computer to stop running and go back to the 
edit mode. 

That is really all it does. You can put an END statement anywhere in the pro­
gram, for example, after THEN in an IF statement. 

Moving Pictures 
Run this: 

1QI '??? Jumping J ??? 
2QI CLS 
22 X=13:Y=15:D=1 
25 FOR J=1 TO 1QI 
26 FOR 1=1 TO 1QI 
3QI COLOR 2,0:GOSUB 11'11: 'draw 
31 FOR T=1 TO 99:NEXT T 
35 COLOR '11,il:GOSUB 11'11: 'erase 
45 Y=Y-D 
50 NEXT I 
55 D=-D 
60 NEXT J 
95 CLS 
98 COLOR 7,QI 
99 END 
100 • 
1'111 • draw the J 
1'112 • 
110 LOCATE Y,X:PRINT "ttttt" 
119 FOR K=1 TO 7 
12QJ LOCATE Y+K,X+3:PRINT "t" 
121 NEXT K 
130 LOCATE Y+7,X:PRINT "ttt" 
14QJ LOCATE Y+6,X:PRINT "t" 
199 RETURN 

Remember to save to disk. 

The picture is the letter J. The subroutine starting in line 110 draws the J. Before 
you GOSUB 110, you pick what color you want the J to be, using a COLOR state­
ment. Look at lines 30 and 35 . If you pick color 0, then the subroutine erases a J 
from that spot because the background is black. 

153 



The subroutine draws the J with its upper-left corner at the spot X,Y on the 
screen. When you change X or Y (or both), the J will be drawn in a different spot. 
Line 22 says that the first J will be drawn near the middle of the screen. 

The letter D tells how far the J will move from one drawing to the next. Line 22 
makes D equal to 1, but line 55 changes D to -1 after ten pictures have been 
drawn. 

Line 45 says that each picture will be drawn at the spot where Y is larger than 
the last Y by the amount D. 

Assignment 24B 
1. Write a short program that uses subroutines. It doesn't have to do anything 

useful, just print some silly things. 

Put three subroutines in it. Call one of them twice from the main program. Call 
one of them from another of the subroutines. Call one of them from an IF 
statement. 

2. Enter the "Jumping J" program and run it. Then make these changes: 

Change the subroutine so that it prints your own initial. Change the color of 
your initial to blue. 

Change the jumping to sliding (so the J moves across the screen instead of up 
and down). 

Change the starting point to the lower right-hand corner instead of the middle 
of the screen. 

Change the distance the slide goes to 15 steps instead of 10. 

Change the size of each step from 1 to 2, while the total distance moved is 10 
squares. 

Change the sliding so that it slides uphill. Use this: 

X=X+D:Y=Y-D 

154 



Change the program so that the initial changes color from blue (color 1) 
through all the colors to brown (color 6) as it jumps. 

3. Make a program that writes your three initials on the screen, each one a dif­
ferent color. Then make them jump up and down one at a time. 

155 



Instructor Notes 25. ASCII Code and ON-GOTO 

This lesson treats the ASCII code for characters, and the functions ASC and 
CHR$ that change characters to ASCII numbers and vice versa. 

The ASCII code is primarily intended to standardize signals between computers 
and such hardware devices as printers, terminals, and other computers. But the 
ASCII numbers are also useful within programs. Since the letters are numbered in 
increasing order, the ASCII numbers are useful in alphabetizing. The numeric dig­
its are also in order, and the punctuation marks have ASCII numbers as well. 

Strictly speaking, there are only 128 ASCII characters, and some of these are sup­
posed to signal mechanical actions on a Teletype machine. It is more convenient 
to define a full byte's worth (256) of characters, and each computer manufacturer 
uses the extra characters in a unique way. IBM assigns them to various graphics, 
math, and foreign language symbols. 

Questions 
1. Does ASC(S$) return a string or a number for its value? 

2. Does ASC(S$) have a string or a number for its argument? 

3. Answer the same two questions for CHR$(N). 

4. Which letter has the larger ASCII code number, B or W? 

5. Do you know the ASCII code for the character 1? Is it the number 1? 

6. What will the computer do if you run this line: 

10 PRINT CHR$(32); CHR$(65) 

' f, 
(If you don't know, try it.) C 

156 

-



Lesson 25. ASCII Code and ON-GOTO 

Numbering the Letters in the Alphabet 
"That's easy," you say. "A is 1, Bis 2, C is 3, ... " 

Well, for some strange reason, it goes like this: A is 65, B is 66, C is 67, ... 

These numbers are called the ASCII code of the characters. ASCII is pronounced 
ask-key. 

The punctuation marks and number digits have ASCII code numbers, too. 

ASC Changes Characters into Numbers 
Use the ASC function to change characters into ASCII numbers. 

Run: 

10 REM*** What number is this key?*** 
20 PRINT "Enter keys to see ASCII number" 
30 INPUT C$ 
40 PRINT TAB<10>;C$;TAB<1S>;ASC(C$) 
50 GOTO 30 

Save the program to disk before running it. Try out some letters, digits, and 
punctuation marks. Hold down Shift and press letters. 

Press the Break key to end the program. 

157 



CHR$ Changes Numbers into Characters 
Use CHR$ to change ASCII code numbers into a string holding one character. 

Run: 

1 9 REM/// display ASCII /// 
11 REM 
29 CLS 
39 FOR I=9 TO 255 
49 PRINT I,CHRS<I> 
45 PRINT 
5(1 FOR T•1 TO 200:NEXT T 
be NEXT I 

Save the program to disk. 

Use CHR$ to print the many ASCII characters that are not on the keyboard. They 
range from graphics like the smiley face and borders and blocks to foreign letters 
like Greek and German. 

CHR$ Is the Reverse of ASC 
ASC gives you the ASCII number for the first character in the string. 

CHR$ does the reverse. It gives you the character belonging to the ASCII number. 

158 

~ 

-



The ASCII Numbers for Characters 
Here are the groups of characters and their ASCII numbers: 

1-31 
32-47 
48-57 
58-64 
65-90 
91-96 
97-122 
123-127 
128-168 
169-223 
224-238 
239-255 

symbols 
punctuation 
number digits 
punctuation 
capital letters 
punctuation 
small letters 
punctuation 
foreign letters 
graphics 
Greek letters 
math symbols 

Alphabetical List 
These functions can also help in making alphabetical lists. 

Run: 

19 REK alphabetize 
29 PRINT 
39 INPUT "Give me a letter:",A1i 
35 PRINT 
49 INPUT "Give me another:",B1i 
45 A=ASC(A1i) 
46 B=ASC(B1i> 
47 REK Put in alphabetical order by 
48 REK seeing which has the lower ASCII number 

5" IF A>B THEN X=A:A=B:B=X 
69 PRINT 
65 PRINT "Here they are in alphabetical order" 
79 PRINT 
71 PRINT CHR1i<A>;TAB<S>;CHR1i(B) 

Save it to disk. 

159 



The ON-GOTO Statement 
The "Snake" program below uses the ON-GOTO statement. 

115 ON K GOTO 120,130,140,150 

If K is 1, GOTO 120 
2, GOTO 130 
3, GOTO 140 
4, GOTO 150 

If K is something else go on to the next line. 

After the GOTO, you can put one, two, or as many numbers as you want. Each 
number is the same as the number of a line somewhere in the program. 

le REM>>>>> SNAKE>>>>> 
2e WIDTH 4" 
3" CLS 
4e GOTO 1""0 
1ee REM 
1e1 REM -------------main loop 
1e2 REM 
UIS D$= I NKEYS 
lle IF D$="," THEN K=K+l:IF K=5 THEN K=l 
111 IF D$="." THEN K=K-1:IF K=0 THEN K=4 
115 ON K GOTO 12",130,140,150 
12e Y=Y-1-(Y=l):GOTO 160 
13e X=X-1-<X=l):GOTO 160 
14e Y=Y+l+(Y=24):GOTO 160 
15" X=X+l+(X=40) 
160 COLOR 7,0:LOCATE Y,X,0:PRINT CHRS(219>; 
161 COLOR 1,0:LOCATE L,A:PRINT" "; 
170 A=B:B=C:C=D:D=E:E=F:F=X 
171 L=M:M=N:N=O:O=P:P=Q:Q=Y 
199 GOTO 105 
10e0 REM 
1e01 REM>>>>> snake>>>>> 
1"e2 REM 
1e11 COLOR 7, 0 
2e00 X=20:Y=12:K=1 
2e10 A=X:B=X:C=X:D=X:E=X:F=X 
2e11 L=Y:M=Y:N=Y:O=Y:P=Y:Q=Y 
2050 PRINT:PRINT:PRINT 
21ff PRINT" Use< and> keys" 
2200 FOR T=l TO 3000:NEXT T 
32ff CLS 
399'9 GOTO 100 

160 



Assignment 25 
1. Write a program that asks for a word. Then it rearranges all the letters in 

alphabetical order. 

2. Write a program that speaks Double Dutch. It asks for a sentence, then re­
moves all the vowels and prints it out. 

161 



Instructor Notes 26 Snipping Strings: LEFT$, MID$, 
RIGHT$, and LEN 

In this lesson the functions LEFT$, MID$, RIGHT$, and LEN are demonstrated. 
The use of MID$ with three arguments is shown, but not that with the third argu­
ment omitted. 

These functions together with the concatenation operator ( +) allow complete 
freedom to cut up strings and glue them back in any order. 

As in earlier explanations, the main characteristics of the functions are shown, but 
not all the special cases, especially those that lead to error messages. It is better 
that extensive explanations not clutter up the text. If the student experiences diffi­
culty, an experienced programmer or an adult consulting the computer reference 
manuals should clear up the problem. 

Questions 
1. If you want to save the star from stars and stripes, what function will you use? 

What arguments? 

2. If you want to save and, what function and arguments? 

3. If you want to count the number of characters in the string PQ$, what function 
do you use? What argument? 

4. What is wrong with each of these lines? 

10 A$= LEFT$( 4,D$) 
10 RIGHT$(R$,I) 
10 F$=MID$(A,3) 
10 J$=LEFT(R$,YT) 

5. What two arguments does the RIGHT$ function need? 

6. What function will snip the third and fourth letters out of a word. 

7. Write a short program that takes the word computer and makes it into putercom. 

162 



Lesson 26. Snipping Strings: LEFT$, MID$, RIGHT$, and 
LEN 

Gluing Strings 
You already know how to glue strings together: 

55 A$= "con" + "cat" + "en" + "ation" 
60 PRINT A$ 

The real name for gluing is concatenation. 

Concatenation means "make a chain." Maybe we should call them chains instead 
of strings. 

Snipping Strings 
Let's cut a piece off a string. Enter and run: 

18 REM>>> scissors>>> 
28 CLS 
38 N$="123456789" 
35 Q$=LEFT$(N$,4) 
48 PRINT Q$,N$ 

The LEFT$ function snips off the left end of the string. The snipped-off piece can 
be put in a box or printed or whatever. 

163 



Rule: The LEFT$ function needs two things inside the parentheses. 

1. The string you want to snip. 

2. The number of characters you want to keep. 

Try another. Change line 40 to 

40 PRINT RIGHT$(N$,3) 

Run the program again. This time the computer prints 

789 

RIGHT$ is like LEFT$ except the characters are saved off the right end of the 
string. (They are still saved left to right, though.) 

More Snipping and Gluing 
Run: 

10 REM>>> scissors>>> 
20 CLS 
30 NS="123456789" 
35 QS=LEFTS<NS,4) 
40 PRINT QS,NS 

The pieces of string you snip off can be glued back together in a different order. 
Add this line and run: 

55 IF I=4 THEN PRINT: PRINT R$ + L$ :PRINT 

How Long Is the String? 
Run: 

10 REM::: Long rope::: 
20 CLS 
30 INPUT"give me a string";NS 
40 L=LEN<NS> 
42 PRINT 
5'1J PRINT "The string:";NS 
55 PRINT"is";L;"characters long." 

164 



The function LEN tells the number of characters in the string. It counts everything 
in the string, even the spaces. 

Cutting a Piece Out of the Middle 
The MID$ function cuts a piece out of the middle of the string. 

Run: 

10 REH### middle### 
20 CLS 
30 N$="123456789" 
40 P$=HID$(N$,3,4) 
50 PRINT P$ 

The line 40 P$= MID$(N$,3,4) means get the string from box N$. Count over 
three letters and start saving letters into box P$. Save four letters. 

Look, Ma, No Spaces 
Enter: 

10 REH>>> no spaces>>> 
11 REH 
20 PRINT:PRINT 
30 PRINT"Give me a long sentence":PRINT 

165 



35 INPUT SS 
4'1.1 L=LEN(SS> 
45 TS="" 
5'1.1 FOR I=1 TO L:REM look at each letter 
6'1.1 LS=MIDS(SS,I,1) 
7'1.1 IF LS<>"" THEN TS=TS+LS1REM don't save spa 

ces 
9'1.1 NEXT I 
92 PRINT :PRINT TS 
95 PRINT:PRINT:PRINT 

Line 60 snips just one letter at a time 
from the middle of the string. 

Alphabetical Order 
Enter: 

2'1.1 IF "A"< "B" THEN PRINT "A COMES BEFORE B" 
22 IF "CA"< "CZ" THEN PRINT "CA COMES BEFORE 

CZ" 

Run each line and then change the < to a > and run again. The less than and 
greater than signs can be used to see if two strings are in alphabetical order. 

166 



Assignment 26 
1. Write a secret cipher-making program. You give it a sentence, and it figures 

how long the sentence is. Then it switches the first letter with the second, 
the third with the fourth, and so on. For example, this is a dragon becomes 
htsii s ardgano. 

2. Write a question-answering program. You give it a question starting with a 
verb, and it reverses verb and noun to answer the question. Here's an example: 

Are you a turkey? 
You are a turkey. 

3. Write a Pig Latin program. It asks for a word. Then it takes all the letters up to 
the first vowel and puts them on the back of the word, followed by ay. If the 
word starts with a vowel, it adds only ay. Examples: 

box becomes oxbay 
apple becomes appleay 

167 



Instructor Notes 27. Switching Numbers with Strings 

This lesson treats two functions, SIR$ and VAL. It also gives a general review of 
the concept of a function. 

SIR$ takes a number and makes a string that represents it. 

VAL does just the opposite. It takes a string and makes a numeric value from it. It 
accepts decimals and scientific notation (for example, 1.2E + 13). If the first 
character is not a decimal digit or + or - , it returns the value 0. Otherwise, it 
scans the number, terminating at the first nonnumeric character (other than the E 
of the scientific notation). 

This conversion between the two main types of variables adds great flexibility to 
programs that involve numbers. 

You can slice up a number and rearrange its digits by first converting it to a 
string. This is demonstrated in the assignment that makes a number play leapfrog 
by repeatedly putting its rear digit in the front. 

A BASIC function returns a value-data in the form of a number or a string-to 
the expression in which it is used. You can also say that functions are called just 
as subroutines are called. The reason, of course, is that functions are implemented 
as subroutines on the machine code level. 

Questions 
1. If your number marches too quickly in the program of assignment 27, how do 

you slow it down? 

2. Assume your program has the string "George Washington was born in 1732." 
Write a few lines to answer the question "How long ago was Washington 
born?" (You need to get the birth date from the string and convert it to a 
number.) 

3. What is a value. What is meant by "a function returns a value"? What are some 
of the things you can do with the value? 

168 



4. What is an argument of a function? How many arguments does the RIGHT$ 
function have? How many for the CHR$ function? 

5. Can you put a function at the start of a line? 

6. Each line below has errors. Explain what is wrong. 

10 INT(Q)=65 
10 D$=LEFT(R$,l) 
10 PW$=VAL(F$) 
10 PRINT CHR$ 

169 



Lesson 27. Switching Numbers with Strings 

This lesson explains two functions, VAL and SIR$. 

Making Strings Into Numbers 
We have two kinds of variables, strings and numbers. We can change one kind 
into the other. 

Run: 

10 REH Making strings into numbers 
12 CLS 
30 L$="123" 
40 M$="789" 
50 L=VAL(L$) 
60 H=VAL(H$) 
70 PRINT L 
72 PRINT H 
74 PRINT"---" 
76 PRINT L+H 

VAL stands for value. It changes the string into a number if it can. 

170 

-



Making Numbers into Strings 
Run: 

10 REN Making numbers into strings 
11 REM 
15 CLS 
2'1 PRINT 
25 INPUT"Give me a number:",NB 
30 NS=STRS(NB> 
35 L=LEN(N$) 
37 PRINT 
40 FOR I=L TO 1 STEP -1 
45 BS=BS+NIDS<NS,I,1> 
50 NEXT I 
60 PRINT "Here it is backwards" 
65 PRINT:PRINT B$ 

STR$ stands for string. It changes a number into a string. 

Functions Again 
In this book we use these functions: RND, INT, LEFT$, RIGHT$, MID$, LEN, 
VAL, STR$, ASC, and CHR$. 

171 



Rules About Functions 
Functions always have parentheses with one or more arguments inside them. 
Here's an example: 

MID$(D$,5,J) has three arguments: D$, 5, and J. 

The arguments may be numbers or strings or both. 

A function is not a statement. It cannot begin a line. 

Right: 10 LET D = LEN(CS$) 

Wrong: 10 LEN(CS$)=5 

A function acts just like a number or a string. We say the function returns a value 
(gives us some information). The value can be put in a box or printed just like 
any other number or string. The function may even be an argument in another 
function. 

(Remember, string values go in string variable boxes and numeric values go in 
numeric boxes.) 

Practice with Functions 
For each function in the list below, answer these questions: 

Is the value of the function a string or a number? 

Is each argument a variable, constant, or a function? 

RND(9) 
fn 

arg 
INT(Q) 

fn 

arg 

172 



MID$(RI$,E,2) 
fn 

arg 

arg 

arg 

VAL(ER$) 
fn 

arg 

STR$(INT(RND(8))) 
fn 

arg 

Assignment 27 
1. Write a program that asks for a number. Then it makes another number that is 

backward from the first and adds them together. It prints all three numbers like 
an addition problem (with a + sign and a line under the two numbers that are 
added). 

2. Make a number leapfrog slowly across the screen. First, write it on the screen. 
Then take its left digit and move it to the right end. Keep repeating. Don't for­
get to erase each digit when you move it. 

173 



Instructor Notes 28. Logic: AND, OR, and NOT 

This lesson treats the AND, OR, and NOT relations and the numeric values for 
true and false. 

Two abstract ideas in this lesson may give difficulty. The first is that true and 
false have numeric values of -1 and 0. Any expression in the form of an asser­
tion (a phrase A) has a numeric value of O or -1. This number is treated just like 
any other number. It can be stored in a numeric variable, printed, or used in an 
expression. Most often, it is used in an IF statement. 

The other abstract idea compounds the confusion. The IF statement doesn't really 
look to see if phrase A is present. Rather, it looks for a numeric value between IF 
and THEN. Any number that is nonzero is treated as true. We call this a little 
white lie. 

You can use the logical values in equations that at first glance look ridiculous. For 
example, 

10 INPUT A 
20 B = 5 - 7*(A<3) 
30 PRINT B 

The value of B will be 12 or 5 depending on whether A is less than 3 or not. 

Questions 
1. For each IF statement, tell if it will print anything: 

10 IF 3=3 THEN PRINT "hi" 
10 IF 3=3 OR 0=2 THEN PRINT "hi" 
10 IF NOT (3=3) THEN PRINT "hi " 
10 IF 3=3 AND 0=2 THEN PRINT "hi" 
10 IF "a"= "b" THEN PRINT "hi" 
10 IF NOT ("a"= "b") THEN PRINT "hi" 

174 



2. What numbers will each of these lines print? 

10 A=l:PRINT A, NOT A 
10 A=0:PRINT A, NOT A 
10 A=l:B=l:PRINT A AND B 
10 A=0:B=l:PRINT A AND B 
10 A=0:B=0:PRINT A AND B 
10 A=0:B= !:PRINT A ORB 
10 A=0:B=0:PRINT A ORB 
10 PRINT NOT 23 
10 PRINT NOT 0 
10 PRINT 3 AND 7 
10 PRINT 3 AND 0 

175 



Lesson 28. Logic: AND, OR, and NOT 

Another Teenager Program 
Enter, save, and run this program: 

10 REM <<<and, or, not>>> 
20 CLS:PRINT 
30 INPUT" YOUR FIRST NAME ";N$ 
35 PRINT 
40 INPUT" your age ";A 
45 PRINT 
50 TA=<A>12 AND A<20> 
55 PRINT" ";N$; 
60 IF TA THEN PRINT" is a teenager" 
65 IF NOT TA THEN PRINT" is not a teenager" 
7(6 IF A=16 THEN PRINT" and is sweet sixteen" 
Be IF A=12 OR A=20 THEN PRINT" and just missed 

II 

What Does AND Mean? 
Two things are true about teenagers: They are over 12 years old and they are less 
than 20 years old. Look at lines 50 and 60. 

IF you are over 12 AND you are less than 20 THEN you are a teenager. 

What Does OR Mean? 
In line 80 the OR is used. The program says two things: 

IF you are 12 OR you are 20 THEN you just missed being a teenager. 

Only one of these needs to be true for you to have just missed being a teenager. 

True and False Are Numbers 
How does the computer understand true and false? It says true and false are 
numbers . 

Rule: True is the number -1. False is the number 0. 

(It is easy to remember that O is false because O is the grade you get if your home­
work is incorrect.) 

176 



To see these numbers, enter this in the edit mode: 

print 3=7 

The computer checks to see if 3 really does equal 7. It doesn't, so it prints 0, 
meaning false. Try another example: 

print 3=3 

The computer checks to see if 
3=3. It does, so the computer 
prints -1, meaning true. 

Putting True and False in Boxes 
The numbers for true and false are treated just like other numbers and can be 
stored in boxes with numeric variable names on the front. Run this: 

10 N=(3=22) 
20 PRINT N 

The number O is stored in the box N because 3 = 22 is false. Try this: 

10 N="b"="b" 
20 PRINT N 

The number -1 is stored in the box N because the two letters in the quotes are 
the same, so the statement "b"="b" is true. 

177 



Whole strings are tested for equality. 

Run: 10 PRINT "ab"= "ac" 

The computer prints 0 for false, because the second letter of each string is not the 
same. 

The IF Statement Tells Little White Lies 
The IF statement looks like this: 

10 IF phrase A THEN command C 

Try these in the edit mode: 

if 0 then print "true" 
if -1 then print "true" 
if 22 then print "true" 

What does the last entry print? 

Rule: In an IF, the computer looks at phrase A. 

178 

;[,t 1Hf 
AN/J 



If it is 0, the computer says phrase A is false and skips what is after THEN. 

If it is not 0, the computer says phrase A is true and obeys the commands after 
THEN. 

The IF statement tells little white lies. True is supposed to be the number -1, but 
the IF stretches the truth to say true is anything that is not false; that is, any num­
ber that is not O is true. 

What Does NOT Mean? 
NOT changes false to true and true to false. Enter, run, and save this: 

19 REM??? Double Negative??? 
29 N=9 
39 PRINT"N ";TAB<15>;N 
49 PRINT"NOT N";TAB<15);NOT N 
59 PRINT"NOT NOT N";TAB(15);NOT NOT N 
60 REM The computer knows that "I don't haven 

0 ..... 

61 REM means "I do have .... " 

Be sure to put a space after each NOT. 

I'M NOT NDT 
FALL/NG 

□ 
□□aaaaa 

179 

" 



The NOT makes sense only when used with O or -1. Try this: Change line 20 to 

20 N=-1 

It still makes sense. But try this : 

20 N=3 

You do not get true or false as the numbers -1 or 0. 

The Logical Signs 
You can use these six symbols in phrase A: 

equal 
<> not equal 
< less than 
> greater than 
< = less than or equal 
> = greater than or equal 

You have to press two keys to make the <> sign and the < = and > = signs. 

The last two are new. To see the difference between < and < = look at these 
examples: 

2<=3 is true 
3<=3 is true 
4< = 3 is false 

2<3 is true 
3<3 is false 
4<3 is false 

These two phrase A's mean the same: 

2<=Q (2<Q) OR (2=Q) 

180 



Assignment 28 
1. Tell what will be found in the box N if 

N=4=4 
N = "g" <> "s" 
N=5>7 
N=3>2 AND 3<2 
N=4=3 OR4=4 
N=NOT 0 
N=5>=4 

2. Tell if the word Jellybean will be printed: 

IF O THEN PRINT "Jellybean" 
IF 1 THEN PRINT "Jellybean" 
IF 9 THEN PRINT "Jellybean" 
IF 3<>0 THEN PRINT "Jellybean" 
IF 2 AND 4 THEN PRINT "Jellybean" 
IF O OR 1 THEN PRINT "Jellybean" 
IF NOT 3 THEN PRINT "Jellybean" 
IF "a"= "z" THEN PRINT "Jellybean" 
IF NOT (3) AND 2 THEN PRINT "Jellybean" 
IF NOT (0) OR O THEN PRINT "Jellybean" 
IF 4<=5 THEN PRINT "Jellybean" 

3. Write a program to detect a double negative in a sentence. It looks for and 
counts the negative words like not, no, don't, won't, can't, and nothing. If there 
are two negative words, it's a double negative. Test the program on this sen­
tence: Computers ain't got no brains. 

181 



Instructor Notes 29. Secret Writing and INKEY$ 

INKEY$ is a method of requesting a single character from the keyboard and 
putting it into the box of a specified string variable. 

There is no screen display at all. No prompt or cursor is displayed and the key­
stroke is not echoed to the screen. 

The utility of the INKEY$ function lies just in this fact. For example, a secret pass­
word may be received with a series of INKEY$'s without displaying it to by­
standers. 

Another advantage over INPUT is that no Enter keypressing is required. This 
makes INKEY$ useful in user-friendly programming. 

The INKEY$ function doesn't wait for a key to be pressed. This makes it useful in 
action games. If you need to have the program wait for a keystroke, you must do 
an IF and branch back until a keystroke is detected. This is demonstrated in the 
lesson. 

If you want to get numeric values, get them as strings and convert them to num­
bers using the VAL function discussed in an earlier lesson. 

Questions 
Compare INPUT and INKEY$. For each item below, which does which? 

One gets one letter at a time, the other gets whole words and sentences. 

One has a cursor, the other does not. 

One prints on the screen, the other does not. 

One needs the Enter key, the other does not. 

182 



Lesson 29. Secret Writing and INKEY$ 

The INPUT Statement 

There are two ways to use INPUT: 

Without a message: 

10 INPUT A$ 
10 INPUT N 

With a message: 

10 INPUT "Name, age ";NA$,AG 

Either way, the computer waits for you to type a word, sentence, or number. 

Then you press the Enter key to tell the computer that you have finished 
entering. 

183 



The INKEY$ Function 
The INKEY$ function is different from INPUT. It gets a single character from the 
keyboard. 

It doesn't wait. 

It looks to see if a key is being pressed. If so, it puts the character into the string 
variable box. 

You do not have to press Enter. 

INKEY$ for Invisible Typing 
Nothing shows on the screen when you use INKEY$: No question mark will 
show, no cursor will show, and what you type will not show. 

To see what happens, you have to PRINT the variable. 

Run: 

10 KS=INKEYS 
2QJ PRINT KS 
25 REM box KS holds the character 
3QJ GOTO 10 

184 



Use Break to end the run. 

The computer prints a blank until you press a key. Then it prints the character. 

Try this: Hold down the A key. 

See that the computer prints the letter a which is run up the screen. Then the a 
starts to repeat, and you see a string of letters up the screen. 

Try holding down different keys. 

Hold down two keys at once. INKEY$ will display the last one you press. 

Making the Computer Walt for You to Type 
Add to the above program: 

15 IF KS="" THEN 10 
211' PRINT KS 

Now the computer is more polite! It keeps looking until a key is pressed. 

Secret Writing 
Use INKEY$ in guessing games. You can enter a word or number to be guessed 
without other players being able to see it. 

Run this program: 

111' REM ---secret---
211' CLS 
3" PRINT "Press any key" 
411' KS=INKEYS:IF KS="" THEN 40 
45 BEEP 
511' PRINT "The key you pressed was ";KS 
55 FOR T=1 TO 500:NEXT T 
99 GOTO 211' 

185 



Run this one, too: 

19 REM### Backwards### 
29 CLS 
39 PRINT "Type in a 5 letter word" 
35 PRINT 
49 FOR 1=1 TO 5 
42 L$=INKEYS:IF LS="" THEN 42 
44 WS=LS+WS 
48 NEXT I 
59 PRINT "Now here it is backwards" 
69 PRINT WS 

Line 42 will not let the program continue until you press a key. 

Making Words from Letters 
The INKEY$ function gets one letter at a time. To make words, glue the strings 
together. 

19 REM Get a word 
29 CLS 
39 PRINT "Type a word.End it with an 'Enter'." 
35 WS="" 
49 LS=INKEYS:IF LS="" THEN 40 
59 IF ASC(LS>=13 THEN 80 
60 WS=WS+LS 
65 GOTO 40 
80 REM word is finished 
85 PRINT WS 

How does the computer know when the word is all typed in? Line 50 checks to 
see if the Enter key was pressed. The ASCII number of the Enter key is 13. Line 
50 branches to print the word if the Enter key was pressed. 

Secret Numbers 
If you want to enter a secret number from the keyboard, you should use INKEY$ 
to enter digit characters (0 to 9), glue them into a string, and then use the VAL 
function explained in lesson 27. 

186 



Assignment 29 
1. Write a program that has a menu for the user to choose from. The user makes a 

choice by typing a single letter. For example, 

PRINT "Which color? R=Red, B=Blue, G=Green" 

2. Write a sentence-making game. Each sentence has a subject, a verb, and an ob­
ject. The first player types a subject (like The donkey). The second player types a 
verb (like sings). The third player types another noun (like the toothpick). Use 
INKEY$ so that no player can see the words of the others. You may expand the 
game by having adjectives before the nouns. 

187 



Instructor Notes 30. Long Programs 

This lesson demonstrates top-down organization of a task. 

One of the hardest habits to form in some students (and even in some pro­
fessionals) is to impose structure on their programs. Structuring has gone by 
many names, such as structured programming and top-down programming, and em­
ploys various techniques to discipline the programmer. 

Here, we outline the program right on the screen. The task is chunked into sec­
tions by using subroutines. This leads to clarity in the articulation of program 
parts and allows testing and debugging of each part separately from the others. 

After the outline is done, each subroutine is expanded by writing in ordinary Eng­
lish what needs to be done. Only when the English description is itself suf­
ficiently detailed does the BASIC programming begin. This is like prewriting an 
essay before attempting the complete version. 

Of course, there is always some improving to be done as the program is written. 
The number of subroutines may change and the tasks performed in each will also 
change-usually expand. 

Some programmers advocate planning the whole program on paper before start­
ing any coding at all. This may work for some people, but children are unlikely to 
adopt this style of working. Besides, if an advantage of word processors is that 
writing text can be done interactively on the screen, it would seem equally appro­
priate to plan computer programs on the screen. 

Questions 
1. Why is it good to outline the program on the screen? 

2. If you have trouble deciding what steps go in a game program, how can you, a 
friend, and a piece of paper help? 

3. What do you do (in English) to the outline next? 

4. When do you test each subroutine that you have written? 

188 



Lesson 30. Long Programs 

How to Write a Long Program 
Let's write a word-guessing game where you draw part of a dragon each time you 
make a wrong guess for a letter. 

First, make an outline. You can do this on paper or right on the screen. If you 
have trouble deciding what to do, just play through a game on paper and keep 
track of what happens. Then the progam has to do the same things. 

The outline could be 

10 REM *** Dragon Game *** 
200 REM Instructions 
300 REM Get the word to guess 
400 REM Make a guess 
500 REM Test if right 
600 REM Add to the drawing 
700 REM Test if game is over 
800 REM End game message 

After making this outline, fill in more details. 

10 REM *** Dragon Game *** 
99 REM 
100 REM Main Loop 
101 REM 
120 INPUT "Need Instructions? <Y/N>", Y$ 
122 IF Y$="Y" THEN GOSUB 200 
130 GOSUB 300:REM Get word 
135 GOSUB 400:REM Make guess 
140 GOSUB 500:REM Test guess 
145 GOSUB 700:REM Test if game is over 
190 GOTO 135:REM Make another guess 
199 REM 
200 REM Instructions 

write the instructions last 
290 RETURN 

189 



299 REM 
300 REM Get the word to guess 

use INPUT to get a word from player 1 
draw dashes for the letters to be guessed 

390 RETURN 
399 REM 
400 REM Make a guess 

player 2 guesses a letter 
490 RETURN 
499 REM 
500 REM Test to see if guess is right 

if wrong, GOSUB 600:REM draw dragon part 
if right, GOSUB 700:REM see if game is over 

590 RETURN 
599 REM 
600 REM Add to the drawing 

add to the dragon drawing 
test if drawing is done 
if so, then GOSUB 800 

690 RETURN 
699 REM 
700 REM Test if game is over 

see if all letters have been guessed 
if yes, GOSUB 900 

790 RETURN 
799 REM 
800 REM End game message 

message for when guesser loses 
show dragon melting your ice cream 

890 RETURN 
899 REM 
900 REM End of game message 

message for when guesser wins 
990 RETURN 

Once you have written the outline of the program, save it to disk. 

Now it's time to start writing and testing the first part of the program. Put a 
STOP in line 132 so that only the first subroutine will be run. (After the first sub­
routine works okay, take the STOP out. See lesson 33 for more information.) 

190 



Start by writing the subroutine at 300. The first step is to write more details in 
English of what the subroutine needs to do. Then start writing the BASIC lines. 

Variable Names 
Variable names in IBM BASIC can be up to 40 characters long. 

The name starts with a letter, and it can have letters, numbers, or periods in it. 

The name must not be one of BASIC's reserved words like FOR, TO, IF, and 
STOP. There is a list of reserved words in an Appendix of this book. 

But the name can have a reserved word inside it. For example, 

FOR cannot be a variable name. 
FORMULA is okay. 
FOR.ME.TOO is okay. 

Assignment 30 
1. Finish the "Dragon Game." This is a long project. Start by writing the "get the 

word" subroutine. Then save it to disk. You may want to write one subroutine 
each day until the program is done. 

2. Write a game you can play against the computer. Organize and outline it before 
programming it. 

191 



Instructor Notes 31. Arrays and the DIM Statement 

This lesson introduces arrays and describes the DIM statement. 

Arrays with one index are described first. The array itself is compared to a family, 
and the individual elements of the array to family members, with the index value 
being the first name of the family member. 

Two-dimensional arrays are compared to the numbers on a month page of a cal­
endar or to the rectangular array of cells on a TV screen. 

The concept of arrays is not too difficult. The trick is to see how they help in 
programming. There is a large variety of uses for arrays, and many do not seem 
to fall into recognizable categories. 

You can use arrays to store lists of information. Connected lists also can occur. 
The "Phone List" program uses two linear arrays-one for names, the other for 
numbers. They are indexed in the same way, so a single index number can re­
trieve both the name and the number that goes with it. 

Another general use of arrays is to store numbers which cannot neatly be ob­
tained from an equation. An example is the number of days in the 12 months. 

Games often use arrays to store information about the playing board. 

Questions 
1. What does the DIM BD(6) statement do? 

2. Where do you put the DIM statement in the program? 

3. What two kinds of array families are there? 

4. What is the index, or subscript, of an array? 

192 



Lesson 31. Arrays and the DIM Statement 

Meet the Array Family 
22 F$(0) = "Dad" 
24 F$(l)="Mom" 
26 F$(2) = "Bianca" 
28 F$(3) = "Matthew" 

Each member of the family is a variable. The F$ family are string variables. 

Here is a family of numeric variables: 

35 N(O)= 43 
37 N(l)= 13 
39 N(2)= 0 
41 N(3)= 0 

The family has a "last name" like A or B$. Each member has a number in paren­
theses for a "first name." The array always starts with the first name being the 
number 0. 

Instead of family we should say array. 

Instead of first name we should say index number, 
or subscript. 

193 



The DIM Statement Saves Boxes 
When the array family goes to a movie, they always reserve seats first. They use a 
DIM statement to do this. 

The DIM statement tells the computer to reserve a row of boxes for the array. 
DIM stands for dimension, which means size. 

For example, the statement 

18 DIM A(3) 

saves four memory boxes, one each for the variables A(O), A(l), A(2), and A(3). 
These boxes are for numbers and they contain the number Oto start with. Here's 
another example: 

30 DIM A(3),B$(4) 

This time, DIM reserves four boxes for the A array and five for the string array B$. 
The boxes named B$(0) through B$(4) are for strings and are empty to start with. 

Rule: Put the DIM statement very early in the program, before the array is used 
in any other statement. 

Making a List 
Enter: 

10 REM+++ In a row+++ 
20 CLS:PRINT 
311 DIM AS(3> 
35 PRINT"Enter a word" 
40 FOR N=0 TO 3 
45 IF N>0 THEN PRINT"Another" 
50 INPUT AS<N> 
55 PRINT 
60 NEXT N 
70 PRINT 
100 REM Put in a row 
105 PRINT"Here they are in a row" 
11'16 PRINT 
110 FOR I=0 TO 3 
120 PRINT AS<I>;" "; 
130 NEXT I 

194 

-



......,. 

Save the program before you run it. 

You can use a member of the array by itself. Look at this line: 

40 B$(2)="yellow submarine" 

Or the array can be used in a loop where the index keeps changing. Lines 50 and 
120 in the program "In a row" do this. 

Making Two Lists 
Enter: 

10 REH Phone list 
20 CLS:PRINT 
30 DIM NAS<20>,NUS<20> 
35 1=0 
40 PRINT "enter names and numbers" 
50 PRINT: INPUT"Name?",NAS<I> 
611 INPUT "number?",NUS<I> 
70 1=1+1:GOTO 50 

Save and run the program. 

195 



One Dlmenslon, Two Dlmenslon, ... 
Arrays that have one index are called one-dimensional arrays. 

But arrays can have more than one index. Two-dimensional arrays have their 
family members put in a rectangle like the days in a month on a calendar. 

Eight Queens 
The "Eight Queens" puzzle asks you to put eight chess queens on the chessboard 
in such a way that no queen is attacked by any other. If you are not familiar with 
chess, look up the moves of the queen in an encyclopedia. Obviously, you can't 
have two queens on the same row or column. Queens attack along the diagonal 
also. There are 92 patterns of queens on the board that solve this puzzle. 

1 REM B queens 
2 GOTO 1090 
100 REM main loop 
115 M=R<I> 
120 11=11+1:IF 11=9 THEN GOSUB 600:GOTO 115 
130 IF B(I,11)=0 THEN GOTO 700 
140 GOTO 120 
200 REM 
201 REM update attacked squares 

196 



2'112 REM 
2UJ FOR L=1 TO 8 
215 B<I,L>=B<I,L>+D 
220 B<L,J>=B<L,J)+D 
225 NEXT L 
5'110 REM 
5'111 REM diagonal 
502 REM 
510 FOR K=1 TO 8 
515 X=I+K 
520 IF X>8 THEN 530 
522 Y=J+K:IF Y>8 THEN 525 
523 B<X,Y>=B(X,Y>+D 
525 Y=J-K:IF Y<1 THEN 530 
526 B<X,Y)=B(X,Y>+D 
530 X=I-K 
535 IF X<1 THEN 590 
540 Y=J+K:IF Y>8 THEN 550 
545 B(X,Y>=B<X,Y)+D 
550 Y=J-K:IF Y<1 THEN 590 
555 B(X,Y)=B<X,Y)+D 
590 NEXT K 
595 8(1,J)=Q 
599 RETURN 
600 REM 
6'111 REM go back 
6'112 REM 
610 R<I)=QI 
612 I=QN 
615 IF I=QI THEN END 
620 J=R( I) 
630 D=-1:Q=0:GOSUB 2H 
640 QN=QN-1 
690 REM gosub 9H 
699 RETURN 
700 REM 
7'111 REM go ahead 
702 REM 
710 R<I>=M:J=M 
715 QN=QN+l 
720 D=l:Q=-1 
730 GOSUB 200 
735 NM=NM+l 
740 IF QN=8 THEN GOTO 800 
780 I=I+l 
785 KB=1 
786 IF KB<>0 THEN GOSUB 9'110 
790 REM gosub 900 
799 GOTO 115 
800 REM 

197 



8"1 REM solution 
802 REM 
810 BEEP 
814 NS=NS+1 
815 GOSUB 900 
860 GOSUB 612 
899 GOTO 115 
900 REM 
901 REM display 
902 REM 
910 FOR X=1 TO 8 
915 FOR V=1 TO 8 
920 LOCATE 2+2U,T-1+2*Y:PRINT 1111 ; 

925 BB=B<X,V> 
930 IF BB=-1 THEN PRINT CHR$(1) 
940 IF BB>0 THEN PRINT 11 11 

950 IF BB=0 THEN PRINT "X" 
955 IF BB<-1 THEN PRINT X,V:END 
960 NEXT V:NEXT X 
980 PRINT:PRINT:PRINT TAB<T-4);"SOLUTIONS";NS, 

"MOVES";NM 
999 RETURN 
1000 DIM R<8>,B<8,8) 
1010 CLS:WIDTH 40:LOCATE,,0 • turn cursor off 
1020 I=1:QN=0:NS=":T=13 
1023 • Graphics: hold down Alt key, type digit 

son 
1024 • NUMERICAL keypad, then let up on Alt ke 

y 
1025 • Line 1"30: use 218,196,194,196, ••• 191 
1026 • Line 1045: use 179 and spaces 
1027 • Line 1046: use 195,196,197,196, ••• 180 
1028 • Line 1048: use 192,196,193,196, ••• 217 
1029 • See appendix on ASCII characters in IBM 

BASIC Manual 
1030 LOCATE 3,3:PRINT TAB(T>; ".t.).).).).).).). ... 
1"40 FOR 1=1 TO 8 
1045 PRINT TAB(T)• 11 • • • • • • • • • 11 

1046 PRINT TAB (T); 11
'),.~ .. •••'••••.,•·•••·••',. .. 

11 

1047 NEXT:1=1 
1048 LOCATE 19,3:PRINT TAB(T>;" .,_•,,_•,,_•,,_•.,_•,,_•,,.~ 

u" 
1"49 L"lfCATE 1, 1:PRINT TAB(T>;" EIGHT QUEENS" 
1999 GOTO 100 
2'800 PRINT" 

198 

-



This program uses two arrays. R(I) tells in which row the queen on the I column 
is located. B(I,J) keeps track of the board. The value of element I,J is a number 
that tells about that square on the board. If the value is -1, there is a queen on 
that square. If the value is 0, then no queen is attacking that square. Values of 1, 
2, 3, and so on, tell how many queens are attacking that square. The program 
takes about two hours to find all the solutions. 

Assignment 31 
1. Write a program that stores the number of days in each month in an array. 

Then when you ask the user to enter a number for the month (1 to 12), it 
prints out the number of days in that month. 

2. Finish the "Phone List" program so that it prints out the list of names with the 
telephone numbers beside them. 

3. We wrote the "Eight Queens" program to work for a standard 8 X 8 chess­
board. Change the program so that the user can choose any size board. 

4. Change the eight queens into super queens. Each can move like a queen or like 
a knight. Are there any solutions? 

199 



Instructor Notes 32. User-Friendly Programs 

This lesson shows how to write clear programs which interact with the user in a 
friendly way. 

The lesson presents a format for writing programs. While different methods of 
imposing order on the task are largely a matter of taste, the methods used here 
can serve to introduce the ideas. 

User-friendly means that screen displays are easy to read, keyboard input is Enter­
key-free as much as possible, and errors are trapped. The program should ask if 
entries are okay. If not, give an opportunity to fix things. 

Instructions and help should be available. Prompts need to be given. Beginners 
need complete prompts, but experienced users would prefer short ones. 

It is hard to teach the writing of user-friendly programs. Success depends mostly 
on the programmer's attitude. The best advice is to "turn up your annoyance 
detectors to high" as you write and debug a program. 

Most young students will not progress very far toward user-friendly program­
ming. Just becoming acquainted with the desirability of friendly programming and 
using some simple techniques toward accomplishing that goal are satisfactory 
achievements. 

Questions 
1. Should your program give instructions whether the user wants them or not? 

2. What is a prompt? Give two examples. 

3. What is scrolling? How can you write to the screen without scrolling? 

4. How do you allow the user to enter a single letter from the keyboard without 
using the Enter key? 

200 



5. What is an error trap? How would you trap errors if you ask your user to enter 
a number from 1 to 5? 

6. In what part of the structured program are most of the GOSUB statements 
found? 

7. Why put the "starting stuff" section of the program at the end of the program 
(at high line numbers)? 

201 



Lesson 32. User-Friendly Programs 

There are two kinds of users: 

1. Most want to run the program. They need: 

instructions 
prompts 
clear writing on the screen 
no clutter on the screen 
erasing old stuff from the screen 
not too much keypressing 
protection from their own errors 

2. Some want to change the program. They need: 

a program made in parts 
each part with a title in a REM 
explanations in the program 

(Don't forget you are a user of your own programs, too. Be kind to yourself!) 

202 



-

Programs Have Three Parts 
Starting Stuff: 

gives instructions to the user 
draws a screen display 
sets variables to their starting values 
asks the user for starting information 

Main Loop: 

controls the order in which tasks are done 
calls subroutines to do the tasks 

Subroutines: 

do parts of the program 

Program Outline 

1 GOTO 1000:REM *** program name *** 

100 REM MAIN LOOP 

199 END 
1000 REM 

calls subroutines 

1001 REM*** program name*** 
1002 REM 

REMs that give a description of the 
program, variable names, etc. 

1999 REM 
2000 REM STARTING STUFF 

ask for starting information 
set variable values 
give instructions 

2999 GOTO 100 
203 



Put the Main Loop at the Beginning of the Program 
Put the main loop near the front because it will run faster there. 

Put Starting Stuff at the End of the Program 
Put the starting stuff near the back because it may be the biggest part of the pro­
gram, and you may keep adding to it as you write to make the program more 
user-friendly. It does not need to run fast. 

Put Subroutines In Three Places 
Subroutines that must run fast should go between lines 2 and 99, starting stuff 
subroutines should go after line 2999, and the rest of the subroutines should be 
put between lines 200 and 999. 

204 

-



Information Please 

280 PRINT "Do you want instructions (Y/N)" 

This lets a beginner see instructions and lets others say no. 

Tie a String Around the User's Finger 
Use a prompt to remind users of what choices they have. 

Example: Use <Y /N> or something similar where the choice is Y for yes or N for 
no. 

Beginners need long prompts. Other users like short prompts. 

205 



Don't Give the User a Headache 
Scrolling gives headaches! 

BASIC usually scrolls. It writes new lines at the 
bottom of the screen and pushes old lines up. 

It is like the scrolls the Romans used for 
writing. They unwound from the bottom 
and wound up at the top. 

Avoid scrolling. Use LOCATE to print just 
where you want. Erase by printing a string 
of blanks to the same spot. 

Use delay loops so the writing stays on the 
screen while the user reads it. 

Ouch! My Fingers Hurt 
Use the INKEY$ function to enter single letters. 
This saves having to press Enter. 

0 

388 PRINT "Do you need instructions?<YIN)",--...,,__,,..~1 ~~~~::=:::=~'J 
382 R$= I NKEV$: IF R$= 1111 THEN 382 
384 IF R$="y" THEN 600 

Set Traps for Errors 
Add this line to the above lines: 

386 IF R$< > "n" THEN 380 

Line 380 asked for only two choices, Y or N. If users press some other key, line 
386 sends them back to line 380. 

Traps make your program bomb-proof so that users will be unable to goof it up! 

206 



Assignment 32 
1. Make a program that writes a very large number, 50 digits. Pick the digits at 

random. Put a comma between each set of three digits. 

2. Write a secret-cipher program. The user chooses a password and it is used to 
make a cipher alphabet like this: If the password is DRAGONETTE, remove the 
repeated letters, to get DRAGONET. Put it at the front of the alphabet and the 
rest of the letters after it in normal order: 

DRAGONETBCFHIJKLMPQSUVWXYZ = Cipher alphabet 
ABCDEFGHIJKLMNOPQRSTUVWXYZ = Normal alphabet 

The user chooses to encode or decode from a menu. 

~ 
~ 

' ' :,. \ . . ~~ ' \ ' av~~, 

207 



Instructor Notes 33. Debugging: STOP and CONT 

Since the sigh-and-moan technique is a loser, our students need a bag of tricks 
that help isolate program bugs. They should practice on the programs they write 
as they go through this book. 

The inexperienced debugger feels hopeless when a program doesn't work right. 
Rather than sitting and staring, it is more useful to try some changes. Any 
changes are better than none, but random changes are very inefficient. The best 
changes are those that eliminate sections of the program from the list of possible 
hiding places for the bug. 

As programs grow in complexity, more of the bugs result from unforeseen inter­
actions between separate parts of the program. The bag of tricks we offer helps 
find these also. Delay loops and PRINT and STOP statements help the student 
see how the program is functioning. 

Don't overlook those techniques you can use after the program is stopped with 
the Break key, STOP, or END. You can print out any variable values you like to 
see what the program has done. You can also do arithmetic with PRINT to check 
for what the program should be doing. 

Questions 
1. How can you make the computer print 

Break in line 55 

by adding a statement to the program? 

2. How are the STOP and END statements different? 

3. How are the STOP statement and Break key different? 

4. What does the CONT command do? 

5. Why would you put STOP statements in your program? 

208 



6. How do delay loops help you debug a program? 

7. How do extra PRINT statements help you debug a program? 

8. Why do you remove the STOP and extra PRINT statements from the program 
after you have fixed the errors? 

9. Can you pick in what line the Break key will stop the program? Can you pick 
using the STOP statement? 

209 



Lesson 33. Debugging: STOP and CONT 

The STOP Statement 
Enter and run: 

19 REM SECRET STOP 
29 CLS 
25 N=INT<RND<9>*290> 
38 FOR I=1 TO 20(11 
49 IF I=N THEN STOP 
'Se NEXT I 

The program will stop and the computer will print a message: 

Break in 40 

What do you suppose the secret value of I was? 

Enter print i (no line number) and find out. 

How to Start It Again 
Enter the command cont. Try it! 

STOP is like END. 

STOP makes the computer stop and enter the edit mode. 

210 



It is like END except it prints the number of the line in which the program quit 
running. 

You can have as many STOP statements in your program as you like. 

STOP is used for debugging your program. 

Another Way to Stop Running the Program 
You can stop running the program with the Break key sequence as well. 

Try it: 

10 REN GO FOREVER 
15 CLS:PRINT:PRINT:PRINT 
16 GOSUB 9'1J 
20 PRINT:PRINT"NUD" 
21 GOSUB 90 
22 PRINT:PRINT" TURTLES" 
23 GOSUB 90 
24 PRINT:PRINT" OF" 
25 GOSUB 9'1J 
26 PRINT:PRINT" THE" 
27 GOSUB 90 
28 PRINT:PRINT" WORLD" 
29 GOSUB 9'1J 
30 PRINT:PRINT" UNITE" 
31 GOSUB 9'1J 
40 GOTO 10 
90 FOR T=l TO 1000:NEXT T:RETURN 

(Notice that you can do all the GOSUB 90 lines by using the up cursor key and 
just changing the line number. Also, all the lines starting PRINT:PRINT" can be 
done by using the up cursor, changing the line numbers, and changing the word 
at the end.) 

Run the program. Hold down the Ctrl key (on the PCjr use the Fn key) and press 
the Break key. This stops the program where it is. It prints 

Ac 
Break in XX 

211 



Then it enters the edit mode. (The XX in the Break message above will be the line 
number where the program quit running.) 

The command CONT starts the program again at the same spot. 

What Do You Do After You Stop? 
You put STOP in whatever part of your program is not working right. Then run 
the program. After it stops, look to see what happened. 

(Or you can use the Break key to stop the program, but it may not stop in the 
spot where the trouble is.) 

Put on your thinking cap. Ask yourself questions about what happened as the 
program ran. 

You are in the edit mode. You can list parts of the program and study them. Use 
the PRINT statement to look at variables. Do they have the values you expected? 
Do little calculations on the computer in the edit mode to check what the com­
puter is doing. 

Use the LET statement to change the values of variables. 

If you find the trouble, you may add a line, change a line, or delete a line. 

Starting the Program Again 
There are four ways to restart a program. They are 

cont 
goto XX 
run XX 
run 

if you have not changed the program. 
where XX is a line number. 
where XX is a line number. 
to try again. 

You may use the CONT command if you have not used Break to stop the pro­
gram, added a line, deleted a line, or changed a line by editing it. 

Or you may start running the program at a different spot by entering the GOTO 
statement. 

212 



-
-
--
-

If you have changed the program, your only choice is to start at the beginning or 
at some other line number with RUN. 

What Is the Difference Between These Four Ways? 
cont 
goto XX 

These two ways use the values in the variable boxes left over from the last time 
you ran. 

CONT starts at the line where the break occurred. GOTO XX starts at line XX. 

run 
run XX 

These two ways throw away all the variable boxes made the last time and then 
execute the program. RUN XX starts at line XX. 

CONT can only restart a program that was stopped with a break from a STOP or 
a Break key. But RUN, RUN XX, and GOTO XX can also start a new program. 

Debugging 
Little errors in your program are called bugs. 

If your program doesn't run right, do these four things: 

1. If the computer printed an error message, it tells what line it stopped on. Care­
ful, the mistake may really be in another line! 

- 2. If the computer just keeps running but doesn't do the right thing, stop it and 

-

--

put some PRINT lines in that will tell what is happening. 

3. Put STOP statements in the program. 

4. If the program runs so fast that you can't tell what is happening, put in some 
delay loops to slow it down. 

213 



After you have fixed the program, take the PRINT lines, the STOP statements, 
and the delay loops out of the program. 

Assignment 33 
1. Go back to the "Snake" program (lesson 25) and fix up some of the bugs. For 

example, the program crashes when the snake hits a wall. Add food for the 
snake. Add scorekeeping. Let the game end if the snake touches a wall. 

2. Go back and fix up some other program that you have written. 

214 

,..., 

-
-

--

--



Appendix A. Disk Use 

Disk Care 
The student should be instructed on the care of disks. Especially: 

1. Do not touch the brown or gray magnetic disk through the oblong holes. 

2. Do not bend the disk. 

3. Insert and remove the disk carefully. 

4. Always put the disk back in its protective cover after use. 

5. Do not spill food or drink on the disk. In fact, it is better not to snack while at 
the computer. 

Preparing a Disk for the Student 
Using the computer will be much easier for your student if you prepare a special 
disk. The disk will automatically start up the computer, set the screen, list the 
files on the disk, and leave the student in BASIC, ready to write programs or load 
files. 

The instructions below are for DOS 2.1. If you have another version of DOS, refer 
to your DOS manual. 

215 



Place the DOS disk in the disk drive and turn on the computer (on PC systems 
with two disk drives, use drive A, the left drive). After a moment, the disk drive 
will start, then stop. 

The computer is asking for date and time. Just press the Enter key twice. 

The message may be unreadable if you are using a color monitor. If so, after 
pressing the Enter key twice, enter 

mode 40 

and you will see the A> prompt clearly. 

With the DOS disk still in the drive, enter 

format a :/s 

The computer will reply: 

Insert new diskette for drive A: 
and strike any key when ready 

Put a brand-new disk (or one that contains information you no longer need) in 
the drive and press a key. The computer will say 

Formatting ... 

and you will hear the disk drive run for quite a while. Then the computer will say 

Formatting ... Format complete 

Also, you will be told the total disk space and the available disk space. These 
messages vary slightly depending on the model of computer you are using. 

The computer will also ask: 

Format another (Y /N)? 

216 

-



Answer no by pressing the N key. You will again see the prompt 

A> 

(PCjr users, skip the next section about BASICA and go to "Student Program for 
Start-up.") 

Now we need to put the "Basica" file on the disk. This section assumes you are 
using a PC with two disk drives, the most common configuration. Remove the 
student disk from drive A and put it in drive B. Put the DOS disk back in drive 
A. Then enter 

copy basica.com b: 

The drive will run, then the computer will print 

1 File(s) copied 

In a similar way, copy the "Colorbar.bas" 
file from the DOS 2.1 Supplemental Pro­
grams disk to the student's disk. 

Student Program for Start-up 
We want the student's disk to prepare the computer for the student automatically. 
So we will put an "Autoexec.bat" file on the disk, which will automatically load 
and run a BASIC program named "student". Insert the student's disk in the drive 
(drive A if you have two drives) and enter this: 

copy con: autoexec.bat 
basica student 

Now press the F6 key (PCjr: first, press the Fn key). You will see the prompt 

217 



Press the Enter key. The drive will run for a moment and the computer will say 

1 File(s) copied 

Now it is time to write the BASIC program. Enter 

basica 

and the computer will load from the disk (or activate the cartridge of the PCjr). If 
the screen is hard to read, enter 

screen 0,1 

Then enter this program, putting your own student's name in line 70. 

39 SCREEN e,1:REM if you are using a TV or non 
-IBM monitor 

se WIDTH 48:REM omit if you have a phosphor (g 
reen) screen monitor 

oe CLS:PRINT:PRINT:PRINT 
79 PRINT TAB(13);"Student Disk" 
75 PRINT:FILES 
Be PRINT "Entering EDIT MODE" 
99 NEW 

Do not run this program yet. Because of line 90, it will erase itself after it runs! 

Save it to disk first. Then enter 

save "student" 

This is the student's own disk, which will boot the 
system and will contain all the programs the 
student writes. If you have more than one student, 
you may want to have them put their names in 
line 70 of the above program. 

218 



Appendix B. IBM BASIC Reserved Words 

Reserved words discussed in this book are in bold. 

ABS DEFDBL HEX$ MERGE 
AND DEFINT MID$ 
ASC DEFSNG IF MKDIR 
ATN DEFSTR IMP MKD$ 
AUTO DELETE INKEY$ MKI$ 

DIM INP MKS$ 
BEEP DRAW INPUT MOD 
BLOAD INPUT# MOTOR 
BSAVE EDIT INPUT$ 

ELSE INSTR NAME 
CALL END INT NEW 
CDBL ENVIRON INTER$ NEXT 
CHAIN ENVIRON$ IOCTL NOT 
CHDIR EOF IOCTL$ 
CHR$ EQV OCT$ 
CINI ERASE KEY OFF 
CIRCLE ERDEV KEY$ ON 
CLEAR ERDEV$ KILL OPEN 
CLOSE ERL OPTION 
CLS ERR LEFT$ OR 
COLOR ERROR LEN OUT 
COM EXP LET 
COMMON LINE PAINT 
CONT FIELD LIST PEEK 
cos FILES LUST PEN 
CSNG FIX LOAD PLAY 
CSRLIN FN LOC PMAP 
CVD FOR LOCATE POINT 
CVI FRE LOF POKE 
CVS LOG POS 

GET LPOS PRESET 
DATA GOSUB LPRINT PRINT 
DATE$ GOTO LSET PRINT# 
DEF PSET 

PUT 

219 



RANDOMIZE SAVE SWAP VAL 
READ SCREEN SYSTEM VARPTR 
REM SGN VARPTR$ 
RENUM SHELL TAB VIEW 
RESET SIN TAN 
RESTORE SOUND THEN WAIT 
RESUME SPACE$ TIMER WEND 
RETURN SPC TIME$ WHILE 
RIGHT$ SQR TO WIDTH 
RMDIR STEP TROFF WINDOW 
RND STICK TRON WRITE 
RSET STOP WRITE# 
RUN STR$ USING 

STRIG USR XOR 
STRING$ 

220 



Appendix C. Answers to Selected Assignments 

Assignment 1.3 

10 REH Greeting 
20 PRINT" Hi There," 
30 PRINT" Computer" 

Assignment 2.1 
10 REH Names 
14 SCREEN lll,1 
15 COLOR lll,1 
20 PRINT" Hinda" 
30 PRINT" Anne" 
40 PRINT" Carlson" 
50 COLOR 7,0 

Assignment 3.5 

10 REH Birds 
15 CLS 
20 PRINT 
22 BEEP 
25 PRINT "---□---" 
30 PRINT 
40 PRINT 
42 BEEP 
50 PRINT II ---0---'' 
60 PRINT 
70 PRINT 
75 BEEP 
8'11 PRINT II ---0--- II 

Assignment 4.3 
10 REM Smile 
12 CLS 
20 PRINT 
3'11 PRINT 
40 PRINT 
50 PRINT II 00 00 
6!1 PRINT 
61 PRINT 
62 PRINT 
63 PRINT II 

* 64 PRINT II 

* 65 PRINT II * 
66 PRINT II ********** 

* 
.. 

* 
* 

221 



Assignment 5.1 

1'11 REM Talking 
15 CLS 
2'11 PRINT 
22 PRINT 
24 PRINT 
3'11 PRINT "Hello. What is your name-:>" 
32 PRINT 
34 INPUT N$ 
36 PRINT 
4'11 PRINT "Well, " 
42 PRINT 
44 PRINT N$ 
46 PRINT 
5'11 PRINT "It's silly to talk to computers!" 

Assignment 5.2 

1'11 REM The string bo>: 
12 CLS 
2'11 PRINT "What is your favorite color?" 
25 INPUT C$ 
27 PRINT 
3'11 PRINT "I put that in box C$. " 
32 PRINT 
35 PRINT "Now, your favorite animal?" 
4'11 INPUT C$ 
42 PRINT 
45 PRINT "I put that in box C$ too. " 
47 PRINT 
5'11 PRINT "Now let's print what is in 
52 PRINT 
55 PRINT "It is: II 

57 PRINT 
6'11 PRINT C$ 

Assignment 6.1 

1'11 REM Music 
12 CLS 

box C$" 

2'11 PRINT "What is your favorite musical group? 
" 

25 INPUT 6$ 
27 CLS 
3'11 PRINT "What tune do they play?" 
35 INPUT T$ 
4'11 CLS 
5'11 PRINT 
55 PRINT 6$; " p 1 ays " ; T$ 

222 



Assignment 7 .2 

10 REM Feelings 
15 CLS 
20 PRINT 
22 PRINT 
24 PRINT "How is the weather?" 
26 PRINT 
28 INPUT W$ 
30 PRINT "And how do you feel?" 
32 PRINT 
34 INPUT F$ 
36 PRINT 
38 PRINT "You mean:" 
40 PRINT 
45 S$=W$ + II and 
50 PRINT S$ 

Assignment 8.3 
10 REM Teen Power 
11 REM 
15 COLOR 5,0 

II + 

20 PRINT "Teen Power" 
21 PRINT 
22 PRINT 
23 PRINT 
30 GOTO 20 

F$ 

35 REM press break key to stop 

Assignment 8.5 

10 REM Friends 
15 CLS 
16 COLOR 1,0 
20 PRINT "Minda" 
25 PRINT 
28 COLOR 3,0 
30 PRINT "Nell" 
35 PRINT 
95 REM press Break key to stop program 
99 GOTO 20 

223 



Assignment 9B.2 
1'11 REM=== Color Guessing Game === 
2'11 CLS 
23 PRINT 
24 PRINT 
25 PRINT "Player 2 Turn your back" 
27 PRINT 
3'11 PRINT "Player 1 Enter a color" 
35 INPUT CS 
42 PRINT 
43 PRINT 
5'11 PRINT "Player 2 Turn around and guess" 
52 PRINT 
54 PRINT 
55 INPUT GS 
56 PRINT 
6'11 IF G$=C$ THEN 8'11 
61 PRINT "wrong. II 

67 PRINT 
7'11 GOTO 55 
8'11 PRINT "RIGHT!!! II 

Assignment l 0.1 
1'11 REM Birth Year 
15 CLS 
3'11 PRINT "How old are you?" 
32 PRINT 
34 INPUT A 
36 PRINT 
4'11 PRINT "And what year is it now?" 
42 PRINT 
45 INPUT y 

50 B=Y-A 
52 PRINT 
55 PRINT "Has your birthday come yet this year 

?" 
58 PRINT "<y-n>" 
59 PRINT 
6'11 INPUT Y$ 
65 IF VS= nyn THEN 7'11 
66 IF YS<>"n" THEN 6'11 
67 B=B-1 
70 PRINT 
75 PRINT "You were born in,.;B; ... " 

224 



Assignment 10.2 
1(11 REM Multiplication 
15 CLS 
2(11 PRINT 
22 PRINT 
24 PRINT 
3(11 PRINT "Give me a number" 
32 PRINT 
35 INPUT A 
37 PRINT 
38 PRINT 
4(11 PRINT "Give me another" 
42 PRINT 
45 INPUT B 
48 C=A*B 
5(11 PRINT 
52 PRINT 
6(11 PRINT "Their product 

Assignment 11 A. I 

1(11 REM nicknames 
15 CLS 

is"; C 

2(11 PRINT "What is your last name'='" 
22 PRINT 
24 INPUT L$ 
28 CLS 
3(11 PRINT "Someone type the nickname" 
32 PRINT 
34 INPUT N$ 
36 CLS 
38 PRINT TAB(5>;N$;TAB<15>;L$ 
4(11 FOR T=1 TO 2000:NEXT T 
5(11 GOTO 10 

Assignment 1 lA.2 

UJ CLS 
219 BS•" ! ! ! ! " 
3(11 CS•"---------- ho"' are you?" 
4(11 PRINT "What is your name?" 
5(11 INPUT AS 
6(11 CLS:BEEP 
719 PRINT AS;BS;TAB(15);CS 

225 



Assignment 11B 
18 REN slow poke 
28 CLS 
22 PRINT 
24 PRINT 
28 FOR T=l TO 1888:NEXT T 
29 PRINT" I'm" 
38 BEEP 
32 FOR T=l TO 1888:NEXT T 
34 PRINT" so" 
48 BEEP 
42 FOR T=l TO 1888:NEXT T 
44 PRINT" tired!!!" 
46 BEEP 

Assignment 12B.3 
18 REN I got your number! 
28 CLS 
25 PRINT 
26 PRINT 
27 PRINT 
38 PRINT "Give me a number between zero and te 

n: II 

35 PRINT 
36 PRINT 
37 PRINT 
48 INPUT N 
45 PRINT 
46 PRINT 
58 IF N=8 THEN PRINT "I got plenty of nothing! 

" 
51 IF N=l THEN PRINT "I'm number one!" 
52 IF N=2 THEN PRINT "Two is company!" 
53 REN etc. 
61 IF N>18 THEN END 
64 FOR T=l TO 2ff81NEXT T 
66 CLS 
68 GOTO 38 
78 PRINT "That's all, folks" 

226 

,... 
... 

--

-
-
""""' 

-



-
--

-
-
""""' -

Assignment 13.1 
10 REM** A pair of dice** 
15 CLS 
16 RANDOMIZE 
18 CLS 
20 LET D1=1+INT(RNDt6> 
22 LET D2=1+INT<RNDt6> 
25 D=D1+D2 
30 PRINT "The roll gave:" 
32 PRINT 
33 PRINT " The first die ";D1 
34 PRINT" The second die";D2 
35 PRINT" The dice ";D 
47 PRINT 
48 PRINT 
50 PRINT "Again?" 
51 PRINT 
55 INPUT Y$ 
60 IF Y$="y" THEN 18 

Assignment 13.2 
10 REM Paper, Scissors, Rock 
11 RANDOMIZE 
12 CLS 
13 PRINT 
14 PRINT 
16 PRINT TAB<12J;" Play the" 
18 PRINT 
19 PRINT TAB<12J;" Paper ":PRINT 
20 PR I NT TAB < 12) ; " S c i s s o r s " : PR I NT 
21 PRINT TAB<12>;" Rock" 
22 PRINT 
23 PRINT TAB<12J;" Game against the computer" 
24 PRINT:PRINT:PRINT:PRINT 
25 PRINT "Press Ctrl-Break to end game" 
27 PRINT 
28 PRINT "Enter your choice <p,s,r>" 
29 REM------ computer chooses its move 
30 C=INT<RNDt3>+1 
31 IF C=1 THEN C$="p" 
34 IF C=2 THEN C$="s" 
36 IF C=3 THEN C$="r" 
37 REM------ C$ is the computer's choice 
38 INPUT Y$ 
39 REM------ Y$ is your choice 
40 REM------ Is there a tie? 
50 IF C$()Y$ THEN GOTO 60 

227 



if C$=V$, there is 
tie" 

52 REM-----­
SS PRINT II 

57 GOTO 30 
60 REM------
61 REM 

no tie, who wins? 

THEN IF V$="s" THEN 
THEN IF V$="r" THEN 
THEN IF V$="p" THEN 
computer wins 

62 IF C$="p" 
63 IF C$="s" 
64 IF C$="r" 
65 REM------
66 PRINT" 
69 GOTO 30 

computer wins" 

70 REM------ you win 
72 PRINT" you win" 
79 GOTO 30 
90 REM end the game by pressing 
91 REM 'Break' key 

Assignment 15.2 
10 REM!!! Vacation 111 

13 CLS 
15 PRINT 
16 PRINT 
20 REM heading 

a tie 

GOTO 
GOTO 
GOTO 

21 PRINT "Vacation Choosing Progra•" 
22 PRINT 
23 PRINT "Picks your vacation by the" 
24 PRINT "amount you can spend" 
25 PRINT 
30 REM instructions 

70 
70 
70 

31 PRINT "Enter the amount in dollars that" 
32 PRINT "you can spend." 
33 PRINT 
35 REN get dollar amount 
37 INPUT D 
38 PRINT 
40 IF D<.S THEN PRINT "Flip pennies with your 

kid brother 11 1GOTO 90 
41 IF D<1 THEN PRINT "Spend the afternoon in b 

eautiful Hog Wallow, Mich.":GOTO 90 
42 IF D<S THEN PRINT "Enter a pickle eating co 

ntest in Scratchy Back, Tenn.":GOTO 90 
47 REM etc. 
SB IF D>1000000! THEN PRINT "Bur, a cozy yacht 

and cruise the Caribbean Sea':GOTO 90 
73 REM etc. 
86 PRINT "treat your whole school to a •round 

the world trip!" 
90 REM ending of program 

228 

-
-
-
-

-
-
--



Assignment 15.3 

10 REM Crazy 
12 RANDOMIZE 
15 CLS 
20 PRINT "What is your name?" 
21 PRINT 
22 INPUT Nii 
30 CLS 
40 PRINT 
41 PRINT Nii 
45 PRINT 
50 Z=INT<RND*3>+1 
60 ON Z GOTO 70,80,90 
70 PRINT "Has one brick short of a full load" 
71 END 
80 PRINT "Has bats in the attic" 
81 END 
90 PRINT "Hasn't got both oars in the water" 
91 END 

Assignment 16. l 
10 REM Jumping name 
12 CLS 
13 RANDOMIZE 
15 INPUT "name";Nii 
16 CLS 
20 FOR S=1 TO 50 
30 X=INT<RND*30)+1 
31 Y=INT<RND*22)+1 
32 C=INT<RND*7> 
33 SCREEN 0,1:COLOR C,0 
35 LOCATE Y,X:PRINT Nii 
45 FOR T=1 TO 500:NEXT T 
50 NEXT S 

Assignment 16.2 

u, REM NAMEX 
28 WIDTH 48:CLS 
38 INPUT "NAME";NS:NS•LEFTS<NS,13) 
4flJ CLS 
58 FOR X•1 TO 1flJ 
6flJ LOCATE X,X+5:PRINT NS 
7flJ NEXT 
88 FOR x-1 TO 1flJ 
9flJ LOCATE X,29-X:PRINT NS 
188 NEXT 

229 



119 LOCATE 11,171PRINT NS 
129 FOR X•l TO 19 
139 LOCATE X+ll,16-X:PRINT NS 
149 NEXT 
159 FOR X•l TO 18 
169 LOCATE X+11,X+1B:PRINT NS 
178 NEXT 

Assignment 17 A 

10 REM Counting by fives 
12 CLS 
28 FOR I=5 TO 100 STEP 5 
30 PRINT I 
35 FOR T=1 TO 580:NEXT T 
40 NEXT I 

Assignment 17B.2 

18 REM Your name is falling 
28 CLS 
25 PRINT "Your name" 
27 PRINT 
38 INPUT NS 
33 CLS 
35 FOR I•1 TO 38 STEP 2 
49 PRINT TAB<I>;N$ 
42 FOR T~1 TO 288:NEXT T 
45 NEXT I 

Assignment 17B.4 

10 REM Friends 
15 CLS 
20 PRINT "Give me your names" 
25 INPUT N$ 
26 INPUT F$ 
30 FOR I=l TO 5 
31 BEEP 
35 PRINT N$ 
36 PRINT F$ 
38 PRINT 
40 FOR T=l TO 300:NEXT T 
50 NEXT I 

230 



Assignment 18.l 

1'11 REM Relatives 
12 CLS 
2'11 PRINT "Relation?" 
21 PRINT 
22 INPUT W$ 
23 PRINT 
24 FL=QI 
29 RESTORE 
3'11 READ R$ 
32 READ N$ 
34 IF RS="end" THEN 3'11'11 
36 IF RS=W$ THEN 2'110 
39 GOTO 30 
9'11 DATA father, William 
91 DATA mother, Anne 
92 DATA sister, Joan 
93 DATA sister, Suzan 
94 DATA grandfather, John 
95 DATA grandmother, Ada 
96 DATA grandmother, Vivian 
97 DATA uncle, Fred 
98 DATA uncle, George 
99 DATA aunt, Mary 
1'110 DATA cousin, Roger 
110 DATA end, end 
2'110 REM 
201 PRINT RS;" ";NS 
2'112 REM 
220 FL=l 
299 GOTO 30 
300 REM 
301 REM no relation 
302 REM 
310 IF FL=1 THEN 320 
315 PRINT "You do not have a ";WS 
320 FOR T=1 TO 300'11:NEXT T 
399 GOTO 12 

Assignment 19.2 

10 REM DATA MUSIC 
20 READ A 
3'11 IF A=-1 THEN END:REM END OF TUNE 
4'11 SOUND A,2 
50 FOR T=l TO 1'110:NEXT T:REM DELAY 
60 SOUND 32767,2:REM REST 
70 GOTO 20 
80 DATA 502,502,742,742,842,842,742,-1 

231 



Assignment 20B.3 

10 REM Sinbad's Magic Carpet 
11 RANDOMIZE 
12 SCREEN 0,1:COLOR 0,0,0:CLS 
100 FOR 1=1 TO 15 
110 FOR J=1 TO 11 
115 COLOR INT<RND*6)+1,0 
120 LOCATE J, I: PRINT " •" 
121 LOCATE 22-J, I: PRINT .. ■• .. 
122 LOCATE 22-J,31-I:PRINT .. ■• .. 
123 LOCATE J, 31-I:PRINT .. ■• .. • 190 NEXT J:NEXT I 
195 FOR 1=1 TO 9999:NEXT I 
199 COLOR 7,0,0 

Assignment 20B.4 
10 REM cross my heart 
20 SCREEN 0,1:COLOR 4,7 
25 FOR X=2 TO 23 
26 CLS 
27 COLOR 4,7,3 
30 LOCATE 10,X 
31 PRINT "M M" 
40 LOCATE 12,X 
41 PRINT" i i 
50 LOCATE 14,X 
51 PRINT" n 
60 LOCATE 16,X 
61 PRINT" d d" 
70 LOCATE 18,X 
71 PRINT "a a" 
80 FOR T=1 TO 300:NEXT T 
81 CLS:COLOR 2,7,3 
82 LOCATE 14,X+5 
83 PRINT CHR$(3) 
84 FOR T=1 TO 300:NEXT T 
90 NEXT X 
99 COLOR 7,0 

232 



Assignment 25. l 
10 REM ALPHABETICAL 
12 CLS 
14 PRINT:PRINT:PRINT:PRINT 
20 PRINT"This program arranges the letters" 
21 PRINT"of a word in alphabetical order." 
25 PRINT 
30 PRINT"Give me a word." 
31 PRINT 
32 INPUT WS 
33 PRINT 
35 L=LEN(WS> 
39 K=1 
40 FOR I=97 TO 97+26 
41 REM test letters in alphabet 
42 REM tosee if in word 
45 FOR J=1 TO L 
50 G=ASC(MIDS(WS,J,1)) 
55 IF G=I THEN HS=H$+CHR$(G):K=K+1 
60 NEXT J,I 
70 PRINT"Here it is in alphabetical order:" 
75 PRINT:PRINT" ";H$ 

Assignment 25.2 
10 REM !~#$% double dutch%$#@' 
12 CLS 
25 PRINT"Give me a sentence:" 
26 PRINT 
27 INPUTS$ 
28 PRINT 
30 L=LEN(S$) 
50 FOR 1=1 TO L 
51 L$=MID$(S$,I,1> 
52 IF L$="a" THEN 72 
53 IF L$="e" THEN 72 
54 IF L$="i" THEN 72 
55 IF L$="o" THEN 72 
56 IF L$="u" THEN 72 
69 SS$=SS$+L$ 
72 NEXT I 
76 PRINT "Here it is in double dutch" 
80 PRINT S5$ 

233 



Assignment 26. l 
UJ REM cipher- maker-
12 CLS 
20 PRINT "Code Making Pr-ogr-am" 
21 PRINT 
25 PRINT"Enter- a sentence for- coding:" 
30 INPUTS$ 
35 L=LEN(S$) 
36 S$=5$+" " 
40 FOR I=1 TO L STEP 2 
45 P$=MID$(S$,I,2> 
50 Q$=MID$(P$,2,1)+MIO$(P$,1,1) 
55 L$=L$+Q$ 
60 NEXT I 
64 PRINT 
65 PRINT"Her-e is the code sentence:" 
66 PRINT 
70 PRINT" ";L$ 

Assignment 26.2 
10 REM Question Answer-er-
12 CLS 
20 PRINT"Enter- a question" 
22 PRINT 
25 INPUT Q$ 
27 L=LEN(Q$) 
28 PRINT 
30 REM take off the question mark 
32 Q$=MID$(Q$,1,L-1)+" " 
36 REM look for- the end of the fir-st wor-d 
40 FOR I=1 TO L 
41 C$=MID$(Q$,I,1> 
43 IF C$()" "THEN 46 
44 S1=I:I=L 
46 NEXT I 
48 REM look for- the end of the second wor-d 
50 FOR I=S1 +1 TO L 
52 C$=MID$(Q$,I,1> 
53 IF C$<>" "THEN 56 
54 S2=I:I=L 
56 NEXT I 
58 REM tur-n the words around 
60 S$=MID$(Q$,S1+1,S2-S1) 
62 V$=MID$(Q$,1,S1> 
65 PRINT S$;V$;MID$(Q$,S2+1,L-S2) 

234 



Assignment 26.3 
10 REM Pig Latin 
15 CLS 
20 PRINT"Pig Latin Program" 
25 PRINT 
30 PRINT"Give me a word" 
31 PRINT 
33 INPUT W$ 
34 L=LEN(W$) 
35 PRINT 
40 REM Find the first vowel 
41 FOR I=1 TO L 
42 V$=MID$(WS,I,1) 
43 IF VS="a" THEN 50 
44 IF V$="e" THEN 50 
45 IF V$="i" THEN 50 
46 IF V$="o" THEN 50 
47 IF V$="u" THEN 50 
49 NEXT I 
50 IF I=1 THEN L$=W$+"lay":GOTO 80 
60 REM found it 
68 L$=MID$(W1i,I,L-I+1> 
70 L$=L$+MID$(W1i,1,I-1> 
72 L$=L$+"lay" 
80 PRINT" ";L1i 
90 FOR T=1 TO 1000:NEXT T 
99 GOTO 15 

Assignment 27. l 
10 REM Backward Added To Forward 
15 CLS 
20 INPUT"Give me a number";N 
30 N$=STR$(N):L=LEN(N$) 
40 FOR 1=1 TO L 
42 B=L-1+1 
45 B$=B$+MID$(N$,B,1) 
50 NEXT I 
55 B=VAL (8$ > 
60 PRINT:PRINT" ";N$ 
61 PRINT"+"; B$ 
62 L$="------------" 
65 PRINT" ";MID$(L$,1,L+1) 
70 A=N+B 
72 A$=STR$(A) 
75 IF LEN(A$)=L THEN PRINT" ";A:END 
80 PRINT"";A 

235 



Assignment 27.2 
H/J REM leapfrog 
12 CLS 
20 INPUT" Give me a number";N 
22 B$="" 
23 CLS 
25 N$=STR$(N):L=LEN(N$) 
28 N$=MID$(N$,2,L):L=LEN(N$) 
40 FOR I=1 TO 40-L 
42 LOCATE 12,I:PRINT" " 
46 LOCATE 12,I+l:PRINT N$ 
65 FOR T=1 TO 500:NEXT T 
66 N$=MID$(N$,2,L-1)+MID$(N$,1,1) 
70 NEXT I 

Assignment 28.3 

10 REM=== Ain't got no .•. === 
12 CL5:PRINT:PRINT:PRINT 
19 REM -----------------get a sentence 
20 PRINT" Enter a sentence":PRINT 
22 PRINT" No punctuation":PRINT 
24 PRINT" Except apostrophe":PRINT 
32 INPUT 5$:5$=5$+" " 
35 L=LEN(S$) 
40 REM nn is number of negative words 
41 REM sl is start of a word 
42 REM s2 is end of a word 
43 NN=0:S1=1:52=1 
44 REM---------------- Test words 
45 FOR I=l TO L 
5121 L$=MI0$(S$,I,1>:A=A5C(L$) 
53 IF A>65 AND A<91 THEN A=A+32 
54 L$=CHR$<A> 
55 REM---------------- Is it a space? 
56 IF L$=" "THEN Sl=S2:52=1+1:GOSUB 200 
60 NEXT I 
65 REM---------------- Print result 
66 PRINT:PRINT 
70 IF NN=0 THEN PRINT" No negative words." 
71 IF NN=l THEN PRINT" A negative sentence" 
72 IF NN=2 THEN PRINT" Double negative" 
73 IF NN >2 THEN PRINT" Hard to understand" 
80 FOR T=l TO 2000:NEXT T 
99 GOTO 12 
10121 REM 
101 REM-------------- Test sentences 
102 REM 
111 REM I don't eat junk food. 

236 



"""' 
112 REM I never eat no junk food 
113 REM I don't never eat no junk food. 
200 REM 
201 REM-------------- Word negative? 
202 REM 
205 LW=S2-S1-1 
210 W$=MID$(S$,S1,LW> 
220 READ NW$ 
222 IF NW$="end" THEN RESTORE:GOTO 299 
224 IF W$=NW$ THEN NN=NN+1 
230 GOTO 22121 
299 RETURN 
9121121 REM 
901 REM-------------- Negative words 
902 REM 
910 DATA no,not,never,none,nothing 
911 DATA don't,doesn't,aren't,ain't 
912 DATA isn•t,didn't 
914 DATA haven't,hasn't,hadn't 
915 DATA wouldn"t,couldn"t,shouldn't 
916 DATA end 

Assignment 29.1 

REM menu maker­
SCREEN 0,1 

UJ 
12 
20 
21 
22 
23 
24 
26 
30 
32 
36 
37 
40 

PRINT"which color- do you like?" 
PRINT 
PRINT" 
PRINT" 
PRINT" 
PRINT 

<y> yellow" 
<g> green" 
<b> blue" 

X$=INKEY$:IF X$="" THEN 30 
IF X$="y" THEN COLOR 6,0:CLS 
IF XS="g" THEN COLOR 0,2:CLS 
IF XS="b" THEN COLOR 121,1:CLS 
GOTO 12 

Assignment 29.2 

10 REM silly sentences 
12 CLS 
13 PRINT"Silly sentences" 
14 PRINT 
15 PRINT"Want instructions <yin>" 
16 PRINT 
18 GOSUB 200 
20 IF Y$="y" THEN GOSUB 100 
21 PRINT"The subject: (end with a period)" 

237 



22 PRINT 
23 GOSUB 300 
33 PRINT"The verb: (end with a period)" 
34 PRINT 
40 GOSUB 300 
50 PRINT"The object: (end with a period)" 
51 PRINT 
52 GOSUB 300 
85 PRINTS$ 
99 END 
100 CLS 
110 PRINT"Three players enter parts of a sente 

nce":PRINT 
115 PRINT"no player can see what the other ent 

ers":PRINT 
120 PRINT"The first enters the subjec:t":PRINT 
121 PRINT" <The person doing something) ":PRINT 
125 PRINT"The second enters the verb":PRINT 
126 PRINT" <The action word) ":PRINT 
130 PRINT"The third enters the object":PRINT 
131 PRINT" <The person or thing to whom":PRINT 
132 PRINT" the action is done)":PRINT 
133 PRINT 
150 FOR T=l TO 2000:NEXT T 
199 RETURN 
200 REM look at keyboard 
210 Y$=INKEY$:IF Y$="" THEN 210 
299 RETURN 
300 REM get a word 
310 GOSUB 200 
320 IF Y$="." THEN 390 
330 S$=S$+Y$ 
340 GOTO 310 
390 S$=S$+" " 
399 RETURN 

Assignment 31.1 

10 REM Month 
12 DIM 0(12> 
15 CLS:PRINT:PRINT:PRINT 
20 FOR I=1 TO 12 
25 READ D:D<I>=D:NEXT I 
30 INPUT" Month number <1-12>";M 
33 PRINT:PRINT"Month number";M;"has";D<M>;"day 

s ... 
90 DATA 31,28,31,30,31,30,31,31,30,31,30,31 

238 



Assignment 32. l 
1'!1 REM a j i 1 1 i on 
12 CLS 
15 PRINT:PRINT:PRINT 
20 PRINT" Here is a big, big number" 
25 PRINT:PRINT 
30 FOR I=1 TO 50 
31 S=St1.05 
32 REM SOUND S,20 
33 FOR J=1 TO 3 
35 D=INT<RND(9)t10)+48 
36 D$=CHR$ <D > 
38 FOR T=1 TO 50:NEXT T 
40 PRINT D$; 
50 NEXT J 
55 IF 1=50 THEN END 
60 PRINT","; 
70 NEXT I 

Assignment 32.2 

1 REM----- Code--Decode 
2 GOTO 1000 
100 REM 
101 REM----- Main Loop 
102 REM 
110 GOSUB 400' get password 
115 PRINT:PRINT" code or decode <cld>?" 
116 Y$=INKEY$: IF Y$='"' THEN 116 
121 IF Y$="c" THEN 500' code 
130 IF YS="d" THEN 600' decode 
140 GOTO 115 
199 END 
40'11 REM 
401 REM get password 
402 REM 
403 REM form cipher alphabet 
404 PRINT:PRINT:PRINT 
405 INPUT" input password";PW$ 
406 REM----- remove repeated letters 
408 F$=LEFT$<PW$,1) 
410 FOR I=2 TO LEN<PW$>:L1$=MID$(PW$,I,1) 
412 FOR J=1 TO LEN(F$):L2$=MID$(F$,J,1) 
420 IF L1$=L2$ THEN 430 
421 NEXT J:F$=F$+L1$ 
430 NEXT l:PW$=F$ 
433 PRINT:PRINT" the shortened password is 
435 PRINT:PRINT" ";PW$ 

239 



439 REM remove password letters from alphabet 
440 FOR J=1 TO LEN<PW$):L2$=MID$(PWS,J,1) 
441 IF L2$=LEFT$(A$,1) THEN A$=MID$(A$,2):GOTO 

460 
442 FOR 1=1 TO LEN(A$):L1$=MID$(AS,I,1) 
445 IF L1$=L2$ THEN A$=LEFT$(A$,I-1>+MID$(A$,I 

+1) 
455 NEXT I 
460 NEXT J 
461 REM 
462 REM----- form cipher alphabet 
463 REM 
465 A$=PW$+A$ 
470 PRINT:PRINT" alphabets:"TAB<23);"plain" 
471 PRINT:PRINT" ";B$ 
475 PRINT" ";A$ 
480 PRINT:PRINT TAB<21);" cipher" 
499 RETURN 
500 REM 
505 PRINT:PRINT" input message":PRINT 
5'1J6 L$=INKEY$:IF L$="" THEN 506 
510 L=ASC<L$):IF L =13 THEN 590 
520 IF L<96 OR L >123 THEN P$=P$+L$:GOTO 540 
530 P$=P$+MID$(A$,L-96,1) 
540 PRINT L$; 
589 GOTO 506 
590 PRINT:PRINT P$ 
599 END 
600 REM 
610 PRINT:PRINT" type in the coded message":PR 

INT 
615 L$=INKEY$:IF L$="" THEN 615 
616 L=ASC(L$):IF L=13 THEN 699 
620 FOR I=1 TO 26 
625 IF L$=MID$(A$,I,1> THEN PRINT MID$(B$,I,1> 

; :GOTO 615 
630 NEXT I 
635 PRINT L$; 
64'1J GOTO 615 
699 END 
1000 REM 
1001 REM----- starting stuff 
1'1J02 REM 
10UJ CLS 
2010 A$="abcdefghi jklmnopqrstuvw>:yz" 
2020 B$=A$ 
2999 GOTO 100 

240 



Appendix D. Glossary 

argument 

The variable, number, or string that appears in the parentheses of a function. N is 
the argument of the integer function in INT(N). 

array 

A set of variables that have the same name. The members of the array are num­
bered. The numbers appear in parentheses after the variable name. See also sub­
script. Examples: 

A(O) is the first member of the array A. 
B$(7) is the eighth member of the array B$. 
CD(3,M+l) is a member of the two-dimensional array CD. 

arrow keys 

Four keys on the computer have arrows on them. They move the input cursor to 
the left and right, up and down. 

ASCII 

American Standard Code for Information Interchange. Each character has an 
ASCII number. 

assertion 

The name of a phrase that can be true or false. The phrase A in an IF statement is 
an assertion. An assertion has a numeric value of O or -1. See also expression, 
false, logic, phrase A, true. 

background 

The part of the screen that is blank, having no characters on it. 

BASIC 

Beginner's All-purpose Symbolic Instruction Code. A computer language origi­
nated by John Kemeny and Thomas Kurtz at Dartmouth College in the early 
1960s. 

241 



bell 

The early Teletype machines had a bell (like the bell on a typewriter). The IBM 
computer makes a beep sound instead. 

bells and whistles 

A phrase going back to the early days of hobby computing. It means the personal 
computer was hooked up to do some interesting or spectacular things, like flash 
lights or play music. 

blank 

The character that is a space. 

boot 

To start up the computer from scratch-the computer "picks itself up by its own 
bootstraps." An easy thing to do with modern computers that have start-up pro­
grams stored permanently in ROM memory. It was an involved procedure in the 
early days. Now it usually means to read in the disk operating system programs 
(DOS) from a disk. 

branch 

A point in a program where there is a choice of which statement to execute next. 
An IF-THEN statement is a branch. So is an ON-GOTO statement. A branch is 
not the same as a jump (where there is no choice). See also jump. 

buffer 

A storage area in memory for temporary storage of information being sent from 
the computer or received from another device. 

call 

Using a GOSUB calls a subroutine. Putting a function in a statement calls the 
function. The computer does what statements are in the subroutine or performs 
the function and then returns to just beyond the calling spot. 

carriage return 

On a typewriter, you push the lever that moves the carriage that carries the paper 
so a new line can begin. In computing, the cursor is moved to the start of the 
line, but not down to the next line. See also CRLF, linefeed. 

242 



character 

Letters, digits, and punctuation marks are characters. 

checksum 

In some 1/0 operations, the computer adds together all the character numbers. 
The resulting sum is the checksum. If the data was transmitted correctly, the 
checksum calculated after the data is received will agree with that calculated 
before the data was sent. See also 1/0. 

clear 

To erase. Used in terms like clear the screen and clear memory. 

column 

Material arranged vertically. See also row. 

command 

In BASIC a command makes the computer perform some action, usually in edit 
mode. Examples are RUN, LIST, and LOAD. See also expression, statement. 

concatenation 

Sticking two strings together. 

constant 

A number or string that does not change as the program runs. It is stored in the 
program line, not in a box with a name on the front. See also line. 

CRLF 

Short for Carriage Return with Linefeed. On a typewriter, it's just called a carriage 
return. See also carriage return, linefeed. 

cursor 

A marker that shows where the next character on the screen or in a storage buffer 
will be placed. Cursor means "runner." The cursor runs along the screen as you 
type. There are two kinds of cursors in the IBM computer: the input cursor (a 
flashing line) and the print cursor (invisible). 

243 



data 

BASIC has two kinds of data: numeric and string. Logical data (true, false) are 
types of numeric data. 

debug 

To run a program to find the errors and fix them. You fix the errors by editing the 
program. See also edit. 

delay loop 

A part of the program that just uses up time and does nothing else. Example: 

30 FOR T=l TO 2000:NEXT T 

duration 

A number in a SOUND statement that tells how long the sound will last. 

edit 

In line and program editing, you retype parts of the line or program to correct it. 

edit mode 

When Ok and the flashing cursor show, you are in the edit mode. The computer 
awaits commands or program line entry. 

enter 

To put information into the computer by typing, then pressing the Enter key. The 
information goes into the input buffer as it is typed. When Enter is pushed, the 
computer uses the information. 

erase 

To destroy information in memory or write blanks to the screen. See also clear. 

error trap 

Part of a program that checks for mistakes in information that the user has en­
tered or that checks to see if computed results are within reasonable bounds. 

244 



execute 

To run a program or perform a single command or statement. 

expression 

A portion of a statement that has a single value, either a number or a string. See 
also value. 

false 

The number O represents false. See also assertion, logic, true. 

fork In the road 

A branch point in the program. See also branch. 

function 

BASIC has a number of functions built-in. Each function has a name followed by 
parentheses. In the parentheses is one or more arguments. The function has a sin­
gle value (numeric or string) determined by its arguments. See also argument, 
value. 

garbage 

A random mess of characters in memory. Usually due to human or machine error. 

graphics 

Computer picture drawing. 

Index 

An array name is followed by one or more numbers or numeric variables in 
parentheses. Each number is an index. Another word for index is subscript. In 
Q(7,J), 7 and J are indices. 

Integers 

The whole numbers-positive, negative, and zero. 

1/0 

Input/Output. Input from keyboard, disk, etc. Output to screen, printer, disk, etc. 

245 



joystick 

A device used in games. It is like the control stick used in early airplanes. It can 
detect eight different directions as well as center and a fire button. 

jump 

GOTO makes the computer jump to another line in the program rather than exe­
cute the next line. 

line 

Program lines start with a number followed by a statement, or statements. Direct 
or edit mode lines do not start with a number. 

line buffer 

The storage space that receives the characters you type in. See also buffer. 

linefeed 

Moving the cursor straight down to the next line. The ASCII number 10 signals 
this command to the screen or printer. See also carriage return, CRLF. 

line number 

The number at the beginning of a program line. The line number tells the com­
puter where to store the line. 

listing 

A list of all the lines in a program. 

load 

To transfer the information in a file on tape, disk, or other memory device to the 
memory of the computer by using the LOAD command. 

logic: 

The part of a program that compares numbers or strings. The relations =, <>, <, 
>, < =, and > = are used. See also assertion, phrase A. 

246 



loop 

A part of the program that is done over and over again. There are many kinds of 
loops, most notably FOR-NEXT loops. 

loop variable 

This is the number that changes as the loop is repeated. For example, in 40 FOR 
I= 1 TO 5 : NEXT I, I is the loop variable. 

memory 

The part of the computer where information is stored. Memory is made of semi­
conductor chips, but in this book we think of it as boxes with labels on the front 
and information inside. Some memory is permanent; it is called ROM .(Read Only 
Memory). The temporary kind of memory, where programs you type in are stored, 
is called RAM (Random Access Memory). 

menu 

A list of choices shown on the screen. Each choice has a letter or number beside 
it. The program user presses a key to pick one. 

message 

A statement that tells what is expected in an INPUT statement. Example: 

61 INPUT "Age";A 

monitor 

Has two meanings. We use it to mean a box with a TV-type screen that is con­
nected to the computer. It displays text and graphics but cannot receive television 
programs. In machine language programming, a monitor is a program that allows 
you to write and examine machine language code. 

nesting 

When one thing is inside another. In programs, we often nest loops. Inside a 
statement, we can nest expressions or functions. 

number 

One type of information in BASIC. The other type is string. The numbers are gen­
erally decimal numbers. See also integers, string. 

247 



operation 

In arithmetic: addition, subtraction, multiplication, and division, with symbols +, 
- , *, and/ respectively. The only arithmetic operation for strings is concatena­
tion. 

phrase A 

A phrase that stands for an assertion in an IF statement in this book. See also 
assertion. In the following line, A > 4 is phrase A: 

IF A>4 THEN 500 

pitch 

The number in a SOUND statement that tells the number of cycles per second of 
the sound (how high or low it sounds). 

pixel 

A loose abbreviation for picture element. The smallest dot that is placed on the 
screen in a graphics mode. 

pointer 

A number in memory that tells where in a list of DATA you are at the present 
moment. 

program 

The usual program is a list of numbered lines containing statements. The com­
puter executes the statements in order when the RUN command is entered. The 
program is stored in a special part of memory, and only one program can be 
stored at a time. 

prompt 

This is a little message you put on the screen with an INPUT to remind the user 
what kind of answer you expect. Its name comes from the hint that actors in a 
play get from the prompter if they forget their lines. 

pseudorandom number 

A number that is calculated in secret by the computer using the RND function. It 
is usually called a random number. Pseudorandom emphasizes that the number 

248 



really is not random (since it is calculated by a known method) but is just not 
predictable by the user of the computer. 

punctuation 

Characters like the period, comma, /, ?, !, $, and so on. 

random number 

Numbers that cannot be predicted, like the numbers that show after the roll of 
dice, or the number of heads you get in tossing a coin ten times. 

remark 

A comment you make in the program by putting it in a REM statement. Example: 

REM the graphics setup subroutine 

reserved words 

A list of words and abbreviations that BASIC recognizes as commands, state­
ments, or functions. The reserved words cannot be used as variable names. 

return a value 

When a function is called, its spot in the expression is replaced with a value (a 
number or a string). This is called returning a value. 

row 

Material arranged horizontally (across). See also column. 

run mode 

The action of the computer when it is executing a program is called operating in 
the run mode. You get into the run mode from the edit mode by entering run. 
When the computer ends the program for any reason, it returns to the edit mode. 

save 

To put the program that is in the computer's memory on disk or other memory 
storage. 

249 



screen 

The monitor screen (similar to a TV screen) that is hooked up to the computer. 
See also monitor. 

scrolling 

The usual way the computer writes to the full screen is to put the new line at the 
bottom of the screen and push all the old lines up. This is called scrolling. 

simple variable 

A variable that is not an array variable. 

stack 

A memory area where the computer temporarily stores data, such as the return 
location for a GOSUB statement. In many cases, the last data item put on the 
stack is the first one taken off. This is called a LIFO stack, for last-in, first-out. 

starting stuff 

The name given in this book to initialization material in a program. It includes 
adding REMs for describing the program, input of initial values of variables, set­
ting up array dimensions, drawing screen graphics, and any other things that 
need to be done just once at the beginning of a program run. 

statement 

A reserved word that usually begins each program line. Examples are PRINT, 
INPUT, and READ. 

store 

To put information in memory or to save it on disk or other long-term memory­
storage device. 

string 

A type of data in BASIC. It consists of a group of characters. See also number. 

250 



subroutine 

A section of a program that starts with a line called from a GOSUB statement and 
ends with a RETURN statement. It may be called from more than one place in 
the program. 

subscript 

Another name for index. A number in the parentheses of an array. It tells which 
member of the array is being used. See also index. 

syntax 

The way a statement in BASIC is spelled. A syntax error means the spelling of a 
command or variable name is wrong, the punctuation (including spacing) is 
wrong, or the order of parts in the line is wrong. 

timing loop 

A loop that does nothing except use up a certain amount of time. See also delay 
loop. 

title 

The name of a program or subroutine. Put it in a REM statement. 

true 

Has the value -1 . See also assertion, false, logic. 

typing 

Pressing keys on the computer. It is different from entering. See also enter. 

value 

The value of a variable is the number or string stored in the memory box belong­
ing to the variable. See also variable. 

variable 

A name given to an imaginary box in memory. The box holds a value. When the 
computer sees a variable name in an expression, it goes to the box and takes a 
copy of what is in the box back to the expression and puts it where the variable 
name was . Then it continues to evaluate the expression. See also variable name. 

251 



variable name 

A variable is either a string variable or a numeric variable. The name tells which. 
String variables have names ending in a dollar sign. Numeric variables do not. 
The variable name has one or two characters. The first character must be a letter, 
the second a letter or a number. 

variable, array 

See array. 

variable, simple 

See simple variable. 

252 



Topical Index 
arithmetic operations (addition, division, multiplica­

tion, subtraction) 58, 60 
arrays 192, 193-96 

one-dimensional 192, 196 
two-dimensional 196 

ASCII code for characters 106, 156, 157, 159 
beeps 10 
bugs in a program 213 
characters 12 
clearing the screen 11 
colon 93, 97-99 
color 

background 127 
border 127 
character 12 7 

coloring the screen 11-12 
concatenation 41, 45, 162 
cursor 3 
data 

kinds of 116 
mixture of 119 
pointer 118-19 
storage of 116-17 

dimension 194 
disk 

care 215 
explanation 87 
preparation 215-17 
start-up program 217-18 
use of 215-18 

dotted notes (music) 145-46 
drawing pictures 21, 104-5, 131, 133-36 

line drawings 131, 133-36 
dumb loop 46 
duration 121 
entering a line 5 
envelope generator 121 
equal sign 58, 63-64 
erasing 26 

files 90 
letters in a program line 39 

error messages 32-33, 96-97 
error traps 206 
file commands 91 
filename 87, 89, 90-91 

extension 89 
FOR-NEXT loops 107, 109 
functions 68, 78, 171 

argument of 68 
nesting 78 
rules 172 

graphics 
brush 137, 140 
color 137, 139-42 

movement of 101, 103-6 
palette 137, 139 

hertz (Hz) 121, 122 
index number 193 
input cursor 37 
insert letters in a program line 39 
keyboard 24-28 

auto-repeat feature 22 
editing 24-28 

logical signs 180 
loops 48-50, 109-12 

delay 65, 69-70, 107, 109, 206, 208, 213, 214 
inside 110, 111 
nested 107, 110-11 
outside 110, 111 

loop variable 65, 107, 111. See also loops, delay 
medium-resolution graphics 131, 133 
memory 

erasing a line 18 
explanation of 14, 17 

253 

music 143, 145-47 
format of the PLAY string 145-47 
scale of musical notes 123 
rests 124 

not equal sign 56-57 
numbers 60, 61-62 
numeric constants 62 
numeric operations 58 
numeric variables 58 
output cursor 35 
phrase A 52, 54, 55, 72 
pitch 121, 122 
plus sign 41, 45, 162 
printing an empty line 11 
programs 

adding a line 19 
debugging 208, 213 
definition of 5 
fixing a line 19-20 
listing 16 
loading from disk 89-90 
numbering the lines 7 
outline of 203 
parts of 203-4 
printing to the screen 14 
prompts 205 
saving to disk 87-89 
stopping 210-12 
storing in memory 14 
user-friendly 200, 202 
writing 202-6 

programmer 33 
programming shortcuts 93, 95-99 
question mark 93, 95 



random numbers 78, 80, 83-84 
remark 20 
repeating keys 24-25 
rounding off 78, 82 
screen capacity 103 
scrolling 206 
semicolon 95 

in PRINT statements 35, 38 
shortcuts. See programming shortcuts 
single quote 99 
sound effects 124 
spaghetti programming 46, 50-51 
statement C 52, 54 
string constants 9, 12, 13, 62 
strings 13, 61-62, 162, 163-66 

cutting 163-65 
gluing 41, 45, 162 
length of 164-65 
switching numbers with 168, 170-71 

254 

string variables 29, 32 
structured programming 188-91 
subroutines 93, 149, 151, 152 
subscript. See index number 
syntax error 4 
timing loops. See loops, delay 
top-down programming. See structured programming 
true and false 176-80 
user 33 
variable name 29, 41 , 42-43 

length of 191 
variables 

kinds of 170 
numeric 62, 193 
string 62, 193 
dollar sign with 61 
value of 41, 42-43, 61 

white noise generator 121 



,.... 

Command and Function Index 
AND operator 174, 176 
ASC function 156, 157, 158, 171 
BEEP command 9, 10, 121, 122 
CHR$ function 156, 158, 171 
CIRCLE statement 131, 133, 135-36, 137, 140, 141 
CLS statement 9, 11, 27, 28, 86 
COLOR statement 9, 12, 125, 126, 127, 128, 139 
CONT command 208, 210, 212, 213 
DATA statement 114, 116, 118, 119, 121 
DIM statement 192, 193, 194 
DRAW statement 132 
END statement 149, 153, 208, 210, 211 
FILES command 86, 88, 91 
FOR-NEXT statements 107, 109 
GET statement 132 
GOSUB statement 149, 151 
GOTO statement 29, 46, 48, 52, 99, 212, 213 
IF statement 29, 52, 54, 71, 72, 73, 98, 174, 178, 179 
INKEY$ variable 105, 182, 183, 184, 185, 186, 206 
INPUT statement 29, 31, 34, 60, 95, 96, 182, 183, 

184 
INT function 78, 80, 81, 82, 171 
KILL command 86, 90, 91 
LEFT$ function 162, 163, 171 
LEN function 162, 163, 165, 171 
LET statement 41, 42, 60, 64, 95, 212 
LINE statement 131, 133, 135, 136, 137, 140, 141 
LIST command 14, 16, 18, 86, 89, 97 
LOAD command 86, 91 

255 

LOCATE statement 101, 103, 136, 206 
MID$ function 162, 163, 165, 171 
NEW command 1, 3, 4, 5, 18, 86 
NOT operator 174, 176, 179 
ON-GOTO statement 156, 157, 160 
OR operator 174, 176 
PAINT statement 137, 141 
PLAY statement 121, 122, 143, 145 
PRINT statement 1, 3, 4, 7, 14, 21 , 29, 34, 35, 37, 

60, 63, 86, 93, 95, 136,184, 208, 212, 213, 214 
PSET statement 131, 133, 134, 136, 137, 140 
PUT statement 132 
RANDOMIZE statement 84-85 
READ statement 114, 116, 118, 119 
REM statement 1, 3, 4, 8, 14, 20, 86, 99 
RESTORE statement 114, 116, 119 
RETURN statement 149, 151 
RIGHT$ function 162, 163, 164, 171 
RND function 29, 78, 80, 171 
RUN command 1, 3, 4, 6, 212, 213 
SAVE command 86, 91 
SCREEN function 131, 133, 139 
SOUND statement 121, 122, 124 
STEP value 107, 110 
STOP statement 190, 208, 210, 211, 212, 213, 214 
STR$ function 168, 170 171 
TAB function 65, 67, 68 
THEN statement 97 
VAL function 168, 170, 171, 182, 186 



----

-
--

COMPUTE! Books 

Ask your retailer for these COMPUTE! Books or order 
directly from COMPUTE!. 
Call toll free (in US) 800-334-0868 (in NC 919-275-
9809) or write COMPUTE! Books, P.O. Box 5058, 
Greensboro, NC 27403. 

Quantity Title 

COMPUTE!'s PC & PCjr Games for Kids 
Easy BASIC Programs for the IBM PC & PCjr 
Home Applications in BASIC on the 
IBM PC & PCjr 
COMPUTE!'s Guide to IBM PCjr 
Sound & Graphics 
Beginner's Guide to BASIC on the IBM PCjr 
Computing Together: A Parents & Teachers 
Guide to Computing with Young Children 
Personal Telecomputing 
COMPUTE!'s Gu.ide to Adventure Games 

Price• Total 

$14.95 -­
$14.95 --

$12.95 -­

$12.95 -­
$14.95 --

$12.95 -­
$12.95 -­
$12.95 --

•Add $2.00 per book for shipping and handling. 
Outside US add $5.00 air mail or $2.00 surface mail. 

Shipping & handling: $2.00/book 
Total payment ____ _ 

All orders must be prepaid (check, charge, or money order). 
All payments must be in US funds. 
NC residents add 4.5% sales tax. 
D Payment enclosed. 
Charge D Visa D MasterCard D American Express 
Acct. No. _____________ Exp. Date ___ _ 
Name ______________________ _ 

Address. ____________________ _ 
City _____________ State ____ Zip __ _ 
• Allow 4-5 weeks for delivery. 
Prices and availability subject to change. 
Current catalog available upon request. 



-
-

--
---

If you've enjoyed the articles in this book, you'll find the 
same style and quality in every monthly issue of COM­
PUTEI Magazine. Use this form to order your subscription 
to COMPUTE!. 

For Fastest Service 
Call Our Toll-Free US Order Line 

800-334-0868 
In NC call 919-27 5-9809 

COMPUTE! 
P.O. Box 5058 
Greensboro, NC 27403 

My computer is: 
D Commodore 64 D Tl-99/4A D Timex/Sinclair D VIC-20 D PET 
D Radio Shack Color Computer D Apple D Atari D Other __ 
D Don't yet have one ... 

□ $24 One Year US Subscription 
□ $45 Two Year US Subscription 
D $65 Three Year US Subscription 
Subscription rates outside the US: 
D $30 Canada 
□ $42 Europe, Australia, New Zeland/Air Delivery 
D $52 Middle East, North Africa, Central America/ Air Mail 
□ $72 Elsewhere/ Air Mail 
□ $30 International Surface Mail (lengthy, unreliable delivery) 

Name 
Address 
City State Zip 
Country 

Payment must be in US funds drawn on a US bank, international 
money order, or charge card. 
□ Payment Enclosed □ Visa 
□ MasterCard □ American Express 

Acct. No. Expires I 

Your subscription will begin with the next available issue. 
Please allow 4-6 weeks for delivery of first issue. Subscription 
prices subject to change at any time. 



Grownups, Tool 
Don't let the title fool you. COMPUTE!'s Kids and the IBM PC & PCJr 
was written for children from ages l 0 to 14, but anyone interested 
in learning BASIC programming will find this series of lessons fun 
and easy to learn. 
You'll discover exactly how to get the most out of your IBM com­
puter. Everything is explained in nontechnical terms, and the many 
illustrations and program examples quickly show you the ins and 
outs of BASIC. You may be a beginner when you pick up this 
book, but before you know it, you'll be programming your own 
exciting games and applications. There are even notes before 
each lesson to help you understand the concepts discussed. 
Whether you already know how to program, or have just un­
packed your computer, you'll find lots of useful information in 
COMPUTE!'s Kids and the IBM PC & PCJr. 
Some of the topics discussed are: 
• What to do if you get an error message 
• Assignments to help you practice what you've learned (with 

sample answers) 
• Techniques to debug your programs 
• Shortcuts to make programming faster 
• How to save programs to disk 
• And dozens of cartoons to let you laugh as you learn 
COMPUTE!'s Kids and the IBM PC & PCjr explains everything you 
need to know to start using and programming your IBM. Its con­
cise, yet refreshing style makes computing fun and exciting for 
every PC or PCjr user. 

- -
STANfORDBQOKSTORE 
I 

ISBN 0-942386-93-0 


