HPBooks

BASIC Program
Conversions

How to Convert Programs |
from One Computer to Another

Includes

IBM PC & PCijr
Commodore 64
Apple Ile & I1+

TRS-80 Models III & IV
TRS-80 Color Computer

Editors of Computer Skill Builders - Bill Crider, Managing Editor‘

BASIC Program
Conversions

How to Convert Programs
from One Computer to Another

Includes:
IBM PC & PCjr, COMMODORE 64, APPLE Ile & I1+,
TRS-80 MODELS III & IV, TRS-80 COLOR COMPUTER

Computer Skill Builders
Bill Crider, Managing Editor
in consultation with Chuck Steele, David Byrum, David Lovelock,
Ignacio Mendivil, Joseph Rotello

HPBooks®

Publisher: Rick Bailey
Editorial Director: Theodore DiSante
Art Director: Don Burton
Book Design: Leslie Sinclair
Typography: Cindy Coatsworth, Michelle Carter
Director of Manufacturing: Anthony B. Narducci

~ Published by HPBooks, Inc., P.O. Box 5367, Tucson, AZ 85703 602/888-2150
ISBN: 0-89586-297-2 Library of Congress Catalog No. 84-80558
© 1984 HPBooks, Inc. Printed in USA
3rd Printing

NOTICE: The information contained in this book is true and complete to the best of our
. knowledge. All recommendations are made without any guarantees on the part of the author or

HPBooks. The author and HPBooks disclaim all liability in connection with the use of this
information.

Table of Contents

1 How To Start Converting Programsoo0vnvenn... 4
2 About BASIC Commands and Programs 15
3 Alphabetic Listing of BASICWordsccovvvunnen.. 28
1376 (). AP 7 | |

Introduction

A computer can do amazing things if it is given logical instructions. But the instructions must be
in the appropriate dialect of the appropriate language. If you thought any computer.running BASIC
would run any BASIC program, you have by now discovered that you were sadly mistaken.

Like French people who will accept only ‘‘French French’’ and openly scorn ““Franglais,”” your
computer won’t accept BASIC programs not written in its specific dialect. For example, you will
find that Apple BASIC will not run on an IBM PC, TRS-80 Model IV, Commodore 64, or TRS-80
Color Computer.

THREE SCENARIOS

This can be a real problem. Consider the plight of the following individuals:
Sue the Teacher—Sue knew that she would be using her school’s microcomputers to teach
arithmetic in the fall: She assumed that she would be using the TRS-80 in the school library.
~ Because her nearby Radio Shack store was offering a BASIC programming class for teachers at a
reduced rate, she eagerly enrolled.

After learning programming, she spent her whole summer writing a math program for her
students. The first day of school she was greeted by her principal at the door. ‘“Good news, Sue,”
the principal beamed, ‘“The PTA has donated two Commodore computers to the school, and we
are going to put one in your class. You won’t have to share the TRS-80 with the science teacher.”
Chuck the Manager—Chuck, an up-and-coming manager in a prospering company, felt that his
company could control inventory better with a microcomputer. But his boss was opposed to the
idea. ““We’ve managed our inventory on 3x5 cards for 15 years. Why should we change now?’’ the
boss scowled.

Not easily intimidated, Chuck decided to take matters into his own hands. He bought an Apple.
Not finding any inventory programs he liked, he spent all his evenings for the next month writing a
program. When his boss saw it, he was impressed. ‘““There’s only one problem,’” he pointed out.
“An Apple doesn’t have enough disk space to put all our inventory on one disk. We will buy an
IBM PC.” You can guess what happened next. Chuck’s program wouldn’t run on the PC!

Joe the Gamesman—Joe had a great idea for a new game that was interesting and exciting. He
spent many hours programming it in TRS-80 Color Computer BASIC. When it was perfected, he
made an appointment with a software publisher. The publisher was also excited, and offered him a
sizable royalty for the program. There was only one hitch. ‘‘Joe, we offer only programs that run on
at least three popular machines,”” the publisher informed him. ‘“Which other machines do you have
this running on?”’

WHAT TO DO?

If one of these scenarios describes your situation, you have only three poss1ble means of
obtaining software for your computer:

Solution 1—Purchase, or otherwise obtain, only that software written for your computer,
Solution 2—Write your own software.
Solution 3—Convert existing software to your computer’s dialect.

You may decide to take Solution 1 and purchase only that software already written for your
machine. Or, obtain it by other means, such as through your users-group’s public domain library.
This is certainly the easiest method of solving the problem, but also the most expensive.

Solution 2, writing your own software, is only a solution if you are an experienced programmer
and have plenty of time. Very few people are in this category.

Solution 3, converting existing software, combines the best features of 1 and 2. You save the
money you would spend on new software, and you don’t need as much time to develop it. If you are
converting a program you or your associates have already been using on a different machine, you
will save the training time involved with a new program. You will also avoid the bugs and
limitations inherent in new software. However, you may possibly put in a few bugs of your own.

Modifying an existing BASIC program from one machine to another is not difficult. In fact, it is
both fun and interesting. It is also one of the easiest ways to learn the BASIC dialect of the second
machine if you do not already know it.

For the most part, the various computers actually share basic terms and keywords. The only
difference is that some BASIC functions may be known by another name on another machine.

1 How To Start
Converting Programs

We’ll start by looking at some elementary concepts of program conversion. Let’s call the machine
the program was originally written for the source. The machine you want it to run on is the target.

LEVELS OF CONVERSION

There are many different levels of converting BASIC programs from source to target.
- First Level —Little or no conversion may be required. For example, a program written for the
TRS-80 may run on an IBM PC with no changes. If this is the case, you are either very lucky or
working with a very simple program! You can just type in the program and run it.

Usually, many of the words in the target program will be the same as in the source program, but
not all of them.
Second Level—The source and target languages may have the same function, but different words
are used. For example, CLS on a TRS-80 will do the same thing as HOME on an Apple. All you
have to do in this case is substitute the target word for the source word.
Third Level —It’s possible that a word used in the source language means something entirely
different in the target language. This requires more ingenuity than the first and second levels. If you
do not translate the word —having mistaken it for a first-level conversion—you will not get
expected results. In this case you may have to write a subroutine (or use one from this book) that
simulates the source word for the target computer.

An example of this is RND. In TRS-80 BASIC, RND (n) will generate a random integer between
0 and n, inclusive. In Applesoft BASIC, RND (n) generates a random number between 0 and 1,
non-inclusive. You would therefore have to replace the TRS-80 command with a subroutine in
Applesoft BASIC. You could use this:

INT(RND(1)#%n+.5)

to get the same results in a program converted from a TRS-80 to an Apple computer.
Fourth Level —In this case the word in the source language has no equivalent in the target language.
Translation at this level is more demanding. Typically, you must write a subroutine to approximate
the effect of the source word.

For example, in IBM BASIC

A$=STRINGS$ (B,C)
assigns to A$ the value of B characters having the ASCII value of C.

4

10 A$=STRINGS$(5,42)
20 PRINT A$

would print
%* % ¥ % ¥

because the ASCII value of an asterisk is 42. Commodore BASIC does not have this function. You
would have to use the program line

PRINT "*%%%%"

to simulate it. In this case, * is the character you want to print.

This example also illustrates another possible pitfall in conversion. The expressions STRS,
STRIG and STRINGS all look similar, but have radically different meanings. Watch your spelling
and typing, and never assume that a command means what you expect it to mean. Look it up if you
are not sure.

Another fourth-level possibility applies to machine language and PEEKs and POKEs. If the
source program calls a machine language routine, you may have to write a subroutine that emulates
the machine code. Rewriting machine language routines into BASIC almost always slows the
program down. If the source code uses PEEKs and POKEs, you will have to determine their
equivalents for your machine or write an equivalent subroutine.

You can recognize machine language by such words as CALL, SYS, USR and BLOAD (in some

cases). Another clue is a loop that reads a series of DATA statements and POKEs the values into
consecutive memory locations.
Fifth Level—It’s possible that an entire expression, line or subroutine in the source language may
be emulated in the target language with a single word. This is just the opposite of Level 3. Actually,
Level 5 is easier than Level 3 or Level 4, but requires a sharp eye to catch.

Here’s an example:

130 RA=1/AR

140 FOR I=X-R TOX+R

150 H=I: V=Y+SQR((RA2) - (H-X)A2) *AR
160 HPLOTH,V

170 H=I: V=Y-SQR((R*2) - (H-X)*2)*AR
180 HPLOTH,V

190 NEXT I

200 FOR I=Y-R*AR TO Y+R*AR

210 V=I: H=X+SQR((RA2) - (RA% (V-Y))A2)
220 HPLOTH,V

230 V=I: H=X-SQR((RA2) - (RA% (V-Y))A2)
240 HPLOTH,V

250 NEXT I

That Apple routine draws a circle. The whole routine could be replaced in a program for the IBM
PC with just one statement:

10 CIRCLE (X,Y),R

The key is to identify what a routine does within the program. Usually this means running it.
Then determine if the target computer allows an easier way.
Sixth Level—This is not a level at all, but a statement of impossibility. That is, some programs or
commands simply may not be translated into the target language. This is most likely to occur in
graphics, PEEKs and POKEs and machine-language parts of a program.

If you have a color program designed to run on a high-resolution Apple screen, for example, you
will never be able to convert it exactly into TRS-80 Model III BASIC. This is because the TRS-80
Model ITI does not have high-resolution or color. There is no way to even simulate the Applesoft

COLOR commmand. You must either greatly modify the program—if the particular graphics are
not necessary—or abandon the project.

Another example concerns memory. If the source program uses 64K RAM and your machine has
only 48K RAM, the program won’t fit.

Another impossiblity would be to translate from compiler BASIC on the source to interpreter
BASIC on the target—and in some cases vice-versa. It is unlikely, however, that you will have
access to the source code of a program written in compiler BASIC. The programs you find in
magazines, books, electronic bulletin boards and users groups are usually interpreter BASIC.

CONVERSION STRATEGY

If you convert programs with a hit-or-miss technique, you will find it slow and frustrating. Even
s0, this is exactly what many programmers do. A typical unplanned session goes like this:

The programmer types in a program from a magazine or other similar source. When he tries to
run the program, it crashes. The programmer looks at the line number of the error message, and
edits that line. Run again, crash again.

This time the line number leads the programmer to what might as well be Greek. He has never
seen these words before. Nor does the computer’s reference manual list the words, so he deletes
the line with the offending syntax.

When he runs the program again, it seems to work for a while, but then the screen fills with
gibberish—yet no error messages. Finally, he gives up.

There is a better way!

What You Need—You should have at least an elementary working knowledge of the target BASIC.
If you know no programming at all, you may be able to translate simple programs with the help of
this book, but it is easy to get in over your head. Start simple and work your way up.

You should also have this book. You will find it irreplaceable for cross-referencing the most
popular BASICs. The programming hints in it will save you hours of work.

A printout of the source program is essential. You could possibly work with just the program in
memory and on the screen, but you will soon see that this is not the best method.

The printout may take many forms. Perhaps you have a book of BASIC programs in a ‘‘generic’’
BASIC or one that is written for a different computer. Possibly you are looking at a magazine article
with the listing. Or best of all, you have a printout from a computer. If you can, specify a
double-spaced printout on wide paper that has room for margin notes.

You must have the target computer. Otherwise, what’s the point of converting? Even if you did
make the conversion, how would you know it ran correctly? Debugging is essential to any program
conversion. -

The BASIC documentation for the target computer is also necessary. It helps with syntax and
vocabulary. Some may have translation tips, too.

Useful But Not Essential —Having the source computer is convenient. If you can run the program
on the source computer you will gain invaluable insight into what the program is supposed to do.
This will help you when debugging the program on the target computer. It’s especially useful when
‘writing graphics routines.

The BASIC documentation for the source machine will help determine if the word on the source
is really the same as for the target. If it has a memory map, you may even be able to translate the
PEEKSs and POKEs. _

With a good word processor you can convert a program more easily. The ‘‘search-and-replace”’
feature makes overall fixes efficient. In addition, a word processor usually allows full-screen editing.

Some users groups and electromic bulletin boards actually have programs designed to convert
programs from one machine to another. Typically, these make simple search-and-replace changes

and alert you to lines requiring further attention. Such programs will speed you along in the early
stages of the project, but will not do it all. They can’t follow program logic and cannot handle most
graphics displays. Even so, they are helpful if available. Check with some of the *“old-timers’’ in
your users group to see if a conversion program is available.

Multicolored, felt-tipped highlighting pens will make the job easier by allowing you to mark up
your printout. Use different colors to indicate different sections or conversion problems. You will
be able to refer to your marked-up printout more quickly and better remember significant portions.

Find a roomy area to work in. Typically, computers seem to leave little space on a desk for
printouts, books and notepads. If you can, make room for your references and printouts around the
computer. We have found it helpful to have a small, four-wheeled cart with space underneath for
disks and pens and a flat top for notepads and printouts. A typing stand is nice for setting books next
to the computer. :

UNDERSTAND THE PROGRAM LOGIC

Learn the logical flow of the program. This is the most important step in converting a program
from one machine to another. Don’t pass it by. The sample program we will use—PICK UP
STICKS —is short, but the principles illustrated become even more valuable as you translate longer
programs.

How To Do It—If you have the source machine available, run the program several times, using all
possible options. Take notes on what happens in what order. Sketch the menu screens and especially
the graphics screens.

If the source computer has “‘screen-dump”” utility, use it to print out different screen displays on
hardcopy. Does the program use color? Animation? Scrolling? Number your sketches or screen
printouts and give them titles, such as Main Menu, Option Menu # 1, or Graphics Screen #3.If you
have a camera, take color photos of any particularly intricate screen displays. An instant-developing
Polaroid or Kodak camera is very useful for this purpose.

Be sure you thoroughly understand program operation before you move on to the next step.
Determine Memory Used by Program— As mentioned earlier, this can be important. In fact, you
may discover at this stage that you can’t make a conversion. .

Use the FRE or MEM command as explained in Chapter 3. If the program uses more memory
than available on the target machine, you cannot convert. In fact, if it uses more than about 75% of
the target memory, you may have difficulty running it unless you modify it to use less RAM. You
may have to break a large program into modules—called overlays in some documentation—to get
the program into memory a little at a time.

Using Pens and Printout—Using the source-program printout and highlighting pens, determine
the logical flow of the program. Mark logical sections and subroutines. Label them with appropriate
titles. Use expressions such as Input Routine, Error-Trapping Routine or Disk-1/0 Routine.

You may want to develop a flowchart of the program and tape it to the wall near your computer.
Write notes to yourself in the printout margins as you go through it. Figure 1-1 on the next page
shows what a simple game program might look like after it has been marked up.

Write in Pseudocode—This is merely an explanation in English of what each program section does
or is supposed to do.

This allows you to break the overall project into small, manageable tasks rather than approaching
it as one monstrous endeavor.

Don’t make your pseudocode too detailed. Go for the “big picture.”” A pseudocode description
of the game in Figure 1-1 is shown in Figure 1-2.

You will refer to the pseudocode repeatedly when you encounter GOTO and GOSUB statements.
This saves you from searching through printouts or screens of information when you are converting
a large program.

100
110
120
130
140
150
160
170
180
190
200
210
220
2390
240
250
260
270
280
290
300
310
329
330
340
3590
600
610
620
700
710
720

REM % % % % % % % % % % % % % % % % % % %

REM PICK-UP - STICKS GAME

REM % % % % % % % % % % % % % % % % % % %
PRINT "THE OBJECT OF THIS GAMEIS "; |
PRINT "TOPICKUP STICKS INSUCH";
PRINT "AWAY THAT YOU ARE NOT THE " ;
PRINT "ONE TOPICK UP THE LAST ";
PRINT "STICK. WEWILL STARTWITH";
PRINT "21 STICKS AND YOUWILL ";

PRINT "HAVE THE FIRST TURN. YOU ";
PRINT "MAYPICKUP EITHER1,2,3,";
PRINT " OR 4 STICKS PER TURN. " : PRINT |
S=21—4f ofF STICcKs

_~ TNITRICTIONS

PRINT "HOWMANY STICKS DO YOU WISH _“_,} WPoT ROUTINE |

INPUT "TOPICK UP" ; P— sTicks A30- 300
IFP<>INT(P) THEN 600 — fRACTION cHoSEN Mﬁé*’ on
IFP<10ORP>4 THEN 700 —WReNG NUMBER &HOSEN | — 50;“
S=5-5 Ky ™ oAme/ ProGRAM\
PRINT"IWILLPICKUP";5-P;".";

PRINT "THAT LEAVES " ;S;" STICKS."

IF S>1 THEN 230 — fhyY AGAIN uNTIL ONE 3TicK LEFT j

PRINT "YOUMUSTPICKUP THELAST";]

PRINT "STICK, SOIWIN." :PRINT COMPITER

INPUT "SHALL WE PLAY AGAIN (Y/N)";A$ [AGIAYS

IFA$="Y" THEN 220 R

END _J

PRINT "YOUCAN’TPICKUPA";] £RROR TRAP

PRINT "FRACTIONOF ASTICK!":PRINT ([R 250

GOTO 230 —

PRINT "THE RULES SAY YOUMAYONLY "3~ | ERROR TRAP

PRINT "PICKUP1,2,30R4 STICKS." T R 260

GOTO 230 L

e c————

Fig. 1-1/Begin by making notes to yourself on a printout of the program you want to convert. This way, you will understand
program flow and make the task of converting more efficient. _

ProgramLines What They Do

100-210 Instructions

220 Initialize variables
230-240 Input routine
250-260 Catch errors
270-300 Computer’s turn; go back to input
310-350 End of game; start another
600-720 Error-trapping routines

Fig. 1-2/A pseudocode explanation of the PICK-UP-STICKS
program clarifies its major segments.

Handling Variables—Make a list of the variables, their names and how they are used. This will be a
very important reference if your program is long. If you have a cross-reference utility, now is the time
to use it.

This is a program that reads a file and compiles useful information from it. Usually a
cross-reference utility constructs lists of variables and the lines where they are found, lists of lines
that call other line numbers (GOSUBs, GOTOs, etc.) and the lines they call, and sometimes lists of
variable values at each line.

Figure 1-3 on the next page shows how a cross-reference listing for PICK UP STICKS might look.

Also, review the reserve words of the target computer and the acceptable format for its variables.
Are all the variables of the source language compatible with the target language? Are the
variable-name rules the same on both computers? If not, note those that you will have to rename.
(The rules for naming variables for each computer are listed in Chapter 2 under Data Tjpes.) Post
the list next to the flowchart.

Handling Machine Language—Highlight any PEEKs and POKEs or machine-language routines.
Look up the PEEK and POKE equivalents in the target documentation and write them in the
printout margin. If there are no equivalents on the target machine, note it in the margin.

Try to determine what the original programmer was doing, and ask yourself ‘“What other method
could I use to achieve the same effect?”’

Syntax Considerations—If your printout does not differentiate between the letter O and the
number zero (0), go through the printout and mark all zeros by putting a slash through them. If it is
difficult to distinguish between the number 1, the letter 1 and the letter I, mark them somehow.

As you are going through the printout, be alert for other syntax considerations. If the source
differs from what you expect, doublecheck to see if the target will accept it. If not, note in the
margin what requires changing. '

Arrays—Note any arrays in the program. Did the programmer DIMension them at the beginning?
Do the current dimensions make the best possible use of memory? Eliminate any doubts by
DIMensioning them yourself.

10

Variable Locations

P appears in 240, 250, 260, 280
S appears in 220, 270, 290, 300
A$ appears in 330, 340

Line Calls

220 s called by 340

230 s called by 300, 620, 720
600 is called by 250

700 s called by 260

Running Variable Values For Sample Run
at220S=21
at240P=3
at270S=16
at240P=4
at270S=11
at240P=1
at270S=6
at240P=3
at270S=1
at330A%$=N

Fig. 1-3/A sample printout from a cross-reference utility
shows the variable locations, line calls and running variable
values.

RUN THE PROGRAM ON THE TARGET MACHINE

Now that you understand the program and what it should do, load it into your computer. If you
already have it on a medium your computer can read, you are a step ahead. If not, type it in.

If you are typing the program lines into your computer, you will be tempted to make many
changes. If so, observe the following general rules:
Variables—Change those variable names that are inappropriate. But be careful to change them
consistently! For example, don’t call a variable TITLE in one place and TI in another place.
Statements—Change only those statements you are sureshould be changed.
Syntax—Don’t change syntax yet.
Renumbering—Don’t renumber the lines yet. If you do, you will run into problems with GOSUBs,
GOTOs and IF-THEN statements. '
REM—Add any REM statements that will help you later when debugging.
Indent—Use indentation to make loops easier to read. For example, a FOR-NEXT loop might be

indented this way:
10 FORA=1TO10
20 PRINT"ALOOP #",A
30 FORB=1TOS
40 PRINT "THIS ISATEST"
50 NEXTB
60 NEXT A

See how easy it is to read that the B loop occurs completely within the A loop? This type of
indentation will assist you when you are not sure what is going on within a loop. If the machine
you’re using does not allow leading blanks in statements, you can usually indent by using
colons—as with the Commodore 64, for example.

Typing and Proofing—Type very carefully and proofread at least twice—once on the screen, and
again from a printout after you have typed in the program.

Using Conversion Aids—You may have various conversion aids not previously discussed. One of
the most useful—but probably also the most imperfect—is a Conversion Program. This is an
advanced type of special-application word processor. It reads in a file in one BASIC language and
outputs it as a file in the target language.

Conversion programs are limited for several reasons. First, they cannot take into account all the
possible permutations of the BASIC language. Second, they cannot correct syntax. Third, they
cannot translate PEEKs, POKEs, machine language routines or screen displays. Fourth, and most
important, they do not know what a program is supposed to do. They cannot verify that the product
is running correctly.

In spite of these limitations, conversion programs can help. They serve primarily as a
search-and-replace tool. Where commands have a direct equivalent (Level 2), they can take the
tedium out of the task. They may also identify areas requiring further intervention on your part.

If you have a conversion program, use it, but don’t expect it to work perfectly.

Word Processor—If you haven’t already been using it to enter the program, now is the time to load
the word-processor or programmer’s-aid program. You should first use it to do any :
search-and-replace tasks you have identified. All the words with a direct equivalent in the target
language can be replaced this way.

As you are doing this, you may wish to use some particular character—such as the asterisk—to
mark those places requiring special attention. Instead of marking them within the line, set them off
with remark lines. This way you can find them again easily. Here is an example:

300 REM* % %% %% %*Thenext 5 l1ines needattention

This will add a few lines to the program, but you can delete them when you work on the routine in
question.

If your word processor has a spelling checker, you may want to use it. But be aware that it is going
to find a large number of ““misspelled”> words, namely the variables and alndost all the reserve
words.

If your spelling checker can build a custom dictionary, add all your reserve words to itasyou
come across them. Don’t add the variables, though. Even if your spelling checker identifies most of
the words as ““misspelled,” it is useful in that it brings each one to your attention. You may find
problems you would have otherwise overlooked.

Renumbering—It’s possible that your program is getting cluttered by this time. If that is the case,

you may wish to use the RENUMBER command to give you more working space. You can do this
at any time, but keep in mind that you will have to run your cross-reference utility again when the
line numbers change. And you should note the changes on your psuedocode listing.

Also, because you have been working with the program already, you probably have some idea of
where each routine is located within it. You will have to *‘relearn” the line numbers if you
renumber them. -

Another way to resolve the numbering problem and create some working space between the lines
is to simply add a 0 to each line number with your word processor. Line 12 becomes line 120; line 30
becomes line 300, and so forth. This will not affect your previously prepared reference aids and will
give you 99 lines to work with between each of the old lines. Remember that your highest line
number can’t be greater than 65535. (63999 for Applesoft and Commodore 64 BASIC.)

When you are completely finished debugging the converted program, it makes sense to use the
RENUMBER command to make it more readable. There is really no need to renumber before then.

1"

12

ABOUT EQUIPMENT DISCUSSED IN THIS BOOK

There are hundreds of microcomputers on the market today, and each computer may be able to
use multiple dialects of BASIC. It would be impossible to cover even half of the total possibilities in
the space available. Therefore, this book is limited to the five brands that comprise at least 90% of
computers in use. A

Of these brands we cover one model extensively and may discuss a second model only if it
differs from the first. In each case, we limit the discussion to one BASIC for each brand, and
comment if the second machine differs.

Remember that just because a computer may have 64K RAM, it is not necessarily true that a 64K
program will run on it. The computer must also have memory available for the BASIC interpreter
itself. Typically, a 64K machine will not run a program that is longer than 40K. The actual length of
program that your computer will run depends not only on memory, but also on the size of the
BASIC interpreter, the amount of variable storage space needed by the program and the amount of
work space needed by that particular program.

APPLE PRIMARY DISCUSSION
Model: Apple lle

Memory: 64K RAM

Monitor: Color

Storage: Disk Drive(s)

DOS: Apple DOS 3.3

BASIC: Applesoft BASIC

COMMODORE 64 DISCUSSION
Model: Commodore 64

Memory: 64K RAM

Monitor: Color

Storage: Disk Drive(s)
DOS:DOS 2.6

BASIC: PETBASIC 2.0

IBM SECONDARY DISCUSSION
Model: IBM PCjr

Memory: 128K RAM

Monitor: Color

Storage: Disk Drive, BASIC Cartridge
DOS: 2.1

BASIC: Cartridge BASIC

RADIO SHACK TRS-80
SECONDARY DISCUSSION
Model: Model Il

Memory: 48K RAM

Monitor: Monochrome
Storage: Disk Drive(s)

DOS: TRS-D0OS 1.3

BASIC: TRS-DOS 1.3BASIC

APPLE SECONDARY DISCUSSION
Model: Apple li+

Memory: 48K RAM

Monitor: Color

Storage: Disk Drive(s)

DOS: Apple DOS 3.3

BASIC: Applesoft BASIC

IBM PRIMARY DISCUSSION
Model: IBM PC or XT
Memory: 64K RAM

Monitor: Color

Storage: Disk Drive(s)

DOS: 2.0

BASIC: 2.0

RADIO SHACK TRS-80 PRIMARY DISCUSSION
Model: Model IV

Memory: 64K RAM

Monitor: Monochrome

Storage: Disk Drive(s)

DOS: TRS-DOS 6.0.0

BASIC: TRS-DOS 6.0.0 BASIC

RADIO SHACK TRS-80

COLOR COMPUTER (COCO)

Model: Color Computer

Memory: 48K RAM

Monitor: Color

Storage: Disk Drive(s)

BASIC: Disk Extended Color BASIC 1.0

USING THIS BOOK

By now you’re probably wondering when you were going to get to use this book. Now is the time!
At this point you should be very close to having a program that will run. Now you need to get down
to details of the various routines that present translation difficulties.

First, identify what a word or routine is supposed to do. Then refer to the alphabetic listing in this
book, Chapter 3. Look up that word. Read the text portion at the beginning of the chapter to gain a
better understanding of what is involved in translating that type of command. Then look at the
command specifically.

Sometimes you will be given an alternate command, sometimes a suggested subroutine. If you
must add lines to insert a subroutine, be careful not to renumber any lines that may be called from
another routine. If you must use a long routine—or if the routine must be used more than
once—consider using a GOSUB instruction.

Make sure you haven’t used the variable names in the subroutine in some other way elsewhere in
your program. If you have used them, rename them in the subroutine.

FINAL DEBUGGING

When you have completed all the substitutions, you will be ready for the final debugging. Load
the program into your computer and try running it. If it runs the first time, give yourself a big pat on
the back! Chances are it will not run perfectly. In this case you are ready to endure the programming
ritual called debugging.

Each time the program crashes it should give you an error message. Refer to the computer’s
documentation to determine what the message means. Use your editor or word processor to correct
the offending program line. Save the corrected version on disk and try again.

If your computer has a TRACE or TRON function, use it. There are also commercial programs
available that allow you to view your program in special ways as you run it. If you have one of these
available, you may wish to use it.

You will probably spend very little time ‘‘tweaking’’ the program if you have followed the
systematic approach advocated here. If you find you are spending more time debugging than in
previous stages, you probably failed to grasp the overall flow and logic of the program before
starting. Go back and start over!

When you have finished debugging the program, you should look over it again to be sure you
have optimized memory usage. You may wish to delete most of your REMs now. And you may find
that combining some lines make it run faster. Like a living organism, a program should be ina
constant state of change and improvement.

LEGAL CONSIDERATIONS

Converting programs from one computer to another may present some complicated legal
problems. Guidelines discussed here are general and may or may not apply to your specific case. If
you have any doubt at all, seek legal counsel.

If a program is in the public domain, you can usually do whatever you wish with it—convert it,
use it or sell it. The problem is being certain of a program’s status. A program is public domain if the
author has allowed it to be so. Generally the programs on electronic bulletin boards and in club
libraries are in the public domain. If they have a copyright notice anywhere in the listing they are
probably not in the public domain.

Programs found in books and magazines are usually notin the public domain. Although they may
not have a copyright notice in the listing, they are covered by the copyright notice at the beginning
of the book or magazine. If you are just using the program on your computer and are not making
any profit on it, the right to copy it from a magazine or book is implied. But check with your lawyer
if you have any doubts or want to make money from the program.

Programs purchased in local computer stores or through the mail are also not generally in the
public domain. There are a few exceptions. If you wish to convert a program that you are reasonably
certain is not in the public domain, you must have the written permission of the copyright holder to
copy it, convert it, use it on multiple machines, or especially to sell it.

13

14

If you wish to convert it to another machine and are willing to give the converted version to the
copyright holder, you will usually find the owner very helpful. This is because having multiple
versions of a program makes it more salable.

If you plan to use the converted program on multiple machines, the copyright owner will likely
grant you permission, but may ask for an additional license fee. If you plan to convert it and sell the
converted version, the owner will probably either deny permission or allow you to do it only if you
pay a royalty.

WHERE DO YOU FIND PROGRAMS?
You can find programs to convert in a variety of places. Some possibilities follow:
1) Programs you have written.
2) Programs your friends or business associates have written.
3) A users-group library.
4) Electronic bulletin boards.
5) Computer magazines.
6) Computer books.
7) Trade journals in your field.
8) Programs you have purchased.

Again we empbhasize: Check the copyright status of a program before you convert it.

2 About BASIC
Commands

and Programs

The various things you can do with BASIC commands vary little from machine to machine. But
how you implement those actions with BASIC syntax and program structure vary greatly.

This chapter discusses the various actions, giving you the commands that cause them. Chapter 3
lists the specific commands in alphabetical order, explaining the parameters included with them and
comparing their usage on each machine.

Computing has three stages—input, processing and output. Each stage can be broken down into
sub-stages. Looking at it this way fragments the explanation—such as splitting up file handling into-
two steps— but provides a logical way to understand this chapter.

USING THE NEXT CHAPTER

It would be impossible to detail every possible usage of every BASIC command on each of the
computers discussed in this book. Therefore, we didn’t try to do that!

Instead, each command has been explained in sufficient detail for you to understand what it does,
what the syntax is, what parameters or switches are needed, and in some cases what the common
program structure is. If you still need help, refer to the documentation that came with the target
computer. Let it be the final arbiter of any doubts you have about syntax or legal parameter values.

If we couldn’t simulate the command in less than 15 lines of BASIC code, without
machine-language code, or without hardware modification, then simulation was considered beyond
the scope of this book. You’ll see something like Not available. Cannot be simulated. In these cases
we mean that it can’t be simulated within these limitations. If you are an experienced programmer,
you may wish to attempt simulation if the command is essential to your program.

In a few cases machine-language routines or extensive PEEKs and POKEs were used where
necessary.

16

16

VARIABLE TYPES

On the TRS-80 Color Computer, all variables are implicitly floating-point variables unless they
have the trailing $. In this case, they are string variables.

On the Apple and Commodore 64 computers, all variables are implicitly floating-point numeric
variables unless they have a trailing % symbol (integer) or $ (string).

Variable types can be defined by using type declarations—such as DEFDBL or DEFSNG—on the
IBM and TRS-80 computers. If a type declaration is not used, the type is defined by the following
trailing type indicators:

% Integer

] Single-precision
Double-precision
$ String

ABOUT TERMINOLOGY

In this book, an instruction is any BASIC key word or reserved word. For example, commands and
statements are both instructions. "

If an instruction has no line number before it, it is called a command because it is issued from the
command mode. It is sometimes called the immediate mode.

If a line number precedes an instruction, it is called a statement. Therefore

RUN
isa command, but
10 RUN

is a statement. Despite this distinction, the terms instruction, command and statement are used
interchangeably in most computer literature—including this book.

An algorithm is a series of instructions. For example, a program is an algorithm. A program may
consist of one statement, or many statements. Usually a portion of a program—or a small program
that does a specific task and is inserted into a larger program—is called a routine. If a routine is
accessed by a GOSUB statement, it is called a subroutine.

All or part of a program may also be generically called code, because an algorithm is just a series
of codes the computer understands.

ABOUT SYNTAX

The syntax of a command has been indicated using symbols and conventions compatible with the
IBM PC BASIC 2.0 documentation. Some of the conventions will seem strange to programmers
familiar only with Apple, Commodore or TRS-80 documentation. Here is what the conventions

-mean.

COMMAND
A word in all capital letters is a key word. It is usually the command under discussion.

variable
A word or letter in lowercase is a variable or constant that must be supplied by the programmer.

filename

The words file and filename are used to denote a valid filename, whether variable or constant. This
implies all the data associated with or required by the computer in use. This may include a drive or
device designator, a filename of the correct length and an extension. In IBM BASIC 2.0 it may also
be a path.

(1

Items enclosed in brackets are optional. They are not required for correct program execution. For
example, PRINT #1, al,bl means that you can have more than one variable printed to a file. In
addition to a, you could also include .

An ellipsis (three dots) indicates a list based on a pattern. For example, PRINT #1, al,b]... means
you may have more variables PRINTed to the file than just a and . You could also have ¢, dand
others.

0]
If parentheses are indicated, they must be included. Also be sure to include all punctuation and to
differentiate between 1 (one) and 1 (the letter 1), as well as between 0 (zero) and O (the letter oh).

INPUT

Before your computer can do any useful work, it must have some data. Getting this data is called
input. It can come from a number of locations—keyboard or joysticks, storage devices such as a
disk drive or cassette player, or from another external communication device such as a modem,
graphics table, A/D converter or host computer. In addition, data may be accessed either serially or
randomly.

KEYBOARD, JOYSTICKS
AND LIGHT PENS

The Apple computer normally gets its input from the keyboard. Input may be redirected to files
using PR#, thus rendering the keyboard ineffective until input is directed back to it. No keyboard
buffer is used—only one character can be sent at a time. Apple normally uses up to three paddles
instead of joysticks, but some companies have released joysticks as well. Unlike other computers,
Apple reads a resistance value from the paddles rather than an x,y coordinate.

The IBM PC has a unique keyboard. Key assignments are all under software control. Some keys
can be ‘“‘event trapped.”” The keyboard has a 15-character buffer, which can be accessed from
BASIC. In addition to the shift and control keys, it has an ALT key—the PCjr has a FN key. They
work the same way. Four joysticks are supported. A light pen will work, too. You can open the
keyboard as a file for input.

The keyboard on the Commodore 64 also has many unique features. It includes a 10-key
buffer—accessibie from BASIC —known as the dynamic keyboard. In addition to four function keys,
each key is addressable as a command or graphics character using the shift or Commodore key. You
can open the keyboard as a file for input. Two joysticks are supported.

The keyboards on Radio Shack computers are ‘‘economy’’ models. They have no control key and
no buffer. Models III and IV do not support joysticks. On the Color Computer, the keyboard may
be opened as an input file. Two joysticks are supported.

Keyboard and Joystick Commands—Those relating to keyboard or joystick usage are in the box on
the next page.

17

18

KEYBOARD AND JOYSTICK VOCABULARY
CMD INPUT# LINEINPUT PR#
GET INPUTS LINE INPUT # READ
GET# INPUTLINE PDL READ#
IN# JOYSTK PEN STICK
INKEY$ KEY PEEK STRIG
INPUT KEY$ POKE

STORAGE .

This part of program operation is critical if you want to retrieve information, programs or data for
re-use. These commands get information from a disk drive or cassette recorder.
Cassette— All computers discussed in this book—except the TRS-80 Model IV—are capable of
using cassette-based programs and files. The Model IV uses cassettes only in the Model III mode or
for downloading from the Model 100. The file structure for sequential access files is similar for each
of them, but the syntax of the command for opening and closing the files differs. The Apple is the
only one that cannot turn the cassette motor on and off under program control.

The TRS-80 Color Computer, IBM PCjr and Commodore 64 can use cartridge-based software.
Cartridges are not compatible among machines.
Sequential Access—Converting sequential-access, disk-file-handling routines from one computer
to another is not difficult. Although the commands have different syntax, usage is very similar.
Apple is somewhat different from the others. It uses a syntax that accesses the DOS disk routines.
Here’s the general syntax:

10 PRINT CHR$ (4) ; "OPEN filename"
20 PRINT CHR$ (4) ; "READ filename"
30 INPUTAS$
Thereafter, all input words will receive data from the disk file instead of the keyboard. Because
Apple does not keep track of the number of records in the file and does not have an end-of-file
marker, the program should also keep track of those items. The general procedure for other
computers is:
10 OPEN"I", 1, "filename"
20 INPUT#1, A$
The specific syntax will vary, but you can have multiple files open, and send output to or get input

from each. Simply specify the number of the file buffer.
Random File Access—The syntax of random-file-access routines varies greatly among computers,

‘but there are only two general methods of actual data handling. Apple and Commodore have a

method that differs from other computers. They handle each record as one long string, without
breaking it up into fields. Accessing a specific item in a record requires positioning the pointer at the
specific byte, or reading the entire record and breaking it up with string functions. Conversely, IBM
and Radio Shack computers define a record as a number of fields of specific length in a random file.
Each field may be accessed individually.

Disk—The TRS-80 Color Computer and the Commodore 64 allow accessing information directly
from a specified sector of a disk from within a BASIC program—a task handled by DOS on other
computers. Commodore also allows direct access to the routines controlling the disk drive, via.
MEMORY commands.

Disk and Tape Input Commands—Those relating to reading disk or tape files are in the following

box.

DISK AND TAPE-FILE VOCABULARY
APPEND CSAVEM INPUT PR#
AUDIO DCLOSE INPUT # PRINT#
B-A: DELETE INPUTS PRINT#USING
B-F: DIR KILL PRINT
B-P: DIRECTORY LINEINPUT PRINT USING
B-R: DLOAD LINE INPUT# PUT
B-Ww: DLOADM LOAD PUT#
BACKUP DOPEN LOADM READ
BLOAD DRIVE LOF READ#
BLOCK-READ: DSAVE LPOS RECALL
BLOCK-WRITE: DSKINI M-E: RECORD
BLOCK-ALLOCATE: DSKI$ M-R: RESTORE
BLOCK-EXECUTE: DSKO$ M-W: RMDIR
BLOCK-FREE: EOF MEMORY-EXECUTE: RUN
BUFFER-POINTER ERASE MEMORY-READ: SAVE
BSAVE FIELD MEMORY-WRITE: SAVEM
CATALOG FILE MERGE SCRATCH
CHAIN FILES MKDIR SHLOAD
CHDIR FORMAT MOTOR SKIPF
CLOAD FRE NAME ST
CLOADM FREE NEW STATUS
CLOSE GET# OPEN STORE
CMD GET out UNLOAD
COPY IN# OUTPUT WRITE
CSAVE INP POINTER WRITE#

EXTERNAL COMMUNICATIONS

Computers receive input from peripherals—such as the display, modem, printer and A/D
converters—in diverse ways. The IBM has the richest BASIC vocabulary for external input. Other
computers may require machine-language programming. Because IBM OPENs the COM port like a
file, all file input commands apply. Other commands relating to external input include the following
words.

EXTERNAL-INPUT VOCABULARY

COM IN POINT ST
CMD INP POSN STATUS
CSRLIN LPOS PPOINT WAIT

IN# PEEK SCREEN

19

PROCESSING

This category includes commands dealing with program flow, functions, operators, data types,
and memory and machine interfacing.

PROGRAM FLOW
Commands for program flow are almost identical for all computers discussed in this book. You

should note that some of the computers do not include the ELSE command, and some do not
include WHILE—WEND loops

PROGRAM-FLOW VOCABULARY
AUTO GOSUB ONERR SHELL
BUFFER-POINTER GOTO POINTER SKIPF
CHAIN IF REM SPEED=
CHDIR IF-THEN REN STOP
CMD IF-THEN-ELSE RENAME THEN
DATA KILL RENUM TO
DELETE LIST RENUMBER TRACE OFF
ELSE LLIST RESTORE TRACE ON
END M-E RESUME TRACE
ERASE MEMORY-EXECUTE RESUMENEXT TROFF
ERL MKDIR RETURN TRON
ERR NEXT RMDIR WAIT
ERROR NOTRACE RUN WEND
ERRS$ ONERRGOTO SCRATCH WHILE
FOR . ONERROR GOTO

FUNCTIONS

Numeric functions, such as SIN, SQRT and VAL, are used nearly the same way on all the
computers discussed here. One exception is RND.

String functions are also very similar, with a few exceptions. For example, MID$ and SCREEN as

statements have radically different definitions from those they have when used as functions.

FUNCTION VOCABULARY
ABS EOF LEFT$ MKS$
ASC ERL LOC OCT$
ATN ERR LOF PDL
CDBL ERRS$ LOG PEEK
CHR$ EXP LPOS PEN
CINT FIX M-R: POINT
CcOs FRE MEM POS
CSRLIN HEX$ MEMORY-READ: PPOINT
CvD INKEY$ MID$ RIGHTS$
Cvi INP MKD$ RND
CVN INPUTS MKI$ ROW
Cvs JOYSTK MKN$ SCREEN

(Continued at top of next page.)

FUNCTION VOCABULARY (cont.)

SGN SQR STRIG TIMES
SIN STATUS STRINGS VAL
SPACE$ STICK TAN VARPTR
SPC(STR$ Ti$ VARPTR$

OPERATORS

Few differences exist among numeric operators used on the various computers. Not all systems
will perform modulo arithmetic or integer division, for example. But all systems provide the same
exponentiation, negation, addition, subtraction, multiplication and division operators.

Relational operators are the same on all computers. Logical operators NOT, AND and OR are
included on all systems, but not all use XOR, EQV and IMP. Apple, however, does not allow
bitwise manipulation with the logical operators, as the others do. Some differences exist in the
priority order of operations, so doublecheck if you are experiencing unexpected results from
operations.

BASIC OPERATORS
A Exponentiation
- Negation
* Multiplication
/ Floating-Point Division
\ Integer Division
MOD Modulo Arithmetic
+ Addition
- Subtraction
= Equality
< Less Than
> Greater Than
NOT
AND
OR
XOR
EQV
IMP
DATA TYPES ,
This section includes constants, variables, strings, numerics and arrays. Variable names must
always begin with a letter.

Apple uses floating-point numbers with nine digits of precision. Though you can use INT to get
an integer, it will still be stored as a floating point. Variable names may be any length, but only the
first two digits are significant, and they may not contain embedded key words.

IBM uses integers, single-precision numbers (seven or fewer digits of precision), and
double-precision numbers (17 digits of precision, of which 16 are printed). Variable names may be
any length, of which only the first 40 characters are significant.

21

The Commodore 64 uses floating-point numbers with nine digits of precision. Though you can
use INT to get an integer, it will still be stored as a floating point. Variable names may be any length,
but only the first two digits are significant, and they may not contain embedded key words.

The TRS-80 Model IV uses integers, single-precision numbers (seven or fewer digits of
precision), and double-precision numbers (17 digits of precision, of which 16 are printed). Variable
names may be 40 characters long, and each character is significant.

The TRS-80 Model III and TRS-80 Color Computer use integers, single-precision numbers
(seven or fewer digits of precision), and double-precision numbers (17 digits of precision, of which
16 are printed). Variable names may be any length, of which only the first two characters are
significant.

VARIABLE-TYPE VOCABULARY

CDBL CVS FIX OCT$
CHR$ DATA HEX$ OPTION BASE
CINT DEFDBL INT STR$
COMMON DEFFN LET _ STRINGS
CONCAT DEFINT MKD$ SWAP
CSNG DEFSNG MKI$ VAL
CvD DEFSTR MKN$ VARPTR
Cvi DIM MKS$ VARPTR$
CVN

MACHINE AND

MEMORY INTERFACE

The interface to the machine and memory is necessarily different on the computers. Some words
used, such as PEEK and POKE, perform the same function but require completely different
addresses. Some machines don’t allow USR (n). Some reserved words are unique to the individual
machine, such as MEMORY-EXECUTE on the Commodore 64.

In fact, you may not be able to translate a program that depends heavily on a machine or memory
interface. In such cases it may be easier to rewrite the program.

MACHINE AND MEMORY-INTERFACE VOCABULARY
B-A: BSAVE MEMORY-EXECUTE: SAVEM
B-F: CALL MEMORY-READ: SHLOAD
B-P: DEFSEG MEMORY-WRITE: SPEED=
B-R: FRE ouT STATUS
B-W: HIMEM: PCLEAR SYS
BLOAD INP PCLS SYSTEM
BLOCK-READ: LOADM PCOPY UNLOAD
BLOCK-WRITE: LOMEM: PEEK USER
BLOCK-ALLOCATE: M-E: PMODE USR
BLOCK-EXECUTE: M-R: POKE VARPTR
BLOCK-FREE: M-W: POP VARPTR$
BUFFER-POINTER: MEM PR# VERIFY

OUTPUT

This category includes commands dealing with display, sound, the printer, storage and external
communications.

DISPLAY

Some of the greatest differences among the systems under discussion concern the screen display.
Some differences exist in the way text and graphics are displayed in terms of the SYNTAX used, the
modes available, colors available, and differences in the physical size and shape of the display screen.

The Apple allows monochrome text of 40 or 80 columns by 24 rows. Low-resolution graphics
allows 40x48 pixels, with 16 colors available. High-resolution graphics offer 280x192 pixels, with six
colors available. The shape table feature allows fast DRAWing and manipulation of predefined
shapes.

The IBM PC provides both text and graphic modes. The text mode may be 40 or 80 columns by
25 rows, which may be displayed in any one of 16 foreground and eight background colors. Limited
graphics are possible on the text screen by using a set of built-in character graphics. There are
several graphics modes with various levels of resolution, but a graphics adapter card is required. A
medium-resolution graphics mode allows text on the screen, and has a resolution of 320x200 pixels
with six foreground colors available—three colors at a time—and 16 background colors. Only black
and white are available in the highest resolution—640x200 pixels. Advanced graphics features
include PAINT tiling, GETting and PUTting screen blocks, and a graphics language.

The IBM PCijr allows all of the same modes as the PC, with the addition of a 160x200 pixel
low-resolution mode (15 foreground and 16 background colors), an additional four-color
medium-resolution mode, a 16-color medium-resolution mode, and a four-color high-resolution
mode. This means that there are seven modes on the PCjr, as opposed to three on the PC. The PCjr
also allows PALETTE and PALETTE USING commands.

The Commodore 64 text mode has 24 rows of 40 columns each. Characters may be displayed in
16 colors. It has several combinations of graphics modes, including bit mapping the screen.
Resolutions available are 160x200 and 320x200 pixels. Advanced capabilities include sprites and
programmable character sets. Many of the graphics features require extensive PEEKing and
POKEing.

The TRS-80 Model III allows either 32 or 64 columns by 16 lines on the text screen. The Model
IV has 80 columns by 25 rows. The only graphics options available are block graphics characters,
although individual graphics blocks may be turned on and off. Color is not available.

The TRS-80 Color Computer provides both text and graphic modes. The text mode is 32
columns by 16 rows, which is limited to one color. Several graphics resolutions are available,
including 128x96, 128x192 and 256x192. Eight colors are available, depending on which resolution
you choose. Advanced graphics features include GETting and PUTting screen blocks, and a
graphics language.

Display Processing Commands—Those associated with display output include the following list..

DISPLAY-OUTPUT VOCABULARY

CIRCLE FLASH HLIN-AT PAGE

CLS GET HPLOT PAINT

CcMD GR HTAB PALETTE
COLOR HCOLOR INVERSE PALETTE USING
COLOR= HCOLOR= KEY PCLEAR
CSRLIN HGR LINE v PCLS

DRAW HGR2 LOCATE PCOPY
DRAWTO HLIN NORMAL PEEK

(Continued at top of next page.)

23

24

DISPLAY-OUTPUT VOCABULARY (cont.)
PEN PRINT ROT= VLIN-AT
PLOT PRINT@ SCALE VPOS
PMAP PRINT# SCALE= VTAB
PMODE PRINT#USING SCREEN WIDTH
POINT PRINT AT SCRN(WINDOW
POINTER PRINT USING SET WRITE
POKE PSET SHLOAD WRITE #
PPOINT PUT VIEW XDRAW
PR# RESET VLIN XPLOT
PRESET

SOUND

Although it has a built-in speaker, the Apple supports sound only with PEEKs and POKEs or
machine-language programs.

The IBM PC supports extensive sound capabilities through the PLAY and SOUND commands. It
too has a built-in speaker. You may also turn the cassette on and off via the cassette port, and thus
generate sound. The IBM PCjr has even greater sound capabilities, including a three-voice music
generator and a NOISE command.

The Commodore 64 supports up to four voices, but only by machine-language programming or
PEEKSs and POKEs.

The TRS-80 Model III and Model IV do not support sound, but you can turn the cassette on and
off on the Model II1. '

The TRS-80 Color Computer supports extensive sound capabilities, including a music language
used with the PLAY command. Another command, AUDIO, allows you to direct cassette output to
the monitor speaker.

Sound Processing Commands—Instructions used with sound output are in the following box.

SOUND-OUTPUT VOCABULARY

AUDIO MOTOR PEEK POKE
BEEP NOISE . PLAY SOUND

PRINTER

There are two fundamental ways computers deal with the printer—as a device or as a file.

Apple always treats it as a device. PR#1 usually sends output to the printer as well as to the screen.

IBM and the TRS-80 Color Computer will treat the printer either way. You can open it as a file or
use commands such as LPRINT, which treat it as a device.

The Commodore 64 makes no distinction between devices and files as far as PRINTing to them is
concerned. :

The TRS-80 Model III and Model IV treat the printer only as a device, accessing it with
commands such as LPRINT.

Printer Processing Commands—Those relating to the printer include all those that relate to file
output—IBM, Commodore 64 and COCO—plus the following.

MORE PRINTER VOCABULARY
CMD POSN PRINT#USING TAB
LLIST PR# PRINTUSING TAB(
LPOS PRINT ST WRITE
LPRINT PRINT@ STATUS WRITE#

LPRINT USING PRINT #

STORAGE

Methods of outputting data to cassette or disk are similar to input methods.

Commodore allows you to write directly to a specified sector of the disk using the BLOCK and
BUFFER commands. COCO allows you to do the same, but utilizes the DSK commands. In
addition, both of these and the other computers handle disk output automatically through their
DOS routines.)

See the discussion of input above, or the discussions of the commands in chapter 3, for more
details on the different file structures.

Output Storage Commands —Those relating to output to cassette and disk are in the following box.

OUTPUT VOCABULARY
APPEND CHDIR DSKI$ PRINT USING
B-A: CLOSE DSKO$ PUT
B-F: CMD ERASE PUT#
B-P: COLLECT FIELD RENAME
B-R: COPY FILES RMDIR
B-W: CSAVE KILL SAVE
BACKUP CSAVEM LOF SAVEM
BLOCK-READ: DCLOSE MKDIR SCRATCH
BLOCK-WRITE: DELETE MOTOR SYSTEM
BLOCK-ALLOCATE: DIR OPEN TAB
BLOCK-EXECUTE: DIRECTORY OUTPUT TAB(
BLOCK-FREE: DOPEN PR# STORE
BUFFER-POINTER DRIVE PRINT UNLOAD
BSAVE DSAVE PRINT # WRITE
CATALOG DSKINI PRINT#USING WRITE#

EXTERNAL COMMUNICATIONS
Outputting methods to external devices, such as modems or relays, are very diverse. The IBM
has the richest BASIC vocabulary for external output. Other computers may require

machine-language programming.

25

26

Because the IBM OPENSs the COM port as a file, all the file output commands apply. Other
commands relating to external output include the following.

AUDIO
CMD
COM

ON

EXTERNAL-OUTPUT VOCABULARY

MOTOR
OFF

ouT
PEEK
POKE

PR#
WAIT

RESERVED WORDS

Words in this list are used by various computers as reserved words. Apple and Commodore do
not allow embedded reserved words in variable names. Therefore, you should avoid using these
words in variable names.

Not all of these words are used on the machines covered in this book. But to get maximum
portability from your software, you should avoid using them.

BLOCK-READ:
BLOCK-WRITE:

BLOCK-ALLOCATE:

BLOCK-EXECUTE:
BLOCK-FREE:
BUFFER-POINTER
BOLD

BPUT

BREAK
BRIGHTNESS
BSAVE

BUTTON

BYE

CALL

CATALOG

CDBL

CH

CHAIN

CHANGE

CHARS

CHAR

CHARSIZE

CHDIR

RESERVED WORDS
CLOG CVTSF
CLOSE CVT%$

LR CVTF$
CLRDOT DASH
CLS DAT
CMD DATA
co DATES
CODE DCLOSE
COLLECT DEBUG
COLOR DEF
COLOR= DEFDBL
COM DEFFN
COMMON DEFINT

ON DEF SEG
CONCAT DEFSNG
CONSOLE DEFSTR
CONT DEFUSR
COPY DEG
COS DEGREE
COSD DEL
COSG DELETE
COSH ET
COUNT DIGITS
CSAVE DIM
CSAVEM DIR

SH DIRECTORY
CSNG DLOAD
CSRLIN DLOADM
CUR DMS
CvD DOPEN
CvI DOS
CVN DOT
Cvs DRAW
CVT$% DRAWTO

DRIVE FIELD
DS FIF
DSAVE FILE
DSKINI FILES
DSKI$ FILL
DSKO$ FIN
DSP FIND
EDIT FINPUT
ELSE FIX
END FLASH
ENTER FLOW
ENVIRON FLT
ENVIRONS FMT
EOF FN

EQ FNEND
EQV FONT
ERASE FOR
ERDEV FORMAT
ERDEV$ FOUT
ERL FPRINT
ERR FPUT
ERRL FRAC
ERRN FRE
ERROR FREE
ERRS$ FUNTIL
EXAM FU
EXCHANGE GE
EXEC GET#
EXIT GET
EXP GIN
EXT GO
FDIM GOTO
FETCH GOODBYE
FGET Gosus

(Continued at top of next page.)

GOSUB-OF
GOT

GOTO
GOTO-OF
GR

GRAD
GRAPHICS
GT

HCOLOR
HCOLOR=
HEADER
HEX$
HGR
HGR2
HIMEM:
HLIN
HLIN-AT
HOME
HPLOT
HSCRN
HTAB

IF
IF-GOT
IF-GOTO
IF-LET
IF-THE
IF-THEN
IF-THEN-ELSE
IMAGE
IMP

IN#
INCH
INCHAR
INDEX
INIT
INKEY$
INP
INPUT
INPUT#
INPUTS
INPUT1
INPUTLINE
INSTR
INT
INTERS
INVERSE
I0CTL
I0CTLS
JOYSTK
KEY
KEY$
KILL

LE

LEFT
LEFTS
LEN

LET

LGT

RESERVED WORDS (cont.)

Ll

LIN

LINE
LINEINPUT
LINE INPUT#
LINK
LINPUT
LIS

LisT

LLIST

LN

LOAD
LOADM

LPRINT
LPRINTUSING
LSET

LT

M-E:

M-R:

M-W:

MAN

MARK

MAT CON
MAT IDN

MAT INPUT
MAT INV

MAT PRINT
MAT READ
MAT TRN

MAT ZER
MAT *

MAT+

MAT-

MAT =

MAX

MDD

MEM
MEMORY-EXECUTE:
MEMORY-READ:
MEMORY-WRITE:
MERGE

MID$

MID

MIN

MKD$

MKDIR

MKI$

MKN$

MKS$

MOD

MONITOR
MOTOR
MPY
MTPACK
NAME

NE

NEW

NEX
NEXT
NOFLOW

ON ERR GOTO
ON ERROR GOTO
ONERR
ON-GOSuUB
ON-GOT
ON-GOTO

OPEN

OPTION

OPTION BASE
OR

out
OUTPUT
PADDLE
PAGE
PAINT
PALETTE
PALETTE USING
PAUSE
PCLEAR
PCLS
PCOPY
PDL
PEEK
PEN

Pl

PIN

PLAY
PLOT
PMAP
PMODE
POINT
POINTER
POKE
POLL
POP
POS

POSITION

PR#
PRECISION
PRESET
PRI
PRINT
PRINT®
PRINT #
PRINT#USING
PRINT AT
PRINT USING
ET

RANDOM
RANDOMIZE
RBYTE
RDRAW

REA

READ
READ#
RECALL
RECORD

RENUMBER
REP

REPEATS
RES
RESET
RESTORE
RESUME
RESUME NEXT
RET
RETURN
RIGHTS
RIGHT
RMDIR
RMOVE
RND
ROT=
ROTATE
ROW
RSET

RU

RUN
SAVE
SAVEM

SCALE
SCALE=
SER
SCRATCH
SCREEN
SCRN
SCRN(
SECRET
SEG$
SEG
SET
SETCOLOR
SETDOT
SGET
SGN
SHELL
SHLOAD
SHUT
SIN
SIND
SING
SINH
SKIPF
SLEEP
SNH
SORT
SOUND
SPA
SPACE$
SPACE
SPC
SPC(
SPEED=
SPUT
SQR
SQRT
ST

STATUS
STE
STEP
STICK
STO

TRACE OFF
TRACE ON
TRACE
TRAP
TROFF
TRON

VIEWPORT
VLIN
VLIN-AT
VPOS
VTAB
WAIT
WBYTE
WEAVE
WEND
WHILE
WIDTH
WINDOW
WRITE
WRITE#
XDRAW
XI0

XOR
XPLOT
XRA

27

3 Alphabetic Listing of
BASIC Words

ABS

APPLE Ile & I1+ IBM PC & PCjr COMMODORE 64
ABS (x) returns the absolute value of Same. Same.

X, where X is any numeric expression.

AND

APPLE Ile & 11+ IBM PC & PCjr COMMODORE 64

AND is a logical operator that returns
a True (1) or False (0) value based on
a bitwise computation. The truth table
for AND follows:

X y xANDy
T T T
T F F
F T F
F F F

AND is a logical operator that returns
a True (1) or False (0) value based on
a bitwise computation. The truth table
for AND follows:

x y xANDy
T T T
T F F
F. T F
F F F

AND may also be used to test for a
particular bit pattern. See page 3-28 in
the IBM BASIC documentation for a
detailed explanation.

AND is a logical operator that returns
a True (—1) or False (0) value. The
truth table for AND follows:

X y xANDy
T T T
T F F
F T F
F F F

28

APPLElle & 11+ 1BM PC & PCjr COMMODORE 64 TRS-80 Models IV& Il TRS-80 Color Computer ~ COMMENTS
CLEAR clears varisbles and rescts CLEAR Llal Ll (BASIC 20) CLR aborts &l logical files that muay CLEAR lm) La) (Model IV) where CLEAR Izl Lml where m 15 the (f 's avaiteble. you may wish lo use
taternzl control stack. where o ts the optiona} number of be open. sets all aonreserved o is an optional integer indicsting amount of stocate for [ERASE 1 clear some memory i you
bytes you wani for BASIC workspace, vartables (0 #ero, end relcases all highest memory location avatiatie —defauli=200 bysca—and @ don't wani (O lose the values stored ia
#nd e t3 the opti speccyou array spece, but does nol xffect the BASIC, &nd n is a rumeric constant. 18 tughest memory vartables, areys and DEF saiements.
destre Used slonc. CLEAR frocs all BASIC progtam (n memary. numenic of cxpeysion avetabdle for BASIC The command
memory. crawes all DIMs, DEFs and indicating the numbet of bytes (o also imsisahzes all vatiables. Note
vari values. and sets xay allocate stack (defauk this ts the opposite order of TRS-80
PEN and STRIG values to OFF. n=512). CLEAR chminsies all ModdIV
CLEAR Lia) Lad Loll (Cortridge vartables sod clases 2 fes.
BASIC Only) clears: . where o CLEAR n tModel [11) where @ is the
15 the optional number of bytes you of space to
‘workspoce. @ is the Defach=30 bytes. Note that
opiianal stack space you desire. sad v thisdoes aotaffect
wpecifics the otal number of byies 10
e aside for video memory.
slone. CLE. fr att
erases s DiMs, DEFs and varial
values, and sty any SOUND. PLAY.
PEN 2nd STRIG values 10 OFF
APPLEIle & 11+ 1BM PC & PCjr COMMODORE 64 TRS-80Models IV& 111 TRS-80 Color Computer ~ COMMENTS
LOAD causcs the next program on LOAD easl:fileaemmell Rl loads the LOAD [filexzmeil deviec].Jocation} The Model IV operates from camsetic CLOAD Ifiiename] foads & program Some computers cloac all files and re-
the cametie (0 load. Notc that (he next program on the . unkess where (Hieaame is the name of ihe file only in the Model I11 or Model 100 (rom cassetic, where fleseme isafile inilstize all varizbie values when
casscite must be roady! the optional fileasme I supplicd. In you wish 10 losd. Default on cassetle mode. The Model 100 is aot covered on the cametic: filemsme 18 wkod ©0 LOAD or CLOAD a
this case it ihe cassetie s the next fie. but the filentme must inthisbook. omitied, the oext progiam oa the program.
the oumed fite (f the R option is be spocified on disk. Device i the (Model 1) toeds.
spocified. the program i fun 435000 storage deviee—canctie |; disk =8 the next fic on caseetic into memory. CLOADM*fiiename™ Lol losds the
asioaded. default=. Loeatioa & the lype of 1 specificd. the computer machioe-lenguage
fod you wish to achieve—0 libe seerches for thet fic oo casactte. 1 the optcnal memory lo-
defuutl) toads it the stet of BASIC, gy u
1 Joads in from where i was saved. CLOAD? comperes the (e i
Files saved on cametie with @eory o the ocat fle oa ihe
relocaizble LOAD—sce SAVE—are canscite. IF the Mes do not masch bR
back igto the ssme location for bit, the word BAD s displayed 0a
teyane Thtsigaoces tbe loce- the:
Although LOAD closcs i es when
e o s, Nor sy
it variables. Nor
e —— COPY CONTINUES HERE
BASIC fincs. Remember. though, that this
&y RUNa the BASIC progazm in tochnique dears i the vridbles.
Be cureful when using LOAD (o chain T i) Loo®
B B A i
o [it must ¥ .
[y e 20 POKE 214.4’ PRINT: PRINT
quently alied. If you wish to LOAD 30 POXE 198.4: POKE 631,19
28d RUN a tonger program from & 40 70R1:2704: POKE
COLUMN ENDS HERE Yo s el P -
\m a1 in the following prognm 50 END

Sometimes, conversion information for a certain computer is so long and detailed that it won't
fit in one column. When that happens, the column ends with a solid black bar. The copy
continues under the next biack bar in a column to the right—typically the next column. See

the above illustration.

TRS-80 Models IV & III

Same.

TRS-80 Color Computer COMMENTS

Same.

TRS-80 Models IV & 111

AND is a logical operator that returns
a True (1) or False (0) value. The
truth table for AND follows:

xANDy
T

e Res R R Ko
e L Res w
esleslies|

TRS-80 Color Computer COMMENTS

AND is a logical operator that returns
a True (1) or False (0) value. The
truth table for AND follows:

xANDy

eshes K R B
es e Res o]
eslesRes oy

29

APPEND

APPLE Ile & I +

PRINT DS$;"APPEND filename"
where D$ is equal to CTRL-D or
CHRS$(4). Opens the sequential file
filename and positions the pointer at
the end of the file, so that data may be
written to it.

IBM PC & PCjr

OPEN "filename" FOR APPEND
AS #n opens the sequential data file
filename as logical file n, and posi-
tions the pointer at the end of the file.

COMMODORE 64

Although there is no documented
reference to APPEND in the Commo-
dore Model 1541 disk drive manual, it
is possible to simulate it on all current
disk drives:

10 OPENn, dv,
sa,"filename,A"

where n is the logical file number to
be written to, dv is the disk drive
device number (usually 8), sa is the
secondary address, and filename is
the name of the file. When the file is
then written to, the new data will be

inserted at the end of the file.

ASC

APPLE Ile & 11+ IBM PC & PCjr -COMMODORE 64
ASC(n$) returns the ASCII value of Same. Same.

the first character of n$, where n$ is :

any string expression except a null.

This is the reverse of CHRS.

ATN

APPLEIle & I1 + IBM PC & PCjr COMMODORE 64
ATN(x) returns the angle whose tan- Same. Same.

gent is x. The value returned is single
precision, and is measured in radians
in the range — /2 to w/2.

30

TRS-80 Models IV & III

OPEN "E", b, filename [,r1] where
"E" is required for the extend
(“append’’) mode, b is the number of
the buffer in the range 1-15, filename
is the name of the file, and rl is the
optional record length of the data
fields in filename. This file OPENing
method will cause data written to the
file to be appended to the end. Also
see OPEN for other uses of this
command.

TRS-80 Color Computer

Because COCO does not have an
APPEND mode, you must use pro-
gram lines similar to the following to
append to a file. This renames the file
with the name "TEMP.DAT",
OPENSs the file, reads it into the new
file to move the pointer to the end,
and returns you to the main program.
You can then write your data to the
file. F$ is the variable reserved for the
filename, which you must assign
before calling this routine. You must
also be sure to close the file. And, it’s
a good idea to KILL TEMP.DAT
when you’re finished.

19000 RENAME F$ TO "TEMP .DAT"
1010 OPEN"I",1, "TEMP.DAT"
1020 OPEN "0",2,F$

1930 IFEOF(1) GOTO 1070
1040 LINE INPUT #1, T$

1050 PRINT #2, T$

1060 GOTO 1030

1070 CLOSE #1

1080 RETURN

To simulate APPEND on cassette,
the entire data file must be read into
memory. Add the data to the file—be
sure to increase the record counter if
there is one—and write the file back
out to cassette.

COMMENTS

See OPEN FOR APPEND. Note that
some other BASICs not covered in
this book use APPEND as a form of
MERGE, loading a program into
memory rather than adding data to
the end of a file.

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS

Same. Same.

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS

Same. Same. ' To convert degrees (D) to radians

(R), use the following formula:

' R=D%3.141593/180

Also note that AT is used within
other commands by Apple and
TRS-80, so it should not be assigned
as a variable.

31

AUDIO

APPLEIle & I1 +

There is no way to control starting and
stopping of the cassette on the Apple.

IBM PC & PCjr

If you wish to hear audio from a

cassette, such as a tutorial tape, under

COMMODORE 64

The Commodore cassette recorder
does not allow audio recording.

Simulating AUDIO would be impossi- program control, you can leave the =~ AUDIO cannot be simulated.
ble without hardware modification. If earplug jack out of the cassette. Then
this function is desired, you need an use the following program lines to
interface with the RS232 port. operate the cassette for 60 seconds.
Adjust the time period by altering line
1020:
- 1000 MOTOR ON
1910 A=TIMER
1020 WHILE TIMER<A+60
1030 WEND
1040 MOTOR OFF
1050 RETURN
turns on automatic line-numbering. It
is not used within programs.
B-A (See BLOCK)
is a reserved word for the TRS-80
Color Computer. It is used to create
backup disks, but is not used within
BASIC programs. It would erase the
program from memory.
APPLE Ile & IT + IBM PC & PCjr COMMODORE 64
PRINT CHR$(7) causes the speaker BEEP Although there is no BEEP command

to sound 1000 Hz tone for .10
seconds.

PEEK (—16336) causes the speaker
to emit a single click.

BEEP ON (Cartridge BASIC Only)

BASIC OFF (Cartridge BASIC Only)
sounds the speaker at 800Hz for 1/4
second and is the equivalent of
PRINT CHRS$(7). In Cartridge
BASIC, BEEP may be used with
SOUND to select the active speaker:

SOUND OFF: BEEP OFF selects the

. internal speaker only.

SOUND ON: BEEP OFT selects the
external speaker only.

SOUND OFF: BEEP ON selects
both speakers (default setting).

on the Commodore 64, the following
program lines produce a similar
effect. In this subroutine, T is the
numeric value associated with the
tone (range 0-255). D is a positive
integer associated with tone duration.
1000 T=60: D=100: S=54273
1010 POKE S,T: POKE S+5,240
1020 POKE S+23,5: POKE S+3,17
1030 FOR A=1TOD: NEXT

1040 POKE S+23,0: POKES,0
1050 RETURN

B-F (See BLOCK)

- 32

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
Because the Model IV does not use AUDIO ON turns on cassette output
cassette (exgept in Model III mode), to the tv speaker.
you cannot simulate AUDIO on it. AUDIO OFF toggles it off. You must
On the Model II1, if you wish to hear use MOTOR ON to start the cassette
audio from a cassette, such as a tuto- motor. Use MOTOR OFTF to stop it.
rial tape, you can leave the earplug
jack out of the cassette. Then use the
following program lines to operate the
cassette. The cassette will continue to
operate until a key is pressed and held
for a few seconds.
1000 PRINT #-1,""
1010 I$=INKEY$: IF I$="" THEN
1000
1020 RETURN
TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
Models IV and III have no sound SOUND t,d where t is a numeric
capabilities ~ without hardware value relating to tone (range 1-255),

modification or machine-language
programming.

and d is a numeric value relating to
duration (range 1-128). You can
simulate BEEP with a tone and
duration of your choice. For example,
SOUND 200,2 is a fair representation
of BEEP.

BLOAD

APPLEIle & IT+

BLOAD filename [,An] [,Sm] [,Do]
[,Vpl where filename is a binary file,
and n is a memory address from
0-65535—for a 64K RAM ma-
chine—where the file is to be loaded.
If An is omitted, the file is loaded into
the memory address from which it
was saved. Parameter m is a slot
number (range 1-7) of the disk drive
controller. Parameter o is 1 or 2, rep-
resenting the desired disk drive.
Parameter p is the volume number of
the disk to be accessed. If omitted,
volume number is ignored. BLOAD
loads a binary file, such as a screen
image or machine-language program,
into memory,

IBM PC & PCjr

BLOAD d:filename [,offset] where
d: is the name of a storage device,
such as CASI1: or A:. Filename is the
name of the file to be loaded. Offset is
an optional offset from the memory
location defined in the most recent
DEF SEG. BLOAD loads a memory
image file, such as a machine- lan-
guage program or screen saved with
the BSAVE instruction, into a speci-
fied memory location.

Note: Because you can easily load a
program into any memory location,
be careful not to overwrite a memory
area currently used by BASIC,

COMMODORE 64

Be careful when loading a binary file,
such as a machine-language program,
from within a BASIC program. A
LOAD from within a program causes
that BASIC program in memory after
the load to RUN. Consequently, the
program may get into an infinite loop
with a line like the following:

10 LOAD "filename",8,1

where 8 is the device number and 1 in-
dicates a nonrelocatable load.

If you wish to simulate BLOAD
where the file is to be loaded into the
address from which it was saved, use
one of the following routines:
10 IF A=0 THEN A=1:
: LOAD"filename",8,1
20 REM REST OF PROGRAM HERE

The above lines must be near the
beginning of the BASIC program be-
cause the program will be reRUN
after line 10 is executed once. Because
LOAD does not clear variables, A has
the value 1 on the second time
around, so the rest of the line is not re-
executed.

If it is necessary to LOAD a binary file
from well within the BASIC program,
then use the following lines:

1000 OPENS,8,8
"filename,P,R"

1010 POKE 780,0

1020 SYS 65493

1030 CLOSE 8

1040 REM PROGRAM CONTINUES
EXECUTING FROM HERE

To simulate BLOAD where the file is
to be loaded into a memory address
different from where it was saved (a
relocatable load), use the following
routine. DV is the device number,
usually 8. SA is the decimal-starting
address at which the file "filename"
will be loaded.

10 NA$="filename":
N=LEN(NA$)

20 DV=8: SA=32768

30 FORI=1TON:
M=ASC(MID$ (NA$,TI,1)):
POKE 2023+I,M: NEXT

40 POKE 183,N: POKE
187,232: POKE 188,7

50 SH=INT(SA/256):
SL=SA-SH* 256

R

TRS-80 Models IV & II1

SYSTEM "LOADIX] filename"
(Model IV) loads the machine-
language file filename into memory.
If the X is included, it will load from a
non-system disk. The default file
extension is /CMD. Programs to be
log%%% must reside above address
x’ X

Note: Be careful to protect high
memory at the MEMORY SIZE
question when first entering BASIC
to avoid overwriting your BASIC
program. You should answer the
MEMORY SIZE question with the
highest address you want BASIC to
use. This is one byte less than the
location you intend to load your
machine-language routine into. You
can also protect high memory with the
CLEAR command.

CMD*“L” filename (Model III)
where filename is a machine-
language routine, normally created by
the DUMP command.

Note: Be careful to protect high
memory at the MEMORY SIZE
question when first entering BASIC
to avoid overwriting your BASIC
program. You should answer the
MEMORY SIZE question with the
highest address you want BASIC to
use. This is one byte less than the
location you intend to load your
machine-language routine into. You
can also protect high memory with the
CLEAR command.

An alternative scheme would be to
avoid using DUMP to save the
machine-language program. See
BSAVE. Instead, you could PEEK
the address you wish to save, convert
it with CHR$(n), and PRINT it to a
file. Simulating BLOAD would be
accomplished with a routine that
would OPEN that file for input, use
INPUT# to get each value, convert it
with ASC(n$), and then POKE it into
the appropriate memory location.

R

60 POKE 186 ,DV: POKE 185,0:
POKE 780,0

70 POKE 781,SL: POKE 782,SH

80 SYS 65493

TRS-80 Color Computer

CLOADM name [,offsetl where
name is a machine-language program
to be loaded from cassette. If offset is
omitted, the program will load as
specified in the program itself.
Otherwise, offset is added to the
loading address.

LOADM filename [,offset] loads a
machine-language program from disk.
If an extension is not specified for the
filename, BASIC uses /BIN. If the
offset address is not specified, BASIC
loads the program into the location
specified within the program.

COMMENTS

35

BLOCK-ALLOCATE, BLOCK-FREE, BLOCK-READ,

APPLEIle & II+

Not available. Cannot be simulated.

IBM PC & PCjr

Not available. Cannot be simulated.

COMMUODORE 64

PRINT#f," BLOCK-READ:"¢,d,t,b
PRINT#f," BLOCK-WRITE:"c,d,
tb

PRINT#f, "BLOCK-ALLOCATE:
"d,t,b

PRINT#f," BLOCK-FREE:"d,t,b
PRINT#f," BUFFER-POINTER:

" c l

Thiase commands allow you to read
(BLOCK-READ) and write
(BLOCK-WRITE) data directly to
disk, allocate space on a disk for data,
logically free up space for data (by
writing to the RAM, not actually
erasing), and change the location of
the data pointer.

Here, f is the number used to OPEN
the file, ¢ is the channel number, d is
the drive number, t is the track
number and b is the block number.
To use these you must OPEN the
command channel (#15) as well as
the file buffer. These are often
abbreviated with only their first
letters (B-R, B-W, B-A, B-F and
B-P). These commands may be used
from BASIC, but are most useful
when used with machine-language
programs. They are very hazardous
without careful syntax and program
structure.

For a full discussion of their proper
use, see the 1541 Disk Drive User’s
Manual, pages 26 through 33.

B-R (See BLOCK)

36

BLOCK-WRITE, BUFFER-POINTER

TRS-80 Models IV & 111

Not available. Cannot be simulated.

TRS-80 Color Computer

DSKI$ d,t,s,s18,52$
DSKO$d,t,s,s18,528

These commands allow you to read
(DSKI$) and write (DSKOS$) data
directly to the disks, where d is the
number of the disk drive, t is the track
number, and s is the sector number.
The strings to be input and output are
represented by s1$ (which will be
read from or written to the first 128
bytes of the sector) and s2$ (which
relates to the last 128 bytes of the
sector).

COMMENTS

Direct access to disk sectors is not
available from BASIC on the other
computers covered by this book. Data
is written onto the disk under the
control of the Disk Operating System.

37

BSAVE

APPLEIle & 11+

BSAVE filename ,An, Lq [,Sm] [,Dol
[,Vpl where filename is a binary file,
and n is a memory address from
0-65535—for a 64K RAM ma-
chine—where the first byte of the file
is located. Parameter q is the number
of bytes to be saved, range 0-32767.
Parameter m is a slot number, range
1-7, of the disk drive controller.
Parameter o is 1 or 2, representing the
desired disk drive. Parameter p is the
volume number of the disk to be
accessed. If omitted, the volume
number is ignored. BLOAD loads a
binary file, such as a screen image or
machine-language program,
memory.

into -

IBM PC & PCjr

BSAVE d:filename, offset, length
saves a memory-image file, where d:
is the optional device name—default
is currently logged disk drive. Offset
is a numerical offset into the location
specified in the most recent DEF
SEG, and length is a numeric expres-
sion between 1 and 65535 indicating
the length of the segment to be saved.

COMMODORE 64

The following program lines will simu-
late the BSAVE command on the
Commodore 64. In it, filename is the
name of the file, SA is the decimal
memory location where the save is to
start, and EN is the decimal memory
location where the save is to end.

10 SA=32768
20 EN=33000: EN=EN+1
30 SH=INT(SA/256):
SL=SA-SH¥* 256
40 EH=INT(EN/256):
EL=EN-EH¥* 256
50 POKE 2024 ,PEEK(43):
POKE 2028, SL
60 POKE 2025 ,PEEK(44) :
POKE 2029,SH
70 POKE 2026 ,PEEK(45) :
POKE 2030,EL .
80 POKE 2027 ,PEEK(46) :
POKE 2031,EH
90 POKE 43 ,PEEK(2028)
100 POKE 44 ,PEEK(2029)
110 POKE 45,PEEK(2030)
120 POKE 46 ,PEEK(2031) -
130 SAVE "filename",8
140 POKE 43 ,PEEK(2024)
150 POKE 44 ,PEEK(2025)
160 POKE 45 ,PEEK(2026)
170 POKE 46 ,PEEK (2027)

BUFFER-POINTER (SeeBLOCK)

B-W (See BLOCK)

38

TRS-80 Models IV & 111

SYSTEM "DUMP file$ (START =
al, END = a2, TRA = a3
LASCILETX= vl]) " (Model IV) will
DUMP a segment of memory top
disk, where file$ specifies the name
of the file to be written. Parameter al
specifies the starting address of
memory to be DUMPed, a2 specifies
the ending address, a3 specifies the
address where program execution will
start. Using ASCII specifies that the
DUMP is to an ASCII file. ETX is re-
quired when using ASCII and specifies
that the character at the end of an
ASCII file is equal to the hexadecimal
value v. Control will return to your
BASIC program after the DUMP is
executed.

CMD"I" , "DUMP file$ (START
= a1, END = a2, TRA = a3, RELO
= a4)" (Model III) will DUMP a
ment of memory to disk, where file$
specifies the name of the file to be
written. Parameter al specifies the
starting address of memory to be
DUMPed, a2 specifies the ending
address, a3 specifies the address
where program execution will start.
Parameter a4 specifies the start ad-
dress at which the program is to be
reloaded. However, you will not
return to BASIC after the DUMP is

executed. You will be left in TRS-
]

TRS-80 Color Computer

CSAVEM filename, start, end,
offset saves a machine-language pro-
gram on cassette specified in the
filename, starting at memory address
start and ending at memory address
end. Offset is the actual memory ad-
dress at which execution will start.

SAVEM filename, start, end, trans-
fer saves a machine-language pro-
gram on the disk drive specified in the
filename, starting at memory address
start and ending at memory address
end. Offset is the actual memory ad-
dress at which execution will start.

L]
DOS. Your BASIC program may or
may not still be available using the
BASIC* command.

An alternative scheme on either
computer would be to avoid using
DUMP to save the machine-language
program. Instead, you could PEEK
the addresses you wish to save by
using a loop. Then convert the values
returned with CHR$(n), and PRINT
them to a file. Simulating BLOAD
would be done with a routine that
would OPEN that file for input. Use
INPUT# to get each value, convert it
with ASC(n$), and then POKE it into
the appropriate memory location.

COMMENTS

39

CALL

APPLE Ile & I1 +

CALL n where n is a decimal numeric
expression in the range of
—65535-65535, representing a
memory location. CALL causes exe-
cution of the machine-language rou-
tine at memory location n.

IBM PC & PCjr

CALL nl(x1 [,x2l...)] where n is the
name of a numeric variable and x1,
x2... are names of variables to be
passed as arguments to a machine-
language routine. CALL executes a
machine-language subroutine at the
location specified by the most recent
DEF SEG and the offset defined by
variable n.

COMMODORE 64

SYS n where n is decimal numeric ex-
pression the range 0-65535 represent-
ing a memory location. The command
causes execution of the machine-
language routine starting at memory
location n.

MEMORY-EXECUTE calls ma-
chine-language code that is present in
the 1541 disk drive’s RAM or ROM.
Because memory maps of the 1541°s
operating system are not widely
available, this kind of code is rare. In
the example below, SA is the start
address in decimal of the
machine-language code to be
executed. L and H are the low and
high bytes of SA when written in
hexadecimal:

10 SA=60064 :H=INT(SA/256)
:L=SA-H*256

20 OPEN15,8,15

30 PRINT#15,
"M-E"CHR$ (L)CHR$ (H)

49 CLOSE 15

You can also use a MEMORY-
WRITE command to write code to the
1541 RAM.

CATALOG

APPLEIle & 11+

CATALOG [,Ssll,Dd]l where s speci-
fies slot number 1-7 and @ specifies
drive 1 or 2. CATALOG will display
the directory of the specified drive. It
may be used in the programming
mode when preceded by CHR$(4). If
the drive number is omitted, the most
recently selected drive will be used.
The code format is:

10 PRINT CHR$(4) ;
"CATALOG,S6,D2"

If the catalog listing is too long to fit
on one screen, it will halt at the end of
each screenful. Listing continues
when the user presses any key.

IBM PC & PCjr

FILES [filenamel lists the name of
the file specified. If the optional file-
name is omitted, all files are listed.
You can use the wildcards % and ? to
obtain a list of all files that satisfy a
particular pattern. You can also specify
a drive other than the default. In
BASIC 2.0 or Cartridge BASIC,
FILES can also contain a path
command, which cannot be simulated
on any other machine,

Use of this command in Cartridge
BASIC will result in an ILLEGAL
FUNCTION CALL if DOS 2.1 is not
present. '

Command DIR is used in DOS only.

COMMODORE 64

Although there is no command in
Commodore 64 BASIC to obtain a
catalog (directory), the following pro-
gram lines produce a similar effect.
However, they will cause the directory
to replace the current program in
memory. If you need a program that
reads the directory without destroying
the program in memory, see the 1541
Disk Drive User’s Manual, page 47.

100 POKE 631,19: POKE
632,13: POKE 633,13
POKE 198,3

110 PRINT CHR$(147) "LIST"

120 LOAD "$",8: END

40

TRS-80 Models IV & 111

CALL n [,a L,b,...]1l where n is a non-
array variable specifying the beginning
address of the machine-language su-
broutine being called, and a, b,... are
variables representing parameters
passed to the machine-language
routine.

TRS-80 Color Computer

EXEC [n] transfers control to the .

machine-language program at mem-
ory location n. If n is omitted, it as-
sumes the address specified at the last
CLOAD.

COMMENTS

Also see the USR function and
VARPTR.

The primary difference between USR
and CALL is the ability to pass multi-
ple arguments or parameters to the
machine-language routine using
CALL. In addition, CALL does not
require POKEing the address of the
routine, but rather specifies it in the
CALL statement.

The method of passing parameters to
the machine-language routine varies
from machine to machine. IBM
passes parameters through its stack,
while TRS uses registers HL, DE and
BC. Consult the manuals for a more
detailed explanation.

TRS-80 Models IV & 111

SYSTEM "DIR:d" (Model IV) will
display the directory of disk drive d,
then continue program execution.
The drive number is not optional.

CMD"D:d" (Model III) will display
the directory of drive d, then continue
program execution. The drive
number is not optional.

TRS-80 Color Computer

DIR [d] where d specifies the drive
number to be accessed. The command
will display the directory of the speci-
fied drive, then continue program
execution.

COMMENTS

41

CDBL

APPLE Ile & I1 +

Because Apple allows up to nine digits
of precision for floating-point
numeric constants, CDBL is not
available and cannot be simulated,

IBM PC & PCjr

CDBL(n) where n is any numeric
expression. CDBL converts n to a
double-precision number having 17
digits of precision, of which 16 are
printed. Note that not all the digits
will be accurate because not all were
supplied with n.

COMMODORE 64

Because Commodore allows up to
nine digits of precision for
floating-point numeric constants,
CDBL is not available and cannot be
simulated.

CHAIN

APPLE Ile & I1 +

Applesoft BASIC does not use
CHAIN. Simulate it with the following
procedure:

Protect high memory by using the
HIMEM instruction. Then POKE the
common variables into the protected
memory. Use RUN (or MERGE and
then RUN) to start the new program.
Then PEEK the variables back into
the program out of high memory.

CHAIN filename [,Ssl[,Ddll, Vvl
(Integer BASIC Only) where filename
is the name of the file, s is the
number of the slot, d is the number of
the disk drive, and v is the volume
number of the disk. CHAIN loads and
runs the specified program, maintain-
ing the variables and arrays from the
previous program.,

IBM PC & PCjr

CHAIN filename [linel [ALLI
causes the program filename to be
run beginning with the line number
specified, and with all variables the
same as in the program currently in
memory. If the line number is
omitted, the execution begins with
the first line of the new program. If
ALL is omitted, then the original pro-
gram must have a COMMON
statement.

Use of this command in Cartridge
BASIC will result in an ILLEGAL
FUNCTION CALL if DOS 2.1 is not
present.

CHAIN MERGE filename
LDELETE range]l merges the new
program with the current one, option-
ally DELETing some lines of the cur-
rent one. This is different from
MERGE in that it executes the pro-
gram after merging it. The range
option allows you to indicate which
lines to delete, using the same format
you would use with the LIST
command. By using the MERGE
option, the OPTION BASE setting
and all user-defined functions and
variable types—such as DEFINT,
DEFSNG, DEFDBL, DEFSTR and
DEF FN-—are preserved. Otherwise,
they would have to be restated.
CHAIN also causes a RESTORE to be
executed, so a READ statement will
read the first data item, not the next
one.

COMMODORE 64

LOAD [filenamell,devicell,location]
where filename is the name of the file
you wish to load. Default on cassette
is the next file, but the file name must
be specified on disk. Device is the
storage device—cassette=1, disk=38,
default=1. Location is the type of
load you wish to achieve—0 (the
default) loads in at the start of BASIC;
1 loads in from where it was saved.

Files saved on cassette with a non-
relocatable load—see SAVE—are
loaded back into the same location
they came from and ignore the loca-
tion direction. Although LOAD
closes all files, when used as a state-
ment within a program it does not
clear variables. Nor does it reset the
BASIC memory pointers.

After the load is complete, it auto-
matically RUNs the BASIC program
in memory. Be careful when using
LOAD to chain BASIC programs.
The first program that has the initial
LOAD in it must be longer than any
of the programs subsequently called.
However, some variable declarations
may be lost, so you should redeclare
the variables in the chained program.
With this in mind, you can use LOAD
similarly to CHAIN.

42

TRS-80 Models IV & I11

CDBL(n) where n is any numeric
expression, CDBL converts n to a
double-precision number having 17
digits of precision, of which 16 are
printed. Note that not all the digits
will be accurate because not all were
supplied with n.

TRS-80 Color Computer

Because the COCO allows only up to
nine digits of precision for
floating-point
CDBL is not available and cannot be
simulated.

numeric constants,,

COMMENTS

TRS-80 Models IV & 111

CHAIN filename [1line] [,ALL]
(Model IV) causes the program file-
name to be run beginning with the
line number specified, and with all
variables the same as in the program
currently in memory. If the line
number is omitted, execution begins
with the first line of the new program.
If ALL is omitted, then the original
program must have a COMMON
statement.

CHAIN MERGE filename
LDELETE rangel (Model 1IV)
merges the new program with the cur-
rent one, optionally DELETing some
lines of the current one. This is dif-
ferent from MERGE in that it exe-
cutes the program after merging it.
The range option allows you to indi-
cate which lines to delete, using the
same format you’d use with the LIST
command. By using the MERGE
option, you preserve the OPTION
BASE setting and all user-defined
functions and variable types—such as
DEFINT, DEFSNG, DEFDBL,
DEFSTR and DEF FN. Otherwise,
they would have to be restated.
CHAIN also causes a RESTORE to be
executed, so a READ statement will
read the first data item, not the next
one.

CHAIN is not available on the Model
III, but can be simulated. First, protect
high memory when you encounter
the MEMORY SIZE question when
entering BASIC. Then POKE the
variables to be common into the pro-
tected memory. Use RUN (or
MERGE and then RUN) to start the
new program, then PEEK the varia-
bles back into the program out of high
memory.

TRS-80 Color Computer

Not available on the COCO, but
CHAIN can be simulated by protect-
ing a portion of memory using the
CLEAR command. Then POKE the
variables to be common into the pro-
tected memory. Use RUN (or
MERGE and then RUN) to start the
new program. Then PEEK the varia-
bles back into the program out of pro-
tected memory.

COMMENTS

The CHAIN instruction leaves files
open. Also see MERGE.

CHDIR

APPLEITe & I1 +

Not available. Cannot be simulated.

IBM PC & PCjr

CHDIR path where path is a string
constant not more than 63 characters
long specifying the new directory that
becomes the current directory.
CHDIR is used by IBM only—and
only in DOS versions 2.0 and 2.1.

Use of this command in Cartridge
BASIC will result in an ILLEGAL
FUNCTION CALL if DOS 2.1 is not
present.

COMMODORE 64

Not available. Cannot be simulated.

CHRS

APPLEIle & I1 +

CHR$(n) where n is an ASCII code
in the range 0-255. CHRS returns the
character represented by ASCII code
n

IBM PC & PCjr

CHRS$(n) where n is an ASCII code
in the range 0-255. CHRS returns the
character represented by the ASCII
code n.

COMMODORE 64

CHRS$(n) where n is an ASCII code
in the range 0-255. CHRS returns the
character represented by the ASCII
code n. Some non-standard CHR$
codes that occur frequently in Com-
modore 64 program listings are listed
below:

CHR$(14)
CHR$(17)
CHR$(18)
CHR$(19)

CHR$(20)
CHR$(29)
CHR$(142)
CHR$(145)
CHR$(146)

Switch to lower case
Move cursor down
Switch reverse on
Move cursor to home
position
Delete a character
Move cursor right
Switch to upper case
Move cursor up
Switch reverse off
CHR$(147) Clear screen and move
cursor home
CHR$(148) Insert a character
CHR$(133) to CHR$(140)
Refer to function keys

fltof8
CHR$(96) to CHR$(127)
Refer to graphics
characters
CHR$(161) to CHR$(191)
Refer to graphics
characters

CINT

APPLE Ile & IT1+
Not available. Use INT instead.

IBM PC & PCjr

CINT (m) where n is a numeric
expression between -—32768 and
32767. Converts n to an integer by
rounding.

COMMODORE 64
Not available. Use INT instead.

TRS-80 Models IV & 111
Not available. Cannot be simulated.

TRS-80 Color Computer COMMENTS

Not available. Cannot be simulated.

TRS-80 Models IV & I11

CHRS$(n) where n is an ASCII code
in the range 0-255. CHRS returns the
character represented by the ASCII
code n.

TRS-80 Color Computer COMMENTS

CHR$(m) where n is an ASCII code
in the range 0-255. CHRS returns the
character represented by the ASCII
code n.

TRS-80 Models IV & 111

CINT (n) where n is a numeric
expression between —32768 and
32767. Converts n to an integer by

rounding.

TRS-80 Color Computer COMMENTS

Not available. Use INT or FIX Ifnis
instead. positive

CINT Rounds up
FIX Truncates
INT Truncates

Ifnis
negative

Rounds up
Truncates
Rounds up
(negatively)

CIRCLE

APPLE Ile & I+

Not available. Simulate it with the fol-
lowing routine. You must define the
following variables before entering
the routine:

X x coordinate of the center.
Range 0-279.
Y .y coordinate of the center.
Range 0-159
Radius of the circle measured in
screen points.
Color of the circle. Range 0-7.
Numeric expression affecting
the aspect ratio. AR=3/4 is a
circle. AR>3/4 draws an ellipse
with the major axis axis in the y
direction. AR<3/4 yields an el-
lipse with its major axis in the x
direction.
You cannot specify a circle or arc that
would lie outside the range of the
screen, or you will get an ILLEGAL
QUANTITY error. Get semicircles by
manipulating the loops in lines 140
and 200. Get quarter circles by mani-
pulating lines 150, 170, 210 and 230
gg)(;lg with the loops in lines 140 and

R
C
AR

130 HGR:HCOLOR=C: RA=1/AR

140 FOR I=X-R TO X+R

150 H=I: V=Y+SQR((RA2) -
(H-X)A2)*AR

160 HPLOTH,V

170 H=I: V=Y-SQR((R*2) -
(H-X)A2)*AR

180 HPLOTH,V

190 NEXT I

200 FORI=Y-R¥*AR TO Y+R¥AR

210 V=I: H=X+SQR (ABS((R"2) -
(RA% (V-Y))~2))

220 HPLOTH,V

230 V=I: H=X-SQR (ABS((R*2) -
(RA% (V-Y))A2))

240 HPLOTH,V

250 NEXT I

IBM PC & PCjr

CIRCLE((x,y),rl,colorl,start,endl,as

pectll]l draws a circle, arc or ellipse
where x and y are the coordinates of
the center of the circle or ellipse, and
r is the radius measured in screen
points. Color is a an optional number
whose range depends on the screen
chosen. See COLOR. Start and end
are angles measured in radians in the
range of —2%a to 2%, which indi-
cate the start and end of an arc.

Aspect is a numeric expression. If it is
5/6 in medium resolution or 5/12 in
high resolution, a circle is drawn. If
aspect is less than 1, then r is the x
radius. If aspect is greater than 1,
then ris the y radius.

COMMODORE 64

Not available. Simulate it with the fol-
lowing routine. You must define the
following variables before entering
the routine:

X x coordinate of the center.

Range 0-319.

Y y coordinate of the center.
Range 0-199

R Radius of the circle measured in
screen points.

AR Numeric expression affecting

the aspect ratio. AR=3/4 is a
circle. AR>3/4 draws an ellipse
with the major axis in the y
direction. AR<3/4 yields an el-
lipse with its major axis in the x
direction.
You must also call a high-resolution
screen routine, such as the one listed
at HGR. Subroutine 1000 should be a
routine that will set individual points,
such as those listed at HPOINT. Get
semicircles by manipulating the loops
in line 310 and 370. Get quarter circles
by manipulating lines 320, 340, 370
and 400 along with loops in lines 310
and 370.

100 REM HIGH RES SCREEN
LOADER GOES HERE (SEE
HGR)

300 RA=1/AR: REMX,Y,R AND AR
MUST BE LOADED BEFORE
THIS LINE

310 FORI=X-R TOX+R

320 H=I: V=Y+SQR((R*t2) -
(H-X)12)*AR

330 GOSUB 1000

340 H=I:V=Y-SQR((Rt2)-
(H-X)*t2)*AR

350 GOSUB 1000

360 NEXT I

370 FORI=Y-R¥AR TOY+R¥*AR

380 V=I: H=X+SQR (ABS((R12) -
(RA% (V-Y))12))

390 GOSUB 1000

400 V=I: H=X-SGR (ABS((Rt2) -
(RA¥% (V-Y))t2))

410 GOSUB 1000

420 NEXT I

430 REM PROGRAM CONTINUES
HERE

1000 REM PLOTTING SUBROUTINE
HERE (SEE HPOINT)

46

TRS-80 Models IV & I1I

Not available and cannot be easily
simulated on the TRS-80 Models IV
or III. They do not support high-
resolution graphics.

TRS-80 Color Computer

CIRCLE (x,y),rl,c,hw,start,end]
draws an ellipse, circle or arc with a
centerpoint at (x,y). Parameter x has
range of 0-255; y has range of 0-191.
Parameter r is the radius of the circle
measured in screen-position points.
Parameter ¢ is the optional color
number in the range of 1-8, with the
default as the current foreground
color. Parameter hw is the optional
height/width ratio and is a numeric
expression in the range of 0-255
(default=1). Start and end are the
optional starting and stopping points
for an arc. The range for each is 0-1,
with the default for start being 0 (the
three o’clock position) and the
default for end being 1 (also the three
o’clock position).

COMMENTS

To convert degrees (D) to radians
(R), use the following formula:

R=D#%*3.141593/180

47

CLEAR

APPLEIle & I1 + IBM PC & PCijr COMMODORE 64
CLEAR clears variables and resets CLEAR [LIn]l [mll (BASIC 2.0) CLR aborts all logical files that may
internal control stack. where n is the optional number of sets all nonreserved

bytes you want for BASIC workspace,
and m is the optional stack space you
desire. Used alone, CLEAR frees all
memory, erases all DIMs, DEFs and
variable values, and sets any sound,
PEN and STRIG values to OFF.

CLEAR [,n] [,m]l Lvll (Cartridge
BASIC Only) clears memory, where n
is the optional number of bytes you
want for BASIC workspace, m is the
optional stack space you desire, and v
specifies the total number of bytes to
set aside for video memory. Used
alone, CLEAR frees all memory,

erases all DIMs, DEFs and variable -

values, and sets any SOUND, PLAY,
PEN and STRIG values to OFF.

be open,
variables to zero, and releases all
array space, but does not affect the
BASIC program in memory.

CLOAD

APPLEIle & 11+

LOAD causes the next program on
the cassette to load. Note that the
cassette must be ready!

IBM PC & PCjr

LOAD casl:[filename][,R] loads the
next program on the cassette, unless
the optional filename is supplied. In
this case it searches the cassette for
the named file. If the R option is
specified, the program is run as soon
as loaded.

COMMODORE 64

LOAD [filenamel[,devicell,location]
where filename is the name of the file
you wish to load. Default on cassette
is the next file, but the filename must
be specified on disk. Device is the
storage device—cassette=1; disk=3$;
default=1. Location is the type of
load you wish to achieve—0 (the
default) loads in at the start of BASIC;
1 loads in from where it was saved.
Files saved on cassette with a non-
relocatable LOAD-—see SAVE-—are
LOADed back into the same location
they came from. This ignores the loca-
tion direction.

Although LOAD closes all files when
used as a statement within a program,
it does not clear variables. Nor does it
reset BASIC memory pointers. After
the LOAD is complete, it automatical-
ly RUNs the BASIC program in
memory.

Be careful when using LOAD to chain
BASIC programs. The first program
that has the initial LOAD in it must
be longer than any programs subse-
quently called. If you wish to LOAD
and RUN a longer program from a
shorter one, use the dynamic key-
board as in the following program
. |

TRS-80 Models IV & 111

CLEAR [,m] [,n] (Model IV) where
m is an optional integer indicating the
highest memory location available to
BASIC, and n is a numeric constant,
numeric variable or expression
indicating the number of bytes to
allocate for stack storage (default

=512). CLEAR eliminates all
variables and closes all files.

CLEAR n (Model III) where n is the
amount of space to reserve for string
storage. Default=>50 bytes. Note that
this does not affect files.

TRS-80 Color Computer

CLEAR [n]l Lm] where n is the
amount of space to allocate for string
storage—default=200 bytes—and m
is the highest memory location
available for BASIC. This command
also initializes all variables. Note that
this is the opposite order of TRS-80
Model IV.

COMMENTS

If it’s available, you may wish to use
ERASE to clear some memory if you
don’t want to lose the values stored in
variables, arrays and DEF statements.

TRS-80 Models IV & 111

The Model IV operates from cassette
only in the Model III or Model 100
mode. The Model 100 is not covered
in this book.

CLOAD I[filename] (Model III) loads
the next file on cassette into memory.
If filename is specified, the computer
searches for that file on cassette.

CLOAD? compares the file in
memory to the next file on the
cassette. If the files do not match bit
for bit, the word BAD is displayed on
the screen.

lines. Remember, though, that this
technique clears all the variables.

10 PRINT CHR$(147) "LOAD"
CHR$(34)"filename"
CHR$(34)",8"

20 POKE 214,4: PRINT: PRINT
”RUN"

30 POKE 198,4: POKE 631,19

40 FORI=2TO4: POKE
630+I,13: NEXT

50 END

TRS-80 Color Computer

CLOAD [filename] loads a program
from cassette, where filename is a file
on the cassette. If filename is
omitted, the next program on the
cassette is loaded.

CLOADM "filename" [,n] loads the
machine-language file filename,

beginning at the optional memory lo-
cation offset n.

COMMENTS

Some computers close all files and re-
initialize all variable values when
asked to LOAD or CLOAD a
program.

CLOSE

APPLEITe & I1+

PRINT D$;"CLOSE filename"
closes the sequential file filename,
where D$=CHR$(4). Apple does not
use éile numbers as the other comput-
ers do.

IBM PC & PCjr

CLOSE [[#filell,I#Ifile2]...] where
filel, file2,... are file numbers of files
previously OPENed. If the optional
file numbers are omitted, all files are
closed. # signs are also optional. If
any data is still stored in the file
buffer, it is written to the file before
the file is CLOSEd. END, NEW,
RESET, SYSTEM or RUN without
the R option will also close all files.

COMMODORE 64

CLOSE n where n is the number of a
file or device previously OPENed.
Any data stored in the buffer is
written to the file before it is CLOSEd.

SYS 65511 closes all open files.

CLR (SeeCLEAR)

CLS

APPLEIle & II+

HOME clears the text
window—which may or may not be
the entire screen—and moves the
cursor to the upper-left corner,

IBM PC & PCjr

CLS clears the screen and moves the
cursor to the home position. In text
mode, home is the upper-left corner
of the screen. In graphics mode,
home is the center of the screen.

If you are using a viewport defined
with the VIEW command, only the
viewport will be affected, and the
cursor will be centered in the
viewport. To clear the whole screen in
such a case, use VIEW without any
parameters. Then use CLS.

COMMODORE 64

PRINT CHRS$(147); clears the
screen and moves the cursor to the
upper-left corner.

CMD

APPLEIle & 11+
See PR#,

IBM PC & PCjr
See LPRINT or LLIST.

COMMUODORE 64

CMDn redirects output to the pre-
viously OPENed device mn—range
1-255—instead of to the monitor. It is
deactivated by PRINT#n, a process
called unlistening by Commodore. It is
most commonly used to redirect
output to the printer, device #4.

This effect is achieved on other
computers by using PR# (Apple) or
by using LPRINT or LLIST.

50

TRS-80 Models IV & III

TRS-80 Color Computer COMMENTS
CLOSE [nl,n..]J1 where n is a CLOSE [#nl closes all communica-
number of an open file range of 1-15. tions to buffer n. If n is omitted, all
If n is omitted, all OPEN files are OPEN files are CLOSEd. The follow-
CLOSEd. ing are possible buffers:

n=1-15 File opened with that

number
=0 Screen or Keyboard

n=—1 Cassette ‘

n=-—2 Printer
TRS-80 Models 1V & I11 TRS-80 Color Computer COMMENTS

CLS clears the screen and moves the
cursor to the upper-left corner.

CLS [(@)] where m is a numeric
expression (range 0-8) specifying
screen color. Clears the screen to the
specified color. Default is green,
Possible values for n are listed below;

0 Black
1 Green
2 Yellow
3 Blue
4 Red
S Buff
6 Cyan
7 Magenta
8 Orange
TRS-80 Models 1V & 111 TRS-80 Color Computer

Not available on the Model IV.
Output can be redirected to the printer
with LLIST or LPRINT.

CMD"A" (Model IN) causes the
computer to return to DOS and dis-
play the message OPERATION
ABORTED. This is similar to
SYSTEM on most other computers.

CMD"B","switch" (Model III)
where switch is either "ON" or
"OFF" —switch must be enclosed in
quotation marks. CMD"B" toggles
the break key on or off. BASIC pro-
gram execution will continue after
using CMD"B". There is no com-

Not available. Cannot be simulated,

mand to achieve this on other
computers, but might be possible
with POKEs if you can determine the
location to POKE for your computer.
For example, CTRL-BREAK is dis-
abled on the IBM PC with the
following: ‘

10 DEF SEG=0 : POKE
&H6C,&H53: POKE
&H6D,&HFF : POKE
&H6E,&HO0: POKE
&H6F ,&HF0 : DEF SEG

R

CMD"C"L,option] (Model IID)
where option is either "R" (to
remove remarks only) or "S" (to -
remove spaces only). If option is
omitted, both remarks and spaces will
be removed from the BASIC program
in memory. BASIC program execu-
tion will continue after using
CMD"C". This command cannot be
easily simulated from within a BASIC
program on other computers. But
there are commercial utilities available
for most other computers that will do
this from outside the program.

. -]

51

CMD (cont.)

TRS-80 Models IV & III

CMD"D:d" (Model III) where
parameter d specifies a currently con-
nected disk drive number,
CMD"D:d" will display the directory
of the specified drive. Note that the
drive specification is not optional.
BASIC program execution will con-
tinue after using CMD"D". See
CATALOG, DIR and FILES for
explanations of how this is accom-
plished on other computers.

CMD"I",command (Model III)
where command is a legal DOS com-
mand or a Z-80 program name,
CMD"I" will exit BASIC and execute
the specified command. If the com-
mand does not overlay BASIC, you
will be returned BASIC. Otherwise,
you will remain in DOS.

This instruction is similar to SYSTEM
on the TRS-80 Model IV; to PRINT
CHR$(4);"command" on the Apple;
to POKEing the keyboard buffer on
the IBM PC; or to using the dynamic
keyboard of the Commodore 64. Any
disk-operating commands may be
issued from a BASIC program on the
COCO, but the program may or may
not be left in memory afterward,
depending on the command.

CMD"J",s,d (Model III) where s
specifies the source date, and d speci-
fies the destination date. This com-
mand converts Julian dates to stan-
dard dates and vice-versa. The source
date must be in the form mm/dd/yy
for standard-to-Julian conversion, or
. -yy/ddd for Julian-to-standard
conversion. Note that specification of
a Julian date requires a leading
hyphen. BASIC program execution
will continue after using CMD"J".

Other computers covered in this book
have no equivalent to CMD"J".

However, a program could be written
<0 do the same thing.

CMD"L" filename (Model III)
where filename is a machine-language
routine or program. This command
will load the specified file into
memory. If the loaded file does not
overlay BASIC or TRSDOS, control
will be returned to BASIC. See
BLOAD for a discussion of how this
is accomplished on other computers.

CMD"O",n,array(start) (Model
III) will sort an array, where n speci-
fies the number of items to be sorted,
array is the variable name of the array
to be sorted, and start specifies the
array element to be the first element
sorted. BASIC program execution will
continue after using CMD"O".

The other computers covered in this
book do not have built-in sort
routines. There are many possible
ways of writing sort routines for each
of them.

CMD"P",status (Model III) returns
information about the printer, where
status is a string variable that will re-
ceive the returned status from the
printer. CMD"P" will return dif-
ferent values for different printers.
The string variable status may be
examined by the program for an ex-
pected value, such as a value repre-
senting "printer ready." BASIC pro-
gram execution will continue after
usingCMD"P".

CMD"R" (Model III) causes the
real-time clock to be displayed in the
upper-right corner of the screen and
updated every second. The clock is
turned off by the command
CMD"T". BASIC program execution
will continue after using CMD"R".
There is no way to easily simulate this
as a background task from BASIC on
any other computer, but there are
utilities commercially available that
do this on the IBM PC.

DYNAMIC KEYBOARDS

CMD"S" (Model III) causes the
computer to exit BASIC and return to
DOS. This is similar to SYSTEM on
other computers. See SYSTEM.

CMD"T" (Model III) turns off the
clock display. See CMD"R". BASIC
program execution will continue after
using CMD"T".

CMD"X" target (Model III) cross-
references the program in memory,
listing all occurrences of the target
variable. If the target variable is a re-
served word—such as INPUT-—it
must not be enclosed in quotation
marks. If the target variable is a literal
string, it must be enclosed in quota-
tion marks. No other computers cov-
ered in this book have this as a resi-
dent command, nor can it be simulat-
ed without extensive code. Most
computers have commercially availa-
ble utilities that do this.

CMD"Z","switch" (Model III)
where switch is either "ON" or
"OFF" —which must be enclosed in
quotation marks. CMD"Z","ON"
causes all output going to the screen
to also go to the printer, and vice-
versa. CMD"Z","OFF" causes this
echoing to stop. BASIC program exe-
cution continues after using
CMD"Z".

On the Apple, you can have simulta-
neous output to the screen and the
printer by specifying PR#n, where n
is the number of the slot where the
printer card resides—usually #1.
Echoing is disabled by PR#0.

You can redirect output to other
devices on the Commodore 64 with
the CMDn command, but simuitane-
ous output is not available on it or the
TRS-80 Models IV or I11.

The Commodore 64 has a keyboard buffer that can be loaded with characters from within a
program. When the program ends, these characters are printed on the screen and can be used to
execute commands not usually available from within a program. You can get some very unusual
and sophisticated effects this way. Some include programs that create or destroy their own lines
while running, and programs that exit to the command level, then return to the program.

(Continued at top of next page.)

52

DYNAMIC KEYBOARDS (cont.)

The memory locations usually used by this technique are 198 (which contains the number of
characters in the keyboard buffer) and 631 to 641 (the keyboard buffer that contains the ASCII
codes of the keys to be printed). Here is a very simple example to demonstrate using this
technique.

10 REMTHIS LINEWILL BEDELETED

20 PRINTCHR$ (147) "10" :REMCLEARS SCREEN AND PRINTS 10 AT HOME
POSITION

3¢ POKE 198, 2: POKE631,19: POKE 632,13

49 END

When this program is RUN the screen is cleared, and the number 10 is printed in the home
position. Two characters—*“move cursor to home” and a carriage return—are then placed in the
keyboard buffer. When the program ends, these characters are printed on the screen, which
gauses t!he cursor to be moved over the 10 already there. When the program is LISTed, line 10 will

e gone

The IBM PC also allows access to the keyboard buftfer. You can read or change the status of
several important keys, clear the buffer, or plug values into the buffer. The values you plug into the
buffer will be retrieved the next time you allow keyboard access, such as when using INKEY$ or
when returning to the command mode.

The following PEEKs and POKESs let you toggle the keys as indicated. You must declare DEF
SEG =64 before using them.

POKE 23, (PEEK(23) OR 64) turns CAPS LOCKon
POKE 23, (PEEK(23) AND 191) turns CAPS LOCK off
POKE 23, (PEEK(23) OR 32) turns NUM LOCK on
POKE 23, (PEEK(23) AND 223) turns NUM LOCK off
POKE 23, (PEEK(23) OR16) turns SCROLL LOCK on
POKE 23, (PEEK(23) AND 239) turns SCROLL LOCK off
POKE 23, (PEEK(23) OR128) turnsINSon

POKE 23, (PEEK(23) AND 127) turns INS off

POKE 23, (PEEK(23) OR 8) turns ALT on

POKE 23, (PEEK(23) AND 247) turns ALT off

POKE 23, (PEEK(23) OR4) turns CTRL on

POKE 23, (PEEK(23) AND 251) turns CTRL off

POKE 23, (PEEK(23) OR 2) turns LEFT SHIFT on
POKE 23, (PEEK(23) AND 253) turns LEFT SHIFT off
POKE 23, (PEEK(23) OR 1) turns RIGHT SHIFT on
POKE 23, (PEEK(23) AND 254) turns RIGHT SHIFT off
POKE 26, (PEEK(28)) Clears the keyboard buffer

You can send characters to the keyboard buffer with the following code:

1000 REM SUBROUTINE TO PUT CHARACTERS INTO KEYBOARD BUFFER

1010 DEF SEG=0 '

1029 X=LEN(a$) : REMa$ SHOULD BE DEFINED BEFORE THIS ROUTINE. IT IS WHAT
YOU ARE GOING TO SEND TO THE BUFFER

1030 POKE1050,30 : POKE1052,30+(X%*2) : REMTELLS BUFFER HOW MANY
CHARACTERS TO EXPECT

1040 FORI=1TOX¥2STEP2

1050 POKE 1653+I,ASC(MID$(a$,(I+1)/2,1))

1060 NEXTI

1070 RETURN

If you want the buffer to include a carriage return, you should include this line:
1015 a$=a$+CHR$(13)

If you know exactly what you wish to put in—instead of using a$—you could greatly simplify the
routine. In the example below, the command RUN followed by a carriage return is sent to the buffer.

1000 REM SUBROUTINE TO PUT RUN AND CARRIAGE RETURN INTO THE BUFFER
1010 DEF SEG=0: POKE 1050,30: POKE 1052, 38

1020 POKE 19054,82: POKE1056,85: POKE 1058,78: POKE 1060,13

1930 RETURN

COLOR, COLOR =

APPLEIle & II+

QOLOR=n sets the color for plotting
in low-resolution graphics. Parameter
1 is a numeric expression in the range
0-255 modulo 16. If n is a real
number, it is converted to an integer
before the modulo arithmetic is
performed. Possible values for n are
as follows:

0 Black 8 Brown
1 Magenta 9 Orange
2 Dark blue 10 Grey
3 Purple 11 Pink
4 Dark green 12 Green
5 Gray 13 Yellow
6 Mediumblue 14 Aqua
7 Light blue 15 White

Parameter n is set to 0 by the GR
command. When in TEXT mode,
COLOR assists in determining which
character will be affected by the PLOT
command. COLOR is ignored when
in the high-resolution graphics mode.

HCOLOR=n where n is a numeric
expression in the range 0-7. Sets the
color plotted in the high-resolution
graphics mode. Color assignments for
n are given below. Note that if n=3,
the dot will be blue if the x coordinate
is even, green if the x coordinate is
odd, and white only if (x,y) and

(x+1,y) are both plotted.

0 Black1 5 Dependson
1 Green monitor

2 Blue 6 Dependson
3 White 1 monitor

4 Black 2 7 White2

IBM PC & PCjr

COLOR Ifgl [Libgll,bdll sets the
screen colors in the TEXT mode,
where fg is the foreground color repre-
sented by a numeric expression in the
range 0-31. Default=7 or the most re-
cently stated value. Parameter bg is
the background color in the range 0-7.
Default=0 or the most recently
stated value. And bd is the border
color in the range 0-15. Default=0 or
the most recently stated value.

Following are color-parameter values
for foreground and border with the

color graphics adapter:

0 Black 9 LightBlue

1 Blue 10 Light Green
-2 Green 11 LightCyan

3 Cyan 12 Light Red

4 Red 13 Light

5 Magenta Magenta

6 Brown 14 Yellow

7 White 15 High-intensity
8 Grey White

A foreground color of 16-31 will pro-
duce the same colors as the above
table, but in blinking mode. For
example, 16 produces blinking black
and 31 produces blinking high-
intensity white.

The background color numbers are
the same, but limited to the range 0-7.

On the PCjr you can use the
PALETTE and PALETTE USING
commands to obtain any color combi-
nation for foreground, background
and border.

With the monochrome adapter (not
available on the PCjr), the color

parameter values are below:
0 Black

1 Underline

2-7 White

As with the color-graphics adapter,
adding 8 to the foreground will pro-
duce a high-intensity color. For
example, COLOR 15 will produce
high-intensity white, COLOR 9 will
produce high-intensity white,
underlined. Adding 16 to the fore-
ground will produce a blinking
foreground.

The background parameters with the
|

COMMODORE 64

To set the color of the screen, border
or cursor on the Commodore 64, use
one of the following POKEs, with N
selected out of the following table:

POKE 53280,N Colors BORDER
POKE 53281 ,N Colors SCREEN
POKE 646, ,N Colors CURSOR

The value of N must be an integer in
the range of 0-15, -and produces the
result indicated in the following table:

0 Black 8 Orange

1 White 9 Brown

2 Red 10 LightRed

3 Cyan 11 Gray1l

4 Purple 12 Gray2

5 Green 13 Light Green

6 Blue 14 Light Blue

7 Yellow 15 Gray3

See HGR for a further discussion of
COLOR on the Commodore 64.

.
monochrome display (not available

on the PCjr) are below:
0-6 Black
7 White

COLOR [bgll,Ipll in the Screen 1
medium-resolution graphics mode,
which requires the color-graphics
adapter, where bg is the background
color in the range 0-15 (default=7 or
the most recently named value),
using the above table. Parameter p is
the numeric expression in the range
0-255, indicating which palette to use.
If p is even, palette 0 is selected,
which includes the attributes green,
red and brown. If p is odd, palette 1 is
chosen, which includes the attributes
cyan, magenta and white. The attri-
bute used is determined when giving
a graphics command, such as PSET,
PRESET, LINE, CIRCLE, PAINT or
DRAW.

Using COLOR in the Screen 2 high-
resolution graphics mode will result in
an ILLEGAL FUNCTION CALL
€rTor.

.]

TRS-80 Models IV & 111

Cannot be simulated on the TRS-80
ModelsIV or II1.

COLOR |fgll,Ibgll (Cartridge BASIC
Only) in the Screen 3 low-resolution
graphics mode, Screens 4 and 5
medium-resolution graphics mode,
and Screen 6 high-resolution graphics
mode this command selects the fore-
ground attribute and background
color. Parameter fg is the foreground
attribute; range 1-15 for Screen 3,
range 1-3 for Screen 4, range 1-15 for
Screen 5, and range 1-3 for Screen 6.
Parameter bg is the background color,
range 0-15. The colors associated with
the numeric values are the same as in
the above table. The exception is that
on Screen 4 and 6 the default colors
for foreground attributes 1, 2 and 3
are cyan, magenta and white. You can
change these defaults with the
PALETTE and PALETTE USING
commands.

In any of the COLOR commands you
may omit a parameter by including a
comma before the following
parameters. In this case, the old value
is considered to be still in effect.

TRS-80 Color Computer

COLOR (fg,bg) sets the color of the
display, where fg is the color for the
foreground, and bg is the color of the
background. Depending upon the
PMODE selected, the range of fg and
bg may be 1-2, 1-4 or 1-8, with the
actual color-number correspondence
varying.

SET (x,y,c) determines the color of
an individual screen point, where x
and y are screen coordinates and cis a
numeric expression associated with
the color. Possible values for ¢ follow:

0 Black 5 Buff

1 Green 6 Cyan

2 Yellow 7 Magenta
3 Blue 8 Orange
4 Red

COMMENTS

65

COM

APPLE ITe & I1 +

Not available. Cannot be simulated.

IBM PC & PCjr

ON COM (mn) GOSUB x enables
event trapping for a COM port, where
n is a numeric expression representing
communications adapter 1 or 2, and x
is a line number of a subroutine. ON
COM enables trapping of activity for
the specified COM port if followed by
a COM ON instruction, unless x rep-
resents line 0. In this case, trapping is
disabled.

COM (n) ON where n is a numeric
expression representing communica-
tions adapter 1 or 2. This instruction
initiates checking for activity at the
specified adapter each time BASIC
starts a new statement. If characters

have come into the adapter, BASIC-

branches immediately to the line
number specified in the ON COM (n)
GOSUB x instruction.

COM (n) OFF where n is a numeric
expression representing communica-
tions adapter 1 or 2. This instruction
causes trapping for the specified adap-
ter to cease. If any characters come
into the adapter, they are not
remembered.

COM (n) STOP where n is a numeric
expression representing communica-
tions adapter 1 or 2. This instruction
causes trapping for the specified adap-
ter to cease, but any characters
coming into the adapter are
remembered—until the buffer
overflows—and an immediate trap
takes place when a COM (n) ON com-
mand is reached.

When a trap occurs during COM (n)
ON status, a COM (n) STOP is im-
mediately executed. A RETURN
from a trap immediately executes a
COM (n) ON unless a COM (n) OFF
is used within the routine. All COM
commands are disabled when' error
trapping occurs as the result of an ON
ERROR GOTO command.

COMMODORE 64

WAIT n,ml,p] where n is a memory
location (range 0-65535), m and p are
in the range 0-255 with the optional p
defaulting to 0. WAIT is not the same
as COM, but can be used to roughly
approximate its action. WAIT causes
program execution to halt until the
value of the bit at memory location n
changes in a specific way dictated by
the other two parameters. Parameter
n is exclusively ORed with p, then the
result is ANDed with m, continuing
until the final result is non-zero. It is
seldom used.

56

TRS-80 Models IV & 111

Not available. Cannot be simulated
on TRS-80 Models IV and III without
machine-language routines.

TRS-80 Color Computer

Not available. Cannot be simulated
on COCO without machine-language
routines.

COMMENTS

57

COMMON

APPLE Ile & IT +

Not available. Simulate it by protect-
ing a portion of memory with
HIMEM. POKE the value of the varia-
bles into the protected memory, RUN
the new program, then PEEK the
values of the variables you wish to use
in the second program out of memory.

IBM PC & PCjr

COMMON vil,v2...] where vi1,
v2,... are variables passed to the
chained program. COMMON passes
the named variables to a program
chained with the CHAIN command.
Array variables must have () append-
ed to the variable name. If the ALL
option is invoked with the CHAIN
command, COMMON is not
necessary. It is also not necessary to
reDIMension any arrays when using
the CHAIN command. You can use

COMMUODORE 64

Not needed on the Commodore 64 if
you just LOAD the new program
from within the currently running
program, and the currently running
program is longer than the new
program. The new program automati-
cally RUNs. Variables are not cleared,
although any open files are CLOSEd,
Also see LOAD.

CONT

is not available within a BASIC
program. It is used in the direct mode
to continue execution of a program
ceased due to an error or user
intervention. If a program has been
edited while stopped, CONT cannot
be used. If an error condition has not
been corrected, CONT cannot be
used. CONT is essentially identical in
use on every machine, except that it is
spelled CON for Apple Integer
BASIC,

COPY

APPLE Ile & I1 +

Simulate it with the following routine:

10 ONERR GOTO 200
20 D$=CHR$ (4)
30 PRINTDS$; "OPEN file1"
40 PRINTDS$; "OPEN file2"
50 PRINTDS$; "READ file1"
60 INPUT A$
70 PRINTDS$; "WRITE £ile2"
80 PRINT A$
90 GOTO 50
200 PRINTD$; "CLOSE £file1"
210 PRINTD$; "CLOSE file2"

Note that this copies only sequential
data files, and only one at a time.

any number of COMMON
statements, but the same variable
cannot appear twice.

IBM PC & PCjr

Simulate it with the following routine
with filel (the file you wish to copy)
and file2 (the resulting copy):

10 OPEN "file1" FOR INPUT AS
#1

20 OPEN "file2" FOR OUTPUT
AS #2

30 WHILE NOT EOF (1)

40 LINE INPUT #1,I$

50 PRINT #2,I$

60 WEND

70 CLOSE

COMMODORE 64

COPY (usually abbreviated C) this
command makes a duplicate copy of a
program or sequential file under
another name on the same disk when
a single disk drive is used. Format is
as follows, with Filel the source file
and File2 the destination file. 8 is the
drive number.
10 OPEN15,8,15: PRINT#15,
"CP:File2=File1": CLOSE
15

58

TRS-80 Models IV & III

COMMON v1[,v2...] (Model IV)
where v1, v2,... are variables that will
be passed to the chained program.
COMMON passes the named varia-
bles to a program chained with the
CHAIN command. Array variables
must have () appended to the variable
name. If the ALL option is invoked
with the CHAIN command,
COMMON is not necessary. It is also
not necessary to reDIMension any
arrays when using the CHAIN
command. You can use any number
of COMMON statements, but the
same variable cannot appear twice.

To simulate the COMMON instruc-
tion on the Model III, protect a block
of high memory, POKE the variables
you wish to preserve into protected
memory, and RUN (or MERGE and
RUN) the new program, then retrieve
variable values by using PEEK.

TRS-80 Color Computer

Cannot be simulated on COCO. You
have to protect a block of high
memory with the CLEAR statement.
Then POKE the variables you wish to
preserve into protected memory,
RUN the new program (or merge
with the R option) and retrieve the
variable values by using PEEK.

COMMENTS

TRS-80 Models IV & 111

Simulate it as follows: OPEN the
target file as #1 using the "E" option,
and OPEN the source file as #2 using
the "I" option. Read the data from
the source file (1) and write it to the
target file (2) until EOF (2) returns
true. Then close both files,

TRS-80 Color Computer

COPY "file1"” TO "file2" copies
filel into file2. You must specify the
drive number at the end of each
filename,

COMMENTS

89

COS

APPLE Ile & I1+ IBM PC & PCjr COMMODORE 64
COS (x) where x is an angle measured Same. Same.
in radians. COS returns the cosine of
angle x. The returned value is a
floating-point number.
APPLEIle & I1 + IBM PC & PCjr COMMODORE 64
SAVE where no argument is given. SAVE "[CASl:lfilename" [AILP] SAVE"filename" saves the file
Saves on cassette the program saves the file filename on the filename on the cassette.
currently in memory. Note that the cassette. In Cassette BASIC, CAS1:
cassette must be ready! can be omitted. The A option saves it

as an ASCII file. The P option saves it

in the "protected" mode. If no option

is given, the program is saved in

binary form.
APPLEIle & I1+ IBM PC & PCjr COMMODORE 64

Because the Apple does not use
double-precision numbers, the CSNG
statement cannot be simulated on it.
To convert an integer to a
floating-point value, just assign it to a
variable without the % symbol
following it. Thus a=a%. Then use a
instead of a%.

CSNG(x) converts the numeric
expression X to a single-precision
expression. A single-precision
variable has seven or fewer digits, is
an integer in the range
—32768-32767, has an exponential
form using E, or has a trailing
exclamation point (!). If x is an
integer, the resulting single-precision
expression can be no more accurate
than x. If x is a double-precision
expression, the single-precision
expression is achieved by rounding.

Because Commodore does not use
double-precision numbers, the CSNG
statement cannot be simulated on it.
To convert an integer to a
floating-point value, just assign it to a
variable without the % symbol
following it. Thus a=a%. Then use a
instead of a%.

CSRLIN

APPLE Ile & I1+

Simulate it with the following routine:
10 ROW=PEEK(37) +1

where ROW is the variable name
denoting the line number, range 1-24.

IBM PC & PCjr

CSRLIN returns the value of the line
of the active screen on which the
cursor is positioned. Range 1-25.

COMMODORE 64

Simulate it with the following routine:
10 ROW=PEEK(214) +1

where ROW is the variable name
denoting the line number, range 1-25,

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS

Same. Same. To convert degrees (D) to radians
(R), use the following formula:
R=D%3.141593/180

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS

The Model IV cannot access the CSAVE "filename"[,A] saves the

cassette from BASIC unless it isin the file filename on the cassette. If the A

Model III emulation code. option is specified, it is saved as an

CSAVE"filename" (Model 1) ASCIlile.

saves the file filename on the cassette. =~ CSAVEM writes a machine-language

file to the cassette.

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS

CSNG(x) converts the numeric Because the COCO does not use

expression x to a single-precision double-precision numbers, the CSNG

expression. A single-precision statement cannot be simulated on it.

variable has seven or fewer digits, is To convert an integer to a

an integer in the range floating-point value, just assign it to a

—32768-32767, has an exponential variable without the % symbol

form using E, or has a trailing following it. Thus a=a%. Then use a

exclamation point (!). If x is an instead of a%.

integer, the resulting single-precision

expression can be no more accurate

than x. If x is a double-precision

expression, the single-precision

expression is achieved by truncating

to seven digits, then rounding with

the 4/5 rule to six digits before

displaying.

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS

ROW(0) (Model IV) returns the row
location of the cursor on the Model
IV. Note that the 0 is a dummy argu-
ment that should not be changed.

Simulate the command on the Model
II1 by using:
10 DEF FNROW(4)=INT((PEEK

(16416) + (PEEK(16417)
-]

Cannot be easily simulated on the
COCO in BASIC.

AND 3) * 256)/64) +1
2@ X=FNROW(®)

FN ROW(0) will return the vertical
position of the cursor.

61

CVD, CVI, CVS

APPLE Ile & 11+

Because of the way it stores data in
random files, there is neither a means
nor a need to simulate these on Apple.

IBM PC & PCjr

CVI(n) where n is a two-byte string,
converts a string read from a random
access disk file into an integer. It does
not change the actual bytes, only the
way BASIC interprets them.

CVS(n) where n is a four-byte string,
converts a string read from a random
access disk file into a single-precision
number. It does not change the actual
bytes, only the way BASIC interprets
them.

CVD(m) where n is an eight-byte
string, converts a string read from a
random access disk file into an
double-precision number. It does not
change the actual bytes, only the way

COMMODORE 64

There is neither a means nor a need to
simulate thess on Commodore
because of the way it stores data in
random files.

BASIC interprets them. '
APPLE lle & 11+ IBM PC & PCjr COMMODORE 64
DATA cl,cl... where cis a constant of Same, except that the use of this Same.
any form. DATA defines constants to command in Cartridge BASIC results-
be used by a READ statement. Note in an ILLEGAL FUNCTION CALL
that the variable type (numeric or if DOS 2.1 is not present.
string) defined in the READ
statement must agree with the
constant type in the DATA statement.
APPLE Ile & 11+ IBM PC & PCjr COMMODORE 64

Because the Apple does not have an
internal calendar, you must simulate

DATES. Define a string variable,

such as D$, as the date string. It will
have to be input each time a program
is used.

DATES sets or retrieves the date.
Used as a variable, the form is

10 v$=DATES$

where v$ is any string variable name.
It returns the 10-character string mm-
dd-yyyy. The actual date may have
been set by DOS prior to entering
BASIC, or within BASIC using the
DATE$ statement. Used as a
statement, the form is

DATE$=x$

where x$ has the form mm-dd-yy,
mm/dd/yy, mm-dd-yyyy or
mm/dd/yyyy. If the first two digits of
the year are omitted, it is assumed to
be 19yy. The value of yyyy must be in
the range 1980-2099.

Because the Commodore 64 does not
have an internal calendar, you must
simulate DATES$. Define a string
variable, such as D$, as the date
string. It will have to be input each
time the program is used.

62

TRS-80 Models IV & I11

CVI(n) where n is a two-byte string,
converts a string read from a random
access disk file into an integer. It does
not change the actual bytes, only the
way BASIC interprets them.

CVS(n) where n is a four-byte string,
converts a string read from a random
access disk file into a single-precision
number. It does not change the actual
bytes, only the way BASIC interprets
them.

CVD(n) where n is an eight-byte
string, converts a string read from a
random access disk file into a
double-precision number. It does not
change the actual bytes, only the way
BASIC interprets them.

TRS-80 Color Computer

CVN(@m$) where n$ is a five-byte
coded string, this command converts
n$ into a number. This is the
complement to MKNS.

COMMENTS

CVl, CVS and CVD are exact
opposites of MKI$, MKS$ and
MKDS$, respectively.

TRS-80 Models IV & I1I

Same.

TRS-80 Color Computer

Same.

COMMENTS

TRS-80 Models IV & 111

DATES (Model IV) returns the date.
The date can be reset with the follow-
ing routine:

10 D$="DATE " + "mm/dd/yy"
20 SYSTEMD$

where mm is the month, dd is the day
and yy is the year. Notice that you
must enter both digits, for example
01/01/85, as a string argument, and
the space must be included after the
word DATE.

TIMES (Model III) returns both date
and time. When the computer is
turned on or reset, these are set to 0.
They can be reset with the following
routine:

10 DEFINTT,I: DIMTM(5)
20 CL=16924

TRS-80 Color Computer

Because the COCO does not have an
internal calendar, you must simulate
DATES. Define a string variable,
such as D$, as the date string. It will
have to be input each time a program
isused.

30 PRINT "INPUT 6 VALUES
SEPARATED BY COMMAS ¢
MONTH, DAY, YEAR, HOUR,
MINUTES, SECONDS"

40 INPUT TM(0), TM(1),
T™M(2), TM(3), TM(4),
TM(5)

50 FORI=0 TOS

60 POKECL-I, TM(I)

70 NEXT I

COMMENTS

Because AT is a reserved word, do not
use DATE or DAT as a variable
name. Some BASICs do not allow re-
served words to be imbedded in a
variable name.

Because the clock is sometimes
turned off, such as during cassette
operations, clock-dependent programs
should allow for occasional resetting
of the clock.

63

DEBUG

is not used within a program.

DEF

APPLEITe & 11+

DEF FNn(a) =e gives a user-defined
function. Parameter n is a numeric
variable and a is an argument (a
numeric variable name) that will be
passed to the function when it is
called, and e is a numeric expression
of less than 239 characters. The func-
tion defined must return a numeric
value, and no more than one argu-
‘ment may be used. The value of argu-
ment a is local to the function. That
is, jt does not matter if you use the
same argument name elsewhere in
the program.

Be careful not to define two functions
whose names have the same first two
characters, because only the first two
characters of a variable name are
significant. Note that all DEFined
functions are cleared by the LOMEM
command.

IBM PC & PCjr

DEF FNnl(all,a2l...)]l=e gives a
user-defined function where n is a
string or numeric variable and al,
a2,... are variable names that will be
replaced with a value when the func-
tion is called. If more than one value
is provided, they are “‘plugged in’’ to
the function on a one-to-one basis.
The value returned by the function is
set by the expression e, which shows
what operations will be performed on
the arguments al, a2,... when the
function is called. This must return a
value consistent with the variable
type named by n.

Note that al, a2,... may be the same
as variable names found elsewhere in
the program, but they do not affect
the rest of the program because they
are local to the function. If the variable
names used in expression e are not
found within al, a2,... then the func-
tion will look for them in the program.

You can define a function that does
not require arguments al, a2,... For
example,

10 DEF FNR=RNDS8

defines a function that returns a
random number. If you define a func-
tion to require arguments, and then
call it without the arguments
supplied, you will get a syntax error.
Similarly, if you provide too many
arguments, you will get a syntax error.

COMMODORE 64

DEF FNn(a) =e gives a user-defined
function. Parameter n is a numeric
variable of one or two characters, and
a is an argument (a numeric variable
name) that will be passed to the func-
tion when it is called. Parameter e is a
numeric expression. The function
defined must return a numeric value,
and no more than one argument may
be used. The value of argument a is
local to the function. That is, it does
not matter if you use the same argu-
ment name elsewhere in the program.

On the Commodore 64, n may be up
to two characters, and a is limited to
floating-point numeric variables.
FNn(a) must be defined by
DEFFN(a) before it is called by the
program. DEFFNn(a) may be defined
in terms of other user-defined
functions. Expressions like
FNm(FNp(a)) and FNm(X*X) are
acceptable.

DEF SEG

APPLE Ile & I1 +

Not available. Cannot be simulated.

IBM PC & PCjr

DEF SEG [=nl where n is a numeric
expression in the range 0-65535.
Defines the current segment of
memory. Note that DEF and SEG
must be separated by a space, or
BASIC will assume you are defining a
variable with the name DEFSEG.

Any BLOAD, BSAVE, CALL,
P e e e

COMMODORE 64

Not available. Cannot be simulated.

.|
PEEK, POKE or USR that follows a
DEF SEG statement will be relative
to that segment. If n is omitted,
BASIC’s data segment is assumed.

]

64

TRS-80 Models IV & 111

Same as IBM, except that a space is
not required between DEF and FN on
the Model II1.

TRS-80 Color Computer

DEF FNn(a) =e gives a user-defined
function. Parameter n is a numeric

- variable, and a is an argument (a

numeric variable name) that will be
passed to the function when it is
called. Parameter e is a numeric
expression. The function defined
must return a numeric value, and no
more than one argument may be
used. The value of argument a is local
to the function. That is, it does not
matter if you use the same argument
name elsewhere in the program.

COMMENTS

Many times a short routine that re-
turns only one value may be DEFined
as a function rather than used as a
GOSUB. This saves disk space,
speeds up the program, and allows
more program versatility. Variable
values remain local to the function,
and the program is more readable.

TRS-80 Models IV & 111

Not available. Cannot be simulated.

Note that the address you specify
should be 1/16th the actual address
you want. The address you refer to
will be a multiple of 16. DEF SEG
.]

TRS-80 Color Computer

Not available. Cannot be simulated.

cannot be simulated on other
machines, nor is there any reason to
do so.

COMMENTS

DEFDBL, DEFINT, DEFSNG, DEFSTR

APPLEIle & 11+

Variable types are not explicitly stated
in a DEF statement on the Apple.
Instead, all variables are implicitly
floating-point numeric variables
unless they have a trailing % (integer)
or § (string).

IBM PC & PCjr

DEF type letter [-letter] [,letter
[-letter]] ... where type is INT, SNG,
DBL or STR, and letter is any letter of
the alphabet. This command explicitly
DEFines any variable whose name
starts with the letter(s) specified as
INTegers, SiNGle precision, DouBLe
precision or STRings. Default is
single precision if DEFtype is not
used. A type-declaration character
(%, !, # or $) always takes precedence
over a DEF statement. The statement
should be at the beginning of the
program, before any variables it de-
clares are used. \

COMMODORE 64

Variable types are not explicitly stated
in a DEF statement on Commodore.
Instead, all variables are implicitly
floating-point numeric variables
unless they have a trailing % (integer)
or $ (string).

DEF USR

APPLE Ile & I1 +

Because Apple has only one allowable
USR function, DEF USR cannot be
simulated in less space than it would
take to simply re-POKE the starting
address before each USR call.

IBM PC & PCjr -

DEF USRInl=offset where n is a
digit from 0 to 9 (default=0),
specifying which USR routine is being
referenced. Offset is an integer in the
range 0-65535. The offset is added to
the segment most recently defined in
a DEF SEG to obtain the actual
starting address of the USR routine.
The USR routine is later called with
the command USR [n].

COMMODORE 64

Because Commodore has only one
allowable USR function, DEF USR
cannot be simulated in less space than
it would take to simply re-POKE the
starting address before each USR call.

DEL, DELETE

APPLEIle & I1 +

DEL al,b] where a and b are program
line numbers, with b the larger line
number. DEL is normally used in the
command mode, but may be used in
programming mode to delete program
lines. Program execution will halt
after the DELete is completed, and
you must type RUN to start it again,

IBM PC & PCjr

DELETE I[all-b] where a and b are
program line numbers, with b the
larger line number. DELETE is
normally used in the command mode,
but may be used in the programming
mode to delete program lines.
Program execution will halt after the
DELETE is completed. A period (.)
can optionally replace line numbers
when referring to the current line.

COMMODORE 64

Although there is no DELETE
command on the Commodore 64, the
following program lines, which make
use of the computer’s dynamic
keyboard, produce the same effect.
This routine will delete all line
numbers between A and B, then
terminate the program. If this routine
is renumbered, the number 140,
which is in quotation marks in line
130, must be changed to reflect the
renumbering.

100 P=0: GOTO 140
110 PRINT CHR$ (147)P
120 POKE 631,19: POKE
632,13: POKE633,13:
POKE 198, 3
]

66

TRS-80 Models IV & IIT

DEF type letter [-letter] [1letter
[-letter]] ... where type is INT, SNG,
DBL or STR, and letter is any letter of
the alphabet. This command explicitly
DEFines any variable whose name
starts with the letter(s) specified as
INTegers, SiNGle precision, DouBLe
precision or STRings. Default is
single precision if DEFtype is not
used. A type-declaration character
%, !, #, or $) always takes precedence
over a DEF statement. The DEF
statement should be at the beginning
of the program, before any variables it
declares are used.

TRS-80 Color Computer COMMENTS

Variable types are not explicitly stated
in a DEF statement on the COCO.
Instead, all variables are implicitly
floating-point numeric variables
unless they have a trailing $ (string).

TRS-80 Models 1V & 111

DEF USRI[n]=address where n is a
digit from 0 to 9 (default=0),
specifying which USR routine is being
referenced. Address is an integer in
the range 0-65535. The address is the
actual starting address of the USR
routine. The USR routine is later
called with the command USRIn].
The space between DEF and USR is
significant on the Model IV, but not
on the Model II1.

TRS-80 Color Computer

DEF USRIn]=address where n is a
digit from 0 to 9 (default=0),
specifying which USR routine is being
referenced. Address is an integer in
the range 0-65535. The address is the
actual starting address of the USR
routine. The USR routine is later
called with the command USR [n],

COMMENTS

'TRS-80 Models IV & III

DELETE [all-b]l where a and b are
program line numbers, with b the
larger line number. DELETE is
normally used in the command mode,
but may be used in the programming
mode to DELETE program lines.

Program execution will halt after the

DELETE is completed. A period (.)
can optionally replace line numbers
when referring to the current line.

¢]

130 PRINTCHR$(19) CHR$(17)
"P="P+1": GOTO 140" : END

140 A=2: B=15: IF P> B THEN
STOP: REMWILL DELETE ALL
LINES FROM2TO15

150 IF P<ATHENP=A

160 GOTO 110

TRS-80 Color Computer COMMENTS

DEL [all-bl where a and b are
program line numbers, with b the
larger line number. DEL is normally
used in the command mode, but may
be used in the programming mode to
DELETE program lines. Program
execution will halt after the DELETE
is completed.

DEL - without line numbers will
delete the entire program,

67

DIM

APPLEITe & 11+

DIM arrayname (a [b...])[,array-
name (a [,b...])...] where a and b are
values specifying the number of ele-
ments in each dimension of
arrayname. The array name may be
either a string or a numeric variable
name. Applesoft BASIC allows a
maximum of 88 dimensions. The
number of elements in each dimen-
sion is limited only by the amount of
available memory. DIM may specify a
list of array names, separated by
commas.

Note: DIM is used differently in integ-
er BASIC. Numeric arrays are limited
to one dimesion, and string arrays are
not allowed. DIM is used with strings
to specify maximum string length.

IBM PC & PCjr

DIM arrayname (a [,b...])[,array-
name (a [,b...])...] where a and b are
values specifying the number of ele-
ments in each dimension of
arrayname. The array name may be
either a string or a numeric variable
name. The maximum number of
dimensions allowed is 255. The maxi-
mum number of elements in each
dimension is 32767, which may be
limited by memory. DIM may specify
a list of array names, separated by
commas.

Note: The minimum value for sub-
scripts is 0, unless the OPTION BASE
statement is used. See OPTION
BASE.

COMMODORE 64

DIM arrayname (a [b...])[,array-
name (a [,b...])...] where a and b are
values specifying the number of ele-
ments in each dimension of
arrayname. The array name may be
either a string or a numeric variable
name. The maximum number of
dimensions allowed is 255. The maxi-
mum number of elements in each
dimension is 32767, which may be
limited by memory. DIM may specify
a list of array names, separated by
commas.

DIRECTORY

APPLEIle & I1+

CATALOG [,Ssl[,Dd] where s speci-

fies slot number 1-7, and d specifies
drive 1 or 2. CATALOG will display
the directory of the specified drive,
and may be used in the programming
mode when preceded by CHR$(4). If
the drive number is omitted, the most
recently selected drive will be
selected.

IBM PC & PCjr

FILES ["d:"] displays the files on
the specified drive, where d is the
drive name. If the drive is not
specified, the currently logged disk
drive is used. DIR is used in DOS
only.

Use of this command in Cartridge
BASIC will result in an ILLEGAL
FUNCTION CALL if DOS 2.1 is not
present.

COMMODORE 64

Although there is no CATALOG or
DIRECTORY command on the Com-
modore 64, the following program
lines produce a similar effect. The pro-
gram halts after the listing. In fact, the
program is no longer in memory. It
has been replaced by the directory. If
you require a program that reads the
directory without destroying the pro-
gram in memory, see the 1541 Disk
Drive User’s Manual, page 47.

100 POKE 631,19: POKE
632,13: POKE633,13:
POKE 198,3

110 PRINT CHR$(147) "LIST"

120 LOAD "$",8: END

DLOAD

APPLEIle & I1+

Not available.

IBM PC & PCjr

Not available.

COMMODORE 64

Not available.

TRS-80 Models IV & 111

DIM arrayname (a [b...])[,array-
name (a [,b...])...] where a and b are
values specifying the number of ele-

TRS-80 Color Computer

DIM arrayname (a [b...])[,array-
name (a [,b...])...] where aand b are
values specifying the number of ele-

COMMENTS

An array that is not DIMensioned
defaults to 11 elements, numbered
0-10. Thus if A(1) is used, A(0),

ments in each dimension of wments in each dimension of A(2),..A(10) are automatically
arrayname. The array name may be arrayname. The array name may be available.

either a string or a numeric variable either a string or numeric variable

name. The number of dimensionsand name. The number of dimensions and

elements in each dimension is limited elements in each dimension is limited

only by the amount of available only by the amount of available

memory. DIM may specify a list of memory. DIM may specify a list of

array names, separated by commas. array names, separated by commas.

Note for TRS-80 Model IV: The mini-

mum value for subscripts is 0, unless

the OPTION BASE statement is used.

See OPTION BASE.

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
SYSTEM "DIR" (Model IV) will DIR [d] where d specifies the drive

display the directory from BASIC, number to be accessed. DIR will dis-

and may be used in either command play the directory of the specified

or program mode. drive, and program execution will

CMD "D:d" (Model III) where continue.

parameter d specifies a currently con-

nected disk-drive number. Displays

the directory of the specified drive.

Note: Drive specification is not

optional. BASIC execution will con-

tinue after usingCMD"D".

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
Not available. DLOAD "filename","n" downloads

a machine-language program from
another computer. Filename is the
name of the file to be transferred.
Parameter n is either 0 (signifying the
transfer at 300 baud) or 1 (signifying
1200 baud). This command is poorly
documented by Radio Shack and isn’t

available on other machines. On most
|

computers, external transfer of files is
handled by commercially available
software.

69

DOPEN

APPLE Ile & I1+
Not available.

IBM PC & PCjr
Not available.

COMMODORE 64

DOPEN#n, "filename",{Lr],Dd,[x]
DOPEN is a reserved word not used
on the Commodore 64 unless BASIC
4.0 is being used. In BASIC 4.0, Lr in-
dicates the record length of a relative
file. If no value is given, then a
sequential file is assumed to be in use.
Parameter d is the number of the disk
drive where the file resides. If parame-
ter x is R, the file is OPENed for
reading. If parameter x is W, the file is
OPENed for writing. Note that file-
name may NOT be a string variable.

See OPEN for the same command on
other computers, as well as normal
Commodore 64 operation.

DRAW

APPLE Ile & I1 +

DRAW n [AT e,r] places a shape on
the screen, where n specifies a shape
in the shape table currently in
memory, ¢ specifies the column, and
r specifies the row for DRAWing on
the high-resolution screen. If ¢ and r
are omitted, the shape will be drawn
at the most recently specified
location. Also see XDRAW, ROT=
and SCALE.

COMMENTS

GRAPHICS COMMAND
LANGUAGE

These are the commands used within
the string for the DRAW command
on the IBM PC, PCjr and COCO.
Commands within a string should be
separated by a semicolon, and x and y
coordinates should be separated by a
comma. Placing a + or — before a
coordinate causes motion to be rela-
tive to cursor position, rather than
absolute.

B Causes the cursor to not
DRAW on the next motion
command.

N Causes the cursor to return to
its previous location following
the next motion command.

IBM PC & PCjr

DRAW "[XIn$"

DRAW "X" +VARPTR$($) draws
the object specified by the graphics
language command in n$. If n$ is a
constant, it must be enclosed in quota-
tion marks, but X may be omitted.
The second method for using DRAW
is primarily for those programs that
will be compiled, but is legal syntax
for interpretive programs too.

An Turns the cursor the relative
angle specified by n, range
0-3: 0=0°, 1=90°, 2=180°,
3=270°.

"Changes the drawing color.
See COLOR for legal values.
In IBM BASIC 2.0 or Car-
tridge BASIC only, sets the
color. Color for the painting
option is specified by n. The
color for the boundary is set
by m. See COLOR for legal
values.
In IBM BASIC 2.0 or Car-
tridge BASIC only, causes the
direction of drawing to be
turned by an angle of n
degrees. Range —360-360.

R

Cn

Pn,m

TAn

COMMODORE 64

Simulating would require extensive
machine-language programming.
Commercial software is available to
give the Commodore 64 similar
capabilities.

Un Moves up a distance of n
times the scaling factor—see
option S below—from the
last point referenced.

Moves down a distance of n
times the scaling factor from
the last point referenced.
Moves left a distance of n
times the scaling factor from
the last point referenced.
Moves right a distance of n
times the scaling factor from
the last point referenced.
Moves diagonally up and
right a distance of n times the
scaling factor from the last
point referenced.

Dn

Ln

En

70

TRS-80 Models IV & III TRS-80 Color Computer COMMENTS
Not available. Not available.

TRS-80 Models IV & ITI TRS-80 Color Computer COMMENTS
Because Models IIT and IV do not DRAW "[XIn$" draws the object (See below left.)

have graphics capabilities, DRAW is
not available and cannot be simulated.

Fn

Gn

Hn

Mx,y

Moves diagonally down and
right a distance of n times the
scaling factor from the last
point referenced.

Moves diagonally down and
left a distance of n times the
scaling factor from the last
point referenced.

Moves diagonally up and left
a distance of n times the scal-
ing factor from the last point
referenced.

Moves to the coordinate
specified by x and y. Motion
is absolute unless x is prefixed
with either + or —, in which
case the move will be relative
to the last cursor position.

specified by the graphics language
commands in n$. If n$ is a constant, it
must be enclosed in quotation marks,
but X may be omitted.

Sn

Xn$

Sets the scaling factor with n.
The actual scale is n/4.
Default for n is 4, so the
default scaling factor is 1.
Range for parameter m is
1-255 for IBM; 1-62 for
COCO.

Calls substring n$ and con-
tinues with the next
command.

n

DRIVE d

APPLE Ile & I1+ IBM PC & PCjr COMMODORE 64

Not available. Not available. Not available.

DSKINI

APPLE Ile & 11 + | IBM PC & PCjr COMMODORE 64

Disks must be initialized from the Disks must be initialized from DOS. NEW initializes, or formats, a new
command mode. disk. It is usually abbreviated as N.

Typical lines to do this follow:
10 OPEN15,8,15
20 PRINT#15,
"NO :diskname,id"
30 CLOSE 15

In this code, id represents a two-
character identifier that you want to
assign to the disk. It should be unique
for each disk. Diskname is the name
you wish to give the disk. The NEW
operation takes about two minutes
per disk.

DSKIS$, DSKO$

APPLE Ile & I1 +
Not available.

IBM PC & PCjr-
Not available.

COMMODORE 64

PRINT#{,"BLOCK-READ: "¢,d,t,b
PRINT#f,"BLOCK-WRITE:
"c,d,t,b

PRIN’T#f, "BLOCK-ALLOCATE:
"d,t,b

?R’Ii\IT#f,"BLOCK-FREE:

'd,t,b

PRINT:#f," BUFFER-POINTER:
"c,l

These commands allow you to read
(BLOCK-READ) and write
(BLOCK-WRITE) data directly to
disk, allocate space on a disk for data,
logically free up space for data (by
writing to the RAM, not actually
erasing), and change the location of
the data pointer.

Here, f is the number used to OPEN
the file, ¢ is the channel number, d is
the drive number, t is the track

number and b is .the block (sector)
...]

72

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
Not available. DRIVEd changes the logged drive to
drive d, default=0. The default drive
cannot be redefined on other comput-
ers covered in this book. You simply
include the drive specification in
those commands that use non-default
values.
TRS-80 Models IV&III TRS-80 Color Computer = COMMENTS
CMD"I","FORMAT" will allow DSKINI d formats the disk in drive
you to format a disk from BASIC, but number d, default=0. Using the com-
you will be returned to DOS mand ina program causes the program
afterward, and the program in to be erased from memory.
memory will be lost.
TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
Not available. DSKIS$ d,t,s,s1$,52$ Direct access to the disk sectors is not
DSKOS$ d,t,s,s1$,s2$ available from BASIC on the other

L]
number. To use these you must
OPEN the command channel (#15)
as well as the file buffer. These are
often abbreviated with only their first
letters (B-R, B-W, B-A, B-F and
B-P). These commands may be used
from BASIC, but are most useful
when used with machine-language
programs. They are very hazardous
without careful attention to syntax
and program structure.

For a full discussion of their proper
use, see the 1541 Disk Drive User’s
Manual.

These commands allow you to read
(DSKI$) and write (DSKO$) data
directly to the disks, where d is the
number of the disk drive, t is the track
number, and s is the sector number.
The strings being input and output are
represented by s1$ and s2$. The
former represents the first 128 bytes
of the sector, the latter the last 128
bytes.

computers covered by this book. Data
is written onto the disk under the con-
trol of the Disk Operating System.

73

EDIT

Although used in the direct mode to
initiate editing a line, EDIT is not
used within a program.

ELSE (See IF-THEN-ELSE)

END

APPLE Ile & I1 + IBM PC & PCjr COMMODORE 64
Terminates program execution and Same. Same.

closes all files.

ENVIRON, ENVIRONS

APPLEIle & II + IBM PC & PCjr COMMODORE 64

Not available. Do not use it as a These are undocumented reserved Not available. Do not use it as a
variable name because it contains the words for IBM computers. variable name because it contains the
embedded reserved word ON. embedded reserved word ON.
EOF

APPLE Ile & 11+ IBM PC & PCjr COMMODORE 64

Although Apple does not have an
EOF function, you can obtain similar
results with the following routine. In
it, the reading loop reads data from
the sequential file filename. When
the end of the file is reached, an OUT
OF DATA error occurs. Line 100
then transfers control to line 500. The
POKE resets the error flag, line 510
closes the file and program execution
continues.

100 ONERR GOTO 500

110 D$=CHR$ (4) : REM CONTROL
D

120 PRINTD$; "OPEN filename"

130 PRINTD$; "READ filename"

149 REM

150 REM PLACE A LOOP HERE THAT

160 REM READS THE DESIRED
DATA

170 REM

500 POKE 216,0

510 PRINTD$; "CLOSE
filename"

EOF(n) returns a —1 (True) if the
end of file n is reached, where n is the
number of a file that has been
OPENed. This is useful for avoiding
an END OF FILE error.

The EOF function can be simulated
on the Commodore 64 with the fol-
lowing program lines:

100 OPEI;I 8,8,8,"filename,
S,R"

110 GET#8, A$: A$=A$+CHR$(0)

120 REM

130 REM MANIPULATE A$ HERE

140 REM

150 IF (ST) AND 64=64 THEN
CLOSE 8: GOTO 170

169 GOTO110

170 REM PROGRAM EXECUTION
CONTINUES HERE

74

TRS-80 Models 1V & 111 TRS-80 Color Computer COMMENTS
Same. Same.

TRS-80 Models IV & I11 TRS-80 Color Computer COMMENTS
These are undocumented reserved Notavailable.

words for the TRS-80 Model IV

computer.

TRS-80 Models IV & I11 TRS-80 Color Computer COMMENTS

EOF(n) returns a —1 (True) if the
end of file n is reached, where n is the

"number of a file that has been
OPENed. Range for n is 1-15. This is
useful for avoiding an END OF FILE
€ITOr.

EOF(n) returns a —1 (True) if the
end of file n is reached, where n is the
number of a file that has been opened.
For cassette files, n=—1. For key-
board files, n=0. For disk files, the
range for n is 1-15. This is useful for
avoiding an END OF FILE error.

75

EQV

APPLE Ile & I1 +

xEQVy can be simulated by DEF
FNEQV(x,y) =(x OR NOT y) AND
(NOTxORYy)

The truth table for this algorithm is:

IBM PC & PCjr

xEQVy is a logical operator indicating
whether two numeric values x and y
are equivalent. The truth table for
EQV follows

COMMODORE 64

xEQVy can be simulated by using the
algorithm (x OR NOT y) AND.
(NOTxORY)

The truth table for this algorithm

(xORNOTy) X y xEQVy (where T=—1and F=0) follows:
AND % g '11; (xORNOTy)
'li{‘ % (NOT % ORYy) F T F AND
X y (NOTxORy)
T F F F F T T T T
F T F T F F
F F T F T F
Be aware that NOT doesn’t perform F F T
bitwise operations ‘in the same
manner as it does for other computers.
APPLEIle & I1+ IBM PC & PCjr COMMODORE 64

CLEAR is used instead of ERASE.
Note that this clears both variables
andarrays.

ERASE namell,name2]... where
namel, name2,... are names of arrays
previously used by the program.
ERASE selectively eliminates arrays
from a program—as opposed to
CLEAR, which erases all arrays and
variables. This is usually used to free
memory space or to allow reDIMen-
sioning of the array.

CLR is used instead of ERASE. Note
that it does not allow the reDIMen-
sioning of an array and also CLEARs
variables.

ERDEV,ERDEVS

These are undocumented reserved
words on IBM.

76

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
xEQVy (Model IV) is a logical opera- xEQVYy can be simulated by using the
tor indicating whether two operators algorithm: (x OR NOT y) AND
are equivalent. The truth table for (NOTxORY)
EQV follows: The truth table for this algorithm

b'¢ % xEQVy follows:

T T

,II;: g F (xORNOTYy)

F

¥ F T "l‘“ ’{‘ (NOT ¥0R y)
xEQVy (Model III) can be simulated T F F
by (x OR NOT y) AND (NOT x OR F T F
y) F F T
The truth table for this algorithm
follows:

(xORNOTYy)
AND

X y (NOTxORy)

T T T

T F F

F T F

F F T
TRS-80 Models IV & I1I TRS-80 Color Computer COMMENTS

ERASE namell,name2]... (Model
IV) where namel, name2,... are
names of arrays previously used by
the program. ERASE selectively elim-
inates arrays from a program—as op-
posed to CLEAR, which erases all
arrays and variables. This is usually
used to free memory space or to allow
reDIMensioning of the array.

CLEAR (Model IID) is used instead
of ERASE. Note that CLEAR also
ERASEs all variables.

CLEAR is used instead of ERASE.
Note that CLEAR also ERASEs all
variables.

77

ERL, ERR

APPLE Ile & I1 +

The line number of the line in which
the most recent error occurred can be
determined by:

PEEK(218)+PEEK(219) %256

The error number of the most recent
error can be determined by:

PEEK (222)

IBM PC & PCjr

ERL is a variable with the value of the
line number of the line in which an
error occurred. Default=0.

ERR is a variable with the value of
the error number that most recently
occurred. Default=0.

COMMODORE 64

Cannot be simulated without
machine-language programming.

ERROR

APPLE ITe & 11 +

Not used as a reserved word, but
should not be used as a variable name
because it contains the embedded
reserved word OR. The user-defined,
error-code function (as on IBM)
cannot be simulated in BASIC.

IBM PC & PCjr
ERRORn simulates the error
number n. Range=0-255. You

should never find this used in a
program. It is primarily a debugging
tool. However, you may find
ERRORn used to define an error code
that does not normally exist in
BASIC. For example,

10 ONERROR GOTO 200
90 INPUT "Select amenu
choice" ;A
100 IF A>9 THEN ERROR 220
2090 IF ERR=220 THEN PRINT
"There areonly 9
choices" : RESUME 90

Thus you can have error routines
based on the logic of the program
rather than on the limitations of the
machine.

COMMODORE 64

Not used as a reserved word, but
should not be used as a variable name
because it contains the embedded
reserved word OR. The user-defined,
error-code function (as on IBM)
cannot be simulated in BASIC.

EXEC

APPLE Ile & 11+

EXEC filename executes the
batch-file filename. The file may
contain DOS commands, and may
load and run other BASIC prcgrams.
If the batch file calls other BASIC
programs, those programs get their
input from the batch file. When the
batch file is finished, it closes and
control returns to the BASIC program
that called it.

IBM PC & PCjr

Cannot be simulated without a
machine-language routine. But you
can work from DOS to BASIC with a
batch file. In this way, the batch file
calls BASIC programs and/or DOS
programs, rather than the other way
around, as with EXEC.

COMMODORE 64

Cannot be simulated without a
machine-language routine.

TRS-80 Models IV & 111

ERL is a function that returns the
value of the line number of the line in
which an error occurred. Default=0.
If the error occurred in the command
mode, then ERL=65535.

ERR is a function that returns the
value of the error number that most
recently occurred. Default=0. On the
Model III, you must use (ERR/2) +1
to get the actual error code.
ERR = (true error code—1) % 2.

ERR (Model IV) returns the system
error number and description of the
most recent TRSDOS error
Default=0.

TRS-80 Color Computer

Cannot be simulated without
machine-language programming.

COMMENTS

TRS-80 Models IV & I1I

ERROR (n) where n is a value 0-255,
which specifies an error code. Used to
simulate errors while debugging
error-trapping routines.

TRS-80 Color Computer

Not used as a reserved word. The
user-defined, error-code function (as
on IBM) cannot be simulated in
BASIC.

COMMENTS

TRS-80 Models IV & 111

SYSTEM [command]l (Model IV)
where command is any TRS-DOS
library command—except DEBUG or
any utility. This does not exactly
emulate the EXEC command as used
on the Apple, but can simulate it. If
you use SYSTEM without the
command, it returns you to
TRS-DOS and the program is lost.

TRS-80 Color Computer

Becauss DOS and BASIC are
transparent to the user, simulating
EXEC is not possible. You can
CHAIN other programs, and you can
initiate DOS commands, such as
DSKINI. But the program in memory
will be lost,

COMMENTS

79

EXP

APPLEITe & I1 +

EXP(x) returns the mathematical
number e raised to the x power,
where e is the base for natural
logarithms. If x is greater than
88.0296919, an overflow error will
occur.

IBM PC & PCjr

EXP(x) returns the mathematical
number e raised to the x power,
where e is the base for natural
logarithms. If x is greater than
88.02969, an overflow error will
occur.

COMMODORE 64

EXP(x) returns the mathematical
number e raised to the x power,
where e is the base for natural
logarithms. If x is greater than
88.0296919, an overflow error will
occur.

FIELD

APPLEIle & I1+

Apple accesses information in
random access files in a different
manner from IBM or TRS-80, requir-
ing more information than the FIELD
command. In a file having undivided
records, you do not define field
length. The entire record is one field,
which can be read into memory as a
string. The various components are
then accessed using string functions,
such as MID$, LEFT$ and RIGHTS.
In a file having divided records,
access fields by specifying the first
byte of the field with the "B" option.
The field is read from the byte speci-
fied until it reaches a delimiter. For
e€xample,
50 PRINT D$; "READ
FILE1,R22,B25"
60 INPUT A$

reads the 22nd record of FILE1, from
the 25th byte until it reaches a
delimiter, and assigns it to string
variable AS.

IBM PC & PCjr

FIELDI#In,x AS yl,x AS yl... where
n is the number of an OPENed file
buffer, x is the number of characters
allocated to the field, and y is a string
variable that will be used to access the
data. FIELD is used to allocate space
and position of variables in a random-
file buffer. FIELD does not actually
insert or retrieve any data into the
disk file or buffer. It only designates
how that data will be inserted by PUT,
and retrieved by GET. The total
number of bytes allocated by FIELD
is limited to the number specified
when the file is opened. Otherwise,
you will get a FIELD OVERFLOW
ERROR.

When you have assigned a variable
name to y, do not use that variable
name in an INPUT or on the left side
of an assignment statement. If you
do, you will get some very unexpected
results!

COMMODORE 64

FIELD is not supported by the Com-
modore 64. When manipulating string
data, it is the programmer’s responsi-
bility to maintain the logistics of
specific fields or data areas within a
record. When manipulating numeric
data, the record length specified in
the OPEN command is the maximum
length of the field. Maximum record
length is 254 characters. See OPEN.

L]
Because of this method of accessing
random files, FIELD cannot be
simulated. Indeed, the whole file-
handling routine will need rewriting
to bring it into Apple-compatible
format.

FILES

APPLE Ile & I1+

CATALOG [,Ssl[,Dd] where s speci-
fies slot number 1-7, and d specifies
drive 1 or drive 2. CATALOG will dis-
play the directory of the specified
drive, and may be used in the pro-
gramming mode when preceded by
CHR$(4). If the drive number is
omitted, the most recently selected
drive will be selected.

IBM PC & PCjr

FILES ["d:"] displays the files on
the specified drive, where d is the
drive name. If the drive is not
specified, the currently logged disk
drive is used. DIR is used in DOS
only.

Use of this command in Cartridge
BASIC will result in an ILLEGAL
FUNCTION CALL if DOS 2.1 is not
present.

COMMODORE 64

Although there is no FILES command
on the Commodore 64, the following
program lines produce a similar
effect. The program halts after the
listing. In fact, the program is no
longer in memory. It has been re-
placed by the directory. If you require
a program that reads the directory
without destroying the program in
memory, see the 1541 Disk Drive
User’s Manual, page 47.

100 POKE 631,19: POKE
632,13: POKE633,13:
POKE 198, 3

110 PRINT CHR$(147)"LIST"

120 LOAD "$",8: END

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
EXP(x) returns the mathematical EXP(x) returns the mathematical
number e raised to the x power, number e raised to the x power,
where e is the base for natural where e ‘is the base for natural
logarithms. If x is greater than logarithms. If x is greater than
87.3365, an overflow error will occur. 87.3365, an overflow error will occur.
TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
FIELD[#ln, x AS yl,x AS yl... FIELD#n, x AS yl,x AS yl... where See OPEN.
where n is the number of an OPENed p is the number of an OPENed file
file buffer. Parameter x is the number puffer: —2 for printer, —1 for
of characters allocated to the field, cassette, 0 for screen and 1-15 for disk
and y is a string variable used t0 drive buffers. Parameter x is the
access the data. FIELD isused toallo- number of characters allocated to the
cate space and position of variables in field, and y is a string variable that will
a random-file buffer. FIELD does not be used to access data. FIELD is used
actually insert or retrieve any data to allocate space and position of varia-
into the disk file or buffer. It only ples in a random-file buffer. FIELD
designates how that data will be insert- does not actually insert or retrieve any
ed by PUT and retrieved by GET. The data into the disk file or buffer. It only
total number of bytes allocated by designates how that data will be insert-
FIELD is limited to the number speci- ed in the file buffer by PUT and re-
fied when the file is ogféif% trieved by GET.
Otherwise, you will get a The total number of bytes allocated
OVERFLOW ERROR. by FIELD is limited to the number
When you have assigned a variable specified when the file is OPENed.
name to y, do not use that variable Otherwise you will get a FIELD
name in an input or on the left sidle of = OVERFLOW ERROR. When you
an assignment statement. If you do, have assigned a variable name to y, do
you will get some very unexpected not use that variable name in an input
results! or on the left side of an assignment

statement. Otherwise, you will get

some unexpected results!
TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS

SYSTEM "DIR" (Model IV) will
display the directory from BASIC,
and may be used in either command
or program mode.

CMD "D:d" (Model III) where d
specifies a currently connected disk
drive number. The command will dis-
play the directory of the specified
drive. Note: The drive specification is
not optional. BASIC program execu-
tion will continue after the command
is used.

DIR [dl where d specifies the drive
number to be accessed. DIR will dis-
play the directory of the specified
drive and program execution will
continue.

81

FIX

APPLE Ile & I1+

Simulate it with the following routine:

20 IFV=INT(V) THEN 40

3¢ V=INT(V) : IF V<0 THEN
V=V+1

40 RETURN

Here V is a numeric variable. The
decimal portion of V will be truncated.

IBM PC & PCjr

FIX (value) where value is a numeric
expression. FIX will truncate the deci-
mal portion of value. FIX is used to
obtain the whole-number part of a
decimal number.

COMMODORE 64

Simulate it with the following routine:
20 IF V=INT(V) THEN 490
30 V=INT(V) : IF V<@ THEN
V=V+1
40 RETURN

Here V is a numeric variable. The
decimal portion of V will be truncated.

FLASH

APPLE Ile & I1 +

FLASH causes subsequent display
output to alternately flash between
INVERSE and NORMAL.

IBM PC & PCjr

COLOR 16,7 is not precisely the
same as FLASH, but it does cause a
normal-on-inverse blinking display.
You can vary the first digit between
16 and 31 to vary foreground color,
and 0 and 7 to vary background color.

COMMODORE 64

Can be simulated with the following
routine, where MSGS is the string to
be flashed on line ROW at position
COL. It will flash on and off at the
DELAY rate untili KEY$—in this
case the space bar—is pressed.

100 MSG$="HELLO" : ROW=1:
COL=2
110 DELAY=100: KEY$=""
120 POKE 783, 0: POKE
781 ,ROW: POKE 782,COL
130 SYS 65520 : PRINT
CHR$ (18)MSG$
140 FOR I=1TODELAY: NEXT
150 POKE 783, 0 : POKE
781 ,ROW: POKE 782,COL
160 SYS 65520 : PRINT MSG$
170 GET A$: IF A$=KEY$ THEN
200
180 FOR I=1TODELAY: NEXT
190 GOTO 120
200 REM PROGRAM CONTINUES

HERE
FN
APPLE Ile & I1 + IBM PC & PCjr COMMODORE 64
FN N(e) where N is a variable name Same. Same.

and e is an expression that specifies
the value to be evaluated by the
function. FN is used to call a function
—]

that has been defined by the DEF FN
statement.

82

TRS-80 Models IV & I11 TRS-80 Color Computer COMMENTS
FIX (value) where value is a numeric ~ FIX (value) where value is a numeric
expression. FIX will truncate the deci- expression. FIX will truncate the deci-
mal portion of value. FIX is used to mal portion of value. FIX is used to -
obtain the whole-number part of a obtain the whole-number part of a
decimal number. decimal number.
TRS-80 Models IV&III - TRS-80 Color Computer COMMENTS
Can be roughly simulated with thefol- Can be roughly simulated with the fol-
loyving subroutine. This subroutine lowing subroutine:
will, however, consume a great deal 1ppp REM INITIALIZE VARTABLES
of processor time, and will not operate 1919 REM FLASH=NUMBER OF
in a background mode. TIMES TO FLASH
1000 REM INITIALIZE VARIABLES 1020 ggn}xg;?hnmm TIME FOR
1 R S = MEER OF 1030 REM P$=STRING TO BE
1020 ﬁﬁ%’;‘ﬁ Y=DELAY TIME FOR 1040 REM LC=SCREEN LOCATION
1030 REM P$=STRING TO BE (9-510) FOR FLASHED
FLASHED STRING
1040 REM LC=SCREEN LOCATION 1050 REMGOSUB 1100 TO CALL
(1-1023) FOR FLASHED SUBROUTINE
STRING 1100 glzai;=STRING$ (LEN(PS$),
1050 REM GOSUB 1100 TO CALL 1110 FORD1=1TO FLASH
= 1120 PRINTELC, P$; : FORD2=1
1108 13315? STRINGS (LEN(P$), TODLAY: NEXT D2
1119 FORD1=1 TO FLASH 1130 PRINTELC, BL$; : FOR
1120 PRINTELC, P$; : FORD2=1 D2=1 TODLAY: NEXT D2
TODLAY: NEXT D2 1140 NEXT D1
1130 PRINTELC, BL$; : FOR 1150 PRINTELC,P$
D2=1 TODLAY: NEXT D2 1160 RETURN
::gg gg}gl?; LC.DS Here FLASH is a numeric variable
2LC, containing the number of times to
1160 RETURN flash P$. DLAY is a numeric variable
Here FLASH is a numeric variable affecting the amount of time the
containing the number of times to string is to remain on and off. P$ is a
flash P$. DLAY is a numeric variable string variable containing the string to
affecting the amount of time the be flashed. LC is the screen location,
string is to remain on and off. P$isa range 0-510, at which P$ is to be
string variable containing the stringto flashed.
be flashed. LC is the screen location,
range 1-1023, at which P$ is to be
flashed.
TRS-80 Models IV & I11 TRS-80 Color Computer COMMENTS
Same. Same,

83

FOR

APPLEIle & 11+

FOR var=v1 TO v2 [STEP il where
var is a numeric variable name. This
instruction executes a loop, terminat-
ed by NEXT, with a beginning value
of v1 and ending value of v2, incre-
mented by STEP i. STEP, v1 and v2
may be negative. STEP is optional
and is assumed to be +1 if not
specified. If you use GOTO or
GOSUB to break out of a loop too
often, you will encounter OUT OF
MEMORY errors. Therefore, plan
loops so that they always hit the
NEXT statement.

IBM PC & PCjr

FOR var=vl TO v2 [STEP il where
var is a numeric variable name. This
instruction executes a loop, terminat-
ed by NEXT, with a beginning value
of vl and ending value of v2, incre-
mented by STEP i. STEP, v1 and v2
may be negative. STEP is optional
and is assumed to be +1 if not
specified.

COMMUODORE 64

FOR var=v1 TO v2 [STEP il where
var is a numeric variable name. This
instruction executes a loop, terminat-
ed by NEXT, with a beginning value
of vl and ending value of v2, incre-
mented by STEP i. STEP, v1 and v2
may be negative. STEP is optional
and is assumed to be +1 if not
specified.

FORMAT

is an undocumented reserved word
for TRS-80s. Some computers have a
DOS command FORMAT that per-
forms the same function as the
TRS-80 COCO command DSKINI.

FRE

APPLEIle & I1+

FRE(e) where e is a numeric expres-
sion that is not evaluated, but must be
present. When used in the form of
PRINT FRE(e), FRE will return the
amount of available memory. When
used in the form of X=FRE(e), FRE
will force reorganization of the string
storage space. This may take a little
time.

IBM PC & PCjr

FRE(e)

FRE(e$) where e is any dummy
numeric or string value or variable.
Returns the amount of free memory
available measured in bytes. This
doesn’t include the space used by the
interpreter. Therefore, be very careful
not to assume the value given by FRE
as the value you could use in a
CLEAR statement. If you use FRE
immediately after a CLEAR, you will
find the free memory is slightly (2K
to 4K bytes) smaller than the amount
of memory you reserved with the
CLEAR. Those 2K to 4K bytes are
used by the interpreter.

Use of this command in Cassette
BASIC will result in an ILLEGAL
FUNCTION CALL if DOS 2.1 is not
present,

COMMODORE 64

FRE(e) where e is a numeric expres-
sion that is not evaluated but must be
present. FRE(e) does not always rep-
resent the amount of available
memory on the Commodore 64. Free
memory is calculated by
10 M=FRE(0) - (FRE(0)<0)
*256%256

When used in the form PRINT
FRE(e) or X=FRE(e), FRE will
force reorganization of the string stor-
age space, called garbage collection,
which could take several minutes.

84

TRS-80 Models IV & III

FOR var=v1 TO v2 [STEP il where
var is a numeric variable name. This
instruction executes a loop, terminat-
ed by NEXT, with a beginning value
of v1 and ending value of v2, incre-
mented by STEP i. STEP, v1 and v2
may be negative. STEP is optional
and is assumed to be +1 if not
specified.

TRS-80 Color Computer

FOR var=vl TO v2 [STEP il where
var is a numeric variable name. This
instruction executes a loop, terminat-
ed by NEXT, with a beginning value
of vl and ending value of v2, incre-
mented by STEP i. STEP, vl and v2
may be negative. STEP is optional
and is assumed to be +1 if not
specified.

COMMENTS

TRS-80 Models IV & I1I

FRE(x$) where x$ is any dummy
string value or variable. Returns the
amount of free string space available.

FRE(m) where n is any dummy
numeric value or variable. Returns
the amount of free memory available.
Same as MEM.

TRS-80 Color Computer

MEM returns the amount of free
memory available.

COMMENTS
Also see MEM.

85

FREE

APPLE Ile & I1 +

Cannot be simulated without
machine-language programming.

IBM PC & PCjr

Cannot be simulated without
machine-language programming.

COMMODORE 64

Simulate it with the following program
lines:

2000 OPEN15,8,15,"I"
2010 PRINT#15,"M-R"
CHR$ (250) CHR$ (2)
2020 GET# 15, A$:
A$=A$+CHR$(0)
2030 PRINT#15, "M-R"
CHR$(252) CHR$(2)
2040 GET# 15, B$:
B$=B$+CHR$ (0)
2050 PRINT
ASC(A$)+256%ASC(B$)"
BLOCKS FREE"
2060 CLOSE 15

GET, GET#

APPLE Ile & I1+

GET v$ [,x8..]1 (Keyboard Input)
where v$ and x$ are string variables.
GET is used to retrieve a single char-
acter from the current input
device—usually the keyboard—for
each variable listed. GET varies from

the INPUT command in that it does -

not display a prompt. It accepts input
without waiting for the RETURN key
to be pressed, and continues without
displaying the typed character.

GET a$ (Random File Access)
The format for this command is as
follows:

10 PRINT CHR$(4) ; "OPEN
filename, Vv, D4, Ss"

20 PRINT CHR$(4) ; "READ
filename, Rn"

30 GETa$

where filename is the file being
accessed, v is the volume number of
the disk, d is the disk drive number, s
is the slot number that contains the
disk drive, and m is the record
number. This code is not as practical
as using INPUT in line 30 would be,
because GET will get only one charac-
ter at a time. If you want more than
one character, you will have to loop
back to line 20 and concatenate a$
each time you GET it.

IBM PC & PCjr

v$=INKEYS$ (Keyboard Input) gets
the first value at the keyboard buffer
and assigns it the value v§. INKEY$
does not pause for input. If no value is
at the buffer, it assigns v$ as a null
value. If you want it to pause, then
you can either loop until INKEYS re-
turns a value different from null, or
use the INPUT$(1) function. If you
are trying to detect keys with extended
codes, use the INKEY$ function.
When a key with extended code is
pressed, the INKEYS$ function returns
a two-character string. The first char-
acter is null, and the second is the ex-
tended code.

GET [#]bl,r] (Random File Han-
dling) where b is a previously defined
buffer number (value 1-15), and r
specifies a record number. Parameter
r is optional; and is assumed to be the
next available record if it is omitted.
GET is used to retrieve a specified
record from a random access file.
Remember to specify the number of
files you will have open when you call
BASIC.

GET (x1,y1)-(x2,y2), arrayname
(Graphics) where x and y are used to
specify the corner coordinates of a
rectangle on the screen and array-
name is the name of an array that
stores the values of points in the
rectangle. This is used for high-speed

movement or replication of graphics
.]

COMMODORE 64

GET vl,x...] (Keyboard Input) reads
characters from the keyboard buffer.
If no character is pending, it returns a
null string. To avoid this you can use a
loop, as in line 100 below.

100 GETV$: IFV$="" THEN
100 : REMLOOP UNTIL AKEY
IS PRESSED

110 IFV$<"Q" ORV$> "9" THEN
100

120 V=VAL(V$)

You could use V instead of V$ in line
100, but non-numeric input would
cause a syntax error. Using V$ and
adding lines 110 and 120 to this rou-
tine allow you to input numeric data,
while avoiding syntax errors if a non-
numeric key is struck.

Conversely, if you used line 100
alone—with V$—you would get a
string variable even if a numeric key
were struck. If you wish to get multi-
ple characters, use a string that col-
lects and concatenates them, or use
the INPUT instruction.

GET# n, alSI[,bI$]l... (Sequential
File Access, Screen Access) where n

is a device or file number, and al$l,

bISl,... are variable names. This in-
struction reads data from a file or
device in the same way GET reads
from the keyboard. If device #3 is
specified, it reads the characters on
the screen sequentially. If no input is
received, characters are returned as a

null, and numbers are returned asa 0.

86

TRS-80 Models IV & I11I TRS-80 Color Computer COMMENTS
Cannot be simulated without FREE (d) reports the number of free
machine-language programming. granules available on the disk in drive
number d. This command is used only
on the TRS-80 Color Computer.
TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS

v$=INKEYS$ (Keyboard Input) gets
the first value at the keyboard buffer
and assigns it the value v§. INKEY$
does not pause for input. If no value is
at the buffer, it assigns v$ as a null
value. If you want it to pause, then
you can loop until INKEYS returns a
value different from null.

GET [#Ibl,l (Random File
Handling) where b is a previously
defined buffer number—value
1-15—and r specifies a record
number. Parameter r is optional, and
is assumed to be the next available
record if it is omitted. GET is used to
retrieve a specified record from a
random access file.

|
objects. This command cannot be

readily simulated on other computers
without using machine language.
Therefore, simulation is beyond the
scope of this book. You may wish to
investigate the use of sprites on the
Commodore 64 or the shape table on
the Apple.

v8=INKEY$ (Keyboard Input) gets
the first value at the keyboard buffer
and assigns it the value v$. INKEY$
does not pause for input. If no value is
at the buffer, it assigns v$ as a null
value. If you want it to pause, then
you can either loop until INKEYS re-
turns a value different from null or
use the INPUT function. To retrieve
multiple characters, use INPUT.

GET [#Ibl,r] (Random File Han-
dling) where b is a previously defined
buffer number—value 1-15—and r
specifies a record number. Parameter
I is optional, and is assumed to be the
next available record if it is omitted.
GET is used to retrieve a specified
record from a random access file.

GET (x1,y1)-(x2,y2), arrayname
[,G] (Graphics) where x and y are
used to specify the corner coordinates
of a rectangle on the screen, and ar-
rayname is the name of an array that
will store the values of points in the
rectangle. G is optional for some uses.
When used, G tells the computer to
store in full graphics detail. This is
used for high-speed movement or
replication of graphics objects. This
command cannot be readily simulated
on other computers without using ma-
chine language. Therefore, it is
beyond the scope of this book. You
may wish to investigate using sprites
on the Commodore 64 or the shape
table on the Apple.

GET can be a very confusing conver-
sion problem because it is used in
many different ways—random file
access, keyboard input and graphics.
Be careful to identify the results it cre-
ates on the source machine before
translating it to the target.

87

GOSUB

APPLE Ile & 11+

GOSUB n where n is a line number
that begins a subroutine terminated
by the RETURN statement. GOSUB
causes program execution to jump to
the specified line, process the
instructions found there, and then
return to the instruction following the
calling GOSUB. Repeatedly breaking
out of subroutines with GOTO will

IBM PC & PCjr

GOSUB n where n is a line number
that begins a subroutine terminated
by the RETURN statement. GOSUB
causes program execution to jump to
the specified line, process the
instructions found there, and then
return to the instruction following the
calling GOSUB. Be sure the
subroutines always end in a RETURN

COMMODORE 64

GOSUB n where n is a line number
that begins a subroutine terminated
by the RETURN statement. GOSUB
causes program execution to jump to
the specified line, process the
instructions found there, and then
return to the instruction following the
calling GOSUB. Repeatedly breaking
out of subroutines with GOTO will

cause an OUT OF MEMORY error. statement, rather than branching cause an OUT OF MEMORY error.
In integer BASIC you can use themwitha GOTO.

variables for the line number.

APPLEIle & I1 + IBM PC & PCjr COMMODORE 64

GOTO n where n is a line number in
the current program. GOTO causes
program execution to jump to the
specified line and continue execution

GOTO n where n is a line number in
the current program. GOTO causes
program execution to jump to the
specified line and continue execution

GOTO n where n is a line number in
the current program. GOTO causes
program execution to jump to the
specified line and continue execution

from that instruction on. Repeated from that instruction on. from that instruction on. Repeated
exits from loops—such as exits from loops—such as
FOR/NEXT or GOSUB—using FOR/NEXT or GOSUB—using
GOTO will cause an OUT OF GOTO will cause an OUT OF
MEMORY error. MEMORY error.

Apple Integer BASIC allows

computed line numbers in a GOTO.

APPLE Ile & 11+ IBM PC & PCjr COMMODORE 64

GR causes the Apple to display the
currently specified page of the low-
resolution graphic screen. If no page
has been specified, page 1 is assumed.
This screen will normally be 40 rows
by 40 columns with the bottom eight
rows open for up to four lines of text.
Make a full 48-row-by-40-column
screen by following the GR statement
with

POKE -16302,0: CALL -1998

SCREEN 1 places the screen into the
medium-resolution graphics mode
(320x200). Used with the
color/graphics adapter only.

SCREEN 2 is the two-color, high-
resolution graphics mode (640x200).

SCREEN 3 (Cartridge BASIC Only)
places the screen in the low-resolution
graphics mode (160x200).

SCREEN 4 (Cartridge BASIC Only)
places the screen in the four-color,

medium-resolution graphics mode
(320x200).

SCREEN 5 (Cartridge BASIC Only)
places the screen in the 16-color,
medium-resolution graphics mode
(320x200). Requires 128K RAM.

...]

POKE 53265,PEEK (53265) OR 32:
POKE 53270,PEEK(53270) OR 16

sets the Commodore 64 into the

multi-color bit map mode (.e.,
medium resolution). This is a very
complex mode in BASIC, requiring
extensive POKEs to control. A discus-
sion of it is beyond the scope of this
book. Instead, see Commodore 64
Graphics & Sound Programming by
Stan Krute or How to Program Your
Commodore 64by Carl Shipman.

SCREEN can also take many other
arguments. Also see SCREEN.

TRS-80 Models IV & 111

GOSUB n where n is a line number
that begins a subroutine terminated
by the RETURN statement. GOSUB
causes program execution to jump to
the specified line, process the
instructions found there, and then
return to the instruction following the
calling GOSUB.

TRS-80 Color Computer

GOSUB n where n is a line number
that begins a subroutine terminated
by the RETURN statement. GOSUB
causes program execution to jump to
the specified line, process the
instructions found there, and then
return to the instruction following the
calling GOSUB.

COMMENTS

Only Apple Integer BASIC allows
computed line numbers in a GOSUB.

TRS-80 Models IV & 111

GOTO n where n is a line number in
the current program. GOTO causes
program execution to jump to the
specified line and continue execution
from that instruction on.

TRS-80 Color Computer

GOTO n where n is a line number in
the current program. GOTO causes
program execution to jump to the
specified line and continue execution
from that instruction on. '

COMMENTS

Only Apple Integer BASIC allows
computed line numbers in a GOTO.

TRS-80 Models IV & 111

Cannot be simulated because TRS-80
Models III and IV do not have separ-
ate graphic screens.

TRS-80 Color Computer

PMODE n where n is 2 or 3. Sets the
COCO into medium resolution.
PMODE is capable of taking several
other arguments not related to
medium resolution. Also see
PMODE.

COMMENTS

89

HCOLOR

APPLE Ile & I+

HCOLOR=n where n is a numeric
expression in the range 0-7. Sets the
color plotted in the high-resolution
graphics mode. Color assignments for
n are given below. Note that if n=3,
the dot will be blue if the x coordinate
is even, green if the x coordinate is
odd, and white only if (x,y) and

(x+1,y) are both plotted.

0 Black1 5 Dependson
1 Green monitor

2 Blue 6 Dependson
3 Whitel monitor

4 Black?2 7 White 2

IBM PC & PCjr

COLOR [bgl LIpl] in the SCREEN 1
medium-resolution graphics mode,
which requires the color graphics
adapter, where bg is the background
color in the range 0-15 (default=7 or
most recently named value) as shown
in the chart below. Parameter p is the
numeric expression in the range
0-255 indicating which palette to use.
If p is even, palette 0 is selected,
which includes red, green and brown.
If p is odd, palette 1 is chosen, which
includes cyan, magenta and white.
The color within the palette that will
be used is determined when giving a
graphics command, such as PSET,
PRESET, LINE, CIRCLE, PAINT or
DRAW.

Parameter bg may be omitted by
including a comma before parameter
p. In this case, the old value of bg is
considered to still be in effect.

Color-parameter values with the color

graphics adapter are:

0 Black 9 LightBlue

1 Blue 10 Light Green

2 Green 11 Light Cyan

3 Cyan 12 Light Red

4 Red 13 Light

5 Magenta Magenta

6 Brown 14 Yellow

7 White 15 High-

8 Gray intensity
White

Using COLOR in the SCREEN 2 high-

resolution graphics mode will result in
an ILLEGAL FUNCTION CALL
€rror.

COLOR Ifgl] [,Ibgll (Cartridge BASIC
Only) in the SCREEN 6 high-
resolution graphics mode selects the
foreground attribute and background
color. Parameter fg is the foreground
attribute—range 1-3. Default colors
for foreground attributes 1, 2 and 3
are cyan, magenta and white. You can
change these defaults with the
PALETTE and PALETTE USING
commands Parameter bg is the back-
ground color—range 0-15. The colors
associated with the numeric values for
the background are the same as in the
above table.

COMMUODORE 64

To set the color of the screen, border
or cursor on the Commodore 64, use
one of the following POKEs, with N
selected out of the following table:

POKE 53280 ,N Colors BORDER
POKE 53281 ,N Colors SCREEN
POKE 646 ,N Colors CURSOR

The value of N must be an integer in
the range 0-15, and produces the
result indicated in the following table:

0 Black 8 Orange

1 White 9 Brown

2 Red 10 LightRed
3 Cyan 11 Gray1

4 Purple 12 Gray2

5 Green 13 Light Green
6 Blue 14 Light Blue
7 Yellow 15 Gray3

See HGR for a further discussion of
high-resolution color on the Commo-
dore 64.

20

TRS-80 Models IV & III

Cannot be simulated on the TRS-80°
ModelsIV or III.

TRS-80 Color Computer

COLOR (f,b) sets the color of the
display, where f is the color of the
foreground, and b is the color of the
background. Depending on the
PMODE selected, the range of f and b
may be 1-2, 1-4 or 1-8, with the actual
colors that correspond to the numbers
varying.

SET (x,y,c¢) determines the color of
an individual screen point, where x
and y are screen coordinates and ¢ is a
numeric expression associated with
the color. Possible values for ¢ follow:

0 Black 5 Buff

1 Green 6 Cyan

2 Yellow 7 Magenta
3 Blue 8 Orange
4 Red

COMMENTS

o1

HEXS$

APPLEIle & I1 +

The following subroutine will return
the same value as would be returned
by HEXS, stored in the string R$.
Before calling this subroutine, assign
the number you wish to convert to the
variable NUMBER.

1000 DIchT$="0123456789ABCD
EF"

1010 R$=""

1015 IF NUMBER< @ THEN
NUMBER= (65536 + NUMBER)

1020 I=NUMBER

1030 Q=INT(I/16)

1040 R=I-Q*%16

1050 R$=MID$ (DIGIT$,R+1,1)+
R$

1060 I=Q

1070 IFI>0 GOTO 1030

1080 RETURN

IBM PC & PCjr

HEXS$() where n is a numeric ex-
pression in the range —32768-65535.
This function returns the hexadecimal
value of a decimal argument. If n is
negative, the two’s complement form
is wused. This means that
HEX$(—n) =HEX$(65536—n).

COMMODORE 64

The following subroutine will return
the same value as would be returned
by HEXS, stored in the string RS$.
Before calling this subroutine, assign
the number you wish to convert to the

variable NUMBER.
1000 DIGIT$="0123456789ABCD
EF"

1010 IF NUMBER< @ THEN
NUMBER= (65536 + NUMBER)

1015 R$=""

1020 I=NUMBER

1030 Q=INT(I/16)

1040 R=I-Q*16

1050 R$=MID$ (DIGIT$,R+1,1)+
R$

1060 I=Q

1070 IFI>0GOTO1030

1080 RETURN

HGR, HGR2

APPLE Ile & I1 +

HGRI2] causes the computer to dis-
play the currently specified page of
the high-resolution graphics screen. If
no page is specified, page one is
assumed. This screen will normally be
280 columns by 160 rows, with a
window at the bottom consisting of
four rows of text. Following the HGR
statement with

POKE -16302,0

will change the window to graphics,
giving a full 280x192 graphics display.

IBM PC & PCjr

SCREEN 2 places the screen in the
two-color, high-resolution graphics
mode (640x280). Used with the
color/graphics adapter only.

SCREEN 6 (Cartridge BASIC Only)
places the screen in the four-color,
high-resolution graphics = mode
(640x200). Requires 128K RAM.

SCREEN can take many other
arguments. Also see SCREEN for
more details,

COMMODORE 64

The following program lines set the
Commodore 64 into the high-
resolution mode, with a 320 column
by 200 row, two-color display. The
colors are determined by parameters
P and B in line 140. Parameter P rep-
resents the pixel color, and B the
background. Parameters P and B are
in the range 0-15. For actual color
values, see the list of colors under
COLOR. In this example, the back-
ground is blue and the pixels are black.

100 POKE 53272, PEEK (53272)
OR 8

110 POKE 53265, PEEK (53265)
OR 32

120 FORI=8192T0 16191

130 POKE I,0: NEXT

140 P=0: B=6

150 FORI=1024 TO 2032

160 POKE I,P*16+B: NEXT

Lines 120 and 130 clear the high-

resolution screen, which takes about
]

22

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
HEX$(m) (Model IV) where nis a The following subroutine will return
numeric expression in the range the same value as would be returned
—32768-65535. This function returns by HEXS, stored in the string RS$.
the hexadecimal value of a decimal Before calling this subroutine, assign
argument. If n is negative, the two’s the number you wish to convert to the
complement form is used. This means variable NUMBER.
that HEX$(—n) =HEX$(65536—n). 199p DIGIT$="0123456789ABCD
For the Model III, the following su- EF"
broutine will return the same value as 1910 IF NUMBER< @ THEN
would be returned by HEXS, stored NUMBER= (65536 + NUMBER)
in the string R$. Before calling this ?'g;; ?fﬁUMBER
subroutine, assign the number you 1030 Q;INT (1/16)
wish to convert to the variable 1949 R=T-Q%16
NUMBER. 1050 R$=MID$ (DIGITS$,R+1,1)+
1000 DIGIT$="0123456789ABCD R$

EF" 1060 I=Q
1010 IF NUMBER< @ THEN 1070 IFI>0 GOTO 1030

NUMBER= (65536 + NUMBER) 1080 RETURN
1015 R$=""
1020 I=NUMBER
1030 Q=INT(I/16)
1040 R=I-Q*16
1050 R$=MID$ (DIGIT$,R+1,1)+

R$
1069 I=Q
1070 IFI>0 GOTO1030
1080 RETURN
TRS-80 Models IV & I1I TRS-80 Color Computer COMMENTS

Cannot be simulated because TRS-80
Models IV and III do not support high
resolution.

]
45 seconds. If you want, replace them
with

120 SYS 2024

This executes almost immediately.
However, prior to calling the line, the
following program lines are needed:

10 FOR I=2024 TO 2047 : READ
A:POKEI,A: NEXT

20 DATA 169, 0, 168, 132,
251, 162, 32, 134

30 DATA 252, 145, 251, 200,
208, 251, 232, 224

40 DATA 64, 240, 4, 134,

252, 208, 242, 96
R

PMODE n where n is 4. Sets the
COCO into high-resolution graphics
mode with two colors available.
PMODE is capable of taking several
other arguments not related to high
resolution. See PMODE.

-]
Other high-resolution screens availa-
ble on the Commodore 64 are beyond
the scope of this book. See Commodore
64 Graphics & Sound Programming by
Stan Krute.

To return to the low-resolution mode,
use the following program lines:
200 POKE 53265, PEEK (53265)

AND 223
210 POKE 53272, 21

23

HIMEM:

APPLE Ile & IT+

HIMEM:m where m is to be the
upper memory limit for BASIC pro-
grams and variable storage. HIMEM:
will protect memory above value m
for reserved use. To find the current
value of HIMEM:, use the expression

PEEK(116) %256 + PEEK(115)

IBM PC & PCjr

CLEAR |,[n][,m]] where n is the total
amount of memory for BASIC to use,
and m is the total stack space to set
aside. CLEAR also closes all files and
clears all variables. The total amount
of memory available to BASIC is
found by using the FRE command,
and by adding the size of the interpret-
er workspace—usually 2.5K to 4K.
For example, if you have 35K free
memory and a 4K interpreter
workspace, and you wish to protect
3K memory (35840+4096—3072=
36864), you would use:

CLEAR, 36864

If you have more than 96K memory,
there is no need to protect any
memory. Everything above 96K is
inaccessible to BASIC under normal
circumstances. You can use PEEK,
POKE and DEF SEG to access this
memory, but BASIC will not other-
wise know it exists.

COMMODORE 64

Memory locations $C000 to $CFFF
are already protected from BASIC on
the Commodore 64. If you need more
than 4K protected space, you can use
the following program lines to protect
the top of memory. Because the top of
memory is normally at $9FFF, you
will be protecting from some address
up to $9FFF. The code is

10 POKE 51,L: POKE 52,H:
POKE 55,L: POKE 56 ,H: CLR

where L is the decimal value of the

right two digits of the address—which

is expressed in hexadecimal. H is the

decimal value of the left two digits.

For example, if you wished to protect

from $9000 to $9FFF, you would use

10 POKE 51,0: POKE 52,144:

POKE 55,0 : POKE 56,144:
CLR

since 90 hexadecimal=144 decimal,
and 00 hexadecimal=0 decimal. If
the address is in decimal, then L and
H can be calculated by H=INT

(address/256) and L=address—
H*256.

HLIN

APPLE Ile & 11+ IBM PC & PCjr COMMODORE 64

HLIN b,e AT r where b specifies the
beginning column, e specifies the
ending column, and r specifies the
row on which to draw the line.
Parameters b and e may have a range
of 0-39, while r may have a range of
0-47. HLIN is used for drawing hori-
zontal lines on the current low-
resolution screen. If HLIN is used in
the text mode, it will draw a line of
characters. The character used is
determined by the current color. If an
attempt is made to print in the lower-
right corner of the screen, the screen
will scroll up.

LINE (hi,v1)-(h2,v2) [Ilal [BIFll
[,stylel (Graphics Mode) where hl is
the beginning horizontal coordinate,
vl is the beginning vertical
coordinate, h2 is the ending horizon-
tal coordinate, and v2 is the ending
vertical coordinate.

Possible ranges for h and v are indicat-
ed below:

Resolution h v

Low (Cart. BASIC only) 0-159 0-199
Medium 0-319 0-199
High 0-639 0-199

The optional value a is the color that
will be used to draw. See COLOR for
alist of possible colors.

Specifying B will cause a box to be
drawn, while BF will draw a filled box.
The style is used to determine wheth-

er to draw a solid line or some sort of
... - .- -

Although there is no HLIN command
for the Commodore 64, the following
program lines produce a similar effect:
100 ROW=1: COL=3: LN=23:
LI=164
110 POKE 783, 0 : POKE
781 ,ROW: POKE 782,COL
120 SYS 65520
130 FOR I=1TOLN: PRINT
CHR$ (LI); : NEXT : PRINT

This produces a line of length LN
starting at ROW, COLumn. In this
case, the line is positioned at the
bottom of the cursor. To raise the
line, change LI from 164 to 114, 102,
96, 99, 100, 101 or 163. If LI is 163,
the line is at the top of the cursor.
Here ROW must be in the range 0-24
and COLumn in the range 0-39. If an
attempt is made to print in the lower-
right corner of the screen, the screen
will scroll up.

94

TRS-80 Models IV & I11 TRS-80 Color Computer COMMENTS
CLEAR I[xl,y] (Model IV) where x CLEAR lyll,x] where y is the number

is the highest memory location you of characters of string storage space to

wish to be available to BASIC, andy reserve, and x is the highest memory

is the number of characters of string location you want available to BASIC.

storage space to reserve. CLEAR CLEAR clears all variables, as well as

clears all variables, as well as reserving reserving string storage space and pro-

string storage space and protecting tecting high memory. Notice that this

high memory. syntax is the opposite of the Model IV!

The Model III does not have a re-

served word that protects high

memory from within a program. You

must do this when BASIC is initiated.

The computer will prompt MEMORY

SIZE?. You must then enter in the

highest memory address—in

decimal—you want used.

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS

May be simulated on Models IV and
III with the following subroutine:

1000 ROW=ROW-1: PRINT
ROW¥ 64+BEGIN,"";

1010 FOR P=BEGINTOE

1020 PRINT CHR$(176) ;

1030 NEXTP

1040 RETURN

ROW is the row number (1-16) on
which to draw the line, BEGIN speci-
fies the column for the beginning of
the line, and E specifies the column
for the ending of the line.

LINE (h1,v1)-(h2,v2),a,lbl where
hl is the beginning horizontal
coordinate, vl is the beginning verti-
cal coordinate, h2 is the ending hori-
zontal coordinate, and v2 is the
ending vertical coordinate. hl and h2
may have a range of 0-255, while vl
and v2 may have a range of 0-191.
Parameter a is either PSET or
PRESET, one of which is required.
PSET sets the line in the foreground
color, while PRESET sets the line in

the background color. Parameter b is.

either B or BF, both of which are
optional. Specifying B will cause a box
to be drawn, while BF will draw a
filled box. '

dotted line. See the LINE statement

for further details.

In text mode, you can simulate HLIN

with

1000 TEMPC=POS(0) :
TEMPR=CSRLIN

1910 IF ROW=25 THEN KEYOFF

1020 LOCATE ROW, BEGIN

1030 PRINT STRING$
(E-BEGIN+1, PATTERN)

1040 LOCATE TEMPR, TEMPC, 1

1950 RETURN .

ROW is the row on which to draw the
line, BEGIN is the beginning
column, E is the ending column, and
PATTERN is the ASCII value of the
character to be used in drawing the
line. Some good choices for the value
of PATTERN are 196, 223, 205 or
178. Any ASCII character may be
used except control characters.

95

HOME

APPLE ITe & I1 +

HOME clears the current text
window and moves the cursor to the
upper-left window corner.

IBM PC & PCjr

CLS clears the screen and moves the
cursor to the upper-left corner in text
mode, or to the center of the screen
or active viewport in graphics mode.

COMMODORE 64

Although there is no HOME com-
mand on the Commodore 64, the
screen can be cleared and the cursor
moved to the upper-left corner by
using

PRINT CHR$(147) ;

HPLOT

APPLE Ile & I1+ IBM PC & PCjr COMMODORE 64
HPLOT h,v [TO h2,v2]... sets a Capabilities of the DRAW command The following subroutine will set the
point on the high-resolution screen, exceed those of HPLOT. See DRAW. point h,v on the high-resolution
where h is the horizontal coordinate, screen. For h the range is 0-319. For v
range 0-279, and v is the vertical the range is 0-199. Prior to this, the
coordinate, range 0-159 (with text high-resolution screen routine must
window) or 0-191 (without text have been called. See HGR. The
window). HPLOT h,v is used to set color of the point set is determined by
poipts on the high-resolution screen, P in that routine.
while HPLOT h,v TO h2,v2 will draw 1000 BY=8192+INT(V/8) %320+
a line. You can extend the line in any INT(H/8) %8+ (VAND7)
direction by specifying additional TO 1010 BI=7-(HAND 7)
h3,v3 parameters. 1020 POKE BY, PEEK (BY) OR
(2+BI)
1030 RETURN
- APPLEIle & 11+ IBM PC & PCjr COMMODORE 64
HTAB n tabs the cursor horizontally, LOCATE Il Llc LIvl Llstartl Not available on the Commodore 64.

where n is a number between 0 and
255, specifying a horizontal position
from the beginning of the current
output line. HTAB is similar to TAB,
but is used independently from
PRINT statements. HTAB can also
move the cursor backward to the
beginning of the line. TAB cannot.

[,stoplll] places the cursor and speci-
fies several options for cursor display.
Parameter r specifies the row (range
1-25), ¢ specifies the column (range
1-40 or 1-80, depending on the cur-
rent width). If v=0, the cursor is
invisible. If v=1, the cursor is visible.
Start and stop indicate the cursor
scan start and stop lines—range 0-31.
Start, stop and v do not apply in
graphics mode. If r=25, then you
must use the KEY OFF command
prior to the LOCATE command.

The following program lines produce
a similar effect:

100 ROW=10: COL=4:
‘MSG$="HELLO"

110 POKE 783, 0: POKE
781,ROW: POKE 782, COL

120 SYS 65520 : PRINT MSG$

The above program will print the con-
tents of MSGS$ on line ROW starting
at position COL.

96

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
CLS clears the screen and moves the CLS clears the text screen and moves

cursor to the upper-left corner. the cursor to the upper-left corner.

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
Cannot be simulated because TRS-80 Capabilities of the DRAW command

Models IV and III do not have high- exceed those of HPLOT. See DRAW.

resolution graphics.

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS

PRINT @ n (Model IV) or PRINT @
(r,c) where n is a screen position in
the range 0-1919, and (r,c) is a pair of
coordinates specifying the row—
range 0-23—and the column— range
0-79. This command places the cursor
at the specified position.

PRINT @ n (Model III) where n is a
screen position in the range 0-1023.
This command places the cursor at
the specified position.

PRINT @ n where n is a screen posi-
tion in the range 0-511. This com-
mand places the cursor at the specified
position. ‘

97

IF-THEN-ELSE

APPLE Ile & IT+
IFaTHEN b

or
IF a [THENI]IGOTO] ¢ where a is a
logical or arithmetic expression, b is
an instruction or line number, and ¢ is
a line number. In the second usage,
you may use either THEN or GOTO
or both, but you must use at least one
of them. This instruction set causes
the program to perform a conditional
branch, based upon whether the test a
returns true. If a is true, THEN (or
GOTO) is executed. If a returns false,
THEN (or GOTO) is ignored. Note
that if you have other commands on
the same line with the IF-THEN
instruction—even if separated by a
colon—they will be executed only if a
returns true,

If the source program has an ELSE
command in it, you can simulate this

IBM PC & PCjr
IF al,) THEN b [JELSE d]

or

IF a [,] GOTO c [LLJELSE dl where a
is a logical or arithmetic expression, b
is an instruction or line number, cis a
line number, and d is an
instruction—including, possibly,
another IF-THEN-ELSE - instruc-
tion—or line number. Commas are
optional. Use them for increased
readability. This instruction set causes
the program to perform a conditional
branch, based on whether the test a is
true. If a is true (not zero), THEN (or
GOTO) is executed. If a is false

- (zero), THEN (or GOTO) is ignored

and the optional ELSE is executed.
Note that if you have other commands
on the same line with the IF-THEN
instruction—even if separated by a
colon—but before the ELSE, they will

COMMODORE 64
IFaTHENb

or
IF a [THEN] [GOTOI ¢ where a is a
logical or arithmetic expression, b is
an instruction or line number, and ¢ is
a line number. In the second usage,
you may use either THEN or GOTO
or both, but you must use at least one
of them. This instruction set causes
the program to perform a conditional
branch, based on whether the test a
returns true. If a is true, THEN (or
GOTO) is executed. If a returns false,
THEN (or GOTO) is ignored. Note
that if you have other commands on
the same line with the IF-THEN
instruction—even if separated by a
colon—they will be executed only if a
returns true,

If the source program has an ELSE
command in it, you can simulate this

by adding another IF-THEN that beexecuted onlyifais true. by simply adding another IF-THEN
covers the other condition. For that covers the other condition. For
example, example,

10 IF A=1 THEN PRINT 10 IF A=1 THEN PRINT
"GOODBYE" ELSE PRINT "GOODBYE" ELSE PRINT
"HELLO" "HELLO"

in the source program would become: in the source program would become

10 IF A=1 THEN PRINT 10 IF A=1 THEN PRINT
"GOODBYE" "GOODBYE"

20 IF A<>1 THEN PRINT 20 IF A<>1 THEN PRINT
"HELLO" Y"HELLO"

APPLE Ille & 11+ IBM PC & PCjr COMMODORE 64

Simulate it by using NOT x OR y.
This will work logically, but not
bitwise. On the Apple, 1 is True and 0
is False.

x y NOTxORYy
T T T
T F F
F T T
F F T

x IMP y where x and y are numeric
expressions. IMP is a logical and bit-
wise operator that returns the follow-
ing truth table:

X y xIMPy
T T T
T F F
F T T
F F T

Simulate it by using NOT x OR y. On
the Commodore —1 is True and 0 is
False.

X y NOTxORYy
T T T
T F F
F T T
F F T

98

TRS-80 Models IV & 111
IFaTHENDbI[ELSE

or

IF a [THEN] command [ELSE c]
where a is an expression that is either
true or false, b is executed if a is true,
and c is executed if a is false. Com-
mand may be any BASIC instruction.
In the second case, THEN is optional
if no ambiguity exists. Parameter a
may be a logical, arithmetic or
Boolean statement. Parameters b and
¢ may be any instruction or a line
number.

TRS-80 Color Computer
IF a THEN b [ELSE c}

or

IF a [THEN] command [ELSE cl]
where a is an expression that is either
true or false, b is executed if a is true,
and c is executed if a is false. Com-
mand may be any BASIC instruction.
In the second case, THEN is optional
if no ambiguity exists. Parameter a
may be a logical, arithmetic or
Boolean statement. Parameters b and
¢ may be any instruction or a line
number.

COMMENTS

TRS-80 Models IV & III

x IMP y (Model IV) where x and y
are numeric expressions. IMP is a log-
ical and bitwise operator that returns

the following truth table:
x y xIMPy
T T T
T F F
F T T
F F T

Simulate it on the Model III by using
NOTxORYy

L]

NOTxORYy
T

el Lo
bes ko Reo e
=3 '

TRS-80 Color Computer
Simulate it by using NOT xOR y
% NOTxORYy

e oo R B
oK Re |
e L R Lo

COMMENTS

99

IN#

APPLE Ile & 11+

IN#x where x is a numeric
expression. IN# redirects input to
come from the slot specified by x.

IBM PC & PCjr

It is not necessary to redirect input be-
cause all input commands specify
which buffer the input is to come
from.

COMMODORE 64

It is not necessary to redirect input be-
cause all input commands specify
which buffer the input is to come
from.

INKEYS

APPLE Ile & 11+

GET v8$ [,x8...] is used to retrieve a
single character from the current
input device—usually the key-
board—for each variable listed, where
v$ and x$ are string variables. GET
varies from the INPUT command in
that it does not display a prompt. It ac-
cepts input without waiting for the
RETURN key to be pressed and con-
tinues without displaying the typed
character.

IBM PC & PCjr

v8$=INKEYS$ gets the first value at
the keyboard buffer and assigns it the
value v$. INKEYS$ does not pause for
input. If no value is at the buffer, it as-
signs v$ as a null value. If you want it
to pause, then you can either loop
until INKEY$ returns a value dif-
ferent from null or wuse the
INPUTS$(1) function. If you are trying
to detect keys with extended codes,
use the INKEY$ function. When a
key with extended code is pressed,
the INKEY$ function returns a two-
character string. The first character is
null, and the second is the extended
code.

COMMODORE 64

GET v$Lx..] (Keyboard Input)
reads characters from the keyboard
buffer. If no character is pending, it re-
turns a null string. To avoid this you
can use a loop, as in line 100 below:

100 GETV$: IFV$=""THEN 100
If you wish to get multiple characters,
use a routine that collects and concate-

nates them, or use the INPUT
instruction.

INP

APPLEIle & 11+

Using ports on the Apple is not ac-
complished without assembly lan-
guage routines or extensive PEEKs
and POKEs. Therefore, it is beyond
the scope of this book. A good refer-
ence on the subject is The Apple Con-
nection by James W. Coffron.

IBM PC & PCjr

INP(n) reads a byte from the port
specified by n, where n is a port ad-
dress in the range 0-65535. The ports
supported by IBM are indicated in the

Technical Reference Manual. Addition-

al devices that use ports not supported
by IBM usually document which port
addresses they use.

COMMODORE 64

Using ports is not possible without
assembly-language routines or exten-
sive PEEKs and POKEs. Therefore, it
is beyond the scope of this book.

100

TRS-80 Models IV & 111

It is not necessary to redirect input be-
cause all input commands specify
which buffer the input is to come
from.

TRS-80 Color Computer

It is not necessary to redirect input on
COCO because all input commands
specify which buffer the input is to
come from.

COMMENTS

TRS-80 Models IV & 111

v$=INKEYS$ gets the first value at
the keyboard buffer and assigns it the
value v$. INKEY$ does not pause for
input. If no value is at the buffer, it as-
signs v$ as a null value. If you want it
to pause, then you can loop until
INKEYS$ returns a value different
from null.

TRS-80 Color Computer

v$=INKEY$ gets the first value at
the keyboard buffer and assigns it the
value v$. INKEY$ does not pause for
input. If no value is at the buffer, it as-
signs v$ as a null value. If you want it
to pause, then you can either loop
until INKEY$ returns a value dif-
ferent from null or use the INPUT
instruction. To retrieve multiple
characters, use the INPUT
instruction.

COMMENTS

TRS-80 Models IV & 111

INP(n) reads a byte from the port
specified by n, where n is a port ad-
dress in the range 0-255. Ports sup-
ported by Tandy are indicated in the
Technical Reference Manual.

TRS-80 Color Computer

Using a port requires assembly-
language routines or extensive
PEEKs and POKEs. Therefore, it is
beyond the scope of this book.

COMMENTS

Also see OUT and WAIT.

101

INPUT

APPLEIle & I1+

INPUT ["promptll";] x1l[,x2l...
pauses program execution to await
input from the keyboard, where
prompt is any string constant that fits
on one line, and x1, x2,... are string
or numeric variable names or array
elements to be assigned. The key-
board input must be terminated with a
carriage return and must agree in type
with the variable name.

If multiple variables are to be
assigned, the user may either enter
them all on the same line separated by
commas, or delimit each with a car-
riage return. If the prompt is omitted,
just a question mark is printed as a
prompt. If the prompt is included, it
does not print the question mark.
Only one space is permitted at the end
of the prompt. A null value—just a
carriage return—will be accepted if x1
is to be a string, but not if x1 is a
number.

Quotation marks within the input are
allowed only if the first character is
also a quotation mark. CTRL-X and
CTRL-M are not allowed within a
string-input response. If the string
begins with a quotation mark, comma
and colon are also not allowed.

IBM PC & PCjr

INPUTL;] " prompt ";] x1[,x2l...
pauses program execution to await
input from the keyboard, where
prompt is any string constant that will
fit on one line, and x1, x2,... are
string or numeric variable names or
array elements to be assigned. The
keyboard input must be terminated
with a carriage return and must agree
in type with the variable name.

If multiple variables are to be
assigned, the user must enter them all
on the same line, separated by
commas. If too many or too few re-
sponses are entered, 7REDO FROM
START will be displayed, and the
INPUT command will be re-executed.
If the semicolon after INPUT is
included, the user’s carriage return is
not echoed to the screen. If the
prompt is omitted, a question mark is
printed as a prompt. The prompt will
be followed by a question mark when
displayed. If the prompt in the comm-
mand is followed by a comma instead
of a semicolon, the question mark is
not displayed.

The keyboard input must be terminat-
ed with a carriage return and must
agree in type with the variable name.
If a colon is used as a character, it and
the data up to the next carriage return
are-ignored.

If a string response is to include a
comma, it must be completely en-
closed in quotation marks.

COMMODORE 64

INPUT ["prompt",] x1l,x2]...
causes program execution to await
input from the keyboard while print-
ing the optional prompt and a question
mark. The prompt may be any string
constant less than 38 characters long.
Parameters x1, x2, ... are string or
numeric variable names or array ele-
ments to be assigned.

While the routine is INPUTting, the
cursor will continue flashing, and the
keyboard input will echo to the
screen. The keyboard input must be
terminated with a carriage return and
must agree in type with the variable
name. If multiple variables are to be
assigned, the user may enter them all
on the same line, separated by
commas. If too few responses are
entered, the symbol ?? will be dis-
played while the computer awaits the
missing inputs. If too many responses
are entered, the message ?EXTRA
IGNORED appears and the extra re-
sponses are rejected.

Commas and colons are treated as
separators by INPUT, so their inad-
vertent use usually results in too
many responses being entered. If the
input does not agree in type with the
variable name, the message 2REDQO
FROM START will be displayed, and
INPUT awaits the correct type of data.

Leading spaces are ignored, although
shifted spaces are not. If a colon is
used as a character, it and the data up
to the next carriage return are
ignored. If a string response is to in-
clude a comma, a colon, a leading
space or any of the screen-editing
characters, then it should be com-
pletely enclosed in quotation marks.

If a string response begins with a quo-
tation mark, it cannot contain embed-
ded quotation marks without the
?REDO FROM START message
occurring. INPUT accepts the entire
line that the cursor is on, including
characters after the cursor. The sum
of the number of characters in the
prompt plus the number of characters
in the input string cannot exceed 78
characters. Otherwise, you will get
unexpected results. Expressed anoth-
er way, (number of characters availa-
ble for input$)=78—LEN (prompt$).

102

TRS-80 Models IV & I11

INPUTI;]1 ["prompt";] x1l[,x2l...
(Model IV) pauses program execution
to await input from the keyboard,
where prompt is any string constant
that will fit on one line, and x1, x2,...
are string or numeric variable names
or array elements to be assigned. The
keyboard input must be terminated
with a carriage return and must agree
in type with the variable name.

If multiple variables are to be
assigned, the user must enter them all
on the same line, separated by
commas. If too many or too few re-
sponses are entered, 7REDO FROM
START will be displayed, and the
INPUT command will be re-executed.
If the semicolon after INPUT is
included, the user’s carriage return is
not echoed to the screen. If the
prompt is omitted, a question mark is
printed as a prompt. The prompt will
be followed by a question mark when
displayed. If the prompt in the comm-
mand is followed by a comma instead
of a semicolon, the question mark is
not displayed. If a string response is to
include leading blanks, a comma or a
colon, it must be completely enclosed
in quotation marks.

INPUT ["prompt";] x1[,x2]...
(Model III) pauses program execution
to await input from the keyboard,
where prompt is any string constant
that will fit on one line, and x1, x2,...
are string or numeric variable names
or array elements to be assigned. The
keyboard input must be terminated
with a carriage return and must agree
in type with the variable name.

If multiple variables are to be
assigned, the user may enter them all
on the same line separated by
commas or on separate lines. If too
many responses are entered,
?EXTRA IGNORED will be displayed
and program execution will continue.
If the prompt is omitted, a question
mark is printed as a prompt. The
prompt will be followed by a question
mark when displayed. If a string re-
sponse is to include leading blanks, a
comma or a colon it must be com-
pletely enclosed in quotation marks.

TRS-80 Color Computer

INPUT ["prompt";] x1[,x2]...
pauses program execution to await
input from the keyboard, where
prompt is any string constant that will
fit on one line, and x1, x2,... are
string or numeric variable names or
array elements to be assigned. The
keyboard input must be terminated
with a carriage return and must agree
in type with the variable name.

If multiple variables are to be
assigned, the user may enter them all
on the same line separated by
commas or on separate lines. If too
many responses are entered,
7EXTRA IGNORED will be
displayed, and program execution will
continue. If the prompt is omitted, a
question mark is printed as a prompt.
The prompt will be followed by a ques-
tion mark when displayed. If a string
response is to include leading blanks,
a comma or a colon, it must be com-
pletely enclosed in quotation marks,

COMMENTS

Syntax for INPUT varies widely. Be
careful to use the right combination of
quotation marks and punctuation!

103

INPUT#

APPLEIle & 11+

INPUT vll,v2l... will get input from
a sequential file if the file was pre-
viously specified by using a routine
similar to the one below. While the
routine is in effect, input comes only
from the file, not the keyboard.
10 PRINT CHR$ (4) ; "OPEN
filename"
20 PRINT CHR$ (4) ; "READ
filename"

IBM PC & PCjr

INPUT #n,v1[,v2]... gets a value or a
string from sequential filenumber n
and assigns the value to variable v1,
v2,... The variables may be string or
numeric, but the data must agree with
the variable in type. If a string value

. begins with a quotation mark, it

cannot include embedded quotation
marks. The value delimiters may be
commas, colons, carriage returns or
line feeds. Thus, these characters may
not be included as part of the
data—except that commas and colons
may be included inside quoted strings.

The file numbered n must have pre-
viously been OPENed for input, and
may be KYBD:, a COM port, or any
other device providing a sequential
data stream. If INPUT # is used with
a random file, it simply gets the next
value after the pointer. GET does not
change the position of the pointer in a
random file. To use INPUT # with a
random file, the file must have delimi-
ters in it. Therefore, INPUTS$ may be
a better choice.

COMMODORE 64

INPUT# n,vil,v2...] gets a value or a
string from a sequential file number n
and assigns the value to the variables
vl, v2,... The variables may be string
or numeric, but the data must agree
with the variable in terms of type. The
value delimiter is usually a carriage
return, although a comma can be used
to separate multiple entries. If multi-
ple variables are to be assigned, the
user may enter them separated by
commas or carriage returns. If too few
or too many responses are entered, no
error message occurs, although in the
latter case data will be lost. If a colon
is used as a character, it and the data
up to the next carriage return are
ignored.

Leading spaces are ignored. If a string
response is to contain a comma, a
colon, or any of the screen-editing
characters, then it should be com-
pletely enclosed in quotation marks.
If a string value begins with a quota-
tion mark, it cannot include embed-
ded quotation marks without the
error message ?FILE DATA ERROR
appearing. After that, the program
halts execution.

The file numbered n must have been
previously OPENed and may be the
keyboard (device 0), the cassette
(device 1) or the disk drive (device
8). In the case of the keyboard, no
prompt question mark is displayed. If
the string exceeds 79 characters, the
message ?STRING TOO LONG
ERROR appears and execution halts.

104

TRS-80 Models IV & 111

INPUT #n,v1l,v2]... getsa value ora
string from a sequential file number n
and assigns the value to the variables
vl, v2,... The variables may be string
or numeric, but the data must agree
with the variable in terms of type.

If a string value begins with a quota-
tion mark, it cannot include embed-
ded quotation marks. The value
delimiters may be commas, colons,
carriage returns or line feeds. Thus
these characters may not be included
as part of the data—except that
commas and colons may be included
inside quoted strings. The file num-
bered n must have previously been
OPENed for INPUT.

TRS-80 Color Computer

INPUT #n,v1[,v2]... getsa value or a
string from a sequential file number n
and assigns the value to the variables
vl, v2,... The variables may be string
or numeric, but the data must agree
with the variable in terms of type.

If a string value begins with a quota-
tion mark, it cannot include embed-
ded quotation marks. The value
delimiters may be commas, colons,
carriage returns or line feeds. Thus,
these characters may not be included
as part of the data—except that
commas and colons may be included
inside quoted strings. The file num-
bered n must have previously been
OPENed for INPUT. If n is —1, the
variable will be input from the
cassette.

COMMENTS

106

INPUTS

APPLE Ile & I1 +

To simulate INPUTS on the Apple,
redirect input from the keyboard to
the file—unless you want the input to
come from the keyboard. Then use
GET with a loop to concatenate the
number of characters you wish to
GET. For example,

10 PRINT CHR$ (4) ; "OPEN
filename"
20 PRINT CHR$(4) ; "READ
filename"
30 CC=5: REM THE CHARACTER
COUNT YOUWISH TOREAD
FROM THE FILE
40 GOSUB 1000
50 PRINT "": PRINT IS$
60 PRINT CHR$(4) ; "CLOSE
filename"
79 END
1000 REM SUBROUTINE TO READ CC
CHARACTERS INTO
VARIABLE IS$
1010 Is$=""
1020 FORI=1TOCC
1030 GETI$: IS$=IS$+I$
1040 NEXTI
1050 RETURN

IBM PC & PCjr

INPUTS @l [#] fl) where n is the
number of characters to read in from

file number f. File f must have been

previously OPENed for input or as a
random file. If f is omitted, the charac-
ters will be read from the keyboard,
but no prompt will be displayed.
INPUTS allows the inclusion of con-
trol characters (except CTRL-
BREAK) in the input string, and is
therefore preferred for use with COM
files.

COMMODORE 64

Can be simulated with the following
program lines. Line 40 may generate
an unusual screen display if graphics
characters are read in.

10 OPEN
8,8,8,"filename,S,R"
20 CC=5: REM THE CHARACTER
COUNT
30 GOSUB 1000
40 PRINT IS$
50 CLOSE 8
60 REM: PROGRAM CONTINUES
HERE
1000 IS$=""
1010 FOR I=1TOCC
1020 GET#8,I$: IS$=IS$+I$
1030 NEXT: RETURN

"INSTR

APPLE Ile & IT+

Can be simulated on the APPLE with
the following routine. Here, big$ is
the string to be searched, and find$ is
the string to be found, and n specifies
the position in big$ at which to begin
searching for find$. GOSUB 1000 will
return the position of the first
occurrence of find$ within
big$—returned in variable R. If find$
is not found in big$, R will be
returned equal to 0.

1000 BIG=LEN(big$) : FIND=LEN
(£ind$) : N=4

1016 R=0: FOR J=N TO BIG

1020 IFMID$(big$,J,FIND)=
find$ THENR=J: J=BIG

1030 NEXT: RETURN

IBM PC & PCjr

INSTR(In,] s1$, s2$) where n is an
integer between 1 and 255 that speci-
fies the position of s1$ at which to
begin searching for s2$. Optional
parameter n is assumed to be 1 if
omitted. Parameter s1$ specifies the
string to be searched and s2$ specifies
the string to be found. INSTR will
return a value specifying the position
of the first occurrence of s2$ within
s1$. If s2$ cannot be found, if
n>LEN(s1$), or if s1$ is a null, the
function returns a 0. If s2$ is a null,
the function returnsa 1.

COMMODORE 64

Simulate it with the following routine.
Here, big$ is the string to be
searched, find$ is the string to be
found, and n specifies the position in
big$ at which to begin searching for
find$. GOSUB 1000 will return the
position of the first occurrence of
find$ within big$—returned in
variable R. If find$ is not found in
big$, R will be returned equal to 0.
1000 BIG=LEN(big$) :FIND=LEN
(find$) : N=4
10190 R=0: FOR J=N TO BIG
1020 IFMID$(big$,J,FIND)=
find$ THENR=J: J=BIG
1030 NEXT: RETURN

106

TRS-80 Models IV & 111

INPUTS@LI[#] f) (Model IV)
where n is the number of characters
to read in from file number f. File f
must be a sequential file previously
OPENed for input. If f is omitted, the
characters will be read from the
keyboard, but no prompt will be
displayed.

TRS-80 Color Computer

Simulate it with the following
subroutine. In this routine, you
should replace n with the number of
the file to be OPENed, —1 for
cassette, range 1-15 for disk.

19 OPEN "1I",n,"filename"
20 GOSUB 1000
30 REM PROGRAM EXECUTION
CONTINUES HERE
190 CLOSE
110 END
1000 REM SUBROUTINE TO
SIMULATE
A$=INPUT$ (CC,n) WHERE
CC IS THE NUMBER OF
CHARACTERS TO READ
1010 L=LEN (B$) : C$=""
1015 IF L@<CC AND EOF (n) THEN
108
1020 IF L<CC THENLINE
INPUT#n,C$ ELSE1050
1030 B$=B$+C$+CHR$(13):
L=LEN(B$) : REMIFL> 255
YOUWILL GET OVERFLOW
ERROR
1040 IFL<CCGOTO1015
1050 A$=LEFT$ (B$,CC)
1960 B$=RIGHT$ (B$, L-CC)
1970 RETURN
1980 PRINT "NOT ENOUGH DATA IN
filename"
1990 RETURN

COMMENTS

TRS-80 Models IV & 111

INSTR(In,] s1$, s2$) where n is an
integer between 1 and 255 that speci-
fies the position of s1$ at which to
begin searching for s2$. Optional
parameter n is assumed to be 1 if
omitted. Parameter s1$ specifies the
string to be searched and s2$ specifies
the string to be found. INSTR will
return a value specifying the position
of the first occurrence of s2$ within
s1$. If s2$ cannot be found, if
n>LEN(s1$), or if s1$ is a null, the
function returns a 0. If s2$ is a null,
the function returnsa 1.

TRS-80 Color Computer

INSTR([n,] s18, s2$) where n is an
integer between 1 and 255 that speci-
fies the position of s1$ at which to
begin searching for s2$. Optional
parameter n is assumed to be 1 if
omitted. Parameter s1$ specifies the
string to be searched and s2$ specifies
the string to be found. INSTR will
return a value specifying the position
of the first occurrence of s2$ within
s1$. If s2$ cannot be found, if
n>LEN(s1$), or if s1$ is a null, the
function returns a 0. If s2$ is a null,
the functionreturnsa 1,

COMMENTS

107

INT

APPLEIle & 11+

INT(n) where n is a number to be
converted into an integer. INT will
truncate the fractional part of n and
return the next lower integer.

IBM PC & PCjr

INT (@) where n is a number to be
converted into an integer. INT will
truncate the fractional part of n and
return the next lower integer.

COMMODORE 64

INT(m) where n is a number to be
converted into an integer. INT will
usually truncate the fractional part of
n and return the next lower integer.
However, INT(.9999999996) =1,
while INT(.9999999995) =0.

INTERS

is an undocumented reserved word
on IBM.

INVERSE

APPLE Ile & 11 +

INVERSE causes anything printed to
the screen to be reversed in color
from normal. INVERSE is cancelled
by the NORMAL command.

IBM PC & PCjr

COLOR x,y simulates an inverse
image if x and y are valid foreground
and background colors other than
those previously in use. Preferably,
they would be the opposite of those
previously in use. For valid colors,
see COLOR.

COMMODORE 64

Using the keys RVS ON (CTRL 9)
and RVS OFF (CTRL 0) or the codes
CHR$(18) and CHR$(146) will
toggle output between reverse
(inverse) and normal. When you in-
clude your PRINT statement, simply
insert RVS ON after you type your
opening quotation marks and insert
RVS OFF before you type your closing
quotation marks. The message be-
tween the quotation marks will then
print in reverse. A carriage return au-
tomatically turns off reverse printing,
so RVS OFF is sometimes omitted at
the end of a message.

I0CTL, IOCTLS

are undocumented reserved words on
IBM.

108

TRS-80 Models IV & I11

TRS-80 Color Computer COMMENTS
INT(n) where n is a number to be INT(n) where n is a number to be
converted into an integer. INT will converted into an integer. INT will
truncate the fractional part of mn and truncate the fractional part of n and
return the next lower integer. return the next lower integer.
TRS-80 Models IV & II1 TRS-80 Color Computer

Enabled on the Model IV by PRINT-
ing CHR$(16), and disabled by
PRINTing CHR$(17).

Not available on the Model I11.

SHIFT-0 will toggle output between
normal and inverse on the COCO.
When you include your PRINT
statement, just toggle to inverse after
you type your opening quotation
marks and back to normal before
typing your closing quotation marks.
The message between the quotation
marks will print inverse.

COMMENTS

109

JOYSTK

APPLE Ile & IT+

PDL(n) where n is an integer in the
range 0-225. If values other than 0, 1,
2 or 3 are used, the PDL function will
give erratic and unpredictable results!
Values of 0-3 return a ‘‘resistance
variable’’ for the respective paddle be-
tween 0 and 150K ohms. This value
must then be interpreted to produce
the desired results. Note that this will
require extensive programming
changes when converting to or from
other computers.

Although it can handle four paddies,
the Apple can read the status only of
three paddle buttons. This is accom-
plished with PEEK(—16287) for the
value of the button on paddle 0,
PEEK(—16286) for paddle 1, and
PEEK(—16285) for paddle 2. If the
value returned is greater than 127,
then the button is being pressed.

IBM PC & PCjr

STICK(n) where n is an integer in
the range 0-3. STICK returns the
coordinates of the joysticks.
STICK (0) obtains the values of both
joysticks, but returns the x coordinate
of joystick A.

STICK (1), STICK(2) and STICK(3)
do not sample the joystick, but return
the coordinates retrieved by the most
recent STICK(0). STICK (1) returns
the y coordinate of joystick A.
STICK (2) returns the x coordinate of
joystick B. STICK(3) returns the y
coordinate of joystick B.

STRIG ON

v=STRIG(n) ;

STRIG OFF where n is an integer
from 0-3 in BASIC, or 0-7 in Ad-
vanced BASIC, Cartridge BASIC or
Compiler BASIC. STRIG ON causes
the program to begin checking the
status of the joystick buttons at the
beginning of execution of each pro-
gram line. STRIG OFF ceases

checking. Interpret the value returned .

by STRIG (n) with the table below:

Valuelf Valuelf
Button Butten

B Value Butten HasBeen IsBeing Default
Number Pressed Pressed
J Al -1 0
1 Al -1 0
2 Bl -1 0
3 Bl -1 0

The following apply to Advanced,
Cartridge and Compiler BASIC only.

4 A2 -1

5 A2 ~1

6 B2 ~1

7 B2 -1
STRIG(n) ON
ON STRIG (n) GOSUB line
STRIG(n) STOP
STRIG (n) OFF
These commands control event trap-
ping for the specified joystick button
n. The value of n is indicated by the
chart below. The parameter line speci-
fies a line to GOSUB if the specified

ocoOoD

button has been pressed.
n Button
0 Al
2 B1
4 A2
6 B2

When STRIG(n) ON has been speci-
fied and the ON STRIG(n) GOSUB

line command is in effect, BASIC
|

COMMODORE 64

The Commodore 64 supports two
game ports, 1 and 2. The joystick in
port 1 is read by PEEKing 56321. Port
2 is read by PEEKing 56320. The
number returned by the PEEK is logi-
cally ANDed with 15 to indicate the
direction according to the chart below:

NW=10 North=14 NE=6
West=11 Home=15 East=7
SW=9 South=13 SE=5

To read the “‘fire”> button, the
number returned is logically ANDed
with 16. If the value resulting is 16,
the button is not pressed. If the value
is 0, the button is pressed.

The following program lines demons-
trate how to read Port 2:

10 FORI=0 TO10: READ
D$(I): NEXT

20 DATA SE,NE,E , ,SW,NW,
W ’ ss ’N 9H ’

30 F$(0)="FIRE":
F$(1)="SAFE"

40 PRINTCHR$(147);

50 PRINT CHR$ (19)D$ ((PEEK
(56320)AND15) -5)

60 PRINTF$ ((PEEK(56320)
AND16)/16)

70 GOTO 50

...
checks at the beginning of execution
of each line to see if the button has
been pressed. If it has, the GOSUB is
executed. If not, program execution
continues uninterrupted. STRIG(n)
STOP causes trapping to cease, but
the computer remembers whether the
button was pressed. If so, when a
STRIG(n) ON is executed, the
GOSUB is executed immediately.
STRIG(n) OFF causes trapping to
cease, and even if the button is
pressed it will not be remembered.

110

TRS-80 Models IV & 111

Joysticks and paddles are not currently
supported on Models IV or III, al-
though some independent manu-
facturers have devised joysticks that
work through the cassette port.

TRS-80 Color Computer

JOYSTK(n) where n is an integer
from 0-3. This function returns a coor-
dinate of the joystick. If n=0, it re-
turns the horizontal coordinate of the
right joystick. If n=1, it returns the
vertical coordinate of the right
joystick. If n=2, it returns the hori-
zontal coordinate of the left joystick.
If n=3, it returns the vertical coordi-
nate of the left joystick.

Joystick buttons are accessed by
PEEKing memory location 65280.
PEEK (65280) will return 127 or 255
if no button is pressed. It will return
126 or 254 if the right button is
pressed, or 125 or 253 if the left
button is pressed.

COMMENTS

111

KEY

APPLE ITe & I1 +

Cannot be simulated.

IBM PC & PCjr

KEY ON causes the current assign-
ments of the function keys to be dis-
played in abbreviated form on the
screen line 25.

KEY OFF removes the function-key
display from the screen line 25 and
frees it for use by the programmer.
This is useful because line 25 does not
scroll with the rest of the screen.

KEY LIST displays the current
function-key assignments—all 15
characters.

KEY n,x$ assigns the value of x$ to
function key number mn. Note:

LEN(x$) cannot be more than 15
characters.

KEY n, CHR$(x) + CHRS(y)
(BASIC 2.0 or Cartridge BASIC
Only) defines a key to be trapped,
where m is a numeric expression

(range 15-20), x is a numeric value

corresponding to the hex value for the
“‘latched’’ keys (see below), and y is a
scan code for the key to be trapped
(range 1-83). Key-scan codes may be
determined by referring to the BASIC
Reference Manual, Appendix K.

Hex values for the “‘latched’’ keys are:

CapsLock &H40
NumLock &H20 (Noton PCjr)

Alt &HO08
Ctrl &HO04
Shift &HO01, &H02, &HO03

You can add these values together to
achieve a combined value. For
example, &HOC would require that
the Alt and Ctrl keys both be
depressed.

ON KEY (n) GOSUB line causes exe-
cution of the subroutine at the speci-
fied line if a KEY(n) ON has been
executed, and function key n has
been depressed. In BASIC 2.0 and
Cartridge BASIC, the extended keys
specified by KEY(n) may also be
trapped.

.

COMMODORE 64

Cannot be simulated without exten-
sive machine-language programming.

L.
KEY(n) ON enables the trapping of
the specified function key—or extend-
ed keys in BASIC 2.0 or Cartridge
BASIC. Causes BASIC to check at the
beginning of the execution of each
line to see if the specified key has
‘been depressed. If it has, the routine
specified by ON KEY (n) GOSUB will
be executed.

KEY (n) STOP causes BASIC to stop
checking for n at the beginning of exe-
cution of each line. But if n has been
depressed, it is remembered. When
the program encounters a KEY(n)
ON, it checks to see if the key has
been depressed, and acts accordingly.

KEY (n) OFF causes checking for the
specified key n to stop. Even if the
key is depressed, it will not be remem-
bered and no action will be taken.

KEYS

is an undocumented reserved word
on the IBM PC.

112

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
Cannot be simulated. Cannot be simulated.

113

KILL

APPLE ITe & I1+

Simulate it with the following program
lines
1@ PRINT CHR$(4) ; "OPEN

IBM PC & PCjr

KILL "filename" erases filename
from the disk. The file must have
been previously CLOSEd. Filename

COMMODORE 64

Called SCRATCH and abbreviated S
by Commodore, it is simulated with
the following program lines:

filename" can include a disk drive specification 10 OPEN 15,8,15,
2@ PRINT CHR$(4) ; "DELETE and must include the extension. For "gp:filename"
filename" example, 20 CLOSE 15
KILL"b:file.bas"
Use of this command in Cartridge
BASIC will result in an ILLEGAL
FUNCTION CALL if DOS 2.1 is not
present.
APPLEIle & I1 + IBM PC & PCjr COMMODORE 64
LEFT$(x$,n) returns a string LEFT$(x$,n) returns a string LEFT$(x$,n) returns a string

expression consisting of the left n
characters of x$, where n is a numeric
expression and x$ is any string. The
range for n is 1-255. If n>LEN (x$),
x$ is returned. If n=0, the null string
is returned,

expression consisting of the left n
characters of x$, where n is a numeric
expression and x$ is any string. The
range for n is 0-255. If n>LEN(x$),
x$ is returned. If n=0, the null string
isreturned.

expression consisting of the left n
characters of x$, where n is a numeric
expression and x$ is any string. The
range for n is 0-255. If n>LEN (x$),
then x$ is returned. If n=0, the null
string is returned.

LEN

APPLE Ile & I1 + IBM PC & PCjr COMMODORE 64
LEN (x$) returns a value equal to the Same. Same.

number of characters—including any :

blanks or unprintable characters—in

x$, where x$ is any string expression.

LET

APPLE Ile & 11+ IBM PC & PCjr COMMODORE 64
[LETIn=x assigns the value of x to Same. Same.

variable n. The only restriction is that
x and n must be of the same data type.
LET is optional. The equals sign
alone is sufficient to make this
assignment.

114

TRS-80 Models IV & I11

KILL "filename" erases the file file-
name from the disk. The file must
have been previously CLOSEd. File-
name can include a disk drive specifi-
cation and must include the
extension. For example,

KILL "file/bas:2"

If no disk drive is specified, the file is
deleted from the first drive that has it.

TRS-80 Color Computer

KILL"filename:d" erases the file
filename on disk drive number d. If d
is omitted, drive 0 is assumed.

COMMENTS

Files can be KILLed on cassette-based
sl{stems simply by recording over
them,

TRS-80 Models IV & I11

LEFT$(x$,n) returns a string
expression consisting of the left m

TRS-80 Color Computer

LEFT$(x$,n) returns a string
expression consisting of the left m

COMMENTS

The only variation on this function is
that the range of m is 1-255 for Apple,

characters of x$, where n is a numeric characters of x$, where n is a numeric 0-255 for all others.
expression and x$ is any string. The expression and x$ is any string. The

range for n is 0-255. If n>LEN(x$), range for n is 0-255. If n>LEN (x§),

then x$ is returned. If n=0, the null then x$ is returned. If n=0, the null

string is returned. string is returned.

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
Same. Same.

TRS-80 Models 1V & I11 TRS-80 Color Computer COMMENTS
Same. Same. Note: Non-extended color

BASIC does not recognize LET.,

115

LINE

APPLE Ile & I1+

HPLOT x1,y1 [TO x2,y2l.. will
draw a line between two points.
Parameters x1 and x2 are column
numbers in the range 0-279, and y1
and y2 are row numbers in the range
0-191 if you have full screen graphics,
or 0-159 if you have a text window.
To use it, you must have first used
HGR and HCOLOR =.

To draw a box, use the following
routine:

19 HPLOT x1,y1 TOx1,y2TO
x2,y2TOx2,y1 TOx1,y1

To draw a filled box, use this routine:

1000 FORy=y1 TOy2
1100 FOR x=x1 TO x2
1200 HPLOT x,y
1300 NEXTX

1400 NEXTY

IBM PC & PCjr

LINE [(h1,v1)] - (h2,v2) Lla]l [,B
[Flll,stylel (Graphics Mode) where
hl is the beginning horizontal
coordinate, v1 is the beginning verti-
cal coordinate, h2 is the ending hori-
zontal coordinate, and v2 is the
ending vertical coordinate.

Possible ranges for h and v are indicat-
ed below:

Resolution h v

Low (Cart. BASIC only) 0-159 0-199
Medium 0-319 0-199
High 0-639 0-199

The optional value a is the color that
will be used to draw. See COLOR for
alist of possible colors.

Specifying B will cause a box to be
drawn—with its opposite corners at
hi,vl and h2,v2. Specifying BF will
draw a filled box.

The style is used to determine wheth-

er to draw a solid line or some sort of a

dotted line. The placement of the dots

is determined by the bit pattern of the

number used. For example, if

&HCCCC is used, it will display a

dashed line with the pattern

1100110011001100, where 1 repre-

sents a dot and O represents a space

(&HCCCC = 11001100110 01100

binary).

Simulate it in text mode in its horizon-

tal line-drawing capabilities by:

1000 TEMPC=POS(0) :
TEMPR=CSRLIN

1010 IF ROW=25 THEN KEY OFF

1020 LOCATE ROW, BEGIN

1030 PRINT STRINGS (E-BEGIN
+1, PATTERN)

1040 LOCATE TEMPR, TEMPC,1

1050 RETURN

where ROW is the row on which to
draw the line, BEGIN is the beginning
column, E is the ending column, and
PATTERN is the ASCII value of the
character to be used in drawing the
line. Some good choices for the value
of PATTERN are 196, 223, 205 or
178. Any ASCII character may be
used except control characters.

Similarly, boxes may be constructed
using LOCATE and the graphics char-
acters represented by ASCII 169-223.

COMMODORE 64

Can be simulated by the following
routine. You must define these varia-
bles before entering the routine:

x1 The x coordinate of the start
point in the range 0-319.

yl The y coordinate of the start
point in the range 0-199.

x2 The x coordinate of the end
point in the range 0-319.

y2 The y coordinate of the end
point in the range 0-199.

You must also insert a high-resolution

screen routine, such as the one listed

under HGR. The subroutine at line

1000 is the set-point subroutine, such

as the one listed under HPLOT.

100 REMHIGH RES SCREEN GOES
HERE

300 IF x1=x2 THEN 380

310 M=(y1-y2)/(x1-x2): IF
ABS (M)>1 THEN 350

320 FORI=0 TO (x2-x1) STEP
SGN(x2-x1)

330 H=x1+I: V=INT(y1+I %
M+.5): GOSUB1000

340 NEXT: GOTO 500

350 FORI=0TO (y2-y1) STEP
SGN(y2-y1)

360 V=y1+1:
H=INT(x1+I/M+.5)
:GOSUB 1000

370 NEXT: GOTO 500

380 FORI=0TO (y2-y1) STEP
SGN(y2-y1)

390 H=x1:V=(y1+I) : GOSUB
1000

400 NEXT: GOTO 500

500 REM PROGRAM CONTINUES
HERE

1000 REMPLOTTING SUBROUTINE
GOES HERE

To draw a box you can put this routine
into a loop that repeats four
times—with new x and y coordinates
each time. You can draw a filled box
by using it as a line, but increment
either the x coordinates or the y coor-
dinates enough times to produce the
desired effect.

116

TRS-80 Models IV & I11

Simulate it in its horizontal line-
drawing capabilities on the Model III
and Model IV with the following
subroutine, where x1,y1 is the starting
point, and x2,y2 is the ending point.
You must declare the x and y coordi-
nates before entering this routine.
The range for the x coordinates is
0-47. The range for the y coordinates
is 0-127. To draw a box, you can
repeat this routine four times—with
new x and y coordinates each time.

300 IF x1=x2 THEN 380

310 M=(y1-y2)/(x1-x2): IF
ABS (M) >1 THEN 350

329 FOR I=0 TO (x2-x1) STEP
SGN(x2-x1)

330 H=x1+I: V=INT(y1+I %
M+.5): GOSUB 1000

340 NEXT: GOTO 500

350 FOR I=0 TO (y2-y1) STEP
SGN(y2-y1)

360 V=y1+I: H=INT(x1+1/
M+.5): GOSUB1000

370 NEXT: GOTO 500

380 FORI=0 TO (y2-y1) STEP
SGN(y2-y1)

390 H=x1:V=(y1+I): GOSUB
1000

400 NEXT: GOTO 500

500 REM PROGRAM CONTINUES
HERE

1000 SET (H,V) : RETURN

A filled box can be drawn with the fol-
lowing routine:

10 X1=0:X2=47 :REMRANGE
X=0 TO 47
20 Y1=0:Y2=127 :REM RANGE
¥=0 TO 127
30 GOSUB 10090
40 END
1000 FOR Y=Y1 TO Y2
1100 FOR X=X1 TO X2
1200 SET (X,Y)
1300 NEXT X
1400 NEXT Y
1500 RETURN

TRS-80 Color Computer

LINE [(h1,v1)]-(h2,v2),a,Ibl draws
a line, where h1 is the beginning hori-
zontal coordinate, v1 is the beginning

vertical coordinate, h2 is the ending

horizontal coordinate, and v2 is the
ending vertical coordinate. If (h1,v1)
is omitted, the end point from the
previous LINE statement is used.
Parameters h1l and h2 may have a
range of 0-255, while-vl and v2 may
have a range of 0-191.

Parameter a is either PSET or
PRESET, one of which is required.
PSET sets the line in the foreground
color, while PRESET sets the line in
the background color. Parameter b is
either B or BF, both of which are
optional. Specifying B will cause a box
to be drawn. Specifying BF will draw a
filled box.

COMMENTS

117

LINE INPUT

APPLE Ile & I1+

Simulate it with the following routine.
IS$ will be the value that would have
beenreturned by LINE INPUT.

1000 REM SUBROUTINE TO
SIMULATE LINE INPUT

1010 IsS$=""

1020 GET I$: PRINT I$;

1030 IF I$=CHR$(13) THEN
RETURN

1035 IF I1$=CHR$ (20) THEN

IS$=LEFT$(IS$,LEN(IS$)

-1): GOTO 1020

1040 IS$=IS$+I$

1050 IFLEN(IS$)=255THEN
RETURN

1060 GOTO 1020

IBM PC & PCjr

LINE INPUTL;I " prompt " ;1x$
allows input of up to 254 char-
acters—including commas and other
delimiters—where x$ is any string
variable. Prompt is a message that
will appear on the screen. Using a
semicolon after LINE INPUT will
allow you to input on the same line as
the prompt. A question mark is not
displayed unless it is part of the
prompt. Trailing blanks are ignored in
the input. :

COMMODORE 64

Can be simulated with the following
routine. IS$ will be the value which
would have been returned by LINE
INPUT. It will accept any key except a
carriage return.

1000 REM SUBROUTINE TO
SIMULATE LINE INPUT

1010 Iss$=""

1020 GET I$: PRINTIS;

1030 IF I$=CHR$(13) THEN
RETURN

1035 IF I$=CHR$ (20) THEN
IS$=LEFT$(IS$,LEN(IS$)
-1): GOTO 1020

1040 IS$=IS$+I$

1050 IF LEN(IS$)=255 THEN
RETURN

1060 GOTO 1020

LINE INPUT #

APPLE Ile & IT+

Simulate it with the following routine.
IS$ will be the value that would have
been returned by LINE INPUT #.
Note that the file must have been pre-
viously OPENed for input, and input
must have been activated with

PRINT CHR$(4) ; "READ
filename"

1000 REM SUBROUTINE TO
SIMULATE LINE INPUT #

1010 1S$=""

1020 GET I$: PRINT I$;

1030 IF I$=CHR$(13) THEN
RETURN

1040 IS$=IS$ +I$

1050 IF LEN (IS$)=255 THEN
RETURN

1060 GOTO 1020

IBM PC & PCjr

LINE INPUT #n,x$ allows input of
up to 254 characters from a sequential
data file—including commas and
other delimiters—where x$ is any
string variable and n is the number of
a sequential data file previously
OPENed for input. You can also use
LINE INPUT # to read from random
files if they have embedded carriage
returns. ,'

COMMODORE 64

Simulate it with the following routine.
IS$ will be the first string returned
from the filename after this routine.

10 OPEN
8,8,8,"filename,S,R"
20 GOSUB 1000
30 PRINTISS$:
REM-MANIPULATE IS$ HERE
40 CLOSE 8
50 END
1000 REM SUBROUTINE TO
SIMULATE LINE INPUT#
1010 Is$=""
1020 GET#8,1I$: PRINTIS$;
1030 IFI$=CHR$(13) THEN
RETURN
1040 IS$=IS$ +1I$
1050 IFLEN(IS$)=255 THEN
RETURN
1060 GOTO 1020

LIST

APPLE Ile & I1 +

LIST I[x]I-Iy]l lists the program to the
screen, where x is the beginning—or
only—line number and y is the
ending line number. If y is omitted,
but the dash included, the program is
listed from x to the end. If you wish
for the program or portion of the pro-
gram to be listed to a disk file, you
must have first opened the file and
specified that output be written to it.

IBM PC & PCjr

LIST Ixll-IyllLfilel lists the program
to the screen or file, where x is the
first (or only) line number to be
listed, y is the final line number to be
listed, and file is the filename to be
listed to, in ASCII form. If y is
omitted, but the dash included, the
program is listed from x to the end. If
the file name is omitted, the program
is listed to the screen.

COMMODORE 64

LIST [xll-Iyll lists the program to the
screen, where X is the beginning—or
only—line number and y is the
ending line number. If y is omitted,
but the dash included, the program is
listed from x to the end. LISTing a
program during execution will cause
the execution to halt.

118

TRS-80 Models IV & I11

LINE INPUTI;liprompt;]x$ allows
input of up to 254 characters (240 for
the Model III) —including commas
and other delimiters—where x$ is any
string variable. Prompt is a message
that will appear on the screen. Using a
semicolon after LINE INPUT on the
Model IV will allow you to input on
the same line as the prompt, but a

TRS-80 Color Computer

LINE INPUTI["prompt";lx$ allows
input of up to 249 char-
acters—including commas and other
delimiters—where x$ is any string
variable and prompt is a message that
will appear on the screen. A semicolon
is not allowed without a prompt. A
question mark is not displayed unless
it is part of the prompt. Trailing

COMMENTS

semicolon without a prompt is not al- blanks are ignored in the input.

lowed on the Model III. A question

mark is not displayed unless it is part

of the prompt. Trailing blanks are ig-

nored in the input. ’

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
LINE INPUT #n,x$ allows input of LINE INPUT #n,x$ allows input of

up to 255 characters from a sequential up to 249 characters from a sequential

data file—including commas and data file—including commas and

other delimiters—where x$ is any other delimiters—where x$ is any

string variable and n is the number of string variable and n is the number of

a sequential data file previously a sequential data file previously

OPENed for input. You can also use OPENed for INPUT.

LINE INPUT # to read from random

files if they have embedded carriage

returns.

TRS-80 Models IV & I11 TRS-80 Color Computer COMMENTS

Causes Models IV and III to return to
command mode when used in a
program.

Causes COCO to return to command
mode when used in a program.

119

LLIST

APPLE Ile & I1 +

To list a program on the printer with
Apple, use the following routine,
where x is the slot number of your
printer—normally - #1. You can also
specify the starting and ending line
numbers after the LIST.

100 PR#x; LIST: PR#0

IBM PC & PCjr

LLIST [x]I-Iyll where x is the begin-
ning line number and y is the ending
line number. LLIST will cause the
program—or specified lines—to print
on the printer, and then return
BASIC to the command level. You
must then RUN or CONTinue the
program.

If you wish to get around this
limitation, wuse the following
subroutine. The program will LLIST,
then continue. It does so because
lines 1010 and 1020 POKE the word
RETURN into the keyboard buffer.
Afterward the program returns to the
command level, the word RETURN
is obtained from the keyboard, and
the program continues. Thus line
1040 is superfluous. It is included
only for clarity.

1000 DEF SEG=0

1010 POKE 1050,30: POKE
1052,44: POKE 1054,82:
POKE 1056,69: POKE
1058,84

1020 POKE 1060,85: POKE
1062,82: POKE 1064,78:
POKE 1066,13

COMMODORE 64

The following routine will list a pro-
gram on the printer, where X is the
device number of your
printer—usually 4. You can also speci-
fy the starting and ending line num-
bers after the LIST command. This
routine will return you to the com-
mand mode.

10 PRINT CHR$(147)
"PRINT#3: CLOSE 3"

20 POKE 198,3: POKE631,19:
POKE 632,13 : POKE
633,13: X=4

30 OPEN3,X: CMD 3: LIST

1030 LLIST
1040 RETURN
LOAD
APPLEIle & 11+ A IBM PC & PCjr COMMODORE 64
LOAD filename loads the specified LOAD "filename"[,Rl loads the @ LOAD ["filename"] [,devicel

file, where filename is the name of
the file with any appropriate device
designation, such as d1. If no filename
is specified, the next file on the
cassette is assumed. All variables are
CLEARed and data files CLOSEd.
After LOADing, BASIC returns to
the command mode.

specified file and optionally runs it,
where filename is the name of the file
with any appropriate device
designation, such as CASI1: or A..
Without DOS, device CASI1: is
assumed. If the extension is left off
the filename, an extension of .BAS is
assumed. All variables are CLEARed
and data files closed, unless the R
option is chosen. In this case all data
files are left open. If the R option is
chosen, the program is immediately
run. Otherwise BASIC returns to the
command mode.

[,Jocation] loads a file into memory,
where filename is the name of the file
you wish to load. Default is the next
file on cassette. Device is the storage
device—cassette=1, disk=8, de-
fault=1. Lecation is the type of load
you wish to achieve. 0 is the default
and loads in at the start of BASIC, 1
loads in from where it was saved. File-
name is not optional for a disk load.

Although LOAD closes all files, when
used as a statement within a program
it does not clear variables. Nor does it
reset the BASIC memory pointers.
After the load is complete, it auto-
matically RUNs the BASIC program
in memory. LOAD "filename" on
the Commodore is equivalent to
RUN "filename" on other

120

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
LLIST Ix][-Iyl] where x is the begin- LLIST [x][-[yll where x is the begin-

ning line number and y is the ending ning line number and y is the ending

line number. LLIST will cause the line number. LLIST will cause the

program—or specified lines—to be program—or specified lines—to be

printed on the printer, and then printed on the printer, and then

return BASIC to command level. return BASIC to the command level.

LLIST is identical to LIST but lists LLIST is identical to LIST but lists

the program to the printer. See LIST. the program to the printer.

TRS-80 Models IV&III & TRS-80 Color Computer COMMENTS
LOAD "filename"[,LR] loads the LOAD "filename"[,R] loads the

specified file and optionally runs it,
where filename is the name of the file
with any appropriate device
designation, such as :0 or :1. If no
device is specified, BASIC searches
all drives, starting with 0. In cassette
BASIC the cassette is assumed. All
variables are CLEARed and data files
closed, unless the R option is chosen,
in which case all data files are left
open. If the R option is chosen, the
program is immediately run. Other-
wisccel BASIC returns to the command
mode.

specified file and optionally runs it,
where filename is the name of the
file. In a cassette-based system the
cassette is assumed. All variables are
CLEARed and data files closed,
unless the R option is chosen. In this
case all data files are left open. If the
R option is chosen, the program is im-
mediately run. Otherwise, BASIC re-
turns to the command mode.

]
computers. Be careful when using
LOAD to chain BASIC programs
together. The first program that has
the initial LOAD in it must be longer
than any programs subsequently
LOADed.

Also be careful when LOADing
machine-language programs to avoid
repeatedly reLOADing the same
program. See BLOAD. If you wish to
LOAD and RUN a long BASIC pro-
gram from a shorter one, you can use
the dynamic keyboard with the rou-
tine below, but remember that all
variables will be cleared.

10 PRINT CHR$(147) "LOAD"
CHR$(34) "filename"
CHR$(34) ",8"

20 POKE 214,4: PRINT: PRINT
"RUN"

30 POKE 198,4: POKE 631,19

40 FORI=2TO 4: POKE
630+I,13: NEXT

50 END

121

LOADM (See BLOAD)

LOC

APPLE Ile & 11+

Not available. Cannot be simulated.

IBM PC & PCjr

LOC(x) returns the position of the
pointer in a file, where x is the
number of an open file. For random
files, it returns the number of the
most recently addressed record. For
sequential files, it returns the number
of records—128 byte blocks—written
to or read from the file since it was
opened. For a file that is actually a
COM bulffer, it returns the number of
characters in the input buffer, up to a
maximum of 255.

COMMODORE 64

Not available. Cannot be simulated.

LOCATE

APPLE Ile & I1+

HTAB n where n is a number be-
tween 0 and 255, specifying a horizon-
tal position from the beginning of the
current output line. HTAB is similar
to TAB, but is used independently
from PRINT statements. HTAB may
also move the cursor backward to the
beginning of the line. TAB may not.

VTAB n where n is a numeric expres-
sion between 1 and 24. VTAB moves
the cursor to line n. Columns remain
unchanged and only row position

changes.

IBM PC & PCjr

LOCATE [l Llcl LIvl Llstart]
[,stopllll places the cursor and
specifies several options for cursor
display. Parameter r specifies the
row—range 1-25. Parameter ¢
specifies the column— range 1-40 or
1-80, depending on current width. If
v=0, the cursor is invisible. If v=1,
the cursor is visible. Start and stop
indicate the cursor scan start and stop
lines—range 0-31. Start, stop and v
do not apply in graphics modes. If
r=25, then you must use the KEY
OFF command prior to the LOCATE
command.

COMMUODORE 64

Simulate it with the following program
lines. They will place the cursor on
line ROW at column COL. Of course,
you must assign values to ROW and
COL before calling the subroutine.

1000 POKE 783, 0: POKE

781 ,ROW: POKE 782,COL
1010 SYS 65520
1020 RETURN

LOF

APPLE ITe & I1 +

Not available. It is the programmer’s
responsibility to keep track of file
length by using a counter. Usually the
counter is the first item in the file. It is
read when the file is opened and
incremented each time data is written
to the file. Before the file is closed,
you must go back and rewrite the new
value into the first position.

IBM PC & PCjr

LOF(x) where x is the number of an
open file. Returns the length of the
file in bytes. If the file was created
under BASIC 1.1, the number
returned will be a multiple of 128. If it
was created outside BASIC or under
BASIC 2.0 or Cartridge BASIC, the
number will be the actual number of
bytes. If the file is a COM buffer, LOF
will return the amount of free space in
the buffer.

COMMODORE 64

Not available. It is the programmer’s
responsibility to keep track of file
length by using a counter. Usually the
counter is the first item in the file. It is
read when the file is opened and
incremented each time data is written
to the file. Before the file is closed,
you must go back and rewrite the new
value into the first position.

122

TRS-80 Models IV & 111

LOC(x) returns the position of the
pointer in the file, where x is the
number of an open file. For random
files, it returns the number of the
most recently addressed record. For
sequential files, it returns the number
of records—256 byte blocks—written
to or read from the file since it was
opened.

TRS-80 Color Computer

LOC(x) returns the position of the
pointer in the file, where x is the
number of an open file.

COMMENTS

TRS-80 Models IV & 111

PRINT @ n or PRINT @ (r,0)
(Model IV) places the cursor at the
specified position, where n is a screen
position in the range 0-1919 and (r,c)
is a pair of coordinates specifying the
row (range 0-23) and column (range
0-79).

PRINT @ n (Model III) places the
cursor at the specified position, where

n is a screen position in the range
0-1023.

TRS-80 Color Computer

PRINT @ n places the cursor at the
specified position, where n is a screen
position in the range 0-511.

COMMENTS

TRS-80 Models IV & I1I

LOF(x) returns the number of the
last record in file x, where x is the
number of an open file.

TRS-80 Color Computer

LOF(x) returns the number of the
last record in file x, where x is the
number of an open file.

COMMENTS

LOF cannot be wused with a
cassette-based system. You can keep
track of the length by using a counter
variable. Usually the counter is the
first item in the file. It is read when
the file is opened and incremented
each time data is written to the file.
Before the file is closed you must go
back and rewrite the new value into
the first position.

123

LOG

APPLE ITe & I1 +

LOG (x) returns the natural logarithm
of x, where x is a numeric expression
greater than 0.

IBM PC & PCjr

Same.

COMMODORE 64

Same.

LOMEM:

APPLEITe & I1 +

LOMEM:x sets the lowest memory
location available to the program for
variable storage, where x is a numeric
expression representing a valid
memory location. This is contrasted
with HIMEM:, which sets the highest
memory location available for variable
storage. LOMEM: can only be set
higher than its current location, not
lower. LOMEM: clears all variable
values and erases all functions
defined with DEF FN, so it should
not normally be used in a program.
Or, use it only at the very beginning.

LOMEM: has no equivalent on other
machines, and no need to be simulat-
ed on them.

IBM PC & PCjr

Not available.

COMMODORE 64

Not available.

LPOS

APPLEIle & I1+

Not available. Cannot be simulated.
However, the most common use of
LPOS—to insert a carriage return in a
string of data being printed—can be
achieved with the following routine.
You must define the string you wish
printed as T$ before entering the
subroutine. You can vary W to be
whatever width you want up to 255
characters. For output to go to the
printer or to a sequential file, you
must use the proper output routire
before calling this subroutine:
1000 W=40: P=1
LEN(T2$)=0 THEN 1030
1020 PRINT T2$: P=P+W: GOTO
1010
1030 RETURN

IBM PC & PCjr

LPOS(n) returns the logical position
of the printer printhead in a buffer
specified by n. If n=0 or 1, then the
buffer is LPT1:. If n=2, then the
buffer is LPT2:. If n=3 then the
buffer is LPT3:. The range for n is
limited to O or 1 in Cartridge BASIC.
Note that this is not the physical posi-
tion of the printhead, but the logical
position.

COMMODORE 64

Not available. Cannot be simulated.
However, the most common use of
LPOS—to insert a carriage return in a
string of data being printed—can be
achieved with the following routine.
You must define the string you wish
printed as T$ before entering the
subroutine. You can vary W to be
whatever width you want up to 255
characters. For output to go to the
printer or to a sequential file, you
must use the proper output routine
before calling this subroutine:
1000 W=40: P=1
1010 T2$=MID$(T$,P,W): IF
LEN(T2$)=0 THEN 1030
1020 PRINT T2$: P=P+W: GOTO
1019
1030 RETURN

124

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
Same. Same.

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
Not available. Not available.

TRS-80 Models IV & I1I TRS-80 Color Computer COMMENTS

LPOS(n) (Model IV) returns the log-
ical position of the printer printhead.
The argument n is a dummy numeric
expression. Note that this is not the
physical position of the printhead, but
the logical position.

Not available. Cannot be simulated
on the Model III. However, the most
common use of LPOS—to insert a car-
riage return in a string of data being
printed—can be achieved with the fol-
lowing routine. You must define the
_ string you wish printed as T$ before
entering the subroutine. You can vary
W to be whatever width you want up
to 255 characters. For output to go to
a sequential file, you must use
PRINT# in line 1020 sinstead of

LPRINT.
S

POS(—2) returns the position of the
printhead. POS(0) returns the posi-
tion of the cursor on the screen.

I

1000 W=40: P=1

1010 T2$=MID$(T$,P,W): IF
LEN(T2$)=0 THEN 1030

1020 LPRINT T2$: P=P+W: GOTO
1010

1030 RETURN

125

LPRINT, LPRINT USING

APPLEITe & IT+

To send output to the printer you
must redefine the output slot. The
printer is usually slot #1. After send-
ing output to the printer, you must
then redefine output to go only to the
monitor—slot #0. Therefore, you
could use the following program lines:

50 PRINT CHR$ (4) ; "PR#1"

60 PRINT "MESSAGE TO BE
PRINTED"

70 PRINT CHR$ (4) ; "PR#0"

Apple lacks the extensive formatting
capabilities of LPRINT USING.
These capabilities are not easily
simulated and are beyond the scope of
this book. You might consider con-
verting any numeric expressions into
string expressions with STR$ and
operating on them with LEFTS,
RIGHTS$ and other string-handling
commands. You can then print them
out in the format you desire. For for-
matting dollars and cents, you can use
the following subroutine, where
AMT is the actual figure you wish
converted into dollars and cents. This
routine will prevent you from getting
values returned in fractional cents,
will force zeros to be added after the
decimal—so you don’t get such things
as $10.9—and will right-justify the
amounts to give you nice-looking
columns.

1000 AMT=100% (AMT+.005) :
AMT=INT (AMT)

1010 PRINT "$";

SPC((AMT<100000) + (AMT<
10000)+ (AMT<1000));
AMT/100;

1020 IF INT(AMT-INT(AMT/100)
%*100)=0 THEN PRINT
".00";: GOTO 1940

10390 IF :

INT (AMT-INT(AMT/10)%10
)=0 THENPRINT "Q";

1040 AMT=AMT/100: PRINT:

RETURN

IBM PC & PCjr

LPRINT Inll;]... causes the numeric
or string expression n to be printed to
the printer. If the semicolon is
included, the next expression is print-
ed on the same line. LPRINT inserts a
carriage return after the 80th character
printed on any one line. Thus if you
print exactly 80 characters plus a car-

riage return, you will have a blank -

line. You can change the value of the
line length with the WIDTH
command.

LPRINT USING v$;list where v8 is
a string constant or variable that con-
tains special formatting characters.
List is a list of expressions to be
LPRINTed. This command formats
the printed output in specific ways
depending upon the contents of v$.
Detailed explanation of the formatting
characters is beyond the scope of this
book. For BASIC 2.0, refer to the
BASIC Reference Manual, pages
4-219 through 4-223. For Cartridge
BASIC, refer to the BASIC Reference
Manual, pages 4-286 through 4-291.

COMMODORE 64

PRINT#n,[ml[;] causes the numeric
or string expression m to be printed if
file n has been opened to the printer.
If the semicolon is included, the next
expression will be printed on the
same line. For example,

50 OPEN4,4

60 PRINT#4, "MESSAGE TO BE

PRINTED"
70 CLOSE 4

Commodore lacks the extensive for-
matting capabilities of LPRINT
USING. These capabilities are not
easily simulated and are beyond the
scope of this book. As a starter, you
might consider converting any numer-
ic expressions into string expressions
with STR$ and operating on them
with LEFT$, RIGHTS$, and other
string-handling commands. You can
then print them in the format you
desire.

126

TRS-80 Models IV & I1I

LPRINT I[nl[;]... causes the numeric
or string expression n to be printed to
the printer. If the semicolon is
included, the next expression is print-
ed on the same line.

LPRINT USING v$;list where v8$ is
a string constant or variable that con-
tains special formatting characters.
List is a list of expressions to be
LPRINTed. This command formats
the printed output in specific ways
depending upon the contents of v$.
Detailed explanation of the formatting
_characters is beyond the scope of this
book. Refer to Operation and BASIC
Language Reference Manual, pages
136-140 for the Model III and to Disk
System Owner’s Manual, pages 2-150
through 2-153 for the Model IV.

TRS-80 Color Computer

PRINT#-2,Inl[;l... causes the
numeric or string expression n to be
printed to the printer. If the semicolon
is included, the next expression is
printed on the same line.

LPRINT -2, USING v$;list where
v$ is a string constant or variable that
contains special formatting char-
acters. List is a list of expressions to
be LPRINTed. This command formats
the printed output in specific ways
depending upon the contents of v$.
Detailed explanation of the formatting
characters is beyond the scope of this
book. Refer to Going Ahead With Ex-
tended Color BASIC, pages 129-132.

COMMENTS

127

LSET, RSET

APPLEIle & I1 +

Simulate LSET with the following
routine:

1000 REM ROUTINE TO SIMULATE
LSET, WHERE L=LENGTH OF
FIELD AND S$ IS THE
STRING BEING MANIPULATED

1160 IF LEN(S$)>L THEN
S$=LEFT$(S$,L) : RETURN

1200 IFLEN(S$)<L THEN
S$=S$+" ": GOTO 1200

1300 RETURN

Simulate RSET with the following
routine:

1000 REMROUTINE TO SIMULATE
RSET, WHERE L=LENGTH OF
FIELD AND S$ IS THE
STRING BEING MANIPULATED

1100 IF LEN(S$)>L THEN
S$=LEFT$ (S$,L) : RETURN

1200 IF LEN(S$) <L THEN
S$=5$+""; GOTO 1200

1300 RETURN

IBM PC & PCjr

LSET v§=x$

RSET v8=x$ moves data into a
random-file buffer, where v$ is the
name of a string variable defined with
a FIELD statement, and x$ is a string
variable to be placed into that field.
These commands are used in prepara-
tion for PUTting the data into a
random file. If x$ requires fewer bytes
than were allocated for v$, then x$ is
left-justified in the field by LSET, or
right-justified by RSET. The field is
padded with blanks. If x$ requires
more bytes than were allocated for v$,
then either instruction truncates x$
on the right. Note that these instruc-
tions operate only upon strings.
Numeric data must be converted into
a string with MKI$, MKS$ or MKD$
before they are LSET or RSET.

You can also use these instructions
with a variable name that was not
definped in a FIELD statement to
format output to the printer. For
example,

100 A$=" " :REM 10 BLANKS

110 LSET A$=X$

will cause x$ to be left-justified in a
field of 10 blanks.

COMMODORE 64

Simulate LSET with the following
routine:

1000 REMROUTINE TO SIMULATE
LSET, WHERE L=LENGTH OF
FIELD AND S$ IS THE
STRING BEING MANIPULATED

1100 IF LEN(S$)>L THEN
S$=LEFT$(S$,L) : RETURN

1200 IF LEN(S$) <L THEN
S$=S$+" ": GOTO 1200

13006 RETURN

Simulate RSET with the following

routine:

1000 REM ROUTINE TO SIMULATE
RSET , WHERE L=LENGTH OF
FIELD AND S$ IS THE
STRING BEING MANIPULATED

1100 IF LEN(S$)>L THEN
S$=LEFT$(S$,L) : RETURN

1200 IFLEN(S$) <L THEN
S$=S%$+"": GOTO 1200

1390 RETURN

M-E (See MEMORY-EXECUTE)

M-R (See MEMORY-READ)

M-W (See MEMORY-WRITE)

MEM

APPLE Ile & I1 +

FRE(0) may be used to simulate
MEM. It returns the amount of free
memory available to the user when
used in the form

PRINT FRE(®)

When FRE is used as an assignment
statement, such as
X=FRE(0)

FRE causes string space to be
reorganized,

IBM PC & PCjr

FRE(x) where x is a dummy string or
numeric argument. FRE returns the
amount of memory available to the
program, not including the
interpreter work area. It also causes
the computer to do ‘‘housecleaning,”
compacting the string storage space as
much as possible.

COMMODORE 64

FRE(x) returns a value that may be
used to calculate the free memory
space, where Xx is a numeric
expression that is not evaluated but
must be present. The actual amount
of free memory is calculated by

10 MEM=FRE(®) - (FRE(9)<0)*

256% 256

When used in the form PRINT
FRE(0) or X=FRE(0), FRE will
force reorganization of the string
|

128

TRS-80 Models IV & 111

LSET v§=x$

RSET v$=x$ moves data into a
random file buffer, where v$ is the
name of a string variable defined with
a FIELD statement, and x$ is a string
variable to be placed into that field.
These commands are used in prepara-
tion for PUTting the data into a
random file. If x$ requires fewer bytes
than were allocated for v$, then x$ is
left-justified in the field by LSET, or
right-justified by RSET. The field is
padded with blanks. If x$ requires
more bytes than were allocated for v$,
then either instruction truncates x$
on the right. Note that these instruc-
tions operate only upon strings.
Numeric data must be converted into
a string with MKI$, MKS$ or MKD$
before they are LSET or RSET.

You can also use these instructions
with a variable name that was not
defined in a FIELD statement to
format output to the printer. For
example,

100 A$=" " :REM 10 BLANKS

110 LSET A$=X$

will cause x$ to be left-justified in a
field of 10 blanks.

TRS-80 Color Computer

LSET v§=x$

RSET v8=x$ moves data into a
random file buffer, where v$ is the
name of a string variable defined with
a FIELD statement, and x$ is a string
variable to be placed into that field.
These commands are used in prepara-
tion for PUTting the data into a
random file. If x$ requires fewer bytes
than were allocated for v$, then x$ is
left-justified in the field by LSET, or
right-justified by RSET. The field is
padded with blanks. If x$ requires
more bytes than were allocated for v§,
then either instruction truncates x$
on the right. Note that these instruc-
tions operate only upon strings.
Numeric data must be converted into
a string with MKI$, MKS$ or MKD$
before they are LSET or RSET.

You can also use these instructions
with a variable name that was not
defined in a FIELD statement to
format output to the printer. For
example,

100 A$=" " :REM 10 BLANKS

110 LSET A$=X$

will cause x$ to be left-justified in a
field of 10 blanks.

COMMENTS

TRS-80 Models IV & 111

MEM returns the amount of free
memory available to the user.

. |
storage space, called garbage
collection. This could take several
minutes under some circumstances,

TRS-80 Color Computer

MEM returns the amount of free
memory available to the user.

COMMENTS

129

MEMORY-EXECUTE

APPLE Ile & I1 +
Not available.

IBM PC & PCjr
Not available.

COMMUODORE 64

It’s possible to execute machine lan-
guage that is present in the 1541 Disk
Drive’s own ROM or RAM. The M-E
command is used as follows:

10 SA=60064:
H=INT(SA/256):
L=SA-H¥*256

20 OPEN15,8,15

30 PRINT#15,

"M-E"CHR$ (L)CHR$ (H)

40 CLOSE 15

In this code, SA is the start address in
decimal of the machine-language
code to be executed. L and H are the
decimal low and high bytes of SA
when written in hexadecimal. Because
memory maps of the 1541’s operating
system are not widely available, this
code is seldom encountered. The
command is roughly equivalent to
CALL or SYS on other machines. It
cannot be simulated on other ma-
chines because their disk drives do
not have their own memory area.

MEMORY-READ

APPLEIle & 11+
Not available.

IBM PC & PCjr
Not available.

COMMODORE 64

MEMORY-READ

On the Commodore 64 it is possible
to PEEK into the 1541 Disk Drive’s
RAM and ROM areas using the M-R
command as follows:

10 OPEN15,8,15

20 PRINT#15,
"M-R"CHR$ (L)CHR$ (H)

30 GET#15, A$: IF A$=""
""THENA$=A$+CHR$(0)

40 CLOSE 15

L and H are the decimal low and high
bytes of the address in hexadecimal of
the location to be read. Large
amounts of data PEEKed this way
may take several minutes to
complete. This command cannot be
simulated on other machines because
their disk drives do not have their
OwWn memory area.

130

TRS-80 Models IV & 111 TRS-80 Color Computer | COMMENTS
Not available. Not available.

TRS-80 Models IV & I11 TRS-80 Color Computer COMMENTS
Not available. Not available.

131

MEMORY-WRITE

APPLE Ile & I1+
Not available.

IBM PC & PCjr
Not available.

COMMODORE 64

MEMORY-WRITE
It is possible to POKE the RAM are:
of the Commodore 1541 Disk Driv
using the M-W command as follows:
10 OPEN15,8,15
20 PRINT#15,
"M-W"CHR$ (L)CHR$ (H)
CHR$ (N)X$
30 CLOSE 15

L and H are the decimal low and hig
bytes of the start address in hexadec
mal of the code, N is the length of tt
code—range 1-34—and X$ is the coc
concatenated as character strings. F
example, if the 3 bytes $FF $09 $1
were to be placed in the 1541°s RAI
at $0500, then L=0, H=5, N=3, an
X$= CHR$(255) + CHR$(9) -
CHR$(16). This command is equiv
lent to POKE. It cannot be simulate
on other machines because their dis
drives do not have their own memo;
area.

MERGE

APPLEIle & I1+

Not available, but you can CHAIN
programs in integer BASIC. In
Applesoft you can use the CHAIN
program on the DOS master disk to
get the same effect. Remember that
CHAIN does not keep the old
program in memory, but does keep
variables common.

“the keyboard,

IBM PC & PCjr

MERGE "file" where file is a valid
BASIC file that was saved in ASCII
format residing on disk (or on
cassette if DOS is not present).
MERGE merges the file in memory
with the file specified. If the line
numbers in memory are duplicated on
disk, the ones from the disk will
replace the ones in memory. If lines in
memory or on disk are not duplicated
in the other file, they will reside in
memory after the merge. MERGE
always returns BASIC to the
command level. You must then RUN
or CONTinue the program.

If you wish to get around this
limitation, you can use following
subroutine. @The program will
MERGE, then continue. It does so
because lines 1010 and 1020 POKE
the word RUN into the keyboard
buffer. After the MERGE the
program returns to the command
level, the word RUN is obtained from
and the merged
program executes. Thus line 1040 is

superfluous. It is included only for
.|

COMMODORE 64

Not easily accomplished on th
Commodore 64 from within BASIC
It is beyond the scope of this book.

.-
clarity. Be sure to include the correc
file name in line 1030.

Note that MERGE destroys a
variable values.

1000 DEF SEG=0

1010 POKE 1050 ,30 : POKE
1052,38: POKE 1054,82

1020 POKE 1056 ,85: POKE
1058,78: POKE 1060,13

1030 MERGE file

1049 RUN

132

TRS-80 Models IV & I11
Not available.

TRS-80 Color Computer COMMENTS

Not available.

TRS-80 Models IV & 111

MERGE "file" where file is a valid
BASIC file on disk. MERGE merges
the file in memory with the file
specified. The file on disk must have
been saved with the A option. If the
line numbers in memory are
duplicated on disk, those from disk
will replace those in memory. If lines
in memory or on disk are not
duplicated in the other file, they will
reside in memory after the merge.
MERGE always returns BASIC to the
command level. You must then RUN
the program.

TRS-80 Color Computer

MERGE "file" [,R] where file is a
valid BASIC file residing on disk.
MERGE merges the file in memory
with the file specified. The file on disk
must have been saved with the A
option. If the line numbers in
memory are duplicated on disk, those
from the disk will replace those in
memory. If lines in memory or on
disk are not duplicated in the other
file, they will reside in memory after
the merge. MERGE always returns
BASIC to the command level. If you
include the R, the program will
immediately RUN. If you do not
include the R, you will be left in the
command mode.

COMMENTS

133

MIDS$

APPLEIle & II+

MID$(S1$,n1[,n2]) (Function) re-
turns the specified portion of string
S18. Parameter n1 specifies the first
character of S18$ to be returned, while
n2 specifies the total number of char-
acters to be returned. If n2 is omitted,
~ MIDS$ will return the right portion of
S1$, beginning with the character in
the nl position.

IBM PC & PCjr

MIDS$ (S1$, n1 L,n2]) = S2$ (Com-
mand) replaces a portion of string S1$
with S28. Parameter nl—an integer
in the range 1-255—specifies the posi-
tion of the first character in S18$ to be
replaced. Parameter n2—an integer in
the range 0-255—specifies the
number of characters to be replaced.
Parameter n2 is optional, and is as-
sumed to be LEN(S2$) if it is
omitted. If n2>LEN(S2$), then n2
will be considered equal to
LEN(S29). If n2> LEN (RIGHT$
(S18$,n1), then n2 will be considered
equal to LEN (RIGHT$ (S1$,n1).
Thus S1$ will not change in length
due to this operation.

MIDS$(S1$,n1L,n2]) (Function) re-
turns the specified portion of S18.
Parameter nl—an integer in the
range 1-255—specifies the first char-
acter of S18$ to be returned. Parameter
n2—an integer in the range 0-255
—specifies the total number of charac-
ters to be returned. If n2 is omitted,
MID$ will return the right portion of
S18$, beginning with the character in
the n1 position. If n2<=0, a null
string is returned. If n1>LEN(S1$), a
null string is returned.

COMMODORE 64

MID$(S1$,n1l,n2]) (Function) re-
turns the specified portion of S18.
Parameter n1 specifies the first char-
acter of S18 to be returned. Parameter
n2 specifies the total number of char-
acters to be returned. If n2 is omitted,
MIDS$ will return the right portion of
S18$, beginning with the character in
the n1 position.

MKDS$

APPLEIle & 11+

There is neither a way nor a need to
simulate MKDS$ on Apple because of
the way it stores data in random files.

IBM PC & PCjr

MKD$(m) converts the double-
precision value n into an eight-byte
string value so it can later be retrieved
from a random file as a numeric
value. MKD$ varies from STRS in
that it does not actually cause n to be
stored as the ASCII value of the
numerals. It stores them as numbers
with the data-type specifier indicating
it is a string. This must be done prior
to LSETing or RSETing, which must
also be done prior to PUTing a value
to arandom-access disk file.

You cannot perform string functions
on a string created with MKD$ or
print it on the screen. It is just for the
purpose of random file storage.
MKDS is the inverse of CVDS$, which
is used for retrieving a string convert-
ed with MKDS.

"COMMODORE 64

There is neither a way nor a need to
simulate MKDS$ because of the way it
stores data in random files.

134

TRS-80 Models IV & 111

MIDS$ (S18, n1 [,n2]) = S2$ (Com-
mand) replaces a portion of S1$ with
S28. Parameter n1—an integer in the
range 1-255—specifies the position of
the first character in S1$ to be
replaced. Parameter n2—an integer in
the range 0-255--specifies the
number of characters to be replaced.
Parameter n2 is optional, and is as-
sumed to be LEN(S2$) if it is
omitted. If n2>LEN(S2$), then n2
will be considered equal to
LEN(S2$). If n2>LEN(RIGHTS
(S1$,n1), then n2 will be considered
equal to LEN (RIGHT$(S1$,n1).
Thus S1$ will not change in length
due to this operation.

MID$(S1$,n1l,n2]) (Function) re-
turns the specified portion of S1$.
Parameter ml—an integer in the
range 1-255—specifies the first char-
acter of S1$ to be returned, while
n2—an integer in the range 0-255
—specifies the total number of charac-
ters to be returned. If n2 is omitted,
MIDS$ will return the right portion of
S18, beginning with the character in
the n1 position.

TRS-80 Color Computer

MIDS$ (S1$, n1 [,n2]) = S2$ (Com-
mand) replaces a portion of S18$ with
S28. Parameter nl—an integer in the
range 1-255—specifies the position of
the first character in S1$ to be
replaced. Parameter n2—an integer in
the range 0-255—specifies the
number of characters to be replaced.
Parameter n2 is optional, and is as-
sumed to be LEN(S2$) if it is
omitted. If n2>LEN(S2$), then n2
will be considered equal to LEN
(S29). If n2> LEN (RIGHTS$ (S18$,
nl), then n2 will be considered equal
to LEN(RIGHTS$ (S1$,n1). Thus
S1$ will not change in length due to
this operation.

MID$(S1$,n1l,n2]) (Function) re-
turns the specified portion of S18.
Parameter nl—an integer in the
range 1-255—specifies the first char-
acter of S18 to be returned. Parameter
n2—an integer in the range 0-255
—specifies the total number of charac-
ters to be returned. If n2 is omitted,
MIDS$ will return the right portion of
S18$, beginning with the character in
the n1 position.

COMMENTS

Be sure to identify whether your
source program is using MID$ as a
function or as a command. The syntax
is the clue,

TRS-80 Models IV & 111

MKD$(m) converts the double-
precision value n into a eight-byte
string value so that it can later be re-
trieved from a random file as a numer-
" ic value. MKDS$ varies from STRS in
that it does not actually cause n to be
stored as the ASCII value of the
numerals, but stores them as numbers
with the data-type specifier indicating
it is a string. This must be done prior
to LSETing or RSETing, which must
also be done prior to PUTing a value
to a random-access disk file. You
cannot perform string functions on a
string created with MKDS$ or print it
on the screen. It is just for the purpose
of random file storage. MKDS is the
inverse of CVD$, which is used for re-
trieving a string converted with
MKDS. ,

TRS-80 Color Computer
See MKNS.

COMMENTS

135

MKDIR

APPLEIle & 11+

Cannot be simulated.

IBM PC & PCjr

MXKDIR path causes a new branch
directory to be created where path is a
valid DOS path. This command
cannot be simulated on BASIC 1.1 or
on any other computer. It is unique to
IBM. If you use this command in Car-
tridge BASIC, DOS 2.1 must be
present.

COMMODORE 64

Cannot be simulated.

MKI$

APPLEIle & I1 +

'l:here is neither a way nor a need to
simulate MKI$ on Apple because of
the way it stores data in random files.

IBM PC & PCjr

MKI$() converts the integer value
n into a two-byte string value so that
it can later be retrieved from a
random file as a numeric value. MKI$
varies from STRS in that it does not
actually cause m to be stored as the
ASCII value of the numerals, but
stores them as numbers with the data-
type specifier indicating it is a string.
This must be done prior to LSETing
or RSETing, which must also be done
prior to PUTing a value to a random
access disk file. You cannot perform
string functions on a string created
with MKIS$ or print it on the screen. It
is just for the purpose of random file
storage. MKIS is the inverse of CVIS,
which is used for retrieving a string

COMMODORE 64

There is neither a way nor a need to
simulate MKI$ on Commodore be-
cause of the way it stores data in
random files.

convertgd with MKIS$.
MKNS$
APPLE Ile & I1+ IBM PC & PCjr COMMODORE 64
There is neither a way nor a need to See MKD$, MKI$ and MKSS. There is neither a way nor a need to

simulate MKN$ on Apple because of
the way it stores data in random files.

simulate MKN$ on Commodore be-
cause of the way it stores data in
random files.

136

TRS-80 Models IV & 111

Cannot be simulated.

TRS-80 Color Computer

Cannot be simulated.

COMMENTS

TRS-80 Models IV & 111

MKI$(n) converts the integer value
n into a two-byte string value so that
it can later be retrieved from a
random file as a numeric value. MKI$
varies from STRS in that it does not
actually cause n to be stored as the
ASCII value of the numerals, but
stores them as numbers with the data-
type specifier indicating it is a string.
This must be done prior to LSETing
or RSETing, which must also be done
prior to PUTing a value to a random
access disk file. You cannot perform
string functions on a string created
with MKIS or print it on the screen. It
is just for the purpose of random file
storage. MKIS is the inverse of CVIS$,
which is used for retrieving a string
converted with MKIS.

TRS-80 Color Computer
See MKNS.

COMMENTS

TRS-80 Models IV & 111
See MKD$, MKI$ and MKSS$.

TRS-80 Color Computer

MKNS$(n) where m is a numeric
expression. MKNS$ converts the speci-
fied value into a five-byte string value
for the purpose of random file
storage. This must be done prior to
LSETing or RSETing, which must
also be done prior to PUTting a value
to arandom access disk file.

COMMENTS

137

MKSS$

APPLE e & 11+

There is neither a way nor a need to
simulate MKS$ on Apple because of
the way it stores data in random files.

IBM PC & PCjr

MKS$(m) converts the single-
precision value m into a four-byte
string value so that it can later be re-
trieved from a random file as a numer-
ic value. MKS$ varies from STRS in
that it does not actually cause n to be
stored as the ASCII value of the
numerals, but stores them as numbers
with the data-type specifier indicating
it is a string. This must be done prior
to LSETing or RSETing, which must
also be done prior to PUTing a value
to a random access disk file. You
cannot perform string functions on a
string created with MKS$ or print it
on the screen. It is just for the purpose
of random file storage. MKS$ is the
inverse of CVSS$, which is used for re-
trieving a string converted with
MKSS.

COMMODORE 64

There is neither a way nor a need to
simulate MKS$ on Commodore be-
cause of the way it stores data in
random files.

MOD

APPLEIle & I1+

n MOD m performs modulo arithmet-
ic on integer values in integer BASIC
only. The result is an integer value
representing the remainder portion of
n divided by m.

Applesoft (floating-point) BASIC
does not recognize MOD. You may
simulate it by defining the following
function:

DEF FNMD (n)=INT((n/m-INT
(n/m)) %m+.05)*SGN(n/m)

where n and m are integer values.
Parameter m must be assigned prior
to referencing FNMD (n). Subsequent
reference to FNMD(n) will return an
integer value representing the remain-
der portion of n divided by m.

IBM PC & PCjr

n MOD m performs modulo arithmet-
ic on integer values. If n or m are not
integers, they will be arithmetically
rounded prior to execution. The
result will be an integer value repre-
senting the remainder portion of n
divided by m.

COMMODORE 64

Can be simulated by defining the fol-
lowing function:

DEF FNMD (n)=INT((n/m-INT
(n/m))%*m+.05) % SGN(n/m)

where n and m are integer values.
Parameter m must be assigned prior
to referencing FNMD (n). Subsequent
reference to FNMD(n) will return an
integer value representing the remain-
der portion of n divided by m.

MOTOR

APPLEIle & IT+

You cannot control the motor of the
cassette from within BASIC on the
Apple, except possibly through some
sort of an external control device.
There is no built-in command.

IBM PC & PCjr

MOTOR [n] where n is an integer
value, MOTOR will turn the cassette
motor on or off. If n=0, the motor is
turned off. If n is not zero, the motor
will be turned on. If n is omitted, the
motor will be switched from its cur-
rent state to its opposite state.

COMMODORE 64

LOAD n turns the cassette motor on,
where n is the name of a file that you
are sure is not on the cassette.
However, program execution halts
alt}tgi there is no way to turn the motor
off.

138

TRS-80 Models IV & 111

MKS$(®m) converts the single-
precision value m into a four-byte
string value so that it can later be re-
trieved from a random file as a numer-
ic value. MKS$ varies from STRS in
that it does not actually cause n to be
stored as the ASCII value of the
numerals, but stores them as numbers
with the data-type specifier indicating
it is a string. This must be done prior
to LSETing or RSETing, which must
also be done prior to PUTing a value
to a random access disk file. You
cannot perform string functions on a
string created with MKSS$ or print it
on the screen. It is just for the purpose
of random file storage. MKSS$ is the
inverse of CVS$, which is used for re-
trieving a string converted with
MKSS.

TRS-80 Color Computer
See MKNS.

COMMENTS

TRS-80 Models IV & 111

n MOD m performs modulo arithmet-
ic on integer values on Model IV. The
result will be an integer value repre-
senting the remainder portion of n
divided by m.

The Model III does not recognize
MOD. You may simulate it by defin-
ing the following function:

DEF FNMD (n,m) =(INT(n) - INT
(INT(n)/INT(m))*INT(m))

where n and m are integer values.
Subsequent reference to
FNMD(n,m) will return an integer
value representing the remainder por-
tion of n divided by m.

TRS-80 Color Computer

Can be simulated by defining the fol-
lowing function:

DEF FNMD (n) =(INT(n) - INT
(INT(n)/INT(m)) *INT(m))

where n and m are integer values.
Parameter m must be assigned before
referencing the function. Subsequent
reference to FNMD (n) will return an
integer value representing the remain-
der portion of n divided by m.

COMMENTS

TRS-80 Models IV & 111

TRS-80 Model IV does not use
cassettes in the Model IV mode.

You can activate the cassette motor
on the Model III with the following
program lines. Be sure you have the
earplug out if you wish to hear the
audio, and don’t have the record
button pressed. It will continue to

operate until a key is pressed and held
.]

TRS-80 Color Computer

MOTOR e where e is ON or OFF.
Turns the cassette motor on or off as
specified.
]
for a few seconds.

1000 PRINT#-1,""
1010 I$=INKEY$: IF I$="" THEN

COMMENTS

There’s a good reason to turn on the
cassette motor. Perhaps you have a
tutorial audio tape you wish to work
with the program. Or, perhaps you
don’t have the cassette plugged in at
all, but rather some other device that
can be activated by the same signals.
See AUDIO.

139

NAME

APPLEITe & I1+

PRINT CHR$(4);"RENAME
a,bl,slldll,v]" causes a to be
renamed b, where a and b are valid
filenames. Parameters s, d and v are
optional. Parameter s specifies the
slot number, d specifies the drive
number, and v specifies the volume
number.

You cannot renumber a BASIC pro-
gram from within itself on the Apple.

IBM PC & PCjr

NAME "a" AS "b" causes a to be
renamed b, where a and b are valid
filenames. Quotation marks are neces-
sary only if a and b are literal names
rather than string variables. If a is not
on the specified disk, or if b is already
on the disk, you will get an error.
NAME does not change the contents
of the file. If you use this command in
Cartridge BASIC, DOS 2.1 must be
present.

RENUM [newlinel [Istartlinel
[,incrementll renumbers the pro-
gram, where newline will be the first
line number of the renumbered
sequence; default=10. Startline is
the current number of the first line to
be renumbered—default=first pro-
gram line. Increment is the increment
to be wused in renumbering;
default=10. If you specify startline,
you must specify newline. Renumber-
ing continues from startline to the
end of the program. RENUM also
makes the necessary adjustments to
all GOTOs, GOSUBs and other com-
mands with line numbers. Program
execution halts when the RENUM
has been completed. You must type
RUN to begin the program again.

COMMODORE 64

. The following routine causes filename

b to be renamed as filename a:
19 OPEN15,8,15, "RO:a=b"
20 CLOSE 15

You cannot easily renumber a BASIC

program from within itself on the
Commodore 64,

140

TRS-80 Models IV & 111

NAME "a" AS "b" (Model IV)
where a and b are valid filenames,
NAME causes a to be renamed b.
Quotation marks are necessary only. if
a and b are literal names rather than
string variables. If a is not on the
specified disk, or if b is already on the
disk, you will get an error. New name
b cannot contain a password or drive
specification. NAME does not change
the contents of the file.

A file cannot be easily renamed from
within a BASIC program on the
Model III. You can use:

19 CMD "I", "RENAME a b"

which will rename a to b, but will
return you to the operating system.
Another alternative—which- won’t
return the program to the DOS level
but will work only on ASCII files—is
to read the file into memory, then
write it out with a new file name and
kill the old file. The routine below will
accomplish this. Note that the
CLEAR command in line 10 should
appear at the beginning of the
program, and that lines 1000 and 1010
require operator input. These can be
easily modified to suit your needs:

19 CLEAR10000

1900 CLS:LINE INPUT "OLD FILE
NAME: ";F1$

1910 LINE INPUT "NEWFILE
NAME: ";F2$

1920 OPEN"I",1,F18%

1930 OPEN "O",2,F2%

19040 IFEOF(1) THEN 1060

1959 LINE INPUT #1,T$: PRINT
#2,T$: GOTO 10490

1060 CLOSE: KILLF1$

RENUM [newlinel [Istartlinel
[,increment]] renumbers the pro-
gram, where newline will be the first
line number of the renumbered
sequence; default=10. Startline is
the current number of the first line to
be renumbered—default=first pro-
gram line. Increment is the increment
to be wused in renumbering;
default=10. If you specify startline,
you must specify newline. Renumber-
ing continues from startline to the
end of the program. RENUM also
makes the necessary adjustments to
all GOTOs, GOSUBs and other com-

mands with line numbers. Program
.]

TRS-80 Color Computer

RENAME "a" TO "b" causes a to
be renamed b, where a and b are valid
filenames. Quotation marks are neces-
sary only if parameters a and b are lit-
eral names rather than string
variables. If parameter a is not on the
specified disk, or if b is already on the
disk, you will get an error. If a drive
specifier is not used on parameter a,
BASIC will search drive 0 only.
RENAME does not change the con-
tents of the file.

RENUM [newlinell, [startlinel
[,incrementl] renumbers .the
program, where newline will be the
first line number of the renumbered
sequence; default=10. Startline is
the current number of the first line to
be renumbered—default=first pro-
gram line. Increment is the increment
to be wused in renumbering;
default=10. If you specify startline,
you must specify newline. Renumber-
ing continues from startline to the
end of the program. RENUM also
makes the necessary adjustments to
all GOTOs, GOSUBs and other com-
mands with line numbers. Program
execution halts when the RENUM
has been completed, and you must
type RUN to begin the program again.

]
execution halts when the RENUM
has been completed, and you must
type RUN to begin the program again.

NAME [newlinel [,[startline]
[,increment]l] (Model III) renumbers
the program, where newline will be
the first line number of the renum-
bered sequence; default=10. Start-
line is the current number of the first
line to be renumbered; default=first
program line. Increment is the incre-
ment to be wused in renum-
bering—default=10. If you specify
startline, you must specify newline.
Renumbering continues from startline
to the end of the program. NAME
also makes the necessary adjustments
to all GOTOs, GOSUBs and other
commands with line numbers. Pro-
gram execution halts when the
NAME has been completed, and you
must type RUN to begin the program
again.

COMMENTS

Notice that NAME is sometimes used
for renaming files, but on the TRS-80
Model III it is used for renumbering
program lines.

Notice also that the Commodore file-
renaming routine is opposite from the
other systems in that the direction of
assignment is different.

141

NEW

APPLEIle & I1 +

NEW clears the display screen,
deletes the program currently in
memory, clears all variables and re-
turns control to the command mode.

IBM PC & PCjr

NEW clears the display screen,
deletes the program currently in
memory, clears all variables and re-
turns control to the command mode.

COMMODORE 64

NEW clears all variables and returns
control to the command mode. The
program is deleted in the sense that it
is no longer accessible. In fact, it is
stil in memory and could be
recovered—sometimes called UN-
NEW or OLD—if you have an exten-
sive knowledge of the inner workings
of the Commodore 64. NEW does not
affect machine-language programs.

NEW is also used on the Commodore
64 in a completely different way: As a
direct command to the disk drive.
When used in this way, it formats pre-
viously unused disks, and is usually
abbreviated by N. For example, the
following program lines will format a
disk:

10 OPEN 15, 8, 15

20 PRINT#15,

"N@ :diskname,id"
30 CLOSE15

Parameter id is a two-character identi-
fier that should be unique to this disk.
This use of NEW erases the entire
disk and formats it for read/write
operations. It takes about two minutes
to complete.

NEXT

APPLEIle & I1 +

NEXT terminates a FOR-NEXT
loop. Program execution either re-
turns to the statement following FOR
or ‘““falls through’’ the NEXT state-
ment to the following statement,
depending upon the value of the
counter specified in the FOR
statement.

It is critical that you not use a GOTO
to break out of a FOR-NEXT loop. If
you do this repeatedly you will soon
getan OUT OF MEMORY error.

IBM PC & PCjr

NEXT terminates a FOR-NEXT
loop. Program execution either re-
turns to the statement following FOR
or ““falls through’ the NEXT state-
ment to the following statement,
depending upon the value of the
counter specified in the FOR
statement.

COMMODORE 64

NEXT terminatess a FOR-NEXT
loop. Program execution either re-
turns to the statement following FOR
or ‘““falls through” the NEXT state-
ment to the following statement,
depending upon the value of the
counter specified in the FOR
statement.

It is critical that you not use a GOTO
to break out of a FOR-NEXT loop. If
you do this repeatedly you will soon
getan OUT OF MEMORY error.

142

TRS-80 Models IV & I11

NEW clears the display screen,
deletes the program currently in
memory, clears all variables and re-
turns control to the command mode.

TRS-80 Color Computer

NEW clears the display screen,
deletes the program currently in
memory, clears all variables and re-
turns control to the command mode.

COMMENTS

TRS-80 Models IV & 111

NEXT terminates a FOR-NEXT
loop. Program execution either re-
turns to the statement following FOR
or ‘“falls through the NEXT state-
ment to the following statement,
depending upon the value of the
counter specified in the FOR
statement.

TRS-80 Color Computer

NEXT terminates a FOR-NEXT
loop. Program execution either re-
turns to the statement following FOR
or ‘““falls through’> the NEXT state-
ment to the following statement,
depending upon the value of the
counter specified in the FOR
statement.

COMMENTS

Unstructured use of FOR-NEXT
loops—or any other branching—can
cause problems. You should always
be sure your loops have ‘‘one way in
and one way out.””

143

NOISE

APPLEIle & 11+

Cannot be simulated without
machine-language programming.

IBM PC & PCjr

NOISE s,v,d (Cartridge BASIC
Only) causes a noise to be generated
through the external speaker, where s
specifies the noise source—range 0-7.
You can change the sound generated
for s=3 or s=7 by changing voice 3
with the PLAY command. See
PLAY. Parameter v controls volume
and is an integer in the range 0-15.
Parameter d is the duration of the
noise measured in clock ticks. There
are 18.2 ticks per second. You must
execute a SOUND command before
the NOISE command. Otherwise, you
will cause an error condition.

COMMODORE 64

Simulating NOISE on the Commo-
dore 64 requires extensive POKEing,
and is beyond the scope of this book.
For a good discussion of generating
sound from BASIC programs, see
Your Commodore 64, by Heilborn and
Talbot or How to Program Your Com-
modore 64 by Carl Shipman.

NORMAL

APPLEIle & 11+

NORMAL restores INVERSE or
FLASH to the normal text
mode—light characters on a dark

IBM PC & PCjr

COLOR x,y gives a normal image on
the PC, where x and y are valid fore-
ground and background colors. See

COMMODORE 64

Not available. If FLASH is being
simulated, normal operation will be
resumed when you cease simulation.

background. COLOR for valid colors.
NOT
APPLEIle & I1+ IBM PC & PCjr COMMODORE 64

NOT e where e is an expression that
may be tested true or false. NOT will
return 1 (True) if the expression is
false, and 0 (False) if the expression
is true.

NOT e where e is an expression that
may be tested true or false. NOT will
return 1 (True) if the expression is
false, and 0 (False) if the expression
is true. ‘

NOT e where e is an expression that
may be tested true or false. NOT will
return —1 (True) if the expression is
false, and O (false) if the expression is
true.

NOTRACE

APPLE Ile & I+

NOTRACE cancels the effects of
TRACE.

IBM PC & PCijr
TROFF cancels the effects of TRON.

COMMODORE 64

Not available on the Commodore be-
cause TRACE is not used. Simulation
is possible but would require exten-
sive machine-language routines
beyond the scope of this book.

144

TRS-80 ModelsIV&III TRS-80 Color Computer COMMENTS
Cannot be simulated without machine = Cannot be simulated without machine
language. language, but you can create some

similar effects with the SOUND

command.
TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
Not available. If FLASH is being Not available. If FLASH is being
simulated, normal operation will be simulated, normal operation will be
resumed when you cease simulation. resumed when you cease simulation.
If inverse printing is enabled on the If inverse printing is enabled, it can be
Model IV, normal printing may be disabled by SHIFT-0.
resumed by PRINT CHR$(17). In-
verse is not available on the Model I11.
TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
NOT e where e is an expression that NOT e where e is an expression that
may be tested true or false. NOT will may be tested true or false. NOT will
return 1 (True) if the expression is return 1 (True) if the expression is
false, and 0 (False) if the expression false, and 0 (False) if the expression
is true. is true.
TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS

TROFF cancels the effects of TRON.

TROFF cancels the effects of TRON.

145

OCTS$

APPLEIle & I1+

The following subroutine will return
the same value as would be returned
by OCTS, stored in the string RS.
Assign the number you wish to con-
vert to the variable NUMBER before
calling this subroutine.

1009 DIGIT$="012345678"

1010 R$=""

1015 IF NUMBER< 0 THEN
NUMBER=(65536 + NUMBER)

1029 I=NUMBER

1030 Q=INT(I/8)

1040 R=I-Q*8

1059 R:=MID$(DIGIT$,R+1 2 1)+
R

1060 I=Q

1070 IFI> 0 GOTO 1030

1080 RETURN

IBM PC & PCjr

OCTS$(n) returns the octal value of a
decimal argument, where n is a
numeric expression in the range
—32768-65535. If m is negative, the
two’s complement form is used. This
means that OCT$(—n)=O0CT$
(65536 —n).

COMMODORE 64

The following subroutine will return
the same value as would be returned
by OCTS. The result will be stored in
the string RS. Assign the number you
wish to be converted to the variable
NUMBER before calling this
subroutine.

1000 DIGIT$="012345678"

1010 IF NUMBER< THEN
NUMBER= (65536 + NUMBER)

1 01 5 R$=ll "

1020 I=NUMBER

1030 Q=INT(I/8)

1040 R=1-Q*8

1050 R$=MID$ (DIGIT$,R+1,1)+
R$

1060 I=Q

1070 IF I>0GOTO 1030

1080 RETURN

ON COM (See COM)

ON ERR GOTO, ON ERROR GOTO, ONERR

APPLE Ile & 11 +

ONERR GOTOn

When an error is encountered after
this statement, program execution
will jump to the routine beginning at
line n, and continue until the word
RESUME is encountered,

IBM PC & PCjr

ON ERROR GOTOn

When an error is encountered after
this statement, program execution
will jump to the routine beginning at
line n, and continue until the word
RESUME is encountered.

COMMODORE 64

Not available. Cannot be easily
simulated.

146

TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
OCT$(m) (Model IV) returns the The following subroutine will return
octal value of a decimal argument, the same value as would be returned
where n is a numeric expression in by OCTS$. The result will be stored in
the range —32768-65535. This func- the string R$. Assign the number you
tion returns the octal value of a deci- wish to convert to the variable
mal argument. If n is negative, the = NUMBER before calling this
two’s complement form is used. This subroutine.
means that OCT$(—n)=OCT$ 4ppp p1GITS="012345678"
(65536—n). 1010 IF NUMBER< 0 THEN
For the Model I1I, the following su- NUMBER= (65536 + NUMBER)
broutine will return the same value as : g;g II*f;UMBER
would be returned by OCTS$. The 1030 Q;INT(I /8)
result will be stored in the string RS. 1929 p-T-q%8
Assign the number you wish to con- R$=MID$ (DIGITS$,R+1,"
vert to the variable NUMBER before 1050 R: $($,R+1,1)+
calling this subroutine. 1060 I=Q
1000 DIGIT$="012345678" 1070 IF I>0GOTO 1030
1010 IF NUMBER< 0 THEN 1080 RETURN

NUMBER= (65536 + NUMBER)
1015 R$=""
1020 I=NUMBER
1030 Q=INT(I/8)
1040 R=I-Q*8
1050 R:=MID$ (DIGIT$,R+1,1)+

R
1060 I=Q
10790 IFI>0GOTO 1030
1080 RETURN
TRS-80 Models IV & I11 TRS-80 Color Computer COMMENTS
ON ERROR GOTOn Not available and cannot be easily
When an error is encountered after simulated.

this statement, program execution
will jump to the routine beginning at
line n, and continue until the word
RESUME is encountered.

147

ON-GOSUB

APPLEIle & I1+

ON v GOSUB nlln2...] causes
conditional program branching,
where v is a numeric expression and
nl, n2... are the beginning line num-
bers of subroutines. The value of v
determines the line number executed
by the GOSUB. If v=1, then GOSUB
will reference the first line number. If
v=2 then GOSUB will reference the
.second line number, etc. If v is 0 or
greater than the number of lines
listed, program execution will ‘fall
through” to the next line. If v is less
than zero, an error condition will
result.

IBM PC & PCjr

ON v GOSUB nll,n2...] causes
conditional program branching,
where v is a numeric expression and
nl, n2... are the beginning line num-
bers of subroutines. The value of v
determines the line number executed
by the GOSUB. If v=1, then GOSUB
will reference the first line number. If
v=2, then GOSUB will reference the
second line number, etc. If v is 0 or
greater than the number of lines
listed, program execution will con-
tinue with the next line—the GOSUB
will not be executed. If v is less than
zero, an error condition will result.

COMMODORE 64

ON v GOSUB nlln2...] causes
conditional program branching,
where v is a numeric expression and
nl, n2... are the beginning line num-
bers of subroutines. The value of v
determines the line number executed
by the GOSUB. If v=1, then GOSUB
will reference the first line number. If
v=2, then GOSUB will reference the
second line number, etc. If v is 0 or
greater than the number of lines
listed, program execution will con-
tinue with the next line—the GOSUB
will not be executed. If v is less than
zero, an error condition will result.

The following program lines are com-
monly used on the Commodore as a
branching method dependent upon
YES and NO responses.
10 ON - (A$="Y") -2% (A$=
"N") GOSUB 100,200
20 REM PROGRAM CONTINUES
HERE
99 END
100 REM THIS IS REACHED IF
A$ = " Y L] .
110 RETURN
200 REM THIS IS REACHED IF
A$ = n N"
210 RETURN

IfA$S="Y", then the first expression
in parentheses is true and returns the
value —1, while the second expres-
sion in parentheses is false and is eval-
uated as 0. Line 100 will therefore be
executed from line 10. If AS="N",
then in a similar way the entire state-
ment is evaluated as 2 and line 200 is
executed. If AS$ is neither "Y" nor
"N", then line 20 is executed. If v is
less than zero, an error condition will
result.

148

TRS-80 Models IV & I1I

ON v GOSUB nll,n2...] causes
conditional program branching,
where v is a numeric expression and
nl, n2... are the beginning line num-
bers of subroutines. The value of v
determines the line number executed
by the GOSUB. If v=1, then GOSUB
will reference the first line number. If
v=2, then GOSUB will reference the
second line number, etc. If v is 0 or
greater than the number of lines
listed, program execution will con-
tinue with the next line—the GOSUB
will not be executed. If v is less than
zero, an error condition will result.

TRS-80 Color Comphter

ON v GOSUB nll,n2...] causes
conditional program branching,
where v is a numeric expression and
nl, n2... are the beginning line num-
bers of subroutines. The value of v
determines the line number executed
by the GOSUB. If v=1, then GOSUB
will reference the first line number. If
v=2, then GOSUB will reference the
second line number, etc. If v is 0 or
greater than the number of lines
listed, program execution will con-
tinue with the next line—the GOSUB
will not be executed. If v is less than
zero, an error condition will result.

COMMENTS

149

ON-GOTO

APPLE Ile & I1 +

ON v GOTO nlln2..] causes
conditional branching, where v is a
numeric expression and nl, n2... are
the beginning line numbers of
routines. The value of v determines
the line number executed by the
GOTO. If v=1, then GOTO will
reference the first line number. If
v=2, then GOTO will reference the
second line number, etc. If v is 0 or
greater than the number of lines
listed, program execution will
continue with the next line—the
GOTO will not be executed. If v is
less than zero, an error condition will
result.

IBM PC & PCjr

ON v GOTO nilln2..] causes
conditional branching, where v is a
numeric expression and nl, n2... are
the beginning line numbers of
routines. The value of v determines
the line number executed by the
GOTO. If v=1, then GOTO will
reference the first line number. If
v=2, then GOTO will reference the
second line number, etc. If v is 0 or
greater than the number of lines
listed, program execution will
continue with the next line—the
GOTO will not be executed. If v is
less than zero, an error condition will
result.

COMMODORE 64

ON v GOTO nlln2..] causes
conditional program branching,
where v is a numeric expression and
nl, n2... are the beginning line
numbers of routines. The value of v
determines the line number executed
by the GOTO. If v=1, then GOTO
will reference the first line number. If
v=2, then GOTO will reference the
second line number, etc. If v is 0 or
greater than the number of lines
listed, program execution will
continue with the next line—the
GOTO will not be executed. If v is
less than zero, an error condition will
result.

ON KEY (See KEY)

ON PEN (See PEN)

ON PLAY (See PLAY)

ON STRIG (SeeSTRIG)

ON TIMER (SeeTIMER)

150

TRS-80 Models IV & I1I

ON v GOTO nlln2..] causes
conditional branching, where v is a
numeric expression and nl, n2... are
the beginning line numbers of
routines. The value of v determines
the line number executed by the
GOTO. If v=1, then GOTO will
reference the first line number. If
v=2, then GOTO will reference the
second line number, etc. If v is 0 or
greater than the number of lines
listed, program execution will
continue with the next line—the
GOTO will not be executed. If v is
less than zero, an error condition will
result.

TRS-80 Color Computer

ON v GOTO nlln2..] -causes
conditional branching, where v is a
numeric expression and nl, n2... are
the beginning line numbers of
routines. The value of v determines
the line number executed by the
GOTO. If v=1, then GOTO will
reference the first line number. If
v=2 then GOTO will reference the
second line number, etc. If v is 0 or
greater than the number of lines
listed, program execution will
continue with the next line—the
GOTO will not be executed. If v is
less than zero, an error condition will
result.

COMMENTS

ON COM GOSUB
ONKEY(n) GOSUB
ON PEN GOSUB
ONPLAY(n) GOSUB
ON STRIG GOSUB
ONTIMERGOSUB

KEY(n) ON.

EVENT TRAPPING ON THE IBM PC, XT & PCjr

Event trapping causes the program to test for the occurrence of some event before the execution
of each program line. IBM allows event trapping for several actions. If the event has occurred,
program control is transferred to the line specified in the GOSUB portion of the command. This
powerful feature siows program execution slightly, but the trade-off in power is worth the slight
delay. In some cases you may want to use event trapping to slow overall execution of a program.

The commands that allow event trapping are as follows:

Notice that ON ERROR, ON ... GOTO and ON ... GOSUB are not event trapping in the sense of
checking for an action at the beginning of each program line. Also, KEY ON is not the same as

These commands are active only if a COMMAND ON, such as KEY (n) ON, is executed before
them. They are deactivated by a COMMAND OFF, such as KEY(n) OFF. If a COMMAND STOP is
executed, such as KEY(n) STOP, event trapping at the beginning of each line ceases. However, if
the event occurs after the COMMAND OFF, the computer remembers it, and if a subsequent
COMMAND ON is encountered, program control will immediately be transferred to the Iine
specified in the GOSUB portion of the ON COMMAND GOSUB.

For a detailed description of these commands, see COM, KEY(n), PEN, PLAY, STRIG and TIMER.

161

OPEN

APPLEIle & I1 +

PRINT CHR$4) ; "OPEN
filename, Ln [,Ssl LDdl [Vv]"
OPENSs the file specified, where file-
name is the name of the file, n is the
length of the records, s is the slot of
the disk drive controller (default=6),
d is the drive number (de-
fault=currently logged drive), and v
is the volume number of the disk. If
you are opening a sequential file, Ln
is not used. It is required only for
random access files.

IBM PC & PCjr

OPEN "filename" [FOR model AS
[#Inum [LEN=n] or OPEN mode2,
[#Inum, "filename" [,n] OPENs the
specified file, where filename is the
name and/or path for the file. It can
also be a device, such as CASI1: or
LPT1:. Mode is either OUTPUT if the
file is to be written to, INPUT if the
file is to be read from, or APPEND if
the file is to be appended to. If mode is
omitted, random access is assumed.
Mode2 is either O if the file is to be
written to, I if the file is to be read
from, or R if the file is to be accessed
randomly,. Num is the file
number—range 1-15. If num> 3, you
must have set the number of files
with the /F switch when entering
BASIC. Parameter m is the record
length—range 1-327617,
default=128 —for random files or for
sequential files in BASIC 2.0 or Car-
tridge BASIC,

For a detailed discussion on all the
ramifications of the OPEN statement,
refer to the BASIC Reference Manual,
pages 4-189 through 4-199b or the
Cartridge BASIC Reference Manual,
page 4-233 through 4-239.

If you OPEN a COM adapter with the
OPEN statement, there are many
other parameters available for setting
baud rate, handshaking, etc. This
capability does not exist for other
computers and cannot be easily
simulated. A detailed discussion is
beyond the scope of this book. Refer
to the BASIC Reference Manual,
pages 4-194 through 4-199b for a
detailed discussion, or the Cartridge
BASIC Reference Manual, page 4-240
through 4-246.

COMMODORE 64

OPEN nl,dlsal, "filename" [,type,
modellll To communicate with any
device, you must OPEN a file to that
device. Parameters that the OPEN
command can take are as follows:

Parameter m is the logical file
number—range 1-255. If n is greater
than 127, a linefeed will be generated
after PRINT#. The number n used in
GET#n, PRINT#n, CLOSEn,
CMDn and INPUT#n causes the
command to relate to the file
OPENed with the number n.

Parameter d is the device number of
the peripheral—range 0-15. Some
commonly encountered device num-
bers are O=keyboard, 1=cassette
tape, 2=modem, 3=video screen,
4=printer, 8=disk drive.

Parameter sa is the secondary address
or command channel number. The
significance of this depends upon the
device. A value of 0-2 may relate to
the cassette, 0-10 may relate to the
printer, and 2-15 may relate to the
disk drives.

Type is the type of file. The default is
a program file. If type=S, it is a
sequential file, and if type=R, it is a
relative file.

Mode is the mode of access. If
mode=R, it is for reading. If
mode=W, it is for writing. And if
mode=A, it is for appending.

The actual usage of OPEN varies from
device to device, so a few examples
help clarify its use.

Cassette: Device 1
A secondary address of 0 indicates the
file is to be read. A 1 indicates data
will be written to it.

10 OPEN2,1,0,"file"

20 INPUT#2, A$: REMGET#2,

A$ COULD BE USED
30 CLOSE 2

The above lines will read one byte of
data, A$, from a cassette sequential
file named "file".

10 OPEN2,1,1,"file"

20 PRINT#2, A$

30 CLOSE 2
.]

162

TRS-80 Models IV & 111

OPEN, "mode", num, "filename"
[,n] OPENS a file, where mode speci-
fies how the file will be used. Num is
the buffer number—range 1-15. File-
name is the name of the file, and n is
the record length for random access
files. Parameter n is not specified for
sequential access files—default=256.
The mode may be one of the
following: O for sequential output, I
for sequential input, E for extended
mode (appending to sequential files),
D or R for random input/output.

]
The above lines will write one byte of
data, A$, to a cassette sequential file
named "file".

Printer: Device 4

Here, you should use nothing after
the device number, so OPEN 1,4 will
OPEN the printer. There are two dif-
ferent ways of printing to the printer,
depending on whether or not CMDn
is used.

10 OPEN 1,4
20 PRINT#1, A$
30 CLOSE 1

will print the string A$ on the printer.
Using CMD diverts all output to file
n, untii a PRINT# statement is
encountered, which disables CMD.

10 OPEN 1,4
20 CMD 1

30 PRINT A$
40 PRINT# 1
50 PRINT B$
60 CLOSE 1

will print A$ to the printer, and B$ to
the screen. A secondary address of 7
on the Commodore 1525 printer
selects a different character set.

Disk Drive: Device 8
On the disk drive, secondary ad-
dresses of 2-14 have no particular
significance. But 15 is reserved for the
command channel.
10 OPEN1,8,2, "file,S,R"
20 INPUT#1, A$: REM
GET#1,A$ COULD ALSO BE
USED
30 CLOSE1
. ... |

TRS-80 Color Computer

OPEN "mode", #num,"filename"
[,n] OPENS a file, where mode speci-
fies how the file will be used, num is
the buffer number, filename is the
name of the file, and n is the record
length for random access files.
Parameter n is not specified for
sequential access files—default=256.
The mode may be one of the
following: O for sequential output, I
for sequential input, D for random
input/output. Parameter num may be
0 for display and keyboard, —1 for
cassette, —2 for printer, or 1-15 for
disk drives.

]
will read one byte of data, AS, from
the disk sequential file named file.
Using 15 as a secondary address is il-
lustrated as follows:

10 OPEN1,8,15

20 INPUT#1,E,E$,T, S

30 IFE$<>"OK" THEN PRINT
E;E$;T;S: CLOSE 1: END

40 REMREST OF PROGRAM GOES
HERE

This routine identifies any disk drive
errors, for example, FILE NOT
FOUND. If E$="OK", no error
exists. If an error exists, then the
error number, error message, track
and sector are displayed. This routine
resets the error channel to normal.
Secondary address 15 is also used to
send commands to the disk operating
system. For example:

10 OPEN1,8,15

20 PRINT#1, "SO:filename"

30 CLOSE 1

will delete (SCRATCH, KILL) the
file named filename from the disk in
the drive. Secondary addresses of 0
and 1 are associated with loading and
saving and are undocumented and
seldom used.

COMMENTS

163

OPTION BASE

APPLEIle & I1+

The option base for Apple is always 0.
Thus, an array will automatically have
11 elements (0-10) if it is not
DIMensioned.

IBM PC & PCjr

OPTION BASE 1 sets the minimum
array subscript value to 1. Thus, if an
array is not DIMensioned, it will auto-
matically have 10 elements (1-10). If
you try to use OPTION BASE after
any arrays are DIMensioned or used,
an error will occur. In BASIC 1.1 or
earlier, a program that is being
chained cannot have an OPTION
BASE command.

If OPTION BASE is not declared, the
option base is 0. In that case an array
will automatically have 11 elements
(0-10) if it is not DIMensioned.

COMMODORE 64

The option base for the Commodore
64 is always 0. Thus, an array will au-
tomatically have 11 elements (0-10) if
it is not DIMensioned,

OR

APPLE Ile & I1+

OR is a logical and bitwise operator. It
allows an evaluation of two items, re-
turning True (1) if either of the
values is true or non-zero. The logic

IBM PC & PCjr

OR is a logical and bitwise operator. It
allows an evaluation of two items, re-
turning True (1) if either of the
values is true or non-zero. The logic

COMMODORE 64

OR is a logical and bitwise operator. It
allows an evaluation of two items, re-
turning True (—1) if either of the
values is true or non-zero. The logic

table for OR follows: table for OR follows: table for OR follows:
X y xORy .4 y xORy .4 y xORy
T T T T T T T T T
T F T T F T T F. T
F T T F T T F T T
F F F F F F F F F
APPLE Ile & 11+ IBM PC & PCjr COMMODORE 64

Use of ports on the Apple is not possi-
ble without assembly-language rou-
tines or extensive PEEKs and
POKEs, and is thus beyond the scope
of this book. A good reference on the
subject is The Apple Connection by
James W. Coffron.

OUT n,m sends a byte to a machine
output port, where m is the port
number—range 0-65535—and m is a
numeric expression representing the
data—range 0-255. OUT is the oppo-
site of INP, which reads a byte at a ma-
chine port.

Use of ports on the Commodore 64 is
not possible without the use of
assembly-language routines or exten-
sive PEEKs and POKEs, and is thus
beyond the scope of this book.

154

TRS-80 Models IV & I11 TRS-80 Color Computer COMMENTS
OPTION BASE 1 (Model IV) sets The option base for the COCO is
the minimum array subscript value to always 0. Thus, an array will automati-
1. Thus, if an array is not cally have 11 elements (0-10) if it is
DIMensioned, it will automatically not DIMensioned.
have 10 elements (1-10). If you try to
use OPTION BASE after any arrays
are DIMensioned or used, an error
will occur.
If OPTION BASE is not declared, the
option base is 0. In that case an array
will automatically have 11 elements
(0-10) if it is not DIMensioned.
The option base for the Model III is
always 0. Thus, an array will automati-
cally have 11 elements (0-10) if it is
not DIMensioned.
TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS
OR is a logical and bitwise operator. It OR is a logical and bitwise operator. It
allows an evaluation of two items, re- allows an evaluation of two items, re-
turning True (1) if either of the turning True (1) if either of the
values is true or non-zero. The logic values is true or non-zero. The logic
table for OR follows: table for OR follows:
X y xORy X y xORy
T T T T T T
T F T T F T
F T T F T T
F F F F F F
TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS

OUT n,m sends a byte to a machine
output port, where n is the port
number—range 0-255—and m is a
numeric expression representing the
data—range 0-255. OUT is the oppo-
site of INP, which reads a byte at a ma-
chine port.

Use of ports on COCO is not possible
without the use of assembly-language
routines or extensive PEEKs and
POKEs, and is thus beyond the scope
of this book.

165

PAINT

APPLE Ile & I1 +

Fill routines, such as accomplished by
PAINT, are not easily simulated on
the Apple in BASIC. Machine-
language graphics utilities are com-
mercially available for this function. If
the figure to be PAINTed is a regular
figure or has easily defined
boundaries, you can use PLOT,
HPLOT, LINE or HLINE to define
and fill them. For example:

10 FORy=y1 TOy2: FOR x=x1

tox2
20 HPLOT x,y: NEXT x: NEXTy

will draw a solid, filled box at x1,y1
with the diagonally opposite corner at
x2,y2. Note: x1 must be less than x2,
and y1 must be less than y2.

Similar algorithms may be defined for
other regular shapes. These algo-
rithms may be stored in subroutines
and recalled as needed. This is not
exactly the same as PAINT, but may
fulfill the same need in some cases
without resorting to machine
language.

IBM PC & PCjr

PAINT (x,y) [,color] [,boundaryl
[,background] fills in an area on a
graphics screen with a specified color
or pattern, where x and y are coordi-
nates within the outline to be filled. If
parameter color is numeric, it specifies
the color to use for filling. See
COLOR for valid numeric values to
use for color.

If parameter color is a string
expression—BASIC 2.0 or Cartridge
BASIC only—then “tiling’® occurs.
Tiling allows you to set individual
pixels in a specified pattern. A
detailed explanation of tiling is
beyond the purpose of this book.
Refer to the BASIC Reference
Manual, pages 4-204a through 4-204f
for a complete discussion, or Cartridge
BASIC Reference Manual pages 4-252
through 4-256.

Parameter boundary specifies the
color of the edges or boundaries of
the figure to be filled. Parameter back-
ground is a one-byte string expression
that is used when tiling.

COMMODORE 64

Fill routines, such as accomplished by
PAINT, are not easily simulated on
the Commodore 64 in BASIC.
Machine-language graphics utilities
are commercially available for this
function. If the figure to be PAINTed
is a regular figure or has easily defined
boundaries, you can fill it by repeat-
edly simulating HPLOT. For example:

100 REM HIGH RES SCREEN
ROUTINE GOES HERE

300 FORV=Y1 TO Y2 STEP
SGN(Y2-Y1)

310 FOR H=X1 TO X2 STEP
SGN(X2-X1)

320 GOSUB 1000

330 NEXT : NEXT

999 END

1000 REM PLOT SUBROUTINE GOES

HERE

will draw a solid, filled rectangle at
X1,Y1 with the diagonally opposite
corner at X2,Y2. Before calling this
routine the high-resolution screen
routine must be called. See HGR. Su-
broutine 1000 is the set-point
subroutine. See HPLOT. Similar al-
gorithms may be defined for other
regular shapes. Note that this is not
exactly the same as PAINT, but may
fulfill the same need in some cases

without resorting to machine
language.
PALETTE,PALETTE USING
APPLEIle & I1+ IBM PC & PCjr COMMODORE 64
Not available. Cannot be simulated. PALETTE lattribute] [,colorl Notavailable. Cannot be simulated.

(Cartridge BASIC Only) assigns the
number color to the attribute number
attribute. The range for each is 0-1,
0-3 or 0-15, depending on which
SCREEN is in use. See COLOR or
SCREEN for a list of valid color
numbers. If attribute is omitted, it
defaults to the maximum attribute for
that SCREEN. If color is omitted, the
attribute will be reset to its default. If
both attribute and color are omitted,
all attributes are reset to their default
values. PALETTE does not affect
background, only the objects or text

in the foreground color.
|

PALETTE USING [arrayname
(start)] (Cartridge BASIC Only) as-
signs the colors for attributes using
the values from the array arrayname,
starting at position start within the
array. The array must have at least 16
elements past position start. The
range for the elements is 0-15, based
on the number of attributes available
for that SCREEN. See SCREEN. If
you do not wish to change a color, use
—1 in the appropriate position in the
array. Also see COLOR.

156

TRS-80 Models IV & III

Because TRS-80 Models IV and III do
not have color capabilities, PAINT
cannot be simulated. See PRINT@ on
the Model IV and SET on the Model
I1I to create solid, regular figures.

TRS-80 Color Computer

PAINT (x,y),color,boundary fills a
figure with the appropriate color,
where x and y are the coordinates at
which to begin filling. Parameter
color—range 0-8—specifies the color
with which to fill. Parameter
boundary—range 0-8—specifies the
color of the edges or boundaries of
the figure to be filled.

Possible values for color and boundary
follow:

Black
Green
Yellow
Blue
Red

Buff
Cyan
Magenta
Orange

PLWN=O
00 N\ W

COMMENTS

TRS-80 Models IV & 111

Not available. Cannot be simulated.

TRS-80 Color Computer

Not available. Cannot be simulated.

COMMENTS

167

PCLEAR

APPLE Ile & I1+

Apple BASIC has no specific way to
reserve memory for graphics. This
can be a problem because the program
can write over the graphics screens.
You can, however, protect an extra
page of low-resolution graphics with
the following program lines, which
must be executed before the program
is loaded. This program calls the pro-
gram "filename", which would be
your main program.

10 POKE 103,0: POKE 104,12

20 POKE 2048,0

30 RUN "filename"

To protect your high-resolution

pages, use HIMEM:8192 if your pro-
gram is small. Or you can use the fol-
lowing program lines. They force
some low-memory loss, but not as
much as becomes unavailable by
using HIMEM:.

10 POKE103,1: POKE 104,96

20 POKE 24576,0

30 RUN "filename"

IBM PC & PCjr

The amount of memory available for
graphics is static on the PC. It cannot
be written over by the program.
Therefore, there is no need to simu-
late PCLEAR.

CLEAR Lin] Lml Lvll (Cartridge
BASIC Only) clears memory, where n
is the optional number of bytes you
want for BASIC workspace. Parameter
m is the optional stack space you
desire. Parameter v specifies the total
number of bytes to set aside for video
memory. Used alone, CLEAR frees
all memory, erases all DIMs, DEFs
and variable values, and sets any
SOUND, PLAY, PEN and STRIG
values to OFF.

COMMUODORE 64

The Commodore 64 has no specific
way to reserve memory for graphics.
This can be a problem because the
program can write over the graphics
screens. The high-resolution screen
used under HGR could be protected
by using the counterpart of HIMEM:
109 POKE 51,0: POKE 52,32
POKE 55,0 : POKE 56,32
CLR

Protecting other graphics pages could
be achieved in a similar way, but a dis-
cussion of that is beyond the scope of
this book because of the complex
nature of other graphics screens.

PCLS

APPLE Ile & I1 +

HOME clears the screen and places
the cursor in the upper-left corner in
the text mode.

To clear the high-resolution screen to
black, use the following call:

CALL -3086

To clear the high-resolution screen to

the most recent HCOLOR, use the
following call:

CALL -3082

IBM PC & PCjr

CLS clears the screen or the active
viewport to the current background
color and places the cursor in the
upper-left corner if the computer is in
text mode, or center of screen if the
computer is in a graphics mode.

COMMODORE 64

PRINT CHR$(147); will clear the
screen and move the cursor to the
upper-left corner of the screen.

168

TRS-80 Color Computer TRS-80 Color Computer COMMENTS
Because TRS-80 ModelsIITandIVdo PCLEAR n protects graphics '
not have graphics, there isnoway and memory, where n is a numeric expres-
no need to simulate PCLEAR. sion in the range 1-8. This specifies
the number of memory pages to be
reserved, protecting that memory
space from being used by the program
for other purposes.
TRS-80 Models IV & 111 TRS-80 Color Computer COMMENTS

CLS clears the screen, but always to
black.

PCLS Inl clears the current graphics
screen, where m is an optional
parameter specifying the color with
which to clear the screen. If n is
omitted, the current background
color is used.

169

PCOPY

APPLEIle & IT+

You can quickly move from displaying
one graphics screen to another with
the following program lines. If you al-
ready have the screens DRAWn or
BLOADed, you need not use lines 50
and 60. This code assumes that your
pictures were BSAVEd in the files pic-
turel and picture2. If you are switch-
ing to page 1, use line 80. If you are
switching to page 2, use line 90. Using
the code as it is will switch from page
1 to page 2 so fast you probably won’t
see page 1. You could put a counting
};)op in line 85 if you want to see them
oth.

50 PRINT CHR$ (4) ;BLOAD
picture1,A$2000 :REM
LOAD HI -RES PAGE 1

60 PRINT CHR$ (4) ; BLOAD
picture2,A$4000 :REM
LOAD HI -RES PAGE 2

70 POKE -16304,0: POKE
-16302,0: POKE -16297,0

80 POKE -16300,0: REM CALLS
PAGE 1

90 POKE -16299,0: REM CALLS
PAGE 2

IBM PC & PCjr

In the text mode IBM allows only
cight pages—numbered 0-7—when
the value of WIDTH=40. It allows
only four pages—numbered 0-3—
when the value of WIDTH=80. You
can switch between the page displayed
on the screen with the following pro-
gram lines, where v is the page
number of the page to be viewed. The
three commas are mandatory. See
SCREEN for an explanation of its
other features.

10 SCREEN ,,,V

BASIC 2.0 and earlier versions allow
only one graphics screen. The quickest
way to load a complete graphics
screen is to BLOAD it with the follow-
ing program lines:
10 DEF SEG=&HB8000 : BLOAD
filename,@

where filename is the name under
which you BSAVEd the screen.

PCOPY lsourcel, [destination] (Car-
tridge BASIC Only) where source and
destination are the numbers of valid
graphics pages. This command copies
the contents of source onto
destination. The range for source and
destination are determined by the
amount of memory required for each
(see SCREEN) and by the on-board
memory available as determined by
the CLEAR command.

COMMODORE 64

Simulating PCOPY on the Commo-
dore would require a machine-
language program, or extensive
PEEKS and POKES. Such discussion
is beyond the scope of this book.

160

TRS-80 Models IV & 111

TRS-80 Models IV and III have only
one screen available, so it is not possi-
ble to simulate PCOPY on them.

TRS-80 Color Computer

PCOPY source TO destination will
copy the contents of graphics page
source onto graphics page
destination. Parameters source and
destination may be in the range 1-8,
depending on the PMODE.

COMMENTS

161

PDL

APPLE ITe & I1 +

PDL (n) returns a value related to the
position of the joystick, where n is an
integer in the range 0-225. If values
other than 0, 1, 2 or 3 are used, PDL
will give erratic and unpredictable
results! Values of 0-3 will return a
“‘resistance variable”’ for